Title word cross-reference

[CPX21], A [RC20b], α [BABD21, TT22a], B [Ume23], C [SHL+20], C^1 [Bar21a], d [KKA24], δ [FGZ20], divB = 0 [GGB22], E [Ume23], ε [LJK+24, YcD23], f [LMHL21], G [PHHJ22], H [PT23b, WWJ24], J [HLB20], K
[CPX21, Ian20, ZLW23, CPGD20, GLSZ22, LJK+24, SEG22, YcD23], k_{off} [PB22], L^2 [YWCII22], l_1 [DD22a], L_p [MN22], M [HLA21], M_1 [BTGA22], R^3 [YLK20], μ [CCE+22, YYJ+23], μ(I) [BFNK+21, LY20a], N [HTW21b, HLA21, HJ24a, KKA24, MM24, RIC+22, UHZ+24], N log N [RMA20], O(N) [RE20], ω [YcD23], p [ARTB20, LWR20, NMR+22, WGY20, XSC21], P_N [XJS21], Φ [RC20b, HLB20, vdWvBAA24], Q [SVW21, XG22, ZLW23], S [PBJ+22, MMKM24], S_N [YOH+20, SHM23b], Σ [NKA+20], t [KUO23], τ [AGR23], Y [NKA+20], -adaptation [WWJ24], -adaptive [NMR+22, WGY20, XSC21], -adaptivity [ARTB20], -Algorithm [Ian20], -body [KKA24, RIC+22, UHZ+24], -component [HLA21], -continuous [PHHJ22], [?]cross-Umeda:2023:NIR, -CVT [MN22], -D [WZC21, GDAP20, ID20, KLZ23, NFL+21a, Orn21, PBVC22, UY22, WCZ+20, WK21b, YU22], -dimensional [Bal21], -dimensions [KKA24], -divergence [vdWvBAA24], -exact [SEG22], -frame [PBJ+22], -leap [AGR23], -matrices [PT23b], -mode [CCE+22], -model [KUO23], -nearest-neighbors [GLSZ22], -order [BMBM24], -phase [HT21b, HJ24a, MM24], -regularization [DD22a], -rheology [YYJ+23], -space [ZLW23], -tensor [SVW21], -TMI [CPGD20], -TMI/ALE [CPGD20], -version [MMKM24], -VSPH [FGZ20], -weighted [LWR20],

İzmir [MMSW22].

1 [Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20g, Ano20f, Ano20h, Ano20i, Ano20j, Ano20k, Ano20l, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21f, Ano21h, Ano21i, Ano21j, Ano21k, Ano21l, Ano22a, Ano22b, Ano22c, Ano22d, Ano22e, Ano22g, Ano22h, Ano22i, Ano22j, Ano22k, Ano22l, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23f, Ano23h, Ano23i, Ano23j, Ano23k, Ano23l, Ano24a, Ano24b, Ano24c, Ano24d, Ano24f, Den23, SLO2Z1a, WMTQ20]. 15 [Ano20m, Ano20n, Ano20o, Ano20p, Ano20q, Ano20s, Ano20r, Ano20s, Ano20u, Ano20v, Ano20w, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q, Ano21s, Ano21r, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x, Ano22m, Ano22n, Ano22o, Ano22p, Ano22q, Ano22s, Ano22r, Ano22t, Ano22v, Ano22w, Ano22x, Ano23m, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23f, Ano23g, Ano23h, Ano23i, Ano23l, Ano24g, Ano24h, Ano24i, Ano24j, Ano24k, Ano24l]. 1d [KSHJ20, BGS22a]. 1d-3d [KSHJ20].
2 [Abg20, KSST21, SLOZ21b]. 2020 [Ano20a, Ano20m, Ano20b, Ano20n, Ano20o, Ano20i, Ano20q, Ano20g, Ano20s, Ano20f, Ano20r, Ano20h, Ano20t, Ano20i, Ano20u, Ano20j, Ano20v, Ano20k, Ano20w, Ano20l]. 2021 [Ano21a, Ano21m, Ano21n, Ano21b, Ano21c, Ano21d, Ano21p, Ano21e, Ano21q, Ano21g, Ano21s, Ano21f, Ano21r, Ano21h, Ano21t, Ano21i, Ano21u, Ano21j, Ano21v, Ano21k, Ano21w, Ano21l, Ano21x]. 2022 [Ano22a, Ano22m, Ano22b, Ano22n, Ano22c, Ano22o, Ano22d, Ano22p, Ano22e, Ano22c, Ano22g, Ano22s, Ano22f, Ano22r, Ano22h, Ano22t, Ano22i, Ano22j, Ano22v, Ano22k, Ano22w, Ano22l, Ano22x]. 2023 [Ano23a, Ano23m, Ano23b, Ano23n, Ano23c, Ano23o, Ano23d, Ano23p, Ano23e, Ano23s, Ano23f, Ano23r, Ano23h, Ano23t, Ano23i, Ano23u, Ano23j, Ano23v, Ano23k, Ano23w, Ano23l, Ano23x]. 2024 [Ano24a, Ano24g, Ano24s, Ano24h, Ano24e, Ano24i, Ano24j, Ano24k, Ano24f, Ano24l]. 265 [HPA22]. 2P [CDT22a]. 2V [ATCS20].

Accuracy-Conserving [PTZ+24]. accuracy-uncertainty [BBO+22].

Accurate [BFM21, CNC21, DS22b, Gar21, Jai22a, LCN20, PB20a, PJA22, Sin21, SAH+22, TJ22, USRH20, BBH+20, BMBM24, CL21, CY23, CEMO21, CMR21, CTK21, CFM22, CY22b, CK21, CKPP24, CNCM21, DMN22, DGGL22, DNP23, DW20a, DT20, DT21b, DT22c, EDEV23, GF20, HTLY23, HSS21, IM20, JGM+22, KCWZ22, KG20, KLB23, KB23, KK21, LS22, LL23a, LD20a, LWL+23, LZX+20, LL21d, MWS24, MR23b, NP23, NR23, PP22b, PBN+21, PM22a, PAA23, RS20c, SRV21, Ste22, S21, SLOZ21b, SLOZ21a, Toh23, TWF+20, WRGB20, XH+22, YM21, Yan21c, YGL20, YL24a, ZDT23, ZCY24, vHP22, vdEW24].

Accurately [LDM+21].

Achieving [Nis22b, vLN21].

acidization [YZK23].

acoustics [CE21, PCD23].

acousto [AL21].

acousto-elastic [AL21].

across [Far20, TLB20].

acting [LR23].

action [HZY22, Wan22].

activation [GGN+20, JKK20].

Active [AK21, DSS+22, GW23, ZLW+21, BPVE24, CHCC23, CCMC20, FGF22, KCK21, MWS24, STWK21, TBST20, WSS22, XH+22, XCL22].

Active [ZLW+21].

active-subspace [XCL22].

actual [LLSD20].

ad [LD22].

ad-hoc [LD22].

adaptability [WZL21].

adaptation [AF21, AFF22, CHG+20, CLS24b, FCTZ24, FC21, GD20, HW20b, LRVF22, MN22, DM23b, QZZ+24, RMD20, RHC+24, WWJ24].

adaptive [JDB+23].

adapted [CC20, MA21, YI23].

adapter [RH20].

adaptive [RBB22, RAZA21, SL22a, SAB+24, SGFW21, Sha23, SP22, SC22c, SP23, TL20, TCK+22, TWY23, TJC21, TCR+20, WGY20, WDL21b, WLS22, WLZ+24b, WZBY20, WBB+24, XSC21, XLXC20, YWN20, YJK21, YKLL21, YZC+23, ZCBS22, ZLZ+23, ZDT23, ZIQ+24, ZSY24, ZG24, ZXD22, dSLdA+22, vHP22].

adaptive-mobility [LZC+23].

adaptive-order [DVS22].

adaptively [HD23, MSHW22, STC+21].

adaptivity [ARTB20, BTT24, DSSS20, DBSS+20, HSW21, LBC23, LKEM21, LL20a, PDM23, RMJ23].

adding [LD20b].

Additive
Addressing [JF24].
ADER-DG [WGU+22]. adhesive [XLHB22].
adiabatic [FN22, GLK20, PA20]. adjacent [CS24a]. Adjacent [AHG21, CSY21, FB23, FLS23, KKS+21c, LAMC24, RMD20, RHR20, SJGC21, YSC23, AMG23a, AS20, BPJ22, CHDB23, CX22a, CX22b, CSdP+22, FH24, GMNY23, KS22a, KR22, LP23b, OY21, PRL22, RB22, SES21, VFBD23]. Adjoint-based
ADLMG [AMM23]. adsorption [Cie20]. Advanced [EFS+20, FSM+22, FGD+21, XBLR21]. advection
[ADJ23, ARR21, BF21, BFG22, CCL21, CC24, CZ22a, CBY23, DGW20, FMB20, FPT23, GTDB22, GHY22b, DPI24, LCG22a, LCWH23, LY23, LT20c, MMRZ21, MTB22, MT21, SWF21, SK23b, SFGNMGN22, XMZ+23, vdEW24]. advection-diffusion [BFG22, FPT23, GTDB22, LCWH23, MTB22, SWF21].
Algorithm [DY22b, HNF+21, ZD21, AG21, ASVL23, ALF+22, ACDV24, AE20, Bar22, BG21, BL21a, BDP23a, BTPK24, Bre20, CF21, CCY+20, CJLL21, CCN21, CFM22, CC23, CC20, CI21a, CNC21, DEvW20, DGL+22, DGS20, DW20a, DW20b, EOS23, EM24, Ere22, FZS+21, FVM22, FVM23, FSB+20, FZQ22b, GQP23, GAB+22a, GMMS22, GW20, hH22, HGH20, HX23, JGM+22, JLG21b, JCM24, KBB+20, KKS21b, KKA24, KG20, KWCS23, Kus20, LGV20, LG20, LH21, LZX+22b, LAT+22, LTX23, LFT+20, LLOL24, LCC+23b, MSC+20, MNG+22, MCVF22, MSWH22, MYL21, MYH20, MRdB21, MGT+21, ND20, Nic22, NZXM21, OGG20, DAGL23, PM21b, PK20, PGS22, PJBB20, PO23,
Algorithmic [CHDB23, CA24, HHN+21]. Algorithms [CEL+20, Far20, FBCD22, Li22, MBK21, PLM+23b, BTK22, BFS23, CM20, DLMZ22, DC22b, EFS+20, EPV21, EASA23, EHL+20, HLL+23, HXZ23, JLY23, LCG23, LLLO21, LLCK20, MD20b, PBN+21, QZHD23, Sab20, SPdS+21, SHJ+23, SC22c, TRC22, Tso23, WK20, WTX+21, WLH21, WY22a, YWLL21, YL21b, ZC22a, PDPK20]. aliasing [KK22b]. aligned [BV20, DH20, FAHA20, WWN+22]. alignment [BB20b, KH20]. alkaline [SS23], all-at-once [LNZ21], all-hexahedral [KRL21]. all-Mach [KD21a, SLF23a]. all-quadrilateral [KRL21]. all-scale [PS22c]. all-speed [Bar21b]. Allen [CLS20b, GTWJ24, HLA20b, LCG23, LLCK20, MD20b, QZHD23, Sab20, SPdS+21, SHJ+23, SC22c, TRC22, Tso23, WK20, WTX+21, WLH21, WY22a, YWLL21, YL21b, ZC22a, PDPK20].
ZZW24b, dSDcdMC^+24). anisotropy [GPL22, LLZ23c]. annulus [GFG22].
anode [FSW22], anomalies [BFL20, CDG^+24]. anomalous [LCF^+23].
ANOVA [CL20b]. anti [ScPll^+22, HSKe^+21, SSPV20]. anti-diffusion
[SSPV20]. Anti-dissipation [ScPll^+22]. anti-Gauss [PPHO22].
antisymmetric [HSKe^+21]. anticipatory [DMK^+24]. antisymmetrized
[LGL23b]. any [Der23, Lem20]. AP [PCQL20]. aperiodic [LE21b].
aperture [DLMZ22, Par22]. APFOS [LY22b]. APFOS-Net [LY22b].
apparent [MFS^+22]. Application [AOR22, BCWD21, BS22b, BBP24,
Cal21, CCPS23, CBCT^+21, CPH^+22, CCMC20, DDVo21, EFO19, EFO20,
FZ21, GDJ24, GB22a, HJK^+21, JADS21, KKN20, KKM21, KSST21,
LLB^+23, LOL22, LT20b, LSY^+23, MMLL^+24, MGMT22, MK20, MSIM21,
MHy20, MD22, NVPP23, NKA^+20, PNK23, RSHK21, SFNM^+21,
SACT21, TSS^+20, WZ23a, ZKK20, AP23, ABO22, AF24, BCG23, BBF20,
BBQ^+21, BABD21, BDF^+23, BJ22, BGS^+22b, CQY21, CBA^+21, CRF^+21,
CA22a, CSdp^+22, CEM20, DDR22, DSBFN^+20, DYO22, DEB21, Eld22,
FGTY23, GMB^+22, GHD24, HCM23, HP21b, KWS22, KEY20, LSC20a,
LZZ2a, LHM20, MSK^+22, MT22, MPIG23, MFR22, MBV22, NdLPL21,
NTSM20, OYK^+22, Per23, PTZ^+24, SH23b, SSM20, SMF20, WDL^+21a,
WLW^+20, WSS22, YB22, ZSKN22, CLS24b, HNR23].
applied [DA23, DFP^+21a, HP21a, KF23, LPJ^+23, MKB24, PHHJ22,
PPHO22, SMK23, ST24, SS22c, TVL^+22, WR23c, ZLW^+21]. Applying
[KS11, MRT^+22, PSL20, XBRL21, HZTN21]. Approach
[Van21b, ABH21, AYH^+21, ASW21, ASSZ21, Ale23, AYB23, AN21b,
AWB^+21, BCG^+20, BZSF20, BV20, BFI22, Bha20, BTEK22, BNN20, BJ22,
BD20b, BBL23, BKN23, CS20, CAF^+22, CL20c, CLS20b, CPK22, CA22b,
DKM^+20, DGGL22, DCHF21, DNP23, DD22b, DLSvW24, DW21, Dup21,
EDLF20, EFR21, EK21, FSW22, FJ21, GZW20a, GNF22, GQR21, GLJB20,
GOF23, GCD20, GTKA20, HLZ20, HRR21, HRRHG21, HGH20, HX23,
HX21, HNZ23a, HJLL20, JYK22, KGBT20, KP23a, KSI^+23, KS21b, KNS21,
KF23, KHM^+22, KV23c, KBC22, LE21b, LHXXZ22, LHA^+21, LW20a, LL21d,
LOLS23, MHA23, MM21a, ML24, MRL^+23, MBTS20, NdLPL21, NGZD22,
NVPP23, ÖL23, Orr21, PA21, PRKS23, PM22a, PNK23, PMH24, PPB23,
PCD23, PEL23, QLMR24, RUG20, RDAB23, RA23, STEK17, STEK22,
SLWRG21, SEG21b, SDP20, Sim23, SES21]. approach
[SYY23, SS22b, SS22d, SOBP22, SE24, ST22, TBM22, TGM23, UHZ^+24,
VMBS20, VPDD22, WQ20, WZ20, WSAZ22, WD23, WKK21, WL22,
XHC22, YGW^+20, YTK22, YZH^+23, YK20a, ZOG22, ZA21, ZS22b,
approaches
[GNZ23, H2A21, JWH20, SPdS+21]. appropriate [AK22]. Approximate
[RHD+24, TSSOA20, ASJ23, AF23, BLF20, BF22, BGY22, CWL+21, CCL22, CMP+21, CDT22b, CY22a, CCHS20a, CSY23, CGM+23, CX22a, CXX2b, CH22, DES23, DDP20, DV21, Ein24, ELSV22, FJG+20, GHD24, GFG22, GS21, GPS20, GCL+22, HLM+20, HRMY20, JYK22, KMS20, LSC20, LZY22a, LTK+22, LMV22a, LMV22b, MRK+20a, MRK+20b, MRK+20c, MLM+21, MK20, MSTR23, PS22b, RB24, SEG21a, SKT20, SSK20, TTY22, TWL22, TPPA22, UY22, WZ21a, YK22, YZZZ22]. approximations
[Ano20a, Ano20m, Ano21a, Ano21m, Ano22a, Ano23a, Ano23m, Ano24a, Ano24g, Ano22n]. aquifers [SFP+20]. Arbitrarily
[GZW20b, Cam21, CL23a, CC23, HHL20, MH21, PR20, PA23, ZZ23, ZZ24b]. arbitrarily-shaped [PAG23]. Arbitrary
[CL23, CB24, GBC+20, SOSM20, WZL21, AAML20, ADJ23, ATCS20, BT23, BZ21, CCM+22, CLLL20, CBII20, CI21b, CCAR22, CL21b, CLPP24, CGM+23, DD21, DLY22, EPL21, FHWK21, FX22, GDB24, Hac21, HSXZ21, KCS21, KKS21a, KKS21b, KB22a, KLB23, KB23, LZX+22a, LQXM22, LEH+21, Nis22b, PA21, QIQW22, QJL23, REC+22, RC20a, RRPSS21, TWY22a, TCR22, TSSOA20, TRC22, VVRWT21, WDK22, YTWK23, ZCL20, ZXX23]. Arbitrary-Lagrangian
[CB24, GBC+20, WZL21, CLLL20]. arbitrary-order
[DD21, EPL21, Hac21, KCS21]. arbitrary-species
[ATCS20]. architecture
[CDL+22, TC23, WZ24a]. architectures
[DM21, DFG+23, SMW+22]. area
[AZ23, CP22b, Hua21, JL21b, Nis20a]. area-conserving
[JL21b]. area-to-line
[AV23]. arising
[AP22, MNS24, NMGR21, Z824b]. array
[AV22a]. arrays
[GCMV23, GLJB20]. arterial
[BCPV21, CDT22b]. arteries
[LC23, LAMC24]. artery
[QWCD23]. articulated [UD22]. artifacts
[LL2+22]. Artificial
[H2Z+21, HCdM23, JPAZ21, MDB24, TR21, UHZ+24, XZWH22, YG24, ALC24, BS22b, CDM+23, DHR20, DTB20, EDO24, FL21, GCVI22, GLWZ22, LJK21, LHA+21, MRK+20a, MOBR22, MFK21, NIT21, QP21, RKTV20, SRH21, SEG22, SLNM21, XZC21, Z21b, ZLS22, ZQ20]. ascent
[LXY23b]. aspect
[HRWP22]. aspects
[MH23]. ASR
[YKLL21]. assemblies
[KCT+23]. assembly
[BCC+24, CDK+23, JBF21, LCC+23b]. assessed
[Vre20, Vre21b]. Assessment
[EDEV23, JAW+23, MBDS23, MPBG23, MKM23, GFG22, SBC20]. assimilation
[AB22, BJ21, BT22, BPJJ22, CMH20, CNBH23, CFM22,
CPH+22, CLGA24, CWT24, CLP22, FFGRLS+20, HPS23, KHM+22, LDZ24, MLCM21, SKT23, TLD20, YG21, YBST24. assisted [JKJ20, WYS20].
associated [GQ22, LLO22a, LW24, MCVF22]. assumptions [CWW22].
Asymmetric [BHW23, WF23]. asymmetrically [PDM23].
atomization [FGL+22, GPSMH20, JGM+22, MMDM22]. atoms [HSB20].
attached [DR20]. attentional [SWY+24]. attenuation [FS23b, SF+20].
based [YZSD21, YA21, YJSX22, YTK22, YZZ23, YAX20, YCC22, YZZ24, YNT20, YXL22, YM20, ZSP20, ZNK23, ZB21a, ZCZ22, ZWY21, ZCY23, ZCYS20, ZGL20, ZHL21, ZS21a, ZDW22, ZC22a, ZW24, ZCKS24, WX24b, WR23c, XDLX21, XHX22, XKZ21, XCL22, XBD20, XZW21, XZWH22, XMZ23, XLL24, XSA21, YHC22, YD20, YZdCNS21].

Based [YZSD21, YA21, YJSX22, YTK22, YZZ23, YAX20, YCC22, YZZ24, YNT20, YXL22, YM20, ZSP20, ZNK23, ZB21a, ZCZ22, ZWY21, ZCY23, ZCYS20, ZGL20, ZHL21, ZS21a, ZDW22, ZC22a, ZW24, ZCKS24, WX24b, WR23c, XDLX21, XHX22, XKZ21, XCL22, XBD20, XZW21, XZWH22, XMZ23, XLL24, XSA21, YHC22, YD20, YZdCNS21].

Bases [AMB22b, DCA22, VZ24].

Basic [KDL23, PO23, SLOZ21a].

Basis [AKWY20, BSVL24, BHP24, BKMC21, CS21b, DDP20, DW20b, EJV22, EFY23, FZS21, JYY22, KS22d, KLN20, KL22, KLW24, LLLL23, LYS22b, LZ23, MRYS20, PZ24, PRPK23, TVL22, WQZP20, WCC23, Xia23].

Batch [JLL20, DFJ22, DL21].

Bateman [CS22].

Bathymetries [DS22a].

Bayesian [ACDV24, BCC24, Bha20, BS21, BGH21, BKON23, CORJ23, CZ20b, CWT24, DCS23, DEB21, EKPS23, FSWA22, GSOM23, HWZ24, LSL20, LWY23, LWZ22, LMZ23, MBK21, MRT22, MTWTB21, PMS23, PW24, RBB22, SPD21, SKP21, WMS21, WDL21c, WPBS22, WK24a, XZ22, XLL24, YMK21, vdBSB20].

Bayesian-variational [GSOM23].

Bayesian-variational [GSOM23].

BDF [WZSC22, ZOWW20].

Beam [CA22a, EWN23, HX21].

Beams [AF23, RW22].

Beavers [QHLL20].

Behavior [AYH21, IL23].

Behaviour [Gin21].

Behind [MLM21].

Below [CDL21].

Belt [DDR22].

BEM [Sel22, van22].

Benchmark [EAA22, ZOWW20].

Benchmarking [GBF24].

Benchmarks [SLOZ21a].

Bending [BNN20, NSS23, Yan21c].

Benjamin [RHY21].

Berenger [HCL20].

Bernoulli [MS20b].

Bernstein [EH22a, GC20b, Hac21, KdL20].

Best [ABOS22, HLM20].

Bets [OGVM22].

Better [GA24].

Between [BDWC23, BGSP22, GCV22, GLJB20, HYSS22, HBEK23, Ish22, KKS21a, LZ22a, LW22b, MMP21, NG20, PRO22, RGH22, RSWD21, SDA21, TUCT24, WCL20, ZTS20].

Beyond [Den23, OKTD21, Gin21, Giv23].

Bezier [BNP22, GC20b, Hac21, PHH22, ZXD22].

BGK [BVT20, BT20, BCR22, BD20a, CTK21, DWM23, HHH23, LMK21, MRBS22, SHM24, TKT22, vdWvBA24].

Bhatnagar [FZL20, FJ21, HJ22].

Bhatnagar-Gross-Krook [FZL20].

BHP [LO23].

Bi [BNP22, BBL23, CHN24, D22a, LHC22, LZ20b, LPZ22, OA21, PZ24, ZDS21, FJG20].

Bi-calibrated [OA21].

Bi-cubic [BNP22].

Bi-fidelity [DD22a, LZ20b, LPZ22, PZ24, ZDS21, FJG20].

Bi-fluid [BBL23].

Bi-orthogonal [ZMG22].

Bi-periodic [CHN24, LHC22].

Bias [LXZ24].

BiCGSTAB [BZC22].

Bit [HXQL23].

Bif-PINN [HXQL23].

Bifurcation [MCBA20].

Bifurcations [DS23c, WZ23b].

BiGlobal [FDH24].

Bilayer [BNN20].

Bilinear [vdEW24].

Bimaterial [MIZ23].

Binary [ALF22, LCCM22, LZ23, LZC23, SS23, XZN23, YH22a].

Bingham

Boltzmann-BGK [BT20, BT20, DWM23].

boom [YWN20, YI23]. boost [CC20]. bootstrap [CC21].

boost [CC20].

Boris [CC22b]. Bose [CL21, CDLX23, GC20a, LXY23b, MR23b].

boson [LM22, MPMD20]. both [HCL20].

bottom [AMB22a, ZDT23].

Bound/positivity [HSW22, HS23].

boundaries [ATS24, CDBS21, CRF21, Coc20, CMS23, GvR24, HJ22, LBN21, Lév22, MMZZ22, Ree23, TKR22, VACE21, ZCY$^+21$].

Boundary [Li20, LZX^+22b, LZZ22b, LPJ$^+23$, Lia21, LHT21, LCF$^+23$, LJS$^+23$, LZZW24, LAMC24, LSTZ21, LCDS23, MWY$^+20$, MZ22, MB24, MKB24, MPBG3, MQ20, MBM$^+22$, MGA20, MD20c, NG2, NFL^+21b, NGZD22, NLZ$^+22$, NG20, NW22, Nor22a, Nor24a, Nor24b, OB20, OL20, OLS21, OSL22, OC22, PSL20, PJA22, DAGL23, PAG23, PH22, PL20, PPB23, QH21, RKA$^+23$, RS20b, RF22, RRPSS21, RS23b, RB24, RGR21, SM21a, SYOS19, SYOS21, SpdF20, SKT20, SWM21, SRT21, SC22a, SBL22, SY21, SAMA21, SNW23, Sv21, Tak23, TAWD23, TNB21, TPH22, Th22, TF20, TSM24, VBA22, Vre20, Vre21b, WQ20, WGS$^+20$, WP21, WH22b, WKB21, WLL$^+23$, WK24b, X20, XY20a, XC23b, XSA$^+21$, YLS21, YYM$^+22$, YYB23, YGL20, YP22, YP24, ZG21, ZHPZ21, ZXY22, ZZZH23, ZAPB$^+24$, ZZZ20, ZCY$^+21$, ZMW23, ZB21c, ZYY23, ZY24, vNGB22, vHG$^+22$].

Boundary [CF21, RB21]. boundary-conforming [CLL20].

Boundary-consistent [BBF20]. boundary-lattice [MWY$^+20$].

boundary-layer [BBF20, MD20c]. boundary-material [NLZ$^+22$]. Boundary-optimized [SAM23]. boundary-phase [SRT21].

boundary-reconstructed [WLL$^+23$]. boundary-value [SY21].

boundary/multi [CW22b]. boundary/multi-relaxation [CW22b].

bounded [CJK24b, CJK24a, Ere22, HFB22, HLA22b, HTDL24, KGN22,
Nor22a, PEA20, PO21, Rec23, SB23, SSG+20]. boundedness [MIM20].

bounds [CF20, KKA24]. Boussinesq
[ADK+21, GFG22, KMS20, LSXC20, MJS23, PKC22]. box
[KKA24, KS22d, KLG+22, LLSX23]. BR2 [BV22]. brackets [SST+23].

Breaching [DEvW22]. breakdown [NTSM20, XSF23]. breakdowns
[GMD22]. breakup [CDJM21, ZMZY23]. Bregman [GU20]. bridges
[KCX+21]. Bridging [CRPB20, HYCL23, YJP23, LLB+23, WLPK20].

Brinkman [LCWH23, NYY22]. BR2 [BV22].

Buckingham [ODM23]. Buckley [AFV20]. budget [CPX21]. Building
[LRT22a, LR24]. buildings [CFS23]. built [Cie20]. bulk
[HLA20a, MYY+23, SVW21]. buoyant [JHT23]. Burgers [SFNMF+21].

buried [LYZ22]. Burton [Sel22]. butterfly [CZHY20, LY20b]. BVD
[CF21, CDX+21]. bypassing [RN23].
cardiovascular [HBBN24]. Carleman [KNT22]. Carlo
[Bar21b, BG20b, CDBS21, Cam21, CTG23, CLP21, CLPP24, CPBB21, DDR22, Eld22, HL22b, HW23, LD20a, LJZK21, SBL22, SI22, TJM23, WBH+24, XS20, XLS22, YWN20, Yok24, ZPW+23]. Cartesian-diffusion
[HL22b]. Cartesian-grid [Cam21, CLP21]. Cartesian-octree
[HW23]. case
[BTKP24, CLS20b, CJK24b, CJK24a, DZ23, ER22, GDL23, HST22a, HPRW20, MMSW22, NMN23, POS+20, PZ20, RA23, SC22c, SGLP23, TBW22]. case-study [POS+20]. cases [DZ22]. CAT [MLPR24]. Cauchy
[HBF22, KKP20]. causal [PJZ+23]. caustics [GDL23]. cavitating
[BFC23, PKG20]. cavitation
[BDTU24, CPD+24, GPSMH20, LZH23, SS23, ZMW23]. cavities
[KAC22, YL24a, ZZW23, ZZW24b]. cavity [CJLL21, TBG20, YL24b]. Cayley
[FLW20b, GDB24, KCS21, KKL24, STC+21, ALF+22, BL22a, BFG22, BG21, BLM22, BCP22, BL21b, BBW+21, CHMP24, CCY+20, CCN21, CY22b, CZLC22, CC23, CLJ+20, CDL+22, CAT20, CKN22a, CSCL21, CBCF20, DSS20, ERE22, FCM+20a, FGL+22, GSFH22, HHL20, HL22b, HPRW20, HPW21b, JCM24, JG21, KBSF22, KDL23, KS21c, LT22a, LB24, LYL20, LAT+23, LXY23a, Li23, LH20, LJK+24, LKG+20, MOR24, NW20, NW23, OCGT22, PWH+22, PGCC+22, QJQW22, QJL23, RE22, Sha23, SCL20, SC22d, TCA21, TZM+20, TRC22, WDS22, WZL21, WBH+24, XLS22, YWN20, ZB21b, ZXBS22, DFG+23, EC20, GHS22, LPH+24, PTZ+24, RB21]. cell-
[GSFH22]. cell-based [GFL+22, LT22a, LJK+24]. cell-cell [KBSF22]. Cell-centered
[HPW21a, KNP20, ZWLG23, BD20a, CKLZ23, CF21, CCH+23, CKN22b, FZ20a, GKL21, JTW22, KLZ20, KKLX23, LC23, PWK20, SAP22, ZB21a]. central-line [LC23]. Central-moment [ZWLG23]. central-upwind

Challenge [Cai21]. change [BDTU24, BS22, HHAFT21, HLA22a, LZT+23, MCP23, LHY23, MMZ21, MRL+23, WA23, ZSY24]. changes [CMPZ22, GBC+20, HCL22, HF23, KSST21, MS20a]. changing [LSTZ21, SCS20].

chaos-informed [CGC21]. chaotic [CB22, HD23, KP23a, KH21a, WKA+20]. character [YAX20].

checkerboard [DMR22]. checkpoint [CC21]. checkpoint-restart [CC21].

chemo-hydro-mechanical [GN23c]. chemoeptaxial [LCC+23].

EdLCCCO24, IW23, KRL21, SLQW22, TZ20, YLS21, ZOWW20.

comparisons [PMZ+23]. Compatible [YWCL22, BLBM24, FTY+22, LCDS23, PGTS21, RLD24b, WCB20, WT24].

compensators [ZLW23]. competitive [BDHO24]. complement [HV20, KKS+21c, RWdBAG23]. complementarity [BE20, YZK23].

complete [BGRO20, DNW23, Hua21, Pan20a, WH22a]. completely [DBC+22]. completion [DLMZ22].

Complex [BH20, BLBM24, BDF+23, CHCC23, CM20, CY22b, CFS23, Cie20, DS22a, DMT21, DFW22, FDH+24, GQF23, GJL20, HZ22b, HW23, JHY21, LL20, LLN22, LLY20, MM20a, MCH20, RLD24b, RWM21, MRZ21, MCI23, PTT22, PTT24, QG21, QH23, RUG20, RS20b, SY21, SBC24, TB21, WZB20, Xia23, XCL22, YBB23, YGL20, ZSL+23, ZOG21b].

Complex-scaling [DHM21b]. Complexity [ASBM20, CF20, Bre20, EMP24, JLY22, JLY23, LBN21].

ZCYS20, ZMWS22, ZSZ23, ZZZH23, ZWY23, ZFAA24, ZJSX23, ZSQ21, ZWB21, dLF23. Compression

[DAGL23, AMB22b, Che23a, DSDB24, DJJD20, EGN23, HM22, LL24b, SC22c].

Compromise

[LW22b]. Comput

[Abg20, ACML20a, BLL20, EFO20, GRT21, HPA22, LMFV22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].

Computation

[CCER20, FSM22, PTT24, WCA20, AF24, BCC+24, BG21, CL20a, CPX22, CF5+22, CT22, CBCF20, EFR21, EK21, FLOL23, Gao24, GLT20, GKD23, KS22a, KKL+23, LPS21, LCG23, LWL20, LM22, MM21a, Nis21, PTZ24, REC22, Wan23, YTK23, YR22, ZSZ23].

Computational

[AP23, CCE21, CP20, KSST21, LLO22a, TACO22, YLLO23, ZZW24b, ASW21, AFGLM20, AWB+21, CAF+22, CHCC23, CL20b, DVF22, DFP+21a, DY22b, DC22b, FTPB23, GCV22, GLJB20, GMMS22, GN23c, HYM20, HGZ23, HHRA19, JM23, KBCH20, KSW22, KRL21, KCT+23, LGV20, LWY20, LLL24, LAS22, LMR20, MD20a, MRT+22, MAP+20, NIT21, Nor24a, Pan20b, PWB24, WRBK20, YCM20, ZW22, ZJSX23, ZAMG20, BCdS+23].

Computationally

[DS23a, WLS22].

computations

[BHW23, CE21, CFS23, EDC23, GU20, Nis22a, NA21, PB22, RD22, RIC+22, SMLM23, VPDD22, ZJSX22].

compute

[MCBA20, NPD20].

computed

[TTP22].

computer

[DEB21, LCL22a, XCL22].

computers

[ZLC+20].

Computing

concentrated

[BLF20, ZD21].

concentration

[FGKY22, FB22, LB20].

concentration-dependent

[LM20].

concentrations

[APR22].

concurrent

[DGL22].

condensates

[CL21, CDLX23, GC20a, LXY23b].

condensation

[DLsW24, MR23b].

condensed

[RRFK+21].

Condensing

[CLT21].

condition

[BCIT22, BDB21, CK20, CYS23, CN21, GS22, JLC21, KRG+23, KKY22, KS21b, LAN21, LCG23, OKT21, QHL20, RRPS21, WH22b, WLL+23, XC20, ZZZH23, ZCY+21].

condition-enforced

[WLL+23, ZCY+21].

Conditional

[BFC23, SPGG23, TBST20, Che20, CD223, GN23a, HGSK22, LT20a, PZ21, ST24, TBS21, YBST24].

conditional-value-at-risk

[GN23a].

conditioned

[HJK21].

conditioning

[BBDT21].

conditions

[AD21, ATS24, BZ21, BFG22, BG20b, BPP24, BFS23, CHS20, Cal21, CLS+20a, CLW22, CK21, Cds20, DG23, DN21, FZ20a, FH24, FDP20, HP21a, HLA22b, HNZ23b, HXQ23, JPA22, JLLY24, KB24, LM21b, LYL20, LZ22b, LCF+23, LMC24, MPB23, MGA20, NFL+21b, NG20, NW22, Nor24a, PJA22, PAGJ23, PT23b, RS23b, RB24, SYOS19, SYOS21, SSS21, Svi21, TAWD23, TNB21, TFB22, VBA22, WZW21, WKKB21, WLL+23, YLS21, YYM+22, YGL20, BRT22].

conditions-free

[HXQ23].

conducting

[AWP23, KLP22, USRH20].

conductivities

[BCG+20].

conductivity

[ILX22, JYK22, Kus20, VSB+22, YSTK20].

conductor

[HLB20].
conductors [LL23a]. cone [HPA22]. configuration
[KLP22, LW22a, MNG+22, QC23, SM21b]. configurations
[MD20c, SVW21, YSCM21]. confined [CY22b, KMR23]. confinement
[AKK20, LCPW23]. confirmation [NTSM20]. conformal
[AMGC21, SQSS20, XMY22]. conformation [LHXZ22]. conformational
[KSS21]. conforming [BGS22a, CBCT+21, CLLL20, HSG+22, Jai22b, LOL22, LWN24, WY22b, XHY23, ZMQ24, ZSKN22]. congruity [RA21].
conjugate [CNCM21, GB22b, HGV+21, CL23b]. connected [Nor22a].
connection [SLQW22]. connectivity [WY22a]. consequences [KP24].
Conservation
[QWZ+23, RLD24a, YWCB22, ALF+22, AFF+23, BKC22, BL22b, BBD22, CQP+21, CJ21, Cha20, CV23, DSZ20, DLWW22, DMP+24, EC20, FTX22,
GKL21, GN20, HMO+20, Kiv21, KDL23, KNG22, KGN22, KWF20, KL20, KV23d, LZZ21a, LSY21, LTO22b, LTO23, LF24b, LWZ23, LD20b, LOLS23,
LA21, LP20b, LSTZ21, LpW21, LLQ+24, Mar23, MYM+21, Mi23, NVPP23, PM21b, PD21, PP22c, PCA+23, QCD21, RLD24b, RBF+21, SSK20, SAP22,
SLNM21, SX20, TFWX22, TKK22, Tot23, WLKR23, WX24b, XS22b, XS23, Yan23, YNT20, ZBH23, ZQ20, ZQ20, ZWPQ22]. Conservative
[AC23, CFH20, CBRY21a, CBRY21b, DFW20, Edo24, EH22a, GNW22, HST22a, LM20a, LS23, RGH+22, WBN22, ZZYX20, ATCS20, BCF22,
BRC22, BCR24, BL21b, CKL23, CBF22, CNMB20, CXZ24, CC23, CGZ23, CSS20, CLS24a, CKN22b, CCB22, CS21c, DC23, DXP23, DWM23, EJ21,
EOS23, FGL+22, FTK23, GGB20, GH22b, GTWJ24, GS23, GMSLC24, GLCS23, GLWY22, HHA22, HT21b, HAX21, HLA20b, HLA20c, HLA21,
HLA22a, HJ23, HABG23, HJ24a, JMM20, Jai22a, JMG+22, Jen20, JHF21, JCM24, JK20, JH23, KBB21, KKS21b, KJ22, KVQE21, KLX23, LTD+21,
LPL+22, LCS24, LL22, LpW21, LLQ+24, Mar23, MYM+21, Mi23, NVPP23, PM21b, PD21, PP22c, PCA+23, QCD21, RLD24b, RBF+21, SSK20, SAP22,
SLNM21, SX20, TFWX22, TKK22, Tot23, WLKR23, WX24b, XS22b, XS23, Yan23, YNT20, ZFH23, ZQ20, ZWPQ22].
Conservative
[AC23, CFH20, CBRY21a, CBRY21b, DFW20, Edo24, EH22a, GNW22, HST22a, LM20a, LS23, RGH+22, WBN22, ZZYX20, ATCS20, BCF22,
BRC22, BCR24, BL21b, CKL23, CBF22, CNMB20, CXZ24, CC23, CGZ23, CSS20, CLS24a, CKN22b, CCB22, CS21c, DC23, DXP23, DWM23, EJ21,
EOS23, FGL+22, FTK23, GGB20, GH22b, GTWJ24, GS23, GMSLC24, GLCS23, GLWY22, HHA22, HT21b, HAX21, HLA20b, HLA20c, HLA21,
HLA22a, HJ23, HABG23, HJ24a, JMM20, Jai22a, JMG+22, Jen20, JHF21, JCM24, JK20, JH23, KBB21, KKS21b, KJ22, KVQE21, KLX23, LTD+21,
LPL+22, LCS24, LL22, LpW21, LLQ+24, Mar23, MYM+21, Mi23, NVPP23, PM21b, PD21, PP22c, PCA+23, QCD21, RLD24b, RBF+21, SSK20, SAP22,
SLNM21, SX20, TFWX22, TKK22, Tot23, WLKR23, WX24b, XS22b, XS23, Yan23, YNT20, ZFH23, ZQ20, ZWPQ22].
Conservative
[AC23, CFH20, CBRY21a, CBRY21b, DFW20, Edo24, EH22a, GNW22, HST22a, LM20a, LS23, RGH+22, WBN22, ZZYX20, ATCS20, BCF22,
BRC22, BCR24, BL21b, CKL23, CBF22, CNMB20, CXZ24, CC23, CGZ23, CSS20, CLS24a, CKN22b, CCB22, CS21c, DC23, DXP23, DWM23, EJ21,
consolidation [GdFP+24]. constant
[Lév22, LKJL22, RR21b, Sha21, WWZ20, XG22, ZLW23]. constant-
[XG22, ZLW23]. constant-volume [Lév22]. Constitutive
[L´ev22, LKJL22, RR21b, Sha21, WWFM22, XHD21, ZBB21]. constrain [PBF24]. Constrained [DVS22, RWH+24, Ac24, BS22b, CSY21, CZ23, CWX23, CBA+20, EIYW24, FCM+20a, FVM22, FVM23, GZ20, HR22, LZZ21b, LXY23b, MSIM21, MD21, SMS23, XD22, YZK23]. Constraint
[HM22, ZLB22, CF20, DCA+22, GKNÖ23, JD23, LWY+20, LT20c, MD21, WR23c, ZJSX23]. Contact
[FMB20, ASW21, BB23b, BHVJ22, BSW+22, BDMP22, BT24, CZZ21, FGF22, FCWT22, HZTN21, HGG23, HYZ22, HLA22b, Ish22, KKM21, LDL20, LT20b, MCT21, PBGB21, PH22, SRTB21, SHL+20, TUCT24, WGS23, XLB22, YLK23, ZY20a, ZR20, ZKY+20, SS22a]. Contact-PIC
[SS22a]. containerless [SDP20]. contamination [LZ20a]. continuity [MMKM24]. Continuous
[CLP22, PR24, CHG+20, CLDC20, FCP21, KK20b, LY22c, MSC+20, MAPS20, PHJJ22, RMD20, SL20b, SL22b, VT23, ZZZG23, ZAA23]. continuous
[SL20b, SL22b]. Continuous-time [PR24]. Continuum
[LY20a, LZ20, LLZ20b, BDI+21, BCP22, BLBM24, CHS20, DGI+22, FM20, JH20, KCK21, KCP20, LSC+20c, MR22, MCP23, SWG21, XLC20, XSF23, ZOC21a, ZYL23a, ZMTZ24, BCD+33]. Continuum-kinetic [CHS20]. Contour
[SWM21, CA22a, GHH24]. contraction [EFO19, EFO20]. Contrast
[CEL21, CEL22, AH21, CG24, LFT+20, RSA+20, SP23, YLW21]. Contrast-independent [CEL21, CEL22]. Control
[BRT22, MBAG21]. Convection
[GHD24, GFY20, LTD+22, MZ23]. convection-pressure
[GMRS20, HTLY23, MD20b]. convective
[BE+22, Edo22, HDm23, KK22b, LLCJ23, SKTK21, SYY23].
[Convergence] [ACHG+21, CZ22a, CHM24, JLC21, SN21, TBD+20, BTCV22, CWW20, CC20, EG20, ESJ23, GLY22, HA21, HY+P24, JKK20, JYY22, JW21, KML23, LKM22, LJ22, LQX22b, LQX22a, tLjTbZ22, Nis20a, Ran23, SMRW22, SMS23, WZZ23, YWCL22]. Convergent
[JWH20, LTE23, CQW24, CX22b, HT21a, JJ21, LZZ21a, MB24, MVO+22, TPAP22, WGW20, WZ23a]. converging
[LZY+22b]. conversion
[AZV23]. Convex
[ZNK23, CDW23, LCL22a, ZZ23a]. convexification
[KNT22]. Convolution
[HZ22a, FA22]. Convolutional
[DC22a, Chi23, GSH22, LC20, LPBK23, PGR+23, PMH24, QCZ22, WWFM22, WZC22, ZYL+23b, AM22]. convolutions
[Ale23, DSBD24, PLYZN23, TPAP22]. cooled
[MCBA20]. coordinate
[CLT21, DV23b, KRG+23, LST24]. coordinates
[Bal21, Bsp21, CLS20b, GKR22, HM21a, MT21, PWbCJ24, PA20, DM23b, QSZ20, SOV21, SK23a, SLOZ21b, WWZZ24a]. copolymer
[BCC+24, LCC+23b]. copolymers
[BCL+23]. core
[CLXS23, LFL+22]. coregionalization
[XKZ21]. Corner
[MGA20, EGN23]. corners
[AnIL20, D HM21b, L L23a]. corona
[MFG22, MP21]. coronaries
[DFP+21a]. corrosion
[OLP23]. cosmological
[BL21a]. Cosserat
[AEGV22]. cost
[BB20a, DDR20, HYM20, KSS21, RRN23, ZT23]. cost-effective
[BB20a, DDR22]. Coupling
[ALF+22, HHL20, HL22b]. coupled
[YGW+20]. Coupled
[ACML20a, ACML20b, WCA+20, ZQ+23]. cost-effective
[RRN23]. cost-aware
[BB20a, DDR20]. Coupling
[ALF+22, HHL20, HL22b]. coupled
[YGW+20]. Coupled
[ACML20a, ACML20b, WCA+20, ZQ+23]. cost-effective
[BB20a, DDR22]. Coupling
[ALF+22, HHL20, HL22b]. coupled
[YGW+20]. Coupled
[ACML20a, ACML20b, WCA+20, ZQ+23]. cost-effective
[BB20a, DDR20]. Coupling
[ALF+22, HHL20, HL22b]. coupled
[YGW+20]. Coupled
[ACML20a, ACML20b, WCA+20, ZQ+23]. cost-effective

D [RG22, WZC1, GDAP20, An21a, ATCS20, AZY23, AF23, BGH20, BAK22, BTZ22, BRZ+23, BCG22, BTCV22, BDWC23, BEP+20, BP21, BLM22, BJL21, CHMP24, CGL+23, CDT22a, CMH20, CBL1, CG23, CFS23, CRF+21, CIMG21, CUCM21, Da22, DT21a, DFW22, FTPB23, GCCvR22, GPL22, GTDB22, GBLT20, GP23, DCC+24, GCH22, GDB24, HTZ22, HL22, HBF22, HNF+21, HP21b, ID20, IMJ20, JG2R23, JRY+20, KSTT22, KCS21, KKA24, KLL22, KKL24, LPS21, LP20a, LLD20, LDLW21, LZ22, LL24a, LLCK20, Mar24, Mar23, MFG22, MPSP22, MSIM21, ML20, MM23, MRZ21, NFL+21a, OLS21, Or21, PT23a, PW+22, PT22, PT24, PBVC22, PCD23, RG22, RV22, SB23, SRD20, SLOZ21b, SLOZ21a, TWY22, YK22b, YK22c, YW22].

...
decompositions [PJZ +23, BCdS +23]. deconvolution [XBD +20].

decoupling-based [XBD +20]. Decoupled [ZY20b, CY22b, LYZW21, WZSC22, WGY +21, WHS22, Yan21c, YTK22, ZHY22, ZH21].
decoupling-decreasing [FY22, JL21b]. Deep [BCdS +23].

deep-learning-based [BCL24]. Deep-OSG [CW23].

defective [QHLL20]. defects [DGL +23, GB22a]. deferred [HPP20, Sti20, ZS22a, ZWY21, ZZ23a]. defined [BLWL22, SAY22, SBC24, XY20a, ZY24].
definitive [SRM24, XHD21].
deflation [DV22, GWY21, KAC22, RSO20]. deformable [BHVL22, BDMP22, KV23c, KB22b, NZX21, HXS21]. deformation [AP22, BNN20, CCGC23, CRF +21, CZ22, FTP20, FZS +21, GH24, JAW +23, KHZ21, LYG +20, LM23a, MLL23, MRL +23, XHZ21, ZHPZ21, ZJ21].
deformation-fault [ZJ21]. deformations [BZ21, BGNY22, BV22, WGS +20, YB22].
deforming [HST22a, RMWS21, SOSM20]. degenerate [BLZ21b, Kan20, Le21a, TZ21, ZZX22, ZTZX24]. degradation [CGJ21].
degree [PZZ +23]. DEIM [EAK20, WDH +21]. delay [ZLQS24]. delay-free [ZLQS24].

Delta [FY22, LZY22a]. Delta [FGZ20, FCY +20, Kho20, RKV20].
delta-Eddington [FCY +20]. dememorization [ELL +23]. dendrite [JZK24].

Denoising [PTZ +24, GN23b]. dense [AFF +23, KVQE21, LY20a, PM21a, ZWS +24]. dense-to-dilute [PM21a].
densely [KKM21]. densities [GHHR22, GQS20]. Density [KC20b, YB22, ZNCZ +21, AFL22, AR21, BCC +20, CL20c, CSMH24, DC21,

density-ratios [LTBM23]. dependencies [VRAM21].

dependent [AH21, AFL22, AFGLM20, AMB22b, BDS23, BG20a, CZ22a, DG20, DJF24, FPT23, GMB+22, GR21, HHK+23, HPA22, KCS21, LL24b, LMB20, LKG+20, NDH20, Nis23, PB20b, PMF20, PM21b, PH22, PTT22, Qia22, QHLL20, QZH22, RV20, RS23b, STEK17, STEK22, Shi23, VdGP20, WQ20, WWZZ24a, WCBQ24, XSC21, Yin21, ZSST23, dZBDMC24].

depend[QGS20]. depletion [CS22].

diagonals [MCBA20]. diaphragm [TVL+22]. Diatomic [WZX24, XCL+21, HGH20, KJ24].

diblock [BCL+23]. dictionary [MO22].

dielectric [CCR20, LMIH22, WZG21, WSA22, ZR21, ZWN24].

different [MHA23].

difference [MDB24, RHD+24, VVRW21, AAL+21, AT20, AD20, AC23, BHNS23, BK23, CCJ24, CLS+20a, CBF22, CHF21, CX23, CLP21, CLP24, CSS24, DMN22, DBD21, DZS20, DYMC20, DT21b, DT22c, DFW22, EWN+24, FQ22a, FQ20a, FQ20b, FHM24, GvR24, Gao22, GLY20, HT21a, HPA22, HZD21, HL20a, HCL20, HXX22, HSG+22, JJK21, JTK22, JLYH24, JLY22, KST22, KL20, K22a, KCD+23, LL21a, LG22, LL23a, LG21, LZ22a, LCR22, LSZ+23a, LH20,

Direct [EGTC+21, GF21, JG21, KOM+22, KSK+24, KD20, LMZ21b, LL24a, QAS20, SXZ+23, VRK+21b, WCA+20, WGB22, YK20b, ZJS23, AWB+21, BBGT21, CPX22, CB23, CH23, CHZ22, DY22a, FSB+20, GBC+20, GA24, HM21a, HLY20, KK220, LCP21a, LHZ20, MTT+23, OGVM22, QLY21, KRR20, SH23a, SGW21, SES21, TUCT24, WCP23, WC23, XZLH23, ZB21c].

discontinuous-Galerkin

discontinuous

discrepancy

discretisation

discretization
dominant [MHY20]. dominated [BBB23, GHD24, GFY20, LTD+22, LT20c, MM21a, MZ23, NZ24, SFGNMGN22]. Dormand [NNJ21].

doubly-periodic [WN21]. dozens [SZW+20]. DP [KLLW24, LHCK24].

doubly-periodic [WN21]. dozens [SZW+20]. DP [KLLW24, LHCK24].
[ZMG+22]. dynamically-orthogonal/bi-orthogonal [ZMG+22].

Dynamics

dynamics [ZBP+24, dPS24]. dynamo [YYM+22, DMK+24].

eddy-viscosity [EDEV23]. edge [CHDB23, He22, HSB20, KYO22, LH21, Sem21, FCL21]. edge-based [He22].
electroencephalography [GGM+23]. electrohydrodynamic [FBS23, LBM20, PHP21].
electrohydrodynamics [XSHH20]. electrokinetic [KSK+24]. electrokineses [WLZ21]. electrolyte [WZC21].
electrolyte-dielectric [WZC21]. Electromagnetic [LLZL20, AFF+23, BAK22, CJLL21, CHZ22, CMS+22b, DNP23, FCGKR23, LL23a, LLLL23, LY20b, LMUHR22, LMHL21, LL24b, MF24, Par22, PT+24, PP24c, RC20a, Sem21, Tak23, USRH20, YL24a, ZZW23, ZZW24b, ZZY21].
electromagnetics [MPSP22, RC20b]. electromechanical [RSA+22].
electromechanics [ZBP+24]. electromechanics-driven [ZBP+24].
electrostatic [BFS23, CC23, Ere22, JCM24, SGMT20, SGM21, TRC22, ZIMA24].

Elliptical [CPGD20].

Embedded [RHD⁺24, STC⁺21, Ver23, BHKJ22, CEL22, CRPB20, CBC⁺23, GAB⁺22a, HF23, HR20, KSHJ20, KWS22, LPJ⁺23, LT20b, LC23d, NG22d, RS20b, SBL22, VLY20, WY22a, WY22b, ZMW22, ZZY21].

Embedded-hybridized [HR20].

Embedding [WMS21].

Embeddings [GFPO22].

Energetic [WLZ21, LCP23, LLB⁺23, LW20a, LHML21]. energetically [Lee21].

entropies [Ran22]. Entropy [BK21, Cha20, CLW22, CCN23, DT21a, GCLM22, GS22, GMD22, KGN22, LLO23, MRK+20b, Ren21, RLD24b, RRHCG23, STG20, Svá21, WKW+22, WZ24b, AÝR22, BKC23, BKMM24, BWG+20, CT22, CSW+24, CJK24b, CJK24a, CMRR21, DC23, DT20, DT21b, DT22c, DW22, EKPS23, GS3, DCC+24, HRRHG21, JMD22, Jia22b, JRD22, KK21, KOS23, LCS23, LCT23, LC24, LMVF22a, LMVF22b, LCDS23, MÖR24, MRK+20a, Mar23, MGV22, Nor22b, NMR+22, PBN+21, QWZ23, RBD+21, RRHH+21, SWG21, Svá22, TJK22, UY22, YU22, ZML24].

OP20, OGVM20, PSL20, PB23, Pan20b, PZ20, PM23, PAM23, Poë23, PEL23, QWZ23, QZZ+24, RS20c, RBPRST20, RA21, RNY21, RMWS21, SH23a, SH23b, Sar21b, STEK17, STEK22, SM24, SL20b, SL22b, SSV20, SL22c, SL23, SHM24, SMAY22, SCdHJ20, SMRW22, SQSS20, SACT21, SQZS23, TZ21, TLKK23, TZNHD20, TBST20, TBG20, TKR22, TS20, TL21, TEA+23, TOB+24, TPYX22, VRK21a, VMBS20, VVRO21, WV2G20, WZC21, WNB21, Wan22, WWZZ24a, WJK20, WKK23, WK24a, WZBV20, W23, Xia21, XF21c, XG22, YLK20, YCH21, YX22, YSC23, YW22, YK20a, Yin21, YFL21, ZWY21, ZOW20, Zha22, ZXY22].

equation [ZC23, ZLQS24, ZG24, ZYY23, ZLW23, aKAK20, vGAtTBI23, vGAtTBI24, vdWvBAA24, PRKS23]. **Equation/Variable** [PRKS23].

LL23b, LLZ23c, LCJ'+20b, LZCC22, MSC'+20, MD20a, MCP23, MTK22, MCGN24, MRK'+20a, Mar20, MHLR22, MOBR22, MPZ23, MB21, MYL21, MT22, MZ23, MM'+21c, MM22, MDF21, MBM'+23, MHY20, MMM23, NCQ22, NV22, NGZD22, NPP24, NYY22, NG20, NW22, Nor22b, OPM22, OY21, OWHN22, OBR22, OSi20, OSi24, PDM23, PWH'+22, PWX24, PCB21].
equations
equations
[ZS21a, ZL21a, ZL21b, ZL21c, ZHY22, ZX22, ZSM22, ZPGR22, ZLW'+22a, ZZZG23, ZST23, ZDT23, ZCCN23, ZXX23, ZYY20, ZOG21b, ZHI21, ZZZ23c, ZGX24, ZH'+24, ZT23, ZVY20, ZL22, ZZZ24, aKAK20, dLF23, vHG'+22].
equidistribution [KH20]. equifinality [GSOM23]. equilibrate [MX22].
estimate [KNT22]. estimates [Gri20, KS22c, KSC22b, MFdSS24]. Estimation [TT20, BLL18, BLC20, BGC'+20, BS20, CGJ21, DM23c, EKPS23, GSO23, H2, JO22, K20b, KN20, KBC22, LCG22b, LCP23, LT20a, LAMC24, POS'+20, RLH22, RBC'+23, SM22, VM22, WK24a, XLL21, ZHL21].
Euler

BLL20, BLL19, Bal21, Bar21b, BBB23, BB23b, BDL+20, BJL21, CSW+24, CBB20, CJK24b, CJK24a, CGM+23, DC23, DYZ24, DZGP24, FX22, GMS20, GGB20, GHH+23, HRRHG21, HBF22, HY22, HTLY23, IK23b, JTW22, Kem23, KR23, LP20a, LD20a, LCJ20a, LG21, LCT23, MS20b, Nor22b, PRL22, Ran22, RWQX23, Ren21, SEG21a, LF24a, Svi21, TPK20, WX22, WZTZ21, WKW+22, WZ24b, YMY+21, YSN23, ZA20, ZS21a, ZL21b, ZL21b, ZL21b.

Euler/Navier

WZTZ21.

Eulerian

LGY+20, BFI22, BDWC23, CQY21, CB24, CLLL20, CCLM22, DDM20, DDVO21, DGW20, DLY22, EM20, EASA23, FHWK21, FX22, GBC+20, GHY22b, GDB24, HLA20a, HSX21, HQ22, JN20, KKS21a, KV20, KBS+21, KWR+23, LB24, LG22, LPL+22, LZX+22a, LQXM22, MJ23, NCQ22, NFL+21b, PM21a, PJ22, QJQW22, QJL23, REC+22, RMJ23, RRPS21, SSM20, SRT21, SMY22, TSP22, TKR22, WWC21, WL21, YL21b, ZXX23.

Eulerian-Eulerian

PM21a.

Eulerian-Eulerian/Eulerian

PM21a.

Eulerian/Lagrangian

LGY+20.

Evacuation

AFMP24.

Evaluation

DHMT21, AZV23.

Evans

NSS23.

Evaporating

MMM23.

Evaporative

PR20.

Events

Gri20, SFDW23.

Evolution

ARB+21, BGN22, BPVE24, GC+22, GYWG23, KB21a, Mon21, SM21a, WP23.

Evolutionary

HKW24, ILN21, ZZL24.

Evolving

BB20b, CB24, CL20d, TFCH22, YA21, YGL20.

Ewald

BT23.

Exact

LP21, Mül23, WNH+20, AMB22a, FML21, LXY23a, PWXY22, Per23, PP22c, SE22, SEG21b, TH22, AFF+23.

Exact-interface-fitted

PWXY22.

Example

BLLL23.

Exchange

LWZ22, LMM23.

Exchanges

LP21, excitation [HKRS23, WR23c], excitations [GC20a], excited [LYC23b].

Exclusive

FA22.

Exhibiting

FTP23.

Existing

MVO+22.

Exit

YZdCNS21.

Exner

MACDR24.

Exogenous

Russ24.

Exogenous

KH21a.

Expansion

WK20, BKn23, CB23, CZ22b, DBC+22, HHYM20, Kus20, LPP+20, Mon21, PDM23, TBST20, WCZ+20.

Expansions

DHMT21, GKD23, NSS24, TBH21, T24, TPS20, VBA22, WK20, XL24.

Expected

BCC+24.

Expensive

WLS22.

Experimental

BJW20, Glai21, SM21b, SLOZ21b.

Experiments

GMMS22, PC22, RA21.

Explainable

THKT21.

Explicit

explicit/vertically [LP21]. Explicitly [LGL23b, CLC24a, FZQ22b]. explicitly-sparse [CLC24a].
Exploiting [ABÁFTO23, SvDtTB21].
exploration [HLXZ21]. explosion [GZW20a, LWH20]. exponent [YL21a].
Explicit [BM24, CCHR20, CH24, LSC20a, AAKW20, CBQ21, CEMO21, CC24, CPA+23, FY22, GJLD20, GRT18, GRT21, JWC20, Li22, LL21d, MH21, MMDP21, PG24, PC22, SZQS23, Wan23, YGJ21a, YGJ21b, YYX21]. Expression [RHSK21]. expressions [SL20a]. extend [HMMO20].
Extended [LT21, TGM23, ACHG21, ALL22, CMSS21, LZLZ21, LYZW21, MTT+23, RSSK24, XHS21, XHS23, ZG21, ZG24, AG24].
Extending [KDL21].
Extension [ADJ23, KUO23, SLOZZ21b, AOR22, BB23b, HP23, LWH+22, PGCC+22, QG21, RH22, XY+20, ZC22b, ZC22c, ZL22, HSS21]. extensions [SPG23].
extrapolation [KB22b, MYL21].
extrapolation [KB22b, MYL21].
extra [HMMO20].
Extended [LT21, TGM23, ACHG21, ALL22, CMSS21, LZLZ21, LYZW21, MTT+23, RSSK24, XHS21, XHS23, ZG21, ZG24, AG24].
Extending [KDL21].
Extension [ADJ23, KUO23, SLOZZ21b, AOR22, BB23b, HP23, LWH+22, PGCC+22, QG21, RH22, XY+20, ZC22b, ZC22c, ZL22, HSS21]. extensions [SPG23].
extrapolation [KB22b, MYL21].
extrapolation [KB22b, MYL21].
extra [HMMO20].
Extended [LT21, TGM23, ACHG21, ALL22, CMSS21, LZLZ21, LYZW21, MTT+23, RSSK24, XHS21, XHS23, ZG21, ZG24, AG24].
Extending [KDL21].
Extension [ADJ23, KUO23, SLOZZ21b, AOR22, BB23b, HP23, LWH+22, PGCC+22, QG21, RH22, XY+20, ZC22b, ZC22c, ZL22, HSS21]. extensions [SPG23].

finite [MCP23, MYJ+23, MJS23, MLM+21, MR23a, MPIG23, MKF21, MD22, MW23, NCQ22, NFA21, NVPP23, NK22, NY22, NW20, Nis20a, Nis22a, NW23, NVK+22, OGG20, PHP21, PWY22, P22b, PWX24, PPP21, PB22, PRL22, PGP+23, QZZ+24, QCD21, QC23, RFZ22, RZ23, RWQ23, RL24b, RRHI+21, RAZA21, RPDO+21, RW22, RMS21, SMSAG22, SOSM20, San20, SOV21, Sar21a, SWG+20, SGW+23, SPF21, SEG21b, SGT23, SHL+20, SBVM20, SM22, SST+23, SSS+20, SCL20, SLN21, SAM23, SC22d, SN21, TCS22, TCK+22, TAWD23, TMD20, TJ23, TVL+22, U21, VMO21, WW20b, YHYL21, WTX+21, WCF+21, WZT21, WZ21, WZV21, WRLG23, WCB20, WT24, WR23c, WK24b, XC20, XDLX21, Xie22, XC23a, XH24, XBR21, XHS21, XHS23, XM20, XSA+21, YG24, YLK20, YLL20, YCH21, YYLY22, YH22a, YRC+21, YLS21, YYM+22, YFLL21, YL21a, YKHF23, YL24b, ZNK23]. finite [ZOG22, ZCY23, ZZ20, ZA21, ZL21b, ZWZ22, ZDW22, ZHY22, ZZ23b, ZD23, ZXX23, ZJQ+24, ZR20, ZR21, ZJ21, Z23c, ZR24a, ZSQ21, ZL22b, ZWR24, ZS20, ZL22, ZPK22, vdWvBA24, Bel24, GAB22b, HMV22].

finite-strain [LBC23]. finite-volume [BHVJ22, BF22, BSA21, BR22b, Cap23, CZLC22, CLXS23, DVS22, DEvW20, GQF24, GSFH22, Lin21, LTBM23, NW20, Nis20a, Nis22b, NW23,
[44]

ZZC20, ZL21a, ZHPZ21, ZPW+23, ZS24, ZJ21, ZLB22, ZJSX23, ZR24a, ZB24, ZZX20, ZF20, ZD21, ZR24b, ZSKN22, dSdCdMC+24, vHP22, vdEW23].

flows [ZMWS22, ZSsC+22, ZSZ23, ZWLG23, ZYL23a, ZYW+23, ZYL+23b,
ZFAA24, ZSY24, ZR20, ZLW+21, ZCY+21, ZZN22, ZWS+24, ZSQ21,
ZPS+21, ZO21, ZGK+22, ZWB21, ZOEL20, dSLdA+22, vNGB22].

fluctuating [MGP+22, MTK22, RPA22, RPDO+21, YR22]. Fluid

[CMZP22, DJ20, FM20, HBBN24, KHH21, MS20a, MKB20, VSS21,
ALMF23, ASW21, ASS2+1, ASVL23, BAT23, BL22a, BV20, BV21, BTZ22,
BVR22, BFI2, BL21a, BKC23, BPG21, BBKB21, BHZ+23, BBL23, BTL23,
BGQ+23, BFST23, BSP21, CLB23, CAF+22, CFJF23, CSM23, CNC21,
CSMH24, CSF+24, CPD20, DS23a, DC21, DSS20, DS21, DC22b, DGPP22,
DFJ20, EG20, FTP20, FW24, FADJ20, FGL+22, GDLL22, GQF23, GDJ24,
GH23, GN23c, HD20, HLA20a, HZTN21, HSXZ21, He22, HPX23, HLXP24,
HV21, HL22b, HW20a, HZG23, HM21b, HSB20, HT20, IMJ20, JAV+23,
JRY+20, JLCT22, KBG23, KBS+21, KWR+23, KV23c, KKS+21c, KCP20,
LPM+20, LB24, Lem20, LL20, LDL21, LZ+22a, LQXM22, LZ22b,
LOL22, LFL23, LPH+24, LHT21, LR21b, LBM20, LSLH20, LR20b, LSZ21,
LFL+22, LMPT24, LMR20, LHFH20, MWY+20, MWS24, MST24, MJ23].

fluid [MHWY21, ML20, ML24, MT21, MRT+22, MD22, MM20,
MMdMB22, NIT21, NG22, NA22, NZR24, NZXM21, Nor24a, NKA+20,
OB20, OL23, OSL22, PR24, PSJ23, PV+21, PAM23, PBVC22, QKG21,
RM23, Re22, RV22, RBBR+23, RPA22, SOM20, SBH21, SC20, SMK23,
SPF21, SRV21, SYL23, SC22b, TF20, VT23, WCM+21, WLL+23, X20,
YL21, YT23, YK20a, ZZML20, ZZC20, ZRH21, ZQC+23, ZSL+23,
ZJS23, ZM23, ZBP+24, DKSA21, KB22a, PJR23]. fluid-electron

fluid-kinetic [HSB20]. fluid-level [MM20]. fluid-particle

[HW20a, LDL21, ZQC+23]. fluid-poroelasticity-structure-contact

[ASW21]. Fluid-reduced-solid [HBBN24]. fluid-rigid [OSL22]. fluid-solid

[CLB23, HVB21, JLCT22]. fluid-structure

[VSS21, ASS21, BFI22, BPG21, BBKB21, BFST23, CFJF23, CPDG20,
FW24, FADJ20, GQF23, HLA20a, HSXZ21, He22, HGZ23, KBG23, KBS+21,
KWR+23, LLD20, LRL21b, LT20b, MWY+20, MJ23, NG22,
NZXM21, PBVC22, QKG21, RM23, TF20, YK20a, ZRH21, ZSL+23].

fluid/free [JRY+20]. fluid/ghost [SYL23]. Fluids [DKM+20, BSW24,
BBV23, CY22b, CHL20, DEV20, FL23b, HDB21, HSK+21, HKJ21, JF20,
KAO+20, KSK+24, LRL2, LZH23, MWY+20, MMM23, PC32, QWZ+23,
SK23a, SWH22, TW22a, UBT22, WFT22, dv23a]. Fluids-membrane

[DKM+20]. Flux [CLKZ23, GMD22, HKW24, Kiv21, PKL+21, RHD+24,
WNN+22, ASKH21, AKWY20, BKC22, BTKP24, CNC21, CB23, CN21,
CND22, CDN+22, DGW22, DWM23, FSM+22, HYQ20, HTLY23, HJQ+23,
KJdm+22, KLX23, KdL20, LL20, LSY20, LFZ21, LDC23, LcXL+20,
LID+22, MÖR24, MGRVR23, Nis22b, PV22, RRG24, SYOS19, SYOS21,
SHM23b, SS22c, SOBP22, TNB21, Tow20, WBN21, WGY20, WW24,
WLL+23, Xia21, YU22, YFY22, YOH+20, dMKJ+22]. Flux-aligned

[WWN+22]. flux-based [BTKP24]. Flux-corrected [HKW24, Kiv21].
flux-differencing [MGRVR23, RRG24]. flux-enriched [WBN21].

gain [BCC+24]. Galerkin [AG24, LMFV22a, ZCQ20a, ADK+21, AdS22, AÖR22, ARR23, ALM23, AMM+20b, AMM20a, ADM22, AM22, AHWW20, AMM23, BL22a, Bal20, Bal21, BRT22, BZSF20, BCF22, BGG21, BKV21, BWG+20, BBMA23, BNN20, BDP23b, BV22, BPY24, BX20, CHS20, CQY21, CBQ21, CWW22, CWW22, CK20, CLJ22, CLDC20, CTG23, Che23b, CZL20, CKLM+23, CBBI20, C121a, C121b, CJK24b, CJK24a, CX22a, CX22b, CCB22, CCN23, CMRR21, CSS24, CLS24b, DEN22, DY22a, DCGQ20, DH20, DHR20, DLSvW24, DMC+23, DY22c, DY22d, DSZ22, DY24, DT20, DZGP24, DK21, EM20, EH22b, FHWK20, FHWW21, FGKY22, FCL21, FX22, FCY+20, GQR21,
GK20, GMSLC24, GAB22b, GC20b, GAC20, GHTC21, GLLM22, GMJ24, Hac21, HMV22, HYQ20, HTL21, Heu21, Hig20, Hig22, HSMR20, HQ22, HR20, HLY20, HABG23, HLQZ23, HYH24, JTW22, JKJ20, JK20, JJ21.

Galerkin

Galerkin

[dLF23, vGAtTBI23].

Galerkin-Finite

[GAB22b, MYJ2+23].

Galerkin/Hermite [BCF22].

Galilean [LM21a].

Gappy [NS23].

Gas [Cap23, LLZ23c, MA21, PLX24, SDA2+21, BAT23, BJC23, BTKP24, CPX21, CPX22, CZL20, CCE2+21, DevW20, EM20, FZL20, FCTZ24, GMNY23, GDB24, GAB22b, HGH20, HLA22a, JZB2+24, JZSX20, JZSX24, Kem23, KJ24, KWCS23, LVK2+22, LCJ20a, LL20a, LLQ21, LLQ2+23, LLS24b, LZ20, LZZW24, LCJ2+20b, M2C2+22, NBR22, PZ20, PZZ2+23, PR20, SH23b, SKT20, Sar21b, SLWRG21, SYL23, SYC2+23, SSS20, SKCM22, SGLP23, SZW2+20, TMZ2+20, Uil20, Unf21, VFB20, WKK24, WN220, WCP23, WZX24, WA23, WABK21, WLZP21, XLC20, XCL2+21, YGW2+20, YJSSX22, YPX24, YLLG24, ZCYS20, ZS21a, ZL21b, ZLW2+22a, ZWLG23, ZNS22, ZJSX22, ZGX24, ZG20, ZPS2+21].

Gas-dust [SDA2+21], gas-gas [CZL20], Gas-kinetic [PLX24, CPX21, CPX22, JZSX20, JZSX24, LCJ20a, LL20a, LLQ21, LLQ2+23, LLS24b, LZ20, LZZW24, LCJ2+20b, M2C2+22, NBR22, PZ20, PZZ2+23, PR20, SH23b, SKT20, Sar21b, SLWRG21, SYL23, SYC2+23, SSS20, SKCM22, SGLP23, SZW2+20, TMZ2+20, Uil20, Unf21, VFB20, WKK24, WN220, WCP23, WZX24, WA23, WABK21, WLZP21, XLC20, XCL2+21, YGW2+20, YJSSX22, YPX24, YLLG24, ZCYS20, ZS21a, ZL21b, ZLW2+22a, ZWLG23, ZNS22, ZJSX22, ZGX24, ZG20, ZPS2+21].

Gauss [HJK2+21].

Gaussian [HXZ23, ABOS22, BBH23, BKY21, BGH21, CZ23, CL20b, CHOS21, CCN21, DS20, HRMY20, HNR23, HWZ24, IT22, JLRZ20, LT20a, MY23, MRT2+22, MYZ22, STG20, STB2+21, WLPK20, WSAZ22, XCL22, YBST24, ZMK21].

GBS [GRC2+22].

GCR [GB22b].

Gegenbauer [FA22, KYO22].

GEGS4 [WMTQ20].

General

[MBN2+20, RHSK21].
generalised [PHHJ22, PB22, Po¨e22, Po¨e23, SPF21, TGS 22, WDK22].
generalizable [ZXLH23].
generalization [GCSH22, RR21b].
Generalized [AEGV22, CGC21, CCHS20a, DJ22, DJ23, JLYH24, Kan20, LLLO21, Nik23, WTX+21, ZS21a, BCG+20, CSM20, CX21, CHF21, CNC21, CPA+23, DCHF21, DC21, DS22b, EAK20, FCM20b, FZ21, GB22b, GGEJ20, GLLB20, GDF21, HVD23, HQ22, KP23b, KBCH20, KBB+20, KBBd21b, LS23, LW20a, LZZW24, LWN24, MCP23, MCVF22, MRG21, MPMD20, Osi20, PGC24, RRBR+23, RVY21, SYL23, SYC+23, Sin21, WH22b, WK24a, YD20, YRH22, ZS22b, ZS24, AEGV22, BBH+20, GTKA20, GKA22, MBM+23].
generally [LTDC23].
generate [DBD21].
generating [CP22b].
Generation [KKN20, ADM+21, BGR20, CL23a, CLW+24, KL20, KKM21, LPS21, MN22, VCNC+21, WNN+22, YJK21, YKdH20].
generative [GN22, KS22d, RK21, WW20a, WD23, WKA+20, XZ22].
generator [PWXY22].
Generic [HLL23, ADJ23, HX23, KKN20].
genetic [XCZ20].
GenMod [WD23].
Gennes [GC20a].
gentlest [LXY23b].
genuinely [QSZB20, WK24b, ZQS+21, ZQL+22].
geodesic [BR23, tH22, ZAMG20].
geological [KFSM21, KH21b, XHS23].
geo [ND23].
geomagnetic [CDG+24].
geomechanics [BKMC21, DZJ22].
Geometric [CGL+23, LPH+24, BGN22, CVM23, CSF+24, CMS23, CS21c, EBC+22, DPI24, KV23a, MMZR21, PP+22a, PC23, RGS21, RAZ21, SMV22, TACO22, ZP20, dPS24].
Geometrical [BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZZ22, vGAtT2B13, vGAtT2B14].
geometrically [BLBM24].
geometries [AZV23, BLK+23, BG20c, CCM+22, Ch23, CLP21, CLPP24, DFW22, GAB22b, GFF20, HST22a, JHY21, KM22b, LLN22, MWY+20, MBE21, MRZ21, RKA+23, SV23, SRTB21, SY21, SBC24, Ste22, TB21, WZBV20, XL22, YGL20, YB22, ZG21].
geometry [BT22, CLB23, DS20, FLZ20, FDH+24, FLW20b, FLW+23, GSW21, Gar21, L24a, LHM20, LJK21, MJ23, MBB22, QJL23, SYOS19, SYOS21, TNB21, VCP20, Xia23, YHK24].
geometry-adaptive [GSW21].
geometry-informed [YKH24].
geostatistical [ZZK20].
geostrophic [CHT20, DNO23].
Germano [TL21].
ghost [ACR23, BL22a, BV20, BV21, CAT20, CSM23, CSLC21, Coc20, CMS23, EG20, J21, LL23a, LSS21, LCP+24, OCGT22, SYL23, WCF+21, ZZZ24, Z22].
ghost-cell [CAT20, CSLC21, J21, LCP+24, OCGT22].
ghost-cell/level-set [LCP+24].
ghost-point [ACR23, Coc20, CMS23, LL23a].
Gibbs [CS21b, RS20c].
Gilbert [CCWX22a, LXD+20, YCH21].
GINNs [HTKT21].
Ginzburg [HMXC23, ZOG21b].
given [PGS22].
Glacier [Bri22].
Glaciers [HPS23].
gLaSDI [HCF+23].
Glauert [BRT22].
GLM [CPGD21, DFGR20].
Global
[AAH+20, AD20, ADM22, AM22, BHNS23, Bar21b, BCIT22, BR23, BWBT24, BG20b, BDF+23, BLM22, BST23, CDBS21, CZLC22, CDX+21, CW22b, CTCS22, CQA21, CLPP24, CIMG21, CPBB21, CA22b, DDR22, DVS22, DSS20, DLYZ23, DW20a, EGTC+21, Eld22, ELSV22, FL21, GAB+22a, DCC+24, Hac21, HRWP22, HX23, HJ24b, JGM+22, KKN20, KIHB21, KML23, KR23, KK21, LKM22, LL23a, LD20a, LWR20, LGZC24, LP23a, LCN20, LSZY20, Liu21, LYS+22b, LSY+23, LEH+21, LLCK20, MLL+24, MK21, MDF21, MWZ23, NMN23, NW20, Nis20a, Nis20b, Nis21, Nis22b, NW23, NA21, OP20, PA21, PGP+23, PBF24, RCSS24, RE20, SGB+21a, SEG22, SEG21b, SC22c, SF22, VPDD22, WY22a, WY22b, XJN+20, XDLX21, XHX22, ZB21a, ZCY23, ZCL20, ZPW23, ZWR24, ZL22, vdEW24].

Gröbner [VK24]. Gross [FJ21, FHJ22, AST21, BSZ+23, FZLL20, HSW21, Wan22, ZCH22].

ground [CL21, CDLX23, DJZ22, GD21, ILY+20, Wan22, ZCH22]. group [JWH20, YB22, ZG22]. group-IV [YB22].

grouping [JWH20, YB22, ZG22]. grouping-circular-based [FZL+21].

growth [FH23, GPL22, HX21, JZK24, LHL+22]. GRP [LZ22b, LFW23].

Grüneisen [LZS22a]. Grüneisen-type [LZS22a]. guarantees [NPL+24]. guess [VdGP20].

guided [ACD20, CHZ21, WCZ22, WZ24a, ZXR21]. guidelines [GDF21].

guideposts [LCC+23]. guiding [AKK20, LAT+22, PK20]. guiding-center [AKK20].

Gummel [Kan20, NBR22]. Gummel-based [NBR22].

Gurtin [XLHB22].

gyrokinetic [MND+20, SOBP22, SC22d]. Gyroscopic [EJZ23a, EJZ22].

H [Pan20b, KRL21]. h-adaptive [KRL21]. Hadamard [WCBQ24].

Hagedorn [GR21]. half [GJL20, Sha23, YZZ24, BDFT23]. half-plane [Sha23]. half-planes [Sha23]. half-space [YZZ24, BDFT23]. Hall [GMJ24, LHF23, MH22b]. Hall-magnetohydrodynamic [GMJ24].

Hamilton [CSY20, DM21, FPT20, GHTC21, KNT22, RB22]. Hamiltonian [BDZ23, BRZ22, CS20, CHSS20, DM23a, DCS23, EL24, GHS22, HLS22, Hua21, LLZ23a, MPM20, NFPSA24, SDSL21, SX20, TJD2, TXH+21, VK24, ZQS20].

Hancock [TYC23, TYC24].

Handling [TPB22, XMY22]. hard [CHZ+21]. hardness [IL23]. hardware [HM21b].

harmonic [AHG21, DW20a, DV22, LE21b, MDG20, NZRH24, VCNC+21, RB21].

HDG-DG [KGBT20].

HEALPix [DV20a]. heart [DV22, DFP+21a, ZBP+24].

KF23, KD20, KdL20, KV23d, LPL+22, LCS23, LCJ20a, Li20, LCSZ21]. high
[LLQC21, LG21, LCR22, LY22a, LLZ23a, LLQ+23, LLR23, LRW21b, LM20a,
LS23, LSZY20, LFZ21, LYS+22b, LJS+23, LZZ23, LsCxL+20, LZJ+24, LD22,
LN24, LL23b, LZCC22, MLPR24, MCGN24, MHW21, MHW22, MGA20,
Mon21, MAPS20, NS22, NZ24, NPD20, Nic22, NGK+21, NKA+20,
ORCVG24, OWHN22, PWL+23, PPP21, PAA23, PM21b, PS22b, PTT22,
PTT24, PZ21, QG21, RUG20, RFZ22, RWQX23, Ren21, RWDG22, RZH20,
RSA+20, SZN19, SZN20, SMSAGG22, SYAM23, SEG21b, SEG22, SRV21,
SWF21, SAP22, SLF23b, SFNM+21, SS22c, SZ21, SP3, SSS22, TFWX22,
TYY22, T22, TL20, TWY23, TCA21, TJC21, TZNHD20, TM23, TSM24,
UIL20, VVRWT21, VOL23, VSY22, WGY20, WTY+21, WTZZ23, WCP23,
WX24a, WAK21, WZBV20, WGY+21, WNLZ21, XZ22, XDLX21, XHX22,
XH24, XCL22, XBR21, XHL23, XHC24, YSCM21, YLY21, YJSX22,
YP24, YOH+20, YCC+22, YWLL21]. high
[YJK24, ZSP20, ZBYZ20, ZB21b, ZZZ22, ZCZ22, ZLG+23, ZWY21, ZCY23,
ZML20, ZL21a, ZL21c, ZCZ22, ZCZ3, ZYZ23, ZSY24, ZHR20, ZJSX22,
ZJSX23, ZBY+23, ZSQ21, ZL22b, ZO21, ZEOLO2, dLF3, vNGB22, Der23].
high-contrast [AH21, CG24, RSA+20]. high-dimensional
[ALFN22, BCWD21, BPVE24, CNBH23, CL20b, CWT24, DV20, DV21,
DJID20, EMP24, EHL+20, GW23, GYZ21, HLZ20, HZD21, HGSK22,
KTB20, KV20, KL+22, LL23, LZJ+24, LD22, ORCVG24, TTTY22, TL20,
TWY23, WX24a, XZ22, XCL22, ZBYZ20, ZZZ22, ZCZ22, ZCZ22a].
high-energy [CSMH24]. high-fidelity
[AP23, AFP22, BBF20, CL23b, DS23a, HLL23, SLF23b, XHX22].
high-frequency [CBF22, MGA20, TZNHD20, YCC+22]. high-index
[ZY+23]. high-Mach-number [vNGB22]. high-order
[BHG20, BKC23, CPX22, CF21, DY22d, DT20, DT21b, DT22c, FHWK21,
FL23b, GCDT22, GLY20, HPP20, HRW22, HNZ23b, HJQ+23, KS22c,
KS22b, KL22, KK21, LCL22a, LJW+22, LVK+22, LMS23, LSZ23b, LH20,
LZ24b, LYS+23, MLL+24, MST24, NFL+21a, NFL+21b, NBR22, NKW22,
PZ20, Pan20a, P22b, PBN+21, PSCK23, PGPT23, RMW21, Say22,
SBL22, XBH+22, XM20, YU22, ZDT23, ZGZ24, ZQS20, ASG+23, ADP22,
AP20, AZV23, AMM+20b, ATS24, BBH+20, BL22b, BL21b, CDK+23,
Cam21, CPX21, CBF21, Cha23, CND22, CDN+22, CLP21, CLPP24, CC22,
CCS20, CMRR21, CCMC21, CA2b, CLS24b, CCLM22, DHM21a, DS22a,
DC21, DHR20, DY22b, DY22c, DYZ24, DK21, DGW22, DWM23, EDEV23,
FMWK20, FML21, GvR24, GDL22, GLF23, Gla21, GDB23, GZW20b,
HM22, HGB20, HKRS23, HL20a, HZ22b, dMKJ+22, IW23, JZSX20, KS23].
high-order [KBB21, KLF22, KdMJ+22, KdL20, KD20, KdL20, KZ23d,
LC20a, Li20, LLQC21, LCR22, LLZ23a, LLQ+23, LRW21b, LM20a,
LS23, LYS+22b, LsCxL+20, LN24, LZCC22, MLPR24, MCGN24, MHW22,
MGA20, Mon21, NS22, NZ24, Nic22, NGK+21, PWL+23, PPP21, PM21b,
PS22b, PTT24, PD21, QG21, RUG20, Ren21, SMSAGG22, SEG21b, SEG22,
SRV21, SWF21, SAP22, SS22c, TFWX22, TJC21, TSM24, VVRWT21,
Poë23, RWBS21, SL22a, SRTB21, SHM24, SMY22, SCL20, SC22b, SMLM23, TY24, UHZ+24, VPDD22, WX22, WZWZ23, WX24b, WTZB23, XDLX21, XHY22, XY20b, XHY23, YGW+20, YRC+21, YLLG24, ZCY23, ZML20, ZFG21, ZFAA24, ZCQ20b, ZMTZ24, ZLW22b, ZO21, ZR24b, vGAtTB124].

hybrid-dimensional [AdDMT21, Che23b, XHY23].

hybrid-unstructured [Jai22c].

hybridised [BGGM21].

Hybridizable [AG24, Mar20, CX22a, MCF23, LF24a, VCNC+21, VCCN+23].

hybridization [NPL+24, OGVM20].

hybridization-based [OGVM20].

hydrate [TZ20].

hydraulic [BGSP22, ND20, Uil20].

hydro [GN23c, RHR20, ZWN24].

hydro-mechanical [RHR20].

Hydrodynamic [EK21, NTSM20, WS22, CS24b, GTKA20, HP22a, HGZ23, Ish22, PLX24, VCCN+23, XHC22, ZTS20, aZY23, MBB+23].

Hydrodynamic/acoustic [EK21].

hydrodynamically [BGSP22, ND20, Uil20].

hydrodynamics [ATS24, BOB21b, BOB21a, BTL23, CQW24, CKT21, CW22a, CSS20, CLS24a, CVM23, CIMG21, DT21a, DT22c, FGF22, GLF23, HNF+21, Ijj21, KKS21a, KKS21b, LCS24, LMZ+21a, LM21c, MGP+22, MTK22, ME22, NKC22, OYK+22, PWL+23, QPW21, QJQW22, RPA22, RRCHG23, RRG24, SDA+21, XHLB22, XZC21, YKLL21, YTK22, YR22, ZRH20, ZHH23, ZBY+23, ZAA23, BZC+22, FQSW23, HP21a, KEY20, LZPM22, LFL+22].

hydrodynamics/radiation [LM21c].

Hydrodynamics/radiation-moment [LM21c].

hydroelastic [ZSL+23].

hydrogel [LZ+22a].

hydrogenic [HSB20].

hydrostatic [CN22, EdLCCCO24, GMMS22, Lee21, LP21, Pop20, RWdBA23].

hyper [CGJM21, CJW22, HSH20, KS24a, ZXY22].

hyper-parameter [HSH20].

hyper-reduced [CJW22].

hyper-reduction [KS24a].

hyper-singular [ZXY22].

Hyperbolic [GKP22, YcD20, YcD23, BKC22, BB20c, BL22b, CEM20, CPGD21, CEM20, DD22b, DLWW22, DSZ22, DKM+24, GCLM22, GKL21, GS23, GPS20, HVD23, HNH+21, HJLZ23, HJT23, Kiv21, KGC2, KMN22, KMF20, KQ20, KFL20, KZ21a, LSN21, LSN21, LF24b, Lin21, LW23, LD20b, LsCXL+20, LA21, LSTZ21, LPW21, LLQ+24, MD20a, MN21, Mar23, MYY+21, Nlc21, Nis20b, Nis21, NG20, PMT+22, PGCC+22, QZH23, SKY20, SLW22, SGB+21b, SAP22, TFWX22, TSH20, VVL21, WX24b, XS22a, XS22b, XS23, XGQ+23, XM20, ZZ23b, ZHR20, ZH20, ZCP20b, ZQ20, ZWQG23, ZR24b].

Hyperbolicity [DEN22].

Hyperbolicity-preserving [DEN22].

hyperelastic [BLM22, FB22, TCR+20].

hypergraph [GDJ24].

hyperparameter [DY22b].

hyperparameterized [ACDV24].

hyperreduction [DY22, WZ23a].

hypersonic [BEP+20, CCMC20, FCW21, NPL+24, PSCK23, PPB23].

hypersonics [MLM+21].

hyperviscous [LCP21a].

hysteresis [LLD20, ZY20a].

hysteretic [YZK20].

IBM [LOL22, LWZ+21].

ice [CPTR23, CFM22, HPH+23, IL23, LGL23a,
MK21, hSMLS23, TTP22, ZMZY23. ice-sheet [HPH+23]. icecap [LL24a].
ing [ZSc+22]. icosahedral [CIMG21]. ideal
[BMBM24, CS21a, CMS+22b, DEvW20, DT20, LZLS21, LFW23, MSC+20, OBB22, RRHC23, WGS23, ZYD20]. ideal-gas [DEvW20]. IDENT
[HKL+23]. Identification
[AP21, JP22, BSCG22, HCF+23, KLP22, NCC21, ZL21d, HKL+23]. identify
[AP21, JP22, BSCG22, HCF+23, KLP22, NCC21, ZL21d, HKL+23]. identify
[AP21, JP22, BSCG22, HCF+23, KLP22, NCC21, ZL21d, HKL+23]. identity
[HKL+23]. IEQ
[Yan21b]. IGA
[LKEM21]. II
[HJH+21]. III
[LLZ+20a]. illustrations
[BBL23]. illustrative
[BLLL23]. image
[ZBB21, MTB22, YM20]. image-based
[YM20]. Imaging
[CDG+24, CHN24, LYZ22, LL24a, Par22, WGB22, YSTK20]. IMEX
[YGJ21a, BDL+20, BP21, CB24, KGBT20, OBB22, PCQL20, TPK20, YGJ21b, ZTZX24]. IMEX-DG
[OBB22]. IMEX-LDG
[PCQL20]. Immersed
[CZCY23, GF21, LHT21]. immersive
[LKvM+22]. immiscible
[BBV23, JM23, KKS+21c, LRT13, LOL20, LZ2H23, MYY+23, VPL20, dv23a]. Impact
[Nor24b, NW22, NKA+20, PR23, WLZ24a]. impacts
[PRO22]. IMPEC
[FGTY23]. impedance
[CJSZ23, DNW23, DZC+23, FY20]. imperfect
[RHG22]. Implementation
[GMA23, LFW23, AFS+23, ATS24, BLLL23, CMPZZ22, EBC+22, FMJ22, FMQ22, FM23b, FM23a, HP23, LFL+22, MCGN24, PLM23a, VS22+21, WR23a, WZ21b, WK21b, ZA21]. implemented
[DGGL22]. Implementing
[HLA22b, FSB+20, LZX+22b]. Implicit
[BEF+20, BD20a, KB24, LA21, MR23a, NGK+21, Po22, SPZ22, YPX24, ZSP20, ZSS2a, ALMF23, AT20, AG21, ATCS20, ALF+22, AFF+23, Bal21, BB20a, BBD+20, BZC+22, BP21, BDI+21, BCP22, CS20, CCY+20, CC23, CCGC23, CK21, CCN23, CSS24, CMS+22b, DEvW22, DT22a, DLsW24, ELLZ22, Er22, FZB+23, FGKY22, FMS21, FMT23, FOL23, GNF22, GPHAPR+22, GFG22, HZ22b, HNZ23b, IRT22, JWC20, JCM24, JLC21, KGBT20, KBB21, KSI+23, KCCR22, KS42b, LCH20, LRT+23, LMS23, LTD+21, LP21, LTE23, LYY20, LTT21, LYS22a, LH2X22, Ll22, LOL22, LLZ23a, LDZ24, LMZ21b, LL21d, LYS+22b, LZC+23, LSY+23,
ZXY22, ZABP+24, ZYY23, ZY24, aKAK20, vHG+22. integrals
[BCG23, GH24, GKD23, IRT22, Rec23, Thu22, WGH23]. integrated
[MYY+23]. Integrating [LAT+22, JLQY21, NS22, Suk23, YGJ21a, YGJ21b].
integration [AKK20, BR22a, BO22, BB20a, BZC+22, BTK22, CCN23,
CPA+23, DSBFN+20, GCV22, GDB23, GPHAPR+22, GMA23, HSM20,
HK21, Kem24, Lep21, NFP2A24, PGC24, PC22, SDKL21, Sha21,
SdSPS24, Unf21, VK22, WMT2Q20, WP23, WDK22, YK20b]. integrations
[HZB+21]. integrator
[CEM21, CCE+22, CCG23, DSG+22, EOP20, GJL20, JWC20, KCC22,
LP+20, Lee21, R2C20a, TCA21, Ume23, WCBQ24]. integrators
[CBQ21, CC22b, CCHS20b, GRT18, GRT21, GFG22, GW22, KSS21, Lin23,
LCB23, MH22, MH22, Mii23, MMPD21, WBN22, YGJ21a, YGJ21b,
ZLQS24, dPS24]. integrado [GW20, YND22]. integro-differential
inter-particle [BFS23]. inter-phase [SFP+20]. interacting
[BPT+20, DF22, JLL20, KLA23, KCK21, LHT21, LR23, WX22].
interaction [ASW21, ASS21, BF22, BPG21, BBK21, BGQ+23, BFST23,
CJF23, CIM21, DK2+20, FQ24, GQF23, HLA20a, HSX21, He22,
HY22, HBN24, HW20a, HG22, JLCT22, KBG23, KBS+21, KWR+23,
LD20, LQ21, LQ21, LI23, LR21b, LT20b, LM20b,
MWY+20, MJ23, NG22, NLZ+22, NZX21, OSL2, PBVC22, PPR23,
QK21, QC23, RMJ23, RSW21, RB21, SWH22, SDA+21, TF20, VSS21,
VS+22, WL+23, YK20a, ZTS20, ZSL+23, vdEW23]. interactions
[BFS23, HVB21, JGvR23, KBSF22, LCC+23v, MAP+20, OB20, PB20a,
QW21, SGM21, TCA21, VEC21, WWY21, XHC22, ZRH21]. interatomic
[N23]. interconnected [LZL21]. interest [VGG23]. Interface
[MT21, QJ2W22, ABH21, Aul20, ASKH21, AD20, AD21, AD23, BL22a,
BCL+23, BG20b, BPG23, BGSP22, BSW+22, BS22, BZ20, BBA22, BSP21,
CL22, CS21, GQ22, CL23a, CLS20b, CSM23, CSD20, DY22a, DU20,
DSP22, EdCC+23, EWN+23, FZ20b, FH24, FO22, GGV2, Gao22,
G121, GL20, GZ21, HLPX24, HHL22, HLY20, JMM20, JAW+23, JZK24,
JHY21, JZW20, ZLL+24, ZLY24, KC20b, KSH22, KK22a, KBCG20, KBS+21,
KWR+23, KB22a, LCM22, LY22, LL22, LLQ+23, LCP21b, LCP3,
LY23, LAN21, MMZ21, MJ21, MJ23, MA21, ML24, MIM20, M2M23,
NZHR24, OL21, Ori21, PW22, PBM23, PAA23, PG20, QK21, QHL20,
QL21, QLM24, RKA+23, RMJ23, RV22, RSW21, RZ23, SCB20, SBC20,
Sha23, SK23b, SRD20, TCW24, TAW23, T2W+20, TLH23,
TSM24, VMO21, VFB23, WBN21, WZ20, WWY21, WZW21, WA23].
interface [W2L2, XFL21, XSH20, XL22, YTW23, YLK23, ZMWS22,
ZQC+23, ZSY21, ZAMG20, ZKG+22, vdEW24, CD22]. interface-adapted
[MA21]. interface-capturing [BSP21]. interface-lattice [QK21].
interface-preserving [MJ21]. interface-resolved [LYH23, SCB20, WA23].
interface-sharpening [LLQ+23]. Interface-unaware [QJ2W22].
Interfaced [WL22]. interfaces
[AAM20, AWB⁺20, BBH⁺20, BTCV22, BDMP22, BTL23, Cam21, FS23a, GvR24, KB22b, LT20b, MR22, OB20, PR20, QHZ⁺22, RS20c, RPA22, SSM20, SN21, TLB20, XBH⁺22, XMY22, YYB23, ZML20, ZY24].
interfacial [BHK⁺22, CHM24, CLLL20, DW22, LZX⁺22a, MS20a, OL23, SLBH23, WFT20, WH24, WYS20, vdEW24].
Interior [FCL21, CLW20, aZWY23]. internal [CSCL20, VBB⁺23]. interphase [OCGT22].
interpolation-free [KSH22]. interpolative [BKMM24, CZHY20, TPYX22]. Interpretale [RR21a, BSVM23, MGT⁺21]. Intersection [KKS21a, CD22, DWWZ21, LZX⁺22a, MS20a, OL23, SLBH23, WFT20, WH24, WYS20, vdEW24].
intersection-based [PWbCJ24]. Intersection-distribution-based [KKS21a, KKS21b, PWbCJ24, Sha23].
irregularly \[SWHJ22\]. isentropic \[BJL21, DT22b\].

isometry \[BNN20\]. Isoparametric \[BNP^+22\]. isotropic \[JW21, KMR23, KL22, LPM^+20, WS22, WLZ21\]. Isotropic \[JK22, CPX21, SMAY22\]. ISPH \[LZT^+23\]. Issue \[EFS^+20, ZX20\]. issues \[TBD^+20, Ui20\]. Itô \[CCHS20b\]. Iterated \[HSS22\]. iteration \[BGSP22, KWMF22, LZY22a, MYL21, VGK21\]. iterations \[HL22a, SZW^+20\]. Iterative \[EHL^+20, YH23, An21, CZLC20, CZCY23, GW20, HA21, HMXC23, HWY20, Kar22, KCCR22, OPHY23, SZKY24, WCKS24, XC20, Xie22, YKdHC20, ZY20b, ZPS^+21\]. IV \[YB22\].

J \[Abg20, ACML20a, BLL20, EFO20, GRT21, HPA22, LMVF22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b\].

Jacobi \[BCJM20, CSY20, DM21, FPT20, GHTC21, HA21, KNT22, LPP^+20, MYL21, PKL^+21\]. Jacobian \[CT22, GDB23, HBFB20, LL21a\].

Jacobian-free \[GDB23, LL21a\]. January \[Ano20e, Ano20q, Ano21e, Ano21q, Ano22e, Ano22q, Ano23e, Ano24c, Ano24i, Ano23q\]. JAX \[MPIG23\].

JAX-DIPS \[MPIG23\]. JCP \[DSA23\]. Joint \[MFdSS24, BKON23\]. Joint-mode \[MFdSS24\]. Jordan \[QHLL20\]. Josephson \[GLJB20\]. Journal \[Pan20b, ZZW24b\]. JSC \[DSA23\].

Jump \[KMF23, BG20b, BBP24, Cal21, CK21, CCdS20, MSTD23, WZ20\].

Jump-diffusion \[MSTD23\]. jumps \[TCW24\]. junctions \[GLJB20\].

June \[Ano20g, Ano20s, Ano21g, Ano21s, Ano22g, Ano24d, Ano24j, Ano22s, Ano23g, Ano23s\]. justification \[BBL23\].

k-exact \[SEG21b\]. Kac \[DZC^+23, YZdCNS21\]. Kalliadasis \[Abg20\].

Kalman \[MLCM22, BJ21, HST22b, HSS22, JL22, MLCM21, SSW22, WLZ^+24b, ZMSX20\]. Kapila \[ZC23\]. Karhunen \[LT22b, TBSS21, TZ24, TBST20, XL24, YBST24\]. Kawasaki \[BCL^+23\].

KEEP \[KK21, KOS23, TKK22\]. Keller \[HS23, QLY21, WZSC22\]. Kelvin \[Kan20\].

Kernel \[AB22, BDHO24, CL20d, CSY20, DLYZ23, CCPS23, CZ23, Che23a, DS22b, EMS^+21, GW20, LBSR20, ILNZ21, LR23, NY21, WYP22, XY20a, YYD^+22, ZYY23, ZY24\]. Kernel-Based \[CSY20, CL20d\].

Kernel-free \[DLYZ23, XY20a, ZYY23, ZY24\]. kernels \[ABOS22, CLC24a, CI21b, GP23, HQ20, KKN^+22\]. Kerr \[HLH21, PBL20\].

Kerr-Debye \[PBL20\]. kind \[BOO^+22, HJ22, KS11, PSL20\]. kinds \[HHL22, kinematics \[MM21a\].

Kinetic \[BJC23, AP21, ATCS20, BBC21, BR22a, BTZ22, BJRR22, BMG^+23, CHS20, CPX21, CPX22, Cap23, CDT22a, CB23, CBRY21a, CBRY21b, CSMH24, CV23, CEM20, DS23a, DC23, Ed22, Ein24, EMP24, EFSH21, GRC^+22, GT23, GT21, HGH20, HLL2b, HPW21b, HSB20, HILJ20, MJ22, JZXM20, JZSX24, KC20b, KV23b, KK21, KOS23, LCJ20a, LLZ^+20a, LLQC21, LLQ^+23, LHPS24, LPH^+24, LLS24b, LZZ20, LCCL23, LLZ23c, LKJL22, MWS24,
extraneous
DR20, DLM+23, DZ22, DZ23, Eld22, Hig20, LGL23b, WC23]. LBM
[HTDL24, JLC22, LOL22, MXL+24]. LBM-FVM [MXL+24]. LDG
[BGNY22, PCQL20, ZTX24]. LDG-IMEX [ZTX24]. leap [AGR23].
leapfrog [CSASS21]. LEARN [SE24]. learned [CGZ23].
Learning
[AIN21, ABOS22, BDMT22, Che20, DJ20, DMC+23, GCC21, HXFD20,
KLW24, LW+24, MWS24, MYM+22, QCZ22, STB+21, VLC+20, WXZ22,
WGSX23, XHD21, YCC+22, ZTK23, AK+21, Ae23, AFB+23, AD22,
AB22, AB23, AM23, Baj23, BSVM23, BDHO24, BM21, BCJ24, Bha20,
BPBM23, BCSK21, BGS24, BPVE24, CCL20, CSS+22, Cha21, CHCC23,
CZ24, CNNH23, CXZ21, CWH21, CHOS21, CHZ+21, CCN21, CW23, CS24a,
CMCX23, DM23a, DSS22, DL21, DY22b, DGPP22, DMK+24, ELZZ22,
EL24, FY20, FFFY20, FSW23, FC21, FWNT21, FCL23, FOO22, GW23,
GJ20, GT22, HYY21, HRMY20, HW20, HCCR22, IT22, JF23, JL23, JF24,
KTDG20, KTDG22, KL20, KKY22, KBC22, KL20, KMS22, KOM22,
LG22b, LJ21, LZY22a, LWA21, LLY23, LXC24, LY23].
Learning
[LHW23, LMR20, MMS24, MO22, MHQ24, NPH21, MGT+21, ND23,
NT23, NPL+24, ORCV24, OL23, ODM23, OKTD21, PO+20, PS22a, PZ22,
PRK23, PK22, PMZ+23, RDAB23, SKP+21, SSS22, SM23, ST24, SACT21,
TLD20, TB21, TZ24, THKT21, TBST20, THH22, TC23, VR2+21b, WLP20,
WCC+20, WL20, WZ20, WLW20, WL20, WCL20, WP21, WCF22,
WF20, WWFM22, WX20, XZ20, XZW21, YZ22, ZZ20, YZ20, WLW20,
WL20, WCL20, WDL21c, WP21, WC22, WWFM22, WX20, XZ20, XZW21,
YZ22, ZZ20, ZZ20, YZ22, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20,
ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20,
ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20, ZZ20,
Learning-based [WGSX23, CCL20, NPL+24]. learning-enhanced
[CNBH23]. learns [MK20]. Least
[CCL21, GTK20, GKA22, LKEM21, BBG21, CCL20, CZ23, DVS22,
GL23, GH24, HW22, JY+20, LC20, LS20, PC21a, PR23,
SM22, TB21, Wa22, WGSX23, ZC22b, ZC22c]. Least-Squares
[GTK20, CCL21, CCL20, DVS22, HW22, JY+20, PC21a, PR23,
SM22, TB21, ZC22c]. Lebesgue [RR21b]. Leffler [LSC20a].
Legendre [SS22c]. Leidenfrost [MTH+23]. Lenard [EH22a, SHS+20].
Lenard-Balescu [SHS+20]. length [CLB23]. Leray [TT22a]. LERNA
[ME22]. LES-RANS [ZDS+21]. LESCM [QWZ+23]. less [LPH24].
Letter [Abg20]. Level
[KKY+21, ASBM20, AAM20, BSW+22, BTE22, BBa22, CSM23, Coc20,
CSS24, DKN+20, DPX23, DW21, DF20, DV22, EdCC+23, GN23a, GQF23,
GYC+23, HSM20, HCL22, HPS23, HT21b, JY+22, JF21, KCS24, KD21b,
KB22b, LCG22a, LCG22b, LCG23, LM23a, LPJ+23, LNC+23, LC23,
LTBM23, LLC20, LHF20, MM23, PB22, SYL23, SYC+23, SD20,
SSTD24, The21, VTC20, WGH23, XSH20, XSA+21, YY23, ZB21a,
ZBS22, ZLG+23, ZY20a, ZMW23, FFL+23, ZOEL20]. level-set
[BTE22, BBa22, Coc20, DPX23, DF20, JHR21, LCG22a, LCG22b,
LC23, LPJ+23, LNC+23, LCP+24, PB22, SD20, SSTD24, XSH20,

line [AZV23, FMB20, HL22a, LC23, SRTB21, SHL+20, TUCT24, TWY+22b, WGH23, XLHB22, ZKY+20]. lineages [CDJM21]. Linear [MD20c, TPYX22, YT22K, YL24b, ZHL21, Abg20, AG24, ACÉ+22, ACDV24, AAKW20, BR22a, BBPR21, BSP21, CCL21, CZ20a, CBA+20, CBA+21, CLPP24, CIMG21, DGL22, Den23, DLM+23, EHW21, EPL21, GZ20b, GQ22, dMK+22, Jai22b, Jai22c, JLY22, JLY23, KKN+22, KLP22, Kiv21, KWD22, LP+20, LL20a, LY22, LWZ23, LZ24b, LGYK24, LsCXL+20, LN21b, MFS+22, MGT+21, MMPD21, NH20, NW22, PHH22, PCQ20, PK23, Poë23, QCZ22, RWBS21, RHR20, SL20b, SL22b, Sev21, SK23a, SL22c, SL23, SMW+22, SW23, SDA+21, TT22b, TT23, WWJ24, WZBV20, WW24b, YAX20, YK20a, ZG21, ZF21, ZQ20].

Load-balanced [WY22b, WGY20]. load-balancing [TTSP21]. loading [MM21a, WQ20]. Lobatto [RRFK+21]. Local [AuIL20, BBTD21, CP22a, CCH+23, CCH23, SC22, Xia23, ARC22, AD22, BDT21, BCR22, BBD22, CS20, CHN24, CV23, DCA+22, DCGQ20, DMC+23, GD21, GHT21, GN23c, HMV22, HVD23, HT20, Hua21, KLN20, KL22, LSXC20, LL20a,
LW22b, LY20a, ILNZ21, MS20a, Mis23, MGA20, NKA+20, PLL+21, QPW21, QZZ+24, SRH21, TCS22, TSSOA20, VSB+21, VBA22, WGSX23, WGU+22, XFL21, XLL24, YZH+23, YAX20, Zha22, ZPW+23, ZL22].

Local-basis [Xia23]. localization [BDT21, BZSF20, KS24a, QC23].

Localized [BHP24, CDM+23, LC22].

Locally [Baj23, BDP23b, KRL21, NNJ21, AG21, BST23, DH20, JFH21, LKEM21, LYZ22, LZLS21, VN21, WHN+20, ZG21, ZXD22].

Locally-adaptive [ZXD22].

Locally-symplectic [Baj23].

Locate [NPD20].

Located [CQA21, CSM23].

Locating [KTDG22].

Location [AL20, CGLZ23, CJT+20].

Lock [GMMS22].

Lock-release [GMMS22].

LOD [ZDW22].

Loève [LT22b, TBSH21, TZ24, TBST20, XLL24, YBST24].

Log [CLS24b].

Log-simplex [CLS24b].

Long [NDH20, WP23, BCG23, EPL21, LBT+23, MFTZ20, Nor24b, PLYZN23, TFCH22, ZDC20].

Long-range [BCG23, PLYZN23, ZDC20].

Long-time [MFTZ20].

Longitude [GS21].

Longitudinal [CKN22a].

Loop [MLCM22, RSA+22].

Loosely [BGQ+23].

Loosely-coupled [BGQ+23].

Low [BRT22, CDX+21, DCSG22, KSS21, KK22a, Osi20, Osi24, PKW20, TSTH20, ARGK22, ASVL23, CWW22, sCpLL+22, CZCY23, CH22, CPGD20, DSPB22, DS23b, EOP20, EHW21, EJ21, EOS23, EIn24, EMP24, EMS+21, FSB+20, FAHA20, GMMS22, GMA23, GMD22, QQ22, HTL21, HYM20, HCD23, JP22, KIHB21, KFP+22, KSBG20, KS24b, KD21a, KWMF22, LPM+20, LBN21, LFA21, LCCM22, LXSF22, MM21b, Mis23, OCQT22, PM20, PM21b, PM23, PS22b, PGTS21, PEL23, RKVV20, SW22, SYAM23, TFWX22, TKGB23, WZTZ21, YFY22, ZGO21b, ZG24, ZKG+22].

Low-cost [KSS21].

Low-dimensional [Mis23].

Low-dissipation [CDX+21, TSTH20, KD21a, LFA21, LXSF22, MM21b, TFWX22].

Low-fidelity [KFP+22].

Low-Mach [DSPB22, HTL21, KSBG20].

Low-Mach-number [GMD22].

Low-memory [DS23b, FSB+20].

Low-order [BRT22, ASVL23, LBN21, PM21b, PS22b, PGTS21].

Low-pressure [LPM+20].

Low-rank [DCSG22, Osi20, Osi24, ARGK22, CH22, EOP20, EHW21, EJ21, EOS23, EIn24, EMP24, EMS+21, KWMF22, PMF20, PM21b, PM23, PEL23, ZGO21b, ZG24].

Low-storage [GMA23].

Low-speed [KSS21].

Lower [BEP+20].

Lower-Upper [BEP+20].

Lowest [BW23].

Lowest-order [BW23].

LS [WYS20].

LS-assisted [WYS20].

LSN [CCL21].

LSV [SS22c].

LU [LY20b].

Lubrication [Ish22, KVQ22].

Lumped [BGSP22, RSA+22].

Lumped-parameter [RSA+22].

LWR [Tow20].

Lyapunov [Li20b].

MAC [CJW22, DSS20, RCS24, SCS22].

Mach [BDL+20, BP21, sCpLL+22, CWX23, DSPB22, GMD22, HLT21, HCD23.

Material-dependent [RGG+22].

Materials [AB24, KS22d, Nic22, PRO22, YSCM21].

Mathematical [BBL23, GM23a, ZWY+23, FS21].

Matrices [CT22, Che23a, HRG20, KCS21, LM22, PT23b].

Matrix [OY21, ASG+23, AR21, BL20, BRZ+23, BDMP22, DES23, HSG+22, LNYD20, DAGL23, WH24, XHC22, ZR24a].

Matrix-free [OY21, ASG+23, BRZ+23].

Matsubara [Yin22].

Maximal [CL20c].

Maximizing [FCGKR23, Liu20b].

Maximum [JLQY21, STG20, ABY23, BSA22, BKMM24, ILTZ20, NS22, DAGL23, SWG21, Shi23, XS22b].

Maximum-entropy [BKMM24].

Maximum-order [BSA22].

Maximum-principle [ILTZ20].

Maximum-principle-preserving [NS22].

Maximum-principle-satisfying [XS22b].

Maxwell [ARGK22, AF23, BBH+20, BDS23, CXZ24, CCY+20, CCHS20b, DLP21, EOP20, EC20, FM20, HLL21, ILX22, KCS21, KV23a, KBH+22, KS21b, KS21c, Li23, LLZ23b, LCJ+20b, NGK+21, Puk20, QXYZ23, Sem21, SM24, LF4a, Suk23, SXX22, WHN+20, WR23c, XBH+22, XZ21, YZW23, ZL22].

Maxwell-Schrödinger [Suk23].

Maxwell-Stefan [FM20].

May [Ano20i, Ano20u, Ano21i, Ano21u, Ano22i, Ano23i, Ano24f, Ano24l, Ano22u].

MBE [YWCL22].

MC [Poe22, Poe23].

MC-gPC [Poe22].

MCMC [HWZ24, LTK+22, SPD5+21, WDL21b, WDL21c].

ME [EPL22].

ME-FSC [EPL22].

Mean [AXWF23, ALFN22, BDMT22, BPT+20, FLOL23, GD20, HYCL23, LCG23, LW21, LFY21, LLO22a, LWX24, MYZZ2, VSB+21, YLLO23, ZEG20].

Mean-curvature [LCG23].

Mean-field [ALFN22, BPT+20, HYCL23, LLO22a, LWX24, YLLO23].

Measure [BCC+24, MQ20, WXZ22].

Measurement [KLP22, SNW23].

Measurements [ABDD20, DGPP22, RLH22].

Mechanics [GN23c, RHR20, TJ22].
medium [BGSP22, CHN24, CZL20, GS20, HJQ23, LW20a, LSC21, LDC23, SWG20, SDA21, SWG20, SGW23, SDA21, XH24, ZSQ21]. meets [HJK21, LLSX23].
XHS21, XJS21, XS22a, XHZ22, XHS23, XC23b, XMZ+23, XM20, XSA+21, XZNZ23, YG24, YS22, YI23, YGW+20, YLNT20, YZdCNS21, YZSD21, YA21, YX22, YLLG24, YFY22, YAX20, YOH+20, YCC+22, YLS21, YMY+21, Yin21, YZW23, Yok24, YK20b, YNT20, YBY23, YB22, YP22, YDC22, YXL22, YP24, Yua21, YL24a, ZSP20, ZP20, ZMXK21, ZB21a, ZB21b, ZS22a, ZA20, ZWY21, ZHN23, ZCY23, ZY20b, ZML20, ZC220, ZZZ20, ZJZK20, ZZ20, ZL21a, ZFG21, ZA21, ZRH21, ZHPZ21, ZDW22, ZHY22, ZSsC+22, ZLW+22a, ZC23, ZQ+C+23, ZSS23, Z23a, ZMSY23, ZABP+24, ZWN24, ZH20, ZR20, ZZZ20, ZCY+21, ZR21, ZNN22, ZMG+22, ZMZZ24, ZZY+20, ZSY21, ZDC20, ZB21c, ZQL+C+22, ZLW22b, ZYY23, ZY24, ZZH22, ZYD20, ZL22, aZWY23, ZOEL20].

method [aKAK20, dKSA21, dSLdA+22, vGAtTB123, vNGB22, vdEW23, vdWvBAA24, AEGV22, DSG22, FB22, Nik23, YSN23].

method-based [CSM23].

method-of-moments [FMJ21, FMOJ22, FM23b, FM23a].

methodology [AAM20, AP20, AWP23, DGL+22, HSS22, LG24, WTX+21, YWN20].

methods [SOG+22, SM22, SAH+22, SW23, SX20, SXX22, SNW23, TACO22, TM23, TWZG22, TTP22, Tur24, Vre20, Vre21b, WWG20, WR23a, WKW+22, WKK23, WX+24b, WX24, WT24, WZ21b, XSC21, XGCW+20, XHX22, XSSS22, XCL+21, XS22b, XS23, YJH23, YYY21, YYLY22, YZK23,
YZZ24, YK20b, YGL20, YH22b, YL24b, ZX20, ZZZ22, ZCZ22, ZGLL20, ZOWW20, ZMSX20, ZWZL22, Zha22, ZXY22, ZHR20, ZZYX20, ZMW23, ZTZX24, ZQS+21, ZWR24, ZQS20.

modeling

molecular

[AHC+21, ALL22, BZ21, Cai22, DG23, FLW+23, GLLB20, HX21, Li21, LT2+22, LZ+23, LL20b, MR22, NM21a, PS23, S23, XCL+21].

monodomain [CCJW24, WCF+21]. monolayers [Cie20]. Monolithic [ALMF23, PKC22, CPK22, CMS+22b, HSXZ21, LHXXZ22, XC23b].
monotone [CA24]. Monotonicity [BB20c, LVK+22, YLYL22, GWYH20, OGG20, YM21].
MOOD [BLM22, BL22b]. Mori [LL21c, WRH20]. morphing [AF24].
Morphological [WCA+20]. morphology [ZAMG20]. Morse [WKK23].

ZSY24, ZQS20, ZS20, ZPS+21, \text{SAL}+20. \textbf{Multi-agent} [DMK+24].
\textbf{multi-channel} [ZYY+24]. \textbf{Multi-component} [ZWN24, FTK23, KK22a, LVK+22, LLQ+23, MS20a, PAA21, Say22, TWY22a, ZY22b, ZYS24].
\textbf{Multi-condition} [KKY22]. \textbf{multi-continuum} [MCP23]. \textbf{multi-core} [LFL+22]. \textbf{multi-degree-of-freedom} [PZZ+23]. \textbf{Multi-dimensional} [DZ22, GKN¨O23, Bar21b, EHW21, HSG+22, KYO22, LPZ22, YZW23].
\textbf{multi-dimensional-aware} [DCC+24]. \textbf{Multi-domain} [KS21b, LLN22].
\textbf{multi-domains} [Jai22c]. \textbf{multi-eigenpairs} [WX24a]. \textbf{Multi-element} [EPL22, VGG23].
\textbf{Multi-fidelity} [BPBM23, MBK21, BS22b, Cha21, CS24a, KFP+22, MK20, ZYY+24].
\textbf{multi-fluid} [DS23a, MST24]. \textbf{Multi-frequency} [SH22]. \textbf{Multi-GPU} [ZBY+23, SAL+20]. \textbf{multi-grid} [RS20b]. \textbf{multi-group} [ZSST23].
\textbf{Multi-index} [HST22b]. \textbf{multi-invariant} [MVO+22]. \textbf{multi-layer} [CSS24, XDLX21].
\textbf{Multi-level} [GQF23, DV22, GN23a, HSM20, KD21b]. \textbf{Multi-material} [KR22, HLL23, HPX23, KKS21a, LB24, LSLH20, MZI+22, PWL+23, DM23b, QJ22, TYB23, VSS21, WBN21, WWYC21].
\textbf{Multi-physics} [MN20, ZZM20]. \textbf{Multi-point} [ZJ22].
\textbf{multi-prediction} [PZZ+23]. \textbf{multi-rate} [YKdHC20]. \textbf{multi-region} [Gar21, Sar21a]. \textbf{multi-relaxation} [CW22b, DFJ20]. \textbf{Multi-resolution} [LSQ21, YDC22, DYM20, JZSX24, LZ24b, MIL+24, VBB+23, WZT21, WZWX23, ZRH21, ZZ24, ZBY+23, ZQS20, ZS20].
\textbf{Multi-scale} [ABH21, MP21, ODM23, AF23, ACR23, BCJ24, Cds22, DhJ+22, EHW21, HWD22, HD23, KSK+24, LPL+22, LXT23, LTK+22, MD22, XFW21, XFW21, XFW21].
\textbf{multi-space} [HVD23]. \textbf{multi-space/time} [HVD23]. \textbf{Multi-species} [CSM24H, DS23a, DFJ22, FN22, HHK+23, LLWX22, XYL22].
\textbf{Multi-variance} [LWZ22]. \textbf{multiblock} [BST23]. \textbf{multiblock} [AD20, JLC21].
\textbf{Multicomponent} [CSF+24, SvDrTB21, ARR23, BV20, BV21, BPS23, DM23b, GM23b, LZ20a, PLKM22, Ren21, SBC20, YFY22, ZY22b]. \textbf{multicontinuum} [VLC+20].
\textbf{Multidimensional} [BGGM22, CZHY20, FPT20, SGB+21, BV20, CJK24b, GLM22, HKKS21, KBC20, Lep21, LFW23, MD20a, MZ20, MGT+21, SMR22, TGM23, WZ21a, WZ24b, ZNK23, ZQ+22, vdEW24].
\textbf{Multidirectional} [DMRG22]. \textbf{Multifidelity} [HPKS23, PGR+23, PZN22, WPB22, DSS+22, GGEJ20, JD23, PWB24, RRN23]. \textbf{Multifluid} [CMS+22b, WHN+20]. \textbf{multifluid-Maxwell} [WHN+20]. \textbf{Multifractal} [GP23]. \textbf{Multigrid} [BGGM21, RSO20, ALMF23, Ani21, ACR23, BTGA22, CD22, Coc20, CMS23, Der23, DC22b, FMWK20, FLW+23, HRG20,}
multigrid/ensemble [MLCM21]. Multigroup [Poé23, GA20].
Multigroup-like [Poé23]. Multilayer
[MLCM21]. Multigroup-like [Poé23, GA20]. Multilayer
[MLCM21]. Multilayer [Poé23]. Multilayer [ZZY21].
Multilevel [GA20, MRBS22, BCWD21, BPS23, Bar20b, BBQ+21, CYY22, HXX23, HJLZ23, KN20, LSS20, LYY20, LTT24, MBTS20, TT20, WPBS22, dSLdA+22].
multimaterial [ZN20, QJW22]. Multiphase
multiphysics [CWL+21, HPPZ20, NAZ22]. Multiple
[MTB22, BEP+20, CMS+22a, CDG+24, CDW23, FVM22, FVM23, GGCvR22, KLA23, KM22b, LRT13, LW22a, LSWZ21, Oru21, SDP20, VBA22, XHS23, YS21, YTK22, ZTS20, ZWW23, ZWW24b, ZHH+24, dv23a, WCP23].
Multiple-GPU [WCP23]. multiple-relaxation-time [LHZ21].
multiple-scale [Oru21]. multiplication [AR21]. multiplicative
[HHS22, LGY24]. multiplier [AST21, HNZ23a, LSZ23b]. multipliers
[BHK+22, GSP21, ZSK22]. Multipole
[GA24, Sc22, BS20, GKD23, Kus20, RS20b, WZ20, WCZ20, WC21]. Multirate
[MDP21, CFH20, LW+22]. Multiresolution [LPBK23, BGM22, YLS21].
Multiscale
multispecies [SMAY22]. multispeed [CYS23]. multisymplectic [C21].
multitask [PMS23]. Multivariate [SBJ+23, Gao24, RA23, Say22].
Murdoch [XLHB22]. MUSCL [Nis20c, TYC23, TYC24, vLN21]. MUSIC
myocardial [DFP+21a, MNG+22].

Naghd I [GKPT22, Mar20, TGM23]. Nagumo [CCJW24, WCF+21].
nano-droplets [BFG23].
nano-droplets/bubbles [BFG23]. nano-photonics [CE21].
nano-structures [CCER20]. nanoscale [ZZY+20]. nanosecond [MAP+20].
nanostructures [VCNC+21, VCCN+23]. nanotubes [YB22].
nanowires [FCGKR23]. narrow [AD20, Sab20, TLKK23, ZD21]. narrow-fit [TLKK23].
narrow-stencil [AD20]. NAS [WZ24a]. NAS-PINN [WZ24a].
natural [PO21, EFO19, EFO20, HSS21, LAS22, PKC22].
nature [CHZ22]. Navier [CZ20a, GHHR22, HS23, JCLK21, LFT+20, LMFV22a, SMLM23,
ZH21, ADK+21, AK21, Bal21, BCIT22, BDP23a, BP21, BSZ+23, BSK+23,
Cap23, CB24, CLW22, CLDC20, CJW22, CKLM+23, CQA21, CK21, CPK22,
CS23, Coc20, DY22a, DD22b, DLY22, DGW22, FZQ21, FZQ22a, FH24,
FHVK21, Fei23, FQSW23, FWNT21, GGCvR22, GNZ23, GQR23, GS22,
GLC+22, HBFB20, HKMR20, HMO+20, HR20, HRWP22, JGvR23, JACL21,
JK120, JK20, KS22c, KS23, KMR23, KLS+20, KSI+23, KKP20, KS24a,
LN21a, LN22, LG20, LD20a, Li20, LCSZ21, LLLN21, LLO22b,
LWF23, LNYD20, LCT23, LZ23, LP20b, MRK+20a, MRK+20b, MHLR22,
MOBR22, MDF21, MHY20, NGZD22, NMR+20, OY21, OBB22,
PCB21, PCB22, QHLL20, RUG20, RS23b, RRFK+21, Sel22, SP22, UY22,
WZTZ21, WH22b, WJHS23, WZ24b, WHS22, YU22, YLKG20, YA21, ZL21b].
Navier [ZPGR22, ZLW+22a, ZT23]. Near [LYZ22, BDWC23, CZLC20, GWC+22, Ish22, IWY+20, PN22,
YGJ21a, YGJ21b]. near-axis [GWC+22]. near-boundary [CZLC20].
Near-field [LYZ22, PN22]. near-ground [IWY+20]. near-minimax
necrosis [LHL+22]. neighbors [GLSZ22]. neighbour [Ale23].
nematic [SVW21, WSS22, CY22b]. neoclassical [VCPGR20]. Nernst
[CX224, KKK21, LWWY22, LM23b, QWZ21, QXYZ23, XC23a, YFFL21,
ZGL20, RAB23]. nested [KKN20, VCNC+21, WZTZ21]. Net
[LY22b, TR21]. nets [JCLK21]. Network
[TR21, BFM23, BSV23, BZSF20, CCL21, CCL22, CCPS21, CCPS23,
Cha21, CX21, CCWX22b, Coa21, Coa22, DM21, DD22a, GLWZ22, GDL22,
GDJ24, GWY21, GYC+23, HLI22, HIQL23, HJJL20, HFB21, KCWZ22,
LMS+22, LJH23, LHC24, LLZ22, LLC20, LY22b, LT22b, LC22, LGL23b,
MLM+21, MHLR22, MX22, MK20, MRBC22, Mi23, NA21, QCZ22, SY21,
SM23, VPL20, WRH20, WWFM22, WXZ22, WCZ22, WZ24a, XJL23, XF23,
XZRW21, XZWH22, YG24, YHC+22, YCC+22, YLY20, YL21b, YYY+22,
ZC22a, ZZG23, ZYL+23b, ZHR23, ZTK23]. network-augmented
[YG24]. Networks
[HJKT21, PZNK22, PZK23, PJZ+23, RR21a, RHG22, UHZ+24, ALC24,
AHJ23, AF24, AK21, ACD23, Ba323, BSZ2b, BZ23, BP22, BTK22, BDIM22,
BX20, CVL+21, Cai22, CGL+23, CDX22, CHKL23, CG23, CFS23, CY21,
CDM+23, DDP20, DM23a, DCS23, DHR20, DN21, DW23, EL24, FGK22,
FFY20, GCVI22, GSW21, GN22, GZ20, GDL23, GCSH22, GYWG23,
networks

Neumann [SYOS21, TNB21, AIN20, GR24, KBCH20, KD21b, LM21b, MMZZ22, SYOS19, TPB22, XCA20].

Neural-network [LMS+22, MRBC22, MLM+21].

Neural-network-augmented [BFM23].

Neural-network [XF21c, XSF23, XHD21, YMK21, YJP23, YNHD22, ZBY20, ZZ22, ZCZ22, ZNCH+21, ZLS22, ZZSL24, ZHH+24, ZMK24, dLF23, AM22, BBV23, JADS21].

Neural-network-augmented [BFM23].

Neural-network-augmented [BFM23].

Neural-network [XF21c, XSF23, XHD21, YMK21, YJP23, YNHD22, ZBY20, ZZ22, ZCZ22, ZNCH+21, ZLS22, ZZSL24, ZHH+24, ZMK24, dLF23, AM22, BBV23, JADS21].

Neural-network-augmented [BFM23].

[Hig20, LL24a]. October
[Ano20k, Ano20w, Ano21k, Ano22w, Ano23k, Ano23w, Ano22k].
Octree [EGTC+21, KML23, WSG+24, BWBT24, CW22b, HW23, KLS+20, KSK+23, KSK+24, LKM22, PBF24]. Octree-based [WSG+24, KSK+24].
On-the-fly [Qia22, ASVL23, WZ23a]. one [ILNZ21]. One [IL23, LZ22b, AG21, AB24, BBGT21, CSW+24, CSS20, CJK24a, DC21, JHJ20, JPAZ21, KHS20, LCH20, LSC20b, LWR20, LZS22a, LLQ+23, LC23, MCBa20, PBCL20, PGMTP23, Ran22, Rei22, SBH21, SWM21, SSPV20, Sha23, SDA+21, SNW23, VT23, YNT20, ZCH22, ZT23, ZYD20, CLS20b].
one- [YNT20]. one-dimension [ZYD20]. One-dimensional [IL23, AG21, CSS20, CJK24a, JPAZ21, LWR20, LZS22a, LC23, MCBa20, PGMTP23, SBH21, SWM21, SDA+21, ZCH22, CLS20b]. one-domain [VT23]. one-fluid [DC21, Rei22]. one-parameter [Ran22]. one-phase [KHS20].
OpenFOAM [OLP23, Sar21a, TGS+22]. opening [KSST21, WBN21].
optPINN [LJJ23]. Optical [VCN+23, CS20, CSS21b, FCGRK23]. optics
[HKRS23, MB24, vGATB23, vGATB24].
optimisation [GN23a]. optimised [DMC+23].
Optimization
MRT$^+22$, NSS23, Qia22, VRK^+21b, WQ20, WSG$^+24$, WZ$23a$, XMZ$^+23$, YXL22, ZSP20, ZNK23, ZOG22, ZDS$^+21$, ZWR24, ZXD22.

PBN+21, PB20b, PM21b, PS22b, PH22, PTT22, PTT24, PSCK23, PD21.

order [PMH24, PGCC+22, PGMP23, PTGTS21, PPB23, PGC24, QG21, QZHD23, QLY21, RMA20, RUG20, RSW21, RFZ22, RZ23, RWQ23, Ren21, RH22, RRBR+23, RBF+21, RIC+22, RCSS24, RA23, RMWS21, SZN19, SZN20, SMSAG22, San20, Sav22, SL20b, SL22b, SEG21b, SEG22, SRV21, SWF21, SBL22, SAP22, SY21, SKCM22, SS22c, SZ21, TFW22, TCS22, TJC21, TJM23, TP20, Toh23, TEA+23, TSM24, Uil20, Unf21, Uy22, VVL21, VVRWT21, VP22, VOL23, VBA22, VK22, WW20a, WMTQ20, WGY20, WW20b, WRH20, WCL+20, WTX+21, WLH21, WCF22, WTZZ23, WCP23, WLZ+24b, WABK21, WZBV20, WWL21, WHS22, XBH+22, XLLH21, XY20a, XGCM+20, XDLX21, XH24, XSSS22, XBLR21, XS22a, XS22b, XHLH23, XM20, YU22, YYX21, YSCM21, Yan21c, YZD21, YJSX22, YLY22, YH22a, YZZ23, YPX24, YHK24, YOH+20, Yin21, YK20b, YGL20, YH22b, YM20, ZSP20, ZEG20, ZEG21].

order-adaptive [CMP+21]. order/low [PM21b].

ordinary [GHNS21, GLT+20, JLY23, LWR+24, LBT+23, OPM22].

oscillators [WF23]. oscillatory [BSA22, CEMO21, CLC24a, GLF23, Gao24, GH24, GHNS21, LCW20, LLZ23a, MH21, SSK20, WTZZ23, XDLX21].

outliers [ZL21c]. output [BS21, GJF20]. output-weighted [BS21].

outputs [KNP20, ZMQ24]. over-parameterization [KGSK23].

overburden [ZC22b, ZC22c]. overcome [SBVM20]. Overcoming [LLS20].

overhang [MQ20]. Overlapping [LG20, BG20c, DMRG22, DGS20, GTDB22, MDG20, MDF21, SS22].

pairing [DFW22]. paper [Pan20b]. papers [DSA23]. Parabolic [RV22, AFV20, BBPR21, CHM24, CPA+23, GN20, GEvWD22, HVD23,
HKMR20, JLQY21, KBB21, LH21, MVK20, MMPD21, OWHN22, PA20, PGC24, SSMA21, WZZ23, ZCZ22, ZC22a, ZX22, ZLL23. paradigm [DhJV+22]. Parallel
[ZL22], pEDFM [RHD+24]. penalised [HV21]. penalization
[KdMJ+22, KJdM+22, KF23, MPBG23, SYOS19, SYOS21, TNB21, TPB22].
penalization/selective [KF23]. penalized [TKGB23]. penalties [AD20].
Penalty [FCL21, ScdHJ20, HNZ23a, KMF23, SY21, aZsWY23]. penalty-free
[SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[CY21]. Peregrine [KMS20]. perfect [LL23a, XYL22]. Perfectly
[DF22, MBAG21, DZ23, KLP22, LZS22b, MF24, USRH20, XHLH23].
Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].
percolating [TKGB23]. penalties [AD20].
Penalty-free [SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[AD20]. Penalized [TKGB23]. penalties [AD20].
Penalty [FCL21, ScdHJ20, HNZ23a, KMF23, SY21, aZsWY23]. penalty-free
[SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[CY21]. Peregrine [KMS20]. perfect [LL23a, XYL22]. Perfectly
[DF22, MBAG21, DZ23, KLP22, LZS22b, MF24, USRH20, XHLH23].
Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].
percolating [TKGB23]. penalties [AD20].
Penalty-free [SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[AD20]. Penalized [TKGB23]. penalties [AD20].
Penalty [FCL21, ScdHJ20, HNZ23a, KMF23, SY21, aZsWY23]. penalty-free
[SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[CY21]. Peregrine [KMS20]. perfect [LL23a, XYL22]. Perfectly
[DF22, MBAG21, DZ23, KLP22, LZS22b, MF24, USRH20, XHLH23].
Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].
percolating [TKGB23]. penalties [AD20].
Penalty-free [SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[AD20]. Penalized [TKGB23]. penalties [AD20].
Penalty [FCL21, ScdHJ20, HNZ23a, KMF23, SY21, aZsWY23]. penalty-free
[SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[CY21]. Peregrine [KMS20]. perfect [LL23a, XYL22]. Perfectly
[DF22, MBAG21, DZ23, KLP22, LZS22b, MF24, USRH20, XHLH23].
Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].
percolating [TKGB23]. penalties [AD20].
Penalty-free [SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[AD20]. Penalized [TKGB23]. penalties [AD20].
Penalty [FCL21, ScdHJ20, HNZ23a, KMF23, SY21, aZsWY23]. penalty-free
[SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[CY21]. Peregrine [KMS20]. perfect [LL23a, XYL22]. Perfectly
[DF22, MBAG21, DZ23, KLP22, LZS22b, MF24, USRH20, XHLH23].
Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].
percolating [TKGB23]. penalties [AD20].
Penalty-free [SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[AD20]. Penalized [TKGB23]. penalties [AD20].
Penalty [FCL21, ScdHJ20, HNZ23a, KMF23, SY21, aZsWY23]. penalty-free
[SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[CY21]. Peregrine [KMS20]. perfect [LL23a, XYL22]. Perfectly
[DF22, MBAG21, DZ23, KLP22, LZS22b, MF24, USRH20, XHLH23].
Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].
percolating [TKGB23]. penalties [AD20].
Penalty-free [SY21]. Peng [FCWS22, LYY20]. pentadiagonal [WK24b]. percolation
[AD20]. Penalized [TKGB23]. penalties [AD20].
dSLdA²⁺²², vdEW²³, HLA²²a. Phase-change [HHA²¹, LHY²³].

Phase-changing [SCB²⁰]. Phase-Field
[HLA²⁰c, HLA²²b, HJJ²³, VPL²⁰, Abg²⁰, Fu²⁰, FY²², GNF²², HHA²¹, HGZ²³, HNZ²³a, HJ²⁴a, Jai²²a, JTK²², JLX²⁴, KSW²², LNC+²¹, LRT+²²b, MJJ²¹, MJ²³, QW²², RMJ²³, SHM+²³a, SHL+²⁰, TWY²²a, WZCK²¹, WLZ²⁴a, XHZ²², Yan²¹b, Yan²¹c, YTK²², YY²²b, ZSSC²², ZWN²⁴, ZCY²⁴, ZKY+²⁰, HLA²²a]. Phase-flows [BDTU²⁴].

physics-constrained [GZ²⁰]. Physics-informed [AB²³, BP²², Cai²², CHW²², DCD+²³, DCA+²², GSW²¹, HBBN²⁴, JMAK²², JCLK²¹, KM²²b, LJH²³, LT²²b, LMK²¹, NMS²⁴, PDM²³, Pan²²b, PZ²², QHZD²³, RR²¹a, RRL+²³, SC²³, SGLP²³, TBSH²¹, T²², TC²³, XD²², ZZW²⁴b, ZK²⁰, Ale²³, AFK+²³, AHJ²³, AK²¹, ACD²³, BSA²¹, BT²², Cha²¹, CZ²³, CS²⁴a, DJ²², Dup²¹, GN²², GZH²³, HDA²³, GCC²¹, GDL²³, GYC+²³, GW²², GYW²³, HTKT²¹, HCF+²³, HK²³, IL²³, JKK²⁰, KRG+²³, KHA²¹, KCWZ²², LST²⁴, LLZ²², LO²³, LWY²³, LC²², LMHL²¹, LAS²², MBN²³, MYS+²³, MN²², MN²³, OPM²², OD²³, PMACG²¹, PDPK²⁰, PR²³, PMT+²², PMSP²³, RCG²², SKP+²¹, SLF²³b, SJ²¹, SWY+²⁴, SZKY²⁴, TBW²², THH²², WCM+²¹, WP²³, WZ²⁴a, WWZ²⁴b, YMK²¹, YNDH²², ZZML²⁰, ZZGG²³, ZYL+²³b, ZHH+²⁴, ZMK²⁴, ZNZK²², PZNK²³, PJZ+²³].
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
polyatomic [DWM23, FHJ22, WLZP21, vdWvBAA24]. polycrystalline [JTK22]. polydisperse [BFC23, SDA+21]. polygonal
pressure-based
[BP21, DSPB22, DeWv20, HPW21a, HTL21, VMO21, WKK24].

pressure-correction [AF20, LRT22b].

pressure-equilibrium [FTK23].

pressure-equilibrium-preserving [BJC23].

pressure-free [SBH21].

pressure-temperature [SLF23a].

pressures [GQS20, KS22b].

prechrested [BGNY22].

prechrestressed [YKdHC20].

preimal [CW22, LOLS23, LLOL24, NG20, Nor22a, sMSL23, WW20b].

primary [CW22, LOLS23, LLOL24, sMSL23, WW20b].

principle [ABY23, JLQY21, LPL22, ILTZ20, NS22, Shi23, Tot23, XS22b].

principles [Coa21, Cap23, GB22a].

printing [OYK22].

prior [LSL20].

priors [BKN23, MYM22].

probabilistic [FTY22, KK20a, LG20, RK21, ST23, VAK23].

probability [BJW20, CW21, CL20c, YZdCNS21, ZJ23].

probable [YR22].

probe [CSA21].

probing [GWT21].

Problem

[AYB23, JLQY21, LPL22, ILTZ20, NS22, Shi23, Tot23, XS22b].

problems [AHG21, ASW21, AuIL20, Ale23, ARB21, ACVD21, ACDS21, AL21, AS20, BF22, BS22b, BBPR21, BB21, BEB22, BDFT23, BF22, BCJ24, BBH23, BZ20, BEP20, BG20b, BB20c, BHP24, BY20, BFST23, CQ21, Cai21, CG24, CWW22, COR23, CZ22a, CWHZ21, CL23a, CYZ23, CBA21, CEL21, CEL22, CHM24, Coa22, CMNS21, CPA23, CCM21, CEM20, DM22, DJ23, DW23, DH24, DM23c, EP21, EL22, EdCC23, ESJ23, FTY22, FVM22, FVM23, FZ20b, FHM24, FCL21, FLS23, GY20, GLZW22, GQ20b, Gar21, GHD24, GSOM23, GN20, GA20, GW20, GM23, GJW24, GL20, GZ21, Hac21, HLA20a, HLZ20, HKKS21, HNR23, HNH22, HP21a, HQ22, HPKS21, HLL22, HPPZ20, HLY20, HWY20, IHS22,
problems

[HWDM22, HD23, HBF21, ID20, JMAK22, JWZ20, JF24, KC20a, KKA24, KSW22, KBH+22, KNS21, KSHJ20, KLG+22].

problems

[KNG22, KGN22, KWMF22, LCL+22b, LPL+22, LTD+22, LLZ22, LWY+20, LLW20a, LJ21, LT22b, LY22a, LWY23, LPJ+23, LHM20, LRAQ22, LWZ22, LY20b, LSZ21, LW23, LMK21, LT21, LL24b, MWY+20, MJZ2+23, MRHR20, MST24, MDG20, MK20, MRG21, MW22, MPIG23, MCF23, MBBV22, MRT+22, MFdSS24, MMPD21, MTWBT21, NNJ21, Nis23, Nor22a, Nor24a, Nor24b, OSL22, Oru21, PZ21, PMACG21, PWXY22, PW24, PMSP23, PH22, PGB24, PBF24, RMA20, Ran23, RFZ22, RZ23, RN23, RN24, RB22, Sab20, Spd+21, SM21a, STEK17, STEK22, SWG+20, SGW+23, SRV21, SY21, SSTD24, SFGMN22, SGL20, SLOZ21b, SN23, SBVW20, Tak23, TCD24, TLD20, TV22, TJM23, TPPA22, TWF+20, TLHL23, Vab23, VAK+23, VACE21, Vas23, VK22, VK42, WNB21, WBN22, WZ20, WW20b, WP21, WZ21a, WC23, WWZZ24b, XZ22, XFL21, Xu24, YS22, YMK21, YZiCNS21, YYLY22, YAX20, YK20a, YBST24, YZZ24, YZZ22, YNDH22, ZP20, ZOWW20, ZMSX20, ZG21, ZFG21, ZDW22, ZXY22, ZZZG23, ZYL23a, ZSL+23, ZLL23, ZS21b, ZHH+24, ZTZX24, ZR24b, ZPK22, dSdCdMC+24, vHP22].

procedure

[ASKH21, LSTZ21].

procedures

[Edu24, LMN20].

Process

[STG20, XCL22, ABOS22, BBH23, BGH21, CZ23, CL20b, CDL+22, CSLC21, GTDB22, HNR23, HWZ24, LT20a, MRT+22, OYK+22, SDP20, Wan23, YBST24, ZLC20].

process-state

[GTDB22].

processes

[ABH21, AFMP24, BTEK22, CHOS21, DES23, Li21, MY23, MYZ22, RHR20, RBC+23, WPBS22, ZMWS22, ZLS22].

processing

[AG21, BEP+20, DM23c, EHL+20, MTB22, Scm21].

processors

[LFL+22].

product

[AMG23b, CN21, Don23, HKKS21, KAZS23].

production

[LO23].

products

[PR23].

profust

[FLW20a].

programming

[Kiv21, YOH+20, RSHK21].

Progress

[LRT13, dv23a].

Projected

[HKL+23].

Projection

[MTK22, RIC+22, ASS21, Ani21, BF22, BFM23, BBD+20, BZB20, BWBT24, BTKP24, CHZ+21, CI21b, GQR23, GFY20, tH22, HBBN24, KS22c, KS23, KAC22, KSI+23, LMS23, LL21b, LCS23, LFL+22, LXD+20, LHX222, LCBW23, NFL+21a, OL20, OLS21, OSL22, PKC22, TN23, WH24, XGCW+20, XC23b, YA21, YP24, aZWW23, ZWB21, RHD+24].

projection-based

[BF22, BFM23, GFY20, HBBN24, KS22c, KSI+23, LMS23, PKC22, TN23, ZWB21, RHD+24].

Projection-tree

[RIC+22].

projection/data

[GQR23].

projection/data-driven

[GQR23].

projections

[HWD22, HD23, LL21c].

Projective

[BR22a].

projector

[Dup21, EOP20].

projector-augmented

[Dup21].

projector-splitting

[EOP20].

prolate

[SK23a].

Prony

[DS22b].

propagation

[ALM23, AD21, AP20, BBMA23, CC22a, DGS20, FGD+21, GHE+23, GC20b, GAC20, KYO22, KS21c, LHCK24, LLLL23, MD20b, MMRP22, NT23, Poe22, Po23, PCD23, STEK17, STEK22, SM21b, TAWD23, TLD20, XHS23, XFL21, Xu24, YS22, YMK21, YZiCNS21, YYLY22, YAX20, YK20a, YBST24, YZZ24, YZZ22, YNDH22, ZP20, ZOWW20, ZMSX20, ZG21, ZFG21, ZDW22, ZXY22, ZZZG23, ZYL23a, ZSL+23, ZLL23, ZS21b, ZHH+24, ZTZX24, ZR24b, ZPK22, dSdCdMC+24, vHP22].
YZK23, ZZZ20, ZDC20, ZPK22. propagators [JL21a]. Proper

property [FX22, MRK+20b, MRK+20c, PBN+21, QCD21, TTK22, XS23]. proposition [MVO+22]. propulsion [AP23]. protection [DR20, PGM22].

protein [HST22a, KSST21, ZAMG20]. protein-membrane [ZAMG20].

Puiseux [NPD20]. Pulliam [PJBB20]. pulse [CMS+22a, MAP+20, NTSM20].

QCD [RSO20]. QMA [Hua21]. QMA-complete [Hua21]. QU [FSM+22].

quadratures [CWT24]. quadrilateral [BW23, GYWH20, KRL21, PP22b, PWX24]. quads [MN22].

quasi-geostrophic [CHT20]. quasi-incompressible
quasi-Newton [Lee21]. quasi-one-dimensional
quasi-optimal [MDG20]. Quasi-periodic

radially [Bre20, OBPP2]. radiation [BOB21b, BOB21a, BVR22, BRZ+23, BR23, BD20b, CSS20, CLS24a, CIMG21, CCH20, DDR22, DW20a, HR23, HNF+21, JZT22, KKL+23, LHS24, LWS20, LLS24b, MH22a, PM22a, PMF20, TR21, TLWM20, TYBW23, Yan21a, YAX20, ZTX24].

radiation-moment [LM21c]. Radiative
radiation-moment [LM21]. RADIATIVE [BSVL24, DW20b, FZS+21, JYY22, KEY20, LLL23, LYS+22b, TVL+22, WQPZ20, WCC23].

discretely [Bre20, SOBP2]. radiation [BOB21b, BOB21a, BVR22, BRZ+23, BR23, BD20b, CSS20, CLS24a, CIMG21, CCH20, DDR22, DW20a, HR23, HNF+21, JZT22, KKL+23, LHS24, LWS20, LLS24b, MH22a, PM22a, PMF20, TR21, TLWM20, TYBW23, Yan21a, YAX20, ZTX24].

Radiative [NASBM, BOB21a, BGTA21, DS23b, FLZ20, GA20, GP23, HCCR22, JBP21, LHW22, LM21c, PT23b, S20, SS20, S23, SH23, SF23, S22, ZS21, X22, ZCQ19, ZCQ20a, ZSST23, ZCCN23].

Radiosity [Ara20]. RAM [KNS21]. RAMSES [SC22c]. Random

Rankine [KGL21]. RANS
arbitrarily [AF21, AFF22, BPJ22, DR20, EDEV23, HTDL24, PB23, ZDS+21, ZAW+20].

RANS/LES [BPJ22, DR20, HTDL24]. Raphson
Rans [CQW24, VGP20]. rapidly [TPPA22]. rare [DSS+22, SFD23, ZSM22].

Rayleigh [BFL20, CCCH23, RS20a, SSS22]. Rayleigh
RAYLIAL [YSZ20, CIMG21, DSSSP20, LTDC23, SHM23b, WCBQ24, YCC+22].

Rayleigh [BFL20, CCCH23, RS20a, SSS22]. Rayleigh
RAYLIAL [YSZ20, CIMG21, DSSSP20, LTDC23, SHM23b, WCBQ24, YCC+22].

Ray [ZZX20, CIMG21, DSSSP20, LTDC23, SHM23b, WCBQ24, YCC+22].

Rayleigh [BFL20, CCCH23, RS20a, SSS22]. Rayleigh
RAYLIAL [YSZ20, CIMG21, DSSSP20, LTDC23, SHM23b, WCBQ24, YCC+22].
RBF-based [LSY+23]. RBF-FD [CS23, MFG22, TB21, ZP20, GFF20].
RBM [JLL20]. Rd [CE21]. RDFM [XHY23]. re
[LHFH20, SAB+24, SBJ+23, GCSH22]. re- [SBJ+23]. re-initialisation
[LHFH20]. re-redistribution [SAB+24]. reacting [BB20a, CAF+22,
CJY24b, CJK24a, DY22d, FCW21, JK20, KCD+23, OCGT22]. reaction
[AdS22, AAKW20, ARR21, BFP21, BHP24, CCL21, CC24, CZ22a, CLPP24,
Coa22, FGK22, FOL23, KV20, LLO22a, LWW21, LLP24, LY23, PEL23,
SSP20, SMR22, TZZ20, Yua21, ZJK20, ZL20].
reaction-advection-diffusion [CZ22a]. reaction-diffusion
[AAB20, FOL23, LWW21, LLP24, Yua21, ZJK20]. reactions
[HZY22, XYL22]. Reactive [DFJ20, ARC22, AMK+21, CYYS22, CC20,
DT22a, FS21, HKS20, MRd21, PCF21, PJJ21, VACE21, YYY23, ZL24].
reaction-advection-diffusion [CZ22a]. reaction-diffusion
[AAB20, FOL23, LWW21, LLP24, Yua21, ZJK20]. reactions
[HZY22, XYL22]. Reactive [DFJ20, ARC22, AMK+21, CYYS22, CC20,
DT22a, FS21, HKS20, MRd21, PCF21, PJJ21, VACE21, YYY23, ZL24].
reactivity [LLB+23]. reactor [DJ22]. Real
[PB20b, RLH22, BJ23, DS22a, DDev20, GTDB22, HPA22, HP21a,
LVK+22, MHWY21, PSCK23, UBT22, WKK24]. real-fluid [MHWY21].
real-gas [BJ23, DDev20]. real-space [HPA22]. Real-time
[PB20b, RLH22, GTDB22]. realistic [ZM22]. Realizability
[NFB23, SL22b, SL20b, SVBM20]. Realizability-preserving
[NFB23, SL22b]. realizable [CB23, LJK+24]. realizing [Sha21].
Recasting [BTP24]. receptivity [HBB20]. recognition [CL24].
Reconstructed [LLNL21, LLL22, WLL+23, ZC20]. Reconstructing
[LH+23, Cam21]. Reconstruction
[CD22, CBRY21a, PL22, AS22, BBA22, CCL20, Cha23,
CZLC20, CN22, CZLC22, CNC21, CN21, CND22, CDN+22, CCH20,
DBT+20, Den23, Don23, DW21, DGPP22, DGW22, DWM23, HSH20,
HLPX24, HJQ+23, JZS20, JZS24, KY20, KIDM+22, KLB23, LsCxL+20,
LLD+22, ML20, ML24, MM20, MT21, PZX20, PV22, PKL+21, PGCC+22,
RSC0c, RHG22, Rv22, SEG22, Sha22, SK23b, SLF23b, SS22c, VOL23,
WDL+21a, WGY20, W124b, WWJ24, Xia21, YZZ23, YK20b, ZCY23, ZX22,
ZFAA24, ZCY24, ZQ5+21, ZC22b, ZC22c, vdEW24, dMKJ+22].
reconstruction-based [JZS24, RS20c]. reconstructions
[BMB24, DLZ23]. recording [AL20]. recovered [LL20]. Recovering
[CGLZ23, EG20, PLL20, CW24, CH22, YLY20]. Recovery
[JK20, BZ20, CCH20, LGZ21, Nis20c, TL20, WBH+24].
Recovery-assisted [JKJ20]. rectangular
[BG20c, CJLL21, DSZ20, ML20, YL24a]. rectangular-polar [BG20c].
Recurrent [WRH20]. Recursive [AFS+23, GKD23, ZT23, SI22]. recycling
[CC22]. red [RE22]. redatuming [AN21b, AL21, ZC22b, ZC22c].
redefined [TKK22]. redistancing [MSIM21]. Redistancing [PhSKH24].
redistribution [BG21, GAB+22a, SAB+24]. Reduced
[DJ22, DJ23, GHSN21, RRBR+23, WCL+20, ADK+21, AHR20, AM22,
BVRS22, BBH23, BHP24, CFS+22, Cha20, CGM21, CHW21, CJW22,
CC23, CBA+20, CBA+21, DDP20, DCA+22, DY22c, DH24, DFP+21b,
EFY23, EMS+21, FFRT+21, FAA20, GLS22, GQR21, GQR23, GS21,
HRG+23, HSMR20, HBBN24, HD23, HTRC23, ISM+23, JADS21, KCWZ22, KS24a, KCCJ21, LJ23, LP23a, LT20c, LY22c, MC123, NKT21, NGK+21, PZ24, PB20b, PB22, Po23, RLH22, RBF+21, RIC+22, SH23a, SH23b, San20, TCK+22, WW20a, WRH20, WCF22, WLZ+24b, XLLH21, XLS22, YSCM21, YZSD21, YKH24, YM20, ZWB21]. **reduced-dissipation** [FFRT+21].

Reduced-order [DJ22, DJ23, WCL+20, ADK+21, CWHZ21, CCCH23, CBA+20, DCA+22, DH24, JADS21, KCCJ21, LJ23, LT20c, LY22c, NKT21, PB20b, RLH22, RBF+21, RIC+22, San20, WW20a, WRH20, WLZ+24b, YKH24, ZWB21].

reduction-based [CGJM21, ZGLL20]. **reduction-consistent** [HJ24a].

reentrant [PH21]. **reentry** [NPL+24]. **reference** [MNG+22, The21, Yan21a]. **refined** [HdB21, LKEM21, MSWH22, XLZ21].

Refinement [AM22, ADM22, AWB+20, BB20c, CAF+22, DS23b, DMRB20, FCL23, FWG22, GQF23, KSK+24, KRL21, LLW20a, tLjTbZ22, MZC+22, NGZD22, PBF24, QZZ+24, RAZA21, SAB+24, SC22c, ZPW+23, Der23].

refinements [GGM+23]. **reflection** [RB24]. **Reflective** [PT23b].

reflectivities [ZC22b, ZC22c]. **reflector** [BCIR22, RTBI20].

reformulation [DD22b]. **regeneration** [LZPM22]. **regime** [BJC23, CY23, GMD22, LSC+20c, PLX24, SZ21, ZGK+22]. **regimes** [AZ22, KOM+22, KDB+20].

region [AMG23b, Gar21, MP21, Sar21a, TUCT24]. **regions** [RGH+22].

Registration [BTT24, FTZ22]. **Registration-based** [BTT24, FTZ22].

Regression [STG20, ABOSS22, BBH23, CZ23, GLSZ22, HNR23, LT20a, LZJ+24, MRT+22, YBST24]. **regressive** [GZ20]. **regret** [TAVD21].

Regular [CBCF20, CY21, KDL23]. **regularisation** [van22]. **regularity** [CWW22]. **Regularization** [LGZ21, BCIR22, DD22a, ESJ23, HYCL23, JKZS21, LLW20b, NVPP23, PB23, WSAZ22, ZLL23]. **Regularized** [BY20, GJW24, ZMSX20, ZXY22, LY20a, NCC21, SL22a, WCM+21, YP24]. **reinforced** [LLZL20]. **reinforcement** [ABY23, BPBM23, DMK+24, FSWA23, FCL23, HGV+21, KKY22, ND23, PS22a, VRK+21b].

reinitialization [AAM20, HCL22, SYC+23, XSA+21]. **Reinterpretation** [AO22, XY20b]. **reinterpreted** [XHY23]. **Reissner** [GQF24]. **rejections** [CSASS21]. **related** [ABH21, HNR23, tLjTbZ22, WZ22].

relation [EL23, NG20, WL24b]. **relations** [HXFD20, XHD21]. **relationships** [YH23].

Relative [WCA+20, TAVD21, YZK20]. **relativistic** [AZ22, BMBM24, BKC23, CQW24, CDT22a, CCY+20, CKT21, CW22a, DT20, DT21a, DT22b, DT22c, Gon24, LDM+21, Li23, LKG+20, NNL+20].
Sha21, SNW23, TWY23, TT20, WW20a, WSG+24, vdBSB20, DCS23, HXZ23.

scheme

105

Sea [MK21, BABD21, CPTR23, CFM22, LGL23a, hSMLS23]. Sea-ice [MK21, hSMLS23]. search [HL22a, WZ24a]. search-guided [WZ24a].

Second [CKT21, CDLX23, GPS20, GCL+22, KLB23, LYZW21, LD20b, LCWH23, PFC21, PWbCJ24, PGCC+22, XCGW+20, ZEG20, ZZZ20, ZHI21, ZCY24, Abg20, AnIL20, AAKW20, AKM23, BDL+20, CCWX22a, CC24, CZZ21, CZ20a, CY22b, CJI+20, CBY23, CGM+23, CX22a, Den23, FGGY22, FGTY23, GKNÖ24, HJ22, HLA22b, HYH24, KS11, KBB21, LL23a, ILTZ20, Mar23, MR23a, MQ20, MKM23, MM24, Mon21, NT20, Nis20c, Nis22b, Onr21, PSL20, PGC24, QZHD23, RSWD21, SY21, SKCM22, SAM23, TPK20, TEA+23, VCNC+21, XHLH23, Yan21c, YLLY22, YH22a, ZHY22, ZL22, aZWY23].

second-harmonic [VCNC+21]. second-kind [HJ22, KS11, PSL20].

Second-order [CKT21, CDLX23, GPS20, KLB23, LD20b, LCWH23, PFC21, PGCC+22, XCGW+20, ZZZ20, ZHI21, ZCY24, Abg20, AAKW20, CCWX22a, CZ20a, CY22b, CJI+20, CBY23, CGM+23, CX22a, FGGY22, FGTY23, HLA22b, HYH24, KBB21, ILTZ20, Mar23, MQ20, MKM23, Nis20c, Nis22b, PGC24, RSWD21, SY21, SKCM22, TEA+23, XHLH23, Yan21c, YLLY22, YH22a, ZHY22, ZL22, aZWY23].

Seebeck [Kan20]. sEFVM [BHJV22]. Segel [HS23, QLY21, WZSC22].

segmentation [KTDG20]. segregated [FH24, ZZC20]. segregation [SS23].

GLWY22, HMV22, HSM20, Hig22, HLL22, HXX22, HXQL23, JH23, KGBT20, KCWZ22, KZ20, LCL+22b, LM21a, LP23a, Liu20a, Liu21, LL24a, LM20c, MÖR24, NW22, RHR20, RLD24a, SGB+21b, SGT23, SFP+20, SdSPS24, TAWD23, WCB20, YYY21, ZDT23, ZXX23, ZZ23c, ZGX24, ZR24b].

shallow-flow [ZR24b]. Shallow-water [DS22a, AG21, Bal20, BP22, BCC+20, GCDT22, DCC+24, HMV22, HSM20].

Sham [GMB+22, HXX23, TMG20, VCK21, WCK24, ZNCZ+21, ZH23].

Shape [CEW23, DLZ23, DW21, AMG23a, AF24, Bar21a, BPBM23, CGLZ23, GEvWD22, GKA22, GLL20, HFA23, MHA23, NSS23, TBG20, VRK+21b, WZ23a, WDK22]. shape-morphing [AF24].

shapes [PA21, PR20, PAGJ23, QAS20, SWHJ22, ZZW23, ZZW24b].

Sheared [DFG+23, RA21].

shears [MSIM21, PTT22, TWY22a, ZQC+23, vdEW24].

Shared [DFG+23, RA21].

sharpening [CNC21, LLPL22, LLQ+23].

Shared [DFG+23, RA21].

Shared [DFG+23, RA21].

Shear [CY22b]. shear [AP22, CNMB20, Ein24, PWK20].

shearing [WNB21].

shield [BBC21, BMG+23].

sheets [AR22, CLT21, CMP22].

sheets [AR22, CLT21, CMP22].

shift [CMNS21, CNB+23, IK23a, TY24, XSA+21]. Shifted [CMNS21, CNB+23, IK23a, TY24, XSA+21].

Shifted [CMNS21, CNB+23, IK23a, TY24, XSA+21].

Shifts [CMNS21, CNB+23, IK23a, TY24, XSA+21].

Shock [CRPB20, KR23, AK22, ATS24, BB22, BZ2F20, Cal21, CF21, CLC24b, CD23, DHM21a, DU20, FL21, FAHA20, FAA20, HRRHG21, HHVM20, HJJ+21, HYZ22, HZ22b, HNZ23b, ITH24, JRD22, KKH22a, LFA21, LWW+23, LLS20, MLM+21, MGV22, MMB24, MMX20, NLZ+22, PB20a, PS22b, PL20, PPB23, RRHH+21, SP22, SS22b, SS22c, SS22d, VEC21, ZSP20, JJSX22]. shock-associated [LWL+23].

shock-associated [LWL+23].

shock-induced [DU20]. shock-stable [AK22, FAA20, HYZ22].

shock-structure [NLZ+22]. shocks [BSA21, HJ23, HNZ23b, OGG20, PSCK23, RSWD21, U120].

shooting [FVM22, FVM23].

sided [BBG21, LZZ2b, ILNZ21]. sides [HJ22]. Sign [FGTY23, YXY21].

Sign-preserving [FGTY23, YXY21]. signature [CMP22]. signed [WZ23b]. similar [CS21a, QSZB20]. similarity [NTSM20].

Simple [DG23, LG21, LAS22, SPdF20, BV21, DSSZ22, GF21, JJ21, LDW21, LFY21, LLQ+24, MM22, GOF23]. simplices [Bar21a, CLS24b].

simplicial [MDB24]. simplified [BV20]. simulate
solitary [SZKY24]. solubility [LCCM22]. soluble [SLBH23, ZKY+20].
solute [LZC+23]. Solution
[AB24, JHJ20, PKG20, WZBV20, ASG+23, ASS21, ARR21, BB21, BEP+20,
CCPS21, CYS22, CCCH23, DT22b, EdLCCCO24, EJ23b, FML21, GHY22a,
Gar20, HKKS21, HA21, HRG0, JWH0, KV23a, Kar22, KTB20, KLZ23,
LPL+22, LLM20, LCN20, MZI+23, MRG21, MBM+23, MBBV22, MS20b,
MPP20, NVPP23, Oru21, Os20, PM22a, Per23, PA20, SH23b, SH+20,
Sel22, Sen21, SRV21, SBVW20, Th22, TBD+20, Vab23, VRK21a, WMTQ20,
XZ22, XF21c, YCH21, YZZZ22, YL24b, ZZML20, ZLI23].
solution-adaptive [LCN20].
solutions [ARB+21, AF24, AK21, BCM24, BZ20, CE21, CW21, CS21a, DM21,
DZ23, EGN23, FMJ21, FCBM22, Gar21, GCDT22, Gin21, GLT+20, GQQ22, Haz21,
HHVM20, HH+21, HF21, JL21a, KNT22, LJH23, LC22, LP23b, MHW21,
PB20a, RY21, Ste22, SZW+20, Svi22, TRC22, TGS+22, ZSY24, ZHH+24].
solvability [LP20b, ZCY24]. solvable [Che20, FZQ22b]. solvation [DWZ23].
solve [BBP24, GHD24, OH22a, PEL23, RA21, TYW+20b, WWZ24b].
solved [YH22b, ZP20]. solvent [LZC+23]. Solver
[BLK+23, ASG+23, AMB22a, ARGK22, ATCS20, Bal20, BRZ+23, BDTU24,
BDWC23, BD+20, BTKP24, BG20c, Cat21, CSCL20, CDT22a, CSM20,
CS21b, CTG23, CLJ+20, CQA21, CKPP24, CCN23, DDVO21, Der23,
EEG22, FAA20, Gao22, GRT21, GB22b, GQ22, Hac21, HHVM20, HJH+21,
HBF21, JL21a, KNT22, LJH23, LC22, LP23b, MHW21, PB20a, RY21, Ste22,
SZW+20, Svi22, TRC22, TGS+22, ZSY24, ZHH+24].
solvers [Cap23, CSA21, CC22b, FH24, GMR20, DPI24, GMA23, GKA22, HP23,
HPZ20, KBCH20, KS22c, KS22b, KS23, Kem23, LK22, LSL20, OPY23,
PP22a, PK23, QSZ20, RUG20, RHR+20, SGT20, SGB+21b, SPF21, Scr23,
SML23, TKGB23, WHH+20, WH22a, vLF23]. solves [TR21]. Solving
[AL21, BG22b, CHOS21, CPK22, FY20, GZ21, GW22, HL20, HJ22, HX23,
MV20, MFG22, PZ21, PMACG21, WC23, ZLS22, ADK+21, ABAFT23, BRT22,
BZ20, BAK22, BL22, CLL20, CCE+22, CLDC20, CDX22, Ch23, CEM20,
DCG20, DSZ22, EBC+22, EDEV23, EFO19, EFO20, FZ20b, GS21, GSOM23,
GDL23, GKT22, GDB24, GAB22b, GYW23, HNS20, HAL20a, HZ21,
HW22, HYH24, JL23, KKP20, KNS21, LSS20, LTM21b, LCR22, LZY22a,
LT22b, LMZ23, LFT+20, LOLS23, LUH22, LM21, LL24b, LP21, LL23c,
LZCC22, MHW22,

strategies

[ADM22, BBDT21, KRL21, KR22, KWF20, LAS22, PJZ+23, SYAM23].

strategy

stratified [TT20]. stream [ZZZH23]. streamer [LZC+20, Mar24, SW22]. streamline [Bat20a]. streams [IK23a].

strength

stripping [FSW22].

strong

[FDP20, CEW23, CHMP24, GS22, LDM+21, PSCK23]. Strongly [ZHPZ21, CWW20, FR23, NG22, SLOZ21b, SLOZ21a].

strongly-compressible [SLOZ21b, SLOZ21a]. structural [ABBG23, JLXZ24, LQXM22, NDH20, ZHPZ21]. structurally [SFP+20, WHZ22a].

structure

structured [AAH+20, APR22, LLS24a, LLQ+24, MRYS20, MSWH22, NGZ22, RAZA21, vEdW24]. structures [BBKB21, BFST23, CECER20, DAJ22, DYGC22, FCP21, GZW20a, GXY24, HYSS22, HRY+22, HPX23, IT22, LZZ21, LR23, MMSW22, NZXM21, QSZB20, TF20, YK20a, YXL22].

studies [AFF+23, KSW22, QWZ+23, SES21, SNW23].

study

[AMGCL21, Lak20, AMK+21, BPS23, BJL21, CPGD20, DS21, FCY+20, GB22a, LTK+22, MWH22, NN23, POS+20, Par22, RYW21, SGLP23, TZ20, TGM23, VGG23, YJK24, QZS+21, ZQZ+22]. studying [GM23b, MH22b].

Sub

[HiB20, JL23, MH22b, MCBA20, OLP23, PS22b, QJQW22, ZB21b].

sub-cell [ZB21b]. sub-cooled [MCBA20].

Sub-grid

[HiB20, OLP23, PS22b]. **Sub-grid-scale** [MH22b]. **Sub-operator** [JL23].

sub-scale [QJQW22]. **Subcell**

ADK, EAK, GKPT, HYH, KSK, LGMV, LZPM, LLPL, LLQ, MYJ, MYL, RBPRST, VL, VK, WL, YG, YX, ZDW, ZZ, aSDCdMC.

Techniques [MVO, OG20, FCW, FMOJ, FM23, FM23a, JKZS, JRY, KC20, KMF, Liu, MY1, MYL, RBYST, VLC, VEC, XSC, YX, ZDW, ZZa, dSdCdMC].

Technologies [MVO, OG20, FCW, FMOJ, FM23b, JKZS, JRY, KC20b, KMF, Liu, MYJ, MYL, RBPRST, VLC, VK, WL, YG, ZZa, aZWY].

technology [LLF].

Teleportation [PV, SH].

Telescopic [BR].

Temperature [CLS, LMPT, SLF, SEG, SW].

Temporal [ATF, EPV, LLB, SOG, CA, HGB, HL, JTZ, KS, KLF, LP, LL21a, LSZ, PJZ, WW, XKZ, XBL, YH, ZCY, ZBY, ZLW, ZWZL].

Temporal-difference [ZCZ].

Temporally [KJ, MD].

ten-moment [BKY].

tensor [LXSF, LF, NME, TFWX, YZZ, ZJO].

Tensor [LXSF, LF, NME, TFWX, YZZ, ZJO].

Tensorial [LQX, HZX].

tensors [GDLL, SRM].

term [BZC, Don, GBLT, HNZ, MFTZ, SKT, SPA, WHN].

terminus [HPS].

terms [AO, BS, BON, JJ, KSHJ, PR, SL, SMS, WZ, ZH].

Ternary [DWWZ].

terrain-following [Ba].

tessellations [MOMS].

Test [RA].

tests [SDA].

tetrahedral [AE, GK, JZS, JBF, ML, Nis, NW, YC, ZH, ZS].

Tetrahedron [CIMG].

TgNN [XZRW].

TgNN-wf [XZRW].

their [BC, JMM, BBQ, DLMZ, EDC, GQ, KMS, LLS, MBM, MAPS, NdlLPL, PJZ, PA].

theorem [ODM].

theoretic [JZB].

Theoretical [ACD, CHZ, WCZ, XZRW].

Theory-guided [ACD, CHZ, WCZ, XZRW].

Thermal-compositional-reactive [CCW].

Thermally [SY, XYL].

Thermo [BBMA, HLA].

Thermo-gas-liquid-solid [HLA].

Thermo-poroelastic [BBMA].

Thermoacoustic [LBN].

Thermocapillary [SMK].

Thermochemical [FCW].

Thermodynamic [ZWN].

Thermodynamically
thermomechanical [GJW24]. thermometry [BAK22]. thick [BFST23].

tracing [Bat20a, CIMG21, WCBQ24]. tracking
[BTCV22, CDJM21, GHY22b, GEvWD22, GHE+23, HZ22b, HNZ23b, HW23,
IKP22, JZK24, LMG+21, LTBM23, MZ23, MrdB21, NZ24, NKT21, PK20,
SLBH23, SPZ22, VMO21, YH23, ZSP20, CRPB20, FO22]. Traction [BDB21].
tractions [KS11, PSL20]. trade [HEBK23]. trade-off [HEBK23]. tradeoff
[BBO+22]. traffic [BX20, Tow20]. train [WYP22]. trained [WLZ+24b].
training [AK21, DD22a, DL21, FL21, GYWG23, HBEK23, HBF21, JD23,
LM20, OWHN22, RK21, SJH+23]. trains [CDZ23]. trajectories [Sin23].
trajectory [HYCL23, PK20, SFDW23]. trans [WH22a]. trans- [WH22a].
transcranial [SACT21]. transcritical [BJC23, ZSY24]. Transfer
[Cha21, ADK+21, Ani21, BOB21a, BRZ+23, BTGA22, CLS+20, CNCM21,
DSPB22, DS23b, FLZ20, GA20, GHP+23, GP23, GSH22, HGV+21,
HCCR22, ID20, JD23, JBE21, KS21d, LJ22, LCWJ20, LS23, LHWZ21,
LYS+23, LM21c, MS20a, MH22a, MYY+23, MFS+22, NdlLPL21,
OCGT22, PT23b, SS23, SSS20, SSX23, Shi23, SFP+20, SH22, WGS+20,
WZCK21, XSSS22, XJS21, XC23b, ZCQ19, ZCQ20a, ZS22, ZSST23,
ZYL23a, ZCCN23, ZYY+24, ZLZ21b]. transfer-based [LJ22].
transfer-learning [ZLW+21]. transfers [GMD22]. transfinite
[GD20, ZL21a]. transform [DC22a, JLRZ20, MCVF22, MTWBT21, Per23].
transformation [HWDM22, MBAG21, WWZZ24b]. transformers [Cai22].
Transient [LM20, AMB22a, BAT23, CMS+22a, CWL+23, EC20, HVD23,
LLF23, RHR20, WMTQ20]. transition [CY21, YR22]. transitional
[MFTZ20, RKV20]. transitions [AdDMT21, GLJB20]. transmission
[BCIT22, CLW20, KBI+22, Lm21, MPSP22, vHG+22, van22]. Transport
[GFF20, VM22, AAH+20, ASJ23, AIL22, AIC+22, BHU23, BCC+24, BO22,
BVR22, BCM24, BW23, BR23, CQY21, C20d, CWX23, CGZ23, CSY23,
CCCC22, CBA+21, CBV23, CHB20, DBSS+20, DIT22a, DW20,
DWZ23, DJ22, DJ23, EFS+20, ELL+23, EHW21, FCP21, FTPB23, FSB+20,
FLOL23, FS21, GRY22a, Gar20, Gar21, GQ22, HR23, HT21a, HKW24,
HA21, HQ2, HWD22, HSG+22, JM23, JHT23, JTT23, Kan20, KAO+20,
KB+24, KV21, KSK21, KWMF22, LT22a, L20, LKEM21, LLO21, LCS22,
Lév22, LLZ+20a, LZZ21b, LTT21, LLS24b, LMG+21, LPZ22, LM23b, LWW24,
MACDR24, MD21, MM21c, MM22, MBV22, MP20, PCQ20, PM21b,
PM23, QHZ+22, SM24, SDStTB21, SB+23, SGP23, TW22, TFCH22,
TR21, TN23, TLWM20, TYBW23, TOB+24, VACE21, VMBS20, VRAM21,
W20b, WR23a, WT24, XJ23, XF21b, XFB1a, Yan21a, YZdCNS21].
transport [YOH+20, YYB23, Z20, ZWY+23, ZS21b, ZG20, Tur24].
transport-reaction [Z20]. transportation [IT22]. Transported [PJW21].
transports [CDZ23]. trapezoidal [FL23a, IRT22]. trapped
[MX22, SFP+20]. Travel [LTDC23, KZ23]. traveling [WZ23b]. Treatment
[BNP+22, CK21, DC22b, JHT23, LJS+23, LZZW24, PR20, RS20c, TBW23,
WLKR23, XYL22, ZHR20, ZZ20]. treatments [DSZ20, MGA20]. tree
[RIC+22, ZPW+23]. tree-topological [ZPW+23]. Treecode [Z1K21].
Treecode-accelerated [Z1K21]. trees [Mar24, WWJ24]. Trend [HJJL20].
Triangular [DM23b, AE20, CK20, CCB22, DNO23, DK21, HYQ20, HLQZ23, LWR20, LZ24b, Liu21, MK21, NW20, Nis20a, Nis21, VPDD22, WTZZ23, WZL21, ZCQ19, ZCQ20a, ZL21b, ZLW+22a]. **triangulated** [TCW24].

TriGlobal [OY21], **trimming** [TLKK23], **triple** [EGN23, NAZ22].

triple-deck [EGN23], **triple-porosity-Stokes** [NAZ22], **triple** [HLQZ23].

Trotter [ZOG21b], **truncated** [FA22, RHG22].

Truncation [BSR20, LRVF22, PR24], trust [AMG23b], **trust-region** [AMG23b].

Trust [AMG23b], **trust** [TTI XH24].

tsunami [FFGRLS+20], TTI [XH24].

Tubular [KWS22], **tuber** [HHVM20, HJH+21, MCBA20, SOBP22].

tube [CCPS21, CCPS23].

Tumor [LHL+22, NE23], **tuned** [DHR20].

tuning [PK23].

Turbomachinery [AFP22], turbopumps [CPD+24].

turbulence [ASSZ21, BBF20, BABD21, BJC23, BGS+22b, CDBS21, CPX21, CLW+24, DGW22, FJG+20, GRC+22, GT23, GCSH22, KL20, KFP+22, KMF23, KKSY21, LMFV22a, MDF20, MND+20, MIH21b, MMYT23, NF23, PPHO22, SSG21, SFNMF+21, TSS+20, WGY20, WCP23, WZSK22, YcD20, YcD21, YGJ21a, YGJ21b, ZXLH23, ZJQ+24, ZAW+20, dZBDMC24].

turbulence-induced [PPHO22].

Turbulent [SI22, BJ22, BDB21, BPJ22, CPX22, CMH20, CM20, Che20, CFJF23, CF22, CPBB21, DJD20, DTB20, DOL23, GFY20, HSMR20, H21b, JGM+22, KM22a, KSBG20, KYY+21, KD20, KS21d, LNC+21, LJK+24, LAS22, PJJ21, RWDG22, TGS+22, TNF23, ZB24, ZO21, vNGB22].

Turn [DCS23].

Tusas [GNF22], TVD [SBVM20], twisted [YB22].

two-dimensions [Sel22, SSPV20, SH22]. two-domain [MP21].
two-electron [BCG23]. two-equation [EDEV23].
two-fluid [BKC23, BSZ+23, CNC21, LMPT24, NKA+20, SBH21, SCB20, YLW21].
two-grid [DZJ22]. two-layer [CKLZ23, DSBFN20, Liu21, ZGX24].
Two-level [LC23, LLCK20]. two-material [XYL22].
two-scale [HdB21]. two-sided [ILNZ21]. two-species [RWDG22].

variance-reduced [SH23a]. variant [BZC+22, CL20c]. variate
{GGEJ20, TTY22}. variates [BLWL22]. Variation
{CF21, BBCD22, GU20, t LJThZ22, MSC+20, Tot23}. Variational
{BBDT21, Bri22, Dup21, KM22a, KSK+24, LLM20, MPSP22, NddlPL21, WLS22, ADK+21, AAM20, CPTR23, CMH20, DSG+22, FOL23, FL23b, FP23, GFPO22, GSOM23, ISM+23, KV20, LLL22, LGL23b, LW20a, MO22, MHA23, MJJ21, RN23, SYC+23, SC23, TPSN20}. various
{FZ20a, KL20, MPBG23}. varying
{CLY21, CLGA24, Chi23, FCL21, GLLM22, LSL20, PLM23a, SWF21, XLLH21}. varying-mass [CLY21].
{CMGS23, BWG+20, FCW21, FM22, FMOJ22, FM23b, FM23a, HJJ20, Nis22a, Nis23, RMM+22, TRC22, WLZP21}. versatile
{CL23b, RKA+23, USRH20}. version [MMKM24]. versus [KRL21]. vertex
{BS22a, CZLC22, GSFH22, GEvWD22, GHE+23, JGR22, LLL22, QZZ+24, SGW+23, SEG21b, SEG22, BMQ20}. vertex-based [CZLC22].
vertex-centered
{BS22a, GSFH22, LLPL22, QZZ+24, SGW+23, SEG21b, SEG22}.
vertical
{KJB+24, Lec21, MCB20}. Vertically [EdLCCCO24, Bal21, LP21, Pop20].
vertically-Lagrangian [Pop20]. Very
{CLP21, CLPP24, WWLZ21, CNCM21, CA22b, MM21b}. vesicle
{CBCT+21, LS22, OL20}. vesicles [MSIM21, ZW22]. vessels
{LB1+23, PBVC22}. via
{JKZS21, RZH20}. Virtual
{MFTZ20, ADM22, BDS23, CG24, RK21, ZC22b, ZC22c, AM22, BBV23}. visco
Viscoelastic [ALC24, BCPV21, CA22a, DPX23, EFO19, EFO20, GFB+24, HKJ21, JRY+20, LHXZ22, LLF23, LBM+23, MWY+20, PC23, PBVC22, PG20, SK23a, XG22, ZLW+21, ZLW23, dKSA21]. viscoelasticity [ALC24, CDT22b, KKN22].
Viscous viscosities [GHHR22].
Viscous viscosity-based [GHHR22].
Viscous-plastic viscoplastic [LCP21a, BZC22, CBF22, DVS22, DS21, FBS23, FWG22, HP21b, JF20, JDB23, KCT23, LZX22b, LQXM22, LGL23a, LSY+23, PS22a, PR20, QAS20, REC+22, SK23a, hSMLS23, SZQS23, TF20, UD22, WPF22, WNB21, ZCY20, ZLQS24, ZLB22, WK21b].
viscous-plastic [LCP21a, hSMLS23].
VISVE [WK21b].
VOF [ADJ23, CS21c, Dv22, DL24, DPI24, GPSHM20, KXY+21, LWZ+21, MMZ21, WYS20, XZN23, ZNN22, ZMT24, ZEL20, SLF23a].
volume-based [AE20, GHY22b].
volume-conserved [Yan21c].
volume-filtering [DZH23]. Volume-of-Fluid [FMB20, KIH21, MKB20, BS21, CSF+24, FGL+22, GH23, HZTN21, IMJ20, KKS+21c, LB24, NZRH24, SCB20, YL23, XS20, KB22a, PJR23].
Volume-of-Fluid-based [MS20a]. Volume-preserving
[BGNZ22, Baj23, LW21, The21, WLH21]. volume/finite [FZB+23].
volumes [KDL23, Rec23]. volumetric [WSG+24]. Voronoi
[BO22, FGZ20, GBC+20, GQF24]. vortex [BPG21, DT22b, GH23, GNW22, MM21a, NMN23, SL20a, SL22a, BDWC23, RHSK21]. vortex-dominated
[MM21a]. vortices [MM21a]. Vorticity
[WK21b, GGCvR22, HP21b, JGvR23, MD20c, MS20b].
Vorticity-Bernoulli-pressure [MS20b]. vorticity-velocity
[GGCvR22, JGvR23]. voxels [TB23]. vs [HPRW20]. VSPH [FGZ20]. VT
[FCWS22, LYS22a]. Vortex
[BO22, FGZ20, GBC+20, GQF24]. Vortex-dominated
[MM21a]. walls
[AF20, LP23b]. WANN [OWHN22]. Wang [CC20]. Wannier [MO22]. warm
[ZHRB23]. warm-start [ZHRB23]. Wasserstein
[FOL23, GN22, LLW20b, WXZ22]. Water
[DV20, AG21, AM22a, AR20, Ba20, BGGM21, BP22, BCC+20, CKLZ23, CP22a, CS+24, CNMB20, CN22, CZL20, CTCS22, DEN22, DS22a, Don23, DT21b, DFP+21b, FSDB20, GCCT22, DCC+24, GLWY22, HM22, HSM20, HG22, HXX22, HXQL23, HJ23, KGBT20, KMS20, KWS20, KLZ20, LP23a, Liu20a, Liu21, LM20c, MÖR24, NW22, RLD24a, SGB+21b, SGT23, SdSP24, TAWD23, WZ23b, WCB20, YX21, ZDT23, ZXX23, ZBY+23, ZZ23c, ZGX24].
waterflooding [LO23]. wave
wave-induced [ZMZY23]. wave-mode [WZ22]. wave-packets [EGN23].
wave-particle [LLZ+20a, LZ20, WZ24, XCL+21]. wave-scattering
[BFL20]. wave-structure [RB21]. wavefield [LKvM+22]. Waveform
[GM23b, AMG23b, AN21b, AL21, BS20, CJT+20, CHM24, DW21, EdCC+23, EGG22, HRG20, LY23]. waveguide [LL24a]. waveguides [NPD20, SML20].
Wavelet [LH21, HM21a, HDML23, HH21, Pan20b, ZDC20].
Wavelet-based [LH21]. wavenumber [FL21, KK22]. wavepackets
waves

way

way-constraint

weakly

weakly-compressible

weakly-contrained

well-balanced

Well-conditioned

Well-posedness

Well-posedness

wet

wet-dry

wettability

wetting

white

Whitney

whole

wide

width

welding

wedge

weight

weight-adjusted

Weighted

weighting

weights

welding

wedge

weight

well-balanced

Well-balanced

Well-posedness

Well-conditioned
Wiechert [KKL+23], Wiener [LL21c], Wigner [QC23, ZCH22].
Wilbraham [RS20c], wildfire [CPH+22], Wilkins [LZS22a, Ser23].

Yang [DOQ23]. yeast [HST22a]. Yee’s [DLP21].

References

REFERENCES

REFERENCES

[ABY23] Richard Archibald, Feng Bao, and Jiongmin Yong. A stochastic maximum principle approach for reinforcement learning with parameterized environment. *Journal of Computational Physics*, 488(??):??, September 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

AlMuslimani:2023:CSR

Acar:2024:TCP

Arzani:2023:TGP

Aretz:2024:GSS

Anguill:2022:APM

REFERENCES

An:2021:CSE

Anderson:2020:CCO

Anderson:2020:COS

Astuto:2023:FDG

[ADK+21] Mostafa Abbaszadeh, Mehdi Dehghan, Amirreza Khodadadian, Nima Noii, Clemens Heitzinger, and Thomas Wick. A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogo-

REFERENCES

 Athkuri:2020:NAV

 Ammosov:2022:GMM

 Aithal:2020:FPC

 Alauzet:2021:FBG

 Assous:2023:NAP

REFERENCES

[An:2022:PTD] Dong An, Di Fang, and Lin Lin. Parallel transport dynamics for mixed quantum states with applications to time-

REFERENCES

Afanasiev:2021:LIT

Ahmad:2024:EHD

Abdulle:2023:OES

Ammari:2021:TDH

References

REFERENCES

REFERENCES

Abdolazizi:2024:VCA

Amiri:2020:AII

Alexiadis:2023:MAP

Angus:2022:NEC

Agrawal:2022:RFH

An:2022:TSE

Adjerid:2023:IDG

Abu-Labdeh:2023:MMI

Antonietti:2022:RPG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
Ahmmed:2021:CSM

Antonietti:2020:STD

Antonietti:2020:HOD

Aristotelous:2023:AEA

Alekseenko:2022:FEB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2020:EBd

Anonymous:2020:EBe

Anonymous:2020:EBf

Anonymous:2020:EBg

Anonymous:2020:EBh

Anonymous:2020:EBi

REFERENCES

Anonymous:2020:EBp

Anonymous:2020:EBq

Anonymous:2020:EBr

Anonymous:2020:EBs

Anonymous:2020:EBt

Anonymous:2020:EBu

REFERENCES

Anonymous:2020:EBv

Anonymous:2020:EBw

Anonymous:2020:EBx

Anonymous:2021:Aa

Anonymous:2021:Ac

Anonymous:2021:Da

Anonymous:2021:Fa
REFERENCES

Anonymous:2021:Md

Anonymous:2021:Nb

Anonymous:2021:Ob

Anonymous:2021:Sb

Anonymous:2021:EBa

Anonymous:2021:EBb

Anonymous:2021:EBc

Anonymous:2021:EBd

Anonymous:2021:EBe

Anonymous:2021:EBf

Anonymous:2021:EBg

Anonymous:2021:EBh

Anonymous:2021:EBi

REFERENCES

Anonymous:2021:EBv

Anonymous:2021:EBw

Anonymous:2021:EBx

Anonymous:2022:Aa

Anonymous:2022:Ac

Anonymous:2022:Da

Anonymous:2022:Fa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2023:Md

Anonymous:2023:Nb

Anonymous:2023:Ob

Anonymous:2023:Sb

Anonymous:2023:EBa

Anonymous:2023:EBb

Anonymous:2023:EBc

 Anonymous:2023:EBd

 Anonymous:2023:EBe

 Anonymous:2023:EBf

 Anonymous:2023:EBg

 Anonymous:2023:EBh

 Anonymous:2023:EBi
Anonymous:2023:EBj

Anonymous:2023:EBk

Anonymous:2023:EBl

Anonymous:2023:EBm

Anonymous:2023:EBn

Anonymous:2023:EBo

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Abgrall:2022:REE

Amlani:2020:SHO

Abdulla:2021:IPL

Armstrong:2022:NSC

Abouhussein:2023:CFE

REFERENCES

REFERENCES

Amiranashvili:2021:ASM

A:2022:ADL

Allmann-Rahn:2022:PLR

Azaiez:2021:CID

Abgrall:2023:DGS

REFERENCES

[ASVL23] Christian Amor, Philipp Schlatter, Ricardo Vinuesa, and Soledad Le Clainche. Higher-order dynamic mode decom-

Ager:2021:CCA

Abushaikha:2020:FIM

Anderson:2020:ECT

Aithal:2023:TAF

REFERENCES

Atallah:2024:WBC

Ahmad:2020:LMM

Astoul:2020:ARS

Astoul:2021:LBM

Amlani:2023:FBM

REFERENCES

Adil:2023:AMM

Adia:2021:CLB

Antoine:2022:PMP

Anderson:2023:FHO

REFERENCES

Zou:2023:EIP

Bennis:2021:LTM

Bajars:2023:LSN

Beilina:2022:AFE

Baldauf:2020:DGS
REFERENCES

REFERENCES

Batista:2020:PMM

Bacigaluppi:2023:PLH

Beardsell:2020:CES

Berezovski:2020:DDM

Bonilla:2020:MPF

REFERENCES

REFERENCES

Bonetti:2023:NMW

Bajgiran:2022:UQK

Bonnafont:2024:FVM

Bastidas:2021:NHN
REFERENCES

[BCC+24] Ricardo Baptista, Lianghao Cao, Joshua Chen, Omar Ghattas, Fengyi Li, Youssef M. Marzouk, and J. Tinsley
REFERENCES

REFERENCES

198

Benamou:2022:PSR

Bergmann:2022:ASI

Berlyand:2024:NMS

Bao:2020:JSM

Barua:2023:SIP

[BCL+:23] Amlan K. Barua, Ray Chew, Shuwang Li, John Lowengrub, Andreas Münch, and Barbara Wagner. Sharp-interface prob-
REFERENCES

REFERENCES

REFERENCES

Boscheri:2021:SPS

Boscheri:2020:SOA

Bonaldi:2022:ESD

Bretin:2022:LPF

Boisneault:2023:AST
Antonin Boisneault, Samuel Dubuis, and Marco Picasso. An adaptive space-time algorithm for the incompressible Navier–

[P. Billuart, M. Duponcheel, G. Winckelmans, and P. Chatelain. A weak coupling between a near-wall Eulerian solver and a...]

[B. Billuart: 2024: WCB]

[Bilbao:2023:EEE]

[Bui:2020:SSN]

[Bayat:2022:SNM]

[Bel24]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BL22a] Xiao Bai and Maojun Li. Simulating compressible two-phase flows with sharp-interface discontinuous Galerkin methods based on ghost fluid method and cut cell scheme. *Journal of Computational Physics*, 459(??):??, June 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

216

[Bourgeois:2022:GMP]

[Boscheri:2024:GTC]

[Banjai:2020:NAS]

[Bourne:2023:SCP]

[Balachandar:2019:SIV]
S. Balachandar, Kai Liu, and Mandar Lakhote. Self-induced velocity correction for improved drag estimation in Euler–Lagrange point-particle simulations. *Journal of Computa-
REFERENCES

Bekar:2021:PEL

Buvoli:2024:ERK

Berta:2024:OAF

Bourne:2023:NUS

Brenner:2020:VAG

REFERENCES

Badia:2022:GDU

Bonito:2020:DGA

Bhole:2022:TPG

Bouziani:2023:UFD

Bassett:2022:MDD

REFERENCES

Bhosale:2021:RVM

Bochkov:2023:NMS

Brenner:2022:EAS

Barnafi:2023:CSS

Burger:2020:ICI

Martin Burger, René Pinnau, Claudia Totzeck, Oliver Tse, and Andreas Roth. Instantaneous control of interacting par-
REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

Bergkamp:2022:DRF

Boelens:2020:TMB

Bonito:2020:ETL

Bendall:2023:IAD

Blomquist:2024:SNP

Bohm:2020:ESN

Buli:2020:DGM

Bruno:2020:RIE

Borleske:2020:EGR

Barclay:2021:PBC

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Ching:2020:TWC

Codina:2023:ESL

Chung:2020:RSC

Casquero:2021:DCI

Chamarthi:2022:IHF
Amareshwara Sainadh Chamarthi, Sean Bokor, and Steven H. Frankel. On the importance of high-frequency damping in

[Cai:2021:HOS]

[Cho:2021:CSLa]

[Cho:2021:CSLb]

[Choi:2023:RSO]
REFERENCES

REFERENCES

Christensen:2022:FAN

Colera:2022:NCH

Cheung:2023:LLR

Colnago:2020:HOI

Chetverushkin:2021:CMM

Caliari:2022:MIS

C:2020:CSR

Chen:2023:MRM

Crockatt:2020:ICH

REFERENCES

Chertock:2023:LCD

Chen:2020:GMA

Cohen:2020:EIS

Cai:2024:FTI

Cai:2021:LSR

REFERENCES

Cai:2022:SAD

Cai:2020:DLS

Crestetto:2022:CHO

Chaillat:2022:EET

Andrea F. Cortesi, Paul G. Constantine, Thierry E. Magin, and Pietro M. Congedo. Forward and backward uncertainty quantification with active subspaces: Application to

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CE21] Juan C. Araújo C. and Christian Engström. On spurious solutions encountered in Helmholtz scattering resonance computations in Rd with applications to nano-photonics and acous-

Chowdhury:2022:ECF

Chowdhury:2022:ECF

Cances:2020:ECP

Chung:2021:CIP

Chung:2022:CIP

Chung:2022:OMC

Chung:2023:DDS

Cheylan:2023:AIB

Chen:2022:ESA

Cao:2022:MLR

REFERENCES

Chiapolino:2023:FCC

Carcipolo:2020:CMM

Chen:2023:PIN

Calvo:2024:RDD

Che:2021:GPC

REFERENCES

Chen:2021:IGF

Carson:2020:AMA

Chen:2021:ODA

Chiu:2023:CCD

Chen:2023:CFT

REFERENCES

Corot:2020:STC

Ciaramella:2024:CAO

Caboussat:2024:CCM

Cakoni:2024:FIL

Chen:2021:SLN

REFERENCES

Celledoni:2021:DCL

Ching:2024:PPEb

Ching:2024:PPEa

Chen:2021:FAE

Cen:2023:EIT

REFERENCES

REFERENCES

[Chen:2021:SOA] Yaping Chen, Yangyu Kuang, and Huazhong Tang. Second-order accurate BGK schemes for the special relativistic hy-

REFERENCES

Chen:2023:AHO
Zhiming Chen and Yong Liu. An arbitrarily high order
unfitted finite element method for elliptic interface prob-
lems with automatic mesh generation. *Journal of Com-
putational Physics*, 491(??):??, October 15, 2023. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
pii/S0021999123004795.

Cruz:2023:VIB
Rodrigo Vicente Cruz and Eric Lamballais. A versa-
tile immersed boundary method for high-fidelity simula-
tion of Conjugate Heat Transfer. *Journal of Computa-
tional Physics*, 488(??):??, September 1, 2023. CODEN
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999123002772.

Cai:2023:ASL
Xinwei Cai, Zhen Li, and Xin Bian. Arbitrary slip length for
fluid-solid interface of arbitrary geometry in smoothed particle
dynamics. *Journal of Computational Physics*, 494(??):??, De-
cember 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print),
com/science/article/pii/S0021999123006046.

Cao:2024:ESR
Yanchuang Cao, Jun Liu, and Dawei Chen. An explicitly-
sparse representation for oscillatory kernels with wave atom-
like functions. *Journal of Computational Physics*, 497(??):??,
January 15, 2024. CODEN JCTPAH. ISSN 0021-9991 (print),
com/science/article/pii/S0021999123007155.

Chang:2024:CAB
Siyuan Chang, Jun Liu, and Kai Cui. A cluster analysis-
based shock wave pattern recognition method for two-
dimensional inviscid compressible flows. *Journal of Com-
REFERENCES

Chen:2020:UFC

Cheng:2024:EDD

Cheng:2020:SOC

Cheng:2020:EFB

Jesse Chan, Yimin Lin, and Tim Warburton. Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions for the compressible Navier–Stokes equations.

[CMCX23] Victor Churchill, Steve Manns, Zhen Chen, and Dongbin Xiu. Robust modeling of unknown dynamical sys-

Cartier-Michaud:2023:VAC

Chandramouli:2020:LSV

Colomes:2021:WSB

Carrillo:2021:OAC

REFERENCES

Guoxian Chen and Sebastian Noelle. A unified surface-gradient and hydrostatic reconstruction scheme for the shallow water

REFERENCES

REFERENCES

REFERENCES

277

REFERENCES

[CSCL20] Quentin Carmouze, Richard Saurel, Alexandre Chiapolino, and Emmanuel Lapebie. Riemann solver with internal re-

Costanzo:2022:PTA

Cipriano:2024:MDE

Choung:2021:NWP

Chen:2020:ESG

REFERENCES

Cheng:2022:WBW

Chen:2023:CFA

Coppola:2023:GLC

Cifani:2023:EGM

Chandramoorthy:2021:PFN

REFERENCES

[Chen:2022:PCP]

[Cheng:2022:IBM]

[Chen:2023:DOD]

[Chen:2021:PIM]

Chen:2023:HOA

Chen:2021:DNT

Chen:2021:GRN

Cockburn:2022:ABA

Cockburn:2022:ABS

Chang:2024:CHD

Choi:2021:PTD

Chassagneux:2022:NAS

Chen:2022:SOT

Cai:2023:UAM

REFERENCES

REFERENCES

Chen:2020:BIP

Chaikovskii:2022:CAF

Chen:2022:SRC

Chang:2023:HDD

Chen:2023:ENI

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Number</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[DC22a] Rong Du and Xiao-Xiao Cai. Convolutional discrete Fourier transform method for calculating thermal neutron cross sec-

Francesco De Vita, Filippo De Lillo, Roberto Verzicco, and Miguel Onorato. A fully Eulerian solver for the simulation of multiphase flows with solid bodies: Appli-
REFERENCES

Erwan Deriaz. High-order Adaptive Mesh Refinement multigrid Poisson solver in any dimension. *Journal of Comput-

REFERENCES

Dumbser:2020:GCC

Dugast:2020:RFF

Daus:2022:RBM

DiGregorio:2021:CMA

Dutta:2021:GNI
Sourav Dutta, Matthew W. Farthing, Emma Perracchione, Gaurav Savant, and Mario Putti. A greedy non-intrusive reduced order model for shallow water equations. *Journal of Computational Physics*, 439(??):Article 110378, August 15,

Ivan Duchemin, Luigi Genovese, Eloïse Letournel, Antoine Levitt, and Simon Ruget. Efficient extraction of reso-

Dubois:2022:MLF

Dominguez:2020:ODF

Du:2020:FUE

Dzanic:2022:PAN

REFERENCES

[DJ22] Kurt A. Dominesey and Wei Ji. Reduced-order modeling of neutron transport separated in energy by Proper Generalized Decomposition with applications to nuclear reactor physics. *Journal of Computational Physics*, 449(??):Article 110744,

DiLeoni:2023:NOP

Dou:2022:DCA

Deng:2021:AYS

Doppler:2024:DGA

Don:2022:NRS

Duan:2022:EDA

Dong:2023:KFB

Ding:2023:SRU

Dai:2021:POU

Darbon:2021:SNN

REFERENCES

Hurtado-de-Mendoza:2022:NMA

Dao:2022:ESA

Dunning:2020:AMR

Dai:2022:MSP

Dong:2023:SRS

Droniou:2023:PDR

Giorgio:2024:EAS

dAquino:2024:MGI

Doherty:2023:SFE

REFERENCES

REFERENCES

Delgado-Sanchez:2020:TLS

deSouza:2024:NRT

DeKlerk:2022:VID

dosSantos:2022:ADM

REFERENCES

Demou:2022:PBD

Ding:2020:APC

Dhulipala:2022:ALM

Dargaville:2020:GBA

Ding:2020:CFD

REFERENCES

Mi-Song Dupuy. Variational projector-augmented wave method: a full-potential approach for electronic structure

REFERENCES

 Du:2022:EHH

 Du:2022:HOB

 Dong:2022:SHO

 Dorschner:2020:FMR

 Du:2024:WBP

REFERENCES

Du:2022:PML

Du:2023:NSN

deZordo-Banliat:2024:SDT

Ding:2023:PIM

Dumbser:2024:WBD

REFERENCES

Egan:2022:NIG

Elias:2020:ESE

Evangelou:2023:DDM

Emmendoerfer:2023:FWI

REFERENCES

Eslaminia:2022:FWI

Evans:2019:ANS

Evans:2020:CAN

Elarif:2021:TFB

Efendiev:2020:SIA
Yalchin Efendiev, Abbas Firoozabadi, Shuyu Sun, Mary F. Wheeler, and Bo Yu. Special issue: Advanced numerical modeling and algorithms for multiphase flow and transport. *Jour-
REFERENCES

[EGTC] Raphael Egan, Arthur Guittet, Fernando Temprano-Coleto, Tobin Isaac, François J. Peaudcerf, Julien R. Landel,

Endeve:2022:CDM

Escalante:2022:SGM

Espig:2020:IAP

Einkemmer:2021:APD

REFERENCES

[EK21] Roland Ewert and Johannes Kreuzinger. Hydrodynamic/
acoustic splitting approach with flow-acoustic feedback for
universal subsonic noise computation. *Journal of Compu-
tational Physics*, 444(??):Article 110548, November 1, 2021.
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

[EKPS23] Michael Engel, Oindrila Kanjilal, Iason Papaioannou, and
Daniel Straub. Bayesian updating and marginal likelihood es-
timation by cross entropy based importance sampling. *Jour-
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

[EL23] Yalchin Efendiev and Wing Tat Leung. Multicontinuum ho-
mogenization and its relation to nonlocal multicontinuum the-
ories. *Journal of Computational Physics*, 474(??):??, Febru-
ary 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print),

[Eld22] Jeff D. Eldredge. A method of immersed layers on Carte-
sian grids, with application to incompressible flows. *Jour-
nal of Computational Physics*, 448(??):Article 110716,
January 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print),

Einkemmer:2024:LRC

Exl:2021:PMD

Einkemmer:2020:LRP

Einkemmer:2023:RCD

Esquivel:2021:FDS

Esquivel:2022:MEF

Efendiev:2021:TSA

Epstein:2022:DSR

Eremin:2022:ECC

Epp:2023:FCS

REFERENCES

Fleischmann:2020:LDM

[FAHA20] Nico Fleischmann, Stefan Adami, Xiangyu Y. Hu, and Niko-
laus A. Adams. A low dissipation method to cure the
grid-aligned shock instability. *Journal of Computational
Physics*, 401(??):Article 109004, January 15, 2020. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999119307090.

Farago:2020:ABD

discontinuities. *Journal of Computational Physics*, 423
(??):Article 109802, December 15, 2020. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999120305763.

Fuhg:2022:MDE

[FB22] Jan N. Fuhg and Nikolaos Bouklas. The mixed Deep En-
ergy Method for resolving concentration features in finite
strain hyperelasticity. *Journal of Computational Physics*,
451(??):Article 110839, February 15, 2022. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999121007348.

Fikl:2023:ABC

[FB23] Alexandru Fikl and Daniel J. Bodony. Adjoint-based con-
trol of three dimensional Stokes droplets. *Journal of Com-
putational Physics*, 494(??):??, December 1, 2023. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999123006277.

Frambati:2022:PUS

[FBCD22] Stefano Frambati, Hélène Barucq, Henri Calandra, and Julien
Diaz. Practical unstructured splines: Algorithms, multi-patch
spline spaces, and some applications to numerical analysis.
Journal of Computational Physics, 471(??):??, December 15,
2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-
science/article/pii/S002199912200688X.
REFERENCES

[FCM20b] Shubin Fu, Eric Chung, and Tina Mai. Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity. Journal of Computational Physics, 417(??):Article 109569, September 15,
REFERENCES

[FCWT22] Andrea Franceschini, Nicola Castelletto, Joshua A. White, and Hamdi A. Tchelepi. Scalable preconditioning for the
REFERENCES

REFERENCES

REFERENCES

Fei:2021:HPA

Fairbanks:2020:BFA

Fierro:2020:FCP

Feng:2021:CFS

Fornberg:2023:ETR

REFERENCES

REFERENCES

REFERENCES

Yiqi Feng, Felix S. Schranner, Josef Winter, and Nikolaus A. Adams. A multi-objective Bayesian optimization environment

REFERENCES

Fan:2022:ACP

Ferrero:2022:RBM

Fu:2020:DFH

Fang:2022:PTM

Fang:2023:SBM

REFERENCES

Fan:2024:DHN

Freret:2022:EAB

Font:2021:DLS

Fu:2022:PPP

Fan:2020:SEI

REFERENCES

REFERENCES

Fang:2021:EMD

Ghassemi:2020:MQM

Gujjula:2024:AIF

Giuliani:2022:WSR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gravenkamp:2024:SFE

Guan:2022:SPT

Girault:2022:CMC

Galassi:2022:ATI
REFERENCES

Garon:2020:MAB

Gumerov:2021:LGF

Geoffroy-Donders:2020:DTO

Gomez:2023:JFN

Guisset:2024:CCI
REFERENCES

Evan S. Gawlik and François Gay-Balmaz. A finite element method for MHD that preserves energy, cross-helicity, mag-

[GJF20] Zhenglin Geng, Daniel Johnson, and Ronald Fedkiw. Coercing machine learning to output physically accurate results. *Journal of Computational Physics*, 406(??):Article 109099, April 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-
Gimbutas:2020:EAF

Gao:2020:STA

Guan:2024:RCM

Giuliani:2020:MLD

Gross:2022:FPT

REFERENCES

REFERENCES

REFERENCES

Goswami:2023:ILS

Gao:2022:AGF

Gouasmi:2022:ESS

Guo:2024:EHG

Golovizin:2022:VLD

[GMMS22] V. M. Golovizin, Pavel A. Maiorov, Petr A. Maiorov, and A. V. Solovyev. Validation of the low dissipation computational algorithm CABARET-MFSH for multilayer hydrostatic flows with a free surface on the lock-release experi-
Guan:2023:TOR

Garg:2020:UJF

Gomez-Molina:2024:SCL

Ghasemi:2020:CDC

REFERENCES

REFERENCES

Gormezano:2022:CIV

Garcke:2023:SPD

Goncharuk:2023:IBM

Gonoskov:2024:EEC

Gomez:2023:MCM

Mustapha Ghilani, El Houssaine Quenjel, and Mazen Saad. Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are depending on the physical pressures. *Journal of Computational Physics*, 407(??):Article 109233, April 15, 2020. COD-

Gradinaru:2021:HWS

Givoli:2024:SDN

Giacomin:2022:GCS

Grigoriu:2020:DBI

Gaudreault:2018:KFA

Stéphane Gaudreault, Greg Rainwater, and Mayya Tokman. KIOPS: a fast adaptive Krylov subspace solver for exponential integrators. *Journal of Computational
REFERENCES

Gerster:2023:SCH

Glaser:2022:CCV

Gejadze:2023:BVC

Gao:2021:PPI

Gorji:2021:EFP

REFERENCES

[Yanni Gao, Guangwei Yuan, Shuai Wang, and Xudeng Hang. A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes. *Journal of Computational

REFERENCES

[Huang:2021:SES]

[Hirschvogel:2024:FRS]

[Heldmann:2023:PTU]

[Hyde:2021:OSS]

[Hertel:2022:CLM]
REFERENCES

[He:2023:GPP] Xiaolong He, Youngsoo Choi, William D. Fries, Jonathan L. Belof, and Jiu-Shyan Chen. gLaSDI: Parametric physics-informed greedy latent space dynamics identification. *Journal of Computational Physics*, 489(??):??, September 15,
REFERENCES

[HdB21] Tim Hageman and René de Borst. A refined two-scale model for Newtonian and non-Newtonian fluids in fractured
REFERENCES

Harnish:2023:AWM

He:2022:MFS

Han:2023:HOS

Heumann:2021:GMW

Ho:2023:AOL

Jonathan Ho and Charbel Farhat. Aerodynamic optimization with large shape and topology changes using a differentiable embedded boundary method. Journal of Com-
REFERENCES

Holst:2020:ETE

Hepp:2020:MEA

Hassanaly:2022:ASU

Hachem:2021:DRL
REFERENCES

Timon Hitz, Matthias Heinen, Jadran Vrabec, and Claus-Dieter Munz. Comparison of macro- and microscopic solutions of the Riemann problem I. Supercritical shock tube
REFERENCES

[HJ24a] Ziyang Huang and Eric Johnsen. A consistent and conservative phase-field method for compressible N-phase flows: Con-
References

Hwang:2024:RPF

Hitz:2021:CMM

Hwang:2020:TEK

Hartung:2021:LML
REFERENCES

REFERENCES

He:2023:GPS

Hitz:2020:PRM

Hoskins:2023:FHO

Hennessey:2020:HTR

Heydari:2024:FCT

Shahin Heydari, Petr Knobloch, and Thomas Wick. Flux-corrected transport stabilization of an evolutionary cross-

Huang:2022:CCP

Huang:2022:ICA

Hao:2020:DCS

Huang:2021:TDF

Hu:2022:DCS

He:2023:GFE

Harizanov:2020:ANM

Hergibo:2024:QBA

Huang:2023:WBM

Hu:2021:HCF

REFERENCES

Harbrecht:2022:SCS

Hahnel:2020:UDL

Hokpunna:2020:FSD

Haidar:2022:PFV
Hong:2023:EIM

Hu:2021:ARH

Henderson:2023:CMG

Han:2020:DFM

Hou:2023:ERL

REFERENCES

REFERENCES

REFERENCES

Hergibo:2023:MFM

Hu:2020:FFS

Hong:2022:GEL

Horvath:2020:EMC

Harris:2022:SCS
Halvic:2023:NIM

Hu:2020:UHM

Hajisharifi:2023:NID

Hateley:2020:DLS

Hashemi:2021:TDM
REFERENCES

REFERENCES

REFERENCES

Shih:2023:REP

Hijazi:2020:DDP

Huang:2021:SAS

Huang:2022:IKM

REFERENCES

Heydari:2022:CFV

Hoel:2022:MIE

Heid:2021:GFF

Huang:2022:BPP

Hao:2021:MMA

REFERENCES

REFERENCES

[Hua21] Yichen Huang. Two-dimensional local Hamiltonian problem with area laws is QMA-complete. *Journal of Compu-
REFERENCES

He:2020:ERS

Hester:2021:IAV

HVD23

Hollbacher:2020:GCE

Huang:2020:AMQ

Weizhang Huang and Yanqiu Wang. Anisotropic mesh quality measures and adaptation for polygonal meshes. *Jour-
REFERENCES

Huet:2023:COA

Huang:2022:MRM

Huang:2020:IDD

Hu:2024:MMB

REFERENCES

REFERENCES

Hu:2024:GCW

He:2020:DDA

He:2022:NSI

Hu:2022:SSH

Hu:2022:RHD

REFERENCES

REFERENCES

Iollo:2022:MCS

Ida:2024:TLN

Ims:2023:CTE

Jacquier:2021:NIR

Jai22a

Jaiswal:2022:ESS

Jaiswal:2022:NLB

Jain:2023:ADI

Jolivet:2021:DRT

Jin:2021:NNS

Jimenez:2024:ICE

Jiang:2023:UMT

Joachim:2023:PAN

Jenny:2020:TAC

Jabbarzadeh:2020:NMI

REFERENCES

Johnson:2024:ADR

Jettestuen:2021:LCM

Jost:2021:DFI

Janodet:2022:MPA

Joshaghani:2022:VST

Ji:2023:SIM

Jung:2023:PCP

Jagannathan:2020:SVM

Jenny:2023:TCH

Jeong:2021:IIM

Jaeyong Jeong, Sanghyun Ha, and Donghyun You. An immersed interface method for acoustic wave equations with discontinuous coefficients in complex geometries. *Journal of
REFERENCES

REFERENCES

Ju:2021:MBP

Jin:2020:GWP

Jin:2024:APF

Jin:2022:TCA

Jin:2023:TCA

Jiang:2024:GFD

Jain:2022:KEE

Jain:2023:CMT

Jagtap:2022:PIN

Jain:2020:CDI

REFERENCES

Jackson:2020:UEF

Jha:2022:GOP

Jung:2022:SLM

Jiang:2023:EDB

Ji:2021:ABC

REFERENCES

442

[JWZ20] Haifeng Ji, Zhifeng Weng, and Qian Zhang. An augmented immersed finite element method for variable coefficient ellip-

Jeon:2022:DDA

Jeong:2022:DWS

Jacobsen:2024:ITC

Jancic:2024:MIT

Kantner:2020:GSG

Katiyar:2020:GPM

Karatson:2022:SGT

Krasnov:2023:TPT

Kromer:2022:FBV

Johannes Kromer and Dieter Bothe. Face-based Volume-of-Fluid interface positioning in arbitrary polyhedra. *Journal of...*
REFERENCES

REFERENCES

REFERENCES

[KC20b] Shane Keniley and Davide Curreli. Density estimation techniques for multiscale coupling of kinetic models of the plasma material interface. *Journal of Computational
REFERENCES

Krath:2021:EPO

Koshkarov:2022:FNI

Kumari:2023:EFD

Kruk:2021:FVM

REFERENCES

[Kumar:2021:TSM] Ronit Kumar, Lidong Cheng, Yunong Xiong, Bin Xie, Rémi Abgrall, and Feng Xiao. THINC scaling method that

Kumari:2020:DNS

Kuhn:2021:AML

Kumari:2021:GNA

Kozak:2020:WIL

REFERENCES

Koch:2020:NCW

Kim:2021:EHR

Kivva:2021:FCT

Kulka:2022:TAC

Kim:2024:SFP

REFERENCES

[Kim+24]

[Kou+22]

[Kaltenbach+20]

[Kuzmin+20]

[Kuya+21]
Yuichi Kuya and Soshi Kawai. High-order accurate kinetic-energy and entropy preserving (KEEP) schemes on curvilinear grids. *Journal of Computational Physics*, 442(??):Article 110482, October 1, 2021. CODEN JCTPAH. ISSN
REFERENCES

REFERENCES

Kim:2022:MCM

Kim:2020:DUL

REFERENCES

REFERENCES

King:2020:HOD

Kang:2022:FIS

Kumar:2020:FUN

Khanwale:2020:STP

REFERENCES

REFERENCES

Kashefi:2022:PIP

Kusch:2020:FSG

Kou:2023:JPS

Kim:2023:SCA

Keim:2023:RMN

REFERENCES

REFERENCES

Klibanov:2022:NVS

Kalinov:2022:DSM

Kuya:2023:KEE

Kantarakias:2023:SAC

Kantarakias:2023:SEG
REFERENCES

Kajzer:2024:PNC

Kuhl:2022:DAM

Kochi:2023:SCU

Kelly:2023:PBO

Koliesnikova:2021:UFC
Daria Koliesnikova, Isabelle Ramière, and Frédéric Lebon. A unified framework for the computational comparison of adaptive mesh refinement strategies for all-quadrilateral and
REFERENCES

Keaveny:2011:ASK

Kay:2021:PNM

Klein:2021:MDS

Kormann:2021:ECT

REFERENCES

REFERENCES

[KSS21] Mokbel Karam, James C. Sutherland, and Tony Saad. Low-cost Runge–Kutta integrators for incompressible flow simu-

[KT24] Kishan Ramesh Kumar and Matei Tene. Algebraic multiscale grid coarsening using unsupervised machine learn-

REFERENCES

REFERENCES

Kusch:2020:IAS

Kusch:2022:LRP

Kolahdouz:2023:SIL

Koch:2022:NMD

Kawai:2022:GRM

Shigetaka Kawai, Wataru Yamazaki, and Akira Oyama. Gegenbauer reconstruction method with edge detection for

Lucor:2022:SCS

Li:2022:IPG

Li:2021:ESP

Law:2024:CCE

Labanda:2023:EPM

[LBC23] Nicolás A. Labanda, Pouria Behnoudfar, and Victor M. Calo. An explicit predictor/multicorrector time marching with au-
REFERENCES

REFERENCES

Lu:2023:SPI

Liu:2023:CIF

Luo:2023:ODC

Liu:2023:EEC

Li:2022:DIM

[LCCM22] Qian Li, Wei Hua Cai, Ching-Yao Chen, and Eckart Meiburg. A diffuse interface model for low solubility binary flows in
Lyu:2023:SEP

Liu:2023:AAD

Larios-Cardenas:2022:ECN

Larios-Cardenas:2022:HIS

Larios-Cardenas:2023:MLA

Tian Long, Jinsheng Cai, and Shucheng Pan. A fully conservative sharp-interface method for compressible mul-

Li:2020:WER

Lespagnol:2020:HOA

Liu:2020:SOL

Luders:2022:PCA

Liu:2023:EFF

REFERENCES

Lee:2021:EBQ

Lopez:2021:NIE

Lemoine:2020:AGM

Lepage:2021:AMI

Levy:2022:POT

REFERENCES

Spina:2024:HDG

Liang:2024:NTN

Li:2021:LDS

Long:2022:VVI

Laurent:2021:DCF

REFERENCES

Arum Lee, Weihua Geng, and Shan Zhao. Regularization methods for the Poisson–Boltzmann equation: Com-

REFERENCES

References

References

[LJZK21] Zhiwei Lin, Shaoen Jiang, Lu Zhang, and Longyu Kuang. An analysis of three formulations of the tensor artificial viscosity in two-dimensional Cartesian geometry. *Journal of Computational Physics*, 432(??):Article 110154, May 1,
REFERENCES

Hai-Long Li, Hao-Ran Liu, and Hang Ding. A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis. *Journal of Computational Physics*, 420(??):Article 109709, November 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Lu:2022:ARL

Leute:2022:ERA

Li:2023:CPM

Lallemand:2021:LBM

Li:2022:RDG

[LLL22] Lingquan Li, Xiaodong Liu, and Hong Luo. A reconstructed discontinuous Galerkin method based on varia-

Li:2023:SMT

Lee:2021:GUO

Li:2020:VTN

Lundquist:2022:MDS

Liu:2024:FOC

Li:2022:VCF

Li:2023:OSH

Luo:2024:CSH

Li:2021:CEH

REFERENCES

REFERENCES

Lipnikov:2020:CHO

Liu:2020:PFE

Lundgren:2020:EFD

Lamaakel:2021:GIS

Lee:2021:OPS

REFERENCES

REFERENCES

REFERENCES

Lui:2021:SCS

Lauren:2022:ESW

Leitenmaier:2023:FEB

Lundgren:2024:HOR

Liu:2021:EPF

Linders:2020:PRK

Lin:2020:ESS

Li:2023:IBP

Li:2020:FVW

Li:2022:PFC

Lozano:2023:SMD

Liu:2023:MCA

Lischke:2020:WFL

Li:2024:GPC

Limare:2023:HLS

REFERENCES

Landstorfer:2021:MGP

Luo:2021:IWZ

Liu:2022:BFS

Li:2022:SCSb

Li:2022:SCSa

REFERENCES

Lindeberg:2021:HOF

Lai:2022:SAI

Lipnikov:2023:CHO

Lam:2020:ESA

Li:2020:NSO

Yingzhe Li, Yajuan Sun, and Nicolas Crouseilles. Numerical simulations of one laser-plasma model based on
REFERENCES

Liu:2020:NSS

[LSC+20c] [LsCxL+20] [LSL20] [LSLH20]

Liu:2020:MFM

Laguzet:2022:CBP

Li:2022:PIK

Lu:2023:DFF

Lu:2024:DDM

Liu:2023:UFV

Jun Liu, Tobias Tolle, Dieter Bothe, and Tomislav Marić. An unstructured finite-volume level set/front tracking method for

Liu:2022:QSA

Li:2021:SFI

Lecointre:2022:HON

Liu:2020:LSP

Lu:2020:TWC

REFERENCES

Lauber:2022:IBS

Li:2023:SOA

Lundquist:2024:EGS

Li:2020:WLD

Lahouel:2024:LNO

REFERENCES

REFERENCES

Li:2023:SDB

Lin:2020:CSR

Liu:2020:HBL

Li:2022:SMH

Li:2022:ANA

REFERENCES

541

Liu:2022:IHO

Li:2020:PMR

Li:2022:NFI

Li:2021:SOL

REFERENCES

REFERENCES

Lan:2023:EIV

Li:2022:EHC

Li:2022:HTA

Liu:2020:UGK

Li:2022:ALEa

Lei Li, Jiaqi Zhang, Zelai Xu, Y.-N. Young, James J. Feng, and Pengtao Yue. An arbitrary Lagrangian-Eulerian method for

REFERENCES

REFERENCES

hp continuous Galerkin schemes and their stabilisation via DG-mimicking spectral vanishing viscosity for high

[Mar20] Fabien Marche. Combined hybridizable discontinuous Galerkin (HDG) and Runge–Kutta discontinuous Galerkin (RK-

REFERENCES

Mai:2023:CEM

Mehmani:2021:MFF

Medvedev:2022:FSO

Macias-Diaz:2020:PCM

Moguen:2020:DDA

Nathaniel H. Mathews, Natasha Flyer, and Sarah E. Gibson. Solving 3D magnetohydrostatics with RBF-FD. Applications
REFERENCES

[MHY20] Hojun Moon, Seungpyo Hong, and Donghyun You. Application of the parallel diagonal dominant algorithm for the

Mirjalili:2020:CDI

Misaka:2023:STA

Mao:2023:IGP

Mao:2021:VIP

Mantravadi:2023:HDE

[**MJS23**] Bhargav Mantravadi, Pankaj Jagad, and Ravi Samtaney. A hybrid discrete exterior calculus and finite difference method

Meng:2020:CNN

Mehlmann:2021:SID

Maric:2020:USG

Margenberg:2024:ODB

Matsunaga:2020:MSM

MKHI20 Takuya Matsunaga, Seiichi Koshizuka, Tomoyuki Hosaka, and Eiji Ishii. Moving surface mesh-incorporated particle

Mirjalili:2023:AEB

Milcent:2020:MFA

Mehmani:2023:MPM

Milcent:2024:AAM

Moldovan:2021:MEK

REFERENCES

Miyoshi:2020:SNR

Menon:2021:QAK

Minoshima:2021:LDH

Mirjalili:2021:CEC

Mirjalili:2022:CCE

Mir:2023:DRP

Mirjalili:2024:CSO

Mukundan:2022:HMF

Magome:2024:HCV

Martin:2024:OBD
Hugo A. Martin, Anne Mangeney, Aline Lefebvre-Lepot, Bertrand Maury, and Yvon Maday. An optimization-based discrete element model for dry granular flows: Application to granular collapse on erodible beds. *Journal of

Ilario Mazzieri, Markus Muhr, Marco Stupazzini, and Barbara Wohlmuth. Elasto-acoustic modeling and simulation...

Mantri:2021:WBD

MacLean:2022:AMG

Mowlavi:2023:OCP

Maurer:2020:GGG

Marx:2022:REF

Laura Marx, Justyna A. Niestrawska, Matthias A. F. Gsell, Federica Caforio, Gernot Plank, and Christoph M. Augustin. Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. *Journal of Computational Physics*, 463(??):??, August 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

Yogiraj Mantri, Philipp Öffner, and Mario Ricchiuto. Fully well-balanced entropy controlled discontinuous Galerkin spectral element method for shallow water flows: Global flux...
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Maes:2020:USF

Mullner:2020:NSM

Mabuza:2020:LPN

Metivet:2021:DRS

Matsunaga:2022:AFS

Takuya Matsunaga, Axel Södersten, Seiichi Koshizuka, Tomoyuki Hosaka, and Eiji Ishii. Axisymmetric free-surface flow simulation using the moving surface mesh particle

REFERENCES

REFERENCES

Maddu:2024:LFA

Ma:2020:IBL

Mu:2023:FEM

Mehmani:2022:PNM

Ma:2024:HLF

REFERENCES

[Nguyen:2022:HOS] Tuan Dung Nguyen, Christophe Besse, and François Rogier. High-order Scharfetter–Gummel-based schemes and

[Negrini:2021:SIT]

[Nakao:2022:ELR]

[Napier:2020:UMA]

[Nasir:2023:DRL]

[Nath:2020:LDR]

Kamaljyoti Nath, Anjan Dutta, and Budhaditya Hazra. Long duration response evaluation of linear structural system with random system properties using time depen-

REFERENCES

[NG22] Nirmal J. Nair and Andres Goza. A strongly coupled immersed boundary method for fluid-structure interaction that mimics the efficiency of stationary body methods. *Journal of Computational Physics*, 454(??):Article 110897, April 1,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nennig:2020:HOC

Novello:2024:AHR

Nguwi:2024:DBS

Nguyen:2023:POD

Nan:2022:HOM

REFERENCES

[NTSM20] Matthew R. New-Tolley, Mikhail N. Sheinder, and Richard B. Miles. Hydrodynamic confirmation of quasi-similarity the-

REFERENCES

REFERENCES

REFERENCES

Oblapenko:2022:HDS

Ovadia:2021:BCF

Ong:2020:IBP

Önder:2023:DLI

Orsi:2023:FIS

Oruc:2021:EMM

Osinsky:2020:LRM

Osinsky:2024:LRM

Ong:2022:IBP

Ouaknin:2021:PAS

Oliva:2022:TFW

Ohmichi:2021:MFT

Ouyang:2022:HSP

Petrov:2020:PAM

Pakseresht:2021:DCP

Pedram Pakseresht and Sourabh V. Apte. A disturbance corrected point-particle approach for two-way coupled particle-laden flows on arbitrary shaped grids. *Journal of Computa-
REFERENCES

Peng:2021:TCP

Paula:2023:RHR

Pei:2023:FMI

Petrella:2023:DEM

REFERENCES

Poette:2022:EUC

Peng:2020:APP

Prouvost:2024:MBA

Pertant:2021:FVM

Piccioli:2022:MBF

Perez:2024:NFE

Parish:2021:WLS

Perot:2021:MMP

Pudykiewicz:2022:CEE
REFERENCES

Pan:2023:DFM

Pretti:2023:CLC

Parada:2021:DAF

Parada:2022:VBF

Potter:2023:NGA

Samuel F. Potter, Maria K. Cameron, and Ramani Duraïswami. Numerical geometric acoustics: an eikonal-based

Pan:2021:SOU

Peng:2020:SEA

Pezzano:2021:NBD

Pagliantini:2023:PBA

Pang:2020:NNP

Pakseresht:2020:CSW

Prugger:2023:DLR

Perrin:2023:ESF

Puelz:2020:SIM

Charles Puelz and Boyce E. Griffith. A sharp interface method for an immersed viscoelastic solid. *Journal of Computational Physics*, 409(??):Article 109217, May 15, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

[PGP+23] Silvano Pitassi, Riccardo Ghiloni, Igor Petretti, Francesco Trevisan, and Ruben Specogna. The curved mimetic fi-

Partin:2023:MDF

Pitassi:2022:IDC

Pitassi:2021:RDG

Pazner:2021:SNA

Peschka:2022:MHH

Pamela:2022:GFG

Pan:2021:ESF

Park:2024:RRI

Peng:2023:NGM

REFERENCES

Jun Peng, Shengping Liu, Shiyao Li, Ke Zhang, and Yiqing Shen. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation. *Journal of Computational Physics*, 425(??):Article 109902, January 15,
REFERENCES

REFERENCES

[PM23] Zhuogang Peng and Ryan G. McClarren. A sweep-based low-rank method for the discrete ordinate transport equation. Journal of Computational Physics, 473(??):??, Jan-

REFERENCES

Pan:2022:HOA

Pinto:2022:SIE

Pan:2024:FUS

Potluri:2023:HOD

Putz:2022:GAG
REFERENCES

Eric J. Parish and Francesco Rizzi. On the impact of dimensionally-consistent and physics-based inner products for
REFERENCES

Pahlani:2023:OMD

Padrino:2020:CAS

Perot:2020:FSM

Palitta:2023:SBP

Pironneau:2023:RCR

Petropavlovsky:2022:TDS

Petropavlovsky:2024:CUE

Picklo:2024:DPC

Pukhov:2020:XDM

Poette:2020:NIM
Pereira:2022:PAH

Prescott:2024:EML

Pan:2024:SOS

Panuelos:2020:LSD

REFERENCES

[PZX20] Liang Pan, Fengxiang Zhao, and Kun Xu. High-order ALE gas-kinetic scheme with WENO reconstruction. Journal of

Shanlin Qin, Rongliang Chen, Bokai Wu, and Xiao-Chuan Cai. A highly parallel fully implicit domain decomposition method for the simulation of the hemodynamics of a patient-specific artery at the full-body scale. *Journal of*
REFERENCES

Qu:2022:LTD

Qin:2020:TPM

Qadeer:2021:SFE

Qi:2023:DDS

Qiu:2020:DDM

[QHLL20] Changxin Qiu, Xiaoming He, Jian Li, and Yanping Lin. A domain decomposition method for the time-dependent Navier–

Qin:2022:PFM

Qian:2022:FDR

Qing:2023:CCD

Qian:2022:IUS

[QSZB20] Feng Qu, Di Sun, Boxiao Zhou, and Junqiang Bai. Self-similar structures based genuinely two-dimensional Riemann solvers in curvilinear coordinates. *Journal of Computational Physics*, 420(??):Article 109668, November 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
Qian:2023:CAS

Qian:2023:ECS

Qian:2023:SPN

Qian:2023:PIN

Qian:2024:NVC

Rondeau:2021:TPM

Rumpler:2023:MMW

Fabien Robaux and Michel Benoit. Development and validation of a numerical wave tank based on the Harmonic Polynomial Cell and Immersed Boundary methods to model nonlinear wave-structure interaction. *Journal of Computational Physics*, 446(?):Article 110560, December 1, 2021. COD-
Rullan:2022:HGS

Roy:2024:NAK

Rossat:2022:BIU

Ruzayqat:2023:UEU

Rojas:2021:RPE

[Rec23] Jonah A. Reeger. Approximate integrals over bounded volumes with smooth boundaries. *Journal of Computa-
REFERENCES

Hoby Rakotoarivelô, Rao Garimella, Angela Herring, Mikhail Shashkov, Daniel Shevitz, Evgeny Kikinzon, Jan Velechovsky, Konstantin Lipnikov, and Navamita Ray. Conservative remapping of material-dependent fields between

REFERENCES

Raynaud:2022:MEP

Reuber:2020:ABI

Reissmann:2021:AGE

Rodriguez:2022:PTR

Rixner:2021:PGM

Maximilian Rixner and Phaedon-Stelios Koutsourelakis. A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing physical constraints through virtual observables. *Journal of Computa-
REFERENCES

Raj:2023:GAS

Reutzsch:2020:CMD

Rozema:2020:NSL

Ricardo:2024:CSD

REFERENCES

Franciane F. Rocha, Fabricio S. Sousa, Roberto F. Ausas, Gustavo C. Buscaglia, and Felipe Pereira. Multiscale mixed meth-

REFERENCES

Sacchetti:2022:SSM

Stanziola:2021:HES

Spencer:2022:ANI

Shi:2020:PNM

REFERENCES

Stiernstrom:2023:BOS

Sanderse:2020:NLS

Shen:2022:CHO

Saravia:2021:FVF

Sarna:2021:PSL

REFERENCES

REFERENCES

[SBVW20] Lampros Svolos, Luc Berger-Vergiat, and Haim Waisman. Updating strategy of a domain decomposition preconditioner for parallel solution of dynamic fracture problems. Journal of Computational Physics, 422(??):Article 109746, December 1,
REFERENCES

Scapin:2020:VFM

Shukla:2020:WAD

Stanier:2020:CPH

Chen:2022:ADP

Schroeder:2022:LDF

Craig Schroeder, Ritoban Roy Chowdhury, and Tamar Shinar. Local divergence-free polynomial interpolation on MAC

Stoyanovskaya:2021:FMS

Semenova:2021:CSS

Shetabivash:2020:MLS

Steinstraesser:2024:PTI

Stephany:2024:WPL

Sangam:2021:DNA

Setzwein:2021:IHO

Setzwein:2022:AND

Sellountos:2022:FMB

Semenikhin:2021:IAN

Serezhkin:2023:HHR

Skene:2021:PTA

Sevilla:2021:IHM

Strahan:2023:PRE
John Strahan, Justin Finkel, Aaron R. Dinner, and Jonathan Weare. Predicting rare events using neural networks and short-trajectory data. *Journal of Computational Physics*, 488(??):??, September 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print),
Solan-Fustero:2022:PBR

Solan-Fustero:2021:AAD

Solovsky:2020:DEI

Sahut:2021:NSB

Schneider:2021:MAR

[SGB+21b] Kleiton A. Schneider, José M. Gallardo, Dinshaw S. Bal-
sara, Boniface Nkonga, and Carlos Parés. Multidimensional
approximate Riemann solvers for hyperbolic nonconservative
systems. Applications to shallow water systems. Journal of
Computational Physics, 444(??):Article 110547, November 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-
science/article/pii/S0021999121004423.

Strelow:2023:PIN

[SGLP23] Erik Laurin Strelow, Alf Gerisch, Jens Lang, and Marc E.
Pfetsch. Physics informed neural networks: a case study for
gas transport problems. Journal of Computational Physics,
481(??):??, May 15, 2023. CODEN JCTPAH. ISSN 0021-

Saunders:2021:NAE

[SGM21] William Robert Saunders, James Grant, and Eike Hermann
Müller. A new algorithm for electrostatic interactions in Monte
Carlo simulations of charged particles. Journal of Computa-
tional Physics, 430(??):Article 110099, April 1, 2021. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999120308731.

Saunders:2020:FES

Müller, and Ian Thompson. Fast electrostatic solvers for
kinetic Monte Carlo simulations. Journal of Computa-
tional Physics, 410(??):Article 109379, June 1, 2020. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999120301534.

Selcuk:2021:FDM

[SGPW21] Can Selçuk, Arthur R. Ghigo, Stéphane Popinet, and An-
thony Wachs. A fictitious domain method with distributed
Lagrange multipliers on adaptive quad/octrees for the di-
rect numerical simulation of particle-laden flows. Journal of
Computational Physics, 430(??):Article 109954, April 1,

Sadr:2023:VRP

ShangGuan:2021:GPS

Shashkov:2023:AMB

Shi:2023:MPP

Siegel:2023:GTA

REFERENCES

Sugaya:2022:TFS

Simonnet:2023:CNE

Singh:2021:AEA

Sierra:2021:ABS

Shukla:2021:PPI

Khemraj Shukla, Ameya D. Jagtap, and George Em Karniadakis. Parallel physics-informed neural networks via do-

Sharma:2023:FDM

Shashkov:2023:MBI

Singh:2022:TDM

Sandhu:2021:NSB

REFERENCES

Salloum:2022:AEC

Schneider:2022:FOC

Shin:2022:ECS

Shin:2023:ECS

Shang:2023:FTM

P.-N. Sun, D. Le Touzé, G. Oger, and A.-M. Zhang. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 2: Extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations. *Jour-
REFERENCES

Sun:2022:TVB
Zhiyuan Sun, Jun Liu, Jianzhen Qian, and Pei Wang. On
the tensor viscosity based on Gauss quadrature: a compar-
ison of robustness, efficiency, and connection with hourglass
control. Journal of Computational Physics, 466(??):??, Oc-
tober 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print),
com/science/article/pii/S0021999122004545.

Schlottke-Lakemper:2021:PHD
Michael Schlottke-Lakemper, Andrew R. Winters, Hendrik Ran-
ocha, and Gregor J. Gassner. A purely hyperbolic discon-
tinuous Galerkin approach for self-gravitating gas dynamics.
Journal of Computational Physics, 442(??):Article 110467, Oc-
tober 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print),
com/science/article/pii/S0021999121003624.

Sakakibara:2021:FDC
Koya Sakakibara and Yuto Miyatake. A fully discrete
curve-shortening polygonal evolution law for moving bound-
ary problems. Journal of Computational Physics, 424
(??):Article 109857, January 1, 2021. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999120306318.

Subramanian:2021:MEP
Abhinav Subramanian and Sankaran Mahadevan. Model er-
ror propagation from experimental to prediction configuration.
Journal of Computational Physics, 443(??):Article 110529, Oc-
tober 15, 2021. CODEN JCTPAH. ISSN 0021-9991 (print),
com/science/article/pii/S0021999121004241.

Subramanian:2022:NIE
Abhinav Subramanian and Sankaran Mahadevan. Non-
intrusive estimation of model error and discrepancy in dynam-

REFERENCES

REFERENCES

Sun:2023:NSD

St-Onge:2022:NAR

Simonis:2022:TLE

Sahu:2020:ALE

Santelli:2021:FDS

References

Schwander:2021:COS

Shivanand:2024:SMS

Shahmardi:2021:FEH

Shahane:2021:HOA

Shi:2022:CPN

Yanyan Shi and Yajuan Sun. Contact-PIC numerical methods for simulating Vlasov–Poisson–Fokker–Planck problem. *Jour-

Soler:2020:NCF

Scillitoe:2021:UQD

Schlachter:2020:WEN

Skaras:2021:STS

Sengupta:2020:GSA

REFERENCES

Shi:2020:APU

Sundaram:2022:NOH

Sokolov:2023:HRF

Shkolnikov:2024:DLS
REFERENCES

Shou:2021:MAE

Stein:2022:SAS

Schaefer:2017:SGA

Schaefer:2022:CSG

Sadr:2020:GPR

REFERENCES

REFERENCES

Spiteri:2023:FSR

Shankar:2021:EHO

Schneider:2020:CSG

Sadr:2021:CKC

Shen:2022:RCC
Zhihao Shen, Gang Wang, Duruo Huang, and Feng Jin. A resolved CFD–DEM coupling model for modeling two-phase

[SY21] Hailong Sheng and Chao Yang. PFNN: a penalty-free neural network method for solving a class of second-order boundary-

REFERENCES

REFERENCES

Tissot:2020:OCS

Tang:2022:FSS

Trask:2020:CCS

Tartakovsky:2021:PIM

REFERENCES

Tschisgale:2020:IBM

Tang:2022:ECM

Takagi:2022:NHO

Tkachenko:2023:ELA

Tsiolakis:2022:PST

[Hart:2022:PPG]

[Troescher:2023:FIH]

[Theillard:2021:VPR]

[Trask:2022:EEP]

[THKT21] Søren Taverniers, Eric J. Hall, Markos A. Katsoulakis, and Daniel M. Tartakovsky. Mutual information for explainable...

Tamaki:2022:CAE

Tiwari:2022:MAL

Tang:2020:RAT

Toosi:2021:GIE

Touboul:2020:TDS

REFERENCES

REFERENCES

[Tu2022:LSS] Yihui Tu, Qiyuan Pung, Haizhao Yang, and Zhenli Xu. Linear-scaling selected inversion based on hierarchical interpolative factorization for self Green’s function for modified

[Tso23] Panagiotis Tsoutsanis. Stencil selection algorithms for WENO schemes on unstructured meshes. *Journal of Com-
REFERENCES

Søren Taverniers and Daniel M. Tartakovsky. Estimation of distributions via multilevel Monte Carlo with stratified sampling.

Takahashi:2022:NEA

Torres:2024:CBD

Turnquist:2024:AMM

Terekhov:2022:FVM

Tominec:2022:URB

Igor Tominec, Pierre Frédéric Villard, Elisabeth Larsson, Victor Bayona, and Nicola Cacciani. An unfitted radial basis function generated finite difference method applied to thoracic diaphragm simulations. *Journal of Com-

Tang:2023:PDA

Tu:2022:MMM

Tong:2021:SNN

Treister:2024:HSL

Till:2023:ITM

REFERENCES

Tong:2023:CRB

Tong:2024:CBP

Teng:2020:CSC

Tang:2021:SIF

Tartakovsky:2024:PIM

REFERENCES

Uilhoorn:2020:NIG

Umeda:2023:NIR

Unfer:2021:TOA

Ubeda:2020:AGR

Upperman:2022:PPE

REFERENCES

Maria Vasilyeva. Efficient decoupling schemes for multiscale multicontinuum problems in fractured porous media. *Journal of Computational Physics*, 487(??):??, August 15,
REFERENCES

vanGestel:2023:ADG

vanGestel:2024:HSL

Vauchel:2023:MEN

Vaughn:2021:TAG

vWout:2022:FRP

vanHoof:2022:FOA

Vorozhtsov:2022:HOS

Vorozhtsov:2024:EMF

Velechovsky:2022:MMS

vanLeer:2024:HCP

Vasilyeva:2020:LMP

vanLeer:2021:TUU

Vermeire:2020:OEP

Vermaak:2022:TEE

REFERENCES

Veilleux:2022:SSD

Vorobev:2020:PFM

Vermaak:2021:MPT

Vreman:2017:SOG

Vreman:2020:IBO

REFERENCES

[VSB+21] Andrea Villa, Roger Schuch, Luca Barbieri, Roberto Malgesini, and Giacomo Buccella. An uncoupled implementa-
REFERENCES

Villa:2022:SSP

Vahab:2021:FSI

Verma:2023:COD

Valle:2020:EPL

VanCappellen:2021:HOH
Maxim Van Cappellen, Maria Rosaria Vetrano, and Delphine Laboureur. Higher order hyperbolic quadrature method of

Veiga:2021:AHO

Wenzel:2023:CIR

Wong:2021:PPH

Wang:2022:CLA

Wang:2020:ACR

Wimmer:2020:ECU

Wei:2024:HIT

Wang:2020:DMM

Wang:2023:SME

REFERENCES

[Wang:2023:MGA]

[Wang:2020:TEB]

[Wang:2020:TEB]

[Wang:2022:SIM]

[Wentz:2023:GGM]

REFERENCES

[Wang:2022:CCL]

[WGB22]

[WGH23]

REFERENCES

REFERENCES

REFERENCES

Wei:2023:IEM

Wada:2024:NSI

Werdelmann:2021:APB

Waruszewski:2022:ESD

Wang:2020:EDL

Yating Wang and Guang Lin. Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous me-
REFERENCES

Wu:2022:IIN

Wang:2024:MSN

Wang:2024:DRR

Wang:2021:HOE

Wang:2023:EMC
Xin Wang, Min Luo, Harshinie Karunarathna, and Dominic E. Reeve. An enhanced momentum conservation treatment for FDM simulation of two-phase flows with large density ratio. *Journal of Computational Physics*, 478(??):??, April 1,

Wang:2020:DAG

Wang:2021:IEM

Wang:2020:MGK

Wang:2021:DLF

Wang:2023:LTI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wissocq:2023:HLB

Wang:2023:IDS

Wells:2023:NIF

Wan:2020:CRO

Wang:2020:PDF

REFERENCES

[Wang:2022:DLF]

[Wang:2020:TCE]

[Wang:2024:EGB]

[Wu:2021:VHO]

[Wu:2022:FAQ]

Meng Wu, Xuhui Wang, Boniface Nkonga, Bernard Mourrain, Gang Xu, Qian Ni, and Yuan Liu. Flux-aligned
quad mesh generation in magnetohydrodynamic simulation.

[Wang:2021:FIM]

[Wu:2020:SIC]

[Wang:2024:TSC]

[Wu:2024:VLT]

REFERENCES

REFERENCES

REFERENCES

[WZTZ21] Zhenming Wang, Jun Zhu, Linlin Tian, and Ning Zhao. A low dissipation finite difference nested multi-resolution...
REFERENCES

REFERENCES

Xiao:2023:RSP

Xiao:2021:LTL

Xiong:2022:SMO

Xie:2020:SOS

Xu:2023:NPP

XIE:2024:STH

XING:2022:HMA

XU:2024:MCM

XU:2021:LCR

XU:2023:HOP

Jiaqi Xu, Hengshan Hu, Qing Huo Liu, and Bo Han. A high-order perfectly matched layer scheme for second-order spectral-element time-domain elastic wave modelling. *Journal of Computational Physics*, 491(??):??, October 15, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

[XHZ22] Jiacheng Xu, Dan Hu, and Han Zhou. A phase-field method for elastic mechanics with large deformation. *Journal of
REFERENCES

REFERENCES

[XLL24] Zhihang Xu, Qifeng Liao, and Jinglai Li. Domain-decomposed Bayesian inversion based on local Karhunen–Loève expansions. *Journal of Computational Physics*, 504(??):??, May 1, 2024. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-
References

Xiao:2021:EES

Xie:2022:CCI

Xu:2020:NEF

Xiao:2020:VSA

[Xu:2022:HOC]

[Xu:2022:TOM]

[Xu:2023:CPP]

[Xue:2021:NFE]

Xiao:2023:PCB

Xu:2020:LSI

Xiong:2022:HOA

Xu:2024:PFS

Xie:2020:FOK

Yaning Xie and Wenjun Ying. A fourth-order kernel-free boundary integral method for implicitly defined surfaces in three space dimensions. *Journal of Computational
REFERENCES

[XZNZ23] Zhong-Han Xue, Shuo Zhao, Ming-Jiu Ni, and Jie Zhang. Three-dimensional sharp and conservative VOF method for

Yan:2021:GOR

Yang:2021:EES

Yang:2021:NFD

Yanaoka:2023:ICN

Ye:2020:LCB

Yu:2022:DFT

Yeung:2024:GPR

Yeung:2022:LRD

Yan:2020:HTM

Yan:2023:HET

Chao Yan and James G. M. c Donald. Hyperbolic equivalent k-ϵ and k-ω turbulence models for moment-closures. *Journal
REFERENCES

Yang:2021:FFE

Yan:2020:SCP

Yang:2020:RDE

Yu:2022:MRL

Ying:2021:NBP

REFERENCES

Jian Yu and Jan S. Hesthaven. Model order reduction for compressible flows solved using the discontinuous Galerkin meth-

Yu:2023:IET

Yan:2022:GBD

Yin:2023:APN

Yamashita:2023:SAS

Yin:2021:FOC

Jia Yin. A fourth-order compact time-splitting method for the Dirac equation with time-dependent potentials. *Journal of Computational Physics*, 430(?):Article 110109, April
Ying:2021:EMG

[YJK21]

Yoo:2024:CSW

[YJK24]

Ye:2023:IDP

[YJP23]
REFERENCES

774

Yang:2022:CPH

Yeo:2020:UME

You:2020:DRM

Yang:2022:NAS

Ye:2020:MRI

[YKdHC20] Ruichao Ye, Kundan Kumar, Maarten V. de Hoop, and Michel Campillo. A multi-rate iterative coupling scheme

Younes:2023:EDG

Ye:2024:DDR

Yang:2021:SPH

You:2021:CFT

REFERENCES

REFERENCES

Yao:2024:FST

Yu:2023:CMF

Yang:2020:UMF

Yin:2021:CFD

Yang:2021:RSI

REFERENCES

Yushu:2020:IBM

Yang:2021:HAM

Yang:2021:BPB

Yin:2021:CMM

Yuan:2022:PAP

Yousefi:2020:NWB

YNT20

Yee:2020:QPF

YOH+20

Yokoi:2024:FVC

Yok24

Yu:2022:IBM

YP22
REFERENCES

Yang:2022:CMF

Yamamoto:2022:MCS

Yang:2023:ADN

Yang:2021:HOT

Yin:2023:CMM

Yazdanian:2020:FEB

Yang:2022:LFD

Yang:2023:MDI

Yamaleev:2022:PPE

Yuan:2021:ESG

REFERENCES

Yang:2022:ECD

Yu:2022:PFB

Yousefzadeh:2023:LSI

You:2022:NKN

Yang:2023:ELB

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Zhang:2021:IMF

Zoller:2023:PCS

Zhang:2024:ITD

Zhou:2020:CMP

Zhao:2020:RTM

Zapata:2021:CLS

Zeifang:2021:DDH

Zhou:2021:AST

Zhou:2024:SAW

REFERENCES

Zhao:2021:IIU

Zingaro:2024:EDF

Zhao:2023:MGM

Zang:2020:WAN

Zhang:2022:FBN
Wenzhong Zhang and Wei Cai. FBSDE based neural network algorithms for high-dimensional quasilinear parabolic PDEs. *Journal of Computational Physics*, 470(??):??, December 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print),
REFERENCES

Zhu:2022:CEL

Zhu:2022:ELS

Zhang:2023:APC

Zhang:2023:RDS

Zhan:2022:WFG

Hongfei Zhan, Zhenning Cai, and Guanhui Hu. The Wigner function of ground state and one-dimensional numerics. Jour-
REFERENCES

Zhao:2021:EBC

Zhan:2023:TDH

Zhao:2024:SOA

Zhang:2020:DDF

Zeng:2022:DNN

REFERENCES

Zinchenko:2021:AFH

Zhou:2020:MLR

Zhang:2021:CDD

Zhang:2023:HOA

REFERENCES

Yaoxin Zhang and Yafei Jia. Multi-point momentum interpolation correction on collocated meshes. *Journal of

Hui Zhang, Xiaoyun Jiang, Fanhai Zeng, and George Em Karniadakis. A stabilized semi-implicit Fourier spectral method for

Zhu:2020:PFM

Zhang:2021:CHO

Zhang:2021:TOS

Zhang:2021:STH

REFERENCES

[ZLG+23] Yadong Zeng, Han Liu, Qiang Gao, Ann Almgren, Amneet Pal Singh Bhalla, and Lian Shen. A consistent adaptive level set framework for incompressible two-phase flows with high density ratios and high Reynolds numbers. *Journal of Computational Physics*, 478(??):??, April 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Chao Zhang, Qibing Li, Z. J. Wang, Jiequan Li, and Song Fu. A two-stage fourth-order gas-kinetic CPR method for the Navier–Stokes equations on triangular meshes. *Journal of Computational Physics*, 451(??):Article 110830, February

Yongchao Zhang, Liquan Mei, and Rui Li. A hybrid high-order method for a coupled Stokes–Darcy problem on general meshes. *Journal of Computational Physics*, 403(??):Article 109064,

[ZMWS22] Chao Zhang, Igor Menshov, Lifeng Wang, and Zhijun Shen. Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. *Journal of Comput-
REFERENCES

Zhang:2023:TWC

Zepeda-Nunez:2021:DDC

Zala:2023:COB

Zolfaghari:2021:HTH

Zuzio:2020:NEM

Zhang:2021:PHC

Zhao:2021:LRL

Zandsalimy:2022:NAM

Zhang:2020:NCM

[ZOWW20] Chenhui Zhang, Jie Ouyang, Cheng Wang, and Steven M. Wise. Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark prob-

REFERENCES

Zhang:2023:ETT

Zhao:2020:HWS

Zhang:2023:CMDa

Zhou:2022:SMF

Zhu:2020:HOR

REFERENCES

Zhou:2021:SHO

Zhang:2020:HEI

Zhao:2020:ESF

Zhao:2021:FEM

REFERENCES

REFERENCES

REFERENCES

Zulian:2022:CAN

Zhang:2023:IMS

Zhang:2022:KFR

Zahr:2020:IST

Zheng:2021:HOC

Zhang:2022:PFM

Zhang:2023:FAP

Zheng:2021:NIM

Zhang:2024:SAT

Zhang:2023:CCM

REFERENCES

REFERENCES

Zucatti:2021:CPB

Zhang:2023:CMDb

Zhang:2024:MCE

Zhong:2023:IFO

Zhou:2024:MLO

[ZWR24] Chong-Bo Zhou, Qian Wang, and Yu-Xin Ren. Machine learning optimization of compact finite volume methods on unstruc-
REFERENCES

Zhao:2024:VFP

Zhai:2021:HOO

Zhang:2023:MMT

Zhang:2022:CFE

REFERENCES

Zaleski:2020:SIN

Zhang:2022:HOI

Zeng:2022:PCC

Zhuang:2022:BEB

ZXLH23

Xin-Lei Zhang, Heng Xiao, Xiaodong Luo, and Guowei He. Combining direct and indirect sparse data for learning generalizable turbulence models. *Journal of Computational Physics*, 489(?):??, September 15, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

[ZY20b] Jun Zhang and Xiaofeng Yang. Decoupled, non-iterative, and unconditionally energy stable large time stepping method

Zhou:2024:CFB

Zou:2020:PPL

Zhang:2023:ICS

Zhang:2023:PIC

Zhou:2023:KFB

Zhang:2024:MFT

Zhang:2023:ELA

Zhang:2020:WGF

Zhang:2023:SDC

Qiang Zheng, Lingzao Zeng, and George Em Karniadakis. Physics-informed semantic inpainting: Application to geo-
REFERENCES

Zuo:2024:PPO

Zhan:2020:URS

Zhao:2022:BEM

Zhang:2024:EDE

Zhao:2023:ESM

Zhang:2024:EUE

Zhao:2024:CES

Zhu:2020:RER

Zheng:2020:MCM

[ZZZG23] Zhi-Yong Zhang, Hui Zhang, Li-Sheng Zhang, and Lei-Lei Guo. Enforcing continuous symmetries in physics-informed neural network for solving forward and inverse