Title word cross-reference

\[\! \sum \! \sum \! \sum \! \sum \]
CKL$^{+11}$, DLMH12, GZZM16, HSZ$^{+11}$, KV14, KDS17, MVKS10, MIS$^{+15}$, OOK11, PM18, RF15, SGS15, SDF12, YJN$^{+11}$, Zha11. $\pi \cdots \pi$ [CCCLCGRO14], pK_a [BA11]. Ψ [Lnc14]. $q = 0, \pm 1, -2$ [XhD15]. r_m^3 [RCM$^{+13b}$]. \rightarrow [CK10, Chu10, GTK10, HZ11, HBL12, LW1D13, NMLD13]. S_1 [KKL$^{+13}$], σ [DPSL16, GZZM16, LZZ$^{+15b}$, PM18]. $\sigma \pi$ [CZY11, YWZ14]. $\tilde{\Delta}^1A'[MCLD10]$. \times [SRS14]. $v = 0$ [LWD13]. $x = 1$ [CWT$^{+12}$, LZTV10].

-X- [SZBM13]. -ZSM-5 [Pon10].

/GIAO [OPR16]. /GIAO-CCSD [OPR16]. /metal [BSF18]. /MgO
[BS16b]. /MM [CZY11]. /TD [TS15b]. /X [BSF18]. /Zn [GEP.

1 [ZZWX11, CS17, DLZ15, GTK10, NHN16, SYH12, SRS14, TTB+10,
UNT16, XLY12, ZsA10]. 1'- [ZZWX11]. 1-Methyluracil
[HvM17, HvM16]. 1-Octene [MJLV14a]. 1-penten-5-yl
[LXFC17]. 1.0 [KJM+17]. 1.1 [KYG+15]. 1.02 [ZDX11].
11-cis-retinal [ZLHH14]. 13 [LAHS16]. 13-13 [LAHS16].
13-dichloropentacene [ZYG+15]. 132b [RVdMB16].
17 [ZYL15]. 1T [RSK+15].

2 [DPNM11, MWJ+11, DH17, HOM+16, LGW12, Liic14, YZGS14b, Yu12b,
2-benzyne [FC16]. 2'-bipyridyld-3 [MWJ+11]. 2-dioxetanone
[RSLML12, dSdS12a, dSdS12b].
2-phenylimidazo [MWJ+11]. 2.0 [Yes15]. 2.1.0 [KYG+15].
2.02 [ZDX11]. 2H [RSK+15]. 2X [SIG+15].

3 [MWJ+11, DH17, HPSK12, Spr10, YZGS14b]. 3- [LZL+. 3'-15-crown-5 [MWJ+11]. 3.37-34242-9 [Spr10]. 3-alternate [ZWS+10].
3-d [YZ15b]. 3-dihydropyrido [YZ15b]. 3-Dipolar
[YZN13]. 3-metal-carbon [ZYW+16]. 3-methyl-7-azaindole
[YYT12]. 3-squaraines [AMQ+14]. 3-thienophenic [NHF+10].
31 [Kne11b, MSK+12]. 311G** [TKN13]. 31G [Mit13]. 31G**
[TKN13]. 33 [ABB+13, CHR+12b, IC5+13]. 35 [SFCCK+15].
36 [SMM15a]. 38 [HLXH18].
3c [KV14, LW16]. 3c/4e [LW16]. 3D [HSB+11, SA10].

4 [YLZ+10, LZTV10]. 4' [YLZ+10]. 4-amino-1 [ZZWT12].
4-aminophthalimide [WHL+10]. 4-azaborinine [RS17a]. 4-dihydro-1
[RS17a]. 4-hydroxyphenylpyruvate [DGH+11]. 4-substituted
[WHL+10, WHL+10]. 4e [KV14, LW16]. 4Fe [PNI13]. 4S [PNI13].

5 [ZZWX11, cCVG+14, LL10c, Mor15, Pon10, SOvG12]. 5-b [YLZ+10].
5'-bridged [ZZWX11]. 5-nitroiminotetrazolate-based [ZYL+12].
5-triazine [WDLG12]. 5-triazines [YPC+10]. 5-triethyleniminotetrazolate-based
[ZYL+12]. 5-triethyleniminotetrazolate-based [ZYL+12].
5-triethyleniminotetrazolate-based [ZYL+12].
5-triethyleniminotetrazolate-based [ZYL+12].
5-triethyleniminotetrazolate-based [ZYL+12].
5-triethyleniminotetrazolate-based [ZYL+12].
5-triethyleniminotetrazolate-based [ZYL+12].

6 [WDLG12, ABM+15, TKN13]. 6-311G** [TKN13]. 6-31G** [TKN13].
6-bisphosphatase [RAR+11]. 6-fluoroquinolones [MPNS13], 6'-tetra [WDLG12]. 6-trinitrotoluene [SH14]. 6.0 [GLW13a, GLW13b]. 60th [HIS17].

7 [ADF+10, MBR+15]. 7-azaindole [YYT12]. 7-tetraene [ABDGN12].

8 [AAC+16]. 8-formyl-7-hydroxycoumarin [LZHH11]. 8R [BG13].

Absorption [RS17a, ZLL+10, FD13, HNN+17, KB16, LLBO12, LX11, LXZ+10, PMC+17, PDMT10, PDG+16, SGDT10, TYN15, TZ12, Tsi14, WWD14, ZTH+15, ZDX11, QCR12]. abstraction [AAMD+11, BS10b, CSXZ17, GY12, JCG+10, LJW+11b, WLHZ12]. Ac [SNKS10]. Accelerated [MFEM15, MFEM16, AGB13, BDTP11, CVT+11, DWC17, GBL+11, HEMCZE+14, HAP+12, KV13, LL11, REV+17, YLX14, YSG12, ZC14, ZLL+13]. accelerates [HS17b]. Accelerating [HASR+12, LZ12, YWJ+16, HP10a]. Acceleration [BKŠ+11, ON14, SOM+13, UTM11, WSGN11, OOT15]. accelerator [SBV10]. accelerators [KK17a]. acceptance [BB11b, KB11c, NDIW15, dRBO13]. acceptor [Gil11, Lu11, MSV16, MIS+15]. acceptors [uLhY11, TWZ12]. accessibility [LHL+10]. accessible [FZY+12, WX+12, WBF17]. Accessing [JZYM14]. accompanying [HSN14]. according [GM17, LPE+10, YZZ16]. account [EPH+13]. Accounting [XML+15, HH11, MBC11]. Accuracy [DBM+15, FCE15, KFY+13, LLH17, BPB11, GRARO+14, HWLW11, KSR+16, LZ12, LDZW17, NTN15, yOaCG10, RS13, RVCT13, Rob13, TO10, ZYS+10, Gil11]. Accurate [BS16b, CX10, CSXZ17, EFOF13, FLMI11, IN13, KG15, LYG+13, LLH11, LWL+10, MK13a, MFR+11, NWW17, Pol13, PVJ10, Sch12, SRR16, SY11, ŠSB+16, SYZ+17, TH13, WL14, YB16, ZWLX11, AF14, BS10a, BPM15, Ben17, CCLP12, CSOGA17, CRZ+18, DKE+17, GAI13, GBW+14, GWZX12, HRC13, LC17b, LZZ14, MAK+14, ME10, MFR+17, NHH16, yOTn16, dRL11, RB13a, RCR+16, RDDS10, RR14, SH15, SS16b, VAMS14, VDVR14].
WXS^12, WJG^13, WX12, XSZL11, YOMT14, dVZ17, dSAAdSL13.
Accurately [Bow16, LFB14, MA16, Zha12b]. ACE [WCDM11, LH^1+10].
acetaldehyde [AS11, AAMD^1+1]. acetals [YZL^1+15]. acetamides [JSW10].
Aceto [SJD14]. acetoxyhydroxyacid [XLY10]. acetone [RS14]. acetyl
[ZBP11, ZP13]. acetylacetone [SJWE10]. acetylation
[FHK^1+12, IMK^1+16, LHL^10]. acetylcholine [SRA17].
acetylene [GRCL12, HSY^1+11, LT13, Tak10]. achieve [PH17, RAR^1+1].
achieving [NNK^1+16]. Achim [Spr10]. acid
[BLG11, CYY^1+17, CC18b, CM16, CB11d, FD14, FZL^1+15, Fel10, FP17b, FCE15, GRL^1+11, GRL^1+12, HPT16a, HGY^1+17, HCP15, KLS10, KML10, LBC^1+12, LXL^1+11, LF12, LP11b, LPMT17, MLS10, MRO17, NHF^1+10, OXW16, PDH13, SISK10, SZBM13, SBW12, SV11, TL16, VMPS17, WC14, W12, XVN17, ZSB^1+11, ZWP11, ZHHX11].
acid-catalyzed [CYY^1]. acid-water [TL16]. acid/base [VMPS17].
acidic [APY^1+16, YDX16]. acidities [ALK^1+5]. acidity [CRZ^1+18, CPK12].
acids [CCCLCGRO14, DKE^1+17, EHSPT16, FCE15, GREA11, RSL16, XLY10, ZKH^1+10]. ACP [STM^1+15, SJ16].
across [AAC^1+16, GMPB12, MGS^1+16]. acrylate [LZL^1+16]. act [LC10]. actinide
[RKS^1+13]. action [XLY12]. activated [CV12, KSR17]. Activation
[Niz13, AALCM11, DR11, DSM^1+11, FB12, MRR11, MBFG15, TS15a, WC11, XLY10, YXXZ17]. activation-strain [FB12]. activator [BM12]. active
[AIGP15, Cas13, DPB^1+12, LVT10, PDG^1+16, SCSW13]. active-space
[PDG^1+16]. actives [EOO^1+16]. activity [BPC13, DXL^1+10, GAI13, GHL17, GFPSD17, MJLY14a, RCM^1+13b, SLY^1+10, TD10, TTB^1+11, YB13, ZSA10]. acute [TL1^+12]. acyclic [ZH^1+10]. acyl [PS10]. adamantane [EHSPT16].
adamantane-based [EHSPT16]. adapted [FF11, SSSM15, TH13, YKH15].
Adaptive [JSK14, KEMP17, LZZ^1+17, AOW11, BGR13, DSK17, FHMB15, HDF^1+15, MJ14, MBFP15, MJG^1+15, OZ14, PN13, SNS13, WMW^1+10].
Adaptive-numerical-bias [KEMP17]. adaptively [SR18]. adcluster
[IN13]. Adding [XHLH16, Zha12b]. addition [FBW14, KS13b, NDG14].
Additive [XVA^1+16, DPNN11, HM13, TSS^1+16, VHA^1+10, VMPS17].
additivity [ZRL^1+15]. address [LG14]. addressing [cCVG^1+4]. adducts
[LC10, LS11b, ZRCC11]. adenine [BZH14, LTL12]. adenosine
[SRA17, WZQW10]. adiabatic [UD12]. adjacency [GZH10]. adjusted
[HH15]. Adjustment [BLZ^1+3]. ADMA [MA17]. AdNDP [KDS17].
adrenergic [CV12, LLHM16, VKC10]. adsorbate [GBS^1+17].
adsorbate-induced [GBS^1+17]. adsorbed
[MCF10, PXW10, SLL13, SIG^1+15]. adsorbents [HVS16]. Adsorption
[CCJ^1+11, FVP14, HB15, KD10, LH14b, PH12, AS15a, BS16b, CMM18, CR14, cCVC^1+14, He10, LL13a, LPK16, LPLS16, LZ14, LT14, LCM^1+14, NPP13, PG12, PLZ17, RHHN10, SH14, SDB^1+16, SKTT11, SYZ^1+17, VS14, WSZW15, WYGW12, YDR13]. Adsorption-induced [HB15]. Advanced
[WBN^1+13, Yan16]. affect [SV15, UNT16]. affected [OHN11]. affecting
[GMSV14]. affects [CLK11]. affinities [CMD13, CTP13, GRS15, MGWR12].
affinity

After

Ag-nanocluster

against

Age

agents

aggregated

against

Age

against

AgX

AHAS

aimed

Al

Al-hydroxylated

Ala

alanine

AlB

alchemical

alcohol

alcohol-based

aldehydes

Alder-ene

Alderase

aldol

aldosterone

algebraic-diagrammatic

Algorithm

algorithm-artificial

algorithmic

Algorithms

aligned

alignments

aliphatic

alkaline-earth

alkane

alkanes

alkenyl

alkyl

alkylthiols

alkynes

All-atom

all-electron

all-organic

alkene

alkenes

allene

allenes

allocation

allophycocyanin

allosteric

allowing

alloy

alloys

Alpha
alphabets [PHDH13]. AlPO [LL10c], alter [CBTZ16]. alterations [HHT+13a, HHT+13b]. alternate [ZWS+10].
alteration [ASL+11], alternative [MA17, NYN17, TF15, Wei12a].
alumina [SH14]. aluminum [GWJJ12, LK16a]. always [KSC16, MBFG15].
AM [FBY+17]. AM05 [MMJ10]. AM1 [KLS10, KMLS10]. AMBER
[MSK+12, RSR+12, GCW14, MSK+10, MJG+15, OYK+11, PGW+17,
SOYC12, SJ16]. AMBER-compatible [SOYC12]. AmberTools
[RN5F+16]. amide [LJW11a, LW11, NDG14]. amidoborane
[PMT16]. amidoboranes [DLT17]. amination [YZ17]. amine
[AK10, BMB13]. amino [CCCLCGRO14, CFC15, CB11d, DKE
+17, FZL+15, FP17b, GRL+11, GRL+12, HCP15, KLS10, KMLS10,
LXL+11, LP11b, MRO17, PHDH13, RSL16, SISK10, SZBM13,
WC14, ZZWT12, ZKH+10, ZHHX11]. amino-acid
[KLS10, KMLS10]. aminoacid [MC10]. aminophenyl
[LZL+16]. aminophthalimide [WHL+10]. aminopolycarboxylate
[CMD13]. ammonia [BEPM14, CC12a, KT12, SNS16, SJZ+15, VS14].
ammonia-borane [BEPM14]. ammonium [AvKSP16]. AMOEBA
[HLW+17, MBE16, PZCL16, XP13]. among
[KYB13, SH15, TCGNT18, WGL+11]. amorphous [Fom13]. amounts
[FN12]. Amsterdam [FP13, SFG+17]. amyloloid
[I013b, LH11]. analog [JBAM11]. analogs
[DCHL12, LP11b, SISK10, VM11, WBT10]. analogue [PGW+17].
alogues [LPS+13, SGWA17, VVBL17, WS12, YLL11]. analyses
[BSF18, KASH14, KP11, PZBA13, SKGB13, VVJ15, XWW+11]. Analysis
[CDM+15, HAI+16, JCGM18, MOS12, XFG+16, AKMT11, AST+16,
ASL+11, ARRC15, Ano15-58, BK15, BH14, BSPP+13, BBG+18, CLFRO18,
CMM18, CAF+13, CEC015, CCC+11, CAT+13, CH14, DMJ17, DHH+11,
DJ12, DBK17, DSC15, EHSPT16, Fer17, FB12, FHW+11, FHK+12,
GVF+10, GLW13a, GLW13b, GNDA+12, GCP+13, Han11, HCD+10,
HPK12, HHT+13a, HHT+13b, HDHL15a, HDHL15b, HDHL15c, HWW17,
Hug12, Jan16, JHH+13, JJW+14, JZZM14, JCX10, KG13, KGY+15, LL13a,
LCPS13, LMZ+11b, LFMI12, LAHS16, LGKS17, MDTD13, MJ14, Mez10,
MADWB11, MCLD10, MGS+16, MCK17b, NI15, NS17, OXW16, OC14,
PTK11, PSP15, PRY1+17, PTB+15, PPUBGD10, FVS12, PS14, RDT14,
REL17, RLG14, SLY+10, SBB10, SPR+11, SGS15, SNDK16, SS13c,
SPR+13, SH18, TYN15, TC16, TD10, TTB+10, TS10b, UKS11, VDMA13].
analysis [WNP+16, Wei12a, Wei12b, XFG+15, YK13, YNH+17, Yes12,
Yes15, ZCS+15, ZBL16, ZHH2, vSGP10, ZSB+11]. Analytic
[Boz18, MDTD13, SXX13a, SXX13b, MY17b]. Analytical
[CCB15, HNWFO7, HNWFO12, HH17, LBG16, SFG+17, WOH18, CHC+13,
FBY+17, HH16a, KN17, KTSW11, MK13a, Pon11, ZWF15]. analytics
[JZL+17]. analyze [LP11c, OVPK15, QLQ11, RLG14, YKO+11, dVAG16].
analyzer [JJW+14, LC12, PVZ13]. Analyzing
[BD11, MRB14, BCP+10, HPT17, LPS+17, PHT17, SWA13, WES13].
anapole [ZPP+16]. anatase [HRL11]. and/or [KB10, Pog10].
androstenedione [VCM15], angle [CKP10, GBFD12, XML+15], angle-dependent [CKP10], angles [BKLA13, EJ13, FZY+12, GREA11, KTK17, LDH+14, OZ14, YZ16]. angular [BBG+18, ENKK+17], anharmonic [Kow11, SSWX14], anhydride [SSP+13]. anhydrides [RB12], aniline [PLP+16], anion [CG15, LC10, uLhY11, SDF12], anionic [SSP+13]. anhydrides [RB12], aniline [PLP+16], anion [CG15, LC10, uLhY11, SDF12], anionic [GZZ12, GWPJ11, HPL13, JCP14, OZ14, YZ16], anion [CG15, LC10, uLhY11, SDF12], anionic [GZZ12, GWPJ11, HPL13, JCP14, OZ14, YZ16], anions [PVS12, RDT14, RJS17, ZWY+10b, ZYL+12], anisotropic [Ano10a, CAT+13, EPH+13, ENKK+17, NLP+16, SLX+15, SN10]. anisotropy [CGP12, LPLB16, ZLZ14], ANN [XWW+11], annealing [RHJ11, SHMO11, SHL+11, ZC14, LMZ11a], annihilation [BL12], annulated [RS17a], Anomerization [SM17], anomers [HH11], antisense [ICS+12, ICS+13], antitrypanosomal [PSdPE+10], antitubercular [TD10], AO [YOPB16], AOFORCE [vW11], API [LAS+14]. Applicability [MAK+14, DI11, GHL17, GKR13, HH15, JZZM14, Ray13, RKG11]. applicable [CL16, WGL+11]. Application [AFBR17, BAMR13, BPE16, GCCM15, HTS15, LDG+15, MBA11, MH10, OL13, PAK15, RVP+11, SMP17a, SRS14, SC17, SDL14, SMM+18, VKTRJ15, WH11, ZsA10, vSGP10, CSAdOM17, DGPMM14, Elk16, GLB16, GFG11, GCW16, IUK+11, KFY+13, KSK11, LHLM16, LP11a, LLL+10, LLLC11, LvG13c, MTD13, PCH13, RZG+13, RCM+13b, SN16a, SLX+15, SYH12, VV14, VKC10, WCDM11, You10, AFP13, BD11, CZNA11, Fer13b, Fer13a, FCOGM12, GAI13, HYUS11, KUDG12, MCC11, Pet11, PW12, TSZQ12]. Applications [KGHC15, LCPS13, LCA17, APK14, CGP11, Feli10, GBFD12, HZY+10, HCD+10, IO13b, KKO+16, uLhY11, LJR+12, MG11, SSSM15, SGM+13, ISP+10], applied [BLG11, CTP13, GKR13, KKR+13, LTT16, Ray13, RKG11]. Applying [KB11a, ZSLL17, CC11], approach [ACD+13b, BPE16, BVHI17, BGR13, CCLP12, CRZ+18, CHC+13, CXS10, DK11, DGPM14, DVPV14, DFF+15, DHE+12, FRSA14, Fer17, FNSF+11, FCPF17, FD16, FSD+18, GPE13, GZ14, GH16a, HRC13, HDH12, HNN+17, HBY10, HZS17, JCX10, KV12, KV13, KSK11, KT10, LTL12, LHI14a, LG14, MZZ11, MGWR12, ME10, Mor15, NO16, OT12, PRP15, PMC+17, PSdPE+10, PH10b, PBE16, PPUBGD10, PLP+16, RKG10, RB12, RVP+11, SLT14, SEF+16, SH11b, SY16a, Sti15, SLLL13, SGH+16, SM17, TAG16, TSR+16, VVLG17, XZ11, YKO+11, ZSLL17, ZLJ10, GFG11, ACD+13a]. approaches [BH13, CME11, DBM+17, ECZWD17, HBI+17, LSH+11, RLDJ17, RSRR15, VLB+10, YJ11]. Appropriate [LZLC13], Approximate
GBVA11, HRK+10, HM13, JYC+16, JGS+17, Jor17, KV14, LC10, LZZ14, MZZ11, Niz13, OCW+15, ST11, SM14b, SYH12, Tsi17, VIT+15, VHA+10, VKAM12, VI17, VDVR14, YPKB12, YHCS11, dLC17, dVZ17, YMP14.
atom-typing [YPKB12]. Atomic [BMFG16, EPD+10, KGM12, AYYO17, BLDK+13, BB11a, CP15, EKH14, Elk16, EP12, EV14, HS12, JMLL13, JXSW15, KOP+14, KR12, Lar11, LZGS11, MK13a, MPA10, MPA12, Mat10, MPBJ11, NPG17, NOKJ16, OBW12, OV14, Pol13, RB13a, SS16b, SE14, SMP17b, VSA11, WWCL15, YOMT14]. Atomic-resolution [BMFG16, NPG17]. Atomistic [BH13, CHKR10, MBA14, SE14, BLKP12, CZNA11, DDP16, HDPM14, LZ12, MK13a, MPA10, MPA12, Mat10, MPBJ11, NPG17, NOKJ16, OBW12, OV14, Pol13, RB13a, SS16b, SE14, SMP17b, VSA11, WWCL15, YOMT14].

12
[FMG12]. balls [CVT+11, KRSC12, OV14]. band [QZI0b, QB10, QB11, SH11a, VLGK+17]. bang [KPF+15, MPA12].

Baoshan [JW12]. bare [SM17]. barrel [LJR+12, yOnCG10, WXL+12].

Barrier [BS10b, ZW17, GAJ+17, HRRD16, KG15, MSBF16, Yu12a]. barriers [HH10, MJLV14a, SFD14, XLYZ10, dALdS+15]. basal [LL13b]. base [BH13, BZH14, DKT13, FD14, HwM12, LZh+11, LW11, ONTTL16, SZZS16, VMPS17, WXY14, YKH+10, ZLL+10, ZLHH14]. base-catalyzed [WXY14].

Based [CSM16, SN16b, AMGB10, ALK+15, AM10, AO10, BSCCJ+13, BARM13, BPE16, BMPML+13, BHR15, CGPP11, CDS16, CH10, CGBK13, CB11b, DK11, DVPF14, DH14, Dil15, DJX+11b, DJX+11a, DFF+15, DPB+12, DXL+10, DCS15, DMM+15, EFAC13, EHSPT16, EV14, EBP13, EP15, EBPK17a, FCL+10, FCOGM12, FCPJM14, FMG12, Fra15, Fra16, GLB16, GH17, Gar12, GJMPAM+14, GBVA11, GV+10, GS13, GBSE11, GZ14, GKB15, HKRS11, HS11, HLS12, HTS15, HZY+10, HKR12, HB14, HEMCZE+14, HSB+11, HYUS11, HM13, HLWD15, ISN13, JWW+14, JLCA17, KGHC15, KZ+16, KNE11a, KC14, KP11, LFB14, LZ11, LDB+17, LMZ+11a, LMZ+11b, LWL+11, LLZ+12, LSH+11, LZS+17, LTA+11, LGKS17, MDTD16, MZZ11, MMM+16, MC10, MA16, MS13, MPNS13, MMZW14, MFR+17, MO15, MNNK10b, NC12, NC13, NC14, NJX+10, NG10, OVPK15].

based [OZLSBH12, PRP15, PLZ17, PCI11, PBBP11, PN13, PKIC11, PP14, PLH16, PBE16, PPUBGD10, RLD17, RZG+13, RV+11, SMI14b, SFG+17, SL+12, SLX+15, SFDE16, SLC+17, TYZ+16, Tak14, TTB+10, TS14, VGV+11, VVJ15, VKC10, VSA11, Vor10, WXL+12, WCDM11, Wei12b, WL14, WS13, WDHZ13, YJN+11, YZ16, YWJ+16, YZZ16, YDL+10, YJ11, YN15, YS13, YS15, YS10, YZZ+17, ZSLL17, Zha12b, Zha12a, ZY14, ZM10, ZY+12, ZT14, dCLFGL13, dSVdM+16, dVZ17, NKJ16].

based-on [CDS16]. bases [CWZB10, KASH14, MSLS10, SBW12, ZLL+10, Zha12a, ZBMZH15]. Basic [CMTvG10]. basin [JLH+14, RDRC16]. basin-hopping [JLH+14]. basins [SNB13a, SNB13b]. Basis [BLF14, BRLS08, BRLS12, PHK14, SN16b, TKN13, ACD+13a, ACD+13b, BLFZ13, BLL13, BLBG+13, BS10a, BLG10, CC11, DBM+15, DLZ15, Fer13a, HSN14, Hii13, HBL12, KK17a, KNP+12, LBH+11, LCW12, Leh15, LYC+13, Mit13, OAN15a, PML+12, PGdO+16, PO13, Pla11, PD11, RLD12, SWM10, SG10a, Sea10, SNKS10, Sun15, SG13, TH13, WX12, ZPP+16, ZLT13]. Batch [WHJH13, TJB12]. bath [CSEMB+16, MO15, Vor12, WAM17]. BaTiO [BE12, EB12, EBK13]. bay [QCR12, WvrSM14]. Bay-type [WvrSM14].

Bayesian [Fer17, GZ14, VZ14]. BayesWHAM [Fer17]. BD_BOX [DZT11].

Be [LDJ+10, EPH+15, IMSR18, KV15b, LWZ+11, NG14, SMGB11, TH13, TCPFC14, Zha12b, BWKW10a, CCM15, CM16, ZLY+16]. Becke [FPV13].

BeH [ZLY+16, ZLY+16]. behavior [AVHB18, BVY+12, CME11, CSAdOM17, FCD10, FTR15, KRTB10, LZY+12a, PD11, TDG+12]. belief [GFPSD17]. Benchmark [WSZW15, AF14, ANH+11, CSXZ17, cCVG+14, GAI14, KG15, RS13, ZWGO16, IKN13]. benchmarked [XYW+14].
Benchmarking [Ben17, GAJ+17, Hug12, LCM+14, GP11b, HRJ+14, HRJ+15, HZ13, JRSHP14, KSM17, RSG14]. benchmarkings [GPdC+16].
bonding-induced [YLZ+10]. bonding/back [PKK17].

Bonding [WFZ+18, DGB+13, ED15, FPRSI4, Gra18, HH15, Jab14, JJJ16, LZH+11, LZY+15b, LDG+15, OOK11, Rob13, SM16a, SK13, SJ16, YLL11, YKH15, YJ17, ZY14, ZYW+16, vSGP10, EHSPT16].
catechol [PBLdS12]. catechol-O-methyltransferase [PBLdS12]. Catenanes [LAHS16].
cathespin [ETLS17]. cation
[CCCLCGRO14, CGPP11, DLMLH12, DDM+15, RMGB11, SSGS15, ZYL+12].
Cationic [HJ13, W.JX+10]. cations [CC18b, KGR+16, LCL+10, LdSRR16, PVS12, SBD+17, Tac17, THP+15, ZWY+10a, ZWS+10].
cations/nucleobases [CC18b]. caused [GDV17]. cavitand [CC18a].
cavities [HRB+17, ZSB+16]. cavities/vacancies [HRB+17]. cavity [ZWS+10]. CAVS [SDZ17]. CB [BTMS12, CC18a, ILKR11]. CBS [KG15].
CBS-QB3 [KG15]. CC [Gil11, LLTC12]. CC2 [SGWA17]. CC3 [LZ14].
ccCA [RJWW12]. CASSD [BG17]. CBB [BTMS12, CC18a, ILKR11]. CBS [KG15].
CBS-QB3 [KG15]. CDOCKER [GLB16]. C enumerates [CROB16]. Ce [Ibr17, YOPB16]. cefotaxime [MFM+12]. cell
[ACS12, CGBK13, Elk16, Fom11, Gon12, JMS14, SRL+15, VÅA14, dACP12].
Cells [FPV13, ACS12, DZA11, DGL+13, JYS+12, LCL+15a, SV11, SLC+17, TZ12, YJN+11]. cellular [VBD11]. cellulose [GS12, LHT15, GS12].
Cellulose-Builder [GS12]. cementite [VED10]. cementite-type [VED10].
cementitious [TZ11]. CENCALC [SDMS13]. census [PPUBGD10].
CEPA [Sch12, SB14]. ceramics [RKB+14]. CERES [CPRS18]. cerium [SRL+15].
CF [JCG+10, NMLD13, RVdMB16, ZLL12, AR10, CROB16, NMLD13, ZZL+10a].
CFCF [NMLD13]. CFCl [JCG+10]. CH
[AR10, LW12, LdG+12, WLH12, ZZL+10b, ZYLL12, ZLL12, BS16b, CK12, CXW14, CY12, HVS16, JCG+10, KBC12, LW12, LGW12, LLTC12, LJG+11, MCU15, OK11, RVCFF13, TCPPC14, VVY17, VDVR14, WLH12, ZZL+10a, DR11]. CH/ [OOK11].
chaff [NMF+14]. Chain [xRWG17, BFI+13, CHK10, HAL14, KV14, KLS10, KMLS10, LP8+13, LZGS11, LP11b, LgV13a, LzLMP16, OZ14, PD12, PS10, QZM11, SA13, SISK10, SZBM13, TSN16].
chains [AFSW16, FP17a, JSW10, LZZ14, NPP13, Pla11, PLH16, TLdG+12, TS15b].
chalcogenides [SPS+12]. chalcone [CPLL11, YZ17]. challenge [SDM+16].
Challenges [HGY15, KHW17, HLvdV13]. challenging [CAP17, VT14, WLF11]. change [EMD17]. changes
[GDV17, GBS+17, HB15, Lk13, MjL14b, M017, RO14b, YZGS14b].
Changing [XVN17, LVG10]. channel
[HYZ13, PVL+13, SFBT17, SY16b, TCX+13]. channels
[KC13a, LL10c, OKIS17]. character
[BMB13, Cas14, Ibr17, RJJ+11, YSSB12]. characteristics
[PSL16, Gav12, LT14, Mat14, RDT14, TZ11]. Characterization
[VT14, XWSW13, CBP+15, DGL+13, GBW+14, GZZ12, Kop15b, MjBM12, MPA10, RNP13, ZYG+14]. Characterizing [LH11, PRSG13, She12, Yu12b]. characters [LSH+11, ZLL+10]. Charge
charge-assisted [SSGS15]. charge-inverted [UT15, YJ17].
Charge-transfer [JM11, ANH+11, EFAC13, YLZ+10]. charge-transport [HLWD15]. charged [BK13, KD10, MRO17, NPP13, RJS17, Tsi14].
Charges [WFZ+18, CCB15, IM17, JMLL13, RB13a, SN15, TBSM12, VSA11, Yan14, ZBG11].
Charles [HIS17]. CHARMM [MSK+12, AKMYB18, BF17, DPNM11, GLB16, GZM11, HBJ+17, HC14, JCL+17, KYB13, LZdlL+10, MSK+10, MMZW14, RR14, VHA+10, WCJ+14, XVA+16, YHVM12]. CHARMM-based [MMZW14].
Chatt [Bac12]. CHCICH [WLHZ12]. CHEM [ABB+13, CHR+12b, HNWF12, HLXH18, ICS+13, Kne11b, MSK+12, RK16a, SFCCK+15, SMM15a, GCC14, GKV+13].
Chemical [BLG10, BCP+10, JCGVPHT17, OM12, SLLL13, VGTI16, ALK+15, ASS+17, AAC+16, APA+14, Bac12, Ben17, Bou14, Cam15, CHP11, DKE+17, DS12a, DJ11, DB12, EOA+11, FB10, FVB10, GH10, GGM+12, GPGSM11, GPSCM12, HPT+16b, HHDC16, HJ13, Ii12, JKS+16, KV12, KASH14, KP11, LK11, LHZ+11, Li14a, Li14b, MDTD13, MDTD16, MN15, MAPB10, MSvG12, MSSP17, MFR+11, MMJ10, MH10, NCV10, NC13, NC14, OKIS17, OSHG17, ONTTL16, OC14, PTK11, PGD+16, Pie14, PBG17, RK15, RSKG14, SRA17, SLC14, SCOJ13, SEF+16, SKMS13, SHB17, TLA10, TG12b, TR12, UD12, VBM13, WBT10, WCT+11, WF16, Wei12b, WL14, Wu10, WDP+12, YZ15a, YB16, ZY14, ZBB16, ZT14, dCDP15, VBD11, Chat10].
chemical-bonding [MDTD13]. Chemically [EFAC13, ZZ12, Zim13].
chirality-based [PBBP11]. Chloride [KJ10, KLN16, Rab12, SG10b].
chlorides [RFP11, YZGS14b]. chlorine [Sán17, ZBMZH15]. chloroform [GC11, WG12]. chloroform-to-water [WG12]. CHOCL [LHHW14]. choice
The image contains a page of a document with text that appears to be a list of abbreviations or references. The text is not clearly legible but seems to involve scientific or technical terms such as "coarse-graining," "cobalamin," "codes," "coefficient," and "cofactors." It also contains names and codes that might be associated with specific references or authors in academic citations.

The text is not legible enough to extract meaningful information in a coherent format. It appears to be a page from a scientific or technical document, possibly an academic paper, report, or reference list.
Complete
[SN16b, CSKH15, LYC+13, OAN15α, SPS+12, SCSW13, TCB16].

Complexity-optimization [Leh15]. Completeness [Leh15].

Complexes [EHSPT16, GPdC+16, SKGB13, AvKSP16, AMK11, ASMS10, AK10, BCSJ+13, BLFZ13, BLDK+13, CSGOA17, CPRS18, CWT+12, ČMD13, CZH12, CGPP11, CAT+13, CMS13, CM16, CB11d, DS12b, DLP11, EPH+13, ED15, FHW+11, FCE15, FPB12, FB14b, GKI5a, GHL17, GPK+16, Gil11, Gra18, HDK+12, HSY+11, HKR12, HLB15, HRJ+14, HGHP14, HRJ+15, HDPM14, HG10, JRSHP14, KTI2, KPL13, KTK17, LS11a, LLC+10, LWL+11, LHHW14, L LZ+15b, LDZW17, LZX+10, LYSS11, LJJ+11, MC10, MFR+11, OSHG17, OOT15, PGCT+12, PHK14, PM13, PZBA13, RRH12, RHPWS13, RLD12, SB10, SLIB12, SPR+13, SDL14, SGH+16, TLY+12, TS15a, Tru18, TS02b, VB+10, VVP12, VYV17, WL14, XMS16, YKH15, ZCK+16, ZRCC12, ZZL+12, ZLZ14, ZDX11, ZYW+10b, ZYW+10a, ZBMZH15, vSGP10].

SGS¹⁶, SNDK¹⁶, SY¹⁶a, Su¹⁰, SDMS¹³, SDL¹⁴, SIG⁺¹¹, SIG⁺¹⁵, TF¹⁵, TLA¹⁰, TRA⁺¹⁶, VZ¹⁴, WDI¹³, WXL⁺¹², WCDM¹¹, WS¹¹, XWSW¹³, YDX¹⁶, ZCK⁺¹⁶, dCLFGL¹³, FHW⁺¹¹, Spr¹⁰]. computationally [JJAB¹⁶]. computations [AGB¹³, BLBG⁺¹³, CC¹²b, SRL⁺¹⁵, VECT¹², VAMS¹⁴, YB¹⁶, dACP¹²]. compute [HDM⁺¹⁵, KK¹⁷a, YAS¹³, dVAG¹⁶]. computed [CCYL¹¹, Fra¹⁵, Fra¹⁶, HJ¹³, JJH⁺¹³, RLDJ¹⁷, UKS¹¹]. Computer [BBG⁺¹⁸, CLC¹¹, BV¹⁴, CBP¹⁴, DSK¹⁷, GP¹², KSH⁺¹⁷, SYN⁺¹²].

Computer [BBG¹⁸, CLC¹¹, BV¹⁴, CBP¹⁴, DSK¹⁷, GP¹², KSH⁺¹⁷, SYN⁺¹²].

Computerized [NYH⁺¹⁷, VBDS⁺¹¹].

Computing [Ano¹⁰a, GK¹⁵a, HJ¹³, JJH⁺¹³, RLDJ¹⁷, UKS¹¹].

Conceptualized [PSP¹⁵].

Concepts [CLFRO¹⁸].

Conceptualizing [LLL¹⁰].

Conceptualization [IPAA¹¹].

Conceptualize [GRL¹¹, GRL⁺¹², dSVdM⁺¹⁶].

Concurrent [HS¹⁴b].

Conduct [SV¹¹].

Conduction [KJ¹⁰].

Conductor-like [KB¹⁴b, SDF⁺¹⁷].

Conductors [MRB¹⁴, NFI⁺¹⁶].

Cone [BKLA¹³].

Confidence [KSM¹⁷].

Configuration [SS¹³a, Cas¹³, CTP¹³, CAP¹⁷, EK¹⁷, FF¹¹, GA¹⁴, GP¹¹a, HPT¹⁷, HBL¹², LCB¹⁰, MIS⁺¹⁵, MCP¹⁸, ZRCC¹¹].

Configurational [RO¹⁴a, WDHZ¹³].

Confinement [CC¹⁸a, TM¹⁶].

Conformational [AD¹⁰].

Conformational-space [AD¹⁰].

Conformationally [AFPI¹³, CP¹⁵].

Conformations [CC¹²b, DJ¹³, LC¹⁶, LZZ¹⁴, NR¹¹, OCL¹¹, PH¹⁰a, RVP⁺¹¹, ZC¹⁴].

Conformers [DBG¹¹, HH¹⁰, HH¹¹, LG¹¹, MS¹⁷, TCGNT¹⁸].

Conjugated [MSV¹⁶].

Conjugation [LBH⁺¹¹, NC¹³, RKGN¹⁰].

Connected [ACD⁺¹³a, ACD⁺¹³b, NR¹¹].

Connectivity [IP⁺¹⁰, ZYS⁺¹⁰].

Conquer [BRP⁺¹², BGR¹³, KKN¹¹, NYH⁺¹⁷, NN¹⁸, NKN⁺¹⁶, WX¹², YN¹⁵].
consensus [DMJ17, SRA17, PLV^{+11}]. consequences [KG15].
conservation [MB16]. Conserving [PH17]. considerable [LLD17].
Consideration [Fom11]. Considering [CSEMB^{+16}]. Consistent [MKO^{+13}, POB13, BKŠ^{+11}, BY11, BK17b, DK11, GBVA11, Hill13, HKR^{+14}, JSXH16, KT10, LBH^{+11}, LCW12, ON14, SPS^{+12}, SMP17b, SCSW13, TYN15, VGV^{+11}, YN15, ZBG11, BLKP12], consistently [IM17].
consolidate [BK17c]. constant [AB16a, CS14, KSK11, KN^{+12}, MK17, PS13, RAGLL11, STM17, Vor12, WOH16, WOH18, dACP12].
constant-distance [dACP12]. constants [AAMD^{+11}, CBH14, CPK12, DSD^{+11}, ECZWD17, FD14, GAI13, GKR13, MG11, OZLSBH12, Ray13, RSG14, RKG11, Rui11, RKK16, SACdG14, TTR^{+12}, Tsi14, WL14, XWW^{+11}, YS13, ZZZ^{+10b}, ZLLL12]. Constraining [SLG15, GREA11, GA12, VBV13b, WBN^{+13}]. Constraints [KB11a, OPBR17, OZS^{+13}], constructing [hh10], constructed [HDL^{+17}, ZLY^{+16}]. Constructing [Che17, HS16b, LG11, SWA13].
construction [AGR11b, JCPC11, KSR17, LZX16, UIW^{+10}, WWD14, YD17].
contact [DBK17, MK13a], contacting [Mau14]. contacts [CCCLCGRO14, Ham11, Kri10, PRP15, SNDK16]. containing [AKMYB18, ACD^{+13a}, ACD^{+13b}, DGL^{+13}, GP12, GPaC^{+16}, HDP14, KLN12, LDZW17, VDVR14, YHVM12, YDX16, ZZZ^{+12}, ZM10].
Continuous [Dry14, PLA13, PBZA13, GFM11, LBGS16]. Continuum [JJJ16, Cam15, CXY11, HZSS17, ISO^{+13}, LFN^{+10}, MC1U15, SK12, SK17, TNG^{+10}, WC13, WRHF10, XZ11]. contraction [HSN14, STM17].
contractions [KK17a]. Contrasting [TS15a], contribution [Pro16].
Contributions [JJH^{+13}, ARRC15, BCNH^{+11}, CGR16, CPN^{+17}, ENKK^{+17}, WS10].
control [BVY^{+12}, DPAB16, Hel13, HH16b, LPLB16, SR10, XYW^{+14}, ZQ14].
controlled [VGTL16]. Controlling [FWB14]. convective [SBN^{+16a}, SBN^{+16b}]. Conventional [SHL^{+13}, BKŠ^{+11}]. conventions [BCJ^{+14}], converged [FLM11, GR10a, KHWB17]. Convergence [GS16, LT13, ZHI12, ASS10, BKŠ^{+11}, GS15, ON14, RFH10, SL17].
converges [SH11a]. Converging [OSR16], conversion [LDB^{+17}, LZZ^{+15a}, LCB10, RVP^{+11}], convex [CLFR18], convolution [SZTSM10], convolutional [LHO17], cooperative [DBG11].
Cooperativity [RS14, AFSW16, JSW10, SM16a], coordinate [AMGB10, HSN14, Hel13, LL15, LL13a, MS10, WBN^{+13}]. coordinates [BK15, LWK^{+14}, NCV10, PH10a, Sch13, VBV13b, You10, ZT14].
coordination [ASMS10, CRC13, HS16b, KJ10, Mor15]. copper [JRSHP14, KKP11, SBC^{+11}, SPR^{+13}, WC14, ASMS10, CPK12, HRJ^{+14}, HGHP14, HRJ^{+15}, XSW13]. coprocessors [WS13]. Copyright
[Ano16-94, Ano16-89, Ano16-95, Ano16-96, Ano16-97, Ano16-98, Ano16-99, Ano16-100, Ano16-101, Ano16-102, Ano16-90, Ano16-91, Ano16-92, Ano16-93].

coupled-cluster/Kohn [VV14]. coupled-electron [SB14]. coupling [AMQ+14, BLZ+13, FD16, GP11a, KSK11, KNP+12, Kos16, LLB+12, LSH+11, LWD13, MG11, MCP18, PS17, Rui11, RRK16, SACdG14, Wu10, YB11, ZTH+15, ZLZ14, ZYvIZ14]. couplings [CSEMB+16, LK11, LZH+11, dVAG16]. covalency [HS14a]. Covalent [WT10, FCCP17, HAI+16, KAR12, MR17, OZS+13, RS13, SFA17]. CovalentDock [OZS+13]. covalently [CZA11]. Cover [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano13a, Ano13s, Ano13t, Ano13u, Ano13v, Ano13x, Ano13y, Ano13l, Ano13i, Ano13c, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30, Ano13-31, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g,

D [LWD13, OZLSBH12, RSKG14, UT14, YZ15b, AKMT11, BWKW10a, BWKW10b, Chn10, DVVP14, ETLS17, GMMH*+16, GSS13, GPK12, KTT16, LTT16, MA16, MYT*+14, MH11, MSSP17, MH10, PSS14, PZBA13, RSKG14, TFQ*+10, UT15, YJN*+11, YDL*+10, ZLY*+16, TS15b, YOPB16]. D-
dance [JW16]. dancing [LL10b]. Dancoff [HH17]. data [BRGN12, BCP+10, FNA12, Fom11, HPT+16b, HM13, JZL+17, JS17b, LAS+14, MMB+17, MCC12, RO14a, REL+14, RCM+13b, SB10, XW15].
Decoding [MBT14]. decoherence [CSEMB+16]. Decomposition [DBGO+17, AMAA+11, MBMJ11, FFA14, GS14, GCW16, ISN13, KNE11a, KRSC12, NJX+10, PS17, RSLML12, SSXS15, STM17, SKGB13, WWU12, WES13, dSD12a, dSD12b, dLC17]. decomposition-based [KNE11a].
deficient [YLL11]. defined [JJAB16, GY10]. definitions [JY+16].
Definitive [TCGNT18]. Deformation [WYL+15, Gav12, MRB14, WCY+11, WCT+11, dLC17]. deformations [HRMAL+13]. Deformed [CSAdOM17, TFQ+10]. degree [Clo15].
delocalization [BK11, FVB10, HSB+11, Jan16, Mat14, SS13b, SSA+17].
delocalized [Alg17, HSH15, dLC17]. DelPhi [DLSA14, JLC17, LLZA12, LPLA13]. DelPhiForce [LCA17]. deltahedra [LK16b].
Densities [ATM18, HGCG10]. LP11c, MA16, REL17, dLC17]. Density [AMK11, CD13, CWH11, FPV13, FD16, GNGC10, GWJP11, INT18, JYS+12, KKPT11, LBGS16, LGW12, LBTV12, LPM17, MWJ+11, Oht16, PPH+14, RB12, RSLML12, TS10b, WDLG12, WGN+16, YJ11, ZLZ14, ZYG+14, ZWY+10b, ZYW+10a, dS812a, ALK+15, Ano15-59, AG12, ASS10, BY11, BBLG+13, Ben17, Boz18, BBI+11, BZB+13, BG13, CHG+16, CRZ+18, CDB10, CR14, CAA10, CSEO15, CGR16, CKH17, CSXZ17, CC11, CAP17, CNK97, CPL11, CB11d, DH17, DWC17, DIL15, ED15, EPI12, FED17, FCPJM14, GAI14, GHL17, GZL+12, GWJR18, GMG+10, GSS13, Gra15, GEG11, GAY+17, Han11, HNWF07, HNWF12, HPT17, HEMCZE+14,
HLBLCCG15, HRMAL+13, HH16a, HH17, Hii13, Höf14, HG10, HOK17, IKN13, IM17, JCP14, JLH+14, JW16, KD10, KB10, KSH13, KOP+14, KGHK12, KB13, KZZ+16, KLN12, KYG+15. density [LL15, LCW12, LBT11, LHKS12, LWGW12, LH14b, LLH17, LZS+17, LKi16a, MAK+14, Mat14, MEZ10, MKM+17, MFR+17, MMJ10, NF17, NN18, NO16, NKK+16, NFI+16, NS17, ORZ11, OM12, OVPK15, PAK17, Pie14, Pil17, PW12, PZM15, QZi10b, RJJPB12, RS13, RB13b, RSG14, Rod13, RPWS13, RHT+15, REV+17, Rui11, RSKG14, SPS+12, SGJP+17, SH15, SS16a, SDF+17, SFG+17, Sea10, SCW11, SDM+16, SEF+16, SE14, SH14, ST13, SHL+13, SPR+13, SZX13a, SZX13b, SMM15a, SMM15b, SMM+18, SKTT11, SSZ16, STS15, SK11, TLdG+12, TN10, VCV+11, VAR12, VECD12, VV14, Viki11, VLI17a, VIII7, VED10, Vy16, WKC10a, WHL+10, WGL+11, WCWW11, WWU12, WWCL15, WHX+10, WL14, WTH+16, XYW+14, YLZ+10, YS13, Yu12b, ZTH+15, ZXS+10, ZSWL12, ZKE+17, ZDX11, ZLHH14, ZGS+10, dSdS12b, dSdLBNB17, dLC+17, CDM10]. density-based [LZS+17]. density-density [SS16a]. density-fitting [Boz18, Hil13]. Density-functional [Oht16, CHG+16, HNWF07, HNWF12, IM17, JCP14, KZZ+16, MFR+17, NF17, NN18, NO16, NKK+16, RHPWS13, SP5+12, VED10]. density-peaks [LZS+17]. deoxy [VM11]. deoxyribonucleoside [XVN17]. deoxyribonucleosides [RJWW12]. dependant [PNG10]. dependence [BRLS08, BRLS12, FE14, GZ12, KKO+16, LG12, LFE+10, LLTC12, MP17b, PZA15, PBE16, PS10, SGPS+17, SY16b, AD10, MGWR12]. dependences [SMM+18]. dependency [DKT13, PHDH13]. dependent [AALCM11, BS16a, CHG+16, CP15, CKP10, DP15, EP+10, GTK10, HNWF07, HNWF12, HG10, HYUS11, JYS+12, KCPMG12, LPLS16, LZ12, LGS11, Mat10, NS10, PAK17, PPJ14, PVJ10, RHPWS13, REL17, SY16a, SFBT17, Viki11, WHL+10, WHX+10, YLZ+10, ZXS+10, ZDX11]. deposition [SE14]. derivation [SCMA+17, VVV+15b]. derivative [MY17b, TPL+10]. Derivatives [KTSW11, CWHH11, CZH12, CBTZ16, CROB16, HSZ+11, JS17a, JYS+12, KG11, KPL15, LWGZ15, LWGW12, MFR+11, MIS+15, NS10, PC14, RV+12, RFN15, REH13, SBR13, SZX13a, SZX13b, VVJ15, VVY18, VSD10, WGL+11, WRG+17, WDP+12, ZsA10, ZW11, ZZ12, ZZWX11]. derive [RVP+11]. derived [CIKT13, GMMH+16, KSR+16, LZGS11, MCLD10, OSS10, PLZ17, REL17, SOYC12, SE14, TBSM12]. Deriving [CCYL11]. descent [MS16]. describe [RHRCH16, RS13]. described [BM12, CCB15, KDS17]. Describing [MKGA10, JCP14, JBSQG11, MY17b, VBD11]. Description [FD16, MR17, BD12, BE16, Cam15, CRZ+18, LZLC13, MFR+11, PM13, PLH16, PVAM16, SRF+17, SSA+17, TKNN10, WvRSM14, WL14]. descriptor [DFF+15, MA16, PRTY+17, TMJ15, WMW+10, Yap11]. descriptor-based [DFF+15]. descriptors [FCL+10, FZL+15, GJMPAM+14, MH10, NKJ16, PKIC11, RB13b, TTB+10,
Wei12b, YLCX10, Yap11, YDX16, ZWX16. **Design**

[LCM16, Tak14, TZ12, VBD11, AM10, AFBR17, BAMR13, BEPM14, BPC13, CBP14, DPB+12, DPOS16, DGL+13, GS14, GMZ12, HHEY10, ISP+10, KSD+12, LABSG17, LBS10, MS16, PC11, SYDS11, SGM+13, Sli15, TKXT13, TRA+16, VVY17, VMPS17, XHLH16, ZSB+11, ZWP11, ZYW+16, ZWS+10]. **designed** [BL13]. **Designing** [BL13]. **desolvation** [BK17a]. **detailed** [ABB+12, ABB+13, GPdC+16, MP13, MO15, MC10]. **determined** [CHP11, IM17, YK13]. **Determining** [DSD+11, SGPJS+17, SDB+16, WOH16]. **detonation** [LWWG12]. **developers** [GKV+13]. **Developing** [CK17, DSK17, LPS+13]. **Detection** [CBP+15, BV14, CLX+10, ZLM+15]. **detectors** [SK13]. **Detection** [LB13]. **detailed** [ABB+12, ABB+13, GPdC+16, MP13, MO15, MC10]. **detected** [TCPPC14]. **Detecting** [DVVP14]. **Detection** [CBP+15, BV14, CLX+10, ZLM+15]. **detectors** [SK13]. **Detection** [CBP+15, BV14, CLX+10, ZLM+15]. **detectors** [SK13]. **Determination** [KLS10, KMLS10, AFPI13, BLS10, FSC+14, KR12, Kne11b, LPS12, CK11, LAT10, LAT11, MS13, NHN16, PG14, PBG17, SS16b, SPR+13, WAM17, WOH18, XLYZ10, YKO+11]. **determine** [VDVR14]. **determined** [CHP11, IM17, YK13]. **Determining** [DSD+11, SGPJS+17, SDB+16, WOH16]. **detonation** [LWWG12]. **developers** [GKV+13]. **Developing** [CK17, DSK17, LPS+13]. **Development** [GLB16, GMMH+16, LLJ12, MMB+17, MMZW14, MCP18, RZG+13, RLD12, SC17, TNYN16, WPM+15, ZA15, CYG+15, GMASBF16, GCP+13, LPLA13, PZA15, PPM15, WDHZ13, YWZ14, ZA10, ZSYH12, CRC13, WCM10, WCM11]. **developments** [YWJ+16]. **Deviation** [CSAdOM17]. **deviations** [HDL+14, KG15]. **devices** [DJX+11b, DJX+11a]. **Dewar** [Bac12]. **DF** [Chu10]. **DFT** [BRLS12, CLFRO18, SIG+15, YJ17, ZZZ+16, AALCM11, AR10, AF14, ASMS10, BTMS12, BRLS08, BIL10, BTB+11, CLFRO18, CMM+18, CCB15, CH10, cCVG+14, CVS10, DJD12, EFAC13, FVP14, FPRS14, GMASBF16, HSH15, HRJ+14, HRI+15, HBI+17, JRSHP14, KG15, Kar17, KT12, KKL+13, KM13, KP10, LEDDOLdV17, LRBB12, LZX+10, LZHH11, LZX+10, LSH+11, LYSS11, LZCL13, LH41a, LLSW14, LCM+14, MMS16, MDTD16, MG15, Mat10, MS11, MVKS10, Mor15, MCK17a, MCK17b, NKJ16, NC12, NMLD13, PTK11, PHK14, QLYL10, RS17a, RDF+11, RS14, RRC+15, RN17, REL17, RK3+14, RK15, SRF+17, SWM10, SRL+15, SDL14, TSNC+17, TG12b, Tsi14, TSI15b, Tsi17, VVJ15, VECT12, VAMS14, WKLC12, WYG12, YZGS14a, YSRSS10, YZ15b, XZZ17, ZCK+16, ZWGO16, ZWWT12, dSDdAR10]. **DFT-based** [NKJ16, NC12]. **DFT-derived** [REL17]. **DFT-MD** [GMASBF16]. **DFT-predicted** [WKLC12]. **DFT/MM** [RN17]. **DFT/MD** [GX116]. **DFT/PP** [LXZ+10]. **DFT/TPD** [LXZ+10]. **DFT/TDDFT** [MS11]. **DFTB** [SA10, FHT+15, MR17]. **DFTB/MM** [RN17]. **DFTB3** [KW15]. **DGeCl** [MCLD10]. **DH** [SGPJS+17]. **DH2** [SBW12]. **di-mannose** [VM11]. **di-tetrazine-tetroxide** [MCAG+16]. **Diabetic** [DHOG13]. **diabetes** [PC11]. **Diagnosis** [MC12, TDKT10]. **diagonal** [BMBJ11, KTK17]. **diagonalization** [BK+11, HRK+14]. **diagonalization-free** [BK+11, HRK+14]. **diagram** [OV14, VED10, ZY14]. **diagrammatic** [WWD14, YD17]. **diameter** [AS15a, KGHK12]. **diamond** [JWO15, WGN+16, WGLG+16, ZSL+11]. **diamond-like** [ZSL+11]. **dianion** [DP11, GRD+10, YZGS14a]. **diarylalkyl** [NS10]. **diarylalkyl-imidazole**
diarylalkyl-triazole [NS10]. Diarylbenzofuranone [SFA17].
diaryl dichalcogenides [ZWGO16]. diastereoselectivity [AARP17].
Diatomic [ATM18, LS11b, Tsi14]. diatoms [TG12b].
diatropically [CPN + 17]. dicarbide [Kop16]. dichloropentacene [ZYG + 15].
dichroism [HNHR13, SB13, SB15]. Dickerson [IPAA11]. dicopper [RHPWS13].
dielectric [DOM + 11, DSF17, JLCA17, KCPMG12, PS13, WXL17, YHW17].
Diels [BJSI12, CC18a, FB14a, GNDA + 12, LZH16, ORZ11, ST13, dSVdM + 16].
difference [LLH17, WL10, Yon16, ZRCC11]. difference-dedicated [ZRCC11].
differences [BVC13, GO13, HDL + 17, KHWB17, LGL11, PM18].
Different [PH15, BRGN12, Di15, FZL + 15, GO13, GR11, GFPSD17,
MCS11, MC12, MPA12, NMLD13, NOKJ16, RHNN10, Rao11, SLP + 12, SIG + 15, TSNC + 17, UT15, VVY18, ZR10].
Differential [HHT + 13a, HHT + 13b, CJL + 13, MY17a, MY17b].
difficult [RJS17, VDVR14]. diffuse [YCGA10].
diffusion [CPV + 12, CC12a, GC11, RSLS13, ZW17, WH11].
Diffusive [SM16b]. digitized [YNH + 17].
dihedral [CYG + 15, OZ14, SZBM13, WES13, ZRL + 15]. dihedrals [LDH + 14].
dihydro [RS17a]. dihydrofolate [RKDM14].
dihydrogen [PM13, UT14, WHX + 10].
dihydrogen-bonded [UT14, WHX + 10].
dihydrogen/hydride [PM13].
dihydropyrido [YZ15b]. diimide [MCC11].
diiodide [AARP17].
diiodide-induced [AARP17]. diketopyrrolopyrrole [HLWD15].
diketopyrrolopyrrole-based [HLWD15]. dilanthane [ZLZ14].
dilute [KVR10].
dimension [HKRS11].
dimensional [BPLL12, KYT + 17, KRSC12, KTO13, MB16, PJ13, SG10a, TYN15, TCX + 13, TKC + 11, ZWX16].
dimensionless [MS10].
dimensions [CHC + 13, HAL14, SRL + 15].
Dimer [LWL + 16, ARRC15, ANH + 11, BPPS17, CBTZ16, FCL + 10, FMNC11,
KCB + 12, LCB10, PD11, SKY + 11, Tac17, WWKS16, YCGA10].
dimeric [PS14].
dimerization [DSD + 11, KAR12, TLA10, WJX + 10].
dimerization/oligomerization [KAR12].
dimers [BCNH + 11, BWKW10a, BWKW10b, CLFRO18, CK10, JKS + 16, LJVW11a,
LMI + 14, PVS12, RS13, SZSS16, VT14, Zha11].
Dimetallic [ZYG + 14].
dimethyl [GC11, WLC12, ZSWL12]. dimethylaminoazobenzene [KP10].
dimethylaminophenyl [YLZ + 10].
dimethyl nitrosamine [FFA14].
dimyristoylphosphatidylcholine [ML14].
dinitrophenol [MIS + 15].
dinuclear [OS10, QLYL10].
dioxide [GM17].
dioxetane [KCN + 16].
dioxide [SC17, Kop17b, QZ10b].
dioxygen [DSM + 11].
dioxygenase [DGH + 11].
dipeptide [EJ13, IO13b].
dipeptide [DHF + 11, RSL16].
diphenyl [GKR13, Ray13, RKG11].
diphenyldimethane [KLN16].
dipidium [KT12].
Dipolar [YIZ13, CSS17, LKI11].
Dipole [GH16b, LIRL + 16, ZBG11, AS15b, BLB + 13, DHOG13, GH16a, HBKL10,
KCB + 12, LHHW14, MNNK10a, MNNK10b, PC14, Yan11].
dipped [IN13].
Dipole [JKS + 16].
diradical [YSSB12].
Direct
[LS11b, WM17, FF11, FSSW17, JCG + 10, RSB + 13, Yu12a, LLHM16].
directed [CH14, HHBY10]. direction [PAK17], direction-dependent [PAK17], directionality [CRC13]. disaccharides [GMSV14]. disconnectivity [SOJ14], discover [Hsu14]. Discovery [AKMT11, Aki16, FMG12, HYYZ13, Ibr11, IGK16, PVJ10, Zim13]. Discrepancy [Yan11], discrete [EJ13, MCUJ15, WAM17]. discretization [AD10, LLFH16], discriminate [UCFR16], Discriminating [FZL+15]. discrimination [YL13], discriminative [KS12], discussion [CDB10], disjoint [BK13], dismutase [GEP+14], disorder [LLL+12]. Disordered [MYT18, GP12, LC16, LC17a, NDLW13, SJZ+15, ZC14]. dispersion [AG12, BCNH+11, CLFR08, cCVG+14, GEG11, Han11, Has14, HGHP14, ITIN15, KB10, KSSH13, LCM+14, RJPB12, STS15, SBB11, SSB13, TG12a, WM17]. dispersion-corrected [CLFR08], Dispersive [TG12a, SDB+16].

dispersion [AG12, BCNH+11, CLFR08, cCVG+14, GEG11, Han11, Has14, HGHP14, ITIN15, KB10, KSSH13, LCM+14, RJPB12, STS15, SBB11, SSB13, TG12a, WM17].

discussion [CDB10], disjoint [BK13], dismutase [GEP+14], disorder [LLL+12].

dissection [BMFG16], dissimilarity [HS17a, YDL+10], dissipation [VVG13], Dissipative [PH17], dissociation [CCJ+11, GCCM15, Gil11, LBC+12, LL10c, MH11, Rob13, WSH10, YPvD13, ZWLX11].

dissociative [HBL12, RIJ+11], dissolve [SG10b].

dissolved [SIG+15], distance-dependent [KCPMG12], distances [BLDK+13, SSWX14, SMGB11].

distance-dependent [KCPMG12], distance [PHDH13, DCˇS15, Hug14, JMS13, KCPMG12, LZ12, PPUBGD10, RPNP10, RH12, UT14, Yon16, ZT14, dACP12].

distance-dependent [KCPMG12], distance [PHDH13, DCˇS15, Hug14, JMS13, KCPMG12, LZ12, PPUBGD10, RPNP10, RH12, UT14, Yon16, ZT14, dACP12].

divergence [PNG10], diverse [KSM17, LLC+10], diversity [WF16], Divide [NNK+16, BRP+12, BGR13, BK17c, KKN11, NYH+17, NN18, WX12, YN15].

Divide-and-conquer [NNK+16, BRP+12, BGR13, KKN11, NYH+17, NN18, WX12, YN15].

divide-and-conquer [NNK+16, BRP+12, BGR13, KKN11, NYH+17, NN18, WX12, YN15].

divide-expand-consolidate [BK17c]. Dividing [SLT+15], division [WWW+18].

dropping [CH14, HHBY10]. direction [PAK17], direction-dependent [PAK17], directionality [CRC13].
Pro16, RTP+13, SA13, SPL+18, SHL+11, SKKS13, TO10, VSD10, Vor10, WdVN12, WZ17, XML+15, ZL11, ZWL13, ZSB+16, dVZ17. **docking** [LZ11], **docking-rescoring** [BMR11]. **DockoMatic** [JBAM11]. **Does** [MBFG15, MIS+15, SV15]. **DOI** [Ano15-59]. **Domain** [KNE11a, AC11a, IMK+16, MBT14, RZ16, SFBT17]. **domains** [FCPJ14, OOK11]. **dominant** [Hua16]. **done** [LRvE17]. **donor** [DGL+13, Gil11, Lu11, MSV16, MIS+15]. **donor**- [MIS+15]. **donors** [LC10, TZ12]. **dopant** [SRL+15]. **doped** [GAMAC+14, LLC17, PGC12, TN12, VS14, WMW11]. **doping** [HYL+11, LLD17, WMW11]. **DOT2** [RTP+13]. **dots** [DPAB16, WAB17]. **double** [Alg17, BE14, CCB15, CGR16, CC11, FC16, KM13, LBH+11, LYC+13, LLL+12, SGPSJ+17, SP13, Sea10, YYT12, ZLY+16]. **double-Hybrid** [CGR16, LBH+11, SGPJS+17, Sea10]. **double-wall** [BE14]. **doubly** [CSXZ17, SZX13a, SZX13b, ZWLX11]. **Douglas** [YS13]. **DOX** [RCR+16]. **DPO** [WGL+11]. **DPPC** [LBDP12, oRWGS17]. **DPT** [BH13, BZH14]. **Dramatic** [MLY+13]. **Draw** [LBB+15]. **drawback** [BRGN12]. **Drew** [IPAA11]. **driven** [BSL11, BG17, DSM+11, HXM+16, KC13b, LLL+12, REL17]. **driving** [RN17, YZ17]. **Drude** [LRvdSM15, Ric16, SM14b, ZM10]. **Drug** [GSHM10, MBA14, FLM11, GMASBF16, Ibr11, ISP10, PC11, PVJ10, VHA+10]. **drug-like** [VHA+10]. **druggability** [LG14]. **drugs** [PPUBGD10].
LH11, LJR+12, LL13a, LRvdSM15, LCH10, LYC+13, LMI+14. **dynamics**

[LPE+10, LLTC12, LZS+17, LPLB16, LLT12, LBDP12, MBT14, MKS+12, MSC+10, MJJC14, MN15, MCR17, MFEM15, MADWBI1, MKM+17, MB16, MHRR11, MO17, MIOM13, NPTS16, NST14, NFPD13, NFG+13, NKN+16, NHK+13, NTNY15, Obt16, ON14, OGL10, OCL11, OLY17, OT12, OCW+15, PMC+17, PSS14, PAK15, PH17, PL14, PM13, PD12, PHT17, PVZ13, PS10, PVAM16, RS12, Ras17, RO14a, RO14b, RFN15, RR14, RdA12, RVdB16, RLG14, REL+14, RJRR15, RSB+13, SHMO11, SLT+15, SWM10, SSWX14, SOM+13, SJ17, SR18, SYN+12, SM16b, SK13, SKMS13, SFLG+17, SLLL13, SJ16, SV11, SBvG14, SAvG15, Tac17, TNYN16, US11, Vor10, VM11, WKLC12, WBN+13, WAM17, WC11, WHL+10, WH11, WWKS11, WLC12, WES13, WG14, Wu10, WBVE16, YPvD13, YJXZ13, Yon16, Yu12a, ZZY+16, ZX11, ZDKM12, ZBP11, ZP13]. **dynamics** [dCLFGL13, dSVdM+16].

dynamics-based [Vor10]. **DynamO** [BSL11].

E-I [GM17]. **EA** [MLCD11]. **EADock** [GZM11]. **early** [CBP+15]. **earth** [Ano11, JHMB+09, JHMB+11, WD10]. **easy** [TKT11, VVV+15b, Yes12].

Ebola [OLY17]. **economic** [PN13]. **Ecoupling** [dVAG16]. **edge** [DWZ+17, DJX+11b, PDG+16]. **edge-modified** [DJX+11b]. **editing** [You10]. **Editor** [GKR13, GPGLM12, JW12, Ray13, RSLML12, WM12, vLBBR12, Ih12, BCJC+14, Cor17, KR14, Man13, SFLG+17, VVB13]. **Editorial** [Ano16-56, Ano16-103, Ano16-104, Ano16-105, Ano16-106, Ano16-107, Yan16, Ano16-129, Ano16-108, Ano16-109, Ano16-110, Ano16-111, Ano16-112, Ano16-114, Ano16-116]. **Editorials** [BEFS13]. **Effect** [AB10, CSKH16, CD11, CXS10, DKT13, DJX+11b, DLW12, FCGM12, FHK+12, GFGS18, HLBLCCG15, JWO15, JYS+12, KTT16, KCL+14, KL16, LLvG10, RWR+13, SLT14, SBC+11, SY16a, UT15, VLGK+17, WDLG12, ZJZM13, ZLL+10, BLG10, CC11, IYK11]. **Effective** [GKV+13, IM17, YZ16, AASP18, DMN15, CVG14, DR11, DMN14, GA12, KS13a, KS15, LCM+14, PHC13, PRY+17, PS13, RLD12, SB+16, UCFR16, WX5+12, YZ16, YZ15b, ZKH+10]. **Effects** [CS14, JAH+17, LGOM+15, LCH+15, Mor15, SEM12, Tac17, YCK16, AS15a, AK10, AS18, BB1+11, EP+13, RA15, FD16, GMG+10, HS16b, HLBLCCG15, INT18, JMX+16, KG11, KYCL11, LGVA14, LHT15, LWD13, MKGA10, MBC11, MRK11, MLY+13, MUC15, MGS+16, NAS15, ORZ11, OS17, OCW+15, PDM+10, PC14, RMGB11, RRS16, SSWX14, SMP17a, SFLG+17, TM14, TYN15, UT14, VKAM12, WXY14, YIN17, YJ11, ZPP+16, Zha11, ALW+10, THP+15]. **Efficacy** [LC17a]. **efficiencies** [RO14a]. **Efficiency** [AC11b, BB11b, BB11c, FE14, GBSE11, XFG+16, AC12, GSHM10, LY10, LWL+11, LZ15a, MKGA10, RO14a, XFG+15, vLBBR12]. **Efficient** [AB16a, BC13, BSA14, Cas13, DMAH15, DBF14, EP10, GCWS15, GPK12, Ham11, HNS16, HDL+14, HIW17, JMS13, LZ11, LGKS17,
MKS+12, NYN17, PSS14, PAK15, Ran12, RJS17, SS16b, TJBJ12, WHAS+16, WM12, ZZ14, ZKE+17, AM10, BW11a, Boz18, CBP14, CHG+16, CY09, CY13, CMS13, DS15, DGL+13, GREAl1, GWZX12, HDL+17, ISK14, JZ17, KB11a, KV15b, LFBl4, LPK16, LLZA12, LZL+15a, LZS+17, LAS+14, NPTS16, NN18, OK16, PW12, PBG17, Ran13, RR14, Rod13, RSL16, SCOJ13, SA13, SSMW09, SCW13, SWB+12, Sun15, TO10, WJG+13, WOH18, ZWP11, Zha12b, Zha12a, vLBBr12, WHAS+10]. Efficiently [WES13, ASMS10, DDK14]. EFP [CBG17]. egg [Pla11, ZP13]. egg-box [Pla11]. EGRAD [vW11]. Ehrenfest [Dil15, FED17]. eigensolver [KZZ+16]. eigensolvers [ZVY+15]. eigenvalue [HLXH17, HLXH18]. eigensolver [KZZ+16]. eigensolvers [ZVY+15]. eigenvalue [HLXH17, HLXH18]. eight [KZZ+16]. either [TCPPC14]. elastic [ECZW17, LBTV11, QB10, QB11, SH11a, XTY+14]. Electric [GH16b, LL13b, BLFZ13, BLBG+13, BS10a, CXS10, GH16a, KZK+12, MRB14, SH15, SLX+15, Yan11, YJ11, YCK16, ZSL17]. electrical [LLL11]. electro [TMJ15]. electro/nucleophilicity [TMJ15]. electrochemical [SIG+11, SGH+16, YJ11]. electrochemistry [DSK17]. electrode [MKO+13]. electrolytes [HAL14]. electrolytic [SV11]. electromagnetic [SEM12]. Electron [BK11, Bar14, BLG11, BWKW10a, BWKW10b, CEB10, HS16a, HRMAL+13, HGGCR+16, KGR+16, Pil17, WWU12, ACD+13a, ACD+13b, ABDG12, BHB12, CDB10, CAA10, CWHH11, CTP13, DaGR15, ED15, EP12, ESM+12, EP15, FRSA14, FED17, FCPJ14, GND412, HSH15, HPT17, HEMCZ+14, HAP+12, HBL12, IYK11, Jan16, JBSQG11, KPL13, KTK17, KYG+15, LW16, uLhY11, LHO17, LY16, LLJ12, LP11c, MKGA10, MRB14, Mat14, MBFP15, MKH+13, MCK17a, NYH+17, NS17, PAK17, PGdO+16, PSC11, PS17, PN13, PTB+15, PHT17, PC16, Ras17, Rod13, REL17, RSKG14, SB14, SHB17, SGL13, SK11, SSA+17, VGV+11, VECT12, VL17a, VI17, Vy16, WLW+10, WMW11, YKH+10, YLL11, ZPP+16, ZSG+10]. electron-correlation [NYH+17]. electron-deficient [YLL11]. electron-hole [PTB+15]. Electron-pair [WWU12]. electron-withdrawing [CWHH11]. Electronegativity [FCPJ14]. Electronic [AMQ+14, ASS10, DAdGR15, GND412, HLW15, Ibr17, KYCL11, KKL+13, LLBO12, LS11b, MAPB10, NIIT15, PMC+17, RLA+11, TN12, TN10, TFQ+10, TS15b, VI17, WRM+12, YW12, ZRCC11, AR15, AK10, AC12, BLZ+13, CPRS18, DKE+17, DHOG13, EH13, EWK+13, EPBK17b, FB10, GTT10, GRAR0+14, GWX+12, GZZ12, HASR+12, HS14a, HSB+11, Hu16, IIF+10, KPT11, KSM17, KG11, Kop15b, Kos16, KP10, LGOM+15, LX11, LBTV11, LBTV12, LZX+10, LSH+11, LLWS14, MC10, MA16, MCF10, Mat10, NC14, NFI+16, OLA15, PHK14, PTB+15, PVAM16, Fyy13, RCM+13a, RML+15, RR12, RNI12, SFA17, SLP+12, SRS14, SB15, SKGB13, TFQ+11, TD10, TS15a, TNG+10, TS11, TG12b, VVP12, VHR16, VARI12, VBMA13, VLGK+17, VGTL16, WHL+10, WGL12, WJG+13, WIO15, WSGN11, WZK+13, YK13, ZJZM13, wZB11, ZBB16, dCDP15]. electronic [dVAG16, vSGP10]. electronically...
electronics [RN17].
electrons [EKH14, WCY+11, WRG+17, XhD15, YCGA10].
electrophilic [MA16].
electrophilicity [YB16].
Electrostatic [CLA16, LP11b, MLZZ12, Sch18, WFZ+18, BCNH+11, BSF18, BK13, CCC+11, CS14, CPK12, CB11c, DLSA14, GBL+11, HOK17, IO13a, KTN10, KYG+15, Lar11, LCA17, LCM16, Mat14, PVJ10, RB13b, TY10, VMRSH+17, VVY18, YKO+11, YWJ+16, YMP14, YZL+15, ZDM13, ZBP11, KG12].
Electrogynics [BSG18, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XYX17, YMP14].
Electrostatics [BSG18, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XYX17, YMP14].
element [GPK+16, RMGB11, TG12b, TCX+13, XYX17].
elementary [LPLB16, Zim13].
elements [TKN13, BV14, CWZB10, Hil13, JJJ16, LFB14, SK15a, TDKT10, Tsi14, WS12, XhD15].
elevation [HH10].
ELF [RSKG14].
ELI [BWKW10a, BWKW10b].
ELIA [BWKW10a, BWKW10b].
Electrostatics [BSG18, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XYX17, YMP14].
Electrostatics [BSG18, CZY11, FGM11, FP17a, KFY+13, LPLA13, MBA11, MBC13, NLP+16, SDZ17, SWPR11, UHH+11, XYX17, YMP14].
Element [BCCO10, GPK+16, RMGB11, TG12b, TCX+13, XYX17].
Elementary [LPLB16, Zim13].
Elements [TKN13, BV14, CWZB10, Hil13, JJJ16, LFB14, SK15a, TDKT10, Tsi14, WS12, XhD15].
Ellipsoidal [DGB+13, LDG+15].
Elongation [OLA15, MKGA10, MKGA10].
Elongation-MP2 [MKGA10].
Elucidating [HNHR13, TDP+12].
Elucidation [CPLL11, TNYN16].
Embedded [DSF17, GMG+10, HSH15].
Encapsulated [EOO+16, STS15].
Encapsulation [YDGZ15].
Energy [AF14, AS14, AG12, BW11a, BLF14, BHV11H, BS16b, BE16, CHG+16, ŠMD13, CH10, CTP13, CB16, DHOG13, DM17, DHF+11, DPOS16, FGM11, GI11, GP11a, GR13, HAGK10, HH10, HH11, HLW+17, HHWL17, IK13, KSH13, Kar17, KSM17, KJDB12, KB11b, KBY13, LJ1W11a, LW11, LHWW14, LH14a, MCS11, MS13, MSK12, MB16, MMJ10, NWW17, NMF+14, OBW12, yOTn16, OAN15a, OSR16, PGT+12, PPJ14, RLDJ17, RDAS10, RAR+11, RO14b, RZ16, RR14, Rob13, RJS17,
SRR16, SK12, SHL+13, SOD+11, STM+15, SGWA17, TS14, TSN16, UD12, VVG13, VECT12, VM11, WBT10, WS10, WJG+13, WG12, WX12, YAS13, YMP14, ZZ14, dALdS+15, dRBO13. **Energy**

[DK11, GS16, IIHY15, JCGVPHT17, LFN+10, LPLB16, SN16b, SSGS15, SKGB13, WM12, AMGB10, AC11a, Aol10a, AK10, AK16, BCSCJ+13, BPM15, B&E16, BH15, BS16a, BRLS08, BRLS12, BACSCJ+10, BG17, Bou14, Boz18, BD11, BWMSM10, BB11b, BB11c, BG12, CM13a, CK10, CDM+15, CLA16, CY09, CX10, CZY11, CY13, CH16, CSXZ17, Che17, CS17, CHR+12b, CHR+12a, CKP10, CMvG10, CPK12, CWZB10, DGH11, DBG11, DS12b, DH14, DWC17, EV14, FMNC11, Fer17, FED17, FCOGM12, FSSW17, FCCP17, FLM11, GS14, GS15, GHK12, GO13, GMO16, HDL+17, Hel13, HDM+15, HH15, HG13, HYMZ16, HYUS11, HJKJ13, HYD10, HDHL15a, HDHL15b, HDHL15c, IMK+16, ISN13, JCPC11, JMLL13, JZ12, JZZM14, JCX10, KCB+12, KTT16, KB10, KNHN16, KN17, KHWB17, KDR+18, KB11a, Kop15a, Kop16, Kop17a]. en

exchange-correlation [HG10, Vyb16].
exchange-coupled [CAT+13]. exchange-repulsion [CGPP11, ENKK+17].
exchanged [LZTV10]. Excitation [KDR+18, CHG+16, EFAC13, PTB+15,
SH17, TG12b, TSN16, UD12, WJG+13]. excitations [ACD+13a, ACD+13b, CMF+17, FE14, IIF+10, PVAM16, WWD14].
Excited [CH10, SGWA17, ZXS+10, BSL+16, EK17, ESM+12, FD14, FAA15,
FD16, HNWF07, HNWF12, HH17, HZSS17, HDHL15a, HDHL15b, HDHL15c,
JCGVPHT17, KB14b, LLBO12, LLW12, LWGZ15, LX11, LSH+11,
LYSS11, MPSG11, NYN17, PH10b, RRCH16, RR14, SFCCK+14,
SFCK+15, SRF+17, SZSS16, TSN17, WHL+10, WHX+10, YD17, YLZ+10,
YB11, YYT12, LZL+10, PGW+17]. Excited-state
[SGWA17, FD14, HH17, HZSS17, LWGZ15, MPSG11, NYN17, PH10b,
WHL+10, WHX+10, YD17, YYT12, LZL+10]. excited-states [LLBO12],
exciton [HRH+17, LSH+11]. EXcitonic [JCGM18, ZMMM12]. excluded
[LWZ+17, Yan14]. exhibited [RWR+13]. Existence [BMB13, WD10].
Exothermic [LWL+16]. expand [BK17c, Car14]. expanded
[MLQ+12, TSNC+17, YSSB12]. Expanding [GMZ12]. expansion
[HAGK10, HSN14, LYM+13, LRER13, NI17, SS16a, SNS13]. expansions
[LZGS11]. Expected [Clo15, AF14]. Expedited [DJD12]. expensive
[LDZW17]. experiment [JAH+17, SA10]. Experimental
[NHF+10, AvKSP16, BRGN12, EOO+16, GPdC+16, HJ13, KP10, DCOD13,
Pog10, RO14a, SB10, SGS+16, SKMS13, VZ14, CYI+10]. experiments
[CBP14, HCB11]. explained [FL15]. Explicit
[WG14, BEM14, COOH14, CBG16, EK15, ENKK+17, GLB16, HDL+17,
KJDB12, LH11, RdA12, SYH12, SKMS13, Zha12b]. Explicitly
[yOTn16, SM17]. Exploiting [HB14, BYE+16]. Exploration
[ZGS+10, LW12, LAW+16, OKIS17, RDRC16, STi15]. explore
[JCPC11, MSC+10, MCC12]. explorer [SYN+12]. Exploring
[BHB12, BPBS17, BCG10, MTM14, PJJ13, Tsi17, ZT14, dSDLB17,
RDRC16, NOKJ16]. explosive [YPC+10]. Exponential [BBOB16, BB11].
expressions [Gav12]. extended
[GWZx12, KUDG12, LRvds15, SSWX14, TSN17, YB16, Pon11]. Extending
[LMZ11a, Man13, VBVI3a, VVBI3, PHH+12]. extensible
[GCW14, JYC+16, LAS+14]. Extension
[HSN14, PFVL14, SDZ17, YHVM12, Cam15, LL11, RLLHL12, Ras17].
extensions [NYH+17]. Extensive [JW12, SLHV09, YB11, CF14, KM13].
extent [GFGS18]. external [GKSS14, SEM12, ZSLL17]. extract [MDTD16].
extracted [HNTS15]. Extraction [CVG14, VVG13]. extrapolation
[CC11, LYM+13, OAN15a, SRR16]. Extreme
[HRH+17, Cam15, DS12a, JBSQG11]. Extremely [ZM11].
LBDP12, MSK+10, MSK+12, MS15, ST11, SEM12, VVV+15b, VHA+10, WKC+10b, WLC12, WG12, YPKB12, ZRL+15]. **fifth** [KM13]. **fifth-rung** [KM13]. **file** [SY16b]. **files** [MK5+12]. **filter** [MH10]. **find** [MN15, RVVK13, SB11]. **Finding** [Ber17, MLC13, GFG11, JZ17, Zim15]. **fine** [Hua16]. **fine-structure** [Hua16]. **fingerprints** [SS13b, Yap11]. **Finite** [ISO+13, BCCO10, BVC13, DJX+11b, EPD+11, Hsu14, LLH17, MLC13, NPP13, SK15a, TD11, TCX+13, WL10, XYZ17]. **finite-difference** [LLH17, WL10]. **Finite-field** [ISO+13]. **finite-size** [DJX+11b, Hsu14]. **FIPSDock** [LZL+13]. **firefly** [FD14, PE11]. **First** [BE12, BE14, CCJC10, DBM+15, EB12, EBK13, EBPK17a, HFSO12, JCG+11, LLLM11, LLB+12, LCWW10, RRK16, TKN13, YPvD13, YR13, wZbZ11, BPE16, BCCO10, BEL+11, EMD17, GD10, GA14, Ibr17, LL10c, Lu11, MCF10, NNS15, PLZ17, RZG+13, SFA17, SK12, TKC+11, TZ11, WX+12, WYL+15, WD10, WZK+13, YHS11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC+14, HYL+11, NG10]. **First-principle** [HFSO12, BE12, BE14, EB12, EBK13, EBPK17a, JCG+11, LLLM11, wZbZ11, BPE16, EMD17, GD10, PLZ17, RZG+13, WYL+15, WD10, ZWMW10, ZZ12, vADC+14, HYL+11]. **fit** [BHNS14, BCG10, GDV17, KGM12, WKC+10b]. **Fitting** [SN16b, Boz18, DGPM14, FN12, Gra15, Hil13, LBGS16, MKH+13, MKM+17, SY11, VYM15, WOH16, WOH18, ZDM13]. **five** [HCD+10, KJDB12]. **five-membered** [HCD+10]. **fix** [WCWV15]. **fixed** [AS15b, FSD+18]. **flakes** [SDF12]. **flash** [AGM+13]. **flavonoids** [PC11]. **Fleksy** [WdVN12]. **Flexibility** [OXBW16, BCG10, FTW12, FMG12, GTZ+18, KL14, LZ11, NPG17, PRSG13, PHH+12, dVZ17]. **Flexible** [GLB16, MKM+17, NG10, SC17, WdVN12, AFPI13, CZNA11, DVVP14, FRLN10, GBW+14, HDM+15, JC16, LS11a, LHS12, PL14, PS13, PJ13, RHJ11]. **flexible-boundary** [PL14]. **Flexible-Monomer** [SC17]. **flip** [ZLHH14]. **FLOODing** [HNTS15, HNS16]. **flow** [TCC+13]. **fluctuating** [CCB15, CMS13, GM17, IHY15, KUDG12, YWZ14]. **fluctuation** [II10, OXBW16]. **fluids** [KGHC15]. **fluorene** [CH10, HXM+16, PH10b, YJN+11]. **fluorene-phenylene** [CH10]. **fluorescence** [CH10, EJ13, ZLL+10]. **fluorescent** [LZL+10, NSO+14, PGW+17, WJG+13]. **fluoride** [LZL+10, MBRC16, NC12, Rab12, SRL+15]. **fluorides** [ASS+17, Sán17]. **fluorinated** [DKE+17]. **fluorobenzene** [KS13b]. **Fluorophilic** [vRWGS17]. **fluoroquinolones** [MPNS13]. **flux** [LGOM+15, Pol13, VGTL16]. **fluxes** [GNDA+12]. **Fly** [PAK15, MIOM13, PL14]. **FMO** [LFN+10, UIW+10]. **FO** [CHu10, GTK10]. **Fock** [ACD+13a, ACD+13b, BY11, CB11d, FRN15, HJKJ13, IYK11, Mat10, PB14, PW12, RRH12, SG13, UIW+10, VL17a]. **Fock-space** [ACD+13b]. **Focused** [MMM+16, CHR+12b, CHR+12a]. **focussing** [CB11c]. **fold** [LK11]. **Folding** [MFEM16, AD10, BPE16, CYT+10, CBG16, DMJ17, DAB16, GRL+11,
GRL+12, HTS15, HTS17, HLH+12, JCX10, KLS10, LKL10, LLvG10, LgV13a, MFEM15, PBE16, WNM17. **folds** [CYT+10]. **folds** [CDS16, CHP11, MV17]. **followed** [AKMT11, Mau14]. **Following** [GS16, MFEM16, XFR+16, Tac17]. **footprint** [BMR11, BAMR13]. **Force** [CYG+15, DBGO+17, DP15, GSD10, LZZ+11, PS10, PNL10, ZSYH12, AKMYB18, AOW11, AS15b, AJR16, BW15, BF17, BVY+12, BMBJ11, BAS14, CCLP12, CRC13, CIKT13, CZAF17, CLC11, CB11b, CB11c, CK17, DPNM11, DGPM14, Di15, DFF+15, DMAH15, DLZ15, FED17, GCWS15, Gar12, GZM11, HH11, HKR12, HDPM14, HLH+12, HJ10, HM13, HJLV16, IHIJ+13, JYC+16, KLY+16, KS12, KSR+16, KLS10, KMLS10, KWL+16, LALH13, LCS+13, LCA17, LZGS11, LN+15, LLvG10, LGL11, LvG13c, LTP11, LDG+15, LBDP12, MHT+18, MSK+10, MSK+12, MRO17, MJC14, MBC11, MSS+13, MTvG12, MBE16, MJG+15, MIOM13, MS15, PHC13, PLZ17, PG15, PZCL16, PLH16, PVM10, RI10, ST11, SM14b, SK17, SZBM13, SIE15, SNK16, SS13c, SR18, SM15, SYZ+17, SBB14, VV+15b, VHA+10, VVEL17, Vor12]. **force** [WKC+10b, WLC12, WOH16, WOH18, WTH+16, WC14, WGD12, WHZ13, XP13, XVA+16, YWZ14, YJXZ13, YPB12, YVM12, ZRL+15, ZL11, ZP13, ZM10, ZCGM11]. **force-constant** [WOH18]. **force-field** [DMAH15, LLvG10, MBC11, WTH+16, ZL11]. **force-fields** [CCLP12]. **force-matched** [KSR+16]. **forcefield** [LDB+17, MMZW14]. **forcefields** [CBP14]. **ForceFit** [WKC+10b]. **forces** [EPD+10, Elk16, Has14, HNWF07, HNWF12, IO13a, RN17, SDB+16]. **ForConX** [LDB+17]. **forest** [WZ17]. **form** [GWX+12, YZ15b]. **formaldehyde** [CYC+17, GNCA10, YPGD13]. **Formalism** [MKGA10, SFCK+14, SFCCK+15, SMP17a]. **formamides** [JSW10]. **format** [LAS+14]. **formate** [CJZS10]. **formate-lyase** [CJZS10]. **Formation** [DWZ+17, BPS17, CD11, ED15, GRCL12, KSM16, KAR12, LH11, LWL+10, MCK17b, OHT16, RVP+11, TDP+12, UCFR16, WNM17, WKC11, WD12, YPC+10, ZSWL12, ZWX16, ZYL+12]. **formations** [HTS17]. **formats** [REL+14]. **formed** [RVB+12]. **formic** [TL16]. **forming** [Car14, ONTTL16]. **FORMS** [RMPAM15, FD14, KG11, PS14]. **formula** [BB11b, Ish12, MA16]. **formulas** [KTSW11]. **Formulation** [BD12, SSSM15, CSKH16, DLMH12, KCL+14, MBA11, SMM15a, SMM15b, WRHF10, ZKE+17]. **formyl** [LZHH11]. **förster** [RCM+13a, Kos16, RML+15]. **forsterite** [DOM+11, DBM+15]. **forth** [PNW+16]. **Four** [PRJ+17, RK15, EB12, HKR+14, JKS+16, LLC+10, LWQ15, WS15, WS12, ZWZ11]. **Four-component** [RK15, HKR+14, JKS+16]. **four-membered** [WS11, WS12]. **Fourier** [YW+16, Ish12, LL13a, SHTSM10]. **fpmb** [CWT+12]. **fraction** [Gil11]. **fractionations** [NASH15]. **Fragment** [GK15b, IF+10, CIKT13, DR11, FMG12, GWF11, GV+13, HB14, KS13a, KS15, LMZ11a, LFP+10, MFR+17, NF17, OOT15, OOK11, RKGN10, VB13b, WCT+11, dLC17]. **Fragment-based** [GK15b, FMG12, HB14, LMZ11a]. **fragmentation**
fragmented [JSXH16]. fragments [CM16, Kos16, KSR17, Sax12].
fragments-rooted [CM16]. framework
[BFH+13, EH13, GPY1a, HPT17, JBB+11, KTNN10, MKGA10, OM12, PHT17, RCM+13a, RML+15, Ñez16, SK15b, SWB+12, WYD13].
frameworks [LSD+10, PLZ17, VVV+15b]. francium [TH13]. Franck
[CHC+13, MCLD10, MLCD11]. Free
[Bou14, CBG16, GS16, GO13, GMD16, MCvdV13, OCW+15, PZCL16, SISK10, AC11a, Ano10a, AK10, AKN16, BKS+11, BSL11, BH15, BS16a, BD11, BB11b, BB11c, BG12, CY09, CX10, CY11, CY13, Che17, CS17, CHR+12b, CHR+12a, CMvG10, DMJ17, DGH+11, DHF+11, DPOS16, Fer17, GS15, GHK12, GMPAM+14, Gri13, HLS12, HH10, HH11, HDK+12, HLW+17, HLD+17, HDM+15, HG13, HYUS11, HKR+14, HHLW17, IMK+16, JMLL13, JCX10, KHWB17, KB11a, KB11b, KYB13, LMZ11a, LGL11, LP11b, LAW+16, MSC+10, MS13, Mau14, MSÁK12, MBE16, MIOM13, OSR16, OK16, PGCT+12, PBLs12, PBBP11, PPJ14, RLDJ17, RDDS10, RAR+11, RO14b, RZ16, RR14, SM14a, SFR+11, SWPR11, SY11, SH11b, SOD+11, SoVG12, SN10, SMM15a, SMM15b, SMM+18, TS11, VLB+10, VG13, VM11, WSH10, WCT+11, WWWW18, WG12, XTG+11, XVN17, YOMT14].
free [YAS13, Yan14, YHH+13, ZZ14, ZPF14, ZWY+10b, ZH12, ZVY+15, dRBO13, WLF11, XYW+14]. Free-energy
[GO13, GMO16, BH15, CY09, HDM+15, HYUS11, IMK+16, JMLL13, JCX10, KHWB17, KB11a, KB11b, KYB13, LMZ11a, LGL11, LP11b, LAW+16, MSC+10, MS13, Mau14, MSÁK12, MBE16, MIOM13, OSR16, OK16, PGCT+12, PBLs12, PBBP11, PPJ14, RLDJ17, RDDS10, RAR+11, RO14b, RZ16, RR14, SM14a, SFR+11, SWPR11, SY11, SH11b, SOD+11, SoVG12, SN10, SMM15a, SMM15b, SMM+18, TS11, VLB+10, VG13, VM11, WSH10, WCT+11, WWWW18, WG12, XTG+11, XVN17, YOMT14].
free-standing [TS11]. freely
[CH16]. frequencies
[LBH+11, LLH17, WX12]. frequency
[BMPML+13, CK10, LCW12, LS11b, yOTn16]. frequency-independent
[yOTn16]. FRET
[RO14a]. Friedel
[CYY+17]. friendly
[DBF14, SFR+11]. frontier
[MGS+16, TZ12]. frozen
[BVC13, Fer13b, Fer13a, HH16a, HH17, HÖf4, SDF+17]. frozen-density
[HH16a, HH17, HÖf4, SDF+17]. fructose
[RAR+11]. fructose-1
[RAR+11]. fuel
[GO13, GMO16, BH15, CY09, HDM+15, HYUS11, IMK+16, JMLL13, JCX10, MIOM13, OSR16, PBBP11].
full-pivoting
[PS17]. fullerene
[GKSS14, KCK+15, KP10, Oht16, TPL+10, TFQ+11, TTB+10, XFTW15, YDGZ15, ZSL+11, ZZ12, SWA13].
fullerene-based
[TTB+10]. fullerenes
[GZH10, GLF16, MCK17a, MCK17b, SWA13, STS15, WTH+16]. Fullrnc
[Aou16]. Fully
[AG12, ZSTI14, FBY+17, GBL+11, KG13, LZZ+13]. function
[ABDG12, AB16b, BLG11, CKP10, GS14, GND+12, GEG11, HH16a, HBL12, HYMZ16, JLC17, JMS13, Kop15a, LL13a, LH11, LCB10, LIRL+16, MB16, yOTn16, ON14, PiL17, PRY+17, RZG+13, RV11, SS16a, SFG+17, TCB16, TO10, UMI3, UCFR16, W015, WDHZ13, YVEI+17, ZLT13, sSGP10].
function-based
[VDHZ13]. function-guided
[YVEI+17]. Functional
[FPV13, AMK11, ALK+15, Ano15-59, AG12, ASS10, BY11, BLBG+13, BK17b, BZB+13, BG13, CHG+16, CRZ+18, CR14, CWHH11, CSKH15, CSKH16, CKH17, CSXZ17, CC11, CNK97, CPL11, CB11d, FD16, GA14, GHL17, GZL+12, GNGCA10, GSS13, GEG11, GAJ+17, GWPJ11, Han11,
HDL+17, HNWF07, HNWF12, HPT17, HG10, HZSS17, INT18, IKN13, IM17, JCP14, JLH+14, JW16, JYS+12, KD10, KKPT11, KOP+14, KGHK12, KB13, KZZ+16, KLN12, LCW12, LBS16, LGW12, LBTV11, LBTV12, LHKS12, LH14b, LLH17, LPMT17, MAK+14, MWJ+11, MFR+17, Mor15, MMJ10, NF17, NN18, NO16, NNK+16, Oht16, ORZ11, OM12, PAK17, PPH+14, Pie14, PD11, QZ10b, RJPB12, RS13, RB12, RSLML12, RHPWS13, RHT+15, Rui11, SPS+12, SH15, SFG+17, SCW11, SBT17, SEF+16, SE14, SH14, ST13, SHL+13, SPH11, SMM15a. functional
[SMM15b, SMM+18, SKTT11, SZSZ16, STS15, TLdG+12, TG12a, TS10b, VV14, Vik11, VL17a, VI17, VLGK+17, VED10, WKC10a, WHL+10, WCWW11, WDLG12, WYT17, WHX+10, WL14, WTH+16, WGN+16, XYW+14, YJ11, YLZ+10, YS13, ZXS+10, ZWXL11, ZSRL12, ZLZ14, ZDX11, ZYG+14, ZYW+10b, ZYW+10a, ZLHH14, ZGS+10, dSdS12a, dSdS12b].

functional/basis [PD11], functionalities [KAG+12], functionalized [KYKR15, LdSRR16], functionals [Ben17, CCB15, CGB16, DH17, DOM+11, DWC17, FPRS14, GWJR18, HG10, HBI+17, KB10, KSH13, KSSH13, Kar17, KM13, LBH+11, LHI4a, LKI6a, PW12, RSG14, Rui11, SGPS+17, Sea10, SDM+16, SPR+13, SXZ13a, SXZ13b, WYT17, Yu12b, ZTH+15, dSdLBNB17].

functions [BLZ+13, CD13, CC11, CVG14, Fer13b, Fer13a, FFA14, Fra15, Fra16, GSHM10, GZ14, KK17a, LRER13, MY17b, Mit13, MLCD11, PHT17, Pro16, RRCH16, SFM14, SYDS11, Sun15, TNY16, WZ17, TKN13].

fundamental [CD16, XLYZ10], furanosides [KRTB10]. Further
[RTS+13, FVB10, PZA15]. fused [CZY11], fusion [OLY17], Fuzzy
[FPV13, SK12, SK17], fuzzy-border [SK12, SK17], FXeOXeF [ARLP13].

G [Ano15-59, BZH14, LWD13, PHK14, ILKR11], g-tensors [PHK14], G2R3 [Gil11], g_membed [WHAS+16, WHAS+10], Ga [UT15, Mit13], Gabedit [Alli1]. GAff [MPBJ11], galactosidase [AKMT11], GALAMOST [ZLL+13], GalaxyDock2 [SKKS13], gallium [YR13], gamepad [HH16b], GAMES [LRBB12, WSGN11], GAMES-UK [WSGN11], GAMPMS [LMA15], gap [QZ10b, RS17a, THP+15, VLGK+17], gaps [TSN16], Garriga [Ihl12], Garriga-Sust [Ihl12], Gas [ATM18, ABB+12, PLZ17, ARLP13, DHE+12, GYX+10, JKS+16, KD10, LPK16, LJW11a, LPLB16, MP13, MFM+12, NIIT15, PGS+15, PMG+16, PSC11, RWR+13, Sea10, SYZ+17, STS15, YHG+11, ZSZ+14, ZYR+15, ZLHH14, ABB+13], Gas-Phase [ATM18, ABB+12, GYX+10, LPPLB16, PSC11, RWR+13, YHG+11, ZYR+15, ABB+13], gaseous [HCBI11, HYWH17], gases [LZ14, DHE+12], gateway [RK15], Gating [SBFT17], GaudiMM [PSC+17], Gauss [MY17a], Gauss-type [MY17a], GAUSSIAN [RSR+12, OYK+11, Bon14, DLL+10, EPD+10, JLCA17, Leh15, MG11, MKB+13, POB13, SPH11, Sum15, TH13, VKTRJ15, ZKE+17], Gaussian-based [JLCA17], gaussian09 [RS13], Gay [SLX+15], GB [OBW12, VM11], GBMV2 [LC17b], GBSA [DSX+11, GR10a, IMSR18, RDDS10, STM+15], GC [GWX+12, YZWC11].

general-contraction [HSN14]. Generalized [GH16b, KCPMG12, AB16b, BSPP+13, DSF17, FCE15, GHI6a, HWLW11, LL10a, MA16, PS13, SZTSM10, SSBW14, VMP17, WHM10, WBVE16]. generate [MPA12]. generated [HWLW11]. Generation [ADF+10, MPA10, RvL11, CAD16, GMSdG15, HGY15, KLJ+17, KSH+17, LTT16, RB13a, TDP+12, WHJH13, ZCGM11]. Generator [MYT18, Gar12, GPM17]. generators [CLK11, GPM17, HMM10].

genes [YS10]. GENESIS [KJM+17]. genetic [AC12, CB11b, FRLN10, LLJ12, NC12, RSL16, SHMO11, WMW+10, YVEI+17, LMA15]. GenIce [MYT18].

geometry-dependent [EPD+10]. Germanium [GSMM15, ALH+10].

glycine [DB12, DP15, FCD10, MC10]. glycoconjugate [LABSG17].

GmbH [Spr10]. GMCT [UU12]. GneimoSim [WK+14]. gold [Auo15-58, BH14, CJC10, FHT+15, GAMAC+14, Li14a, Li14b, LHK12, LH14b, MFR+11, MG14, MBFG15, SRR16, SKTT11, YLGX14].

GPU-accelerated [AGB13, CVT+11, HAP+12, YLGX14, ZL+13].

GPU-based [KGHC15]. GPU-enabled [BK17c]. GPUs
Hexahalogenated [VVJ15]. hexameric [RCM+13a, RML+15].
hexopyranose [HH11, PLH16]. hexopyranose-based [HH11, PLH16]. HF
[BRLS12, LGW12, MCK17a, BRLS08, Chu10, LSH+11, SKGB13]. HF/DF
[Chu10]. HF/DFT [BRLS12, BRLS08]. HFC [AR10]. HFC-263fb [AR10].
Hg [SLIB12, BBI+11]. HgHe [BBI+11]. HGXe [BBI+11].
HH [LGW12]. HI [LGW12]. hidden [DVVP14, LTT16]. Hierarchical
[JYC+16, BCG10, GBFD12, KKN11, RMPAM15, SNS13].
High [MCLD10, MKB+13, RLS13, BACSCJ+10, Cam15, CM13b, CSSB11, DH17,
DLS13, ESB13, EKW+13, GWJP11, IPAA11, JBAM11, JC16, KSM16,
KSM17, LL10a, MJLV14a, MO17, OPB+12, PVL+13, PV10, RVCFF13,
REH13, SC15, WGL+11, WDLG12, ZWL13, dSaSL13]. high-accuracy
[RVCFF13]. high-confidence [KSM17]. High-level
[MCLD10, EKW+13, KSM16, PVL+13]. high-order [REH13].
High-performance [RSLS13, CSSB11, ESB13, EKW+13, LL10a].
high-precision [DH17]. high-pressure [WDLG12]. High-quality
[MKB+13]. high-resolution [CM13b, JC16]. high-temperature [DLSD13].
high-throughput [ESB13, PVJ10]. higher
[NHY+17, PJJ13, VKAM12, WHM10]. higher-dimensional [PJJ13].
higher-order [NYH+17, VKAM12]. Highlighting [BRGN12]. Highly
[CHG+16, HAL14, LLZA12, LWL+16, DBDP16, BWWK10a, BWWK10b,
HYUS11, KOY+12, KZK+12, KV15b, OK16, TFQ+10, TJB12, LZZ14].
hindrance [MP17a]. Hirshfeld
[Man13, VVB13, VGV+11, EV14, GBVA11, OVPK15, VBV13a].
Hirshfeld-based [OVPK15]. Hirshfeld-I
[Man13, VVB13, VGV+11, VBV13a]. histidine [KFY+13, WC14].
histogram [Fer17, HHWL17, SH11b, ZH12]. histone
[GHK12, GH010, GSD10, KC13a]. HIV
[DLZ15, NNN16, OBW12, SYH12, TTB+10, UNT16, XLY12, Zsa10]. HIV-1
[DL15, NNN16, SYH12, TTb+10, UNT16, XLY12]. HIVgp41
HOB [LCL+10]. hole [BSF18, Cas13, CWHH11, EPH+13, GZZM16, GA12,
LZL+15b, PAK17, PTB+15]. holes [PM18]. Hollliday [Ish10, She12].
holo
graphic [CDB10]. Holt [She12]. HOMO [RS17a]. Homocysteine
[AALCM11]. homologated [ZLL+10]. homologation [GRCL12].
Homology [Z11, BFB11, DJ13, KOY+12, XFTW15, YZZ16].
homology-model [KOY+12]. homology/ab [DJ13]. homolysis [SZ17].
homonestable [BWKW10a, BWWK10b]. homopeptides [FC10].
[JLH+14, KV14, LZW+11, RDR16, KRSLO15]. Horizontal [PC16].
hormone [HYYZ13, LLL+10, NS10, OME16]. hormone-dependent [NS10].
hormone-receptor [OME16]. horsetail [MCRL17]. Host
[CC18b, OAN15b, YDGZ15]. hot [RFHG10]. Hou [JW12]. HOX [LZJ+11].
HP [LKL10]. HP-36 [LKL10]. HPt [dSdAR10]. HSE [VLC17]. HSiCl
hydroxyl
[DPNM11, GKR13, JCG+10, KS13b, Ray13, RKG11, TTR+12, ZSZ+14].
hydroxylated [CCJ+11, SH14]. hydroxylation [TLY+12, VCM15].
hydroxylations [MRR11]. hydroxymethyl [HH11].
hydroxymethylfurural [APY+16]. hydroxynaphthaldehyde [MPSG11].
hydroxyphenylpyruvate [DGH+11]. hydroxysteroid [ZX11].
hydroxysulfinyl [TL16]. Hyper [FRN15, BLLB+13, BZB+13, RFN15].
Hyper-parallel [RFN15]. Hyper-parallelism [FRN15].
hyperballs [CVT+11]. hyperboloids [CVT+11]. hyperbonding [LW16].
hyperconjugative [LZH16]. hypercoordinate [BSPP+13]. hyperfine
[CSEMB+16, MG11]. hypermatrices [BMPML+13]. Hypernetted
[HAL14]. hyperpolarizabilities [MLC13, WYT17, YHCS11].
hyperpolarizability [ISO+13, KBC12, TAL12, WXS+12, WZK+13].
hyperpolarizability [KSK11]. hypersurfaces [Ano10a, SN10]. hypervalent
[ASS+17, SLT14, SLT+15]. hypothesized [LLB+12]. hypoxanthine [FF11].
HZSM [cCVG+14]. HZSM-5 [cCVG+14].
Implementing [SCOJ13]. Implications
[CV12, VVY17, CBG16, LP11b, LTP11, RB12]. Implicit
[BEM14, CAD16, Has14, CBG16, EK15, FBEM11, KJDB12, KB11a, KB11b,
LC17b, ML14, SSBW14, SLX+15, SCMA+17, TCC+13, WWKS11, YL13].
implicit-solvent [WWKS11].

Importance
[APA+14, CPK12, ENKK+17, NMF+14, OOK11, ESM+12, Ham11,
KTNN10, PBDW11, SDZ17, TNSS17, TKNN10]. important

importing [FN12]. impregnated [GLZ17].

Improved [BS16a, LRER13, CCM15, DPB+12, DSF17, GCCM15, KSR+16, MP11,
RTP+13, RDC16, SSBW14, YS10]. improvement [GSHM10, NLP+16].

Improvements [JCX10, AB16b, LRBB12, BB11c]. improves [BBOB16].

Improving [DWL11, GS16, LN15, PLH16, SB14, SACdG14, SA11, WZ17,
ZX16, ZYS+10, GS15, GFPSD17, GZ14, FZY+12, TO10]. impurities
[SBC+11]. IMSPeptider [dCLFGL13]. In/Si [LGKS17]. inactive [CV12].

include [PZA15]. includes [HBKL10]. Including
[KL14, SFLG+17, BL12, FA15, FD16, LH14a, SPH11, TG12a, WC14, YB11].
inclusion [CGR16, LZ11]. Incorporating
[LHO17, Yan14, CSKH16, GCCM15, ZBP11]. Incorporation
[BT10, DDP16]. incremental [DCS15, LTA+11, SR18]. increments
[MS15]. independence [LC17a]. independent
[BVY+12, FVB10, GR11, yOTn16, ŠB15, ZBB16]. index
[CMF+17, OXBW16, RRC+15, TS14]. Indexing
[GPGSM11, GPGSM12, lili12, JZL+17]. indicator [BLG11]. indicators
[Bar14, BWKW10a, BWKW10b]. indices
[BK11, BMPML+13, BVC13, EFAC13, FVB10, GSHM10, HSB+11, MMS16,
PRSG13, Pon11, SBR13, YB16]. indispensable [BF15]. individual
[LYZ12b, WS10]. indole [AARP17, YHCS11]. indole- [AARP17]. induce
[ASK18]. Induced [ATM18, AB10, AARP17, AKK+16, AS15b, BHNS14,
BLFZ13, BCG10, CC18a, CPN+17, DH11, DLZ15, GDV17, GBS+17,
HLBLCCG15, HB15, IMK+16, KL14, LCB10, MTM14, MHT+18, PD12,
Tru18, WDP+12, YB13, YLZ+10]. induced-fit [BHNS14]. induction
[BCNH+11, DWR17]. inefficient [GMO16]. Inequivalence [MPSG11].
inexpensive [AC12]. infantum [VSD10]. inference [BFH+13, VZ14].

Infinite [CC11, GK15b]. Influence
[BSL+16, CSS17, CSKH16, HLH+12, KCPMG12, LvG13a, AKK+16,
HGP14, LdSR16, OSHG17, SBD+17, SRL+15, HRK+10, HKRS11, HS11].
influenced [JXSW15, LLT12]. Informatics [SN16b, KSD+12].
Informatics-Based [SN16b]. Information
[ATM18, Ano16-75, Ano16-80, Ano16-94, Ano16-89, Ano16-81, Ano16-95,
Ano16-82, Ano16-96, Ano16-83, Ano16-97, Ano16-84, Ano16-98, Ano16-85,
Ano16-99, Ano16-86, Ano16-100, Ano16-87, Ano16-101, Ano16-88, Ano16-102,
Ano16-76, Ano16-90, Ano16-77, Ano16-91, Ano16-78, Ano16-92, Ano16-79,
Ano16-93, Ano16-129, Ano16-108, Ano16-109, Ano16-110, Ano16-130,

information-theoretic [CRZ+18, ZLW10]. informed [LZL+13]. infrared [DPAB16, HRH+17, KB16, LBC+12, NHF+10]. ingredients [CMvG10].

initialization [GR11]. initiate [HTS17].

Initio [DHOG13, Kop15b, PAK15, RSR+12, AR10, AG12, BEM14, BLG10, BIL10, BDDx13, BL12, CPRS18, CG15, CLC11, DHL+11, DSLD13, DJ13, EP12, EFOD13, FAA15, FCD10, GKL10, GWZ15, GZZ12, HYD10, KOP+14, KTO11, Kop15a, Kop16, Kop17a, Kop17b, KSR+16, Kow11, KVR10, LLH14, LPK16, LDJ+10, LZJ+11, LPE+10, LX11, LWJ+11b, LLTC12, LTP11, MK13b, MCDL10, MS12, NASH15, NMLD13, NDD+10, OHNK11, OYK+11, ON14, ORP16, OT12, OZLSB12, OOK11, PVL+13, DCOD13, RB13a, RFN15, SL+15, SS13b, SLIB12, SJZ+15, SLLL13, TLG+12, TG12b, US11, VVV+15b, VPR10, WLC12, WXY14, WDHZ13, XZ11, YG12b, YU12a, ZZL+12, ZZ10, ZMM12, ZLT13, ZLZ14, HEM+17, LI13a]. inito [JWST10].

Ano16-118, Ano16-119, Ano16-120, Ano16-57, Ano16-58, Ano16-59, Ano16-60, Ano16-61, Ano16-62, Ano16-63. Issue [Ano16-64, Ano16-65, Ano16-66, Ano16-67, Ano16-68, Ano16-69, Ano16-70, Ano16-71, Ano16-72, Ano16-73, Ano16-74, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17m, Ano17n, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano17-36, Ano17-37, Ano17-38, Ano17-39, Ano17-40, Ano17-41, Ano17-42, Ano17-43, Ano17-44, Ano17-45, Ano17-46, Ano17-47, Ano17-48, Ano17-49, Ano17-50, Ano17-51, Ano17-52, Ano17-53, Ano17-54, Ano17-55, Ano17-56, Ano17-57, Ano17-58, Ano17-59, Ano17-60, Ano17-61, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s]. Issues [GS16, MFEM16, XFG16]. iteration [SBB10]. iterative [Gra15, HLXH17, HLXH18, ZVY15, PGL15]. IV [EH13, MLGB16, VBMA13]. LV [HLXH18, HLXH17].

Lagrangian [FXC+13, HGCCGR+16, LRvdSM15, RHJ11, SDF+17].
Lamarckian [FRLN10]. lambda [ISK14]. Landau [SA11]. landscape
[HDM+15, IMK+16, ZSB+16]. landscapes
[BRE16, CDM+15, JCP11, PJ13, RDRIC16, SOJ14, SH11h, WSH10].
Langevin [OCL11, SSWX14, WBVE16]. language [LMR14].
lanthanide [CPRS18, DBF14, Hua16, TS11].
lanthanides [JXSW15]. lanthanoid [BCSCJ+13].
Large [JBSQG11, XFG+15, XFG+16, AF14, AGR11a, CSGOA17, CHG+16,
CEBO15, CSSB11, DZA11, DDM+15, FN12, GRS15, GBW+14, GP11b,
GWXZ12, HLXH17, HLXH18, JSXH16, JS17b, KG15, KNE11a, LS11a,
LCPS13, LZX16, LWL+10, LCM+14, MK11, MDT10, NYN17, NFG+13,
OPB+12, RLL+10, RS12, RSB+13, SCQ13, SAGC16, Sch12, SRR16, SG13,
SMM17, TSR+16, WLW+10, WX12, XhD15, YHCS11, ZWL13, ZLL+13].
Large-Scale [XFG+16, JBSQG11, XFG+15, DDM+15, LCM+14, MDT10,
RSB+13, XhD15, ZLL+13]. large-time-step [RS12].
LaSrVMoO [SWMW10]. lateness [MS10].
Lattice [RSLS13, EFOD13, Pon10]. layer
[MBA11, PP10, SE14, YZZ+17]. layer-layer [YZZ+17]. lazy [LLL+10].
LCgau [SPH11]. LCgau-B97 [SPH11]. Lck [AC11a].
LDA [DOM+11]. leading [SJD14, TCPPC14]. LEAP [LZZ14]. learned [FP17a]. Learning
[HJG09, Aou16, FZY+12, FSD+18, GHV17, LHO17, LTA+11, YLCX10].
least [BCCO10, Bow16]. least-squares [BCCO10]. leave [WMW+10].
leave-one-out [WMW+10]. leaving [KV15b]. lectins [MS˚AK12]. legacy
vWI11]. Leishmania [VD10]. length [ASL+11, KSC16, RAR+11]. lengths
[GREA11]. Lennard [DPSL16, DH11, KGHK12, NW17]. Lennard-Jones
[DPSL16, DH11, KGHK12, NW17]. Less [SA10]. Letters
[BCJC+14, Cor17, GKR13, GPGSM12, Ihl12, JW12, KR14, Man13, Ray13,
RLSML12, SFLG+17, VVB13, WM12, dSdS12b, vLBBR12]. LEUS [BH15].
level [BVH17, DMJ17, EWEK+13, FFA14, HJKJ13, JGC+10, KSM16,
KSM17, KNN11, MSc+10, MCLD10, OSR16, PVL+13, PTK11, PML+12,
PBI4, VAMS14, WWD14, ZMM12]. levels
[AC12, BCSCJ+13, BY11, BACSCJ+10, HYD10, Hua16, KHWB17, Kop15a,
Kop16, Kop17a, Kop17b, MK13b, dSAdSL13]. leveraged [EPH+15]. Lewis
[EHSPT16, KASH14, Lüc14]. Li [DDM+15, JW12, RLA+11, YCGA10,
YHCS11, BWKW10a, RLA+11, TN12, YCGA10, SBW12]. Libcint [Sun15].
LIBEFP [KS13a, KS15]. libKEDF [DWC17]. Libra [Aki16]. libraries
[LG11, RLL+10, WF16]. Library
[KSD+12, AK16, DWEK17, EWEK+13, FRN15, KS13a, KS15, LRvE17,
LMZ11a, LAS+14, MZZ11, RFN15, SC15, Sin15, VAR12, Yes12, Yes15].
library-based [MZZ1]. LICHEM [KWL+16]. LiCN [LLL+11]. LIE
[CZY11, VLB+10]. life [RHT+15]. lifetimes [CH10]. Ligand
[DPOS16, KCI3a, MNNK10a, VKC10, ABD11, AG12, BKLA13, BPD11,
BCG10, BBG+18, BS10c, CMD13, CIKT13, CHR+12b, CHR+12a, DFF+15,
FTW12, FBEM11, FRLN10, GHK12, GDV17, GS11, GZ14, HKR12, HG13,
...
ligand-based [RVP+11].
ligand-binding [GDV17, MGWR12, OSR16, RO14b].
ligand-field [BBG+18].
ligand-induced [KL14].
ligand-receptor [FRLN10, VKC10].
ligand-sized [OGL10].
ligands [CS17, GPdC+16, HRC13, LL10b, LXZ+10, LS11b, SSP+13, TS10b, ZRCC12, ZWY+10b].
ligated [EH13, WC14].
LigDockCSA [SHL+11].
light [HXM+16, KDR+18, PE11, REL17].
light-driven [HXM+16, REL17].
light-harvesting [KDR+18].
lighter [WD10].
Lightweight [RLG14].
lke [AASP18, Che17, EPH+15, KOY+12, KB14b, MP17b, OAN15b, SDF+17, SM15, UCFR16, VHA+10, VVY18, WFZ+18, WKCI16, WGN+16, ZSL+11, VVY18].
Limit [SN16b, Fra15, Fra16, LW16, LYC+13, OAN15a, SLT14, WTH+16].
Limitations [LvG13a].
limited [SLT+15].
limit [II18].
Linear [BG12, YN15, ZLY+16, ARLP13, CPV+12, EP12, FBY+17, FCE15, GZZ12, JZZM14, JMS13, LP11b, MA17, MSAK12, NYH+17, PH17, RS17a, RLA+11, RR11, SS16a, Tak14, VBDS+11, WL10, YDX16].
linear-combination-based [Tak14].
Linear-scaling [BG12, YN15, NYH+17, RR11].
Linearity [IKN13].
linearized [Fra15, Fra16].
Link [ANO12u].
Linkage [HH11, OZS+13].
linked [Fom11, dACP12].
linked-cell [Fom11].
linked-lists [dACP12].
linker [NPG17].
lipid [BPPS17, MOS12, PGCT+12, ST11, WAS+10, WHAS+16].
lipids [HM16, ML14].
lipopolysaccharide [DLA14].
lipopolysaccharides [HBJ+17].
Liquid [WLC12, AASP18, APY+16, BDTP11, CC12a, EK15, GWJR18, IM17, KGHC15, Lar12, MG15, NTNY15, RSJ17, SBvG14, SAvg15, WCWV15, ZZT14].
liquid/lithium [EK15].
lipids [AFPI13, CG15, CFC15, CVG14, DASA15, EDOLdV17, SCM+15, SHF11, You10].
lists [Gon12, dACP12].
lithiated [KZK+12].
lithium [EK15, GMG+10, KOP+14, KYC11, LLL+11, MBRC16, NDG14, NFI+16, PGCI12, PMT16, SKY+11, TN12, ZZL+12].
lithium-doped [PGC12].
load [Fom11].
LOBSTER [MDTD16].
Local [CHP11, GH16a, GH16b, HJK13, ITIN15, CPN+17, DPP16, Fer13a, HH10, KSSH13, KDT+12, KGM12, Lar12, LLL+10, LZS+17, MKH+13, PH17, PRSG13, PRY+17, PW12, Sch12, SEF+16, SB15, WM17].
localizability [Bar14, BLG11, BWKW10a, BWKW10b].
Localization [Sax12, ABDGN12, BLK11, BLG11, GNDA+12, HJJ13, Mat14, Pill17, vSGP10].
localized [ANO15-58, BH14, SB15, ZM11, dLC17].
locate [AMGB10].
location [PTB+15].
locked [XVN17].
locking [XVN17].
locus [NR11].
logarithmic [MIOM13].
LOL [BSPP+13].
lone [BSF18, BSG18, ENKK+17, SSGS15, WCY+11].
lone-pairs [ENKK+17].
Long [BCNH+11, KSH13, KSSH13, AO10, BLBG+13, BZH14, JBSQG11,
KB10, KV14, MMS16, MBC13, PNG10, SMGB11, ST13, SPH11, SSA+17, TSN16, VI17a, Rui11. long-bond [KV14]. long-chain [TSN16].

Long-range
Low-density [BBI+11]. low-cost [TF15].
Low-energy [BPM15, DH14, MPA10, MPA12]. low-index [RRC+15]. low-lying [AC12, TSN17].
Low-memory [Gra15]. low-resolution [SM11, Vor10, BS10c, BBI+11]. lowest [GFG11].
Luminescence [DBF14].
M [LDJ+10, LLL+11, MCK17a, Rab12, TLdG+12, WWKS16, YW12, YHCS11, JJAB16, CCLCGR014, MCK17a, TLdG+12, YHCS11, JJAB16].
machines [GTZ+18, RLL+10, ZWL13]. macrocycles [CMM18, GMASBF16]. macrocyclic [ZRCC12]. macrolide [PG15].
macromolecular [Kne11b, LCA17, LAT10, LAT11, PG14, UW12, RTP+13].
macromolecules [DGC14, DZA11, FXC+13, OHPR17, RZ16, ZKE+17].
macrotetra cyclic [ZHY+10b]. magnetic [BCSCJ+13, BACSCJ+10, CPRS18, CPN+17, FNSF+11, GTT10, HAI+16, Ibr17, JCG+11, KNP+12, LLM11, LLB+12, SACdG14, SB13, SB15, Vik11, wZbZ11, ZLZ14].
Magnetically [ATM18]. magnetizabilities [ZPP+16]. magnetoresponsive [TDKT10, TS11]. main [ACD+13a, ACD+13b, JJJ16, XhD15].
managed [LMA15]. manganese [GHL17]. manganese-based [GHL17].
many-core [KNHN16]. map [MKM+17]. mapper [BJP15]. mapping [EMD17, MMM+16, RNSF+16, TD10]. maps [GMPAM+14, YRSR10].
Marburg [OLY17]. marker [JAH+17]. Markov [BFH+13, LTT16].
Martini [HBJ+17, SM15]. MARTINI-like [SM15]. mass [NPTS16, PGY15]. massive [GP11b, TNY16]. Massively [KNHN16,
KZZ$^{+16}$, MYT$^{+14}$, BWMSM10, KN17, NNK$^{+16}$, OPB$^{+12}$, WHK$^{+12}$.
master [RSLS13]. match [TZ12, YPKB12]. matched [KSR$^{+16}$]. matching
[AW11, GPS10, HS12]. Material [JW12, DGL$^{+13}$, HLWD15, JBSQG11,
LL13b, MCAG$^{+16}$, NGAS17, SLHW09]. materials [BSL$^{+16}$, CD11, DLT17,
ECZWD17, EMD17, Man13, NDD$^{+10}$, SYZ$^{+17}$, VB13a, VVB13, VVY17].
MATLAB [DDK14]. matrices [Car14, LHO17, Mat14, Yon16]. matrix
[CAP17, CWZB10, Kne11b, LAT10, LAT11, PW12, RPNP10, RNP13, RR11,
SS13a, STM17, TCPPC14, UIW$^{+10}$, VGV11, VKNT15, VKNT16, ZVY$^{+15}$].
matrix-based [VGV$^{+11}$]. matrix-free [ZVY$^{+15}$]. matter
[HRB$^{+17}$]. Maxima [L¨uc14]. maximum [MLC13]. may
MC-XQDPT2 [KKL$^{+13}$]. MCN [LLL$^{+11}$]. MCQDPT [LLSW14]. MD
[DDK14, RSR$^{+12}$, BM12, FB14b, GMASBF16, LJL$^{+11}$, MTvG12,
OYK$^{+11}$, RAR$^{+11}$, SISK10, SMP17a]. MDAnalysis [MADWB11]. MDLab
[CCW$^{+10}$]. MDTRA [PVZ13]. Me [KKR$^{+13}$]. mean [HDL$^{+14}$, KERY$^{+16}$,
KT10, KS12, KLS10, KMLS10, MIOM13, MP17b, RI10, VBDS$^{+11}$, Vor12].
mean-force [MIOM13]. meaning [PSP15]. Means
[Sch18, KSM16, TTB$^{+10}$]. measure [TZCK18, WF16]. measurement
[MPSG11]. measures [CDB10, CAA10, Dry14, MK11, PZBA13]. mechanical
[AC11a, APY$^{+16}$, ACS12, ALH$^{+10}$, BTT10, BEL$^{+11}$, CXW14,
DR11, DLW12, ECZWD17, FL15, GMMH$^{+16}$, HYUS11, Ibr11, JW015,
JSXH16, KVR10, LPE$^{+10}$, MHRR11, NKK$^{+16}$, NDD$^{+10}$, OR16, PML$^{+12}$,
PGW$^{+17}$, PVAM16, SBD$^{+17}$, TZ11, VPR10, WKC$^{+10b}$, WCAH10,
YKO$^{+11}$, ZSTI14, ZWMW10, ZKH$^{+10}$]. mechanical/effective [DR11].
mechanical/molecular [BEL$^{+11}$, YKO$^{+11}$]. mechanically [SOYC12].
mechanics [AS10, AGB13, AS15b, BGR13, CGPP11, CXW14, Chu10,
CHKR10, Cor17, CB11b, CB11c, DDM$^{+15}$, EPH$^{+13}$, ENKK$^{+17}$, Fer13b,
Fer13a, GEP$^{+14}$, GPdC$^{+16}$, HWLW11, KGHK12, LAHS16, LTP11, L¨uc14,
MS12, NLP$^{+16}$, NHK$^{+13}$, PSC11, PGW$^{+17}$, SFLG$^{+17}$, VYM15, WOH16,
WOH18, WCDM11, YPKB12, HWLW11]. mechanics-based [WCDM11].
mechanics/dynamics [DDM$^{+15}$, EPH$^{+13}$, GPdC$^{+16}$].
mechanics/generalized [HWLW11]. mechanics/molecular
[FB14b, Fer13a]. mechanics/Poisson [HWLW11]. Mechanism
[GZL$^{+12}$, SLY$^{+10}$, VKNT15, WCW11, BHNS14, BMFG16, BEL$^{+11}$,
CPV$^{+12}$, CPLLI1, FB14b, GYX$^{+10}$, GRCL12, HYZZ13, HDHL15a,
HDHL15b, HDHL15c, JCG$^{+10}$, JLS$^{+10}$, JW16, KV14, KT12, KS13b,
LZL$^{+10}$, LZHH11, LLB$^{+12}$, LWWC16, LHT15, LPM17, NJX$^{+10}$, Oht16,
PMT16, RLGI11, RSK$^{+15}$, SLL13, SBW12, VMTL10, WQZW10, WCL$^{+11}$,
XLY12, YPC$^{+10}$, YHG$^{+11}$, YXZZ17, ZSWL12]. Mechanisms
[WJX$^{+10}$, ZZWT12, DWZ$^{+17}$, GG10, KCI13a, MH11, MLY$^{+13}$, PPH$^{+14}$,
SLT14, SLT$^{+15}$, YB11]. Mechanistic [CYY$^{+17}$, LZZL$^{+16}$, TSJ$^{+10}$, YZ17,
ABB$^{+12}$, ABB$^{+13}$, GDNA$^{+12}$, NGD14, WLVHW12, WHDL11, YZGS14b].
mechanochemical [QB16]. mediated [MRR11, RVP$^{+11}$, XYW$^{+14}$].
medium [FE14, IPAA11, LRvE17, RK15, WWD14]. medium-size [FE14].
[PSC11, PKIC11, PPJ14, PLV+11, Pon10, QLQ11, QB10, QB11, RHRC3H16, RKG10, RLS13, Rod13, RKB+14, RFHG10, SS13a, SCM+15, SBB10, SSWX14, SBN13a, SBN13b, SB15, STM17, SG13, SSAS10, Tk14, TKNN10, Tak10, TSZQ12, TSNC+17, US11, UIW+10, VLB+10, VDVR14, Vor10, WXS+12, WJG+13, WMH10, WTH+16, YWJ+16, Yun10, YN15, YHH+13, ZDZM13, ZMM12, Zha12b, Zha12a, ZLM+14, RFHG10, SSWX14, SBN13a, SBN13b, SB15, STM17, SG13, SSAS10, Tk14, TKNN10, Tak10, TSZQ12, TSNC+17, US11, UIW+10, VLB+10, VDVR14, Vor10, WXS+12, WJG+13, WMH10, WTH+16, YWJ+16, Yun10, YN15, YHH+13, ZDZM13, ZMM12, Zha12b, Zha12a, ZLM+14, RFHG10, SSWX14, SBN13a, SBN13b, SB15, STM17, SG13, SSAS10, Tk14, TKNN10, Tak10, TSZQ12, TSNC+17, US11, UIW+10, VLB+10, VDVR14, Vor10, WXS+12, WJG+13, WMH10, WTH+16, YWJ+16, Yun10, YN15, YHH+13, ZDZM13, ZMM12, Zha12b, Zha12a, ZLM+15, ZW17, ZH12, ZA15, Zim15].

Methodological [VKNT16]. methodologies [Rob13]. methodology [Aki16, FF11, GAI13, GMASBF16, HPT17, OHPR17, RJWW12, HCD+10]. methods [Ano12u, Ano15-59, ASMS10, BG13, CLFRO18, CSGOA17, CXS10, CNK97, DKE+17, DBM+15, EWK+13, ESM+12, EV14, Fer13b, Fer13a, FB10, FSSW17, GAI14, GFPSD17, GD10, GSS13, GMSBF16, HCB11, HSB+11, HÖf14, HWLW11, JJH+13, KSM17, KB13, KHWB17, LEDOLdL17, LZLC13, LLSW14, MS13, MY17b, MR17, MVKS10, MOS12, NYH+17, NASH15, NC13, NC14, NTNY15, OSHG17, DCOD13, PN13, PVAM16, RZG+13, RRH12, SFR+17, SS+16, SACdG14, STM+15, SGWA17, TG12b, TS15b, Tsi17, WBT10, WX12, YLCX10, YAS13, YJ17, ZGS+10, dSDLBNB17].

JCL+17, KSD+12, LABSG17, LLH14, LZGS11, LT13, LN15, MBA11, MJLV14b, MA17, MBA14, MPBJ11, NSO+14, NW17, PHC13, PSS14, PGM+17, PHT16, RJS17, SN16a, TTR+12, VKNT15, VAA14, VCM15, WLX17, WPM+15, WLO+17, XDL+10, XLY12, YJ11, ZX11, DHE+12].

modelling [DBM+15], models [BEM14, BLKP12, BPB11, CD11, Cor17, CBG16, CK17, DDP16, DSM+11, DI11, DGC14, EK15, EPD+10, GMPB12, GMMH+16, GMG+10, GKR13, GCP+13, GCC14, GAJ+17, HS16b, HGY15, JCP14, JGS+17, KJDB12, KKO+16, KB11b, KSR+16, KSW16, LTL16, LKL10, LZ12, LLWS14, MPSA17, MSAK12, MCIJ15, MKB+13, NNS15, OL13, PCH13, PGY15, PL18, Ray13, RTP+13, RKG11, SCMA+17, SFLG+17, SAvg15, TH13, TTB+11, TTT+12, VKC10, VMPS17, VZ14, WS10, WW14, YJ11, YL13, ZsA10, dSLBNB17].

modelling [DBM+15], models [BEM14, BLKP12, BPB11, CD11, Cor17, CBG16, CK17, DDP16, DSM+11, DI11, DGC14, EK15, EPD+10, GMPB12, GMMH+16, GMG+10, GKR13, GCP+13, GCC14, GAJ+17, HS16b, HGY15, JCP14, JGS+17, KJDB12, KKO+16, KB11b, KSR+16, KSW16, LTL16, LKL10, LZ12, LLWS14, MPSA17, MSAK12, MCIJ15, MKB+13, NNS15, OL13, PCH13, PGY15, PL18, Ray13, RTP+13, RKG11, SCMA+17, SFLG+17, SAvg15, TH13, TTB+11, TTT+12, VKC10, VMPS17, VZ14, WS10, WW14, YJ11, YL13, ZsA10, dSLBNB17].
LZL⁺13, LWXC16, LZS⁺17, LJL⁺11, LP11c, LAS⁺14, MRB14, MKS⁺12.

molecular

[MSC⁺10, MJC14, MCRL17, Mat10, Mat14, MSvG12, MWJ⁺11, MFEM15, MADWB11, MPNS13, MKM⁺17, MBA14, MHRR11, MCC12, MFR⁺17, MO17, MS12, NPTS16, NSO⁺14, NLP⁺16, NST14, NPG17, NFPD13, NFG⁺13, NF17, NNK⁺16, NHK⁺13, NS17, NTNY15, Oht16, OHNK11, ON14, OGL10, OHPR17, OCL11, OLY17, OT12, OME16, OVPK15, OOT15, OW15, OWX17, OW16, OW15, OW14, OW13, OW12, OW11, OW10, OW9, OW8, OW7, OW6, OW5, OW4, OW3, OW2, OW1, OW10, OW9, OW8, OW7, OW6, OW5, OW4, OW3, OW2, OW1, OW10, OW9, OW8, OW7, OW6, OW5, OW4, OW3, OW2, OW1, OW10, OW9, OW8, OW7, OW6, OW5, OW4, OW3, OW2, OW1, OW10, OW9, OW8, OW7, OW6, OW5, OW4, OW3, OW2, OW1.

Molecular networks [MCC12].

Molecule

[KR12, vRWGS17, DHOG13, DGL⁺13, ETLS17, FAA15, GAI14, GCWS15, GBVA11, HH17, ISG13, IHI15, KB11b, LIRL16, MCC12, PCLL11, RLL⁺10, SG10b, VGV11, WF16, XYW⁺14, XMSZ16].

molecule-mediated [XYW⁺14].

Molecule-specific [KR12].

molecule-transcription [XMSZ16].

Molecules

[ATM18, AIGP15, ARAG17, AGR11a, BLBG⁺13, BS10a, BTMS12, BSF18, Ben17, BS16b, BL12, CHG⁺16, CQFC10, CYG⁺15, CCOH14, CXS10, CZNA11, FE14, GWF11, GP12, GPGSM11, GPGSM12, GAJ⁺17, HRB⁺17, HSB⁺11, Hug12, Hl12, Kan15, KLJ⁺17, KYG⁺15, LPS12, LHSH12, LgV13b, LI4b, LJ⁺11, LG14, MA16, MS13, Mat10, MSS⁺13, MH17, MBE16, MPBJ11, NIT15, OGL10, OT12, PZBA13, Pyy13, RSG14, RK15, SFCCK⁺14, SFCCK⁺15, Sch13, SG10b, SFLG⁺17, SY16b, SM17, TZCK18, TSR⁺16, UNT16, VVV⁺15a, VHA⁺10, VVY18, VDVR14, WC13, WSZW15, WWD14, WX12, You10, YKHI5, YHW17, ZPP⁺16, Zha12b, ZLX⁺13, ZBB16, ZCGM11].

Møller [FSSW17, Hll13, KKKN11, KN17, MCC11, YKHI5].

MOLSIM [JP15].

molSimplify [IGK16], MolTPC [WHJH13].

Molybdaticarbaboranes [LK16b].

molybdocene [PM13, SDL14].

Moment [SS16a, JCG⁺11, KCB⁺12, Yan11].

Moments

[GH16b, BLDK⁺13, CP15, CTP13, DHOG13, GH16a, Lar11, NOKJ16, Tru18].

momentum [EP12, GWF11, PH17].

monazite [RKB⁺14].

monazite-type [RKB⁺14].

monoxanion [YZGS14a].

monoboronyl [VVBL17].
[GA14, SP13, CCM15, CF14, GCCM15, MCC11, MC12, SSSM15].

multiresolved [DGC14]. Multiscale
[BLKP12, FXC+13, LC16, LZ14, JBB+11, MBC13, SYN+12, WLO+17].
multisite [CK17, HS14b, MMB+17]. Multistart [MS16]. Multistate
[TM16, AM10]. Multistep [DWZ+17, FZY+12, WDZN16]. Multistructural
[SMM17]. Multisubstate [PBLdS12]. Multithreading [TO10, ZWL13].
multivalent [AS14, FVP14]. Multiwfn [LC12]. Mus [WZQW10].
muscarinic [SRA17]. musculus [WZQW10]. mutagenic [BZH14].
mutant [FHK+12, LMA15]. Mutantelec [VMRSH+17]. mutants [RKDM14].
mutation [BA11, VMRSH+17, ZJZM13]. mutations [BH15, GMO16, KYT+17, SL10, SY16a, WC11].
mMVPack [BACSCJ+10]. MX [Sch13]. mycobacterium [MPNS13].
MyMolDB [XTG+11]. myoglobin [SHB17].

N [Ano15-59, BLF14, BCNH+11, KBC12, KCL+14, LPLB16, NDG14,
PV+13, BCNH+11, BWK10b, BMB13, BSDP16, CWT+12, CCM15,
DCHL12, DLW12, GMASBF16, GZL+12, HLH+12, KV14, KCL+14,
LZL+15b, MLGB16, MS15, OZLSBH12, PVL+13, RHN10, RWR+13,
SB+17, SGHL13, TSJ+10, VM11, WS10, WGL+11, WCL+11, WYGW12,
WS12, Yu12b, YXZZ17, ZP13, HPSK12]. N- [BMB13]. N-heterocyclic
[BSP16, CWT+12, SGHL13, WS12]. N-methyl-N-phenyl-hydrazine
[GZL+12]. N-methylacetamide [HLH+12]. N-substituted [DCHL12].
NABs [SBW12, SBW12]. NABs-Li [SBW12]. NaCl [HB15]. NaI
[OCW+15]. Naiyang [Ano12u]. nano [Ano15-58, BH14, QZ10b].
nano-clusters [QZ10b]. nanobiotechnology [Fel10]. nanochannels
[TM16]. nanocluster [AS15a, RVKV13]. nanoclusters [AASP18, LLJ12].
nanocrystal [KC13b]. nanographene [DWZ+17]. nanographenes
[TSN17]. nanolayers [EBK13]. nanoparticle [CCJC10, NS15].
nanoparticle-PMMA [NS15]. nanoparticles [EOO+16, LZZ+11].
nanopore [SM16b]. nanopores [DMN14, MJ14, SM15]. nanoribbon
[DJX+11b, DJX+11a, RRK14]. nanoribbon-based [DJX+11b, DJX+11a].
nanoribbons [LWZK13]. nanorings [TS15b, YDGZ15]. nanorods
[LHKS12, LH14b]. nanoscale [Hei10, SWB+12]. nanosecond
[Bow16, MCRL17]. nanosheets [wZbZ11]. nanostructure [LLD17].
nanostructures [YZZ+17]. nanosystems [Tia12]. nanotube
[AS15a, FTR15, JWO15, OCW+15, RHN10]. nanotubes
[ASL+11, BE14, BPE16, DI11, Den12, DZAI11, EBK13, EP15, EBPK17a,
EBPK17b, GBS+17, KGKH12, LPLS16, LL10c, LT14, NDD+10, PBE16,
naphthalenediimides [MGS+16]. naphtho [ZLL+10].
naphtho-homologated [ZLL+10]. naphthodianthrene [DGL+13].
naphthol [CY+17, GZL+12]. native [DJ13, HYL+11, UCFR16, YL13].
native-like [UCFR16]. Natural [LCPS13, MBFP15, Wei12a, Wei12b, AO10,
GMZ12, NC14, Sch12, GLW13a, GLW13b]. naturally [XVA+16]. Nature
[ABDGN12, MJM1+15, WFZ1+18, GPK1+16, HBR17, Kri10, LZJ1+11, LYL16, LdSRR16, MLGB16, PKK17, RKDM14, YK13, YJ17, ZRCC12]. navigation [SLG15]. NBe [UT14]. NBO [GLW13a, GLW13b, WvRSM14]. NBS [YZ17]. NCCH [MLGB16]. NCI [REV1+17, VVJ15]. NCY [LZL1+15b]. near [DJ13, SISK10, Yan11]. near-native [DJ13]. near-solute [Yan11]. near-native [Hug14, YS15]. Necessity [JC16]. necks [CC12a]. negative [KV13]. neighbor [AGR11a]. neighbors [Hug14, YS15]. NEMO [HBKL10]. Net [RO14b, CS14]. netropsin [HDK1+12]. network [AD10, GFPSD17, GGM1+12, HNHR13, HAI1+16, IIHY15, LDH1+14, OC14, PC11, PPUBGD10, RKDM14, WMW1+10, XTY1+14]. network-based [PC11, PPUBGD10]. networks [AGM1+13, Clo15, Kan15, KUDG12, LHO17, PPM15, PPUBGD10, TD11]. neural [AGM1+13, HNHR13, LHO17, LDH1+14, PC11, WMW1+10]. neutral [GC11, GWPJ11, JM11, KD10, Tsi14]. new-type [HLWD15]. News [AIGP15, Aki16, APK14, AAC1+16, BTA1+13, BBH12, BCSCJ1+13, BSZ1+12, Ber17, BJP15, DNN15, BBG1+18, CBBH14, CSEM12, ZCZF17, CAT1+13, DDJ12, DVVP14, DDK14, DWC17, DSK17, ESB13, EWK1+13, FN12, FSC1+14, GMSdG15, Gar12, GJMPAM1+14, GLW13b, GS12, GCP1+13, GCC14, GH16b, HG13, HYMZ16, HKR1+14, HBJ1+17, HL14, HC14, IKG16, JHH1+13, JJW1+14, JPCA17, JP15, JCGM18, KS13a, KS15, KK17a, Kan15, KB16, KDR1+18, KKM1+17, KDT1+12, Kos16, KG13, KL1+16, KK17b, KWG15, KYG1+15, KAG1+12, KSW16, KPF1+15, LPS12, LJR1+12, LSH12, Lh15, LRvdSM15, LRvE17, LDB1+17, LLZA12, LBB1+15, LWW1+17, LC12, LAc1+14, MHT1+18, MDT16, MBR1+15, MYT18, MSSP17, MB14, MB16, NKJ16, OV14, OPB1+12, OZS1+13, OC14, PSS14, PGL1+15]. News [DBDP16, PSC1+17, PW12, PPM15, PHH1+12, PVZ13, PG14, RLLHL12, RNSF1+16, RZ17, RX16, RR14, RdA12, RSR1+12, RCM1+13b, SM14a, SFG1+17, SK15b, SW13a, SM14s1+17, She12, SC15, Sie15, SJ17, SW12+12, SDMS13, TNY16, TSC1+13, TTR1+12, TTL1+12, UU12, VMRS1+17, VVV1+15b, VAR12, VBV13b, WDvN12, WDI13, WPM1+15, WF16, Wei12b, WHK1+12, WHJH13, WG14, WC1+14, XCM1+15, XY17, YWJ1+16, YZ16, Yes12, Yes15, YHH1+13, ZDKM12, ZLL1+13, dVAG16, KKR1+13]. Next [ADF1+10, HGY15]. next-generation [HGY15]. NF [ABB1+13, ABB1+12]. NGuaS [WGN1+16, WGLG1+16, WRG1+17]. Nguyen [Ano15-59]. NH [CG12, KS11, LBV12, VVY17, CCJ1+11, Kop15a, LYT1+13, LYT1+11, ON1+16, UT14, Yu12a]. NH-... [MVKS10]. NHH [LZH1+11]. NHOC [LHH1+14]. Ni [ib17, TLdG1+12, Tsi17, WWKS16, MMB1+17, SSX1+14, TLA10, ZRCC12]. Ni-NO [Tsi17]. nickel [ED15, FCW1+14]. nicotine [PMC1+17]. NICSz [AVH18]. nitrate [OSS10]. nitric [BS16a]. nitride [GLF16, LT14]. nitrides [TS11]. nitrilotri [CM16]. nitrilotri- [CM16]. nitrilotriaconic [CM16]. nitro [YPC1+10, ZWZ11]. nitro-substituted [YPC1+10]. nitroaldol
nitroaniline [ZTH+15]. nitroaromatic [PSC11, TD10]. nitrobenzenes [ZGS+10]. nitrocompounds [SIG+15, SGH+16].
nitrophenylbenzofuran [DPB+12]. nitroethane [YZL+15].
nitrogen [LLC17, BEPM14, KV14, ZZWX11, ZYL+12]. nitrogen-atom [KV14].
Nitrogen-doped [LLC17]. nitrogen-rich [ZGS+10, SGH+16].
nitrodibenzofuran [DPB+12]. nitroethane [YZL+15].
Nitrogen [LLC17, BEPM14, KV14, ZZWX11, ZYL+12].
nitrosothiol [TKXT13]. NMR
[Ben17, CHP11, EOA+11, HJ13, HBI+17, HM13, KASH14, LK11, OPR16,
PTK11, PGd0+16, PC14, Pie14, RK15, SEF+16, SKMS13, WL14, YS13].
NNO [WGL+11]. NO
[MCUJ15, Tsi17, ZZ10, WYGW12, BS16a, GY12, OSHG17].
nitrogen-doped [LLC17]. nitrogen-rich [ZZWX11, ZYL+12].
nitrogen-substituted [BEPM14]. nitroiminotetrazolate [ZYL+12].
nitromethane [MCUJ15]. nitrosamine [dALdS+15]. nitroso [TDP+12].
nitrosothiol [TKXT13]. NMR
[Ben17, CHP11, EOA+11, HJ13, HBI+17, HM13, KASH14, LK11, OPR16,
PTK11, PGd0+16, PC14, Pie14, RK15, SEF+16, SKMS13, WL14, YS13].
NNO [WGL+11]. NO
[MCUJ15, Tsi17, ZZ10, WYGW12, BS16a, GY12, OSHG17].
nitrogen-doped [LLC17]. nitrogen-rich [ZZWX11, ZYL+12].
nitrogen-substituted [BEPM14]. nitroiminotetrazolate [ZYL+12].
nitromethane [MCUJ15]. nitrosamine [dALdS+15]. nitroso [TDP+12].
open-ended [RJR14]. open-shell [BG13, ISO\(^{+} \)13]. Open-source [HLS\(^{+} \)13, Aki16, APK14, FBY\(^{+} \)17, HPT17, KSD\(^{+} \)12, PHT17, Yes12]. open-shell [GMBX\(^{+} \)16, WCL\(^{+} \)11, ZQ14]. OpenMM [HLW\(^{+} \)17]. OpenMP [JMS14, KS15, KN17]. operation [Bac12]. operational [MA16]. operations [WS13]. operator [LMR14, SNS13]. operators [Car14]. Oppenheimer [BLZ\(^{+} \)13, LCH10, RSB\(^{+} \)13]. opportunities [KHWB17]. opposed [WWKS16]. opposite [´SSB\(^{+} \)16]. opsin [RLG11]. Optical [WGLG\(^{+} \)16, ARLP13, BLL13, BLS10, GTT10, HB15, HRJ\(^{+} \)14, HRJ\(^{+} \)15, JRSHP14, KRTB10, KOP\(^{+} \)14, LLBO12, LLD17, MLQ\(^{+} \)12, MIS\(^{+} \)15, MGS\(^{+} \)16, MCK17a, TFQ\(^{+} \)10, TFQ\(^{+} \)11, TS15b, YB13, YCGA10]. optics [Tia12]. Optimal [DBK17, VSA11, HS12, Kne11b, LTT16, LAT10, LAT11, MLC13, SM17, Tak11, TTB\(^{+} \)10]. optimally [SZZS16]. Optimization [AG11, CB11b, CB11c, HOK17, LC17b, MY17b, TKN13, WM12, BW11b, BHR15, BW15, BS15, BC13, CY09, CY13, CJL\(^{+} \)13, DS15, DH11, DMAH15, Elk16, HKR12, HJKJ13, LvDH13, Leh15, LZL\(^{+} \)13, LLJ12, Ponn10, SA13, SZBM13, SKKS13, SMMW09, SLG15, SR10, SM17, TSZQ12, TO10, Vor10, VBVI3b, YS15, ZWP11, ZsA10, vLBBR12, PGL\(^{+} \)15]. optimization-based [YS15]. optimizations [RR12, WX12]. optimized [Boz18, CX10, GA12, HH10, LZZ14, SD17, SB14, WO15]. Optimizing [SYDS11]. optimum [KTNN10, SB11, TKN10]. ORAC [MSC\(^{+} \)10]. orange [LWL\(^{+} \)11]. orbit [AMQ\(^{+} \)14, FAA15, FD16, GP11a, JKS\(^{+} \)16, MG11, MCP18, PS17, YB11]. Orbital [WM12, ASL\(^{+} \)11, Boz18, BVC13, CIKT13, CPN\(^{+} \)17, CGPP11, DHF\(^{+} \)11, FE14, GFW11, GLW13a, GLW13b, IIF\(^{+} \)10, IKN13, KTN10, LCP13, LFN\(^{+} \)10, LTP11, MFR\(^{+} \)17, MGS\(^{+} \)16, NF17, OHNK11, OOT15, OOK11, PRYI\(^{+} \)17, PH15, RKGN10, SGPJS\(^{+} \)17, Sch12, SMMW09, SB14, SB15, TKN10, TS14, TSN16, US11, UM13, Wei12a, Wei12b, WCWV15, WM17, ZA15, vLBBR12]. orbital-based [CGPP11, MFR\(^{+} \)17, Wei12b]. orbital-dependence [SGPJS\(^{+} \)17]. orbital-optimized [Boz18, SB14]. orbital-weighted [PRYI\(^{+} \)17]. orbital/local [SB15]. orbitals [AVHB18, CAF\(^{+} \)13, CCM15, Dil15, EP12, Fer13b, Fer13a, GCCM15, HJKJ13, HJJ13, JXSW15, MRB14, MY17a, MBFP15, MCK17a, Sax12, TZ12, VI17, ZR10, ZM11]. ORBKIT [HPT\(^{+} \)16b]. ORCA [MG11]. Orchestral [LL10b]. order [BCC10, DCHL12, FSSW17, HIL13, KKKN11, KN17, LCL\(^{+} \)10, LPS\(^{+} \)13, MLQ\(^{+} \)12, MCC11, NYH\(^{+} \)17, yOTn16, RBOH11, REH13, SK12, SSB\(^{+} \)16, TAG16, VKAM12, VFAR16, WHM10, ZWF15]. ordered [LPAS11, LC17a, LLB\(^{+} \)12, SJZ\(^{+} \)15]. ordering [MNNK10a, MNNK10b]. ordering-based [MNNK10b]. Org27569 [ILKR11]. organic [AH10, Bent17, BE16, CWHH11, CYG\(^{+} \)15, CLK11, DGL\(^{+} \)13, ED15, FNSF\(^{+} \)11, GLZ17, GAJ\(^{+} \)17, LZ14, LZF\(^{+} \)15a, LWL\(^{+} \)10, NDLW13, PLZ17, PNW\(^{+} \)16, Pog10, PPM15, RSG14, SRR16, SFDE16, SSAS10, SIG\(^{+} \)11, TTR\(^{+} \)12, TTB\(^{+} \)11, VVV\(^{+} \)15b, VVY17, XWW\(^{+} \)11, YJN\(^{+} \)11, YNH\(^{+} \)17, Zha12a, ZA15, ZCGM11]. organization [AO10, MCC12]. organo [MMS16]. organo-metallic

P [GTK10, HZ11, LCWW10, VT14, BE16, ED15, HAI+16, RVCF13].
P-type [BE16]. P 450 [EH13, MRR11, SLY+10, SOYC12, TDP+12, VCM15].
Pairwise [GS14, Gon12, VMPS17, XTY+14]. pairwise-additive [VMPS17].
palladium \([WCWW11, YHG^{+11}, dCDP15]\). palladium-catalyzed \([dCDP15]\). paper \([GP GSM12, hl12, JW12, WM12, HP10a]\). para \([KYCL11]\). para-substituted \([KYCL11]\). paracyclophe [KGR^{+16}]. paracyclophane-bridged \([KGR^{+16}]\). Paradoxical \([UT14]\). Parallel \([BTB^{+11}, KDB13, NN18, UIW^{+10}, WWKS16, BW11a, BTT10, CEB015, CSSB11, GJMPAM^{+14}, GRARO^{+14}, HP10a, HS17b, HPSK12, KS13a, KNHH16, KN17, KZZ^{+16}, KJM^{+17}, KDT^{+12}, LL10a, LPLA13, MBR^{+15}, MCR17, MYT^{+14}, MJM^{+15}, NNK^{+16}, OPB^{+12}, RFN15, SHMO11, Tcx^{+13}, TJB12, WHK^{+12}, Yes15, ZWL13, ZSS^{+13}, CJL^{+13}, KDT^{+12}, LMR14]\). parallel-generalized \([LL10a]\). Parallel-ProBiS \([KDT^{+12}]\). parallelism \([FRN15, Gon12]\). Parallelization \([AB16b, VDL^{+13}, BWMSM10, IUK^{+11}, JMS14, KS15, KKNN11, LLZA12, RˇSRR15, vW11, ZDKM12]\). parallelize \([vW11]\). parallelized \([DBDP16]\). parallelizing \([BMBJ11]\). parameter \([PFVL14, VVLG17, WDHZ13, LL11]\). Parameterization \([HK18, HJLV16, ILKR11, IHJ^{+13}, MPSA17, PRRT^{+10}, TCC^{+13}, BAS14, CCLP12, DLMH12, KYYB13, LTP11, MSS^{+13}, VLB^{+10}, VBD11]\). parameterizations \([SH15]\). parameterized \([OZS^{+13}]\). Parameters \([CTR13, AG11, AKMYB18, BCSCJ^{+13}, BCJC^{+14}, BW15, BC13, CYG^{+15}, DPSL16, DMAH15, FHT^{+15}, GSD10, HLS12, HM16, HBI^{+17}, HLH^{+12}, KvdV14, GKH12, LvDH13, LPS^{+13}, LLvG10, LSH^{+11}, MRO17, MP11, Pog10, RKB^{+14}, SOYC12, SZBM13, SPB^{+13}, VYM15, VLGK^{+17}, WAM17, WOH16, WOH18, WC14, YWZ14, ZRL^{+15}]\). Parametrization \([PG15, DGPM14, GCWS15, SPS^{+12}]\). Paramfit \([BW15]\). parasite \([FZL^{+15}]\). paratropic \([CPN^{+17}]\). Parrinello \([KCK^{+15}]\). Part \([HRJ^{+15}, CDBM11, CD13, HRT^{+14}, Fer13b, SK13]\). Partial \([HTS17, JMILL13, SMP17b, WOH16, GVP^{+10}, MPBJ11, PL14]\). partially \([UT14]\). particle \([AG11, BK13, Cas13, NO16, PH17, ZDKM12]\). particle-field \([ZDKM12]\). particle-mesh \([AG11]\). partition \([HGCCGR^{+16}, JS13, LRR13, WG12, WDHZ13, YAS13]\). partitioning \([DI11, EV14, FCOGM12, LZS^{+17}, REL17, SS13a, TM15, VGV^{+11}]\). partner \([dVZ17]\). pass \([SR18]\). passing \([CSSB11, ZWL13]\). Past \([GS16, MFEM16, XFG^{+16}]\). patches \([OME16, YSSB12]\). Path \([MA17, VKAM12, CY09, HXM^{+16}, Ish10, JZ17, SRSLO15, SA13, SS13b, SM17, WXY14, ZT14, CY13]\). path-based \([ZT14]\). Path-integral \([VKAM12, WXY14]\). path-search \([Ish10]\). PathOpt \([GPE13]\). Paths \([SH11a, AMGB10, AN13, CX10, NMLD13, RVP^{+11}]\). pathway \([BHB12, HOM^{+16}, LKL10, SJ14, TDP^{+12}, XLYZ10]\). pathways \([CM13a, EFB16, GS11, HNTS15, KGR^{+16}, KDT^{+18}, MTM14, QSW^{+10}, QB16, RCM^{+13a}, RML^{+15}, SJ11, SH18, Tsi17, WSH10, Yon16, BHB12]\). pattern \([CXS10, WGL12]\). patterns \([FZL^{+15}, RS14]\). Paul \([Ano15-60, Ano16-56]\). Pauli \([JH^{+13}]\). PAW \([LGKS17, MDTD13]\). PAW-based \([LGKS17]\). Pb \([MCK17b, PMG^{+16}, vSGP10, FBY^{+17}, OBW12, VM11, vSGP10]\). PB-AM
[SCOJ13, ZWL13]. PH [LZL+15b, dSDdAR10, LZL+15b, AB16a, CS14, CAD16, HS14b, MBA14, PZA15, PS13, SY16a, SOvG12, Vor12].

pH-dependent [SY16a]. pH-responsive [MBA14]. Phage [MP17b].

Phage-like [MP17b]. PHAISTOS [BFH+13]. pharmacokinetics [VBDS+11]. Pharmacophore [HRK+10, HKRS11, HS11, TD10, AKMT11]. Phase [ATM18, ZWMW10, ABB+12, BE12, BG17, DLSD13, DLW12, EMD17, GYX+10, Hsu14, KID10, LJW11a, LPLB16, LGKS17, MFM+12, NIIT15, PSC11, RWR+13, RSLML12, RSJ17, SIZ+15, VKAM12, VED10, YHG+11, YSG12, ZSZ+14, ZWW10, ZYR+15, ZLHH14, dSDs12a, dSDs12b, ABB+13].

phase-change [EMD17]. phases [EB12, LPAS11]. Phen [FD16]. phenol [AAMD+11, AK10, IYK11, PPH+14, WHX+10, YKH+10, AK10].

phenylacetylene-containing [ZZL+12]. phenylalanine [GWF11, PVS12]. phenylaziridines [KYCL11]. phenylene [CH10].

phosphorus [GWX+12, RB12]. phosphorus-containing [YDX16].

phosphorylation [RIJ+11]. Photo [HNN+17]. photochemical [Su10].

photocycloadition [LXFC17]. Photodeactivation [Ant13].

photodetachment [MLCD11]. photodetectors [DPAB16]. photodynamic [ZZ12].

photoelectron [FF11, MLCD11]. photodeossimilation [RJS17].

photoexcitation [RVdMB16]. photoexcited [MS11]. photoinduced [CGP12, MSV16].

photoionization [MY17a, MY17b]. photoisomerization [ZLHH14]. photon [DPB+12, ZTH+15]. photooxidation [LWX16].

photophysical [CWT+12]. photoresponsive [YDGZ15]. photosensitizers [ZZ12].

Physical [CB11d, FCQM12, JJH+13, LHH11, VP12, YJ17, WCT+11].

physicochemical [CCYL11, HZ+10, LHL+10, RI10]. physiological [HM16]. phytochrome [FD13]. piano [FPB12, FB14b, ZCK+16].

pillars [NNK+16]. pilot [SSSM15]. Pimephales [TTL+12]. pinane [BLS10].

pincer [ED15, JJAB16]. pincers [KJDB12]. pinene [BLS10].
[HJJ13]. pivoting [PS17]. PK
[HL51+13, GKL5a, SK15a, SK12, SK17, YDX16, Zha12b, Zha12a]. PLA
[EOO1+16]. Placevent [SYH12]. planar
[BSPP1+13, EV14, XhD15, ZYW1+16, ZLY1+16]. Plane
[Lar11, AS15b, AGM1+13, BHR15, BEL1+11, BTB1+11, EPD1+10, LPS12, LLSW14, OHPR17, SN15, Tac17, TBSM12, Wei12b, YHW17]. points [HDL1+17, HEMCZE1+14]. Poisson
[SCCO10, BD12, CILA16, FBY1+17, FHMB15, FCE15, Fra15, Fra16, GRARO1+14, NWW17, SK15a, WL10, XXY17, YOM1+14, HWW11]. polar
[BK17a, CVD14, GMG1+10, LGL13b, PAT1+10, WWW18]. polar-nonpolar
[WWW18]. polarizabilities
[BLG1+13, BZB1+13, KR12, KNP1+12, LIRL1+16, MLC13, RLA1+11, S16b]. polarizability
[CPK12, EPD1+11, HBK10, KSK11, NNY17, OVPK15, PC14, YB13]. polarizability/reaction [SKS11]. Polarizable
[GE1+14, LPS1+13, NS11, SAVG15, ZM10, BSL1+16, Cam15, CCB15, CPP11, GPM14, DGB1+13, DDM1+15, ENKK1+17, ESM1+12, FPA17a, GR15, GPD1+16, HOK17, HZS17, HCP15, ISO1+13, KFY1+13, KR12, KWL1+16, LRdSM15, LFN1+10, LHH14, LDG1+15, MBC11, MBC13, MBE16, NLP1+16, PMC1+17, PZCL16, Ric16, SM14b, SK17, SBvG14, VV17, WRHF10, WLO1+17, XZ11, XP13, ZRL1+15, ZP13]. Polarization
[MIT13, CD11, JZ12, LCW12, MLZ12, POB13, RF15, TNG1+10, WWID14, YD17, ZJZM13, ZBG11, ZBP11]. polarizable [S16b]. Polarized
[BS10a, BLG1+13, DLZ15, JZM14, NHR1+10, SFM14, YJXZ13]. pole [NNY17]. pole-search [NNY17]. pollutants [GCC14, SIG1+11, TTR1+12]. pollution [LZ14]. poly [CH10, PRT1+10]. polyacenes [KAR12, RS17a]. polyamidoamine [CAD16]. polyatomic [OT12]. polybrominated
Prediction
[Ano12a, CP15, CQFC10, FSD+18, HZSS17, KPL15, LDZW17, MCAG+16, yOaCG10, PRP15, SRA17, SPL+18, WDW12, YHW17, ZYL+12, AGM+13, BLDK+13, Ben17, Bds13, BA11, CZAF17, DWL11, DDP16, EOA+11, FZY+12, GK10, GFPSD17, GTZ+18, HLS+13, HMYZ16, HL14, JSW10, KL14, KT011, LXL+11, LMI+14, LZL+15a, LZZ14, LLH11, LWW+10, LSH+11, MDT10, Man14, MG11, MSK12, PML+12, PN13, PPJ14, PLV+11, RCR+16, RK8+14, SM11, SYH12, TYZ+16, VKC10, WLF11, WH11, WXS+12, WXL+12, WWW+18, XFTW15, YVEI17, YLCX10, YHH+13, YX16, YDGZ15, ZsA10, ZYvIZ14, ZLW10, ZHHX11, VVBL17].
predictions [ALK+15, BCP+10, CLA16, CS17, EOO+16, GAI13, RDDS10, RCM+13b, SHMO11, SA10].
predictive [LLL+10, WKC11].
predictor [CDS16].
predictors [GHK12].
predissociation [YB11].
Preface [GS18].
preferences [FCOGM12, LGL11].
preferential [TKYN17].
preorganized [CM16].
preorganized-interacting [CM16].
preparation [JSD+11].
present [Cas14].
preserving [ZBG11].
pressures [RHN10].
primary [ALK+15, GAI13, VVLG17, KTNN10].
prime [DSX11].
primitive [HAL14].
principal [PSP15].
principle [CCJC10, DBM+15, LLB+12, MCF10, Tsk11, YPvd13].
Principles [HFSO12, BE12, BE14, BPE16, EMD17, EB12, EBK13, EBPK17a, GD10, HYL+11, Ibr17, JCG+11, LLLM11, LCWW10, NNS15, PLZ17, RZG+13, SFA17, TZ11, WYL+15, WD10, YR13, wZbZ11, Zha12b, Zha12a, ZWMW10, ZZ12, vADC+14].
principles-based [Zha12b, Zha12a].
prismane [DM15, VIT+15].
Pro [RB12].
Pro-Tide [RB12].
probe [RN17].
Probing [HH15, KG11, LPK16, TG12b, ZYR+15, BS18].
ProBiS [KDT+12].
problem [BB11a, GA14, KV13].
problems [HLXH17, HLXH18, PNW+16].
procedure [AD10, BK5+11, BY11, CJJS10, HKR+14, MG14, MS12, SA13, dSAdSL13].
procedures [AC11b, CKH17, KSM16, PW12].
process [ABDGN12, BM12, DPAB16, HBL12, NIIT15, ZZ10].
processes [BPLL12, FBEM11, HTS17, JM11, KV15b, LPLB16, PAK17, PTB+15, REL17].
processing [CKKK16, EP10, GBL+11, HASR+12, HEMCZE+14, WSGN11, WS13, YWJ+16, YN15, ZKE+17].
processor [HKR12].
processors [AB16a, AB16b, BDTP11, Fom11].
PROCONS [FHW+11].
produced [LS11a, SIG+15].
Producing [RN17].
product [CC12b, ZQ14].
production [GYX+10].
products [TR12].
profile [AK10, BS16a, GTZ+18, KTT16, XML+15].
profiles [MIOM13, RBOH11, SISK10, Yu12b].
profiling [VMRSH17].
profit [KB11c].
Program [FPV13, GH16b, SWA13, BBG+11, BBG+18, CBH14, CAT+13, FM10, GLW13a, GLW13b, GBW+14, HS16a, HL14, JS17b, KWL+16, KK17b, LHS+12, MHT+18, MSC+10, MSvG12, Mez10, MSSP17, MB14, SFG+17, ...
proteochemometric [NSO+14]. proteoglycans [NPG17]. proteolysis [VKNT15].
Proteus [SGM+13]. protic [RK16a, RK16b]. protocol [KPL13, RCR+16, SDL14, WdVN12, dCLFGL13]. protocols [CLA16, EOA+11, GR11, ZKH+10]. Proton [AK10, IYK11, RJWW12, RK16b, CG15, LPAS11, LZL+10, LWGZ15, MPSG11, RS+13, SRF+17, SB+17, SV11, TM16, VMTL10, Vor12, Wd14, YZGS14a, YKH+10, YTY12, dALdS+15, RK16a].
[HSL+11, QSW+10]. **pyrophyllite** [BHB+17]. **pyrrole** [YCGA10, YHCS11]. **pyruvate** [CJZS10]. **Python** [HPT+16b, LRvE17, PHH+12, Yes15]. **PYX** [LWWG12].

Q [WPM+15, BS10c, GKV+13]. **Q-Chem** [GKV+13]. **QDock** [BS10c]. **Q2MM** [LN15]. **Q5** [REL+14]. **Q5/D5Cost** [REL+14]. **QB3** [KG15]. **QC** [BTA+13]. **QC/MM** [BTA+13]. **QCT** [BLG10]. **QIDH** [SGPJS+17].

QikProp [LP11a]. **QM** [BM12, Lun12, RSR+12, Lun12, PLP+16, AALCM11, BH13, BZH14, CBG17, CJZS10, DSK17, FLMI11, FBP12, FB14b, GRS15, GWZ15, GCW14, HH15, HYUS11, HBR17, JJH+13, JWST10, KTNN10, KWL+16, KG15, LZdL+10, LFM12, LT13, LHT15, LJL+11, MCRL17, MTG12, MJG+15, NO16, OYK+11, PMC+17, PP10, PDMT10, PL14, PLP+16, RR14, RR12, SN16a, SGDT10, SJ14, SCM+15, STN+15, SSAS10, TSC+13, UTN11, VKNT15, VKNT16, VCM15, VKTRJ15, WDP+12, GRS15, RFN15, ZZY+16]. **QM-only** [LT13]. **QM/GRS15, RFN15**. **QM/EFP** [CBG17]. **QM/MM** [BM12, RSR+12, AALCM11, CJZS10, DSK17, FLMI11, FBP12, FB14b, GWZ15, GCW14, HH15, HBR17, JJH+13, JWST10, KTNN10, KWL+16, KG15, LFM12, LT13, LHT15, LJL+11, MCRL17, MTG12, MJG+15, NO16, OYK+11, PMC+17, PDMT10, PL14, RR14, RR12, SN16a, SGDT10, SJ14, SCM+15, STN+15, SSAS10, TSC+13, UTN11, VKNT15, VKNT16, VCM15, VKTRJ15, WDP+12]. **QM/MM-MD** [RSR+12, OYK+11]. **QM/MM-QMC** [UTN11]. **QM/MM-QM** [PLP+16]. **QMC** [UTN11]. **QMX** [KKR+13]. **QSAR** [GKR13, Ray13, AKMT11, BF15, CLX+10, FCL+10, GMMH+16, GCP+13, GCC14, LLL+10, LLL+15a, PKIC11, PPUBGD10, RKG11, TTB+10, TTL+12, WMW+10]. **QSAR/QSPR** [CLX+10, GCC14]. **QSARINS** [GCP+13, GCC14]. **QSARINS-chem** [GCC14]. **QSPR** [CD13, BRGN12, CLX+10, CD13, CD16, GCC14, KKO+16, TTR+12, XWW+11]. **QTAIM** [BH13, BZH14, FCQM12, FCPJM14, GMBX+16, HXM+16, JMX+16, dRL11, Rod13, RSKG14, VVJ15, Wei12b, WvRSM14, XFX+16, ZZE+12]. **QTAIM-based** [VVJ15]. **Quantum** [AKM+13, Ray13, AKMT11, BF15, CLX+10, FCL+10, GMMH+16, GCP+13, GCC14, LLL+10, LLL+15a, PKIC11, PPUBGD10, RKG11, TTB+10, TTL+12, WMW+10]. **Quality** [CLK11, KCK+17, KYB13, MKB+13, POB13, RB13a, RCM+13b, SC15]. **QuanPol** [TSC+13]. **quantification** [Fer17, Ham11, PC14, YNH+17]. **quantify** [LLHM16]. **Quantitative** [DZA11, RDT14, VÀA14, Wei12b, BPC13, CD13, DXL+10, NFG+13, REL17, RCM+13b, XFW15, TTB+11]. **Quantum** [AKM+13, AC11a, APA+14, Chu10, CG12, DDM+15, FRN15, GH10, HHDC16, KASH14, Li14a, Li14b, LWD13, MBRC16, MS12, RFN15, SCOJ13, SAGC16, SBd+17, SOY12, SR10, SHB17, TR12, UD12, WCAH10, WDP+12, Aki16, ASS+17, ARAG17, AAC+16, APY+16, ACS12, ASK18, ALH+10, Bac12, BTT10, BRP+12, BGR13, BEL+11, Cam15, CBH14,}
CDM10, CDB10, CDBM11, CD13, CD16, CXW14, CHK10, CM16, DR11, DKT13, DPAB16, ECZWD17, EV14, Fer13b, Fer13a, FB10, FFA14, FLM11, GPM17, GMMH+16, GTK10, GGM+12, HZ11, HLvdV13, HPT+16b, HGCCGR+16, HMM10, HYUS11, HGY15, JBB+11, JSXH16, KP11, KVR10, LPE+10, Lac14, MP17a, MAPB10, MSvG12, ME10, MSSP17, MHRR11, MFR+11, NC13, NC14, NNK+16, NDD+10, NHK+13, NS17, OKIS17, OSR16, PML+12, PSC11, PGW+17, PBG17, PVAM16, RLLHL12.

reactivities [WS11, WS12].

reach [QZ10b]. Reaching [MCRL17]. Reaction
[DBGO+17, FB14b, HLS+11, LWL+16, NJX+10, QSW+10, QB16, ST13, AMGB10, AS11, Alg17, AR10, APA+14, BK15, CYY+17, CSAdOM17, CXW14, FB12, GYX+10, GZL+12, GTK10, GKR13, GAJ+17, HOM+16, Hel13, HJLV16, IF+10, JZ17, JLS+10, JW16, KV12, KV13, KG15, KB13, KSK11, LGOM+15, LZY+12a, LJW+11b, LZY+16, LWD13, LPMT17, MTM14, MHT+18, MPSG11, MS10, MJLV14a, MJLV14b, MB16, MMJ10, NMLD13, NTNY15, OZLSBH12, PVL+13, PPH+14, QLYL10, RAGLL11, Ray13, RLSL13, RN17, RKG11, RSKG14, RSK+15, SLT14, SLT+15, SJD14, SRF+17, SBD+17, STS+10, SMM17, SM17, Tac17, Tak14, TSJ+10, TDP+12, TCPPC14, Tsi17, VV14, VGTL16, VMTL10, Wu10, WHDL11, WCL+11, YHG+11, YJ11, Yu12a, ZZLL12, ZSZ+14, ZYR+15, Zim13, VBD11].

diffusion [RSLS13]. reactions
[AAMD+11, ABB+12, ABB+13, APA+14, Cam15, CC18a, CSXZ17, Chu10, DSD+11, DS12a, FB14a, FC16, FFA14, GA14, GH10, GNDA+12, GMBX+16, HLS12, HYUS11, HRL11, JZ17, JCG+10, KG15, LHL14, LGW12, LT13, LXFC17, JG+11, MC10, MSV16, ORZ11, OSGH17, RWR+13, RB12, ST13, Su10, SSX+14, TKXT13, TTR+12, Tsi17, VKAM12, VKTRJ15, VGTL16, WHZ12, WCDM11, XLYZ10, YZGS14a, YNH+17, Yu12b, ZZL+10b, ZZL+10a, ZWZ11, ZLLL12, ZW17, dSdLBNB17, dSdVMD+16].

reactive [DMAH15, HJLV16, IHJ+13, LvDH13, MB14, RLLHL12, TDP+12].

activities [WS11, WS12]. Reactivity
[TS14, BCP+10, CRZ+18, DI11, HGY15, JS17a, LZH16, MAPB10, OSF12, OM12, PML+12, PRY1+17, Sti15, YB16, ZYR+15, ZT14]. read [DDK14].

reader [GHK12, JSD+11, KLJ+17]. READY [MB14].

reagents [SLT14]. Re|al [VHR16, JCGVPHT17, MBFP15, RHT+15].

realizes [YHCS11], really [MP17a]. Reannotation [YS10].

rearrangement [ABDG12, BIL10, OPR16]. rearrangements
[BIL10, RSKG14]. reason [SJWE10]. reasonable [Zim13]. ReaxFF
[HJLV16, JW05, LvDH13, YPvD13]. Recasting [HRCHR16]. Receptor
[HK18, CV12, ESB13, FTW12, FRLN10, HYZZ13, ILKR11, LZ11, LLL+10, OME16, PPJ14, SSP+13, VKC10, WC11, YZZ16]. receptor-ligand
[FTW12]. receptors [DR14, SRA17, UU12]. recognition
[CXS10, EPH+15, HS12, Hsnu14, ISP+10, LG14, OME16, OOK11].

recognized [CDS16]. recognizes [uLhY11]. recombination
[DS12a, SLC+17]. Reconsideration [MS11]. Reconstruction
[RSG+10, DWZ+17, MKB+13, MIOM13]. reconstructions [WDZ16].

recrossing [Yu12a]. rectification [LWZK13]. recurrence [HSN14].

recursive [RJR14]. Red [Jab14]. redesign [CGBK13, SL10, PGL+15].

Redesigned [XHLH16]. redistribution [JCGVPHT17]. Redox
[LCB10, GLM+17, INT18, KPL13, LZY+12a, MLQ+12, MKO+13, TN10, Tsi17].

reduction [BS16a, GMPB12, KPL15, LDZW17, PNI13, PSC11, SIG+15, YJ11, ZGS+10].

reference [KGM12, OZLSBH12, SHF11, SMM15a, SMM15b, SMM+18, TYN15, dLC17]. reference-modified [SMM15a, SMM15b, SMM+18]. references [EK17]. Refinement [LVG13c, BCG10, BS10c, CM13b, FLM11, LFM12, LZZ14, LGH11, OCL11, OL13, PNI13, Vor10]. reflectance [DCOD13]. Reformulating [Pro16].

Refraction [MMS16]. regime [CSAdOM17]. region [MTvG12, MNNK10a].

regions [MP17a, Pol13, TZ12]. Regioselective [WDZN16, BCP+10].

reliability [LLSW14]. Reliable [JZ17, LHG11, Kar17, NWW17, OV14, PTK11, RAD+11, RK15, SRL+13, TSR+16, Zha12b, Zha12a].

replacement [YHW17]. Replacing [ZSB+16]. Replica [GS15, GS16, XFG+16, ZC14, CH16, CCOH14, IO13a, IO13b, KCK+17, KTO11, KTO13, LC17a, LMI+14, MS16, OGL10, OLI3, OLY17, OZ14, RFH410, SBN13a, SBN13b, TKT11, XFG+15]. replica-exchange [CCOH14, IO13a, KTO11, KTO13, LMI+14, OLY17, OZ14, SBN13a, SBN13b].

replica-permutation [IO13b]. replicas [LL11]. Reply [Can11, Cor17, GKR13, QB11, VVB13, WM12, LAT11]. representation [CXW14, CWZB10, FFC+13, HZY+10, KCPMG12, KDS17, LLLC11, ME10].
YDL+10, YS10, YHH+13], representations [OVPK15, dVZ17].
representative [KV12, KV13, VLGK+17]. representing [TY10]. repressor
[OHNK11]. reproduced [Zha12b]. reproducibility
[GKR13, Ray13, RKG11]. reproducing [KTNN10, MAK+14]. reproduction
[OPBR17]. repulsion [BBOB16, CGPP11, ENKK+17, HOK17, PS17, PC16].
repulsions [JJH+13]. repulsive [IO13a, SNKD16]. required
[RAR+11, SG10b]. requirement [BF15]. requirements [TS15a]. requires
[LABSG17, BH15, BA11, GMO16, IHHY15, NR11, SL10, SEF+16, WC14,
YHH+13]. Residue-centric [LABSG17]. residues
[FHK+12, KLS10, KMLS10, RKDM14, SK17, WXL+12, WC14]. resistivity
[AB10]. resolution [BMFG16, BS10c, CM13b, DFF+15, Höfl14, JC16, KN17,
NPG17, SM11, Vor10, WNM17, YN15]. resolution-of-identity [YN15].
Resolutions [LMR14]. resolving [AVHB18]. resonance
[EFS16, KNP+12, YB13]. resource [Gil11]. Response
[GPGSM12, dSD12b, BZH14, DHE+12, ESM+12, ITIN15, KSSH13,
KZK+12, LP11b, MRB14, RJR14, RCY+13b, SS16a, SDF+17, WGLG+16].
responses [GWX+12, MLQ+12]. responsive [MBA14]. restrained
[HCD+10, KCK+17, SR18, ZDZM13]. restraining [KOY+12]. restraint
[RO14a]. restraints [SM11]. Restricted [SL10, Cas13, PDG+16, YD17].
restriction [FSD+18]. result [PH15]. results [Ber17, CBH14, CLK11,
GR10a, KERY+16, PLAG11, RAR+11, SHL+13, WDHZ13, KMLS10].
retinal [CG12, SGWA17, ZLHH14]. retinoic [LFM12]. Retracted
[Ano12a, GRL+12]. retro [GRCL12]. retro-imino-ene [GRCL12]. reveal
[MA16, RKDM14]. revealed [ALH+10, PNG10, VKNT15, YZGS14b].
Revealing [VVY17, YW13, YJ17, Bac12, GFGS18]. reveals [NR11, WC11].
Reverse [LWL+16, ASL+11, Aou16, GP12, OPBR17]. reversible [RIJ+11].
Review [DR14, FRS14, GHV17, JCL+17, CMvG10, Sch10, Spr10].
Reviews [HLvdV13, ZZWT12]. Revised [AKMYB18]. Revising [Pla11].
Revision [PLH16]. Revisited
[KR14, ASS+17, CYI+10, Dii15, HZ11, HFSO12, MSBF16, YW13, vSGP10].
Revisiting [OAN15a, Sán17, dSVdM+16]. reweighted [SH11b].
reweighting [Fe17, OGL10]. Rh [SN16a, WJX+10]. rhenium
[TS15a, ZWWMW10]. rhodium [GYX+10, RL12]. rhodopsin [RLG11].
rhodopsins [HRMAL+13]. rhombohedral [BE12]. Rhorix [MSSP17]. RI
[BK17c, BK17c, KNH16, TKN13, RKG10]. RI-MP2
[BK17c, KNH16, TKN13, RKG10]. ribonucleotides [XVA+16].
ribozyme [BJS12]. rich [ZZWX11, ZYL+12, YZWC11]. right [SJW10].
rigid [Aou16, AG11a, CZA11, DBM+17, HBL+14, PG14, dACP12].
Rigid-CLL [dACP12]. Rigidity [NPG17, OX16, PRSG13]. rigorous
[WO15]. ring
[ABDGN12, CPN+17, CB11d, FNS+11, GWT+17, GMBX+16, HH10,
HH11, HCD+10, PCLL11, PLH16, SP13, WCL+11, XV17, YHCS11, ZQ14].

S [CXSO10, GTK10, LWD13, SPS+12, WGN+16, WGLG+16, YZGS14b, ZYG+14, PRRT+10, AS11, Alg17, HOM+16, LGW12, MH11, MLY+13, RWR+13, TKXT13, WJX+10, YZGS14b, Yu12b, Yu12a, YZL+15, ZYR+15].

saccharide [LABSG17]. salicylidene [PLP+16]. Salpeter [KK17b]. salt [EK15, IPAA11, OCW+15, PZA15].

Sampling [AKN16, Yan16, BLKP12, BH15, BG17, CY09, CY13, CS17, DPNM11, DJ13, FM10, FBEM11, FB14b, GFSFD17, GMO16, HH10, HDK+12, HTS15, HNS16, HS17a, HDM+15, HCP15, IMK+16, ISK14, Ish10, KvdV14, KJ+17, KTO11, KB11c, LTT16, LC16, LC17a, LL11, LMT+14, LZZ14, LAW+16, MZZ11, MCRL17, OL13, PBDW11, SEM12, SBN13a, SBN13b, STM+15, TJB12, YZ16, ZZ14, ZC14, DAB16]. sandwich [TS15a, WWKS16]. SAPT [CLFRO18, DWR17, YJ17]. SAR
[AFSW16, CD11]. self-assembly [Hei10, KLN16, uLhY11]. Self-consistent
[JSXH16, BK17b, DK11, GBVA11, HZR+14, IM17, KC13b, KT10, KLN16, MJLV14a,
ON14, OCL11, SPS+12, SCSW13, TYN15, WMW+10, YN15, uLhY11].
[HS17a]. self-metathesis [MJLV14a]. semi [FSSW17, SC15]. semi-direct
[FSSW17]. semi-global [SC15]. semiconducting [VS14, ZSLL17].
semiconductor [LCH+15, SFDE16]. semiconductors [BE16, NDLW13].
Semiempirical [SRL+15, GP11a, HGY15, KTNN10, KB14b, LSD+10,
MGWR12, SPH11, SDL14, TKNN10, TG12a, UCFR16, WCWV15].
semiexperimental [VDVR14]. Seminumerical [PW12], sense
[DR14, ICS+12, ICS+13]. sensing [LZL+10, RRK14]. Sensitivity
[Han11, LL11, LWLG12, PDG+16, Sea10]. sensitized
[ACS12, JYS+12, LZZ+15a, YJN+11]. sensitizer [YJN+11]. sensitizers
[SLC+17]. sensors [DHE+12]. separable [WWU12]. separated
[BK17b, HZSS17, RSG14, SZS16, WYT17]. separation
[CSKH15, DS12a, VLG17, YSG12]. Sequence [TYZ+16, DLL+10, DVL11,
LXL+11, MPP17, Sti15, WXL+12, YZWC11, YS10, ZWP11, HYMZ16].
Sequence-based [TYZ+16, WXL+12]. sequence-reactivity [Sti15].
Sequence-specific [HYMZ16]. sequences [Ano12u, CCYL11, Fel10,
HZY+10, LMZ+11b, LLLL11, LDH+14, OLA15, QLQ11, YDL+10].
Sequential [CBP14]. Ser [LY10]. serial [BB11a]. series
[AC11b, DDM+15, LZZS11, MCK17b, SRA17, SB10, TD10]. serious
[BRGN12]. server [PZA15, XML+15, XXY17, dVAG16]. servers [UHH+11].
services [LP11a, UHH+11]. Set
[SN16b, BLLL13, BLG10, BRLS08, BRLS12, CC11, HZS16b, KNP+12, LS1a,
LLC+10, LCY+13, LZW+10, Mat10, OAN15a, PML+12, PGdO+16, PHK14,
PDL11, Pog10, PFVL14, RLD12, SPS+12, Sch13, SWM10, SG10a, SG13,
VLGK+17, VVLG17, WX12, YOMT14, ZPP+16, FL15]. Sets
[TKN13, BLF13, BLBG+13, BLF14, BS10a, DBM+15, HS14, Hill13,
LBH+11, LCW12, Lec15, Mit13, POB13, Sea10, SNKS10, STM+15, TH13,
UCF16, ZLT13]. Setschenow [XWW+11]. seven [PLAG11]. sextet
[BWMSM10, SSB+16, VV14]. Shao [Ano12u]. Shape [KC14, Zha11, GPS10,
HCS11, Hsn14, MNK10a, OAN15b, XTY+14, YLGX14]. Shape-based
[KC14]. shape-complementarity [GPS10]. shaped [LWK13]. shapes
[CCOH14, Hug12, WS10]. sheets [PL18, WCAH10, YZZ+17]. shell
[Ano15-58, BH14, BG13, GKS14, ISO+13, JCG+11, KSR17, MBA11, MA16,
MS12, SRR16, TBSM12, WW14]. shell-wise [KSR17]. shells
[GPK12, JXSW15]. Sheppard [QB11]. shielding

RS13, SG13, STS15, VT14, WF16, WTH+16, XML+15, XMSZ16, ZCGM11].
small-molecule [ETLS17, WF16]. smaller [MCK17b]. smallest [PMT16].
SMD [ALK+15]. smeared [ENKK+17]. SMILES [TTB+10].
SMILES-based [TTB+10]. Smoluchowski [SG10a]. smooth
[AG11, EFS16, JLC17, ZSB+16]. smoothed [LZ12]. SMPBS [XYX17]. Sn
[MCK17b, PMG+16, RDT14, YW12, ASS10, PKK17]. SnCl [dSDdAR10].
SnO [DHE+12]. Sodium [KLN16]. Soft [SJ11, Ben17, BG12]. Soft-core
[SJC11, BG12]. Software
[AIGP15, Aki16, APK14, AAC+16, BTA+13, BHB12, BCSCJ+13, BSZ+12,
Ber17, BP15, DMN15, BFH+13, BBG+18, CBH14, CSEMB+16, CZAF17,
CAT+13, DJD12, DVVP14, DDK14, DWC17, DSK17, ESB13, EWK+13,
FN12, FSC+14, GMSdG15, Gar12, GJMMP+14, GLW13b, GS12, GCP+13,
GCC14, GBW+14, GH16b, HLC+13, HRB+17, HDH12, HPT+16b, HPSK12,
HHT+13b, HH16b, HG13, HYMZ16, HKR+14, HB17, HL14, HC14, IGK16,
JHH+13, JJW+14, JLC17, JP15, JCGM18, KS13a, KS15, KK17a, Kan15,
K14, KB16, KKR+13, KDR+18, KLJ+17, KJM+17, KDT+12, Kos16, KG13,
KLW+16, KK17b, KWG15, KSD+12, KYG+15, KAG+12, KSW16, KPF+15,
LPS12, LJR+12, LHS12, Lrh15, LRvdSM15, LRvE17, LDB+17, LLZA12,
LBB+15, LWZ+17, LC12, LAS+14, MHT+18, MTD16, MBR+15, MYT18,
MSSP17, MB14, MB16, NKK16, OVI14, OPB+12, OZS+13]. Software
[OC14, PSS14, PG+15, DBDP16, PSC+17, PW12, PPM15, PHH+12,
PVZ13, PG14, RLLHL12, RNSF+16, Rrs17, RZ16, RR14, RdA12, RSR+12,
RCM+13b, SM14a, SFG+17, SK15b, SWA13, SMRM+17, She12, SC15, Sie15,
SJ17, SWB+12, SDS13, TNYN16, TSC+13, TTR+12, TTL+12, UU12,
VMRSH+17, VV+15b, VAR12, VBV13b, WdVN12, WY13, WPM+15,
WF16, Wei12b, WHK+12, WHJH13, WG14, WCJ+14, XML+15, XYX17,
YWJ+16, YZ16, Yes12, Yes15, YHH+13, ZDKM12, ZLL+13, dVAG16,
CCC+11, DBF14, MSvG12, MJG+15, SBV10, SGM+13, Yap11, ZCS+15,
She12]. softwares [All11]. solar
[ACS12, DGL+13, JYS+12, LZZ+15a, SLC+17, TZ12, VAA14, YJN+11].
Solid [RSK+15, ASS10, A11, CL16, HLS12, HBI+17, KLN12, POB13].
Solid-state [RSK+15, HBI+17, KLN12, POB13]. solids
[BK11, HAI+16, MTD13, MS15, dRL11, Pon11, SN16a]. solubility
[KKO+16]. solution [BRLS08, BRLS12, EO+11, TKTL11, YKOP+11, Yan11].
solutes [GC11, PAK15]. solution [AvKSP16, AK10, DR11, DBM+17, DP15,
EOA+11, GA13, GA14, HDK+12, HAL14, HNN+17, KTN10, KVR10,
LVG10, MMB+17, MFM+12, PMC+17, PGW+17, SJWE10, TKN11,
UCFR16, WHL+10, WC13, XTG+11, ZLL+10, ZZ10, vADC+14]. solutions
[Ber17, CFC15, EK15, Kri10, OCW+15, SM14a]. Solvation [RNSF+16,
ZBP11, CBG17, CBG16, FG11, GMMH+16, GPK12, HRC13, JMLL13,
JGS+17, Jor17, KSK11, LP11b, MS13, MPSA17, MBE16, NW17, OBW12,
PL14, RK16a, RK16b, SM14a, SK12, SY11, SM15a, SM15b, SM+18,
TKYN17, TCC+13, WXL17, WWW18, YOMT14, YAS13, Yan14, ZCS+15].
solvation-free-energy [SM15a, SM15b]. solvational [FCL+10].
Solvatochromic [MKH15]. Solvatochromism [TKYN17]. solve [PNW'16]. Solvent [KC13b, AKK+16, BEM14, BRLS08, BRLS12, CAD16, CBG16, EK15, FZY+12, FD16, HDL+17, Has14, HYUS11, KJDB12, KB11b, KCPMG12, LHL+10, LC17b, LZF+16, LWZ+17, MBC11, MBC13, MS11, ML14, MCUJ15, MCC12, MNNK10a, MNNK10b, PDM10, PS13, RdA12, RRK16, SLT14, SBV10, SK17, SLX+15, SYH12, SCMA+17, SKMS13, TYN15, WWKS11, WXL+12, WBF17, YOMT14, Yan14, YJ11, BK17a].

[TCB16, Aki16, APK14, BZH14, CD13, FBY+17, HLS+13, HPT17, KSD+12, PHT17, SMRM+17, XTG+11, Yap11, Yes12]. sources [BK13]. Space [vRGWS17, ACD+13a, ACD+13b, AD10, Cas13, CH16, CXS10, DK11, GA14, GK15b, HB14, HP10b, HSB+11, JCGVPHT17, LMZ11a, LLFH16, LAW+16, MBFP15, PDG+16, SS13a, SHL+11, SCSW13, TJB12, WDHZ13, YD17].

spectrometer [LBB+15]. Spectroscopic [SS13b, GKI10, KDB13, Kp15b, NC13, NC14, T Zack18, Tsi14, ZLL+10]. spectroscopy [HPSK12, LLBO12, NC12, WHK+12].

Spin-flip [ZLHH14]. Spin-orbit [JKS+16, AMQ+14, FAA15, FD16, GP11a, MG11, MCP18, PS17].

KS12, KKL+13, KLS10, KMLS10, LLBO12, LFB14, LKL10, LZJ+11, LMI+14, LYL16, LPE+10, LGL11, LHG11, LWWG12, LLFH16, Mat10, MDT10, Mau14, MAPB10, MV17, NGAS17, OCL11, OL3, OLA15, PSS14, PML+12, PNI3, RLG14, RCM+13b, RR11, SHMO11, SB10, SM11, SLP+12, SLIB12, SRS14, SYN+12, SKGB13, TN12, TTB+11, TG12b, UNT16, VVP12].

structure
[VHR16, VVBL17, VÅA14, VBMA13, VKC10, VI17, VLGK+17, WO15, WRM+12, WSGN11, YY12, YZZ16, ZRCC11, ZHHX11, OSF12, SA10].

studied [Ish10, KRTB10, OLY17, RHPWS13, RI10, TS15b].

Studies [JW12, AALCM11, BLS10, BRGN12, BG10, DMN15, BIL10, DXL+10, GZZM16, GEP+14, JLS+10, KG15, KP11, LXFC17, LCWL10, LJ+11, LW13, RC+13b, SB10, SFA17, SLHW09, TDP+12, VSD10, WCAH10, YK10+10, YPC+10, YDL+10, YXX17, ZZL+12, ZZL+10a, ZYG+15, ZX11].

Study [JLH+14, VL17b, AARP17, AS11, AS15a, AMAA+11, ASMS10, ANH+11, APA+14, APY+16, ALH+10, BEM14, BE14, BHB+17, BEEL14, BJS12, BLG11, BRLS08, BRLS12, BL12, BEL+11, CCLP12, CCLRO14, CWHH11, CBG17, CJC+11, CKL+11, CXW14, CBTZ16, CL16, CSXZ17, cCVG+14, Ch10, CG12, CB11c, CPLL11, CB11d, DASA15, DR11, DI11, DLSD13, DSX+11, EO+11, EV14, FCL+10, FF11, FCD10, FBEM11, FL15, FPB12, FB14b, GAG14, GG10, GYX+10, GVP+10, GD10, GTR10, GWZ15, GNCA10, GGM+12, GKR13, GPWW11, HZ11, HDB15, HHDC16, HRL11, HRB17, HSV16, IB11, II+10, INT18, IN13, IYH15, I10, JA10, JS17a, JCG+10, JAH+17, JJAB16, JW16, JYS+12, KD10, KPF11, KOP+14, KC13b, KB13, KT12, KG11, KNP+12, KS13b, KP10, LC10, LY10, uLhY11, LP11a, LLI3a, LLL+10, LDJ+10].

study
[LZL+10, LCL+10, LZJ+11, LZZH11, LWW+11, Li14a, Li14b, LGW12, LT13, LJW+11b, LBV11, LV12, LTP11, LX11, LHKS12, LH14b, LWS14, LWWC16, LHT15, Lu11, LJG+11, LPM17, MMS16, MC10, MG15, MF10, MLJ14b, MAPB10, MF+12, MH11, MWJ+11, MS11, MPNS13, MHRR11, MBR16, MO17, Mor15, MIS+15, NHP+10, NGAS17, NAS15, NC12, NC13, NC14, NXL+10, NFI+16, OPR16, ORZ11, OSS10, OSH17, OME16, OOK11, PVL+13, PGCT+12, PP10, PGC12, PGS+15, PH12, PPK17, PP+14, QYL10, QZ10b, RS17a, RAGLL11, RAR+11, Ray13, RS13, RS14, RVC113, RSLML12, RKG11, RSKG14, SN16a, SSP+13, SGDT10, SJ14, SCM+15,
tautomers [BZH14, dALdS+15]. Tb [SRL+15]. TD [TS15b, CCB15, CH10, EFAC13, HRJ+14, HRJ+15, JRSHP14, KKL+13, KP10, LZZ+10, LZZH11, LSH+11, LYSS11, RDF+11, SRF+17]. TD-DFT [CCB15, CH10, EFAC13, HRJ+15, JRSHP14, KKL+13, KP10, LZZH11, LZ+10, LYSS11, RDF+11, SRF+17]. TD-DFT- [LSH+11]. TD-HF-based [LSH+11]. TDDFT [CCB15, CH10, EFAC13, HRJ+15, JRSHP14, KKL+13, KP10, LZZH11, LXZ+10, LYSS11, RDF+11, SRF+17].

Temperature-shuffled [HS17b].

Temperature/Hamiltonian [KCK+17].

temperatures [NMLD13, RHNN10]. tempering [LAW+16, MO15, MO17, NPTS16, TKT11]. Template [Mau14, GLF16, KCK+17, ME10, YHH+13]. Template-free [Mau14, YHH+13]. template-restrained [KCK+17].

tension [NFPD13].

tensors [EPD+11, PHK14].

TDDFT [SFCCK+15, CMF+17, LRBB12, MS11, QCR12, SFCCK+14]. Te [SPS+12].

Technique [AMGB10, BG17, LZZ+13, SMM+17, TSR+16].

techniques [BCP+10, BCG10, GVP+10, MCP18, SDF+17, SPL+18, SY11, WBN+13].

Tellurium [RRK16, ZWGO16].

Test [PHC13, BS10b, DPOS16].

tethered [CZNA11].

tetraamines [SB10].

tetracarboxylates [CRC13].

tetracoordinate [XhD15, ZYW+16, ZLY+16].

tetraene [ABDGN12].

tetramer [LYL16, SZZS16].

Tetrazine [JW12, MCAG+16, SLHW09].

tetraaxilvalene [MCF10].

Tetrazine-Tetrazine-Tetraoxide [JW12, SLHW09].

tetrel [YKH15].

tetroxide [MCAG+16].

text [HKRS11, HS11].

text-based [HKRS11, HS11].

tf [XMSZ16].

Th [MCK17a].

Their [ARRC15, Ano11, BG18, CC12a, CBTZ16, CFC15, CB11a, DLT17, DSM+11, GPM17, HJ13, JMLL13, JHMB+09, JHMB+11, KG15, KNE11a, KRSC12, NYH+17, SBR13, TN12, Tak11, TY10, TS11, VVJ15, VVY17, VVBL17, XDL+10, ZWY+10a].

Them [WCWV15].

Theorem [CDB10, KSH13, YB16, ZM11].

Theoretic [CRZ+18, MCC12, ZLW10].

Theoretical [AvKSP16, AMAA+11, BHB+17, BSDP16, CWT+12, DBM+17, DGL+13, FF11, GYX+10, GLZ17, GLM+17, HDHL15c, JW12, KCB+12, KS13b, LCL+10, LWL+11, LLW12, LZY+12a, LWGW12, LWXC16, LXFC17, LJJ+11, MLQ+12, MSV16, NFI+16, OSS10, OAN15b, PKK17, PM13, PE11, RS17b, SB10, SKY+11, STS+10, SZZS16, SLC+17, SGHH13, TPL+10, WMW11, WHDL11, WCL+11, WS12, YJN+11,
YPC$^{+10}$, YHG$^{+11}$, YCGA10, YYT12, YDGZ15, ZZL$^{+10b}$, ZZL$^{+10a}$, ZYLL12, ZLLL12, ZSZ$^{+14}$, ZYG$^{+15}$, ZBZMZH15, dSdLB17, BL10, BE16, CZH12, CKL$^{+11}$, CB16, EV14, G10, HD15, HGHP14, LW12, LLD17, LZW$^{+11}$, MPS11, N$^{+10}$, NJX$^{+10}$, PH12, Ps$^{+10}$, Po10, PH10b, RZ$^{+13}$, RVC13, RV$^{+11}$, SS$^{+13}$, SJ11, SLH14, S$^{+11}$, T11, WSH10, WZQW10, YK13, YZWC11, YZ13, YB11, Zha12b, d13, HDHL15a, HDHL15b, LH15, AR10, ARAG17, ABDGN12, AG12, ASS10, BY11, BLBG13, B13, BG13, CHG16, CRZ$^{+18}$, CS16, CWH11, CKH17, CCM15, CF14, CC11, DCH12, FRSA14, FD16, GHL17, GZ$^{+12}$, GCCM15, G10, GNGCA10, GNDA12, GE11, GP12, Han11, HPT17, Hii13, HNN17, HRJ$^{+14}$, HRJ$^{+15}$, HG10, IS13, IKN13, IM17, JR14, JW16, JYS$^{+12}$, KHWB17, KL12, KM13, LC12, LBGS16, LCL$^{+10}$, LLH17, LPMT17, MCC11, MA$^{+14}$, MW$^{+11}$, ME10, NMLD13, NO16, Niz13, ORZ11, OZLSB12, PAK17, PML$^{+12}$, PP$^{+14}$, Pie14, Pyy13, QZ10b, QZ10c, QB16, RAGL11, RJPB12, RCM$^{+13a}$, RML$^{+15}$, RB12, RSL12, RHPWS13, Rui11, SM14a, SFG$^{+17}$, SCW11, SSS15, SHF11, SEF$^{+16}$, SE14, SH14, ST13, S$^{+13}$, SSM16, SB14, SMM$^{+18}$, SKT11, SZS16, ST15, Tld$^{+12}$].

Theories

[OM12, WCW15].

Theory

[IUK$^{+11}$, SZX13a, SZX13b, WM12, AMK11, ALK$^{+15}$, AR10, ARAF17, AB12, AG12, AS10, BY11, BLB$^{+13}$, BBZ$^{+13}$, BB13, CH16, CRZ$^{+18}$, CS16, CWH11, CKH17, CCM15, CF14, CC11, DCH12, FRSA14, FD16, GHL17, GZ$^{+12}$, GCCM15, G10, GNGCA10, GNDA12, GE11, GP12, Han11, HPT17, Hii13, HNN17, HRJ$^{+14}$, HRJ$^{+15}$, HG10, ISN13, IK13, IM17, JR14, JL$^{+14}$, JW16, JYS$^{+12}$, KHW17, KL12, KM13, LC12, LBGS16, LCL$^{+10}$, LLH17, LPMT17, MCC11, MA$^{+14}$, MW$^{+11}$, ME10, NMLD13, NO16, Niz13, ORZ11, OZLSB12, PAK17, PML$^{+12}$, PP$^{+14}$, Pie14, Pyy13, QZ10b, QZ10c, QB16, RAGL11, RJPB12, RCM$^{+13a}$, RML$^{+15}$, RB12, RSL12, RHPWS13, Rui11, SM14a, SFG$^{+17}$, SCW11, SSS15, SHF11, SEF$^{+16}$, SE14, SH14, ST13, S$^{+13}$, SSM16, SB14, SMM$^{+18}$, SKT11, SZS16, ST15, Tld$^{+12}$].

Theory/Configuration

[HPT17].

Theory/Time

[JYS$^{+12}$].

therapeutic

[AFBR17].

thermodynamically

[DS12a, RS12, BRE16, DMJ17, EHSPT16, HRC13, Kan15, WRM$^{+12}$, ZYL$^{+12}$].

thermoelectric

[DS12a, RS12, BRE16, DMJ17, EHSPT16, HRC13, Kan15, WRM$^{+12}$, ZYL$^{+12}$].

thermostabilizing

[KYT$^{+17}$].

thermostat

[JWO15].

thermostabilization

[PH17].

Thia

[GMASBF16].

Thia-calix

[GMASBF16].

Thiaphosphiranes

[TR12].

Thiazol

[BMB13].

Thiazol-2-amine

[BMB13].

Thienylenevinylene

[TZ12].

Thin

[MBA11].

Thin-shell

[MBA11].

Thioacetamide

[LCB10].

Thioamide

[KG11].

Thiol

[GWZ15].

Thiolate

[EH13].

Thiolate-ligated

[EH13].

Thiolates

[FHT$^{+15}$].

Thiophene

[PH10b, PRRT$^{+10}$, YHCS11, ZSLL17].

Thiophene-based

[ZSLL17].

Thiophenes

[Su10].

Thiophenic

[NHF$^{+10}$].

Thiophenol

[AMAA$^{+11}$].
 Third-Row [TKN13]. Thole [AS15b]. Thomas [Spr10]. those [SIG+15].
 threading [Mau14]. Three [NR11, NF17, NNK+16, TYN15, TKC+11, HJKJ13, KYT+17, KRSC12, LYSS11, LK16b, MBT14, MS16, SLT+15, TDKT10, TCX+13, UT15, WC14, YLL11, ZZZ+12, ZWX16]. Three-body [NF17]. three-center [YLL11]. Three-dimensional [TYN15, TKC+11, KYT+17, KRSC12, TCX+13, ZWX16]. three-domain [MBT14].
 three-membered [HJKJ13]. three-level [Lar12]. three-membered [HJKJ13]. three-level [Lar12].
 three-body [NF17]. three-dimensional [TYN15, TKC+11, KYT+17, KRSC12, TCX+13, ZWX16]. three-domain [MBT14].
 three-membered [HJKJ13]. three-level [Lar12]. three-body [NF17]. three-dimensional [TYN15, TKC+11, KYT+17, KRSC12, TCX+13, ZWX16]. three-domain [MBT14].
 three-membered [HJKJ13]. three-level [Lar12]. three-body [NF17]. three-dimensional [TYN15, TKC+11, KYT+17, KRSC12, TCX+13, ZWX16]. three-domain [MBT14].
 three-membered [HJKJ13]. three-level [Lar12].
[Ano11, Gav12, GRD+10, JHMB+09, JHMB+11]. **trihalide** [Gra18]. **trihydride** [PM13]. **trimer** [THP+15, YCGA10]. **Trimeric** [PTM16, RCM+13a, RML+15]. **trimetallic** [GLF16]. **trimethylsilyl** [BIL10]. **trinitrotoluene** [SH14]. **tripeptide** [BH15, GMI06]. **triphenylamine** [MSV16]. **triple** [ACD+13a, ACD+13b, POB13]. **triple-zeta** [POB13]. **triplet** [RS17a, THP+15]. **triplets** [EK15]. **tripodal** [SB10]. **tripropylamine** [LL10c]. **tris** [KPI15]. **trivial** [IUK+11]. **tRNA** [LSB10]. **tropocollagen** [PP10]. **Trotter** [VKAM12]. **Trp** [EJ13]. **Trp-Glu** [EJ13]. **TRREAT** [CM13a]. **truncated** [CMI11]. **truncated-CI** [CMI11]. **truncation** [ACD+13a, ACD+13b, CS14, IMR18, MC12]. **trust** [PLAG11]. **trying** [BRGN12]. **trypanothione** [VSD10]. **tryptophan** [EOA+11, PS14, SHB17, VML10]. **Tsallis** [QZ10c]. **TTTO** [JW12, SLHW09]. **tuberculosis** [MPNS13]. **tubes** [TS15b]. **tubular** [uLy11, ZLY+16]. **tularensis** [STM+15]. **tumor** [JAH+17]. **tuned** [BK17b, HZSS17, SSZ16]. **tungsten** [TS15a]. **Tuning** [Ano11, JHMB+09, JHMB+11, BK17b, LWL+11, Mor15, RLG11, WYT17, LZ12]. **tunnel** [KL14]. **tunneling** [CSAdOM17, HS16a, LZW+11, OT12]. **TURBOMOLE** [KK17b, RR14, STH+10, vW11]. **tweezers** [MBA14]. **twelve** [Pog10]. **twist** [KTK17]. **twisted** [YLZ+10]. **Two** [DS12b, Gra18, KKN11, KTO13, SC17, CC0H14, DPB+12, ECZWD17, FRSA14, GAMAC+14, HLH+12, LPAS11, LRER13, NASH15, PS17, PW12, SLT14, SCC11, TCPCC14, VT14, YAS13, YLL11, ZTH+15, SM17]. **Two-Body** [SC17]. **two-center** [LRER13]. **two-component** [NASH15, PW12]. **Two-dimensional** [KTO13]. **two-electron** [PS17, YLL11]. **Two-level** [KKN11]. **two-photon** [DPB+12, ZTH+15]. **two-scale** [FRSA14]. **Two-step** [DS12b, SJC11, TCPCC14]. **type** [BM12, BE16, CYY+17, CRC13, CB11c, Dil15, HLWD15, JYC+16, LH14a, MY17a, MY17b, MKH15, RKB+14, SZX13a, SZX13b, VED10, WvRSM14, ZX11]. **type-II** [CB11c]. **types** [SKY+11, UT15]. **typical** [TZ12]. **typing** [FP17b, YPKB12].

unit-based [WS13]. Unitary [SSSM15]. united [JGS17, Jor17, ST11].
GMO16, GZM11, GRL+11, GRL+12, GBMX+16, GTZ+18, HASR+12, HNS16, HLW+17, HDL+17, HH17, H6f14, HBL12, HYUS11, HJKJ13, HZS17, HHLW17, Hug14, HRH+17, Ish10, HIJ+13, JLH+14, JMS13, KV13, Kan15, KERY+16, KT10, KLOS10, KTN10, KP11, LBGS16, LPK16, LRvdSM15, LZ12, LCH10, LCL+10, LMR14, LHG11, LTA+11, LBDP12, MS17, MZZ11, MB14, MJC14, MN15, MY17a, MSS+13, MKM+17, MCUJ15, MVK10, MKB+13, MFR+17, MIOM13, MMJ10, MS15, NLP+16, NASH15, NH16, OCW+15, PGdO+16, PC11, PG15, Pie14, PJ13, RB13a.

using [RLDJ17, RDDS10, RHJ11, RS13, RRK14, Ric16, REL17, REV+17, Rui11, RFHG10, REH13, SHMO11, SFR+17, SBV10, SA13, SCW11, SEF+16, SHL+11, SKKS13, SY11, SRS14, SZZS16, STS15, TYZ+16, Tak14, TKN10, Tsi17, TJB12, UTM11, VKAM12, VECT12, VI17, WKLC12, WdVN12, WLC12, WZ17, WIX+10, WDHZ13, XTY+14, XYX17, XWW+11, YY+16, Yon16, YD16, ZWX11, ZL11, ZLT13, ZWS+10, ZP13, ZH12, ZHHX11, dLC17, LHL+10].

utility [YHVM12]. utilizing [BVY+12]. UV [GGM+12, KASH14, RDF+11, RvdMB16]. UV-photoexcitation [RVdMB16]. UV/Vis [GGM+12].

vibration [GK10, Kop15a, Kop16, Kop17a, Kop17b, MK13b, Tac17].
vibration-rotation [GK10, Kop15a, Kop16, Kop17a, Kop17b, MK13b].
Vibrational [DB12, LCW12, QZM11, ARLP13, BZB+13, DOM+11, DHF+11, HYD10, KCPMG12, Kow11, LBH+11, LLTC12, LBTV12, LS11b, MCF10, MAK+14, RLA+11, RRK16, SS13a, SSWX14, TZCK18, WX12, XSZL11, dSA13, dSL13, WHK+12].
vibronic [MCLD10, ZTH+15].
vibronic view [DMJ17].
VIII [LMR14].
villin [LKL10].
Vina [TO10].
VinaMPI [ESB13].
vinylidene [HSY+11].
violating [FL15, GZH10].
virial [FED17].
viridis [IIF+10].
Virtual [GRP+12, HDM+15, CCM15, ESB13, GCCM15, HIJ13, JBAM11, KC14, KLS10, KMLS10, LBB+15, MRR14, MMN10b, MHN10, VK10, YZZ16, YD17].
Virtual-system-coupled [HDM+15].
viruses [OLY17].
Vis [GGM+12].
viscoelastic [YS12].
viscosity [BBI+11, GM17].
VISM [ZCS+15].
visualization [CVT+11, HH16b, TKC+11, You10].
Visualize [GH16b, QLQ11].
Visualizing [SOJ14, WM17].
VMD [BBH12, KLOS10].
vmdICE [KLOS10].
VMS [LBB+15].
VMS-Draw [LBB+15].
voids [CC12a].
voltage [ACS12, SFB17].
voltage-dependent [SFB17].

W4 [KSM17]. **W4-17** [KSM17]. **Waals** [BLF14, BB11a, BC13, CR14, DS12b, DSF17, KBC12, KCK+15, KGHK12, KLN12, LCH+15, SMGB11, SLIB12, SJZ+15, SYZ+17, YZZ+17, ZY14].

Wales [DWZ+17, YZN13]. walk [CY09, CY13]. Walking [CH16]. wall [BE14, Den12, FTR15, TSR+16]. walled

[AS15a, PBE16, RHNN10, VS14, WYL+15, YZN13]. **Wang** [Ano12u, JW12, SA11].

Water [DBGO+17, HvM17, LWL+16, MCUJ15, RBOH11, UNT16, ZLX+13, AASPI18, AIGP15, AOW11, AF14, BRLS08, BRLS12, CYY+17, CZH12, CXW14, CCOH14, DDP16, GHL17, GM17, HH10, HvM16, Hug12, IUK+11, JCP14, JIS13, JA10, KUDG12, KGHK12, KGHC15, KB13, KJ10, KSR+16, LH11, LK13, LPLS16, LP11b, LIRL+16, LCM+14, LJJ+11, LAW+16, MC10, MKH15, MJM+15, MHRR11, NC12, NC13, OSS10, PAK15, PD11, RTS+13, RZ16, Ric16, RRF11, RSB+13, SG10b, SNS16, SISK10, SMP17a, SY16b, SV11, SIG+15, SM17, Tac17, TM16, TKYN17, TG12a, TL16, US11,
VMTL10, Vor12, WC13, WCW15, WG12, YDR13, YZ17, ZCK+16, Zha12b].

water-fluoride [NC12], water-halide [NC13], water-vapor [SISK10].

Wave-function [HH16a]. wave-functions [Fer13b, Fer13a]. wavefunction [FD16, GSS13, HPT+16b, KSH+17, LC12]. wavefunction-based [GSS13].

REFERENCES

References

Aquilante:2016:SNU

Abdel-Azeim:2011:ZHB

REFERENCES

[ABB+12] Paola Antoniotti, Elena Bottizzo, Stefano Borocci, Maria Giordani, and Felice Grandinetti. Gas-phase reactions of SiH+ (n = 1, 2) with NF\textsubscript{3}: a computational investigation on the detailed mechanistic aspects. Journal of Computational Chemistry, 33(24):1918–1926, September 15, 2012. CODEN JCJCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See erratum [ABB+13].

Allen:2015:DIN

Abraham:2011:PEG

Anisimov:2011:QMB

Avaltroni:2011:ERS

Avaltroni:2012:ICL

Adhikari:2013:EST

Kalipada Adhikari, Sudip Chattopadhyay, Barin Kumar De, Amitava Sharma, Ranendu Kumar Nath, and Dhiman Sinha.

Asaduzzaman:2012:RBD

Affentranger:2010:PFC

Aquilante:2010:MNG

REFERENCES

Anthopoulos:2013:GAM

Astray:2013:EFP

Artemova:2011:CNS

Artemova:2011:FCA

Alonso:2010:USA

Afanasyeva:2015:SNU

Artemova:2016:AMS

Aono:2010:PTP

Akimov:2016:SNU

Alekseenko:2016:SGI

Abdula:2011:DND

REFERENCES

Anonymous:2012:CIIb

Anonymous:2012:CIIc

Anonymous:2012:CIId

Anonymous:2012:CIIe

Anonymous:2012:CIIf

Anonymous:2012:CIIg

Anonymous:2012:CIIh

Anonymous:2012:CIIi

Anonymous:2012:CIIj

Anonymous:2012:CIVa

Anonymous:2012:CIVb

Anonymous:2012:CIVc

Anonymous:2012:CIVd

Anonymous:2012:CIVe

Anonymous:2012:CIVf

Anonymous:2012:CIVg

Anonymous:2012:CIVh

Anonymous:2012:CIVi

Anonymous:2012:CIVj

Anonymous:2012:RRP

Anonymous:2013:CIIa
REFERENCES

Anonymous:2013:CIIj

Anonymous:2013:CIIk

Anonymous:2013:CIIl

Anonymous:2013:CIIm

Anonymous:2013:CIIn

Anonymous:2013:CIIp

Anonymous:2013:CIIq

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIc

Anonymous:2013:CIIae

Anonymous:2013:CIIaf

Anonymous:2013:CIIid

Anonymous:2013:CIIe

Anonymous:2013:CIIf

Anonymous:2013:CIIg

REFERENCES

2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2013:CIIh

Anonymous:2013:CIIIi

Anonymous:2013:CIVa

Anonymous:2013:CIVj

Anonymous:2013:CIVk

Anonymous:2013:CIVl

Anonymous:2013:CIVm
REFERENCES

Anonymous:2013:CIVu

Anonymous:2013:CIVv

Anonymous:2013:CIVw

Anonymous:2013:CIVx

Anonymous:2013:CIVy

Anonymous:2013:CIVz

Anonymous:2013:CIVaa

REFERENCES

Anonymous:2013:CIVab

Anonymous:2013:CIVac

Anonymous:2013:CIVc

Anonymous:2013:CIVad

Anonymous:2013:CIVae

Anonymous:2013:CIVaf

Anonymous:2013:CIVag

Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2014:CIIa

REFERENCES

Anonymous:2014:CIVa

Anonymous:2014:CIVb

Anonymous:2014:CIVx

Anonymous:2014:CIVz

Anonymous:2014:CIVaa

Anonymous:2014:CIVab

REFERENCES

REFERENCES

Anonymous:2014:CIVak

Anonymous:2014:CIVam

Anonymous:2014:CIVan

Anonymous:2014:CIVap

Anonymous:2014:CIVAq
Anonymous:2014:CIVar

Anonymous:2014:CIVas

Anonymous:2014:CIVc

Anonymous:2014:CIVd

Anonymous:2014:CIVat

Anonymous:2014:CIVau

Anonymous:2014:CIVav

REFERENCES

Anonymous:2014:CIVbl

Anonymous:2014:CIVf

REFERENCES

Anonymous:2014:CIVj

Anonymous:2014:CIVk

Anonymous:2014:CIVm

Anonymous:2014:CIVn

Anonymous:2014:CIVo

REFERENCES

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Anonymous:2015:CIVe

Anonymous:2015:CIVan

Anonymous:2015:CIVao

Anonymous:2015:CIVap

Anonymous:2015:CIVaq

Anonymous:2015:CIVar

Anonymous:2015:CIVas

Anonymous:2015:CIVat

Anonymous:2015:CIVau

Anonymous:2015:CIVav

Anonymous:2015:CIVaw

Anonymous:2015:CIVax

Anonymous:2015:CIVay

Anonymous:2015:CIVf
REFERENCES

Anonymous:2015:CIVh

Anonymous:2015:CIVi

Anonymous:2015:CIVj

Anonymous:2015:CIVk

Anonymous:2015:CIVl

Anonymous:2015:CIVm

Anonymous:2015:CIVn

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVaa

Anonymous:2016:CIVab

Anonymous:2016:CIVac

Anonymous:2016:CIVad

Anonymous:2016:CIVae

Anonymous:2016:CIVaf

Anonymous:2016:CIVag

Anonymous:2016:CIVah

Anonymous:2016:CIVai

Anonymous:2016:CIVaj

Anonymous:2016:CIVd

Anonymous:2016:CIVe

Anonymous:2016:CIVak

REFERENCES

Anonymous:2016:CIVal

Anonymous:2016:CIVam

Anonymous:2016:CIVan

Anonymous:2016:CIVao

Anonymous:2016:CIVap

Anonymous:2016:CIVaq

Anonymous:2016:CIVar
Anonymous:2016:CIVas

Anonymous:2016:CIVat

Anonymous:2016:CIVau

Anonymous:2016:CIVav

Anonymous:2016:CIVaw

Anonymous:2016:CIVax

Anonymous:2016:CIVay
REFERENCES

Anonymous:2016:CIVi

Anonymous:2016:CIVj

Anonymous:2016:CIVk

Anonymous:2016:CIVl

Anonymous:2016:CIVm

Anonymous:2016:CIVn

Anonymous:2016:CIVO

Anonymous:2016:CIVp

REFERENCES

<table>
<thead>
<tr>
<th>Reference ID</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Anonymous:2016:IICa

Anonymous:2016:IICs

Anonymous:2016:IICu

Anonymous:2016:IICw

Anonymous:2016:IICy

Anonymous:2016:IICaa

Anonymous:2016:IICc

REFERENCES

Anonymous:2016:IICe

Anonymous:2016:IICg

Anonymous:2016:IICI

Anonymous:2016:IICk

Anonymous:2016:IICm

Anonymous:2016:IICO

Anonymous:2016:IICq

Anonymous:2016:IIEj

Anonymous:2016:IIEk

Anonymous:2016:IIEl

Anonymous:2016:IIEm

Anonymous:2016:IIEn

Anonymous:2016:IIEb

Anonymous:2016:IIEc
Anonymous:2016:IIEd

Anonymous:2016:IIEf

Anonymous:2016:IIEg

Anonymous:2016:IIEh

Anonymous:2016:IIEi

Anonymous:2016:IITa

Anonymous:2016:IITj

Anonymous:2016:IITe

Anonymous:2016:IITf

Anonymous:2016:IITg

Anonymous:2016:IITH

Anonymous:2016:IITi

Anonymous:2016:IIEa

Anonymous:2016:IIEe
REFERENCES

Anonymous:2017:CIVq

Anonymous:2017:CIVr

Anonymous:2017:CIVs

Anonymous:2017:CIVt

Anonymous:2017:CIVu

Anonymous:2017:CIVb

Anonymous:2017:CIVv

Anonymous:2017:CIVw

REFERENCES

Anonymous:2017:CIVae

Anonymous:2017:CIVc

Anonymous:2017:CIVaf

Anonymous:2017:CIVag

Anonymous:2017:CIVah

Anonymous:2017:CIVd

Anonymous:2017:CIVe

REFERENCES

Anonymous:2017:IId

Anonymous:2017:IId

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIf

Anonymous:2017:IIt

Anonymous:2017:IIu

Anonymous:2017:IIv

Anonymous:2017:IIw

Anonymous:2017:IIx

Anonymous:2017:IIy

Anonymous:2017:IIz

Anonymous:2017:IIaa

Anonymous:2017:IIab

Anonymous:2017:IIac

Anonymous:2017:IIad

Anonymous:2017:IIae

Anonymous:2017:IIaf

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVc

Anonymous:2018:CIVd

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:CIVg

Anonymous:2018:CIVh

Anonymous:2018:CIVi

Anonymous:2018:CIVj

Anonymous:2018:IIa

REFERENCES

REFERENCES

REFERENCES

Arifin:2016:GTH

Ali:2010:RCR

Anjos:2015:TAE

Anderson:2017:RSZ

Avramopoulos:2013:VLN
REFERENCES

[Antila:2015:CTI] Hanne S. Antila and Emppu Salonen. On combining Thole’s induced point dipole model with fixed charge distributions

Azadi:2018:NQE

Alaghemandi:2011:CBT

Ansbacher:2010:CDM

Assadollahzadeh:2010:EPS

Amaouch:2017:BPH

Mohamed Amaouch, Dumitru-Claudiu Sergentu, David Steinmetz, Rémi Maurice, Nicolas Galland, and Julien Piñé. The bonding picture in hypervalent XF₃ (X = Cl, Br, I, At) fluorides revisited with quantum chemical topology. *Journal of Computational Chemistry*, 38(32):2753–2762, December 15,
REFERENCES

2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Boresch:2011:AVW

Bruckner:2011:EAFa

Bruckner:2011:EAFb

Bachorz:2011:MFM

Bronova:2018:SNU

Bucinsky:2011:REH

[BBI+11] Lukáš Bučinský, Stanislav Biskupič, Michal Ilčin, Vladimír Lukeš, and Viliam Laurinc. Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low-density

[BBOB16] Bazgier:2016:ERI

Burger:2013:EOV

Bond:2010:FOS

[BCCO10] Bond:2010:FOS

Borrelli:2010:EHR

Baldovi:2014:LEU

REFERENCES

REFERENCES

April 15, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Brooks:2013:ENP

Bushnell:2011:FBP

Bandaru:2014:IES

Benassi:2017:BDF

Bandaru:2014:TDN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bou14] Georgios C. Boulougouris. Free energy calculations, enhanced by a Gaussian ansatz, for the “chemical work” distribution.
Bowman:2016:AMN

Bozkaya:2018:AEG

Bordogna:2011:PAP

Borkar:2013:HBC

Bandura:2016:AZF

Laban Bondesson, Elias Rudberg, Yi Luo, and Pawel Salek. Basis set dependence of solute–solvent interaction energy of

REFERENCES

REFERENCES

Bylaska:2011:PIP

Baskaran:2012:FCP

Baskaran, Sambath; Tamizmani, Masilamani; Mahalakshmi, Thanigachalam; Sivasankar, Chinnappan. A $\text{[Fe(CB}_6\text{)]}$ platform for binding of small molecules: Insights from DFT calculations. *Journal of Computational Chemistry*, 33(10):1047–1054, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Bertran:2010:IDN

Beruski:2014:ACD

Bultinck:2013:BFI

Bellafont:2017:PCL

Bellafont, Noélia Pueyo; Viñes, Francesc; Hieringer, Wolfgang; Illas, Francesc. Predicting core level binding energies shifts: Suitability of the projector augmented wave approach

REFERENCES

[BZH14] Ol’ha O. Brovarets’, Roman O. Zhurakivsky, and Dmytro M. Hovorun. Is the DPT tautomerization of the long A-G

REFERENCES

REFERENCES

Courcot:2011:MIB

Courcot:2011:OMMa

Courcot:2011:OMMb

Czyznikowska:2011:POS

Cumberworth:2016:FES
REFERENCES

Chakraborty:2017:ESI

Canneaux:2014:SNU

Cailliez:2014:CFM

Cardone:2015:DCN

Chen:2016:HSC

Chuang:2011:IBS

Chakraborty:2012:VNL

Chys:2012:SPC

Chakraborty:2018:CIT

Chakraborty:2018:HGI

Carnimeo:2015:AGM

REFERENCES

2290, December 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Chen:2011:MSP

Campo-Cacharron:2014:IAU

Alba Campo-Cacharrón, Enrique M. Cabaleiro-Lago, Jorge A. Carrazana-García, and Jesús Rodríguez-Otero. Interaction of aromatic units of amino acids with guanidinium cation: the interplay of \(\pi\cdots\pi\), \(XH\cdots\pi\) and \(M^+\cdots\pi\) contacts. *Journal of Computational Chemistry*, 35(17):1290–1301, June 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Campo-Cacharron:2014:IBI

Chang:2011:ADN

Chen:2010:FPC

Chiu:2011:DPI

Chen:2011:EPM

Carbo-Dorca:2013:NQS

Carbo-Dorca:2016:AQM

Carbo-Dorca:2010:CQSb

Carbo-Dorca:2011:CQS

Ramon Carbó-Dorca, Emili Besalú, and Luz Dary Mercado. Communications on quantum similarity, part 3: a geometric-quantum similarity molecular superposition algorithm. *Jour-
REFERENCES

Coccia:2012:QMC

Carlin:2015:ICA

Choi:2013:SBR

Cantatore:2012:SMP

Chaudret:2011:MBE

Chu:2010:QMQ

Chang:2013:PSF

Chen:2013:PPD

Condic-Jurkic:2010:CQM

Campen:2010:IES

Cvitkovic:2017:DME

REFERENCES

2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Chakavorty:2016:ECB

Chung:2011:CST

Cabaleiro-Lago:2018:DCC

Click:2011:QRN

Clote:2015:EDR

Cao:2010:NSO

[CLX+10] Dong-Sheng Cao, Yi-Zeng Liang, Qing-Song Xu, Hong-Dong Li, and Xian Chen. A new strategy of outlier detection for QSAR/QSPR. *Journal of Computational Chemistry*, 31(3):
REFERENCES

Campana:2013:TMP

Chitsaz:2013:GHR

Cukrowski:2016:IQF

Cendić:2013:MMC

Calzado:2011:HBS

REFERENCES

Chaiwongwattana:2012:DMS

Chen:2010:PIB

Carter:2014:VWC

Castro:2013:SMD

Cormanich:2016:IIC

Cao:2018:MAA

Xiaofang Cao, Chunying Rong, Aiguo Zhong, Tian Lu, and Shubin Liu. Molecular acidity: an accurate description with

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Chan:2015:TCR

Chan:2016:POC

Cukrowski:2016:SCT

Cardona-Serra:2017:IDI

Collignon:2011:TPM

[CVT*11] Matthieu Chavent, Antoine Vanel, Alex Tek, Bruno Levy, Sophie Robert, Bruno Raffin, and Marc Baaden. GPU-

[CWT+12] Qi Cao, Jing Wang, Zhao-Shuo Tian, Zai-Feng Xie, and Fu-Quan Bai. Theoretical investigation on the photophysical properties of N-heterocyclic carbene iridium (III) complexes \((fpmb)_x \text{Ir(bptz)}_{3-x} \) \((x = 1–2)\). *Journal of Computational Chemistry*, 33(10):1038–1046, April 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[CYY+17] Shanshan Cao, Haiyan Yuan, Yang Yang, Mang Wang, Xiaoying Zhang, and Jingping Zhang. Mechanistic investigation

Cheron:2017:SNU

Chandra:2012:TII

Curco:2011:SSA

Chen:2011:EMB

Dickson:2016:CFB

REFERENCES

587–594, March 5, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Pasquale:2016:SNU

Dutra:2014:LLL

Deshmukh:2011:IHB

Diaz:2017:END

Dickson:2017:OAS

Demichelis:2015:FPM

DiTommaso:2017:TAP

Drujon:2013:PHC

deCourcy:2015:BOQ

Dong:2012:BCE

deCarvalho:2013:ICP

Pierre:2013:UIM

Dubaj:2015:IIM

Dien:2014:SNU

Dudev:2015:QCB

Davie:2016:ILS

DENIS:2012:IBA

DING:2015:GNA

DU:2013:PEF

DI PASQUALE:2014:MTS

DE BEER:2011:MDS

DUAN:2013:TCD

[DGL+13] Yu-Ai Duan, Yun Geng, Hai-Bin Li, Jun-Ling Jin, Yong Wu, and Zhong-Min Su. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. *Journal of
Devereux:2014:SFA

Dieterich:2011:CIS

Dieterich:2014:GBS

Dasgupta:2017:SGH

Ducere:2012:CCA

Dziubinski:2016:TIM

deLange:2017:TDD

Dai:2010:UGM

Du:2012:EFP

Dias:2011:SDP

Otero-de-la-Roza:2011:FAA
A. Otero de-la Roza and Víctor Luaña. A fast and accurate algorithm for QTAIM integration in solids. *Journal of
REFERENCES

Dolgonos:2015:SNS

Dittner:2015:EGO

DasGupta:2017:CAF

DeBiase:2014:MSD

Biase:2015:SNU

[Druart:2016:PLB]

[Deb:2016:RCT]

[Du:2016:HPC]

[DaSilva:2011:CBA]

[Don:2014:RSS]

Du:2011:MMS

deVaca:2016:SNU

DiDomizio:2014:SNU

deVries:2017:FAG

Dieterich:2017:SNU

Dai:2011:IPS
Qi Dai, Li Wu, and Lihua Li. Improving protein structural class prediction using novel combined sequence information

Evarestov:2012:FPC

Evarestov:2013:BBN

Evarestov:2017:FPM

Evarestov:2017:PSE

Erba:2017:NRE

Eller:2015:CAE

Ehara:2013:CII

Edel:2016:IFP

Erba:2013:ADS

Ehara:2016:PCS

Elenewski:2013:CPC
El-Hamdi:2016:CAB

Eisenberg:2013:RTG

Eilmes:2015:SIT

Ehlert:2017:QBS

Ekesan:2014:TPE

Elking:2016:TAF

Dennis M. Elking. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization. *Journal of Computational Chemistry*, 37
Esser:2017:AFP

ElKhoury:2017:IES

Eriksen:2011:CPP

Erlebach:2016:TCA

Eastman:2010:ENI
Peter Eastman and Vijay S. Pande. Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. *Journal of Computational Chemistry*, 31(6):1268–1272,
April 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Erba:2012:EEM

Evarestov:2015:SCE

Elking:2010:AFG

Elking:2011:FFM

ElHage:2013:CAM

REFERENCES

Zdeněk Futera and Jaroslav V. Burda. Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM

Forti:2011:CCI

Felberg:2017:POS

Fernandez:2016:IBA

Francisco:2017:MAI

Ferrari:2010:IPS

REFERENCES

Falklof:2013:MPA

Falklof:2014:DBK

Fumanal:2016:DES

Fukuda:2014:EPS

Ferreira:2017:TCP

Feldkamp:2010:CDN

[Fel10] Udo Feldkamp. CANADA: Designing nucleic acid sequences for nanobiotechnology applications. *Journal of Computation-
REFERENCES

Ferenczy:2013:CWFb

Ferenczy:2013:CWFa

Ferguson:2017:BBA

Fracchia:2014:MLQ

REFERENCES

REFERENCES

REFERENCES

Foroutan-Nejad:2011:DRC

Fomin:2011:CDL

Fomin:2013:MDS

Fletcher:2017:FTP

Fletcher:2017:TAA

Futera:2012:BPS
REFERENCES

REFERENCES 266

2015. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Flick:2012:MLB

Fias:2010:MDI

Fertitta:2014:AMA

Fernandez:2014:COA

Feng:2013:MGM

Fan:2015:DDS

Faraggi:2012:SXI

Glushkov:2012:OCM

Glushkov:2014:MSF

Galano:2013:CMA

Galano:2014:KRM

Grebner:2014:SNU

Gupta:2011:NDI

Gramatica:2014:SNU

Ghosh:2015:RSS

Gramatica:2013:SNU

Gotz:2014:EIQ

Gong:2016:ACD

Gao:2015:EPC

Gillessen:2010:CSI

Gao:2017:IFP

Grimme:2011:EDF
Gresh:2014:PMM

Goldstein:2011:NHA

Godey:2018:EGT

Ghasemi:2017:RDS

Galvez:2010:TST

Gotze:2012:BHN

Jan P. Götze, Claudio Greco, Roland Mitrić, Vlasta Bonačić-Koutecký, and Peter Saalfrank. BLUF hydrogen network dy-

Goh:2017:RDL

Gilbert:2011:TOG

Garcia-Jacas:2014:SNU

Gertych:2010:IPS

Galstyan:2015:CPK

Gunera:2015:FBS

Jakub Gunera and Peter Kolb. Fragment-based similarity searching with infinite color space. *Journal of Computational

[GLF16] Li-Hua Gan, Dan Lei, and Patrick W. Fowler. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. Journal of Computa-

[GMSBF16] Rodrigo Galindo-Murillo, Luis Enrique Aguilar-Suárez, and Joaquín Barroso-Flores. A mixed DFT-MD methodology

Guo:2016:DQT

Gotz:2010:MEE

Ginex:2016:DVH

Graf:2016:FEC

REFERENCES

278

REFERENCES

[GREAR11] Pablo García-Risueño, Pablo Echenique, and J. L. Alonso. Exact and efficient calculation of Lagrange multipliers in bio-

Grigoryan:2013:AFE

Guo:2011:PPF

Guo:2012:RRP

Jianxiu Guo, Nini Rao, Guangxiong Liu, Yong Yang, and Gang Wang. Retracted: Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. *Journal of Computational Chemistry*, 33(32):2614, December 15, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [GRL+11]. From the publisher: “The retraction has been agreed due to significant overlap with respect to another article, ‘Predicting Protein Folding Rate from Amino Acid Sequence,’ published in Progress in Biochemistry and Biophysics (2010, 37, 1331) and authored by a subset of the present authors.”.

Geppert:2012:VSC

REFERENCES

[GS16] Raimondas Galvelis and Yuji Sugita. The following articles were published in past issues of the *Journal of Computational Chemistry*. Replica state exchange metadynamics for improving the convergence of free energy estimates. *Journal of Com-
putational Chemistry, 37(6), March 5, 2016. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[GTK10] Fahrettin Gogtas, Rukiye Tutuk, and Mustafa Kurban. Time-dependent quantum study of H(2S) + FO(2Π) → OH(2Π) + F(2P) reaction on the 1^{3}A' and 1^{3}A'' states. *Journal of Computational Chemistry*, 31(14):2607–2611, November 15,
REFERENCES

2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Garbounis:2010:SEB

[Dimitrios N. Garbounis, Athanassios C. Tsipis, and Constantinos A. Tsis. Structural, electronic, bonding, magnetic, and optical properties of bimetallic $[\text{Ru}_n\text{Au}_m]^{0/+} (n + m \leq 3)$ clusters. *Journal of Computational Chemistry*, 31(16):2836–2852, December 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Guruge:2018:BFP

Ghysels:2010:CSV

Ganesan:2011:IIP

Gutsev:2012:SPA

Goel:2018:PDF

Gutsev:2011:DFS

Gan:2017:CCB

Gu:2012:SEP

Guo:2012:XEO

Wenping Guo, Anan Wu, Igor Ying Zhang, and Xin Xu. XO: an extended ONIOM method for accurate and efficient model-

[Gao:2012:MRN] Jie Ying Gao, Cheng Hua Zhang, Mei Ming Luo, Chan Kyung Kim, Wei Chu, and Ying Xue. Mechanism for the reaction of

Heinen:2014:HAE

Hamacher:2011:EQI

Hanke:2011:SAU

Hofinger:2012:GAC

Hassan:2014:ITS

Hacene:2012:AVE

Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr, Thomas Guignon, and Paul Fleurat-Lessard. Accelerating VASP electronic structure calculations using graphic processing units. *Journal of Computational Chem-
REFERENCES

[Heit:2014:ESG]

[Hochheim:2015:AIC]

[Holmes:2017:CSS]

[Hsu:2017:SNU]

[Holt:2010:NPI]

REFERENCES

REFERENCES

Hansen:2012:AED

Hildebrandt:2014:ECR

Harris:2017:CCF

Higo:2015:VSC

Hofmann:2014:TFF

Franziska D. Hofmann, Michael Devereux, Andreas Pfaltz, and Markus Meuwly. Toward force fields for atomistic simu-

Holland:2010:EEC

Homeyer:2013:SNU

Holguin-Gallego:2016:ECI

Hoffmann:2014:IID

Huang:2015:NAR

Hansen:2010:ULE

[HH10] Halvor S. Hansen and Philippe H. Hünenberger. Using the local elevation method to construct optimized umbrella sam-

Hansen:2011:RGF

Hitzenberger:2015:PRA

Heuser:2016:WFF

Holec:2016:SNU

Heuser:2017:ANE

Hu:2010:GDM

Herrmann:2016:QCS

Hischenhuber:2013:CDG

Hischenhuber:2013:SNU

Huang:2017:EEB

REFERENCES

REFERENCES

REFERENCES

Hahnke:2011:PASa

Hu:2014:SNU

Hintze:2015:SSS

Hernandez-Lima:2015:RIC

Horta:2012:RIP
Han:2012:CMB

He:2013:SNU

Herbers:2013:RGC

Harger:2017:TOA

Huang:2015:ESM

Huang:2017:IIV

[HLXH17] Chao Huang, Wenjian Liu, Yunlong Xiao, and Mark R. Hoffmann. iVI: an iterative vector interaction method for large

REFERENCES

REFERENCES

Harano:2013:MAA

Husseini:2017:CIS

Huang:2017:EBE

Huwald:2016:CMD

Hoffmann:2014:GOB

Hoffmann:2015:ECG
Alexander Hoffmann, Martin Rohrmüller, Anton Jesser, Ines dos Santos Vieira, Wolf Gero Schmidt, and Sonja Herres-

Harris:2014:ISB

Hu:2014:SCM

Hagras:2016:ETP

Harris:2016:PEE

Harada:2017:SDS

Harada:2017:TSP

REFERENCES

Harada:2015:ECS

Harada:2017:CFP

Huang:2011:IQD

Huang:2016:FSL

[Hua16] Bolong Huang. $4f$ fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. *Journal of Computational Chemistry*, 37(9):825–835, April 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Huggins:2012:BTA

Huggins:2014:CDM

REFERENCES

Hu:2016:QST

Huang:2010:IPE

Han:2011:END

Hoque:2016:SNU

Hori:2011:FEP

Hao:2013:CGB

Han:2011:NQD

Huang:2013:NSD

Hu:2017:PES

He:2010:GRP

Ibrahim:2011:MMS

Ibrahim:2017:ESM

Illingworth:2012:SSS

Illingworth:2013:ESS

Ioannidis:2016:SNU

Iype:2013:PRF

Imamura:2013:LCO

Iliff:2011:POA

Ishizuka:2017:ECI

Iida:2016:VFE

Ignjatovic:2018:CMG

[Ish10] Hisashi Ishida. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. *Journal of Computational

[JAH+17] Zhe Jia, Christine Ackroyd, Tingting Han, Vibhor Agrawal, Yinling Liu, Kenneth Christensen, and Brian Dominy. Effects from metal ion in tumor endothelial marker 8 and anthrax

Janesko:2016:TAE

Jacob:2011:DAP

Jacob:2011:PSF

Jaramillo-Botero:2011:LSL

Jia:2016:NHR

REFERENCES

REFERENCES

Jimenez-Halla:2011:ETA

Jakobtorweihen:2013:CCM

Jiao:2016:CCS

Jin:2013:CPR

Joy:2016:CXZ

Jeong:2014:SNU

Jankowska:2016:SOZ

Jia:2017:SNU

Jiang:2014:SCH

Jia:2010:CSM

REFERENCES

369, March 5, 2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[JSW10] Xiao-Nan Jiang, Chang-Liang Sun, and Chang-Sheng Wang. A scheme for rapid prediction of cooperativity in hy-

Jin:2016:SCF

Jorgensen:2012:LEC

Jones:2016:MHD

Jensen:2015:ETS

Jono:2010:MIQ

Ji:2015:IBL

Jin:2016:HAT

Jungsuttiwong:2012:ECS

Jafari:2017:RER

Johnston:2017:SDA

Jia:2014:AAP

Kunz:2012:SNU

Kantardjiev:2015:SNU

Koley:2012:CIC

Gerhard König and Stefan Boresch. Non-Boltzmann sampling and Bennett’s acceptance ratio method: How to profit from bending the rules. *Journal of Computational Chemistry*, 32
Kazaryan:2013:ADF

Kessler:2014:MDH

Krause:2014:CLS

Kendrick:2016:SNU

Kalugina:2012:SHV

Kalyaanamoorthy:2013:LRM

REFERENCES

Kesharwani:2011:PSE

Koukos:2013:SNU

Karton:2015:ARB

Kazachenko:2015:AGB

Kaukonen:2012:LJP

[KJM+17] Chigusa Kobayashi, Jaewoon Jung, Yasuhiro Matsunaga, Takaharu Mori, Tadashi Ando, Koichi Tamura, Motoshi

[KKO+16] Kyrylo Klimenko, Victor Kuz’min, Liudmila Ognichenko, Leonid Gorb, Manoj Shukla, Natalia Vinas, Edward Perkins,

REFERENCES

[**Kwon:2016:SCE**]

[**Knapp:2010:VPR**]

[**Kozlowska:2010:DSCa**]

[**Kozuch:2013:SCS**]

[**Kozlowska:2010:DSCb**]

Urszula Kozłowska, Gia G. Maisuradze, Adam Liwo, and Harold A. Scheraga. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein

Katouda:2017:MOH

Kim:2011:DDB

Kneller:2011:CFD

Katouda:2016:MPA

Kjaer:2012:NMR

Koput:2017:IPEb

Kosenkov:2016:SNU

Kowal:2011:IMG

Kim:2012:SHM

Kumar:2010:IEC

Kozlowski:2011:NIQ

Kraka:2016:REB

Kulp:2012:SIM

Kar:2013:LRCa

Krupicka:2017:TAG

Kjaer:2011:CCP

Karton:2016:HFP

Karton:2017:WDH

Koster:2016:AAI

Krausbeck:2017:SAF

Kar:2013:LRCb

Kuttel:2016:SNU

Klesiek:2010:RSS

Kefalidis:2012:DSM

Kirkpatrick:2017:ECI

Koyano:2010:OSS

Kokubo:2011:IPP

Kokubo:2013:TDR

Klenin:2011:DMS

Kanematsu:2016:IUE

Kashmirian:2012:MDE

Kadam:2012:NAM

Kadam:2013:SPN
Kaur:2014:MIN

Krieger:2015:NWB

Kuriakose:2015:CSA

Karolak:2014:ESS

Karimi-Varzaneh:2011:IMD

Kritayakornupong:2010:IQM

Chinapong Kritayakornupong, Viwat Vchirawongkwin, and Bernd M. Rode. An ab initio quantum mechanical charge field molecular dynamics simulation of a dilute aqueous HCl

[KYG+15] Anmol Kumar, Sachin D. Yeole, Shridhar R. Gadre, Rafael López, Jaime F. Rico, Guillermo Ramírez, Ignacio Ema, and David Zorrilla. Software news and updates: DAMQT 2.1.0: a new version of the DAMQT package enabled with the topographical analysis of electron density and electrostatic po-
REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

2228–2241, September 15, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Lee:2013:NBO

Laury:2012:VFS

Lu:2010:FPS

Lesch:2017:SNU

Liu:2015:APE

Lyons:2014:PBC

Li:2010:NUH

Qing-Zhong Li, Xu Dong, Bo Jing, Wen-Zuo Li, Jian-Bo Cheng, Bao-An Gong, and Zhi-Wu Yu. A new unconventional halogen bond C — X· · · H — M between HCCX (X = Cl and Br) and HMH (M = Be and Mg): an ab initio study. *Journal of Computational Chemistry*, 31(8):1662–1669, June 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Li:2016:SFC

Liang:2017:PRP

Lage-Estebanez:2017:RER

REFERENCES

References

Xinying Li. Erratum: Metalophilic interaction in gold halide: Quantum chemical study of AuX (X = F–At). *Journal of*
REFERENCES

Computational Chemistry, 35(22):1664, August 15, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [Li14b].

Li:2014:MIG

Loboda:2016:DQP

Luo:2011:TSK

Lu:2011:RBW

Lee:2012:SNU

Yung Ting Lee and Jyh Shing Lin. Ab Initio molecular dynamics study of ethylene adsorption onto Si(001) surface:

[Liu:2013:EFA]

[Lai:2015:ICD]

[Li:2012:FPI]

[Laref:2012:ESX]

[Li:2010:EPF]

Lin:2017:NDC

Lin:2017:TID

Liu:2016:ISV

Lii:2011:APE

Le:2014:SIK

Liu:2017:AFD

Lakkaraju:2016:DIA

Logsdlai:2012:DON

Li:2010:NSI

Li:2011:IBH

Lv:2012:IMT

REFERENCES

Liao:2011:NGR

Li:2011:FPI

Liu:2014:RDM

Lu:2012:MAD

Lin:2012:TDV

Lin:2010:UOS
Zhixiong Lin, Haiyan Liu, and Wilfred F. van Gunsteren. Using one-step perturbation to predict the effect of changing force-field parameters on the simulated folding equilibrium of...

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Labat:2011:RNE

Lim:2010:TDS

Lee:2016:PGA

Li:2013:CDS

Lombardi:2016:ETD

[LRER13] Rafael López, Guillermo Ramírez, Ignacio Ema, and Jaime Fernández Rico. Improved partition–expansion of two-

Lemkul:2015:SNU

Lervik:2017:SNU

Launay:2011:LDS

Liu:2011:EGS

Lei:2010:NIM

Lin:2013:CRS

Lin:2013:RAG

Li:2011:REBb

Landis:2016:ERH

Lu:2013:QWP

Li:2015:CCI
REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[LX11] Sen Lin and Daiqian Xie. New ab initio potential energy surfaces for both the ground (\(\tilde{\text{X}}^1\text{A}’\)) and excited (\(\tilde{\text{A}}^1\text{A}’\)) electronic states of HSiCl and the absorption and emission spectra of HSiCl/DSiCl. *Journal of Computational Chemistry*, 32(8):1694–1702, June 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[LXFC17] Xiang-Yang Liu, Pin Xiao, Wei-Hai Fang, and Ganglong Cui. Theoretical studies of spin state-specific \([2 + 2]\) and \([5 + 2]\) photocycloaddition reactions of \(n\)-(1-penten-5-yl)maleimide.
Li:2011:SPD

Shuyan Li, Lili Xi, Jiazhong Li, Chengqi Wang, Beilei Lei, Yulin Shen, Huaxiang Liu, Xiaojun Yao, and Biao Li. In silico prediction of deleterious single amino acid polymorphisms from amino acid sequence. *Journal of Computational Chemistry*, 32(7):1211–1216, May 2011. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Liu:2010:DTD

Lankau:2010:MSE

Li:2013:ADM

Li:2016:NSB

Liu:2011:TDS

Leis:2011:EIR

Lettieri:2012:AMM

Li:2014:MSP

Lev:2010:QMI

Liang:2011:PSC

[LZGS11] Shide Liang, Yaoqi Zhou, Nick Grishin, and Daron M. Stanley. Protein side chain modeling with orientation-dependent atomic force fields derived by series expansions. Journal of

Liu:2013:FN

Li:2015:CQ

Li:2015:CY

Liu:2016:MIM

Liu:2013:AD

REFERENCES

[Li:2012:TIT] Jinliang Li, Zhenzhen Zhao, Cui Yu, Hongbo Wang, and Jianwei Zhao. Theoretical investigation on the transportation behavior of molecular wires with redox reaction. *Journal*
REFERENCES

Michaud-Agrawal:2011:MTA

Matanovic:2014:ADF

Manz:2013:LEC

Mehdi:2010:ESR

Matta:2010:HDM

References

Ma:2011:IDP

Modesto-Costa:2015:WSE

Ma:2013:FES

Maupetit:2010:FML

Maintz:2013:APP

Maintz:2016:SNU

[MFEM16] Yinglong Miao, Ferran Feixas, Changsun Eun, and J. Andrew McCammon. The following articles were published in past issues of *Journal of Computational Chemistry*: Accelerated molecular dynamics simulations of protein folding. *Journal of Computational Chemistry*, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Syed Tarique Moin, Thomas S. Hofer, Bernhard R. Randolf, and Bernd M. Rode. Structure and dynamics of methanol in water: a quantum mechanical charge field molecular dynamics

Maeda:2018:SNU

Morishita:2013:FRF

Muhammad:2015:HDH

Mitin:2013:PFM

Maingi:2012:DBT

Vishal Maingi, Vaibhav Jain, Prasad V. Bharatam, and Prabal K. Maiti. Dendrimer building toolkit: Model building

[MJMJ+15] Mariusz P. Mitoraj, Goran V. Janjić, Vesna B. Medaković, Dušan Ž. Veljković, Artur Michalak, Snežana D. Zarić, and...

REFERENCES

Makowski:2010:DEC

Merlot:2013:AEE

Middendorf:2015:SSB

Miyashita:2017:FFC

Matsui:2013:CSC

Marais:2012:ECM

[MKS+12] Patrick Marais, Julian Kenwood, Keegan Carruthers Smith, Michelle M. Kuttel, and James Gain. Efficient compression of
REFERENCES

REFERENCES

Maekawa:2016:RIO

Mirijanian:2014:DUA

Martinez-Nunez:2015:AMF

Murata:2010:LSE

Murata:2010:SSD

Mori:2015:STB

Yoshiharu Mori and Hisashi Okumura. Simulated tempering based on global balance or detailed balance conditions: Suwa–Todo, heat bath, and Metropolis algorithms. Journal of Computational Chemistry, 36(31):2344–2349, December 5,

Maxwell:2017:URR

Myers:2017:PLP

Marques:2010:GCL

Marques:2012:UBB

Mukherjee:2011:FEG

Minovski:2013:CBM

[MPNS13] Nikola Minovski, Andrej Perdih, Marjana Novic, and Tom Solmajer. Cluster-based molecular docking study for in silico identification of novel 6-fluoroquinolones as potential in-

Margreitter:2017:UPC

Mayeno:2011:REA

Manz:2010:DRC

Miao:2011:RHB

Moura:2012:QMM

Martins:2013:CAC

Muller:2015:CSN

Mignon:2016:CTS

Mahajan:2017:JBP

Mishra:2012:CPM

Matta:2016:BMR

Marsili:2010:OMD

Malolepsza:2010:SAC

Malolepsza:2012:ESA

Maciejczyk:2010:CGM

Mayne:2013:RPS

REFERENCES

1347–1355, July 5, 2014. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Matsumoto:2018:SNU

Mamonov:2011:RSA

Nemoto:2015:ISN

Neogi:2012:SSW

Neogi:2013:SSA

Neogi:2014:SSA

[NC14] Soumya Ganguly Neogi and Pinaki Chaudhury. Structural, spectroscopic aspects, and electronic properties of (TiO$_2$)$_n$.

Nemeth:2010:CIC

Noel:2010:USI

Nieto:2014:BNM

Neumann:2013:MDM

Neumann:2015:MMA

Namsani:2017:IPS

Najeh:2010:ETS

Nowosielski:2013:MTC

Ngo:2016:FAD

Nozaki:2015:EST
REFERENCES

Ng:2013:RCC

Maggie Ng, Daniel K. W. Mok, Edmond P. F. Lee, and John M. Dyke. Rate coefficients of the \(\text{CF}_3\text{CHFCF}_3 + \text{H} \rightarrow \text{CF}_3\text{CFCF}_3 + \text{H}_2 \) reaction at different temperatures calculated by transition state theory with ab initio and DFT reaction paths. *Journal of Computational Chemistry*, 34(7): 545–557, March 15, 2013. CODEN JCCCHD. ISSN 0192-8651 (print), 1096-987X (electronic).

Nishimura:2018:PIE

Nishizawa:2016:TPA

Namsani:2015:IPM

Nishizawa:2016:RQM

REFERENCES

[S10] Shuchi Nagar and Achintya Saha. Modeling of diarylalkyl-imidazole and diarylalkyl-triazole derivatives as potent aromatase inhibitors for treatment of hormone-dependent can-

Ng:2011:PPP

Nozaki:2017:CDA

Nantasenamat:2014:IOS

Nunes:2015:CPC

Negami:2014:CGM

Nozawa:2015:CAP

REFERENCES

Ootani:2015:TIE

Oehme:2012:EAC

Ozkanlar:2014:SNU

Olson:2011:CBS

Ortega-Carrasco:2014:APL

Ou:2015:FEC

Shu-Ching Ou, Di Cui, Matthew Wezowicz, Michela Taufer, and Sandeep Patel. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature

Okoshi:2014:ASC

Ortega:2016:CEN

Ozawa:2011:ICH

Otsuka:2015:AAB

Orlando:2012:SNU

[PAK15] Pouya Partovi-Azar and Thomas D. Kühne. Efficient “on-the-fly” calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic so-

Partovi-Azar:2017:TDD

Pasalic:2010:TSH

Peintinger:2014:CCM

Pietropaolo:2011:CBM

Perilla:2011:CET

Porsev:2016:TDS

Pracht:2017:AEQ

Palma:2012:CBA

Patra:2011:ANN

Pelloni:2014:CCS

Pritchard:2016:HVE

[Benjamin P. Pritchard and Edmond Chow. Horizontal vectorization of electron repulsion integrals. *Journal of Com-
Pelloni:2011:RCM

Plumley:2011:CBF

Plazinski:2012:DCI

Pinjari:2016:CSR

Parac:2010:QMC

PintoDaSilva:2011:TMC

Petrella:2011:VMS

Pol-Fachin:2014:EVG

Popov:2014:SNU

Pavlova:2015:PMA

Pan:2012:CSH

REFERENCES

Pacios:2012:CSL

Paschoal:2016:PPN

Pantazes:2015:SNU

Pan:2015:CCS

Pirojsirikul:2017:CQM

Peter P. Passler and Thomas S. Hofer. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations. *Journal of Computa-
REFERENCES

Pang:2013:SEM

Pape:2013:DDM

Pool:2012:SNU

Pedersen:2014:BSE

Pohl:2017:OSF

REFERENCES

Plewczynski:2011:VCD

Pang:2017:GAM

PiEkos:2013:TDD

Politzer:2018:SHP

Pagliai:2017:EAS

Pan:2016:SSN

Paschoal:2012:RBS

Pomogaeva:2016:TCL

Pipek:2013:EPR

Project:2010:FFD

Perrin:2013:CSR

Procacci:2016:REC

Padhi:2015:PSH

Preat:2010:PTP

Pfleger:2013:GLI

Pino-Rios:2017:PSE

Prakash:2010:FFD

Polydorides:2013:MCS

Purushotham:2014:CCA

Piccardo:2017:FPA

Phillips:2011:MCO

Planche:2010:DNA

Alejandro Speck Planche, Marcus Tulius Scotti, Vicente de Paulo Emerenciano, América García López, Enrique Molinari.

Prandi:2016:CCM

Puranen:2010:ACD

Pacifi:2013:HLI

Poger:2010:NFF

Purushotham:2012:CIC

REFERENCES

[Pinsky:2013:CSA] Mark Pinsky, Amir Zait, Maayan Bonjack, and David Avnir. Continuous symmetry analyses: C_{nv} and D_n measures of

Qi:2011:UHC

Qi:2010:DSA

Qu:2010:RPP

Qian:2010:CCP

Qu:2010:DAT

Quapp:2010:TST

F. Rabilloud. Structure and stability of coinage metal fluoride and chloride clusters ($M_n F_n$ and $M_n Cl_n$, $M = Cu, Ag, or Au; n = 1–6$). *Journal of Computational Chemistry*, 33(26):2083–2091, October 5, 2012. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Rathore:2011:MMS

Raskovalov:2017:SNU

Rayne:2013:LEC

Ricci:2012:DFT

Rai:2013:FAG

Yanliang Ren, Bo Chi, Osama Melhem, Ke Wei, Lingling Feng, Yongjian Li, Xinya Han, Ding Li, Ying Zhang, Jian Wan, Xin Xu, and Minghui Yang. Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of förster theory. *Journal of Computational Chemistry*, 34(12):1005–1012, May 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ribeiro:2012:SNU

Rastelli:2010:FAP

Ravelli:2011:PUS

Roth:2016:HRE

Raupach:2014:QIB

Rybkin:2013:ICB

REFERENCES

Coden Jcchdd. Issn 0192-8651 (print), 1096-987X (electronic).

Rossi:2014:CIS

Rombouts:2017:QAL

Rubez:2017:GAI

Rezac:2016:SNU

Rezabal:2015:EPB

REFERENCES

Rogers:2017:PDM

Randic:2013:CVMa

Ramsey:2016:SNU

Randic:2013:CVMb

Reif:2014:MDS

Rodrigues:2016:UPU

Rashid:2011:GKV

Roumen:2011:ALB

Rogan:2013:SFM

Ren:2013:AEE

Yi Ren, Xi-Guang Wei, Si-Jia Ren, Kai-Chung Lau, Ning-Bew Wong, and Wai-Kee Li. The α-effect exhibited in gas-phase S$_N$2@N and S$_N$2@C reactions. *Journal of Computational Chemistry*, 34(23):1997–2005, September 5, 2013. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[SACdG14] Mariano Spivak, Celestino Angeli, Carmen J. Calzado, and Coen de Graaf. Improving the calculation of magnetic cou-

Scemama:2016:QMC

Sanchez:2017:RTC

Szklarczyk:2015:PCG

Sax:2012:LMO

Salehzadeh:2010:TSS

Silva:2011:HFO

Nathan Schmid, Mathias Bötschi, and Wilfred F. Van Gunsteren. A GPU solvent–solvent interaction calculation accelerator for biomolecular simulations using the GROMOS soft-

REFERENCES

Scemama:2013:QMC

Song:2013:EAC

Selvam:2011:MZI

Signorile:2016:RDF

Shi:2012:USA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume/Issue/Year</th>
<th>CODEN/ISSN</th>
</tr>
</thead>
</table>

Greg Starek, J. Alfredo Freites, Simon Bernèche, and Douglas J. Tobias. Gating energetics of a voltage-dependent K+...
REFERENCES

Sanchez-Flores:2014:PAE

Sanchez-Flores:2015:EPA

Stehr:2016:CCM

Schluns:2017:SNU

Steinmann:2017:LEM

[SFLG+17] Stephan N. Steinmann, Paul Fleurat-Lessard, Andreas W. Götz, Carine Michel, Rodrigo Ferreira de Morais, and

San-Fabian:2014:CAR

Seeber:2011:WUF

Scott:2010:SLD

Sen:2010:WMN

Sure:2013:CSB

REFERENCES

Sanchez-Garcia:2010:QMS

Sviatenko:2016:SEP

Sviatenko:2013:TSI

Simonson:2013:CPD

Sancho-Garcia:2017:DRU

Shernyukov:2016:NBB

Szefczyk:2017:ESM

Sheppard:2011:PWN

Smiatek:2011:CFE

Shukla:2014:PWD

Santiago:2015:NDF

[SH15] Régis Tadeu Santiago and Roberto Luiz Andrade Haiduke. New density functional parameterizations to accurate calcu-

Steenbock:2018:TAA

Suess:2017:QCC

Sherman:2012:SNU

Sergiievskyi:2011:MSR

Shin:2011:LPL

REFERENCES

REFERENCES

Schlund:2010:PTE

Song:2015:ODO

Szarek:2011:MED

Sharma:2012:CPK

Stachowicz:2013:BDM

[SKMS13] Stanislav Standara, Petr Kulhánek, Radek Marek, and Michal Straka. \(^{129}\text{Xe}\) NMR chemical shift in Xe@C\(_{60}\) calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent. *Journal of Computational Chem-

REFERENCES

Stenrup:2015:CNG

Song:2009:ETS

Sladek:2012:ICS

Su:2013:CMS

Settels:2012:CES

Sala:2014:SET

[SLT14] Oliver Sala, Hans Peter Lüthi, and Antonio Togni. The solvent effect on two competing reaction mechanisms involving

REFERENCES

Savelyev:2014:AAP

Stachiewicz:2015:CGM

Salehzadeh:2016:NEC

Stachiewicz:2016:DDD

Szczeぱniak:2017:ARB

Sheng:2011:CCU

[SMGB11] Xiao Wei Sheng, Lukasz Mentel, Oleg V. Gritsenko, and Evert Jan Baerends. Counterpoise correction is not useful for
short and van der Waals distances but may be useful at long
2901, October 2011. CODEN JCCHDD. ISSN 0192-8651
(print), 1096-987X (electronic).

Sumi:2015:ESF

Erratum: “A solvation-free-energy functional: a reference-
2015, 36, 1359–1369]. *Journal of Computational Chemistry*,
36(26):2009–2011, October 5, 2015. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic). See [SMM15b].

Sumi:2015:SFE

A solvation-free-energy functional: a reference-modified den-
sity functional formulation. *Journal of Computational Chem-
istry*, 36(18):1359–1369, July 5, 2015. CODEN JCCHDD.
ISSN 0192-8651 (print), 1096-987X (electronic). See erratum
[SMM15a].

Suzuki:2017:MMT

[SMM17] Kimichi Suzuki, Keiji Morokuma, and Satoshi Maeda. Mul-
tistructural microiteration technique for geometry optimiza-
tion and reaction path calculation in large systems. *Journal
of Computational Chemistry*, 38(26):2213–2221, October 5,
2017. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X
(electronic).

Sumi:2018:ARM

[SMM+18] Tomonari Sumi, Yutaka Maruyama, Ayori Mitsutake, Kenji
Mochizuki, and Kenichiro Koga. Application of reference-
modified density functional theory: Temperature and pres-
sure dependences of solvation free energy. *Journal of Compu-
JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Sinha:2017:CEF

[SMP17a] Sudipta Kumar Sinha, Mohit Mehta, and Sandeep Patel. A
charge equilibration formalism for treating charge transfer ef-
fecteds in MD simulations: Application to water clusters. *Jour-
nal of Computational Chemistry*, 38(16):1389–1409, June 15,

[SOD+11] Denise Steiner, Chris Oostenbrink, François Diederich, Martina Zürcher, and Wilfred F. van Gunsteren. Calculation of binding free energies of inhibitors to plasmepsin II. *Journal

Jong-Won Song, Daoling Peng, and Kimihiko Hirao. A semiempirical long-range corrected exchange correlation func-

Strohecker:2010:QCI

Szalay:2011:FCD

Singh:2018:SPI

Sakkal:2017:PCB

Savarese:2017:CPT

Shyichuk:2015:SDC

[SRL+15] Andrii Shyichuk, Marcin Runowski, Stefan Lis, Jakub Kaczkowski, and Andrzej Jezierski. Semiempirical and DFT computations of the influence of Tb(III) dopant on unit cell dimensions of cerium(III) fluoride. *Journal of Computational

Thomas Simonson and Priyadarshi Satpati. Simulating GTP:Mg and GDP:Mg with a simple force field: a struc-

REFERENCES

Swart:2013:CII

Smiga:2016:AKS

Setzler:2014:SIG

Sharma:2015:EDA

Song:2009:EAE

Sahu:2013:BAS

Sen:2015:UGA

Shen:2014:PTA

Sun:2014:RCC

Sapay:2011:CCF

Singh:2013:REL

Rebecca Sure, Ralf Tonner, and Peter Schwerdtfeger. A systematic study of rare gas atoms encapsulated in small

Su:2010:CSP

Sun:2015:LEG

Sunda:2011:MDS

Sim:2015:HDH

Schwerdtfeger:2013:SNU

Strunk:2012:SNU

Schnupf:2010:PDM

Song:2010:HMP

Shi:2011:MEH

Shyu:2011:AES

Spassov:2016:PDC

Su:2016:TDT

Jiaye Su and Keda Yang. Temperature dependence of the transport of single-file water molecules through a hydropho-

REFERENCES

REFERENCES

Tomlinson:2016:NAS

Takeuchi:2010:GMG

Takeuchi:2011:TIO

Takahashi:2014:DRF

Tan:2012:CSP

Tantardini:2016:SFP

Christian Tantardini, Davide Ceresoli, and Enrico Benassi. Source function and plane waves: Toward complete Bader
Thomas:2013:PGF

Tobias:2018:DTK

Torres:2014:TSR

Tu:2013:PFE

Tawari:2010:PME

Tokmachev:2011:HBN

Tsipis:2010:DMA

Taxak:2012:MIC

Thackston:2015:PLC

Tang:2010:ESN

[TFQ+10] Shu-Wei Tang, Jing-Dong Feng, Yong-Qing Qiu, Hao Sun, Feng-Di Wang, Ying-Fei Chang, and Rong-Shun Wang. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C_{3v} $C_{60}F_{18}$ and D_{3d} $C_{60}Cl_{30}$. *Journal of Computational Chemistry*, 31(14):2650–2657, November 15, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

REFERENCES

[TKT11] Tsuyoshi Terakawa, Tomoshi Kameda, and Shoji Takada. On easy implementation of a variant of the replica exchange with
REFERENCES

[Talipov:2013:CDN]

[Tanaka:2017:SPS]

[Tusar:2016:HBH]

[Tognetti:2010:HCC]

[Tabookht:2012:RBM]

REFERENCES

REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Traore:2016:FSA

Trumm:2018:IIM

Tao:2010:TAO

Tsalavoutis:2010:DFI

Tsipis:2011:SEM

Tsuneda:2014:RIB

REFERENCES

REFERENCES

REFERENCES

15, 2010. CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ka un Lao and Chin hui Yu. A computational study of unique properties of pillar[n] quinones: Self-assembly to tubu-

REFERENCES

derWeeen:2011:DPS

Villalba:2011:CEM

Viciano:2013:NIE

Vanpoucke:2013:EHB

Vysotskiy:2013:SNU

REFERENCES

Vela:2016:ZOH

Vogt-Geisse:2016:CPR

Vanfleteren:2011:FDM

Vanommeslaeghe:2010:CGF

Vaucher:2016:RTF

vanLenthe:2012:LEE

Vines:2017:SSE

Vorontsov:2011:CMD

Villa:2017:CPA

Valdebenito-Maturana:2017:SNU

Vohringer-Martinez:2010:RWP

Vorobjev:2010:BDM

Vorobjev:2012:PMF

Vchirawongkwin:2010:IQM

vonRudorff:2017:CSP

Vikramaditya:2014:ESB

Vilseck:2011:OSF

Venkatesan:2010:MDS

vanSeveren:2010:ATA

VanDornshuld:2014:CPE

Varadwaj:2018:DSP

vanWullen:2011:SMP

Vyboishchikov:2015:MEE

Vyboishchikov:2016:CEC

Vanommeslaeghe:2015:RFM

Voelz:2014:BIC

Weber:2017:IIR

Walters:2017:DDD

Wei:2017:RSA

Wagner:2013:ATC

Wang:2010:CHE

Wu:2016:SGL

REFERENCES

REFERENCES

REFERENCES

[Watanabe:2013:RDP] Hiroshi Watanabe, Marcus Elstner, and Thomas Steinbrecher. Rotamer decomposition and protein dynamics: Efficiently an-

Wolf:2010:GEI

Wolf:2016:ECG

Wu:2011:TMS

Will:2013:SNU

Weymuth:2012:SNU
REFERENCES

Ivan Welsh and Matthias Lein. Accurate density functional theory description of binding constants and NMR chemical shifts of weakly interacting complexes of C$_{60}$ with
REFERENCES

[Wang:2016:CPL] Changhao Wang, Peter H. Nguyen, Kevin Pham, Danielle Huynh, Thanh-Binh Nancy Le, Hongli Wang, Pengyu Ren,

Weiss:2015:ROS

Wang:2016:PHF

Wang:2018:AHF

Weidlich:2015:SNU

Witte:2017:CNO

Matthias Witte, Martin Rohrmüller, Uwe Gerstmann, Gerald Henkel, Wolf Gero Schmidt, and Sonja Herres-Pawlis. \([\text{Cu}_6(\text{NGuaS})_6]^{2+}\) and its oxidized and reduced derivatives: Confining electrons on a torus. *Journal of Computational Chem-
REFERENCES

Wilkinson:2011:AGU

Wang:2010:GTI

Wang:2015:BCA

Wirz:2016:SFG

Wu:2010:CCN

Weinhold:2014:BTH

Wang:2015:BCD

Wenzel:2014:CCL

Wang:2011:MDS

Wang:2016:BAS

Wang:2012:EPD

Wang:2018:BPN

Wu:2012:DCD

Wang:2012:SBC

Wang:2017:NIM

Wang:2012:EMA

Wong:2014:IPI

Wu:2012:CDS

Wang:2015:DSW

Wang:2017:ARS

Wang:2017:ISD

Zhang:2011:FPP
[wZbZ11] Chang wen Zhang and Fu bao Zheng. First-principles prediction on electronic and magnetic properties of hydrogenated

REFERENCES

Chemistry, 37(6), March 5, 2016. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[XhD15] Jing Xu and Yi hong Ding. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiX$_n$Y$_m$q ($n + m = 4$; $q = 0, \pm 1, \pm 2$; $X, Y =$ main group elements from H to Br). *Journal of Computational Chemistry*, 36(6):355–360, March 5, 2015. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Dilan Yildiz and Uğur Bozkaya. Assessment of the extended Koopmans’ theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and

Yu:2010:TSN

YCGA10

Youn:2016:EEF

[YCK16]

Yang:2017:ERV

[YD17]

Yuan:2015:TPH

[YDGZ15]

Yao:2010:SDS

[YDL+10]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>[YHG+11]</td>
<td>Theoretical study on the gas-phase reaction mechanism between pal-</td>
<td>Hua-Qing Yang, Chang-Wei Hu, Chao Gao, Meng-Yao Yang, Fang-Ming Li, Cai-Qin Li, and Xiang-Yuan Li.</td>
<td></td>
</tr>
</tbody>
</table>

Yakhanthip:2011:TIN

Yao:2013:MDS

Yamada:2013:VDE

Yan:2010:CSE

Yourdkhani:2015:IBT

Yamada:2011:TNA

Yuzlenko:2013:MPN

Yang:2010:SPS

Yao:2014:BGB

Yao:2011:BGB

Yamagishi:2014:NSA

Yonezawa:2016:MPP

Yu:2016:DAS

Ohnishi:2016:ECF

Youngs:2010:AAC

Yang:2010:TSF

REFERENCES

Yesselman:2012:MAT

Yamada:2013:FPR

Yang:2013:FPS

Yu:2010:RPC

Yoshizawa:2013:NSC

Yosipof:2015:KNN
Abraham Yosipof and Hanoch Senderowitz. k-Nearest neighbors optimization-based outlier removal. Journal of Comput-
REFERENCES

Yu:2012:TSE

Yan:2015:PPB

Yuan:2015:DHH

Yang:2016:EPC

Yuan:2017:MID

Yamabe:2014:DSP

Shinichi Yamabe, Guixiang Zeng, Wei Guan, and Shigeyoshi Sakaki. A DFT study on proton transfers in hydrolysis reactions of phosphate dianion and sulfate monoanion. *Journal of
REFERENCES

Yuan:2017:VWH

Zhu:2015:DMM

Zhou:2016:NIC

Zhang:2011:DPP

Zierkiewicz:2015:TIH

Zhong:2011:SPA

REFERENCES

Zhao:2011:TDD

Zeng:2013:NSR

Zubatyuk:2010:EDF

Zhu:2012:CEE

Zhang:2011:SSE

Zhang:2012:REFb

Zhang:2012:REFa

Zou:2011:SSP

Zimmerman:2013:ADC

Zimmerman:2015:SET

Zeng:2013:FMS

Zhang:2017:EGD

Zhu:2010:EES

Zhang:2011:SGP

Zhou:2014:PCR

Zhang:2010:AFE

Zhu:2013:SNU

Zhang:2012:TSRb
Hui Zhang, Yang Liu, Jing-Yao Liu, and Ze-Sheng Li. Theoretical study and rate constants calculation for the reactions

REFERENCES

Zarycz:2016:CSB

Zhu:2014:TPC

Zilberberg:2010:POD

Zapata-Rivera:2011:ESR

Zapata-Rivera:2012:RML

Zgarbova:2015:TAD

REFERENCES

REFERENCES

Zhao:2013:FPC

Zahariev:2014:FAM

Zhang:2012:DFT

Zhang:2012:FFD

Zhang:2014:TSG

Zinovjev:2014:ECR

Zalesny:2015:TAD

Zuev:2015:NAI

Zhou:2017:BHH

Zhou:2015:ABO

Zaccaria:2016:IST

Zhang:2013:MPI

Xiaohua Zhang, Sergio E. Wong, and Felice C. Lightstone. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high

[ZWX16] Yuwei Zhou, Jianming Wu, and Xin Xu. Improving B3LYP heats of formation with three-dimensional molecular descrip-

Zheng:2010:DFTb

Zheng:2010:DFTA

Zhang:2011:IIR

Zhao:2011:HMM

Zhang:2010:ESO

Zhao:2014:IDB

Zhao:2014:DSE

Zhao:2015:TCS

Zhu:2012:PPT

Zhang:2012:TSRa

Zhao:2015:PRM

[ZYR+15] Wen-Yang Zhao, Jie Yu, Si-Jia Ren, Xi-Guang Wei, Fang-Zhou Qiu, Peng-Hui Li, He Li, Yi-Peng Zhou, Chang-Zhen

Zhu:2010:IAP

Zhao:2014:CBP

Zhao:2016:CDO

Zhang:2010:III

Zhou:2012:CMF

REFERENCES

Zeller:2014:ECR

Zhang:2010:TSRb

Zhang:2010:TSRa

Hui Zhang, Gui-Ling Zhang, Jing-Yao Liu, Miao Sun, Bo Liu, and Ze-Sheng Li. Theoretical study and rate constants calculation for the reactions of SiH$_3$ radical with SiH$_3$CH$_3$ and SiH$_2$ (CH$_3$)$_2$. *Journal of Computational Chemistry*, 31(2):403–411, January 30, 2010. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zeng:2012:AII

Zhang:2012:RMC
