A Complete Bibliography of Publications in
Journal of Computational Chemistry:
2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

24 July 2017
Version 1.27

Title word cross-reference

(N – 1) [ACD+13a, ACD+13b]. (σ3, λ3) [TR12]. (σ3, λ3) [TR12]. +
[CXW14, GTK10, NMLD13]. 0 [UD12]. 1 [MG15, TS15b]. 1 – n [CYG+15].
10 [AC11b, TS15b], 13 [WYGW12]. 15 [AC11b], 17 [GZZ12]. 18 [LW16]. 2
[CWT+12, GSS13, MSBF16, MH10, SJD14, WvRSM14, YDL+10]. 20
[AC11b, LYL16, YVEI+17]. 24 [TS15b]. 3
[CM16, DVVP14, GMMH+16, GSS13, GPK12, LTT16, MG15, MA16,
MYT+14, PSS14, RVCFF13, TS15b, YLL11]. 4
[AFSW16, GWJJ12, ZTH+15]. 4d [Hil13]. 4f [Hua16]. 4 × 4 [SH14]. 5
[APY+16, LZH16, YLL11]. 512 [MKH15]. 6 [MCAY15, Rab12, TSQ12]. 62
[MKH15]. 63 [MKH15]. 64 [MKH15]. 8 [TN12]. 5 + 1 [YZL+15]. [n]
[uLhY11]. + [DDM+15, FD16, LCL+10, LdSRR16, LCWW10, RLA+11,
RRF11, SFBT17, UT14, YCGA10, YZ15b, ZCK+16, ZWY+10a]. +/+1
[TG12b]. + ⋄ π [CCCLCGRO14]. −
[CXW14, HBL12, JLH+14, LCWW10, RDT14, YCGA10, Yu12a, ZWY+10b].

[GT10].

[Ben17, KSK11, LGW12, LX11, LWD13, PTK11, Pie14].

[SKMS13].

[RDT14], {2} [RDT14].

[HAI+16].

[GTK10, LGW12].

[HAI+16].

[HA10].

[CM16].

[HJ13].

[SNKS10].
[DPSL16, GZZM16, LZL+15b]. \(\sigma \pi \) [CZY11, YWZ14]. Å1 Å' [MCLD10]. × [SRS14]. \(v = 0 \) [LWD13]. \(x = 1 \) [CWT+12, LZTV10].

- [CZY11, YWZ14]. ~A

-X [SZBM13]. -ZSM-5 [Pon10].

MgO [BS16b]. /MM [CZY11]. /TD [TS15b]. /Zn [GEP+14].

7 [ADF+10, MBR+15]. 7-azaindole [YYT12]. 7-tetraene [ABDGN12].

8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZHH11]. 8R [BG13].

= [CXS10, GPK+16, EPH+15, JLL+14, JJAB16, JJJ16, LDJ+10, LLL+11, LJJ+11, Li14a, Li14b, LGW12, LWW10, LWD13, MCK17a, MCK17b, PGS+15, PMG+16, Rab12, RDT14, SPS+12, SLIB12, TLdG+12, TFQ+11, TG12b, UT15, WWKS16, XiD15, YW12, YS13, YHCS11, ZYLL12, ZLLL12].

amino [CCCLCGRO14, CFC15, CB11d, FZL\(^+\)13, FP\(^+\)17b, GRL\(^+\)11, GRL\(^+\)12, HCP15, KLS10, KMLS10, LXL\(^+\)11, LP11b, MRO17, PHDH13, RSL16, SISK10, SZBM13, WC14, ZZWT12, ZKH\(^+\)10, ZHHX11]. amino-acid [KLS10, KMLS10]. aminoacid [MC10]. aminophenyl [LZL\(^+\)16]. aminophthalimide [WHL\(^+\)10]. aminopolycarboxylate [CMD13]. ammonia [BEPM14, CC12a, KT12, SNS16, SJZ\(^+\)15, VS14]. ammonia-borane [BEPM14]. AMOEBA [HLW\(^+\)17, MBE16, PZCL16, XP13]. among [KYB13, SH15, WGL\(^+\)11]. amorphous [Fom13]. amounts [FN12]. amounts [SFG\(^+\)17, FPV13]. amyloid [IO13b, LH11]. amyloid-beta [LH11]. analog [JBAM11]. analogs [DCHL12, LP11b, SISK10, VM11, WBT10]. analogue [PGW\(^+\)17]. analogues [LPS\(^+\)13, SGWA17, VVBL17, WS12, YLL11]. analyses [KASH14, KP11, PZBA13, SKGB13, VVJ15, XWW\(^+\)11]. Analysis [CDM\(^+\)15, HAI\(^+\)16, MOS12, AKMT11, AST\(^+\)16, ASL\(^+\)11, ARRCC15, Ano15-58, BK15, BH14, BSPP\(^+\)13, CAF\(^+\)13, CEBO15, CCC\(^+\)11, CAT\(^+\)13, CH14, DHF\(^+\)11, DJD12, DBK17, DCS15, EHSPT16, Fer17, FB12, FHW\(^+\)11, FHK\(^+\)12, GVP\(^+\)10, GLW13a, GLW13b, GND\(^+\)12, GCP\(^+\)13, Han11, HCD\(^+\)10, HPSK12, HHT\(^+\)13a, HHT\(^+\)13b, HDHL15a, HDHL15b, HDHL15c, HHWL17, Hug12, Jan16, JHH\(^+\)13, JJJ\(^+\)14, JZM14, JX10, KG13, KG\(^+\)Y15, LL13\(a\), LPS13, LMZ\(^+\)11b, LFM12, LAHS16, MDT13, MJ14, Mez10, MADWB11, MCLD10, MGS\(^+\)16, MCK17b, NIIT15, NS17, OXBW16, OC14, PTK11, PRT\(^+\)17, PTB\(^+\)15, PPUBGD10, PV12, PS14, RDT14, REL17, RL18, SYL\(^+\)10, SBB10, SFR\(^+\)11, SSS15, SMDK16, SS13c, SPR\(^+\)13, TYN15, TCB16, TD10, TT\(^+\)10, TS10b, UKS11, VBMA13, WNP\(^+\)16, Wei12a, Wei12b, XFG\(^+\)15, YK13, YNH\(^+\)17, Yes12]. analysis [Yes15, ZCS\(^+\)15, ZBB16, ZH12, vSGP10, ZSB\(^+\)11]. Analytic [MDTD13, SZX13a, SZX13b, MY17b]. Analytical [CCB15, HNWFO7, HNWFO12, LBGS16, SFG\(^+\)17, CHC\(^+\)13, FBY\(^+\)17, HH16a, KN17, KTSW11, MK13a, Pon11, ZWF15]. analytics [JZL\(^+\)17]. analyze [LP11c, OVPK15, QLQ11, RL18, YK011, dVAG16]. analyzer [JJW\(^+\)14, LC12, PVZ13]. Analyzing [BD11, MRB14, BCP\(^+\)10, LKS\(^+\)17, PHT17, SWA13, WES13]. anapole [ZPP\(^+\)16]. anatase [HRL11]. and [KB10, Pog10]. and/or [KB10, Pog10]. androstenedione [VCM15]. angle [CKP10, GBFD12, XML\(^+\)15]. angle-dependent [CKP10]. angles [BKLA13, EJ13, FZY\(^+\)12, GREA11, KTK17, LDH\(^+\)14, OZ14, YZ16]. angular [ENKK\(^+\)17]. anharmonic [Kow11, SSWX14]. anhydrase [SSP\(^+\)13]. anion [CG15, LC10, uLhY11, SDF12]. anionic [GZZ12, GWJ11, HPL13, JCP14, QZ10b, ZYR\(^+\)15]. anionic-water [JCP14]. anions [PVS12, RTD14, RJS17, ZYW\(^+\)10b, ZYL\(^+\)12]. anisotropic [Ano10a, CAT\(^+\)13, EPH\(^+\)13, ENKK\(^+\)17, NLP\(^+\)16, SLX\(^+\)15, SN10]. anisotropy [CP12, LPLB16, ZLZ14]. ANN [XWW\(^+\)11]. annealing [RHJ11, SHM11, SHL\(^+\)11, ZC14, LMZ11a]. annihilation [BL12]. Anomerization [SM17]. anomers [HH11]. ansatz [Bou14]. answer
Aromaticity
[CD16, AH10, AF16, Ano11, BY11, FC16, FNSF11, GRD10, HSB11, JHM10, KASH14, LZH16, MP11, YOP16, FB12].

arsenic/phosphorus [GWX12].

Artificial [CSAdOM17].

Atomic-resolution [BMFG16, NPG17]. Atomicistic [BH13, CHK10, MBA14, SE14, BLKP12, CZA11, DDP16, HDPM14, LZ12, MSC10, MMZ14, RO14b, RSG10, ZST14]. atoms [ARAG17, ARLP13, BSP13, DC13, EV14, GAM14, HSB11, HGCCGR16, IN13, LSH12, Mit13, Pyy13, SFCCK14, SFCCK15,
MC10, MA16, MS13, MPNS13, MMZW14, MFR+17, MO15, MNNK10b, NC12, NC13, NIX+10, NG10, OVPK15, OZLSBH12, PRP15, PC11].

based [PSC11, PBBP11, PN13, PKIC11, PPJ14, PLH16, PBE16, PPUBGD10, RLDJ17, RZG+13, RVP+11, SM14b, SFG+17, SLP+12, SLX+15, SFDE16, SLC+17, TYZ+16, Tak14, TTB+10, TS14, VGV+11, VVJ15, VKC10, VSA11, Vor10, WXL+12, WCDM11, Wei12b, WL14, WS13, WDHZ13, YJN+11, YZ16, YWJ+16, YZZ16, YDL+10, YJ11, YN15, YS13, YS15, YS10, YZZ+17, ZSLL17, Zha12b, Zha12a, ZY14, ZM10, ZYL+12, ZT14, dCLFGL13, dSVdM16, dVZ17, NKJ16]. **based-on** [CDS16].

bases [CWZB10, KASH14, MSLS10, SBW12, ZLL+10, Zha12a, ZBMZH15].

Basic [CMvG10].

basin [JLH+14, RDRC16].

basin-hopping [JLH+14].

basins [SBN13a, SBN13b].

Basis [BLF14, BRLS08, BRLS12, PHK14, SN16b, TKN13, ACD+13a, ACD+13b, BLFZ13, BLL13, BLBG+13, BS10a, BLG10, CC11, DBM+15, DLZ15, Fer13a, HSN14, Hll13, HBL12, KK17a, KNP+12, LBH+11, LCW12, Leh15, LYC+13, Mit13, OAN15a, PML+12, PGdO+16, POB13, Pla11, PD11, RLD12, SWM10, SGL10a, Sea10, SNKS10, Sun15, SG13, TH13, WX12, ZPP+16, ZLT13]. **Batch** [WHJH13, TJB12]. **bath** [CSEMB+16, MO15, Vor12, WAM17]. **BaTiO** [BE12, EB12, EBK13]. **Bay-type** [WvRSM14].

Bayesian [Fer17, GZ14, VZ14]. **BayesWHAM** [Fer17].

BayesWHAM [DZT11].

Be [LDJ+10, EPH+15, KV15b, LZW+11, NDG14, SMGB11, TH13, TCPPC14, Zha12b, BWKW10a, CCM15, CM16, ZLY+16]. **Becke** [FPV13].

BeH [ZLY+16, ZLY+16]. **behavior** [BVY+12, CME11, CSAOM17, FCD10, FTR15, KRTB10, LZY+12a, PD11, TLdG+12]. **belief** [GFPSD17].

Benchmark [WSZW15, AF14, ANH+11, cCVG+14, GAI14, KG15, RS13, ZWGO16, IKN13].

Benchmarked [XYW+14]. **Benchmarking** [Ben17, Hug12, LCM+14, GP11b, HRJ+14, HRJ+15, HZ13, JRSHP14, RSG14].

benchmarkings [GpdC+16]. **benchmarks** [ZDKM12]. **bending** [KB11c, Sch13]. **Bennett** [BB11b, KB11c, dRBO13].

benzaldehyde [Lu11].

benzannulation [YZL+15]. **benzene** [BPM15, BRLS08, BRLS12, CR14, Fom13, FTR15, FPRS14, SNS16, SGS+16, VVJ15, YHCS11].

benzenesulfonamide [SSP+13]. **benzenesulfonamides** [ALK+15].

benzenesulfonyl [YZGS14b]. **benzimidazole** [SJ16]. **benzo** [GKR13, Ray13, RKG11]. **benzo-** [GKR13, Ray13, RKG11]. **benzoquinones** [GNA+12].

benzyl [NDG14, YZGS14b]. **benzyne** [FC16]. **Bergman** [DHL12]. **Berne** [SLX+15]. **beryllium** [CME11, DLT17, Kop17a].

Best [KPF+15, AOW11, EK17, KM13, NG10]. **Best-First** [NG10]. **Beta** [KRSC12, HLH+12, Hug12, LH11, LJ+12, SKKS13]. **beta-barrel** [LJR+12].

beta-complex [SKKS13]. **Beta-decomposition** [KRSC12]. **beta-peptides** [HLH+12]. **Bethe** [KK17b].

better [AF14, BM12, KDS17, yOaCG10, XHL16]. **between** [ALW+10, ASL+11, AR10, ACS12, CCCLRO14, CZH12, CQFC10, COOH14, CB11a, DHF+11, Den12, FD14, FC16, GYX+10, GO13, Gav12, GKSS14].
DGH+11, EFAC13, EK17, EWK+13, EP12, EB12, EBK13, FAA15, FE14, GRARO+14, GMI16, HASR+12, HYL+11, HS14a, HB14, HSH15, Hel13, HG10, HG13, HBL12, HYUS11, JCG+11, KK17a, KB10, KKN11, KGK12, KRK+13, KERY+16, KCMPG12, KKL+13, KSH+17, LEEdldV17, LMZ11a, LCH10, Lyc+13, LCA17, LyG13b, LCM+14, Lun12, MCLD10, MCK17a, MCK17b, NWW17, OHNK11, OLA15, OOT15, OZLSBH12, PBLdS12, PTK11, PKH14, POB13, PBBP11, PDG+16, PN13, PGW+17, RAR+11, RHT+15, RLD12, RR11, REV+17, RI10, RK15, SH15, SRSLO15, SP13, SS16b, SCW11, SWPR11, SRS14, SDMS13, SHB17, SHTT11, TLdG+12, TS10a, UHH+11, VLb+10, VKAM12, VKNT16. calculations [VHR16, VFRAR16, VI17, WC13, WSZW15, WTH+16, WXY14, XYW+14, YWJ+16, YD17, YN15, ZRCC11, ZLT13, ZLZ14, ZWMW10, ZH12].
CASPT2 [SGWA17, VFRAR16]. Cassandra [SMRM+17].

change [EMD17], changes [GDV17, GBS+17, HB15, LK13, MJLV14b, MO17, RO14b, YZGS14b].

Changing [XVN17, LLvdG10]. channel [HYYZ13, PVL+13, SFJT17, SY16b, TCX+13]. channels [KC13a, LL10c, OKIS17]. character [BMB13, Cas14, RIJ+11, YSSB12]. characteristics [DPSL16, Gav12, LT14, Mat14, RDT14, TZ11]. Characterization [VT14, XWSW13, CBP+15, DGL+13, GBW+14, GZZ12, Kop15b, MJBMI2, MPA10, RNP13, ZYG+14]. Characterizing [LH11, PRSG13, She12, Yu12b].

charged [BK13, KD10, MRO17, NPP13, RJJS17, Tsi14].

MFM$^{+12}$, MFEM16, MSÅK12, PGCT$^{+12}$, SGM$^{+13}$, TKXT13, XFG$^{+16}$, XLYZ10, YKH$^{+10}$, ZSTI14, ZPP$^{+16}$, ZYW$^{+16}$, ZZWX11, All11, ABB$^{+12}$, ABB$^{+13}$, BCJC$^{+14}$, BHI13, CCCLRMO14, CCJ$^{+11}$, DPOS16, DZA11, DHE$^{+12}$, FMSG12, GS14, GAI13, GD10, GHV17, HCB11, HS16b, HDH12, HZ13, HV16, IHH15, KCI13b, KG11, KV15b, LC10, uLhY11, MS13, MS16, ME10, OSHG17, PGC12, PPUBGD10, PVS12, RCR$^{+16}$, Rez16, RK15, SLY$^{+10}$, SRR16, SNS16, SNGD$^{+16}$, SY16a, Su10, SDSMS13, SDL14, SIG$^{+11}$, SIG$^{+15}$, TF15, TLA10, TRA$^{+16}$, VZY13, WXL12, WCDM11, WS11, XWSW13, YDX16, ZCK$^{+16}$, dCLFGL13, FHW$^{+11}$, Spr10].

computationally [JJAB$^{+16}$]. computations [AGB$^{+13}$, B LBG$^{+13}$, CC$^{+12b}$, SRL$^{+15}$, VECT12, VAMS14, YB16, dACP$^{+12}$].

compute [HDM$^{+15}$, KK17a, YAS13, dVAG$^{+16}$]. computed [CCYL$^{+11}$, Fra15, Fra16, HJ$^{+13}$, IIHY15, RLDJ$^{+17}$, UKS$^{+11}$].

Computer [CLC$^{+11}$, BV14, CBP$^{+14}$, DSK17, GP12, KSH$^{+17}$, SYN$^{+12}$]. Computerized [VBDS$^{+11}$]. computers [CSSB$^{+11}$, ESB$^{+13}$, TJB$^{+12}$]. Computing [Ano$^{+10a}$, GK15a, HDL$^{+17}$, KHW$^{+17}$, PBDW11, SN10, ACD$^{+13a}$, ACD$^{+13b}$, BZB$^{+13}$, CHC$^{+13}$, CKKK$^{+16}$, GM17, LPLA$^{+13}$, MKI13a, MKO$^{+13}$, OV14, OPB$^{+12}$, Rod13, TF15, XYX17, Yan14, ZWL$^{+13}$].

concatenated [PSP$^{+15}$]. concentrating [LLL$^{+10}$]. concentration [IPAA$^{+11}$].

concept [GRL$^{+11}$, GRL$^{+12}$, dSVdM$^{+16}$].

congestion [KNE11a, XLYZ10]. condensation [KNE11a, XLYZ10]. condensed [HRB$^{+17}$, RSLML12, VKAM12, dSdS12a, dSdS12b]. condition [IKN$^{+13}$, MTvG$^{+12}$].

conditional [BMPML$^{+13}$]. conditions [BRGN$^{+12}$, KB14a, MO$^{+15}$, MO$^{+17}$, NO$^{+16}$, SIE$^{+15}$, SKMS$^{+13}$, TCPPC$^{+14}$, VECT12].

Conductor [KB14b, SDF$^{+17}$]. Conductor-like [KB14b, SDF$^{+17}$]. conductors [MRB$^{+14}$, NFI$^{+16}$]. cone [BKLA$^{+13}$].

Configuration [SS$^{+13a}$, Cas$^{+13}$, CTP$^{+13}$, EK$^{+17}$, GA$^{+14}$, GP11a, HBL$^{+12}$, LC$^{+10}$, MIS$^{+15}$, ZRCC$^{+11}$]. configurational [RO$^{+14a}$, WDHZ$^{+13}$].

Confining [NSP$^{+15}$, CDB$^{+10}$, FTR$^{+15}$, Vy$^{+15}$, Vy$^{+16}$]. confinement [TM$^{+16}$].

Confining [WRG$^{+17}$]. conformation [AST$^{+16}$, EJ$^{+13}$, PVJ$^{+10}$, SEF$^{+16}$]. conformational [SV$^{+11}$]. conformational [JJAB$^{+16}$]. conformational [JJAB$^{+16}$].
crystalline [DOM+11, DSLD13, DB12, EP12, EFOD13, GS12, DCOD13, RB13b, WDLG12].
crystallography [YW13], crystals [HZSS17, KGHC15, KLN12, KB16, LPS11, PLP+16, SFDE16, VECT12, You10].

CTOCD [PC14].
Cu [Rab12, RHT+15, TS15b, WRG+17, AMK11, CR14, ČMD13, GEP+14, HSH15, Mor15, PGS+15, PXXW10, PH12, RHT+15, SB10, WGN+16, WGLG+16, XP13, ZRCC11, ZSWL12].
Cu-O [ZRCC11].
Cu2II [WGLG+16].
Cuby [Rez16].
CuCN [TS15b].
CUDA [SR11].
CUDA-enabled [SR11].
CuE [TG12b].
curcumin [AMK11].
Curie [WMW11].
curing [LPMT17, PPH+14].
Current [NS17, ABM+15, FNSF+11, GWT+17, HLBLCCG15, PCLL11, PZM15, Vik11].
current-density [Vik11].
currents [RVB+12].
Curvature [LPLS16, RR12, NW17].
Curvature-dependent [LPLS16].
curves [BBI+11, LSH+11].
cut [DH14].
CVD [NIIT15].
CX [LGW12, EPH+15, ZYLL12].
CXH [CKL+11].
CXHM [LDJ+10].

cyanide [LZHH11, LLW12, TLY+12, VVBL17].
cyanide-chemosensing [LZHH11].
cyanides [PGS+15].
cyano [PKK17, TS10b].
cyanobacteria [RCM+13a, RML+15].
cyano [RCM+13a, RML+15].
cyanovirin [VM11].
cytochrome-P450-mediated [MRR11].
cytochromes [APA+14].
cytosine [JS17a, LZH+11, ZZY+16].
cyclizations [DCHL12].
cycloadditions [YZN13].
cyclobutadiene [SFM14, MCC11].
cyclized [QZ10a].
cyclodextrin [DBG11].
cycloguanil [APA+14].
cyclohexane [CROBY16, SNDK16, SAVG15].
cyclohexanes [SNDK16].
cycloocta [ABDGN12].
cycloocta-1 [ABDGN12].
cyclooctatetraene [DP11, SP13].
cyclopentadienes [LZH16].
cyclopropenylidene [VPV12].
cyclosporin [QZM11].
CYP11B2 [RVP+11].
CYP11B2-mediated [RVP+11].
CYP19A1 [VC15].
CYP2A6 [ALW+10].
cysteine [CPK12, SDL14].
cytochrome [EH13, BS16a, MRR11, SL+10, SOYC12, TN10, TDP+12, VCM15].
cytochrome-P450-mediated [MRR11].
cytochromes [APA+14].
cytosine [JS17a, LZH+11, ZZY+16].
detonation [LWWG12]. developers [GKV+13]. Developing [CK17, DSK17, LPS+13]. Development [GLB16, GMMH+16, LLJ12, MMB+17, MMZW14, RZG+13, RLD12, TNYN16, WPM+15, ZA15, CYG+15, GMASBF16, GCP+13, LPLA13, PZA15, PPM15, WDHZ13, YWZ14, ZsA10, ZSYH12, CRC13, VKC10, WCDM11]. developments [YWJ+16]. Deviation [CSAdOM17]. deviations [HDL+14, KG15]. devices [DJX+11b, DJX+11a]. Dewar [Bac12]. DFT [SIG+15, YJ17, ZZY+16, AALCM11, AR10, AF14, ASMS10, BTMS12, BIL10, BTB+11, CCB15, CH10, cCVG+14, CXS10, DJD12, EFAC13, FVP14, FPRS14, GMASBF16, HSH15, HRJ+14, HRJ+15, HBI+17, JRSHP14, KG15, Kar17, KT12, KKL+13, KM13, KP10, LEdOLdlV17, LRRB12, LZZ+10, LZHH11, LZX+10, LSH+11, LYSS11, LZLC13, LH14a, LLSW14, LCM+14, MMS16, MTD16, MG15, Mat10, MS11, MVK10, Mor15, MCK17a, MCK17b, NKJ16, NMLD13, PTK11, PHK14, QLYL10, RDF+11, RS14, RRC+15, RN17, REL17, RKB+14, RK15, SRF+17, SWM10, SRL+15, SDL14, TG12b, Ts14, Ts15b, Ts17, VVJ15, VECT12, VAMS14, WKL12, WYGW12, YZGS14a, YSRS10, YZ15b, ZCK+16, ZWGO16, ZZWT12, dSDdAR10].

DFT-based [NKJ16, NC12]. DFT-derived [REL17].

DFT-based [NKJ16, NC12]. DFT-derived [REL17].

diagonization [BK9+11, HKR+14]. diagonalization-free [BK9+11, HKR+14].

diagonization [OV14, VED10, ZY14]. diagrammatic [WWD14, YD17].

diagonization [OV14, VED10, ZY14]. diagrammatic [WWD14, YD17].

diagonization [OV14, VED10, ZY14]. diagrammatic [WWD14, YD17].

DFT-based [NKJ16, NC12]. DFT-derived [REL17].

diagonization [BK9+11, HKR+14]. diagonalization-free [BK9+11, HKR+14].

diagonization [OV14, VED10, ZY14]. diagrammatic [WWD14, YD17].

diagonization-free [BK9+11, HKR+14].

DFT-based [NKJ16, NC12]. DFT-derived [REL17].

diagonization [BK9+11, HKR+14]. diagonalization-free [BK9+11, HKR+14].

diagonization [OV14, VED10, ZY14]. diagrammatic [WWD14, YD17].

diagonization-free [BK9+11, HKR+14].

DFT-based [NKJ16, NC12]. DFT-derived [REL17].

diagonization [BK9+11, HKR+14]. diagonalization-free [BK9+11, HKR+14].

diagonization [OV14, VED10, ZY14]. diagrammatic [WWD14, YD17].

diagonization-free [BK9+11, HKR+14].
distance-dependent KCPMG12, distances BLDK+13, SSWX14, SMGB11, distinction ZY14, Distinguishing FD14, GMBX+16, Distributed XFG+16, BMBJ11, UIW+10, XFG+15, distribution [Bou14, HDK+12, HNS16, JLCA17, SYH12, TKN10, YKO+11], distributions [AS15b, BCSCJ+13, GWF11, GMG+10, LRER13, disulfide ZYS+10, ditetrazoles ZZWX11, dithiolate GS11, dithiolene KTK17, Divalent WC14, BMB13, divergence PNG10, diverse LLC+10, diversity WF16, Divide NNK+16, BRP+12, BGR13, BK17b, KKKN11, WX12, YN15, Divide-and-conquer NNK+16, BRP+12, BGR13, KKKN11, WX12, YN15, divide-expand-consolidate BK17b, Dividing SLT+15, DLPNO [CSGOA17], DLPNO-CCSD [CSGOA17], DMF [YZL+15], DMPC [GBL+11, PS10, SLX+15], DMS [RAGLI1], DNA [AB10, DNN15, BD11, BH13, BZH14, DMN14, FPB12, GWX+12, HKD+12, HQC16, HvM12, IPAA11, KvdV14, IW11, LMZ+11b, LIT12, OHNK11, OLA15, QLQ11, SM14b, She12, SM15, SM16b, SZSZ16, YZWC11, YJXZ13, YS10, ZLL+10, DNA-backbone [AB10], DNA MR [SR11], DOCK [ABM+15, BS10c], docking [ABM+15, BMR11, BAMR13, BBOB16, BBP11, BCG10, BEL+11, CSSB11, DFF+15, DSX+11, ESB13, FM10, FTW12, FRLN10, GLB16, GSHM10, GPS10, GZM11, HDM+15, HHLW11, HZ13, KERY+16, Kri10, LS11a, LLC+10, LL10b, LLL+13, LJL+11, MMM+16, MPNS13, MP11, MFR10, NMF+14, NHK+13, NG10, OCLM14, OZS+13, PLAG11, PLV+11, Pro16, RMP+13, SA13, SHL+11, SKKS13, TO10, VSD10, Vor10, WdVN12, WZ17, XML+15, ZL11, ZW13, ZSB+16, dVZ17, docking* LZ11, docking-rescoring [BMR11], DockoMatic [JBAM11], Does [MBFG15, MIS+15, SV15], DOI [Ano15-59], Domain [KNE11a, AC11a, IMK+16, MBT14, RJ16, SBFT17], domains [FCPMJ14, OOK11], dominant [Hua16], donor DGL+13, Gil11, Lu11, MSV16, MIS+15, donor- [MIS+15], donors [LC10, TZ12], dopant [SRL+15], doped [GAMAC+14, LLC17, PGC12, TN12, VS14, WMW11], doping [HYL+11, LLD17, WMW11], DOT2 [RTP+13], dots [DPAB16], double [Alg17, BE14, CCB15, CGR16, CC11, FC16, KM13, LBH+11, LYG+13, LLL+12, SGPS+17, SP13, Sea10, YYT12, ZLY+16], double-Hybrid [CGR16, LBH+11, SGPS+17, Sea10], double-wall [BE14], doubly [SZX13a, SZX13b, ZWIX11], Douglas [YS13], DOX [RCP+16], DPO [WGL+11], DPPC [LBDP12, rWGS17], DPT [BH13, BZH14], Dramatic [MLY+13], Draw [LBB+15], drawback [BRGN12], Drew [IPAA11], driven [BLSL11, DSM+11, HXM+16, KC13b, LLL+13, LLL+12, REL17], driving [RN17, YZ17], Drude [LKVdSM15, Ric16, SM14b, ZM10], Drug [GSHM10, MBA14, FLM11, GMASBF16, Ibr11, ISP+10, PC11, PVJ10, VHA+10], drug-like [VHA+10], druggability [LG14], drugs [PPUBGD10], DSCs [YI11], DSPMP [FZL+15], DsRed.M1 [SGDT10], DSS [GZM11].
DTTO [MCAG+16]. dual [JCG+10, MA16, TMJ15]. Duncanson [Bac12].
duplex [HDK+12]. Durandal [BSZ+12]. during
[GNDA+12, LBC+12, MJLV14a, MJLV14b, PNG10, RSKG14, dCDP15].
dyad [KP10]. dyads [KCK+15]. dye
[ACS12, JYS+12, LSL+12, YJN+11]. dye-aggregates [SLP+12].

dye-sensitized [ACS12, JYS+12, LSL+12, YJN+11]. dye-sensitizer
[YJN+11]. dyes [DBM+17, VAA14, WJG+13, YJN+11].
dynamic [LKL10, TNYN16, AKK+16, BS10a, BMB13, CVT+11, ESM+12, GBL+11,
Hel13, MB14, NYN17, OPR16, Vor12, PBDW11]. dynamical
[ALH+10, EFOD13, Ham11, VPR10]. dynamically [HS17].
Dynamics
[CPV+12, LK13, MFEM16, AALCM11, AG11, AS15a, Aki16, ASL+11,
ABD11, APK14, AB16a, ALH+10, BHB12, BSL11, BDTP11, BJSI12, BW15,
DMN15, BMBJ11, Bow16, BEL+11, CTR13, CS14, CH16, CCOH14,
CCW+10, CHKR10, DASA15, DGH+11, DSD+11, DZH11, DLZ15, EP10,
EK15, ETLS17, EFOD13, Fom13, FBM11, GBL+11, GDV17, GR11,
GWZ15, GCW14, GGM+12, GP11b, GC11, HZ11, HCD+10, HP10b, HPSK12,
HJ10, HHWL17, HRD16, HC14, IUK+11, ISK14, II10, IPAA11, JIS13, JA10,
JBSQG11, JCG+10, JAH+10, JST10, JMS14, JS17b, KCK+15, KV+10,
KUDG12, KGHC15, KDB13, KB14a, KNE11a, KERY+16, KLOS10, KSR+16,
KG13, KV15a, KVR10, LL12, Lar12, LWK+14, LH11, LJR+12, LL13a,
LRvdSM15, LCH10, LSY+13, LMI14, LPE+10, LLTC12, LZS+17, LPLB16,
LLT2, LBDP12, MBT14, MKS+12, MSC+10, MJ14, MN15]. dynamics
[MCRL17, MFEM15, MADWB11, MKM+17, MB16, MHR11, MO17,
MIOM13, NPTS16, NST14, NFDP13, NFG+13, NNK+16, NHK+13,
NTY15, Oht16, ON14, OGL10, OCL11, OLY17, OT12, OCW+15, PMC+17,
PSS14, PAK15, PH17, PL14, PM13, PD12, PHT17, PVZ13, PS10, PVAM16,
RS12, Ras17, RO14a, RO14b, RFN15, RR14, RdA12, RVdB16, RLG14,
REL+14, RSR15, RSB+13, SHMO11, SL+15, SWM10, SSWX14, SOM+13,
SJ17, SYN+12, SM16b, SK13, SKMS13, SLL13, SJ16, SV11, SBvG14,
SAvG15, Tac17, TNYN16, US11, Vor10, VM11, WKLC12, WBN+13,
WAM17, WC11, WHL+10, WH11, WWKS11, WLC2, WES13, WG14, Wu10,
WBVE16, YPvD13, YJXZ13, Yon16, Yu12a, ZZY+16, ZX11, ZDKM12,
ZBP11, ZP13, dCLFG13, dSVdM+16]. dynamics-based [Vor10].
DynamO [BSL11].

[Ano11, JHMB+09, JHMB+11, WD10]. easy [TKT11, VVV+15b, Yes12].
Ebola [OLY17]. economic [PN13]. Ecoupling [dVAG16]. edge
[DJX+11b, PDG+16]. edge-modified [DJX+11b]. editing [You10]. Editor
[GKR13, GPGSM12, JW12, Ray13, RSLML12, WM12, dSDs12b, vLBBR12,
Lli12, BCJC+14, KRC14, Man13, VVB13]. Editorial
[Ano16-56, Ano16-103, Ano16-104, Ano16-105, Ano16-106, Ano16-107, Yan16,
Ano16-129, Ano16-108, Ano16-109, Ano16-110, Ano16-130, Ano16-111,
Ano16-112, Ano16-113, Ano16-114]. Editorials [BEFS13]. Effect
[HDL^{+17}, SL10]. ended [RJR14, Zim15]. endo [FB14a]. endohedral [FL15, GLF16, MCK17a, MCK17b, ZSL^{+11}, ZYG^{+14}]. endohedrally [DM15, VIT^{+15}]. endothelial [JAH^{+17}]. endpoint [BB11a]. ene [GRCL12, FB12]. enediene [DCHL12]. Energetic [JW12, CG15, MCAG^{+16}, SLHW09, TPL^{+10}, YSRS10, ZZWX11, ZYL^{+12}]. Energetics [SFM14, BK17a, BMFG16, DSF17, JJH^{+13}, KB13, MP13, MBRC16, OCW^{+15}, SJ11, SNS16, SDB^{+16}, ST13, SFBT17]. energies [AF14, AS14, AG12, BW11a, BLF14, BVHI17, BS16b, BE16, CHG^{+16}, CMD13, CH10, CTP13, CBG16, DHOG13, DHF^{+11}, DPOS16, FGM11, Gil11, GP11a, Gri3, HAGK10, HH10, HH11, HLW^{+17}, HHWL17, IKN13, KSH13, Kar17, KJDB12, KB11b, KPY13, LW11, LHWH14, LH14a, MCS11, MS13, MSAK12, MBE16, MMJ10, NWW17, NMF^{+14}, OBW12, yOTn16, OAN15a, OSR16, PGCT^{+12}, PPJ14, RLKD17, RDDS10, RAR^{+11}, RO14b, RZ16, RR14, Rob13, RJS17, SRR16, SK12, SRL^{+13}, SOD^{+11}, STM^{+15}, SGWA17, TSI14, TSN16, UD12, VVG13, VECT12, VM11, WBT10, WS10, WJG^{+13}, WG12, WX12, YAS13, YMP14, ZZ14, dALdS^{+15}, dRBO13]. Energy [DK11, GS16, IIHY15, JCGVPHT17, LFN^{+10}, LPLB16, SN16b, SSGS15, SKGB13, WM12, AMGB10, AC11a, A-Nao10a, AK10, ANKN16, BCSCJ^{+13}, BPM15, BRE16, BH15, BS16a, BRLS08, BRLS12, BACSCJ^{+10}, Bou14, BD11, BWMSM10, BB11b, BB11c, BG12, CM13a, CK10, CDM^{+15}, CLA16, CY09, CX10, CY11, CI13, CH16, CS17, CHR^{+12b}, CHR^{+12a}, CKP10, CMvG10, CPK12, CWZB10, DGH^{+11}, DBG11, DS12b, DH14, DWC17, EV14, FMNC11, Fer17, FCOGM12, FSSW17, FCCP17, FLM11, GS14, GS15, GHH12, GO13, GNO16, HDL^{+17}, He13, HDM^{+15}, HH15, HG13, HYMZ16, HYUS11, HJKJ13, HYD10, HDH15a, HDHi15b, HDHL15c, IMK^{+16}, ISN13, JCP11, JMLL13, JZ12, JZZM14, JX10, KCB^{+12}, KTT16, KB10, KNHN16, KN17, KHWB17, KB11a, Kop15a, Kop16, Kop17a, Kop17b, KLS10, KMLS10, KCL^{+14}, LMZ11a, LZZ14]. Energy-adjusted [HH15]. enforced [BW11b]. engine [BEFS13, HC14, DBDP16]. enhance [EFH^{+15}, LZZ^{+15}, MIS^{+15}]. Enhanced [CFC15, HTS15, IMK^{+16}, KvdV14, BND14, KKO^{+16}, LC16, MBFG15, SL11, ZLT^{+15}]. enhancement [LLL^{+11}, MA17]. enhancements [Abr11]. enol [FD14]. enoyl [STM^{+15}, SJ16]. enoyl-ACP
Ensemble [PKIC11, MKM+17, YHH+13, ZWP11].

Ensembles [CDM+15, GO13, Gri13, PBDW11, PKIC11, RLDJ17, RO14a].

Entatic [HBR17].

Enthalpies [cCVG+14, HDK+12, LLH11, LWL+10, MRR11, WKC11, WDW12, ZWLX11].

Enthalpy [UCFR16, vADC+14].

Entropy [CHR+12b, CHR+12a, Pro16].

Environments [CCW+10, CB11a, JWST10, KKR+13, Lar12, LvG13b, LLT12, TLY+12].

Environment [JBSQG11, PAT+10].

Epimeric [HH11].

Epitope [CGBK13].

Epitopes [GRP+12].

Epoxidation [WCDM11].

Epoxides [BCP+10].

Equation [BCCO10, CD16, CLA16, Fer13b, Fer13a, FCE15, Fra15, Fra16, KK17b, RLS13, SK15a, SM16a, SG10a, WBVE16, XX17].

Equations [BYE+16, ZR10].

Equilibrated [WHAS+10, WHAS+16].

Equilibrating [OPR16].

Equilibration [LBDP12, SMP17].

Equilibrium [DSD+11, FD14, LLvG10, LvG13a, MCLD10, NHH16, SJWE10, WXY14].

Eric [Sch10].

ERKALE [LHS12].

Ermod [SM14a].

Errata [CHR+12b, HRJ+15].

Erratum [ACD+13a, Ano15-59, Ano15-58, Ano17z, ABB+13, BRLS12, CY13, Fra16, GLW13a, HNWF12, HvM17, HDHL15a, HDHL15b, ICS+13, JHMB+11, Li14a, MSK+12, RK16a, SFCCK+15, SB13b, SSM15a, WHAS+16].

Error [HAGK10, Hua16, PHK14, PB11, WNP+16, ZH12].

Errors [LEdOLdlV17].

ESCF [vW11].

Esculetin [LYSS11].

ESES [LWZ+17].

Essentials [DASA15, SKMS13, XTY+14].

Establishing [ZKH+10].

Estrone [AGM+13].

Estimates [GS16, GS15, NFG+13].

Estimating [RF15, KB11b, TTB+11].

Estimation [RLDJ17, BPE16, CZY11, Fer17, GLM+17, HHWL17, Hug14, JKS+16, MSV16, MRR11, OZS+13, PHK14, SY11, YOMT14, ZH12].

Estimator [FCPMJ14, WBF17].

Ethan [Tak11, ZLT13].

Ethanol [AAMD+11].

Ethylene [HLB15, WLC12].

Ethers [KGR13, Ray13, RKG11].

Etoh [KCS12].

ETS [CSM16].

ETS-NOVC [CSM16].

Eulerian [LWZ+17].

Evaluating [BY11, KPL13].

Evaluate [BY11, KPL13].

Evaluating [SJ16, WG12, HLS12, VL17a, XSZL11].

Evaluation [AYYO17, CHR+12b, CHR+12a, EP12, HG10, LLC+10, MBE16, MCK17a, RRRH12, RB13b, WM17, YD17, BMR11, BLF13, BLF14, DLT17, DS12b, GS11, HBI+17, ISO+13, KLOS10, Kos16, KSC16, LJW11a, LW11, LHHW14].
explosive \textsuperscript{YP+10}. Exponential BBOB16, BB11b. expressions Gav12. extended GWZX12, KUDG12, LRvdSM15, SSWX14, TSN17, YB16, Pon11. Extending \textsuperscript{LMZ11a, Man13, VBV13a, VBV13, PHH+12}. extensible GWZX12, KUDG12, LRvdSM15, SSWX14, TSN17, YB16, Pon11. Extensive \textsuperscript{LMZ11a, Man13, VBV13a, VVB13, PHH+12}. external \textsuperscript{GCW14, JYC+16, LAS+14}. \textbf{Extension} HSN14, PFVL14, SDZ17, YHVM12, Cam15, LL11, RLLHL12, Ras17. Extensive JW12, SLHW09, YB11, CF14, KM13. extrapolation \textsuperscript{CC11, LYC+13, OAN15a, SRR16}. Extreme HRHI17, Cam15, DS12a, JBSQG11. Extremely ZM11. F \textsuperscript{CXW14, CXS10, GPK+16, GTK10, HBL12, LZJ+11, Li14a, Li14b, PMG+16, Rab12, STM+15, TFQ+10, TFQ+11, TCPPC14, WLW+10, WCY+11, YS13, ZYLL12, ZLLL12, BWKW10b, CCM15, Chn10, H10, LZL+15b, MLGB16, SYH12, TCPPC14, Yu12a, ZWY+10b}. F-ATP SYH12. F12 \textsuperscript{BBG+11}. F12a MLCD11. F130L ZJZM13. FabI \textsuperscript{STM+15, SJ16}. face GY10, Zha11. Face-to-face Zha11. faces \textsuperscript{PRJ+17}. facilitate MDTD16. facilitate HNTS15. Facilitating CVG14, VVG13. facilify ZM11. F-ATP SYH12. F12 \textsuperscript{BBG+11}. F12a MLCD11. F130L ZJZM13. FabI \textsuperscript{STM+15, SJ16}. face GY10, Zha11. Face-to-face Zha11. Facilitating ESB13. facilitator Mez10. facilities GP11b. Facing SLT14. factor WLF11, WC11, XMSZ16. factors VKAM12. Factors \textsuperscript{GMSV14, EFOD13, LBH+11, LCW12, Pie14, VSA11}. fail WCWV15. failure JWO15. FALDI dLC17. family PHC13, ZLZ14. FAMSEC CSM16. farming HPSK12. Farm \textsuperscript{AGR11b, BSZ+12, GZM11, HKR12, Kne11b, KDT+12, LAT10, LAT11, NHH16, PPJ14, RB13a, RDDS10, SM14a, SR11, TRA+16, VGV+11, XSZL11, YZZ16, Yes12, dVZ17, DZA11, FGM11, GBFD12, Kan15, LFB14, LBG16, MDT10, MS12, MPBJ11, OV14, dRL11, Sch12, TJB12, Yes15, ZSS+13, ZCM11, dSAdSL13, YWJ+16}. faster HC14, AM10. fate \textsuperscript{SIG+11}. fathead \textsuperscript{TTL+12}. FAU LZTV10. FE \textsuperscript{JJAB16, BTMS12, LLLM11, LLSW14, VED10, WWKS16, Bac12, DAdGR15, GBGR16, PCH13, SSX+14, YPd13, vADC+14}. feasible VAMS14. feature \textsuperscript{TD10, YS+10}. Features \textsuperscript{FHMB15, ALW+10, AS11, ABM+15, DLW+10, PLP+16, WC11}. featuring \textsuperscript{Alg17, ZYW+16}. feedback VHR16. FeFe GS11. Fehlberg AMGB10. FeO \textsuperscript{TLY+12}. FeP1d BK15. FEBERUS DBDP16. ferromagnetism \textsuperscript{HYL+11}. ferromagnets ZA15. FeS \textsuperscript{TLY+12}. Festschrift HIS17. FEW HG13. FF LGW12. FFLUX FP17a, FP17b. FFT \textsuperscript{MYT+14, WS13}. field \textsuperscript{AJR16, ALH+10, BK\textsuperscript{S+11, BCSCJ+13, BCJC+14, BY11, BW15, CRC13, CIK13, CYG+15, CZA17, CLC11, CB11b, CB11c, CK17, DPNM11, DGPM14, DFF+15, DMAH15, DP15, DGB+13, DLZ15, EPD+11, Gar12, GSD10, GZM11, HH11, HKR12, HLH+12, HKR+14, HM13, HJLV16, HCP15, ISO+13, IHJ+13, JSXH16, KLJ+17, KSK11, KT10, KMLS10, KR10, Lar11, LvDH13, LC17, LPS+13, LPE+10, LN15, LLvG10, LvG13c, LL13b, LDG+15, MRO17, MBC11, MCB+13, MS+13, MTvG12, MBE16
MLC13, MHRR11, MP17, NTNY15, ON14, PHC13, PG15, PZCL16, PLH16, PVM10, PS10, PNG10, Rod13, SH15, ST11, SM14b, SK17, SZBM13, Sie15, SS13c, SCSW13, SM15, SYZ + 17, SBvG14, Tak14, TYN15, VHA + 10, VPR10, VikI1, VVLG17, WXL17, WTH + 16, WC14, WZK + 13, WDHZ13, XP13, XVA + 16, Yan11, YWZ14, YJXZ13, YJ11, YN15, YCK16, YHVM12, ZSLL17.

First-Principles [CCJC10, DBM + 15, ELI2, EBK13, JCG + 11, LLLM11, LLB + 12, LCWW10, RRK16, TKN13, YPvD13, YRI3, wZbZ11, BPE16, BCCO10, BEL + 11, EDM17, GD10, GA14, LL10c, Lu11, MCF10, NNS15, RZG + 13, SK12, TKC + 11, TZ11, WXS + 12, WYL + 15, WD10, WZK + 13, YHCS11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC + 14, HYL + 11].

flexible-boundary [PL14]. flip [ZLHH14]. FLOODing [HNTS15, HNS16].

fluorescence [CH10, EJ13, ZLL + 10]. fluorescent [LZL + 10, NOS + 14, PGW + 17, WJG + 13]. fluoride [LZL + 10, MBRC16, NC12, Rab12, SRL + 15]. fluorides [Sán17].

fluorobenzene [KS13b]. Fluorophilic [vRWGS17]. fluoroquinolones
BZB+13, BG13, CHG+16, CR14, CWWH11, CSKH15, CSKH16, CC11, CNK97, CPLL11, CB11d, FD16, GA14, GHL17, GZL+12, GNCA10, GSS13, GEG11, GWPJ11, Han11, HDL+17, HNWF07, HNWF12, HG10, HZS17, IKN13, JCP14, JLH+14, JW16, JYS+12, KD10, KKPT11, KOP+14, KGHK12, KB13, KZZ+16, KLN12, LCW12, LBS16, LGW12, LBTV11, LBT12, LHKS12, LH14b, LLH17, LPMT17, MAK+14, MWJ+11, MFR+17, Mor15, MMJ10, NF17, NO16, NDK+16, Oht16, ORZ11, OM12, PAK17, PPH+14, Pie14, PD11, QZ10b, RJPB12, RS13, RB12, RSLML12, RHPWS13, RHT+15, Rui11, SPS+12, SH15, SFG+17, SCW11, SBT17, SEF+16, SE14, SH14, STS13, SMM15a, SMM15b, SKTT11, SZZS16, STS15, TLDG+12, TG12a, TS10b, VV14, Vik11. functional [VL17a, VI17, VLGK17, VED10, WKC10a, WHL10, WDLG12, WYT17, WHX+10, WL14, WTH+16, WGN+16, XYW+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX11, ZSWL12, ZLY+14, ZYW+10, ZLY+10a, ZLHH14, ZGS+10, dSdS12b, functional basis [PD11]. functionalities [KAG+12]. functionalized [KYKR15, LDSSR16]. functionalities [Ben17, CCB15, CGR16, DH17, DOM+11, DWC17, FPR14, HG10, HBI+17, KB10, KSH13, KSSH13, Kar17, KM13, LBH+11, LH14a, LKI6a, PW12, RSG14, Rui11, SGPJS+17, Sea10, SDM+16, SPR+13, SZX13a, VLGK+17, Yu12b, ZTH+15]. functions [BLZ+13, CD13, CC11, CVG14, Fer13b, Fer13a, FFA14, Fra15, Fra16, GSHM10, GZ14, KK17a, LRER13, MY17b, Mit13, MLCD11, PHT17, Pro16, RHRCH16, SPM14, SYDS11, Sun15, TNYN16, WZ17, TK13]. fundamental [CD16, XLYZ10]. furanosides [KRTB10]. Further [RTS+13, FVB10, PZA15]. fused [CZY11]. fusion [OLY17]. Fuzzy [FPV13, SK12, SK17]. fuzzy-border [SK12, SK17]. FXeOXeF [ARLP13].

Gas-phase
Generalized
[GH16b, KCPMG12, AB16b, BSPP+13, DSF17, FCE15, GH16a, LL10a, MA16, PS13, SZTSM10, SSBW14, WWKS11, WHM10, WBVE16]. generate [MPA12]. generated [HWLW11].

Geometrically [RIJ11]. geometries
[Alg17, HCP15, SRA17, Tak10, LXZ+10]. Geometry
gibberellin [HYYZ13]. gibberellin-binding [HYYZ13]. Gini [WF16].

Gradient [DS15, CDM10, HHHY10, KN17, SH15]. gradient-directed
Gradients [GP11a, WM12, BWMSM10, CCB15, HH16a, LBGS16, LFN+10, RSG14, SFG+17, SSWM09, SLG15, vLBBR12]. grafting [KKR+13].

gradient [GP11a, WM12, BWMSM10, CCB15, HH16a, LBGS16, LFN+10, RSG14, SFG+17, SSWM09, SLG15, vLBBR12].

grained [BLKP12, CAD16, HHWL17, JC16, KVQC+11, KLS10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MLS10, MBC11, MBC13, NST14, RSG+10, SLX+15, SDZ17, SJ17, SM15, SA+G15, WBF17].

graining [BJP15, GMPB12, ML14].

gran [HLvdV13, PHH+12].

grand-canonical [PHH+12].

Grante [HLvdV13, PHH+12].

graph [WSH10, DH14, GPGSM11, GPGSM12, Ihli12, MCC12, PsdPE+10, Pog10, RNP10]. graph-based [DH14].

Graph [WSH10, PsdPE+10, Pog10].

Graph-theoretical [WSH10, PsdPE+10, Pog10].

Graphane [YZZ+17].

Gratzel [VAA14].

gravitational [DS15].

Grcarma [KG13].

Green [LWL+11, NSO+14, PGW+17, yOTn16].

Gregori [Ihl12].

Gregori-Puigjané [Ihl12].

ggreg [Ihl12].

Gregori [Ihl12].

Gregori-Puigjané [Ihl12].

Grid [BAMR13, HEMCZE+14, KP11, LZ11, LLZA12, MM+16, RLLHL12, dVZ17, CM13b]. Grid-based [BAMR13, HEMCZE+14, KP11, LZ11, LLZA12, MM+16]. grids [DH17].

Gro2mat [DK14].

GROMACS [AG11, Abr11, Gar12, GP11b, KPF+15, LRvdSM15, PHH+12, TKT11, KWG15, DDK14].

GROMOS [HH11, HLL+12, KAG+12, LGL11, LVG13c, MRO17, MSvG12, PLH16, PFV14, SBV10].

GromPy [PHH+12]. ground [BBI+11, CCM15, FAA15, GCM15, HH16a, Kop15a, LLBO12, LYC+13, LX11, LS11b]. ground-state [HH16a, Kop15a, LLBO12].

group [Kan15, KV15b, LPS12, TN10, WGL+11]. growing [JZ17, Zim15].

growth [FCL+10, LL10, LZLMP16, MZZ11, OME16, RS14, WC11, XYW+14].

Grubbs [RS17].

GSK3 [LJL+11]. GTKDynamo [BTA+13].

GTP [SS13c].

guanidine [HRJ+14, HGP14, HRJ+15, JRSHP14].

guanidinium [CCCLCGRO14].

guanine [BZH14, LZH+11, PDM10].

guanine-cytosine [LZH+11].

guanines [WGL12].

guanylthiourea [MAPB10].

guest [OAN15b, YDGZ15].

GUI [WCJ+14, JCL+17, KLJ+17].

guide [BS15, GKV+13].

guided [OCL11, WBVE16, YVEI+17, Yon16, ZC14].

guiding [HS17].

gWEGA [YLGX14].
NMLD13, OPRI6, PMG^16, RMPAM15, SNDK16, STS^10, Tak11, TSJ^10, TFO^11, UT14, VIT^15, VV14, WKC10a, WLKC12, WHL^10, WWKS16, WCL^11, XFX^16, YKH15, YZ15b, YZZ^17, ZYLL12, AS15a, Ben17, BS10b, CK10, CKL^11, Chu10, DHE^12, GTK10, GS11, HZ11, HRL11, KTT16, LJW^11b, LWD13, Niz13, OKIS17, PTK11, Pie14, Pon10, STS^10, TS15a, UT15, WGL12, WvRSM14, XhD15, YZ15b, YZZ^17. H- [Pon10].

H-atom [BS10b]. H-bonding [WGL12]. H-C-C-H [YZZ^17, YZZ^17].

Heats [KSM16, ZWX^16]. headgroup [PS10]. headpiece [LKL10]. heat [MO15].

Heating [MO15]. Heats [KSM16, ZWX^16]. heavy [VKAM12, WS11]. heights [BS10b, KG15, ZW17].

Henry [QYL10, VKTRJ15]. HFO [HyL11]. hexagon [GHZ10].

Hessians [GVP^10]. heterobimetallic [DSdAR10]. heterocyclic [BSDP16, CWT^12, KYKR15, LXZ^10, RF15, SGHL13, WS12].

Heterodimer [YT12]. Heterogeneous [DSF17, AFPI13, CKKK16, YZZ^17]. Heuristic [Hel13, MS16, Tak10].

Hexhalogenated [VYJ15]. hexameric [RCM^13a, RML^15].

Hierarchical [JYC+16, BCG10, GBFD12, KKNN11, RMPAM15, SNS13].

High [MCLD10, MKB+13, RSLS13, BACSCJ+10, Cam15, CM13b, CSSB11, DH17, DLSD13, ESIB13, EWK+13, GWJPJ11, IPAA11, JBAM11, JC16, KSM16, LL10a, MJLV14a, MO17, OPB+12, PVL+13, PVJ10, RVCF13, REH13, SC15, WGL+11, WDLG12, ZWL13, dSAdSL13]. high-accuracy [RVCFF13].

High-level [MCLD10, EWK+13, KSM16, PVL+13].

high-order [REH13].

High-performance [RSLS13, CSSB11, EWK+13, LL10a].

high-precision [DH17].

high-pressure [WDLG12].

High-quality [MKB+13]. high-resolution [CM13b, JC16].

histogram [Fer17, HHWL17, SH11b, ZH12]. histone [GHK12, GH10a, GSD10, KC13a]. HIV [DLZ15, NNN16, OBW12, SYH12, TTB+10, UNT16, XLY12, ZaA10]. HIV-1 [DLZ15, NNN16, SYH12, TTB+10, UNT16, XLY12]. HIVgp41 [BAMR13].

HMH [LDJ+10]. HNCN [WLH11]. HNO [BLG10]. HOB [LCL+10]. hole [Cas13, CWHH11, EPH+13, GZZM16, GA12, LZL+15b, PAK17, PTB+15].

Holliday [Ish10, She12]. holographic [CDB10]. HolT [She12].

homology-model [KOY+12]. homology/ab [DJ13]. homonuclear [BWKW10a, BWKW10b]. homopeptides [FCD10]. HomoSAR [BPC13].

HONO [BLG10]. HOONO [BLG11]. hopping [JLH+14, KV14, LWZ+11, RDRc16, SRSLO15]. Horizontal [PC16].

hormone [HYYZ13, LLL+10, NS10, OME16]. hormone-dependent [NS10].

Hybrid [CGR16, KS15, ZDKM12, BTA+13, BG13, CCB15, CSK15, CC11, DR11, DJ13, FHT+15, GFG11, HOX17, JMS14, KN17, KKR+13, LBH+11, LT14, MIS+15, OK16, PW12, RSG14, SGPJS+17, Sea10, SXZ13a, SXZ13b, VI17, WN1M17, ZWLX11, ZWL13]. hybrid-meta [BG13]. hybridized [DC13].

Hybridizing [RDRc16, FZL+15]. hybrids [KM13]. hydratase [LT13].

Hydrated [ALH+10, BMFG16, CGPP11, GBL+11, GNGCA10, LPE+10,
hyperpolarizability [ISO+13, KBC12, Lu11, TKC+11, WXS+12, WZK+13].
hyperpolarizability [KSK11]. hypersurfaces [Ano10a, SN10]. hypervalent
[SLT14, SLT+15]. hypothesized [LLB+12]. hypoxanthine [FF11]. HZSM
[cCVG+14]. HZSM-5 [cCVG+14].

I50V [DLZ15]. I50V-induced [DLZ15]. IBIsCO [KVQC+11]. ice
[LPAS11, TD11]. icosahedral [FCW+14, GKSS14]. ID [LLHM16].
Identification [HRB+17, KYT+17, RLL+10, DL16, JSD+11, MPNS13,
RLDJ17, WSH10, YZWC11, ZYvIZ14]. identifier [hi12]. identifiers
[GPSM11, GPSM12]. identify [LLHM16, LHL+10]. Identifying
[AC12, HAGK10, XTY+14, LHO17, LLJ12, She12]. identity
[Höf14, KN17, YN15].

Illuminating [NSO+14]. illustrating [RML+15]. illustration [RP15].
Image [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g,
Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o,
Ano12p, Ano12q, Ano12r, Ano12s, Ano13a, Ano13b, Ano13c, Ano13d,
Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m,
Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u,
Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano13-27, Ano13-28,
Ano13-29, Ano13-30, Ano13-31, Ano13-32, Ano13-33, Ano13-34,
Ano13-41, Ano13-42, Ano13-43, Ano13-44, Ano13-45, Ano13-46,
Ano13-47, Ano13-48, Ano13-49]. Image
[Ano13-50, Ano13-51, Ano13-52, Ano13-53, Ano13-54, Ano13-55,
Ano13-56, Ano13-57, Ano13-58, Ano13-59, Ano13-60, Ano13-61,
Ano13-68, Ano13-69, Ano13-70, Ano13-71, Ano13-72, Ano13-73,
Ano13-74, Ano13-75, Ano13-76, Ano13-77, Ano13-78, Ano13-79,
Ano13-80, Ano13-81, Ano13-82, Ano13-83, Ano13-84, Ano13-85,
Ano13-86, Ano13-87, Ano13-88, Ano13-89, Ano13-90, Ano13-91,
Ano13-92, Ano13-93, Ano13-94, Ano13-95, Ano13-96, Ano13-97,
Ano13-98, Ano13-99]. Image

Implementations [LSD+10]. implemented [BVHI17, DLsA14, SR10, VBV13b]. Implementing [SCOJ13]. Implicit [CV12, CBG16, LP11b, LTP11, RB12]. Implicit [EM14, CAD16, Has14, CBG16, EKI5, FBEM11, KJDB12, KB11a, KB11b, LC17, ML14, SBW14, SLX+15, SCMA+17, TCC+13, WWKS11, YL13].

Kop16, Kop17a, Kop17b, KSR⁺¹⁶, Kow11, KVR10, LLH14, LPK16, LDJ⁺¹⁰, LJJ⁺¹¹, LPE⁺¹⁰, LX11, LJV⁺¹¹b, LLC12, LTP11, MK13b, MCLD10, MS12, NASH15, NMLD13, NDO⁺¹⁰, OHNK11, OYK⁺¹¹, ON14, OPR16, OT12, OZLSBH12, OOK11, PVL⁺¹³, DCOD13, RB13a, RFN15, SLT⁺¹⁵, SS13b, SLJB12, SLIZ⁺¹⁵, SLLL13, TLdG⁺¹², TG12b, US11, VV⁺¹⁵b, VPR10, WLC12, WXY14, WDHZ13, XZ11, Yu12b, Yu12a, ZZZ⁺¹², ZZ10, ZMM⁺¹², ZLT13, ZLZ⁺¹⁴, LL13a].

inito [JWST10].

Inner [KT12, HS16b].

Inner-[KT12]. inorganic [FNSF⁺¹¹, IGK16, OCW⁺¹⁵, SGH⁺¹⁶]. input [VV⁺¹⁵b]. insect [FCL⁺¹⁰].

insect-growth [FCL⁺¹⁰].

insertion [BB11a, LPK16, MG15, OLY17, WNM17, WHAS⁺¹⁰, WHAS⁺¹⁶]. Insight [CSM16, WC13, ZLHH14, CHKR10, DM15, LGWZ15, LZL⁺¹⁶, PM13, VIT⁺¹⁵, VBMA13, KKL⁺¹³]. Insights [EK15, FVP14, HRJ⁺¹⁴, HGHP14, HRJ⁺¹⁵, JRSHP14, RSB⁺¹³, ZWGO16, Alg17, GND⁺¹², HRMAL⁺¹³, HMS16, KP11, NDD10, OAN15b, PKK17, PSP15, RTS⁺¹³, SM16a, TN12, VV17, WM11, WDP⁺¹², YZ17, BTMS12, LJJ⁺¹¹]. inspection [KOY⁺¹²]. inspired [DSM⁺¹¹]. instantaneous [RO14a]. instanton [MRK11].

Insubria [GCC14]. Insulator [LLL⁺¹²]. Insulin [MV17]. INT [YJXZ13].

INT-DBD [YJXZ13]. integral [RFN15, SS13b, Sun15, VKAM12, WXY14]. integrals [CHC⁺¹³, PC16, SZTSM10].

Integration [FPV13, AYYO17, BB11b, BB11c, DH17, LP11a, MOS12, dRL11, Pol13, SJC11, SJ16, dRBO13]. integrative [Rez16]. integrator [JS17b]. intelligence [Aou16]. intelligent [CDS16].

Inter [CROB16, SS11, IHY15, SSB13]. Inter- [CROB16, SSB11, SSB13].

inter-residue [IHY15]. Interacting [CM16, EV14, HGCCGR⁺¹⁶, WL14].

Interaction [CK10, CCCLCGRO14, CCCLRO14, Den12, NNS15, SBW12, YZWC11, ALV⁺¹⁰, AG12, BLFZ13, BLF14, BCNH⁺¹¹, BHB⁺¹⁷, BRLS08, BRLS12, Cas13, CZH12, CYG⁺¹⁵, CTP13, EK17, EV14, FF11, FCCP17, GA14, GP11a, HBL12, HLM⁺¹², HSS⁺¹¹, JZMZ14, Kan15, KTNN10, LL10a, LMY⁺¹³, Li14a, Li14b, LHHW14, LZZ⁺¹⁵b, LPLB16, LCWW10, MSÅK12, OHPR17, OAN15b, PRJ⁺¹⁷, RZG⁺¹³, RS13, SM16a, SS13a, SBV10, SHF11, TYN15, WSH10, WYL⁺¹⁵, YK13, YWJ⁺¹⁶, YCK16, YHCS11, ZRC11, ZY14, KCB⁺¹²]. interaction-induced [BLFZ13].

Interactions [WCT⁺¹¹, ZCK⁺¹⁶, Abr11, ARRC15, AKK⁺¹⁶, AO10, CSS17, CIKT13, cCV⁺¹⁴, CKP10, CROB16, CB11a, CB11c, DHF⁺¹¹, DBG11, DLMH12, EP10, GWF11, GZM16, GZ14, HLvdV13, ICSC⁺¹², ICSC⁺¹³, IHY15, KSZH13, KCK⁺¹⁵, LZLC13, MLGB16, MKH⁺¹³, MR17, MJM⁺¹⁵, MVKS10, MG14, MFR⁺¹⁷, MPBJ11, OHNK11, PPJ14, PLV⁺¹¹, RTS⁺¹³, SSGS15, SDF12, SSB11, SSB13, TNSS17, TG12a, TY10, TSR⁺¹⁶, TNG⁺¹⁰, VV15, WS10, WGD⁺¹⁶, WM17, XTY⁺¹⁴, XLY12, YKO⁺¹¹, YZ15a, YW13, YZL⁺¹⁵, YDGZ15, ZZZ⁺¹², Zha11, dLC17]. Interactive [BRP⁺¹², BGR13].

interactiveness [CQFC10]. interatomic [DPAB16, FCCP17, YK0⁺¹¹, dLC17]. interconnections [GLF16].
iridium [CWT12, HDPM14, KB13]. Iridium-catalyzed [KB13].

Iron [HS14a, BG13, CTR13, GBGR16, HS16b, KPL13, KPL15, MC10, SBC+11, TS10b, VBMA13, EH13].

isocloso [LK16b]. isoconversional [DCS15]. isocyanide [TLY+12]. Isolated [FL15].

Irregular [Kan15, ALH+10]. k-Raman [Kan15, CWT12, HDPM14, KB13]. Irregular [Kan15, ALH+10]. k-Shrey [Kan15, CWT12, HDPM14, KB13].

Irregular [Kan15, ALH+10]. k-Raman [Kan15, CWT12, HDPM14, KB13]. Irregular [Kan15, ALH+10]. k-Shrey [Kan15, CWT12, HDPM14, KB13].

Irregular [Kan15, ALH+10]. k-Raman [Kan15, CWT12, HDPM14, KB13]. Irregular [Kan15, ALH+10]. k-Shrey [Kan15, CWT12, HDPM14, KB13].

Irregular [Kan15, ALH+10]. k-Raman [Kan15, CWT12, HDPM14, KB13]. Irregular [Kan15, ALH+10]. k-Shrey [Kan15, CWT12, HDPM14, KB13].

Irregular [Kan15, ALH+10]. k-Raman [Kan15, CWT12, HDPM14, KB13]. Irregular [Kan15, ALH+10]. k-Shrey [Kan15, CWT12, HDPM14, KB13].

Irregular [Kan15, ALH+10]. k-Raman [Kan15, CWT12, HDPM14, KB13]. Irregular [Kan15, ALH+10]. k-Shrey [Kan15, CWT12, HDPM14, KB13].
56

Material

[AW11, GPS10, HS12].

Materials

[BSL+16, CD11, DLT17, ECZW17, EMD17, Man13, NDD+10, SYZ+17, VBV13a, VBV13]. MATLAB [DKK14].

Matrices

[Car14, LHO17, Mat14, Yon16].

Matrix

[Car14, LHO17, Mat14, Yon16].

Matrix-based

[GGW11].

Matrix-free

[VBV13].

Maxima

[Luc14].

Maximum

[MLC13].

May

[SMGB11].

MBJLDA

[SRS14].

MC

[LL14a].

MC-DFT

[LL14a].

MCN

[LLL11].

MCQDPT

[LLSW14].

MD

[HCD+10, RSR+12, BM12, FB14b, GNASBF16, LL+11, MTvG12, OYK+11, RAR+11, SISK10, SMP17].

MDAnalysis

[MADWB11].

MDLab

[CCW10].

MDTRA

[PVZ13].

Mean

[ADG10].

Mean-force

[ADD10].

Meaning

[PSP15].

Means

[KSM16, TTB+10].

Measure

[WF16].

Measurement

[MPG11].

Mechanical

[ADG10].

Mechanical/effective

[DR11].

Mechanical/molecular

[SOY12].

Mechanical/dynamics

[ADG10].

Mechanical/generalized

[ADG10].

Mechanical/molecular

[ADG10].

Mechanics

[ADG10].

Mechanism

[GZL12, SLY+10, VKNT15, WCWW11, BNS14, BMFG16, \(B + 11\), CPV+12, CPLL11, FB14b, GY+10, GRLC12, HYYZ13, HDHL15a, HDHL15b, HDHL15c, JCG+10, JLS+10, JW16, KV14, KT12, KS13b, LZL+10, LZZH11, LLB+12, LWXC16, LHT15, LPMT17, NJJX+10, Oht16, PMT16, RLG11, SDK+15, LL13, SBLW12, VM10, WZ10, WCL+11, XLY12, YFC+10, YHG+11, ZSWL12].

Mechanisms

[ADG10].

Mechanistic

[LZL+16, TSJ+10, YZ17, ABB+12, ABB+13, GND+12, NG14, WHLZ11, YZG014b].

Mechanochemical

[QB16].

Mediated

[MRR11, RVP+11, XYW+14].

Medium

[FE14, IPA11, RK15, WW14].

Medium-size

[FE14].

Medium-sized

[RK15, WW14].

Melanin

[LLL+10].

Melanin-concentrating

[LLL+10].

Mellitus

[PC11].

Melting

[FCW+14].

Membered
Methodological [VKNT16]. methodologies [Rob13]. methodology [Aki16, FF11, GAI13, GMASBF16, OHPR17, RJWW12, HCD+10]. methods [Ano12u, Ano15-59, ASMS10, BG13, CSGOA17, CXS10, CNK97, DBM+15, EWK+13, ESM+12, EV14, Fer13b, Fer13a, FB10, FSSW17, GAI14, GFPSD17, GD10, GSS13, GMO16, HCB11, HSB+11, Höf14, HWLW11, JJJ+13, KB13, KHWB17, LaEdOLdV17, LZLC13, LLSW14, MS13, MY17b, MR17, MVKS10, MOS12, NASH15, NC13, NC14, NTNY15, OSHG17, DCOD13, PN13, PVAM16, RZG+13, RRH12, SRF+17, ŠSB+16, SACdG14, STM+15, SGWA17, TG12b, Ts15b, Ts17, WBT10, WX12, YLCX10, YAS13, YJ17, ZGS+10].
modulators [SRA17]. module [PHH+12, VBV13b]. MOFs [LPK16].
MOLCAS [ADF+10, VBV13b, AAC+16]. Moldyn [HPSK12]. Molecular
[BDTP11, CMD13, DGH+11, DSD+11, DHF+11, Fom13, Ibr11, JA10,
KUDG12, KB14a, LWZK13, LBPD12, MFEM16, PL14, Pla11, RKGN10,
RO14a, RRK14, SB17, SV11, VSD10, WC11, WWKS11, XFG+16, XLY12,
Yan16, YJXZ13, ZWS+10, AALCM11, AG11, AST+16, AFP13, AS15a,
ASL+11, AS10, APK14, AGB13, AS15b, AGR11b, AJR16, AB16a, ALH+10,
BMR11, BAMR13, BEM14, BS11, BF15, BBOB16, BJSI12, BV14, BW15,
Bjp15, BMBJ11, BE16, BC13, BEL+11, CBP14, CM13a, CDBM11, CD13,
Car14, CF13, CAF+13, CEB15, CIKT13, CGPP11, CS14, CXW14,
CBTZ16, CH16, CC1H14, CV14, CCW+10, CHKR10, CB11b, CB11c,
CM16, DSD+11, DJX+11b, DJX+11a, DLZ15, DDM+15, DL16, EP10, EK15,
EJ13, EPH+13, ENKK+17, EPD+11, FBM11, FSC+14, GBL+11, GDV17,
Gar12, GJM14+14, GSHM10, GR11]. molecular
[GMZ12, GM14, GM14, GM14, GP+14, GP+14, GP11b, GR10b, GP12, EP+15, HB14, HS12,
HCD+10, HDM+15, HPSK12, HH16b, HHLW11, HJ10, HXM+16, HHWL17,
HR16, HC14, IUK+10, II10, JIS13, JBSQG11, JAH+17, JSXH16,
JWST10, JGS17, K10, K10, K10, K10, K10, K10, K10, K10, K10,
K10, MJC14, MCRL17, Mat10, Mat14, MSV+12, MFT+15, MADWB11, MPNS13, MKM+17, MBA14,
MR11, MCC12, MFR+17, MO17, MS12, NPTS16]. molecular
[NSO+14, NLP+16, NST14, NPG17, NF17, NFG+13, NF17, NNK+16,
NHK+13, NS17, NTN15, Oht16, OHNK11, ON14, OGL10, OHP17,
OCL11, OLY17, OT12, OME16, OVPK15, OOT15, OCW+15, OZS+13,
OOK11, PMC+17, PSS14, PAK15, PAK17, PH17, PM13, PGW+17, PV13,
PB13, PS10, PV16, PLP+16, Pro16, PH15, PVJ14, RMP15, RLLH12,
RSF+16, RNP13, RNVP13, RS12, Ras17, RHJ11, RO14b, RR14, RL14,
RSH15, REH13, SHMO11, SLE+15, Sax12, SMV10, SK15b, SA13,
SZS10, Sch12, SF+11, SHF11, SFRM+17, SOM+13, SJ17, SY+12,
SK3, SWB+12, SLLE13, SJ16, SDS13, SKY+11, SBvG14, SA15,
TNYN16, TKNN10, TZ12, US11, VYM15, VBM11, Vb10, Vb12, VM11,
WKLC12, WBN+13, WAM17, WLW+10, WH11, WCY+11, WLC12, WOH16,
WX17, WES13, WBF17, WCDM11, WO15]. molecular
[WCW15, WL14, WGI4, XDL+10, XFG+15, YPD13, YNH+17, YL14,
YLCX10, Ynp11, YPK12, Yes12, Yes15, Yon16, ZST14, ZW13, ZZY+16,
ZX11, ZDKM12, ZSS+13, ZLY+16, ZP13, ZWX16, ZLL+13, ZA15,
ZBMZH15, dCLFL13, IPAA11, KSD+12, MJL14b, ZBP11, ZK+10].
Molecular networks [MCC12]. Molecule
[KR12, vRWGS17, DHOG13, DGL+13, ETLS17, FAA15, GAI14, GCWS15, GBVA11, HLvdV13, HHWL17, ISO+13, IIHY15, KB11b, LIRL+16, MCUJ15, PCLL11, RLL+10, SG10b, VGV+11, WF16, XYW+14, XMSZ16], molecule-mediated [XYW+14]. Molecule-specific [KR12]. Molecule-transcription [XMSZ16]. molecules [AIGP15, ARAG17, AGR11a, BLBG+13, BS10a, BTMS12, Ben17, BS16b, BL12, CHG+16, CQFC10, CYG+15, COOH14, CXS10, CZNA11, FE14, GWF11, GP12, GPGSM11, GPGSM12, HRB+17, HSB+11, Hug12, Ihl12, Kan15, KLJ+17, KYG+15, LPS12, LHSH12, LvG13b, LH14b, LJL+11, LG14, MA16, MS13, Mat10, MSS+13, MBE16, MPBJ11, NIIT15, OGL10, OT12, PZBA13, Pyy13, RSG14, RK15, SFCCK+14, SFCCK+15, Sch13, SG10b, SY16b, SM17, TSN+16, UNT16, VVV+15a, VHA+10, VDVR14, WC13, WSWZ15, WWD14, WX12, Yot10, YKH15, YHW17, ZPP+16, Zha12b, ZLX+13, ZBB16, ZCGM11].

Mulliken [BVC13]. Multi

N
[Ano15-59, BLF14, BCNH†11, KBC12, KCL†14, LPLB16, NDG14, PVL†13, BCNH†11, BWKW10b, BMB13, BSDP16, CWT†12, CCM15, DCHL12, DFW12, GMASBF16, GZL†12, HLH†12, KV14, KCL†14, LZZH15, MLGB16, MS15, OZLSBH12, PVL†13, RHNN10, RWR†13, SGHL13, TSJ†10, VM11, WS10, WGL†11, WCL†11, WYGW12, WS12, Yu12b, ZP13, HPSK12].

PW12, PPM15, PHH+12, PVZ13, PG14, RLLHL12, RNSF+16, Ras17.

News [Rez16, RR14, Ra1A2, RSR+12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sie15, SJ17, SWB+12, SDMS13, TNYN16, TSC+13, TTR+12, TTL+12, UU12, VMRS+17, VVV+15b, VARI12, VBV13h, WdVNI2, Wdy13, WPM+15, WF16, Wei12b, WHK+12, WHJJ13, WG14, WCI+14, XM+15, XYX17, YWJ+16, YZZ16, Yes12, Yes15, YHH+13, ZDKM12, ZLL+13, dVAG16, KKR+13]. Next [ADF+10, HGY15].

next-generation [HGY15]. NF [ABB+13, ABB+12], NGuaS [WGN+16, WLG+16, WRG+17]. Nguyen [Ano15-59], NH [CG12, KSK11, LBTV12, CCJ+11, Kopp15a, LYC+13, LBT11, ONTTL16, UT14, Yu12a].

NH … [MVKS10]. NHH [LZH+11]. NHOC [LHHW14], Ni [TLdG+12, Tsi17, WWKS16, MMB+17, SSX+14, TLA10, ZRCC12]. Ni-NO [Tsi17]. nickel [ED15, FCW+14], nicotine [PMC+17], nitrate [OS10].

nitric [BS16a], nitride [GLF16, LT14], nitrides [TS11], nitritolotri [CM16], nitritoloti- [CM16], nitritolatriacet [CM16]. nitro [YPC+10, ZW11].
nitro-substituted [YPC+10], nitroalcohol [QLYL16].

nitroaniline [ZTH+15]. nitroaromatic [PSC11, TD10].
nitrobenzenes [ZGS+10].
nitrocompounds [SIG+15, STH+16]. nitrobenzofuran [DPB+12].
nitroethane [YZL+15].

Nitrogen [LLC17, BEMP14, KY14, ZZWX11, ZYL+12]. nitrogen-atom [KV14].

Nitrogen-doped [LLC17]. nitrogen-rich [ZZWX11, ZYL+12].
nitrogen-substituted [BEMP14]. nitroiminoazotetrazolate [ZYL+12].
nitromethane [MCU15]. nitrosamine [dALdS+15]. nitroso [TDP+12].
nitrosothiol [TKXT13]. NMR [Ben17, CHP11, EOA+11, HJ13, HBI+17, HM13, KASH14, LKK11, OPR16, PTK11, PGdO+16, PC14, P1e14, RK15, SF+16, SKMS13, WL14, YS13].

NNO [WGL+11].

[MCU15, Tsi17, ZZ10, WYGW12, BS16a, GY12, OSH17].
noble [ARLP13, JKS+16, PGS+15, PMG+16]. NOCV [CSM16].
nodes [KK17a].
nodes [KPF+15]. NOEs [LK11]. Non

[KB11c, LCH10, CSKH15, GMZ12, MR17, NHN16, PHC13, RS13, YWJ+16]. Non-Boltzmann [KB11c]. Non-Born [KCH10]. non-covalent [MR17, RS13]. non-equilibrium [NHN16].
non-heme [PHC13].
non-hybrid [CSKH15]. non-natural [GMZ12].
non-uniform [YWJ+16].
nonadditive [RTS+13]. Nonadiabatic [HZ11, JBSQ11, SRSLO15].

Nonclassical [GZH10, DM15].
noncovalent [RRH12, SM16a, SBW12, TS+16, VT14, WGD+16, YW13].

noncyclic [SM16a].
nonempirical [WT17]. nonequilibrium [ASL+11, KHW17].

Nonfitting [RZG+13].
nongeometric [KB11a].
nonheme [BG13].

Nonideality [GC11].
nionic [WWKS11].
noniterative [MS12].
nonlinear [ARLP13, KOP+14, LLD17, MLQ+12, MIS+15, RLA+11, TFQ+10, Tia12, YCGA10].
nonlinear-optical [KOP+14].
nonlocal [LPAS11].
nonlocality [FVB10].
nonorthogonal [ZM11].
nonparametric

nylon [BHNS14]. nylon-oligomer [BHNS14].

[SH11a, AMGB10, Ant13, CX10, NMLD13, RVP+11]. **pathway**
[BHB12, HOM+16, LKL10, SJD14, TDP+12, XLYZ10]. **pathways**
[CM13a, EFB16, GS11, HNTS15, KGR+16, MTM14, QSW+10, QB16, RCM+13a, RML+15, SJID11, Ts17, WSH10, Yon16, BHB12]. **pattern**
[CXS10, WGL12]. **patterns** [FZL+15, RS14]. **Pauli** [Ano15-60, Ano16-56].

Pauli [JH+13]. **PAW** [MDTD13]. Pb
[MCK17b, PMG+16, vSGP10, FBY+17, OBW12, vSGP10]. **PB-AM**
[FBY+17]. **PBE** [DOM+11, PTK11, LK16a, SGPJS+17, TG12a].

PBE-QIDH [SGPJS+17]. **PBE/3z** [PTK11]. **PBE0**
[DOM+11, LK16a, SGPJS+17]. **PBE0-DH** [SGPJS+17]. **PBESOL**
[DOM+11]. **PBSA** [CS17, RDDS10, STM+15]. **PBSS**
[DVVP14]. **PCASSO** [LFB14]. **PCCP** [VT14]. **pCCSD**
[Sch12]. **PD**
[HLS+13, Hil13, KD10, Niz13, YDR13]. **PD-PK-T** [HLS+13]. **PDB2PQR**
[UHH+11]. **PDBbind** [PLAG11]. **PDECO** [CJL+13]. **PDIELEC**
[KB16]. **peaks** [LZS+17]. **PEG** [EEO+16]. **PEG-PLA** [EEO+16]. **penalty** [GZH10].
[RRF11, ZKH+10, OOk11, ZZY+16, GRS15, RN12], **ab** [DJ13].

ammonium [AvKSP16]. **aromatic** [MJM+15]. **AT-rich** [YWC11].
aug-CC-pVTZ [Gil11]. **back-bonding** [PPK17]. **basis** [PD11]. **Brownian**
[DMN15]. **CASPT2** [LWGZ15]. **cholesterol** [RBOH11]. **configuration**
[FF11]. **D** [Chu10, KTT16, UT15]. **D5Cost** [REL+14]. **DF**
[Chu10]. **DFT**
[BRLS12, BRLS08]. **dissimilarity** [YDL+10]. **DSiCl** [LX11]. **dynamics**
[DDM+15, EPH+13, GPdC+16]. **E-I** [GM17]. **effective** [DR11]. **Fe**
[DAadGR15]. **FEPL** [HYUS11]. **GBSA** [GR10a]. **generalized** [HWLW11].

GIAO-CCSD [ORF16]. **GULP** [SN16a]. **hydride** [PM13]. **hydrophilic**
[PAX15]. **II** [KPL15]. **KCl** [HB15]. **Kohn** [VV14]. **lithium** [EK15].
local [SB15]. **MC** [HYUS11]. **MC-XQDPT2** [KKL+13]. **MgO** [BS16b].
MM
[BM12, AALCM11, BTA+13, CZY11, CJZS10, DSK17, DSX+11, FLM11, FDB12, FB14b, GWZ15, GCW14, HH15, HBR17, JH+13, JSTW10, KTN10, KWL+16, KWG15, LFM12, LT13, LHT15, LJJ+11, MCR17, MTvG12, MJG+15, NO16, PMC+17, PDMT10, PL14, RR14, RN17, RR12, SN16a, SGDT10, SJID14, SCM+15, STM+15, SSAS10, TSC+13, VKN15, VKNT16, VCM15, VKTRJ15, WDP+12]. **MM-MD** [RSR+12, OYK+11].

MM-QMC [UTM11]. **molecular**
[BEL+11, Fer13b, Fer13a, RdA12, YKO+11]. **multiple** [JS17b]. **NaCl**
[HB15]. **nucleophilicity** [TMJ15]. **OD** [Chu10]. **oligomerization** [KAR12].
OpenMP [KS15, KN17]. **or** [KB10, Pog10]. **PB** [VM11]. **PBSA**
[BD11]. **PC** [VL17b]. **PCM** [LFN+10]. **PC-MST** [GMMH+16]. **phenol**
[IYY11]. **phosphorus** [GWX+12]. **Poisson** [HWLW11]. **QM+**
[PLP+16]. **QSPR** [CLX+10, GCC14]. **reaction** [KSK1]. **repulsive** [SN16]. **SAC-CI**
[EFS16, IN13]. **superoxo** [ZRCC12]. **TD** [TS15b]. **TD-DFT** [LXZ+10].

TDDFT [MS11]. **thymine** [HV12]. **time-dependent** [JYS+12]. **TIP3P**
[SA10]. **uracil** [HV12]. **vacancies** [HRB+17]. **Vis** [GGM+12]. **water**
[JA10, SV11]. **Zn** [GEP+14]. **penetration** [NL+16]. **Pentaatomic**
[XH15]. **pentacene** [CWHH11, ZYG+15]. **pentacoordinated** [TS10b].
pentagon [FL15, GZH10]. pentaprismane [PCLL11]. pentathienoacene [ZYG+15]. peptide
[FP17a, HPL13, HLH+12, ICS+12, ICS+13, JBAM11, JWST10, LTT16,
LW11, LlvG10, LJW+11b, LvG13a, LMA15, MDT10, MV17, OZ14, QZM11,
SV15, SEM12, TYZ+16, XHLH16, YZ15a, dCLFGL13]. peptide-backbone
[HLH+12]. peptide-design [XHLH16]. peptides [BLKP12, BPC13,
CCOH14, CZNA11, GF11, HLH+12, HHWL17, IO13b, JCYX10, KB10,
Lw11, LLvG10, LJW+11b, LvG13a, MZZ11, OLY17, XHLH16, XWSW13, ZKH+10]. peptoid
[MMZW14]. perception [AJR16, HYYZ13]. Performance
[Abr11, BZB+13, CSKH16, CKKK16, DOM+11, HSB+11, JCP14, LK16a,
RKb+14, SGWA17, ABM+15, BLBG+13, CXS10, CSSB11, CJS10, ESB13,
EWK+13, GAI14, GRAR0+14, GSS13, HMLW11, KZZ+16, LL10a, LRBB12,
LC+10, MC12, MG11, OPB+12, RRH12, RSL13, SRF+17, SPR+13, SJ16,
TF15, YPC+10, ZSL17, ZWL13, SBW12]. Pericyclic
[HPT16a, KG15]. Periodic [Sce07, Sch10, AAC+16, CEBO15, FCD10, Gar12, HSH15, HBI+17,
ITIN15, KB14a, LBGS16, Man13, MGS+16, NO16, NTNY15, RJPB12,
SN16a, SE15, TLdG+12, Tak14, VBV13a, VBV13, VECT12, VI17]. Perlin
[HLBLCCG15]. permeation [DNM15]. permutation [IO13b]. pernitrides
[WD10]. peroxo [RHPWS13, RHT+15, ZRCC12]. peroxo/superoxo
[ZRCC12]. peroxyinitrous [BLG11]. persistence [WX15]. Persistent
[XFTW15]. perspective [ABDGN12, DI15, Hsu14, JCGVPHT17, JMX+16, LGOM+15,
Niz13, PM15, XLY12]. perspectives [DR14, Wei12a]. perturbation
[CMM15, CF14, DCHL12, FRSA14, FSSW17, FE14, GRS15, GCCM15, HIL13,
HRJ+14, HRJ+15, HYUS11, JRSH14, KKNN11, KN17, KM13, LCL+10,
LlvG10, LGL11, LlvG13b, Lg13a, MCCI11, RLDJ17, RAR+11, RHPWS13,
SSSM15, TAG16, VDL+13, WHAS+10, YKH15, ZSL14, WHAS+16]. perturbation-selection
[FE14]. perturbations
[GMSdG15, OS16, Tak10, WWCL15]. Perturbative [SSWX14]. perylene
[BSL+16, SLP+12]. perylenediimides [QCR12]. pesticide
[BHB+17]. peta [KNHN16]. peta-scale [KNHN16]. petascale
[SCOJ13, ZWL13]. PH [LZL+15b, dSDdAR10, LZL+15b, AB16a, CS14,
CAD16, HS14b, MBA14, PZA15, PS13, SY16a, SOvG12, VR12].
pH-dependent [SY16a]. pH-responsive [MBA14]. Phase
[MP17]. Phage-like [MP17]. PHAISTOS [BFH+13]. pharmacokinetics
[VBD+11]. Pharmacophore [HRK+10, HKRS11, HS11, TD10, AKMT11].
Phase [ZWMW10, ABB+12, BE12, DLS13, DLW12, EMD17, GYX+10,
Hsu14, KD10, LJJ11a, LPLB16, MF+12, NIT15, PSC11, RWR+13,
RSLML12, RJ17, SJZ+15, VKAM12, VED10, YHG+11, YGS12, ZSV+14,
ZWW10, ZYR+15, ZLHH14, dSDS12a, dSDS12b, ABB+13]. phase-change
[EMD17]. phases [EB12, LPAS11]. Phen [FD16]. phenol
[AAMD+11, AK10, PPH+14, WHX+10, YKH+10, AK10].
phenol-imidazole-base [YKH+10]. phenol-triethylgermanium
[WHX+10]. phenolates [SKGB13]. phenols [SK12]. phenomena
phenyl [GZL+12, ZWY+10a]. phenylacetylene [ZZL+12].
phenylacetylene-containing [ZZL+12]. phenylalanine [GWF11, PVS12].
phosphaalkene [TR12]. phosphano [KYKR15].
phosphate [MRO17, XZ11, YZGS14a]. phosphatidylcholine [PVM10].
phosphetane [SHL+13]. phosphine [MG14, YK13]. phosphorous [KLN12].
phosphorus [RB12, YDX16]. phosphorus-containing [YDX16].
phosphorylation [RIJ+11]. photolysis [HNN+17]. photophysical [CWT+12].
phthalocyanine [SKY+11]. phycocyanin [RCM+13a].
phylogenetic [CCYL11]. phytochrome [FD13]. piano [FPB12, FB14b, ZCK+16].
piano-stool [FPB12, FB14b, ZCK+16]. pictures [MA16]. PICVib
plage [SSSM15]. Pimpehales [TTL+12]. pinane [BLS10]. pincer
[ED15, JJB16]. pincers [KJD16]. pinene [BLS10]. Pipek [HJJ13]. PK
[HLS+13, GK15a, SK15a, SK12, SK17, YDX16, Zha12b, Zha12a]. PLA
[EOO+16]. Placevent [SYH12]. planar
[BSPP+13, EV14, XhDi15, ZYW+16, ZLY+16]. Plane
[SH14, BTB+11, EH13, Gav12, LL13b, MDTD13, MDTD16, TCB16].
Planar-wave [SH14, BTB+11, MDTD13, MDTD16]. plasmapin [SOD+11].
plasmigen [BM12]. plasmon [Ano15-58, BH14]. plastocyanin [HBR17].
PLATiform [TNYN16, BTMS12, HPT+16b, PZCL16, VMRSH+17].
platforms [SCOJ13]. platonic [KSM16]. PLATYpus [TNYN16]. plausible
[KV14]. pleated [WCAH10]. Plesset
[FSSW17, HI13, KKNN11, KN17, MCC11, YKH15]. PlmII [VLB+10].
PlmII-inhibitors [VLB+10]. plug [BTA+13, KLOS10]. plug-in
[BTA+13, KLOS10]. Plugin [BHB12]. plumbacyclopentadienylidenes
[KASH14]. PM3 [SA10]. PM3-CARB1 [SA10]. PM3-CARB1/TIP3P
[SA10]. PM6 [SBW12]. PM6-DH2 [SBW12]. PMF [ZLX+13]. PMMA
post-translationally [MRO17]. postprocessing [HPT⁺16b].
posttranslational [Ano12u]. potassium [SG10b]. potent [NS10, XDL⁺10].
Potential [Vor12, AMGB10, BTA⁺13, BLF14, BPM15, BBI⁺11, CM13a, CG15, Car14, CKP10, CKKK16, DR11, DLT17, DS12b, DLSA14, EFS16, EPH⁺13, FMNC11, GKV⁺13, GLM⁺17, GKSS14, GA12, GFG11, HDL⁺17, HBKL10, HYD10, KS13a, KS15, KTT16, KPL13, KPL15, KERY⁺16, KS12, Kop15a, Kop16, Kop17a, Kop17b, KGM12, KYG⁺15, KCL⁺14, uLhY11, Lar11, LYG⁺13, LX11, LSH⁺11, LCM16, MK13b, Mat14, MPNS13, MB14, MLCD11, NNS15, NW17, OKIS17, PRRT⁺10, RLD12, Ri10, SBR13, SN15, SRF⁺17, SC15, SSB⁺16, SRS14, SLG15, SJ16, TBSM12, VMRSH⁺17, VOT14, VLI17a, VOT16, Vy15, Vy16, WKC⁺10b, WLO⁺17, XFX⁺16, Yu12b, ZDM13, ZLT13, ZWF15, ZGS⁺10]. potential-derived [TBSM12].
Prediction [Ano12u, CP15, CQFC10, HZSS17, KPL15, MA6⁺16, yOaCG10, PRP15, SRA17, WD12, YW17, ZYL⁺12, AGM⁺13, BLDK⁺13, Ben17, BDdIS13, BA11, CZAF17, DWL11, DDP16, EOÄ⁺11, FZY⁺12, GK10, GFPSD17, HLS⁺13, HYM16, HL14, JSW10, KLI4, KT10, KTO11, LXL⁺11, LMY⁺14, LZZ15a, LZZ14, LLI11, LWL⁺10, LSH⁺11, MDT10, Mau14, MG11, MSÅK12, PML⁺12, PN13, PPJ14, PLV⁺11, RCR⁺16, RKB⁺14, SM11, SYH12, TYZ⁺16, VKC10, WLF11, WH11, WXS⁺12, WX1⁺12, XFTW15, YVEI⁺17, YLCX10, YHH⁺13, YDX16, YDZG15, ZsA10, wZbZ11, ZYvI14, ZL10, ZHX11, VVBL17].
principle [CCJC10, DBM+15, LLB+12, MCF10, Tak11, YPvD13].

Principles [HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13, GD10, HYL+11, JCG+11, LLLM11, LCWW10, NNS15, RZG+13, TZ11, WYL+15, WD10, YR13, wZbZ11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC+14].

principles-based [Zha12b, Zha12a].

prismane [DM15, VIT+15].

Pro [RB12].

Pro-Tide [RB12].

probe [RN17].

Probing [HH15, KG11, LPK16, TG12b, ZYR+15].

ProBiS [KDT+12].

problem [HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13, GD10, HYL+11, JCG+11, LLLM11, LCWW10, NNS15, RZG+13, TZ11, WYL+15, WD10, YR13, wZbZ11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC+14].

problems [PNW+16].

procedure [AC11b, KSM16, PW12].

procedures [AD10, BKS+11, BY11, CJZS10, HKR+14, MG14, MS12, SA13, dSAdSL13].

procedures [AC11b, KSM16, PW12].

process [AB16a, AB16b, BDTP11, Fom11].

processes [AC11b, KSM16, PW12].

processing [AK10, BS16a, KTT16, XML+15].

processor [HKR12].

processors [AC11b, KSM16, PW12].

produced [LS11a, SIG+15].

Producing [RN17].

produced [LS11a, SIG+15].

produced [LS11a, SIG+15].

production [LLC+10, PGL+15, PLAG11, vW11].

proguanil [APA+14].

Projected [EFS16].

projection [MDS13, RHRCH16].

projector [BVH17].

prolapse [TH13].

proline [AS11, HJLv16, OOK11].

proline-catalyzed [HJLv16].

proline-recognition [OOK11].

promelas [TTL+12].

promising [KSSH13, ZSL17].

promolecular [REV+17].

promoted [LPLB16].

Proof [FVB10].

propagator [WWD14, YD17].

propene [HSL+11, QSW+10, dSDdAR10].

Properties [SFCK+14, TY10, ARAG17, ASS10, ARLP13, ALH+10, BCSCJ+13, BE12, BPE16, BLFZ13, BS10a, BACSCJ+10, BC13, CBH14, CWT+12, CWHH11, CBTZ16, CH10, CCYL11, CXS10, CLC11, DDP16, DOM+11, DBM+15, DPNM11, DJX+11b, DJX+11a, DP15, DLW12, DQ16, FB10, GBL+11, GTT10, GKS10, GWJ+12, GBGR16, EPH+15, HZY+10, HRB+17, HLH+12, HSS17, HLWD15, JBSQG11, JJJ+13, KKPT11, KDB13, KZK+12, uLHy11, LHL+10, LLS12, LLLM11, LZJ+11, LLD17, LBT11, LBT12, LXZ+10, LWWG12, MCI10, MCF10, MJLV14b, Mat10, Mat14, MIS+15, MGS+16, MCK17a, NSO+14, NC14, PHC13, PGY15, PPK17, PGW+17, Pog10, PH10b, PBE16, PS10, RR14, RRF11, RI10, SDF+17, SB11, SLIB12, SWMW10, SIG+15, SGH+16, TN12, TFQ+10, TFQ+11, TS11, TS15b, VPR10, VECT12, WLC12, YW12, YCGA10, wZbZ11, ZYG+15, ZWMW10, ZLX+13].
properties [ZBP11, ZYL+12, SFCCK+15]. property
[CD13, GPS10, GBS+17, GWX+12, PH15, VAA14, WH11]. propionate
protease [DLZ15, NHN16, OBW12, SYH12]. protection [SBW12].
protective [JAH+17]. Protegrin [RI10]. Protegrin-1 [RI10]. Protein
[CIKT13, CDS16, DPOS16, GPS10, HNTS15, HS16b, LZGS11, MFEM16,
MFR10, PGL+15, Ran12, RP15, Rao11, SHMO11, SKKS13, AIGP15,
AKK+16, AM10, AG12, BSZ+12, BFH+13, BPB11, BPC13, BCG10, Bow16,
BddS13, BA11, CZAF17, CFC15, CHR+12b, CHR+12a, CM13b, CCYL11,
CKP10, CH14, CC12b, CBG16, CHP11, DLW11, DJ13, DVVP14, DLMH12,
FZY+12, FHW+11, FCE15, FLMI1, FSC+14, GS14, GDV17, GMSdG15,
GRP+12, GZ14, GRL+11, GRL+12, HAGK10, HNHR13, HTS15, HTS17,
Has14, HZY+10, HK12, HYMZ16, HJ10, HHBY10, HM13, HZ13, ILKR11,
IIHY15, JZ12, JZZM14, JL+17, KYT+17, Kan15, KNE11a, KOY+12, KL14,
KERY+16, KJ10, KTO11, KTO13, KDT+12, KLS10, KMLS10, LS11a, LFB14,
LHL+10, LH11, LCPS13, LC16, LC17, LZ11, LLC+10, LL10b, LFM12, LPS+13,
LZZ14, LLCL11, LHLG11, LBS10, LDH+14, MS17, MMM+16, MJCI4, MA14].
protein [MA17, MFEM15, MS16, MP11, MB13, MOS12, MNNK10a, NST14,
NS11, NFG+13, NG10, OHNK11, OCL11, OL13, OXBW16, OCLM14, OK16,
OME16, OOT15, PGCT+12, PGW+17, PLV+11, RZG+13, RCR+16, SBB10,
SYDS11, SK17, SM+13, SY16a, Sti15, TYZ+16, TNYN16, TNSS17, TRA+16,
TJB12, UNT16, UCFT16, WdVN12, WNP+16, WZ17, WES13, WHAS+10,
WHAS+16, XML+15, YZ15a, YZ16, YDL+10, Yon16, YS10, YL13, ZL11,
ZC14, ZYvZ14, ZLW10, ZLX+13, ZSB+16, dRBO13, LGL11, SL10, SHL+11].
ILKR11]. protein-ligand
[AG12, CHR+12b, CHR+12a, LLC+10, OOT15, WdVN12, dRBO13].
protein-like [KOY+12]. protein-lipid [PGCT+12]. Protein-protein
[CIKT13, JZZM14]. proteins [ABD11, CTR13, CGBK13, FZL+15, FP17b,
FBEM11, HS16a, Ham11, HTS15, HTS17, HRC13, HS14b, HRH+17, JC16,
JX10, LHO17, MBT14, NOS+14, NR11, OCLM14, yOaCG10, PGCT+12,
PRP15, PHC13, PNI13, PZBA13, PS13, SK15a, SA11, VMRSH+17, Vor12,
XSZL11, YZWC11, YMP14, DZA11, GREAI11]. proteochemometric
[NSO+14]. proteoglycans [NPG17]. proteolysis [VKNT15]. Proteus
[SGM+13]. protic [RK16a, RK16b]. protocol
[KPL13, RCR+16, SDL14, WdVN12, dCLFGL13]. protocols
[CLA16, EOA+11, GR11, ZKH+10]. Proton
[AK10, IYK11, RJWW12, RK16b, CG15, LPAS11, LBC+12, LZL+10,
LGZ15, MPSG11, RSB+13, SRF+17, SV11, TM16, VMTL10, Vor12, WG14,
YZGS14a, YKH+10, YYT12, dALdS+15, RK16a]. Proton-coupled [IYK11].
proton-ordered [LPAS11]. protonatable [Kan15]. protonated
[RSB+13, US11, ZLHH14, dALdS+15]. protonation
Q [WPM+15, BS10c, GKV+13], Q-CHEM [GKV+13], Q-Dock [BS10c], Q2MM [LN15], Q5 [REL+14], Q5/D5Cost [REL+14], QB3 [KG15], QC [BTA+13], QC/MM [BTA+13], QCT [BLG10], QIDH [MGJ17], QikProp [LP11a], QM [BM12, Lun12, SRS+12, RSR+12, Lun12, AALCM11, BH13, BZH14, CJZS10, DSK17, FLM11, FB12, FB14b, GRS15, GWZ15, GSW14, HH15, HYUS11, HBR17, JHH+13, JST10, KTN10, KW1+16, KWG15, LZJ+12, LDM12, LT13, LT15, LNL+15, MCRL17, MTvG12, MJG+15, NO16, OYK+11, PMC+12, PP10, PDMT10, PL14, PLP+16, RR14, RR12, SN16a, SGD10, SJ14, SC+15, ST1+15, SSAS10, TSC+13, UTM11, VKN15, VKN16, VCM15, VKN15, WDP+12, GRS15, RFN15, ZZY+16], QM-only [LT13], QM/MM [BM12, RSR+12, AALCM11, CJZS10, DSK17, FLM11, FB12, FB14b, GWZ15, GSW14, HH15, HBR17, JHH+13, JST10, KTN10, KW1+16, KWG15, LDM12, LT13, LT15, LNL+15, MCRL17, MTvG12, MJG+15, NO16, OYK+11, PMC+12, PDMT10, PL14, RR14, RR12, SN16a, SGD10, SJ14, SC+15, ST1+15, SSAS10, TSC+13, UTM11, VKN15, VKN16, VCM15, WDP+12, QM/MM-MD [RSR+12, OYK+11], QM/MM-QMC [UTM11], QM/QM* [PLP+16], QMC [UTM11], QMX [KKR+13], QSAR [GKR13, Ray13, AKMT11, BF15, CLX+10, FCL+10, GMHH+16, GCC14, LS1+10, LZL+15a, PKIC11, PPUBGD10, RKG11, TTB+10, SSL+12, WMW+10], QSAR/QSPR [CLX+10, GCC14], QSARINS [GCP+13, GCC14], QSARINS-chem [GCC14], QSPR
Recasting [RHRCH16]. receptor [CV12, ESB13, FTW12, FRLN10, HYZY13, ILKR11, LZ11, LLI+10, OME16, PPJ14, SSP+13, VKC10, WC11, YZZ16]. receptor-ligand [FTW12].

receptors [DR14, SRA17, UU12]. recognition [CXS10, EPH+15, HS12, Hsu14, ISP+10, LG14, OME16, OOK11].

[CSKH16]. sample [HRID16]. sampled [AST+16, CDM+15]. Sampling [AKN16, Yan16, BLKP12, BH15, CY09, CY13, CS17, DPNM11, DJ13, FM10, FBE11, FB14b, GFPSD17, GMO16, HH10, HDK+12, HTS15, HNS16, HS17, HDM+15, HCP15, IMK+16, ISK14, Ish10, KvdV14, KTO11, KB13c, LTT16, LC16, LL11, LM1+14, LZZ14, LAW+16, MZZ11, MCRL17, OL13, PBDW11, SEM12, SBN13a, SBN13b, STM+15, TJB12, YZ16, ZZ14, ZC14, DAB16].
Scalable [NLP+16]. scalar [Rod13]. Scale [XFG+16, ACD+13a, ACD+13b]. scales [GMPB12]. scaling [BG12, MA17, NPTS16, Pie14, RCM+13b, RR11, SS13a, VSA11, YN15].
SCC-DFTB/MM [RN17]. Scents [DR14]. Scerri [Sch10]. SCF [HNN+17]. SCH [ZL+10a]. Scheme
[SN16b, BG12, DK11, DGC14, HKR+14, ISN13, JSW10, MKO+13, MPBJ11, RK15, TCPPC14, UM13, WWD14, WDHZ13, YD17, dLC17, FPV13].

KVQC^11, KVR^10, KAG^12, LL^15, Lar^12, Lar^11, LWK^14, LJ^12, LC^17, LMZ^11a, LZ^14, LBPD^12, M^cvdV^13, MSC^10, MBR^15, MSvG^12, Mez^10, MMZW^14, MLCD^11, MCC^12, NPG^17, NFG^13, NDD^10, OYK^11, ON^14, R^11, RO^14a, RO^14b, RSR^12, RLS^13, SWM^10, SK^15b, SMRM^17, SJZ^15, SBvG^14, SA^15, G^15, TYNN^16, UT^11, UU^12, VRMR^17, Vor^12, WC^11, YAS^13, ZX^11, ZSS^13, ZKH^10, ZLL^13, dCLFGL^13].

Simulations [BRE^16, MFEM^16, RKDM^14, XFG^16, Aki^16, BM^12, BDTP^11, BW^15, BJ^15, BB^11b, BB^11c, BB^11i, CTR^13, CCOH^14, CVG^14, CLK^11, DG^11, DMN^14, DSD^11, DHF^11, DZT^11, DSK^17, DLZ^15, DDM^15, EK^15, FTW^12, GBL^11, GR^11, GCW^14, GP^11b, Has^14, HFSO^12, HPSK^12, HDPM^14, HYUS^11, HJ^10, HHWL^17, IPAA^11, JIS^13, JWO^15, JMS^14, KV^13, KCK^15, KvdV^14, KGHK^12, KGHC^15, KLOS^10, KTO^11, KSR^16, KSWL^16, KWL^16, KV^15a, KPF^15, LH^11, LRvdSM^15, LZ^12, LPS^13, LMI^14, LZLMP^16, LAS^14, MN^15, MCRL^17, MTvG^12, MFEM^15, MADWB^11, MK^17, MB^14, NST^14, NF^13, NNK^16, NTNY^15, Oht^16, OCL^11, OLY^17, OZ^14, OC^15, P^15, PH^17, PZCL^16, PL^14, PM^13, PS^13, PS^10, PNG^10, Rd^12, RLG^11, RSR^15, SBV^10, SS^13b, SBT^17, SIK^10, SJ^17].

simulations [SMP^17, SYN^12, SK^13, SB^15, SWB^12, SDMS^13, SV^11, VSA^11, VKTR^15, VM^11, WKLC^12, WH^11, WWKS^11, WLC^12, WBF^17, WG^14, WC^14, XFG^15, XWSW^13, YKO^11, YSG^12, Yon^16, YHVM^12, ZZY^16, ZDKM^12].

LHKS12, LH14b, MSS+13, MBE16, MBRC16, MPBJ11, NHH16, RLL+10, RS13, SG13, STS15, VT14, WF16, WTH+16, XML+15, XMSZ16, ZCGM11]. **small-molecule** [ETLS17, WF16]. **smaller** [MCK17b]. **smallest** [PMT16]. **SMD** [ALK+15]. **smeared** [ENKK+17]. **SMILES** [TTB+10]. **SMILES-based** [TTB+10]. **Smoluchowski** [SG10a]. **smooth** [AG11, EFS16, JLCA17, ZSB+16]. **smoothened** [MCK17b, PMG+16, RDT14, YW12, ASS10, PKK17]. **Sn** [MCK17b, PMG+16, RDT14, YW12, ASS10, PKK17]. **SnCl** [dSDdAR10]. **SnO** [DHE+12]. **Sodium** [KLN16]. **Soft** [SJC11, Ben17, BG12]. **Software** [RLLHL12, RNSF+16, Ras17, Rez16, RR14, RdA12, RSR+12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sie15, SJ17, SWB+12, SDMS13, TNYN16, TSC+13, TTR+12, TTL+12, UU12, VMRSH+17, VVV+15b, VAR12, VBV13b, WdVN12, WDY13, WPM+15, WF16, Wei12b, WHK+12, WHJH13, WG14, WCJ+14, XML+15, XYX17, YWJ+16, YZZ16, Yes12, Yes15, YHH+13, ZDKM12, ZLL+13, dVAG16, CCC+11, DBF14, MSvG12, MJG+15, SBV10, SGM+13, Yap11, ZCS+15, She12]. **softwares** [All11]. **solar** [ACS12, DGL+13, JYS+12, LZZ15a, SLC+15, TZ12, VAA14, YJN+11]. **Solid** [RSK+15, ASS10, CL16, HLS12, HBI+17, KLN12, POB13]. **Solid-state** [RSK+15, HBI+17, KLN12, POB13]. **solids** [BK11, HAI+16, MDT13, MS15, dLRL11, Pon11, SN16a]. **solubility** [KKO+16]. **solute** [BRLS08, BRLS12, EOA+11, TKT11, YKO+11, Yan11]. **solutes** [GC11, PAK15]. **solution** [AvKSP16, AK10, DR11, DBM+17, DP15, EOA+11, GAI13, GAI14, HDK+12, HAL14, HNN+17, KTN10, KVR10, LVC10, MMB+17, MFN+12, PMC+17, PGW+17, SJWE10, TKNN10, UCFR16, WLB+10, WC13, XTG+11, ZLL+10, ZZO+11, vADC+14]. **solutions** [Ber17, CFC15, EK15, Kri0, OCW+15, SM14a]. **Solvation** [RNSF+16, ZBP11, CGB16, FGM11, GMMH+16, GPK12, HRC13, JMLL13, JGS+17, Jor17, MS15, MBE16, NW17, OBU12, PL14, RK16a, RK16b, SL14a, SK12, SY11, SMM15a, SMM15b, TCC+13, WXL17, YOMT14, YAS13, Yan14, ZCS+15]. **solvation-free-energy** [SMM15a, SMM15b]. **solvational** [FCL+10]. **Solvatochromic** [MKH15].
solve [PNW+16]. Solvent [KC13b, AKK+16, BEM14, BRLS08, BRLS12, CAD16, CBG16, EK15, FZy+12, FD16, HDL+17, Ha14, HYUS11, KJDB12, KB11b, KCPMG12, LH+10, LC17, LzL+16, LWZ+17, MBC11, MBC13, MS11, ML14, MCG15, MCC12, MNNK10a, MNNK10b, PDMT10, PS13, RdA12, RK16, SLT14, SBV10, SK17, SLX+15, SYH12, SCMA+17, SKMS13, TYN15, WWKS11, WXL+12, WBF17, YOMT14, Yan14, YJ11, BK17a].

Solving [KV13, SG10a, BYE+16, GA14, SK15a]. solvolysis [OSS10].

SOMA [BMFG16]. Some [RCM+13b, CME11, CCYL11, CXS10, MJLV14b, MJLV14c, Vyb16, ZPF10].

sometimes [VDVR14]. Song [JW12]. Soon [Ano16-75, Ano16-80, Ano16-81, Ano16-82, Ano16-83, Ano16-84, Ano16-85, Ano16-86, Ano16-87, Ano16-88, Ano16-76, Ano16-77, Ano16-78, Ano16-79].

soot [KAR12]. SOP [AKK+16]. SOP-GPU [AKK+16]. Sorafenib [GMASBF16]. Sorting [NMF+14]. Source [TCB16, Aki16, APK14, BZH14, CD13, FBY+17, HLS+13, KSD+12, PHT17, SMRM+17, XTC+11, Yap11, Yes12]. sources [BK13]. Space [vRWS17, ACD+13a, AD10, Cas13, CH16, CXS10, DK11, GA14, Gk15b, Hb14, HP10b, HSB+11, JCGVPH17, LMZ11a, LLF16, LAW+16, MBFP15, PDG+16, SS13a, SHL+11, SCW13, TJB12, WDHZ13, YD17].

specificity [LJW+11b, LBS10, ZX11]. Spectra [PAK14, AMQ+14, FD13, FF11, GWF11, GGM+12, GZ12, HRH+17, KASH14, Kow11, LBC+12, LX11, MAK+14, MCLD10, NHF+10, PMC+17, PD10, DCOD13, PDG+16, RJS17, SGDT10, SB15, SR11, TYN15, TG12b, Tsi14, WGL12, WW14]. spectral [Ano15-58, BH14, HRMAL+13, KZ16, NS14, QZM11, RG1L11, SFDE16].

structured [GEP+14]. Structures

[DLT17, SNS16, BHNS14, BPI5, Ber17, CL16, CCOH14, CV12, DVVP14, DH14, DZA11, GS12, GSS13, HS+11, HTS17, HS12, Hua16, IYK11, KNE11a, KOT11, KOT13, KDT+12, KSW16, LABSG17, uLhY11, LXZ+10, LLSW14, Lüc14, MCS11, MTKM14, MPA10, MPA12, MP13, Mr14, MH10, MCA15, MP17, PRP15, PW+16, QM11, RHRCH16, Raol11, RCR+16, RvL11, RHJ11, RvK13, SFR+10, SWA13, SFR+11, SJD11, SKY+11, TN10, TFQ+10, TFQ+11, UCFS16, WKC11, WD10, YNH+17, ZSL+11, ZLY+16, ZP13, CMD13, PGCT+12]. studied [Ish10, KRTB10, OLY17, RHPWS13, RI10, TS15b].

Studies [JW12, AALCM11, BLS10, BRGN12, BLG10, DMN15, BIL10, DXL+10, GZZM16, GEP+14, JLS+10, KG15, KP11, LCWW10, LJL+11, LWD13, RCM+13b, SB10, SLHW09, TDP+12, VSD10, WCAH10, YKH+10, YPC+10, YDL+10, ZSL+12, ZSL+10a, ZYG+15, ZX11]. Study [JLH+14, VL17b, AS11, AS15a, AAMA+11, ASMS10, ANH+11, APA+14, APY+16, ALH+10, BEM14, BE14, BHB+17, BEEL14, BSJ12, BLG11, BRLS08, BRLS12, BL12, BSL11, CCLP12, CCCLRO14, CWHH11, CCJ+11, CKL+11, CXW14, CBTZ16, CL16, CC14, Chu10, CG12, CB1c, CPL11, CB1d, DAS15, DR11, DI11, DLSD13, DXS+11, EO+11, EV14, FCL+10, FF11, FCD10, FBEM11, FL15, FB14b, GA14, GG10, GYX+10, GVP+10, GD10, GTK10, GWZ15, GNGCA10, GGM+12, HKR13, GPS11, HZ11, HDB15, HRL11, HBR17, HVS16, IL11, II1F+10, IN13, IIHY15, II10, JA10, JS17a, JCG+10, JAH+17, JJAB16, JW16, JYS+12, KD10, KKPT11, KOP+14, KC13b, KB13, KT12, KG11, KN16, KS13b, KP10, LC10, LY10, uLhY11, LP11a, LL13a, LLL+10, LD10, LSL+10, LCL+10, LZ+11, LZH11, LWL+11]. study [Li14a, Li14b, LGW12, LT13, LJW+11b, LBTV11, LBTV12, LTP11, LYSS11, LH12, LH14b, LLSW14, LWXC16, LHT15, Lu11, LJG+11, LPTM17, MMS16, MC10, MG15, MCF10, MJL14b, MAPB12, MF+12, MH11, MWJ+11, MS11, MPS13, MHRR11, MBRC16, MO17, Mor15, MIS+15, NHE+10, NASH15, NC12, NC13, NC14, NJX+10, NFI+16, OPR16, ORZ11, OSS10, OSHG17, OME16, OOK11, PVL+13, PGCT+12, PP10, PGC12, PSG+15, PH12, PAK17, PPH+10, QYL10, QZ10b, RAGL11, RAR+11, Ray13, RS13, RS14, RVV+13, RSLM12, RKG11, RSKG14, SN16a, SSP+13, SGDT10, SJD14, SCM+15, SRF+17, SVM10, SNS16, SGS+16, SE14, SCMA+17, Su10, SKY+11, STS+10, SKTT11, SZS16, STS15, SGHL13, SIG+15, TM16, TLA10, TSR+16, TLR16, VKNT16, VPR10, VAR12, Vik11, VLGK+17, VED10, WKC10a, WLC10, WDLG12, WLHZ12, WYL+15, WMN17, WXH+10]. study [WD10, WMW+10, WZQW10, WS11, WHDL11, WCL+11, WYGW12, WDP+12, XDL+10, XZ11, XWW+11, YZGS14a, YZWC11, YHG+11, YZ13, YR13, YJZX13, YLZ+10, YKH15, YSRR10, YCGA10, YB11, YY12, YZ15b, ZCK+16, ZWGO16, ZTH+15, ZPP+16, ZXS+10, ZZZ+10b, ZZWT12, ZYLL12, ZLLL12, ZSZ+14, ZDX11, ZWY+10b, ZWY+10a, ZBP11,
Symmetrizer [LPS12]. Symmetry
[CAA10, EP15, VVV+15a, BV14, CWZB10, DZA11, Dry14, FF11, HB14,
KTT16, KC13b, NDD+10, PBZA13, Sch13, VGT16, YKH15].
symmetry-adapted [FF11, YKH15], symmetry-invariant [CWZB10],
synchronicity [dSVdM+16], synthase [AALCM11, SYH12, XLY10].
synthase-catalyzed [XLY10], synthesis [ZZWT12], synthetase [LBS10].
syringe [ZWS+10]. system [BEEL14, BTT10, BCCO10, CS14, CJZS10,
GRS15, HSY+11, HDM+15, LL11, LYL6, LZY12b, MLZZ12, NTNY15,
NSP15, RHT+15, SZBM13, TL16, VBDS+11, WLF11]. Systematic
[GP11b, ML14, SA13, SCMA+17, UT15, VLGK+17, AIGP15, BEL+11,
FM10, Ish12, LG11, Pet11, STS15, VVGL17, WG12, RFHG10]. Systems
[RMM16, AST+16, APK14, BV14, BYV+12, BK13, BG13, CSS17, CEBO15,
CKL+11, CLK11, EP12, GG10, Gar12, GP12, GBW+14, GR10b, GWX12,
HS11, HCD+10, HvM16, ITIN15, JSXH16, JS17b, KV12, KGM12, LBG16,
LCPS13, LPLA13, MSC+10, MG14, MOS12, MS12, NYN17, NCV10,
NFG+13, NO16, NKK+16, NS17, OPB+12, OC14, PAK17, PAT+10, PBBP11,
PD12, RJPB12, RVCF13, SCQJ13, Sch12, Sea10, SWB+12, SG13, TSN16,
TCX+13, UT15, WCY+11, WWU12, WS11, YCK16, ZSB+11, ZT14, HvM17].
T [BB1+11, CSGOA17, Gil11, MLCD11, OP16, SRR16, YJ17, BBG+11,
BH13, CGBK13, HLS+13, Sch13]. T-cell [CGBK13]. Table
[Ano16-115, Ano16-121, Ano16-122, Ano16-123, Ano16-124, Ano16-125,
Ano16-126, Ano16-127, Ano16-128, Ano16-116, Ano16-117, Ano16-118,
Ano16-119, Ano16-120, Sce07, Sch10, AAC+16, Fom11, JMS13, MGS+16].
tables [BDdS13, LZ12]. TaBoo [HTS15]. tabu [GBSE11].
tabu-search-based [GBSE11]. tabulated [LL10a]. tail [MBC13]. tailoring
[RKGN10]. tails [GSD10]. Taming [CCM15]. tar [HCD+10]. tar-MD
[HCD+10]. target [FMG12]. TargetATPsite [YHH+13]. targets
[BK13, MPBJ11]. Task [CSSB11, HPSK12, KG13]. task-oriented [KG13].
[WHJH13]. tautomeric [SJWIE10]. tautomerism [BMB13, LGOM+15].
tautomerization [BH13, BZH14]. tautomers [BZH14, dALdS+15]. Tb
[SRL+15]. TD [CCB15, CH10, EFAC13, HRJ+14, HRJ+15, JRSH14,
KLK+13, KP10, LZL+10, LZHH11, LSH+11, LYSS11, RDF+11, SRF+17].
TD-DFT [CCB15, CH10, EFAC13, HRJ+15, JRSH14, KLK+13, KP10,
LZH11, LYSS11, RDF+11, SRF+17]. TD-DFT- [LSH+11]. TD-HF-based
[LSH+11]. TDDFT [SFCCK+15, LRBB12, QCR12, SFCCK+14]. Te
[SPL+12]. technique [AMGB10, LZZ+13, TSR+16]. techniques
[BCP+10, BCG10, GVP+10, SDF+17, SY11, WBN+13]. tellurium
[RRK16, ZWGO16]. Temperature
[KKO+16, LPE+10, LTLC12, PBE16, SY16b, CH16, DKT13, DLSD13, LL11,
OGL10, TLG+12, TM16, VED10, WMW11, YW12, OCW+15].
temperatures [NMLD13, RHNN10]. tempering
[LAW+16, MO15, MO17, NPTS16, TKT11]. Template
[Mau14, GLF16, ME10, YHH+13]. Template-free [Mau14, YHH+13].
tension [NFPD13]. tensor [Elk16, EWK+13, GMBX+16, HXM+16,
JMX+16, KK17a, NFPD13, NIT15, NFI+16, TKC+11, XFX+16]. tensors
[EPD+11, PKH14]. terahertz [KB16], term [DSF17, JBSQG11]. terminal
[IMK+16]. terminally [KLS10, KML10]. terminally-blocked
[KLS10, KML10]. terms [BAS14, CZY11, CWZB10, RRH12]. ternary
[RDT14]. tertiary [OPR16, SM11]. tessellation [MOS12]. Test
[PHC13, BS10b, DPOS16]. tested [HMM10]. Testing
[Gil11, RLD12, JGS+17]. tests [Aon15-59, CNK97, ENKK+17]. tethered
[CZA11]. tetra [WDLG12]. tetraamines [SB10]. tetracarboxylates
[CRC13]. tetracoordinate [XHz15, ZYW+16, ZLY+16]. tetracene
[ABDG12]. tetrramer [Ish10]. tetramers [LYL16, SZS16]. Tetraoxide
[JW12, SLHW09]. tetraprotonated [ZWY+10b]. tetraradical
[Cas14, YSSB12]. tetrasaccharide [NPG17]. tetraflafulvalene [MCF10].
Tetrazine [JW12, MCA+16, SLHW09]. Tetrazino [JW12, SLHW09].
Tetrazino-Tetrazine-Tetraoxide [JW12, SLHW09]. tetrel [YKH15].
TF [XMSZ16]. Th [MCK17a]. their
[ARRC15, Aon11, CCI2a, CBTZ16, CFC15, CB11a, DLT17, DSM+11, HJ13,
JML13, JHMB+09, JHMB+11, KG15, KNE11a, KRSC12, SBR13, TN12,
Tak11, TY10, TS11, VV15, VVBL17, XDL+10, ZYW+10a]. them
[WCWV15]. theorem [CDB10, KSH13, YB16, ZM11]. theoretic
[MCC12, ZLW10]. Theoretical
[AvKSP16, AMA+11, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13,
FF11, GYX+10, GLZ17, GLM+17, HDHL15c, JW12, KCB+12, KS13b,
LCL+10, LWL+11, LLW12, LZY+12a, LWWG12, LWXC16, LGJ+11, MLQ+12,
MSV16, NFT+16, OSS10, OAN15b, PKK17, PM13, PE11, RS17, SB10,
SKY+11, STH+10, SZS16, SLC+17, SGHL13, TPL+10, WMW11, WHDL11,
WCL+11, WS12, YJN+11, YPC+10, YHG+11, YCAG10, YYT12, YGDZ15,
ZBL+10b, ZZL+10a, ZYL+12, ZLLL12, ZSZ+14, ZYG+15, ZBMDH15, BLS10,
BE16, CHZ12, CKL+11, CBTZ16, EV14, GG10, HDM15, HHPH14, LWW+12,
LDD17, LZW+11, MPSS11, NHF+10, NJX+10, PH12, PSSdP10, Pog10,
PH10b, RZG+13, RVCF13, RVP+11, SSF+13, SJ11, SLHW09, SKT11,
SHG+16, Tak11, TL16, WSH10, WZQW10, YK13, YZCW11, YZ13, YB11,
Zhai12b, dSAdSL13, HDHL15a, HDHL15b, KZK+12, TDP+12]. theories
[OM12, WCWV15]. Theory
[IUK+11, SXZ13a, SXZ13b, WM12, AMK11, ALK+15, AR10, ARAG17,
ABDGN12, AG12, ASS10, BY11, BLBG+13, BZB+13, BG13, CHG+16,
CSAdOM17, CWHH11, CCM15, CF14, CC11, DCHL12, FRSA14, FD16,
GHL17, GZL+12, GCM15, CY10, GNGCA10, GND+12, GEG11, GPK12,
Han11, Hll13, HNN+17, HRJ+14, HRJ+15, HG10, ISN13, IKN13, JRSHP14,
JLH+14, JW16, JYS+12, KHWB17, KL12, KM13, LC12, LBG16,
LCL+10, LLH17, LPMT17, MCC11, MAK+14, MWJ+11, ME10, NMDL13,
NO16, Niz13, ORZ11, OZLSB12, PAK17, PML+12, PPH+14, Pie14, Pyy13,
translationally [MRO17], translocation [MJC14]. transmembrane [DSF17, LMI+14, LAW+16, WXL+12]. transmission [LLJ12].

transphosphorylation [WXY14]. Transport [DJX+11a, DMN15, CWHH11, CBTZ16, DMN14, DJX+11b, HLWD15, LHO17, LJ+12, NS17, PGY15, SLIB12, SY16b, TCX+13, ZYG+15].

transportation [LZY+12]. trapped [DM15, VIT+15, WXL+12]. Treating [JLCA17, SMP17]. Treatment [HSH15, CSGOA17, GPK12, Has14, HGHP14, MG14, NS10, Sch12, SSWX14].

triads [YKH+10]. traminoguanidinium [ZYL+10].

triangles [She12]. triangular [TS11]. triangularly [LWZK13].

triangulenes [GSM15]. triarylamine [KGR+16]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triarylamine [KGR+16]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

triangulenes [GSM15]. triarylamine [KGR13]. triazine [WDLG12].

triazines [YPC+10]. triazol [ZZWT12].

100

[BM12, BE16, CRC13, CB11c, Dil15, HLWD15, JYC+16, LH14a, MY17a, MY17b, MKH15, RKB+14, SZX13a, SZX13b, VED10, WvRSM14, ZX11].
type-II [CB11c]. types [SKY+11, UT15]. typical [TZ12]. typing
[FP17b, YPKB12].

U [MCK17a, RKB+14], Ubbelohde [KTT16]. ubiquitin [MO17]. UCCSD
Umbrella [DAB16, FB14b, AKN16, HH10, HDM+15, Ish10, KTO11,
LMt+14, OL13, ZZ14]. unbiased [ISO+13]. uncertainty [Fer17, Han11].
unconventional [LDJ+10]. underlying [RN17, SGPS+17].
Understanding [DLZ15, Lun12, RCM+13a, TZ11, dCDP15, BH13,
FCOGM12, KNE11a, LGVA14, VVJ15, ZX11]. unexpected [HYYZ13].
Unexpectedly [SDF12]. unfavorable [PRP15]. Unified
[PPUBGD10, CVT+11, TNYN16]. uniform [TH13, YWJ+16].
unimolecular [AMAA+11, STM17]. union [KRSC12]. unique
[GS11, uLhY11]. unit
[CKKK16, DZA11, DGLt+13, EP10, Elk16, PMT16, SRLt+15, WS13].
unit-based [WS13]. Unitary [SSSM15]. united [JGS+17, Jor17, ST11].
united-atom [JGS+17, Jor17, ST11]. units
[CCCLCGRO14, CY11+10, FCOGM12, GBL+11, HASR+12, HEMCZE+14,
WSGN11, YWJ+16, YN15, ZKE+17]. universal
[AH10, AJR16, Gar12, SYN+12]. unknown [GPdC+16, KYN+17, MFR10].
unperturbed [Gri13]. unraveling [HYYZ13]. UNRES
[KMLS10, Sie15, SJ17]. unrestricted [BW11a]. Unsaturated
[HPT16a, Tsi17]. unsulfated [SA10]. unoctium [TH13]. unusual
[KYCL11, LJJ+11]. unzipping [SM15, SM16b]. Update
[CZAF17, MRO17, DPNM11]. updated [BCJC+14]. Updates
[AIGP15, Ak16, APK14, AAC+16, BTA+13, BHB12, BSCSJ+13, BSZ+12,
Ber17, BJ15, DMN15, BFH+13, CB14, CSEMB+16, CZAF17, CAT+13,
DJ12, DVVP14, DDK14, DWC17, DSK17, ESBI3, EWK+13, FN12,
FSCc+14, GMSdG15, Gar12, GJMPAM+14, GLW13b, GS12, GCP+13,
GCC14, GBWc+14, GH16b, HLS+13, HRB+17, HDH12, HPT+16b, HPSK12,
HHCT+13b, HH16b, HG13, HYMIZ6, HKR+14, HL14, HC14, IGK16, JH+13,
JWW+14, JLCA17, JP15, KS13a, KS15, KK17a, Kan15, KB16, KL+17,
KDTc+12, Kos16, KG13, KWL+16, KK17b, KGW15, KYG+15, KAG+12,
KSW16, KPF+15, LPS12, LJ+12, LS12, Leh15, LRvdSM15, LDB+17,
LLZZ12, LBB+15, LWZ+17, LC12, LAS+14, MDTD16, MBR+15, MB14,
MB16, NKJ16, OV14, OPB+12, OZS+13, OC14, PSS14, PGL+15, DBDP16,
PW12, PPM15, PPH+12, PVZ13, PG14, RLLHL12, RNSF+16, Ras17].
Updates [Rez16, RR14, RdA12, RSR+12, RCM+13b, SM14a, SFGc+17,
SK15b, SWA13, SMRM+17, She12, SC15, Sie15, SJ17, SWB+12, SDMS13,
TNYN16, TSc+13, TTR+12, TTL+12, UU12, VMRS+17, VV+15b,
VAR12, VB13b, WdVN12, WDJ13, WPM+15, WF16, Wei12b, WHK+12,
WHJ13, WGU14, WCJ+14, XML+15, XYX17, YWJ+16, YZZ16, Yes12,
Yes15, YHH\(^+13\), ZDKM12, ZLL\(^+13\), dVAG16, KKR\(^+13\)]. updating [UM13].
upgrade [ZSLL17]. uptake [WKC10a]. uracil
[HvM12, LGOM\(^+15\), LJW11a]. uracil/uracil [HvM12]. uranium [OSS10].
uranyl [OSS10]. URBOMOLE [BBG\(^+11\)]. ureas [FCL\(^+10\)]. uracil
[SPP\(^+13\)]. ureido-benzenesulfonamide [SSP\(^+13\)]. uridines [DSP16].
urokinase [BM12]. uroporphyrinogen [BEL\(^+11\)]. uroporphyrinogen-III
[BEL\(^+11\)]. Use [DCOD13, HCD\(^+10\), MPA12, MMZW14, NPTS16, NC14,
NDD\(^+10\), RLD12, WM17, Yes12, BCP\(^+10\)]. used
[PGY15, Pie14, PLAG11, TH13]. useful [SMGB11]. usefulness [PSP15].
user [All11, DBF14, HH16b, JJW\(^+14\), LBB\(^+15\)]. user-friendly
[SFR\(^+11\)]. users [GKV\(^+13\)]. uses
[BCJC\(^+14\), FHMB15]. Using
[BS15, Car14, DLL\(^+10\), HH10, HPSK12, LLvG10, LG14, MP11, QLQ11,
SK17, TNG\(^+10\), WF16, AG11, AGM\(^+13\), AC12, BW11b, BMRI11, BDTP11,
BB11a, CVT\(^+11\), CSSB11, DWL11, DBK17, DFF\(^+15\), DCHL12, DLZ15,
EWK\(^+13\), FF11, FLM11, FL15, Gar12, GRS15, GFPS17, GMO16, GZM11,
GRL\(^+11\), GRL\(^+12\), GMBX\(^+16\), HASR\(^+12\), HNS16, HLW\(^+17\), HDL\(^+17\),
Höf14, HBL12, HYUS11, HJKJ13, HZSS17, HHWL17, Hug14, HRH\(^+17\),
Ish10, IH\(^+13\), JLH\(^+14\), JMS13, KV13, Kan15, KERY\(^+16\), KT10, KLOS10,
KTNN10, KP11, LBSIS16, LPK16, LRvdSM15, LZ12, LCH10, LCL\(^+10\),
LMR14, LHG11, LTA\(^+11\), LBDP12, MS17, MZZ11, MRB14, MJJC14, MN15,
MY17a, MSS\(^+13\), MKM\(^+17\), MCUJ15, MVKS10, MBA\(^+13\), MFR\(^+17\),
MOIM13, MMJ10, MS15, NLP\(^+16\), NASH15, NHN16, OCW\(^+15\), PGdO\(^+16\),
PC11, PG15, Pie14, PJ13, RB13a, RLDJ17, RDDS10, RHIJ11, RS13]. using
[RRK14, Ric16, REL17, REV\(^+17\), Rui11, RFHG10, REH13, SHMO11,
SMF14, SDF\(^+17\), SBV10, SA13, SCW11, SEF\(^+16\), SHT\(^+11\), SKKS13, SY11,
SRS14, SSZS16, STS15, TYZ\(^+16\), Tak14, TKNN10, Tsi17, TJB12, UTM11,
VKAM12, VECT12, VI17, WKLC12, WdVN12, WLC12, WZ17, WJX\(^+10\),
WDHZ13, XTY\(^+14\), XYX17, XWW\(^+11\), YWJ\(^+16\), Yon16, YN15, YDX16,
ZWLX11, ZLI11, ZLT13, ZWS\(^+10\), ZP13, ZH12, ZHHX11, dLC17, LHL\(^+10\)].
utility [YHV12]. utilizing [BVY\(^+12\)]. UV
[GGM\(^+12\), KASH14, RDF\(^+11\), RVdMB16]. UV-photoexcitation
[RVdMB16]. UV/Vis [GGM\(^+12\)].

V [WWKS16, LZL\(^+15b\), MG11, PBE16, WRM\(^+12\), WYGW12]. valence
[FF11]. Valence [WM12, YWZ14, BEEL14, BACSCJ\(^+10\), FE14, GCW16,
Hil13, HAI\(^+16\), KGR\(^+16\), LLW12, LWW12, POB13, RHRCH16, RVL11,
SSMW09, SCSW13, TM16, WWU12, XP13, XhD15, vLBBR12, GWF11].
validation
[GMMH\(^+16\), GCP\(^+13\), PFVL14, WMW\(^+10\), ZSTI14, GMG\(^+10\), HM13].
validity [LP11b]. value [SG10a]. values
[BA11, GK15a, SK12, Zha12b, Zha12a]. vanadia [GNGCA10]. vanadium
[WYGW12]. vapor [BDTP11, SISK10]. variable [KDB13]. variant
[TKT11]. variants [SLY\(^+10\)]. Variation [IMK\(^+16\), LvG13a, MTvG12].

Volume

Waals
[BLF14, BB11a, BC13, CR14, DS12b, DSF17, KBC12, KCK+15, KGHK12, KLN12, LCH+15, SMGB11, SLIB12, SJZ+15, SYZ+17, YZZ+17, ZY14].
REFERENCES

[FLM11, LLBO12, LSHH12, PDG+16, WWD14, XML+15]. X10 [LMR14].

Xe [SKMS13, BBI+11, MLGB16, SKMS13]. XH [UT15, CCCLCGRO14].

Xiaobo [Ano12u]. Xiaojian [Ano12u]. Xinli [JW12]. XML [LDB+17]. XO

[GWZX12]. XPS [IN13]. XQDPT2 [KKL+13]. XY [CXS10]. XYG3

[SZX13a, SZX13b, ZWLX11].

Ye [SKMS13, BBI+11, MLGB16, SKMS13]. Yeast [ZZY+16]. YH

Yy-DNA [ZLL+10].

Z [JJJ16, FCOGM12, JJJ16]. Zebularine [SCW11]. Zeolite [SN16a]. Zeoe-

lites [LZTV10, Lar11, SN15, SDB+16]. Zero [Pol13, Tac17, VED10]. Zeo-

SPS+12, YSSB12]. Zintl [RDT14]. Zn [SLIB12, GPdC+16, QLYL10, RRF11,

XP13]. Zn-metalloenzyme [GPdC+16]. ZnH [HYD10]. ZnO [HSH15, VI17].

ZnPh [RDT14]. Zns [NNS15]. ZnSe [Lar12]. ZnX [SPS+12]. Zone [PBE16,

BPE16]. Zone-folding [PBE16, BPE16]. Zones [TDKT10]. Zora [ARAG17]

[JKS+16]. Zr [MCK17a, YW12, TCPCC14]. ZrN [FAA15]. ZrO [RRC+15].

ZrS [BE14, BPE16]. ZSM [Mor15, Pon10]. Zwitterion [DQ16, ZZWT12]

.Zwitterions [PVS12].

References

[AAC+16] Francesco Aquilante, Jochen Autschbach, Rebecca K. Carl-

son, Liviu F. Chibotaru, Mickaël G. Delcey, Luca De Vico, Ignacio Fdez.

Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer,

Giovanni Li Manni, Hans Lischka, Dongxia Ma, Per Åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci,

Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reihner, Ivan Rivalta, Igor Schapiro, Javier

Segarra-Martí, Michael Stenrup, Donald G. Truhlar, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Verya-

zov, Victor P. Vysotskiy, Oliver Weingart, Felipe Zapata, and Roland Lindh. Software news and updates: Molcas 8: New

capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational

Abdel-Azeim:2011:ZHB

Altarawneh:2011:RCH

Abolfath:2010:DBR

Arthur:2016:EIC

Arthur:2016:PIG

[ACD+13b] Kalipada Adhikari, Sudip Chattopadhyay, Barin Kumar De, Amitava Sharma, Ranendu Kumar Nath, and Dhiman Sinha.

Asaduzzaman:2012:RBD

Affentranger:2010:PFC

Aquilante:2010:MNG

Anacker:2014:NAB

Addicoat:2013:SSD

Matthew A. Addicoat, Syou Fukuoka, Alister J. Page, and Stephan Irle. Stochastic structure determination for confor-

Anand:2016:HBA

Abraham:2011:OPM

Antony:2012:FIP

Anthopoulos:2013:GAM

Astray:2013:EFP

Artemova:2011:CNS

Svetlana Artemova, Sergei Grudinin, and Stephane Redon. A comparison of neighbor search algorithms for large rigid

Artemova:2011:FCA

Alonso:2010:USA

Afanasyeva:2015:SNU

Artemova:2016:AMS

Aono:2010:PTP

Akimov:2016:SNU

Aidas:2015:AAP

Allouche:2011:GGU

Ai:2010:IBF

Allen:2010:EAM

Al-Muhtaseb:2011:TSU
Aguilar-Mogas:2010:IAB

Addicoat:2011:DFT

Alberto:2014:ESI

Aquino:2011:CTS

Anonymous:2010:CFE

Anonymous:2010:JCC

REFERENCES

Anonymous:2011:TAT

Anonymous:2012:CIIa

Anonymous:2012:CIIb

Anonymous:2012:CIIc

Anonymous:2012:CIIId

Anonymous:2012:CIIe

Anonymous:2012:CIIf

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2013:CIiab

Anonymous:2013:CIiac

Anonymous:2013:CIiad

Anonymous:2013:CIiac

Anonymous:2013:CIiab

Anonymous:2013:CIiab

Anonymous:2013:CIiab

REFERENCES

Anonymous:2013:CIVk

Anonymous:2013:CIVl

Anonymous:2013:CIVm

Anonymous:2013:CIVn

Anonymous:2013:CIVo

Anonymous:2013:CIVp

Anonymous:2013:CIVq

Anonymous:2013:CIVr

Anonymous:2013:CIVs

Anonymous:2013:CIVb

Anonymous:2013:CIVt

Anonymous:2013:CIVu

Anonymous:2013:CIVv

Anonymous:2013:CIVw

Anonymous:2013:CIVx

Anonymous:2013:CIVy

Anonymous:2013:CIVz

Anonymous:2013:CIVaa

Anonymous:2013:CIVab

Anonymous:2013:CIVac

Anonymous:2013:CIVc

Anonymous:2013:CIVad

Anonymous:2013:CIVae

Anonymous:2013:CIVaf

Anonymous:2013:CIVag

Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anon Anonymous:2013:CIVh

Anon Anonymous:2013:CIVi

Anon Anonymous:2014:CIIa

Anon Anonymous:2014:CIVa

Anon Anonymous:2014:CIVb

Anon Anonymous:2014:CIVx

Anon Anonymous:2014:CIVy
References

Anonymous:2014:CIVz

Anonymous:2014:CIVaa

Anonymous:2014:CIVab

Anonymous:2014:CIVac

Anonymous:2014:CIVad

Anonymous:2014:CIVae

Anonymous:2014:CIVah

Anonymous:2014:CIVai

Anonymous:2014:CIVaj

Anonymous:2014:CIVak

Anonymous:2014:CIVam

Anonymous:2014:CIVan

Anonymous:2014:CIVbi

Anonymous:2014:CIVbl

Anonymous:2014:CIVf

Anonymous:2014:CIVbp

Anonymous:2014:CIVbq

Anonymous:2014:CIVbr

Anonymous:2014:CIVbs

REFERENCES

Anonymous:2014:CIVn

Anonymous:2014:CIVo

Anonymous:2014:CIVq

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt

Anonymous:2014:CIVu

Anonymous:2014:CIVv

Anonymous:2014:CIVw

Anonymous:2015:CIVa

Anonymous:2015:CIVb

Anonymous:2015:CIVu

Anonymous:2015:CIVv

Anonymous:2015:CIVw

Anonymous:2015:CIVx

Anonymous:2015:CIVy

Anonymous:2015:CIVz

Anonymous:2015:CIVaa

Anonymous:2015:CIVab

Anonymous:2015:CIVac

Anonymous:2015:CIVad

REFERENCES

Anonymous:2015:CIVam

Anonymous:2015:CIVc

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVan

Anonymous:2015:CIVao

Anonymous:2015:CIVap

REFERENCES

REFERENCES

Anonymous:2015:CIVax

Anonymous:2015:CIVay

Anonymous:2015:CIVf

Anonymous:2015:CIVg

Anonymous:2015:CIVaz

Anonymous:2015:CIVba

Anonymous:2015:CIVbb

Anonymous:2015:CIV1

Anonymous:2015:CIVm

Anonymous:2015:CIVn

Anonymous:2015:CIVo

Anonymous:2015:CIVp

Anonymous:2015:CIVq

Anonymous:2015:CIVr

Anonymous:2015:CIVs

Anonymous:2015:CIVt

Anonymous:2015:ECS

Anonymous:2015:ECG

Anonymous:2015:OPS

Anonymous:2016:CIVa

Anonymous:2016:CIVb

Anonymous:2016:CIVc

Anonymous:2016:CIVv

Anonymous:2016:CIVw

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVaa

Anonymous:2016:CIVab

Anonymous:2016:CIVac

Anonymous:2016:CIVad

Anonymous:2016:CIVae

Anonymous:2016:CIVaf

Anonymous:2016:CIVag

Anonymous:2016:CIVah

Anonymous:2016:CIVai

Anonymous:2016:CIVaj

References

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:CIVaq

Anonymous:2016:CIVar

Anonymous:2016:CIVas

Anonymous:2016:CIVat

Anonymous:2016:CIVau

Anonymous:2016:CIVav

Anonymous:2016:CIVaw

REFERENCES

Anonymous:2016:CIVbc

Anonymous:2016:CIVh

Anonymous:2016:CIVi

Anonymous:2016:CIVj

Anonymous:2016:CIVk

Anonymous:2016:CIVl

Anonymous:2016:CIVm

Anonymous:2016:EPR

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIc

Anonymous:2016:IIf

Anonymous:2016:IIg

Anonymous:2016:IIh

Anonymous:2016:IIi

REFERENCES

Anonymous:2016:IIR

Anonymous:2016:IIs

Anonymous:2016:IIt

Anonymous:2016:IICa

Anonymous:2016:IICs

Anonymous:2016:IICu

Anonymous:2016:IICw

Anonymous:2016:IICy

Anonymous:2016:IICaa

Anonymous:2016:IICc

Anonymous:2016:IICe

Anonymous:2016:IICg

Anonymous:2016:IICI

Anonymous:2016:IICK

Anonymous:2016:IICm
REFERENCES

15, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

15, 2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:ICab

Anonymous:2016:ICd

Anonymous:2016:ICf

Anonymous:2016:ICh

Anonymous:2016:ICj

Anonymous:2016:ICl

Anonymous:2016:ICn

2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Anonymous:2016:IIEb

Anonymous:2016:IIEc

Anonymous:2016:IIEd

Anonymous:2016:IIEf

Anonymous:2016:IIEg

Anonymous:2016:IIEh

Anonymous:2016:IIEi

REFERENCES

April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:IIEa

Anonymous:2016:IIEe

Anonymous:2017:CIVa

Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:CIVl

Anonymous:2017:CIVm

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:C IVi

Anonymous:2017:E

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

REFERENCES

Anonymous:2017:II

Anonymous:2017:IIm

Anonymous:2017:IIn

Anonymous:2017:IIo

Anonymous:2017:IIp

Anonymous:2017:IIsn

Anonymous:2017:IIr

Anonymous:2017:IIIs

REFERENCES

REFERENCES

Manjaly J. Ajitha and Cherumuttathlu H. Suresh. Role of stereoelectronic features of imine and enamine in (S)-proline catalyzed Mannich reaction of acetaldehyde: an in silico

Andersson:2014:PHE

Akbarzadeh:2015:HAA

Antila:2015:CTI

Alaghemandi:2011:CBT

Ansbacher:2010:CDM

REFERENCES

Assadollahzadeh:2010:EPS

Abramyan:2016:CAM

Achazi:2016:TEI

Andoh:2017:EAP

Burger:2011:EPP

Bachler:2012:QCC

[Bac12] Vinzenz Bachler. A quantum chemical calculation on Fe(CO)\textsubscript{5} revealing the operation of the Dewar–Chatt–Duncanson
REFERENCES

REFERENCES

Bond:2010:FOS

Borrelli:2010:EHR

Baldov:2014:LEU

Bartolomei:2011:LRI

Borghini:2010:CRP

[BCP+10] Alice Borghini, Paolo Crotti, Daniele Pietra, Lucilla Favero, and Anna Maria Bianucci. Chemical reactivity predictions: Use of data mining techniques for analyzing regioselective azidolysis of epoxides. Journal of Computational Chemistry,

Bandura:2012:FPC

Bandura:2014:TZS

Bruckner:2016:TDC

Bendazzoli:2014:TPS

Brooks:2013:ENP

Bushnell:2011:FBP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Baranowska-Laczkowska:2013:PLR

Beker:2013:LCP

Baranowska-Laczkowska:2014:BSE

Baranowska-Laczkowska:2013:NBS

Berski:2010:IQC

Barbault:2012:IPB

Bhatia:2013:EDT

Borštnik:2011:DDF

Branduardi:2016:ARD

Barigye:2013:RFH

Balius:2011:IED

Boulougouris:2014:FEC

Bowman:2016:AMN

Bordogna:2011:PAP

Borkar:2013:HBC

Bandura:2016:AZF

REFERENCES

Bartolomei:2012:FDG

Bartolomei:2015:LES

Bandara:2017:ESS

Bello-Rivas:2016:STK

Beheshti:2012:HTO

Bondesson:2008:BSD

Bondesson:2012:EBS

Bosson:2012:IQC

Baranowska:2010:PBS

Black:2010:BHH

Brylinski:2010:QDL

REFERENCES

2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[BSL*16] Daniel Bellinger, Volker Settels, Wenlan Liu, Reinhold F. Fink, and Bernd Engels. Influence of a polarizable surrounding on the electronically excited states of aggregated perylene...

REFERENCES

1054, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Bertran:2010:IDN

Beruski:2014:ACD

Bultinck:2013:BFI

Bellafont:2017:PCL

Biswas:2012:SMS

REFERENCES

REFERENCES

[Chong:2016:ISC] Leebyn Chong, Fikret Aydin, and Meenakshi Dutt. Implicit solvent coarse-grained model of polyamidoamine dendrimers:

[CASANOVA:2013:PAM]

[CAMMI:2015:NEP]

[CANPEA:2010:SWM]

[CANPEA:2011:RCS]

[CARLSEN:2014:UOE]

[CASANOVA:2013:EIR]

[Cas13] David Casanova. Efficient implementation of restricted active space configuration interaction with the hole and particle

[Casanova:2014:HMT]

[Chilton:2013:SNU]

[Courcot:2011:MIB]

[Courcot:2011:OMMa]

[Courcot:2011:OMMb]

REFERENCEs

REFERENCES

REFERENCES

March 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Chattaopadhyay:2015:SSM

Chiang:2014:TBA

Chiu:2014:PAE

Cickovski:2010:MMD

Chiu:2011:DPI

REFERENCES

August 2010. CODEN JCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Chidthong:2010:ESP

Chong:2014:SDA

Chen:2016:WFE

Chang:2013:AAC

Cao:2016:HEI

Le Chang, Takeshi Ishikawa, Kazuo Kuwata, and Shoji Takada. Protein-specific force field derived from the frag-

Chen:2013:PPD

Condic-Jurkic:2010:CQM

Campen:2010:IES

Cvitkovic:2017:DME

Choi:2016:PHC

Chen:2011:RBS

Choi:2010:NAD

Chen:2016:NMA

Chakavorty:2016:ECB

Chung:2011:CST

Click:2011:QRN

REFERENCES

[CMD13]

[CPK12] Timothy H. Click, Sergei Y. Ponomarev, and George A. Kaminski. Importance of electrostatic polarizability in calu-

Cormanich:2016:IIC

Chen:2014:ESN

Cheron:2017:ESB

Carvalho-Silva:2017:DTS

Cardona-Serra:2016:SNU

REFERENCES

Coe:2013:MCC

Carvalho:2013:PMD

Costanzi:2012:SSA

Chuev:2014:ESS

Chavent:2011:GAA

Chai:2011:DFT

Cao:2012:TIP

Cui:2010:SRE

Chen:2010:AFE

Christodouleas:2010:TBE

Chen:2014:MRQ

Chen:2009:PRW

Chen:2013:EPR

Chen:2015:FFD

Chintapalli:2010:CLF

Cheron:2017:SNU

[CZAF17] Jean-Baptiste Chéron, Martin Zacharias, Serge Antonczak, and Sébastien Fiorucci. Software news and updates: Update

Chandra:2012:TI

Curco:2011:SSA

Chen:2011:EMB

Dickson:2016:CFB

deAngulo:2012:RCA

REFERENCES

[DBF14] José Diogo L. Dutra, Thiago D. Bispo, and Ricardo O. Freire. LUMPAC lanthanide luminescence software: Efficient and
REFERENCES

Deshmukh:2011:IHB

Dickson:2017:OAS

Demichelis:2015:FPM

DiTommaso:2017:TAP

Drujon:2013:PHC

deCourcy:2015:BOQ

Dong:2012:BCE

deCarvalho:2013:ICP

Pierre:2013:UIM

Dubaj:2015:IIM

REFERENCES

REFERENCES

REFERENCES

[DJX+11b] Zongling Ding, Jun Jiang, Huazhong Xing, Haibo Shu, Yan Huang, Xiaoshuang Chen, and Wei Lu. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices. *Journal of Computa-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DXL+10] Juan Du, Lili Xi, Beilei Lei, Jing Lu, Jiazhong Li, Huanxiang Liu, and Xiaojun Yao. Structure-based quantitative

Eller:2015:CAE

Ehara:2013:CII

Edel:2016:IFP

Erba:2013:ADS

Ehara:2016:PCS

Elenewski:2013:CPC

Justin E. Elenewski and John C. Hackett. Cytochrome P450 compound I in the plane wave pseudopotential framework: GGA electronic and geometric structure of thiolate-ligated

El-Hamdi:2016:CAB

Eisenberg:2013:RTG

Eilmes:2015:SIT

Ehlert:2017:QBS

Ekesan:2014:TPE

REFERENCES

[Hage:2015:CJL]

[Ellingson:2013:SNU]

[Eriksen:2012:IES]

[Ellis:2017:CDC]

[Eskandari:2014:HHI]

REFERENCES

[Anna Maria Ferrari, Bartolomeo Civalleri, and Roberto Dovesi. Ab initio periodic study of the conformational behavior of glycine helical homopeptides. *Journal of Computational
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Franchini:2013:BFC

Fraenkel:2015:ISL

Fraenkel:2016:ECI

Fuhrmann:2010:NLG

Fernandes:2015:QSL

Farahani:2014:RTS

REFERENCES

References

Fertitta:2014:AMA

Fernandez:2014:COA

Feng:2013:MGM

Fan:2015:DDS

Faraggi:2012:SXI

Glushkov:2012:OCM

V. N. Glushkov and X. Assfeld. On orthogonality constrained multiple core-hole states and optimized effective potential

Gavrish:2012:AER

Gumerov:2012:HAF

Gutsev:2016:SPI

Ganesan:2011:SDE

Gross:2017:MAI

Grebner:2011:ETS

Ghillemijn:2011:SCH

Grebner:2014:SNU

Gupta:2011:NDI

Gramatica:2014:SNU

[Gao:2017:IFP]

[Grimme:2011:EDF]

[Goldstein:2011:NHA]

[Ghasemi:2017:RDS]
Galvez:2010:TST

Gotze:2012:BHN

Georgieva:2010:QCM

Gross:2016:LED

Gross:2016:SNU

Gao:2012:AFE

REFERENCES

REFERENCES

Galstyan:2015:CPK

Gunera:2015:FBS

Gramatica:2013:LER

Glukhova:2014:MFB

Ghosh:2013:EFP

Gagnon:2016:FCD

Gan:2016:SIR

Gillet:2017:TER

Glendening:2013:ENN

Glendening:2013:SNU

Gao:2017:TSC

REFERENCES

1162, May 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Gonzalez-Navarrete:2012:EFD

Gonzalez-Navarrete:2010:DFT

Garate:2013:FED

Gonnet:2012:PVL

Granucci:2011:GCI

Gruber:2011:SBL

[GP11b] Christian C. Gruber and Jürgen Pleiss. Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities. *Journal of
REFERENCES

Gereben:2012:RCC

Gresh:2016:CZM

Grebner:2013:PGT

Gregori-Puigjané:2011:IMC

Gregori-Puigjané:2012:LER

Elisabet Gregori-Puigjané, Rut Garriga-Sust, and Jordi Mestres. Letters to the editor: Response to the comment by Wolf Ihlenfeldt on the paper “Indexing molecules with chemical graph identifiers”. *Journal of Computational Chemistry*,
REFERENCES

Gusarov:2012:ETS

Ghara:2016:SSN

Geppert:2010:PPD

Genheden:2010:HOS

Grudinin:2010:PMM

Genheden:2011:CDI
Samuel Genheden and Ulf Ryde. A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. *Journal of Computational Chem-
Grajciar:2015:LMI

Garcia-Risueno:2014:SPP

Gonzalez:2012:SRI

Giri:2010:BAS

Garcia-Risueno:2011:EEC

Grigoryan:2013:AFE

Guo:2011:PPF

Guo:2012:RRP

Jianxiu Guo, Nini Rao, Guangxiong Liu, Yong Yang, and Gang Wang. Retracted: Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. *Journal of Computational Chemistry*, 33(32):2614, December 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [GRL+11]. From the publisher: “The retraction has been agreed due to significant overlap with respect to another article, ‘Predicting Protein Folding Rate from Amino Acid Sequence,’ published in Progress in Biochemistry and Biophysics (2010, 37, 1331) and authored by a subset of the present authors.”.

Geppert:2012:VSC

Genheden:2015:BAA

Samuel Genheden, Ulf Ryde, and Pär Söderhjelm. Binding affinities by alchemical perturbation using QM/ MM with a

[GS16] Raimondas Galvelis and Yuji Sugita. The following articles were published in past issues of the *Journal of Computational Chemistry*: Replica state exchange metadynamics for improving the convergence of free energy estimates. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Dimitrios N. Garbounis, Athanassios C. Tsipis, and Constantinos A. Tsipis. Structural, electronic, bonding, magnetic, and optical properties of bimetallic [Ru$_n$Au$_m$]$^{0/+}$ ($n + m \leq 3$
REFERENCES

Ghysels:2010:CSV

Ganesan:2011:IIP

Gutsev:2012:SPA

Gutsev:2011:DFS

Gan:2017:CCB
References

REFERENCES

953, April 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Grinter:2014:BSA

Gan:2010:NFH

Gao:2012:MRN

Grosdidier:2011:FDU

Guo:2012:ICS

REFERENCES

REFERENCES

[HFSO12] Franziska Hess, Attila Farkas, Ari P. Seitsonen, and Herbert Over. “first-principles” kinetic Monte Carlo simulations re-

REFERENCES

Herrmann:2016:QCS

Hischenhuber:2013:CDG

Hischenhuber:2013:SNU

Huang:2017:EEB

Hill:2013:ABS

REFERENCES

[HL14] Bingjie Hu and Markus A. Lill. Software news and updates: WATsite: Hydration site prediction program with PyMOL.

Herbers:2013:RGC

Harger:2017:TOA

Huang:2015:ESM

Huang:2013:CAA

Hills:2016:MPS

Hongo:2010:RNG

Kenta Hongo, Ryo Maezono, and Kenichi Miura. Random number generators tested on quantum Monte Carlo simu-

REFERENCES

Heringer:2012:EAE

Hofener:2014:CCF

Harabuchi:2016:NST

Haque:2010:PAP

Henriksson:2010:PDT

He:2013:MPB

REFERENCES

Harano:2013:MAA

Husseini:2017:CIS

Huang:2017:EBE

Huwald:2016:CMD

Homann:2014:GOB

Hoffmann:2015:ECG

Alexander Hoffmann, Martin Rohrmüller, Anton Jesser, Ines dos Santos Vieira, Wolf Gero Schmidt, and Sonja Herres-

Hahnke:2010:PAS

Huang:2011:CSR

Hernandez-Rodriguez:2013:EDD

Hahnke:2011:PASb

Helmich:2012:SRM

Benjamin Helmich and Marek Sierka. Similarity recognition of molecular structures by optimal atomic matching and rotational superposition. *Journal of Computational Chemistry*,

REFERENCES

Zhaowei Huang, Hui Sun, Houyu Zhang, Yue Wang, and Fei Li. \(\pi-\pi\) interaction of quinacridone derivatives. *Journal of
Harada:2015:ECS

Harada:2017:CFP

Huang:2016:FSL

Bolong Huang. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. *Journal of Computational Chemistry*, 37(9):825–835, April 5, 2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Huggins:2012:BTA

Huggins:2014:CDM

REFERENCES

Hu:2016:QST

Huang:2010:IPE

Han:2011:END

Hoque:2016:SNU

Hori:2011:FEP

REFERENCES

REFERENCES

Atsushi Ishikawa and Hiroshi Nakatsuji. XPS of oxygen atoms on Ag(111) and Ag(110) surfaces: Accurate study with SAC/SAC-CI combined with dipped adcluster model. *Journal of Computational Chemistry*, 34(21):1828–1834, August 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ishida:2010:BMH

Ishida:2012:FTG

Ikebe:2014:ALS

Imamura:2013:KED

Inui:2013:FFM

Illingworth:2010:CBS

REFERENCES

Jia:2017:EMI

Janesko:2016:TAE

Jacob:2011:DAP

Jacob:2011:PSF

Jaramillo-Botero:2011:LSL

Jahangiri:2014:PDF

Jaillet:2011:RTC

Jiang:2010:INA

Jorge:2017:PHSa

Jenkins:2013:SNU

Jimenez-Halla:2009:TAT

[JHMB+09]
Jimenez-Halla:2011:ETA

Jakobtorweihen:2013:CCM

Jiao:2016:CCS

Jin:2013:CPR

Joy:2016:CXZ

REFERENCES

Jeong:2014:SNU

Jankowska:2016:SOZ

Jia:2017:SNU

Jiang:2014:SCH

Jia:2010:CSM

369, March 5, 2017. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Jin:2016:SCF

Jorgensen:2012:LEC

Jones:2016:MHD

Jensen:2015:ETS

Jono:2010:MIQ

Ji:2015:IBL

Jin:2016:HAT

Jungsuttiwong:2012:ECS

Jafari:2017:RER

References

Johnston:2017:SDA

Jia:2014:AAP

Kunz:2012:SNU

Kantardjiev:2015:SNU

Koley:2012:CIC

[KB11c] Gerhard König and Stefan Boresch. Non-Boltzmann sampling and Bennett’s acceptance ratio method: How to profit from bending the rules. *Journal of Computational Chemistry*, 32
REFERENCES

REFERENCES

[KCPMG12] Hannes Kopitz, Daniel A. Cashman, Stefania Pfeiffer-Marek, and Holger Gohlke. Influence of the solvent representation...

Kalita:2010:ACO

Kessler:2013:PVS

Kumar:2017:CBD

Konc:2012:SNU

Kingsley:2016:RPP

Kaukonen:2012:LJP

Kramer:2012:AME

Kaupp:2016:ETP

Kearns:2017:CCF

Ko:2010:CIC

Kessler:2012:BEF

Kaliman:2017:SNU

Krause:2017:SNU

Kornobis:2013:ESS

Katouda:2011:TLH

REFERENCES

Michio Katouda, Akira Naruse, Yukihiko Hirano, and Takahito Nakajima. Massively parallel algorithm and implementation of RI-MP2 energy calculation for peta-scale many-core supercomputers. *Journal of Computational Chemistry*,
REFERENCES

Kjaer:2012:NMR

Karamanis:2014:SNO

Koput:2015:IGS

Koput:2015:ISC

Koput:2016:IPE

Koput:2017:IPEa

Koput:2017:IPEb

Kosenko:2016:SNU

Kowal:2011:IMG

Kim:2012:SHM

Kumar:2010:IEC

Goran Kovacevic and Aleksandar Sabljic. Theoretical study on the mechanism and kinetics of addition of hydroxyl radicals...

REFERENCES

Kokubo:2013:TDR

Klenin:2011:DMS

Kanematsu:2016:IUE

Kashmirian:2012:MDE

Kadam:2012:NAM

REFERENCES

Kumar:2015:SNU

Kirilchuk:2015:MPF

Kajiwara:2017:ITM

Koukaras:2012:SSE

Keceli:2016:SIP

REFERENCES

[Liu:2010:FDO] Pu Liu, Dimitris K. Agrafiotsis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macro-

Liu:2011:RCR

Lv:2016:CEH

Licari:2015:SNU

Laflamme:2012:SIS

Lucas:2012:MDS

REFERENCES

Li:2010:NBO

Li:2015:VWE

Li:2010:TSH

Lorenz:2014:BDG

Liu:2016:DTI

REFERENCES

Lee:2013:NBO

Laury:2012:VFS

Lu:2010:FPS

Lesch:2017:SNU

Liu:2015:APE

Lyons:2014:PBC
[LDH$^+$14] James Lyons, Abdollah Dehzangi, Rhys Heffernan, Alok Sharma, Kuldip Paliwal, Abdul Sattar, Yaoqi Zhou, and Yue-

[LDJ+10] Qing-Zhong Li, Xu Dong, Bo Jing, Wen-Zuo Li, Jian-Bo Cheng, Bao-An Gong, and Zhi-Wu Yu. A new unconventional halogen bond $\text{C} \cdots \text{H} - \text{M}$ between HCCX (X = Cl and Br) and HMH (M = Be and Mg): an ab initio study. *Journal of Computational Chemistry*, 31(8):1662–1669, June 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Lin:2011:RPS

Li:2014:PDD

Liu:2012:SSH

Lee:2010:AUS

Lonsdale:2011:CSW

Le:2017:IDL
Nguyen-Quoc-Khanh Le, Quang-Thai Ho, and Yu-Yen Ou. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying

REFERENCES

REFERENCES

Li:2010:MLS

Liu:2010:TDT

Li:2011:TIG

Lee:2013:IMD

Liu:2013:EFA

Lai:2015:ICD

REFERENCES

[LLZA12] Chuan Li, Lin Li, Jie Zhang, and Emil Alexov. Software news and updates: Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in

[LPE+10] Len Herald V. Lim, Andreas B. Pribil, Andreas E. Ellmerer, Bernhard R. Randolf, and Bernd M. Rode. Temperature dependence of structure and dynamics of the hydrated Ca$^{2+}$ ion according to ab initio quantum mechanical charge field

REFERENCES

Launay:2011:LDS

Liu:2011:EGS

Lei:2010:NIM

Liu:2011:ATD

Liao:2013:CQO

Liu:2014:OAC

Long:2011:CSU

Liu:2011:IMO

Lamiable:2016:CAH

Lu:2011:CSS

Luchow:2014:MPC

Ruifeng Lu, Yunhui Wang, and Kaiming Deng. Quantum wave packet and quasiclassical trajectory studies of the reaction H(^2S) + CH(\text{X}^2\text{II}) : v = 0, j = 1 \rightarrow C(^1\text{D}) + H2 (\text{X}^1\Sigma^+ g+) : Coriolis coupling effects and stereodynamics. *Journal of Computational Chemistry*, 34(20):1735–1742, July 30, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Xiao-Na Li, Zhi-Jian Wu, Xi-Yan Li, Hong-Jie Zhang, and Xiao-Juan Liu. Theoretical study on phosphorescence ef-

REFERENCES

[LYC+13] Yongqing Li, Jiuchuang Yuan, Maodu Chen, Fengcai Ma, and Mengtao Sun. Accurate double many-body expansion potential energy surface by extrapolation to the complete basis

Li:2016:NSB

Liu:2011:TDS

Leis:2011:EIR

Lettieri:2012:AMM

Li:2014:MSP

REFERENCES

[Li:2011:TDS] Qing-Zhong Li, Jun-Ling Zhao, Bo Jing, Ran Li, Wen-Zuo Li, and Jian-Bo Cheng. The structure, properties, and nature of HArF–HOX (X = F, Cl, Br) complex: an ab initio study.

Li:2010:TDS

Liu:2013:FNM

Li:2015:CQM

Li:2015:CYX

Wei Li, Yanli Zeng, Xiaoyan Li, Zheng Sun, and Lingpeng Meng. The competition of Y·O and X·N halogen bonds to enhance the group V σ-hole interaction in the NCY·o PH₃·NCX and O·PH₃·NCX·NCY (X, Y F, Cl, and Br) complexes. *Journal of Computational Chemistry*, 36(18):1349–1358, July 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Liu:2016:MIM

Jiahui Liu, Yiyi Zheng, Ying Liu, Haiyan Yuan, and Jingping Zhang. Mechanistic insight on (E)-methyl 3-(2-aminophenyl)acrylate cyclization reaction by multicatalysis of

Martinez-Araya:2016:GOF

Mezey:2017:ASP

Michaud-Agrawal:2011:MTA

Matanovic:2014:ADF

Manz:2013:LEC

Mehdi:2010:ESR

[MAPB10] Ahmed Mehdi, Legesse Adane, Dhilon S. Patel, and Prasad V. Bharatam. Electronic structure and reactivity of guanylth-

Matta:2010:HDM

Matta:2014:MBB

Maurice:2014:STF

Mogo:2014:SNU

Mogo:2016:SNU

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA11</td>
<td>Alessandra Manzin, Oriano Bottauscio, and Domenico Patrizio Ansalone</td>
<td>Application of the thin-shell formulation to the numerical modeling of Stern layer in biomolecular electrostatics</td>
<td>Journal of Computational Chemistry</td>
<td>32(14)</td>
<td>3105–3113</td>
<td>November 15, 2011</td>
<td>JCCHDD</td>
<td>0192-8651 (print), 1096-987X (electronic)</td>
</tr>
<tr>
<td>MBC11</td>
<td>Michel Masella, Daniel Borgis, and Philippe Cuniasse</td>
<td>Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic effects</td>
<td>Journal of Computational Chemistry</td>
<td>32(12)</td>
<td>2664–2678</td>
<td>September 2011</td>
<td>JCCHDD</td>
<td>0192-8651 (print), 1096-987X (electronic)</td>
</tr>
<tr>
<td>MBFG15</td>
<td>Krishnakanta Mondal, Arup Banerjee, Alessandro Fortunelli, and Tapan K. Ghanty</td>
<td>Does enhanced oxygen activation always facilitate CO oxidation on gold clusters?</td>
<td>Journal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

REFERENCES

2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

Mollenhauer:2011:AQC

Morao:2017:RAA

Micera:2011:SOC

Mollenhauer:2014:BPT

Marmitt:2015:DSI

Tetsuya Morishita, Satoru G. Itoh, Hisashi Okumura, and Masuhiro Mikami. On-the-fly reconstruction of free-energy

Muhammad:2015:HDH

Mitin:2013:PFM

Maingi:2012:DBT

Martin:2014:CAN

Mones:2015:ABF

Letif Mones, Andrew Jones, Andreas W. Götz, Teodoro Laino, Ross C. Walker, Ben Leimkuhler, Gábor Csányi, and Noam Bernstein. The adaptive buffered force QM/MM

Marx:2014:CLH

Marx:2014:MMS

Mitoraj:2015:NWA

Mach:2011:GML

Mach:2013:AMC

Malyszek:2013:AIP

Moore:2013:HQP

Makowski:2010:DEC

Merlot:2013:AEE

Middendorf:2015:SSB

Miyashita:2017:FFC

Matsui:2013:CSC

Marais:2012:ECM

Mirzoev:2014:SIS

Mohammed:2013:FOF

Mok:2011:FCS

Makarewicz:2016:NIF

Ma:2012:TIR

Mo:2013:DSE

Mei:2012:EPC

Masetti:2017:DMM

Katsumi Murata, Naoya Nagata, Isao Nakanishi, and Kazuo Kitaura. Ligand shape emerges in solvent dipole ordering

Mitra:2011:UCP

Marques:2013:DIG

Myers:2017:PLP

Marques:2010:GCL

Marques:2012:UBB

Mukherjee:2011:FEG

Goutam Mukherjee, Niladri Patra, Poranjyoti Barua, and B. Jayaram. A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small

Minovski:2013:CBM

Mahanta:2011:ISP

Miriayala:2017:DNC

Mandado:2014:AER

Meisner:2011:KIE

REFERENCES

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Muller:2015:CSN

Mignon:2016:CTS

Mahajan:2017:JBP

Mishra:2012:CPM

Matta:2016:BMR

REFERENCES

Marsili:2010:OMD

Malolepsza:2010:SAC

Malolepsza:2012:ESA

Maciejczyk:2010:CGM

Mayne:2013:RPS

Martinez:2016:TER

Meier:2012:IGB

Maeda:2014:ETS

Meier:2012:EVF

Mohammadiarani:2017:IMP

Mohan:2010:CAN

Neetha Mohan, Kunduchi P. Vijayalakshmi, Nobuaki Koga, and Cherumuttathu H. Suresh. Comparison of aromatic

Miao:2011:DFT

Matsuzaki:2017:CPD

Matsuzaki:2017:OCS

Maruyama:2014:MPI

Mamonov:2011:RSA

Nemoto:2015:ISN

Neogi:2012:SSW

Neogi:2013:SSA

Neogi:2014:SSA

Nemeth:2010:CIC

Noel:2010:USI

Yves Noel, Philippe D’arco, Raffaella Demichelis, Claudio M. Zicovich-Wilson, and Roberto Dovesi. On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes.

Nozaki:2016:TSL

Nickerson:2013:CCW

Noy:2010:FPP

Najeh:2010:ETS

Nowosielski:2013:MTC

[NLP+16] Christophe Narth, Louis Lagardère, Étienne Polack, Nohad Gresh, Qiantao Wang, David R. Bell, Joshua A. Rackers,

[NMLD13] Maggie Ng, Daniel K. W. Mok, Edmond P. F. Lee, and John M. Dyke. Rate coefficients of the $\text{CF}_3\text{CHFCF}_3 + \text{H} \rightarrow \text{CF}_3\text{CFCF}_3 + \text{H}_2$ reaction at different temperatures calculated by transition state theory with ab initio and DFT reaction paths. *Journal of Computational Chemistry*, 34(7):545–557, March 15, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Nishizawa:2016:RQM

Norby:2016:MME

Ng:2017:RFT

Nunes:2013:NAP

Nagai:2016:UMS

REFERENCES

gust 5, 2015. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[OAN15a] Masaki Okoshi, Teruo Atsumi, and Hiromi Nakai. Revisiting the extrapolation of correlation energies to complete basis
REFERENCES

Ootani:2015:TIE

Oehme:2012:EAC

Ozkanlar:2014:SNU

Olson:2011:CBS

Ortega-Carrasco:2014:APL

Osman:2016:RPS

Okoshi:2014:ASC

Ortega:2016:CEN

Ozawa:2011:ICH

Otsuka:2015:AAB

Otero:2015:HBI

Opron:2016:FRI

Okamoto:2011:MIA

Ostermeir:2014:HRE

Ouk:2012:TST

REFERENCES

Pietropaolo:2011:CBM

Perilla:2011:CET

Porsev:2016:TDS

Palma:2012:CBA

Patra:2011:ANN

Pelloni:2014:CCS

Stefano Pelloni and Inmaculada García Cuesta. CCSD–CTOCD static dipole shielding polarizability for quantifica-

Pritchard:2016:HVE

Pelloni:2011:RCM

Plumley:2011:CBF

Plazinski:2012:DCI

Pinjari:2016:CSR

Pan:2012:CSH

Pacios:2012:CSL

Paschoal:2016:PPN

Pantazes:2015:SNU

Pan:2015:CCS

Pirojsirikul:2017:CQM

Panteva:2015:CST

Pesonen:2010:PCI

Poolmee:2010:IES

Panosetti:2012:AMC

Proppe:2015:CTM

[PH15] Jonny Proppe and Carmen Herrmann. Communication through molecular bridges: Different bridge orbital trends re-

Passler:2017:CLM

PH17

Pang:2013:SEM

PHC13

Pape:2013:DDM

PHDH13

Pool:2012:SNU

PHH+12

Pedersen:2014:BSE

PHK14

REFERENCES

[Papp:2017:TIN] Tamara Papp, László Kollár, and Tamás Kégl. Theoretical insights into the nature of Pt–Sn bond: Reevaluating the bonding/back-bonding properties of trichlorostannate with comparison to the cyano ligand. *Journal of Computational Chem-
REFERENCES

Pezeshki:2014:MDS

Plazinski:2011:MBC

Plewczynski:2011:CWT

Plazinski:2016:RGF

Presti:2016:MEF

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

30, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Purushotham:2012:CIC

Popo:2013:SNU

Plessow:2012:SNU

Pang:2010:SOS

Pyykko:2013:REB

Petukh:2015:SIS

Pinsky:2013:CSA

Peng:2016:FES

Porta:2015:HHB

Quapp:2010:CNE

Quapp:2011:RCS

REFERENCES

Randic:2013:VES

Rao:2011:PIS

Rathore:2011:MMS

Raskovalov:2017:SNU

Rayne:2013:LEC

Ricci:2012:DFT

REFERENCES

Rai:2013:FAG

Rice:2013:EED

Robinson:2011:WOP

Ren:2013:UEE

[RCM+13a] Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian Wan, Xin Xu, and Minghui Yang. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of fürster theory. *Journal of Computational Chemistry*, 34(12):1005–1012, May 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Roy:2013:SNU

anions: Charge and energy analysis of [Sn$_2$ E$_2^{15}$ (ZnPh)$_2$]$^{3-}$ (E15 = Sb, Bi) and [Sn$_2$ Sb$_5$ (ZnPh)$_2$]$_3^{3-}$. *Journal of Computational Chemistry*, 35(14):1045–1057, May 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Amir Abbas Rafati, Sayed Majid Hashemianzadeh, Zabiololah Boli Bolbol Nojini, and Negin Naghshineh. Canonical Monte Carlo simulation of adsorption of O2 and N2 mixture on single walled carbon nanotube at different temperatures and pressures. *Journal of Computational Chemistry*, 31(7):1443–1449,
Rohrmuller:2013:BMO

Racine:2016:RWF

Rohrmuller:2015:CTT

Rui:2010:POP

Rick:2016:PCT

[Rusakovi2015:FCR] Yury Yu. Rusakov and Leonid B. Krivdin. Four-component relativistic DFT calculations of 77Se NMR chemical shifts: a

Rossini:2016:EPS

Rossini:2016:PSP

Romero:2014:PDU

Roston:2014:SRM

Roy:2011:QMR

REFERENCES

REFERENCES

Rehman:2016:SS

Ramirez-Manzanares:2015:HAM

Rogers:2017:PDM

Randic:2013:CVMa

Ramsey:2016:SNU

Randic:2013:CVMb

Reif:2014:MDS

Reif:2014:NCC

Robinson:2013:SMB

Rodriguez:2013:EMC

Randić:2015:PAE

Randić:2010:NGD

References}

Karunakaran Remya and Cherumuttatu H. Suresh. Cooperativity and cluster growth patterns in acetonitrile: a DFT

REFERENCES

REFERENCES

Reif:2016:RAC

Rao:2013:NPL

Sattelle:2010:LMW

Swetnam:2011:IWL

Schumann:2013:SES

Spivak:2014:ICM

[SACdG14] Mariano Spivak, Celestino Angeli, Carmen J. Calzado, and Coen de Graaf. Improving the calculation of magnetic cou-

Scemama:2016:QMC

Sanchez:2017:RTC

Szklarczyk:2015:PCG

Sax:2012:LMO

Salehzadeh:2010:TSS

Silva:2011:HFO

Alexander M. Silva and Itamar Borges Jr. How to find an optimum cluster size through topological site properties: MoS$_x$

Stepanek:2013:CMC

Soydas:2014:AOO

Stepanek:2015:OIS

Sedeh:2010:SIM

Simpson:2011:EIC

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Sun:2012:IPM

Sibaev:2015:SNU

Scerri:2007:PTS

Schwarz:2010:BRB

Schwabe:2012:AFT

References

Schmidling:2013:NSB

Sanchez:2015:NQM

Song:2017:SDI

Scemama:2013:QMC

Song:2013:EAC

Selvam:2011:MZI

REFERENCES

Suarez:2013:SNU

Shen:2017:ECC

Shirazi:2014:AKM

Seal:2010:CRG

Shaghaghi:2016:SGA

Solomentsev:2012:EEE

Gleb Y. Solomentsev, Niall J. English, and Damian A. Mooney. Effects of external electromagnetic fields on the conformational sampling of a short alanine peptide. *Journal of

REFERENCES

Elsa Sanchez-Garcia, Markus Doerr, and Walter Thiel. QM/MM study of the absorption spectra of DsRed.M1 chro-
REFERENCES

REFERENCES

REFERENCES

[SHMO11] Yoshitake Sakae, Tomoyuki Hiroyasu, Mitsunori Miki, and Yuko Okamoto. Protein structure predictions by parallel sim-

[SJ16] Pin-Chih Su and Michael E. Johnson. Evaluating thermodynamic integration performance of the new Amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors. *Journal of
REFERENCES

Song:2015:ODO

Szarek:2011:MED

Sharma:2012:CPK

Stachowicz:2013:BDM

Sakalli:2015:PKP

Schultz:2015:SNU

REFERENCES

molecular structures of X-, α-, and β-types of lithium phthalo-
3062–3067, November 15, 2011. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

Safi:2010:RDE

[SL10] Maria Safi and Ryan H. Lilien. Restricted dead-end elimin-
ation: Protein redesign with a bounded number of residue
1215, April 30, 2010. CODEN JCCHDD. ISSN 0192-8651
(print), 1096-987X (electronic).

Surakhot:2017:TRR

[SLC+17] Yaowarat Surakhot, Viktor Laszlo, Chirawat Chitpakdee,
Vinich Promarak, Taweesak Sudyoadsuk, Nawee Kungwan,
Tim Kowalczyk, Stephan Irle, and Siriporn Jungsuttiwong.
Theoretical rationalization for reduced charge recombination
in bulky carbazole-based sensitizers in solar cells. *Journal
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

Stenrup:2015:CNG

Constrained numerical gradients and composite gradients:
Practical tools for geometry optimization and potential en-
ergy surface navigation. *Journal of Computational Chemistry*,
36(22):1698–1708, August 15, 2015. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

Song:2009:ETS

[SLHW09] Xinli Song, Jicun Li, Hua Hou, and Baoshan Wang. Extensive
theoretical studies of a new energetic material: Tetrazino-
tetrazine-tetraoxide (TTTO). *Journal of Computational
Chemistry*, 30(12):1816–1820, September 2009. CODEN JC-
CHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See
[JW12].

Sladek:2012:ICS

[SLIB12] Vladimír Sládek, Vladimír Lukeš, Michal Ilčín, and Stanislav
Biskupič. Ab initio calculation of structure and transport
properties of He...X (X = Zn, Cd, Hg) van der Waals com-
plexes. *Journal of Computational Chemistry*, 33(7):767–778,
March 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

[SLLL13] Jen-Ping Su, Yung-Ting Lee, Shao-Yu Lu, and Jyh Shing
Lin. Chemical mechanism of surface-enhanced Raman scatter-
ing spectrum of pyridine adsorbed on Ag cluster: Ab ini-
tio molecular dynamics approach. *Journal of Computational
JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[SLP+12] Volker Settels, Wenlan Liu, Jens Pflaum, Reinhold F. Fink,
and Bernd Engels. Comparison of the electronic structure of
different perylene-based dye-aggregates. *Journal of Compu-
JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Sala:2014:SET] Oliver Sala, Hans Peter Lüthi, and Antonio Togni. The sol-
vent effect on two competing reaction mechanisms involving
hypervalent iodine reagents (λ^3-iodanes): Facing the limit of
the stationary quantum chemical approach. *Journal of Compu-
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

[Sala:2015:DCR] Oliver Sala, Hans Peter Lüthi, Antonio Togni, Marcella Ian-
nuzzi, and Jürg Hutter. Dividing a complex reaction involv-
ing a hypervalent iodine reagent into three limiting mecha-
nisms by ab initio molecular dynamics. *Journal of Compu-
JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Shen:2015:ACG] Hujun Shen, Yan Li, Peijun Xu, Xiaofang Li, Huaying Chu,
Dinglin Zhang, and Guohui Li. An anisotropic coarse-grained
model based on Gay–Berne and electric multipole potentials
and its application to simulate a DMPC bilayer in an implicit
1103–1113, June 5, 2015. CODEN JCCHDD. ISSN 0192-8651
(print), 1096-987X (electronic).

[SM16a] Sadegh Salehzadeh and Farahnaz Maleki. New equation for calculating total interaction energy in one noncyclic ABC triad and new insights into cooperativity of noncovalent

Stachiewicz:2016:DDD

Szczepaniak:2017:ARB

Sheng:2011:CCU

Sumi:2015:ESF

Sumi:2015:SFE

[SN16b] Junji Seino and Hiromi Nakai. Informatics-based energy fitting scheme for correlation energy at complete basis set
REFERENCES

REFERENCES

Springborg:2010:BRB

Sousa:2013:CAP

Saha:2012:CSS

Strohecker:2010:QCI

Szalay:2011:FCD
Sakkal:2017:PCB

Savarese:2017:CPT

Shyichuk:2015:SDC

Sengupta:2016:BBA

Smith:2014:SES

REFERENCES

Julia Setzler, Carolin Seith, Martin Brieg, and Wolfgang Wendel. SLIM: an improved generalized Born implicit membrane...
REFERENCES

Pin-Chih Su, Cheng-Chieh Tsai, Shahila Mehboob, Kirk E. Hevener, and Michael E. Johnson. Comparison of radii sets,

Sumiya:2017:FRC

Sun:2010:TKS

Sure:2015:SSR

Su:2010:CSP

Sun:2015:LEG

Weiyu Song, Jing Wang, Jian Meng, and Zhijian Wu. Half metallic properties of LaSrVMoO$_6$. *Journal of Computational
Shi:2011:MEH

Shyu:2011:AES

Spassov:2016:PDC

Su:2016:TDT

Sharabi:2011:OEF

Sindhikara:2012:PAP

REFERENCES

1536–1543, July 5, 2012. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Solovyov:2012:MEU

Sun:2017:AVW

Shim:2013:AXA

Schupbach:2010:FTC

Su:2013:ADX

REFERENCES

Takahashi:2014:DRF

Tan:2012:CSP

Tantardini:2016:SFP

Thomas:2013:PGF

Torres:2014:TSR

Ana E. Torres, Guadalupe Castro, Ricardo Pablo-Pedro, and Fernando Colmenares. A two-step reaction scheme leading to singlet carbene species that can be detected under matrix conditions for the reaction of Zr(3 F) with either CH3F or CH3CN. *Journal of Computational Chemistry*, 35(11):883–890, April 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Tu:2013:PFE

Bin Tu, Minxin Chen, Yan Xie, Linbo Zhang, Bob Eisenberg, and Benzhuo Lu. A parallel finite element simula-

[TF15] Russell Thackston and Ryan C. Fortenberry. The performance of low-cost commercial cloud computing as an alternative in computational chemistry. *Journal of Computational Chem-

[Teodoro:2013:ARA] Tiago Quevedo Teodoro and Roberto Luiz Andrade Haiduke. Accurate relativistic adapted Gaussian basis sets for francium through ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.
REFERENCES

[TLdG+12] Zahra Tabookht, Xavier López, Coen de Graaf, Nathalie Guihéry, Nicolas Suaud, and Nadia Benamor. Rationalization of the behavior of $M_2\left(\text{CH}_3\text{CS}_2\right)_4\text{I}$ ($M = \text{Ni, Pt}$) chains at room temperature from periodic density functional theory

[Tang:2012:CFF]

[Tahat:2016:MEV]

[Tognetti:2015:QEN]

[Takano:2010:ESH]

[Tai:2012:EST]

Thenraj:2015:CER

Tsipis:2015:EBO

Athanassios C. Tsipis and Alexandros V. Stalikas. Electronic, bonding, and optical properties of 1 d [CuCN]_n (n = 1–10) chains, 24 d [Cu CN]_n (n = 2–10) nanorings, and 3 d [Cu_n (CN)_m]_n (n = 4, m = 2, 3; n = 10, m = 2) tubes studied by DFT /TD–DFT methods. *Journal of Computational Chemistry*, 36(17):1334–1347, June 30, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Thellamurege:2013:SNU

Tsipis:2014:DAS

Tsipis:2017:EPR

Tang:2010:MKI

Tsuneda:2016:RBO

Tsuneda:2017:LLE

Torres:2016:SAA

Tang:2012:TMG

Toropov:2010:SBO

REFERENCES

REFERENCES

(26):2341–2348, October 5, 2016. CODEN JCCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

\textbf{Udagawa:2011:IMD}

[U11] Taro Udagawa and Shogo Sakai. Ab initio molecular dy-
namics of protonated water clusters by integrated multicenter molecular-orbital method. \textit{Journal of Computational Chem-

\textbf{Udagawa:2014:WND}

[UT14] Taro Udagawa and Masanori Tachikawa. Why is N···Be distance of NH$_3$H$^+$···DBeH shorter than that of NH$_3$D$^+$···HBeH$^+$? Paradoxical geometrical isotope effects for partially isotope-substituted dihydrogen-bonded isotopomers. \textit{Journal of Com-
putational Chemistry}, 35(4):271–274, February 5, 2014. CO-
DEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

\textbf{Udagawa:2015:HDI}

[UT15] Taro Udagawa and Masanori Tachikawa. H/D isotope ef-

\textbf{Uejima:2011:AQM}

\textbf{Ullmann:2012:SNU}

REFERENCES

Vogt:2014:WIS

Vener:2012:IHB

VonAppen:2010:DFS

Vela:2016:ZOH

Vogt-Geisse:2016:CPR

REFERENCES

[VSD10] Santhosh Kannan Venkatesan, Anil Kumar Shukla, and Vikash Kumar Dubey. Molecular docking studies of selected

vanSeveren:2010:ATA

VanDornshuld:2014:CPE

Viegas:2014:CCR

Vanpoucke:2013:LER

Vega-Vega:2017:MMC

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Vincent A. Voelz and Guangfeng Zhou. Bayesian inference of conformational state populations from computational mod-

Wan:2011:MDS

Wang:2013:HWM

Wise:2014:NFF

Wu:2010:QMS

Weill:2011:TCT

Wang:2011:ELP

Wessel:2010:FPS

Wu:2013:PFB

Wang:2012:DFT

Wu:2012:QCI

Wagener:2012:SNU

Wilson:2012:PHE

Waller:2013:SNU

Wang:2016:RMR

Weinhold:2012:NBO

Weinhold:2012:SNU

Watanabe:2013:RDP

[WES13] Hiroshi Watanabe, Marcus Elstner, and Thomas Steinbrecher. Rotamer decomposition and protein dynamics: Efficiently an-

REFERENCES

REFERENCES

Wolf:2016:ECG

Wu:2011:TMS

Will:2013:SNU

Weymuth:2012:SNU

Wang:2010:TDD

Benjamin Waldher, Jadwiga Kuta, Samuel Chen, Neil Henson, and Aurora E. Clark. ForceFit: a code to fit classical force

REFERENCES

Wallnoefer:2011:CSF

Wang:2012:HAR

Witzke:2017:APP

Wang:2010:EET

Wu:2012:LER

Wuttke:2017:VDI

[Axel Wuttke and Ricardo A. Mata. Visualizing dispersion interactions through the use of local orbital spaces. *Journal

REFERENCES

REFERENCES

Wang:2010:BCA

Wirz:2016:SFG
Lukas N. Wirz, Ralf Tonner, Andreas Hermann, Rebecca Sure, and Peter Schwerdtfeger. From small fullerenes to the graphene limit: a harmonic force-field method for fullerenes and a comparison to density functional calculations for Goldberg–Coxeter fullerenes up to C_{980}. *Journal of Computational Chemistry*, 37(1):10–17, January 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Wu:2010:CCN

Weinhold:2014:BTH

Wang:2015:BCD

Wenzel:2014:CCL
Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating core-level excitations and X-ray absorption spectra

REFERENCES

[Wang:2017:ARS] Chao Wang, Yizhong Yuan, and Xiaohui Tian. Assessment of range-separated exchange functionals and nonempirical func-

REFERENCES

[XhD15] Jing Xu and Yi hong Ding. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiX$_m$Yq_m ($n + m = 4$; $q = 0, \pm 1, -2$; X, Y = main group elements from H to Br). *Journal of Computational Chemistry*, 36(6):355–360, March 5, 2015. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Yu:2011:ETS

Yamamoto:2013:TPM

Yildiz:2016:AEK

Yu:2010:TSN

Youn:2016:EEF

Yang:2017:ERV

Chong Yang and Andreas Dreuw. Evaluation of the restricted virtual space approximation in the algebraic-diagrammatic

[Yuan:2015:TPH]

[Yao:2010:SDS]

[Yang:2013:RWA]

[Yu:2016:PKP]

[Yesylevskyy:2012:SNU]

Yesylevskyy:2015:SNU

Yu:2011:AMA

Yang:2011:TSG

Yu:2013:SNU

Yu:2012:ECG
Yao:2013:MDS

Yeh:2011:DFT

Yu:2017:PDS

Yourdkhani:2017:RPN

Yakhanthip:2011:TIN

Yu:2017:PS
REFERENCES

Yamada:2013:VDE

Yan:2010:CSE

Yourdkhani:2015:IBT

Yamada:2011:TNA

Yuzlenko:2013:MPN

Yoshikawa:2015:LSS

Yamaguchi:2017:RRA

Ou:2010:PMS

Yamagishi:2014:NSA

Yonezawa:2016:MPP

Yu:2016:DAS

REFERENCES

2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[YR13] Rui Yang and Alistair P. Rendell. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3 (0001)

Yu:2010:RPC

Yoshizawa:2013:NSC

Yosipof:2015:KNN

Yang:2012:GAN

Yousfi:2010:REM

Yang:2012:MZE

[YSSB12] Hongfang Yang, Qisheng Song, Xinyu Song, and Yuxiang Bu. Multi-zinc-expanded graphene patches: Tetraradical versus

[Yu:2012:IDC]

[Yu:2012:AIM]

[Yanez:2017:FF]

[Yanez:2017:FF]

[Yan:2012:ESL]

[Yang:2013:RNI]

Sheng-Chun Yang, Yong-Lei Wang, Gui-Sheng Jiao, Hu-Jun Qian, and Zhong-Yuan Lu. Software news and updates: Ac-

Yang:2014:VSP

Yu:2012:TSE

Yan:2015:PPB

Yuan:2015:DHH

Yang:2016:EPC

REFERENCES

Bo Yang, Yanyan Zhu, Yan Wang, and Guangju Chen. Interaction identification of Zif268 and TATA$_{ZF}$ proteins with

REFERENCES

[ZCS+15] Shenggao Zhou, Li-Tien Cheng, Hui Sun, Jianwei Che, Joachim Dzubiella, Bo Li, and J. Andrew McCammon. LS-

REFERENCES

Zhang:2011:SSE

Zhang:2012:REFb

Zhang:2012:REFa

Zou:2011:SSP

Zimmerman:2013:ADC

Zimmerman:2015:SET

[ZLL+10] Laibin Zhang, Huifang Li, Jilai Li, Xiaohua Chen, and Yuxiang Bu. Absorption and fluorescence emission spectroscopic

Zhu:2013:SNU

Zhang:2012:TSRb

[ZLLL12] Hui Zhang, Yang Liu, Jing-Yao Liu, and Ze-Sheng Li. Theoretical study and rate constants calculation for the reactions \(X + \text{CF}_3\text{CH}_2\text{OCF}_3 \) (\(X = \text{F}, \text{Cl}, \text{Br} \)). *Journal of Computational Chemistry*, 33(6):685–690, March 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhang:2015:EMC

Zhang:2013:ICA

Zheng:2010:ITA

Zheng:2013:WPP

Zhao:2016:LPT

Xue-Feng Zhao, Haixia Li, Cai-Xia Yuan, Yan-Qin Li, Yan-Bo Wu, and Zhi-Xiang Wang. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D$_{2h}$ C$_2$ (BeH)$_4$ species via hydrogen-bridged BeH$_2$Be bonds. *Journal of Computational Chemistry*, 37(2):261–269, January 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhang:2014:ECM

Zhu:2010:PEF

Zoboki:2011:ELN

Zhang:2012:IRE

REFERENCES

43, January 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhong:2013:BST

Zarbeto:2014:LSF

Zarycz:2016:CSB

Zhu:2014:TPC

Zilberberg:2010:POD

Zapata-Rivera:2011:ESR

Jhon Zapata-Rivera, Rosa Caballol, and Carmen J. Calzado. Electronic structure and relative stability of 1:1 Cu-O₂

Zapata-Rivera:2012:RML

Zgarbova:2015:TAD

Zare-shahabadi:2010:AAC

Zadeh:2011:NAD

Zoete:2016:ACD

Zhao:2011:CDL

Zhan:2017:ASE

Zhao:2013:FPC

Zahariev:2014:FAM

Zhang:2012:DFT

REFERENCES

Zhou:2015:ABO

Zaccaria:2016:IST

Zhang:2013:MPI

Zhang:2011:ABD

Zhao:2010:PSM

Zadeh:2011:NAS

REFERENCES

February 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zheng:2010:MDM

Zhao:2010:SSP

Zhou:2016:IBH

Zheng:2010:DFTb

Zheng:2010:DFTa

Zhang:2011:IIR

Zhao:2011:HMM

Zhang:2010:ESO

Zhao:2014:IDB

Zhao:2014:DSE

Zhang:2015:TCS

[ZYG+15] Xu Zhang, Xiaodi Yang, Hua Geng, Guangjun Nan, Xingwen Sun, Jinyang Xi, and Xin Xu. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and

Zhu:2012:PPT

Zhang:2012:TSRa

Zhao:2015:PRM

Zhu:2010:IAP

Zhao:2014:CBP

Zhao:2016:CDO

Zhang:2010:III

Zhou:2012:CMF

Zeller:2014:ECR

Zhang:2010:TSRb

Zhang:2010:TSRa

[ZZL⁺10b] Hui Zhang, Gui-Ling Zhang, Jing-Yao Liu, Miao Sun, Bo Liu, and Ze-Sheng Li. Theoretical study and rate constants cal-

Zeng:2012:AII

Zhang:2012:RMC

Zhu:2011:CSE

Zhang:2016:CQD