Title word cross-reference

\((N-1) \) [ACD+13a, ACD+13b], \((\sigma^3, \lambda^3) \) [TR12]. \((\sigma^3, \lambda^5) \) [TR12]. +
[CXW14, GTK10, NMLD13]. 0 [UD12]. 1 [MG15, TS15b, YZLZ18]. 1 – \(n \)
[CYG+15]. 10 [AC11b, TS15b]. 13 [WYGW12]. 15 [AC11b]. 17 [GZZ12]. 18
[LW16]. 2
[CWT+12, GSS13, MSBF16, MH10, SJD14, WvRSM14, YDL+10, YZLZ18].
20 [AC11b, LYL16, YVEI+17]. 24 [TS15b]. 3
[AARP17, CM16, DVVP14, GMMH+16, GSS13, GPK12, GBG+19, HSW+19,
LTT16, MG15, MA16, MYT+14, MP19a, MSSP17, PSS14, Pop18, RVCFF13,
TS15b, VVMY18, YLL11, YZLZ18, dLvNC18b]. 4
[AFSW16, GWJJ12, ZTH+15]. 4d [Hil13]. 4f [Hua16]. 4 \times 4 [LGKS17]. 4 \times 4
[SH14]. 5 [APY+16, LZH16, YLL11]. 5+ [MKH15]. 6
[MCAY15, Rab12, TSZQ12]. 62 [MKH15]. 63 [MKH15]. 64 [MKH15]. 8
[CSC+18, TN12]. 8 \times 2 [LGKS17]. [2 + 2] [LXFC17]. [5 + 1] [YZL+15]. [5 + 2]
[Ano10b, Ano12u]. 263fb [AR10]. 28 [HNWF12]. 2C9 [SLY+10]. 2D
[DAB16, DLC18b, YMY+19]. 2D-[YMY+19]. 2D- [YMY+19]. 2G12

3 [MWJ+11, DH17, HPSKI2, Spr10, YZGS14b]. 3- [LZL+16, YZLZ18]. 3-13
3-alternate [ZWS+10]. 3-d [YZ15b]. 3-dihydropyrido [YZ15b]. 3-Dipolar
[YN13]. 3-metal-carbon [ZYW+16]. 3-methyl-7-azaindole [YYT12].
3-squaraines [AMQ+14]. 3-thiophenic [NHF+10]. 3.0 [SvLK18]. 31
[ABB+13, CHR+12b, ICS+13]. 35 [SFCCK+15]. 36 [SMM15a]. 38
[HLS18]. 3c [KV14, LW16]. 3c/4e [LW16]. 3D [HSB+11, SA10, YMY+19].
3z [PTK11].

4 [YLZ+10, LTV10]. 4’- [YLZ+10]. 4-addition [KSO+19]. 4-amino-1
[ZZWT12]. 4-aminophthalimide [WHL+10]. 4-azaborinine [RS17a].
4-dihydro-1 [RS17a]. 4-hydroxyphenylpyruvate [DGH+11].
4-methoxybenzyl [YZLZ18]. 4-substituted [SKGB13]. 4-triazol-3-one
[MdOdQ18, MdOdQ18]. 4D-QSAR [MdOdQ18]. 4e [KV14, LW16]. 4Fe
[PN13]. 4S [PN13].

5 [SC18b, ZZWX11, cCVG+14, LL10c, Mor15, Pon10, SOvG12]. 5-b
[YLZ+10]. 5-biphosphate [CKG18]. 5-bridged [ZZWX11].
5-nitroiminotetrazolate-based [ZYL+12]. 5-phosphate [SY1].
5-triazine [WDLG12]. 5-triazines [YPC+10]. 5-triene [ABDGN12]. 53A6
[PVFL14, LG11]. 54A7 [LvG13c]. 56A6 [PLH16].

6 [WDLG12, ABM+15, TKN13]. 6-311G** [TKN13]. 6-31G** [TKN13].
6-bisphosphatase [RAR+11]. 6-fluoroquinolones [MPNS13]. 6-tetra
[WDLG12]. 6-trinitrotoluene [SH14]. 6-triphenyl [AS18]. 6.0
[GLW13a, GLW13b]. 60th [HIS17].

7 [ADF+10, MBR+15, UGK18]. 7-azaindole [YYT12]. 7-diphenylamin-9
[FWS+18]. 7-tetraene [ABDGN12].

8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZWH11].
8-naphthoquinone [HFWB19]. 8R [BG13].

9 [Sch10, Spr10, SOvG12, ZQ14]. 9-dimethylacridine [FWS+18]. 978
[ZQ14].
= [ATP18, ATIP18, ASS+17, AM19, CXS10, EPH+15, GPK+16, GNI18, JLH+14, JJAEB16, JJI16, LDJ+10, LLL+11, LJJ+11, Li14a, Li14b, LGW12, LLX+19, LZSM19, LCWW10, LWD13, MP19a, MCK17a, MCK17b, OKY18, PGS+15, PMG+16, Rab12, RDT14, SPS+12, Sak18, SIT18, SLIB12, TLdG+12, TFQ+11, TT18, TG12b, UT15, WWKS16, XhD15, YW12, YLT+19, YS13, YHCS11, ZYLL12, ZLLL12].

achieving [NNK+16]. Achim [Spr10]. acid
[BLG11, CYY+17, CC18b, CFC15, CM16, CB11d, FD14, FZL+15, Fell0,
FP17b, FCE15, GRL+11, GRL+12, HPT16a, HNN+17, HGY15, HCP15,
KSNT19, KLS10, KMLS10, LBC+12, LXL+11, LFMI2, LP11b, LPMI17,
MSLS10, MRO17, NHF+10, OXBIW16, PHDH13, PG18, SISK10, SZBM13,
SGY+18, SBW12, SV11, TKCN19, TL16, VMP17S, WC14, WG12, XN17,
ZSB+11, ZWP11, ZHIX11]. acid-arsenic [KSNT19]. acid-catalyzed
[CYY+17]. acid-phosphoric [KSNT19]. acid-water [TL16]. acid/base
[VMP17]. acidic [CYY+17]. acidities [ALK+15]. acidity [CRZ+18, CPK12].
acidity [AKL15]. acids [BSG+18, CCCLCGRO14, DKE+17, EHSPT16,
FCE15, GREA11, RSL16, SCF+19, SST+18, XLYZ10, ZKH10].
ACP [STM+15, SJ16]. across [AAC+16, GMPB12, MGS+16]. acrylate
[LZL+16]. act [LC10]. acting [BT18]. Actinide [SvLK18, RTS+13].
action [XLY12]. activated [CV12, FWS+18, KSR17]. Activation
[Niz13, AALCM11, DR11, DSM+11, FB12, LSL+19, MRR11, MBFG15,
PG18, TM18, TS15a, WC11, XLYZ10, YXZZ17]. activation-strain [FB12].
activator [BM12]. active [AIGP15, BHF+18, Cas13, DAP+18, DBP+12,
EB18, LVT10, NH19, PDG+16, SCSW13, SC18b, XTn18]. active-site
[DAP+18]. active-space [NH19, PDG+16, XTn18]. actives [EOO+16].
activities [AHK+19]. activity [BPC13, DKL+10, GAI13, GHL17, GFP17,
MJLV14a, RCM+13b, SLY+10, TD10, TBB+11, YB13, ZA10, ZD18].
acute [TTL+12]. acyclic [NMH19, ZKH10]. acyl [PS10]. adamantane
[EHSPT16]. adamantane-based [EHSPT16]. adapted
[FF11, SSSM15, TH13, YKH15]. Adaptive
[ISK14, KEMP17, LZZ+17, AOW11, BGR13, DSK17, FHMB15, HDM+15,
LL19, MJC14, MBFP15, MJG+15, OZI4, PN13, SNS13, WTD+19, WMW+10].
Adaptive-numerical-bias [KEMP17]. adaptively [ER18, SR18].
adcluster [IN13]. Adding [XHLH16, PFAS+19, Zha12b]. addition
[FWB14, KSO+19, KS13b, NDG14]. Additive
[XVA+16, DPNM11, HM13, TSR+16, VPA+10, VMP17]. additivity
[VRKT19, ZRL+15]. address [LG14]. Addressing [MMH19, cCVG+14].
adduct [KK19]. adducts [LC10, LS11b, ZRCC11]. adenine
[BZH14, LLT12]. adenosine [SRA17, WZQW10]. adhesion [Won18].
adhesive [HTY19]. adiabatic [MT19b, UD12]. adjacency [GZH10].
adjusted [HH15, KHL15]. Adjustment [BLZ+13]. ADMA [MA17].
AdNDP [KDS17]. adrenergic [CV12, LLHM16, VKC10]. adsorbate
[GBS+17]. adsorbate-induced [GBS+17]. adsorbed
[MF10, PXXW10, SLL13, SIG+15, TH1+19]. adsorbents [HV16].
adsorbing [KGZJ9]. Adsorption [CCJ+11, FVP14, HB15, KD10, LH14b,
PH12, AS15a, BS16b, CMM18, CR14, cCVG+14, Hei10, LL13a, LPK16,
LPLS16, LZ14, LT14, LCM+14, NPP13, PC12, PLZ17, RHNN10, SH14,
SDS+16, SKTT11, SYZ+17, VS14, WSW15, WYGW12, YDR13].
Adsorption-induced [HB15]. Advanced [WBN+13, Yan16, DJs+18].
affect [SV15, UNT16]. affected [MCF+18, OHNK11]. affecting [GMSV14].
affects [CLK11]. affinities
[CMD13, CTP13, GRS15, MGWR12, NHN16, NFG+13, PBLdS12, RJWW12, RMGB11, VCL18, VKC10, WNP+16, WLLL18, SDIP18]. affinity
[CG15, CZAFL7, DLZ15, MUGNVJ+18, MCK17a, SSP+13, VL17a, ZJZM13, ZYvIZ14]. After [WZK+13]. Ag [LLX+19, Rab12, ASl5a, BBG+18a, IN13, LLTC12, MCF10, PGS+15, SLL113, TNI+19a, THI+19, YXZZ17]. Ag-nanocluster [AS15a]. against [Gil11, MPNS13]. Age [Yan16]. agents [PSdPE+10]. Aggregate [NNT+19]. aggregated [BSL+16]. aggregation
[RCR+13a, RML+15, WDP+12, ZSTRS+18, PK19]. aggregators [RLL+10]. Agonist [HK18]. agonists [CV12]. AgX [YS13]. AHAS [SJD14]. aimed [KS12]. Al
[LCWW10, Pon10, UT15, YR13, CC18c, GWJJ12, KKR+13, SH14]. Al-hydroxylated [SH14]. Ala [SZBM13]. alanine
[I013b, LL19, MAMF19, MVKS10, SEM12]. AIB [MCAY15]. albumin [JAH5+19]. alchemical
[BBI11b, BBI1c, BG12, GMSdG15, GRS15, HLW+17, KB11a]. alcohol [MS13, ZSZ+14]. alcohol-based [MS13]. alcohols [VVLG17]. aldehyde [ZZWT12]. Alder
[CC18a, FB12, FB14a, GNDA+12, LZH16, ORZ11, ST13, dSVdM+16]. Alder-ene [FB12]. Alderase [BJSI12]. aldonol [HJLV16]. aldosterone [RVP+11]. algebraic
[GJMPAM+14, WWD15, YD17]. algebraic-diagrammatic [YD17]. Algorithm
[WM12, AMGB10, AM10, AYYO17, BW11a, BYE+16, BDD13, CM13a, CDBM11, CGA19, CTV+11, CM13b, CB11b, DS15, DJ13, DLSA14, DZA11, EVR18, FRLN10, FGFI1, GPE13, GBFD12, HTS15, HEMCZE+14, HQC16, HKR+14, Hug14, Ish10, IJJ+13, JCPC11, KK17a, KNHN16, KN17, KD18, KDT+12, LZX16, LLI+13, LZLMP16, LSS+17, LLIJ12, LTA+11, LMA15, MEH18, NYN17, NC12, NG10, dRL11, PS17, RPMAM15, RAs17, RSL16, SSO19, SRSLO15, SYH12, SSMW09, SCSW13, SA11, UCRL18, WMW+10, XHLH16, YVEI+17, ZSS+13, vLBBR12]. algorithm-artificial [WMW+10]. Algorithmic [LPS12]. Algorithms [BV14, KGHC15, AGR11a, AC12, CD13, Fom11, GBSE11, KJM+17, Lehi15, LLZ12, MS16, MO15, NC14, NOKJ16, RFN15, TRA+16, ZVY+15, dACP12, vLBBR12]. aligned [KC14]. alignment

amination [YZ17]. amine [AK10, BMB13]. amines [MRC+18]. amino [BG+18b, CCCLCG14, CFC15, CB11d, DKE+17, FZL+15, FP17b, GRL+11, GRL+12, HCP15, KLS10, KMLS10, LXL+11, LP11b, MRO17, PHDH13, RSL16, SISK10, SZBM13, SST+18, WC14, ZZWT12, ZKH+10, ZHIX11]. amino-acid [KLS10, KMLS10]. aminoacid [MC10].

analyses [BSF18, KASH14, KP11, PZBA13, SKGB13, VVJ15, XWW+11]. Analysis [CDM+15, HAI+16, JCGM18, LL19, MOS12, SvLK18, XFG+16, AKMT11, AST+16, ASL+11, ARRC15, AS18, Aon15-58, AM19, BK15, BH14, BSPP+13, BBG+18b, CLFR018, CMM18, CAF+13, CEBO15, CCC+11, CAT+13, CH14, DMJ17, DDP+18, DHF+11, DJD12, DBK17, DJS+18, DCS15, DN19, ESD18, EHSPT16, EB18, Fer17, FB12, FHW+11, FHK+12, GFP+10, GLW13a, GLW13b, GNDA+12, GCP+13, Han11, HSB+19, HCD+10, HPSKL2, HHT+13a, HHT+13b, HGW18, HDHL15a, HDHL15b, HDHL15c, HHWLL17, Hug12, IY18, Jan16, JHH+13, JJW+14, JZZM14, JCX10, JLS18, KG13, KYG+15, LSL+19, LBC+19, LL13a, LCPS13, LMZ+11b, LFM12, LAHS16, LGKS17, MLG18, MDTD13, MJC14, MT19b, MeI0, MADWB11, MCLD10, MGS+16, MCK17b, NK19, NH19, NIIT15, NS17, OXBW16, OC14, PTK11, PSP15, PRYI+17, PTB+15, PPUBGD10].

analysis
Analytic [Box18, MDTD13, NF18, SZX13a, SZX13b, TSH+19, WNP16, Wei12a, Wei12b, WDKT19, XFG+15, YK13, YNH+17, Yes12, Yes15, ZCS+15, ZBB16, ZH12, ZZX19, ZWX18, vSGP10, JCHT18, SZL19, Spr18, ZSB11] .

Analytical [CCR18, CCB15, HNWF07, HNWF12, HH17, LBGS16, SF17, WOH18, CHJ+13, FBY+17, HH16a, KN17, KT5W11, MK13a, Pon11, Pop18, ZWF15].

analytics [JZL17].

analyze [LP11c, OVPK15, QLQ11, RLG14, YKO+11, dVAG16].

analyzer [JJW+14, LC12, PVZ13].

Analyzing [BD11, MRB14, BCP10, HPT17, LZS17, PHT17, SWA13, WES13].

anapole [ZPP+16].

anatase [HRL11].

and/or [KB10, Pog10].

androstenedione [VCM15].

angle [CKP10, GBFD12, XML+15].

angle-dependent [CKP10].

angular [BBG+18b, ENKK+17].

anharmonic [Kow11, SSWX14].

anhydrase [SSP+13].

anhydrides [RB12].

aniline [PLP16].

Anion [TT18, CG15, KSNT19, LC10, uLhY11, LCC18, SC18a, SDF12].

anionic [AM19, GZZ12, GH13, HPL13, JCP14, QZ10b, ZYR+15].

anionic-water [JCL14].

anions [PVS12, RDT14, RJS17, ZYW+10b, ZYL+12].

anisotropic [ANO10a, CAT+13, EPH+13, ENKK+17, NLP+16, SLX+15, SN10].

anisotropy [BP18, CGP12, LPLB16, ZLZ14].

ANN [XWW+11, ZDW18].

ANN-based [ZDW18].

annealing [RHJ11, SHMO11, SHL+11, ZC14, LMZ11a].

annihilation [BL12].

annulated [RS17a].

anode [GNI18, YZLZ19].

anomerization [SM17].

anomers [HH11].

ansatz [Bou14, WGA18].

answer [SJWE10, Tan19].

ant [ZsA10].

antagonists [LLL+10].

anthrax [JA+17].

Anti [WFZ+18, ZsA10].

Anti-Electrostatic [WFZ+18].

anti-HIV-1 [ZsA10].

antiaromatic [TDKT10].

antibiotics [PG15].

antibody [UNT16].

anticancer [SZ+18].

antiferrromagnetic [ZB18].

Antiferromagnetically [SZL19].

antigen [JA+17].

antimicrobials [PPUG10].

antioxidant [GAI3, ZDW18].

antiparasitic [PPUG10].

antisense [ICS+12, ICS+13].

antityrpanosomal [PSdPE+10].

antitubercular [TD10].

AO [YOPB16].

AOFORCE [vW11].

APBS [UH+11].

API [LAS+14, ZW18].

AppA [XBS19].

Applicability [MAK+14, DI11, GHL17, GKR13, HH15, JZZM14, KMS+19, Ray13, RKG11, VHS+19].

applicable [CL16, WGL+11].

Application [AFBR17, BAMR13, BPE16, DAG19, GCCM15, HTS15, LDG+15, MBA11, MH10, OLI13, PAK15, RVP+11, Smp17a, SRS14, SC17, SDL14, SMM+18, VKTJ15, WH11, ZsA10, vSGP10, CSAdOM17, CJP1CT18, DP1M14, Eik16, GLL16, GFG11, GCW16, IUK+11, KT19, KFY+13, KS18, KS11, LLHM16, LP11a, LLL+10, LLLC11, Lvg13c, MDTD13, MDOD18, PHC13, RZG+13, ZC14].
As-Rigid-As-Possible [NJR18]. AsCl [MLCD11]. ascorbate [HHDC16].
ASED [BRP+12]. ASED-MO [BRP+12]. Asp [LY10]. asparaginyl [LBS10].
[ABB+12, ABB+13, ECZWD17, NC13, NC14, OPR16, Tac19, VKNT16].
assembled [KC13b]. assemblies [AKK+16]. assembling [AFSW16, CD11].
assemblings [CBTZ16]. assembly [AGR11b, Hei10, JM11, KLN16, uLhY11, Mau14, OAN15b, TBJ18].
assessed [SJ16]. Assessing [HWLW11, KYB13, KSR+16, OCLM14, SNDK16, VL17a, FNSF+11].
Assessment [ARRC15, FB10, GKH12, HDK+12, HJ10, KB10, KB13, LSH+11, OOT15, SB14, UCFR16, WL10, WYT17, YB16, Yu12b, ZZZ+12, AR15, BG13, ED15, FCE15, FPRS14, FLM11, GAI13, ITIN15, LTT16, LZLC13, MS13, MFR+17, SZX13a, SZX13b, Tsi14, ZTH+15, HCB11, Sch12, YVEI+17]. assigning [LFB14]. assignment [Ben17, KKH19, MPBJ11]. Assignments [TT18].
assist [TS10a]. Assisted [DBGO+17, LL13b, SSGS15]. associated [WNM17, ZZ10, dLvNC18a]. association [DSF17, JA10, MBR+15, NC14, OCW+15, PD12].
associative [Ano10a, JLS18, SN10]. asymmetric [DLSA14, HAL14, KSO+19, NDG14, QLYL10, WCDM11].
asymptotic [KIOY19]. Asynchronous [XFG+16, XFG+15]. AT-rich [YZWC11]. Aten [You10]. atmospheric [BCNH+11]. atom [ATP18, BS10b, CVT+11, CS14, DPNM11, DM15, FSC+14, GBVA11, HRK+10, HM13, JYC+16, JGS+17, Jor17, KV14, KT18, LC10, LZZ14, LKZM18, MZZ11, Niz13, OCW+15, ST11, SM14b, SYH12, Tsi17, VIT+15, VHA+10, VKAM12, VI17, VDVR14, YPKB12, YHCS11, ZFS18, dLC17, dVZ17, YMP14].
atom-typing [YPKB12]. Atomic [BMFG16, EPD+10, KGM12, AYYO17, BLDK+13, BB11a, CCR18, CP15, EKH14, Elk16, EP12, EV14, HS12, HH18, JMLL13, JXS15, KHLM19, KOP+14, KR12, LRVM18, Lar11, LZGS11, MK13a, MPA10, MPA12, Mat10, MPBJ11, NPG17, NOKJ16, OBW12, OV14, Pol13, RB13a, SS16b, SE14, SMP17b, TSH+19, VSA11, WWCL15, YOMT14, dLC18a, dLvNC18b, VV19].
Atomic-resolution [BMFG16, NPG17]. Atomicistic [BH13, CHKR10, MTS+19, MBA14, SE14, BLKP12, CZNA11, DDP16, HDPM14, LZ12, MSC+10, MMZW14, RO14b, RSG+10, ZST14].
atomization [KSM17]. Atoms [JCHT18, ARAG17, ARLP13, BSF18, BSPAN+13, CGA19, DC13, EV14, GAMAC+14, HSJ18, HSB+11, HGCCGR+16, IN13, Jab18a, KHE+19, LHSH12, MP17a, Mit13, MyvBD18, PNE18, Pop18, Pyy13, SFCCK+14, SFCCK+15, STS15, TY10, VGV+11, VyB15, VyB16, WZH+18, WYZ14, YKH15, ZYW+16]. atoms-in-molecules [BSF18, HSB+11, YKH15]. ATP [BMFG16, SYH12, YHH+13].
ATP-binding [YHH+13]. ATP-Mg [BMFG16]. ATPase [II10]. atrazine [BHB+17]. attachment [HBL12, SSS+18, THP+15]. attack [MLY+13].
DVVP14, DH14, Dil15, DJX⁺11b, DJX⁺11a, DFF⁺15, DPB⁺12, DXL⁺10, DCs15, DDM⁺15, EFAC13, EHSPT16, EV14, EBK13, EP15, EBPK17a, EB18, FCL⁺10, FCQGM12, FCPJM14, FHZA⁺18, FMG12, Fra15, Fra16, GLZ16, GHL17, Gar12, GJMPAM⁺14, GJK⁺19, GBVA11, GC18, GVP⁺10, GN18, GSS13, GBSE11, GZ14, GK15b, HKRS11, HS11, HLS12, HH11, HTS15, HW19, HZY⁺10, HSW⁺19, HPL⁺18, HKR12, HB14, HEMCZE⁺14, HSB⁺11, HYUS11, HM13, HIWD15, ISN13, ISM18, JJW⁺14, JLCA17, KS18, KGH15c, KZZ⁺16, KLZ⁺18, KNE11a, KC14, KP11, KKHS19, LFB14, LX11, LM18a, LDB⁺17, LMZ11a, LMZ⁺11b, LWL⁺11, LLZA12, LSH⁺11].

based [LZS⁺17, LZSM19, LTA⁺11, LGKS17, MDTD16, MZZ11, MMM⁺16, MSY19, MC10, MA16, MDQ18, MGCC19, MPNS13, MMZW14, MAP18, MFR⁺17, MO15, MNNK10b, NC12, NC13, NC14, NMH19, NJX⁺10, NG10, OVPK15, OZLSBH12, PRP15, PLZ17, PSC11, PBBP11, PN13, PKC11, PPJ14, PLH16, PBE16, PUBG10, RLDJ17, RZG⁺13, RMRBH⁺19, RVP⁺11, SM14b, SFG⁺17, SLR⁺12, SLX⁺15, SGR⁺18, SFDE16, SLC⁺17, TYZ⁺16, Tak14, TTB⁺10, TS14, VGV⁺11, VVJ15, VC10, VSA11, Vor10, WXL⁺12, WLLH18, WCDM11, Wei12b, WL14, WS13, WDH13, WZWW18, XCLZ19, YJN⁺11, YZ16, YWJ⁺16, YZ16, YZL19, YDL⁺10, YJ11, YN15, YS13, YS15, YS10, YZZ⁺17, ZSLL17, Zha12b, Zha12a, ZY14, ZW18, ZM10, ZYL⁺12, ZT14, dCLFGL13, dSVdM⁺16, dVZ17, FAS⁺18, NKJ16, WTD⁺19, ZDW18, dLVNC18a, dLVNC18b].

based-on [CDS16].

bases [CWZB10, KASH14, LRVM18, MSLS10, SC18b, SBW12, WGA18, ZLL⁺10, Zha12a, ZBMZH15].

Basic [CMvG10, WLF19].

basin [JLH⁺14, RDRC16].

basin-hopping [JLH⁺14].

basins [SBN13a, dLC18a, SBN13b].

Basis [BLF14, BRLS08, BRLS12, PH14, SN16b, TK13, ACD⁺13a, ACD⁺13b, BLFZ13, BLL13, BLBG⁺13, BS10a, BLG10, CC11, DBM⁺15, DLZ15, Fer13a, HSN14, Hili3, HBL12, KKi7a, KT19, KN12⁺15, LDB⁺17, LBH⁺11, LCW12, Lehi5, LYC⁺13, LZ18, Mit13, OAN15a, PML⁺12, PGD⁺16, POB13, Pla11, PD11, RLD12, SWM10, SG10a, Sea10, SNKS10, SM18, Sun15, SG13, TH13, WX12, ZPP⁺16, ZLT13].

Batch [WHJH13, TJBJ12], bath [CSEM16⁺15, MO15, Vor12, WAM17].

BaTiO [BE12, EB12, EBK13].

batteries [GNI18, YZLZ19].

battery [SM19, QCR12, WvRSM14].

Bay-type [WvRSM14].

Bayesian [Fer17, GZ14, SGKP19, VZ14].

BayesWHAM [Fer17].

BD BOX [DZT11].

Be [GNI18, LDJ⁺10, LLX⁺19, EPH⁺15, IMSR18, KV15b, LZW⁺11, NDC14, SMGB11, TH13, TCPPC14, Zha12b, BWW10a, CC18c, CCM15, CM16, ZLY⁺16].

Becke [FPV13].

become [Tan19].

BeH [ZL⁺16, ZLY⁺16].

behavior [AVHB18, BVY⁺12, CME11, CSAdOM17, FCD10, FTR15, KRTB10, LZY⁺12a, PD11, TLDG⁺12].

belief [FPSD17].

Benchmark [CXD⁺19, WSZW15, AF14, ANH⁺11, CSXZ17, cCVG⁺14, DGSVGM19, GA114, KG15, NH19, RS13, ZWGO16, IKn13].

Benchmarking [XYW⁺14].

Benchmarking [Ben17, GA⁺17, Hug12, LCM⁺14, GP11b, HRJ⁺14, HRJ⁺15, HZ13, IY18, JRSHP14, KSM17, RSG14].

benchmarks [GPD⁺16].

benchmarks [HLEM18, XKW18, ZDK12].

bending
binding [TS15a, UNT16, VVG13, Vor10, VM11, VHS+19, WS10, WNP+16, WLLH18, WL14, XHLH16, YZ15a, YZZ16, YJXZ13, YHH+13, ZZ14, ZJZM13, ZYvIZ14, ZLX+13, dRBO13]. binding-based [MAP18].

binding-site [ISP+10]. binds [XHLH16]. BINOL [HPT16a].

BINOL-phosphoric [HPT16a]. Binor [WJX10]. Binor-S [WJX10].

BioLayer [JAH17]. biological [BHB12, Ben17, CLK11, DLL+10, DMN15, GREAI11, GFPSSD17, GLM+17, JS17b, LPLA13, Mat14, MG11, SCF+19, VHA+10, WCJ+14, SDP18].

biologically [BZH14, Mat10]. biomimetic [ZRCC12]. biomolecular [KMS+19, LZTV10]. biophysical [FN12, Mat14, RFP+13].

bipyrimidyl [ZLZ14]. Biradicals [SZL19]. birthday [HIS17]. Bis [WWKS16, KGR+16, KTK17, YMY+19, RHPWS13]. Bis- [RHPWS13].

blending [KM13]. Blind [Vor10]. Block [BGR13, Car14, CAT+13, EWK+13, MCK17b, TDKT10]. Block-adaptive [BGR13]. blockade [AB10]. blocked [KLS10, KML10]. blockers [CV12].

Boltzmann [ALRM18, BCCO10, BD12, CLA16, FBY+17, FMB15, FCE15, Fra15, Fra16, HWWL11, KB11e, NWW17, SK15a, WL10, WLQ19, XY17, YOM14, YLS19]. Bond [BVC13, Jab18a, NKD18, Pon11, SK13, WM12, ASL+11, AF516, BK17a, CFM+19, CPR+12, CR19, CVT+11, CD11, CKL+11, CP10, DR11, DBG11, DL19, EPF+15, FCPJ14, GREAI11, GCCM15, GLW13a, GLW13b, GCW16, GC+11, HS14a, HAI+16, HEM+17, JSW10, KTT16, KV14, KSNT19, KKA+18, KLS10, KML10, KSC16, LCPS13, LDJ+10, LLL+11, LZJ+11, LZY12b, LGKS17, MPSG11, MLGB16, MS11, MVBD18, NNF+10, Niz13, PKK17, QZM11, RHRCH16, RL11, RS17b, Rob13, RRK16, SZ17, SP13, SFA17].
SSWX14, SB18, SSMW09, SCSW13, TM16, Tan19, TD11, VECT12, Wei12a, Wei12b, XP13, YK13, ZWLX11, ZLT13, ZZW19, ZWF15, vLBBR12].

bond-order [ZW15]. bond-valence [HAI+16]. bonded [BLFZ13, BSD18, BLDK+13, DKT13, JCP14, LJW11a, LHHW14, LZSM19, PAT+10, SSGS15, UT14, UT15, WHX+10, ZZL+12, ZDX11, ZBMZH15].

Bonding [BP13+13, GRD+16, BD+13, KGR+16, ZLZ14, ZLY+16, ZB18, ZZWX11].

Bonds [WFZ+18, BT18, CXD+19, DGB+13, ED15, FPRS14, Gra18, HH15, Jab14, JJJ16, LHZ+11, LZL+15b, LZY12b, LDG+15, OOK11, Rob13, SM16a, SK13, SJ16, YLT+19, YLL11, YKH15, YJ17, ZLY+16, Jab18b, YLZ+19].

BonnMag [BBG+18]. Book [Sch10, Spr10]. boost [KV15a]. BOP [SH19].

borafluorenes [ZQ14]. borane [BEPM14, Kop15b, LC10]. borates [GWJJ12]. borides [ZWMW10].

born [AB16b, BLZ+13, DSF17, FCE15, HWLW11, KCPMG12, LL10a, LCH10, MT19b, PS13, RSB+13, SZTSM10, SSBW14, VMPS17, WWKS11].

boron [BEPM14, Gra18, GAMAC+14, LT14, Olt16, PGC12, VS14]. boron-doped [VS14]. boron-nitride [LT14]. boryl [LC10].

BOSS [VKTRJ15]. BOSS-Gaussian [VKTRJ15]. Bosutinib [GMASBF16]. both [AST+16, FNSF+11, LX11, TH13, WZ19]. bottleneck [SRR16].

bound [FLM11, GPK+16, LFM12, MAK+14, PMG+16, PZA15, XWSW13].

boundary [KB14a, Lun12, MTvG12, NO16, PL14, PS13, SSP19, Sie15, VECT12, YAO18].

Boys [WO15]. bptz [CWT+12]. bpy [LWXC16].

Br [ATP18, ASS+17, EPH+15, GPK+16, LDJ+10, LLL+11, LZJ+11, PMG+16, YS13, ZLL12, LZL+15b, MKH15, MPSBC19, XhD15, ZWY+10b]. Branch [Ish10]. branching [BEL+11, OZLSBH12, STM17]. BrBr [LGW12].

Bridging [YLL11, dCDP15, LLL+11, MIP+15, BPC13]. Brillouin [QS19].

Bringing [RR11]. broad [MP19b, TZ12]. broken [KKW18].

broken-Symmetry [KKW18]. bromide [MG15]. bromination [SGS+16].

Bromine [LWL+16]. BROMOC [DMN15]. Bromosuccinimide [QQY+18].

C [LdSRR16, LTR18, LAHS16, LLD17, LCWW10, LWD13, MLQ+12, MCK17a, MCK17b, NKD18, PMG+16, RLA+11, Sak18, SKMS13, STS+10, SBW12, Tak11, UT15, WCY+11, WKK15, YZZ+17, ZYG+14, ZLY+16, BS16a, VAMS14, AM19, Ben17, BWK10a, BS16b, BH13, CG12, ED15, FL15, GWT+17, GMS14, GZZ12, HJ13, HVS16, IMK+16, JLS+10, KV14, KP10, LFB14, LC17, LDH+14, MSV16, MH11, MSPC19, Niz13, OPR16, PTK11, Pie14, PZB13, RWR+13, SND16, TFQ+10, TFQ+11, TS15a, TKN19, VAR12, VED10, WK10a, W10, WWT19, WL14, WTH+16, Yes12, Yes15, YDZ15, ZZZ+19, ZZL19]. C-terminal [IMK+16].

EFAC13, EK17, EWK^+13, EP12, EB12, EBAK13, EB18, FAA15, FRC18, FA18, FE14, GRARO^+14, GA18, GMO16, HASR^+12, HYL^+11, HS14a, HB14, HSH15, Heli13, HG10, HG13, HBL12, HYUS11, HGW18, Ibr17, IMSR18, ISM18, JCG^+11, KK17a, KB10, KKNN11, KGHK12, KMS^+19, KKR^+13, KERY^+16, KFT18, KCPMG12, KKL^+13, KSH^+17, KKH18, LEdOLdV17, LRVM18, LOB18, LMZ11a, LCH10, LYG13b, LCK^+18, LCM^+14, Lun12, MK17, MK19, MUGNVJ^+18, MLN^+18, MCLD10, MEH18, MCK17a, MCK17b, NWW17, NZM18, NLL19, NCT18, NN18, OHNK11, OLA15, OOT15, OZLSBH12, PBLdS12, PTK11].

calculations [PHK14, POB13, PBBP11, PDG^+16, PN13, PGW^+17, RAR^+11, RLZ^+18, RHT^+15, RLD12, RR11, REV^+17, RH10, RK15, SH15, SRSLO15, SP13, SPHF^+18, SS16b, SCW11, SWPR11, SRS14, SMP17b, SDMS13, SHB17, SIK11, SPZP18b, SPZP19, TLdG^+12, TNY18, TS10a, TN19b, UHH, VLB^+10, VKAM12, VKNT15, WK12, WHK^+12, WTH^+16, WGA18, WXY^+14, WYJ^+16, YD17, YN15, ZRCC11, ZLT13, ZLZ14, ZWMW10, ZH12, MSPC19, NQB19].

calculator [dCLFGL13].

calibrate [VVLG17].

Calibration [CBP14, DDM^+15].

calix [GMASBF16, PRRT^+10, YCGA10, ZWY^+10a, ZWS^+10, GMASBF16].

Can [ZPF14].

CAMERRA [JLS18].

Can [ASMS10, IMSR18, KV15b, LZW^+11, NH19, PLAG11, SHL^+13, SPZP18a, CIKT13, LCB10, TCPPC14, Zha12b].

CANADA [Fel10].

cancer [NS10, WC11].

Canepa [LHMM11].

cannabinoid [ILKR11].

Canonical [CPN^+17, RHNN10, BW11a, HRK^+10, KCK^+17, PHH^+12].

Canerakis [UCRL18].

CaO [BL12].

CAP/SAC [EFS16].

CAP/SAC-CI [EFS16].
capabilities [AAC^+16].
capability [LC10].
capacity [KOP^+14, PGC12, WK10a, WKLC12].
capillary [NFPD13].
caps [WDS^+19].
capture [GLZ17, SMD18].
Car [DL19, KCK^+15].

CARB1/TIP3P [SA10].

carbazole [JYS^+12, SLC^+17, YJN^+11].
carbazole-based [SLC^+17].
carbazole-fluorene [YJN^+11].

CarbBuilder [KSW16].

carbene [CWT^+12, LXX^+10, TCPPC14, WS11, WS12, dSdlBNB17].
carbenes [BAD^+19, BSDP16, KYKR15, RF15].
carbocation [ONTTL16].
carbocations [OPR16].
carbonyl [BAD^+19].
Carbohydrate [ZYvIZ14, NMF^+14].
Carbohydrate-binding [ZYvIZ14].
carbohydrates [CP15, HH11, JSD^+11, PLH16].
Carbon [SC17, AS15a, AAMR18, AS15a, BPE16, CME11, DI11, Den12, DC13, Fom13, FTR15, GMSM15, GPK^+16, GBS^+17, GZ12, JW01, KGHK12, KV14, KPH^+19, KHE^+19, KGJ12, LPLS16, LL10c, LT14, LK16b, MSY19, OCW^+15, RHNN10, RRK16, Sie18, TSR^+16, VS14, WYL^+15, WDZN16, YNZ13, YZZ^+17, ZY^+16, ZYL^+16, ZWF15, OSI^+19].
carbon-beryllium [CME11].
carbon-carbon [KGJ19].
carbon-germanium [GSM1M15].
carbonate [ZSWL12].
Carbondioxide [Sea10].
carbonic [SSP^+13].
carbons [MBK^+13, RVB^+12].
carbonyl
carbonylation [MRC+18].
carbonyls [SSX+14].
carboranes [HJ13].
carboxybetaine [DQ16].
carboxylates [AARP17, RVM19].
carboxylation [CKG18, DGSVGVM19].
carboxylic [LPMT17, RB12]. card [SR11].
Carlo
[LHMM11, NQB19, Aou16, BFH++13, CLK11, CG12, CTP13, CAP17, DMMN15, FFA14, GP12, GPM17, HFSO12, HMM10, HYUS11, HQC16, HHBY10, IHJ++13, LPK16, LMZ11a, LZ12, MS16, MBRC16, MOS12, NDW15, OPFR17, PSS14, PS13, Pon10, PIH++12, RHNN10, RdA12, SCOJ13, SAGC16, SMRM++17, SSSP19, SE14, UU12, ZLM++15, ZW17].
Carlo/Brownian [DMN15].
Carlo/molecular [RdA12].
carotenoids [PVAM16].
carrabiose [YSRSS10].
carrier [SFDE16].
carriers [GMASBF16, UGK18].
Cartesian [REH13, FHMB15, AlQ19, Elk16].
caryolene [ONTTL16].
caryolene-forming [ONTTL16].
CAS [KMS++19, MH11].
cascade [HS17b, ONTTL16, ZZWT12].
cascaded [LZL++15a].
cases [GREA11].
CASPT2 [LGZ15, SGWA17, VFRAR16, WGA18].
Cassandra [SMRM++17].
CASSCF [KKL++13, LWGZ15, NH19, SGWA17].
CASSCF/CASPT2 [LGZ15].
CASSCF/MC [KKL++13].
CASSCF/MC-XQDPT2 [KKL++13].
CAST [GBW++14].
catalysis [Can10, Can11, EvRC++18, KK19, LHMM11, MG14, RNS19].
catalyst [BEM14, DK19, DSHLM18, LLCL17, RLZ++18, WWTL19, YZ15b, ZSWL12, dSDdAR10].
catalysts [AHK++19, BEPM14, JJAB16, NJX++10, WJX++10].
Catalytic [YMY++19, AHK++19, GHL17, GA19, KV15b, ONTTL16, SJ14, SLY++10, SOYC12, TM18, UKS11, WZQW10, dSDdAR10].
catalyzed [AS11, BF19, CYY++17, CCJC10, CPLLI1, HPT16a, HDB15, HJLV16, KSO++19, KB13, KT12, MRC++18, MG15, MTS++19, QLYL10, TLA10, Tsi17, VCM15, WCW11, WWTL19, WXY14, XLYZ10, XXZ17, YZ17, YZLZ18, dSDdAR10, dSDLBNB17, dCDP15].
catastrophe [ABDG12, GND+12].
catechol [PBLdS12].
catechol-O-methyltransferase [PBLdS12].
Catenanes [LAHS16].
cathepsin [ETLS17].
cathode [SMiN++19].
cation [CCCLCGRO14, CGPP11, DLMLH12, DDM++15, RMGB11, SSGS15, ZYL++12].
Cationic [HJ13, CI18a, WJX++10].
cations [CC18b, KGR++16, LCL++10, LDsRR16, LTR18, PVS12, SD++17, Tac17, THP++15, ZWY++10a, ZWS+10].
cations/nucleobases [CC18b].
causes [GDV17].
cavatand [CC18a].
cavities [HRB++17, ZSB++16].
cavities/vacancies [HRB++17].
cavity [KD18, ZWS++10].
CAVS [SDZ17].
CB [BTMS12, CC18a, ILKRN11].
CBS [KG15].
CBS-QB [KG15].
CC [Gil11, LLTC12].
CC2 [SGWA17].
CC3 [LZ14].
ccCA [RJWV12].
CCSD [BBI++11, MSPC19, CGOA17, Gil11, KK17a, KKL++13, MVKS10, OPR16, PC14, RS13, SRR16, SB14, XKW18, YJ17].
Cd [SLIB12].
CDocker [GLB16].
C == [CROB16].
CsS [NS18].
Ce [Ibr17, YOPB16].
CeF
[KKA'18]. cefotaxime [MFM+12]. cell
[ACS12, CGBK13, Elk16, Fom11, Gon12, JMS14, SRL+15, VÂA14, dACP12].
Cells [FPV13, ACS12, DZA11, DGL+13, JYS+12, LZL+15a, SV11, SLC+17, TZ12, YJN+11]. cellular [VBD11].
Cellulose-Builder [GS12]. cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13]. cenus [PPUBGD10].
center [CXD+19, IIF+10, LRER13, YLL11, Yu12b]. centered [FA18, VI17].
centers [Gav12, GA19, WC14]. centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a]. centrality [RNVP13].
centre [SC18a]. centric [LABSG17].
cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13].
census [PPUBGD10].
center [CXD+19, IIF+10, LRER13, YLL11, Yu12b]. centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a]. centrality [RNVP13].
centre [SC18a].
centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a].
centrality [RNVP13].

Cellulose-Builder [GS12]. cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13]. census [PPUBGD10].
center [CXD+19, IIF+10, LRER13, YLL11, Yu12b]. centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a]. centrality [RNVP13].
centre [SC18a]. centric [LABSG17].
cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13]. census [PPUBGD10].
center [CXD+19, IIF+10, LRER13, YLL11, Yu12b]. centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a].
centrality [RNVP13].
centre [SC18a]. centric [LABSG17].
cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13].
census [PPUBGD10].
center [CXD+19, IIF+10, LRER13, YLL11, Yu12b]. centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a].
centrality [RNVP13].
centre [SC18a].
centered [FA18, VI17].
centers [Gav12, GA19, WC14]. central [DGL+13, Yu12a].
centrality [RNVP13].

[CFM+19]. CH/ [OOK11]. chaff [NMF+14]. Chain
[vRWGS17, BFH+13, CHKR10, DMD+18, HAL14, KV14, KLS10, KMLS10, LPS+13, LZGSI1, LP11b, LvGI3a, LZMP16, OZ14, PD12, PS10, QZM11, SA13, SISK10, SZBM13, TSN16, DKV18].
chains [AFSW16, FP17a, JSW10, LZZ14, NPP13, Pla11, PLH16, TLDG+12, TS15b].
chalcogen [CFM+19, DDP+18]. chalcogenides [SPS+12]. chalcone [CPLL11, YZ17].

change [EMD17]. changes [GDV17, GBS+17, HB15, LK13, MJLV14b, MO17, PdSC18, RO14b, YZGS14b].
Changing [XVN17, LLvG10]. channel
[HYYZ+13, PVL+13, SFBT17, SY16b, TCX+13]. channels
[KC13a, LL10c, NSK18, OKIS17]. character
[Ali18, BMB13, Cas14, Ibr17, LCK+18, RIJ+11, VSH19, YSSB12].
characteristics [DPSL16, Gav12, LT14, Mat14, RDT14, TZ11].
Characterization [DDP+18, VT14, XWSW13, CBP+15, DGL+13, GBW+14, GZZ12, Kop15b, MJBMI2, MPA10, RNP13, ZYG+14].
characterize [MGCC19]. Characterizing [LH11, PRSG13, She12, Yu12b].
characters [LSH+11, ZLL+10]. Charge
[CMF+17, JM11, RDT14, SFDE16, VV19, AWF+18, AS15b, ANH+11, ALH+10, BCSJCJ+13, BE16, CS14, CBTZ16, CMS13, Cor17, DS12a, DWR17, DAdeGR15, EFAC13, ENKK+17, GMG+10, HLWD15, JCGVPHT17, JZZM14, Kan15, KVR10, LLLMI1, LPE+10, LBDP12, MSV16, MCF+18, MRHR11, MPBJ11, NN18, OBW12, PL14, PTB+15, RSSG18, RO14b, Ric16, REL17, SPS+12, SFM+18, SSSG15, SmIN+19, SMP17a, SFLG+17, SLC+17, TN10, TKN10, UT15, UKG18, VPR10, VAR12, VL17b, WCT+11, WWCL15, YKO+11, YWZ14, YLZ+10, YJ17, YFH+19, ZDZM13, ZZL19, dLC17].
charge-assisted [SSSG15]. charge-inverted [UT15, YJ17].
Charge-transfer [JM11, ANH+11, EFAC13, YLZ+10]. charge-transport [HLWD15]. charged [BK13, KD10, MRO17, NPP13, RJS17, Tsi14].

chromophores [SGDT10, UD12]. CI [CME11, EFAC13, EFS16, FE14, IN13, KMS+19, MN19, PH10b, RSR+17, SCF+19].
circuits [RBV+12]. circular [HNNR13, SEJ+18, SB13, SB15]. circularly [SEJ+18]. Cis [CSM16, MSBF16, WvRSM14, ZLHH14]. Cis-
[CSM16, MSBF16, WvRSM14]. CISD [dALdS+15].
cisplatin [dRCFGRB18, CK17, PML+12]. CI

[ATP18, ASS+17, CXS10, EP+15, GPK+16, KKR+13, LDJ+10, LLL+11, LZJ+11, LGW12, PMG+16, Rab12, RVdMB16, Sak18, TFS+10, TFS+11, WGN+16, WGLG+16, YS13, ZCK+16, ZLLL12, CSNCS+18, JCG+10, JLS+10, JLH+14, LTL+15b, MSCP19, WHLZ12, WLF19, ZWY+10b]. Clar

Clusters [SC17, TT18, AFPI13, ATIP18, AF14, Ano11, ASS10, AC12, BPM15, BACSCI+10, CCL+13, CZZL19, DAI9, DH11, FCW+14, GT10, GC18, GRD+10, GAMAC+14, GZZ12, GBGR16, GBG+19, HS14a, HS16b, Hsu14, JM11, JCP14, JHMB+09, JHMB+11, JCG+11, KD10, KKPT11, KOP+14, KSNT19, KDB13, LZTV10, KL13, LZZ+11, LCH+15, LCWW10, MCS11, MPA10, MPA12, MP13, MBFG15, MBRC15, MCBY15, NC13, NC14, OKY18, PM18b, QZ10b, Rab12, RGVC+19, RSB+13, SN16a, SBGP18, SB11, SIT18, SMP17a, TN12, TNI+19a, Tak10, Tak11, Tak18, TSZQ12, TN19b, TS11, Tsu19, US11, WHL+10, WYGW12, WZH+18, YVEI+17]. CM1 [VSA11]. CN

[TS15b, YKH15, KIOY19, STS+10, TCPP14, WHDL11]. CNH [DBGO+17]. CNO [OKIS17]. cNOR [BS16a]. CO

[Bac10, BPLL12, FD16, FH+19, OKY18, SC17, SSX+14, YXZZ17, ZBB16, Spr10, WWKS16, BPLL12, CCJC10, DHE+12, DSHLM18, GLZ17, GWRJ18, HFSO12, HVS16, KD10, LLC17, LPLB16, MG15, MBFG15, SSC+19, SKTT11, WC13, AAMR18, CMM18, HYL+11, JCG+11, JWJ+10, YMY+19].
coadsorbed [LLTC12]. Coarse
[KZP+18a, MSLS10, NST14, BJP15, BLKP12, CAD16, GMPB12, HHWL17,
JC16, KCK+17, KVQC+11, KLS10, KMLS10, LZ12, LZX16, LZZ14,
LZLMP16, MT19a, MBC11, MBC13, ML14, RSG+10, SLX+15, SDZ17,
SOM+13, SJ17, SYG+18, SM15, SAvG15, WBF17]. Coarse-grained
[KZP+18a, MSLS10, NST14, BLKP12, CAD16, HHWL17, JC16, KCK+17,
KVQC+11, KLS10, KMLS10, LZ12, LZX16, LZZ14, LZLMP16, MT19a,
MBC11, MBC13, RSG+10, SLX+15, SDZ17, SJ17, SYG+18, SM15, SAvG15].
coarse-graining [BJP15, GMPB12]. cobalamin [AALCM11].
cobalamin-dependent [AALCM11]. cobalt [DSHLM18].
Code [REL+14, BTT10, CPRS18, GHK12, GP12, LLH14, LCPS13, RJR14,
RRFV+18, WKC+10b, vW11]. codes [KSH+17, RKGN10]. coding
[QLQ11, YS10]. Codoped [RLZ+18]. coefficient
[FSD+18, WH11, WF16, WZWW18]. coefficients
[AR10, JIS13, KCL+14, LRVM18, NMLD13, PN13, WG12, YAS13].
cofactor [ZX11]. cofactors [AKMYB18, GLM+17, ZSYH12].
cogs [DL16]. coherent [Rab12]. cold [VL17b]. collapse [SCMA+17].
collection [BRGN12, MP19b]. collective [CF18]. colliding
[YHX19]. Collision [FBvdB18, ZHS+18, dCLFGL13]. Collision-free
[FBvdB18]. collisions [KCL+14, LPLB16]. colony [ZsA10]. color
[DBM+17, GK15b, LWL+11, PE11]. Combination
[JIS13, NO16, Pon10, ST11, EP12, IM17, KHL19, Tak14]. combinations
[PD11]. combinatorial [GD10, SR10]. Combined
[CMM18, PGW+17, ZZY+16, ASL+11, DWL11, DHF+11, GGM+12, IN13,
KSSH13, KOP+14, LFN+10, MCR17, NC12, NF17, PMC+17, SGS+16,
SNDK16, SH19, SDL14, SPZP19, Tak10, VVJ15, WLF19, XDL+10, YKH15].
combines [WX12]. Combining
[ALRM18, MBC11, PVAM16, SDF+17, AS15b, AKN16, BKŠ+11, CQFC10,
FBEM11, LWZ+19, MOS12, NHK+13, Vor10, Gon12]. combustion [MB14].
Coming [Ano16-75, Ano16-80, Ano16-81, Ano16-82, Ano16-83, Ano16-84,
Ano16-85, Ano16-86, Ano16-87, Ano16-88, Ano16-76, Ano16-77, Ano16-78,
Ano16-79, Yan16]. Commemorate [HIS17]. Comment
[Ihl12, JW12, Kne11b, LHMM11, Man13, Ray13, RSR+12, RSLML12,
dSlS12b, Can11, GKR13, GPGSM12, LAT11, QB10, QB11, SFLG+17,
WM12, vLLBRR12, VVB13]. Commentaries [CDM10]. Commentary
[RSR+12]. commercial [TF15]. Common [HTS17, RNP13, PH15].
commonly [PGY15, Pie14, PLAG11, SPR+13]. Communication
[PH15, KP10, LAT11]. Communications [CDB10, CDM11]. CoMnO
[LLL+12]. Comp
[ABB+13, CHR+12b, HNWF12, ICS+13, Kne11b, MSK+12]. compact
[RLD12]. compactness [PTB+15]. comparable [Gil11]. Comparative
[GZZM16, GVP+10, LAW+16, MJC14, MS13, SPR+13, WYGW12, BT18,
BPC13, BS10c, JJAB16, RSSG18, VMRSH+17, ZYG+15, CJZS10, PS10].
compared [SGWA17]. Comparing
Comparison [BBG18a, BK13, BK17b, BVC13, GPM17, MHO18, MVKS10, NFPD13, NTNY15, OCL11, PGY15, Sch18, SLP+12, STM+15, TLY+12, YAS13, dRBO13, AGR11a, BAMR13, BB11b, CDM+15, DLL+10, FED17, GR11, HCB11, HBI+17, HM13, KDL+12, KMLS10, LLSW14, MJL14a, MvBD18, PXXW10, PKK17, PD11, RKGN10, Rob13, RŠRR15, TG12a, UD12, VVBL17, WTH+16, WG12, YLGX14, Kar17, Mat10, SA10, SIT18, YJ11].

compatibility [BP11].

competing [KYB13, MPBJ11, RO14a, SOYC12, VHA+10].

Competition [HvM16, LZL+15b, HvM17].

Competitive [ZSL+11, GMBX+16, RLDJ17].

Complementary [GPS10, OAN15b].

Complete [SN16b, CSKH15, LYC+13, OAN15a, SPS+12, SCSW13, TCB16].

complexation [CBP+15, SNS16].

Complexes [EHSPT16, GPdC+16, SvLK18, SKGB13, AvKSP16, AMK11, ASMS10, AK10, AM19, BCSCJ+13, BLFZ13, BLDK+13, BSG+18b, CSGOA17, CRPS18, CWT+12, ČMD13, CZH12, CGPP11, CAT+13, CMS13, CM16, CB11d, DS12b, DLP11, EPH+13, ED15, FHW+11, FCE15, FPB12, FB14b, GKI15a, GHL17, GPK+16, Gil11, Gra18, HDK+12, HSY+11, HKR12, HL15, HRJ+14, HGHP14, HRJ+15, HDPM14, HG10, HQSZ19, ITY+19, JKS+16, KM13, NK19, NASH15, PSP15, PW12, RK15, SV11].

components [CLA16, CSKH16, DMJ17, HSN+18, HKR+14, JK+16, KM13, NK19, NASH15, PSP15, PW12, RK15, SV11].

Compounds [LLX+19, AH10, AR15, ARLP13, BEEL14, CME11, CL16, CSSB11, DOM+11, DCOD13, DPB+12, EPH+13, FHT+15, FSD+18, GRP+12, JSF19, LWL+10, MMS16, NHN16, NFG+13, OCLM14, PMG+16, PSC11, SH15, SK12, SSNT19, SGHL13, TFQ+11, TD10, TTB+11, VVBL17, VFRAR16].
Confined [RO14a, WTD+19, WDHZ13]. Confinement
[NSP15, CCR18, CDB10, FTR15, Vyb15, Vyb16]. Confining
[CC18a, DLC18b, TM16]. Conformation
[AST+16, CR19, EJ13, FBvdB18, GKJ+19, PVJ10, SEF+16].

Conformation-dependent [PVJ10]. Conformational
[CDM+15, ETLS15, KRTB10, LGL11, LTA+11, MO17, OGL10, vRWGS17,
AD10, BLKP12, BD11, ČMD13, DPSL16, DPNM11, DSHL18, FCD10,
FCOGM12, GDV17, GOL13, GBSE11, HTS15, HDL+17, HKNH13, HCD+10,
IMK+16, ISK14, JLS18, KB10, KNE11a, KGM12, LLHM16, LC17b, NMF+14,
Pet11, PKIC11, PLH16, PVS12, PS14, RSL16, SBT17, SHL+11, SEM12,
SDMS13, TJB12, VZ14, YZ16, Yon16].

Conformational-space [AD10].

congested [MvBD18].

Conjugated
[RVB+12, BLBG+13, HDHL15a, HDHL15b, HDHL15c, JYS+12, RSSG18,
YJN+11, JCHT18].

conjunction [CGA19, LBH+11, NC13, RKGN10].

Connected
[ACD+13a, ACD+13b, NR11, XTn18].

Connectivity [ISP+10, ZYS+10]. conquer [BRP+12, BGR13, KKN11,
KFT18, NYH+17, NN18, NNK+16, WX12, YN15].

consensus [CGA19, LBH+11, NC13, RKGN10].

Conserving [PH17].

Consistent
[LOB18, MKO+13, POB13, BKŠ+11, BY11, BK17b, DK11, GBVA11, Hili13,
HKR+14, JXH16, KT10, KFT18, LBH+11, LCW12, ON14, SPS+12,
SMF17b, SCSW13, TYN15, VGV+11, YN15, ZBG11, BLKP12].

Consistently [IM17].

Consolidate [BK17c].

constantly [IM17].

constant
[AB16a, CS14, KSK11, KNP+12, MK17, MK19, PLFS18, PS13, RAGLL11,
Sak18, STM17, Vor12, WOH16, WOH18, dACP12].

constant-distance
[AAMD+11, CBH14, CPK12, DSD+11, ECZWD17,
FD14, GAI13, GKR13, MG11, OZLSBH12, Ray13, RSG14, RKG11, Rui11,
RRK16, SSC+19, SPHF+18, SH18a, SACdG14, TTR+12, Ts14, WL14,
XWW+11, YS13, ZWL+10b, ZLLL12].

Constrained
[SLG15, GREA11, GA12, VBV13b, WBN+13].

Constraints
[KB11a, OPBR17, OZS+13].

constructed
[HDL+17, ZLY+16].

Constructing
[ACG15, CHE15].

Construction
[MS18b, JCMC11, KI18, KSR17, LZX16, UIW+10,
WWD14, YD17].

Contact
[DBK17, MK13a].

Contacts
[CCCLCGRO14, Ham11, Kri10, PRP15, SNDK16].

Contaminated
[ER19].

Contents
[Ano16-115, Ano16-121, Ano16-122,
Ano16-123, Ano16-124, Ano16-125, Ano16-126, Ano16-127, Ano16-128,
Corrigendum

[Ano15-58, Fra16, HHT +13a, HRJ +15, HvM17, SSB13, WHAS +16]. COSMO
[DS12a, UVsWdWK19]. COSMO-RS [DS12a]. COSMOmic [JIS13]. Cost
[PDG +16, BLDK +13, BYE +16, CBP14, Gil11, LCM +14, SRR16, TF15].
cost-effective [LCM +14]. cost-efficient [CBP14]. Could
[EPH +13, EPH +15, TLA10]. Coulomb
[FED17, GC18, IO13a, JKS +16, LMR14]. coulombic [DPAB16]. coumaric
[HN +17]. coumarin [MS11, ZDX11]. count [KTK17]. counterintuitive
[WDS +19]. Counterpoise [SMGB11, LCM +14]. Counting [QZ10a, RNP13].
couple [IYK11, Tsi17]. Coupled [DAB16, Höf14, SZL19, VV14, ACD +13a,
ACD +13b, BYE +16, CAT +13, EVR18, FZY +12, GA18, HKH18, HDM +15,
HGCGGR +16, ILKR11, YK11, JLH +14, KT19, Les19, MC12, PGS +15,
RKM14, SB14, SH18b, SM17, TTh19, XTn18, XBSS19]. Coupled-cluster
[Höf14, VV14, BYE +16, HGCGGR +16, Les19, MC12, PGS +15, TTh19,
XTn18]. coupled-cluster/Kohn [VV14]. coupled-electron [SB14].
Coupling [NNT +19, AMQ +14, BLZ +13, FD16, GP11a, KSK11, KN +12,
KK +18, KoS16, KKH18, LLB +12, LSH +11, LWD13, MG11, MCP18,
PLFS18, PS17, Rui11, RRK16, SPH +18, SH18a, SACdG14, Wu10, YB11,
ZTH +15, ZLZ14, ZYvIZ14, GA19]. couplings
[CSEMB +16, LKH +11, YFH +19, ZB18, dVAG16]. covalency [HS14a].
Covalent
[WBT10, FCCP17, HAI +16, KAR12, MR 17, OZS +13, RS13, SFA17].
CovalentDock [OZS +13]. covalently [CZNA11]. Cover
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13b, Ano13c, Ano13d,
Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m,
Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u,
Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano13-27, Ano13-28, Ano13-29,
Ano13-30, Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g,
Ano13h, Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p,
Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x,
Ano13y, Ano13z, Ano13-32, Ano13-33, Ano13-34, Ano13-35, Ano13-36,
Ano13-37, Ano13-38, Ano13-39, Ano13-40, Ano13-41, Ano13-42,
Cover
[Ano13-50, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g,
Ano14-35, Ano14-36, Ano14-37, Ano14-38, Ano14-39, Ano14-40, Ano14-41,
Ano14-42, Ano14-43, Ano14-44, Ano14-45, Ano14-46, Ano14-47, Ano14-50,
Ano14-51, Ano14-52, Ano14-53, Ano14-54, Ano14-55, Ano14-56, Ano14-57,
Ano14-58, Ano14-59, Ano14-60, Ano14-61, Ano14-62, Ano14-63, Ano14-64,
Ano14-65, Ano14-66, Ano14-67, Ano14-68, Ano14-69, Ano14-70, Ano14-71,
Ano14-72, Ano14-73, Ano14-74, Ano14-75, Ano14-76, Ano14-77, Ano14-78,
Ano14-79, Ano14-80, Ano14-81, Ano14-82, Ano14-83, Ano14-84, Ano14-85,
Ano14-86, Ano14-87, Ano14-88, Ano14-89, Ano14-90, Ano14-91, Ano14-92,
Ano14-93, Ano14-94, Ano14-95, Ano14-96, Ano14-97, Ano14-98, Ano14-99,
Ano14-100, Ano14-101, Ano14-102, Ano14-103, Ano14-104, Ano14-105,
Ano14-106, Ano14-107, Ano14-108, Ano14-109, Ano14-110, Ano14-111,
Ano14-112, Ano14-113, Ano14-114, Ano14-115, Ano14-116, Ano14-117,
Ano14-118, Ano14-119, Ano14-120, Ano14-121, Ano14-122, Ano14-123,
Ano14-124, Ano14-125, Ano14-126, Ano14-127, Ano14-128, Ano14-129,
Ano14-130, Ano14-131, Ano14-132, Ano14-133, Ano14-134, Ano14-135,
Ano14-136, Ano14-137, Ano14-138, Ano14-139, Ano14-140, Ano14-141,
Ano14-142, Ano14-143, Ano14-144, Ano14-145, Ano14-146, Ano14-147,
Ano14-148, Ano14-149, Ano14-150, Ano14-151, Ano14-152, Ano14-153,
Ano14-154, Ano14-155, Ano14-156, Ano14-157, Ano14-158, Ano14-159,
Cover [Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15y, Ano15z, Ano15-27, Ano15-28, Ano15-29, Ano15-30, Ano15-31, Ano15-32, Ano15-33, Ano15-34, Ano15-35, Ano15-36, Ano15-37, Ano15-38, Ano15-45, Ano15-46, Ano15-47, Ano15-48, Ano15-49, Ano15-50, Ano15-51, Ano15-52, Ano15-53, Ano15-54, Ano15-55, Ano15-56, Ano15-57, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano16a, Ano16i, Ano16-39, Ano16-40, Ano16-41, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16-37, Ano16-38, Ano16-42, Ano16-43, Ano16-44, Ano16-45, Ano16-46, Ano16-47, Ano16-48, Ano16-49, Ano16-50, Ano16-51, Ano16-52, Ano16-53, Ano16-54, Ano16-55, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano17a, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano17z, Ano17-27, Ano17-28, Ano17n, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano18a, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31, Ano18-32, Ano18b, Ano18n, Ano18-29, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g]. **Coxeter** [WTH⁺16]. **Cp⁺CoEt** [MLQ⁺12]. **CP2K** [MJG⁺15]. **CPB** [FHMB15]. **CPMD** [SN16a]. **CPMD/GULP** [SN16a]. **CPPTRAJ** [RC18]. **CPU** [DZT11, MEH18]. **CPUs** [KK17a]. **Cr** [WWKS16, SSX⁺14, ZFS18]. **Crabbé** [GRCL12]. **Crafts** [CYY⁺17]. **Crafts-type** [CYY⁺17]. **crambin** [YMIP14]. **creation** [JBAM11, You10]. **Crick** [BZH14]. **criteria** [MvBD18]. **criterion** [dLvNC18a]. **critical** [HEMCL14, KCK⁺15, LTT16, MLZZ12, Wei12a, Wei12b, dLvNC18a]. **CrMnAs** [LKZM18]. **cross** [HPT⁺16b, HBL12, Lun12, MY17a, MY17b, WMW⁺10, ZHS⁺18, dCLFGL13]. **cross-boundary** [Lun12]. **cross-platform** [HPT⁺16b]. **cross-section** [dCLFGL13]. **crossing** [LLSW14, QCR12]. **crossover** [CSS17, KV14, MK17, SHMO11, VFRAR16]. **crotonaldehyde** [KK19]. **crowded** [MH17]. **crown** [AvKSP16, HLB15, MWJ⁺11]. **crown/ammonium** [AvKSP16]. **CrWO** [WMW11]. **cyro** [MKM⁺17].
cryo-EM [MKM+17]. Crystal
[FDCJG18, Kri10, VM11, ASL+11, BCSCJ+13, BCJC+14, Elk16, GMG+10,
HB14, HJ10, MCAG+16, NHP+10, NTNY15, SPZP18b, OPB+12, CPR18].
crystalline [DOM+11, DCOD13, DLSD13, DB12, EP12, EFOD13, GS12,
RB13b, WDLG12]. crystallography [MM18, Mat18, Tsi18, YW13].
crystals [BS18, DL19, HZSS17, KGHC15, KLN12, KB16, LPAS11, PLP+16,
SFDE16, SPZP18a, VECT12, You10]. CS
[TlDg+12, ZBB16, DDM+15, YLT+19, FMNC11]. CSe [ZBB16]. Csonka
[Au015-59]. CTOCD [PC14]. Cu
[LLX+19, NGAS17, Rab12, RHT+15, SIT18, TS15b, WRG+17, AMK11,
CR14, CMD13, GEP+14, HSH15, MLG18, Mor15, PGS+15, PXXW10, PH12,
RHT+15, SB10, TNI+19a, WGN+16, WGLG+16, XP13, ZRCC11, ZSWL12].
Cu-O [ZRCC11]. Cu-ZSM-5 [Mor15]. Cu2II [WGLG+16]. Cuby [Rez16].
curcumín [AMK11]. Curie [WMW11]. curing [LPMT17, PPH+14].
Current [ATM18, NS17, ABM+15, ATIP18, FNSF+11, GWT+17,
HLBLCCG15, PCLL11, PL18, PZM15, Vik11]. current-density [Vik11].
currents [CPN+17, RVB+12]. Curvature [LPLS16, RR12, NW17].
Curvature-dependent [LPLS16]. curves [BB1+11, LSH+11].
[NIIT15]. CX [AM19, LGW12, EPH+15, ZYL12]. CXH [KCI+11].
CXHM [LDJ+10]. cyanide [LZH11, LW12, TLY+12, VBL17].
cyanide-chemosensing [LZH11]. cyanides [PGS+15]. cyano
[PKK17, TS10b]. cyanobacteria [RCM+13a, RML+15]. Cyanovirin
[VM11]. cycle [HDL+17, SJD14, SOYC12, dSDdAR10]. cycles [UKS11].
cyclic [CH212, LC10, PB14, RB12]. Cyclization
[HPT16a, SMB18, APA+14, LZL+16]. cyclizations [AARP17, DCHL12].
cycloadditions [YZN13]. Cyclobutadiene [SFM14, MCC11]. cyclocized
[QZ10a]. cycloextrim [DBC11]. cyclophan [APA+14]. cyclohexane
[CROB16, SNGD16, SAVG15]. cyclohexanes [SNKD16]. cycloocta
[ABDG12]. cycloocta-1 [ABDG12]. Cyclooctatetraene [DP11, SP13].
cyclopentadienes [LZH16]. cyclopropenyldiene [VVP12]. cyclosporin
CYP19A1 [VCM15]. CYP2A6 [ALW+10]. cysteine [CPK12, SLD14].
Cytochrome
[EH13, BS16a, MRR11, SLY+10, SOYC12, TN10, TDP+12, VCM15].
cytochrome-P450-mediated [MRR11]. cytochromes [APA+14]. cytosine
[JS17a, LZH+11, ZZY+16].

D
[LWD13, OZLSBH12, RSKG14, SPHF+18, UT14, GBG+19, MP19a, YZ15b,
AKMT11, BWKW10a, BWKW10b, CKH19, Chu10, DVVP14, ETLS17,
GMHH+16, GSS13, GPK12, HSW+19, KTT16, LTT16, MA16, MYT+14,
MH11, MSSH17, MH10, PSS14, PZBA13, Pop18, RSKG14, TFQ+10, UT15,
VVMY18, YJN+11, YDL+10, ZLY+16, dLvNC18b, TS15b, YOPB16]. D-
[MYT+14]. D-structures [DVP14]. D/TIP3P [SA10]. D2 [LAHS16].
DAMQT [KYG+15]. dance [JW16]. dancing [LL10b]. Dancoff
[HH17]. data [BRGN12, BCP+10, FN12, Fom11, HPT+16b, HM13, JZL+17, JS17b,
LAI+14, MBM+17, MCC12, RO14a, RC18, REL+14, RCM+13b, SB10,
WDK19, XW15]. database [PLAG11, XTG+11, XMSZ16]. databases
[CSSB11, MP19b, OHPR17, ZWL13]. DataPipeline [FN12]. dataset
[HZ13, KSM17]. datasets [GCC14]. Dative
[JSF19]. days [Tsi18]. DBD
[YJXZ13]. DBU [YZ15b, YZL+15, YZ17]. DBU-H [YZ15b].
DCMB [WX12]. DDPredictor [HLS+13]. decacetylas [KC13a]. dead
[SL10]. dead-end [SL10]. deaminase
[WZQW10, ZZY+16]. deamination [ZZY+16]. Debye
[GBFD12]. DEC
[BK17c]. DEC-RI-MP2 [BK17c]. decamer [DDP16]. decarboxylase
[BEL+11]. decay [DPAB16, LCH10, LLI12]. Decoding
[MBT14]. decoherence
[CSEMB+16]. Decomposition
[DBGO+17, Spr18, AMAA+11, BMJJ11, FFA14, GS14, GCW16, ISN13, KNE11a, KRSC12, Les19, NBJ+10,
ODB18, PS17, RSLML12, Sak18, SGS15, SEJ+18, STM17, SKGB13,
WWU12, WES13, dSdS12a, dSdS12b, dLC17, dLvNC18b].
decomposition-based
[KNE11a]. decouples [FM10]. decoy
[HYMZ16, LS11a, PHDH13, UCFR16]. decoys [BSZ+12, MP11]. decrease
[DLZ15, SLT+10]. dedicated [CFRS18, ZRCC11]. Deep
[GHV17, GFPSD17, HPL+18, LHO17, LDH+14, WZWW18]. deeper
deficient [YLL11]. defined [JJAB16, GY10]. defining [HH+18]. definitions
[JY+16]. Definitive
[TCGNT18]. Deformation
[WYL+15, Gav12, MRB14, WCY+11, WCT+11, dLC17]. deformations
[HRMAL+13]. Deformed
[CSAdOM17, TFQ+10]. degree [Clo+15].
dehydrogenase
[ZX11]. deiodinase [CFM+19]. delayed [FWS+18]. deleterious
[LX+11]. delineate [SBT17]. delocalization
[BK11, FV810, HSB+11, Jan16, Mat14, SS+13b, SSA+17]. delocalized
[Alg17, HSH15, dLC17]. DelPhi
[DLSA14, JLCA17, LLZA12, LPLA13]. DelPhiForce
[LCA17]. deltahedra
[LK16b]. deMon
[LZdL+10]. deMon2k
[BT10]. Denaturation
[IPAA11, FMG12]. Dendrimer
[MJBM12]. dendrimers [CAD16, HDHL15a, HDHL15b, HDHL15c]. Deng
[Ano12u]. dense [ASK18]. Densities
[ATM18, ATIP18, HGCCCGR+16, LP11c, MA16, REL17, UCRL18, dLC17]. Density
[AMK11, CD13, CWHH11, CKH19, FPV13, FD16, GMBM18,
GNGCA10, GWPJ11, INT18, JYS+12, KKPT11, LBGS16, LGW12, LLX+19,
LBTV12, LPMT17, MP19a, MWJ+11, MAP18, Oht16, PPH+14, RB12,
RSLML12, TS10b, UvSvdWK19, WDLG12, WGN+16, YJ11, ZLZ14,
ZYG+14, ZLY+10b, ZLY+10a, dSdS12a, ALK+15, Ali18, Ano15-59, AG12,
ASS10, BY11, BLBG+13, Ben17, Boz18, BBI+11, BZB+13, BG13, CHG+16, CRZ+18, CDB10, CR14, CAA10, CBO15, CC15c, CGR16, CKH17, CSXZ17, CC11, CAP17, CNK97, CPL11, CXD+19, CB11d, DAP+18, DH17, DWC17, Dl15, ED15, EP12, FED17, FCPJM14, GAI14, GHL17, GZL+12, GWJR18, GMG+10, GSS13, Gra15, GEG11, GAJ17, CHN19, CDB10, CR14, CAA10, CEBO15, CC18, CGR16, CKH17, CSX17, HH13, Holf14, HG10, HOK17, IKN13, IM17, JCP14, JLH+14]. density [JW16, KD10, KB10, KSSH13, KOP+14, KGHK12, KB13, KZ+16, KLN12, KYG+15, LL15, LRVM18, LCM12, LHKS12, LWG12, LH14b, LH17, LHZ+17, LK16a, MRC+18, MGL18, MHH19, MSY19, MCF+18, MGCC19, MAK+14, Mat14, ME10, MKM+17, MFR+17, MMJ10, NS18, NF17, NN18, NO16, NKK+16, NFI+16, NS17, OHPR18, ORZ11, OM12, OVPK15, PK17, Pie14, Pil17, PW12, PZM15, QZ10b, RJP12, RS13, RB13b, RSG14, Rod13, RHPWS13, RHT+15, RNS19, REV+17, Rui11, RSKG14, SPS+12, SGPJS+17, SH15, SSI6a, SDF+17, SFG+17, SHL+18, Sca10, SCW11, SDM+16, SEF+16, SE14, SH14, ST13, SHL+13, SPR+13, SXX13a, SXX13b, SMM15a, SMM15b, SMM+18, SXTT11, SZZS16, STS15, SK11, TldG+12, TN10, VGV+11, VAR12, VECT12, VV14, VV17, VED10, VHS+19, Vy16, WC10a, WHL+10]. density [WGL+11, WCUW11, WWU12, WWC15, WHX+10, WL14, WTH+16, XYW+14, YLZ+10, YS13, Yu12b, ZTH+15, ZXX+10, ZSWL12, ZKE+17, ZDX11, ZLHH14, ZCWX18, ZGS+10, dSdS12b, dSdLBNB17, dLC17, dLVoNC18a, CDM10, FAS+18, VV19]. density-density [JS16a]. density-fitting [Boz18, Hili3].

Density-functional

Derivatives

[KTSW11, CWHH11, CZH12, CBZ16, CROB16, HSZ+11, JS17a, JYS+12, KG11, KPT15, LWG12, LWG12, MFR+11, MIS+15, NS10, NF18, PC14, RVB+12, RFN15, REH13, SBR13, SX13a, SX13b, VV15, VV18, VSD10, WGL+11, WRG+17, WDP+12, Zsa10, ZW11, ZL12, ZWW11]. derive
MCK17a, MCK17b, NKJ16, NC12, NMLD13, PTK11, PHK14, QLYL10, RS17a, RDF+11, RS14, RRC+15, RLZ+18, RN17, REL+17, RKB+14, RK15, SRF+17, SWM10, SCF+19, SRL+15, SDL14, SZ+18, SPZP18b, TNI+19a, TSNC+17, TG12b, Tsi14, TS15b, Tsi17, VVJ15, VECT12, VAMS14, WKLC12, WYGW12, XKW18, YZGS14a, YZLZ19, YSRSS10, YZ15b, YXZZ17. DFT [ZCK+16, ZWGO12, ZZWT12, dSDdAR10, vS18]. DFT-based [NKJ16, NC12]. DFT-derived [REL17]. DFT-MD [GMASBF16].

dihydroxylated [LDH+14]. dihydrated [HvM19]. dihydro [RS17a].

dihydrofolate [RKDM14]. dihydrogen [PM13, UT14, WHX+10].

dihydrogen-bonded [UT14, WHX+10]. dihydrogen/hydride [PM13].

dimension [HKRS11]. dimensional [BPLL12, FBvdB18, FZL+19, KYT+17, KRSC12, KTO13, MB16, PJ13, SG10a, SHL19, TYN15, TCX+13, TKC+11, XCLZ19, YZLZ19, ZWX16].
dimensionless [MS10].
dimensions [CHC+13, HAL14, SRL+15].

dimer [LWL+16, ARRC15, ANH+11, BPPS17, CBTZ16, FCL+10, FMNC11, JT18, KB1+12, LCB10, Nav18, PD11, SKY+11, Tac17, WWKS16, YCGA10].
dimetric [PS14].
dimerization [DSD+11, KAR12, TNI+11, ARRC15, ANH+11, BPPS17, CBTZ16, FCL+10, FMNC11, JT18, KCB+12, LCB10, Nav18, PD11, SKY+11, Tac17, WWKS16, YCGA10].
dimerization/oligomerization [KAR12].
dimers [AM19, BCNH+11, BWKW10a, BWKW10b, CLFRO18, CK10, DT19, JKS+16, LJW11a, LMI+14, PG18, PVS12, RS13, SZZS16, VT14, Zha11].

dimetallic [ZYG+14].
dimethyl [GC11, KPH+19, WLC12, ZSWL12].
dimethylacridine [FWS+18].
dimethylaminoazobenzene [KP10].
dimethylaminophenyl [YLZ+10].
dimethylnitrosamine [FFA14].
dimyristoylphosphatidylcholine [ML14].
dinitrophenol [MIS+15].
dinuclear [ITY+19, OSS10, QLYL10].
dioxane [GM17].
dioxetanone [RSLML12, dSdS12a, dSdS12b].
dioxide [SC17, KPH+19, Kop17b, QZ10b].
dioxygen [DSM+11].
dioxygenase [DGH+11].
dipeptide [EJ13, IO13b, LL19, MAMF19].
dipeptides [DHF+11, RSL16].
diphenyl [GKR13, Ray13, RKG11].
diphenylalanine [KLN16].
diphenylamino [FWS+18].
diplatinum [KT12].
dipolar [YZN13, CSS17, AKM11].

dipole [Ali18, GH16b, LIRL+16, ZBG11, AS15b, BLBG+13, DHOG13, GH16a, HBKL10, IY18, KCB+12, LHHW14, MNNK10a, MNNK10b, PC14, Yan11].
dipped [IN13].

diradical [HWWB19, VSH19, YSSB12, ZB18].
diradicals [SH18a].
direct [LZY12b, SM18, WAM17, FF11, FSSW17, FZL+19, JCG+10, MMH19, RSB+13, Yu12a, LLHM16].
directed [CH14, HBBY10].
direction [PAK17].
direction-dependent [PAK17].
directionality [WGD+16].
diruthenium [CRC13].
disaccharides [GMSV14].
discharge [SMiN+19].
disconnectivity [SOJ14].
discotic [AWF+18].
discover [Hsu14].

Discovery [AKMT11, Aki16, CF18, FMG12, HYYYZ13, Ibr11, IGK16, PVJ10, RRV+18, Zim13].

discrepancy [Yan11].
discrete [EJ13, MCUJ15, WAM17].
discretization [AD10, LLFH16].
discriminate [UCFR16].

Discriminating [FZL+15].
discrimination [YL13].
discriminative [KS12].
discussion [CDB10].
disjoint [BK13].
dismutase [GEP+14].
disorder [LLL+12].

Disordered [MYT18, GP12, LC16, LC17a, NDLW13, SJZ+15, ZC14].

Dispersion [HSJ18, AG12, BCNH+11, CLFRO18, cCVG+14, DAG19, GEG11, Han11, Has14, HGHP14, ITIN15, KB10, KSSH13, LCM+14, RJP12, STS15, SB11, SB13, TG12a, WM17].
dispersion-corrected [CLFRO18].

Dispersive [TG12a, SDB+16].
disproportionation [DLP11].
dissected [FNSF+11].

Dissecting [CLFRO18].
dissection [BMFG16].
dissimilarity [HS17a, YDL+10]. dissipation [VVG13]. Dissipative [PH17, SCK18]. dissociation [CR19, CCJ+11, GCCM15, Gil11, LBC+12, LL10c, MH11, Rob13, TNY18, WSH10, Won18, YPvD13, ZWLX11, ZZZ19].
dissociative [HBL12, RIJ+11]. dissolve [SG10b]. dissolved [SIG+15].
Distance [PHDH13, DCS15, Hug14, JMS13, KCPMG12, LZ12, PUPGD10, RPNP10, RRH12, UT14, You16, ZT14, dACP12]. distance-dependent [KCPMG12].
distance-dependent [VVG13]. distance/interaction [PH17, SCK18].
distance/interaction-activation [PH17, SCK18].
Distinct [JAMS+19]. distinction [ZY14].
Distinguishing [FD14, GMBX+16].
distortion [INT18, LSL+19].
distortion/interaction [LSL+19].
distortion/interaction-activation [LSL+19].
Distortion [KCPMG12].
distortion [INT18, LSL+19].
distortion/interaction-activation [INT18, LSL+19].
Distributed [XFG+16, BMBJ11, KNR+18, UIW+10, XFG+15].
distribution [AS15b, BCSCJ+13, GWF11, GMG+10, LRER13].
distance [PHDH13, DCˇS15, Hug14, JMS13, KCPMG12, LZ12, RPNP10, ˇRRH12, UT14, You16, ZT14, dACP12]. distance-dependent [KCPMG12].
distance [VVG13]. distance/interaction [VVG13].
distance/interaction-activation [VVG13].
Distributed [XFG+16, BMBJ11, KNR+18, UIW+10, XFG+15].
null
GBG+19, HTY+19, NNT+19, THP+15. Efficacy [LC17a]. efficiencies [RO14a]. Efficiency [AC11b, BB11b, BB11c, FE14, GBSE11, XFG+16, AC12, GSHM10, LY10, LWL+11, LZZ+15a, MKGA10, RO14a, XFG+15, vLBBR12]. Efficient [AB16a, BC13, BAS14, Cas13, DMAH15, DBF14, EP10, GCWS15, GPK12, Ham11, HNS16, HDL-14, HHWL17, JMS13, KNR+18, LZ11, Les19, LGKS17, MKS+12, NYN17, PSS14, PAK15, Ran12, RJS17, SS16b, SSP19, TJB12, UCRL18, WHAS+16, WM12, ZZ14, ZKE+17, AM10, BW11a, Boz18, CBP14, CHG+16, CY09, CY13, CZZL19, CMS13, DS15, DGL+13, GREA11, GWZX12, HDL-17, ISK14, JZ17, KB11a, KKH18, KV15b, LFB14, LPK16, LLZA12, LZZ+15a, LZ11, Les19, LZS+17, LAS+14, NPTS16, NF18, NN18, OK16, PW12, PBG17, Ran13, RR14, Rod13, RSL16, SCQJ13, SA13, SMBW09, SCSW13, SWB+12, SUN5, TO10, WJC+13, WOH18, WLQ19, ZWP11, Zha12b, Zha12a, vLBBR12, WHAS+10. Efficiently [WES13, ASMS10, DDK14].

Ehrenfest [Dil15, FED17]. eigensolver [KZZ+16, KCC+18].

eigenvalue [Coh18, HLXH17, HLXH18, eigh [HDK+12]. either [TCPFC14].

elastic [ECZW17, LBTV11, QB10, QB11, SH11a, XTY+14]. Electric [GH16b, LL13b, B LFZ13, B LBG+13, BS10a, CXS10, GH16a, KZK+12, MRB14, PdSC18, SH15, SLX+15, Yan11, YJ11, YCK16, ZSL17].

electrical [LLLM11].

electro [TMJ15].

electro/nucleophilicity [TMJ15].

electrochemical [SKGP19, SIG+11, SGH+16, YJ11].

electrochemistry [DSK17].

electrode [MKO+13].

electrodynamics [Tac19].

electrolyte [KS18].

electrolytes [HAL14].

electrolytic [SV11].

electromagnetic [SEM12].

Electron [BK11, Bar14, BLG11, BKW10a, BKW10b, CBO15, HS16a, HRMAL+13, HGCCGR+16, KGR+16, LLX+19, Pil17, VV19, WWU12, ACD+13a, ACD+13b, ABGN12, BH12, BT18, CDB10, CAA10, CWH11, CC18c, CJPTC18, CTP13, CXD+19, DA1G+15, ED15, EP12, ES+12, EP15, FROS14, FWS+18, FED17, FCPJM14, GNDA+12, HSH15, HPT17, HEMCZE+14, HAP+12, HBL12, IYK11, Jan16, JBSQG11, JSS19, KPL13, KTK17, KKA+18, KYG+15, LW16, uLhY11, LRMV18, LHO17, LYL16, LLJ12, LP11c, MRC+18, MKGA10, MRB14, MT19b, Mat14, MBFP15, MKH+13, MCK17a, NYH+17, NLL19, NS17, PAK17, PGdO+16, PSC11, PS17, PT16, PHT17, PC16, Ras17, Rod13, REL17, RSKG14, SF+18, SZB19, SB14, SHB17, SHG13, SK11, SSA-17, UCRL18, VGG+11, VC12, V17a, VCL18, VI17, Vy16].

electron [WLW+10, WMW11, XBBS19, YK10h, YLL11, ZPP+16, ZCWX18, ZGS+10, dLC18a, dLvNC18a, GBM18, SDIP18].

electron-correlation [NYH+17].

electron-deficient [YLL11].

electron-hole [PTB+15].

Electron-pair [WWU12]. electron-sharing [JSF19]. electron-vibrational [CJPTC18].

electron-withdrawing [CWH11].

Electronegativity [FCJM14, vS18].

Electronic [AMQ+14, AM19, ASS10, BAD+19, DA1G+15, DGSSVGM19, GNDA+12, GNI18, HLW15, Ibr17, KYCL11, KKL+13, LLBO12, LS11b, MT19b,
MP19a, MAPB10, NIIT15, PMC+17, RLA+11, TN12, TNI+19a, TN10, TFQ+10, TS15b, VI17, WRM+12, YW12, ZRCC11, AR15, AK10, AC12, BLZ+13, CPRS18, DKE+17, DHOG13, DMD+18, EVR18, EH13, EWK+13, EBP17b, FB10, GRR10, GRARO+14, GXW+12, GZZ12, HASR+12, HS14a, HSB+11, HuA16, IEF+10, KKH19, KPT11, KSM17, KG11, KKA+18, Kop15b, Kos16, KP10, LGOM+15, LX11, LBT11, LBT12, LXZ+10, LSH+11, LLW14, MC10, MA16, MCF10, MCF+18, Mat10, NC14, NS18, NCT18, NFI+16, OLA15, PdSC18, PKH14, PTB+15, PVAM16, Pyy13, RCa+13a, RML+15, RR12, RR11, SFA17, SLP+12, SIT18, SRS14, SB15, SKGB13, Tac19, TFQ+11, TD10, TS15a, TNG+10]. electronic
[TS11, TG12b, Tsu19, TEDT18, VVP12, VHR16, VAR12, VBMA13, VLGK+17, VGTL16, WGL+10, WGL12, WJG+13, WO15, WSGN11, WXK+13, YK13, YFH+19, ZJZM13, zZb111, ZBB16, ZZZ+19, dCDP15, dVAG16, vSGP10, LKZM18, SZL19]. electronically
[BSL16, LSH+11, LYSS11, RIJ+11, SFCCK+14, SFCCK+15, YB11].
electronics [RN17].
electrons [EKH14, FHZA+18, WCY+11, WRG+17, Xhd15, YCGA10, Sah18, SGP18]. electrophilic [MA16, WDS+19]. electrophilicity [YB16]. Electrostatic [CLA16, LP11b, MLZZ12, Sch18, WFZ+18, ALRM18, AS18, BT18, BCNH+11, BSF18, BK13, CCC+11, CS14, CPK12, CB11c, DLSA14, ER18, GBL+11, HOK17, IO13a, KTNN10, KYG+15, Lr11, LCA17, LCM16, Mat14, NF18, OHR18, PV10, RB13b, TY10, VSMR+17, VV18, YKO+11, YWJ+16, YAO18, YMP14, YZL+15, ZDZM13, ZBP11, KGM12].
Electrostatics [BSG18a, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XXY17, YMP14]. element [BCCO10, GPK+16, RMGB11, TG12b, TCX+13, XXY17].
Elongation [OLA15, MKGA10, MKGA10]. Elongation-MP2 [MKGA10].
Elucidating [HNHR13, TDP+12]. Elucidation [CPLL11, TNYN16].
embedded [DSF17, GMG+10, HSH15, ZFS18]. embedding [CCB15, ESD18, ESM+12, HH16a, HH17, Höf14, HOK17, KSR17, NF18, NOKJ16, RR12, SDF+17, SS16b]. Embelin [CPR18]. emerges [MNK10a]. emission [CSC+18, LX11, LMCd10, PLP+16, SGWA17, WDP+12, ZLL+10].
Enantioselective [ORZ11]. enantioselectivity [OAN15b]. encapsulated [EOO+16, STS15]. encapsulating [WZH+18]. encapsulation [YDGZ15]. encoded [RSL16]. encoder [LDH+14]. end [HDL+17, SL10]. ended [RJR14, Zim15]. endo [FB14a]. Endohedral [NKD18, FL15, MCK17a, MCK17b, ZSL+11, ZYG+14]. endohedrally [NKD18, FL15, GLF16, MCK17a, MCK17b, ZSL+11, ZYG+14]. endohedral [JKH18, YTS+18, BB11a]. Endo [GRCL12, FB12]. enediyne [DCHL12]. Energetic [JCHT18, JW12, CG15, MCAG+16, MvBD18, PBG17, SB18, SLHW09, TPL+10, YRSS10, ZZWX11, ZYL+12]. Energies [AF14, AS14, AG12, ABS+19, BW11a, BLF14, BVHI17, BS16b, BE16, BS18, CHG+16, CMD13, CR19, CH10, CTP13, CXD+19, CBG16, DHO13, DMJ17, DHH+11, DPOS16, FGM11, Gil11, GP11a, Grl13, HAK+10, HH10, HH11, HLM+17, HHWL17, IK13, KS13, Kar17, K15, KDE12, KB11b, KPY13, LHW11a, LW11, LHWW14, LH14a, MCS11, MS13, Min18, MS12, MBE16, MMJ10, NW17, NMF+14, OB12, yOTn16, OAN15a, OS16, PGCT+12, PP14, RLD+17, Ran19, RDDS10, RAR+11, RO14b, RZ16, RR14, Rob13, RJ17, S12, SHL+13, SOD+11, STM+15, S15, TS16, UD12, VVG13, VECT12, VM11, WBT10, WS10, WJ+13, WGA18, WGI2, WX12, YAS13, YMP14, ZZ14, dALdS+15, dBO13, NQB19]. Energy [DK11, GS16, IHY15, JCGVPHT17, LFN+10, LPLB16, MYKO18, OSI+19, PK19, SN16b, SSGS15, Spr18, SKGB13, WM12, AMGB10, AC11a, Ano10a, AK10, AK16, BSC+13, BPM15, BRE16, BH15, BS16a, BRLS08, BL12, BCSC+10, BG17, Bon14, Boz18, BD11, BWMS10, BB11b, BB11c, BG12, CM13a, CK10, CDM+15, CLA16, CY09, CX10, CY11, CY13, CH16, CSXZ17, Che17, CF18, CS17, CHR+12b, CHR+12a, CP10, CMv10, CP12, CWZ10, DGH+11, DWR17, DB11, DS12b, DH14, DWC17, EV14, FMNC11, Fer17, FED17, FC12, FCOG12, FSSW17, FCCP17, FL11, GS14, GS15, GHK12, GO13, GNO16, HNY19, H+17, Hel13, HDM+15, HH15, HG13, HMY16, HYUS11, HJ13, HG18, HYD10, HDHL15a, HDHL15b, HDHL15c, IMK+16, ISN13, JCP11, JML13, JZ12, JZZM14, JXC10, KB+12, KTT16, KB10, KIO19].
SC18b, SBN13a, SBN13b, SOvG12, SLG15, SNS13, SN10, SHB17, SMM15a, SMM15b, SMZ+18, TM18, TSN16, UCFR16, UGK18, VLB+10, VT14.

energy [VGV+11, VLI7a, Vyb16, WKC+10b, WLF11, WSH10, WGL+11, WWW18, WZ19, WHM10, XHLH16, XYW+14, XFX+16, XVN17, XCLZ19, YOMT14, Yan14, VLB+10, ZPF14, ZLT13, ZH12, ZSB+16, vLBBR12, NK19, SGP18] energy-adjusted [HH15]. enforced [BW11b].

dm [BEFS13, DBDP16, HC14]. engineering [KLZ+18].

enhancement [CFC15, HTS15, IMK+16, KvdV14, SSO19, Bou14, CF18, KKO+16, KJM+17, LC16, MBFG15, SLLL13, ZLM+15].

enhancement [LLL+11, MA17].

tenaltic [HBR17].

enterprise [WDY13].

enthalpies [cCVG+14, HFK+12, LLH11, LWL+10, MRR11, SHL+18, WKC11, WDW12, ZWLX11, MSPC19].

enthalpy [UGFR16, vADC+14].

ten[CHR+12b, CHR+12a, Pro16].

entropy [BMPML+13, HUG12, LLH11, LWL+10, MRR11, SHL+18, WKC11, WDW12, ZWLX11, MSPC19].

entropy-based [BMPML+13].

environmental [GMG+10, GCC14, HS16b, LGVA14, SIG+11].

enzymes [GH10, LT13, RIJ+11].

enzymes [HH11, CQFC10].

EOM [KK17a, KKL+13].

EOM-CCSD [KK17a, KKL+13].

EPIC [TNG+10].

epidermal [BHF+18, WC11].

epidermis [CGBK13].

epitope [GRP+12].

epoxidation [WCDM11].

epoxide [DSHM18].

epoxides [BCP+10].

epoxy [HTY19, LPMT17, PPH+14].

epoxy-carboxylic [LPMT17].

epoxy-phenol [PPH+14].

equality [ABS+19].

equalization [vS18].

Equation [NNT+19, AA18, BCCO10, CD16, CLA16, Fer13b, Fer13a, FCE15, Fra15, Fra16, FC18, KS18, KK17b, RSLS13, SK15a, SM16a, SG10a, WBVE16, XYX17, YS18].

equations [BYE+16, ZR10].

equilibrated [WHAS+10, WHAS+16].

equilibrating [OPR16].

equilibration [LBDP12, SMP17a].

equilibria [GWJR18, LC17b, PHH+16].

equilibrium [DSF+11, FD14, LLvG10, Lvg13a, MCLD10, NHHN16, SJWE10, WXY14].

ergodicity [KCK+17].

Erik [Sch10].

ERKALE [LHSH12].

Ermod [SM14a].

Errata [CHR+12b, HRJ+15].

Erratum [ACD+13a, Ano15-59, Ano15-58, Ano17-35, ABB+13, BRSL12, CY13, Fra16, GLW13a, HNWF12, HvM17, HDHL15a, HDHL15b, HLXH18, ICS+13, JHMB+11, Li14a, MSK+12, RK16a, SFCCK+15, SBN13b, SZX13b, SMM15a, WHAS+16].

error [HAGK10, Hua16, KFT18, PHH14, PD11, WNP+16, ZH12].

errors [LEdOLLV17, vS18].

erythrose [SM17].

ESCF [vW11].

esculetin [LYSS11].

ESES [LWZ+17].

eSHAFTS [HSW+19].
[DWR17, RF15, KB11b, TTB+11]. Estimation
[RLDJ17, ABS+19, BPE16, CZY11, Fer17, GLM+17, HHL17, Hug14,
JKS+16, MSV16, MRR11, OZS+13, PHK14, SY11, TM18, YOMT14, ZH12].
Estimations [RLA18]. estimator [FCPJM14, WBF17]. etching [KHE+19].
ethane [Tak11, ZLT13]. Ethanedithial [SMB18]. ethenol [AAMD+11].
ether [HLB15, WLC12]. ethers [GKR13, Ray13, RKG11]. ethylene
[KCB+12, KT12, LL13a, MCC11, SFM14, TLA10, XZ11, YMY+19, SMB18].
Etomica [SK15b]. ETS [CSM16, DBGO+17]. ETS-NOCV [CSM16, DBGO+17]. Eulerian
[LWZ+17]. eV [KKH19]. evaluate [BY11, KPL13]. evaluated [VECT12]. Evaluating
[DKE+17, Sch18, SJ16, WGIz, HLS12, JLS18, VLI7a, XSZL11]. Evaluation
[AYYO17, CHR+12b, CHR+12a, EP12, HG10, LLC+10, MBE16, MCK17a,
RRH12, RB13b, WNM17, YD17, BMRI11, BLPF13, BLF14, DLT17, DS12b,
GS11, HBI+17, ISO+13, KLOS10, Kos16, KT18, KSC16, LW11a, LW11,
LHW14, LZY12b, NN18, PW12, SF18, UM13, VBD5+11, VM11, WO15,
PLAG11]. evaluations [HP10a]. evaporation [RSB+13]. event
[BSL11, HNS16]. event-driven [BSL11]. events
[LSvE17, Luv12, ONTTL16]. evidence [RS17b]. Evolution
[RSGK14, WCY+11, CJI+13, GAMAC+14, MGCC19, NGA17, Niz13,
YHI+13, Yes15]. evolutionary [BDdS13, CDS16]. evolving [SL17]. Ewald
[AG11, NO16, YWJ+16]. EX [PMG+16]. EX3 [GPK+16]. Exact [BKLA13,
GREA11, RP15, dLC18a, BSZ+12, BTB+11, KTSW11, LLZA12, Vy1b5].
exacting [BS10b]. Examination [DT19]. example
[BBG+18a, GREA11, MS15, RRR16]. Examples [HJG09, LK16b]. EXAT
[JCGM18]. ExcelAutomat [LSL+19]. Excess
[LLX+19, WILW+10, Fra15, Fra16, WCY+11, YCGA10]. Exchange
[CKH19, DAB16, GS16, Ru111, XFG+16, ZLZ14, BTB+11, CSKH15,
CSKH16, CCH17, CQPP11, CH16, COOH14, CAT+13, ENKK+17, GS15,
GW+12, HG10, IYK11, IHI+13, KCK17, KTO11, KTO13, KCL+14, LPAS11, LC17a, LL11, LMI+14, MC10, MS16, OGL10, OLI3,
OLY17, OZ14, PW12, RFH10, SH18a, PH11, SH19, SNB13a, SNB13b,
SH18b, SA+17, TK11, VL17a, Vy1b5, Vy1b6, WY17, XFG+15, ZC14].
exchange-correlation [HG10, SH18a, Vy1b6]. exchange-coupled
[CAT+13]. exchange-repulsion [CGPP11, ENKK+17]. exchanged
[DAP+18, LZTV10]. Excitation [KDR+18, CHG+16, EFAC13, Les19,
MEH18, PTB+15, SHB17, TG12b, TSN16, UDI2, WJG+13, WZ19, WGA18].
excitations
[ACD+13a, ACD+13b, CMF+17, FE14, IIF+10, PVAM16, WWD14, XTn18].
Excited [CH10, FHG+19, SGWA17, ZZS+10, BSL+16, EK17, ESM+12,
FD14, FAA15, FD16, GA18, HNW07, HNW12, HH17, HZS17, HDHL15a,
HDHL15b, HDHL15c, JCGVPT17, KT19, KPG18, KB14b, LLBO12,
LLW12, LWW12, LWG15, LGC19, LX1, LSH+11, LYSS11, MPG11,
Excited-State [FHG+19, SGWA17, FD14, GA18, HH17, HZSS17, KT19, LWGZ15, MPSG11, NYN17, PH10b, WHL+10, WHX+10, YD17, YHX19, YLZ+10, YB11, YYT12, L2Z+10, PGW17].

Excited-states [LLBO12].

Exciton [HRH+17, LSH+11, SEJ+18, WZ19, ZSL19].

Exciton-phonon [WZ19].

Excitonic [JCGM18, LCK+18, ZMMM12, NNT+19].

Excluded [LWZ+17, Yan14].

Exclusive [dLC18a].

Exhaustive [DKV18].

Existence [BMB13, WD10, NKD18].

Existing [KT18].

Exothermic [LWL+16].

Expand [BK17c, Car14].

Expanded [MLQ+12, TSNC+17, YSSB12].

Expanding [GMZ12, UCRL18].

Expansions [HAGK10, HSN14, LYC+13, LRER13, NF17, SS16a, SNS13].

Expected [Clo15, AF14].

Expedited [DJD12].

Expensive [LDZW17].

Experiment [GNC+18, JAH+17, SA10].

Experimental [MRC+18, NHF+10, AvKSP16, BRGN12, DCD13, EOO+16, GpD+16, HJ13, KP10, Pog10, RO14a, SB10, SGS+16, SKMS13, VZ14, CYI+10].

Experiments [CBP14, HCB11].

Explained [FL15].

Explicit [WG14, BEM14, CC0H14, CBG16, EK15, ENK+17, GLB16, HDL+17, KJD12, LH11, RDA12, SYH12, SKMS13, Zha12b].

Explicitly [yOTn16, SM17].

Exploiting [HB14, BYE+16].

Exploration [FHG+19, OSI+19, ZGS+10, BGL+18, CF18, LW12, LAW+16, NLR18, OKIS17, OKY18, RDC16, Sti15].

Explore [JPC11, MSC+10, MCC12].

Explored [WLF19].

Explorer [SYN+12].

Exploring [BHB12, BPPS17, BCG10, DSHLM18, MTM14, P13, Tsi17, VHS+19, ZST18+18, ZT14, dSLBNB17, RDC16, NOKJ16].

Explosion [GC18].

Explosive [YPC+10].

Exponential [BBOB16, BB11b].

Expressions [Gav12].

Extended [GWZX12, KUDG12, LRvdSM15, SSWX14, TSN17, YB16, Pon11].

Extending [LMZ11a, Man13, TTN19, VBV13a, VBV13, P HI+12].

Extensible [GCW14, JYC+16, LAS+14].

Extension [AIQ19, HSN14, PFVL14, SDZ17, VVW+18, YHVM12, Cam15, LL11, RLL12, RAS17].

Extensions [NYH+17].

Extent [GFGS18].

Exterior [HL19].

Exterior/interior [HL19].

External [GS14, PdSC18, SEM12, XTN18, ZSL17].

Extra [PFAS+19].

Extract [MDTD16].

Extrapolation [CC11, Lyc+13, OAN15a, SRR16].

Extraction [CVG14, UvsdWK19, VVG13].

Extrapolation [CC11, Lyc+13, OAN15a, SRR16].

Extrapolation [CC11, Lyc+13, OAN15a, SRR16].

Extremely [ZM11].
friendly [DBF14, SFR+11]. frontier [MGS+16, TZ12]. frozen [BVC13, Fer13b, Fer13a, HH16a, HH17, Höf14, SDF+17]. frozen-density [HH16a, HH17, Höf14, SDF+17]. fructose [RAR+11]. fructose-1 [RAR+11]. fuel [SV11]. Fukui [BVC13, PRY1+17, SBR13, YVEI+17]. Full [STM17, ACD+13a, ACD+13b, BPLL12, PS17, TSC+13, XCLZ19, dSdAR10]. full-dimensional [XCLZ19]. full-pivoting [PS17]. Fullerene [Avd18, NKD18, GKSS14, KCK+15, KP10, LTR18, Oht16, TPL+10, TFQ+11, TTB+10, XFTW15, YDGZ15, ZSL+11, ZZ12, SWA13]. fullerene-based [TTB+10]. fullerenes [GZH10, GLF16, MCK17a, MCK17b, SWA13, STS15, WTH+16]. Fullrmc [Aou16]. Fully [AG12, NLL19, ZSTI14, FBY+17, GBL+11, KG13, LZZ+13, Pop18]. fulvenes [AS18]. Function [GBMB18, ABDGN12, AB16b, BLGI11, CKP10, GS14, GND+12, GEG11, HH16a, HBL12, HYM16, IY18, JLCA17, JMS13, Kop15a, LL13a, LGH11, LCB10, LIR+16, MLG18, MB16, yOTu16, ON14, PiL17, PRY1+17, RZG+13, RvL11, SS16a, SFG+17, SK18, TCB16, TO10, UM13, UCPR16, WO15, WDHZ13, YVEI+17, ZLT13, ZCWX18, vSGP10]. function-based [WHDZ13]. function-guided [YVEI+17]. Functional [CKH19, FAS+18, FPV13, LLX+19, MP19a, AMK11, ALK+15, Ali18, Ano15-59, AG12, ASS10, BY11, BLBG+13, BK17b, BZB+13, BG13, CHG+16, CRZ+18, CR14, CWHH11, CSKH15, CSKH16, CKH17, CSXZ17, CC11, CNK97, CPLL11, CB11b, DAP+18, FD16, GAI14, GHL17, GZL+12, GNCA10, GSS13, GEG11, GJ+17, GWJP11, Han11, HDL+17, HNWF07, HNWF12, HPT17, HG10, HZSS17, INT18, IKN13, IM17, JCP14, JLH+14, JW16, JYS+12, KD10, KKPT11, KOP+14, KGHK12, KB13, KZZ+16, KN12, LCW12, LBGS16, LGW12, LBT11, LBTV12, LHKS12, LH14b, LH17, LPM1T7, MMH19, MSY19, MAK+14, MWJ+11, MAP18, MFR+17, Mor15, MMJ10, NS18, NF17, NN18, NO16, NK+16, Oht16, ORZ11, OM12, PAK17, PPH+14, Pie14, PD11, QZ10b, RJPB12, RS13, RB12, RSLML12, RHPS13, RHT+15, RNS19, Rui11]. functional [SPS+12, SH15, SFG+17, SML+18, SCW11, SB17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SH19, SMM15a, SMM15b, SMM+18, SKT11, SZZ16, STS15, TLDG+12, TG12a, TS10b, UvSvdWK19, VV14, Vik11, VL17a, VI17, VLGK+17, VED10, VHS+19, WKL+10, WCW11, WDGL12, WYT17, WHX+10, WL14, WTH+16, WGN+16, XYW+14, YJ11, YLZ+10, YS13, ZXS+10, ZWLX11, ZSWL12, ZLZ14, ZYG+14, ZYW+10b, ZYW+10a, ZLHH14, ZG+10, dSdS12a, dSdS12b, CK19]. functional/basis [PD11]. functionalities [KAG+12]. functionalization [WWTL19]. functionalized [KYKR15, LdSRR16, LTR18, MSY19]. functionals [Ben17, CCB15, CGR16, CXD+19, DH17, DOM+11, DWC17, FPR114, GWJR18, HG10, HBI+17, KB10, KSH13, KSSH13, Kar17, KM13, LH+11, LH14a, LKB16, PW12, RSG14, Rui11, SGPJ+17, Sea10, SDM+16, SH18a, SPR+13, SZX13a, SZX13b, VCL18, WYT17, Yu12b, ZTH+15, ZWX19, dSdB17]. functions [BP18, BLZ+13, CD13, CC11, CVG14,

YVEI’17, LMA15. **GenIce** [MYT18]. **GenLocDip** [GH16b]. **Geo** [DLSD13]. **Geometric** [MK11, AM19, CDB10, CDBM11, EH13, FXC+13, HHT+13a, HHT+13b, LLFH16, REH13, TCC+13]. **geometric-quantum** [CDBM11]. **Geometrical** [DPAB16, HRJ+14, JRSHP14, LCM+14, SPR+13, Tak10, Tsu19, UT14, HRJ+15]. **Geometrically** [RIJ+11]. **Geometries** [Alg17, HCP15, SRA17, SIT18, Tak10, LXZ+10]. **Geometric-dependent** [EPD+10]. **Germanium** [GSMM15, ALH+10, Kop18]. **GeSbTe** [NIIT15]. **GFP** [UD12]. **GGA** [BG13, EH13]. **Ghost** [CMF+17]. **ghost-hunter** [CMF+17]. **Giant** [JCG+11]. **GIAO** [PTK11]. **GIAO-CCSD** [OPR16]. **Gibberellin** [HYYZ13]. **Gibberellin-binding** [HYYZ13]. **Gini** [WF16]. **GIPAW** [SPZP18b, SPZP19]. **Give** [AA18, JT18]. **Glass** [GFGS18]. **Glasses** [You10]. **Global** [LzDH13, OKIS17, PRSG13, Tak10, BK17b, CPN+17, CZZL19, DS15, DMAH15, GPE13, LK11, LL11, MP13, MB14, MO15, MCAY15, SKKS13, SC15, TszQ12, Vor10, WDHZ13, XhD15, XCLZ19, ZL11, DH11]. **Glu** [EJ13]. **Glucopyranose** [HH10]. **Glucosamine** [ZBP11, ZP13]. **Glucose** [APY+16]. **GLYCAM06** [SA10]. **GLYCAM06/TIP3P** [SA10]. **Glycan** [JSD+11]. **Glycine** [DB12, DP15, FCD10, MC10, SPZP18a, SPZP18b]. **glycoconjugate** [LABSG17]. **glycol** [MSY19]. **glycoproteins** [JSD+11, PFVL14]. **glycosaminoglycan** [CHKR10, SA10]. **glycosidic** [HH11]. **Glycodelin** [HPP+12]. **Glycosyltransferase** [RN17]. **GmbH** [Spr10]. **GMCT** [U12]. **GnomeoSim** [LWK+14]. **Gold** [Ano15-58, BH14, CCJC10, FHT+15, GAMAC+14, Li14a, Li14b, LHKS12, LH14b, MFR+11, MG14, MBFG15, SRR+16, SKTT11, YLL11]. **Gold-thiolates** [FHT+15]. **Goldberg** [WTH+16]. **Good** [SB10]. **GPCR** [LLHM16, MFR+17]. **GPgpu** [UM13]. **GPR119** [HK18]. **GPU** [AKK+16, AGB13, BK17c, CVT+11, DZT11, HAP+12, Kan15, KGHC15, KP+15, ML+18, MEH18, PZCL16, REV+17, SBV10, SOM+13, UTM11, YLGX14, YSG12, ZLL+13]. **GPU-accelerated** [AGB13, CVT+11, HAP+12, YLGX14, ZLL+13]. **GPU-based** [KGHC15]. **GPU-enabled** [BK17c]. **GPUs** [GBL+11, HLW+17, HLEM18, KK17a, RSRR15]. **Gradient** [DS15, CDM10, HHBY10, KN17, MN19, SH15]. **gradient-directed** [HHBY10]. **Gradients** [GP11a, WM12, Boz18, BWMSM10, CCB15, HH16a, HH17, LBGS16, LFN+10, RSG14, SFG+17, SSMW09, SLG15, TSH+19, vLBR12]. **grafting** [KKR+13]. **Grain** [SOM+13]. **grained** [BLKP12, CAD16, HHWL17, JC16, KKK+17, KVQC+11, KLS10, KMLS10, KZP+18a, LZ12, LZX16, LZZ14, LZLMP16, MLIS10, MT19a, MBC11, MBC13, NST14, RSG+10, SLX+15, SDZ17, SJ17, SGY+18, SM15, SAvg15, WBF17]. **graining** [BJP15, GMPB12, ML14]. **Gram** [EVR18]. **Grand** [HLvdV13, PHH+12].

H [BSF18, BS16b, CXS10, CG12, CSNCS+18, DM15, DT19, GPK+16, HZ11, HSY+11, HVS16, JLS+10, JLH+14, LLL+11, LdSRR16, LAHS16, LWD13, MLQ+12, MCAY15, NMLD13, OKY18, OPR16, PMG+16, RMPAM15, Sak18, SNDK16, STS+10, TNY18, Tak11, TSJ+10, TFIG+11, UT14, UT15, VIT+15, VV14, WKC10a, WKLC12, WHT+10, WWS16, WLF19, WCL+11, XFX+16,
XCLZ19, YKH15, YZ15b, YZZ+17, ZYLL12, AS15a, Ben17, BS10b, CK10, CKL+11, Chu10, DT19, DHE+12, EVR18, GTK10, GS11, HZ11, HRL11, KTT16, LJW+17b, LWD13, MSPC19, Niz13, OKIS17, PLFS18, PTK11, Pie14, Pon10, STS+10, TS15a, TKCN19, UT15, UvSvdWK19, WGL12, WWTL19, WvRSM14, XhD15, XCLZ19, YHX19, YZ15b, YZZ+17, YZLZ18.

heterodimer [YYT12]. Heterogeneous
[DSF17, AFPI13, CKKK16, MEH18, RNS19, TM18, YZZ+17].
heterojunctions [FZL+19]. Heuristic [Hel13, MS16, Tak10, Tak18].
Heusler [GD10]. HeX [SLIB12]. hexa [GK15a]. hexa-aqua [GK15a].
heaxazatrinaphthylene [AWF+18]. heaxazatrinaphthylene-based
[AWF+18]. hexabenzocoronene [RVB+12]. hexacoordinated [MC10].
Hexahalogenated [VVJ15]. hexameric [RCM+13a, RML+15].
hexasilabenzen [NK19]. hexopyranose [HH11, PLH16].
hexopyranose-based [HH11, PLH16]. hexuple [XTn18]. HF
[BRLS12, LGW12, MCK17a, WZH+18, YZLZ19, BRLS08, Chu10, LSH+11,
SKGB13, YXH19, JT18]. HF-based [YZLZ19]. HF/DF [Chu10].
HF/DFT [BRLS12, BRLS08]. HFC [AR10]. HFC-263fb [AR10].
Hg [SLIB12, BBI+11]. HgGeCl [MCLD10]. HgHe [BBI+11]. HgXe [BBI+11].
HH [LGW12]. HI [LGW12]. hidden [DVVP14, LTT16]. Hierarchical
[JYC+16, BCG10, GBFD12, KKNN11, RMPAMP, SNS13]. High
[KLZ+18, MCLD10, MBK+13, RSLS13, ZHS+18, BACSCJ+10, Cam15,
CM13b, CSSB11, DH17, DLSL13, ESBL13, EKWK+13, FBvdB18, GJK+19,
GWPJ11, IPAA11, JBAM11, JC16, KSM16, KSM17, LL10a, LCK+18,
MJLV14a, MO17, OHPRL18, OPB+12, PV+13, PVJ10, RVCFF13, RNS19,
REH13, SML19, SC15, VWL+11, WDLG12, ZWL13, dSAdSL13, SDIP18].
high-accuracy [RVCFF13, SDIP18]. high-confidence [KSM17].
high-dimensional [FBvdB18, SML19]. High-level
[MCLD10, EKWK+13, KSM16, KSM17, PV+13]. high-order [REH13].
High-performance [RSLS13, CSSB11, ESBL13, EKWK+13, LL10a].
high-precision [DH17]. high-pressure [WDLG12]. High-quality
[MBK+13]. high-resolution [CM13b, JC16]. high-temperature [DLSL13].
high-throughput [ESBL13, PVJ10, RNS19]. higher
[NYH+17, PJ13, VKAM12, WHM10]. higher-dimensional [PJ13].
higher-order [NYH+17, VKAM12]. Highlighting [BRGN12]. Highly
[CHG+16, DBDP16, HAL14, LLZA12, LWP+16, BWK10a, BWK10b,
HYUS11, KOY+12, KZK+12, KV15b, OK16, TFQ+10, TBJ12, LZZ14].
hindrance [MP17a]. Hirshfeld
[Man13, VB13, VG+11, EV14, GBVA11, OVPK15, VB13a].
Hirshfeld-based [OVPK15]. Hirshfeld-I
[Man13, VB13, VG+11, VB13a]. histidine [KFY+13, WC14].
histogram [Fer17, HHWL17, SH11b, ZH12]. histone
[GHK12, GH10, GSD10, KCC1a]. HIV
[DLZ15, NHN16, OBW12, SYH12, TTB+10, UNT16, XLY12, Zsa10]. HIV-1
[DLZ15, NHN16, SYH12, TTB+10, UNT16, XLY12]. HIVgp41
HOB [LCL+10]. Hot [NMH19]. hole [BSF18, Cas13, CWHH11, EPH+13,
GZM16, GA12, LZL+15b, APK17, PTB+15]. holes [PM18a]. Holliday
[Ish10, She12]. hollow [AMAR18]. holographic [CDB10]. HotT [She12].

[AC12, HAGK10, RNS19, XTY+14, LHO17, LLJ12, She12]. identity
[Höf14, KN17, YN15]. IE [MLCD11]. IEF [GMMH+16]. IEF/PCM
[GMMH+16]. IEF/PCM-MST [GMMH+16]. Ihlenfeldt [PGPSM12]. II
[AMK11, ALH+10, BSG+18a, CMD13, CK17, FPB12, FB14b, GEP+14,
HRJ+14, HRJ+15, JIAB16, KPL15, LGW12, LWXC16, MLG18, MMB+17,
PHC13, SB10, TLA10, WGN+16, XP13, XWSW13, ZCK+16, vSGP10,
AKMYB18, BWKW10b, BB11c, CB11c, FXC+13, Fer13a, FVB10, HPT17,
HRJ+14, HWLW11, HHWL17, KTT16, KT12, KTNN10, KMLS10, MBC11,
PPUBGD10, SOD+11, WH11, YK13, ZSYH12]. III
[BP18, DSHLM18, IKN13, KPL15, LWL+11, LXZ+10, SRL+15, BGL+11,
CWT+12, GZZM16, HIS17, Zha12b, ZKH+10]. III/II [KPL15]. IKP
[HLS12]. Illuminating [NSO+14]. illustrating [RML+15]. illustration
[RP15]. im [FHC+19]. Image [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e,
Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n,
Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13b, Ano13c,
Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m,
Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v,
Ano13w, Ano13x, Ano13y, Ano13z, Ano14a, Ano14b, Ano14c, Ano14d,
Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l,
Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t,
Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14-28, Ano14-29, Ano14-30,
Ano14-31, Ano14-32, Ano14-33, Ano14-34, Ano14-35, Ano14-36, Ano14-37,
Ano14-38, Ano14-39, Ano14-40, Ano14-41, Ano14-42, Ano14-43, Ano14-44,
Ano14-45, Ano14-46, Ano14-47, Ano14-48, Ano14-49, Ano14-50, Ano14-51,
Ano14-52, Ano14-53, Ano14-54, Ano14-55, Ano14-56, Ano14-57, Ano14-58,
Ano14-59, Ano14-60, Ano14-61, Ano14-62, Ano14-63, Ano14-64, Ano14-65,
Ano14-66, Ano14-67, Ano14-68, Ano14-69, Ano14-70, Ano14-71, Ano14-72,
Ano14-73, Ano14-74, Ano14-75, Ano14-76, Ano14-77, Ano14-78, Ano14-79,
Ano14-80, Ano14-81, Ano14-82, Ano14-83, Ano14-84, Ano14-85, Ano14-86,
Ano14-87, Ano14-88, Ano14-89, Ano14-90, Ano14-91, Ano14-92, Ano14-93,
Ano14-94, Ano14-95, Ano14-96, Ano14-97, Ano14-98, Ano14-99, Ano14-100,
Ano14-101, Ano14-102, Ano14-103, Ano14-104, Ano14-105, Ano14-106,
Ano16-33, Ano16-34, Ano16-35, Ano16-36, Ano16c, Ano16s]. Image
[Ano16t, Ano16-37, Ano16-39, Ano16-42, Ano16-43, Ano16-44, Ano16-45,
Ano16-46, Ano16-47, Ano16-48, Ano16-49, Ano16-50, Ano16-51, Ano16-52,
Ano16-53, Ano16-54, Ano16-55, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h,
Ano17a, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano17z, Ano17-27,
Ano17-28, Ano17a, Ano17y, Ano17-29, Ano17-30, Ano17-31, Ano17-32,
Ano17-33, Ano17-34, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g,
Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o,
Ano17p, Ano17q, Ano17r, Ano17s, Ano17a, Ano17t, Ano17u, Ano17v,
Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-30, Ano18-31,
Ano18-32, Ano18b, Ano18c, Ano18-29, Ano18-33, Ano18-34, Ano18-35,
Ano18-36, Ano18-37, Ano18-38, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g].

Image [Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n,
Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano19a, Ano19f, Ano19g,
Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19b, Ano19c,
Ano19d, Ano19e, Cor17, LCM16, SFLG+17, YHH+13]. images [LLJ12, MBFP15].
imaging [SCF+19]. imatinib [AS10]. imidazo [FD16, LWGZ15, NS10, YKH+10]. imidazolinone [CSC+18]. Imidazolium
[MG15]. imidogen [Kop15a]. Imine [DK19, AS11, GG10, HDB15]. imino
[GRCL12, YMY+19]. immediate [HTS17]. immersive [SFM+18]. Impact
[ABM+15, DPNM11, MCS11, MKK+19, VCL18, vADC+14, JMLL13, NW17].
impacts [SSNT19]. Implementation
[AMGB10, BMR11, HKR+14, HLEM18, ITIN15, KB14b, KK17b, LRvdSM15,
LPLA13, LBB+15, MHT+18, RJPB12, RSG14, SN16a, ZMMMI2, AB16a,
Boz18, BTB+11, CHG+16, Cas13, CEB015, CSSB11, EKW+13, KS13a,
KNHN16, KMLS10, KWG15, LL10a, LLZA12, LMR14, MKGA10, MBR+15,
MY+14, NYH+17, NLL19, NN18, OYK+11, QSY19, RSR+12, REV+17,
SSP19, SZX13a, SZX13b, TKT11, WPM+15]. implementations [LSD+10].
implemented [BVHI17, DLSA14, SR10, VBV13b]. Implementing
[Nav18, SCOJ13]. Implications
[CV12, VVY17, CBG16, LP11b, LTP11, RB12]. Implicit [BEM14, CAD16,
Has14, ALRM18, CBG16, EK15, FBEM11, KJDB12, KB11a, KB11b, LC17b,
ML14, SSBW14, SLX+15, SCMA+17, TCC+13, WWKS11, YL13]. implicit-solvent [WWKS11]. Importance
[APA+14, CPK12, ENKK+17, NFM+14, OOK11, ESM+12, Han11,
KTNN10, PBDW11, SDZ17, TNSS17, TKNN10]. important [AST+16, BZH14, MG11]. importing [FN12]. impregnated [GLZ17].
improve [CIKT13, DLL+10, DPSL16, Gou12, LLL+10, Min18, VLB+10].
Improved [BS16a, LRER13, CCM15, DPB+12, DSF17, GCCM15, KSR+16,
MP11, OHFR18, RTP+13, RDRC16, SSBW14, VVW+18, YS10].
improvement [GSHM10, NLP+16]. Improvements
[JCX10, AB16b, LRBB12, BB11c]. improves [BBOB16]. Improving
[AIM+18, DWL11, GS16, LN15, PLH16, RVM19, SB14, SACdG14, SA11,
Ano17-59, Ano17-60, Ano18-39, Ano18-66, Ano18-67, Ano18-68, Ano18-69, Ano18-40, Ano18-41, Ano18-42, Ano18-43, Ano18-44, Ano18-45, Ano18-46, Ano18-47, Ano18-48, Ano18-49, Ano18-50, Ano18-51, Ano18-52, Ano18-53, Ano18-54, Ano18-55, Ano18-56, Ano18-57, Ano18-58, Ano18-59, Ano18-60, Ano18-61, Ano18-62, Ano18-63, Ano18-64, Ano19n, Ano19o, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z, BMPML+13, CRZ+18, CDS16, CCYL11, DWL11, GBVA11, ISN13, RSL16, ZLW10. information-theoretic [CRZ+18, ZLW10]. informed [LZL+13]. Infrared [EB18, DPA16, HRR+17, KB16, LBC+12, NHF+10, NPG+18]. ingredients [CMvG10]. Inherent [LLFH16, Rao11]. inhibition [BM12, GWZ15, LD18, SSP+13]. inhibitor [ETLS17, FMG12, LIL+11, NFG+13, XLY12]. inhibitors [AKMT11, ALW+10, AC11a, BM12, DXY10, DSX+11, MPNS13, NS10, PBL\textsuperscript{dS12}, RZG+13, RAR+11, SOD+11, SJ16, TTB+10, VLB+10, XDL+10, YLCX10]. Initial [GA18, YLS19]. initial-value [YLS19]. initialization [GR11]. initiate [HTS17]. Initio [DHOG13, Kop15b, MSPC19, PAK15, RSR+12, AR10, AG12, BEM14, BLG10, BIL+10, DD\textsuperscript{S13}, BL12, CPR\textsuperscript{S18}, CG15, CLC11, DCOD13, DHF+11, DLS13, DJ13, EP12, EFO\textsuperscript{D13}, FAA15, FCD10, GK10, GZZ12, HYD10, KT19, KOP+14, KCC+18, KTO11, Kop15a, Kop16, Kop17a, Kop18, KSR+16, Kow11, KVR10, LHL14, LLP13, LS10, PBL\textsuperscript{dS12}, RZG+13, RAR+11, SOD+11, SJ16, TTB+10, VLB+10, XDL+10, YLCX10]. inspection [KOY+12]. inspired [CYY+17, DSM+11]. instability [MMH19]. instantaneous [RO14a]. Instanton [MK17, MK19, MR\textsuperscript{K11}]. Insulator [GCC14]. Insulin [MV17]. INT [YJX13]. INT-DBD [YJX13]. integral [DL19, KS\textsuperscript{NT19}, MEH18, RFN15, SS13b, Sn15, VAT12, WXY14, YS18]. integrals [CHC+13, PS17, PC16, RLA18, SZTS10, WDKT19]. integrase
Integrated [HSW⁺19, vRWGS17, CKKK16, MCC12, US11]. Integrating [APK14, LZZ14]. Integration [FPV13, AYYO17, BB11b, DH17, LP11a, MOS12, NSK18, dRL11, Pop13, Pop18, SJC11, SJ16, dRBO13, MYKO18]. integrator [JS17b]. intelligence [Aou16]. intelligent [CDS16]. Inter [CROB16, SSB11, IHY15, SSB13]. Inter- [CROB16, SSB11, SSB13]. inter-residue [IHY15]. Interacting [CM16, ATP18, EV14, HGCCGR⁺16, MP17a, PNE18, WL14, JCHT18]. Interaction [CK10, CCCLCGRO14, CCCLRO14, Den12, NNS15, SBW12, YZWC11, ALW⁺10, AG12, BLFZ13, BLF14, BCNH⁺11, BSD18, BHB⁺17, BRLS08, BRLS12, BG17, CLFR018, Cas13, CZHI2, CYG⁺15, CTP13, CAP17, EK17, EV14, FF11, FCCP17, FA18, GA14, GP11a, HPT17, HBL12, HLH⁺12, HSZ⁺11, HLXH17, HLXH18, HQSZ19, HL19, JZZM14, KAN15, KTN10, LL10a, LMZ11a, LPS⁺13, Li14a, LPHW14, LZL⁺15b, LPLB16, LWW11, Min18, MSĀK12, MCP18, MvBD18, NGAS17, NN18, OHP17, OHPR18, OAN15b, PRJ⁺17, RZG⁺13, RS13, SM16a, SS13a, SBBP18, SVB10, SGL⁺18, SPL⁺18, SHF11, TYN15, Tan19, TSH⁺19, WSH10, WYL⁺15, YK13, YWJ⁺16, YAO18, YCK16, YHCS11, ZRCC11, ZY14, ZW18, ZZI⁺19, dLvNC18b, vS18, KCB⁺12]. interaction-activation [LSL⁺19]. interaction-based [ZW18]. interaction-induced [BLFZ13]. Interactions [Sch18, WCT⁺11, ZCK⁺16, Abr11, ARR15, AKK⁺16, AO10, BSF18, BSG18a, CSS17, CC11b, CIKT13, cCVG⁺14, CKP10, CROB16, CB11a, CB1c, dRCFGRB18, DDP⁺18, DHF⁺11, DBG11, DLMH12, EP10, ER18, GWF11, GZZM16, GZ14, HSJ18, HLvdV13, HTY19, ICS⁺12, ICS⁺13, IHY15, JAB18a, KSSH13, KCK⁺15, KPH⁺19, KGJ19, LZLC13, LZY12b, MBGB16, MH17, MKH⁺13, MFR17, MJM⁺15, MVKS10, MG14, MFR⁺17, MPBJ11, OHNK11, PPJ14, PLV⁺11, RTS⁺13, RVM19, RMRH⁺19, SSGS15, SD12, SSB11, SSB13, TNSS17, TG12a, TY10, TGR⁺16, TNG⁺10, VVJ15, WS10, WGD⁺16, WDS⁺19, WZ19, WM17, XTY⁺14, XLY12, YKO⁺11, YZ15a, YW13, YZL⁺15, YGZ15, YZL18, ZZL⁺12, ZH11, dLC17, dLvNC18b]. Interactive [BRP⁺12, BGR13]. interactivity [CQFC10]. interatomic [DPABI, FCCP17, RLA18, YKO⁺11, dLC17]. interconversion [HH10]. interconversions [TCGT18]. Interdependence [WAB17]. interest [BCNH⁺11, OZLSBH12]. interface [All11, BDTP11, CSSB11, GRP⁺12, GC14, HL14, JJW⁺14, KG13, LIR⁺12, LZDL⁺10, LBB⁺15, MSSP17, NS18, OFYK⁺11, PHH⁺12, PVZ13, RTR14, RSR⁺12, SN16a, SYDS11, SISK10, STH⁺10, VKTRJ15, VL17b, WPM⁺15, ZWL13, SJL18]. interfaces [BB⁺18a, PGCT⁺12, RRF11, SSAS10]. interfacial [HTY19, NFDP13, SHFJ18]. Interfacing [MSvG12]. interference [KIOY19]. Interferometry [JAH⁺17]. interior [HL19]. intermediate [TDP⁺12]. intermediates [BL10, MRC⁺18, RB12]. Intermolecular [FMNC11, VECT12, ANO10a, BLF14, BLDK⁺13, CCLP12, KSNT19, KCL⁺14, LZY12b, LZLC13, RR12, SN10, TY10, TNG⁺10, VV12].
Internal [LL15, REH13, LWK+14, NCV10, PH10a, TNG+10, VLGGK+17, VBV13b, WBN+13, ALQ19].

65
SNS16, SGH+ 16, VHS+ 19, WKC10a, XP13]. IP [BK17b]. IP-tuned
[BK17b]. IPRO [PGL+ 15]. IQA [CSM16]. IR
[DCOD13, CWT+ 12, LWL+ 11, LXZ+ 10, WJX+ 10]. irGPU.proton.Net
[Kan15]. iridium [CWT+ 12, HDPM14, KB13]. Iridium-catalyzed [KB13].
iridium-containing [HDPM14]. Iron
[HS14a, AKMYB18, BG13, CTR13, DK19, GBGR16, HSB+ 19, HS16b,
KPL13, KPL15, MC10, NH19, SBC+ 11, TS10b, VBMA13, EH13].
iron-containing [AKMYB18]. iron-sulfur [CTR13, HSB+ 19, HS16b].
[TLY+ 12]. isoindolin [YZLZ18]. isoindolin- [YZLZ18]. Isolated [FL15].
Isomeric [FL15]. isomerism [RS17b]. Isomerization
[BW11b, DBGO+ 17, EFB16, BLG10, BMFG16, LL19, MSBF16, OKIS17,
SJD11, Su10, WCL+ 11, ZWZ11]. Isomers
[CSM16, ZWZ11, DSHLM18, Kar17, OKIS17, WCL+ 11]. Isoster [EdOdS18].
Isothiirane [MM19]. isotope
[KTT16, MRK11, NASH15, ORZ11, UT14, UT15, VKAM12, WXY14].
isotope-substituted [UT14]. isotopomers [UT14]. isotropic
[JKS+ 16, Tak14]. isotropy [Tru18]. Issue
[Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p,
Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13t, Ano13u, Ano13v, Ano13x,
Ano13y, Ano13l, Ano13w, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30,
Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h,
Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q,
Ano13r, Ano13s, Ano13-32, Ano13-51, Ano13-52, Ano13-53, Ano13-55,
Ano13-56, Ano13-57, Ano13-58, Ano13-43, Ano13-54, Ano13-59, Ano13-60,
Ano13-61, Ano13-62, Ano13-63, Ano13-64, Ano13-33, Ano13-34, Ano13-35,
[Ano13-50, Ano14a, Ano14b, Ano14g, Ano14-35, Ano14-36, Ano14-37,
Ano14-38, Ano14-39, Ano14-40, Ano14-41, Ano14-42, Ano14-43, Ano14-44,
Ano14-45, Ano14-46, Ano14-47, Ano14-50, Ano14-51, Ano14-52, Ano14-53,
Ano14-54, Ano14-55, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m,
Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u,
Ano14v, Ano14w, Ano14x, Ano14y, Ano14-28, Ano14-29, Ano14-30, Ano14-31,
Ano14-32, Ano14-33, Ano14-34, Ano14c, Ano14z, Ano14-27, Ano14-48,
Ano14-49, Ano14-56, Ano14-57, Ano14-58, Ano14-59, Ano14-60, Ano14-61,
Ano14-62, Ano14-63, Ano14-64, Ano14-65, Ano14-66, Ano14-67, Ano14-68,
Ano14-69, Ano14-70, Ano14-71, Ano14-72, Ano14d, Ano14e, Ano14f, Ano15a,
[Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r,
Ano15s, Ano15t, Ano15u, Ano15y, Ano15z, Ano15-27, Ano15-28, Ano15-29,


iteration [SBB10]. Iterative [Hei18, VV19, Gra15, HLXH17, HLXH18, HL19, SM18, TTo19, VHR16, ZVY+15, PGL+15]. IV [EH13, KMS+19, MLG16, MTS+19, VBMA13, WZH+18]. iVI [HLXH18, HLXH17, HL19]. iVI-TD-DFT [HL19].

SHL +11]. **ligand-based** [RVP +11]. **ligand-binding**
[GDV17, MGWR12, OSR16, RO14b]. **ligand-field** [BBG +18b].
ligand-induced [KL14]. **ligand-receptor** [FRL10, VKC10]. **ligand-sized**
[OGL10]. **ligands** [CS17, GpDC +16, HRC13, KSO +19, LBC +19, LL10b,
LXZ +10, LS11b, SSP +13, TS10b, ZRCC12, ZWY +10b]. **ligated**
[EHI13, WC14]. **ligating** [BAD +19]. **LigDockCSA** [SHL +11]. **light**
[FWS +18, GNI18, HXM +16, KDR +18, PE11, REL17, XBSS19]. **light-driven**
[HXM +16, REL17]. **light-emitting** [FWS +18]. **light-harvesting**
[KDR +18]. **lighter** [WD10]. **Lightweight** [RLG14]. **like**
[AASP18, Che17, EPH +15, KOY +12, KD18, KB14b, MP17b, OAN15b, SDF +17, SM15, UCFR16,
VHA +10, VV18, WZF +18, WKC11, WGN +16, ZSL +11, VVY18, YLZ +19]. **Limit**
[SN16b, Fra15, Fra16, LW16, LYC +13, OAN15a, SLT14, WTH +16]. **Limitations**
[LVG13a, HH18]. **limiting** [SLT +15]. **limits** [GC18, II18, NSK18, PdSC18].
line [dLvNC18b]. **Linear** [BG12, NNT +19, XKW18, YN15, ZLY +16, ARLP13, CPY +12, EP12, FBY +17, FCE15, GZ12,
JJZ14, JMS13, KHM19, LP11b, MA17, MSÅK12, NYH +17, PH17, RS17a,
RLA +11, RR11, SS16a, Tak14, VBDS +11, WL10, YDX16, ZZ19].
linear-combination-based [Tak14]. **Linear-scaling**
[BG12, YN15, NYH +17, RR11]. **Linearity** [IKN13]. **linearized**
[Fra15, Fra16, XTn18]. **Ling** [Ano12u]. **Ling-Yun** [Ano12u]. **link**
[HH15]. **linkage** [HH11, OZS +13]. **linked** [Fom11, dACP12, LCC18]. **linked-cell**
[Fom11]. **linked-lists** [dACP12]. **linker** [NPG17]. **lipid**
[BPP17, MOS12, PGCT +12, ST11, WHAS +10, WHAS +16]. **lipids**
[HM16, ML14]. **lipopolysaccharide** [DLSA14]. **lipopolysaccharides**
[HB +17]. **Liquid** [WLC12, AASP18, APY +16, BDTP11, CC12a, EK15,
GWJR18, IM17, KGHC15, KT18, Lar12, MG15, NTTY15, RJS17, SBvG14,
SAvG15, WCWV15, ZST14]. **liquid/lithium** [EK15]. **liquids**
[AFP13, CG15, CFC15, CVG14, DASA15, LEDOLdV17, SCM +15, SH11,
You10, FDCJG18]. **lists** [Gon12, dACP12]. **liothiated** [KZK +12]. **lithium**
[EK15, GMG +10, KOY +14, KYCL11, LLY +11, MBRC16, NDI14, NIF +16,
PG12, PMT16, SKY +11, TN12, ZZ +12]. **lithium-bonded** [ZZ +12].
lithium-doped [PG12]. **lives** [QS19]. **load** [Fom11]. **LOBSTER**
[MDTD16]. **Local**
[CHP11, GH16a, GH16b, HKJ13, ITIN15, CPN +17, DDP16, Fer13a, HH10,
KSSH13, KDT +12, KGM12, Lar12, LLL +10, LZS +17, MKH +13, NLL19, PH17,
PRSG13, PRY +17, PW12, Ran19, RVM19, Sch12, SEF +16, SB15, WM17].
locality [Gon12]. **localizability** [Bar14, BLG11, BKWK10a, BKWK10b].
Localization [Sax12, ABG11, BK11, BLG11, GNDA +12, HJJ13, Mat14,
Pil17, dLC18a, vSGP10]. **localized**
[Ano15-58, BH14, KKH18, SB15, ZM11, dLC17]. **locate** [AMGB10].
location [PTB +15]. **locked** [GA18, XVN17]. **locking** [XVN17]. **locus**
[NR11]. **logarithmic** [MIOM13]. **LOL** [BSPP +13]. **lone**
[BSF18, BS18a, ENS17, SSGS15, WCY +11]. **lone-pairs** [ENKK +17].
Long [BCNH +11, KSH13, KSSH13, AO10, BLBG +13, BZH14, JBSQG11,
KB10, KV14, MMS16, MBC13, PNG10, SMGB11, ST13, SPH11, SH19, SZB19, SSA17, TSN16, VL17a, VCL18, Rui11. long-bond [KV14].

long-chain [TSN16]. Long-range [BCNH11, KSH13, KSSH13, KB10, MMS16, ST13, SPH11, SH19, SZB19, SSA17, VCL18, Rui11].

Low [BPM15, BLDK13, Gra15, AC12, CM13a, DH14, KKA18, LG14, MPA10, MPA12, MJLV14a, RRC15, SN15, SG10a, SM11, She12, TF15, TSN17, UGK18, Vor10, YW12, BS10c, BBI11, SGP18].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].

Low-energy [BPM15, DH14, MPA10, MPA12, SGP18]. low-index [RRC15]. low-lying [AC12, KKA18, TSN17]. Low-memory [Gra15].
Many-body [CGPP11, HRJ+14, HRJ+15, JRSHP14, LYC+13, RHPWS13, VMPS17].

many-core [KNHN16], map [MKM+17], mapper [BJP15], mapping [EMD17, KZP+18b, MMM+16, RNRF+16, TD10]. maps [GJMPPAM+14, YSRS10].

Marburg [OLY17]. marker [JAH+17]. Markov [BFH+13, LTT16].

Martini [HBJ+17, SM15, MT19a]. MARTINI-like [SM15]. mass [NPTS16, PGY15]. massive [GP11b, TNYN16].

Massively [KNHN16, KZZ+16, KN17, NNK+16, OPB+12, WHK+12, KCC+18]. master [RSLS13, NNT+19]. match [TZ12, YPKB12]. matched [KSR+16]. matching [AOW11, GPS10, HS12].

Material [JW12, DGL+13, HLWD15, JBSQG11, LL13b, MCAG+16, NGAS17, SHL19, SMiN+19, SLHW09]. materials [BSL+16, CD11, DLT17, ECZWD17, EMD17, GNI18, KLZ+18, Man13, NDD+10, SB18, SYZ+17, VBV13a, VBV13, VVY17, VVMM18, YZLZ19].

MATLAB [DDK14]. matrices [Car14, LHO17, Mat14, Yon16]. matrix [CAP17, CWZB10, Kne11b, LAT10, LAT11, PW12, RPNP10, RNP13, RR11, SS13a, STM17, TCPPC14, UIW+10, VGV+11, VKNT15, VKNT16, ZVY+15].

matrix-based [VGV+11]. matrix-free [ZVY+15].

[HLH_{12}, KSK_{11}]. methylacetylene [WCWW_{11}]. methylated [LRVM_{18}]. Methylation [SCW_{11}, KYCL_{11}, QZM_{11}, dALdS_{15}]. methylbenzyl [NDG_{14}]. methylcobalamin [KKL_{13}]. methylformamides [JSW_{10}]. methyllysine [GHK_{12}]. methyltransferase [CPLL_{11}, GH10, PBLdS_{12}]. Methyluracil [HvM_{17}, HvM_{16}]. MetREx [Sti_{15}]. metric [CXS_{10}, LLFH_{16}, PKIC_{11}, SOJ_{14}, ZT_{14}]. metrics [Hug_{14}, PBBP_{11}, RCM_{13}]. Metropolis [MO_{15}, Pon_{10}]. Mezey [HJJ_{13}]. MF [YKH_{15}]. Mg [LDJ_{10}, LLX_{19}, BMFG_{16}, DOM_{11}, PLZ_{17}, PGY_{15}, RRF_{11}, SS13c, ZZ_{10}]. Mg-porphyrin-based [PLZ_{17}]. MgO [BS_{16}]. MH [HHT_{13a}, HHT_{13b}]. MHC [HHWL_{17}]. MIA-QSAR [BF_{15}]. MIBPB [CCC_{11}]. Micellar [SCK_{18}]. Michael [NDG_{14}]. microbes [RSLS_{13}]. microclusters [NC_{12}]. microelectrostatic [SMP_{17b}]. microhydration [SM_{17}, ZYR_{15}]. microiteration [SMM_{17}]. microscopic [HLWD_{15}]. microscopy [LLJ_{12}]. Microsecond [DMN_{14}]. microstructures [DASA_{15}]. microwave [BLF_{14}]. MIDAS [GJMPAM_{14}]. Midpoint [JMS_{14}]. migration [FBEM_{11}, Ish_{10}, KYKR_{15}, RSB_{13}, TN_{10}]. milestoneing [BRE_{16}]. mimetic [MV_{17}]. mimetics [CFM_{19}]. mimic [GRP_{12}, ZWS_{10}]. mineral [TZ_{11}]. mini [CFC_{15}, HTS_{15}]. mini-protein [CFC_{15}, HTS_{15}]. mini-proteins [HTS_{17}]. minima [AC_{12}, GFG_{11}, HvMi_{12}, MAMF_{19}, SGWA_{17}]. minimal [CGBK_{13}, CG_{12}, OYK_{11}, RSR_{12}, RVVK_{13}, WHAS_{10}, WHAS_{16}]. minimization [GBV_{11}, Rao_{11}, TJB_{12}, XHLH_{16}]. minimized [ZA_{15}]. minimizing [KS_{12}]. Minimum [RAR_{11}, CY_{09}, CY_{13}, CZZL_{19}, HNYH_{19}, LLSW_{14}, MP_{13}, MCAY_{15}, PRP_{15}, PHDH_{13}, SRSLO_{15}, SG10b, Tak_{10}, MYKO_{18}]. mining [BCP_{10}, MCC_{12}]. miniprotein [MTD_{10}]. minnesota [LH_{14a}]. minnesota-type [LH_{14a}]. minnow [TTL_{12}]. misfolding [LH_{11}]. mismatched [BH_{13}]. mispair [BZH_{14}]. Mixed [RdA_{12}, BRGN_{12}, BEEL_{14}, BACSCJ_{10}, DH_{11}, DFF_{15}, Fer_{13b}, Fer_{13a}, GMASBF_{16}, GG_{10}, Ibr_{17}, JT_{18}, KGR_{16}, LYL_{16}, MP_{13}, PsdPE_{10}, RB_{12}, TS_{10b}, VVJ_{15}, WX_{12}, YLL_{11}, SZL_{19}]. mixed-basis [WX_{12}]. mixed-QSPR [BRGN_{12}]. mixed-resolution [DFF_{15}]. mixed-valence [BEEL_{14}, KGR_{16}, SZL_{19}]. mixing [LCH_{10}, ZA_{15}]. mixture [BBJ_{11}, MKB_{13}, RHN_{10}]. mixtures [GM_{17}, GC_{11}, JA_{10}, KGHC_{15}, SV_{11}, TKYN_{17}]. Mizoroki [dSdB_{17}]. MLR [GCP_{13}, XWW_{11}]. MM [BM_{12}, JAHS_{19}, LWZ_{19}, AALCM_{11}, BTA_{13}, BD_{11}, CZY_{11}, CS_{17}, CIZS_{10}, DSK_{17}, DSX_{11}, FLM_{11}, FPD_{12}, FB{14b}, GR10a, GRS_{15}, GWZ_{15}, GCW_{14}, HH_{15}, HBR_{17}, IMSR_{18}, JJJ_{13}, JWST_{10}, KTN_{10}, KWL_{16}, KWG_{15}, LZdL_{10}, LFM_{12}, LT_{13}, LHT_{15}, LJJ_{11}, MCRL_{17}, MTvG_{12}, MJG_{15}, NO_{16}, OBW_{12}, PMC_{17}, PDMT_{10}, PL_{14}, RDDS_{10}, RFN_{15}].
RR14, RN17, RR12, SN16a, SGDT10, SJD14, SCM+15, STM+15, SSAS10, TSC+13, VKNT15, VKNT16, VCM15, VKTRJ15, VM11, WDP+12, ZZY+16.

MM-GBSA [RDDS10]. **MM-MD** [RSR+12, OYK+11]. **MM-PB** [OBW12]. **MM-PBSA** [RDDS10]. **MM-QMC** [UTM11]. **MM/GBSA** [GR10a, IMSR18]. **MM/PB** [VM11]. **MM/PBSA** [BD11]. **MM2QM** [NHK+13]. **MMGBSA** [GS14]. **MMPBSA** [WNP+16]. **MMX** [CRC13].

Mo [BRP+12, UIW+10, ZY14]. **moana** [DJ12].

mobilities [SEF16]. **Mode** [AIM+18, BHR15, GVP+10, IY18, SRA17, SBB10, YHCS11, XYZZ17].

Mode-tracking [BHR15]. **Model** [BLS10, HM16, Pog10, AASP18, AOW11, AS10, ALRM18, ATP18, AS15b, APA+14, AB16b, Bac12, BK17a, BEEL14, BS10b, BBG+18b, Cam15, Can10, Can11, CGP12, CGA19, CBTZ16, CFC15, CAD16, CG12, CMS13, CJZS10, DLL+10, DSF17, FCE15, FNSF+11, GRS15, GM17, Gil11, GKR13, HLS12, HAL14, HLH+12, HOK17, HZSS17, Hug12, HRR+17, ISO+13, IN13, IL18, JSXH16, Jor17, KFY+13, KCK+17, KMS+19, KR12, KOY+12, K18, KCPMG12, KBI4b, KDS17, LSL+19, LTT16, LY10, LRvdSM15, LFN+10, LPS+13, LHWH14, LZZ+15a, LDG+15, LCK+18, LHMM11, MSL10, MT19a, MBC11, MBC13, MMB+17, MOH18, NIX+10, NTNY15, OPBR17, PB14, PCLI11, Pla11, Pon11, Ray13, RTS+13, Ric16, RMRBH+19, REL+14, RKG11, SM14b, SDF+17, SHF11, SSBW14, SK12, SK17, SLX+15, SDZ17, SZBM13, SB11, TYN15, TCC+13]. **model** [Tia12, TLA10, TTn19, UIW+10, VV14, VHS+19, WWKS11, WXL+12, WC13, WNM17, WRHF10, WKC11, WCAH10, XZ11, XTY+14, XP13, YS18, YOMT14, YB13, YSG12, ZST14, ZKH+10, ZM10, dSDDAR10, CCR18, FAS+18, MJBM12]. **model-tuned** [HZSS17]. **modeled** [MPA12]. **modeler** [KLJ+17]. **Modeling** [CB11a, DLSA14, FD13, FTW12, GMG+10, GBS+17, HPL13, JW16, KDR+18, Mat14, NS10, NDLW13, PLP+16, SK11, Tia12, Vyb15, AKMT11, Aou16, BEM14, BCP13, Bow16, BS10c, CMD13, CLA16, CZNA11, DAG19, DWR17, D5X+11, DLMH12, EBPK17a, FXC+13, GH10, GP12, GMZ12, GWJR18, GR10b, GWZX12, HLvdV13, HBJ+17, JC16, JCL+17, KSD+12, LABSG17, LHLH14, LZG11, LT13, LN15, MBA11, MJLV4b, MA17, MBA14, MPBJ11, NSO+14, NW17, PHC13, PSS14, PSS+17, PMT16, QLKI19, RJS17, SN16a, SKGP19, TTR+12, VKNT15, VAA14, VCM15, WXL17, WPM+15, WLO+17, XDL+10, XLY12, YMY+19, YJ11, ZX11, DHE+12].

modelling [DBM+15]. **models** [BEM14, BLKP12, BPB11, CD11, Cor17, CBG16, CK17, DDP16, DSM+11, DI11, DGC14, DCL18b, EK15, EPD+10, GMPB12, GMMH+16, GMG+10, GKR13, GCP+13, GCC14, GAJ+17, HS16b, HGY15, JCP14, JGS+17, KJDB12, KKO+16, KB11b, KSR+16, KSW16, LTT16, LKL10, LZZ12, LLSW14, LM18b, MPSA17, MSA12, MCU15, MKB+13, NNS15, OL13, PHC13, PGY15, PL18, Ray13, RTP+13, RKG11, SPHF+18, SCMA+17, SFLG+17, SAVG15, TH13, TTB+11, TTL+12, VKC10, VMPS17, VZ14,
modern [AB16a, AB16b, DH17, Fom11, LMR14, SF18, SDM +16]. modes [CBP +15, EB18, GMPB12, KKHH18, LLTC12, MS17, dSAdSL13].

modification [Ano12u, MIS +15]. modified [BD12, CH16, DPSL16, DJX +11b, GSD10, MRO17, Mit13, SMM15a, SMM15b, SMM +18, XXY17, XVA +16, ZZ12]. Modifying [CYG +15, LBS10].

MOFs [LPK16]. moieties [SPL +18]. MOLCAS [ADF +10, VBV13b, AAC +16].

Moldyn [HPSK12]. Molecular [AASP18, BDTP11, BSF18, CRZ +16, CBP14, CMM18, CCR18, CM13a, CDBM11, Car14, CTR13, CAF +13, CEBO15, CGA19, CIKT13, CGPP11, CS14, CXW14, CBTZ16, CH16, CCOH14, CVG14, CCW +10, CHKR10, CJPTC18, CB11b, CB11c].

molecular [CM16, DMJ17, DSD +11, DJX +11b, DJX +11a, DJS +18, DLZ15, DDM +15, DN19, DL19, DL16, EP10, EK15, EJ13, EPH +13, EPH +15, ENKK +17, EPD +11, Fer13b, Fer13a, FBvdB18, FBEM11, FSC +14, GBL +11, GDV17, Gar12, GJMT14, AG11, AST +16, APFI13, AS15a, ASL +11, AS10, APK14, AS18, AGB13, AS15b, AGR11b, AJR16, AB16a, ASK18, ALH +10, BMRI11, BAMR13, BEM14, BSL11, BF15, BBOB16, BJS12, BV14, BW15, BF17, BJP15, BGL +18, BMBJ11, BE16, BS18, BVC13, BEL +11, CBP14, CMM18, CCR18, CM13a, CDBM11, CD13, Car14, CTR13, CAF +13, CEBO15, CGA19, CIKT13, CGPP11, CS14, CXW14, CBTZ16, CH16, CCOH14, CVG14, CCW +10, CHKR10, CJPTC18, CB11b, CB11c].

molecular [CM16, DMJ17, DSD +11, DJX +11b, DJX +11a, DJS +18, DLZ15, DDM +15, DN19, DL19, DL16, EP10, EK15, EJ13, EPH +13, EPH +15, ENKK +17, EPD +11, Fer13b, Fer13a, FBvdB18, FBEM11, FSC +14, GBL +11, GDV17, Gar12, GJMT14, AG11, AST +16, APFI13, AS15a, ASL +11, AS10, APK14, AS18, AGB13, AS15b, AGR11b, AJR16, AB16a, ASK18, ALH +10, BMRI11, BAMR13, BEM14, BSL11, BF15, BBOB16, BJS12, BV14, BW15, BF17, BJP15, BGL +18, BMBJ11, BE16, BS18, BVC13, BEL +11, CBP14, CMM18, CCR18, CM13a, CDBM11, CD13, Car14, CTR13, CAF +13, CEBO15, CGA19, CIKT13, CGPP11, CS14, CXW14, CBTZ16, CH16, CCOH14, CVG14, CCW +10, CHKR10, CJPTC18, CB11b, CB11c].
OME16, OVPK15, OOT15, OCW+15, OZS+13, OOK11, PMC+17, PSS14, PAK15, PK17, PH17, PSG+17, PM13, PGW+17, PVZ13, PJ13, PGB17, PS10, PVAM16, PLP+16, Pro16, PH15, PVJ10, RJBH18, RD18, RMPAM15, RLLHL12, RN5F+16, RNPI3]. **molecular** [RNV13, RS12, Ras17, RHJ11, RO14b, RR14, RdA12, RC18, RLGI4, RSR15, REH13, SHMO19, SF18, SLT+15, Sax12, SWM10, SK15b, SA13, SZTSM10, Sch12, SFR+11, SHFJ18, SHF11, SMRM+17, SS19, SSNT19, SOM+13, SJ17, SR18, SYN+12, SK13, SWB+12, SLLL13, SJ16, SDMS13, SKY+11, SZZ+18, SPZP18a, SPZP19, SBV14, SAVG15, TNY16, TKN10, TZ12, TCT+18, US11, UGK18, VYMI5, Vik11, Vor10, Vor12, VM11, WKLC12, WBN+13, WAM17, WLW+10, WH11, WCY+11, WLC12, WOH16, WXL17, WOH18, WES13, WB17, WCDM11, WO15, WCV15, WL14, WGI4, Won18, WDKT19, XDL+10, XG+15, YKO+11, YPvD13, YNH+17, YLGX14, YLCX10, Yap11, YPKB12, Yes12, Yes15, Yon16, ZSTI14, ZWL13, ZZ+16, ZX11, ZDKM12, ZSS+13, ZLY+16, ZP13, ZWX16, ZLL+13, ZA15, ZBmZH15, dSLBNB17, dCLFL13, dLvNC18a, AIM+18]. **Molecular** [IPAA11, KSD+12, MJLV14b, ZBP11, ZKH+10]. **molecular-mechanical** [ZSTI14]. **molecular-orbital** [US11]. **Molecularnetworks** [MCC12]. **Molecule** [KR12, vRG17, BT18, DHOG13, DGL+13, ETL17, FAA15, GAI14, GCWS15, GBVA11, HLvdV13, HHH17, ISO+13, IIHY15, KB11b, KKA+18, LIRL+16, MCUJ15, NLL19, PC11, RLL+10, SG10b, VGV+11, WF16, XYW+14, XMS16]. **molecule-mediated** [XYW+14]. **Molecule-specific** [KR12]. **molecule-transcription** [XMS16]. **Molecules** [ATM18, PdSC18, AIG15, Ali18, AWF+18, ARAG17, AGR11a, BLBG+13, BS10a, BTMS12, BS18, Ben17, BS16b, BL12, CFZ19, CHG+16, CC18c, CQF10, CYG+15, COOH14, CXS10, CZNA11, FE14, GWF11, GJK+19, GP12, GPGM11, GPGM12, GAJ+17, HBR+17, HSB+11, Hug12, Ihi12, Kan15, KLJ+17, KJZ19, KYG+15, LPS12, LHS12, Lw13b, Lju14b, LjL+11, LG14, MA16, MS13, Mat10, MSS+13, MH17, MBE16, MPB11, NIT15, OGL10, OT12, PB13, Pyy13, RS18, RSG14, RK15, SFCCK+14, SFCCK15, Sch13, SG10b, SFLG+17, SY16b, SM17, TZK18, Tsr+16, UNT16, VVY+15a, VHA+10, VVY18, VDVR14, WC13, WSZW15, WWD14, WX12, You10, YK15, YHW17, ZPP+16, Zha12b, ZLX+13, ZBB16, ZGGM11, MSPC19, SMB18]. **Møller** [SSW17, Hii13, KKK11, KN17, MCC11, YKH15]. **MOLSIM** [JP15]. **molSimplify** [GK16]. **molten** [LCL+18]. **MolTPC** [WHJ13]. **molUP** [FRC18]. **Molybdatricarbaboranes** [LK16b]. **molybdenocine** [PM13, SDL14]. **Moment** [SS16a, JCG+11, KCB+12, Yan11]. **Moments** [GH16b, Ali18, BLDK+13, CP15, CTP13, DHOG13, GH16a, Lar11, NOK16, Tru18]. **momentum** [EP12, GWF11, NCT18, PH17]. **monazite** [RKB+14]. **monazite-type** [RKB+14]. **mono** [HV19]. **mono-** [HV19]. **monoaion** [YZGS14a]. **monoboronyl** [VVBL17]. **monohydroxide** [Kop17a]. **monolayered** [RSKG14]. **monolayers** [LD12, RSK+15]. **Monomer** [SC17]. **Monomeric** [LLT12, CAT+13]. **mononuclear** [BCSCJ+13, OSS10].
[AS15a, FTR15, JWO15, KHE+19, OCW+15, RHNN10]. **nanotubes** [ASL+11, BE14, BPE16, DI11, Den12, DZA11, EBK13, EP15, EBPK17a, EBPK17b, EB18, GBS+17, KGHK12, KGJZ19, LPLS16, LL10c, LT14, MSY19, NDD+10, PBE16, TD11, TSR+16, VS14, WYL+15, WDZN16, YZN13]. **nanowires** [EP15]. **naphthalenediimides** [MSG+16]. **naphtho** [ZLL+10]. **naphtho-homologated** [ZLL+10]. **naphthodithiophene** [DGL+13]. **naphthol** [CYY+17, GZL+12]. **naphthoquinone** [HWB19]. **naphthyl** [CFM+19]. **naphthyl-based** [CFM+19]. **NARES** [SGY+18]. **NARES-2P** [SGY+18]. **native** [DJ13, HYL+11, UCFR16, YL13]. **native-like** [UCFR16]. **Natural** [LCPS13, MBFP15, SZL19, Wei12a, Wei12b, AO10, GMZ12, NC14, Sch12, AIQ19, GLW13a, GLW13b, Spr18]. **naturally** [XVA+16]. **Nature** [ABDGN12, MJM+15, SC18a, WFZ+18, GPK+16, GA19, HBR17, Kri10, LZJ+11, LLY16, LdSRR16, LTR18, MLGB16, PKK17, RKDM14, YK13, YJ17, ZRCC12, dLvNC18b]. **navigation** [SLG15]. **NBe** [UT14]. **NBO** [GLW13a, GLW13b, WvRSM14]. **NBS** [YZ17]. **NCCH** [MLGB16]. **NCI** [REV+17, VVJ15]. **NCX** [LZL+15b]. **NCY** [LZL+15b]. **near** [DJ13, NPG+18, Yan11]. **near-infrared** [NPG+18]. **near-native** [DJ13]. **near-solute** [Yan11]. **nearly** [LPS12]. **necessarily** [Jab18a]. **Necessity** [JC16]. **necks** [CC12a]. **Negative** [PG18, KV13]. **neglect** [WDKT19]. **neighbor** [AGR11a]. **neighboring** [HSJ18]. **NEMO** [HBKL10]. **nesting** [HSB+19]. **Net** [RO14b, CS14]. **netropsin** [HDK+12]. **network** [AD10, GFPSD17, GGM+12, HNNR13, HAT+16, IHY15, JCY10, LDH+14, NSK18, OC14, FC11, PPUBGD10, RKDM14, SHL19, WMW+10, XTY+14]. **network-based** [PC11, PPUBGD10]. **networks** [AGM+13, Clo15, Kan15, KUDG12, LHO17, PPM15, PPUBGD10, TD11, WZWW18]. **neural** [AGM+13, HNNR13, LHO17, LDH+14, PC11, SHL19, WMW+10, WZWW18]. **neutral** [AM19, GC11, GWPJ11, JM11, KDD10, Tsi14, GMBM18]. **new-type** [HLWD15]. **News** [AIGP15, AKI16, APK14, AAC+16, GTA+13, BHH12, BCSCJ+13, BSZ+12, Ber17, BJP15, BFH+13, BBG+18b, CBH14, CSEMB+16, CZAF17, CAT+13, DMN15, DJD12, DVVP14, DBDP16, DDK14, DWC17, DSK17, ES13, EWE+13, FNI12, FSC+14, GMSdG15, Gar12, GJMPAM+14, GLW13b, GS12, GCP+13, GCC14, GBW+14, GH16b, HLS+13, HRB+17, HDH12, HPT+16b, HPS12, HHT+13b, HH16b, HG13, HMYM16, HKR+14, HBJ+17, HLC14, IGK16, JHH+13, JJJ+14, JLCA17, JP15, JCGM18, KS13a, KS15, KK17a, Kan15, KB16, KDR+18, KLJ+17, KJM+17, KDT+12, Kos16, KG13, KWL+16, KK17b, KGW15, KYG+15, KAG+12, KSW16, KPF+15, LPS12, LJ+12, LHS12, Leh15, LRvdSM15, LRvE17, LDB+17, LLZA12, LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MDT16, MBR+15, MYT18, MSSP17, MB14, MB16, NKJ16, OV14, OPB+12, OZS+13, OC14]. **News** [FSS14, PGL+15, PSG+17, PW12, PPM15, PHH+12, PVZ13, PG14, RLLHL12, RNSF+16, Ras17, Rex16, RR14, RdA12, RSR+12, KRM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sie15, SJ17, SWB+12,
Nitrogen

SDMS13, TNYN16, TSC+13, TTR+12, TTL+12, UU12, VMRS+17, VVV+15b, VAR12, VBV13b, WDVN12, WDY13, WPM+15, WF16, Wei12b, WHK+12, WHJH13, WGI4, WCJ+14, XML+15, XYX17, YWJ+16, YZZ16, Yes12, Yes15, YHH+13, ZDKM12, ZL+13, dVAG16, KKR+13. Next

[CG12, KSK11, LLX+19, LBT12, VVY17, CCJ+11, Kop15a, LYYC+13, LBTV11, ONTTL16, UT14, Yu12a]. NHC [GA19]. NHCHO [KMS+19].

[NH· · · [MVK10]. NHH [LZH+11]. NHOC [LHHW14]. Ni

[Ibr17, MP19a, TLDG+12, Tsi17, WWS16, ZFS18, MMB+17, SIT18, SSX+14, TLA10, ZRC12]. Ni-NO [Tsi17]. Nickel

[SMB18, ED15, FCW+14, HVS+19]. nicotine [PMC+17]. NICSz

[YPC+10, ZWZ11, FAS+18].

Nitro-Porphyrin [FAS+18]. nitro-substituted [YPC+10]. nitroaldol

[QLY10]. nitroaniline [ZTH+15]. nitroarenes [MRC+18]. nitroaromatic

[PSC11, SB18, TD10]. nitrobenzenes [ZGS+10]. nitrocompounds

[SIG+15, SGH+16]. nitrodibenzo furan [DPB+12]. nitroethane [YZL+15].

Nitrogen [LLC17, BEPM14, KV14, Lin18, ZZWX11, ZYL+12, SMD18].

nitrogen-atom [KV14]. Nitrogen-doped [LLC17, Lin18]. nitrogen-rich

[ZZWX11, ZYL+12]. nitrogen-substituted [BEM14]. nitrogenase [Sie18].

nitroiminotetrazolate [ZYL+12]. nitromethane [MCU15]. nitrosamine

dALdS+15]. nitroso [TDP+12]. nitrosothiol [TKXT13]. NMR

[Ben17, CHP11, EOA+11, HJ13, HBI+17, HM13, KASH14, LD11, ORP16, PTK11, PGdO+16, PC14, Pie14, RK15, SPHF+18, SEF+16, SKMS13, SPZP18b, SPZP19, TET18, WL14, YS13]. NNO [WGL+11]. NO

[MCU15, Tsi17, ZZ10, WYGW12, BS16a, GY12, LWZ+19, MN19, OSH17, RGCVC+19, TNI+19a]. Noble

[SMD18, ARLP13, GC18, JKS+16, PGS+15, PMG+16]. NOCV

[CSM16, DBGO+17]. node [KK17a]. nodes [KPF+15]. NOEs [LK11]. Non

[KB11c, LCH10, BSD18, CSKH15, GMZ12, GA19, HOK17, MR17, NHN16, PHC13, RS13, VCL18, YWJ+16]. Non-Boltzmann [KB11c]. non-bonded

[BS18]. Non-Born [LCH10]. non-classical [GA19]. non-covalent

[MR17, RS13]. non-electrostatic [HOK17]. non-empirically [VCL18].

non-equilibrium [NH16]. non-heme [PHC13]. non-hybrid [CSKH15].

non-natural [GM12]. non-uniform [YWJ+16]. nonadditive [RTS+13].

Nonadiabatic

[HZ11, RGYC+19, JBSQG11, KIOY19, MT19b, SRSLO15, WLF19].

nonadiabaticity [Wn10]. nonbonded [Abr11, EP10]. Noncatalytic

[SGS+16]. Nonclassical [GZH10, DM15]. Noncovalent

dRCFGRB18, Sch18, RRRH12, RLA18, SM16a, SBW12, TSR+16, VT14, WGD+16, WDS+19, YW13, YZLZ18, SMD18]. noncyclic [SM16a].

nonempirical [BK17b, WYT17]. nonequilibrium [ASL+11, KHWB17].
Nonfitting [RZG+13]. nongeometric [KB11a]. nonheme [BG13].
Nonlinear [LLX+19, ARLP13, KOP+14, LLd17, MLQ+12, MIS+15, RLA+11, TFQ+10, Tia12, YCGA10]. nonlinear-optical [KOP+14].
noniterative [RB13a]. nonperiodic [MS15]. nonplanar [KG11].
nonnorbornadiene [Ant13, WJX+10]. normal [GVP+10, GMPB12, KKH18, MS17, SBB10, IY18].
Notes [CD13]. Novel [FCL+10, KKO+16, RPNP10, AIGP15, BEPM14, BPM15, DFWL11, MDL14, RNP13, WKC11, YJN+11, YHCS11, YDGZ15].
novo [AFBR17, BAMR13, LK11, MDT10]. Nuclear [ASK18, DKT13, ECZWD17, KN+12, CSEMB+16, HH16a, HH17, JKS+16, MT19b, NASH15, PLFS18, RSG14, SPHF+18, SS13b]. Nuclear-step [ECZWD17].
Nucleic [HGY15, ZWP11, F10, FCE15, GREA11, MSL10, OX16, SCF+19, SGB+18, SBW12, WGL12, XV17, ZSB+11]. nucleic-acid [SGY+18].
nylon-oligomer [BHNS14].

O [AM19, BCNH+11, CXS10, CSNCS+18, DHE+12, GBGR16, HRL11, JM11, JLH+14, KMS+19, LZTV10, LLLM11, LLB+12, LSW14, MG11, PLFS18, PBE16, RHT+15, SPS+12, SBD+17, TNY18, VV14, WLL+10, WLF19, WRG+12, XFX+16, YW12, YR13, YOPB16, ZRCC12, Tsi17, BCNH+11, BWK10b, CK10, Chn10, HOB16, CPLL11, D19, DHE+12, HZ11, LZW+15b, LCWW10, MH11, MSC19, MS15, PBLdS12, RHN10, RAGL11, SZ17, SJD16, SXX+14, TKCN19, WLF19, Y15b, ZRCC11, ZSW12, dCRN18]. o-atom [Tsi17]. O-H [TKCN19]. O-loss [MH11].
Obtained [GR10a, GR11, MA16]. obtained [LRVM18, OSR16, SISK10, Tak10].
obtaining [STM17]. occlusion [BK17a]. occupancy [MP13]. occupied
[HJJ13, MRB14]. occupied-virtual [MRB14]. occurring [XVA+16]. ocean
[SSNT19]. OCF [ZLL12]. OCHO [dCRN18]. octa [ABDGN12, CC18b].
octa-1 [ABDGN12]. Octene [MJLV14a]. OCXR [FCOGM12]. OD [Chu10].
off [RGVC+19, WZ19]. off-diagonal [WZ19]. offsets [KRSC12]. OFLOW
[HNS16, HNTS15]. OH [CXW14, Chu10, GTK10, HZ11, LLSW14, AR10,
CK10, CSNCS+18, GK10, LJW+11b, LJG+11, RAGLL11, SST+18, TSJ+10,
VDRV14, WLHZ12, ZZL+10a]. OH/OD [Chu10]. OH ··· [MVKS10].
OHHGe [WHX+10]. oils [ZSTI14]. Ole [Spr10]. olefin
[KSO+19, MJLV14b, RS17b, MTS+19]. olefins [BF19]. olfactory [DR14].
oligo [KSW16, TZ12]. oligo- [KSW16]. oligoacene [HZSS17]. oligomer
[BHNS14]. oligomerization [KAR12, ZQ14]. oligomers
[DP15, PH10b, ZSLL17, ZYW+16]. oligopeptides [RSL16]. On-the-Fly
[PAK15, MIOM13, PL14, CF18]. On-the-path [CY09, CY13]. One
[MBFP15, CCOH14, GAMAC+14, HRID16, KPL13, LLvG10, LGL11,
LvG13b, LvG13a, PSC11, RPK16, SM16a, SH19, SJC11, SGLH13, WMW+10,
YZZL18, ZZWT12, ZGS+10]. one- [SJC11]. one-bit-per-sample [HRID16].
one-bond [RRK16]. One-electron [MBFP15, PSC11, SGLH13, ZGS+10].
one-parameter [SH19]. one-step [LLvG10, LGL11, LvG13b, LvG13a]. ones
[YZ15b]. ONETEP [LCPS13, WS13]. ONIOM [JAHS+19, AALCM11,
CR19, FBY17, Gil11, GWZX12, Lun12, Mor15, PFAS+19, RJWW12, TS10a].
ONIOM-ccCA [RJWW12]. online [Auo12m, BJP15]. only [LT13]. ONO
[CSKH16]. Open [HLS+13, Aki16, APK14, BG13, FBY+17, HPT17, ISO+13,
KRN+18, KSH+12, NS17, PHT17, RJK14, SRR16, SMRM+17, XTG+11,
Yap11, Yes12, ZCWX18, CZH12, HMO+18]. open-ended [RJK14].
open-shell [BG13, ISO+13]. Open-source [HLS+13, Aki16, APK14,
FBY+17, HPT17, KSH+12, PHT17, Yes12, HMO+18]. opening
[GMBX+16, LGC19, WCL+11, ZQ14]. OpenMM [HLW+17, HLEM18].
OpenMP [JMS14, KS15, KN17]. operation [Bac12]. operational [MA16].
operations [WS13]. operator [LMR14, SH19, SNS13, YLS19]. operators
[Car14, NCT18]. Oppenheimer [BLZ+13, LCH10, RSB+13]. opportunities
Optical [LLX+19, WGL+16, ARLP13, BBL13, BSL10, CJPCT18, GTT10,
HB15, HRJ+14, HRJ+15, JRSHP14, KRTB10, KKPT11, KOP+14, LLB012,
LLD17, MLQ+12, MIS+15, MGS+16, MCK17a, TFQ+10, TFQ+11, TS15b,
YB13, YCGA10]. optically [RJBH18]. optics [Tia12]. Optimal
[DBK17, VSA11, HS12, Kne11b, LTT16, LAT10, LAT11, MLC13, SM17,
Tak11, TBB+10, WGA18, CKH19]. optimally [Ali18, ZZS16].
Optimization [AG11, CB11b, CBI1c, HOK17, LC17b, MY17b, TKN13,
WM12, BW11b, BSD18, BHR15, BW15, BS15, BC13, CY09, CY13, CJI+13,
DS15, DH11, DMAH15, Elk16, GJK+19, HNYH19, HKR12, HJKJ13,
LvDH13, Lch15, LZL+13, LLJ12, Pon10, SA13, SZBM13, SKKS13, SMW09,
SLG15, SR10, SMM17, Tak18, TSQ12, TO10, Vor10, VBV13b, YS15,
optimization-based [YS15].

optimizations [RR12, WX12].

optimized [Boz18, CX10, GA12, HH10, LZZ14, NDW15, NLL19, ŠSB+16, SB14, WO15].

Optimizing [SYDS11].

optimum [KTNN10, SB11, TKNN10, WTD+19].

ORAC [MSC+10].

orange [LWL+11].

orbit [AMQ+14, ATP18, FAA15, FD16, GP11a, JKS+16, KT19, KKA+18, MG11, MCP18, PS17, YB11].

Orbital [SZL19, WM12, ASL+11, Boz18, BVC13, CIKT13, CPN+17, CGPP11, DHF+11, DN19, FE14, GWF11, GLW13a, GLW13b, IIF+10, IKN13, ISM18, KTNN10, LCP13, LFN+10, LTP11, MFR+17, MGS+16, NF18, NPG+18, NF17, OHNK11, OOT15, OOK11, PRY+17, PH15, RKGN10, SGPJS+17, Sch12, SHL+18, SMW09, SB14, SB15, TKNN10, TSH+19, TS14, TSN16, US11, UM13, Wei12a, Wei12b, WCWV15, WM17, ZA15, ZZZ+19, vLBBR12].

orbital-based [CGPP11, MFR+17, Wei12b].

orbital-dependence [SGPJS+17].

orbital-optimized [Boz18, SB14].

orbital-weighted [PRY+17].

orbital/local [SB15].

orbitals [AVHB18, CAF+13, CCM15, Dil15, EP12, Fer13b, Fer13a, GCCM15, HJKJ13, HJJ13, JXSW15, KHLM19, MRB14, MY17a, MBFP15, MCK17a, Sax12, TZ12, VI17, YFI+19, ZR10, ZM11].

ORBKIT [HPT+16b].

ORCA [MG11].

Orchestrated [LL10b].

order [BCCO10, DCHL12, FSSW17, Hil13, KKNN11, KN17, LCL+10, LPS+13, MLQ+12, MCC11, NYH+17, yOTn16, RBOH11, REH13, SK12, ŠSB+16, TAG16, VKAM12, VFRAR16, WLQ19, WHM10, WGA18, ZWF15].

ordered [LPAS11, LC17a, LLB+12, SJZ+15].

ordering [LKZM18, MNNK10a, MNNK10b].

ordering-based [MNNK10b].

Org27569 [ILKR11].

organic [AH10, BBG+18a, Ben17, BE16, BS18, CWHH11, CYG+15, CLK11, DGL+13, ED15, FWS+18, FNSF+11, GLZ17, GAJ+17, KLZ+18, LZ14, LZZ+15a, LWL+10, NPG+18, NDW13, PLZ17, PNW+16, Pog10, PPM15, RSG14, RNS19, SRR16, SH18a, SSNT19, SFDE16, SSAS10, SIG+11, TTR+12, TTB+11, VVV+15b, VVV+18, VVY+11, YJV+11, YNH+17, Zha12a, ZA15, ZCGM11].

organization [AO10, MCC12].

organo [MMS16].

organo-metallic [MMS16].

organocatalytic [ORZ11].

organocuprates [KYCL11].

organometallic [OCLM14, ZYW+16].

organometallics [GMG+10, dCDP15].

organophosphorus [VRKT19].

organoselenium [RK15].

orientation [AST+16, LZ12, LZZG11, RI10, SJZ+15].

orientation-dependent [LZ12, LZZG11].

orientations [WWKS16].

oriented [HPSK12, KG13, RLG14, SCM+15, SK15b].

Origin [FB14a, SB15, CD13, FCOGM12, dLwNC18a].

Origin-independent [ŠB15].

origins [CB11d, NSO+14, WGD+16].

Ornstein [Hei18].

ORP [BLL13].

ortho [LTP11].

ortho-substituted [LTP11].

Orthogonal

[BL15, DC8+15, LAW+16].

orthogonality [GA12].

OsC [ZWW10].

oscillator [LRvdSM15, LM18a, Ric16, SM14b, ZM10].

oscillators [CHC+13].

OsO [ZXS+10].

OSPREY [HMO+18].

other [AFBR17, SK12].
[FBY+17]. PBE [DOM+11, PTK11, LK16a, SGPJS+17, TG12a].
PBE-QIDH [SGPJS+17]. PBE/3z [PTK11]. PBE0
[DOM+11, LK16a, SGPJS+17]. PBE0-DH [SGPJS+17]. PBESOL
[DOM+11]. PbI [VVY17, VVMY18]. PbS [NS18]. PBSA
[BD11, CS17, RDDS10, STM+15]. PBSS [DVVP14]. PC [VL17b].
PCASSO [LFB14]. PCCP [VT14]. pCCSD [Sch12]. PCM [LFN+10].
PCM-MST [GMMH+16]. PD
[HL5+13, Hii13, KD10, Niz13, YDR13, dSdLBNN17, GA19]. PD-PK-T
PDECO [CJL+13]. PDielec [KB16]. PDixCN [ZZL19]. peaks [LZS+17].
PBG [EOO+16]. PEG-PLA [EOO+16]. penalty [GZH10]. penetration
[NLP+16]. penta [LBC+19, Sak18]. penta-coordinated [Sak18].
penta-coordination [LBC+19]. Pentaatomic [XhD15]. pentacene
[CVWH11, ZYG+15, NTN+19]. pentacordinated [TS10b]. pentagon
[FL15, ZYG+15]. pentane [TCGNT18]. pentathienoacene [ZYG+15].
penetration [NLP+16]. penta-coordinated [Sak18]. penta-coordination
[LBC+19]. Pentaatomic [XhD15]. pentacene
[CVWH11, ZYG+15, NTN+19]. pentacordinated [TS10b]. peptide
[FP17a, HPL13, HLH+12, ICS+12, ICS+13, JBAM11, JWST10, LTT16,
LW11, LLvG10, LJJ+11b, LvG13a, LMA15, MDT10, MV17, OZ14, QZM11,
SV15, SEM12, SZB19, TYZ+16, XHLH16, XYZ18, YZ15a, dCLFG13].
peptide-backbone [HLH+12]. peptide-design [XHLH16]. peptides
[BLKP12, BPC13, CR19, COOH14, CZNA11, GFG11, HSB+19, HLH+12,
HHWL17, IO13b, JCR10, KB10, LvG13c, MZZ11, MUGNVJ+18, OLY17,
WNM17, XHLH16, XWSW13, ZKH+10]. peptoid [MMZW14]. perception
[AJR16, HYYZ13]. Performance
[Abr11, BZB+13, CSKH16, CKKK16, DAP+18, DOM+11, GWJR18, HBSB+11,
JCP14, LK16a, RKB+14, SF18, SH18a, SGWA17, ZZMW19, ABM+15,
BLBG+13, CLFR018, CXS10, CSSB11, CJZS10, ESB13, EWK+13, GA14,
GRARO+14, GSS31, HWWL11, KZS+16, KLZ+18, LL10a, LBBD12, LL+10,
MHT+18, MC12, MG11, OPB+12, RRH12, RLS13, SRF+17, SPR+13, SJ16,
TF15, YPC+10, YMY+19, ZHS+18, ZSTRS+18, ZSSL17, ZL13, SBW12].
Pericyclic [HPT16a, KG15, ZZMW19]. period [LOB18]. Periodic
[Sce07, Schul10, AAC+16, BBG+18a, BS18, CMM18, CEBO15, FCD10, Gar12,
HSH15, HBI+17, ITIN15, KB14a, LBGS16, Man13, MG+16, NN18, NO16,
NTN15, RJPB12, RLZ+18, RNS19, SN16a, SP19, Ste15, SPZP18b,
TLdG+12, Tak14, VBB13a, VBB13, VECD12, VI17, YAO18]. Perlin
[HLLBCCG15]. permeation [DMN15]. permutation [IO13b]. pernitrides
[BLKP12, BPC13, CR19, COOH14, CZNA11, GFG11, HSB+19, HLH+12,
HHWL17, IO13b, JCR10, KB10, LvG13c, MZZ11, MUGNVJ+18, OLY17,
WNM17, XHLH16, XWSW13, ZKH+10]. peptoid [MMZW14]. perception
[AJR16, HYYZ13]. Performance
[Abr11, BZB+13, CSKH16, CKKK16, DAP+18, DOM+11, GWJR18, HBSB+11,
JCP14, LK16a, RKB+14, SF18, SH18a, SGWA17, ZZMW19, ABM+15,
BLBG+13, CLFR018, CXS10, CSSB11, CJZS10, ESB13, EWK+13, GA14,
GRARO+14, GSS31, HWWL11, KZS+16, KLZ+18, LL10a, LBBD12, LL+10,
MHT+18, MC12, MG11, OPB+12, RRH12, RLS13, SRF+17, SPR+13, SJ16,
TF15, YPC+10, YMY+19, ZHS+18, ZSTRS+18, ZSSL17, ZL13, SBW12].
Pericyclic [HPT16a, KG15, ZZMW19]. period [LOB18]. Periodic
[Sce07, Schul10, AAC+16, BBG+18a, BS18, CMM18, CEBO15, FCD10, Gar12,
HSH15, HBI+17, ITIN15, KB14a, LBGS16, Man13, MG+16, NN18, NO16,
NTN15, RJPB12, RLZ+18, RNS19, SN16a, SP19, Ste15, SPZP18b,
TLdG+12, Tak14, VBB13a, VBB13, VECD12, VI17, YAO18]. Perlin
[HLLBCCG15]. permeation [DMN15]. permutation [IO13b]. pernitrides
[BLKP12, BPC13, CR19, COOH14, CZNA11, GFG11, HSB+19, HLH+12,
HHWL17, IO13b, JCR10, KB10, LvG13c, MZZ11, MUGNVJ+18, OLY17,
WNM17, XHLH16, XWSW13, ZKH+10]. peptoid [MMZW14]. perception
[AJR16, HYYZ13]. Performance
[Abr11, BZB+13, CSKH16, CKKK16, DAP+18, DOM+11, GWJR18, HBSB+11,
JCP14, LK16a, RKB+14, SF18, SH18a, SGWA17, ZZMW19, ABM+15,
BLBG+13, CLFR018, CXS10, CSSB11, CJZS10, ESB13, EWK+13, GA14,
GRARO+14, GSS31, HWWL11, KZS+16, KLZ+18, LL10a, LBBD12, LL+10,
MHT+18, MC12, MG11, OPB+12, RRH12, RLS13, SRF+17, SPR+13, SJ16,
TF15, YPC+10, YMY+19, ZHS+18, ZSTRS+18, ZSSL17, ZL13, SBW12].
photoionization \[CGP_{12}, MSV_{16}\], photoisomerization \[ZLHH_{14}\], photon \[DPB_{12} + ZTH_{15}\], photooxidation \[LWX_{16}\]. Photophysical \[SCF_{19} + CWT_{12}\], photoreceptor \[XBSS_{19}\]. photoresponsive \[YDGZ_{15}\], photosensitizers \[ZZ_{12}\], photosynthetic \[IIF_{10}\], photosystem \[AKMYB_{18}, KTT_{16}, ZSYH_{12}\], photovoltaic \[NS_{18}\], photovoltaics \[VVMY_{18}\]. phthalocyanine \[SKY_{11}\]. phycocyanin \[RC_{13a}\], phylogenetic \[CCYL_{11}\]. Physical \[CB_{11d}, FCOGM_{12}, JJH_{13} + LHG_{11}, VVP_{12}, YJ_{17}, WCT_{11}\]. physicochemical \[CCYL_{11}, HZY_{10} + LHL_{10}, RI_{10}\]. physiological \[HM_{16}\], phytochrome \[FD_{13}\]. piano \[FPB_{12}, FB_{14b}, ZCK_{16}\], piano-stool \[FPB_{12}, FB_{14b}, ZCK_{16}\]. picture \[ASS_{17}\]. pictures \[MA_{16}\]. PICVib \[dSAdSL_{13}\]. piezoelectric \[ECZWD_{17}\]. pillar \[uLhY_{11}\]. pillars \[NNK_{16}\], pilot \[SSSM_{15}\]. Pimephales \[TTL_{12}\]. pinane \[BLS_{10}\]. pincer \[ED_{15}, JJA_{16}\]. pincers \[KJDB_{12}\], pincer \[HJJ_{13}\]. pivoting \[PS_{17}\]. PK \[HLS_{13}, GKI_{15a}, SKI_{15a}, SKI_{12}, SKI_{17}, YDX_{16}, Zha_{12b}, Zha_{12a}\]. PKA \[MUGN_{18}, EOO_{16}\], Placevent \[SYH_{12}\], planar \[BSP_{13}, LVI_{14}, KSO_{19}, XD_{15}, YS_{18}, YLZ_{16}, YZW_{17}\]. planar-chiral \[KSO_{19}\]. planarity \[NK_{19}\], planarization \[NK_{19}\]. Plane \[SH_{14}, BTB_{11}, EHI_{13}, Gav_{12}, LL_{13b}, MDT_{13}, MDT_{16}, TCP_{16}\]. Plane-wave \[SH_{14}, BTB_{11}, MDT_{13}, MDT_{16}\], planewave \[SM_{18}\]. planning \[FBvdB_{18}\], plasmepsin \[SOD_{11}\], plasminogen \[BM_{12}\]. plasmogen \[Ano_{15-58}, BH_{14}\], plastocyanin \[HBI_{17}\], PLATform \[TN_{16}, BTM_{12}, HPT_{16b}, PSG_{17}, PZC_{16}, VM_{17}\]. platforms \[KJ_{17}, SC{OJ}_{13}\], platinum \[ITY_{19}\], platonic \[KSM_{16}\]. PLATYpus \[TN_{16}\], plausible \[KV_{14}\]. Plested \[FSSW_{17}, HII_{13}, KKN_{11}, KNI_{17}, MCC_{11}, YKH_{15}\]. PlmII \[VLB_{10}\]. PlmII-inhibitors \[VLB_{10}\], plot \[MP_{17a}\], plug \[BTA_{13}, KLS_{10}\]. plug-in \[BTA_{13}, KLS_{10}\], plugin \[FRC_{18}, RD_{18}, BHB_{12}\]. plumbacyclopentadienylidenes \[KASH_{14}\], PM3 \[SA_{10}\], PM3-CARB1 \[SA_{10}\]. PM3-CARB1/Tip3P \[SA_{10}\], PM6 \[SBW_{12}\], PM6-DH2 \[SBW_{12}\], PMF \[ZLX_{13}\], PMI-MDM2 \[HQSZ_{19}\]. PMMA \[NSS_{15}\], pnum \[GMS{Gd}_{15}\]. nicipogen \[L{DG}_{15}\]. Pocket \[AIM_{18}\], pockets \[MK_{11}, TN_{17}\]. Point \[Lar_{11}, AS_{15b}, AGM_{13}, BHR_{15}, BTL_{11}, BTB_{11}, EPD_{10}, LPS_{12}, LLWS_{14}, OHPR_{17}, SN_{15}, Tc_{17}, TBSM_{12}, We_{12b}, YHW_{17}, dLvN_{18}, NQB_{19}\]. points \[HD_{17}, HEMC_{14}, OHPR_{18}\]. Poisson \[ALRM_{18}, BCCO_{10}, BD_{12}, CLA_{16}, FBY_{17}, FHMB_{15}, FCE_{15}, FBvdB_{18}, Fra_{15}, Fra_{16}, GRARO_{14}, NW_{17}, SK_{15a}, WL_{10}, WLQ_{19}, XXY_{17}, YOMT_{14}, HWL_{11}\]. polar \[BK_{17a}, CVG_{14}, GMG_{10}, L{V}_{13b}, PAT_{10}, WWW_{18}\]. polar-nonpolar \[WWW_{18}\]. polarizabilities \[BLBG_{13}, BZB_{13}, KR_{12}, KNP_{12}, LIRL_{16}, ML{C}_{13}, PL{F}_{18}, RLA_{11}, SS_{16b}, XKW_{18}\]. polarizability \[CPK_{12}, EPD_{11}, H{BKL}_{10}, KS_{11}, N{YN}_{17}, OVP_{15}, PC_{14}, YB_{13}\]. polarizability/reaction \[K{S}_{11}\]. Polarizable
[CCR18, GEP +14, LM18a, LPS +13, LCL +18, NS11, SAvG15, ZM10, ALRM18, BSL +16, Cam15, CCB15, CGPP11, DGM14, DGB +13, DDM +15, ENKK +17, ESM +12, FP17a, GRS15, GpdC +16, HOK17, HZSS17, HLEM18, HCP15, ISO +13, KFY +13, KR12, KW1 +16, LRvdSM15, LFN +10, LHHW14, LDG +15, MBC11, MBC13, MBE16, NLP +16, ODB18, PMC17, PZCL16, Ric16, SM14b, SK17, SBvG14, VVLG17, WRHF10, WLO +17, XZ11, XP13, ZRL +15, ZP13].

Polarization [Mit13, CD11, JZ12, LOB18, LCW12, MLZZ14, POB13, RF15, TNG +10, WWD14, YD17, ZJZM13, ZBG11, ZBP11].

polarizeable [SS16b].

Polarized [BS10a, B LG +13, DLZ15, JZZM14, NHF +10, SFM14, SEJ +18, VHS +19, YJXZ13].

pole [NYN17].

polarization [GCC14, SIG +11, TTR +12].

pollution [LZ14].

poly [CH10, PRRT +10].

polyacenes [KAR12, RS17a].

polyacetylenic [ZZZ +19].

polyamidoamine [CAD16].

polyatomic [OT12].

polybrominated [GKR13, Ray13, RKG11].

polycyclic [CB11d, FVB10, Kar17, PL18, ZWX19].

polyelectrolytes [NSP15].

polyethyleneimine [BAF18].

polyethylenimine [BF17, MT19a].

polyglutamine [CCOH14].

Polygonal [PL18].

polyguluronate [Pla11].

polyhedra [CD16].

polyhedral [CL16].

Polymer [HP10b, PH10a, AHK +19, KZP +18b, MZZ11, SCMA +17, YCGA10, YFH +19].

polymer-growth [MZZ11].

polymer-stabilized [AIK +19].

polymerase [SBT17].

polymerization [KZP +18a, MTS +19, SCK18, YMY +19].

polymers [CRC13, GRE11, KLZ +18, SA11].

polymorph [SPZP18b].

polymorphic [SLY +10, XWSW13].

polymorphisms [LXZ +11].

polymorphs [RRC +15, WRM +12].

polynomial [SY11].

Polynuclear [SVLK18, CAT +13].

polyoxometalate [JAHS +19].

polyoxometalates [CB11a, CB11b, CB11c, GLZ17, RDF +11].

polyoxy [SC18a].

polyoxy-anion [SC18a].

Polypeptide [AD10, IUK +11].

polyphenacenes [QZ10a].

Polyphlic [vRWGS17].

polyaccharide [KSW16].

polyspherical [PH10a].

polyuronate [PD12].

poor [HDH12].

popular [CXD +19].

populated [CBP +15].

population [LTA +11].

population-based [LTA +11].

Populational [DK11].

populations [BVC13, KV13, OGL10, VZ14, WES13].

pore [KJ10, SBFT17, WNM17].

pores [DMN15, Fom13, HPL13, LJR +12].

porous [LZ14, PLZ17, SYZ +17].

porphin [SMDP18].

porphyrin [BEL +11, EH13, INT18, KCK +15, PLZ17, VBA13, FAS +18].

porphyrins [MLQ +12, TSNC +17].

portable [KS13a].

Porting [WS13].

pose [Vor10].

poses [HWWL11].

position [LHO17, VDVR14, BEEL14].

positions [AVHB18].

positive [SRA17, VVY18].

positron [SS +18].

positronation [BL12].

Possible [Oht16, FHK +12, GNI18, RB12, Tsi17, NJR18].

POSSIM [LPS +13, SK17].

post [BY11, CGR16, CB11d, MRO17, RRH12, SJL18].

post-Hartree [CB11d, RRH12].

post-MP2 [CGR16].

post-self-consistent [BY11].

post-translationally [MRO17].

Post-treatment [SJL18].

postprocessing [HPT +10].

potential [NS10, XDL +10].

Potential [KIOY19, OSI +19, SC17, Vor12, AMGB10, AS18, BTA +13, BLF14, BT18]
primary [ALK+15, GA13, VVLG17, KTNN10]. prime [DSX+11].

prime/MM [DSX+11]. primitive [HAL14]. principal [PSP15]. principle [CCJC10, DBM+15, LLB+12, MCF10, SBGP18, Tak11, YPyD13]. Principles [HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13, EBPK17a, EB18, GD10, HYL+11, Ib17, JCG+11, KLZ+18, LLLM11, LCWW10, NNS15, PLZ17, RGZ+13, SFA17, SPZP18a, TZ11, UGK18, WYL+15, WD10, YR13, wZbZ11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC+14, THI+19].

PROCOS [FHW+11]. produced [LS11a, SIG+15]. Producing [RN17].

product [CC12b, ZQ14]. production [GYX+10, SSNT19]. products [KIOY19, TR12]. profile [AK10, BS16a, GTZ+18, KTT16, XML+15]. profiles [MIOM13, RB0H11, SISK10, Yl12b]. profiling [VMRSH+17].

profit [KB11c]. Program [FPV13, GH16b, SWA13, BBG+11, BBG+18b, CBH14, CZZL19, CAT+13, FM10, GLW13a, GLW13b, GBW+14, HS16a, HSN+18, HL14, JS17b, KWL+16, KK17b, LHS12, MHT+18, MSC+10, MSvG12, Mez10, MSP17, MAP18, MB14, NMMH19, SMPD18, SFG+17, SFR+11, SYN+12, TNT16, TSC+13, UDK+18, VV15+15, WDCM11, WHK+12, ZL11].

proline [AS11, HJLV16, OOK11]. proline-catalyzed [HLV16].

proline-recognition [OOK11]. promelas] [TTL+12]. promising [KSSH13, RNS19, ZSSL17]. promolecular [REV+17]. promoted [LPLB16, QXY+18].

Proof [FVB10]. propagator [WWD14, YLS19, YD17].

propene [HSL+11, QSW+10, dSddAR10].

Properties [LLX+19, MP19a, SFCCK+14, TY10, AWF+18, ARAG17, ASS10, Avd18, ARLP13, ALH+10, BCSCJ+13, BE12, BPE16, BLFZ13, BS10a, BAD+19,
BP18, BACSCJ+10, BC13, CPRS18, CBH14, CWT+12, CWHH11, CBTZ16, CH10, CCY11, CCS10, CLC11, CJPTC18, DDP16, DOM+11, DMD+18, DBM+15, DPNM11, DJX+11b, DJX+11a, DP15, DLW12, DQ16, EPH+15, EBPK17b, FB10, GBL+11, GTT10, GK10, GNI18, GWWJ12, GBGR16, GBG+19, HZY+10, HR3+17, HLH+12, HZSS17, HLWD15, Ibr17, JBSQC11, JH+13, KKT11, KDB13, KZK+12, KPG18, uLhY11, LHL+10, LSHH12, LLM11, LZJ+11, LLD17, LBTV12, LZX+10, LWG12, MC10, MCF10, MJLV14b, Mat10, Mat14, MIS+15, MGS+16, MCK17a, NC14, NS18, PGC13, PGY15, Pog10, PH10b, Pop18, PBE16, PS10, RR14, RRF11, RI10, SDF+17, SCF+19. properties [SB11, SIT18, SLIB12, SWMW10, SZB19, SIG15, SGH+16, TN12, TFQ+10, TFQ+11, TS11, TS15b, VVW+18, VPR10, VECT12, WLC12, YW12, YCGA10, ZYG+15, ZWMW10, ZB18, ZLX+13, ZBP11, ZYL+12, FDCJG18, SFCCK+15]. property [CD13, GPS10, GBS+17, GWX+12, PH15, V˚AA14, WH11].

propionate [TN10].

propanoate [NC14, NS18, PH10b, Pop18, PBE16, PS10, RR14, RRF11, RI10, SDF+17, SCF+19]. properties [SB11, SIT18, SLIB12, SWMW10, SZB19, SIG15, SGH+16, TN12, TFQ+10, TFQ+11, TS11, TS15b, VVW+18, VPR10, VECT12, WLC12, YW12, YCGA10, ZYG+15, ZWMW10, ZB18, ZLX+13, ZBP11, ZYL+12, FDCJG18, SFCCK+15]. property [CD13, GPS10, GBS+17, GWX+12, PH15, V˚AA14, WH11].

protease [DLZ15, NHN16, OBW12, SYH12]. protection [SBW12].

protective [JAH+17]. Protegrin [RI10]. Protegrin-1 [RI10]. Protein [CIKT13, CDS16, DPOS16, GPS10, HTS15, HS16b, LZGS11, MEFM16, MFR10, PGL+15, Ran12, RP15, Rao11, SHMO11, SKKS13, AIGP15, AKK+16, AM10, AG12, BZS+12, BFH+13, BB11, BCP13, BCG10, Bow16, BDD13, BA11, CFA+18, ZAF17, CFC15, CHR+12b, CHR+12a, CM13b, CCYL11, CKP10, CH14, CC12b, CBG16, CHP11, DL11, DJ13, DRV14, DLMH12, ESD18, FZY+12, FHW+11, FCE15, FLM11, FSC+14, GS14, GGD17, GMSdG15, GRP+12, GZ14, GRL+11, GRL+12, HAGK10, HNNR13, HMO+18, HTS15, HTS17, Has14, HZY+10, HPL+18, HKR12, HYMZ16, HJ10, HHHY10, HM13, HZ13, HQS19, ILKR11, IHY15, JZ12, JZM14, JZL+17, KTE+17, Kan15, KNE11a, KNY+12, KL14, KERY+16, KJ10, KTO11, KTO13, KDT+12, KLS10, KMLS10, LS11a, LFB14, LHL+10, LH11, LCP13, LC16, LC17b, LZ11, LLC+10, LI10b, LFM12, LPS+13, LZU14, LLLC11, LH11, LBS10].

protein [LM18b, LDH+14, MS17, MMM+16, MJC14, Mau14, MUGNVJ+18, MA17, MEFM15, MS16, MP11, MKB+13, MOS12, MNNK10a, NSK18, NS14, NS11, NFG+13, NG10, OHNK11, OCL11, OL13, OBW16, OCLM14, OK16, OME16, OOT15, PGCT+12, PGW+17, PLV+11, RZZ+13, RCR+16, RMRBH+19, SPP+18, SBB10, SYDS11, SK17, SGG+18, SM13+13, SY16a, Sti15, TYZ+16, TNY16, TCC+18, TNSS17, TRA+16, TJB12, UNT16, UC1F16, VMPS17, WDVN12, WNP+16, WZ17, WLLH18, WES13, WHAS+10, WHAS+16, XML+15, YXZ18, YZ15a, YZ16, YDL+10, You16, YS10, YL13, ZC14, ZYvZ14, ZLW10, ZLX+13, ZDT18, ZSB+16, dRBO13, AIM+18, DKV18, LGL11, SL10, SHL+11]. protein-bound [FLM11]. protein-coding [YS10]. protein-coupled [ILKR11]. protein-jaundice [AG12, CH+12b, CH+12a, LLC+10, OOT15, SPL+18, WDVN12, dRBO13, AIM+18]. protein-like [KOY+12]. protein-lipid [PGCT+12]. protein-peptide [XYZ18]. Protein-protein

retinal [CG12, GA18, SGWA17, WGA18, ZLHH14]. retinoic [LFM12].
Self-guided [WBVE16, OCL11]. self-guiding [HS17a].
self-interaction [SHL18, TSH19, vS18]. self-metathesis [MJL14a].
semi [DAG19, FSSW17, SC15]. semi-direct [FSSW17]. semi-empirical
[DAG19]. semi-global [SC15]. semiclassical [YLS19]. semiconducting
[VS14, ZSLL17]. semiconductor [LCH15, SFDE16, VVMY18].
semiconductors [BE16, NDLW13]. Semiempirical
[FA18, SRL15, BP18, GKL19, GP11a, HG15, KTNN10, KB14b, LSD10,
MGWR12, SPH11, SDL14, TKNN10, TG12a, UCFR16, WCWW15].
semielementary [VDVR14]. Seminumerical [PW12]. sense
[DR14, ICS12, ICS13, NH19]. sensing [LZL10, LCC18, RRK14].
Sensitivity [Han11, LL11, LWWG12, PDG16, Sea10]. sensitized
[ACS12, JYS12, LZL15a, YJN11]. sensitizers [YJN11].
sensitized [ACS12, JYS12, LZL15a, YJN11]. sensitizer [YJN11].
sensitizers [SLC17]. sensors [DHE12]. separable [WWU12]. separated
[Ali18, BK17b, HZSS17, RSG18, SH18a, SZZS16, WYT17]. separation
[CSKH15, DS12a, NMH19, VCL18, VL17b, YSG12]. Sequence
[TYZ16, DLI10, DNL11, HPL18, LXL11, MP17b, RMRBH19, Sti15,
TYX18, WXL12, YZWC11, YS10, ZWP11, HYMZ16]. Sequence-based
[TYZ16, RMRBH19, WXL12]. sequence-reactivity [Sti15].
Sequence-specific [HYMZ16]. sequences [Ano12u, CCYL11, Fel10,
HZY10, LML11b, LLVM11, LDH14, OLA15, QLQ11, YDL10].
Sequential [CBP14]. sequestration [CC18c]. Ser [LY10]. Serenity
[UDK18]. serial [BB11a]. series [AWF18, AC11b, DDM15, FWS18,
LZGS11, MCK17b, SB10, TD10, AM19]. server
[CPA11a, XML15, XYX18, dVAG16]. servers [UHH11]. services
[LP11a, UHH11]. Set
[SN16b, BLL13, BGL10, BLRS08, BRLS12, CC11, HS16b, KNP12,
LS11a, LLC10, LVC13, LZ18, LW110, Mat10, OAN15a, PML12,
PG10, PHK14, PD11, Pog10, PFVL14, RLD12, SPS12, Sch13, SWM10,
SG10a, SG13, VLGK17, VVLG17, WX12, YOMT14, ZPP16, FL15].
Sets
[TKN13, BLFZ13, BLBG13, BLF14, BS10a, DBM15, HSN14, H113,
LOB18, LBH11, LCW12, Leh15, Mit13, PO13, Sea10, SNKS10, ST15,
TH13, UCFR16, ZLT13]. Setschenow [XWW11]. setting
SG-3 [DH17]. SH [XCLZ19]. SH2 [AC11a]. Sham [BWMS10, SS16,
VV14]. Shao [Ano12u]. Shape [KC14, Zha11, GPS10, HCB11, Hsu14,
MNNK10a, OAN15b, XTY14, YLGCX14]. Shape-based [KC14]. shape-complementarity
[GPS10]. shaped [LWZ13]. shapes [KC14, PL18]. Shared
[vW11, UWI10]. Shared-memory [vW11]. sharing [JSF19]. shed
[GN18]. sheet [CCOH14, Hug12, WS10]. sheets [PL18, WCAH10, YZZ17].
shell [BH14, BG13, GKSS14, ISO13, JCG11, KSR17, MBA11, MA16,
MS12, SRR16, TBSM12, TEDT18, WWD14, Ano15-58]. shell-wise [KSR17].
shells [GPK12, JXS15, SC18a]. Sheppard [QB11]. shielding
[GMSV14, HAI16, FC14, VAMS14, YS13]. shellings [JKS16]. Shift
LWZ$^{\pm}19$, LBDP12, MCvdV13, MSC$^{\pm}10$, MBR$^{\pm}$15, MTS$^{\pm}19$, MSvG12, Mez10, MMZW14, MLCD11, MCC12, NPG17, NFG$^{+13}$, NDD$^{+10}$, OYK$^{+11}$, ON14, PLZ17, QLKI19, RHNN10, RAR$^{+11}$, RO14a, RO14b, RSR$^{+12}$, RSLS13, SWM10, SK15b, SMRM$^{+17}$, SSP19, SHL19, SS19, SJZ$^{+15}$, SBvG14, SAvG15, TNYN16, UTM11, UU12, VMRS$^{+17}$, Vor12, WC11, WLF19, YAS13, ZX11, ZSS$^{+13}$, ZKH$^{+10}$, ZLL$^{+13}$, dCLFLGL13, SG18. **Simulations**

[BRE16, MFEM16, PK19, RJH18, RKDM14, XFG$^{+16}$, Aki16, BTA$^{+13}$, BM12, BDTP11, BW15, BF17, BJP15, MBMJ11, BB11b, BB11c, BBI$^{+11}$, CTR13, CCOH14, CVG14, CLK11, DGH$^{+11}$, DMN14, DSD$^{+11}$, DHF$^{+11}$, DZT11, DLZ15, DDM$^{+}$, ER18, EK15, FTW12, GBL$^{+11}$, GR11, GPM17, GCW14, GP11b, Has14, HCD10, HFSO12, HPSK12, HDPM14, HMM10, HYUS11, HJ10, HHWL17, HLEM18, HI18, IPAA11, JIS13, JWO15, JMS14, KV13, KCK$^{+17}$, KCK$^{+15}$, KvdV14, KGK12, KGC15, KLOS10, KBI11a, KTO11, KSR$^{+16}$, KLS10, KMLS10, KZP$^{+18a}$, KW$^{+16}$, KV15a, KPF$^{+15}$, LH11, LC17a, LRvdSM15, LZ12, LPS$^{+13}$, LMI$^{+14}$, LZLMP16, LCL$^{+18}$, LM18b, LAS$^{+14}$, MMH19, MN15, MCR17, MTvG12, MFEM15, MADWB11, MAP18, MKM$^{+17}$, MB14, NST14, NFPD13, NNK$^{+16}$, NTNY15, Oht16, OCL11, OLY17, OZ14, OCW$^{+15}$, PGY15, PH17, PZCL16].

Simulations [PL14, PM13, PS13, PS10, PNG10, RD18, RdA12, RLG14, RSR15, SSO19, SBV10, SS13b, SHFJ18, SB$^{T}^{17}$, SISK10, SCK18, SJ17, SMP17a, SYN$^{+12}$, SK13, SFLG$^{+17}$, SB15, SWB$^{+12}$, SDMS13, SV11, VSA11, VKT15, VM11, WKL12, WAM17, WH11, WWA11, WLC12, WBF17, WG14, WOn18, WC$^{J}^{+14}$, XFG$^{+15}$, XWS13, YKO$^{+11}$, YSG12, Yon16, YHV12, YFH$^{+19}$, ZZY$^{+16}$, ZDKM12]. **Simulator**

[BSL11, KJM$^{+17}$, RLLHL12, TCX$^{+13}$]. **Simultaneous** [LL10b, WZZW18].

Single [HPL$^{+18}$, LP11c, PM18b, SR18, Zim15, AS15a, BE14, BP18, BK17b, Den12, FTR15, GCCM15, KK, KJG, LXL$^{+11}$, MSY, MT19b, MCLD10, MEH18, PBE16, RHNN10, RLD17, SY16b, TSR$^{+16}$, VS14, WL$^{+10}$, WYL$^{+15}$, YZN13]. **Single-** [BE14]. **Single-bond** [GCCM15].

Single-configuration [MT19b]. **Single-ended** [Zim15]. **Single-excitation** [ME18]. **Single-file** [SY16b]. **Single-ion** [BP18]. **Single-pass** [SR18].

Single-sequence-based [HPL$^{+18}$]. **Single-step** [RLD17].

Single-vibronic-level [MCLD10]. **Single-wall** [KG19, TSR$^{+16}$].

Single-wall [AS15a, PBE16, VS14, WYL$^{+15}$, YZN13]. **Singles** [EK17].

Singlet [BSDP16, HWB19, ISO$^{+13}$, RS17a, SSC$^{+19}$, THP$^{+15}$, TCPPC14, NNT$^{+19}$, ZSL19, ZZL19]. **Singlet-triplet** [RS17a]. **Singlet** / [ZZL19].

Singular [Les19, SG10a]. **Singular-value** [Les19]. **SiO** [DOM$^{+11}$, HEM$^{+17}$].

SiOH [LvDH13]. **SIPs** [KCC$^{+18}$]. **Site**

[CH14, LJW$^{+11b}$, CVG14, DAP$^{+18}$, GEP$^{+14}$, GPdC$^{+16}$, HL14, ISP$^{+10}$, LB$^{+12}$, LKZ18, LL$^{+12}$, MP13, MNNK10a, OHP17, OHP18, RLD17, SHF11, SB11, SC18b, TYN15, ZLX$^{+13}$]. **Sitedirected** [CH14].

site-identification [RLD17]. **sites** [AIGP15, An12u, DVVP14, DBK17, JAH$^{+19}$, KDT$^{+12}$, LZTV10, LHL$^{+10}$, LL10b, LZX16, LG14, MA16, PHC13, PGB17, TYZ$^{+16}$, TYX$^{+18}$, Vor10, YZ15a, YHH$^{+13}$, ZZL$^{+12}$]
[ZJL+17, LZY12b], six [DOM+11, XhD15]. Size
[Tak18, AS15a, BLBG+13, BD12, CC12a, CF14, DJX+11b, FE14, GZZ12, Hsu14, MTVg12, SL17, SB11, XYX17, Zha11, NNT+19]. Size-guided
[Dil15, LRER13, MY17b, SFG+17]. Slater-function-based [SFG+17]. Slater-type [Dil15, MY17b]. slices [AKN16]. slicing [KCC+18]. SLIM
Smoluchowski [KS18, SG10a]. smooth [AG11, EFS16, JLCA17, ZSB+16]. smoothed [LZ12]. SMPBS [XYX17]. Sn
[MCK17b, PMG+16, RDT14, YW12, AS10, PKK17]. SnCl3 [dSDdAR10]. SnO [DHE+12]. Sodium [KL16]. Soft [SJC11, Ben17, BG12]. Soft-core
[SJC11, BG12]. Software
[AIGP15, Aki16, APK14, AAC+16, BTA+13, BHB12, BCSCJ+13, BSZ+12, Ber17, BJP15, BFI+13, BBG+18b, CBH14, CSEMB+16, CZAF17, CAT+13, DM15, DJD12, DVVP14, DBDP16, DDK14, DWC17, DSK17, ESB13, EWK+13, FN12, FSC+14, GMSdG15, Gar12, GJMPAM+14, GLW13b, GS12, GCP+13, GCC14, GBW+14, GH16b, HLS+13, HRB+17, HD12, HPT+16b, HPSK12, HHT+13b, HH16b, HG13, HYMZ16, HKR+14, HBJ+17, HL14, HC14, IGK16, JHH+13, JJW+14, JLCA17, JP15, JCGM18, KS13a, KS15, KK17a, Kan15, KR14, KB16, KKR+13, KDR+18, KLJ+17, KMM+17, KDT+12, Kos16, KG13, KWL+16, KK17b, KWG15, KSD+12, KYG+15, KAG+12, KSW16, KPF+15, LPS12, LJR+12, LHS12, Leh15, LRvdSM15, LRvE17, LDB+17, LLZA12, LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MTD16, MBR+15, MTK18, MSSP17, MB14, MB16, NKK16, OV14, OPB+12].
Software [OZS+13, OC14, PSS14, PGL+15, PSG+17, PW12, PPM15, PHH+12, PVZ13, PG14, RLLHL12, RNSF+16, Ras17, Rez16, RR14, RdA12, RSR+12, RCN+13b, SM14a, SFG+17, SK15b, SWA13, SRM+17, She12, SCI, SIE15, SJ17, SVLK18, SWB+12, SDMS13, TNYN16, TSC+13, TTL+12, UU12, VMRSH+17, VVV+15b, VAR12, VBV13b, WDVN12, WDI13, WPM+15, WF16, Wei12b, WHK+12, WJJH13, WG14, WCJ+14, XML+15, XYX17, YWJ+16, YZ16, Yes12, Yes15, YHH+13, ZDKM12, ZLL+13, dVAG16, CCC+11, DBF14, EdOdS18, FRC18, HSW+19, MSvG12, MJG+15, SF18, SBV10, SGM+13, Yap11, ZCS+15, She12, SJL18]. softwares
[All11]. solar
[ACS12, DGL+13, JYS+12, LZZ+15a, SL+17, TZ12, VAA14, YJN+11].
Solid [MP19a, RSK+15, ASS10, ASK18, CL16, HLS12, HBI+17, KLN12,
KKH18, LOB18, POB13]. **Solid-state**

[RSK15, HBI17, KLN12, KKH18, LOB18, POB13]. **solids**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BRLS08, BRLS12, EOA11, RVM19, TKT11, YKO11, Yan11]. **solute/solvent**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**

[BK11, HAI16, MDTD13, MS15, dlRL11, Pon11, SN16a]. **Solubility**

[MSY19, KKO16, WZW18]. **solute**
Specific

[CBP+15]. **Sparsity** [HNS16, BYE+16, RR11]. sparsity-exploiting

[BYE+16]. **Sparsity-weighted** [HNS16]. **Spatial**

[PTB+15, HAL+14, MVG12]. **SPC** [GM17]. **SPC/E** [GM17]. **SPC/E-I** [GM17]. **special** [Alg+14, MG11, OSS10, RH+15, SSA+17, TCPCC14, Ts14, VRK+19, WvR+14, ZZ10, ZLY+16].

Specific

[DHF+11, OHNK+11, CIKT13, CCM+15, GCCM+15, HN+19, HY+16, JJZ+14, KR+12, LHO+17, LGL+11, LF+17, MCC+11, MC+12, SSS+15].

spectrality [LJW+11b, LBS+10, ZK+11]. **Spectra**

[PAK+15, TT+18, AMQ+14, BG+17, DCOD+13, EBPK+17b, FD+13, FF+11, GWF+11, GGM+12, GZ+17, HRH+17, KASH+14, Kow+11, LC+12, LX+11, MAK+14, ML+10, MKK+19, NHF+10, PMR+17, PDMT+10, PDR+16, RS17a, RI+17, SGT+10, SB+15, SR+11, TYN+15, TZC+18, TG+12b, Ts14, WGL+12, WW+14].

spectral

[Ano+58, BH+14, HRM+13, KZZ+16, NSO+14, QZM+11, RLG+11, SF+16].

spectrometer [LBB+15]. **Spectroscopic**

[SS+13b, GKh+10, KDB+13, KOp+15b, NC+13, NC+14, TZC+18, Ts14, ZL+10].

spectroscopy [DM+18, HPSK+12, IY+18, KN+18, LLB+12, Lin+18, NC+12, WH+12, FAS+18]. **spectroscopy-oriented** [HPSK+12]. **spectrum**

[BLF+14, KCC+18, MN+19, ML+11, RDF+11, SLL+13, TSC+13, ZD+11].

spectrum-slicing [KCC+18]. **speed** [MSR+18]. **speed** [TO+10, VM+11, YD+17].

speed-up [YD+17]. **speeding** [AO+10]. **spalerite** [SBC+11]. **sphere**

[KT+12, MH+10, Pop+18, TH+13]. **spheres** [HS+16b]. **spherical**

[Ano+58, BH+14, YOB+16]. **spherically** [YOB+15, Yvb+16]. **spheroidal**

[ZWY+10b]. **spider** [Che+17]. **SPILLO** [DVVP+14]. **Spin**

[AT+18, DSM+11, JKS+16, KM+13, MLG+18, TT+18, AB+10, AMQ+14, CSE+16, CSS+17, CSK+16, CAP+17, FAA+15, FD+16, GP+11a, KT+19, KIO+19, KSK+11, KKA+18, LFX+17, MG+11, MCP+18, PLF+18, PS+17, RRK+16, SF+14, SPH+18, SB+16, SH+18b, TN+18, TN+19, VFR+16, VHS+19, YB+11, ZL+14, ZZZ+19, S+19]. **Spin-component-scaled** [KM+13].

spin-coupled [SH+18b]. **Spin-driven** [DSM+11]. **spin-flip** [ZL+14].

spin-forbidden [TN+18]. **Spin-orbit** [AT+18, JKS+16, AMQ+14, FAA+15, FD+16, GP+11a, KT+19, KKA+18, MG+11, MCP+18, PS+17]. **spin-orbital** [ZZZ+19]. **spin-polarized** [SF+14, VHS+19]. **spin-rotation** [KIO+19].

spin-spin [PLF+18, SPH+18]. **spin-symmetry** [TT+19]. **SPINE**

[FZ+12]. **Sinor** [CC+12b, BA+14]. **spins** [ZR+10]. **Spiral** [SK+8]. **Splitting** [Rob+13, EHS+16, FL+19, LL+19, OT+12]. **SPME** [NL+16]. **SPOT**

[YZZ+16]. **SPOT-Ligand** [YZZ+16]. **spots** [HSQ+19]. **Spread** [BE+14].

squaraines [AMQ+14]. **square** [HDL+14, HGW+18, ISK+14]. **squared**

[JMS+13]. **squares** [BCC+10]. **SR** [AR+17, WM+11]. **SR-ZORA**

[AR+17]. **SrO** [BL+12]. **SSC** [LG+11]. **SSThread** [Mau+14]. **ST** [JJW+14].

ST-analyzer [JJW+14]. **STAAR** [JHH+13]. **stabilities**

[BL+13, SIT+18, TFQ+11]. **Stability**

[CS+16, EK+17, GWT+17, Ld+16, Lin+18, OME+16, PP+10, BPP+17, CSS+17,
CFC15, CM16, CB11d, DLT17, DLW12, GPK+16, GC18, Ham11, HLB15, LTR18, LHK512, MC10, MS15, PMG+16, PAT+10, Rab12, SBGP18, SY16a, SPZP18a, TN12, TKCN19, XFTW15, ZRCC11, ZWMW10, ZWW10.
Stabilization [KSR17, BSDP16, DBK17].
Stabilize [KG11].
Stabilized [AHK+19, KASH14].
Stabilizing [MvBD18].
Stable [NPTS16, PBDW11, ZDZM13].
Stacked [ANH+11, HvM12, LDH+14].
Stacking [HvM12, YZZ+17].
Stages [CBP+15].
Standard [DH17, BCJC+14, MKO+13, PNI13, RD18, REL+14, SRR16, VVG13, WHK+12, WGA18].
Standing [TS11].
Staple [SV15].
Star [MA17].
State [CCM15, FHG+19, GS16, MP19a, TT18, Alg17, AR10, ASS10, BS15, BBI+11, CSAdOM17, CH10, LDH+14].
States [GMBM18, AST+16, ANH+11, BSL+16, DHOG13, EFS16, EK17, EVR18, EP15, FAA15, FD16, GO13, GA12, GTK10, HDHL15a, HDHL15b, HDHL15c, JCGVPT17, KKH19, KT19, KKA+18, KPG18, KB14b, LLBO12, LLW12, LWW12, LGC19, LX11, LS11b, LYSS11, LCK+18, MS10, MN15, MGCC19, MH11, MEH18, PBDW11, RHRC16, SRF+17, SSC+19, SOYC12, SMN+19, SB13, SB15, SSZS16, TN10, Tia12, TSN17, VVV+15, XWSW13, YZGS14b, YK13, YLZ+10, YB11, ZXS+10, ZBB16, ZDT18, dLC17].
Static [KBC12, BS10a, KZK+12, Lu11, PC14, PNW+16, PM13, WYT17].
Statistics [Pon10].
Stationary [BHR15, Can10, Can11, LHMM11, SLT14].
Stationary-point [BHR15].
Stationary-wave [Can10, Can11, LHMM11].
Statistical [JHH+13, PZA15, PTB+15, FL15, GZ14, HYMZ16, ICS+12, ICS+13, Kan15, KMLS10, PTK11, RB13a].
Statistically [GR10a, GR11].
Statistics [QZ10c].
Steepest [MS16].
Steepest-descent [MS16].
Steered [Won18, FBEM11, KERY+16, MJC14, NFG+13, SJ17, WTD+19].
Step [AYYO17, DS12b, DGCI4, GRCL12, JWO15, JS17b, KvdV14, LLG10, LG11, LvG13b, Lvg13a, LL10c, RLDJ17, RS12, SJC11, TCP14].
Steps [REH13, Zim13].
Stepwise [DLP11, LZ18, GRCL12, ZL11].
Stereochemical [WCDM11].
Stereochemistry [PPJ14].
Stereochemistry-dependent [PPJ14].
Stereochemistry-stereodynamics [CSNCS+18, IWD13].
Steroelectronic [AS11].
Steroelectroselection [BJS12].
Steric [RMGB11, MJLW14b, MP17a, YNH+17].
Sterically [MH17].
Stern [MBA11].
Steroelectronic [HLBLCCG15].
Stevens [BCJC+14].
Sticks [CVT+11].
stilbene [BW11b]. stk [TBJ18]. Stochastic
[AFPI13, CGP12, AC12, ESD18, KV12, KV13, MS16, MCP18, NC13, PH17, RSLs13, SWB+12, VBD11, ITY+19]. STOCK [BJP15]. stockholder
[FHZA+18], stoichiometric [VI7]. stoichiometry [FSD+18]. Stone
[DWZ+17, YZN13]. stool [FPB12, FB14b, ZCK+16]. storage
[BEM14, BEPM14, DLT17, WKLC12]. Story [Sce07, Sch10]. Strain [DM15, FB12, FC16, FLM11, JWO15, LSL+19, PBE16, She12, SRL+13, VIT+15]. strand [XLY12]. strategies
[AFBR17, BSDP16, cCVG+14, DSX+11, LTT16, Rao11, SC0J13]. strategy
[CLS+10, CZNA11, HJKJ13, KTNN10, KKH18, LLL+10, PHC13, PH17, RVVK13, SRL16, TKNN10, WO15, XHLH16, YDGZ15, SMD18]. StreaMD
[DJS+18]. strength
[Fra15, Fra16, KSC16, LGKS17, MPSG11, YJ17, YHW17]. strengthening
[MS11, LSS11]. strengths [CLK+19, MLC13]. streptavidin
[MLZZ12, ZJZM13]. streptavidin-biotin [MLZZ12]. streptocyanines
[WYT17, XKW18]. stress
[GMBX+16, HXM+16, JMX+16, NIIT15, NFI+16, XFX+16]. stretch
[CK10, RS17b]. stretching [KLS10, KMLS10, TKN19]. string
[BMGF16, JZ17, Zim15]. stringent [DPOS16]. strong
[Kan15, MLZZ12, SDF12, SS19, VVY17, Vik11, ZSLL17]. stronger [KSC16]. Structural
[FHC+19, GLF16, GBL+11, GTT10, GAMAC+14, GWX+12, HS17a, II10, KZK+12, KSD+12, LBTV11, MP19a, NC14, TS11, VSH19, ZWW10, AIGP15, AD10, AKK+16, ALH+10, BBOB16, BPC13, CPV+12, CDS16, CYI+10, DWL11, DH11, GWT+17, GNI18, HS17b, HVS16, KKPT11, KG11, KNE11a, KDT+12, KK13, LLL13a, MCF10, PHC13, PGI15, PNG10, RRR11, RKB+14, RSL16, SFA17, SS13c, TYX+18, VVW+18, WC11, XMSZ16, YV17, ZLW10, ESD18, FAS+18, VPR10]. structurally [TZCK18]. Structure
[BJP15, CBK13, DXL+10, GPK+16, GWJJ12, GBGR16, HLB15, LAHS16, MM19, MHRR11, NC12, NC13, PMG+16, Rab12, SGH+16, VDR14, WZK+13, AFPI13, AR15, AM19, AJR16, AC12, BPPS17, BFH+13, Bds13, CPRS18, CD13, CM13b, Clo15, DKE+17, DKT13, DDP16, DVP14, DGSGVM19, DLW12, EH13, EWK+13, EFD13, FZY+12, FSC+14, GL16, GMSdG15, GRARO+14, GP12, GIK10, GRD+10, GPC16, GBG+19, HASR+12, HNHR13, HS+19, HNYH19, HS14a, HRB+17, HH15, HYMZ16, HZ13, HWL15, Hua16, Ibr17, KTY+17, KKH19, KSM17, KT10, KS12, KKL+13, KLS10, KMLS10, LLBO12, LFB14, LKL10, LHZ+11, LMI+14, LYLX, LPE+10, LGL11, LGI12, LWG12, LLFX16, Mat10, MDT10, Man14, MAP10, MV17, NGAS17, NCT18, OCL11, OLI13, OLA15, PSS14, PdSc18, PML+12, PN13, RL14, RCM+13b, RR11, SHM011, SB10, SM11, SLP+12]. structure [SLIB12, SRS14, SYN+12, SKGB13, SPZP18a, SPZP18b, Tac19, TN12, TTB+11, TG12b, UNT16, VVP12, VHR16, VVBL17, VAA14, VBMA13, VC10, VI17, VLGK+17, WO15, WRM+12, WSG11, YW12, YZZ16, ZRCC11, ZHHX11, CPR18, FDCJ18, OSF12, SA10]. structure-
structure-activity [DXL+10]. Structure-based [CGBK13, DXL+10, DVVP14, GLB16, VKC10, YZZ16]. structured [GEP+14].

Structures [DLT17, SNS16, AHK+19, BHNS14, BPM15, Ber17, CL16, CCOH14, CV12, DVVP14, DH14, DLT18b, DT19, DZA11, GS12, GSS13, HSY+11, HTS17, HPL+18, HS12, Hua16, IYK11, KNE11a, KOY+12, KTO11, KTO13, KDT+12, KSW16, LABSG17, uLhY11, LHZ+10, LLSW14, LüC14, MCA14, MCA15, MCA16, MCA19, MCB10, MCF10, MD10, MC10, MCT10, MCG10, MG15, MCG16, MH11, MH13, MH16, MHN15, MHR11, MBRC16, MO17, Mor15, MIS+15, NHR+10, NH19, NGAS17, NASH15, NC12, NC13, NC14, NS18, NJX+10, NFI+16, OPR16, ORZ11, OSS10, OSH17, OME16, OOK11, PVL+13, PGCT+12, PP10, PGC12, PGS+15, PH12, PG18, PAK17, PPH+14, QLYL10, QZ10b, RSI7a, RAGL11, RA+11, Ray13, RS13, RS14, RVCFF13, RSLML12, RKG11, RSKG14, SN16a, SS+13, SGD10, SJ14, SCM+15, SRF+17, SSC+19, SWM10].

Studies [Ish10, KRTB10, OLY17, RHPWS13, RI10, TS15b].
Kop17a, Kop17b, Kop18, LLH14, LL13a, LYC+13, LWZ+17, MK13b, MAK+14, MB14, MOS12, NW17, OKIS17, OHPR17, OHPR18, PZA15, SRSLO15, SH14, SBC+11, SLG15, SLLL13, SIG+15, TSR+16, WXL+12, WXL17, WBF17, XFX+16, XCLZ19, YPvD13, Yan14, ZLT13, ZKE+17, MK11].

Switching [GA19, AB16b, KOP+14, LCH10]. symmetric [HOM+16, KZK+12, LPS12, RSSG18]. symmetries [GR10b]. Symmetrization [MSK+10, MSK+12]. Symmetrizer [LPS12]. Symmetry [CA10, EP15, VV+15a, BV14, CWZB10, DZA11, Dry14, FF11, HB14, KTT16, KC13b, NDD+10, PZBA13, Sch13, TTN19, VGT16, YKH15, vS18, EB18, XKW18]. symmetry-adapted [FF11, YKH15]. symmetry-invariant [CWZB10]. synchronicity [dSVdM+16]. synthase [AALCM11, EvRC+18, SYH12, XLYZ10]. synthase-catalyzed [XLYZ10]. synthesis [QQY+18, YZL18, ZZWT12]. synthetase [LBS10]. synthetic [SBGP18]. synthons [LZSM19]. syringe [WZ+10]. system [BEEL14, BTT10, BCCO10, CS14, CJSZ10, GRS15, HSY+11, HKNH18, HDM+15, IMSR18, KNK+18, LL11, LYL16, LZY12b, MO18, MLZ12, NTNY15, NS15, RHT+15, SZBM13, TL16, VBDS+11, WLF11, XCLZ19]. Systematic [GP11b, KT18, ML14, SDIP18, SA13, SCMA+17, UT15, VLK+17, AIGP15, BEL+11, FM10, IY18, Ish12, LG11, MAMF19, Pet11, STS15, VLV17, WG12, RFHG10]. Systems [RMM16, AST+16, AKP14, BV14, BGL+18, BVY+12, BK13, BBG+18b, BG13, CCR18, CSS17, CEBO15, CKL+11, CLK11, CAP17, EP12, GG10, Gar12, GP12, GA19, GBW+14, GR10b, GWZX12, HS11, HCD+10, HH18, Hm16, ITIN15, JSX16, JS17b, KV12, KZP+18b, KGM12, KL18, LBGS16, LCPS13, LPLA13, MSC+10, MG14, MOS12, MS12, NYN17, NC10, NLL19, NFG+13, NO16, NNK+16, NS17, ODB18, OPB+12, OC14, PAK17, PAT+10, PBBP11, PD12, QLKI19, RJPB12, RVCFF13, SSO19, SCOJ13, Sch12, Se10, SKGP19, SEJ+18, SH18b, SWB+12, SG13, SMM17, TS16, TCX+13, UT15, WCY+11, WWU12, WS11, YCK16, ZSB+11, ZFS18, ZT14, Hm17, SZL19].

T [BBI+11, CSGOA17, Gil11, MSPC19, MLCD11, OPR16, SRR16, XKW18, YY17, BBG+11, BH13, CGBK13, HLS+13, Sch13]. T-cell [CGBK13]. Table [Ano16-115, Ano16-121, Ano16-122, Ano16-123, Ano16-124, Ano16-125, Ano16-126, Ano16-127, Ano16-128, Ano16-116, Ano16-117, Ano16-118,
Ano16-119, Ano16-120, Sce07, Sch10, AAC+16, Fom11, JMS13, MGS+16. tables [BDdS13, LZ12]. TaBoo [HTS15]. tabu [GBSE11].
TANGO [GKJ+19]. tar [HCD+10]. tar-MD [HCD+10]. target [FMG12]. TargetATPsite [YHH+13]. targets [AFBR17, BK13, MPBJ11]. Task
TD [HL19, TS15b, CCB15, CH10, EFAC13, HRJ+14, HRJ+15, HL19, JRSH14, KKL+13, KP10, LZL+10, LZHH11, LSH+11, LYSS11, RDF+11, SRF+17, SCF+19].
TD-DFT [CCB15, CH10, EFAC13, HRJ+15, HL19, JRSH14, KKL+13, KP10, LZHH11, LXZ+10, LYSS11, RDF+11, SRF+17, SCF+19].
TD-DFT- [LSh+11]. TD-HF-based [LSh+11]. TDDFT [SFCCK+15, CMF+17, LRBB12, MS11, QCR12, SFCCK+14]. Te
[AM19, PLFS18, SPS+12, HSJ18]. technique [AMGB10, BG17, LZL+13, SMM17, TSR+16, TTn19]. techniques [BCP+10, BCG10, GVP+10, MCP18, RD18, SDF+17, SPL+18, SY11, WBN+13].
tellurium [RRK16, ZWGO16]. Temperature
[HS17b, KKO+16, LPE+10, LLTC12, PBE16, SY16b, SMM+18, CH16, DKT13, DLSD13, KCK+17, LI11, MK17, MKK+19, OGL10, TLDG+12, TM16, VED10, WMW11, WWTL19, YW12, OCW+15]. Temperature-shuffled
[HS17b]. temperature/Hamiltonian [KCK+17]. temperatures [NMLD13, RHNN10]. tempering [GC18, LAW+16, MO15, MO17, NPTS16, TKT11]. Template
[Mau14, GLF16, KCK+17, ME10, YHH+13]. Template-free [Mau14, YHH+13]. template-restrained [KCK+17]. tension [NPFD13].
tensor [CPZ19, Elk16, EWK+13, GMBX+16, HXM+16, JMX+16, KK17a, NFPD13, NIIT15, NFI+16, TKC+11, XFX+16, YAO18]. tensors
[EPD+11, PHK14]. tepidum [KPG18]. terahertz [KB16]. term [DSF17, JBSQG11]. terminal [IMK+16, YXZZ17]. terminally-
[KLS10, KMLS10]. terminally-blocked [KLS10, KMLS10]. terms [BAS14, CZA11, CWZB10, RRH12]. ternary [RDT14]. tertiary
[OPR16, SM11]. tessellation [MOS12]. Test
[PHC13, BS10b, DPOS16, Wnn18]. tested [HM10]. Testing
[Gill11, IM18, MPSA17, RLD12, JGS+17]. tests
[Ano15-59, CNK97, ENKK+17]. tethered [CZNA11]. tetra [WDLG12].
tetraamines [SB10]. tetracarboxylates [CRC13]. tetracoordinate
[XhD15, ZYW+16, ZLY+16]. tetroalene [ABDGN12]. tetragonal [LKZM18]. Tetrahedral [LBC+19]. tetramer [ish10]. tetramers
[EyL16, SZSZ16]. Tetraoxide [JW12, SLHW09]. tetraprotonated [ZWA+10b]. tetraradical
[CS14, YSSB12]. tetrasaccharide [NP17]. tetraethylvaline [MCF10].
Tetrazine [JW12, MCAG+16, SLHW09]. Tetrazino [JW12, SLHW09]. Tetrazino-Tetrazine-Tetraoxide [JW12, SLHW09]. Tetrel [YKH15].
tetroxide [MCAG+16]. text [HKRS11, HS11]. text-based [HKRS11, HS11]. TF [XMSZ16]. TGMin [CZL19]. Th [MCK17a]. ThCl [LCL+18]. them [ARRC15, Ano11, AM19, BSG18a, CBTZ16, CFC15, CB11a, DLT17, DSM+11, GPM17, HJ13, JMLL13, JHMB+09, JHMB+11, KG15, KNE11a, KRSC12, NYH+17, SBR13, TN12, Tak11, TY10, TS11, VVJ15, VVY17, VVL17, XDL+10, ZYW+10a, GMBM18]. them [WCWV15]. theoretical [CRZ+18, MCC12, ZLW10].

Theoretical [AvKLSP16, AMAA+11, AWF+18, AHK+19, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, FWS+18, GYX+10, GLZ17, GLM+17, HW19, HDHL15c, JW12, KCB+12, KSO+19, KS13b, LCL+10, LWL+11, LLW12, LZY+12a, Lin18, LWXC16, LXFC17, LD18, LJG+11, MLQ+12, MSV16, NFI+16, OSS10, OAN15b, PKK17, PM13, PE11, RS17b, SB10, SMiN+19, SKY+11, STS+10, SZZS16, SLC+17, SGHL13, TDP+12, Tsui19, WMM11, WHDL11, WSL+11, XBSS19, YJN+11, YPC+10, YHG+11, YCGA10, YYT12, YDGZ15, ZYW+10a, ZZL+10b, ZZL+10a, ZYLL12, ZLLL12, ZSZ+14, ZYG+15, ZBMMH15, dSdLB18, BLS10, BAD+19, BE16, CHZ12, CKL+11, CBTZ16, EV14, GG10, HDB15, HGHP14, LWL12, LLD17, LZW+11, LCL+18, MRC+18, MPSG11, MKK+19, NHF+10, NJX+10, PH12, PdSc18, PsPE+10, Pog10, PH10b, RZG+13, RVCFF13, RVP+11, RVCFF13, RVP+11, SSP+13, SSC+19, SD11, SLHW09, SKTT11, SGH+16, Tak11, TL16].

theoretical [UCRL18, WSH10, WZQW10, YK13, YZWC11, YZN13, YB11, Zha12b, dSAdSL13, HDHL15a, HDHL15b, KZK+12, TDP+12].

Theoretically [LLX+19]. theories [OM12, WCWV15]. Theory [CKH19, EVR18, GNC+18, IUK+11, LLX+19, MP19a, SXZ13a, SXZ13b, WM12, AMK11, ALK+15, AR10, Ali18, ARAG17, ABDGN12, AG12, ASS10, BY11, BLCB+13, BZB+13, BG13, CHG+16, CRZ+18, CSAdOM17, CWHH11, CKH17, CCM15, CF14, CC11, DAP+18, DCHL12, FRSA14, FD16, GHL, GZL+12, GQ15, GIY10, GNGCA10, GND+12, GA18, EGEN1, GP12, Han11, HPT17, HII+13, HNN+17, HRJ+14, HRJ+15, HG10, ISN13, IKN13, IM17, JRSH14, JLH+14, JW16, JYS+12, KHBW17, KLN12, KM13, LCW12, LBG16, LCL+10, LLH17, LPM17, MCC11, MMH19, MAK+14, MJH+11, ME10, NPG+18, NMLD13, NO16, Niz13, ORZ11, OZLSB12, PAK17, PML+12, PPH+14, Piel4, Pyy13, QZ10b, QZ10c, QH16, RAGLL11, RJPB12, RCM+13a, RML+15, RB12, RSLML12, RHPWS13, RNS19, Rui11, SM4a, SFG+17, SHL+18, SCW11, SSSM15, SHF11].

therapeutic [AFBR17]. therapy [ZZ12]. there [MLGB16, Sie18]. Thermal [LL10c, ASL+11, BIL10, NGAS17, OZLSBH12, VVW+18]. thermally [FWS+18, IHY15]. thermostabilizing [MLGB16, Sie18]. Thermal [TFQ+11, KSM16, TN12, WD12]. thermochemistry [HDH12]. Thermochromatium [KPG18]. Thermodynamic [LL10c, ASL+11, BIL10, NGAS17, OZLSBH12, VVW+18]. thermally [FWS+18, IHY15]. thermostabilizing [MLGB16, Sie18]. Thermodynamics [DS12a, RS12, BRE16, DMJ17, EHSPT16, HRC13, Kan15, WRM+12, ZYL+12]. thermoelectric [KLZ+18, NGAS17, YW12]. Thermodynamic [EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13]. Thermodynamic [EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13]. Thermodynamic [EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13]. Thermodynamic [EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13]. Thermodynamic [EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13]. Thermodynamic [EOO+16, NSK18, PAT+10, BE12, BPE16, BB11b, BB11c, CBH14, CC18a, EBPK17b, HDL+17, Hug12, MMB+17, PGY15, PBE16, RNSF+16, RRF11, RKB+14, SS13c, SJC11, SJ16, WC11, dRBO13].
transition-metal [LDZW17].

transitions [AKK+16, BD11, DH11, HS17b, NB18, SPZ18a].

transmembrane [DSF17, LMI+14, LAW+16, WXL+12].

transmission [LLJ12].

transphosphorylation [WXY14].

Transport [DJX+11a, AWF+18, CWHH11, CBTZ16, DMN14, DMN15, DJX+11b, HLWD15, LHO17, LJR+12, NSK18, NS17, PGY15, RJBH18, RSSG18, SLIB12, SY16b, TCX+13, ZYG+15].

transportation [LZY+12a].

trapped [DM15, VIT+15, WLW+10].

treat [CJPTC18].

Treating [JLCA17, SMP17a].

Treatment [HSH15, CSGOA17, GPK12, Has14, HGHP14, MG14, NS10, Sch12, SSWX14, SJL18].

tree [JCPC11].

treecodes [BK13].

trees [AGR11b, RDRC16].

Trends [CXS10, PH15, RLA18, dSdLBNB17].

tri [ZP13].

tri-N-acetyl- [ZP13].

triaxial [YY10].

triangular [TS11].

triangularly [LWZK13].

triangles [She12].

triangularly [LWZK13].

triangulenes [GSMM15].

triarylamine [KGR+16].

triazine [WDLG12].

triazines [YPC+10].

triazol [ZZWT12].

triazole [NS10].

triazoles [GKR13, Ray13, RKG11].

trichlorostannate [PKK17].

tricyclic [VSD10].

Triel [Jab18b, Gra18, YKH15].

triene [ABDGN12].

triethylgermanium [WHX+10].

triflate [SV11].

trifluoroethanol [ARA11b, RDRC16].

Trifluoroethanol/water [JA10].

trifluoroethanol [JA10].

trifluoromethane [CLC11].

trifurcation [LLD17].

trigger [SB18].

triggered [DADGR15, TTC+18].

triggering [AN011, GAV12, GRD+10, HMB+09, JHM+11].

trihalide [Gra18].

trihydride [PM13].

triiodide [VVMY18].

trimer [THP+15, YCGA10].

Trimeric [PMT16, RCM+13a, RML+15].

trimetallic [GLF16].

trimethylsilyl [BIL10].

trinitrotoluene [SH14].

tripeptide [BH15, GMO16, MHO18].

tripeptide-water [MHO18].

triphenyl [AS18].

triphenylamine [MSV16].

triple [ACD+13a, ACD+13b, LOB18, LES19, POB13].

triplet [RS17a, SSC+19, THP+15, ZZL19].

triplets [EK15].

triphosphorylamine [LL10c].

tris [KPL15].

trivial [UK+11].

tRNA [LBS10].

tropocollagen [PP10].

tropolone [DL19].

Trotter [VKAM12].

Trp [EJ13].

Trp-Glu [EJ13].

TRREAT [CM13a].

truncated [CME11].

truncated-CI [CME11].

truncation [ACD+13a, ACD+13b, CS14, IMSR18, MC12].

trust [PLAG11].

trying [BRGN12].

trypanothione [VSD10].

tryptophan [EOA+11, LM18b, PS14, SHB17, VMTL10].

Tsaltis [ZQ10c].

tsscds2018 [RRFV+18].

TTTO [JW12, SLHW09].

tuberculosis [MPNS13].

tuberculosi [MPNS13].

tubular [uLhY11, ZY+16, YLZ+19].

tularensis g [STM+15].

tumor [JAH+17].

tuned [Ali18, BK17b, HZSS17, LCK+18, SZS16].
[CZAF17, MRO17, ER18, SPL+18, DPNM11]. Updated
[SvK18, BCJC+14]. Updates
[AIGP15, Aki16, APK14, AAC+16, BTA+13, BHB12, BCSCJ+13, BSZ+12, Ber17, BJPI15, BFH+13, BBG+18b, CBH14, CSEMB+16, CZAF17, CAT+13, DMIN15, DJD12, DVPI14, DBDP16, DDK14, DWC17, DSK17, ESB13, EWK+13, FN12, FSC+14, GMSdG15, Gar12, GJMAMP+14, GLW13b, GS12, GCP+13, GCC14, GBW+14, GH16b, HLS+13, HRB+17, HDH12, HPT+16b, HPSK12, HHT+13b, HH16b, HG13, HYZM16, HKR+14, HBJ+17, HL14, HC14, IGK16, JHH+13, JJW+14, JLA17, JP15, JCGM18, KS13a, KS15, KK17a, Kan15, KB16, KDR+18, KLJ+17, KJM+17, KDT+12, Kos16, KG13, KWL+16, KK17b, KG15, KYG+15, KAG+12, KSW16, KPF+15, LPS12, LJ+12, LSH12, Lsh15, LrvdSM15, LrvE17, LDB+17, LLZA12, LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MTD16, MBR+15, MYT18, MSSP17, MB14, MB16, NKJ16, OVI14, OPB+12, OZS+13, OC14]. Updates
[PSS14, PGL+15, PSG+17, PW12, PPM15, PHH+12, PVZ13, PG14, RLLHL12, RNSF+16, Ras17, Rez16, RR14, RdA12, RSR+12, RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sic15, SJ17, SWB+12, SDMS13, TNYN16, TSC+13, TTR+12, TNL+12, UU12, VMRS+17, VVV+15b, VAR12, VB113b, WdVN12, WdY13, WPM+15, WF16, Wei12b, WHK+12, WHJH13, WG14, WJC+14, XML+15, XYX17, YWJ+16, YZ16, Yes12, Yes15, YHH+13, ZDKM12, ZLL+13, dVAG16, KKR+13, SR18].

Uroporphyrinogen-III [BEL+11]. Use
[DCOD13, GPM17, HCD+10, MPA12, MMZ14, NPTS16, NC14, NDD+10, QS19, RLD12, WM17, Yes12, BCP+10, CKH19, SJL18]. used
[PGY15, Pie14, PLAG11, TH13]. useful [SMGB11]. usefulness [SP15].

[BS15, Car14, DLL+10, HH10, HPSK12, LLvG10, LG14, MGCC19, MSPC19, MP11, NZM18, QLQ11, SK17, TNG+10, WF16, AASP18, AG11, AS18, ABS+19, AGM+13, AC12, BW11b, BMR11, BDTP11, BSD18, BB11a, CCR18, CVT+11, CAP17, CSSB11, DK19, DWL11, DBK17, DFF+15, DJS+18, DCHL12, DLZ15, ESD18, EWK+13, FF11, FRC18, FLM11, FZL+19, FL15, Gar12, GRS15, GFPSD17, GMO16, GZM11, GRL+11, GRL+12, GMBX+16, GTZ+18, HASR+12, HNS16, HNy19, HLW+17, HDL+17, HH17, Höf14, HBL12, HYUS11, HJKJ13, HZSS17, HHWL17, HLEM18, Hug14, HH+17, Ish10, IHJ+13, JLH+14, JMS13, KV13, Kan15, KSO+19, KERY+16, KT10, KLOS10, KGJZ19, KTN10, KP11, LBGS16, LPK16, LRvdSM15, LZ12, LCH10, LCL+10, LMR14, LGH11, LTA+11, LBDP12,
using [MKM+17, MCUJ15, MVKS10, MKB+13, MFR+17, MIOM13, MMJ10, MS15, NPG+18, NLP+16, Nav18, NASH15, NHN16, OHPR18, OCW+15, PGdO+16, PC11, PG15, Pie14, PJ13, RB13a, RD18, RLDJ17, RDDS10, RHJ11, RVM19, RS13, RRK14, Ric16, REL17, REV+17, Rui11, RFHG10, REH13, SHMO11, SSO19, SFM14, SDF+17, SBV10, SA13, SCW11, SEF+16, SHL19, SS19, SRL+11, SKKS13, SB18, SY11, SRS14, SH19, SZZS16, STS15, TYZ+16, TYX+18, Tak14, TKNN10, Tsi17, Ttn19, TJB12, UTC11, VAM12, VECD12, VdV12, WdVN12, WLC12, WZ17, WJX+10, WDHZ13, XTY+14, XYX17, XWW+11, YYJ+16, Yon16, YN15, YDX16, YFF+19, ZWFX11, ZL11, ZLT13, ZWX19, ZWS+10, ZP13, ZH12, ZZZ+19, ZHXX11, dLC17, AIM+18, JCHT18, LHL+10]. utility [YHVM12].

utilizing [BVY+12, BP18]. UV [GGM+12, KASH14, RDF+11, RVdMB16]. UV-photoexcitation [RVdMB16]. UV/Vis [GGM+12].

validation [GMMH+16, HLEM18, PFVL14, WMW+10, ZSTI14, GMG+10, HM13]. validity [LP11b, PdSC18]. value [Les19, SG10a, YLS19].

MK13b, Tac17, WZ19, YHX19]. vibration-rotation [GK10, Kop15a, Kop16, Kop17a, Kop17b, Kop18, MK13b].

vibration-vibration [YHX19]. Vibrational [DB12, LCW12, QZM11, ARLP13, BZB+13, CJPTC18, DOM+11, DHF+11, DT19, EB18, HYD10, IV18, KKA+18, KCPMG12, Kow11, KKH18, LBH+11, LLTC12, LBTVC12, LS11b, MCF10, MAK+14, MN19, RLA+11, RRK16, SS13a, SSWX14, SST+18, TZCK18, VVW+18, WX12, XSZL11, dSaSA+13, WHK+12].

vibrational-rotational [MN19]. vibrationally [YHX19].

Vis [GGR+12]. viscoelastic [YSG12]. viscosity [BBI+11, GM17]. VISM [ZCS+15]. visualization [CVT+11, HH16b, TKC+11, TEDT18, You10].

W4 [KSM17]. **W-4-17** [KSM17]. **Waals** [BLF14, BB11a, BC13, CR14, DS12b, DSF17, FZL\(^+\)19, KBC12, KCK\(^+\)15, KGHK12, KLN12, LCH\(^+\)15, SMGB11, SLIB12, SJZ\(^+\)15, SYZ\(^+\)17, Tan19, YZZ\(^+\)17, ZY14]. **Wales** [DWZ\(^+\)17, YZN13]. **walk** [CY09, CY13]. **Walking** [CH16]. **wall** [BE14, Den12, FTR15, KGJZ19, MSY19, TSR\(^+\)16]. **walled** [AS15a, PBE16, RHNN10, VS14, WYL\(^+\)15, YZN13]. **Wang**
[Ano12u, JW12, SA11]. Water [DBGO+17, HvM17, LWL+16, MCUJ15, RBOH11, UNT16, ZLX+13, AASP18, AIGP15, AOW11, AF14, BSD18, BRLS08, BRLS12, CYH+17, CZHI12, CXW14, CCOH14, DDP16, DAG19, DCL18b, FZL+19, GH17, GM17, HH10, HTY19, HvM16, Hug12, IUK+11, JCP14, JIS13, JA10, KUDG12, KGHK12, KB13, KPH+19, KJ10, KSR+16, LH11, LK13, LPLS16, LP11b, LRL+16, LCM+14, LJJ+11, LAW+16, MC10, MHO18, MKH15, MJM+15, MHRR11, NC12, NC13, OSS10, PAK15, PD11, PM18b, QQY+18, RTS+13, RZ16, Ric16, RRF11, RSB+13, SBGP18, SG10b, SNS16, SC18a, SISK10, SMP17a, SY16b, SV11, SIG+15, SM17, Tac17, TM16, TKYN17, TG12a, TL16, US11, VMTL10, Vor12, WC13, WCWV15, WG12, YDR13, YZ17, YZLZ18, ZCK+16, Zha12b, SGP18].

water-fluoride [NC12].
water-halide [NC13].
water-vapor [SISK10].

WC1LYP [DOM+11]. weak [JJJ16, KSSH13]. weakening [LYSS11]. weakly [WL14]. weaving [Che17]. web [Che17, MdOdQ18, WPM+15, Gar12, JW+14, LP11a, LJR+12, MdOdQ18, UHH+11, XYX17].

X [ATP18, ASS+17, CPR18, CXS10, EPH+15, GPK+16, LDJ+10, LLL+11,
REFERENCES

LZJ+11, Li14a, Li14b, LGW12, LCWW10, LWD13, PMG+16, SPS+12, SZBM13, SLIB12, TFQ+11, YS13, ZYLL12, ZLLL12, BSF18, FZY+12, FLM11, JJJ16, Kop15b, LLBO12, LHSH12, LZL+15b, LCWW10, MKK+19, PDG+16, SKY+11, WWD14, XML+15, XhD15, ZLLL12, LX11. X-

[SKY+11]. X-Ray

References

Anderson:2018:GSZ

Achazi:2017:CSS

Abbaspour:2018:MDS

Abolfath:2010:DBR

Arthur:2016:EIC

Arthur:2016:PIG

Antoniotti:2012:GPR

Paola Antoniotti, Elena Bottizzo, Stefano Borocci, Maria Giordani, and Felice Grandinetti. Gas-phase reactions of SiH$_n^+$

Mark J. Abraham. Performance enhancements for GROMACS nonbonded interactions on BlueGene. Journal of Comput-
REFERENCES

Arrar:2019:AEF

Anisimov:2011:QMB

Avaltroni:2011:ICL

Avaltroni:2012:ICL

Adhikari:2013:EST

Adhikari:2013:STE

Asaduzzaman:2012:RBD

Affentranger:2010:PFC

Aquilante:2010:MNG

Anacker:2014:NAB

Allen:2017:CND

Addicoat:2013:SSD

Anand:2016:HBA

Abraham:2011:OPM

Antony:2012:FIP

Anthopoulos:2013:GAM

Araki:2018:IAP

Artemova:2016:AMS

Aono:2010:PTP

Akimov:2016:SNU

Alekseenko:2016:SGI

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Alipour:2018:DMM

Aidas:2015:AAP

Allouche:2011:GGU

AlQuraishi:2019:PNE

Aleksandrov:2018:CPD

Ai:2010:IBF

[ALW+10] Chunzhi Ai, Yan Li, Yonghua Wang, Wei Li, Peipei Dong, Guangbo Ge, and Ling Yang. Investigation of binding features: Effects on the interaction between CYP2A6 and in-

REFERENCES

REFERENCES

Anonymous:2012:CIIb

Anonymous:2012:CIIc

Anonymous:2012:CIId

Anonymous:2012:CIIe

Anonymous:2012:CIIf

Anonymous:2012:CIIg

Anonymous:2012:CIIh
REFERENCES

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIq

Anonymous:2013:CIIr

Anonymous:2013:CIIi

Anonymous:2013:CIIb

Anonymous:2013:CIIc

Anonymous:2013:CIIu

Anonymous:2013:CIIv

REFERENCES

144

Anonymous:2013:CIIc

Anonymous:2013:CIId

Anonymous:2013:CIIe

Anonymous:2013:CIIf

Anonymous:2013:CIIg

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIh

Anonymous:2013:CIIi

Anonymous:2013:CIVa

Anonymous:2013:CIVj

Anonymous:2013:CIVk

Anonymous:2013:CIVl

Anonymous:2013:CIVm

Anonymous:2013:CIVn

Anonymous:2013:CIVO

Anonymous:2013:CIVp

Anonymous:2013:CIVq

Anonymous:2013:CIVr

Anonymous:2013:CIVs

Anonymous:2013:CIVb

Anonymous:2013:CIVt

Anonymous:2013:CIVu

Anonymous:2013:CIVv

Anonymous:2013:CIVw

Anonymous:2013:CIVx

Anonymous:2013:CIVy

Anonymous:2013:CIVz

Anonymous:2013:CIVaa

REFERENCES

Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2014:CII

Anonymous:2014:CIVa

Anonymous:2014:CIVb

Anonymous:2014:CIVx

Anonymous:2014:CIVz

Anonymous:2014:CIVaa

Anonymous:2014:CIVab

REFERENCES

Anonymous:2014:CIVac

Anonymous:2014:CIVad

Anonymous:2014:CIVae

Anonymous:2014:CIVah

Anonymous:2014:CIVai

Anonymous:2014:CIVaj
Anonymous:2014:CIVak

Anonymous:2014:CIVam

Anonymous:2014:CIVan

Anonymous:2014:CIVap

Anonymous:2014:CIVAq

Anonymous:2014:CIVar

Anonymous:2014:CIVas

Anonymous:2014:CIVc

Anonymous:2014:CIVd

Anonymous:2014:CIVat

Anonymous:2014:CIVau

Anonymous:2014:CIVav

REFERENCES

Anonymous:2014:CIVaw

Anonymous:2014:CIVax

Anonymous:2014:CIVay

Anonymous:2014:CIVaz

Anonymous:2014:CIVaac
REFERENCES

Anonymous:2014:CIVaad

Anonymous:2014:CIVaaf

Anonymous:2014:CIVaai

Anonymous:2014:CIVaaj

Anonymous:2014:CIVaam

Anonymous:2014:CIVf

Anonymous:2014:CIVaap

Anonymous:2014:CIVaaq

Anonymous:2014:CIVaar

Anonymous:2014:CIVaas

Anonymous:2014:CIVg

Anonymous:2014:CIVh

Anonymous:2014:CIVi

REFERENCES

Anonymous:2014:CIVq

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt

Anonymous:2014:CIVu

Anonymous:2014:CIVv

Anonymous:2014:CIVw

Anonymous:2015:CIVa
REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

 Anonymous:2015:CIVo

 Anonymous:2015:CIVp

 Anonymous:2015:CIVq

 Anonymous:2015:CIVr

 Anonymous:2015:CIVs

 Anonymous:2015:CIVt

 Anonymous:2015:ECS

REFERENCES

Anonymous:2016:CIVaf

Anonymous:2016:CIVag

Anonymous:2016:CIVah

Anonymous:2016:CIVai

Anonymous:2016:CIVaj

Anonymous:2016:CIVd

Anonymous:2016:CIVe

Anonymous:2016:CIVak

Anonymous:2016:CIVal

Anonymous:2016:CIVam

Anonymous:2016:CIVan

Anonymous:2016:CIVao

Anonymous:2016:CIVap

Anonymous:2016:CIVAq

Anonymous:2016:CIVar

Anonymous:2016:CIVas

Anonymous:2016:CIVat

Anonymous:2016:CIVau

Anonymous:2016:CIVav

Anonymous:2016:CIVaw

Anonymous:2016:CIVax

Anonymous:2016:CIVay

Anonymous:2016:CIVaz

Anonymous:2016:CIVf

Anonymous:2016:CIVg

Anonymous:2016:CIVaaa

Anonymous:2016:CIVaab

Anonymous:2016:CIVaac

Anonymous:2016:CIVh

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

Anonymous:2016:IIc

Anonymous:2016:IId

Anonymous:2016:IIf

Anonymous:2016:IIf

Anonymous:2016:IIg

Anonymous:2016:IIh

Anonymous:2016:IIi

Anonymous:2016:IIj

Anonymous:2016:II

Anonymous:2016:IIm

Anonymous:2016:IIn

Anonymous:2016:IIo

Anonymous:2016:IIp

Anonymous:2016:IIq

Anonymous:2016:IIr

Anonymous:2016:IIt

REFERENCES

Anonymous:2016:IICa

Anonymous:2016:IICs

Anonymous:2016:IICu

Anonymous:2016:IICw

Anonymous:2016:IICy

Anonymous:2016:IICaa

Anonymous:2016:IICc

Anonymous:2016:IICf

Anonymous:2016:IICh

Anonymous:2016:IICj

Anonymous:2016:IICl

Anonymous:2016:IICn

Anonymous:2016:IICp

Anonymous:2016:IICr

Anonymous:2016:IIEj

Anonymous:2016:IIEk

Anonymous:2016:IIEl

Anonymous:2016:IIEm

Anonymous:2016:IIEn

Anonymous:2016:IIEb

Anonymous:2016:IIEc

Anonymous:2016:IIEd

Anonymous:2016:IIEf

Anonymous:2016:IIEg

Anonymous:2016:IIEh

Anonymous:2016:IIEi

Anonymous:2016:IITa

Anonymous:2016:IITj

REFERENCES

Anonymous:2016:IITk

Anonymous:2016:IITl

Anonymous:2016:IITm

Anonymous:2016:IITn

Anonymous:2016:IITb

Anonymous:2016:IITc

Anonymous:2016:IITd

Anonymous:2016:IITf

Anonymous:2016:IITg

Anonymous:2016:IITh

Anonymous:2016:IITi

Anonymous:2016:IIEa

Anonymous:2016:IIEe

Anonymous:2017:CIVa

Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:CIVl

Anonymous:2017:CIVm

Anonymous:2017:CIVn

Anonymous:2017:CIVo

Anonymous:2017:CIVp

Anonymous:2017:CIVq

Anonymous:2017:CIVr

Anonymous:2017:CIVs

Anonymous:2017:CIVt

Anonymous:2017:CIVu

Anonymous:2017:CIVb

Anonymous:2017:CIVv

Anonymous:2017:CIVw
Anonymous:2017:CIVx

Anonymous:2017:CIVy

Anonymous:2017:CIVz

Anonymous:2017:CIVaa

Anonymous:2017:CIVab

Anonymous:2017:CIVac

Anonymous:2017:CIVad

Anonymous:2017:CIVae

Anonymous:2017:CIVc

Anonymous:2017:CIVaf

Anonymous:2017:CIVag

Anonymous:2017:CIVah

Anonymous:2017:CIVd

Anonymous:2017:CIVe

REFERENCES

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:CIVi

Anonymous:2017:E

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IIId

Anonymous:2017:IIe

Anonymous:2017:IIf

Anonymous:2017:IIg

Anonymous:2017:IIh

Anonymous:2017:IIi

Anonymous:2017:IIj

Anonymous:2017:IIk

Anonymous:2017:IIl

Anonymous:2017:IIm

Anonymous:2017:IIn

Anonymous:2017:IIo

Anonymous:2017:IIp

Anonymous:2017:IIq

Anonymous:2017:IIr

Anonymous:2017:IIs

REFERENCES

REFERENCES

Anonymous:2017:IIab

Anonymous:2017:IIac

Anonymous:2017:IIad

Anonymous:2017:IIae

Anonymous:2017:IIaf

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVk

Anonymous:2018:CIV1

Anonymous:2018:CIVm

Anonymous:2018:CIVn

Anonymous:2018:CIVo

Anonymous:2018:CIVp

Anonymous:2018:CIVq

Anonymous:2018:CIVr

Anonymous:2018:CIVs

REFERENCES

Anonymous:2018:CIVaa

Anonymous:2018:CIVab

Anonymous:2018:CIVac

Anonymous:2018:CIVad

Anonymous:2018:CIVae

Anonymous:2018:CIVaf

Anonymous:2018:CIVag

REFERENCES

Anonymous:2018:CIVah

Anonymous:2018:CIVai

Anonymous:2018:CIVd

Anonymous:2018:CIVaj

Anonymous:2018:CIVak

Anonymous:2018:CIVal

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:CIVg

Anonymous:2018:CIVh

Anonymous:2018:CIVi

Anonymous:2018:CIVj

Anonymous:2018:IIa

Anonymous:2018:IIb

Anonymous:2018:IIc
REFERENCES

Anonymous:2018:IIi

Anonymous:2018:IIi

Anonymous:2018:IIi

Anonymous:2018:IIi

Anonymous:2018:IIi

Anonymous:2018:IIi

Anonymous:2018:IIi

Anonymous:2018:IIi

REFERENCES

Anonymous:2018:IIab

Anonymous:2018:IIac

Anonymous:2018:IIad

Anonymous:2018:IIae

Anonymous:2019:CIVa

Anonymous:2019:CIVj

Anonymous:2019:CIVk

Anonymous:2019:CIVl

Anonymous:2019:CIVm

Anonymous:2019:CIVb

Anonymous:2019:CIVc

Anonymous:2019:CIVd

Anonymous:2019:CIVe

Anonymous:2019:CIVf

Anonymous:2019:CIVg

REFERENCES

Anonymous:2019:IIg

Anonymous:2019:IIh

Anonymous:2019:IIi

Anonymous:2019:IIj

Anonymous:2019:IIk

Anonymous:2019:IIl

Anonymous:2019:IIm

Antol:2013:PPN

Anandakrishnan:2010:ABN

Aoun:2016:FRB

Akin-Ojo:2011:QBN

Arfeen:2014:ICC

Allen:2014:SNU

Arifin:2016:GTH

Arifin, Maneeporn Puripat, Daisuke Yokogawa, Vudhichai Parasuk, and Stephan Irle. Glucose transformation to 5-

Ali:2010:RCR

Anjos:2015:TAE

Anderson:2017:RSZ

Avramopoulos:2013:VLN

Alaniz:2015:AHI

Aleksandrov:2010:MMM

Ajitha:2011:RSF

Andersson:2014:PHE

Akbarzadeh:2015:HAA

Antila:2015:CTI

Anjali:2018:PRP

Bai Amutha Anjali and Cherumuttathu H. Suresh. Predicting reduction potentials of 1,3,6-triphenyl fulvenes using molecular electrostatic potential analysis of substituent effects. *Journal of Computational Chemistry*, 39(15):881–888,
Azadi:2018:NQE

Alaghemandi:2011:CBT

Ansbacher:2010:CDM

Assadollahzadeh:2010:EPS

Amaouch:2017:BPH

Abramyan:2016:CAM

Alvarez-Thon:2018:SOE

Alvarez-Thon:2018:IGP

Alkorta:2018:IQA

Avdoshenko:2018:FFC

Acke:2018:IBN

Achazi:2016:TEI

An:2018:TIC

Andoh:2017:EAP

Burger:2011:EPP

Bachler:2012:QCC

Borrás-Almenar:2010:MPC

J. J. Borrás-Almenar, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. V. Pali, and B. S. Tsukerblat. MV-PACK: a package to calculate energy levels and magnetic

REFERENCES

[BBG+18b] Anna Bronova, Thomas Bredow, Robert Glaum, Mark J. Riley, and Werner Urland. Software news and updates: Bonn-

Baldovi:2014:LEU

Bartolomei:2011:LRI

Borghini:2010:CRP

Baldovi:2013:SNU

Brice:2011:ARM

REFERENCES

Boschitsch:2012:FNS

Brasil:2013:MEA

Bauer:2011:MDS

Bandura:2012:FPC

Bandura:2014:TZS

Bruckner:2016:TDC

[BE16] Charlotte Brückner and Bernd Engels. A theoretical description of charge reorganization energies in molecular organic P-

REFERENCES

Wouter Boomsma, Jes Frellsen, Tim Harder, Sandro Bottaro, Kristoffer E. Johannson, Pengfei Tian, Kasper Støvgaard, Christian Andreetta, Simon Olsson, Jan B. Valentin,

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[Baranov:2011:ELD]

[Boateng:2013:CTC]

[Banushkina:2015:FSA]

[Bazzoli:2017:SHB]

[Borpuzari:2017:NNT]

[Bykov:2017:GED]

REFERENCES

Bilbrey:2013:ELC

Balde:2011:ASC

Buenker:2012:ISP

Baranowska-Laczkowska:2013:PLR

Beker:2013:LCP

REFERENCES

REFERENCES

Baranowska-Laczkowska:2013:OBS

Baranowska:2010:MSO

Buenker:2013:ABO

Barbault:2012:IPB

Bhatia:2013:EDT

Borstnik:2011:DDF

[BMBJ11] Urban Borštnik, Benjamin T. Miller, Bernard R. Brooks, and Dušanka Janežič. The distributed diagonal force decom-

Bozkaya:2018:AEG

Bohme:2018:RDM

Bordogna:2011:PAP

Borkar:2013:HBC

Bandura:2016:AZF

Bartolomei:2012:FDG

Massimiliano Bartolomei, Fernando Pirani, Antonio Laganà, and Andrea Lombardi. A full dimensional grid empowered

REFERENCES

Blomberg:2016:IFE

Boese:2016:AAE

Buchholz:2018:ALE

Bejagam:2018:DNB

Borthakur:2016:TST

Bauza:2018:MEP
Antonio Bauzá, Saikat Kumar Seth, and Antonio Frontera. Molecular electrostatic potential and “atoms-in-molecules” analyses of the interplay between π-hole and lone pair···π / X–H···π/metal···π interactions. *Journal of Computational

References

Bertran:2010:IDN

Beruski:2014:ACD

Bultinck:2013:BFI

Bellafont:2017:PCL

Biswas:2012:SMS

Baker:2011:EPA

[BW11a] Jon Baker and Krzysztof Wolinski. An efficient parallel algorithm for the calculation of unrestricted canonical MP2 ener-
REFERENCES

Brabec:2016:RCS

Bulik:2013:PDF

Brovarets:2014:DTL

Casanova:2010:SME

Chong:2016:ISC

REFERENCES

Casanova:2013:EIR

Casanova:2014:HMT

Chilton:2013:SNU

Courcot:2011:MIB

Courcot:2011:OMMa

Courcot:2011:OMMb

Blandine Courcot and Adam J. Bridgeman. Optimization of a molecular mechanics force field for type-II polyoxometalates focussing on electrostatic interactions: a case study.
REFERENCES

Cardone:2015:DCN

Chen:2016:HSC

Chuang:2011:IBS

Chakraborty:2012:VNL

Chys:2012:SPC

Chakraborty:2018:CIT

Debdutta Chakraborty and Pratim Kumar Chattaraj. Confinement induced thermodynamic and kinetic facilitation of

REFERENCES

[CCOH14] Hsin-Lin Chiang, Chun-Jung Chen, Hisashi Okumura, and Chin-Kun Hu. Transformation between α-helix and β-sheet
structures of one and two polyglutamine peptides in explicit water molecules by replica-exchange molecular dynamics sim-
1437, July 15, 2014. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

[CCR18] Roberto Cammi, Bo Chen, and Martin Rahm. Analytical cal-
culation of pressure for confined atomic and molecular systems
using the eXtreme-Pressure Polarizable Continuum Model. *Journal of Computational Chemistry*, 39(26):2243–2250, Oc-
tober 5, 2018. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

[cCVG+14] Cheng chau Chiu, Georgi N. Vayssilov, Alexander Genest,
Armando Borgna, and Notker Rösch. Predicting adsorption
enthalpies on silicalite and HZSM-5: a benchmark study on
CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[CCW+10] Trevor Cickovski, Santanu Chatterjee, Jacob Wenger,
Christopher R. Sweet, and Jesús A. Izaguirre. MDLab:
a molecular dynamics simulation prototyping environment.
Journal of Computational Chemistry, 31(7):1345–1356, May
2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X
(electronic).

[CCYL11] Shih-Hau Chiu, Chien-Chi Chen, Gwo-Fang Yuan, and Thy-
Hou Lin. Deriving the phylogenetic information from some physicochemical properties of protein sequences computed.
Journal of Computational Chemistry, 32(1):70–80, January
15, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-
987X (electronic).

on multiple hydrogen-bond formation in models of self-
assembling materials. *Journal of Computational Chemistry,

Valentina Cantatore, Giovanni Granucci, and Maurizio Persico. Stochastic model for photoinduced anisotropy. *Journal...

Chiba:2012:EPL

Chiba:2012:EEP

Chu:2010:QMQ

Chang:2013:PSF

Chen:2013:PPD

Clemente-Juan:2018:VPT

[CJPTC18] Juan M. Clemente-Juan, Andrew Palii, Boris Tsukerblat, and Eugenio Coronado. VIBPACK: a package to treat multidi-

Condic-Jurkic:2010:CQM

Campen:2010:IES

Cvitkovic:2017:DME

Cummins:2018:RMC

Chan:2017:CFS

REFERENCES

Dong-Sheng Cao, Yi-Zeng Liang, Qing-Song Xu, Hong-Dong Li, and Xian Chen. A new strategy of outlier detection for QSAR/QSPR. *Journal of Computational Chemistry*, 31(3):
Campana:2013:TMP

Chitsaz:2013:GHR

Cukrowski:2016:IQF

Cendic:2013:MMC

Calzado:2011:HBS

Campetella:2017:CTE

Calborean:2018:CMP

Comba:2013:EFC

Christ:2010:BIF

Csonka:1997:STD

Cohen:2018:EPP

[CPR18] Francesco Caruso, Sarah Paumier, and Miriam Rossi. X-ray Crystal Structure of Embelin and Its DFT Scavenging of Su-

REFERENCES

Chan:2016:POC

Cukrowski:2016:SCT

Coutinho:2018:KOH

Cardona-Serra:2017:IDI

Collignon:2011:TPM

REFERENCES

2011. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[CWT+12] Qi Cao, Jing Wang, Zhao-Shuo Tian, Zai-Feng Xie, and Fu-Quan Bai. Theoretical investigation on the photophysical properties of N-heterocyclic carbene iridium (III) complexes \((\text{fpmb})_x \text{Ir(bptz)}_{3-x} \ (x = 1–2)\). Journal of Computational Chemistry, 33(10):1038–1046, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[CXD+19] Cheng-Xing Cui, Dongdong Xu, Bo-Wen Ding, Ling-Bo Qu, Yu-Ping Zhang, and Yu Lan. Benchmark study of popular

Christodouleas:2010:TBE

Chen:2014:MRQ

Chen:2009:PRW

Chen:2013:EPR

Chen:2015:FFD

Chintapalli:2010:CLF

Cao:2017:MII

Cheron:2017:SNU

Chandra:2012:TII

Curco:2011:SSA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
</tr>
</thead>
</table>
Dutra:2014:LLL

Deshmukh:2011:IHB

Diaz:2017:END

Dickson:2017:OAS

Demichelis:2015:FPM

DiTommaso:2017:TAP
Stefania Di Tommaso, Diane Bousquet, Delphine Moulin, Frédéric Baltenneck, Priscilla Riva, Hervé David, Aziz Fadli, Jérôme Gomar, Ilaria Ciofini, and Carlo Adamo. Theoretical

Freija De Vleeschouwer, Mats Denayer, Balazs Pinter, Paul Geerlings, and Frank De Proft. Characterization of chalcogen bonding interactions via an in-depth conceptual quantum

REFERENCES

Dhingra:2013:HIH

Delgado-Jaime:2012:SNU

Dombrowsky:2018:SAA

Ding:2011:TPG

Ding:2011:FSE

DeSilva:2011:EPS

Dahy:2019:IHU

Dahanayake:2017:EES

Daido:2013:NQE

Dauzhenka:2018:CFE

Elena I. Davydova, Anna S. Lisovenko, and Alexey Y. Timoshkin. Complex beryllium amidoboranes: Structures, stability, and evaluation of their potential as hydrogen storage

deLange:2018:FBC

deLange:2018:FBD

Du:2012:ESP

Duan:2015:UBI

Dolgonos:2015:SNS

Dittner:2015:EGO

DelGaldo:2018:TAS

DasGupta:2017:CAF

DeBiase:2014:MSD

DeBiase:2015:SNU

REFERENCES

REFERENCES

Denning:2011:IHS

Druart:2016:PLB

Deb:2016:RTL

Du:2016:HPC

DaSilva:2011:CHB

REFERENCES

Dash:2015:GGS

dosSantos:2013:PAF

DeJong:2011:DEC

daSilva:2010:DSF

daSilva:2017:TSS

Jing-Shuang Dang, Wei-Wei Wang, Jia-Jia Zheng, Shigeru Nagase, and Xiang Zhao. Formation of Stone–Wales edge:
REFERENCES

Evarestov:2013:BBN

Evarestov:2017:FPM

Evarestov:2017:PSE

Erba:2017:NRE

Eller:2015:CAE

Elias:2018:MIS

REFERENCES

El-Hamdi:2016:CAB

Eisenberg:2013:RTG

Eilmes:2015:SIT

Ehlert:2017:QBS

Ekesan:2014:TPE

Elking:2016:TAF

Dennis M. Elking. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization. *Journal of Computational Chemistry*, 37
REFERENCES

Esser:2017:AFP

ElKhoury:2017:IES

Eriksen:2011:CPP

Erlebach:2016:TCA

Eastman:2010:ENI

Peter Eastman and Vijay S. Pande. Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. *Journal of Computational Chemistry*, 31(6):1268–1272,
April 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Erba:2012:EEM

Evarestov:2015:SCE

Elking:2010:AFG

Elking:2011:FFM

ElHage:2013:CAM

Christopher R. Ellis, Cheng-Chieh Tsai, Fang-Yu Lin, and Jana Shen. Conformational dynamics of cathepsin D and

Eskandari:2014:HHI

Eidi:2018:CVF

Escorcia:2018:MDS

Epifanovsky:2013:SNU

Fredin:2018:SCI

[FA18] Lisa A. Fredin and Thomas C. Allison. Semiempirical configuration interaction calculations for ru-centered dyes*. *Jour-
Farhat:2015:ICG

Farley:2018:SMN

Ferro:2010:AQC

Fernandez:2012:AER

Fernandez:2014:OER

Futura:2014:RMR

Zdeněk Futera and Jaroslav V. Burda. Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM

Forti:2011:CCI

Fonseca:2018:CFP

Felberg:2017:POS

Fernandez:2016:IBA

Frishberg:2018:CSE

Francisco:2017:MAI

Ferrari:2010:IPS

Fogolari:2015:AAL

Fan:2010:NDB

Ferro-Costas:2012:QBE

REFERENCES

REFERENCES

Fukuda:2014:EPS

Ferreira:2017:TCP

Feldkamp:2010:CDN

Ferenczy:2013:CWFb

Ferenczy:2013:CWFa
REFERENCES

[298]

Ferguson:2017:BBA

Farrokhpour:2011:TSV

Fracchia:2014:MLQ

Fedichev:2011:CEM

Fumanal:2019:ESR

Fujimoto:2012:POE

Hirofumi Fujimoto, Mariko Higuchi, Manabu Koike, Hirotaka Ode, Miroslav Pinak, Juraj Kotulic Bunta, Toshiyuki

Fenley:2015:FCP

Fihey:2015:SDP

Fink:2011:PCA

Fias:2018:RFS

Fuhrer:2015:IPR

Timothy J. Fuhrer and Angel M. Lambert. Isolated pentagon rule violating endohedral metallofullerences explained using the Hückel rule: a statistical mechanical study of the

REFERENCES

REFERENCES

Fernandes:2015:QSL

Farahani:2014:RTS

Fu:2014:SNU

Furmanchuk:2018:PSC

Fought:2017:STE

[Feng:2013:MGM]

[Fan:2015:DDS]

[Fu:2019:CDZ]

[Faraggi:2012:SXI]

[Glushkov:2012:OCM]

Glushkov:2014:MSF

Grabarek:2018:IES

Gordeev:2019:SNC

Galano:2013:CMA

Galano:2014:KRM

Gruden:2017:BDF

[GAJ+17] Maja Gruden, Ljubica Andjeklović, Akkarapattiakal Kuriappan Jissy, Stepan Stepanović, Matija Zlatar, Qiang Cui, and

Grimme:2011:EDF

Gresh:2014:PMM

Goldstein:2011:NHA

Godey:2018:EGT

Ghasemi:2017:RDS

Galvez:2010:TST

Gotze:2012:BHN

Georgieva:2010:QCM

Gross:2016:LED

Gross:2016:SNU

Gao:2012:AFE

REFERENCES

Ghosh:2013:EFP

Gagnon:2016:FCD

Gan:2016:SIR

Gillet:2017:TER

Glendening:2013:ENN

Glendening:2013:SNU

[GLW13b] Eric D. Glendening, Clark R. Landis, and Frank Weinhold. Software news and updates: NBO 6.0: Natural bond or-
 REFERENCES

Gao:2017:TSC

Ghazouani:2017:SCV

Galindo-Murillo:2016:MDM

Gatti:2018:EDS

Guo:2016:DQT

Garay:2014:FAC

Gfeller:2012:EMM

Galabov:2018:HEH

Gonzalez-Navarrete:2012:EFD

Gonzalez-Navarrete:2010:DFT

[GNI18] Moein Goodarzi, Fariba Nazari, and Francesc Illas. Electronic and structural properties of Li$_n$@Be$_2$B$_8$ (n = 1-14) and Li$_n$@Be$_2$B$_{36}$ (n = 1-21) nanoflakes shed light on possible anode materials for Li-based batteries. *Journal of Computational Chemistry*, 39(22):1795–1805, August 15, 2018. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[GREA11] Pablo García-Risueño, Pablo Echenique, and J. L. Alonso. Exact and efficient calculation of Lagrange multipliers in bio-

[GS16] Raimondas Galvelis and Yuji Sugita. The following articles were published in past issues of the *Journal of Computational Chemistry*. Replica state exchange metadynamics for improving the convergence of free energy estimates. *Journal of Compu-
putational Chemistry, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[GWZX12] Weping Guo, Anan Wu, Igor Ying Zhang, and Xin Xu. XO: an extended ONIOM method for accurate and efficient model-

Gong:2010:IMS

Guan:2012:KHA

Gao:2010:TSG

Grinter:2014:BSA

Gan:2010:NFH

Gao:2012:MRN

[GZL+12] Jie Ying Gao, Cheng Hua Zhang, Mei Ming Luo, Chan Kyung Kim, Wei Chu, and Ying Xue. Mechanism for the reaction of

[**Grosdidier:2011:FDU**]

[**Guo:2012:ICS**]

[**Gao:2016:CSG**]

[**Hahn:2010:IRE**]

[**Holmes:2016:ABV**]

Heinen:2014:HAE

Hamacher:2011:EIQI

Hanke:2011:SAU

Hofinger:2012:GAC

Hassan:2014:ITS

Hacene:2012:AVE

REFERENCES

Heit:2014:ESG

Hochheim:2015:AIC

Holmes:2017:CSS

Hsu:2017:SNU

Holt:2010:NPI

Hughes:2015:RSA

Heinz:2015:TSI

Hellweg:2012:SNU

Huang:2015:ETAAa

Huang:2015:ETAb

Huang:2015:TAE

REFERENCES

[Hofmann2014TFF] Franziska D. Hofmann, Michael Devereux, Andreas Pfaltz, and Markus Meuwly. Toward force fields for atomistic simu-

Heinz:2010:CSB

Heinen:2018:CPP

Hellweg:2013:HCK

Huhn:2017:IES

Hernandez-Esparza:2014:GBA

Hess:2012:FPK

Holland:2010:EEC

Homeyer:2013:SNU

Holguin-Gallego:2016:ECI

Hoffmann:2014:IID

Hu:2018:WLS

Dan Hu, Xiaoping Guan, and Yukun Wang. Weighted least square analysis method for free energy calculations. *Journal
REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [HHT+13b].

REFERENCES

REFERENCES

Huang:2019:ITD

Hintze:2015:SSS

Hernandez-Lima:2015:RIC

Huang:2018:MDS

Horta:2012:RIP

Han:2012:CMB

He:2013:SNU

Herbers:2013:RGC

Harger:2017:TOA

Huang:2015:ESM

Huang:2017:IIV

[HLXH17] Chao Huang, Wenjian Liu, Yunlong Xiao, and Mark R. Hoffmann. iVI: an iterative vector interaction method for large
REFERENCES

REFERENCES

He:2013:MPB

Heffernan:2018:SSB

Hinsen:2012:SNU

Heggen:2016:CUH

Hermann:2016:SNU

REFERENCES

REFERENCES

Huang:2011:CSR

Hernandez-Rodriguez:2013:EDD

Hahnke:2011:PASb

Helmich:2012:SRM

Harris:2014:ISB

Hu:2014:SCM

Hagras:2016:ETP

Harris:2016:PEE

Harada:2017:SDS

Harada:2017:TSP

Heyndrickx:2011:PSB

Hanscam:2019:SSA

Rebecca Hanscam, Eric M. Shepard, Joan B. Broderick, Valérie Copié, and Robert K. Szilagyi. Secondary structure
REFERENCES

REFERENCES

[Hua16] Bolong Huang. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. Journal of Computational Chemistry, 37(9):825–835, April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[HvM16] Simon W. L. Hogan and Tanja van Mourik. Competition between hydrogen and halogen bonding in halogenated 1-

REFERENCES

Hori:2011:FEP

Hao:2013:CGB

Han:2011:NQD

Huang:2013:NSD

Hu:2017:PES

He:2010:GRP

[HZY†10] Ping-An He, Yan-Ping Zhang, Yu-Hua Yao, Yi-Fa Tang, and Xu-Ying Nan. The graphical representation of protein se-

[Ishikura:2015:EEN] Takakazu Ishikura, Yuki Iwata, Tatsuro Hatano, and Takahisa Yamato. Energy exchange network of inter-residue interac-

Imamura:2013:LCO

Iliff:2011:POA

Ishizuka:2017:ECI

Iida:2016:VFE

Ignjatovic:2018:CMG

REFERENCES

Ishikawa:2013:XOA

Imada:2018:DFS

Itoh:2013:CRE

Itoh:2013:HRP

Izanloo:2011:DDD

REFERENCES

Illingworth:2010:CBS

Ikabata:2015:LRD

Iioka:2019:KSL

Ikebe:2011:TTT

Inakollu:2018:SBC

Inagaki:2011:PCE

[135x681]364

Jalili:2010:MDS

Jablonski:2014:RBS

Jablonski:2018:BPB

Jablonski:2018:HTB

Jia:2017:EMI

Jayasinghe-Arachchige:2019:HCD

Janesko:2016:TAE

Jacob:2011:DAP

Jaramillo-Botero:2011:LSL

Jia:2016:NHR

Ji:2010:KMH

Jing:2011:GMM

Jurinovich:2018:SNU

Jara-Cortes:2017:CBE

Jara-Cortes:2018:EAC
Jesús Jara-Cortés and Jesús Hernández-Trujillo. Energetic Analysis of Conjugated Hydrocarbons Using the Interacting

[Jo:2017:RCG]

[Jahangiri:2014:PDF]

[Jaillet:2011:RTC]

[Jiang:2010:INA]

[Jorge:2017:PHSa]

Jenkins:2013:SNU

Jimenez-Halla:2009:TAT

Jimenez-Halla:2011:ETA

Jakobtorweihen:2013:CCM

Jiao:2016:CCS

[Jin:2013:CPR]

[Joy:2016:CXZ]

[Jeong:2014:SNU]

[Jankowska:2016:SOZ]

[Jia:2017:SNU]
Jiang:2014:SCH

Jia:2010:CSM

Johnson:2018:CAT

Jadraque:2011:CTP

Jambeck:2013:PAC

Jung:2013:ELT

Jerbi:2017:CSR

Jung:2017:MPM

Jo:2011:GRA

Jerabek:2019:DES

Jiang:2010:SRP

Jin:2016:SCF

[JXSW15] Wen-Xin Ji, Wei Xu, W. H. Eugen Schwarz, and Shu-Guang Wang. Ionic bonding of lanthanides, as influenced by d- and

Jin:2016:HAT

Jungsuttiwong:2012:ECS

Ji:2012:EIP

Jafari:2017:RER

Johnston:2017:SDA

[JZL+17] Travis Johnston, Boyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. In situ data analytics and indexing of protein trajectories. *Journal of Computational Chemistry*, 38

Kawamura:2014:QCA

Kang:2010:ADF

Knight:2011:AEI

Knight:2011:SIS

Konig:2011:NBS

Kazaryan:2013:ADF

REFERENCES

Kurnosov:2014:EIP

Kopitz:2012:ISR

Kalita:2010:ACO

Klamt:2018:RCC

Kessler:2013:PVS

Kholod:2018:SNU

[KDR+18] Yana Kholod, Michael DeFilippo, Brittany Reed, Danielle Valdez, Grant Gillan, and Dmytro Kosenkov. Software news

Kumar:2017:CBD

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Source</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Konc:2012:SNU

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Source</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Khanjari:2017:ANB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Source</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Kingsley:2016:RPP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Source</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Kobayashi:2018:AEC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Source</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Kaukonen:2012:LJP

Kong:2019:IDM

Kramer:2012:AME

Kaupp:2016:ETP

Kimura:2019:CSE

Kobayashi:2017:SNU

Kaliman:2017:SNU

Krause:2017:SNU

Kroeger:2019:CFM

Kondo:2018:AER

Kuenzer:2018:PVC

Kaledin:2019:EST

Kornobis:2013:ESS

Katouda:2011:TLH

Klimenko:2016:NEA

Karagiannis:2011:DFS

Kerber:2013:SNU

Kingsley:2014:ILI

Kim:2017:SNU

Kendrick:2012:EVW

Kozlowska:2010:DSCb

Kawakami:2019:DCC

Katouda:2017:MOH

Kim:2011:DDB

Kneller:2011:CFD

Gerald R. Kneller. Comment on “Fast determination of the optimal rotational matrix for macromolecular superpositions”

Katouda:2016:MPA

Kjaer:2012:NMR

Kramer:2018:ECO

Karamanis:2014:SNO

Koput:2015:IGS

Koput:2015:ISC

Koput:2016:IPE

Koput:2017:IPEa

Koput:2017:IPEb

Koput:2018:IPE

Kosenkov:2016:SNU

Kowal:2011:IMG

Kim:2012:SHM

Kumar:2010:IEC

Kozlowski:2011:NIQ

Kutzner:2015:SNU

[Carsten Kutzner, Szilárd Páll, Martin Fechner, Ansgar Esztermann, Bert L. de Groot, and Helmut Grubmüller. Software news and updates: Best bang for your buck: GPU nodes]

Kozlov:2018:CES

Khanh:2019:ICB

Kim:2013:PEO

Kim:2015:PRP

Kim:2012:MSD

REFERENCES

[KSH13] Rahul Kar, Jong-Won Song, and Kimihiko Hirao. Long-range corrected functionals satisfy Koopmans’ theorem: Calculation

Kawashima:2019:TIR

Koster:2016:AAI

Krausbeck:2017:SAF

Kar:2013:LRCb

Kuttel:2016:SNU

Klesiek:2010:RSS

Kefalidis:2012:DSM

Kowsari:2018:SER

Kamiya:2019:ISH

Kirkpatrick:2017:ECI

Koyano:2010:OSS

[O] Yoshiyuki Koyano, Norio Takenaka, Yukinori Nakagawa, and Masataka Nagaoka. An optimum strategy for solution chemistry using semi-empirical molecular orbital method. II. Primary importance of reproducing electrostatic interaction in
REFERENCES

Kokubo:2010:IPP
Kokubo:2011:IPP
Kokubo:2013:TDR
Klenin:2011:DMS
Kanematsu:2016:IUE
Kashmirian:2012:MDE

Karimi-Varzaneh:2011:IMD

Kritayakornupong:2010:IQM

Kubar:2015:SNU

Kratz:2016:SNU

Knight:2013:AQA

REFERENCES

Krajniak:2018:CGM

Krajniak:2018:RMM

Keceli:2016:SIP

Labonte:2017:RCM

Lii:2016:CMM

Larin:2011:PAM

[Lar11] Alexander V. Larin. Point atomic multipole moments for simulation of electrostatic potential and field in all-siliceous zeo-

Lv:2016:CEH

March 5, 2016. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Laury:2011:HVF

Lopes:2010:CDP

Lingam:2011:SEB

Lingam:2012:DFS

Lai:2010:CSC

REFERENCES

[LCL+18] Jian-Biao Liu, Xin Chen, Jun-Bo Lu, Hong-Qiang Cui, and Jun Li. Polarizable force field parameterization and theoretical simulations of ThCl\(_4\) -LiCl molten salts. *Journal of Com-
REFERENCES

REFERENCES

Li:2016:SFC

Liang:2017:PRP

Lage-Estebanez:2017:RER

Lehtola:2015:SNU

Lesiuk:2019:ESV

Law:2014:PFE

Sean M. Law, Aaron T. Frank, and Charles L. Brooks III. PCASSO: a fast and efficient \(\alpha \)-based method for accurately assigning protein secondary structure elements. *Journal of
REFERENCES

REFERENCES

REFERENCES

Li:2011:REBa

Lin:2011:SSO

Latek:2011:CNN

Lee:2013:DSC

Lousada:2016:SCO

Li:2011:TIG

Lee:2013:IMD

Liu:2013:EFA

Lai:2015:ICD

Lopes:2019:AAM

Li:2012:FP1

82–87, January 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Laref:2012:ESX

Li:2010:EPF

Lin:2017:NDC

Lin:2017:TID

Liu:2016:ISV

Lii:2011:APE

[LLH11] Jenn-Huei Lii, Fu-Xing Liao, and Ching-Han Hu. Accurate prediction of the enthalpies of formation for xantho-

[Le:2014:SIK]

[Liu:2017:AFD]

[Lakkaraju:2016:DIA]

[Logsdail:2012:DON]

[Li:2010:NSI]

REFERENCES

[LLX+19] Yan Ying Liang, Bo Li, Xuan Xu, Feng Long Gu, and Chaoyuan Zhu. A density functional theory study on nonlinear optical properties of double cage excess electron compounds: Theoretically design M [Cu(Ag)@(NH_3)$_n$] ($M = \text{Be, Mg and Ca; } n = 1–3$). *Journal of Computational Chemistry*, 40(9):971–979, April 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[LLZA12] Chuan Li, Lin Li, Jie Zhang, and Emil Alexov. Software news and updates: Highly efficient and exact method for paral-

Lemkul:2018:PFF

Lopez:2018:PMC

Long:2015:GGA

Li:2014:MUS

Limpanuparb:2014:RCO

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Date</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Lasinski:2012:RPI

Lopez:2013:IPE

Lemkul:2015:SNU

Lervik:2017:SNU

Lara:2018:PCM

Launay:2011:LDS

Liu:2011:EGS

Lei:2010:NIM

Liu:2011:ATD

Laloo:2019:EFA

Liao:2013:CQO

[Liu:2014:OAC]

[Long:2011:CSU]

[Liu:2011:IMO]

[Li:2018:MSF]

[Lamiable:2016:CAH]

REFERENCES

REFERENCES

Liu:2010:APE

Li:2011:TSP

Li:2016:RBB

Li:2012:VRE

Liu:2012:TIS

REFERENCES

[LX11] Sen Lin and Daiqian Xie. New ab initio potential energy surfaces for both the ground (\(\tilde{X}^1\text{A}\')) and excited (\(\tilde{A}^1\text{A}\'\)) electronic states of HSiCl and the absorption and emission spectra of HSiCl/DSiCl. *Journal of Computational Chemistry*, 32(8):1694–1702, June 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[LXFC17] Xiang-Yang Liu, Pin Xiao, Wei-Hai Fang, and Ganglong Cui. Theoretical studies of spin state-specific \([2 + 2]\) and \([5 + 2]\)

REFERENCES

Bogdan Lev, Rui Zhang, Aurélien de la Lande, Dennis Salahub, and Sergei Yu Noskov. The QM–MM interface for
REFERENCES

REFERENCES

Li:2010:TDS

Liu:2013:FN

Li:2015:CQM

Li:2015:CH

Liu:2016:MIM

Liu:2013:ADI

Liu:2016:KCG

Liu:2017:APL

Liu:2019:PHS

Larin:2010:IEB

Liu:2011:CTT

Hongmei Liu, Zhenzhen Zhao, Nan Wang, Cui Yu, and Jianwei Zhao. Can the transition from tunneling to hopping in

Li:2016:NAC

Li:2012:TIT

Liu:2012:DEI

Legenski:2011:FFM

Liang:2014:LHA

Martinez-Araya:2016:GOF

Mezey:2017:ASP

Michaud-Agrawal:2011:MTA

Matanovic:2014:ADF

Mironov:2019:SSM

Manz:2013:LEC

Mitchell:2018:DFT

Mehdi:2010:ESR

Matta:2010:HDM

Matta:2014:MBB

Matta:2018:QCI

Chérif F. Matta. Quantum crystallography: From the intersection to the union of crystallography and quantum mechanics. *Journal of Computational Chemistry*, 39(17):1019–1020,

Masella:2011:CPF

Masella:2013:MCG

Mohamed:2016:ESF

Mondal:2015:DEO

Menendez:2015:OEI

Martinez:2015:SNU

[MBR⁺15] Michael Martinez, Neil J. Bruce, Julia Romanowska, Daria B. Kokh, Musa Ozboyaci, Xiaofeng Yu, Mehmet Ali Öztürk, Stefan Richter, and Rebecca C. Wade. Software news and

Moreira:2016:QMC

Maciejewski:2014:DCD

Mandado:2010:SMA

Mahapatra:2012:DPS

Mendoza-Cortes:2016:PCP

REFERENCES

Ma:2011:IDP

Modesto-Costa:2015:WSE

Ma:2013:FES

Martins:2018:WQW

Maupetit:2010:FML

Maintz:2013:APP

Maintz:2016:SNU

Miljacic:2010:RTA

Morrison:2018:DBH

Mezei:2010:SSF

Miao:2015:AMD

Miao:2016:FAW

[MFEM16] Yinglong Miao, Ferran Feixas, Changsun Eun, and J. Andrew McCammon. The following articles were published in past issues of the *Journal of Computational Chemistry*: Accelerated molecular dynamics simulations of protein folding. *Journal
REFERENCES

Melia:2012:CSH

Moreira:2010:PPD

Mollenhauer:2011:AQC

Morao:2017:RAA

Micera:2011:SOC

Hajime Muta and Noriaki Hirayama. Alpha sphere filter method: Application of pseudomolecular descriptors in vir-

Minh:2018:PTI

Morishita:2013:FRF

Muhammad:2015:HDH

Mitin:2013:PFM

Maingi:2012:DBT

REFERENCES

[MKB+13] Benjamin L. Moore, Lawrence A. Kelley, James Barber, James W. Murray, and James T. MacDonald. High-quality protein backbone reconstruction from alpha carbons using Gaussian mixture models. *Journal of Computational Chem-
Makowski:2010:DEC

Merlot:2013:AEE

Middendorf:2015:SSB

Muller:2019:IFT

Miyashita:2017:FFC

Matsui:2013:CSC

Marais:2012:ECM

Mirzoev:2014:SIS

Mohammed:2013:FOF

Mok:2011:FCS

Macetti:2018:SDA

Giovanni Macetti, Leonardo Lo Presti, and Carlo Gatti. Spin density accuracy and distribution in azido Cu(II) complexes:

[MLZZ12] Ye Mei, Yong L. Li, Juan Zeng, and John Z. H. Zhang. Electrostatic polarization is critical for the strong binding in streptavidin-biotin system. *Journal of Computational Chemi-
Massa:2018:QCP

Maley:2019:IMS

Masetti:2017:DMM

Malpathak:2019:AIU

Muller:2010:CCR

Mamonov:2016:FGB

Artem B. Mamonov, Mohammad Moghadasi, Hanieh Mirzaei, Shahrooz Zarbafian, Laurie E. Grove, Tanggis Bohnuud, Pirooz Vakili, Ioannis Ch. Paschalidis, Sandor Vajda, and

Maekawa:2016:RIO

Mirijanian:2014:DUA

Martinez-Nunez:2015:AMF

Miyahara:2019:PSN

Murata:2010:LSE
Murata:2010:SSD

Mori:2015:STB

Mori:2017:CCU

Morpurgo:2015:DSC

Morokuma:2019:F

Mori:2012:ALS

March 5, 2019. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Marques:2010:GCL

Marques:2012:UBB

Mukherjee:2011:FEG

Minovski:2013:CBM

Michael:2017:SMN

Mahanta:2011:ISP

Miriyala:2017:DNC

Mandado:2014:AER

Macchi:2018:ETE

Meisner:2011:KIE

REFERENCES

Muller:2015:CSN

Mignon:2016:CTS

Mahajan:2017:JBP

Mishra:2012:CPM

Matta:2016:BMR

Marsili:2010:OMD

Malolepsza:2010:SAC

Malolepsza:2012:ESA

Maciejczyk:2010:CGM

Mielczarek:2019:GPE

Mahajan:2019:MCG

Matsuzaki:2019:ENF

Maeda:2014:ETS

Matsumoto:2019:ACC

Meier:2012:EVF

Mena-Ulecia:2018:SAB

[MUGNVJ+18] Karel Mena-Ulecia, Fabian Gonzalez-Norambuena, Ariela Vergara-Jaque, Horacio Poblete, William Tiznado, and Julio
REFERENCES

Mohammadiarani:2017:IMP

Myburgh:2018:CEC

Mohan:2010:CAN

Mo:2019:E

Miao:2011:DFT

REFERECEs

REFERENCES

Ninno:2018:RSG

Nemeth:2010:CIC

Noel:2010:USI

Nieto:2014:BNM

Neumann:2013:MDM

Neumann:2015:MMA

[NDW15] Tobias Neumann, Denis Danilov, and Wolfgang Wenzel. Multiparticle moves in acceptance rate optimized Monte

Noy:2010:FPP

Namsani:2017:IPS

Nakatani:2019:CLA

Najeh:2010:ETS

Nowosielski:2013:MTC

[NMF+14] Anita K. Nivedha, Spandana Makeneni, Bethany Lachele Foley, Matthew B. Tessier, and Robert J. Woods. Importance of

[Ng:2013:RCC] Maggie Ng, Daniel K. W. Mok, Edmond P. F. Lee, and John M. Dyke. Rate coefficients of the \(\text{CF}_3\text{CHFCF}_3 + H \rightarrow \text{CF}_3\text{CFCF}_3 + H_2 \) reaction at different temperatures calculated by transition state theory with ab initio and DFT reaction paths. *Journal of Computational Chemistry*, 34(7):545–557, March 15, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Namsani:2015:IPM

Nakano:2019:QME

Nishizawa:2016:RQM

Norby:2016:MME

Ng:2017:RFT

[Ng, Cathy Ng, Padmavathy Nandha Premnath, and Olgun Govench. Rigidity and flexibility in the tetrasaccharide linker of proteoglycans from atomic-resolution molecular simulation. *Journal of Computational Chemistry*, 38(16):1438–1446, June 15, 2017. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).]
REFERENCES

Narsaria:2018:RDN

Nunes:2013:NAP

Nagai:2016:UMS

Nandi:2019:DMC

Nekouzadeh:2011:TRL

Nagar:2010:MDI

Shuchi Nagar and Achintya Saha. Modeling of diarylalkyl-imidazole and diarylalkyl-triazole derivatives as potent aromatase inhibitors for treatment of hormone-dependent can-

REFERENCES

REFERENCES

Ozkanlar:2014:SNU

Olson:2011:CBS

Ortega-Carrasco:2014:APL

Ou:2015:FEC

Odinokov:2018:PAD

Okumura:2010:CPL
[OGL10] Hisashi Okumura, Emilio Gallicchio, and Ronald M. Levy. Conformational populations of ligand-sized molecules by

Ohno:2017:GEI

Ohno:2018:QCE

Olson:2013:ARE

Orimoto:2015:EME

Olson:2017:MIF

Otero:2012:CRF

Osman:2016:RPS

Okoshi:2014:ASC

Ortega:2016:CEN

Ozawa:2011:ICH

Otsuka:2015:AAB
Orlando:2012:SNU

Opletal:2017:RMC

Olah:2016:IGC

Omar:2011:EOD

Orthaber:2012:OVS

REFERENCES

[OZLSBH12] Chanda-Malis Ouk, Natalia Zvereva-Loëte, Yohann Scriban, and Béatrice Bussery-Honvault. Transition state the-

Ouyang:2013:SNU

Partovi-Azar:2015:EFC

Partovi-Azar:2017:TDD

Pasalic:2010:TSH

P. Nuno Palma, Maria João Bonifácio, Ana Isabel Loureiro, and Patrício Soares da Silva. Computation of the binding

Patra:2011:ANN

Pelloni:2014:CCS

Pritchard:2016:HVE

Pelloni:2011:RCM

Plumley:2011:CBF

Pedregal:2019:GAE

Pol-Fachin:2014:EVG

Popov:2014:SNU

Pavlova:2015:PMA

Parida:2018:NIP

Pan:2012:CSH

Pacios:2012:CSL

Paschoal:2016:PPN

Pantazes:2015:SNU

Pan:2015:CCS

Pirojsirikul:2017:CQM

REFERENCES

[PH17] Peter P. Passler and Thomas S. Hofer. Conserving the linear momentum in stochastic dynamics: Dissipative particle dy-

Pang:2013:SEM

Pape:2013:DDM

Pool:2012:SNU

Pedersen:2014:BSE

Pohl:2017:OSF

Tamara Papp, László Kollár, and Tamás Kégl. Theoretical insights into the nature of Pt–Sn bond: Reevaluating the bonding/back-bonding properties of trichlorostannate with com-

Pezeshki:2014:MDS

Pelloni:2018:PCM

Plazinski:2011:MBC

Plewczynski:2011:CWT

Pagola:2018:IRE

[PLFS18] Gabriel I. Pagola, Martin A. B. Larsen, Marta Ferraro, and Stephan P. A. Sauer. The influence of relativistic effects on nuclear magnetic resonance spin-spin coupling constant polarizabilities of \(\text{H}_2 \text{O}_2 \), \(\text{H}_2 \text{S}_2 \), \(\text{H}_2 \text{Se}_2 \), and \(\text{H}_2 \text{Te}_2 \). *Journal of Computational Chemistry*, 39(31):2589–2600, December 5, 2018. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
Plazinski:2016:RGF

Presti:2016:MEF

Plewczynski:2011:VCD

Pang:2017:GAM

PiEkoś:2013:TDD

REFERENCES

[PMT16] Anna V. Pomogaeva, Keiji Morokuma, and Alexey Y. Timoshkin. Trimeric cluster of lithium amidoborane — the smallest

Pipek:2013:EPR

Petkovic:2018:WHM

Project:2010:FFD

Perrin:2013:CSR

Petraglia:2016:BSS

REFERENCES

1762–1773, July 30, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Prakash:2010:FFD

Polydorides:2013:MCS

Purushotham:2014:CCA

Piccardo:2017:FPA

Phillips:2011:MCO

Planch:2010:DNA

Alejandro Speck Planche, Marcus Tulius Scotti, Vicente de Paulo Emerenciano, América García López, Enrique Molina.

[PZBA13] Mark Pinsky, Amir Zait, Maayan Bonjack, and David Avnir. Continuous symmetry analyses: $C_n\nu$ and D_n measures of

Peng:2016:FES

Porta:2015:HBB

Quapp:2010:CNE

Quapp:2011:RCS

Quapp:2016:RRT

Quartarolo:2012:TIB

Qi:2019:CGN

Qi:2011:UHC

Qi:2010:DSA

Qian:2018:MIB

Quanz:2019:TEU

Qu:2010:RPP

Yena Qu, Kehe Su, Xin Wang, Yan Liu, Qingfeng Zeng, Laifei Cheng, and Litong Zhang. Reaction pathways of propene
REFERENCES

Qian:2010:CCP

Qu:2010:DAT

Quapp:2010:TST

Qu:2011:VSS

Rabilloud:2012:SSC

Ramirez-Anguita:2011:VTS

REFERENCES

REFERENCE

Rayne:2013:LEC

Ricci:2012:DFT

Rai:2013:FAG

Rice:2013:EED

Robinson:2011:WOP

Roe:2018:PCE

[RC18] Daniel R. Roe and Thomas E. Cheatham III. Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics

[RCM+13a] Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian Wan, Xin Xu, and Minghui Yang. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of forster theory. *Journal of Computational Chemistry*, 34(12):1005–1012, May 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[RDRC16] Marc Raupach, Stefanie Dehnen, and Ralf Tonner. Quantitative investigation of bonding characteristics in ternary Zintl anions: Charge and energy analysis of \([\text{Sn}_2 \text{E}^5 \text{(ZnPh)}]^- (\text{E}^{15} = \text{Sb, Bi})\) and \([\text{Sn}_2 \text{Sb}_5 \text{(ZnPh)}]_{2}^{3-}\). *Journal of Computational Chemistry*, 35(14):1045–1057, May 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Rossi:2014:CIS

Rombouts:2017:QAL

Rubez:2017:GAI

Rezac:2016:SNU

Rezabal:2015:EBE
REFERENCES

[RIJ+11] Suyong Re, Takashi Imai, Jaewoon Jung, Seiichiro Ten-No, and Yuji Sugita. Geometrically associative yet electronically...

Raeker:2018:SOS

Reckien:2012:IED

Rubi:2010:PRN

Rubesova:2017:EML

Riojas:2012:PAD

Rusakov:2015:FCR

Rossini:2016:EPS

Rossini:2016:PSP

Romero:2014:PDU

Roston:2014:SRM

Roy:2011:QMR

[RKG11] Partha Pratim Roy, Simona Kovarich, and Paola Gramatica. QSAR model reproducibility and applicability: a case study of rate constants of hydroxyl radical reaction models applied to

Rajamani:2011:OSM

Romo:2014:LOO

Rao:2010:ISM

Rampino:2012:SNU

Ricca:2018:BCG

REFERENCES

Randic:2013:CVMa

Rosen:2019:IPM

Ramsey:2016:SNU

Randic:2013:CVMb

Reif:2014:MDS

Rokob:2012:CCM

Riahi:2014:SNU

Ricca:2015:CDI

Rodriguez-Ropero:2011:EMZ

[Francisco Rodríguez-Ropero and Marco Fioroni. Effect of Na$^+$, Mg$^{2+}$, and Zn$^{2+}$ chlorides on the structural and thermodynamic properties of water/n-heptane interfaces. *Journal of Computational Chemistry*, 32(9):1876–1886, July 15, 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).]

Rodriguez:2018:TCA

Karunakaran Remya and Cherumuttathu H. Suresh. Cooperativity and cluster growth patterns in acetonitrile: a DFT

Rakhi:2017:DSD

Remya:2017:TEB

Rykin:2013:IDE

Rzepiela:2010:RAD

Risthaus:2014:ING

REFERENCES

530

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Sakata:2018:FCD

Sanchez:2017:RTC

Szklarczyk:2015:PCG

Sax:2012:LMO

Salehzadeh:2010:TSS

Silva:2011:HFO

REFERENCES

Stepanek:2013:CMC

Soydas:2014:AOO

Stepanek:2015:OIS

Shoaf:2018:TBA

Sedeh:2010:SIM

Simpson:2011:EIC

REFERENCES

Sebesta:2017:IMC

Schacht:2018:AOF

Spill:2013:CRE

Spill:2013:ECR

Saha:2013:HPD

Sesmero:2017:MSD

Schmid:2010:GSS

Szklarczyk:2014:PEF

Sun:2012:IPM

Sibaev:2015:SNU

Sode:2017:DFM

Sharma:2018:NHS

Soniya:2018:FEL

Scerri:2007:PTS

Shiraogawa:2019:PPF

Schwarz:2010:BRP

Bin Song, Nathaniel Charest, Herbert Alexander Morriss-Andrews, Valeria Molinero, and Joan-Emma Shea. Systematic derivation of implicit solvent models for the study of polymer

Scemama:2013:QMC

Song:2013:EAC

Selvam:2011:MZI

Signorile:2016:RDF

Shi:2012:USA

Schieschke:2017:CFD

Schulz:2018:SHA

Suarez:2014:CSD

Sergentu:2016:SIA

Suarez:2013:SNU

Shen:2017:ECC

Shirazi:2014:AKM

Seal:2010:CRG

Shaghaghi:2016:SGA

Shiraogawa:2018:FED

Solomentsev:2012:EEE

[SEM12] Gleb Y. Solomentsev, Niall J. English, and Damian A. Mooney. Effects of external electromagnetic fields on the con-

&Sakuraba:2018:PEZ

&Schleder:2017:DCB

&Starek:2017:GEV

&Sanchez-Flores:2014:PAE

&Sanchez-Flores:2015:EPA

Andrea Salvadori, Marco Fusè, Giordano Mancini, Sergio Rampino, and Vincenzo Barone. Diving into chemical bonding: an immersive analysis of the electron charge rearrange-

[SGH+16] Liudmyla K. Sviatenko, Leonid Gorb, Frances C. Hill, Danuta Leszczynska, and Jerzy Leszczynski. Structure and electro-

Sviatenko:2013:TSI

Simonson:2013:CPD

Smith:2018:MSS

Sancho-García:2017:DRU

Shernyukov:2016:NBB

Andrey V. Shernyukov, Alexander M. Genaev, George E. Salnikov, Henry S. Rzepa, and Vyacheslav G. Shubin. Noncatalytic bromination of benzene: a combined computational and
REFERENCES

REFERENCES

Shaytan:2010:FEP

Singh:2018:IGS

Su:2016:ETI

Sieradzan:2017:SNU

Steinbrecher:2011:SCP

REFERENCES

2. Sharma:2012:CPV

3. Stachowicz:2013:BDM

4. Sakalli:2015:PPS

5. Schultz:2015:SNU

REFERENCES

Sumimoto:2011:TSM

Safi:2010:RDE

Siegbahn:2017:CSC

Surakhot:2017:TRR

Stenrup:2015:CNG

557

Savelyev:2014:AAP

Stachiewicz:2015:CGM

Salehzadeh:2016:NEC

Stachiewicz:2016:DDD

Szczepaniak:2017:ARB

Stuart:2018:DII

REFERENCES

Shah:2017:SNU

Strumpfer:2010:CFE

Sahoo:2015:PLP

Sahoo:2016:CGQ

Seino:2016:IBE

SilvaLopez:2016:AAR

SNDK16 Carlos Silva Lopez, Olalla Nieto Faza, Frank De Proft, and Antonios Kolocouris. Assessing the attractive/repulsive force
balance in axial cyclohexane $\text{C-H}_\text{ax} \cdots \text{Y}_\text{ax}$ contacts: a combined computational analysis in monosubstituted cyclohexanes. *Journal of Computational Chemistry*, 37(30):2647–2658, November 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[SPHF⁺18] Anna Kristina Schnack-Petersen, Pi A. B. Haase, Rasmus Faber, Patricio F. Provasi, and Stephan P. A. Sauer. RPA(D) and HRPA(D): Two new models for calculations of NMR indirect nuclear spin-spin coupling constants. *Journal of Com-

Sciortino:2018:PIM

Springborg:2010:BRC

Sousa:2013:CAP

Sproviero:2018:INE

Saha:2012:CSS

Singh:2018:SPI

Sakkal:2017:PCB

Savarese:2017:CPT

Shyichuk:2015:SDC

Sengupta:2016:BBA

REFERENCES

Schroder:2016:EDA

Shi:2019:CSF

Szczepanik:2017:RLR

Sushko:2010:QMM

Swart:2011:IID

Swart:2013:CII

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [SSB11].

Smiga:2016:AKS

Setzler:2014:SIG

Savchenkova:2019:MRC

Sharma:2015:EDA

Song:2009:EAE

REFERENCES

Stiebritz:2015:MPD

Su:2015:CRS

Sumiya:2017:FRC

Sun:2010:TKS

Sure:2015:SSR

Strunk:2012:SNU

Schnupf:2010:PDM

Song:2010:HMP

Shi:2011:MEH

Shyu:2011:AES

Spassov:2016:PDC

Song:2019:DRP

Shim:2013:AXA

Sheong:2019:RSN

Schupbach:2010:FTC

Su:2013:ADX
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Date</th>
<th>DOI</th>
<th>Electronic ISSN</th>
</tr>
</thead>
</table>
Takeuchi:2010:GMG

Takeuchi:2011:TIO

Takahashi:2014:DRF

Takeuchi:2018:SGM

Tantardini:2019:WDH

Turcani:2018:SPT

Tantardini:2016:SFP

Thomas:2013:PGF

Tobias:2018:DTK

Torres:2014:TSR

Ana E. Torres, Guadalupe Castro, Ricardo Pablo-Pedro, and Fernando Colmenares. A two-step reaction scheme leading to singlet carbene species that can be detected under matrix conditions for the reaction of Zr(3F) with either CH$_3$F or CH$_3$CN. *Journal of Computational Chemistry*, 35(11):883–890, April 30, 2014. CODEN JCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

REFERENCES

[TFQ+10] Shu-Wei Tang, Jing-Dong Feng, Yong-Qing Qiu, Hao Sun, Feng-Di Wang, Ying-Fei Chang, and Rong-Shun Wang. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C_3v $C_{60}F_{18}$ and D_{3d} $C_{60}Cl_{30}$. *Journal of Computational Chemistry*, 31(14):2650–2657, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Tiago Quevedo Teodoro and Roberto Luiz Andrade Haiduke. Accurate relativistic adapted Gaussian basis sets for francium through ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models. *Journal of Computational Chemistry*, 34(27):2372–2379, October 15, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[TLdG+12] Zahra Tabookht, Xavier Lópe, Coen de Graaf, Nathalie Guihéry, Nicolas Suaud, and Nadia Benamor. Rationalization of the behavior of M$_2$ (CH$_3$CS$_2$)$_4$I (M = Ni, Pt) chains at room temperature from periodic density functional theory

REFERENCES

REFERENCES

Takayanagi:2018:IPD

Takano:2016:SNU

Trott:2010:AVI

Tan:2010:TIE

Turcheniuk:2012:PVI

[TR12] K. V. Turcheniuk and A. B. Rozhenko. (\sigma3,\Lambda5)-phosphoranes versus (\sigma3,\lambda3)-thiaphosphiranes: Quantum chemical investigation of products of phosphaalkene sulfurization. *Journal of Computational Chemistry*, 33(10):1023–1028, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[TS15b] Athanassios C. Tsipis and Alexandros V. Stalikas. Electronic, bonding, and optical properties of 1 d $[\text{CuCN}]_n$ ($n = 1$–10) chains, 24 d $[\text{Cu CN}]_n$ ($n = 2$–10) nanorings, and 3 d $[\text{Cu}_n (\text{CN})_m]^m_2$ ($n = 4, m = 2, 3; n = 10, m = 2$) tubes studied by DFT /TD–DFT methods. *Journal of Computational Chemistry*, 36(17):1334–1347, June 30, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

REFERENCES

[UM13] Yutaka Uejima and Ryo Maezono. GPGPU for orbital function evaluation with a new updating scheme. *Journal of Com-

REFERENCES

VonAppen:2010:DFS

Vela:2016:ZOH

Vogt-Geisse:2016:CPR

Vanfleteren:2011:FDM

Vanommeslaeghe:2010:CGF

REFERENCES

Vorontsov:2011:CMD

Vreven:2019:CIF

Villa:2017:CPA

Valdebenito-Maturana:2017:SNU

Vohringer-Martinez:2010:RWP

Vorobjev:2010:BDM

Vorobjev:2012:PMF

Vchirawongkwin:2010:IQM

Vuori:2019:BGA

vonRudorff:2017:CSP

REFERENCES

vanWullen:2011:SMP

Vyboishchikov:2015:MEE

Vyboishchikov:2016:CEC

Vanommeslaeghe:2015:RFM

Voelz:2014:BIC

Weber:2017:IIR

[Wan:2011:MDS] Shunzhou Wan and Peter V. Coveney. Molecular dynamics simulation reveals structural and thermodynamic features of

REFERENCES

[WCY+11] Yin-Feng Wang, Wei Chen, Guang-Tao Yu, Zhi-Ru Li, Di Wu, and Chia-Chung Sun. Evolution of lone pair of excess electrons inside molecular cages with the deformation of the cage in \(\text{e}_2 @\text{C}_{60}\text{F}_{60}\) systems. *Journal of Computational Chemistry*,

Weinhold:2012:SNU

Watanabe:2013:RDP

Weidlich:2016:SNU

Wang:2018:HHB

Wolf:2012:ENN

[WGLG⁺16] Matthias Witte, Benjamin Grimm-Lebsanft, Arne Goos, Stephan Binder, Michael Rübhausen, Martin Bernard, Adam

[WLF19] Ya-Ting Wang, Xiang-Yang Liu, and Wei-Hai Fang. Mechanism of the O\textsubscript{2} (\(^{1}\Delta\text{g}\)) generation from the Cl\textsubscript{2} /H\textsubscript{2}O\textsubscript{2} basic aqueous solution explored by the combined ab initio calculation and nonadiabatic dynamics simulation. *Journal of Computational Chemistry*, 40(2):447–455, January 15, 2019.

[WM2012] Wei Wu and Yirong Mo. Letters to the editor: Reply to comment on the paper “An Efficient Algorithm for Energy

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Chi-Shiun Wu and Ming-Der Su. Theoretical investigations of the reactivities of four-membered N-heterocyclic carbene

Wilkinson:2013:POG

Wilkinson:2011:AGU

Wang:2010:GTI

Wang:2015:BCA

Wang:2019:BBO

Wirz:2016:SFG

[WTH+16] Lukas N. Wirz, Ralf Tonner, Andreas Hermann, Rebecca Sure, and Peter Schwerdtfeger. From small fullerenes to the

Chengqi Wang, Lili Xi, Shuyan Li, Huanxiang Liu, and Xiaojun Yao. A sequence-based computational model for the prediction of the solvent accessible surface area for \(\alpha\)-helix and

REFERENCES

[Xia:2016:FAW]

Junchao Xia, William F. Flynn, Emilio Gallicchio, Bin W. Zhang, Peng He, Zhiqiang Tan, and Ronald M. Levy. The following articles were published in past issues of the *Journal of Computational Chemistry*. Large-scale asynchronous and distributed multidimensional replica exchange molecular simulations and efficiency analysis. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Xia:2015:PHQ]

[Xu:2016:QST]

[XhD15]

Jing Xu and Yi Hong Ding. Pentaatomic planar tetracordinate silicon with 14 valence electrons: a large-scale global search of \(\text{SiX}_n\text{Y}_m^n\) \((n + m = 4; q = 0, \pm 1, -2; X, Y = \text{main group elements from H to Br})\). *Journal of Computational Chemistry*, 36(6):355–360, March 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[Xiao:2016:AEM]

Xingqing Xiao, Michelle E. Hung, Joshua N. Leonard, and Carol K. Hall. Adding energy minimization strategy to

[Xu:2016:STS] Xianjin Xu, Zhiwei Ma, Hongmin Sun, and Xiaoqin Zou. SM-TF: a structural database of small molecule-transcription fac-

[XYW+14] Zhijun Xu, Yang Yang, Ziqiu Wang, Donald Mkhonto, Cheng Shang, Zhi-Pan Liu, Qiang Cui, and Nita Sahai. Small molecule-mediated control of hydroxyapatite growth: Free energy calculations benchmarked to density functional theory.
Xie:2017:SNU

Xu:2018:MIP

Xia:2011:AHE

Yang:2011:DNS

Yang:2014:IES

Yang:2016:EAS
REFERENCES

37(6):549, March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Yoshii:2018:PTE

Yap:2011:PDO

Yang:2013:CTS

Yu:2011:ETS

Yamamoto:2013:TPM

Yildiz:2016:AEK
Dilan Yildiz and Uğur Bozkaya. Assessment of the extended Koopmans’ theorem for the chemical reactivity: Accurate

[Yu:2010:TSN]

[Yout:2016:EEF]

[Yang:2017:ERV]

[Yuan:2015:TPH]

[Yao:2010:SDS]
Yang:2013:RWA

Yu:2016:PPA

Yesylevskyy:2012:SNU

Yesylevskyy:2015:SNU

Yu:2019:FSC

Yu:2011:AMA

[YHCS11] Guangtao Yu, Xu-Ri Huang, Wei Chen, and Chia-Chung Sun. Alkali metal atom-aromatic ring: a novel interaction mode realizes large first hyperpolarizabilities of M@AR (M = Li,

[**Yang:2011:TSG**]

[**Yu:2013:SNU**]

[**Yu:2012:ECG**]

[**Yu:2017:PDS**]

[**Yang:2019:QDV**]

REFERENCES

[![Yeh:2011:DFT]

[![Yourdkhani:2017:RPN]

[![Yakhanthip:2011:TIN]

[![Yao:2013:MDS]

[![Yamada:2013:VDE]
Yan:2010:CSE

Yourdkhani:2015:IBT

Yamada:2011:TNA

Yuzlenko:2013:MPN

Yang:2010:SPS

REFERENCES

REFERENCES

Yesselman:2012:MAT

Yamada:2013:FPR

Yang:2013:FPS

Yu:2010:RPC

Yoshizawa:2013:NSC

REFERENCES

[YW12] Yu Li Yan and Yuan Xu Wang. Electronic structure and low temperature thermoelectric properties of In\textsubscript{24}M\textsubscript{8}O\textsubscript{48} (M = Ge4+, Sn4+, Ti4+, and Zr4+). *Journal of Computational Chemistry*, 33(1):88–92, January 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[YWZ14] Zhong-Zhi Yang, Jian-Jiang Wang, and Dong-Xia Zhao. Valence state parameters of all transition metal atoms in met-

Yuan:2017:DSM

Yu:2012:TSE

Yan:2015:PPB

Yuan:2015:DHH

Yang:2016:EPC

References

Yang:2019:ITD

Yang:2013:DCS

Yang:2011:IIZ

Yang:2016:SNUb

Yuan:2017:VWH

[YZZ+17] Kun Yuan, Rui-Sheng Zhao, Jia-Jia Zheng, Hong Zheng, Shigeru Nagase, Sheng-Dun Zhao, Yan-Zhi Liu, and Xiang Zhao. Van der Waals heterogeneous layer-layer carbon nanostructures involving $\pi\cdot\cdot\cdot$H-C-C-H$\cdot\cdot\cdot\pi\cdot\cdot\cdot$H-C-C-H stacking based on graphene and graphane sheets. Journal of Computational Chemistry, 38(10):730–739, April 15, 2017. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

Zhu:2015:DMM

Zhao:2018:ABD

Zhou:2016:NIC

Zhang:2011:DPP

Zierkiewicz:2015:TIH

Zhong:2011:SPA

Zhao:2012:SNU

Zhou:2018:RPA

Zuvela:2018:IAB

Zhao:2011:TDD

Zeng:2013:NSR

Zhou:2018:FNC

Dongsheng Zou, Zhongshi He, Jingyuan He, and Yuxian Xia. Supersecondary structure prediction using Chou’s pseudo

Zanotto:2018:HPC

Zimmerman:2013:ADC

Zimmerman:2015:SET

Zeng:2013:FMS

Zhang:2017:EGD

Zhu:2010:EES

Xiao Zhu, Peter Koenig, Michael Hoffmann, Arun Yethiraj, and Qiang Cui. Establishing effective simulation protocols

REFERENCES

[ZLY+16] Xue-Feng Zhao, Haixia Li, Cai-Xia Yuan, Yan-Qin Li, Yan-Bo Wu, and Zhi-Xiang Wang. Linear, planar, and tubular molecular structures constructed by double planar tetracordinate carbon $D_{2h} C_2$ $(\text{BeH})_4$ species via hydrogen-bridged BeH_2Be bonds. *Journal of Computational Chemistry*, 37(2): 261–269, January 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhu:2010:PEF

Zhu:2010:PEF

Zoboki:2011:ELN

Zoboki:2011:ELN

Zhang:2012:IRE

Zhang:2012:IRE

Zhong:2013:BST

Zhong:2013:BST

Zerbetto:2014:LSF

Zerbetto:2014:LSF

Zarycz:2016:CSB

Zarycz:2016:CSB

Natalia Zarycz, Patricio F. Provasi, Gabriel I. Pagola, Marta B. Ferraro, Stefano Pelloni, and Paolo Lazzeretti. Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules. *Journal of
REFERENCES

Zhu:2014:TPC

Zilberberg:2010:POD

Zapata-Rivera:2011:ESR

Zapata-Rivera:2012:RML

Zgarbová:2015:TAD

Zare-shahabadi:2010:AAC

Vali Zare-shahabadi and Fatemeh Abbasitabar. Application of ant colony optimization in development of models for pre-

REFERENCES

Zaccaria:2016:IST

Zhang:2013:MPI

Zhang:2011:ABD

Zhao:2010:PSM

Zadeh:2011:NAS

Zheng:2010:MDM
ZHANG:2010:AHF

ZHENG:2010:DFTa

ZHENG:2010:DFTb

Zhang:2011:IIR

Zhao:2011:HMM

Zhang:2010:ESO

Zhao:2014:IDB

Zhao:2014:DSE

Zhang:2015:TCS

[ZYG+15] Xu Zhang, Xiaodi Yang, Hua Geng, Guangjun Nan, Xingwen Sun, Jinyang Xi, and Xin Xu. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and

Zhu:2012:PPT

Zhang:2012:TSRa

Zhao:2015:PRM

Zhu:2010:IAP

Zhao:2014:CBP

REFERENCES

2183, November 15, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhao:2016:CDO

Zhao:2016:CDO

Zhang:2010:III

Zhang:2010:III

Zhou:2012:CMF

Zhang:2010:TSRb

Zeller:2014:ECR

Zhang:2010:TSRb

Zhang:2010:TSRb

Zhang:2010:TSRa

[ZZL+10b] Hui Zhang, Gui-Ling Zhang, Jing-Yao Liu, Miao Sun, Bo Liu, and Ze-Sheng Li. Theoretical study and rate constants cal-

Zhang:2016:CQD

Zhu:2019:ISO