Title word cross-reference

\( (N - 1) \) [ACD\textsuperscript{+}13a, ACD\textsuperscript{+}13b]. \( (n = 2, 3, 4) \) [VSP19]. \( (\sigma^3, \lambda^3) \) [TR12]. 
\( (\sigma^3, \lambda^5) \) [TR12]. + [CXW14, GTK10, NMLD13]. 0 [UD12]. 1 
[MG15, TS15b, YZLZ18]. \( 1 - n \) [CYG\textsuperscript{+}15]. 10 [AC11b, TS15b]. 13 
[GYGW12, SIT18]. 15 [AC11b]. 17 [GZZ12]. 18 [LW16]. 2 [CWT\textsuperscript{+}12, 
CBDS19, GSS13, MSBF16, MH10, SJD14, WvRSM14, YDL\textsuperscript{+}10, YZLZ18]. 20 
[AC11b, LYL16, YVEI\textsuperscript{+}17]. 24 [TS15b]. 3 
[AARP17, CM16, DVVP14, GMMH\textsuperscript{+}16, GSS13, GPK12, GBG\textsuperscript{+}19, HSW\textsuperscript{+}19, 
LTT16, MG15, MA16, MYT\textsuperscript{+}14, MP19b, MSSP17, PSS14, Pop18, RVCFF13, 
TS15b, VVMY18, YLL11, YZLZ18, dLvNC18b]. 4 
[AFSW16, GWJJ12, ZTH\textsuperscript{+}15]. 4d [Hil13]. 4f [Hua16]. 4 \times 1 [LGKS17]. 4 \times 4 
[SH14]. 5 [APY\textsuperscript{+}16, LZH16, WFL\textsuperscript{+}19, YLL11]. 5\textsuperscript{12} [MKH15]. 6 
[MCAY15, Rab12, TSZQ12]. 6\textsuperscript{2} [MKH15]. 6\textsuperscript{3} [MKH15]. 6\textsuperscript{4} [MKH15]. 7 \times 7 
[UGK18]. 8 [CSC\textsuperscript{+}18, TN12]. 8 \times 2 [LGKS17]. [2 + 2] [LXFC17]. [5 + 1]
\[ \text{CAT}^{+13}, \text{JXSW15}, \text{MCK17a}, \text{TDKT10}. \] \( f^{\text{n}} \) \([\text{BBG}^{+18b}]\).
\( \gamma \)
\[ \text{BTZ}^{+11}, \text{DBG11}, \text{YLCX10}. \] \( J \) \([\text{KNP}^{+12}, \text{LZH}^{+11}]\). \( k \) \([\text{Hug14}, \text{YS15}]\).
\( \kappa \)
\[ \text{YSRSS10}. \] \( \lambda \) \([\text{BH15}]\), \( \lambda^{3} \) \([\text{SLT14}]\), \( \lambda^{N} \) \([\text{XHL16}]\). \( \leftrightarrow \) \([\text{RSK}^{+15}]\).
\( \text{M} \)
\[ \text{ATIP18}, \text{AM19a}, \text{LLX}^{+19}, \text{MP19b}, \text{YLT}^{+19}, \text{NMH19}. \] \( m = 1, 2 \) \([\text{SIT18}]\).
\( n = 2 \) \([\text{TS15b}]\). \( m = 2, 3 \) \([\text{TS15b}]\). \( M^{+} \) \([\text{ATIP18}]\).
\( \mu \) \([\text{RHPWS13}]\).
\text{N} \[ \text{AARP17}, \text{HPT17}, \text{JSW10}, \text{KYCL11}, \text{KYKR15}, \text{KSK11}, \text{LHL}^{+10}, \text{LXZ}^{+10}, \text{MB16}, \text{PH17}, \text{PM18b}, \text{QZM11}, \text{RF15}, \text{YLZ}^{+10}, \text{ZYY}^{+10a}, \text{ZBP11}, \text{dSdLBN17}, \text{BLBC}^{+13}, \text{BS10b}, \text{HCBI11}, \text{JLH}^{+14}, \text{LLX}^{+19}, \text{LXFC17}, \text{OKY18}, \text{RRF11}, \text{SLY}^{+19}, \text{TCGT18}, \text{TT18}. \] \( n + m = 4 \) \([\text{XhD15}]\). \( n + m = 3 \)
\([\text{GT10}]\).
\( n = 0 \) \([\text{MCAY15}]\). \( n = 1 \)
\[ \text{GWJJ12}, \text{Rab12}, \text{RVCFF13}, \text{TN12}, \text{TSQ12}, \text{YLL11}, \text{TS15b}. \] \( n = 1, 2 \)
\[ \text{ABB}^{+12}, \text{ABB}^{+13}. \] \( n = 10 \) \([\text{TS15b}]\).
\( n = 12 \) \([\text{YVEI}^{+17}]\). \( n = 2 \)
\[ \text{WYGW12}, \text{TS15b}. \] \( n = 3 \) \([\text{SIT18}]\).
\( n = 4 \) \([\text{GZZ12}, \text{TS15b}]\). \( n = 5 \) \([\text{AC11b}]\).
\( n \leq 20 \) \([\text{ASS10}]\).
\( n \leq 25 \) \([\text{Tak11}]\).
\( n \leq 55 \) \([\text{Tak10}]\).
\( N \log N \) \([\text{AO10}]\), \( O(N) \)
\([\text{BSL1}1] \).
\( p \) \([\text{HNN}^{+17}, \text{MCK17b}]\).
\( \pi \)
\[ \text{AH10}, \text{BLBC}^{+13}, \text{BSF18}, \text{CLFRO18}, \text{CKL}^{+11}, \text{DLMH12}, \text{GNC}^{+18}, \text{GZM16}, \text{HSZ}^{+11}, \text{KV14}, \text{KDS17}, \text{MUN}^{+19}, \text{MVKS10}, \text{MIS}^{+15}, \text{OOK11}, \text{PM18a}, \text{RF15}, \text{SSG15}, \text{SDF12}, \text{SWW}^{+19}, \text{YJN}^{+11}, \text{Zha11}, \text{ZZMW19}. \] \( \pi \) \( \cdots \)
\[ \text{YZZ}^{+17}. \] \( \pi \cdots \pi \) \([\text{CCCLCGRO14}]\).
\( pK_{a} \) \([\text{BA11}, \text{CPK19}]\).
\( \Psi \) \([\text{Lüc14}]\).
\( q = 0, \pm 1, -2 \) \([\text{XhD15}]\).
\( r_{m}^{2} \) \([\text{RCM}^{+13b}]\).
\( \rightarrow \)
\[ \text{CK10}, \text{Chu10}, \text{GTK10}, \text{H211}, \text{HBL12}, \text{LWD13}, \text{NMLD13}. \]
\( S_{1} \) \([\text{KKL}^{+13}]\).
\( \sigma \)
\[ \text{DPSL16}, \text{GZM16}, \text{LZL}^{+15b}, \text{PM18a}. \]
\( \sigma_{\pi} \) \([\text{CZY11}, \text{YWZ14}]\).
\( \Lambda^{A} \)
\([\text{MCLD10}]\).
\( \times \) \([\text{SRS14}]\).
\( \rightarrow \) \([\text{CSNCS}^{+18}, \text{SB19}, \text{XCLZ19}]\).
\( v = 0 \) \([\text{LWD13}]\).
\( X \)
\[ \text{AM19a}, \text{Sak18}, \text{UT15}. \]
\( x = 1 \) \([\text{CWT}^{+12}, \text{LZTV10}]\).
\( Y \) \([\text{UT15}]\).

-1 \([\text{DLvNC18a}]\).
-5 \([\text{LL10c}]\).
-A \([\text{YJN}^{+11}]\).
-acceptor \([\text{MIS}^{+15}]\).
-Ace \([\text{LHL}^{+10}]\).
-acetals \([\text{YZL}^{+15}]\).
-Acetate \([\text{BHP19}]\).
-Aceto- \([\text{SJD14}]\).
-acetyl- \([\text{ZBP11}]\).
-acetylation \([\text{LHL}^{+10}]\).
-adrenergic \([\text{LLHM16}, \text{VKC10}]\).
-AI \([\text{YR13}]\).
-alkenoyl \([\text{YZL}^{+15}]\).
-alumina \([\text{SH14}]\).
-amination \([\text{YZ17}]\).
-amino \([\text{ZKH}^{+10}]\).
-aminopolyoxycarboxylate \([\text{CMD13}]\).
-arene \([\text{ZCK}^{+16}]\).
-atomic \([\text{XJSW15}]\).
-ATPase \([\text{II10}]\).
-azacrown-5 \([\text{ZYY}^{+10a}]\).
-barrel \([\text{yOaCG10}, \text{WXL}^{+12}]\).
-based \([\text{BPE16}, \text{EBK13}, \text{EP15}, \text{EB18}, \text{LFB14}, \text{MP19a}, \text{PBE16}]\).
-benzaldehyde \([\text{Lu11}]\).
-bipyridyl \([\text{KPL15}]\).
-block \([\text{CAT}^{+13}, \text{MCK17b}, \text{TDKT10}]\).
-bound \([\text{CKL}^{+11}]\).
-bound \([\text{XSW13}]\).
-butane \([\text{TCGT18}]\).
-butanol \([\text{BS10b}]\).
-butene \([\text{MSBF16}, \text{WvRSM14}]\).
-butyl- \([\text{MG15}]\).
-butylbenzene \([\text{HCB11}]\).
-carboxylates \([\text{AARP17}]\).
-carrabiose \([\text{YRSS10}]\).
-catalyst \([\text{SSD19}]\).
-catalyzed \([\text{YXZZ17}]\).
-cation \([\text{MUN}^{+19}]\).
-chloridophenylacetohydroxamate \([\text{CBDS19}]\).
-conjugated \([\text{BLBC}^{+13}]\).
-coumaric \([\text{HNN}^{+17}]\).
-couplings \([\text{LZH}^{+11}]\).
-Cu \([\text{NGAS17}]\).
-curcumin \([\text{AMK11}]\).
-cyclodextrin \([\text{DBG11}]\).
-dimensional \([\text{MB16}]\).
-dimethylaminophenyl \([\text{YLZ}^{+10}]\).
-effect \([\text{RWR}^{+13}]\).
-electron \([\text{KTK17}, \text{LW16}, \text{LYL16}, \text{HPT17}, \text{PHT17}]\).
-erythrose \([\text{SM17}]\).
-expanded \([\text{MLQ}^{+12}]\).
-\textbf{F12a} \([\text{MLCD11}]\).
-form \([\text{GWX}^{+12}]\).
-glucosamine


0 [KKH19].


7 [ADF+10, CD19, MBR+15]. 7-azaindole [YYT12]. 7-diphenylamino-9
7-tetraene [ABDGN12]. 7.0 [GLW19].

8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZHH11]. 8-naphthoquinone [HWW19]. 8R [BG13].

8-naphthoquinone [HWW19]. 8R [BG13].


9H-9-borafluorenes [ZQ14].

= [ATP18, ATIP18, ASS+17, AM19a, AM19b, CXS10, EPH+15, GPK+16, GN18, JLA+14, JJAB16, JJJ16, LDJ+10, LLL+11, JJJ16, Li14a, Li14b, LGW12, LLX+19, LZSM19, LCWW10, LWD13, MP19b, MCK17a, MCK17b, OKY18, PGS+15, PMG+16, Rab12, RDT14, SPS+12, Sak18, SLIB12, TLDG+12, TFQ+11, TT18, TG12b, UT15, WWKS16, XhD15, YW12, YLT+19, YS13, YHCS11, ZYLL12, ZLLL12, ZLX+19].


ability [LLL+10, PGS+15, RTS+13]. above [MK17]. Absolute [Gri13, HLW+17, KB11b, KYB13, VED10]. absorbing [NPG+18]. Absorption [RS17a, ZLL+10, DMD+18, FD13, HNN+17, KB16, LLBO12, LX11, LXZ+10, MKK+19, PMC+17, PMT10, PDG+16, SGDT10, TYN15, TZ12, Tsi14, WWD14, ZTH+15, ZDX11, QCR12]. abstraction [AAMD+11, BS10b, CSXZ17, GY12, JCG+10, LJW+11b, PNE18, WLHZ12, dCRN18]. Ac [SNKS10]. ACCDB [MP19c]. Accelerated [MFEM15, MFEM16, SH19a, YKNN19, AGB13, BDTP11, CVT+11, CF18, DWC17, GBL+11, HEMCZE+14, HAP+12, KV13, LL11, MLN+18, REV+17, YLX14, YSG12, ZC14, ZLL+13]. accelerates [HS17b]. Accelerating [HASR+12, HB19, LZ12, YWJ+16, HP10a]. Acceleration [BK+S11, ON14, SOM+13, UTM11, WSGN11, OOT15]. accelerator [SBV10]. accelerators [KK17a]. acceptance [BB11b, KB11c, NDW15, dRBO13]. acceptor [EHT19, Gil11, Lu11, MSV16, MBS+15, SB19, ZSTRS+18, ZZL19]. acceptor-bridge-donor [ZSTRS+18]. acceptors [KKK+19, uLhY11, TZ12]. accessibility [HPL+18, LHL+10]. accessible [FZY+12, WXL+12, WBF17]. Accessing [JZZM14]. accompanying [HSN14]. according [GM17, LPE+10, YZZ16]. account [EPH+13, Tsi18]. Accounting [XML+15, HH11, MBC11]. Accuracy [ASW19, DBM+15, FCE15, FKY+13, LLH17, BPB11, GRAR+14, HWLW11, KSR+16, LZ12, LDZW17, MLG18, NTNY15, yOaCG10, RS13, RVCFF13, Rob13, TO10, VVW+18, ZYS+10, AIM+18, Gil11, SDIP18]. Accurate [BS16b, BS18, CX10, CSXZ17, EFOD13, FLMI11, IN13, KG15, LAC+13, LLH11, LVL+10, MK13b, MFR+11, NWW17, Pol13, PVJ10, Sch12, SRR16, SY11, ZSB+16, ZSY+17, TH13, VSP19, WL14, YB16, ZWLX11, ZYL12, ZLLL12, ZLX+19].
ZWX19, AF14, ABS⁺19, BS10a, BPM15, Ben17, CCLP12, CSGOA17, CRZ⁺18, DKE⁺17, GA13, GBW⁺14, GWZX12, HRC13, KKH18, LC17b, LZZ14, MAK⁺14, ME10, MFR⁺17, NH16, yOTn16, dIRL11, RB13a, RCR⁺16, RDDS10, RR14, SH15, SS16b, VAMS14, VDVR14, VRKT19, WX⁺12, WJG⁺13, WX12, XSSL11, YOMT14, dVZ17, dSAI13].

Accurately [Bow16, LFB14, MA16, Zha12b].

ACE [WCDM11, LHL⁺10].

acetaldehyde [AS11, AAMD⁺11].

acetals [YZL⁺15].

acetamides [JSW10].

Acetate [BHP19].

acetic [KSNT19].

Aceto [SJD14].

acetohydroxyacid [XLY10].

acetonitrile [KT18, RS14].

acetyl [ZBP11, ZP13].

acetylacetone [SJWE10].

acetylation [FHK⁺12, IMK⁺16, LHL⁺10].

acetylcholine [SRA17].

acetylene [GRCL12, HSY⁺11, LT13, Tak10].

achieve [PH17, RAR⁺11].

Achieving [SLY⁺19, NNK⁺16].

Achim [Spr10].

acid [BLG11, CYY⁺17, CC18b, CM16, CB11d, FD14, FZL⁺15, Fel10, FP17b, FCE15, GRL⁺11, HNN⁺17, HG15, HCP15, KSNT19, KLS10, KML10, LBC⁺12, LXL⁺11, LF12, LP11b, LPM17, MSL10, MRO17, NH⁺10, OXW16, PHHD13, PG18, SIS10, SZBM13, SGG⁺18, SW12, SV11, TKCN19, TL16, VMP17, WC14, WG12, XN17, ZSB⁺11, ZWP11, ZHHX11, dSH19].

acid-arsenic [KSNT19].

acid-catalyzed [CYY⁺17].

acid-phosphoric [KSNT19].

acid-water [TL16].

acid/base [VMP17].

acidic [APY⁺16, TCC⁺18, YDX16].

acidities [ALK⁺15].

acidity [CRZ⁺18, CPK12].

Acids [WBKS19, BSG⁺18b, CCCLCGRO14, DKE⁺17, EHSPT16, FCE15, GREA11, RSL16, SCF⁺19, SST⁺18, XLY10, ZKH⁺10].

ACP [STM⁺15, SJ16].

across [AAC⁺16, GMPB12, MGS⁺16].

acylate [LZL⁺16].

act [LC10].

acting [BT18].

Actinide [SVLK18, RST⁺13].

action [XLY12].

activated [CV12, FWS⁺18, KSR17, ZG19].

Activation [Niz13, AALCM11, DR11, DSM⁺11, FB12, KMT⁺19, LSL⁺19, MRR11, MBGF15, PG18, SH19b, TM18, TS15a, WC11, XLY10, YXZ17].

activation-strain [FB12].

activator [BM12].

active [AIGP15, BHE⁺18, Cas13, DAP⁺18, DPF⁺12, EB18, LHZ10, NH19, PDG⁺16, SCSW13, SC18b, XTN18].

active-site [DAP⁺18].

active-space [NH19, PDG⁺16, XTN18].

actives [EOO⁺16].

activities [AHK⁺19].

activity [BPC13, DXL⁺10, GA13, GHL17, GFP17, MJLY14a, RCM⁺13b, SLY⁺10, TD10, TTB⁺11, YB13, Zsa10, ZDW18].

acute [TTL⁺12].

acyclic [NMH19, ZKH⁺10].

acyl [PS10].

adamantane [EHSPT16].

adamantane-based [EHSPT16].

Adapted [ELKE19, FF11, SS15, TH13, YKH15].

Adaptive [SK14, KEMP17, LZS⁺17, AOW11, BGR13, DSK17, FHMB15, HDM⁺15, LL19a, MJ14, MBFP15, MJG⁺15, OZ14, PN13, SNS13, WTD⁺19, WMW⁺10].

Adaptive-numerical-bias [KEMP17].

adaptively [ER18, SR18].

adcluster [IN13].

Adding [PFAS⁺19, XHLH16, Zha12b].

addition [FWB14, KSO⁺19, KS13b, NG14].

Additive [XVA⁺16, DPNM11, HM13, TSR⁺16, VHA⁺10, VMP17].

additivity [VRKT19, ZRL⁺15].

address [LG14].

Addressing [MMH19, cCVG⁺14].

alignment
[BF15, HRK+10, HKRS11, HS11, MJM+15, RP15, RHJ11, Ran12]. alignments [CYI+10, Ran13]. aliphatic [CROB16, SB10]. Alkali [YHCS11, Ano11, AM19a, DDM+15, JHM+09, JHM+11, THP+15, ZWY+10a].

alkali-metal [ZWY+10a]. Alkalides [WXS+12]. Alkaline-earth [WD10]. alkane [JGS+17, ZSTI14]. Alkaline [XZ11, Ano11, JHM+09, JHM+11, WP+15].

alkoxy-catalyzed [WFL+19]. alkyl [Den12, RMGB11]. All-atom [SM14b, CS14, DPNM11, HM13, JYC+16, KT18, LZZ14, MZZ11, OCW+15, VHA+10]. all-atomistic [FPH+19]. All-electron [KKA+18, PGdO+16].


alkoxy-catalyzed [WFL+19]. alkyl [Den12, RMGB11]. alkylthiols [FVP14]. alkyn [WWTI19]. alkaline [Jor17, YXZZ17]. Alkali [YHCS11, Ano11, AM19a, DDM+15, JHM+09, JHM+11, WP+15].

alkali-metal [ZWY+10a]. Alkalides [WXS+12]. Alkaline-earth [WD10]. alkane [JGS+17, ZSTI14]. Alkaline [XZ11, Ano11, JHM+09, JHM+11, WP+15].

alkoxy-catalyzed [WFL+19]. alkyl [Den12, RMGB11]. All-atom [SM14b, CS14, DPNM11, HM13, JYC+16, KT18, LZZ14, MZZ11, OCW+15, VHA+10]. all-atomistic [FPH+19]. All-electron [KKA+18, PGdO+16].

amyloid- [IO13b], amyloid-beta [LH11], analog [JBAM11], analogs [DCHL12, LP11b, SISK10, VM11, WBT10], analogue [PGW+17], analogues [LPS+13, NK19, SGWA17, VVBL17, VM19, WS12, YLL11].

analyses [BSF18, CBD510, KASH14, KP11, PZBA13, SKGB13, VVJ15, XWW+11].

Analysis [BMD19, CDM+15, ELKE19, HAI+16, JCGM18, KKGW19, LL19a, MOS12, SZL19, svLK18, Spr18, XFG+16, AKMT11, AST+16, ASL+11, ARRC15, AAB+19, AS18, Ano15-58, AM19a, AM19b, BK15, BL19, BH14, BSSP+13, BBG+18b, CLFR018, CMM18, CAF+13, CEB015, CCC+11, CAT+13, CH14, DMJ17, DDP+18, DHF+11, DJD12, DBK17, DJS+18, DCS15, DN19, ESD18, EHSPT16, EB18, Fer17, FB12, FHW+11, FHK+12, GVP+10, GLW13a, GLW13b, GNDA+12, dCGCRN19, GCP+13, Han11, HSX+19, HCD+10, HPSK12, HHT+13a, HHT+13b, HGW18, HDHL15a, HDHL15b, HDHL15c, HHWL17, Hug12, IY18, Jan16, JHH+13, JJJW+14, JZZM14, JCX10, JLS18, KG13, KYG+15, LSL+19, LBC+19, LL13a, LCPS13, LMZ+11b, LFM12, LAHS16, LGKS17, MLG18, MTD13, MJ14, MT19b, Mez10, MADWB11, MCLD10, MGS+16, MCK17b, NK19, NH19].

Analysis [NIIT15, NS17, OXBW16, OC14, PTK11, PSP15, PRyi+17, Ptb+15, PPUBGD10, PS14, RDT14, RSGS18, RC18, REL17, RLG14, SFM+18, SLY+10, SBB10, SFR+11, SHF18, SSGS15, SEJ+18, SB18, Sndk16, SSi13c, SB19, SPR+13, SH18b, SSP+19b, SH19b, Tyn15, TCB16, TD10, TTB+10, TS10b, UKS11, VBMA13, WNP+16, WWW19, Wei12a, Wei12b, WDKT19, XFG+15, YK13, YNH+17, Yes12, Yes15, ZCS+15, ZBB16, ZH12, ZZZ+19, ZCWX18, dSH19, vSGP10, JCHT18, ZSB+11].

Analytic [Boz18, MTD13, NF18, SZX13a, SZX13b, TSH+19, My17b].

Analytical [CCR18, CCB15, HNWF07, HNWF12, HH17, LBGS16, SFG+17, WOH18, CHC+13, FBY+17, GNR19, HHIa, KN17, KTSW11, MK13a, Popn11, Pop18, ZWF15].

Analyzing [BGS+19, BD11, MRB14, BCP+10, HPT17, LZS+17, PHT17, SWA13, WES13].

anapole [ZPP+16].

anatase [HRL11].

and/or [KB10, Pog10].

androstenedione [VCM15].

angle [CKP10, GBFD12, XML+15].

angle-dependent [CKP10].

angles [BKLA13, EJ13, FZY+12, GREA11, KTK17, LDH+14, OZ14, YZ16].

angular [BBG+18b, ENKK+17].

anharmonic [Kow11, SSWX14].

anhydrase [SSP+13].

anhydrides [RB12].

aniline [PLP+16].

Anion [TT18, CG15, KSN19, LCI0, uLhY11, LCC18, SC18a, SDF12].

Anionic [BHP19, AM19a, AM19b, GZZ12, GWPJ11, HPL13, JCP14, QZ10b, ZYR+15].

anionic-water [JCP14].

anions [PVS12, RDT14, RJS17, ZFY+10b, ZYL+12].

anisotropic [Ano10a, CAT+13, EPH+13, ENKK+17, NLP+16, SLX+15, SN10].

anisotropy [BP18, CGP12, LPLB16, ZLZ14].

ANN [XWW+11, ZDW18].

ANN-based [ZDW18].

annealing
[RHJ11, SHMO11, SHL*11, ZC14, LMZ11a]. annihilation [BL12].
annulated [RS17a]. anode [GNI18, YZLZi9]. Anomerization [SM17].
anoma-rzirconocene/borate [OSA19]. ansatz [Bou14, WGA18]. answer
[SJWE10, Tan19]. ant [ZsA10]. antagonists [LLL+10]. anthrax [JAH+17].
Anti [WFZ+18, ZsA10]. Anti-Electrostatic [WFZ+18]. anti-HIV-1
[ZsA10]. antiaromatic [TDKT10]. antibiotics [PG15]. antibody [UNT16].
anticancer [AJA+19, SZZ+18]. Anticooperativity [TDT19].
antiferromagnetic [ZB18]. Antiferromagnetically [SZL19]. antigen
[JAH+17]. antimicrobials [PPUBGD10]. antioxidant [GAI13, ZDW18].
antiparasitic [PPUBGD10]. antisense [ICS+12, ICS+13].
antitrypanosomal [PSdPE+10]. antitubercular [TD10]. AO [YOPB16].
AOFORCE [vW11]. APBS [UHH+11]. API [LAS+14, ZW18]. AppA
Application [AFBR17, BAMR13, BPE16, DAG19, GCCM15, HTS15, LDG+15, MBA11, MTS+19, MH10, OL13, PAK15, RVP+11, SMP17a, SRS14, SCI7, SDL14, SMM+18, Tak18, VKTRJ15, WH11, WFS19, ZsA10, vSGP10, CSAdOM17, CJPTC18, DGP14, Elki6, GLB16, GFG11, GWC16, HYSF19, IUK+11, KTO19, KFY+13, Ks18, KSK11, LLHM16, LP11a, LLL+10, LLLC11, LGRic1c, MDTD13, MdOdQ18, PFR13, RZG+13, RCM+13b, SDMP18, SN16a, SLX+15, SYH12, VV14, VKC10, WCDM11, You10, AFPI13, BD11, CZNA11, Fer13h, Fer13a, FCOGM12, GAI13, HYUS11, KUDG12, MCC11, Pet11, PW12, SPZP19, TSZQ12]. Applications [KGHC15, LCPS13, LCA17, Spr18, APK14, CGP11, EVR18, Fel10, GBFD12, HZY+10, HCD+10, IO13b, KK0+16, uLHy11, LJR+12, MG11, NS18, SSM15, SGM+13, ISP+10].
applied [BLG11, CTP13, GKR13, KKR+13, LTT16, PM18b, Ray13, RKG11, ZS7SM10]. Applying [KBI1a, ZSLL17, CC11]. Approach [Coo19, NNT+19, VSP19, ACD+13b, BPE16, BBG+18a, BVH17, BGR13, CCLP12, CRZ+18, CHC+13, CXS10, DK11, DGP14, DVVP14, DFF+15, DHE+12, FRSA14, Fer17, FNSF+11, FCCP17, FD16, FSD+18, dCGR19, GPE13, GZ14, GH16a, HRC13, HDH12, HNN+17, HBBY10, HZSS17, ITY+19, JCCX10, KV12, KV13, KHM19, KT19, KId19, KSK11, KT10, KSHP+19, KKH+19, KKH18, LLTC12, LH1a4, LG14, MZZ11, Man19b, MGWR12, ME10, Mor15, NSK18, NB19, NLL19, NNO16, OT12, PRP15, PMC+17, PSPE+10, PH10b, PBE16, PPUBGD10, PLP+16, RKG10, RB12, RVP+11, SLT14, Szd1B9, SEF+16, SH11b, SY16a, St15, SLLL13, SHG+16, SM17, TO19, TAG16, TSR+16, VVLG17, WFS19, XZ11, YKO+11, ZSLL17, ZLW10, AIM+18, GFG11, ACD+13a]. approach-an [KKH18]. approaches [BP18, BH13, CME11, DBM+17, ECZWD17, HBI+17, IT19, LSH+11, RLDJ17, RSR15, VLB+10, YJ11, ZDT18]. Appropriate [LZL13]. Approximate [Gav12, KV12, KV13, RP15, RZ16, SM14a, HH16a]. approximation [AO10, Boz18, Cas13, HH17, Kid19, Sch12, WHM10, WDKT19, YD17, YN15].


Based [ZYL†12, ZGZ19, ZT14, dCLFGL13, dSVdM†16, dVZ17, FAS†18, NKJ16, WTD†19, ZDW18, dLvNC18a, dLvNC18b]. Based-on [CDS16].

Bases [WBKS19, CWZB10, KASH14, LRVM18, MSLS10, SC18b, SBW12, WGA18, ZLL†10, Zha12a, ZBMZH15]. Basic [CMvG10, WLF19]. Basin [JLH†14, RDRC16]. Basin-hopping [JLH†14]. Basins [SBN13a, dLC18a, SBN13b]. Basis [B LF14, BRLS08, BRLS12, PHK14, WGA18, ZLL†10, Zha12a, ZBMZH15].


C [LdSRR16, LTR18, LAHS16, LLD17, LCWW10, LWD13, MLQ12, MCK17a, MCK17b, NDK18, PMG16, RLA11, Sak18, SKMS13, STS10, SBW12, Tak11, UT15, WCY11, WWKS16, YZZ17, ZYG14, ZLY16, ZLX19, BS16a, VAMS14, AM19a, Ben17, BWKW10a, BS16b, BH13, CG12, ED15, FL15, GWT17, GMSV14, GZ12, HJ13, HS16, IMK16, JLS10, LJW19, KV14, KMT19, KP10, LFB14, LLJ17, LDH14, MSV16, MH11, MSCP19, Niz13, OPR16, PTK11, Pic14, PZBA13, RWR13, SNDK16, TFQ10, TFQ11, TS15a, TKCN19, VAR12, VED10, WKC10a, W10, WWT19, W11, WTH16, Yes12, Yes15, YDGZ15, ZZZ19].


caging [DPB12]. calbindin [TJR19, PNG10]. calcium [Pla11, PD12, TJR19].

calcium-binding [TJR19]. calcium-induced [PD12]. Calculate

[GH16b, BCSCJ13, BACSCJ10, HDK12, PSC11, SK17, Yap11, YFH19].
calculated [CHP11, GY10, KJDB12, MJLV14a, MR11, NMLD13, SKMS13, Yan11, YA018].
calculating [CPZ19, Hei18, PNI13, SK12, WNP16, WWD14, CPK12, CXD19, EFS16, EDP11, HAI16, OK16, SM16a, WTYT17, dRBO13].

Calculation [Fer13b, Fer13a, HQSZ19, KSH13, KPG18, MY17a, MMJ10, MS15, SH11b, SOD11, SOvG12, AC11a, Bac12, BW11a, BK17b, BD11, BL12, CPR18, CCR18, CHG16, CG15, CX10, DKE17, DSX11, FD14, FGM11, FPH19, GRE11, GGM16, H111, JIS13, KHN16, KN17, KB16, KDB13, KNR18, LFN1, LLW12, LZW11, MYT14, MLC13, MS12, NYN17, NH19, NMR19, NFDP13, PDMT10, PAK15, Pic14, PW12, RO14b, RZ16, RB12, RRK16, SBV10, SH18a, SLIB12, SCSW13, SACdG14, SMM17, SR11, UT15, VVV15a, VVG13, WLLH18, WLF19, WDHZ13, ZHS18, ZZL10b, ZLLL12, ZGZC19, HH10].

Calculations [HBI17, HWB19, Jia19, MP19b, SR19, THI19, AR10, AAC16, BE12, BLL13, BS10a, BTMS12, BH15, Bou14, BS18, BG12, BLZ13, CR14, CCJ10, CS17, CCKK16, CBDS19, CMvG10, CXS10, CHK10, CKG18, DGH11, DSV19, DGSVGM19, EFAC13, EK17, EWK13, EP12, EB12,
EBK13, EB18, FAA15, FRC18, FA18, FE14, GRARO$^+$14, GA18, GMO16, HASR$^+$12, HYL$^+$11, HS14a, HB14, HSH15, Hel13, HG10, HG13, HBL12, HYUS11, HGW18, Ibr17, IMS18, ISM18, JCG$^+$11, KK17a, KB10, KKN11, KGHK12, KMS$^+$19, KKR$^+$13, KERY$^+$16, KFT18, KCPMG12, KKL$^+$13, KSH$^+$17, KKH18, LEdOLdV17, LRVM18, LOB18, LMZ11a, LCH10, LYT$^+$13, LCA17, LvG13b, LCK$^+$18, LCM$^+$14, Lun12, MK17, MK19, MUGNVJ$^+$18, MLN$^+$18, MCLD10, MEH18, MCK17a, MCK17b, NWW17, NZM18, NLL19, NH19, PLAG11, SHL$^+$13, SPZP18a, CKT13, LCB10, TCPPC14, Zha12b].

calculations [OLA15, OOT15, OZLSBH12, PBLdS12, PTK11, PHK14, POB13, PBBP11, PDG$^+$16, PN13, PGW$^+$17, RAR$^+$11, RLZ$^+$18, RHT$^+$15, RLD12, RR11, REV$^+$17, RI10, RK15, SH15, SRSL015, SP13, SPHF$^+$18, SS16b, SCW11, SWPR11, SRS14, SMP17b, SDMS13, SHB17, SKTT11, SPZP18b, SPZP19, TLD$^+$12, TNY18, TS10a, TN19b, UHH$^+$18, VLA$^+$10, VKAM12, VKNT16, VHR16, VFRAR16, VMP17, VI17, WC13, WSZW15, WHK$^+$12, WTH$^+$16, WGA18, WXY14, XYW$^+$14, YWJ$^+$16, YD17, YN15, YJ19, ZRCC11, ZLT13, ZLZ14, ZWMM10, ZH12, MSPC19, NQB19].
calibrate [dCLFGL13].
calibration [VVLG17].
call [ZPF14].
can [ZPF14].
Can [ASMS10, IMSR18, KV15b, LZW$^+$11, NH19, PLAG11, SHL$^+$13, SPZP18a, CIKT13, LCB10, TCPPC14, Zha12b].

canada [Fel10].
cancer [NS10, WC11].
Canepa [LHMM11].
cannabinoid [ILKR11].
Canonical [CP15, HH11, JSD$^+$11, PLH16].
capacity [KOP$^+$14, PGC12, WKCl0a, WKLC12].
capability [LC10].
capabilities [AAC$^+$16].
capacity [KOP$^+$14, PGC12, WKCl0a, WKLC12].
capillary [NFPD13].
caps [WDS$^+$19].
capture [GLZ17, SMD18].
car [DL19, KCK$^+$15].
carbon [JLLW19, SC17, AJA$^+$19, AS15a, AAMR18, ASL$^+$11, BPE16, CME11, DI11, Den12, DC13, Fom13, FTR15, GSSMM15, GPK$^+$16, GBS$^+$17, GZZ12, JWO15, KGHK12, KV14, KPH$^+$19, KHE$^+$19, KGJZ19, LPS16, LL10c, LT14, LK16b, MSY19, OCW$^+$15, RHN10, RRK16, Sie18, TSR$^+$16, VS14, WYL$^+$15, WDZN16, YZN13, YZZ$^+$17, ZYW$^+$16, ZLY$^+$16, ZWF15, OSI$^+$19].
carbon-beryllium [CME11].
carbon-carbon [KGJZ19].
carbon-germanium [GSM15].
carbonate [ZSWL12].
carbondioxide [Sea10].
carbonic [SSP$^+$14].
carbons [MKB$^+$13, RVB$^+$12].
carbonyl [BH19, CZH12, CROB16, TS10b, ZBMZH15].
carbonylation [MRC$^+$18].
carbonyls [SSX\textsuperscript{+14}]. carboranes [HJ13]. carboxybetaine [DQ16].
carboxylates [AARP17, RVM19]. carboxylation [CKG18, DGSVGVM19].
carboxylic [LPMT17, RB12, dSH19]. card [SR11]. Carlo [LHMM11, NQB19, Aou16, BFH\textsuperscript{+13}, CLK11, CG12, CTP13, CAP17, DMN15, FFA14, GP12, GPM17, HFSO12, Hes19, HMM10, HYUS11, HQC16, HHHY10, HJJ\textsuperscript{+13}, LPK16, LMZ11a, LZ12, MS16, MBRC16, MOS12, NDW15, OPBR17, PSS14, PS13, Pon10, PHH\textsuperscript{+12}, RHNN10, RdA12, SCOJ13, SAGC16, SMRM\textsuperscript{+17}, SSP19a, SE14, SE14, YO19, ZLM\textsuperscript{+15}, ZW17]. Carlo/Brownian [DMN15]. Carlo/molecular [RdA12].
carotenoids [PVAM16]. carrabiose [YSRSS10]. carrier [SFDE16]. carriers [GMASBF\textsuperscript{+16}, UGK18]. Cartesian [REH13, FHMB15, AlQ19, Elk16].
caryolene [ONTTL16]. caryolene-forming [ONTTL16]. CAS [KMS\textsuperscript{+19}, MH11]. cascade [HS17b, ONTTL16, ZZWT12]. cascaded [LZL\textsuperscript{+15a}]. Case [BMD19, Alg17, ASMS10, AM19a, AM19b, BM12, BG13, CCLP12, CB11c, DSB\textsuperscript{+19}, DOM\textsuperscript{+11}, DS12a, EFOD13, EOA\textsuperscript{+11}, GH10, GKR13, GpdC\textsuperscript{+16}, HSH15, KB13, LAPAS11, LP11a, LT13, MIS\textsuperscript{+15}, OME16, PG18, PVAM16, Ray13, RVM19, Rod13, RKG11, RCM\textsuperscript{+13b}, RJS17, SRF\textsuperscript{+17}, SC18a, SPZP18b, TLA10, VKNT16, WDS\textsuperscript{+19}, ZTH\textsuperscript{+15}, RAR\textsuperscript{+11}]. cases [GREA11]. CASPT2 [LWGZ15, SGWA17, VFRAR16, WGA18]. Cassandra [SMRM\textsuperscript{+17}]. CASSCF [KSHP\textsuperscript{+19}, KKL\textsuperscript{+13}, LWGZ15, NH19, SGWA17]. CASSCF/CASPT2 [LWGZ15]. CASSCF/MC [KKL\textsuperscript{+13}].
CASSCF/MC-XQDPT2 [KKL\textsuperscript{+13}]. CAST [GBW\textsuperscript{+14}]. catalysis [Can10, Can11, EvRC\textsuperscript{+18}, GSMZ19, KK19, LHMM11, MG14, RNS19, WFL\textsuperscript{+19}]. catalyst [BEM14, DK19, DSHLM18, LLC17, OSA19, RLZ\textsuperscript{+18}, WWT19, YZ15b, ZSWL12, ZX19, dSdDar10, SSD19]. catalysts [AHK\textsuperscript{+19}, BEPM14, GSMZ19, JJB16, MPJ\textsuperscript{+19}, NJX\textsuperscript{+10}, WJX\textsuperscript{+10}].
Catalytic [YMY\textsuperscript{+19}, AKH\textsuperscript{+19}, GHL17, GA19, KV15b, ONTTL16, SJD14, SLY\textsuperscript{+10}, SOY12, TM18, UKS11, WZQW10, dSdDar10]. catalyzed [AS11, BF19b, CYY\textsuperscript{+17}, CJC10, CPL11, HPT16a, HDB15, JJL16, KSO\textsuperscript{+19}, KB13, KT12, MRC\textsuperscript{+18}, MG15, MTS\textsuperscript{+19}, QLYL10, TLA10, Ts17, VCM15, WCWW11, WFL\textsuperscript{+19}, WWT19, WXY14, XLYZ10, YXZZ17, YZ17, YZLZ18, dSdDar10, dSdLBN17, dCDP15]. catastrophic [ABDGN12, GND\textsuperscript{+12}]. catechol [PBLdS12]. catechol-O-methyltransferase [PBLdS12]. Catenanes [LAHS16].
cathepsin [ETLS17]. cathode [SMIN\textsuperscript{+19}]. cation [CCCLCGRO14, CGPP11, DLMH12, DDM\textsuperscript{+15}, MUN\textsuperscript{+19}, RMGB11, SSGS15, ZYL\textsuperscript{+12}].
Cationic [HJ13, SC18a, WJX\textsuperscript{+10}]. Cations [ND19, SB19, CCI18b, KGR\textsuperscript{+16}, LCL\textsuperscript{+10}, LSRR16, LLR18, PVS12, SB\textsuperscript{+17}, Tac17, THP\textsuperscript{+15}, ZWY\textsuperscript{+10a}, ZWS\textsuperscript{+10}]. cations/nucleobases [CC18b]. caused [GDV17]. caveolin [PGI19]. caveolin-1 [PGI19]. cavitation [CC18a]. cavities [HRB\textsuperscript{+17}, ZSB\textsuperscript{+16}]. cavities/vacancies [HRB\textsuperscript{+17}]. cavity [KD18, ZWS\textsuperscript{+10}]. CAVS [SDZ17]. CB [BTMS12, CC18a, ILKR11]. CBS [KG15]. CBS-QB3 [KG15]. CC [Gil11, LTLC12]. CC2 [SGWA17].
CC3 [LZ14]. ccCA [RJWW12]. CCSD
PL14, PTB+15, RSSG18, RO14b, Rez19, Ric16, REL17, SPS+12, SDF+18, SSGS15, SmIN+19, SMP17a, SFLG+17, SLC+17, TN10, TKNN10, UT15, UGK18, VPR10, VAR12, VL17b, WCT+11, WWCL15, YKO+11, YWZ14, YLZ+10, YJ17, YFH+19, ZDZM13, ZZL19, dSH19, dLC17. charge-assisted [SSGS15]. charge-inverted [UT15, YJ17]. Charge-transfer [JM11, ANH+11, EAC13, YLZ+10]. charge-transport [HLWD15].

charged [BK13, KD10, MRO17, NPP13, RJS17, Tsi14]. Charges [WFZ+18, CCB15, IM17, JMLL13, LRM18, RB13a, SN15, TBSM12, VSA11, Yan14, ZBG11].


Chemical [dCDP15, Chu10]. chemical-bonding [MDTD13]. Chemically [BS10b]. Chemistry [Ano10b, Ano15-59, Cam19, HJG09, KKGW19, Spr10, ZLX+19, Ali11, BRP+12, BGR13, CBH14, CD19, DDM+15, FLM11, GHV17, HSN+18, IGK16, JBB+11, KTNN10, LBC+19, LK16a, MP19c, OZLSBH12, PNP+16, PPUBG10, RZG+13, Rez16, REL+14, TKNN10, TF15, UDK+18, VVP12, VV14, WDY13, ZVY+15, GS16, MEFM16, XFG+16].

concentration [IPAA11], concept [GRL+11, GRL+12, dSVdM+16].
conceptual [DDP+18, vS18], concerted [HL10], concurrent [HS14b].
condensation [KNE11a, XLYZ10], condensed [BGL+18, BG17, HRB+17, 
MK+19, RSLML12, VKAM12, dSdS12a, dSdS12b]. condensed-matter 
[BGL+18], condensed-phase [MKK+19], condition 
[AA18, IKN13, MTvG12, TTC+18, YAO18]. conditional [BMPML+13].
conditions [AA18, BRGN12, KB14a, MO15, MO17, NO16, SSP19a, SIE15, 
SKMS13, TCPPC14, VECT12]. CONDON 
[SvLK18, CHC+13, MCLD10, MLCD11]. conducting [SV11]. conduction 
[KJ10]. conductivity [ASL+11]. Conductor 
[KB14b, GRN19, KD18, SDF+17]. Conductor-like 
[KB14b, GRN19, KD18, SDF+17]. conductors [MRB14, NFI+16]. cone 
[BKLA13]. confidence [KSM17]. Configuration 
[KKGW19, SS13a, Cas13, CTP13, CAP17, EK17, FF11, FA18, GA14, GP11a, 
HPT17, HBL12, LCB10, MT19b, MIS+15, MCP18, ZRCC11].
configurational [RO14a, WTD+19, WDHZ13]. Confined 
[NS15, CCR18, CDB10, FTR15, Vyb15, Vyb16]. Confinement 
[CC18a, DCG18b, TM16]. Confining [WRG+17]. conformation 
[AST+16, CR19, EJ13, FBvdB18, GKJ+19, PVJ10, SEF+16].
conformation-dependent [PVJ10]. Conformational 
[CDM+15, ETLS17, KRTB10, LGL11, LTA+11, MO17, OGL10, vRWGS17, 
AD10, BLKP12, BD11, ČMD13, DPSL16, DPNM11, DSHLM18, FCD10, 
FCOGM12, GDV17, GO13, GBSE11, HTS15, HYNS19, HDL+17, HKNH18, 
HCD+10, IMK+16, ISK14, JLS18, KB10, KNE11a, KGM12, LLHM16, LC17b, 
NMF+14, Pet11, PKIC11, PLH16, PVSS2, PS14, RSL16, SBT17, SIE11, 
SEM12, SDMS13, TJB12, VZ14, YZ16, YBS19, Yon16].
conformational-space [AD10]. conformationally [AFPI13, CP15].
conformations [CC12b, DJ13, ESD18, LC16, LZZ14, NR11, OCL11, PGI19, 
PH10a, RVP+11, ZC14, DKV18]. Conformers 
[SS+18, BHF+18, DBG11, HH10, HH11, LG11, MS17, TCGNT18, VP19].
congested [MvBD18]. conjugate [MSV16]. Conjugated 
[RVB+12, BLBG+13, HDHL15a, HDHL15b, HDHL15c, JYS+12, RSSG18, 
YJN+11, JCHT18]. conjugating [JDW+19]. conjunction 
[CGA19, LBH+11, NCI13, RKG10]. connected 
[ACD+13a, ACD+13b, NR11, XTN18]. connection [Lüe14]. connections 
[CDC19]. Connectivity [ISP+10, ZYS+10]. Conquer 
[NN19, YKNN19, BRP+12, BGR13, KKN11, KFT18, NYH+17, NN18, 
NNK+16, WX12, YN15]. consensus [DMJ17, SRA17, PLV+11].
consequences [KG15], conservation [MB16], conserved [JDW+19].
Conserving [PH17], considerable [LLD17]. Consideration [Fom11], 
considerations [SBGP18]. Considering [CSEMB+16]. considers [YBS19].
Consistent 
[LOB18, MKO+13, POB13, BKŠ+11, BY11, BK17b, DK11, GBVA11, Hili13, 
HKR+14, JSXH16, KT10, KFT18, LBH+11, LCW12, ON14, OLPB19, Reiz19,
SPS$^{+12}$, SMP$^{17b}$, SCSW$^{13}$, TYN$^{15}$, VGV$^{+11}$, YN$^{15}$, ZBG$^{11}$, BLKP$^{12}$].

**consistently** [IM$^{17}$]. **consolidate** [BK$^{17c}$]. **constant**

[AB$^{16a}$, CS$^{14}$, IN$^{19}$, KSK$^{11}$, KNP$^{+12}$, KB$^{19}$, MK$^{17}$, MK$^{19}$, PLFS$^{18}$, PS$^{13}$, RAGL$^{11}$, Sak$^{18}$, STM$^{17}$, Vor$^{12}$, WOH$^{16}$, WOH$^{18}$, dACP$^{12}$].

**constant-distance** [dACP$^{12}$]. **constants** [AAMD$^{+11}$, CBH$^{14}$, CPK$^{12}$, DSD$^{+11}$, ECZWD$^{17}$, FD$^{14}$, GAI$^{13}$, GKR$^{13}$, MG$^{11}$, OZLSBH$^{12}$, Ray$^{13}$, RSG$^{14}$, RK$^{G11}$, Ru$^{i11}$, RRK$^{16}$, SSC$^{+19}$, SPHF$^{+18}$, SH$^{18a}$, SACdG$^{14}$, TTR$^{+12}$, Tsi$^{14}$, WL$^{14}$, XWW$^{+11}$, YS$^{13}$, ZZL$^{+10b}$, ZLLL$^{12}$]. **Constrained** [SLG$^{15}$, GREAI$^{11}$, GA$^{12}$, VBV$^{13b}$, WBN$^{+13}$].

**Constraint** [HNyH$^{19}$]. **constraints** [KB$^{11a}$, OPBR$^{17}$, OZ$^{S}^{+13}$]. **construct** [HH$^{10}$]. **constructed** [HDL$^{+17}$, Tsi$^{19}$, ZLY$^{+16}$].

**Constructing** [Che$^{17}$, LLH$^{+19}$, HS$^{16b}$, LG$^{11}$, SWA$^{13}$]. **Construction** [FZL$^{+19}$, AGR$^{11b}$, JCP$^{C11}$, KD$^{18}$, KSR$^{17}$, LZX$^{16}$, UIW$^{+10}$, WWD$^{14}$, YD$^{17}$]. **contact** [DB$^{K17}$, LL$^{19b}$, MK$^{13a}$]. **contact-assisted** [LL$^{19b}$].

**contacting** [Mau$^{14}$]. **contacts** [CCCLCGRO$^{14}$, Ham$^{11}$, Kri$^{10}$, PRP$^{15}$, SNDK$^{16}$]. **containing** [AKMY$^{B18}$, ACD$^{+13a}$, ACD$^{+13b}$, DT$^{19}$, DGL$^{+13}$, GP$^{12}$, GPdC$^{+16}$, HDPM$^{14}$, KLN$^{12}$, KGJ$^{Z19}$, LDZW$^{17}$, MUGNVJ$^{+18}$, VDVR$^{14}$, YHVM$^{12}$, YDX$^{16}$, ZZL$^{+12}$, ZM$^{10}$, MSCP$^{19}$]. **contaminated** [YR$^{13}$].

**content** [CGBK$^{13}$, GWPJ$^{11}$]. **Contents** [Ano$^{16-115}$, Ano$^{16-121}$, Ano$^{16-122}$, Ano$^{16-123}$, Ano$^{16-124}$, Ano$^{16-125}$, Ano$^{16-126}$, Ano$^{16-128}$, Ano$^{16-116}$, Ano$^{16-117}$, Ano$^{16-118}$, Ano$^{16-119}$, Ano$^{16-120}$]. **context** [CBG$^{16}$].

**continuation** [PJ$^{13}$]. **Continuous** [Dry$^{14}$, LPLA$^{13}$, PZBA$^{13}$, BS$^{19}$, FGM$^{11}$, LBGS$^{16}$]. **Continuum** [CCR$^{18}$, JJJ$^{16}$, ND$^{19}$, ALRM$^{18}$, Cam$^{15}$, CZY$^{11}$, GRN$^{19}$, HZSS$^{17}$, ISO$^{+13}$, LFN$^{+10}$, MCUJ$^{15}$, SK$^{12}$, SK$^{17}$, TNG$^{+10}$, WC$^{13}$, WRFH$^{10}$, XZ$^{11}$]. **Contracted** [FC$^{18}$, SM$^{18}$]. **Contraction** [Hes$^{19}$, HSN$^{14}$, STM$^{17}$].

**contractions** [KK$^{17a}$]. **Contrasting** [TS$^{15a}$]. **contribution** [Pro$^{16}$].

**Contributions** [JJH$^{+13}$, ARRC$^{15}$, BCNH$^{+11}$, CGR$^{16}$, CPN$^{+17}$, ENKK$^{+17}$, WS$^{10}$]. **control** [B$^{VY}^{+12}$, DPAB$^{16}$, He$^{l13}$, HH$^{16b}$, KFT$^{18}$, LPL$^{B16}$, SR$^{10}$, XYW$^{+14}$, ZQ$^{14}$].

**Controlled** [PGK$^{+19}$]. **Controlled-advancement** [PGK$^{+19}$]. **Controlling** [FWB$^{14}$, NPG$^{+18}$, SS$^{19}$]. **convective** [SBN$^{13a}$, SBN$^{13b}$].

**cooperative** [DBG$^{11}$, WFL$^{+19}$]. **convex** [CLFRO$^{18}$, GWW$^{19}$]. **convolution** [SZTSM$^{10}$]. **convolutional** [LHO$^{17}$].

**coordinate** [DK$^{17}$, AFSW$^{16}$, JSW$^{10}$, KPH$^{+19}$, SM$^{16a}$]. **coordinate** [AMGB$^{10}$, HSN$^{14}$, He$^{l13}$, LL$^{15}$, LL$^{13a}$, MS$^{10}$, WBN$^{+13}$]. **coordinated** [Sak$^{18}$]. **Coordinates** [AlQ$^{19}$, BK$^{15}$, LWK$^{+14}$, MK$^{19}$, NCV$^{10}$, PH$^{10a}$, Sch$^{13}$, VBV$^{13b}$, You$^{10}$, ZT$^{14}$]. **Coordination** [LBC$^{+19}$, ASMS$^{10}$, AHK$^{+19}$, CRC$^{13}$, GBPC$^{C19}$, HS$^{16b}$, HH$^{18}$, KLZ$^{+18}$, KJ$^{10}$, Mor$^{15}$, SB$^{19}$].
copolymerization [DSHLM18]. copper
[JRSHP14, KKPT11, SBC+11, SIT18, SPR+13, WC14, ASMS10, BSG+18b, CPK12, HRJ+14, HGHP14, HRJ+15, XWSW13]. coprocessors [WS13].

Copyright
[Ano16-89, Ano16-94, Ano16-95, Ano16-96, Ano16-97, Ano16-98, Ano16-99, Ano16-100, Ano16-101, Ano16-102, Ano16-90, Ano16-91, Ano16-92, Ano16-93].


Coriolis [LWD13, Wu10]. Corrected [SG13, AG12, BLBG+13, CLFRO18, CR14, GEG11, Han11, KSH13, KSS13, MMS16, Rui11, SHL+18, ST13, SPH11, SH19a, ST15, VCL18]. correcting [vS18]. Correction
[ND19, DAG19, HGHP14, NLP+16, OLPB19, RR12, SMG11, TSH+19]. corrections [JKS+16, KB10, KLN12, LCM+14, MGWR12, PTK11, RJPB12, RRK16, SJJ+15, SSA+17, TG12a, VL17a]. correctly [ASMS10]. correlate [MJLV14a]. correlated [BWKW10a, BKWK10b, EK17, GA12, HKN16, LCM+14, MGWR12, OOK11, RLD12, SJC11, WWU12, WWD14]. correlating [TZCK18, SNKS10]. Correlation
[ASL+11, CKB17, ELKE19, RLA18, SN16b, VSP19, Vyb16, CSKH15, CSHK16, ESM+12, FRSA14, Hll13, HGCCGR+16, HG10, KSH13, KN1P+12, LBH+11, LKZ18, MKGA10, NYH+17, NLL19, OAN15a, PBT+15, SH18a, SPH11, SH19a, VL17a, WFS19, ZPP+16]. correlations [AHK+19, CSKH16, Hei18, SB10, TTB+10]. corresponding [PG14, RvL11].

Corrigendum
[PDG+16, BLDK+13, BYE+16, CBP14, Gil11, LCM+14, SRR16, TF15].
cost-effective [LCM+14]. cost-efficient [CBP14]. Could
[EPH+13, EPH+15, TIA10]. Coulomb
[FED17, GC18, IO13a, JKS+16, LMR14]. Coulombic [DPAB16]. coundaric
[HHN+17]. coundaric [MS11, ZDX11]. count [KTK17]. counterintuitive
[WDS+19]. Counterpoise [SMGB11, LCM+14]. Counting [QZ10a, RNP13].
couple [IYK11, Tsi17]. Coupled [DAB16, Höf14, SZL19, VV14, ACD+13a, ACD+13b, BYE+16, CAT+13, EV18, FYZ+12, GA18, HKN18, HN1K19, HDM+15, HGCCGR+16, ILKR11, IYK11, JIL+14, KT19, Les19, MC12, PGS+15, RKDM14, SB14, SH18b, SM17, TX19, TX18, XBSS19].

Coupled-cluster [Höf14, VV14, BYE+16, HGCCGR+16, Les19, MC12, PGS+15, TX19, TX18]. coupled-cluster/Kohn [VY14].
coupled-electron [SB14]. Coupling [NNT+19, AMQ+14, BLZ+13, FD16,
32
GP11a, KSK11, KNP+ 12, KKA+ 18, Kos16, KKH18, LLB+ 12, LSH+ 11,
LWD13, MG11, MCP18, PLFS18, PS17, Rui11, RRK16, SPHF+ 18, SH18a,
SACdG14, Wu10, YB11, ZTH+ 15, ZLZ14, ZYvIZ14, GA19]. couplings
[CSEMB+ 16, LK11, LZH+ 11, YFH+ 19, ZB18, dVAG16]. covalency [HS14a].
Covalent
[WBT10, FCCP17, HAI+ 16, KAR12, MŘ17, OZS+ 13, RS13, SFA17].
CovalentDock [OZS+ 13]. covalently [CZNA11]. Cover
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13l, Ano13t, Ano13u, Ano13v,
Ano13x, Ano13y, Ano13w, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30,
Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h,
Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q,
Ano13r, Ano13s, Ano13-32, Ano13-43, Ano13-51, Ano13-52, Ano13-53,
Ano13-55, Ano13-56, Ano13-57, Ano13-58, Ano13-54, Ano13-59, Ano13-60,
Ano13-61, Ano13-62, Ano13-63, Ano13-64, Ano13-33, Ano13-34, Ano13-35,
[Ano13-50, Ano14a, Ano14b, Ano14c, Ano14g, Ano14h, Ano14i, Ano14j,
Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r,
Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14-28,
Ano14-29, Ano14-30, Ano14-31, Ano14-32, Ano14-33, Ano14-34, Ano14z,
Ano14-35, Ano14-36, Ano14-37, Ano14-38, Ano14-39, Ano14-40, Ano14-41,
Ano14-42, Ano14-43, Ano14-44, Ano14-45, Ano14-46, Ano14-47, Ano14-50,
Ano14-51, Ano14-52, Ano14-53, Ano14-54, Ano14-55, Ano14-27, Ano14-48,
Ano14-49, Ano14-56, Ano14-57, Ano14-58, Ano14-59, Ano14-60, Ano14-61,
Ano14-62, Ano14-63, Ano14-64, Ano14-65, Ano14-66, Ano14-67, Ano14-68,
Ano14-69, Ano14-70, Ano14-71, Ano14-72, Ano14d, Ano14e, Ano14f, Ano15a,
Ano15b, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o]. Cover
[Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15y, Ano15z,
Ano15-42, Ano15-43, Ano15-44, Ano15w, Ano15x, Ano15-37, Ano15-38,
Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano16a, Ano16b, Ano16i, Ano16j,
Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r,
Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16-27, Ano16-28,
Ano16-29, Ano16-30, Ano16-31, Ano16-32, Ano16-33, Ano16-34, Ano16-35,
Ano16-36, Ano16c, Ano16-39, Ano16-40, Ano16-41, Ano16s, Ano16t]. Cover
[Ano16-37, Ano16-38, Ano16-42, Ano16-43, Ano16-44, Ano16-45, Ano16-46,
Ano16-47, Ano16-48, Ano16-49, Ano16-50, Ano16-51, Ano16-52, Ano16-53,
Ano16-54, Ano16-55, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano17a,
Ano17n, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano17z, Ano17-27,


Ano17-28, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18a, Ano18b, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18a, Ano18b, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h.

**Cover**
[Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h].


crown/ammonium [AvKSP16]. CrWO [WMW11]. cryo [MKM +17].

cryo-EM [MKM +17]. cryptands [EHT19]. CRYSPLOT [BPC19]. Crystal [FDCJG18, Kri10, VM11, ASL +11, BCSCJ +13, BCJC +14, Elk16, GMG +10, HB14, HJ10, MCAC +16, NHF +10, NTNY15, SPZP18b, VMV19, OPB +12, CPR18].

crystalline [BPC19, DOM +11, DCOD13, DLSD13, DB12, EP12, EFOD13, GKB +10, GS12, RB10, TNI +19a, WGN +16, WGLG +16, XP13, ZRCC11, ZSWL12].

cu-O [ZRCC11]. Cu-ZSM-5 [Mor15]. Cu2II [WGLG +16]. Cuby [Rez16].


curcumin [AMK11]. Curie [WMW11]. curing [LPMT17, PPH +14].

Current [ATM18, NS17, ABM +15, ATIP18, BL19, FNSF +11, GWT +17, HBLCCG15, PCLL11, PL18, PZM15, Vik11]. current-density [Vik11].

currents [CPN +17, RVB +12]. Curvature [LPLS16, RR12, NW17].
SFG$^{+17}$, SHL$^{+18}$, Sea10, SCW11, SDM$^{+16}$, SEF$^{+16}$, SE14, SH14, ST13, SHL$^{+13}$, SPR$^{+13}$, SZX13a, SZX13b, SMM15a, SMM15b, SMM$^{+18}$, SKTT11, SZZS16, STS15, SK11, TLDG$^{+12}$, TN10, VGV$^{+11}$. density [VAR12, VECT12, VV14, Vik11, VI17, VED10, VHS$^{+19}$, Vyb16, WKC10a, WHL$^{+10}$, WGL$^{+11}$, WCWW11, WWU12, WWCL15, WHX$^{+10}$, WL14, WTH$^{+16}$, XYW$^{+14}$, YLZ$^{+10}$, YS13, Yu12b, ZTH$^{+15}$, ZXS$^{+10}$, ZSWL12, ZKE$^{+17}$, ZDX11, ZLHH14, ZCWX18, ZGS$^{+10}$, dSD12b, dSDLBNB17, dLC17, dLvNC18a, CDM10, FAS$^{+18}$, VV19]. density-based [LZS$^{+17}$]. density-density [DSAS19, SS16a]. density-fitting [Boz18, Hil13]. Density-Functional [YKNN19, Oht16, CHG$^{+16}$, HNWF07, HNWF12, IM17, JCP14, KZZ$^{+16}$, MFR$^{+17}$, NF17, NN18, NO16, NNK$^{+16}$, Rez19, RHPWS13, SPS$^{+12}$, VED10]. density-peaks [LZS$^{+17}$]. deoxy [VM11]. deoxyribonucleoside [XVN17]. deoxyribonucleosides [RJWW12]. dependant [PNG10]. Dependence [CFM$^{+19}$, BRLS08, BRLS12, ELP19, FE14, GZZ12, KKO$^{+16}$, KGM12, Lar12, LPE$^{+10}$, LLTC12, MP17b, PZA15, PBE16, PS10, SGPJS$^{+17}$, SY16b, AD10, MGWR12]. Dependences [NNT$^{+19}$, SMM$^{+18}$]. dependency [DKT13, PHDH13]. Dependent [YKNN19, AALCM11, BS16a, CHG$^{+16}$, CP15, CKP10, DP15, EPD$^{+10}$, GTK10, HNWF07, HNWF12, HG10, HYUS11, JYS$^{+12}$, KS18, KCPMG12, LPLS16, LZ12, LZGS11, Mat10, NS10, PAK17, PPJ14, PVJ10, RHPWS13, REL17, SY16a, SFBT17, Vik11, WHL$^{+10}$, WHX$^{+10}$, YLZ$^{+10}$, ZXS$^{+10}$, ZDX11]. depending [Lin18]. depolarized [KKK$^{+19}$]. deposition [SE14]. depth [DDP$^{+18}$]. derivates [UGK18]. derivation [SCMA$^{+17}$, VVV$^{+15}$b]. derivative [MY17b, TPL$^{+10}$].

Derivatives [KTSW11, CWHH11, CZH12, CBTZ16, CROB16, GRN19, HSZ$^{+11}$, JS17a, JYS$^{+12}$, KG11, KPL15, LWGZ15, LWWG12, MFR$^{+11}$, MIS$^{+15}$, NS10, NF18, PC14, RBV$^{+12}$, RFN15, REH13, SBR13, SZX13a, SVJ15, VVJ15, VVY18, VSD10, WGL$^{+11}$, WRG$^{+17}$, WDP$^{+12}$, ZsA10, ZZ12, ZZWX11]. derive [RVP$^{+11}$]. derived [CIKT13, GMMH$^{+16}$, KSR$^{+16}$, LRVM18, LZGS11, MUGNVJ$^{+18}$, MCLD10, OSS10, PLZ17, REL17, SOYC12, SE14, TBSM12]. Deriving [CCYL11].

descent [MS16]. describe [LCK$^{+18}$, RHRC16, RS13]. described [BM12, CCB15, KDS17]. Describing [MKGA10, CGA19, DAP$^{+18}$, JCP14, JBSQG11, MY17b, VBD11].

Description [FD16, MR17, Rez19, SWW$^{+19}$, BBG$^{+18a}$, BD12, BE16, Cam15, CRZ$^{+18}$, LAM19, LZZC13, MFR$^{+11}$, PM13, PLH16, PVAM16, RVM19, SRF$^{+17}$, SSA$^{+17}$, TKNN10, WvRSM14, WL14]. descriptor [DFP$^{+15}$, MA16, PRYI$^{+17}$, TMJ15, WMW$^{+10}$, Yap11]. descriptor-based [DFP$^{+15}$]. Descriptors [ELKE19, STF$^{+19}$, CBD19, FCI$^{+10}$, FZL$^{+15}$, GJMPAM$^{+14}$, MdOdQ18, MCF$^{+18}$, MH10, NK16, PKIC11, RB13b, SIT18, TTB$^{+10}$, Wei12b, YLCX10, Yap11, YDX16, ZWX16]. Design [LI19, LLX$^{+19}$, LCM16, Spr18, SCSM19, Tak14, TZ12, VBD11, AM10, AFBR17, BAMR13, BEPM14, BPC13, CBP14, DPB$^{+12}$, DPOS16, DGL$^{+13}$,
diabetic [RGVC$^{+19}$, YFH$^{+19}$, DHOG$^{+13}$]. diabetes [PC$^{11}$]. Diagnosis [MC$^{12}$, TDK$^{+10}$]. diagonal [BMBJ$^{+11}$, KTK$^{+17}$, WZ$^{+19}$]. diagonalization [BK$^{+8}$, HKR$^{+14}$]. diagonalization-free [BK$^{+8}$, HKR$^{+14}$]. diagram [OV$^{+14}$, VED$^{+10}$, ZY$^{+14}$]. diagrammatic [WWD$^{+14}$, YD$^{+17}$]. diameter [AS$^{+15a}$, KGHK$^{+12}$]. diamond [JWO$^{+15}$, WGN$^{+16}$, WGLG$^{+16}$, ZSL$^{+11}$]. diamond-like [ZSL$^{+11}$]. dianion [DP$^{+11}$, GRD$^{+10}$, YZGS$^{+14a}$]. diarylalkyl [NS$^{+10}$]. diarylalkyl-imidazole [NS$^{+10}$]. diarylalkyl-triazole [NS$^{+10}$]. Diarylbibenzofuranone [SFA$^{+17}$]. diaryldichalcogenides [ZWGO$^{+16}$]. diastereoselectivity [AARP$^{+17}$]. Diatomic [ATM$^{+18}$, KKA$^{+18}$, LS$^{+11b}$, Tsi$^{+14}$, WDKT$^{+19}$]. diatropic [CPN$^{+17}$.] dicarbide [Kop$^{+16}$, Kop$^{+18}$]. dicationic [GC$^{+18}$]. dichalcogenides [FZL$^{+19}$]. dichloropentacene [ZYG$^{+15}$]. dichroism [HNHR$^{+13}$, SEJ$^{+18}$, ˇSB$^{+13}$, ˇSB$^{+15}$]. Dickerson [IPAA$^{+11}$]. dicopper [RHPWS$^{+13}$]. dielectric [DOM$^{+11}$, DSF$^{+17}$, JLCA$^{+17}$, KCPMG$^{+12}$, PS$^{+13}$, WXL$^{+17}$, YHW$^{+17}$]. Diels [BJSI$^{+12}$, CC$^{+18a}$, FB$^{+14a}$, GND$^{+12}$, LZH$^{+16}$, ORZ$^{+11}$, ST$^{+13}$, dSV$^{+16}$]. difference [LLH$^{+17}$, WL$^{+10}$, Yon$^{+16}$, ZRCC$^{+11}$]. difference-dedicated [ZRCC$^{+11}$]. differences [BVC$^{+13}$, GO$^{+13}$, HDL$^{+17}$, KHWB$^{+17}$, LGL$^{+11}$, PM$^{+18a}$]. Different [PH$^{+15}$, BRGN$^{+12}$, Dil$^{+15}$, DLC$^{+18b}$, FZL$^{+15}$, GO$^{+13}$, GR$^{+11}$, GFPSD$^{+17}$, GMPB$^{+12}$, Kar$^{+17}$, KB$^{+19}$, MCS$^{+11}$, MC$^{+12}$, MPA$^{+12}$, NMLD$^{+13}$, NOKJ$^{+16}$, RHNN$^{+10}$, Rao$^{+11}$, SLP$^{+12}$, SIG$^{+15}$, TTC$^{+18}$, TSNC$^{+17}$, UT$^{+15}$, VVY$^{+18}$, ZR$^{+10}$]. Differential [HHT$^{+13a}$, HHT$^{+13b}$, CJL$^{+13}$, MY$^{+17a}$, MY$^{+17b}$, WDKT$^{+19}$]. Difficult [RJS$^{+15}$, VDVR$^{+14}$]. Diffusion [NQB$^{+19}$, CPZ$^{+19}$, CPV$^{+12}$, CC$^{+12a}$, GC$^{+11}$, KB$^{+19}$, RSLS$^{+13}$, ZW$^{+17}$, WH$^{+11}$]. diffusional [BPLL$^{+12}$, FBvdB$^{+18}$, FZL$^{+19}$, KTY$^{+17}$, KRSC$^{+12}$, KTO$^{+13}$, MB$^{+16}$, PJ$^{+13}$, SG$^{+10a}$, SHL$^{+19}$, TYN$^{+15}$, TCX$^{+13}$, TKC$^{+11}$, XCLZ$^{+19}$, YZLZ$^{+19}$, ZWX$^{+16}$]. different [LLH$^{+17}$, WL$^{+10}$, Yon$^{+16}$, ZRCC$^{+11}$]. differences [BVC$^{+13}$, GO$^{+13}$, HDL$^{+17}$, KHWB$^{+17}$, LGL$^{+11}$, PM$^{+18a}$]. Dimer [BPPS$^{+19}$, LWL$^{+16}$, ZQH$^{+19}$, ARRC$^{+15}$, ANH$^{+11}$, BPPS$^{+17}$, CBTZ$^{+16}$, FCL$^{+10}$, FMNC$^{+11}$, JT$^{+18}$, KCB$^{+12}$, LC$^{+10}$, Nav$^{+18}$, PD$^{+11}$, SKY$^{+11}$, Tac$^{+17}$, WWKS$^{+16}$, YCGA$^{+10}$]. Dimeric [VL$^{+19}$, PS$^{+14}$]. dimerization [DS$^{+11}$, Kar$^{+12}$, TNI$^{+19a}$, TLA$^{+10}$, WJX$^{+10}$]. dimerization/oligomerization [KAR$^{+12}$]. dimers [AM$^{+19a}$, BCNH$^{+11}$, BWKW$^{+10a}$, BWKW$^{+10b}$, CLFRO$^{+18}$, CK$^{+10}$, DT$^{+19}$, JKS$^{+16}$, LJW$^{+11a}$,
Dimetallic [ZYG+14], dimethyl [GC11, KPH+19, WLC12, ZSWL12], dimethylacridine [FWS+18], dimethylaminoazobenzene [KP10], dimethylaminophenyl [YLZ+10], dimethylnitrosamine [FFA14], dinitrophenol [MIS+15], Dinuclear [SCSM19, ITY+19, OSS10, QLYL10], diodes [FWS+18, ZGZ19], diorganotin [CBDS19], dioxane [GM17], dioxetanone [RSLML12, dSdS12a, dSdS12b], Dioxide [SC17, KPH+19, Kop17b, QZ10b], dioxygen [DSM+11], dioxygenase [DGH+11], diphenyl [GKR13, Ray13, RKG11], diphenylamino [FWS+18], diplatinum [KT12], Dipoles [Ali18, Cam19, GH16b, LIRL+16, ZBG11, AS15b, B LBG+13, DHOG13, GH16a, HBKL10, IY18, KCB+12, LHHW14, MNNK10a, MNNK10b, PC14, Yan11, dSH19], dippened [IN13], Dirac [JKS+16], diradical [HWB19, VSH19, YSSB12, ZB18], dipeptides [KH16, LIRL+16, RSL16], diphenylalanine [KLN16], diphenylamino [FWS+18], diphenylalkane [KLN16], diphenylamine [KP10], diphosphonlitrosamine [FFA14], dinitrophenol [MIS+15],...
[CSXZ17, SZX13a, SZX13b, ZWLX11, ZWX19]. **Douglas** [YS13]. **DOX** [RCR+16]. **DPO** [WGL+11]. **DPPC** [LBDP12, vRWGS17]. **DPT** [BH13, BZH14]. **Dramatic** [MLY+13]. **dramatically** [CSC+18]. **Draw** [LBB+15]. **drawback** [BRGN12]. **Driven** [IPAA11].

[BSL11, BG17, DMS+11, GA19, HXM+16, KC13b, LZL+13, LLL+12, REL17].

**Driving** [YZLZ18, RN17, YZ17]. **Droplet** [SJSS19]. **Drude** [ALRM18, LRvdSM15, LM18a, Ric16, SM14b, ZM10, HLEM18]. **Drug** [GSHM10, MBA14, AJA+19, FLM11, GMASBF16, HSW+19, Ibr11, ISP+10, PC11, PVJ10, VHA+10, Won18]. **drug-like** [VHA+10].

**DSiCl** [LX11].

**DSPMP** [FZL+15].

**DsRed.M1** [SGDT10].

**DSS** [GZM11].

**DSSCs** [ZSTRS+18].

**DTTO** [MCAG+16].

**dual** [JCG+10, MA16, TMJ15].

**Duncanson** [Bac12].

**Durandal** [BSZ+12]. **during** [GBPCC19, GNDA+12, LBC+12, MJLV14a, MJLV14b, OSA19, PNG10, RSKG14, dCDP15].

**dyad** [KP10].

**dyads** [KCK+15].

**Dye** [MP19a, ACS12, JYS+12, SLP+12].

**dye-aggregates** [ACS12, JYS+12, LLL+15a, SLP+12, YJN+11].

**dye-sensitizer** [YJN+11].

**Dyes** [FAS+18, DBM+17, NPG+18, VAA14, WJG+13, YJN+11, ZSTRS+18].

**dyes*** [FA18]. **Dynamic** [LKL10, SFA17, SBZ19, VP19, TNYN16, AKK+16, BS10a, BMB13, CVT+11, ESM+12, GBL+11, Hel13, MR14, NYN17, OPR16, VOR12, WSFS19, PBDW11].

**dynamical** [ALH+10, EFOD13, Ham11, VVMY18, VPR10].

**dynamically** [HS17a]. **Dynamics** [AIM+18, BHF+18, BHB19, CPV+12, JK13, MFEM16, NNT+19, NN19, AASP18, AJA+19, AALCM11, AG11, AS15a, Aki16, ASL+11, ABD11, APK14, AB16a, ALH+10, BHBI2, BSL11, BDTP11, BJSI12, BW15, BF17, BMBJ11, Bow16, BEL+11, CTR13, CS14, CH16, CCOH14, CCW+10, CHKR10, DASA15, DGH+11, DMN15, DSD+11, DZT11, DJS+18, DLZ15, DDM+15, DL19, EP10, EK15, EPH+13, ETLS17, EFOD13, EvRC+18, Fon13, FBEM11, FPH+19, GBL+11, GDV17, GR11, GKB+19, GWZ15, GWC14, GGM+12, GPdC+16, GP11b, GC11, HZ11, HS17b, HKNH18, HHHK19, HHC+10, HP10b, HPT17, HPDK12, HJ10, HHWL17, HLEM18, HRID16, HC14, IUK+11, ISK14, IN19, IM17, III10, IPAA11, JIS13, JA10, JBSQG11, JCG+10, JAH+17, JLS18, JWST10, JMS14, JS17b, JND+19, KT19, K17, KCH+15, KVQ+10, KUDG12, KSN19].

**dynamics** [KGHC15, KCC+18, KDB13, KB14a, KNE11a, KERY+16, KLOS10, KJM+17, Kop19b, KSR+16, KG13, KZP+18a, KN18, KV15a, KVR10, LL15, Lar12, LWK+14, LH11, LJR+12, LLI13a, LRvdSM15, LCH10, LQC+13, LMI+14, LPE+10, LLTC12, LZS+17, LPLB16, LLL12, LDPD12, MBT14, MMH19, MSY19, Man19b, MKS+12, MSC+10, MJ14, MN15, MCRL17, MLN+18, MFEM15, MADWB11, MKM+17, MB16, MHR11, MO17, MO13, NPTS16, NST14, NFPD13, NFG+13, NNK+16, NHK+13, NNY15, Oht16, ON14, OGL10, OCL11, OLY17, OT12, OCW+15, PMC+17, PSS14, PAK15, PH17, PP19, PL14, PM13, PD12, PHT17, PVZ13, PS10,
PVAM16, RD18, RS12, Ras17, RO14a, RO14b, RFN15, RR14, RdA12, RVdMB16, RC18, RLG14, REL+14, RSR15, RSB+13, SHMO11, SF18, SLT+15, SKA19, SWM10, SSWX14, SS19, SSNT19, SOM+13, SCK18].

**dynamics**

[SJ17, SR18, SYN+12, SM16b, SK13, SKMS13, SFLG+17, SLLL13, SJ16, SZZ+18, SV11, SPZP19, SBrG14, SAvG15, Tac19, Tac17, TNY16, TFYO19, TJR19, TTC+18, US11, UGK18, Vor10, VM11, WKLC12, WBN+13, WAM17, WC11, WHL+10, WH11, WWKS11, WLC12, WLF19, WES13, WG14, Won18, Wu10, WBVE16, XCLZ19, YPvD13, YO19, YHX19, YJXZ13, Yon16, Yu12a, YFH+19, ZY+16, ZX11, ZDKM12, ZBP11, ZP13, dCLFGL13, dSVdM16].

**Dynamics-Based** [AIM+18, Vor10]. **DynamO** [BSL11].

**dysprosium** [BP18].

**E-field** [XMA+19]. **E-I** [GM17]. **EA** [MLCD11]. **EADock** [GZM11].

**EADock** [GZM11].

**E-coupling** [dVAG16]. **Early** [Tsi18, CBP+15]. **Eart** [Ano11, JHMB+09, JHMB+11, WD10]. **Easy** [SJL18, QS19, TKT11, VVV+15b, Yes12]. **Easy-to-use** [QS19]. **Ebola** [OLY17]. **Echo** [OC19]. **Economic** [PN13]. **Ecoupling** [dVAG16].

**E-coupling** [dVAG16]. **Edge** [DWZ+17, DJX+11b, KHE+19, PDG+16]. **edge-modified** [DJX+11b].

**E-diff** [DWZ+17, DJX+11b, KHE+19, PDG+16].

**Editor** [GKR13, GPGSM12, JW12, dSdS12b, vLBBR12, Ihl12, BCJC+14, Cor17, KR14, Man13, SFLG+17, VVB13].

**Editor** [GKR13, GPGSM12, JW12, dSdS12b, vLBBR12, Ihl12, BCJC+14, Cor17, KR14, Man13, SFLG+17, VVB13].


**Editorials** [BEFS13].

**Effect** [ABD11, CIG17, CS17, DSHLM18, GEG11, HYL+11, JZ12, KMT+19, OBW12, RRF11, SJSS19, TJR19, VS14, WZ19, dALdS+15, AB10, CSKH16, CR19, CD11, CXS10, DKT13, DJX+11b, DLW12, FCOGM12, FHK+12, GFS18, GA19, HLBlcG15, JWO15, JYS+12, KTT16, KCL+14, KLN16, LVdG10, MTvG12, ONTL16, RWR+13, SLT14, SBC+11, SY16a, Tsi19, UT15, VLGK+17, WDLG12, ZZZM13, ZLL+10, BLG10, CC11, IYK11].

**Effective** [GKV+13, IM17, YZ16, AASP18, CVG14, DR11, DMN14, DMN15, GA12, HKNH18, KS13a, KS15, LCM+14, PHC13, PRY1+17, PS13, RLD12, SSB+16, UCFR16, WXS+12, YZZ16, YZ15b, ZKH+10]. **Effects** [CS14, GBG+19, HTY19, JAH+17, JLLW19, LGOM+15, LCH+15, Mor15, NNT+19, SEM12, Tac17, WWTL19, YCK16, dCRN18, AS15a, ATIP18, AS18, AK10, ASK18, BBI+11, DMD+18, EPH+13, FAA15, FD16, GNC+18, GMG+10, HS16b, HDM+19, HLBlcG15, INT18, IN19, JMX+16, KIOY19, KG11, KYCL11, KHE+19, KKA+18, LGVA14, LHT15, LWD13, LKZM18, MUN+19, MKGA10, MBC11, MRK11, MLX+13, MCUJ15, MSG+16, MKK+19, NASH15, ORZ11, OSHG17, OCW+15, PLFS18, PDMT10, PP19, PC14, RMGB11, RRK16, SSWX14, SMP17a, SFLG+17, TM16, TNY15, TY10, UT14, VP19, VKAM12, WXY14, YNH+17, YJ11, ZPP+16, Zha11, ALW+10, THP+15]. **Efficacy** [LC17a]. **efficiencies** [RO14a]. **Efficiency** [AC11b, BB11b, BB11c, FE14, GBSE11, XFG+16, AC12, FSSW19, GSHM10,
LY10, LWL$^+$11, LZL$^+$15a, MKGA10, RO14a, XFG$^+$15, vLBBR12]. **Efficient** [AB16a, BC13, BAS14, Cas13, DSV$^+$19, DSHA15, DSAS19, DBF14, EP10, GCWS15, GRN19, GWW19, GPK12, Han11, HNS16, Het19, HHL$^+$14, HHWL17, JMS13, KNH$^+$18, LZ11, Les19, LGKS17, MKS$^+$12, NYN17, PSS14, RAN12, RJS17, SS16b, SS19a, TJB12, UCRL18, WHAS$^+$16, WM12, ZL14, ZKE$^+$17, AM10, BW11a, Boz18, CBP14, CHG$^+$16, CY$^+$10, CY13, CZZL19, CMS13, DS15, DGL$^+$13, GREA11, GWWX12, HHL$^+$17, ISK14, JZ17, Kid19, KB11a, KKH18, KV15b, LFB14, LPK16, LLZA12, LZL$^+$15a, LSW$^+$17, LAS$^+$14, MP19a, NTPT2416, NF18, OK16, PW12, PBE17, Ran13, RR14, Rod13, RSL16, SOJ13, SA13, SSMW09, SCW13, SWB$^+$12, Sun15, TO10, WJG$^+$13, WLQ19, ZWP11, Zha12a, vLBBR12, WHAS$^+$10].

**Efficiently** [WES13, ASMS10, DDK14].

EFP [CBG17].

egg [Pla11, ZP13].

egg-box [Pla11].

EGRAD [vW11].

Ehrenfest [Dil15, FED17].

eigensolver [KZZ$^+$16, KCC$^+$18].

eigensolvers [ZVY$^+$15].

eigenvalue [Coh18, HLXH17, HLXH18].

eight [HDK$^+$12].
either [TCP14].
electric [ECZWD17, LBTV11, QB10, QB11, SH11a, XTY$^+$14].

Ekectric [GH16b, LL13b, BLFZ13, BLBG$^+$13, BS10a, CXS10, GH16a, KMT$^+$19, KZK$^+$12, MRB14, PdSC18, SH15, SLX$^+$15, YN11, YJ11, YCK16, ZSL17, ZIX19].

electrical [LLL11].

electro [TMJ15].
electro/nucleophilicity [TMJ15].
electrochemical [SKGP19, SIG$^+$11, SGH$^+$16, YJ11].
electrochemistry [DSK17].

Electrode [IN19, MKO$^+$13].
electrodynamics [TAC19].
electrolyte [KS18].
electrolytes [HAL14].
electrolytic [SV11].
electromagnetic [SEM12].

Electron [BK11, Bar14, BLG11, BWKW10a, BWKW10b, CEBO15, HS16a, HRML$^+$13, HGCCGR$^+$16, KGR$^+$16, KKGW19, LLX$^+$19, PI17, VSP19, VV19, WWU12, ACD$^+$13a, ACD$^+$13b, ABGD12, BH12, BT18, CDB10, CA10, CWHH11, CC18c, CJPTC18, CTP13, CXD$^+$19, DAAGR15, ED15, EP12, ESM$^+$12, EP15, FRS14, FWS$^+$18, FED17, FCY15, GND$^+$12, HSH15, HPT17, HEMCZE$^+$14, HAP$^+$12, HBL12, IYK11, Jan16, JSQB11, JCF19, KPL13, KTK17, KKA$^+$18, KYG$^+$15, LW16, uLhY11, LRV18, LHO17, LYL16, LLJ12, LP11c, MRC$^+$18, MKGA10, MRB14, MT19b, Mat14, MBFP15, MKH$^+$13, MCK17a, NYH$^+$17, NLL19, NS17, PAK17, PGDO16, PSC11, PI17, PN13, PTB$^+$15, PHT17, PC16, Ras17, Rod13, REL17, RSK14, SFM$^+$18, SZ19, SB14, SHB17, SGLH13, SK11, SSA$^+$17, UCRL18, VGG$^+$11, VEET12, VL17a, VCL18].

electron [VI17, VYb16, WLW$^+$10, WMM11, XBS19, YKH$^+$10, YLL11, ZPP$^+$16, ZCWX18, ZGS$^+$10, dLC18a, dLvNC18a, GMBM18, SDP18].
electron-correlation [NYH$^+$17].
electron-deficient [YLL11].
electron-hole [PTB$^+$15].
electron-pair [WWU12].
electron-sharing [JSF19].
electron-vibrational [CJPTC18].
electron-withdrawing [CWHH11].

Electronegativity [FCY15, vS18].

Electronic [AMQ$^+$14, AM19a, AM19b, ASS10, BAD$^+$19, DSB$^+$19, DADGR15, DGSVVM19, GND$^+$12, GNI18, HLWD15, Ibr17, JLL19, KYCL11, KKL$^+$13, KKGW19, LLBO12, LS11b, LKZM18, MT19b, MP19b, MAP10,
NSN19, ND19, NIIT15, PMC+17, RLA+11, SZL19, TN12, TNI+19a, TN10, TFQ+10, TS15b, VI17, WRM+12, YW12, ZRCC11, ZLX+19, AR15, AK10, AC12, BLZ+13, CPRS18, DKE+17, DHOG13, DMD+18, EVR18, EH13, EWK+13, EBPK17b, FB10, GTT10, GRARO+14, GWX+12, GZZ12, HASR+12, HS14a, HSB+11, Hu16a, IIF+10, KKH19, KKPT11, KSM17, KG11, KKA+18, Kop15b, Kos16, KP10, LGOM+15, LX11, LBTV11, LBTV12, LZX+10, LSH+11, LLSW14, MC10, MA16, MCF10, MCF+18, Mat10, NC14, NCT18, NF1+16, OLA15, PiSc18, PHK14, PTB+15, PY1M16, PyY13, RCM+13a, RML+15, RR12, RR11, SFA17, SLP+12].

Electronically [SIT18, SB19, SRS14, SB15, SKGB13, Tac19, TFQ+11, TD10, TS15a, TNG+10, TS11, TG12a, Tu19, TEDT18, VVP12, VHR16, VAR12, VBM13, VLK+17, VGTL16, WHL+10, WGL12, WJC+13, WO15, WSGN11, WZK+13, YK13, YFH+19, ZJM13, wZbZ11, ZBB16, ZZZ+19, dCDP15, dVAG16, vSGP10].

Electrons [Sah18, EKH14, FHZA+18, WCY+11, WRG+17, XhD15, YAO13, YMP14, YZL+15, ZBB16, ZDZM13, ZBP11, KGM12].

Electrostatics [BSG18a, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NL+11, SDZ17, SWPR11, UHH+11, XYY17, YMP14].

Element [BCCO10, GPK+16, RMGB11, TG12b, TCX+13, XYX17].

Elementary [LPLB16, ZIM13]. Elements [TKN13, BV14, CWZB10, Hl13, JJJ16, LFB14, SK15a, KTN10, KYG+15, Lar11, LCA17, LCM16, Mat14, NF18, OHR18, PV10, RB13a, Ty10, VMR17, VV18, YKF+11, YWJ+16, YAO18, YMP14, YZL+15, ZDZM13, ZBP11, KGM12].

Elongation [OLA15, MKGA10, MKGA10]. Elongation-MP2 [MKGA10].

Elucidating [HNHR13, TDP+12]. Elucidation [CPLL11, TNY16].

Embedded [DSF17, GMS+10, HS15, KMT+19, ZFS18]. Embedding [CCB15, ESD18, ESM+12, HH16a, HH17, Hf14, KOK17, KSR17, NF18, NOK16, RR12, SDF+17, SS16b]. Embelin [CPR18]. emerges [MNNK10a].

Emission [CSC+18, LXF11, MCLD10, PLP+16, SGWA17, WDP+12, ZLL+10]. emitted [P111]. emitters [FWS+18, ZG19]. emitting [FWS+18, ZG19].

Emphasis [RCM+13b, PD11]. Empirical

Enantioselective [ORZ11]. enantioselectivity [OAN15b]. encapsulated [EOO+16, STS15]. encapsulating [WZH+18]. encapsulation [YDGZ15]. encoded [RSL16]. encoder [LDH+14]. end [HDL+17, SL10]. ended [RJR14, Zin15]. endo [FB14a]. Endohedral [NKD18, FL15, MCK17a, MCK17b, ZSL+11, ZYG+14]. endohedrally [NKD18, FL15, GLF16, MCK17a, MCK17b, ZSL+11, ZYG+14]. endothelial [JK14a]. Enediyne [DCHL12]. Energy [DK11, ELKE19, Jia19, Kop19a, LFN+10, LPLB16, MYKO18, NK19, OSI+19, PK19, SN16b, SSGS15, Spr18, SKGB13, VL19, VSP19, WM12, ZQH19, AMGB10, AAB+19, AC11a, Anol10a, AK10, AK16, BCSCJ+13, BPM15, BRL16, BH15, BS16a, BRLS08, BRLS12, BACSCJ+10, BG17, Bon14, Boz18, BD11, BWMSM10, BB11b, BB11c, BG12, CM13a, CK10, CDM+15, CLA16, CY09, CXY10, CZ13, CH16, CSXZ17, Che17, CF18, CS17, CHR+12b, CHR+12a, COH19, CKP10, CM+10, CP12, CWZB10, DGG+11, DWR17, DBG11, DS12b, DH14, DWC17, EV14, FMNC11, Fer17, FED17, FC0G14, FSSW17, FCCP17, FLM11, GS14, IS15, GH12, GO13, dCGCRN19, GMO16, HNYH19, HDL+17, HHNK19, He13, HDM+15, HH15, HG13, HYMZ16, HYUS11, HJK13j, HGW18, HYD10, HDH15a, HDH15b]. Energy [HDHL15c, IMK+16, IS13, IT19, JCPC11, JL13, JZ12, JZZM14, JCX10, KCB+12, KTT16, KB10, KIOY19, KNH16, KN17, KHWB17, KDR+18, Kid9, KB11a, Kop15a, Kop16, Kop17a, Kop18, KLS10, KMLS10, KC1+14, LRVM18, LMZ11a, LZ12, LYO13, LZZ14, LGL11, LP11b, LX11, LH11, LSH+11, LZY12b, LLSW14, LAW+16, MCvD13, MCC11, MK13b, MPA10, MPA12, MSC+10, MJL14a, MSBF16, MHO18, MK19, MUGNVJ+18, MLN+18, MSÅ12, MAP18, MB14, MB16, MLCD11, MIOM13, NZM18, NCT18, NFT+16, OKS17, ORS16, OK16, OOT15, OZS+13, PBLdS12, PG18, PBL19, PZCL16, PBB11, PM18b, PBE16, PJ13, RS17a, RLD17, RAR+11, RDT14, RS13, RCM+13a, RML+15, RF15, RVVK13, RLA18,
HNWF12, HH17, HZSS17, HDHL15a, HDHL15b, HDHL15c, JCGVPHT17, KT19, KPG18, KB14b, LLBO12, LLW12, LWGZ15, LGC19, LX11, LSH+11, LYSS11, MPSG11, MGCC19, MEH18, NYN17, PH10b, RRCH16, RR14, SFCCK+14, SFCCK+15, SRF+17, SZZS16, TSN17, WHL+10, WHX+10, YD17, YHX19, YLZ+10, YB11, YYT12, LZL+10, PGW+17].

**Excited-State**

[FHG+19, YKNN19, SGWA17, FD14, GA18, HH17, HZSS17, KT19, LWGZ15, MPSG11, NYN17, PH10b, WHL+10, WHX+10, YD17, YHT12, LZZ+10].

**excited-states** [LLBO12].

**exciton** [HRH+17, LSH+11, SEJ+18, WZ19, ZLL+19].

**exciton-phonon** [WZ19].

**EXcitonic** [JCGM18, NNT+19, LCK+18, ZMMM12].

**excluded** [LWZ+17, Yan14].

**exclusive** [dLC18a].

**Exhaustive** [DKV18].

**exhibited** [RWR+13].

**Existence** [BMB13, WD10, NKD18].

**existing** [KT18].

**Exothermic** [LWL+16].

**expand** [BK17c, Car14].

**expanded** [MLQ+12, TSNC+17, YSSB12].

**Expanding** [GMZ12, UCRL18].

**Expansions** [LZG+11].

**Expected** [Clo15, AF14].

**Expedited** [DJD12].

**expensive** [LDZW17].

**experiment** [GNC+18, JAH+17, SA+10].

**Experimental** [CAM19, MRC+18, NHF+10, AvKSP16, BRG12, DCOD13, EOO+16, GPIC+16, HJ13, KP10, POG10a, SB10, SGS+16, SKMS13, VZ14, CI+10].

**experiments** [CBP14, HCB11].

**explained** [FL15].

**Explicit** [WG14, BEM14, CCOH14, CBG16, EK15, ENK+17, GLB16, HDL+17, KJDB12, LH11, RD12, SYH12, SKMS13, ZHL+12].

**Explicitly** [yOT+16, SM17].

**Exploiting** [HB14, BYE+16].

**Exploration** [FHG+19, OSI+19, ZGS+10, BGL+18, CF18, IWW12, LAW+16, NJR18, OKS17, OKY18, RDR16, Sti15, SSP+19b].

**explore** [JCPC11, SE+10, MCC12].

**explorer** [SYN+12].

**Exploring** [BHB12, BPPS17, BPPS19, BC10, DSHL18, ELKE19, FD19, MTM14, PJJ13, TS17, VHS+19, ZTR+18, ZT14, dSDLB17, RDR16, NOK16].

**explosion** [GC18].

**explosive** [YP+10].

**Exponential** [BBO16, BB11b].

**expressions** [Gav12].

**extended** [GWZX12, IN19, KUDG12, LRvdSM15, SSWX14, TSN17, YB16, Pon11].

**Extending** [LMZ11a, Man13, TTh+19, VBV13a, VVB13, PPH+12].

**extensible** [GCW14, JYC+16, LAS+14].

**Extension** [AIQ19, HSN14, PFVL14, SDZ17, VVW+18, YHVM12, Cam15, LL11, RLLHL12, Ras17].

**extensions** [NYH+17].

**Extensive** [JW12, SLHW09, YB11, CF14, KM13].

**Extent** [OSA19, GFGS18].

**exterior** [HL19].

**exterior/interior** [HL19].

**external** [GKSS14, KMT+19, PdSC18, SEM12, XTN18, XMA+19, ZSL17, ZX19].

**extra** [PFAS+19].

**extract** [MDTD16].

**extracted** [HN15].

**Extracting** [WSW19].

**Extraction** [CVG14, UVsvdWK19, VVG13].

**extrapolation** [CC11, LC+13, OAN15a, SRR16].

**Extreme** [HRHI17, Cam15, DS12a, JBSQ11, CCR18].

**eXtreme-Pressure** [CCR18].
Extremely [ZM11].

F [ATP18, CXW14, CXS10, GPK+F, GTK10, HBL12, LZJ+F, Li14a, Li14b, MP19b, PMG+F, Rab12, STM+F, TFQ+F, TFQ+F, TCPPC14, WLY+F, WCY+F, YS13, ZYL12, ZLL12, BWKW10b, CCM15, Cht10, DKE+F, II10, JLLW19, KIOY19, LZL+F, MLGB16, MSPC19, SMiN+F, SYH12, TCPPC14, Yu12a, ZWY+F]

F-ATP [SYH12]. F12 [BBG+F]

Kid19, KLJ\textsuperscript{+17}, KSK11, KT10, KFT18, KGJZ19, KMLS10, KVR10, Lar11, LvDH13, LC17b, LM18a, LPS\textsuperscript{+13}, LPE\textsuperscript{+10}, LN15, LLvG10, LvG13c, LL13b, LDG\textsuperscript{+15}, LCL\textsuperscript{+18}, MRO17, MBC11, MSS\textsuperscript{+13}, MTvG12, MBE16, MLC13, MHRR11, MP17b, NB19, NTNY15, ON14, PHC13, PLZ17, PdSc18, PG15, PZCL16, PLH16, PVM10, PS10, PNG10, Rod13, SH15, ST11, SM14b, SK17, SS19, SzBM13, Sie15, SGY\textsuperscript{+18}, SS13c, SCSW13, SM15]. field [SYZ\textsuperscript{+17}, SBvG14, Tak14, TYN15, VV\textsuperscript{+18}, VHA\textsuperscript{+10}, VPR10, Vik11, VVLG17, WXL17, WS19, WTH\textsuperscript{+16}, WC14, WZK\textsuperscript{+13}, WDHZ13, XP13, XVA\textsuperscript{+16}, XMA\textsuperscript{+19}, Yan11, YWZ14, YJXZ13, YJ11, YN15, YCK16, YHYM12, ZSL17, ZL11, ZSYH12, ZX19, ZDKM12, ZP13, ZM10, ZCGM11]. field-based [HKR12]. field-dependant [PNG10]. field-dependent [DP15].

Fields [Coo19, AS15b, BHI19, BVY\textsuperscript{+12}, BAS14, CCLP12, CPN\textsuperscript{+17}, GCWS15, GMMH\textsuperscript{+16}, HDPM14, HJ10, JYC\textsuperscript{+16}, KT18, KWL\textsuperscript{+16}, LZZ\textsuperscript{+11}, LZGS11, LGL11, LTP11, LBDP12, MSK\textsuperscript{+10}, MSK\textsuperscript{+12}, MS15, ST11, SGY\textsuperscript{+18}, SEM12, TTC\textsuperscript{+18}, VV\textsuperscript{+15b}, VHA\textsuperscript{+10}, WKC\textsuperscript{+10b}, WLC12, WG12, YPKB12, ZRL\textsuperscript{+15}]. fifth [KM13, LOB18]. fifth-rung [KM13]. fifth [SY16b]. filter [MH10]. finding [Ber17, MLC13, ZQH19, GFG11, JZ17, Zim15]. fine [Hua16]. fine-structure [Hua16]. fingerprints [BHF\textsuperscript{+18}, SS13b, Yap11]. Finite [ISO\textsuperscript{+13}, ZQH19, BBG\textsuperscript{+18a}, BCCO10, BVC13, DJX\textsuperscript{+11b}, EPD\textsuperscript{+11}, Hsu14, LLH17, MLC13, MKK\textsuperscript{+19}, NPP13, SK15a, TD11, TCX\textsuperscript{+13}, WL10, XXY17]. finite-difference [LLH17, WL10]. Finite-field [ISO\textsuperscript{+13}]. finite-size [DJX\textsuperscript{+11b}, Hsu14]. Finite-Temperature [ZQH19, MKK\textsuperscript{+19}]. FIPSDock [LZL\textsuperscript{+13}]. firefly [FD14, PE11]. First [BE12, BE14, BF19a, CCJC10, DBM\textsuperscript{+15}, EB12, EBK13, EBPK17a, HFSO12, JCG\textsuperscript{+11}, LLLM11, LLB\textsuperscript{+12}, LCWW10, RRK16, THI\textsuperscript{+19}, TKN13, UGK18, YPvD13, YR13, wZbZ11, BPE16, BCCO10, BEL\textsuperscript{+11}, EMD17, EB18, GD10, GA14, Ibr17, KLZ\textsuperscript{+18}, LL10c, Lu11, MCF10, NNS15, OC19, PLZ17, RZG\textsuperscript{+13}, SBGP18, SFA17, SK12, TKC\textsuperscript{+11}, T211, WXS\textsuperscript{+12}, WYL\textsuperscript{+15}, WD10, WZK\textsuperscript{+13}, YHCS11, Zha12b, Zha12a, ZWMW10, Z12, vADC\textsuperscript{+14}, HYL\textsuperscript{+11}, NG10, SPZP18a].

First- [TKN13]. first-order [BCCO10, SK12]. First-principle [CCJC10, DBM\textsuperscript{+15}, LLB\textsuperscript{+12}]. First-Principles [HFSO12, BE12, BE14, EB12, EBK13, EBPK17a, JCG\textsuperscript{+11}, LLLM11, wZbZ11, BPE16, EMD17, EB18, GD10, KLZ\textsuperscript{+18}, PLZ17, RZG\textsuperscript{+13}, WYL\textsuperscript{+15}, WD10, ZWMW10, Z12, vADC\textsuperscript{+14}, HYL\textsuperscript{+11}, SPZP18a]. First-to-Third-Row [BF19a]. Fission [NNT\textsuperscript{+19}]. fit [BHNS14, BCG10, GDV17, KGM12, WKC\textsuperscript{+10b}]. fitted [KGJZ19]. Fitting [SN16b, BS19, Boz18, DGPM14, FN12, Gra15, Hili3, LBGS16, MKH\textsuperscript{+13}, MKM\textsuperscript{+17}, SY11, VYM15, WOH16, WOH18, ZDZM13]. five [HCD\textsuperscript{+10}, KJDB12]. five-membered [HCD\textsuperscript{+10}]. fix [WCW15]. Fixed [Jia19, AS15b, FSD\textsuperscript{+18}]. Fixed-charge [Jia19]. flake [Lin18]. flakes [SDF12]. flanks [RSG18]. flash [AGM\textsuperscript{+13}]. Flavins [Ale19]. flavonoids [PC11, ZDW18]. flavor [PFAS\textsuperscript{+19}]. Fleksy [WdVN12]. Flexibility [OXBW16, BCG10, FTW12, FMG12, GTZ\textsuperscript{+18}, KL14, LZ11, NPG17].
Flexible [GLB16, MKM+17, NG10, SC17, WdVN12, AFPI13, CPZ19, CZNA11, DVVP14, FRLN10, GBW+14, HDM+15, JC16, LS11a, LHS12, MLN+18, PL14, PS13, PJ13, RHJ11].


HLS12, HH10, HH11, HDK+12, HLW+17, HDL+17, HHNK19, HDM+15, HG13, HYUS11, HKR+14, HGW18, HHWL17, IMK+16, JMLL13, JCX10, KHWB17, Kid19, KB11a, KB11b, KBY13, LRV18, LMZ11a, LGL11, LP11b, LAW+16, MSC+10, MS13, MHO18, Mau14, MLN+18, MS˚AK12, MAP18, MBE16, MIO13, NZM18, OSR16, OK16, PGCT+12, PLBoS12, PBBP11, PPJ14, RLDJ17, RDDS10, RAR+11, RO14b, RZ16, RR14, RR19.


Frenkel [SEJ+18]. Frenkel-exciton [SEJ+18]. Frequencies [DT19, LBH+11, LLH17, SST+18, TKN19, WX12]. frequency [BMPML+13, CK10, KKA+18, LCW12, LS11b, yOTn16]. frequency-independent [yOTn16]. FRET [RO14a]. Friedel [CYY+17]. Frontier [GMBM18, Kop15a, LL13a, LHG11, LCB10, LIRL+16, LL19b, MLG18, MB16, yOTn16, ON14, Pll17, PRYI+17, RGZ+13, RvL11, SS16a, SFG+17, SK18, TCB16, TO10, UM13, UCFR16, WO15, WDHZ13, YVEI+17, ZLT13, ZCWX18, vSGP10]. function-based [WDHZ13]. function-guided [YVEI+17]. Functional [BBH19, CKH19, FAS+18, FPV13, LLX+19, MP19b, NN19, YKN19, AMK11, ALK+15, Ali18, ASW19, Ano15-59, AG12, ASS10, BY11, BLBLG+13, BS19, BK17b, BZB+13, BG13, CHG+16, CRZ+18, CR14, CWWH11, CSKH15, CSKH16, CKH17, CSXZ17, CC11, CNK97, CPL111, CB11d, DAP+18, FD16, GAI14, GHL17, GZL+12, GNCGA10, GSS13, GEG11, GAJ+17, GWJP11, Han11, HDP+17, HNF07, HNF12, HPT17, HG10, HZSS17, IN18, IKN13, IM17, JCP14, JHL+14, JW16, JYS+12, KD10, KKPT11, KOP+14, KGHK12, KB13, KZ+16.
KLN12, LCW12, LBGS16, LGW12, LBTV11, LBTV12, LHKS12, LH14b, LH17, LPM17, MMH19, MSY19, MAK+14, MWJ+11, MAP18, MFR+17, Mor15, MMJ10, NS18, NF17, NN18, NO16, NK+16, Oht16, ORZ11, OM12, PAK17, PPH+14, Pic14, PD11, QZ10b, RJPB12, RS13, Rez19, RB12.

functional [RSLML12, RHPWS13, RHT+15, RNS19, RR19, Rui11, SPS+12, SH15, SFG+17, SHL+18, SCW11, SBT17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SH19a, SMM15a, SMM15b, SMM+18, SKTT11, SZZS16, STS15, TLDG+12, TG12a, TS10b, UvSvdWK19, VV14, Vi11, VL17a, VI17, VLGK+17, VED10, VHS+19, WKC10a, WHL+10, WCDW11, WDLG12, WYT17, WXY+10, WL14, WTH+16, WGN+16, WZC+19, XY+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX12, ZLZ14, ZYG+14, ZWY+10b, ZWY+10a, ZLHH14, ZGZ19, ZGS+10, dSdS12a, dSdS12b, CKH19].

functional [LJC+19, KAG+12].

functionalization [WWTL19].

functionalized [KYKR15, LdSRR16, LTR18, MSY19].

functionals [Ben17, CCB15, CGR16, CXD+19, DH17, DOM+11, DWC17, ELF19, FPR14, GWJR18, HG10, HBI+17, KB10, KSH13, KSSH13, Kar17, KM13, LBH+11, LAM19, LH14a, LK16a, PW12, RSG14, Rui11, SGPJS+17, Sea10, SMD+16, SH18a, SPR+13, SZX13a, SZX13b, VCL18, WYT17, Yu12b, ZTH15, ZWX19, dSdLBn17].

functions [BP18, BLZ+13, CD13, COHI19, CC11, CVG14, Fer13b, Fer13a, FFA14, Fra15, Fra16, GSHM10, GZ14, KK17a, KS18, LRER13, MY17b, Mit13, MLCD11, PHT17, Pro16, RHRC16, RVM19, SFM14, SYDS11, SM18, Sun15, TNYN16, UCRL18, WZ17, TKN13].

fundamental [CD16, VCL18, XLY10].

furan [LGC19].

furanosides [KRTB10].

Further [RTS+13, FVB10, PZA15].

fusion [CZY11].

Fuzzy [FPV13, SK12, SK17].

fuzzy-border [SK12, SK17].

FXeOXeF [ARLP13].

G [Ano15-59, BZH14, LWD13, PHK14, ILKR11].

g-tensors [PHK14].

G2R3 [Gil11].

G_membed [WHAS+16, WHAS+10].

Ga [UT15, Mit13].

Gabedit [All11].

GAFF [MPB11].

galactosidase [AKMT11].

GALAMOST [ZL+13].

GalaxyDock2 [SKKS13].

GalaxyDock3 [YBS19].

GalaxyTongDock [PBLS19].

gallium [GKB+19, YR13].

gallium-supertetrahedral [GKB+19].

gamepad [HH16b].

GAMESS [LRBB12, WSGN11].

GAMESS-UK [WSGN11].

GAMPMS [LMA15].

gap [NP+18, QZ10b, RS17a, TPH+15, VLGK+17, WZH+18].

gaps [TSN16, VCL18].

GARLEEK [PFAS+19].

Garriga [Ihl12].

Garriga-Sust [Ihl12].

Gas [ATM18, ABB+12, BGS+19, PLZ17, ARLP13, CC18c, DHE+12, FYX+10, GC13, JKS+16, KD10, LPK16, LJW11a, LPLB16, MP13, MFM+12, NIIT15, PMG+15, PSC11, RWR+13, Sea10, SYZ+17, STS15, YHG+11, ZSZ+14, ZYL+15, ZLHH14, ABB+13].

Gas-Phase [ATM18, ABB+12, FYX+10, LPLB16, PSC11, RWR+13, YHG+11, ZYL+15, ABB+13].

gaseous [HC11, YHW17].

gases [LZ14, DHE+12, SMD18].

gateway [RK15].

Gating [SBFB17].

GaudiMM [PSG+17].

Gauss [MY17a].

Gauss-type [MY17a].

GAUSSIAN
Gaussian-based [CGA19, JLCA17].

gaussian09 [RS13].

Gay [SLX15].

GB [OBW12, VM11].

GBMV2 [LC17b].

GBSA [DSX11, GR10a, IMSR18, RDDS10, STM15].

GC [GWX12, YZWC11].

GC-/AT-rich [YZWC11].

GC-related [GWX12].

GDP [SS13c].

Ge [Cas14, MCK17b, PMG16, Sak18, UT15, YW12, LYL16, WKC11].

GeauxDock [DFF15].

GeC [HSY11, Kop18].

GeH [Kop19b].

gelatinases [XDL10].

Gelessus [Spr10].

gene [CQFC10].

general [AA18, BSL11, EWK13, FNSF11, HSN14, Ish12, NLP16, PH17, RJR14, Sun15, VHA10, YHVM12].

general-contraction [HSN14].

Generalization [Sah18].

Generalized [GH16b, KCPMG12, MSPC19, AB16b, BSPP13, DSF17, FCE15, GH16a, HWLW11, LL10a, MA16, NMH19, PS13, SZTSM10, SSBW14, VMPS17, WWKS11, WHM10, WBVE16].

generally [KKK19].

generate [MPA12, MdOdQ18].

generated [HWLW11].

Generation [ADF10, AIM18, MPA10, RvL11, STF19, CAD16, GMSiG15, GKJ19, HXY15, KLJ17, KSH17, LTT16, RB13a, RGVC19, TDP12, WLF19, WHJH13, ZCGM11].

Generator [MYT18, Gar12, GPM17].

generators [CLK11, GPM17, MPA10, RvL11, STF19].

GenLocDip [GH16b].

GeO [DLSD13].

Geometric [MK11, AM19a, AM19b, CDB10, CDBM11, EH13, FXC13, HHT13a, HHT13b, LFFH16, REH13, TCB13].

geometric-quantum [CDBM11].

Geometrical [DPAB16, HRJ14, JRSHP14, NSN19, LCM14, SPR13, Tak10, Tsu19, UT14, HRJ15].

Geometrically [RIJ11].

Geometries [VL19, ZLX19, Alg17, HCP15, SRA17, STT18, Tak10, LXZ10].

Geometry [MP13, BW11b, CGA19, EPD10, ELP19, FB10, Kow11, LIRL16, MCLD10, OZS13, Pon10, RSG818, RS13, REH13, SLG15, SMM17, Tak18, VB13b, WAB17, WX12].

geometry-dependent [EPD10].

Germanium [GSMM15, ALH10, Kop18].

germylene [Kop19b].

GeSbTe [NIIT15].

GFP [UD12].

GGA [BG13, EH13].

ghost [CMF17].

ghost-hunter [CMF17].

GIANT [JCG11].

GIAO [PTK11].

GIAO-CCSD [OPR16].

gibberellin [HYZ13].

gibberellin-binding [HYZ13].

Gini [WF16].

GIPAW [SPZP18b, SPZP19].

GIST [RNSF16].

give [AA18, JT18].

glass [GF818].

glasses [You10].

Global [LVDH13, OKIS17, PRSG13, Tak10, VL19, BK17b, CPN17, CZZL19, DS15, DAA15, FDH19, GPE13, KLI11, LLI11, MP13, MB14, MO15, MCA1Y1, SKKS13, SC15, TSZQ12, Vor10, WDHZ13, XHD15, XCLZ19, ZL11, DH11].

Glu [EJ13].

glucopyranose [HH10].

glucosamine [ZBP11, ZP13].

Glucose [APY16, WFL19].

GLYCAM06 [SA10].

GLYCAM06/TIP3P [SA10].

Glycan [JSD11].

glycine [DB12, DP15, FCD10, MC10, SPZP18a, SPZP18b].

glycoconjugate
[LABSG17], glycol [MSY19, TFYO19], glycoproteins [JSD+11, PFVL14],
glycosaminoglycan [CHKR10, SZdB19, SA10], glycosidic [HH11],
glycosyltransferase [RN17], GmbH [Spr10], GMCT [UU12],
GneimoSim [LWK+14], gold
[Ano15-58, BH14, CCJC10, FHT+15, FDH19, GAMAC+14, Li14a, Li14b,
LHKS12, LH14b, MFR+11, MG14, MBFG15, SRR16, SKTT11, YLL11],
gold-thiolates [FHT+15], Goldberg [WTH+16], Good [SB10], GPCR
[LLHM16, MFR+17], GPGPU [UM13], GPR119 [HK18], GPU
[AKK+16, AGB13, BK17c, CVT+11, DZT11, HAP+12, Kan15, KGHC15,
KPF+15, KPF+19, MFR+11, MLN+18, MEH18, PZCL16, REV+17, SVB10, SOM+13,
TSH18, YLL14, YSG12, ZLL+13], GPU Accelerated
[GKHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
[GBL+11, HLW+17, HLEM18, KPF+15, KPF+19, MLN+18, MEH18, PZCL16,
REB19, SVB10, SOM+13], GPU-based
[KGHC15], GPU enabled [BK17c], GPUs
LRvdSM15, PHH+12, TKT11, KWG15, DDK14]. **GROMOS** [HH11, HLH+12, KAG+12, LGL11, LvG13c, MRO17, MSvG12, PLH16, PFVL14, SVB10]. **GromPy** [PHH+12]. **Ground** [GMBM18, Kop19a, BBI+11, CCM15, FAA15, GCCM15, HH16a, HWB19, Kop15a, LLBO12, LYC+13, LX11, LS11b]. **Ground-State** [Kop19a, HH16a, Kop15a, LLBO12]. **group** [Alg17, CAP17, Dry14, EHSPT16, FC16, GZZM16, GPK+16, Gil11, GWZ15, HB14, JJJ16, LZL+15b, LTR18, SSSM15, TG12b, Tsi14, VDVR14, VRKT19, WS12, WZH+18, XhD15, LdSRR16]. **group-IV** [WZH+18]. **groups** [Kan15, KV15b, LPS12, TN10, WGL+11, WZC+19]. **growing** [JZ17, Zim15]. **Grown** [SJSS19]. **growth** [BHF+18, DWZ+17, FCL+10, KHE+19, LL10c, LZLMP16, MZZ11, OME16, RS14, VMV19, WC11, XYW+14]. **GRRM17** [MHT+18]. **Grubbs** [RS17b]. **GSK3** [LJL+11]. **GTKDynamo** [BTA+13]. **GTP** [SS13c]. **guanidine** [HRJ+14, HGHP14, HRJ+15, JRSHP14]. **guanidinium** [CCCLCGRO14]. **guanine** [BZH14, CBG17, KK19, LZH+11, PDMT10]. **guanine-cytosine** [LZH+11]. **guanines** [WGL12]. **guanylthiourea** [MAPB10]. **guest** [CC18b, OAN15b, YDGZ15]. **GUI** [WCJ+14, HBJ+17, JCL+17, KLJ+17, QLKI19]. **guide** [BS15, GKV+13]. **guiding** [HS17a]. **GULP** [SN16a]. **gWEA** [YLGX14]. **H** [BSF18, BS16b, CXS10, CG12, CSNCS+18, DM15, DT19, GPK+16, HZ11, HSY+11, HVS16, JLS+10, JLH+14, LLL+11, LdSRR16, LAHS16, LWD13, MLQ+12, MCAY15, NMLD13, OKY18, OPR16, PMG+16, RMPAM15, Sak18, SNDK16, STS+10, TNY18, Tsk11, TSJ+10, TFQ+11, UT14, UT15, VIT+15, VV14, WKC10a, WKL12, WHL+10, WWKS16, WLF19, WCL+11, XFX+16, XCLZ19, YKH15, YZ15b, YZZ+17, ZYLL12, AS15a, Be17, BS10b, CK10, CKL+11, Chu10, DT19, DHE+12, EVR18, GTK10, GS11, HZ11, HRL11, JLL19, KTT+19, LJM+11b, LWD13, MSPC19, Niz13, OKIS17, PLFS18, PTK11, PJe14, Pon10, STS+10, TS15a, TKCN19, UT15, UvSvdWK19, WGL12, WWTL19, WvRSM14, XhD15, XCLZ19, YHX19, YZ15b, YZZ+17, YZL18]. **H-** [Pon10]. **H-atom** [BS10b]. **H-bonding** [WGL12]. **H-C-C-H** [YZZ+17, YZZ+17]. **H-cluster** [GS11]. **H-F** [JLLW19]. **H-FORMS** [RMPAM15]. **H-indol-** [YZZL18]. **HÔ** [BS10b]. **H/D** [Chu10, KTT16, UT15]. **H4** [BEEL14]. **hafnia** [EBPK17a]. **hafnia-based** [EBPK17a]. **hafnium** [MTS+19]. **hairpin** [LJW+11b]. **Half** [SWMW10, QS19, TS15a, WDZN16, YLT+19]. **half-lives** [QS19]. **half-sandwich** [TS15a, YLT+19]. **half-saturated** [WDZN16]. **halide** [Li14a, Li14b, NC13, ZWY+10b]. **halides** [FWB14, PGS+15, RVM19, VVP12]. **halobenzene** [CvM19, EPH+15, HvM19]. **halocyclopentadiene** [CvM19]. **halofullerenes** [TFQ+10]. **Halogen** [CvM19, FPRS14, GSMZ19, HvM17, HvM19, VVMY18, WFZ+18, ASW19].

hydrogen-bridged [ZLY+16]. hydrogen-contaminated [YR13].
Hydrogen-Disordered [MYT18]. hydrogen-storage [BEM14].
hydrogen-transfer [ZW17]. hydrogenase [GS11]. hydrogenated
[MBRC16, wZbZ11]. Hydrogenation [GBG+19, JAB16]. hydrolase
[BHNS14, LD18]. hydrolysates [LWZ+19]. hydrolyses [YZGS14a].
Hydrolysis [JAHS+19, LHT15, MFM+12, XZ11, YZGS14a]. hydperoxyl
[AAMD+11]. hydrophilic [PAK15]. hydrophobic
[ARRC15, GMMH+16, JGS+17, MBC11, PAK15, SY16b, TM16].
hydrophobic/hydrophilic [PAK15]. hydrophobicity
[CH14, SV15].hydroquinone [PNE18]. hydrosilylation
[DK19, SSD19]. hydrostatic
[FCW+14]. hydroxamate [GWZ15, GPdC+16]. hydroxamate-containing
[GPdC+16]. hydroxy [FFA14]. hydroxyapatite
[XYW+14]. hydroxybutyrate [SJD14]. hydroxycoumarin
[LZHH11]. Hydroxyl
[BHP19, DPNM11, GKR13, KS13b, Ray13, RKG11, SY16b, TM16].
hypothesized [LLB+12]. hypoxanthine
[FF11].HZSM [cCVG+14]. HZSM-5 [cCVG+14].
I50V [DLZ15]. I50V-induced [DLZ15]. IBISCO [KVQC+11]. ICD
[WAB17]. Ice [MYT18, AASP18, LPA11, TD11]. ICI [GSM19]. ICN
[KIOY19]. icosaheiral [FCW+14, GKSS14]. ID [LLHM16]. Identification
[HRB+17, KYT+17, RLL+10, DL16, JSD+11, MPNS13, RLDJ17, WSH10,
YZWC11, ZYvIZ14]. identifier [hlh12]. identifiers [GPGSM11, GPGSM12].
identify [LLHM16, LHL+10]. Identifying
[AC12, HAG10, RNS19, XTY+14, LHO17, LLJ12, She12]. identity
[Höf14, KN17, YN15]. IE [MLCD11]. IEF [GMMH+16]. IEF/PCM
[GMMH+16]. Ilhenfeldt [GPGSM12]. II
[AMK11, ALH+10, BSQ+18b, ČMD13, CK17, FPB12, FB14b, GEP+14,
HRJ+14, HRJ+15, JAB16, KPL15, LGW12, LWXC16, MLG18, MMB+17,
PHC13, SB10, TLA10, WGN+16, XP13, XWSW13, ZCK+16, vSGP10,
AKMYB18, BKWK10b, BB11c, CB11c, FXC+13, Fer13a, FVB10,
Ano17-28, Ano17y, Ano17-29, Ano17-30, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano18a, Ano18b, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18-29, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h]. Image [Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano19a, Ano19l, Ano19t, Ano19u, Ano19v, Ano19x, Ano19y, Ano19z, Ano19w, Ano19-27, Ano19-28, Ano19-29, Ano19-30, Ano19-31, Ano19-32, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Cor17, LCM16, SFLG+17, YHH+13]. images [LLJ12, MBFP15]. imaging [SCF+19]. imatinib [AS10]. imidazo [QQY+18, YLZ+10, FDCJG18]. Imidazo-Pyridine [FDCJG18]. Imidazole [FD16, LWGZ15, NS10, YKH+10]. imidazolinone [CSC+18]. Imidazolium [MG15]. imidogen [Kop15a]. Imine [DK19, AS11, GG10, HDB15]. imines [ZX19]. imines-external [ZX19]. imino [GRCL12, YMY+19]. immediate [HTS17]. immersive [SFM+18]. Impact [ABM+15, DPNM11, MCS11, MKK+19, VCL18, vADC+14, JMLL13, NW17]. impacts [SSNT19]. Implementing [Nav18, SCOJ13]. Implications [CV12, VVY17, CBBG16, LP11b, LTP11, RB12]. Implicit [BEM14, CAD16, Has14, ALRM18, CBG16, EK15, FBEM11, KJDB12, KB11a, KB11b, LC17b, ML14, SSBW14, SLX+15, SCMA+17, TCC+13, WWKS11, YL13]. implicit-solvent [WWKS11]. Implicitly [Jia19]. Importance [APA+14, CPK12, ENKK+17, NMF+14, OOK11, ESM+12, Ham11, KTNN10, PBDW11, SDZ17, TNSS17, TKNN10]. important [AST+16, BZH14, MG11]. importing [FN12]. impregnated [GLZ17]. improve [CIKT13, DLL+10, DPSL16, Gon12, LLL+10, Min18, VLB+10]. Improved [BS16a, KPF+19, LRR13, CCM15, DPB+12, DSF17, GCCM15, KSR+16, MP11, OHPR18, PBLs19, RTP+13, RDRC16, SSBW14, VVV+18, XMA+19, YS10]. improvement [GSHM10, NLP+16]. Improvements [JCX10, ZFOS19, AB16b, LRBB12, BB11c]. improves [BBOB16]. Improving [AIM+18, DWL11, FSSW19, GS16, LN15, PLH16, RVM19, SB14, SACdG14, SA11, WZ17, ZWX16, ZYS+10, GS15, GFPXD17, GZ14, FZY+12, TO10].
impurities [SBC+11]. IMSPeptider [dCLFGL13]. in-depth [DPD+18].
In/Si [LGKS17]. inactive [CV12]. include [PZA15]. includes [HBKL10].
Including [KL14, SFLG+17, BL12, FAA15, FD16, LH14a, SPH11, TG12a, WC14, YB11].
inclusion [CGR16, LZ11]. Incorporating [LHO17, Yan14, CSKH16, GCCM15, ZBP11].
Incorporation [LHO17, Yan14, CSKH16, GCCM15, ZBP11]. Incremental [SPZP18a].
Incremental [ER18, RR19, DCS15, LTA+11, SR18]. increments [MS15].
In/Si [LGKS17]. inactive [CV12]. include [PZA15]. includes [HBKL10].
Including [KL14, SFLG+17, BL12, FAA15, FD16, LH14a, SPH11, TG12a, WC14, YB11].
inclusion [CGR16, LZ11]. Incorporating [LHO17, Yan14, CSKH16, GCCM15, ZBP11].
Incorporation [LHO17, Yan14, CSKH16, GCCM15, ZBP11]. Incremental [SPZP18a].
Incremental [ER18, RR19, DCS15, LTA+11, SR18]. increments [MS15].
In/Si [LGKS17]. inactive [CV12]. include [PZA15]. includes [HBKL10].
Including [KL14, SFLG+17, BL12, FAA15, FD16, LH14a, SPH11, TG12a, WC14, YB11].
inclusion [CGR16, LZ11]. Incorporating [LHO17, Yan14, CSKH16, GCCM15, ZBP11].
Incorporation [LHO17, Yan14, CSKH16, GCCM15, ZBP11]. Incremental [SPZP18a].
Incremental [ER18, RR19, DCS15, LTA+11, SR18]. increments [MS15].
Ano17-52, Ano17-53, Ano17-54, Ano17-55, Ano17-56, Ano17-57, Ano17-58, 
Ano17-59, Ano17-60, Ano17-61, Ano18-39, Ano18-40, Ano18-65, Ano18-66, 
Ano18-67, Ano18-68, Ano18-69, Ano18-41, Ano18-42, Ano18-43, Ano18-44, 
Ano18-45, Ano18-46, Ano18-47, Ano18-48, Ano18-49, Ano18-50, Ano18-51, 
Ano18-52, Ano18-53, Ano18-54, Ano18-55, Ano18-56, Ano18-57, Ano18-58, 
Ano18-59, Ano18-60, Ano18-61, Ano18-62, Ano18-63, Ano18-64, Ano19-33, 
Ano19-56, Ano19-57, Ano19-58, BMPML+13, CRZ+18]. information 
inspection \[KOY^{+12}\]. inspired \[CYY^{+17}, DSM^{+11}\]. instability \[MMH19\]. instantaneous \[RO14a\]. Instanton \[MK17, MK19, MRK11\]. Insubria \[GCC14\]. Insulator \[LLL^{+12}\]. Insulin \[MV17\]. INT \[YJXZ13\]. INT-DBD \[YJXZ13\]. Integral \[Coo19, VSP19, DL19, KSNT19, MEH18, RFN15, SS13b, Sun15, VKAM12, WXY14, YS18\]. integrals \[CHC^{+13}, PS17, PC16, RLA18, SZTSM10, WDKT19\]. integrase \[XLY12\]. Integrated \[HSW^{+19}, vRWGS17, CKKK16, MCC12, US11\]. Integrating \[APK14, LZZ14\]. Integration \[FPV13, AYY017, BB11b, BB11c, DH17, LP11a, MOS12, NSK18, dlR11, Pol13, Pop18, SJC11, SJ16, dRBO13, MYKO18\]. integrative \[ˇRez16\]. integrator \[JS17b\]. intelligence \[Aou16\]. intelligent \[CDS16\]. intensity \[dSH19\]. Inter \[CROB16, SSB11, IIHY15, SSB13\]. Inter- \[CROB16, SSB11, SSB13\]. inter-residue \[IIHY15\]. Interacting \[CM16, VSP19, ATP18, EV14, HGCCGR^{+16}, MP17a, PNE18, WL14, JCHT18\]. Interaction \[BHB19, CK10, CCCLCGRO14, CCCLRO14, Den12, NNS15, SBW12, YZWCl11, ALW^{+10}, AG12, BLFZ13, BLF14, BCNH^{+11}, BSD18, BHB^{+17}, BRLS08, BRLS12, BG17, CLFRO18, Cas13, CZH12, CYG^{+15}, CTP13, CAP17, EK17, EV14, FF11, FCCP17, FA18, GA14, GP11a, HPT17, HBL12, HLH^{+12}, HSZ^{+11}, HLXH17, HLXH18, HQSZ19, HL19, JZZM14, Kan15, KTNN10, LL10a, LMZ11a, LPS^{+13}, Li14a, Li14b, LHHW14, LZL^{+15b}, LPLB16, LCVW10, Min18, MSÁK12, MCP18, MVBD18, NGAS17, NN18, OHPR17, OHPR18, OAN15b, PRJ^{+17}, RZG^{+13}, RS13, SM16a, SS13a, SBGP18, SBV10, SHL^{+18}, SPL^{+18}, SHF11, SH19b, TYN15, Tan19, TSH^{+19}, WSH10, WYL^{+15}, YK13, YWJ^{+16}, YAO18, YCK16, YHCS11, ZRCC11, ZY14, ZW18, ZZZ^{+19}, dLvNC18b, vS18, KCB^{+12}\]. interaction-activation \[LSL^{+19}\]. interaction-based \[ZW18\]. interaction-induced \[BLFZ13\]. Interactions \[BGS^{+19}, Hes19, Sch18, WCT^{+11}, ZCK^{+16}, Abr11, ARRC15, AKK^{+16}, AO10, BSF18, BSG18a, CSS17, CIH18, CIK13, cCVG^{+14}, CKP10, CROB16, CB11a, CB11c, dRCFGRB18, DDP^{+18}, DHP^{+11}, DBG11, DLH12, EP10, ER18, GWF11, GZZM16, GZ14, HSJ18, HLvdV13, HTY19, ICS^{+12}, ICS^{+13}, IHY15, Jab18a, KSSH13, KCK^{+15}, KPH^{+19}, KGJJ19, LZLC13, LZSM19, MLGB16, MH17, MKH^{+13}, MR17, MJM^{+15}, MVKS10, MG14, MFR^{+17}, MPBJ11, OHNK11, PPJ14, PLV^{+11}, RTS^{+13}, RVM19, RMRBH^{+19}, SSIS15, SDF12, SB19, SWW^{+19}, SB11, SB13, TSSS17, TG12a, TY10, TSR^{+16}, TNG^{+10}, VVJ15, VM19, WS10, WGD^{+16}, WDS^{+19}, WZ19, WM17, XTY^{+14}, XLY12, YKO^{+11}, YZ15a, YW13, YZL^{+15}, YDGZ15, YZLI18, ZLL^{+12}, Zha11, dLC17, dLvNC18b\]. Interactive \[BRP^{+12}, BGR13\]. interactivity \[CQFC10\]. interatomic \[DPAB16, FCCP17, RLA18, YKO^{+11}, dLC17\]. intercalation \[LAM19\]. interconnections \[GLF16\]. interconversion \[HH10\]. interconversions \[TCGNT18\]. Interdependence \[WAB17\]. interest \[BCNH^{+11}, OZLSBH12\]. Interface \[SJJ18, All11, BDTFP11, CSSB11, GRP^{+12}, GCW14, HL14, JJW^{+14}, KG13, LJ112, LZdlL^{+10}, LBB^{+15}, MSSP17, NS18, OYK^{+11}, PHH^{+12}, PVZ13, RR14, RSR^{+12}, SN16a, SYDS11, SISK10, STH^{+10},
ion-pairing [KTK17]. ion/water [SV11]. Ionic
[FDCJG18, JXSW15, AFP113, APY+16, CG15, CFC15, EK15, GC11, IN19,
IM17, LEdOLd1V17, MG15, NF1+16, PS14, SCM+15, WWKS11]. ionicity
[SLY+19]. Ionisation [CTP13]. Ionization
[SHL+18, ACD+13a, ACD+13b, BG17, CG15, CBG17, GWF11, HNyH19,
LGOM+15, LK13, yOTu16, SSB+16, SGHL13, Tac17, VL17a, VCL18].
Ionicity [SLY+19]. Ionisation [CTP13]. Ionization
[SHL+18, ACD+13a, ACD+13b, BG17, CG15, CBG17, GWF11, HNyH19,
LGOM+15, LK13, yOTu16, SSB+16, SGHL13, Tac17, VL17a, VCL18].
implosions [LGVA14]. Ionized [GMBM18]. Ions
[WFZ+18, AS14, BDTP11, CCCLRO14, CC12a, EKH14, PRJ+17, PZA15,
SNS16, SGH+16, VHS+19, WKC10a, XP13]. IP [BK17b]. IP-tuned
[BK17b]. IPRO [PGL+15]. IQA [CSM16]. IR
[DCOD13, CWT+12, LWL+11, LXZ+10, WJX+10]. irGPU.proton.Net
[Kan15]. iridium [CWT+12, HDPM14, KB13]. Iridium-catalyzed [KB13].
Iridium-containing [HDPM14]. Iron
[HS14a, AKMYB18, BH19, BG13, CTR13, DK19, GBGR16, HSb+19, HS16b,
KPL13, KPL15, MC10, NH19, SBC+11, TS10b, VBMA13, EH13].
iron-containing [AKMYB18]. iron-porphyrin-carbonyl [BH19].
iron-sulfur [CTR13, HSb+19, HS16b]. irradiation [WJX+10]. Irregular
[Sch10]. isocloso [LK16b]. isoconversional [DCˇS15]. isocyanide [TLY+12].
Isoelectronic [ZLX+19]. isoindolin [YZL18]. isoindolin- [YZL18].
Isolated [FL15, DSB+19]. Isomeric [FL15]. isomerism
[dCGCRN19, RS17b]. Isomerization [BW11b, DBGO+17, EF16, BLG10,
BMFG16, LL19a, MSBF16, OKIS17, SJD11, Su10, WCL+11, ZWZ11].
Isomers [CSM16, ZWZ11, DSHL18, Kar17, OKIS17, WCL+11].
isoselectivity [OSA19]. Isoster [EdOdS18]. Isothiirane [MM19]. isotope
[KK16, MRK11, NASH15, ORZ11, UT14, UT15, VKAM12, WXY14].
isotope-substituted [UT14]. isotopomers [UT14]. isotropic
[KJS+16, Tak14]. isotropy [Tru18]. Issue
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13b, Ano13c, Ano13e, Ano13f,
Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p,
Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x,
Ano13y, Ano13z, Ano13+27, Ano13+28, Ano13+29, Ano13+30,
Ano13+31, Ano13+32, Ano13+33, Ano13+34, Ano13+35, Ano13+36,
Ano13+37, Ano13+38, Ano13+39, Ano13+40, Ano13+41, Ano13+42,
Ano13+43, Ano13+44, Ano13+45, Ano13+46, Ano13+47, Ano13+48,
Ano13+49]. Issue
[Ano13+50, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14h,
Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p,
Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x,
Ano14y, Ano14z, Ano14-29, Ano14-30, Ano14-31, Ano14-32, Ano14-33,
Ano14-34, Ano14-35, Ano14-36, Ano14-37, Ano14-38, Ano14-39, Ano14-40,
Ano14-41,


KSM17, KKNN11, LCK+18, MSC+10, MCLD10, OSR16, PVL+13, PTK11, PML+12, PB14, VAMS14, WWD14, ZMMM12. Levels [Kop19a, AC12, BCSCJ+13, BY11, BACSCJ+10, HYD10, Hua16, KIOY19, KHWB17, Kop15a, Kop17a, Kop17b, Kop18, MK13b, dSAdSL13], leveraged [EPH+15]. Lewis [EHSPT16, KASH14, Liac+14]. LH1 [KPG18].

Li [AM19a, AM19b, DDM+15, JW12, RLA+11, YCGA10, YHCS11, BWKW10a, GNI18, RLA+11, TN12, YZLZ19, YCGA10, SBW12]. Li-based [GNI18]. Li/Na [YZLZ19]. Li/Na-ion [YZLZ19]. Libcint [Sun15].


library-based [MZZ11]. LICHEM [KWL+16]. LiCl [LCL+18]. LiCN [LLL+11]. LIE [CZY11, VLb+10]. life [RHT+15]. lifetimes [CH10]. Ligand [DPOS16, KKH19, KC13a, LI19, MNNK10a, VKC10, ABD11, AG12, BKL13a, BPB11, BCG10, BBG+18b, BS10c, CMD13, CIK13, CHR+12b, CHR+12a, DFF+15, FTW12, FBEM11, FRLN10, GHIK12, GDV17, GJK+19, GS11, GZ14, HKR12, HG13, ITY+19, KLJ+17, KL14, KYB13, KTO11, KTO13, LZ11, LL+10, LL10b, LWL+11, LBS10, MC10, MGWR12, MG14, MFR+17, NST14, NHR18, NFG+13, NMF+14, OBW12, OHNK11, OGL10, OSR16, OCLM14, OOT15, PGCT+12, PK17, PPJ14, PLV+11, RL17, RZG+13, RCR+16, RO14b, RVP+11, SPL+18, SKKS13, STM+15, TLY+12, TNSS17, VVG13, Vor10, WdVN12, WNP+16, WZ17, WWW19, YZZ16, YBS19, dRBO13, AIM+18, YZZ16, SHL+11]. ligand-based [RVP+11].

ligand-binding [GDV17, MGWR12, OSR16, RO14b, WW19].

ligand-field [BBG+18b]. ligand-induced [KL14]. ligand-receptor [FRLN10, VKC10]. ligand-sized [OGL10].

ligands [CS17, GPdC+16, HRC13, KSO+19, LBC+19, LL10b, LW+11, LBS10, MC10, MGWR12, MG14, MFR+17, NST14, NHR18, NFG+13, NMF+14, OBW12, OHNK11, OGL10, OSR16, OCLM14, OOT15, PGCT+12, PKK17, PPJ14, PLV+11, RLD17, RZG+13, RCR+16, RO14b, RVP+11, SPL+18, SKKS13, STM+15, TLY+12, TNSS17, VVG13, Vor10, WdVN12, WNP+16, WZ17, WWW19, YZZ16, YBS19, dRBO13, AIM+18, YZZ16, SHL+11]. ligated [EH13, WC14]. ligating [BAD+19].

LigDockCSA [SHL+11]. light [FWS+18, GNI18, HXM+16, KDR+18, PE11, REL17, XBSS19, ZG9+19].

light-driven [HXM+16, REL17]. light-emitting [FWS+18, ZG9+19].

light-harvesting [KDR+18]. lighter [WD10]. Lightweight [RLG14]. like [AASP18, Che17, EPH+15, GRN19, KIOY+12, KD18, KB14b, MP17b, OAN15b, SDF+17, SM15, UCFR16, VHA+10, VVY18, WFZ+18, WKC11, WGN+16, ZSL+11, VVY18, YZL+19]. Limit [SN16b, Fra15, Fra16, LW16, LYC+13, OAN15a, SLT14, WTH+16].

Limitations [LvG13a, VL19, HH18]. limiting [SLT+15]. limits [GC18, II18, NSK18, PDSC18]. line [dLvNC18b]. Linear [BG12, NNT+19, KKW18, YN15, ZLY+16, ARLP13, CPV+12, DSAS19, EP12, FYB+17, FCE15, GZZ12, JZM14, JMS13, KHL19, Kid19, LP11b, MA17, MSAK12, NYH+17, PH17, RS17a, RLA+11, RR11, SS16a, Tak14, VBDS+11, WL10, YDX16, ZZZ+19]. linear-combination-based [Tak14].

Linear-scaling [BG12, YN15, NYH+17, RR11]. Linearity [IKN13].
lysine-malonylation [TYX’18]. lysoyzme [ZP13].

M [AM19b, LDJ’10, LLL’11, MCK’17a, Rab12, TLdG’12, WWKS’16, YW12, YHCS’11, JJAB’16, CCCLCGR’14, MCK’17a, TLdG’12, YHCS’11, JJAB’16].


machine-learned [FP’17a]. machines [GTZ’18, RJBH’18, RLL’10, ZWL’13], macrocycles [CMM’18, GAMSBF’16].

macrocyclic [ZRC’12]. macrolide [PG’15]. macromolecular [Kne’11b, LCA’17, LAT’10, LAT’11, PG’14, UU’12, RTP’13]. macromolecules [DG’14, DZA’11, FXC’13, OHP’17, RZ’16, ZKE’17]. macrotcyclc [ZYY’10b]. Magnetic [BHP’19, LKZM’18, MP’19b, Avd’18, BCSC’13, BP’18, BACSC’10, CPRS’18, CPN’17, CJPT’18, FNS’11, GTT’10, GBG’19, HAI’16, Ibr’17, JCG’11, KNP’12, LLLL’11, LL’12, PLSF’18, SH’18a, SIT’18, SACd’14, SB’13, SB’15, Vik’11, wZb’11, ZLZ’14, ZB’18].

Magnetically [ATM’18, ATIP’18]. magnetizabilities [ZP’16]. Magnetochemical [SvL’18]. magnetoresponsive [TDKT’10, TS’11].

magnets [BP’18]. main [ACD’13a, AC’13b, JJJ’16, XhD’15].


malonylation [TYX’18]. maltose [HYSF’19, SWM’10]. man [HDH’12].


Many [CGP’11, BDdS’13, CKK’16, HRJ’14, HRJ’15, JRSHP’14, KNH’16, LYG’13, RHPWS’13, VMP’17, WCWV’15]. Many-body [CGP’11, HRJ’14, HRJ’15, JRSHP’14, LYG’13, RHPWS’13, VMP’17].

many-core [KNH’16]. map [MKM’17]. mapper [BJP’15].

mapping [EMD’17, KZP’18b, MMM’16, NSF’16, TD’10]. Maps [ZFOS’19, GJMPAM’14, YSRSS’10]. Marburg [OLY’17]. Marcus [WBKS’19].

Marjana [CD’19]. marker [JAH’17]. Markov [BFH’13, LTT’16, WW’19].


Material [JW’12, DGL’13, HLWD’15, JBSQ’11, LL’13b, MC’16, NGAS’17, SHL’19, SMN’19, SLHW’09]. materials [BSL’16, CD’11, DLT’17, ECZW’17, EMD’17, GNI’18, KLZ’18, KB’19, Man’13, NDD’10, SB’18, SYZ’17, VBV’13a, VVB’13, VVVY’17, VVMY’18, YZLZ’19].

MATLAB [DK’14, SKA’19]. matrices [Car’14, LHO’17, Mat’14, Yon’16]. matrix
matrix-based [VGV+11]. matrix-free [ZVY+15]. matter

[BGL+18, HRB+17]. Maxima [LüC14]. Maximal [DN19]. maximum


[LLSW14]. MCSCF [ZZZ+19]. MD

[HCD+10, RSR+12, BM12, FB14b, GMASBF16, LWZ+19, LJL+11, MTVG12, OYK+11, RAR+11, SISK10, SMP17a, WTD+19, WWW19]. MD-FEP


[KKR+13]. mean [HDL+14, Kid19, KERY+16, KT10, KS12, KLS10, KML50, MIOM13, MP17b, RAR+11, SISK10, SMP17a, WTD+19, WWW19]. mean-field [Kid19].

[MIOM13]. mean-force [MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].

[Me]. mean [HDL+14, Kid19, KERY+16, KT10, KS12, KLS10, KML50, MIOM13, MP17b, RAR+11, SISK10, SMP17a, WTD+19, WWW19]. mean-field [Kid19].

[MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].

[MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].

[MIOM13]. mean-force [MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].

[MIOM13]. mean-force [MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].

[MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].

[MP17b, RI10, VBDS+11, Vor12]. mean-field [Kid19].
[FBKD19, LI19, VSP19, WNP+16, ZQH19, AIGP15, AOW11, BBG+11, BMR11, BAMR13, BF15, BS19, BCCO10, BMBJ11, BRP+12, BMFG16, BD11, BB11b, BK17c, CIKT13, CZY11, CL16, CH16, DK11, DC15, EFS16, EVR18, EDP+11, FGM1, Fer17, FRN15, FHZA+18, GLB16, GKH+19, GBVA11, GKY+13, GA12, dCGCRN19, GWZX12, HLS12, HH10, HTS15, HNTS15, HNS16, HYS19, HSN14, HNWF07, HNWF12, HAI+16, HBL12, HYUS11, HGW18, HHWL17, HLXH17, HLXH18, HL19, ITIN15, ISK14, ISO+13, ISM18, IO13a, IO13b, JZ17, JY+14, JMS14, JS17b, KV12, KS13a, KS15, Kan15, KSSH13, KG15, KNN11, KTO13, KB19, KB11c, KTN10, KLS10, KZP+18b, KB14b, KW15, LLHM16, LFB14, LBG16, LPC16, LCH10, LL11, LLZA12, LWZ19, LN15, LLSW14, LL19a, MK13a, MTM14, MHT+18, MC12, MKGA10, MPA12, MN15, Mat10, MDT10], method [MRK11, MA17, MJG+15, MFR+17, MS15, MNNK10b, MH10, NF18, NR11, NFDP13, NF17, NO16, OLA15, OK16, OOT15, PSS14, Pet11, PSC11, PKIC11, PPJ14, PLV+11, PM18b, Pon10, QLQ11, QB10, QB11, RHRCH16, RKGN10, RSL15, RGVC+19, Rod13, RKB+14, RFHG10, SSO19, SF18, SS13a, SCM+15, SBB10, SSWX14, SBN13a, SBN13b, SB15, STM17, SG13, SSAS10, Tak14, TKNN10, Tak10, Tak18, TSZQ12, TSNC+17, US11, UIW+10, VLB+10, VDR14, Vor10, WXS+12, WLG19, WHM10, WTH+16, YO19, YJ+16, Yon16, YAO18, YN15, YHH+13, ZDZ13, ZMM12, Zha12b, Zha12a, ZLM+15, ZGZC19, ZW17, ZFS18, ZH12, ZA15, ZZZ+19, Zim15, CKH19, JCHT18], method-based [GKJ+19]. Methodological [VKNT16], methodologies [Rob13]. Methodology [CPK19, AKI16, FF11, GAI13, GMASBF16, HPT17, OHPR17, OHPR18, RJWW12, HCD+10]. Methods [SGP18, ANO12u, Ano15-59, ASMS10, BG13, CLFRO18, CSGOA17, CXS10, CNK97, DKE+17, DCOD13, DBM+15, EHK+13, EMS+12, EV14, Fer13b, Fer13a, FB10, FSSW17, FSSW19, GA14, GFPSD17, GD10, GSS13, GM16, HCB11, HSB+11, Hsf14, HWL11, JY+13, KSM17, KB13, KHW17, LeolDLv17, LLZC13, LLSW14, MS13, MY17b, MHO18, MR17, MVK510, MOS12, NXY+17, NASH15, NC13, NC14, NTNY15, OSHG17, PN13, PVAM16, RZG+13, RRH12, Rez19, SRF+17, SS16, SACdG14, STM+15, SWW+19, SWA17, TG12b, TS15b, Tsi17, WBT10, WX12, YLCX10, YAS13, YJ17, ZGS+10, dSdLBN17], methoxy [PNE18], methoxybenzyl [YTLZ18], methyl [AARP17, BIL10, CPLL11, GZL+12, GMG+10, LL11, LSL+16, MG15, MSBF16, VKE15, YTT12], methyl-methyl [LK11], methylacetamide [HLH+12, KSK11], methacrylene [WCVW11], methylated [LRVM18], Methylation [SCW11, KYCL11, QZM11, dALdS+15], methylbenzyl [NG14], methylcobalamin [KKL+13], methylformamides [JSW10], methylysine [GHK12], methyltransferase [CPLL11, GH10, PBLdS12], Methylurea [HV17, HvM16], MetRex [Sti15], metric [CSX10, LLH16, PKIV11, SOJ14, ZT14], metrics [Hug14, PBBP11, RCM+13b], Metropolis [MO15, Pon10], Mezey [HJ13], MF [YKH15], Mg [HDM+19, LDJ+10, LLX+19, BMFG16, DOM+11,
[LLLW19]. MNX [AM19b]. MO [BRP +12, UIW +10, ZY14]. mo analyzer [DJD12]. mobilities [SFDE16]. Mode
[AIM +18, BHR15, GVP +10, YI18, SRA17, SBB10, YHCS11, YXZZ17]. Mode-tracking [BHR15]. Model [Ale19, BLS10, HM16, Jia19, MT20, Pog10, AASP18, AOW11, AS10, ALRM18, ATP18, AS15b, APA +14, AB16b, Bac12, BK17a, BH19, BEEL14, BS10b, BBG +18b, Cam15, Can10, Cam11, CGP12, CGA19, CBTZ16, CFC15, CAD16, CG12, CMS13, CJZS10, DLL +10, DSF17, FCE15, FNSF +11, GRN19, GR515, GM17, Gil11, GKR13, HLS12, HAL14, HLH +12, HOK17, HZSS17, Hug12, HRH +17, ISO +13, IN13, III18, JSXH16, Jor17, KFY +13, KCC +17, KMS +19, KR12, KOY +12, KD18, KCPMG12, KB14b, KDS17, LSL +19, LTT16, LY10, LRvdSM15, LFN +10, LPS +13, LHHW14, LZL +15a, LDG +15, LCK +18, LHMM11, ML10, MT19a, MPJ +19, MBC11, MBC13, MM +17, MHO18, NJX10, NTNY15, OPB17, PB14, PCLL11, Pla11, Pon11, Ray13, RTS +13, Ric16, RMRBH +19, REL +14, RKG11, SM14b, SDF +17, SHF11, SSBW14, SK12]. model [SK17, SLX +15, SDZ17, SZBM13, SB11, TYN15, TCC +13, Tia12, TLA10, TTh19, UIW +10, VV15, VH +19, WWKS11, WXL +12, WC13, WWW19, WNM17, WRHF10, WKC11, WCAH10, XZ11, XTY +14, XP13, YS18, YOM14, YB13, YG12, ZST14, ZKH +10, ZM10, dSDdAR10, dSH19, CCR18, FAS +18, MJBM12]. model-tuned [HZSS17]. modeled [MPA12]. modeler [BHI19, KLJ +17]. Modeling
[ASW19, CB11a, DLSA14, FD13, FTW12, GMG +10, GBS +17, HPL13, JW16, KDR +18, Mat14, NS10, NDLW13, PLP +16, SZdB19, SK11, Tia12, VY15, AKMT11, Ati16, BEM14, BPC13, Bow16, BS10c, CMD13, CLA16, CNZ11, DAG19, DWR17, DSY +11, DLmH12, EBPK17a, FZX +13, GH10, GP12, GMZ12, GWJR18, GR10b, GWZK12, HLvdV13, HBJ +17, JC16, JCL +17, KSD +12, LABS17, LLH14, LZGS11, LT13, LN15, MBA11, MJLV14b, MA17, MA14, MBP11, NSO +14, NW17, PHC13, PSS14, PSG +17, PMS16, QLK19, RJS17, SN16a, SKGP19, TTR +12, VKNT15, VAA14, VCM15, WXL17, WPM +15, WLO +17, XDL +10, XY12, YMY +19, YJ11, ZX11, DHE +12]. modelling [DBM +15]. Models [Hes19, NNT +19, ND19, BEM14, BLKP12, BPB11, CD11, Cor17, CBG16, CK17, DDP16, DSM +11, DI11, DGC14, DLC18b, EK15, EPD +10, GMPB12, GMH +16, GMG +10, GKR13, GCC +13, GDC14, GAIJ +17, HS16b, HGY15, JCP14, JGS +17, KJDB12, KKO +16, KB11b, KSR +16, KSW16, LTT16, LKL10, LZ12, LLSW14, LM18b, MPSA17, MSK12, MCJ15, MKB +13, NNS15, OLI13, PHC13, PGY15, PL18, Ray13, RTP +13, RKG11, SPHF +18, SCMA +17, SFLG +17, SAgG15, TH13, TTB +11, TLY +12, VCK10, VMP17, VZ14, WS10, WXY14, WSWD19, XTn18, YJ11, YL13, ZsA10, ZDW18, dSDdLB18]. modern [ABI16a, AB16b, DH17, Fom11, LM14, SF18, SDM +16]. modes [CBP +15, EB18, GMPB12, KKH18, LLTC12, MS17, dSH19, dSAAdSL13]. modification [Ano12u, MS +15]. modified [BD12, CH16, DPSL16, DJX +11b, GSD10, MRO17, Mit13, SMM15a, SMM15b, SM +18, XY17, XVA +16, ZZ12]. modify [ZX19]. Modifying
modular

Modulating

modulators

moieties

MOLCAS

Moldyn

molecular

molecular
PH15, PVJ10, RJBH18, RD18, RMPAM15, RLLHL12, RNSF+16, RNP13, RNVP13, RS10, RS17, RJH11, RO14b, RR14, Rda12, RC18, RLG14, RSR15, REH13, SHMO11, SSO19, SF18, Slt+15, Sax12, SWM10, SK15b, SA13, SZTSM10, Sch12, SFR+11, SHFJ18, SHF11, SMRM+17, SS19, SSNT19, SOM+13, SJ17, SR18, SYN+12, SK13, SWB+12, SLLL13, SJ16, SMD13, SKY+11, SPZP18a, SPZP19, SBvG14, SAvG15, TNYN16, TKNN10, TZ12, TJR19, TTC+18, US11, UGK18, VYM15, Vik11, Vor10, Vor12, VM11, WKL12, WBN+13, WM17, WLM+10, WH11, WCY+11, WLC12, WOH16, WXL17, WOH18, WES13, WBF17, WCDM11, WO15, WCUW15, WL14, WG14, Won18, WDKT19, XDL+10, XFG+15, YK0+11, YP+D3, YNH+17, Yo19, YLGX14, YLCX10, Yap11]. molecular [YPKB12, Yes12, Yes15, ZSTI14, ZYL16, ZX11, ZDKM12, ZSS+13, ZS19, ZLY16, ZP13, ZWX16, ZLL+13, ZA15, ZBMZH15, dSdLBNB17, dCLFGL13, dLvNC18a, AIM+18, IPAA11, KSD12, ZKH10]. molecular-mechanical [ZSTI14]. molecular-orbital [US11].

MoleculaRnetworks [MCC12]. Molecule [KR12, vRWGS17, BT18, DHO13, DGL+13, ETLS17, FAA15, GAI14, GCWS15, GBVA11, HLvdV13, HHWL17, ISO+13, IIHY15, KB11b, KKA+18, LIRL+16, MCUJ15, NLL19, PCLL11, RLL+10, SG10b, VGV+11, WF16, XYW+14, XMSZ16].
molecule-transcription [XMSZ16].

Molecules
[ATM18, Cam19, ELKE19, PiSC18, AIPG15, Ali18, AFW+18, ARAG17, AGR11a, BLDG+13, BS10a, BTMS12, BSC19, BPC19, Ben17, BS16b, BL12, CPZ19, CHG+16, CC18c, CQFC10, CYG+15, CCOH14, CXS10, CZNA11, FDI19, FE14, GWF11, GKJ+19, GP12, GPBS11, GPS12, GAJ+17, HRB+17, HSB+11, Hug12, Ih12, Kan15, KLI+17, KGFZ19, KGY+15, LPS12, LHSH12, LvG13b, LH14b, LJJ+11, LG14, MA16, MS13, Mat10, MSS+13, MH17, MBE16, MPBJ11, NII+15, OGL10, OT12, PZBA13, Pyy13, RSG18, RSG14, RK15, SFCCK+14, SFCC+15, Sch13, SG10b, SLG+17, SY16b, SM17, TZCK18, TSR+16, UNT16, VVV+15a, VHA+10, VVY18, VDVR14, WC13, WSZW15, WFS19, WWD14, WX12, You10, YKH15, YHW17, ZPP+16, Zha12b, ZIX+13, ZBB16, ZCGM11, MSPC19, SMB18].

molUP [FRC18]. Molybdaticarboranes [LK16b]. molybdocene [PM13, SDL14].

Moments [GH16a, Ali18, BLDK+13, CP15, CTP13, DHO13, GH16a, Lar11, NOKJ16, Tru18].

multipoles [Elk16, KGM12, SMP17b]. multiprocess [MB16].
multiprocessing [GP11b].
multiresolved [DGC14].
multisite [CK17, HS14b, MMB17].
multistart [MS16]. Multistep [DWZ17, FZY12, WDZN16].
multistate [BLKP12, FXC13, LC16, LZ14, JBB11, MBC13, SYN12, WLO17].
multithreading [TO10, ZWL13].
multivalent [AS14, FVP14].
Multiwfn [LC12].
muscarinic [SRA17].
musculus [WZQW10].
muscular [WZQW10].
mutagenic [BZH14].
mutant [FHK12, LMA15].
mutants [CSC18, RKDM14].
mutations [BH15, GMO16, KYT17, SL10, SY16a, WC11].
mutable [BMPML13].
MVPACK [BACSCJ10].
MX [Sch13].
MXenes [YZLZ19].
mycobacterium [MPNS13].
myoglobin [SHB17].
N [ATIP18, Ano15-59, BLF14, BCNH11, KBC12, KCL14, LPLB16,
NDG14, PVL13, RLZ18, ZLX19, GNI18, LZSM19, BCNH11,
BKWK10b, BMB13, BSDP16, CWT12, CCM15, DCHL12, DLW12,
GMASBF16, GZL12, HLH12, KV14, KCL14, LZL15b, MLGB16,
MSPC19, MS15, OZLSBH12, PVL13, QQY18, RHN10, RWR13,
ŠBD17, SGHL13, TSJ10, VM11, WS10, WGL11, WCL11, WYGW12,
WS12, Yu12b, YXZZ17, ZP13, HPSK12]. N-[BMB13].
-N-Bromosuccinimide-promoted [QQY18]. N-Codoped [RLZ18].
N-heterocyclic [BSDP16, CWT12, SGHL13, WS12].
N-methyl-N-phenyl-hydrazine [GZL12].
N-methylacetamide [HLH12].
N-substituted [DCHL12]. Na-ion [SMIN19, YZLZ19].
NABs [SBW12, SBW12]. NABs-Li [SBW12]. NaCl [HB15, PK19, TNY18].
NaI [OCW15]. Naïve [JL19].
Naiyang [Ano12u]. NAMI [LWZ19].
NAMI-A [LWZ19]. nano [Ano15-58, BH14, QZ10b].
nano-clusters [QZ10b].
Nanocluster [THF19]. nanobiotechnology [Fel10].
nanochannels [TM16].
nanocluster [AS15a, AAMR18, AHK19, RVKK13].
nanoclusters [AASP18, LLJ12].
nanocrystal [KC13b].
nanodisc [QLKI19].
nanoflakes [GNI18, Lin18].
nanogranular [DWZ17].
nanographene [DWZ17].
nanographenes [TSN17].
nanolayers [EBK13].
nanoparticle [CCJC10, NNS15].
nanoparticle-PMMA [NNS15].
nanoparticles [EOO16, KHL19, LZZ11].
nanopore [SM16b].
nanopores [DMN14, MJC14, SM15].
nanoporous [KB19].
nanoribbon [DJX11b, DJX11a, RRK14].
nanoribbon-based [DJX11b, DJX11a].
nanoribbons [LWZK13].
nanorings [TS15b, YDGZ15].
nanorods [LHKS12, LH14b].
nanoscale [Hei10, SWB12].
nanosheet [Bow16, MCRL17].
nanosheets [wZbZ11].
nanospheres [AAMR18].
non-equilibrium [NHN16]. non-heme [PHC13]. non-hybrid [CSKH15].
non-natural [GMZ12]. non-uniform [YWJ+16]. nonadditive [RTS+13].
Nonadiabatic [HZ11, RGVC+19, JBSQG11, KIOY19, MT19b, SRSLO15, WLF19].
Nonclassical [GC11]. Noncovalent [BGS+19, dRCFGRB18, Sch18, RLA18, SM16a, SWW+19, SBW12, TSM+16, VT14, WGD+16, WDS+19, YW13, YZLZ18, SMD18]. noncyclic [SM16a].
onempirical [BK17b, WYT17]. nonequilibrium [ASL+11, KHWB17]. Nonfitting [RZG+13].
nongeometric [KB11a]. nongeometric [KB11a]. Nonstatistical [Yu12a]. nontemplate [OL13].
Nontotally [HOM+16]. nonuniform [BD12]. norbornadiene [Ant13, WJX+10]. Nuclear
[AM19a, BCNH+11, CXS10, CSNCS+18, DHE+12, GBGR16, HRL11,}

O [AM19a, BCNH+11, CXS10, CSNCS+18, DHE+12, GBGR16, HRL11,
JM11, JLH + 14, KMS + 19, LZTV10, LLLM11, LLB + 12, LLSW14, MG11, PLFS18, PBE16, RHT + 15, SPS + 12, SBD + 17, TNY18, VV14, WHL + 10, WLF19, WRM + 12, XFX + 16, YW12, YR13, YOBP16, ZRCC12, ZXL + 19, Tsi17, BCNH + 11, BWKW10b, CK10, Chn10, CROB16, CPLL11, DT19, DHE + 12, HZ11, LZL + 15b, LCWW10, MH11, MSPC19, MS15, PBLdS12, PP19, RHNN10, RAGLL11, SZ17, SJ11, SSX + 14, TKCN19, WLF19, YZ15b, ZRCC11, ZSWL12, dCRN18. o-atom [Tsi17]. O-H [TKCN19].

[SvLK18, Aou16, BBG+11, BCSCJ+13, BCJC+14, BACSCJ+10, CCC+11, CJPTC18, DDK14, Dra19, GBW+14, HSN+18, KR14, KVQC+11, KCC+18, KGW15, KYG+15, LWK+14, LISH12, MLN+18, SKA19, SWA13, SHFJ18, SMRM+17, SJ17, SJ16, UI12, VB113b, WSGN11, ZCS+15]. packages [MSvG12, MJG+15]. packet [LWD13]. packing [MCAG+16, MP17b, NS11].

PaDEL [HLS+13, Yap11]. PaDEL-DDPredictor [HLS+13].


Parallelized [KAI19, DBDP16]. parallelizing [BMBJ11]. parameter [NB19, PFL14, SH19a, VCL18, VVL17, WDHZ13, LL11].

Parameterization [HKH18, HIJ16, ILKR11, IJH+13, MPSA17, PRRT+10, TCC+13, BAS14, CCL12, DLM12, KY13, LTP11, LCL+18, MSS+13, VLB+10, VBD11, VH1+19]. parameterizations [SH15]. parameterized [OZS+13]. Parameters [CTR13, AG11, AKMYB18, BCSCJ+13, BCJC+14, BSD18, BW15, BC13, CYG+15, DPSL16, DMAH15, FHT+15, GSD10, HLS12, HM16, HBI+17, HLH+12, KvdV14, KGK12, KGJZ19, LvDH13, LPS+13, LVG11, LHH+11, MRO17, MP11, PLS19, Pog10, RKB+14, SOY12, SZBM13, SPR+13, SPZP18b, VYM15, VLGK+17, WAM17, WOH16, WOH18, WC14, YWW+14, ZRL+15]. Parametric [LM18b].

Partitioning [VSP19, DK11, EV14, FCQGM12, FHZA+18, LZF+17, REL17, SS13a, TMJ15, VGV+11, ZW18, VV19]. partner [dVZ17].

Path [MA17, VKAM12, CY09, DL19, HXM+16, Ish10, JZ17, KSNT19, MvBD18, SRSLO15, SA13, SS13b, SMM17, TN18, TNY18, WXY14, ZT14, MYKO18, CY13]. path-based [ZT14].

Path-integral [VKAM12, WXY14]. path-search [Ish10]. PathOpt [GPE13].

Paths [SH11a, AMGB10, Ant13, CX10, Jab18a, NMLD13, RVP+11]. pathway [BHB12, HOM+16, LKL10, SJJD14, TDP+12, XLYZ10]. Pathways [JL19, CM13a, EF616, GS11, HNTS15, KGR+16, KDR+18, MTM14, NJR18, QSW+10, QB16, RCM+13a, RML+15, SJJD11, SH18b, Tsi17, WSH10, Yon16, BHH12]. pattern [CS10, LZSM19, WGL12]. Patterned [SJSS19].


PCASSO [LFB14]. PCCP [VT14]. pCCSD [Sch12]. PCM [LFN+10].


PDECO [CJL+13]. PDielec [KB16]. PDxCN [ZLL19]. peaks [LZS+17]. PEG [EOO+16]. PEG-PLA [EOO+16]. penalty [GZH10, LL19b].


peptides [BLKP12, BPC13, CR19, CCOH14, CZA11, GFG11, HSB+19, HLH+12, HWWL17, IO13b, JX10, KB10, LG13c, MZ11, MUGN18, OLY17, WNM17, XHL16, XWSW13, ZKH+10]. peptoid [MMZW14].

peptoids [WS19]. perception [AJR16, HYZ13]. Performance [Abr11, BZB+13, CSH16, CKKK16, DAP+18, DOM+11, GWR18, HSB+11, HB19, JC14, LK16a, RKB+14, SF18, SH18a, SGW17, ZWMW19, ABM+15, BLBG+13, CLF018, XSS10, CSS11, CJZS10, ESB13].
EWK$^{+13}$, GAI$^{+14}$, GRARO$^{+14}$, GSS$^{+13}$, HWLW$^{11}$, KZZ$^{+16}$, KLZ$^{+18}$, LL10a, LBB$^{12}$, LLC$^{+10}$, MHT$^{+18}$, MC$^{12}$, MG$^{11}$, OPB$^{+12}$, RRH$^{12}$, RSLS$^{13}$, SRF$^{+17}$, SPR$^{+13}$, SJ$^{16}$, TF$^{15}$, XMA$^{+19}$, YPC$^{+10}$, YMY$^{+19}$, ZHS$^{+18}$, ZST$^{+18}$, ZSLL$^{17}$, ZWL$^{13}$, SBW$^{12}$.

Pericyclic [HPT$^{16a}$, KG$^{15}$, ZZMW$^{19}$].

Period [LOB$^{18}$].

Periodic [Sce$^{07}$, Sch$^{10}$, AAC$^{+16}$, BBG$^{+18a}$, BS$^{19}$, BS$^{18}$, CMM$^{18}$, CDC$^{19}$, CEBO$^{15}$, FCD$^{10}$, Gar$^{12}$, HSH$^{15}$, HBI$^{+17}$, ITIN$^{15}$, KB$^{14a}$, LBGS$^{16}$, Man$^{13}$, MGS$^{+16}$, NN$^{18}$, NO$^{16}$, NTNY$^{15}$, RJPB$^{12}$, RLZ$^{+18}$, RNS$^{19}$, SN$^{16a}$, SSP$^{19a}$, Sie$^{15}$, SPZP$^{18b}$, TLD$^{+12}$, Tak$^{14}$, VBV$^{13a}$, VVB$^{13}$, VECT$^{12}$, VI$^{17}$, YAO$^{18}$].

Perlin [HLBLCCG$^{15}$].

Permeation [DMN$^{15}$].

Permutation [IO$^{13b}$, YO$^{19}$].

Permitrines [WD$^{10}$].

Perovskites [LLB$^{12}$, LLL$^{12}$, VVY$^{17}$, VVMY$^{18}$].

Peroxide [HW$^{19}$, KNP$^{+12}$, MK$^{13b}$, SZ$^{17}$].

Peroxo [RHPWS$^{13}$, RHT$^{+15}$, ZRCC$^{12}$].

Peroxo/superoxo [ZRCC$^{12}$].

Peroxyl [CGVBAI$^{19}$].

Peroxynitrous [BLG$^{11}$].

Persistence [XW$^{15}$].

Persistent [WZWW$^{18}$, XFTW$^{15}$].

Personal [Tsi$^{18}$].

Perspective [ABDGN$^{12}$, Dil$^{15}$, Hsu$^{14}$, JCGVPHT$^{17}$, JMX$^{+16}$, LGOM$^{15}$, MM$^{18}$, MP$^{17a}$, Niz$^{13}$, PZM$^{15}$, TNY$^{18}$, XLY$^{12}$].

Perspectives [NSK$^{18}$, DR$^{14}$, Wei$^{12a}$].

Perturbation [ELKE$^{19}$, CCM$^{15}$, CF$^{14}$, DCHL$^{12}$, FRSA$^{14}$, FSSW$^{17}$, FSSW$^{19}$, FE$^{14}$, GR$^{15}$, GCCM$^{15}$, GA$^{18}$, Hii$^{13}$, HRJ$^{+14}$, HRJ$^{+15}$, HYUS$^{11}$, JRSH$^{14}$, KKKN$^{11}$, KN$^{17}$, KSHP$^{+19}$, KM$^{13}$, LCL$^{+10}$, LLvG$^{10}$, LGL$^{11}$, LvG$^{13b}$, LvG$^{13a}$, MCC$^{11}$, MUGNY$^{+18}$, RL$^{+17}$, RAR$^{+11}$, RHPWS$^{13}$, SSSM$^{15}$, TAG$^{16}$, VDL$^{+13}$, WHAS$^{+10}$, YKH$^{15}$, ZZ$^{14}$, WHAS$^{+16}$].

Perturbation-based [KSHP$^{+19}$].

Perturbation-selection [FE$^{14}$].

Perturbations [GM$^{17}$, OS$^{16}$, Tak$^{10}$, WWCL$^{15}$].

Perturbative [SSWX$^{14}$].

Perylene [BSL$^{+16}$, SLP$^{+12}$].

Perylenebisimide [LCK$^{18}$].

Perylenediimides [QCR$^{12}$].

Pesticide [BHB$^{+17}$].

Peta [KNHN$^{16}$].

Peta-scale [KNHN$^{16}$].

Petascale [SCOJ$^{13}$, ZWL$^{13}$].

PH [LZL$^{+15b}$, dSD$^{10}$, RBC$^{+19}$, LZL$^{+15b}$, AB$^{16a}$, CS$^{14}$, CAD$^{16}$, HS$^{14b}$, MBA$^{14}$, PZ$^{15}$, PS$^{13}$, SY$^{16a}$, SOvG$^{12}$, Vor$^{12}$].

pH-dependent [SY$^{16a}$].

pH-responsive [MA$^{14}$].

Phage [MP$^{17b}$].

Phage-like [MP$^{17b}$].

PhAISTOS [BFH$^{+13}$].

Pharmacokinetics [VBDS$^{+11}$].

Pharmacophore [HRK$^{+10}$, HKRS$^{11}$, HS$^{11}$, TD$^{10}$, AKMT$^{11}$].

Phase [ATM$^{18}$, ZWM$^{10}$, ABB$^{+12}$, BE$^{12}$, BG$^{17}$, Coh$^{18}$, DSL$^{13}$, DLW$^{12}$, EMD$^{17}$, FC$^{18}$, GYX$^{+10}$, Hsu$^{14}$, KD$^{10}$, LJW$^{11a}$, LPLB$^{16}$, LGKS$^{17}$, MFM$^{+12}$, MKK$^{+19}$, NIT$^{15}$, PSC$^{11}$, RWR$^{+13}$, RSLML$^{12}$, RJS$^{17}$, SJZ$^{+15}$, SPZP$^{18a}$, VKAM$^{12}$, VED$^{10}$, YHG$^{+11}$, YSG$^{12}$, ZSZ$^{+14}$, ZWW$^{10}$, ZYR$^{+15}$, ZLH$^{114}$, dS$^{12a}$, dS$^{12b}$, ABB$^{+13}$].

Phase-change [EMD$^{17}$].

Phase-space [FC$^{18}$].

Phases [EB$^{12}$, LPAS$^{11}$].

Phen [FD$^{16}$, FHG$^{+19}$].

Phenantherline [SCSM$^{19}$, MRC$^{+18}$].

Phenol [AAMD$^{+11}$, AK$^{10}$, IYK$^{11}$, PPH$^{+14}$, TFYO$^{19}$, WH$^{+10}$, YKH$^{+10}$, AK$^{10}$].

Phenol-imidazole-base [YKH$^{+10}$].

Phenol-triethylgermanium [WHX$^{+10}$].

Phenolates [SKGB$^{13}$].

Phenols [SK$^{12}$].

Phenomena [JBSQG$^{11}$, WD$^{+12}$].

Phenoxy [IYK$^{11}$].

Phenoxy/phenol [IYK$^{11}$].
phenyl [GZL+12, ZWY+10a]. phenylacetylene [ZZL+12].
phenylacetylene-containing [ZZL+12]. phenylalanine [GWF11, PVS12].
phenylimidazo [LWL+11]. PHI [CAT+13]. philicity [Tsi19].
phosphate [MR17, SC18b, XZ11, YZGS14]. phosphatidylcholine [PVM10].
phosphatidylethanolamine [SH11a, TSW11]. phosphathione [TLM11].
phosphatidylglycerol [BH12]. phosphatidylinositol [GZ10].
phosphatidylserine [AD11a, HHK11, HHK10].
phosphatidylethanolamine [GZ10].
phosphatidylcholine [PVM10].
phosphatidylglycerol [BH12]. phosphatidylinositol [GZ10].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylglycerol [BH12].
phosphatidylinositol [GZ10]. phosphatidylethanolamine [SH11a, TSW11].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylglycerol [BH12].
phosphatidylinositol [GZ10].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylglycerol [BH12].
phosphatidylinositol [GZ10].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylethanolamine [SH11a, TSW11].
phosphatidylglycerol [BH12].
phosphatidylinositol [GZ10].
phosphatidylethanolamine [SH11a, TSW11].
SHL⁺18, SLX⁺15, ŠSB⁺16, SJC11, SGHL13, VCL18, YB16, ZL11.

**powdered** [KB16].  **Power** [Min18, LZL⁺15a].  **powerful** [CAT⁺13, HMO⁺18].  **powers** [WZ17].  **pp** [CD19, Spr10].  **PPI** [RMRBH⁺19].  **PPI-Detect** [RMRBH⁺19].  **PR** [TTB⁺10].  **Practical** [GR10b, SLG15, BB11b].  **pre** [RLDJ17].  **pre-computed** [RLDJ17].  **preadsorbed** [KD10].  **prebiotic** [SSNT19].  **precatalyst** [MJLV14a].  **precatalysts** [MJLV14a, MJLV14b].  **precision** [DH17, MLC13, SWW⁺19].  **predict** [ASMS10, CBH14, DLC18b, HWB19, LLvG10, LLSW14, SEF⁺16, SPZP18a, WJG⁺13].  **predictability** [BBOB16].  **predictable** [GDV17].  **predicted** [DWL11, LZW⁺11, TYX⁺18, WKLC12, YZ16, Zha12b, ZWX19].  **Predicting** [AS14, AS18, BVHI17, BPB11, cCVG⁺14, CPK19, ELKE19, GC18, GRL⁺11, JGS⁺17, Jor17, LZSM19, LDH⁺14, PGdO⁺16, RDF⁺11, SJWE10, TYX⁺18, VL19, YZ15a, DBM⁺17, Kar17, KTO13, RB13b, SMDP18, SIG⁺11, WCDM11, Yon16, Zha12b, Zha12a, ZLX⁺13, ZYS⁺10, GRL⁺12].  **Prediction** [Ano12u, AIM⁺18, CP15, CQFC10, FSD⁺18, HZSS17, KPL⁺15, LDZW17, MCAG⁺16, vOaCG10, PRP15, SRA17, SPL⁺18, WDL12, YHW17, ZYL⁺12, AGM⁺13, BLDK⁺13, Ben17, BddS13, BA11, CZAF17, DWL11, DDP16, EOA⁺11, FZY⁺12, GK10, GFPSD17, GTZ⁺18, HLS⁺13, HPL⁺18, HYMZ16, HL14, JSW10, KL14, KT10, KTO11, KB19, LXL⁺11, LMI⁺14, LZL⁺15a, LZZ14, LH11, LWL⁺10, LSH⁺11, MDT10, Mau14, MG11, MSÅK12, PML⁺12, PN13, PPJ14, PLV⁺11, RCR⁺16, RMRBH⁺19, RKB⁺14, SM11, SYH12, SSD19, TYZ⁺16, VKC10, WLF11, WH11, WXS⁺12, WXL⁺12, WWW18, XFTW15, YVEI⁺17, YLCX10, YHH⁺13, YDX16, YDGZ15, ZsA10, wZbZ11, ZvI13, ZLW10, ZHIX11, ZDW18, MSP19, SDIP18, VVL17].  **predictions** [ALK⁺15, BCP⁺10, CLA16, CS17, EOO⁺16, GAI13, KZK⁺12, PdSC18, RDDS10, RCM⁺13b, SHMO11, SA10, WZWW18].  **predictive** [LLL⁺10, WKC11].  **predictor** [CDS16].  **predictors** [GHK12].  **predissociation** [YB11].  **Preface** [GS18].  **preference** [DSHLM18, LK18].  **preferences** [FCOGM12, LGL11].  **preferential** [TKYN17].  **preorganized** [CM16].  **preorganized-interacting** [CM16].  **preparation** [JSD⁺11].  **present** [Cas14].  **presenting** [ZGZ19].  **preserving** [ZBG11].  **Press** [CD19].  **Pressure** [YAO18, AYYO17, Cam15, CCCR18, FCW⁺14, HYNS19, HRHI17, I18, LLL⁺12, MO17, NFDP13, SMM⁺18, SPZP18a, WDLG12, CCR18].  **pressures** [RHNN10].  **primary** [ALK⁺15, GAI13, VVLG17, KTN11].  **prime** [DSX⁺11].  **prime/MM** [DSX⁺11].  **primitive** [HAL14].  **principal** [PSP15].  **Principle** [WBKS19, CCJC10, DBM⁺15, LLB⁺12, MCF10, SBGP18, Tak11, YPvD13].  **Principles** [HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13, EBPK17a, EB18, GD10, HYL⁺11, Ibr17, JCC⁺11, KLZ⁺18, LLLL11, LCWW10, NNS15, OC19, PLZ17, RZG⁺13, SFA17, SPZP18a, TZ11, UGK18, WYL⁺15, WD10, YR13, wZbZ11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC⁺14, THI⁺19].
properties [SCF+19, SB11, SIT18, SLIB12, SWMW10, SZB19, SZZ+18, SIG+15, SGH+16, TN12, TFQ+10, TFQ+11, TS11, TS15b, VVW+18, VPR10, VECT12, WLC12, YW12, YCGA10, wZbZ11, ZYG+15, ZWMW10, ZB18, ZLX+13, ZBP11, ZYLX12, ZBB19, FDCJG18, SFCCK15].

property [CD13, GPS10, GBS+17, GWX+12, PH15, V˚AA14, WH11].

propionate [TN10].

propionic [CM16].

Proposal [PRYI+17].

proposed [GS11].

protease [DLZ15, NHN16, OBW12, SYH12].

protective [JAH+17].

Protegrin [RI10].

Protegrin-1 [RI10].

Protein [CIKT13, CDS16, CPK19, DPOS16, GPS10, HNTS15, HS16b, JL19, LZGS11, MFEM15, MFR10, PGL+15, Ran12, RP15, Rao11, SHMO11, SKKS13, YBS19, AIGP15, AKK+16, AM10, AG12, BSZ+12, BFH+13, BPB11, BPC13, BCG10, Bow16, BDds13, BA11, CSC+18, CZA17, CFC15, CHR+12b, CHR+12a, CM13b, CCYL11, CKP10, CH14, CC12b, CBG16, CHP11, DWL11, DJ13, DVVP14, DLMH12, ESD18, FZY+12, FHW+11, FCE15, FLM11, FSC+14, GS14, GDV17, GMSdG15, GRP+12, GZ14, GRL+11, GRL+12, HAGK10, HNNR13, HMO+18, HTS15, HTS17, Has14, HZY+10, HPL+18, HKR12, HYMZ16, HJ10, HHHY10, HM13, HZ13, HQSZ19, ILKR11, IHY15, JZ12, JZZM14, JLZ+17, KYT+17, Kan15, KNE11a, KOY+12, KL14, KERY+16, KJ10, KTO11, KTO13, KDT+12, KLS10, KMLS10, LS11a, LFB14, LHL+10, LH11, LCPS13, LC16, LC17b, LZ11, LL+10, LL10b, LFM12, LPS+13].

protein [LZZ14, LLLC11, LHH11, LBS10, LMI18b, LL19b, LDH+14, MS17, MMM+16, MJC14, Mau14, MUGNVJ+18, MA17, MFEM15, MS16, MP11, MKB+13, MOS12, MNNK10a, NSK18, NST14, NS11, NFG+13, NG10, OHNK11, OCL11, CKP10, CH14, CC12b, CBG16, CHP11, DWL11, DJ13, DVVP14, DLMH12, ESD18, FZY+12, FHW+11, FCE15, FLM11, FSC+14, GS14, GDV17, GMSdG15, GRP+12, GZ14, GRL+11, GRL+12, HAGK10, HNNR13, HMO+18, HTS15, HTS17, Has14, HZY+10, HPL+18, HKR12, HYMZ16, HJ10, HHHY10, HM13, HZ13, HQSZ19, ILKR11, IHY15, JZ12, JZZM14, JLZ+17, KYT+17, Kan15, KNE11a, KOY+12, KL14, KERY+16, KJ10, KTO11, KTO13, KDT+12, KLS10, KMLS10, LS11a, LFB14, LHL+10, LH11, LCPS13, LC16, LC17b, LZ11, LL+10, LL10b, LFM12, LPS+13].
python [SH19b, HPT+16b, LRvE17, PHH+12, SHFJ18, TBJ18, Yes15].
Pytim [SHFJ18]. PYX [LWWG12].

Q [WPM+15, BS10c, GKV+13]. Q-CHEM [GKV+13]. Q-Dock [BS10c].
Q2MM [LN15]. Q5 [REL+14]. Q5/D5Cost [REL+14]. QB3 [KG15]. QC
QikProp [LP11a]. QM [BM12, Lun12, RSR+12, PLP+16, AALCM11, BH13, BZH14, CBG17, CJZS10, DSK17, FRC18, FLM11, FPB12, FB14b, GRS15, GWZ15, GCW14, HH15, HYUS11, HBR17, JHH+13, JWST10, Kid19, KTNN10, KWL+16, KWG15, LZdL+10, LFM12, LT13, LHT15, LJJ+11, MCR17, MTvG12, MJG+15, NO16, OYK+11, PMC+17, PP10, PDMT10, PL14, PLP+16, RR14, RR12, SN16a, SGDT10, SJ14, SCM+15, STM+15, SSAS10, TSC+13, UTM11, VKNT15, VKNT16, VCM15, VTKRJ15, WDP+12, vRET19, GRS15, JAHS+19, LWZ+19, RFN15, ZZY+16].
QM-only [LT13]. QM/ [GRS15, JAHS+19, LWZ+19, RFN15]. QM/EFP
[CBG17]. QM/MM [BM12, RSR+12, AALCM11, CJZS10, DSK17, FLM11, FPB12, FB14b, GWZ15, GCW14, HH15, HBR17, JHH+13, JWST10, Kid19, KTNN10, KWL+16, KWG15, LFM12, LT13, LHT15, LJJ+11, MCR17, MTvG12, MJG+15, NO16, OYK+11, PMC+17, PDMT10, PL14, RR14, RR12, SN16a, SGDT10, SJ14, SCM+15, STM+15, SSAS10, TSC+13, UTM11, VKNT15, VKNT16, VCM15, VTKRJ15, WDP+12, vRET19]. QM/MM-QMC [UTM11].
QM/MM-type [Kid19].
QM/QM' [PLP+16]. QMC [UTM11]. QMX [KKR+13]. QSAAR
[GKR13, Ray13, AKMT11, BF15, CLX+10, FCL+10, GMMH+16, GCP+13, GCC14, LLL+10, LZdL+15a, MdOdQ18, PKIC11, PPUBGD10, RK11, TTB+10, TLL+12, WMW+10, ZDW18]. QSAR/QSPR [CLX+10, GCC14].
QSARINS [GCC14]. QSARINS-chem [GCC14]. QSPR
[CD13, BRNG12, CLX+10, CD13, CD16, GCC14, KKO+16, TTR+12, XWW+11, YMY+19]. QTAIM
[BH13, BZH14, FCOGM12, FCPJM14, GMBX+16, HXM+16, JMX+16, diRL11, Rod13, RSKG14, VV15, Wei12b, WvRSM14, XFX+16, ZZZ+12, ZCWX18, dLC18a]. QTAIM-
[VV15].
QTAIM-based [FCOGM12, FCPJM14, Wei12b]. quadrupolar
[CSEMB+16], quadrupole [HBKL10, LIRL+16], quadrupoles [NLP+16].
Qualitative [YK13]. Quality [CLK11, KCK+17, KYB13, LOB18, MCF+18, MKB+13, OLB19, POB13, RB13a, RCM+13b, SC15]. QuanPol
[TSC+13]. quantification [Fer17, Ham11, PC14, SKGP19, YNH+17]. quantify
[LLHM16]. Quantifying [TMJ15, GMBX+16, MS10]. Quantitative
[DZA11, RDT14, VAA14, Wei12b, BPC13, CD13, DKL+10, NPG+18, NFG+13, REL17, RCM+13b, XFTW15, TTB+11]. Quantized [KKGW19].
Quantum [ALK+15, AC11a, APA+14, Chu10, CG12, DDM+15, FRN15, GH10, HHD16, JCHT18, KASH14, Li14a, Li14b, IWD13, MM18, Mat18, MBRC16, MS12, NNT+19, NN19, OKY18, RFN15, SCOJ13, SAGC16, SBD+17, SOY12, SR10, SHB17, TR12, UD12, VP19, VSP19, WCAH10,
WDP+12, YHX19, Aki16, ATP18, ASS+17, ARAG17, AAC+16, APY+16, ACS12, ASK18, ALH+10, Bac12, BTT10, BRP+12, BGR13, BEL+11, Cam15, CBH14, CDM10, CDB10, CDBM11, CD13, CD16, CDC19, CXW14, CHK10, CSNCS+18, CM16, CKG18, DR11, DKT13, DDP+18, DPAB16, Dra19, ECZWD17, EV14, Fer13b, Fer13a, FB10, FFA14, FC18, FLM11, GPM17, GMMH+16, GTK10, GGM+12, HZ11, HSN+18, HLvdV13, HPT+16b, HGCCGR+16, HMM10, HYUS11, HGY15, JBB+11, JSXH16, KP11, KNR+18, KVR10, KKH18, LPE+10, Lüe14, Man19b]. quantum [MP17a, MAPB10, MSvG12, ME10, MSSP17, MHRR11, MFR+11, NC13, NC14, NNK+16, NDD+10, NHK+13, NS17, OKIS17, OSR16, PML+12, PNE18, PSC11, PGW+17, PAMG16, RLLHL12, Rez19, REL+14, SLT14, SKA19, SS13b, SPZP19, Tae9, Ts18, UDK+18, VPR10, VBMA13, WKC+10b, WBT10, WLLH18, WAB17, XCLZ19, YKO+11, YLS19, YW13, YKH15, ZVY+15, dCDP15, BLG10, OSI+19, SKA19].

Quantum-chemical [KASH14, FB10, MSvG12, MFR+11].
Quantum-chemistry [DDM+15].
Quantum-classical [HLvdV13, SKA19].
Quantum-mechanical [ACS12, ECZWD17, PGW+17, Rez19].
question [YLT+19].
quasi-planar [YLT+19].
Quasi-classical [YLT+19].
quasiclassical [YLT+19].
quaternary [DSHLM18].
QuBiLS [GJMPAM+14].
quest [AOW11, EK17].
question [BZH14].
questions [AAB+19].
quick [VVV+15b].
QuickFF [VVV+15b, VV18].
quickly [vW11].
quinacridone [HSZ+11].
quinoline [HRJ+14, HGHP14, HRJ+15, JRSH14, SSD19].
quinolone [ZCK+16].
quinone [GLM+17, VSD10].
quinones [uLhY11, SDIP18].
[KERY+16, HWLW11, MP11, PBG17]. Rapid [LJW11a, LW11, LAT11, MZZ11, MRR11, MSS+13, MFR+17, NO16, PG14, RZ16, TM18, JSW10, KLOS10, JK11, WBF17]. Rapidly [OPR16, RDRC16]. RAQET [HSN+18]. rare [HNS16, LRvE17, MP13, Sea10, STS15]. rare-gas [MP13, Sea10]. RASPT2 [BH19]. Rate [AR10, AAMD+11, CSNCS+18, NMLD13, CBH14, GAI13, GKR13, HSL+11, JW10, KB19, KCL+14, MSV16, MK17, MK19, NDW15, OZLSBH12, RAGLL11, Ray13, RKG11, SSC+19, STM17, TTR+12, ZSL+10b, ZLLL12]. rates [BL12, CSAdOM17, GRL+11, GRL+12, QB16, SHB17, WAB17]. ratio [AR10, APA+14, BK15, CYY+17, CSAdOM17, CXW14, CSNCS+18, FB12, GYX+10, GZL+12, GTK10, GKR13, GJ17, HS16, He13, HLJ16, ITP+19, JZ17, JLS+10, JW16, KV12, KV13, KB15, KSK11, KK19, LGOM+15, LZY+12a, LJW+11b, LZL+16, LW13, LPMT17, MTM14, MHT+18, MPPS11, MS10, MJLV14a, MJLV14b, MTS+19, MT19b, MB16, MMJ10, NH19, NMLD13, NM19, NTNY15, OSA19, OZLSBH12, PVL+13, PG18, PNE18, PXH1+14, QLY10, RAGLL11, Ray13, RLZ+18, RSL13, RRFV+18, RN17, RKG11, RSKG14, RSK+15, SLT14, SLT+15, SJD14, SRF+17, SBH+17, STS+10, SSB+19b, SM17, SM17, TAC17, Tak14, TN18, TNY18, TSJ+10, TDP+12, TCPPC14, Tsi17, VBD11, VV14, VGT16, VMT10, Wu10, WHDL11, WCL+11, XCLZ19]. Reaction [XBSS19, YHG+11, YJ11, Yu12a, ZYLL12, ZSZ+14, ZX19, ZYR+15, Zim13]. reaction-diffusion [RSLS13]. Reactions [CC18c, ATP18, AAMD+11, ABB+12, ABB+13, APA+14, Cam15, CC18a, CSXZ17, Chu10, DSD+11, DS12a, DGSGVM19, FB14a, FC16, FFA14, GAI14, GH10, GNDA+12, GMBX+16, GSMZ19, HLS12, HYUS11, HRL11, JZ17, JC+10, KG15, KZP+18a, LLH14, LGW12, LTL3, LXF17, LJ+11, MC10, MSV16, ORZ11, OSH17, RWR+13, RB12, SSC+19, ST13, Su10, SSS+14, TM18, TN18, TKXT13, TTR+12, Tsi17, UvSvdWK19, VKAM12, VKTRJ15, VGTL16, WLHZ12, WCDM11, WSWD19, XLYZ10, YZGS14a, YND+17, Yu12b, ZSL+10b, ZSL+10a, ZW11, ZLLL12, ZMW19, ZW17, dSDLBNB17, dCRN18, dSV+16, SMB18]. reactive [DMAH15, HJL16, IHJ+13, LvDH13, MB14, NB19, RLLHL12, TDP+12]. reactivities [WS11, WS12]. Reactivity [FHG+19, QQY+18, TS14, WBKS19, BCP+10, CRZ+18, CBDS19, DI11, DI11, DI11].
HGY15, JS17a, LZH16, MAPB10, OSF12, OM12, PML+12, PRYI+17, SIT18, Sti15, YB16, ZYR+15, ZT14. read [DDK14]. reader
Reannotation [YS10]. rearrangement
[HJL16, JW15, LvDH13, YpD13]. Recasting [RHRCH16]. receive
[JT18]. Receptor
[HK18, BHF+18, CV12, ESB13, FTW12, FRLN10, HYYZ13, ILK11, LZ11, LLL+10, OME16, PPJ14, SSP+13, VKC10, WC11, YZ16]. receptor-ligand
[FTW12]. receptors [DR14, SRA17, UU12]. Recognition
[ZDT18, CXS10, EPH+15, HS12, Hsu14, ISP+10, LG14, OME16, OOK11]. recognized [CDS16]. recognizers [uLhY11]. recombination
[DS12a, SL+17, ZZL19]. Reconsideration [MS11]. Reconstruction
recursive [RJR14]. Red [Jab14, CSC+18, MTS+19]. redesign
[CGBK13, HMO+18, SL10, PGL+15]. Redesigned [XHL16].
redistribution [JCGVPHT17]. Redox [LCB10, GLM+17, INT18, KPL13, LZY+12a, MLQ+12, MKO+13, TN10, Ts17]. Redox-induced [LCB10].
redox-switchable [MLQ+12]. Reduced
[BYE+16, BBL13, SWM10, SRR16, SL+17, VI17, WRG+17]. Reduced-cost [BYE+16]. reduced-size [BBL13]. reduces [ZIJZ13].
reducing [HAGK10]. reductase [BS16a, RKDM14, STM+15, SJ16, VSD10]. Reduction
[SST+18, TN19b, AS18, BS16a, GMPB12, KPL15, LDZW17, PN13, PSC11, RLZ+18, SIG+15, YJ11, ZGS+10]. reductive
[MRC+18, dCDP15]. Reevaluating [PKK17]. Reexamination
[CLK+11].
Reference
[AIQ19, Jia19, Ail18, FHZA+18, KGM12, LvGi13b, OZL12, SHF11, SMM15a, SMM15b, SMM+18, YN15, dLC17]. reference-free
[FHZA+18]. reference-modified [SMM15a, SMM15b, SMM+18]. references [EK17]. refined [KD18]. Refinement
[Lvg13c, BC10, BS10c, CM13b, FLM11, K18, LFM12, LZZ14, LGH11, OCL11, OL13, PN13, Vor10]. reflectance [DCOD13]. Reformulating [Pro16]. Refractive [MMS16].
regime [CSAOM17]. region [MtvG12, MNNK10a]. regions
[KIOY19, MP17a, Pol13, TZ12]. Regioselective [WDZN16, BCP+10].
regression [DCS15, LLL+10, RB13a, YNH+17, YDX16]. regular [SWA13].
Regularized [YNH+17]. regularly [NPP13]. regulated [PGI19].
regulators [FCL+10]. reHiSS [CHK19]. reHiSSB [CHK19]. reHiSSB-D [CHK19]. related [BP18, FCOGM12, GWX+12, LEdOLdlV17, NDD+10, SRA17, Tzck18, TY10, WvRSM14, SMB18]. Relating [EJ13]. Relation
[KTT16, CSKH16, HSN14, SBR13]. Relations [BMPML+13]. Relationship
104


respiratory [TN19b]. Response [GPGSM12, dSdS12b, BZH14, DSAS19, DHE^+12, ESM^+12, ITIN15, KSSH13, Kid19, KZK^+12, LP11b, MRB14, RJR14, RCM^+13b, SS16a, SDF^+17, WGLG^+16]. responses [GWX^+12, MLQ^+12], responsive [MA14]. restrained [ER18, HCD^+10, KCK^+17, SR18, ZDZM13]. restraining [KOV^+12].


resulting [MvBD18]. Results [XKW18, Ber17, CBH14, CLK11, GR10a, KERY^+16, PLAG11, RAR^+11, SHL^+13, SPZP18b, WDIH13, KMLS10].


rich [BHI19, ZZWX11, ZYL^+12, ZYW11]. right [SJWE10]. Rigid [NJR18, Aou16, AGRI1a, CZNA11, DBM^+17, HDL^+14, ODB18, PG14, PKG^+19, dACP12]. rigid-body [PGK^+19]. Rigid-CLL [dACP12]. Rigidity [NPG17, OXW16, PRSG13]. rigorous [WO15]. ring [ABDG12, CPN^+17, CB11d, FNSF^+11, GWT^+17, GMBX^+16, GSMZ19, HH10, HHI1, HCD^+10, LG19, PCL11, PLH16, SP13, WCL^+11, XVN17, YHCS11, ZQ419].


Robustness [VYM15, BD11]. ROCS [HP10a]. Role

S
[AM19a, AM19b, CXS10, DT19, GTK10, LWD13, PLFS18, SPS1+12, WGN1+16, WGLG1+16, XCLZ19, YZGS1+1b, ZYG1+14, PRRT1+10, AS11, Alg17, ATP18, DT19, HOM1+16, LGW12, MH11, MSCP19, MLY1+13, RWR1+13, TKXT13, TN19b, WJX1+10, WZZW18, YZGS1+1b, Yu12b, Yu12a, YZL1+15, ZYR1+15]. S-loss [MH11]. S-nitrosothiol [TKXT13]. S. [GKR13]. S100-family [TJR19]. S371 [MV17]. SA [OBW12, VM11]. SAC [EFAC13, FE14, IN13, MN19, PH10b, SRF1+17, SCF19]. SAC-CI [EFAC13, EFS16, IN13, MN19, SRF1+17, SCF19]. SAC/SAC [IN13]. SAC/SAC-CI [IN13]. saccharide [LABSG17]. Saddie [ZH19]. Sal [LBC1+19]. salen [DSHM18]. salicylidene [PLP1+16]. Salpeter [KK17b]. salt [EK15, IPA11, OCW1+15, PZA15]. salts [Ano11, DSHM18, HJM1+09, HJM1+11, LCL1+18, ZYL1+12]. samarium [AARP17]. same [CSKH16]. same-spin [CSKH16]. sample [HRID16]. sampled [AST1+16, CDM1+15]. Sampling [AKN16, JL19, Yan16, BLKP12, BH15, BG17, CY09, CY13, CF18, CS17, DPN11, DJ13, FM10, FB14b, GFPS17, GMO16, HH10, HKD1+12, HTS15, HNS16, HS17a, HYNS19, HKN1H18, HDM1+15, HCP15, IMK1+16, ISK14, Ish10, KvdV14, KJM1+17, KTO11, KB11c, LTT16, LC16, LC17a, LL11, LMI1+14, LZZ14, LAW1+16, MZZ11, MCR17, OL13, PBDW11, SSO19, SEM12, SBN13a, ...
sandwich [TS15a, WWKS16, YLT+19]. SBN13b, STM+15, TJB12, WTD+19, YZ16, ZZ14, ZC14, ZGZC19, DAB16].

SAPT [CLFRO18, DWR17, YJ17]. SAR [WPM+15]. satellite [ACD+13a, ACD+13b], satisfy [KSH13].

saturated [WDZN16, ZWX19]. Saving [FSSW17]. Sb [ATIP18, RDT14, SLY+19]. Sand: [WS16, ZWX19].

SSAP [CLFRO18, DWR17, YJ17]. SAR [WPM+15]. Scale [XFG+16, YKNN19, AH10, CK18].

satisfied [KSH13]. saving [FSSW17]. Scents [DR14]. Schiff [GA18, SC18b, WGA18, ZLHH14].


Scope [KMS+19]. scores [LZZ14]. scoring [FM10, GSHM10, GZ14, HS11, LH017, PH11, Pro16, RZG+13, TO10, WZ17]. scoring-docking-screening [WZ17].

screened [KH17]. screened-exchange [KH17]. screening [AKMT11, CV12, GRP+12, Hei10, JBAM11, KD18, KC14, KB14b, LG11, LMA15, MNNK10b, MH10, SDF+17, WZ17, Won18, YLFX10, YZZ16].


Schemes [CSM16, Hes19, KYB13, LPLA13, MC12, WOH18, WDW12, XSL11]. Schiff [GA18, SC18b, WGA18, ZLHH14].


Scope [KMS+19]. scores [LZZ14]. scoring [FM10, GSHM10, GZ14, HS11, LH017, PH11, Pro16, RZG+13, TO10, WZ17]. scoring-docking-screening [WZ17].

screened [KH17]. screened-exchange [KH17]. screening [AKMT11, CV12, GRP+12, Hei10, JBAM11, KD18, KC14, KB14b, LG11, LMA15, MNNK10b, MH10, SDF+17, WZ17, Won18, YLFX10, YZZ16].


Schemes [CSM16, Hes19, KYB13, LPLA13, MC12, WOH18, WDW12, XSL11]. Schiff [GA18, SC18b, WGA18, ZLHH14].


Scope [KMS+19]. scores [LZZ14]. scoring [FM10, GSHM10, GZ14, HS11, LH017, PH11, Pro16, RZG+13, TO10, WZ17]. scoring-docking-screening [WZ17].

screened [KH17]. screened-exchange [KH17]. screening [AKMT11, CV12, GRP+12, Hei10, JBAM11, KD18, KC14, KB14b, LG11, LMA15, MNNK10b, MH10, SDF+17, WZ17, Won18, YLFX10, YZZ16].


Schemes [CSM16, Hes19, KYB13, LPLA13, MC12, WOH18, WDW12, XSL11]. Schiff [GA18, SC18b, WGA18, ZLHH14].


Scope [KMS+19]. scores [LZZ14]. scoring [FM10, GSHM10, GZ14, HS11, LH017, PH11, Pro16, RZG+13, TO10, WZ17]. scoring-docking-screening [WZ17].

screened [KH17]. screened-exchange [KH17]. screening [AKMT11, CV12, GRP+12, Hei10, JBAM11, KD18, KC14, KB14b, LG11, LMA15, MNNK10b, MH10, SDF+17, WZ17, Won18, YLFX10, YZZ16].


Schemes [CSM16, Hes19, KYB13, LPLA13, MC12, WOH18, WDW12, XSL11]. Schiff [GA18, SC18b, WGA18, ZLHH14].


Scope [KMS+19]. scores [LZZ14]. scoring [FM10, GSHM10, GZ14, HS11, LH017, PH11, Pro16, RZG+13, TO10, WZ17]. scoring-docking-screening [WZ17].

screened [KH17]. screened-exchange [KH17]. screening [AKMT11, CV12, GRP+12, Hei10, JBAM11, KD18, KC14, KB14b, LG11, LMA15, MNNK10b, MH10, SDF+17, WZ17, Won18, YLFX10, YZZ16].


Semiempirical [FA18, SRL +15, BP18, GJK +19, GP11a, HGY15, KTN10, KB14b, LSD +10, MGWR12, Rez19, SPH11, SDL14, TKNN10, TG12a, UCFR16, WCWV15].


separation [CSKH15, DS12a, NMH19, VCL18, VL17b, YSG12]. Sequence [TYZ +16, DLY +10, DWL11, HPL +18, LXL +11, MP17b, RMRBH +19, Sti15, TXY +18, WXL +12, YZWC11, YS10, ZWP11, HYMZ16]. Sequence-based [TYZ +16, RMRBH +19, WXL +12]. sequence-reactivity [Sti15].

Sequence-specific [HYMZ16]. sequences [AnO12u, CCYL11, Fel10, HZY +10, LMZ +11b, LLLC11, LDH +14, OLA15, QLQ11, YDL +10].

[SN16b, BLL13, BLG10, BRLS08, BRLS12, CC11, HS16b, KNP+12, LS11a, LLC+10, LYC+13, LZ18, LWL+10, Mat10, OAN15a, PML+12, PGdO+16, PHK14, PD11, Pog10, PFVL14, RLD12, SPS+12, Sch13, SWM10, SG10a, SG13, VLGK+17, VVLG17, WX12, YOMT14, ZPP+16, FL15]. Sets
silicon-doped [TN12].
silicon-germanium [GSMM15].
Silver [NSN19, Tsu19, YXZZ17].
silylene [BIL10].
Similarities [PM18a].
Similarity [HS12, LMZ+11b, YDL+10, CDR10, CDB10, CDBM11, CDC19, CQFC10, GWT+17, GK15b, HRK+10, HKRS11, HS11, HSW+19, RMPAM15, TZCK18, YZZ16, ZYvIZ14].

Similarity/dissimilarity [YDL+10].
SIMONA [SWB+12].
Simple [Ano15-59, CNK97, GM17, MPSA17, AB16b, BS10b, BD12, CWZB10, KRTB10, NSP15, PHC13, PRIY+17, RHRCH16, RGVC+19, SEF+16, SS13c, YS18, dSAdSL13, KTSW11].
simplified [KOY+12].
simplify [BLZ+13].
simplifying [BL19].
SIMPRE [BCSCJ+13, BCJC+14, KR14].
SIMPRE1.2 [CSEMB+16].
simulaid [Mez10].
simulate [SLX+15].
simulated [LBC+12, MO15, LVG10, MO17, NPTS16, RHJ11, SHMO11].
simulating [HIS17, SS13c, FHT+15, PVM10, SA10].
simulation [ZSS+13, ZKH+10, ZLL+13, dCLFGL13, SGP18].
simulations [OCL11, OLY17, OCW+15, PGY15, PH17, PL19, PW17, PL14, PM13, PS13, PS10, PNG10, RD18, RdA12, RLG14, RSRR15, SSO19, SBV10, SKA19, SS13b, SHFJ18, SBT17, SIK10, SCK18, SJ17, SMP17a, SYN+12, SK13, SFLG+17, SB15, SWB+12, SMDS13, SPM+19, SV11, VSA11, VINTERJ15, VM11, WKL12, WAM17, WH11, WWSK11, WLC12, WBF17, WS19, WGI14, Won18, WCJ+14, XFG+15, XWSW13,
YKO$^{+11}$, YO$^{19}$, YSG$^{12}$, Yon$^{16}$, YHVM$^{12}$, YFH$^{+19}$, ZZY$^{+16}$, ZDKM$^{12}$]. simulator [BSL$^{11}$, KJM$^{+17}$, RLLHL$^{12}$, TCX$^{+13}$]. simultaneous [LL$^{10b}$, WZWW$^{18}$]. Single [HPL$^{+18}$, LP$^{11c}$, PM$^{18b}$, SR$^{18}$, Zim$^{15}$, AS$^{15a}$, BE$^{14}$, BP$^{18}$, BK$^{17b}$, Den$^{12}$, FTR$^{15}$, GCCM$^{15}$, KK$^{17a}$, KGJZ$^{19}$, LXL$^{+11}$, MS$^{19}$, MT$^{19b}$, MCLD$^{10}$, MEH$^{18}$, PBE$^{16}$, RHNN$^{10}$, RLDJ$^{17}$, SY$^{16b}$, SPM$^{+19}$, TSR$^{+16}$, VS$^{14}$, WLW$^{+10}$, WYL$^{+15}$, YZN$^{13}$]. single- [BE$^{14}$]. single-bond [GCCM$^{15}$]. single-configuration [MT$^{19b}$]. Single-ended [Zim$^{15}$]. single-excitation [MEH$^{18}$]. single-file [SY$^{16b}$]. single-ion [BP$^{18}$]. Single-pass [SR$^{18}$]. single-sequence-based [HPL$^{+18}$]. single-step [RLDJ$^{17}$]. single-vibronic-level [MCLD$^{10}$]. single-wall [KGJZ$^{19}$, TSR$^{+16}$]. single-walled [AS$^{15a}$, PBE$^{16}$, VS$^{14}$, WYL$^{+15}$, YZN$^{13}$]. singles [EK$^{17}$]. Singlet [NNT$^{+19}$, SZL$^{19}$, BSDP$^{16}$, HWB$^{19}$, ISO$^{+13}$, RS$^{17a}$, SSC$^{+19}$, THP$^{+15}$, TCPPC$^{14}$, ZZL$^{19}$]. singlet-triplet [RS$^{17a}$]. Singlet/ [ZZL$^{19}$]. singular [Les$^{19}$, SG$^{10a}$]. singular-value [Les$^{19}$]. SiO [DOM$^{+11}$, HEM$^{+17}$]. SiOH [LvDH$^{13}$]. SIPs [KCC$^{+18}$]. Site [CH$^{14}$, LJW$^{+11b}$, CVG$^{14}$, DAP$^{+18}$, GEP$^{+14}$, GPdC$^{+16}$, HL$^{14}$, ISP$^{+10}$, LLB$^{+12}$, LKZM$^{18}$, LLL$^{+12}$, MP$^{13}$, MNNK$^{10a}$, OHP$^{+17}$, OHPR$^{+18}$, RLDJ$^{17}$, SHF$^{11}$, SB$^{11}$, SC$^{18b}$, TYN$^{15}$, ZLX$^{+13}$]. Site-directed [CH$^{14}$]. site-identification [RLDJ$^{17}$]. sites [AIGP$^{15}$, Ano$^{12u}$, DVVP$^{14}$, DBK$^{17}$, JAHS$^{+19}$, KDT$^{+12}$, LZTV$^{10}$, LHL$^{+10}$, LL$^{10b}$, LZX$^{16}$, LG$^{14}$, MA$^{+16}$, PHC$^{13}$, PGB$^{17}$, TYZ$^{+16}$, TYX$^{+18}$, Vor$^{10}$, YZ$^{15a}$, YHI$^{+13}$, ZZL$^{+12}$]. situ [JZL$^{+17}$, LZY$^{12b}$]. six [DOM$^{+11}$, Xh$^{15}$]. Size [NNT$^{+19}$, Tak$^{18}$, AS$^{15a}$, BLBG$^{+13}$, BD$^{12}$, CC$^{12a}$, CF$^{14}$, DJX$^{+11b}$, FE$^{14}$, GZZ$^{12}$, Hsu$^{14}$, MTVG$^{12}$, SL$^{17}$, SB$^{11}$, XYX$^{17}$, Zha$^{11}$]. Size-guided [Tak$^{18}$]. size-modified [BD$^{12}$]. sized [LRV$^{+17}$, OGL$^{10}$, RK$^{15}$, WWD$^{14}$]. sizes [Lin$^{18}$]. SKATE [FM$^{10}$]. slab [BBG$^{+18a}$]. Slater [Dil$^{15}$, LRER$^{13}$, MY$^{+17b}$, SFG$^{+17}$]. Slater-function-based [SFG$^{+17}$]. Slater-type [Dil$^{15}$, MY$^{+17b}$]. slices [AKN$^{16}$]. slicing [KCC$^{+18}$]. SLIM [SSBW$^{14}$]. slit [Fom$^{13}$]. slope [Zha$^{12b}$]. Slowing [SGP$^{18}$]. SM [XMSZ$^{16}$]. SM-TF [XMSZ$^{16}$]. Small [XYW$^{+14}$, ASS$^{10}$, BTMS$^{12}$, BLKP$^{12}$, BS$^{16b}$, CQFC$^{10}$, DT$^{19}$, DGL$^{+13}$, ETL$^{17}$, GAMAC$^{+14}$, GBFD$^{12}$, KKPT$^{11}$, KGHK$^{12}$, KL$^{+17}$, KB$^{11b}$, LK$^{13}$, LHKS$^{12}$, LH$^{14b}$, Man$^{19a}$, Man$^{19b}$, MSS$^{+13}$, MBE$^{16}$, MBRC$^{16}$, MPBJ$^{11}$, NHH$^{16}$, RLL$^{+10}$, RSG$^{18}$, RS$^{13}$, SG$^{13}$, STS$^{15}$, TNY$^{18}$, VT$^{14}$, WF$^{16}$, WTH$^{+16}$, XMSZ$^{16}$, ZCGM$^{11}$]. small-molecule [ETLS$^{17}$, WF$^{16}$]. smaller [MCK$^{17b}$]. smallest [PMT$^{16}$]. SMD [ALK$^{+15}$]. smeared [ENKK$^{+17}$]. SMILES [TTB$^{+10}$]. SMILES-based [TTB$^{+10}$]. Smoluchowski [KS$^{18}$, SG$^{10a}$]. smooth [AG$^{11}$, EFS$^{16}$, JLCA$^{17}$, ZSB$^{+16}$]. smoothed [LZ$^{12}$]. SMPPS [XYX$^{17}$]. Sn [MCK$^{17b}$, PMG$^{+16}$, RDT$^{14}$, YW$^{12}$, ASS$^{10}$, PKK$^{17}$]. SnCl [dSDdAR$^{10}$]. SnO [DHE$^{+12}$]. Sodium [KLN$^{16}$, OC$^{19}$, TFYO$^{19}$]. Soft [SJC$^{11}$, WBKS$^{19}$, Ben$^{17}$, BG$^{12}$]. Soft-core [SJC$^{11}$, BG$^{12}$]. Software [AIGP$^{15}$, Aki$^{16}$, APK$^{14}$, AAC$^{+16}$, BTA$^{+13}$, BHB$^{12}$, BCSC$^{+13}$, BS$^{+12}$, Ber$^{17}$, BPJ$^{15}$, BFH$^{+13}$, BBG$^{+18b}$, CBH$^{14}$, CSEMB$^{+16}$, CZAF$^{17}$, CAT$^{+13}$,
CPK19, DMN15, DJD12, DVVP14, DBDP16, DDK14, DWC17, DSK17, ESB13, EWK+13, FN12, FSC+14, GMSdG15, Gar12, GJMPAM+14, GLW13b, GS12, GCP+13, GCC14, GBW+14, GH16b, HLS+13, HBR+17, HDH12, HPT+16b, HPSK12, HHT+13b, HH16b, HG13, HYMZ16, HKR+14, HBJ+17, HL14, HC14, IGK16, JHJ+13, JJW+14, JLCA17, JP15, JCGM18, KS13a, KS15, KK17a, Kan15, KR14, KB16, KKR+13, KDR+18, KLJ+17, KJM+17, KDT+12, Kos16, KG13, KWL+16, KK17b, KGW15, KSD+12, KYG+15, KAG+12, KSW16, KPF+15, LPS12, LJJR+12, LHSH12, Lhe15, LRvdSM15, LRvE17, LDB+17, LLZA12, LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MDT16, MBR+15, MYT18, MSSP17, MB14, MB16, NKJ16, OV14].

Software
[OPB+12, OZS+13, OC14, PSS14, PGL+15, PSG+17, PW12, PPM15, PHH+12, PVZ13, PG14, RLLHL12, RNSF+16, Rast17, Řez16, RR14, RdA12, RSR+12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sie15, SJ17, SvlK18, SJL18, SWB+12, SDMS13, TNYN16, TSC+13, TTR+12, TTL+12, UU12, VMRSH+17, VV+15b, VAR12, VB13b, WDdN12, WY13, WPM+15, WF16, We12d, WHH+12, WJ1G13, WG14, WCJ+14, XML+15, XYX17, YYJ+16, YYZ16, Yes12, Yes15, YHH+13, ZFS19, ZDKM12, ZLL+13, dVAG16, CCC+11, DBF14, EdOdS18, FRC18, HSW+19, MSvG12, MJG+15, SF18, SVB10, SGM+13, Yap11, ZCS+15, She12].

softerwares [All11]. solar [ACS12, DGL+13, JYS+12, LZZ+15a, MP19a, SLC+17, TZ12, VÁA14, YJN+11]. Solid [MP19b, RSK+15, ASS10, ASK18, CL16, HLS12, HBI+17, KLN12, KKH18, LOB18, OLPB19, POB13].

Solid-state [RSK+15, HBI+17, KLN12, KKH18, LOB18, OLPB19, POB13]. solids [BK11, BPC19, HAI+16, MDT13, MS15, dRL11, PON11, SNI6a]. Solubility [MSY19, KKO+16, WZW18]. solubilization [TFYO19].

solute [BRLS08, BRLS12, EOA+11, RVM19, TKT11, YKO+11, Yan11].
solute/solvent [RVM19]. solutes [GC11, PAK15]. Solution
[Cam19, PK19, AvKSP16, AK10, DR11, DBM+17, DP15, EOAO+11, GAI13, GA14, HDK+12, HAL14, HNN+17, KSI8, KTNNO10, KVR10, LVMG10, MM+17, MFM+12, PMC+17, PGW+17, SJWE10, TKNN10, UCF16, WHL+10, WC13, WLF19, XTG+11, ZLL+10, ZZ10, vADC+14]. solutions [Ber17, CFC15, EK15, Kri10, OC19, OCW+15, SM14a]. Solvate
[Jia19, RNSF+16, ZBP11, ALRM18, CBG17, CBG16, FGM11, GMHM+16, GP12, HRC13, JMLL13, JGS+17, Jor17, KSK11, LP11b, MS13, MPSA17, MBE16, NW17, OBW12, PL14, RK16a, RK16b, SM14a, SK12, SY11, SMM15a, SMM15b, SMM+18, TKYN17, TCC+13, WXL17, WWW18, YOMT14, YAS13, Yan14, ZCS+15]. solvation-free-energy [SMM15a, SMM15b]. solvational [FCL+10]. Solvatochromic [MK15].

Solvatochromism [TKYN17]. solve [PNW+16]. Solved [CD19]. Solvent
[KC13b, PK19, AKK+16, BEM14, BRLS08, BRLS12, CAD16, CBG16, EK15, FZY+12, FD16, GA19, HDL+17, Has14, HPL+18, HYUS11, JKDB12, KB11b, KCMPMG12, LHL+10, LC17b, LZZ+16, LWZ+17, MBC11, MBC13, MS11, ML14, MCU15, MCC12, MNK10a, MNK10b, PDMT10, PS13, QQY+18,
RVM19, RdA12, RRK16, SLT14, SBV10, SK17, SLX+15, SYH12, SCMA+17, SKMS13, TYN15, WWKS11, WXL+12, WBF17, YOMT14, Yan14, YJ11, BK17a]. **solvent-dependent** [HYUS11]. **Solvent-driven** [KC13b]. **solvent-induced** [AKK+16]. **Solvents** [LHT15, ISO+13, Pie14, Pog10, RK16a, RK16b]. **solvolyis** [OSS10]. **SOMA** [BMFG16]. **Solvants** [LHT15, ISO+13, Pie14, Pog10, RK16a, RK16b]. **solver** [FBY+17, FHMB15, Kan15, RR19, SHF11]. **solvers** [GRARO+14, WL10, XYX17]. **Solving** [KV13, SG10a, BYE+16, GA14, RRFV+18, SK15a]. **Song** [JW12]. **Soon** [Ano16-75, Ano16-80, Ano16-81, Ano16-82, Ano16-83, Ano16-84, Ano16-85, Ano16-86, Ano16-87, Ano16-88, Ano16-76, Ano16-77, Ano16-78, Ano16-79]. **soot** [KAR12]. **SOP** [AKK+16]. **SOP-GPU** [AKK+16]. **Sorafenib** [GMASBF16]. **sorbates** [KB19]. **Sorting** [NMF+14]. **Source** [GMBM18, TCB16, Aki16, APK14, BZH14, CD13, FBY+17, HMO+18, HLS+13, HPT17, KSD+12, MLG18, PHT17, SMRM+17, XTG+11, Yap11, Yes12]. **Source-Function** [GMBM18]. **sources** [BK13]. **Space** [vRWGS17, ACD+13a, ACD+13b, AD10, Cas13, CH16, CXS10, Coh18, DK11, DSHLM18, FC18, GA14, GK15b, HB14, HP10b, HSB+11, JCGVPHT17, LMZ11a, LLFH16, LAW+16, MBFP15, NH19, NCT18, PDG+16, SS13a, SHL+11, SCSW13, TTN19, TJB12, WDHZ13, XTn18, YD17]. **space-group** [HB14]. **spare [JYS+12]. spacings [CD13, FBvdB18, TTN19, WM17]. sweeping [yOaCG10]. sparse [LK11, LDH+14, VZ14, YHH+13]. sparsely [CBP+15]. Sparsity [HNS16, BYE+16, RR11]. sparsity-exploiting [BYE+16]. **Sparsity-weighted** [HNS16]. **Spatial** [PTB+15, HAL14, MTvG12]. **SPC** [GM17]. **SPC/E** [GM17]. **SPC/E-I** [GM17]. special [Alg17, ZZZ+19]. **species** [MAK+14, MG11, OSS10, RHT+15, SSA+17, TCPCC14, Tsi14, VRKT19, WvRSM14, ZZ10, ZLY+16]. **Specific** [DHF+11, OHNK11, CIKT13, CCM15, GCCM15, HnyH19, HYMZ16, JZZM14, KR12, LHO17, LGL11, LXFC17, MCC11, MC12, SSSM15]. **specificity** [LJW+11b, LBS10, ZX11]. **Spectra** [PAK15, TT18, AMQ+14, BG17, DCOD13, EBPK17b, FD13, FF11, GWF11, GGM+12, GZZ12, HRH+17, KASH14, Kow11, LBC+12, LX11, MAK+14, MCLD10, MKK+19, NHF+10, PMC+17, PDMT10, PDG+16, RS17a, RJS17, SGD10, SB15, SR11, TYN15, TZCK18, TG12b, Tsi14, WGL12, WWD14]. **spectral** [Ano15-58, BH14, CBDS19, HRMAL+13, KZZ+16, NSO+14, QZM11, RLG11, SFDE16]. **spectrometer** [LBB+15]. **Spectroscopic** [SS13b, GK10, KDB13, Kop15b, NC13, NC14, TCPPC14, Tsi14, VRKT19, WvRSM14, ZZ10, ZLY+16]. **spectroscopy** [DMD+18, HDM+19, HPSK12, IY18, KNR+18, LLBO12, Lin18, NC12, OC19, WHK+12, FAS+18]. **spectroscopy-oriented** [HPSK12]. **spectrum** [BLF14, KCC+18, MN19, MLCD11, RDF+11, SLLL13, TSC+13, ZDX11].
spectrum-slicing [KCC\textsuperscript{+18}]. sped [IMSR\textsuperscript{18}]. speed [TO10, VM11, YD17]. speed-up [YD17]. speeding [AO10]. sphalerite [SBC\textsuperscript{+11}]. sphere [KT12, MH10, Pop18, TH13]. spheres [HS16b]. spherical [Ano15-58, BH14, YOPB16]. spherically [Vyb15, Vyb16]. spheroidal [ZBW10b]. spider [Che17]. SPILLO [DVVP14]. Spin [ATIP18, DSM\textsuperscript{+11}, JKS\textsuperscript{+16}, KM13, MLG18, SZL19, TT18, AB10, AMQ\textsuperscript{+14}, CSEBM\textsuperscript{+16}, CSS17, CSKH16, CAP17, FAA15, FD16, GP11a, KT19, KIOY19, KSK11, KKA\textsuperscript{+18}, LXF17, MG11, MCP18, PLFS18, PS17, RRK16, SFM14, SPHF\textsuperscript{+18}, SSB\textsuperscript{+16}, SH18b, TN18, TTn19, VFRAR16, VHS\textsuperscript{+19}, YB11, ZLHH14, ZZZ\textsuperscript{+19}]. Spin-component-scaled [KM13]. spin-coupled [SH18b]. Spin-driven [DSM\textsuperscript{+11}]. spin-flip [ZLHH14]. spin-forbidden [TN18]. Spin-orbit [ATIP18, JKS\textsuperscript{+16}, AMQ\textsuperscript{+14}, FAA15, FD16, GP11a, KT19, KKA\textsuperscript{+18}, MG11, MCP18, PS17]. spin-orbital [ZZZ\textsuperscript{+19}]. spin-polarized [SFM14, VHS\textsuperscript{+19}]. spin-rotation [KIOY19]. spin-spin [PLFS18, SPHF\textsuperscript{+18}]. spin-symmetry [TTn19]. SPINE [FZY\textsuperscript{+12}]. Spinor [CC12b, Bar14]. spins [ZR10]. Spiral [SK18]. Splitting [Rob13, EHSPT16, EHT19, FZL\textsuperscript{+19}, LL19a, OT12]. SPME [NLP\textsuperscript{+16}]. SPOT [YZZ16]. SPOT-Ligand [YZZ16]. spots [HQSZ19]. Spread [BEEL14]. squaraines [AMQ\textsuperscript{+14}]. square [HDL\textsuperscript{+14}, HGW18, ISK14, Tsi19]. squared [JMS13]. squares [BCCO10]. SR [ARAG17, WMW11]. SR-ZORA [ARAG17]. SrO [BL12]. SSC [LG11]. ST [JJW\textsuperscript{+14}]. ST-analyzer [JJW\textsuperscript{+14}]. STAAR [JHH\textsuperscript{+13}]. Stabilities [BF19a, ZLX19, BLDK\textsuperscript{+13}, SIT18, TFQ\textsuperscript{+11}]. Stability [BPPS19, CSM16, EK15, GWT\textsuperscript{+17}, LdSR16, Lin18, OME16, PP10, BPPS17, CSS17, CFC15, CM16, CB11d, DLT17, DLW12, GPK\textsuperscript{+16}, GC18, Ham11, HLB15, LTR18, LIHS12, MC10, MS15, PMG\textsuperscript{+16}, PAT\textsuperscript{+10}, Rab12, SGBP18, SY16a, SPZP18a, TN12, TKCN19, VP19, XFTW15, ZRCC11, ZWMW10, ZW10]. Stabilization [KSR17, BSDP16, DBK17]. stabilize [KG11]. stabilized [AHK\textsuperscript{+19}, KASH14]. stabilizing [MvBD18]. stable [NPTS16, PBDW11, ZDZM13]. stacked [ANH\textsuperscript{+11}, HVM12, LDH\textsuperscript{+14}]. stacking [HVM12, YZZ\textsuperscript{+17}]. stages [CBP\textsuperscript{+15}]. staircase [SK18]. Stalis [LI19]. Standard [DH17, BCJC\textsuperscript{+14}, MKO\textsuperscript{+13}, PNI13, RD18, REL\textsuperscript{+14}, SRR16, VVG13, WHK\textsuperscript{+12}, WGA18]. standing [TS11]. staple [SV15]. Star [MA17]. State [CCM15, FHH\textsuperscript{+19}, GS16, Kop19a, MP19b, TT18, YKNN19, Alg17, AR10, ASS10, BS15, BBI\textsuperscript{+11}, CSAdOM17, CH10, CV12, ESM\textsuperscript{+12}, F414, GS15, GBPC19, GCCM15, GA18, GPE13, HLS12, Hei18, HNWF07, HNWF12, HH16a, HH17, HBI\textsuperscript{+17}, HWB19, HZSS17, HBR17, JZ17, KT19, KLN12, Kop15a, Kop15b, KKL\textsuperscript{+13}, KKH18, KCL\textsuperscript{+14}, LL15, LLBO12, LOB18, LZZL\textsuperscript{+10}, LFC17, MTM14, MPSG11, MCC11, MC12, MCLD10, NNY17, NMLD13, OBW12, OLBP19, OZLSBH12, POB13, PGW\textsuperscript{+17}, PHI10b, QZ10c, RAGL11, RIJ\textsuperscript{+11}, RCM\textsuperscript{+13a}, RML\textsuperscript{+15}, RR14, RGVC\textsuperscript{+19}, RSK\textsuperscript{+15}, SRF\textsuperscript{+17}, SSM15, Sie18, SGWA17, VZ14, VL17b, WHL\textsuperscript{+10}, WWW19, WHX\textsuperscript{+10}, XCLZ19, XBSS19, YWZ14, YD17, YJ19, YYT12, YL13, ZZZ\textsuperscript{+19}, Zim15].
state-of-the-art [YJ19]. state-selected [KCL+14]. State-specific [CCM15, GCCM15, LGL11, LXFC17, MCC11, MC12]. state-to-state [XCLZ19]. States [GBMB18, AST+16, ANH+11, BSL+16, BH19, DHOG13, DSV+19, EFS16, EK17, EVR18, EP15, FAA15, FD16, GO13, GA12, GTK10, HDHL15a, HDHL15b, HDHL15c, JCGVPHT17, KKH19, KT19, KKA+18, KPG18, KB14b, LLBO12, LLW12, LWW12, LGC19, LX11, LS11b, LYSS11, LCK+18, MS10, MN15, MGCC19, MH11, MEH18, PBDW11, RHRCH16, SRF+17, SSC+19, SOYC12, SMN+19, SB13, SB15, SZSS16, TN10, Tia12, TSN17, VVV+15a, XWSW13, YZGS14b, YK13, YLZ+10, YB11, ZX5+10, ZBB16, ZDT18, dLC17].


stringent [DPOS16]. strong
[Kan15, MLZZ12, SDF12, SS19, VVY17, Vik11, ZSL17]. stronger [KSC16]. Structural [ESD18, FHG+19, GLF16, GBL+11, GTT10, GAMAC+14, GWX+12, HS17a, II10, KZK+12, KSD+12, LBTV11, MP19b, NC14, TS11, VSH19, ZWW10, AIGP15, AD10, AKK+16, ALH+10, BBOB16, BPC13, CD19, CPV+12, CDS15, CY1+10, DWL11, DH11, GWT+17, GNI18, HS17b, HVS16, KKPT11, KG11, KNE11a, KDT+12, KZ13, LL13a, MCF10, OSA19, PHC13, PGI15, PNG10, RRF11, RKB+14, RSL16, SFA17, SS13c, TYX+18, VVW+18, WC11, XMSZ16, YVEI+17, ZWW10, FAS+18, VPR10].
structurally [TZCK18]. Structure [BPPS19, BJP15, CGBK13, DXL+10, GPK+16, GWJJ12, GBGR16, HLB15, JLLW19, LAHS16, MM19, MHR11, NC12, NC13, PMG+16, Rab12, SGH+16, VDVR14, WZK+13, AFPI13, AR15, AM19a, AM19b, AC12, BPPS17, BFIH+13, BDdS13, CPRS18, CD13, CvM19, CM13b, Clo15, DKE+17, DKT13, DSB+19, DDP16, DVVP14, DGSGVM19, DLW12, EH13, EKW+13, EFOD13, FZY+12, FDH19, FSC+14, GLB16, GMDG15, GRARO+14, GP12, GK10, GRD+10, GDPC+16, GBG+19, HASR+12, HNHR13, HSB+19, HNHy19, HS14a, HHR+17, HH15, HMYM16, HZ13, HLWD15, Hua16, Ibr17, KYT+17, KKH19, KSM17, KT10, KS12, Kop19b, KKL+13, KLS10, KML10, LLBO12, LFB14, LKL10, LZJ+11, LMI+14, LYL16, LPE+10, LGL11, LWWG12, LLFH16, Mat10, MDT10, Mau14, MAPB10, MV17, NGAS17, NCT18, OCL11, OL13, OL15, PSS14, PdSC18, PML+12].
structure [PN13, RLG14, RCM+13b, RR11, SHMO11, SB10, SM11, SLP+12, SB19, SLIB12, SRS14, SYN+12, SKGB13, SPZP18a, SPZP18b, Tac19, TN12, TTB+11, TG12b, UNT16, VVP12, VHR16, VVBL17, VAA14, VBMA13, VKC10, VI17, VLHK+17, WO15, WRM+12, WSGN11, YW12, YZZ16, ZRCC11, ZHHX11, CPR18, FDCG18, OFS12, SA10]. structure-activity [DXL+10]. Structure-based [CGBK13, DXL+10, DVVP14, GLB16, VKC10, YZZ16]. structured [GEP+14].
Structures [DLT17, HDM+19, NSN19, SNS16, SZL19, ZLX+19, AHK+19, BHNS14, BPM15, Ber17, CL16, CCIO14, CBDS19, CV12, DVVP14, DH14, DLC18b, DT19, DZA11, GS12, GSS13, HSY+11, HTS17, HPL+18, HS12, Hua16, IYK11, KNE11a, KOS+12, KTO11, KTO13, KDT+12, KSW16, LABSG17, uLhY11, LZX+10, LLWS14, LL19b, Lâe14, MCS11, MMT14, MPA10, MPA12, MP13, Mau14, MN19, MH10, MCAY15, MP17b, NS18, PRP15, PNH+16, QZM11, RRCH16, Rao11, RCR+16, RV11, RJJ11, RVVK13, RSG+10, Sak18, SWA13, SFR+11, SJD11, SIT18, SPM+19, SKY+11, TN10, Tak11, TFO+10, TFO+11, Tsu19, UCFR16, WKCI11, WD10, YNH+17, ZSL+11, ZLY+16, ZP13, ÇMD13, OSI+19, PGCT+12]. studied
[Ish10, KRTB10, OLY17, RHPWS13, RI10, TS15b]. Studies [JW12, AALCM11, BLS10, BRGN12, BLG10, BIL10, DM15, DXL+10, FWS+18, GZZM16, GEP+14, JLS+10, KG15, KP11, LXFC17, LCCW10, LLJ+11, LWD13, RCM+13b, SB10, SFA17, SLHW09, SZZ+18, TNI+19a,
TDP+12, VSD10, WCAH10, YKH+10, YPC+10, YDL+10, YXZZ17, ZZL+12, ZZL+10a, ZYG+15, ZX11]. Study [BHB19, JLH+14, LLX+19, MUGNVJ+18, VL17b, AARP17, AS11, AS15a, AMMA+11, ATP18, ASMS10, ANH+11, APA+14, APY+16, ALH+10, BEM14, BE14, BHB+17, BH19, BEEL14, BSJ12, BLG11, BMD19, BRLS08, BRLS12, BL12, BEL+11, CCLP12, CCCLR14, CWHH11, CBG17, CC18c, CCJ+11, CKL+11, CXW14, CBTZ16, CL16, CSXZ17, CSC+18, cCVG+14, CBDS19, Chu10, CG12, CB11c, CPLL11, CXD+19, CB11d, DASA15, DR11, DK19, DI11, DLS13, DSX+11, EHT19, EOA+11, EvRC+18, EV14, FCL+10, FF11, FCD10, FBEM11, FL15, FPB12, FB14b, GAI14, GG10, GKB+19, GC18, GVP+10, GD10, GTK10, GWZ15, GNGCA10, GKR13, GWPJ11, HZ11, HW19, HDB15, HRL11, HBR17, HVS16, Ibr11, IIF10, INT18, IN19, IN13, IIHY15, II10, JA10, JAHS19, JCG+10, JAH+17, JJAB16, JW16, JYS+12, KD10, KKT11, KOP+14, KIOY19, KC13b, KSNT19, KB13, KT12, KG11, KMT+19, KNP+12, KS13b, KP10, LC10, LY10, uLH11, LP11a, LL13a, LA19, LL+10, LDJ+10, LZL+10, LCL+10, LZJ+11, LZH11, LWL+11, Li14a, Li14b, LGW12, LT13, LJW+11b, Lin18, LBTV11, LBTV12, LTP11, LYSS11, LHS12, LH14b, LLSW14, LHT15, Lu11, LJC+11, LPM17, MUN+19, MMS19, MSY19, MC10, MG15, MCF10, MJLV14b, MAPB10, MFM+12, MH11, MWJ+11, MS11, MPNS13, MAMF19, MN19, MHR11, MBRC16, MO17, Mor15, MIS+15, NHF+10, NH19, NGAS17, NASH15, NC12, NC13, NC14, NS18, NJX+10, NFI+16, OP16, ORZ11, OSS10, OSHG17, OSA19, OME16, OOK11, PVL+13, PGCT+12, PP10, PGC12, PGS+15, PH12, PG18, PAK17, PP19, PPH+14, QLYL10, QZ10b, RS17a, RAGLL11, RAR+11, Ray13, RS13, RS14]. study [RVCFF13, RSLML12, RKG11, RSKG14, SN16a, SSP+13, SGDT10, SJD14, SCM+15, SRF+17, SSC+19, SWM10, SBD+17, SNS16, SGS+16, SSNT19, SMN+19, SCF+19, SE14, SCMA+17, SCMM19, Su10, SKY+11, STS+10, SKTT11, SZZS16, STS15, SGHL13, SIG+15, SPZP18a, SPZP19, TM16, TYFO19, TTC+18, TLA10, TNSC+17, TSR+16, TL16, UvSvdWK19, VKNT16, VPR10, VAR12, Vik11, VLGK+17, VED10, WKC10a, WHL+10, WCCW11, WDLG12, WHZ12, WYL+15, WFL+19, WNM17, WHX+10, WD10, WMW+10, WZQW10, WS11, WHDL11, WCL+11, WYGW12, WDP+12, XDL+10, XZ11, XWW+11, XCLZ19, XBSS19, YZGS14a, YZWC11, YHG+11, YZN13, YR13, YLZ19, YJXZ13, YLZ+10, YKH15, YSR11, YCA10, YBI11, YYT12, YZ15b, ZCK+16, ZWGO16, ZTH+15, ZPP+16, ZXS+10, ZZL+10b, ZZWT12, ZYLL12, ZLL12, ZSS+14, ZDX11, ZWY+10b, ZWY+10a, ZBP11, ZZ12, ZZWX11, ZGZ19, dSDdAR10, dSdS12a, dSD12b, dSd1B17]. study [dALdS+15, vRET19, vADC+14, GMBM18]. studying [SDL14]. styrene [MG15, FXX10]. sub [LTT16, YO19]. sub-optimal [LTT16]. sub-permutation [YO19]. subdomain [LKL10]. subjected [JMX+16]. submarine [WWKS16]. Subspace [FBKD19, SBB10, SM18]. Substituent [MG+16, AS18, CWHH11, JMX+16, MLX+13, TYN15, TY10].

T [BBI+11, CSQOA17, Gil11, MSPC19, MLCD11, OPR16, SRR16, XKW18, YJ17, BBG+18b, BG13, CCR18, CSS17, CEBO15, CKL+11, CLK11, CAP17, EP12, GG10, Gar12, GP12, GA19, GBW+14, GR10b, GWZ12, HS11, HCD+10, HH18, HvM16, ITTN15, JSXH16, JS17b, KV12, KZP+18b, KGM12, KKH18, LBS16, LCP13, LPLA13, MP19a, MSC+10, MG14, MSL12, MS12, NYN17, NCV10, NLI19, NFG+13, NO16, NSK+16, NS17, ODB18, OPB+12, OC14, PAK17, PAT+10, PBBP11, PD12, QLI19, RJPB12, RVCFF13, SSO19, SCOJ13, Sch12, Sea10, SKGP19, SEJ+18, SH18b, SW+12, SG13, SMM17, TSN16, TCX+13, UT15, WCY+11, WWU12, WS11, YCK16, ZSB+11, ZS18, ZT14, HvM17].

Theoretical

[AvKSP16, AMAA+11, AWFK+19, AHK+19, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF1+18, GYX+10, GLZ+17, HW+19, HDHL+15c, JW+12, KCB+12, KSO+19, KMT+19, KS+13b, LCL+10, LNL+11, LYL+12, LZY+12a, Lin+18, LWG+12, LX+16, LXFC+17, LD+18, LGJ+11, MLQ+12, MSV+16, NSF+16, OSS+10, OAN+15b, PKK+17, PM+13, PE+11, RS+17b, SB+10, SMI+19, SDD+19, SKY+11, STS+10, SZZ+16, SLC+17, TPL+10, Ts+19, WMW+11, WDL+11, WS+12, XSS+19, YJ+N+11, YPC+10, YH+11, YCGA+10, YY+12, YDGZ+15, ZL+10a, ZYLL+12, ZL+11, ZSG+14, ZGY+15, ZGZ+19, ZBMZH+15, dSdLBNB+17, BL+10, BAD+19, BE+16, CZH+12, CK+11, CBTZ+16, EV+14, GG+10, HDB+15, HGP+14, LWW+12, LLD+17, LZW+11, LCL+18, MRC+18, MPSG+11, MP+19a, MKK+19, NHH+10, PH+12, PsD+18, PsD+10, Pog+10, PH0b, RZG+13, RVCF+13, RP+13, SSE+13, SCS+19, SJD+11, SLH+09].

Theoretical [SKT+11, SGH+16, Tak+11, TL+16, UCRL+18, WSH+10, WQZ+10, YK+13, YZWC+11, YN+13, YB+11, Zha+12b, dSdSL+13, HDHL+15a, HDHL+15b, KZK+12, TD+12]. Theoretically [LLX+19].

Theories [OM+12, WCWV+15].

Theory [BHB+19, CKH+19, EVR+18, ELKE+19, GNC+18, IUK+11, LL+19, MP+19b, Sah+18, SZX+13a, SZX+13b, WBKS+19, WM+12, AMK+15, AR+10, Ali+18, ARAG+17, ABDGN+12, ASW+19, AG+12, ASS+10, BY+11, BLBG+13, BS+19, BMD+19, BZB+13, BG+13, CHG+16, CRZ+18, CSadOM+17, CWH+11, CKH+17, CCM+15, CF+14, CC+11, DAP+18, DCHL+12, FRSA+14, FD+16, GHL+17, GZL+12, GCCM+15, GWW+19, GLW+19, GYO+10, GNGCA+10, GND+12, GA+18, GEG+11, GPK+12, Han+11, HPT+17, Hil+13, HNN+17, HRJ+14, HRJ+15, HG+10, ISN+13, IKN+13, IM+17, JR+14, JLH+14, JW+16, YS+12, KH+17, KL+12, KM+13, LC+12, LBS+16, LCL+10, LLH+17, LPM+17, MCC+11, MMH+19, MAK+14, MWJ+11, ME+18, NPG+18, NMLD+13, NO+16, Niz+13, ORZ+11, OZLSBH+12, PAK+17, PML+12, PHP+14, Pie+14, Fyy+13, QZ+10b, QZ+10c, QB+16, RAGL+11, RJB+12, RCM+13a, RML+15, RB+12, RSLML+12]. Theory [RHP+13, RNS+19, RR+19, Rui+11, SM+14a, SFG+17, SHL+18, SCW+11, SSSM+15, SHF+11, SEF+16, SE+14, SH+14, ST+13, SHL+13, SSMW+09, SB+14, SMM+18, SKTT+11, SZZS+16, STS+15, TLdG+12, TAG+16, UvSw+WK+19, VDL+13, VP+12, VV+14, VL+17a, VAMS+14, WHL+10, WDLG+12, WHX+10, WO+15, WL+14, WGN+16, XTY+14, XYW+14, YJ+11, YLZ+10, YS+13, YKH+15, ZZS+10, ZSWL+12, ZL+14, ZDX+11, ZYG+14, ZYW+10b, ZYW+10a, ZLH+14, dSdS+12a, dSdS+12b, vLBBR+12, FAS+18]. Theory-based [YJ+11].

Theory/Configuration [HPT+17]. Theory/Time [JYS+12].

Theory/Time-dependent [JYS+12]. Therapeutic [AFBR+17]. Therapy [ZZ+12]. There [MLGB+16, Sie+18]. Thermal
thermally [FWS+18, IIHY15, ZGZ19]. thermoecal [HDH12].
CHG$^+$16, HNWF07, HNWF12, HG10, JYS$^+$12, RHPWS13, Vik11, ZXS$^+$10.

time-resolved [KNR$^{+18}$], time-step [AYYO17]. times [VBDS$^{+11}$].
timescales [MCR17]. tin [ASS10]. Tinker [HLW$^{+17}$]. TiO
[NC14, TSQ12, CCJ$^{+11}$, DSB$^{+19}$, EP15, HRL11, MP19a]. TIP3P [SA10].

Tis [BE14, RSKG14]. Titan [OZLSBH12]. titanium [QZ10b]. titration
[HS14b]. TMBimH [LWXC16]. TmoleX [STH$^{+10}$. TMS [XYZZ17].

TMS-N [XYZZ17]. tobermorite [TZ11]. Todo [MO15]. toluene
[AAMD$^{+11}$. Tool [LH$^{+19}$, BPC19, GKJ$^{+19}$, HRK$^{+10}$, HKRS11, HS11,
HG13, JLS18, KDB13, LP11a, LKI1, LDB$^{+17}$, LCA17, LBB$^{+15}$, LG11,
LP11c, MDT16, MCC12, NHK$^{+13}$, OV14, OVPK15, OC14, PNW$^{+16}$,
SDM13, SH19b, WCDM11, ZCGM11, dVAG16, JCGM18]. toolbox
[HPT$^{+16b}$. toolchain [KSH$^{+17}$. toolkit [FSC$^{+14}$, GS12, IGK16, MJBM12,
MSS$^{+13}$, MADWB11, NKJ16, PG15, PPM15, TS10a, TBJ18, ZLL$^{+13}$. Tools
[RLG14, ZFOS19, GMZ12, SLG15]. toolset [YPKB12].

topological [KFY$^{+13}$. training [DBDP16]. trajectories [AST$^{+16}$, HRID16, JZL$^{+17}$,
KG13, LZS$^{+17}$, PSP15, RN17, SKA19, SFR$^{+11}$, ZSS$^{+13}$, dSvdM$^{+16}$.]

trajectory [IKU$^{+11}$, JFW$^{+14}$, LWD13, LAS$^{+14}$, MKS$^{+12}$, PVZ13, RC18,
SB$^{+17}$, Yu12a]. Trans [CSM16, MSBF16, Tsi19, WS19, BLS10]. Trans-
[MSBF16]. Trans-2-Butene [CSM16]. trans-effect [Tsi19].

trans-influence [Tsi19]. trans-influence/trans-effect [Tsi19].

Trans-philicity [Tsi19]. trans}-pinane [BLS10]. transcription [XMSZ16].

transfer [Alg17, AK10, ANH$^{+11}$, BHB12, CMF$^{+17}$, CSAdOM17, CPL11,
DWR17, DAdGR15, EFAC13, ENKK$^{+17}$, FC16, HSH15, HAP$^{+12}$, HDHL15a,
HDHL15b, HDHL15c, IYK11, JM11, JCGVHPHT17, KGR$^{+16}$, KDR$^{+18}$,
LZL$^{+10}$, LLLM11, LWGZ15, LPLB16, MEG11, MRB14, MSV16, MCF$^{+18}$,
MT19b, PGCT$^{+12}$, PG18, PAK17, PL14, PTB$^{+15}$, Ras17, RCM$^{+13a}$,
RML$^{+15}$, Ric16, REL17, RKDM14, SRF$^{+17}$, SB$^{+17}$, SMP17a, SZZ19,
SHB17, TM16, Tsi17, VKTRJ15, VMTL10, YL17b, WCT$^{+11}$, YZ19, WG14,
XBSS19, XLY12, YKH$^{+10}$, YHX19, YLZ$^{+10}$, YYT$^{+12}$, YFH$^{+19}$, ZW17,
dALdS$^{+15}$. Transferability [FP17a, ZRL$^{+15}$, HOK17]. Transferable
[EKH14, VVLG17]. transfers [YZS14a]. transform
[Ano15-58, BH14, Ish12, LL13a, SFTSM10, YI18, NZM18, YWJ$^{+16}$.]

Transformation
transformations\textsuperscript{1}\,\textsuperscript{14}, WZ\textsuperscript{+19}, APY\textsuperscript{+16}, DLW\textsuperscript{+12}, KZZ\textsuperscript{+16}, REH\textsuperscript{+13}, RSK\textsuperscript{+15}.\ transition\textsuperscript{14}, \textsuperscript{15}\textsuperscript{14}, Min\textsuperscript{18}, SJC\textsuperscript{11}.\ Transiting\textsuperscript{13a}.\ Transition\textsuperscript{13a}.\

Transition\textsuperscript{19, 16}, BGS\textsuperscript{+19}, OZLSBH\textsuperscript{12}, QZ\textsuperscript{10c}, YB\textsuperscript{13}, Alg\textsuperscript{17}, AR\textsuperscript{10}, BS\textsuperscript{15}, CSA\textsuperscript{15}, CMS\textsuperscript{13}, DLS\textsuperscript{13}, G1\textsuperscript{15a}, GFGS\textsuperscript{18}, GPE\textsuperscript{13}, Hsu\textsuperscript{14}, IYK\textsuperscript{11}, JZ\textsuperscript{17}, JSF\textsuperscript{19}, LYL\textsuperscript{16}, LDZW\textsuperscript{17}, LN\textsuperscript{15}, LZW\textsuperscript{+11}, LGKS\textsuperscript{17}, LLL\textsuperscript{+12}, TM\textsuperscript{14}, MS\textsuperscript{10}, MN\textsuperscript{15}, MKK\textsuperscript{+19}, NMLD\textsuperscript{13}, PHK\textsuperscript{14}, RAGL\textsuperscript{11}, RJ\textsuperscript{+11}, SJ\textsuperscript{+15},

VVV\textsuperscript{+15a}, VHS\textsuperscript{+19}, YZG\textsuperscript{14b}, YWZ\textsuperscript{14}, ZWW\textsuperscript{10}, Zim\textsuperscript{15}.\ transition-metal\textsuperscript{17}.\ transition-state\textsuperscript{17}.\ transitions\textsuperscript{19, 16}, BD\textsuperscript{11}, DH\textsuperscript{11}, HS\textsuperscript{17b}, HB\textsuperscript{15}, KIO\textsuperscript{19}, MC\textsuperscript{v1}, PB\textsuperscript{11}, SBT\textsuperscript{17}, SPZ\textsuperscript{18a}.\ translation\textsuperscript{17}.\ Translation\textsuperscript{17}.\ transmembrane\textsuperscript{17}.\ transmission\textsuperscript{12}.\ transphosphorylation\textsuperscript{14}.\ Transport\textsuperscript{11a}, AWF\textsuperscript{+18}, CWH\textsuperscript{11}, CBT\textsuperscript{16}, DM\textsuperscript{14}, DM\textsuperscript{15}, DJX\textsuperscript{+11b}, HLD\textsuperscript{15}, LHO\textsuperscript{17}, LJ\textsuperscript{+12}, NS\textsuperscript{18}, NS\textsuperscript{17}, PG\textsuperscript{15}, RJ\textsuperscript{18}, RSS\textsuperscript{18}, SL\textsuperscript{18}, SY\textsuperscript{16b}, TC\textsuperscript{+13}, ZYG\textsuperscript{+15}.\ transportation\textsuperscript{12a}.\ transporter\textsuperscript{19}.\ transporters\textsuperscript{10}.\ trapped\textsuperscript{15}, VIT\textsuperscript{+15}, WL\textsuperscript{+10}.\ treat\textsuperscript{18}.\ Treating\textsuperscript{17}.\ Treatment\textsuperscript{11}.\ triad\textsuperscript{13}.\ triads\textsuperscript{10}.\ triangulene\textsuperscript{13}.\ triarylamine\textsuperscript{16}.\ triazenyl\textsuperscript{19}.\ triazine\textsuperscript{12}.\ triazines\textsuperscript{10}.\ triazol\textsuperscript{12}.\ triazole\textsuperscript{10}.\ triazoles\textsuperscript{11}.\ trichlorostannate\textsuperscript{13a}.\ tricyclic\textsuperscript{10}.\ Trends\textsuperscript{10}.\ triethylgermanium\textsuperscript{12}.\ trifluorides\textsuperscript{19}.\ trifluoroethanol\textsuperscript{10}.\ trifluoroethanol/water\textsuperscript{10}.\ trifluromethane\textsuperscript{13}.\ trifurcation\textsuperscript{16}.\ Trigger\textsuperscript{18}.\ triggered\textsuperscript{15}, TCC\textsuperscript{+18}.\ triggering\textsuperscript{17}.\ trigonal\textsuperscript{11}.\ trihalide\textsuperscript{18}.\ trihydride\textsuperscript{13}.\ triiodide\textsuperscript{18}.\ Trimer\textsuperscript{16}.\ trimetallic\textsuperscript{12}.\ trimethylsilyl\textsuperscript{10}.\ trinitrotoluene\textsuperscript{14}.\ tripeptide\textsuperscript{18}.\ tripeptide-water\textsuperscript{18}.\ triphenyl\textsuperscript{18}.\ triphenylamine\textsuperscript{16}.\ triple\textsuperscript{13a}.\ triple-zeta\textsuperscript{13a}.\ triplet\textsuperscript{13a}.\ triplets\textsuperscript{15}.\ tripeodal\textsuperscript{10}.\ tripropylamine\textsuperscript{10}.\ tris\textsuperscript{15}.\ trivial\textsuperscript{11}.\ tRNA\textsuperscript{10}.\ tropocollagen\textsuperscript{10}.\ tropolone\textsuperscript{19}.\ Trotter\textsuperscript{12}.\ Trp\textsuperscript{13}.\ Trp-Glu\textsuperscript{13}.\ TRRE\textsuperscript{11a}.\ truncated-CI\textsuperscript{11}.\ truncation\textsuperscript{15a}.\ trusting\textsuperscript{12}.\ trying
BSD18, BB11a, CCR18, CVT+11, CAP17, CSSB11, DK19, DWL11, DBK17, DFF+15, DJS+18, DCHL12, DLZ15, ESD18, EWK+13, FF11, FRC18, FLM11, FZL+19, FL15, Gar12, GRS15, GFPSD17, GMO16, GZM11, GRL+11, GRL+12, GMXB+16, GTZ+18, HASR+12, HNS16, HNgH19, HLW+17, HDL+17, HH17, Höff14, HBL12, HYUS11, HJKJ13, HSZS17, HHWL17, HLEM18, Hug14, HH+17, Ish10, IHJ+13, JLH+14, JMS13, KV13, Kan15, KSO+19, KERY+16, KT10, KLOS10, KGJZ19, KTNN10, KP11, LBS16, LPK16, LrVS15, LZ12, LCH10, LCL+10, LM14, LHG11, LTA+11, LBDP12, MS17, MZZ11, MRB14, MJCI4, MN15, MY17a. using [MHO18, MSS+13, MK19, MKM+17, MUJ15, MVK10, MKB+13, MFR+17, MIOM13, MMJ10, MS18, NLP+16, NASH15, NHN16, OHPR18, OCW+15, PGdO+16, PC11, PG15, Pie14, PJ13, RB13a, RD18, RLJD17, RDDS10, RJ11, RVK19, RS13, RKK14, Ric16, REL17, REV+17, Rui11, RFHG10, REH13, SHMO11, SSO19, SZdB19, SFD+17, SVB10, SA13, SCW11, SEF+16, SHL19, SS19, SHL+11, SKKS13, SB18, SY11, SRS14, SH19a, SZSZ16, ST15, TYZ+16, TX+18, Tak14, TKN10, Ts17, TTH19, TJB12, UTM11, VAKM12, VE12, VI17, WKLC12, WdVN12, WLC12, WZ17, WJX+10, WDHZ13, XTY+14, XY17, XXW+11, YWJ+16, Yon16, YN15, YDX16, YF+19, ZWLX11, ZL11, ZLT13, ZWX19, ZWS+10, ZP13, ZH12, ZZZ+19, ZHHX11, dLC17, AIM+18, JCHT11, LHL+10]. utility [YHVM12]. utilizing [BV12, BP18]. UV [GGM+12, KASH14, RDF+11, RVdMB16]. UV/photoexcitation [RVdMB16]. UV/Vis [GGM+12].

Verlet [Fon11, Gon12]. versatile [KKR13, Pet11, SM14a, SWB12].
version [BCJC14, EVR18, KYG15, OPB12, Pyy13]. versus
[BF19a, BH15, FD16, GMPB12, GWZ15, ITY19, KCMPG12, LLLH16,
MG11, OSI12, PG15, RP15, TR12, WCT11, WvRSM14, YSBB12].
vertex [RNP13]. vertical [UD12]. vertices [LK16b, OV14, RNVP13]. Very
[Ran13, CSSB11, SAGC16, Ran12]. VESPA [Ran12]. VGe [TT18].
VI [OSS10]. via [AKMT11, ACD13a, ACD13b, BSPP13, BH13, CS17,
DDP18, DL15, DL19, GRCL12, HGCGR16, KHW17, KKH18,
LAW18, NSO14, RO14b, RJWW12, RNSS19, SS13b, SISK10, SB15, SM17,
TM18, TZ12, WBE16, ZWP11, ZLY16]. viable [SSX14]. VIBPACK
[CJPT18]. Vibration [Kop19a, GK10, Kop15a, Kop17b, Kop18, Kop19b,
MK13b, Tac17, WZ19, YHX19]. vibration-rotation
[GK10, Kop15a, Kop16, Kop17b, Kop18, Kop19b, MK13b].
vibration-vibration [YHX19]. Vibrational [DB12, LC12, OC19, QZM11,
ARLP13, BZB13, CJPT18, DOM11, DHF11, DT19, EB18, HYD10,
IY18, KKA18, KCMPG12, Kow11, KKH18, LBH11, LLTC12, LBTV12,
LS1b, MCF10, MAK14, MN19, RLA11, RRR16, SS13a, SSX14,
SST18, TZCK18, VVW18, WX12, XSZ11, dSADSL13, WHK12].
vibrationally [YHX19]. vibronic [MCLD10, ZTH15]. view
[BT18, DMJ17, MT19b]. viewpoint [PNE18]. VIII [LMR14]. villin
virating [FL15, GZH10]. virial [FED17]. viridis [IF10]. Virtual
[GR12, HDM15, CCM15, ES13, GCM15, HKNH18, HNNK19, HJJ13,
JBAM11, KCI4, KLS10, KML10, LBB15, MRB14, MNNK10b, MH10,
SF18, VC10, YZZ16, YD17]. virtual-bond-stretching
[KLS10, KML10]. virtual-system [HNK19]. Virtual-system-coupled
[HDM15]. viruses [OLY17]. Vis [GGM12]. viscoelastic [YSG12].
viscosity [BBI11, GM17]. VISM [ZCS15]. vistas [GLW19].
visualization [CVT11, HH16, TKC11, TDET18, You10]. Visualize
[GH16b, BPC19, QLQ11]. Visualizing [SOJ14, WM17, RD18]. vivo [HW19].
VMD [BHB12, FRC18, KLOS10]. vmdICE [KLOS10]. VMS [LBB15].
VMS-Draw [LBB15]. Voids [CC12a]. voltage [AS12, SFBT17].
voltage-dependent [SFBT17]. Volume
[Ano10b, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g,
Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o,
Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano13x,
Ano13y, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30,
Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h,
Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q,
Ano13r, Ano13s, Ano13-32, Ano13-43, Ano13-51, Ano13-52, Ano13-53,
Ano13-55, Ano13-56, Ano13-57, Ano13-58, Ano13-59, Ano13-60,
Ano13-61, Ano13-62, Ano13-63, Ano13-64, Ano13-33, Ano13-34, Ano13-35,


References

Anderson:2018:GSZ


Andres:2019:NQE


Aquilante:2016:SNU

Francesco Aquilante, Jochen Autschbach, Rebecca K. Carlson, Liviu F. Chibotaru, Mickaël G. Delcey, Luca De Vico, Ignacio Fdez. Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer, Giovanni Li Manni, Hans Lischka, Dongxia Ma, Per Åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci, Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reiher, Ivan Rivalta, Igor Schaprio, Javier

**Abdel-Azeim:2011:ZHB**


**Altarawneh:2011:RCH**


**Akbarzadeh:2018:PCN**


**Achazi:2017:CSS**

Abbaspour:2018:MDS


Abolfath:2010:DBR


Arthur:2016:EIC


Arthur:2016:PIG


Antoniotti:2012:GPR

Paola Antoniotti, Elena Bottizzo, Stefano Borocci, Maria Giordani, and Felice Grandinetti. Gas-phase reactions of SiH\textsubscript{n}\textsuperscript{+} (n = 1, 2) with NF\textsubscript{3}: a computational investigation on the detailed mechanistic aspects. *Journal of Computational Chemistry*, 33(24):1918–1926, September 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See erratum [ABB\textsuperscript{+}13].

Antoniotti:2013:EGP

Paola Antoniotti, Elena Bottizzo, Stefano Borocci, Maria Giordani, and Felice Grandinetti. Erratum: Gas-phase re-


REFERENCES


Asaduzzaman:2012:RBD


Affentranger:2010:PFC


Aquilante:2010:MNG


Anacker:2014:NAB


Allen:2017:CND


Asaduzzaman:2012:RBD


Affentranger:2010:PFC


Aquilante:2010:MNG


Anacker:2014:NAB


Allen:2017:CND

Addicoat:2013:SSD


Anand:2016:HBA


Abraham:2011:OPM


Antony:2012:FIP


Anthopoulos:2013:GAM


Astray:2013:EFP


[AIM+18] Mitsugu Araki, Hiroaki Iwata, Biao Ma, Atsuto Fujita, Kei Terayama, Yukari Sagae, Funie Ono, Koji Tsuda, Narutoshi Kamiya, and Yasushi Okuno. Improving the Accuracy of


References

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Abdula:2011:DND

Adam:2018:RCF

Awasthi:2016:SFE

Aleksandrov:2019:MMM

Algarra:2017:CIT
REFERENCES

Azam:2010:HGI


Alipour:2018:DMM


Aidas:2015:AAP


Allouche:2011:GGU


AlQuraishi:2019:PNE


Aleksandrov:2018:CPD


Aguilar-Mogas:2010:IAB


Addicoat:2011:DFT


Alberto:2014:ESI


Aquino:2011:CTS


Anonymous:2010:CFE

Anonymous:2010:JCC


Anonymous:2011:TAT


Anonymous:2012:CIIa


Anonymous:2012:CIIb


Anonymous:2012:CIIc


Anonymous:2012:CIIId


Anonymous:2012:CIIe

Anonymous:2012:CIIf


Anonymous:2012:CIIg


Anonymous:2012:CIIh


Anonymous:2012:CIIi


Anonymous:2012:CIIj


Anonymous:2012:CIVA


Anonymous:2012:CIVb

REFERENCES


REFERENCES

Anonymous:2012:CIVj


Anonymous:2012:RPP


Anonymous:2013:CIIa


Anonymous:2013:CIIj


Anonymous:2013:CIIk


Anonymous:2013:CIII


Anonymous:2013:CIIIm

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIin


Anonymous:2013:CIIo


Anonymous:2013:CIIp


Anonymous:2013:CIIq


Anonymous:2013:CIIr


Anonymous:2013:CIIi


Anonymous:2013:CIIb

Anonymous:2013:CIIt


Anonymous:2013:CIIu


Anonymous:2013:CIIv


Anonymous:2013:CIIw


Anonymous:2013:CIIx


Anonymous:2013:CIIy


Anonymous:2013:CIIz


REFERENCES

2013. CODEN JCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIe


Anonymous:2013:CIIf


Anonymous:2013:CIIg


Anonymous:2013:CIIh


Anonymous:2013:CIIi


Anonymous:2013:CIVa


Anonymous:2013:CIVj

Anonymous:2013:CIVk


Anonymous:2013:CIVl


Anonymous:2013:CIVm


Anonymous:2013:CIVO


Anonymous:2013:CIVp


Anonymous:2013:CIVq


Anonymous:2013:CIVr


Anonymous:2013:CIVr

Anonymous:2013:CIVs


Anonymous:2013:CIVb


Anonymous:2013:CIVt


Anonymous:2013:CIVu


Anonymous:2013:CIVv


Anonymous:2013:CIVw


Anonymous:2013:CIVx

REFERENCES

Anonymous:2013:CIVy


Anonymous:2013:CIVz


Anonymous:2013:CIVba


Anonymous:2013:CIVbb


Anonymous:2013:CIVbc


Anonymous:2013:CIVc


Anonymous:2013:CIVbd

Anonymous:2013:CIVbe


Anonymous:2013:CIVbf


Anonymous:2013:CIVbg


Anonymous:2013:CIVd


Anonymous:2013:CIVe


Anonymous:2013:CIVf


Anonymous:2013:CIVg

REFERENCES

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2014:CII

Anonymous:2014:CIVa

Anonymous:2014:CIVb

Anonymous:2014:CIVx

Anonymous:2014:CIVz


Anonymous:2014:CIVba


Anonymous:2014:CIVbc


Anonymous:2014:CIVbd


Anonymous:2014:CIVbe


REFERENCES


Anonymous:2014:CIVbi


Anonymous:2014:CIVbl


<table>
<thead>
<tr>
<th>References</th>
<th>Anonymous:2014:CIVbo</th>
</tr>
</thead>
</table>

**Anonymous:2014:CIVbo**

REFERENCES


Anonymous:2014:CIVch


Anonymous:2014:CIVcj


Anonymous:2014:CIVck


Anonymous:2014:CIVcl


Anonymous:2014:CIVcm


Anonymous:2014:CIVve

REFERENCES


Anonymous:2014:CIVg


Anonymous:2014:CIVh


Anonymous:2014:CIVi


Anonymous:2014:CIVj


Anonymous:2014:CIVk


Anonymous:2014:CIVm

Anonymous:2014:CIVn

Anonymous:2014:CIVo


Anonymous:2014:CIVq

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt
DEN JCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2015:CIVx


Anonymous:2015:CIVy


Anonymous:2015:CIVz


Anonymous:2015:CIVba


Anonymous:2015:CIVbb


Anonymous:2015:CIVbc


Anonymous:2015:CIVbd


REFERENCES

Anonymous:2015:CIVbm

Anonymous:2015:CIVc

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVbn

Anonymous:2015:CIVbo

Anonymous:2015:CIVbp
REFERENCES


Anonymous:2015:CIVcc


Anonymous:2015:CIVcd


Anonymous:2015:CIVce


Anonymous:2015:CIVh


Anonymous:2015:CIVi


Anonymous:2015:CIVj


Anonymous:2015:CIVk


REFERENCES


REFERENCES


Anonymous:2016:CIVbc


Anonymous:2016:CIVbd


Anonymous:2016:CIVbe


Anonymous:2016:CIVbf


Anonymous:2016:CIVbg


Anonymous:2016:CIVbh


Anonymous:2016:CIVbi


Anonymous:2016:CIVbj

Anonymous:2016:CIVd


Anonymous:2016:CIVe


Anonymous:2016:CIVbk


Anonymous:2016:CIVbl


Anonymous:2016:CIVbm


Anonymous:2016:CIVbn


Anonymous:2016:CIVbo


Anonymous:2016:CIVbp

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES

Anonymous:2016:CIVbx


Anonymous:2016:CIVby


Anonymous:2016:CIVbz


Anonymous:2016:CIVf


Anonymous:2016:CIVg


Anonymous:2016:CIVca


Anonymous:2016:CIVcb

Anonymous:2016:CIVcc


Anonymous:2016:CIVh


Anonymous:2016:CIVi


Anonymous:2016:CIVj


Anonymous:2016:CIVk


Anonymous:2016:CIVl


Anonymous:2016:CIVm

Anonymous:2016:CIVn

Anonymous:2016:CIVO

Anonymous:2016:CIVp

Anonymous:2016:CIVq

Anonymous:2016:CIVr

Anonymous:2016:CIVs

Anonymous:2016:CIVt

Anonymous:2016:CIVu


Anonymous:2016:IIr


Anonymous:2016:IIs


Anonymous:2016:IIu


Anonymous:2016:IICa


Anonymous:2016:IICs


Anonymous:2016:IICu


Anonymous:2016:IICw


Anonymous:2016:IICy

Anonymous:2016:IICba


Anonymous:2016:IICc


Anonymous:2016:IICe


Anonymous:2016:IICg


Anonymous:2016:IICi


Anonymous:2016:IICk


Anonymous:2016:IICm

REFERENCES

Anonymous:2016:IICo

Anonymous:2016:IICq

Anonymous:2016:IICb

Anonymous:2016:IICt

Anonymous:2016:IICv

Anonymous:2016:IICx

Anonymous:2016:IICz
Anonymous:2016:IICbb


Anonymous:2016:IICd


Anonymous:2016:IICf


Anonymous:2016:IICj


Anonymous:2016:IICl


Anonymous:2016:IICn


Anonymous:2016:IICm


REFERENCES


Anonymous:2016:IIEb


Anonymous:2016:IIEc


Anonymous:2016:IIEd


Anonymous:2016:IIEf


Anonymous:2016:IIEg


Anonymous:2016:IIEh


Anonymous:2016:IIEi

REFERENCES

April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Anonymous:2016:IITc


Anonymous:2016:IITd


Anonymous:2016:IITf


Anonymous:2016:IITg


Anonymous:2016:IITh


Anonymous:2016:IITi

REFERENCES


REFERENCES

Anonymous:2017:CIVn


Anonymous:2017:CIVo


Anonymous:2017:CIVp


Anonymous:2017:CIVq


Anonymous:2017:CIVr


Anonymous:2017:CIVs


Anonymous:2017:CIVt


Anonymous:2017:CIVu

REFERENCES


Anonymous:2017:CIVd


Anonymous:2017:CIVe


Anonymous:2017:CIVf


Anonymous:2017:CIVg


Anonymous:2017:CIVh


Anonymous:2017:CIVi


Anonymous:2017:E


Anonymous:2017:IIa

Anonymous:2017:IIB


Anonymous:2017:IIC


Anonymous:2017:IID


Anonymous:2017:IIE


Anonymous:2017:IIF


Anonymous:2017:IIG


Anonymous:2017:IIH


Anonymous:2017:III

Anonymous:2017:IIj


Anonymous:2017:IIk


Anonymous:2017:IIl


Anonymous:2017:IIm


Anonymous:2017:IIn


Anonymous:2017:IIo


Anonymous:2017:IIp


Anonymous:2017:IIq

Anonymous:2017:IIR


Anonymous:2017:IIS


Anonymous:2017:IIT


Anonymous:2017:IIV


Anonymous:2017:IIV


Anonymous:2017:IIV


Anonymous:2017:IIX


Anonymous:2017:IIX

Anonymous:2017:IIz

Anonymous:2017:IIba

Anonymous:2017:IIbb

Anonymous:2017:IIbc

Anonymous:2017:IIbd

Anonymous:2017:IIbe

Anonymous:2017:IIbf

Anonymous:2018:CIVa
Anonymous:2018:CIVb


Anonymous:2018:CIVk


Anonymous:2018:CIVl


Anonymous:2018:CIVm


Anonymous:2018:CIVn


Anonymous:2018:CIVo


Anonymous:2018:CIVp


Anonymous:2018:CIVq

Anonymous:2018:CIVr

Anonymous:2018:CIVs

Anonymous:2018:CIVt

Anonymous:2018:CIVu

Anonymous:2018:CIVc

Anonymous:2018:CIVv

Anonymous:2018:CIVw

Anonymous:2018:CIVx
Anonymous:2018:CIVy


Anonymous:2018:CIVz


Anonymous:2018:CIVba


Anonymous:2018:CIVbb


Anonymous:2018:CIVbc


Anonymous:2018:CIVbd


Anonymous:2018:CIVbe

Anonymous:2018:CIVbf

Anonymous:2018:CIVbg

Anonymous:2018:CIVbh

Anonymous:2018:CIVbi

Anonymous:2018:CIVd

Anonymous:2018:CIVbj

Anonymous:2018:CIVbk
Anonymous:2018:CIVbl


Anonymous:2018:CIVe


Anonymous:2018:CIVf


Anonymous:2018:CIVg


Anonymous:2018:CIVh


Anonymous:2018:CIVi


Anonymous:2018:CIVj


Anonymous:2018:IIa

Anonymous:2018:IIb


Anonymous:2018:IIc


Anonymous:2018:IId


Anonymous:2018:IIf


Anonymous:2018:IIg


Anonymous:2018:IIf

Anonymous:2018:IIj


Anonymous:2018:IIm


Anonymous:2018:IIo


Anonymous:2018:IIz


Anonymous:2018:IIba


Anonymous:2018:IIbb


Anonymous:2018:IIbc


Anonymous:2018:IIbd


Anonymous:2018:IIbe


Anonymous:2019:CIVa


Anonymous:2019:CIVj

REFERENCES


Anonymous:2019:CIVs


Anonymous:2019:CIVb


Anonymous:2019:CIVt


Anonymous:2019:CIVu


Anonymous:2019:CIVv


Anonymous:2019:CIVw


Anonymous:2019:CIVx

Anonymous:2019:CIVy


Anonymous:2019:CIVz


Anonymous:2019:CIVba


Anonymous:2019:CIVbb


Anonymous:2019:CIVbc


Anonymous:2019:CIVc


Anonymous:2019:CIVbd


Anonymous:2019:CIVi


Anonymous:2019:IIa


Anonymous:2019:IIb


Anonymous:2019:IIc


Anonymous:2019:IId


Anonymous:2019:IIe


Anonymous:2019:IIf


Anonymous:2019:IIf

Anonymous:2019:I Ih


Anonymous:2019:IIi


Anonymous:2019:IIj


Anonymous:2019:IIk


Anonymous:2019:IIl


Anonymous:2019:IIm


Anonymous:2019:IIo


Anonymous:2019:IIp

Anonymous:2019:IIp


Anonymous:2019:IIq


Anonymous:2019:IIr


Anonymous:2019:IIs


Anonymous:2019:IIt


Anonymous:2019:IIu


Anonymous:2019:IIv


Anonymous:2019:IIw


REFERENCES


Allen:2014:SNU


Arifin:2016:GTH


Ali:2010:RCR


Anjos:2015:TAE


Anderson:2017:RSZ


Avramopoulos:2013:VLN


REFERENCES


**Amaouch:2017:BPH**


**Abramyan:2016:CAM**


**Ang:2019:MHB**


**Alvarez-Thon:2018:SOE**


**Alvarez-Thon:2018:IGP**

REFERENCES


REFERENCES

Burger:2011:EPP


Bachler:2012:QCC


Borras-Almenar:2010:MPC


Bhagat:2019:ELP


Beu:2018:CFF


Balius:2013:GBM

Trent E. Balius, William J. Allen, Sudipto Mukherjee, and Robert C. Rizzo. Grid-based molecular footprint compari-


**Banerjee:2018:CPS**


**Bronova:2018:SNU**


**Bucinsky:2011:REH**


**Bazgier:2016:ERI**


**Burger:2013:EOV**


Bandura:2012:FPC


Bandura:2014:TZS


Bruckner:2016:TDC


Bendazzoli:2014:TPS


Brooks:2013:ENP


Bushnell:2011:FBP

Eric A. C. Bushnell, Edvin Erdtman, Jorge Llano, Leif A. Eriksson, and James W. Gauld. The first branching point in porphyrin biosynthesis: a systematic docking, molecular dynamics and quantum mechanical/molecular mechanical study of substrate binding and mechanism of uroporphyrinogen-III
REFERENCES


<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Bushnell:2013:APH


Bose:2017:IED


Bhatia:2018:TMC


Bosson:2013:BAQ


Borocci:2019:NCN


Brovarets:2013:AUC

[BH13] Ol’ha O. Brovarets’ and Dmytro M. Hovorun. Atomistic understanding of the C·T mismatched DNA base pair tau-
REFERENCES


REFERENCES


Boo:2010:IDS


Bevc:2015:SNU


Berezniak:2012:SDA


Baranov:2011:ELD


Boateng:2013:CTC

REFERENCES

Banushkina:2015:FSA


Bazzoli:2017:SHB


Borpuzari:2017:NNT


Bykov:2017:GED


Bilbrey:2013:ELC


Baldes:2011:ASC


Baranowska-Laczkowska:2013:NBS


Berski:2010:IQC


Berski:2011:ELF


Bezkorovaynaya:2012:MSS


Baranowska-Laczkowska:2013:OBS


Baranowska:2010:MSO

[BLS10] Angelika Baranowska, Krzysztof Z. Laczkowski, and Andrzej J. Sadlej. Model studies of the optical rotation, and theo-


REFERENCES

2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES

Bozkaya:2018:AEG


Bohme:2018:RDM


Bordogna:2011:PAP


Borkar:2013:HBC


Beata:2019:CNT


Bandura:2016:AZF

[BPE16] Andrei V. Bandura, Vitaly V. Porsev, and Robert A. Evarestov. Application of zone-folding approach to the first-


REFERENCES

Beheshti:2012:HTO

Bondesson:2008:BSD

Bondesson:2012:EBS

Bosson:2012:IQC

Baranowska:2010:PBS

Black:2010:BHH
Grainne Black and John M. Simmie. Barrier heights for H-atom abstraction by HO₂ from n-butanol — a simple yet ex-


[BSF18] Antonio Bauzá, Saikat Kumar Seth, and Antonio Frontera. Molecular electrostatic potential and “atoms-in-molecules” analyses of the interplay between \( \pi \)-hole and lone pair \( \pi / X - H \cdots \pi / \mathrm{metal} \cdots \pi \) interactions. Journal of Computational Chemistry, 39(9):458–463, April 5, 2018. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[Bukharov:2018:HCI]


REFERENCES


REFERENCES


REFERENCES

Brovarets:2014:DTL


Casanova:2010:SME


Chong:2016:ISC


Casanova:2013:PAM


Cammi:2015:NEP


Cammi:2019:RCC

REFERENCES

2309–2317, October 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Chilton:2013:SNU


Courcot:2011:MIB


Courcot:2011:OMMa


Courcot:2011:OMMb


Czyżnikowska:2011:POS

REFERENCES


REFERENCES

Cardone:2015:DCN


Chen:2016:HSC


Chuang:2011:IBS


Chakraborty:2012:VNL


Chys:2012:SPC


Chakraborty:2018:CIT

[CC18a] Debdutta Chakraborty and Pratim Kumar Chattaraj. Confinement induced thermodynamic and kinetic facilitation of


REFERENCES


[CCOH14] Hsin-Lin Chiang, Chun-Jung Chen, Hisashi Okumura, and Chin-Kun Hu. Transformation between α-helix and β-sheet...


REFERENCES


REFERENCES


[CVT2017:DME] John P. Cvitkovic and George A. Kaminski. Developing multi-site empirical force field models for Pt(II) and cisplatin. *Jour-
REFERENCES

Cummins:2018:RMC


Chan:2017:CFS


Chan:2019:RTR


Choi:2016:PHC


Chen:2011:RBS

REFERENCES


[CLK11] Timothy H. Click, Aibing Liu, and George A. Kaminski. Quality of random number generators significantly affects results of


Cendic:2013:MMC


Calzado:2011:HBS


Campetella:2017:CTE


Calborean:2018:CMP


Comba:2013:EFC


Christ:2010:BIF


Click:2012:IEP


Cvitkovic:2019:PCG


Cui:2011:EMT


Charistos:2017:COC


Caruso:2018:XRC

REFERENCES


REFERENCES

uary 5, 2019. CODEN JCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


REFERENCES

Chen:2017:APE


Coe:2013:MCC


Carvalho:2013:PMD


Costanzi:2012:SSA


Chuev:2014:ESS


Cates:2019:HBH

[CvM19] Emma L. Cates and Tanja van Mourik. Halogen bonding with the halogenabenzene bird structure, halobenzene, and


REFERENCES

Chen:2010:AFE


Cui:2019:BSP


Christodouleas:2010:TBE


Chen:2014:MRQ


Chen:2009:PRW


Chen:2013:EPR

Chen:2015:FFD


Chintapalli:2010:CLF


Cao:2017:MII


Cheron:2017:SNU


Chandra:2012:TII

Curco:2011:SSA

Chen:2011:EMB

Chen:2019:TEG

Dickson:2016:CFB

deAngulo:2012:RCA

Domingo:2015:ERT
[ DAdGR15 ] Alex Domingo, Celestino Angeli, Coen de Graaf, and Vincent Robert. Electronic reorganization triggered by electron trans-
REFERENCES

DeSilva:2019:ASE


deAndrade:2015:EMR


Dandu:2018:PDF


DAlessando:2015:EDS


Dracinsky:2012:VAC

REFERENCES

DiPasquale:2016:SNU


Dutra:2014:LLL


Deshmukh:2011:IHB


Diaz:2017:END


Dickson:2017:OAS


Demichelis:2015:FPM


DiTommaso:2017:TAP


Drujon:2013:PHC


deCourcy:2015:BOQ


Gouveia:2019:DAL


Dong:2012:BCE


 REFERENCES


REFERENCES

-Du:2013:PEF-


-DiPasquale:2014:MTS-


-DeBeer:2011:MDS-


-Duan:2013:TCD-


-Devereux:2014:SFA-


-Douglas-Gallardo:2019:ESB-

Oscar A. Douglas-Gallardo, David Adrian Saez, Stefan Vogt-Geisse, and Esteban Vöhringer-Martinez. Electronic structure


REFERENCES

November 15, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


REFERENCES


[DLW12] Xiang Po Du, Veng Cheong Lo, and Yuan Xu Wang. The effect of structure and phase transformation on the mechan-

Duan:2015:UBI


Dolgonos:2015:SNS


Dittner:2015:EGO


DelGaldo:2018:TAS


DasGupta:2017:CAF

REFERENCES


DeBiase:2014:MSD


DeBiase:2015:SNU


Dupuis:2019:MOA


DeLaPierre:2011:PSF


Dominikowska:2011:CDA

REFERENCES

Drake:2015:FFD


Dolbundalchok:2016:GCI


Dreuw:2012:CDI


Denning:2011:IHS


Druart:2016:PLB


Deb:2016:RTL

[DPDSL16] Indrajit Deb, Rupak Pal, Joanna Sarzynska, and Ansuman Lahiri. Reparameterizations of the $\chi$ torsion and Lennard-


REFERENCES


Dohm:2017:SNU


DeLaLande:2011:SDA


Delcey:2019:ECL


desouza:2016:RCS


Du:2011:MMS

Dreux:2019:ESE


deVaca:2016:SNU


DiDomizio:2014:SNU


DeVries:2017:FAG


Dieterich:2017:SNU


Dai:2011:IPS

[DWL11] Qi Dai, Li Wu, and Lihua Li. Improving protein structural class prediction using novel combined sequence information.


Eller:2015:CAE

Elias:2018:MIS

Ehara:2013:CII

Edel:2016:IFP

Erba:2013:ADS
Ehara:2016:PCS


Elenewski:2013:CPC


El-Hamdi:2016:CAB


El-Hamdi:2019:HSP


Eisenberg:2013:RTG


Eilmes:2015:SIT

REFERENCES


Ehlert:2017:QBS


Ekesan:2014:TPE


Elking:2016:TAF


Emamian:2019:ENP


Eng:2019:GDT

REFERENCES


REFERENCES


[ETLS17] Christopher R. Ellis, Cheng-Chieh Tsai, Fang-Yu Lin, and Jana Shen. Conformational dynamics of cathepsin D and

**Eskandari:2014:HHI**


**Eidi:2018:CVF**


**Escorcia:2018:MDS**


**Epifanovsky:2013:SNU**


**Fredin:2018:SCI**

Lisa A. Fredin and Thomas C. Allison. Semiempirical configuration interaction calculations for ru-centered dyes*.


Zdeněk Futera and Jaroslav V. Burda. Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM

**Forti:2011:CCI**


**Fletcher:2019:VMP**


**Fonseca:2018:CFP**


**Felberg:2017:POS**


**Fernandez:2016:IBA**

Frishberg:2018:CSE


Francisco:2017:MAI


Ferrari:2010:IPS


Fogolari:2015:AAL


Fan:2010:NDB


Ferro-Costas:2012:QBE

[FCOGM12] David Ferro-Costas, Nicolás Otero, Ana M. Graña, and Ricardo A. Mosquera. A QTAIM-based energy partitioning for understanding the physical origin of conformational preferences: Application to the Z effect in O═C — X — R and


REFERENCES


Ferenczy:2013:CWFa


Ferguson:2017:BBA


Farrokhpour:2011:TSV


Fracchia:2014:MLQ


Fedichev:2011:CEM

REFERENCES


REFERENCES


[Farrokhpour:2011:IPE] Hossein Farrokhpour, Zainab Mombeini, Mansoor Namazian, and Michelle L. Coote. Intermolecular potential energy sur-

[Farrell:2012:SNU]


[Foroutan-Nejad:2011:DRC]


[Fom11]


[Fom13]


[FP17a]

Fletcher:2017:TAA


Futera:2012:BPS


Fujimoto:2019:DDF


Forni:2014:HBB


Franchini:2013:BFC


Fraenkel:2015:ISL

Dan Fraenkel. Ion strength limit of computed excess functions based on the linearized Poisson–Boltzmann equation. *Journal of Computational Chemistry*, 36(31):2302–2316, December 5,
REFERENCES

[2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic). See erratum [Fra16].


[FSC+14] Biao Fu, Aleksandr B. Sahakyan, Carlo Camilloni, Gian Gaetano Tartaglia, Emanuele Paci, Amedeo Caflisch, Michele

Furmanchuk:2018:PSC


Fought:2017:STE


Fought:2019:IES


Fomin:2015:BBC


Flick:2012:MLB

REFERENCES

2515, December 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Fan:2015:DDS


Fu:2019:CDZ


Faraggi:2012:SXI


Glushkov:2012:OCM


Glushkov:2014:MSF


Grabarek:2018:IES

[GA18] Dawid Grabarek and Tadeusz Andruniów. Initial excited-state relaxation of locked retinal protonated Schiff base chro-
 REFERENCES


Garberoglio:2012:SNU


Gavrish:2012:AER


Gumerov:2012:HAF


Gutsev:2019:HDM


Gutsev:2016:SPI

Ganesan:2011:SDE


Garcia:2019:EST


Gross:2017:MAI


Grebner:2011:ETS


Ghillemijn:2011:SCH


Grebner:2014:SNU

[Christoph Grebner, Johannes Becker, Daniel Weber, Daniel Bellinger, Maxim Tafipolski, Charlotte Brückner, and Bernd]


Paola Gramatica, Nicola Chirico, Ester Papa, Stefano Cassani, and Simona Kovarich. Software news and updates: QSARINS: a new software for the development, analysis, and...


[Gong:2016:ACD]


[Gao:2015:EPC]


[Gillessen:2010:CSI]


[Gao:2017:IFP]


[Grimme:2011:EDF]

Stefan Grimme, Stephan Ehrlich, and Lars Goerigk. Effect of the damping function in dispersion corrected density func-

**Gresh:2014:PMM**


**Goldstein:2011:NHA**


**Godey:2018:EGT**


**Ghasemi:2017:RDS**


**Galvez:2010:TST**


REFERENCES


Eric D. Glendening, Clark R. Landis, and Frank Weinhold. Software news and updates: NBO 6.0: Natural bond or-


REFERENCES

Guo:2016:DQT


Gotz:2010:MEE


Ginex:2016:DVH


Graf:2016:FEC


Ghysels:2012:CNM


[Goodarzi:2018:ESP] Mooin Goodarzi, Fariba Nazari, and Francesc Illas. Electronic and structural properties of $\text{Li}_n \oplus \text{Be}_2 \text{B}_8$ $(n = 1-14)$ and $\text{Li}_n \oplus \text{Be}_2 \text{B}_{36}$ $(n = 1-21)$ nanoflakes shed light on possible anode materials for Li-based batteries. *Journal of Computational Chemistry*, 39(22):1795–1805, August 15, 2018. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).


Genheden:2011:CDI


Grajciar:2015:LMI


Grabowski:2018:TFT


Garcia-Risueno:2014:SPP


Gonzalez:2012:SRI


Giri:2010:BAS

REFERENCES


[!GRN19] Miquel Garcia-Ratés and Frank Neese. Efficient implementation of the analytical second derivatives of Hartree–Fock and

**Geppert:2012:VSC**


**Genheden:2015:BAA**


**Grigoropoulos:2011:SEP**


**Gomes:2012:SNU**


**Gaillard:2014:PDM**

Galvelis:2015:RSE


Galvelis:2016:FAW

[GS16] Raimondas Galvelis and Yuji Sugita. The following articles were published in past issues of the *Journal of Computational Chemistry*. Replica state exchange metadynamics for improving the convergence of free energy estimates. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Gadre:2018:P


Grauffel:2010:FFP


Garcia-Sosa:2010:DEI


Gapurenko:2015:GCG

Guo:2019:MRO


Gotz:2013:PDF


Gogtas:2010:TDQ


Garbounis:2010:SEB


Guruge:2018:BFP


Ghysels:2010:CSV

[GVP+10] An Ghysels, Veronique Van Speybroeck, Ewald Pauwels, Saron Catak, Bernard R. Brooks, Dimitri Van Neck, and


Li-Hua Gan, Rui Wu, Jian-Lei Tian, Joseph Clarke, Christopher Gibson, and Patrick W. Fowler. From C$_{58}$ to C$_{62}$ and back: Stability, structural similarity, and ring current. *Journal of Computational Chemistry*, 38(3):144–151, January 30,
REFERENCES

2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


July 30, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Guo:2012:ICS]

[Gao:2016:CSG]

[Hahn:2010:IRE]

[Holmes:2016:ABV]

[Heinen:2014:HAE]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>
Hochheim:2015:AIC


Hohnerbach:2019:AAN


Holmes:2017:CSS


Hsu:2017:SNU


Holt:2010:NPI

Honigmann:2012:CCI

Hurd:2017:QMS

Hynninen:2014:SNU

Halbert:2011:SGB

Hendrickx:2010:UTA
Hughes:2015:RSA


Heinz:2015:TSI


Hellweg:2012:SNU


Huang:2015:ETAAA


Huang:2015:ETABB


Huang:2015:TAE

Jing Huang, Likai Du, Deping Hu, and Zhenggang Lan. Theoretical analysis of excited states and energy transfer mechanism in conjugated dendrimers. *Journal of Computational
Hansen:2012:AED


Hildebrandt:2014:ECR


Harris:2017:CCF


Higo:2015:VSC


Hattab:2019:SBE

Awatef Hattab, Zoubeida Dhaouadi, Alhadji Malloum, Jean Jules Fifen, Souad Lahmar, Nino Russo, and Emilia


Hitzenberger:2015:PRA


Heuser:2016:WFF


Holec:2016:SNU


Heuser:2017:ANE


Higham:2018:OLC


Hu:2010:GDM

REFERENCES


Hill:2013:ABS


Hirst:2017:ISB


Hu:2010:ABF


Hnyk:2013:CCC


Heine:2009:CCW


REFERENCES


[He:2013:SNU] Yuye He, Chin Yee Liew, Nitin Sharma, Sze Kwang Woo, Yi Ting Chau, and Chun Wei Yap. Software news and up-

Herbers:2013:RGC


Harger:2017:TOA


Huang:2015:ESM


Huang:2017:IIV


Huang:2018:EII

Huang:2013:CAA

Hills:2016:MPS

Hongo:2010:RNG

Hallen:2018:OOS

Hall:2013:EPS

Hirano:2017:PAC

Hirano:2017:PAC

Hongo:2010:RNG

Hallen:2018:OOS

Hills:2016:MPS

Huang:2013:CAA


REFERENCES

5, 2017. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[Harada:2016:SWO]


[Harada:2015:PFP]


[Heringer:2007:AES]


[Heringer:2012:EAE]


[Harada:2019:CSO]
Hofener:2014:CCF


Hrsak:2017:OTN


Harabuchi:2016:NST


Haque:2010:PAP


Henriksson:2010:PDT


He:2013:MPB

Heffernan:2018:SSB


Hinsen:2012:SNU


Heggen:2016:CUH


Hermann:2016:SNU


Hermann:2017:OSF

Howell:2016:MCS


Huang:2019:CHS


Heimbach:2017:SNU


Harano:2013:MAA


Husseini:2017:CIS


Huang:2017:EBE

REFERENCES

5, 2017. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[Huang:2011:CSR] Wen-Fei Huang, P. Raghunath, and M. C. Lin. Computational study on the reactions of $\text{H}_2\text{O}_2$ on $\text{TiO}_2$ anatase (101) and rutile (110) surfaces. *Journal of Computational Chemistry*,
Hernandez-Rodriguez:2013:EDD


Hahnke:2011:PASb


Helmich:2012:SRM


Harris:2014:ISB


Hu:2014:SCM


Hagras:2016:ETP

REFERENCES

Harris:2016:PEE


Harada:2017:SDS


Harada:2017:TSP


Heyndrickx:2011:PSB


Hanscam:2019:SSA


REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

He:2019:EIG


Hao:2011:ACV


Huang:2011:IQD


Harada:2015:ECS


Harada:2017:CFP

Higuchi:2019:MUA


Huang:2016:FSL

Bolong Huang. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. *Journal of Computational Chemistry*, 37(9):825–835, April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Huggins:2012:BTA


Huggins:2014:CDM


Hunter:2012:DBS


Hogan:2016:CBH

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic). See corrigendum [HvM17].


[Hou:2011:APM] Tingjun Hou, Junmei Wang, Youyong Li, and Wei Wang. Assessing the performance of the molecular mechanics/Poisson...

**Hu:2016:QST**


**Huang:2010:IPE**


**Han:2011:END**


**Hoque:2016:SNU**


**Harada:2019:TPS**

[HYNS19] Ryuhei Harada, Ryunosuke Yoshino, Hiroaki Nishizawa, and Yasuteru Shigeta. Temperature-pressure shuffling outlier flooding method enhances the conformational sampling of
REFERENCES


REFERENCES


[ICS+13] Christopher J. R. Illingworth, Sree V. Chintapalli, Stefano A. Serapian, Andrew D. Miller, Vaclav Veverka, Mark D. Carr,

Ioannidis:2016:SNU


Iype:2013:PRF


Ihlenfeldt:2012:LEC


Ito:2010:SFC


Ivanova:2018:TLM


Iida:2016:VFE


Ignjatovic:2018:CMG


Ishikawa:2013:XOA

Atsushi Ishikawa and Hiroshi Nakatsuji. XPS of oxygen atoms on Ag(111) and Ag(110) surfaces: Accurate study with SAC/SAC-CI combined with dipped adcluster model. *Journal of Computational Chemistry*, 34(21):1828–1834, August 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Inagaki:2019:EPE


Imada:2018:DFS


Ishikawa:2018:RMC


Imamura:2013:KED


Inui:2013:FFM


Illingworth:2010:CBS


Ishikawa:2019:REB


Ikabata:2015:LRD

[ITIN15] Yasuhiro Ikabata, Yusuke Tsukamoto, Yutaka Imamura, and Hiromi Nakai. Local response dispersion method in periodic

**Iioka:2019:KSL**


**Ikebe:2011:TTT**


**Inakollu:2018:SBC**


**Inagaki:2011:PCE**


**Jalili:2010:MDS**

REFERENCES

Jablonski:2014:RBS


Jablonski:2018:BPB


Jablonski:2018:HTB


Jia:2017:EMI


Jayasinghe-Arachchige:2019:HCD


Janesko:2016:TAE

Benjamin G. Janesko. Topological analysis of the electron delocalization range. *Journal of Computational Chemistry*, 37
Jaramillo-Botero:2011:LSL


REFERENCES

Jahangiri:2014:PDF


Jaillet:2011:RTC


Jiang:2010:INA


Jones:2019:CAU


Jorge:2017:PHSa


Jenkins:2013:SNU

REFERENCES


Jimenez-Halla:2009:TAT


Jimenez-Halla:2011:ETA


Jia:2019:SFE


Jakobtorweihen:2013:CCM


Jiao:2016:CCS

Jin:2013:CPR


Joy:2016:CXZ


Jeong:2014:SNU


Jankowska:2016:SOZ


Joshi:2019:DPP

REFERENCES


[JW12] Kameron R. Jorgensen and Angela K. Wilson. Letters to the editor: Comment on the paper “Extensive Theoretical Studies of a New Energetic Material: Tetrazino-Tetrazine-Tetraoxide (TTTO)” by Xinli Song, Jicun Li, Hua Hou, and

[Jones:2016:MHD]


[Jensen:2015:ETS]


[Jono:2010:MIQ]


[Ji:2015:IBL]


[Jin:2016:HAT]


Anna-Pitschna E. Kunz, Jane R. Allison, Daan P. Geerke, Bruno A. C. Horta, Philippe H. Hünenberger, Sereina Riniker,


[KB10] Young Kee Kang and Byung Jin Byun. Assessment of density functionals with long-range and/or empirical dispersion corrections for conformational energy calculations of peptides.
REFERENCES


Knight:2011:AEI


Knight:2011:SIS


Konig:2011:NBS


Kazaryan:2013:ADF


Kessler:2014:MDH


Krause:2014:CLS

REFERENCES


**Kendrick:2016:SNU**


**Kolokathis:2019:KRC**


**Kalugina:2012:SHV**


**Kalyaanamoorthy:2013:LRM**


**Kaushik:2013:SDS**


**Koes:2014:SBV**

Kalugina:2012:TIE


Keceli:2018:SSM


Karilainen:2015:VWI


Karczynska:2017:EMQ


Kurnosov:2014:EIP

Alexander Kurnosov, Mario Cacciatore, Antonio Laganà, Fernando Pirani, Massimiliano Bartolomei, and Ernesto Garcia.


Shaun M. Kandathil, Timothy L. Fletcher, Yongna Yuan, Joshua Knowles, and Paul L. A. Popelier. Accuracy and tractability of a kriging model of intramolecular polarizable...


REFERENCES


Kearns:2017:CCF


Kido:2019:NMF


Kashimura:2019:PES


Ko:2010:CIC


Kessler:2012:BEF

Kobayashi:2017:SNU


Kaliman:2017:SNU


Krause:2017:SNU


Kroeger:2019:CFM


Kondo:2018:AER

Kyriakidou:2019:DQP


Kuenzer:2018:PVC


Kaledin:2019:EST


Kondo:2019:HBD


Kornobis:2013:ESS

Katouda:2011:TLH


Klimenko:2016:NEA


Karagiannis:2011:DFS


Kerber:2013:SNU


Kingsley:2014:ILI

REFERENCES


Khan:2018:HPT


Kozuch:2013:SCS


Kozlowska:2010:DSCb


Kawakami:2019:DCC


Ketrat:2019:TSM

[KMT+19] Sombat Ketrat, Thana Maihom, Piti Treesukul, Bundet Boekfa, and Jumras Limtrakul. Theoretical study of methane adsorption and C-H bond activation over Fe-embedded

**Katouda:2017:MOH**


**Kim:2011:DDB**


**Kneller:2011:CFD**


**Katouda:2016:MPA**


**Kjaer:2012:NMR**

Kramer:2018:ECO


Karamanis:2014:SNO


Koput:2015:IGS


Koput:2015:ISC


Koput:2016:IPE

Koput:2017:IPEa


Koput:2017:IPEb


Koput:2018:IPE


Koput:2019:IGS


Koput:2019:ISV


Kosenkov:2016:SNU

Kowal:2011:IMG


Kim:2012:SHM


Kumar:2010:IEC


Kozlowski:2011:NIQ


Kutzner:2015:SNU


Kutzner:2019:MBY

Carsten Kutzner, Szilárd Páll, Martin Fechner, Ansgar Esztermann, Bert L. de Groot, and Helmut Grubmüller. More


Kovacevic:2013:TSM


Kaliman:2015:SNU


Kasahara:2018:TDP


Kulsha:2019:SS


Kraka:2016:REB


Kulp:2012:SIM

Kar:2013:LRCa


Krupicka:2017:TAG


Kollmar:2019:PBS


Kjaer:2011:CCP


Karton:2016:HFP


Kar:2013:LRCb


Kuttel:2016:SNU


Kleesiek:2010:RSS


Kefalidis:2012:DSM


Kowsari:2018:SER


Kamiya:2019:ISH

Muneaki Kamiya and Tetsuya Taketsugu. Ab initio surface hopping excited-state molecular dynamics approach on the


REFERENCES


Kuriakose:2015:CSA


Karolak:2014:ESS


Karimi-Varzaneh:2011:IMD


Kritayakornupong:2010:IQM


Kubar:2015:SNU


Kratz:2016:SNU


**Knight:2013:AQA**


**Kim:2011:ECE**


**Kumar:2015:SNU**


**Kirilchuk:2015:MPF**


**Kajiwara:2017:ITM**

Yuta Kajiwara, Satoshi Yasuda, Yuuki Takamuku, Takeshi Murata, and Masahiro Kinoshita. Identification of thermostabilizing mutations for a membrane protein whose three-


[Liu:2010:FDO] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macro-

Liu:2011:RCR


Lv:2016:CEH


Licari:2015:SNU


Laflamme:2012:SIS


Lamine:2019:CCZ

Walid Lamine, Salima Boughdiri, Lorraine Christ, Christophe Morell, and Henry Chermette. Coordination chemistry of Zn²⁺ with Sal(ph)en ligands: Tetrahedral coordination or

**Lucas:2012:MDS**


**Lazarski:2016:DFT**


**Laury:2011:HVF**


**Lopes:2010:CDP**


**Lingam:2011:SEB**

Lingam:2012:DFS


Lai:2010:CSC


Lu:2012:SNU


Lee:2016:MES


Lee:2017:EIS


Lee:2017:OGI

Kuo Hao Lee and Jianhan Chen. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein


**Li:2010:TSH**


**Liu:2018:PFF**


**Lorenz:2014:BDG**


**Liu:2016:DTI**


**Lee:2013:NBO**

Louis P. Lee, Daniel J. Cole, Mike C. Payne, and Chris-Kriton Skylaris. Natural bond orbital analysis in the ONETEP code: Applications to large protein systems. *Journal of Computa-
Laury:2012:VFS

Lu:2010:FPS

Lizana:2018:TII

Lesch:2017:SNU

Liu:2015:APE
REFERENCES


[LDJ⁺10] Qing-Zhong Li, Xu Dong, Bo Jing, Wen-Zuo Li, Jian-Bo Cheng, Bao-An Gong, and Zhi-Wu Yu. A new unconventional halogen bond $\mathrm{C} \cdots \mathrm{X} \cdot \cdot \cdot \mathrm{H} \cdot \cdot \cdot \mathrm{M}$ between HCCX (X = Cl and Br) and HMH (M = Be and Mg): an ab initio study. *Journal of Computational Chemistry*, 31(8):1662–1669, June 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Lehtola:2015:SNU


Lesiuk:2019:ESV


Law:2014:PFE


Li:2010:EGC


Ling:2011:STC

Lucas:2014:UCM


Li:2019:CIE


Lucke:2017:EPB


Lin:2011:CSS


Lamsabhi:2015:EIT

REFERENCES

Laurent:2014:TUE


Liang:2012:DFS


Lee:2011:CAB


Liu:2014:MDA


Liu:2014:ASM


Lin:2011:RPS


**Loerbroks:2015:SEM**


**Li:2014:EMI**


**Li:2014:MIG**


**Lee:2019:SCM**


**Lin:2018:TSN**


**Loboda:2016:DQP**

[LIRL+16] Oleksandr Loboda, Francesca Ingrosso, Manuel F. Ruiz-López, Heribert Reis, and Claude Millot. Dipole and


Lin:2011:SSO


Latek:2011:CNN


Lee:2013:DSC


Lousada:2016:SCO


Lupan:2016:MEI


Xianfeng Li and Robert A. Latour. The temperature intervals with global exchange of replicas empirical accelerated sampling method: Parameter sensitivity and extension to a complex molecular system. *Journal of Computational Chemistry*,


[LLB+12] Hongping Li, Shuhui Lv, Yijia Bai, Yanjie Xia, Xiaojuan Liu, and Jian Meng. First-principle investigation of magnetic cou-
pling mechanism in hypothesized A-site-ordered perovskite
$YMn_3Sc_4O_{12}$. *Journal of Computational Chemistry*, 33(1):
82–87, January 5, 2012. CODEN JCCHDD. ISSN 0192-8651
(print), 1096-987X (electronic).

**Laref:2012:ESX**

A. Laref, S. Laref, and S. Bin-Omran. Electronic structure,
X-ray absorption, and optical spectroscopy of LaCoO$_3$ in the
ground-state and excited-states. *Journal of Computational
ISSN 0192-8651 (print), 1096-987X (electronic).

**Li:2010:EPF**

Xun Li, Yan Li, Tiejun Cheng, Zhihai Liu, and Renxiao Wang.
Evaluation of the performance of four molecular docking pro-
grams on a diverse set of protein-ligand complexes. *Journal
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

**Lin:2017:NDC**

I-Hsiang Lin, Yu-Huan Lu, and Hsin-Tsung Chen. Nitrogen-
doped C$_{60}$ as a robust catalyst for CO oxidation. *Journal
of Computational Chemistry*, 38(23):2041–2046, September 5,
2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X
(electronic).

**Lin:2017:TID**

Zhifeng Lin, Tian Lu, and Xun-Lei Ding. A theoretical in-
vestigation on doping superalkali for triggering considerable
nonlinear optical properties of Si$_{12}$ C$_{12}$ nanostructure. *Journal
of Computational Chemistry*, 38(18):1574–1582, July 5,
2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X
(electronic).

**Liu:2016:ISV**

Hanzhong Liu, Minghai Li, Jue Fan, and Shuanghong Huo.
Inherent structure versus geometric metric for state space
discretization. *Journal of Computational Chemistry*, 37(14):
1251–1258, May 30, 2016. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).


REFERENCES


Li:2010:NSI


Li:2011:IBH


Lv:2012:IMT


Liao:2011:NGR


Li:2011:FPI


Yan Ying Liang, Bo Li, Xuan Xu, Feng Long Gu, and Chaoyuan Zhu. A density functional theory study on nonlinear optical properties of double cage excess electron compounds: Theoretically design $M\,[Cu(Ag)@(NH_3)_n]$ ($M = Be, Mg$ and $Ca$; $n = 1–3$). *Journal of Computational Chemistry*, 40(9):971–979, April 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Joachim Laun, Daniel Vilela Oliveira, and Thomas Bredow. Consistent Gaussian basis sets of double- and triple-zeta va-


Lee:2016:PGA


Li:2013:CDS


Lombardi:2016:ETD


Lei:2016:CDA


Ly:2017:DFT


Largent:2012:SNU

R. Jeffrey Largent, William F. Polik, and J. R. Schmidt. Software news and updates: Symmetrizer: Algorithmic determi-

Li:2013:PSS


Lasinski:2012:RPI


Lopez:2013:IPE


Lemkul:2015:SNU


Lervik:2017:SNU


Laloo:2019:EFA


Liao:2013:CQO


Liu:2014:OAC


Long:2011:CSU


Liu:2011:IMO


Li:2018:MSF

Jingbai Li, Divya Tadakamalla, and Andrey Yu. Rogachev. Modulating stability of functionalized fullerene cations [R-


[LvG13a] Zhixiong Lin and Wilfred F. van Gunsteren. Influence of variation of a side chain on the folding equilibrium of a β-peptide:


[LWD13] Ruifeng Lu, Yinhui Wang, and Kaiming Deng. Quantum wave packet and quasiclassical trajectory studies of the reaction $\text{H}(^2\text{S}) + \text{CH}(X^2\Pi) ; v = 0, j = 1 \rightarrow \text{C}(^1 \text{D}) + \text{H}_2 (X^1\Sigma^+ g^+)$: Coriolis coupling effects and stereodynamics. *Journal of Computational Chemistry*, 34(20):1735–1742, July 30, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


Hongmei Liu, Hongbo Wang, Jianwei Zhao, and Man-abu Kiguchi. Molecular rectification in triangularly shaped
REFERENCES

459


[LX11] Sen Lin and Daiqian Xie. New ab initio potential energy surfaces for both the ground (X1A') and excited (A1A") electronic states of HSiCl and the absorption and emission spectra of HSiCl/DSiCl. *Journal of Computational Chemistry*, 32(8):1694–1702, June 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


Li:2014:MSP


Li:2018:SBS


Lev:2010:QMI


Liang:2011:PSC


Li:2011:ICC


Levandowski:2016:SHA


Li:2011:TDS


Li:2011:SPN


Li:2010:TDS


Liu:2013:FN


Li:2015:CQM
Wei Li, Yanli Zeng, Xiaoyan Li, Zheng Sun, and Lingpeng Meng. The competition of Y • O and X • N halogen bonds to enhance the group V σ-hole interaction in the NCY • PH₃ • NCX and O PH₃ • NCX • NCY (X, Y F, Cl, and Br) complexes. *Journal of Computational Chemistry*, 36(18): 1349–1358, July 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


A. V. Larin, G. M. Zhidomirov, D. N. Trubnikov, and D. P. Vercauteren. Ion-exchanged binuclear \(\text{Ca}_2\text{O}_x\) clusters, \(x = 1\text{-}4\), as active sites of selective oxidation over MOR and FAU zeolites. *Journal of Computational Chemistry*, 31(2):421–430, January 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Cui Liu, Dong-Xia Zhao, and Zhong-Zhi Yang. Direct evaluation of individual hydrogen bond energy in situ in intra-


Matanovic:2014:ADF


Mironov:2019:SSM


Manz:2013:LEC


Manak:2019:VBD


Manogaran:2019:MBS


Mitchell:2018:DFT


REFERENCES

Mogo:2014:SNU


Mogo:2016:SNU


Manzin:2011:ATS


Mohammed:2014:DRP


Masella:2011:CPF


Masella:2013:MCG

Michel Masella, Daniel Borgis, and Philippe Cuniasse. A multiscale coarse-grained polarizable solvent model for handling

**Mohamed:2016:ESF**


**Mondal:2015:DEO**


**Menendez:2015:OEI**


**Martinez:2015:SNU**


**Moreira:2016:QMC**

Maciejewski:2014:DCD

Mandado:2010:SMA

Mahapatra:2012:DPS

Mendoza-Cortes:2016:PCP

Muz:2015:SGM
Mahapatra:2011:SOS


Mooney:2012:MIG


Martorell:2010:FPS


Maschietto:2018:HCT


Munoz-Castro:2017:EBE


Daniel K. W. Mok, Foo-Tim Chau, Edmond P. F. Lee, and John M. Dyke. High-level ab initio calculations on $\text{HGeCl}$ and the equilibrium geometry of the $\tilde{A}^1\tilde{A}'$ state derived from Franck–Condon analysis of the single-vibronic-level emission spectra of $\text{HGeCl}$ and $\text{DGeCl}$. *Journal of Computational Chemistry*, 31(3):476–491, February 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Lucas Modesto-Costa, Elmar Uhl, and Itamar Borges Jr. Water solvent effects using continuum and discrete models: the


[Miao16] Yinglong Miao, Ferran Feixas, Changsun Eun, and J. Andrew McCammon. The following articles were published in past issues of the *Journal of Computational Chemistry*: Accelerated molecular dynamics simulations of protein folding. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Moreira:2010:PPD


Mollenhauer:2011:AQC


Morao:2017:RAA


Micera:2011:SOC


Mollenhauer:2014:BPT

Marmitt:2015:DSI


Maschietto:2019:UDB


Mulder:2016:SEO


Mikulskis:2012:SAL


Muta:2010:ASF


Meng:2011:CSL

[Qingyong Meng and Ming-Bao Huang. A CAS study on S-loss and O-loss dissociation mechanisms of the \( \text{SO}_2^+ \) ion in...

[Meitei:2017:IIS]


[Maurer:2018:CFE]


[Moin:2011:SDM]


[Maeda:2018:SNU]


[Minh:2018:PTI]

Morishita:2013:FRF


Muhammad:2015:HDH


Mitin:2013:PFM


Maingi:2012:DBT


Martin:2014:CAN


REFERENCES


REFERENCES

481


Merlot:2013:AEE


Middendorf:2015:SSB


Muller:2019:IFT


Miyashita:2017:FFC


Matsui:2013:CSC


Emilia Makarewicz, Jan Lundell, Agnieszka J. Gordon, and Slawomir Berski. On the nature of interactions in the F$_2$OXe···NCCH$_3$ complex: Is there the Xe(IV) — N bond?
REFERENCES


[Mermelstein:2018:FFG]

[Ma:2012:TIR]

[Mo:2013:DSE]

[Mei:2012:EPC]

[Massa:2018:QCP]
Maley:2019:IMS


Masetti:2017:DMM


Malpathak:2019:AIU


Muller:2010:CCR


Mamonov:2016:FGB


Maekawa:2016:RIO

[MMS16] Shintaro Maekawa, Krzysztof Moorthi, and Yasuteru Shigeta. Refractive indices of organo-metallic and -metalloid compounds: a long-range corrected DFT study. *Journal of Com-
REFERENCES


Yoshiharu Mori and Hisashi Okumura. Simulated tempering based on global balance or detailed balance conditions:


**[MP13]** Jorge M. C. Marques and Francisco B. Pereira. A detailed investigation on the global minimum structures of mixed rare-


Mahanta:2011:ISP


Miriyala:2017:DNC


Mandado:2014:AER


Macchi:2018:ETE


Meisner:2011:KIE

REFERENCES


REFERENCES

Marsili:2010:OMD


Malolepsza:2010:SAC


Malolepsza:2012:ESA


Maciejczyk:2010:CGM


Mielczarek:2019:GPE

REFERENCES

Mayne:2013:RPS


Mills:2017:SNU


Martinez:2016:TER


Meier:2012:IGB


Mananghaya:2019:SAG

Mahajan:2019:MCG


Matsuzaki:2019:ENF


Mahajan:2020:EMC


Maeda:2014:ETS


Matsumoto:2019:ACC


Mohan:2010:CAN


Mo:2019:E


Miao:2011:DFT


Matsuzaki:2017:CPD


Matsuzaki:2017:OCS


Mitsuta:2018:ASM


REFERENCES

2464–2472, October 30, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[Nakata:2018:ASD] Hiroya Nakata and Dmitri G. Fedorov. Analytic second derivatives for the efficient electrostatic embedding in the frag-


REFERENCES

Nakatani:2019:CLA

Najeh:2010:ETS

Nowosielski:2013:MTC

Ngo:2016:FAD

Nozaki:2015:EST
Nizovtsev:2013:ACH


Nguyen:2018:ARR


Niu:2010:RMM


Nakamura:2019:PHA


Nikolaienko:2018:EBE


Nath:2016:SNU

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ni:2019:FOI


Narth:2016:SIS


Nivedha:2014:ILC


Nguyen:2019:HGM


Ng:2013:RCC

Maggie Ng, Daniel K. W. Mok, Edmond P. F. Lee, and John M. Dyke. Rate coefficients of the CF₃CHFCF₃ + H

[NLL19] [NLP+16] [NMF+14] [NMH19] [NMLD13]
$\rightarrow$ CF$_3$CFCF$_3$ + H$_2$ reaction at different temperatures calculated by transition state theory with ab initio and DFT reaction paths. *Journal of Computational Chemistry*, 34(7): 545–557, March 15, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[NNT+19] Masayoshi Nakano, Takanori Nagami, Takayoshi Tonami, Kenji Okada, Soichi Ito, Ryohei Kishi, Yasutaka Kitagawa,

**Nishizawa:2016:RQM**


**Norby:2016:MME**


**Ng:2017:RFT**


**Narsaria:2018:RDN**

Nunes:2013:NAP


Nagai:2016:UMS


Nandi:2019:DMC


Nekouzadeh:2011:TRL


Nagar:2010:MDI


Ng:2011:PPP

Nozaki:2017:CDA


Nguyen:2018:HDF


Na:2018:TIN


Nhat:2019:CTI


Nantasenamat:2014:IOS

REFERENCES


Nakai:2017:EPS


Nguyen:2018:UFF


Okoshi:2015:REC


Ootani:2015:TIE


Oehme:2012:EAC

Ozkanlar:2014:SNU


Ojha:2019:VES


Olson:2011:CBS


Ortega-Carrasco:2014:APL


Ou:2015:FEC


Odinokov:2018:PAD

[ODB18] Alexey V. Odinokov, Nikita O. Dubinet, and Alexander A. Bagaturyants. pyEFP: Automatic decomposition of the complex molecular systems into rigid polarizable fragments. *Journal-


Oshima:2016:HEH

Ohno:2017:GEI

Ohno:2018:QCE

Olson:2013:ARE

Orimoto:2015:EME

Oliveira:2019:BCS
Olson:2017:MIF


Otero:2012:CRF


Osman:2016:RPS


Okoshi:2014:ASC


Ortega:2016:CEN

Ozawa:2011:ICH


Otsuka:2015:AAB


Orlando:2012:SNU


Opletal:2017:RMC


Olah:2016:IGC

Omar:2011:EOD


Orimoto:2019:ESC


Orthaber:2012:OVS


Orenha:2017:HCM


Ohno:2019:ECA

Olsson:2016:CLB


Oncak:2010:TSM


Ootani:2012:IMD


Olechnovic:2014:SNU


Opron:2016:FRI


Otero:2015:HBI


**Okamoto:2011:MIA**


**Ostermeir:2014:HRE**


**Ouk:2012:TST**


**Ouyang:2013:SNU**


**Partovi-Azar:2015:EFC**

[Partovi-Azar and Thomas D. Kühne. Efficient “on-the-fly” calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic so-

### Partovi-Azar:2017:TDD


### Pasalic:2010:TSH


### Peintinger:2014:CCM


### Pietropaolo:2011:CBM


### Perilla:2011:CET

Porsev:2016:TDS


Pracht:2017:AEQ


Palma:2012:CBA


Park:2019:GSA


Patra:2011:ANN


Pelloni:2014:CCS

Stefano Pelloni and Inmaculada García Cuesta. CCSD–CTOCD static dipole shielding polarizability for quantifica-

**Pritchard:2016:HVE**


**Pelloni:2011:RCM**


**Plumley:2011:CBF**


**Plazinski:2012:DCI**


**Pinjari:2016:CSR**

Parac:2010:QMC

Pansini:2018:MUE

PintoDaSilva:2011:TMC

Petrella:2011:VMS

Pedregal:2019:GAE

Pol-Fachin:2014:EVG
REFERENCES


**Popov:2014:SNU**


**Pavlova:2015:PMA**


**Parida:2018:NIP**


**Pan:2012:CSH**


**Pacios:2012:CSL**


**Paschoal:2016:PPN**

chemical shift using new relativistic all-electron basis set. 


Peter P. Passler and Thomas S. Hofer. Conserving the linear momentum in stochastic dynamics: Dissipative particle dy-

**Pang:2013:SEM**


**Pape:2013:DDM**


**Pool:2012:SNU**


**Pedersen:2014:BSE**


**Pohl:2017:OSF**

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[PKK17] Tamara Papp, László Kollár, and Tamás Kégl. Theoretical insights into the nature of Pt–Sn bond: Reevaluating the bonding/back-bonding properties of trichlorostannate with com-

**Pezeshki:2014:MDS**


**Pelloni:2018:PCM**


**Pei:2019:FVC**


**Plazinski:2011:MBC**


**Plewczynski:2011:CWT**


PiEkos:2013:TDD


Politzer:2018:HHS


Polkosnik:2018:SDR


Pagliai:2017:EAS


Pan:2016:SSN


Paschoal:2012:RBS

[PL+12] Diego Paschoal, Bruna L. Marcial, Juliana Fedoce Lopes, Wagner B. De Almeida, and Hélio F. Dos Santos. The role of the basis set and the level of quantum mechanical theory in the


Popelier:2018:FAI


Palfi:2010:SHL


Paul:2019:MDS


Pham:2014:DFT


Plazinska:2014:FMB


Ponce:2015:SNU

Prado-Prado:2010:UQN


Papp:2017:FFI


Procacci:2016:REC


Padhi:2015:PSH


Preat:2010:PTP


Pfleger:2013:GLI

Christopher Pfleger, Sebastian Radestock, Elena Schmidt, and Holger Gohlke. Global and local indices for characterizing biomolecular flexibility and rigidity. *Journal of Computa-


REFERENCES

 Phillies:2011:MCO


 Planche:2010:DNA


 Pedregal:2017:SNU


 Pierdominici-Sottile:2015:NIM


 Panshenskov:2014:SNU


References

Petukh:2015:SIS


Pinsky:2013:CSA


Peng:2016:FES


Porta:2015:HHB


Quapp:2010:CNE


Quapp:2011:RCS

Wolfgang Quapp and Josep Maria Bofill. Reply to the comment by Sheppard and Henkelman on the nudged elastic band

**Quapp:2016:RRT**


**Quartarolo:2012:TIB**


**Qi:2019:CGN**


**Qi:2011:UHC**


**Qi:2010:DSA**


**Qian:2018:MIB**

[Min Qian, Bowen Qin, Haiyan Yuan, Wenliang Li, and Jingping Zhang. Mechanistic insights into N-bromosuccinimide-

**[Quanz:2019:TEU]**


**[Qu:2010:RPP]**


**[Qian:2010:CCP]**


**[Qu:2010:DAT]**


**[Quapp:2010:TST]**


**[Qu:2011:VSS]**

REFERENCES


Rathore:2011:MMS


Raskovalov:2017:SNU


Rayne:2013:LEC


Ricci:2012:DFT


Rai:2013:FAG

REFERENCES


[RCM+13a] Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian Wan, Xin Xu, and Minghui Yang. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of Förster theory. *Journal of Computational Chemistry*, 34(12):1005–1012, May 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[Roth:2016:HRE] Christine-Andrea Roth, Tom Dreyfus, Charles H. Robert, and Frédéric Cazals. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy


Raymond:2011:FAM


Rafati:2010:CMC


Rohrmuller:2013:BOP


Racine:2016:RWF


Rohrmuller:2015:CTT

[RHT+15] Martin Rohrmüller, Alexander Hoffmann, Christian Thieffeld, Sonja Herres-Pawlis, and Wolf Gero Schmidt. The Cu$_2$ O$_2$ torture track for a real-life system: [Cu$_2$ (btmgp)$_2$O$_2$]$^{2+}$


H. Reis, O. Loboda, A. Avramopoulos, M. G. Papadopoulos, B. Kirtman, J. M. Luis, and R. Zalesny. Electronic and vibrational linear and nonlinear polarizabilities of Li@C_{60} and [Li@C_{60}]^{+}. *Journal of Computational Chemistry*, 32(5):908–914, April 15, 2011. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).
Romanova:2018:EEN


Roscioni:2012:DTC


Raman:2017:ERF


Rajamani:2011:OSM


Romo:2014:LOO

REFERENCES


REFERENCES


Rodriguez:2013:EMC


Randic:2015:PAE


Randic:2010:NGD


Rubensson:2011:BAM


Rokob:2012:CCM


Riahi:2014:SNU


[Rakhi:2017:DSD] Ramachandran Rakhi and Cherumuttathu H. Suresh. A DFT study on 1,4-dihydro-1,4-azaborinine annulated linear polyacenes: Absorption spectra, singlet-triplet energy gap, aro-

Remya:2017:TEB


Rybkin:2013:IDE


Rzepiela:2010:RAD


Risthaus:2014:ING


Ryzhikov:2015:SSR

Ryzhikov:2014:ECB


Ru:2016:GAE


Roca-Sanjuan:2012:LEC


Roberts:2013:LMH


Roberts:2012:SNU

Benjamin P. Roberts, Gustavo M. Seabra, Adrian E. Roitberg, Kenneth M. Merz, Erik Deumens, Juan Torras, and Samuel B. Trickey. Software news and updates: Commentary: Comment on “A minimal implementation of the AMBER–GAUSSIAN interface for Ab Initio QM/MM-MD simulation”.
REFERENCES


Randic:2012:CCC


Rey-Villaverde:2013:HAT


Rodrigues:2016:UPU


Rashid:2011:GKV


Real:2019:IDS


Roumen:2011:ALB

Luc Roumen, Bram Van Hoof, Koen Pieterse, Peter A. J. Hilbers, Erica M. G. Custers, Ralf Plate, Marcel De Gooyer, Ilona P. E. Beugels, Judith M. A. Emmen, Dirk Leysen, Jos


Swetnam:2011:IWL

Schumann:2013:SES

Spivak:2014:ICM

Scemama:2016:QMC

Sahni:2018:GST

Sakata:2018:FCD
REFERENCES

Sanchez:2017:RTC


Szklarczyk:2015:PCG


Sax:2012:LMO


Salehzadeh:2010:TSS


Silva:2011:HFO


Stepanek:2013:CMC


REFERENCES


Sesmero:2017:MSD


Schmid:2010:GSS


Szklarczyk:2014:PEF


Sun:2012:IPM


Sibaev:2015:SNU


Sode:2017:DFM


**Sharma:2018:NHS**


**Soniya:2018:FEL**


**Scerri:2007:PTS**


**Shiraogawa:2019:PPF**


**Schwarz:2010:BRP**

REFERENCES

1793–1794, June 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


**Scemama:2013:QMC**


**Starikova:2019:RDE**


**Song:2013:EAC**


**Selvam:2011:MI**


**Signorile:2016:RDF**

Shi:2012:USA


Schieschke:2017:CFD


Schulz:2018:SHA


Suarez:2014:CSD


Sergentu:2016:SIA

Suarez:2013:SNU


Shen:2017:ECC


Shirazi:2014:AKM


Seal:2010:CRG


Shaghaghi:2016:SGA


Shiraogawa:2018:FED

Takafumi Shiraogawa, Masahiro Ehara, Sandro Jurinovich, Lorenzo Cupellini, and Benedetta Mennucci. Frenkel-exciton

**Solomentsev:2012:EEE**


**Sakuraba:2018:PEZ**


**Schleder:2017:DCB**


**Starek:2017:GEV**


**Sanchez-Flores:2014:PAE**

REFERENCES

DEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See erratum [SFCCK+15].

Sanchez-Flores:2015:EPA


Stehr:2016:CCM


Schluns:2017:SNU


Steinmann:2017:LEM


San-Fabian:2014:CAR

[SFM14] Emilio San-Fabián and Federico Moscardó. Cyclobutadiene automerization and rotation of ethylene: Energetics of the


Sanchez-Garcia:2010:QMS


Sviatenko:2016:SEP


Sviatenko:2013:TSI


Simonson:2013:CPD


Smith:2018:MSS


Sancho-Garcia:2017:DRU

Juan Carlos Sancho-García, Ángel José Pérez-Jiménez, Marika Savarese, Éric Brémont, and Carlo Adamo. Determin-


30, 2011. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).


Svatunek:2019:APT


Suess:2017:QCC


Sherman:2012:SNU


Sergievskyi:2011:MSR


Sega:2018:PPP


Shin:2011:LPL

Smith:2013:CSE


Schwalbe:2018:FLO


Shang:2019:MPS


Sakae:2011:PSP


Sieradzan:2015:SNU

REFERENCES


Su:2016:ETI


Sieradzan:2017:SNU


Steinbrecher:2011:SCP


Shao:2011:TSS


Sanchez:2014:QMS


Stoliaroff:2018:PEU

Adrien Stoliaroff, Stéphane Jobic, and Camille Latouche. Py-DEF 2.0: An easy to use post-treatment software for publishable charts featuring a graphical user interface. *Journal


<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>


Sumimoto:2011:TSM


Safi:2010:RDE


Siegbahn:2017:CSC


Surakhot:2017:TRR


Stenrup:2015:CNG

Song:2009:ETS


Sladek:2012:ICS


Su:2013:CMS


Settels:2012:CES


Sala:2014:SET

Sala:2015:DCR


Shen:2015:ACG


Sano:2010:MDC


Sun:2019:ABC


Seetin:2011:ART


Shinagawa:2019:TSC


Sumi:2015:ESF


Sumi:2015:SFE


Suzuki:2017:MMT


Sumi:2018:ARM

Sinha:2017:CEF


Snamina:2017:PAM


Shah:2017:SNU


Strumpfer:2010:CFE


Sahoo:2015:PLP


Sahoo:2016:CGQ


Song:2011:SLR


Schnack-Petersen:2018:RDH


Sciortino:2018:PIM


Suma:2019:TUF


Springborg:2010:BRC

Michael Springborg. Book review: *Computational Chemistry Workbook*, by Thomas Heine, Jan-Ole Joswig, and Achim Gelessus, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,


[Szeleszczuk:2018:DCC] Łukasz Szeleszczuk, Dariusz Maciej Pisklak, and Monika Zielińska-Pisklak. Does the choice of the crystal structure influence the results of the periodic DFT calculations? A case of


[SRA17] Leon A. Sakkal, Kyle Z. Rajkowski, and Roger S. Armen. Prediction of consensus binding mode geometries for related


REFERENCES


Samsonyuk:2013:CSP


Schutt:2013:SFT


Simonson:2013:SGM


Scherrer:2016:MEL


Schroder:2016:EDA


Shi:2019:CSF

[Ss19] Xuetao Shi and H. Bernhard Schlegel. Controlling the strong field fragmentation of CICHO⁺ using two laser pulses — an

[Szczepanik:2017:RLR]

[Sushko:2010:QMM]

[Swart:2011:IID]

[Swart:2013:CII]

[Smiga:2016:AKS]


Shimamura:2019:IMD


Sakae:2019:ESM


Sahu:2013:BAS


Shakhno:2019:EIP


Sun:2019:PAE


Sen:2015:UGA

[SSSM15] Avijit Sen, Sangita Sen, Pradipta Kumar Samanta, and Debashis Mukherjee. Unitary group adapted state specific mul-


REFERENCES


Speldrich:2018:CUS


Schwerdtfeger:2013:SNU


Strunk:2012:SNU


Schnupf:2010:PDM


Song:2010:HMP


Shi:2011:MEH

Su:2019:DNI


Shyu:2011:AES


Spassov:2016:PDC


Su:2016:TDT


Sharabi:2011:OEF


Sindhikara:2012:PAP


Samsonov:2019:MLP


Sheong:2019:RSN


Schupbach:2010:FTC


Su:2013:ADX


Su:2013:EAD


Sun:2018:CPD

[SZZ+18] Chuancai Sun, Lijuan Zhu, Chao Zhang, Ce Song, Cuihong Wang, Meiling Zhang, Yaoming Xie, and Henry F. Schaefer


[TCPPC14] Ana E. Torres, Guadalupe Castro, Ricardo Pablo-Pedro, and Fernando Colmenares. A two-step reaction scheme leading to singlet carbene species that can be detected under matrix conditions for the reaction of \(\text{Zr}(^{3}\text{F})\) with either \(\text{CH}_3\text{F}\) or \(\text{CH}_3\text{CN}\). *Journal of Computational Chemistry*, 35(11):883–890, April 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[TD10] Nilesh R. Tawari and Mariam S. Degani. Pharmacophore mapping and electronic feature analysis for a series of ni-

**Tokmachev:2011:HBN**


**Tsipis:2010:DMA**


**Taxak:2012:MIC**


**Tupikina:2019:AFH**


**Tupikina:2018:OES**

REFERENCES

2018. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[TFQ10] Shu-Wei Tang, Jing-Dong Feng, Yong-Qing Qiu, Hao Sun, Feng-Di Wang, Ying-Fei Chang, and Rong-Shun Wang. Electronic structures and nonlinear optical properties of highly deformed halofullerenes $C_{3v}C_{60}F_{18}$ and $D_{3d}C_{60}Cl_{30}$. *Journal of Computational Chemistry*, 31(14):2650–2657, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


March 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


[Tia12] Wei Quan Tian. Modeling nonlinear optics of nanosystems with sum-over-states model. *Journal of Computational Chem-
Tyka:2012:ESP


Thapa:2019:EMI


Tuer:2011:TDV


Trung:2019:RSC


Tanaka:2013:ORM


[TLA10] Vincent Tognetti, Pascal Le Floch, and Carlo Adamo. How the choice of a computational model could rule the chemical interpretation: the Ni(II) catalyzed ethylene dimerization as a
REFERENCES

Tabookht:2012:RBM


Tang:2012:CFF


Tahat:2016:MEV


Takahashi:2018:REA


Tognetti:2015:QEN

REFERENCES


[TNI19b] Kelly N. Tran, Shuqiang Niu, and Toshiko Ichiye. Reduction potential calculations of the Fe-S clusters in Thermus

**Tonddast-Navaei:2017:ICP**


**Takayanagi:2018:IPD**


**Takano:2016:SNU**


**Trott:2010:AVI**


**Taju:2019:DDL**

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>


[TS15b] Athanassios C. Tsipis and Alexandros V. Stalikas. Electronic, bonding, and optical properties of 1 d $[\text{CuCN}]_n$ ($n = 1–10$) chains, 24 d $[\text{Cu CN}]_n$ ($n = 2–10$) nanorings, and 3 d $[\text{Cu}_n (\text{CN})_m]_m$ ($n = 4$, $m = 2, 3$; $n = 10$, $m = 2$) tubes studied by DFT /TD–DFT methods. *Journal of Computational Chemistry*, 36(17):1334–1347, June 30, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


REFERENCES


Tsuchimochi:2019:ESS


Toropov:2012:SNU


Torii:2010:PHA


Tanaka:2015:TDR


Taherzadeh:2018:PLM

REFERENCES

Taherzadeh:2016:SBP


Tunega:2011:UBM


Tang:2012:DDB


Tao:2018:CVS


Urquiza-Carvalho:2016:ASE

Urquiza-Carvalho:2018:EAE


Uppsten:2012:QCC


Unsleber:2018:SSQ


Utecht:2018:DIL


Unni:2011:WSS


Umeda:2010:PFM

[UIW+10] Hiroaki Umeda, Yuichi Inadomi, Toshio Watanabe, Toru Yagi, Takayoshi Ishimoto, Tsutomu Ikegami, Hiroto Tadano,


Venkatraman:2014:QSP


vonAppen:2014:IMS


Vila:2014:ACS


Vega:2012:SNU


VanderWeeen:2011:DPS


Villalba:2011:CEM


**References**


[VCM15] Ignacio Viciano, Raquel Castillo, and Sergio Martí. QM/MM modeling of the hydroxylation of the androstenedione substrate catalyzed by cytochrome P450 aromatase


REFERENCES


REFERENCES

Vines:2017:ESS

Vikas:2011:MIS

Vach:2015:DIS

Vardi-Kilshtain:2012:PIC

Vilar:2010:LSB


[VL19] Talapunur Vikramaditya and Shiang-Tai Lin. Limitations of global hybrids in predicting the geometries and torsional en-

[Valiente:2010:NPA]


[vanLenthe:2012:LEE]


[Vines:2017:SSE]


[Vorontsov:2011:CMD]


[Vreven:2019:CIF]

Thom Vreven and Stephen C. Miller. Computational investigation into the fluorescence of luciferin analogues. *Journal of
Villa:2017:CPA


Valdebenito-Maturana:2017:SNU


Vohringer-Martinez:2010:RWP


Varadwaj:2019:NHC


Vorobjev:2010:BDM

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Marie-Céline van Severen, Christophe Gourlaouen, and Olivier Parisel. Application of the topological analysis of the

Voigt:2019:SDC


Vincent:2019:APM


VanDornshuld:2014:CPE


Viegas:2014:CCR


Vyboishchikov:2019:IAC


Varadwaj:2018:HMD


Varadwaj:2012:EST


Vandewiele:2015:SCM


Vanduyfhuys:2015:SNU


Vanduyfhuys:2018:EQF


Kenno Vanommeslaeghe, Mingjun Yang, and Alexander D. MacKerell Jr. Robustness in the fitting of molecular mechan-


REFERENCES


References


REFERENCES


Waller:2013:SNU


Wang:2016:RMR


Weinhold:2012:NBO


Weinhold:2012:SNU


Watanabe:2013:RDP


Weidlich:2016:SNU

[WF16] Iwona E. Weidlich and Igor V. Filippov. Software news and updates: Using the Gini coefficient to measure the chemi-


Will:2013:SNU


Weymuth:2012:SNU


Wang:2010:TDD


Weiss:2010:GHO


Wei:2010:TDD


Weiss:2015:ROS


Wang:2016:PHF


Wang:2018:AHF


Wong:2018:SMD


Weidlich:2015:SNU

Witte:2017:CNO

Weijo:2010:WFP

Wessel:2012:EST

Wang:2010:IIC

Wu:2011:CSR

Wu:2012:TIR
Chi-Shiun Wu and Ming-Der Su. Theoretical investigations of the reactivities of four-membered N-heterocyclic carbene

Wilkinson:2013:POG


Weiser:2019:CBF


Wilkinson:2011:AGU


Wang:2010:GTI


Wu:2019:EMK


Wang:2015:BCA

Weizhou Wang, Tao Sun, Yu Zhang, and Yi-Bo Wang. Benchmark calculations of the adsorption of aromatic molecules on


REFERENCES

Wang:2019:ULB


Wang:2018:BPN


Wu:2012:DCD


Wang:2012:SBC


Wang:2017:NIM


Wang:2012:EMA

[Jia-Nan Wang, Hong-Liang Xu, Shi-Ling Sun, Ting Gao, Hong-Zhi Li, Hui Li, and Zhong-Min Su. An effective method


Xian-Hui Wu, Guo-Lin Zou, Jun-Min Quan, and Yun-Dong Wu. A theoretical study on the catalytic mechanism of Mus


The following articles were published in past issues of the Journal of Computational Chemistry: Large-scale asynchronous and distributed multidimensional replica exchange molecular simulations and efficiency analysis. Journal of Computational Chemistry, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


Jing Xu and Yi hong Ding. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiXₙYₘ⁻ (ₙ + ₘ = 4; ₚ = 0, ±1, ±2; X, Y = main group elements from H to Br). Journal of Computational Chemistry, 36(6):355–360, March 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


REFERENCES


[XYW⁺14] Zhijun Xu, Yang Yang, Ziqiu Wang, Donald Mkhonto, Cheng Shang, Zhi-Pan Liu, Qiang Cui, and Nita Sahai. Small

**Xie:2017:SNU**


**Xu:2018:MIP**


**Xia:2011:AHE**


**Yang:2011:DNS**


**Yang:2014:IES**

Yang:2016:EAS


Yoshii:2018:PTE


Yap:2011:PDO


Yang:2013:CTS


Yu:2011:ETS


Yamamoto:2013:TPM


Kun Yuan, Jing-Shuang Dang, Yi-Jun Guo, and Xiang Zhao. Theoretical prediction of the host–guest interactions between novel photoresponsive nanorings and C60: a strategy for facile


Yu:2019:FSC


Yu:2011:AMA


Yang:2011:TSG


Yu:2013:SNU


Yu:2012:ECG

Yu:2017:PDS

Yang:2019:QDV

Yeh:2011:DFT

Yourdkhani:2017:RPN

Yourdkhani:2019:PNS

Yakhanthip:2011:TIN
Thanisorn Yakhanthip, Siriporn Jungsuttiwong, Supawadee Namuangruk, Nawee Kungwan, Vinich Promarak, Taweesak Sudyoadsuk, and Palita Kochpradist. Theoretical investigation of novel carbazole-fluorene based D-π-A conjugated...


**REFERENCES**


**Yamada:2011:TNA**


**Yuzlenko:2013:MPN**


**Yang:2010:SPS**


**Yan:2014:GGA**


**Yao:2011:BGB**


**Yoshikawa:2015:LSS**


**Yamaguchi:2017:RRA**


**Yamauchi:2019:RSP**


**Ou:2010:PMS**


**Yamagishi:2014:NSA**


REFERENCES

Yamada:2013:FPR


Yang:2013:FPS


Yu:2010:RPC


Yoshizawa:2013:NSC


Yosipof:2015:NNO


Yagi:2018:SMP


Yan:2012:ESL


Yang:2013:RNI


Yang:2016:SNUa


Yang:2014:VSP


Yuan:2017:DSM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[YZ15a]</td>
<td>Chengfei Yan and Xiaoqin Zou</td>
<td>Predicting peptide binding sites on protein surfaces by clustering chemical interactions.</td>
<td><em>Journal of Computational Chemistry</em></td>
<td>36(1)</td>
<td>49–61</td>
<td>January 5, 2015</td>
</tr>
</tbody>
</table>
Yamabe:2014:MCR


Yuan:2015:MDD


Yuan:2018:MIW


Yang:2019:ITD


Yang:2013:DCS

REFERENCES


[YZZ+17] Kun Yuan, Rui-Sheng Zhao, Jia-Jia Zheng, Hong Zheng, Shigeru Nagase, Sheng-Dun Zhao, Yan-Zhi Liu, and Xiang Zhao. Van der Waals heterogeneous layer-layer carbon nanostructures involving $\pi\cdots\text{H-C-C-H}\cdots\pi\cdots\text{H-C-C-H}$ stacking based on graphene and graphane sheets. *Journal of Computational Chemistry*, 38(10):730–739, April 15, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).


REFERENCES


Zabojnikova:2016:IPS


Zhou:2015:LVS


Zou:2018:OLR


Zhao:2012:SNU


Zhou:2018:RPA

REFERENCES


Zhao:2011:TDD


Zeng:2013:NSR


Zubatyuk:2010:EDF

REFERENCES

150, January 15, 2010. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhu:2019:TSP


Zhang:2019:CBU


Zhu:2012:CEE


Zhang:2011:SSE


Zhang:2012:REFb


Zhang:2012:REFa

[Zha12b] Shuming Zhang. A reliable and efficient first principles-based method for predicting $pK_a$ values. III. Adding explicit wa-

**Zou:2011:SSP**


**Zanotto:2018:HPC**


**Zimmerman:2013:ADC**


**Zimmerman:2015:SET**


**Zeng:2013:FMS**


**Zhang:2017:EGD**

[Baofeng Zhang, Denise Kilburg, Peter Eastman, Vijay S. Pande, and Emilio Gallicchio. Efficient Gaussian density formulation of volume and surface areas of macromolecules on...](ZKE+17)

**Zhu:2010:EES**


**Zhang:2011:SGP**


**Zhou:2014:PCR**


**Zhang:2010:AFE**


**Zhu:2013:SNU**

Zhang:2012:TSRb


Zhang:2015:EMC


Zhang:2013:ICA


Zheng:2010:ITA


Zheng:2013:WPP


Zhao:2019:PRN

[ZLX+19] Yao-Xiao Zhao, Meng-Yang Li, Yi-Ming Xiong, Shirin Rahmani, Kun Yuan, Rui-Sheng Zhao, Masahiro Ehara, Shigeru Nagase, and Xiang Zhao. Pivotal role of nonmetal atoms in the stabilities, geometries, electronic structures, and isoelectronic chemistry of $\text{Sc}_3X@\text{C}_{80}$ ($X = C, N, \text{and} \ O$). *Journal of Computational Chemistry*, 40(31):2730–2738, December 5,
Zhao:2016:LPT

Xue-Feng Zhao, Haixia Li, Cai-Xia Yuan, Yan-Qin Li, Yan-Bo Wu, and Zhi-Xiang Wang. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon $D_{2h}$ C$_2$ (BeH)$_4$ species via hydrogen-bridged BeH$_2$Be bonds. *Journal of Computational Chemistry*, 37(2): 261–269, January 15, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhang:2014:ECM


Zhu:2010:PEF


Zoboki:2011:ELN


Zhang:2012:IRE


Zhong:2013:BST

Yang Zhong and Sandeep Patel. Binding structures of tri-N-acetyl-β-glucosamine in hen egg white lysozyme using molecu-

**Zerbetto:2014:LSF**


**Zarycz:2016:CSB**


**Zhu:2014:TPC**


**Zhang:2019:FTD**


**Zilberberg:2010:POD**


**Zapata-Rivera:2011:ESR**


**Zapata-Rivera:2012:RML**


**Zgarbová:2015:TAD**


**Zare-shahabadi:2010:AAC**


**Zadeh:2011:NAD**


**Zoete:2016:ACD**

Zhao:2011:CDL


Zhan:2017:ASE


Zhao:2013:FPC


Zahariev:2014:FAM


Zarate:2018:ERT

REFERENCES

Zhang:2012:DFT


Zhang:2012:FFD


Zhang:2014:TSG


Zinovjev:2014:ECR


Zalesny:2015:TAD


Zuev:2015:NAI

REFERENCES


Zhou:2017:BHH

Zhou:2015:ABO

Zheng:2018:YIB

ZWF15

ZWGO16

Zhang:2013:MPI

Zhang:2011:ABD


[ZWLX11] Igor Ying Zhang, Jianming Wu, Yi Luo, and Xin Xu. Accurate bond dissociation enthalpies by using doubly hybrid XYG3
Zhao:2010:PSM


Zadeh:2011:NAS


Zheng:2010:MDM


Zhao:2010:SSP


Zhou:2016:IBH


Zhang:2019:AHF

Igor Ying Zhang, Jianming Wu, and Xin Xu. Accurate heats of formation of polycyclic saturated hydrocarbons predicted...

Zheng:2010:DFTb


Zheng:2010:DFTa


Zhang:2011:IIR


Zhao:2011:HMM


Zhang:2019:GCH

Zhang:2010:ESO


Zhao:2014:IDB


Zhao:2014:DSE


Zhao:2015:TCS


Zhu:2012:PPT

Zhang:2012:TSRa


Zhao:2015:PRM


Zhu:2010:IAP


Zhao:2014:CBP


Zhao:2016:CDO

Zhang:2010:III


Zhou:2012:CMF


Zeller:2014:ECR


Zhang:2010:TSRb


Zhang:2010:TSRa


Zeng:2012:AII

[ZZL$^+$12] Yanli Zeng, Min Zhu, Xiaoyan Li, Shijun Zheng, and Lingpeng Meng. Assessment of intermolecular interactions at three sites of the arylalkyne in phenylacetylene-containing lithium-bonded complexes: ab initio and QTAIM studies. *Journal of
REFERENCES


Zhu:2019:STE


Zhang:2019:PVM


Zhang:2012:RMC


Zhu:2011:CSE


Zhang:2016:CQD

Zhu:2019:ISO