A Complete Bibliography of Publications in
Journal of Computational Chemistry:
2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

04 June 2020
Version 1.39

Title word cross-reference

\((N - 1)\) [ACD\(^+13\)a, ACD\(^+13\)b]. \((n = 2, 3, 4)\) [VSP\(^19\)]. \((\sigma^3, \lambda^3)\) [TR\(^12\)].
\((\sigma^3, \lambda^5)\) [TR\(^12\)] + [CXW14, GTK10, NMLD13]. 0 [UD\(^12\)].

\([MG15, TS15b, YZLZ18]. 1 - n\) [CYG\(^+15\)]. 10 [AC\(^11\)b, TS\(^15\)b]. 13
[MYGW12, SIT18]. 15 [AC\(^11\)b]. 17 [GZZ\(^12\)]. 18 [LW\(^16\)]. 2 [CWT\(^+12\),
CBDS\(^19\), GSS\(^13\), MSBF\(^16\), MH\(^10\), SJD\(^14\), WvRSM\(^14\), YDL\(^+10\), YZLZ\(^18\)]. 20
[AC\(^11\)b, LYL\(^16\), YVEI\(^+17\)]. 24 [TS\(^15\)b]. 3
[AARP\(^17\), CM\(^16\), DVVP\(^14\), GMMH\(^+16\), GSS\(^13\), GPK\(^12\), GBG\(^+19\), HSW\(^+19\),
LT\(^16\), MG\(^15\), MA\(^16\), MYT\(^+14\), MP\(^19\)b, MSSP\(^17\), PSS\(^14\), Pop\(^18\), RVCFF\(^13\),
TS\(^15\)b, VVMY\(^18\), YLL\(^11\), YZLZ\(^18\), dL\(^v\)NC\(^18\)b]. 4
[AFSW16, GWJJ\(^12\), ZTH\(^+15\)]. 4d [Hil\(^13\)]. 4f [Hua\(^16\)]. 4 \times 1 [LGKS\(^17\)]. 4 \times 4
[SH\(^14\)]. 5 [APY\(^+16\), LZH\(^16\), WFL\(^+19\), YLL\(^11\)]. 5\(^+12\) [MKH\(^15\)]. 6
[MCAY\(^15\), Rab\(^12\), TSZQ\(^12\)]. 6\(^2\) [MKH\(^15\)]. 6\(^3\) [MKH\(^15\)]. 6\(^4\) [MKH\(^15\)]. 7 \times 7
[UGK\(^18\)]. 8 [CSC\(^+18\), TN\(^12\)]. 8 \times 2 [LGKS\(^17\)]. [2 + 2] [LXFC\(^17\)]. [5 + 1]
\[\text{[CAT}^\pm, \text{JXSW}15, \text{MCK}17a, \text{TDKT}10]. \] \(f^n \) [\text{BBG}^\pm18b]. \)

\(\gamma \) [\text{BTB}^\pm11, \text{DBG}11, \text{YLCX}10]. \(J \) [\text{KNP}^\pm12, \text{LZH}^\pm11]. \(k \) [\text{Hug}14, \text{YS}15]. \(\kappa \) [\text{YRSS}10]. \(\lambda \) [\text{BH}15]. \(\lambda^3 \) [\text{SLT}14]. \(\lambda^N \) [\text{XHLH}16]. \(\leftrightarrow \) [\text{RSK}^\pm15]. \(M \)

\[\text{[ATIP}18, \text{AM}19a, \text{LLX}^\pm19, \text{MP}19b, \text{YLT}^\pm19, \text{NH}19]. \] \(n = 1, 2 \) [\text{SIT}18].

\[m = 2 \) [\text{TS}15b]. \(m = 2, 3 \) [\text{TS}15b]. \(M_\gamma \) [\text{ATIP}18]. \(\mu \) [\text{RHPWS}13]. \(N \)

\[\text{[AARP}17, \text{HPT}17, \text{JSW}10, \text{KYCL}11, \text{KYKR}15, \text{KSK}11, \text{LHL}^\pm10, \text{LXZ}^\pm10, \text{MB}16, \text{PHT}17, \text{PM}18b, \text{QZM}11, \text{RF}15, \text{YLZ}^\pm10, \text{ZYW}^\pm10a, \text{ZBP}11, \text{dSdLBN}17, \text{BLBG}^\pm13, \text{BS}10b, \text{HCB}11, \text{JLH}^\pm14, \text{LLX}^\pm19, \text{LXFC}17, \text{OKY}18, \text{RFF}11, \text{SLY}^\pm19, \text{TCGN}18, \text{TT}18]. \] \(n + m = 4 \) [\text{XhD}15]. \(n + m \leq 3 \) [\text{GT}10]. \(n = 0 \) [\text{MCAY}15]. \(n = 1 \)

\[\text{[GWJJ}12, \text{Rab}12, \text{RVCFF}13, \text{TN}12, \text{TSZQ}12, \text{YLL}11, \text{TS}15b]. \ n = 1, 2 \ [\text{ABB}^\pm12, \text{ABB}^\pm13]. \ n = 10 \) [\text{TS}15b]. \(n = 12 \) [\text{YVEI}^\pm17]. \(n = 2 \)

\[\text{[WYGW}12, \text{TS}15b]. \ n = 3 \) [\text{SIT}18]. \(n = 4 \) [\text{GZZ}12, \text{TS}15b]. \(n = 5 \) [\text{AC}11b]. \(n \leq 20 \) [\text{ASS}10]. \(n \leq 25 \) [\text{Tak}11]. \(n \leq 55 \) [\text{Tak}10]. \(N \log N \) [\text{AO}10]. \(O(N) \)

\[\text{[BLS}11]. \ O(\log N) \) [\text{FGM}11]. \(p \) [\text{HN}17, \text{MCK}17b]. \(\pi \)

\[\text{[AH}10, \text{BLBG}^\pm13, \text{BS}18, \text{CLFR}18, \text{CKL}^\pm11, \text{DLMH}12, \text{GNC}^\pm18, \text{GZM}16, \text{HSZ}^\pm11, \text{KV}14, \text{KDS}17, \text{MUN}^\pm19, \text{MVK}10, \text{MIS}^\pm15, \text{OOK}11, \text{PM}18a, \text{RF}15, \text{SSGS}15, \text{SDF}12, \text{SWW}^\pm19, \text{YJN}^\pm11, \text{Zha}11, \text{ZZW}19]. \pi \cdots \)

\[\text{[YZZ}^\pm17]. \pi \cdots \pi \) [\text{CCCLCG}14]. \(pK_a \) [\text{BA}11, \text{CPK}19]. \(\Psi \) [\text{Lüc}14].

\[q = 0, \pm 1, -2 \) [\text{XhD}15]. \(r^2 \) [\text{RMC}^\pm13b]. \rightarrow \)

\[\text{[CK}10, \text{Chu}10, \text{GTK}10, \text{H}211, \text{HBL}12, \text{LWD}13, \text{NMLD}13]. \(\sigma \) [\text{KKL}^\pm13]. \sigma \)

\[\text{[DPSL}16, \text{GZM}16, \text{LZL}^\pm15b, \text{PM}18a]. \sigma \pi \) [\text{CZY}11, \text{YWZ}14]. \(\Lambda \) \(\Lambda' \)

\[\text{[MCLD}10]. \times \) [\text{SRS}14]. \rightarrow \) [\text{CSNCS}^\pm18, \text{SB}19, \text{XCLZ}19]. \(v = 0 \) [\text{LWD}13]. \(X \)

\[\text{[AM}19a, \text{Sak}18, \text{UT}15]. \ x = 1 \) [\text{CWT}^\pm12, \text{LZTV}10]. \(Y \) [\text{UT}15].

-1 [\text{dLxNC}18a]. -5 [\text{LL}10c]. -A [\text{YJN}^\pm11]. -acceptor \) [\text{MIS}^\pm15]. -Ace \)

[\text{LHL}^\pm10]. -acetals \) [\text{YZL}^\pm15]. -Acetate \) [\text{BHP}19]. -Aceto- \) [\text{SJD}14].

-acyetyl- \) [\text{ZBP}11]. -acytation \) [\text{LHL}^\pm10]. -adrenergic \) [\text{LLHM}16, \text{VKC}10].

-\text{Al} \) [\text{YR}13]. -alkenoyl \) [\text{YZL}^\pm15]. -alumina \) [\text{SH}14]. -amination \) [\text{YZ}17].

-amin \) [\text{ZKH}^\pm10]. -aminopolyacrylate \) [\text{CMD}13]. -arene \) [\text{ZCK}^\pm16].

-atomic \) [\text{JXSW}15]. -ATPase \) [\text{II}10]. -azacrown-5 \) [\text{ZYW}^\pm10a]. -barrel \)

[\text{yOAC}10, \text{WXL}^\pm12]. -based \)

[\text{BPE}16, \text{EBK}13, \text{EP}15, \text{EB}18, \text{LFB}14, \text{MP}19a, \text{PBE}16]. -benzaldehyde \)

[\text{Lu}11]. -bipyridinyl \) [\text{KPL}15]. -block \) [\text{CAT}^\pm13, \text{MCK}17b, \text{TDKT}10]. -bond \)

[\text{CKL}^\pm11]. -bound \) [\text{XWSW}13]. -butane \) [\text{TCGN}18]. -butanol \) [\text{BS}10b].

-butene \) [\text{MSBF}16, \text{WvRSM}14]. -butyl- \) [\text{MG}15]. -butylbenzene \) [\text{HCB}11].

-carboxylates \) [\text{AARP}17]. -carrabiose \) [\text{YRSS}10]. -catalyst \) [\text{SSD}19].

-catalyzed \) [\text{YXZZ}17]. -cation \) [\text{MUN}^\pm19].

-chlorodiphenylacetohydroxamate \) [\text{CBDS}19]. -conjugated \) [\text{BLBG}^\pm13].

-coumaric \) [\text{HN}17]. -couplings \) [\text{LZH}^\pm11]. -Cu \) [\text{NGAS}17]. -curcumin \)

[\text{AKM}11]. -cyclodextrin \) [\text{DBG}11]. -dimensional \) [\text{MB}16].

-dimethylaminophenyl \) [\text{YLZ}^\pm10]. -effect \) [\text{RWR}^\pm13]. -electron \)

[\text{KTK}17, \text{LW}16, \text{LYL}16, \text{HPT}17, \text{PHT}17]. -erythrose \) [\text{SM}17]. -expanded \)

[\text{MLQ}^\pm12]. -F12a \) [\text{MLCD}11]. -form \) [\text{GWX}^\pm12]. -glucosamine
[LJW+11b, TKCN19]. -hairpin [LJW+11b]. -helices
[KKK+19, HHT+13a, HHT+13b]. -helix [CCOH14, WXL+12]. -heptane
[RSSF11]. -heterocyclic [KYKR15, LZX+10, RF15, dSdLBWB17]. -hole
[BSF18, GZM16, LZR+15b]. -holes [PM18a]. -hydrogen [GNC+18].
-hydrogenase [GS11]. -hydroxydimethylnitrosamine [FFA14].
-hydroxybutyrate [SJD14]. -hydroxymethylfurfural [APY+16, WFL+19].
-hydroxyquinolin-imidazolinone-based [CSC+18]. -hydroxysteroid
[BH15]. -LiCl [LCL+18]. -like [WGN+16]. -maltose [SWM10]. -metalloid
[MMS16]. -methyl [LZL+16]. -methyl-Imidazolium [MG15].
[NDG14]. -methylformamides [JSW10]. -Montmorillonite
[BHB19, BHB+17]. -N-benzyl-N- [NDG14]. -napthalene [CYY+17].
-nearest [Hug14, YS15]. -nitroaniline [ZTH+15]. -nucleophile [ZYR+15],
one [YZLZ18]. -ones [YZ15b]. -orbitals [MCK17a]. -organic [AH10]. -oxo
[VBMA13, RHPWS13]. -oxoalkyl-substituted [AARP17]. -Pd
dSdLBWB17. -pentane [TCGNT18]. -peptide [LLvG10, LvG13a].
-peptides [LvG13c, ZKH+10]. -phosphoranes [TR12]. -pinene
-propionic [CM16]. -pyridone [AFSW16]. -representability [PM18b].
salen [DSHLM18]. -secretase [YLCX10]. -sextet [KDS17]. -sheet
[CCOH14, WS10]. -substituted [LZH+16]. -system [SWW+19].
-thiaphosphiranes [TR12]. -turn [SZB19]. -type [SLY+19]. -types
[Pon10].

[DSHLM18]. /Fe [DAdGR15]. /GIAO [OPR16]. /GIAO-CCSD [OPR16].
/H [WLF19]. /metal [BSF18]. /MgO [BS16b]. /MM [CZY11]. /PDIxCN
[ZZL19]. /TD [TS15b]. /X [BSF18]. /Zn [GEP+14].

0 [KKH19].

1 [ZZWX11, CS17, DLZ15, GTK10, NH16, SYH12, SRS14, TTB+10,
UNT16, XLY12, ZAs10]. 1*- [ZZWX11]. 1-14 [GNI18]. 1-16 [XWSW13].
1-21 [GNI18]. 1-Methyluracil [HvM17, HvM16]. 1-Octene
[MJLV14a]. 1-penten-5-y1 [LXFC17]. 1.0 [SWB+12]. 1.1 [KJM+17]. 1.3 [LSL+19].
10-Phenanthroline-5 [SCSM19]. 10.1002/jcc.25747 [MT20]. 102
[RvdMB16]. 17 [KSM17]. 195 [PDGb+16]. 1D [AWF+18]. 1D-charge
[AWF+18]. 1H [YZ15b]. 1T [RSK+15].

7 [ADF+10, CD19, MBR+15]. 7-azaindole [YYT12]. 7-diphenylamino-9
8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZHH11].
8-naphthoquinone [HWB19]. 8R [BG13].

ability [LLL+10, PGS+15, RTS+13]. above [MK17]. Absolute [Gri13, HLW+17, KB11b, KYB13, VED10]. absorbing [NPG+18].
Absorption [RS17a, ZLL+10, DMD+18, FD13, HNN+17, KB16, LLBO12, LX11, LXZ+10, MKK+19, PMC+17, PDZT10, PDG+16, SGDT10, TYN15, TZ12, Tsi14, WWD14, ZTH+15, ZDX11, QCR12]. abstraction [AAMD+11, BS10b, CSXZ17, CY12, JCG+10, LJW+11b, PNE18, WLHZ12, dCRN18]. Ac [SNKS10]. ACCDB [MP19c]. Accelerated
[MFEM15, MFEM16, SH19a, YKNN19, AGB13, BDTP11, CVT+11, CF18, DWC17, GBL+11, HEMCZE+14, HAP+12, KV13, LL11, MLN+18, REU+17, YLX14, YSG12, ZC14, ZLL+13]. accelerates [HS17b]. Accelerating [HASR+12, HB19, LZ12, WYJ+16, HP10a]. Acceleration [BK+11, ON14, SOM+13, UTM11, WSGN11, OOT15]. accelerator [SBV10]. accelerators [KK17a]. acceptance
[BB11b, KB11c, NDW15, dBRO13]. acceptor [EHT19, Gil11, Lu11, MSV16, MB+15, SB19, ZSTR+18, ZLL19]. acceptor-bridge-donor [ZSTR+18]. acceptors [KKK+19, uH11, TZ12]. accessibility [HPL+18, LHL+10]. accessible [FZ+12, WXL+12, WBF17].
Accessing [JZZM14], accompanying [HSN14]. according [GM17, LPE+10, YZZ16]. account [EPH+13, Tsi18]. Accounting [XML+15, HH11, MBC11]. Accuracy
[ASW19, DBM+15, FCE15, KFY+13, LL17, BPB11, GRAR+14, HWL11, KSR+16, LZ12, LDZW17, MLG18, NTNY15, yOAOG10, RS13, RVCFF13, Rob13, TO10, VV+18, ZYS+10, AIM+18, Gil11, SDP+18]. Accurate [BS10b, BS18, CX10, CSXZ17, EFOD13, FL11, IN13, KG15, LYG+13, LL11, LWL+10, MK13b, MFR+11, NW17, Pol13, PVJ10, Sch12, SRR16, SY11, SSB+16, SYZ+17, TH13, VSP19, WL14, YB16, ZW11, ZLX11, ZYL12, ZLZ+19].
Algorithmic \[LPS12\]. Algorihms \[BV14, KGHC15, AGR11a, AC12, CD13, Fon11, GBSE11, KJM+17, Leh15, LLZA12, MS16, MO15, NC14, NOKJ16, RFN15, TRA+16, ZVY+15, dACP12, vLBBR12\]. aligned \[KC14\].

alignment \[BF15, HRK+10, HKRSL11, HS11, MJM+15, RP15, RHJ11, Ran12\]. alignments \[CYI+10, Ran13\]. aliphatic \[CROB16, SB10\]. Alkali \[YHCS11, Ano11, AM19a, DDM+15, JHMB+09, JHMB+11, THP+15, ZWY+10a\].

alkali-metal \[ZWY+10a\]. alkalides \[WXS+12\]. Alkaline \[XZ11, Ano11, JHMB+09, JHMB+11, WD10\]. alkaline-earth \[WD10\].

alkane \[JGS+17, ZST14\]. alkanes \[Jor17\]. Alkanethiol \[SJS19\]. AlkB \[PHC13\]. alkenes \[Jor17\]. alkenoic \[YFL+15\]. alkoxy \[WFL+19\].

alkoxy-catalyzed \[WFL+19\]. alkyl \[Den12, RMGB11\]. alkylthiols \[FVP14\]. alkyne \[WWTL19\]. alkynes \[Jor17, YYZZ17\]. All-atom \[SM14b, CS14, DPNM11, HM13, JYC+16, KT18, LZZ14, MZZ11, OCW+15, VHA+10\]. all-atomistic \[FPH+19\]. All-electron \[KKA+18, PGDo+16\].

all-organic \[LZL+15a\]. all-siliceous \[Lar11\]. allene \[GRCL12\]. allenes \[KV15b\]. allocation \[NOKJ16\]. allopolyacrylan \[RML+15\]. allostere \[DBK17, ILKR11, MWM+11, SR17, ZDT18\]. Allotropes \[OSI+19\].

allotropic \[GBK+19\]. allowing \[MLC13\]. alloy \[NIIT15\]. alloys \[GD10, vADC+14\]. ALMOST \[FSC+14\]. AlN \[wZbZ11\]. AIO \[GWPJ11\].

along \[ABDGN12, AC11b, CM13a, CX10\]. Alpha \[MH10, MBK+13, SPZP18b, XTY+14\]. alphabets \[PHDH13\]. A IPO \[LL10c\]. alter \[CBTZ16\]. alterations \[HHT+13a, HHT+13b\]. alternate \[ZWS+10\]. alternative \[ASL+11\].

alternative \[DSHLM18, MA17, NYN17, TF15, Wei12a\]. alumina \[SH14\]. Aluminum \[Kop19a, SBG18, WFL+19, GWJ12, LK16a\]. always \[KSC16, MBFG15\]. AM \[FBY+17\]. AM05 \[MMJ10\]. AM1 \[KLS10, KMLS0\]. AMBER \[MSK+12, RSR+12, MLN+18, GCW14, MSK+10, MGJ+15, OYK+11, PGW+17, SOY12, SJ16\]. AMBER-compatible \[SOY12\]. AmberTools \[RNSF+16\]. Ambident \[WBKS19\]. amide \[LJW11a, LW11, NDG14\].

amidoborane \[PMT16\]. amidoboranes \[DLT17\]. amination \[YZ17\]. amine \[AK10, BMB13\]. amines \[MR+18\]. amino \[BSG+18b, CCLGRO14, CFIC15, CB1d, DKET+17, FZL+15, FP17b, GRL+11, GRL+12, HCP15, KLS10, KMLS10, LXL+11, LP11b, MRO17, PHDH13, RSL16, SISK10, SBM13, SST+18, WC14, ZZWT12, ZKH+10, ZHXX11\].

amino-acid \[KLS10, KMLS10\]. aminoacid \[MC10\]. aminophenyl \[LZL+16\]. aminophthalimide \[WHL+10\]. aminopolycarboxylate \[CMD13\]. aminotriethylene \[MSY19\]. amrine \[dCCGRN19\]. ammonia \[BEMP14, CC12a, KT12, SNS16, SJZ+15, VS14\]. ammonium \[AvKSP16, DSHLM18\]. AMOBA \[HLW+17, MBE16, PZCL16, XP13\]. among \[KYB13, SH15, TCGNT18, WGL+11\]. amorphous \[Fom13\]. amounts \[FN12\]. amplitudes \[Les19\]. Amsterdam \[FPV13, SFG+17\]. amyloid
[IO13b, LH11]. amyloid- [IO13b]. amyloid-beta [LH11]. analog [JBAM11]. analogs [DCHL12, LP11b, SISK10, VM11, WBT10]. analogue [PGW +17]. analogues [LPS +13, NK19, SGWA17, VVBL17, VM19, WS12, YLL11]. analyses [BSF18, CBDS19, KASH14, KP11, PZBA13, SKGB13, VVJ15, XWW +11]. Analysis [BMD19, CDG +15, ELKE19, HAI +16, JCGM18, KKGW19, LL19a, MOS12, SZL19, SvLK18, Spr18, XFG +16, AKMT11, AST +16, ASL +11, ARRC15, AAB +19, AS18, ANO15-58, AM19a, AM19b, BK15, BL19, BH14, BSSP +13, BBG +18b, CMM18, CAL +13, CEBO15, CCH +11, CHT +13, CHY4, DMJ17, DDP +18, DTF +11, DJD12, DBK17, DJS +18, DCS15, DN19, ESD18, EHSP16, EB18, Fer17, FB12, FHW +11, FHK +12, GVP +10, GLW13a, GLW13b, GD +12, dCGCRN19, GCP +13, Han11, HSB +19, HCT +10, HPSK12, HHT +13a, HHT +13b, HGW18, HDHL15a, HDHL15b, HHWL17, Hug12, IY18, Jan16, JHH +13, JJW +14, JZZM14, JCX10, JLS18, KG13, KYG +15, LSL +19, LBC +19, LL13a, LCPS13, LMZ +11b, LFM12, LAHS16, LGKS17, MLG18, MDTD13, MJ14, MT19b, Mez10, MADWB11, MCLD10, MGS +16, MCK17b, NK19, NH19]. analysis [NIIT15, NS17, OXBW16, OC14, PTK11, PSP15, PRYI +17, PTB +15, PPUBGD10, PS12, PS14, RDT14, RSG18, RC18, REL17, RLG14, SFM +18, SLY +10, SBB10, SFR +11, SHFJ18, SSGS15, SEJ +18, SB18, SNDK16, SS13c, SB19, SPR +13, SH18b, SSP +19b, SH19b, TYN15, TCB16, TD10, TT +10, TS10b, UKS11, VBMA13, WNP +16, WWW19, Wei12a, Wei12b, WDKT19, XFG +15, YK13, YNH +17, Yes12, Yes15, ZCS +15, ZBB16, ZH12, ZZZ +19, ZCWX18, dSH19, vSGP10, JCHT18, ZSB +11]. Analytic [Boz18, MDTD13, NF18, SZX13a, SZX13b, TSH +19, MY17b]. Analytical [CCR18, CCB15, HNWF07, HNWF12, HH17, LBGS16, SFG +17, WOH18, CHC +13, FBY +17, GRN19, HH16a, KN17, KTSG11, MK13a, Pon11, Pop18, ZWF15]. analytics [JZL +17]. analyze [LP11c, OVPK15, QLQ11, RLG14, YKO +11, dVAG16]. analyzer [JJW +14, LC12, PVZ13]. Analyzing [BGS +19, BD11, MRB14, BCP +10, HPT17, LZS +17, PHT17, SWA13, WES13]. anapole [ZPP +16]. anatase [HRL11]. and/or [KB10, Pog10]. androstenedione [VCM15]. angle [CKP10, GBFD12, XML +15]. angle-dependent [CKP10]. angles [BKLA13, EJ13, FZY +12, GREA11, KTK17, LDH +14, OZ14, YZ16]. angular [BBG +18b, ENKK +17]. anharmonic [Kow11, SSWX14]. anhydrase [SSP +13]. anhydrates [RB12]. aniline [PLP +16]. Anion [TT18, CG15, KSNT19, LC10, uLhY11, LCC18, SC18a, SDF12]. Anionic [BHP19, AM19a, AM19b, GZZ12, GWPJ11, HPL13, JCP14, QZ10b, YZR +15]. anionic-water [JCP14]. anions [PV12, RDT14, RJS17, ZWY +10b, ZYL +12]. anisotropic [ANO10a, CAT +13, EPH +13, ENKK +17, NLP +16, SLX +15, SN10]. anisotropy [BP18, CGP12, LPLB16, ZLZ14]. ANN [XWW +11, ZDW18]. ANN-based [ZDW18]. annealing
annihilation [BL12].
annulated [RS17a].
anode [GNI18, YZLZ19].
Anomerization [SM17].
anomers [HH11].
ansa [OSA19].
ansa-zirconocene [OSA19].
anza-zirconocene/borate [OSA19].
ansatz [Bou14, WGA18].
answer [SJWE10, Tan19].
ant [ZsA10].
antagonists [LLL+10].
antibiotics [PG15].
antibody [UNT16].
antiaromatic [TDKT10].
antibodies [HH15, ZDW18].
anticooperativity [TDT19].
antiferromagnetic [ZB18].
antitubercular [TD10].
AO [YOPB16].
AOFORCE [vW11].
APBS [UHH+11].
API [LAS+14, ZW18].
AppA [XBSS19].
Applicability [MAK+14, DI11, GHL17, GKR13, HH15, JZZM14, KMS+19, Ray13, RKG11, VHS+19].
applicable [CL16, WGL+11].
Application [AFBR17, BAMR13, BPE16, DAG19, GCCM15, HTS15, LDG+15, MBA11, MTS+19, MHI10, OL13, PAK15, RVP+11, SMP17a, SRS14, SCI7, SDL14, SMM+18, Tak18, VKTRJ15, WH11, WFS19, ZsA10, vSGP10, CSAdOM17, CJPCTC18, DGPMD14, Elk16, GLB16, GFG11, GWC16, HYSF19, IUK+11, KTG19, KSY18, KSK11, LLHM16, LP11a, LLLC11, LVG13c, MTD13, MdOQ18, PHC13, RZG+13, RCM+13b, SMDP18, SN16a, SLX+15, SYH12, VV14, VKC10, WCDM11, You10, APFI13, BD11, CZNA11, Fer13b, Fer13a, FCQGM12, GAI13, HYUS11, KUDG12, MCC1, Pet11, PW12, SPZP19, TSZQ12].
Applications [KGHC15, LCPS13, LCA17, SPR18, APK14, CGP011, EVR18, Fel10, GBFD12, HZY+10, HCD+10, IO13b, KKO+16, uLhY11, JLR+12, MG11, NS18, SSSM15, SGM+13, ISP+10].
approached [BLG11, CTP13, GKR13, KKR+13, LTT16, PM18b, Ray13, RKG11, BZSM15].
Approach [KB11a, ZSLL17, CC11].
Approach-an [KKH18].
approaches [BP18, BH13, CME11, DBM+17, ECZWD17, HBI+17, IT19, LSH+11, RDDJ17, RR15, VLB+10, YJ11, ZDT18].
Approximate [LZLC13].
Approximation [AO10, Boz18, Cas13, HH17, Kid19, Sch12, WHM10, WDKT19, YD17, YN15].

Base [GBM18, BH13, BZH14, DKT13, DSB^+19, FD14, GA18, HvM12, LZH^+11, LW11, ONTTL16, SZSZ16, VMP^+17, WXY14, YKH^+10, ZLL^+10, ZLHH14].
base-catalyzed [WXY14]. Based [AIM^+18, CSM16, CPK19, L19, SN16b, YKNN19, AMGB10, ALK^+15, AM10, AWF^+18, AO10, BCSC1^+13, BAMR13, BPE16, BMPML^+13, BHR15, BMD19, CFM^+19, CC18c, CQA19, CGPP11, CSC^+18, CDS16, COH19, CH10, CGBK13, CB11b, DK11, DVVP14, DH14, Dil15, DJX^+11b, DJX^+11a, DFF^+15, DPB^+12, DXL^+10, DCS15, DDM^+15, EFAC13, ESPT16, EV14, EBK13, EP15, EBPK17a, EB18, FCL^+10, FCOGM12, FCPJM14, FHZA^+18, FMG12, Fra15, Fra16, GLB16, GHL17, Gar12, GJMPAM^+14, GJ15^+19, GBVA11, GC18, GVP^+10, GWW19, GNI18, GSS13, GBSE11, GZ14, GKB15b, HKRS11, HS11, HLS12, HH11, HTS15, HW19, HZY^+10, HSW^+19, HPL^+18, HKR12, HB14, HEMCZE^+14, HSB^+11, HYUS11, HM13, HLWD15, ISN13, IN19, ISM18, JJJW^+14, JLCA17, KS18, KGHC15, KZZ^+16, KLZ^+18, KNE11a, KC14, KSHP^+19, KP11, KKH18]. based [LSL^+19, LFB14, LZ11, LM18a, LDB^+17, LMZX11a, LMZ^+11b, LWL^+11, LLZA12, LSH^+11, LZS^+17, LZZM19, LTA^+11, LGKS17, MDTD16, MZ11, MMM^+16, Man19a, MSY19, MC10, MP19a, MA16, MS13, MdOdQ18, MGCC19, MPNS13, MMZW14, MAP18, MFR^+17, MO15, MNNK10b, NB19, NC12, NC13, NC14, NMI19, NJX^+10, NG10, OVPK15, OZLSBH12, PRP15, PLZ17, PC11, PSC11, PBBP11, PN13, PKIC11, PPJ14, PLH16, PBE16.
based on [CDS16]. Bases [WBKS19, CWZB10, KASH14, LRVM18, MSLS10, SC18b, SBW12, WGA18, ZT14, dCLFGL13, dSVdM16, dVZ17, FAS+18, NKJ16, WTD+19, ZDL18, dLvNC18a, dLvNC18b].
[KRSC12, HLH+12, Hug12, LH11, LJ+12, SKKS13]. beta-barrel [LJR+12].
beta-complex [SKKS13]. Beta-decomposition [KRSC12]. beta-peptides
[HLH+12]. Bethe [KK17b]. better
[AF14, BM12, JT18, KDS17, yOaCG10, XHLH16]. Between
[ELKE19, ALW+10, ASL+11, AR10, ACS12, AHK+19, BSF18, BSD18,
CCCLRQ14, CC18b, CZH12, CQFC10, CC0H14, CB11a, dRCFGRB18,
DHF+11, Den12, FD14, FC16, GYX+10, GO13, Gav12, GKSS14, HSJ18,
HTY19, HvM16, HvM17, HHWL17, Jab18a, Jia19, KTT16, KHWB17,
KPH+19, LDJ+10, LLL+11, LW11, LYL16, LWL+16, LvG13b, Lüc14, MS17,
MUGNVJ+18, MSSP17, MdVBD18, OHNK11, OCL11, PRJ+17, PL14,
RSRR15, SBW12, TTR+12, TSN16, WCT+11, WFZ+18, WDS+19, Wei12b,
YHG+11, YK15, YPH+19, YDGZ15, ZY14, Z18B, ZBMZH15]. Beyond
[PNW+16, JND+19, RLA18, SCOJ13]. BH [LBTV11, LBTV12, Kop15b].
Bi [ATIP18, RDT14, DM15, VIT+15, HSJ18]. bias [KEMP17, KS12].
[BEM+14, BEPM14, WFL+19]. Big [WDKT19, MPA12]. big-bang [MPA12].
BiH [HSJ18]. Bilayer
[vRWGS17, II18, KLN16, RBOH11, SLX+15, WHAS+10, WHAS+16].
Bilayers [BPPS19, BPPS17, GBL+11, PVM10, PS10, RI10, TG12a].
Bimetallic [GEP+14, DAdGR15, GTT10, KKPT11, SIT18]. bimolecular
[CSAdOM17]. binary [Hua16, LAS+14]. Binding [AIM+18, ELKE19,
FPB12, GRS15, HVS16, KJDB12, NN19, SSP+13, SMD18, YKNN19, ZP13,
AALCM11, ALW+10, ABD11, AS10, AC11a, ACS12, BHH14, BTMS12,
BVHL17, BEL+11, CBP+15, ČMD13, CLA16, CIKT13, CZY11, CS17,
CZAF17, CHR+12b, CHR+12a, CPK12, CXD+19, DFL+11, DS12b,
DVVP14, DAB16, DPOS16, ETLRS17, GHK12, GDV17, GWZ15, GEP+14,
GPc+16, GJ+17, HKY+13, HDM+19, HPL3, HNWF07, HNWF12, HG13,
HHLW17, ISP+10, JCP14, JZ12, KZZ+16, KTO11, KTO13, KDT+12,
Lar12, LL10b, LW11a, LW11, LCA17, LSB10, MSY19, MLZZ12,
MLN+18, MGWR12, MSAK12, MAP18, MFR+17, MNNK10a, NST14,
NHN16, NW17, NZM18, NFG+13, NF17, NN18, NO16, NKK+16, OBW12,
Oht16, OHNK11, ORS16, OCLM14, OOT15, PGCT+12, PBLd12, PGS+15,
Pla11, RLDJ17, RCR+16, RDDS10, RAR+11, RO14b, RZ16, RF15, Rez19].
binding [SPS+12, SRA17, SOD+11, STM+15, TYZ+16, TJ19, TS15a,
UNT16, VV13, Vor10, VM11, VHS+19, WS10, WNP+16, WLLH18,
WWW19, WL14, XHLH16, YZ15a, YZZ16, YXZ13, YHH+13, Z14b,
ZJZM13, ZY1Z14, ZGX+13, dRBO13]. binding-based [MAP18].
binding-site [SP+10]. binds [XHLH16]. BINOL [HPT16a].
BINOL-phosphoric [HPT16a]. Binor [WJX+10]. Binor-S [WJX+10].
binuclear [KMS+19, LZZT10]. bio [MSvG12, RZ16]. biochemical
[DGSVGM19, RB12]. biofuels [LGC19]. bioisosterism [EdOdS18].
BiOLayer [JAH+17]. biological
[BHB12, Ben17, CLK11, DLL+10, DMN15, GREAA11, GFFSD17, GLM+17,
bonding-induced [YLZ+10].

bonding/back [PKK17]. bonding/back-bonding [PKK17]. Bonds [ELKE19, JLLW19, WFZ+18, BT18, CXD+19, DGB+13, ED15, FPRS14, Gra18, HHI+15, Jab14, JJJ+16, LZH+11, LZL+15b, LZY12b, LDG+15, OOK11, PGI+19, Roh+13, SM16a, SK13, SJ16, TDT+19, WS19, XMA+19, YLT+19, YLL11, YKH+15, YJ+17, ZLY+16, Jab18b, YLZ+19]. BonnMag [BBG+18b].

C [LdSRR16, LTR18, LAHS16, LLD17, LCWW10, LWD13, MLQ+12, MCK17a, MCK17b, NDK18, PMG+16, RLA+11, Sak18, SKMS13, STS+10, SBW12, Tak11, UT15, WCY+11, WWKS16, YZZ+17, ZYG+14, ZLY+16, ZLX+19, BS16a, VAMS14, AM19a, Ben17, BWKW10a, BS16b, BH13, CG12, ED15, FL15, GWT+17, GMSV14, GZ12, HJ13, HS16, IMK+16, JLS+10, JLLW19, KV14, KMT+19, KP10, LFB14, LCC17, LDH+14, MSV16, MH11, MSPC19, Niz13, OPR16, PTK11, Pie14, PZBA13, RWR+13, SNDK16, TFQ+10, TFQ+11, TS15a, TKCN19, VAR12, VED10, WK10a, WLW+10, WS10, WWT19, WL14, WTH+16, Yes12, Yes15, YDGZ15, ZZZ+19, ZZL19].

EBK13, EB18, FAA15, FRC18, FA18, FE14, GRARO+14, GA18, GMO16, HASR+12, HYL+11, HS14a, HB14, HSH15, Hel13, HG10, HG13, HBL12, HYS11, HGW18, Ibr17, IMS18, ISM18, JCG+11, KK17a, KB10, KKNN11, KGHK12, KMS+19, KKR+13, KERY+16, KFT18, KCPMG12, KKL+13, KSH+17, KKH18, LedOLdV17, LRVM18, LOB18, LMZ11a, LCH10, Lyc+13, LCA17, LvG13b, LCK+18, LCM+14, Lun12, MK17, MK19, MUGNVJ+18, MLN+18, MCLD10, MEH18, MCK17a, MCK17b, NWW17, NZM18, NLL19, OLA15, OOT15, OZLSBH12, PBLdS12, PTK11, PHK14, POB13, PBBP11, PDG+16, PN13, PGW+17, RAR+11, RLZ+18, RHT+15, RLD12, RR11, REV+17, RI10, RK15, SH15, SRSLO15, SP13, SPF+18, SS16b, SCW11, SWPR11, SRS14, SMP17b, SDMS13, SHB17, SKTT11, SPZP18b, SPZP19, TLdG+12, TNY18, TS10a, TN19b, UHH+18, VLB+10, VKAM12, VKNT16, VHR16, VFRAR16, VMPS17, VI17, WC13, WSZW15, WHK+12, WTH+16, WGA18, WXY+14, YYW+16, YDJ17, YN15, YJ19, ZRCC11, ZLT13, ZLZ14, ZWMW10, ZH12, MSC19, NQB19. calculations [OLA15, OOT15, OZLSBH12, PBLdS12, PTK11, PHK14, POB13, PBBP11, PDG+16, PN13, PGW+17, RAR+11, RLZ+18, RHT+15, RLD12, RR11, REV+17, RI10, RK15, SH15, SRSLO15, SP13, SPF+18, SS16b, SCW11, SWPR11, SRS14, SMP17b, SDMS13, SHB17, SKTT11, SPZP18b, SPZP19, TLdG+12, TNY18, TS10a, TN19b, UHH+18, VLB+10, VKAM12, VKNT16, VHR16, VFRAR16, VMPS17, VI17, WC13, WSZW15, WHK+12, WTH+16, WGA18, WXY14, YYW+14, YYJ+16, YDJ17, YN15, YJ19, ZRCC11, ZLT13, ZLZ14, ZWMW10, ZH12, MSC19, NQB19].
calculated [VVLG17]. Calibrations [CBP14, DDM+15].
calix [GMASBF16, PRRT+10, YCGA10, ZWY+10a, ZWS+10, GMASBF16]. Call [ZPF14].
calorimeter [JLS18]. Can [ASMS10, IMSR18, KV15b, LZW+11, NH19, PLAG11, SHL+13, SPZP18a, CIKT13, LCB10, TCPPC14, Zha12b].
capacity [KOP+14, PGC12, WK10a, WK12]. capillary [NFPD13].
caps [WDS+19]. capture [GLZ17, SMD18]. Car [DL19, KCK+15].
CARB1/TIP3P [SA10]. carbazole [JYS+12, SLC+17, YJN+11].
carbazole-based [SLC+17]. carbazole-fluorene [YJN+11]. CarbBuilder [KSW16]. carbene [CWT+12, LXZ+10, TCPPC14, WSL1, WS12, YJ19, dSDLBNB17].
carbenes [BAD+19, BSDP16, KYKR15, RF15]. carbocation [ONTTL16].
carbon-beryllium [CME11]. carbon-carbon [KGJ19].
carbonyls [SSX+14]. carboranes [HJ13]. carboxybetaine [DQ16].
carboxylates [AARP17, RVM19]. carboxylation [CKG18, DGSVGVM19].
carboxylic [LPMT17, RB12, dSH19]. card [SR11].
Carlo [HMM11, NQB19, Aou16, BFH+13, CLK11, CG12, CTP13, CAP17,
DMN15, FFA14, GP12, GPM17, HFSO12, Hes19, HMM10, HYUS11, HQC16,
HHBY10, IHJ+13, LPK16, LMZ11a, LZ12, MS16, MBRC16, MOS12,
NDW15, OPBR17, PSS14, PS13, Pon10, PHH+12, RHNN10, RdA12,
SCOJ13, SAGC16, SMRM+17, SSP19a, SE14, SE14, UU12, YO19, ZLM+15, ZW17].
Carlo/Brownian [DMN15]. Carlo/molecular [RdA12].
caroabiose [YSRSS10].
carotenoids [PVAM16].
carrabiose [YSRSS10].
carrier [SFDE16].
carriers [GMASBF16, UGK18].
cartesian [REH13, FHMB15, AlQ19, Elk16].
caryolene [ONTTL16]. caryolene-forming [ONTTL16].
CAS [KMS+19, MH11]. cascade [HS17b, ONTTL16, ZZWT12].
cascaded [LZL+15a]. Case [BMD19, Alg17, ASMS10, AM19a, AM19b, BM12, BG13,
CCLP12, CB11e, DSB+19, DOM+11, DS12a, EFOD13, EOA+11, GH10,
GKR13, GpdC+16, HSH15, KB13, LPAS11, LP11a, LT13, MIS+15, OME16,
PG18, PVAM16, Ray13, RVM19, Rod13, RKG11, RCM+13b, RJS17, SRF+17,
SC18a, SPZP18b, TLA10, VKNT6, WDS+19, ZTH+15, ZAR+11]. cases
[GREA11]. CASPT2 [LWGZ15, SGWA17, VFRAR16, WGA18].
Cassandra [SMRM+17].
CASSCF [KSHP+19, KKL+13, LWGZ15, NH19, SGWA17].
CASSCF/MC [KKL+13].
CASSCF/MC-XQDPT2 [KKL+13]. CAST [GBW+14]. catalysis [Can10,
Can11, EvRC+18, GSMZ19, KK19, LHMM11, MG14, RNS19, WFL+19].
catalyst [BEM14, DK19, DSHLM18, LLC17, OSA19, RLZ+18, WWT19,
Y2Z15b, ZW11, ZW11, ZW11].
catalysts [AHK+19, BEPM14, GSMZ19, JAB16, MPJ+19, NJX+10, WJX+10].
Catalytic [YMY+19, AHK+19, GHL17, GA19, KV15b, ONTTL16, SJD14,
SLY+10, SOYCL12, TM18, UKS11, WZQW10, dSDdAR10]. catalyzed
[AS11, BF19b, CYY+17, CJC10, CPLL11, HPT1a, HDB15, HJLV16,
KSO+19, KB13, KT12, MUN+19, MRC+18, MG15, MTS+19, QLYL10,
TLA10, Tsi17, VCM15, WCWW11, WFL+19, WWT19, WX14, XLY10,
YXZZ17, YZ17, YZLZ18, dSDdAR10, dSDdBR17, dCDP15].
catastrophe [ABDGN12, GNDA+12]. catechol [PBLdS12].
catechol-O-methyltransferase [PBLdS12]. Catenanes [LAHS16].
cathepsin [ETLS17]. cathode [SMIN+19]. cation [CCCLCGRO14,
CGPP11, DLHLM12, DDM+15, MUN+19, RMGB11, SSGS15, ZYL+12].
Cationic [HJ13, SC18a, WJX+10]. Cations
[N19, SB19, C18b, KGR+16, LCL+10, LdSRR16, LTR18, PVS12,
SB+17, Tac17, THP+15, ZWY+10a, ZWS+10].
cations/nucleobases [CC18b]. caused [GDV17].
caveolin [PG19]. caveolin-1 [PG19]. cavitand [CC18a].
cavities [HRB+17, ZSB+16]. cavities/vacancies [HRB+17].
cavity [KD18, ZWS+10].
CAYS [SDZ17]. CB [BTMS12, CC18a, ILKR11].
CC3 [LZ14]. ccCA [RJWW12]. CCSD
CeO [LLW19]. CEPA [Sch12, SB14]. ceramics [RKB+14].

[vRWS17, BFH+13, CHKR10, DMD+18, HAL14, KV14, KLS10, KML10, LPS+13, LZGS11, LP11b, LvG13a, LZLMP16, OZ14, PD12, PS10, QZ11, SA13, SISK10, SZBM13, TSN16, DKV18]. chains

[AFSW16, FPI1a, JW10, LZZ14, NPP13, PLA11, PLH16, TLdG+12, TS15b].

[HGY15, KHWB17, ASW19, HLvdV13]. challenging

[CAP17, DSB+19, VT14, WLF11]. change [EMD17, OSA19]. changes

[GDV17, GBS+17, HB15, LK13, MJLV14b, MO17, PsDC18, RO14b, YZGS14b].

Changing [XVN17, LLvG10]. channel

[HYYZ13, PVL+13, SBFB17, SY16b, TCX+13]. channels

[KC13a, LL10c, NS18, OKIS17, TO19]. character

[Ali18, BMB13, Cas14, Br17, LCK+18, RIJ+11, VSH19, YSSB12]. characteristics

[DSL16, Gav12, LT14, Mat14, RDT14, TZ11]. Characterization [DDP+18, VT14, XWSW13, CBP+15, DGL+13, GBW+14, GZZ12, Kop15b, MJBM12, MPA10, RNP13, ZYG+14]. characterize [MGCC19]. Characterizing [HL11, PRSG13, Sh12, Yu12b].

characters [LSH+11, ZLL+10]. Charge [CMF+17, JM11, RDT14, SFDE16, VV19, AWF+18, AS15b, ANH+11, ALH+10, BCSCJ+13, BE16, CS14, CBTZ16, CMS13, Cor17, DS12a, DWR17, DADGR15, EFAC13, ENKK+17, GMG+10, HLWD15, JCGVPHT17, JZM14, Jia19, Kan15, KVR10, LLLM11, LEP+10, LBDP12, MSV16, MCF+18, MHRR11, MPBJ11, NN18, OBW12,
PL14, PTB+15, RSSG18, RO14b, Rez19, Ric16, REL17, SPS+12, SFM+18, SSGS15, SMiN+19, SMP17a, SFLG+17, SLC+17, TN10, TKNN10, UT15, UGK18, VPR10, VAR12, VL17b, WCT+11, WWCL15, YKO+11, YWZ14, YLZ+10, YJ17, YFH+19, ZDM13, ZL19, dSH19, dLC17]. charge-assisted [SSGS15]. charge-inverted [UT15, YJ17]. Charge-transfer [JM11, ANH+11, EFAC13, YLZ+10]. charge-transport [HLWD15].

Chemical [BLG10, BCP+10, BGS+19, JCGVPHT17, OSI+19, OM12, SLLL13, VGTL16, ALK+15, ASS+17, AAC+16, APA+14, Bac12, BPC19, Ben17, Bou14, Cam15, CKG18, CHP11, DKE+17, DDF+18, DS12a, DI11, DB12, Dra19, EO+11, FB10, FVB10, GH10, GLW19, GGM+12, GPGSM11, GPGSM12, HPT+16b, HHDC16, HJ13, Ihl12, JKS+16, KV12, KASH14, KP11, LK11, LZH+11, Li4a, Li4b, MDTD13, MDTD16, Man19b, MN15, MTS+19, MAPB10, MSvG12, MSSP17, MFR+11, MMJ10, MH10, NCV10, NC13, OK1S17, OKY18, OSH17, ONTTL16, OC14, PTK11, PGDo+16, Pie14, PBG17, RRFV+18, RK15, RSKG14, SRA17, SLT14, SFM+18, SOJ13, SEF+16, SKMS13, SHB17, TLA10, TG12b, TEDT18, TR12, UD12, VBD11, VDMA13, WBT10, WCT+11, WF16, Wei12b, WL14, Wu10, WDP+12, YZ15a, YB16, YZ14, ZBB16, ZLT14].

chemist [DHE+12]. Chemistry [Ano10b, Ano15-59, Cam19, HJG09, KKGW19, Spr10, ZLX+19, Ali11, BRP+12, BGR13, CBH14, CD19, DDM+15, FLM11, GHV17, HSN+18, IGK16, JBB+11, KTN10, LBC+19, LKI6a, MP19c, OZLSBH12, PNV+16, PPUBGD10, RZG+13, Rez16, REL+14, TKNN10, TF15, UKD+18, VVP12, VV14, WDIY13, ZVY+15, GS16, MFEM16, XFG+16].

Chloroammonium [VVMY18]. chloroform
[GC11, WG12]. chloroform-to-water [WG12]. CHOC [LHWH14]. choice
[LvG13b, Mor15, NCV10, SPZP18b, TLA10, WGA18]. Cholesky
[GCW16, PS17]. Cholesterol [BPSP19, BPSP17, RBOH11]. choline [PP19].
choline-O-sulfate [PP19], chondroitin [CHKR10]. chondroitin-6-sulfate [CHKR10].
Chou [FZL15, GRIL11, GRIL12, ZHHX11]. chromophore
[GA18, PGW17, SGWA17]. chromophores [SGDT10, UD12]. CI
[CME11, EFAC13, EPS16, FE14, IN13, KMS19, KSHP19, MN19, PH10b,
SRF17, SCF19]. circuits [RVB12]. circular
[HNHR13, SE15, SB13, SB15]. circularly [SE15]. Cis-
[CSM16, MSB16, WvRSM14, WS19, ZLHH14]. Cis-
[CSM16, MSB16, WvRSM14]. CISS [dALdS15]. cisplatin
[dRCFGB18, CK17, PML12]. CI [ATP18, ASS17, CXS10, EPH15,
GPK16, KKR13, LDJ10, LLL11, LZJ11, LGW12, PMG16, Rab12,
RvdMB16, Sak18, TFQ10, TFQ11, Tsi19, TDT19, WGN16, WGLG16,
YS13, ZCK16, ZLLL12, CSNC18, JGC10, JLS10, JLH14, LZL15b,
MSPC19, W LH12, WLF19, ZWY10]. Clar [KDS17]. Clarifying
[RML15]. class [DWL11, HHWL17, LD18, ZLW10]. classical
[Aki16, BEM14, DIF11, GA19, HS14a, HLvdV13, LRvdSM15, LM18a,
LPE10, LM18b, MS15, PVAM16, Ras17, RTS13, RO14b, SM14b, SAK19,
WKC10b, WG14, Yu12a, ZM10]. classification [EP15, UT15]. classifier
[YHH13]. classifying [TO19]. Clay [HBH19, BBH17]. CIC [KJ10].
cleaning [YR13]. cleavage [HEM17, MS11]. click [TKXT13]. CLL
[dACP12]. CINH [VVMY18]. close [BLZ13, MK17, RS13]. Closed
[CY110, MA16, MS12, WW1D4]. closed-shell [MA16, WW1D4]. Clos-
[TF15]. cluspro [XM15]. Cluster [AST16, Hes19, MPNS13, SL17,
ACD13a, ACD13b, AC11b, Avd18, BBG18a, BYE16, Cas14, CCI1c,
DI11, DM15, FF11, GNGCA10, GMG10, GA18, GS11, HAGK10, HSB19,
HS15, Höf14, HGCGCR16, HBI17, Les19, MC12, MG14, NLL19, Oht16,
PGB15, PB14, PMT16, RS14, RLZ18, SB11, SLLL13, SM17, TLdG12,
TN18, TTn19, VIT15, VV15, WC13, XTN18]. Cluster-based [MPNS13].
cluster-continuum [WC13]. cluster-expansion [HAGK10].
cluster-in-molecule [NLL19]. cluster/configuration [FF11].
cluster/Kohn [VV14]. clustering
[BSZ12, LZZ17, PL19, YZ15a, ZSS13]. Clusters
[NSN19, SC17, TT18, AFPI13, ATIP18, AF14, ANo11, ASS10, AC12, BPM15,
BACSCJ10, CJL13, CZZL19, DAG19, DH11, FCW14, GTT10, GC18,
GRD10, GAMAC14, GZZ12, GBGR16, GBG19, HS14a, HS16b,
HDM19, Hsu14, JM11, JCP14, JHMB10, JHMB11, JGC11, KD10,
KKPT11, KOP14, KSNT19, KDB13, LTZTV10, LK13, LZZ11, LCH15,
LCWW10, MCS11, Man19b, MPA10, MP10, MP13, MBFG15, MBRC16,
MCAY15, NC13, NC14, OKY18, PM18b, QZ10b, Rab12, RGVC19, RB13,
commercial [TF15]. Common [HTS17, RNP13, PH15].
commonly [PGY15, Pie14, PLAG11, SPR+13]. Communication
[PH15, KP10, LAT11]. Communications [CDB10, CDBM11]. CoMnO
[LLL+12]. Comp
[ABB+13, CHR+12b, HNW12, ICS+13, Kne11b, MSK+12]. compact
[RLD12]. compactness [PTB+15]. comparable [Gil11]. Comparative
[GZZM16, GVP+10, LAM19, LAW+16, MJC14, MS13, SPR+13, WYG12,
BT18, BFC13, BS10c, JJB16, RSG18, VMRS17, ZYG+15, CJZS10,
PS10]. compared [SGWA17]. Comparing
[FBEM11, GMPB12, Hug14, MS16, SRF+17, VMPS17, SJC11]. Comparison
[BBG+18a, BK13, BK17b, BVC13, GPM17, MHO18, MVKS10, NFPD13,
NTNY15, OCL11, PGY15, Sch18, SLP+12, ST18, STM+15, TLY+12,
YAS13, dRBO13, AGR11a, BAMR13, BB11b, CDM+15, DLL+10, FED17,
GR11, HCB11, HBI+17, HM13, KDL+12, KMLS10, LLSW14, MJLV14a,
MvBD18, PXXW10, PKK17, PD11, RKGN10, Rob13, RŠRR15, T1G12a,
UD12, VVBL17, WTH+16, WGI2, YLGX14, Kar17, Mat10, SA10, YJ11].
comparisons [BMR11]. compatibility [EOO+16]. compatible
[KYB13, MPBJ11, RO14a, SOYC12, VHA+10]. competing [SLT14].
Competition [HvM16, LLL+15b, HvM17]. Competitive
[ZSL+11, GMBX+16, RLJ17]. compilation [NKJ16]. complementarity
[GPS10, OAN15b]. Complementary [EVR18]. Complete
[SN16b, CSKH15, LYC+13, OAN15a, SPS+12, SCSW13, TCB16].
completeness [Leh15]. completeness-optimization [Leh15]. Complex
[DLT17, HBL12, KKGW19, ANH+11, BLF14, BH19, DK19, DaGDR15,
Dry14, FFA14, GCWS15, HBJ+17, Ish10, KBC12, KMS+19, KGH15,
KPG18, KZP+18b, KSW16, LLL+11, LZJ+11, LL11, LWXC16, MLGB16,
MTS+19, MY17a, MY17b, NH19, NDB18, OME16, OC14,
PPUBGD10, QQLY10, SLT+15, SKKS13, SL17, SYN+12, SPM+19, TDP+12,
TN19b, WKL12, WCW11, WHX+10, WSWD19, ZT14]. compexation
[CBP+15, SNS16]. Complexes
[BF19a, BGS+19, EHSPT16, GP4C+16, SvL18, SKGB13, AvKSP16,
AM11, ASMS10, AK10, AM19a, BCSC13+13, BLFZ13, BLDK+13, BSG+18b,
CSGOA17, CPR18, CWT+12, CMD13, CZH12, CGPP11, CAT+13,
CBDS19, CMS13, CM16, CB11d, DS12b, DLP11, EPB+13, ED15, FHW+11,
FCE15, FPB12, FB14a, GKI5a, GHL17, GPK+16, Gil11, dCGCR19, Gra18,
HDK+12, HSY+11, HK12, HLB15, HRJ+14, HGHP14, HRJ+15, HDPM14,
HG10, HQS19, ITY+19, JRSH14, KT12, KPL13, KTK17, LS11a, LLC+10,
LWL+11, LHWH14, LZZ+15b, LDZW17, LZX+10, LYSS11, LJJ+11,
MUN+19, MLG18, MC10, MFR+11, MKK+19, OSHG17, OOT15, PCGT+12,
PH14, PM13, PZB13, RRH12, RHPWS13, RLD12, SB10, SZdB19, SLIB12,
SPR+13, SCSM19, SDL14, SGH+16, TLY+12, TS15a, Tru18, TKCN19,
TS10b, Tsi19, VLB+10, VVP12, VVY17, WL14, XMSZ16, YMY+19, YKH15].
complexes [ZCK+16, ZRCC12, ZZZ+12, ZLZ14, ZDX11, ZYW+10b,
ZYW+10a, ZZL19, ZBMZH15, vSGP10]. complexity [GP12, NS15].
concentration [IPAA11], concept [GRL+11, GRL+12, dSVdM+16].
conceptual [DDP+18, vSI18], concerted [LI10], concurrent [HS14b].
condensation [KNE11a, XLY10], condensed [BGL+18, BG\textsubscript{17}, HRB+17, MKK+19, RSLML\textsubscript{12}, VKAM\textsubscript{12}, dSS\textsubscript{12a}, dSS\textsubscript{12b}]. condensed-matter [BGL+18], condensed-phase [MKS+19], condition [AA18, IKN13, MVT\textsubscript{12}, TAC+18, YAO18]. conditional [BMP\textsubscript{13}].
conditions [AA18, BRGN\textsubscript{12}, KB\textsubscript{14a}, MO\textsubscript{15}, MO\textsubscript{17}, NO\textsubscript{16}, SSP\textsubscript{19a}, Sie\textsubscript{15}, SKMS\textsubscript{13}, TC\textsubscript{14}, VECT\textsubscript{12}]. CONDON
[SV\textsubscript{18}, CHC+13, MLC\textsubscript{10}, ML\textsubscript{11}]. conducting [SV\textsubscript{11}]. conduction [KJ\textsubscript{10}]. conductivity [ASL+11]. Conductor [KB\textsubscript{14b}, GRN\textsubscript{19}, KD\textsubscript{18}, SDF+17]. Conductor-like [KB\textsubscript{14b}, GRN\textsubscript{19}, KD\textsubscript{18}, SDF+17]. conductors [MR\textsubscript{14}, NFI+16]. cone [BKL\textsubscript{13}]. confidence [KSM\textsubscript{17}]. Configuration [KKG\textsubscript{19}, SS\textsubscript{13a}, Cas\textsubscript{13}, CTP\textsubscript{17}, EK\textsubscript{17}, FF\textsubscript{11}, FA\textsubscript{18}, GA\textsubscript{14}, GP\textsubscript{11a}, HPT\textsubscript{17}, HBL\textsubscript{12}, LCB\textsubscript{10}, MT\textsubscript{19b}, MIS+15, MCP\textsubscript{18}, ZRCC\textsubscript{11}]. configural [RO14a, WTD+19, WDH\textsubscript{13}]. Confined [NSP\textsubscript{15}, CCR\textsubscript{18}, CDB\textsubscript{10}, FTR\textsubscript{15}, Vy\textsubscript{15}, Vy\textsubscript{16}]. Confinement [CC\textsubscript{18a}, DCL\textsubscript{18b}, TM\textsubscript{16}]. Confining [WR+17]. conformation [AST\textsubscript{15}, CR\textsubscript{19}, EJ\textsubscript{13}, FB\textsubscript{18}, GK\textsubscript{J}, GV\textsubscript{10}, SE\textsubscript{F}]. conformational-dependent [PV\textsubscript{11}]. Conformational [CD\textsubscript{15}, ETL\textsubscript{17}, KRT\textsubscript{10}, LGL\textsubscript{11}, LTA+11, MO\textsubscript{17}, OGL\textsubscript{10}, vRW\textsubscript{17}, AD\textsubscript{10}, BLKP\textsubscript{12}, BD\textsubscript{11}, \(\mathcal{C}\mathcal{M}\textsubscript{13}, \mathcal{D}\mathcal{P}\textsubscript{16}, \mathcal{D}\mathcal{P}\textsubscript{11}, \mathcal{D}\mathcal{S}\textsubscript{18}, \mathcal{F}\mathcal{C}\textsubscript{10}, \mathcal{F}\mathcal{C}\mathcal{O}\mathcal{G}\textsubscript{12}, \mathcal{G}\mathcal{D}\textsubscript{17}, \mathcal{G}\mathcal{O}\textsubscript{13}, \mathcal{G}\mathcal{B}\textsubscript{11}, \mathcal{H}\mathcal{T}\textsubscript{15}, \mathcal{H}\mathcal{Y}\textsubscript{19}, \mathcal{H}\mathcal{D}\textsubscript{17}, \mathcal{H}\mathcal{K}\textsubscript{18}, \mathcal{H}\mathcal{C}\textsubscript{10}, \mathcal{I}\mathcal{M}\textsubscript{11}, \mathcal{N}\mathcal{S}\textsubscript{15}, \mathcal{N}\mathcal{H}\textsubscript{17}, \mathcal{I}\mathcal{S}\textsubscript{13}, \mathcal{S}\mathcal{D}\textsubscript{18}, \mathcal{T}\mathcal{J}\textsubscript{12}, \mathcal{V}\mathcal{Z}\textsubscript{14}, \mathcal{Y}\mathcal{Z}\textsubscript{16}, \mathcal{Y}\mathcal{B}\textsubscript{19}, \mathcal{Y}\mathcal{O}\textsubscript{16}]. conformational-space [AD\textsubscript{10}]. conformationally [AF\textsubscript{13}, CP\textsubscript{15}]. conformations [CC\textsubscript{12b}, DJ\textsubscript{13}, ES\textsubscript{D}\textsubscript{18}, LC\textsubscript{16}, LZZ\textsubscript{14}, NR\textsubscript{11}, O\mathcal{C}\textsubscript{11}, PG\textsubscript{19}, PH\textsubscript{10a}, RV\textsubscript{P}\textsubscript{+11}, ZC\textsubscript{14}, DK\textsubscript{V}\textsubscript{18}]. Conformers [SZ\textsubscript{+18}, BHF\textsubscript{+18}, DB\textsubscript{G}\textsubscript{11}, HH\textsubscript{10}, HH\textsubscript{11}, LG\textsubscript{11}, MS\textsubscript{17}, TCG\textsubscript{18}, VP\textsubscript{19}]. congested [Mv\textsubscript{B}\textsubscript{18}]. conjugate [MS\textsubscript{16}]. Conjugated [RV\textsubscript{+12}, B\mathcal{L}\mathcal{B}\textsubscript{+13}, HDH\textsubscript{15a}, HDH\textsubscript{15b}, HDH\textsubscript{15c}, JYS\textsubscript{+12}, RSG\textsubscript{18}, YJ\textsubscript{+11}, JCH\textsubscript{T}\textsubscript{18}]. conjugating [JD\textsubscript{W}\textsubscript{+19}]. conjunction [CG\textsubscript{19}, LB\textsubscript{H}\textsubscript{+11}, N\mathcal{C}\textsubscript{13}, R\mathcal{G}\textsubscript{N}\textsubscript{10}]. connected [ACD\textsubscript{+13a}, ACD\textsubscript{+13b}, NR\textsubscript{11}, XT\textsubscript{n}\textsubscript{18}]. connection [L\mathcal{U}\textsubscript{c}\textsubscript{14}]. connections [CDC\textsubscript{19}]. Connectivity [ISP\textsubscript{+10}, ZYS\textsubscript{+10}]. Conquer [NN\textsubscript{19}, YKN\textsubscript{19}, BR\textsubscript{P}\textsubscript{+12}, BGR\textsubscript{13}, KKN\textsubscript{11}, KFT\textsubscript{18}, NYH\textsubscript{+17}, NN\textsubscript{18}, N\mathcal{N}\textsubscript{+16}, WX\textsubscript{12}, YN\textsubscript{15}]. consensus [DM\textsubscript{17}, SRA\textsubscript{17}, PLV\textsubscript{+11}]. consequences [KG\textsubscript{15}], conservation [MB\textsubscript{16}], conserved [JD\textsubscript{W}\textsubscript{+19}]. Conserving [PH\textsubscript{17}]. considerable [LLD\textsubscript{17}]. Consideration [Fom\textsubscript{11}]. considerations [SB\textsubscript{G}\textsubscript{P}]. Consistent [LOB\textsubscript{18}, MK\textsubscript{+13}, POB\textsubscript{13}, BK\textsubscript{\(\tilde{S}\)}\textsubscript{+11}, BY\textsubscript{11}, BK\textsubscript{17b}, DK\textsubscript{11}, GB\textsubscript{V}\textsubscript{11}, H\textsubscript{i}\textsubscript{13}, HK\textsubscript{+14}, JSH\textsubscript{16}, KT\textsubscript{10}, KFT\textsubscript{18}, LB\textsubscript{H}\textsubscript{+11}, LC\textsubscript{W}\textsubscript{12}, ON\textsubscript{14}, OLP\textsubscript{19}, Rez\textsubscript{19}].
SPS$^{+12}$, SMP17b, SC13, TYN15, VGV$^{+11}$, YN15, ZBG11, BLKP12].

consistently [IM17]. consolidate [BK17c]. constant

[AB16a, CS14, IN19, KSK11, KN$^{+12}$, KB19, MK17, MK19, PLFS18, PS13, RAGL11, Sak18, STM17, Vor12, WOH16, WOH18, dACP12].

constant-distance [dACP12]. constants [AAMD$^{+11}$, CBH14, CPK12, DSD$^{+11}$, ECZWD17, FD14, GAI13, GKR13, MG11, OZLSBH12, Ray13, RSG14, RKG11, Rui11, RRK16, SPHF$^{+18}$, SH18a, SACdG14, TTR$^{+12}$, Tsi14, WL14, XWW$^{+11}$, YS13, ZL$^{+10b}$, ZLL12].

Constrained [SL15, GREA11, GA12, VBV13b, WBN$^{+13}$]. Constraint [HNyH19]. constraints [KB11a, OPBR17, OZ$^{+13}$]. construct [HH10]. constructed [HDL$^{+17}$, Tsi19, ZL$^{+16}$]. Constructing [Che17, LLH$^{+19}$, HS16b, LG11, SWA13]. Construction [FZL$^{+19}$, AGR11b, JCP11, KD18, KSR17, LZX16, UIW$^{+10}$, WW14, YD17]. contact [DBK17, LL19b, MK13a]. contact-assisted [LL19b]. contacting [Mau14]. contacts [CCCLCGRO14, Ham11, Kri10, PRP15, SNDK16]. containing [AKMYB18, ACD$^{+13a}$, ACD$^{+13b}$, DT19, DGL$^{+13}$, GP12, GPdC$^{+16}$, HDPM14, KL12, KGJZ19, LDZW17, MUGNVJ$^{+18}$, VDVR14, YHVM12, YDX16, ZZL$^{+10b}$, ZLLL12]. contaminated [YR13].

content [CGBK13, GWPJ11]. Contents [Ano$^{16-115}$, Ano$^{16-121}$, Ano$^{16-122}$, Ano$^{16-123}$, Ano$^{16-124}$, Ano$^{16-125}$, Ano$^{16-126}$, Ano$^{16-127}$, Ano$^{16-128}$, Ano$^{16-116}$, Ano$^{16-117}$, Ano$^{16-118}$, Ano$^{16-119}$, Ano$^{16-120}$]. context [CBG16].

continuation [PJ13]. Continuous [Dry14, LPLA13, PZB13, BS19, FGM11, LBGS16]. Continuum [CCR18, JJ16, ND19, ALRM18, Cam15, CZY11, GRN19, HZSS17, ISO$^{+13}$, LFN$^{+10}$, MCUJ15, SK12, SK17, TNG$^{+10}$, WC13, WRHF10, XZ11]. Contracted [FC18, SM18]. Contraction [Hes19, HSN14, STM17]. contractions [KK17a].

Contributions [JJ13, ARRC15, BCNH$^{+11}$, CGR16, CPN$^{+17}$, ENKK$^{+17}$, WS10]. control [BV*12, DP16, Hel13, HH16b, KFT18, LPLB16, SR10, XYW$^{+14}$, ZQ14]. Controlled [PGK$^{+19}$, VGTL^{16}]. Controlled-advancement [PGK$^{+19}$].

Controlling [FWB14, NPG$^{+18}$, SS19]. convenient [ZGZC19]. Conventional [SHL$^{+13}$, BK$^{+11}$].

conventions [BCJC$^{+14}$]. converged [FLM11, GR10a, KHWB17]. Convergence [GS16, LT13, ZH12, ASS10, BK$^{+11}$].

converges [SHL11a]. Converging [OSR16]. Conversion [AIQ19, DAP$^{+18}$, LDB$^{+17}$, LZL$^{+15a}$].

converted [ZB18]. convex [CLFRO18, GWW19]. convolution [SZTSM10]. convolutional [LHO17]. cooperative [DBG11, WFL$^{+19}$]. Cooperativity [RS14, AF16].

coordinate [AMGB10, HSN14, Hel13, LL15, LL13a, MS10, WBN$^{+13}$]. coordinated [Sak18]. Coordinates [AIQ19, BK15, LWK$^{+14}$, MK19, NCV10, PH10a, Sch13, VB13b, You10, ZT14]. Coordination [LBC$^{+19}$, ASMS10, AHK$^{+19}$, CRC13, GBPCC19, HS16b, HH18, KL$^{+18}$, KJ10, Mor15, SB19].
GP11a, KSK11, KNP+12, KKA+18, Kos16, KKH18, LLB+12, LSH+11, LWD13, MG11, MCP18, PLFS18, PS17, Rue11, RRK16, SPHF+18, SH18a, SACdG14, Wu10, YB11, ZTH+15, ZLZ14, ZVvI14, GA19]. **couplings** [CSEMB+16, LK11, LZH+11, YFH+19, ZB18, dVAG16]. **covalency** [HS14a].

Covalent

[WBT10, FCCP17, HAI+16, KAR12, MR17, OZS+13, RS13, SFA17].

Ano17-28, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17y, Ano17-39, Ano17r, Ano17s, Ano18a, Ano18c, Ano18b, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h].

Cover

criteria [MvBD18]. criterion [dLvNC18a]. critical [HEMCZE+14, KCK+15, LTT16, MLZZ12, Wei12a, Wei12b, dLvNC18a].

CrMnAs [LKZM18]. cross

[HPT+16b, HBL12, Lun12, MY17a, MY17b, WMW+10, ZHS+18, dCLFGL13]. cross-boundary [Lun12]. cross-platform [HPT+16b]. cross-section [dCLFGL13]. crossing [LLSW14, QCR12]. crossover [CSS17, KV14, MK17, SHMO11, VFRAR16]. crotonaldehyde [KK19].

crowded [MH17]. crown [AvKSP16, HLB15, MWJ+11].

crown/ammonium [AvKSP16]. CrWO [WMW11]. cryo [MKM+17].

cryo-EM [MKM+17]. cryptands [EHT19]. CRYSPLOT [BPC19]. Crystal [FDCJG18, Krii0, VM11, ASL+11, BCSCJ+13, BCJC+14, Elk16, GMG+10, HB14, HJ10, MCAC+16, NHF+10, NTNY15, SPZP18b, VMV19, OPB+12, CPR18].

CTOCD [PC14]. Cu

[LLX+19, NGAS17, Rab12, RHT+15, SIT18, TS15b, WRG+17, AMK11, CR14, CRMD13, GEP+14, HSH15, MLG18, Mor15, PGS+15, PXXW10, PH12, RHT+15, SB10, TNI+19a, WGN+16, WGLG+16, XP13, ZRCC11, ZSWL12].

Cu-O [ZRC11]. Cu-ZSM-5 [Mor15]. Cu2II [WGLG+16]. Cuby [Rez16].

curcumin [AMK11]. Curie [WMW11]. curing [LPMT17, PPH+14].

Current [ATM18, NS17, ABM+15, ATIP18, BL19, FNSF+11, GWT+17, HBLCCCG15, PCLL11, PL18, PZM15, Vik11]. current-density [Vik11].

currents [CPN+17, RVB+12]. Curvature [LPLS16, RR12, NW17].

cyanide-chemosensing [LZH11]. cyanides [PGS+15].

cyanide [LZH11]. cyanides [PGS+15].

cyanobacteria [RCM+13a, RML+15]. Cyanovirin [VM11].

Cyclobutadiene [SFM14, MCC11]. cyclocized [QZ10a].

cycloadditions [YS13]. Cyclobutadiene [SFM14, MCC11].

Cyclopentadienes [LZH16].

cycloadditions [YS13].

cycloadditions [YS13].

cycloadditions [YS13].

cycloadditions [YS13].

D [LWD13, OZLSBH12, RSKG14, SPHF+18, UT14, GBG+19, MP19b, YZ15b, AKMT11, BKWK10a, BKWK10b, BKHW19, CTK16, MA16, MTT+14, MH11, MSP17, MI10, NN19, PSS14, PZBA13, Pop18, RSGK14, SWW+19, TQ+10, TJJ19, UT15, VVMY18, YJN+11, YDL+10, ZLY+16, dLvNC18b, TS15b, YOPB16].

cyclizations [AARP17, DH14].

cyclizations [AARP17, DH14].

Cytochrome [EH13, BS16a, MRR11, SLY+10, SOYC12, TN10, TDP+12, VCM15].

cytosine [JS17a, LZH+11, ZZY+16].

cytosine [JS17a, LZH+11, ZZY+16].
decomposition-based \[\text{KNE11a}\]. \text{decouples} \[\text{FM10}\]. \text{decoy}

\[\text{HYMZ16, LS11a, PHDH13, UCFR16}\]. \text{decoys} \[\text{BSZ+12, MP11}\]. \text{decrease}

\[\text{DLZ15, SLY+10}\]. \text{dedicated} \[\text{CPRS18, ZRCC11}\]. \text{Deep}

\[\text{GHV17, TO19, GFPSD17, HPL+18, LHO17, LDH+14, WZWW18}\]. \text{deeper}

\[\text{VIT+15}\]. \text{DeepIon} \[\text{TO19}\]. \text{defects} \[\text{HYL+11}\]. \text{Deformed} \[\text{CSAdOM17, TFQ+10}\]. \text{degree}

\[\text{JYC+16}\]. \text{Definitive} \[\text{TCGNT18}\]. \text{Deformation}

\[\text{WYL+15, Gav12, MRB14, WCY+11, WCT+11, dLC17}\]. \text{defective}

\[\text{ZWP11}\]. \text{deficient} \[\text{YLL11}\]. \text{defined}

\[\text{JJAB16, Man19a, GY10}\]. \text{defining}

\[\text{HH18}\]. \text{definitions}

\[\text{JYC+16}\]. \text{Demystifying} \[\text{KKGW19}\]. \text{Denaturation}

\[\text{IPAA11, FMG12}\]. \text{Dendrimer}

\[\text{MJBM12}\]. \text{dendrimers}

\[\text{CAD16, HDHL15a, HDHL15b, HDHL15c}\]. \text{Deng}

\[\text{Ano12u}\]. \text{dense} \[\text{ASK18}\]. \text{Densities}

\[\text{ATM18, ATIP18, HGCCGR+16, LP11c, MA16, REL17, UCRL18, dLC17}\]. \text{Density}

\[\text{AMK11, BS19, BHB19, CD13, CWHH11, CKH19, FPV13, FD16, GMBM18, GNGCA10, GWPJ11, INT18, JYS+12, KKPT11, LBS16, LGW12, LL+19, LBTY12, LPM17, MP19b, MWJ+11, MAP18, NN19, Oht16, PPH+14, RB12, RSLML12, TS10b, UvSvdWK19, WDLG12, WGN+16, YJ11, YKN19, ZLZ14, ZYG+14, ZYW+10b, ZYW+10a, dSD12a, ALK+15, Ali18, ASW19, Ano15-59, AG12, ASS10, BY11, BBG+13, BL19, Ben17, Boc18, BII+11, BZB+13, BG13, CHG+16, CRZ+18, CDB10, CR14, CA10, CEB015, CC18c, CCR16, CKH17, CSXX17, CC11, CAP17, CNK97, CPL11, CXD+19, CB11d, DAP+18, DH17, DWC17, Di15, DSAS19, ED15, EP12, FED17, FCPJM14, GAI14, GHL17, GZL+12, GWJR18, GMG+10, GSS13, Gra15, GEG11, GAI+17, Han11, HNW07, HNW12, HPT17, HEMCZE+14, HLBLCCG15, HRMAL+13, HH16a, HH17\]. \text{density}

\[\text{Hil13, Hs14, HG10, HOK17, IKN13, IM17, JCP14, JZ14, JU16, KD10, KB10, KSSH13, KOP+14, KGHK12, KB13, KZZ+16, KLN12, KYG+15, LL15, LRVM18, LCM12, LAM19, LBTV11, LHKS12, LWWG12, LH14b, LH17, LZS+17, LMK16a, MRC+18, MLG18, MMH19, MSY19, MCF+18, MGCC19, MAK+14, Mat14, ME10, MKM+17, MFR+17, MMJ10, NS18, NF17, NN18, NO16, NFK+16, NFI+16, NS17, OHR18, ORZ11, OM12, OVPK15, PAK17, Piel14, Pil17, PW12, PZ15, QZ10b, RJBP12, RS13, Rez19, RB13b, RSG14, Rod13, RHPWS13, RHT+15, RSN19, RR19, REV+17, Rui11, RSKG14, SPS+12, SGPS+17, SH15, SS16a, SDF+17,
SFG$^{+17}$, SHL$^{+18}$, Sea10, SCW11, SDM$^{+16}$, SEF$^{+16}$, SE$^{+14}$, SH14, ST13, SHL$^{+13}$, SPR$^{+13}$, SZX13a, SZX13b, SMM15a, SMM15b, SMM$^{+18}$, SKTT11, SZSZ16, STS15, SK11, TLDg$^{+12}$, TN10, VGV$^{+11}$, density [VAR12, VECT12, VV14, Vik11, VI17a, VI17, VED10, VHS$^{+19}$, Vyb16, WKL10a, WHL$^{+10}$, WGL$^{+11}$, WCWW11, WWU12, WWCL15, WHX$^{+10}$, WL14, WTH$^{+16}$, XYW$^{+14}$, YLZ$^{+10}$, YS13, Yu12b, ZTH$^{+15}$, ZXS$^{+10}$, ZSWL12, ZKE$^{+17}$, ZDX11, ZLHH14, ZCWX18, ZGS$^{+10}$, dSdS12b, dSdLBNB17, dLC17, dLvNC18a, CDM10, FAS$^{+18}$, VV19]. density-based [LZS$^{+17}$]. density-density [DSAS19, SS16a]. density-fitting [Boz18, Hil13]. Density-Functional [YKNN19, Oht16, CHG$^{+16}$, HNW07, HNW12, IM17, JCP14, KZZ$^{+16}$, MFR$^{+17}$, NF17, NN18, NO16, NNK$^{+16}$, Rez19, RHPWS13, SPS$^{+12}$, VED10]. density-peaks [LZS$^{+17}$], deoxy [VM11]. deoxyribonucleoside [XVN17]. deoxyribonucleosides [RJWW12]. dependant [PNG10]. Dependence [CFM$^{+19}$, BRLS08, BRLS12, ELP19, FE14, GZZ12, KKO$^{+16}$, KGM12, Lar12, LPE$^{+10}$, LTLT12, MP17b, PZA15, PBE16, PS10, SGFJS$^{+17}$, SY16b, AD10, MGWR12]. Dependences [NNT$^{+19}$, SMM$^{+18}$]. dependency [DKT13, PHDH13]. Dependent [YKNN19, AALCM11, BS16a, CHG$^{+16}$, CP15, CP10, DP15, EPD$^{+10}$, GTK10, HNW07, HNW12, HG10, HYUS11, JYS$^{+12}$, KS18, KCPMG12, LPLS16, LZ12, LZGS11, Mat10, NS10, PAK17, PPJ14, PVJ10, RHPWS13, REL17, SY16a, SFBT17, Vik11, WHL$^{+10}$, WHX$^{+10}$, YLZ$^{+10}$, ZXS$^{+10}$, ZDX11]. depending [Lin18]. depolarized [KKK$^{+19}$]. deposition [SE14]. depth [DDP$^{+18}$], derivates [UGK18]. derivation [SCMA$^{+17}$, VVV$^{+15b}$]. derivative [MY17b, TPL$^{+10}$]. Derivatives [KTSW11, CWHH11, CZH12, CBTZ16, CROB16, GRN19, HSZ$^{+11}$, JS17a, JYS$^{+12}$, KG11, KPL15, LWGZ15, LWGZ12, MFR$^{+11}$, MIS$^{+15}$, NS10, NF18, PC14, RBV$^{+12}$, RFN15, REH13, SBR13, SZX13a, SZX13b, VVJ15, VYV18, VSD10, WGL$^{+11}$, WRP$^{+17}$, WDP$^{+12}$, ZsA10, ZWZ11, ZZ12, ZZWX11]. derive [RVP$^{+11}$]. derived [CIKT13, GMMH$^{+16}$, KSR$^{+16}$, LRVM18, LZGS11, MUGNVJ$^{+18}$, MCLD10, OSS10, PLZ17, REL17, SOYC12, SE14, TBSM12]. Deriving [CCYL11]. descent [MS16]. describe [LCK$^{+18}$, RHCHR16, RS13]. described [BM12, CCB15, KDS17]. Describing [MKGA10, CGA19, DAP$^{+18}$, JCP14, JBSQG11, MY17b, VBD11]. Description [FD16, MR17, Rez19, SWW$^{+19}$, BBG$^{+18a}$, BD12, BE16, Cam15, CRZ$^{+18}$, LAM19, LZLC13, MFR$^{+11}$, PM13, PLH16, PVAM16, RVM19, SRF$^{+17}$, SSA$^{+17}$, TKNN10, WvRSM14, WL14]. descriptor [DFP$^{+15}$, MA16, PRY1$^{+17}$, TMJ15, WMW$^{+10}$, Yap11]. descriptor-based [DFP$^{+15}$]. Descriptors [ELKE19, STF$^{+19}$, CBDS19, FCL$^{+10}$, FZL$^{+15}$, GJMPAM$^{+14}$, MdOdQ18, MCF$^{+18}$, MH10, NKJ16, PKIC11, RB13b, SIT18, TTB$^{+10}$, Wei12b, YLCX10, Yap11, YDX16, ZWX16]. Design [LI19, LLX$^{+19}$, LCM16, Spr18, SCSM19, Tak14, TZ12, VBD11, AM10, AFBR17, BAMR13, BEPM14, BPC13, CBP14, DPB$^{+12}$, DPOS16, DGL$^{+13}$, }
GS14, GMZ12, HSW+19, HHBY10, ISP+10, KSD+12, LABSG17, LBS10, MS16, NPG+18, PC11, SYDS11, SGM+13, Sti15, TKXT13, TRA+16, VVY17, VVMY18, VMV19, VMPS17, XHLH16, ZSB+11, ZWP11, ZYW+16, ZWS+10. designed [BL13]. Designing [PS+10, CSC+18, ZA15, Fe10].
desolvation [BK17a]. Desorption [UG18]. destabilization [XMA+19].
detailed [ABB+12, ABB+13, GPdC+16, KGJZ19, MP13, MO15, MC10].
details [MBA14, RSG+10]. Detect [RMRBH+19]. detected [TCP+14].
Detecting [DVVP14, HW19]. Detection [CBP+15, BV14, CLX+10, Man19a, ZLM+15]. detectors [SK13].

determinant [PM18b]. Determination [BP18, Cam19, KLS10, ABB+13, GPdC+16, KGJZ19, MP13, MO15, MC10].

DFT [BRLS12, CLFRO18, CPR18, SIG+15, YJ17, ZZY+16, AALCM11, AR10, AF14, ASMS10, BTMS12, BRLS08, BIL10, BTB+11, CLFRO18, CMM18, CCB15, CH10, cCVG+14, CBDS19, CXS10, DSB+19, DJD12, EFAC13, FVP14, FPR14, GNASBF16, GRN19, dCGR19, HDM+19, HSH15, HRJ+14, HRJ+15, HBI+17, HL19, JRSHP14, KG15, Kar17, KT12, KKL+13, KM13, KP10, LEDO1DV17, LBC+19, LRBB12, LZL+10, LZHH11, LZX+10, LSH+11, LYSS11, LZLC13, LH14a, LLSW14, LCM+14, MUN+19, MMS16, MPJ+19, MDTD16, MG15, Mat10, MS11, MVKS10, Mor15, MCK17a, MCK17b, NKLJ6, NC12, NMLD13, PTK11, PHK14, QLYL10, RS17a, RDF+11, RS14, RRC+15, RLZ+18, RN17, REL17, RKB+14, RK15, RRF+17, SWM10, SCF+19, SRL+15, SCMI19, SWW+19, SDL14, SZZ+18, SPZP18b, TNI+19a, TSNC+17, TG12b, Tsi14, TS15b, Tsi17, VVJ15].

LMI+14, PG18, PVS12, RS13, SZZS16, VT14, VMV19, YJ19, Zha11, dSH19.
Dimetallic [ZYG+14]. dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18]. dimethylaminoazobenzene [KP10].
dimethylaminophenyl [YLZ+10]. dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
edited [IN13].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
dimyristoylphosphatidylcholine [ML14].
Dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminophenyl [YLZ+10].
dimethylaminosilane [FFA14].
distribution [Bou14, COHI19, HDK+12, HNS16, JLCA17, KS18, MLG18, SK18, SYH12, TKN10, YKO+11]. distributions [AS15b, BCSCJ+13, GWF11, GMG+10, LRER13]. disulfide [ZYS+10].

[CSXZ17, SZX13a, SZX13b, ZWLX11, ZWX19]. **Douglas** [YS13]. **DOX** [RCR+16]. **DPO** [WGL+11]. **DPPC** [LBDP12, vRWGS17]. **DPT** [BH13, BZI14]. **Dramatic** [MLY+13]. dramatically [CSC+18]. **Draw** [LBB+15]. **drawback** [BRGN12]. **Driven** [IPAA11]. **Driving** [YZLZ18, RN17, YZ17]. **Droplet** [SJSS19]. **Drude** [ALRM18, LRvdSM15, LM18a, Ric16, SM14b, ZM10, HLEM18]. **Drug** [GSHM10, MBA14, AJA+19, FLM11, GMASBF16, HSW+19, Ibr11, ISP+10, PC11, PVJ10, SZZ+18, VHA+10, Won18]. drug-like [VHA+10]. **druggability** [LG14]. **drugs** [PPUBGD10]. **DSCs** [YJN+11]. **DSiCl** [LX11]. **DSPMP** [FZL+15]. **DsRed.M1** [SGDT10]. **DSS** [GZM11]. **DSSCs** [ZSTRS+18]. **DTTO** [MCAG+16]. **dual** [JCG+10, MA16, TMJ15]. **Duncanson** [Bac12]. **duplex** [HDK+12]. **Durandal** [BSZ+12]. **during** [GBPCC19, GNDA+12, LBC+12, MJLV14a, MJLV14b, OSA19, PNG10, RSKG14, dCDP15]. **dyad** [KP10]. **dyads** [KCK+15]. **Dye** [MP19a, ACS12, JYS+12, SLZ+15a, SLP+12]. dy-aggregates [ACS12, JYS+12, LCLZ+15a, MP19a, YJN+11]. **dyne-sensitized** [YJN+11]. **Dyes** [FAS+18, DBM+17, NPG+18, VAA+14, WJG+13, YJN+11, ZSTRS+18]. dyne* [FA18]. Dynamic [LKL10, SFA17, SZB19, VSP19, TNYN16, AKK+16, BS10a, BMB13, CVT+11, ESM+12, GBL+11, Hel13, MB14, NNY+17, OPR16, VOR12, WFS19, PBDW11]. dynamical [ALH+10, EFOD13, Ham11, VVMY18, VPR10]. dynamically [HS17a]. **Dynamics** [AIM+18, BHF+18, BHB19, CPV+12, LK13, MFEM16, NNT+19, NN19, AASP18, AJA+19, AALCM11, AG11, AS15a, Aki16, ASL+11, AB11, APK14, AB16a, ALH+10, BHB12, SBL11, BDDTP11, BJSI12, BW15, BF17, BMBJ11, Bow16, BEL+11, CTR13, CSl+14, CH16, CCOH14, CCW+10, CHK10, DASA15, DGA+11, DNN15, DSD+11, DTZT+11, DJS+18, DLZ15, DMT+15, DL19, EP10, EK15, EPH+13, ETLS17, EFOD13, EvRC+18, Fon13, FBEM11, FPH+19, GBL+11, GDV17, GR11, GKB+19, GWZ15, GCW14, GGM+12, GPdC+16, GP11b, GC11, HZ11, HS17b, HKNH18, HHHK19, HCD+10, HP10b, HPT17, HPSK12, HJ10, HHWL17, HLEM18, HRID16, HC14, IUK+11, ISK14, IN19, IM17, II10, IPAA11, JIS13, JA10, JSBSQ11, JCG+10, JAH+17, JLS18, JWST10, JMS14, JS17b, JND+19, KT19, KCT+17, KCR+15, KVQ+11, KUDG12, KSNT19]. **dynamics** [KGHC15, KCC+18, KDB13, KB14a, KNE11a, KERY+16, KLOS+17, KMG+17, Kop19b, KSR+16, KG13, KZP+18a, KN18, KV15a, KVR10, LLI15, Lar12, LWK+14, LH11, LJR+12, LL13a, LRvdSM15, LCH10, LHC+13, LLI+14, LPE+10, LLTC12, LZS+17, LPLB16, LL12, LBPD12, MBT+14, MMH19, MSY19, Man19b, MKS+12, MSC+10, MJ14, MN15, MCRL17, MLN+18, MFEM15, MADWB11, MKM+17, MB16, MHR11, MO17, MO17, MIOM13, NPTS16, NST14, NFPD13, NFG+13, NNN+16, NHK+13, NTNY15, Oht16, ON14, OGL10, OCL11, OLY17, OT12, OCW+15, PMC+17, PSS14, PAK15, PH17, PP19, PL14, PM13, PD12, PHT17, PVZ13, PS10,
PVAM16, RD18, RS12, Ras17, RO14a, RO14b, RFN15, RR14, RdA12, RVdMB16, RC18, RLG14, REL+14, RSR15, RSB+13, SHMO11, SF18, SLT+15, SKA19, SWM10, SSWX14, SS19, SSNT19, SOM+13, SCK18] dynamics
[SIJ17, SR18, SYN+12, SM16b, SK13, SKMS13, SFLG+17, SLLL13, SI16, SZZ+18, SV11, SPZP19, SBvG14, SAVG15, Tac9, Tac17, TNYN16, TFYO19, TJR19, TTC+18, US11, UGK18, Vor10, VM11, WKLC12, WBN+13, WAM17, WC11, WHL+10, WH11, WWKS11, WLC12, WLF19, WES13, WG14, Won18, Wu10, WBE16, XCLZ19, YPvD13, YO19, YHX19, YJXZ13, Yon16, Yu12a, YFH+19, ZZY+16, ZX11, ZDKM12, ZBP11, ZP13, dCLFGL13, dSVdM+16].

Dynamics-Based [AIM+18, Vor10]. DynamO [BSL11]. dysprosium [BP18].

Effective [GKV+13, IM17, YZ16, AASP18, CVG14, DR11, DMN14, DMN15, GA12, HKNH18, KS13a, KS15, LCM+14, PHC13, PRY+17, PS13, RLD12, SSB+16, UCFR16, WXS+12, YZZ16, YZ15b, ZKH+10]. Effects [CS14, GBG+19, HTY19, JAH+17, JLLW19, LGOM+15, LCH+15, Mor15, NNT+19, SEM12, Tac17, WWTL19, YCK16, dCRN18, AS15a, ATIP18, AS18, AK10, ASK18, BBI+11, DMD+18, EPH+13, FAA15, FD16, GNC+18, GMG+10, HS16b, HDM+19, HLBCCG15, INT18, IN19, JMX+16, KIOY19, KG11, KYCL11, KHE+19, KKA+18, LGVA14, LHT15, LWD13, LKZM18, MUN+19, MKGA10, MBC11, MRK11, MLY+13, MUC15, MGS+16, MKK+19, NASH15, ORZ11, OSHG17, OCW+15, PLFS18, PMT10, PP19, PC14, RMGB11, RRK16, SSWX14, SMP17a, SFLG+17, TM16, TYN15, TY10, UT14, VP19, VKAM12, WXY14, YNH+17, YJ11, ZZP+16, Zha11, ALW+10, TIP+15]. Efficacy [LC17a]. efficiencies [RO14a]. Efficiency [AC11b, BB11b, BB11c, FE14, GBSE11, XFG+16, AC12, FSSW19, GSHM10,
Eigensolver [KZZ+16, KCC+18].
eigensolvers [ZVY+15].
eigenvalue [Coh18, HLXH17, HLXH18].
eight [HDK+12].
either [TCPPC14].
elastic [ECZWD17, LBTV11, QB10, QB11, SH11a, XTY+14].
Electric [GH16b, LL13b, BLFZ13, BLBG+13, BS10a, CXXS10, GH16a, KMT+19, KZK+12, MRB14, PDC18, SH15, SLX+15, YL11, YJ11, YCK16, ZSL17, ZX19].
electrical [LLL11].
electro [TMJ15].
electro/nucleophilicity [TMJ15].
electrochemical [SKGP19, SIG+11, SGH+16, YJ11].
electrochemistry [DSK17].
electrode [IN19, MKO+13].
electrodynamics [Tac19].
electrolyte [KS18].
electrolytes [HAL14].
electrolytic [SV11].
electromagnetic [SEM12].
electron [BK11, Bar14, BLG11, BWKW10a, BWKW10b, CEBO15, HS16a, HRMAL+13, HGCGGR+16, KGR+16, KKGW19, LLX+19, PII17, VSP19, VV19, WWU12, ACD+13a, ACD+13b, ABGD12, BH12, BT18, CDB10, CAA10, CW11a, CC18c, CJPTC18, CTP13, CXD+19, DA15, ED15, EP12, ESM+12, EP15, FRSA14, FWS+18, FED17, FCPJM14, GNDA+12, HSH15, HPT17, HEMCZE+14, HAP+12, HBL12, IYK11, Jan16, JBSQG11, JSF19, KPL13, KTK17, KKA+18, KYG+15, LW16, uLhY11, LRVM18, LH10, LYL16, LLJ12, LP11c, MRC+18, MKGA10, MRB14, MT19b, Mat14, MBFP15, MH+13, MCK17a, NYH+17, NLL19, NS17, PAK17, PGDO+16, PSC11, PS17, PNI13, PTB+15, PHT17, PC16, Ras17, Rod13, REL17, RSKG14, SFM+18, SZB19, SB14, SB17, SGL13, SK11, SSA+17, UCR18, VGV+11, VECT12, VL17a, VCL18].
electron [VI17, Vyb16, WL+10, WMY11, XBSS19, YKH+10, YL11, ZPP+16, ZCWX18, ZGR+10, dLC18a, dLvNC18a, GMBM18, SDIP18].
electron-correlation [NYH+17].
electron-deficient [YL11].
electron-hole [PTB+15].
electron-pair [WWU12].
electron-sharing [JSF19].
electron-vibrational [CJPTC18].
electron-withdrawing [CWHH11].
Electronegativity [FCPJ14, vS18].
Electronic [AMQ+14, AM19a, AM19b, ASS10, BAD+19, DSB+19, DAdGR15, DGSVGM19, GNDA+12, GNI18, HLWD15, Ibr17, JLL19, KYL11, KKL+13, KKGW19, LLBO12, LS11b, LKZM18, MT19b, MP19b, MAPB10,
NSN19, ND19, NIIT15, PMC+17, RLA+11, SZL19, TN12, TNI+19 a, TN10, TFQ+10, TS15b, VI17, WRM+12, YW12, ZRCC11, ZLX+19, AR15, AK10, AC12, BLZ+13, CPRS18, DKE+17, DHOG13, DMD+18, EVR18, EH13, EKW+13, EBPK17b, FB10, GTH10, GRARO+14, GWX+12, GZZ12, HASR+12, HS14a, HS+11, Hua16, IIF+10, KK1H19, KKPT11, KSM17, KG11, KKA+18, Kop15b, Kos16, KP10, LGOM+15, LX11, LBT1V1, LBT1V12, LNX+10, LSH+11, LLWS14, MC10, MA16, MCF10, MCF+18, Mat10, NC14, NCT18, NFI+16, OLA15, PiSC18, PHK14, PTB+15, PVAM16, Py13, RCM+13a, RML+15, RR12, RR11, SFA17, SLP+12].
electronic [SIT18, SB19, SRS14, ŠB15, SKGB13, Tac19, TFQ+11, TD10, TS15a, TNG+10, TS11, TG12b, Tsu19, TEDT18, VVP12, VHR16, VAR12, VBMA13, VLKG+17, VGT116, WHL+10, WGL12, WJC+13, WO15, WSGN11, WZK+13, YK13, YFH+19, ZJZ13, wZhZ11, ZBB16, ZZZ+19, dCDP15, dVAG16, vSGP10].
Electronically [SCSM19, BSL+16, LSH+11, LYSS11, RIJ+11, SFCCK+14, SFCCK+15, YB11].
electronics [Sah18, EKH14, FHZA+18, WCY+11, WRG+17, XhD15, YCGA10, SGP18].
electrophilic [MA16, WDS+19].
electrophilicity [YB16].
Electrostatic [CLA16, LP11b, MLZZ12, Sch18, VSP19, WFZ+18, ALRM18, AS18, BT18, BCNH+11, BSF18, BK13, CCC+11, CS14, CPK12, CB11c, DLSA14, ER18, GBL+11, HOK17, IO13a, KTN10, KYG+15, Lar11, LCA17, LCM16, Mat14, NF18, OHPR18, PV110, RB13b, TY10, VMMR+17, VVY18, YKO+11, YWJ+16, YAO18, YMP14, YZL+15, ZDM13, ZBP11, KGM12].
Electrostatics [BSG18a, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XYX17, YMP14].
element [BCCO10, GPK+16, RMGB11, TG12b, TCX+13, XYX17].
elementary [LPLB16, Zim13].
Elements [TKN13, BV14, CWZB10, Hil13, JJ16, LF14, SK15a, TDKT10, Ts14, WSI2, XhD15, MSCP19].
elevation [HH10].
ELF [RSKG14].
ELI [BWKW10a, BWKW10b].
ELIA [BWKW10a, BWKW10b].
Eliminating [vS18].
elimination [SL10, dCDP15].
Elisabeth [Hil12].
ellipsoidal [DBG+13, LDG+15].
Elongation [OLA15, MKGA10, MKGA10].
Elongation-MP2 [MKGA10].
Elucidating [HNHR13, TDP+12].
Elucidation [CPLL11, TNY16].
embedded [DS17, GMG+10, HSH15, KMT+19, ZFS18].
embedding [CCB15, ESD18, ESM+12, HH16a, HH17, Höf14, HOK17, KSR17, NF18, NOKJ16, RR12, SDF+17, SS16b].
Embelin [CPR18].
emerges [MNNK10a].
emission [CSC+18, LX11, MCLD10, PLP+16, SGWA17, WDP+12, ZLL+10].
emitted [PE11].
emitters [FWS+18, ZGZ19].
emitting [FWS+18, ZGZ19].
Emphasis [RCM+13b, PD11].
Empirical [BA11, DLMH12, KLN12, CK17, DAG19, KB10, LL11, MPBJ11, PTK11, RJPB12, SZBM13, SBvG14, TM16, ZRL+15, ZM10].
empirically [VCL18].
employing [GP11b, MLCD11, TG12b].
empowered [BPLL12, RLLHL12].
enabled [Aou16, BK17c, KYG+15, LL10a, SR11].
enables [KK17a, RC18, XHLH16].
Enabling [PHH+12].
enamine [AS11].
Enantioselective [ORZ11]. enantioselectivity [OAN15b]. encapsulated [EOO+16, STS15]. encapsulating [WZH+18]. encapsulation [YDGZ15]. encoded [RSL16]. encoder [LDH+14]. end [HDL+17, SL10]. ended [RJR14, Zin15]. en. [FB14a]. Endohedral [NKD18, FL15, MCK17a, MCK17b, ZSL+11, ZYG+14]. endohedrally [DK11, ELKE19, AF14, AS14, AG12, ABS+19, BW11a, BLF14, BVH17, BS16b, BE16, BS18, CHG+16, CMD13, CR19, CH10, CTP13, CXD+19, CBG16, DHOG13, DMJ17, DHH+11, DPOS16, FGM11, GRN19, Gil11, GP11a, Gri13, HAGK10, HH10, HH11, HLW+17, HDM+19, HWWL17, IKN13, KSH13, Kar17, KSM17, KJDB12, KB11b, KYB13, LJW11a, LW11, LHLL14, LH14a, MCS11, MS13, Min18, MSÄK12, MBE16, MMJ10, NWW17, NMF+14, OBW12, yOTh16, OAN15a, ORS16, PGCT+12, PPJ14, RLDJ17, Ran19, RDDS10, RAR+11, RO14b, RZ16, RR14, Rob13, RJS17, SRR16, SK12, SHL+13, SOD+11, STM+15, SWA17, TS14, TSN16, UD12, VVG13, VECT12, VM11, WBT10, WS10, WJG+13, WSA19, WGA18, WG12, WX12, YAS13, YMP14, ZZ+14, dALdS15, dRBO13, NQB19]. Energy [DK11, ELKE19, GS16, IHY15, JCGVPHT17, Jia19, Kop19a, LFN+10, LPLB16, MYKO18, NK19, OSI+19, PK19, SN16b, SSGS15, Spr18, SKGB13, VL19, VSP19, WM12, ZQH19, AMGB10, AAB+19, AC11a, Ano10a, AK10, AK16, BCSJC+13, BPM15, BRE16, BH15, BS16a, BRLS08, BRLS12, BACSCJ+10, BG17, Bon14, Boz18, BD11, BWMSM10, BB11b, BB11c, BG12, CM13a, CK10, CDM+15, CLA16, CY09, CX0, CZY11, CY13, CH16, CSXZ17, Che17, CF18, CS17, CHR+12b, CHR+12a, COHI19, CKP10, CM+10, CPK12, CWZB10, DPG+11, DWR17, DBG11, DS12b, DH14, DWC17, EV14, FMNC11, Fer17, FED17, FCOCM12, FSSW17, FCP17, FLM11, GS14, GS15, GHK12, GO13, dCCCRN19, GMO16, HNYH19, HDM+17, HHNK19, Hei13, HDM+15, HH15, HG13, HYMZ16, HYUS11, HJKJ13, HGWI18, HYD10, HDHL15a, HDHL15b].
HNWF12, HH17, HZSS17, HDHL15a, HDHL15b, HDHL15c, JCGVPHT17, KT19, KPG18, KB14b, LLBO12, LLW12, LWGZ15, LGC19, LX11, LSH+11, LYSS11, MPSG11, MGCC19, MEH18, NYN17, PH10b, RRHCH16, RR14, SFCCK+14, SFCCK+15, SRF+17, SZZS16, TSN17, WHL+10, WHX+10, YD17, YHX19, YLZ+10, YB11, YYT12, LZL+10, PGW+17].

Excited-State [FHG+19, YKNN19, SGWA17, FD14, GA18, HH17, HZSS17, KT19, LWGZ15, MPSG11, NYN17, PH10b, WHL+10, WHX+10, YD17, YHX19, YLZ+10, YB11, YYT12, LZL+10].

excited-states [LLBO12]. exciton [HRH+17, LSH+11, SEJ+18, WZ19, ZZL19]. exciton-phonon [WZ19].

EXcitonic [JCGM18, NNT+19, LCK+18, ZMMM12]. excluded [LWZ+17, Yan14]. exclusive [dLC18a]. Exhaustive [DKV18]. exhibited [RWR+13]. Existence [MBB13, WD10, NKK18]. existing [KT18].

expensive [LDZW17]. Experimental [Cam19, MRC+18, NHE+10, AvKSP16, BRGN12, DCDOD13, EOO+16, GPSC+16, HJ13, KIP10, PO14a, SB10, SGS+16, SKMS13, VZ14, CVC+10].

expected [LZGS11]. experiments [CBP14, HCBI].

Explicit [WG14, BEM14, CCH14, CBG16, EK15, ENKK+17, GLB16, HDL+17, KJDB12, LH11, RdA12, SYH12, SKMS13, Zha12b]. Explicitly [yOT+16, SM17].

Exploiting [HB14, BYE+16]. Exploration [FHG+19, OSI+19, ZGS+10, BGL+18, CF18, IWW12, LAW+16, NJR18, OKIS17, OKY18, RDRC16, Sti15, SPP+19b].

explore [JCPC11, MNB+10, MCC12].

Exploring [BHB12, BPPS17, BPS19, BCG10, DSHLM18, ELKE19, FDH19, MTM14, PJ13, Ts17, VHS+19, ZT14, sDsLBNN17, RDRC16, NOKJ16].

explosion [GC18]. explosive [YPC+10]. Exponential [BB11b].

expressions [Gav12]. extended [GWZX12, IN19, KUDG12, LRvdSM15, SSWX14, TSN17, YB16, PON11].

Extending [LMZ11a, Man13, TTN19, VB13a, VB13, PHH+12].

extensible [GCW14, JYC+16, LAS+14]. Extension [AlQ19, HSN14, PFVL14, SDZ17, VW+18, YHVM12, Cam15, LL11, RRLHL12, Ras17].

extensions [NYH+17].

Extensive [JW12, SLHW09, YB11, CF14, KM13].

Extent [OSA19, FGS18]. exterior [HL19]. exterior/interior [HL19].

external [GKSS14, KMT+19, PdSC18, SEM12, XTN18, XMA+19, ZSLL17, ZX19].

Extreme [HRH17, Cam15, DS12a, JBSQG11, CCR18]. eXtreme-Pressure [CCR18].
Extremely [ZM11].

Kid19, KLJ+17, KSK11, KT10, KFT18, KGJZ19, KMLS10, KVR10, Lar1i, LvDH13, LC17b, LM18a, LPS+13, LPE+10, LN15, LLvG10, LvG13c, LL13b, LGD+15, LCL+18, MRO17, MBC11, MSS+13, MTvG12, MBE16, MLC13, MHR11, MP17b, NB19, NTNY15, ON14, PHC13, PLZ17, PdSC18, PG15, PZCL16, PLH16, PVM10, PS10, PNG10, Rod13, SH15, ST11, SM14b, SK17, SS19, SZBM13, Sie15, SYZ+17, SBvG14, Tak14, TYN15, VV+18, VHA+10, VPR10, Vik11, VVLG17, WXL17, WS19, WTH+16, WC14, WZK+13, WDHZ13, XP13, XVA+16, XMA+19, Yan11, YWZ14, YJXZ13, YJl1, YN15, YCK6, YHM12, ZSL17, ZL11, ZSYH12, ZVX19, ZDKM12, ZP13, ZM10, ZCGM11. field
[SYZ+17, SBvG14, Tak14, TYN15, VV+18, VHA+10, VPR10, Vik11, VVLG17, WXL17, WS19, WTH+16, WC14, WZK+13, WDHZ13, XP13, XVA+16, XMA+19, Yan11, YWZ14, YJXZ13, YJl1, YN15, YCK6, YHM12, ZSL17, ZL11, ZSYH12, ZVX19, ZDKM12, ZP13, ZM10, ZCGM11]. field-based [HKR12]. field-dependant [PNG10]. field-dependent [DP15].

Fields [Coo19, AS15b, BHI19, BVY+12, BAS14, CCLP12, CPN+17, GCWS15, GMMH+16, HDPM14, HJ10, JYC+16, KT18, KWL+16, LZZ+11, LZS11, LGL11, LTP11, LBDP12, MSK+10, MSK+12, MS15, ST11, S Gly+18, SEM12, TTC+18, VV+15b, VHA+10, WKC+10b, WLC12, WGI2, YPKB12, ZRL+15]. fifth [KM13, LOB18]. fifth-rung [KM13]. fifth-rung [DP15].

First- [TKNI3]. first-order [BCCO10, SK12]. First-principle [CCJC10, DBM+15, LLB+12]. First-Principles [HFSO12, BE12, BE14, EB12, EBK13, EBPK17a, JCG+11, LLLM11, wZbZ11, BPE16, EMD17, EB18, GD10, KLZ+18, PLZ17, RZG+13, WY+15, WD10, ZWMW10, Z12, vADC+14, HYL+11, SPZP18a].

fluorene [CH10, HXM+16, PH10b, YJN+11]. fluorene-phenylene [CH10].

fluorescence [CH10, EJ13, FWS+18, LM18b, VM19, ZLL+10, ZGZ19]. fluorescent [CSC+18, LZL+10, NSO+14, PGW+17, SCF+19, WJG+13].

fluoride [LCC18, LZL+10, MBRC16, NC12, RAB12, SBGP18, SRL+15].

fluorides [ASS+17, Sán17]. fluorinated [DK17].

fluorine [VMV19].

fluorine-centered [VMV19]. fluorobenzene [KS13].

fluoroquinolones [MPNS13].

fluorene [CH10, HXM+16, PH10b, YJN+11]. fluorene-phenylene [CH10].

fluorescence [CH10, EJ13, FWS+18, LM18b, VM19, ZLL+10, ZGZ19]. fluorescent [CSC+18, LZL+10, NSO+14, PGW+17, SCF+19, WJG+13].

fluoride [LCC18, LZL+10, MBRC16, NC12, RAB12, SBGP18, SRL+15].

fluorides [ASS+17, Sán17]. fluorinated [DK17].

fluorine [VMV19].

fluorine-centered [VMV19]. fluorobenzene [KS13].

fluoroquinolones [MPNS13].

fluorene [CH10, HXM+16, PH10b, YJN+11]. fluorene-phenylene [CH10].

fluorescence [CH10, EJ13, FWS+18, LM18b, VM19, ZLL+10, ZGZ19]. fluorescent [CSC+18, LZL+10, NSO+14, PGW+17, SCF+19, WJG+13].

fluoride [LCC18, LZL+10, MBRC16, NC12, RAB12, SBGP18, SRL+15].

fluorides [ASS+17, Sán17]. fluorinated [DK17].

fluorine [VMV19].

fluorine-centered [VMV19]. fluorobenzene [KS13].

fluoroquinolones [MPNS13].

fluorene [CH10, HXM+16, PH10b, YJN+11]. fluorene-phenylene [CH10].

fluorescence [CH10, EJ13, FWS+18, LM18b, VM19, ZLL+10, ZGZ19]. fluorescent [CSC+18, LZL+10, NSO+14, PGW+17, SCF+19, WJG+13].

fluoride [LCC18, LZL+10, MBRC16, NC12, RAB12, SBGP18, SRL+15].

fluorides [ASS+17, Sán17]. fluorinated [DK17].

fluorine [VMV19].

fluorine-centered [VMV19]. fluorobenzene [KS13].

fluoroquinolones [MPNS13].
KLN12, LCW12, LBGS16, LGW12, LBTV11, LBTV12, LHKS12, LH14b, LH17, LPM17, MMH19, MSY19, MAK+14, MJW+11, MAP18, MFR+17, Mor15, MMJ10, NS18, NF17, NN18, NO16, NNK+16, Oht16, ORZ11, OMI12, PAK17, PPH+14, Pic14, PD11, QZ10b, RJPB12, RS13, Rez19, RB12.

functional [RSLML12, RHPWS13, RHT+15, RNS19, RR19, Rui11, SPS+12, SH15, SFG+17, SHL+18, SCW11, SBT17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SH19a, SMM15a, SMM15b, SMM+18, SKTT11, SZZS16, STS15, TLDG+12, TG12a, TS10b, UvSvdWK19, VV14, Vik11, VL17a, VI17, VLGK+17, VED10, VKC10a, WHL+10, WCWW11, WDLG12, WYT17, WXH+10, WL14, WTH+16, WGN+16, WZC+19, YY+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX12, ZLZ14, ZYG+14, ZYW+10b, ZYW+10a, ZLHH14, ZGS+10, dSDS12a, dSDS12b, CKH19].

functional/basis [PD11]. Functionalities [LJC+19, KAG+12].

functionalization [WWTL19]. functionalized [KYKR15, LdSRR16, LTR18, MSY19]. functionals [Ben17, CCB15, CGR16, CXD+19, DH17, DOM+11, DWC17, ELF19, FPRS14, GWRJ18, HG10, HBI+17, KB10, KSH13, KSSH13, Kar17, KM13, LBH+11, LAM19, LH14a, LK16a, PW12, RSG14, Rui11, SGPJS+17, Sea10, SDM+16, SH18a, SPR+13, SZX13a, SZX13b, VCL18, WYT17, Yu12b, ZTH15, ZWX19, dSDS12a, dSDS12b, CKH19].

[RSR⁺12, OYK⁺11, Bou14, CGA19, DLL⁺10, EPD⁺10, FRC18, IT19, JLCA17, LOB18, Leh15, MG11, MKB⁺13, OLPB19, POB13, SFI11, SH19a, Sun15, TH13, VKTRMJ15, ZKE⁺17]. Gaussian-based [CGA19, JLCA17].

GC-related [GX⁺12]. GDP [SS13c]. Ge [Cas14, MCK17b, PMG⁺16, Sak18, UT15, YW12, YLY16, WKC11].

GeauxDock [DFF⁺15]. GeC [HSY⁺11, Kop18]. **GeH** [Kop19b].

gelatinases [XDL⁺10]. Gelessus [Spr10]. gene [CQFC10]. **general** [AA18, BSL11, EWK⁺13, FNSF⁺11, HSN14, Ish12, NLP⁺16, PH17, RJR14, Sun15, VHA⁺10, YHVM12]. general-contraction [HSN14].

Generalization [Sah18]. Generalized [GH16b, KCPMG12, MSPC19, AB16b, BSPP⁺13, DSF17, FCE15, GH16a, HWL11, LL10a, MA16, NMH19, PS13, SZTSM10, SSB14, VMPS17, WWKS11, WHM10, WBVE16].

giberellin [HYYZ13]. giberellin-binding [HYYZ13]. Gini [WF16].

GIPAW [SPZP18b, SPZP19]. **GIST** [RNSF⁺16]. give [AA18, JT18]. glass [GFSG18]. glasses [You10].

Global [LvDH13, OKIS17, PRSG13, Tak10, VL19, BK17b, CPN⁺17, CZZL19, DS15, DMAH15, FDH19, GPE13, LK11, LL11, MP13, MB14, MO15, MCA1Y15, SKKS13, SC15, TSZQ12, Vor10, WDHZ13, XhD15, XCLZ19, ZL11, DH11].

Glu [JL13]. glucopyranose [HH10]. glucosamine [ZBP11, ZP13]. Glucose [APY⁺16, WFL⁺19]. **GLYCAM06** [SA10]. **GLYCAM06/TIP3P** [SA10].

Glycan [JSD⁺11]. glycine [DB12, DP15, FCD10, MC10, SPZP18a, SPZP18b]. glycoconjugate
[LABSG17], glycol [MSY19, TFYO19]. glycoproteins [JSD+11, PFVL14],
glycosaminoglycan [CHKR10, SZdB19, SA10]. glycosidic [HH11].
glycosyltransferase [RN17]. Gmbh [Spr10]. GMCT [UU12].
Gneimosim [LWK+14]. gold
[Ano15-58, BH14, CCJC10, FHT+15, FDH19, GAMAC+14, Li14a, Li14b,
LHKS12, LH14b, MFR+11, MG14, MBFG15, SRR16, SKTT11, YLL11].
gold-thiolates [FHT+15]. Goldberg [WTH+16]. Good [SB10]. GPCR
[LLHM16, MFR+117]. GPGPU [UM13]. GPR119 [HK18].
GPGSM11, GPGSM12, Ihl12, MCC12, PsdPE+10, Pog10,
RPNP10, dLvnCl8a]. graph-based [DH14]. Graph-theoretical
[WSH10, PsdPE+10, Pog10]. graphene [YZZ+17]. graphene
[BSD18, CMM18, dRcFGRB18, DJX+11b, DJX+11a, JWO15, KMT+19,
Lin18, LWZK13, LCM+14, PL18, RRK14, RLZ+18, SDF12, WCT+11,
WSZW15, WYL+15, WTH+16, YSSB12, YZZ+17]. graphic [HASR+12].
Graphical [SJL18, All11, GBL+11, HZY+10, HSW+19, LLLC11, LBB+15,
PVZ13, SEF+16, STH+10, WSGN11, WS13, YWJ+16, YDL+10, YN15,
YS10, ZKE+17]. graphics [AB16a, AB16b, BDTP11, CKKK16, EP10,
HKK12, HEMCZE+14, MSSP17, SR11]. graphite [Fom13, IN19, LAM19].
graphitic [LL13b]. graphs [AGR11b, RNPI3, RNVPI3, SOJ14]. Gratzel
[VAA14], gravitational [DS15]. Grcarma [KG13]. green
[LWL+11, NSF+14, PGW+17, yOTn16]. greener [ZX19]. Gregori [Hl12].
Gregori-Puigjané [Hl12]. Grid
[BAMR13, CPK19, HEMCZE+14, BPLL12, CGA19, CKKK16, FHMB15,
KP11, KKH18, LZ11, LLZA12, MMM+16, NCT18, RLLH12, dVZ17, CM13b].
Grid-Based [CPK19, BAMR13, HEMCZE+14, CGA19, KP11, KKH18,
LZ11, LLZA12, MMM+16]. grids [DH17, Min18]. Gro2mat [DDK14].
gromacs [Nav18, AG11, Abr11, Gar12, GP11b, KPF+15, KPF+19,
Hierarchical

High

High-Performance

high-resolution

high-temperature

higher-dimensional

high-throughput

higher-order

high-confidence

high-accuracy

highlighting

Hirshfeld-based

Hirshfeld

histidine

homodesmotic

homoarginine-containing

homoarginine

homologated

homology

horizontal

hormone-dependent
hormone-receptor [OME16]. horsetail [MCRL17]. Host
[CC18b, OA15b, YDGZ15]. hot [HQSZ19, RFHG10]. Hou [JW12]. HOX
[dSDdAR10]. HRPA [SPHF18]. HS [XCLZ19]. HSE [VLZK17]. HSiCl
[LX11]. HSICl/DSiCl [LX11]. Hua [JW12]. Huang [MT19b]. H¨uckel
[FL15, SKTT11]. Huffman [QLQ11]. Huge [NN19, NNK16, OHPR17].
Huge-System [NN19]. huisgen [ZZWT12]. human
[JAHS19, OME16, SLY10, ZX11]. hunter [CMF17, She12]. Huzinaga
[Fer13b]. HXeOXeF [ARLP13]. HXeOXeH [ARLP13]. Hybrid
[CGR16, KS15, NS18, VVY17, ZDKM12, BTA13, BG13, CBG17,
CSKH15, CSXZ17, CC11, DR11, DJ13, EL19, FHT15, GRN19, GFG11,
HZSS17, JAHS19, JMS14, KN17, KKR13, KJM17, LBH11, LT14,
MIS15, OK16, PW12, RSG14, SGPS17, Sea10, SH18a, SZX13a, SZX13b,
VCL18, VN17, ZWLX11, ZWL13, ZWX19, HPT17]. hybrid-meta
[BG13]. hybrid-parallel [KJM17]. hybridized [DC13]. Hybridizing
[RDRC16, FZL15]. Hybrids [VL19, KM13]. hydratase
[LT13]. Hydrated
[ALH10, BMFG16, CGP11, GBL11, NGCA10, LPE10, LBPD12,
VPR10]. hydrates [LZLC13]. Hydration
[BSC18b, HL14, AS14, DQ16, KB11b, KY13, OK16, PP10, RZ16, SK12,
SC18a, SWPR11, WBT10, WC13, WG12]. hydrazine [GZL12]. hydrazo
[WDLG12]. hydrazo-1 [WDLG12]. hydrazo-H [HPT16a, ZZWT12].
Hydride
[Jab18b, PM13, RKDM14]. Hydride-Triol [Jab18b]. hydrides
[DM15, PG12, RMGB11, WKC11]. hydric [Jab14]. hydroamination
[KT12]. hydroazidation [YXZZ17]. hydroboration [ZX19]. hydrobromic
[CY17]. hydrocarbon
[CB11d, IT19, KSM16, Kar17, MI17, SV15, WD12]. Hydrocarbons
[JCHT18, FVB10, NMI19, PL18, Ran19, SBvG14, ZWX19].
hydrocyanation [HDB15]. hydrodynamic [AKK16]. hydroformylation
[BF19b, dSDdAR10]. Hydrogen
[AFSW16, EHT19, ELKE19, EV14, HvM17, JLIW19, JT18, KKK19, MYT18, PNE18, PZM15, TD11, TL16, WKC10a,
WLH12, WFZ18, YZL15, AAMD11, ASK18, BEM14, BEMP14,
BLFZ13, BK17a, BLDK13, CK10, CSAdOM17, CPV12, CD11, CSXZ17,
CKP10, DKT13, DLT17, DBG11, DL19, EHSPT16, GNC18, GGM12,
GY12, GC11, HW19, HvM16, JCP14, JCG10, JSW10, KTT16, KSNT19,
KNP12, KGJZ19, LC10, LZH11, LJIW11a, LZJ11, LLW12, LHHW14,
LCC18, LTP11, LYSS11, LZY12b, LAW16, MPSG11, MK13b, MKO13,
MS11, MB14, NHF10, OKK11, PG12, PG19, PAT10, PD11, PNT16,
QZM11, SZ17, SSGS15, SKGB13, Tan19, TDT19, UT15, VVP12, VVY17,
VECT12, VDVR14, WLKC12, WHL10, XMA19, YR13, YLZ10, YI17,
ZDX11, ZLY16, ZW17, dCRN18, vADC14, SK13, SMD18]. Hydrogen-
[WFZ18]. hydrogen-abstraction [GY12]. Hydrogen-bond
[TD11, BK17a, CD11]. hydrogen-bonded
[BLFZ13, DKT13, JCP14, LJW11a, LHHW14, PAT10, UT15, ZDX11].
hydrogen-bonding [LCC18, PD11, WHL10]. hydrogen-bonds [LZH11].
hydrogen-bridged [ZLY+16]. hydrogen-contaminated [YR13].
Hydrogen-Disordered [MYT18]. hydrogen-storage [BEM14].
hydrogen-transfer [ZW17]. hydrogenase [GS11]. hydrogenated
[MRC16, wZbZ11]. Hydrogenation [GBG+19, JAB16]. hydrolase
[BHNS14, LD18]. hydrolysates [LWZ+19]. hydrolyses [YZGS14a].
Hydrolysis [JAHS+19, LHT15, MFM+12, XZ11, YZGS14a]. hydroperoxyl
[AAEM+11]. hydrophilic [PAK15].
hydrophobic [ARRC15, GMMH+16, JGS+17, MB11, PAK15, SY16b, TM16].
hydrophobic/hydrophilic [PAK15]. hydrophobicity [CH14, SV15].
hydroquinone [PNE18]. hydrosilylation [DK19, SSD19].
hydrostatic [FCW+14]. hydroxamate [GWZ15, GPdC+16].
hydroxamate-containing [GPdC16]. hydroxy [FFA14].
hydroxyapatite [XYW+14]. hydroxybutyrate [SJD14].
hydroxycoumarin [LZHH11]. Hydroxyl
[BHP19, DPNM11, GKR13, KS13b, Ray13, RKG11, SY16b, TM16].
hydroxylation [TLY+12, VCM15]. hydroxylations [MRR11].
hydroxymethyl [HH11]. hydroxymethylfurfural [APY+16, WFL+19].
hydroxynaphthaldehyde [MPSG11]. hydroxyphenylpyruvate [DGH+11].
hydroxyquinolin [CSC18]. hydroxyapatic [XYW+14].
hydroxylation [TLY+12, VCM15]. hydroxylations [MRR11].
62
dCGCRN19, HPT17, HRJ+ 14, HWLW11, HHWL17, KTT16, KT12, KTNN10,
KMLS10, MBC11, PPUBGD10, SOD+ 11, Tsi19, WH11, YK13, ZSYH12].
II/III [dCGCRN19]. III
[BP18, IKN13, KPL15, LWL+ 11, LXZ+ 10, SRL+ 15, BEL+ 11, CWT+ 12,
DSHLM18, GZZM16, dCGCRN19, HIS17, SKA19, Zha12b, ZKH+ 10]. III/II
[KPL15]. IKP [HLS12]. Illuminating [NSO+ 14]. illustrating [RML+ 15].
illustration [RP15]. im [FHG+ 19]. Image
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13l, Ano13t, Ano13u, Ano13v,
Ano13x, Ano13y, Ano13w, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30,
Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h,
Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q,
Ano13r, Ano13s, Ano13-32, Ano13-43, Ano13-51, Ano13-52, Ano13-53,
Ano13-55, Ano13-56, Ano13-57, Ano13-58, Ano13-54, Ano13-59, Ano13-60,
Ano13-61, Ano13-62, Ano13-63, Ano13-64, Ano13-33, Ano13-34, Ano13-35,
[Ano13-50, Ano14a, Ano14b, Ano14c, Ano14g, Ano14h, Ano14i, Ano14j,
Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r,
Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14-28,
Ano14-29, Ano14-30, Ano14-31, Ano14-32, Ano14-33, Ano14-34, Ano14z,
Ano14-35, Ano14-36, Ano14-37, Ano14-38, Ano14-39, Ano14-40, Ano14-41,
Ano14-42, Ano14-43, Ano14-44, Ano14-45, Ano14-46, Ano14-47, Ano14-50,
Ano14-51, Ano14-52, Ano14-53, Ano14-54, Ano14-55, Ano14-27, Ano14-48,
Ano14-49, Ano14-56, Ano14-57, Ano14-58, Ano14-59, Ano14-60, Ano14-61,
Ano14-62, Ano14-63, Ano14-64, Ano14-65, Ano14-66, Ano14-67, Ano14-68,
Ano14-69, Ano14-70, Ano14-71, Ano14-72, Ano14d, Ano14e, Ano14f, Ano15a,
Ano15b, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o]. Image
[Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15y, Ano15z,
Ano15-42, Ano15-43, Ano15-44, Ano15w, Ano15x, Ano15-37, Ano15-38,
Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano16a, Ano16b, Ano16i, Ano16j,
Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r,
Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16-27, Ano16-28,
Ano16-29, Ano16-30, Ano16-31, Ano16-32, Ano16-33, Ano16-34, Ano16-35,
Ano16-36, Ano16c, Ano16-39, Ano16-40, Ano16-41, Ano16s, Ano16t]. Image
[Ano16-37, Ano16-38, Ano16-42, Ano16-43, Ano16-44, Ano16-45, Ano16-46,
Ano16-47, Ano16-48, Ano16-49, Ano16-50, Ano16-51, Ano16-52, Ano16-53,
Ano16-54, Ano16-55, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano17a,
Ano17n, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano17z, Ano17-27,


Ano17-28, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h].

information [CDS16, CCYL11, DWL11, GBVA11, ISN13, RSL16, ZLW10].

inspection [KOY+12]. inspired [CYY+17, DSM+11]. instability [MMH19]. instantaneous [RO14a]. Instanton [MK17, MK19, MRK11]. Insubria [GCC14]. Insulator [LLL+12]. Insulin [MV17]. INT [YJXZ13]. INT-DBD [YJXZ13]. Integral [Coo19, VSP19, DL19, KSNT19, MEH18, RFN15, SS13b, Sun15, VKAM12, WXY14, YS18]. integrals [CHC+13, PS17, PC16, RLA18, SZTSM10, WDKT19]. integrase [XYL12]. Integrated [HSW+19, vRWGS17, CKKK16, MCC12, US11]. Integrating [APK14, LZZ14]. Integration [FPV13, AYYO17, BB11b, BB11c, DH17, LP11a, MOS18, NSK18, dRL11, Pol13, Pop18, SJ11, SJ16, dBO13, MYKO18]. integrative [ˇRez16]. integrator [JS17b]. intelligence [Aou16]. intelligent [CDS16]. intensity [dSH19]. Inter [CROB16, SSB11, I HY15, CKKK16, MCC12, US11]. Inter- [APK14, LZZ14]. inter-residue [HY15]. Interacting [CM16, VSP19, ATP18, EV14, HGCCGR+16, MP17a, PNE18, WL14, JCHT18]. Interaction [BHB19, CK10, CCCLCRO14, CCCLRRO14, Den12, NNS15, SBW12, YZWC11, ALW+10, AG12, BLFZ13, BLF14, BCNH+11, BSD18, BHB+17, BRLS08, BRLS12, BG17, CLFRO18, Cas13, CZH12, CYG+15, CTP13, CAP17, EK17, EV14, FF11, FCCP17, FA18, GA14, GP11a, HPT17, HBL12, HLH+12, HSZ+11, HLXH17, HLXH18, HQS19, HL19, JZZM14, Kan15, KTNN10, LL10a, LMZ11a, LPS+13, Li14a, Li14b, LHWW14, LZL+15b, LPLB16, LCWW10, Min18, MS12K12, MCP18, MVBD18, NGAS17, NN18, OHP17, OHP18, PRJ+17, RZG+13, RS13, SM16a, SS13a, SBGP18, SBV10, SHL+18, SPL+18, SHF11, SH19b, TYN15, Tan19, TSH+19, WSH10, WYL+15, YK13, YWJ+16, YAO18, YCK16, YHCS11, ZRC11, ZY14, ZW18, ZZZ+19, dLvNC18b, vS18, KCB12]. interaction-activation [LSL+19]. interaction-based [ZW18]. interaction-induced [BLFZ13]. Interactions [BGS+19, Hes19, Sch18, WCT+11, ZCK+16, Abr11, ARRC15, AKB+16, AO10, BSF18, BSDG18a, CSS17, C18b, CIKT13, cCVG+14, CKP10, CROB16, CB11a, CB11c, dRCGFRB18, DDP+18, DFP+11, DBG11, DLML12, EP10, ER18, GFP11, GZ15, H14, HSJ18, HLVdV13, HTY19, ICS+12, ICS+13, IHY15, Jab18a, KSSH13, KCK+15, KPH+19, KGJZ19, LZLC13, LZSM19, MLGB16, MH17, MKH+13, MR17, MJM+15, MVKS10, MG14, MF+17, MPBJ11, OHNK11, PPJ14, PLV+11, RTS+13, RVM19, RMRBH+19, SSIG15, SDF12, SB19, SWW+19, SSB11, SSB13, TNN17, TG12a, TY10, TSR+16, TNG+10, VV15, VM19, WS10, WGD+16, WDS+19, WZ19, WM17, XTY+14, XLY12, YKO+11, YZ15a, YW13, YZL+15, YDGZ15, YZLZ18, ZLL+12, Zha11, dLC17, dLvNC18b]. Interactive [BRP+12, BGR13]. interactivities [CQFC10]. interatomic [DPAB16, FCCP17, RLA18, YKO+11, dLC17]. intercalation [LAM19]. interconnections [GLF16]. interconversion [HH10]. interconversions [TCGNT18]. Interdependence [WAB17]. interest [BCNH+11, OZLSBH12]. Interface [SJJ18, AI11, BDTP11, CSSB11, GRP+12, GCW14, HL14, JJW+14, KG13, LJR+12, LZdL+10, LBB+15, MSSP17, NS18, OYK+11, PHH+12, PVZ13, RR14, RSR+12, SN16a, SYDS11, SISK10, STH+10,
ion-pairing [KTK17]. ion/water [SV11]. Ionic
[FDCJG18, JXSW15, APFI13, APY+16, CG15, CFC15, EK15, GC11, IN19,
IM17, LEDOLdV17, MG15, NFT+16, PS14, SCM+15, WWKS11]. ionicity
[SLY+19]. ionisation [CTP13]. Ionization
[SHL+18, ACD+13a, ACD+13b, BG17, CG15, CBG17, GWF11, HNyH19,
LGOM+15, LK13, yOTu16, SSB+16, SGHL13, Tac17, VL17a, VCL18].
ionizations [LGVA14]. Ionized [GMBM18]. Ions
[WFZ+18, AS14, BDTP11, CCL1R014, CC12a, EKH14, PRJ+17, PZA15,
SNS16, SGH+16, VHS+19, WKC10a, XP13]. IP [BK17b]. IP-tuned
[BK17b]. IPRO [PGL+15]. IQA [CSM16]. IR
[DCOD13, CWT+12, LWL+11, LXZ+10, WJX+10]. irGPU.proton.Net
[Kan15]. iridium [CWT+12, HDPM14, KB13]. Iridium-catalyzed [KB13].
iridium-containing [HDPM14]. Iron
[HS14a, AKMYB18, BH19, BG13, CTR13, DK19, GBGR16, HS+19, HS16b,
KPL13, KPL15, MC10, NH19, SBC+11, TS10b, VBMA13, EH13].
iron-containing [AKMYB18]. iron-porphyrin-carbonyl [BH19].
iron-sulfur [CTR13, HS+19, HS16b]. irradiation [WZC+19]. Irregular
[Sch10]. isocloso [LK16b]. isoconversional [DCS15]. isocyanide [TLY+12].
Isoelectronic [ZLX+19]. isoindolin [YZL18]. isoindolin- [YZL18].
Isolated [FL15, DS+19]. Isomeric [FL15]. isomerism
[dCGCRN19, RS17b]. Isomerization [BW11b, DBGO+17, EFB16, BLG10,
BMFG16, LL19a, MSBF16, OKIS17, SJ11, Su10, WCL+11, ZWZ11].
Isomers [CS16, ZWZ11, DSHLM18, Kar17, OKIS17, WCL+11].
isoselectivity [OSA19]. Isoster [EdOdS18]. Isothiirane [MM19]. isotope
[KT16, MRK11, NASH15, ORZ11, UT14, UT15, VKAM12, WXY14].
isotope-substituted [UT14]. isotopomers [UT14]. isotropic
[JK+16, Tak14]. isotropy [Tru18]. Issue
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13b, Ano13c, Ano13d,
Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l,
Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t,
Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano13a, Ano13b,
Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j,
Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r,
Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z,
Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h,
Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p,
Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x,
Ano14y, Ano14z, Ano14-13, Ano14-28, Ano14-29, Ano14-30, Ano14-31,
Ano14-32, Ano14-33, Ano14-34, Ano14-35, Ano14-36, Ano14-37,
Ano14-38, Ano14-39, Ano14-40, Ano14-41,

Issues [GS16, MFEM16, XFG+16]. iteration [SBB10]. Iterative [Hei18, VV19, Gra15, HLXH17, HLXH18, HL19, SM18, TTN19, VHR16, ZVY+15, PGL+15]. iVI [CBDS19, EH13, KMS+19, MUN+19, MLGB16, MTS+19, VBMA13, WZH+18]. iVI [HLXH18, HLXH17, HL19]. iVI-TD-DFT [HL19].

KSM17, KKNN11, LCK+18, MSC+10, MCLD10, OSR16, PVL+13, PTK11, PML+12, PB14, VAMS14, WWD14, ZMM12. **Levels**

[Kop19a, AC12, BCSCJ+13, BY11, BACSCJ+10, HYD10, Hua16, KIOY19, KHWB17, Kop15a, Kop14a, Kop17a, Kop18, MK13b, dSaSL13], leveraged [EPH+15]. **Lewis** [EHSP16, KASH14, Lǎc14], LH1 [KPG18].

Li [AM19a, AM19b, DDM+15, JW12, RLA+11, YCGA10, YHCS11, BWKW10a, GNI18, RLA+11, TN12, YZLZ19, YCGA10, SBW12]. **Li-based** [GNI18]. Li/Na [YZLZ19]. Li/Na-ion [YZLZ19]. Libcint [Sun15].

LIBEFP [KS13a, KS15]. libKEDF [DWC17]. Libra [Aki16]. **Libraries** [LG11, RLL+10, WF16]. **Library**

[KSD+12, Ak16, DWC17, EKW+13, FRN15, KS13a, KS15, LrvE17, LMZ11a, LAS+14, MZZ11, RFN15, SC15, Sun15, VAR12, Yes12, Yes15, ZCWX18].

Ligand [DPOS16, KKH19, KC13a, LI19, MNNK10a, VKC10, ABD11, AG12, BKLA13, BPB11, BCG10, BBG+18b, BS10c, CMD13, CIKT13, CHR+12b, CHR+12a, DFF+15, FTW12, FBEM11, FRLN10, GHHK12, GDV17, GJK+19, GS11, GZ14, HKR12, HG13, IYT+19, KLJ+17, KL14, KYB13, KTO11, KTO13, L11, LLC+10, LL10b, L1W+11, LBS10, MC10, MGWR12, MG14, MFR+17, NST14, NR18, NFG+13, NMF+14, OBW12, OHNK11, OGL10, OSR16, OCLM14, OOT15, PGCT+12, PK17, PPI14, PLV+11, RLD17, RZG+13, RCR+16, RO14b, RVP+11, SPL+18, SKKS13, STM+15, TLY+12, TNSS17, VVG13, Vor10, WdVN12, WNP+16, WZ17, WWW19, YZ16, YBS19, dRBO13, A1M+18, YZZ16, SHL+11]. ligand-based [RVP+11].

ligand-binding [GDV17, MGWR12, OSR16, RO14b, WWW19]. ligand-field [BBG+18b]. ligand-induced [KL14]. ligand-receptor [FRLN10, VKC10]. **ligand-sized** [OGL10].

ligands [CS17, GPdC+16, HRC13, KSO+19, LBC+19, LL10b, LXZ+10, LS11b, SSP+13, TS10b, ZRCC12, ZWY+10b]. ligated [EH13, WC14]. ligating [BAD+19]. **LigDockCSA** [SHL+11]. light

[FWS+18, GNI18, HXM+16, KDR+18, PE11, REL17, XBSS19, ZGZ19]. light-driven [HXM+16, REL17]. light-emitting [FWS+18, ZGZ19].

light-harvesting [KDR+18]. lighter [WD10]. Lightweight [RLG14]. like [AASP18, Che17, EPF+17, GRN19, KOY+12, KD18, KB14b, MP17b, OAN15b, SDF+17, SM15, UCFR16, VHA+10, VVY18, WFZ+18, WKC11, WGN+16, ZSL+11, VVY18, YLZ+19]. **Limit**

[SN16b, Fra15, Fra16, LW16, LYC+13, OAN15a, SLT14, WTH+16]. **Limitations** [LvG13a, VL19, HH18]. limiting [SLT+15]. limits [GC18, II18, NSK18, dLvNC18b]. **Linear**

[BG12, NNT+19, XKW18, YN15, ZLY+16, ARLP13, CPV+12, DSAS19, EP12, FBY+17, FCE15, GZZ12, JZZM14, JMS13, KHM19, Kid19, LF11b, MA17, MSAK12, NYH+17, PH17, RS17a, RLA+11, RR11, SS16a, Tak14, VBDS+11, WL10, YDX16, ZZZ+19]. linear-combination-based [Tak14]. Linear-scaling [BG12, YN15, NYH+17, RR11]. Linearity [IKN13].
lysine-malonylation [TYX+18]. lysozyme [ZP13].

[CAP17, CWZB10, Kne11b, LAT10, LAT11, PW12, RPNP10, RNP13, RR11, SS13a, STM17, TCPPC14, UIW+10, VVG+11, VKNT15, VKNT16, ZVY+15].

matrix-based [VVG+11]. **matrix-free** [ZVY+15]. **matter** [BGL+18, HRB+17]. **Maxima** [Lić14]. **Maximal** [DN19]. **maximum** [MLC13]. **may** [SMGB11]. **MB** [EdOdS18]. **MB-Isosteric** [EdOdS18]. **MBJLDA** [SRS14]. **MC** [HYUS11, BF19a, LH14a, ATIP18]. **MC-DFT** [LH14a]. **MC-QDPT2** [KKL+13]. **MCN** [LLL+11]. **MCQDPT** [LLSW14]. **MCSF** [ZZZ+19]. **MD**

[HCD+10, RSR+12, BM12, FB14b, GMASBF16, LWZ+19, LJL+11, MTvG12, OYK+11, RAR+11, SISK10, SMP17a, WTD+19, WWW19]. **MD-FEP** [LWZ+19]. **MDAnalysis** [MADWB11]. **MDLab** [CCW+10]. **MDM2** [HQS19]. **MDMX** [HQS19]. **MDockPeP** [XYZ18]. **MDTRA** [PVZ13]. **Me** [KKR+13]. **mean** [HDL+14, Kid19, KERY+16, KT10, KS12, KLS10, KMLS10, MIOM13, MP17b, RI10, VBDS+11, Vor12]. **mean-field** [Kid19].

mean-force [MIOM13]. **meaning** [PSP15]. **Means** [Sch18, KSM16, TBB+10, dSH19]. **measure** [TZCK18, WF16].

measurement [MPSG11]. **measures** [CDB10, CA10, Dry14, MK11, PZBA13]. **Mechanical**

[NN19, AC11a, APY+16, ACS12, ALH+10, BTT10, BEL+11, CXW14, DR11, DLW12, ECZW17, FL15, GMHH+16, HYUS11, Ibr11, JWO15, JSXH16, KVR10, LPE+10, MHRR11, NNK+16, NDD+10, OSR16, PML+12, PGW+17, PVAM16, Rez19, ŠBD+17, TZ11, VVV+18, VPR10, WKC+10b, WLL18, WCAH10, YKO+11, ZTI14, ZWMW10, ZKH+10]. **mechanical/effective** [DR11]. **mechanical/molecular** [BEL+11, YKO+11]. **mechanically** [SOY12]. **Mechanics**

[Ale19, AS10, AGB13, AS15b, BGR13, CGPP11, CXW14, Chu10, CHKR10, Cor17, CB11b, CB11c, DDM+15, EPH+13, ENKK+17, Fer13b, Fer13a, GEP+14, GPdC+16, HWLW11, KGHK12, LAHS16, LTP11, Lić14, Mat18, Min18, MS12, NLP+16, NKH+13, PSCI11, PGW+17, SFLG+17, VYM15, WOH16, WOH18, WCDM11, YPKB12, HWLW11].

mechanics-based [WCDM11]. **mechanics/dynamics** [DDM+15, EPH+13, GPdC+16].

mechanics/generalized [HWLW11]. **mechanics/molecular**

[Fer13b, Fer13a]. **mechanics/Poisson** [HWLW11]. **Mechanism**

[GZL+12, SLY+10, SSC+19, VKNT15, WCWW11, WLF19, BHNS14, BMFG16, BEL+11, CPV+12, CPL11, CKG18, FWS+18, FB14b, GYX+10, GRCL12, GMSZ19, HYZZ13, HLI+19, HDH15a, HDH15b, HDH15c, JCG+10, JLS+10, JW16, KV14, KT12, KGJZ19, KS13b, KK19, LZL+10, LH111, LLB+12, LCC18, LWZ+19, LWXC16, LD18, LHT15, LPMT17, NJX+10, Oht16, PMLT16, RLG11, RSK+15, SLL13, SBW12, SZZ+18, VMTL10, WWW19, WQW10, WCL+11, XLY12, YPC+10, YHG+11, YYZZ17, ZWSL12, ZX19, vRET19]. **Mechanisms** [CGVBAI19, WJX+10, ZZWT12, DWZ+17, GG10, KC13a, MH11, MLY+13, PPH+14, RRFV+18, SLT14, SLT+15, SSP+19b, TNY18, Won18, WSWD19, YB11].

Mechanistic

[CYY+17, LZL+16, QQQ+18, TSJ+10, WFL+19, YZ17, YZLZ18, ABB+12,
[LLLW19]. MNX [AM19b]. MO [BRP+12, UIW+10, ZY14]. moana
der [DJD12]. mobilities [SFDE16]. Mode
[AIM+18, BHR15, GVP+10, IY18, SRA17, SBB10, YHCS11, YXZZ17].
Mode-tracking [BHR15]. Model [Ale19, BLS10, HM16, Jia19, MT20,
Pog10, AASP18, AOW11, AS10, ALRM18, ATP18, AS15b, APA+14, AB16b,
Bac12, BK17a, BH19, BEEL14, BS10b, BBG+18b, Cam15, Can10, Can11,
CGP12, CGA19, CBTZ16, CFC15, CAD16, CG12, CMS13, CJZS10, DLL+10,
DSF17, FCE15, FNSF+11, GRN19, GR515, GM17, Gil11, GKR13, HLS12,
HAL14, HLH+12, HOK17, HZSS17, Hug12, HRH+17, ISO+13, IN13, II18,
JSXH16, Jor17, KFY+13, KCK+17, KMS+19, KRY12, KOY+12, KD18,
KCPMG12, KB14b, KDS17, LSL+19, LTT16, LY10, LRvdSM15, LFN+10,
LPS+13, LHHW14, LZN+15a, LDG+15, LCK+18, LHMM11, MSLS10,
MT19a, MPJ+19, MBC11, MBC13, MB+17, MHO11, NXY+10, NTNY15,
OPBR17, PBY14, PCLL11, Pla11, Pon11, Ray13, RTS+13, Ric16, RMRRBH+19,
REL+14, RKG11, SM14b, SDF+17, SHF11, SSBW14, SK12]. model
[SK17, SLX+15, SDZ17, SZBM13, SB11, TYN15, TCC+13, Tia12, TLA10,
TKn19, UIW+10, VV15, VW+19, WWK11, WXL+12, WC13, WWW19,
WNM17, WHF10, WKC11, WCAH10, ZX11, XTY+14, XP13, YS18,
YMT14, YB13, YG12, ZST14, ZKH+10, ZM10, dSDdAR10, dSH19,
CCR18, FAS+18, MJBM12]. model-tuned [HZSS17]. modeled [MPA12].
modeler [BHI19, KLO+17]. Modeling
[ASW19, CB11a, DLSA14, FD13, FTW12, GMG+10, GBS+17, HPL13, JW16,
KDR+18, Mat14, NS10, NDLW13, PLP+16, SZdB19, SK11, Tia12, Vyb15,
AKMT11, Aou16, BEM14, BPC13, Bow16, BS10c, CMD13, CLA16, CZNA11,
DAG19, DWR17, DSX+11, DLLH12, EBPK17a, FXC+13, GH10, GP12,
GMZ12, GWJR18, GR10b, GWXZ12, HLvdV13, HBJ+17, JCL+17,
KSD+12, LABSG17, LLH14, LHZS11, LT13, MN15, MBB11, MLL14b, MA17,
MBA14, MPB11J, NSO+14, NW17, PHC13, PSS+17, PGM+16, QMK19,
RJS17, SN16a, SKGP19, TTR+12, VKN15, VAA14, VCM15, WXL17,
WPM+15, WLO+17, XDL+10, XLY12, YMY+19, YJ11, Zlx11, DHE+12].
modelling [DBM+15]. Models [Hes19, NNT+19, ND19, BEM14, BLKP12,
BPP11, CD11, Cor17, CBG16, CK17, DDP16, DSM+11, DI11, DGC14,
DL18b, EK15, EPD+10, GMP12, GBM+16, GMG+10, GKR13,
GCP+13, GCC14, GAJ+17, HS16b, HGY15, JC14, JGS+17, JKD12,
KCO+16, KBB1b, KR1+10, KSW16, LTT16, LKL10, LZ12, LSSW14, LM18b,
MPSA17, MSAK12, MUC15, MBK+13, NNS15, OLS13, PCH13, PGY15,
PL18, Ray13, RTP+13, RKG11, SPHF+18, SCMA+17, SFLG+17, SAVG15,
TH13, TTB+11, TLT+12, VKN15, VMS17, VZ14, WS10, WXY14,
WSW19, XTN18, YJ11, Y1L13, ZsA10, ZWD18, dSDdBNB17]. modern
[AB16a, AB16b, OH17, Fom11, LMR14, SF18, SDM+16]. modes
[CBP+15, EB18, GMP12, KKH18, LLTA12, MS17, dSH19, dSAdSL13].
modification [Ano12u, MI+15]. modified
[BD12, CH16, DPL16, DJ+11b, GSD10, MRO17, Mit13, SMM15a,
SMM15b, SM+18, XYX17, XVA+16, ZZ12]. modify [ZX19]. Modifying
modular

Modulating

molecular

molecular
nanostructure [LLD17]. nanostructures [ZZY17]. nanosystems [PGK19, Tia12]. nanotube [AJA19, ASI5a, FTR15, JWO15, KHE19, OCW15, RHNN10].
KWL+16, KK17b, KWG15, KYG+15, KAG+12, KSW16, KPF+15, LPS12, LJR+12, LHS12, Leh15, Lr1dSM15, LrV17, LDB+17, LLAZ12, LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MDT16, MBR+15, MYT18, MSSH17, MB14, MB16, NKJ16, OV14, OPB+12, OZS+13, OC14]. News

[PPS14, PGL+15, PSN+17, P12, PPM15, PHH+12, PVZ13, PG14, RLLH12, RNSF+16, Ras17, Rez16, RR14, RDS12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sic15, SJ17, SWB+12, SDMS13, TNYN16, TSC+13, TTR+12, TTL+12, UU12, VRMRS+17, VVV+15b, VAR12, VBV13b, WV12, WDV13, WPD+15, WF16, Wei12b, WHK+12, WHJH13, WG14, WCP+14, XML+15, XY+17, YWJ+16, YZZ16, Yes12, Yes15, YHH+13, ZDK12, ZLL+13, dVAG16, KKR+13]. Next

[ADF+10, HGY15]. next-generation [HGY15]. NF

[ABB+13, ABB+12]. NGuaS [WGN+16, WGLG+16, WRG+17]. Nguyen [Ano15-59]. NH

[Ben17, CHP11, EOA+11, HJ13, HBI+17, HM13, KASH14, LKI11, OPR16, PTK11, PGoD+16, PCl14, Pie14, RK15, SPH+18, SEF+16, SKMS13, SPZP18b, SPZP19, Ts19, TED18, WL14, YS13]. NNO [WGL+11]. NO

[MCU15, Ts17, ZZI0, WYW12, BS16a, GY12, LWZ+19, MN19, OSH17, RGV+19, TNI+19a]. Noble

[BGS+19, SM18, ARLP13, GC18, JKS+16, PG5+15, PMG+16]. Noble-Gas [BGS+19]. NOCV [CSM16, DBGO+17]. node [KK17a]. nodes [FSSW19, KPF+15, KPF+19]. NOEs [LK11]. Non

non-equilibrium [NHN16]. non-heme [PHC13]. non-hybrid [CSKH15].
non-natural [GMZ12]. non-uniform [YWJ+16]. nonadditive [RTS+13].
Nonadiabatic
[HZ11, RGVC+19, JBSQG11, KIOY19, MT19b, SRSLO15, WLF19].
nonadiabaticity [Wu10]. Nonbonded [ND19, Abr11, EP10]. Noncatalytic
[SGS+16]. Nonclassical [GZ11, RGVC+19, JBSQG11, KIOY19, MT19b, SRSLO15, WLF19].
nonadditive [RTS+13]. Nonadiabatic
[HZ11, RGVC+19, JBSQG11, KIOY19, MT19b, SRSLO15, WLF19].
nonadiabaticity [Wu10]. Nonmetal
[ZLX+19]. nonorthogonal [ZM11]. nonparametric [RB13a].
nonperiodic [MS15]. nonplanar [KG11]. nonpolar
[LvG13b, MPAA17, PAT+10, WWWW18]. nonpolarizable
[AOW11, WG12, ZRL+15]. Nonrandom [NPP13]. nonredundant
[HZ13, MK19]. nonresonant [BZB+13]. nonspecific [CBP+15].
Nonstatistical [Yu12a]. nontemplate [OL13]. Nontotally [HOM+16].
nonuniform [BD12]. norbornadiene [Ant13, WJX+10]. Normal
[BY18, GVP+10, GMB12, KKH18, MS17, SBB10]. Notes [CD13]. Novel
[FCL+10, KKO+16, RPNP10, AIGP15, BEPM14, BPM15, DWW11, DMN14, DFF+15, JYS+12, LLLC11, LLLJ12, MPNS13, PSED1+10, RNP13, WFS19, WKC11, YJN+11, YHCS11, YDGY15, dCLFGL13]. Novic [CD19]. novo
[AFBR17, BAMR13, LK11, MDT10]. Nuclear
[ASK18, DKT13, ECZWD17, KNP+12, CSEMB+16, HH16a, HH17, JKS+16, MT19b, NASH15, PLFS18, RSG14, SPHF+18, SS13b]. Nuclear-relaxed
[ECZWD17]. nuclearity [BACSCJ+10]. Nucleic
[HGY15, ZWP11, Fel10, FCE15, GRE11, MSLS10, OXWB16, SCF+19, SGG+18, SWB12, WGT12, XNY17, ZSB+11]. nucleic-acid [SGY+18].
nucleobase [ANH+11]. nucleobases [CC18b, WG12, ZB18]. nucleophile
[ZYR+15]. Nucleophiles [WBKS19]. nucleophilic
[JDS+19, MA16, MLY+13]. nucleophilicity [TMJ15]. nucleotide
[CBG17, MJDC14, Ran13]. nucleotides [DMN14]. Nucleus
[ZBB16, FBB10, TH13]. Nucleus-independent [ZBB16, FBB10]. nudged
[QB10, QB11, SH11a]. null [TTn19]. null-space [TTn19]. Number
[Ant10b, ASMS10, CLK11, DSV+19, GPM17, HMM10, MEH18, SL10, SG10b]. numeric [VI17]. Numerical
[WXL17, CKKK16, KEMP17, KP11, MABA11, SSK19, SLG15, YSG12].
numerically [ZDM13]. NUPACK [ZSB+11]. NWChem [PGW+17].
nylon [BHNS14]. nylon-oligomer [BHNS14].
O [AM19a, BCN+11, CXS10, CSNCS+18, DHE+12, GBGR16, HRL11,

packages [MSvG12, MJG15]. packet [LWD13]. packing [MCAG16, MP17b, NS11].

PaDEL [HLS13, Yap11]. **PaDEL-DDPredictor** [HLS13].
PaDEL-descriptor [Yap11].
PAEM [ZY14]. **PAEM-MO** [ZY14].

pair [BSF18, BH13, CYG15, CVG14, Hei18, KS18, MPA12, OM12, Sch12, SSIG15, SB14, TNY18, WCY11, WWU12]. **Paired** [ZR10, WAB17].

pairing [KTK17, ZLL10, ZM11].
pairs [BSG18a, DKT13, ENKK17, LEdOLdlV17, LZH11, MPSG11, Mau14, PL19, GMBM18].

Pairwise [GS14, Gon12, RVMPS17, XTY14]. **pairwise-additive** [VMPS17].

palladium [MRC18, WCWW11, YHG11, dCDP15]. **palladium-catalyzed** [dCDP15]. **palladium-phenanthroline** [MRC18].

paper [GPGSM12, Ihl12, JW12, WM12, HP10a]. **para** [KYCL11].
para-substituted [KYCL11]. **paracyclophane** [KGR16]. **paracyclophane-bridged** [KGR16]. **Paradoxical** [UT14].

Parallel [BTB11, FBKD19, KDB13, NN18, UIW10, WWKS16, BW11a, BTT10, CEB015, CSSB11, GJMPAM14, GRARO14, GC18, HP10a, HS17b, HPSK12, KS13a, KNH16, KN17, KZZ16, KCC18, KJM17, KDT12, LI10a, LPLA13, MR15, MCRL17, MYT14, MJM15, NNK16, OPB12, RFN15, SHM011, TCTX13, TJB12, WHK12, Yes15, ZWL13, ZSS13, CCL13, KDT12, LMR14]. **parallel-generalized** [LL10a].

Parallel-ProBiS [KDT12]. **parallelism** [FRN15, Gon12]. **Parallelization** [AB16b, RC18, VDL13, BWMSM10, IUK11, JMS14, KS15, KKK11, LLZA12, RSRR15, SLH19, vW11, ZDKM12]. **parallelize** [vW11].

Parallelized [AIQ19, DBDP16]. **parallelizing** [BMBJ11]. **parameter** [NB19, PFVL14, SH19a, VCL18, VVLG17, WDZH13, LL11].

Parameterization [HK18, HJJLV16, ILKR11, IHJ13, MPSA17, PRRT10, TCC13, BAS14, CCLP12, DLH12, KYB13, LTP11, LCL18, MSS13, VLB10, VBD11, VHS19]. **parameterizations** [SH15]. **parameterized** [OZS13]. **Parameters** [CTR13, AG11, AKMYB18, BCSCJ13, BCJC14, BSD18, BW15, BC13, CYG15, DPSL16, DMAH15, FHT15, GSD10, HLS12, HM16, HBI17, HLH12, KvdV14, GKH12, KJZ19, LVDH13, LPS13, LLvG10, LSH11, MRO17, MP11, PBL19, Pog10, RKB14, SOYC12, SBB13, SPR13, SPZP18b, VYM15, VLGK17, WAM17, WOH16, WOH18, WC14, YZW14, ZRL15]. **Parametric** [LM18b].

Parametrization [PG15, COHI19, DGPM14, GCWS15, SPS12]. **Paramfit** [BW15]. **parasite** [FZL15]. **paratropic** [CPN17]. **Parrinello** [DL19, KCK15]. **Part** [HRJ15, CDBM11, CD13, HRJ14, Fer13b, SK13].

Partial [HTS17, JMLL13, SMP17b, WOH16, GVG10, MPBJ11, PL14].
Partially [Xtn18, UT14]. **participating** [GSMZ19]. **particle** [AG11, BSD18, BK13, Cas13, ER18, Hei18, NO16, PH17, RJBH18, SCK18, ZDKM12]. **particle-field** [ZDKM12]. **particle-mesh** [AG11]. **Partition**
[LRVM18, HGCCGR+16, JIS13, LRER13, WG12, WDHZ13, WZWW18, YAS13]. **Partitioning** [VSP19, DK11, EV14, FCOGM12, FHZA+18, LZS+17, REL17, SS13a, TMJ15, VGV+11, ZW18, VV19]. **partner** [dVZ17]. **pass** [SR18]. **passing** [CSSB11, ZWL13]. **Past** [GS16, MFEM16, XFG+16]. **patches** [OME16, YSSB12]. **Path** [MA17, VKAM12, CY09, DL19, HXM+16, Ish10, JZ17, KSNT19, MvBD18, SRSLO15, SA13, SS13b, SMM17, TN18, TNY18, WXY14, ZT14, MYKO18, CY13]. **path-based** [ZT14]. **Path-integral** [VKAM12, WXY14]. **path-search** [Ish10]. **PathOpt** [GPE13]. **Paths** [SH11a, AMGB10, Ant13, CX10, Jab18a, NMLD13, RVP+11]. **pathway** [BHB12, HOM+16, LKL10, SJD14, TDP+12, XLYZ10]. **Pathways** [JL19, CM13a, EF5B16, GS11, HNTS15, KGR+16, KDR+18, MTM14, NJR18, QSW+10, QB16, RCM+13a, RML+15, SJD11, SH18b, Tisi17, WSH10, Yon16, BHB12]. **pattern** [CXS10, LZSM19, WGL12]. **Patterned** [SJSS19]. **Patterns** [KKGW19, FZL+15, RS14]. **Paul** [Ano15-60, Ano16-56]. **Pauli** [JJH+13]. **PAW** [LGKS17, MDTD13]. **PAW-based** [LGKS17]. **Pb** [MCK17b, PMG+16, vSGP10, FBY+17, OBW12, VM11, vSGP10]. **PB-AM** [FBY+17]. **PBE** [DOM+11, PTK11, LKL16a, SGPSJ+17, TG12a]. **PBE-QIDH** [SGPSJ+17]. **PBE/3z** [PTK11]. **PBE0** [DOM+11, LKL16a, SGPSJ+17]. **PBE0-DH** [SGPSJ+17]. **PBESOL** [DOM+11]. **PbI** [VVY17, VVMY18]. **PbS** [NS18]. **PBSA** [BD11, CS17, RDDS10, STM+15]. **PBSS** [DVVP14]. **PC** [VL17b]. **PCASSO** [LFB14]. **PCCP** [VT14]. **pCCSD** [Sch12]. **PCM** [LFN+10]. **PCM-MST** [GMMH+16]. **PD** [HLS+13, Hill13, KD10, Niz13, YDR13, dSdLBNI17, GA19]. **PD-PK-T** [HLS+13]. **Pd** [GA19]. **PDB2PQR** [UHH+11]. **PDBbind** [PLAG11]. **PDECO** [CJL+13]. **PDielec** [KB16]. **PDixCN** [ZZL19]. **peaks** [LZS+17]. **PEG** [EOO+16]. **PEG-PLA** [EOO+16]. **penalty** [GZH10, LL19b]. **penetration** [NLP+16]. **penta** [dCGCRN19, LBC+19, Sak18]. **penta-coordinated** [Sak18]. **penta-coordination** [LBC+19]. **Pentaatomic** [XhD15]. **Pentacene** [NNT+19, CWHH11, ZYG+15]. **pentacoordinated** [TS10b]. **pentagon** [FL15, GZH10]. **pentane** [TCGNT18]. **pentaprimane** [PCLL11]. **pentathienoacene** [ZYG+15]. **penten** [LXF17]. **peptide** [FP17a, HHNK19, HPL13, HLY+12, IC$^+$12, IC$^+$13, JBAM11, JWST10, LTT16, LW11, LlVgo10, LjW+11b, LVg13a, LMA15, MDT10, MV17, OZ14, QZM11, SV15, SEM12, SZB19, TYZ+16, WS19, XHL16, XYZ18, YZ15a, dLFG113]. **peptide-backbone** [HLH+12]. **peptide-design** [XHL16]. **peptides** [BLKP12, BPC13, CR19, COOH14, CZNA11, GFG11, HSB+19, HLH+12, HWWL17, IO13b, JX10, KB10, LvG13c, MZZ11, MUGNVJ+18, OLY17, WNM17, XHL16, XWSW13, ZKH+10]. **peptoid** [MMZW14]. **peptoids** [WS19]. **perception** [AJR16, HYYZ13]. **Performance** [Abr11, BZB+13, CSHK16, CKKK16, DAP+18, DOM+11, GWRJ18, HSB+11, HB19, JCP14, LK16a, RKB+14, SF18, SH18a, SGWA17, ZZMW19, ABM+15, BLBG+13, CLF018, CXS10, CSSB11, CJZS10, ES13,
SHL^{+18}, SLX^{+15}, ŠSB^{+16}, SJC11, SGHL13, VCL18, YB16, ZL11.

powdered [KB16]. Power [Min18, LZL^{+15a}]. powerful
[CAT^{+13}, HMO^{+18}]. powers [WZ17]. pp [CD19, Spr10]. PPI
[RMRBH^{+19}]. PPI-Detect [RMRBH^{+19}]. PR [TTB^{+10}]. Practical
[GR10b, SLG15, BB11b]. pre [RLDJ17]. pre-computed [RLDJ17].
preadSORbed [KD10]. prebiotic [SSNT19]. precatalyst [MJLV14a].
precatalysts [MJLV14a, MJLV14b]. precision [DH17, MLC13, SWW^{+19}].
predict [ASMS10, CBH14, DLC18b, HWB19, LLSW14, SEF^{+16},
SPZP18a, WJG^{+13}]. predictability [BBOB16]. predictable [GDV17].
predicted [DWL11, LZW^{+11}, TYX^{+18}, WKLC12, YZ16, Zha12b, ZWX19].
Predicting [AS14, AS18, BVHI17, BB11, cCVG^{+14}, CPK19, ELKE19, GC18, GRL^{+11},
JGS^{+17}, Jor17, LZSM19, LDH^{+14}, PgDo^{+16}, RDF^{+11}, SJWE10, TYX^{+18},
VL19, YZ15a, DBM^{+17}, Kar17, KTO13, RB13b, SMDP18, SIG^{+11},
WCDM11, Yon16, Zha12b, Zha12a, ZLX^{+13}, ZYS^{+10}, GRL^{+12}]. Prediction
[Ano12u, AIM^{+18}, CP15, CQFC10, FSD^{+18}, HZSS17, KPL15, LDZW17,
MCAG^{+16}, vOaCG10, PRP15, SRA17, SPL^{+18}, WDW12, YHW17, ZYL^{+12},
AGM^{+13}, BLDK^{+13}, Ben17, BddS13, BA11, CZAFL7, DLW11, DDP16,
EOA^{+11}, FZY^{+12}, GK10, GFPSD17, GTZ^{+18}, HLS^{+13}, HPL^{+18}, HYMZ16,
HL14, JSW10, KL14, KT10, KTO11, KB19, LXL^{+11}, LMI^{+14}, LZL^{+15a},
LZZ14, LLH11, Lwl^{+10}, LSH^{+11}, MDT10, Mau14, MG11, MSÃ K12,
PML^{+12}, PN13, PJP14, PLV^{+11}, RCR^{+16}, RMRBH^{+19}, RBK^{+14}, SM11,
SYH12, SSD19, TYZ^{+16}, VKC10, WLF11, WH11, WXS^{+12}, WXL^{+12},
WWW18, XFTW15, YVEI^{+17}, YLCX10, YHH^{+13}, YDX16, YDgZ15,
ZsA10, wZbZ11, ZYvIZ14, ZLW10, ZHHX11, ZDW18, MSP18, SIG^{+11},
WCDM11, Yon16, Zha12b, Zha12a, ZLX^{+13}, ZYS^{+10}, GRL^{+12}].

predissociation [YB11]. Preface [GS18]. preference
[DSHLM18, LKZM18]. preferences [FCOGM12, LGL11]. preferential
[TKYN17]. preorganized [CM16]. preorganized-interacting [CM16].
preparation [JSD^{+11}]. present [Cas14]. presenting [ZGZ19]. preserving
[WBKS19, CCJC10, DBM^{+15}, LLB^{+12}, MCF10, SBGP18, Tak11, YPvD13].

Predictions
[Ano12u, AIM^{+18}, CP15, CQFC10, FSD^{+18}, HZSS17, KPL15, LDZW17,
MCAG^{+16}, vOaCG10, PRP15, SRA17, SPL^{+18}, WDW12, YHW17, ZYL^{+12},
AGM^{+13}, BLDK^{+13}, Ben17, BddS13, BA11, CZAFL7, DLW11, DDP16,
EOA^{+11}, FZY^{+12}, GK10, GFPSD17, GTZ^{+18}, HLS^{+13}, HPL^{+18}, HYMZ16,
HL14, JSW10, KL14, KT10, KTO11, KB19, LXL^{+11}, LMI^{+14}, LZL^{+15a},
LZZ14, LLH11, Lwl^{+10}, LSH^{+11}, MDT10, Mau14, MG11, MSÃ K12,
PML^{+12}, PN13, PJP14, PLV^{+11}, RCR^{+16}, RMRBH^{+19}, RBK^{+14}, SM11,
SYH12, SSD19, TYZ^{+16}, VKC10, WLF11, WH11, WXS^{+12}, WXL^{+12},
WWW18, XFTW15, YVEI^{+17}, YLCX10, YHH^{+13}, YDX16, YDgZ15,
ZsA10, wZbZ11, ZYvIZ14, ZLW10, ZHHX11, ZDW18, MSP18, SIG^{+11},
WCDM11, Yon16, Zha12b, Zha12a, ZLX^{+13}, ZYS^{+10}, GRL^{+12}].

predictions [ALK^{+15}, BCP^{+10}, CLA16, CS17, EOO^{+16}, GAI13,
KZK^{+12}, PdSc18, RDDS10, RCM^{+13b}, SHMO11, SA10, WZW18].
predictive [LLL^{+10}, WKC11]. predictor [CDS16]. predictors [GHK12].
predissociation [YB11]. Preface [GS18]. preference
[DSHLM18, LKZM18]. preferences [FCOGM12, LGL11]. preferential
[TKYN17]. preorganized [CM16]. preorganized-interacting [CM16].
preparation [JSD^{+11}]. present [Cas14]. presenting [ZGZ19]. preserving
[WBKS19, CCJC10, DBM^{+15}, LLB^{+12}, MCF10, SBGP18, Tak11, YPvD13].

Pressures
[YAO18, AYYO17, Cam15, CCR18, FCW^{+14}, HYNS19, HHRI17, II18,
LLL^{+12}, MO17, NFPD13, SMDP18, SPZP18a, WDLG12, CCR18].

pressures [RHNN10]. primary [ALK^{+15}, GAI13, VVLG17, KTN110].
prime [DSX^{+11}]. prime/MM [DSX^{+11}]. primitive [HAL14]. principal
[PSP15]. Principle
[WBKS19, CCJC10, DBM^{+15}, LLB^{+12}, MCF10, SBGP18, Tak11, YPvD13].

Principles
[HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13, EBPK17a, EB18,
GD10, HYL^{+11}, Ibr17, JCG^{+11}, KLZ^{+18}, LLLM11, LCWW10, NNS15,
OC19, PLZ17, RZG^{+13}, SFA17, SPZP18a, TZ11, UGK18, WYL^{+15}, WD10,
YR13, wZbZ11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC^{+14}, THI^{+19}].
proteins [SCF19, SB11, SIT18, SLIB12, SWMW10, SZB19, SZZ18, SIG15, SGH16, TN12, TFQ10, TFQ11, TS11, TS15b, VPR10, VECT12, WLC12, YW12, YCGA10, wZbZ11, ZYG15, ZWMW10, ZB18, ZLX13, ZBP11, ZYL12, ZGZ19, FDCJG18, SFCCK15].

property [CD13, GPS10, GBS17, GWX12, PH15, V˚AA14, WH11].

propionate [TN10].

propionic [CM16].

Proposal [PRYI17].

proposed [GS11].

protease [DLZ15, NHN16, OBW12, SYH12].

protective [JAH17].

Protegrin [RI10].

Protegrin-1 [RI10].

Protein [CIKT13, CDS16, CPK19, DPOS16, GPS10, HNTS15, HS16b, JL19, LZGS11, MFEM15, MFR10, PGL15, Ran12, RP15, Rao11, SHMO11, SKKS13, YBS19, AIGP15, AKK16, AM10, AG12, BSZ12, BFH13, BBP11, BPC13, BCG10, Bow16, BDiS13, BA11, CSC18, CZAF17, CFC15, CHR12b, CHR12a, CM13b, CCYL11, CKP10, CH14, CC12b, CBG16, CHP11, DWL11, DJ13, DVP14, DLMI12, ESD18, FZY12, FHW11, FCE15, FLM11, FSC14, GS14, GDV17, GMS1G15, GRP12, GZ14, GRL11, GRL12, HAGK10, HNHR13, HMO18, HTS15, HTS17, Has14, HZY10, HPL18, HKR12, HYMZ16, HJ10, HBY10, HM13, HZ13, HZ14, ILKR11, HHY15, JZ12, JZZM14, JL17, KTY17, Kan15, KNE11a, KOY12, KL14, KERY16, KJ10, KTO11, KTO13, KDT12, KLS10, KMLS10, LS11a, LFB14, LHL10, LH11, LCPS13, LC16, LC17b, LZ11, LL10, LL10b, LFM12, LPS13].

protein [LZZ14, LLLC11, LHG11, LBS10, LM18b, LL19b, LDH14, MS17, MMM16, MJ14, Mau14, MUGNV18, MA17, MFEM15, MS16, MP11, MKB13, MOS12, MNNK10a, NSK18, NST14, NS11, NFG13, NG10, OHNK11, OCL11, CPL10, CH14, CC12b, CBG16, CHP11, DWL11, DJ13, DVP14, DLMI12, ESD18, FZY12, FHW11, FCE15, FLM11, FSC14, GS14, GDV17, GMS1G15, GRP12, GZ14, GRL11, GRL12, HAGK10, HNHR13, HMO18, HTS15, HTS17, Has14, HZY10, HPL18, HKR12, HYMZ16, HJ10, HBY10, HM13, HZ13, HZ14, ILKR11, HHY15, JZ12, JZZM14, JL17, KTY17, Kan15, KNE11a, KOY12, KL14, KERY16, KJ10, KTO11, KTO13, KDT12, KLS10, KMLS10, LS11a, LFB14, LHL10, LH11, LCPS13, LC16, LC17b, LZ11, LL10, LL10b, LFM12, LPS13].

protein-bound [FLM11].

protein-coding [YS10].

protein-coupled [ILKR11].

protein-glycosaminoglycan [SZdB19].

protein-ligand [AG12, CHR12b, CHR12a, LLC10, OOT15, SPL18, WdVN12, dRBO13, AIM18].

protein-like [KOY12].

protein-lipid [PGCT12].

protein-peptide [XYZ18].

Protein-protein

[GS10, HOSZ19, NG10, PBL19, RMRBH19, WLLL18, WES13, WHAS10, WHAS16, XML15, XYZ18, YZ15a, YZ16, YDL10, Yon16, YS10, YL13, ZC14, ZYV14, ZLW10, ZLX13, ZDT18, ZSB16, dRBO13, AIM18, DKV18, LGL11, SL10, SHL11].

protein-RNA [HZ13].

Protein-specific [CIKT13, JZZM14].

proteins [ABD11, CTR13, CGBK13, DMJ17, FZL15, FP17b, FBEM11, HS16a, Ham11, HTS15, HTS17, HS17b, HYN19, HRC13, HS14b, HRH17, JC16,
python [SH19b, HPT+16b, LRvE17, PHH+12, SHFJ18, TBJ18, Yes15].
Pytim [SHFJ18]. PYX [LWWG12].

Q [WPM+15, BS10c, GKV+13]. Q-CHEM [GKV+13]. Q-Dock [BS10c].
Q2MM [LN15]. Q5 [REL+14]. Q5/D5Cost [REL+14]. QB3 [KG15].
QikProp [LP11a]. QM [BM12, Lun12, RSR+12, Lun12, PLP+16, AALCM11, BH13, BZH14, CBG17, CJZS10, DSK17, FRC18, FLM11, FB14b, GR15, GZ15, GCW14, HH15, HYUS11, HBR17, JJH+13, JWST10, Kid19, KTN10, KWL+16, KG15, Lzdl+10, LFM12, LT13, LHT15, LJJ+11, MCR17, MTvG12, MJG+15, NO16, Q5 [REL+14]. Q5/D5Cost [REL+14]. QBB3 [KG15]. QCSA10, TSC+13, UT11, VKNT15, VKNT16, VCM15, VKTR15, WDP+12, vRET19, GRS15, JAH17+19, LWZ+19, RFN15, ZZY+16].
QM-only [LT13]. QM/QM [GRS15, JAH17+19, LWZ+19, RFN15]. QM/EFP [CBG17]. QM/MM [BM12, RSR+12, AALCM11, CJZS10, DSK17, FLM11, FB14b, GZ15, GCW14, HH15, HBR17, JJH+13, JWST10, Kid19, KTN10, KWL+16, KG15, LFM12, LT13, LHT15, LJJ+11, MCR17, MTvG12, MJG+15, NO16, OYK+11, PMC+17, P10, PDMT10, PL14, PLP+16, RR14, RGR12, SN16a, SGDT10, SJ14, SCM+15, ST15+1, SASS10, TSC+13, UT11, VKNT15, VKNT16, VCM15, VKTR15, WDP+12, vRET19]. QM/MM-QMC [UT11]. QM/MM-type [Kid19].
QSARINS [GCP+13, GCC14]. QSARINS-chem [GCC14].
QSAR/QSPR [CD13, BRN12, CLX+10, CD13, CD16, GCC14, KKO+16, TTR+12, XWW+11, YMY+19]. QTAIM [BH13, BZH14, FC112, FCP114, GMX+16, HXX+16, JX1+16, dR11, Rod13, RSKG14, VV15, Wei12b, WvRSM14, XFX+16, ZZZ+12, ZCW18, dLC18a]. QTAIM- [VV15].
QTAIM-based [FC112, FCP114, Wei12b]. quadrupolar [CSE16]. quadrupole [HB10, LL16]. quadrupoles [NL16].
Quantitative [YK13]. Quality [CLK11, KCK+17, KYY13, LOB18, MCF+18, MK+13, OLB19, POB13, RB13a, RC13b, SC15]. QuantPol [TSC+13]. quantification [Fer17, Ham11, PC14, SKGP19, YNH+17]. quantify [LLH16]. Quantifying [TMJ15, GMX+16, MS10]. Quantitative [DZA11, RTD14, VAA14, Wei12b, BCP13, CD13, DXL+10, NFG+18, NFG+13, REL17, RC13b, XFW15, TTT+11]. Quantized [KK19].
Quantum [ALK+15, AC11a, APA+14, CH10, CG12, DDM+15, FRN15, GH10, HHD+16, JCT18, KASH14, LL14a, LL14b, LW13, MM18, Mat18, MB16, MS12, NNT+19, NN19, OKY18, RFN15, SCOJ13, SAGC16, SBD+17, SOYC12, SR10, SHB17, TR12, UD12, VP19, VSP19, WCA10, 100]
WDP+12, YHX19, Aki16, ATP18, ASS+17, ARAG17, AAC+16, APY+16, ACS12, ASK18, ALH+10, Bac12, BTT10, BRP+12, BGR13, BEL+11, Cam15, CBH14, CD10, CDB10, CDBM11, CD13, CD16, CDC19, CXW14, CHKR10, CSNCS+18, CM16, CKG18, DR11, DKT13, DDP+18, DPAB16, Dra19, ECZWD17, EV14, Fer13b, Fer13a, FB10, FFA14, FC18, FLN11, GPM17, GM16H+16, GTK10, GGM+12, HZ11, HSN+18, HLvdV13, HPT+16b, HGCCGR+16, HMM10, HYUS11, HGY15, JBB+11, JSXH16, KP11, KNR+18, KVR10, KKH18, LPE+10, Luc14, Man19b, quantum [MP17a, MAPB10, MSvG12, ME10, MSSP17, MHRR11, MFR+11, NC13, NC14, NK+16, NDD+10, NHK+13, NS17, OKIS17, OR16, PML+12, PNE18, PSC11, PGW+17, PBG17, PVAM16, RLLHL12, Rez19, REL+14, SLT14, SKA19, SS13b, SPZP19, Tac19, Tsi18, UK+18, VPR10, VBA13, WKC+10b, WBT10, WLLH18, WAB17, XCLZ19, YKO+11, YLS19, YW13, YKH15, ZW17, ZVY+15, dCDP15, BLG10, OSI+19, SKA19].

Quantum-chemical [KASH14, FB10, MSvG12, MFR+11].
Quantum-chemistry [DDM+15].
Quantum-classical [HLvdV13, SKA19].
Quantum-mechanical [ACS12, ECZWD17, PGW+17, Rez19].
Quasi [YLT+19].
Quasi-planar [YLT+19].
Quasiclassical [YLT+19].
Quaternary [DSHLM18].
QuBiLS [GJMPAM+14].
Quest [AOW11, EK17].
Questions [BZH14].
Quick [VVV+15b].
Quickly [vW11].
Quinacridone [HSZ+11].
Quinoline [HRJ+14, HGHP14, HRJ+15, JRSHP14, SSD19].
Quinolone [ZCK+16].
Quinone [GLM+17, VSD10].
Quinones [uLhY11, SDIP18].

R [LdSRR16, LTR18, NDG14, Sch10, DJS+18, GA19, LdSRR16, LTR18].
R-C [LdSRR16, LTR18].
R-Group [LdSRR16, LTR18].
R-NHC [GA19].
Radial [ME10, COHI19].
Radial-template [ME10].
Radiation [LZH+11].
Radiation-damaged [LZH+11].
Radical [AAMD+11, GAI14, GKR13, JCG+10, KGR+16, KV14, LJG+11, MUN+19, PNE18, Ray13, RKG11, SDJ11, TTR+12, TL16, WHLI11, ZZL+10b, ZL14, ZSZ+14, dLC17, CPR18].
Radical-bridged [ZLZ14].
Radical-formic [TL16].
Radical-molecule [GAI14].
Radicals [CGVBAI19, Den12, KS13b, LG19, SRR16, WCT+11, WHLZ12, ZZL+10a].
Radii [STM+15, YOMT14].
Radio [AB10].
Ragüé [Ano16-56].
Ramachandran [KS12, MP17a].
Raman [EB18, PAK15, SLLL13, YB13].
Randić [CD19].
Random [HMM10, AC11b, CY09, CY13, CLK11, GPM17, OLA15, RDRC16, WZ17].
Randomized [JCPIC11].
Range [CKH19, Ali18, AO10, BLBG+13, BCNH+11, BK17b, CSK15, ELF19, HH15, HZZS17, Jan16, KKH19, KB10, KSH13, KSSH13, MMS16, NLP+16, RSG14, Rui11, SGMB11, SH18a, ST13, SPH11, SH19a, SZB19, ZZS16, SSA+17, VL17a, VCL18, WY17].
Range-separated [Ali18, BK17b, HZZS17, RSG14, SH18a, ZZS16, WY17].
Range-separation [VCL18].
Ranges [MA12].
Rank [EPD+11].
Ranking
[KERY$^{+}$16, HWLW11, MP11, PBG17]. Rapid
[LJW11a, LW11, LAT11, MZZ11, MRR11, MSS$^{+}$13, MFR$^{+}$17, NO16, PG14,
RZ16, TM18, JSW10, KLOS10, DK11, WBF17]. Rapidly [OPR16, RDRC16].
RAQET [HSN$^{+}$18]. rare [HNS16, LRvE17, MP13, Sea10, STS15]. rare-gas
[MP13, Sea10]. RASPT2 [BH19]. Rate
[AR10, AAMD$^{+}$11, CSNCS$^{+}$18, NMLD13, CBH14, GAI13, GKR13, HSL$^{+}$11,
JWO15, KB19, KCL$^{+}$14, MSV16, MK17, MK19, NDW15, OZLSBH12,
RAGLL11, Ray13, RKG11, SSC$^{+}$19, STM17, TTR$^{+}$12, ZLL$^{+}$10b]. rates [BL12, CSAdOM17, GRL$^{+}$11, GRL$^{+}$12, QB16, SHB17, WAB17]. ratio
[BB11b, KB11c, ST13, dRBO13]. Rational
[CSC$^{+}$18, NPG$^{+}$18, Spr18, SCSM19]. rationale [AARP17]. Rationalization
[TLdG$^{+}$12, SLC$^{+}$17]. ratios [OZLSBH12]. Raton
[CD19]. rats [TTB$^{+}$11]. Ray
[CPR18, FLM11, LLBO12, LSHH12, MKK$^{+}$19, PDG$^{+}$16, WWD14, XML$^{+}$15].
Rayne [GKR13]. Rb [YLT$^{+}$19, ZWY$^{+}$10a]. RbLi [DHOG13]. RC [YKH15].
RDG [VVJ15]. RDG-based [VVJ15]. Re [FD16, KSC16, DLW12]. Re-evaluation
[KSC16]. reach [QZ10b]. Reaching [MCRL17]. Reaction
[DBGO$^{+}$17, FB14b, HSL$^{+}$11, IT19, LWL$^{+}$16, LWZ$^{+}$19, NIX$^{+}$10, QSW$^{+}$10,
QB16, ST13, AMGB10, AS11, Alg17, AR10, APA$^{+}$14, BK15, CYY$^{+}$17,
CSAdOM17, CXW14, CSNCS$^{+}$18, FB12, GYX$^{+}$10, GZL$^{+}$12, GTK10,
GKR13, GJ17, HOM$^{+}$16, HL13, HJL16, ITY$^{+}$19, IIF$^{+}$10, JZ17, JLS$^{+}$10,
JW16, KV12, KV13, KL15, KSK11, KK19, LGOM$^{+}$15, LZY$^{+}$12a,
LJW$^{+}$11b, LZL$^{+}$16, LW131, LPM17, MT214, MHT$^{+}$18, MPSG11, MS10,
MJLV14a, MJLV14b, MTS$^{+}$19, MT19b, MB16, MMJ10, NH19, NMLD13,
NMI19, NTTY15, OA19, OZLSBH12, PVL$^{+}$13, PG18, PNE18, PPH$^{+}$14,
QYL10, RAGLL11, Ray13, RLZ$^{+}$18, RLS13, RRFV$^{+}$18, RN17, RKG11,
RSG14, RSK$^{+}$15, SLT14, SLT$^{+}$15, SJD14, SRF$^{+}$17, SBD$^{+}$17, STS$^{+}$10,
SSP$^{+}$19b, SMM17, SM17, Tac17, Ta14, TN18, TNY18, TSJ$^{+}$10, TDP$^{+}$12,
TCPPC14, Tsi17, VBD11, VV14, VGT16, VMT10, Wu10, WHDL11,
WCL$^{+}$11, XCLZ19]. reaction
[XBSS19, YHG$^{+}$11, YJ11, Yu12a, ZYLL12, ZSZ$^{+}$14, ZX19, ZYR$^{+}$15, Zim13].
reaction-diffusion [RSLS13]. Reactions
[CC18c, ATP18, AAMD$^{+}$11, ABB$^{+}$12, ABB$^{+}$13, APA$^{+}$14, Cam15, CC18a,
CSXZ17, Chu10, DSD$^{+}$11, DS12a, DGSVGM19, FB14a, FC16, FFA14,
GAI14, GH10, GND$^{+}$12, GMBX$^{+}$16, GSMZ19, HLS12, HYUS11, HRL11,
JZ17, JCG$^{+}$10, KG15, KZP$^{+}$18a, LLH14, LGW12, LT13, LXFC17, LJG$^{+}$11,
MC10, MSV16, ORZ11, OSH17, RWR$^{+}$13, RB12, SBD$^{+}$19, ST13, Su10,
SSX$^{+}$14, TM18, TN18, TXKT13, TTR$^{+}$12, Tsi17, UvSvdWK19, VKAM12,
VKTR15, VGTL16, WHZ12, WCDM11, WSW19, XLY10, YZGS14a,
YN17$^{+}$17, Yu12b, ZZI$^{+}$10b, ZZI$^{+}$10a, ZWZ11, ZLLL12, ZMW19, ZW17,
dSLBNB17, dCRN18, dSVDM$^{+}$16, SMB18]. reactive
[DMAH15, HJLV16, IHJ$^{+}$13, LvDH13, MB14, NB19, RLLHL12, TDP$^{+}$12].
reactivities [WS11, WS12]. Reactivity
[FHG$^{+}$19, QQY$^{+}$18, TS14, WBKS19, BCP$^{+}$10, CRZ$^{+}$18, CBDS19, DI11,
S

[LLC17, MKH+13, NWW17, RGVC+19, SIG+11, WHK+12]. Robustness [VYM15, BD11]. ROCS [HP10a]. Role
[AS11, Cam19, CAD16, LPAS11, LLIW19, LJL+11, MCK17a, VL19, ZLX+19, ZT14, AALCM11, CFM+19, EJ13, GLF16, GFPSD17, HLBLCCG15, LeOdOldV17, OME16, PML+12, RF15, SGPSJ+17, SDB+16, SKMS13, SSA+17, VL17a, VMTL10, YDR13, ZRCC12]. roles

S

Semiempirical [FA18, SRL+15, BP18, GJK+19, GP11a, HGY15, KTN10, KB14b, LSD+10, MGWR12, Rez19, SPHI1, SDL14, TKNN10, TG12a, UCFR16, WCV15].

semiexperimental [VDVR14]. Seminumerical [PW12]. sense [DR14, ICS+12, ICS+13, NH19]. sensing [LZL+10, LCC18, RRK14].

Sensitivity [Han11, LL11, LWGW12, PDG+16, Sea10]. sensitized [ACS12, JYS+12, LZL+15a, MP19a, YJN+11]. sensitizer [YJN+11].

[SN16b, BLL13, BLG10, BRLS08, BRLS12, CC11, HS16b, KNP+12, LS11a, LCC+10, LYE+13, LZ18, LWL+10, Mat10, OAN15a, PML+12, PGdO+16, PHK14, PD11, Pog10, PFVL14, RLD12, SPS+12, Sch13, SWM10, SG10a, SG13, VLGK+17, VVGL+17, WX12, YOMT14, ZPP+16, FL15]. **Sets**

[TKN13, BLFZ13, BLBG+13, BLF14, BS10a, DBM+15, HSN14, Hili13, LOB18, LBH+11, LCW12, Leh15, Mit13, OLPB19, POB13, Sea10, SNKS10, STM+15, TH13, UCFR16, ZLT13]. **Setschenow** [XWW+11].

[TKN13, B LFZ13, B LBG+13, B LF14, BS10a, DBM+15, HSN14, Hil13, LOB18, LBH+11, LCW12, Leh15, Mit13, OLPB19, POB13, Sea10, SNKS10, STM+15, TH13, UCFR16, ZLT13]. **Setschenow** [XWW+11].

[AA18]. **seven** [PLAG11].

[AA18]. **seven** [PLAG11].
TN12, THP+15, VIT+15, XhD15]. silicon-doped [TN12].

silicon-germanium [GSMM15]. Silver [NSN19, Tsu19, YXZZ17]. silylene [BIL10]. **Similarities** [PM18a]. **Similarity** [HS12, LMZ+11b, YDL+10, CDM10, CDB10, CDBM11, CDC19, CQFC10, GWT+17, GK15b, HRK+10, HKS11, HS11, HSW+19, RMPAM15, TZCK18, YZZ16, ZYvIZ14].

Similarity/dissimilarity [YDL+10]. SIMONA [SWB+12]. Simple [Ano15-59, CNK97, GM17, MPSA17, AB16b, BS10b, BD12, CWZB10, KRTB10, NSP15, PHC13, PRIY+17, RHRCH16, RGVC+19, SEF+16, SS13c, YS18, dSAdSL13, KTSW11].

Simulating [HIS17, SS13c, FHT+15, PVM10, SA10]. Simulation [BVY+12, CRC13, Yan16, YKNN19, AASP18, AJA+19, AG11, AST+16, BEM14, BPPL12, Ber17, BLKP12, BFH+13, Bow16, CBP14, CLC11, CCW+10, CHKR10, CZNA11, DOM+11, EdOdS18, Fom13, FSC+14, GLZ17, GFGS18, GSD10, HM16, HYSF19, HQC16, HBJ+17, ISK14, IN19, Ish10, IM17, JA10, JJW+14, JAH+17, JSD+11, JCL+17, JWST10, JGS+17, Jor17, JP15, KV12, KVQC+11, KT18, KVR10, KAG+12, LL15, Lar12, Lar11, LWK+14, LJ+12, LCI7b, LMZ11a, LZ14, LWZ+19, LBDP12, MCVdV13, MSC+10, MBR+15, MTS+19, MSvG12, Mez10, MMZW14, MLCD11, MCC12, NPG17, NFG+13, NDD+10, OYK+11, ON14, PLZ17, PP19, QLKI19, RHNN10, RAR+11, RO14a, RO14b, RSR+12, RSLS13, SWM10, SK15b, SMRM+17, SSP19a, SHL19, SS19, SJZ+15, SBvG14, SAvG15, TNYN16, UTM11, UU12, VMRSH+17, Vor12, WC11, WLF19, WWW19, WSWD19, YAS13, ZX11].

simulation [ZSS+13, ZKH+10, ZLL+13, dCLFGL13, SGPI8]. Simulations [BRE16, Hes19, JL19, MFEM16, NN19, PK19, RJBH18, RKDM14, XFG+16, Aki16, BTA+13, BM12, BDTP11, BW15, BF17, BJJ15, BMBJ11, BB11c, BB11e, BCI11, CTR13, CCOH14, CVG14, CLK11, DGH11, DMN14, DSD+11, DHE+11, DZT11, DSK17, DLZ15, DDM+15, ER18, EK15, FTW12, GBL+11, GR11, GPM17, GCW14, GP11b, Has14, HCD+10, HFSO12, HPS12, HPKM14, HMM10, HYUS11, HJ10, HHWL17, HLEM18, II18, IPAA11, JS13, JWO15, JMS14, JND+19, KV13, KCK+17, KCK+15, KvdV14, KGKH12, KGHC15, KLOS10, KB11a, KTO11, KSR+16, KLS10, KMLS10, KZP+18a, KWL+16, KV15a, KPF+15, LH11, LCI7a, LRvdSM15, LZ12, LPS+13, LMI+14, LZLMP16, LCL+18, LM18b, LL19b, LAS+14, MPJ+19, MMH19, MN15, MCR17, MTvG12, MFEM15, MADWB11, MAP18, MKM+17, MB14, NST14, NFP13, NNK+16, NTNY15, Oht16, OC19].

simulations [OCL11, OLY17, OZ14, OCW+15, PGY15, PH17, PL19, PZCL16, PL14, PM13, PS13, PS10, PNG10, RD18, RdA12, RLG14, RSR15, SSO19, SBV10, SKA19, SS13b, SHFJ18, SBT17, SISK10, SCK18, SJ17, SMP17a, SYN+12, SK13, SFLG+17, SB15, SWB+12, SDMS13, SP+19, SV11, VSA11, VKTRJ15, VM11, WKL12, WAM17, WH11, WWKS11, WLC12, WBF17, WS19, WG14, Won18, WCJ+14, XFG+15, XWS13,
YKO$^{+11}$, YO19, YSG12, Yon16, YHVM12, YFH$^{+19}$, ZZY$^{+16}$, ZDKM12]. simulator [BSL11, KJM$^{+17}$, RLLHL12, TCX$^{+13}$]. simultaneous [LL10b, WZWW18]. Single [HPL$^{+18}$, LP11c, PM18b, SR18, Zim15, AS15a, BE14, BP18, BK17b, Den12, FTR15, GCCM15, KK17a, KGJZ19, LXL$^{+11}$, MSY19, MT19b, MCLD10, MEH18, PBE16, RHNN10, RLDJ17, SY16b, SPM$^{+19}$, TSR$^{+16}$, VS14, WLW$^{+10}$, WYL$^{+15}$, YZN13]. single- [BE14]. single-bond [GCCM15]. single-configuration [MT19b]. Single-ended [Zim15]. single-excitation [MEH18]. single-file [SY16b]. single-ion [BP18]. Single-pass [SR18]. Single-sequence-based [HPL$^{+18}$]. single-step [RLDJ17]. single-vibronic-level [MCLD10]. single-wall [KGJZ19, TSR$^{+16}$]. single-walled [AS15a, PBE16, VS14, WYL$^{+15}$, YZN13]. singles [EK17]. Singlelet [WNT$^{+19}$, SZL19, BSDP16, HWB19, ISO$^{+13}$, RS17a, SSC$^{+19}$, TCPPC14, ZZL19]. singlet-triplet [RS17a]. singlet/triplet [ZZL19]. singlet [NNT$^{+19}$, SZL19, BSDP16, HWB19, ISO$^{+13}$, RS17a, SSC$^{+19}$, TCPPC14, ZZL19]. singular [Les19, SG10a]. singular-value [Les19]. SiO [DOM$^{+11}$, HEM$^{+17}$]. SiOH [LvDH13]. SIPs [KCC$^{+18}$]. Site [CH14, LJW$^{+11}$b, CVG14, DAP$^{+18}$, GEP$^{+14}$, GPD$^{+16}$, HL14, ISP$^{+10}$, LLB$^{+12}$, LKZM18, LLL$^{+12}$, MNNK10a, OHPR17, OHPR18, RLDJ17, SHF11, SB11, SC16b, TYN15, ZLX$^{+13}$]. Site-directed [CH14]. site-identification [RLDJ17]. sites [AIGP15, Ano12u, DVVP14, DBK17, JAH$^{+19}$, KDT$^{+12}$, LZTV10, LHL$^{+10}$, LL10b, LZ16, MA16, PHC13, PBG17, TYZ$^{+16}$, TYX$^{+18}$, Vor10, YZ15a, YHH$^{+13}$, ZZL$^{+12}$]. situ [JZL$^{+17}$, LZY12b]. size [DOM$^{+11}$, XhD15]. Size [NNT$^{+19}$, Tak18, AS15a, BLBG$^{+13}$, BD12, CC12a, CF14, DJX$^{+11}$b, FE14, G12, Hsu14, MTvG12, SL17, SB11, XYX17, Zha11]. Size-guided [Tak18]. size-modified [BD12]. sized [LRvE17, OGL10, RK15, WWD14]. sizes [Lin18]. SKATE [FM10]. slab [BBG$^{+18}$a]. Slater [Dil15, LRER13, MY17b, SFG$^{+17}$]. Slater-function-based [SFG$^{+17}$]. Slater-type [Dil15, MY17b]. slices [AKN16]. slicing [KCC$^{+18}$]. SLIM [SSBW14]. slit [Fom13]. slope [Zha12b]. Slowing [SGP18]. SM [XMSZ16]. SM-TF [XMSZ16]. Small [XYW$^{+14}$, ASS10, BTMS12, BLKP12, BS16b, CQFC10, DT19, DGL$^{+13}$, ETL17, GACAC$^{+14}$, GBFD12, KKPT11, KGHK12, KLJ$^{+17}$, KB11b, LK13, LHKS12, LH14b, Man19a, Man19b, MSS$^{+13}$, ME16, MBRC16, MPBJ11, NHH16, RLL$^{+10}$, RSSG18, RS13, SG13, STS15, TNY18, VT14, WF16, WTH$^{+16}$, XW15, XMSZ16, ZCGM11]. small-molecule [ETLS17, WF16]. smaller [MCK17b]. smallest [PMT16]. SMD [ALK$^{+15}$]. smeared [ENKK$^{+17}$]. SMILES [TTB$^{+10}$]. SMILES-based [TTB$^{+10}$]. Smoluchowski [KS18, SG10a]. smooth [AG11, EFS16, JLA17, ZSB$^{+16}$]. smoothed [LZ12]. SMOPS [XYX17]. Sn [MCK17b, PMG$^{+16}$, RDT14, YW12, ASS10, PKK17]. SnCl [dSDdAR10]. SnO [DHE$^{+12}$]. Sodium [KLN16, OC19, TFYO19]. Soft [SJC11, WBKS19, Ben17, BG12]. Soft-core [SJC11, BG12]. Software [AIGP15, Aki16, APK14, AAC$^{+16}$, BTA$^{+13}$, BHB12, BCSCJ$^{+13}$, BSZ$^{+12}$, Ber17, BIP15, BFH$^{+13}$, BBG$^{+18}$b, CBH14, CSEMB$^{+16}$, CZAF17, CAT$^{+13}$,
Software
[OPB⁺12, OZS⁺13, OC14, PSS14, PGL⁺15, PSG⁺17, PW12, PPM15, PHE⁺12, PVZ13, PG14, RLLHL12, RNSF⁺16, Rasz17, Réz16, RR14, RdA12, RSR⁺12, RCM⁺13b, SM14a, SFG⁺17, SK15b, SWA13, SMRM⁺17, She12, SC15, Si15, SJ17, SlvK18, SJL18, SWB⁺12, SDMS13, TNYN16, TSC⁺13, TTR⁺12, TTL⁺12, UU12, VMRSH⁺17, VVV⁺15b, VAR12, VBV13b, WdV12, WDY13, WPM⁺15, WF16, We12b, WHK⁺12, WHJ13, WG14, WCJ⁺14, XM11⁺15, XYX17, YY16, Yes12, Yes15, YHH⁺13, ZFOS19, ZDKM12, ZLL⁺13, dVAG16, CCC⁺11, DBF14, EdOdS18, FRC18, HSW⁺19, MSvG12, MJG⁺15, SF18, SBV10, SGM⁺13, Yal11, ZCS⁺15, She12].

Softwares [Ali11]. solar [ACS12, DGL⁺13, JYS⁺12, LZZ⁺15a, MP19a, SLC⁺17, TZ12, VAA14, YJN⁺11]. Solid [MP19b, RSK⁺15, ASS10, ASK18, CL16, HLS12, HBI⁺17, KLN12, KKH18, LOB18, OLPB19, POB13].

Solid-state [RSK⁺15, HBI⁺17, KLN12, KKH18, LOB18, OLPB19, POB13].

solids [BK11, BPC19, HAI⁺16, MDTD13, MS15, diRL11, Pon11, SN16a]. Solubility [MSY19, KKO⁺16, WZW18]. solubilization [TFYO19].

solute [BRLS08, BRLS12, EOA⁺11, RVM19, TKT11, YKO⁺11, Yan11].

solute/solvent [RVM19]. solutes [GC11, PAK15]. Solution [Cam19, PK19, AvKSP16, AK10, DR11, DBM⁺17, DP15, EOAO⁺11, GAI13, GAI14, HDK⁺12, HAL14, HNN⁺17, KS18, KTN10, KVR10, LvG10, MMB⁺17, FMM⁺12, PMC⁺17, PGG⁺17, SJ1E10, TKN10, UCF16, WHL⁺10, WC13, WLF19, XTG⁺11, ZLL⁺10, ZZ10, vADC⁺14]. solutions [Ber17, CFC15, EK15, Kri10, OC19, OCW⁺15, SM14a].

Solvation [Jia19, RNSF⁺16, ZBP11, ALRM18, CBG17, CBG16, FMG11, GMNH⁺16, GPK12, HRC13, JMLL13, JGS⁺17, Jor17, KSK11, LP11b, MS13, MPMA17, MBE16, NW17, OBW12, PL14, RK16a, RK16b, SM14a, SK12, SY11, SM15a, SM15b, SMM⁺18, TKYN17, TCC⁺13, WXL17, WWW18, YMT14, YAS13, Yan14, ZCS⁺15]. solvation-free-energy [SM15a, SM15b]. solvational [FCL⁺10]. Solvatochromic [MKH15].

Solvatochromism [TKYN17]. solve [PNW⁺16]. Solved [CD19]. Solvent [KC13b, PK19, AKK⁺16, BEM14, BRLS08, BRLS12, CAD16, CBG16, EK15, FYZ⁺12, FDI6, GA19, HDL⁺17, Has14, HPL⁺18, HYUS11, KJDB12, KB11b, KCPM12, LHL⁺10, LC17b, LZZ⁺16, LWZ⁺17, MBC11, MBC13, MS11, ML14, MCUJ15, MCG12, MNNK10a, MNNK10b, PDMM10, PS13, QY⁺18,
RVM19, RdA12, RRK16, SLT14, SBV10, SK17, SLX+15, SYH12, SCMA+17, SKMS13, TYN15, WWKS11, WXL+12, WBF17, YOMT14, Yan14, YJ11, BK17a. solvent-dependent [HYUS11]. Solvent-driven [KC13b].
solvent-induced [AKK+16]. Solvents
[LHT15, ISO+13, Pie14, Pog10, RK16a, RK16b]. solver
[FBY+17, FHMB15, Kan15, RR19, SHF11]. solvers
[GRARO+14, WL10, XYX17]. Solving
[KV13, SG10a, BYE+16, GA14, RRFV+18, SK15a]. solvolysis [OSS10].
SOMA [BMFG16]. Some
[RCM+13b, CME11, CC18a, CCYL11, CXS10, MJLV14b, Vyb16, ZPF14]. sometimes [VDVR14]. Song
[JW12].
Soon
[Ano16-75, Ano16-80, Ano16-81, Ano16-82, Ano16-83, Ano16-84, Ano16-85, Ano16-86, Ano16-87, Ano16-88, Ano16-76, Ano16-77, Ano16-78, Ano16-79].
soot [KAR12]. SOP [AKK+16]. SOP-GPU [AKK+16]. Sorafenib
[GMASBF16]. sorbates [KB19]. Sorting
[NMF+14]. Source
[GMBM18, TCB16, Aki6, APK14, BZH14, CD13, FBY+17, HMO+18, HLS+13, HPT17, KSD+12, MLG18, PHT17, SMRM+17, XTG+11, Yap11, Yes12].
Source-Function [GMBM18]. sources [BK13]. Space
[vRWGS17, ACD+13a, ACD+13b, AD10, Cas13, CH16, CXS10, Coh18, DK11, DSHLM18, FC18, GA14, GKA5b, HB14, HP10b, HSB+11, JCGVPHT17, LMZ11a, LLFH16, LAW+16, MBFP15, NH19, NCT18, PDG+16, SS13a, SHL+11, SCSW13, TNT19, TJB12, WDHZ13, XTn18, YD17]. space-group
[HB14]. spacer [JYS+12]. spaces [CD13, FBvdB18, TNT19, WM17].
spanning [yOaCG10]. sparse [LK11, LDH+14, VZ14, YHH+13]. sparsely
[CBP+15]. Sparsity [HNS16, BYE+16, RR11]. sparsity-exploiting
[BYE+16]. Sparsity-weighted [HNS16]. Spatial
[PTB+15, HAL14, MTvG12]. SPC [GM17]. SPC/E [GM17]. SPC/E-I
[GM17]. special [Alg17, ZZ19]. species [MAK+14, MG11, OSS10, RHT+15, SSA+17, TCPPC14, Tsi14, VRKT19, WvRSM14, ZZ10, ZLY+16].
Specific
[DHF+11, OHNK11, CIKT13, CCM15, GCCM15, HNyH19, HYM16, JZZM14, KR12, LHO17, LGL11, LFHC17, MCC11, MC12, SSSM15].
specificity [LJW+11b, LBS10, ZX11]. Spectra
[PAK15, TT18, AMQ+14, BG17, DCOD13, EBPK17b, FD13, FF11, GWF11, GGM+12, GZZ12, HHH+17, KASH14, Kow11, LBC+12, LK11, MAK+14, MCLD10, MKK+19, NHF+10, PMC+17, PDMT10, PDG+16, RS17a, RJS17, SGT10, SB15, SR11, TYN15, TZCK18, TG12b, Tsi14, WGL12, WWD14].
spectral [Ano15-58, BH14, CBDS19, HRMAL+13, KZZ+16, NSO+14, QZM11, RLG11, SFDE16]. spectrometer [LBB+15]. Spectroscopic
[SS13b, GK10, KDB13, KOP15b, NC13, NC14, TCPPC14, TSI14, ZLL+10]. spectroscopy [DMD+18, HDM+19, HPSK12, IY18, KINR+18, LLO12, Lin18, NC12, OC19, WHK+12, FAS+18]. spectroscopy-oriented [HPSK12].
spectrum
[BLF14, KCC+18, MN19, MLCD11, RDF+11, SLL13, TSC+13, ZDX11].
state-of-the-art [YJ19]. state-selected [KCL+14]. State-specific
[CCM15, GCCM15, LGL11, LXFC17, MCC11, MC12]. state-to-state
[XCLZ19]. States [GBMB18, AST+16, ANH+11, BSL+16, BH19, DHOG13,
DSV+19, EFS16, EK17, EVR18, EP15, FAA15, FD16, GO13, GA12, GTK10,
HDHL15a, HDHL15b, HDHL15c, JCGVPHT17, KKH19, KT19, KKA+18,
KPG18, KB14b, LLBO12, LLW12, LWW12, LGC19, LX11, LS11b, LYSS11,
LCK+18, MS10, MN15, MGCC19, MH11, MEH18, PBDW11, RHRCH16,
SRF+17, SSC+19, SOYC12, SM†+19, SB13, SB15, SZZS16, TN10, Tia12,
TSN17, VVV+15a, XWSW13, YZGS14b, YK13, YLZ+10, YB11, ZXS+10,
ZBB16, ZDT18, dLC17]. Static
[KBC12, BS10a, KZK+12, Lu11, PC14, PNW+16, PM13, WYT17]. Statics
[Pon10]. stationary [BHR15, Can10, Can11, LHMM11, SLT14]. stationary-point
[BHR15]. stationary-wave [Can10, Can11, LHMM11]. Statistical
[JHH+13, PZA15, PTB+15, FL15, GZ14, HMYZ16, ICS+12,
ICS+13, Kan15, KMLS10, PTK11, RB13a]. statistically [GR10a, GR11]. statistics
[QZ10c]. steepest [MS16]. steepest-descent [MS16]. Steered
[Won18, FBEM11, KERY+16, MJC14, NFG+13, SJ17, WTD+19]. step
[AYYO17, DS12b, DGC14, GRCL12, JWO15, JS17b, KvdV14, LLvG10,
LGL11, LvG13a, LL10c, RLDJ17, RS12, SJC11, TCPPC14]. steps
[REH13, Zin13]. Stepwise [DLP11, LZ18, GRCL12, ZL11]. stereochemical
[WCDM11]. stereochemistry [PPJ14]. stereochemistry-dependent
[PP14], stereodynamics [Chn10, CSMN+18, LWD13]. stereoelectronic
[AS11]. Stereoselection [BJSI2]. Steric
[RMGB11, MJLV14b, MP17a, YNH+17]. sterically [MH17]. Stern [MBA11].
stereoelectronic [HLBCCG15]. Stevens [BCJC+14]. sticks [CVT+11].
stilbene [BW11b]. stk [TBJ18]. Stochastic
[AFPI13, CGP12, ITY+19, AC12, ESD18, KV12, KV13, MS16, MCP18,
NC13, PH17, RSL13, SWB+12, VBD11]. STOCK [BPJ15]. stockholder
[FHZK+18]. stoichiometric [VI17]. stoichiometry [FSD+18]. Stone
[DWZ+17, YNZ13]. stool [FPB12, FB14b, ZCK+16]. storage
[BE14, BEPM14, DLT17, WKL12]. Story [Sce07, Sch10]. Strain
[DM15, FB12, FC16, FLM11, JWO15, LSL+19, PBE16, She12, SHL+13,
strategies [AFBR17, BSDP16, cCVG+14, DSX+11, LT16, Rao11, SCOJ13].
Strategy
[Jia19, CLX+10, C2NA11, HJKJ13, KTN10, KKH18, LLL+10, PHC13, PH17,
RVVK13, SHL19, TKNN10, WO15, XHLH16, YDGZ15, ZGZC19, SMD18].
StreaMD [DJS+18]. Strength
[ELKE19, JLLW19, Fra15, Fra16, KSC16, LGKS17, MPSG11, YJ17, YHW17].
strengthening [MS11, LYS11]. strengths [CKL+11, MLC13].
streptavidin [MLZZ12, ZJZM13]. streptavidin-biotin [MLZZ12].
streptocyanines [WYT17, XKW18]. Stress
[BS19, GMBX+16, HXM+16, JMX+16, NI15, NFI+16, XFX+16]. stretch
[CK10, RS17b]. stretching [KLS10, KMLS10, TKCN19, dSH19]. string
BMFG16, JZ17, Zim15]. **stringent** [DPOS16]. **strong**
[Kan15, MLZZ12, SDF12, SS19, VVY17, Vik11, ZSL17]. **stronger** [KSC16]. **Structural** [ESD18, FHG+19, GLF16, GBL+11, GTT10, GAMAC+14,
GWX+12, HS17a, II10, KZK+12, KSD+12, LBT11, MP19b, NC14, TS11,
V SH19, ZWW10, AIGP15, AD10, AKK+16, ALH+10, BOBO16, BPC13,
CD19, CPV+12, CDS16, CYI+10, DUL11, DH11, GWT+17, GNI18, HS17b,
HVS16, KPK11, KG11, KNE11a, KDT+12, LL13a, MCF10, OSA19,
PHA13, PGY15, PNG10, RKF11, RKB+14, RSL16, SFA17, SS13c, TYX+18,
VVW+18, WC11, XMSZ16, YVEI+17, ZWW10, FAS+18, VPR10]. **structurally** [TZCK18].
Structure [BPPS19, BJP15, CGBK13, DXL+10, GPK+16, GWJJ12, GBGR16, HLB15,
JLLW19, LAHS16, MM19, MHR11, NC12, NC13, PMG+16, Rab12, SGH+16,
VDVR14, WZK+13, AFPI13, AR15, AM19a, AM19b, AJR16, AC12, BPPS17,
BFH+13, BD13, CPRS18, CD13, CV19, CM13b, Clo15, DKE+17, DK13,
DSB+19, DDP16, DVVP14, DGSVGVM19, DLW12, EH13, EK+13,
EFOD13, FZY+12, FD19, FSC+14, GLB16, GMSdG15, GRARO+14, GP12,
GK10, GRD+10, GPDc+16, GBG+19, HASR+12, HNH13, HS17b,
HNYH19, HS14a, HRB+17, HH15, HMYZ16, HZ13, HLW15, Hua16, Ibr17,
KYT+17, KKH19, KSM17, KT10, KS12, Kop19b, KKL+13, KLS10, KMD10,
LBO12, LFB14, LKL10, L+11, LMI+14, LYL16, LPE+10, LGL11,
LH11, LWG12, LLFH16, Mat10, MDT10, Mau14, MAPB10, MV17,
NGAS17, NCT18, OCL11, OL13, OLA15, PSS14, PdSC18, PLM+12].
structure [PN13, RLG14, RCM+13b, RR11, SHMO11, SB10, SM11,
SLP+12, SB19, SLIB12, SRS14, SYN+12, SKGB13, SPZP18a, SPZP18b,
Tacl9, TN12, TT+11, TG12b, UNT16, VV12, VHR16, VVBL17, VA14,
VBM13, VKC10, VI17, VLGK+17, WO15, WGN11, YY12,
YZ16, ZRCC11, ZH11, CPR18, FDCJG18, OFS12, SA10]. **structure-activity** [DXL+10]. **Structure-based** [CGBK13, DXL+10, DVVP14, GLB16, VKC10, YZZ16]. **structured**
structure [GEP+14]. **Structures**
[DLT17, HDM+19, NSN19, SNS16, SZL19, ZLX+19, AHK+19, BHKS14,
BPM15, Ber17, CL16, CC14, CBDS19, CV12, DVVP14, DH14, DCM18b,
DT19, DZA11, GS12, GSS13, HSY+11, HTS17, HPL+18, HS12, Hua16,
IK10, KNE11a, KOY+12, KTO11, KTO13, KDT+12, KSW16, LABSG17,
uLH111, LXZ+10, LLW14, LL19b, LAc14, MGS11, MTM14, MPA10,
MPA12, MP13, Mau14, MN19, MH10, MCAY15, MP17b, NS18, PRP15,
PNW+16, QZM11, RHR16, RAO11, RCR+16, RV11, RHJ11, RVV13,
RSG+10, Sak18, SWA13, SFR+11, SJ11, SIT18, SPM+19, SKY+11, TN10,
Tak11, TFO+10, TFO+11, Tsu19, UCF16, WKC11, WD10, YNH+17,
ZSL+11, ZLY+16, ZP13, CM13, OSI+19, PGCT+12]. **studied**
[Ish10, KRTH10, OLY17, RHPWS13, RI10, TS15b]. **Studies**
[JM12, AALCM11, BLS10, BRSN12, BLG10, BIL10, DM15, DXL+10,
FWS+18, GZZM16, GEP+14, JLS+10, KG15, KP11, LFC17, LCW10,
LJ+11, LWD13, RCM+13b, SB10, SFA17, SLHW09, SZZ+18, TNI+19a,
substituents [CBTZ16]. substituted
[AARP17, BEPM14, CCCLRO14, CZH12, DCHL12, KYCL11, KV15b, LZH16, LWL+11, LTP11, Lu11, OSF12, PRRT+10, QCR12, SSP+13, SK12, SKGB13, UT14, WGL12, YPC+10, ZZWT12]. Substitution
[MUN+19, CFM+19, ITY+19, LGW12, MPSG11, TZ12]. substitutionally
[VS14]. substrate [AALCM11, BHNS14, BEL+11, JDW+19, LZL+16, VCM15, WWW19, YZLZ18]. substrate-binding [WWW19].
substrate-enzyme [BHNS14]. substrates [QQY+18, Tsi17]. substructural [PSdPE+10]. subsystem [SFG+17, UDK+18]. subsystems [DK11, PL14].
subtilis [CPK12]. Subtraction [Hes19]. sugar [JSD+11]. suggested
[GZL+12]. Suitability [BVHI17]. suitable [TZ12]. suite
[DMN15, PGL+15, FPVI3, LJC+19]. suited [EK17]. sulfate
[CHKR10, PP19, TFYO19, YZGS14a]. sulfide [LW+16, ZYG+14]. sulfides
[OSF12]. sulfonyl [YHVM12]. sulfonyl-containing [YHVM12]. sulfoxide
[GC11, KPH+19]. sulfur [CTR13, HS+14, HS16b, Kop17b, OSF12, WGL12, WZC+19, YB11, ZM10]. sulfur-containing [DT19, ZM10].
sulfurization [TR12]. sum [SB13, SB15, Tak14, Tia12]. sum-over-states
[SB13, Tia12]. sumanene [CLFRO18, CBTZ16]. summation
[GBDF12, SF18]. summations [SB13]. super
[CBB11, SF18]. superfraction [CSSB11]. Superacid [KS19].
superacids [EHSPT16]. superalkali [LLD17]. superatom [LYL16].
supercharger [FRN15, RFN15]. Supercluster [Hes19]. supercomputers
[KNHN16, KN17]. Superhalogen [KS19]. superlattices [KC13b].
supermolecule [XZ1]. superoxide [GEP+14, CPR18]. superoxo
[ZRC+12]. superposition [CDMB11, HS12, PD11, YLGX14].
superpositions [Kne11b, LAT10, LAT11]. Supersecondary [ZHHX11].
Supersites [Hes19]. supertetrahedral [GKB+19]. supervised [DGPM14].
support [GTZ+18, HJ13, RLL+10, RMRBH+19, Sie18, TYZ+16].
supported [CZZL19, SN16a]. supramolecular
[CSGOA17, HLBI5, OAN15b, SMDP18, TBJ18]. Surface
[Hes19, LLW19, LKI6a, SRS14, Ano15-58, BPM15, BH14, CM13a, CR14, Che17, CZZL19, DBM+15, DS12b, FZY+12, FMNC11, FVP14, FDH19, GCWS15, GY10, HLVdV13, HTY19, HWLW11, HYD10, IN19, JZ17, JX10, KT19, KKR+13, KTSW11, Kop16, Kop17a, Kop17b, Kop18, LLH14, LL13a, LYC+13, LWZ+17, MK13b, MA+14, MB14, MOS12, NW17, OKIS17, OHPR17, OHPR18, PZAI5, SRSL015, SAKAI9, SH14, SBC+11, SLG15, SLL13, SIG+15, TSR+16, WXL+12, WXL17, WBF17, XFX+16, XCLZ19, YPD13, Yan14, ZLT13, ZKE+17, MK11]. Surface-enhanced [SLLL13].
surface-supported [CZZL19]. Surfaces
[BHB19, ZQH19, AKN16, BPC19, BHB+17, BS16b, CCJ+11, CSXX17, CZNA11, GFG11, Hei10, HRL11, IN13, KIOY19, KLS10, KMLS10, LX11, LAW+16, MCC11, MSC+10, MCF10, MK19, NPP13, OHPR18, Pol13, RNSF+16, RRC+15, RBOH11, RLA18, SRF+17, SFR+11, SC15, SFLG+17, TG12a, VT14, VVY18, WKC+10b, YZ15a, YR13, OSI+19]. surfactant
Taurine [YW13]. tautomer [WHJH13]. tautomeric [SJWE10].
tautomerism [BMB13, LGOM+15, SC18b]. tautomerization
[BH13, BZH14]. tautomers [BZH14, dALdS+15]. taxadiene
[EvRC+18, vRET19]. Tb [SRL+15]. TD [HL19, TS15b, CCB15, CH10,
DSB+19, EFA13, HRJ+14, HRJ+15, HL19, JRSHP14, KKL+13, KP10,
LZL+10, LZHH11, LSH+11, LYSS11, RDF+11, SRF+17, SCF+19]. TD-DFT
[CCB15, CH10, DSB+19, EFA13, HRJ+15, HL19, JRSHP14, KKL+13,
KP10, LZHH11, LXZ+10, LYSS11, RDF+11, SRF+17, SCF+19]. TD-DFT-
[LSH+11]. TD-HF-based [LSH+11]. TDDFT
[SFCck+15, CMF+17, LRBB12, MS11, QCR12, SFCCK+14]. Te
[AM19a, AM19b, PLFS18, SPS+12, HSJ18]. technique
[AMGB10, BG17, LZL+13, SMM17, TSR+16, TTn19]. techniques
[BCP+10, BCG10, GVP+10, MCP18, RD18, SDF+17, SPL+18, SY11, WBN+13].
Teller [BMD19]. tellurium [RRK16, ZWGO16].
Temperature [HS17b, HYNS19, KKO+16, LPTc12, PBE16, SY16b, SMM+18,
ZQH19, CH16, DKT13, DLSD13, HDM+19, KCK+17, LL11, MK17, MKK+19,
OGL10, TldG+12, TM16, VED10, WMW11, WWT19, YW12, OCW+15].
Temperature-pressure [HYNS19]. Temperature-shuffled [HS17b].
temperature/Hamiltonian [KCK+17]. temperatures
[NMLD13, RHNN10]. tempering
[GC18, LAW+16, MO15, MO17, NPTS16, TKT11]. Template
[LI19, Man14, GLF16, KCK+17, ME10, YHH+13]. Template-Based [LI19].
Template-free [Man14, YHH+13]. template-restrained [KCK+17].
tension [NFPD13]. tensor
[BS19, CPZ19, Elk16, EWK+13, GMBX+16, HXm+16, JMX+16, KK17a,
NFPD13, NIIT15, NFI+16, TKC+11, XFX+16, YA018]. tensors
[EPD+11, PHK14]. tepidum [KPG18]. terahertz [KB16]. term
d[SFs17, JBsg11]. terminal [MK+16, YXZz17]. terminally
[KLs10, KMLS10]. terminally-blocked [KLs10, KMLS10]. Terminated
[BHP19]. terms [BSA14, Czy11, CWZB10, RRH12]. ternary [RDT14].
tertiary [Opr16, SM11]. tessellation [MOs12]. Test
[PHC13, BS10b, DSB+19, DPOS16, WOn18]. tested [HMM10]. Testing
[Gil11, II18, MPSA17, RLD12, JGS+17]. tests
Tetra [BHP19, WDLG12]. Tetra-Anionic [BHP19]. tetraamines
[SB10]. tetracarboxylates [CRC13]. tetracoordinate
[XHd15, ZYW+16, ZLY+16]. tetraene [ABDGN12]. tetragonal [LKZz18]. Tetrahedral
[LBC+19]. tetramer [Ish10]. tetramers [LYL16, ZZS16]. Tetraoxide
[JW12, SLHW09]. tetraprotonated [ZYW+10b]. tetradical
[Cas14, YSSB12], tetrascarhide [NPG17]. tetrahiafulvalene [MCF10].
Tetrazine [JW12, MCAG+16, SLHW09]. Tetrazino [JW12, SLHW09].
Tetrazino-Tetrazine-Tetraoxide [JW12, SLHW09]. tetetel [YKH15].
tetroxide [MCAG+16]. text [HRKS11, HS11]. text-based [HRKS11, HS11].
TF [XMSZ16]. TGMin [CZZL19]. Th [MCK17a]. ThCl [LCL+18]. their
[ARRC15, Ano11, AM19a, BSG18a, CC12a, CBTZ16, CFC15, CB11a, DLT17, DSM+11, GPM17, HJ13, JMLL13, JHMB+09, JHMB+11, KG15, KNE11a, KRSC12, NYH+17, SBR13, TN12, Tak11, TY10, TS11, VV15, VVV17, VVBL17, XDL+10, ZWY+10a, GMBM18]. them [WCWV15]. theorem [CDB10, KSH13, YB16, ZM11]. theoretic [CRZ+18, MCC12, ZLW10].

Theoretical

[AvKSP16, AMAA+11, AWF+18, AHK+19, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, FWS+18, GYX+10, GLZ17, GLM+17, HW19, HDHL15c, JW12, KCB+12, KSO+19, KMT+19, KS13b, LCL+10, LWL+11, LW12, LZY+12a, Lin18, LWG12, LX16, LXFC17, LD18, LGJ+11, MLQ+12, MSV16, NSN19, NFI+16, OSS10, OAN15b, PPK17, PM13, PE11, RS17b, SB10, SMN+19, SSD19, SKY+11, STS+10, SSZ16, SLC+17, SGL13, TPL+10, Tsu19, WMW11, WHDL11, WCL+11, WS12, XBS19, YJN+11, YPC+10, YHG+11, YCGA10, YYT12, YDGZ15, ZZL+10b, ZZL+10a, ZYLL12, ZLL12, ZSZ+14, ZYG+15, ZGZ19, ZBMZ15, dSdLBNB17, BLS10, BAD+19, BE16, CZH12, CKL+11, CBTZ16, EV14, GG10, HDB15, HGP14, LW12, LDL17, LZW+11, LCL+18, MRC+18, MPSG11, MP19a, MKK+19, NFF+10, NJX+10, PH12, PdSC18, PdSP+10, Pog10, PH10b, RZG+13, RVCF13, RVP+13, SSP+13, SSC+19, SJD11, SLHW09].

theoretical [SKT11, SGH+16, Tak11, TL16, UCRL18, WSH10, WQ10, YK13, YW11, YZ13, YZ13, YD10, Zha12b, dSdSL13, HDHL15a, HDHL15b, KZK+12, TDP+12]. Theoretically [LLX+19]. theories [OM12, WCWV15].

Theory [BHB19, CKH19, EV18, ELKE19, GNC+18, IUK+11, LLX+19, MP19b, Sah18, SXZ13a, SXZ13b, WBKS19, WM12, AMK11, ALK+15, AR10, Ali18, ARAG17, ABDGN12, AW19, AG12, ASS10, BY11, BLDG+13, BS19, BMD19, BZB+13, BG13, CHG+16, CRZ+18, CSAdOM17, CWHH11, CKH17, CCM15, CF14, CC11, DAP+18, DCHL12, FRSA14, FD16, GHL17, GZL+12, GCCM15, GWW19, GLW19, GY10, GNGCA10, GND+12, GA18, GEG11, GPA12, Han11, HPT17, H113, HNN+17, HRJ+14, HRJ+15, HG10, ISN13, IKN13, IM17, JRSPH14, JHL+14, JW16, JYS+12, KHBW17, KLN12, KML13, LCW12, LBGS16, LCL+10, LLH17, LPMT17, MCC11, MHH19, MAK+14, MWJ+11, ME10, NPG+18, NMLD13, NO16, Niz13, ORZ11, OZLSBH12, PAK17, PML+12, PPH+14, Pie14, Fyy13, QZ10b, QZ10c, QB16, RAGL11, RJP12, RCM+13a, RML+15, RB12, RSLML12]. theory [RHPWS13, RNS19, RR19, Rui11, SM14a, SFG+17, SHL+18, SCW11, SSSM15, SHF11, SEF+16, SE14, SH14, ST13, SHL+13, SSMW09, SB14, SM+18, SKT11, SZ16, STS15, TdG+12, TAG16, UvSdWK19, VDL+13, VVP12, VV14, VL17a, VAMS14, WHL+10, WDLG12, WHX+10, WQ15, WL14, WGN+16, XTY+14, XYW+14, YJ11, YLZ+10, YS13, YKH15, ZXS+10, ZSWL12, ZL14, ZDX11, ZYG+14, ZWY+10b, ZYW+10a, ZLHH14, dSdS12a, dSdS12b, vLBBR12, FAS+18]. theory-based [YJ11].

theory/configuration [HPT17]. theory/time [JYS+12].

theory/time-dependent [JYS+12]. therapeutic [AFBR17].

theory [ZZ12]. there [MLGB16, Sie18]. Thermal
[LL10c, SJSS19, ASL+11, BIL10, NGAS17, OZLSBH12, VVW+18].
thermally [FWS+18, IHY15, ZGZ19]. thermocalc [HDH12].
Thermochemical [TFQ+11, KSM16, TN12, WDW12]. thermochemistry
[HDH12, Sán17, SB14, TCGNT18, VRKT19]. Thermochromatium
[KPG18]. Thermodynamic
[EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a,
EBPK17b, HIL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11,
RKB+14, SS13c, SJIC11, SJ16, WC11, dRBO13]. Thermodynamics
[DS12a, RS12, BRE12, DMJ17, EHSPT16, HRC13, Kan15, WRM+12, ZYL+12].
thermoelectric [KLZ+18, NGAS17, YW12]. thermolysin
[DHF+11]. thermometer [SPZP19]. thermophilus [TNI19b].
thermostat [JWO15]. thermostatization [PH17].
Thermus [TNI19b]. thia [GMASBF16]. thia-calix [GMASBF16]. thiaphosphiranes
[ZSLL17]. thiazol [BMB13]. thiazol-2-amine [BMB13]. thienylenevinylene
[TZ12]. thioacetamide [LCB10]. thioamide [KG11]. thioformaldehydes
Thiophene [PH10b, PRRT+10, YHCS11, ZSTRS+18, ZSLL17]. thiophene-based
[ZSLL17]. thiophenes [Su10]. thiophenic [NHF+10]. thiophenol
[AMAA+11]. Thiophenols [CGVBAI19]. thiotropolone [DL19]. thiourea
[TKN13]. Thole [AS15b]. Thomas [Spr10]. thorium [KKH19]. those
[SIG+15]. ThQs [ZZL19]. ThQs-C [ZZL19]. threading [Mau14]. Three
[CKH19, NR11, NF17, NNK+16, TYN15, TKC+11, CXD+19, HJKJ13,
KYT+17, KRSC12, LYSS11, LK16b, MBT14, MS16, RVM19, SLT+15,
TDKT10, TTX+13, UT15, WC14, YLL11, ZZL+12, ZWX16]. Three-body
[NF17, RVM19]. three-center [CXD+19, YLL11]. Three-dimensional
[TYN15, TKC+11, KTY+17, KRSC12, TTX+13, ZWX16]. three-domain
[MBT14]. three-level [HJKJ13]. three-membered [TDKT10].
Three-Range [CKH19]. Three-residue [NR11]. threshold [LCM16].
through-put [GKJ+19]. through-put [ESB13, JBAM11, PVJ10, RNS19].
thymine [HvM12, LJJW11a, ŠBD+17]. thymine/thymine [HvM12]. Ti
[MP19b, WWKS16, WZH+18, YW12, BH15, SDB+16]. Tian [Aneol2u]. Tide
[RB12]. Tight [Lar12, NN19, YKKN19, GAJ+17, HNWF07, HNWF12,
JCP14, KZZ+16, MSY19, MAP18, MFR+17, NF17, NN18, NO16, NKK+16,
Oht16, Res19, SPS+12, VHS+19]. Tight-Binding
[NN19, YKKN19, Lar12, HNWF07, HNWF12, JCP14, KZZ+16, MFR+17,
NF17, NN18, NO16, NKK+16, Oht16, Res19, SPS+12]. tightly [PG19].
Time [GTK10, KS18, PAK17, WHL+10, WHX+10, YLZ+10, YKKN19,
ZDX11, AYYO17, CHG+16, DGC14, Fom11, FSSW17, HCD+10, HNWF07,
HNWF12, HIL10, JWO15, LS17b, KNR+18, LL13a, PNG10, RS12,
RHPWS13, REL17, VHR16, VIK11, ZXS+10]. time-averaged [HCD+10].
Time-Dependent
[YKNN19, GTK10, KS18, PAK17, WHL+10, WHX+10, YLZ+10, ZDX11,
timescales [MCR17], time-step [AYO17], times [VBDS11].

Tinker [HLW17], TiO [NC14, TSK12, CCJ11, DSB19, EP15, HRL11, MP19a]. TIP3P [SA10].

TIs [BE14, RSKG14]. Titan [OZLSBH12]. titanium [QZ10b]. titration [HS14b].

TMBiM [LWXC16]. TmoleX [STH10]. TMS [YXZZ17].

Tool [LH19, BPC19, GKJ19, HKR10, HKS11, HS11, HG13, JLS18, KDB13, LP11a, LK11, LDB17, LCA17, LBB15, LG11, LP11c, MTD16, MCC12, NHK13, OV14, OVPK15, OC14, PNW16, SDMS13, SH19b, WCDM11, ZCGM11, dVAG16, JCGM18].

toolbox [HPT16b]. toolchain [KSH17]. toolkit [FSC14, GS12, IGK16, MJBM12, MSS13, MADWB11, NKJ16, PG15, PPM15, TS10a, TBJ18, ZLL13].

Tools [RLG14, ZFOS19, GMZ12, SLG15].

Topo [BGL18]. TopoG [KYG15]. Topographical [KYG15]. Topography [PK19].

Topological [Jan16, AR15, BGL18, PRY17, Pop18, SB11, TSQ12, Tan19, VAR12, VBMA13, Wei12b, vSGP10].

Topologies [Gar12, TSNC17].

topology [AD10, ASS17, Dill15, FED17, GMSdG15, KP11, MSCP17, yOACG10, Rod13, dCDP15, BLG10].

Topomerization [GG10].

toroidal [SS13b].

Torque [Elk16].

torquoselectivity [GMBX16].

torsion [DSPL16, FZY12, HP10b, HXM16, JMX16, YZ16].

torsional [VL19, BAS14, PRRT10].

torture [RHT15, ENKK17].

torus [WRG17].

total [BEEL14, IKN13, MA16, SM16a, WX12].

toxicity [TTB11, TTL12].

tQ1 [VL17b].

tQ1/PC [VL17b].

track [ENKK17, RHT15].

tracking [BHR15, GBPC19].

tractability [KFY13].

training [DBDP16].

trajectories [AST16, HRD16, JZL17, KG13, LZS17, PSP15, RN17, SKA19, SFR11, ZSS13, dSdM16].

trajectory [UK11, JJW14, LW13, LAS14, MKS12, PVZ13, RC18, SBD17, Yu12a].

Trans [CSM16, MSBF16, Tsi19, WS19, BLS10].

Trans-2-Butene [CSM16].

Trans-effect [Tsi19].

trans-influence [Tsi19].

trans-influence/trans-effect [Tsi19].

Trans-philicity [Tsi19].

trans-pinane [BLS10].

transcription [XMSZ16].

transfer [Alg17, AK10, ANH11, BHB12, CMF17, CSAOM17, CPLL11, DWR17, DAdGR15, EFAC13, ENKK17, FC16, HSH15, HAP12, HDHL15a, HDHL15b, HDHL15c, IYK11, JM11, JGVPHT17, KGR16, KDR18, LZL10, LLL11, LWGZ15, LPB16, MPSG11, MRB14, MSV16, MCF18, MT19b, PGCT12, PG18, PAK17, PL14, PTB15, Ras17, RCM13a, RML15, Ric16, REL17, RKDM14, SRF17, SBD17, SMP17a, SZB19, SHB17, TM16, Tsi17, VKTRJ15, VMTL10, VL17b, WCT11, WZ19, WG14, XBS19, XLY12, YKH10, YHX19, YLZ10, YYT12, YFH19, ZW17, dALDS15].

Transferability [FP17a, ZRL15, HOK17].

Transferable [EKH14, VVLG17].

transforms [YZSG14a].

transform

[Ano15-58, BH14, Ish12, LL13a, SZZT10, IY18, NZM18, YW16].
transformations [HDL+14, Min18, SJC11]. Transiting [CM13a]. Transition [BF19a, BGS+19, ZQ10c, YB13, Alg17, AR10, BS15, CSA10M17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JZ17, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. transition-metal [LDZW17]. transition-state [CSA10M17, RAGL11]. transitions [AKK+16, BD11, DH11, HS17b, HB15, KIYO19, MCvdV13, PBDW11, SBT17, SPZ18a]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15]. translationally [MRO17, MK19]. translocation [BF19a, BGS+19, OZLSBH12, QZ10c, YB13, Alg17, AR10, BS15, CSAdOM17, CMS13, DLSD13, GK15a, GFGS18, GPE13, Hsu14, IYK11, JSF19, LYL16, LDZW17, LN15, LZW+11, LGKS17, LLL+12, MTM14, MS10, MN15, MKK+19, NMLD13, PHK14, RAGL11, RIJ+11, SJZ+15, VV+15a, VHS+19, YZG14b, YWZ14, ZWW10, Zim15].
BSD18, BB11a, CCR18, CVT+11, CAP17, CSSB11, DK19, DWL11, DBK17, DFF+15, DJS+18, DCHL12, DLZ15, ESD18, EWK+13, FF11, FRC18, FLM11, FZL+19, FL15, Gar12, GRS15, GFPSD17, GMO16, GZM11, GRL+11, GRL+12, GMBX+16, GTZ+18, HASR+12, HNS16, HNYH19, HLW+17, HDL+17, HHI17, Hof14, HBL12, HYUS11, HJKJ13, HZSS17, HHWL17, HLEM18, Hug14, HRRH+17, Ish10, IHJ+13, JLH+14, JMS13, KV13, Kan15, KSO+19, KERY+16, KT10, KLOS10, KGJZ19, KTNN10, KP11, LBGS16, LPK16, LRvdSM15, LZ12, LCH10, LCL+10, LMR14, LHE11, LTA+11, LBDP12, MS17, MZZ11, MJC14, MN15, MY17a. using [MHO18, MSS+13, MK19, MKM+17, MUJ15, MVKS10, MKB+13, MFR+17, MIOM13, MMJ10, MS18, NLP16, Nav18, NASH15, NHN16, OHPR18, OCW+15, PGdO+16, PC11, PG15, Pie14, PJ13, RB13a, RD18, RLDJ17, RDDS10, RHJ11, RvM19, RS13, RRK14, Ric16, REL17, REV+17, Rui11, RFHG10, REH13, SHMO11, SSO19, SzdB19, SFM14, SFD+17, SBV10, SA13, SW11, SEF+16, SHL19, SS19, SLK13, SB18, SY11, SRS14, SH19a, SZS16, STS15, TYZ+16, TYX+18, Tak14, TKNN10, Ts17, Th19, TJB12, UTM11, VKAM12, VECT12, V17, WKL12, WDN12, WLC12, WZ17, WXY+10, WDH13, XTY+14, XXY+17, XWW+11, YWJ+16, Yon16, YN15, YDX16, YFH+19, ZLD11, ZLT13, ZMX19, ZWS+10, ZP13, ZHI2, ZZZ+19, ZHXX11, dLC17, AIM+18, JCHT18, LHL+10]. utility [YHVM12].

Verlet [Fon11, Gon12]. versatile [KKR+13, Pet11, SM14a, SWB+12].
version [BCJC+14, EVR18, KYG+15, OPB+12, Pyy13]. versus
[BF19a, BH15, FD16, GMPB12, GWZ15, ITY+19, KCPMG12, LLFH16,
MG11, OSF12, PGS+15, RP15, TR12, WCT+11, WvRSM14, YSSB12].
vertex [RNP13]. vertical [UD12]. vertices [LK16b, OV14, RNVP13]. Very
[Ran13, CSSB11, SAGC16, Ran12]. VESPA [Ran12]. VGe [TT18].
VI [OSS10]. via [AKMT11, ACD+13a, ACD+13b, BSPP+13, BH13, CS17,
DDP+18, DLZ15, DL19, GRCL12, HGCCGR+16, KHWB17, KKH18,
LAW+16, NSO+14, RO14b, RJWW12, RNS19, SS13b, SISK10, SB15, SM17,
TM18, TZ12, WBVE16, ZWP11, ZLY+16]. viable [SSX+14]. VIBPACK
[CJPTC18]. Vibration [Kop19a, GK10, Kop15a, Kop17a, Kop17b,
Kop18, Kop19b, MK13b, Tac17, WZ19, YHX19]. vibration-rotation
[KG10, Kop15a, Kop16, Kop17a, Kop18, Kop19b, MK13b].
vibration-vibration [YHX19]. Vibrational [DB12, LCW12, OC19, QZM11,
ARLP13, BZB+13, CJPTC18, DOM+11, DHF+11, DT19, EB18, HYD10,
IY18, KKA+18, KCPMG12, Kow11, KKH18, LBH+11, LLTC12, LBT12,
LS11b, MCF10, MAK+14, MN19, RLA+11, RRR16, SS13a, SSWX14,
SST+18, TZCK18, VW+18, WX12, XSSL11, dSaAdSL13, WHK+12].
vibrational [YHX19]. vibronic [MCLD10, ZTH+15]. view
[BT18, DMJ17, MT19b]. viewpoint [PNE18]. VIII [LMR14]. villin
vinding [FL15, GZH10]. virial [FED17]. viridis [IF+10]. Virtual
[GRP+12, HDM+15, CCM15, ESB13, GCCM15, HKNH18, HHK19, HJJ13,
JBAM11, KC14, KLS10, KMLS10, LBB+15, MRB14, MNNK10b, MH10,
SMF+18, VKC10, YZZ16, YD17]. virtual-bond-stretching
[KLS10, KMLS10]. virtual-system [HHNK19]. Virtual-system-coupled
[HDM+15]. viruses [OLY17]. Vis [GGM+12]. viscoelastic [YSG12].
viscosity [BBI+11, GM17]. VISM [ZCS+15]. vistas [GLW19].
visualization [CVT+11, HH16b, TKC+11, TDE18, You10]. Visualize
[GH16b, BPC19, QLQ11]. Visualizing [SOJ14, WM17, RD18]. vivo [HW19].
VMD [BHB12, FRC18, KLOS10]. vmdICE [KLOS10]. VMS [LBB+15].
VMS-Draw [LBB+15]. Voids [CC12a]. voltage [ACS12, SFBT17].
voltage-dependent [SFBT17]. Volume
[Ano10b, Ano12a, Ano12b, Ano12c, Ano12e, Ano12f, Ano12g,
Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o,
Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12x,
Ano13y, Ano13y, Ano13z, Ano13z, Ano13-27, Ano13-28, Ano13-29,
Ano13-30, Ano13-31, Ano13b, Ano13c, Ano13d, Ano13f, Ano13g, Ano13h,
Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q,
Ano13r, Ano13s, Ano13-32, Ano13-43, Ano13-51, Ano13-52, Ano13-53,
Ano13-54, Ano13-55, Ano13-56, Ano13-57, Ano13-58, Ano13-59, Ano13-60,
Ano13-68, Ano13-69, Ano13-70, Ano13-71, Ano13-72, Ano13-73,
Ano13-74, Ano13-75, Ano13-76, Ano13-77, Ano13-78, Ano13-79,
Ano13-80, Ano13-81, Ano13-82, Ano13-83, Ano13-84, Ano13-85,
Ano13-86, Ano13-87, Ano13-88, Ano13-89, Ano13-90, Ano13-91,
Ano13-92, Ano13-93, Ano13-94, Ano13-95, Ano13-96, Ano13-97, Ano13-98,
Ano13-99]. Volume
Ano18q, Ano18r, Ano18s, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, GY10, KRSC12, KTSW11, MK11, NASH15, NW17, Pop18, SZTSM10, Yan14, ZKE17. Volume [Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, GY10, KRSC12, KTSW11, MK11, NASH15, NW17, Pop18, SZTSM10, Yan14, ZKE17].

volumetric [KC14, MYT14].

W4 [KSM17]. W4-17 [KSM17]. Waals [BLF14, BB1a, BC13, CR14, DS12b, DSF17, FZL+19, KBC12, KCK+15, KGHK12, KLN12, LCH+15, SMGB11, SLIB12, SJZ+15, SYZ+17, Tan19, VP19, YZZ+17, ZY14].

Wales [DWZ17, YZN13]. walk [CY09, CY13]. Walker [JL19]. Walking [CH16].

Wang [Ano12u, JW12, SA11]. Water [BHP19, DBGO+17, HvM17, LWL+16, MUCU15, RBOH11, UNT16, ZLX+13, AASP18, AIGP15, AOW11, AF14, BSD18, BRLS08, BRLS12, CYY+17, CZH12, CXW14, CCOH14, DS3+19, DDP16, DAG19, DLC18b, FZL+19, GHL17, GM17, HH10, HTY19, HvM16, Hug12, IUK+11, JCP14, JIS13, JA10, KUDG12, KGHK12, KB13, KPH+19, KJ10, KSR+16, LH11, LK13, LPLS16, LP11b, LIRL+16, LCM+14, LJJ+11, LAW+16, MC10, Man19b, MHO18, MKH15, MJM+15, MHRR11, NC12, NC13, OSSI0, PAK15, PD11, PM18b, QYY+18, KTS+13, RZ16, Ric16, RRF11, RSB+13, SBGP18, SG10b, SNS16, SC18a, SISK10, SOMP17a, SY16b, SV11, SIG+15, SM17, Tac17, TM16, TKYN17, TG12a, TL16, US11, VMTL10, Vor12, WC13, WCW15, WG12, YDR13, YZ17, YZLZ18, ZCK+16, Zha12b, SG18]. water-fluoride [NC12]. water-halide [NC13]. Water-Terminated [BHP19]. water-vapor [SISK10].

Web [CPK19, Che17, MdODQ18, PBLS19, SMP+19, WPM+15, Gar12, JJJW+14, LP11a, LR+12, MdODQ18, UHH+11, XYX17]. Web-4D-QSAR [MdODQ18]. Web-Based [CPK19, MdODQ18, Gar12, JJJW+14]. web-user
[WPM+15]. WEGA [YLGX14]. Weighted
[HGW18, Fer17, HNS16, HHLW17, LMZ+11b, PRYI+17, RHJ11, ZHI2, Hill13].
weighting [WDHZ13]. weightings [GW19W]. Weinheim [Spr10]. well
were [GS16, MFEM16, XFG+16]. wettability [SBC+11]. wheat [NMF+14].
where [AST+16]. Which [RS13, SH11a]. white [ZP13]. whole
[HPL+18, RZ16]. whole-sequence [HPL+18]. whose [KYT+17]. Wiberg
[SB18]. Widom [LPK16]. Wiley [Spr10]. Wiley-VCH [Spr10]. windmill
[LZSM19]. Window [DAB16]. Window-Exchange [DAB16]. wires
[LYZ+12a, NS17]. wise [KSR17]. withdrawing [CWHH11]. within
[AIGP15, BBG+18b, CLK+11, DVVP14, GLB16, GRN19, HHR+14, IHY15,
Lar12, MKH+13, MLN+18, RCM+13a, RML+15, RHPWS13, SFCCK+14,
SFCCK+15, SFG+17, Sch12, SJZ+15, WC11, WPM+15, dLC18a]. Without
[SMB18, FSD+18, GA14, KJ10, TH13, UvSvdWK19, dLC17]. WKB [QS19].
Wolf [GPGSM12]. Wordom [SFR+11]. work
[Bou14, CME11, KHWB17, NHN16, SPZP19]. Workbook [HJG09, Spr10].
workflow [HG13]. wrong [SJWE10]. WS [EBPK17b]. Wu [Ano12u].

X [ATP18, ASS+17, CPR18, CSX10, EPSH+15, GPK+16, LDJ+10, LLY+11,
LZJ+11, Li4a, Li4b, LGW12, LCCW10, LWD13, PMG+16, SPS+12, SSB13,
SLB12, TFO+11, YS13, ZYLL12, ZLLL12, ZLX+19, BSF18,
FZY+12, FL11, IJR16, KOP15b, LLOBO12, LHS12, LZL+15b, LCWW10,
MKK+19, PDG+16, SKY+11, WWD14, XML+15, XD15, ZLLL12, LX11].
X- [SKY+11]. X-Ray
[CPR18, L11, LLOBO12, LHS12, MKK+19, PDG+16, WWD14, XML+15].
xanthophylls [LLH11]. XCCH [LLL+11]. Xe
[SKMS13, BBB+11, MLGB16, SKMS13]. XF [ASS+17]. XH [CCCLCGRO14].
Xiaobo [Ano12u]. Xiaoqian [Ano12u]. Xinli [JW12]. XML [LBD+17]. XO
XYG3 [CSSX17, SXX13a, SX13b, ZWXL11, ZWX19].

Y-zeolite [SN16a]. yCD [ZZY+16]. years [JCL+17]. yeast [ZZY+16]. yield
[SHL+13, SXX+14]. yields [RDRC16]. Yingjie [Ano12u]. yl
[BMB13, LXFC17, YZL18]. YMn [LLB+12]. Yonik [ZW18]. Yongcui
[Ano12u]. Yun [Ano12u]. yy [ZL+10]. yy-DNA [ZL+10].

Z [JJJ16, FCG12, FZL+19, JJ16]. Z-Scheme [FZL+19]. zebularine
[CCW11]. zeolite [SN16a]. zeolites [DAP+18, LZTV10, Lar11, SN15, SDB+16].
Zernike [Hei18, UCRL18]. zero [AA18, Pol13, RLA18, SF18, Tac17, VED10,
NQB19]. zero-flux [AA18, Pol13, RLA18]. zero-multipole [SF18]. Zero-
Point [NQB19]. zeroth [VFRAR16, WGA18]. zeroth-order [VFRAR16,
WGA18]. zeta [LOB18, OLPP19, P0B13]. Zif268 [YXWZ11]. zigzag [DWZ+17].
VS14, WDZN16]. Zinc [AALCM11, GWZ15, SPS+12, YSSB12]. Zintl [RT14].
REFERENCES

References

Anderson:2018:GSZ

Andres:2019:NQE

Aquilante:2016:SNU

[AAC+16] Francesco Aquilante, Jochen Autschbach, Rebecca K. Carlson, Livin F. Chibotaru, Mickaël G. Delcey, Luca De Vico, Ignacio Fdez. Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer, Giovanni Li Menni, Hans Lischka, Dongxia Ma, Per Åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci, Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reiher, Ivan Rivalta, Igor Schapiro, Javier
REFERENCES

Abdel-Azeim:2011:ZHB

Altarawneh:2011:RCH

Akbarzadeh:2018:PCN

Achazi:2017:CSS

Abbaspour:2018:MDS

Abolfath:2010:DBR

Arthur:2016:EIC

Arthur:2016:PIG

Antoniotti:2012:GPR

Antoniotti:2013:EGP

[ABB+13] Paola Antoniotti, Elena Bottizzo, Stefano Borocci, Maria Giordani, and Felice Grandinetti. Erratum: Gas-phase re-

REFERENCES

[ACD+13b] Kalipada Adhikari, Sudip Chattopadhyay, Barin Kumar De, Amitava Sharma, Ranendu Kumar Nath, and Dhiman Sinha. Search of truncation of ($N - 1$) electron basis containing full connected triple excitations in computing main and satellite ionization potentials via Fock-space coupled cluster approach. *Journal of Computational Chemistry*, 34(15):1291–1310, June
Asaduzzaman:2012:RBD

Affentranger:2010:PFC

Aquilante:2010:MNG

Anacker:2014:NAB

Allen:2017:CND

REFERENCES

Artemova:2011:CNS

Artemova:2011:FCA

Alonso:2010:USA

Ato:2019:TSC

Afanasyeva:2015:SNU

Araki:2018:IAP

[AIM+18] Mitsugu Araki, Hiroaki Iwata, Biao Ma, Atsuto Fujita, Kei Terayama, Yukari Sagae, Funie Ono, Koji Tsuda, Narutoshi Kamiya, and Yasushi Okuno. Improving the Accuracy of

Abbspour:2019:MDS

Artemova:2016:AMS

Aono:2010:PTP

Akimov:2016:SNU

Alekseenko:2016:SGI

[AKMT11] Ahmed Mutanabbi Abdula, Reema Abu Khalaf, Moham-
mad S. Mubarak, and Mutasem O. Taha. Discovery of new
β- D-galactosidase inhibitors via pharmacophore modeling
and QSAR analysis followed by in silico screening. Journal
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

[AKMYB18] Suliman Adam, Michaela Knapp-Mohammady, Jun Yi, and
Ana-Nicoleta Bondar. Revised CHARMM force field param-
ters for iron-containing cofactors of photosystem II. Jour-
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

[AKN16] Shalini Awasthi, Venkat Kapil, and Nisanth N. Nair. Sam-
pling free energy surfaces as slices by combining umbrella sam-
ppling and metadynamics. Journal of Computational Chem-
istry, 37(16):1413–1424, June 15, 2016. CODEN JCCHDD.
ISSN 0192-8651 (print), 1096-987X (electronic).

Journal of Computational Chemistry, 40(32):2834–2842, De-
cember 15, 2019. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

[Alg17] Andrés G. Algarra. Computational insights into the S1 tran-
fer reaction: a special case of double group transfer reaction
featuring bicyclically delocalized aromatic transition state ge-
1973, August 15, 2017. CODEN JCCHDD. ISSN 0192-8651
(print), 1096-987X (electronic).

Ai:2010:IBF

Allen:2010:EAM

Ariyarathna:2019:EGSa

Ariyarathna:2019:EGSb

Al-Muhtaseb:2011:TSU

REFERENCES

Aguilar-Mogas:2010:IAB

Addicoat:2011:DFT

Alberto:2014:ESI

Aquino:2011:CTS

Anonymous:2010:CFE

Anonymous:2012:CIIff

Anonymous:2012:CIIgg

Anonymous:2012:CIIhh

Anonymous:2012:CIIii

Anonymous:2012:CIIjj

Anonymous:2012:CIVaa

Anonymous:2012:CIVbb

Anonymous:2012:CIVj

Anonymous:2012:RPP

Anonymous:2013:CIIa

Anonymous:2013:CIIj

Anonymous:2013:CIIk

Anonymous:2013:CIIl

Anonymous:2013:CIIm
REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIt

Anonymous:2013:CIIu

Anonymous:2013:CIIv

Anonymous:2013:CIIw

Anonymous:2013:CIIx

Anonymous:2013:CIIy

Anonymous:2013:CIIz
REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Anonymous:2013:CIVk

Anonymous:2013:CIVl

Anonymous:2013:CIVm

Anonymous:2013:CIVn

Anonymous:2013:CIVo

Anonymous:2013:CIVp

Anonymous:2013:CIVq

Anonymous:2013:CIVr
REFERENCES

Anonymous:2013:CIVy

Anonymous:2013:CIVz

Anonymous:2013:CIVba

Anonymous:2013:CIVbb

Anonymous:2013:CIVbc

Anonymous:2013:CIVc

Anonymous:2013:CIVbd

Anonymous:2013:CIVbe

Anonymous:2013:CIVbf

Anonymous:2013:CIVbg

Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2014:CII

Anonymous:2014:CIVa

Anonymous:2014:CIVb

Anonymous:2014:CIVx

Anonymous:2014:CIVz

Anonymous:2014:CIVba

Anonymous:2014:CIVbc

Anonymous:2014:CIVbd

Anonymous:2014:CIVbe

REFERENCES

Anonymous:2014:CIVbi

Anonymous:2014:CIVbl

Anonymous:2014:CIVbp

Anonymous:2014:CIVbq

Anonymous:2014:CIVbr

Anonymous:2014:CIVbs

Anonymous:2014:CIVc

Anonymous:2014:CIVd

REFERENCES

REFERENCES

Anonymous:2014:CIVca

Anonymous:2014:CIVcb

Anonymous:2014:CIVcc

Anonymous:2014:CIVce

Anonymous:2014:CIVcf

Anonymous:2014:CIVcg
<table>
<thead>
<tr>
<th>Anonymous:2014:CIVch</th>
</tr>
</thead>
</table>

|----------------------|

<table>
<thead>
<tr>
<th>Anonymous:2014:CIVcj</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2014:CIVck</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2014:CIVcl</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2014:CIVcm</th>
</tr>
</thead>
</table>

|----------------------|
REFERENCES

Anonymous:2014:CIVg

Anonymous:2014:CIVh

Anonymous:2014:CIVi

Anonymous:2014:CIVj

Anonymous:2014:CIVk

Anonymous:2014:CIVm

Anonymous:2014:CIVu

Anonymous:2014:CIVv

Anonymous:2014:CIVw

Anonymous:2015:CIVa

Anonymous:2015:CIVb

Anonymous:2015:CIVu

Anonymous:2015:CIVv

Anonymous:2015:CIVw

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2015:CIVx

Anonymous:2015:CIVy

Anonymous:2015:CIVz

Anonymous:2015:CIVba

Anonymous:2015:CIVbb

Anonymous:2015:CIVbc

Anonymous:2015:CIVbd

Anonymous:2015:CIVbe

Anonymous:2015:CIVbf

Anonymous:2015:CIVbg

Anonymous:2015:CIVbh

Anonymous:2015:CIVbi

Anonymous:2015:CIVbj

Anonymous:2015:CIVbk

Anonymous:2015:CIVbl

Anonymous:2015:CIVbm

Anonymous:2015:CIVc

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVbn

Anonymous:2015:CIVbo

Anonymous:2015:CIVbp
Anonymous:2015:CIVbq

Anonymous:2015:CIVbr

Anonymous:2015:CIVbs

Anonymous:2015:CIVbt

Anonymous:2015:CIVbu

Anonymous:2015:CIVbv

Anonymous:2015:CIVbw

Anonymous:2015:CIVbx

Anonymous:2015:CIVby

Anonymous:2015:CIVf

Anonymous:2015:CIVg

Anonymous:2015:CIVbz

Anonymous:2015:CIVca

Anonymous:2015:CIVcb

REFERENCES

REFERENCES

Anonymous:2015:CIVs

Anonymous:2015:CIVt

Anonymous:2015:ECS

Anonymous:2015:ECG

Anonymous:2015:OPS

Anonymous:2016:CIVa

Anonymous:2016:CIVb

Anonymous:2016:CIVc

Anonymous:2016:CIVv

Anonymous:2016:CIVw

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVba

Anonymous:2016:CIVbb
REFERENCES

Anonymous:2016:CIVd

Anonymous:2016:CIVe

Anonymous:2016:CIVbk

Anonymous:2016:CIVbl

Anonymous:2016:CIVbm

Anonymous:2016:CIVbn

Anonymous:2016:CIVbo

Anonymous:2016:CIVbp

REFERENCES

Anonymous:2016:CIVbq

Anonymous:2016:CIVbr

Anonymous:2016:CIVbs

Anonymous:2016:CIVbt

Anonymous:2016:CIVbu

Anonymous:2016:CIVbv

Anonymous:2016:CIVbw

Anonymous:2016:CIVbx

Anonymous:2016:CIVby

Anonymous:2016:CIVbz

Anonymous:2016:CIVf

Anonymous:2016:CIVg

Anonymous:2016:CIVca

Anonymous:2016:CIVcb
Anonymous:2016:CIVcc

Anonymous:2016:CIVh

Anonymous:2016:CIVi

Anonymous:2016:CIVj

Anonymous:2016:CIVk

Anonymous:2016:CIVl

Anonymous:2016:CIVm

Anonymous:2016:CIVn

Anonymous:2016:CIVo

Anonymous:2016:CIVp

Anonymous:2016:CIVq

Anonymous:2016:CIVr

Anonymous:2016:CIVs

Anonymous:2016:CIVt

Anonymous:2016:CIVu

Anonymous:2016:EPR

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIId

Anonymous:2016:IIIf

Anonymous:2016:IIig

Anonymous:2016:IIh

Anonymous:2016:IIi
REFERENCES

Anonymous:2016:IIj

Anonymous:2016:IIk

Anonymous:2016:IIl

Anonymous:2016:IIm

Anonymous:2016:IIo

Anonymous:2016:IIp

Anonymous:2016:IIq

Anonymous:2016:IIr

Anonymous:2016:IIR

Anonymous:2016:IIS

Anonymous:2016:IHU

Anonymous:2016:IICa

Anonymous:2016:IICs

Anonymous:2016:IICu

Anonymous:2016:IICw

Anonymous:2016:IICy

Anonymous:2016:IICo

Anonymous:2016:IICq

Anonymous:2016:IICb

Anonymous:2016:IICt

Anonymous:2016:IICv

Anonymous:2016:IICx

Anonymous:2016:IICz

Anonymous:2016:IICbb

Anonymous:2016:IICd

Anonymous:2016:IICf

Anonymous:2016:IICj

Anonymous:2016:IICl

Anonymous:2016:IICn

Anonymous:2016:IICo

REFERENCES

REFERENCES

Anonymous:2016:IIEb

Anonymous:2016:IIEc

Anonymous:2016:IIEd

Anonymous:2016:IIEf

Anonymous:2016:IIEg

Anonymous:2016:IIEh

Anonymous:2016:IIEi

REFERENCES

April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:IITa

Anonymous:2016:IITj

Anonymous:2016:IITk

Anonymous:2016:IITl

Anonymous:2016:IITm

Anonymous:2016:IITn

Anonymous:2016:IITb

REFERENCES

161, January 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2016:IIEa

Anonymous:2016:IIEe

Anonymous:2017:CIVa

Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:CIVl

Anonymous:2017:CIVm

REFERENCES

Anonymous:2017:CIVb

Anonymous:2017:CIVv

Anonymous:2017:CIVw

Anonymous:2017:CIVx

Anonymous:2017:CIVy

Anonymous:2017:CIVz

Anonymous:2017:CIVba

Anonymous:2017:CIVbb

Anonymous:2017:CIVbc

Anonymous:2017:CIVbd

Anonymous:2017:CIVbe

Anonymous:2017:CIVc

Anonymous:2017:CIVbf

Anonymous:2017:CIVbg

Anonymous:2017:CIVbh

Anonymous:2017:CIVd

Anonymous:2017:CIVe

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:CIVi

Anonymous:2017:E

Anonymous:2017:IIa

REFERENCES

REFERENCES

Anonymous:2017:Ij

Anonymous:2017:Ik

Anonymous:2017:Il

Anonymous:2017:Im

Anonymous:2017:In

Anonymous:2017:Io

Anonymous:2017:Ip

Anonymous:2017:Iq
Anonymous:2017:IIr

Anonymous:2017:IIs

Anonymous:2017:IIt

Anonymous:2017:IIt

Anonymous:2017:IIu

Anonymous:2017:IIw

Anonymous:2017:IIx

Anonymous:2017:IIy
Anonymous:2017:IIZ

Anonymous:2017:IIba

Anonymous:2017:IIbb

Anonymous:2017:IIbc

Anonymous:2017:IIbd

Anonymous:2017:IIbe

Anonymous:2017:IIbf

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVk

Anonymous:2018:CIVl

Anonymous:2018:CIVm

Anonymous:2018:CIVn

Anonymous:2018:CIVo

Anonymous:2018:CIVp

Anonymous:2018:CIVq

Anonymous:2018:CIVy

Anonymous:2018:CIVz

Anonymous:2018:CIVba

Anonymous:2018:CIVbb

Anonymous:2018:CIVbc

Anonymous:2018:CIVbd

Anonymous:2018:CIVbe

Anonymous:2018:CIVbf

Anonymous:2018:CIVbg

Anonymous:2018:CIVbh

Anonymous:2018:CIVbi

Anonymous:2018:CIVd

Anonymous:2018:CIVbj

Anonymous:2018:CIVbk
Anonymous:2018:CIVbl

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:CIVg

Anonymous:2018:CIVh

Anonymous:2018:CIVi

Anonymous:2018:CIVj

Anonymous:2018:IIa

Anonymous:2018:IIb

Anonymous:2018:IIc

Anonymous:2018:IId

Anonymous:2018:IIe

Anonymous:2018:IIf

Anonymous:2018:IIg

Anonymous:2018:IIf

Anonymous:2018:IIi

Anonymous:2018:IIj

Anonymous:2018:IIk

Anonymous:2018:IIl

Anonymous:2018:IIm

Anonymous:2018:IIm

Anonymous:2018:IIo

Anonymous:2018:IIp

Anonymous:2018:IIq

REFERENCES

Anonymous:2018:IIZ

Anonymous:2018:IIba

Anonymous:2018:IIbb

Anonymous:2018:IIbc

Anonymous:2018:IIbd

Anonymous:2018:IIbe

Anonymous:2019:CIVa

Anonymous:2019:CIVj

Anonymous:2019:CIVk

Anonymous:2019:CIVl

Anonymous:2019:CIVm

Anonymous:2019:CIVn

Anonymous:2019:CIVo

Anonymous:2019:CIVp

Anonymous:2019:CIVq

Anonymous:2019:CIVr

Anonymous:2019:CIVs

Anonymous:2019:CIVb

Anonymous:2019:CIVt

Anonymous:2019:CIVu

Anonymous:2019:CIVv

Anonymous:2019:CIVw

Anonymous:2019:CIVx

REFERENCES

Anonymous:2019:CIVbe

Anonymous:2019:CIVbf

Anonymous:2019:CIVd

Anonymous:2019:CIVe

Anonymous:2019:CIVf

Anonymous:2019:CIVg

Anonymous:2019:CIVh

REFERENCES

Anonymous:2019:CIVi

Anonymous:2019:IIa

Anonymous:2019:IIb

Anonymous:2019:IIc

Anonymous:2019:IId

Anonymous:2019:IIe

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIh

Anonymous:2019:IIi

Anonymous:2019:IIj

Anonymous:2019:IIk

Anonymous:2019:IIl

Anonymous:2019:IIm

Anonymous:2019:IIn

Anonymous:2019:IIO

Anonymous:2019:IIp

Anonymous:2019:IIq

Anonymous:2019:IIr

Anonymous:2019:IIi

Anonymous:2019:IIt

Anonymous:2019:IIm

Anonymous:2019:IIn

Anonymous:2019:IIo

Anonymous:2019:IIx

Anonymous:2019:IIy

Anonymous:2019:IIz

Anonymous:2019:Iiba

Anonymous:2019:Iibb

Anonymous:2019:Iibc

Anonymous:2019:Iibd

Anonymous:2019:Iibe

REFERENCES

Anonymous:2019:IIbf

Antol:2013:PPN

Anandakrishnan:2010:ABN

Aoun:2016:FRB

Akin-Ojo:2011:QBN

Arfeen:2014:ICC
Allen:2014:SNU

Arifin:2016:GTH

Ali:2010:RCR

Anjos:2015:TAE

Anderson:2017:RSZ

Avramopoulos:2013:VLN

Alaniz:2015:AHI

Aleksandrov:2010:MMM

Ajitha:2011:RSF

Andersson:2014:PHE

Akbarzadeh:2015:HAA

Antila:2015:CTI

Anjali:2018:PRP

Azadi:2018:NQE

Alaghemandi:2011:CBT

Ansbacher:2010:CDM

Assadollahzadeh:2010:EPS

Behnam Assadollahzadeh, Sascha Schäfer, and Peter Schwedtfeger. Electronic properties for small tin clusters Snₙ,

REFERENCES

REFERENCES

Burger:2011:EPP

Bachler:2012:QCC

Borras-Almenar:2010:MPC

Bhagat:2019:ELP

Beu:2018:CFF

Balius:2013:GBM

Trent E. Balius, William J. Allen, Sudipto Mukherjee, and Robert C. Rizzo. Grid-based molecular footprint compari-

Bond:2010:FOS

Borrelli:2010:EHR

Baldovi:2014:LEU

Bartolomei:2011:LRI

Borghini:2010:CRP

Eric A. C. Bushnell, Edvin Erdtman, Jorge Llano, Leif A. Eriksson, and James W. Gauld. The first branching point in porphyrin biosynthesis: a systematic docking, molecular dynamics and quantum mechanical/molecular mechanical study of substrate binding and mechanism of uroporphyrinogen-III

Beu:2017:CFF

Batlogg:2019:CAM

Bernales:2019:RCH

Boomsma:2013:SNU

Buelens:2012:LSS

[BH13] Ol’ha O. Brovarets’ and Dmytro M. Hovorun. Atomistic understanding of the C-T mismatched DNA base pair tau-

REFERENCES

Boo:2010:IDS

Bevc:2015:SNU

Berezniak:2012:SDA

Baranov:2011:ELD

Boateng:2013:CTC

REFERENCES

Buenker:2012:ISP

Barquera-Lozada:2019:VSA

Baranowska-Laczkowska:2013:PLR

Beker:2013:LCP

Baranowska-Laczkowska:2014:BSE

Baranowska-Laczkowska:2013:NBS

Berski:2010:IQC

Berski:2011:ELF

Bezkorovaynaya:2012:MSS

Baranowska-Laczkowska:2013:OBS

Baranowska:2010:MSO

[BLS10] Angelika Baranowska, Krzysztof Z. Laczkowski, and Andrzej J. Sadlej. Model studies of the optical rotation, and theo-

REFERENCES

2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Andrei V. Bandura, Vitaly V. Porsev, and Robert A. Evarestov. Application of zone-folding approach to the first-

[BS10b] Graine Black and John M. Simmie. Barrier heights for H-atom abstraction by HO₂ from n-butanol — a simple yet ex-

[Brylinski:2010:QDL]

[Birkholz:2015:UBG]

[Blomberg:2016:IFE]

[Boese:2016:AAE]

[Buchholz:2018:ALE]

[Becker:2019:DFT]

REFERENCES

Bejagam:2018:DNB

Borthakur:2016:TST

Bauza:2018:MEP

Bijina:2018:EPL

Bukharov:2018:HCl

Bylaska:2011:PIP

Baskaran:2012:FCP

Bertran:2010:IDN

Beruski:2014:ACD

Bultinck:2013:BFI

REFERENCES

REFERENCES

REFERENCES

2309–2317, October 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Cardone:2015:DCN

Chen:2016:HSC

Chuang:2011:IBS

Chakraborty:2012:VNL

Chys:2012:SPC

Chakraborty:2018:CIT

[CC18a] Debdutta Chakraborty and Pratim Kumar Chattaraj. Confinement induced thermodynamic and kinetic facilitation of

REFERENCES

Cammi:2018:ACP

Chiu:2014:PAE

Cickovski:2010:MMD

Chiu:2011:DPI

Chen:2011:EPM

REFERENCES

[Ramona Carbó-Dorca:2013:NQS]

[Ramona Carbó-Dorca:2016:AQM]

[Ramona Carbó-Dorca:2019:BRS]

[Ramona Carbó-Dorca:2010:CQSb]

[Ramona Carbó-Dorca:2011:CQS]

References

REFERENCES

REFERENCES

Chidthong:2010:ESP

Chong:2014:SDA

Chen:2016:WFE

Chang:2013:AAC

Chen:2017:CMF

Cao:2016:HEI

REFERENCES

Chang:2013:PSF

Chen:2013:PPD

Clemente-Juan:2018:VPT

Condic-Jurkic:2010:CQM

Campen:2010:IES

Cvitkovic:2017:DME

[CK17] John P. Cvitkovic and George A. Kaminski. Developing multisite empirical force field models for Pt(II) and cisplatin. *Jour-
REFERENCES

CUMMINS:2018:RMC

CHAN:2017:CFS

CHAN:2019:RTR

CHOI:2016:PHC

CHEN:2011:RBS

[CLK11] Timothy H. Click, Aibing Liu, and George A. Kaminski. Quality of random number generators significantly affects results of

[Clote:2015:EDR]

[Cao:2010:NSO]

Dong-Sheng Cao, Yi-Zeng Liang, Qing-Song Xu, Hong-Dong Li, and Xian Chen. A new strategy of outlier detection for QSAR/QSPR. *Journal of Computational Chemistry*, 31(3):592–602, February 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Campana:2013:TMP]

[Chitsaz:2013:GHR]

[Cukrowski:2016:IQF]

REFERENCES

2010. CODEN JCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Calvello:2018:CIC

Chaiwongwattana:2012:DMS

Campeggio:2019:DCD

Chen:2010:PIB

Carter:2014:VWC

Chan:2019:OIE

REFERENCES

uary 5, 2019. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

[CvM19] Emma L. Cates and Tanja van Mourik. Halogen bonding with the halogenabenzene bird structure, halobenzene, and

[CWT+12] Qi Cao, Jing Wang, Zhao-Shuo Tian, Zai-Feng Xie, and Fu-Quan Bai. Theoretical investigation on the photophysical properties of N-heterocyclic carbene iridium (III) complexes \((\text{fpmb})_x \text{Ir(bptz)}_{3-x} (x = 1–2)\). *Journal of Computational Chemistry*, 33(10):1038–1046, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Chen:2015:FFD

Chintapalli:2010:CLF

Cao:2017:MII

Cheron:2017:SNU

Chandra:2012:TII

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Curco:2011:SSA

Chen:2011:EMB

Chen:2019:TEG

Dickson:2016:CFB

deAngulo:2012:RCA

Domingo:2015:ERT

Alex Domingo, Celestino Angeli, Coen de Graaf, and Vincent Robert. Electronic reorganization triggered by electron trans-

DeSilva:2019:ASE

deAndrade:2015:EMR

Dandu:2018:PDF

DAlessando:2015:EDS

Dracinsky:2012:VAC

REFERENCES

DiPasquale:2016:SNU

Dutra:2014:LLL

Deshmukh:2011:IHB

Diaz:2017:END

Dickson:2017:OAS

Demichelis:2015:FPM

[DBM+15] Raffaella Demichelis, Marco Bruno, Francesco R. Massaro, Mauro Prencipe, Marco De La Pierre, and Fabrizio Nestola.

REFERENCES

Dudev:2015:QCB

Davie:2016:ILS

DeVleeschouwer:2018:CCB

Denis:2012:IBA

Ding:2015:GNA

REFERENCES

Dieterich:2011:CIS

Dieterich:2014:GBS

Dasgupta:2017:SGH

Ducere:2012:CCA

Dedachi:2011:SIB

Dardouri:2013:IDE

Denis:2011:ACM

Dillen:2015:TEF

Dhingra:2013:HIH

Delgado-Jaime:2012:SNU

Dombrowsky:2018:SAA

Maximilian J. Dombrowsky, Sven Jager, Benjamin Schiller, Benjamin E. Mayer, Sebastian Stammler, and Kay Hamacher.

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[DLW12] Xiang Po Du, Veng Cheong Lo, and Yuan Xu Wang. The effect of structure and phase transformation on the mechano-
REFERENCES

Duan:2015:UBI

Dolgonos:2015:SNS

Dittner:2015:EGO

DelGaldo:2018:TAS

DasGupta:2017:CAF
DeBiase:2014:MSD

DeBiase:2015:SNU

Dupuis:2019:MOA

DeLaPierre:2011:PSF

Dominikowska:2011:CDA

REFERENCES

295

[Deb:2016:RTL] Indrajit Deb, Rupak Pal, Joanna Sarzynska, and Ansuman Lahiri. Reparameterizations of the χ torsion and Lennard-

REFERENCES

Dohm:2017:SNU

DeLaLande:2011:SDA

Delcey:2019:ECL

deSouza:2016:RCS

Du:2011:MMS

REFERENCES

[DWL] Qi Dai, Li Wu, and Lihua Li. Improving protein structural class prediction using novel combined sequence information

Evarestov:2012:FPC

Evarestov:2018:IRA

Evarestov:2013:BBN

Evarestov:2017:FPM

Evarestov:2017:PSE

Erba:2017:NRE

Alessandro Erba, Dominique Caglioti, Claudio Marcelo Zicovich-Wilson, and Roberto Dovesi. Nuclear-relaxed elastic and piezoelectric constants of materials: Computational aspects of two quantum-mechanical approaches. *Journal of
REFERENCES

Eller:2015:CAE

Elias:2018:MIS

Ehara:2013:CII

Edel:2016:IFP

Erba:2013:ADS

Ehara:2016:PCS

Elenewski:2013:CPC

El-Hamdi:2016:CAB

El-Hamdi:2019:HSP

Eisenberg:2013:RTG

Eilmes:2015:SIT
REFERENCES

Esser:2017:AFP

ElKhoury:2017:IES

Eriksen:2011:CPP

Erlebach:2016:TCA

Eastman:2010:ENI

Christopher R. Ellis, Cheng-Chieh Tsai, Fang-Yu Lin, and Jana Shen. Conformational dynamics of cathepsin D and

[FA18] Lisa A. Fredin and Thomas C. Allison. Semiempirical configuration interaction calculations for Ru-centered dyes*. *Jour-
REFERENCES

Farhat:2015:ICG

Farley:2018:SMN

Ferro:2010:AQC

Fernandez:2012:AER

Fernandez:2014:OER

Futera:2014:RMR
Zdeněk Futera and Jaroslav V. Burda. Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM

REFERENCES 313

Frishberg:2018:CSE

Francisco:2017:MAI

Ferrari:2010:IPS

Fogolari:2015:AAL

Fan:2010:NDB

Ferro-Costas:2012:QBE

[FCOGM12] David Ferro-Costas, Nicolás Otero, Ana M. Graña, and Ricardo A. Mosquera. A QTAIM-based energy partitioning for understanding the physical origin of conformational preferences: Application to the Z effect in O ≡ C — X — R and

Ferro-Costas:2014:EEB

Fu:2014:MIN

Falklof:2013:MPA

Falklof:2014:DBK

Fumanal:2016:DES

REFERENCES

REFERENCES

[Farrokhpour:2011:IPE] Hossein Farrokhpour, Zainab Mombeini, Mansoor Namazian, and Michelle L. Coote. Intermolecular potential energy su-

REFERENCES

2015. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See erratum [Fra16].

[FSC+14] Biao Fu, Aleksandr B. Sahakyan, Carlo Camilloni, Gian Gae-tano Tartaglia, Emanuele Paci, Amedeo Caflisch, Michele

Fan:2015:DDS

Fu:2019:CDZ

Faraggi:2012:SXI

Glushkov:2012:OCM

Glushkov:2014:MSF

Grabarek:2018:IES

Dawid Grabarek and Tadeusz Andruniów. Initial excited-state relaxation of locked retinal protonated Schiff base chro-

Gordeev:2019:SNC

Galano:2013:CMA

Galano:2014:KRM

Gruden:2017:BDF

Grande-Aztatzi:2014:SES

REFERENCES

Garberoglio:2012:SNU

Gavrish:2012:AER

Gumerov:2012:HAF

Gutsev:2019:HDM

Gutsev:2016:SPI

[GBW+14] Christoph Grebner, Johannes Becker, Daniel Weber, Daniel Bellinger, Maxim Tafipolski, Charlotte Brückner, and Bernd

Gupta:2011:NDI

Ghorai:2018:PSL

Gramatica:2014:SNU

Ghosh:2015:RSS

Gramatica:2013:SNU

Paola Gramatica, Nicola Chirico, Ester Papa, Stefano Cassani, and Simona Kovarich. Software news and updates: QSARINS: a new software for the development, analysis, and

[Gong:2016:ACD]

[Gao:2015:EPC]

[Gillessen:2010:CSI]

[Gao:2017:IFP]

[Grimme:2011:EDF]

Stefan Grimme, Stephan Ehrlich, and Lars Goerigk. Effect of the damping function in dispersion corrected density func-

Gotze:2012:BHN

Georgieva:2010:QCM

Gross:2016:LED

Gross:2016:SNU

Gao:2012:AFE

Gamez:2017:ADF

REFERENCES

July 30, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Goh:2017:RDL

Gilbert:2011:TOG

Garcia-Jacas:2014:SNU

Gertych:2010:IPS

Galstyan:2015:CPV

Gunera:2015:FBS

Getmanskii:2019:MDS

Gavane:2019:THT

Gramatica:2013:LER

Glukhova:2014:MFB

REFERENCES

Ghosh:2013:EFP

Gagnon:2016:FCD

Gan:2016:SIR

Gillet:2017:TER

Glendening:2013:ENN

Glendening:2013:SNU

[GLW13b] Eric D. Glendening, Clark R. Landis, and Frank Weinhold. Software news and updates: NBO 6.0: Natural bond or-

Goodarzi:2018:ESP

Goodarzi, Moein; Nazari, Fariba; Illas, Francesc. Electronic and structural properties of Li$_n$@Be$_2$B$_8$ (n = 1-14) and Li$_n$@Be$_2$B$_{36}$ (n = 1-21) nanoflakes shed light on possible anode materials for Li-based batteries. *Journal of Computational Chemistry*, 39(22):1795–1805, August 15, 2018. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Garate:2013:FED

Gonnet:2012:PVL

Granucci:2011:GCI

Gruber:2011:SBL

REFERENCES

REFERENCES

Genheden:2011:CDI

Grajciar:2015:LMI

Grabowski:2018:TFT

Garcia-Risueno:2014:SPP

Gonzalez:2012:SRI

Giri:2010:BAS
REFERENCES

[GRN19] Miquel Garcia-Ratés and Frank Neese. Efficient implementation of the analytical second derivatives of Hartree–Fock and

Geppert:2012:VSC

Genheden:2015:BAA

Grigoropoulos:2011:SEP

Gomes:2012:SNU

Gaillard:2014:PDM

[GS16] Raimondas Galvelis and Yuji Sugita. The following articles were published in past issues of the *Journal of Computational Chemistry*. Replica state exchange metadynamics for improving the convergence of free energy estimates. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

An Ghysels, Veronique Van Speybroeck, Ewald Pauwels, Saron Catak, Bernard R. Brooks, Dimitri Van Neck, and

Li-Hua Gan, Rui Wu, Jian-Lei Tian, Joseph Clarke, Christopher Gibson, and Patrick W. Fowler. From C$_{58}$ to C$_{62}$ and back: Stability, structural similarity, and ring current. *Journal of Computational Chemistry*, 38(3):144–151, January 30,
 REFERENCES

2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Glendening:2019:EON

Gu:2012:SEP

Gong:2015:TVH

Guo:2012:XEO

Gong:2010:IMS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
July 30, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Guo:2012:ICS

Gao:2016:CSG

Hahn:2010:IRE

Holmes:2016:ABV

Heinen:2014:HAE

Hamacher:2011:EQUI

Hanke:2011:SAU

Hofinger:2012:GAC

Hassan:2014:ITS

Hacene:2012:AVE

Heit:2014:ESG

Hochheim:2015:AIC

Hohnerbach:2019:AAN

Holmes:2017:CSS

Hsu:2017:SNU

Holt:2010:NPI

Honigmann:2012:CCI

Hurd:2017:QMS

Hynninen:2014:SNU

Halbert:2011:SGB

Hendrickx:2010:UTA

REFERENCES

Hughes:2015:RSA

Heinz:2015:TSI

Hellweg:2012:SNU

Huang:2015:ETAa

Huang:2015:ETAb

Huang:2015:TAE

REFERENCES

Hofmann:2014:TFF

Heinz:2010:CSB

Heinen:2018:CPP

Hellweg:2013:HCK

Huhn:2017:IES

Hernandez-Esparza:2014:GBA

Hess:2019:EIC

Hess:2012:FPK

Holland:2010:EEC

Homeyer:2013:SNU

Holguín-Gallego:2016:ECI

Herrmann:2016:QCS

Hayami:2019:MVS

Hischenhuber:2013:CDG

Hischenhuber:2013:SNU

Huang:2017:EEB

Hill:2013:ABS

Hirst:2017:ISB

Hu:2010:ABF

Hnyk:2013:CCC

Heine:2009:CCW

REFERENCES

REFERENCES

[Huang:2018:MDS]

[Horta:2012:RIP]

[Hayashi:2019:HIM]

[Han:2012:CMB]

[He:2013:SNU]

Yuye He, Chin Yee Liew, Nitin Sharma, Sze Kwang Woo, Yi Ting Chau, and Chun Wei Yap. Software news and up-

Herbers:2013:RGC

Harger:2017:TOA

Huang:2015:ESM

Huang:2017:IIV

Huang:2018:EII

REFERENCES

Hofener:2014:CCF

Hrsak:2017:OTN

Harabuchi:2016:NST

Haque:2010:PAP

Henriksson:2010:PDT

He:2013:MPB

Heffernan:2018:SSB

Hinsen:2012:SNU

Heggen:2016:CUH

Hermann:2016:SNU

REFERENCES

Wen-Fei Huang, P. Raghunath, and M. C. Lin. Computational study on the reactions of H$_2$O$_2$ on TiO$_2$ anatase (101) and rutile (110) surfaces. *Journal of Computational Chemistry*,...
REFERENCES

Hernandez-Rodriguez:2013:EDD

Hahnke:2011:PASb

Helmich:2012:SRM

Harris:2014:ISB

Hu:2014:SCM

Hagras:2016:ETP

Muhammad A. Hagras and Alexei A. Stuchebrukhov. Electron tunneling in proteins program. *Journal of Computa-
REFERENCES

Harris:2016:PEE

Harada:2017:SDS

Harada:2017:TSP

Heyndrickx:2011:PSB

Hanscam:2019:SSA

REFERENCES

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[He:2019:EIG]

[Hao:2011:ACV]

[Huang:2011:IQD]

[Harada:2015:ECS]

[Harada:2017:CFP]
REFERENCES

Higuchi:2019:MUA

Huang:2016:FSL

Balong Huang. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. *Journal of Computational Chemistry*, 37(9):825–835, April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Huggins:2012:BTA

Huggins:2014:CDM

Hunter:2012:DBS

Hogan:2016:CBH

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic). See corrigendum [HvM17].

REFERENCES

[Harada:2019:TPS] Ryuhei Harada, Ryunosuke Yoshino, Hiroaki Nishizawa, and Yasuteru Shigeta. Temperature-pressure shuffling outlier flooding method enhances the conformational sampling of

Hu:2017:PES

He:2010:GRP

Ibrahim:2011:MMS

Ibrahim:2017:ESM

Illingworth:2012:SSS

Illingworth:2013:ESS

Christopher J. R. Illingworth, Sree V. Chintapalli, Stefano A. Serapian, Andrew D. Miller, Vaclav Veverka, Mark D. Carr,

Ioannidis:2016:SNU

Iype:2013:PRF

Ihlenfeldt:2012:LEC

Ito:2010:SFC

Ivanova:2018:TLM

Ikegami:2010:FMO

Ishikura:2015:EEN

Imamura:2013:LCO

Iliff:2011:POA

Ishizuka:2017:ECI

Iida:2016:VFE

Ignjatovic:2018:CMG

Ishikawa:2013:XOA

Atsushi Ishikawa and Hiroshi Nakatsuji. XPS of oxygen atoms on Ag(111) and Ag(110) surfaces: Accurate study with SAC/SAC-CI combined with dipped adcluster model. *Journal of Computational Chemistry*, 34(21):1828–1834, August 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Inagaki:2019:EPE

Imada:2018:DFS

Yasuhiro Ikabata, Yusuke Tsukamoto, Yutaka Imamura, and Hiromi Nakai. Local response dispersion method in periodic...

[Ijoka:2019:KSL]

[Ikebe:2011:TTT]

[Inakollu:2018:SBC]

[Inagaki:2011:PCE]

REFERENCES

2010. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Jacob:2011:DAP

Jacob:2011:PSF

Jaramillo-Botero:2011:LSL

Jia:2016:NHR

Ji:2010:KMH

Jimenez-Halla:2009:TAT

Jimenez-Halla:2011:ETA

Jia:2019:SFE

Jakobtorweihen:2013:CCM

Jiao:2016:CCS

JIS13

Jia:2019:SFE

391

REFERENCES

REFERENCES

Jadraque:2011:CTP

Jambeck:2013:PAC

Jung:2013:ELT

Jung:2014:MCM

Jiajun:2016:STQ

Jung:2019:SMD

Jaewoon Jung, Wataru Nishima, Marcus Daniels, Gavin Bascom, Chigusa Kobayashi, Adetokunbo Adedoyin, Michael Wall, Anna Lappala, Dominic Phillips, William Fischer, Chang-Shung Tung, Tamar Schlick, Yuji Sugita, and

Jorge:2017:PHSb

Jurij:2015:SNU

Jesser:2014:GOB

Jerbi:2017:CSR

Jung:2017:MPM

Kameron R. Jorgensen and Angela K. Wilson. Letters to the editor: Comment on the paper “Extensive Theoretical Studies of a New Energetic Material: Tetrazino-Tetrazine-Tetraoxide (TTTO)” by Xinli Song, Jicun Li, Hua Hou, and

Jones:2016:MHD

Jensen:2015:ETS

Jono:2010:MIQ

Ji:2015:IBL

Jin:2016:HAT

Anna-Pitschna E. Kunz, Jane R. Allison, Daan P. Geerke, Bruno A. C. Horta, Philippe H. Hünenberger, Sereina Riniker,

Kantardjiev:2015:SNU

Koley:2012:CIC

Karton:2017:HRD

Kawamura:2014:QCA

Kang:2010:ADF

Young Kee Kang and Byung Jin Byun. Assessment of density functionals with long-range and/or empirical dispersion corrections for conformational energy calculations of peptides.

References

Knight:2011:AEI

Knight:2011:SIS

Konig:2011:NBS

Kazaryan:2013:ADF

Kessler:2014:MDH

Krause:2014:CLS

Kendrick:2016:SNU

Kolokathis:2019:KRC

Kalugina:2012:SHV

Kalyaanamoorthy:2013:LRM

Kaushik:2013:SDS

Koes:2014:SBV

David Ryan Koes and Carlos J. Camacho. Shape-based virtual screening with volumetric aligned molecular shapes.
REFERENCES

REFERENCES

[**Kandathil:2013:ATK**] Shaun M. Kandathil, Timothy L. Fletcher, Yongna Yuan, Joshua Knowles, and Paul L. A. Popelier. Accuracy and tractability of a kriging model of intramolecular polarizable...

Kong:2019:IDM

Kramer:2012:AME

Kaupp:2016:ETP

Kimura:2019:CSE

Kaledin:2019:BAL
Alexey L. Kaledin, Craig L. Hill, Tianquan Lian, and Djamaaladdin G. Musaev. A bulk adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanoparticles. *Journal of Computational Chemistry*, 40(1):212–221, January 5,
Kearns:2017:CCF

Kido:2019:NMF

Kashimura:2019:PES

Ko:2010:CIC

Kessler:2012:BEF

References

Kobayashi:2017:SNU

Kaliman:2017:SNU

Krause:2017:SNU

Kroeger:2019:CFM

Kondo:2018:AER

REFERENCES

Kim:2017:SNU

Kendrick:2012:EVW

Kwon:2016:SCE

Knapp:2010:VPR

Kozlowska:2010:DSCa

REFERENCES

Khan:2018:HPT

Kozuch:2013:SCS

Kozlowska:2010:DSCb

Kawakami:2019:DCC

Ketrat:2019:TSM

[KMT+19] Sombat Ketrat, Thana Maihom, Piti Treesukul, Bundet Boekfa, and Jumras Limtrakul. Theoretical study of methane adsorption and C-H bond activation over Fe-embedded
 REFERENCES

412

Kramer:2018:ECO

Karamanis:2014:SNO

Koput:2015:IGS

Koput:2015:ISC

Koput:2016:IPE

REFERENCES

Carsten Kutzner, Szilárd Páll, Martin Fechner, Ansgar Esztermann, Bert L. de Groot, and Helmut Grubmüller. More

References

Karbowiak:2014:LES

Krissinel:2010:CCN

Kim:2012:BDV

Kaminsky:2010:CBS

Koppole:2012:DRP

Kaliman:2013:SNU

REFERENCES

1661, July 30, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Karton:2017:WDH

Kawashima:2019:PIM

Kawashima:2019:TIR

Koster:2016:AAI

Krausbeck:2017:SAF

Kar:2013:LRCb

Kuttel:2016:SNU

Kleesiek:2010:RSS

Kefalidis:2012:DSM

Kowsari:2018:SER

Kamiya:2019:ISH

[KT19] Muneaki Kamiya and Tetsuya Taketsugu. Ab initio surface hopping excited-state molecular dynamics approach on the

Kuriakose:2015:CSA

Karolak:2014:ESS

Karimi-Varzaneh:2011:IMD

Kritayakornupong:2010:IQM

Kubar:2015:SNU

Kratz:2016:SNU

Knight:2013:AQA

Kim:2011:ECE

Kumar:2015:SNU

Kirilchuk:2015:MPF

Kajiwara:2017:ITM

[KYT+17] Yuta Kajiwara, Satoshi Yasuda, Yuuki Takenuku, Takeshi Murata, and Masahiro Kinoshita. Identification of thermostabilizing mutations for a membrane protein whose three-

Koukaras:2012:SSE

Krajniak:2018:CGM

Krajniak:2018:RMM

Keceli:2016:SIP

Labonte:2017:RCM

REFERENCES

Lii:2016:CMM

Lenchuk:2019:CSD

Larin:2011:PAM

Laref:2012:TBM

Lundborg:2014:SNU

Liu:2010:FDO

Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macro-
REFERENCES

REFERENCES

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[LC17b] Kuo Hao Lee and Jianhan Chen. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein

Li:2017:DTE

Liu:2010:RIC

Li:2018:FAS

Li:2010:NBO

Li:2015:VWE

Liu:2018:MHT

Li:2010:TSH

Liu:2018:PFF

Lorenz:2014:BDG

Liu:2016:DTI

Lee:2013:NBO

REFERENCES

Laury:2012:VFS

Lu:2010:FPS

Lizana:2018:TII

Lesch:2017:SNU

Liu:2015:APE

Lehtola:2015:SNU

Lesiuk:2019:ESV

Law:2014:PFE

Li:2012:QMR

Li:2010:EGC

Ling:2011:STC

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Lucas:2014:UCM

Li:2019:CIE

Lucke:2017:EPB

Lin:2011:CSS

Lamsabhi:2015:EIT

REFERENCES

Li:2014:PDD

Liu:2012:SSH

Lee:2010:AUS

Lonsdale:2011:CSW

Le:2017:IDL

Lehtola:2012:SNU

Li:2019:DSN

Luo:2011:TSK

Lu:2011:RBW

Lee:2012:SNU

Li:2011:REBa

REFERENCES

Lin:2011:SSO

Latek:2011:CNN

Lee:2013:DSC

Lousada:2016:SCO

Lupan:2016:MEI

REFERENCES

REFERENCES

[LLB+12] Hongping Li, Shuhui Lv, Yijia Bai, Yanjie Xia, Xiaojuan Liu, and Jian Meng. First-principle investigation of magnetic cou-

REFERENCES

[Lii:2011:APE]

[Liu:2017:AFD]

[Li:2019:MFF]

[Lakkaraju:2016:DIA]

Li:2010:NSI

Li:2011:IBH

Lv:2012:IMT

Liao:2011:NGR

Li:2011:FPI

Liu:2019:URS

Liu:2014:RDM

Lu:2012:MAD

Lin:2012:TDV

Lin:2010:UOS

Li:2012:TCA

Yan Ying Liang, Bo Li, Xuan Xu, Feng Long Gu, and Chaoyuan Zhu. A density functional theory study on nonlinear optical properties of double cage excess electron compounds: Theoretically design M [Cu(Ag)@(NH_3)$_n$] (M = Be, Mg and Ca; n = 1–3). *Journal of Computational Chemistry*, 40(9):971–979, April 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Joachim Laun, Daniel Vilela Oliveira, and Thomas Bredow. Consistent Gaussian basis sets of double- and triple-zeta va-
lence with polarization quality of the fifth period for solid-
state calculations. Journal of Computational Chemistry, 39
(19):1285–1290, July 15, 2018. CODEN JCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

Laoui:2011:WSA

[LP11a] Abdel Laoui and Valery R. Polyakov. Web services as applica-
tions' integration tool: QikProp case study. Journal of Compu-
tational Chemistry, 32(9):1944–1951, July 15, 2011. CO-
DEN JCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

Lin:2011:ESF

free energy of amino acid side chain analogs: Implications for
the validity of electrostatic linear response in water. Journal
CODEN JCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

Luchow:2011:SED

tool to analyze molecular wavefunctions. Journal of Compu-
tational Chemistry, 32(12):2619–2626, September 2011. CO-
DEN JCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

Labat:2011:RNE

[LPAS11] Frédéric Labat, Claude Pouchan, Carlo Adamo, and Gusta-
vao E. Scuseria. Role of nonlocal exchange in molecular crys-
tals: the case of two proton-ordered phases of ice. Journal of
CODEN JCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

Lim:2010:TDS

[LPE+10] Len Herald V. Lim, Andreas B. Pribil, Andreas E. Ellmerer,
Bernhard R. Randolf, and Bernd M. Rode. Temperature de-
pendence of structure and dynamics of the hydrated Ca^{2+}
ion according to ab initio quantum mechanical charge field
and classical molecular dynamics. Journal of Computational
Chemistry, 31(6):1195–1200, April 30, 2010. CODEN JC-
CHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

Li:2013:PSS

Lasinski:2012:RPI

Lopez:2013:IPE

Lemkul:2015:SNU

Lervik:2017:SNU

REFERENCES

REFERENCES

Lamiable:2016:CAH

Lu:2011:CSS

Luchow:2014:MCB

Lundberg:2012:UCB

Larsson:2013:GOP

Lin:2013:IVS

[LvG13a] Zhixiong Lin and Wilfred F. van Gunsteren. Influence of variation of a side chain on the folding equilibrium of a ⍺-peptide:
REFERENCES

Lin:2013:CRS

Lin:2013:RAG

Li:2011:REBb

Landis:2016:ERH

Lu:2013:QWP

REFERENCES

{Li:2014:MSP}

{Li:2018:SBS}

{Lev:2010:QMI}

{Liang:2011:PSC}

{Li:2011:ICC}

{Levandowski:2016:SHA}

Li:2015:CXH

Liu:2016:MIM

Liu:2013:ADI

Liu:2016:KCG

Liu:2017:APL

Cui Liu, Dong-Xia Zhao, and Zhong-Zhi Yang. Direct evaluation of individual hydrogen bond energy in situ in intra-

Michel Masella, Daniel Borgis, and Philippe Cuniasse. A multiscale coarse-grained polarizable solvent model for handling

Mohamed:2016:ESF

Mondal:2015:DEO

Menendez:2015:OEI

Martinez:2015:SNU

Moreira:2016:QMC

Maciejewski:2014:DCD

Mandado:2010:SMA

Mahapatra:2012:DPS

Mendoza-Cortes:2016:PCP

Muz:2015:SGM
Mahapatra:2011:SOS

Mooney:2012:MIG

Martorell:2010:FPS

Maschietto:2018:HCT

Munoz-Castro:2017:EBE

Alvaro Muñoz-Castro and R. Bruce King. On the formation of smaller \(p \)-block endohedral fullerenes: Bonding analysis in the \(E@C_{20} \) (\(E = \text{Si, Ge, Sn, Pb} \)) series from relativistic DFT calculations. *Journal of Computational Chemistry*, 38(19):1661–1667, July 15, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Daniel K. W. Mok, Foo-Tim Chau, Edmond P. F. Lee, and John M. Dyke. High-level ab initio calculations on \(\text{HGeCl} \) and the equilibrium geometry of the \(\tilde{A}^1 \tilde{A}' \) state derived from Franck–Condon analysis of the single-vibronic-level emission spectra of \(\text{HGeCl} \) and \(\text{DGeCl} \). *Journal of Computational Chemistry*, 31(3):476–491, February 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Lucas Modesto-Costa, Elmar Uhl, and Itamar Borges Jr. Water solvent effects using continuum and discrete models: the

Ma:2013:FES

Martins:2018:WQW

Maupetit:2010:FML

Maintz:2013:APP

Maintz:2016:SNU

REFERENCES

Moreira:2010:PPD

Mollenhauer:2011:AQC

Morao:2017:RAA

Micera:2011:SOC

Mollenhauer:2014:BPT

REFERENCES

Marmitt:2015:DSI

Maschietto:2019:UDB

Mulder:2016:SEO

Mikulskis:2012:SAL

Muta:2010:ASF

Meng:2011:CSL

[MH11] Qingyong Meng and Ming-Bao Huang. A CAS study on S-loss and O-loss dissociation mechanisms of the SO$_4^2-$ ion in

[Meitei:2017:IIS]

REFERENCES

Morishita:2013:FRF

Muhammad:2015:HDH

Mitin:2013:PFM

Maingi:2012:DBT

Martin:2014:CAN

REFERENCES

REFERENCES

Merlot:2013:AEE

Middendorf:2015:SSB

Muller:2019:IFT

Miyashita:2017:FFC

Matsui:2013:CSC

REFERENCES

REFERENCES

Mermelstein:2018:FFG

Ma:2012:TIR

Mo:2013:DSE

Mei:2012:EPC

Massa:2018:QCP

REFERENCES

REFERENCES

Murata:2010:LSE

Yoshiharu Mori and Hisashi Okumura. Simulated tempering based on global balance or detailed balance conditions:

Mori:2017:CCU

Morpurgo:2015:DSC

Morokuma:2019:F

Mori:2012:ALS

Mitra:2011:UCP

Marques:2013:DIG

Jorge M. C. Marques and Francisco B. Pereira. A detailed investigation on the global minimum structures of mixed rare-

REFERENCES

Mahanta:2011:ISP

Miriyala:2017:DNC

Mandado:2014:AER

Macchi:2018:ETE

Meisner:2011:KIE

Margreitter:2017:UPC

Mayeno:2011:REA

Manz:2010:DRC

Miao:2011:RHB

Moura:2012:QMM

Martins:2013:CAC

REFERENCES

Müller:2015:CSN

Mignon:2016:CTS

Mahajan:2017:JBP

Mishra:2012:CPM

Matta:2016:BMR

REFERENCES

Mayne:2013:RPS

Mills:2017:SNU

Martinez:2016:TER

Meier:2012:IGB

Mananghaya:2019:SAG

Meier:2012:EVF

Mena-Ulecia:2018:SAB

Ma:2019:SEO

Mohammadiarani:2017:IMP

Myburgh:2018:CEC

Aromatic interactions of alanine using MP2, CCSD, and DFT methods.

Editorial.

Density functional theory study of a molecular allosteric switch for 2,2'-bipyridyl-3,3'-15-crown-5.

Calculation of photoionization differential cross sections using complex Gaussian-type orbitals.

Optimization of complex Slater-type functions with analytic derivative methods for describing photoionization differential cross sections.

Automated Search of Minimum Free-Energy Path by Umbrella Integration.

Maruyama:2014:MPI

Matsumoto:2018:SNU

Mamonov:2011:RSA

Nemoto:2015:ISN

Nava:2018:IDM

Nakata:2019:DNP

[Nakata:2018:ASD] Hiroya Nakata and Dmitri G. Fedorov. Analytic second derivatives for the efficient electrostatic embedding in the frag-

Maggie Ng, Daniel K. W. Mok, Edmond P. F. Lee, and John M. Dyke. Rate coefficients of the CF₃CHFCF₃ + H

Nishizawa:2016:RQM

Norby:2016:MME

Ng:2017:RFT

Narsaria:2018:RDN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nakai:2017:EPS

Nguyen:2018:UFF

Ookoshi:2015:REC

Ootani:2015:TIE

Oehme:2012:EAC

Alexey V. Odinokov, Nikita O. Dubinets, and Alexander A. Bagaturyants. pyEFP: Automatic decomposition of the complex molecular systems into rigid polarizable fragments. *Jour-

REFERENCES

REFERENCES

CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

[PAK15] Pouya Partovi-Azar and Thomas D. Kühne. Efficient “on-the-fly” calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic so-
REFERENCES

Partovi-Azar:2017:TDD

Pasalic:2010:TSH

Peintinger:2014:CCM

Pietropaolo:2011:CBM

Perilla:2011:CET

[Pelloni2014:CCS] Stefano Pelloni and Inmaculada García Cuesta. CCSD–CTOCD static dipole shielding polarizability for quantifica-

Panteva:2015:CST

Pesonen:2010:PCI

Poolmee:2010:IES

Panosetti:2012:AMC

Proppe:2015:CTM

Passler:2017:CLM

[PH17] Peter P. Passler and Thomas S. Hofer. Conserving the linear momentum in stochastic dynamics: Dissipative particle dy-
namics as a general strategy to achieve local thermostatiza-
tion in molecular dynamics simulations. *Journal of Computa-
JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Pang:2013:SEM] Xueqin Pang, Keli Han, and Qiang Cui. A simple but effec-
tive modeling strategy for structural properties of non-heme Fe(II) sites in proteins: Test of force field models and appli-
cation to proteins in the AlkB family. *Journal of Computa-
JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Pape:2013:DDM] Susanne Pape, Franziska Hoffgaard, Mirjam Dür, and Kay
Hamacher. Distance dependency and minimum amino acid
alphabets for decoy scoring potentials. *Journal of Compu-
JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Pool:2012:SNU] René Pool, Jaap Heringa, Martin Hoefling, Roland Schulz,
Jeremy C. Smith, and K. Anton Feenstra. Software news and
updates: Enabling grand-canonical Monte Carlo: Extending
the flexibility of GROMACS through the GromPy Python
interface module. *Journal of Computational Chemistry*, 33
(12):1207–1214, May 5, 2012. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

Basis set error estimation for DFT calculations of electronic
g-tensors for transition metal complexes. *Journal of Compu-
CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

[Pohl:2017:OSF] Vincent Pohl, Gunter Hermann, and Jean Christophe Trem-
blay. An open-source framework for analyzing N-electron
dynamics. I. Multideterminantal wave functions. *Journal of
REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Pierens:2014:NSF

Pilme:2017:ELF

Porta:2013:EEL

Patel:2019:SNA

Pissurlenkar:2011:EQQ

Papp:2017:TIN

[PKK17] Tamara Papp, László Kollár, and Tamás Kégl. Theoretical insights into the nature of Pt–Sn bond: Reevaluating the bonding/back-bonding properties of trichlorostannate with com-

Pezeshki:2014:MDS

Pelloni:2018:PCM

Pei:2019:FVC

Plazinski:2011:MBC

Plewczynski:2011:CWT

 Pagola:2018:IRE

 Plazinski:2016:RGF

 Presti:2016:MEF

 Plewczynski:2011:VCD

 Pang:2017:GAM

PiEkos:2013:TDD

Politzer:2018:HHS

Polkosnik:2018:SDR

Pagliai:2017:EAS

Pan:2016:SSN

Paschoal:2012:RBS

[PML+12] Diego Paschoal, Bruna L. Marcial, Juliana Fedoce Lopes, Wagner B. De Almeida, and Hélio F. Dos Santos. The role of the basis set and the level of quantum mechanical theory in the

Pomogaeva:2016:TCL

Pipek:2013:EPR

Petkovic:2018:WHM

Project:2010:FFD

Perrin:2013:CSR

Petraglia:2016:BSS

Peintinger:2013:CGB

Pogliani:2010:MTP

Polestshuk:2013:AIA

Pongsai:2010:CMM

Ponec:2011:BIS

Prado-Prado:2010:UQN

Papp:2017:FFI

Procacci:2016:REC

Padhi:2015:PSH

Preat:2010:PTP

Pfleger:2013:GLI
Christopher Pfleger, Sebastian Radestock, Elena Schmidt, and Holger Gohlke. Global and local indices for characterizing biomolecular flexibility and rigidity. *Journal of Computa-

REFERENCES

REFERENCES

REFERENCES

Petukh:2015:SIS

Pinsky:2013:CSA

Peng:2016:FES

Porta:2015:HHB

Quapp:2010:CNE

Quapp:2011:RCS

Wolfgang Quapp and Josep Maria Bofill. Reply to the comment by Sheppard and Henkelman on the nudged elastic band

[QQY+18] Min Qian, Bowen Qin, Haiyan Yuan, Wenliang Li, and Jingping Zhang. Mechanistic insights into N-bromosuccinimide-

REFERENCES

REFERENCES

Rice:2013:EED

Robinson:2011:WOP

Roe:2018:PCE

Ren:2013:UEE

[RCM+13a] Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian Wan, Xin Xu, and Minghui Yang. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of Förster theory. *Journal of Computational Chemistry*, 34(12):1005–1012, May 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Roy:2013:SNU

Rao:2016:DNC

Rajendiran:2018:PBP

Ribeiro:2012:SNU

Rastelli:2010:FAP

Ravelli:2011:PUS

Roth:2016:HRE

[RDRC16] Christine-Andrea Roth, Tom Dreyfus, Charles H. Robert, and Frédéric Cazals. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy

[Robertson2019:NSN] Christopher Robertson, Jesús González-Vázquez, Ines Corral, Sergio Díaz-Tendero, and Cristina Díaz. Nonadiabatic

[Raymond:2011:FAM]

[Rafati:2010:CMC]

[Rohrmuller:2013:BOP]

[Racine:2016:RWF]

[Rohrmuller:2015:CTT]
Martin Rohrmüller, Alexander Hoffmann, Christian Thiefelder, Sonja Herres-Pawlis, and Wolf Gero Schmidt. The Cu$_2$ O$_2$ torture track for a real-life system: [Cu$_2$ (btmgp)$_2$O$_2$]$^{2+}$

H. Reis, O. Loboda, A. Avramopoulos, M. G. Papadopoulos, B. Kirtman, J. M. Luis, and R. Zalesny. Electronic and vibrational linear and nonlinear polarizabilities of Li@C_{60} and [LiO\overline{C}_{60}]^{+}. *Journal of Computational Chemistry*, 32(5):908–914, April 15, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

Ramachandran Rakhi and Cherumuttathu H. Suresh. A DFT study on 1,4-dihydro-1,4-azaborinine annulated linear polyacenes: Absorption spectra, singlet-triplet energy gap, aro-

Remya:2017:TEB

Rybkin:2013:IDE

Rzepiela:2010:RAD

Risthaus:2014:ING

Ryzhikov:2015:SSR

REFERENCES

Randic:2012:CCC

Rey-Villaverde:2013:HAT

Rodrigues:2016:UPU

Rashid:2011:GKV

Real:2019:IDS

Roumen:2011:ALB

Luc Roumen, Bram Van Hoof, Koen Pieterse, Peter A. J. Hilbers, Erica M. G. Custers, Ralf Plate, Marcel De Gooyer, Ilona P. E. Beugels, Judith M. A. Emmen, Dirk Leysen, Jos
REFERENCES

REFERENCES

Swetnam:2011:IWL

Schumann:2013:SES

Spivak:2014:ICM

Scemama:2016:QMC

Sahni:2018:GST

Sakata:2018:FCD

REFERENCES

Sanchez:2017:RTC

Szklarczyk:2015:PCG

Sax:2012:LMO

Salehzadeh:2010:TSS

Silva:2011:HFO

Stepanek:2013:CMC

REFERENCES

Sharma:2018:NHS

Soniya:2018:FEL

Scerri:2007:PTS

Shiraogawa:2019:PPF

Schwarz:2010:BRP

Bin Song, Nathaniel Charest, Herbert Alexander Morriss-Andrews, Valeria Molinero, and Joan-Emma Shea. Systematic derivation of implicit solvent models for the study of polymer
Scemama:2013:QMC

Starikova:2019:RDE

Song:2013:EAC

Selvam:2011:MZI

Signorile:2016:RDF

Shi:2012:USA

SCHIESCHEK:2017:CFD

Schulz:2018:SHA

Suarez:2014:CSD

Sergentu:2016:SIA

REFERENCES

Suarez:2013:SNU

Shen:2017:ECC

Shirazi:2014:AKM

Seal:2010:CRG

Shaghaghi:2016:SGA

Shiraogawa:2018:FED

Solomentsev:2012:EEE

Sakuraba:2018:PEZ

Schleder:2017:DCB

Starek:2017:GEV

Sanchez-Flores:2014:PAE

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See erratum [SFCCK+15].

Sanchez-Flores:2015:EPA

Stehr:2016:CCM

Schluns:2017:SNU

Steinmann:2017:LEM

San-Fabian:2014:CAR

[SFM14] Emilio San-Fabía and Federico Moscardó. Cyclobutadiene automerization and rotation of ethylene: Energetics of the

Salvadori:2018:DCB

Seeber:2011:WUF

Scott:2010:SLD

Sen:2010:WMN

Sure:2013:CSB

Sanchez-Garcia:2010:QMS

Sviatenko:2016:SEP

Sviatenko:2013:TSI

Simonson:2013:CPD

Smith:2018:MSS

Sancho-Garcia:2017:DRU

[SGPJS+17] Juan Carlos Sancho-García, Ángel José Pérez-Jiménez, Marika Savarese, Éric Brémond, and Carlo Adamo. Determin-

Shernyukov:2016:NBB

Szefczyk:2017:ESM

Sieradzan:2018:NPN

Sheppard:2011:PWN

Smiatek:2011:CFE

REFERENCES

30, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Shukla:2014:PWD

Santiago:2015:NDF

Shil:2018:PRS

Steenbock:2018:TAA

Song:2019:ALR
Svatunek:2019:APT

Suess:2017:QCC

Sherman:2012:SNU

Sergievskyi:2011:MSR

Sega:2018:PPP

Shin:2011:LPL

Smith:2013:CSE

Schwalbe:2018:FLO

Shang:2019:MPS

Sakae:2011:PSP

Sieradzan:2015:SNU

REFERENCES

[SJL18] Adrien Stoliaroff, Stéphane Jobic, and Camille Latouche. Py-DEF 2.0: An easy to use post-treatment software for publishable charts featuring a graphical user interface. *Journal
REFERENCES

REFERENCES

Stachowicz:2013:BDM

Sakalli:2015:PPS

Schultz:2015:SNU

Sharma:2017:UPP

Silanteva:2018:RDE

Schmidt:2019:WMP

Szatylowicz:2013:CSP

Sethurajan:2019:BUQ

Shin:2013:GPL

Standara:2013:NCS

Stanislav Standara, Petr Kulhánek, Radek Marek, and Michal Straka. 129Xe NMR chemical shift in Xe@C$_{60}$ calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent. *Journal of Computational Chemistry*, 34(22):1890–1898, August 15, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Sun:2011:TSC

References

Sumimoto:2011:TSM

Safi:2010:RDE

Siegbahn:2017:CSC

Surakhot:2017:TRR

Stenrup:2015:CNG

Sakuraba:2014:SNU

Savelyev:2014:AAP

Stachiewicz:2015:CGM

Salehzadeh:2016:NEC

Stachiewicz:2016:DDD

Szczepaniak:2017:ARB

Stuart:2018:DII

Shibl:2018:WHN

Suresh:2018:NBS

Sachse:2018:PAP

Sheng:2011:CCU

Shinagawa:2019:TSC

Sumi:2015:ESF

Sumi:2015:SFE

Suzuki:2017:MMT

Sumi:2018:ARM

Sinha:2017:CEF

Snamina:2017:PAM

Shah:2017:SNU

Strumpfer:2010:CFE

Sahoo:2015:PLP

Sahoo:2016:CGQ

[SN16a] Sudhir K. Sahoo and Nisanth N. Nair. CPMD/GULP QM/MM interface for modeling periodic solids: Implementation and its application in the study of Y-zeolite supported Rh₈,

Song:2011:SLR

Schnack-Petersen:2018:RDH

Sciortino:2018:PIM

Suma:2019:TUF

Springborg:2010:BRC

Michael Springborg. Book review: *Computational Chemistry Workbook*, by Thomas Heine, Jan-Ole Joswig, and Achim Gelessus, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,

Sousa:2013:CAP

Sproviero:2018:INE

Saha:2012:CSS

Szeleszczuk:2018:CWP

Szeleszczuk:2018:DCC

[SPZP18b] Łukasz Szeleszczuk, Dariusz Maciej Pisklak, and Monika Zielińska-Pisklak. Does the choice of the crystal structure influence the results of the periodic DFT calculations? A case of

Szeleszczuk:2019:HDN

Strohecker:2010:QCI

Szalay:2011:FCD

Singh:2018:SPI

Stein:2019:APF

Sakkal:2017:PCB

[SRA17] Leon A. Sakkal, Kyle Z. Rajkowski, and Roger S. Armen. Prediction of consensus binding mode geometries for related

Samsonyuk:2013:CSP

Schutt:2013:SFT

Simonson:2013:SGM

Scherrer:2016:MEL

Schroder:2016:EDA

Shi:2019:CSF

[SS19] Xuetao Shi and H. Bernhard Schlegel. Controlling the strong field fragmentation of CICHO+ using two laser pulses — an

REFERENCES

Shimamura:2019:IMD

Sakae:2019:ESM

Sahu:2013:BAS

Shakhno:2019:EIP

Sun:2019:PAE

Sen:2015:UGA

[SSSM15] Avijit Sen, Sangita Sen, Pradipta Kumar Samanta, and Debashis Mukherjee. Unitary group adapted state specific mul-

Schwalbe:2019:IAG

Steffen:2010:TGU

Stiebritz:2015:MPD

Su:2015:CRS

Sumiya:2017:FRC

Speldrich:2018:CUS

Schwerdtfeger:2013:SNU

Strunk:2012:SNU

Schnupf:2010:PDM

Song:2010:HMP

Shi:2011:MEH

Yue Shi, Chuanjie Wu, Jay W. Ponder, and Fengyu Ren. Multipole electrostatics in hydration free energy calculations. *Journal of Computational Chemistry*, 32(5):967–977, April 15,
Su:2019:DNI

Shyu:2011:AES

Spassov:2016:PDC

Su:2016:TDT

Sharabi:2011:OEF

Sindhikara:2012:PAP

REFERENCES

[Sun:2018:CPD] Chuancai Sun, Lijuan Zhu, Chao Zhang, Ce Song, Cuihong Wang, Meiliing Zhang, Yaoming Xie, and Henry F. Schaefer
REFERENCES

REFERENCES

Tantardini:2016:SFP

Thomas:2013:PGF

Tobias:2018:DTK

Torres:2014:TSR

Tu:2013:PFE

Tawari:2010:PME

[TD10] Nilesh R. Tawari and Mariam S. Degani. Pharmacophore mapping and electronic feature analysis for a series of ni-

Thackston:2015:PLC

Tang:2010:ESN
Shu-Wei Tang, Jing-Dong Feng, Yong-Qing Qiu, Hao Sun, Feng-Di Wang, Ying-Fei Chang, and Rong-Shun Wang. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C$_{3v}$C$_{60}$F$_{18}$ and D$_{3d}$C$_{60}$Cl$_{30}$. *Journal of Computational Chemistry*, 31(14):2650–2657, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Tang:2011:TSE

Takeda:2019:MDS

Tonigold:2012:DIW
March 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Tia12] Wei Quan Tian. Modeling nonlinear optics of nanosystems with sum-over-states model. *Journal of Computational Chemi-
Tyka:2012:ESP

Thapa:2019:EMI

Tuer:2011:TDV

Trung:2019:RSC

Tanaka:2013:ORM

[TLA10] Vincent Tognetti, Pascal Le Floch, and Carlo Adamo. How the choice of a computational model could rule the chemical interpretation: the Ni(II) catalyzed ethylene dimerization as a

[Tabookht:2012:RBM]

[Tang:2012:CFF]

[Tahat:2016:MEV]

[Takahashi:2018:REA]

[Tognetti:2015:QEN]

Kelly N. Tran, Shuqiang Niu, and Toshiko Ichiye. Reduction potential calculations of the Fe-S clusters in Thermus

Tonddast-Navaei:2017:ICP

Takayanagi:2018:IPD

Takano:2016:SNU

Trott:2010:AVI

Taju:2019:DDL

REFERENCES

Tsipis:2011:SEM

Tsuneda:2014:RIB

Thenraj:2015:CER

Tsipis:2015:EBO

Athanassios C. Tsipis and Alexandros V. Stalikas. Electronic, bonding, and optical properties of 1 d [CuCN]$_n$ ($n = 1–10$) chains, 24 d [Cu CN]$_n$ ($n = 2 – 10$) nanorings, and 3 d [Cu$_n$ (CN)$_m$]$_n$ ($n = 4$, $m = 2, 3$; $n = 10$, $m = 2$) tubes studied by DFT /TD–DFT methods. *Journal of Computational Chemistry*, 36(17):1334–1347, June 30, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Thellamurege:2013:SNU

Trepte:2019:AAG

Kai Trepte, Sebastian Schwalbe, Torsten Hahn, Jens Kortus, Der-You Kao, Yoh Yamamoto, Tunna Baruah, Rajendra R.

Tsuchimochi:2019:ESS

Toropov:2012:SNU

Torii:2010:PHA

Tanaka:2015:TDR

Taherzadeh:2018:PLM

[UIW+10] Hiroaki Umeda, Yuichi Inadomi, Toshio Watanabe, Toru Yagi, Takayoshi Ishimoto, Tsutomu Ikegami, Hiroto Tadano,

[Uhe:2011:AAC]

[Lao:2011:CSU]

[Uejima:2013:GOF]

[Ueno-Noto:2016:WMI]

[Udagawa:2011:IMD]

Venkatraman:2014:QSP

vonAppen:2014:IMS

Vila:2014:ACS

Vega:2012:SNU

VanderWeeen:2011:DPS

Villalba:2011:CEM

Viciano:2013:NIE

Vanpoucke:2013:EHB

Vysotskiy:2013:SNU

Vikramaditya:2018:INE

Viciano:2015:QMM

[VCM15] Ignacio Viciano, Raquel Castillo, and Sergio Martí. QM/MM modeling of the hydroxylation of the androstenedione substrate catalyzed by cytochrome P450 aromatase

Vancoillie:2013:PMP

Vogt:2014:WIS

Vener:2012:IHB

VonAppen:2010:DFS

Vela:2016:ZOH

[VFRAR16] Sergi Vela, Maria Fumanal, Jordi Ribas-Ariño, and Vincent Robert. On the zeroth-order Hamiltonian for CASPT2 calculations of spin crossover compounds. *Journal of Comput-
REFERENCES

Vogt-Geisse:2016:CPR

Vogt-Geisse:2016:CPR

Vanfleteren:2011:FDM

Vanommeslaeghe:2010:CGF

Vanommeslaeghe:2010:CGF

Vaucher:2016:RTF

Vaucher:2016:RTF

Vujovic:2019:EAD
REFERENCES

[VL19] Talapunur Vikramaditya and Shiang-Tai Lin. Limitations of global hybrids in predicting the geometries and torsional en-

REFERENCES

Vorobjev:2012:PMF

Valdes:2019:QES

Vchirawongkwin:2010:IQM

vanRijn:2019:QMS

Vuori:2019:BGA

Marie-Céline van Severen, Christophe Gourlaouen, and Olivier Parisel. Application of the topological analysis of the

REFERENCES

REFERENCES

REFERENCES

2018. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Varadwaj:2017:HOI]

[Varadwaj:2018:DSP]

[vanWullen:2011:SMP]

[Vyboishchikov:2015:MEE]

[Vyboishchikov:2016:CEC]

[Vanommeslaeghe:2015:RFM]
Kenno Vanommeslaeghe, Mingjun Yang, and Alexander D. MacKerell Jr. Robustness in the fitting of molecular mechan-

Voelz:2014:BIC

Weber:2017:IIR

Walters:2017:DDD

Wei:2017:RSA

Wang:2019:RAN

Olivia Wise and Orkid Coskuner. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid
REFERENCES

REFERENCES

[Welborn:2015:WMS]

[Wang:2011:MMB]

Yin-Feng Wang, Wei Chen, Guang-Tao Yu, Zhi-Ru Li, Di Wu, and Chia-Chung Sun. Evolution of lone pair of excess electrons inside molecular cages with the deformation of the cage in e_2 @C_{60}F_{60} systems. *Journal of Computational Chemistry*, 32(9):2012–2021, July 15, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Wessel:2010:FPS]

[Wu:2013:PFB]

Waller:2013:SNU

Wang:2016:RMR

Weinhold:2012:NBO

Weinhold:2012:SNU

Watanabe:2013:RDP

Weidlich:2016:SNU

Iwona E. Weidlich and Igor V. Filippov. Software news and updates: Using the Gini coefficient to measure the chemi-

Wolanski:2018:CSZ

Wang:2016:ODN

Wang:2011:LHE

Wang:2012:ESH

Witte:2016:ORC

REFERENCES

September 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

REFERENCES

Chi-Shiun Wu and Ming-Der Su. Theoretical investigations of the reactivities of four-membered N-heterocyclic carbene
REFERENCES

Wilkinson:2013:POG

Weiser:2019:CBF

Wilkinson:2011:AGU

Wang:2010:GTI

Wu:2019:EMK

Wang:2015:BCA

Weizhou Wang, Tao Sun, Yu Zhang, and Yi-Bo Wang. Benchmark calculations of the adsorption of aromatic molecules on
REFERENCES

Wang:2019:BBO

Wirz:2016:SFG

Wu:2010:CCN

Weinhold:2014:BTH

Wang:2015:BCD

Hongyan Wang, Hui Wang, R. Bruce King, and Henry F. Schaefer III. Bis(azulene) “submarine” metal dimer sandwich compounds (C$_{10}$H$_{8}$)$_{2}$M$_{2}$ (M = Ti, V, Cr, Mn, Fe, Co, Ni): Parallel and opposed orientations. *Journal of Computational Chemistry*, 37(2):250–260, January 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

[WZK+13] Xian-Hui Wu, Guo-Lin Zou, Jun-Min Quan, and Yun-Dong Wu. A theoretical study on the catalytic mechanism of Mus

Wu:2018:TPP

Xu:2019:TSP

Xu:2019:IBG

Xi:2010:CMM

Xia:2015:LSA

[XhD15] Jing Xu and Yi hong Ding. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiX_nY_m ($n + m = 4$; $q = 0, \pm 1, -2$; $X, Y =$ main group elements from H to Br). *Journal of Computational Chemistry*, 36(6):355–360, March 5, 2015. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Xue:2012:MMH

Xiong:2010:CDF

Xu:2019:DHB

Xia:2015:SNU

Xu:2016:ACF

Xu:2017:FEL

Xia:2015:MPB

Xu:2013:CPS

Xu:2011:QSS

XYW+14
Zhijun Xu, Yang Yang, Ziqiu Wang, Donald Mkhonto, Cheng Shang, Zhi-Pan Liu, Qiang Cui, and Nita Sahai. Small

We refer the reader to the original papers for a detailed discussion of the methods and results.

Yang:2016:EAS

Yoshii:2018:PTE

Yap:2011:PDO

Yang:2013:CTS

Yu:2011:ETS

Yamamoto:2013:TPM

REFERENCES

Yildiz:2016:AEK

Yang:2019:GPL

Yu:2010:TSN

Youn:2016:EEF

Yang:2017:ERV

Yuan:2015:TPH

[Kun Yuan, Jing-Shuang Dang, Yi-Jun Guo, and Xiang Zhao. Theoretical prediction of the host–guest interactions between novel photoresponsive nanorings and C$_{60}$: a strategy for facile

Yao:2010:SDS

Yang:2013:RWA

Yu:2016:PPA

Yesylevskyy:2012:SNU

Yesylevskyy:2015:SNU

Yu:2017:PDS
[X7W17] Xiaojuan Yu, Hua Hou, and Baoshan Wang. Prediction on
dielectric strength and boiling point of gaseous molecules for
(10):721–729, April 15, 2017. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

Yang:2019:QDV
[YHX19] Dongzheng Yang, Xixi Hu, and Daiqian Xie. Quantum dy-
namics of vibration-vibration energy transfer for vibrationally
excited HF colliding with H2. *Journal of Computational
Chemistry*, 40(10):1084–1090, April 15, 2019. CODEN JC-
CHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Yeh:2011:DFT
theory-based electrochemical models for the oxygen reduction
reaction: Comparison of modeling approaches for electric field
and solvent effects. *Journal of Computational Chemistry*, 32
(16):3399–3408, December 2011. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

Yourdkhani:2017:RPN
[YJ17] Sirous Yourdkhani and Miroslaw Jabłoński. Revealing the
physical nature and the strength of charge-inverted hydrogen bonds by
SAPT(DFT), MP2, SCS-MP2, MP2C, and CCSD(T) methods. *Journal of Computational Chemistry*, 38
(11):773–780, April 30, 2017. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

Yourdkhani:2019:PNS
[YJ19] Sirous Yourdkhani and Mirosław Jabłoński. Physical nature
of silane-···carbene dimers revealed by state-of-the-art ab ini-
tio calculations. *Journal of Computational Chemistry*, 40(30):
2643–2652, November 15, 2019. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

Yakhanthip:2011:TIN
[YJN+11] Thanisorn Yakhanthip, Siriporn Jungsuttiwong, Supawadee
Namuangruk, Nawee Kungwan, Vinich Promarak, Taweesak
Sudyoadsuk, and Palita Kochpradist. Theoretical investi-
gation of novel carbazole-fluorene based D-π-A conjugated

Yao:2013:MDS

Yamada:2013:VDE

Yan:2010:CSE

Yourdkhani:2015:IBT

Yoshikawa:2019:GAL

Yamada:2011:TNA

Yuzlenko:2013:MPN

Yang:2010:SPS

Yan:2014:GGA

Yao:2011:BGB

Yan:2019:SIV

Yan:2019:FBQ

Yin:2010:TDD

Yuan:2014:MEP

Yang:2019:CPB

Yonezawa:2016:MPP

Yu:2016:DAS

Ohnishi:2016:ECF

Youngs:2010:AAC

Yang:2010:TSF

Yesselman:2012:MAT

REFERENCES

Yamada:2013:FPR

Yang:2013:FPS

Yu:2010:RPC

Yoshizawa:2013:NSC

Yosipof:2015:NNO

Yagi:2018:SMP

REFERENCES

Yang:2012:GAN

Yousfi:2010:REM

Yang:2012:MZE

Yu:2012:IDC

Yu:2012:AIM

Yanez:2017:FFG

Yan:2012:ESL

Yang:2013:RNI

Yang:2016:SNUa

Yang:2014:VSP

Yuan:2017:DSM

Yamabe:2014:MCR

Yuan:2015:MDD

Yuan:2018:MIW

Yang:2019:ITD

Yang:2013:DCS

REFERENCES

Yang:2011:IIZ

Yang:2016:SNUb

Yuan:2017:VWH

Zhao:2015:DMM

Zhao:2018:ABD

Zabojnikova:2016:IPS

Zhou:2015:LVS

Zou:2018:OLR

Zhao:2012:SNU

Zhou:2018:RPA

Zhu:2019:TSP

Zhang:2019:CBU

Zhu:2012:CEE

Zhang:2011:SSE

Zhang:2012:REFb

Zhang:2012:REFa

Shuming Zhang. A reliable and efficient first principles-based method for predicting pK_α values. III. Adding explicit wa-

[Zou:2011:SSP]

[Zanotto:2018:HPC]

[Zimmerman:2013:ADC]

[Zimmerman:2015:SET]

[Zeng:2013:FMS]

[Zhang:2017:EGD]
Baofeng Zhang, Denise Kilburg, Peter Eastman, Vijay S. Pande, and Emilio Gallicchio. Efficient Gaussian density formulation of volume and surface areas of macromolecules on
REFERENCES

Zhu:2010:EES

Zhang:2011:SGP

Zhou:2014:PCR

Zhang:2010:AFE

Zhu:2013:SNU
Hui Zhang, Yang Liu, Jing-Yao Liu, and Ze-Sheng Li. Theoretical study and rate constants calculation for the reactions $X + \text{CF}_3\text{CH}_2\text{OCF}_3$ ($X = \text{F}, \text{Cl}, \text{Br}$). *Journal of Computational Chemistry*, 33(6):685–690, March 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Yao-Xiao Zhao, Meng-Yang Li, Yi-Ming Xiong, Shirin Rahmani, Kun Yuan, Rui-Sheng Zhao, Masahiro Ehara, Shigeru Nagase, and Xiang Zhao. Pivotal role of nonmetal atoms in the stabilities, geometries, electronic structures, and isoelectronic chemistry of $\text{Sc}_3X@\text{C}_{80}$ ($X = \text{C}, \text{N}, \text{and} \text{O}$). *Journal of Computational Chemistry*, 40(31):2730–2738, December 5,
Zhao:2016:LPT

Zhang:2014:ECM

Zhu:2010:PEF

Zoboki:2011:ELN

Zhang:2012:IRE

Zhong:2013:BST

Yang Zhong and Sandeep Patel. Binding structures of tri-N-acetyl-β-glucosamine in hen egg white lysozyme using molecu-

Zerbetto:2014:LSF

Zarycz:2016:CSB

Zhu:2014:TPC

Zhang:2019:FTD

Zilberberg:2010:POD

Zapata-Rivera:2011:ESR

Zhao:2011:CDL

Zhan:2017:ASE

Zhao:2013:FPC

Zahariev:2014:FAM

Zarate:2018:ERT

Dmitry Zuev, Eugene Vecharynski, Chao Yang, Natalie Orms, and Anna I. Krylov. New algorithms for iterative matrix-free eigensolvers in quantum chemistry. *Journal of Computational
Zhou:2017:BHH

Zheng:2018:YIB

Zhou:2015:ABO

Zaccaria:2016:IST

Zhang:2013:MPI

Zhang:2011:ABD

[ZWLX11] Igor Ying Zhang, Jianming Wu, Yi Luo, and Xin Xu. Accurate bond dissociation enthalpies by using doubly hybrid XYG3

Zheng:2010:DFTb

Zheng:2010:DFTa

Zhang:2011:IIR

Zhao:2011:HMM

Zhang:2019:GCH

REFERENCES

Zhang:2010:ESO

Zhao:2014:IDB

Zhao:2014:DSE

Zhang:2015:TCS

Zhu:2012:PPT

Zhang:2010:III

Zhou:2012:CMF

Zeller:2014:ECR

Zhang:2010:TSRb

Hui Zhang, Gui-Ling Zhang, Jing-Yao Liu, Miao Sun, Bo Liu, and Ze-Sheng Li. Theoretical studies on the reactions CH\textsubscript{3}SCH\textsubscript{3} with OH, CF\textsubscript{3}, and CH\textsubscript{3} radicals. *Journal of Computational Chemistry*, 31(15):2794–2803, November 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhang:2010:TSRa

Hui Zhang, Gui-Ling Zhang, Jing-Yao Liu, Miao Sun, Bo Liu, and Ze-Sheng Li. Theoretical study and rate constants calculation for the reactions of SiH\textsubscript{3} radical with SiH\textsubscript{3}CH\textsubscript{3} and SiH\textsubscript{2} (CH\textsubscript{3})\textsubscript{2}. *Journal of Computational Chemistry*, 31(2):403–411, January 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zeng:2012:AII

Yanli Zeng, Min Zhu, Xiaoyan Li, Shijun Zheng, and Lingpeng Meng. Assessment of intermolecular interactions at three sites of the arylalkyne in phenylacetylene-containing lithium-bonded complexes: ab initio and QTAIM studies. *Journal of
REFERENCES

Zhu:2019:STE

[ZZL19] ZhiYe Zhu, Yi Zhao, and WanZhen Liang. Singlet/ triplet exciton dissociation and charge recombination in donor- acceptor ThQs-C$_{60}$/PDIxCN$_{2}$ complexes. *Journal of Computational Chemistry, 40(9):997–1004, April 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).*

Zhang:2019:PVM

Zhang:2012:RMC

Zhu:2011:CSE

Zhang:2016:CQD