A Complete Bibliography of Publications in

Journal of Computational Chemistry:

2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 February 2018
Version 1.31

Title word cross-reference

[GT10] [TN12].

[Ben17, KSK11, LGW12, LX11, LWD13, PTK11, Pie14].

[SKMS13].

[RDT14], \frac{1}{2} [RDT14]. \Sigma [LWD13], \Sigma [Kop15b].

[GTK10, LGW12, LWD13, OZLSBH12].

[BHB17, BMFG16, DaadGR15, LPE10, LWXC16, MG11, PGIY10, RRF11, RHT15, TLY12, WRG17, vSGP10].

[CM16].

[GTK10, LGW12].

[CM16], \frac{1}{2} [LSW14, MG11], LHM [BS10c].

[KPL15], (ads) [LLTC12].

[GBGR16, JCG11, LdSRR16, TFQ10, VIT15].

[AS15a, AR10, BE14, BPE16, BP14, CXW14, EB12, EBK13, FD16, Ibr17, JCG10, JLS10, JLH14, KBC12, KKR13, Kop16, KCL14, LZTV10, LW12, LWC16, LWD13, LLB12, LL10c].

[XFX16, YR13, YL11, Yu12a, YZ15b, YXZZ17, ZRCC12, ZRCC11, ZZ10, ZZL10b, ZSW12, ZLL12, ZYG14, ZLY16, dSDdAR10].

[GBGR16, JCG11, LdSRR16, MCK17b].

[MCIK16, SC17].\frac{1}{2} [OPR16].\frac{1}{2} [OPR16].

[DM15, TFQ10, VIT15].

[AS15a, AR10, BE14, BPE16, BLF14, CNH11, BPLL12, BLG10, BKWK10a, BKWK10b, BS10b, BS16b, CK10, CCJ11, CCM15, CKL11, CXS10, DOM11, DLS13, DLW12, DHE12, EP15, EPB17b, FMNC11, GL17, GK10, GWJR18, GY12, GWJJ12, HYL11, HZ11, HSY11, HFSO12, HBL12, HYD10, HRL11, HVS16, Ibr17, JCG10, JLS10, JLH14, KBC12, KKR13, Kop16, KCL14, LZTV10, LW12, LWC16, LWD13, LLB12, LL10c].

[TFQ10], \frac{1}{2} [PMG16].

[TFQ10], \frac{1}{2} [RSKG14, TFQ10].

[TFQ10], \frac{1}{2} [RSKG14].

[TFQ10].

[TFQ10].

[TFQ10].
CKL+11, DLMH12, GZZM16, HSZ+11, KV14, KDS17, MVKS10, MIS+15, OOK11, PM18, RF15, SSGS15, SDF12, YJN+11, Zha11]. π · · · π [CCCLCGRO14], pK_a [BA11]. Ψ [Lü14]. q = 0, ±1, −2 [Xh15X]. r_m^2 [RCM+13b]. → [CK10, Chu10, GTK10, HZ11, HBL12, LWD13, NMLD13]. S_1 [KKL+13]. σ [DPSL16, GZZM16, LZZ+15b, PM18]. σπ [CZY11, YWZ14]. Å³ A’ [MCLD10]. × [SRS14]. v = 0 [LWD13]. x = 1 [CWT+12, LZTV10].

1	ZZWX11, CS17, DLZ15, GTK10, NHH16, SYH12, SRS14, TTB10, UNT16, XLY12, ZsA10.
2	[DPNM11, MWJ+11, DH17, HOM+16, LGW12, Lüc14, YZGS14b, Yu12b, Yu12a].
3	[MWJ+11, 15-crown-5 [MWJ+11], 3-15-crown-5 [MWJ+11], 3-alternate [ZWS+10].
4	[YLZ+10, LZTV10].
5	ZZWX11, cCVG+14, LL10c, Mor15, Pon10, SOvG12.

7 [ADF+10, MBR+15]. 7-azaindole [YYT12]. 7-tetraene [ABDGN12].

8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZHH11]. 8R [BG13].

Ben17, CCLP12, CSGOA17, CRZ+18, DKE+17, GAI13, GBW+14, GWZX12, HRC13, LC17b, LZZ14, MAK+14, ME10, MFR+17, NHHN16, yOTn16, dIRL11, RB13a, RCR+16, RDDS10, RR14, SH15, SS16b, VAMS14, VDVR14, WX5+12, WJG+13, WX12, XSZL11, YOMT14, dVZ17, dSaSL13.

Accurately [Bow16, LFB14, MA16, Zha12b]. ACE [WCDM11, LHL+10].

acetaldehyde [AS11, AAMD11]. acetaldehyde [YZL+15]. acetals [JSW10].

acetylation [FHK+12, IMK+16, LHL+10]. acetylcholine [SRA17].

achim [Spr10]. acid [BLG11, CYY+17, CC18b, CFC15, CM16, CB11d, FD14, FZL+15, Fel10, FP17b, FCE15, GRL+11, GRL+12, HPT16a, HNN+17, HGY15, HCP15, KLS10, KMLS10, LBC+12, LXL+11, LFM12, LP11b, LPMT17, MSLS10, MRO17, NHF+10, OXW16, PHDH13, SISK10, SZBM13, SBW12, SV11, TL16, VMPS17, WC14, WG12, XVN17, ZSB+11, ZWP11, ZHHX11].

acid-catalyzed [CYY+17]. acid-water [TL16]. acid/base [VMPS17].

acid/base [VMPS17]. acidic [APY+16, YDX16]. acidities [ALK+15]. acidity [CRZ+18, CPK12].

Activation [Niz13, AALCM11, DR11, DSM+11, FB12, MRR11, MBFG15, TS15a, WC11, XLYZ10, YXZZ17].

activation-strain [FB12]. activator [BM12].

active [AIGP15, Cas13, DPB+12, LZTV10, PDG+16, SCSW13]. active-space [PDG+16].

actives [EOO+16]. activity [BPC13, DXL+10, GAI13, GHL17, GFPSD17, MJLV14a, RCM+13b, SLY+10, TD10, TTB+11, YB13, ZsA10].

acute [TL+12]. acyclic [ZKH+10]. acyl [PS10].

adcluster [IN13]. Adding [XHLH16, Zha12b]. addition [FWB14, KS13b, NDG14].

Additive [XVA+16, DNS11, HMI+13, TMR+16, VHA+10, VMPS17].

additivity [ZRL+15]. address [LG14]. addressing [cCVG+14]. adducts [LC10, LS11b, ZRCC11].

adenine [BZH14, LLT12]. adenosine [SRA17, WZQW10].

adiabatic [UD12]. adjacency [GZH10]. adjusted [HH15].

Adjustment [BLZ+13]. ADMA [MA17]. AdNDP [KDS17].

adrenergic [CV12, LHIHM16, VKC10]. adsorbate [GBS+17].

adsorbate-induced [GBS+17]. adsorbed [MCF10, PXXW10, SLLL13, SIG+15].

adsorbents [HVS16]. Adsorption [CCJ+11, FVP14, HB15, KD10, LHI1b, PH12, AS15a, BS16b, CMM18, CR14, cCVG+14, Hei10, LL13a, LPP16, LPLS16, LZ14, LT14, LCM+14, NPP13, PGC12, PLZ17, RHNN10, SH14, SDB+16, SKTT11, SYZ+17, VS14,

affinity
[CG15, CZAF17, DLZ15, MCK17a, SSS+13, VL17a, ZJZM13, ZYvIZ14].

After [WZK+13]. Ag
[Rab12, AS15a, IN13, LLTC12, MCF10, PGS+15, SLLL13, YXZZ17].

Ag-nanocluster [AS15a]. against [Gil11, MPNS13]. Ag
[Yan16]. agents
[PsdPE+10]. aggregated [BSL+16]. aggregates [LSH+11, SLP+12, Ber17].

aggregation [RCM+13a, RML+15, WDP+12]. aggregators [RLL+10].

Agonist [HK18]. agonists [CV12]. AgX
[YS13]. AHAS
[SJD14]. aimed
[KS12]. Al
[LCWW10, Pon10, UT15, YR13, GWJJ12, KKR+13, SH14].

Al-hydroxylated [SH14]. Ala
[SZMI13]. alanine
[IO13b, MVKS10, SEM12]. AIB
[MAY15]. alchemical
[BB11b, BB11c, BG12, GMSdG15, GRS15, HLW+17, KB11a]. alcohol
[MS13, ZSZ+14]. alcohol-based
[MS13]. alcohols
[VVY17]. aldehyde
[ZZWT12]. Alder
[CC18a, FB12, FB14a, GNDA+12, LZH16, ORZ11, ST13, dSVdM+16].

Alder-ene
[FB12]. Alderase
[BJS12]. aldol
[HJLV16]. aldosterone
[RVP+11]. algebraic
[GMMP+14, WWD14, YD17].

algebraic-diagrammatic
[YD17]. Algorithm
[WM12, AMGB10, AM10, AYYO17, BW11a, BYE+16, BDdS13, CM13a, CDBM11, CVT+11, CM13b, CB11b, DS15, DJ13, DLSA14, DZA11, FRLN10, GFG11, GPE13, GBD12, HTS15, HEMCZE+14, HQC16, HKR+14, Hug14, Ish10, IJH+13, JCPIC11, KK17a, KNHN16, KN17, KDT+12, LZX16, LZL+13, LZLM16, LZS+17, LLJ12, LTA+11, LMA15, NYN17, NC12, NG10, dRL11, PS17, RMPAM15, Ras17, RSL16, SRSO15, SYH12, SSMW09, SCSW13, SA11, WMW+10, XHLH16, YVEI+17, ZSS+13, vLBBR12].

algorithm-artificial
[WMW+10]. Algorithmic
[LPS12]. Algorithms
[BV14, KGHC15, AGR11a, AC12, CD13, Fom11, GBSE11, KJM+17, Leh15, LLZA12, MS16, MO15, NC14, NOKJ16, RFN15, TRA+16, ZVY+15, dACP12, vLBBR12].

aligned
[KC14]. alignment
[BF15, HRK+10, HKRS11, HS11, MJM+15, RP15, RH11, Ran12].

alignments
[CY10, Ran13]. aliphatic
[CROB16, SB10]. Alkali
[YHC11, Ano11, DDM+15, JHMB+09, JHMB+11, THP+15, ZVY+10a].

alkali-metal
[ZVY+10a]. alkalides
[WXS+12]. Alkaline
[XZ11, Ano11, JHMB+09, JHMB+11, WD10]. alkaline-earth
[WD10]. alkane
[JGS+17, ZST14]. alkanes
[Jo17]. AlkB
[PHC13]. alkynes
[Jo17]. alkenyl
[YZZ+15]. alkyl
[Deu12, RMG11]. alkylthiols
[FVP14]. alkenes
[Jo17, YXZZ17]. All-atom
[SM14b, CS14, DPNM11, HM13, JYC+16, LZZ14, MZZ11, OCW+15, VHA+10]. all-electron
[PGdO+16]. all-organic
[LZZ+15a]. all-siliceous
[Lar11]. allene
[GRCL12]. allenes
[KV15b]. allocation
[NOKJ16]. allophycocyanin
[RML+15]. allostERIC
TSR+16, VVLG17, XZ11, YKO+11, ZSLL17, ZLW10, GFG11, ACD+13a.

approaches [BH13, CME11, DBM+17, ECZWD17, HBI+17, LSH+11, RLDJ17, RR15, VLB+10, YJ11]. Appropriate [LZLC13]. Approximate [Gav12, KV12, KV13, RP15, RZ16, SM14a, HH16a].

approximation [AO10, Boz18, Cas13, HH17, Shc12, WHM10, YD17, YN15].

approximations [CGPP11, HAGK10, MKH+13]. April [Ano12u]. Appropriate [LZLC13]. Approximate [Gav12, KV12, KV13, RP15, RZ16, SM14a, HH16a].

approximations [AO10, Boz18, Cas13, HH17, Shc12, WHM10, YD17, YN15].

arbitrary CHC+13, EPD+11, GP12, HAL14]. archetypical [vSGP10]. architectures [MJBM12, OB+12, SOM+13]. area [FZY+12, GY10, HWLW11, KRSC12, KTSW11, MOS12, NW17, WXL+12, WBF17, dCLFGL13]. areas [MK13a, ZKE+17].

armchair [LPLS16, RRK14]. aromatic [HC16, AH10, FVB10, JHB+13, Kar17, KDS17, MVKS10, PRJ+17, PL18, SSA+17, TTR+12, TDKT10, WSZW15, YCK16, YHC11].

aromatic [HC16, AH10, FVB10, JHB+13, Kar17, KDS17, MVKS10, PRJ+17, PL18, SSA+17, TTR+12, TDKT10, WSZW15, YCK16, YHC11].

assemblings [CBTZ16]. assembly [AGR11b, Hei10, JM11, KL16, uLhY11, Mau14, OAN15b]. assess [SJ16].

[DLSA14, HAL14, NDG14, QLYL10, WCDM11]. Asynchronous
[XFG+16, XFG+15]. Aten [You10]. atmospheric [BCNH+11]. atom
[BS10b, CVT+11, CS14, DPNM11, DM15, FSC+14, GBVA11, HRK+10,
HM13, JYC+16, JGS+17, Jor17, KV14, LC10, LZZ14, MZZ11, Niz13,
OCW+15, ST11, SM14b, SYH12, Tsi17, VIT+15, VHA+10, VKAM12, VI17,
VDVR14, YPKB12, YHCS11, dLC17, dVZ17, YMP14]. atom-aromatic
[YHCS11]. atom-based [dVZ17]. atom-centered [VI17]. atom-typing
[YPKB12]. Atomic
[BMFG16, EPD+10, KGM12, AYYO17, BLDK+13, BB11a, CP15, EKH14,
Elk16, EP12, EV14, HS12, JMLL13, JXSW15, KOP+14, KR12, Lar11, LZGS11,
MK13a, MPA10, MPA12, Mat10, MPBJ11, NOKJ16, OBW12, OV14,
Pol13, RB13a, SS16b, SE14, SMP17b, SFCCK+14, SFCCK+15,
STS15, TY10, VGV+11, Vybi5, Vybi6, YWZ14, YKH15, ZYW+16].
atomic-resolution [BMFG16, NPG17]. Atomistic
[BH13, CHKR10, MBA14, SE14, BLKP12, CZNA11, DDP16, HDPM14,
LZ12, MSC+10, MMZW14, RO14b, RSG+10, ZST15]. atoms
[ARAG17, ARLP13, BSF18, BSPP+13, DC13, EV14, GAMAC+14, HSB+11,
HGCCGR+16, IN13, LHSH12, MP17a, Pyy13, SFCCK+14, SFCCK+15,
STS15, TY10, VGV+11, VHG+11, YHG+11, YKH15, ZYW+16].
atoms-in-molecules [BSF18, HSB+11, YKH15]. ATP
[BMFG16, SYH12, YHH+13]. ATP-binding [YHH+13]. ATP-Mg
[BMFG16]. ATPase [II10]. atrazine [BHB+17]. attachment
[HBL12, THP+15]. attack [MY+13]. attenuation [SPH11]. attract
[VYV18, CZAF17]. Attracting [ZSB+16, VYV18]. Attractive
[MKH+13, IO13a, SNDK16]. attractive/repulsive [SNDK16]. attributed
[CM16]. aufbau [EKH14]. augmented [BVHI17]. austenitic [vADC+14].
auto [LDH+14]. auto-encoder [LDH+14]. autocorrelation [LL13a].
AutoDock [TO10]. Autodock4 [CSSB11]. Automated
[BW15, EMD17, GMsG15, OZS+13, PBG17, SM11, Zim13, CCLP12, KG13,
LLHM16, MN15, NKJ16, SH18, FN12, JBAM11, JSD+11]. Automatic
[AJR16, Leh15, UKS11, KSH+17]. automating [IGK16]. automaton
[Li14a, Li14b, YS13]. Auxiliary [Hil13, TKN13, HDL+17]. availability
[HJ13]. available [SPR+13]. averaged [HCD+10, WLO+17]. averaging
[DB12]. Avoiding [BB11a, dACP12]. axial [SNDK16]. axis [KGM12]. Aza
[NDG14]. azaborine [EFB16]. azaborinine [RS17a]. azacrown
[ZGW+10a]. azaindole [YYT12]. azetidine [SHL+13]. azido [WDLG12].
azidolysis [BCP+10]. azulene [WWKS16]. azurin [SOvG12].

B [MLQ+12, UT15, YLZ+10, BWKW10a, GTZ+18, HJ13, HQC16, LLLM11,
BACE [CS17]. BACE-1 [CS17]. BACE1 [ETLS17]. Bacillus [CPK12].
back [GWT+17, REH13]. backbone [AB10, CKP10, CHP11, FZY+12,
Benchmark [WSZW15, AF14, ANH+11, CSXZ17, cCVG+14, GAI14, KG15, RS13, ZWGO16, IKN13]. benchmarked [XYW+14].

Benchmarking [Ben17, GAJ+17, Hug12, LCM+14, GP11b, HRJ+14, HRJ+15, HZ13, JRSHP14, KSM17, RSG14]. benchmarkings [GPdC+16].

benchmarks [ZDKM12]. bending [KB11c, Sch13]. Bennett

[BB11b, KB11c, dRBO13]. benzaldehyde [Lu11].

Beta [KRSC12, HLH+12, Hug12, LH11, LJR+12, SKKS13]. beta-barrel [LJR+12].

[AF14, BM12, KDS17, yOaCG10, XHLH16]. between [ALW+10, ASL+11, AR10, ACS12, BSF18, CCCLR014, CC18b, CZH12, CQFC10, COOH14, CB11a, dRCFGRB18, DHP+11, Den12, FD14, FC16, GYS+10, GO13, Gav12, GKS14, HvM16, HvM17, HWWL17, KTT16, KWWB17, LDA+10, LLL+11, LW11, LYL16, LWL+16, LvG13b, Luc14, MS17, MSSH17, OHNK11, OCL11, PRJ+17, PL14, RSHR15, SBW12, TTR+12, TSN16, WCT+11, WFZ+18, Wei12b, YHG+11, YKH15, YDGZ15, ZY14, ZBMZH15]. Beyond

[PNW+16, SCOJ15]. BH [LVTV11, LBTV12, Kop15b]. Bi

[RDT14, DM15, VIT+15]. bias [KEPM17, KS12]. biased [BG17]. biasing

[MJC14, OZ14]. bibliography [Pyy13]. bicarbonate [VPR10]. BiCu

[LLL11]. bicyclically [Alig17]. bifunctional [BEM14, BEPM14]. big

[MPA12]. big-bang [MPA12]. Bilayer

[vRWS17, II18, KLN16, RBOH11, SLX+10, WHAS+10, WHAS+16]. bilayers [BPPS17, GBL+11, PVMI0, PS10, RI10, TG12a]. Bimetallic [GEP+14, DAdGR15, GTT10, KKPT11]. bimolecular [CSADOM17].

binary [Hua16, LAS+14]. Binding

[FPB12, GR515, HXS15, JKDB12, SSP+13, ZP13, AALCM11, ALW+10, ABD11, AS10, AC11a, ACS12, BHNS14, BTMS13, BVHI17, BEL+11, CBP+15, CDM13, CLA16, CIKT13, CZY11, CS17, CAF17, CHR+12a, CHR+12a, CPK12, DHP+11, DS12b, DVVP14, DAB16, DPOS16, ETL17, GHK12, GDV17, GWZ15, GEP+14, GPdC+16, GAY+17, HDK+12, HYZZ13, HPL13, HNW07, HNW12, HGI13, HWWL17, ISP+10, JCP14, JZ12, KZW+16, KTO11, KTO13, KDT+12, Lar12, LL10b, L.JW11a, LW11, LCA17, LBS10, MLZ12, MGWR12, MSK12, MFR+17, MNNK10a, NST14, NHI16, NWI17, NFG+13, NF17, NN16, NO16, NKK+16, OBW12, Oht16, OHNK11, ORS16, OCLM14, OOT15, PGC+12, PBLdS12, PSG+15, Pla11, RLDJ17, RCR+16, RDDS10, RAR+11, RO14b, RZ16, RF15, SPS+12, SRA17, SOD+11,
STM⁺¹⁵, TYZ⁺¹⁶, TS¹⁵a, UNT¹⁶, VVG¹³, Vor¹⁰, VM¹¹, WS¹⁰, WNP⁺¹⁶].

BION [PZA¹⁵]. bioorganometallic [SDL¹⁴]. biophysical [FN¹², Mat¹⁴, RTP⁺¹³]. biophysics [HRHI¹⁷]. biosynthesis [BEL⁺¹¹].

bonding-induced [YLZ+10]. bonding/back [PKK17]. bonding/back-bonding [PKK17].

Bonds [WFZ+18, DGB+13, ED15, FPR14, Gra18, HH15, Jab14, JJJ16, LHZ+11, LZL+15b, LZY12b, LDG+15, OOK11, Rob13, SM16a, SK13, SJ16, YLL11, YKH15, YJ17, ZLY+16].

BonnMag [BBG+18]. Book [Sch10, Spr10]. boost [KV15a]. borafluorenes [ZQ14].

borane [BEPM14, Kop15b, LC10, SJZ+15]. borane-cyclic [LC10]. borates [GWJJ12].

border [SK12, SK17]. borides [ZWMW10]. born [AB16b, BLZ+13, DSF17, FCE15, HWLW11, KCPMG12, LL10a, LCH10, PS13, RSB+13, SZTSM10, SSBW14, VMPS17, WWKS11].

boron [BEPM14, Gra18, GAMAC+14, LT14, Oht16, PGC12, VS14]. boron-doped [VS14].

boron-nitride [LT14]. boryl [LC10].

BOSS [VKTRJ15]. BOSS-Gaussian [VKTRJ15]. Bosutinib [GMASBF16].

both [AST+16, FNSF+11, LX11, THI3]. bottleneck [SRR16]. bound [FLM11, GPK+16, LFM12, MAK+14, PMG+16, PZA15, XWSW13].

boundary [KB14a, Lun12, MTvG12, NO16, PL14, PS13, Sie15, VECT12].

[APK14]. builder [KOY+12, GS12, WCJ+14]. Building

[MB14, CBP14, GS12, KSW16, MJBM12, RLG14, Tak11, TJB12, VVY17]. building-up [Tak11]. buildu [SS13a]. built [FCPM14, KOP+14]. bulk

butane-like [WKC11]. butanol [BS10b]. Butene

WCY+11, WWKS16, YZZ+17, ZYG+14, ZLY+16, BS16a, VAMS14, Ben17, BWKW10a, BS16b, BH13, CG12, ED15, FL15, GWT+17, GMSV14, GZZ12, HJ13, HV16, IMK+16, JLS+10, KV14, KP10, LFB14, LLC17, LDH+14, MSV16, MH11, Niz13, OPR16, PTK11, Pie14, PZBA13, RWR+13, SNKD16, TFO+10, TFO+11, TS15a, VAR12, VED10, WKC10a, WLW+10, WS10, WL14, WTH+16, WS10, YDZ15].

C-terminal [IMK+16].

C2 [KYCL11].

C2-methylation [KYCL11].

C60 [SBW12].

c7rfjv [Ano15-59].

Ca [BHB+17, HBI+17, LZTV10, LPE+10, LBTV12].

CABS [LK11].

CABS-NMR [LK11].

Caffeine [FF11].

Cage [GLZ17, LZ14, OAN15b, WLW+10, WCY+11].

cage-like [OAN15b].

Caging [DPB+12].

Calbindin [PNG10].

Calcium [BHB+17, HBI+17, LZ14, OAN15b, WLW+10, WCY+11].

Calcium-induced [PD12].

Calculate [GH16b, BCSCJ+13, BACSCJ+10, HDK+12, PSC11, SK17, Yap11].

Calculated [CHP11, GY10, KJDB12, MJKV14a, MRK11, NMLD13, SKMS13, Yan11].

Calculating [PNI13, SK12, WNP+16, WWD14, CPK12, EFS16, EPD+11, HAI+16, OK16, SM16a, WYT17, dRBO13].

Calculation [Fer13b, Fer13a, KSH13, MY17a, MMJ10, MS15, SH11b, SOD+11, SOvG12, AC11a, Bac12, BW11a, BK17b, BD11, BL12, CPR18, CHG+16, CG15, CX10, DKE+17, DXX+11, FD14, GM11, GREA11, GCW16, Han11, JIS13, KNH16, KN17, KB16, KDB13, LFN+10, LLW12, LZW+11, MYT+14, MLC13, MS12, NNY17, NFDP13, PDM10, PAK15, Pie14, PW12, RO14b, RZ16, RB12, RRK16, SBV10, SLIB12, SCSW13, SACdG14, SMM17, SR11, SRL11, UTL12, VV+15a, VV13, WDHZ13, ZZ14, ZZL+10b, ZLLL12, HH10].

Calculations [HBI+17, AR10, AAC+16, BE12, BLL13, BS10a, BTMS12, BH15, Bou14, BGI2, BLZ+13, CR14, CCJC10, CS17, CKKK16, CMB10, CXX10, CHK10, DHG+11, EFAC13, EK17, EKW+13, EP12, EB12, EBK13, FA15, FE14, GRARO+14, GMO16, HASR+12, HYL+11, HS14a, HB14, HSH15, He13, HG10, HG13, HBL12, HYS11, Ibr17, IMS18, JCG+11, KKK17a, KB10, KKN11, KGH12, KKR+13, KERY+16, KCPMG12, KKL+13, KSH+17, LEQ13, LM11a, LCH10, LYES+13, LCA17, LzG12, LCM+14, Lun12, MK17, MCD10, MCK17a, MCR17b, NW17, NN18, ONH11, OLA15, OOT15, OZLS12, PBL12, PTK11, PH14, POB13, PBBP11, PDG+16, P131, PGW+17, RAR+11, RHT+15, RLD12, RR11, REV+17, R10, RK15, SH15, SRS10, SP13, SS16b, SCW11, SWR11, SRS14, SMP17b, SDMS13, SHB17, SK17, STT1, TLG+12].

calculations [TS10a, UHH+11, VLB+10, VKAM12, VKNT16, VHR16, VFR16, VMM17, VI17, WC13, WSW15, WHK+12, WTH+16, WXY14, XY+14, YW+16, YD17, YN15, ZRCC11, ZLT13, ZLT14, ZWMW10, ZH12].

calculator [dCLFL13].

calibrate [VVLG17].

Calibration [CBP14, DDM+15].

calix [GMASBF16, PRRT+10, YCGA10, ZYW+10a, ZWS+10, GMASBF16].

Call [ZPF14].

Can [ASMS10, IMS18, KV15b, LZW+11, PLAG11, SHL+13,
CIKT13, LCB10, TCPPC14, Zha12b. CANADA [Fel10]. cancer
[CPN+17, RHNN10, BW11a, HRK+10, KCK+17, PHH+12]. CaO [BL12].
CAP [EFS16]. CAP/SAC [EFS16]. CAP/SAC-CI [EFS16]. capabilities
[AAC+16]. capability [LC10]. capacity
[KOP+14, PGC12, WKC10a, WKLC12]. capillary [NFPD13]. capture
(GLZ17). Car [KCK+15]. CARB1/TIP3P [SA10]. carbozole
[JYS+12, SLC+17, YJN+11]. carbazole-based [SLC+17].
carbozole-fluorene [YJN+11]. CarbBuilder [KSW16]. carbene
[CWT+12, LXZ+10, TCPPC14, WS11, WS12, dSDdBNB17]. carbenes
[BSDP16, KYKR15, RF15]. carbocation [ONTTL16]. carbocations
[OPR16]. Carbohydrate [ZYvIZ14, NMF+14]. Carbohydrate-binding
[ZYvIZ14]. carbohydrates [CP15, HH11, JSD+11, PLH16].
carbon [SC17, AS15a, ASL+11, BPE16, CME11, DI11, Den12, DC13, FTR15,
GSM15, GPK+16, GBS+17, GZZ12, JWO15, KGHK12, KV14, LPLS16,
LL10c, LT14, LK16b, OCW+15, RHNN10, RRRK16, VS14, WYL+15,
WDZN16, YZN13, YZZ+17, ZYW+16, ZWF15]. carbon-beryllium
carbon dioxide [Sea10]. carbonic [SSP+13]. carbons
[MKB+13, RVB+12]. carboxylate [DQ16]. carboxylates [AARP17].
carboxylic [LPMT17, RB12]. card [SR11]. Carlo
[LHMM11, Aou16, DNN15, BFH+13, CLK11, CG12, CTP13, CAP17, FFA14,
GP12, GPM17, HFSO12, HMM10, HYUS11, HQC16, HHHY10, IH+13,
LPK16, LMZ11a, LZ12, MS16, MBRC16, MOS12, NDW15, OPBR17, PSS14,
PS13, Pn10, PHH+12, RHNN10, RdA12, SCOJ13, SAGC16, SMRM+17,
SE14, UU12, ZLM+15, ZW17]. Carlo/Brownian [DMN15]. Carlo/molecular
[RdA12]. carotenoids [PVAM16]. carrabiose [YSRSS10].
carrier [SFDE16]. carriers [GMASBF16]. Cartesian
[REH13, FHMB15, Elk16]. caryolene [ONTTL16]. caryolene-forming
[ONTTL16]. CAS [MH11]. cascade [HS17b, ONTTL16, ZZWT12].
cascaded [HLZ+15a]. case [Alg17, ASMS10, BM12, BG13, CCLP12, CB11c,
DOM+11, DS12a, EFOD13, EQA+11, GH10, GKR13, GPdC+16, HSH15,
KB13, LPAS11, LP11a, LT13, MIS+15, OME16, PVAM16, Ray13, Rod13,
RG11, RCM+13b, RJS17, SRF+11, TLA10, VKNT16, ZTH+15, ZAR+11].
cases [GREA11]. CASPT2 [SGWA17, VFRAR16]. Cassandra [SMRM+17].
CASSCF [KKL+13, LGZ15, SGWA17]. CASSCF/CASPT2 [LGZ15].
CASSCF/MC [KKL+13]. CASSCF/MC-XQDPT2 [KKL+13]. CAST
[GBW+14]. catalysis [Can10, Can11, LHMM11, MG14]. catalyst
[BEM14, LLC17, YZ15b, ZSWL12, dSDdAR10]. catalysts
[BEPM14, JAB16, NJX+10, WJX+10]. catalytic [GHL17, KV15b,
ONTTL16, SJD14, SYL+10, SOY12, UKS11, WZQW10, dSDdAR10].
catalyzed [AS11, CYY+17, CCJC10, CPL11, HPT16a, HDB15, HJLV16,
KB13, KT12, MG15, QLYL10, TLA10, Tsi17, VCM15, WCWW11, WXY14,
catastrophe [ABDGN12, GNDA+12]. catechol [PBLdS12].
catechol-O-methyltransferase [PBLdS12]. Catenanes [LAHS16].
cathepsin [ETLS17]. cation [CCCLCGRO14, CGPP11, DLMH12, DDM+15, RMGB11, SSGS15, ZYL+12].
Cationic [HIJ13, WJX+10]. cations [CC18b, CGPP11, DLMH12, DDM+15, RMGB11, SSGS15, ZYL+12].
cations [CC18b, KGR+16, LCL+10, LdSRR16, PVS12, SBD+17, Tac17, THP+15, ZYW+10a, ZWS+10].
cations [CG18b, KGR+16, LCL+10, LdSRR16, PVS12, SBD+17, Tac17, THP+15, ZYW+10a, ZWS+10].
cations [CG18b, KGR+16, LCL+10, LdSRR16, PVS12, SBD+17, Tac17, THP+15, ZYW+10a, ZWS+10].
cations/nucleobases [CC18b].
cavitand [CC18a]. cavities [HRB+17, ZSB+16]. cavities/vacancies [HRB+17].
cavity [ZWS+10]. CAVS [SDZ17]. CB [BTMS12, CC18a, ILKR11]. CBS [KG15]. CBS-QB3 [KG15].
CC [Gil11, LLTC12]. CC2 [SGWA17]. CC3 [LZ14]. ccCA [RJWW12].
CCSD [BBI+11, CSGOA17, Gil11, KK17a, KKL+13, MVKS10, OPR16, PC14, RS13, SRR16, SB14, YJ17].
Cd [SLIB12]. CDOCKER [GLB16]. C == [CROB16]. Cefotaxime [MFM+12].
cell [ACS12, CGBK13, Elk16, Fon11, Gon12, JMS14, SRL+15, VAA14, dACP12].
Cells [FPV13, ACS12, DZA11, DGL+13, JYS+12, LZL+15a, SV11, SLC+17, TZ12, YJN+11].
cellular [VBD11]. cellulose [GS12, LHT15].
Cellulose-Builder [GS12]. cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13]. census [PPUBGD10].
centric [LABSG17]. CEPA [Sch12, SB14]. ceramics [RKB+14]. CERES [CPRS18].
Cerium [SRL+15]. CF [JCG+10, NMLD13, RVdB16, ZLLL12, AR10, CROB16, NMLD13, ZLL+10a].
CFCF [NMLD13]. CFCF [JCG+10]. CH [AR10, LWD13, LG+11, OZLSBH12, TLdG+12, WLZ12, ZLL+10b, ZYLL12, ZLLL12, BS16b, CK10, CXW14, KY12, HV16, JCG+10, KBC12, LW12, LGW12, LLTC12, LG+11, MC15, OOK11, RVCFF13, TCPPC14, VY17, VDV14, WHX12, ZLL+10a, DR11].
CH/ [OOK11].
Chaff [NM+14]. Chain [rRGWS17, BFH+13, CHK10, HAL14, KV14, KLS+10, KML10, LPS+13, LZG11, LP11b, LGl13a, LLLM16, OZ14, PD12, PS10, QZM11, SA13, SIS10, SZB13, TSN16]. chains [AF5W16, FP17a, JSW10, LZZ14, NPP13, Pla11, PLH16, TLdG+12, TS15b].
chalcogenides [SPS+12]. chalcone [CPL11, YZ17]. challenge [SDM+16].
Challenges [HGY15, KHGB17, HLvV13]. challenging [CAP17, VT14, WLF11]. change [EMD17]. changes [GDV17, GBS+17, HB15, LK13, MLV14b, MO17, RO14b, YZGS14b].
Changing [XVN17, LLvG10]. channel [HYZY13, PV+13, SFB17, SY16b, TCX+13]. channels [KC13a, LL10c, OKIS17]. character [BMB13, Cas14, Ibr17, RIJ+11, YSS12]. characteristics [DPSL16, Gav12, LT14, Mat14, RDT14, TZ11]. Characterization [VT14, XWSW13, CBP+15, DGL+13, GBW+14, GZZ12, Kop15b, MJBM12, MPA10, RNP13, ZYG+14]. Characterizing [LH11, PRSG13, She12, Yu12b].
characters [LSH$^{+11}$, ZLL$^{+10}$]. Charge
[CMF$^{+17}$, JM11, RDT14, SFDE16, AS15b, ANH$^{+11}$, ALH$^{+10}$, BCSCJ$^{+13}$, BE16, CS14, CBTZ16, CMS13, Cor17, DS12a, DWR17, DAdGr15, EFAC13, ENKK$^{+17}$, GMG$^{+10}$, HLWD15, JCGVPHT17, JZMJ14, Kan15, KVR10, LLLM11, LPE$^{+10}$, LBPD12, MSV16, MHRR11, MPBJ11, NN18, OBW12, PL14, PTB$^{+15}$, RO14b, Rice16, REL17, SPS$^{+12}$, SSGS15, SMP17a, SFLG$^{+17}$, SLC$^{+17}$, TN10, TKNN10, UT15, VPR10, VAR12, VL17b, WCT$^{+11}$, WWCL15, YK0$^{+11}$, YWZ14, YLZ$^{+10}$, YJ17, ZDZM13, dLC17]. charge-assisted [SSGS15]. charge-inverted [UT15, YJ17]. Charge-transfer [JM11, ANH$^{+11}$, EFAC13, YLZ$^{+10}$]. charge-transport [HLWD15]. charged [BK13, KD10, MRO17, NPP13, RJS17, Tsi14]. Charges [WFZ$^{+18}$, CCB15, IM17, JMLL13, RB13a, SN15, TBSM12, VSA11, Yan14, ZBG11]. Charles [HIS17]. CHARMM [MSK$^{+12}$, AKMY18, BF17, DPNM11, GLB16, GZM11, HBJ$^{+17}$, HC14, JCl$^{+17}$, KLJ$^{+17}$, KYB13, LZdIL$^{+10}$, MSK$^{+10}$, MMZW14, RR14, VHA$^{+10}$, WCJ$^{+14}$, XVA$^{+16}$, YHVM12]. CHARMM-based [MMZW14]. CHARMM-compatible [KYB13]. CHARMM-GUI [HBJ$^{+17}$, KLJ$^{+17}$]. CHARMM27 [ST11]. CHARMM36 [HM13]. CHARMMing [WPM$^{+15}$]. Chatt [Bac12]. CHCICH [WLHZ12]. CHEM [ABB$^{+13}$, CHR$^{+12}$b, HNWF12, HLXH18, ICS$^{+13}$, Kne11b, MSK$^{+12}$, RK16a, SFCCK$^{+15}$, SMM15a, GCC14, GKV$^{+13}$]. Chemical [BLG10, BCP$^{+10}$, JCGVPHT17, OM12, SLLL13, VGTL16, ALK$^{+15}$, ASS$^{+17}$, AAC$^{+16}$, APA$^{+14}$, Bac12, Ben17, Bou14, Cam15, CHP11, DKE$^{+17}$, DS12a, DI11, DB12, EOQ$^{+11}$, FB10, FVB10, GH10, GGM$^{+12}$, GPBSM11, GPBSM12, HPT$^{+16}$b, HHDC16, HJ13, Ihl12, JKS$^{+16}$, KV12, KASH14, KP11, KL11, LHZ$^{+11}$, Li14a, Li14b, MDTD13, MDTD16, MN15, MAPB10, MSV12, MSSP17, MFR$^{+11}$, MMJ10, MH10, NCV10, NC13, NC14, OKIS17, OSIG17, ONTT16, OC14, PTK11, PGDo$^{+16}$, Pie14, PBG17, RK15, RSKG14, SRA17, SLT14, SCOJ13, SEF$^{+16}$, SKMS13, SHB17, TLA10, TG12b, TR12, UD12, VBMA13, WBT10, WCT$^{+11}$, WF16, Wei12b, WL14, Wu10, WDP$^{+12}$, YZ15a, YB16, ZY14, ZBB16, ZT14, dCDP15, VBD11, Chua10]. chemical-bonding [MDTD13]. Chemically [EFAC13, ZZ12, Zin13]. chemist [DHE$^{+12}$]. chemistries [BS10b]. Chemistry [Ano10b, Ano15-59, HJG09, Spr10, All11, BRP$^{+12}$, BGR13, CBH14, DDM$^{+15}$, FML11, GHV17, IGK16, JBB$^{+11}$, KTN10, LK16a, OZLSBH12, PWN$^{+16}$, PPUBG10, RZG$^{+13}$, Rez16, REL$^{+14}$, TKNN10, TF15, VVP12, VV14, WDY13, ZYV$^{+15}$, GS16, MFEM16, XFG$^{+16}$]. ChemNetworks [OC14]. chemosensing [LZIH11]. chemosensor [LZL$^{+10}$]. ChemY [Pet11]. CHFCF [NMLD13]. chi [EJ13]. chignolin [HTS15]. chiral [LG14, PC14, ZPP$^{+16}$]. chirality [AS15a, DZA11, PBBP11]. chirality-based [PBBP11]. Chloride [KJ10, KLN16, Rab12, SG10b]. chlorides [RRF11, YZGS14b]. chlorine [Sani17, ZBMZH15]. chloroform
SOM$^{+}$13, SJ17, SM15, SAvG15, WBF17]. Coarse-grained
[MSLS10, NST14, BLKP12, CAD16, HHWL17, JC16, KCK$^{+}$17, KVQC$^{+}$11, KL10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MBC11, MBC13, RSG$^{+}$10, SLX$^{+}$15, SDZ17, SJ17, SM15, SAvG15]. coarse-graining
[BJP15, GMPB12]. cobalamin [AALCM11]. cobalamin-dependent
[AALCM11]. Code [REL$^{+}$14, BTT10, CPRS18, GHK12, GP12, LLH14, LCPS13, RJR14, WKC$^{+}$10b, vW11]. codes [KSH$^{+}$17, RKGN10]. coding
[MSLS10, NST14, BLKP12, CAD16, HHWL17, JC16, KCK$^{+}$17, KVQC$^{+}$11, KLS10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MBC11, MBC13, RSG$^{+}$10, SLX$^{+}$15, SDZ17, SJ17, SM15, SAvG15].
}[SOM$^{+}$13, SJ17, SM15, SAvG15, WBF17]. Coarse-grained
[MSLS10, NST14, BLKP12, CAD16, HHWL17, JC16, KCK$^{+}$17, KVQC$^{+}$11, KL10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MBC11, MBC13, RSG$^{+}$10, SLX$^{+}$15, SDZ17, SJ17, SM15, SAvG15]. coarse-graining
[BJP15, GMPB12]. cobalamin [AALCM11]. cobalamin-dependent
[AALCM11]. Code [REL$^{+}$14, BTT10, CPRS18, GHK12, GP12, LLH14, LCPS13, RJR14, WKC$^{+}$10b, vW11]. codes [KSH$^{+}$17, RKGN10]. coding
[MSLS10, NST14, BLKP12, CAD16, HHWL17, JC16, KCK$^{+}$17, KVQC$^{+}$11, KLS10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MBC11, MBC13, RSG$^{+}$10, SLX$^{+}$15, SDZ17, SJ17, SM15, SAvG15].
}
[ZSL+11, GMBX+16, RLDJ17]. compilation [NKJ16]. complementarity [GPS10, OAN15b]. Complete
[SN16b, CSKH15, LYZ+13, OAN15a, SPS+12, SCSW13, TCB16]. completeness [Leh15]. completeness-optimization [Leh15]. Complex
[DLT17, HBL12, ANH+11, BLF14, DaDGr15, Dry14, FFA14, GCWS15, HB|+17, Ishi10, KBC12, KGHC15, KSW16, LLL+11, LZZ+11, LLI1, LWWC16, MLGB16, MY17a, MY17b, NCV10, OME16, OC14, PPUBGD10, QLYL10, SLT+15, SKK13, SL17, SYH+12, TDP+12, WKLC12, WCCW11, WHX+10, ZT14]. complextation [CBP+15, SNS16]. Complexes
[EHSP16, GpdC+16, SKGB13, AvKSP16, AMK11, ASMS10, AK10, BcSC1+13, BLFZ13, BLDK+13, CSGOA17, CPRS18, CWT+12, CMD13, CZH12, CGPP11, CAT+13, CMS13, CM16, CB11d, DS12b, DLP11, EPH+13, ED15, FHW+11, FCE15, FPB12, FB14b, GK15a, GHL17, GPK+16, Gil11, Gra18, HDK+12, HSV+11, HKR12, HLB15, HRJ+14, HGH14, HRJ+15, HDP14, HG10, JRSHP14, KT12, KPL13, KTK17, LS11a, LLC+10, LWL+11, LHWW14, LZZ+15b, LDZW17, LXZ+10, LYSS11, LZZ+11, MC10, MFR+11, OSHG17, OOT15, PGCT+12, PHK14, PM13, PZBA13, RRH12, RHPWS13, RLD12, SB10, SLB12, SPR+13, SDL14, SGH+16, TLY+12, TS15a, Tru18, TS10b, VLB+10, VV17, WL14, XMSZ16, YKH15, ZCK+16, ZRC12, ZZL+12, ZLZ14, ZDX11, ZYW+10b, ZYW+10a, ZBMZH15, vSGP10]. complexity [GP12, NSP15]. component
[CLA16, CSKH16, DMJ17, HKR+14, JKS+16, KMI3, NASH15, PSP15, PW12, RK15, SV11]. components
[CHR+12b, CHR+12a, MBT14, Pil17, XTG+11]. composed [ZYL+12]. composite [KG15, SLG15, TNSS17]. composites [AS15a]. Composition
[PBLdS12, SB13, AO10, FCL+10, GMSV14, GJMPAM+14, HDL+14, HAP+12, NKN+16, SM14a, XSSZ11]. Computational
[Alg17, Anol10b, Anoi5-59, DPB+12, ED15, ECZWD17, EOA+11, GSI16, HYYZ13, HJG09, Hei10, HRL11, JS17a, JLS+10, KAR12, LBS10, Lu11, MFM+12, MFEM16, MSAK12, PGCT+12, SGM+13, TKXT13, XFG+16, XLYZ10, YHK+10, ZST14, ZPP+16, ZYW+16, ZZWX11, AARP17, All11, ABB+12, ABB+13, BCJC+14, BH13, CCCLRO14, CCJ+11, DPOS16, DZA11, DHE+12, FMG12, GS14, GAI13, GD10, GHV17, HCB11, HS16b, HDH12, HZ13, HVS16, IHy15, KCI3b, KG11, KJM+17, KV15b, LC10, uLhY11, MS13, MS16, ME10, OSHG17, PG12, PLZ17, PNW+16,
consensus [DMJ17, SRA17, PLV+11]. consequences [KG15].
conservation [MB16]. Conserving [PH17]. considerable [LLD17].
Consideration [Fom11]. Considering [CSEMB+16]. Consistent
[DMJ17, POB13, BKŠ+11, BY11, BK17b, DK11, GBVA11, Hili13, HKR+14,
JSXH16, KT10, LBH+11, LCW12, ON14, SPS+12, SMP17b, SCSW13,
TYN15, VGG+11, YN15, ZBG11, BLKP12]. consistently [IM17].
consolidate [BK17c]. constant [AB16a, CS14, KSK11, KNP+12, MK17,
PS13, RAGLL11, ST1M7, Vor12, WOH16, WOH18, dACP12].
constant-distance [DBK17]. constants [MG11, OZLSBH12, Ray13, RSG14,
RKG11, Rui11, RRK16, SACdG14, TTR+12, Tsi14, WL14, XWW+11,
YS13, ZLL+10b, ZLL12]. Consistent [MB16]. Conserving
[PH17]. considerable [LLD17]. Consideration [Fom11]. Considering
[CSEMB+16]. Consistent [DMJ17, POB13, BKŠ+11, BY11, BK17b, DK11,
GBVA11, Hili13, HKR+14, JSXH16, KT10, LBH+11, LCW12, ON14,
SPS+12, SMP17b, SCSW13, TYN15, VGG+11, YN15, ZBG11, BLKP12].
considerable [LLD17]. Consideration [Fom11]. Considering
[CSEMB+16]. Consistent [DMJ17, POB13, BKŠ+11, BY11, BK17b,
DK11, GBVA11, Hili13, HKR+14, JSXH16, KT10, LBH+11, LCW12,
ON14, SPS+12, SMP17b, SCSW13, TYN15, VGG+11, YN15, ZBG11,
BLKP12]. consistently [IM17].
constituted [HDL+17, ZLY+16]. Constructing [Che17, HS16b, LG11, SWA13].
content [CGBK13, GWPJ11]. Contents [Ano16-115, Ano16-121, Ano16-122,
Ano16-123, Ano16-124, Ano16-125, Ano16-126, Ano16-127, Ano16-128,
Ano16-116, Ano16-117, Ano16-118, Ano16-119, Ano16-120].
context [CBG16]. continuation [PJ13].
contributions [JJH+13, ARRC15, BCNH+11, CGR16, CPN+17, ENKK+17,
WS10]. control [BVY+12, DPAB16, Hel13, HH16b, LPLB16, SR10, XYW+14,
ZQ14]. controlled [VGTL16]. Controlling [FWB14]. convective
[SBN13a, SBN13b]. Conventional [SHL+13, BKŠ+11]. conventions
[BCJC+14]. converged [FLM11, GR10a, KHWB17]. Convergence
[GS16, LT13, ZH12, AS10, BKŠ+11, GS15, ON14, RFHG10, SL17].
converges [SH11a]. Converging [OSR16]. conversion
[LDB+17, LGL+15a, LCB10, RVP+11]. convex [CLFRO18]. convolution
[SZTSM10]. convolutional [LHO17]. cooperative [DBG11].
cooperativity [RS14, AFJ16, JSW10, SM16a]. coordinate
[AMGB10, HSN14, Hel13, LL15, LL13a, MS10, WBN+13]. coordinates
[BK15, LKW+14, NCV10, PH10a, Sch13, VGV+11, YN15, ZBG11, BLKP12].
coordination [ASMS10, CRC13, HS16b, KJ10, Mor15]. copper
[JRSHP14, KKPT11, SBC+11, SPR+13, WC14, ASMS10, CPK12, HRJ+14,
HGHP14, HRJ+15, XWSW13]. coprocessors [WS13]. Copyright
[dCLFGL13]. crossing [LLSW14, QCR12]. crossover
[CSS17, KV14, MK17, SHMO11, VFRAR16]. crowded [MH17]. crown
[AvKSP16, HLB15, MWJ+11]. crown/ammonium [AvKSP16]. CrWO
[WMW11]. cryo [MKM+17]. cryo-EM [MKM+17]. Crystal
[Kri10, VM11, ASL+11, BCSCI+13, BCJC+14, Elk16, GMG+10, HB14,
HJ10, MCAG+16, NHF+10, NTNY15, OB+12]. crystalline [DOM+11,
DLSD13, DB12, EP12, EFOD13, GS12, DCOD13, RB13b, WDLG12].
crystallography [YW13]. crystals [HZSS17, KGH15, KLN12, KB16,
LPAS11, PLP+16, SFDE16, VECT12, You10]. CS
CTOCD [PC14]. Cu [NGAS17, Rab12, RHT+15, TS15b, WRG+17, AMK11,
CR14, CMID13, GEP+14, HSH15, Mor15, PGs+15, PXXW10, PH12,
RHT+15, SB10, WGN+16, WGLG+16, XP13, ZRCC11, ZSWL12]. Cu-O
[ZRCC11]. Cu-ZSM-5 [Mor15]. Cu2II [WGLG+16]. Cuby [Rez16]. CuCN
[TS15b]. CUDA [SR11]. CUDA-enabled [SR11]. CuE [TG12b],
curcumin [AMK11]. Curie [WMW11]. curing [LPMT17, PPH+14].
Current [ATM18, NS17, ABM+15, FNSF+11, GWT+17, HLBLC15,
PCLL11, PL18, PZM15, Vik11]. current-density [Vik11]. currents
[CP+17, RVB+12]. Curvature [LPLS16, RR12, NW17].
Curvature-dependent [LPLS16]. curves [BB11, LSH+11].
Customizable [AFBR17]. cut [DH14]. CuX [YS13]. CVD [NIIT15]. CX
[LGW12, EPH+15, ZYLL12]. CXH [CKL+11]. CXHM [LDJ+10].
cyanie [LZHH11, LLW12, TLY+12, VVBL17]. cyanide-chemosensing [LZHH11].
cyanides [PGs+15]. cyan [PKK17, TS10b]. cyanobacteria
[RCM+13a, RML+15]. Cyanovirin [VM11]. cycle
[HDl+17, SJD14, SOY12, dSDaR10]. cycles [UKS11]. cyclic
[CHZ12, LC10, PB14, RB12]. Cyclization [HPT16a, APA+14, LZL+16].
cyclizations [AARP17, DCHL12]. cycloadditions [YZN13].
Cyclobutadiene [SMF14, MCC11]. cyclized [QZ10a]. cyclodextrin
[DBG11]. cycloguanil [APA+14]. cyclohexane
[CRBO16, SNK16, SAv15]. cyclohexanes [SNK16]. cycloocta
[ABDGN12]. cycloocta-1 [ABDGN12]. Cyclooctaturae [DP11, SP13].
cyclopentadienes [LZHH6]. cyclopropenyliene [VVP12]. cyclosporin
CYP19A1 [VCM15]. CYP2A6 [ALW+10]. cysteine [CPK12, SDL14].
Cytochrome
[EH13, BS16a, MRR11, SLY+10, SOY12, TN10, TDP+12, VCM15].
cytochrome-P450-mediated [MRR11]. cytochromes [APA+14]. cytoseine
[JS17a, LZL+11, ZZY16]. D
[LDW13, OZLSBH12, RSKG14, UT14, YZ15b, AKMT11, BWKW10a,
BKW10b, DVP14, ETLS17, GMAT16, GSS13, GP12, LTT16, MA16,
MYT+14, MI11, MOP17, MH10, PSS14, PZBA13, RSKG14, TFQ+10,
YJN+11, YDL+10, ZLY+16, TS15b, YOB16]. D- [YJN11]. d-AO
[YOPB16]. **D-FFT** [MYT+14]. **D-galactosidase** [AKMT11]. **D-QSAR** [GMMH+16]. **D-RISM** [MYT+14]. **D-structures** [DVVP14]. **D/TIP3P** [SA10]. **D2** [LAHS16]. **d9k** [PNG10]. **damaged** [LZH+11]. **damping** [GEZ11]. **DAMQT** [KYG+15]. **dance** [JW16]. **dancing** [LL10b]. **Dancoff** [HH17]. **data**

[BRGN12, BCP+10, FN12, Fom11, HPT+16b, HM13, JZL+17, JS17b, LAS+14, MM+17, MCC12, RO14a, REL+14, RCM+13b, SB10, XW15].

database [PLAC11, XTG+11, XMSZ16], **databases** [CSSB11, OHPR17, ZWL13]. **DataPipeline** [FN12]. **dataset** [HZ13, KSM17]. **datasets** [GCC14]. **DBD** [YJZX13]. **DBeH** [UT14]. **DBU** [YZ+15, YZ17]. **DBU-H** [YZ15b]. **DCMB** [WX12]. **DDPredictor** [HL+13]. **deacetylases** [KC13a]. **dead** [SL10]. **dead-end** [SL10]. **dealing** [MFR10]. **deaminase** [WZQW10, ZZ+16]. **deamination** [ZZ+16].

Debye [GBFD12]. **DEC** [BK17c]. **DEC-RI-MP2** [BK17c]. **decamer** [DDP16]. **decarboxylase** [BEL+11]. **decay** [DPAB16, LCH10, LLI12].

Decoding [MBT14]. **decoherence** [CSEBM+16]. **Decomposition** [DBGO+17, AMAA+11, BMBJ11, FFA14, GS14, GCW16, ISN13, KNE11a, KRSC12, NJX+10, PS17, RSLML12, SSGS15, STM17, SKGB13, WWU12, WES13, dSDS12a, dSDS12b, dLC17]. **decomposition-based** [KNE11a].

decouples [FM10]. **decoy** [HYMZ16, LS11a, PHDH13, UCFR16]. **decoys** [BS+12, MP11]. **decrease** [DLZ15, SLY+10]. **dedicated** [CRS18, ZRCC11]. **Deep** [GHH17, GFPSD17, LOH17, LHD+14]. **deeper** [VIT+15]. **defect** [ZWP11]. **defective** [YZN13]. **defects** [HYL+11].

deficient [YLL11]. **defined** [JJAB16, GY10]. **definitions** [JYC+16].

Definitive [TCGNT18]. **Deformation** [WYL+15, Gav12, MRB14, WCY+11, WCT+11, dLC17]. **deformations** [HRM+13]. **Deformed** [CSAdOM17, TFQ+10]. **degree** [Clo15].

dehydrogenase [ZX11]. **deleterious** [XL+11]. **delineate** [SBT17].

delocalization [BK11, FV10, HS+11, Jan16, Mat14, SS13b, SSA+17]. **delocalized** [Alg17, HSH15, dLC17]. **DelPhi**

[DLSA14, LCA17, LLZ12, LPLA13]. **DelPhiForce** [LCA17]. **delatahedra** [LK16b]. **deMon** [LZdL+10]. **deMon2k** [BTT10]. **Denaturation** [IPAA11, FMG12]. **Dendrimer** [MJB12]. **dendrimers** [CAD16, HDH15a, HDH15b, HDH15c]. **Deng** [ASO12u]. **dense** [ASK18].

Densities [ATM18, HGCCGR+16, LP11c, MA16, REL17, dLC17]. **Density** [AMK11, CD13, CWH11, FPV13, FD16, GNGCA10, GPWJ11, INT18, JYS+12, KKKT11, LBGS16, LGW12, LBTV12, LPMT17, MWJ+11, Oht16, PPH+14, RB12, RSLML12, TS10b, WDLG12, WGN+16, YJ11, ZLZ14, ZYG+14, ZYW+10b, ZYW+10a, dSY12a, ALK+15, Ano15-19, AG12, ASS10, BY11, BLBG+13, Ben17, Boz18, BB1+11, BZB+13, BG13, CHG+16, CRZ+18, CDB10, CR14, CAA10, CEBO15, CQR16, CKH17, CSXZ17, CC11, CAP17, CNK97, CPL111, CBI11d, DH17, DWWC17, DII15, ED15, EPI12, FED17, FCP1M14, GA14, GHL17, GZL+12, GWJR18, GMG+10, GSS13, Gra15, GEG11, GAJ+17, Han11, HNWF07, HNWF12, HPT17, HEMCZE+14,
HLBLCCG15, HRMAL+13, HH16a, HH17, Hıı13, Höf14, HG10, HOK17, IKN13, IM17, JCP14, JLH+14, JW16, KD10, KB10, KSSH13, KOP+14, KGHK12, KB13, KZZ+16, KLN12, KYG+15]. density
[LL15, LCW12, LBT11, LHKS12, LWWG12, LH14b, LLH17, LZS+17, LK16a, MAK+14, Mat14, ME10, MKM+17, MFR+17, MJ10, NF17, NN18, NO16, NNK+16, NFI+16, NS17, ORZ11, OM12, OVPK15, PAK17, Pie14, Pil17, PW12, PZM15, QZ10b, RJPB12, RS13, RB13b, RG14, Rod13, RHPWS13, RHT+15, REV+17, Rui11, RSKG14, SPS+12, SPGJS+17, SH15, SS16a, SDF+17, SF+17, Sea10, SCW11, SDM+16, SEF+16, SE14, SH14, ST13, SHL+13, SPR+13, SZX13a, SZX13b, SMM15a, SMM15b, SMM+18, SKTT11, SZZS16, STS15, SK11, TldG+12, TN10, VGV+11, VAR12, VECT12, VV14, Viki11, VLI7a, VI17, VED10, Vybi6, WKC10a, WGL+11, WCWW11, WWU12, WWCL15, WHX+10, WL14, WTH+16, XYW+14, YLZ+10, YS13, Yu12b, ZTH+15, ZXS+10, ZSWL12, ZKE+17, ZDX11, ZLHH14, ZGS+10, dSdS12b, dSdLBNB17, dLC17, CDM10].
density-based [LZS+17]. density-density [LL15, LCW12, LBT11, LHKS12, LWWG12, LH14b, LLH17, LZS+17]. density-fitting [Boz18, Hil13].
Density-functional [Oht16, CHG+16, HNWF07, HNWF12, IM17, JCP14, KZZ+16, MFR+17, NF17, NN18, NO16, NNK+16, RHPWS13, SPS+12, VED10]. density-peaks [LZS+17].
deoxy [VM11]. deoxyribonucleoside [XVN17].
deoxyribonucleosides [RJWW12]. dependant [PNG10].
dependence [BRLS08, BRLS12, FE14, GZZ+16, KGO12, Lar12, LPE+10, LLTC12, MP17b, PZA15, PBE16, PS10, SGPJS+17, SY16b, AD10, MGWR12].
dependences [SMM+18].
dependency [DKT13, PHDH13].
dependent [AALCM11, BS16a, CHG+16, CP15, CKP10, DP15, EPD+10, GKK10, HNWF07, HNWF12, HG10, HYUS11, JYS+12, KCPMG12, LPLS16, LZ12, LZGS11, Mat10, NS10, PAK17, PPJ14, PVJ10, RHPWS13, REL17, SY16a, SFBFT17, Vik11, WHL+10, WHX+10, YLZ+10, ZXS+10, ZDX11].
deposition [SE14]. derivation [SCMA+17, VVV+15b]. derivative [MY17b, TPL+10].
Derivatives
[KTSW11, CWHH11, CZH12, CBTZ16, CROB16, HSZ+11, JS17a, JYS+12, KG11, KPL15, LWGZ15, LWWG12, MFR+11, M15, NS10, PC14, RVB+12, RFN15, REH13, SBR13, SZX13a, SZX13b, VVVJ15, VYV18, VSD10, WGL+11, WRG+17, WDP+12, ZsA10, ZWZ11, ZZ12, ZZZ11].
derive [RVP+11]. derived [CIKT13, GMMH+16, KSR+16, LZGS11, MCLD10, OSS10, PLZ17, REL17, SOYC12, SE14, TBSM12]. Deriving [CCYL11].
descent [MS16]. describe [HRCH16, RS13]. described [BM12, CCB15, KDS17]. Describing
[MKGA10, JCP14, JBSQ11, MY17b, VBD11].
Description
[FD16, MR17, BD12, BE16, Cam15, CRZ+18, LZLC13, MFR+11, PM13, PLH16, PVAM16, SRF+17, SSA+17, TKNN10, WWRSM14, WL14].
dercriptor [DFF+15, MA16, PRY17, TMJ15, WMW+10, Yap11].
descriptor-based [DFF+15]. descriptors
[FCL+10, FZL+15, GJMPAM+14, MH10, NKLJ16, PKIC11, RB13b, TTB+10,
Wei12b, YLCX10, Yap11, YDX16, ZWX16]. **Design**

[LCM16, Tak14, TZ12, VBD11, AM10, AFBR17, BAMR13, BEPM14, BPC13, CBP14, DPB+12, DPOS16, DGL+13, GS14, GMZ12, HHBY10, ISP+10, KSD+12, LABSG17, LBS10, MS16, PC11, SYDS11, SGM+13, Sti15, TKXT13, TRA+16, VVY17, VMP17, XHLH16, ZSB+11, ZWP11, ZYW+16, ZWS+10].

designed [BLL13].

Designing [BLL13].

details [MBA14, RSG+10].

Detected [TCPPC14].

determined [CHP11, IM17, YK13].

Determining [DSD+11, SGPJS+17, SDB+16, WOH16].

Developers [GKV+13].

Development [GLB16, GMMH+16, LLJ12, MMB+17, MMZW14, MCP18, RZG+13, RLD12, SC17, TNYN16, WOH16].

Developments [YWJ+16].

Deviation [CSAdOM17].

deviations [HDL+14, KG15].

devices [DJX+11b, DIX+11a].

Dewar [Bac12].

DFT [CLFRO18, SIG+15, YJ17, ZZY+16, AALCM11, AR10, AF14, ASMS10, BTMS12, BIL10, BTB+11, CLFRO18, CMM18, CCB15, CH10, cCVG+14, CXS10, DJD12, EFAC13, FVP14, FRPS14, GMASBF16, HSH15, HRJ+14, HRJ+15, HBI+17, JRSHP14, KG15, Kar17, KT12, KKL+13, KM13, KP10, LEDLOld17, LRBB12, LZX+10, LZHH11, LZX+10, LSH+11, LYSS11, LZLC13, LH14a, LLSW14, LCM+14, MMS16, MTD16, MG15, Mat10, MS11, MVKS10, Mor15, MCK17a, MCK17b, NKJ16, NC12, NMLD13, PTK11, PHK14, QLYL10, Re17a, RDF+11, RS14, RRC+15, RN17, REL17, RKB+14, RK13, SRF+17, SWM10, SRL+15, SDL14, TSNC+17, TG12b, Tsi14, TS15b, Tsi17, VVJ15, VECT12, VAMS14, WKL12, WYBW12, YZGS14a, YSRSS10, YZ15b, YXZ17, ZCK+16, WZGO16, ZZWT12, dSDdAR10].

DFT-based [NKJ16, NC12].

DFT-derived [REL17].

DFT-MD [GMASBF16].

DFT-predicted [WKL12].

DFT/MM [RN17].

DFT/TV [LXZ+10].

DFT/TDDFT [LXZ+10].

DFTB [SA10, FHT+15, MR17].

DFTB/MM [RN17].

DFTB3 [KW15].

DGeCl [MCLD10].

DH [SGPJS+17].

DH2 [SBW12].

di-mannose [NM11].

di-tetrazine-tetroxide [MCAG+16].

Diabetic [DHOG13].

diabetes [PC11].

Diagnosis [MC12, TDKT10].

diagonal [BMBJ11, KTK17].

diagonalization [BKŠ+11, HKR+14].

diagonalization-free [BKŠ+11, HKR+14].

diagram [OV14, VED10, ZY14].

diagrammatic [WWD14, YD17].

diameter [AS15a, KGHK12].

diamond [JWO15, WGN+16, WGLG+16, ZSL+11].

diamond-like [ZSL+11].

dianion [DP11, GRD+10, YZGS14a].

diarylalkyl-imidazole [NS10].
[NS10]. diarylalkyl-triazole [NS10]. Diarylbibenzofuranone [SFA17]. diaryldichalcogenides [ZWGO16]. diastereoselectivity [AARP17].
Diatomic [ATM18, LS11b, Tsil4]. diatomics [TG12b]. diatomic [CPN^+17].
dielectric [DOM^+11, DSF17, JLCA17, KCPMG12, PS13, WXL17, YHW17]. Diels
[BJSI12, CC18a, FB14a, GMDA^+12, LZH16, ORZ11, ST13, dSVdM^+16].
difference [LLH17, WL10, Yon16, ZRCC11]. difference-dedicated [ZRCC11].
differences [BVC13, GO13, HDL^+17, KHWB17, LGL11, PM18].
Different [PH15, BRGN12, Di15, FZL^+15, GO13, GR11, GFPS17, GMPP12, Kar17, MCS11, MC12, MPA12, NMLD13, NOKJ16, RHNN10, Rao11, SLP^+12, SIG^+15, TSNC^+17, UT15, VVY18, ZR10]. Differential
[HHT^+13a, HHT^+13b, CJL^+13, MY17a, MY17b]. Difficult
[RJS17, VDVR14]. diffuse [YCGA10]. diffusion
[CPV^+12, CC12a, GC11, RSL13, ZW17, WH11]. diffusional [MBR^+15].
Diffusive [SM16b]. digitized [YNH^+17]. dihedral
[CYG^+15, OZ14, SZBM13, WES13, ZRL^+15]. dihedrals [LDH^+14]. dihydro
[RS17a]. dihydrofolate [RKDM14]. dihydrogen [PM13, UT14, WHX^+10].
dihydrogen-bonded [UT14, WHX^+10]. dihydrogen/hydride [PM13].
dihydropyridine [YZ15b]. diimide [MCC11]. diiodide [AARP17].
diiodide-induced [AARP17]. diketopyrrolopyrrole [HLWD15].
diketopyrrolopyrrole-based [HLW15]. dilanthanide [ZLZ14]. dilute
[KVR10]. dimension [HKRS11]. dimensional [BPLL12, KYT^+17, KRC12, KTO13, MB16, PJ13, SG10a, TYN15, TCX^+13, TKC^+11, ZWX16].
dimensionless [MS10]. dimensions [CHC^+13, HAL14, SRL^+15]. Dimer
[LWL^+16, ARRC15, ANH^+11, BPPS17, CBTZ16, FCL^+10, FMNC11, KCB^+12, LCB10, PD11, SKY^+11, Tac17, WWKS16, YCGA10].
dimeric [PS14]. dimerization [DS^+11, KAR12, TLA10, WJX^+10]. dimerization/
oligomerization [KAR12]. dimers
[BCNH^+11, BWKW10, BWKW10b, CLFRO18, CK10, JKS^+16, LJW11a, LMI^+14, PVS12, RS13, SZS16, VT14, Zha11]. Dimetallic [ZYG^+14].
dimethyl [GC11, WLC12, ZSW12]. dimethylaminoazobenzene [KP10].
dimethylaminophenyl [YLZ^+10]. dimethylnitrosamine [FPA14].
dimyristoylphosphatidylcholine [ML14]. dinitrophenol [MIS^+15].
dinuclear [OS10, QLYL10]. dioxygen [GM17]. dioxygenoisilane [KL16].
diphenyl [KCPMG12]. diphenylamine [PZ10b]. Dipole
[SC17, Kop17b, QZ10b]. dioxygen
[DHF^+11, RSL16]. diphenyl [GKR13, Ray13, RKG11]. diphenyldiiline
[KLN16]. diplatinum [KT12]. Dipolar
[YSB12]. Direct
[LZY12b, WAM17, FF11, FSSW17, JCG^+10, RSB^+13, Yu12a, LLHM16].
WdVN12, WZ17, XML+15, ZL11, ZWL13, ZSB+16, dVZ17. docking*
[MBFG15, MIS+15, SV15]. DOI [Ano15-59]. Domain
[KNE+1a, AC11a, IMK+16, MBT14, RZ16, SFBT17]. domains
[FCPJ14, OOK11]. dominant [Hua16]. done [LRvE17]. donor
[DGL+13, Gil11, Lu11, MSV16, MIS+15]. donor- [MIS+15]. donors
[LC10, TZ12]. dopant [SRL+15]. doped
[GAMAC+14, LLC17, PGC12, TN12, VS14, WMW11]. doping
[HYL+11, LLD17, WMW11]. DOT2 [RTP+13]. dots [DPAB16, WAB17].
double [Alg17, BE14, CCB15, CGR16, CC11, FC16, KM13, LBH+11,
LYC+13, LLL+12, SGPSJ+17, SP13, Sea10, YYT12, ZLY+16].
double-Hybrid [CGR16, LBH+11, SGPJS+17, Sea10]. double-wall [BE14].
doubly [CSXZ17, SZX13a, SZX13b, ZWLX11]. Douglas [YS13]. DOX
[RCR+16]. DPO [WGL+11]. DPPC [LBDP12, vRWGS17]. DPT
[BH13, BZH14]. Dramatic [MLY+13]. Draw [LBB+15]. drawback
[BRGN12]. Drew [IPAA11]. driven
[BSL11, BG17, DSM+11, HXM+16, KC13b, LZL+13, LLL+12, REL17].
driving [RN17, YZ17]. Drude [LRvdSM15, Ric16, SM14b, ZM10]. Drug
[GHSM10, MBA14, FLM11, GMASBF16, Ibr11, ISP+10, PC11, PVJ10,
VHA+10]. drug-like [VHA+10]. druggability [LG14]. drugs [PPUBGD10].
DSCs [YJN+11]. DSPMP [FZL+15]. DsRed.M1 [SGDT10]. DSS
[GZM11]. DTTO [MCAG+16]. dual [JCG+10, MA16, TMJ15]. Duncanson
[Bac12]. duplex [HDK+12]. Durandal [BSZ+12]. during
[GNDA+12, LBC+12, MJLV14a, MJLV14b, PNG10, RSKG14, dCDP15].
dyad [KP10]. dyads [KKC+15]. dye
[ACS12, JYS+12, LZZ+15a, SLP+12, YJN+11]. dye-aggregates [SLP+12].
dye-sensitized [ACS12, JYS+12, LZZ+15a, YJN+11]. dye-sensitizer
[YJN+11]. dyes [DBM+17, VAA14, WJG+13, YJN+11]. Dynamic
[LKL10, SFA17, TNYN16, AKK+16, BS10a, BMB31, CVT+11, ESM+12,
GMB+11, Hel13, MB14, NYN17, OPR16, Vor12, PBDW11]. dynamical
[ALH+10, EFOD13, Ham11, VPR10]. dynamically [HS17a]. Dynamics
[CPV+12, LK13, MFEM16, AAS18, AALCM11, AG11, AS15a, Aki16,
ASL+11, ABD11, APK14, AB16a, ALH+10, BHB12, BSL11, BDP11,
BJ12, BW15, BF17, DMN15, BMBJ11, Bow16, BEL+11, CTR13, CS14,
CH16, COOH14, CCW+10, CHKR10, DASA15, DGH+11, DSD+11, DZT11,
DLZ15, EP10, ETL17, EFOD13, FOM13, FBEM11, GBL+11, GDV17,
GR11, GZ15, GCW14, GGM+12, GP11b, GC11, HZ11, HS17b, HCD+10,
HP10b, HPT17, HPSK12, HJ10, HWWL17, HRID16, HC14, IUK+11, ISK14,
IM17, JJ10, IPAA11, JIS13, JA10, JBSQG11, JCG+10, JAH+17, JWST10,
JMS14, JS17b, KCK+17, KVC+11, KUDG12, KGHC15, KDB13, KB14a,
KNE11a, KERY+16, KLOS10, KJM+17, KSR+16, KG13, KV15a,
KVR10, LL15, Lar12, LWK+14, LH11, LJ+12, LL13a, LRvdSM15, LCH10,
LYC+13, LMI+14, LPE+10, LLTE12, LZS+17]. dynamics
[LPLB16, LTT12, LBDP12, MBT14, MKS+12, MSC+10, MJC14, MN15,
MCRL17, MFEM15, MADWB11, MKM+17, MB16, MHRR11, MO17, MIOM13, NPTS16, NST14, NFPD13, NFG+13, NNK+16, NHK+13, NTNY15, Oht16, ON14, OGL10, OCL11, OLY17, OT12, OCW+15, PMC+17, PSS14, PAK15, PH15, PL14, PM13, PD12, PHT17, PVZ13, PS10, PVAM16, RS12, Ras17, RO14a, RO14b, RFN15, RR14, RdA12, RVdB16, RLG14, REL+14, RŠRR15, RSB+13, SHMO11, SLT+15, SMW10, SSWX14, SOM+13, SIJ, SR18, SYN+12, SM16b, SK13, SKMS13, SFLG+17, SLLL13, SJ16, SV11, SBvG14, SAvg15, Tac17, TNY16, US11, Vor10, VM11, WKL12, WBN+13, WAM17, WC11, WHL+10, WH11, WWKS11, WLC12, WES13, WG14, Wu10, WBVE16, YPyD13, YJXZ13, Yon16, Yu12a, ZZY16, ZX11, ZDKM12, ZBP11, ZP13, dCLFGL13, dSVdM+16].

Dynamics-based [Vor10]. DynamO [BSL11].

Editorials [BEFS13]. Effect [ABD11, CBG17, CS17, GEG11, HYL+11, JZ12, OBW12, RRF11, VS14, dALdS+15, AB10, CSHK16, CD11, CXS10, DKT13, DJX+11b, DLW12, FCOGM12, FHK+12, GFGS18, HLBBCCG15, JWO15, JYS+12, KTT16, KCL+14, KLN16, LlyG10, MTV12, ONTT16, RWR+13, SLT14, SBC+11, SY16a, UT15, VLGK+17, WDLG12, ZJM13, ZLL+10, BLG10, CC11, IYK11].

Effective [GKV+13, IM17, YZ16, AASP18, DMN15, CVG14, DMN14, GA12, KS13a, KS15, LCM+14, PHC13, PRY17, PS13, RLD12, ŠSB+16, UCFR16, WX5+12, YZZ16, YZ15b, ZKH+10]. Effects [CS14, JAH+17, LGOM+15, LCH+15, Mor15, SEM12, Tac17, YCK16, AS15a, AK10, AS18, BBF+11, EPH+13, FAA15, FD16, GMG+10, HS16b, HLBBCCG15, INT18, JMXP+16, KG11, KYCL11, LGVA14, LHT15, LWD13, MKGA10, MBC11, MRK11, MLY+13, MCUJ15, MGS+16, NASH15, ORZ11, OSHG17, OCW+15, PDMT10, PCI14, RMGB11, RRK16, SSWX14, SMP17a, SFLG+17, TM16, TY115, TY10, UT14, VKAM12, WXY14, YNH+17, YJ11, ZPP+16, Zha11, ALW+10, THP+15].

Efficacy [LC17a]. efficiencies [RO14a]. Efficiency [AC11b, BB11b, BB11c, FE14, GBSE11, XFG+16, AC12, GSHM10, LY10, LWL+11, LZL+15a, MKGA10, RO14a, XFG+15, vLBBR12]. Efficient [AB16a, BC13, BAS14, Cas13, DMAH15, DBF14, EP10, GCWS15, GPK12, Ham11, HNS16, HDL+14, HHWL17, JMS13, LZ11, LGKS17, MKS+12, NYN17, PSS14, PAK15, Ran12, RJS17, SS16b, TJB12, WHAS+16, WMI2, ZZ14, ZKE+17, AM10, BW11a, Bose18, CBP14, CHG+16, CY09.
CY13, CMS13, DS15, DGL$^+_{13}$, GREA11, GWZX12, HDL$^{+}_{17}$, ISK14, JZ17, KB11a, KV15b, LFB14, LPK16, LLZA12, LZZ$^{+}_{15a}$, LZZ$^{+}_{17}$, LAS$^{+}_{14}$, NPTS16, NN18, OK16, PW12, PBG17, Ran13, RR14, Rod13, RSL16, SCOJ13, SA13, SSMW09, SCSW13, SWB$^{+}_{12}$, Sun15, TO10, WJG$^{+}_{13}$, WOH18, ZWP11, Zha12b, Zha12a, vLBBR12, WHAS$^{+}_{10}$]. Efficiently [WES13, ASMS10, DDK14]. egg [Pla11, ZP13]. egg-box [Pla11]. EGRAD [vW11]. Ehrenfest [Dil15, FED17]. eigensolver [KZZ$^{+}_{16}$]. eigensolvers [ZVY$^{+}_{15}$]. eigenvalue [HLXH17, HLXH18]. eigensolvers [ZVY$^{+}_{15}$].

Electric [GH16b, LL13b, B LFZ13, B LBG$^{+}_{13}$, BS10a, CXS10, GH16a, KZK$^{+}_{12}$, MRB14, SH15, SLX$^{+}_{15}$, Yan11, YJ11, YCK16, ZSLL17].

electrochemistry [DSK17].

electrochemical [SIG$^{+}_{11}$, SGH$^{+}_{16}$, YJ11].

electrochemical [SIG$^{+}_{11}$, SGH$^{+}_{16}$, YJ11].

electrolytic [SV11].

electrochemical [SIG$^{+}_{11}$, SGH$^{+}_{16}$, YJ11].

electrochemical [SIG$^{+}_{11}$, SGH$^{+}_{16}$, YJ11].
electrophilicity [YB16]. **Electrostatic**

[CLA16, LP11b, MLZZ12, Sch18, WFZ+18, BCNH+11, BSF18, BK13, CCC+11, CS14, CPK12, CB1c, DLSA14, GBL+11, HOK17, IO13a, KTN10, KYG+15, Lar11, LCA17, LCM16, Mat14, PVJ10, RB13b, TY10, VMRSH+17, VVY18, YKO+11, YWJ+16, YMP14, YZL+15, ZDZM13, ZBP11, KGM12]. **Electrostatics** [BSG18, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XYX17, YMP14]. **element** [BCCO10, GPK+16, RMGB11, TG12b, TCX+13, XYX17]. **elementary** [LPLB16, Zim13]. **Elements** [TKN13, BV14, CWZB10, Hil13, JJJ16, LFB14, SK15a, TDKT10, Tsi14, WS12, XhD15]. **elevation** [HH10]. **ELF** [RSKG14]. **ELI** [BWKW10a, BWKW10b]. **ELIA** [BWKW10a, BWKW10b]. **elimination** [SL10, dCDP15]. **Elisabeth** [Ihl12]. **ellipsoidal** [DGB+13, LDG+15]. **Elongation** [OLA15, MKGA10]. **Elongation-MP2** [MKGA10]. **Elucidating** [HNHR13, TDP+12]. **Elucidation** [CPLL11, TNYN16]. **embedded** [DSF17, GMG+10, HSH15]. **embedding** [CCB15, ESM+12, HH16a, HH17, HfF14, HOK17, KSR17, NOKJ16, RR12, SDF+17, SS16b]. **emerges** [MNNK10a]. **emission** [LX11, MCLD10, PLP+16, SGWA17, WDP+12, ZLL+10]. **emitted** [PE11]. **Emphasis** [RCM+13b, PD11]. **Empirical** [BA11, DLMH12, KLN12, Hil13, JJJ16, LFB14, SK15a, TDKT10, Tsi14, WS12, XhD15]. **employing** [GP11b, MLCD11, TG12b]. **empowered** [BPLL12, RLHL12]. **enabled** [Aou16, BK17c, KYG+15, LL10a, SR11]. **enables** [KK17a, XHLH16]. **Enabling** [PHH+12]. **enamine** [AS11]. **Enantioselective** [ORZ11]. **enantioselectivity** [OAN15b]. **encapsulated** [EOO+16, STS15]. **encapsulation** [YDGZ15]. **encoded** [SL10]. **encoder** [LDH+14]. **end** [HDL+17, SL10]. **ended** [RJR14, Zim15]. **endo** [FB14a]. **endochemical** [FL15, GLF16, MCK17a, MCK17b, ZSL+11, ZYG+14]. **endochemically** [DM15, VIT+15]. **endothelial** [JAH+17]. **endpoint** [BB11a]. **ene** [GRCL12, FB12]. **enediyne** [DCHL12]. **Energetic** [JW12, CG15, MCAG+16, PBG17, SLHW09, TPL+10, YSRSS10, ZZWX11, ZYL+12]. **Energetics** [SFM14, BK17a, BMFG16, DSF17, GAJ+17, HEM+17, JJH+13, KB13, MP13, MBRC16, OCW+15, SJ11, SNS16, SL17, SDB+16, ST13, SFBT17]. **energies** [AF14, AS14, AG12, BW11a, BFL14, BVHH17, BS16b, BE16, CHG+16, CDM13, CH10, CTP13, CBC16, DHO13, DM17, DHP+11, DPOS16, FGM11, Gi11, GP11a, Grl13, HAKG10, HH10, HH11, HLW+17, HHWL17, IK113, KSH13, Kar17, KSM17, KJDB12, KB11b, KYP13, LJ11a, LW11, LHHW14, LH14a, MCS11, MS13, MSK12, MBE16, MMJ10, NW17, NMF+14, OBW12, yOTu16, OAN15a, ORS16, PGCT+12, PP14, RLJD17, RDDS10, RAR+11, RO14b, RZ16, RR14, Rob13, RJS17, SRR16, SK12, SHL+13, SOD+11, STM+15, SGWA17, TS14, TS16, UD12, VVG13, VECT12, VM11, WBT10, WS10, WJG+13, WG12, WX12, YAS13, YMP14, ZZ14, dALD+15, dRBO13]. **Energy**
epoxides [BCP+10]. epoxy [LPMT17, PPH+14]. epoxy-carboxylic [LPMT17]. epox-phenol [LPMT17]. equation
[BCCO10, CD16, CLA16, Fer13b, Fer13a, FCE15, Fra15, Fra16, KK17b, RSLS13, SK15a, SM16a, SG10a, WBVE16, XYX17]. equations [BYE+16, ZR10]. equilibrated [WHAS+10, WHAS+16]. equilibrating [OPR16]. equilibration [LBDP12, SMP17a]. equilibria

F [CXW14, CXS10, GPK+16, GTK10, HBL12, LZJ+11, Li14a, Li14b, PMG+16, Rab12, STM+15, TFQ+10, TFQ+11, TCPC14, WJL+10,

FEW [HG13]. FF [LGW12]. FFLUX [FP17a, FP17b]. FFT [MYT+14, WS13]. field [AKMYB18, AJR16, ALH+10, BKŠ+11, BCSCJ+13, BCJC+14, BY11, BW15, BF17, BK7b, BBG+18, CRC13, CIKT13, CYG+15, CZAF17, CLC11, CB11b, CB11c, CK17, DPNM11, DGPM14, DFF+15, DMAH15, DP15, DGB+13, DL215, EPD+11, Gar12, GSD10, GZM11, HH11, HKR12, HLH+12, HRR+14, HM13, HJLV16, HCP15, ISO+13, IHJ+13, JSXH16, KLJ+17, KSK+11, KT10, KMSL10, KVR10, Lar11, LVD13, LC17b, LPS+13, LPE+10, LN15, LLG10, Lg13c, LL13d, LDG+15, MRO17, MBC11, MSS+13, MTvG12, MBE16, ML13, MHRR11, MP17b, NTTY15, ON14, PHC13, PLZ17, PG15, PZCL16, PH16, PV10, PS10, PNG10, Rod13, SH15, ST11, SM14b, SK17, SZBM13, Sic15, SS13c, SCSW13, SM15, SYZ+17, SBGv14, Tak14, TYN15, VHA+10, VPR10, Vik11, VLGL17, WX17, WTH+16, WC14, WZK+13, WDH13, XP13, XVA+16, Yan11, YWZ14, YJXZ13]. field [YJ11, YN15, YCK16, YHV12, ZSLL17, ZL11, ZSYH12, ZDKM12, ZP13, ZM10, ZCGM11]. field-based [HKR12]. field-dependant [PNG10]. field-dependent [DP15]. fields [ASK15b, BSY+12, BAS14, CCLP12, CPN+17, GCW15, GMMH+16, HDP14, HJ10, JYC+16, KWL+16, LZZ+11, LGS11, LGL1, LTP11, LD12, MSh+10, MSK+12, MS15, ST11, SEM12, VV+15b, VHA+10, WKC+10b, WLC12, WG12, YPKB12, ZRL+15]. fifth [KM13]. fifth-rung [KM13]. file [SY16b]. files [MSK+12]. filter [MH10]. find
LH14b, LLH17, LPMT17, MAK+14, MWJ+11, MFR+17, Mor15, MMJ10, NF17, NN18, NO16, NNK+16, Oht16, ORZ11, OM12, PAK17, PPH+14, Pie14, PD11, QZ10b, RJPB12, RS13, RB12, RSLML12, RHPWS13, RHT+15, Rui11, SPS+12, SH15, SFG+17, SCW11, SBT17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SMM15a]. functional
[SM15b, SMM+18, SKTT11, SZS16, STS15, TLdG+12, TG12a, TS10b, HV14, Vi11, VL17a, VL17, VLGK+17, VED10, WKC10a, WHL+10, WCCW11, WDLG12, WYT17, WHX+10, WL14, WTH+16, WGN+16, XYW+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX11, ZSWL12, ZLZ14, ZDX11, ZYG+14, ZYW+10b, ZYW+10a, ZLHH14, ZGS+10, dSdS12a, dSdS12b].

LH14b, LLH17, LPMT17, MAK+14, MWJ+11, MFR+17, Mor15, MMJ10, NF17, NN18, NO16, NNK+16, Oht16, ORZ11, OM12, PAK17, PPH+14, Pie14, PD11, QZ10b, RJPB12, RS13, RB12, RSLML12, RHPWS13, RHT+15, Rui11, SPS+12, SH15, SFG+17, SCW11, SBT17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SMM15a]. functional
[SM15b, SMM+18, SKTT11, SZS16, STS15, TLdG+12, TG12a, TS10b, HV14, Vi11, VL17a, VL17, VLGK+17, VED10, WKC10a, WHL+10, WCCW11, WDLG12, WYT17, WHX+10, WL14, WTH+16, WGN+16, XYW+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX11, ZSWL12, ZLZ14, ZDX11, ZYG+14, ZYW+10b, ZYW+10a, ZLHH14, ZGS+10, dSdS12a, dSdS12b].

general [BSL11, EWK+13, FNSF+11, HSN14, Ish12, NLP+16, PH17, RJP14, Sun15, VHA+10, YHVM12]. general-contraction [HSN14].

Generalized [GHI6b, KCPMG12, AB16b, BSPP+13, DSF17, FCE15, GH16a, LL10a, MA16, PS13, SZTSM10, SSBW14, VMP17, WWKS11, WHM10, WBVE16].
generate [MPA12]. generated [HWLW11].
generation [ADF+10, MPA10, RVL11, CAD16, GMSdG15, HGY15, KLJ+17, KSH+17, LTT16, RB13a, TDP+12, WHHJ13, ZCGM11].

generators [MPA12, RvL11, CAD16, GMSdG15, HGY15, KLJ+17, KSH+17, LTT16, RB13a, TDP+12, WHHJ13, ZCGM11].
generators [MYT18, Gar12, GPM17].
genes [YS10].

GENESIS [KJM+17]. genetic [AC12, CB11b, FRLN10, LLJ12, NC12, RSL16, SHMO11, WMW+10, YVEI+17, LMA15].
GenIce [MYT18].

GenLocDip [GH16b]. GeO [DLSD13].

Geometric [MK11, CDB10, CDBM11, EHI3, FXC+13, HHT+13, LLFH16, REH13, TCC+13].

Geometrically [RJ1+11]. geometries

geometry-dependent [EPD+10]. Germanium [GSMM15, ALH+10].

GGS [SA10]. GLYCAM06 [SA10]. GLYCAM06/TIP3P [SA10].

Glu [EJ13].

Glycosaminoglycan [CHKR10, SA10]. glycosidic [HH11].

glycosyltransferase [RN17]. gbh [Spr10]. GMCT [U12].

GneimoSim [LWK+14]. gold [Ano15-58, BH14, CCJC10, FHT+15, GAMAC+14, Li14a, Li14b, LHKS12, LH14b, MFR+11, MG14, MBFG15, SRR16, SKTT11, YLL11].

GP [SA10]. Glycan [JS+11].
glycine [DB12, DP15, FCD10, MC10].
glycoconjugate [LABSG17].
glycoproteins [JS+11, PFVL14].
glycosaminoglycan [CHKR10, SA10].
glycosidic [HH11].
glycosyltransferase [RN17].

GmbH [Spr10]. GMCT [U12].

GneimoSim [LWK+14]. gold [Ano15-58, BH14, CCJC10, FHT+15, GAMAC+14, Li14a, Li14b, LHKS12, LH14b, MFR+11, MG14, MBFG15, SRR16, SKTT11, YLL11].

GP [SA10]. Glycan [JS+11].
glycine [DB12, DP15, FCD10, MC10].
glycoconjugate [LABSG17].
glycoproteins [JS+11, PFVL14].
glycosaminoglycan [CHKR10, SA10].
glycosidic [HH11].
glycosyltransferase [RN17].

GmbH [Spr10]. GMCT [U12].

GneimoSim [LWK+14]. gold [Ano15-58, BH14, CCJC10, FHT+15, GAMAC+14, Li14a, Li14b, LHKS12, LH14b, MFR+11, MG14, MBFG15, SRR16, SKTT11, YLL11].

GP [SA10]. Glycan [JS+11].
glycine [DB12, DP15, FCD10, MC10].
LBGS16, LFN+10, RSG14, SFG+17, SSMW09, SLG15, vLBBR12. **grafting** [KKR+13]. **grain** [SOM+13]. **grained** [BLKP12, CAD16, HHWL17, JC16, KCK+17, KVQC+11, KLS10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MSL10, MBC11, MBC13, NST14, RSG+10, SLX+15, SDZ17, SJ17, SM15, SAvG15, WBF17]. **graining** [BJP15, GMPB12, ML14]. **Grand** [HLvdV13, PHH+12]. **grand-canonical** [PHH+12]. **Graph** [WSH10, DH14, GPGSM11, GPGSM12, Ihl12, MCC12, PShPE+10, Pog10, RPnP10]. **graph-based** [DH14]. **Graph-theoretical** [WSH10, PSdPE+10, Pog10]. **graphane** [YZZ+17]. **graphene** [CMM18, dRCFGRB18, DJX+11b, DJX+11a, JWO15, LWZK13, LCM+14, PL18, RRK14, SDF12, WCT+11, WZW15, WYL+15, WTH+16, YSSB12, YZZ+17]. **graphic** [HASR+12]. **graphical** [All11, GBL+11, HZY+10, LLLC11, LBB+15, PVZ13, SEF+16, STH+10, WSGN11, WS13, YWJ+16, YDL+10, YN15, YS10, ZKE+17]. **graphics** [AB16a, AB16b, BDTPI11, CKKK16, EP10, HKR12, HEMCZE+14, MSSP17, SR11]. **graphite** [Fom13]. **graphitic** [LL13b]. **graphs** [AGR11b, RNP13, RNVP13, SOJ14]. **Grätzel** [VÅ14]. **gravitational** [DS15]. **Grcarma** [KG13]. **green** [LWL+11, NSO+14, PGW+17, yOTn16]. **Gregori** [Ihl12]. **Gregori-Puigjané** [Ihl12]. **Grid** [BAMR13, HEMCZE+14, KP11, LZ11, LLZA12, MMM+16, RLLHL12, dVZ17, CM13b]. **Grid-based** [BAMR13, HEMCZE+14, KP11, LZ11, LLZA12, MMM+16, grids] [DH17]. **Gro2mat** [DDK14]. **GROMACS** [AG11, Abr11, Gar12, GP11b, KPF+15, LRvdSM15, PHH+12, TKT11, KWG15, DDK14]. **GROMOS** [HH11, HHL+12, KAG+12, LGL11, LvG13c, MRO17, MSvG12, PLH16, PFVL14, SBV10]. **GromPy** [PHH+12]. **ground** [BBI+11, CCM15, FAA15, GCM15, HH16a, Kop15a, LLBO12, LYY+13, LX11, LS11b]. **ground-state** [HH16a, Kop15a, LLBO12]. **group** [Alg17, CAP17, Dry14, EHSPT16, FC16, GZQM16, GPK+16, Gil11, GWZ15, HB14, JJJJ16, LZ11, LZ11, MSL16, RLLHL12, dVZ17, CM13b]. **Grids** [DK12, Tsi14, VDVR14, WS12, XhD15, LdSRR16]. **groups** [Kan15, KV15b, LPS12, TN10, WGL+11]. **growing** [JZ17, Zim15]. **growth** [DWZ+17, FCL+10, LL10c, LZLMP16, MZZ11, OME16, RS14, WC11, XYW+14]. **GRRM17** [MHT+18]. **Grubbs** [RS17b]. **GSK3** [LJL+11]. **GTKDynamo** [BTA+13]. **GTP** [SS13c]. guanidine [HRJ+14, HGHP14, HRJ+15, JRSHP14]. guanidinium [CCCLCRO14]. guanine [BZH14, CBG17, LZH+11, PDMT10]. guanine-cytosine [LZH+11]. guanines [WGL12]. guanylthiourea [MAPB10]. guest [CC18b, OAN15b, YDGZ15]. GUI [WCJ+14, HBJ+17, JCL+17, KLJ+17]. guide [BS15, GKV+13]. **guided** [OCL11, WVE16, YVE1+17, Yon16, ZC14]. guiding [HS17a]. **gWEGA** [YLGX14].

H [B18, BS16b, CCS10, CG12, DM15, GPK+16, HZ11, HSY+11, HVS16, JLS+10, JLH+14, LLL+11, LDSSR16, LAHS16, LDW13, LLQ+12, MCAY15, NMLD13, OPR16, PMG+16, RMPAM15, SNKD16, STS+10, Tak11, TSJ+10,
TFQ+11, UT14, VIT+15, VV14, WKC10a, WKCL12, WHL+10, WWKS16, WCL+11, XFX+16, YKH15, YZ15b, YZZ+17, ZYLL12, AS15a, Ben17, BS10b, CK10, CKL+11, Chu10, DHE+12, GTK10, GS11, HZ11, HRL11, KTT16, LJW+11b, LWD13, Nix13, OKIS17, PTK14, Pie14, Pon10, STS+10, TS15a, UT15, WGL12, WvRSM14, XhD15, YZ15b, YZZ+17. H- [Pon10].

H-atom [BS10b]. H-bonding [WGL12]. H-C-C-H [YZZ+17, YZZ+17].

half-sandwich [TS15a]. half-saturated [WDZN16]. halide [Li14a, Li14b, NC13, ZW17+10b]. halides [FWB14, PGS+15, VVP12].

halobenzene [EPH+15]. halofullerenes [TFQ+10]. halogen-bonding [HDB15]. Halogen-Bonds [WFZ+18]. Halogenated [HvM17, EPH+13, HvM16].

Hamiltonian [IO13b, MGWR12, OZ14, VFRAR16, YS13]. Handling [IO13a, MBC13].

Hardness [SBR13]. Hardnesses [YB16]. HArF [LZJ+11, WZK+13].

Harmonic [LBH+11, Aom15-58, BH14, CHC+13, LLH17, WAM17, WTH+16].

Hartree [BY11, CKKK16, CB11d, FRN15, HJKJ13, IYK11, Mat10, PB14, PW12, RH12, SG13, VL17a]. harvesting [KDR+18]. HBaH [UT14].

Heck [dSdLB17]. heights [BS10b, GAJ+17, KG15, ZW17]. Heine [Spr10]. Heisenberg [CME11]. helical [FCD10, KB14a, LHKS12, LH14b, McvdV13, MV17, PRP15].

helices [DS17, HHT+13a, HHT+13b]. helix [CCOH14, LMI+14, WXL+12]. heme [FBEM11, INT18, LS11b, PBC13, SOYC12, SH17, TN10]. Henkelman [QB11].

Henry [QLYL10, VKTRJ15]. HEPT [ZsA10]. heptagon [GZH10].

heterobimetallic [dSdDAR10]. heterocyclic [BSDP16, CWT+12, KYKR15, LXX+10, RF15, SGHL13, WS12, dSdLB17].

heterodimer [YVT12]. Heterogeneous [DSF17, AFPI13, CKK16, YZZ+17]. Heuristic [Hel13, MS16, Tak10].

Heusler [GD10]. HeX [SLIB12]. hexa [GK15a]. hexa-aqua [GK15a].

hexabenzocoronene [RBB+12]. hexacoordinated [MC10].

Hexahalogenated [VVJ15]. hexameric [RCM+13a, RML+15].

hexopyranase [HH11, PLH16]. hexopyranose-based [HH11, PLH16]. HF [BRLS12, LGW12, MCK17a, BRLS08, Chu10, LSH+11, SKGB13]. HF/DFT [Chu10]. HF/DFT [BRLS12, BRLS08]. HFC [AR10]. HFC-263fb [AR10].
HFD [AASP18], HFD-like [AASP18], HfO [HYL+11], Hg [SLIB12, BBI+11], HGeCl [MCLd10], HgHe [BBI+11], HgXe [BBI+11], HH [LGW12], HI [LGW12], hidden [DVVP14, LTT16], Hierarchical [JYC+16, BCG10, GBFD12, KKN11, RMPAM15, SNS13], High [MCLd10, MKB+13, RSL13, BACSCJ+10, Cam15, CM13b, CSSB11, DH17, DLSd13, ESB13, EWK+13, GWPJ11, IPAA11, Jbam11, JC16, KMS16, KSM17, LL10a, MJLV14a, MO17, OPB+12, PVl+13, PVJ10, RVCFF13, REH13, SC15, WGL+11, WDLG12, ZWL13, dSAdSL13]. High-accuracy [RVCFF13], high-confidence [KSM17], High-level [MCLd10, EWK+13, KMS16, KL17, PVl+13]. High-performance [RSLS13, CSSB11, ESB13, EWK+13, LL10a], high-precision [DH17], high-pressure [WDLG12], High-quality [MKB+13], high-resolution [CM13b, JC16], high-temperature [DLDs13], high-throughput [ESB13, PVJ10], higher [NYH+17, PJ13, VKAM12, WHM10], higher-dimensional [PJ13], highlighting [BRGN12], Highly [CHG+16, HAL14, LLZA12, LwL+16, DBDP16, BkwK10a, BkwK10b, HYUS11, KOY+12, KZK+12, KV15b, OK16, TFQ+10, TJB12, LZZ14], hindrance [MP17a], Hirshfeld [Man13, VVB13, VGV+11, VBV13a]. Hirshfeld-based [OVPK15], Hirshfeld-I [Man13, VVB13, VGV+11, VBV13a]. Histidine [KFY+13, WC14], histogram [Fer17, HHWL17, SH11b, ZH12], histone [GHK12, GH10, GSD10, KC13a], HIV [DL15, Nhn16, OBW12, SYH12, TTB+10, UNT16, XLY12, ZSA10], HIV-1 [DL15, Nhn16, SYH12, TTB+10, UNT16, XLY12], HIVgp41 [AFBR17, BARM13], HMH [LDJ+10], HNcn [WHDL11], HNO [BLG10], HOB [LCL+10], hole [BSF18, Cas13, CWHH11, EPH+13, GZZM16, GA12, LZZ+15b, PAK17, PTB+15], holes [PM18], Holliday [ISH10, SHE12], holographic [CDB10], HolIT [SHE12], HOMO [RS17a], Homocysteine [AALCM11], homologated [ZLL+10], homologation [GRCL12], Homology [ZX11, BPB11, DJ13, KOY+12, XFTW15, YZZ16], homology-model [KOY+12], homology/ab [DJ13], homolysis [SZ17], homonuclear [BkwK10a, BkwK10b], homopeptides [FCD10], HomoSAR [BPC13], HONO [BLG10], HOONO [BLG11], hopping [JLH+14, KV14, LZW+11, RDR16, SRS1015], Horizontal [PC16], hormone [HYYY13, LLL+10, NS10, OME16], hormone-dependent [NS10], hormone-receptor [OME16], horsetail [MCRL17], Host [CC18b, OAN15b, YDGZ15], hot [RFHG10], Hou [JW12], HOX [LZJ+11], HP [LKL10], HP-36 [LKL10], HPT [dSDdAR10], HSE [VLK17], HSiCl [LX1], HSiCl/DSiCl [LX11], Hua [JW12], Hückel [FL15, SKT11], Huffman [QLQ11], huge [NNK+16, OHPR17], huisgen [ZZWT12], human [OME16, SLY+10, XZ11], hunter [CFM+17, SHE12], Huzinaga [Fer13b], HXEoxef [ARLP13], HXeOxeH [ARLP13], Hybrid [CR16, KS15, ...
hydroxymethylfurfural [APY+16]. hydroxynaphthaldehyde [MPSG11].
hydroxyphenylpyruvate [DGH+11]. hydroxysteroid [ZX11].
hydroxysulfanyl [TL16]. Hyper [FRN15, BLBG+13, BZB+13, RFN15].
Hypernetted [HAL14]. hyperpolarizabilities [MLC13, WYT17, YHCS11].
hyperpolarizability [ISO+13, KBC12, Lu11, TKC+11, WXS+12, WZK+13].
HZSM [cCVG+14]. HZSM-5 [cCVG+14].

identifier [Ihl12]. identifiers [GPGSM11, GPGSM12]. identify [LLHM16, LHL+10]. Identifying [AC12, HAGK10, XTY+14, LHO17, LLJ12, She12]. identity [Höf14, KN17, YN15]. IE [MLCD11]. IEF [GMMH+16]. IEF/PCM [GMMH+16]. IEF/PCM-MST [GMMH+16]. Ihlenfeldt [GPGSM12]. II [AMK11, ALH+10, ČMD13, CK17, FPB12, FB14b, GEP+14, HRJ+14, HRJ+15, JAB16, LGW12, LWXC16, MMB+17, PHC13, SB10, TLA10, WGN+16, XP13, XWSW13, ZCK+16, vSGP10, AKMYB18, BWKW10b, BB11c, CB11c, FXC+13, Fer13a, FVB10, HPT17, HRJ+14, HWLW11, HHWL17, KT12, KTN10, KLNN10, MBC11, PPUBGD10, SOD+11, WH11, YK13, ZSYH12]. III [IKN13, KPL15, LWL+11, LXZ+10, SRL+15, BEL+11, CWT+12, GZZM16, HIS17, Zha12b, ZKH+10]. III/II [KLP15]. IKP [HLS12]. Illuminating [NSO+14]. illustrating [RML+15]. illustration [RP15]. Image [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s,
implicit-solvent [WWKS11]. Importance
[APA+14, CPK12, ENKK+17, NMF+14, OOK11, ESM+12, Ham11, KTNN10, PBDW11, SDZ17, TNSS17, TKNN10]. important

improve [CIKT13, DLL+10, DPSL16, Gon12, LLL+10, VLB+10]. Improved
[BS16a, LRER13, CCM15, DPB+12, DSF17, GCCM15, KSR+16, MP11, RTP+13, RDC16, SSBW14, YS10]. improvement [GSHM10, NLP+16].

Improving [CIKT13, DLL+10, DPSL16, Gon12, LLL+10, VLB+10]. Improved
[BS16a, LRER13, CCM15, DPB+12, DSF17, GCCM15, KSR+16, MP11, RTP+13, RDC16, SSBW14, YS10]. improvement [GSHM10, NLP+16].
[AMGB10, OVPK15]. intrinsically [LC16]. Introducing [DJD12].
Introduction [HIS17, Sie15, SJ17]. intuitive [EFAC13]. invariant [CWZB10]. Inverse [KTT16, GD10, JMS13, WHK+12]. inversion [SP13, GG10]. inverted [UT15, YJ17]. investigate [dSAdSL13]. investigated [SLY+10, SCW11, YS13]. Investigation [ALW+10, CAP17, GY10, PH10b, WS10, ZY14, AvKSP16, AMK11, ABB+12, ABB+13, CWT+12, CYY+17, CZH12, CH10, GDV17, HXM+16, KCB+12, KSV15b, LLM11, LLB+12, LZY+12a, LLD17, LXZ+10, MLQ+12, MP13, OAN15b, PZA15, PV12, QCR+12, RDT14, RRC+15, SH14, Tak11, TPL+10, TS10b, TR12, VVP12, YJJ+11, Yu12a, ZZ10, ZSWL12, ZBMZ15].

investigations [GZL+12, KAR12, LWWG12, TSJ+10]. Invisible [SDM+16]. involving [ARLP13, GNDA+12, LRER13, NFG+13, SLT14]. iodanes [SLT14]. iodine [ACS12, SLT14, SLT+15, YZZ+17]. Ion [Fra15, Fra16, LZTV10, DM15, DMN14, EK15, JAH+17, JTC17, KJ10, LedOLdV17, LJR+12, LPE+10, MMB+17, MH11, NC13, PYY15, PL14, RTS+13, SGS15, SV11, Tru18, TCX+13, VPR10, Vi11, WC14, ZZ10].

Ano17-27, Ano17-28, Ano17n, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17o, Ano17n, Ano17-36, Ano17-62, Ano17-63, Ano17-64, Ano17-65, Ano17-66, Ano17-67, Ano17-38, Ano17-39, Ano17-40, Ano17-41, Ano17-42, Ano17-43, Ano17-44, Ano17-45, Ano17-46, Ano17-47, Ano17-48, Ano17-49, Ano17-50, Ano17-51, Ano17-52, Ano17-53, Ano17-54, Ano17-55, Ano17-56, Ano17-57, Ano17-58, Ano17-59, Ano17-60, Ano17-61, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Issue [Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s]. Issues [GS16, MFEM16, XFG +16]. iteration [SBB10].

IV [EH13, MLGB16, VBMA13]. iVI [HLXH17, HLXH18, VHR16, ZVY +15, PGL +15].

Jumping [MS17]. junction [Ish10]. junctions [LZW +11].

Large [JBSQG11, XFG+15, XFG+16, AF14, AGR11a, CSGOA17, CHG+16, CEBO15, CSSB11, DZA11, DDM+15, FN12, GRS15, GBW+14, GP11b, GWXZ12, HLHX17, HLHX18, JS17b, KG15, KNE11a, LS11a, LCPS13, LZX16, LWL+10, LCM+14, MK11, MDT10, NYN17, NFG+13, OBP+12, RLL+10, RSL2, RSb+13, SCOJ13, SAGC16, Sch12, SRR16, SG13, SMM17, TSR+16, WLW+10, WX12, XhD15, YHCS11, ZWL13, ZLL+13]. Large-Scale [XFG+16, JBSQG11, XFG+15, DDM+15, LCM+14, MDT10, RSL+13, XhD15, ZLL+13].

WZ17, YZZ16, dRBO13, YZZ16, SHL+11. ligand-based [RVP+11].
ligand-binding [GDV17, MGWR12, OSR16, RO14b]. ligand-field [BBG*18]. ligand-induced [KL14]. ligand-receptor [FRLN10, VKC10].
ligand-sized [OGL10]. ligands [CS17, GPDC+16, HRC13, LL10b, LXZ+10, LS11b, SS+13, TS10b, ZRCC12, ZWY+10b]. ligated [EH13, WC14].
LigDockCSA [SHL+11]. light [HXM+16, KDR+18, PE11, REL17].
light-driven [HXM+16, REL17]. light-harvesting [KDR+18]. lighter [WD10].
Lightweight [RLG14]. like [AASP18, Che17, EPH+15, KOY+12, KB14b, MP17b, OAN15b, SDF+17, SM15, UCFR16, VHA+10, VVY18, WFZ+18, WKC11, WGN+16, ZSL+11, VVY18]. Limit [SN16b, Fra15, Fra16, LW16, LYC+13, OAN15a, SLT14, WTH+16].
linkage [HH11, OZS+13]. linked [Fom11, dACP12]. linked-cell [Fom11].
lists [Gon12, dACP12]. lithiated [KZK+12]. lithium [MG+10, KOP+14, KYCL11, LLL+11, MBRC16, NDG14, NFI+16, PGC12, PMT16, SKY+11, TN12, ZSL+12]. lithium-bonded [ZZL+12].
lithium-doped [PGC12]. load [Fom11]. LOBSTER [MDTD16]. Local [CHP11, GH16a, GH16b, HJKJ13, ITIN15, CPN+17, DDP16, Fer13a, HH10, KSSH13, KDS12, KGM12, Lar12, LLL+10, LZS+17, MKH+13, PH17, PRSG13, PRYI+17, PW12, SCH+12, SEF+16, WM17]. locality [Gon12].
localizability [Bar14, BLG11, BWK10a, BWK10b]. Localization [Sax12, ABDG12, BK11, BLG11, GDN+12, HIJ13, Mat14, PII17, vSGP10]. localized [Ano15-58, BH14, SB15, ZM11, dLC17]. locate [AMGB10].
Long [BCNH+11, KSH13, KSHH13, A010, BLBG+13, BZH14, JSGQ11, KB10, KV14, MMS16, MBC13, PNG10, SMGB11, ST13, SPH11, SSA+17, TSN16, VL17a, Rui11]. long-bond [KV14]. long-chain [TSM16].
Looking [WGL$^{+11}$, ZPF14]. lookup [JMS13]. loop
[CY$^{+10}$, FT12, LZZ14, NR11, OCL11, TJ12]. loops [PJ13]. loss
[GBVA11, MH11]. Low [BPM15, BLDK$^{+13}$, Gra15, AC12, CM13a, DH14, LG14, MPA10, MP12, MJLV14a, RRC$^{+15}$, SN15, SG10a, SM11, She12, TF15, TSN17, Vor10, YW12, BS10c, BBI$^{+11}$]. low-cost [TF15].
Low-density [BBI$^{+11}$]. low-druggability [LG14].
Low-energy [BPM15, DH14, MPA10, MP12]. low-index [RRC$^{+15}$]. low-lying [AC12, TS17]. Low-memory [Gra15]. low-resolution [SM11, Vor10, BS10c]. low-strain [She12]. lowest [GFG11]. LOX [BG13].
LPol [BLBG$^{+13}$]. LPS [ZCS$^{+15}$]. luminescence [DBF14]. LUMO [RS17a]. LUMPAC [DBF14]. lyase [CJZ10]. lying [AC12, TSN17]. lysine [FHK$^{+12}$, GH10]. lysozyme [ZP13].
M [LD$^{+10}$, LL$^{+11}$, MCK17a, Rab12, TLdG$^{+12}$, WWKS16, YW12, YHCS11, JJAB16, CCCLCGR014, MCK17a, TLdG$^{+12}$, YHCS11, JJAB16]. M05 [SIG$^{+15}$]. M05-2X [SIG$^{+15}$]. M06 [LK12]. M06-L [LK16a]. m4 [VM11]. m6 [Mit13]. m6-31G [Mit13]. machine [Aou16, FP17a, FSD$^{+18}$, TYZ$^{+16}$, YLCX10]. machine-learned [FP17a].
machines [GTZ$^{+18}$, RLL$^{+10}$, ZWL13]. macrocycles [CMM18, GMASBF16]. macrocyclic [ZRCC12]. macrolide [PG15].
macromolecular [Kne11b, LCA17, LAT10, LAT11, PG14, UU12, RTP$^{+13}$].
macromolecules [DGC14, DZA11, FXC$^{+13}$, OHPR17, RZ16, ZKE$^{+17}$].
magnetic [BCSCJ$^{+13}$, BACSCJ$^{+10}$, CPRS18, CPN$^{+17}$, FNSF$^{+11}$, GTT10, HAI$^{+16}$, Ibr17, JJJ$^{+16}$, XhD15]. many-body [CGPP11, BDdS13, CKKK16, HRJ$^{+14}$, HRJ$^{+15}$, JRSHP14, KNHN16, LY$^{+13}$, RHPWS13, VMP17, WCVW15]. Many-body
[CGPP11, HR$^{+14}$, HRJ$^{+15}$, JRSHP14, LYC$^{+13}$, RHPWS13, VMP17].
many-core [KNHN16]. map [MKM$^{+17}$]. mapper [BJP15]. mapping [EMD17, MMM$^{+16}$, RNSF$^{+16}$, TD10]. maps [GJMP$^{+14}$, YSR10]. Marburg [OLY17]. marker [JAH$^{+17}$]. Markov [BFH$^{+13}$, LTT16].
Mannich [AS11]. mannose [VM11]. Many
[CGPP11, BDdS13, CKKK16, HRJ$^{+14}$, HRJ$^{+15}$, JRSHP14, KNHN16, LY$^{+13}$, RHPWS13, VMP17, WCVW15]. Many-body
[CGPP11, HR$^{+14}$, HRJ$^{+15}$, JRSHP14, LYC$^{+13}$, RHPWS13, VMP17].
many-core [KNHN16]. map [MKM$^{+17}$]. mapper [BJP15]. mapping [EMD17, MMM$^{+16}$, RNSF$^{+16}$, TD10]. maps [GJMP$^{+14}$, YSR10]. Marburg [OLY17]. marker [JAH$^{+17}$]. Markov [BFH$^{+13}$, LTT16].
Martini [HBJ$^{+17}$, SM15]. MARTINI-like [SM15]. mass
[NPTS16, PGY15]. massive [GP11b, TNY16]. Massively [KNHN16, KZZ$^{+16}$, MYT$^{+14}$, BWMSM10, KN17, NNN$^{+16}$, OPB$^{+12}$, WHK$^{+12}$].
master [RSLS13]. match [TZ12, YPKB12]. matched [KSR$^{+16}$]. matching
[AO11, GPS10, HS12]. Material [JW12, DGL$^{+13}$, HLWD15, JBSQG11, LL13b, MCAG$^{+16}$, NGAS17, SLHW09]. materials [BSL$^{+16}$, CD11, DLT17, EHZW17, EMD17, Man13, NDD$^{+10}$, SYZ$^{+17}$, VB13a, VVB13, VVY17].
methods [Ano12u, Ano15-59, ASMS10, BG13, CLFRO18, CSGOA17, CXS10, CNK97, DKE+17, DBM+15, EWK+13, ESM+12, EV14, Fer13b, Fer13a, FB10, FSSW17, GAI14, GFPSD17, GD10, GSS13, GMO16, HCB11, HSB+11, Höf14, HWLW11, JJI+13, KSM17, KB13, KHWB17, LEoDdV17, LZLC13, LLSW14, MS13, MY17b, Mr17, MVKS10, MOS12, NYH+17, NASH15, NC13, NC14, NTNY15, OSHG17, DCO13, PN13, PVAM16, RZG+13, RRH12, SRF+17, SSB+16, SACdG14, SM+15, SGWA17, TG12b, TS15b, Tsi17, WBT10, WX12, YLCX10, YAS13, YJ17, ZGS+10, dSdLB17].
methylacetamide [HLH+12, KSK11].
methylacetylene [WCWW11].
Methylation [SCW11, KYCL11, QZM11, ALdS+15].
methylbenzyl [NDG14].
methylcobalamin [KKL+13].
methylformamides [JSW10].
methyllysine [GHK12].
methyltransferase [CPLL11, GH10, PBLdS12].
Methyluracil [HvM17, HvM16].
MetREx [Sti15].
metric [CXS10, LLFH16, PKIC11, SOJ14, ZT14]. metrics [Hug14, PBBP11, RCM+13b].
Metropolis [MO15, Pon10].
Mezev [HJJ13].
MF [YKH15].
Mg [LDJ+10, BMFG16, DOM+11, PLZ17, PYY15, RRF11, SS13c, ZZ10]. Mg-porphyrin-based [PLZ17].
MHC [HHWL17].
MIA-QSAR [BF15].
MICPB [CCC+11].
micelles [WWKS11].
Michael [NDG14].
microbes [RSLS13]. microclusters [NC12].
microelectrostatic [SM17b].
microhydrated [SM17, ZYP+15].
microhydration [OSS10, SB+17]. microiteration [SMM17].
microiterative [RR12].
micromolecular [XTG+11]. microscopic [HLWD15].
microscopy [LLJ12].
Microsecond [DMN14]. microseconds [Bow16].
microstructures [DASA15].
microwave [BLF14].
MIDAS [GJMPA+14].
Midpoint [JMS14].
migration [FBEM11, Ish10, KYKR15, RSB+13, TN10].
milestoning [BRE16].
mimetic [MV17].
mimic [GRP+12, ZWS+10].
mineral [TJZ11].
mini [CFC15, HTS15, HtS17].
mini-protein [CFC15, HTS15].
mini-proteins [HTS17].
minima [AC12, GFG11, HvM12, SGWA17].
minimal [CGBK13, CG12, OYK+11, RSR+12, RVVK13, WHAS+10, WHAS+16].
minimization [GBVA11, RAO11, TJBI12, XHLH16].
minimized [ZAZ].
minimizing [KS12].
Minimum [RAR+11, CY09, CY13, LLSW14, MP13, MCAY15, PRP15, PHDH13, SRSLO15, SG10b, Tak10].
mixing [BCP+10, MDC12].
miniprotein [MTD10].
minnesota [LH14a].
minnesota-type [LH14a].
minnow [TTL+12]. misfolding [LH11].
mismatched [BH13].
mispair [BZH14].
Mixed [RdA12, BRGN12, BEEL14, BACSCJ+10, DH11, DFF+15, Fer13b, Fer13a, GMASBF16, GG10, Ibr17, KGR+16, LYL16, MP13, PSdcP+10, RB12, TS10b, VVJ15, WX12, YLL11].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].

Modern [AB16a, AB16b, DH17, Fon11, LMR14, SDM+16]. modes [CBP+15, GMPB12, LLTC12, MS17, dSaSL13].
[Ano12u, MIS+15]. modified [BD12, CH16, DPSL16, DJX+11b, GSD10, MRO17, Mit+13, SMM15a, SMM15b, SMM+18, XYX17, XVA+16, ZZ12].

modulation [PE11, RS17a]. modulator [ILKR11]. modulators [SRA17].

module [PHH+12, VBV13b]. MOFs [LPK16]. moieties [SPL+18].

MOLCAS [ADF+10, VBV13b, AAC+16]. Moldyn [HPSK12]. Molecular [AAStP18, BDTP11, BSF18, CRZ+18, CMD13, Cor17, DGH+11, DHF+11, DSX+11, Fom13, Ibr11, KUDG12, KB14a, LWZK13, LDPM12, MFEM16, PL14, Pla11, RKG10, RO14a, RKK14, Sch18, SBT17, SFLG+17, SV11, VSD10, WC11, WWKS11, XFG+16, XLY12, Yan16, YJXZ13, ZWS+10, AALCM11, AG11, ASL+11, AS10, APK14, AGB13, AS15b, AGR11b, AJR16, AB16a, ASK18, ALH+10, BMR11, BAMR13, BE16, BSI12, BV14, BW15, BJF17, BIP15, BMBJ11, BE16, BV13, BE+11, CBP14, CMM18, CM13a, CDBM11, CD13, Car14, CTR13, CAF+13, CEB10, CIKT13, CGPP11, CS14, CXW4, CBTZ16, CH16, CCOH14, CVG14, CCW+10, CHK10, CB11b, CB11c, CM16, DJM17, DSD+11, DJX+11b, DLZ15, DPD+15, DL16, EP10, EK15, EJ13, EPF+13, ENKK+17]. molecular [EPD+11, FBEM11, FSC+14, GBL+11, GDV17, Gar12, GJMPAM+14, GSHM10, GR11, GMZ12, GMMH+16, FFGS18, GLY10, GWZ15, GCV14, GGM+12, GBW+14, GEP+14, GPdC+16, GP11b, GR10b, GPK12, EPF+15, HS17b, HB14, HS12, HCD+10, HDM+15, HSK12, HH16b, HWLW11, HJ10, HX+16, HHWL17, HRI16, HC14, IUK+11, IIF+10, IM17, IU10, JS13, JBSQG11, JAH+17, JSXH16, JWST10, JGS+17, Jor17, JMS14, JS17b, JP15, KCK+17, KCK+15, KVQC+11, KGHK12, KGC+15, KL12, KJD12, KDB13, KERY+16, KTSW11, KLOS10, KJM+17, KC14, Kos16, KSR+16, KG13, Kow11, KTN10, KV15a, KVR10, KSW16, LPAS11, LL15, Lar12, LWK+14, LGBS16, LH11, LL13a, LJ12, LFN+10, LLC+10, LL11, LZY+12a, LMI+14, LAHS16, LPE+10, LLTC12, LCB10, LZW+11, LTP11, LZL+13, LWXC16, LZS+17, LJL+11, LP11c, LAS+14, MRB14, MKS+12, MSC+10, MJC14, MCRL17]. molecular [Mat10, Mat14, MSvG12, MJW+11, MFEM15, MADWB11, MPNS13, MMK+17, MBA14, MRHR11, MCC12, MFR+17, MO17, MS12, NPTS16, NSF+14, NLB+16, NST14, NPG17, NFPD13, NFG+13, NF17, NPK+16, NHK+13, NS17, NTRY15, Oh16, ONHK11, ON14, OGL10, OHR17, OCL11, OLY17, OT12, OME16, OVPK15, OOT15, OCW+15, OZS+13, OOK11, PMC+17, PSS14, PAK15, PAK17, PH17, PSG+17, PM13, PGW+17, PVZ13, PJ13, PBG17, PS10, PVAM16, PLP+16, Pro16, PH15, PVJ10, RMPAM15, RLLH12, RNSF+16, RPG13, RNP13, RS12, Ras17, RHJ11, RO14b, RR14, RLG14, RSR15, REH13, SHMO11, SLT+15, Sax12, SVM10, SK15b, SA13, SZTSM10, Sch12, SFN+11, SHF11, SMRM+17, SOM+13, SJ17, SR18, SYN+12, SK13, SWB+12, SLL13, SJ16, SDMS13, SKY+11, SBvG14, SAvG15, TNYN16, TKNN10, TZ12, US11]. molecular
multi-core [KK17a]. multi-fragment [VBV13b]. Multi-level [FFA14].
multi-nanosecond [MCRL17]. multi-objective [PSG+17].
[CXW14]. multilevel [TNY16]. multiline [GJMPAM+14].
multimolecular [CD16]. Multiobjective [BDdS13]. Multiparticle
[NDW15]. multiphase [BVY+12]. Multiple [JS17b, LL10b, YZ17, AYYO17, CD11, CL16, DGC14, DSX+11, ESB13, FBEM11, GA12, KJM+17, LZY12b, Rob13, RFHG10, TNSS17, YDX16, PPUBGD10]. multipliers
[GREA11, RHJ11]. multiply [RJS17]. Multipolar
[YMP14, FCCP17, HCP15, KFY+13, KWL+16, NLP+16]. Multipole
[NOKJ16, SWPR11, BLDK+13, CP15, CTP13, EPD+10, EPD+11, Kan15, KR12, KSK11, Lar11, LBGS16, SLX+15, Tru18]. multipoles
[Elk16, KGM12, SMP17b]. multiprocess [MB16]. multiprocessing
[GP11b]. Multireference
[GA14, SP13, CCM15, CF14, GCCM15, MCC11, MC12, SSSM15].
multiresolved [DGC14]. Multiscale
[BLKP12, FXC+13, LC16, LZ14, JBB+11, MBC13, SYN+12, WLO+17].
multisite [CK17, HS14b, MMB+17]. multistart [MS16]. Multistate
[TM16, AM10]. Multistep [DWZ+17, FZY+12, WDZN16]. Multistructural
[SMM17]. Multisubstrate [PBLdS12]. multithreading [TO10, ZWL13].
multivalent [AS14, FVP14]. Multiwfn [LC12]. Mus [WZQW10].
muscarinic [TRA17]. musculus [WZQW10]. mutagenic [BZH14]. mutant
[FHK+12, LMA15]. Mutantelec [VRMSH+17]. mutants [RKDM14].
mutation [BA11, VRMSH+17, ZJZM13]. mutations
[BH15, GNO16, KYT+17, SL10, SY16a, WC11]. mutual [BMPML+13].
MVPACK [BACSCJ+10]. MX [Sch13]. mycobacterium [MPNS13].
MyMolDB [XTG+11]. myoglobin [SHB17].
PVL$^{+13}$, BCNH$^{+11}$, BWKW10b, BMB13, BSDP16, CWT$^{+12}$, CCM15, DCHL12, DLW12, GMASBF16, GZL$^{+12}$, HLH$^{+12}$, KV14, KCL$^{+14}$, LZL$^{+15b}$, MLGB16, MS15, OZLSBH12, PVL$^{+13}$, RHNN10, RWR$^{+13}$, ŠBD$^{+17}$, SGHL13, TSJ$^{+10}$, VM11, WS10, WGL$^{+11}$, WCL$^{+11}$, WYGW12, WS12, Yu12b, YXZZ17, ZP13, HPSK12, N- [BMB13], N-heterocyclic [GZL$^{+12}$], N-methyl-N-phenyl-hydrazine [BSDP16, CWT$^{+12}$, SGHL13, WS12], N-methylacetamide [HLH$^{+12}$], N-substituted [DCHL12], NABs [SBW12, SBW12], NABs-Li [SBW12], NaI [OCW$^{+15}$], NaIyang [Ano12u], nano [Ano$^{15-58}$, BH14, QZ10b], nano-clusters [QZ10b], nanobiotechnology [Fe10], nanochannels [TM16], nanocluster [AS15a, RVK13], nanocusters [AASP18, LLJ12], nanocluster [AS15a, RVVK13], nanoclusters [AASP18, LLJ12], nanocrystal [KC13b], nanographene [DW$^{+17}$], nanographenes [TSN17], nanolayers [EBK13], nanoparticles [CCJC10, NNS15], nanoparticle-PMMA [NNS15], nanoparticles [EOO$^{+16}$, LZZ$^{+11}$], nanopore [SM16b], nanopores [DMN14, MJC14, SM15], nanoribbon [DJX$^{+11b}$, DJX$^{+11a}$, RRK14], nanoribbon-based [DJX$^{+11b}$, DJX$^{+11a}$], nanoribbons [WZK13], nanorings [TS15b, YDGZ15], nanorods [LHKS12, LH14b], nanoscale [Hei10, SWB$^{+12}$], nanosecond [Bow16, MCRL17], nanosheets [wZb11], nanosheet [wZ11], nanosheets [TSN17], nanosystems [Tia12], nanotube [AS15a, FTR15, JWO15, RHNN10], nanotubes [AS15a, FTR15, JWO15, OCW$^{+15}$, RHNN10], nanowires [EP15], naphthalenediimides [MGS$^{+16}$], naphtho [ZLL$^{+10}$], naphthalenediimidines [MGS$^{+16}$], naphtho [ZLL$^{+10}$], naphtho-homologated [ZLL$^{+10}$], naphthodithiophene [MGS$^{+16}$], naphtoid [CYY$^{+17}$, GZL$^{+12}$], native [DJ13, HYL$^{+11}$, UCFR16, YL13], native-like [UCFR16], Natural [LCPS13, MBFP15, Wei12a, Wei12b, AO10, GMZ12, NC14, Sch12, GLW13a, GLW13b], naturally [XVA$^{+16}$], Nature [ABDGN12, MJ$^{+15}$, OC$^{+15}$, WY15, YZN13], network [MS15, PPUBGD10, RKDM14, WMW$^{+10}$], network-based [OC$^{+14}$, PPUBGD10], networks [AG$^{+13}$, Clo15, Kan15, KUDG12, LHO17, PPM15, PPUBGD10, TD11], neural [AG$^{+13}$, HNHR13, LHO17, LD$^{+14}$, PC$^{+11}$, PPUBGD10, RKDM14, WMW$^{+10}$], neutral [GC11, GWP$^{+11}$, JM$^{+11}$, KD10, Ts14], new-type [HLWD15], News [AIGP15, Aki16, APK14, AAC$^{+16}$, BTA$^{+13}$, BHB$^{+12}$, BCSCJ$^{+13}$, BSZ$^{+12}$, ...
optimization-based [YS15], optimizations [RR12, WX12], optimized [Boz18, CX10, GA12, HH10, LZZ14, NDW15, ŠŠB+16, SB14, WO15].

Orbital [WM12, ASL+11, Boz18, BVC13, CIKT13, CPN+17, CGPP11, DHF+11, FE14, GWF11, GLW13a, GLW13b, IIF+10, IKN13, KTNN10, LCPs13, LFN+10, LTP11, MFR+17, MGS+16, NF17, OHNK11, OOT15, OOK11, PRY+17, PH15, RKGN10, SGPJS+17, Sch12, SSMMW09, SB14, SB15, TKNN10, TS14, TSN16, US11, UM13, Wei12a, Wei12b, WCWV15, WM17, ZA15, vLBRR12].

ordering [LPAS11, LC17a, LLB+12, SJZ+15]. ordering [MNNK10a, MNNK10b].

overestimation [FHK+12]. overlap [BBG+18, SFDE16]. overlapping
generalized [HWLW11]. GIAO-CCSD [OPR16]. GULP [SN16a].
Hamiltonian [KCK+17]. hydride [PM13]. hydrophilic [PAK15]. II
[HYUS11]. MC-XQDPT2 [KKL+13]. metal [BS16]. MgO [BS16b]. MM
[BM12, AALCM11, BTA+13, CZY11, CJZS10, DSK17, DSX+11, FLM11,
FPB12, FB14b, GWZ15, GCW14, HH15, HBR17, JHH+13, JWS10,
KTN10, KWL+16, KWG15, LFM12, LT13, LHT15, LLL+11, MCRL17,
MTG12, MJG+15, NO16, PMC+17, PDMT10, PL14, RR14, RN17, RR12,
SN16a, SGDT10, SJ14, SCM+15, STM+15, SSAS10, TSC+13, VKNT15,
VKNT16, VCM15, VKTRJ15, WDP+12]. MM-MD [RSR+12, OYK+11].
MM-QMC [UTM11]. molecular
[BEL+11, Fer13b, Fer13a, Rad12, YK+11]. multiple [JS17b]. NaCl
[HB15]. nucleobases [CC11]. nucleophilicity [TMJ15]. OD [Chu10].
oligomerization [KAR12]. OpenMP [KS15, KN17]. or [KB10, Pog10]. PB
[GMMH+16]. phenol [LYK11]. phosphorus [GW+12]. Poisson
repulsive [SNK16]. SAC-Cl [EFS16, IN13]. Si [LGKS17]. superoxo
[ZRC12]. TD [TS15b]. TD-DFT [LXZ+10]. TDDFT [MS11]. thymine
[HvM12]. time-dependent [JYS+12]. TIP3P [SC10]. uracil [HvM12].
vacancies [HRB+17]. Vis [GGM+12]. water [JA10, SV11]. X [BS18]. Zn
[GE+14]. penetration [NLP+16]. Pentaatomic [Xb15]. pentacene
[CWHH11, YG+15]. pentacoordinated [TS10]. pentagon
[Fl15, GZH10]. pentane [TCGNT18]. pentaprismane [PCL11].
pentathienoacene [YG+15]. penten [LXFC17]. peptide
[FP17a, HPL13, HLH+12, ICS+12, ICS+13, JBAM11, JWS10, LTT16,
LW11, LLvG10, LJW+11b, Lvg13a, LMA15, MDT10, MV17, OZ14, QZM11,
SV15, SEM12, TYZ+16, XHLH16, YZ15a, dCLFGL13]. peptide-backbone
[HLH+12]. peptide-design [XHLH16]. peptides [BLKP12, BPC13,
COCH4, CZN11, CFG11, HLH+12, HHW17, IO13b, JXC10, KB10,
Lvg13c, MZZ11, OLY17, WNM17, XHLH16, XWS13, ZKH+10]. peptoid
[MMZW14]. perception [AJ16]. HYZZ13]. Performance
[Abr11, BZB+13, CSKH16, CKK16, DOM+11, GJIR18, HS+11, JCP14,
KL16a, KRB+14, SGW17A, ABM+15, BLBG+13, CLFR018, CXS10, CSSB11,
CJZS10, ESBI3, EWH+13, GA14, GRARO+14, GSS13, HWL11, KZZ+16,
Ll10a, LRB12, LLC+10, MHT+18, MC12, MG11, OPB+12, RRH12,
RSL13, SRF+17, SPR+13, SJ16, TF15, YPC+10, ZSL17, ZWL13, SBW12].
Pericyclic [HPT16a, KG15]. Periodic
[Sce07, Sch10, AAC+16, CMM18, CEBO15, FCD10, Gar12, HSH15, HHI+17,
ITIN15, KB14a, LBGS16, Man13, MGS+16, NN18, NO16, NNTN15, RJPB12,
SN16a, Ste15, TLG+12, Tak14, VB13a, VB13b, VECT12, VI17]. Perlin
[HLBLCCG15]. permeation [DMN15]. permutation [AO13b]. pernitrides
[WD10]. perovskite [LLB+12, LLL+12, VY17]. peroxide
[KNP+12, MK13b, SZ17]. peroxy [RHPWS13, RHT+15, ZRC12]. peroxy/
superoxo [ZRCC12]. peroxynitrous [BLG11]. persistence [XW15].
Persistent [XFTW15]. perspective [ABDGN12, Dil15, Hsu14,
JCGVPH17, JM+16, LGOM+15, MP17a, Niz13, PZM15, XLY12].
perspectives [DR14, Wei12a]. perturbation
[CCM15, CF14, DCHL12, FRSA14, FSSW17, FE14, GRS15, GCCM15, Hil13,
HRJ+14, HRJ+15, HYUS11, JRSHP14, KKNN11, KN17, KM13, LCL+10,
LlvG10, LGL11, Lg13b, Lg13a, MCC11, RLDJ17, RAR+11, RHPWS13,
SSM15, TAG16, VDL+13, WHAS+10, YKH15, ZZ14, WHAS+16].
perturbation-selection [FE14]. perturbations
[GMSdG15, OSR16, Tak10, WWCL15]. Perturbative [SSWX14].
perylene [BSL+16, SLP+12]. perylene-based [SLP+12]. perylenediimides [QCR12].
pesticide [BHB+17]. peta [KNHN16]. peta-scale [KNHN16]. petascale
[SCOJ13, ZWL13]. PH [LZL+15b, dSDdAR10, LZL+15b, AB16a, CS14,
CAD16, HS14b, MBA14, PS13, SY16a, SOvG12, Vor12].
pH-dependent [SY16a]. pH-responsive [MBA14]. Phage [MP17b].
Phage-like [MP17b]. PHAISTOS [BFH+13]. pharmacokinetics
[VBDS+11]. Pharmacophore [HRK+10, HKRS11, HS11, TD10, AKMT11].
Phase [ATM18, ZWMW10, ABB+12, BE12, BG17, DLSD13, DLW12, EMD17,
GYX+10, Hsu14, KD10, LJW11a, LPLB16, LGKS17, MFM+12, NIIT15,
PSC11, RWI+13, RSLML12, RJS17, SJZ+15, VKAM12, VED10, YHG+11,
YS12, ZS+14, ZWW10, ZYR+15, ZLHH14, dSDs12a, dSDs12b, ABB+13].
phase-change [EMD17]. phases [EB12, LPAS11]. Phen [FD16]. phenol
[AAMD+11, AK10, PPH+14, WHX+10, YKH+10, AK10].
phenol-imidazole-base [YKH+10]. phenol-triethylgermanium
[WHX+10]. phenolates [SKGB13]. phenols [SK12]. phenomena
phenyl [GZL+12, ZWY+10a]. phenylacetylene [ZZL+12].
phenylacetylene-containing [ZZL+12]. phenylalanine [GWF11, PV11].
phenylaziridines [KYL11]. phenylene [CH10]. phenylhydrazine
phosphaalkene [TR12]. phosphano [KYR15]. phosphate
[MRO17, XZ11, YZS14a]. phosphatidylcholine [PVM10]. phosphatene
[SHL+13]. phosphine [MG14, YK13]. phospholipid
[PS10, RBOH11, SDZ17, WLO+17]. phospholipid/cholesterol [RBOH11].
phosphopeptide [AC11a]. phosphoranes [TR12]. phosphorescence
[LW+11, LXZ+10]. phosphoric [HPT16a]. phosphorous [KLN12].
phosphorus [RB12, YDX16]. phosphorus-containing [YDX16].
phosphorylation [RIJ+11]. Photo [HNN+17]. photochemical [Su10].
photocycloaddition [LXFC17]. Photodeactivation [Ant13].
photodetachment [MLCD11]. photodetectors [DPAB16]. photodynamic
[ZZ12]. photoelectron [FF11, MLCD11]. photoemission [RJS17].
photoexcitation [RVDMB16]. photoexcited [MS11]. photoinduced
[CGP12, MSV16]. photoionization [MY17a, MY17b]. photoisomerization
FBEM11, HTS17, JM11, KV15b, LPLB16, PAK17, PTB15, REL17.

83

[TLdG+12, CK17, NJX+10, PKK17, PGdO+16, YDR13]. **Pt-195**

[PGaO+16]. **Pt-based** [NJX+10]. **PTCDa** [HB15]. **PTCDa/KCl** [HB15].

PTCDa/NaCl [HB15]. Pteros [Yes12, Yes15]. Published

[GS16, MFEM16, XFG+16, Ano12u]. Puigjané [Ihl12]. pull [MLQ+12].

PUPIL [BTT10]. pure [BG13, LBH+11, SN15]. purely [BDdS13, purine

PyADF [JBB+11]. PyFREC [KDR+18, Kos16]. PyGlobal [NkJ16]. PyMOL

[BTA+13, HL14]. PyMOL360 [HH16b]. PyMOL360 [HH16b].

PyMOL [BTA+13, HL14]. PyMOL360 [HH16b]. pyMolDyn [HRB+17].

PYP [UD12]. PyPES [SC15]. pyramidalization [Gav12]. pyrazine [WDP+12].

PyRETIS [LRvE17]. pyridin [BMB13]. pyridin-2-yl [BMB13]. pyridine

[LWL+11, MFR+11, PMC+17, SLLL13, YLZ+10, CCLP12]. pyridone

[AFSW16]. pyrimidin [YZ15b]. pyrimidin-4 [YZ15b]. pyrolysis

Pyruvate [CJZS10]. Python [HPT+16b, LRvE17, PHH+12, Yes15].

PYX [LWWG12].
quadrupolar [CSEMB+16]. quadrupole [HBKL10, LIRL+16].
quadrupoles [NLP+16]. Qualitative [YK13]. Quality
[CLK11, KCK+17, KYB13, MKB+13, POB13, RB13a, RCM+13b, SC15].
QuanPol [TSC+13]. quantification [Hamb11, PC14, YNH+17].
quantify [LLHM16]. Quantifying [TMJ15, GMBX+16, MS10].
Quantitative [DZA11, RDT14, V˚AA14, Wei12b, BPC13, CD13, DKL+10, NFG+13, REL17, RCM+13b, XFTW15, TTB+11]. Quantum
[ALK+15, AC11a, APA+14, Cha10, CG12, DDM+15, FRN15, GH10, HHDC16, KASH14, Li14a, Li14b, LWD13, MBRC16, MS12, RFN15, SC0J13, SAGC16, SBD+17, SOY12, SR10, SHB17, TR12, UD12, WCAH10, WDP+12, Aki16, ASS+17, ARAG17, AAC+16, APY+16, ACS12, ASK18, ALH+10, Bac12, BTT10, BRP+12, BGR13, BEL+11, Cam15, CBH14, CDM10, CDB10, CDBM11, CD13, CD16, CXW14, CHK10, CM16, DR11, DKT13, DPAB16, ECZW17, EV14, Fer13b, Fer13a, FFB10, FLM11, GPM17, GMMH+16, GTK10, GGM+12, HZ11, HLvdV13, HPT+16b, HGCCGR+16, HMM10, HYUS11, HGY15, JBB+11, JSXH16, KP11, KVR10, LPE+10, Lü14, MP17a, MAP10, MSvG12, ME10, MSSP17, MHH11, MFR+11, NC13, NC14, NNK+16, NDD+10, NHK+13, NS17, OKIS17, OSM16, PML+12, PSC11, PGW+17, PG17, PVAM16, RLLHL12].
quantum [REL+14, SLT14, SS13b, VPR10, VBMA13, WKC+10b, WBT10, WAB17, YKO+11, YW13, YHK15, ZW17, ZVY+15, dCDP15, BLG10]. Quantum-chemical [KASH14, FB10, MSvG12, MFR+11].
Quantum-chemistry [DDM+15]. quantum-classical [HLvdV13].
Quantum-mechanical [ACS12, ECZW17, PGW+17]. quasiclassical
[Cha10, LWD13, dSVdM+16]. QuBiLS [JMPAM+14]. quest
[AOW11, EK17]. question [BZH14]. quick [VVV+15b]. QuickFF
[HRJ+14, HGHP14, HR+15, JRSHP14]. quinolone [ZCK+16]. quinone
[GLM+17, VSD10]. quinones [uLhY11].
R [LdSRR16, NDG14, Sch10, LdSRR16]. R-C [LdSRR16]. R-Group
radiation-damaged [LZH+11].
radiation [LZH+11].
radiation-damaged [LZH+11].
radiation [LZH+11].
radiation-damaged [LZH+11].
radiation [LZH+11].
radiation-damaged [LZH+11].
radiation [LZH+11].
radiation-damaged [LZH+11].
radical [AAMD+11, GAI14, GKR13, JCG+10, KGR+16, KV14, LJJ+11, Ray13, RKG11, SJD11, TTR+12, TL16, WHDL11, ZZZ+10b, ZLZ14, ZSZ+14, dLC17].
radical-bridged [ZLZ14]. radical-formic [TL16]. radical-molecule
[GAI14]. radicals [Den12, KS13b, SRR16, WCT+11, WLHZ12, ZZZ+10a].
radii [STM+15, YMT14]. radio [AB10]. Rugué [Ano16-56].
Ramachandran [KS12, MP17a]. Raman [PAK15, SLLL13, YB13].
Random
[HMM10, AC11b, CY09, CY13, CLK11, GPM17, OLA15, RDRC16, WZ17].
Randomized [JPC11]. range [AO10, BLBG+13, BCNH+11, BK17b, CSKH15, HH15, HZSS17, Jan16, KB10, KSH13, KSSH13, MMS16, NLP+16, RSG14, Rui11, SMGB11, ST13, SPI11, SZZS16, SSA+17, VLT17a, WYT17].
Reoptimized [HLH+12, HH11]. reorganization [BE16, DAdGR15, RJS17].
Reparameterizations [DPJ16]. reparametrization [DH11, FCE15].
replacement [YHW17]. Replacing [ZSB+16]. Replica
GS15, GS16, XFG+16, ZC14, CH16, CCOH14, IO13a, IO13b, KCK+17,
KTO11, KTO13, LC17a, LMI+14, MS16, OGL10, OL13, OLY17, OZ14,
RFHG10, SBN13a, SBN13b, TKT11, XFG+15]. replica-exchange
[CCOH14, IO13a, KTO11, KTO13, LMI+14, OLY17, OZ14, SBN13a, SBN13b].
replica-permutation [IO13b]. replicas [LL11]. Reply
[Can11, Cor17, GKR13, QB11, VVB13, WM12, LAT11]. representation
CXW14, CWZ10, FXC+13, HZY+10, KCPMG12, KDS17, LLLC11, ME10,
YDL+10, YS10, YHH+13]. representations [OVPK15, dVZ17].
representative [KV12, KV13, VLGK+17]. representing [TY10]. repressor
[OHNK11]. reproduced [Zha12b]. reproducibility
[GKR13, Ray13, RKG11]. reproducing [KTNN10, MAK+14]. reproduction
[OPBR17]. repulsion [BOB16, CGPP11, ENKK+17, HOK17, PS17, PC16].
repulsions [JJH+13]. repulsive [IO13a]. required [RAR+11, SG10b].
requirement [BF15]. requirements [TS15a]. requires [Bow16].
resampling [MMM+16]. rescaling [LL10a]. rescoring [BMR11].
LABSG17, BH15, BA11, GMO16, IHIY15, NR11, SL10, SEF+16, WC14,
YHH+13]. Residue-centric [LABSG17]. residues
[FKH+12, KLS10, KMLS10, RKDM14, SK17, WX1+12, WC14]. resistivity
[AB10]. resolution [BMFG16, BS10c, CM13b, DFF+15, Höf14, JC16, KN17,
NPG17, SM11, VOR10, WNM17, YN15]. resolution-of-identity [YN15].
Resolutions [LMR14]. resolving [AVHB18]. resonance
EF16, KN+12, YB13]. resource [Gil11]. Response
[GPGSM12, dSdS12b, BZH14, DHE+12, ESM+12, ITIN15, KSSH13,
KZK+12, LP11b, MRB14, RJR14, RCM+13b, SS16a, SDF+17, WGLG+16].
responses [GWX+12, MLQ+12]. responsive [MA14]. restrained
[HCD+10, KCK+17, SR18, ZDZM13]. restraining [KOY+12]. restraint
[RO14a]. restraints [SM11]. Restricted [SL10, Cas13, PDG+16, YD17].
restriction [FSD+18]. result [PH15]. results [Ber17, CBH14, CLK11,
GR10a, KERY+16, PLAG11, RAR+11, SHL+13, WDHZ13, KMLS10].
retinal [CG12, SGWA17, ZLHH14]. retinoic [LMF12]. Retracted
[ANO12a, GRL+12]. retro [GRCL12]. retro-imo-ene [GRCL12]. reveal
[MA16, RKDM14]. revealed [ALH+10, PNG10, VKN15, YZGS14b].
Revealing [VVY17, YW13, YJ17, Bac12, GFGS18]. reveals [NR11, WC11].
Reverse [LWL+16, ASL+11, Aou16, GP12, OPBR17]. reversible [RII+11].
Review [DR14, FRSA14, GHV17, JCL+17, CMVg10, Sch10, Spr10].
Reviews [HLvdV13, ZW12]. Revised [AKMYB18]. Revising [Pla11].
Revision [PLH16]. Revisited
[KR14, ASS+17, CYT+10, Dii15, HZ11, HFSO12, MSBF16, YW13, vSGP10].

LCL$^+$10, LPS$^+$13, MLQ$^+$12, yOTn16, ŠSB$^+$16, TAG16, WYT17. Second-
[TKN13]. Second-order [MCC11, DCHL12, Hil13, KKNN11, KN17, LCL$^+$10, MLQ$^+$12, yOTn16, ŠSB$^+$16, TAG16]. secondary
[Clo15, DWL11, FZY$^+$12, HNHR13, HTS17, KT10, KS12, LFB14, LGL11, Man14, QZM11, SM11]. secretase [YLCX10], secretory [FZL$^+$15]. section
[HBL12, dCLFGL13]. selections [MY17a, MY17b]. SEDD [HNN$^+$17]. Seebeck [FSD$^+$18]. Segmentation [TSR$^+$16, LCM16]. segments
[yOaCG10]. selected
[ICS$^+$12, ICS$^+$13, KCL$^+$14, SGM$^+$13, VSD10, dSAdSL13]. selection
[FE14, HS17a, HS17b, KDB13, WMW$^+$10, ZYS$^+$10]. selections [HYMZ16].
Selective [PXXW10, LZZT10]. Selectivity [LPLB16, dSdLBNB17].
[AFSW16, CD11]. self-assembly [Hei10, KN16, uLhY11]. Self-consistent
[JSXH16, BK17b, DK11, GBVA11, HKR$^+$14, IM17, KC13b, KT10, KLN16, MJLV14a, ON14, OCL11, SPS$^+$12, SCSW13, TYN15, WMW$^+$10, YN15, uLhY11].
[HS17a]. self-metathesis [MJLV14a]. semi [FSSW17, SC15]. semi-direct
[FSSW17], semi-global [SC15]. semiconducting [VS14, ZL17].
semiconductor [LCH$^+$15, SFDE16]. semiconductors [BE16, NDLW13].
Semiempirical [SRL$^+$15, GP11a, HGY15, KTN10, KB14b, LSD$^+$10, MGWR12, SPH11, SDL14, TKN10, TG12a, UCWR16, WCWV15].
semiexperimental [VDVR14]. Seminumerical [PW12]. sense
[DR14, ICS$^+$12, ICS$^+$13]. sensing [LZL$^+$10, RRK14]. Sensitivity
[Han11, LL11, LWG12, PDG$^+$16, Sea10]. sensitized
[ACS12, JYS$^+$12, LZL$^+$15a, YJN$^+$11]. sensitizer [YJN$^+$11]. sensitizers
[SQC$^+$17]. sensors [DHE$^+$12]. separable [WWU12]. separated
[BK17b, HZSS17, RSG14, SZS16, WYT17]. separation
[CSKH15, DS12a, VL17b, YSG12]. Sequence [TYZ$^+$16, DLL$^+$10, DWL11, LXL$^+$11, MP17b, Sti15, WXL$^+$12, YZWC11, YS10, ZWP11, HYMZ16].
Sequence-based [TYZ$^+$16, WXL$^+$12]. sequence-reactivity [Sti15].
Sequence-specific [HYMZ16]. sequences [Ano12u, CCYL11, Fel10, HZY$^+$10, LMZ$^+$11b, LLLC11, LDH$^+$14, OLA15, QLOQ11, YDL$^+$10].
Sequential [CBP14]. Ser [LY10]. serial [BB11a]. series
[AC11b, DDM$^+$15, LZGS11, MCK17b, SRA17, SB10, TD10]. serious
services [LP11a, UHH$^+$11]. Set
[SN16b, BLL13, BLG10, BRLS08, BRLS12, CC11, HS16b, KN$^+$12, LS11a, LLC$^+$10, LYS$^+$13, LWL$^+$10, Mat10, OAN15a, PML$^+$12, PdO$^+$16, PHK14, PD11, Pog10, PFVL14, RLD12, SPS$^+$12, Sch13, SWM10, SG10a, SG13, VLGK$^+$17, VVLG17, WX12, YOMT14, ZPP$^+$16, FL15]. Sets

Similarities [PM18]. Similarity [HS12, LMZ+11b, YDL+10, CDM10, CDB10, CDBM11, CQFC10, GWT+17, GK15b, HRK+10, HKRS11, HS11, RMPAM15, TZCK18, YZZ16, ZYvIZ14]. Similarity/dissimilarity [YDL+10]. SIMONA [SWB+12]. Simple [Ano15-59, CNK97, GM17, MPSA17, AB16b, BS10b, BD12, CWZB10, KRTB10, NS15, PHC13, PRIY+17, RHRC16, SEF+16, SS13c, dSAdSL13,
sites [AIGP15, Ano12a, DVVP14, DBK17, KDT+12, LZTV10, LHL+10, LL10b, LZX16, LG14, MA16, PHC13, PBG17, TYZ+16, Vor10, YZ15a, YHH+13, ZZL+12]. situ [JZL+17, LZY12b]. size [DMN15, BFH+13, BD12, CC12a, CF14, DJX+11b, FE14, GZ92, Hsu14, MTvG12, SL17, SB11, XYX17, Zha11]. Slater [Dil15, LRER13, MY17b, SFG+17]. Slater-function-based [SFG+17]. Slater-type [Dil15, MY17b], slices [AKN16], SLIM [SSBW14]. slit [Fom13]. slope [Zha12b]. SM [XMSZ16]. SM-TF [XMSZ16]. Small [XYW+14, ASS10, BTMS12, BLKP12, BS16b, CQFC10, DGL+13, ETLS17, GAMAC+14, GBFD12, KKPT11, KGHK12, KLJ+17, KB11b, KL13, LHKS12, LH14b, MSS+13, MBE16, MBRC16, MPBJ11, NH16, RLL+10, RS13, SG13, STS15, VT14, WF16, WTH+16, XML+15, XMSZ16, ZCGM11]. small-molecule [ETLS17, WF16]. smaller [MCK17b], smallest [PMT16]. SMD [ALK+15]. smeared [ENKK+17]. SMILES [TTB+10]. SMILES-based [TTB+10]. Smoluchowski [SG10a]. smooth [AG11, EFS16, JLCA17, ZSB+16]. smooth [LZ12]. SMPBS [XYX17]. Sn [MCK17b, PMG+16, RDT14, YW12, AS10, PKK17]. SnCl [dSDdAR10]. SmO [DHE+12]. Sodium [KLN16]. Soft [SJC11, Ben17, BG12]. Soft-core [SJC11, BG12]. Software [AIGP15, Aki16, APK14, AAC+16, BTA+13, BHB12, BCSCJ+13, BSZ+12, Ber17, BJP15, DMIN15, BFH+13, BBG+18, CBH14, CSEMB+16, CZAF17, CAT+13, DJD12, DVVP14, DDK14, DWC17, DSK17, ES13, EKW+13, FN12, FSC+14, GMSdG15, Gar12, GJMPAM+14, GLW13b, GS12, GCP+13, GCC14, GBW+14, GH16b, HLS+13, HRB+17, HDH12, HPT+16b, HPSK12, HHT+13b, HH16b, HG13, HYMZ16, HKR+14, HBJ+17, HL14, HC14, IK16, JHH+13, JJW+14, JLCA17, JP15, JCGM18, KS13a, KS15, KK17a, K15, KR14, KB16, KKR+13, KDR+18, KLJ+17, KJM+17, KDT+12, Kos16, KG13, KWL+16, KK17b, KWG15, KSD+12, KYG+15, KAG+12, KSW16, KPF+15, LPS12, LJ+12, LHSI12, Lhl15, LRvdS15, LRvE17, LDB+17, LLZA12, LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MDT16, MBR+15, MYT18, MSSF17, MB14, MB16, Nkj16, OV14, OPB+12, OZS+13]. Software [OC14, PSS14, PGL+15, DBDP16, PSG+17, PW12, PPM15, PHH+12, PVZ13, PG14, RLLH12, RNSF+16, Ras17, Rz216, RR14, Rda12, RSR+12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sic15, SJ17, SWB+12, SDMS13, TNY16, TSC+13, TTR+12, TTL+12, UU12, VMRS+17, VV+15b, VAR12, VB13b, WdV12, WY13, WPM+15, WF16, Web12b, WHK+12, WHJH13, WG14, WCJ+14, XML+15, XYX17, YW1+16, YZZ16, Yes12, Yes15, YHH+13, ZDKM12, ZLL+13, dVAG16, CCC+11, DFB14, MSvG12, MJG+15, SBV10, SGM+13, Yap11, ZCS+15, She12]. softwares [All11]. solar [ACS12, DGL+13, JYS+12, LTL+15a, SLC+17, TZ12, VAA14, YJN+11]. Solid [RSK+15, ASS10, ASK18, CL16, HLS12, HBI+17, KLN12, POG13]. Solid-state [RSK+15, ASS10, ASK18, CL16, HLS12, HBI+17, KLN12, POG13]. solids
solute

solutes

solubility

solute

solutes

solution

solutions

Solvation

solvation-free-energy

solvational

Solvatochromic

Solvatochromism

solve

Solvent

Solvent-driven

solvent-induced

solvent-dependent

solvent-dependent

Solvent-driven

solvent-induced

Solvvolysis

SOMA

Some

sometimes

spatial

sparsity

sparsity-weighted

Specific

specificity
Spectra
[PAK15, AMQ14, BG17, EBPK17b, FD13, FF11, GWF11, GGM12, GZZ12, HRH17, KASH14, Kow11, LBC12, LX11, MAK14, MCLD10, NHF10, PMC17, PDMT10, DCOD13, PDG16, RS17a, RJS17, SGDT10, SB15, SR11, TYN15, TZCK18, TG12b, Tsi14, WGL12, WWD14].
spectrometer [LBB15].
Spectroscopic
[SS13b, GK10, KDB13, Kop15b, NC13, NC14, TZCK18, Tsi14, ZLL10].
spectroscopy [HPSK12, LLBO12, NC12, WHK12].
spectroscopy-oriented [HPSK12].
speed [TO10, VM11, YD17].
speed-up [YD17].
speeding [AO10].
Sphalerite
[SBC11].
sphere [KT12, MH10, TH13].
spheres [HS16b].
spherical [Ano15-58, BH14, YOPB16].
spherically [Vyb15, Vyb16].
spheroidal [ZWY10b].
spider [Che17].
SPILLO [DVVP14].
Spin
[DSM11, JKS16, KM13, AB10, AMQ14, CSEMB16, CSS17, CSKH16, CAP17, FAA15, FD16, GP11a, KSK11, LXFC17, MG11, MCP18, PS17, RRK16, SFM14, SSB16, SH18, VFRAR16, YB11, ZLHH14].
Spin-component-scaled [KM13].
spin-coupled [SH18].
Spin-driven [DSM11].
spin-flip [ZLHH14].
Spin-orbit [JKS16, AMQ14, FAA15, FD16, GP11a, MG11, MCP18, PS17].
spin-polarized [SFM14].
SPINE [FZY12].
Spinar [CC12b, Bar14].
spins [ZR10].
Splitting [Rob13, EHSPT16, OT12].
SPME [NLP16].
SPOT [YZZ16].
SPOT-Ligand [YZZ16].
Spread [BEEL14].
Squaraines
[AMQ14].
square [HD14, IS14].
squared [JS13].
squares [BCCO10].
SR [ARAG17, WMW11].
SR-ZORA [ARAG17].
SrO [BL12].
SSC [LG11].
SSThread [Mau14].
ST [JJW14].
ST-analyzer [JJW14].
STAAR [JHH13].
stabilities [BLDK13, TFQ11].
Stability
[CSM16, EK15, GWT17, LiSRR16, OME16, PP10, BPPS17, CSS17, CFC15, CM16, CB11d, DLT17, DLW12, GPK16, Ham11, HLB15, LHKS12, MC10, MS15, PMG16, PAT10, Rab12, SY16a, TN12, XFTW15, ZRCC11, ZWMW10, ZWW10].
Stabilization [KSR17, BSDP16, DBK17].
stabilize [KG11].
stabilized [KASH14].
stacked [ANH11, HvM12, LDH14].
stacking [HvM12, YZZ17].
stages [CBP15].
Standard
[DH17, BCJC14, MKO13, PNI13, REL14, SRR16, VG13, WHK12].
standing [TS1].
staple [SV15].
State
[CCM16, GS16, Alg17, AR10, ASS10, BS15, BBI11, CSAOM17, CH10, CV12, ESM12, FD14, GS15, GCCM15, GPE13, HLS12, HNWFO7, HNWFO12, HHH16a, HHI17, HBI17, HZSS17, HBR17, JZ17, KLN12, Kop15a, Kop15b, KKL13, KCL14, LL15, LLBO12, LZL10, LYC13, LWGZ15, LN15, LGL11, LgV13b, LLFH16, LXFC17, MTM14, MPSG11, MCC11, MC12, MCLD10, NYM17, NMLD13, OBW12, OZLSBH12, POB13, PGW17, PH10b, QZ10c, RAGL11, RIJ11, RCM13a, RML15, RR14, RSK15,
SRF$^{+17}$, SSSM15, SGWA17, VZ14, VL17b, WHL$^{+10}$, WHX$^{+10}$, YWZ14, YD17, YYT12, YL13, Zim15]. state-selected [KCL$^{+14}$]. State-specific [CCM15, GCCM15, LGL11, LXFC17, MCC11, MC12]. states [AST$^{+16}$, ANH$^{+11}$, BSL$^{+16}$, DHOG13, EFS16, EK17, EP15, FAA15, FD16, GO13, GA12, GTK10, HDHL15a, HDHL15b, HDHL15c, JCGVPHT17, KB14b, LLBO12, LIW12, LWW12, LX11, LS11b, LYSS11, MS10, MN15, MH11, PBDW11, RHRCH16, SRF$^{+17}$, SOYC12, ˇSB13, ˇSB15, SZZS16, TN10, Tia12, TSN17, VVV$^{+15a}$, XWSW13, YZGS14b, YK13, YLZ$^{+10}$, YB11, ZXS$^{+10}$, ZBB16, dLC17]. Static [KBC12, BS10a, KZK$^{+12}$, Lu11, PC14, PNW$^{+16}$, PM13, WYT17]. Statics [Pon10]. stationary [BHR15, Can10, Can11, LHMM11]. stationary-point [BHR15]. stationary-wave [Can10, Can11, LHMM11]. Statistical [JHH$^{+13}$, PZA15, PTB$^{+15}$, FL15, GZ14, HYMZ16, ICS$^{+12}$, ICS$^{+13}$, Kan15, KMLS10, PTK11, RB13a]. statistically [GR10a, GR11]. statistics [QZ10c]. steepest [MS16]. steepest-descent [MS16]. steered [FBEM11, KERY$^{+16}$, MJC14, NFG$^{+13}$, SJ17]. step [AYYO17, DS12b, DGC14, GRCL12, JWO15, JS17b, KvdV14, LLvG10, LGL11, LVG13b, LL10c, RLDJ17, RS12, SJC11, TCP14]. steps [REH13, Zim13]. Stepwise [DLP11, GRCL12, ZL11]. stereodynamics [Chu10, LWD13]. stereoelectronic [AS11]. Stereoselection [BJSI12]. Steric [RMGR11, MJLV14b, MP17a, YNH$^{+17}$]. sterically [MH17]. Stern [MBA11]. steroelectronic [HLBLC15]. Stevens [BCJC$^{+14}$]. sticks [CVT$^{+11}$]. stilbene [BW11b]. Stochastic [AFPI13, CGP12, AC12, KV12, KV13, MS16, MCP18, NC13, PH17, RSL13, SW$^{+12}$, VBD11]. STOCK [BJP15]. stoichiometric [VI17]. stoichiometry [FSD$^{+18}$]. Stone [DWZ$^{+17}$, YZN13]. stool [FPB12, FB14b, ZCK$^{+16}$]. storage [BEM14, BEPM14, DLT17, WKLC12]. Story [Sce07, Sch10]. Strain [DM15, FB12, FC16, FLM11, JWO15, PBE16, She12, SHL$^{+13}$, VIT$^{+15}$]. strand [XYL12]. strategies [AFBR17, BSDP16, cCVG$^{+14}$, DSX$^{+11}$, LTT16, Rao11, SOCJ13]. strategy [CLX$^{+10}$, CZNA11, HJK13, KTNN10, LLL$^{+10}$, PHC13, PH17, RVVK13, TKNN10, WO15, XHHL16, YDGZ15]. strength [Fra15, Fra16, KSC16, LGKS17, MPSG11, YJ17, YHW17]. strengthening [MS11, LYSS11]. strengths [CKL$^{+11}$, MLC13]. streptavidin [MLZZ12, ZJZM13]. streptavidin-biotin [MLZZ12]. streptocyanines [WYT17]. stress [GMBX$^{+16}$, HXM$^{+16}$, JMX$^{+11}$, NIIT15, NFI$^{+16}$, XFX$^{+16}$]. stretch [CK10, RS17b]. stretching [KLS10, KMLS10]. string [BMFG16, JZ17, Zim15]. stringent [DPOS16]. strong [Kan15, MLZZ12, SDF12, VVY17, Vik11, ZSL17]. stronger [KSC16]. Structural [GLF16, GBL$^{+11}$, GTT10, GAMAC$^{+14}$, GWX$^{+12}$, HS17a, II10, KZK$^{+12}$, KSD$^{+12}$, LBTV11, NC14, TS11, ZWW10, AIGP15, AD10]
AKK+16, ALH+10, BBOB16, BPC13, CPV+12, CDS16, CYI+10, DWL11, DH11, GWT+17, HS17b, HVS16, KKPT11, KG11, KNE11a, KDT+12, LK13, LL13a, MCF10, PHC13, PGY15, PNG10, RR11, RKB+14, RSL16, SFA17, SS13c, WC11, XMSZ16, YVEI+17, ZYvIZ14, ZLW10, VPR10. structurally [TZCK18].

Structure
[BJP15, CGBK13, DXL+10, GPK+16, GWJJ12, GBGR16, HLB15, LAHS16, MHRR11, NC12, NC13, PMG+16, Rab12, SGH+16, VDVR14, WZK+13, AFIP13, AR15, AJR16, AC12, BPPS17, BFH+13, BddS13, CPRS18, CD13, CM13b, Clo15, DKE+17, DKT13, DDP16, DVVP14, DLW12, EH13, EKW+13, EFOD13, FZY+12, FSC+14, GLB16, GMSdG15, GRARO+14, GP12, GK10, GRD+10, GPdC+16, HASR+12, HNHR13, HS14a, HRB+17, HH15, HYMZ16, HZ13, HLWD15, Hua16, Ibr17, KYS+17, KSM17, K10, KS12, KKL+13, KLS10, KMLS10, LFB14, LKL10, LJJ+11, LMI+14, LYL16, LPE+10, LGL11, LHG11, LWWG12, LLFH16, Mat10, MDT10, Mau14, MAPB10, MV17, NGAS17, OCL11, OL13, OLA15, PSS14, PML+12, PN13, RLG14, RCM+13b, RR11, SHMO11, SB10, SM11, SLF+12, SLIB12, SRS14, SYN+12, SKGB13, TN12, TT+11, TGI2b, UNT16, VVF12].

structure [VHR16, VVBL17, VÅA14, VBMA13, VC110, VI17, VLGK+17, WO15, WRM+12, WSGN11, YW12, YZZ16, ZRC11, ZHHX11, OFS12, SA10].

structure-activity [DXL+10]. Structure-based [CGBK13, DXL+10, DVVP14, GLB16, VVF12].

Studies
[ISH10, KRTB10, OLY17, RHPWS13, RI10, TS15b]. Studies [JW12, AALCM11, BLS10, BRGN12, BLG10, DMN15, BIL10, DXX+10, GZMZ16, GEP+14, JLS+10, KG15, KP11, LXFC17, LCWW10, LJJ+11, LWD13, RCM+13b, SB10, SFA17, SLWH09, TDP+12, VSD10, WAC10, YKK+10, YPC+10, YDL+10, YXZZ17, ZZL+10, ZZL+10a, ZYG+15, ZXI11].

Study [JLH+14, VL17b, AAPP17, AS11, AS15a, AMAA+11, ASMS10, ANI+11, APA+14, APY+16, ALH+10, BEM14, BE14, BHB+17, BEEL14, BJS12, BLG11, BRLS08, BRLS12, BL12, BEL+11, CCLP14, CCLD14, CHWH11, CB17, CCJ+11, CKL+11, CXW14, CB716, CL16, CSX17, cCVG+14, ChA10, CG12, CB11c, CPL11, CB11d, DASA15, DR11, DL11, DLSD13, DSX+11, EOA+11, EV14, FCL+10, FF11, FCD10, FBEM11, FL15, FPB12, FB14b, GA14, GG10, GYX+10, GVP+10, GD10, GTK10, GWZ15, GNCA10, GGM+12, GKR13, GWPJ11, HZ11, HDB15, HD16, HRL11, HBR17, HVS16, Ibr11, IIF+10, INT+18, IN13, IHY15, II10, JA10, JS17a,
JCG+10, JAH+17, JJAB16, JW16, JYS+12, KD10, KKPT11, KOP+14, KC13b, KB13, KT12, KG11, KNK+12, KS13b, KP10, LC10, LY10, uLHY11, LP11a, LL13a, LL+10, LDJ+10]. study
BH13, CGBK13, HLS+13, Sch13. **T-cell** [CGBK13]. **Table** [Ano16-115, Ano16-121, Ano16-122, Ano16-123, Ano16-124, Ano16-125, Ano16-126, Ano16-127, Ano16-128, Ano16-116, Ano16-117, Ano16-118, Ano16-119, Ano16-120, Sc e07, Sch10, AAC+16, Fom11, JMS13, MGS+16]. **tables** [BDdS13, LZ12]. **TabBoo** [HTS15]. **tabu** [GBSE11]. **tabulated** [LL10a]. **tail** [MBC13]. **tailoring** [RKGN10]. **tails** [GSD10]. **Taming** [CCM15]. **Tamm** [HH17]. **tar** [HCD+10]. **tar-MD** [HCD+10]. **Target** [FMG12]. **TargetATPsite** [YHH+13]. **targets** [AFBR17, BK13, MPBJ11]. **Task** [CSSB11, HPSK12, KG13]. **task-oriented** [KG13]. **Task-parallel** [CSSB11]. **TATA** [YZWC11]. **Taurine** [YW13]. **tautomer** [WHJH13]. **tautomerism** [BJW13, LGOM+15]. **tautomerization** [BH13, BZH14]. **tautomers** [BZH14, dALdS+15]. **Tb** [SRL+15]. **TD** [CCB15, CH10, EFAC13, HRJ+15, JRSHP14, KKL+13, KP10, LZZ+10, LZHH11, LSH+11, LYSS11, RDF+11, SRF+17]. **TD-DFT** [CCB15, CH10, EFAC13, HRJ+15, JRSHP14, KKL+13, KP10, LZZ+10, LZHH11, LSH+11, LYSS11, RDF+11, SRF+17]. **TD-DFT-** [LSH+11]. **TD-HF-based** [LSH+11]. **TDDFT** [SFCCK+15, CMF+17, LRBB12, QCR12, SFCCK+14]. **Te** [HCD+10]. **technique** [AMGB10, BG17, LZL+13, SMM17, TSR+16]. **techniques** [BCP+10, BCG10, GVP+10, MCP18, SDF+17, SPL+18, SY11, WBN+13]. **tellurium** [RRK16, ZWGO16]. **Temperature** [HS17b, KKO+16, LPE+10, LLTC12, PBE16, SY16b, SMM+18, CH16, DKT13, DLSD13, KCK+17, LL11, MK17, OGL10, TLdG+12, TM16, VED10, WMW11, YW12, OCW+15]. **Temperature-shuffled** [HS17b]. **temperature/Hamiltonian** [KCK+17]. **temperatures** [NMLD13, RHNN10]. **tempering** [LAW+16, MO15, MO17, NPTS16, TKT11]. **Template** [Man14, GLF16, KCK+17, ME10, YHH+13]. **Template-free** [Man14, YHH+13]. **template-restrained** [KCK+17]. **tension** [NFPD13]. **tensor** [Elk16, EWK+13, GMBX+16, HXM+16, JMX+16, KCK+17a, NFPD13, NIT+15, NFI+16, TKC+11, XFX+16]. **tensors** [EPD+11, PHK14]. **terahertz** [KB16]. **term** [DSF17, JBSQG11]. **terminal** [IMK+16, YXZZ17]. **terminally** [KLS10, KMLS10]. **terminally-blocked** [KLS10, KMLS10]. **terms** [BAS14, CZY11, CWZB10, RRH12]. **ternary** [RDT14]. **tertiary** [OPR16, SM11]. **tessellation** [MOS12]. **Test** [PHC13, BS10b, DPOS16]. **tested** [HMM10]. **Testing** [Gil11, II18, MPSA17, RLD12, JGS+17]. **tests** [Ano15-59, CNK97, ENKK+17]. **tethered** [CZNA11]. **tether** [WDG12]. **tetraamines** [SB10]. **tetracarboxylates** [CRC13]. **tetracoordinate** [XhD15, ZYW+16, ZLY+16]. **tetraene** [ABDG12]. **tetramer** [Ish10]. **tetramers** [LYL16, SZS16]. **Tetraoxide** [JW12, SLHWO9]. **tetraprotonated** [ZYW+10b]. **tetraradical** [Cas14, YSSB12]. **tetrasaccharide** [NPG17]. **tetrafluorovalene** [MC10]. **Tetrazine** [JW12, MCAG+16, SLHWO9]. **Tetrazine** [JW12, SLHWO9]. **Tetrazino-Tetrazine-Tetraoxide** [JW12, SLHWO9]. **tetrel** [YKH15].
tetroxide [MCAG+16], text [HKRS11, HS11], text-based [HKRS11, HS11], TF [XMSZ16], Th [MCK17a], their [ARRC15, Ano11, BSG18, CC12a, CBTZ16, CFC15, CB11a, DLT17, DSN+11, GPM17, HJ13, JMLL13, JHMB+09, JHMB+11, KG15, KENE11a, KRSCI12, NYH+17, SBR13, TN12, Tak11, TY10, TS11, VVJ15, VVY17, VVBL17, XDL+10, ZWY+10a, them [WCWV15], theorem [CDB10, KSH13, YB16, ZM11], theoretic [CRZ+18, MCC12, ZLW10]. Theoretical [AvKSP16, AMAA+11, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, GYX+10, GLZ17, GLM+17, HDHI15c, JW12, KCB+12, KS13b, LCL+10, LW12, LZW12, LWXC16, LXCFC17, LJG+11, MLQ+12, MSV16, NFI+16, OSS10, OAN15b, PKK17, PM13, PE11, RS17b, SB10, SKY+11, STS+10, SZSZ16, SLC+17, SGHL13, TPL+10, WMW11, WHDL11, WCL+11, WS12, YJN+11, YPC+10, YHC+11, YCGA10, YYT12, YDZG15, ZZL+10b, ZZL+10a, ZYLL12, ZLLL12, ZS1+14, ZYG+15, ZBMZH15, dSDLB17, BLS10, BE16, CZ12, CKL+11, CBTZ16, EV14, GG10, HDB15, HGH114, LW122, LLD17, LZW+11, MPSG11, NHH+10, NJX+10, PH12, PSE14, Pog10, PH10b, RZG+13, RVCF13, RVP+11, SSP+13, SJD11, SLHW09, SKTT11, SGH+16, Tak11, TL16, WSH10, WZQW10, YK13, YZWC11, YZN13, YB11, Zha12b, dSA1L3, HDHI15a, KZK+12, TDP+12, theories [OM12, WCWV15]. Theory [IU1+11, SZX13a, ZX13b, WM12, AMK11, ALK+15, AR10, ARAG17, ABGD12, AG12, ASS10, BY11, BLBG+13, BZB+13, BG13, CHG+16, CRZ+18, CSSdOM17, CWHH11, CK17, CCM15, CF14, CC11, DCHL12, FRSA14, FD16, GH17, GZL+12, GCCM15, GI10, GNGC10, GND12, GEG11, GP12, Han11, HPT17, Hii13, HNN+17, HRJ+14, HRJ+15, HG10, ISN13, IK13, IM17, JRSPH14, JLH+14, JW16, JYS+12, KHW17, KLN12, KM13, LCW12, LBGS16, LCL+10, LLH17, LPMT17, MCC11, MAK+14, MWJ+11, ME10, NMLD13, NO16, Niz13, ORZ11, OZLSBH12, PAK17, PML+12, PPH+14, Pie14, Py13, QZ10b, QZ10c, QB16, RAGL11, RJPB12, RCM+13a, RML+15, RB12, RSLML12, RHPWS13, Ruei11, SM14a, SFG+17, SCW11, SSSM15, SHF11, SEF+16, SE14, SH14, ST13, SHL+13, SMW09, SB14, SMM+18, SKTT16, SZZS16, STS15, TLdG+12, theory [TAG16, VDL+13, VVPI12, VV14, VL17a, VAMS14, WHL+10, WDLG12, WHX+11, WO15, WL14, WGN+16, XTY+14, XYW+14, YJ11, YLZ+10, YS13, YK15, ZXS+10, ZS1L12, ZLZ14, ZDX11, ZYG+14, ZWY+10b, ZWY+10a, ZLH+14, dSDS12a, dSDS12b, vLBFR12]. theory/configuration [HPT17], theory/time [JYS+12], therapeutic [AFBR17], therapy [ZZ12], there [MLGB16], Thermal [LL10c, ASL+11, BIL10, NGAS17, LZLSBH12], thermally [IIHY15], thermocalc [HDH12], Thermochemical [TFQ+11, KSM16, TN12, WDW12], thermochernistry [HDH12, Sán17, SB14, TCGNT18], Thermodynamic [EOO+16, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11,

Topological
[Jan16, AR15, PRYI+17, SB11, TSZQ12, VAR12, VBMA13, Wei12b, vSGP10].
topologies [Gar12, TSNC+17]. topology [AD10, ASS+17, Dil15, FED17, GMSdG15, KP11, MSSP17, yOaCG10, Rod13, dCDP15, BLG10].
topomerization [GG10].
toroidal [AD10, ASS+17, Dil15, FED17, GMSdG15, KP11, MSSP17, yOaCG10, Rod13, dCDP15, BLG10].
torque [Elk16].
torquoselectivity [GMBX+16].
torsion [SS13b].
torque [Elk16].
torsional [DPSL16, FZY+12, HP10b, HXM+16, JMX+16, YZ16].
torsional [BAS14, PRRT+10].
torture [RHT+11, TTL+12, TQ1/PC [VL17b].
torture [RHT+11, TTL+12, TQ1/PC [VL17b].
torus [WRG+17].
total [BEEL14, IKN13, MA16, SM16a, WX12].
toxicity [TTB+11, TTL+12, TQ1 [VL17b].
toxicity [TTB+11, TTL+12, TQ1 [VL17b].
track [ENKK+17, RHT+15].
track [ENKK+17, RHT+15].
tracking [BHR15].
tracking [BHR15].
tractability [KFY+13].
tractability [KFY+13].
training [DBDP16].
training [DBDP16].
trajectories [AST+16, HRID16, JZL+17, KG13, LZS+17, PSP15, RN17, SFR+11, ZSS+13, dSVdM+16].
trajectories [IUK+11, JJW+14, LWD13, LAS+14, MKS+12, PVZ13, SBD+17, Yu12a].
Trans [CSM16, MSBF16, BLS10].
Trans- [MSBF16].
Trans-2-Butene [CSM16].
transcription [XMSZ16].
transfer [Alg17, AK10, ANH+11, BHB12, CMF+17, CSAdOM17, CPL11, DWR17, DaDG15, EFAC13, ENKK+17, FC16, HSH15, HAP+12, HDHL15a, HDHL15b, HDHL15c, IYK11, JM11, JCGVPHT17, KGR+16, KDR+18, LZL+10, LLLM11, LWGZ15, LPLB16, MPSG11, MRB14, MSV16, PGCT+12, PAK17, PL14, PTB+15, Ras17, RCM+13a, RML+15, Ric16, REL17, RDLM14, SRF+17, SBD+17, SMP17a, SHB17, TM16, Tsi17, VKTRJ15, VMTL10, VL17b, WCT+11, WG14, XLY12, YKH+10, YLZ+10, YTT12, ZW17, dALdS+15].
Transferability [FP17a, ZRL+15, HOK17].
Transferability [FP17a, ZRL+15, HOK17].
transfers [YZGS14a].
transfers [YZGS14a].
transform [Ano15-58, BH14, Ish12, LL13a, SZTSM10, YWJ+16].
transform [Ano15-58, BH14, Ish12, LL13a, SZTSM10, YWJ+16].
Transformation [CCOH14, APY+16, DLW12, KZZ+16, REH13, RSK+15].
Transformation [CCOH14, APY+16, DLW12, KZZ+16, REH13, RSK+15].
transformations [HDL+14, SJC11].
transformations [HDL+14, SJC11].
Transiting [CM13a].
Transiting [CM13a].
Transition [OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GKI15a, GFGS18, GPE13, Hsu14, IYK11, JZ17, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, NMLD13, PHK14, RAGLL11, RIJ+11, SJZ+15, VVv+15a, YZGS14b, YWZ14, ZWW10, Zim15].
transition-metal [LDZW17].
transition-state [CSAdOM17, RAGLL11].
transition [LDZW17].
transition [LDZW17].
Transitions [AKK+16, BD11, DH11, HS17b, HB15, MCvdV13, PBDW11, SBT17].
Translationaly [MRO17].
Translationaly [MRO17].
translocation [MJC14].
translocation [MJC14].
transmembrane [DSF17, LMI+14, LAW+16, WXL+12].
transmembrane [DSF17, LMI+14, LAW+16, WXL+12].
transmission [LLJ12].
transmission [LLJ12].
transphosphorylation [WXY14].
transphosphorylation [WXY14].
Transport [DJX+11a, DMN15, CWHH11, CBTZ16, DMN14, DJX+11b, HLWD15, LHO17, LJ+12, NS17, PGY15, SLIB12, SY16b, TCX+13, ZYG+15].
Transport [DJX+11a, DMN15, CWHH11, CBTZ16, DMN14, DJX+11b, HLWD15, LHO17, LJ+12, NS17, PGY15, SLIB12, SY16b, TCX+13, ZYG+15].
transportation [LZY+12a].
transportation [LZY+12a].
trapped [DM15, VIT+15, WLV+10].
trapped [DM15, VIT+15, WLV+10].
Treating [JLCA17, SMP17a].
Treating [JLCA17, SMP17a].
Trends [CRP17, SMP17a].
Trends [CRP17, SMP17a].
tri [ZP13].
tri [ZP13].
tri-N-acetyl- [ZP13].
tri-N-acetyl- [ZP13].
tria
triadic [PPUBGD10]. triads [YKH+10].
triaminoguanidinium [ZYL+12]. triangles [She12]. triangular [TS11].
triangularly [LWZK13]. trianguenes [GSMM15]. triarylamine
[KGR+16]. triazine [WDLG12]. triazines [YPC+10]. triazol [ZZWT12].
triazole [NS10]. triazoles [GKR13, Ray13, RKG11]. trichlorostannate
[PKK1]. tricyclic [VSD10]. triel [Gra18, YKH15]. triene [ABDG12].
trifluoroethanol [JA10]. trifluoroethanol/water [JA10].
trifluoromethane [CLC11]. trifurcation [HOM+16]. triggered
[DAdGR15]. triggering [LLD17]. trigonal
[Ano11, Gav12, GRD+10, JHMB+09, JHMB+11]. trihalide [Gra18].
trihydrate [PM13]. trimer [THP+15, YCGA10]. Trimeric
[PMT16, RCM+13a, RML+15]. trimetallic [GLF16]. trimethylsilyl
[BIL10]. trinitrotoluene [SH14]. tripeptide [BH15, GMO16].
triphenylamine [MSV16]. triple [ACD+13a, ACD+13b, POB13].
tripeptide [POB13]. triplet [RS17a, THP+15]. triplets [EK15].
trNA [LBS10]. tropocollagen [PP10]. Trotter [VKAM12]. Trp [EJ13].
truncation [ACD+13a, ACD+13b, CS14, IMSR18, MC12]. trust [PLAG11].
trying [BRGN12]. trypanothione [VSD10]. tryptophan
[EOA+11, PS14, SHB17, VMTL10]. Tsallis [QZ10c]. TTTO
[JB12, SLHW9]. tuberculosis [MPNS13]. tubes [TS15b]. tubular
[uLhY11, ZLY+16]. tularensis [STM+15]. tumor [JAH+17]. tuned
[BK17b, HZSS17, SZS16]. tungsten [TS15a]. Tuning [Ano11, JHMB+09,
JHMB+11, BK17b, LWL+11, Mor15, RLG11, WYT17, LZ12]. tunnel [KL14].
tunneling [CSAdOM17, HS16a, LZW+11, OT12]. TURBOMOLE
[KK17b, RR14, STH+10, vV111]. tweezers [MBA14]. twelve [Pog10]. twist
[KTK17]. twisted [YLZ+10]. Two
[DS12b, Gra18, KKN11, KTO13, SC17, CCOH14, DPB+12, ECZWD17,
FRSA14, GAMAC+14, HLH+12, LPAS11, LRER13, NASH15, PS17, PW12,
SL14, SJC11, TCPC14, VT14, YAS13, YLL11, ZTH+15, SM17].
Two-Body [SC17]. two-center [LRER13]. two-component
[NASH15, PW12]. Two-dimensional [KTO13]. two-electron
[PS17, YLL11]. Two-level [KKN11]. two-phonon [DPB+12, ZTH+15].
two-scale [FRSA14]. Two-step [DS12b, SJC11, TCPC14]. type [BM12,
BE16, CYY+17, CRC13, CB11c, Dl15, HLWD15, JYC+16, LH14a, MY17a,
MY17b, MKH15, RKB+14, SZX13a, SZX13b, VED10, WvRSM14, ZX11].
type-II [CB11c]. types [SK+11, UT15]. typical [TZ12]. typing
[FP17b, YPKB12].
AKN16, HH10, HDMP+15, Ish10, KTO11, LMIP+14, OL13, ZZ14].

unactivated [YXZZ17], **unbiased** [ISO+13], **uncertainty** [Fer17, Han11].
unconventional [LDJ+10]. **uncoupled** [HH17]. **underlying** [RN17, SGPJS+17]. **Understanding** [DLZ15, Lun12, RCM+13a, TZ11, dCDP15, BH13, FCOGM12, KNE11a, LGVA14, LGKS17, VVJ15, ZK11].
unexpected [HYYZ13]. **Unexpectedly** [SDF12]. **Unfavorable** [MP17a, PRP15]. **Unified** [PPUBGD10, CVT+11, TNYN16].

unique [GS11, uLhY11]. **unit** [CKKK16, DZA11, DGL+13, EP10, Elk16, PMT16, SRL+15, WS13].
unit-based [WS13]. **Unitary** [SSSM15].

unitary [JGS+17, Jor17, ST11].
units [CCCLCGRO14, CYI+10, FCOGM12, GBL+11, HASR+12, HEMCZE+14, WSGN11, YWJ+16, YN15, ZKE+17].

universal [AH10, AJR16, Gar12, SYN+12].

unknown [GPdC+16, KYT+17, MFR10].

unperturbed [Gri13].

unraveling [HYYZ13]. **UNRES** [KMLS10, Sie15, SJ17]. **unrestricted** [BW11a].
Unsaturated [HPT16a, Tsi17].

unsulfated [SA10].

ununoctium [TH13].

unusual [KYCL11, LZJ+11].
unzipping [SM15, SM16b].

Update [CZAF17, MRO17, SPL+18, DPNM11]. **updated** [BCJC+14]. **Updates** [AIGP15, Ak16, APK14, AAC+16, BTA+13, BHB12, BCSJ+13, BSZ+12, Ber17, BJP15, DNN15, BFH+13, BBG+18, CBH14, CSEMM+16, CZAF17, CAT+13, DJD+12, DVVP14, DDK+14, DWC17, DSK+13, EB13, EWB+13, FN12, FSC+14, GMSdG15, Gar12, GJMPAM+14, GLW13b, GS12, GCP+13, GCC14, GBW+14, GH16b, HLS+13, HRB+17, HDH12, HPT+16b, HPSP12, HHT+13b, HH16b, HG13, HYMZ16, HK+14, HBJ+17, HL1+14, HC14, IGK16, JHH+13, JJW+14, JLA+17, JP15, JCMG18, KS13a, KS15, KI17a, Kan15, KB16, KDR+18, KLI+17, KJM+17, KDT+12, Kos16, KG13, KWL+16, KI17b, KG17G, KYG+15, KAG+12, KSW16, KFP+15, LPS12, LJR+12, LHSH12, Leh15, LRRvOM15, LRV+17, LDB+17, LLAZ+16, LB+15, LWZ+17, LC12, LAS+14, MHT+18, MDT+16, MBR+15, MYT+18, MSP17, MB14, MB16, NKJ16, OV14, OPB+12, OZS+13, OC14, PSS14, PGL+15].

updates [BBDP16, PSG+17, PW12, PPM15, PHH+12, PVZ13, PG14, RLLHL12, RNSF+16, Ras17, Rex16, RR14, RdA12, RSR+12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sie15, SJ17, SWB+12, SDMS13, TYN+16, TSC+13, TTR+12, TTL+12, UU12, VMRSH+17, VV+15b, VAR12, VB13b, WDN12, WDI3, WPM+15, WF16, Wei12b, WHK+12, WHJ+13, WG14, WCJ+14, XM+15, XXY17, YWJ+16, YZ16, Yes12, Yes15, YH+13, ZDKM12, ZL+13, dVAG16, KKR+13, SR18].

updating [UM13]. **upgrade** [ZSLL17]. **uptake** [WKC10a].

uracil [HvM12, LGOM+15, LJW11a]. **uracil/uracil** [HvM12]. **uranium** [OSS10].

uranyl [OSS10]. **URBOMOLE** [BBG+11]. **ureas** [FCL+10].

ureido [SSP+13]. **ureido-benzenesulfonamide** [SSP+13]. **uridines** [DPSL16].

urokinase [BM12]. **uroporphyrinogen** [BEL+11]. **uroporphyrinogen-III**
Use [DCOD13, GPM17, HCD+10, MPA12, MMZW14, NPTS16, NC14, NDD+10, RLDD12, WM17, Yes12, BCP+10].

[PGY15, Pie14, PLAG11, TH13]. Useful [SMGB11]. Usefulness [PSP15].

Using [BS15, Car14, DLL+10, HH10, HPSK12, LLvG10, LG14, MP11, QLQ11, SK17, TNG+10, WF16, AASP18, AG11, AGM+13, AC12, BW11b, BMR11, BDT11, BB11a, CVT+11, CAP17, CSSB11, DWL11, DBK17, DFF+15, DCHL12, DLZ15, EWK+13, FF11, FLM11, FL15, Gar12, GRS15, GFPSD17, GMO16, GZM11, GRL+10, LBB+15, LCH10, LCL+10, LMR14, LSG11, LTA+11, LBDP12, MS17, MZZ11, MRB14, MJC14, MN15, MY17a, MZ13, MKM+17, MCUI15, MVKS10, MKB+13, MFR+17, MIOM13, MJM10, M515, NLP+16, NASH15, NHH16, OCW+15, PGDO+16, PC11, PG15, Pia14, PJ13, RB13a].

using [RLDJ17, RDDS10, RJH11, RS13, RRK14, RIC16, REL17, REV+17, Ru11, RHG10, REN13, SMO11, SFM14, SDF+17, SVB10, SA13, SCW11, SFF+16, SHL+11, SKKS13, SY11, SRS14, SZZS16, STS15, TZY+16, Tak14, TKN10, TS17, TJB12, UTM11, VBAM12, VECT12, VI17, WKL12, WDYN12, WLC12, WZ17, WJX+10, WDHZ13, XTY+14, XYX17, XWW+11, YWJ+16, Yn16, YN15, YDX16, ZWLX11, ZL11, ZLT13, ZWS+10, ZP13, ZH12, ZHX11, dLC17, LHH+10]. Utility [YWVM12]. Utilizing [BVY+12].

UV [GGM+12, KASH14, RDF+11, RvdMB16]. UV-photoexcitation [RvdMB16]. UV/Vis [GGM+12].

V [WWKS16, LZL+15b, MG11, PBE16, WRM+12, WYGW12]. Valence [FF11]. Valence

[WM12, YWZ14, BEEL14, BACSCJ+10, FE14, GCW16, HIL13, HAI+16, Ibr17, KGR+16, LLW12, LWW12, PBO13, RHCH16, RvL11, SMW09, SCW13, TM16, WUW12, XP13, XiD15, vLBBr12, GWF11]. Validation [GMMH+16, GCP+13, PFVL14, WMW+10, ZST14, GMG+10, HM13].

validity [LP11b]. Value [SG10a]. Values

Variant [TKT11]. Variants [SLY+10]. Variation

[IMK+16, LgG13a, MFlG12]. Variational [RAGL11, TH13].

Variationally [YK13]. Variations [LLHM16, SH15]. Various [Sch18, CC11, DSM+11, GVP+10, GMO16, MJBM12, PGC12, PLC18, SOYC12, WDW12].

Varying [CC12a, GC11]. VasP [BVH17, HSR+12]. VBSCF [vLBBr12]. VC [WKL12]. VCH [Spr10]. vDNA [XY12]. Vector

[GTZ+18, HXH17, HXH18, RLL+10, TZY+16]. Vectorization [PC16].

vertical [UD12]. vertices [LK16b, OV14, RNVP13]. Very [Ran13, CSSB11, SAGC16, Ran12]. VESPA [Ran12]. VI [OSS10]. via [AKMT11, ACD+13a, ACD+13b, BSPP+13, BH13, CS17, DLZ15, GRCL12, HGCCGR+16, KHWB17, LAW+16, NSO+14, RO14b, RJWW12, SS13b, SISK10, SB15, SM17, TZ12, WBVE16, ZWP11, ZLY+16]. viable [SSX+14].

Volume [Ano17a, Ano17-27, Ano17-28, Ano17n, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, GY10, KRSC12, KTSW11, MK11, NASH15, NW17, SZTSM10, Yan14, ZKE+17].

W4 [KSM17]. W4-17 [KSM17]. Waals [BLF14, BB11a, BC13, CR14, DS12b, DSF17, KBC12, KCK+15, KGHK12, KLN12, LCH+15, SMGB11, SLIB12, SJZ+15, SYZ+17, YZZ+17, ZY14]. Wales [DWZ+17, YZN13]. walk [CY09, CY13]. Walking [CH16]. wall [BE14, Den12, FTR15, TSR+16]. walled
[AS15a, PBE16, RHNN10, VS14, WYL+15, YZN13]. Wang
[Ano12u, JW12, SA11]. Water
[DBGO+17, HvM17, LWL+16, MCUJ15, RBOH11, UNT16, ZLX+13,
AAS18, AIGP15, AOW11, AF14, BRLS08, BRLS12, CYY+17, CZH12,
CXV14, CCOH14, DDP16, GHL17, GM17, HH10, HvM16, Hug12, IUK+11,
JCP14, JIS13, KUDG12, KGHK12, KGH15, KB13, KJ10, KSR+16, LH11,
LK13, LPLS16, LP11b, LIRL+16, LCM+14, LJL+11, LAW+16, MC10,
MKH15, MJM+15, MHRR11, NC12, NC13, OSS10, PK15, PD11, RTS+13,
RZ16, Ric16, RRF11, RSB+13, SG16b, SNS16, SISK10, SMP17a, SY16b,
SIG+15, SM17, Ta17, TM16, TKYN17, TG12a, TL16, US11, VMTL10,
Vor12, WC13, WCWV15, WG12, YDR13, YZ17, ZCK+16, Zha12b].
water-fluoride [NC12]. water-halide [NC13]. water-vapor [SISK10].
water/ [RRF11]. water/aromatic [MJM+15]. waters [GEP+14]. WATsite
[HL14]. Watson [BZH14]. Wave [HH16a, BVHI17, BLZ+13, BTB+11,
Can10, Can11, EH13, Fer13b, Fer13a, FFA14, LHMM11, LWD13, MDTD13,
MDTD16, NFPD13, ON14, PHT17, RHRCH16, RV11, SFM14, SH14].
Wave-function [HH16a]. wave-functions [Bar14, BWKW10a, BWKW10b, LP11c, MDTD13, SAGC16].
wavefunction-based [GSS13]. wavefunctions [Bar14, BWKW10a, BWKW10b, LP11c, MDTD13, SAGC16].
[LYSS11]. weakly [WL14]. weaving [Che17]. web
[Chem10, Chem11, EH13, Fer13b, Fer13a, FFA14, LHMM11, LWD13, MDTD13,
MDTD16, NFPD13, ON14, PHT17, RHRCH16, RV11, SFM14, SH14].
Web-based [Gar12, JW+14]. web-user [WPM+15]. WEGA [YLGX14].
weighted
[Fer17, HNS16, HHWL17, LMZ+11b, PRY+17, RHJ11, ZH12, Hi113].
weighting [WDH13]. Weinheim [Spr10]. well [CME11, LV17].
well-done [LV17]. wells [GKSS14]. were [GS16, MFEM16, XFG+16].
wettability [SBC+11]. wheat [NMP+14]. where [AST+16]. Which
[RS13, SH11a]. white [ZP13]. whole [ZR16]. whose [KTY+17]. Widom
[LPK16]. Wiley [Spr10]. Wiley-VCH [Spr10]. Window [DAB16].
Window-Exchange [DAB16]. wires [LZY+12a, NS17]. wise [KSR17].
withdrawing [CWWH11]. within [AIGP15, BBG+18, CKL+11, DVVP14,
GLB16, HKR+14, IITY15, LR12, MKH+13, RCM+13a, RML+15, RHPWS13,
SFCCK+14, SFCCK+15, SFG+17, Sch12, SJZ+15, WC11, WPM+15].
without [FSD+18, GA14, KJ10, TH13, dLC17]. Wolf [GP12].
Wordom [SFR+11]. work [Bon14, CME11, KHWB17, NHH16]. Workbook
[HJG09, Spr10]. workflow [HG13]. wrong [SJWE10]. WS [EBP17b]. Wu
[Ano12u].

X [ASS+17, CXS10, GPK+16, EPH+15, LDJ+10, LLL+11, LJJ+11, Li14a,
Li14b, LGW12, LCWW10, LWD13, PMG+16, SPS+12, SZBM13, SLI12,
TFQ+11, UT15, YS13, ZYLL12, ZLL12, FZY+12, FLM11, JJ16, Kop15b,
LLBO12, LHSH12, LZL+15b, LCWW10, PDG+16, SKY+11, WWD14]
REFERENCES

References

Arthur:2016:EIC

Arthur:2016:PIG

Antoniotti:2012:GPR

Antoniotti:2013:EGP

Alakent:2011:ELB

Andres:2012:NRC

Allen:2015:DIN

Abraham:2011:PEG

Anisimov:2011:QMB

Avaltroni:2011:ERS

Avaltroni:2012:ICL

[AC12] Fabrice Avaltroni and Clemence Corminboeuf. Identifying clusters as low-lying minima — efficiency of stochastic and ge-

Adhikari:2013:EST

Adhikari:2013:STE

Asaduzzaman:2012:RBD

Affentranger:2010:PFC

REFERENCES

REFERENCES

Abraham:2011:OPM

Antony:2012:FIP

Anthopoulos:2013:GAM

Astray:2013:EFP

Artemova:2011:CNS

Artemova:2011:FCA

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[AKMT11] Ahmed Mutanabbi Abdula, Reema Abu Khalaf, Moham-

mad S. Mubarak, and Mutasem O. Taha. Discovery of new
β- D-galactosidase inhibitors via pharmacophore modeling
and QSAR analysis followed by in silico screening. Journal
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-

tronic).

[AKMYB18] Suliman Adam, Michaela Knapp-Moham-

mady, Jun Yi, and Ana-Nicoleta Bondar. Revised CHARMM force field param-
eters for iron-containing cofactors of photosystem II. Journal
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-

tronic).

[AKN16] Shalini Awasthi, Venkat Kapil, and Nisanth N. Nair. Sam-
pling free energy surfaces as slices by combining umbrella sam-
pling and metadynamics. Journal of Computational Chem-
istry, 37(16):1413–1424, June 15, 2016. CODEN JCCHDD.
ISSN 0192-8651 (print), 1096-987X (electronic).

[Alg17] Andrés G. Algarra. Computational insights into the S3 trans-
fer reaction: a special case of double group transfer reaction
featuring bicyclically delocalized aromatic transition state ge-
1973, August 15, 2017. CODEN JCCHDD. ISSN 0192-8651
(print), 1096-987X (electronic).

[ALH+10] S. Sikander Azam, Len Herald V. Lim, Thomas S. Hofer,
Bernhard R. Randolf, and Bernd M. Rode. Hydrated ger-
manium (II): Irregular structural and dynamical properties
revealed by a quantum mechanical charge field molecular dy-
namics study. Journal of Computational Chemistry, 31(2):
278–285, January 30, 2010. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

Addicoat:2011:DFT

Alberto:2014:ESI

Aquino:2011:CTS

Anonymous:2010:CFE

Anonymous:2010:JCC

REFERENCES

Anonymous:2012:CIIg

Anonymous:2012:CIIh

Anonymous:2012:CIIi

Anonymous:2012:CIIj

Anonymous:2012:CIVa

Anonymous:2012:CIVb

Anonymous:2012:CIVc

Anonymous:2012:CIVd

Anonymous:2012:CIVe

Anonymous:2012:CIVf

Anonymous:2012:CIVg

Anonymous:2012:CIVh

Anonymous:2012:CIVi

Anonymous:2012:CIVj

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIp

Anonymous:2013:CIIq

Anonymous:2013:CIIr

Anonymous:2013:CIIs

Anonymous:2013:CIIt

Anonymous:2013:CIIb

Anonymous:2013:CIIu

REFERENCES

Anonymous:2013:CIIv

Anonymous:2013:CIIw

Anonymous:2013:CIIx

Anonymous:2013:CIIy

Anonymous:2013:CIIz

Anonymous:2013:CIIaa

Anonymous:2013:CIIab
REFERENCES

15, 2013. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIac

Anonymous:2013:CIIad

Anonymous:2013:CIIic

Anonymous:2013:CIIae

Anonymous:2013:CIIaf

Anonymous:2013:CIIid

Anonymous:2013:CIIie

REFERENCES

15, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIf

Anonymous:2013:CIIg

Anonymous:2013:CIIh

Anonymous:2013:CIIi

Anonymous:2013:CIVA

Anonymous:2013:CIVj

Anonymous:2013:CIVk

Anonymous:2013:CIV1

Anonymous:2013:CIVm

Anonymous:2013:CIVn

Anonymous:2013:CIVo

Anonymous:2013:CIVp

Anonymous:2013:CIVq

Anonymous:2013:CIVr

Anonymous:2013:CIVs

Anonymous:2013:CIVb

Anonymous:2013:CIVt

Anonymous:2013:CIVu

Anonymous:2013:CIVv

Anonymous:2013:CIVw

Anonymous:2013:CIVx

Anonymous:2013:CIVy

REFERENCES

Anonymous:2013:CIVz

Anonymous:2013:CIVaa

Anonymous:2013:CIVab

Anonymous:2013:CIVac

Anonymous:2013:CIVc

Anonymous:2013:CIVad

Anonymous:2013:CIVae
REFERENCES

REFERENCES

REFERENCES

REFERENCES

DEN JCCDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVai

Anonymous:2014:CIVaj

Anonymous:2014:CIVak

Anonymous:2014:CIVam

Anonymous:2014:CIVan

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVav

Anonymous:2014:CIVaw

Anonymous:2014:CIVax

Anonymous:2014:CIVay

Anonymous:2014:CIVaz

Anonymous:2014:CIVba

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVbc

Anonymous:2014:CIVbd

Anonymous:2014:CIVbe

Anonymous:2014:CIVbi
REFERENCES

CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2014:CIVbl

Anonymous:2014:CIVf

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Anonymous:2014:CIVq

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt

Anonymous:2014:CIVu

Anonymous:2014:CIVv
Anonymous:2014:CIVw

Anonymous:2015:CIVa

Anonymous:2015:CIVb

Anonymous:2015:CIVu

Anonymous:2015:CIVv

Anonymous:2015:CIVw

Anonymous:2015:CIVx

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2015:CIVag

Anonymous:2015:CIVah

Anonymous:2015:CIVai

Anonymous:2015:CIVaj

Anonymous:2015:CIVak

Anonymous:2015:CIVal

Anonymous:2015:CIVam

Anonymous:2015:CIVc

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVan

Anonymous:2015:CIVao

Anonymous:2015:CIVap

Anonymous:2015:CIVaq

Anonymous:2015:CIVar

Anonymous:2015:CIVf

Anonymous:2015:CIVg

Anonymous:2015:CIVaz

Anonymous:2015:CIVba

Anonymous:2015:CIVbb

Anonymous:2015:CIVbc

Anonymous:2015:CIVbd
Anonymous:2015:CIVbe

Anonymous:2015:CIVh

Anonymous:2015:CIVi

Anonymous:2015:CIVj

Anonymous:2015:CIVk

Anonymous:2015:CIVl

Anonymous:2015:CIVm

REFERENCES

REFERENCES

REFERENCES

Anonymous:2016:CIVak

Anonymous:2016:CIVal

Anonymous:2016:CIVam

Anonymous:2016:CIVan

Anonymous:2016:CIVao

Anonymous:2016:CIVap

Anonymous:2016:CIVaq

Anonymous:2016:CIVar
REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:CIVas

Anonymous:2016:CIVat

Anonymous:2016:CIVau

Anonymous:2016:CIVav

Anonymous:2016:CIVaw

Anonymous:2016:CIVay

Anonymous:2016:CIVax

REFERENCES

REFERENCES

Anonymous:2016:CIVq

Anonymous:2016:CIVr

Anonymous:2016:CIVs

Anonymous:2016:CIVt

Anonymous:2016:CIVu

Anonymous:2016:EPR

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIC

Anonymous:2016:IIF

Anonymous:2016:IIG

Anonymous:2016:IIH

Anonymous:2016:III

Anonymous:2016:IJJ

Anonymous:2016:IIK

Anonymous:2016:IIl

REFERENCES

Anonymous:2016:IIm

Anonymous:2016:IIi

Anonymous:2016:IIo

Anonymous:2016:IIp

Anonymous:2016:IIq

Anonymous:2016:IIr

Anonymous:2016:IIs

Anonymous:2016:IIt

REFERENCES

REFERENCES

Anonymous:2016:IITe

Anonymous:2016:IITf

Anonymous:2016:IITg

Anonymous:2016:IITH

Anonymous:2016:IITi

Anonymous:2016:IIEa

Anonymous:2016:IIEe

REFERENCES

REFERENCES

Anonymous:2017:CIVq

Anonymous:2017:CIVr

Anonymous:2017:CIVs

Anonymous:2017:CIVt

Anonymous:2017:CIVu

Anonymous:2017:CIVb

Anonymous:2017:CIVv

Anonymous:2017:CIVw

REFERENCES

Anonymous:2017:CIVae

Anonymous:2017:CIVc

Anonymous:2017:CIVaf

Anonymous:2017:CIVag

Anonymous:2017:CIVah

Anonymous:2017:CIVd

Anonymous:2017:CIVe

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:CIVi

Anonymous:2017:E

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IId

Anonymous:2017:IJe

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

REFERENCES

Anonymous:2017:II

Anonymous:2017:IIm

Anonymous:2017:IIn

Anonymous:2017:IIo

Anonymous:2017:IIP

Anonymous:2017:IIq

Anonymous:2017:IIr

Anonymous:2017:IIs
Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIab

Anonymous:2017:IIac

Anonymous:2017:IIad

Anonymous:2017:IIae

Anonymous:2017:IIaf

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVc

Anonymous:2018:CIVd

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:CIVg

Anonymous:2018:CIVh

Anonymous:2018:CIVi

Anonymous:2018:CIVj

Anonymous:2018:IIa
Anonymous:2018:IIb

Anonymous:2018:IIc

Anonymous:2018:IId

Anonymous:2018:IIf

Anonymous:2018:IIg

Anonymous:2018:IIf

Anonymous:2018:IIi
Antol:2013:PPN

Anandakrishnan:2010:ABN

Aoun:2016:FRB

Akin-Ojo:2011:QBN

Arfeen:2014:ICC

Allen:2014:SNU

Bruce M. Allen, Paul K. Predecki, and Maciej Kumosa. Software news and updates: Integrating open-source software applications to build molecular dynamics systems. *Journal of
Arifin:2016:GTH

Ali:2010:RCR

Anjos:2015:TAE

Anderson:2017:RSZ

Avramopoulos:2013:VLN

REFERENCES

[Antila:2015:CTI] Hanne S. Antila and Emppu Salonen. On combining Thole’s induced point dipole model with fixed charge distributions

Abramyan:2016:CAM

Alvarez-Thon:2018:IGP

Acke:2018:IBN

Achazi:2016:TEI

Andoh:2017:EAP

REFERENCES

[Burger:2011:EPP]

[Bachler:2012:QCC]

[Borras-Almenar:2010:MPC]

[Balius:2013:GBM]

[Baranov:2014:ELI]

[Burger:2014:EPT]
REFERENCES

[BBI+11] Lukáš Bučinský, Stanislav Biskupič, Michal Ilčín, Vladimír Lukeš, and Viliam Laurinc. Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low-density

[Bazgier:2016:ERI]

[Burger:2013:EOV]

[Bond:2010:FOS]

[Borrelli:2010:EHR]

[Baldovi:2014:LEU]

REFERENCES

Brasil:2013:MEA

Bauer:2011:MDS

Bandura:2012:FPC

Bandura:2014:TZS

Bruckner:2016:TDC

Bendazzoli:2014:TPS

Bernardes:2017:SNU

Barigye:2015:MAI

Beu:2017:CFF

Boomsma:2013:SNU

Buelens:2012:LSS

Noah S. Bieler and Philippe H. Hünenberger. Orthogonal sampling in free-energy calculations of residue mutations in
REFERENCES

REFERENCES

REFERENCES

REFERENCES

1540, June 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[Bou14] Georgios C. Boulougouris. Free energy calculations, enhanced by a Gaussian ansatz, for the “chemical work” distribution.
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRLS08</td>
<td>Bondesson, Laban, Rudberg, Elias, Luo, Yi, and Salek, Pawel. Basis set dependence of solute–solvent interaction energy of</td>
</tr>
</tbody>
</table>

REFERENCES

Birkholz:2015:UBG

Blomberg:2016:IFE

Boese:2016:AAE

Borthakur:2016:TST

Bauza:2018:MEP

Bijina:2018:EPL
REFERENCES

Bannerman:2011:DFG

Bellinger:2016:IPS

Bomble:2013:BAP

Berenger:2012:SNU

Bachega:2013:SNU
REFERENCES

[BVHI17] Noèlia Pueyo Bellafont, Francesc Viñes, Wolfgang Hieringer, and Francesc Illas. Predicting core level binding energies shifts: Suitability of the projector augmented wave approach

REFERENCES

[BZH14] Ol’ha O. Brovarets’, Roman O. Zhurakivsky, and Dmytro M. Hovorun. Is the DPT tautomerization of the long A·G

Courcot:2011:MIB

Courcot:2011:OMMa

Courcot:2011:OMMb

Czyznikowska:2011:POS

Cumberworth:2016:FES

REFERENCES

Chakraborty:2017:ESI

Canneaux:2014:SNU

Cailliez:2014:CFM

Cardone:2015:DCN

Chen:2016:HSC

REFERENCES

Chen:2011:MSP

Campo-Cacharron:2014:IAU

Alba Campo-Cacharrón, Enrique M. Cabaleiro-Lago, Jorge A. Carrazana-García, and Jesús Rodríguez-Otero. Interaction of aromatic units of amino acids with guanidinium cation: the interplay of $\pi\cdot\cdot\cdot\pi$, $XH\cdot\cdot\cdot\pi$ and $M^+\cdot\cdot\cdot\pi$ contacts. Journal of Computational Chemistry, 35(17):1290–1301, June 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Campo-Cacharron:2014:IBI

Chang:2011:ADN

Chen:2010:FPC

Ramon Carbó-Dorca, Emili Besalú, and Luz Dary Mercado. Communications on quantum similarity, part 3: a geometric-quantum similarity molecular superposition algorithm. *Jour-
REFERENCES

Guillaume Chevrot, Eudes Eterno Fileti, and Vitaly V. Chaban. Enhanced stability of the model mini-protein in amino

Coccia:2012:QMC

Carlin:2015:ICA

Choi:2013:SBR

Cantatore:2012:SMP

Chaudret:2011:MBE

REFERENCES

Cao:2016:HEI

Cilpa:2010:AIC

Czajlik:2011:LPB

Chiba:2012:EPL

Chiba:2012:EEP

REFERENCES

Chu:2010:QMQ

Chang:2013:PSF

Chen:2013:PPD

Condic-Jurkic:2010:CQM

Campen:2010:IES

Cvitkovic:2017:DME

REFERENCES

2017. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Chakavorty:2016:ECB

Chung:2011:CST

Cabaleiro-Lago:2018:DCC

Click:2011:QRN

Clote:2015:EDR

Cao:2010:NSO

[CLX+10] Dong-Sheng Cao, Yi-Zeng Liang, Qing-Song Xu, Hong-Dong Li, and Xian Chen. A new strategy of outlier detection for QSAR/QSPR. *Journal of Computational Chemistry*, 31(3):

REFERENCES

REFERENCES

REFERENCES

Chen:2014:ESN

Cheron:2017:ESB

Carvalho-Silva:2017:DTS

Cardona-Serra:2016:SNU

Calbo:2017:DCS

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Chen:2017:APE

Coe:2013:MCC

Carvalho:2013:PMD

Costanzi:2012:SSA

Chuev:2014:ESS

Chavent:2011:GAA

[CVT*11] Matthieu Chavent, Antoine Vanel, Alex Tek, Bruno Levy, Sophie Robert, Bruno Raffin, and Marc Baaden. GPU-

[CYY+17] Shanshan Cao, Haiyan Yuan, Yang Yang, Mang Wang, Xiaoying Zhang, and Jingping Zhang. Mechanistic investigation

Cheron:2017:SNU

Chandra:2012:TII

Curco:2011:SSA

Chen:2011:EMB

Dickson:2016:CFB

References

587–594, March 5, 2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Raffaella Demichelis, Marco Bruno, Francesco R. Massaro, Mauro Prencipe, Marco De La Pierre, and Fabrizio Nestola.

Denis:2012:IBA

Ding:2015:GNA

Du:2013:PEF

DiPasquale:2014:MTS

DeBeer:2011:MDS

Duan:2013:TCD

Yu-Ai Duan, Yun Geng, Hai-Bin Li, Jun-Ling Jin, Yong Wu, and Zhong-Min Su. Theoretical characterization and design of small molecule donor material containing naphthodithio-phene central unit for efficient organic solar cells. *Journal of
Devereux:2014:SFA

Dieterich:2011:CIS

Dieterich:2014:GBS

Dasgupta:2017:SGH

Ducere:2012:CCA

Mario Ulises Delgado-Jaime and Serena DeBeer. Software news and updates: Expedited analysis of DFT outputs: Introduc

[REFERENCES]

Ding:2011:TPG

Ding:2011:FSE

DeSilva:2011:EPS

Dahanayake:2017:EES

Daido:2013:NQE

Dziubinski:2016:TIM

deLange:2017:TDD

Dai:2010:UGM

Du:2012:EFP

Dias:2011:SDP

Otero-de-la-Roza:2011:FAA

REFERENCES

REFERENCES

REFERENCES

pling on the conformational properties of RNA: Update of

Deng:2017:EMC

Dang:2017:FSW

Du:2010:SBQ

Dryzun:2011:QSC

Dlugosz:2011:BDS

Evarestov:2012:FPC

Evarestov:2013:BBN

Evarestov:2017:FPM

Evarestov:2017:PSE

Erba:2017:NRE

Eller:2015:CAE

El-Hamdi:2016:CAB

Eisenberg:2013:RTG

Eilmes:2015:SIT

Ehlert:2017:QBS

Ekesan:2014:TPE

Elking:2016:TAF

Dennis M. Elking. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization. *Journal of Computational Chemistry*, 37

REFERENCES

April 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Hage:2015:CJL

Ellingson:2013:SNU

Eriksen:2012:IES

Ellis:2017:CDC

Eskandari:2014:HHI

Zdeněk Futera and Jaroslav V. Burda. Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM
REFERENCES

REFERENCES

[Fel10] Udo Feldkamp. CANADA: Designing nucleic acid sequences for nanobiotechnology applications. *Journal of Computation-
REFERENCES

Ferenczy:2013:CWFb

Ferenczy:2013:CWFa

Ferguson:2017:BBA

Farrokhpour:2011:TSV

Fracchia:2014:MLQ

REFERENCES

REFERENCES

REFERENCES

Foroutan-Nejad:2011:DRC

Fomin:2011:CDL

Fomin:2013:MDS

Fletcher:2017:FTP

Fletcher:2017:TAA

Futura:2012:BPS

Forni:2014:HBB

Franchini:2013:BFC

Fraenkel:2015:ISL

Fraenkel:2016:ECI

Fuhrmann:2010:NLG

Fernandes:2015:QSL
Kyle D. Fernandes, C. Alicia Renison, and Kevin J. Naidoo. Quantum supercharger library: Hyper-parallelism of the

Flick:2012:MLB

Fias:2010:MDI

Fertitta:2014:AMA

Fernandez:2014:COA

Feng:2013:MGM

Fan:2015:DDS
Guo-Liang Fan, Xiao-Yan Zhang, Yan-Ling Liu, Yi Nang, and Hui Wang. DSPMP: Discriminating secretory proteins of

Gutsev:2016:SPI

Ganesan:2011:SDE

Gross:2017:MAI

Grebner:2011:ETS

Ghillemijn:2011:SCH

REFERENCES

Jan P. Götze, Claudio Greco, Roland Mitrić, Vlasta Bonačič-Koutecký, and Peter Saalfrank. BLUF hydrogen network dy-

Georgieva:2010:QCM

Gross:2016:LED

Gross:2016:SNU

Gao:2012:AFE

Gamez:2017:ADF

[GK15b] Jakub Gunera and Peter Kolb. Fragment-based similarity searching with infinite color space. *Journal of Computational

[GMASBF16] Rodrigo Galindo-Murillo, Luis Enrique Aguilar-Suárez, and Joaquín Barroso-Flores. A mixed DFT-MD methodology

Guo:2016:DQT

Gotz:2010:MEE

Ginex:2016:DVH

Graf:2016:FEC

REFERENCES

Grigoryan:2013:AFE

Guo:2011:PPF

Guo:2012:RRP

Jianxiu Guo, Nini Rao, Guangxiong Liu, Yong Yang, and Gang Wang. Retracted: Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. *Journal of Computational Chemistry*, 33(32):2614, December 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [GRL +11]. From the publisher: “The retraction has been agreed due to significant overlap with respect to another article, ‘Predicting Protein Folding Rate from Amino Acid Sequence,’ published in Progress in Biochemistry and Biophysics (2010, 37, 1331) and authored by a subset of the present authors.”.

Geppert:2012:VSC

REFERENCES

[GS16] Raimondas Galvelis and Yuji Sugita. The following articles were published in past issues of the *Journal of Computational Chemistry*. Replica state exchange metadynamics for improving the convergence of free energy estimates. *Journal of Com-
REFERENCES

putational Chemistry, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Jie Ying Gao, Cheng Hua Zhang, Mei Ming Luo, Chan Kyung Kim, Wei Chu, and Ying Xue. Mechanism for the reaction of
REFERENCES

Grosdidier:2011:FDU

Guo:2012:ICS

Gao:2016:CSG

Hahn:2010:IRE

Holmes:2016:ABV

Heinen:2014:HAE

Hamacher:2011:EQI

Hanke:2011:SAU

Hofinger:2012:GAC

Hassan:2014:ITS

Hacene:2012:AVE

Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr, Thomas Guignon, and Paul Fleurat-Lessard. Accelerating VASP electronic structure calculations using graphic processing units. *Journal of Computational Chem-

REFERENCES

Hughes:2015:RSA

Heinz:2015:TSI

Hellweg:2012:SNU

Huang:2015:ETAa

Huang:2015:ETAb

Huang:2015:TAE

REFERENCES

Hansen:2012:AED

Hildebrandt:2014:ECR

Harris:2017:CCF

Higo:2015:VSC

Hofmann:2014:TFF

Franziska D. Hofmann, Michael Devereux, Andreas Pfaltz, and Markus Meuwly. Toward force fields for atomistic simu-

Heinz:2010:CSB

Hellweg:2013:HCK

Huhn:2017:IES

Hernandez-Esparza:2014:GBA

Hess:2012:FPK

REFERENCES

[Hansen:2010:ULE] Halvor S. Hansen and Philippe H. Hünenberger. Using the local elevation method to construct optimized umbrella sam-

Hu:2010:GDM

Herrmann:2016:QCS

Hischenhuber:2013:CDG

Hischenhuber:2013:SNU

Huang:2017:EEB

Hill:2013:ABS

Hirst:2017:ISB

Hu:2010:ABF

Hnyk:2013:CCC

Heine:2009:CCW

Hoyvik:2013:PML

Hoyvik:2013:LHF

Hubin:2016:PRR

Hamilton:2018:PGR

Heinzerling:2012:FFF

Hrda:2014:SNU

REFERENCES

Han:2012:CMB

He:2013:SNU

Herbers:2013:RGC

Harger:2017:TOA

Huang:2015:ESM

Huang:2017:IIV

Chao Huang, Wenjian Liu, Yunlong Xiao, and Mark R. Hoffmann. iVI: an iterative vector interaction method for large

REFERENCES

Alexander Hoffmann, Martin Rohrmüller, Anton Jesser, Ines dos Santos Vieira, Wolf Gero Schmidt, and Sonja Herres-
REFERENCES

Hahnke:2010:PAS

Huang:2011:CSR

Hernandez-Rodriguez:2013:EDD

Hahnke:2011:PASb

Helmich:2012:SRM

Benjamin Helmich and Marek Sierka. Similarity recognition of molecular structures by optimal atomic matching and rotational superposition. *Journal of Computational Chemistry*,
Harris:2014:ISB

Hu:2014:SCM

Hagras:2016:ETP

Harris:2016:PEE

Harada:2017:SDS

Harada:2017:TSP

References

Heyndrickx:2011:PSB

Hellstrom:2015:TDE

Han:2011:RRP

Hayami:2014:EAC

Hsu:2014:NPS

Hao:2011:ACV

REFERENCES

Huang:2011:IQD

Harada:2015:ECS

Harada:2017:CFP

Huang:2016:FSL

Bolong Huang. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. *Journal of Computational Chemistry, 37*(9):825–835, April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Huggins:2012:BTA

Huggins:2014:CDM

David J. Huggins. Comparing distance metrics for rotation using the \(k\)-nearest neighbors algorithm for entropy estimation.
Hunter:2012:DBS

Hogan:2016:CBH

Hogan:2017:ECC

Hussain:2016:BAC

Hou:2011:APM

REFERENCES

REFERENCES

Ishikawa:2013:XOA

IN13 Atsushi Ishikawa and Hiroshi Nakatsuji. XPS of oxygen atoms on Ag(111) and Ag(110) surfaces: Accurate study with SAC/SAC-CI combined with doped adcluster model. Journal of Computational Chemistry, 34(21):1828–1834, August 5, 2013. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Imada:2018:DFS

Itoh:2013:CRE

Itoh:2013:HRP

Izanloo:2011:DDD

Ishida:2010:BMH

Ishida:2010:BMH

Ish10 Hisashi Ishida. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. Journal of Computational

REFERENCES

Ikabata:2015:LRD

Ikebe:2011:TTT

Inagaki:2011:PCE

Jalili:2010:MDS

Jablonski:2014:RBS

Jia:2017:EMI

[JAH+17] Zhe Jia, Christine Ackroyd, Tingting Han, Vibhor Agrawal, Yinling Liu, Kenneth Christensen, and Brian Dominy. Effects from metal ion in tumor endothelial marker 8 and anthrax
REFERENCES

REFERENCES

Jahangiri:2014:PDF

Jaillet:2011:RTC

Jiang:2010:INA

Jorge:2017:PHSa

Jenkins:2013:SNU

Jimenez-Halla:2009:TAT

REFERENCES

Jimenez-Halla:2011:ETA

Jakobtorweihen:2013:CCM

Jiao:2016:CCS

Jin:2013:CPR

Joy:2016:CXZ

REFERENCES

Jeong:2014:SNU

Jankowska:2016:SOZ

Jia:2017:SNU

Jiang:2014:SCH

Jia:2010:CSM

REFERENCES

REFERENCES

369, March 5, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[JSW10] Xiao-Nan Jiang, Chang-Liang Sun, and Chang-Sheng Wang. A scheme for rapid prediction of cooperativity in hy-

Jin:2016:SCF

Jorgensen:2012:LEC

Jones:2016:MHD

Jensen:2015:ETS

Jono:2010:MIQ

REFERENCES

Kazaryan:2013:ADF

Kessler:2014:MDH

Krause:2014:CLS

Kendrick:2016:SNU

Kalugina:2012:SHV

Kalyaanamoorthy:2013:LRM

Kumar:2017:CBD

Konc:2012:SNU

Khanjari:2017:ANB

Kingsley:2016:RPP

Kandathil:2013:ATK

Kesharwani:2011:PSE

Koukos:2013:SNU

Karton:2015:ARB

Kazachenko:2015:AGB

Kaukonen:2012:LJP

REFERENCES

[KJM+17] Chigusa Kobayashi, Jaewoon Jung, Yasuhiro Matsunaga, Takaharu Mori, Tadashi Ando, Koichi Tamura, Motoshi

[KKO+16] Kyrylo Klimenko, Victor Kuz’min, Liudmila Ognichenko, Leonid Gorb, Manoj Shukla, Natalia Vinas, Edward Perkins,

REFERENCES

Kwon:2016:SCE

Knapp:2010:VPR

Kozlowska:2010:DSCa

Kozuch:2013:SCS

Kozlowska:2010:DSCb

Urszula Kozłowska, Gia G. Maisuradze, Adam Liwo, and Harold A. Scheraga. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein...

Katouda:2017:MOH

Kim:2011:DDB

Kneller:2011:CFD

Katouda:2016:MPA

Kjaer:2012:NMR

Hanna Kjaer, Monia R. Nielsen, Gabriel I. Pagola, Marta B. Ferraro, Paolo Lazzeretti, and Stephan P. A. Sauer. Nuclear

Michelle M. Kuttel, Jonas Stähle, and Göran Widmalm. Software news and updates: CarbBuilder: Software for building

Kleesiek:2010:RSS

Kefalidis:2012:DSM

Kirkpatrick:2017:ECI

Koyano:2010:OSS

Kokubo:2011:IPP

Kokubo:2013:TDR

Klenin:2011:DMS

Kanematsu:2016:IUE

Kashmirian:2012:MDE

Kadam:2012:NAM

Kadam:2013:SPN

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Kaur:2014:MIN

Krieger:2015:NWB

Kuriakose:2015:CSA

Karolak:2014:ESS

Karimi-Varzaneh:2011:IMD

Kritayakornupong:2010:IQM

[KVR10] Chinapong Kritayakornupong, Viwat Vchirawongkwin, and Bernd M. Rode. An ab initio quantum mechanical charge field molecular dynamics simulation of a dilute aqueous HCl
REFERENCES

Kubar:2015:SNU

Kratz:2016:SNU

Knight:2013:AQA

Kim:2011:ECE

Kumar:2015:SNU

[Anmol Kumar, Sachin D. Yeole, Shridhar R. Gadre, Rafael López, Jaime F. Rico, Guillermo Ramírez, Ignacio Ema, and David Zorrilla. Software news and updates: DAMQT 2.1.0: a new version of the DAMQT package enabled with the topographical analysis of electron density and electrostatic po-
REFERENCES

Kirilchuk:2015:MPF

Kajiwara:2017:ITM

Koukaras:2012:SSE

Keceli:2016:SIP

Labonte:2017:RCM

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

Liu:2010:RIC

Li:2010:NBO

Li:2015:VWE

Lorenz:2014:BDG

Liu:2016:DTI

REFERENCES

2228–2241, September 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Lyons:2014:PBC

Li:2010:NUH

Li:2016:SFC

Liang:2017:PRP

Lage-Estebanez:2017:RER

Lehtola:2015:SNU

Law:2014:PFE

Li:2012:QMR

Li:2010:EGC

Ling:2011:STC

Lucas:2014:UCM

November 5, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

[Li:2014:EMI] Xinying Li. Erratum: Metalophilic interaction in gold halide: Quantum chemical study of AuX (X = F–At). *Journal of
REFERENCES

[LL13a] Yung Ting Lee and Jyh Shing Lin. Ab Initio molecular dynamics study of ethylene adsorption onto Si(001) surface:

Liu:2013:EFA

Lai:2015:ICD

Li:2012:FPI

Laref:2012:ESX

Li:2010:EPF

REFERENCES

Lin:2017:NDC

Lin:2017:TID

Liu:2016:ISV

Lii:2011:APE

Le:2014:SIK

Liu:2017:AFD

REFERENCES

Liao:2011:NGR

Li:2011:FPI

Liu:2014:RDM

Lu:2012:MAD

Lin:2012:TDV

Lin:2010:UOS

[LLvG10] Zhixiong Lin, Haiyan Liu, and Wilfred F. van Gunsteren. Using one-step perturbation to predict the effect of changing force-field parameters on the simulated folding equilibrium of
REFERENCES

[Li:2012:TCA]

[Li:2012:SNU]

[Long:2015:GGA]

[Li:2014:MUS]

DEN JCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Labat:2011:RNE

Lim:2010:TDS

Lee:2016:PGA

Li:2013:CDS

Lombardi:2016:ETD

[LRER13] Rafael López, Guillermo Ramírez, Ignacio Ema, and Jaime Fernández Rico. Improved partition–expansion of two-

[Lei10] Lei:2010:NIM

Liu:2011:ATD

Liao:2013:CQO

Liu:2014:OAC

Long:2011:CSU

Liu:2011:IMO

Sen Lin and Daiqian Xie. New ab initio potential energy surfaces for both the ground ($\tilde{X}^{1}A'$) and excited ($\tilde{A}^{1}A''$) electronic states of HSiCl and the absorption and emission spectra of HSiCl/DSiCl. *Journal of Computational Chemistry*, 32(8):1694–1702, June 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Li:2011:SPD

Liu:2010:DTD

Lankau:2010:MSE

Li:2013:ADM

LYL16

Shide Liang, Yaoqi Zhou, Nick Grishin, and Daron M. Standley. Protein side chain modeling with orientation-dependent atomic force fields derived by series expansions. *Journal of

REFERENCES

[**LZL**+13] Liu:2013:FNM

[**LZL**+15a] Li:2015:CQM

[**LZL**+15b] Li:2015:CYX
Wei Li, Yanli Zeng, Xiaoyan Li, Zheng Sun, and Lingpeng Meng. The competition of Y · O and X · N halogen bonds to enhance the group V σ-hole interaction in the NCY · o PH₃ · NCX and O PH₃ · NCX · NCY (X, Y F, Cl, and Br) complexes. *Journal of Computational Chemistry*, 36(18):1349–1358, July 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[**LZL**+16] Liu:2016:MIM

[**LZLC13**] Liu:2013:ADI

[LZY+12a] Jinliang Li, Zhenzhen Zhao, Cui Yu, Hongbo Wang, and Jianwei Zhao. Theoretical investigation on the transportation behavior of molecular wires with redox reaction. *Journal

Paul G. Mezey and Zoltan Antal. An alternative to the “Star Path” enhancement of the ADMA linear scaling method for protein modeling. Journal of Computational Chemistry, 38
Michaud-Agrawal:2011:MTA

Matanovic:2014:ADF

Manz:2013:LEC

Mehdi:2010:ESR

Matta:2010:HDM
REFERENCES

REFERENCES

[MCLD10] Daniel K. W. Mok, Foo-Tim Chau, Edmond P. F. Lee, and John M. Dyke. High-level ab initio calculations on HGeCl and the equilibrium geometry of the \(\tilde{A}^1\tilde{A}' \) state derived from Franck–Condon analysis of the single-vibronic-level emission spectra of HGeCl and DGeCl. *Journal of Computational Chemistry*, 31(3):476–491, February 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ma:2011:IDP

Modesto-Costa:2015:WSE

Ma:2013:FES

Maupetit:2010:FML

Maintz:2013:APP

Maintz:2016:SNU

[MFEM16] Yinglong Miao, Ferran Feixas, Changsun Eun, and J. Andrew McCammon. The following articles were published in past issues of the *Journal of Computational Chemistry*: Accelerated molecular dynamics simulations of protein folding. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Syed Tarique Moin, Thomas S. Hofer, Bernhard R. Randolf, and Bernd M. Rode. Structure and dynamics of methanol in water: a quantum mechanical charge field molecular dynamics

Maeda:2018:SNU

Morishita:2013:FRF

Muhammad:2015:HDH

Mitin:2013:PFM

Maingi:2012:DBT

REFERENCES

Mach:2011:GML

Mach:2013:AMC

Malyszek:2013:AIP

McConnell:2017:IRC

Moore:2013:HQP

Makowski:2010:DEC

Merlot:2013:AEE

Middendorf:2015:SSB

Miyashita:2017:FFC

Matsui:2013:CSC

Marais:2012:ECM

[MKS+12] Patrick Marais, Julian Kenwood, Keegan Carruthers Smith, Michelle M. Kuttel, and James Gain. Efficient compression of

Mo:2013:DSE

Mei:2012:EPC

Masetti:2017:DMM

Muller:2010:CCR

Mamonov:2016:FGB
Maekawa:2016:RIO

Mirijanian:2014:DUA

Martinez-Nunez:2015:AMF

Murata:2010:LSE

Murata:2010:SSD

Mori:2015:STB

Yoshiharu Mori and Hisashi Okumura. Simulated tempering based on global balance or detailed balance conditions: Suwa–Todo, heat bath, and Metropolis algorithms. *Journal of Computational Chemistry*, 36(31):2344–2349, December 5,
REFERENCES

2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[M Mori:2017:CCU

[M Mori:2015:DSC

[M Mori:2012:ALS

[MMP11

[MMP13

REFERENCES

Maxwell:2017:URR

Myers:2017:PLP

Marques:2010:GCL

Marques:2012:UBB

Mukherjee:2011:FEG

Minovski:2013:CBM

[MPNS13] Nikola Minovski, Andrej Perdih, Marjana Novic, and Tom Solmajer. Cluster-based molecular docking study for in silico identification of novel 6-fluoroquinolones as potential in-

Michael:2017:SMN

Mahanta:2011:ISP

Miriyala:2017:DNC

Mandado:2014:AER

Meisner:2011:KIE

Margreitter:2017:UPC

Mayeno:2011:REA

Manz:2010:DRC

Miao:2011:RHB

Moura:2012:QMM

Martins:2013:CAC

Mohammadiarani:2017:IMP

Mohan:2010:CAN

Miao:2011:DFT

Matsuzaki:2017:CPD

Matsuzaki:2017:OCS

Maruyama:2014:MPI

REFERENCES

1347–1355, July 5, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[NC14] Soumya Ganguly Neogi and Pinaki Chaudhury. Structural, spectroscopic aspects, and electronic properties of (TiO₂)n,

Nemeth:2010:CIC

Noel:2010:USI

Nieto:2014:BNM

Neumann:2013:MDM

Neumann:2015:MMA

REFERENCES

Ng:2013:RCC

Nishimura:2018:PIE

Nishizawa:2016:TPA

Namsani:2015:IPM

Nishizawa:2016:RQM

Norby:2016:MME

Ng:2017:RFT

Nunes:2013:NAP

Nagai:2016:UMS

Nekouzadeh:2011:TRL

Nagar:2010:MDI

Shuchi Nagar and Achintya Saha. Modeling of diarylalkyl-imidazole and diarylalkyl-triazole derivatives as potent aromatase inhibitors for treatment of hormone-dependent can-

Okoshi:2014:ASC

Ortega:2016:CEN

Ozawa:2011:ICH

Otsuka:2015:AAB

Orlando:2012:SNU

REFERENCES

Opletal:2017:RMC

Olah:2016:IGC

Omar:2011:EOD

Orthaber:2012:OVS

Orenha:2017:HCM

Olsson:2016:CLB

Ončak:2010:TSM

Ootani:2012:IMD

Olechnovic:2014:SNU

Otero:2015:HBI

Opron:2016:FRI

[PAK15] Pouya Partovi-Azar and Thomas D. Kühne. Efficient “on-the-fly” calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic so-
Partovi-Azar:2017:TDD

Pasalic:2010:TSH

Peintinger:2014:CCM

Pietropaolo:2011:CBM

Perilla:2011:CET

Benjamin P. Pritchard and Edmond Chow. Horizontal vectorization of electron repulsion integrals. *Journal of Com-
Pelloni:2011:RCM

Plumley:2011:CBF

Plazinski:2012:DCI

Pinjari:2016:CSR

Parac:2010:QMC
PintoDaSilva:2011:TMC

Petrella:2011:VMS

Pol-Fachin:2014:EVG

Popov:2014:SNU

Pavlova:2015:PMA

Pan:2012:CSH

Panteva:2015:CST

Pesonen:2010:PCI

Poolmee:2010:IES

Panosetti:2012:AMC

Proppe:2015:CTM

Passler:2017:CLM

434

REFERENCES

Pang:2013:SEM

Pape:2013:DDM

Pool:2012:SNU

Pedersen:2014:BSE

Pohl:2017:OSF

REFERENCES

1788, September 15, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Pelloni:2018:PCM

Plazinski:2011:MBC

Plewczyński:2011:CWT

Plazinski:2016:RGF

Presti:2016:MEF

Paschoal:2012:RBS

Pomogaeva:2016:TCL

Pipek:2013:EPR

Project:2010:FFD

Perrin:2013:CSR

REFERENCES

1762–1773, July 30, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Alejandro Speck Planche, Marcus Tulius Scotti, Vicente de Paulo Emerenciano, América García López, Enrique Molina.

Prandi:2016:CCM

Puranen:2010:ACD

Pacifici:2013:HLI

Poger:2010:NFF

Purushotham:2012:CIC

[PZBA13] Mark Pinsky, Amir Zait, Maayan Bonjack, and David Avnir. Continuous symmetry analyses: $C_n\alpha$ and $D_n\alpha$ measures of

[Xiangda Peng, Yuebin Zhang, Huiying Chiu, and Guohui Li.
Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. Journal of Computational Chemistry, 37(6):614–622, March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).]

[Xiangda Peng, Yuebin Zhang, Huiying Chiu, and Guohui Li.
Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. Journal of Computational Chemistry, 37(6):614–622, March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).]

[Paolo Della Porta, Riccardo Zanasi, and Guglielmo Monaco.

[Paolo Della Porta, Riccardo Zanasi, and Guglielmo Monaco.

Qi:2011:UHC

Qi:2010:DSA

Qu:2010:RPP

Quapp:2010:TST

Qu:2010:DAT

Quapp:2010:TST
REFERENCES

Rathore:2011:MMS

Raskovalov:2017:SNU

Rayne:2013:LEC

Ricci:2012:DFT

Rai:2013:FAG

REFERENCES

[RCM+13a] Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian Wan, Xin Xu, and Minghui Yang. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of Förster theory. *Journal of Computational Chemistry*, 34(12):1005–1012, May 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ribeiro:2012:SNU

Rastelli:2010:FAP

Ravelli:2011:PUS

Roth:2016:HRE

Raupach:2014:QIB

[RDT14] Marc Raupach, Stefanie Dehnen, and Ralf Tonner. Quantitative investigation of bonding characteristics in ternary Zintl anions: Charge and energy analysis of \([\text{Sn}_2 \text{E}_{15}^5 \text{(ZnPh)}^-] \) (\(\text{E}^5 \) = Sb, Bi) and \([\text{Sn}_2 \text{Sb}_5 \text{(ZnPh)}^2_{13^-}]\). *Journal of Computational Chemistry*, 35(14):1045–1057, May 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Rybkin:2013:ICB

ROSSI:2014:CIS

ROMBOUTS:2017:QAL

RUBEZ:2017:GAI

REZAC:2016:SNU

REZABAL:2015:EPB

Racine:2016:RWF

Rohrmuller:2015:CTT

Rui:2010:POP

Rick:2016:PCT

Re:2011:GAY

Reckien:2012:IED

[RJPB12] Werner Reckien, Florian Janetzko, Michael F. Peintinger, and Thomas Bredow. Implementation of empirical dispersion corrections to density functional theory for periodic sys-

Ringholm:2014:GRO

Rubesova:2017:EML

Riojas:2012:PAD

Rusakov:2015:FCR

Rossini:2016:EPS

REFERENCES

Rossini:2016:PSP

Romero:2014:PDU

Roston:2014:SRM

Roy:2011:QMR

Rahalkar:2010:MTA

Rao:2010:ISM

Rampino:2012:SNU

Ruiz:2011:SEA

Ren:2015:CIE

Yanliang Ren, Osama Melhem, Yongjian Li, Bo Chi, Xinya Han, Hao Zhu, Lingling Feng, Jian Wan, and Xin Xu. Clarifying and illustrating the electronic energy transfer pathways in trimeric and hexameric aggregation state of cyanobacteria allophycocyanin within the framework of Förster theory. *Journal of Computational Chemistry, 36*(3):137–145, January 30, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Rehman:2016:SS

Ramirez-Manzanares:2015:HAM

Alonso Ramirez-Manzanares, Joaquin Peña, Jon M. Azpiroz, and Gabriel Merino. A hierarchical algorithm for molecular

REFERENCES

REFERENCES

Remya:2017:TEB

Rybkin:2013:IDE

Rzepiela:2010:RAD

Risthaus:2014:ING

Ryzhikov:2015:SSR

REFERENCES

REFERENCES

Rodrigues:2016:UPU

Rashid:2011:GKV

Roumen:2011:ALB

Rogan:2013:SFM

Ren:2013:AEE
Yi Ren, Xi-Guang Wei, Si-Jia Ren, Kai-Chung Lau, Ning-Bew Wong, and Wai-Kee Li. The α-effect exhibited in gas-phase $S_N2@N$ and $S_N2@C$ reactions. *Journal of Computational Chemistry*, 34(23):1997–2005, September 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Mariano Spivak, Celestino Angeli, Carmen J. Calzado, and Coen de Graaf. Improving the calculation of magnetic cou-

Scemama:2016:QMC

Sanchez:2017:RTC

Szklarczyk:2015:PCG

Sax:2012:LMO

Salehzadeh:2010:TSS

Silva:2011:HFO

Alexander M. Silva and Itamar Borges Jr. How to find an optimum cluster size through topological site properties: MoSx.

Nathan Schmid, Mathias Bötschi, and Wilfred F. Van Gunsteren. A GPU solvent–solvent interaction calculation accelerator for biomolecular simulations using the GROMOS soft-

REFERENCES

Schwarz:2010:BRB

Schwarz:2010:BRB

Schwabe:2012:AFT

Schwabe:2012:AFT

Schmidling:2013:NSB

Schmidling:2013:NSB

Scheiner:2018:CVM

Scheiner:2018:CVM

Sanchez:2015:NQM

Sanchez:2015:NQM

Song:2017:SDI

Song:2017:SDI

Bin Song, Nathaniel Charest, Herbert Alexander Morriss-Andrews, Valeria Molinero, and Joan-Emma Shea. Systematic derivation of implicit solvent models for the study of polymer

Shirazi:2014:AKM

Seal:2010:CRG

Shaghaghi:2016:SGA

Solomentsev:2012:EEE

Schleder:2017:DCB

Starek:2017:GEV

Sanchez-Flores:2014:PAE

Sanchez-Flores:2015:EPA

Stehr:2016:CCM

Schluns:2017:SNU

Steinmann:2017:LEM

Stephan N. Steinmann, Paul Fleurat-Lessard, Andreas W. Götz, Carine Michel, Rodrigo Ferreira de Morais, and

[SG13] Rebecca Sure and Stefan Grimme. Corrected small basis set Hartree–Fock method for large systems. *Journal of Computa-
REFERENCES

Sanchez-Garcia:2010:QMS

Sviatenko:2016:SEP

Sviatenko:2013:TSI

Simonson:2013:CPD

Sancho-Garcia:2017:DRU

REFERENCES

[SH15] Régis Tadeu Santiago and Roberto Luiz Andrade Haiduke. New density functional parameterizations to accurate calcu-

[SH18]

[Suess:2017:QCC]

[Sherman:2012:SNU]

[Sergiievskyi:2011:MSR]

[Shin:2011:LPL]
Smith:2013:CSE

Sakae:2011:PSP

Sieradzan:2015:SNU

Sviatenko:2011:TRC

Sviatenko:2015:ROP

REFERENCES

Schlund:2010:PTE

Song:2015:ODO

Szarek:2011:MED

Sharma:2012:CPK

Stachowicz:2013:BDM

REFERENCES

[Standara:2013:XNC] Stanislav Standara, Petr Kulhánek, Radek Marek, and Michal Straka. 129Xe NMR chemical shift in Xe@C\textsubscript{60} calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent. *Journal of Computational Chem-

[SLT14] Oliver Sala, Hans Peter Lüthi, and Antonio Togni. The solvent effect on two competing reaction mechanisms involving

Sala:2015:DCR

Shen:2015:ACG

Sano:2010:MDC

Seetin:2011:ART

Sakuraba:2014:SNU

[SMGB11] Xiao Wei Sheng, Lukasz Mentel, Oleg V. Gritsenko, and Evert Jan Baerends. Counterpoise correction is not useful for

2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Seino:2016:IBE

SilvaLopez:2016:AAR

Sekiya:2010:RCB

Strobusch:2013:AHE

Sharma:2016:SEC

Steiner:2011:CBF

[SOD+11] Denise Steiner, Chris Oostenbrink, François Diederich, Martin Zürcher, and Wilfred F. van Gunsteren. Calculation of binding free energies of inhibitors to plasmps in II. *Journal

[Song:2011:SLR] Jong-Won Song, Daoling Peng, and Kimihiko Hirao. A semiempirical long-range corrected exchange correlation func-

Sciortino:2018:PIM

Springborg:2010:BRB

Sousa:2013:CAP

Saha:2012:CSS

Strohecker:2010:QCI

Szalay:2011:FCD

Singh:2018:SPI

Sakkal:2017:PCB

Savarese:2017:CPT

Shyichuk:2015:SDC

[SRL+15] Andrii Shyichuk, Marcin Runowski, Stefan Lis, Jakub Kaczkowski, and Andrzej Jezierski. Semiempirical and DFT computations of the influence of Tb(III) dopant on unit cell dimensions of cerium(III) fluoride. *Journal of Computational
REFERENCES

[SS13c] Thomas Simonson and Priyadarshi Satpati. Simulating GTP:Mg and GDP:Mg with a simple force field: a struc-

Scherrer:2016:MEL

SS16a

Schroder:2016:EDA

SS16b

Szczepanik:2017:RLR

SSA+17

Sushko:2010:QMM

SSAS10

Swart:2011:IID

SSB11

REFERENCES

Swart:2013:CII

Smiga:2016:AKS

Setzler:2014:SIG

Sharma:2015:EDA

Song:2009:EAE

Sahu:2013:BAS

Rebecca Sure, Ralf Tonner, and Peter Schwerdtfeger. A systematic study of rare gas atoms encapsulated in small...

Su:2010:CSP

Sun:2015:LEG

Sunda:2011:MDS

Sim:2015:HDH

Schwerdtfeger:2013:SNU

Strunk:2012:SNU

[SY16b] Jiaye Su and Keda Yang. Temperature dependence of the transport of single-file water molecules through a hydropho-

[Sharabi:2011:OEF]

[Sindhikara:2012:PAP]

[Solovyov:2012:MEU]

[Sun:2017:AVW]

[Sandhiya:2017:BHH]

Tomlinson:2016:NAS

Takeuchi:2010:GMG

Takeuchi:2011:TIO

Takahashi:2014:DRF

Tan:2012:CSP

Tantardini:2016:SFP
Christian Tantardini, Davide Ceresoli, and Enrico Benassi. Source function and plane waves: Toward complete Bader
REFERENCES

Shu-Wei Tang, Jing-Dong Feng, Yong-Qing Qiu, Hao Sun, Feng-Di Wang, Ying-Fei Chang, and Rong-Shun Wang. Electronic structures and nonlinear optical properties of highly deformed halofullerenes $C_{3v}C_{60}F_{18}$ and $D_{3d}C_{60}Cl_{30}$. *Journal of Computational Chemistry*, 31(14):2650–2657, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
Tang:2011:TSE

Tonigold:2012:DIW

Tsipis:2012:PES

Teodoro:2013:ARA

Tam:2015:BST

We refer you to the following references:

[TKT11] Tsuyoshi Terakawa, Tomoshi Kameda, and Shoji Takada. On easy implementation of a variant of the replica exchange with

REFERENCES

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Tang:2010:MKI

Tang:2010:MKI

Tsuneda:2016:RBO

Tsuneda:2016:RBO

Tsuneda:2017:LLE

Tsuneda:2017:LLE

Torrent-Sucarrat:2017:RDM

Torrent-Sucarrat:2017:RDM

Torres:2016:SAA

Torres:2016:SAA

Tang:2012:TMG

Tang:2012:TMG

REFERENCES

516

Urquiza-Carvalho:2016:ASE

Uppsten:2012:QCC

Unni:2011:WSS

Umeda:2010:PFM

Uhe:2011:AAC

Lao:2011:CSU

[uLhY11] Ka un Lao and Chin hui Yu. A computational study of unique properties of pillar[n] quinones: Self-assembly to tubu-
lar structures and potential applications as electron acceptors
and anion recognizers. *Journal of Computational Chemistry*,
32(12):2716–2726, September 2011. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

[Uejima:2013:GOF] Yutaka Uejima and Ryo Maezono. GPGPU for orbital func-
tion evaluation with a new updating scheme. *Journal of Com-
putational Chemistry*, 34(2):83–94, January 15, 2013. CO-
DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

protein structure affect binding of monosaccharides with HIV-
1 antibody 2G12. *Journal of Computational Chemistry*, 37
(26):2341–2348, October 5, 2016. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

[Udagawa:2011:IMD] Taro Udagawa and Shogo Sakai. Ab initio molecular dy-
namics of protonated water clusters by integrated multicenter
molecular-orbital method. *Journal of Computational Chem-
istry*, 32(13):2902–2908, October 2011. CODEN JCCHDD.
ISSN 0192-8651 (print), 1096-987X (electronic).

[Udagawa:2014:WND] Taro Udagawa and Masanori Tachikawa. Why is N···Be dis-
tance of NH₃H⁺···DBeH shorter than that of NH₃D⁺···HBeH⁺?
Paradoxical geometrical isotope effects for partially isotope-
substituted dihydrogen-bonded isotopomers. *Journal of Com-
putational Chemistry*, 35(4):271–274, February 5, 2014. CO-
DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

[Udagawa:2015:HDI] Taro Udagawa and Masanori Tachikawa. H/D isotope ef-
fect on charge-inverted hydrogen-bonded systems: Systematic
classification of three different types in H₃XH⁻···YH₃ (X = C,
Si, or Ge, and Y = B, Al, or Ga) with multicomponent calcula-
tion. *Journal of Computational Chemistry*, 36(22):1647–1654,
August 15, 2015. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).
REFERENCES

REFERENCES

REFERENCES

vanLenthe:2012:LEE

Vines:2017:SSE

Vorontsov:2011:CMD

Villa:2017:CPA

Valdebenito-Maturana:2017:SNU

REFERENCES

Vohringer-Martinez:2010:RWP

Vorobjev:2010:BDM

Vorobjev:2012:PMF

Vchirawongkwin:2010:IQM

vonRudorff:2017:CSP

REFERENCES

REFERENCES

[Varadwaj:2018:DSP]

[vW11]

[Vyb15]

[Vyb16]

[VYM15]

[VZ14]

[WES13] Hiroshi Watanabe, Marcus Elstner, and Thomas Steinbrecher. Rotamer decomposition and protein dynamics: Efficiently an-

Wolf:2010:GEI

Wolf:2016:ECG

Wu:2011:TMS

Will:2013:SNU

Weymuth:2012:SNU

Wadnerkar:2010:HUC

Waldher:2010:FCF

Weng:2011:NPM

Wadnerkar:2012:VDP

Wang:2010:ALF

Welsh:2014:ADF

Ivan Welsh and Matthias Lein. Accurate density functional theory description of binding constants and NMR chemical shifts of weakly interacting complexes of C$_{60}$ with

[WLHZ12] Li Wang, Yanjie Li, Hongqing He, and Jinglai Zhang. Hydrogen abstraction reactions of OH radicals with \(\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl}\) and \(\text{CH}_3\text{CHClCH}_3\): a mechanistic and kinetic study. *Journal of Computational Chemistry*, 33(1):66–75, January 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[WMN16] Changhao Wang, Peter H. Nguyen, Kevin Pham, Danielle Huynh, Thanh-Binh Nancy Le, Hongli Wang, Pengyu Ren,

Weiss:2015:ROS

Wang:2016:PHF

Wang:2018:AHF

Weidlich:2015:SNU

Witte:2017:CNO

[WRG+17] Matthias Witte, Martin Rohrmüller, Uwe Gerstmann, Gerald Henkel, Wolf Gero Schmidt, and Sonja Herres-Pawlis. [Cu₆(NGuaS)₆]²⁺ and its oxidized and reduced derivatives: Confining electrons on a torus. *Journal of Computational Chemi-
REFERENCES

Weijo:2010:WFP

Wessel:2012:EST

Wang:2010:IIC

Wu:2011:CSR

Wu:2012:TIR

Wilkinson:2013:POG

Wilkinson:2011:AGU

Wang:2010:GTI

Wang:2015:BCA

Wirz:2016:SFG

Wu:2010:CCN

REFERENCES

Weinhold:2014:BTH

Wang:2015:BCD

Wenzel:2014:CCL

Wang:2011:MDS

Wang:2016:BAS

References

REFERENCES

[wZbZ11] Chang wen Zhang and Fu bao Zheng. First-principles prediction on electronic and magnetic properties of hydrogenated...

[XFG+16] Junchao Xia, William F. Flynn, Emilio Gallicchio, Bin W. Zhang, Peng He, Zhiqiang Tan, and Ronald M. Levy. The following articles were published in past issues of the *Journal of Computational Chemistry*: Large-scale asynchronous and distributed multidimensional replica exchange molecular simulations and efficiency analysis. *Journal of Computational

Jing Xu and Yi hong Ding. Pentaatomic planar tetracordinate silicon with 14 valence electrons: a large-scale global search of SiX_nY_m^q ($n + m = 4$; $q = 0, \pm 1, \pm 2$; X, Y = main group elements from H to Br). *Journal of Computational Chemistry*, 36(6):355–360, March 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Xu:2011:QSS

Xu:2014:SMM

Xie:2017:SNU

Xia:2011:AHE

Yang:2011:DNS

Yang:2014:IES

Dilan Yildiz and Uğur Bozkaya. Assessment of the extended Koopmans’ theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardeneries, and

[Yu:2010:TSN]

[YCGA10]

[YCK16]

[YD17]

[YDGZ15]

[YDL+10]

[YHG+11] Hua-Qing Yang, Chang-Wei Hu, Chao Gao, Meng-Yao Yang, Fang-Ming Li, Cai-Qin Li, and Xiang-Yuan Li. Theoretical study on the gas-phase reaction mechanism between pal-

REFERENCES

REFERENCES

REFERENCES

Yu:2012:TSE

Yan:2015:PPB

Yuan:2015:DHH

Yang:2016:EPC

Yuan:2017:MID

Yamabe:2014:DSP

Shinichi Yamabe, Guixiang Zeng, Wei Guan, and Shigeyoshi Sakaki. A DFT study on proton transfers in hydrolysis reactions of phosphate dianion and sulfate monoanion. *Journal of

Yuan:2017:VWH

Zhu:2015:DMM

Zhou:2016:NIC

Zhang:2011:DPP

Zierkiewicz:2015:TIH

Zhong:2011:SPA

[ZBP11] Yang Zhong, Brad A. Bauer, and Sandeep Patel. Solvation properties of N-acetyl-β-glucosamine: Molecular dynam-
Zhang:2014:REG

Zoete:2011:SFF

Zabojnikova:2016:IPS

Zhou:2015:LVS

Zhao:2012:SNU

Zhao:2011:TDD

Zeng:2013:NSR

Zubatyuk:2010:EDF

Zhu:2012:CEE

Zhang:2011:SSE

Zhang:2012:REFb

Zhang:2012:REFa

Zou:2011:SSP

Zimmerman:2013:ADC

Zimmerman:2015:SET

Zeng:2013:FMS

Zhang:2017:EGD

Hui Zhang, Yang Liu, Jing-Yao Liu, and Ze-Sheng Li. Theoretical study and rate constants calculation for the reactions...

Zhang:2014:ECM

Zhu:2010:PEF

Zoboki:2011:ELN

Zhang:2012:IRE

Zhong:2013:BST

Zerbetto:2014:LSF

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
</tr>
</thead>
</table>
REFERENCES

Zhao:2013:FPC

Zahariev:2014:FAM

Zhang:2012:DFT

Zhang:2012:FFD

Zhang:2014:TSG

Zinovjev:2014:ECR

Zinovjev, Kirill; Tuñón, Iñaki. Exploring chemical reactivity of complex systems with path-based coordinates: Role of the distance metric. *Journal of Computational Chemistry*, 35
Zalesny:2015:TAD

Zuev:2015:NAI

Zhou:2017:BHH

Zhou:2015:ABO

Zaccaria:2016:IST

Zhang:2013:MPI

Xiaohua Zhang, Sergio E. Wong, and Felice C. Lightstone. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high

[Zhou:2016:IBH] Yuwei Zhou, Jianming Wu, and Xin Xu. Improving B3LYP heats of formation with three-dimensional molecular descrip-
Zheng:2010:DFTa

Zheng:2010:DFTb

Zhang:2011:IIR

Zhao:2011:HMM

Zhang:2010:ESO

REFERENCES

[ZYR+15] Wen-Yang Zhao, Jie Yu, Si-Jia Ren, Xi-Guang Wei, Fang-Zhou Qiu, Peng-Hui Li, He Li, Yi-Peng Zhou, Chang-Zhen
REFERENCES

[Zhu:2010:IAP]

[Zhao:2014:CBP]

[Zhao:2016:CDO]

[Zhang:2010:III]

[Zhou:2012:CMF]

