A Complete Bibliography of Publications in
Journal of Computational Chemistry:
2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
30 December 2017
Version 1.30

Title word cross-reference

\((N - 1) [ACD^{+13a}, ACD^{+13b}] \quad (\sigma^3, \lambda^3) [TR12] \quad (\sigma^3, \lambda^3) [TR12] \quad + \quad [CXW14, GTK10, NMLD13] \quad 0 [UD12] \quad 1 [MG15, TS15b] \quad 1 - n [CYG^{+15}] \quad 10 [AC11b, TS15b] \quad 13 [WYGW12] \quad 15 [AC11b] \quad 17 [GZZ12] \quad 18 [LW16] \quad 2 \quad [CWT^{+12}, GSS13, MSBF16, MH10, SJD14, WvRSM14, YDL^{+10}] \quad 20 \quad [AC11b, LYL16, YVEI^{+17}] \quad 24 [TS15b] \quad 3 \quad [AARP17, CM16, DVVP14, GMMH^{+16}, GSS13, GPK12, LTT16, MG15, MA16, MYT^{+14}, MSSP17, PSS14, RVCFF13, TS15b, YLL11] \quad 4 \quad [AFSW16, GWJJ12, ZTH^{+15}] \quad 4d [Hil13] \quad 4f [Hua16] \quad 4 \times 1 [LGKS17] \quad 4 \times 4 \quad [SH14] \quad 5 [APY^{+16}, LZH16, YLL11] \quad 5^{12} [MKH15] \quad 6 \quad [MCAY15, Rab12, TSZQ12] \quad 6^2 [MKH15] \quad 6^3 [MKH15] \quad 6^4 [MKH15] \quad 8 \quad [TN12] \quad 8 \times 2 [LGKS17] \quad 2 + 2 [LXFC17] \quad 5 + 1 [YZL^{+15}] \quad 5 + 2 \quad [LXFC17] \quad [n] [uLhY11] \quad + [DDM^{+15}, FD16, LCL^{+10}, LdSRR16, LCWW10, RLA^{+11}, RRF11, SFBT17, UT14, YCGA10, YZ15b, ZCK^{+16}, ZWY^{+10a}].\)
WKC10a, YHK15, ZXS+10, ZLY+16, ZBB16]. 48 [YW12]. 5 [Bac12, CG12, Ibr17, JLS+10, PBE16, RDT14, SJD11, STS+10, SSX+14, XFX+16]. 56 [TFQ+11]. 57 [SNKS10]. 5a [GWT+17]. 6
[BTMS12, BS16b, Cas14, CG12, GBGR16, KV14, LLL+12, OPR16, SWMV10, SSX+14, Tak11, WMW11, WRT+17, YHK15, YOPB16, YHW17]. 60 [KP10, LLC17, MSV16, RLA+11, SKMS13, SBW12, TFQ+10, WLW+10, WCY+11, WL14, YDGZ15]. 62 [GWT+17]. 7 [GBGR16, OPR16]. 70
[ZSL+11]. 71 [VL17b]. 76 [ZYG+14]. 8
[WWKS16, WCL+11, YW12, YOPB16]. 84 [FL15]. 89 [SNKS10]. 9 [Cas14]. 980 [WTH+16]. A [GK15a, SK15a, WGN+16, SK12, SK17, Zha12b, Zha12a].
\text{ax} [SNDK16]. \text{CARBO} [PLH16]. d [Sch13]. \text{glyc} [PFVL14]. k [GM17]. H
[HCD]. 10
[HNN]. N
[HOM+16, LGW12, RWR+13, YZGS14b, Yu12b, Yu12a, ZYR+15, ASS10, AC11b, CKL+11, GTF10, GWJ11, GWJJ12. JM11, JLH+14, MCAY15, NC14, PZBA13, Rab12, RVCFF13, SN16a, TN12, Tak10, Tak11, TSZQ12, TS15b, WYGW12, XhD15, YVEI+17, vSGP10]. + [ABB+12, ABB+13]. −
[GZZ12, GWJJ12]. −/0 [YLL11]. nV [PZBA13]. x [CWT+12, LZT10, SB11].
\text{ze} [YZWC11]. a [TN10].
[CCHO14, DBG11, DB12, FFA14, HPT16a, HHT+13a, HHT+13b, LJW+11b, LDH+14, NDU14, RWR+13, SWMV10, SH14, SKY+11, WXL+12, WCAH10, XLYZ10, YR13, YZL+15, ZYR+15, ZKH+10, LFB14]. B [GWX+12]. 1
[HSH15]. β [AKMT11, BLS10, CYY+17, CCOH14, DBG11, HPT16a, IO13b, LLvG10, LJW+11b, LvG13a, LvG13c, LJL+11, NGAS17, yOaCG10, SKY+11, WS10, WXL+12, XWSW13, YZ17, XZ11, ZBP11, ZP13, ZKH+10].
\beta_2 [CV12, VKC10, LLHM16]. c [TN10].
[BH13, LZX+15b, RAGL11, YHK15, BZHI4].
[CROB16, VVJ15, WvRSM14]. [CCCLCGRO14]. [YZZ+17]. \chi [DPSL16]. \chi_1 [SZBM13]. \chi_2 [SZBM13]. d
[CAT+13, JSW15, KTK17, MCK17a, SM17, TDKT10]. d^6 [TS15a]. d_4 [Kow11]. e^− [HBL12]. e_2 [WCY+11]. \eta^2 [RHPWS13]. \eta^6 [ZCK+16]. f
[CAT+13, JSW15, MCK17a, TDKT10]. f^n [BBG+18]. γ
[BTB+11, DBG11, YLCX10]. J [KNP+12, LHZ+11]. k [Hug14, YS15]. κ
[YRSS10]. λ [BH15]. λ^3 [SLT14]. λ^N [XHLH16]. ↔ [RSK+15]. m = 2
[TS15b]. m = 2, 3 [TS15b]. \mu [RHPWS13]. N
[AARP17, HPT17, JSW10, KYCL11, KYKR15, SKK11, LHL+10, LXZ+10, MB16, PHT17, QZM11, RF15, YLZ+10, ZYW+10a, ZBP11, dSDLBW17, BLBG+13, BS10b, HCB11, JLH+14, LXFC17, RRF11]. n + m = 4 [XhD15].

n + m ≤ 3 [GTT10]. n = 0 [MCAY15]. n = 1
[GWJJ12, Rab12, RVCFF13, TN12, TSZQ12, YLL11, TS15b]. n = 1, 2
[ABB+12, ABB+13]. n = 10 [TS15b]. n = 12 [YVEI+17]. n = 2
[WYGW12, TS15b]. n = 4 [GZZ12, TS15b]. n = 5 [AC11b]. n ≤ 20 [ASS10].

n ≤ 25 [Tak11]. n ≤ 55 [Tak10]. N \log N [AO10]. O(N) [BLS11]. O(N \log N) [FGM11]. p [HNN+17, MCK17b]. π
\[q = 0, +1, -2 \{X_{\text{Ba}}, R_{\text{CM}^{-1}, 13b}, \rightarrow \}
\]
\[\{\text{CK}10, \text{Chu}10, \text{GTK}10, \text{H}12, \text{HBL}12, \text{LWD}13, \text{NMLD}13\}, S_1 \{\text{KKL}^{+13}, \sigma \}
\]
\[\{\text{DPSL}16, \text{GZZM}16, \text{LZL}^{+15b}\}, \sigma \{\text{CZY}11, \text{YWZ}14\}, \text{A}^1 \text{A}’ \{\text{MCLD}10\} \times \{\text{SR}14\}, v = 0 \{\text{LWD}13\}, x = 1 \{\text{CWT}^{+12}, \text{LZTV}10\}.
\]

- \{\text{AKM}11, \text{CAT}^{+13}, \text{DBG}11, \text{JXS}15, \text{LWX}16, \text{LXFC}17, \text{MCK}17a, \text{RHPWS}13, \text{SKY}^{+11}, \text{TDKT}10, \text{YYT}12, \text{ZKH}^{+10}, \text{AMK}11, \text{KYCL}11\}. - 5 \{\text{LL}10c\}, - \text{A} \{\text{Y}JN^{+11}\}, - \text{acceptor} \{\text{MIS}^{+15}\}, - \text{Ac} \{\text{LHL}^{+10}\}, - \text{acetals} \{\text{Y}ZL^{+15}\}, - \text{Aceto-} [\text{SJD}14], - \text{acyethyl} - \text{ZBP}11, - \text{acylation} \{\text{LHL}^{+10}\}, - \text{adrenergic} \{\text{LL}HM16, \text{VK}10\}, - \text{AI} \{\text{YR}13\}, - \text{alkenoyl} \{\text{Y}ZL^{+15}\}, - \text{alumina} \{\text{SH}14\}, - \text{amination} \{\text{Y}Z17\}, - \text{amino} \{\text{ZKH}^{+10}\}, - \text{aminopolycarboxylate} \{\text{CM}D13\}, - \text{arene} \{\text{ZCK}^{+16}\}, - \text{atomic} \{\text{JXS}15\}, - \text{ATPase} [\text{H}10], - \text{azacrown}-5 \{\text{WY}W^{+10a}\}, - \text{barrel} \{\text{yOa}CG10, \text{WXL}^{+12}\}, - \text{based} \{\text{EP}15, \text{PE}16, \text{BPE}16, \text{EBK}13, \text{LFB}14\}, - \text{benzaldehyde} \{\text{Lu}11\}, - \text{bipyridyl} \{\text{KPL}15\}, - \text{block} \{\text{CAT}^{+13}, \text{MCK}17b, \text{TDKT}10\}, - \text{bond} \{\text{CK}1L11\}, - \text{bound} \{\text{XWS}13\}, - \text{butanol} \{\text{BS}10b\}, - \text{butene} \{\text{MSBF}16, \text{WvR}5M14\}, - \text{butyl-} [\text{MG}15], - \text{butylbenzene} \{\text{HCB}11\}, - \text{carboxylates} \{\text{AARP}17\}, - \text{carribose} \{\text{YS}R10\}, - \text{catalyzed} \{\text{Y}XZ1\7\}, - \text{conjugated} \{\text{BLG}^{+13}\}, - \text{coumaric} \{\text{HNN}^{+17}\}, - \text{coulplings} \{\text{LZH}^{+11}\}, - \text{Cu} \{\text{NGA}17\}, - \text{curcumin} \{\text{AMK}11\}, - \text{cyclodextrin} \{\text{DBG}11\}, - \text{dimensional} \{\text{MB}16\}, - \text{dimethylaminophenyl} \{\text{YL}Z^{+10}\}, - \text{effect} \{\text{RWR}^{+13}\}, - \text{electron} \{\text{KTK}17, \text{LW}16, \text{LYL}16, \text{HPT}17, \text{PHT}17\}, - \text{erythrose} \{\text{SM}17\}, - \text{expanded} \{\text{ML}Q^{+12}\}, - \text{F}12a \{\text{MLCD}11\}, - \text{form} \{\text{GW}X^{+12}\}, - \text{glucosamine} \{\text{ZBP}11, \text{ZP}13\}, - \text{glycine} \{\text{DB}12\}, - \text{H} \{\text{LJW}^{+11b}\}, - \text{hairpin} \{\text{LJW}^{+11b}\}, - \text{helices} \{\text{HHT}^{+13a}, \text{HHT}^{+13b}\}, - \text{helix} \{\text{CC}OH14, \text{WX}L^{+12}\}, - \text{heptane} \{\text{R}RF11\}, - \text{heterocyclic} \{\text{KY}K15, \text{LX}Z^{+10}, \text{RF}15, \text{dSD}LBNB17\}, - \text{hole} \{\text{GZZM}16, \text{LZL}^{+15b}\}, - \text{hydrogenase} \{\text{GS}11\}, - \text{hydroxyl-dimethylnitrosamine} \{\text{FFA}14\}, - \text{hydroxybutyrate} \{\text{SJD}14\}, - \text{hydroxymethylfurural} \{\text{APY}^{+16}\}, - \text{hydroxysteroid} \{\text{ZX}11\}, - \text{inhibitor} \{\text{LJJ}^{+11}\}, - \text{iodes} \{\text{SL}T14\}, - \text{ keto} \{\text{LYZ10}\}, - \text{LEUS} \{\text{BH}15\}, - \text{like} \{\text{WGN}^{+16}\}, - \text{maltose} \{\text{SW}M10\}, - \text{metalloid} \{\text{MMS}16\}, - \text{methyl} \{\text{LZL}^{+16}\}, - \text{methyl-Imidazolium} \{\text{MG}15\}, - \text{methylacetamide} \{\text{KSK}11\}, - \text{methylation} \{\text{QZM}11\}, - \text{methylbenzyl} \{\text{NDG}14\}, - \text{methylformamides} \{\text{JSW}10\}, - \text{montmorillonite} \{\text{B}HB^{+17}\}, - \text{N-benzyl-N-} \{\text{NDG}14\}, - \text{naphthol} \{\text{Hug}14, \text{YS}15\}, - \text{nearest} \{\text{Hug}14, \text{YS}15\}, - \text{nitroaniline} \{\text{ZTH}^{+15}\}, - \text{nucleophile} \{\text{ZYR}^{+15}\}, - \text{alanes} \{\text{Y}Z15b\}, - \text{orbitals} \{\text{MCK}17a\}, - \text{organic} \{\text{AH}10\}, - \text{oxo} \{\text{VB}MA13, \text{RHPWS}13\}, - \text{oxoalkyl-substituted} \{\text{AARP}17\}, - \text{Pd} \{\text{dSD}LBNB17\}, - \text{peptide} \{\text{LV}G10, \text{LVG}13a\}, - \text{peptides} \{\text{LV}G13c, \text{ZKH}^{+10}\}, - \text{peroxy} \{\text{RHPWS}13\}, - \text{phenyl-azacrown-5} \{\text{Z}WY^{+10a}\}, - \text{phosphano} \{\text{KY}K15\}, - \text{phosphoranes} \{\text{TR}12\}, - \text{pinane} \{\text{BLS}10\}, - \text{pinene} \{\text{BLS}10\}, - \text{pleated} \{\text{WCA}H10\}, - \text{point} \{\text{BT}B^{+11}\}, - \text{proline}

5 [ZZWX11, cCVG+14, LL10c, Mor15, Pon10, SOvG12]. 5-b [YLZ+10]. 5'-bridged [ZZWX11]. 5-nitroimidetrazolate-based [ZYL+12]. 5-triazine [WDLG12]. 5-triazines [YPC+10]. 5-triene [ABDGN12]. 53A6
[PFVL14, LGL11]. 54A7 [LvG13c]. 56A6 [PLH16].

7 [ADF+10, MBR+15]. 7-azaindole [YYT12]. 7-tetraene [ABDGN12].

8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZHH11]. 8R [BG13].

= [ASS+17, CXS10, GPK+16, EPH+15, JLH+14, JJAB16, JJJ16, LDJ+10, LLL+11, LZJ+11, Li14a, Li14b, LGW12, LCWW10, LWD13, MCK17a, MCK17b, PGS+15, PMG+16, Rab12, RDT14, SPS+12, SLJ12, TLDG+12, TFO+11, TG12h, UT15, WWKS16, XhD15, YW12, YS13, YHCS11, ZYLL12, ZLLL12].

Ben17, CCLP12, CSGOA17, CRZ+18, DKE+17, GAI13, GBW+14, GWZX12, HRC13, LC17b, LZZ14, MAK+14, ME10, MFR+17, NHH16, yOTn16, dRL11, RB13a, RCR+16, RDDS10, RR14, SH15, SS16b, VAMS14, VDVR14, WXS+12, WJG+13, WX12, XZSL11, YOMT14, dVZ17, dSAdSL13.

Accurately [Bow16, LFB14, MA16, Zha12b]. ACE [WCDM11, LHL+10].

acetaldehyde [AS11, AAMD+11]. acetals [YZL+15]. acetamides [JSW10].

Aceto [SJ14]. acetohydroxyacid [XLYZ10]. acetonitrile [RS14].

acetyl [ZBP11, ZP13]. acetylacetone [SJWE10]. acetylation [FHK+12, IMK+16, LHL+10].

acetylcholine [SRA17]. acetylene [GRCL12, HSY+11, LT13, Tak10].

achieve [PH17, RAR+11]. achieving [NNK+16]. Achim [Spr10].

acid [BLG11, CYY+17, CC18b, CFC15, CM16, CB11d, FD14, FZL+15, Fel10, FP17b, FCE15, GRL+11, GRL+12, HPT16a, HGY15, HCP15, KLS10, KMLS10, LBC+12, LXL+11, LFM12, LP11b, LPMT17, MSLS10, MRO17, NHF+10, OXW16, PHDH13, SISK10, SZBM13, SBW12, SV11, TL16, VMPS17, WC14, WG12, XVN17, ZSB+11, ZWP11, ZHHX11].

acid-catalyzed [CYY+17]. acid-water [TL16].

acid/base [VMPS17]. acidic [APY+16, YDX16]. acidities [ALK+15]. acidity [CRZ+18, CPK12].

Activation [Niz13, AALCM11, DR11, DSM+11, FB12, MRR11, MBFG15, TS15a, WC11, XLYZ10, YXZZ17]. activation-strain [FB12]. activator [BM12].

active [AIGP15, Cas13, DPB+12, LZTV10, PDC+16, SCSW13]. active-space [PDC+16]. actives [EOO+16]. activity [BPC13, DXL+10, GA13, GHL17, GFPSD17, MJLV14a, RCM+13b, SLY+10, TD10, TTB+11, YB13, ZsA10].

acute [TTL+12]. acyclic [ZKH+10]. acyl [PS10]. adamantane [EHSP16].

adamantane-based [EHSP16]. adapted [FF11, SSSM15, TH13, YKH15].

Adaptive [ISK14, KEMP17, LZS+17, AOW11, BGR13, DSK17, FHMB15, HDM+15, MJ14, MBFP15, MJG+15, OZ14, PN13, SNS13, WMW+10].

adrenergic [CV12, LLMH16, VKC10]. adsorbate [GBS+17]. adsorbate-induced [GBS+17]. adsorbed [MCF10, PXXW10, SLLL13, SIG+15]. adsorbents [HVS16]. Adsorption [CCJ+11, FVP14, HB15, KD10, LH14b, PH12, AS15a, BS16b, CMM18, CR14, cCVG+14, Hei10, LL13a, LPK16, LPLS16, LZ14, LT14, LCM+14, NPP13, PGC12, PLZ17, RHHN10, SH14, SDB+16, SKTT11, SYZ+17, VS14].

affinity
[CG15, CZAF17, DLZ15, MCK17a, SSP+13, VL17a, ZJZM13, ZYvIZ14].

algebraic-diagrammatic [YD17]. Algorithm [WM12, AMGB10, AM10, AYYO17, BW11a, BYE+16, BDdS13, CM13a, CDBM11, CVT+11, CM13b, CB11b, DS15, DJ13, DLSA14, DZA11, FRLN10, GFG11, GPE13, GBFD12, HTS15, HEMCZE+14, HQC16, HKR+14, Hug14, Ish10, IHJ+13, JPC11, KK17a, KNN16, KN17, KDT+12, LZX16, LZL+13, LZLMP16, LZS+17, LLLJ12, LTA+11, LMA15, NYN17, NC12, NG10, dRL11, PS17, RMPAM15, Ras17, RSL16, SRSLO15, SYH12, SMMW09, SCSW13, SA11, WMW+10, XHLH16, YVEI+17, ZSS+13, vLBR12].
[BD11, MRB14, BCP+10, HPT17, LZS+17, PHT17, SWA13, WES13].
anapole [ZPP+16]. anatase [HRL11]. and/or [KB10, Pog10].
androstenedione [VCM15]. angle [CP10, GBFD12, XML+15].
angle-dependent [CP10]. angles [BKLA13, EJ13, FZY+12, GREA11, LDH+14, OZ14, YZ16].
anisotropy [CGP12, LPLB16, ZLZ14]. ANN [XWW+11]. annealing [RHJ11, SHMO11, SHL+11, ZC14, LMZ11a]. annihilation [BL12].
aplicable [CL16, WGL+11]. Application [AFBR17, BAMR13, BPE16, GCCM15, HTS15, LDG+15, MBA11, MH10, OL13, PAK15, RVP+11, SMP17a, SRS14, SC17, SDL14, SMM+18, VKTRJ15, WH11, ZsA10, vSGP10, CSaDO17, DGP14, Elk16, GLB16, GFG11, GCW16, IUK+11, KFY+13, KSK11, LLHM16, LP11a, LLL+10, LLLC11, LyG13c, MDTD13, PHC13, RZG+13, RCM+13b, SN16a, SLX+15, SYH12, VV14, VK10, WCDM11, You10, AFP13, BD11, CZNA11, Fer13b, Fer13a, FCQGM12, GA13, HYUS11, KUDG12, MCC11, Pet11, PW12, TSQZ12].
Applications [KGHC15, LCPS13, LCA17, APK14, CGPP11, Fel10, GBFD12, HZY+10, HCD+10, IO13b, KKO+16, uLhY11, LJR+12, MG11, SSSM15, SGM+13, ISP+10]. applied [BLG11, CTP13, GKR13, KKR+13, LTT16, Ray13, RKG11, SZTSM10].
Applying [KB11a, ZSL17, CC11]. approach [ACD+13b, BPE16, BVH17, BGR13, CCLP12, CRZ+18, CHEC13, CSX10, DK11, DGP14, DVP14, DFF+15, DHE+12, FRA14, Fer17, FNSF+11, FCCP17, FD16, FSD+18, GPE+13, GZ14, GH16a, HRC13, HDH12, HNX+17, HHBY10, HZS17, JCX10, KV12, KV13, KSK11, KT10, LLTC12, LHI14a, LG14, MZZ11, MGWR12, ME10, Mor15, NO16, OT12, PRP15, PMC+17, PSdPE+10, PH10b, PBE16, PPU10, PFL+16, PKG10, RB12, RVP+11, SLT14, SEF+16, SH11b, SY16a, Sti15, SLL13, SGH+16, SM17, TAG16, TSR+16, VVLG17, XZ11, YKO+11, ZSL17, ZI10, GFG11, ACD+13a]. approaches [BH13, CME11, DBM+17, ECZWD17, HBI+17, LSH+11].

Baoshan [JW12]. bare [SM17]. barrel [LJR+12, yOaCG10, WXL+12].
bonding-induced [YLZ+10]. bonding/back [PKK17]. bonding/back-bonding [PKK17]. bonds [DBG+13, EDI5, FPRS14, HH15, Jab14, JJ16, LZ+11, LZL+15, LZY12b, LDG+15, OOK11, Rob13, SM16\text{a}, SK13, SJ16, YLL11, YKH15, YJ17, ZLY+16]. BonnMag [BBC+18]. Book [Sch10, Spr10]. boost [KV15\text{a}]. borafflourenes [ZQ14]. borane [BEP\text{M14}, Kop15\text{b}, LC10, SJZ+15]. borane-cyclic [LC10]. borates [GWJ\text{W12}]. border [SK12, SK17]. borides [ZWM\text{W10}]. born [AB16\text{b}, BLZ+13, DSF17, FCE15, KCP\text{MG12}, LL10\text{a}, LCH10, PS13, RS\text{B}13, SZ\text{TS}10, SSBW14, VMPS\text{17}, WWKS\text{11}]. boron [BEP\text{M14}, GAMAC\text{14}, LT\text{14}, Oht16, PGC\text{12}, VS\text{14}]. boron-doped [VS\text{14}]. boron-nitride [LT\text{14}]. boryl [LC10]. BOSS [VKTRJ15]. BOSS-Gaussian [VKTRJ15]. Bosutinib [GMASBF16]. both [AST+16, FNS\text{F11}, LX11, TH13]. bottleneck [SRR\text{16}]. bound [FLM11, GPK+16, LFM12, MAK+14, PMG+16, PZA15, XWS\text{W13}]. boundary [KB14\text{a}, Lun12, MT\text{vG12}, NO16, PL14, PS13, Sie15, VECT12]. bounded [Pol13, SL10]. bowls [WL14]. box [Pla11, WS13]. boxB [XHLH16]. Boys [WO15]. bptz [CWT+12]. bpy [LWXC16]. Br [ASS+17, EPH\text{+15}, LDJ+10, LLL\text{11}, LZJ\text{+11}, PMG+16, YS13, ZLLL12, LZL+15, MKH15, XhD\text{15}, ZWY10]. Branch [Ish10]. branching [BEL+11, OZ\text{LSBH12}, STM17]. BrBr [LGW12]. Breaking [HRID16, SRR\text{16}, WWW\text{W18}]. bridge [CVG\text{14}, PH15]. bridged [KGR+16, ZLZ\text{14}, ZLY+16, ZZWX11]. bridges [MLY+13, PH15]. Bridging [YLP\text{11}, dCD\text{P15}, LJJ\text{+11}, MIS+15, BPC\text{13}]. Bringing [RR\text{11}]. broad [TZ12]. bromide [MG\text{15}]. bromination [SGS+16]. Bromine [LWL\text{16}]. BR\text{OMOC} [DMN\text{15}]. Brooker [TYN\text{15}, TKYN\text{17}]. Brooks [HIS\text{17}]. Brownian [DZ\text{T11}, LJR\text{+12}]. brushes [DQ\text{16}]. btmgp [RHT+15]. buck [KPF+15]. Buckybowls [HVS\text{16}, CCCL\text{RO14}]. buffered [MJG\text{15}]. build [APK\text{14}]. builder [KOY\text{+12}, GS12, WCJ\text{+14}]. Building [MB14, CB\text{P14}, GS12, KSW16, MJBM12, RLG14, Tak11, TJB\text{12}, VVY\text{17}]. building-up [Tak11]. build-up [SS\text{13a}]. built [FC\text{PJM14}, KOP\text{+14}]. bulk [BC13, Man13, MBC13, NNS15, PAK15, QZ\text{10}b, RRC+15, VBB\text{13a}, VVB\text{13}]. bulky [SL\text{C17}]. butadiene [MCC\text{11}]. butane [WK\text{C11}]. butane-like [WK\text{C11}]. butanol [BS\text{10}]. Butene [CS\text{M16}, MS\text{BF16}, W\text{vRSM14}]. butterfly [NDG\text{14}]. butyl [MG\text{15}]. butylbenzene [HCB\text{11}]. BX [YKH15].

C [Ld\text{SRR16}, LAH\text{S16}, LDL\text{17}, LC\text{WW10}, LWD\text{13}, MLQ+12, MK\text{C17\text{a}, MCK17\text{b}, PS\text{G16}, RLA\text{+11}, SK\text{MS13}, STS\text{+10}, SBW12, Tak11, UT15, WC\text{y+11, WWKS\text{16}, YZZ+17, ZYG+14, ZLY+16, BS16\text{a}, VAMS\text{14}, Ben17, B\text{WKW10}\text{a, BS16}, BH13, CG12, ED15, FL15, GWT+17, GMSV\text{14}, GZ\text{Z12}, HJ13, HVS\text{16, IMK\text{+16}, JLS+10, KV14, KP10, LFB\text{14, LLC\text{17}, LDH\text{+14}, MSV\text{16}, MH11, Niz13, OPR16, PTK\text{11, Pie14, PZ\text{BA13}, RWR\text{+13}, SND\text{K16, TF\text{Q\text{+10}, TF\text{Q\text{+11, TS\text{15a, VAR\text{12, VED\text{10, WKC\text{10a, WL\text{W\text{+10, WS\text{10, WL\text{14, W\text{TH\text{+16, Yes\text{12, Yes\text{15, YDGZ15}]}]. C-termi

C2

Calculating [PNI13, SK12, WNP+16, WWD14, CPK12, EFS16, EPD+11, HAI+16, OK16, SM16a, WYT17, dRBO13]. Calculation [Fer13b, Fer13a, KSH13, MMJ10, MS15, SH11b, SOD+11, SOvG12, AC11a, Bac12, BW11a, BK17b, BD11, BL12, CHG+16, CG15, CX10, DKE+17, DSX+11, FD14, FGM11, GREA11, GCW16, Han11, JIS13, KNHN16, KN17, KB16, KDB13, LFN+10, LLW12, LZW+11, MYT+14, MLC13, MS12, NYN17, NFPD13, PDMT10, PAK15, Pie14, PW12, ROI4b, RZ16, RB12, RRK16, SBV10, SLIB12, SCSW13, SACdG14, SMM17, SR11, UT15, VVV+15a, VVG11, WCY+11, ZLL12, HH10].

Calculations [HBI+17, AR10, AAC+16, BE12, BLL13, BS10a, BTMS12, BH15, Bou14, BG12, BLZ+13, CR14, CCJC10, CS17, CCKK16, CMvG10, CXS10, CHKR10, DCH+11, EFAC13, EK17, EWK+13, EP12, EB12, EBK13, FAA15, FE14, GRAR0+14, GMO16, HASR+12, HYL+11, HS14a, HB14, HSH15, Hei13, HG10, HG13, HBL12, HYUS11, Ibr17, JCG+11, KK17a, KB10, KNN11, KGHK12, KKR+13, KERY+16, KCPMG12, KKL+13, KSH+17, LED0LdV17, LMZ11a, LCH10, LYC+13, LCA17, LvG13b, LCM+14, Lun12, MK17, MCLD10, MCK17a, MCK17b, NJ1+17, OHL12, OOT15, OZLSBH12, PBLdS12, PTK11, PHK14, POB13, PBBP11, PDG+16, PN13, PGW+17, RAR+11, RHT+15, RLD12, RR11, REV+17, RI01, RK15, SH15, SRSLO15, SP13, SSI16b, SCW11, SWPR11, SRS14, SMP17b, SMDS13, SH17, STT11, TLDG+12, TS10a].

[HRB$^+_{17}$, ZSB$^+_{16}$]. cavities/vacancies [HRB$^+_{17}$]. cavity [ZWS$^+_{10}$].
CAVS [SDZ17]. CB [BTMS12, CC18a, ILKR11]. CBS [KG15]. CBS-QB3 [KG15].
CC [Gii11, LLTC12]. CC2 [SGWA17]. CC3 [LZ14]. ccCA [RJWW12].
CCSD [BBI$^+_{11}$, CSLOA17, Gii11, KK17a, KKL$^+_{13}$, MVKS10, OPR16, PIC14, RS13, SRR16, SB14, YJ17].
Cc [SLIB12]. CDOCKER [GLB16]. C == [CROB16]. Cc [Ibr17, YOPB16].
cefotaxime [MFM$^+_{12}$].
cell [ACS12, CGBK13, Elk16, Fom11, Gon12, JMS14, SRL$^+_{15}$, VÀA14, dACP12].
Cells [FPV13, ACS12, DZA11, DGL$^+_{13}$, JYS$^+_{12}$, LZZ15a, SV11, SLC$^+_{17}$, TZ12, YJN$^+_{11}$].
cellular [VBD11].
Cellulose-Builder [GS12].
cementite [VED10].
cementite-type [VED10].
cementitious [TZ11].
CENSALC [SDMS13]. census [PPUBGD10].
center [IF$^+_{10}$, LRER13, YLL11, Yu12b]. centered [VI17]. centers [Gav12, WC14].
central [DGL$^+_{13}$, Yu12a].
centrality [RNVP13].
centric [LABSG17].
CEPA [Sch12, SB14].
ceramics [RKB$^+_{14}$]. cerium [SRL$^+_{15}$].
CF [JCG$^+_{10}$, NMLD13, RVdMB16, ZLL12, AR10, CROB16, NMLD13, ZZL$^+_{10a}$].
CFCF [NMLD13].
CH [AR10, LWD13, LJG$^+_{11}$, OZLSBH12, TLdG$^+_{12}$, WHZ12, ZZL$^+_{10b}$, ZYLL12, ZLL12, BS16b, CK10, CXW14, GY12, HVS16, JCG$^+_{10}$, KBC12, LW12, LGW12, LLTC12, LJG$^+_{11}$, MCU15, OOK11, RVCFF13, TCPPC14, VY17, VDVR14, WHZ12, ZZL$^+_{10a}$, DR11].
CHA/ [OOK11].
chaff [NMF$^+_{14}$]. Chain [vRWGS17, BFH$^+_{13}$, CHKR10, HAL14, KV14, KLS10, KMLS10, LPS$^+_{13}$, LZGS11, LP11b, LvG13a, LZLMP16, OZ14, PD12, PS10, QZM11, SA13, SISK10, SZBM13, TSN16]. chains [AFSW16, FP17a, JSW10, LZZ14, NPP13, Pla11, PLH16, TLdG$^+_{12}$, TS15b].
chalcogenides [SPS$^+_{12}$]. chalcone [CPLL11, YZ17].
challenge [SDM$^+_{16}$].
Challenges [HGY15, KHWB17, HLvdV13].
challenging [CAP17, VT14, WLF11].
change [EMD17].
changes [GDV17, GBS$^+_{17}$, HB15, LI13, MSL14, MO17, RO14b, YZGS14b].
Changing [XVN17, LLvG10]. channel [HYV13, PVL$^+_{13}$, SFBT17, SY16b, TCX$^+_{13}$]. channels [KC13a, LL10c, OKIS17]. character [BMB13, Cas14, Ibr17, RJJ$^+_{11}$, YSSB12]. characteristics [DPSL16, Gav12, LT14, Mat14, RDT14, TZ11]. Characterization [VT14, XWSW13, CBP$^+_{15}$, DGL$^+_{13}$, GBW$^+_{14}$, GZD12, Kop15b, MJBM12, MPA10, RNP13, ZYG$^+_{14}$].
Characterizing [LH11, PRSG13, Shf12, Yu12b]. characters [LSH$^+_{11}$, ZZL$^+_{10}$]. Charge [CMF$^+_{17}$, JM11, RDT14, SFDE16, AS15b, ANH$^+_{11}$, ALH$^+_{10}$, BCSCJ$^+_{13}$, BE16, CS14, CBTZ16, CMS13, Cor17, DS12a, DWR17, DADGR15, EFAC13, ENKK$^+_{17}$, GMG$^+_{10}$, HLWD15, JCGVPHT17, JZZM14, Kan15, KVR10, LLL11, LPE$^+_{10}$, LBDP12, MSV16, MHRR11, MPBJ11, NN18, OWB12, PL14, PTB$^+_{15}$, RO14b, Ric16, REL17, SPS$^+_{12}$, SSGS15, SMP17a, SFLG$^+_{17}$, SLC$^+_{17}$, TN10, TKNN10, UT15, VPR10, VAR12, VL17b, WCT$^+_{11}$, WWCL15, YKO$^+_{11}$, YWZ14, YLZ$^+_{10}$, YJ17, ZDZM13, dLC17].
charge-assisted [SSGS15]. charge-inverted [UT15, YJ17].
Charles [HS17]. CHARMM [MSK12, AKMYB18, BF17, DPNM11, GLB16, GZM11, HBJ17, HC14, JCL17, KLJ17, KYB13, LZdIL10, MSK10, MMZW14, RR14, VHA10, WCJ14, XVA16, YHVM12].
CHARMM-based [MMZW14]. CHARMM-compatible [KYB13].
CHARMM-GUI [HBJ17, KLJ17]. CHARMM27 [ST11].
CHARMM36 [HM13]. CHATT [Bac12].
CHClCH [WLHZ12]. CHEAP [MVKS10]. CHEAP-path [SA13]. CHEAP [HIS17].
CHEM [ABB13, CHR12b, HNWF12, ICS13, Kne11b, MSK12, RK16a, SFCCK15, SMM15a, GCC14, GKV13].
CHEMICAL [BLG10, BCP10, JCGVPHT17, OM12, SLLL13, VGL16, ALK15, ASS17, AAC16, APA14, Bac12, Ben17, Bou14, Cam15, CHP11, DKE17, DS12a, DI11, DB12, EOA11, FB10, FVB10, GH10, GGM12, GPMSM11, GPGSM12, HPT16b, HHDIC16, HJ13, Ihl12, JKS16, KV12, KASH14, KP11, LK11, LZH11, Li14a, Li14b, MDTD13, MDTD16, MN15, MAPB10, MSV12, MSSP17, MFR11, MMJ10, MH10, NCV10, NC13, NC14, OKS17, OSH17, ONTTL16, OC14, PTK11, PGO16, POG17, RK15, RSKG14, SRA17, SLT14, SCHO13, SEF16, SKMS13, SHB17, TLA10, TG12b, TR12, UD12, VBA13, WBT10, WCT11, WF16, Wei12b, WL14, Wu10, WDP12, YZ15a, YB16, ZY14, ZBB16, ZT14, dCDP15, VBD11, Chui10].
CHEMICAL-BONDING [MDTD13]. CHEMICALLY [EFAC13, ZZ12, Zim13].
CISPLATIN
Clarifying [RML+15], class [DWL11, HHWL17, ZLW10], classical
[DKJ10, CICH [RvdMB16], CICI [LGW12], clean [YR13], click [TKXT13], close [BLZ+13, MK17, RS13], Clos [YR13].
Closed [CYI+10, MA16, MS12, WWD14]. Closed-shell [MA16, WWD14]. Closo [HJ13]. Closo-carboranes [HJ13].
CM3 [VSA11]. CN [TS15b, YKH15, STS+10, TCPPC14, WHDL11]. CNO [OKIS17]. cNOR [BS16a]. CO
[BAC12, BPLL12, FD16, SC17, SSX+14, YXX17, ZBB16, Spr10, WVKS16, BPLL12, CCJ10, DHE+12, GLZ17, HF10, HVS16, HD10, LLC17, LPLB16, MG15, MBFG15, SKT11, WC13, CMM18, HYL+11, JCG+11, WJX+10]. coadsorbed [LLTIC12]. Coarse [MSL10, SNT14, BIP15, BLK12, CAD16, GMPB12, HHWL17, JCN16, KCK+17, KVQc+11, KLS10, KML10, L212, LZX16, LZZ14, LZLMP16, MBC11, MBC13, ML14, RSG+10, SLX+15, SDZ17, SOM+13, SJ17, SM15, SavG15, WBF17]. Coarse-grained [MSL10, SNT14, BLK12, CAD16, HHWL17, JCN16, KCK+17, KVQc+11, KLS10, KML10, L212, LZX16, LZZ14, LZLMP16, MBC11, MBC13, RSG+10, SLX+15, SDZ17, SJ17, SM15, SavG15]. coarse-graining [BIP15, GMPB12]. cobalamin [AALCM11]. cobalamin-dependent [AALCM11]. Code
[REL+14, BT10, GHK12, GP12, LLH14, LCPS13, RHR14, WK+10b, VV11]. codes [KSH+17, RGN10]. coding [QLQ11, YS10]. coefficient [FSD+18, WH11, WF16]. coefficients
Computing
[Ano10a, GKI15a, HDL+17, HRH+17, KHWB17, PBDW11, SN10, ACD+13a, ACD+13b, BK13, BZB+13, CHC+13, CKKK16, GM17, LPLA13, MK13a, MKO+13, OV14, OPB+12, Rod13, TF15, XYX17, Yan14, ZWL13].
concatenated [PSP15].
connected [PAA11]. concept [GRL+11, GRL+12, dSvD+16].
concerted [II10].
connection [Luc14].
considerable [LLD17].
Consideration [Fom11].
Consistent [CSEMB+16].
Consistently [IM17].
considerable [LLD17].
constant [AB16a, CS14, KSK11, KNP+12, MK17, PS13, RAGLL11, STM17, Vor12, WOH16, dACP12].
constant-distance [dACP12].
constants [AAMD+11, CBH14, CPK12, DSD+11, ECZWD17, FD14, GAI13, GKR13,
Constrained [SLG15, GRE11, GA12, VB13b, WBN+13], constraints [KB11a, OPBR17, OZS+13]. construct [HH10], constructed [HDL+17, ZLY+16]. Constructing [Che17, HS16b, LG11, SWA13].

construction [AGR11b, JCPC11, KSR17, LZX16, UIW+10, WWD14, YD17].

Continuous [Dry14, LPLA13, PZBA13, FGM11, LBGS16]. Continuum [JJJ16, Cam15, CY11, HZSS17, ISO+13, LFN+10, MUC15, SK12, SK17, TNG+10, WC13, WRHF10, XZ11]. contraction [HSN14, STM17]. contractions [KK17a]. Contrasting [TS15a], contribution [Pro16]. Contributions [JJH+13, ARRC15, BCNH+11, CGR16, CPN+17, ENKK+17, WS10].

control [BVY+12, DPAB16, Hel13, HH16b, LPLB16, SR10, XYW+14, ZQ14], controlled [VGTL16]. Controlling [FWB14].

Cooperativity [RS14, AFWS16, JSW10, SM16a]. coordinate [AMGB10, HSN14, Hel13, LL15, LL13a, MS10, WBN+13]. coordinates [BK15, LWK+14, NCV10, PH10a, Sch13, VB13b, You10, ZT14].

coordination [ASMS10, CRC13, HS16b, KJ10, Mor15]. copper [JRSHP14, KKPT11, SBC+11, SPR+13, WC14, AMSS10, CPK12, HRJ+14, HGHP14, HRJ+15, XWSW13]. coprocessors [WS13]. Copyright [Ano16-94, Ano16-95, Ano16-96, Ano16-97, Ano16-98, Ano16-99, Ano16-100, Ano16-101, Ano16-102, Ano16-90, Ano16-91, Ano16-92, Ano16-93].

KSH13, KSSH13, MMS16, Rui11, ST13, SPH11, STS15. correction
[HGHP14, NLP+16, RR12, SMGB11]. corrections
[JKS+16, KB10, KLN12, LCM+14, MGWR12, PTK11, RJPB12, RRK16,
SJZ+15, SSA+17, TG12a, VL17a]. correctly [ASMS10]. correlate
[MJLV14a]. correlated [BWKW10a, BWKW10b, EWK+13, KSH+17,
LLM11, MP11, yOTn16, RRK16, SM17, Vy16]. correlating [SNKS10].
Correlation [ASL+11, CKH17, SN16b, Vy16, CSKH15, CSKH16, ESM+12,
FRSA14, H13, HGCCGR+16, HG10, KSH13, KNP+12, LBH+11, MKGA10,
NYH+17, OAN15a, PTB+15, SPH11, VL17a, ZPP+16]. correlations
[CSKH16, SB10, TTB+10]. corresponding [PG14, RvL11]. Corrigendum
[Ano15-58, Fra16, HHT+13a, HRJ+15, HvM17, SSB13, WHAS+16].
COSMO [DS12a]. COSMO-RS [DS12a]. COSMOmic [JIS13]. Cost
[PDG+16, BLDK+13, BYE+16, CBP14, Gi11, LCM+14, SRR16, TF15].
cost-effective [LCM+14]. cost-efficient [CBP14]. Could
[EPH+13, EPH+15, TLA10]. Coulomb [FED17, IO13a, JKS+16, LMR14].
coulnic [DPAB16]. coumaric [HNN+17]. coumarin [MS11, ZDX11].
count [KTK17]. Counterpoise [SMGB11, LCM+14]. Counting
[QZ10a, RNP13]. couple [IYK11, Tsi17]. Coupled [DAB16, H614, VV14,
ACD+13a, ACD+13b, BYE+16, CAT+13, FZY+12, HDM+15, HGCCGR+16,
ILKR11, IYK11, JLIH+14, MC12, PGS+15, RKDM14, SB14, SH18, SM17].
Coupled-cluster [H614, VV14, BYE+16, HGCCGR+16, MC12, PGS+15].
coupled-cluster/Kohn [VV14]. coupled-electron [SB14]. coupling
[AMQ+14, BLZ+13, FD16, GP11a, KSK11, KNP+12, Kos16, LLB+12,
LSH+11, LWD13, MG11, PS17, Rui11, RRK16, SACdG14, Wu10, YB11,
ZTH+15, ZLZ14, ZYyIZ14]. couplings
[CSEMB+16, LK11, LZH+11, dVAG16]. covalency [HS14a]. Covalent
[WB10, FCCP17, HAI+16, KAR12, MR17, OZS+13, RS13, SFA17].
CovalentDock [OZS+13]. covalently [CZNA11]. Cover
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13b, Ano13c, Ano13d,
Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m,
Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u,
Ano13v, Ano13x, Ano13y, Ano13z, Ano13w, Ano13z, Ano13-27, Ano13-28,
Ano13-29, Ano13-30, Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e,
Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m, Ano13n,
Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v,
Ano13w, Ano13x, Ano13y, Ano13z, Ano13-27, Ano13-28, Ano13-29,
Ano13-30, Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g,
Ano13h, Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p,
Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x,
Ano13y, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30, Ano13-31,

density-density [SS16a], density-fitting [Hil13], Density-functional [Oht16, CHG+16, HNWF07, HNWF12, IM17, JCP14, KZZ+16, MFR+17, NF17, NN18, NO16, NNK+16, RHPWS13, SPSS+12, VED10]. density-peaks [LZS+17].

density-based [LZS+17].

density-density [SS16a]. density-fitting [Hil13]. Density-functional [Oht16, CHG+16, HNWF07, HNWF12, IM17, JCP14, KZZ+16, MFR+17, NF17, NN18, NO16, NNK+16, RHPWS13, SPSS+12, VED10]. density-peaks [LZS+17].

dependence [SMM+18]. dependency [DKT13, PHDH13]. dependent [AALCM11, BS16a, CHG+16, CP15, CKP10, DP15, EP+10, GTK10, HNWF07, HNWF12, HG10, HYUS11, JYS+12, KCPMG12, LPLS16, LZ12, LZGS11, Mat10, NS10, PAK17, PPJ14, PVJ10, RHPWS13, REL17, SY16a, SFBT17, Vik11, WHL+10, WHX+10, YLZ+10, ZXS+10, ZDX11].

determination [SE14]. derivation [SCMA+17, VVV+15]. derivative [MY17b, TPL+10].

Derivatives [KTSW11, CWHH11, CZH12, CBTZ16, CROB16, HSZ+11, JS17a, JYS+12, KG11, KPL15, LWGZ15, LWGW12, MFR+11, MS+15, NS10, PC14, RVB+12, RFN15, REH13, SBR13, SXZ13a, SXZ13b, VVJ15, VSD10, WGL+11, WRG+17, WDP+12, ZsA10, ZWZ11, ZZ12, ZZWX11].

derive [RVP+11]. derived [CIKT13, GMMH+16, KSR+16, LZGS11, MCLD10, OSS10, PLZ17, REL17, SOYC12, SE14, TBSM12]. Deriving [CCYL11].

descent [MS16]. describe [RHRCH16, RS13]. described [BM12, CCB15, KDS17].

describing [MKGA10, JCP14, JBSQG11, MY17b, VBD11].

descriptors [FCL+10, FZL+15, GJMMPAM+14, MH10, NK16, PKIC11, RB13b, TT+10, We12b, YLXC10, Yapr11, YDx16, ZXW16].

described [BM12, CCB15, KDS17]. Describing [MKGA10, JCP14, JBSQG11, MY17b, VBD11]. Description [FD16, MR17, BD12, BE16, Cam15, CRZ+18, LZLC13, MFR+11, PM13, PLH16, PVAM16, SRF+17, SSA+17, TKNN10, WvRSM14, WL14].

descriptor [DFF+15, MA16, PRYI+17, TMJ15, WMW+10, Yap11].

descriptor-based [DFF+15]. descriptors [FCL+10, FZL+15, GJMMPAM+14, MH10, NK16, PKIC11, RB13b, TT+10, We12b, YLXC10, Yapr11, YDx16, ZXW16]. Design [LCM16, Tak14, Tz12, VBD11, AM10, AFR17, BAM13, BEPM14, BPC13, CBP14, DPB+12, DPOS16, DGL+13, GS14, GMZ12, HHBY10, ISP+10, KSD+12, LABSG17, LBS10, MS16, PC11, SYDS11, SGM+13, St15, TKXT13, TRA+16, VVY17, VMPS15, XHLH16, ZSB+11, ZWP11, ZYW+16, ZWS+10].

designed [BLL13]. Designing [PsPE+10, ZA15, Fel10]. desolvation [BK17a]. detailed [ABB+12, ABB+13, GPC+16, MP13, MO15, MC10].

details [MBA14, RSG+10]. detected [TCPPC14]. Detecting [DVVP14].

Detection [CBP+15, BV14, CLX+10, ZLM+15]. detectors [SK13].

developers [GKV+13]. Developing [CK17, DSK17, LPS+13].

Development

[GLB16, GMMH+16, LLJ12, MMB+17, MMZW14, RZG+13, RLD12, SC17, TNYN16, WPM+15, ZA15, CYX+15, GMASBF16, GCP+13, LPLA13, PZA15, PPM15, WDHZ13, YWZ14, ZsA10, ZSYH12, CRC13, VKC10, WCDM11].

developments [YWJ+16]. Deviation [CSAdOM17].

deviations [HDL+14, KG15].

devices [DJX+11b, DJX+11a].

dewar [Bac12].

DFT [CLFRO18, SIG+15, YJ17, ZZY+16, AALCM11, AR10, AF14, ASMS10, BTMS12, BIL10, BTB+11, CLFR018, CMM18, CCB15, CH10, cCVG+14, CX10, DJD12, EFAC13, FVP14, FPRSI4, GMASBF16, HSH15, HRJ+14, HRIJ+15, HBI+17, JRSHP14, KG15, Kar17, KT12, KKL+13, KM13, KP10, LEdOLdv17, LRBB12, LZL+10, LZHH11, LXZ+10, LSH+11, LYSS11, LZLC13, LH14a, LSLW14, LCM+14, MMS16, MTD16, MG15, Mat10, MS11, MVKS10, Mor15, MCK17a, MCK17b, NKJ16, NC12, NMLD13, PTK11, PPM15, WDHZ13, YWZ14, ZsA10, ZSYH12, CRC13, VKC10, WCDM11].

DFT-based [NKJ16, NC12]. DFT-derived [REL17].

DFT-MD [GMASBF16]. DFT-predicted [WKLC12].

DFT/MM [RN17]. DFT/TD [LXZ+10]. DFT/TD-DFT [LXZ+10].

DFT/TDDFT [MS11].

DFTB [SA10, FHT+15, MR17].

DFTB/MM [RN17].

DFTB3 [KGW15].

DGeCl [MCLD10].

DH [SGPJS+17]. DH2 [SBW12].

di-mannose [VM11].

di-tetrazine-tetroxide [MCAG+16].

diabetic [DHOG13].

diagnosis [PC11].

Diagnosis [MC12, TDKT10]. diagonal [BMBJ11, KTK17].

diagonalization [BKŠ+11, HKR+14]. diagonalization-free [BKŠ+11, HKR+14].

diagram [OV14, VED10, ZY14].

diagrammatic [WWD14, YD17].

diameter [AS15a, KGHK12].

dianion [DP11, GRD+10, YZGS14a].

diarylalkyl [NS10].

diarylalkyl-imidazole [NS10].

diarylalkyl-triazole [NS10].

Diarylbibenzofuranone [SFA17].

diaryl dichalcogenides [ZWGO16]. diastereoselectivity [AARP17].

Diatomic [ATM18, LS11b, Tsi14].

diatomic [TG12b].

diatomic [CPN+17].

dicarbide [Kop16].

dichloropentacene [ZYG+15].

dichroism [HNHR13, SB13, SB15].

Dickerson [IPAA11].

dicopper [RHPWS13].

diels [BJSI12, CC18a, FB14a, GNDA+12, LZH16, ORZ11, ST13, dSVD+16].

difference [LLH17, WL10, You16, ZRCC11].

difference-dedicated [ZRC11]. differences [BVC13, GO13, HDL+17, KHWB17, LGL11].

Different [PH15, BRGN12, Dill15, FZL+15, GO13, GR11, GFPSD17, GMPB12, Kar17, MCS11, MC12, MPA12, NMLD13, NOKJ16, RNHN10, Rao11, SLP+12, SIG+15, TSNC+17, UT15, ZR10].

Differential [HHT+13a, HHT+13b, CJL+13, MY17a, MY17b].

Diet

[CLS12, CC18a, FBA14a, GNDA+12, LZH16, ORZ11, ST13, dSVD+16].
diffuse [YCGA10]. diffusion
[CPV+12, CC12a, GC11, RSLS13, ZW17, WH11]. diffusional [MBR+15].
Diffusive [SM16b], digitized [YNH+17], dihedral
[CYG+15, OZ14, SZBM13, WES13, ZRL+15], dihedrals [LDH+14], dihydro
[RS17a], dihydrofolate [RKDM14], dihydrogen [PM13, UT14, WHX+10],
dihydrogen-bonded [UT14, WHX+10], dihydrogen/hydride [PM13].
dihydropyrido [YZ15b], dilmide [MCC11], diiode [AARP17].
diode-induced [AARP17], diketopyrrolopyrrole [HLWD15],
diketopyrrolopyrrole-based [HLWD15], dilanthanide [ZLZ14], dilute
[KVR10]. dimensional [BPLL12, KYT+17, KRSC12, KTO13, MB16, PJ13, SG10a, TYN15, TCTX+13, TKC+11, ZWX16].
dimensionless [MS10]. dimensions [CHC+13, HAL14, SRL+15].
Dimer [LWL+16, ARRC15, ANH+11, CBTP17, CBTZ16, FCL+10, FMNC11, KCB+12, LCB10, PD11, SKY+11, Tac17, WWKS16, YCGA10].
dimeric [PS14]. dimerization [DSD+11, KAR12, TLA10, WJX+10].
dimerization/oligomerization [KAR12].
dimers [BCNH+11, BWKW10a, BWKW10b, CLFRO18, CK10, JKS+16, LJW11a, LMI+14, PVS12, RS13, SZS16, VT14, Zha11].
Dimetallic [ZYG+14].
dimethyl [GC11, WLC12, ZSWL12]. dimethylaminoazobenzene [KP10].
dimethylaminophenyl [YLZ+10]. dimethylnitrosamine [FFA14].
dimyristoylphosphatidylcholine [ML14], dinitrophenol [MIS+15].
dinuclear [OSS10, QLYL10]. dioxane [GM17].
dioxetanone [RSLML12, dSdS12a, dSdS12b].
Dioxide [SC17, Kop17b, QZ10b].
dioxygen [DSM+11]. dioxygenase [DGH+11].
dipeptide [EJ13, IO3b]. dipeptides [DHF+11, RSL16].
diphenyl [GKR13, Ray13, RKG11].
diphenylalanine [KLN16].
dipotassium [KT12].
Dipolar [YZZ13, CSS17, LK11].
Dipole [GH16b, LIRL+16, ZBG11, AS15b, BLBG+13, DHOG13, GH16a, HBBK10, KCB+12, LLHW14, MNNK10a, MNNK10b, PC14, Yan11].
dipped [IN13].
Dirac [JKS+16]. diradical [YSSB12].
Direct [LZY12b, WAM17, FF11, FSSW17, JCG+10, RSB+13, Yu12a, LLHM16].
directed [CH14, HHBY10]. direction [PAK17]. direction-dependent
[PAK17].
directionality [WGD+16]. diruthenium [CRC13].
disaccharides [GMSV14].
disconnectivity [SOJ14].
discover [Hsu14].
Discovery [AKMT11, AK16, FMG12, HYYZ13, Ibr11, IGK16, PVJ10, Zim13].
Discrepancy [Yan11].
discrete [EJ13, MCUJ15, WAM17].
discretization [AD10, LLFH16]. discriminate [UCFR16].
Discriminating [FZL+15].
discrimination [YL13].
discriminative [KS12]. discussion [CDB10].
disjoint [BK13].
dismutase [GEP+14]. disorder [LLL+12].
Disordered [MYT18, GP12, LC16, LC17a, NDLW13, SJD+15, ZC14].
dispersion [AG12, BCNH+11, CLFRO18, eCVG+14, GEG11, Han11, Has14, HGHP14, ITIN15, KB10, KSS13, LCM+14, RJPB12, STS15, SSB11, SSB13, TG12a, WM17].
dispersion-corrected [CLFRO18].
Dispersive [TG12a, SDB+16].
disproportionation [DLP11].
dissected [FNS+11]. Dissecting [CLFRO18].
dissertation [BMFG16]. dissimilarity [HS17a]. dissipation
electromagnetic [SEM12]. Electron [BK11, Bar14, BLG11, BWKW10a, BWKW10b, CEB015, HS16a, HRMAL+13, HGCCGR+16, KGR+16, Pil17, WWU12, ACD+13a, ACD+13b, ABGDN12, BHB12, CDB10, CAA10, CWHH11, CTP13, DaGR15, ED15, EP12, ESM+12, EP15, FRSA14, FED17, FCJM14, GNDA+12, HSH15, HPT17, HEMCZE+14, HAP+12, HBL12, IYK11, Jan16, JBSQG11, KPL13, KTK17, KYG+15, LW16, uLhY11, LHO17, LY16, LLJ12, LP11c, MKGA10, MRB14, Mat14, MBFP15, MKH+13, MCK17a, NYH+17, NS17, PAK17, PGdO+16, PSC11, PS17, PN13, PTB+15, PHT17, PC16, Ras17, Rod13, REL17, RSKG14, SB14, SHB17, SGHL13, SK11, SSA+17, VECT12, VL17a, VI17, Vyb16, WLW+10, WMW11, YKH+10, YLL11, ZPP+16, ZGS+10].

electron-correlation [NYH+17].

electron-deficient [YLL11].
electron-hole [PTB+15].

Electron-pair [WWU12], electron-withdrawing [CWHH11].

Electronegativity [FCPJM14].

Electronic [AMQ+14, ASS10, DaGR15, GNDA+12, HLWD15, Ibr17, KYCL11, KKL+13, LLBO12, LS11b, MAPB10, NIIT15, PMC+17, RLA+11, TN12, TN10, TFQ+10, TS15b, VI17, WRM+12, YW12, ZRCC11, AR15, AK10, AC12, BLZ+13, DKE+17, DOHG13, EH13, EWK+13, EBPK17b, FB10, GTT10, GRARO+14, GWX+12, GZZ12, HASR+12, HS14a, HSB+11, Hua16, IIF+10, KKPT11, KSM17, KG11, Kop15b, Kos16, KP10, LGOM+15, LX11, LBTV11, LBTM12, LXZ+10, LSH+11, LLSW14, MC10, MA16, MCF10, Mat10, NC14, NFI+16, OLA15, PHK14, PTB+15, PVAM16, Py13, RCM+13a, RML+15, RR12, RR11, SFA17, SLP+12, SRS14, SB15, SKGB13, TFQ+11, TD10, TS15a, TNG+10, TS11, TG12b, VVP12, VHR16, VAR12, VBA13, VGKL+17, WGL+10, WGL12, WJC+13, WO15, WSGN11, WZK+13, YK13, ZJZM13, wZbZ11, ZBB16, dCDP15, dVAG16].

electronic [vSGP10].
electronically [BSL+16, LSH+11, LYSS11, RIJ+11, SFCC++14, SFCC++15, YB11].
electrons [RN17].
electrons [EKH14, WCY+11, WRG+17, Xhd15, YCGA10].
electrophilic [MA16].
electrophilicity [VB16].

Electrostatic

[CLA16, LP11b, MLZZ12, BCNH+11, BK13, CCC+11, CS14, CPK12, CB11c, DLSA14, GBL+11, HOK17, IO13a, KTN10, KYG+15, Lar11, LCA17, LCM16, Mat14, PVJ13, RB13b, TY10, VMRSH+17, YKO+11, YY16, YMP14, YZL+15, ZDM13, ZBP11, KG12].
electrostatics

[CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UH+11, XY17, YMP14].
element

[BCCO10, GPK+16, RMGB11, TG12b, TCX+13, XY17].
elementary

[LPLB16, Zim13].

Elements

[TNK13, BV14, CWZ10, HU13, JJJ16, LFB14, SK15a, TDKT10, Ts14, WS12, Xhd15].
elevation [HH10].

ELF [RSKG14].

EL1 [BWKW10a, BWKW10b].

ELIA [BWKW10a, BWKW10b].

elimination [SL10, dCDP15].

Elisabeth [Ihl12].

ellipsoidal

[DGB+13, LDG+15].

Elongation [OLA15, MKGA10, MKGA10].

Elongation-MP2 [MKGA10].

Elucidating [HNHR13, TDP+12].
Elucidation [CPLL11, TNYN16]. embedded [DSF17, GMG10, HSH15].
embedding [CCB15, ESM12, HH16a, HH17, Höf14, HOK17, KSR17, NOKJ16, RR12, SDF17, SS16b]. emerges [MNNK10a]. emission [LX11, MCLD10, PLP16, SGWA17, WDP12, ZLL10]. emitted [PE11].

Emphasis [RCM13b, PD11].

Employee [BA11, DLMH12, KLN12, CK17, KB10, LL11, MPBJ11, PTK11, RJPB12, SZBM13, SBvG14, TM16, ZRL15, ZM10]. employing [GP11b, MLCD11, TG12b].

enabled [Aou16, BK17c, KYG15, LL10a, SR11]. enables [KK17a, XHLH16].

enantioselectivity [OAN15b]. encapsulated [EOO16, STS15].

Energetic [JW12, CG15, MCAG16, PGB17, SLHW09, TPL10, YSRSS10, ZZXW11, ZYL12].

Energetics [SFM14, BFK17a, BMFG16, DSF17, GAJ17, HEM17, JJH13, KB13, MP13, MBC16, OCW15, SJ11, SNS16, SL17, SDB16, ST13, SFBT17]. energies [AF14, AS14, AG12, BW11a, BLF14, BVH17, BS16b, BE16, CHG16, ČMD13, CH10, CTP13, CBG16, DHO13, DMJ17, DHH11, DPO16, FGM11, Gill11, GP11a, Grl13, HAK10, HH10, HH11, HLW17, HHWL17, IKN13, KSH13, Kar17, KSM17, KJDB12, KB11b, KY13, LJW11a, LW11, LHHW24, LH14a, MCS11, MS13, MSÅ12, MBE16, MMR10, NWW17, NMF14, OBW12, yOTn16, OAN15a, ORS16, PGCT12, PPJ14, RLDJ17, RDDS10, RAR11, RO14b, RZ16, RR14, Rob13, RJS17, SRR16, SK12, SHL13, SOD11, STM15, SGWA17, TS14, TSN16, UD12, VVG13, VECT12, VM11, WBT10, WS10, WJS13, W12, WX12, YAS13, YMP14, ZZ14, dAlD15, dRBO13].

Energy [DK11, GS16, IIHY15, JCGVPHT17, LFN10, LPLB16, SN16b, SSGS15, SKGB13, WM12, AMGB10, AC11a, Aou10a, AK10, AKN16, BCSC13, BPM15, BRE16, BH15, BS16a, BRLS08, BRLS12, BACSC10, BG17, Bou14, BD11, BWMSM10, BB11b, BB11c, BG12, CL13a, CK10, CDN15, CLA16, CY09, CX10, CZY11, CY13, CH16, CSXZ17, Che17, CS17, CHR12b, CH12a, CPK10, CMV10, CPK12, CWZB10, DGH11, DWR17, DBG11, DS12b, DH14, DWC17, EV14, FMNC11, Fer17, FED17, FCOC12, FSSW17, FCCP17, FLML11, GS14, GS15, GHK12, GO13, GMO16, HDM15, HLM10, HH15, HG13, HYM16, HYUS11, HJKJJ13, HYD10, HDHL15a, HDH15b, HDHL15c, IMK16, ISN13, JCPC11, JMLL13, JZ12, JZMM14, JX10, KCB12, KTM16, KB10, KNHN16, KN17, KHW17, KB11a, KOP15a, KOP16, KOP17a, KOP17b, KLS10].

energy [KML10, KCL14, LMZ11a, LZ12, LYT13, LZZ14, LGL11, LP11b, LX11, LHG11, LSH11, LZY12b, LLSW14, LAW16, MCvdV13, MCC11, MK13b,
WHL$^{+10}$, WHX$^{+10}$, YD17, YYT12, LZZ$^{+10}$]. excited-states [LLBO12].

exciton [HRH$^{+17}$, LSH$^{+11}$]. EXcitonic [JCGM18, ZMMM12]. excluded [LWZ$^{+17}$, Yan14]. exhibited [RWR$^{+13}$]. Existence [BMB13, WD10].

Exothermic [LWL$^{+16}$]. expand [BK17c, Car14]. expanded [MLQ$^{+12}$, TSNC$^{+17}$, YSSB12]. Expanding [GMZ12]. expansion [HAGK10, HSN14, LYC$^{+13}$, LRER13, NF17, SS16a, SNS13]. expansions [LZGS11]. Expected [LWZ$^{+17}$, Yan14]. exhibited [RWR$^{+13}$]. Existence [BMB13, WD10].

Exothermic [LWL$^{+16}$]. expand [BK17c, Car14]. expanded [MLQ$^{+12}$, TSNC$^{+17}$, YSSB12]. Expanding [GMZ12]. expansion [HAGK10, HSN14, LYC$^{+13}$, LRER13, NF17, SS16a, SNS13]. expansions [LZGS11]. Expected [LWZ$^{+17}$, Yan14]. exhibited [RWR$^{+13}$]. Existence [BMB13, WD10].

Exothermic [LWL$^{+16}$]. expand [BK17c, Car14]. expanded [MLQ$^{+12}$, TSNC$^{+17}$, YSSB12]. Expanding [GMZ12]. expansion [HAGK10, HSN14, LYC$^{+13}$, LRER13, NF17, SS16a, SNS13]. expansions [LZGS11]. Expected [LWZ$^{+17}$, Yan14]. exhibited [RWR$^{+13}$]. Existence [BMB13, WD10].
YWZ14, YJXZ13, YPKB12, YHVM12, ZRL+15, ZL11, ZP13, ZM10, ZCGM11].
forcefields [CBP14]. ForceFit [WKC+10b]. forces [EPD+10, ELK16, HNWF07, HNWF12, IO13, RN17, SDB+16].
ForConX [LDB+17]. forest [WZ17].
formaldehyde [CYY+17, GNGCA10, YPvD13]. Formalism [MKGA10, SFCCK+14, SFCCK+15, SMM17a]. formamides [JSW10].
fractures [NASH15]. Fragment [GK15, IIF+10, CIKT13, DR11, FMG12, GWF11, GKV+13, HB14, KS13, KS15, LMZ11, LFN+10, MFR+17, NF17, OOT15, OOK11, RKGN10, VBV13, WCT+11, dLC17].
Fragmentation [EFB16]. fragmented [JSXH16]. fragments [CM16, Kos16, KSR17, Sax12].
fractures-rooted [CM16]. framework [BHF+13, EH13, GP11a, HPT17, JBB+11, KTN10, MKGA10, OM12, PHT17, RCM+13, RML+15, Rz16, SK15, SWB+12, WYD13].
Frameworks [LSD+10, PLZ17, VVV+15b]. francium [TH13]. Franck [CHC+13, MCLD10, MLCD11]. Free
[Bou14, CBG16, GS16, GO13, GOM16, MCvdV13, OCW+15, PZCL16, SISK10, AC11a, AN10a, AK10, AKN16, BK+11, BSL11, BH15, BS16a, BD11, BB11b, BB11c, BG12, CY09, CXY11, CY13, Che17, Cs17, CHR+12, CHR+12a, CMvG10, DMJ17, DGH+11, DHP+11, DPOS16, Fer17, GS15, GHK12, GJMMPAM+14, GR13, HSL12, HH10, HH11, HDK+12, HLW+17, HSL+17, HDM+15, HG13, HYUS11, HKR+14, HHWL17, IMK+16, JML13, JCX10, KHWB17, KB11a, KB11b, KBY13, LMZ11a, LGL11, LP11b, LW+16, MSC+10, MS13, Mau14, MSAK12, MBE16, MJOM13, OSR16, OK16, PGC+12, PBLDS12, PPB11, PPJ14, RLDD17, RDDS10, RAR+11, RO14b, RZ16, RR14, SM14a, SFR+11, SWPR11, SY11, SH11b, SOD+11, SOvG12, SN10, SMM15, SMM15b, SMM+18, TS11, VLB+10, VVG13, VM11, WSH10, WCT+11, WWW18, WG12, XTG+11, XVN17, YOMT14].
free [YAS13, Yan14, YHH+13, ZZ14, ZPF14, ZYW+10b, ZH12, ZVY+15, dRBO13, WLZ11, XYW+14]. Free-energy [GO13, GMO16, BH15, CY09, HDM+15, HYUS11, IMK+16, JCX10, MIOM13, OSR16, PBBP11].

free-software [GJMPAM+14]. Free-standing [TS11]. freely [CH16].

frences [LBH+11, LLH17, WX12]. frequency

frontier [MGS+16, TZ12]. frozen

[BVC13, Fer13b, Fer13a, HH16a, HH17, Hop14, SDF+17]. frozen-density [HH16a, HH17, Hop14, SDF+17]. fructose [RAR+11]. fructose-1 [RAR+11].

car [SV11]. Fukui [BVC13, PRY17, SBR13, YVEI+17]. Full

[STM17, ACD+13a, ACD+13b, BPLL12, PS17, TSC+13, dSDdAR10].

full-pivoting [PS17]. Fullerene [GKSS14, KCK+15, KP10, Oht16, TPL+10, TFO+11, TTB+10, XFTW15, YDGZ15, ZSL+11, ZZ12, SWA13].

fullerene-based [TTB+10]. fullerenes

[GZHi0, GLF16, MCK17a, MCK17b, SWA13, STS15, WTH+16]. Fullrnc

[Aou16]. Fully [AG12, ZST14, FBY+17, GBL+11, KG13, LZZ+13]. function

[ABDGNI12, AB16b, BLG11, CKP10, GS14, GND+12, GEG11, HH16a, HBL12, HMYZ16, JLCA17, JMS13, Kop15a, LL13a, LHL11, LCB10, LIRR+16, MB16, yOTn16, ON14, Pi17, PRY17, RZG+13, RL11, S16a, SFG+17, TCB16, TO10, UM13, UCFR16, WO15, WDHZ13, YVEI+17, ZLT13, vSGP10].

function-based [WDHZ13]. function-guided [YVEI+17]. Functional

[FPV13, AMK11, ALK+15, Aon15-59, AG12, ASS10, BY11, BLBG+13, BK17b, BZB+13, BG13, CHG+16, CRZ+18, CR14, CWHH11, CSKH15, CSKH16, CKH17, CSXZ17, CC11, CNK97, CPLL11, CB11d, FD16, GAI14, GHL17, GZL+12, GNGCA10, GSS13, GEG11, GAE+17, GWPJ11, HHi1, HDL+17, HNWF07, HNWF12, HPT17, HG10, HZSS17, INT18, IKN13, IM17, JCP14, JLF+14, JW16, JYS+12, KD10, KKPT11, KOP+14, KGHK12, KB13, KZG+16, KL12, LCW12, LBGS16, LGW12, LBTV11, LBTV12, LSH12, LH14b, LH17, LPMT17, MAK14, MWJ+11, MFR+17, Mor15, MMJ10, NF17, NN18, NO16, NN+16, Oht16, ORZ11, OM12, PA17, PPH+14, Pie14, PD11, QZ10b, JRPB12, RS13, RB12, RSLML12, RHPWS13, RHT+15, Rui11, SPF+12, SH15, SFG+17, SCW11, SBT17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SMM15a].

functional

[SMM15b, SMM+18, SKTT11, SZSS16, STS15, TLdG+12, TG12a, TS10b, VV14, VIK11, VLL17a, VI17, VLGK+17, VED10, WKC10a, WHL+10, WCWW11, WDLG12, WYT17, WHX+10, WL14, WTH+16, WGN+16, XYYW+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX11, ZSL12, ZL14, ZDX11, ZYG+14, ZYW+10b, ZYW10a, ZLHH14, ZGS+10, dSdS12a, dSdS12b].

functional/basis [PD11]. functionalities [KAG+12].

functionalized [KYKR15, LdSR16]. functionals [Ben17, CCB15, CG16, DH17, DOM+11, DWC17, FPR14, HG10, HBI+17, KB10, KSH13, KSSH13, Kar17, KM13, LBH+11, LH14a, LKK16a, PW12, RSG14, Rui11, SGPJS+17, Sea10, SDM+16, SPR+13, SZX13a, SXX3b, WYT17, Yu12b, ZTH+15, dSDLBNB17].
functions of [BLZ+13, CD13, CC11, CVG14, Fer13b, Fer13a, FFA14, Fra15, Fra16, GSHM10, GZ14, KK17a, LRR13, MY17b, Mit13, MLCD11, PHT17, Pro16, RHCH16, SFM14, SYDS11, Sun15, TNYN16, WZ17, TKN13].

fundamental [CD16, XLYZ10]. furanosides [KRTB10]. Further [RTS+13, FVB10, PZA15], fused [CZY11], fusion [OLY17], Fuzzy [FPV13, SK12, SK17]. fuzzy-border [SK12, SK17]. FXeOxEF [ARLP13].

Garriga [Ihl12]. Garriga-Sust [Ihl12]. Gas [ATM18, ABB+12, PL17, ARLP13, DHE+12, GYX+10, JKS+16, KD10, LPK16, LJW11a, LPLB16, MP13, MFMI+12, NIIT15, PGS+15, PMG+16, PSCI11, RWR+13, Sea10, SYZ+17, STS15, YHG+11, ZSZ+14, ZYR+15, ZLHH14, ABB+13].

Gauss [MY17a]. Gauss-type [MY17a]. GAUSSIAN [RS+12, OYK+11, Bow14, DLL+10, EPD+10, JLC17, Leh15, MG11, MKB+13, POB13, SPH11, Sun15, TH13, VKTR15, ZKE+17].

Generalized [GH16b, KCPMG12, AB16b, BSPP+13, DSF17, FCE15, GH16a, LL10a, MA16, PS13, SZTSM10, SSBB14, VMP17, WWKS11, WHM10, WBVE16].

GenLocDip [GH16b]. GeO [DLSD13]. Geometric [MK11, CDB10, CDBM11, EH13, FXC+13, HHT+13a, HHT+13b, LFH16, REH13, TCC+13].

geometric-quantum [CDBM11]. Geometrical [DPAB16, HRJ+14, JRSHP14, LCM+14, SPR+13, Tak10, UT14, HRJ+15].
Geometrically. geometries
[Alg17, HCP15, SRA17, Tak10, LXZ+10]. Geometry
[MP13, BW11b, EPD+10, FB10, Kow11, LIRL+16, MCLD10, OZS+13,
Pon10, RS13, REH13, SLG15, SMM17, VBV13b, WAB17, WX12].
geometry-dependent [EPD+10]. Germanium [GSMM15, ALH+10].
GeSbTe [NIIT15]. GFP [UD12]. GGA [BG13, EH13]. ghost [CMF+17].
[HYYZ13]. gibberellin-binding [HYYZ13]. Gini [WF16]. GIST
[RNSF+16]. glass [GFGS18]. glasses [You10]. Global
[LvDH13, OKIS13, PRSG13, Tak10, BK17b, CPN+17, DS15, DMAH15,
Pon10, RS13, REH13, SLG15, VBV13b, WAB17, WX12].
glucopyranose [HH10]. glucosamine [ZBP11, ZP13]. Glucose [APY+
16]. GLYCAM06 [SA10]. GLYCAM06/TIP3P [SA10]. Glycan [JSD+
11]. glycine [DB12, DP15, FCD10, MC10]. glycoconjugate [LABSG17].
glycoproteins [JSD+11, PFVL14]. glycosaminoglycan [CHRKR10, SA10].
glycosidic [HH11]. glycosyltransferase [RN17]. GmbH [Spr10]. GMCT
[UU12]. GneimoSim [LWK+14]. gold
[Auo15-58, BHS14, CJC10, FHT+15, GAMAC+14, Li14a, Li14b, LHKS12,
LH14b, MFR+11, MG14, MBFG15, SRR16, SKRT11, YLL11].
gold-thiolates [FHT+15]. Goldberg [WTH+16]. Good [SB10].GPCR
[LLHM16, MF+17]. GPGBP [UM13]. GPR119 [HK18]. GPU [AKK+
16, AGB13, BK17c, CVT+11, DZT11, HAP+12, Kan15, KGHC15, KPF+
15, PZCL16, REV+17, SBV10, SOM+13, UTM11, YLGX14, YSG12, ZLL+
13]. GPU-accelerated [AGB13, CVT+11, HAP+12, YLGX14, ZLL+
13].
GPU-based [KGHC15]. GPU-enabled [BK17c]. GPUs
[GBL+11, HLW+17, KK17a, RSRR15]. Gradient
[DS15, CDM10, HBBY10, KN17, SH15]. gradient-directed [HBBY10].
Gradients [GP11a, WM12, BWMSM10, CB25, HH16a, HH17, LBGS16,
LFN+10, RS14, SFG+17, SSMW09, SLG15, vLBDR12]. grafting
[KKR+13]. grain [SOM+13]. grained
[BLKP12, CAD16, HHWL17, JC16, KCK+17, KVQC+11, KLS10, KMLE10,
LZ12, LZX16, LZZ14, LZLMP16, MSL10, MBC11, MBC13, NST14,
RSG+10, SLX+15, SDAZ17, SJ17, SM15, SAVG15, WBF17]. graining
[BJP15, GMPB12, ML14]. Grand [HLvdV13, PHH+12]. grand-canonical
[PHH+12]. Graph [WSH10, DH14, GPGSM11, GPGSM12, IHL12, MCM12,
PsDPE+10, Pog10, RPNP10]. graph-based [DH14]. Graph-theoretical
[WSH10, PsDPE+10, Pog10]. graphene [YZZ+17].
[CM18, dRCFGRB18, DJX+11b, DJX+11a, JWO15, LWZK13, LCM+14,
PL18, RRR14, SDF12, WCT+11, WSZW15, WYL+15, WTH+16, YSSB12,
YZZ+17]. graphitic [HASR+12]. graphical
[All11, GLB+11, HZY+10, LMLC11, LBB+15, PVZ13, SEF+16, STH+10,
WSGN11, WS13, YWJ+16, YDL+10, YN15, YS10, ZKE+17]. graphics
[AB16a, AB16b, BDTP11, CKKK16, EP10, HKR12, HEMCZE+14, MSSP17,
48

HYUS11, KOY12, KZK12, KV15b, OK16, TFQ10, TJB12, LZZ14.

hindrance [MP17a]. Hirshfeld
[Man13, VVB13, VGV11, EV14, GBVA11, OVKP15, VB13a].

Hirshfeld-based [OVKP15]. Hirshfeld-I
[Man13, VVB13, VGV11, VB13a]. histidine [KFY13, WC14].
histogram [Fer17, HHWL17, SH11b, ZH12]. histone
[GHK12, GH10, GSD10, KC13a]. HIV
[DL15, NHH16, OBW12, SY12, TT10, UNT16, XLY12, ZsA10]. HIV-1
[DL15, NHH16, SY12, TT10, UNT16, XLY12]. HIVg41
[AFBR17, BAMR13]. HIV-1
[DL15, NHN16, SYH12, TTB10, UNT16, XLY12].

HIVgp41 [AFBR17, BAMR13]. HMH
[LDJ10]. HNCN
[WHDL11]. HNO
[BLG10]. HOB
[ALC10]. hole
[Cas13, CWHH11, EPH13, GZZ15b, PAK17, PTB15].

Holliday [Ish10, She12]. holographic
[CDB10]. HolT
[She12]. HOMO
[RS17a]. Homocysteine
[AALCM11]. homologated [ZLL10].
homologation [GRCL12]. Homology
[ZX11, BPB11, DJ13, KOY12, XFTW15, YZ16]. homology-model
[KOY12]. homology/ab [DJ13]. homolysis [SZ17].

Homonuclear [BWKW10a, BWKW10b]. homopeptides [FCD10]. HomoSAR
[BPC13]. HONO
[BLG10]. HOONO
[BLG11]. hopping
[JLH14, KV14, LZW11, RDRC16, SRSLO15]. Horizontal
[PC16]. hormone [HYYZ13, LLL10, NS10, OME16]. hormone-dependent
[NS10]. hormone-receptor [OME16]. horsetail [MCRL17]. Host
[CC18b, OAN15b, YDGZ15]. hot [RFHG10]. Hou
[JW12]. HOX
[LZJ11]. HP
[KL10]. HP-36 [KL10]. HPe [dSDdAR10]. HSE
[VLGK17]. HSICl
[LX11]. HSiCl/DSiCl [LX11]. Hua
[JW12]. Hückel
[FL15, SKT11]. Huffman [QLQ11]. huge
[NNK16, OHPR17]. huisgen [ZZWT12]. human
[OME16, SLY10, ZX11]. hunter [CMF17, She12]. Huzinaga
[Fer13b]. HXeOXeF
[ARLP13]. HXeOXeH
[ARLP13]. Hybrid
[CRG16, KSI15, VVY17, ZDKM12, BTA13, BG13, CCB15, CBG17, CSKH15, CSX17, CC11, DR11, DJ13, FHT15, GFG11, HZSS17, JMS14, KKR13, KJM17, LHB11, LT14, MJS15, OK16, PW12, RSG14, SGPS17, Sea10, SZX13a, SZX13b, VI17, WNM17, ZWLN11, ZWLN13, HPT17]. hybrid-meta
[BG13]. hybrid-parallel
[KJM17]. hybridized
[DC13]. Hybridizing
[RDRC16, FZL15]. hybrids
[KM13]. hydratase
[LT13]. Hydrated
[ALH10, BMFG16, CGPP11, GBL11, GNGCA10, LPE10, LBDP12, VPR10]. hydrates
[LZLC13]. Hydration
[HL14, AS14, DQ16, KB11b, KYB13, OK16, PPO10, RZ16, SK12, SWPR11, WBT10, WC13, WG12].

Hydrazine
[GZL12]. hydrazo
[WDLG12]. hydrazo-1
[WDLG12]. hydrazone
[HPT16a, ZZWT12]. hydride
[RKDM14]. hydrides
[DM15, PGC12, RMGB11, WKC11]. hydricid
[Jab14]. hydroamination
[KT12]. hydroazidation
[YXZ17]. hydrobromic
[CYY17]. hydrocarbon
[CB11d, KSM16, Kar17, MH17, SV15, WDW12]. hydrocarbons
[PL18, SBvG14]. hydrocyanation
[HDB15]. hydrodynamic
[AKK16]. hydroformylation
[dSDdAR10]. Hydrogen
hydrogen-abstraction [GY12].

hydrogen-bond [TD11, BK17a, CD11].

hydrogen-bonded [B LFZ13, DKT13, JCP14, LJW11a, LHHW14, PAT+10, UT15, ZDX11].

hydrogen-bridged [ZLY+16]. hydrogen-contaminated [YR13].

hydrogen-Disordered [MYT18]. hydrogen-storage [BEM14].

hydrogen-transfer [ZW17]. hydrogenase [GS11].

hydrogenation [JJAB16]. hydrolase [BHNS14].

hydrolyses [YZGS14b]. hydrolysis [LHT15, MFMP+12, XZ11, YZGS14a].

hydroperoxyl [AAMD+11]. hydrophobic

hydrophobic/hydrophilic [PAK15]. hydrophobicity [CH14, SV15].

hydrostatic [FCW+14]. hydroxamate [GWZ15, GPdC+16].

hydroxyl [DPNM11, GKR13, JCG+10, KS13b, Ray13, RKG11, TTR+12, ZSZ+14].

hydroxylated [CCJ+11, SH14]. hydroxylation [TYL+12, VCM15].

hydroxylationts [MRR11]. hydroxymethyl [HH11].

hydroxyethylfurural [APY+16]. hydroxynaphthaldehyde [MPG11].

hydroxyphenylpyruvate [DGH+11]. hydroxysteroid [ZX11].

hydroxysulfanyl [TL16]. Hyper [FRN15, BLBG+13, BZB+13, RFN15].

HZSM [cCVG+14]. HZSM-5 [cCVG+14].
RLL$^+$10, DL16, JSD$^+$11, MPNS13, RLDJ17, WSH10, YZWC11, ZYvIZ14.

identifier [Ihl12]. identifiers [GPGSM11, GPGSM12]. identify [LLHM16, LHL$^+$10]. Identifying

Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16-27, Ano16-28, Ano16-29, Ano16-30, Ano16-31, Ano16-32, Ano16-33, Ano16-34, Ano16-35, Ano16-36, Ano16b, Ano16-39, Ano16-40, Ano16-41, Ano16c, Ano16s, Ano16t. Image [Ano16-37, Ano16-38, Ano16-42, Ano16-43, Ano16-44, Ano16-45, Ano16-46, Ano16-47, Ano16-48, Ano16-49, Ano16-50, Ano16-51, Ano16-52, Ano16-53, Ano16-54, Ano16-55, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p, Ano17r, Ano17s, Ano17u, Ano17v, Ano17w, Ano17x, Ano17y, Ano17z, Ano17-27, Ano17-28, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Cor17, LCM16, SFLG+17, YHH+13]. images [LLJ12, MBFP15]. imatinib [AS10]. imidazo [YLZ10]. Imidazole [FD16, LWGZ15, NS10, YKH+10]. Imidazolium [MG15]. imidogen [Kop15a]. imine [AS11, GG10, HDB15]. imino [GRCL12]. immediate [HTS17]. Impact [ABM+15, DPNM11, MCS11, vADC+14, JMML13, NW17]. Implementation [AMGB10, BMRI11, HKR+14, ITIN15, KB14b, KK17b, LRvdSM15, LPLA13, LBB+15, MHT+18, RJPB12, RSG14, SN16a, ZMMM12, AB16a, BTB+11, CHG+16, Cas13, CEBO15, CSSB11, EWK+13, KS13a, KNHN16, KMLS10, KWG15, LL10a, LLZA12, LMR14, MKGA10, MBR+15, MYT+14, NYH+17, NN18, OYK+11, RSR+12, REV+17, SZX13a, SZX13b, TKT11, WPM+15]. implementations [LSD+10]. implemented [BVHI17, DLSA14, SR10, VBV13b]. Implementing [SCOJ13]. Implications [CV12, VVY17, CBG16, LP11b, LTP11, RB12]. Implicit [BEM14, CAD16, Has14, CBG16, EK15, FBEM11, KJDB12, KB11a, KB11b, LC17b, ML14, SSBW14, SLX+15, SCMA+17, TCC+13, WWKS11, YL13]. implicit-solvent [WWKS11]. Importance [APA+14, CPK12, ENKK+17, NMF+14, OOK11, Ham11, KTN10, PBWD11, SDZ17, TNSS17, TKNN10]. important [AST+16, BZH14, MG11]. importing [FN12]. impregnated [GLZ17]. improve [CIKT13, DLL+10, DPSL16, Gon12, LLL+10, VB10]. Improved [BS16a, LRER13, CCM15, DPB+12, DSF17, GCCM15, KSR+16, MP11, RTP+13, RDR16, SSBW14, YS10]. improvement [GSHM10, NLP+16]. Improvements [JCX10, AB16b, LRBB12, BB11c]. improves [BBOB16]. Improving [DWL11, GS16, LN15, PLH16, SB14, SACdG14, SA11, WZ17, ZWX16, ZYS+10, GS15, GFPSD17, GZ14, FZY+12, TO10]. impurities [SBC+11]. IMSPeptider [dCLFGL13]. In/Si [LGKS17]. inactive [CV12]. include [PZA15]. includes [HBKL10]. including [KL14, SFLG+17, BL12, FAA15, FD16, LH14a, SPH11, TG12a, WC14, YB11]. inclusion [CGR16, LZ11]. Incorporating [LHO17, Yan14, CSKH16, GCCM15, ZBP11]. Incorporation [BTT10, DDP16]. incremental [DCS15, LTA+11]. increments [MS15]. independence [LC17a]. independent
indispensable

individual

indole

induce

Induced

induction

inefficient

Inequivalence

inexpensive

infantum

inguence

Informatics

Informatics-Based

Information

Informational

initialization

Inherent

inhibition

inhibitor

information-theoretic

informed

infrared

ingredients

Inh

Initio
Interactive [BRP+12, BGR13].

interactiveness [CQFC10].

interatomic [DPAB16, FCCP17, YKO+11, dLC17].

interconnections [GLF16].

interconversion [HH10].

Interdependence [WAB17].

interest [BCNH+11, OZLSBH12].

interface [Alli11, BDTP11, CSSB11, GRP+12, GCW14, HL14, JJW+14, KG13, LJR+12, LZdIL+10, LBB+15, MSSH17, OYK+11, PHH+12, PVZ13, RR14, RSR+12, SN16a, SYDS11, SISK10, STH+10, VKTR15, VLI7b, WPM+15, ZWL13].

interfaces [PGCT+12, RRF11, SSAS10].

interfacial [NFPD13].

Interfacing [MSvG12].

Interferometry [JAH+17].

intermediate [TDP+12].

Intermolecular [FMNC11, VECT12, Ano10a, BLF14, BLDK+13, CCLP12, KCL+14, LZY12b, LZLC13, RRH12, SN10, TY10, TNG+10, VVP12, WGD+16, ZL+12, ZLT13].

Internal [LL15, REH13, LWK+14, NCV10, PH10a, TNG+10, VLGK17, VBV13b, WBN+13].

Internal-to-Cartesian [REH13].

internally [SMP17b].

Internucleotide [LZH+11].

interoperability [REL+14].

interphase [BVY+12].

Interplay [FC16, LLL+11, YKH15, CCLCGR14].

interpretation [DCOD13, TLA10, WXL17, XFX+16].

Interpreting [CLA16].

interprotein [JZ12].

intersite [LLLM11].

interstitial [GM17].

intersystem [AMQ+14, QCR12].

intervalence [DAdGR15].

intervals [LL11].

intra [LZY12b].

intra- [LZY12b].

intraminimum [ABD11].

Intramolecular [DBG11, GWF11, KP10, MH17, CROB16, HB15, KFY+13, KV14, LWGZ15, LTP11, MMT14, MPSG11, SSB11, SSB13, VVJ15, YK13, YLZ+10, dALS+15, dLC17].

intraphase [BVY+12].

intrinsic [AMGB10, OVPK15].

intrinsicly [LC16].

Introducing [DJD12].

Introduction [HIS17, Sie15, SJ17].

intuitive [EFAC13].

invariant [CWZB10].

Inverse [KTT16, GD10, JMS13, WHK+12].

inversion [SP13, GG10].

invert [KZZ+16].

inverted [UT15, YJ17].

investigate [dSAdSL13].

investigated [SLY+10, SCW11, YS13].

Investigation [ALV+10, CAP17, GY10, PH10b, WS10, ZY14, AvKSP16, AMK11, ABB+12, ABB+13, CWT+12, CYY+17, CZH12, CH10, GDV17, HXM+16, KCB+12, KV15b, LLM11, LLB+12, LZY+12a, LLDF17, LZX+10, MLQ+12, MP13, OAN15b, PZA15, PVS12, QCR12, RDT14, RRC+15, SH14, Tak11, TPL+10, TS10b, TR12, VVP12, YJN+11, YU12a, ZZ10, ZZ11, ZSWL12, ZBMZH15].

investigations [GZL+12, KAR12, LWWG12, TSJ+10, WS12, YPvD13].

Invisible [SDM+16].

involving [ARLP13, GND+12, LEDOLd17, LRRR13, NFG+13, OSHG17, SLT14, SL+15, YZZ+17].

iodanes [SLT14].

iodine [ACS12, SLT14, SL+15, KLN12].

Ion [Fra15, Fra16, LZTV10, DMN15, DMN14, EK15, JAH+17, JLCA17, KTK17, KJ10, LEDOLd17, LJ+12, LPE+10, MMB+17, MH11, NC13, PGY15, PL14, RTS+13, SSGS15, SV11, TCX+13, VPR10, Wk11, WC14, ZZ10].
ion-associated [ZZ10]. Ion-exchanged [LZTV10]. ion-pairing [KTK17].
ionisation [CTP13]. ionization [ACD+13a, ACD+13b, BG17, CBG17, GWF11, LGOM+15, LK13, yOTa16, SSB+16, SGHL13, Tac17, VL17a]. ionizations [LGVA14]. ions [AS14, BDTP11, CCCLRo14, CC12a, EKH14, PRJ+17, PZa15, SNS16, SGH+16, WKC10a, XP13]. IP [BK17b]. IP-tuned [BK17b]. IPRO [PGL+15]. IQA [CSM16]. IR
[DCOD13, CWT+12, LWL+11, LXZ+10, WJX+10]. irGPU.proton.Net
[Kan15]. iridium [CWT+12, HDPM14, KB13]. Iridium-catalyzed [KB13].
iridium-containing [HDPM14]. Iron [HS14a, AKMYB18, BG13, CTR13, GBGR16, HS16b, KPL13, KPL15, MC10, SBC+11, TS10b, VBMA13, EH13].
iron-containing [AKMYB18]. iron-sulfur [CTR13, HS16b]. Irregular
Isolated [FL15]. Isomeric [FL15]. isomerism [RS17b]. Isomerization
[BW11b, DBGO+17, EFB16, BLG10, BMFG16, MSBF16, OKIS17, SJD11, Su10, WCL+11, ZWZ11]. Isomers
[CSM16, ZWZ11, Kar17, OKIS17, WCL+11]. isotope
[KTT16, MRK11, NASH15, ORZ11, UT14, UT15, VKAM12, WXY14].
isotope-substituted [UT14]. isotopomers [UT14]. isotropic
Joswig [Spr10]. Journal [Ano15-59, Ano10b, GS16, MFEM16, XFG+16]. judging [RCM+13b]. Jumping [MS17], junction [Ish10], junctions [LZW+11]

Less [SA10]. Letters
[BCJC+14, Cor17, GKR13, GPGSM12, Ihl12, JW12, KR14, Man13, Ray13, RSLML12, SFLG+17, VVB13, WM12, dSDS12b, vLBBR12]. LEUS [BH15].
level [BVHH17, DMJ17, EWK+13, FFA14, HJKJ13, JCG+10, KSM16, KSM17, KKN11, MSC+10, MCLD10, OSR16, PVL+13, PTK11, PML+12, PB14, VAMS14, WWD14, ZM3M12]. levels
[AC12, BCSCJ+13, BY11, BACSCJ+10, HY12, Hua16, KHW17, Kop15a, Kop16, Kop17a, Kop17b, MK13b, dSAdSL13]. leveraged [EPH+15]. Lewis
[EHSPT16, KASH14, Li14]. Li
[DDM+15, JW12, RL+11, YCGA10, YHCS11, BWKW10a, RL+11, YCGA10, SBW12]. Libcint [Sun15].
LIBEFP [KS13a, KS15]. libKEDF [DWC17]. Libra [Aki16]. libraries
[LG11, RLL+10, WF16]. Library
[KSD+12, Aki16, DWW17, EWK+13, FRN15, KSL13a, KSL15, LRvE17, LMMZ11a, LAS+14, MZZ11, SC11, VAR12, Yes12, Yes15]. library-based [MZZ11].
LICHEM [KL+16]. LiCN [LLL+11]. LIE
[CZY11, VLB+10]. life [RHT+15]. lifetimes [CH10]. Ligand
[DPOS16, KC13a, MNNK10a, VCC10, AB11, BKLA13, BPB11, BCG10, BBG+18, BS10c, CM13, CTK13, CHR+12b, CHR+12a, DFF+15, FTLF12, FBMM11, FRLN10, GHIK12, GDV17, GS11, GZ14, HIR12, HG13, KL+17, KL14, KVB13, KTO11, KN11, LL+10, LWL+11, LBS10, MC10, MGWR12, MG14, MFR+17, NST14, NFG+13, NMF+14, OBW12, OHNK11, OGL10, OSR16, OCLM14, OOT15, PGCT+12, PK17, PP14, PV+11, RLDJ17, RZG+13, RCR+16, RVP11, RVP+11, S+18, SL+18, SKKS13, STM+15, TLY+12, TNSS17, VVG13, VOR10, WDVN12, WNP+16, WZ17, YZ16, dRBO13, YZZ16, SCH+11]. ligand-based [RVP+11].
ligand-binding [GDV17, MGWR12, OSR16, RVP11b]. ligand-field
[BBG+18]. ligand-induced [KL14]. ligand-receptor [FRLN10, VCC10].
ligand-sized [OGL10]. ligands
[CS17, GPDC+16, HRC13, LL10, LZC+10, LS11b, SSP+13, TS10b, ZRCC12, ZWY+10b]. ligated [EH13, WC14].
LigDockCSA [SHL+11]. light
[HXM+16, PE11, REL17]. light-driven
[HXM+16, REL17]. lighter [WD10]. Lightweight [RLG14]. like
[AASP18, Che17, EPH+15, KOY+12, KB14b, MP17b, OAN15b, SDF+17, SM15, UCFR16, VHA+10, WKC11, WGN+16, ZL+11]. Limit
[SN16b, Fra15, Fra16, LW16, LYC+13, OAN15a, SLT14, WTH+16]. Limitations
[LvG13a]. limiting [SLT+15]. Linear
[BG12, YN15, ZLY+16, ARLP13, CPV+12, EP12, FBY+17, FCE15, GZZ12, JzzM14, JMS13, LP11b, MA17, MSAK12, NYH+17, PH17, RS17a, RL+11, RR11, SS16a, Tak14, VBDS+11, WL10, YDX16]. linear-combination-based
[Tak14]. Linear-scaling
[BG12, YN15, NYH+17, RR11]. Linearity [IKN13]. linearized
[Fra15, Fra16]. Ling
[Ano12a]. Ling-Yun [Ano12a]. link
[HH15]. linkage
[HH11, OZS+13]. linked
[FO11, dACP12]. linked-cell [FO11]. linked-lists
[dACP12]. linker
[NPG17]. lipid
[BPPS17, MOS12, PGCT+12, ST11, WHAS+10, WHAS+16]. lipids
[HM16, ML14]. lipopolysaccharide [DLSA14]. lipopolysaccharides
[HBJ+17]. Liquid

methanol

methionine

Method

method

Methodological

methodologies

methodology

methods

methyl

methyl-methyl

methylacetamide

methylacetylene

Methylation

methylbenzyl

methylcobalamin

methylformamides

methyllysine

methyltransferase

Methyluracil

MetREx

metric

metrics

Mg

Mg-porphyrin-based

MHC

MIA-QSAR

micelles
Michael [NDG14]. microbes [RSLS13]. microclusters [NC12].
microelectrostatic [SMP17b]. microhydrated [SM17, ZYR +15].
microhydration [OSS10, SBD +17]. microiteration [SMM17].
WNM17, WRHF10, WKC11, WCAH10, XZ11, XTY+14.

model [XP13, YOMT14, YB13, YSZ12, ZSTII14, ZKH+10, ZM10, dSddAR10, MJBM12].

model-tuned [HZS17].

modeled [MPA12].

modeler [KLJ+17].

Modeling [CB11a, DLSA14, FTW12, GMG+10, GBS+17, HPL13, JW16, Mat14, NS10, NDLW13, PLP+16, SK11, Tia12, Vyb15, AKMT11, Aou16, BEM14, BPC13, Bow16, BS10c, ČMD13, CLA16, CZNA11, DWR17, DSX+11, DLMH12, EBPK17a, FXC+13, GH10, GP12, GMZ12, GR10b, GWZX12, HLvdV13, HBJ+17, JC16, JCL+17, KSD+12, LABSG17, LLH14, LZGS11, LT13, LN15, MBA11, MJLV14b, MA17, MBA14, MPBJ11, NSO+14, NW17, PHC13, PSS14, PVT16, RJS17, SN16a, TTR+12, VKNT15, VAA14, VCM15, WXL17, WPM+15, WLO+12, XDL+10, XLY12, YJ11, ZX11, DHE12].

modelling [DBM+15].

models [BEM14, BLKP12, BPB11, CD11, Cor17, CBG16, CK17, DDP16, DSM+11, DLMH12, EBPK17a, FXC+13, GH10, GP12, GMZ12, GR10b, GWZX12, HLvdV13, HBJ+17, JC16, JCL+17, KSD+12, LABSG17, LLH14, LZGS11, LT13, LN15, MBA11, MJLV14b, MA17, MBA14, MPBJ11, NSO+14, NW17, PHC13, PSS14, PVT16, RJS17, SN16a, TTR+12, VKNT15, VAA14, VCM15, WXL17, WPM+15, WLO+12, XDL+10, XLY12, YJ11, ZX11, DHE12].

modern [AB16a, AB16b, DH17, Fom11, LMR14, SDM+16].

modes [CBP+15, GMPB12, LLTC12, MS17, dSAdSL13].

modification [Ano12u, MIS+15].

modified [BD12, CH16, DPSL16, DJX+11b, GSD10, MRO17, Mit13, SMM15a, SMM15b, SMM+18, XYX17, XVA+16, ZZ12].

Modifying [CYG+15, LB10].

modular [HPT+16b, JP15, LWK+14, MBR+15, PSG+17].

modulate [WC13].

modulation [PE11, RS17a].

modulator [ILKR11].

modulators [SRA17].

module [PHH+12, VBV13b].

MOFs [LPK16].

moieties [SPL+18].

MOLCAS [ADF+10, VBV13b, AAC+16].

Moldyn [HPSK12].

Molecular [AASP18, BDTP11, CRZ+18, ČMD13, Cor17, DHG+11, DHH+11, DSX+11, Fon13, Ibr11, JA10, KUDG12, KB14a, LWZK13, LBDP12, MFEM16, PL14, Pla11, RKG11, RO14a, RRK14, SBT17, SFLG+17, SV11, VSD10, WC11, WWKS11, XFG+16, XLY12, Yan16, YJXZ13, ZWS+10, AALCM11, AG11, AST+16, AFFF13, AS15a, ASL+11, AS10, APK14, AGB13, AS15b, AGR11b, AJR16, AB16a, ASK18, ALH+10, BMR11, BAMR13, BEM14, BSL11, BF15, BBOB16, BJS12, BU14, BW15, BF17, BJF15, BMBJ11, BE16, BVC13, BEL+11, CP14, CMM18, CM13a, CDBM11, CD13, Car14, CTR13, CAF+13, CBO15, CJKT13, CGPP11, CS14, CXW14, CBTZ16, CH16, COH14, CVG14, CCW+10, CHK10, CB11b, CB11c, CM16, DMM17, DSD+11, DJX+11b, DJX+11a, DLZ15, DDM+15, DL16, EP10, EK15, EJ13, EPH+13, ENKK+17, EPD+11, FBEM11].

molecular [FSC+14, GBL+11, GDV17, Gar12, GJMPAM+14, GSHM10, GR11, GMZ12, GPM17, GMMH+16, GFGS18, GY10, GWZ15, GCW14, GGM+12, GBW+14, GEP+14, GPdC+16, GP11b, GR10b, GPK12, EPH+15, HS17b, HB14, HS12, HCD+10, HDM+15, HPSK12, HH16b, HWLW11, HJ10, HXM+16, HHWL17,}
naphthol [CYY+17, GZL+12]. native [DJ13, HYL+11, UCFR16, YL13].
native-like [UCFR16]. Natural [LCPS13, MBFP15, Wei12a, Wei12b, AO10, GMZ12, NC14, Sch12, GLW13a, GLW13b]. naturally [XVA+16]. Nature [ABDGN12, MJM+15, GPK+16, HBR17, Kri10, LZJ+11, LYL16, LdSR+16, MLGB16, PKK17, RKM14, YK13, YJ17, ZRCC12]. navigation [SLG15].
NBe [UT14]. NBO [GLW13a, GLW13b, WvRSM14]. NBS [YZ17]. NCCH [MLGB16]. NCN [REV+17, VVJ15]. NCX [LZL+15b, LZL+15b]. NCY [LZL+15b]. near [DJ13, SISK10, Yan11]. near-native [DJ13]. near-solute [Yan11].
native-like [UCFR16]. Nature [ABDGN12, MJM+15, GPK+16, HBR17, Kri10, LZJ+11, LYL16, LdSRR+16, MLGB16, PKK17, RKM14, YK13, YJ17, ZRCC12].
navigation [SLG15].
NBo [GLW13a, GLW13b, WvRSM14]. NBS [YZ17]. NCCH [MLGB16]. NCN [REV+17, VVJ15]. NCX [LZL+15b, LZL+15b]. NCY [LZL+15b]. near [DJ13, SISK10, Yan11]. near-native [DJ13]. near-solute [Yan11].
native-like [UCFR16]. Nature [ABDGN12, MJM+15, GPK+16, HBR17, Kri10, LZJ+11, LYL16, LdSRR+16, MLGB16, PKK17, RKM14, YK13, YJ17, ZRCC12].
navigation [SLG15].
[CM16]. nitrolitro- [CM16]. nitrolitriacetic [CM16]. nitro
nitroaniline [ZTH+15]. nitroaromatic [PSC11, TD10]. nitrobenzenes
[ZGS+10]. nitrocompounds [SIG+15, SGH+16]. nitrodibenzofuran
[DPB+12]. nitroethane [YWL+15]. Nitrogen
[LLC17, BEPM14, KV14, ZZWX11, ZYL+12]. nitrogen-atom [KV14].
Nitrogen-doped [LLC17]. nitrogen-rich [ZZWX11, ZYL+12].
nitrogen-substituted [BEPM14]. nitroimine [ZYL+10].
nitromethane [MCUJ15]. nitrosamine [dALdS+15]. nitroso [TDP+12].
nitrosodimethane [TDP+12]. NMR
[Ben17, CHP11, EOA+11, HJ13, HBI17, HM13, KASH14, LK11, OPR16,
PTK11, PGdO+16, PC14, Pie14, RK15, SEF+16, SKMS13, WL14, YS13].
NNO [WGL+11]. NO
[MCUJ15, Ts17, ZZ10, WYGW12, BS16a, FYQ11, YSHG17]. noble
[ARLP13, JKS+16, PGS+15, PMG+16]. NOCV [CSM16, DBGO+17]. node
[KK17a]. nodes [KPF+15]. NOEs [LK11]. Non [KB11c, LCH10, CSHK15,
GMZ12, HOK17, MR17, NHI16, PHC13, RS13, YWJ+16]. Non-Boltzmann
[KB11c]. Non-Born [LCH10]. non-covalent [MR17, RS13].
non-electrostatic [HOK17]. non-equilibrium [NHI16]. non-heme
[PHC13]. non-hybrid [CSH15]. non-natural [GMZ12]. non-uniform
[YWJ+16]. nonadditive [RTS+13]. Nonadiabatic
[HZ11, JBSQ11, SRSLO15]. nonadiabaticity [Wu10]. nonbonded
Noncovalent
[dRCFGRB18, RRH12, SM16a, SBW12, TGR+16, VT14, WGD+16, YW13].
noncyclic [SM16a]. nonempirical [BK17b, WYT17]. nonequilibrium
[ASL+11, KHWB17]. Nonfitting [RZG+13]. nongeometric [KB11a].
noniterative [MS12]. nonlinear [ARLP13, KOP+14, LLD17, MLQ+12,
MIS+15, RLA+11, TFQ+10, Tia12, YCA10]. nonlinear-optical [KOP+14].
nonparametric [RB13a]. nonperiodic [MS15]. nonplanar [KG11].
nonpolar [LvG13b, MPSA17, PAT+10, WWW18]. nonpolarizable
[AOW11, WGD12, ZRL+15]. Nonrandom [NPP13]. nonredundant [HZ13].
nonspecific [CBP+15]. Nonstatistical [Yu12a]. nontemplate [OL13].
Nontotally [HOM+16]. nonuniform [BD12].
norbondenediene [Ant13, WJX+10]. normal
[GV+10, GMBP12, MS17, SBB10]. Notes [CD13]. Novel
[FCL+10, KKO+16, RPNP10, AIGP15, BEPM14, BPM15, DWF11, DMN14,
DFP+15, JYS+12, LLLC11, LLJ12, MPN13, PSDPE+10, RNP13, WKC11,
YJN+11, YHC11, YDGZ15, dCFLGL13]. novo
[AFBR17, BAMR13, LK11, MDT10]. Nuclear [ASK18, DKT13, ECZWD17,
KNP+12, CSEM+16, HHI16a, HII17, JKS+16, NASH15, RSG14, SS13b].
Nuclear-relaxed [ECZWD17]. nuclearity [BACSC11+10]. Nucleic
nucleobase \[\text{ANH}^{+11} \] nucleobases \[\text{WG}^{12} \] nucleophile \[\text{ZYR}^{+15} \] nucleophilic \[\text{MA}^{16}, \text{MLY}^{+13} \] nucleotide \[\text{CBG}^{17}, \text{MJC}^{14}, \text{Ran}^{13} \] nucleotides \[\text{DMN}^{14} \] Nucleus \[\text{ZBB}^{16}, \text{FVB}^{10}, \text{TH}^{13} \] Nucleus-independent \[\text{ZBB}^{16}, \text{FVB}^{10} \] nudged \[\text{QB}^{10}, \text{QB}^{11}, \text{SH}^{11a} \] Number \[\text{Ano}^{10b}, \text{ASMS}^{10}, \text{CLK}^{11}, \text{GPM}^{17}, \text{HMM}^{10}, \text{SL}^{10}, \text{SG}^{10b} \] numeric \[\text{VI}^{17} \] Numerical \[\text{WXL}^{17}, \text{CKKK}^{16}, \text{KEMP}^{17}, \text{KP}^{11}, \text{MBA}^{11}, \text{SLG}^{15}, \text{YS}^{12} \] numerically \[\text{ZDZM}^{13} \] NUPACK \[\text{ZSB}^{11} \] NWChem \[\text{PGW}^{17} \] nylon \[\text{BHNS}^{14} \] nylon-oligomer \[\text{BHNS}^{14} \] O \[\text{BCNH}^{+11}, \text{CX}^{50}^{10}, \text{DHE}^{+12}, \text{GBGR}^{16}, \text{HRL}^{11}, \text{JMV}^{14}, \text{LZ}^{10}, \text{LLL}^{11}, \text{LLB}^{+12}, \text{LSW}^{14}, \text{MG}^{11}, \text{PBE}^{16}, \text{RHT}^{+15}, \text{SPS}^{+12}, \text{SB}^{+17}, \text{V}^{14}, \text{WHL}^{+10}, \text{WRM}^{+12}, \text{XFX}^{+16}, \text{YW}^{12}, \text{YR}^{13}, \text{YOPB}^{16}, \text{ZRCC}^{12}, \text{Tsi}^{17}, \text{BCNH}^{+11}, \text{BW}^{10}, \text{CK}^{10}, \text{Chu}^{10}, \text{CRO}^{16}, \text{CPLL}^{11}, \text{DHE}^{+12}, \text{HZ}^{11}, \text{LZ}^{+15}, \text{LCW}^{10}, \text{MH}^{11}, \text{MS}^{15}, \text{PB}^{12}, \text{RNH}^{10}, \text{RAGL}^{11}, \text{SZ}^{17}, \text{SD}^{11}, \text{SSX}^{+14}, \text{YZ}^{15}, \text{ZRC}^{11}, \text{ZSWL}^{12} \] o-atom \[\text{Tsi}^{17} \] O-loss \[\text{MH}^{11} \] O-methyltransferase \[\text{CPLL}^{11} \] OBC \[\text{FCE}^{15} \] OBGMX \[\text{Gar}^{12} \] Obituary \[\text{Ano}^{15-60} \] object \[\text{RLG}^{14}, \text{SK}^{15b} \] object-oriented \[\text{SK}^{15b} \] objective \[\text{PSG}^{+17} \] observables \[\text{VZ}^{14} \] observed \[\text{XML}^{+15} \] obtain \[\text{GR}^{10a}, \text{GR}^{11}, \text{MA}^{16} \] obtained \[\text{OSR}^{16}, \text{SISK}^{10}, \text{Tak}^{10} \] obtaining \[\text{STM}^{17} \] occlusion \[\text{BK}^{17a} \] occupancy \[\text{MP}^{13} \] occupied \[\text{HJJ}^{13}, \text{MRB}^{14} \] occupied-virtual \[\text{MRB}^{14} \] occurring \[\text{XVA}^{+16} \] OCF \[\text{ZLL}^{12} \] octa \[\text{ABDG}^{11}, \text{CC}^{18b} \] octa-1 \[\text{ABDG}^{11} \] Octene \[\text{MJLV}^{14a} \] OCXR \[\text{FCOG}^{12} \] offsets \[\text{KRSC}^{12} \] OFLOOD \[\text{HNS}^{16}, \text{HNTS}^{15} \] OH \[\text{CX}^{14}, \text{Chu}^{10}, \text{GTK}^{10}, \text{HZ}^{11}, \text{LLS}^{14}, \text{AR}^{10}, \text{CK}^{10}, \text{GK}^{10}, \text{LJ}^{+11}, \text{LJ}^{+11}, \text{RAGL}^{11}, \text{TJS}^{+10}, \text{VDVR}^{14}, \text{WLH}^{12}, \text{Z}^{+10a} \] OH/OD \[\text{Chu}^{10} \] \(\cdot \) \[\text{MVKS}^{10} \] OHHGe \[\text{WHX}^{+10} \] oils \[\text{SST}^{14} \] Ole \[\text{Spr}^{10} \] olefin \[\text{MJLV}^{14b}, \text{RS}^{17b} \] olfactory \[\text{DR}^{14} \] oligo \[\text{KSW}^{16}, \text{TZ}^{12} \] oligo-acene \[\text{HZSS}^{17} \] oligomer \[\text{BHNS}^{14} \] oligomerization \[\text{ZQ}^{14} \] oligomers \[\text{DP}^{15}, \text{PH}^{10b}, \text{ZSLL}^{17}, \text{TYW}^{+16} \] oligopeptides \[\text{RS}^{16} \] On-the-Fly \[\text{PAK}^{15}, \text{MIOM}^{13}, \text{PL}^{14} \] On-the-path \[\text{CY}^{9}, \text{CY}^{13} \] One \[\text{MBFP}^{15}, \text{COCOH}^{14}, \text{GAMAC}^{+14}, \text{HRID}^{16}, \text{KPL}^{13}, \text{L}^{10}, \text{L}^{11}, \text{L}^{13b}, \text{LvG}^{13a}, \text{PSC}^{11}, \text{RRK}^{16}, \text{SM}^{16a}, \text{SJ}^{11}, \text{SGH}^{13}, \text{WM}^{+10}, \text{ZZW}^{12}, \text{ZGS}^{+10} \] one- \[\text{SJC}^{11} \] one-bit-per-sample \[\text{HRID}^{16} \] one-bond \[\text{RRK}^{16} \] One-electron \[\text{MBFP}^{15}, \text{PSC}^{11}, \text{SGH}^{13}, \text{ZGS}^{+10} \] one-step \[\text{LvG}^{10}, \text{L}^{11}, \text{LvG}^{13b}, \text{LvG}^{13a} \] ones \[\text{YZ}^{15} \] ONETEP \[\text{LCPS}^{13}, \text{WS}^{13} \] ONIOM \[\text{AALCM}^{11}, \text{Gil}^{11}, \text{GWZ}^{12}, \text{Lun}^{12}, \text{Mor}^{15}, \text{RJW}^{12}, \text{TS}^{10a} \] ONIOM-ccCA \[\text{RJWW}^{12} \] online \[\text{Ano}^{12u}, \text{BJP}^{15} \] only \[\text{LT}^{13} \] ONO \[\text{WGL}^{+11} \] onto \[\text{LL}^{13a} \] ontology \[\text{CQFC}^{10} \] OOH \[\text{LJG}^{+11} \] OP \[\text{CSKH}^{16} \] Open
[HLS+13, Aki16, APK14, BG13, FBY+17, HPT17, ISO+13, KSD+12, NS17, PHT17, RJR14, SRR16, SMRM+17, XTG+11, Yap11, Yes12, CZH12].

open-ended [RJR14]. open-shell [BG13, ISO+13]. Open-source [HLS+13, Aki16, APK14, FBY+17, HPT17, KSD+12, PHT17, Yes12].

opsin [RLG11]. Optical [WGLG+16, ARLP13, BLL13, BLS10, GTT10, HB15, HRJ+14, HRJ+15, JRSHP14, KRT10, KOP14, LLBO12, LLD17, MLQ+12, MIS+15, MGS+16, MCK17a, TFQ+10, TFQ+11, TS15b, YB13, YCGA10].

optics [Tia12]. Optimal [WGLG+16, ARLP13, BLL13, BLS10, GTT10, HB15, HRJ+14, HRJ+15, JRSHP14, KRT10, KOP14, LLBO12, LLD17, MLQ+12, MIS+15, MGS+16, MCK17a, TFQ+10, TFQ+11, TS15b, YB13, YCGA10].

oral [LWL+11]. orbit [AMQ+14, FAA15, FD16, GP11a, JKS+16, MG11, PS17, YB11]. Orbital [WM12, ASL+11, BVC13, CIKT13, CPN+17, CGPP11, DFH+11, FE14, GWF11, GLW13a, GLW13b, IIF+10, IKN13, KTN10, LCPS13, LFN+10, LTP11, MFR+17, MGS+16, NF17, OHNK11, OOT15, OOK11, PRY1+17, PH15, RKGN10, SGPJS+17, Sch12, SMW09, SB14, SB15, TKN10, TS14, TSN16, US11, UM13, Wei12a, Wei12b, WCW15, WM17, ZA15, vLBBR12].

pairwise-additive [VMPS17].
palladium [WCWW11, YHG+11, dCDP15].
palladium-catalyzed [dCDP15].
paper [GPJSM12, Hl12, JW12, WM12, HP10a].
para [KYCL11].
para-substituted [KYCL11].
paracyclophane-bridged [KGR+16].
Paradoxical [UT14].
Parallel [BTB+11, KDB13, NN18, UIW+10, WWKS16, BW11a, BTT10, CEBO15,
CSSB11, GJMPAm+14, GRARO+14, HP10a, HS17b, HPSK12, KS13a,
KNHN16, KN17, KZZ+16, KJM+17, KDT+12, LL10a, LPLA13, MBR+15,
MCRL17, MYT+14, MJM+15, NNK+16, OPB+12, RFN15, SHMO11,
TCX+13, TJB12, WHK+12, Ys15, ZWL13, ZSS+13, CJL+13, KDT+12,
LMR14].
parallel-generalized [LL10a].
Parallel-ProBiS [KDT+12].
Parallelization [AB16b, VDL+13, BWMSM10, IUK+11, JMS14, KS15, KNN11, LLZa12,
RŠRR15, vW11, ZDKM12].
parallelize [vW11].
parallelized [DBDP16].
parallelizing [BMBJ11].
Parameterization [HK18, HJLV16, ILK11, IHJ+13, MPA17, PRRT+10, TCC+13, BAS14,
CCLP12, DLMH12, KYB13, LTP11, MSS+13, VLB+10, VBD11].
parameterizations [SH15].
parameters [OZS+13].
Part [HRJ+15, CDBM11, CD13, HRJ+14, Fer13b, SK13].
Partial [HTS17, JMILL13, SMP17b, WOH16, GVP+10, MPBJ11, PL14].
parsimony [UT14].
particle [AG11, BK13, Cas13, NO16, PH17, ZDKM12].
particle-field [ZDKM12].
particle-mesh [AG11].
partition [HGCCGR+16, JIS13, LRR13, WG12, WDHZ13, YAS13].
partitioning [DK11, EV14, FCOGM12, LZZ+17, REL17, SS13a, TMJ15, VGV+11].
partner [dVZ17].
passing [CSSB11, ZWL13].
Past [GS16, MFM16, XFG+16].
patches [OME16, YSSB12].
Path [MA17, VKAM12, CY09, HX+16, Ish10, JZ17, SRSLO15, SA13, SS13b,
SMML17, WXY+14, ZT14, CY13].
path-based [ZT14].
Path-integrals [VKAM12, WXY+14].
path-search [Ish10].
PathOpt [GPE13].
Paths [SH11a, AMGB10, Ant13, CX10, NMLD13, RVP+11].
pathway [BHR12, HOM+16, LKL10, SJ14, TDP+12, XLYZ10].
pathways [CM13a, EFB16, GS11, HNTS15, KGR+16, MTM14, QSW+10, QB16,
RCM+13a, RML+15, SJ11, SH18, Tsi17, WSH10, Yn16, BHB12].
pattern [CX10, WGL12].
Patterns [FZL+15, RS14].
Pauli [Ano15-60, Ano16-56].
Pauli [JH+13].
PAW [LGKS17, MDTD13].
PAW-based [LGKS17].
Pb [MCK17b, PMG+16, vSGP10, FBY+17, OBW12, vSGP10].
PB-AM
[FBY+17]. PBE [DOM+11, PTK11, LK16a, SGPJS+17, TG12a].
SV15, SEM12, TYZ\(^{16}\), XHLH16, YZ15a, dCLFGL13). peptide-backbone [HLH\(^{12}\)]. peptide-design [XHLH16]. peptides [BLKP12, BPC13, CCOH14, CZNA11, GFG11, HLH\(^{12}\), HHWL17, IO13b, JCX10, KB10, LvG13c, MZZ11, OLY17, WNM17, XHLH16, XWSW13, ZKH\(^{10}\)]. peptoid [MMZW14]. perception [AJR16, HYYZ13]. Performance [Abr11, BZB\(^{13}\), CSKH16, CKKK16, DOM\(^{15}\), HSB\(^{11}\), JCP14, LK16a, RKB\(^{14}\), SGWA17, ABM\(^{15}\), BLKP12, BPC13, CCOH14, CZNA11, GFG11, HLH\(^{12}\), HHWL17, IO13b, JCX10, KB10, LvG13c, MZZ11, OLY17, WNM17, XHLH16, XWSW13, ZKH\(^{10}\)]. peptide-design [XHLH16]. peptides [BLKP12, BPC13, CCOH14, CZNA11, GFG11, HLH\(^{12}\), HHWL17, IO13b, JCX10, KB10, LvG13c, MZZ11, OLY17, WNM17, XHLH16, XWSW13, ZKH\(^{10}\)]. pericyclic [HPT16a, KG15]. Periodic [Sce07, Sch10, AAC\(^{16}\), CMM18, CEBO15, FCD10, Gar12, HSH15, HBI\(^{17}\), ITIN15, KB14a, LBGS16, Man13, MGS\(^{16}\), NN18, NO16, NTNY15, RJPB12, SN16a, Sie15, TLdG12, Tak14, VBV13a, VBV13, VECT12, VI17]. Perlin [HLBLCCG15]. permeation [DMN15]. permutation [IO13b]. pernitrides [WD10]. perovskite [LLB\(^{12}\), LLL\(^{12}\), VVY17]. peroxide [KNP\(^{12}\), MK13b, SZ17]. peroxy [RHPWS13, RHT\(^{15}\), ZRCC12]. peroxy/superoxo [ZRCC12]. peroxo/persulphates [BLG11]. persistence [XW15]. Persistent [XFTW15]. perspective [ABDGN12, Dil15, Hsu14, JCGVPT17, JM\(^{+}\), LGOM\(^{+}\), MP17a, Niz13, PZM15, XLY12]. perspectives [DR14, Wei12a]. perturbation [CCM15, CF14, DCHL12, FRSA14, FSSW17, FE14, GR15, GCCM15, HI13, HRJ\(^{14}\), HRJ\(^{15}\), HYUS11, JRSHP14, KKKN11, KN17, KM13, LCL\(^{10}\), LLvG10, LLl11, LvG13b, LvG13a, MCC11, RLDJ17, RAR\(^{11}\), RHPWS13, SSSI15, TAG16, VDL\(^{+}\), WHAS\(^{+}\), YKH15, ZZ14, WHAS\(^{+}\)]. perturbation-selection [FE14]. perturbations [GMSdG15, OSR16, Tak10, WWCL15]. Perturbative [SSWX14]. perylene [BSL\(^{16}\), SLP\(^{+}\)]. perylene-based [SLP\(^{+}\)]. perylenediimides [QCR12]. pesticide [BBH\(^{17}\)]. peta [KNHN16]. peta-scale [KNHN16]. pecascale [SOCD13, ZWL13]. PH [LZL\(^{15}\), dSDAR10, LZL\(^{15}\), AB16a, CS14, CAD16, HS14b, MBA14, PZA15, PS13, SY16a, SOvG12, Vor12]. pH-dependent [SY16a]. pH-responsive [MBA14]. Phage [MP17b]. Phage-like [MP17b]. PHAISTOS [BFH\(^{13}\)]. pharmacokinetics [VBDS\(^{+}\)]. Pharmacophore [HRK\(^{+}\), HKRS11, HS11, TDO10, AKMT11]. Phase [ATM18, ZWMW10, ABD\(^{12}\), BE12, BG17, DLSD13, DLW12, EMD17, GYX\(^{+}\), Hsu14, KD10, LJJW11a, LPLB16, LGKS17, MFM\(^{+}\), NIIT15, PSC11, RWR\(^{+}\), RSLML12, RJS17, SJZ\(^{+}\), VKAM12, VED10, YHG\(^{+}\), YSG12, ZSZ\(^{+}\), ZWW10, ZYR\(^{+}\), ZLH14, dSDS12a, dSDS12b, ABD\(^{+}\)]. phase-change [EDEM17]. phases [EB12, LPAS11]. Phen [FD16]. phenol [AAMD\(^{+}\), AK10, PPH\(^{+}\), WHX\(^{+}\), YKH\(^{+}\), AK10]. phenol-imidazole-base [YKH\(^{+}\)]. phenol-triethylgermanium [WHX\(^{+}\)]. phenolates [SKGB13]. phenols [SK12]. phenomena [JBSQG11, WDP\(^{+}\)]. phenoxy [LY11]. phenoxy/phenol [LY11].
[SBW12]. PMF [ZLX +13]. PMMA [NNS15]. pmx [GMSdG15]. nicogen
[LDG +15]. pockets [MK11, TNSS17]. Point
[Lar11, AS15b, AGM +13, BHR15, BEL +11, BTB +11, EPD +10, LPS12,
LSW14, OHPR17, SN15, Tac17, TBSM12, Wei12b, YHW17]. points
[HDL +17, HEMCZE +14]. Poisson
[BCCO10, BD12, CLA16, FBY +17, FHMB15, FCE15, Fra15, Fra16,
GRARO +14, NWW17, SK15a, WL10, XYX17, YOMT14]. polar
[BK17a, CVG14, GMG +10, LvG13b, PAT +10, WWWW18]. polar-nonpolar
[BWWW18]. polarizabilities
[BLG +13, BZB +13, KR12, KNP +12, LIRL +16, MLC13, RLA +11, SS16b].
polarizability
[CPK12, EPD +11, HBKL10, KSK11, NYN17, OVPK15, PC14, YB13].
polarizability/reaction [KSK11]. Polarizable
[GEP +14, LPS +13, NS11, SAvG15, ZM10, BSL +16, Cam15, CCB15,
CGPP11, DGPM14, DGB +13, DDM +15, ENKK +17, ESM +12, FP17a,
GRS15, GPDc +16, HOK17, HZSS17, HCP15, ISO +13, KFY +13, KR12,
KWL +16, LRvdSM15, LFN +10, LHHW14, LDG +15, MBC11, MBC13,
MBE16, NLP +16, PMC +17, PZCL16, Ric16, SM14b, SK17, SbvG14,
VVLG17, WRHF10, WLO +17, XZ11, XP13, ZRL +15, ZP13].
Polarization
[Mit13, CD11, JZ12, LCW12, MLZZ12, POB13, RF15, TNG +10, WWD14,
YD17, ZJZM13, ZBG11, ZBP11]. polarizable [SS16b]. Polarized
[BS10a, BLG +13, DLZ15, JZZM14, NHF +10, SFM14, YJXZ13]. pole
[NYN17]. pole-search [NYN17]. pollutants [GCC14, SIG +11, TTR +12].
pollution [LZ14]. poly [CH10, PRRT +10]. polyacenes [KAR12, RS17a].
polyamidoamine [CAD16]. polyatomic [OT12]. polybrominated
[GKR13, Ray13, RKG11]. polycyclic [CB11d, FVB10, Kar17, PL18].
polyelectrolyte [DLP11, NNP13]. polyelectrolytes [NSP15].
polyethylenimine [BF17]. polylglycine [CCOH14]. Polyglutamine [PL18].
polyglurononate [Pla11]. polyhedra [CD16]. polyhedral [CL16]. Polymer
[HP10b, PH10a, MZZ11, SCMA +17, YCGA10]. polymer-growth [MZZ11].
polymerase [SBT17]. polymers [CRC13, GREA11, SA11]. polymorphic
[SLY +10, XWSW13]. polymorphisms [LXL +11]. polymorphs
[RRC +15, WRM +12]. polynomial [SY11]. polynuclear [CAT +13].
polynuclear metalates [CB11a, CB11b, CB11c, GLZ17, RDF +11]. Polypeptide
[AD10, IUK +11]. polyphenacenes [QZ10a]. Polyphilic
[vRWGS17]. polysaccharide [KSW16]. polyspherical [PH10a]. polyuronate [PD12].
poor [HDDH12]. populated [CBP +15]. population [LTA +11].
population-based [LTA +11]. Populational [DK11]. populations
[BVC13, KV13, OGL10, VZ14, WES13]. pore [KJ10, SFBT17, WNM17].
pores [DMN15, Fom13, HPL13, LJR +12]. porous [LZ14, PLZ17, SYZ +17].
porphyrin [BEL +11, EH13, INT18, KCK +15, PLZ17, VBMA13].
porphyrins [MLQ +12, TSNC +17]. portable [KS13a]. Porting [WS13].
pose [Vor10]. poses [HWLW11]. position [LHO17, VDVR14, BEEL14].
positive [SRA17]. positronation [BL12]. Possible

FCW+14, HRHI17, LLL+12, MO17, NFPD13, SMM+18, WDLG12].
pressures [RHNN10]. primary [ALK+15, GAI13, VVLG17, KTNN10].
[PSP15], principle [CCJC10, DBM+15, LLB+12, MCF10, Tak11, YPD13].
Principles [HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13,
EBPK17a, GD10, HYL+11, Ibr17, JCG+11, LLLM11, LCWW10, NNS15,
PLZ17, RZG+13, SFA17, TZ11, WYL+15, WD10, YR13, wZbZ11, Zha12b,
Zha12a, ZWMW10, ZZ12, vADC+14]. principles-based [Zha12b, Zha12a].
prismane [DM15, VIT+15]. Pro [RB12]. Pro-Tide [RB12]. probe [RN17].
ProBiS [KDT+12].
problem [BB11a, GA14, KV13]. problems [HLX17, PWN+16].
procedure
[AD10, BK5+11, BY11, CJSZ10, HKR+14, MG14, MS12, SA13, dSAdSL13].
procedures [AC11b, CKH17, KSM16, PW12]. process
[ABDG112, BM12, DPAB16, HBL12, NIIT15, ZZ10]. processes [BPBL12,
FBEM11, HTS17, JM11, KV15b, LPLB16, PAK17, PTB+15, REL17].
processing [CKKK16, EP10, GBL+11, HASR+12, HEMCZ+14, WSGN11,
WS13, YWJ+16, YN15, ZKE+17]. processor [HCR12]. processors
[AB16a, AB16b, BDTP11, Fon11]. PROCOS [FHV+11]. produced
[LS11a, SIG+15]. Producing [RN17]. product [CC12b, ZQ14]. production
[GYX+10]. products [TR12]. profile [AK10, BS16a, KTT16, XML+15].
profiles [MIOM13, RBOH11, SISK10, Yu12b]. profiling [VMRS+17].
profit [KB11c]. Program
[FPV13, GH16b, SWA13, BBG+11, BBG+18, CBH14, CAT+13, FM10,
GLW13a, GLW13b, GBW+14, HS16a, HL14, JS17b, KWL+16, KK17b,
LHSH12, MHT+18, MSC+10, MsV12, Mez10, MSCP17, MB14, SFG+17,
SFR+11, SYN+12, TNYN16, TSC+13, VVV+15b, WCDM11, WHK+12, ZL11].
program/multiple [JS17b]. programming [LMR14]. programs
[LLC+10, PGL+15, PLAG11, vW11]. proguanil [APA+14]. Projected
[EF16]. projection [MDT13, HRCH16]. projector [BVH17]. prolapse
+[TH13]. proline [AS11, HJLV16, OOK11]. proline-catalyzed [HJLV16].
proline-recognition [OO11]. promelas] [TTL+12]. promising
[KSSH13, ZSL17]. promolecular [REV+17]. promoted [LPLB16]. Proof
[FVB10]. propagator [WWD14, YD17]. propane [WKC11]. propane-
[HSL+11, QSW+10, dSDdAR10]. Properties
[SFCCK+14, TY10, ARAG17, ASS10, ARLP13, ALH+10, BCSCJ+13, BE12,
BPE16, BLFZ13, BS10a, BACSCJ+10, BC13, CBH14, CWT+12, CWHH11,
CBTZ16, CH10, CCYL11, CXS10, CLC11, DDP16, DOM+11, DBM+15,
DPNM11, DJX+11b, DJX+11a, DP15, DLW12, DQ16, EBPK17b, FB10,
GBL+11, GTT10, GIK10, GWJJ12, GBGR16, EPH+15, HZY+10, HRR+17,
HLH+12, HZZS17, HLWD15, Ibr17, JBSQG11, JH+13, KP11, KDB13,
KZK+12, uLHY11, LHL+10, LHSH12, LLLM11, LZ1+11, LLD17, LBT11,
LBT12, LXX+10, LW1G12, MC10, MCF10, MJLY14b, Mat10, Mat14,

R [LdSRR16, NDG14, Sch10, LdSRR16]. R-C [LdSRR16]. R-Group
[ACS12, TSN16, BPC13, DXL+10, Gav12, RCM+13b, TTB+11, VÅA14].
relationships [CD13, Sti15, Wei12a, Wei12b].
relative [BLDK+13, CSS17, CM16, EOA+11, HH10, HH11, HDK+12, HLW+17,
Kar17, NHI16, PBLdS12, PPJ14, RLDJ17, RAR+11, RO14b, SOvG12,
ZRCC11, ZZ14, dALdS+15, dRBO13].
Relativistic
[ARAG17, BBI+11, GCCM15, RRK16, SNKS10, HKR+14, JKS+16, LHKS12,
LH14b, MCK17a, MCK17b, NASH15, OSHG17, PGdO+16, Pyy13, RK15,
TH13, VI17, ZXS+10].
relativity [JXSW15, SKMS13].
relaxation [KSH13].
Relaxed [YSRSS10, ECZWD17, KB14b].
release [KC13a, MBA14, PMT16, YDGZ15].
releasing [GMASBF16].
Relevance [TSNC+17].
relevant [ISP+10, KAR12, Mat10].
reliability [LLSW14].
Reliable [JZ17, LHG11, Kar17, NHN16, PBLdS12, PPJ14, RLDJ17, RAR+11,
RAR11, RO14b, SOvG12, ZRCC11, ZZ14, dALdS+15, dRBO13].
relocalisation [dCDP15].
Remarkable [BIL10].
REMD [PNW+16].
remote [BSDP16, RKDM14].
removal [LL13b, YS15].
renormalization [CAP17].
renormalized [ZMMM12].
Reoptimized [HLH+12, HH11].
reorganization [BE16, DAdGR15, RJS17].
Reparameterizations [DPSL16].
reparametrization [DH11, FCE15].
replacement [YHW17].
Replacing [ZSB+16].
Replica
[GS15, GS16, XFG+16, ZC14, CH16, CCOH14, IO13a, IO13b, KCK+17,
KT11, KTO13, LC17a, LMI+14, MS16, OGL10, OL13, OLY17, OZ14,
RFHG10, SBN13a, SB13b, TKI11, XFG+15].
replica-exchange [CCOH14, IO13a, KTO11, KTO13, LMI+14, OLY17, OZ14,
SB13a, SB13b].
replica-permutation [IO13b].
replicas [LL11].
Reply
[Can11, Cor17, GKR13, QB11, VVB13, WM12, LAT11].
representation [CXW14, CWOB10, FXC+13, HZY+10, KCPMG12, KDS17, LLC11,
ME10, YDL+10, YS10, YHH+13].
representations [OVPK15, dVZ17].
representative [KV12, KV13, VLGK+17].
representing [TY10].
repressor [OHNK11].
reproduced [Zha12b].
reproducibility [GKR13, Ray13, RK11].
reproducing [KTNN10, MAK+14].
reproduction [OPBR17].
repulsion [BBOB16, CGPP11, ENKK+17, HOK17, PS17, PC16].
repulsions [JJH+13].
repulsive [IO13a].
required [RAR+11, SG10b].
requirement [BF15].
requirements [TS15a].
requires [Bow16].
resampling [MMM+16].
rescaling [LL10a].
resoring [BMR11].
reservoirs [RFHG10].
residence [VBDS+11].
residual [LK11].
Residue
[LABSG17, BH15, BA11, GOM16, HIY15, NR11, SL10, SEF+16, WC14,
YHH+13].
Residue-centric [LABSG17].
residues
[FHK+12, KLS10, KML15, RK14, SK17, WXL+12, WC14].
resistivity [AB10].
resolution [BMFG16, BS10c, CM13b, DFP+15, Höfl14, JCC16, KN17,
NPG17, SM11, Vor10, WNM17, YN15].
resolution-of-identity [YN15].
Resolutions [LMR14].
resonance [EFS16, KN10+12, YB13].
resource [Gil11].
Response
[GPBS12, dSDS12b, BZH14, DHE+12, ESM+12, ITIN15, KSSH13,
KZK+12, LP11b, MRB14, RJR14, RCM+13b, SS16a, SDF+17, WGLG+16].
responses [GWX+12, MLQ+12].
responsive [MA14].
restrained

screenings [VKC10]. scripting [BK15]. Scrutinizing [SDM+16]..search [ACD+13b, MCAY15, Ran12, AIGP15, AGR11a, AC11b, DS15, GBSE11, GPE13, HRK+10, HKRS11, HS11, HEMCZE+14, Ish10, KM13, MS16, NYN17, Ng10, Ran13, TTRA+16, Vor10, XHLH16, XhD15, YZZ16, HTS15, ACD+13a]. searches [Pet11, RSL16]. searching [GK15b, HRK+10, HKRS11, HS11, LTA+11, ZYvIZ14]. Secondary [MCC11, TKN13, DCHL12, FSSW17, HIL13, ISO+13, KKN11, KN17, LCL+10, MLQ+12, yOTn16, SSB+16, TAG16, WYT17]. Second-order [MCC11, DCHL12, Hil13, KKNN11, KN17, LCL+10, MLQ+12, yOTn16, SSB+16, TAG16]. Secondary-order [MCC11, DCHL12, Hil13, KKNN11, KN17, LCL+10, MLQ+12, yOTn16, SSB+16, TAG16].

semiconductor [LCH+15, SFDE16]. semiconductors [BE16, NDLW13]. Semiempirical [SRL+15, GP11a, HGY15, KTN10, KB14b, LdS+10, MGWR12, SPH11, SDL14, TKN10, TG12a, UCFR16, WCWV15].

Sequence-based [TYZ+16, WXL+12]. sequence-reactivity [Sti15].
Sequence-specific [HYMZ16]. sequences [Ano12u, CCYL11, Fel10, HZY+10, LMZ+11b, LLLC11, LDH+14, OLA15, QLQ11, YDL+10].
Sequential [CBP14], SeR [LY10], serial [BR11a]. series
[AC11b, DDM+15, LZGS11, MCK17b, SRA17, SB10, TD10]. serious [BRKN12]. server [PZA15, XML+15, XYX17, dVAG16]. servers [UHH+11]. services [LP11a, UHH+11]. Set
[SN16b, BLL13, BLG10, BRLS08, BRLS12, CC11, HS16b, KNK+12, LS11a, LC+10, LYC+13, LWL+10, Mat10, OAN15a, PML+12, PGdO+16, PHK14, PD11, Pog10, PFVL14, RLD12, SPS+12, Sch13, SWM10, SG10a, SG13, VLGK+17, VVLG17, WX12, YOMT14, ZP+16, FL15]. Sets
[BWMSM10, SS+16, VV14]. Shao [Ano12u]. Shape [KC14, Zha11, GPS10, HCB11, Hsu14, MNNK10a, OAN15b, XTY+14, YLGX14]. Shape-based
[KC14]. shape-complementarity [GPS10]. shaped [LWZK13]. shapes
[CCOH14, Hug12, WS10]. sheets [PL18, WCAH10, YZW+17]. shell
[Ano15-58, BH14, BG13, GKS14, ISO+13, JCG+11, KSR17, MBA11, MA16, MS12, SRR16, TBSM12, WWD14]. shell-wise [KSR17]. shells
[GPK12, JXSW15]. Sheppard [QB11]. shielding
[GMZV14, HAI+16, PC14, VAMS14, YS13]. shieldings [JKS+16]. Shift
[BVHI17, Ben17, CHP11, DKE+17, EOA+11, FVB10, HJ13, JKS+16, KASH14, LK11, LZH+11, LS11b, MKH15, PTK11, Pie14, RK15, SEF+16, SK17, WL14]. Short
[DM15, Ibr17, LCCW10, MCK17b, TN12, UT15, AC11b, Cas14, DM15, HAI+16, JM11, LL13a, LDD17, SRS14, VIT+15, WKC11, YVEI+17, ZSL+11]. SIBFA
[DGPM14]. Si — [LYL16]. SiC [Kop16]. Side
[vRWS17, KLS10, KML10, LPS+13, LZGS11, LZZ14, LP11b, LvG13a, OZ14, QZM11, SA13, SISK10, SZBM13]. side-chain
[KLS10, KMLS10]. sidechains [GMZ12, PS13]. sigma [EPH+13]. sign
[DM15, VIT+15]. silica-bi [DM15, VIT+15]. silica [KKR+13, SIG+15].
silicalite \cite{CVG14}, siliceous \cite{Lar11, SN15}. Silico
\cite{VMRH17, AKMT11, AS11, DR14, EOO16, GS11, HS14b, LXL11, MPNS13, PVJ10, YLCX10, GMASBF16, CV12]. silicon
\cite{AC11b, BIL10, DM15, EFOD13, GSSM15, KOP14, Op16, KZK12, TN12, THP15, VT15, XhD15]. silicon-doped \cite{TN12}, silicon-germanium \cite{GSSM15}. silver \cite{YXZZ17}. silylene \cite{BIL10}.
Similarity \cite{HS12, LMZ11b, YDL10, CDM10, CDB10, CDBM11, CQFC10, GWT17, GK15b, HRK10, HKRS11, HS11, RMPAM15, YZZ16, ZYvIZ14]. Similarity/dissimilarity \cite{YDL10}.
SIMONA \cite{SWB12}. Simple \cite{Ano15-59, CNK97, GM17, MPSA17, AB16b, BS10b, BD12, CWZB10, TN12, THP15, VIT15, XhD15}.
simplify \cite{BLZ13}. SIMPRE \cite{BCSCJ13, BCJC14, KR14}. SIMPRE1.2 \cite{CSEMB16}.
Simulaid \cite{Mez10}. simulate \cite{SLX15}. Simulating \cite{BRE16, MFEM16, RKDM14, XFG16, Aki16, BTA13, BM12, BDTP11, BW15, BF17, JPG15, BMBJ11, BB11b, BB11c, BB11, CTR13, COOH14, CVG14, CLK11, DGH11, DNM14, DSD11, DHH11, DZT11, DSK17, DLZ15, DMD15, EK15, FTW12, GBL11, GR11, GMP17, GCW14, GP1b, Has14, HCD10, HFISON2, HPSK12, HDPM14, HMM10, HYUS11, HJ10, HHWL17, IPAA11, JIS13, JWO15, JMS14, KV13, KCK17, KCK15, KvdV14, KGKH12, KGHC15, KLO10, KB11a, KTO11, KSR16, KLS10, KMS10, KWL16, Kv15a, KPF15, LH11, LC17a, LRvSM15, LZ12, LPS13, LMI14, LZLM16, LAS14, MN15, MCRL17, MTvG12, MFEM15, MADWB11, MKM17, MB14, NST14, NFDP13, NKN16, NTNY15, Oht16, OCL11, OLY17, OZY1, OCW15, PGO15, PH17, PZCL16, PL14, PM13, PS13, PS10, PNG10, Rd14a, RLG14, RS11R15, SBV10]. simulations \cite{SS13b, SBT17, SISK10, SJ17, SMP17a, SYN12, SK13, SFLG17, SB15, SWB12, SDMS13, SV11, VSA11, VKTRJ15, VM11, WLIC12, WAM17, WH11, WWSK11, WLC12, WBF17, WG14, WC14, XFG15, XWSW13, YK011, YSG12, Yon16, YHVM12, ZZY16, ZDKM12]. simulator \cite{BSL11, KJM17, RLLHL12, TCX13}. simultaneous \cite{LL10b}. Single
93

PG14, RLLHL12, RNSF$^{+16}$, Ras17, Řez16, RR14, RdA12, RSR$^{+12}$, RCM$^{+13b}$, SM14a, SFG$^{+17}$, SK15b, SWA13, SMRM$^{+17}$, She12, SC15, Sie15, SJ17, SWB$^{+12}$, SDMS13, TNYN16, TSC$^{+13}$, TTR$^{+12}$, TTL$^{+12}$, UU12, VMRSH$^{+17}$, VVV$^{+15b}$, VAR12, VBV13b, WdVN12, WDY13, WPM$^{+15}$, WF16, Wei12b, WKH$^{+12}$, WHJI13, WGI14, WCJ$^{+14}$, XML$^{+15}$, XYX17, YWJ$^{+16}$, YZZ16, Yes12, Yes15, YHH$^{+13}$, ZDKM12, ZLL$^{+13}$, dVAG16, CCC$^{+11}$, DBF14, MSvG12, MJG$^{+15}$, SBV10, SGM$^{+13}$, Yap11, ZCS$^{+15}$, She12]. softwares [All$^{[11]}$]. solar [ACS12, DGL$^{+13}$, JYS$^{+12}$, LZL$^{+15a}$, SLC$^{+17}$, TZ12, VAA14, YJN$^{+11}$]. Solid [RSK$^{+15}$, AS10, AS18, CL16, HLS12, HBI$^{+17}$, KLN12, POB13]. Solid-state [RSK$^{+15}$, HBI$^{+17}$, KLN12, POB13]. solids [BK11, HAI$^{+16}$, MTD13, MS15, dRL11, Pon11, SN16a]. solubility [KKO$^{+16}$]. solute [BRLS08, BRLS12, EOAI$^{+11}$, TKT11, YKO$^{+11}$, Yan11]. solutes [GC11, PAK15]. solution [AvKSP16, AK10, DR11, DBM$^{+17}$, DP15, EOAI$^{+11}$, GAI13, GAI14, HKD$^{+12}$, HAL14, HN$^{+17}$, KTN10, KVR10, LVG10, MM$^{+17}$, MF$^{+12}$, PMC$^{+17}$, PGW$^{+17}$, SJWE10, TKNN10, UCPR16, WHL$^{+10}$, WC13, XTG$^{+11}$, ZLL$^{+10}$, ZZ10, vADC$^{+14}$]. solutions [Ber17, CFC15, EK15, Kri10, OCW$^{+15}$, SM14a]. Solvation [RNSF$^{+16}$, ZBP11, CBG17, CBG16, FGM11, GMH$^{+16}$, GPK12, HRC13, JMLL13, JGS$^{+17}$, Jor17, KSK11, LP11b, MS13, MPSA17, MBE16, NW17, OW17, PL14, RK16a, RK16b, SM14a, SK12, SY11, SMM15a, SMM15b, SM$^{+18}$, TKYN17, TCC$^{+13}$, WXL17, WWW18, YOMT14, YAS13, Yan14, ZCS$^{+15}$]. solvation-free-energy [SMM15a, SMM15b]. solvational [FCL$^{+10}$]. Solvatochromic [MKH15]. Solvatochromism [TKYN17]. solve [PNW$^{+16}$]. Solvent [KC13b, AKK$^{+16}$, BEM14, BRLS08, BRLS12, CAD16, CBG16, EK15, FZ$^{+12}$, FD16, HLD$^{+17}$, Has14, HYUS11, KJDB12, KB11b, KCPMG12, LHL$^{+10}$, LC17b, LLL$^{+16}$, LWZ$^{+17}$, MBC11, MBC13, MS11, ML14, MCC2015, MNN10a, MNN10b, PDM10, PS13, RdA12, RR16, SLT14, SBV10, SK17, SLX$^{+15}$, SYH12, SCMA$^{+17}$, SKMS13, TYN15, WWS11, WXL$^{+12}$, WBF17, YOMT14, Yan14, YJJ1, BR17a]. solvent-dependent [HYUS11]. Solvent-driven [KC13b]. solvent-induced [AKK$^{+16}$]. Solvents [LHT15, ISO$^{+13}$, Ple14, Pog10, RK16a, RK16b]. solver [FY1$^{+17}$, FHMB15, Kan15, SHF11]. solvers [GRARO$^{+14}$, WL10, XYX17]. Solving [KV13, SG10a, BYE$^{+16}$, GA14, SK15a]. solvolysis [OSS10]. SOMA [BMFG16]. Some [RCM$^{+13b}$, CME11, CCL18, CCYL11, CXX10, MLVL14b, Byb16, ZPF14]. sometimes [VDRV14]. Song [JW12]. Soon [A016-75, A016-80, A016-81, A016-82, A016-83, A016-84, A016-85, A016-86, A016-87, A016-88, A016-76, A016-77, A016-78, A016-79]. soot [KAR12]. SOP [AKK$^{+16}$]. SOP-GPU [AKK$^{+16}$]. Sorafenib [GMASBF16]. Sorting [NMF$^{+14}$]. Source [TCB16, Aki16, APK14, BZH14, CD13, FY1$^{+17}$, HLS$^{+13}$, HPT17, KSD$^{+12}$, PHT17, SMRM$^{+17}$, XTG$^{+11}$, Yap11, Yes12]. sources [BK13]. Space [vRWGS17, ACD$^{+13a}$, ACD$^{+13b}$, AD10, Cas13, CH16, CXX10, DK11, GA14,
Standard
[DH17, BCJC14, MKO13, PNI13, REL14, SRR16, VVG13, WHK12].

standing [TS11]. staple [SV15]. Star [MA17]. State
[CCM15, GS16, Alg17, AR10, ASS10, BS15, BBI11, CSAO17, CH10, CV12, ESM12, FD14, GS15, GCCM15, GPE13, HLS12, HNF07, HNWF12, HH16a, HH17, HBI17, HZSS17, HBR17, JZ17, KLN12, Kop15a, Kop15b, KKL13, KCL14, LGL11, LvG13b, LL10c, LLBO12, LWGZ15, LN15, LGG11, LLF16, LXFC17, MTM14, MPSG11, MCC11, MC12, MCLD10, NYN17, NMLD13, OBW12, OZLSB12, PBO13, PGW17, PH10b, QZ10c, RAGL11, RIJ11, RML15, RR14, SRR17, SSSM15, SGWA17, VZ14, VL17b, WHL10, WHX10, YWZ14, YD17, YYT12, YL13, Zim15]. state-selected [KCL14]. State-specific
[CCM15, GCCM15, LGL11, LXFC17, MCC11, MC12].

states
[AST16, ANH11, BSL16, DHO13, EFS16, EK17, EP15, FAA15, FD16, GO13, GA12, GTK10, HDHL15a, HDHL15b, HDHL15c, JCGVP17, KB14b, LLBO12, LW12, LWW12, LX11, LS11b, LYSS11, MS10, MN15, MH11, PBDW11, RHRCH16, SRF17, SOYC12, SB15, SZSS16, TN10, Tia12, TSN17, VVV15a, XWSW13, YZGS14b, YK13, YLZ10, YB11, ZXS10, ZBB16, dLC17]. Static
[KBC12, BS10a, KZK12, Lu11, PC14, PNW16, PM13, WYT17]. Statics

Statistical
[FBEM11, KERY16, MJC14, NFG13, SJ17]. step
[AYYO17, DS12b, DG14, GRCL12, JWO15, JS17b, KvdV14, LVG10, LGL11, LvG13b, LvG13a, LL10c, RLDJ17, RS12, SJC11, TCP14]. steps
[REH13, Zim13]. Stepwise
[DL11, GRCL12, ZL11]. stereochemical

Stereoselection
[BJSI12]. Steric
[RMGB11, MJLV14b, MP17a, YNH17]. sterically [MH17]. Stern [MBA11]. stereoelectronic [HLBLCC15].

Stevens
[BCJC14]. sticks [CVT11]. stilbene [BW11b]. Stochastic
[AFPI13, CGP12, AC12, KV12, KV13, MS16, NC12, PH17, RSL13, SW12, VBD11]. STOCK
[BJ15]. stoichiometric [VI17]. stoichiometry [FSD18]. Stone
[DUZ17, YZN13]. stool
[FPB12, FBJ14b, ZCK16]. storage
[BEM14, BEMP14, DL17, WK12].

Story
[Sce07, Sch10]. Strain
[DM15, FB12, FC16, FLM11, JWO15, PBE16, SHE12, SHL13, V15].

strand
[XLY12]. strategies
[AFBR17, BSDP16, cCVG14, DSX11, LTT16, RAO11, SCOJ13]. strategy
[CLX10, CZNA11, HJKJ13, KTN10, LLL10, PHC13, PH17, RVK13, TKNN10, WO15, XHL16, YDG15]. strength
strengthening [MS11, LYSS11]. strengths [CKL+11, MLC13]. streptavidin [MLZZ12, ZJZM13]. streptavidin-biotin [MLZZ12]. streptocyanines [WYT17]. stress [GMBX+16, HXM+16, JMX+16, NIIT15, NFI+16, XFX+16]. stretching [CK10, RS17b]. string [BMFG16, JZ17, Zim15]. stringent [DPOS16]. strong [Kan15, MLZZ12, SDF12, VVY17, Vik11, ZSLL17]. stronger [KSC16]. Structural [GLF16, GBL+11, GTT10, GAMAC+14, GWX+12, HS17a, I110, KKK+12, KSD+12, LBTV11, NC14, TS11, ZWW10, AIGP15, AD10, AKK+16, ALI+10, BBOB16, BPC13, CPV+12, CDS16, CYI+10, DWL11, DH11, GWT+17, HS17b, HVS16, KKPT11, KG11, KNE11a, KDT+12, LK13, LL13a, MCF10, PHC13, PGP15, PNG10, RRF11, RKB+14, RSL16, SFA17, SS13c, WC11, XMSZ16, YVEI+17, ZLW10, VPR10]. Structure [BJP15, CGBK13, DXL+10, GPK+16, GWJJ12, GBGR16, HLB15, LAHS16, MHRR11, NC12, NC13, PMG+16, Rab12, SGH+16, VDVR14, WZK+13, APFI13, AR15, AJR16, AC12, BPPS17, BFH+13, BDD13, CD13, CM13b, Clo15, DKE+17, DKT13, DDP16, DVVP14, DLW12, EH13, EWF+13, EFOD13, FZY+12, FSC+14, GLB16, GMSiG15, GRARO+14, GP12, GK10, GRD+10, GpIC+16, HASR+12, HNHR13, HS14a, HRB+17, HH15, HYM16, HZ13, HLWD15, Ha16, Ibr17, KTY+17, KSM17, KT10, KS12, KKL+13, KLS10, KMLS10, LLBO12, LFB14, LKL10, LZ13, MRI+14, LLY16, LPE+10, LGL11, LHG11, LWWG12, LLFI16, Mat10, MDT10, Mau14, MAP10, MV17, NGAS17, OCL11, OL13, OLA15, PSS14, PML+12, PN13, RLG14, RM+13b, RR11, SHMO11, SB10, SM11, SLP+12, SLL12, SRS14, SYN+12, SKGB13, TN12, TTB+11, TGI2b, UNT16, VV12, VH16]. structure [VBL17, VA14, VBMA13, VKC10, VI17, VLG1+17, WO15, WR+12, WSGN11, YW12, YZZ16, ZRCC11, ZHHX11, OSF12, SA10]. structure-activity [DXL+10]. Structure-based [CGBP13, DXL+10, DVVP14, GLB16, VKC10, YZZ16]. studied [Ish10, KRTB10, OLY17, RHPWS13, RI10, TS15b]. Studies [JW12, AALCM11, BLS10, BRGN12, BLG10, DMN15, BIL10, DIL10, GZZM16, GEP+14, JLS+10, KG15, KP11, LXFC17, LCWW10, LJL+11, LW13, RC+13b, SB10, SFA17, SLHW09, TDP+13, VSD10, WCAH10, YKH+10, YPC+10, YDL+10, YXXZ17, ZZL+12, ZZL+10a, ZYG+15, ZX11]. Study [JLH+14, VL17b, AARP17, AS11, AS15a, AMAA+11, ASMS10,
study [LZL+10, LCL+10, LZJ+11, LZHH11, LWL+11, Li+14a, Li+14b, LGW12, LT13, LJW+11b, LBT11, LBT12, LTP11, LYSS11, LHKS12, LH4b, LLSW14, LWXC16, LHT15, Lu+11, LGJ+11, LPMT17, MMS16, MC10, MG15, MCF10, MJLV14b, MAPB10, MFM+12, MH11, MWJ+11, MS11, MPNS13, MHR11, MBRC16, MO17, Mor+15, MIS+15, NHF+10, NGAS17, NASH15, NC12, NC13, NC14, NJX+10, NFT+16, OPR16, ORZ11, OSS10, OSHG17, OME16, OOK11, PVL+13, PGCT+12, PP10, PG12, PG5+15, PH12, PAK17, PPH+14, QYL10, QZJ0b, RS17a, RAGL11, RAR+11, Ray13, RS13, RS14, RVCF13, RSLML12, RKG11, RSKG14, SN16a, SSP+13, SGDT10, SJD14, SCM+15, SRF+17, SWM10, SBD+17, SNS16, SGS+16, SE14, SCMA+17, Su+10, SKY+11, STS+10, SKTT11, SZS16, STS15, SGHL13, SIG+15, TM16, TLA10, TSNC+17, TSR+16, TL16, VKNT16, VPR10, VAR12, Vik11, VL1GK+17].

study [VED10, WKC10a, WHL+10, WCWW11, WDL12, WLL12, WYL+15, WNM17, WHX+10, WD10, WMW+10, WQW10, WS11, WHD11, WCL+11, WYGW12, WDP+12, XDL+10, XZ11, XWW+11, YZS14a, YZWC11, YHG+11, YZN13, YR13, YJXZ13, YLZ+10, YKH5, YSRSS10, YCG10, YB11, YYT12, YZ15b, ZCK+16, ZWGO16, ZTH+15, ZPP+16, ZXS+10, ZZZ+10b, ZZZT12, ZYL12, ZLL12, ZSZ+14, ZDX11, ZYW+10b, ZYW+10a, ZBP11, ZZZ2, ZZZX11, dSDAR10, dSDS12a, dSDS12b, dSLBN17, dLAoS+15, vADC+14].

substituents [CBTZ16]. substituted

[AR11P, BEMP14, CCLCRO14, CZH12, DCHL12, KY11L, KV15b, LHZ16, LWL+11, LTP11, Lu+11, OS12, PRRT+10, QCR12, SSP+13, SK12, SKGB13, UT14, WGL12, YPC+10, ZZWT12]. substitution

sulfide [LAW+16, ZYG+14]. sulfides [OSF12]. sulfonyl [YHVM12].
sulfonyl-containing [YHVM12]. sulfoxide [GC11]. sulfur
[CTR13, HS14a, HS16b, Kop17b, OSF12, WGL12, YB11, ZM10].
sulfur-containing [YHVM12]. sulfuryl [YHVM12].
sulfoxide [GC11]. sulfur [CTR13, HS14a, HS16b, Kop17b, OSF12, WGL12, YB11, ZM10].
sulfurization [TR12]. sum
[SB13, SB15, Tak14, Tia12]. sum-over-states [SB13, Tia12]. sumanene
[CLFRO18, CBTZ16]. summation [GBFD12]. summations [SB13].
superalkali [LLD17]. superatom [LYL16]. supercharger [FRN15, RFN15].
supercomputers [KNHN16, KN17]. superlattices [KC13b].
supermolecule [XZ11]. superoxide [GEP+14]. superposition
[CDBM11, HS12, PD11, YLGX14]. superpositions [KB11b, LAT10, LAT11].
Supersecondary [ZHHX11]. supervised [DGPM14]. support [HJ13, RLL+10, TYZ+16]. supported [SN16a].
supramolecular [CSGOA17, HLB15, OAN15b]. Surface
[LK16a, SRS14, Ano15-58, BPM15, BH14, CM13a, CR14, Che17, DBM+15, DS12b, FZY+12, FMNC11, FVP14, GCWS15, GY10, HLvdV13, HWLW11, HYD10, JZ17, JCX10, KKR+13, KTSW11, Kop16, Kop17a, Kop17b, LLH14, LL13a, LYC+13, LWZ+17, MK13b, MAK+14, MB14, MOS12, NW17, OKIS17, OHPR17, PZA15, SRSLO15, SH14, SBC+11, SLG15, SLLL13, SIG+15, TSR+16, WXL+12, WXL17, WBF17, XFX+16, YPV13, Yan14, ZLT13, ZKE+17, MK11]. surface-enhanced [SLLL13]. surfaces
[AKN16, BHB+17, BS16b, CCJ+11, CSXZ17, CZNA11, GFG11, Hei10, HRL11, IN13, KLS10, KMLS10, LX11, LAW+16, MCC11, MSc+10, MCF10, NPP13, Pol13, RNNS+16, RRC+15, RBHO11, SRF+17, SFR+11, SC15, SFLG+17, TG12a, VT14, WKC+10b, YZ15a, YR13]. surfactant [WWKS11].
SurfKin [LLH14]. Surprisingly [KG15]. surrounding [BSL+16]. survey
[GRARO+14, SJD11]. Surveying [KB11b]. Sust [Ihl12]. Suwa [MO15].
SVM [XWW+11]. swarm [LZL+13]. SwissParam [ZCGM11]. switch
[LCB10, MJ+11, MB16]. switchable [MLQ+12]. switching
[AB16b, KOP+14, LCH10]. symmetric [HOM+16, KZK+12, LPS12].
symmetries [GR10b]. Symmetrization [MSK+10, MSK+12].
Symmetrizer [LPS12]. Symmetry
[CAA10, EP15, VV+15a, BV14, CWZB10, DZA11, Dry14, FF11, HB14, KTT16, KC13b, NDD+10, PZBA13, Sch13, VGLT16, YHK15].
symmetry-adapted [FF11, YHK15]. symmetry-invariant [CWZB10].
synchronicity [dSvdM+16]. synthase [AALCM11, SYH12, XLYZ10].
synthase-catalyzed [XLYZ10]. synthesis [ZZWT12]. synthetase [LBS10].
syringe [ZWS+10]. system [BEEL14, BT710, BCCO10, CS14, CIJZ10, GRS15, HSY+11, HDM+15, LL11, LLY16, LZY12b, MLZZ12, NTNY15, NS15, RHT+15, SZBM13, TL16, VBDS+11, WLF11]. Systematic
[GP11b, ML14, SA13, SCMA+17, UT15, VLGK+17, AIGP15, BEL+11, FM10, Ish12, LG11, Pet11, STS15, VVGL17, WG12, RFHG10]. Systems
[RMM16, AST+16, APK14, BV14, BVY+12, BK13, BBG+18, BG13, CSS17, CEBO15, CKL+11, CLK11, CAP17, EP12, GG10, Gar12, GP12, GBW+14,
GR10b, GWZX12, HS11, HCD+10, HvM16, ITIN15, JSXH16, JS17b, KV12, KGM12, LBGS16, LPCS13, LPLA13, MSC+10, MG14, MOS12, MS12, NYN17, NCV10, NFG+13, NO16, NKK+16, NS17, OPB+12, OC14, PAK17, PAT+10, PBBP11, PD12, RJPB12, RVCF13, SCOJ13, Sch12, Sca10, SH18, SWB+12, SG13, SMM17, TSN16, TCX+13, UT15, WCY+11, WWU12, WS11, YCK16, ZSB+11, ZT14, HvM17].

tetraamines \[SB10\]. tetracarboxylates \[CRC13\], tetracoordinate \[XhD15, ZYW+16, ZLY+16\]. tetraene \[ABDG12\]. tetramer \[ish10\]. tetraradical \[Cas14, YSSB12\]. tetraoxide \[JW12, SLHW09\]. tetraprotonated \[ZWY+10b\]. tetraradical \[Cas14, YSSB12\]. tetrasaccharide \[NPG17\]. tetrathiafulvalene \[MCF10\]. Tetrazine \[JW12, MCAG+16, SLHW09\]. Tetrazino \[JW12, SLHW09\]. Tetrazino-Tetrazine-Tetraoxide \[JW12, SLHW09\]. tetrel \[YKH15\]. tetroxide \[MCAG+16\]. text \[HKRS11, HS11\]. text-based \[HKRS11, HS11\].

Theoretical [AvKSP16, AMAA+11, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, GYX+10, GLZ+17, GLM+17, HDHL15c, JW12, KCB+12, KS13b, LCL+10, LLY+11, LLW+12, LZY+12a, LWG+12, LWXC16, LXFC17, LYG+11, MLQ+12, MSV+16, NFI+16, OAN15b, PKK+17, PM+13, PE11, RS+17b, SB10, SKY+11, STS+10, ZZS+16, SLC+17, SGHL13, TPL+10, WMW+11, WHDL+11, WCL+11, WS12, YJN+11, YPC+10, YHG+11, YCG+11, YTC+11, CB+16, DLT+17, DSM+11, GPM+17, HJ+13, JMML+13, JHMB+09, JHMB+11, KG+15, NKE+11a, KRSC+12, NYH+17, SBR+13, TAK+11, TY+10, TS+11, VJ+15, VYY+17, VYBL+17, XDL+10, ZWY+10a].

determine [CDB+10, KSH+13, YBH+11, CRZ+18, MCC+12, ZWL+10].

Theorem [CDB+10, KSH+13, YBH+11, CRZ+18, MCC+12, ZWL+10].

Theoretical [AvKSP16, AMAA+11, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, GYX+10, GLZ+17, GLM+17, HDHL15c, JW12, KCB+12, KS13b, LCL+10, LLY+11, LLW+12, LZY+12a, LWG+12, LWXC16, LXFC17, LYG+11, MLQ+12, MSV+16, NFI+16, OAN15b, PKK+17, PM+13, PE11, RS+17b, SB10, SKY+11, STS+10, ZZS+16, SLC+17, SGHL13, TPL+10, WMW+11, WHDL+11, WCL+11, WS12, YJN+11, YPC+10, YHG+11, YCG+11, YTC+11, CB+16, DLT+17, DSM+11, GPM+17, HJ+13, JMML+13, JHMB+09, JHMB+11, KG+15, NKE+11a, KRSC+12, NYH+17, SBR+13, TAK+11, TY+10, TS+11, VJ+15, VYY+17, VYBL+17, XDL+10, ZWY+10a].

determine [CDB+10, KSH+13, YBH+11, CRZ+18, MCC+12, ZWL+10].

Theorem [CDB+10, KSH+13, YBH+11, CRZ+18, MCC+12, ZWL+10].

Theoretical [AvKSP16, AMAA+11, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, GYX+10, GLZ+17, GLM+17, HDHL15c, JW12, KCB+12, KS13b, LCL+10, LLY+11, LLW+12, LZY+12a, LWG+12, LWXC16, LXFC17, LYG+11, MLQ+12, MSV+16, NFI+16, OAN15b, PKK+17, PM+13, PE11, RS+17b, SB10, SKY+11, STS+10, ZZS+16, SLC+17, SGHL13, TPL+10, WMW+11, WHDL+11, WCL+11, WS12, YJN+11, YPC+10, YHG+11, YCG+11, YTC+11, CB+16, DLT+17, DSM+11, GPM+17, HJ+13, JMML+13, JHMB+09, JHMB+11, KG+15, NKE+11a, KRSC+12, NYH+17, SBR+13, TAK+11, TY+10, TS+11, VJ+15, VYY+17, VYBL+17, XDL+10, ZWY+10a].
time-dependent [JYS+12], therapeutic [AFBR17], therapy [ZZ12], there [MLGB16]. Thermal [LL10c, ASL+11, BIL10, NGA17, OZLSBH12]. thermally [HIY15], thermocalc [HDH12]. Thermochemical [TFQ+11, KSM16, TN12, WD12]. thermochemistry [HDH12, Sán17, SB14]. Thermodynamic [EOO+16, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13]. Thermodynamics [DS12a, RS12, BPE16, DMJ17, EHSPT16, HRC13, Kan15, WRM+12, ZYL+12].

Three-residue [NR11]. threshold [LCM16]. throughput [ESB13, JBAM11, PVJ10]. thymine [HvM12, LJW11a, SBD+17]. thymine/thymine [HvM12]. Ti [WWK316, YW12, BH15, SBD+16]. Tian [Ano12a]. Tide [RB12]. Tight [Lar12, GAI+17, HNW07, HNW12, JCP14, KZZ+16, MFR+17, NF17, NN18, NO16, NKK+16, Oht16, SPS+12]. Tight-binding [Lar12, HNW07, HNW12, JCP14, KZZ+16, MFR+17, NF17, NN18, NO16, NKK+16, Oht16, SPS+12]. Time [GTK10, PAK17, WHL+10, WHX+10, YLZ+10, ZDX11, AYY017, CHG+16, DGC14, Fom11, FSSW17, HCD+10, HNW07, HNW12, HG10, JWO15, JS17b, LL13a, PNG10, RS12, RHPWS13, REL17, VHR16, Vik11, ZXS+10].

toolbox [HPT+16b], toolchain [KSH+17], toolkit [FSC+14, GS12, IgK16, MJBM12, MSS+13, MADWB11, NKJ16, PG15, PPM15, TS10a, ZLL+13], Tools [RLG14, GMZ12, SLG15]. toolset [YPKB12]. topographical [KYG+15].

Topological

Jan16, AR15, PRYI+17, SB11, TSZQ12, VAR12, VBMA13, Wei12b, vSGP10].

topologies [Gar12, TSNC+17], topology [AD10, ASS+17, Dii15, FED17, GMSdG15, KP11, MSSP17, yOaCG10, Rod13, dCDP15, BLG10].

topomerization [GG10].

Topological

Jan16, AR15, PRYI+17, SB11, TSZQ12, VAR12, VBMA13, Wei12b, vSGP10].

topologies [Gar12, TSNC+17], topology [AD10, ASS+17, Dii15, FED17, GMSdG15, KP11, MSSP17, yOaCG10, Rod13, dCDP15, BLG10].

topomerization [GG10].

Toroidal [SS13b]. Torque [Elk16].

torquoselectivity [GMBX+16].

Torsion [DPSL16, FZY+12, HP10b, HXM+16, JMX+16, YZ16].

torsional [BAS14, PRRT+10], Total [BEEL14, IKN13, MA16, SM16a, WX12].

toxicity [TTB+11, TTL+12], TQ1 [VL17b], TQ1/PC [VL17b].

track [ENKK+17, RHT+15], tracking [BHR15].

tractable [KFY+13], training [DBDP16].

Trajectories [AST+16, HRID16, JZL+17, KG13, LZS+17, PSP15, RN17, SFR+11, ZSS+13, dSVdM+16].

transcription [XMSZ16]. transform [Ano15-58, BH14, Ish12, LL13a, SZTSM10, YWJ+16].

Trans [CSM16, MSBF16, BLS10], Trans- [MSBF16], Trans-2-Butene [CSM16].

Transformation [CCOH14, APY+16, DLW12, KZZ+16, REH13, RSK+15].

transformations [HDL+14, SJC11]. Transiting [CM13a].

Transition [OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JZ17, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, NMLD13, PHK14, RAGLL11, RJ+11, SJJ+15, VVV+15a, YZGS14b, YWZ14, ZWW10, Zim15].

transition-metal [LDZW17]. transition-state [CSAdOM17, RAGLL11].

transitions [AKK+16, BD11, DH11, HS17b, Hb15, MCvdV13, PBDW11, SBT17].

translationally [MRO17]. translocation [MJC14]. transmembrane [DSF17, LMI+14, LAW+16, WXL+12]. transmission [LLJ12].

transphosphorylation [WXY14]. Transport [DJX+11a, DMN15, CWHH11, CBTZ16, DMN14, DJX+11b, HLWD15].
LHO17, LJ012, NS17, PGG15, SLI12, SY16b, TCX13, ZYG15.
transportation [LYZ12a]. trapped [DM15, VIT15, WLW10]. Treating
[PLCA17, SMP17a]. Treatment
[HSH15, CGOA17, GPK12, Has14, HGH14, MG14, NS10, Sch12, SSWX14],
[CXS10, PH15, dSdLB16]. tri [ZP13]. tri-N-acetyl- [ZP13]. triad
[LY10, SM16a]. triadic [PPUB16]. triads [YKH10].
triaminoguanidinium [ZYL12]. triangles [She12]. triangular [TS11].
triangularly [LWZ13]. trimethylsilyl [BM11]. trimethylsilyl [GL16].
trimetallic [GLF16]. triethyleneglycol [GL16]. triethylgermanium
[WHX10].
triethylenetriazine [RA09, Gav12, GRD15]. triazenes [YPC10]. triazol [ZWT12].
triazole [NS10]. triazoles [GKR13, Ray13, RKG11]. trichlorostannate
[PKK17]. tricyclic [VSD10]. triel [YKH15]. triene [ABD12].
trifluoroethanol [JA10]. trifluoroethanol/water [JA10].
trifluoromethane [CLC11]. trifurcation [HOM16]. triggered
[DA15]. triggering [LDD17]. trigonal
[Ano11, Gav12, GRD10, JHMB09, JHMB11]. trihydride [PM13].
trimer [THP15, YCA10]. Trimeric [PMT16, RCM13a, RML15].
trimetallic [GL16]. trimethylsilyl [BIL10]. trinitrotoluene [SH14].
tripeptide [BH15, GOM16]. triphenylamine [MSV16].
triple [ACD13a, ACD13b, POB13]. triple-zeta [POB13]. triplet
[BS17a, THP15]. triplets [EK15]. tripodal [SB10].
[FP10]. Trotter [VKAM12]. Trp [EJ13]. Trp-Glu [EJ13]. TRREAT
[CM13a]. truncated [CFE11]. truncated-CI [CFE11]. truncation
[ACD13a, ACD13b, CS14, MC12]. trust [PLA11]. trying [BRG12].
trypanothione [VSD10]. tryptophan [EOA11, PS14, SHB17, VMT10].
Tsalis [QZ10c]. TTTO [JW12, SLHW09]. tuberculosis [MPNS13].
tubes [TS15]. tubular [nLH11, ZLY16]. tularansis [STM15]. tumor
[AI11]. tuned [BK17b, HZS17, ZZS16]. tungsten [TS15a]. Tuning
[Ano11, JHMB09, JHMB11, BK17b, LWW11, Mor15, RLG11, WTY17, LZ12].
tunnel [KL14]. tunneling [CSAdOM17, HS16a, LZW11, OT12].
TURBOMOLE [KK17b, RR14, STH10, vW11]. tweezers [MA14].
twelve [Pog10]. twist [KTK17]. twisted [YLZ10].
Two [DS12b, KKN11, KTO13, SC17, COH14, DBP12, ECZ17, FSA14,
GAMAC14, HLH12, LPS11, LRER13, NASH15, PS17, PW12, SL14,
SJC11, TCP14, VT14, YAS13, YLL11, ZTH15, SM17].
Two-Body [SC17]. two-center [LRER13]. two-component [NASH15, PW12].
Two-dimensional [KTO13]. two-electron [PS17, YLL11]. Two-level
[KKN11]. two-photon [DBP12, ZTH15]. two-scale [FSA14].
Two-step [DS12b, SJC11, TCP14]. type [BM12, BE16, CYY17,
CRC13, CB11c, DI15, HLH15, JYC16, LH14a, MY17a, MY17b, MK15,
RKB14, SZX13a, SZX13b, VED10, WvRSM14, ZK11]. type-II
[CB11c]. types [SKY11, UT15]. typical [TZ12]. typing [FP17b, YPK12].
uranyl [OSS10]. URBOMOLE [BBG+11]. ureas [FCL+10]. ureido [SSP+13]. ureido-benzensulfonamide [SSP+13]. uridines [DPSL16]. urokinase [BM12]. uroporphyrinogen [BEL+11]. uroporphyrinogen-III [BEL+11]. Use [DCOD13, GPM17, HCD+10, MPA12, MMZW14, NPTS16, NC14, NDD+10, RL12, WM17, Yes12, BCP+10]. used [PGY15, Pie14, PLAG11, TH13]. useful [SMGB11]. usefulness [PSP15]. user [All11, DBF14, HH16b, JJW+14, LBB+15, PVZ13, SFR+10, STH+10, WPM+15]. user-friendly [SFR+11]. users [GKV+13]. uses [BCJC+14, FHMB15]. Using [BS15, Car14, DLL+10, HH10, HPSK12, LLvG10, LG14, MP11, QLQ11, SK17, TNG+10, WF16, AASP18, AG11, AGM+13, AC12, BW11b, BMR11, BDP11, BB11a, CVT+11, CAP17, CSSB11, DWL11, DBK17, DFF+15, DCHL12, DLZ15, EWK+13, FF11, FLM11, FL15, Gar12, GR15, GFPSD17, GMO16, GZM11, GRL+11, GRL+12, GMBX+16, HASR+12, HNS16, HLW+17, HDL+17, HH17, Höf14, HBL12, HYUS11, HJKJ13, HZSS17, HHWL17, Hug14, HRH+17, Ish10, IHJ+13, JLS13, KV13, Kan15, KERY+16, KT10, KLOS10, KTNN10, KP11, LBGS16, LPK16, LRvdSM15, LZ12, LCH10, LCL+10, LMR14, LHG11, LTA+11, LBDP12, MS17, MZZ11, MRB14, MJ14, MN15, MY17a, MSS+13, MKM+17, MUCJ15, MKVS10, MKB+13, MFR+17, MIOM13, MMJ10, MS15, NLP+16, NASH15, NH11, NOC+15, PGd0+16, PC11, PG15, Pie14, PJ13, RB13a, RLDJ17]. using [RDDS10, RJH11, RS13, RRR14, Ric16, REL17, REV+17, Rui11, RFH10, REH13, SHMO11, SFM14, SDF+17, SBV10, SA13, SCW11, SEF+16, SHL+11, SKKS13, SY11, SRS14, SZSS16, STS15, TYZ+16, Tak14, TKNN10, Tsi17, TJB12, UTM11, VKAM12, VECT12, VI17, WKLC12, WdVN12, WLC12, WZ17, WJX+10, WDZH13, XTY+14, XYX17, XWW+11, YWJ+16, Yon16, YN15, YDX16, ZWLX11, ZL11, ZLT13, ZWS+10, ZP13, ZH12, ZHHX11, dLC17, LHL+10]. utility [YHVM12]. utilizing [BVY+12]. UV [GGM+12, KASH14, RDF+11, RVdMB16]. UV/photoexcitation [RVdMB16]. UV/Vis [GGM+12].

V [WWKS16, LZL+15b, MG11, PBE16, WRM+12, WYGW12]. valence [FF11]. Valence [WM12, YWZ14, BEEL14, BACSCJ+10, FE14, GCW16, Hill13, HAI+16, lbr17, KGR+16, LLW12, LWJ12, POB13, RHRCH16, Rx112, SMW09, SCSW13, TM16, WWU12, XP13, XhD15, vLBBR12, GWF11]. validation [GMMH+16, GCP+13, PFV14, WMW+10, ZST14, G MG+10, HM13]. validity [LP11b]. value [SG10a]. values [BA11, GKi5a, SK12, Zha12b, Zha12a]. vanadia [GNCA10]. vanadium [WYGW12]. vapor [BDTP11, SISK10]. variable [KDB13]. variant [TKT11]. variants [SLY+10]. Variation [IMK+16, Lvg13a, MTvG12]. Variational [RAGLL11, TH13]. Variationally [YK13]. variations [LLHM16, SH15]. various [CC11, DSM+11, GVP+10, GMO16, MJBM12, PGC12, PL18, SOYC12, WDW12]. varying [CC12a, GC11]. VASP

W4 [KSM17]. W4-17 [KSM17]. Waals [BLF14, BB11a, BC13, CR14, DS12b, DSF17, KBC12, KCK+15, KGHK12, KLN12, LCH+15, SMGB11, SLIB12, SJZ+15, SYZ+17, YZZ+17, ZY14].

water-fluoride [NC12]. water-halide [NC13]. water-vapor [SISK10].

Wave-function [HH16a]. wave-functions [Fer13b, Fer13a]. wavefunction [FD16, GSS13, HPT+16b, KSH+17, LC12]. wavefunction-based [GSS13].

wavefunctions [Bar14, BWKW10a, BWKW10b, LP11c, MDTD13, SAGC16]. Wavelet [WRHF10, PN13]. wavelet-based [PN13]. waves [TCB16]. ways [KV15a].

Web-based [Gar12, JIW+14]. web-user [WPM+15]. WEGA [YLGX14].

weighted [Fer17, HNS16, HHWL17, LMZ+11b, PRY1+17, RHH11, ZH12, Hill13]. weighting [WDHI13]. Weinheim [Spr10]. well [CME11, LrE17].

dell [LrE17]. wells [GKSS14]. were [G16, MFEM16, XFG+16].

Wiley [Spr10]. Wiley-VCH [Spr10]. Window [DAB16].

Window-Exchange [DAB16]. wires [LZY+12a, NS17]. wise [KSS17].

withdrawing [CWHH11]. within [AIGP15, BBG+18, CKL+11, DVPV14, GL16, HKR+14, IHI15, Lar12, MKH+13, RCM+13a, RML+15, RHPWS13, SFCCK+14, SFCX+15, SFG+17, Sch12, SJ+15, WC11, WPM+15].

without [FSD+18, GA14, KJ10, TH13, dLC17]. Wolf [GPSS12].

X [ASS+17, CXS10, GKP+16, EPH+15, LDJ+10, LLL+11, LZJ+11, Li14a, Li14b, LGW12, LCWW10, LWD13, PMG+16, SPS+12, SZBM13, SLIB12,
REFERENCES

TFQ+11, UT15, YS13, ZYLL12, ZLLL12, FZY+12, FLM11, JJ16, Kop15b, LLBO12, LHS12, Lz151b, LCW10, PDG+16, SKY+11, WWD14, XML+15, XhD15, ZLLH12, LX11]. X- [SKY+11]. X-ray

References

References

2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Andrés:2012:NRC

Allen:2015:DIN

Abraham:2011:PEG

Anisimov:2011:QMB

Avaltroni:2011:ERS

Avaltroni:2012:ICL

[AC12] Fabrice Avaltroni and Clemence Corminboeuf. Identifying clusters as low-lying minima — efficiency of stochastic and ge-

Abraham:2011:OPM

Antony:2012:FIP

Anthopoulos:2013:GAM

Astray:2013:EFP

Artemova:2011:CNS

Artemova:2011:FCA

REFERENCES

Alonso:2010:USA

Afanasyeva:2015:SNU

Artemova:2016:AMS

Aono:2010:PTP

Akimov:2016:SNU

Alekseenko:2016:SGI

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Aidas:2015:AAP

Allouche:2011:GGU

Ai:2010:IBF

Allen:2010:EAM

Al-Muhtaseb:2011:TSU

Aguilar-Mogas:2010:IAB

Antoni Aguilar-Mogas, Xavier Giménez, and Josep Maria Bofill. Implementation of an algorithm based on the Runge–

REFERENCES

Anonymous:2012:CIIg

Anonymous:2012:CIIh

Anonymous:2012:CIIi

Anonymous:2012:CIIj

Anonymous:2012:CIVa

Anonymous:2012:CIVb

Anonymous:2012:CIVc

REFERENCES

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CI

Anonymous:2013:CII

Anonymous:2013:CII

Anonymous:2013:CII

Anonymous:2013:CII

Anonymous:2013:CII

Anonymous:2013:CII

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIac

Anonymous:2013:CIIad

Anonymous:2013:CIIe

Anonymous:2013:CIIe

Anonymous:2013:CIIe

Anonymous:2013:CIIe

Anonymous:2013:CIIe

REFERENCES

REFERENCES

Anonymous:2013:CIVaf

Anonymous:2013:CIVag

Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

REFERENCES

REFERENCES

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVa

Anonymous:2014:CIVaj

Anonymous:2014:CIVak

Anonymous:2014:CIVam

Anonymous:2014:CIVan

REFERENCES

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVbp

Anonymous:2014:CIVbq

Anonymous:2014:CIVbr

Anonymous:2014:CIVbs

Anonymous:2014:CIVg

Anonymous:2014:CIVh

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVq

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt

Anonymous:2014:CIVu

Anonymous:2014:CIVv

Anonymous:2014:CIVw

Anonymous:2015:CIVa

Anonymous:2015:CIVb

Anonymous:2015:CIVu

Anonymous:2015:CIVv

Anonymous:2015:CIVw

Anonymous:2015:CIVx

REFERENCES

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVan

Anonymous:2015:CIVao

Anonymous:2015:CIVap

Anonymous:2015:CIVaq

Anonymous:2015:CIVar

Anonymous:2015:CIVf

Anonymous:2015:CIVg

Anonymous:2015:CIVaz

Anonymous:2015:CIVba

Anonymous:2015:CIVbb

Anonymous:2015:CIVbc

Anonymous:2015:CIVbd

Anonymous:2015:CIVbe

Anonymous:2015:CIVh

Anonymous:2015:CIVi

Anonymous:2015:CIVj

Anonymous:2015:CIVk

Anonymous:2015:CIVl

Anonymous:2015:CIVm

Anonymous:2015:CIVn

Anonymous:2015:CIVo

Anonymous:2015:CIVp

Anonymous:2015:CIVq

Anonymous:2015:CIVr

Anonymous:2015:CIVs

Anonymous:2015:CIVt

REFERENCES

Anonymous:2016:CIVw

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVaa

Anonymous:2016:CIVab

Anonymous:2016:CIVac

Anonymous:2016:CIVad

REFERENCES

Anonymous:2016:CIVae

Anonymous:2016:CIVaf

Anonymous:2016:CIVag

Anonymous:2016:CIVah

Anonymous:2016:CIVai

Anonymous:2016:CIVaj

Anonymous:2016:CIVd

Anonymous:2016:CIVe
DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:CIVas

Anonymous:2016:CIVat

Anonymous:2016:CIVau

Anonymous:2016:CIVav

Anonymous:2016:CIVaw

Anonymous:2016:CIVax

Anonymous:2016:CIVay

Anonymous:2016:CIVaz

Anonymous:2016:CIVf

Anonymous:2016:CIVg

Anonymous:2016:CIVba

Anonymous:2016:CIVbb

Anonymous:2016:CIVbc

Anonymous:2016:CIVh

Anonymous:2016:CIVi

Anonymous:2016:CIVj

Anonymous:2016:CIVk

Anonymous:2016:CIVl

Anonymous:2016:CIVm

Anonymous:2016:CIVn

Anonymous:2016:CIVO

Anonymous:2016:CIVp
REFERENCES

Anonymous:2016:CIVq

Anonymous:2016:CIVr

Anonymous:2016:CIVs

Anonymous:2016:CIVt

Anonymous:2016:CIVu

Anonymous:2016:EPR

Anonymous:2016:Ila

Anonymous:2016:Ilb
REFERENCES

Anonymous:2016:I1c

Anonymous:2016:I1f

Anonymous:2016:I1g

Anonymous:2016:I1h

Anonymous:2016:I1i

Anonymous:2016:I1j

Anonymous:2016:I1k

Anonymous:2016:I1l
Anonymous:2016:IIm

Anonymous:2016:IIn

Anonymous:2016:IIo

Anonymous:2016:IIp

Anonymous:2016:Iq

Anonymous:2016:Ir

Anonymous:2016:IIs

Anonymous:2016:IIt

REFERENCES

Anonymous:2016:IICa

Anonymous:2016:IICs

Anonymous:2016:IICu

Anonymous:2016:IICw

Anonymous:2016:IICy

Anonymous:2016:IICaa

Anonymous:2016:IICc

Anonymous:2016:IICf

Anonymous:2016:IICh

Anonymous:2016:IICj

Anonymous:2016:IICl

Anonymous:2016:IICn

Anonymous:2016:IICp

Anonymous:2016:IICr

Anonymous:2016:IIEd

Anonymous:2016:IIEf

Anonymous:2016:IIEg

Anonymous:2016:II Eh

Anonymous:2016:IIEi

Anonymous:2016:IIITa

Anonymous:2016:IIITj

Anonymous:2016:ITe

Anonymous:2016:ITf

Anonymous:2016:ITg

Anonymous:2016:ITh

Anonymous:2016:ITi

Anonymous:2016:IIEa

Anonymous:2016:IIEe

Anonymous:2017:CIVa

Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:CIVl

Anonymous:2017:CIVm

Anonymous:2017:CIVn

Anonymous:2017:CIVO

Anonymous:2017:CIVp
REFERENCES

REFERENCES

Anonymous:2017:CIVae

Anonymous:2017:CIVc

Anonymous:2017:CIVaf

Anonymous:2017:CIVag

Anonymous:2017:CIVah

Anonymous:2017:CIVd

Anonymous:2017:CIVE

REFERENCES

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:CIVi

Anonymous:2017:E

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc
REFERENCES

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:II

Anonymous:2017:I

Anonymous:2017:II

Anonymous:2017:III

Anonymous:2017:IV

Anonymous:2017:V

Anonymous:2017:VI

Anonymous:2017:VII

Anonymous:2017:VIII

REFERENCES

Anonymous:2018:CIVd

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:IIa

Anonymous:2018:IIb

Anonymous:2018:IIc

Anonymous:2018:IId

Anonymous:2018:IIe
REFERENCES

REFERENCES

Arifin:2016:GTH

Ali:2010:RCR

Anjos:2015:TAE

Anderson:2017:RSZ

Avramopoulos:2013:VLN

Alaniz:2015:AHI

Aleksandrov:2010:MMM

Ajitha:2011:RSF

Andersson:2014:PHE

Akbarzadeh:2015:HAA

Antila:2015:CTI

[AS15b] Hanne S. Antila and Emppu Salonen. On combining Thole’s induced point dipole model with fixed charge distributions

Azadi:2018:NQE

Alaghemandi:2011:CBT

Ansbacher:2010:CDM

Assadollahzadeh:2010:EPS

Amaouch:2017:BPH

Mohamed Amaouch, Dumitru-Claudiu Sergentu, David Steinmetz, Rémi Maurice, Nicolas Galland, and Julien Pilmé. The bonding picture in hypervalent XF₃ (X = Cl, Br, I, At) fluorides revisited with quantum chemical topology. *Journal of Computational Chemistry*, 38(32):2753–2762, December 15,
Abramy an:2016:CAM

Alvarez-Thon:2018:IGP

Achazi:2016:TEI

Andoh:2017:EAP

Burger:2011:EPP

Bachler:2012:QCC

Vinzenz Bachler. A quantum chemical calculation on Fe(CO)$_5$ revealing the operation of the Dewar–Chatt–Duncanson
REFERENCES

REFERENCES

BBOB16 Václav Bazgier, Karel Berka, Michal Otyepka, and Pavel Banáš. Exponential repulsion improves structural predictabil-
REFERENCES

Burger:2013:EOV

Bond:2010:FOS

Borrelli:2010:EHR

Baldov:2014:LEU

Bartolomei:2011:LRI

REFERENCES

Bushnell:2011:FBP

Bandaru:2014:IES

Benassi:2017:BDF

Bandaru:2014:TDN

Bernardes:2017:SNU

Barigye:2015:MAI

Beu:2017:CFF

Boomsma:2013:SNU

Buelens:2012:LSS

Bushnell:2013:APH

REFERENCES

[BHB12] Ilya A. Balabin, Xiangqian Hu, and David N. Beratan. Software news and updates: Exploring biological electron transfer

REFERENCES

Baranowska-Laczkowska:2014:BSE

Baranowska-Laczkowska:2013:NBS

Berski:2010:IQC

Berski:2011:ELF

Bezkorovaynaya:2012:MSS

Baranowska-Laczkowska:2013:OBS

Baranowska:2010:MSO

Buenker:2013:ABO

Barbault:2012:IPB

Bhatia:2013:EDT

REFERENCES

Bordogna:2011:PAP

Borkar:2013:HBC

Bandura:2016:AZF

Bartolomei:2012:FDG

Bartolomei:2015:LES

Bosson:2012:IQC

Baranowska:2010:PBS

Black:2010:BHH

Brylinski:2010:QDL

Birkholz:2015:UBG

Blomberg:2016:IFE

REFERENCES

Boese:2016:AAE

Borthakur:2016:TST

Bannerman:2011:DFG

Bellinger:2016:IPS

Bomble:2013:BAP

Berenger:2012:SNU

REFERENCES

Bezugly:2010:ELIa

Bezugly:2010:ELIb

Brown:2010:MMP

Bao:2011:NPE

Brabec:2016:RCS

REFERENCES

[Cam15] Roberto Cammi. A new extension of the polarizable continuum model: Toward a quantum chemical description of

[CB11d] Żaneta Czyźnikowska and Wojciech Bartkowiak. Physical origins of the stability of aromatic amino acid core ring-polycyclic hydrocarbon complexes: a post-Hartree–Fock and

REFERENCES

[CBTZ16] Xi Chen, Fu-Quan Bai, Yongan Tang, and Hong-Xing Zhang.

Carnimeo:2015:AGM

Chen:2011:MSP

Campo-Cacharron:2014:IAU

Alba Campo-Cacharrón, Enrique M. Cabaleiro-Lago, Jorge A. Carrazana-García, and Jesús Rodríguez-Otero. Interaction of aromatic units of amino acids with guanidinium cation: the interplay of $\pi \cdots \pi$, $XH \cdots \pi$ and $M^+ \cdots \pi$ contacts. *Journal of Computational Chemistry*, 35(17):1290–1301, June 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Campo-Cacharron:2014:IBI

Chang:2011:ADN

REFERENCES

Chen:2010:FPC

Cacelli:2012:AAP

Chattopadhyay:2015:SSM

Chiang:2014:TBA

Chiu:2014:PAE

R. Carbó-Dorca and E. Besalú. Communications on quantum similarity (2): a geometric discussion on holographic electron density theorem and confined quantum similarity measures.
REFERENCES

Carbo-Dorca:2011:CQS

Carbo-Dorca:2010:CQSa

Cazals:2015:CES

Cheung:2016:PFR

Casassa:2015:EDA

REFERENCES

REFERENCES

REFERENCES

[CK10] Richard Kramer Campen and James D. Kubicki. Interaction energy and the shift in OH stretch frequency on hydrogen bonding for the H₂O → H₂O, CH₃OH → H₂O, and H₂O →

REFERENCES

Dong-Sheng Cao, Yi-Zeng Liang, Qing-Song Xu, Hong-Dong Li, and Xian Chen. A new strategy of outlier detection for QSAR/QSPR. *Journal of Computational Chemistry*, 31(3):592–602, February 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Sermsiri Chaiwongwattana, Mayuree Phonyiem, Viwat Vchirawongkwin, Supakit Prueksaaroon, and Kritsana Sagarik.

Chen:2014:ESN

Cheron:2017:ESB

Carvalho-Silva:2017:DTS

Cardona-Serra:2016:SNU

Calbo:2017:DCS

REFERENCES

REFERENCES

Chen:2017:APE

Coe:2013:MCC

Carvalho:2013:PMD

Costanzi:2012:SSA

Chuev:2014:ESS

Chavent:2011:GAA

[CVT+11] Matthieu Chavent, Antoine Vanel, Alex Tek, Bruno Levy, Sophie Robert, Bruno Raffin, and Marc Baaden. GPU-
REFERENCES

[CWT+12] Qi Cao, Jing Wang, Zhao-Shuo Tian, Zai-Feng Xie, and Fu-Quan Bai. Theoretical investigation on the photophysical properties of N-heterocyclic carbene iridium (III) complexes \((\text{fpmb})_x \text{Ir(bptz)}_{3-x}\) \((x = 1–2)\). *Journal of Computational Chemistry*, 33(10):1038–1046, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[CYY+17] Shanshan Cao, Haiyan Yuan, Yang Yang, Mang Wang, Xiaoying Zhang, and Jingping Zhang. Mechanistic investigation

Cheron:2017:SNU

Chandra:2012:TII

Curco:2011:SSA

Chen:2011:EMB

Dickson:2016:CFB

REFERENCES

587–594, March 5, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

deAngulo:2012:RCA

Domingo:2015:ERT

deAndrade:2015:EMR

DAlessando:2015:EDS

Dracinsky:2012:VAC

Raffaella Demichelis, Marco Bruno, Francesco R. Massaro, Mauro Prencipe, Marco De La Pierre, and Fabrizio Nestola.

DiTommaso:2017:TAP

Drujon:2013:PHC

deCourcy:2015:BOQ

Dong:2012:BCE

deCarvalho:2013:ICP

Dubaj:2015:IIM

Dien:2014:SNU

Dudev:2015:QCB

Davie:2016:ILS

[Duan:2013:TCD] Yu-Ai Duan, Yun Geng, Hai-Bin Li, Jun-Ling Jin, Yong Wu, and Zhong-Min Su. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. *Journal of
Devereux:2014:SFA

Dieterich:2011:CIS

Dieterich:2014:GBS

Dasgupta:2017:SGH

Ducere:2012:CCA

REFERENCES

A. Otero de-la Roza and Víctor Luaña. A fast and accurate algorithm for QTAIM integration in solids. *Journal of
REFERENCES

REFERENCES

[Dolgonos:2015:SNS]

[Dittner:2015:EGO]

[DasGupta:2017:CAF]

[DeBiase:2014:MSD]

[DeBiase:2015:SNU]
DeLaPierre:2011:PSF

Dominikowska:2011:CDA

Drake:2015:FFD

Dolbundalchok:2016:GCI

Dreuw:2012:CDI

Denning:2011:IHS

deRuiter:2013:CTI

dRCFGRB18

Dryzun:2014:CSM

Deglmann:2012:TCR

Deshmukh:2012:TSE

Dash:2015:GGS

REFERENCES

Qi Dai, Li Wu, and Lihua Li. Improving protein structural class prediction using novel combined sequence information

Deng:2017:EMC

Dang:2017:FSW

Du:2010:SBQ

Dryzun:2011:QSC

Dlugosz:2011:BDS

REFERENCES

Ehara:2013:CII

Edel:2016:IFP

Erba:2013:ADS

Ehara:2016:PCS

Elenewski:2013:CPC

[Elk16] Dennis M. Elking. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization. Journal of Computational Chemistry, 37
REFERENCES

Esser:2017:AFP

ElKhoury:2017:IES

Eriksen:2011:CPP

Erlebach:2016:TCA

Eastman:2010:ENI

Peter Eastman and Vijay S. Pande. Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. *Journal of Computational Chemistry*, 31(6):1268–1272,
REFERENCES

April 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Epifanovsky:2013:SNU

Farhat:2015:ICG

Ferro:2010:AQC

Fernandez:2012:AER

Fernandez:2014:OER

Futera:2014:RMR

[FB14b] Zdeněk Futera and Jaroslav V. Burda. Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM
REFERENCES

Forti:2011:CCI

Felberg:2017:POS

Fernandez:2016:IBA

Francisco:2017:MAI

Ferrari:2010:IPS

REFERENCES

REFERENCES

REFERENCES

Ferenczy:2013:CWFb

Ferenczy:2013:CWFa

Ferguson:2017:BBA

Farrokhpour:2011:TSV

Fracchia:2014:MLQ

REFERENCES

REFERENCES

Fuhrer:2015:IPR

Fu:2011:AAS

Feng:2010:SDP

Foster:2012:BTF

Farrokhpour:2011:IPE

Farrell:2012:SNU

Foroutan-Nejad:2011:DR

Fomin:2011:CDL

Fomin:2013:MDS

Fletcher:2017:FTP

Fletcher:2017:TAA

Futera:2012:BPS

REFERENCES

Forni:2014:HBB

Franchini:2013:BFC

Fraenkel:2015:ISL

Fraenkel:2016:ECI

Fuhrmann:2010:NLG

Fernandes:2015:QSL

Kyle D. Fernandes, C. Alicia Renison, and Kevin J. Naidoo. Quantum supercharger library: Hyper-parallelism of the

Farahani:2014:RTS

Fu:2014:SNU

Furmanchuk:2018:PSC

Fought:2017:STE

Fomin:2015:BBC

REFERENCES

2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Faraggi:2012:SXI

Glushkov:2012:OCM

Glushkov:2014:MSF

Galano:2013:CMA

Galano:2014:KRM

Gruden:2017:BDF

Grande-Aztatzi:2014:SES

Garberoglio:2012:SNU

Gavrish:2012:AER

Gumerov:2012:HAF

Jan P. Götze, Claudio Greco, Roland Mitrić, Vlasta Bonačić-Koutecký, and Peter Saalfrank. BLUF hydrogen network dy-
namics and UV/Vis spectra: a combined molecular dynam-
ics and quantum chemical study. Journal of Computational
Chemistry, 33(28):2233–2242, October 30, 2012. CODEN JC-
CHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[GH10] Polina Georgieva and Fahmi Himo. Quantum chemical model-
ing of enzymatic reactions: the case of histone lysine methyl-
1714, June 2010. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

[GH16a] Lynn Groß and Carmen Herrmann. Local electric dipole mo-
ments: a generalized approach. Journal of Computational
JCCRDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[GH16b] Lynn Groß and Carmen Herrmann. Software news and up-
dates: GenLocDip: A generalized program to calculate and
visualize local electric dipole moments. Journal of Compu-
CODEN JCCRDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

[GHK12] Cen Gao, J. Martin Herold, and Dmitri Kireev. Assessment
of free energy predictors for ligand binding to a methyllysine histone code reader. Journal of Computational Chemistry, 33
(6):659–665, March 5, 2012. CODEN JCCRDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

[GHL17] José A. Gámez, Markus Hölscher, and Walter Leitner. On
the applicability of density functional theory to manganese-
based complexes with catalytic activity toward water oxida-
July 30, 2017. CODEN JCCRDD. ISSN 0192-8651 (print),
1096-987X (electronic).
REFERENCES

Goh:2017:RDL

Gilbert:2011:TOG

Garcia-Jacas:2014:SNU

Gertych:2010:IPS

Galstyan:2015:CPK

Gunera:2015:FBS

Jakub Gunera and Peter Kolb. Fragment-based similarity searching with infinite color space. Journal of Computational

Gramatica:2013:LER

Glukhova:2014:MFB

Ghosh:2013:EFP

Gagnon:2016:FCD

Gan:2016:SIR

[GLF16] Li-Hua Gan, Dan Lei, and Patrick W. Fowler. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. Journal of Computational...

Guo:2016:DQT

Gotz:2010:MEE

Ginex:2016:DVH

Graf:2016:FEC

Grajciar:2015:LMI

Gonzalez:2012:SRI

Giri:2010:BAS

Grigoryan:2013:AFE

Guo:2011:PPF

Guo:2012:RRP
Jianxiu Guo, Nini Rao, Guangxiong Liu, Yong Yang, and Gang Wang. Retracted: Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. *Journal of Computational Chemistry*, 33(32):2614, December 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [GRL+11]. From the publisher: “The retraction has been agreed due to significant overlap with respect to another article, ‘Predicting Protein Folding Rate from Amino Acid Sequence,’ published in Progress in Biochemistry and Biophysics (2010, 37, 1331) and authored by a subset of the present authors.”.

Geppert:2012:VSC

Genheden:2015:BAA
REFERENCES

Cédric Grauel, Roland H. Stote, and Annick Dejaegere. Force field parameters for the simulation of modified histone
REFERENCES

REFERENCES

Ghysels:2010:CSV

Ganesan:2011:IIP

Gutsev:2012:SPA

Gutsev:2011:DFS

Gan:2017:CCB

Grinter:2014:BSA

Gan:2010:NFH

Gao:2012:MRN

Grosdidier:2011:FDU

Guo:2012:ICS

Gao:2016:CSG

Hahn:2010:IRE

Holmes:2016:ABV

Heinen:2014:HAE

Hamacher:2011:EQI

Hanke:2011:SAU

REFERENCES

Hofinger:2012:GAC

Hassan:2014:ITS

Hacene:2012:AVE

Heit:2014:ESG

Hochheim:2015:AIC

Holmes:2017:CSS
Sean T. Holmes, Shi Bai, Robbie J. Iulucci, Karl T. Mueller, and Cecil Dybowski. Calculations of solid-state 43Ca NMR

Hsu:2017:SNU

Holt:2010:NPI

Honigmann:2012:CCI

Hurd:2017:QMS

Hynninen:2014:SNU

413, February 15, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Huang:2015:ET

Huang:2015:ETAb

Huang:2015:TAE

Hansen:2012:AED

Hildebrandt:2014:ECR

[HEM⁺17] Carolin Huhn, Andreas Erlebach, Dorothea Mey, Lothar Wondraczek, and Marek Sierka. Ab Initio energetics of SiO bond
Hernandez-Esparza:2014:GBA

Hess:2012:FPK

Holland:2010:EEC

Homeyer:2013:SNU

Holguin-Gallego:2016:ECI

REFERENCES

1765, July 15, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Heuser:2016:WFF

Holec:2016:SNU

Heuser:2017:ANE

Hu:2010:GDM

Herrmann:2016:QCS

Hischenhuber:2013:CDG

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [HHT+13b].

Hamilton:2018:PGR

Heinzerling:2012:FFF

Hrda:2014:SNU

Hahnke:2011:PASa

Hu:2014:SNU

Hintze:2015:SSS

Hernandez-Lima:2015:RIC

Horta:2012:RIP

Han:2012:CMB

He:2013:SNU

Herbers:2013:RGC

Hall:2013:EPS

Hirano:2017:PAC

Harada:2016:SWO

Harada:2015:PFP

Heringer:2007:AES

Heringer:2012:EAE

REFERENCES

Hofener:2014:CCF

Hrsak:2017:OTN

Harabuchi:2016:NST

Haque:2010:PAP

Henriksson:2010:PDT

He:2013:MPB

REFERENCES

Hinsen:2012:SNU

Heggen:2016:CBU

Hermann:2016:SNU

Hermann:2017:OSF

Howell:2016:MCS

Heimbach:2017:SNU

Harano:2013:MAA

Husseini:2017:CIS

Huang:2017:EBE

Huwald:2016:CMD

Hoffmann:2014:GOB

Helmich:2012:SRM

Harris:2014:ISB

Hu:2014:SCM

Hagras:2016:ETP

Harris:2016:PEE

Harada:2017:SDS

Po-Jen Hsu. A new perspective of shape recognition to discover the phase transition of finite-size clusters. *Journal of
Hao:2011:ACV

Huang:2011:IQD

Harada:2015:ECS

Harada:2017:CFP

Huang:2016:FSL

Bolong Huang. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. *Journal of Computational Chemistry*, 37(9):825–835, April 5, 2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

Hou:2011:APM

Hu:2016:QST

Efthymios I. Ioannidis, Terry Z. H. Gani, and Heather J. Kulik. Software news and updates: molSimplify: a toolkit for au-

Iype:2013:PRF

Ihlenfeldt:2012:LEC

Ito:2010:SFC

Ikegami:2010:FMO

Ishikura:2015:EEN

REFERENCES

Imada:2018:DFS

Itoh:2013:CRE

Itoh:2013:HRP

Izanloo:2011:DDD

Ishida:2010:BMH

Ishida:2012:FTG
REFERENCES

Ikebe:2011:TTT

Inagaki:2011:PCE

Jalili:2010:MDS

Jablonski:2014:RBS

Jia:2017:EMI

Janesko:2016:TAE
Benjamin G. Janesko. Topological analysis of the electron delocalization range. *Journal of Computational Chemistry*, 37
REFERENCES

Jacob:2011:DAP

Jacob:2011:PSF

Jaramillo-Botero:2011:LSL

Jia:2016:NHR

Ji:2010:KMH

REFERENCES

Jaillet:2011:RTC

Jiang:2010:INA

Jorge:2017:PHSa

Jenkins:2013:SNU

Jimenez-Halla:2009:TAT

Jimenez-Halla:2011:ETA

[Jakobtorweihen:2013:CCM]

[Jiao:2016:CCS]

[Jin:2013:CPR]

[Joy:2016:CXZ]

[Jeong:2014:SNU]

Jankowska:2016:SOZ

Jia:2017:SNU

Jiang:2014:SCH

Jia:2010:CSM

Jadraque:2011:CTP

Jambeck:2013:PAC

Jung:2013:ELT

Jung:2014:MCM

Jiajun:2016:STQ

Jorge:2017:PHSb

Jurij:2015:SNU

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[JSXH16] Yingdi Jin, Neil Qiang Su, Xin Xu, and Hao Hu. Self-consistent field for fragmented quantum mechanical model of

Jin:2016:HAT

Jungsuttiwong:2012:ECS

Ji:2012:EIP

Jafari:2017:RER

Johnston:2017:SDA

REFERENCES

REFERENCES

Kessler:2014:MDH

Krause:2014:CLS

Kendrick:2016:SNU

Kalugina:2012:SHV

Kalyaanamoorthy:2013:LRM

Kaushik:2013:SDS

REFERENCES

Kopitz:2012:ISR

Kalita:2010:ACO

Kessler:2013:PVS

Kumar:2017:CBD

[Anand Kumar, Miquel Duran, and Miquel Solà. Is coronene better described by Clar’s aromatic π-sextet model or by the AdNDP representation? *Journal of Computational Chemistry*, 38(18):1606–1611, July 5, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).]

Konc:2012:SNU

Khanjari:2017:ANB

DEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Kornobis:2013:ESS

Katouda:2011:TLH

Klimenko:2016:NEA

Karagiannis:2011:DFS

Kerber:2013:SNU

Kingsley:2014:ILI

Kim:2017:SNU

Kendrick:2012:EVW

Kwon:2016:SCE

Knapp:2010:VPR

Kozlowska:2010:DSCa

Kozuch:2013:SCS

Kozlowska:2010:DSCb

Katouda:2017:MOH

Kim:2011:DDB

[KPL15] Hyungjun Kim, Joungwon Park, and Yoon Sup Lee. Prediction of the reduction potential of tris(2,2'-bipyridinyl)iron(III/

Kim:2012:MSD

Karbowski:2014:LES

Krissinel:2010:CCN

Kim:2012:BDV

Kaminsky:2010:CBS

Koppole:2012:DRP

REFERENCES

Krausbeck:2017:SAF

Kar:2013:LRCb

Kuttel:2016:SNU

Kleesiek:2010:RSS

Kefalidis:2012:DSM

[Kanematsu:2016:IUE] Yusuke Kanematsu, Masanori Tachikawa, and Yu Takano. Inverse Ubbelohde effect in the short hydrogen bond of pho-

[KV15b] Nishamol Kuriakose and Kumar Vanka. Can substituted alkenes be highly efficient leaving groups in catalytic processes?
REFERENCES

Koukaras:2012:SSE

Keceli:2016:SIP

Labonte:2017:RCM

Lii:2016:CMM

Larin:2011:PAM

REFERENCES

REFERENCES

REFERENCES

2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Li:2010:TSH

Lorenz:2014:BDG

Liu:2016:DTI

Lee:2013:NBO

Laury:2012:VFS

Lu:2010:FPS

Lesch:2017:SNU

Liu:2015:APE

Lyons:2014:PBC

Li:2010:NUH

[LDJ$^{+}$10] Qing-Zhong Li, Xu Dong, Bo Jing, Wen-Zuo Li, Jian-Bo Cheng, Bao-An Gong, and Zhi-Wu Yu. A new unconventional halogen bond C \cdots H \cdots M between HCCX (X = Cl and Br) and HMH (M = Be and Mg): an ab initio study. *Journal of Computational Chemistry*, 31(8):1662–1669, June 2010. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Li:2010:EGC

Ling:2011:STC

Lucas:2014:UCM

Lucke:2017:EPB

Lin:2011:CSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Li:2012:FPI

Laref:2012:ESX

Li:2010:EPF

Lin:2017:NDC

Lin:2017:TID

Liu:2016:ISV

Lii:2011:APE

Le:2014:SIK

Liu:2017:AFD

Lakkara:2016:DIA

Logsdail:2012:DON

Liu:2014:RDM

Lu:2012:MAD

Lin:2012:TDV

Lin:2010:UOS

Li:2012:TCA

Li:2012:SNU

[LLZA12] Chuan Li, Lin Li, Jie Zhang, and Emil Alexov. Software news and updates: Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in

[LPE+10] Len Herald V. Lim, Andreas B. Pribil, Andreas E. Ellmerer, Bernhard R. Randolf, and Bernd M. Rode. Temperature dependence of structure and dynamics of the hydrated Ca$^{2+}$ ion according to ab initio quantum mechanical charge field

REFERENCES

Lervik:2017:SNU

Launay:2011:LDS

Liu:2011:EGS

Lei:2010:NIM

Liu:2011:ATD

Liao:2013:CQO

Rong-Zhen Liao and Walter Thiel. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: a case study for acetylene hydratase. *Journal of Computational
REFERENCES

Liu:2014:OAC

Long:2011:CSU

Liu:2011:IMO

Lamiable:2016:CAH

Lu:2011:CSS

REFERENCES

Ruifeng Lu, Yunhui Wang, and Kaiming Deng. Quantum wave packet and quasiclassical trajectory studies of the reaction $\text{H}(^2\text{S}) + \text{CH}(^3\text{II}) \rightarrow \text{C}(^1\text{D}) + \text{H}_2 (^1\Sigma^+)$: Coriolis coupling effects and stereodynamics. *Journal of Computational Chemistry*, 34(20):1735–1742, July 30, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Cun-Xi Liu, Hai-Xia Wang, Ze-Rong Li, Chong-Wen Zhou, Han-Bing Rao, and Xiang-Yuan Li. Accurate prediction

(Guoliang Li, Hui Wang, Qian-Shu Li, Yaoming Xie, and Henry F. Schaefer III. The reaction between bromine and the water dimer and the highly exothermic reverse reaction. *Journal of Computational Chemistry*, 37(2):177–182, January 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

(Li-Hong Liu, Dan Wu, Shu-Hua Xia, and Ganglong Cui. Theoretical study on photooxidation mechanism of ruthenium complex [Ru(II)-(bpy)$_2$ (TMBiimH$_2$)]$^{2+}$ with molecular oxygen. *Journal of Computational Chemistry*, 37(24):2212–2219,

Sen Lin and Daiqian Xie. New ab initio potential energy surfaces for both the ground (\(\tilde{X}^1A'\)) and excited (\(\tilde{A}^1A''\)) electronic states of HSiCl and the absorption and emission spectra of HSiCl/DSiCl. *Journal of Computational Chemistry*, 32(8):1694–1702, June 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Shuyan Li, Lili Xi, Jiazhong Li, Chengqi Wang, Beilei Lei, Yulin Shen, Huaxiang Liu, Xiaojun Yao, and Biao Li. In silico prediction of deleterious single amino acid polymorphisms from amino acid sequence. *Journal of Computational Chemistry*, 32(7):1211–1216, May 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

[LZH+11] Huifang Li, Laibin Zhang, Li Han, Wenming Sun, and Yuxiang Bu. Intramolecular J-couplings and chemical shifts of the N—H⋯N hydrogen-bonds in the radiation-damaged

REFERENCES

Li:2015:CQM

Li:2015:CYX

[LZL+15b] Wei Li, Yanli Zeng, Xiaoyan Li, Zheng Sun, and Lingpeng Meng. The competition of \(Y \cdot \text{O and X} \cdot \text{N} \) halogen bonds to enhance the group V \(\sigma \)-hole interaction in the NCY \(\cdot \text{o PH}_3 \cdot \text{NCX} \) and O \(\text{PH}_3 \cdot \text{NCX} \cdot \text{NCY} \) (X, Y F, Cl, and Br) complexes. *Journal of Computational Chemistry*, 36(18):1349–1358, July 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Liu:2016:MIM

Liu:2013:ADI

Liu:2016:KCG

REFERENCES

[LZY12b] Cui Liu, Dong-Xia Zhao, and Zhong-Zhi Yang. Direct evaluation of individual hydrogen bond energy in situ in intra-

Legenski:2011:FFM

Liang:2014:LHA

Martinez-Araya:2016:GOF

Mezey:2017:ASP

Michaud-Agrawal:2011:MTA

Maurice:2014:STF

Mogo:2014:SNU

Mogo:2016:SNU

Manzin:2011:ATS

Mohammed:2014:DRP

Masella:2011:CPF

Michel Masella, Daniel Borgis, and Philippe Cuniasse. Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic ef-

REFERENCES

REFERENCES

REFERENCES

[MCvdV13] Ning Ma, Ying-Hua Chung, and Arjan van der Vaart. Free energy simulation of helical transitions. *Journal of Comput-
REFERENCES

Maupetit:2010:FML

Maintz:2013:APP

Maintz:2016:SNU

Miljacic:2010:RTA

Mezei:2010:SSF

Miao:2015:AMD

Yinglong Miao, Ferran Feixas, Changsun Eun, and J. Andrew McCammon. Accelerated molecular dynamics simulations of

[MFEM16] Yinglong Miao, Ferran Feixas, Changsun Eun, and J. Andrew McCammon. The following articles were published in past issues of the *Journal of Computational Chemistry*. Accelerated molecular dynamics simulations of protein folding. *Journal of Computational Chemistry, 37*(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Micera:2011:SOC

Mollenhauer:2014:BPT

Marmitt:2015:DSI

Mulder:2016:SEO

Mikulskis:2012:SAL

REFERENCES

[MIOM13] Tetsuya Morishita, Satoru G. Itoh, Hisashi Okumura, and Masuhiro Mikami. On-the-fly reconstruction of free-energy...

REFERENCES

Malyszek:2013:AIP

McConnell:2017:IRC

Moore:2013:HQP

Makowski:2010:DEC

Merlot:2013:AEE

Middendorf:2015:SSB

Middendorf, Nils Middendorf, Katharina Krause, and Sebastian Höfener. Solvatochromic shifts of Br₂ and I₂ in water cages of type 5₁²,

Miyashita:2017:FFC

Matsui:2013:CSC

Marais:2012:ECM

Mirzoev:2014:SIS

Mohammed:2013:FOF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Marques:2010:GCL

Marques:2012:UBB

Mukherjee:2011:FEG

Minovski:2013:CBM

Michael:2017:SMN

Mahanta:2011:ISP

[MPSG11] Subrata Mahanta, Bijan Kumar Paul, Rupashree Balia Singh, and Nikhil Guchhait. Inequivalence of substitution pairs in hydroxynaphthaldehyde: a theoretical measurement by...

Manz:2010:DR

Miao:2011:RHB

Moura:2012:QMM

Martins:2013:CA

Muller:2015:CSN

Mignon:2016:CTS

David Mignon and Thomas Simonson. Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart,

Yuan Miao, Xueye Wang, Xin Jin, Ling Yi, and Cuihuan Ren. Density functional theory study of a molecular allosteric

[Matsuzaki:2017:CPD]

[Matsuzaki:2017:OCS]

[Maruyama:2014:MPI]

[Matsumoto:2018:SNU]

[Mamonov:2011:RSA]

Nieto:2014:BNM
[NDG14] Carlos T. Nieto, David Díez, and Narciso M. Garrido. To be or not to be butter

Neumann:2013:MDM

Neumann:2015:MMA

Nishimoto:2017:TBE

Nicolini:2013:TQE

References

REFERENCES

Nunes:2013:NAP

Nagai:2016:UMS

Nekouzadeh:2011:TRL

Nagar:2010:MDI

Ng:2011:PPP

Nozaki:2017:CDA

Nakano:2017:CIH

Nakai:2017:EPS

Okoshi:2015:REC

Ootani:2015:TIE

Oehme:2012:EAC
REFERENCES

Ozkanlar:2014:SNU

Olson:2011:CBS

Ortega-Carrasco:2014:APL

Ou:2015:FEC

Okumura:2010:CPL

Ohyama:2011:SIB

[OHNK11] Tatsuya Ohyama, Masato Hayakawa, Shin Nishikawa, and Noriyuki Kurita. Specific interactions between lactose re-

Orimoto:2015:EME

Olson:2017:MIF

Otero:2012:CRF

Osman:2016:RPS

Okoshi:2014:ASC

Ortega:2016:CEN
[ONTTL16] Daniela E. Ortega, Quynh Nhu N. Nguyen, Dean J. Tantillo, and Alejandro Toro-Labbé. The catalytic effect of the NH$_3$

Omar:2011:EOD

Orthaber:2012:OVS

Orenha:2017:HCM

Olsson:2016:CLB

Oncak:2010:TSM

REFERENCES

[OZ14] Katja Ostermeir and Martin Zacharias. Hamiltonian replica-exchange simulations with adaptive biasing of peptide back-

REFERENCES

Peintinger:2014:CCM

Pietropaolo:2011:CBM

Perilla:2011:CET

Porsev:2016:TDS

Pracht:2017:AEQ

REFERENCES

REFERENCES

Pantazes:2015:SNU

Pan:2015:CCS

Pirojsirikul:2017:CQM

Panteva:2015:CST

Pesonen:2010:PCI

REFERENCES

Plewczynski:2011:CWT

Plazinski:2016:RGF

Presti:2016:MEF

Plewczynski:2011:VCD

Pang:2017:GAM

Piperk:2013:EPR

Project:2010:FFD

Perrin:2013:CSR

Petraglia:2016:BSS

Peintinger:2013:CGB

Pogliani:2010:MTP

Polestsh:2013:AIA

Pongsai:2010:CMM

Ponec:2011:BIS

Palfi:2010:SHL

Pham:2014:DFT

Plazinska:2014:FMB

REFERENCES

REFERENCES

Rayne:2013:LEC

Ricci:2012:DFT

Rai:2013:FAG

Rice:2013:EED

Robinson:2011:WOP

Ren:2013:UEE

Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian

Roy:2013:SNU

Rao:2016:DNC

Ribeiro:2012:SNU

Rastelli:2010:FAP

Ravelli:2011:PUS

REFERENCES

REFERENCES

[RI10] Huan Rui and Wonpil Im. Protegrin-1 orientation and physicochemical properties in membrane bilayers studied by potential of mean force calculations. *Journal of Computational

Rick:2016:PCT

Re:2011:GAY

Reckien:2012:IED

Ringholm:2014:GRO

Rubesova:2017:EML

Riojas:2012:PAD

Amanda G. Riojas, Joshua R. John, T. Gavin Williams, and Angela K. Wilson. Proton affinities of deoxyribonucleosides

Rusakov:2015:FCR

Rossini:2016:EPS

Rossini:2016:PSP

Romero:2014:PDU

Roston:2014:SRM

REFERENCES

[RML+15] Yanliang Ren, Osama Melhem, Yongjian Li, Bo Chi, Xinya Han, Hao Zhu, Lingling Feng, Jian Wan, and Xin Xu. Clarifying and illustrating the electronic energy transfer pathways

Randić:2013:CVMb

Reif:2014:MDS

Reif:2014:NCC

Robinson:2013:SMB

Rodriguez:2013:EMC

Randić:2015:PAE

REFERENCES

Randic:2010:NGD

Rubensson:2011:BAM

Rokob:2012:CCM

Riahi:2014:SNU

Ricca:2015:CDI

Rodriguez-Ropero:2011:EMZ

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Ruiz:2011:ECC

Randic:2012:CCC

Rey-Villaverde:2013:HAT

Rodrigues:2016:UPU

Rashid:2011:GKV

Roumen:2011:ALB

Swetnam:2011:IWL

Schumann:2013:SES

Spivak:2014:ICM

Scemama:2016:QMC

Sanchez:2017:RTC

Szklarczyk:2015:PCG

REFERENCES

DEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Sedeh:2010:SIM

Simpson:2011:EIC

Sebesta:2017:IMC

Spill:2013:CRE

Spill:2013:ECR

Sanchez:2015:NQM

Song:2017:SDI

Scemama:2013:QMC

Song:2013:EAC

Selvam:2011:MZI

Signorile:2016:RDF

Matteo Signorile, Alessandro Damin, Francesca Bonino, Valentina Crocellà, Carlo Lamberti, and Silvia Bordiga. The

Shi:2012:USA

Schieschke:2017:CFD

Suarez:2014:CSD

Sergentu:2016:SIA

Suarez:2013:SNU

Schleder:2017:DCB

Starek:2017:GEV

Sanchez-Flores:2014:PAE

Sanchez-Flores:2015:EPA

Stehr:2016:CCM

REFERENCES

[Simonson] Thomas Simonson, Thomas Gaillard, David Mignon, Marcel Schmidt am Busch, Anne Lopes, Najette Amara, Sav-

Sancho-García:2017:DRU

Shernyukov:2016:NBB

Szefczyk:2017:ESM

Sheppard:2011:PWN

Smiatek:2011:CFE

Shukla:2014:PWD

Santiago:2015:NDF

Steenbock:2018:TA

Suess:2017:QCC

Sherman:2012:SNU

[SIG11] Liudmila Sviatenko, Olexandr Isayev, Leonid Gorb, Frances Hill, and Jerzy Leszczynski. Toward robust computational

Sviatenko:2015:ROP

Shaytan:2010:FEP

Su:2016:ETI

Sieradzan:2017:SNU

Steinbrecher:2011:SCP

Shao:2011:TSS

Sanchez:2014:QMS

Schlund:2010:PTE

Song:2015:ODO

Szarek:2011:MED

Sharma:2012:CPK

Ity Sharma and George A. Kaminski. Calculating pK$_a$ values for substituted phenols and hydration energies for other

Stachowicz:2013:BDM

Sakalli:2015:PKP

Schultz:2015:SNU

Sharma:2017:UPP

Szatlowicz:2013:CSP

[SL17] Per E. M. Siegbahn and Xichen Li. Cluster size convergence for the energetics of the oxygen evolving complex in...
REFERENCES

Surakhot:2017:TRR

Stenrup:2015:CNG

Song:2009:ETS

Sladek:2012:ICS

Su:2013:CMS

REFERENCES

Settels:2012:CES

Sala:2014:SET

Sala:2015:DCR

Shen:2015:ACG

Sano:2010:MDC

Szczepaniak:2017:ARB

Sheng:2011:CCU

Sumi:2015:ESF

Sumi:2015:SFE

Suzuki:2017:MMT

Sumi:2018:ARM

Sinha:2017:CEF

Snamina:2017:PAM

Shah:2017:SNU

Strumpfer:2010:CFE

REFERENCES

30, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[SS13b] Ole Schütt and Daniel Sebastiani. Spectroscopic fingerprints of toroidal nuclear quantum delocalization via ab initio path integral simulations. *Journal of Computational Chemistry*, 34
Simonson:2013:SGM

Scherrer:2016:MEL

Schroder:2016:EDA

Szczepanik:2017:RLR

Sushko:2010:QMM

REFERENCES

Swart:2011:IID

Swart:2013:CII

Smiga:2016:AKS

Setzler:2014:SIG

Sharma:2015:EDA

Song:2009:EAE

[SSMW09] Lingchun Song, Jinshuai Song, Yirong Mo, and Wei Wu. An efficient algorithm for energy gradients and orbital optimization in valence bond theory. *Journal of Computa-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Takahashi:2014:DRF

Tan:2012:CSP

Tantardini:2016:SFP

Thomas:2013:PGF

Torres:2014:TSR

Tu:2013:PFE

Tawari:2010:PME

Shu-Wei Tang, Jing-Dong Feng, Yong-Qing Qiu, Hao Sun, Feng-Di Wang, Ying-Fei Chang, and Rong-Shun Wang. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C$_{5v}$C$_{60}$F$_{18}$ and D$_{3d}$C$_{60}$Cl$_{30}$. *Journal of Computational Chemistry*, 31(14):2650–2657, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
Tang:2011:TSE

Tonigold:2012:DIW

Tsipis:2012:PES

Teodoro:2013:ARA

Tam:2015:BST

REFERENCES

[TKT11] Tsuyoshi Terakawa, Tomoshi Kameda, and Shoji Takada. On easy implementation of a variant of the replica exchange with

Tang:2012:CFF

Tahat:2016:MEV

Tognetti:2015:QEN

Takano:2010:ESH

Tai:2012:EST

Truchon:2010:UEP

Jean-François Truchon, Anthony Nicholls, J. Andrew Grant, Radu I. Iftimie, Benoît Roux, and Christopher I. Bayly. Using

Murugesan Thenraj and Ashoka G. Samuelson. Contrasting electronic requirements for C-H binding and C-H activation in...
REFERENCES

Tsipis:2015:EBO

Thellamurege:2013:SNU

Tsipis:2014:DAS

Tsipis:2017:EPR

Tang:2010:MKI

[Tsuneda:2016:RBO]

[Tsuneda:2017:LLE]

[Torrent-Sucarrat:2017:RDM]

[Torres:2016:SAA]

[Tang:2012:TMG]

REFERENCES

[Udagawa:2014:WND] Taro Udagawa and Masanori Tachikawa. Why is $N\cdot\cdot\cdot$Be distance of $\text{NH}_3\text{H}^{+}\cdot\cdot\cdot\text{DBeH}$ shorter than that of $\text{NH}_3\text{D}^{+}\cdot\cdot\cdot\text{HBeH}$? Paradoxical geometrical isotope effects for partially isotope-substituted dihydrogen-bonded isotopomers. *Journal of Computational Chemistry*, 35(4):271–274, February 5, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[VD11] Pieter Van der Weeën, Jan M. Baetens, and Bernard De Baets. Design and parameterization of a stochastic cellular

Villalba:2011:CEM

Viciano:2013:NIE

Vanpoucke:2013:EHB

Vysotskiy:2013:SNU

Viciano:2015:QMM

Vancoillie:2013:PMP

Vogt:2014:WIS

Vener:2012:IHB

VonAppen:2010:DFS

Vela:2016:ZOH

REFERENCES

REFERENCES

[VKNT16] Tatiana Vasilevskaya, Maria G. Khrenova, Alexander V. Nemukhin, and Walter Thiel. Methodological aspects of QM/

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [SSMW09].

REFERENCES

2642–2649, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Vilsec:2011:OSF

Venkatesan:2010:MDS

vanSeveren:2010:ATA

VanDornshuld:2014:CPE

Viegas:2014:CCR

REFERENCES

Varadwaj:2012:EST

Vandewiele:2015:SCM

Vanduyfhuys:2015:SNU

Varadwaj:2017:HOI

vanWullen:2011:SMP

Vyboishchikov:2015:MEE

Vyboishchikov:2016:CEC

Vanommeslaeghe:2015:RFM

Voelz:2014:BIC

Weber:2017:IIR

Walters:2017:DDD

REFERENCES

Wise:2014:NFF

Wu:2010:QMS

Weill:2011:TCT

Wu:2014:SNU

Wu:2011:TSR

Han-Ying Wu, Wan-Fei Cai, Lai-Cai Li, An-Min Tian, and Ning-Bew Wong. Theoretical study on the ring-opening isomerization reaction mechanism of the ring isomers of

REFERENCES

[Wang:2016:RMR]

[Wei12a]

[Wei12b]

[Watanabe:2013:RDP]

[WF16]

[WGLG+16] Matthias Witte, Benjamin Grimm-Lebsanft, Arne Goos, Stephan Binder, Michael Rübsamen, Martin Bernard, Adam Neuba, Serge Gorelsky, Uwe Gerstäpp, Gerald Henkel,

REFERENCES

Li Wang, Yanjie Li, Hongqing He, and Jinglai Zhang. Hydrogen abstraction reactions of OH radicals with CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}Cl and CH\textsubscript{3}CHClCH\textsubscript{3}: a mechanistic and kinetic study. Journal of Computational Chemistry, 33(1):66–75, January 5, 2012.
REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

[WTH+16] Lukas N. Wirz, Ralf Tonner, Andreas Hermann, Rebecca Sure, and Peter Schwerdtfeger. From small fullerenes to the graphene limit: a harmonic force-field method for fullerenes and a comparison to density functional calculations for

REFERENCES

[Wong:2014:IPI]

[Wu:2012:CDS]

[Wang:2015:DSW]

[Wang:2017:ARS]

REFERENCES

[Xia:2016:FAW]

[Xu:2016:QST]

[Xu:2015:PPT]

[XhD15] Jing Xu and Yi hong Ding. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiX_nY_m^q ($n+m=4$; $q=0, \pm 1, -2$; $X, Y =$ main group elements from H to Br). *Journal of Computational Chemistry*, 36(6):355–360, March 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Xiao:2016:AEM]

[XHLH16] Xingqing Xiao, Michelle E. Hung, Joshua N. Leonard, and Carol K. Hall. Adding energy minimization strategy to peptide-design algorithm enables better search for RNA-binding peptides: Redesigned λN peptide binds boxB RNA. *Journal of Computational Chemistry*, 37(27):2423–2435, Oc-

Kelin Xia and Guo-Wei Wei. Multidimensional persistence in biomolecular data. *Journal of Computational Chemistry*,
Xu:2013:CPS

Xu:2011:QSS

Xu:2014:SMM

Xie:2017:SNU

Xia:2011:AHE

REFERENCES

Yamamoto:2013:TPM

Yildiz:2016:AEK

Yu:2010:TSN

Youn:2016:EEF

Yang:2017:ERV

Yuan:2015:TPH

[YGDZ15] Kun Yuan, Jing-Shuang Dang, Yi-Jun Guo, and Xiang Zhao. Theoretical prediction of the host–guest interactions between novel photoresponsive nanorings and C60: a strategy for facile

Yeh:2011:DFT

Yourdkhani:2017:RPN

Yakhanthip:2011:TIN

Yao:2013:MDS

Yamada:2013:VDE

REFERENCES

[yOTn16] Yu ya Ohnishi and Seiichiro Ten-no. Explicitly correlated frequency-independent second-order Green’s function for accurate ionization energies. *Journal of Computational Chem-
REFERENCES

[Yu12a] Feng Yu. Ab initio direct classical trajectory investigation on the S_N2 reaction of F^- with NH_2F: Nonstatistical central barrier recrossing dynamics. *Journal of Computational
Yu:2012:AIM

Yanez:2017:FFG

Yan:2012:ESL

Yang:2013:RNI

Yang:2016:SNUa

REFERENCES

Yang:2014:VSP

Yuan:2017:DSM

Yu:2012:TSE

Yan:2015:PPB

Yuan:2015:DHH

Yang:2016:EPC

REFERENCES

Kun Yuan, Rui-Sheng Zhao, Jia-Jia Zheng, Hong Zheng, Shigeru Nagase, Sheng-Dun Zhao, Yan-Zhi Liu, and Xiang Zhao. Van der Waals heterogeneous layer-layer carbon nanostructures involving \(\pi \cdots \text{H-C-C-H} \cdots \pi \cdots \text{H-C-C-H} \) stacking based on graphene and graphane sheets. *Journal of Computational Chemistry*, 38(10):730–739, April 15, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

-Zhang:2011:DPP-
Zhang:2011:DPP

-Zierkiewicz:2015:TIH-
Zierkiewicz:2015:TIH

-Zhong:2011:SPA-
Zhong:2011:SPA

-Zhang:2014:REG-
Zhang:2014:REG

-Zoete:2011:SFF-
Zoete:2011:SFF

-Zabojnikova:2016:IPS-
Zabojnikova:2016:IPS

REFERENCES

Zimmerman:2015:SET

Zeng:2013:FMS

Zhang:2017:EGD

Zhu:2010:EES

Zhang:2011:SGP

Zhou:2014:PCR

Panwang Zhou, Jianyong Liu, Keli Han, and Guozhong He. The photoisomerization of 11-cis-retinal protonated Schiff base in gas phase: Insight from spin-flip density functional theory. *Journal of Computational Chemistry*, 35(2):109–120,
REFERENCES

Zhang:2010:AFE

Zhu:2013:SNU

Zhang:2012:TSRb

Zhang:2015:EMC

Zhang:2013:ICA

Zheng:2010:ITA

Xiaoqi Zheng, Chun Li, and Jun Wang. An information-theoretic approach to the prediction of protein structural
REFERENCES

Zheng:2013:WPP

Zhao:2016:LPT

ZLY+16 Xue-Feng Zhao, Haixia Li, Cai-Xia Yuan, Yan-Qin Li, Yan-Bo Wu, and Zhi-Xiang Wang. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D_{2h} C_{2} (BeH)_{4} species via hydrogen-bridged BeH_{2}Be bonds. *Journal of Computational Chemistry*, 37(2): 261–269, January 15, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhang:2014:ECM

Zh:2010:PEF

Zoboki:2011:ELN

Zhang:2012:IRE

Zhong:2013:BST

Zerbetto:2014:LSF

Zarycz:2016:CSB

Zhu:2014:TPC

Zilberberg:2010:POD

REFERENCES

Zapata-Rivera:2011:ESR

Zapata-Rivera:2012:RML

Zgarbova:2015:TAD

Zare-shahabadi:2010:AAC

Zadeh:2011:NAD

Zoete:2016:ACD

[ZSB⁺16] Vincent Zoete, Thierry Schuepbach, Christophe Bovigny, Prasad Chaskar, Antoine Daina, Ute F. Röhrig, and Olivier

Zhao:2011:CDL

Zhao:2017:ASE

Zhao:2013:FPC

Zahariev:2014:FAM

Zhang:2012:DFT

REFERENCES

Zhang:2012:FFD

Zhang:2014:TSG

Zinovjev:2014:ECR

Zalesny:2015:TAD

Zuev:2015:NAI

Zhou:2017:BHH

Zhou:2015:ABO

Zaccaria:2016:IST

Zhang:2013:MPI

Zhang:2011:ABD

Zhao:2010:PSM

Zadeh:2011:NAS

Feb 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zheng:2010:MDM

Zhao:2010:SSP

Zhou:2016:IBH

Zheng:2010:DFTb

Zheng:2010:DFTa

REFERENCES

[ZYG+15] Xu Zhang, Xiaodi Yang, Hua Geng, Guangjun Nan, Xingwen Sun, Jinyang Xi, and Xin Xu. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and

Zhu:2012:PPT

Zhang:2012:TSRa

Zhao:2015:PRM

Zhu:2010:IAP

Zhao:2014:CBP

REFERENCES

Zhao:2016:CDO

Zhang:2010:III

Zhou:2012:CMF

Zeller:2014:ECR

Zhang:2010:TSRa
Hui Zhang, Gui-Ling Zhang, Jing-Yao Liu, Miao Sun, Bo Liu, and Ze-Sheng Li. Theoretical study and rate constants cal-

Zeng:2012:AII

Zhang:2012:RMC

Zhu:2011:CSE

Zhang:2016:CQD