A Complete Bibliography of Publications in

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

03 August 2023
Version 1.38

Title word cross-reference

1 [ATCS20, GBLT20, MPSP22, PBVC22, RG22, SMY22, SLOZ21a, UY22, YU22]. 2 [An21a, AZV23, Bal21, BTZ22, BDWC23, BJL21, CDT22a, CG23, DT21a, FTPB23, GGCvR22, GPL22, GCSH22, ID20, IMJ20, JRY20, KSTT22, KCS21, LDIW21, Mar23, MSIM21, NFL+21a, Oru21, RG22, RV22, SLOZ21a, WDS22, WZBV20]. 25 [ID20]. 2

-adaptive [NMR+22, WGY20, XSC21]. -adaptivity [ARTB20].
-Algorithm [Ian20]. -body [RIC+22]. -component [HLA21]. -continuous [PHHJ22].
[Ano23a, Ano23k, Ano23l, Ano23b, Ano23c, Ano23m, Ano23d, Ano23p,
Ano23e, Ano23o, Ano23g, Ano23q, Ano23h, Ano23r, Ano23i, Ano23j, Ano23s].
265 [HPA22]. 2P [CDT22a]. 2V [ATCS20].

[SYOS21]. 395 [Pan20b]. 3d [DFG+23, KSHJ20, MND+20]. 3d-3v
[DFG+23]. 3v [DFG+23].

407 [ACML20a]. 426 [MM22]. 434 [YGJ21a]. 455 [LMFV22a, SS22b]. 461
[ZC22b]. 4th [BBO+22, Kar22].

a-FSI [BCPV21]. A-PINN [YNDH22]. a-posteriori [JO22, RHSK21].
A-priori [GZ21]. A-WENO [CKN22b]. ab-initio [PBO20]. ablation
[FCMB22]. Abramowitz [GJL20]. Absolutely [LZZ21a]. absorbing
[LF+23, MGA20, PJA22, PM22a, VBA22, BRT22]. Absorption [KAC22].
absorptive [CCER20]. accelerate
[JJK20, SPdS+21, WPBS22, WZ23a, XF21c]. Accelerated
[JTT23, KBH+22, VN21, WCA+20, WLPK20, BB21, CORJ+23, CTG23,
GKD23, HA21, HM21b, LMZ23, LCP21b, MHWY21, OSZ21, RKA+23,
RFZ22, RZ23, VGK21, WCP23]. Accelerating
[BZ23, CDK+23, dLF23, AP23, HZB+21, HXX23, SES21, XDCF21].
acceleration [ARC22, FZ20b, JLC21, KV23a, KWF20, MH22a, Puk20].
accelerators [BD20b]. acceptance [CSASS21]. Accessibility [ABBG23].
accessible [WL22]. account [CNB+23]. accuracies [ZLW22b]. Accuracy
[ALCZ20, BTCV22, KD20, ATF23, AMGCL21, BBO+22, BW23, BSV22,
CMGGS23, CZZ21, GDL23, HVB21, ID20, IK23b, JZZ22, KD21b, LGZ21,
Li20, LGL23a, Nis20c, Nis22b, PH21, PV22, QWZ+23, RGR21, Sem21,
SAS+21, SSS22, VPPD22, WMTQ20, WZ21a, YH22a, YZZ23, ZHY22,
ZGK+22, vLN21]. accuracy-uncertainty [BBO+22]. Accurate
[BFM21, CN21, DS22b, Gar21, Jai22a, LCN20, PB20a, PJA22, Sin21,
SAH+22, TJ22, USRH20, BBH+20, CL21, CY23, CEMO21, CMR21, CKT21,
CFM22, CY22b, CK21, CNMC21, DMN22, DGG22, DNP23, DW20a, DT20,
DT21b, DT22c, EDEV23, GF20, HSS21, IMJ20, JGM+22, KCW22, KG20,
KB23, KK21, LS22, LL23a, LD20a, LZC+20, LL21d, MR23b, NR23, PP22b,
PBN+21, PM22a, RS20c, SRV21, Ste22, SZ21, SLOZ21b, SLOZ21a, Toli23,
TWF+20, WRBK20, XBH+22, YM21, Yan21c, YGL20, vHP22]. Accurately
[LDM+21]. Achieving [Nis22b, vLN21]. acidification [YZK23]. acoustic
[ALM23, An21a, AL20, BGH20, CAG20, CHG21, CV23, DLMZ22, EK21,
FS23b, GAC20, HCD23, JHY21, LPP+20, LQXM22, MMSW22, MGA20,
MD20b, NPD20, OP20, SAC23, TBG20, ZJSX22, ZHRB23, vHG+22, van22].
acoustics [CE21, PCD23]. acousto [AL21]. acousto-elastic [AL21]. across
[Far20, TLB20]. action [HZY22, Wan22]. activation [GGN+20, JKK20].
Active [AK21, DSS+22, GW23, ZLW+21, CCMC20, FGF22, KCK21,
STWK21, TBST20, WSS22, XBH+22, XCL22]. Active- [ZLW+21].

Analyzing anatomy aneurysms. Anger angle
CDL21, FZQ22b, HZTN21, HLA22b, LL20, PH22, ZY20a. angles
CDL21. Anisotropic
ADM21, CHG20, HW20b, MN22, ZZML20, AF21, AFP22, AD21,
CWW20, Coa22, DDR22, DH20, FWG22, GYWH20, GS20, KLN20, KL22,
KHS20, LB21, LY22b, MW22, PWXY22, PWH22, RMD20, SVW21,
SSG20, WZ22, YYLY22, ZZW23. anisotropy GPL22, LLZ23c.
Annulus
GFG22.
Anode
FSW22.
Anomalies
BFL20.
anomalous
LCF23.
ANOVA
CL20b.
Anti-diffusion
SSPV20.
AP
PCQL20.
Aperiodic
LE21b.
aperture
DLMZ22, Par22. APFOS
LY22b.
APFOS-Net
LY22b.
applied
DA23, DFP21a, HP21a,
KF23, LPJ23, PHHJ22, PPHO22, SS22c, TVL22, WR23c, ZLW21.
Applying
KS11, MRT22, PSL20, XBR21, HZTN21. Approach
Yan21b, ABH21, AYH21, ASW21, ASS21, Ale23, ABY23, AN21b,
AWB21, BCG20, BZSF20, BV20, BF22, Bha20, BTK22, BNN20, BJR22,
BD20b, BB23, BKN23, CS20, CAF22, CL20c, CLS20b, CPK22, CA22b,
DKM20, DGG22, DCH21, DNP23, DD22b, DW21, Dnp21, EDF20,
EFR21, EK21, FSW22, FJ21, GZW20a, GNF22, GQR21, GLJB20, GOF23,
GCP20, GTK20, HLZ20, HRR21, HRRHG21, HGH20, HX21, HNZ23,
HIJ20, JYK22, KGBT20, KPP23, KSI23, KS21b, KNS21, KF23, KHM22,
KV23b, KBC22, LE21b, LHX22, LHA21, LW20a, LL21d, LOLS23, MM21a,
MRL23, MBTS20, ND21, NGZ22, OL23, ORU21, PA21, PRS23,
PM22a, PZN23, PBP23, PCD23, PEL23, RUG20, RDAB23, RA23,
STEK17, STEK22, SLWRG21, SEG21b, SDP20, SES21, SS22b, SS22d,
SOBP22, SI22, TBM22, TGM23, VMBS20, VPDD22. **approach** [WQ20, WZ20, WASAZ22, WD23, WKKB21, WL22, XHC22, YGW+20, YTK22, YZH+23, YK20a, ZOG22, ZA21, ZS22b, ZOG21b, ZZN22, ZZY21, ZHRB23]. **approaches** [GNZ23, HA21, JWH20, SP4S+21]. **appropriate** [AK22]. **Approximate** [BMQ20, FFY21, AHR20, AR21, BLWL22, BGD21, CMPR23, DNO23, GGEJ20, HBF20, LHK22, LHZ22, MM21b, FJBB20, SGB21b, SFNM+21, SV+22, WH22a, WPBS22, XF23]. **approximate-factorization** [PJBB20]. **approximated** [WLPK20, WDL21b]. **Approximation** [TSSOA20, ASJ23, AF23, BLF20, CMPR23, DNO23, GGG20, HBFB20, LVK+22, LJH23, LZS22b, MM21b, PJBB20, SGB21b, SFNM+21, SV+22, WH22a, WPBS22, XF23]. **approximations** [AD20, BNP22, BT20, FGK22, FGB20, GN20, GLY22, HV20, JTK22, LLM20, LT22b, LOLS23, MR23a, MR23b, Sin21, YH22a]. **APR** [MZX+22]. **April** [Ano20a, Ano20m, Ano21a, Ano21m, Ano22a, Ano23a, Ano23k, Ano22m]. **aquifers** [SFP+20]. **Arbitrarily** [GZW20b, Cam21, CC23, HHL20, MH21, PR20, PAGJ23, ZZW23]. **arbitrarily-shaped** [PAGJ23]. **Arbitrary** [GBC+20, SOSM20, WZL21, XDLX21, AAM20, ADJ23, ATCS20, BZ21, CCM+22, CLLL20, CBB20, CI21b, CCR22, CLP21, CGM+23, DD21, DLY22, EPL21, FHMK21, FX22, Hac21, HXZ21, KSCS21, KKS21a, KKS21b, KB22a, KB23, LZ+22a, LQXM22, LEH+21, NIS22b, PA21, QJQW22, QJL23, REC+22, RC20a, RRPS21, TWY22a, TKR22, TSSOA20, TRC22, VVRWT21, WDK22, YTK23, ZCL20, ZXX23]. **Arbitrary-Lagrangian** [GBC+20, WZL21, CLLL20]. **arbitrary-order** [DD21, EPL21, Hac21, KCS21]. **arbitrary-species** [ATCS20]. **architecture** [CDL+22, TC23]. **architectures** [DM21, DFG+23, SMW+22]. **area** [AZV23, CP22b, Hua21, JL21b, NIS20a]. **area-conserving** [JL21b]. **area-to-line** [AZV23]. **arising** [APR22, NMRG21]. **array** [LW22a]. **arrays** [GLJB20]. **arterial** [BCPV21, CDT22b]. **arteries** [LC23]. **artery** [QCWC23]. **articulated** [UD22]. **artifacts** [LLF+22]. **Artificial** [HNB+21, HCD23, JPAZ21, TR21, ZWHH22, BS22b, CDM+23, DHR20, DT20, FL21, GC22, GLWZZ2, LJZK21, LHA+21, MRK+20a, MOBR22, MFK21, NIT21, QPW21, RKVW20, SRH21, SEG22, SLM21, XZC21, ZB21b, ZLS22, ZQL20]. **ascent** [LXY23]. **aspect** [HRWP22]. **aspects** [MH22b]. **ASR** [YKLL21]. **assemblies** [KCT+23]. **assembly** [CDK+23, JBF21, LCC+23b]. **assessed** [Vre20, Vre21b]. **Assessment** [EDEV23, JAW+23, MBDS23, MKM23, GFG22, SBC20]. **assimilation** [AB22, BJ21, BT22, BP22, CMH20, CNBH23, CFM22, CPH+22, CLP22, FFGRSL+20, HPS23, KHM+22, MLCM21, TLD20, YG21]. **assisted**
asymmetric

asymmetrically

Asymmetric

asymmetrically

Asymptotic

asymmetrically-weighted

Asymptotic

associated

assumptions

[LY22b, PBC20, APR22, ACE+22, BTZ22, CDT22a, CWX23, CC23, CCAR22, EHW21, GMB+22, HXX22, JTTZ22, KCCR22, LPM+20, MGL21, MRBS22, RC20a, SSS20, XSSS22, JX21]. asymptotic-numerical

[CCAR22]. asymptotic-preserving

asymptotic-numerical

asymptotic-preserving

Asymptotically

asymptotics

[FR23, FTY+22]. asynchronous

asynchronous

Asynchronous

atmosphere

atmospheric

atmospheric-pressure

Atomic

atomistic

atomistic-continuum

tomatization

atomic-continuum

tomatization

automatically

Auxiliary

Auxiliary

Aw

Aw-Rascle

B

B-DeepONet

B-grid

B-PINNs

B-spline

Backscattering

Backward

Backflow

background

Backward

balanced

balanced

B-DeepONet

[LMZ23]. B-grid

[AB20, DNO23, BBS20, LMS23, PC23, YMK21]. B-DeepONet

[AB20, DNO23]. B-PINNs

[AB20, DNO23]. B-spline

[BBB20, LBSR20]. Backflow

[AB20, DNO23]. B-grid

[BBB20, LBSR20]. Backflow
balanced-force [HLA20c, HX23], balances [Sin21]. balancing [TTSP21].
Balescu [SHS+20]. ball [BBO+22]. balls [PC23]. band
[CMS21, Per23, ZZY+20]. band-limited [Per23]. banded [SMW+22].
baroclinic [LJW+22]. barotropic [CHT20, LJW+22]. barrier [BF22].
bases [AMB22b, DCA+22]. Basic [KDL23, SLOZ21a]. basis [AKWY20, BKMC21, CGJM21, CS21b, DDP20, DW20b, EJ22, EFY23, FZS+21, JYY22, KS22d, KLN20, KL22, LYS+22b, MRYS20, TVL+22, WQZP20, Xia23].
Batch [JLL20, DFJ22, DL21]. Bateman [CS22]. bathymetries [DS22a]. Bayesian

bodies [DDVO21, GGCvR22, Ian20, LHT21, UD22, VSS21, WNB21, XS20, ZTS20, vdEW23]. body [BPG21, CRF+21, FADJ20, KBS+21, KWR+23, LT20b, MBM+22, NG22, OSL22, QCWC23, RIC+22, WBN22, YJK21, YhCdJ+23, YP22].

body-fitted [FADJ20]. Bogoliubov [GC20a]. Bogoliubov-de [GC20a].

Boiling [ZZN22, KVH20, MCBA20, SGB+21a, WZCK21].

Boiling-BGK [BVT20, BT20, DW23].

Earthquake [YWN20, YI23].

Boltzmann-BGK [BVT20, BT20, DWM23].

bootstrap [CC20].

Bose [CC22b].

boundary [CDBS21, CRF+21, CYS22, CDW23, CYS23, CTG23, CW22b, CBA+21, DSSSP20].

boundaries [HSS21, HSS23].

Bound-preserving [FGKY22, GH22, GR+22, HSS23, CYS22, CY23, CTG23, CYS23, CTZ21, DSSSP20].

Boundaries [CDBS21, CRF+21, CYS22, CDW23, CYL22, GLY20, KWS21, LCS23, LT20b, TY23].

Bound/positivity [HS23].

Boundaries [CDBS21, CRF+21, CYS22, CDW23, CYL22, GLY20, KWS21, LCS23, LT20b, TY23].

cache-efficient [LWH23]. Cached [DS20]. Cahn [FQW23, LHC22, MRK+20b, NMR+22, QW221, CZ20a, CL20b, CWW20, DW221, Fu20, GuHR22, GCL+22, HLA20b, KLS+20, KSI+23, LLC23, LYY21, LQX22b, LQX22a, ILITZ20, LFT+20, MRK+20c, NS22, NMR+21, SHM+23a, VRTK21a, WJKW20, Yan21b, ZFY21, ZY20b, ZOWW20, ZH21].
calculating [DC22a, Is22, SHM23b, Sha21]. calculation [BFS23, CEBC22, FCWS22, MHWY21, YS22]. calculations [CMS21, DLZZ21, Dup21, MH22a, PMF20, PM21b, TMG20, WL+20].
capillary [AFV20, BV21, DevW22, JFH21, LGY+20, Pan20a, YZK20, ZGK+22].
cardiac [ASG+23, BCG+20, BBQ+21, BGQ+23, FBD+22, RSA+22].
Cartesian [Bar21b, BG20b, CDBS21, Cam21, CTG23, CLP21, CPBB21, DDR22, Eld22, HL22b, LD20a, LJZK21, SBL22, SI22, XS20, XLS22, YWN20, ZPW+23].
Cartesian-diusion [HL22b]. Cartesian-grid [Cam21, CLP21].
Cartesian-grid [Cam21, CLP21].
case [CLS20b, DZ22]. case-study [POS+20]. cases [DZ22]. Cauchy [HBF22, KKP20]. caustics [GDL23].
CEM [CP20]. CEM-GMsFEM [CP20]. centered [AKK20, LAT+22, PK20].
CEM-GMsFEM [CP20]. centered [AKK20, LAT+22, PK20].
converged [BS22a, BL22a, BCP22, CZLC22, CLJ+20, FLW20b, GFH22, HZ21, KDL23, LLPL22, LH20, NW20, NW23, PWH+22, QJQ22, QJL23, SG23, SEG21b, SEG22, WDS22, WZL21, YJK21, ZXS22]. Central [HPW21a, KNP20, ZWLG23, BD20a, KCL23, CF21, CCH+23, CKN22b, FZ20a, GKL21, ITW22, KL20, KLX23, LC23, PWK20, SAP22, ZB21a].
ZP20, ZAW⁺20]. **CFD-DEM** [CZ22b]. **CFD-driven**
[BSCG22, ZAW⁺20, WZSK22]. **CFL** [CK20, HZHL22, Liu20b]. **CG**
[CMS⁺22b]. **chain** [LTK⁺22]. **Challenge** [Cai21]. **change**
[BSV22, HHAFR21, HLA22a, LHZ⁺23, LYH23, MMZR21, MRL⁺23, WA23].
changes [CMPZ22, GBC⁺20, HCL22, HF23, KSST21, MS20a]. **changing**
[LSTZ21, SCB20]. **channel** [DTB20, HKJ21, XC20, Xie22, XC23a, ZGLL20].
channels [CCAR22, Liu20a]. **Chaos**
[Poe22, RBBD22, Bha20, BKON23, CGC21, EPL21, EPL22, HL20c, LT20a,
NDH20, Poe23, PB22, TPSN20, VGG23]. **chaos-informed** [CGC21].
chaotic [CBCF20, CF22, KP23, KH21a, WKA⁺20]. **character**
[YAX20]. **Characteristic** [CYS23, YMY⁺21, ABDD20, CCH⁺23, FL21, FDP20,
KFSM21, MZ22, SC22a, TN23, YSN23]. **characteristic-based** [SC22a].
characteristic-featured [FL21]. **characterization** [KAC22].
characterized [GSOM23]. **charge**
[CCY⁺20, Ere22, PP22c, SMY22, XC20]. **charge-conserving**
[CCY⁺20, Ere22]. **charge-momentum-energy-conserving** [SMY22].
charged [KCCR22, RC20a, RGLN22, SGM21, Ume23, WLH21].
charged-particle [KCCR22, RC20a]. **Chaussée** [PJB20]. **Chebyshev**
[BG20c, EDLF20, RS20c, WSS22, YNT20]. **Chebyshev-based**
[BG20c, EDLF20]. **Chebyshev-collocation** [RS20c]. **check**
[CMGGS23]. **checkerboard** [DMRG22]. **checkpoint** [CCN21]. **checkpoint-restart**
[CCN21]. **chemical** [GN23b, HZY22, PEL23, XYL22]. **chemically**
[DY22d, JK20]. **chemistry** [BB20a, GCVI22, LLB⁺23, MLM⁺21, PSCK23].
chemo [GN23b]. **chemo-hydro-mechanical** [GN23b]. **chemoepitaxial**
[LCC⁺23b]. **chemotaxis** [BGH21, LHL⁺22, QLY21]. **Cherenkov**
[BD20b, LKG⁺20, NNL⁺20]. **Chimera** [KFSM21, MMZZ22]. **chiral**
[KCK21]. **chirality** [FCGKR23]. **Choice** [ZS21a, RRPS21, ZHZ22]. **CIAs**
[BTK22]. **circuit** [BGSP22]. **circular** [FZS⁺21]. **circulation** [RSA⁺22].
Circumventing [ZNCZ⁺21]. **class**
[BGFB20, CCH20, EFR21, GLY22, HSW22, LCR22, Mar23, RBC⁺23, SAP22,
SY21, TT22h, TYC23, WH22a, WZSC22, WHS22, YZdCNS21, ZWZL22].
classes [CS20]. **classic** [CDW23]. **Classical**
[CL21, AZ22, DY22b, JLRZ20, ZOWW20]. **cleaning**
[CQGD21, DFGR20, KK20b]. **climate** [WDL⁺21a]. **cloaking** [WYHL21].
cloaks [CHG21]. **Close** [KKCC20]. **closed** [RSA⁺22]. **closed-loop**
[RSA⁺22]. **closest** [HCL22]. **closure** [BBB23, BKY21, HCCR22, PBJ⁺22,
QJW22, SS22, TBW22, WRH20, WZSK22, WSS22]. **closures**
[YcD20, YcD23, ZDS⁺21]. **cloud** [CKLM⁺23, RS2WD21]. **clouds**
[PM22a, PLYZN23]. **cluster** [DCA⁺22, DBC⁺22, SAL⁺20]. **Clustered**
[XCL22]. **clustering** [LKJL22, TACO22, VGG23]. **clusters** [LMUHR22].
CMP [TZM⁺20]. **CMP-PIC** [TZM⁺20]. **co** [CQA21, CSM23]. **co-located**
[CQA21, CSM23]. **coagulation** [Sin21]. **coalescence** [CDJM21]. **Coarse**
[CPX21, EFY23, BT21, CCAR22, DC22b, KK20a, LC20, LC23, NÁ21, RK21].
coarse-grained [BT21, RK21]. **Coarse-graining** [CPX21, KK20a].
[FCW21, FM22, FMOJ22, FM32b, FM3a, GRC$^+$22, HPW21b, LAT$^+$22, MND$^+$20, SOBP22, VCPGR20]. Code-verification
[FCW21, FMOJ22, FM32b, FM3a]. codes
[MVK20, RMM$^+$22, TYBW23, XLT$^+$20]. coefficient
[JWZ20, Kan20, LNYD20]. coefficients
[BKON23, DLP21, DL21, HL20a, HL20b, JHY21, LH21, PWH$^+$22, PZ22]. Coercing [GJF20]. coherent [IT22]. coil
[GWC$^+$22]. colliding [RE20]. collision
[AMW22, CI21a, HHK$^+$23, HQ20, Li21, MRBC22, TBD$^+$20, XF23, YSC23].
collisional [ASBM20, BBC21, CB23, Ere22, LRW21a, WNZ20].
collisional-radiative [ASBM20]. collisionless [CEM20, TS20]. collisions
[ALF$^+$22, LKJL22]. collocated
[NVK$^+$22, PBN$^+$21, RBD$^+$21, XJN$^+$20, ZJ22]. collocation
[CL20d, CGJM21, ELSV22, FTY$^+$22, LSS20, LPZ22, LN21b, RS20c, RRHC23, TFCH22, TJC21, WQZP20, Zha22, ZZY$^+$20]. colloidal
[KVQE21]. comb [LCF$^+$23]. combination
[AMK$^+$21, FCY$^+$20, LPG$^+$20]. Comparison
[BGSP22, CCLM22, GCV22, GSFH22, HHVM20, HJH$^+$21, ID20, LGZ21, SHM$^+$23a, SDDL21, YJSX22, ZSKN22, BLK$^+$23, CSM23, DY22b, IW23, KRL21, SLQW22, T220, YLS21, ZOWW20]. comparisons
[PMZ$^+$23]. Compatible
[YWClL22, FTY$^+$22, LCDS23, PGTS21, WC20].
compensators [ZLW23]. complement [HV20, KKS$^+$21].
complementarity [BE20, YZK23]. complete
[BGRL20, DN2W23, Hua21, Pan20a, WH22a]. completely
[KKP20, WWG20]. Completeness [DBC$^+$22]. completion [DLMZ22].
Complex [DHM21b, ASVL23, AZV23, BDF$^+$23, CM20, CY22b, CFS23, Cie20, DS22a, DHMT21, DFW22, GQF23, GJL20, HZ22b, JHY21, LYL20, LN22, MWY$^+$20, MBE21, MHNY21, MRZ21, PTT22, QG21, QH23, RUG20, RS20b, SV3, SRTB21, SY21, TB21, WZBV20, Xia23, XCL22, YYB23, YGL20, ZSL$^+$23, ZOG21b]. Complex-scaling
[DHM21b].}

Complexity
[ASBM20, CF20, Bre20, JLY22, JLY23, LBN21].
Complexity-reduction [ASBM20]. compliant [BBK21]. complicated
[SYOS19, SYOS21, TNB21]. component
[ADJ23, FTK23, HLA21, KK22a, LVK$^+$22, LLQ$^+$23, MS20a, PAA21, Say22, TWY22a, ZYX$^+$23]. components
[FGKY22, FB22, LBM20]. concentration-dependent [LBM20].
concentrations [APR22]. concurrent [DGL+22]. condensates
[CL21, CDLX23, GC20a, LXY23]. condensation [MR23b]. condensed
[RRFK+21]. Condensing [CLT21]. condition [BCIT22, BDB21, CK20,
CYS23, CN21, GS22, JLC21, KRG+23, KKY22, KS21b, LAN21, LCD23,
OKTD21, QHLL20, RRPS21, WH22b, WLL+23, XC20, ZZZH23, ZCY+21].
condition-enforced [WLL+23, ZCY+21]. Conditional
[BFC23, TBST20, Che20, CDZ23, HGSK22, LT20a, PZ21, TBSH21].
conditioned [HKJ21]. conditioning [BBDT21]. conditions
[AD21, BZ21, BFG22, BG20b, BFS23, CHS20, Cal21, CLS+20a, CLW22,
CK21, CCdS20, DG23, DN21, FZ20a, FDP20, HP21a, HLA22b, HXQL23,
JPAZ21, LM21b, LYL20, LZZ2b, LCF+23, MGA20, NFL+21b, NG20, NW22,
PJA22, PAGJ23, SYOS19, SYOS21, SMMA21, Svi21, TNB21, TPB22,
VBA22, WZW21, WKKB21, WLL+23, YLS21, YGL20, BRT22].
conditions-free [HXQL23]. conducting [KLP22, USRH20]. conductivities
[BGG+20]. conductivity [ILX22, JYK22, Kus20, VS+22, YSTK20].
conductor [HLB20]. conductors [LL3a]. cone [HPA22]. configuration
[KLP22, LW22a, MNG+22, QC23, SM21b]. configurations
[MD20c, SVW21, YSC21]. confined [CY22b, KMR23]. confinement
[AKK20]. confirmation [NTSM20]. conformal
[AMGCL21, SQSS20, XMY22]. conformational [LHX22]. conformations
[KSST21]. conforming [BGG22a, CBCT+21, CLLL20, HSG+22, YSTK20].
congruity [RA21]. conjugate
[CNC21, GB22b, HG+21, CL23]. connected [NOR22a]. connection
[SLQW22]. connectivity [WY22a]. Conservation
[QWZ+23, YWCB22, ALF+22, BKC22, BL22b, BBCD22, CMP+21, CJ21,
Cha20, CV23, DSS20, DLWW22, EC20, FTZ22, GKL21, GN20, HMO+20,
Ki21, KDL23, KNG22, KGN22, KWF20, KdL20, KV23c, LZZZ21, LSQ21,
LLO22b, LLD20b, LOLS23, LA21, LP20b, LSTZ21, LPW21, Mar23,
MYM+21, Mi223, PM21b, PD21, PP22c, PCA+23, QCD21, RBF+21, SSK20,
SAP22, SLNM21, SX20, TFWX22, TKK22, WLKR23, XS22b, XS23, YNT20,
ZZ3a, ZHR20, ZCQ20b, ZQ20]. Conservative [AC23, CFH20, CBRY21a,
CBRY21b, DEnV20, EH22a, GW22, HST22a, LM20a, LS23, RGH+22,
WBN22, ZZY20, ATCS20, BCF22, BCR22, BL21b, CKLZ23, CBB22,
CNMB20, CC23, CG23, CSS20, CNK22b, CCB22, CS21c, DXP23, DWM23,
EJ21, EOS23, FGL+22, FTK23, GGB20, GY22b, GS23, GLCS23, GLWY22,
HHAFR21, HT21b, HLN21, HLA20b, HLA20c, HLA21, HLA22a, HJ23,
HABG23, JMM20, Jai22a, JGM+22, Jen20, JFH21, JK20, JH23, KBB21,
KKS21b, KJ22, KQVE21, KLX23, LTD+21, LPL+22, LL22, Li22, LZ20a,
LRAQ22, LFZ21, LCC+23a, LCP21b, LCBW23, MMZR21, MJJ21, MHW21,
MIM20, MMYT23, NKW22, OP20, PWL+23, PCB22, PBGB21, PGCC+22,
RSWD21, SHM+23a, SRD20, SS+20, SC22b, TSTH20, TP20, WJHS23,
WKW+22, WA23, XJN+20, XL22, XS22a, ZB21a, ZL21a, ZNN22, ZSQ21].
conserved [KV23b, LC22, Yan21c]. conserving [BDZ23, BTL23, CCY+20,
MZ23, MD20b, NCQ22, PKC22, SSPV20, Sev21. convection-diffusion
[DCGQ20, Kiv21, LFZ21, Sev21]. convection-diffusion-reaction
[AdS22, SSPV20]. convection-dominated [GFY20, LTD22, MZ23].
convection-pressure [GMRS20, MD20b]. convective
[BEB22, Edo22, HCbM23, KK22b, LLCJ23, SKTK21]. Convergence
[ACHG21, CZ22a, JLC21, SN21, TDB22, BTCV22, CWW20, CC20, EG20,
ESJ23, GLY22, HA21, JKK20, JYY22, JW21, KML23, LKM22, LJ22,
LQX22b, LQX22a, tLJTbZ22, Nis20a, SMRW22, SMS23, WZZ23, WYCI22].
Convergent
[JWH20, CX22b, HT21a, JJ21, LZZ21a, MVO22, TPPA22, WWG20, WZZa].
converging [LZY22b]. conversion [AZV23]. convex [CDW23, LCL22a].
convexification [KNT22]. Convolution
[HZ22a, FA22]. Convolutional
[DC22a, Chi23, GSH22, LC20, LPBK23, PGR23, WWFM22, WC22, ZYL22b, AM22].
convolutions [Ale23, PLYZ23, TPPA22]. cooled [MCBA20]. coordinate
[CLT21, KRG23]. coordinates [Bal21, BSP21, CLS20b, GKR22, HM21a,
MT21, PA20, DM23, QSZ20, SOV21, SLO22b]. copolymer [LCC23b].
copolymers [BCL23]. core [CLXS23, LFL22]. coregionalization
[XKZ21]. Corner
[MG20, EGN23]. corners [AuIL20, DHM21b, LL23a].
corona [MF22, MP21]. coronaries [DFP21a]. Corrected
[IRT22, ZA20, BST23, HHL20, Kiv21, PA21]. Correcting
[LZ21, LCG22a, STB22, WDK22]. correction [AOR22, AF20, BLL19,
BL20, CORJ23, sCpLL22, CCH20, DY22a, EOP20, GYWH20, GF21,
HM22, HXX23, HPF20, LRT22b, MW22, Nis22b, PEA20, PBJ22,
PKL22, QLY21, Sti20, YLY22, YOH20, ZS22a, ZWY21, ZJ22].
corrections [OLP23]. corrector [CEL20, TC23]. corresponding
[HLL23]. Corrigendum
[ACML20a, BLL20, EFO20, GRT21, HPA22, LMF22a, MM22, SZN20,
SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].
corrosion [GJLD20]. cosmic [DW20a]. cosmological [BL21a]. Cosserat
[AEGV22]. cost [BB20a, DDR22, HYM20, KSS21, RR23, ZT23].
cost-aware [RR23]. cost-effective [BB20a, DDR22]. Coulomb
[ALF22, HHL20, HJL22]. couple [YGW20]. Coupled
[ACML20a, ACML20b, WCA20, ZQC23, ADK21, ALF22, BGQ23,
CBQ21, CYS22, CBB20, CIMG21, DEvW22, FSW22, GLSZ22, GNP22,
GLJZ20, GAB22b, GAC20, GN23b, HMO20, HSS21, JHT23, JLCT22,
KGBK20, KSHJ20, LQT23, LFP21, LFF23, LHF20, LCJ20b, MD20a,
MLM21, NG22, NA22, NMR22, OYK22, PEA20, PA21, RSA22,
RLH22, RR22, SLF23a, SGW23, SYL23, SML20, TV22, TWY22b, VMO21,
WF23, WZSK22, Yan21b, Yan21c, YTK22, YHT22a, ZML20, ZHPZ21, ZJ21].
Coupling [BSZ23, CDBS21, Li21, SWG21, SWG20, SGW23, WW20a,
ABH21, AWB21, BGS22a, BDWC23, BGSP22, BHK22, CAG20, CZ22b,
CS22, DMN22, DS23a, JHJ20, KC20b, LG22, LW22b, LOL22, LCWH23,
LW20b, LMN20, MPSP22, MZC22, MP21, MMZZ22, RG22, SWHJ22,
YZH+23, YKdHC20, ZZML20, ZQC+23, ZMZ23, ZLW+21, ZMW23, van22].
Courant [OKTD21]. Courant-Friedrichs-Lewy [OKTD21]. CoV
[KSST21]. covariant [Bal20, OP20]. CPR [YZK23, ZLW+22a]. CPU
[KNS21]. CPU-time [KNS21]. crack [CC22a, FGD+21]. cracks [KLP22].
creep [KH21b]. creeping [GDF21]. criteria [ZRH20]. criterion [DCA+22].
critical [CDL21, LSF+23]. critical-adaptive [LSF+23]. criticality
[KWMF22]. Critique [TNB21]. cross [CCAR22, DC22a, EKP22, GGB22, Ume23].
cross-helicity [GGB22]. crumpled [AR22]. crystal [FGD+21, GB22a, SVW21, YH22a, YK22].
crystals [BW20, CMS21, QAS20, ZY20]. CSF [BTL23]. cubature
[Gla21, HJK+21]. cubed [CLXS23, GCDT22, LP20a, SGT23].
cubed-sphere [GCDT22, SGT23]. cubic [BP22, YJK21]. cumulus
curvature [BTCV22, BDMT22, FO22, LCG22b, LCG23, LW21, ÚL23, ZEG20, ZAMG20].
curve [LZS22a, SM21a]. curve-shortening [SM21a]. curved
[AF20, AFG20, CB20, CI21b, CRF+21, Coc20, CMS23, CNCM21,
GTKA20, LL23a, PGP+23, QERT20, RPA22, SSM20, YLK20, YK20b,
ZL21a, ZL22, PGP+23]. curves [JL21b]. curvilinear [AD20, CTC22,
CDN+22, IJM20, IK21, LM20a, NKW22, OP20, PA20, QSZB20, SC22b].
Customized [ZDS+21]. cut [BL22a, BFG22, BG21, BL21b, FZ23, XS20, XLS22, YWN20].
cell [BL21b, XS20, XLS22, YWN20]. cut-cell [HLB20, Hen21].
cylinder [CCMC20, CGPD20]. cylindrical [BSP21, FLW20b, GKR22, SLO22b].

D [RG22, WZC21, GDAP20, An21a, ATCS20, AZV23, AF23, BGH20,
BAK22, BTZ22, BRZ+23, BGS22a, BTCV22, BDWC23, BEP+20, BP21,
BL22b, BJL21, CDT22a, CMH20, CDL21, CG23, DFS23, CRF+21, CIMG21,
CNCM21, Da22, DT21a, DFW22, FTPB23, GCC2R22, GPL22, GTDB22,
GDT22, GP23, GSH22, HZTN21, HLB20, HBF22, HNF+21, HP21b, ID20,
IM20, JRY+20, KSTT22, KCS21, KLZ23, Lips21, LP20a, LLD20, LLDW21,
LCK20, Mar23, MFG22, MPSP22, MSIM21, ML20, MM23, MRZ21,
NFL+21a, OLS21, ORU21, PT23, PWH+22, PTT22, PBVC22, PCD23, RG22,
RV22, SRD20, SLOZ21b, SLO22a, TWY22a, TMB22, Tlru22, TNF23, UY22,
WCZ+20, WDS22, WY22a, WY22b, WGU+22, WZBV20, WK21b, XBPRL21,
dam [MMSW22]. damage [HDML23, ZOG21a]. damaged [LLZL20]. damp
[DNO23]. damping [KB22a, SQSS20]. Damper [SPAC23]. Darcy
densities [GHHR22, QGS20]. Density [KC20b, YB22, ZNCZ+21, AFL22, AR21, BCC+20, CL20c, DC21, GGB20, GMNY23, GCL+22, HPW21a, HZHL22, LRT13, LCSZ21, LWQ23, LRT+22b, LP20b, MRK+20a, PHP21, RZH20, RPDO+21, SHL+20, TWL22, TMG20, VKG21, WQ20, WP23, WLRK23, WGY+21, YLW21, YKHF23, ZLG+23, ZWL23, ZXD22, ZOE20, dv23]. dependencies [VRAM21]. dependent [AH21, AFL22, AFGL20, AMB22b, BDS23, BG20a, C22a, DGW20, FP23, GMB+22, GR21, HHK+23, HPA22, KCS21, LBM20, LKG+20, NDI20, PB20b, PM20, PM21b, PH22, PTT22, Qha22, QHL20, QCZ22, RGH+22, RV20, STEK17, STEK22, VGP20, WQ20, XSC21, Yin21].

YLY22, YW22, YAX20, Yua21, ZJK20, ZW22, ZMIS22, ZLS22.
dissipation-adjustable [DhJV+22]. Dissipation-based [KV23c, JP23].

dissipative [DWZ23, GS20, KK22a, Li22, LL21d, MHW21, SBL22, TKK22, TCS22, YD20, YJP23, ZS22b]. distance [ABBG23, GCV22, Ns21, WXZ22].

distillation [KKM21]. Distributed [HLB20, KSHJ20, KHS20, SGPW21, TEA+23, ZLC+20, ZO21].

distributed-memory [ZLC+20]. Distribution

[ABBG23, GCV22, Nis21, WXZ22].

disturbance [PA21]. div [BDP23].

div-curl [BDP23]. divergence [CBCT+21, DW20b, EOP20, Fu20, GEvWD22, KK20b, LZZ21b, LZLS21, LP23b, SCS22, Toh23, WDS22].

divergence-conforming [CBCT+21]. divergence-free [DW20b, Fu20, LZZ21b, LZLS21, SCS22, Toh23, WDS22].

divergence-preserving [GEvWD22]. dividing [HST22a]. DLGA [XCZ20].

DNS [HW20a, PO21]. do [MX22]. Domain

domains [ASS21, BFG22, BDF23, CLS+20a, CPK22, Coc20, CBC+23, CCdS20, CNCM21, DS23a, DS20, DS20, FPT23, GLLM22, HR20, Jai22c, KMR23, KML23, LWY+20, LSLH20, QG21, RS20b, RFZ22, RMWS21, Say22, SWF21, YLNT20, YTJK23, YLS21, Yua21, ZPGR22]. dominance

[ARR21]. dominant [MY20]. dominated

[BBB23, GFY20, LTD+22, LT20c, MM21a, MZ23, SFGNMGN22]. Dormand

doubly-periodic [WNB21]. dozens [SWZ+20]. DPG [MMPD21]. DPM

[SMF20]. drag [BL19, BLL20, SDA+21]. drift

[CDT22a, NWM21, RPA22, Sab20, SAH+22, WDK22, ZWZL22].

drift-correcting [WDK22]. drift-diffusion [RPA22, ZWZL22].

drift-kinetic [SAH+22]. drift-kinetic-equation [CDT22a]. drift-region

[MP21]. driven [ASSZ21, AMW22, BT21, BB20b, BSA21, BSA22, BBA22, CZ23, CHZ+21, CPH+22, CCHS20b, DDP20, DOL23, EPL21, EPL22, FGB+20, GQR23, GLLB20, GN23a, HSRM20, HZY22, ISM+23, JY22, KV20, KH21a, KFP+22, KLF22, LWL22, LJ23, LO23, LL21c, LHA+21, MH22a, MM21a, PRKS23, PR21, QH23, SWG21, SSG21, THH22, WDL+21a,
WCM'21, WZZ23, WZSK22, WX20, XJN'20, XZWH22, XD22, ZB21b, ZDS'21, ZL21c, ZLL23, ZAMG20, BSCG22, ZAW'20. drop [MSK'22].
droplet [ABH21, HRR21, MKHI20, NKA'20, RKRW20, XLHB22].
droplet-related [ABH21, droplets [DU20, FS23a, GHI22b].
droplets/bubbles [BFG23]. drops [CDJ20, FS23a, GHY22b].
droplets [BFG23]. dry [BFNK'21, Liu21].
DSMC [CSY21, FHJ22, GMNY23, YSC23]. DtN [RG22].
Dual [BR22, DFW22, ZRH20, CWW22, FLW20a, GN20, GCD20, HHRA19, LKEM21, LZY'22b, LOLS23, NG20, Nor22a, PP22b, Pan20b, PGTS21, Qia22, Sev21, hSMLS23, WW20b, ZPGR22, ZSKN22].
Dual-criteria [ZRH20]. dual-field [ZPGR22]. Dual-pairing [DFW22].
dual-scale [GCD20]. dual-stage [FLW20a]. due [ARR21, SCL20, Vre20, Vre21b]. duration [NDH20]. dust [SDA21].
dynamo [YYM'22].

[HGB20, LFP +21, MJJ21, MYY +23, WNZ20, ZZX20]. Effective [Cie20, LsCxl +20, ABDD20, BB20a, DDR22, LPS21, LAS22, TKGB23, XC3a].

effectiveness [KS22d].

[SSPV20, BEB +22, BY21, CBCF20, DSSSP20, DWZ23, FTPB23, GDBFN +20, GPSMH20, GN23b, HPW21a, MH22b, SMH23b, SFP +20, ZGF +22].

eigenmodal [MD20c]. Eigensolution [KdMJ +22, KLF22].

eigenvalue [BCJM20, BZB20, DJ23, HL20, HP22a, KAC22, LY22a, SML20, ZLS22].

eigenvalues [AIN20, CL20, CX22b].

eigenvectors [PJBB20].

Eikonal [GGN +20, DLG23, PCD23, TEA +23]. eikonal-based [PCD23].

EIM [CGJM21].

ELM-degradation [CGJM21]. Einstein

[CL21, CDLX23, DFG20, GC20a, LXY23, MR23b]. EL-RK-FV [NCQ22].

Elastic

[AD21, LZZ22a, LKvM +22, AL23, MM20a, AL20, AL21, ABDD20, BB20b, BY20, CL20, CGLZ23, CDL21, CC22a, CLJ +20, DLL22, DFW22, GLL20, GAC20, HYQ20, JF20, JAW +23, Kar22, KFS21, LZS22b, LM23a,
MDG20, TBM22, WGB22, WZ22, XHZ22, Yan21c, YK20a, ZZML20, ZSZ23. elastic-acoustic [GAC20], elastic-perfectly [LZS22b], elastic-plastic [CLJ+20, JAW+23], Elastic [MMSW22, LGY+20], Elasto-acoustic [MMSW22], elastico-capillary [LZS22b], elastic-plastic [CLJ+20, JAW+23], elastic [AEGV22, BHNS23, FCM20b, RAZA21, ZFG21, ZZY+20], Elastodynamics [MMSW22, LGY+20], Electroconvection [BW20, CWL+21], Electrode [DNW23, FGD+21], Electrohydrodynamic [FBS23, LBM20, PHP21], Electrohydrodynamics [XSHH20]. Elastic [AEGV22, BLLL23, DSG+22, DY22c, Nik23, Sel22, ADK+21, Abg20, ARR23, AYH+21, ASJ23, AMGCL21, ADM22, BFP21, BS22a, BGNZ22, BDS23, BAK22, BN+22, BTEK22, BB20c, BRS22, CDK+23, CHG+20, CAG20, CJ21, CFM22, CMS21, Coa21, Coa22, CPA+23, CMRR21, CMS+22, DHM21a, DMN22, DPX23, DLY22, DW22, EFR21, EPL22, FSW22, FFL+23, FHT21, FZ23, FCM20b, FZ21, GYWH20, GJLD20, GGB20, GGB22, GL20, HSXZ21, HRR21, He22, HS20, HW20a, HLX21, HXX23, HCL20, HLH21, Ish22, JYK22, JWZ20, KK20b, KdL20, KB22b, KV23c, KKJ21, LP20a, LG22, LN23, LL+22, Li20, LZZ21b, LB21, LL22, LZ23b, Lin21, LT20b, LFZ21, LCC+23a, LAN21, LY22c, M22, MCP23, MFT20, MFK21, MFRZ22, MFS+22, NFA21, NKF22, NYY22, PHP21, PLK+21, PLKM22, QC23, RR22, RR+21, SSM20, SPF21, SW22, SHL+20]. Electrowetting [ZR21]. Element [AEGV22, BLLL23, DSG+22, DY22c, Nik23, Sel22, ADK+21, Abg20, ARR23, AYH+21, ASJ23, AMGCL21, ADM22, BFP21, BS22a, BGNZ22, BDS23, BAK22, BN+22, BTEK22, BB20c, BRS22, CDK+23, CHG+20, CAG20, CJ21, CFM22, CMS21, Coa21, Coa22, CPA+23, CMRR21, CMS+22, DHM21a, DMN22, DPX23, DLY22, DW22, EFR21, EPL22, FSW22, FFL+23, FHT21, FZ23, FCM20b, FZ21, GYWH20, GJLD20, GGB20, GGB22, GL20, HSXZ21, HRR21, He22, HS20, HW20a, HLX21, HXX23, HCL20, HLH21, Ish22, JYK22, JWZ20, KK20b, KdL20, KB22b, KV23c, KKJ21, LP20a, LG22, LN23, LL+22, Li20, LZZ21b, LB21, LL22, LZ23b, Lin21, LT20b, LFZ21, LCC+23a, LAN21, LY22c, M22, MCP23, MFT20, MFK21, MFRZ22, MFS+22, NFA21, NKF22, NYY22, PHP21, PLK+21, PLKM22, QC23, RR22, RR+21, SSM20, SPF21, SW22, SHL+20]. Elastodynamics [MMSW22, LGY+20], Electroconvection [BW20, CWL+21], Electrode [DNW23, FGD+21], Electrohydrodynamics [XSHH20].

Elliptical [AuIL20, BG20b, CCLL20, CWW22, CX22a, DYM20, FZ20b, GB22b, GL20, Hac21, HNS20, HLM+20, HLL22, HLY20, JWZ20, KTB20, Kho20, KAZS23, LCL+22b, LSS20, LY22a, LY22b, LXX23, MRZ21, Orn21, PWXY22, PZ22, PHX23, QG21, RFZ22, RZ23, SSG+20, Ste22, TB21, WZW21, WK21a, Xia23, YHJ23, YLS21, ZDW22].

Embedded [STC+21, Ver23, BHV22, CEL+20, CRFB20, CBC+23, GAB+22a, GAB22b, HF23, HR20, KSH20, KWS22, LPJ+23, LT20b, LCDS23, NGZ22, RS20b, SBL22, VLY20, WY22a, WY22b, ZMW23, ZZY21].

Embedded-hybridized [HR20].

embedding [WMS21].

embeddings [GFPO22].

emerging [FCP21].

emission [CHS20, Ian20]. emulate [CGIL+21].

emulation [XKZ21].

emulator [XCL22].

emulsions [ZD21].

enabled [BM21].

enclosed [KV23b].

enclosing [BBO+22].

encoder [PGR+23]. encoder/decoder [PGR+23].

encountered [CE21].

Energetic [WLZ21, LLB+23, LW20a, LMHL21].

energetically [Lee21].

energy [YTWK23, YZW23, ZEG21, ZY20b, ZOWW20, ZHY22, ZPGR22, ZR20, ZH21].

energy [CCY+20, Ere22, ZPGR22].

energy-and [JM22].

energy-based [AHZW20, HSW21, MKM23].

Energy-conserving [BTL23, GLLM22, KLS21c, SL23, BDZ23, FQZ22b, KCCR22, MM21c, MM22, RC20a, San20, ZY23].

Energy-consistent [Iij21].

Energy-decreasing [TY22].

energy-momentum [Liu23].

energy-preserving [HHS22, HL20a, MHW21, XLZ21, CS20, JWC20, LLZ23a, MHW22, VTC20].

Energy-stable [BDMP22, DVB20, WH22b, AD21, FCWS22, FQSW23, LB21, LMDLIW21, LLZ23b, LNY20, LBM20, YD20, YTWK23, ZR20, ZH21].

enforce [EC20]. enforced [AD21, RHG22, WLC+23, ZCY+21].

enforcement [LAN21].

Enforcing [THH22, WKA+20, DN21, RK21].

enhance [RDAB23].

Enhancing [DSA23].

ENO [LCWJ20, LZLS21, PLL+21].

Enriched [BZ20, CHT20, KNLB21, CNB+23, HRR21, WBN21]. enrichment
Ensemble [MLCM22, SSW22, CNBH23, CMCX23, HST22b, MLCM21, MTWBT21, ZMSX20]. ensemble-based [CNBH23]. ensembles [YG21].

Enskog [BFG23]. Entropic [BT20, GT21]. entropies [Ran22].

Entropy [BKY21, Cha20, CLW22, CCN23, DT21a, GCLM22, GS22, GMD22, KGN22, LLO23, MRK+20b, Ren21, RRHC23, STG20, Svä21, WKW+22, AÖR22, BKC23, BWG+20, CT22, CMRR21, DT20, DT21b, DT22c, DW22, EFKS23, GS3, HRRHC21, JM22, Jai22b, JRD22, KK21, LCS22, LCT23, LMFV22a, LMFV22b, LCSDS23, MRK+20a, Mar23, MGMV22, Nor22b, NMR+22, PBN+21, QWZW23, RBD+21, RRHH’+21, SWG21, Svä22, TKK22, UY22, YU22]. entropy-based [DD22]. Entropy-entropy [LLO23].

Entropy-preserving [JM22]. entropy-pressure [LCDS23].

equation [LZY+22b, LM21c, LLSD20, MRK+20c, MBAG21, MGL21, MCVF22, MST23, MRBC22, MRBS22, MR23b, MPMD20, NS22, NT20, NMR+21, OP20, OGM20, PSL20, PBM23, Pan20b, PZ20, PM23, PAM23, Poi23, PEL23, QWZW23, RS20c, RBPRST20, RA21, RY21, RMWS21, SH23, Sar21b, STEK17, STEK22, SL20b, SL22b, SSPV20, SL22c, SL23, SMAY2, SSC22, SM22c, SQSS20, SACT21, T21, TL22, T22, ZT22, TZNH20, TBST20, TBG20, TMR22, TS20, TL21, TEA+23, TPYX22, VR21a, VBMS20, VVRWT21, WGG20, WZC21, WNB21, WNZ22, WJK20, WK23, WZBV20, Xi21, XF21c, XG22, YLK20, YCH21, YX22, YSC23, YY22, YK20a, Yin21, YFLL21, ZYW21, ZOW20, ZZ20, Zha22, ZZY22, ZL23, aKAK20, vGAtTB23, PRKS23].

Equation/Variable [PRKS23]. Equation/Variable-free [PRKS23]. Equations [CCPS21, ADK+21, AdS22, AG21, AMB22a, ARGK22, AST21, AZ22, AHWZ20, AR20, AK21, AF23, ARR21, BDT21, BFP21, BL20, BT21, Bal20, Bal21, BBH+20, BGNZ22, BDS23, Bar21b, BMF21, BMM23, BM21, BNT23, BGGM21, BL21a, BKC23, BP22, BKY21, BWG+20, BDL+20, BP21, BGS+22b, BLK+23, BSZ+23, BJL21, BSK+23, CCE+22, CM21, CKLZ23,
equidistribution [KH20]. equiﬁnality [GSOM23]. equilibrate [MX22].
Equivalence [MMPD21]. equivalent [HCL20, MBDS23, MMRP22, YeD23].
equivariant [GDLL22, HZX23]. Erdos [CY21].
Error [LCG22a, WR23a, ZPK22, ALL22, AR21, BGGM22, CORJ+23, CHG+20,
CMH20, CGJM21, CZCY23, CX22a, EFSH21, GF21, GZ21, HGB20, IW23,
JO22, LRVF22, LKEM21, LTK+22, LMN20, PV20, SL22a, SBJ+23, SM21b,
SM22, TL21, VM22, ZHL21, ZLW23]. error-controlled [SL22a].
Error-correcting [LCG22a]. Error-optimized [ZPK22].
ESAV [GLLM22]. ESAV-Hermite-Galerkin [GLLM22]. escape [Sab20].
ESERK [MVK20]. ESI [LL21d]. ESI-SAV [LL21d]. essentially
[BSA22, GLF23, HLA20c, SSK20, WTZZ23]. estimate [KNT22]. estimates
[Bri20, KS22c, KS22b]. Estimation [TT20, BLL20, BCG+20, BS20,
CGJM21, EKPS23, GSOM23, HB21, JO22, KC20b, KNP20, KBC22,
LCG22b, LT20a, POS+20, RLC22, RBC+23, SM22, VM22, XLLH21, ZHL21].
estimator [GTDB22, WW20a]. estimators [BLWL22, ZS21b]. ETD [ZY+23].
Euler [BLL20, BLL19, Bar21b, BBB23, BDL+20, BJL21,
CB210, CGM+23, FX22, GMRS20, GGB20, GGH+23, HRRHG21, HBF22,
HY222, IK23b, JTW22, Kem23, KR23, LP20a, LD20a, LCJ20a, LG21,
LCT23, MS20b, Nor22b, PRL22, Ren21, SEG21a, Svi21, TPK20,
WX22, WZTZ21, WKW+22, YMY+21, YSN23, ZA20, ZS21a, ZL21b].
Euler/Navier [WZTZ21].
Eulerian [LGY+20, BFI22, BDWC23, CQY21, CLLL20, CCLM22, DKM+20, DDVO21,
DGW20, DLY22, EM20, FHWK21, FX22, GBC+20, GHY22b, HLA20a,
HSXZ21, HQ22, JN20, KKS21a, KVH20, KBS+21, KWR+23, LG22, LPL+22,
LZX+22a, LQXM22, MJ23, NCQ22, NFL+21b, PM21a, PJW21, QJ222,
QJM23, REC+22, RMJ23, RRPSS21, SOSM20, SRTB21, SM22, TSP22,
TKR22, WWYC21, WZL21, YL21b, ZXX23]. Eulerian-Eulerian [PM21a].
Eulerian-Eulerian/Eulerian [PM21a]. Eulerian/Eulerian [PM21a].
Eulerian/Lagrangian [LGY+20]. Evaluating [DHMT21, AZV23].
Evaluation [GJL20, KCD+23, AMW22, BFL20, CCM+22, GKR22,
KKCC20, NDH20, NMRG21, SL20a, YST20]. Evans [NSS23].
evaporating [MMM23]. evaporation [KVH20, RKR20, ZZN22].
evaporative [PR20]. Even [BT22]. event [DSS+22, OGVM22, ZSM22].
events [Gr20, SFD23]. evolution
[ARB+21, BGN222, CCE+22, GYW23, KH21a, Mon21, SM21a, WP23].
evolutionary [LNZ21]. evolving [BB20b, CL20d, TFCH22, YA21, YGL20].
Exact [LP21, Mi23, WHN+20, AMB22a, FML21, PWXY22, Per23, PP22c,
SEG21b, SEG22, THI22]. exact-interface-fitted [PWXY22]. exactly
[BDZ23, CLLL20, DN21, HR20, WDS22]. example [BLWL23]. exceptional
[NPD20]. exchange [LW22, LMZ23]. exchanges [LP21]. excitation
[HKRS23, WR23c]. excitations [GC20a]. excited [LXY23]. Exclusive
[FA22]. exhibiting [FTP23]. existing [MVO+22]. exit [YZdCNS21].
exogenous [KH21a]. Expansion [WK20, BKON23, CB23, CZ22b, DBC+22,
HHVM20, Kus20, LPP+20, Mon21, PDM23, TBST20, WCZ+20].
expansions [DHMT21, GKD23, TBSH21, TPSN20, VBA22, WK20].
expensive [WLS22]. experimental [BJW20, Gla21, SM21b, SLOZ21b].

evaluations [GMMS22, PC22, RA21]. explainable [THKT21]. Explicit
[BFM21, BDZ23, NZC23, NV22, TBW22, ADP22, BMV22, Bai21, Bar22,
BCP22, CMR21, CZC23, CSY20, CEL21, CEL22, CS22, ELL22, EC20,
FGK22, FCWS22, GTDB22, GFG22, GN23b, KGB20, KPBP20, LBC23,
LJW22, LP21, Lin20b, MYM21, MYL21, NIT21, NM23, NY22, SC22a,
SMR22, TCS22, VN21, Ver23, WW20, WH21, WLL23, ZQYS20, ZH20,
BD20a]. explicit-implicit [ELL22]. explicit-implicit-null [TCS22].
Explicit-solute [LZC23]. explicit/vertically [LP21]. explicitly
[ELL22]. Explicitly exploited [AB AFTO23, SvDtTB21].

exploration [HLX21]. explosion [GZW20a, LW20]. exponent
[YL21a]. Exponential [CCHS20b, CEM20, LSC20a, AAKW20, CBQ21, CEM21,
CPA23, FY22, GJL20, GRT21, JWC20, Lj22, LL21d, MH21,
MMP21, PC22, Wan23, YGJ21a, YGJ21b, YXY21]. Expression [RHSK21].
expressions [SL20a]. extend [HMM20]. Extended [LT21, TGM23,
ACHG21, ALL22, CMS21, LYZ21, XHS21, XHS23, ZG21]. Extending
[KDL23]. Extension [ADJ23, KUO23, SLO21b, AÖR22, HKP23,
LVK22, PGCC22, QG21, RHG22, XY20b, ZC22b, ZL22, HSS21].
exterior [BRS22, TTH22, WJHS23]. external [BDWC23, DA23].

extinction [PM22a]. extract [NWM21]. extraction
[DGL23, LE21, XZD22]. Extrapolated [CRPB20]. extrapolation
[KB22b, MYL21]. extreme [DL21, DY22b, GZ20, MRL23]. extremum
[DD22]. extremum-preserving [DD22].

Face [KB22a, NW20, Nis20a, VRK22]. face-area-weighted [Nis20a].
face-averaged [NW20]. Face-based [KB22a]. faces [PH21, GPG23].
factor [Ara20, JLQY21, LM21c, N222, YGJ21a, YGJ21b, OPHY23].
Factorized [BB21, BB23]. factorization [CZLY20, JBB20, TPY22]. fail
[VWP22]. failure [TCR20]. family [LSZ23, NEM23, OPHY23, Ran22].
far [RtTBi20, YLY20]. far-field [RtTBi20, YLY20]. farfield [VBA22]. Fast
[AMW22, BL20, CFS23, CCA22, DG20, DS23b, ESJ23, FJH20, KLP22,
KCC22, LW23, MCVF22, SGM20, Scl22, SDA21, SP23, WZC21, WZ22,
YST20, AV23, CIL21, DJJ22, DZJ22, DZ22, EN23, DNP23, DYM20,
DM20, DM22, FSB20, GTR21, GRT21, GKD23, HMIN2, HKS21, HKS23,
HQ20, KKM21, KCM22, LCH20, LLO21, LZZ21a, LHA21, LZY22b,
LA21, Mon21, OWHIN22, Os210, PWH22, PAG23, R23, RS20b, RIC22,
SL22a, Tak23, TPPA22, TEE23, VCP20, WK20, WLY20, WZ20,
WS22, YL23, YL22, YW22, aKAK20]. FastRK3 [ATF23]. fault [DZJ22, GB22b, NVK22, ZJ21]. fault-tolerant
[GB22b]. faulted [BHJ22]. FBSDE [ZC22a]. FC [AP20]. FC-based
[AP20]. FD [CS23, GFF20, MFG22, PC23, TB21, ZP20]. FDM
Feature [AF21, Ben23, EMS21, MZ23]. Feature-based [AF21]. featured
finite

finite-difference

finite-element

finite-element-based

finite-grid

finite-rate

finite-strain

finite-volume

First-order

First-passage

Fisher

fitting

Floquet

Flow

[LPL+22, LYL20, LLW20a, LNZ21, LNW22, LYS22a, LHZX22, LW22a, LLF23, LHT21, LBM20, LZF20, LM21b, LCWH23, LMK21, LW20b, LCDS23, MR22, MLM+21, MSK+22, MZC+22, MSIM21, MYY+23, MD20c, MD22, MS20b, NFA21, NAZ22, PSL20, PPV+21, PS22a, PBN+21, PLL+21, PL20, PSM20, PBVC22, PGMT23, RS23, RH22, Rei22, RKV20, San20, SBH21, SBC20, SWG+20, SGW+23, SR21, SAL+20, SLF23b, Sti20, StL20, TV22, TK23, TH23, U120, VACE21, Vre17, Vre20, Vre21b, Vre21a, WL20, WCL+20, WNB21, WCM+21, Wan22, WCF22, WH22b, WCZ22, WLS23, WZB20, WGY+21, WK21b, XF21a, XCL+21, XZB21, XHY23, YHC+22, Yan21c, YA21, YRH22, YH22a, YKZ20, YL21b, YKF23, YP22, ZZ20, ZL21a, ZHP21, ZP+23, ZJ21, ZLB22, ZJSX23, ZZX20, ZF20, ZD21, ZSKN22, vHP22, vdEW23. **flow-acoustic**

HSK+21, HKJ21, JF20, KAO+20, LRT13, MWY+20, MMM23, PC23, QWZ+23, SWHJ22, TWY22a, UBT22, WTF22, dv23. **Fluids-membrane** [DKM+20]. **Flux** [CLKZ23, GMD22, Kiv21, PKL+21, WVN+22, ASKH21, AKWY20, BKC22, CNC21, CBY23, CN21, CND22, CDN+22, DGW22, DWM23, FSM+22, HYQ20, HJJ+23, KJ+2+22, KLX23, KdL20, LLO23, LSZY20, LFZ21, LsCXL+20, LLD+22, MGRRVR23, Nis22b, PV22, SYOS19, SYOS21, SHM23b, SS22c, SOBP22, TNB21, Tow20, WBN21, WGY20, WLI+23, Xia21, YU22, YFY22, YOH+20, dMKJ+22]. **Fluids-aligned** [DKM+20]. **Flux** [CKLZ23, GMD22, Kiv21, PKL+21, WWN+22, ASKH21, AKWY20, BKC22, CNC21, CBY23, CN21, CND22, CDN+22, DGW22, DWM23, FSM+22, HYQ20, HJJ+23, KJ+2+22, KLX23, KdL20, LLO23, LSZY20, LFZ21, LsCXL+20, LLD+22, MGRRVR23, Nis22b, PV22, SYOS19, SYOS21, SHM23b, SS22c, SOBP22, TNB21, Tow20, WBN21, WGY20, WLI+23, Xia21, YU22, YFY22, YOH+20, dMKJ+22]. **Fluids-corrected** [Kiv21]. **Flux-differencing** [MGRRVR23]. **Flux-enriched** [WWN+22]. **Flux-scheme** [PFY22]. **Flux-tube** [MGRRVR23]. **Fluxes** [CBF22, EG20, Nis20d, Ran22, ScdHJ20, YJSX22]. **Fly** [ASVL23, Qia22, WZ23a]. **FMM** [CTG23, Sel22]. **FMM-accelerated** [CTG23]. **FMM/BEM** [Sel22]. **Focus** [CHS20]. **Fokker** [AC23, CH22, NGK+21, SS22a, SMAY22, FN22, GT21, HGH20, HLYZ21, HJLL20, Le21a, LJH23, LRW21a, TWL22]. **Following** [Bal21]. **Force** [ACHG+21, CLLL20, CSM23, Heu21, HLA20c, HX23, LZX+22b, LKG+20, LKL22, Nis22a, YP22]. **Force-balanced** [CLLL20]. **Force-based** [CSM23]. **Forced** [KSK21]. **Forced-flight** [KSK21]. **Forbiddens** [Bal21]. **Hankel** [ACHG+21, CLLL20, CSM23, Heu21, HLA20c, HX23, LZX+22b, LKG+20, LKL22, Nis22a, YP22]. **Formal** [KLP20]. **Formalism** [CC22b, FDP20, LL21c, WRH20]. **Format** [SC22c]. **Formation** [MSK+22, ZBB21]. **Formations** [XHS23]. **Forms** [GMRS20, KK22b, LKEM21]. **Formulation** [BBDT21, DGS20, AFS+23, BTL23, BE20, CPT23, CPGD21, CPGD20, DFRG20, E23b, EFO19, EFO20, GPHAPR+22, GLT+20, HPW21a, HLB20, Heu21, Hig22, JW21, KSS+22, LGY+20, LHC22, LLL22, LGL23a, LHT21, LMZ+21a, LMK21, LLN22, MS20a, MGRRVR23, MCT21, MFRZ22, MD20c, MS20b, Nor22b, PHHJ22, PCB21, PFO22, Rei22, Sar21a, Sel22, SMRW22, TLKK23, Yan21a, ZSY21]. **Formulations** [TLWM20, DY22c, G22, KGN22, LL21a, LJZK21, Mar20, TBD+20]. **Forward** [CCMC20, BS22b, BJW20, CZ22a, CY22a, CCB22, FCY+20, GWZ22, LG20, LWW22, LLK21, RB22, YMK21, YNDH22]. **Forward-backward** [CY22a, LG20]. **Foundation** [KNG22, KGN22]. **Foundations** [BL21b]. **Fourth** [FMS21, RR22]. **Four-phase** [FMS21]. **Four-way** [RR22]. **Fourier** [DC22a, FFY21, GKR22, HQ20, Lak20, MYZ22, MFS+22, Per23, RHG22, SJGC21, WWG20, ZJ20]. **Fourth** [FZ20b, GU20, HCL20, HSW22, JRD22, LZZ22a, MZ22, OGG20, RZ23, XY20a, Yin21, ZLW+22a, vHP22]. **Fourth-order** [HCL20, LZZ22a, MZ22, OGG20, XY20a, Yin21, ZLW+22a, vHP22]. **Fraction**
Fractional [BHNS23, HZD21, KS22a, SW23, ASSZ21, BL20, BCJM20, CA22a, DGW20, FTPB23, GLLM22, HLM+20, HKK21, HHRA19, HX21, HL20b, HRG20, LSC20a, ILTZ20, LPG+20, MD20a, NMGR21, Pan20b, PCB21, PCB22, PSRM20, QW22, WCF+21, YLNT20, YWCL22, YW22, YWLL21, YZZZ22, Yuan21, ZJZK20, ZOG21b, ZMG+22, ZLW23].

Fractional-step [BHNS23, SW23, PSRM20]. fractionally [KS22a].

fractions [KB23]. Fracture [BHNS23, HZD21, KS22a, SW23, ASSZ21, BL20, BCJM20, CA22a, DGW20, FTPB23, GLLM22, HLM+20, HKK21, HHRA19, HX21, HL20b, HRG20, LSC20a, ILTZ20, LPG+20, MD20a, NMGR21, Pan20b, PCB21, PCB22, PSRM20, QW22, WCF+21, YLNT20, YWCL22, YW22, YWLL21, YZZZ22, Yuan21, ZJZK20, ZOG21b, ZMG+22, ZLW23].

Fredholm [HJ22]. free [ADK+21, ABH21, ASG+23, BRZ+23, CDL21, CGJM21, CKN22a, CcdS20, CMNS21, DW20b, EFR21, ELV22, Fu20, GQF23, GMM22, GDB23, HN20, HYM20, HT21b, HXQ23, JKS21, JRY+20, JJ21, KTPB20, KSH22, L21a, lev22, LZ21b, LL23, LM20b, LZX22, LMZ+21a, M222, MRK+20c, MSK+22, NMR+21, OZ21, PH22, PLKM22, Pop20, SL20a, SBH21, SWG+20, SGW+23, SCS22, SMH+23a, SY21, Toh23, WZ20, WP21, WDS2, XY20a, YKL21, YYJ+23, ZLY23a, ZZZH23, vdEW23, PRK23].

free-surface [GQF23, HXQ23, JKS21, L21a, lev22, LZ21b, LL23, LM20b, LZX22, LMZ+21a, MSK+22, Pop20, SMH+23a, YYJ+23, ZLY23a, vdEW23]. freedom [PZZ+23].

Frequency-robust [vHG+22]. friction [CFS+22, GBLT20, WWYC21, YXY21]. frictional [BDP+22, MCT21].

Full [AN21b, EEG22, AT20, AL21, BS20, DKM\(^+\)+20, DW21, Dup21, LMHL21, MCBA20, QCWC23, TZM\(^+\)+20, YWN20]. **full-body** [QCWC23]. **full-field** [YWN20]. **full-potential** [Dup21]. **full-range** [MCBA20]. **Full-waveform** [AN21b, AL21]. **Fully** [CK21, FTK23, LYS22a, LLCK20, TBMC22, WZSC22, YH22a, Abg20, AT20, ATCS20, BB20a, BGGM22, BOKN23, CY22b, CYS22, CKLM\(^+\)+23, CEBG22, CMS\(^+\)+22b, DDVO21, FCWS22, GBLT20, GNF22, HHS22, LSS20, LTD\(^+\)+21, LLDO, LTT21, MJ23, PP22b, PGMT23, QCWC23, RMJ23, RR22, SM21a, SRTB21, TCK\(^+\)+22, TH23, VM021, Yan21c, YTK22, ZA21, ZHY22]. **fully-decoupled** [CY22b, Yan21c]. **fully-discrete** [HHS22]. **fully-implicit** [TH23]. **fully-ionized** [CMS\(^+\)+22b]. **Function** [BB21, BB23, CJT\(^+\)+20, CL20c, DYMCO20, DFJ20, GMB\(^+\)+22, GKR22, HZTN21, HYM20, JYY22, KLN20, KL22, LSC20a, LYS22b, MGL21, MK20, Ste22, TVL\(^+\)+22, TYPY22, YDC22, ZCH22, ZCYS20]. **function-based** [Lys\(^+\)+22b, ZCYS20]. **functional** [AFL22, BGSP22, LRVF22, MYM\(^+\)+22, RPDO\(^+\)+21, TMG20, VGHK21, WZ21a, YB22]. **functionals** [CX22a]. **functions** [ABBG23, Bar21a, BFL20, CLL22, CCM\(^+\)+22, CHKL23, DN21, DW20b, FZS\(^+\)+21, FFL\(^+\)+23, GJL20, GD21, Hac21, JKK20, KKN20, KEY20, KB22b, LCL22a, Li22, MO22, Per23, PKL\(^+\)+21, PKK22, WQZ20, WSAZ22, WZ20]. **fusion** [BS22b, PRG\(^+\)+23]. **FV** [BBD\(^+\)+20, NCQ22, PWH\(^+\)+22]. **FV/FE** [BBD\(^+\)+20].

Galerkin [LMFV22a, ZCQ20a, ADK\(^+\)+21, AdS22, AÖR22, ARR23, ALM23, AMM\(^+\)+20b, AMM20a, ADM22, AM22, AHWZ20, AMM23, B122a, Bal20, Bal21, BRT22, BZSF20, BCF22, BGGM21, BKY21, BWG\(^+\)+20, BBMA23, BNN20, BDP23, BV22, BX20, CHS20, CQY21, CBQ21, CWW22, CK20, CLW22, CLDC20, CTG23, Che23, CZL20, CKLM\(^+\)+23, CBBI20, CI21a, CI21b, CX22a, CX22b, CCB22, CCN23, CMRR21, DEN22, DY22a, DCGQ20, DH20, DHR20, DY22c, DY22d, DS22, DT20, DK21, EM20, EH22b, FMWK20, FHVK21, FGKY22, FCL21, FX22, FCY\(^+\)+20, GQR21, GK20, GAB22b, GC20b, GAC20, GHTC21, GLLM22, Hac21, HMV22, HYQ20, HTL21, Heu21, Hig20, Hig22, HSMR20, HQ22, HR20, HLY20, HABG23, HLQZ23, JTW22, JK20, JK21, KNLB21, KGBT20, KR23, KSBG20, KMF20, LCS22, LTD\(^+\)+22, LSXC20, LWR20, LLNL21, LLL22, LCT23, LM20a, LSZ21].

Galerkin [LMFV22b, LAN21, MSC\(^+\)+20, MYJ\(^+\)+23, MN21, MRK\(^+\)+20a, MRK\(^+\)+20b, MRK\(^+\)+20c, Mar20, MOBR22, MGMV22, MPZ23, MAP20, NdLPL21, NMR\(^+\)+21, NMR\(^+\)+22, PP22a, PKG20, PZ20, PBN\(^+\)+21, PH21, PS22b, PD21, PPB23, QJL23, QLY21, RMD20, RBD\(^+\)+21, RRH\(^+\)+21, RRFK\(^+\)+21, SSK20, SLWRG21, SL20b, SL22b, SMA2Y22, ScdHJ20, SJG21, SKCM22, SP22, SX20, SSX22, TCS22, TCR\(^+\)+20, TH23, VCN\(^+\)+21, VCCN\(^+\)+23, WRH20, WTX\(^+\)+21, WR23a, WKW\(^+\)+22, WZL21, XSSS22, XS22a, XS22b, XS23, YXY21, YXY22, YK20b, YKFH23, YH22b, Yua21, ZSP20, ZB21b, ZS22a,
ZCQ19, ZCL20, ZZ20, ZZYX20, ZQS20, ZYD20, dLF23, vGATB23].

Galerkin-Finite [GAB22b, MYJ+23]. **Galerkin/Hermite** [BCF22].

Galilean [LM21a]. **games** [ALFN22, HYCL23, LFY21, MYZ22, YLLO23].

Gappy [NS23]. **gaps** [BCJM20]. **Gas** [Cap23, LLZ23c, MA21, SDA+21, BAT23, CPX21, CPX22, CZL20, CCE+21, DEvW20, EM20, FZLL20, GMNY23, GAB22b, HGH20, HLA22a, JZSX20, Kem23, KWCS23, LVK+22, LCJ20a, LLZ+20a, LLQC21, LLQ+23, LZX20, LCJ+20b, MZC+22, NBR22, PZX20, PZZ+23, PR20, SHT20, Sar21b, SLWRG21, SYL23, SSS20, SKCM22, SGLP23, SZW+20, TMZ+20, Ulf20, Unf21, VFB23, WN20, WCP23, WA23, WAK21, WLZP21, XLX20, XCL+21, YGW+20, YJSX22, ZCS20, ZS21a, ZL21b, ZLW+22a, ZWLG23, ZZN22, ZJSX22, ZG20, ZPS+21].

Gas-dust [SDA+21]. **gas-gas** [CZL20]. **gas-kinetic** [CPX21, CPX22, JZSX20, LCJ20a, LLZ+20a, LLQC21, LLQ+23, LZX20, PZX20, WCP23, WLZP21, XCL+21, YJSX22, ZL21b, ZLW+22a, ZWLG23, ZJSX22].

Gas-liquid [MA21, WAK21]. **gas-particle** [MZC+22, TZM+20].

Gas-water [CZL20]. **gaseous** [SFP+20].

gauge [HJK+21]. **Gauss** [BEP+20, DBT+20, HSH20, LXD+20, MGRRVR23, PPHO22, RRHK21, RRHCG23, SLQW22]. **Gauss-kriging** [HSH20]. **Gauss/anti** [PPHO22]. **Gauss/anti-Gauss** [PPHO22].

Gaussian [HXZ23, ABOS22, BKY21, BHZ20, DOS20, HRMY20, IT22, JLRZ20, LT20a, MY23, MRT+22, MYZ22, STG20, STB+21, WLPK20, WSAZ22, XCL22, ZXMK21]. **GBS** [GRC+22].

GCR [GB22b]. **GDM** [BBH+20]. **Gegenbauer** [FA22, KYO22]. **GEGS4** [WMTQ20]. **GEGS4-1** [WMTQ20]. **GENE** [MND+20, RRSK21]. **GENE-3D** [MND+20].

General [CD22, SOSM20, ZPS+21, AT20, ASW21, ACÉ+22, Ara20, BD20a, CS20, DGGL22, GYW20, GAA22, HK20, KAO+20, Lem20, LSS22a, LHA+21, NNL+20, PGTS21, RBPR21, Sha21, TT22b, YSC23, ZML20, ZW22, ZZZ20]. **generalised** [PHHI22, PB22, Po22, Po23, SPF21, TGS+22, WDK22]. **generalizable** [XLL22]. **generalization** [GCS22, RRH21]. **Generalized** [AEVG22, CCG21, CCHR20a, DJ22, DJ23, Kan20, LLLO21, Nik23, WTX+21, ZS21a, BCG+20, CSM20, CX21, CHE21, CNC21, CPA+23, DCH21, DC21, DS22b, EAK20, FCM20b, FZ21, GB22b, GEJ20, GLLB20, GDF21, HVD23, HQ22, KBC20, KBB+20, KD21b, LS23, LW20a, MCP23, MCVF22, MRG21, MPFD20, Os20, RRBR+23, RW21, SYL23, Sin21, WH22b, YD20, YRN22, ZSS2b, AEGV22, BBH+20, GTKA20, GKA22]. **generate** [DBD21]. **generated** [AWB+20, LX21, NTSM20, TVL+22, TSS+20, WX22]. **generating** [CP22b]. **Generation** [KKN20, ADM+21, BGR20, KL20, KKM21, LPS21, MN22, VCN+21, WNN+22, YJK21, YKHC20]. **generative** [GN22, KS22d, HK21, WW20a, WD23, WKA+20, XX22]. **generator** [PWXY22]. **Generic** [HLL23, ADJ23, HX23, KKN20]. **genetic** [XCZ20]. **GenMod** [WD23]. **Gennes** [GC20a]. **gentlest** [LXY23].

genuinely [QSZ20, ZQS+21, ZQL+22]. **geodesic** [th22, ZAM20].

Geometrical [BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZNN22, vGATB21].

geometries [AZV23, BLK+23, BG20c, CCM+22, Chi23, CLP21, DFW22, GAB22b, GFF20, HST22a, JHY21, KM22b, LLN22, MBE21, MRZ21, RKA+23, SV23, SRTB21, SY21, Ste22, TB21, WZBV20, XLS22, YGL20, YB22, ZG21].

Geometrical [BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZNN22, vGATB21].

geometry [BT22, DS20, FLZ20, FLW20b, FLW+23, GSW21, Gar21, LHM20, LJZK21, MJ23, MBBV22, QJL23, SYOS19, SYOS21, TNB21, VCPGR20, Xia23].

geometry-adaptive [GSW21].

geostatistical [ZZK20].

geostrophic [CHT20, DNO23].

Germano [TL21].

ghost [ACR23, BL22a, BV20, BV21, CAT20, CSM23, CSLC21, Coc20, CMS23, EG20, JG21, LL23a, LSZ21, OCGT22, SY21, WCF+21, ZL22].

ghost-cell [ACR23, CSLC21, JG21, OCGT22].

ghost-point [ACR23, Coc20, CMS23, LL23a].

Gibbs [CS21b, RS20c].

Gilbert [CCWX22a, LXD+20, YCH21].

GINN [HTKT21].

Ginzburg [HMX+23, ZOG21b].

global-local [HVD23].

globalization [CKLZ23, KLB23].

globally [KBC20, WZ23a].

GLM [CPGD21, DFG20].

Global [Bha20, CV23, FFGRLS+20, Mar23, SSPV20, BKN23, HVD23, LT22a, LP23a, MND+20, QCD21, STEK17, STEK22, SMS23, SOBP22, WK20, Yan21a].

Glauert [BRT22].

GModel [GGV21].

GMLs [GTA20, GKA22].

GMsFEM [CP20].

Goal [DSSP20, JO22, AF21, FC21].

Goal-based [DSSP20].

Goal-oriented [JO22, AF21, FC21].

Godunov [sCpLL+22, GCLM22, HKS20, LL21b, MAM23, WBN21, XZC21, XGQ+23].

Godunov-type [sCpLL+22, GCLM22, LL21b, XZC21].

Gordon [CY23, GLMM22, SZ21, AZ22, JWC20, SQS20].

governing [HZY22, SRH21].

governing [RN23, TL21].

GP [BL22b].

GP-MOOD [BL22b].

GPUs [Poè22].

GPR [DD22b].

GPU [LZC+23, RKA+23, SAR+20, WCP23, ZBY+23].

GPU-accelerated [RKA+23].

GPUs [CDK+23, ZO21].

Grad [ELS22].

Gradient [CBA+20, DBT+20, HSW21, HW20a, AE20, BZ20, BCC+20, CL21, Cha23, CN22, CDZ23, GWC+22, GZW20b, HCC22, KS22a, Kar22, KNS21, Len20, LL20b, PHX23, SML20, TT22b, WFW+20, WQ20, WDL21b, WDL21c, WK21a, Wan22, YHC+22, ZEG21, BMQ20].

Gradient-based [CBA+20, Cha23, CDZ23, GWC+22, KNS21, YHC+22].

Gradient-consistent [HW20a].

Gradient-index [SML20].

gradients [NW20, WH22a].

grained [BT21, RK21].

graining [CPX21, KK20a].

granular [BFNK+21, EM20, LY20a, YYJ+23].

Graph [FBD+22, HKT21, BZ23, CCP21, PGS22].

Graph-based [FBD+22].

Graph-Informed [HTKT21].

graphene [SML20].

graphics [BEP+20].

graphs [THH22].

Grassmann [OA21].

grating [PM22b, PLM23a].

Greedy [SHJ +23, DFP +21b, FZS +21, HCF +23]. Green [BB21, BR23, GKT22, RHSK21, TGM23, VGK21, BFL20, CCM +22].

Grid-point [CB23]. grid-robust [USRH20]. grids [AAH +20, AD20, ADM22, AM22, BHN23, Bar21b, BCIT22, BG20b, BDF +23, BLM22, BST23, CDBS21, CCL22, CDX +21, CW22b, CTC22, CQA21, CIMG21, CPBB21, CA22b, DDR22, DVS22, DSS20, DW20a, EGTC +21, Eld22, ELSV22, FL21, GAB +22a, Hac21, HRWP22, HX23, JGM +22, KKN20, KIHB21, KML23, KR23, KK21, LKM22, LL3a, LD20a, LWR20, LP23a, LC20, LSZY20, Liu21, LYS +22b, LSY +23, LE +21, LLCK20, MK21, MDF21, NNM23, NW20, Nis20a, Nis20b, Nis21, Nis22b, NW23, NA21, OP20, PA21, PGP +23, RE20, SGB +21a, SC22, SEG21b, SEG22, SC22c, SI22, VPDD22, WY22a, WY22b, XJN +20, XDLX21, XHX22, ZB21a, ZCY23, ZCL20, ZPW +23, ZL22].

heart

heater

Heat

height

heated

Hedging

height-coordinate

Helging

hearing

hemodynamic

Hemisphere

Hemihedron

Hemisphere-free

heterogeneities

heterogeneous

High

Hierarchies

High

impact [NW22, NKA +20]. **impacts** [PRO22]. **IMPEC** [FGTY23]. **impedance** [DNW23, DZC +23, FY20]. **imperfect** [RHG22]. **Implementation** [GMA23, LFW23, AF23, BLLL23, CMPZ22, EBC +22, FMJ21, FMOJ22, FM23b, FM23a, HP23, LFL +22, PLM23a, VSB +21, WR23a, WZ21b, WK21b, ZA21]. **implemented** [DGGL22]. **Implementing** [HLA22b, FSB +20, LZX +22b]. **Implicit** [BEP +20, BD20a, LA21, MR23a, NGK +21, Poe22, SPZ22, ZSP20, ZS22a, ALMF23, AT20, AG21, ATCS20, ALF +22, Bal21, BB20a, BBD +20, BZC +22, BP21, BDI +21, BCP22, CS20, CCY +20, CC3, CCGC23, CK21, CCN23, CMS +22b, DEVW22, DT22a, ELLZ22, Ere22, FGKY22, FMS21, GNF22, GPHAPR +22, GFG22, HZ22b, IRT22, JW20, JLC21, KGBT20, KBB21, KSI +23, KCCR22, LCH20, LZT +23, LTD +21, LP21, LY20, LTT21, LYS22a, LHXX22, Li22, LOL22, LLZ23a, LMZ21b, LL21d, LYS +22b, LZC +23, LSY +23, LOL23, LMHL21, LLCK20, MYM +21, MZ23, Mon21, MMYT23, MFS +22, MMZZ22, PZZ +23, PR20, PP22c, PS22c, QCWC23, RC20a, SEG21b, Sev21, SV23, SM22, SH22, TCS22, TZ21, TCK +22, TH23, UBT22, VN21, WGY20, WHN +20, XGCW +20, XLS22, Yan21a, YP22, ZEG21, ZJK20, ZA21, ZX22, ZH20, PV20, SC22b]. **implicit-explicit** [BCC22, BMY +21, SM22, VN21, ZH20]. **implicit-PIC** [SC22b]. **implicit-solvent** [LZC +23]. **Implicitly** [ZA20, Say22, XY20a]. **implosion** [HNF +21]. **importance** [CBF22, EKPS23, Grl20, Sha21, SBJ +23, WW20a]. **imposing** [PAGJ23]. **imposition** [GS22]. **Improved** [Bar21a, PBB20, TBBW23, BL19, BL20, CPBB21, DSZ22, HSH20, HYZ22, JYY22, JW21, LCG22b, LSCX20, LXD +20, LZPM22, LMG +21, LpW21, WMTQ20, WY22a, WLTZ23, YZZ23, YFLL21, ZYL23a, ZSL +23]. **Improvement** [CHF21, IK23b, ALCZ20]. **Improvements** [CCH20, JG21]. **improves** [Nis20a]. **Improving** [BW23, GDL23, HVB21, JZZ22, LGL23a, Sem21, VdGP20, BBCT21, OGG20, RGSR21]. **In-cell** [PGCC +22]. **in-nozzle** [GPSMH20]. **incomplete** [KU23, XC20]. **incompressibility** [GGB22]. **incompressible** [ADK +21, ALMF23, AF20, ASS21, BHNS23, BDBB22, BCIT22, BDB21, CLDC20, CAT20, CK21, CPK22, CVM23, Coc20, CBC +23, CS +22, DEVW20, DC21, EGTC +21, Eld22, EJ23b, FHWK21, FQSW23, Fu20, GBB20, GCL +22, HV20, HBF22, HMO +20, HLX21, HLA20b, HLA20c, HLA21, JCLK21, KM22a, KSS21, KM22b, KWDS22, LLKY21, LN21a, LG20, Li20, LCSZ21, LZZ21b, LWF23, LNYD20, LSZY20, LMZ21b, LYS +22b, LY22c, MKR +20, MRK +20b, MOBR22, MDF21, MHT20, MMYT23, MD22, MS20b, NFL +21b, OLS21, PS22a, QWZ +23, San20, SBH21, SOV21, SEG21b, SRV21, SV23, SAS +21, SHL +20, SAL +20, St20, TWY22a, TKGB23, TGS +22, Vre17, Vre21a, WQZP20, WJHS23, WYS20, WHS22, WHX22, XC23b, YLW21, YRHN22, YMY +21, YSN23, YDC22, ZLG +23, ZCYS20, ZCL20, ZHY22, ZPG22, ZWG23, ZPW +23, ZCY +21, ZO21, ZOEL20, vHP22].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrations [HZB+21]. Integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].

integrate

integrations [HZB+21]. integrator [CEMO21, CCE+22, DSG+22, EOP20, GJLD20, JWC20, KCCR22, LPP+20, Lec21, Li22, RC20a, TCA21, Ume23].

integrators [CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GNW22, KSS21, Liu23, LCBW23, MHW21, MHW22, Mfil23, MMPD21, WBN22, YGJ21a, YGJ21b].
NW23, OA21, SCS22, ZB21a, ZJ22. interpolation-free [KSH22].

interpolative [CZHY20, TPYX22]. Interpretable [RR21a, MGT+21].

Intersection [KKS21a, CD22, KKS21b]. Intersection-distribution-based [KKS21a, KKS21b], interval [SP2F20]. Intrinsic [BFP21, DL21].

intrusive/non [Poe23]. intrusive/non-intrusive [Poe23].

intersection [KKS21a, CD22, KKS21b]. intersection-distribution-based [KKS21a, KKS21b]. interval [SPdF20].

intrinsic [BFP21, DL21]. introducing [Sab20]. Introduction [YGJ21a, YGJ21b].

intrinsic/non [Poe23]. intrusive/non-intrusive [Poe23].

inverse-PDE [PMACG21]. inversion [BS20, CZ20b, DNP23, DW21, EGG22, EAA+22, FF21, RHR20, RBB22, SS22, TPYX22, WMS21, ZBB21]. invertible [PGS22].

Investigation [GZW20a, Kem23, LRT13, dv23]. Investigations [VOL23].

IP [GMNY23]. IP-DSMC [GMNY23]. IPDG [YCC+22].

irradiated [FJG+20]. irregular [CL5+20a, CPK22, Ccds20, GS21, KM22b, KML23, LSLH20, MRY20, Nis21, RS20c, RFZ22, SWF21, VGG23, WCF+21, YLNT20, YLS21, ZLL22]. irregularly [SWH22]. isentropic [BJL21, DT22b]. ISMC [Poe22, SH22].

isogeometric [ID20, LKEM21, MTO21, ZXD22]. isometry [BN20].

J [Abg20, ACML20a, BLL20, EFO20, GRT21, HPA22, LMVF22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].

L [TZNHD20]. L-Sweeps [TZNHD20]. L1 [YWCIL22]. L2 [QW22, Sar21b].
L2-minimization [Sar21b]. label [GHY22b]. LABFM [KL22]. laden
[CW22b, FJG+20, PA21, RR22, RE20, SGPW21]. lag [HHRA19, Pan20b].
Lagrange [BLL20, AST21, BLL19, BHK+22, CBBJ20, CCB22, HBF22,
HN23, SGPW21, ZSKN22]. Lagrangian
[LGY+20, NCQ22, Pop20, ALCZ20, ACHG+21, ALL22, BFG22, BDBB22,
BCCR2, BLM22, BCF22, BJRL22, BMG+23, CQY21, CBQ21, CFMP22, CGZ23,
CLLL20, CSS20, CLST+20, CJL+20, CCCH23, CBRY21a, CBRY21b, DD22b,
DCQ20, DGW20, DLY22, FHWK21, FLW20b, FX22, GBC+20, HLA20a,
HSZ21, HV20, HQ22, KKS21a, KBS+21, KWR+23, KDB+20, LCG22a,
LG22, LPL+22, Lévy22, LZX+22a, LQXM22, LW20a, LCC+23a, LT20c,
NKW22, PM21a, PK20, DM23, PCA+23, QPW21, QJWQ22, QJL23,
REC+22, RRPS21, RE22, SClM20, SMy22, TSP22, TKR22, TGM23,
WDS22, WFL21, XZC21, YM21, YL21b, ZA20, ZZ23, ZZ23, ZYD20].
Lagrangian-Lagrangian [HLA20a]. laminar
[DA23, GFY20, HV20, WK21b]. laminates [LLZL20]. Landau
[CCWX22a, CC20, HMN23, LJH23, LN23, LD+20, LW21a, SHS+20,
YCH21, ZOG21b]. landscape [ZYZ22, ZZ23]. landslide [FFGRLS+20].
lane [DMR20]. Langevin [DS22b, GLLB20, HL22b, LLZ20b]. LANS
[BABD21]. LANS- [BABD21]. Laplace
[DJ20, GLLM22, HZD21, HKKS21, LPG+20, PDP20]. Large
[NN23, PBO20, AP21, BN20, BNGY22, BCC+20, CCWX22a, CMH20,
CJL21, CJC22b, CBA+21, CEBG22, CBC+23, DS22a, DFP+21a, DWZ23,
DFW22, FVM22, FVM23, FBG20, FCL21, FLW+23, GQF23, HZHL22, HF23,
HRW22, IW23, KCT+23, KS21d, LM21a, LCP21a, LYY+20, LLY23,
LD20b, LWWH23, NN21, SSG+22, SMF20, SS22b, SS22d, TT23,
WGS+20, WH22a, WLR23, Wan23, WZ23a, WGY+21, XBD+20, XHZ22,
ZYZ20, ZWLG23, ZO21, vNG22, Sva22]. large-convection [DWZ23].
large-eddy [LM21a, LCP21a, LWWH23, SMF20, SS22b, SS22d, vNG22].
large-scale [AP21, CBA+21, DS22a, FVM22, FVM23, FLW+23, LYY+20,
TT23, WZ23a, ZO21]. laser
[CMS+22a, CIMG21, LSC20b, Li23, MAP+20, NTSM20, TCA21, ZM23].
[LSC20b, Li23, MAP+20, TCA21]. Latent
[EDC+23, CP+22, HCF+23, LMS+22]. latitude [GS21]. Lattice
[AWB+21, GDF21, HJK+21, LL20, AWB+20, BSR20, BGM22, BSK+23,
CYS23, CW22b, DYMC20, DFJ20, Gin21, GFJ+20, HPW21a, HTV+22,
KS21d, LKY21, LRT13, LSZ20, LHW21, LLSD20, LCL+22, MWY+20,
MTB22, PAA21, QKG21, Re22, RWBS21, RR22, SHM+23a, SSM+22,
SMM23, WS22, WGY+21, WLL+23, YYJ+23, YDC22, ZHPZ21, ZQ+23,
ZZZ20, dV23, AX+21, MYY+23, RS20]. Lattice-Boltzmann
[GDF21, MYY+23]. Lattice-Boltzmann-finite [AYH+21]. lattices
[PAGJ23]. law [HZY22, KDL23, MN21, MVO+22, PCA+23, SM21a, XHY23].
laws [BKC22, BL22b, BBC22, BBL23, CMP+21, CMRR23, CJ21, Cha20,
DLWW22, FTZ22, GKL21, HMO⁺20, Hua21, Kiv21, KGN22, KWF20,
KdL20, KV23c, LZZ21a, LSQ21, LLO22b, LLO23, LD20b, LOLS23, LA21,
LSTZ21, LpW21, Mar23, MYM⁺21, MVO⁺22, Mül23, PPP21, PD21,
RBF⁺21, SSK20, SAP22, SLNM21, TFWX22, WKW⁺22, XS22b, YNT20,
ZZ23a, ZHR20, ZCQ20b, ZQ20, ZBB21]. Lax
[BKC22, DSZ20, FLW20b, LSTZ21, XS22b].

layer

[ACD23, ADM⁺21, CKLZ23, DA23, DFSBN⁺20, DHMT21, GKD23, HBFB20, Hig20, KSTT22,
KKCC20, LZX⁺22b, Liu21, MBB⁺22, MD20c, PPB23, YW22].

layered

[FGD⁺21, Nic22, WCZ⁺20, WZC21].

Layers

[MBAG21, CLT21, DR20, DLM⁺23, DZ22, DZ23, Eld22, Liu21, MBM⁺22, MD20c, PPB23, YW22].

Leapfrog

[CSASS21].

Learned

[CGZ23].

Learning

[AIN21, ABOSS22, BDMT22, Che20, DJ20, GCC21, HXFD20, MYM⁺22, QZ222, STB⁺21, VIL⁺20, WXZ22, XHD21, YCC⁺22, ZTK23, AMK⁺21,
Ale23, ADM22, AB22, ABY20, AMM23, Baj23, BM21, Bha20, BPBM23,
BCSK21, BGS⁺22b, CCLL20, CFS⁺22, Cha21, CNBH23, CX21, CWH21,
CHOS21, CHZ⁺21, CCN23, DSS⁺22, DL21, Dy22b, DGPP22,
ELLZ22, FY20, FFFY20, FC21, FWNT21, FO22, GW23, GJF20, GY21,
GCSH22, HGY⁺21, HMMO20, HJLY21, HRMY20, HWY20, HCCR22, IT22,
JD23, KTDG20, KTDG22, KK20a, KM22b, KL20, KKY22, KLG⁺22, KBC22,
LMS⁺22, LG22b, LG23, LH23, LJ21, LZ22a, LHA⁺21, LLI⁺23, LY23,
LMR20, MO22, MHLY21, MGT⁺21, ND23, NT23, ÖL23, OMD23, OKTD21,
POS⁺20, PS22a, PZ22, PRK23, PCK22, PMZ⁺23, RDAB23, SKP⁺21,
SSW22, SMF20, SACT21, TLD20, TB21, THKT21, TBST20].

Learning

[THH22, TC23, VRK⁺21b, WLPK20, WCC⁺20, WI20, WZ20, WLW⁺20,
WCL⁺20, WDL21c, WP21, WCF22, WWFM22, WX20, XZ20, XZW21,
XZRW21, XD22, XDCF21, YG21, ZXLH23, ZAW⁺20, ZLW⁺21].

Learning-based

[CCLL20]. Learning-enhanced

[CNBH23].

Learns

[MK20].

Least

[CCL21, GTKA20, GKA20, LKM21, BBGT21, CCL20, CZY23,
DVS22, GLF23, HWDM22, JRY⁺20, LCW20, LSZ20, PC21a, SMSAGG22,
TB21, Wan22, ZC22b, ZC22c]. Least-Squares

[GTKA20, CCL21, CCLL20,
DVS22, HWDM22, JRY⁺20, PC21a, SMSAGG22, TB21, ZC22c]. Lesbesgue

[RR21b]. Leffler

[LSC20a]. Legendre

[SS22c]. Lenard

[EH22a, SHS⁺20]. Lenard-Balescu

[SHS⁺20]. Leray

[TT22a]. LERNA

[ME22]. LES-RANS

[ZDS⁺21]. LESCM

[QWZ⁺23]. Letter

[Abg20]. Level

[KGY⁺21, ASBH20, AAM20, BS⁺22, BTEK22, BBA22, CSM23, Coc20,
DKM⁺20, DPX23, DW21, DF20, DV22, GQF23, HSM20, HCL22, HPS23,
HT21b, JGM⁺22, JHF21, KCC⁺21, KD21b, KB22b, LG22a, LG22b,
LCG23, LM23a, LPJ⁺23, LZC⁺23, LC23, LLCK20, LHF20, MMdMB22,
PBGB21, SYL23, SDP20, Th21, VTC20, XSSH20, XSA⁺21, YYB23, ZB21a,
ZXBS22, ZLQ⁺23, ZY20a, ZMW23, FFL⁺23, ZOEL20]. Level-set

[BTEK22, BBA22, Coc20, DPX23, DF20, HRR21, LG22a, LG22b,
LCG23, LPJ⁺23, LZC⁺23, PBGB21, SDP20, XSSH20, YYB23, ZB21a,
ZY20a, FFL⁺23, ZOEL20]. Level-set-based
[BSW⁺22].
level-set/embedded [LPJ+23]. level-set/finite-volume [ZB21a].
lineages [CDJ21]. Linear [MD20c, TPYX22, YTK22, ZHL21, Abg20, ACÉ+22, AAKW20, BR22a, BBPR21, BSP21, CCL21, CZ20a, CBA+20, CBA+21, CIM21, DGL22, Den23, DLM+23, EHW21, EPL21, GZW20b, GQ22, dMKJ+22, Jai22b, Jai22c, JLY22, JLY23, KKN+22, KLP22, Kiv21, KWDS22, LPP+20, LL20a, LYZ21, LYZ22, LsCxD+20, LN21b, MFS+22, MGT+21, MMDP21, NHD20, NW22, PHHJ22, PCQL20, Poé23, QCZ22, RWBS21, RHR20, SL20b, SL22b, Sev21, SL22c, SL23, SM2+22, SW23, SDA+21, TT22b, WZBV20, YAX20, YK20a, ZG21, ZF22, ZQ20].
locally-adaptive [ZXD22]. Locally-symplectic [Baj23]. locate [NPD20].
located [CQA21, CSM23]. locating [KTDG22]. location
[AL20, CGLZ23, CJT+20]. lock [GMMS22]. lock-release [GMMS22]. LOD
[ZDW22]. Loéve [LT22b, TBSH21, TBST20]. Long
[NDH20, WP23, EPL21, LBT+23, MFTZ20, PLYZN23, TFCH22, ZDC20].
long-range [PLYZN23, ZDC20]. long-term [MFTZ20]. Long-time
[WP23, EPL21, LBT+23, TFCH22]. longitudinal [CKN22a]. loop
[MLCM22, RSA+22]. loosely [BGQ+23]. loosely-coupled
[BGQ+23]. Lorentz [BRT22, MBAG21, PBCL20, WLH21, ZPK22]. loss
[HBEK23, Nis20c, PKK22]. losses [TBG20]. lossless [SC22c]. Low
[BRT22, CDX+21, DCSG22, KSS21, KK22a, Os20, PKW20, TSTH20,
ARGK22, ASVL23, CWW22, sCpLL+22, CZZY23, CH22, CPGD20, DSPB22,
DS23b, EOP20, EHW21, EJ21, EOS23, EMS+21, FSB+20, FAHA20,
GMM22, GMA23, GMD22, GQ22, HTL21, HYM20, HCdM23, JP22, KIHB21,
KFP+22, KSBG20, KD21a, KWMF22, LPM+20, LBN21, LFA21, LCCM22,
LXSF22, MM21b, OCGT22, PMF20, PM21b, PM23, PS22b, PGTS21, PEL23,
RKVV20, SW22, TFXX22, TKGB23, WZTZ21, YFY22, ZOG21b, ZGK+22].
Low-cost [KSS21]. Low-dissipation
[CDX+21, TSTH20, KD21a, LFA21, LXSF22, MM21b, TFXX22].
low-fidelity [KFP+22]. low-Mach [DSPB22, HTL21, KSBG20].
low-Mach-number [GMD22]. low-memory [DS23b, FSB+20]. Low-order
[BRT22, ASVL23, LBN21, PM21b, PS22b, PGTS21]. low-pressure
[LPM+20]. Low-rank [DCSG22, Os20, ARGK22, CH22, EOP20, EHW21,
EJ21, EOS23, EMS+21, KWMF22, PMF20, PM21b, PM23, PEL23, ZOG21b].
low-storage [GMA23]. low-temperature [LPM+20, SW22]. Lower
[BE+20]. Lower-Upper [BE+20]. lowest [BW23]. lowest-order [BW23].
LS [WYS20]. LS-assisted [WYS20]. LSNN [CCL21]. LSV [SS22c]. LU
[LY20b]. lubrication [Ish22, KVQE21]. lumped [BGSP22, RSA+22].
lumped-parameter [RSA+22]. LWR [Tow20]. Lyapunov [Li22, YL21a].
M [Abg20, Pan20b, HYM20, ZSL+23]. M-SPEM [ZSL+23]. MAC
[CJW22, DSS20, SSC22]. Mach [BDL+20, BP21, sCpLL+22, CWX23,
DSPB22, GMD22, HTL21, HCdM23, JP22, Ken23, KSBG20, KD21a, LP20b,
MM21b, MD20b, OCGT22, SLF23a, YL22, ZGK+22, vNGB22]. Machine
[ADM22, CFS+22, DJ20, DGPP22, HJLY21, HCCR22, LCG23,
YG21, AMK+21, Ale23, BGS+22b, CWHZ21, CHZ+21, CCN21, FC21, FO22,
GF20, KK20a, LCG22b, MG7+21, OMD23, POS+20, PRKS23, PMZ+23,
RDAB23, TBH21, THH22, WLM+20, ZAW+20]. machine-learning
[CCN21]. machines [DL21, DY22b, TPSN20]. macro
[EH22a, HHVM20, HJH+21, HSB20, KV23a]. macro-
[HHVM20, HJH+21]. macroscale [AEHV22, RE22, ZLW+21]. macroscopic
[JYK22, KG20, LLSD20, MH22b, PSJ23, VLC+20]. magnesium [GB22a].
magnetic
[AKK20, CC23, CC22b, FM23b, GGB22, GR21, HLB20, WDS22, YYM+22].
Suk23, SSX22, WHN+20, WR23c, XBH+22, XLZ21, YZW23, ZL22.

mean [ALFN22, BDMT22, BPT+20, GD20, HYCL23, LCG23, IW21, LFY21, LLO22a, MYZ22, VSBl21, YLLO23, ZEG20]. mean-curvature [LCG23].

mean-field [ALFN22, BPT+20, HYCL23, LLO22a, YLLO23]. measure [MQ20, WXZ22], measurement [KLP22, SNW23], measurements [ABDD20, DGPP22, RLH22]. measures [BJW20, HW20b, LKEM21]. Measuring [RGSR21].

Meshfree [GTKA20, Oru21, SPdF20, TKR22, TBP20, WQZP20, Nik23], meshing [th22, RS23], Meshkov [RS20a], Meshless [BO22, TWZG22, Zha22, Aul20, SVP21, SWF21, WL22, ZP20, ZZY+20, SXZ+23], Mesoscale [POS+20], mesoscopic [YJP23], Meta [CDX22, FFFY20, PKK22, TDB20, CDX22], meta-interfaces [TDB20], Meta-learning [FFFY20, PKK22], Meta-MgNet [CDX22], metaball [BO22, TWZG22, Zha22, AuIL20, SRV21, SV23, SWF21, WL22, ZP20, ZZY+20, SXZ+23], metamaterial [CHG21], metamaterials [Lin21], metastable [ZLS22], Metasolver

XMY22, XY20a, XS20, XDLX21, XLS22, Xie22, XSHH20]. method
[XHS21, XJS21, XS22a, XHZ22, XHS23, XC23b, XM20, XSA+21, YS22, YT23, YGW+20, YLNT20, YzdCNS21, YZSD21, YA21, YX22, YFY22, YAX20, YOH+20, YCC+22, YLS21, YMY+21, Yin21, YZW23, YK20b, YNT20, YYB23, YB22, YDC22, YXL22, Ynz21, ZSP20, ZP20, ZMK21, ZB21a, ZB21b, ZS22a, ZA20, ZWY21, ZHC23, ZCY23, ZY20b, ZML20, YZ20a, ZCL20, ZZC20, ZJZK20, ZZ20, ZL21a, ZFG21, ZA21, ZRH21, ZHPZ21, ZDW22, ZHY22, ZSsC+22, ZLW+22a, ZQ+23, ZMY23, ZH20, ZR20, ZZ20, ZCY+21, ZR21, ZNN22, ZMG+22, ZZY+20, ZSY21, ZDC20, ZBS21c, ZQL+22, ZLW22b, ZHH22, ZYD20, ZL22, ZOEL20, aKAK20, dKSA21, dSLdA22, vGAtTBI23, vNGB22, vdEW23, AEGV22, DSG+22, FB22, Nik23, YSN23].

MSC+20, MD21, PHHJ22, RRHH+21, STC+21, TCK+22, ZHY222.

MHD-AEPIC [STC+21]. **MHD-kinetic** [HPW21b]. **micro** [EH22a, HSB20, KV23a, KFP+22, LYL20, ScdHJ20].

micro-heterogeneities [ScdHJ20]. **micro-macro** [EH22a, HSB20, KV23a]. **micro-networks** [LYL20]. **micro-turbulence** [KFP+22]. **miroinstability** [FGB+20].

micromagnetics [XGCW+20]. **micromechanical** [DYGC22].

micromechanics [YZH+23].

micoscale [ML23, SKCM22, ZLW+21].

microscale-macroscale [ZLW+21].

microscopic [GPL22, HHVM20, HJH+21, YJP23].

microstructural [ZOG21a].

microstructure [LPS21]. **microstructures** [FSW22, GDAP20, RPA22].

microvasculature [DFP+21a].

migration [WZ22].

Miller [Sel22].

Mills [DOQ23].

MIM [LZCC22].

mimetic [AT20, HSG+22, LP20a, PC21b, PGP+23, TBP20, ZFG21, ZA21, ZPGR22, Bat20b].

mimicking [MAPS20].

mimics [NG22].

minimal [LZLZ21].

minimalistic [Ale23].

Minimally [BVR22]. **Minimally-invasive** [BVR22].

minimax [YGJ21a, YGJ21b].

minimization [Sar21b]. **minimized** [LCR22, LMN20].

minimizing [FCM20b, LFP+21, MCP23, WXZ22].

minimum [BBO+22, YZK23]. **minimum-type** [YZK23]. **misaligned** [RGH+22].

miscible [FGKY22, FGTY23, GLY20, PAA21].

missing [HJLY21].

mitigating [BF22]. **mitigation** [BD20b].

Mittag [LSC20a]. **Mittag-Leffler** [LSC20a].

Mixed [CdS22, AFS+23, AFL22, BPG21, CCHS20a, CP20, FB22, GA20, HRWP22, KSHJ20, KWS22, LP20a, LZCC22, NFA21, NGK+21, PS22b, RSA+20, YK20b].

mixed-curved [YK20b].

mixed-dimension [KSHJ20, KWS22].

mixed-order [GA20]. **Mixed-precision** [CdS22].

mixing [AMK+21, JDB+23]. **mixture** [SRA+21].

mixture [SRA+21]. **mixtures** [BR22a, CCN21, PA21].

MLS [REC+22].

mobility [BST23, LZC+23].

MOC [FSM+22].

modal

CLW22, EM20, dMKJ+22, NdIPL21, SKCM22, WX20].

ModalPINN [RHG22].

Mode

**KUO23, ASVL23, CCE+22, CS21b, GLSZ22, HTRC23, JL22, JP22, LGMV22, LAT+22, LT20c, LT21, MH22a, NKT21, PA20, WZ22, YhCdJ+23].

Model [BW20, CCGC23, Da22, HWDM22, LC20, MZ23, PH22, SL20b, SM21b, YH22b, ZGLL20, ARR23, AFV20, AdDMT21, AEGV22, Ara20, BBH+20, BF22, BCL+23, BSR20, BVR22, BTZ22, BVRS22, BCPV21, BTGA22, BCR22, BD20a, BCP22, BCSK21, BTL23, BX20, Cal21, CFS+22, CML20, CNMB20, CY22b, CZ22b, CYS23, CG23, CPH+22, CKLM+23, CBA+21, CMRR21, CCLM22, DNW23, DA23, DVF22, DBSNF+20, DC21, DD22b, DFP+21, DYGC22, DCSG22, DFP+21b, EH22a, EAK20, FCCP21, FLZ20, FS23b, FHZJ22, FQSW23, FTPPB23, FTZ22, FM20, Fu20, FS21, FP23, GJLD20, GQF21, GQR23, GT21, GHNS21, GFY20, HKH+23, HdB21, HP23, HZHL22, HLL23, HKS20, HSM20, HKMR20, HPRW20, HSB20, HHR19, HX21, HT20, HT21b, HLA20b, HLA20c, HCL20, HLA21, HLA22a, HABG23, HLQ23, JM23, JYK22, JO22, JLL22, JRY+20, KTDG22].
CS20, Cha21, CHSS20, CLXS23, CDX+21, CdS22, DS23a, DFJ22, DhJV+22, DYM+20, DFJ20, DV22, EHW21, FSWA22, FN22, FBCD22, FTK23, Gar21, HK+23, HSM20, HZHL22, HLL23, HVD23, Hig20, HLS22, HWDM22, HSG+22, Jai22c, JTT23, KYO22, KS21a, KKS21a, KK22a, KFP+22, KD21b, LVK+22, LPL+22, LLWX22, LLQ+23, LXZ23, LSLH20, LPZ22, LTK+22, LFL+22, LLN22, MS20a, MCP23, MK20, MVO+22, MD22, PZZ+23, PWL+23, PA21, DM23, QJL23, RS20b, RZH20, Sar21a, Say22, SL22c, SL23, SX20, TYW22a, TYBW23, VSS21, VGG23, WBN21, WWYC21, WZT22, WDS22, WZW23, XF21b, XF21a, XDLX21, XYL22, YKdHC20, YZW23, ZZML20],
multi [ZRH21, ZW22, Zha22, ZYS+23, ZQS20, ZS20, ZPS+21, SAL+20].
multi-component [FTK23, KK22a, LVK+22, LLQ+23, MS20a, PA21, Say22, TYW22a, ZYS+23].
Multi-condition [KKY22].
multi-continuum [MCP23].
multi-core [LFL+22].
multi-degree-of-freedom [PZZ+23].
Multi-dimensional
[DZ22, Bar21b, EHW21, HSG+22, KYO22, LPZ22, YZW23].
Multi-domain [KS21b, LLN22].
multi-domains [Jai22c].
Multi-element [EPL22, VGG23].
Multi-fidelity [BPBM23, MBK21, BS22b, Cha21, KFP+22, MK20].
multi-fluid [DS23a].
Multi-frequency [SH22].
Multi-GPU [ZBY+23, SAL+20].
multi-grid [RS20b].
Multi-index [HST22b].
multi-invariant [MVO+22].
multi-layer [Hig20].
multi-level [QF23, DV22, HSM20, KD21b].
Multi-material [VNR+22, HLL23, KKS21a, LSLH20, PWL+23, DM23, QJL23, TYBW23, VSS21, WBN21, WWYC21].
multi-moment [CLXS23, XDLX21].
Multi-objective [WZSK22, FSWA22, KKY22].
multi-patch [FBCD22].
multi-phase [BD21, CDX+21, HZHL22, JTT23, KS21a, RZH20, VSS21, ZW22].
Multi-physics [MN20, ZZML20].
multi-point [ZJ22].
multi-prediction [PZZ+23].
multi-rate [YKdHC20].
multi-region [Gar21, Sar21a].
multi-relaxation [CW22b, DFJ20].
Multi-resolution [LSQ21, YDC22].
Multi-space [HS20, VSS21, ZHA22].
multi-space [HVD23].
multi-space/time [HVD23].
multi-species [DS23a, DFJ22, FN22, HHK+23, LLWX22, XYL22].
Multi-stage [CC20, SL22c, SL23].
multi-state [WDS22].
Multi-symplectic [SS20, CS20, CHSS20, HHL22, Zha22].
multi-symplecticity [S20].
Multi-variance [LW22].
multiblob [BST23].
multiblock [AD20, JLC21].
Multicomponent [SVDT21, ARR23, BW20, BV21, DY22d, FSB+20].
Multi-layer [LS20a, PLK22, Ren21, SBC20, YFY22, ZYW+23].
multicontinua [VLC+20].
Multicontinuum [EL23, Vas23].
multicorrector [LBC23].
Multidimensional [BGGM22, CZHY20, FPT20, SGB+21b, BV20, GCLM22, HKKS21, KBCH20, Lep21, LFW23, MD20a, MZ20, MGT+21, SMRW22, TGM23, W21a, ZQ+22].
Multidirectional [DMRG22].
Multifidelity [PGR+23, PZK22, WPBS22, DSS+22, GGEJ20, JD23, RRR23].
multifluid

Naghdi \[GKPT22, Mar20, TGM23\]. Nagumo \[WCF^+21\]. nano \[BFG23, CCER20, CE21\]. nano-droplets \[BFG23\]. nano-droplets/bubbles \[BFG23\]. nano-photonics \[CE21\]. nano-structures \[CCER20\]. nanoscale \[ZZY+20\]. nanosecond \[MAP^+20\].
Neural

Neural-network [LMS+22, MRBC22, MLM+21].

neuron [FL21, HLXZ21].

neutral [AAL+21, GRC+22, KSK21].

neutron [DJ22, DJ23, DC22a, Gar20, Gar21, HA21, KWMF22, LKEM21, ZG20].

neutronics [CS22].

neutronics-depletion [CS22].

Newton
[BE20, CYYS22, GDS23, Lee21, LTT21, LCC+23b, hSMLS23, VdGP20].

Newtonian
[CY22b, GDF21, HdB21, HKJ21, KAO+20, RRBR+23, SPF21].

NH [LLZ22].

NH-PINN [LLZ22].

nine [LDM+21].

nine-dimensional [LDM+21].

Nitsche [JDB+23, LT20b, WR23c].

NN [BSA22, MFK21].

no [GS22, IKP22].

no-slip [GS22].

nodal [BG+20, CCWX22b, DT20, MRC+20, NW20, NMR+21, NMR+22, PLKM22, RRHH+21, WVRLG23].

nodal-gradients [NW20].

node [KDL23].

node-centered [KDL23].

nodes [CS23, MGRVR23, RRFK+21].

NoFAS [WLS22].

Noise [EFSH21, AWB+20, CCM+22, CCHS20b, EK21, HHS22, SQSS20, SS22, ZL21c].

noises [ZXM21].

noisy [BCSK21, JL22, KTDG22, LMZ23, LLR23, WFW23, XZW21, YMK21, YIN22, ZL21d].

Non
XLLH21, XMY22, XDLX21, XHY23, YZH+23, YhCdJ+23, ZXBS22, ZY20b].
non [ZQC+23, ZF20, ZSKN22, dSLdA+22]. non-canonical [AKK20].
non-collodial [KVQE21]. non-conformal [AMGCL21, XMY22].
non-conforming [Jai22c, LOL22, WY22b, XHY23, ZSKN22].
non-conservative [TSTH20, WKW+22]. non-cutoff [HQ20].
non-decomposing [FCBM22]. non-dissipative [SBL22, TKK22].
non-equilibrium [CSCL20, EM20, Jai22c, LOL22, WY22b, XHY23, ZSKN22].
non-hydrostatic [Lee21, LP21, Pop20]. non-ideal [OBB22].
Non-intrusive [BLLL23, JADS21, SM22, DFP+21b, Poe23, VGG23, XLLH21].
non-isothermal [KMR23, WLZ21]. non-iterative [CZCY23, ZY20b].
non-linear [Jai22c, AAKW20, BR22a, BBPR21, CIMG21, Den23, EPL21, Jai22b, LIW20a, MGT+21, PHHJ22, RHR20].
Non-linearly [San20, FBG20]. Non-local [HT20, BDT21, LY20a, ILNZ21, YZH+23].
non-Markovian [GCC21]. Non-modal [dMKJ+22]. non-Newtonian [HdB21, KAO+20].
non-orthogonality [HX23]. non-oscillatory [BSA22, GLF23, LCWJ20, SSK20, WTZZ23, XDLX21].
non-overlapping [BG20c, DMRG22, GTDB22, MD20g, SSS22]. non-periodic [EDLF20, Per23, TMEG20].
non-planar [ZF20]. non-polynomial [CSY23].
non-reactive [ARC22]. non-realizability [SBVM20]. non-rectangular [DSZ20].
non-smooth [HIJ22]. non-spherical [RGLN22, ZQC+23].
Non-staggered [SGT23]. non-stationary [EPV21, LY22c, QH23].
Non-stiff [AD20]. non-subcycling [ZXBS22]. non-symmetric [NFA21].
non-thermal [GDB23]. Non-uniform [BMG+23, AWB+21, CSM20, MZC+22, dSLdA+22].
non-uniformly [LGMC22]. non-uniqueness [BJL21, GSOM23]. nonadiabatic [HXZ23].
nonautonomous [LJ23]. nonclassical [BSA21, MBV22, VMBS20].
nonhydrostatic [CLX23]. Nonintrusive [FCBM22, KCP20].
Nyström-type \[LLTY23\].

Objective \[PSJ23, FSWA22, KKY22, WZSK22\].

objects \[LL20, LMUHR22, YK22, ZPW +23, ZZY21, ZL22\]. observables \[LMR20, RK21\]. observation \[LSL20\]. observations \[CM20, CHe20, HXFD20, XD22\]. observed \[WPBS22\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].

Obstacle \[KTDG20, CGLZ23, DLL22, LW23, ZHRB23\]. obstacles \[LYZ22, YYL20\].

obtain \[TWF +20\]. obtaining \[CDJM21, HBF21\]. ocean \[Hig20\].
YH22a, YZZ23, YOH$^+$20, Yin21, YK20b, YGL20, YH22b, YM20, ZSP20, ZEG20, ZEG21, ZB21b, ZWY21, ZCY23, ZCQ19, ZCQ20a, ZML20, ZL21a, ZL21b, ZHY22, ZX22, ZLW$^+$22a, ZZ23a, ZHR20, ZZZ20, ZH21, ZJSX22, ZJSX23, ZZ23b, ZSQ21, ZQS$^+$21, ZQL$^+$22, ZQS20, ZS20, ZF20, ZL22, ZWB21, dLF23, vHP22, vLN21, Der23, NV22, order-adaptive [CMP$^+$21].

[ABY23, CDX22, FTZ22, GSW21, GLSZ22, IT22, LC23, PZNK23].

parameters [AP21, ABDD20, BCPV21, CCWX22a, DWWZ21, LSL20, LZ20b, MNG+22, VLC+20, XLLH21]. **Parametric**

Particle-in-Cell

[STC+21, ALF+22, BBW+21, CCY+20, CCN21, CC23, CK22a, CBCF20, Erc22, FCM+20a, HHL20, HL22b, HPRW20, KS21c, LAT+22, Li23, LKG+20, SCL20, SC22d, TCA21, TZM+20, TRC22, DFG+23, EC20, GHS22]. **particle-laden** [CW22b, FJG+20, PA21, RR22, RE20, SGW21].

Particle-Mesh [BDWC23]. **particle-resolved** [CW22b]. **particles**

[CMS+22a, DMM21h, HPW21b, Ish22, KG20, KDB+20, KCK21, LT22a, LDM+21, LZX+22b, RPA22, RGLN22, SGM21, SWHJ22, SDA+21, Ume23, WHL21, WDK22]. **particles-in-cell** [HPW21b]. **particulate** [OLP23, OYK+22, YCM+20]. **partitioned**

[ASS21, BFST23, HPPZ20, LOL22, NAZ22, ZAA23]. **Parts**

[LNF20, AAL+21, CT22, DFW22, GN20, LLN22, MRK+20b, MRK+20c,
MZ20, MR23a, PBN$^{+}$21, SGT23, WZ21a]. Pascal [Oru21]. Pass [DJID20].

patches [BG20c]. Path [JH23, CKLZ23, CNMB20, CKN22b, DZC$^{+}$23, KLX23, LLZ20b, PGCC$^{+}$22, XQG$^{+}$23, XDCF21, YR22, ZMK21].

pattern [TZA$^{+}$20, ZBB21]. PDF [DW23, FVM22, FVM23, GZ20, GKA22, MK20, PMACG21, SMF20, SMS23, Ste22, WL22, XZC20, YMK21].

Perfectly [DZ22, MBAG21, DZ23, KLP22, LFS22b, USRH20]. Performance [PV22, AD22, KSW22, KD20, RBD$^{+}$21, YJSX22]. performing [FTPB23].

perfusion [DFP$^{+}$21a, KSHJ20]. peridynamic [ZHPZ22, ZLB22]. Peridynamics [BM21, KAO$^{+}$20, PJA22]. perimeter [JL21b].

perimeter-decreasing [JL21b]. Periodic [AFP22, BZ21, ZPGR22, BFS23, BFL20, CEW23, DG23, DN21, EDLF20, GDAP20, GLT$^{+}$20, HL20b, LPS21, LHC22, LZLZ21, MBE21, MD20c, PAGJ23, Per23, PLM23a, RHH22, SWM21, SJGC21, TMG20, WNB21, WZ23b].

petroleum [TH23, dSL22a$^{+}$22]. Petrov [LTD$^{+}$22, WTX$^{+}$21]. PFNN [SY21].

Phase [CY21, HHAFR21, HLA20c, HLA22b, HJ23, VPL20, Abg20, AdDMT21, ASKH21, BL22a, BBV23, BDPM22, BSV22, BDB21, BMQ20, BMST22, BE20, BR22b, Ca21, CASC2, CHZ20, CY22b, Che23, CXX$^{+}$21, CK21, CLP22, CMRR21, DC21, DLY22, EAA$^{+}$22, FQSW23, FMS21, FZ23, Fu20, FY22, FS21, GJLD20, GNZ23, GDBFN$^{+}$20, GQS20, GNF22, GPSM20, GCL$^{+}$22, HZHL22, HKS20, HCL22, HJH$^{+}$21, HHRK23, HN23, HT21b, HLA20b, HLA21, HLA22a, IKP22, JMM20, Jai22a, JMM22, JM23, JHT23, JK22, JTT23, JGR22, KS21a, KLS$^{+}$20, KSW22, KHS20, KWS22, LZZ22, LZT$^{+}$23, LHC22, LL21b,
LOL20, LIW20a, LDM+21, LYS22a, LLPL22, LNC+21, LRT+22b, LHY23, LLCK20, MMZ21, MJ21, MJ23, MA21, MCA20, MIM20, MM21c, MM22, MKM23, MYY+23, MRL+23, MD22, PM21a, Pan20b, PPHO22, QWZW23, QERT20, QHZ+22, QW22, RMJ23, RZH20, RSA+20, SCB20, SHM+23a, phase [SRTB21, SRD20, SHL+20, SWHJ22, SFP+20, SDA+21, TWY22a, TH23, UBT22, VSS21, WZ22, WCZ22, WJHS23, WLKR23, WA23, XJL23, XS20, XZRW21, XHZ22, XHY23, XDCF21, Yan21b, Yan21c, YA21, YTK22, YH22a, YK22, YR22, YZK20, YXL22, YQ20, ZEG20, ZXS22, ZLG+23, ZY20b, ZMWS22, ZW22, ZSSC+22, ZWL23, ZYZ+23, ZYL+23b, ZR20, ZKY+20, ZF20, ZGK+22, ZOEL20, dSLdA, vdEW23, HLA22a].

Phase-change [HHAFR21, LYH23].

Phase-changing [SCB20].

polydisperse [BFC23, SDA+21]. polygonal
[AM22, BD20a, CP22b, Hac21, HW20b, LS23, MW22, SM21a]. polygons
Pre-training [GYWG23, DL21]. precision [CdS22, HL20c].
preconditioned [Bat20b, LLZ20b, OPHY23, WDL21c]. Preconditioner
[BS20, BEP+20, HV20, LY20b, LC23, ML23, NFA21, SBVW20, TZNHD20,
YFL21, YM20]. preconditioners
[BL20, BDS23, BGGM21, CCW20, DMRG22, LM21b, LYY20, PT23, PS22c].
Preconditioning
[KS21a, ASKH21, BKMC21, CC22a, DV22, FJH20, FGFW22, FCWT22, GDB23,
GMD22, JBF21, KTH+22, LL22, LNZ21, TKGB23, TTP22, YFY22, vHG+22].
Predicting
[IK23a, MLM+21, SFDW23, XSF23, AMK+21, WCM+21, YhCdJ+23].
Prediction
[EMS+21, AAM20, BJW20, DLM+23, DYG22, HJL21, KUO23, NKT21,
PZZ+23, RLH22, SFGNMG22, SM21b, YI23, ZYL+23b, vdBSB20].
predictive [LHA+21]. predictor [LBC23]. predictor/multicorrector
[LBC23]. Preface [AACX21]. preferential [TACO22]. presence
[DHSS20, ZHL21]. preserve [HRY+22]. preserves [GGB22]. Preserving
[LVK+22, AAL+21, AÖR22, APR22, ACE+22, AKKM23, Ba23, BGN22,
BTZ22, BB20c, BDI+21, BDP23, BL22b, BMQ20, BRS22, BBA22, CS20,
CDT22a, CZZ21, CP22b, CHSS20, CW22a, CWX23, CCS2, CYS22, CDW23,
DDR22, DEN22, DC21, DW20, DWZ23, DWZ21, DY22d, DW22,
DWM23, Edo22, EHW21, FCM+20a, FZQ21, FZQ22a, Fte23, FGKY22,
FGTY23, FR23, FX22, FTK23, GCLM22, GNZ23, GQS20, GEv2D22, GS20,
GLCS23, GGH+23, GPS20, GLWY22, GLY20, HBG+21, HPRW20, HPW21b,
HHS22, HLM20a, HLXZ21, HSW22, HXX22, HWDM22, HS23, HJQ+23, JM22,
JWC20, JTW22, JZT22, JLY21, JH23, KBC20, KBB21, KKS21b, KS21c,
KCCR22, KCWS23, KK21, LPM+20, LCL23, LW21, LCS22, LCS23,
LCSZ21, LYW21, LY22b, LLL23a, ILT20, LCT23, Liu20a, LZLS21,
LWW21, LRT+22b, LYY22, LKJL22, MSC+20, MGP+22, MJ21, MJ23,
MH21, MHW21, MRBS22]. preserving
[NS22, ÖL23, PCF21, PWXY22, PBCL20, PM21b, QXY23, QLY21, RMI23,
RC20a, SL22b, SAS+21, SSS20, SX20, The21, Toh23, TYC23, UY22, VTC20,
WLH21, WABK21, XF23, XLZ21, XSSS22, XJS21, XS22a, XS22b, XS23,
XQ+23, YU22, YM21, YYY21, YWLI21, ZNC21, ZCQ19, ZCQ20a, ZXX23,
ZY20, ZGK+22, ZOEL20, vdEW23]. Pressure
[IS+23, AFV20, AF20, ASS21, ASJ23, Bat20b, BP21, BBL23, sCP2L+22,
CG23, DSPB22, DeW20, DTB20, FGKY22, FTK23, GMR20, HP21a,
HTL21, Hig22, HP21a, KS22c, KS22b, LPM+20, LO23, LRT+22b, LLZ23c,
LCS23, MD20b, MS20b, NFL+21a, NFL+21b, SLF23a, SBH21, SW22,
SKT21, VMO21, XLS22, YA21, YZK23, YZK20]. pressure-based
[BP21, DSPB22, DeW20, HP21a, HTL21, VMO21]. pressure-correction
[AF20, LRT+22b]. pressure-equilibrium [FTK23]. pressure-free [SBH21].
pressure-temperature [SLF23a]. pressures [GQS20, KS22b], prestrained
[BGN+22]. prestressed [YKdHC20]. Preventing [SKT21, GF21]. primal
[CWW22, LOLS23, NG20, Nor22a, hSMLS23, WW20b]. primal-dual
primary [FGL+22, MMdMB22].

primitive [LJW+22, PDB21, Scl22].
Prince [NNJ21].

principle [ABY23, JLQY21, LPL+22, ILT20, NS22, XS22b].

principles [Coa21, Cap23, GB22a].

printing [OYK+22].

prior [LSL20].

priors [BKON23, MYM+22].

probabilistic [FTY+22, KK20a, LG20, RK21].

probability [BJW20, CW21, CL20c, YZdCNS21].

probable [YR22].

probe [CSA21].

probing [GWY21].

Problem [ZS21a, AN21b, BCL+23, BCIR22, BST23, CEL+20, CZ20b, DLL22, DT22b, ELSV22, FS23b, FCWT22, FZ21, HLB20, HSXZ21, HJH+21, HNF+21, HSS21, Hu21, ILX22, JLCT22, KS22a, KBC20, KLZ23, LSW20, LDI21, Lin21, MNG+22, MBM+22, OKTD21, Par22, SS22a, SBVM20, SCL20, WJK20, ZMK21, ZML20, ZHR23].

problems [LT21, MWY+20, MZ22, MRHR20, MDG20, MK20, MRG21, MW22, MBV22, MRT+22, MMP21, MTWT21, N2J21, Nor22a, OSL22, ORU21, PZ21, PMAC21, PWY22, PH22, PK20, RMA20, RFZ22, RZ23, RN3, RB22, Sb20, SPS+21, SM21a, STEK17, STEK22, SWG+20, SWG+23, SRV21, SY21, SFGM22, SSG+20, SML20, SGLP23, SLO22b, SBM20, SBV22, TAK23, TDL20, TV22, TPP22, TWF+20, Vab23, VACE21, Ves23, VK22, WB21, WB22, WZ20, WW20b, WP21, WZW21, WZW22, WZ21a, WZ22, WLL+23, XZ22, XFL21, Y2S2, YM21, YZ22S1, YY22, YAX20, YK20a, YZ22S2, ZP20, ZOW20, ZMS20, ZG21, ZFG21, ZDW22, ZXY22, ZY23a, ZSL+23, ZLL23, ZS22b, ZPK22, vHP22].

procedure [ASKH21, LST21].

procedures [LMN20].
Process [STG20, XCL22, ABOS22, BGH21, CZ23, CL20b, CDL+22, CSLC21, GTDB22, LT20a, MRT+22, OYK+22, SDP20, W23, ZLC+20].

process-state [GTDB22].
processes [ABH21, BTEK22, CHOS21, DES23, L21, MY23, MYZ22, RHR20, RBC+23, WPBS22, ZMWS22, ZLS22].

processing [AG21, BEP+20, EHL+20, MB22, SE21].

processors [LFL+22].
product [CN21, Don23, HKKS21, KAZ23].
production [LO23].

profust [FL20a].

programming [Kiv21, YOH+20, RSH21].

Progress
Project [MTK22, RIC+22, ASS21, Ani21, BF22, BBD+20, BZB20, CHZ+21, CI21b, GQR23, GFY20, tH22, KS22c, KAC22, KSI+23, LL21c, LCS23, LFF+22, LXD+20, LHXZ22, LCBW23, NFL+21a, OL20, OLS21, OSL22, PKC22, TN23, XGCW+20, XC23b, YA21, ZWB21].

projection-based [BF22, GFY20, KS22c, KSI+23, PKC22, TN23, ZWB21].

Projection-tree [RIC+22].

projection/data-driven [GQR23].

Projective [BR22a].

propagation [GQR23].

Propagator [JL21a].

Properties [LNF20, LPS21, LJ20, LN21a, LBM20, MHYW21, MIM20, NDH20, PGMTP23, SMSAGG22].

property [FX22, MRK+20b, MRK+20c, PBN+21, QCD21, TK22, XS23].

proposition [MVO+22].

propulsion [AP23].

protein [HST22a, KSST21, ZAMG20].

protocol [VdGP20].

Puiseux [NPD20].

Pulliam [PJBB20].

Pulse [CMS+22a, MAP+20, NTSM20].

purpose [AT20, Sha21].

push-forward [BJW20].

Push-forward [BJW20].

Pyroclastic [MFRZ22].

QCD [RSO20].

QMA [Hua21].

QMA-complete [Hua21].

QP [FSM+22].

QSV [SS22b, SS22d].

Quadrature [DHT21, GN23a, TM23, WK20, AKK20, BT20, DY22b, FCO+20, GB22a, KKN20, LYS+22b, LYS+23, PPHO22, SH22, SBVM20, SLQW22, VVL21, vdBSB20].

Quadrature-based [TM23, SBVM20].

Quadtree [CF22, SY22c, SY22d].

Quadtree [CF22, SY22c, SY22d].

Quadrature [CF22, SY22c, SY22d].

Quadrature-based [TM23, SBVM20].
ray-effects [DSSSP20]. Rayleigh [BFL20, CCCH23, RS20a, SSS22]. rays [YCC+22].

RBF [MM23, AMG23, CS23, GFF20, LSY+23, MFG22, TB21, ZP20, Zha22].

RBF-based [LSY+23]. RBF-FD [CS23, MFG22, TB21, ZP20, GFF20].

RBM [JLL20]. Rd [CE21]. RDMF [XHY23].

reacting [BB20a, CAF+22, DY22d, FCW21, JK20, KCD+23, OCGT22].

reaction [AdS22, AAKW20, ARR21, BFP21, CCL21, CZ22a, Coa22, FGK22, KV20, LLO22a, LWW21, LY23, PEL23, SSPV20, SMR22, TB21, ZP20, Zha22].

reaction-advection-diffusion [CZ22a]. reaction-diffusion [AAKW20, LWW21, Yua21, ZJZK20].

reactions [HZY22, XYL22].

Reactive [DFJ20, ARC22, AMK+21, CYYS22, CCW20, CT22a, FS21, HKS20, MRdB21, PCF21, PJW21, VACE21, YYB23].

rectangular [BG20c, CJLL21, DSZ20, ML20]. rectangular-polar [BG20c].

Reduced-order [DJ22, DJ23, WCL+20, ADK+21, CWHZ21, CCCH23, CBA+20, DCA+22, JADS21, KCC21, Lj23, LT20c, LY22c, NKT21, PB20b,
RLH22, RBF+21, RIC+22, San20, WW20a, WRH20, ZWB21. Reducing
[CSASS21, GEvWD22]. reduction
[ASBM20, An21a, AWB+20, BF22, BVR22, Ben23, BW20, CGJM21,
CCGC23, CDZ23, Da22, DFGR20, EAK20, FTZ22, GGY20, HWDM22,
KC20a, KV20, KSK21, LT22a, LC20, LL21c, MZ23, OA21, PC21a, Qia22,
RA23, TL20, VACE21, WCL+20, WDH+21, WZZ23, YH22b, ZGLL20].
reduction-based [CGJM21, ZGLL20]. reentrant [PH21].
reduction [CSASS21, GEvWD22].
reservoirs \[RHR20, \text{TH23, ZA21, dSLdA}^+22\]. Residual \[\text{CORJ}^+23, \text{ZCCN}23, \text{AOR22, AR20, CGJM21, CX21, GB22b, HBEK23, LKEM21, LRAQ22, LZCC22, RMJ23, SLNM21, TL21, VM22, WTX}^+21, \text{YZK}23\]. Residual-based \[\text{CORJ}^+23, \text{RMJ23, SLNM21}\]. resistance \[\text{BVRS}22, \text{Dn22}\]. resistive \[\text{BWG}^+20, \text{LL22, RRHH}^+21, \text{TCK}^+22\]. resolution \[\text{AFV}20, \text{CCB22, DS22a, DT22a, DYM}20, \text{HKS20, HZ22a, KIHB21, LSQ21, PB22, Poi23, SST}^+23, \text{SFNMF}^+21, \text{WZTZ21, WZWZ}23, \text{YKLL21, YYD}^+22, \text{YDC}22, \text{ZRH}21, \text{ZBY}^+23, \text{ZB21c, ZQS20, ZS20, dSLdA}^+22\]. resolution-independent \[\text{YYD}^+22\]. resolved \[\text{CZ22b, CW22b, CEBG22, FSW22, KSBG20, LWWH23, LYH23, MMZR21, PBM23, RR22, RGLN22, RE22, SCB20, SWHJ22, SFNMF}^+21, \text{Vre17, Vre21a, WGY20, WA23, YRHN22}\]. resolvent \[\text{HKJ21}\]. Resolving \[\text{CS21b, DhJV}^+22, \text{DEB21, FB22, HYZ22, LXSF22, WGS23}\]. resonance \[\text{CE21}\]. resonances \[\text{CCER}20, \text{DHM21b, DLZ23}\]. resonant \[\text{DGL}^+23, \text{TLB20}\]. resonators \[\text{AH21, CSM20}\]. response \[\text{EDLF}20, \text{LE21b, MMSW}22, \text{VCCN}^+23, \text{XZWH}22, \text{ZHL21}\]. restart \[\text{CCN21}\]. restricted \[\text{LYY20, SMV}22\]. restriction \[\text{BKMC21}\]. restriction-smoothed \[\text{BKMC21}\]. results \[\text{CSASS21, GJF}20, \text{LPG}^+20, \text{RA21}\]. retrieving \[\text{ABDD}20, \text{WDH}^+21\]. Revealing \[\text{HYZH22}\]. reversal \[\text{AL20, AL21, DW21, KTDG22}\]. reverse \[\text{WZ22}\]. reversible \[\text{AG21}\]. review \[\text{EDLF}20, \text{LE21b, MMSW}22, \text{VCCN}^+23, \text{XZWH}22, \text{ZHL21}\]. restart \[\text{CCN21}\]. restricted \[\text{LYY20, SMV}22\]. restriction \[\text{BKMC21}\]. restriction-smoothed \[\text{BKMC21}\]. results \[\text{CSASS21, GJF}20, \text{LPG}^+20, \text{RA21}\]. retrieving \[\text{ABDD}20, \text{WDH}^+21\]. Revealing \[\text{HYZH22}\]. reversal \[\text{AL20, AL21, DW21, KTDG22}\]. reverse \[\text{WZ22}\]. reversible \[\text{AG21}\]. review \[\text{EDLF}20, \text{LE21b, MMSW}22, \text{VCCN}^+23, \text{XZWH}22, \text{ZHL21}\]. restart \[\text{CCN21}\]. restricted \[\text{LYY20, SMV}22\]. restriction \[\text{BKMC21}\]. restriction-smoothed \[\text{BKMC21}\]. results \[\text{CSASS21, GJF}20, \text{LPG}^+20, \text{RA21}\]. retrieving \[\text{ABDD}20, \text{WDH}^+21\]. Revealing \[\text{HYZH22}\]. reversal \[\text{AL20, AL21, DW21, KTDG22}\]. reverse \[\text{WZ22}\]. reversible \[\text{AG21}\]. review \[\text{EDLF}20, \text{LE21b, MMSW}22, \text{VCCN}^+23, \text{XZWH}22, \text{ZHL21}\]. restart \[\text{CCN21}\]. restricted \[\text{LYY20, SMV}22\]. restriction \[\text{BKMC21}\]. restriction-smoothed \[\text{BKMC21}\]. results \[\text{CSASS21, GJF}20, \text{LPG}^+20, \text{RA21}\]. retrieving \[\text{ABDD}20, \text{WDH}^+21\]. Revealing \[\text{HYZH22}\]. reversal \[\text{AL20, AL21, DW21, KTDG22}\]. reverse \[\text{WZ22}\]. reversible \[\text{AG21}\]. review \[\text{EDLF}20, \text{LE21b, MMSW}22, \text{VCCN}^+23, \text{XZWH}22, \text{ZHL21}\]. restart \[\text{CCN21}\]. restricted \[\text{LYY20, SMV}22\]. restriction
rotated [GCDT22]. rotating [AFP22, CKLZ23, CDLX23, HSM20, Ian20, KLZ20, WCB20, WHS22].

Rotation [GDLL22]. Rotation-equivariant [GDLL22]. rotational [Edo22].

RotEqNet [GDLL22]. rough [KT20, LH21, LYZ22]. roughness [GD21].

Rotation [GDLL22]. Rotation-equivariant [GDLL22]. rotational [Edo22].

RotEqNet [GDLL22]. rough [KT20, LH21, LYZ22]. roughness [GD21].

ruptures [YKdHC20].

Scalar [LQX22a, ASSZ21, JZZ22, Klv21, KdL20, KV23c, LL21d, SYOS19, SYOS21, SLNM21, TNB21, YX22, ZLW22b, AST21]. scalars [JM23]. scale [AP21, ABH21, ASSZ21, AF23, ACR23, Bri22, CMH20, CBA21, CBC23, CdS22, DS22a, DhJ+22, DLWW22, DYG22, DEB21, DF22, EHW21, FVM23, FLV23, GQ23, GCD20, GGH23, Hdb21, HWD22, LPL22, LLB23, LMY20, LXX22, LTK22, MCT21, MH22b, MP21, MD22, ODM23, Ozu21, PS22c, PBO20, QJQ22, QCWC23, TTSP21, WDL21a, WLPK20, WR23b, WZ23a, XF21b, Xf21a, YSCM21, ZPS21, ZO21].

scale-bridging [LLB23]. scale-invariant [DLWW22, GGH23].

Scharfetter [Kan20, NBR22]. Scharfetter-Gummel [Kan20]. Scheme [SLOZ21b, SLOZ21a, ARC22, AT20, APR22, AZV23, AAKW20, AKKM23, BL22a, Bal21, BBH20, BT22, BCT22, BSA21, BSA22, BDF23, BD121, BCP22, BG23, BF23, CP21, CP22, CKLZ23, CF21, CHT20, CZ20a,
[AST21, AKKM23, BLF20, BCJM20, BG20a, CLY21, GMB+22, GR21, GLLM22, JL21a, JPAZ21, JLRZ20, MCW22, Sac22, STEK17, STEK22, SDK21, Suk23, WWG20, Wan22, YWLL21, Zha22].

Schrödinger/Gross [AST21], Schur [HV20], Schwarz [LY20, LC23, LY23]. scientific [CHZ+21, EDC+23, PMZ+23, THH22].

Semi-implicit
[TZ21, BB20a, BBD+20, BZC+22, BP21, BDI+21, CCY+20, KBB21, KSI+23, LMZ21b, LL21d, PP22c, PS22c, SV23, XGCW+20, ZEG21, ZJK20, ZX22].

Semi-Lagrangian
[YM21, ZA20, BFG22, BCR22, BMG+23, CBQ21, CGZ23, CBY21a, CBY21b, DCGQ20, LCG22a, LCC+23a, PK20, DM23, LMZ21b, LL21d, PP22c, PS22c, SV23, XGCW+20, ZEG21, ZJZK20, ZX22].

Semi-permeable [QHZ+22].

Semi-resolved [CZ22b].

Semi-smooth [BE20].

Semi-structured [AAH+20].

Semi-supervised [RK21].

Semiclassical [BG20a].

Semiconductor [LCH20, ZWZL22].

Semiconductors [Kan20].

Semigroup [LY22a].

Semilinear [AHWZ20, JLQY21, TTY22, WK21a].

Semismooth [CYYS22].

Sensitivity
[FGB+20, KP23, Bha20, CBCF20, DLZ23, FJG+20, KCP20, SJGC21, YS22].

Sensitivity-driven [FGB+20].

Sensor [KK22a, WTZZ23].

Sensors [KTDG22, KBC22, RHG22].

Separate [LLW20a, QCZ22].

Separations [KKM21].

September [Ano20l, Ano21l, Ano21x, Ano22l, Ano22x, Ano23j, Ano23s, Ano20x].

Sequence [DD21].

Sequences [GGN+20].

Sequential [LLW20a, LTT21, MTWBT21, LTD+21, MH22a].

Series [DS22a, HYHZ22, JWH20, Mon21, NPD20, TXH+21].

Serre [GKPT22, TGM23, ZZXY20].

Set-based [KKY+21].

Set/embbeded [LPJ+23].

Set/VOF [ZOEL20].

Set/volume [SYL23].

Set/volume-of-fluid/ghost [SYL23].

Sets [KM22b, WD+21a].

Setting [EMS+21, TB21].

Settling [PC23].

Seven [PBM23, QWZ23].

Seven-equation [PBM23, QWZ23].

Several [MK20].

SGLD [LMZ23].

SGMCMC [LWZ22].

Shabat [MCVF22].

Shadowing [CW21, KP23].

Shafranov [ELS22].

Shallow [DS22a, DVB20, AG21, AMB22a, AR20, Bal20, BGG21, BP22, BCC+20, CKLZ23, CP22a, CNMB20, CN22, CTC22, DEN22, DSBFN+20, Don23, DT21b, DFP+21b, GDBFN+20, GCDT22, GLYW22, HMY22, HSM20, Hig22, HLL22, HXX22, HXL23, HH23, KGBT20, KCWZ22, KLZ20, LCL+22b, LM21a, LP23a, Liu20a, Liu21, LM20c, NW22, RHR20, SGB+21b, STG23, SFP+20, WCB20, YYX21, XZ23, ZZ23b].

Shallow-water [DS22a, AG21, Bal20, BP22, BCC+20, GCDT22, HMY22, HSM20].

Sham [GMB+22, HXX23, TMG20, VK21, ZNCZ+21, ZH23].

Shape [CEW23, DLZ23, DW21, AMG23, Bar21a, BPBM23, CGLZ23, GEvWD22, GKA22, GLZ20, HF23, NIS23, TBG20, VRK+21b, WZ23a, WDK22].

Shaped [PA21, PR20, PAG23, QAS20, SWH22, ZZ23].

Shapes [MS21, PTT22, TWY22a, ZQZ+23].

Shared [DFG+23, RA21].

Sharp [BCL+23, AuIL20, ALL22, BL22a, BBE+22, BSW+22, BSV22, CSM23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].

sharpening [CNC21, LLPL22, LLQ+23]. Shaw [CY22b], shear [AP22, CNMB20, PKW20], shearing [WN21]. sheath [BBC21, BMG+23].
SRD20, SAL+20, SOG+22, SMF20, SS22b, SS22d, SOBP22, TFCH22, TZ20, TTSP21, TBL20, Vre17, Vre21a, WGY20, WL20, WYHL21, WNB21, WF23, WLKR23, WCP23, WA23, WGU+22, WWN+22, XZK21, XBD+20, XHS23, YWN20, ZYS21, YYJ+23, YMY+22, ZXBS22, ZSM22, ZYL+23b, ZR20, ZZY+20, ZZX20, ZPS+21, ZF20, dKSA21, dSLdA+22, vNGB22, RBBD22.

Simulation-based [XKZ21]. Simulations [HSK+21, ARC22, ADP22, AK22, AP22, BAT23, BLL19, BLL20, BZ21, BBB20, BV20, BZ23, BW20, BD20b, BMG+23, BDB21, BPJ22, BBW+21, CHS20, CMGGS23, CDT22a, CCM+22, CDJM21, CCN21, CGZ23, CI21a, CI21b, CLP22, CBC+23, CPBB21, CA22b, DS23a, DC22b, DTB20, DF22, DGW22, EC20, Er22, EAK20, EFSH21, FSB20, FGL+22, GHNS21, HZTN21, HHL20, HL22b, HGB20, HT20, HL20c, HB21, JTK22, KSS21, KZBS22, ZSM22, ZYL+23b, ZR20, ZZY+20, ZZX20, ZPS+21, ZF20, dKSA21, dSLdA+22, vNGB22, RBBD22].

Simulator-free [KTBP20]. Simultaneous approximations [SKT20]. Simultaneously [CHZ22].

Smoothed [BHJV22, YKLL21, BOB21b, BOB21a, BKMC21, BTL23, FGZ20, GLF23, He22, LMZ+21a, OYK+22, SDA+21, ZRH20, ZZZH23, ZXD22, ZAA23, BZC+22, FQS23, HP21a, KEY20, LZPM22, LFL+22], smoother [SMV22], smoothing [CM20, CLT21, CMS23], smoothness [FPT20, Vev21, WWZ20, WWLZ21], Smoother [Kar22].

Solver [BLK+23, ASG+23, AMB22a, ARGK22, ATCS20, Bal20, BRZ+23, BDWC23, BDL+20, BG20c, Cai21, CSDL20, CDT22a, CSM20, CS21b, CTG23, CLL+20, CQA21, CNN22, DDVO21, Der23, EGG22, FAA20, Gao22, GRT18, GRT21, GB22b, GPSMH20, GDL23, GLCS23, HBBF20, HM21a, HKS20, HTL21, HP22a, HABG23, JTT23, JP23, JBF21, KM22b, KML23, KS21c, KCCR22, KAZ23, KCD+23, LCH20, LVK+22, LLW20a, LL22, LZS22b, LW22a, LZ22b, LHM20, LSZY20, LSC+20c, LFV23, LLD+22, MHLR22, MTO21, MOBR22, ME21, MM21b, MRZ21, Nis20b, Nis21, OGMV20, OBB22, PWH+22, PBN+21, Puk20, RMA20, RS20b, RBPRST20, RAB23, RB22, RAZA21, RE22, SLF32a, SL22a, SAL+20, SMW+22, SACT21, SH22, TTY22, TBM22, TSP22, UBT22, VMO21, WDS22, WGS23, WLL+23, XJN+20, XC20, XHX22, XZ23a, YLW21, YA21, YFLL21, YM20, ZQS+21, ZQL+22]. solver [ZO21, ZGK+22, dSLdA+22, vHP22]. solvers [Cap23, CSA21, CC22b, GMRS20, GMA23, GKA22, HP23, HPPZ20, KBCH20, KS22c, KS22b, KEM23, LKM22, LLS20, OPHY23, PP22a, QSZB20, RUG20, RHR20, SGMT20, SGB+21b, SPF21, hSML23, TKGB23, WHN+20, WH22a, dLF23].

some [CSASS21, DM21, FBCD22, TPPA22, YL21b]. Sommerfeld [KS21b].

sonic [AG21, CWX23, YWN20, YI23]. sorption [ACR23]. sound [AMM+20b, PCD23, TWY+22b]. source [BCIR22, CGLZ23, Don23, ER22, FZ21, GBLT20, HL20b, JL21a, KTDG22, KHS20, RrTBI20, SHM23b, TWY+22b, WHN+20, WZZ23, ZL23, ZH20]. sources [Ara20, ADM+21, BS20, KSHJ20, LCL+22b, LRW21b, WGB22]. Space [BBQ+21, CBA+21, KSW22, PC20, TCR+20, An21a, AMM20a, BTEK22, CCWX22b, DGW20, EDC+23, EMS+21, GJLD20, HPA22, HLB20, HCF+23, HR20, HCL20, KSTT22, LCH20, LDM+21, Liu20b, LN21b, LY22c, MFS+22, MPMD20, OGVM20, PDM23, PS22b, PM22b, PPHO22, VRK21a, WX20, XLX20, XLLH21, XY20a, VZ23, YLNT20, YWLL21, YZZZ22, ZJZK20, ZL22b, ZLW23, BDFT23]. space-fractional [DGW20, YWLL21, YZZZ22, ZJZK20]. Space-homogeneous [PZ20].

Space-time [BBQ+21, CBA+21, KSW22, PC20, TCR+20, An21a, AMM20a, BTEK22, CCWX22b, DGW20, EDC+23, EMS+21, GJLD20, HPA22, HLB20, HCF+23, HR20, HCL20, KSTT22, LCH20, LDM+21, Liu20b, LN21b, LY22c, MFS+22, MPMD20, OGVM20, PDM23, PS22b, PM22b, PPHO22, VRK21a, WX20, XLX20, XLLH21, XY20a, VZ23, YLNT20, YWLL21, YZZZ22, ZJZK20, ZL22b, ZLW23, BDFT23]. space-fractional [DGW20, YWLL21, YZZZ22, ZJZK20]. Space-homogeneous [PZ20].

some [CSASS21, DM21, FBCD22, TPPA22, YL21b]. Sommerfeld [KS21b].

sonic [AG21, CWX23, YWN20, YI23]. sorption [ACR23]. sound [AMM+20b, PCD23, TWY+22b]. source [BCIR22, CGLZ23, Don23, ER22, FZ21, GBLT20, HL20b, JL21a, KTDG22, KHS20, RrTBI20, SHM23b, TWY+22b, WHN+20, WZZ23, ZL23, ZH20]. sources [Ara20, ADM+21, BS20, KSHJ20, LCL+22b, LRW21b, WGB22]. Space [BBQ+21, CBA+21, KSW22, PC20, TCR+20, An21a, AMM20a, BTEK22, CCWX22b, DGW20, EDC+23, EMS+21, GJLD20, HPA22, HLB20, HCF+23, HR20, HCL20, KSTT22, LCH20, LDM+21, Liu20b, LN21b, LY22c, MFS+22, MPMD20, OGVM20, PDM23, PS22b, PM22b, PPHO22, VRK21a, WX20, XLX20, XLLH21, XY20a, VZ23, YLNT20, YWLL21, YZZZ22, ZJZK20, ZL22b, ZLW23, BDFT23]. space-fractional [DGW20, YWLL21, YZZZ22, ZJZK20]. Space-homogeneous [PZ20].

Space-time [BBQ+21, CBA+21, KSW22, PC20, TCR+20, An21a, AMM20a, BTEK22, CCWX22b, DGW20, EDC+23, EMS+21, GJLD20, HPA22, HLB20, HCF+23, HR20, HCL20, KSTT22, LCH20, LDM+21, Liu20b, LN21b, LY22c, MFS+22, MPMD20, OGVM20, PDM23, PS22b, PM22b, PPHO22, VRK21a, WX20, XLX20, XLLH21, XY20a, VZ23, YLNT20, YWLL21, YZZZ22, ZJZK20, ZL22b, ZLW23, BDFT23]. space-fractional [DGW20, YWLL21, YZZZ22, ZJZK20]. Space-homogeneous [PZ20].

Space-time [BBQ+21, CBA+21, KSW22, PC20, TCR+20, An21a, AMM20a, BTEK22, CCWX22b, DGW20, EDC+23, EMS+21, GJLD20, HPA22, HLB20, HCF+23, HR20, HCL20, KSTT22, LCH20, LDM+21, Liu20b, LN21b, LY22c, MFS+22, MPMD20, OGVM20, PDM23, PS22b, PM22b, PPHO22, VRK21a, WX20, XLX20, XLLH21, XY20a, VZ23, YLNT20, YWLL21, YZZZ22, ZJZK20, ZL22b, ZLW23, BDFT23]. space-fractional [DGW20, YWLL21, YZZZ22, ZJZK20]. Space-homogeneous [PZ20].
stabilized-Invariant

stable

stable-grid

steady-state

steady-state-preserving

steepness

Stein-based

stellarators

stellarator

stellarator

stellarator

stellarator

stellarator

stellarator

stellarator

stellarator

stellarator

stellarator
Dup21, FADJ20, GQF23, HLA20a, HSXZ21, He22, HPW21b, HLXZ21, KBS+21, KWH+23, KS21c, LLJC23, LLD20, LSW20, LSC20b, LOL22, LWW21b, LT20b, LWW21, LCF+23, MWY+20, MJ23, NG22, NLZ+22, NZXM21, PBVC22, QKG21, RMJ23, RB21, SX20, TF20, VSS21, WCF+21, WLL+23, XF23, YH22a, YK20a, YWLL21, ZRH21, ZSL+23, ZZY+20.

Structure-preserving [DWZ20, GNZ23, HBG+21, HPRW20, QXYZ23, ZXX23, AKKM23, BDII+21, BDPI23, BRSH21, KS21c, LLJC23, LWW21, SX20, XF23].

Structured [AAH+20, APR22, MRYS20, MSWH22, NGZD22, RAZA21].

Structures [BBK23, BFST23, CCER20, DAJ22, DYGC22, FCP21, GZW20a, HYSS22, HRY+22, IT22, LZLZ21, MMSW22, NZXM21, QSZB20, TF20, YK20a, YXL22].

Studies [KSW22, QWZ+23, SES21, SNW23].

Study [AMGCL21, Lak20, AMK+21, BJL21, CPGD20, DS21, FCY+20, GB22a, LTK+22, MH22, NMN23, POS+20, Par22, RWY21, SGLP23, TZ20, TGM23, VGG23, ZQS+21, ZQL+22].

Sub-cell [HZ20, MH22b, MCBA20, OLP23, PS22b, QJQW22, ZB21b].

Sub-cell [HZ20].

Sub-cooled [MCBA20].

Sub-grid [HZ20].

Sub-grid-scale [HZ20].

Sub-domain [HV23, SSS23, XLLH21].

Subgrid [ASSZ21].

Subgrid-scale [ASSZ21].

Subiterative [JLC21].

Submarine [DSBFN+20].

Subset [RRD22].

Subsonic [EK21, KKS21, LCD23, SZ21].

Subspace [LXZ23, CC22a, GRT18, GRT21, KAC22, XCL22].

Subspaces [CCMC20, PB20b].

Substrates [MN20, XLAB22].

Substructure [HRMY20].

Subsurface [AT20, CCHS20a, CHF21, CY20, CYYS22, JD23, LY20, ND23, TLD20, TV22, XZRW21].

SubTSBR [ZL21c].

Subwavelength [AH21, DHM21b].

Successive [SL22c, SL23].

Suitable [LHFH20].

Suite [PS22c].

Sum [LSC20a].

Summation [LNF20, SGT23, AAL+21, CT22, DFW22, GN20, LLN22, MKR+20, MKR+20c, ZM20, MR23a, PBN+21, WZZ21a].

Summation-by-parts [SGT23, AAL+21, CT22, GN20, LLN22, MKR+20, MKR+20c, ZM20, PBN+21, WZZ21a].

Super [LKM22, SSMA21, CX22b, KMM23, WSA22].

Super-convergence [LKM22, KML23].

Super-convergent [CX22b].

Super-Gaussian [WSA22].

Super-time-stepping [SSMA21].

Superconductors [ER22].

Superconvergence [LCBW23].

Superconvergent [LCW20].

Supercritical [WH22a, YFY22, HHVM20].

Supers [CF20, XMY22].

Supersonic [RE20, CPX21, EG23, JMAK22].

Supersonically [Ian20].

Supervised [RK21].

Supplemental [LE21b].

Supplemental-frequency [LE21b].

Suppressing [LKG+20].

Surface [CHL20, Don23, GKA22, RPA22, RGLN22, ADM+21, BGR20, BDB21, BCC+20, BTL23, CN22, CPGD21, CMNS21, DDV20, DZL+22, DENV22, GQF23, GMMS22, HPW21a, HRR21, HMO+20, HPS23, HT20, HT21b, HXQL23, Ian20, IMJ20, JKZS21, JRY+20, JL21b, KS11, KH20, LHT+23, ZSL+23, ZZY+20].
LB21, LLF23, LMZ+21a, MJJ21, MKH20, MSK+22, MM23, MKM23, PSL20, Pop20, SHM+23a, VSB+22, WR23c, XJN+20, XC20, XLHB22, XZWH22, YKLL21, YJJ+23, ZYL23a, ZSY21, ZAA23, vdEW23, YK20b.

surface-gradient [CN22], **surface-plasma** [VSB+22], **Surface-resolved** [BGLN22], **surface-tension-driven** [XJN+20], **surfaces** [AAM20, BFP21, CL20d, GTKA20, GKA22, HXZ23, KBCG20, KV23b, KT20, LCWJ20, LZLZ21, LY20b, QERT20, SOSM20, TWY22a, TFC22, TSS20, XFL21, XY20a, YL20, YQO20, dKSA21].

surfactant [ACR23, YTK22].

surfactants [FZ23, ZKY+20].

Surrogate [ELSV22, LWY23, WCZ22, ZTS20, CPH+22, JD23, QH23, LTM20, WLS22].

surrogates [KGSK23, RK21].

surrounding [XLT+20].

survey [KLG+22].

suspension [LYL20].

suspensions [KVQE21, OLP23, QAS20, STWK21, TACO22, UD22, WNB21, WSS22, WDK22, YCM+20].

sweep [BVR22, BNT23, PM23, TR21].

sweep-based [BVR22, PM23].

Sweep-Net [TR21].

sweeping [DMRG22, EEG22, GHY22a, LJ22, LZZ21a, LA21, TEA+23].

sweeps [AAH+20, VRAM21, TZN2D20].

swimmers [AP23].

symbolic [BSCG22].

Symmetric [BEP+20, BCL+23, Bre20, BCC+20, GDLL22, HSK+21, HLY20, LKM22, Li22, NFA21, Nor22b, QWZ23, XHD21].

Symmetry [BBA22, GWC+22, OL23, ZNCZ+21].

Symmetry-preserving [OL23].

Symplectic [AKK20, TXH+21, Baj23, CS20, CHSS20, HHL22, SXS22, VK22, Zha22].

symplecticity [SX20].

Synge [CKT21].

synthesis [CHG+20, DCSG22].

synthetic [ZPS+21].

System [NCC21, ATCS20, Bat20b, BCF22, BGH21, BCC+20, BBL23, CY23, CH22, CMS+22b, DD22b, DWWZ21, EH22b, GHHR22, GLLM22, GCL+22, HS23, ILX22, KN20, LCG22b, LLN21, LNZ21, LPT+20, LL21d, LCW23, LCWB23, LCJ+20, MRK+20b, MCV22, MBTS20, NDH20, NMR+22, PGM22, PBVC22, SMY22, SZ21, TZN+20, Tu22, YTK22, YH22a, YRC+21, YZW23, ZG21].

Systematic [MD21, FSWA22, YXL22].

systems [AHR20, AB23, Ale23, AAKW20, AKKM23, BCWD21, BDZ23, BTK22, BRS22, BPT+20, CMP+21, CMPR23, CNBH23, C20b, CM20, CL20c, CX21, CS21b, CBA+21, CMXX23, DFJ22, DSZ22, DGL+23, EDLF20, EPL21, EPL22, FAD20, GCLM22, GDLL22, GKL21, GZ20, GS23, GGH+23, GPS20, GLT+20, HL21, HJIL23, JL20, KHK20a, KG20b, KP23, KUO23, KWF20, LC20, Li22, LGZ23a, LBT+23, LSH20, LSCL+20, LA21, LCL+23a, MD20a, Mar23, MH21, MH22, Mi23, MN22, NV22, ND23, NG20, PPP21, PC21a, PM22, PGCC+22, SGB+21b, SSW22, SM22, SWM+22, TJ22, THKT21, TXH+21, VSS21, VN21, WMTQ20, WHN+20, WKA+20, XGQ+23, YD20, YAX20, ZS22b, ZQC+23, ZYZ+23, ZH20].

tackle [ZL21c].

tagged [DES23].

Tahtah [MMSW22].

tailored [CCM+22].
tangency [GLWY22], tangent [WYP22], tangential [XFL21], tank [RB21], target [AN21b, LHT21, RtTB20, Sab20, WK20], target-fixed [LHT21], target-specific [WK20], targeted [GLF23, PLL21], targets [USRH20], task [TSP22, ZO21], Taylor [CMP21, CMPR23, CCCH23, Mon21, MNM23, RS20a, RSK21, SSS22, TXH21, WCY20], TD [KBCH20], technique [ADK21, EAK20, GKPT22, KSK21, LGMV22, LZPM22, LLPL22, LLQ23, PBC22, QG21, RN23, TSS20, VEC21, XSC21, YX22, ZDW22], Techniques [MVO22, OGG20, FCW21, FMOJ22, FM23b, FM23a, JKZS21, JRY20, KC20b, Li23, MYJ23, MYL21, RBPRST20, VLC20, VK22, WL20, YG21, ZWZL22], technology [LLF23], teleportation [PV20, SH22], telescopic [BR22a], temperature [LPM20, SLF23a, SEG21a, SW22], Temporal [ATF23, EPV21, LLB23, SOG22, CA22b, HGB20, HL20c, JTT22, KLF22, LP21, LL21a, LLW20a, LSZ23, WWFM22, XK22, YH22a, ZCY22, ZHY22, ZB21c, ZLW22b], temporal-difference [ZCZ22], Temporally [KJ22, MD20c], ten [BKY21], ten-moment [BKY21], TENO [LXF22, NME23, TXWX22, YZZ23], tension [BCC20, BTL23, CPGD21, CHL20, DFW22, HP21a, HT20, HT21b, IMJ20, LMZ21a, MJ21, MKM23, XJN20, YLZ23a, ZSY21], Tensor [BVT20, DES23, HKKS21, KAZS23, AT20, CHKL23, CN21, CDZ23, DV20, DV21, GQ22, Kho20, KHM22, LHZ22, LHZ21, QP21, RV20, SVW21, SLQ22, TL20, TSSO20, WGB22, XY20b, XZC21], Tensor-product-Thomas [KAZS23], Tensorial [LQX22b, HXZ23], tensors [GDLL22], term [BZC22, Don23, GBLT20, HNZ23, MFTZ20, SKT20, SPAC23, WHN20], terminus [HPS23], terms [AOR22, BS22a, BKON23, JJ21, KSHJ20, PR20, SL23, SMS23, WZ21a, ZH20], ternary [DWW21], terrain [Bal21], terrain-following [Bal21], Test [RA21], tests [SDA21], tetrahedral [AE20, GKG20, JF20, Nis20b, NW23, YCH21, ZH23, ZS20], tetrahedron [CIMG21], TgNN [XZRW21], TgNN-wf [XZRW21], their [BCJ20, BB21, DLMZ22, EDC23, GQ22, KMS20, LLSD20, MAPS20, NdlLPL21, PA20], theorem [ODM23], Theoretical [TLJ22, KNG22, KGN22], theories [EL23], Theory [ACD23, BWG20, CHZ21, GDF21, AB23, AFL22, CSA21, FM20, HJK21, Ish22, NTSM20, RPDO21, SOSM20, SL20b, TMG20, VGG21, VCCN23, WCZ22, WLM20, TYBW23, TG20, WLC23], thermal-compositional-reactive [CCW20], thermal-fluid-structure [WLL23], thermally [XYL22], thermo [BBMA23, HLA22a], thermo-gas-liquid-solid [HLA22a], thermo-poroelastic [BBMA23], thermoacoustic [LBN21], thermochemical [FCW21], Thermodynamically
thin [ACML20a, ACML20b, BW20, BBKB21, CCPS21, CMPZ22, FCGKR23, HYSS22, HCL22, Hig20, LWL22, PH22, QERT20, VSS21, VACE21].

thin-film [ACML20a, ACML20b, PH22].

THINC [KCX+21, TFWX22].

Three [KB23, QLY21, Unf21, XS22b, LL21a, LWYY22, NW23, Toh23, ZL21b, ZS20, vLN21, NV22].

Third [KB23, QLY21, Unf21, XS22b, LL21a, LWYY22, NW23, Toh23, ZL21b, ZS20, vLN21, NV22].

Third-order [KB23, LL21a, NW23, Toh23, ZL21b, ZS20, vLN21, NV22].

Thomas [BW23, KAZS23].

thoracic [TVL+22].

three-dimensional [CS21c, TTP22, ZCY23, Cam21, CCM+22, FSW22, FZ20a, FZ20b, GHP+23, JLL22, LCG23, LSW20, LZC+20, LjZK21, LRT22a, LC23, OYK+22, PJR23, PLV20, RZ23, SL20a, SOV21, SKCM22, Tak23, VCNC+21, XY20a, XS20, YLNT20, Yan21b, YSCM21, YK22, YSN23, ZGL20, ZFG21, ZWZL22, ZPGR22, ZSsC+22, ZXY22].

three-domain [ABH21].

three-field [BGS22a].

three-phase [GPSMH20, ZY20b, ZSsC+22].

three-point [BSA22].

three-scale [DYGC22, TSCM21].

three-way [LW20b].

throughput [ZO21].

Tightly [JHT23].

tilts [PV20].

time [LLTY23, ILTZ20, ILNZ21, LBT+23, Liu20b, LD20b, LHWZ21, LR22, HOL23, LN21b, LY22c, MDG20, MPR22, MME21, MYL21, MTB22, MMR22, MMMD20, NA22, NH20, PK22, PB20b, PM20, PM21b, Ph22, PTT22, PM22b, PC22, Qia22, QHLL20, QCZ22, QW22, RMA20, RLT22, RC20a, RV20, RC20b, STEK17, STEK22, SS22, Sev21, SWF21, SSMA21, SES21, SFGNMG22, SP22, Tak23, TCS22, TFCCH22, TCR+20, TB23, Unf21, VRK21a, VLV20, VdGP20, WRBK20, WMTQ20, WTX+21,
LYS22b, LLY$^{+}$23, LM21c, MS20a, MH22a, MYY$^{+}$23, MFS$^{+}$22, NdILPL21, OCGT22, SS20, SFP$^{+}$20, SH22, WGS$^{+}$20, WZCK21, XSSS22, XJS21, XC23b, ZCQ19, ZCQ20a, ZSZ23, YLZ23a, ZCCN23, ZLW$^{+}$21, CL23].

transfer-based [LJ22], transfer-learning [ZLW$^{+}$21]. transfers [GMD22].

transfinite [GD20, ZL21a]. transform
[DC22a, JLRZ20, MCVF22, MTWBT21, Per23]. transformation

transport-reaction [ZZ20]. transportation [TT22]. Transported [PJW21].

transports [CDZ23]. trapezoidal [IRT22]. trapped [MX22, SFP$^{+}$20].

[TLKK23]. triple [EGN23, NA22]. triple-deck [EGN23].

triple-porosity-Stokes [NA22], triply [LZL21]. Trotter [ZOG21b].

Trubnikov [SAH$^{+}$22]. Truly [Bar21b]. truncated [FA22, RH22].

Truncation [BSR20, LRV22]. tsunami [FFGRLS$^{+}$20]. tube
[HHVM20, HJH$^{+}$21, MCBA20, SOBP22]. tubes [CCPS21]. tubular
[KWS22]. tumor [LHL$^{+}$22]. tuned [DHR20]. turbomachinery [AFP22].

turbulence
[ASSZ21, BFB20, BAB21, BGS$^{+}$22b, CDBS21, CPX21, DGW22, FJG$^{+}$20, GRC$^{+}$22, GCSH22, KL20, KFP$^{+}$22, KKSY21, LMFV22a, LMFV22b, MND$^{+}$20, MH22b, MYMT23, PPH22, SSG21, SFNMF$^{+}$21, TSS$^{+}$20, WGY20, WCP23, WZSK22, YcD20, YcD23, YGJ21a, YGJ21b, ZXLH23, ZAW$^{+}$20].

turbulence-induced [PPO22]. Turbulent
[S22, BJR22, BDB21, BPJ22, CPX22, CMH20, CM20, Che20, CF22,
two-species [RWDG22]. two-stage [BJZ1, LC22, W22b, ZW +22a]. two-temperature [SEG21a], two-way [CZ22b, CB22, PEA20, PA21, ZMZY23]. type [CWY21, sCpLL +22, CLS20b, CC22b, CNC21, ER22, GCLM22, HCDm23, Kar22, KLG +22, LL21b, LZ22a, LZ22b, LLTY23, LW20a, LLS20, Par22, QPW21, SDF21, XZC21, YZK23, ZOW20, ZYS +23, ZQS20, ZS20, HK20]. type-I [ER22].

unstructured [MB20, BGF20, BM22, BCP22, CAF +22, CPT23, CZLC20, CW22a, CZLC22, CDX +21, CRF +21, CCB22, CA22b, DVS22, DBT +20, DSZ22, FL21, FBCD22, GCLM22, GK20, HP23, HM21b, HRWP22, HX23, Jai22c,
unsupervised
[CCCL20, CCN21, KL20, KLG22, SACT21].
updated
[Li20].
updated
[BLM22, LNYD20, PCA23].
Updating
[SBVW20, DLZZ21, EKPS23].
Upper
[BEP20].
upscaling
[KLPR20, VLC20].
uptake
[KWS22].
upwind
[CKLZ23, CF21, CCH23, CKN22b, DGW20, GKL21, KLZ20, KZX23, MD21].
upwinded
[WCB20]. Use
[GMRS20, JD23, BT22, FTPB23, SC22c].
used
[BFS23].
Using
using
utilizing
[EMS21, JY22, JYK22, ZJ21, ZL21a]. UWC [SFNM21].

V [XCL21]. vacancies [KAC22]. vacuum [HHVM20, YYM22]. Vaes
[Ab20]. Validation [GMMS22, KLPR20, RB21]. validations
[SLOZ21b, SLOZ21a]. value
[CL20c, GD20, MH22a, MBM22, NNJ21, Nor22a, RFZ22, RPB2T20, RN23, SY21, SNW23, XM20, ZG21]. values
[WZ23b]. vanishing
[MGMV22, MAPS20]. Vanka
[SMV22]. Vapor
[MR22, MV22]. vaporization
[DU20, LMZ21b]. var
[PT23]. variable
[BJ21, CBY23, GGB20, GHP23, GCL22, HHRA19, HL20a, HWDM22, LEM21, LVK22, LC20, LPP20, LJ21, LLLZ21, LMZ23, LMZ21b]. using
utilizing
[EMS21, JY22, JYK22, ZJ21, ZL21a]. UWC [SFNM21].

[Hig20, SS22b, SS22d, CDM+23, DM21, DHR20, EDEV23, JRD22, KNT22, LJT+23, LRT13, LQQM21, LFT+20, MGV22, MPA20, QPW21, SH21, SS22c, SLNM21, SLQW22, LZC21, ZB21b, dv23]. Viscous
[LCP21a, BZC+22, CSS21, CBF22, DVS22, DS21, FBS23, FG22, HP21b, JF20, JDB+23, KCT+23, LZX+22b, LQXM22, LGL23a, LSX+23, PS22a, PR20, QAS20, REC+22, hSLMS23, TF20, UD22, WFT22, WNB21, YP22, ZMY21, ZCY20, ZLB22, WK21b]. Viscous-plastic [LGL23a, hSLMS23].
VISVE [WK21b]. Vlasov
[ARGK22, AC23, ATCS20, AF23, BZC+22, CCPS21, CBF22, DVS22, DS21, FBS23, FG22, HP21b, JF20, JDB+23, KCT+23, LZX+22b, LQXM22, LGL23a, LSY+23, PS22a, PR20, QAS20, REC+22, hSLMS23, TF20, UD22, WFT22, WNB21, YP22, ZMY21, ZCY20, ZLB22, WK21b]. VOF [ADJ23, CS21c, DEvW22, GPGMH20, KCT+21, LWZ+21, MMZR21, WYS20, ZNZ22, ZOE120, SLF23a].
VMS [PCB22].
VMS-based [PCB22]. Volume
[BGNZ22, BLM22, CMPZ22, DJ20, FMB20, KIB21, MS20a, MKB20, SY0S19, SY0S21, SLOZ21b, SLOZ21a, TNB21, YNT20, ASJ23, AZV23, AE20, ADM+21, Baj23, BVJ22, BAK22, BG21, BFI22, BSA21, BDL+20, BDT+21, BL22b, BSK+23, BR22b, BP21, Cam21, Cap23, CNMB20, CZLC20, CW22a, CZLC22, CGZ23, CLXS23, CSY23, CNMC21, CA22b, DDR22, DVS22, DHK23, DEM20, DGW20, FTP20, FZQ21, FGL+22, GYW20, GTDB22, GHY22b, QS20, GS20, GEvWD22, GLK20, HZTN21, HVB21, HST21a, HRWP22, HX23, IMI20, Jen20, JH23, KDMJ+22, KDJ+22, KB23, KCK21, KS2+21c, LW21, LFP+21, LDr22, LOL20, LL22, LSZ20, LZLS21, Lui21, LYS+2b, LSY+23, LFW23, LFH20, MYJ+23, MT21, MD22, NCQ22, NW20, Nis20a, Nis22b, NW23, NVK+22, OLM23, OGG20, PWXY22, DAGL23, PGPB21, PL22, RV22, RRHH+21].
Vortex
[BGNZ22, Baj23, LW21, LW21, LH21, HZT21, IMJ20, KDMJ+22, KDJ+22, KB23, KCK21, KS2+21c, LW21, LFP+21, LDr22, LOL20, LL22, LSZ20, LZLS21, Lui21, LYS+2b, LSY+23, LFW23, LFH20, MYJ+23, MT21, MD22, NCQ22, NW20, Nis20a, Nis22b, NW23, NVK+22, OLM23, OGG20, PWXY22, DAGL23, PGPB21, PL22, RV22, RRHH+21].
Volume-preserving [BGNZ22, Baj23, LW21, LW21, HZT21, IMJ20, KDMJ+22, KDJ+22, KB23, KCK21, KS2+21c, LW21, LFP+21, LDr22, LOL20, LL22, LSZ20, LZLS21, Lui21, LYS+2b, LSY+23, LFW23, LFH20, MYJ+23, MT21, MD22, NCQ22, NW20, Nis20a, Nis22b, NW23, NVK+22, OLM23, OGG20, PWXY22, DAGL23, PGPB21, PL22, RV22, RRHH+21].
Volume-dominated [MM21a].
Wachspress [LCL22a]. wakefield [BD20b]. walk [CC20]. Wall
[KS21d, BDLC23, CDBS21, CLW22, DA23, DOL23, HP23, HBF22, HLA22b,
IK23b, LN22, LZX+22b, LWWH23, NFL+21b, Nis21, PEA20, PO21, vNGB22, DA23]. **wall-bounded** [HBF22, HLA22b, PEA20, PO21].

Wall-modeled [KS21d, vNGB22, DA23], **wall-resolved** [LWWH23].

Walls [AF20, LP23b], **WAN** [OWHN22]. **Wang** [CC20]. **Wannier** [MO22]. warm [ZHHR23]. warm-start [ZHHR23]. Wasserstein [GN22, LLW20b, WXZ22].

Water [DVB20, AG21, AM22a, AR20, Bal20, BGGM21, BP22, BCC20, CKLZ23, CP22a, CNMB20, CN22, CZZ20, CTCS22, DEN22, DS22a, Don23, DT21b, DFP+21b, FSD20, GCDT22, GLWY22, HMV22, HSM20, Hig22, HXX22, HXQL23, JH23, KGBT20, KMS20, KZQ20, KLZ20, LP23a, Liu20a, Liu20, LM20c, NW22, SGB21b, SGT23, WZ23b, WCB20, YXY21, ZXX23, ZBY+23, ZZ23b].

wave-mode [WZ22]. **wave-packets** [EGN23].

wave-particle [LLZ+20a, LZX20, XCL+21]. wave [ALM23, AD21, AP20, An21a, AMM20a, AHWZ20, BDT21, BBMT21, BBMA23, BDB21, BFL20, CDL21, CHSS20, CP20, CELV22, DHMT21, DH20, DGS20, DZ23, Dup21, DFW22, EGN23, FL21, FGD21, GC20b, GAC20, HYQ20, HSS2, HL20a, JHY21, JLRZ20, KTDG20, KSTT22, KS22a, KMS20, LSC20a, LPP+20, LSWL20, LLZ+20a, LC22, LD20b, LZX20, LL23b, MDG20, MGL21, MMRP22, NTSM20, NT20, NT23, OP20, OKTD21, RB21, SL22c, SL23, SCdH20, TBM2, TPAA22, TLB20, VEC21, WZ22, XG22, XBR21, XCL+21, YGJ21a, YGJ21b, ZMZ23, ZJS22, ZDCZ20, ZLW22b, ZLW23, ZPK22, van22].

wave-structure [RB21]. wavefield [LKvM+22]. waveform [AN21b, AL21, BS20, CJT+20, DW21, EGG22, HRG20, LY23]. waveguides [NP20, SML20].

Wavelet [LH21, HM21a, HDML23, HHRA19, Pan20b, ZDC20].

Wavelet-based [LH21]. wavenumber [FCL21, KK22b]. wavepackets [GR21].

waves [AMM+20b, CLW20, CLJ+20, DVO21, DLM+23, D22, KFSM21, LMHL21, PB20a, Pan20a, SSS22, TGM23, TTP22, VEC21, WGB22, WZ23b, WGU+22, YKD20].

way [CZ22b, CB220, JHJ20, LW20b, PEA20, PA21, RR22, ZMZ23, ZT23].

WCAWE [RC23]. **WCNS** [WZW23]. **WCSF** [LZ+22b].

Weak [BBMT21, MB21, TLLK23, XZRW21, ZBYZ20, BDWC23, CWW22, CAG20, Hec21, NTSM20, OWHN22, PT23, Svi22, ZZ20]. weak-constraint [PT23].

weight [DW23, GC20b, GAC20, KKN20, SCdH20].

weight-adjusted [GC20b, GAC20, SCdH20]. Weighted [LS21, SSK20, BSA22, BS21, BFG23, CLT21, CYY21, CTCS22, CMNS21, GAB+22a, HHL20, KR22, LKEM21, LCW20, LWR20, Nis20a, PDM23, SAP22, WQZP20, WTX+21, WTTZ23, WABK21, LKEM21]. weighting [CSLC21, SBJ+23]. weights [CD23, ZQ20]. welding [CFS+22].

Well [AR20, CMPR23, FP23, GLK20, HKJ21, KNG22, KLX23, MN21, PPC21, ZZ23b, CKLZ23, CTCS22, DEN22, DSBN+20, GBL20, GGH+23].
References

Abgrall:2021:P

REFERENCES

REFERENCES

Abgrall:2020:LEA

Abgrall:2021:E

Ackermann:2021:MST

Akian:2022:LBK

Archibald:2023:SMP

REFERENCES

REFERENCES

Computational Physics, 418(??):Article 109561, October 1,
2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
article/pii/S0021999120303351. See [ACML20b].

[ACML20b] Tom H. Anderson, Benjamin J. Civiletti, Peter B. Monk,
and Akhlesh Lakhtakia. Coupled optoelectronic simulation
and optimization of thin-film photovoltaic solar cells. Journal of
Computational Physics, 407(??):Article 109242, April
15, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-
science/article/pii/S0021999120300164. See corrigendum
[ACML20a].

[ACR23] Clarissa Astuto, Armando Coco, and Giovanni Russo. A finite-
difference ghost-point multigrid method for multi-scale mod-
ing of sorption kinetics of a surfactant past an oscillating
bubble. Journal of Computational Physics, 476(??):??, March
1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
article/pii/S0021999122009433.

and interface penalties for narrow-stencil finite difference ap-
proximations of the Laplacian on curvilinear multiblock grids.
Journal of Computational Physics, 408(??):Article 109294, May
1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
article/pii/S0021999120300681.

[AD21] Martin Almquist and Eric M. Dunham. Elastic wave propaga-
tion in anisotropic solids using energy-stable finite differences
with weakly enforced boundary and interface conditions. Journal of
Computational Physics, 424(??):Article 109842, January
1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
article/pii/S0021999120306161.
Aghili:2021:HDC

Ancellin:2023:EGT

Abbaszadeh:2021:ROV

Aubry:2021:ASS

Antonietti:2022:MLB

AlJahdali:2022:PRA

Abdulle:2022:LAD

Athkuri:2020:NA

Ammosov:2022:GMM

REFERENCES

Alauzet:2022:PAA

Abreu:2023:RFP

Abreu:2020:NRP

Afanasiev:2021:LIT

Ammari:2021:TDH

Adriaens:2021:ASM

Amini:2023:IMN

Akram:2020:PAR

Appelo:2020:EBD

Ammari:2020:OSN

REFERENCES

REFERENCES

Amiri:2020:AI

Alexiadis:2023:MAP

Angus:2022:NEC

Agrawal:2022:RFH

An:2022:TSE

Aberglo:2023:ASO

Amor-Martino:2021:SAN

Ahmmedo:2021:CSM

Antoniettii:2020:STD

Antoniettii:2020:HOD

[AMM+20b] Paola F. Antonietti, Ilario Mazzieri, Markus Muhr, Vanja Nikolić, and Barbara Wohlmuth. A high-order discontinuous Galerkin method for nonlinear sound waves. *Journal of Computational Physics*, 415(??):Article 109484, August 15,
REFERENCES

REFERENCES

Anonymous:2020:Mc

Anonymous:2020:Na

Anonymous:2020:Oa

Anonymous:2020:Sa

Anonymous:2020:Ab

Anonymous:2020:Ad

Anonymous:2020:Db

Anonymous:2020:Fb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2021:Mc

Anonymous:2021:Na

Anonymous:2021:Oa

Anonymous:2021:Sa

Anonymous:2021:Ab

Anonymous:2021:Ad

Anonymous:2021:Db

Anonymous:2021:Fb

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano21q</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2022:EBm

Anonymous:2022:EBn

Anonymous:2022:EBo

Anonymous:2022:EBp

Anonymous:2022:EBq

Anonymous:2022:EBr

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Anon Anonymous:2023:Mb

Anon Anonymous:2023:Md

Anon Anonymous:2023:Sb

Anon Anonymous:2023:EBa

Anon Anonymous:2023:EBb

Anon Anonymous:2023:EBc

Anon Anonymous:2023:EBd
REFERENCES

REFERENCES

Anonymous:2023:EBk

Anonymous:2023:EBl

Anonymous:2023:EBm

Anonymous:2023:EBn

Anonymous:2023:EBo

Anonymous:2023:EBp

REFERENCES

Anonymous:2023:EBq

Anonymous:2023:EBr

Anonymous:2023:EBs

Abgrall:2022:REE

Amlani:2020:SHO

Abdulla:2021:IPL

[AP21] Ugur G. Abdulla and Roby Poteau. Identification of parameters for large-scale kinetic models. Journal of Computa-
REFERENCES

Armstrong:2022:NSC

Abouhussein:2023:CFE

Almeida:2022:APS

Arpaia:2020:WBR

Artemov:2021:SAM
Anton G. Artemov and Emanuel H. Rubensson. Sparse approximate matrix–matrix multiplication for density ma-
REFERENCES

Azaiez:2021:CID

Abgrall:2023:DGS

Abba:2020:DAC

Aurentz:2020:SUS

Abrantes:2020:CRU

REFERENCES

REFERENCES

Bajars:2023:LSN

Beilina:2022:AFE

Baldauf:2020:DGS

Baldauf:2021:HEV

Barnes:2021:ISF

D. C. Barnes. Improved C^1 shape functions for simplex meshes. *Journal of Computational Physics*, 424(??):Article 109852, Jan-

Bj"orsj"o:2022:CEC

Bj"orsj"o:2023:dds

Barsukow:2021:TMD

Barnes:2022:TED

Batista:2020:MIS

Batista:2020:PMM

Bacigaluppi:2023:PLH

REFERENCES

Bresch:2023:MJC

Bonetti:2023:NMW

Bajgiran:2022:UQK

Bastidas:2021:NHN

REFERENCES

BenBader:2021:STM

Berrone:2023:VES

Brown:2021:HOP

Bresch:2020:ASS

Bessemoulin-Chatard:2022:SCD

REFERENCES

REFERENCES

Barua:2023:SIP

Boscheri:2022:CCI

Bertaglia:2021:UQV

Boscarino:2022:LVG

Both:2021:DDL

REFERENCES

Bode:2023:HSC

Becache:2023:HSM

Boscheri:2021:SPS

Boscheri:2020:SOA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Berger:2021:SRA

Balsara:2020:ECW

Betteridge:2021:MPH

Bellotti:2022:MFA

REFERENCES

Beaufort:2020:ASM

Berrone:2022:CNC

Boureima:2022:DCD

Bociu:2022:NSA

REFERENCES

REFERENCES

Ba:2021:TSV

Bressan:2021:NSN

Bossy:2022:ITK

Butler:2020:OED

Babbar:2022:LWF

REFERENCES

REFERENCES

REFERENCES

[BLLL23] Rutger A. Biezemans, Claude Le Bris, Frédéric Legoll, and Alexei Lozinski. Non-intrusive implementation of Multiscale Finite Element Methods: an illustrative example. *Journal
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Benedusi:2023:SMF

Bencomo:2020:PEM

Blanchard:2021:BOO

Bakhvalov:2022:MAE

Basir:2022:PEC

REFERENCES

REFERENCES

[BT22] Leonardo Boledi, Benjamin Terschanski, Stefanie Elgeti, and Julia Kowalski. A level-set based space-time finite element
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Capdeville:2023:GKP

Chi:2020:DGC

Chan:2023:GPR

Choi:2020:GBC

Choi:2021:STR

Youngsoo Choi, Peter Brown, William Arrighi, Robert Anderson, and Kevin Huynh. Space-time reduced order model

Ching:2020:TWC

Codina:2023:ESL

Chung:2020:RSC

Casquero:2021:DCI

Chamarthi:2022:IHF

Cai:2021:HOS

Cho:2021:CSLa

Cho:2021:CSLb

Choi:2023:RSO

Byeongyeob Choi, Jehyun Baek, and Donghyun You. A realizable second-order advection method with variable flux...

REFERENCES

Caliari:2022:MIS

C:2020:CSR

Chen:2023:MRM

Crockatt:2020:ICH

REFERENCES

Chertock:2023:LCD

Chen:2020:GMA

Cohen:2020:EIS

Cai:2021:LSR

Cai:2022:SAD

Cai:2020:DLS

Crestetto:2022:CHO

Chaillat:2022:EET

Cortesi:2020:FBU

Chen:2021:UML

REFERENCES

Chen:2022:DNN

Chen:2020:SIE

Chiodi:2022:GRE

Chen:2023:NWS

Cai:2021:CTW
REFERENCES

Chan:2021:ITB

Camier:2023:AHO

Chehade:2021:EPW

Cheng:2022:MSC
Chen:2023:SOF

Coutinho:2023:PIN

Cicchino:2022:PSF

Croci:2022:MPE

Chacon:2022:APR

REFERENCES

Chalons:2022:NAU

Cui:2023:CCD

Cheng:2021:LDB

Chen:2022:MMM

Cui:2023:SCD

Tiangang Cui, Sergey Dolgov, and Olivier Zahm. Scalable conditional deep inverse Rosenblatt transports using tensor trains and gradient-based dimension reduction. *Journal

Chung:2022:CIP

Crouseilles:2020:EMS

Caliari:2021:ATP

CEW23

Croci:2020:CBS

REFERENCES

Chamarthi:2021:HOC

Chung:2022:OMC

Chen:2022:ESA

Cao:2022:MLR

Chiapolino:2023:FCC

REFERENCES

Carson:2020:AMA

Chen:2021:ODA

Chiu:2023:CCD

Chen:2023:CFT

Corot:2020:STC
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cheng:2020:EFB

Clain:2021:VHO

Chow:2022:CDA

Chai:2020:FDD

Cheng:2020:NIC

Chen:2021:CSL

Chang:2020:EMC

Chan:2022:ESM

Chen:2023:NAD

Chen:2021:CL

Shi Chen, Qin Li, and Xu Yang. Classical limit for the varying-mass Schrödinger equation with random inhomogeneities. *Journal of Computational Physics*, 438(??):Article 110365, August
[CM20] Nan Chen and Andrew J. Majda. Efficient nonlinear optimal
nonlinear smoothing and sampling algorithms for complex turbulent
Journal of Computational Physics, 410(??):Article 109381, June 1,
nonlinear dynamical systems with partial observations. Journal
2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
of Computational Physics, 410(??):Article 109381, June 1,
2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
article/pii/S0021999121002606.
([CM20] Chen:2020:ENO

[CMCX23] Victor Churchill, Steve Manns, Zhen Chen, and Dong-
Robust modeling of unknown dynamical sys-
bin Xiu. Robust modeling of unknown dynamical sys-
tems via ensemble averaged learning. Journal of Com-
tems via ensemble averaged learning. Journal of Com-
puter Physics, 474(??):??, February 1, 2023. CODEN
puter Physics, 474(??):??, February 1, 2023. CODEN
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999122009056.
article/pii/S0021999122009056.

[CMGGS23] Thomas Cartier-Michaud, Philippe Ghendrih, Virginie Grand-
Verification and accuracy check of simula-
girard, and Eric Serre. Verification and accuracy check of simula-
tions with PoPe and iPoPe. Journal of Com-
tions with PoPe and iPoPe. Journal of Com-
puter Physics, 474(??):??, February 1, 2023. CODEN
puter Physics, 474(??):??, February 1, 2023. CODEN
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999122008521.
article/pii/S0021999122008521.

4D large scale variational data assimilation of a turbulent
flow with a dynamics error model. Journal of Compu-
tational Physics, 412(??):Article 109446, July 1, 2020. CO-
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999120302205.
article/pii/S0021999120302205.

[CMNS21] Oriol Colomés, Alex Main, Léo Nouveau, and Guglielmo
Scovazzi. A weighted shifted boundary method for free

REFERENCES

Coquel:2021:ESH

Chaussonnet:2022:MMS

Crockatt:2022:IMA

Coco:2023:GPS

Chin:2021:SEF

REFERENCES

Cicchino:2021:NNS

Chen:2022:USG

Carlier:2023:ESB

Chattopadhyay:2023:DLE

Chiu:2021:AHA

REFERENCES

Costa:2021:EVH

Cicchino:2022:NSF

Chandrashekar:2020:PCF

Coatléven:2021:PNE

Coatléven:2022:NEM

Julien Coatléven. A network element method for heterogeneous and anisotropic diffusion–reaction problems. Journal of

Contreras:2023:EIG

Constant:2021:IIB

Couture-Peck:2020:NTA

Chiocchetti:2021:HOA

REFERENCES

Chiarini:2021:DSN

Cai:2021:ELD

Cirrottola:2021:ADU

Ciallella:2020:EST

Cai:2020:TCL

Jiaxiang Cai and Jie Shen. Two classes of linearly implicit local energy-preserving approach for general multisymplectic Hamiltonian PDEs. *Journal of Computational
REFERENCES

Chen:2021:NMS

Chen:2021:RGP

Comminal:2021:TDC

Cosgrove:2022:SAH

Chu:2023:RFD
Tianyi Chu and Oliver T. Schmidt. RBF-FD discretization of the Navier–Stokes equations on scattered but staggered nodes. *Journal of Computational Physics*, 474(?):??, February
REFERENCES

[CSLC21] Hanahchim Choung, Vignesh Saravanan, Soogab Lee, and Hae-seong Cho. Nonlinear weighting process in ghost-cell im-

Chen:2020:ESG

Chirammel:2023:GFM

Cheng:2020:HOC

Cao:2021:CIQ

REFERENCES

Chen:2023:CFA

Coppola:2023:GLC

Cifani:2023:EGM

Chandramoorthy:2021:PFN

Chen:2022:PCP

REFERENCES

Chen:2023:HOA

Chen:2021:DNT

Chen:2021:GRN

Cockburn:2022:ABA

Cockburn:2022:ABS

Bernardo Cockburn and Shiqiang Xia. An adjoint-based superconvergent Galerkin approximation of eigenvalues. Journal of Computational Physics, 449(??):Article 110816, January 15,
REFERENCES

Choi:2021:PTD

Chassagneux:2022:NAS

Chen:2022:SOT

Cai:2023:UAM

Cheng:2022:PFC
REFERENCES

Chen:2023:CBC

Cheng:2022:SSN

Chen:2020:NSO

Chen:2020:BIP

Chaikovskii:2022:CAF

Dmitrii Chaikovskii and Ye Zhang. Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations. *Journal of
REFERENCES

Chen:2022:SR

Chang:2023:HDD

Chen:2023:ENI

Chen:2020:MPR

Cheng:2020:DGM

CZL20 Jian Cheng, Fan Zhang, and Tiegang Liu. A discontinuous Galerkin method for the simulation of compress-

[DA23] Eron T. V. Dauricio and João Luiz F. Azevedo. A wall model for external laminar boundary layer flows ap-

Darga:2020:SAA

Deka:2020:NGG

Desmons:2021:GHO

Du:2022:CDF

Du:2022:NCG

Daniel:2022:PIC

Ding:2020:SLD

DeSantis:2021:GMM

Duffin:2022:LRS

DiPietro:2021:AOM

Daniele A. Di Pietro and Jérôme Droniou. An arbitrary-order method for magnetostatics on polyhedral meshes based

DeVita:2021:FES

Duchemin:2022:MMA

Duan:2021:FIP

Dai:2022:HPW

Deng:2023:UFN

REFERENCES

REFERENCES

I. Duchemin, L. Genovese, E. Letournel, A. Levitt, and S. Ruget. Efficient extraction of resonant states in systems with defects. *Journal of Com-

Dubois:2022:MLF

Dominguez:2020:ODF

Du:2020:FUE

Dzanic:2022:PAN

REFERENCES

REFERENCES

[DJ23] Kurt A. Dominesey and Wei Ji. Reduced-order modeling of neutron transport eigenvalue problems separated in energy by Proper Generalized Decomposition. *Journal of Computational Physics*, 486(??):??, August 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

[DL21] Suchuan Dong and Zongwei Li. A modified batch intrinsic plasticity method for pre-training the random coefficients of extreme learning machines. *Journal of Computational
REFERENCES

deLara:2023:AHO

Dong:2022:SBI

DiLeoni:2023:NOP

Dou:2022:DCA

Darbon:2021:SNN

Pino:2023:TMB

Hurtado-de-Mendoza:2022:NMA

Dao:2022:ESA

Dunning:2020:AMR

REFERENCES

Dai:2022:MSP

Dong:2021:MRP

Do:2023:ADO

Denich:2023:FAN

Darde:2023:IBM

[DNW23] Jérémi Darde, Niami Nasr, and Lisl Weynans. Immersed boundary method for the complete electrode model in
REFERENCES

REFERENCES

Ding:2020:CGE

Dolejs:2021:NST

Delmas:2022:PHO

Duong:2022:ARS

Datta:2023:CEH

[DS23a] I. A. M. Datta and U. Shumlak. Computationally efficient high-fidelity plasma simulations by coupling multi-species kinetic and multi-fluid models on decomposed do-

[dSiLdA+22] José Cícero Araujo dos Santos, Paulo Roberto Maciel Lyra, João Paulo Rodrigues de Andrade, Artur Castiel Reis de Souza,

Demou:2022:PBD

Ding:2020:APC

Dhulipala:2022:ALM

Dargaville:2020:GBA

Junming Duan and Huazhong Tang. High-order accurate entropy stable finite difference schemes for the shal-

REFERENCES

Kathryn P. Drake and Grady B. Wright. A fast and accurate algorithm for spherical harmonic analysis on HEALPix grids with applications to the cosmic microwave background radiation. *Journal of Computational Physics*, 416(??):Article 109544, September 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print),
REFERENCES

Drake:2020:SAD

Dorn:2021:SRS

Dzanic:2022:PPE

Dong:2023:MCI

Dzanic:2023:PPC

REFERENCES

[DY22a] Suchuan Dong and Jielin Yang. On computing the hyperparameter of extreme learning machines: Algorithm and application to computational PDEs, and comparison with classical and high-order finite elements. *Journal of Computational Physics*, 463(??):??, August 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

Esmaili:2020:GDT

Egan:2022:NIG

Elias:2020:ESE

Evangelou:2023:DDM

REFERENCES

REFERENCES

Egan:2020:XRC

Exposito:2023:WPD

Egan:2021:DNS

Endeve:2022:CDM

Escalante:2022:SGM

Espig:2020:IAP

Einkemmer:2021:APD

Einkemmer:2021:MME

Ellison:2023:GP

Esmaily:2023:SFS

REFERENCES

Ellison:2022:GPB

Ewert:2021:HAS

Engel:2023:BUM

Efendiev:2023:MHR

Eldredge:2022:MIL

Lukas Exl, Norbert J. Mauser, Sebastian Schaffner, Thomas Schrefl, and Dieter Suess. Prediction of magnetization dynamics in a reduced dimensional feature space setting utilizing a low-rank kernel method. *Journal of Computational...
REFERENCES

Einkemmer:2020:LRP

Einkemmer:2023:RCD

Esquivel:2021:FDS

Esquivel:2022:MEF

Efendiev:2021:TSA

Yalchin Efendiev, Sai-Mang Pun, and Petr N. Vabishchevich. Temporal splitting algorithms for non-stationary multi-

Epstein:2022:DSR

Eremin:2022:ECC

Epp:2023:FCS

Eriksson:2023:BIM

REFERENCES

REFERENCES

REFERENCES

Fidkowski:2021:MBG

Freno:2022:NMS

Fernandez-Corbaton:2023:MEC

Fu:2021:EMI

Faghihi:2020:MPC

Fu:2020:CEM

Facca:2021:BSE

Freno:2021:CVT

Feng:2022:FEU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[FHT21] Daniel Fortunato, Nicholas Hale, and Alex Townsend. The ultraspherical spectral element method. *Journal of Computational Physics*, 436(??):Article 110087, July 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

[FL21] Yiwei Feng and Tiegang Liu. A characteristic-featured shock wave indicator on unstructured grids based on train-
REFERENCES

REFERENCES

[FMWK20] Niklas Fehn, Peter Munch, Wolfgang A. Wall, and Martin Kronbichler. Hybrid multigrid methods for high-order dis-
REFERENCES

[FPT23] Fredrik Fryklund, Sara Pålsson, and Anna-Karin Tornberg. An integral equation method for the advection-diffusion equation on time-dependent domains in the plane. *Journal of
REFERENCES

Feng:2023:ESS

Filbet:2023:APP

Fumagalli:2021:MMT

Falavarjani:2023:MDS

Faucher:2023:QIP

[FS23b] Florian Faucher and Otmar Scherzer. Quantitative inverse problem in visco-acoustic media under attenuation model un-

Fillo:2020:FLM

Furfaro:2020:TSC

Falabino:2022:CUF

Fang:2022:CFE

REFERENCES

Hongsong Feng and Shan Zhao. FFT-based high order central difference schemes for three-dimensional Poisson’s equation with various types of boundary conditions. *Journal of Computational Physics*, 410(??):Article 109391, June 1,
REFERENCES

[FZQ21] Chuan Fan, Xiangxiong Zhang, and Jianxian Qiu. Positivity-preserving high order finite volume hybrid Hermite WENO schemes for compressible Navier-Stokes equations. Journal of
REFERENCES

Fan:2022:PPH

Fu:2022:ESE

Fang:2021:EMD

Ghassemi:2020:MQM

REFERENCES

Guo:2022:SOA

Gallice:2022:ESP

Guan:2022:SPT

Girault:2022:CMC

Galassi:2022:ATI

J. Garres-Díaz, F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, and G. Narbona-Reina. Multilayer models for shal-

REFERENCES

REFERENCES

Gu:2022:HPC

Guo:2021:ASG

Gao:2022:OSS

Gaylo:2022:ELA

Ginzburg:2021:SIB

Irina Ginzburg. Spurious interface and boundary behaviour beyond physical solutions in lattice Boltzmann schemes. *Jour-
REFERENCES

REFERENCES

Gross:2022:FPT

Gumerov:2023:RCM

Garg:2021:SDC

Guermond:2022:HRT

Garritano:2022:EEA

Guo:2020:IFE

Glaubitz:2021:SHO

Gu:2023:HOP

Gao:2023:NSP

REFERENCES

REFERENCES

[GN22] Yihang Gao and Michael K. Ng. Wasserstein generative adversarial uncertainty quantification in physics-informed neural

Gu:2023:QRB

Guo:2023:CFB

Ghosh:2022:TFI

Gomezano:2022:CIV

Garcke:2023:SPD

[GPS20] Jean-Luc Guermond, Bojan Popov, and Laura Saavedra. Second-order invariant domain preserving ALE approxima-
REFERENCES

Girfoglio:2023:HPD

Ghilani:2020:PPF

Gradinaru:2021:HWS

Giacomin:2022:GCS

Grigoriu:2020:DBI

REFERENCES

[GS22] Anita Gjesteland and Magnus Svärd. Entropy stability for the compressible Navier–Stokes equations with strong imposition of the no-slip boundary condition. *Journal of Com-
REFERENCES

Gerster:2023:SCH

Glaser:2022:CCV

Gejadze:2023:BVC

Gao:2021:PPI

REFERENCES

Gorji:2021:EFP

Gatsonis:2022:HNO

Gross:2020:MMM

Giga:2020:NCS

Gu:2020:PTI

REFERENCES

Gao:2023:ALB

Giuliani:2022:SSG

Gu:2021:SPN

Guo:2022:NFF

Guo:2023:PTS

Jiawei Guo, Yanzhong Yao, Han Wang, and Tongxiang Gu. Pre-training strategy for solving evolution equations based on physics-informed neural networks. *Journal of Computational Physics*, 489(??):??, September 15, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Gao:2020:FVE

Gu:2021:SSP

Geneva:2020:MDP

Guo:2021:STD

Ge:2020:IUE
Liang Ge, A-Man Zhang, and Shi-Ping Wang. Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach. *Journal of Computational...
REFERENCES

Gong:2020:AHO

Hoagland:2021:HAA

Huang:2023:CGS

Hackemack:2021:DGS

Huang:2021:SES
Zhishen Huang and Stephen Becker. Spectral estimation from simulations via sketching. *Journal of Computational
REFERENCES

REFERENCES

[HCL20] Yunqing Huang, Min Chen, and Jichun Li. Development and analysis of both finite element and fourth-order in space finite difference methods for an equivalent Berenger's PML model. *Journal of Computational Physics*, 405(?):Article 109154,
Henri:2022:GLS

Hageman:2020:SGM

Hageman:2021:RTS

Harnish:2023:AWM

He:2022:MFS

Tao He. Modeling fluid-structure interaction with the edge-based smoothed finite element method. *Journal of
REFERENCES

Heumann:2021:GMW

Ho:2023:AOL

Holst:2020:ETE

Hepp:2020:MEA

Hassanaly:2022:ASU

Malik Hassanaly, Andrew Glaws, Karen Stengel, and Ryan N. King. Adversarial sampling of unknown and high-dimensional

Hong:2022:TKN

Herty:2021:ADH

Hosseininia:2019:CWM

Hong:2022:EPF

Hitz:2020:CMM

REFERENCES

REFERENCES

Hwang:2020:TEK

Hartung:2021:LML

Harlim:2021:MLP

Hu:2023:MMC

Huang:2023:HOP

Lintao Huang, Zhenhua Jiang, Xueyu Qin, Xin Zhang, and Chao Yan. High-order positivity-preserving method in the flux reconstruction framework for the simulation of two-medium

[Hariharan:2021:WCU]

[HKJ21]

[HKKS21]

[Heidel:2021:TPM]

Hitz, 2020:PRM

[HKMR20]

Hitz:2020:PRM

[HKRS23]

REFERENCES

[HLA21] Ziyang Huang, Guang Lin, and Arezoo M. Ardekani. A consistent and conservative model and its scheme for N-phase-M-component incompressible flows. *Journal of Computational Physics*, 434(??):Article 110229, June 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

REFERENCES

REFERENCES

Hu:2021:ARH

Han:2020:DFM

Hou:2023:ERL

Holmes:2021:NPI

Hume:2021:VVM

REFERENCES

REFERENCES

Holderied:2020:SPV

Hossain:2023:SSH

Hajabdollahi:2021:CML

Holderied:2021:MKH

Hateley:2020:DLS

Hashemi:2021:TDM

Hennemann:2021:PES

Huang:2022:HOC
He:2022:SAS

Huang:2023:BPP

Horsten:2020:HFK

Hyman:2022:FTT

Han:2020:IWM

Shao-Qiang Han, Wen-Ping Song, and Zhong-Hua Han. An improved WENO method based on Gauss-kriging reconstruction with an optimized hyper-parameter. *Journal of
REFERENCES

Halpern:2021:SPF

Hamon:2020:PTM

Shih:2023:REP

Hijazi:2020:DDP

REFERENCES

REFERENCES

[HW20b] Weizhang Huang and Yanqiu Wang. Anisotropic mesh quality measures and adaptation for polygonal meshes. *Journal of Computational Physics*, 410(??):Article 109368, June 1,
REFERENCES

[HXF20] Daniel Z. Huang, Kailai Xu, Charbel Farhat, and Eric Darve. Learning constitutive relations from indirect obser-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Joachim:2023:PAN

Jenny:2020:TAC

Jabbarzadeh:2020:NMI

Jettestuen:2021:LCM

Jost:2021:DFI

[JHT23] Patrick Jenny, Rasim Hasanzade, and Hamdi Tchelepi. Tightly coupled hyperbolic treatment of buoyant two-phase

[Jeong:2021:IIM]

[Johnson:2021:SOC]

[Johnson:2020:CDG]

[Johnson:2020:ARA]
Jagtap:2020:AAF

Jandaghian:2021:EWC

Jacobs:2021:NSP

Jiang:2021:PDA

Jiang:2021:CND

REFERENCES

Jagtap:2022:PIN

Jain:2020:CDI

Jackson:2020:UEF

Jha:2022:GOP

Jung:2022:SLM

REFERENCES

Jiang:2023:EDB

Ji:2021:ABC

Jisha:2022:NNV

Jiang:2020:LSP

Ji:2022:IFD

REFERENCES

Jakobsen:2020:CSS

Ji:2020:AIF

Jeon:2022:DDA

Jeong:2022:DWS

Ji:2020:HRB

Xing Ji, Fengxiang Zhao, Wei Shyy, and Kun Xu. A HWENO reconstruction based high-order compact gas-kinetic

Jiang:2022:IAC

Kaur:2022:AKV

Kantner:2020:GSG

Katiyar:2020:GPM

REFERENCES

KBB+20

Keita:2021:MCP

Kumar:2022:SEL

Kolahdouz:2020:IIM

Kappeli:2020:OGC
REFERENCES

Shane Keniley and Davide Curreli. Density estimation techniques for multiscale coupling of kinetic models of

Kulkarni:2020:NCS

Kapidani:2021:AOC

Koshakji:2023:RCF

Kim:2022:FAP

Kumar:2021:TSM

Ronit Kumar, Lidong Cheng, Yunong Xiong, Bin Xie, Rémi Abgrall, and Feng Xiao. THINC scaling method that

Kuzmin:2020:SFL

Kong:2023:EES

Kou:2022:EAI

Kemm:2023:NIM

Kostorz:2020:SAB

Kou:2023:CVP

Konrad:2022:DDL

Khokhlov:2021:GCM

Klahn:2020:AEA

Kang:2020:IHD
Shinhoo Kang, Francis X. Giraldo, and Tan Bui-Thanh. IMEX HDG-DG: a coupled implicit hybridized discontinu-

REFERENCES

Kumar:2021:MSI

Krause:2022:MT

Khoromskij:2020:RST

Koch:2020:NCW

Kim:2021:EHR

Koga:2022:LDF

Kuya:2022:MWA

Khatri:2020:CEL

Kwon:2021:DBI

In Kwon, Do Y. Kwak, and Gwanghyun Jo. Discontinuous bubble immersed finite element method for Poisson–Boltzmann–Nernst–Planck model. *Journal of Computational Physics*, 438(??): Article 110370, August 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

REFERENCES

Kubo:2021:LSB

Kim:2022:MCM

Kim:2020:DUL

King:2022:HOS

REFERENCES

REFERENCES

Kumar:2020:FUN

Khanwale:2020:STP

Kurganov:2020:WBP

Kurganov:2020:WBC

Klibanov:2023:NSD
Michael V. Klibanov, Jingzhi Li, and Wenlong Zhang. Numerical solution of the 3-D travel time tomography prob-

Kang:2022:VMI

Kashefi:2022:PIP

Kusch:2020:FSG

Kim:2023:SCA

Keim:2023:RMN

REFERENCES 396

REFERENCES

Klein:2021:MDS

Kormann:2021:ECT

Kuwata:2021:WML

Kaltenbacher:2022:FTS

Karam:2022:HOPb

Mokbel Karam and Tony Saad. High-order pressure estimates for Navier–Stokes Runge–Kutta solvers using stage pseudo-pressures. *Journal of Computational Physics*, 471(??):??, De-
REFERENCES

Karam:2022:HOPa

Kilgour:2022:IBB

Krais:2020:SFA

Kingora:2022:NIF

Koch:2020:MTP

Timo Koch, Martin Schneider, Rainer Helmig, and Patrick Jenny. Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources.
REFERENCES

Khanwale:2023:PBS

Kulesza:2021:DOA

Karam:2021:LCR

Kucherova:2021:CMP

Kahana:2022:HOC

Khimin:2022:STF

Kwon:2020:MIB

Karumuri:2020:SFS

Kahana:2020:OSB

REFERENCES

Kawai:2022:GRM

Lozano:2021:IFS

Lakoba:2020:SIF

Luo:2021:MDG

Lucor:2022:SCS

Didier Lucor, Atul Agrawal, and Anne Sergent. Simple computational strategies for more effective physics-informed neural networks modeling of turbulent natural convection. *Journal of
REFERENCES

Laurent:2021:RGC

Lahiri:2020:SSA

Linot:2023:SNO

Lee:2020:MRD

Lin:2022:TSP

REFERENCES

REFERENCES

Reference:

Lei:2022:HOE

Lei:2023:HOP

Li:2021:BPH

Lin:2023:PPS

Liu:2023:SON

REFERENCES

Li:2020:WER

Lespagnol:2020:HOA

Liu:2020:SOL

Luders:2022:PCA

Li:2021:ESS

REFERENCES

REFERENCES

Lejay:2020:FBP

Li:2021:SHO

Lee:2022:LEC

Li:2023:INA

Lin:2023:EAN

Jeffmin Lin, Gil Goldshlager, and Lin Lin. Explicitly antisymmetric neural network layers for variational Monte Carlo simulation. Journal of Computational Physics, 474(??):??, Febru-
References

REFERENCES

Lu:2022:NSV

Lin:2020:DPS

Lin:2021:TFI

Liu:2021:MRT

Li:2022:ICT

[LHXZ22] Yansong Li, Weixi Huang, Chunxiao Xu, and Lihao Zhao. An implicit conformation tensor decoupling approach for viscoelastic flow simulation within the monolithic projection framework.
REFERENCES

Liu:2020:SSP

Liu:2020:MCN

Liu:2021:NWB

Liu:2023:DNS

Laso:2020:HTP

REFERENCES

Lyu:2022:SMB

Lee:2022:SCA

Li:2022:EIW

Lallemand:2020:LBE

Lee:2021:SST

Luo:2023:FPI

Leiter:2023:TSB

Lan:2023:OSB

Luo:2020:FIH

Li:2020:FSF
REFERENCES

[LLL22] Lingquan Li, Xiaodong Liu, and Hong Luo. A reconstructed discontinuous Galerkin method based on varia-

[Lin:2021:PTT]

[Li:2022:CMF]

[Li:2022:CCL]

[Li:2023:CCL]

[LLPL22]
REFERENCES

REFERENCES

REFERENCES

Li:2023:ESF

Luo:2023:GKS

Liu:2020:EMD

Lipnikov:2020:CHO

Liu:2020:PFE

REFERENCES

[Lodares:2022:ESD]

[Liu:2021:ITM]

Lu:2021:DIF

Lou:2021:PIN

Lundquist:2020:EEM

Lye:2020:DLO

REFERENCES

REFERENCES

REFERENCES

[LOL22] Zhe Li, Guillaume Oger, and David Le Touzé. A partitioned framework for coupling LBM and FEM through an implicit IBM allowing non-conforming time-steps: Application to fluid-structure interaction in biomechanics. *Journal of Computational Physics*, 449(??):Article 110786, January 15,

Lozano:2023:SMD

Liu:2023:MCA

Lischke:2020:WFL

Limare:2023:HLS

REFERENCES

Li:2021:HSM

Lindeberg:2021:HOF

Lai:2022:SAI

Lipnikov:2023:CHO

REFERENCES

Hannah Lu and Daniel M. Tartakovsky. Extended dynamic mode decomposition for inhomogeneous problems. *Journal of Computational Physics*, 444(??):Article 110550, November 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
Laguzet:2022:CBP

Li:2022:PIK

Lee:2021:CSF

Leng:2022:PGM

Liu:2022:QSA

Jie Liu, Qinglin Tang, Jisheng Kou, Dingguo Xu, Tao Zhang, and Shuyu Sun. A quantitative study on the approximation error and speed-up of the multi-scale MCMC

Li:2021:SFI

Lecointre:2022:HON

Liu:2020:LSP

Lu:2020:TWC

Laurain:2021:OCV

Li:2022:MIS

Li:2022:DLC

Liu:2023:FOS

Li:2023:FTS

Lauber:2022:IBS

[LWL22] Marin Lauber, Gabriel D. Weymouth, and Georges Limbert. Immersed boundary simulations of flows driven by moving thin

Li:2020:WLD

Liu:2021:SPO

Liu:2023:CER

Li:2020:NCM

Yang Liu and Haizhao Yang. A hierarchical butterfly LU
preconditioner for two-dimensional electromagnetic scatter-
ing problems involving open surfaces. *Journal of Compu-
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S002199911930720X.

Haoya Li and Lexing Ying. A semigroup method for
high dimensional elliptic PDEs and eigenvalue problems
based on neural networks. *Journal of Computational
Physics*, 453(??):Article 110939, March 15, 2022. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999122000018.

Long Li and Chang Yang. APFOS-Net: Asymptotic
preserving scheme for anisotropic elliptic equations with
deep neural network. *Journal of Computational Physics*,
453(??):Article 110958, March 15, 2022. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999122000201.

Zhendong Luo and Jing Yang. The reduced-order method
of continuous space-time finite element scheme for the
non-stationary incompressible flows. *Journal of Compu-
tational Physics*, 456(??):??, May 1, 2022. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999122001061.

Emmanuel Lorin and Xu Yang. Schwarz waveform relaxation-
learning for advection–diffusion–reaction equations. *Journal of
Computational Physics*, 473(??):??, January 15, 2023. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999122007203.

Jichun Li and Li Zhu. Analysis and application of a spatial fourth-order finite difference scheme for the Ziolkowski’s PML model. *Journal of Computational Physics*, 464(??):??, September 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print),
REFERENCES

[Li:2021:DOI]

[Li:2022:IMC]

[Li:2022:EHC]

[Li:2022:HTA]

REFERENCES

[MBAG21] Philippe Marchner, Hadrien Bériot, Xavier Antoine, and Christophe Geuzaine. Stable perfectly matched layers with

Moraes:2022:AAD

Martin:2023:AIE

Meng:2021:SSS

Meng:2021:MFB

Mitchell:2022:SLB

McClenny:2023:SAP

Muralikrishnan:2020:MA

Medale:2020:ODF

Mai:2023:CEM

[MD20c] Scott Morgan and Christopher Davies. Linear stability eigenmodal analysis for steady and temporally periodic boundary-layer flow configurations using a velocity-vorticity formulation. *Journal of Computational Physics, 409(??):* Article 109325, May
REFERENCES

Mignone:2021:SCU

Mosharaf-Dehkordi:2022:FPM

Mittal:2021:MTI

Mattesi:2020:QON

Marciant:2022:HL
M. Marciant and C. Enaux. The hydrodynamics of LERNA. *Journal of Computational Physics*, 463(??):??, August 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716

Annamaria Mazzia, Massimiliano Ferronato, Pietro Teatini, and Claudia Zoccarato. Virtual element method for

REFERENCES

Mateo-Gabin:2023:FDF

Mouradi:2021:PIM

McClarren:2022:DDA

Miura:2022:SGS

Margenberg:2022:NNM

REFERENCES

[MIM20] Shahab Mirjalili, Christopher B. Ivey, and Ali Mani. A conservative diffuse interface method for two-phase flows with

Mao:2023:IGP

Mao:2021:VIP

Meng:2020:CNN

Mehlmann:2021:SID

Maric:2020:USG

Matsunaga:2020:MSM

Mirjalili:2023:AEB

Milcent:2020:MFA

Mehmani:2023:MPM

Moldovan:2021:MEK

Moldovan:2022:OPI

Mao:2021:DHP

Miyoshi:2020:SNR

Menon:2021:QAK

Mowla:2023:OCP

Maurer:2020:GGG

Marx:2022:REF

Magnetta:2022:VFC

Massa:2022:AES

Montecinos:2021:UCH

Monrolin:2021:MST

Munoz-Perez:2020:SGH

McGregor:2022:VSS

REFERENCES

REFERENCES

[MRL+23] Nicolas Moës, Jean-François Remacle, Jonathan Lambrechts, Benoît Lé, and Nicolas Chevaugeon. The eXtreme mesh deformation approach (X-MESH) for the Stefan phase change
REFERENCES

Morita:2022:ABO

Maurya:2020:NHC

Morse:2021:RSE

Maes:2020:USF

REFERENCES

REFERENCES

Miao:2022:NCS

Ma:2020:IBL

Mehmani:2022:PNM

Meng:2023:SGP

Maltsev:2023:HDG

Mou:2022:NMM

Marchildon:2020:OMD

Ma:2022:FOU

Mirhoseini:2023:MRC

Meng:2022:NMC

REFERENCES

<table>
<thead>
<tr>
<th>Citation</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[NLZ+22] Ruichen Ni, Jiasheng Li, Xiong Zhang, Xu Zhou, and Xiaoxiao Cui. An immersed boundary-material point method

Navas-Montilla:2023:FWB

Nikan:2021:NEF

Najafiayazdi:2023:LES

Ntoukas:2021:FES

REFERENCES

Ntoukas:2022:ESP

Naranjo-Noda:2021:LLR

Na:2020:DNC

Nordstrom:2022:NLP

Nordstrom:2022:SSE
REFERENCES

REFERENCES

Ovadia:2021:BCF

Ong:2020:IBP

Onder:2023:DLI

Orsi:2023:FIS

Ong:2021:IBP

Petrov:2020:PAM

Pakseresh:t:2021:DCP

Peng:2021:TCP

Pei:2023:FMI

REFERENCES

Patil:2020:RTR

Poette:2022:EUC

Peng:2020:APP

Pertant:2021:FVM

Peters:2022:FDC

[PBJ+22] Eric L. Peters, Riccardo Balin, Kenneth E. Jansen, Alireza Doostan, and John A. Evans. S-frame discrepancy correc-
REFERENCES

REFERENCES

REFERENCES

Pimentel-García:2023:HOF

Pitassi:2023:CMF

Partin:2023:MDF

Pitassi:2022:IDC

Pitassi:2021:RDG

[PGTS21] Silvano Pitassi, Riccardo Ghiloni, Francesco Trevisan, and Ruben Specogna. The role of the dual grid in low-order compatible numerical schemes on general meshes. Journal
REFERENCES

Yifan Peng, Dan Hu, and Zin-Qin John Xu. A non-gradient method for solving elliptic partial differential equa-

Pang:2022:AAB

Pulliam:2020:IEP

Pathak:2023:TDN

Pant:2021:TPM

Piao:2020:ETT

Pan:2022:MPB

Papoutsakis:2020:SCC

Psaros:2022:MLP

Peyvan:2021:FRU

[PLV20]

[PLYZN23]

[PM21a]

[PM21b]

REFERENCES

REFERENCES

[Poë23] Gaël Poëtte. Multigroup-like MC resolution of generalised polynomial chaos reduced models of the uncertain linear
REFERENCES

REFERENCES

Pathak:2020:ISN

Prado:2021:DDD

Patsatzis:2023:DDC

Peter:2022:AFV

Pearl:2022:FSF

Jason M. Pearl, Cody D. Raskin, and J. Michael Owen. FSISPH: an SPH formulation for impacts between dissimi-

Park:2022:DRL

Persson:2022:DGM

Piotrowski:2022:SRP

Peyvan:2023:HOM

Pahlani:2023:OMD

REFERENCES

Aditya K. Pandare, Jacob Waltz, Weizhao Li, Hong Luo, and Jozsef Bakosi. On the design of stable, consistent, and conservative high-order methods for multi-material hydrodynam-

Pan:2022:EIF

Pareschi:2020:MCS

Padmanabha:2021:SIP

Park:2022:PIN

Penwarden:2022:MMP

[PZNK22] Michael Penwarden, Shandian Zhe, Akil Narayan, and Robert M. Kirby. Multifidelity modeling for Physics-

Penwarden:2023:MAP

Pan:2020:HOA

Pan:2023:MDF

Qin:2020:DNS

Quan:2023:FEC

Xue Quan and Huajie Chen. A finite element configuration interaction method for Wigner localization. *Jour-

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Article Number</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
Qing:2023:CCD

Qian:2022:IUS

Qin:2021:IIL

Qiu:2021:TOP

Qian:2021:LTG

REFERENCES

Qiao:2023:SPN

Rondeau:2021:TPM

Rumpler:2023:MMW

Roy:2023:SDS

Ranocha:2022:NNF

Hendrik Ranocha. A note on numerical fluxes conserving a member of Harten’s one-parameter family of en-

REFERENCES

[RG22] Daniel Rabinovich and Dan Givoli. Elastodynamic 2D–1D coupling using the DtN method. Journal of Computational Physics, 448(??):Article 110722, January 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
Rakotoarivelo:2022:CRM

Ruan:2022:SRD

Ruiz-Girones:2021:MIG

Raynaud:2022:MEP

Reuber:2020:ABI

Georg S. Reuber, Lukas Holbach, and Ludovic Räss. Adjoint-based inversion for porosity in shallow reservoirs using pseudo-
REFERENCES

REFERENCES

REFERENCES

[RRPSS21] Javier Rivero-Rodríguez, Miguel Pérez-Saborid, and Benoit Scheid. An alternative choice of the boundary condition

REFERENCES

Ranjan:2020:RAS

Rodgers:2020:SAH

Remmerswaal:2022:PIR

Ryan:2022:FVA

Renard:2021:LSA

REFERENCES

REFERENCES

REFERENCES

Mohsen Shiea, Antonio Buffo, Marco Vanni, and Daniele L. Marchisio. A novel finite-volume TVD scheme to overcome non-realizability problem in quadrature-based moment methods. *Journal of Computational Physics*, 409(??):Article 109337,

Shin:2023:PIV

Scapin:2020:VFM

Shukla:2020:WAD

Stanier:2020:CPH

Chen:2022:ADP

Shu sheng Chen, Jinxing Li, Zheng Li, Wu Yuan, and Zhenghong Gao. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. *Journal

REFERENCES

[Semenikhin:2021:IAN] Igor Semenikhin. Improving accuracy of the numerical solution of Maxwell’s equations by processing edge singularities of the electromagnetic field. *Journal of Computational
REFERENCES

REFERENCES

Solovský:2020:DEI

Salut:2021:NSB

Schneider:2021:MAR

Strelow:2023:PIN

Saunders:2021:NAE

Saunders:2020:FES

Selcuk:2021:FDM

Shashkin:2023:SPF

Schneider:2023:CSG

Steinberg:2022:MFI

Sadr:2023:VRD

ShangGuan:2021:GPS

Siegel:2023:GTA

REFERENCES

Shen:2020:ESF

Schwarzmeier:2023:CFS

Shands:2023:MMC

Scullard:2020:ASS

Sugaya:2022:TFS

Keisuke Sugaya and Taro Imamura. Turbulent flow simulations of the common research model on Cartesian grids

Samer Salloum and Issam Lakkis. Proper evaluation of spherical harmonics-based expressions for the velocity and vortex stretching vectors in three-dimensional grid-free vortex methods. *Journal of Computational Physics*, 418(??):Article 109603,
REFERENCES

Schneider:2020:FOC

Salloum:2022:AEC

Schneider:2022:FOC

Shin:2022:ECS

Shin:2023:ECS

REFERENCES

Sun:2022:TVB

Schlottke-Lakemper:2021:PHD

Sakakibara:2021:FDC

Subramanian:2021:MEP

Subramanian:2022:NIE

Shiroto:2022:MEC

Sirignano:2020:DDL

Song:2020:NEP

Suss:2023:HLB

REFERENCES

REFERENCES

Simonis:2022:TLE

Sahu:2020:ALE

Santelli:2021:FDS

Sousedik:2022:SGM

Su:2023:FOA

[SP23] Xin Su and Sai-Mang Pun. Fast online adaptive enrichment for poroelasticity with high contrast. *Journal of
REFERENCES

Sun:2023:IAD

Sandim:2020:SRB

Saibaba:2021:RAA

Schussnig:2021:RSF

Shi:2022:IST
A. Shi, P.-O. Persson, and M. J. Zahr. Implicit shock tracking for unsteady flows by the method of lines. *Journal

Song:2020:SCS

Shen:2020:CSI

Schwander:2021:COS

Shahmardi:2021:FEH

Shahane:2021:HOA

Shi:2022:CPN

Sousa:2022:CUQ

Sousa:2022:LSV

Sousa:2022:UQS

REFERENCES

Shi:2020:APU

Sundaram:2022:NOH

Sokolov:2023:HRF

Schneider:2022:EKI

REFERENCES

REFERENCES

Schaefer:2022:CSG

Sadr:2020:GPR

Stiller:2020:SDC

Schoeller:2021:MSP

Sukharev:2023:EPS

Maxim Sukharev. Efficient parallel strategy for molecular plasmonics — a numerical tool for integrating Maxwell-Schrödinger equations in three dimensions. *Journal of

REFERENCES

580

REFERENCES

Chunmei Su and Xiaofei Zhao. A uniformly first-order accurate method for Klein–Gordon–Zakharov system in simultane-

Takahashi:2023:FTD

Trappler:2021:RCN

Tominec:2021:URF

Tekbas:2023:FDT

Tregan:2020:CID

REFERENCES

REFERENCES

Takagi:2022:NHO

Tkachenko:2023:ELA

Tsiolakis:2022:PST

Hart:2022:PPG

Troescher:2023:FIH

Nicholas Troescher and Jonathan Higdon. A fully-implicit hybridized discontinuous Galerkin spectral element method for two phase flow in petroleum reservoirs. *Journal of
REFERENCES

Theillard:2021:VPR

Trask:2022:EEP

Taverniers:2021:MIE

Tao:2022:AES

Tao:2021:AHO

REFERENCES

Thirumalaisam:2023:EPS

Tamaki:2022:CAE

Tiwari:2022:MAL

Tang:2020:RAT
REFERENCES

Toosi:2021:GIE

Touboul:2020:TDS

Tang:2020:DLB

Li:2022:TAP

Tang:2023:WWF

REFERENCES

REFERENCES

Thomann:2020:ASS

Tiwari:2022:FRC

Tsiliﬁs:2020:SPC

Tu:2022:LSS

Tano:2021:SNA

REFERENCES

REFERENCES

Igor Tominec, Pierre-Frédéric Villard, Elisabeth Larsson, Victor Bayona, and Nicola Cacciani. An unfitted radial basis function generated finite difference method applied

REFERENCES

Teng:2020:CSC

Tang:2021:SIF

Tian:2020:_CMP

Taus:2020:SSP

Urbano:2022:SIC

REFERENCES

REFERENCES

Vu:2023:AMC

vanGestel:2023:ADG

Vauchel:2023:MEN

Vaughn:2021:TAG

REFERENCES

REFERENCES

Vermeire:2021:AIE

vanNoordt:2022:IBM

Vergnaud:2023:IHO

Veilleux:2022:SSD

Vorobev:2020:PFM
Vermaak:2021:MPT

Vreman:2017:SOG

Vreman:2020:IBO

Vreman:2021:CSO

Vreman:2021:CIB

REFERENCES

[619]

[Wang:2023:DEC]

[Wei:2020:IEM]

[Wala:2020:OFA]

[Wang:2021:SGD]

[Wu:2021:PIV]

Chunlin Wu and Spyros A. Kinnas. Parallel implementation of a VIScous Vorticity Equation (VISVE) method in 3-D laminar flow. *Journal of Computational Physics*,
REFERENCES

Wilhelm:2023:IPM

Wu:2020:ESC

Werdelmann:2021:APB

Waruszewski:2022:ESD

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Publication Date</th>
<th>Page Numbers</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
REFERENCES

[Wang:2020:ASB]

[Wang:2022:VIN]

[Wang:2020:PAM]

[Wu:2021:ESD]

[WLZP21] Jun-Lin Wu, Zhi-Hui Li, Zi-Bin Zhang, and Ao-Ping Peng. On derivation and verification of a kinetic model for quantum vibrational energy of polyatomic gases in

REFERENCES

Wang:2021:DLF

Wang:2023:LTI

Warne:2022:MMM

Wang:2020:DGA

Wang:2020:WMC

Wang:2020:TCE

Wu:2021:VHO

Wu:2022:FAQ

Wang:2021:FIM

Wu:2020:SIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Xu:2023:EMI

Xu:2021:UGK

Xiong:2022:CAS

Xu:2020:DPD

XD22

REFERENCES

Xing:2022:HMA

Xu:2021:LCR

Xu:2021:MEF

Xu:2023:AME

Xie:2022:HFS

REFERENCES

REFERENCES

[XLZ21] Jianqiang Xie, Dong Liang, and Zhiyue Zhang. Energy-preserving local mesh-refined splitting FDTD schemes for two

[Xuan:2020:HOP]

[Xiao:2022:SRP]

[Xie:2020:TDC]

[Xu:2022:HOC]

[XYL22] Liang Xu, Wubing Yang, and Tiegang Liu. An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions. Journal of Computational Physics, 448(??):Article 110707, January 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716

Shuai Ye, Hengbin An, and Xinhai Xu. A local character based method for solving linear systems of radia-
REFERENCES

REFERENCES

Hee Jun Yang, Kiwan Jeon, and Hyea Hyun Kim. Efficient mesh generation utilizing an adaptive body cen-
REFERENCES

[Ye:2023:IDP]

[Yang:2022:CPH]

[Yeo:2020:UME]

[You:2020:DRM]

REFERENCES

Yang:2021:RSI

Yushu:2020:IBM

Yang:2021:HAM

YMK21

Yin:2021:CMM
Xi-Yuan Yin, Olivier Mercier, Badal Yadav, Kai Schneider, and Jean-Christophe Nave. A characteristic mapping method for

Yushutin:2020:NMP

Yao:2022:VLP

Yao:2021:TDM

Yang:2022:CMF

Yamamoto:2022:MCS

Junxiang Yang, Zhijun Tan, and Junseok Kim. Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach. *Journal of Computational Physics*,
REFERENCES

Yang:2023:MDI

Yamaleev:2022:PPE

Yuan:2021:ESG

Yao:2022:NST

Yamazaki:2022:CMM

Qian Yu, Qing Xia, and Yibao Li. A phase field-based systematic multiscale topology optimization method for porous struc-
REFERENCES

Yousefzadeh:2023:LSI

You:2022:NKN

Yang:2023:ELB

Yin:2020:NNS

[YZH+23] Zihao Yang, Shaoqi Zheng, Fei Han, Xiaofei Guan, and Jieqiong Zhang. An adaptive coupling approach of local and non-local micromechanics. *Journal of Computational Physics*, 489(??):??, September 15, 2023. CO-
Yoon:2020:RMH

Yang:2023:MTN

Yang:2021:PRO

Yin:2023:HEE

Yang:2023:NTS

Tao Yang, Guoqing Zhao, and Qijun Zhao. Novel TENO schemes with improved accuracy order based on perturbed

Zhao:2020:RTM

Zapata:2021:CLS

Zeifang:2021:DDH

Zhou:2021:AST

REFERENCES

Zhang:2023:RDS

Zhan:2022:WFG

Zhang:2020:RDG

Zhang:2019:HOP

[Min Zhang, Juan Cheng, and Jianxian Qiu. High order positivity-preserving discontinuous Galerkin schemes for

REFERENCES

Zhang:2020:DDF

Zeng:2022:DNN

Zinchenko:2021:AFH

Zhou:2020:MLR

Zhang:2021:CDD

REFERENCES

Zhou:2020:DUG

Zhang:2021:AEL

Zou:2022:CST

Zhang:2020:MRB

Zhao:2020:BTI

[Zhao:2021:SOD]

[Zhan:2023:NTS]

[Zha22]

[ZHL21]

[ZHPZ21]

REFERENCES

Zhao:2020:BTH

Zhou:2023:NNW

Zhang:2022:FDL

Zhao:2021:NCM

Zhang:2021:CHO

Zhang:2021:TOS

Zhang:2021:STH

Zhang:2021:RFI

Zou:2022:FDM

Zhao:2022:CPM

Zhong:2020:NSP

Zeng:2023:CAL

Zhang:2023:SRD

Zhang:2022:SEP

Zhao:2021:ATL

Zhang:2022:TSF

Zhou:2022:TSD

Zhou:2023:SDE

Zhao:2022:SMS

REFERENCES

[ZMZY23] Ningbo Zhang, Qingwei Ma, Xing Zheng, and Shiqiang Yan. A two-way coupling method for simulating wave-induced breakup of ice floes based on SPH. *Journal of
REFERENCES

Zepeda-Nunez:2021:DDC

Zolfaghari:2021:HTH

Zuzio:2020:NEM

Zhang:2021:PHC
REFERENCES

Zhao:2021:LRL

Zandsalimy:2022:NAM

Zhang:2020:NCM

Zamolo:2020:AGU

Zhang:2022:MKE

REFERENCES

Zygiridis:2022:EOF

Zhu:2021:GSI

Zhang:2023:ETT

Zhao:2020:HWS

REFERENCES

Zhang:2023:CMDa

Zhou:2022:SMF

Zhu:2020:HOR

Zhou:2021:SHO

Zhang:2020:HEI

[ZQYS20] Hong Zhang, Xu Qian, Jingye Yan, and Songhe Song. Highly efficient invariant-conserving explicit Runge–Kutta schemes for nonlinear Hamiltonian differential equations. *Journal of
REFERENCES

Zhao:2020:ESF

Zhao:2021:FEM

Zhang:2020:DCT

Zhang:2021:MRS

Zhu:2020:NTT

Jun Zhu and Chi-Wang Shu. A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. Journal of Computational Physics,
REFERENCES

Zhao:2021:HMC

Zeifang:2022:ITD

Zhang:2022:GSA

Zulian:2022:CAN

Wenqiang Zhang, Armin Shahmardi, Kwing so Choi, Outi Tammisola, Luca Brandt, and Xuerui Mao. A phase-

[ZTS20] Jize Zhang, Alexandros A. Taflanidis, and Jeffrey T. Scruggs. Surrogate modeling of hydrodynamic forces between multiple floating bodies through a hierarchical interaction de-
REFERENCES

REFERENCES

Zhang:2023:MMT

Zhang:2022:CFE

Zaleski:2020:SIN

Zhang:2022:HOI

Zeng:2022:PCC

REFERENCES

REFERENCES

Zhang:2020:RES

Zhu:2022:DRM

Zheng:2020:PIS

Zhao:2022:BEM

Zhan:2020:URS

REFERENCES

