A Complete Bibliography of Publications in

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 September 2023
Version 1.40

Title word cross-reference

[PHHJ22]. J [HLB20]. K
[CPX21, Ian20, ZLW23, CPGD20, GLSZ22, SEG22, YcD23]. k_{eff} [PB22]. L^2
[YWCI22]. l_1 [DD22a]. L_p [MN22]. M [HLA21]. M_1 [BTGA22]. R^3
[YLK20]. μ [CCE$^{+22}$, YY$^{+23}$]. $\mu(I)$ [BFNK$^{+21}$, LY20a]. N
[HT21b, HLA21, RIC$^{+22}$]. $N\log N$ [RMA20]. $O(N)$ [RE20]. ω [YcD23]. p
[ARTB20, LWR20, NMR$^{+22}$, WGY20, XSC21]. P_N [XJS21]. Φ
[RC20b, HLB20]. Q [SVW21, XG22, ZLW23]. S [PB$^{J+22}$]. S_N
[YOH$^{+20}$, SHM23b]. Σ [NKA$^{+20}$]. t [KUO23]. Υ [NKA$^{+20}$].

-adaptive [NMR$^{+22}$, WGY20, XSC21]. -adaptivity [ARTB20].

-Algorithm [Ian20]. -body [RIC$^{+22}$]. -component [HLA21]. -continuous
[PHHJ22]. -cross-Umeda:2023:NIR. -CVT [MN22]. -D [WZC21, GDAP20,
ID20, KLZ23, NFL$^{+21a}$, Oru21, PBVC22, UY22, WCZ$^{+20}$, WK21b, YU22].

-dense [Bal21]. -exact [SEG22]. -frame [PXJ$^{+22}$]. -mode
[CCE$^{+22}$]. -model [KUO23]. -nearest-neighbors [GLSZ22]. -phase
[HT21b]. -phase-Huang:2021:CCM. -point [ID20]. -regularization

İzmir [MMSW22].

1 [Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20f, Ano20h,
Ano20i, Ano20j, Ano20k, Ano20l, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e,
Ano21g, Ano21f, Ano21h, Ano21i, Ano21j, Ano21k, Ano21l, Ano22a, Ano22b,
Ano22c, Ano22d, Ano22e, Ano22f, Ano22g, Ano22h, Ano22i, Ano22j, Ano22k,
Ano22l, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23g, Ano23h, Ano23i,
Ano23j, Ano23k, Den23, SLOZ21a, WM20]. 15
[Ano20m, Ano20m, Ano20n, Ano20o, Ano20p, Ano20q, Ano20s, Ano20r, Ano20t,
Ano20u, Ano20v, Ano20w, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q,
Ano21s, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x, Ano22m, Ano22n,
Ano22o, Ano22p, Ano22q, Ano22s, Ano22r, Ano22t, Ano22v, Ano22w, Ano22x,
Ano23i, Ano23m, Ano23n, Ano23q, Ano23p, Ano23r, Ano23s, Ano23t, Ano23u].
[1d [KSHJ20, BGS22a]. 1d-3d [KSHJ20].

2 [Abg20, KSST21, SLOZ22b]. 2020
[Ano20a, Ano20m, Ano20n, Ano20o, Ano20p, Ano20c, Ano20d, Ano20e,
Ano20q, Ano20s, Ano20f, Ano20r, Ano20h, Ano20i, Ano20j, Ano20k, Ano20v, Ano20w, Ano20l]. 2021
[Ano21a, Ano21m, Ano21n, Ano21o, Ano21p, Ano21e, Ano21q, Ano21g, Ano21s, Ano21f, Ano21r, Ano21h, Ano21i, Ano21u, Ano21j, Ano21v, Ano21k, Ano21w, Ano21l, Ano21x]. 2022
[Ano22a, Ano22m, Ano22n, Ano22c, Ano22o, Ano22p, Ano22e, Ano22q, Ano22g, Ano22s, Ano22f, Ano22r, Ano22h, Ano22t, Ano22i, Ano22j, Ano22v, Ano22k, Ano22w, Ano22i, Ano22x]. 2023 [Ano23a, Ano23b,
Ano23b, Ano23m, Ano23c, Ano23a, Ano23d, Ano23q, Ano23c, Ano23p, Ano23g, Ano23r, Ano23h, Ano23s, Ano23i, Ano23j, Ano23t, Ano23k, Ano23u]. 265 [HPA22]. 2P [CDT22a]. 2V [ATCS20].

aerodynamics [ABOS22, GFJ+20]; aeronautics [AF21]; aerospace [AF21]; AFC [CMS+22b]; Affine [DSS20]; age [APR22]; age-structured [APR22]; agent [PRKS23]; agent-based [PRKS23]; Agglomeration [PP22a, KG20]; Agglomeration-based [PP22a]; agglomerative [VGG23]; aggregate [AK21, MRS21]; aggregation [HST22a, KOM+22]; aggregation-fragmentation [KOM+22]; aid [JO22]; aided [NT23]; air [HMMO20, NTSM20]; Alderney [BABD21]; ALE [AR20, CHL20, CPGD20, GPS20, KKS21b, KSBG20, PZX20, VMO21]; Alfven [LMHL21]; algebra [LCL22a]; algebraic [BSCG22, PCB21, dSLdA+22]; Algorithm [DY22b, HNF+21, ZD21, AG21, ASVL23, ALF+22, AE20, Bar22, BG21, BL21a, Bre20, CF21, CCY+20, CJL21, CCN21, CFM22, CC23, CC20, C21a, CNC21, DEW20, DGL+22, DGS20, DW20a, DW20b, EOS23, Ere22, FZS+21, FVM22, FVM23, FSB+20, FZQ22b, GQF23, GAB+22a, GMMS22, GW20, th22, HGH20, HX23, JGM+22, JL21b, KBB+20, KKS21b, KG20, KCW23, Kus20, LGV20, LG20, LH21, LZX+22b, LAT+22, LXZ23, LFT+20, LCC+23b, MSC+20, MNG+22, MCVF22, MSWH22, MYL21, MHY20, MRdB21, MGT+21, ND20, Nic22, NZXM21, OGG20, DAGL23, PM21b, PK20, PG22, PBB20, RW22, SMB21, TCK+22, TS20, Tow20, TWY+22b, Vev21, WLZ21, XMY20, YZZZ22, ZC20, Ian20]; Algorithmic [CHDB23, HHN+21]; Algorithms [CEL+20, Far20, FBCD22, L22, MBK21, PLM+23b, BTK22, BFS23, CM20, DLM22, DC22b, EFS+20, EPV21, EHL+20, HLL23, HXZ23, JLY23, LCG23, LLO21, LLCK20, MD20b, PBN+21, Sab20, SPdS+21, SHJ+23, SC22c, TRC22, Tso23, WK20, WTX+21, WH21, WY20a, YWLL21, YL21b, ZC22a, PDPK20]; aligned [BV20, DH20, FAHA20, WNM+22]; alignment [BB20b, KH20]; alkane [SS23]; all-at-once [ILNZ21]; all-hexahedral [KRL21]; all-Mach [KD21a, SLF23a]; all-quadrilateral [KRL21]; all-scale [PS22c]; all-speed [Bar21b]; Allen [CLS20b, HLA20b, LLJ23, LQX22b, LQX22a, ILTZ20, NS22, SHM+23a]; Allmaras [LMFV22a, LMFV22b]; Allowing [PGP+23, BCC+20, LOL22]; alloy [JTK22]; alteration [KNL21]; alternating [AR22]; alternative [FM20, RRPS21, ZG21]; aluminum [KAC22]; ambiguous [ESJ23]; amorphous [KS22a]; Ampère [CH22, QXYZ23, RBPRST20, ATCS20, LCCL23]; amplitude [VEC21]; AMR [MA21]; analog [Poć22, SH22, YG21]; Analyses [LLD+22, NdLPL21, SFN+21]; Analysis [ARC22, AWB+20, CFJF23, CLP22, DNO23, DTB20, HLM+20, HcdM23, JK20, LZ22a, LCF+23, MVO+22, PRL22, ZP20, ZC23, AHR20, ALL22, BDT21, BGG22, Bha20, BGSP22, CPX21, CZ22a, CWW20, CS22, DCA+22, DGS20, DYGC22, DW20a, EFS21, FJG+20, FGB+20, FLW20a, FGD+21, FBCD22, GM23, GC22, HX21, HKJ21, HYQ20, HLV21, HP22b, HCL20, HHL21, dMKJ+22, JLY22, JLY23, KP23a, KBCH20, KML23, KFP+22, KLF22, KmMJ+22, KSP21, KCP20, RD21b, LK21, LMM22, L22,

block-diagonal [KCS21]. block-Jacobi [HA21]. block-structured [MSWH22, NGZD22, RAZA21]. blood
[DDVO21, GGCvR22, Ian20, LHT21, UD22, VSS21, WNB21, XS20, ZTS20, vdEW23]. body
[CC20]. bootstrap [CY21]. Boris [CC22b]. Bose
[CL21, CDLX23, GC20a, LXY23, MR23b]. boson [LM22, MPMD20]. both
[HCL20]. bottom [AMB22a, ZDT23]. bottomhole [LO23]. Bound
[ASS21, BRT22, BBF20, CMNS21, EWN⁺23, HSS21, Se22, SAM23, ZHR20,
cache-efficient [LWWH23]. Cached [DS20]. Cahn [FQSW23, LHC22, MRK+20b, NMR+22, QWZ21, CZ20a, CLS20b, CWW20, DWZW21, Fn20, GHHR22, GCL+22, HLA20b, KLS+20, KSI+23, LLCJ23, LYZW21, LQX22b, LQX22a, ILTZ20, LFT+20, MRK+20c, NS22, NMR+21, SHM+23a, SZQS23, VRK21a, WJKW20, Yan21b, ZYW21, ZY20b, ZOWW20, ZH21].

calculating [DC22a, Ish22, SHM23b, Sha21]. calculation [BFS23, CHDB23, CEBG22, FCWS22, MHWY21, YS22]. calculations [CMSS21, DLZZ21, Dup21, MH22a, PM21b, TMG20, WLW20]. calculus [BRS22, MJS23, THH22, WJHS23].
Calderón [FJH20, GGM+23, KBH+22]. Calibrate [CGIL+21]. calibrated [OA21].
Calibration [ZWB21, BGS+22b, DEB21, TAVD21]. CAMERA [RRN23].
Can [NE23, SZW+20, DM21].
cancellation [SCL20]. cancer [NE23].
candidate [XCZ20]. Canham [NSS23]. canonical [AKK20]. capability [HYZ22]. capillaries [VPL20].
capillary [AFV20, BV21, DevW22, JFH21, LGY+20, Pan20a, YZK20, ZGK+22].
capillary-controlled [JFH21]. capsule [AP, CBCT+21]. capsules [HW23]. capturing [ASKH21, APR22, BSV22, BSP21, CF21, CD23, CLS20b, HRRHG21, HLL22, JRD22, KR23, LFA21, MGMV22, MM20, PB20a, PAA23, PS2b, RRRH+21, SBC20, SS22b, SS22c, SS22d, TZ21, TLHL23].
carbon [SFP+20]. carbonate [YZK23].
Cardinal [KNT22]. Cario [LT+22, Po+22, ALF+22, BBQ+21, DZC+23, Fei23, GP23, HLZ20, HJLZ23, KOM+22, KFP+22, KN20, KSK21, LT22a, LGL23b, LMG+21, LMG22, MRBS22, OGVM22, PJW21, PZ20, PV20, PB22, Po+22, RA21, SH23a, SGMT20, GGM21, SXZ+23, SBJ+23, SH22, TTT20, TBD+20, VM22, WPBS22, YS22, Yan21a, ZS21b].
Cartesian [Bar21b, BCG22, CDBS21, Cam21, CTG23, CLP21, CPBB21, DDR22, Eld22, HL22b, HW23, LD20a, LJZK21, SBL22, SL22, TJM23, XS20, XLS22, YW20, ZPW+23]. Cartesian-diusion [HL22b]. Cartesian-grid [Cam21, CLP21].
Cartesian-octree [HW23]. case [CLS20b, DZ23, ER22, GDL23, HST22a, HPRW20, MMSW22, NMN23, POS+20, PZ20, RA23, SC22c, SGLP23, TBW22]. case-study [POS+20]. cases [DZ22]. Cauchy [HB22, KKPB20]. caustics [GDL23].

cavitating [BFC23, PKG20]. cavitation [GPSMH20, SS23, ZMW23]. cavities [KAC22, ZZW23].
cavity [CJL21, TBG20].
Cayley [MVF22]. CCZ4 [DFGR20].
CD [CPTR23]. CD-grid [CPTR23]. cDFIB [Chi23]. Cell [FLV20b, KCS21, ST+21, ALF+22, BL22a, BFG22, BG21, BLM22, BCP22, BL21b, BBW+21, CCY+20, CCN21, CY22b, CZLC22, CC23, CLJ+20, CQG+22, CAT20, CKN22a, CSLC21, CBCF20, DSS20, Erc22, FCM+20a, FGL+22, GSF22, HHL20, HLL2b, HPRW20, HPW21b, HJ21, KBSF22, KDL23, KS21c, LT22a, LYL20, LAT+22, Li23, LH20, LKG+20, NW20, NW23, OCCT22, PWH+22, PGCC+22, QJQW22, QIL23, RE22, SCL20,
[BD20b, LKG+20, NNL+20]. Chimera [KFSM21, MMZZ22]. chiral
[KCK21]. chirality [FCGKR23]. Choice [ZS21a, RRPSS21, ZZH22]. CIAs
Circumventing [ZNZC+21]. class
[BGFB20, CCH20, EFR21, GLY22, HSW22, LCR22, Mar23, RBC+23, SAP22,
SY21, TT22b, TYC23, WH22a, WZSC22, WHS22, YZdCNS21, ZWZL22].
classes [CS20]. classic [CDW23]. Classical
[CLY21, AZ22, DY22b, JLRZ20, ZOWW20]. cleaning
[CPGD21, DFGR20, KK20b]. climate [WDL+21a]. cloaking [WYHL21].
cloaks [CHG21]. Close [KKCC20]. closed [RSA+22]. closed-loop
[RSA+22]. closest [HCL22]. closure [BBB23, BKY21, HCCR22, PBJ+22,
QJQW22, SSS22, TBW22, WRH20, WZSK22, WSS22]. closures
[YcD20, YcD23, ZDS+21]. cloud [CLLM+23, RSWD21]. clouds
[PM22a, PLYZN23]. cluster [DCA+22, DBC+22, SAL+20]. Clustered
[XCL22]. Clustering [IL23, GHE+23, LKJL22, TACO22, VGG23]. clusters
[LMUHR22]. CMP [TZM+20]. CMP-PIC [TZM+20]. co [CQA21, CSM23].
co-located [CQA21, CSM23]. coagulation [Sin21]. coalescence [CDJ21].
Coarse
[CPX21, EFY23, BT21, CCAR22, DC22b, KK20a, LCN20, LC23, NÄ21, RK21].
course-grained [BT21, RK21]. Coarse-graining [CPX21, KK20a].
[FCW21, FM22, FMOJ22, FM23b, FM23a, AFF+22, GRC+22, HPW21b,
LAT+22, MND+20, SOBP22, VCPGR20]. Code-verification
[FCW21, FMOJ22, FM23b, FM23a]. codes
[CHDB23, MVK20, RMM+22, TYBW23, XLT+20]. coefficient
[JWZ20, Kan20, LNYD20]. coefficients [BKON23, DLP21, DL21, HL20a,
HL20b, JHY21, LH21, PWH+22, PZ22, SAM23]. Coercing [GJF20].
coherent [IT22]. coil [GWC+22]. colliding [RE20]. collision
[AMW22, C21a, HHK+23, HQ20, Li21, MRBC22, TBD+20, XF23, YSC23].
collisional [ASBM20, BBC21, CB23, CFGJ23, Ere22, LSR21a, WNZ20].
collisional-radiative [ASBM20]. collisionless [CEM20, TS20]. collisions
[ALF+22, LKJL22]. collocated
[NVK+22, PBN+21, RBD+21, XJN+20, ZJ22]. collocation
[CL20d, CGJM21, ELSV22, FTY+22, IL23, LSS20, LPZ22, LN21b, RS20c,
RRHCG23, TFCH22, TJC21, WQZP20, Zha22, ZZY+20]. colloidal
[KVQE21]. comb [LCF+23]. combination
[FHJ22, FM20, PRPK23, XZC20]. Combined [Mar20, AYH+21, AP22,
FM23a, GZW20a, KF23, LCC+23a, USRP20, ZMKX21, ZDW22, ZZB23].
combined-field [FM23a, USRP20]. Combining
[MFK21, Po22, ZXLH23, AL21]. combustion [FSDB20, TTSP21, TSP22].
Comment [PSL20, Pan20b, dv23a]. Committor [CHKI23]. common
[SI22]. communications [HR22]. Community [BTK22]. Compact
[Toh23, BCIT22, CMP+21, CMPR23, CWY21, CTCS22, Den23, DBD21,
FDP20, HL20a, HRWP22, JZSX20, KSTT22, LLQC21, MRYS20, PP22a,
SAP22, SMW\(^+\)22, SSS22, WABK21, Yin21, ZCY23, ZJSX22, ZJSX23.

comparative [AMK\(^+\)21, BPS23, FCY\(^+\)20, LPG\(^+\)20]. Comparison [BGSP22, CCLM22, GCV22, GSFH22, HHVM20, HJH\(^+\)21, ID20, LGZ21, SHM\(^+\)23a, SDKL21, YJXS22, ZSKN22, BLK\(^+\)23, CSM23, DY22b, IW23, KRL21, SLQW22, TZ20, YLS21, ZOWW20]. comparisons [PMZ\(^+\)23].

Compatible [YWClL22, FTY\(^+\)22, LCDS23, PGTS21, WCB20].

Compatible [YWClL22, FTY\(^+\)22, LCDS23, PGTS21, WCB20].

Comparable [AMK\(^+\)21, BPS23, FCY\(^+\)20, LPG\(^+\)20].

Comparable [AMK\(^+\)21, BPS23, FCY\(^+\)20, LPG\(^+\)20].

Comparability [BE20, YZK23].

Compatible [YWClL22, FTY\(^+\)22, LCDS23, PGTS21, WCB20].

Compatible [YWClL22, FTY\(^+\)22, LCDS23, PGTS21, WCB20].

Compatible [YWClL22, FTY\(^+\)22, LCDS23, PGTS21, WCB20].
Compton [KKL+23, MTW23, TLWM20]. Comput
[Abg20, ACM20a, BLL20, EFO20, GRT21, HPA22, LMFV22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].

Computation
[Abg20, ACML20a, BLL20, EFO20, GRT21, HPA22, LMFV22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].

Computational
[AP23, CCE21, CP20, KSST21, LL20a, TACO22, YLLO23, ASW21, AFG20, AWB+21, CAF+22, CL20b, DAFP+21a, DY22b, DC22b, FTP23, GCV22, GLJB20, GMMS22, GN23b, HUY20, HGZ23, HHR21, KBL21, KCT+23, LGV20, LWY+20, LAS22, LMR20, MRT+22, MAP+20, NIT21, Pan20b, WRBK20, YCM+20, ZW22, ZJSX23, ZCQ20a, ZC22b].

Computationally
[AP23, CCE21, CP20, KSST21, LLO22a, TACO22, YLLO23, ASW21, AFG20, AWB+21, CAF+22, CL20b, DAFP+21a, DY22b, DC22b, FTP23, GCV22, GLJB20, GMMS22, GN23b, HUY20, HGZ23, HHR21, KBL21, KCT+23, LGV20, LWY+20, LAS22, LMR20, MRT+22, MAP+20, NIT21, Pan20b, WRBK20, YCM+20, ZW22, ZJSX23, ZCQ20a, ZC22b].

Compute
[MCBA20, NPD20]. computed [TTP22].

Computing
[CSX21, LLR23, Sim23, WFT22, Wan22, YL21a, YZZZ22, BCJM20, CL21, CLW20, CDLX23, DY22b, DW23, FADJ20, FO22, GCV22, MO22, SAH+22, Vev21, VCNC+21, XHC22, YL21b].

Concentrated
[BLF20, ZD21].

Concentration
[FGKY22, FB22, LBM20].

Concentrations
[APR22]. concurrent [DGL+22].

Condensed
[RRFK+21].

Condensing
[LC21].

Condensation
[MR23b].

Conditioned
[HKJ21].

Conditions
[AD21, BZ21, BFG22, BG20b, BFS23, CHS20, Cal21, CLS+20a, CLW22, CK21, CD2S20, DG23, DN21, FZ20a, FDP20, HP21a, HLA22b, HXQL23, JPA21, LM21b, LY20, NZ22b, LCF+23, MGA20, NFL+21b, NG20, NW22, PA22, FG20b, RS22b, SYOS19, SYOS21, SSMA21, Svi21, TNB21, TP22, VBA22, WZ23, WKK21, YL21b, YL33, YMM+23, YL20, BRT22].

Conditions-free
[HXQL23].

Conducting
[KLP22, USRH20].

Conductivities
[BG20b].

Conductor
[HLB20].

Conductors
[LL23a].

Conformality
[KHPA22].

Configuration
[KLP22, LW22a, MNG+22, QC23, SM21b].

Configurations
[MD20c, SVW21, YSCM21].

Confined
[CC22b, KMR23].

Confine
[AK20].

Confimation
[NTSM20].

Conformal
[AMGCL21, SQSS20, XMY22].

Conformation
[LHXZ22].

Conformational
[KSST21].

Conforming
[BGS22a, CBCT+21, CL22, HSG+22, Jai22c, LCL22a, PJA22, RS22b, SYOS19, SYOS21, SSMA21, Svi21, TNB21, TP22, VBA22, WZ23, WKK21, YL21b, YL33, YMM+23, YL20, BRT22].

Congruity
[RA21].

Conjugate
[CNCM21, GB22b, HGV+21, CL23b].
connectivity

Conservation

Conservative

Consistency

Constraint

Constrained
BHVJ22, BSW+22, BDMP22, CZZ21, GFG22, FCWT22, HZTN21, HGZ23, HYZ22, HLA22b, Ish22, KKM21, LLD20, LT20b, MCT21, PBGB21, PH22, SRTB21, SHL+20, WGS23, XLHB22, YLK23, ZY20a, ZR20, ZKY+20, SS22a].

Contact-PIC [SS22a], containerless [SDP20], contamination [LZ20a], continuation [JWH20, NPD20, Yin22].

Continuous [CLP22, CHG+20, CLDC20, FCP21, KK20b, LY22c, MSC+20, MAPS20, PHHJ22, RMD20, SL20b, SL22b, ZZZG23, ZAA23], continuous [SL20b, SL22b].

Continuum [LY20a, LZX20, LLZ20b, BDI+21, BCP22, CHS20, DGI+22, FM20, JN20, KK20b, LY22c, MSC+20, MAPS20, PHHJ22, RMD20, SL20b, SL22b, ZZZG23, ZAA23], continuum-kinetic [CHS20].

Contour [SWM21, CA22a], contraction [EFO19, EFO20], Contrast [CELV21, CELV22, AH21, LFT+20, RSA+20, SP23, YLW21].

Contrast-independent [CELV21, CELV22].

Control [TTY22, ASJ23, AR21, BGGM22, BLWL22, BPT+20, DGW20, FVM22, FVM23, GGEJ20, HGV+21, HKKS21, HBF21, KSW22, KDL23, LT22a, LG20, LW21, LFA21, LHL+22, MQ20, MN23, ND23, PKRS23, SEG22, SLQ2W2, VFB23].

Controllability [GLJB20, TBM22], controllable [WTX+21], controlled [CLP22, JFH21, SL22a].

Controlling [DHR20, GPL22, LLO22b, LLO23, SRH21].

Convection [MMYT23, PC22, Ads22, DCGQ20, DWZ23, GMRS20, GFG22, GFY20, GLY22, HSS21, JRD22, Kiv21, LMA21, LTD+22, LFZ21, LJS+23, LAS22, MJJS23, MTT+23, MZ23, MD20b, NCQ22, PKC22, SSPV20, Sev21].

Convection-diffusion [DCGQ20, Kiv21, LFZ21, Sev21].

Convection-diffusion-reaction [AdS22, SSPV20], convection-dominated [GFY20, LTD+22, MZ23], convection-pressure [GMRS20, MD20b].

Conductive [BEB+22, Edo22, HCDM23, KK22b, LLCJ23, STK21].

Convergence [ACHG+21, CZZ22a, JLC21, SN21, TBD+20, BTCV22, CWW20, CC20, EG20, ESJ23, GLY22, HA21, JKK20, JYY22, JW21, KML23, LKM22, LJ22, LQX22b, LQX22a, tLtJh22, Nis20a, Ran23, SMRW22, SMS23, WZZ23, YWCl22].

Convergent [JWH20, LTE23, CX22b, HT21a, JJ21, LZZ21a, MVO+22, TPPA22, WGW20, WZZ23a], converging [LYZ+22b], conversion [AZV23].

Convex [ZNK23, CDW23, LCL22a, ZZ23a], convexification [KNT22].

Convolution [HZ22a, FA22].

Convolutional [DC22a, Chi23, GSW21, GSH22, LC20, LPBK23, PGR+23, QCZ22, WWFM22, WCZ22, ZYL+23b, AM22], convolutions [Ale23, PLYZN23, TPPA22], cooled [MCBA20].

coordinate [CLT21, DV23b, KRG+23], coordinates [Bal21, BSP21, CLS20b, GKR22, HM21a, MT21, PA20, DM23a, QSZB20, SOV21, SLOZ21b].

copolymer [LCC+23b], copolymers [BCL+23], core [CLXS23, LFL+22].

Coplexification [XK21].

Corner [MGA20, EGN23], corners [AuIL20, DHM21b, LL23a].

corona [MFC22, MP21], coronaries [DFP+21a].

Corrected [IRT22, ZA20, BST23, HHL20, Kiv21, PA21].

Correcting
curves [JL21b]. curvilinear [AD20, CTC22, CDN+22, IMJ20, KK21, LM20a, NKW22, OP20, PA20, QSZB20, SC22b].
BSA22, BBA22, CHZ+21, GQR23, GN23a, HRG+23, ISM+23, JYK22, KH21a, LO23, LHA+21, MM21a, PBJ23, QH23, SWG21, SSG21, THH22, WDL+21a, WCM+21, WZZ23, XZWH22, XD22, ZB21b, ZDS+21, ZL21c, ZLL23.

data-driven-physics-constrained [CZ23], data-informed [PBJ+22], database [CBA+20], Davidson [KBB+20], DC [AP22, MP21], DDADI [JLC21]. DDADI/D3ADI [JLC21]. death [CMPZ22]. debris [GDBFN+20].

Debye [ER22, PBCL20]. decaying [GLWY22]. December [Ano20c, Ano20o, Ano21c, Ano21o, Ano22c, Ano22o].

deconvolution [XBD+20]. deconvolution-based [XBD+20]. Decoupled [ZY20b, CY22b, GLSY21, WZSC22, WGY+21, WHS22, Yan21c, YTK22, ZHY22, ZH21]. decoupling [LHXZ22, Vas23, YH22a].

DeepParticle [WXZ22]. DeepStSSNet [LHW+23]. defect [CCH20].
defective [QHLL20]. defects [DGL+23, GB22a]. deferred [HPPZ20, Sti20, ZS22a, ZYW21, ZZ23a]. defined [BLWL22, Say22, XY20a].
definite [XHD21]. deflation [DV22, GYW21, KAC22, RSO20]. deformable [BHJ22, BDM22, KV23b, KB22b, NZM21, XHS21].
deformation [AP22, BN20, CGGC23, CRF+21, DZJ22, FTP20, FZS+21, JAW+23, KH21b, LGY+20, LM23a, ML23, MRL+23, XHZ22, ZHPZ21, ZJ21].
deformation-fault [ZJ21]. deformations [BZ21, BGNY22, BV22, WGS+20, YB22].

deforming [HST22a, RMWS21, SOSM20]. degenerate [BL21b, Kan20, Le21a, TZ21, ZX22]. degradation [CGJM21]. degree

dememorization [ELL+23]. denoising [GN23a]. dense [AFF+23, KVQE21, LY20a, PM21a]. dense-to-dilute [PM21a]. densely
dependent [AH21, AFL22, AGFL20, AMB22b, BDS23, BG20a, CZ22a, DGW20, FPT23, GMB+22, GR21, HHH+23, HPA22, KCS21, LBM20, LKG+20, ND20, Nis23, PB20b, PMF20, PM21ib, PH22, PTT22, Qia22, QHLL20, QCQ22, RGH+22, RV20, RS23b, STK17, STEK22, VGP20, WQ20, XSC21, Yin21, ZST23].
depending [GQS20]. depletion [CS22]. Derivation [SEG21a, SL20b, WLZP21]. derivative

diagonal-norm [MZ20]. diagonalization [WZ21b]. diagonalized
[PJB20]. diagrams [MCBA20]. diaphragm [TVL+22]. Diatomic
[XCL+21, HGH20]. diblock [BCL+23]. dictionary [MO22]. dielectric
[CCER20, LMUHR22, WZC21, WSAZ22, ZR21]. Difference
[VVRWT21, AAL21, AT20, AD20, ACR23, BHNS23, BKC23, CLS+20a, CBF22, CHF21, CWX23, CLP21, DMN22, DBD21, DSZ20, DYM20, DT21b, DT22c, DFH22, EWN+23, FQZ22a, FZ20a, FZ20b, Gao22, GLY20, HT21a, HPA22, HZD21, HZC20, HCL20, HXX22, HSG+22, i21, JTK22, JLY22, KSTT22, KLN20, KK22a, KCD+23, LL21a, LG22, LL23a, LG21.
LZ22a, LCR22, LSZ+23, LH20, LRAQ22, LRW21b, LCN20, LSY20, Liu20b, LM20c, MJLS23, MR23a, PP22b, PPP22, PTT22, PGP+23, QCD21, RFZ22, RZ23, RAZA21, RMWS21, SOV21, SGT23, SS+20, SLMN21, SAM23, SN21, TCS22, TB23, TVL+22, WCF+21, WZTZ21, WVRLG23, Xia23, XBRL21, Yan21a, YLK20, YLNT20, YLS21, YWLL21, ZCZ22, ZA21, ZK22, ZZ23b, ZDT23, ZZ23c, ZSQ21, ZLW22b, ZL22, ZPK22, Bat20b, VPDD22.

difference-finite [LSZY20]. difference/finite [YLNT20]. differences [AD21]. differencing [AAKW20, BDBB22, FY22, MGRRVR23, SZQS23].
different [BBL23, CHZ22, GM23, GHH22, GCD20, KLA23, LM21c].
differentiable [HF23, LRT22a]. differential
differentiate [AIN21]. Differentiation [CHDB23, HHN+21]. Diffraction [PM22b, PLM23a, CEW23, CDL21, LSW20].
Diffuse
[ZHWS22, CSM23, DSPB22, JMM20, JAW+23, KB22b, LCM22, MIM20, YTW23, YL23, YGL20].
diffuse-domain [YGL20].
diffuse-interface [YGL20].
diffused [PBM23]. Diffusion
diffusion-redistanciation [MSIM21].
diffusiophoretic [LHM20]. diffusive
[J21, LFZ22, MRB22, PCQ20]. digital [HP21b, TSS+20]. Dilatancy
[BFNK+21, GDBF21]. dilute [PM21a]. dimension
[CDZ23, Der23, GYC+23, KSHJ20, KWS22, LCH20, LeN20, PBC20, VACE21, ZYD20].
dimension-augmented [GYC+23]. Dimensional
[SFP+20, AG21, AdDMM21, ALFN22, ARKG22, AAKW20, BCW21, BL20, Bal21, Bar21b, BD+20, Bre20, Can21, CPX21, CORJ+23, CCM+22, CNBH23, CL20b, Che23, CSS20, CLS20b, CLJ+20, CS21c, DEN22, DY22a, DM21, DV20, DV21, DZ22, DZ23, DJID20, EHW21, EHL20, EMS+21, FSW22, FZ20a, FTZ22, FW22, GFL+22, FLW+23, FLS23, GHY22a, Gao22, GW23, GKN23, GHP+23, GY221, GZ21, HL20, HZ21, HRR21, HGS22, Hu21, HSG+22, IL23, JPA21, JLL22, JLY22, KTB20, KV20, KYO22, KR23, KZC23, KLB+22, KKY+21, LL20, LCG23, LSW20, LWR20,
LDM$^{+21}$, LZS22a, LZS22b, LY22a, LJZK21, LLR23, LRT22a, LY20b, Liu21, LPZ22, LC23, LD22, MDC20, MCBA20, OWHN22, OYK$^{+22}$, PB20a, PJA22, PJR23, PMF20, PLV20, PRL22, PGMTP23, QPW21, QSZB20, RZ23, SL20a, SBH21, SOV21, SWM21, SKCM22, SDA$^{+21}$, TTY22, Tak23]. **Dimensional** [TL20, TYY23, TTP22, VCNC$^{+21}$, WGS23, XZ22, XS20, XLZ21, XCL22, XY20b, XZW22, XHY23, XM20, XZNZ23, YLN20, YK22, YRC$^{+21}$, YMY$^{+21}$, YWLL21, YS20, YZ23, ZBY20, ZZZ22, ZCZ22, ZCH22, ZCY23, ZGL20, ZFG21, ZWZ22, ZC22a, ZPG22, ZXY22, ZSY21, ZQS$^{+21}$, ZQL$^{+22}$, aKAK20]. **Dimensionality** [PBJ23, WDH$^{+21}$]. **Dimensionally** [BVRS22, PR23, SBL22]. **Dimensionally-consistent** [PR23]. **Dimensionally-reduced** [BVRS22]. **Dimensionally-split** [SBL22]. **Dimensions** [BY20, CJLL21, CDW23, DLL22, FCBM22, GL20, GHTC21, JW20, KKCC20, LZC$^{+20}$, MTO21, MVK20, PAG23, Sel22, SSS20, SH22, Snk23, TRC22, TPX22, XY20a]. **Diminishing** [CF21, DLY22]. **Dioxide** [SFP$^{+20}$]. **Dirac** [HPA22, AFGLM20, BHW23, CL20a, CY23, Kh20, MR23b, YX22, Yn21]. **Direct** [EGTC$^{+21}$, GF21, JG21, KOM$^{+22}$, KD20, LMZ21b, QAS20, SXZ$^{+23}$, VRK$^{+21b}$, WCA$^{+20}$, WGB22, YK20b, ZJSX23, AWB$^{+21}$, BBG21, CPX22, CB23, Ch23, CHZ22, DY22a, FSB$^{+20}$, GBC20, HM21a, HLY20, KKM21, LPC21a, LHM20, MTT$^{+23}$, OGVM22, QLY21, RKR20, SH23a, SGW21, SES21, WCP23, ZXLH23, ZB21c]. **Direct-adjoint** [SES21]. **Direct-forcing** [GF21]. **Directed** [LCC$^{+23b}$]. **Direction** [CQA21, LSTZ21]. **Directional** [CAT20, DGW20, OCGT22]. **Directly** [HCCR22]. **Dirichlet** [ASS21, MMZ22, PR21, YLS21, YGL20]. **Dirichlet/Neumann** [MMZ22]. **Discharge** [CF23, MP21, NBR22, VBB$^{+23}$]. **Discharge/drift** [MP21]. **Discharge/drift-region** [MP21]. **Discharges** [GDB23, LZC$^{+20}$, SW22]. **Discontinuities** [BB23b, BB20b, EGN23, Far20]. **Discontinuity** [BB20b, CNC21, HLL22, KK22a, LXSF22, WTZ22]. **Discontinuity-driven** [BB20b]. **Discontinuity-resolving** [LXSF22]. **Discontinuous** [Bal20, BN20, Ch23, CCN23, CCL21, Hac21, Hig20, KK21, Mar20, ZY20, Ads22, AOR22, ARR23, ALM23, AMB22a, AMM$^{+20b}$, AMM20a, ADM22, AHWW20, BL22a, Bal21, BZSF20, BCF22, BGM21, BKY21, BWG$^{+20}$, BBMA23, BDP23, BV22, BX20, CHS20, CQY21, CBQ21, CK20, CIW22, CLDC20, CS21b, CZL20, CBB20, CI21a, CI21b, CX22a, CRMR21, DY22a, DL21, DCG20, DH20, DLY22, DY22a, DYZ22, DY22c, DYZ2d, DSZ22, DT20, DK21, DW22, EM20, FHW20, FHWK21, FGKY22, FDP20, FL23a, FX22, GK20, GAB22b, GC20b, GAC20, GHTC21, HM22, HYQ20, HYR$^{+22}$, HTL21, Hig22, HQ22, HR20, HLY20, HL22, JHY21, JTW22, JK20, JK20, JZ21, KGBT20, KR23, KMF23, KS20, LCM20, LCS22, LSCX20, LWR20, LNL22, LLL22, LCT23, LM20a, LSZ21, LMVF22a, LMVF22b, LAN21, MYJ$^{+23}$, MN21, MRK$^{+20a}$, MRK$^{+20b}$, MRK$^{+20c}$, MOBR22, MGV22, NdLPL21]. **Discontinuous** [NMR$^{+21}$, NMR$^{+22}$, PP22a, PWH$^{+22}$, PBN$^{+21}$, PJR23, PH21, PS22b,
PKL²¹, PLKM²², PD²¹, PGCC²², PGMT²³, PPB²³, QJL²³, QLY²¹, RMD²⁰, Ran²³, RWdBAG²³, RBD²¹, RRHH²¹, RRFK²¹, Sar²¹a, SLWRG²¹, SL²⁰b, SL²²b, SMAY²², SCdHJ²⁰, SKCM²², SX²², SSX²², XS²²a, XS²²b, XS²³, YYX²¹, YY²², YK²⁰b, YKFH²³, YH²²b, ZSP²⁰, ZB²¹b, ZS²²a, ZC²³, ZCYX²⁰, ZQS²⁰, dLF²³, vGAtTBI²³, AM²², BRT²², DHR²⁰, PKG²⁰].

discontinuous-Galerkin [SL²⁰b, SL²²b]. Discovery [XCZ²⁰, BT²¹, BCSK²¹, GN²³a, HZY²², XZW²¹, XDCF²¹, ZL²¹c].
discrepancy [PBJ²², SM²²].

discrete [AFK²³, CJ²¹, KR²², KSK²¹, SMRW²², WJHS²³, ZG²⁰, AMG²³, BO²², BGR²⁰, BZ²³, BPJ²², BBL²³, Cal²¹, CFM²², DD²¹, DNO²³, DOQ²³, DC²²a, FFY²¹, GKL²¹, HLB²⁰, HHS²², HSG²², JLL²², JP²³, KBCG²⁰, LW²⁰a, MJS²³, MBBV²², PAA²³, PM²³, PRL²², PAM²³, PGS²², RR²², SM²¹a, WY²²a, WY²²b, XY²²b, XHY²³, YGW²⁰, YZSD²¹, YH²²a, ZCY²², ZA²¹, ZQC²³, ZWL²³, BBV²³, DSG²²].
discrete-equations [PAA²³].
discrete-ordinates [BO²²].

discrete-time [AFK²³].
discretely [YD²⁰].
discretisation [BGGM²¹, PKG²⁰, PH²²].
discretisations [BMV²², BW²³, CJ²¹, PP²²b].
discretization [AOR²², BS²²a, BGH²⁰, BO²², BR²³, BDMP²², BMQ²⁰, BRS²², Cel²⁰, CCPS²³, CHG²⁺²⁰, CLS²⁺²⁰, CZLC²², CS²³, CMS²⁺²²b, DSBFN²⁺²⁰, EDEV²³, FQS²³, FGTY²³, FO²³, GA²⁰, HMO²⁺²⁰, HX²¹, JK²⁰, JJ²¹, KNLB²¹, KSW²², LL²¹a, LRT²⁺²²b, MSC²⁺²⁰, MOBR²², MMRP²², PKC²², Ran²³, RC²⁰b, RN²³, SKT²⁰, SKTK²¹, USRH²⁰, WJHS²³, WLZ²¹, ZS²²a, ZPGR²²].
discretizations [ALMF²³, BDS²³, BTCV²², BL²¹b, CEL²¹, CEL²², ELL²⁺²³, EWN²⁺²³, FMWK²⁰, GNZ²³, HSW²¹, KK²⁰b, KdL²⁰, LCT²³, LM²¹c, MBTS²⁰, Nis²²b, OP²⁰, PP²²a, SAS²⁺²¹, YOH²⁺²⁰].
discretized [JPAZ²¹, Kho²⁰, LP²⁰b, WZ²¹a].
discrete-equations [BO²²].
discussion [Po²³].
dislocation [BZ²³].
dislocations [PBO²⁰].
disperse [CJ²¹b].
dispersed [PM²¹a].
Dispersion [HYQ²⁰, An²¹a, CKN²²a, DGW²⁰, LCR²², LSZ²⁺²³, MFS²⁺²², PBCL²⁰, SSS²³, SFNMF²⁺²¹, ZL²³, ZPK²²], dispersion-diffusion [SFNMF²⁺²¹].
Dispersion-dissipation [HYQ²⁰].
dispersionless [Puk²⁰].
Dispersive [BBH²⁺²⁰, BDT²¹, CCER²⁰, GKPT²², TCS²², TGM²³].
displacement [FGTY²³, VPL²⁰].
displacements [FGKY²², GLY²⁰, JFH²¹].
dissimilar [PRO²²].
Dissipation [KY²³, SYAM²³, AK²², sCpLL²⁺²², CDX²⁺²¹, DhJV²⁺²², DNO²³, FFRT²⁺²¹, FAHA²⁰, FAA²⁰, GMMS²², HYQ²⁰, JP²³, KdL²¹a, LFA²¹, LYZ²¹, LCR²², LSZ²⁺²³, LXS²², MM²¹b, MD²⁰b, PLL²⁺²¹, RKVV²⁰, SEG²², TFWX²², TSTH²⁰, WTX²⁺²¹, WZTZ²¹].
dissipation-adjustable [DhJV²⁺²²].
Dissipation-based [KY²³, JP²³].
dissipative [DZW²³, GS²⁰, KK²²a, Li²², LL²¹d, MHW²¹, SBL²², TKK²², TCS²², YD²⁰, YJP²³, ZS²²b].
distance [ABB²³, GCV²², Nis²¹, WZX²²].
distillation [KMM²¹].
Distributed [HLB²⁰, KSHJ²⁰, SGWP²¹, TEÀ²⁺²³, ZLC²⁺²⁰, ZO²¹].
distributed-memory [ZLC²⁺²⁰]. Distribution
div-curl [BDP23]. divergence [CBCT⁺21, DW20b, EOP20, Fu20, GEvWD22, KK20b, LZZ21b, LZLS21, LP23b, SCS22, Toh23, WDS22].
divergence-conforming [CBCT⁺21]. divergence-free [DW20b, Fu20, LZZ21b, LZLS21, SCS22, Toh23, WDS22].
divergence-preserving [CBCT⁺21].
div-curl [BDP23].
divergence [CBCT⁺21, DW20b, EOP20, Fu20, GEvWD22, KK20b, LZZ21b, LZLS21, LP23b, SCS22, Toh23, WDS22].
differential [BDP23].
differential [BDP23].
differential [BDP23].
differential [BDP23].

domains [ASS21, BFG22, BDFT23, CLS⁺20a, CPK22, Coc20, CBC⁺23, CCdS20, CNCM21, DS23a, DSZ20, DS20, FPT23, GLLM22, HR20, HW23, Jai22c, KMR23, KML23, LWY⁺20, LSLH20, QG21, RS20b, RFZ22, RMWS21, Say22, SWF21, YLS21, Yua21, ZPG22].
dominance [ARR21]. dominant [MHY20]. dominated [BBB23, GFY20, LTD⁺22, LT20c, MM21a, MZ23, SFGMGN22]. Dormand [NNJ21].

double-sweeping [EEG22]. doubly [WNB21]. double-periodic [WNB21].
dozens [SZW⁺20]. DPG [MMPD21]. DPM [SMF20].
drag [BLL19, BLL20, SDA⁺21]. drift [CDT22a, NWM21, RPA22, Sab20, SAH⁺22, WDK22, ZWZL22].
drift-correcting [WDK22]. drift-diffusion [RPA22, ZWZL22].
drift-kinetic [SAH⁺22]. drift-kinetic-equation [CDT22a]. drift-region [MP21].
drop [MSK⁺22].

droplet [ABH21, HRR21, MKH20, MTT⁺23, NKA⁺20, RKR20, XLB22].
droplet-related [ABH21]. droplets [DU20, FS23a, GHH22b, YL23].
droplets/bubbles [BFG23]. drops [CDJM21, FBS23, LWZ⁺21].
dry [BFN21, Liu21]. DSMC [CSY21, FJ21, FHJ22, GMNY23, YSC23]. DfN [RG22]. Dual [BRS22, DFW22, ZRH20, CWW22, FLW20a, GN20, GCD20,
HHRA19, LKEM21, LZY+22b, LOLS23, NG20, Nor22a, PP22b, Pan20b, PGTS21, Qia22, Sev21, hSZML23, WW20b, ZPGR22, ZSKN22.

Dual-criteria [ZRH20], dual-field [ZPGR22], Dual-pairing [DFW22], dual-scale [GCD20], dual-stage [FLW20a], due [ARR21, SCL20, Vre20, Vre21b], duration [NDH20], dust [SDA+21], dusty [EM20], DWR [LKEM21]. Dynamic [BGS+22b, DV21, LW22b, AFV20, ASVL23, AR22, BTCV22, CLS20b, CCE+21, EWN+23, FCWS22, GLSZ22, HDML23, HTRC23, JL22, KUO23, KNS21, LLD20, LGM22, LW22a, LLLL23, LM23b, LT20c, LT21, LCJ+20b, MH22a, NKT21, NLZ+22, NKA+20, PH22, PCA+23, RS23a, RGLN22, SBVW20, TLD20, YKdHC20, YhCdJ+23, YQO20, ZL21a, ZHZ22, dSDLdA+22, KUO23]. Dynamical [ARTB20, AHR20, BCWD21, BTK22, CMN20, CL20c, CX21, CLXS23, CBA+21, CMX23, CH22, EW21, EJ21, EOS23, EPL20, EPL21, EPL22, GFPO22, HMX23, KK20a, LC20, LJ23, LBT+23, Mk23, PC21a, PEL23, RPDO+21, SSW22, WKA+20, ZJ23]. Dynamically [DV20, BR22b, WGY20, ZMG+22]. dynamically-orthogonal [ZMG+22].

dynamo [YBM+22].

Eddy [Sva22, EDEV23, FBG20, HLB20, IW23, KS21d, LM21a, LCP21a, LWWH23, NM23, SOG+22, SMF20, SS22b, SS22d, XBD+20, vNGB22].

eddy-viscosity [EDEV23]. edge [CHDB23, He22, HS20, KY20, LH21, Sen21, FCL21]. edge-based [He22].

Effect [HG20, LFP+21, MJ21, MYY+23, WNZ20, ZZX20].

Effect [HGB20, LFP+21, MJ21, MYY+23, WNZ20, ZZX20].

Effective [Cie20, LsCxL+20, ABDD20, DDR22, LPS21, LAS22, TKGB23, Xc23a].

effectiveness [KS22d].

Effects [SSPV20, BEB+22, BY21, CBCF20, DSSSP20, DWZ23, FTPB23, GDBFN+20, GPSMH20, GN23b, HPW21a, MH22b, SHM23b, SFP+20, ZGK+22].

effectively [MD20c].

eigenanalysis [MAPS20].

eigenmodal [MD20c].

eigenvalues [AIN20, CLW20, CX22b].

eigenvectors [PJBB20].

Eikonal [GGN+20, GDL23, PCD23, TEA+23].

eikon-based [PCD23].

EIM [CGJ21].

EIM-degradation [CGJ21].

Einstein [CL21, CDLX23, DFGR20, GC20a, LXY23, MR23b].

EL-RK-FV [NCQ22].

Elastic [AD21, LZS22a, LKvM+22, ALM23, AMM20a, AL20, AL21, ABDD20, BB20b, BY20, CLW20, CGLZ23, CDL21, CC22a, CLJ+20, DLL22, DFW22, GLL20, GAC20, HYQ20, JF20, JAW+23, Kar22, KFSM21, LZS22b, LM23a, MDG20, TBM22, WGB22, WZ22, XHZ22, XHLH23, Yan21c, YK20a, ZML20, ZSZ23].

elastic-acoustic [GAC20].

elastic-perfectly [LZS22b].

elastic-plastic [CLJ+20, JAW+23].

elasticity [AEGV22, BHNS23, FCM20b, RAZA21, ZFG21, ZZY+20].

Elasto [MMSW22, LGY+20].

Elasto-acoustic [MMSW22].

elasto-capillary [LGY+20].

Elastocapillarity [FTP20].

Elastodynamic [RG22, BDFT23].
elastodynamics [LBC23]. elastoplastic [MN20]. elastoplasticity [Ser23].
elastostatic [MNG+22]. electric [AP22, FMJ21, FMOJ22, LL23a].
electric-field [FMJ21, FMOJ22].
electro-fluid-structure [BGQ+23]. electro-thermal [Kan20].
electrode [DNW23, FGD+21].
electromagnetics [MPSP22, RC20b].
electron [CHS20, CDT22a, CCLM22, HPR20, LCS22, SC22b].
electron-neutral [RAB23].
electrodynamics [KBCH20].
electroencephalography [GGM+23].
KAZS23, LCL+22b, LSS20, LY22a, LXZ23, MRZ21, Ori21, PWXY22,
PHZ23, QG21, Ran23, RFZ22, RZ23, SSG+20, Ste22, TJM23, TB21,
TLHL23, WZW21, WK21a, WCC23, Xia23, YJH23, YLS21, ZDW22
elliptical [CPGD20]. Embedded
(STC+21, Ver23, BHVJ22, CEL+20, CRPB20, CBC+23, GAB+22a, GAB22b,
HF23, HR20, KSHJ20, KWS22, LPJ+23, LT20b, LCDS23, NGZD22, RS20b,
SBL22, VLY20, WY22a, WY22b, ZMD23, ZYZ21]. embedded-hybridized
[HR20]. embedding [WMS21]. embeddings [GFPO22]. emerging [FCP21].
emission [CHS20, Ian20]. emulate [CGIL+21]. emulation [XKZ21].
emulator [XCL22]. emulsions [ZD21]. enabled [BM21]. enclosed [KV23b].
enclosing [CE21]. Energetic [WLZ21, LLB+23, LW20a, LMHL21].
energetically [Lee21]. Energy
[BDM22, BTL23, CHSS20, DMN22, DWZ23, DVB20, FY22, FB22, GLM22,
HHS22, HL20a, Iij21, KS21c, LN22, LSXC20, Li23, MHW21, MMRP22, OP20,
PHP21, GW22, SL22e, SL23, SX20, WH22b, WCB20, XLZ21, YX22, ZYZ+23,
Abg20, AD21, ALF+22, AFF+23, AHWZ20, BD23, BJR22, CS20, CCY+20,
CW20, CV23, DC23, DJ22, DJ23, DWZ21, DLY22, Ed22, EJ21, Ere22,
EWN+23, FCWS22, FQSW23, FCM+20b, FZQ22b, GGB22, GZW20b, GS20,
GLYW22, HSW21, HT21b, JMC22, JW20, KLS+20, KZC23, KCCR22,
KWDS22, KWCS23, KK21, LP21, LB21, LDL21, LYZ21, LLZ23b, LLZ23a,
LYD20, LB20b, LM20b, Lin23, LCCL23, LsCXL+20, LKL22, MCP23,
MMZR21, MRK+20c, MHW22, MM21c, MM22, MKM23, MMYT23, MFS+22,
NdLPL21, NSS23, Nor22b, NMR+21, PM22a, PP22c, QWZ21, RC20a, San20,
SHL+20, SMY22, SMAY22, SN21, TT22b, VTC20, VS2+21, WZSC22].
energy [WLZP21, Yan23, YD20, Yan21b, Yan21c, YTWK23, YZW23,
ZEG21, ZY20b, ZOWW20, ZHY22, ZPGR22, ZDT23, ZR20, ZH21, RS23b].
energy- [CCY+20, Ere22, ZPGR22]. energy-and [JM22]. energy-based
[AHWZ20, HSW21, MKM23]. Energy-conserving
[BTL23, GLM22, KS21c, SL23, BDZ23, FZQ22b, KCCR22, MM21c, MM22,
Energy-preserving
[HHS22, HL20a, MHW21, XLZ21, CS20, JWC20, LLZ23a, MHW22, VTC20].
Energy-stable [BDM22, DVB20, WH22b, AD21, FCWS22, FQSW23,
LB21, LDL21, LLZ23b, LNYD20, LB20b, YD20, YTHK23, ZR20, ZH21].
enforce [EC20]. enforced [AD21, RHG22, WLL+23, ZCY+21].
enforcement [LAN21]. Enforcing
[THH22, WKA+20, ZZZG23, DN21, RK21]. enhance [RDAB23]. Enhanced
[BKMC21, FL23a, FWG22, JKZS21, BGH21, CNBH23, CSY23, DR20,
DLZ23, KP23b, LJT+23, Lep21, LYS22a, LZPM22, LMZ23, NA21, PCQ20,
TC23, WLKR23, XM20]. enhancement [Wan23]. Enhancing [DSA23].
ENO [LCWJ20, LZLS21, PLL+21]. Enriched
[BZ20, CHT20, KNL21, CNB+23, HRR21, WBN21]. enrichment
Ensemble-based [CNBH23]. ensembles [YG21].

Ensemble-based [CNBH23]. ensembles [YG21].

Entropic [BT20, GT21]. entropies [Ran22].

Entropy [BKY21, Cha20, CLW22, CCN23, DT21a, GCLM22, GS22, GMD22, KGN22, LLO23, MKR+20b, Ren21, RRHCG23, STG20, Svä21, WKW+22, AÖR22, BKC23, BWG+20, CT22, CMRR21, DC23, DT20, DT21b, DT22c, DW22, EKPS23, GS23, HRRHC21, JI22b, JRD22, KK21, LCS22, LCT23, LMVF22a, LMVF22b, LCD23, MKR+20a, Mar23, MGMV22, Nor22b, NMR+22, PBN+21, QWZW23, RBD+21, RRHH+21, SWG21, Svä22, TTK22, UY22, YU22].

Entropy-entropy [LLO23].

Entropy-entropy-preserving [JM22].

Entropy-pressure [LCD23].

Entropy-stable [GMD22, MKR+20b, RRHCG23, LMVF22a, LMVF22b, MKR+20a, NMR+22, PBN+21].

entire [BVR22, ZBY+23]. environment [ABY23, FSWA22]. environments [MFTZ20, PCD23].

epicardial [GGN+20]. epitaxial [HX21].

EPPL [ZZC20]. equality [BS22b].

Equation [MOBR22, WK21b, ADK+21, AC23, ABÁFTO23, An21a, ACÉ+22, AFGLM20, AMMT20, BLF20, BGH20, BRT22, BOB2, BAK22, BW23, BR23, BG20a, BVT20, BT20, BZ20, BGH21, BNT23, BY20, BFG23, CSY21, CCL21, CCWX22a, CDT22a, CLDC20, CLY21, CKT21, CWW20, CP20, Cm+23, DS22b, DWM23, EHW21, EJ21, EDEV23, EWN+23, FLZ20, FZ20a, FG2+21, FMJ21, FMOJ22, FM23b, FM23a, FTP23, Gar20, GKR22, GMA23, GR21, GLL320, GDL23, GS20, HPA22, HLL23, HSW21, HGH20, HA21, HSB20, HHRA19, HQ20, HRG20, HXX23, HCCR22, HIJL20, NL21a, JI22b, JI22c, JWH20, JPA21, JWC20, JLRZ20, JRD22, JBF21, KTDG20, KSTT22, KS22a, Kar22, KS11, LL20, LSC20a, LLCJ23, LKEM21, LPP+20, LM21b, LGZ21, LJH23, LN23, LJ22, LSXC20, LYY20, LXD+20, LR21a, LI22, LPS22a, LLJX22, LT22b, LQX22a, LNZ21, LZ20b].

Equation [LHW221, LZY+22b, LL21b, LLSD20, MKR+20c, MBAG21, MGL21, MCVF22, TST23, MRBC22, MRBS22, MR23b, MPMD20, NS22, NT20, NMR+21, OP20, OGV20, PSL20, PBM23, Pan20b, PZ20, PM23, PAM23, Poi23, PEL23, QWZW23, RS20c, RBP2320, RA21, RWY21, RMWS21, SH23a, SH23b, Sar21b, STEK17, STEK22, SL20b, SL22b, SSFP20, SL22c, SL23, SMAY22, ScdIJ20, SMRW22, SQS20, SACT21, SQS23, T21, TLK23, TZNHD20, TBT20, BSG20, TPR22, TS20, TL21, TEA+23, TPYX22, VRK21a, VMB20, VVRWT21, WWG20, WZC21, WNB21, Wan22, WJKW20, WKK23, WK23, WZBV20, Xia21, XF21c, XG22, YL20, YCH21, YX22, YSC23, YY22, YK20a, Yin21, YFLL21, ZHY21, ZOW20, ZZ20, Zha22, ZXY22, ZC23, ZLW23, aKAK20, vGAtTBI23, PRKS23].

Equation/Variable [PRKS23]. Equation/Variable-free [PRKS23].

Equations [CCPS21, ADK+21, AdS22, AG21, AMB22a, ARGK22, AST21, AZ22, AHWZ20, AR20, AK21, AF23, ARR21, BDT21, BFP21, BL20, BT21, Bal20, Bal21, BBH+20, BGN22, BDS23, Bar21b, BFM21, BBB23, BB23b, BM21, BCT22, BGG21, BL21a, BKC23, BP22, BKY21, BWG+20,
BDL$^+$20, BP21, BGS$^+$22b, BLK$^+$23, BSZ$^+$23, BJL21, BSK$^+$23, CCE$^+$22,
CMR21, CKLZ23, CP22a, CZ22a, CLW22, CHT20, CHSS20, CZ20a,
CCY$^+$20, CCWX22b, CJW22, CDX22, CN22, CWX23, CSS20, CLS20b,
CTCS22, CCE$^+$21, CBRY21a, CBRY21b, CK21, CPK22, CBY23, CSY20,
CS23, CMG$^+$23, CX22a, Coco20, CCHS20b, CA22a, CCdS20, CD22, CEM20,
DEN22, DY22a, DM21, DC23, DS22a, DPL21, DCGQ20, DH20, DLYZ23,
Don23, DYM20, DOQ23, DGW20, DZ22, DFGR20, DTB20, DVB20,
DFZ$^+$21b, ELL$^+$23, EBC$^+$22, EOP20, EDEV23, EJ23b, EFY23].

Our equations include:

- FPT20, FZQ21, FZQ22a, FHWK21, FJH20, FN22, FWNT21, FM22, FX22,
- GGCvR22, GMB$^+$22, GHY22a, GLSZ22, GW23, GCDT22, GGB20, GBLT20,
- GNF22, GQR23, GS22, GP23, GHNS21, GYZ21, GHS22, GKPT22, GLYW22,
- GHTC21, GWZ22, GLY22, GYWG23, HSM20, HSN20, HLM$^+$20,
- HDM23, HYQ20, HI22, HRRHG21, HKS20, Hig22, HKMR20, HMO$^+$20,
- HHS22, HHL22, HMXC23, HCdM23, HR20, HL20a, HL20b, HLXZ21, HLH21,
- HSW22, HRWP22, HXX22, IK23b, JHY21, JTW22, JCLK21, JLY22, JLY23,
- JKJ20, JK20, JLQY21, JH23, KCS21, KTB20, KMR23, KBB21, Kem23,
- KL$^+$20, KSI$^+$23, KKP20, Ki21, KS21b, KNT22, KR23, KV23a, KZC23,
- KCK21, KCD$^+$23, KLZ20, KM20, KK20b, LHF23, LPM$^+$20, LT22a, LW22,
- L21a, LN22, LP20a, LG20, LD20a, LJC20, Li20, LCSZ21, LZZ21b, LG21,
- LG21, LY22b, LLO22b, Li23, LLL23b, LWF23, LLTZ20.

Our equations also include:

- LP23a, LNYY20, LCT23, LBT$^+$23, LW20a, LSLH20, LFZ21, LLS21, LW21,
- LPZ22, LWY22, LM23b, LIS$^+$23, LMFV22a, LM23b, LM21c, LLSD20, LP20b,
- LM20c, LL23b, LLZ23c, LCJ$^+$20b, LZCC22, MSC$^+$20, MD20a, MCP23, MK22, MKR$^+$20a, Mar20, MHLR22, MOBR22,
- MP223, MB21, MYL21, MTB22, MZ23, MM21c, MM22, MDF21, MHY20,
- MMM23, NCQ22, NV22, NGZD22, NYY22, NG20, NW22, Nor22b, OPM22,
- OY21, OWHN22, OBB22, Osi20, PDM23, PWH$^+$22, PCB21, PCC22, PZZ22,
- PB20b, PAA23, PCQ20, PHX23, PA20, PPHO22, QG21, QW221, QLY21,
- QW22, Ran22, RWQX23, Ren21, RS23b, RC20b, RN23, RAB23, RRHI$^+$21,
- RRFK$^+$21, SLF23a, Sac22, SKT20, SHS$^+$20, Sem21, SCLK21, SWF21, SSS20,
- SC23, SSA21, SST$^+$23, SML20, SP22, Suk23, SX20, SX22S, Sv21, TCS22,
- TL20, TWL22, TB22M, TY23, TP20, TGM$^+$23].

Our equations also include:

- [TSTH20, TC23, UY22, VVL21, WX22, WCZ$^+$20, WZT21, WK21a, WZSC22, WJHS23, WR23a, WP23, WGS23, WKW$^+$22, WKK23, WCB20,
- WR23c, WX20, WHS22, XBH$^+$22, XLZ21, XSSS22, XZW21, XJS21, X22a,
- XS23, XM20, YU22, YLYT20, YXYX21, YCC$^+$22, YLS21, YMY$^+$21, YWLL21,
- YSN23, YGL20, Yua21, YNDH22, ZXMK21, ZBYZ20, ZZZ22, ZC222,
- ZNCZ$^+$21, ZA20, ZCQ19, ZCQ20a, ZQYS20, ZGL22, ZJZK20, ZS21a,
- ZL21c, ZLI21b, ZHY22, ZX22, ZSM22, ZPGR22, ZLW$^+$22a, ZZZG23, ZSST23,
- ZDT23, ZCCN23, ZXX23, ZXY20, ZO21b, ZH21, ZZZc, ZT23, ZYD20,
- ZL22, aKAK20, dLF23, vH$^+$22].

Our equations also include:

- equidistribution [KH20], equifinality [GSOM23], equilibrate [MX22], equilibria [HP22a], equilibrium [AAM20, CCL20, CSS20, EM20, EFR21, FTK23, GLJB20, GN23b, HJJ20, JTZ22,
- MSIM21, NKL21, PCF21, SVV21, Sim23, TZ20, WLV$^+$20, YhdC$^+$23].

Face [KB22a, NW20, Nis20a, VKR+22]. **face-area-weighted** [Nis20a]. **face-averaged** [NW20]. **Face-based** [KB22a]. **faces** [PH21, PGP+23]. **factor** [Ara20, JLQ21, LM21c, NS22, YGJ21a, YGJ21b, OPHY23]. **Factored** [BB21, BB23a]. **factorization** [CZHY20, FB20, TPYX22]. **fail** [WYP22]. **failure** [TCR+20]. **family** [LSZ+23, NME23, OPHY23, Ran22, SQ23]. **far** [RT21B, YYL20]. **far-field** [RT21B, YYL20]. **farfield** [VBA22]. **Fast** [AMW22, BL20, CFS23, CCA22, DGW20, DS23b, ES23, FJH20, KLP22, KCCR22, LW23, MCFV22, SGMT20, SL22, SDA+21, SP23, WZ21, WZ22, YSTK20, AF20, AZ23, CMLL21, DZJ22, DVV22, DNP23, DYM20, DW20, DMRB20, FSB+20, GRT18, GRT21, GDK23, HM21a, HKKS21, HKS23, HQ20, KKM21, KCM22, LCH20, LLL21, LZZ21a, LHA+21, LZY+22b, LA21, Mon21, OWNN22, OSI20, PWH+22, PAGJ23, RS23a, RS20b, RIC+22, SL22a, Tak23, TPA22, TEA+23, VCPGR20, WK20, WLM+20, WCZ+20, WSS22, YI23, YWL21, YZZZ22, aKAK20]. **fast-converging** [LZY+22b].
fitting [CRPB20, DHM21a, SI22]. FitzHugh [WCF21]. five
[HLL23, ZC23]. five-equation [HLL23, ZC23]. Fixed
[DEB21, BBC21, LZZ21a, LHT21, LL23b, MNG'22, MD22, YS22].
fixed-point [LZZ21a, LL23b, MNG'22]. flash [FCWS22, LYS22a, ZYZ'23].
flat [DW20b, ZDT23]. flexible
[HYSS22, KWR'23, KCT'23, LGY'20, LFA21, TF20, VSS21].
flexible-body [KWR'23]. flight [KSK21]. floating [LSW20, ZTS20]. floes
[ZMZY23]. flood [JADS21]. flooding [ZLC'20]. Floquet [GLT'20]. Flow
[EPL21, HSG'22, WCA'20, ARC22, ARR23, ALMF23, ABH21, ADMT21,
AJP22, AJP22, AK22, AP22, BVRS22, BBV23, BCPV21, BKM'20, BKM'21,
BJ'22, BE20, BX20, BR'22b, CL21, CFSH20, CZZ21, CCM'22,
CDT22b, CMH20, CHS20a, CH21, Che23, CLS20b, CYS22, CYS22,
CSF23, CPGD21, CSLC21, CLP22, CELV21, CF22, CBC'23, CMNS21,
CPBB21, CV23, CMRR21, CCW20, DSBFN'20, DS20, DG23, DLY22,
DGPP22, DFJ20, DJID20, DTB20, EFS'20, EPL22, EK21, FTP20, FSWA22,
FS21, GN223, GBGT20, GU20, GSFH22, GZ20b, GMNY23, GQ'22,
GW22, HD20, HSW21, HKS20, HTL21, HHH'21, HP21a, HM21b, HZ22a,
HJQ'23, IKP22, JHT23, JY21, JL21b, JTT23, JP23, JD23, JCL21,
JR22, KLA23, KSS21, KS21a, KS11, KSH20, KCT'23, KWDS22, KWCS23,
KDB'20, KKY'21, KJ22, KLPR20, LZT'23, LW21]. flow
[LPL'22, LYL20, LLW20a, LT21, LW22b, LGMV22, LYS22a, LH222,
LW22a, LLP23, LXS23, LHT21, LMB20, LZ20, LMZ21b, LCWH23,
LMK21, LW20b, LCDS23, MR22, MLM'21, MSK'22, MZC'22, MSIM21,
MYY'23, MD20c, MD22, MS20b, NFA21, NAZ22, PSL20, PPV'21, PS22a,
PBN'21, PAA23, PLL'21, PLV20, PSM20, PBV22, PGMT23, RS32a,
RH22, Re22, RKV20, San20, SH21, SMK23, SBC20, SWG'20,
SGW'23, SS23, SRF21, SAL'20, SLF23b, Si20, SI22, TLD20, TV'22,
TKGB23, TH23, UI20, VACE21, Vre17, Vre20, Vre21b, Vre21a, WL20,
WCL'20, WNB21, WCM'21, Wan22, WC22, WH22b, WC22, WLS22,
WZBV20, WGY'21, WK21b, XF21a, XCL'21, XZRW21, XHY23, XMZ'23,
YHC'22, Yan21c, YA21, VRHN22, YH22a, YHK20, YL21b, YKFH23, YP'22,
ZCZ20, ZL21a, ZHPZ21, ZPW'23, ZJ21, ZLB22, ZJSX23, ZZ20, ZF'20,
ZD21, ZSN22, vHP22, vdEW23]. flow-acoustic [EK21]. flow-coupled
[Yan21c]. Flow-driven [EPL21, EPL22]. flow-finite [ZJ21]. flow-induced
[FTP20, ZHP21]. flow/porous [SWG'20]. flow/porous-medium
[SWG'20]. flowfield [LHW'23]. flowfields [MHWY21]. flows
[ARTB20, AF20, AKWY20, ASVL23, BAT23, BL22a, BDB22, BDB23,
BB20a, BV20, BB21, BBD'20, BL21a, BDWC3, BDF'23, BDMP22,
BSV22, BFNK'21, BB21, BSYZ'23, BMQ20, BDMT22, RFC23, Cal21,
CCPS21, CCPS23, CAF'22, CPX22, CSS20, Cha23, CDLX23, CZL20,
CLJ'20, CDM'21, CW22b, CAT20, CBB20, CL21a, CI21b, Cha23, CRF'21,
CBB22, CCMC20, CsdP'22, DVS22, DA23, DCHF21, DDVO21, DV23b,
DSDP22, DwJ22, DSeW20, DC21, DJ20, DPX23, DS21, DY22d,
DOL23, EGTC'21, EM20, Eld22, EAA'22, EFO19, EFO20, EG23,
40

Formulations

Formulations [TLWM20, DY22c, FMT23, GS23, KGN22, LL21a, LJJK21, Mar20, RWDABG23, TBD+20]. Forward [CCMC20, BS22b, BJW20, CZ22a, CY22a, CCB22, FCY+20, GGM+23, GWZ22, LG20, LWZ22, LMK21, PMS23, RR22, VAK+23, YMK21, YNDH22, ZZG23]. forward-backward [CY22a, LG20]. foundation [KNG22, KGN22]. Foundations [BL21b].

Forward [CCMC20, BS22b, BJW20, CZ22a, CY22a, CCB22, FCY+20, GGM+23, GWZ22, LG20, LWZ22, LMK21, PMS23, RR22, VAK+23, YMK21, YNDH22, ZZG23].

fourth [FZ20b, GU20, HCL20, HSW22, JRD22, LZ22a, MZ22, OGG20, RZ23, XY20a, Yin21, ZLW+22a, vHP22].

fourth-order [HCL20, LZ22a, MZ22, OGG20, XY20a, Yin21, ZLW+22a, vHP22].

fractional-step [BHNS23, SW23, PSM20].

fractions [KLB23, KB23].

fracture [BBV23, BVVS22, BDMP22, Che23, Da22, DAJ22, HS+22, KSW22, ND20, NLZ+22, POS+20, SBV20, WY22a, WY22b, XY20b, XHY23, ZA21, ZHPZ21].

fractured-porous [PPV+21].

fracturing [BR22b].

fredholm [HJ22]. free [ADK+21, ABH21, ASG+23, BRZ+23, CDL21, CGJM21, CKN22a, CCDS20, CMNS21, DLY23, DW20b, EFR21, ELSV22, Fu20, GQF23, GMS22, GDB23, HNS20, HYM20, HT21b, IXXL23, JKZS21, JRY+20, JZ21, KTB20, KSH22, LYTZ23, LL21a, Lév22, LZZ2a, LF23, LM20b, LZLS21, LMZ+21a, MZ22, MRK+20c, MSK+22, NMR+21, OY21, PH22, PLKM22, Pop20, SL20a, SBH21, SMK23, SWG+20, SGW+23, SCS22, SHM+23a, SY21, T0h23, WZ20, WP21, WDS22, XY20a, YKLL21, YYJ+23, ZYL23a, ZZHZ23, vEWE23, PRKS23].

free-boundary [EFR21, MZ22].

free-energy [MRK+20c, NMR+21].

free-surface [GQF23, HXQL23, JKZS21, LYTZ23, LMZ+21a, MSK+22]
Pop20, SHM$^{+23}$, YYJ$^{+23}$, ZYL$^{+23}$, vdEW23]. freedom [PZZ$^{+23}$].

freezing [LWL$^{+21}$, SDP20]. frequencies [FGK23]. Frequency [vHG$^{+22}$, Ani21, CBF22, EJ32b, GLT$^{+20}$, HHK$^{+23}$, ILX22, JLI21a, KP23a, KF23, LE21b, LL23b, MGA20, SH22, SZ21, TBM22, TZNHD20, XSC21, YCC$^{+22}$, ZSST23]. frequency-dependent [XSC21, ZSST23].

frequency-domain [KP23a, TBM22]. Frequency-robust [vHG$^{+22}$].

freezing [LWZ$^{+21}$, SDP20]. frequencies [FCG23]. Frequency [vHG$^{+22}$, Ani21, CBF22, EJ32b, GLT$^{+20}$, HHK$^{+23}$, ILX22, JLI21a, KP23a, KF23, LE21b, LL23b, MGA20, SH22, SZ21, TBM22, TZNHD20, XSC21, YCC$^{+22}$, ZSST23]. frequency-dependent [XSC21, ZSST23].

frequency-domain [KP23a, TBM22]. Frequency-robust [vHG$^{+22}$].

frequency-domain [KP23a, TBM22]. Frequency-robust [vHG$^{+22}$].

freezing [LWZ$^{+21}$, SDP20]. frequencies [FCG23]. Frequency [vHG$^{+22}$, Ani21, CBF22, EJ32b, GLT$^{+20}$, HHK$^{+23}$, ILX22, JLI21a, KP23a, KF23, LE21b, LL23b, MGA20, SH22, SZ21, TBM22, TZNHD20, XSC21, YCC$^{+22}$, ZSST23]. frequency-dependent [XSC21, ZSST23].

frequency-domain [KP23a, TBM22]. Frequency-robust [vHG$^{+22}$].

freezing [LWZ$^{+21}$, SDP20]. frequencies [FCG23]. Frequency [vHG$^{+22}$, Ani21, CBF22, EJ32b, GLT$^{+20}$, HHK$^{+23}$, ILX22, JLI21a, KP23a, KF23, LE21b, LL23b, MGA20, SH22, SZ21, TBM22, TZNHD20, XSC21, YCC$^{+22}$, ZSST23]. frequency-dependent [XSC21, ZSST23].

frequency-domain [KP23a, TBM22]. Frequency-robust [vHG$^{+22}$].

friction [CFS$^{+22}$, GBLT20, WWYC21, YYX21]. frictional [BDMP22, MCT21].

Friedrichs [OKTD21]. friendly [BZC$^{+22}$]. front [BTCV22, GEWD22, GHE$^{+23}$, HW23, IKP22, TZ21, FO22].

front-tracking [BTCV22, HW23, IKP22, FO22]. fronts [CNB$^{+23}$, Liu21].

FT [GB22]. FT-GCR [GB22]. Fuchsian [BL21a]. Full [AN21b, EEG22, AT20, AL21, BS20, DKM$^{+20}$, DW21, Dup21, LMHL21, MB20, QCWC23, TZNHD20, YWN20]. full-body [QCWC23].

full-field [YWN20]. full-potential [Dup21]. full-range [MCBA20].

Full-waveform [AN21b, AL21]. Fully [CK21, FTC23, LYM$^{+22}$a, LLK20, TBM22, VAK$^{+23}$, WZSC22, YH22a, Abg20, AT20, ATCS20, BB20a, BGGM22, BKON23, CY22b, CYS22, CKLM$^{+23}$, CEB22, CMS$^{+22}$b, DDVO21, FCWS22, GBLT20, GNF22, HHS22, LSS20, LTD$^{+21}$, LTE23, LL20, LTT21, MJ23, PP22b, PMTP23, QCWC23, RM32, RR22, SM21a, SRTB21, TCK$^{+22}$, TH23, VM2021, Yan21c, YTK22, ZA21, ZHY22, ZSST23].

fully-decoupled [CY22b, Yan21c]. fully-discrete [HWS22]. fully-implicit [TH23]. fully-ionized [CMS$^{+22}$b]. Function [BB21, BB23a, CTJ$^{+20}$, CL20c, DYMC20, DFJ20, GMB$^{+22}$, GKR22, GKN23, HZT21, HY20, JYY22, KLN20, KL22, LSC20a, LLL23, LYS$^{+22}$b, MGL21, MK20, ST22, TVL$^{+22}$, TYPX22, WCC23, YDC22, ZCH22, ZCY20]. function-based [LYS$^{+22}$b, ZCS20]. functional [AFL22, BGSP22, LRV22, MYM$^{+22}$, RPDO$^{+21}$, TMG20, GKV21, WZ21a, YB22].

functional [ZOWW20]. functionals [CX22a]. functions [ABBG23, Bar21a, BFL20, CCL22, CCM$^{+22}$, CHKL23, DN21, DW20b, FZS$^{+21}$, FLL$^{+23}$, FL23a, GJL20, GD21, Gac21, JKK20, KKN20, KEY20, KB22b, LCL22a, Li22, MO22, Per23, PCL$^{+21}$, PRPK23, PKK22, WQZP20, WSAZ22, WGH23, WWZ20], fusion [BS22b, PGR$^{+23}$].

fusion [BB22b, NCQ22, PWH$^{+22}$]. FV [BB22b, NCQ22, PWH$^{+22}$]. FV/FE [BB22b].

Galerkin [LMF22, ZCQ20a, ADK$^{+21}$, AdS22, AÖR22, ARR23, ALM23, AMM$^{+20}$b, AM20a, ADM22, AM22, AH20, AMM23, BL22a, Bal20, Bal21, BRT22, BZS20, BCF22, BGGM21, BKY21, BWG$^{+20}$, BBMA23, BNN20, BDP23, BV22, BX20, CHS20, CQY21, CBQ21, CWW22, CK20, CLW22, CLDC20, CTG23, Che23, CZL20, CKLM$^{+23}$, CBB20, CI21a, CI21b, CX22a, CX22b, CBB22, CCR23, CMRR21, DEN22, DY22a, DCMQ20, DH20, DHJ20, DY22c, DY22d, DSZ22, DT20, DK21, EM20, EH22b, FMM20, FH21, FGK22, FCL21, FX22, FCY$^{+20}$, GQR21, GK20, GAB22b, GC20b, GAC20, GHTC21, GLLM22, Hac21, HMV22, HYY20, HTL21, Hex21, Hig20, Hig22, HSM20, HQ22, HR20, HLY20, HAB23, HLEQ23, JTW22,
Galerkin [LSZ21, LMFV22a, LAN21, MSC +20, MYJ +23, MN21, MRK +20a, MRK +20b, MRK +20c, Mar20, MOBR22, MGV22, MPZ23, MAPS20, NdILPL21, NMR +21, NMR +22, PP22a, PKG20, PZ20, PR23, PBN +21, PH21, PS22b, PD21, PBB23, QJL23, QLY21, RMD20, Ran23, RWdBAG23, RBD +21, RRHH +21, RRKF +21, SSK20, SLWRG21, SL20b, SL22b, SMAY22, SCdHJ20, SJGC21, SKCM22, SP22, SX20, SX22, TCS22, TCR +20, TH23, VCN +21, VCCN +23, WRH20, WTX +21, WR23a, WKW +22, WZL21, XSSS22, XS22a, XS22b, XS23, YXY21, YX22, YK20b, YKHF23, YH22b, Yua21, ZSP20, ZB21b, ZS22a, ZCQ19, ZCL20, ZZ20, ZQ520, ZYD20, dLF23, vGAtTBI23].

Galerkin-Finite [LSZ21, LMFV22b, LAN21, MSC +20, MYJ +23, MN21, MRK +20a, MRK +20b, MRK +20c, Mar20, MOBR22, MGV22, MPZ23, MAPS20, NdILPL21, NMR +21, NMR +22, PP22a, PKG20, PZ20, PR23, PBN +21, PH21, PS22b, PD21, PBB23, QJL23, QLY21, RMD20, Ran23, RWdBAG23, RBD +21, RRHH +21, RRKF +21, SSK20, SLWRG21, SL20b, SL22b, SMAY22, SCdHJ20, SJGC21, SKCM22, SP22, SX20, SX22, TCS22, TCR +20, TH23, VCN +21, VCCN +23, WRH20, WTX +21, WR23a, WKW +22, WZL21, XSSS22, XS22a, XS22b, XS23, YXY21, YX22, YK20b, YKHF23, YH22b, Yua21, ZSP20, ZB21b, ZS22a, ZCQ19, ZCL20, ZZ20, ZQ520, ZYD20, dLF23, vGAtTBI23].

Galerkin/Hermite [BCF22]. Galilean [LM21a].

Gaussian [HXZ23, ABOS22, BKY21, BGH21, C23, CL20b, CHOS21, CCN21, D20, HRMY20, IT22, JLRZ20, LT20a, MY23, MRT +22, MYZ22, STG20, STB +21, WLPF20, WSA22, XCL22, XZMK21]. GBS [GRC +22]. GCR [GB22b].

GDM [BBH +20]. Gegenbauer [FA22, KYO22].

GEGS4 [WMTQ20].

GEGS4-1 [WMTQ20].

General [CD22, SOSM20, ZPS +21, AT20, ASW21, ACÉ +22, Ara20, BD20a, CS20, DGLL22, GYWH20, GKNÖ23, GKA22, HK20, KAO +20, Lem20, LHS22a, LHA +21, NNL +20, PGTS21, RBPRST20, Sha21, TT22b, YS23, ZML20, ZW22, ZZ20].

generalised [PHHJ22, PB22, Poe22, Poe23, SPF21, TGS +22, WDK22].

generalizable [ZXLH23].

generalisation [GCSH22, RR21b].

Generalized [AEGV22, CGC21, CCHS20a, DJ22, DJ23, Kan20, LLO21, Nik23, WTX +21, ZS21a, BCG +20, CSM20, CX21, CHF21, CNC21, CPA +23, DCHF21, DC21, DS22b, EAK20, FCMB20, FZ21, GB22b, GGEJ20, GLLB20, GDF21, HVD23,
generate [DBD21].

generated [AWB20, LX21, NTSM20, TVL+22, TSS+20, WXZ22].

generating [CP22b]. Generation [KKN20, ADM+21, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCN+21, WVN+22, YJK21, YKdHC20].

generator [PWXY22]. Generic [HLL23, ADJ23, HX23, KKN20, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCN+21, WVN+22, YJK21, YKdHC20].

Geometrical
[BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZZN22, vGAtTBI23]. geometries

[AZV23, BLK+23, BG20c, CCM+22, Chi23, CLP21, DFW22, GAB22b, GFF20, HST22a, JHY21, KM22b, LLN22, MBE21, MRZ21, RKA+23, SV23, SRTB21, SY21, Ste22, TB21, WZBV20, XLS22, YGL20, YB22, ZG21].

generate [DBD21].

generically [QSZB20, ZQS+21, ZQ+22].

generative [GN22, KS22d, RK21, WW20a, WD23, WKA+20, ZJ22].

genetic [XCZ20].

GenMod [WD23].

generation [KKN20, ADM+21, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCN+21, WVN+22, YJK21, YKdHC20].

Geometric
[BKMC21, DZJ22].

Geometrical
[BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZZN22, vGAtTBI23]. geometries

[AZV23, BLK+23, BG20c, CCM+22, Chi23, CLP21, DFW22, GAB22b, GFF20, HST22a, JHY21, KM22b, LLN22, MBE21, MRZ21, RKA+23, SV23, SRTB21, SY21, Ste22, TB21, WZBV20, XLS22, YGL20, YB22, ZG21].

generate [DBD21].

generically [QSZB20, ZQS+21, ZQ+22].

generative [GN22, KS22d, RK21, WW20a, WD23, WKA+20, ZJ22].

genetic [XCZ20].

GenMod [WD23].

generation [KKN20, ADM+21, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCN+21, WVN+22, YJK21, YKdHC20].

Geometric
[BKMC21, DZJ22].

Geometrical
[BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZZN22, vGAtTBI23]. geometries

[AZV23, BLK+23, BG20c, CCM+22, Chi23, CLP21, DFW22, GAB22b, GFF20, HST22a, JHY21, KM22b, LLN22, MBE21, MRZ21, RKA+23, SV23, SRTB21, SY21, Ste22, TB21, WZBV20, XLS22, YGL20, YB22, ZG21].

generate [DBD21].

generically [QSZB20, ZQS+21, ZQ+22].

generative [GN22, KS22d, RK21, WW20a, WD23, WKA+20, ZJ22].

genetic [XCZ20].

GenMod [WD23].

generation [KKN20, ADM+21, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCN+21, WVN+22, YJK21, YKdHC20].

Geometric
[BKMC21, DZJ22].

Geometrical
[BMV22, HCL22, FMB20, LBN21, MKB20, PL20, ZZN22, vGAtTBI23]. geometries

[AZV23, BLK+23, BG20c, CCM+22, Chi23, CLP21, DFW22, GAB22b, GFF20, HST22a, JHY21, KM22b, LLN22, MBE21, MRZ21, RKA+23, SV23, SRTB21, SY21, Ste22, TB21, WZBV20, XLS22, YGL20, YB22, ZG21].

generate [DBD21].

generically [QSZB20, ZQS+21, ZQ+22].

generative [GN22, KS22d, RK21, WW20a, WD23, WKA+20, ZJ22].

genetic [XCZ20].

GenMod [WD23].

generation [KKN20, ADM+21, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCN+21, WVN+22, YJK21, YKdHC20].

Geometric
Gradient-based \(CBA^+20, Cha23, CDZ23, GWC^+22, KNS21, YHC^+22 \).
Gradient-consistent \(HW20a \).
Gradient-index \(SML20 \).
Gradients \(NW20, WH22a \).
Grained \(BT21, RK21 \).
Graining \(CPX21, KK20a \).
Granular \(BFNK^+21, EM20, LY20a, YYJ^+23 \).
Graph \(FBD^+22, HTKT21, BZ23, CCPS21, PGS22 \).
Graph-based \(FBD^+22 \).
Graph-Informed \(HTKT21 \).
Graphene \(SML20 \).
Graphics \(BEP^+20, THH22 \).
Grassmann \(OA21 \).
Grating \(PM22b, PLM23a \).
Gratings \(CEW23 \).
Gravitation \(SLWRG21 \).
Gravitational \(GGH^+23, JTW22, LG21 \).
Gravity \(AFV20, DDVO21, MFRZ22, TPK20, WKW^+22 \).
Green \(BB21, BB23a, GKPT22, RHSK21, TGM23, VGK21, BFL20, CCM^+22, DBT^+20, DYM20, GMB^+22, GKR22, GD21, Mar20, MGL21, NNM23, RB22, TPYX22, YDC22 \).
Grid \(CB23, KFSM21, AWB^+20, AWB^+21, BV20, BNP^+22, BCR22, Cam21, CPT23, CSM23, CLP21, DZJ22, DFG^+23, DNO23, DC22b, FAHA20, GCLM22, GCD22, GS21, GHTC21, HdB20, tH22, KN22, KGN22, LFP^+21, LW22a, MH22b, MMZZ22, OLP23, PS22b, PO21, PGTS21, PRPK23, QPW21, RS20b, SL20a, SWG^+20, SGW^+23, SGT23, SC22d, TJ21, TM23, USRH20, Vre17, Vre20, Vre21b, Vre21a, ZLW22b \).
grid-aligned \(BV20, FAHA20 \).
Grid-characteristic \(KFSM21 \).
grid-free \(SL20a \).
Grid-point \(CB23 \).
grid-robust \(USRH20 \).
grids \(AAH^+20, AD20, ADM22, AM22, BHNS23, Bar21b, BCIT22, BR23, BG20b, BDF^+23, BLM22, BST23, CDBS21, CZLC22, CDX^+21, CW22b, CTC22, CQA21, CIM21, CPBB21, CA22b, DDR22, DVS22, DSS20, DLY22, DW20a, EGTC^+21, Eld22, ELV22, FL21, GAB^+22a, Hack21, HRWP22, HX23, JGM^+22, KKN20, KIHB21, KML23, KR23, KK21, LKM22, LL23a, LD20a, LWR20, LP23a, LCN20, LSZY20, Lin21, LYS^+22b, LSY^+23, LEH^+21, LLCK20, MK21, MDF21, NNM23, NW20, Nis20a, Nis20b, Nis21, Nis22b, NW23, NA21, OP20, PA21, PGP^+23, RE20, SGB^+21a, SCS22, SEG21b, SEG22, SC22c, SF22, VPDD22, WY22a, WY22b, XJN^+20, XDLX21, XHH22, ZB21a, ZCY23, ZCL20, ZPW^+23, ZL22 \).
Gross \(FJ21, FII22, AAT21, BSZ^+23, FZLL20, HSW21, Lak20 \).
ground \(CL21, CDLX23, DZJ22, GD21, LWY^+20, Wan22, ZCH22 \).
group \(JWH20, YB22, ZST23 \).
group-IV \(YB22 \).
grouping \(ASBM20, FZS^+21 \).
grouping-circular-based \(FZS^+21 \).
growth \(FH23, GPL22, HX21, HXL^+22 \).
GRP \(LZ22b, LFW23 \).
Grüneisen \(LZR22a \).
Grüneisen-type \(LZS22a \).
guaranteed \(YD20 \).
guess \(VdGP20 \).
guided \(ACD23, CHZ^+21, WCZ22, XZR21 \).
guidelines \(GDF21 \).
guideposts \(LCC^+23b \).
guiding \(AKK20, LAT^+22, PK20 \).
guiding-center \(AKK20 \).
Gummel \(Kan20, NBR22 \).
Gummel-based \(NBR22 \).
Gurtin \(XLHB22 \).
gyrokinetic \(MND^+20, SOBP22, SC22d \).
gyroscopic
[EJ23a, EJV22].

H [Pan20b, KRL21]. h-adaptive [KRL21]. Hagedorn [GR21]. half
[GJL20, BDFT23]. Half-Space [BDFT23]. Hall [LHF23, MH22b].
Hamilton [CSY20, DM21, FPT20, GHTC21, KNT22, RB22]. Hamiltonian
[BDZ23, BRS22, CS20, CHSS20, DCS23, GHS22, HHLS22, Hua21, LLZ23a,
MPMD20, SDKL21, SX20, TJ22, TXH+21, ZQYS20]. Hancock [TYC23].
hand [HJ22]. Handling [TPB22, XMY22]. hard
[CHS+21]. hardness
[IL23]. hardware [HM21b]. harmonic
[AHG21, DW20a, DV22, LE21b, MDG20, VCNC+21, RB21]. Harmonics
[EDC+23, Gar20, Gar21, LS22, SL20a]. harmonics-based
[SL20a]. Harten
[Ran22]. HCP [CHS+21]. HDG [Fu20, KGBT20, Mar20, MBTS20, Sev21].
HDG-DG [KGBT20]. HEALPix [DW20a]. heart
[DVV22, DFP+21a]. Heat
[CL23b, ADK+21, CLS+20a, CL20d, CNCM21, HGV+21, HRG20,
ID20, KS21d, LCS22, LYS+22b, OCGT22, TFCH22, WZCK21, WLL+23,
XC23b, ZSZ23, ZYL23a]. heated
[MCBA20]. Hedging
[OGVM22]. height
[HZTN21, HPS23, KRG+23]. height-coordinate
[KRG+23]. Hele
[CY22b]. Helfrich
[NSS23]. Helicity
[HLX21, GGB22, LHF23, ZPGR22].
Helicity-conservative
[HLX21]. helicity-conserving
[LHF23, ZPGR22]. heliosphere
[IK23a]. Helmholtz
[BRT22, BNT23, CE21, CCM+22,
DMRG22, DZ22, FJH20, FCL21, GKRS22, JL21a, JWH20, LJ22, MBAG21,
SML20, SACT21, TZND20, TBC20, WCZ+20, YRC+21, YCG+22].
Helmholtz-curl
[YRC+21]. hemodynamic
[AP20, HSXZ21]. hemodynamics
[BCPV21, QCWC23]. Hermite
[GLL22, BCF22,
BNP+22, FZ21, LRW21a, LLWX22, PDM23, ZCQ20b, ZQ20, ZZ23c].
Hessian
[LL21a, WDL21b]. Hessian-free
[LL21a]. heterogeneities
[ScdHJ20]. heterogeneous
[AFV20, AYH+21, ASJ23, BMQ20, CFH20,
Coa22, DT22a, DGS20, FTY+22, FTPB23, FCL21, FP23, GTDB22, GC20b,
JGR22, KNLB21, LN23, LH21, MW22, MD22, SMW+22, TM22, WL20,
WSAZ22, YSCM21, ZYL+23b, dSLdA+22]. HEVI
[Bal21]. hexahedral
[GHY2a, KRL21]. hexahedrons
[ML20]. Heydari
[Pan20b]. hidden
[HYZH22]. Hierarchical
[KV23a, LSL20, BFS23, ESJ23, HRG20, LY20b, PRPK23, RV20, TPXY22, XHC22, ZTS20]. hierarchically
[WCN+21]. hierarchies
[PH22]. Higgs
[PMMD20]. High
[BGH20, BKC23, BG20a, BD20a, BP21, CBQ21, CPX22, CF21, CWX23,
CSS20, CPGD21, DT22a, DY22d, DT20, DT21b, DT22c, FHWK21, FLOL23,
FOL23, FL23b, GBC+20, GCĐT2, GGH+23, GLY20, HPPZ20, HLY20,
HRWP22, HXX22, HJQ+23, KS22c, KS22b, KLN20, KL22, KKSY21, KK21,
LCL22a, LJW+22, LVK+22, LCS22, LD20a, LH20, LRAQ22, LS+23,
NFL+21a, NFL+21b, NBR22, NKW22, PZX20, Pan20a, PB22b, PBN+21,
PSCK23, PGMTP23, PPB23, RMWS21, Say22, SBL22, SST+23, VBA22,
WLH21, XBH+22, XSSS22, XS22a, XMO20, YU22, YYY21, ZEG21, ZCQ19,
ZCQ20a, ZX22, ZDT23, ZQS20, ARTB20, AP23, ASG+23, ALFN22,
ASKH21, ADP22, AFP22, AP20, AH21, AZV23, AMM+20b, BCWD21,
dMKJ+22, IW23, JZSX20, KBB21, KLF22, KdMJ+22, KJdM+22, KF23, KD20, KdL20, KV23c, LCJ20a, Li20, LLQC21, LCR22, LLZ23a, LLQ+23.

high-order
[LRW21b, LM20a, LS23, LYS+22b, LsCxL+20, LZCC22, MHW22, MGA20, Mon21, NS22, Nic22, NGK+21, PWL+23, PPP21, PM21b, PS22b, PD21, QG21, RUG20, Ren21, SMSAGG22, SEG21b, SEG22, SRV21, SWF21, SAP22, SS22c, TFWX22, TCJ21, VVRWT21, WGY20, WTX+21, WTK22, WC23, WAK21, WZBV20, XDLX21, XBL21, XHLH23, YS22, YJSX22, YOH+20, ZSP20, ZCY23, ZML20, ZL21a, ZC23, ZJSX22, ZJSX23, Der23].

high-order/low-order [PM21b].

high-plasma-frequency [SZ21].

high-resolution [HKS20, KIHB21, PAA23].

high-Reynolds-number [YLW21].

high-speed [DLM+23, HBFB20, HZ22b, NKA+20, ZBY+23].

high-throughput [ZO21].

Higher [ASVL23, BBW+21, VVL21, VK22, YGL20, ZF20, BL20, CS22, DLM+23, HBFB20, HZ22b, NKA+20, ZBY+23].

Higher-order [ASVL23, BBW+21, VVL21, VK22, YGL20, ZF20, BL20, CS22, DLM+23, HBFB20, HZ22b, NKA+20, ZBY+23].

Hilliard [GLT+20].

Hilliard-extended-Darcy [LYZW21].

HLL [FLW20b, LFW23].

HLL-GRP [LFW23].

HLLC [CLJ+20, FAA20, HKS20, LZS22b, YJSX22].

HLLCEPJ [Ser23].

HLLD [MM21b].

HLLE [LLS20].

HLLE-type [LLS20].

HLLEM [HYZ22].

HLLEPJ [Ser23].

HMC [CSASS21]. hoc [LD22].

hollow [KKM21].

HOLO [PM21b]. homogeneous [GR21, HQ20, PZ20, TB23, WZW21, YSC23]. homogenisation [FBD+22, FTPB23].

Homogenization [HL20b, LJ20, BBPR21, CEL+20, EI23, GDAP20, LLZ22, LLF+22, MBDS23, PLM23a, YSCM21].

homogenization-based [LLZ22]. homogenized [PZ22, ZOG21a].

homotopy [JWH20].

HOMP [DC21].

Horizontal [GS21]. horizontally [Bal21, LP21].

Hosseininia [Pan20b].

hourglass [SLQW22].

hp [MFS+22, RMD20, DS23b, MAPS20].

hp-adaptation [RMD20].

human [DVW22, DFP+21a].

Huygens [WR23c].

HWENO [JZSX20, LS21, LRA22, ZZ23b].

Hybrid [BD11+23, FMWK20, HA21, MYJ+23, MFK21, ZS21b, AdDMT21, ASJ23, BFG22, BB+20, CZ23, Che23, CNC21, CLM22, CCH20, DR20, ELLZ22, FZQ21, FGK22, FJ21, FLW20b, GTDB22, GQR23, HPH+23, HL22b, HPRW20, HPW21b, HSB20, Ish22, Jai22c, JRD22, KK22a, LCG22b, LSW20,

hybrid-dimensional [AdDMT21, Che23, XHY23]. **hybrid-unstructured** [Ja22c]. **hybridised** [BGGM21]. **Hybridizable** [Mar20, CX22a, VCCN$^+$21, VCCN$^+$23]. **hybridization** [OGVM20]. **hybridization-based** [OGVM20]. **hydrate** [TZ20]. **hydrate** [BGSP22, ND20, Ul20]. **hydraulically** [FGF22]. **hydraulic** [BGSP22, ND20, Uil20]. **hydro** [GN23b, RHR20]. **hydro-mechanical** [RHR20]. **Hydrodynamic** [EK21, NTSM20, WS22, GTKA20, HP22a, HGZ23, Ish22, XHC22, ZTS20]. **Hydrodynamic/acoustic** [EK21]. **hydrodynamically** [BST23, Yan21b]. **hydrodynamics** [BOB21b, BOB21a, BTL23, CKT21, CW22a, CSS20, CVM23, CIMG21, DT21a, DT22c, FGZ20, GLF23, HNF$^+$21, Iij21, KKS21a, KKS21b, LMZ$^+$21a, LM21c, MGP$^+$22, MTK22, ME22, NKW22, OYK$^+$22, PWL$^+$23, QPW21, QJQW22, RPA22, RRHC23, SDA$^+$21, XLHB22, XZC21, YKLL21, YTK22, YR22, ZRH20, ZSY22, ZBY$^+$23, ZAA23, BZC$^+$22, QSWS23, HP21a, KEY20, LPMZ22, LFL$^+$22]. **hydrodynamics/radiation** [LM21c]. **hydrodynamics/radiation-moment** [LM21c]. **hydroelastic** [ZSL$^+$23]. **hydrogel** [LZX$^+$22a]. **hydrogenic** [HSB20]. **hydrostatic** [CN22, GMMS22, Lee21, LP21, Pop20, RWdBAG23]. **hyper** [CGJM21, CJW22, HSH20, ZXY22]. **hyper-parameter** [HSH20]. **hyper-reduced** [CJW22]. **hyper-singular** [XY22]. **Hyperbolic** [GKPT22, Yc20, Yc20, BKC22, BB20c, BL22b, CEMO21, CPD21, CEM20, DB22b, DJW22, DZ22, GCLM22, GKL21, GS23, GPS20, HV23, HNH$^+$21, HJZ23, HJT23, K21, KNG22, KNG22, KMF20, KWF20, KdL20, LZZ21a, LSQ21, LLNL21, Lin21, LD20, LsCgL$^+$20, LA21, LSTZ21, LpW21, MD20a, MN21, Mar23, MYM$^+$21, Nic22, Nis20b, Nis21, NG20, PUMT$^+$22, PGCC$^+$22, SSK20, SLWR22, SGB$^+$21b, SAP22, TFWX22, TSTH20, VVL21, XS22a, XS22b, XS23, XGQ$^+$23, XM20, ZY22, ZH20, ZCQ20b, ZQ20, ZWQ23]. **Hyperbolicity** [DEN22]. **Hyperbolicity-preserving** [DEN22]. **hyperelastic** [BV22, LQXM22]. **hyperelasticity** [BLM22, FB22, TCR$^+$20]. **hyperparameter** [DY22b]. **hyperreduction** [DY22c, WZ23a]. **hypersonic** [BE$^+$20, CCMC20, FCW21, PSCK23, PPB23]. **hypersonics** [MLM$^+$21]. **hyperviscous** [LCP21a]. **hysteresis** [LLD20, ZY20a]. **hysteretic** [YZ20].

IBM [LOL22, LWZ$^+$21]. **ice** [CPTR23, CFM22, HPH$^+$23, IL23, LGL23a, MK21, lsSML23, TTP22, ZMZY23]. **ice-sheet** [HPH$^+$23]. **icing** [ZSSC$^+$22]. **icosahedral** [CIMG21]. **ideal** [CS21a, CMS$^+$22b, DevW20, DT20, LZLS21, LFW23, MSC$^+$20, OBB22, RRHC23, WGS23, ZYD20]. **ideal-gas** [DevW20]. **Identification** [AP21, JP22, BSCG22, HCF$^+$23, KLP22, NCC21, ZL21d]. **identify**
Improvement [CHF21, IK23b, ALCZ20]. Improvements [CCH20, JG21].

Improving [Nis20a].

Improving [BW23, GDL23, HVB21, JZZ22, LGL23a, Sem21, VdGP20, BBDT21, OGG20, RGR21]. In-cell [PGCC+22].

in-nozzle [GPSMH20].

incorporated [MKHI20]. Incorporating [KK20a, Sin21].

indefinite [DV22]. independence [HZZ22a, KBB+20].

independent [Bat20a, CELV21, CELV22, OPHY23, YYYD+22]. index [HST22b, SML20, ZYY+23]. indicator [FL21, GS23, WW20]. indicators [FPT20, IW23, Vev21, WWLZ21, ZWQG23].

Ingard [WKK23].
homogeneities [CLY21, Par22].
homogeneous [CHZ22, JWH20, LT21, SYOS19, SYOS21, Ste22, TNB21, YCC+22, ZZW23].
initial [HXQL23, LH21, NNI21, Nor22a, RN23, VdGP20, WDH21].
initialisation [LHFH20].
initialization [KB23, ZGLL20].
initialized [HWY20].
initiation [PBO20].
inlet [HP21a, TSS23].
INN [WL22].
inner [IK23a, MLCM22, PR23].
inner-heliosphere [IK23a].
inpainting [ZZK20].
input [Ben23].
inputs [JLRZ20, LPZ22, TL20, WD23].
Insights [MFS22].
INSIM [LO23].
INSIM-BHP [LO23].
insoluble [FZ23].
inspired [AP23].
instabilities [ARR21, LBN21, NNL20, RS20a, SC22d].
instability [CCCH23, DLM+23, FAHA20, LK20, LLS20, MK20, SSS22].
instance [LW22a].
Instantaneous [BJR22, BPT+20].
insulators [BH23].
Int [HWY20].
Int-Deep [HWY20].
integrals [GK23, IRT22, Rec23, Th22, WGH23].
integrated [MYY+23].
Integrating [LAT+22, JLQY21, NS22, Suk23, YGJ21a, YGJ21b].
integration [AKK20, BR22a, BO22, BB20a, BZC+22, BTK22, CCN23, CPA+23, DSBF+20, GCVI22, GDB23, GPHAPR+22, GMA23, HSM20, HKJ21, Lep21, PC22, SDKL21, Sh21, Un21, VK22, WMTQ20, WP23, WDK22, YK20b].
integrations [HZB+21].
integrator [CEMO21, CCE+22, DSG+22, EPO20, GJL20, JWC20, KCCR22, LPP+20, Lee21, Li22, RC20a, TCA21, Ume23].
integrators [CBQ21, CC22a, CC22b, GRT18, GRT21, GFG22, GNV22, KSS21, Liu23, LCBW23, MHW21, MHW22, Miil23, MPPD21, WNB22, YGJ21a, YGJ21b].

integro [GW20, YNDH22].
integro-differential [GW20, YNDH22].
intelligence [HZB+21].
Intelligent [YJP23].
tensity [SDA+21].
tensity [Ste22].
tensity [TCA21].
ter [BFS23, SFP+20].
ter-particle [BFS23].
ter-phase [SFP+20].
teracting [BPT+20, DFJ22, JLL20, KLA23, KCK21, LHT21, WXZ22].
teractions [BFS23, HVB21, KBSF22, LCC+23a, MAP+20, OB20, PB20a,

J [Abg20, ACML20a, BLL20, EFO20, GRT21, HPA22, LMVF22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].
Jacobi [BCJM20, CSY20, DM21, FPT20, GHTC21, HA21, KNT22, LPP+20, MYL21, PKL+21]. Jacobian [CT22, GDB23, HBFB20, LL21a].
Josephson [GLJB20]. Journal [Pan20b]. JSC [DSA23]. July [Ano20f, Ano20r, Ano21f, Ano21r, Ano22f, Ano22r, Ano23e, Ano23p]. Jump [KMF23, BG20b, Cal21, CK21, CcdS20, MST23, WZW21]. jump-diffusion [MST23]. junctions [GLJB20]. June [Ano20g, Ano20s, Ano21g, Ano21s, Ano22g, Ano22s, Ano23f, Ano23q]. justification [BBL23].
k-exact [SEG21b]. Kac [DZC+23, YZdCNS21]. Kalliadasis [Abg20].
Kalman [MLCM22, BJ21, HST22b, HSS22, JL22, MLCM21, SSW22, ZMSX20].
Kelvin [Kan20]. Kernel [AB22, CL20d, CSY20, DLYZ23, CCP23, Cz23, DS22b, EMS+21, GW20, LBSR20, ILNZ21, NY21, WYP22, XY20a, YYD+22]. Kernel-Based
[CSY20, CL20d]. Kernel-free [DLYZ23, XY20a]. kernels
[ABOS22, CT21b, GP23, HQ20, KKN+22]. Kerr [HLH21, PBCL20].
Kerr-Debye [PBC+20]. kind [BB+22, HJ22, KS11, PSL20]. kinds
[HHLS22]. kinematics [MM21a].
Kernel-free [DLYZ23, XY20a]. kernels
[ABOS22, CT21b, GP23, HQ20, KKN+22]. Kerr [HLH21, PBCL20].
Kerr-Debye [PBC+20]. kind [BBO+22, HJ22, KS11, PSL20]. kinds
[HHLS22]. kinematics [MM21a]. kinetic
[AP21, ATCS20, BBC21, BR22a, BTZ22, BJ22, BM+23, CHS20, CPX21,
CPX22, Cap23, CDT22a, CB23, CBRY21a, CBRY21b, CV23, CEM20, DS23a,
DC23, Ed22, EFH21, GRR+22, GT21, HG20, HL22b, HPW21b, HS20,
HJJ20, JM22, JZSX20, KC20b, KV23a, KK21, LCJ20a, LL22a, LL22b, LL22c,
LL23, LZ20, LCL23, LZ23c, LKJL22, MP23, MR22, NKT21, NWM21, PZX20,
PZZ+23, PCQL20, PRPK23, SW21, SGM20, SL20b, SL22b, SSS20,
S+23, SAH+22, SC22b, TM23, T22, VVL21, W20, WCP23,
WLZ21, XLC20, Xia21, X21, X21a, XCL+21, YJSX22,
ZCYS20, ZL21b, ZPGR22, ZLW+22a, ZWL23, ZJSX22, ZG20, ZPS+21].
kinetic-diffusive [MRBS22].
kinetic-energy [DC23, KK21]. kinetic-energy-preserving [Edo22]. kinetic-fluid [BTZ22, HL22b].
kinetic-iclon [SC22b]. kinetics [AC23, KOM+22, KAC22].
kinetic-ion [SC22b]. kinetics [AC23, KOM+22, KAC22].
kinetic-
uid [BTZ22, HL22b].
Klions [GRT+21, GRT18]. Klein
[A22, CY23, GL22, JW20, NM21, SQ20, SZ21]. KNOSOS
[VCPGR20]. knowledge [CHZ+21]. knowledge-based [CHZ+21].
Knudsen [LSC+20c].
Kohn
[GMB+22, HXX23, TM20, VG21, ZNC21, ZH23]. Kolmogorov
[BF22, BFM23]. Koopman [KLF22, LJ21, LL21c, MR21, ZSM22].
Korteweg [DD22b, HKMR20, KMR23]. Kramers [NM21].
Kriging [CG21, FL20a, RB22, HS20]. Kronecker [CCE+22].
Krook
[FZL20, FJ21, FH22].
Krylov
[GRT21, GRT18, GDB23, KAC22, hSML23]. Kutta
[A23, AD22, AC23, BD20a, CB21, C+21, FY22, GMA23, JLY21,
KB20, KS21, KS22b, LNF20, M20, MYM+21, NC22, NS22,
NV22, SM22, SW23, SZQ23, VL20, VN21, Ver23, YXY21, ZQS20,
ZHR20, ZH20, ZQS20].
Kutta-Summation-By-Parts [LNF20].

[55]
WDS22, WZL21, XZC21, YM21, YL21b, ZA20, ZZZH23, ZXX23, ZYD20
Lagrangian-Lagrangian [HLA20a]. laminar
[DA23, GYF20, HV20, WK21b]. laminates [LLZL20]. Landau
[CCWX22a, CC20, HMXC23, LJJ23, LXD+20, LRW21a, SHS+20, YCH21, Z23a, ZOG21b]. landscape [YZZZ22, ZYZ23]. landslide
[FFGRLS+20]. lane [DMRB20]. Langevin
[DS22b, GLBH20, HL22b, LLZ20b]. LANS [BABD21]. LANS-[BABD21]. Laplace
[DHMT21, GD21]. Laplacian
[AD20, GLLM22, HZD21, HKKS21, LPG+20, PDPK20]. Large
[NMN23, PBO20, AP21, BNN20, BGY22, BCC+20, CCWX22a, CMH20, CJLL21, CC22b, CBA+21, CEBG22, CBC+23, DS22a, DFP+21a, DWZ23, DFW22, FVM22, FVM23, FBG20, FCL21, FLW+23, GQF23, HZHL22, HF23, HRWP22, HW23, KCT+23, KS21d, LM21a, LCP21a, LWY20, LTY23, LD20b, LWWH23, NNJ21, SOG+22, SMF20, SS22b, SS22d, TTSP21, WGS+20, WH22a, WLKR23, Wan23, WZ23a, WuG21, XBD20, YCH21, ZZ23a, ZOG21b]. large-convection
[DW22]. large-eddy
[AP21, CBA+21, DS22a, FVM22, FVM23, FLW+23, LWY20, TTSP21, WZ23a, ZO21]. laser
[LSC20b, Li23, MAP+20, TCA21]. Latent
[EDC+23, CPH+22, DCS23, HCF+23, LMS+22]. latitude [GS21]. Lattice
[GDF21, MYY+23]. Lattice-Boltzmann-finite
[AYH+21]. lattices [PAGJ23]. law
[HZY22, KDL23, MN21, MVO+22, PCA+23, SM21a, XHY23]. laws
[BKC22, BL22b, BB22, BB23, CMP+21, CMPR23, CJ21, Cha20, DLW22, FTZ22, GKL21, HMO+20, Hua21, KGN22, KWF20, KlL20, KV23c, LZZ21a, LSQ21, LCO22b, LLO23, LD20b, LQ23, LA21, LSTZ21, LP21, M23, MYM+21, MVO+22, MÜ23, PPP21, PD21, RBF+21, SSK20, SAP22, SLN21, TFWX22, WK+22, HS22b, YNT20, ZZ23b, ZHR20, ZCQ20b, ZQ20, ZBB21, ZWQ23]. Lax
[BKC22, DZ20, FLW20b, LSTZ21, XS22b]. layer [ACD23, ADM+21, CKLZ23, DA23, DSBN+20, DHMT21, GKD23, HBF20, Hig20, KSTT22, KKC20, LZX+22b, Liu21, MBM+22, MD20c, PPP23, XHLH23, YW22]. layered [FGD+21, NW22, WCZ+20, WZC21]. Layers
[MBAG21, CLT21, DR20, DLM+23, DZ22, DZ23, Eld22, Hig20, LGL23b].

mean-curvature \cite{LCG23}. mean-field
\cite{ALFN22, BPT+20, HYCL23, LLO22a, YLLO23}. measure \cite{MQ20, WXZ22}.
measurement \cite{KLP22, SNW23}. measurements
\cite{ABDD20, DGPP22, RLH22}. measures \cite{BJW20, HW20b, LKEM21}.
Measuring \cite{RGSR21}. mechanical \cite{GN23b, RHR20, TJ22}.
mechanics \cite{BPS23, BHVJ22, BDI+21, BCP22, Cal21, FGF22, FCWT22, FM20,
FLW+23, JN20, MCT21, RDAB23, XHZ22, ZOG21a}. mechanism \cite{MFS+22}.
media \cite{AFV20, ABH21, AYH+21, ALM23, AdDMT21, ASJ23, \BHVJ22, BVRS22,
BDMP22, BBMA23, BKMC21, BMQ20, BE20, BR22b, CALS22, FGF22, FCWT22,
FLW+23, JN20, MCT21, RDAB23, XHZ22, ZOG21a]. medium \cite{BGSP22, CZL20,
GS20, HJQ+23, LW20a, LSZ21, SWG+20, SGW+23, SDA+21, ZSQ21].
meets \cite{HJK+21, LLSX23}. melt \cite{LPJ+23}. melting \cite{BTEK22, PGM22}.
member \cite{Ran22}. membrane \cite{DKM+20, KKM21, XC20, ZAMG20}.
membranes \cite{LWL22, ZW22}. memory \cite{DFG+23, DS23b, DS22b, FTPB23,
FSB+20, KNS21, RA21, TEA+23, XG22, ZLC+20]. Mesh
\cite{Bat20a, Der23, GD20, KBB+20, LPS21, MRL+23, AF21, AFP22, ADM+21,
BHR20, BB20b, BB20c, BR22b, CDK+23, CAF+22, CHG+20, CL23a,
CCAR22, CCN21, DS23b, DT21a, DT22c, DMB20, FZS+21, FML21, FC21,
FCL23, FWG22, Gao22, GLCS23, HNF+21, HZ22a, HW20b, HLY20, HLQZ23,
HS+22, JZSX20, KKM21, KH20, KRL21, Lév22, LW20a, tLjTbZ22, LP23b,
MN22, MKHI20, MSK+22, MZC+22, ND20, PWXY22, DM23a, RMD20,
RAZA21, SC22c, WZ20, WBN+22, XLZ21, YLNT20, YJK21, ZOG22,
ZPW+23, ZDT23, ZJSX22, ZSKN22, dSLdA+22, MRL+23, BDWC23, HZ22a].
Mesh-Conv \cite{HZ22a}. mesh-free \cite{WZ20}. mesh-incorporated \cite{MKHI20}.
Mesh-independent \cite{Bat20a}. mesh-refined \cite{XLZ21}. meshes
\cite{ACÉ+22, AR20, AWB+21, AE20, BGFB20, Bar21a, BPR21, BG21, BFI22,
BG22a, BD20a, BCP22, BL21b, CK20, CP22b, CW22a, CSY20, CRF+21,
CCB22, CF20, DBT+20, DS22a, DD21, DNO23, DSZ22, DK21, FADJ20,
GBC+20, GYWH20, GHY22a, GK20, HW20b, HLQZ23, IMJ20, JBF21,
KK21a, KKS21b, KLS+20, KSI+23, KFSM21, KRL21, KHM+22, KLB23,
KB23, LM20a, LS23, LW23, LMN20, LHF20, MYJ+23, Mar20, Mar23,
MRS20, MW22, NNL+20, PP22a, PP22b, PPBG21, PD21, PGTS21,
RGSR21, SAS+21, SC22b, TNL23, Tso23, VKR+22, VRM21, WTZ23,
WLZ21, XY20b, XM20, YW20, YWCB22, YCH21, YK20b, ZCQ19, ZCQ20a,
ZML20, ZL21a, ZL21b, ZJ22, ZLW+22a, ZCCN23, ZS20, vGAtTB123].
Meshfree \cite{GTKA20, Oru21, SPF20, TKR22, TBP20, WQZP20, Nik23].
method

[WJK20, WVRRL23, WYS20, WZZ23a, WK23, WZZ23b, WR23c, WGY+21, WK21b, Xia23, XFL21, XMY22, XY20a, X20, XDLX21, XLS22, Xic22, XSHH20, XHS21, XJS21, XS22a, XHZ22, XHS23, XC23b, XMZ+23, XM20, XSA+23, XNZ23, Y22, Y23, YGW+20, YLNT20, YZdCNS21, YZSD21, YA21, YX22, YFY22, YAX20, YOH+20, YCC+22, YLS21, YMY+21, Yin21, YZW23, YK20b, YNT20, YYB23, YB22, YP22, YDC22, YXL22, Yun21, ZSP20, ZP20, ZXMK21, ZB21a, ZB21b, ZS22a, ZA20, ZYW21, ZH23, ZCY23,

Methods [JLL20, PMZ23, STWK21, AFS23, Ani21, AFGLM20, AZ22, ADM22, AM22, BL22a, BGNZ22, BRT22, BZSF20, BGGM22, BBQ22, BCF22, BDZ23, BKY21, BGSP22, BVT20, BBMA23, BSV22, BHK22, BV22, BNT23, BL21b, BY20, BFC23, BE20, BSK22, CCL20, CL21, CMPR23, CAG20, CL20, CHSS20, CL20d, CLDC20, CYS22, CYY22, CCE21, CSLC21, CSY23, CP20, CBCF20, CRPB20, CND22, CDN22, CCLM22, CdS22, CCH20, CEM20, DHM21a, DM22, DGG22, DR20, DV20, DW20, DY22c, DY22d, DS22, DS23b, DJ22, DS23b, DFW22, DMD2b, DW22, EWN20, EH22b, EFY23, FCM20a, FSM22, FMWK20, FHW21, FJ21, FGKY22, FDP20, FR23, FO22, FY22, FCY20, GC20a, GHR22, GCV22, GNW22, GT20, GSS22, GC20b, GL20, GLL20, HK21, HLM20, Hig20, Hig22, HA21, HPR20, HHS22].

molecular-continuum [MR22].

Mondrian [SSG21]. Monge [TSSOA20].

momentum-weighted [KR22].

momentum-weighted [KR22].

Moments [SK23].

Moments-based [ML20, HPX23, Lem20, LSHL20]. Moments [SK23].

Monolithic [ALMF23, PKC22, CPK22, CMS+22b, HSXZ21, LHXZ22, XC23b].

Monotonicity [BB20c]. VLY22, GYWH20, OGG20, YM21].

Monotonicity-Preserving [LVK+22, BB20c, YM21].

Monte Carlo [ALF+22, YLY22, GYWH20, OGG20, YM21].

Monte Carlo [ALF+22, BB20c, YM21].

Monolithic [ALMF23, PKC22, CPK22, CMS+22b, HSXZ21, LHXZ22, XC23b].

Monotonicity [BB20c]. VLY22, GYWH20, OGG20, YM21].

Monotonicity-Preserving [LVK+22, BB20c, YM21].

Monte Carlo [ALF+22, BB20c, YM21].

Monotonicity-Preserving [LVK+22, BB20c, YM21].

Monte Carlo [ALF+22, BB20c, YM21].
Multidimensional [BGGM22, CZHY20, FPT20, SGB+21b, BV20, GCLM22, HKKS21, KBCH20, Lep21, LFW23, MD20a, MZ20, MGT+21, SMRW22, TGM23, WZ21a, ZNK23, ZQL+22]. Multidirectional [DMRG22].

Mutual [THKT21]. MWCAWE [RA23]. myocardial [DFP+21a, MNG+22].

canonical [AKK20], non-colloidal [KVQE21], non-conformal [AMGCL21, XMY22], non-conforming [Jai22c, LOL22, WY22b, XHY23, ZSKN22].

canonical [TSTH20, WKW+22, Yan23], non-cutoff [HQQ20], non-decomposing [FCBM22].

canonical [SBL22, TKK22], non-equilibrium [CSCL20, EM20, JTTZ22, PCF21, Sim23, YhCdJ+23].

canonical [STB+21], non-gradient [PHX23], non-homogeneous [TB23, WZW21], non-hydrostatic [Lee21, LP21, Pop20, RWdBG23].

canonical [OB22].

non-ideal [LLSX23].

non-iterative [XMY23].

non-linear [Jai22c, AAKW20, BR22a, BBPR21, CIMG21, Den23, EPL21, Jai22b, LWW20a, MGT+21, Pfhil22, RHR20].

non-iterative [San20, FBG20].

non-local [HT20, BDT21, LY20a, LTN21, YH23].

non-Markovian [GCC21].

non-modal [dMKJ+22].

non-Newtonian [HdB21, KAO+20].

non-orthogonality [HQQ20].

canonical [BSA22, GLF23, LCWW20, SSS22, WTZT23, XDLX21].

canonical [BG20c, DMRG22, GTDB22, MDG20, SSS22].

canonical [EDLF20, Per23, TSTH20].

non-planar [ZF20].

non-polynomial [CSY23].

non-reactive [ARC22].

non-realizability [SBVM20].

non-rectangular [DSZ20].

non-relativistic [AZ22].

non-shallow [HQQ20].

non-singular [Li23].

non-smooth [HQQ20].

non-spherical [RGLN22, ZQC+23].

Non-staggered [SGT23].

non-stationary [EPV21, LY22c, QQ23].

Non-stiff [AD20].

non-subcycling [XZBS22].

non-symmetric [NFA21].

non-uniform [GDB23].

non-uniformly [LGMV22].

non-uniqueness [BJL21, GSOM23].

nonadiabatic [HQQ23].

nonautonomous [HQQ23].

non-classical [BSA21, MBBV22, VMBS20].

non-conforming [XZBS22, ZL21a].

non-conservative [ARR23, Don23, SGB+21b].

nonequilibrium [FCW21, LHW+23].

nonequispaced [Per23].

nonhydrostatic [CLXS23].

Nonintrusive [FCBM22, KCP20].

non-isothermal [AHJ23].

Nonlinear
[CMR21, MM20, PH21, Ran22, TNF23]. Novel [HP21a, YZZ23, AAL+21, AKKM23, CZ20a, CA22b, DHM21a, DLWW22, DC22b, FLW20a, HHAFT21, HHL22, JRD22, KSI22, IYW+20, LSC+20c, MS20b, NFA21, NXM21, Par22, PM22a, PG22, RBPRST20, SBH21, SBVM20, SOBP22, TFWX22, TY+22b, TTP22, Yan21c, ZOG22, ZH23, ZSY21, ZLW22b]. November
[An20j, Ano20v, Ano21j, Ano21v, Ano22j, Ano22v, Ano23i]. nozzle [GPSMH20]. nPINNs [PDPK20]. NSFnets [JCLK21]. nuclear
[CDL+22, DJ22]. null [TCS22, TBD+20]. null-collision [TBD+20]. number
[ADJ23, BDL+20, CSASS21, GMD22, HTL21, HCdM23, JP22, Kem23, KSBG20, Lin20b, LSC+20c, MD20b, MAPS20, OCGT22, RHG22, SYAM23, YLW21, vNGB22]. numbers
[BP21, sCpLL+22, CW23, HZHI22, HXX22, KL20, LPL+22, MM21b, WGY+21, YFY22, ZLG+23]. Numerical
[AFV20, AP22, AF23, BLF20, BBPR21, BGSP22, BBMA23, BJL21, CCL22, CCP21, CDT22b, CY22a, CK22a, DS21, DZ23, GC20a, GU20, HHK+23, HYSS22, JL21a, KAC22, Kem23, KNT22, KL23, Kus20, LSC20b, LJC+20b, MZC+22, MYZ22, NSS23, NT23, NMRG21, OKTD21, PPV+21, PCD23, RKVV20, SGB+21a, SV21, SLOZ21a, SW23, Uii20, WR32b, WGH23, XGO+23, YH22a, YK22, YQO20, ZX20, ZOWW20, ZLC+20, ASG+23, ALF+22, AK22, ABDD20, BBC21, BB23b, BEB+22, BL21a, BWG+20, BW20, BD20b, BSZ+23, Bre20, BBL23, CCLL20, Cal21, CCWX22a, CPX22, CHT20, CS21a, CY22b, CCA22, DC23, DNP23, DW20, DOQ23, DS23b, DTB20, EFS+20, EGTC+21, FSW22, FSB+20, FAA20, FBCD22, FH23,
FP23, GHHR22, GCDT22, GS23, GLY22, HRG+23, HLM+20, HYQ20, HLL23, HKRS23, HL20c, HLXZ21, HP22b, JF20, JLRZ20, JRD22, KMS20].

numerical
[KK20, KIH21, KWDS22, KV23b, KLPR20, KD20, LLCJ23, LVK+22, Li21, LZ22b, LGL23a, LBM20, LFT+20, LMZ21b, LCWH23, LKG+20, MBDS23, MKHI20, MFTZ20, MSWH22, MTT+23, MHYW21, MBM+22, MP21, MR23b, NNL+20, Nic22, Nis20d, Onu21, PR20, FJ23, PG22, PA20, PLM23a, PGMP23, PGTS21, QWZ21, QXYZ22, QAS20, QERT20, Ran22, RKW20, RB21, RWY21, SEG21a, SL22b, SS23, SGPM21, Sen21, SSPV20, SEG22, SS2a, SAH+22, Suk23, TGM23, TAVD21, UD22, WTX+21, WH22b, WCP23, WS22, XLLH21, XHX22, XLT+20, YZdCNS21, YW22, dKSA21].

numerical-based [HYQ20].

numerically [BZC+22, Gar20, LRT22a].

numerics [ZCH22].

Nunziato [CMRR21, LL21b].

NURBS [PD21, TMG20].

NURBS-based [TMG20, PD21]. NVT [ZYZ+23]. NySALT [LLTY23].

Nystrom [CCH20, LLTY23]. Nystrom-type [LLTY23].

Oberbeck [PK22]. Objective [PSJ23, FSWA22, KKY22, WZSK22].

obtain [TWF+20]. obtaining [CDMJ21, HBF21]. ocean [Hig20]. October [Ano20k, Ano20w, Ano21k, Ano21w, Ano22w, Ano23j, Ano23t, Ano22k].

Octree [EGTC+21, KML23, CW22b, HW23, KLS+20, KSI+23, LKM22].

On-the-fly [Qia22, ASVL23, WZ23a]. once [ILZ21]. One [IL23, LZZ22b, AG21, BBGT21, CSS20, DC21, JH20, JPA221, KHS20, LCH20, LSC20b, LWR20, LZZ22a, LLQ+23, LC23, MCBA20, PBC20, PGMP23, Ran22, Rei22, SBH21, SWM21, SSPV20, SDA+21, SNW23, YNT20, ZCH22, ZT23, ZYD20, CLS20b]. one- [YNT20]. one-dimension [ZYD20].

One-dimensional [IL23, AG21, CSS20, JPA21, LWR20, LZ22a, LC23, MCBA20, PGMP23, SBH21, SWM21, SDA+21, ZCH22, CLS20b].

one-fluid [DC21, Rei22]. one-parameter [Ran22]. one-phase [KHS20].

operator/finite [HPH+23]. operators [BFM21, BDP23, CL20a, CM21, CS22, DNO23, FFFY20, FF21, GKNÖ23, HM21a, KGSK23, MLM+21,
MZ20, MR23a, MRBC22, Ran23, SAM23, WZ21a. **opPINN** [LJH23].

Optical [VCCN\(^{+}\), CSM20, CS21b, FCGKR23]. **optics** [HKRS23, vGAtTB23]. **Optimal** [BJW20, CHG21, KBCH20, LW21, LM21b, LCC\(^{+}\), MN23, NYZ21, TBC20, VLV20, AAH\(^{+}\), BBO\(^{+}\), BS21, CM20, CD23, CDW23, FCP21, FVM22, FVM23, FLOL23, HT21a, HKKS21, ID20, IT22, KUO23, KSW22, LGV20, LLLL21, Lév22, MDG20, ND23, RE20, Yan21a]. **optimally** [JJ21].

Optimization [AIN20, GWC\(^{+}\), MZ20, SMS23, WK20, AMG23, AP23, ABBG23, ACML20a, ACML20b, BG20a, BG20b, BF22, BM23, BRT22, BVR22, BW23, BSA22, BKC23, BG20a, BD20a, BDL\(^{+}\), BP21, BDP23, BL22b, BL21b, BBW\(^{+}\), CBQ21, CCWX22a, CDK\(^{+}\), Cam21, CPX21, CPX22, CFS\(^{+}\), CMP\(^{+}\), CZZ21, CF21, CFB22, Cha23, Cha20, CZ20a, CWZH21, CKT21, CY22b, CL23a, CWX23, CD23, CDLX23, CSS20, CLJ\(^{+}\), CCCH23, CPGD21, CBA\(^{+}\), CBA\(^{+}\), CBY23, CKN22b, CP20, CND22, CDN\(^{+}\), CL21, CMG\(^{+}\), CX22a, CCB22, CCdS20, CMRR21, CS22, CEC21, CA22b, CCLM22, DHM21a, DCA\(^{+}\), DVS22, DS22a, Den23, DC21, DD22b, DD21, DHR20, DJ22, DJ23, DY22b, DYGC22, DY22c, DY23d, DT20, DT21b, DT22c, DFR20, DK21, DFP\(^{+}\), DGW22, DW23]. **Order** [EDEV23, EAK20, EPL21, FPT20, FZQ21, FZQ22a, FMWK20, FH20, FZ20a, FZ20b, FGY22, FGY23, FML21, FX22, FL23, FL23b, GBC\(^{+}\), GLS22, GLD22, Gao22, GLF23, GCDT22, GS23, GA20, GU20, GQR21, GQR23, Gl21, GDB23, GZW20b, GF20, GLCS23, GHG\(^{+}\), GSP20, GLY20, GLC\(^{+}\), Hac21, HMY22, HRG\(^{+}\), HR23, HRH23, HS23, HGB20, HKRS23, HHRA19, HL20a, HCL20, HPP20, HLY20, HSW22, HRWP22, HXX22, HL22b, HZ22b, HJQ\(^{+}\), HD23, HTRC23, dMKJ\(^{+}\), IM20, IW23, ISM\(^{+}\), JADS21, JY22, JZX20, JRD22, KSTT22, KCS21, KS22c, KS22b, Kar22, KBB21, KCCW22, KLN20, KL22, KLF22, KdMJ\(^{+}\), KJdM\(^{+}\), KF23, KCCJ21, KKS21, KLB23, KB23, KD20, KK21, KD20, KV23c, LCL22a, LJW\(^{+}\), LBN21, LVK\(^{+}\), LL21a,
LL23a, LCS22, LCS23, LD20a, LCJ20a, Li20, LCSZ21, LLQC21, LG21, LYZW21, LZ22a, LCR22. order
[LJ23, LLZ23a, LLO+23, LXSF22, LH20, ILTZ20, LRAQ22, LRW21b, LM20a, LS21, LSYZ20, LD20b, LFZ21, LYS+22b, LWYY22, LSY+23, LJS+23, LCWH23, LsCXL+20, LT20c, LY22c, LZCC22, MZ22, Mar23, MCVF22, MHW21, MHW22, MQ20, MKM23, MGA20, Mon21, NS22, NFL+21a, NFL+21b, NKT21, NPD20, NT20, NBR22, Nic22, NGK+21, NKW22, Nis20c, Nis22b, NW23, ORU21, OA21, OGG20, PZX20, Pan20a, PCF21, PP22b, PWL+23, Pan20b, PPP21, PBN+21, PB20b, PM21b, PH22, PTT22, PSCK23, PD21, PGCC+22, PGMT23, PGST21, PPB23, QG21, QLY21, RMA20, RUG20, RSWD21, RFZ22, RZ23, RWQX23, Ren21, RLH22, RRBR+23, RBF+21, RIC+22, RA23, RMWS21, SZN19, SZN20, SMSAGG22, San20, Say22, SL20b, SL22b, SEG21b, SEG22, SRV21, SWF21, SBL22, SAP22, SY21, SKCM22, SS22c, SZ21, TFWX22, TCS22, TJ21, TJM23]. order
[TPK20, Toh23, TEA+23, Uil20, Unf21, UY22, VVL21, VVRWT21, VPDD22, VOL23, VBA22, VK22, WW20a, WMTQ20, WGY20, WW20b, WRH20, WCL+20, WTX+21, WHL21, WCF22, WTTZ23, WCP23, WABK21, WZBV20, WWLZ21, WNS22, XBH+22, XLLH21, XY20a, XGCW+20, XDLX21, XSS22, XBR21, X22a, XSS22, XHLH23, XM20, YU22, YXY21, YSCM21, Yan21c, YZSD21, YJSX22, YLY22, YH22a, YZ23, YOH+20, Yin21, YK20b, YGL20, YH22b, YM20, ZSP20, ZEG20, ZEG21, ZB21b, ZYW21, ZCY23, ZCQ19, ZCQ20a, ZML20, ZL21a, ZL21b, ZHY22, ZX22, ZLW+22a, ZC23, ZZ2b, ZDT23, ZHR20, ZZZ20, ZH21, ZJSX22, ZJSX23, ZZ23c, ZSQ21, ZWQG23, ZQS+21, ZQL+22, ZQS20, ZS20, ZF20, ZL22, ZWB21, dLF23, vHP22, vLN21, Der23, NV22]. order-adaptive [CMP+21].

order/low [PM21b]. ordinary
[GHNS21, GLT+20, JLY23, LBT+23, OPM22]. ordinate [PM23]. ordinates
[BO22, KSK21, MBBV22]. orientation [LFP+21]. oriented
[AF21, AN21b, FC21, GDAP20, JO22, LRVF22]. orography [YWCB22].

Orthogonal [JADS21, ADK+21, CP22b, DV20, KCCJ21, LL23a, MSWH22, NS23, NR23, ZMG+22]. orthogonal/bi [ZMG+22]. orthogonality [HX23]. oscillating
[ACR23, Vre20, Vre21b]. Oscillation [PLKM22].

Oscillation-free [PLKM22]. oscillations
[DHR20, MQ20, SRH21, SKTK21, XLS22]. oscillators [WF23]. oscillatory
[BSA22, CEMO21, GLF23, GHNS21, LCWJ20, LL23a, MH21, SSK20, WTZZ23, XDLX21]. ORC [van22]. Ostwald [MX22]. other
[JRY+20, TPPA22]. outflow [LYL20]. outlet [HP21a, HPS23]. outliers
[ZL21c]. output [BS21, GF20]. output-weighted [BS21]. outputs
[KNP20]. over-parameterization [KGSK23]. overburden [ZC22b, ZC22c]. overcome [SBVM20]. Overcoming [LL20]. overhang [MQ20].

overlapping [BG20c, DMRG22, DQS20, GTDB22, MGD20, MDF21, SS22]. Overset

pairing [DFW22]. paper [Pan20b]. papers [DSA23].

Parallel [RV22, AFV20, BBPZ21, CPA+23, GN20, GevWD22, HVD23, HKMR20, JLQY21, KBB21, LH21, MKV20, MMPD21, OWHN22, PA20, SSM21, WZZ23, ZCZ22, ZC22a, ZJ22, ZLL23]. paradigm [DiJ+22].

parameter-free [JJ21]. Parameter-robust [BHK+22]. parameterization [KGSK23]. parameterized

ZPR22, BWG+20, CEL+20, CKLM+23, CBRY21a, CBRY21b, DBT+20, Den23, KNPM20, LQX22b, LQX22a, RRH+21, SGT23, SLOZ21b, SLOZ21a].

[BZC+22, FQSW23, HP21a, KEY20, LKPM22, LFM+22, MVO+22, RA21, STC+21, TCA21, Ale23, ALF+22, AFF+23, AF23, BL19, BL20, BOB21b, BOB21a, BFS23, BBW+21, BTL23, BPT+20, BFG23, CCY+20, CCN21, CC23, CW22b, CI21a, CK22a, CCAR22, CBCF20, CFGJ23, DES23, DFJ22, DSS20, ERE22, FNS21, FPC+20, FJG+20, FZLL20, FJ21, FHJ22, FGZ20, FFL+23, FR23, GQF23, GLF23, HHL20, HLL2b, HPR20, HW20a, JKNZ21,

particle-based [EFSH21]. Particle-in-Cell [STC+21, ALF+22, BBW+21, CCY+20, CCN21, CC23, CK22a, CBCF20, Erc22, FCM+20a, HHL20, HL22b, HPRW20, KS21c, LAT+22, Li23, LKG+20, SCL20, SC22d, TCA21, TZO+20, TRC22, DFG+23, EC20, GHS22].

perfusion [DFP +21a, KSHJ20]. peridynamic [ZHPZ21, ZLB22].
Peridynamics [BM21, KAO +20, PJA22]. perimeter [JL21b].
perimeter-decreasing [JL21b]. Periodic
[AFP22, BZ21, ZPGR22, BFS23, BFL20, CFW23, DG23, DN21, EDLF20,
GDAP20, GLT +20, HL20b, LPS21, LHC22, LRLZ21, MBE21, MD20c, PAGJ23,
Per23, PLM23a, RHG22, SWM21, SJGC21, TMG20, WNB21, WZ23b].
periodically [LNYD20]. permeable [QHZ +22, WKKB21]. perspective [WYP22].
perturbations [AHG21, DS23c]. perturbative [PLM +23b]. Peshkov [MMM23].
petroleum [TH23, dSLdA +22]. Petrov [LTD +22, WTX +21].
PFNN [SY21]. Phase [CY21, HHA21, HLA20c, HLA22b, HJ23, VPL20,
Abg20, AdDMT21, ASKH21, BL22a, BBV23, BDMP22, BS22, BDB21,
BMQ20, BDMT22, BE20, BR22b, Cal21, CSCL20, CHZY20, CY22b, Che23,
CDX +21, CK21, CLP22, CMRR21, DC21, DLYZ23, DLY22, EAA +22,
FQSW23, FMS21, FZ23, Fu20, FY22, FS21, GJLD20, GNZ23, GDBFN +20,
GQS20, GN22, GSNH20, GL22, HJ23, HJ23, HJH +21, HGZ23, HHRA19,
HNZ23, HT21b, HLA20b, HLA21, HLA22a, IKP22, JMM20, Jai22a, JM22,
JM23, JH23, JTK22, JTT23, JGR22, KS21a, KLS +20, KSW22, KHS20,
KWS22, LHT +23, LC22, LL21b, LOL20, LW20a, LDM +21, LYS22a, LLP22,
LNC +21, LRT +22b, LYH23, LL22, MM20, MJJ21, MJ23, MA21, MCBA20,
MIM20, MM21c, MM22, MKM23, MYY +23, MRL +23, MD22, HM21a, Fan20b,
FA23, PPH22, QWZ23, QERT20, HQZ +22, QW22, RM23, RZ20]. phase
[RSA +20, SCB20, SHM +23a, SRTB21, SRD20, SHT +20, SWHJ22, SFP +20,
SDA +21, TWH22a, TH23, UBT22, VSS21, WLW +20, WZ21, WZ22,
WZ22, WJH23, WL22, XJL23, XS20, XZRW21, XH22, XY23, XDCF21,
Yan21b, Yan21c, YA21, YTB22, YH22a, YK22, YL23, YR22, ZY20, XYL22,
YQ20, ZEG20, XBS22, ZL +23, ZY20, ZM22, ZW22, ZSsC +22, ZWL23,
ZYZ +23, ZYL +23b, ZR20, ZK +20, ZF20, ZGK +22, ZOE20, dSLdA +22,
vdEW23, HLA22a]. Phase-change [HHA21, HLY23]. Phase-Field
[HLA20c, HLA22b, HJ23, VPL20, Abg20, Fu20, FY22, GN22, HHA21,
HHZ23, HN22, Jai22a, JTK22, KSW22, LNC +21, LRT +22b, MJ21, MJ23,
QW22, RM23, SHM +23a, SHT +20, TWH22a, WZ21, WZ22, Yan21b,
Yan21c, YTB22, YK22, ZY20, ZSsC +22, ZY20, HLA22a]. phase-space
[PPHO22]. phaseless [YLY20]. phases [SDA +21]. PHCDM [ZOG21a].
phenomena [Abg20, BBM23, GFPO22, LT20c, ZWY +23]. phenomenon
[CS21b, RS20c]. phonon [LYZ +22b]. phononic
[CMS21, FGD +21, ZZY +20]. photoacoustic [RB22]. photon
[An21, LLZ +20a]. photonics [CE21, PV20, Poe22]. photons [FCY +20].
photovoltaic [ACML20a, ACML20b]. PhyGeoNet [GW21]. Phys
[Abg20, ACML20a, BL20, EPO20, GRT21, HPA22, LMFV22a, MM22,
SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b.

Physical [CG23, AB23, Ben23, CW22a, GQS20, Gin21, KK20a, KS22d, LLM20, RK21, ZC23]. physical-constraint-preserving [CW22a, ZC23].

pinning [PJR23]. PINNs [PZNK12, PZNK23, TWY23, WYP22, YMK21].

Plaque [FH23]. Plasma [CHS20, BKD23, BNG+23, CHDB23, CB23, CBDF20, CFGJ23, CIMG21, CMS+22b, DS23a, EFR21, ESH21, FGB+20, GRC+22, GDB23, HHL20, HL22b, HS20, KFC+22, LSC20b, LRW21a, Li23, LCC+23a, MAP+20, NNL+20, NK21, NWM21, DABL21, BPK20, SH23b, SEG21a,
SWM21, SC22b, SZ21, TCA21, TM23, VSB+21, VSB+22, XF21b].
plasma-based [Puk20]. Plasma-material [CHS20, LCC+23a]. plasmas
[AFF+23, CC23, Erc22, FR23, FZQ22b, HSK+21, Htu21, HABG23, LPM+20,
MP223, SwDrTB21, SW22]. Plasm [DLZ23]. plasmonic [DHM21b].
plasmonics [Suk23].
plasmon [DLZ23]. Plasmonic [DHM21b].
plastic [CLJ+20, JAW+23, LZS22b, LGL23a, hSMLS23]. Plasticity [DL21].
plasticity [CLJ+20, JAW+23, LZS22b, LGL23a, hSMLS23]. Plastic
plastic [CLJ+20, JAW+23, LZS22b, LGL23a, hSMLS23]. Plasticity [DL21].
plume [CB23]. PML [AZ22, BDT21, HCL20, LZ22a]. pneumatic [LRW21b].
Pn [XG20]. PNP [XC20]. POD [ARR21, GQR21, PR23, SFGNMGN22, SPGG23, WRH20].
POD-based [SFGNMGN22]. POD-Galerkin [WRH20]. PODS [TSS+20].
Point [BCIR22, AG21, ACR23, BBC21, BLL19, BLL20, BSA22, CB23,
CCGC23, Coc20, CMS23, DY22c, HCL22, ID20, JL21a, LL23a, LZZ21a,
LZ23b, MNG+22, MD22, NLZ+22, PEA20, PA21, PLYZN23, PCA+23,
RtTBI20, SHM23b, WGB22, XM20, JZ22, ZL22]. Point-particle [BLL19,
BLL20, PEA20, PA21]. Point-source [JL21a]. Point-value [XM20].
point-wise [DY22c]. PointNet [KM22b]. points [DEB21, NPD20]. Poisson
[EH22a, SS22a, WZC21, ABAFTO23, AKKM23, BCF22, BZ20, BLK+23,
CTG23, CSA21, CcdS20, Der23, EH22b, FZ20a, GH22, KML23, KKJ21,
LM21b, LGZ21, LKM22, LSC20b, LHM20, LWYY22, LM23b, MHW22,
Nis20b, Nis21, PDM23, QWZ21, RS20b, RS20c, SWM21, SST+23, TPXY22,
WASA22, WK23, Xie22, XC23a, YM21, YFLL21, ZGLL20, ZO21].
Poisson-like [BLK+23]. polar [BNP+22, BG20c, HP22a]. polarizable
[ACHG+21]. polarization [CGL23]. polarized [BRZ+23]. pollution
[HMMO20]. Polyatomic [DWM23, FHJ22, WLZ21]. Polycrystalline
[JTK22]. Polydisperse [BFC23, SDA+21]. Polyhedral [AM22, BD20a, CP22b,
Hac21, HW20b, LS23, MW22, SM21a]. polygons [LCL22a, PC21b]. Polyhedra
[KB22a]. Polyhedral [ADM22, CNCM21, CA22a, DD21, DOQZ23, HX23, KLB23,
KB23, LM20a, Nis22b, VKR+22]. Polyhedron [CD22]. Polyhedrons
[Lem20]. Polymer [XDCF21, ZLC+20]. Polyhedral [CD22]. Polyhedrons
[Lem20]. Polymer [XDCF21, ZLC+20]. Polynomial [RB21, TPSN20, Bha20,
BKON23, CGC21, CSY23, DHTM21, EJ22, KP23b, LCS23, LT20a, Li22,
MRYS20, NDH20, Po23, RGRS21, SCS22, TJC21, VYZ23, PB22, Po22, RBBDB22,
VGG23]. Polynomials [EJ23a, GFF20, Ort21, Say22]. Polynya [LSW20]. Ponderomotive
[MX22]. Poromechanics [AHJ23, LR20b]. Porous [Af20, AF20, AdDMT21, ASJ23,
BHV22, BDMP22, BKMC21, BMQ20, BE20, BR22b, CSF2H0, CYS22, CYYS22,
CCW20, DT22a, EAK20, FGKY22, FS21, FP23, GS20, GS20, GLY20, GN23b,
HP21a, JHT23, JH21, JTT23, JH23, KNL21, KAO+20, KHS20, KWDS22,
KWCS23, KLPR20,
preserving [MHW21, MHW22, MRBS22, NS22, \(\text{\text{\textit{OL}}}23\), PCF21, PWXY22, PBCL20, PM21b, QXYZ22, QLY21, RMJ23, RWQX23, RC20a, SL22b, SAS\(^+\)21, SSS20, SX20, SZQS23, \(\text{\textit{The}}\)21, \(\text{\textit{Tah}}\)23, TYC23, UY22, VTC20, WLH21, WABK21, XF23, XLZ21, XSS22, XJS21, XS22a, XS22b, XS23, XGQ\(^+\)23, YU22, YM21, YY21, YWLL21, ZNK23, ZNCZ\(^+\)21, ZCQ19, ZCQ20a, ZC23, ZSST23, ZXX23, ZWQG23, ZYD20, ZGK\(^+\)22, ZOEL20, vdEW23]. \textbf{Pressure} [ISM\(^+\)23, AFV20, AF20, ASS21, ASJ23, Bat20b, BP21, BBL23, sCpLL\(^+\)22, CG23, DSPB22, DEvW20, DTF20, FGKY22, FTK23, GMRS20, HPW21a, HTL21, Hig22, HP21a, KS22c, KS22b, LPM\(^+\)20, LO23, LRT\(^+\)22b, LLZ23c, LCDS23, MD20b, MS20b, NFL\(^+\)21a, NFL\(^+\)21b, RS23b, SLF23a, SBH21, SW22, SKTK21, VMO21, XLS22, YA21, YZK23, YZK20]. \textbf{Pressure-based} [BP21, DSPB22, DEvW20, HPW21a, HTL21, VMO21]. \textbf{Pressure-correction} [AF20, LRT\(^+\)22b]. \textbf{Pressure-equilibrium} [FTK23]. \textbf{Pressure-temperature} [SLF23a]. \textbf{Pressures} [GQS20, KS22b]. \textbf{Prestrained} [BGNY22]. \textbf{Prestressed} [YKdHC20]. Prevention [SKTK21, GP21]. \textbf{Primal} [CW222, LOLS23, NG20, Nor22a, hSMLS23, WW20b]. \textbf{Primal-dual} [CW222, LOLS23, hSMLS23, WW20b]. \textbf{Primary} [FGL\(^+\)22, MM4MB22]. \textbf{Primitive} [LJW\(^+\)22, PC21, Scl22]. \textbf{Prince} [NNJ21]. \textbf{Principle} [ABY23, JLQY21, LPL\(^+\)22, ILTZ20, NS22, XS22b]. \textbf{Principles} [Coa21, Cap23, GB22a]. \textbf{Printing} [OYK\(^+\)22]. \textbf{Prior} [LSL20]. \textbf{Priori} [DCA\(^+\)22, GZ21, AHR20]. \textbf{Priors} [BKON23, MYM\(^+\)22]. \textbf{Probabilistic} [FTY\(^+\)22, KK20a, LG20, RK21, VAK\(^+\)23]. \textbf{Probability} [BJW20, CW21, CL20c, YZdCNS21, ZJ23]. \textbf{Probable} [YR22]. \textbf{Probe} [CSA21]. \textbf{Probing} [GMY21]. \textbf{Problem} [ZS21a, AN21b, BCL\(^+\)23, BCI22, BST23, CEL\(^+\)20, CZ20b, DLL22, DT22b, ELSV22, FS23b, FCWT22, FZ21, GGM\(^+\)23, HL220, HSXZ21, HHVM20, HJH\(^+\)21, HNF\(^+\)21, HSS21, Hua21, ILX22, JLCT22, KS22a, KBC20, KKB20, KLZ23, LSW20, LDD21, Lin21, MNG\(^+\)22, MBM\(^+\)22, OKTD21, Par22, SS22a, SBV23, SCL20, WJK20, ZMK21, ZML20, ZHRB23]. \textbf{Problems} [AHG21, ASW21, AuIL20, Ale23, ARB\(^+\)21, ACD23, AL21, AS20, BFG22, BS22b, BBPR21, BB21, BEB\(^+\)22, BDF23, BFT22, BZB20, BEP\(^+\)20, BG20b, BB20c, BY20, BFST23, CQ21, Cal21, CWW22, CORJ\(^+\)23, CZ22a, CWHZ21,
problems

procedure

process

processing

Projective

propagation

Projection

projections

projection/data-driven

[\text{LNF}20, \text{LPS}21, \text{LJ}20, \text{LN}21a, \text{LB}20, \text{MH}21, \text{MIM}20, \text{NDH}20, \text{PGMTP}23, \text{Ran}23, \text{SMSAGG}22, \text{Yan}23. \text{ property} [\text{FX}22, \text{MRK}^{+20b}, \text{MRK}^{+20c}, \text{PBN}^{+21}, \text{QCD}21, \text{TKK}22, \text{XS}23]. \text{ proposition} [\text{MVO}^{+22}, \text{propulsion} [\text{AP}23], \text{protection} [\text{DR}20, \text{PGM}22], \text{protein} [\text{HST}22a, \text{KSST}21, \text{ZAMG}20], \text{protein-membrane} [\text{ZAMG}20]. \text{ protocol} [\text{VdGP}20]. \text{ Provable} [\text{GLY}22, \text{MIM}20]. \text{ Provably} [\text{AAH}^{+20}, \text{CDN}^{+22}, \text{HRRHG}21]. \text{ proxy} [\text{EFY}23]. \text{ PSE} [\text{ZT}23]. \text{ PSE-like} [\text{ZT}23]. \text{ Pseudo} [\text{AFV}20, \text{FFFY}20, \text{GFG}22, \text{KS}22b, \text{PAA}21, \text{RHR}20, \text{VLV}20, \text{WWG}20, \text{YY}^{+22}]. \text{ pseudo-di}\text{mensional} [\text{FFFY}20]. \text{ pseudo-parabolic} [\text{AFV}20]. \text{ pseudo-potential} [\text{PAA}21]. \text{ pseudo-pressures} [\text{KS}22b]. \text{ pseudo-spectral} [\text{GFG}22, \text{WWG}20]. \text{ pseudo-time} [\text{VLV}20]. \text{ pseudo-transient} [\text{RHR}20]. \text{ pseudo-vacuum} [\text{YYM}^{+22}]. \text{ Pseudodifferential} [\text{PA}20]. \text{ Pseudospectral} [\text{AFGLM}20, \text{AZ}22, \text{AST}21, \text{tLjTbZ}22]. \text{ PSI} [\text{LD}22]. \text{ PSTs} [\text{MVO}^{+22}]. \text{ PU} [\text{MM}23]. \text{ Puiseux} [\text{NPD}20]. \text{ Pulliam} [\text{PJBB}20]. \text{ pulse} [\text{CMS}^{+22a}, \text{MAP}^{+20}, \text{NTSM}20]. \text{ purely} [\text{GLT}^{+20}, \text{PM}22a, \text{SLWRG}21]. \text{ puri}\text{fication} [\text{AR}21]. \text{ purpose} [\text{AT}20, \text{Sha}21]. \text{ push} [\text{BJW}20]. \text{ push-forward} [\text{BJW}20]. \text{ pyroclastic} [\text{MFRZ}22]. \text{ QCD} [\text{RSO}20]. \text{ QMA} [\text{Hua}21]. \text{ QMA-complete} [\text{Hua}21]. \text{ QP} [\text{FSM}^{+22}]. \text{ QSV} [\text{SS}22b, \text{SS}22d]. \text{ QTT} [\text{MTO}21]. \text{ QTT-isogeometric} [\text{MTO}21]. \text{ quad} [\text{SGPW}21, \text{WWN}^{+22}]. \text{ quad/octrees} [\text{SGPW}21]. \text{ Quadratic} [\text{BF}22, \text{CHSS}20, \text{ID}20, \text{NW}23, \text{Sac}22, \text{YOH}^{+20}]. \text{ Quadratization} [\text{Yan}21b]. \text{ Quadrature} [\text{DHMT}21, \text{GN}23a, \text{TM}23, \text{WK}20, \text{AKK}20, \text{BT}20, \text{DY}22c, \text{FCY}^{+20}, \text{GB}22a, \text{KK}20, \text{LYS}^{+22b}, \text{LSY}^{+23}, \text{PH}22, \text{SN}22, \text{SV}20, \text{SLQW}22, \text{VVL}21, \text{vdGB}20]. \text{ Quadrature-based} [\text{TM}23, \text{SV}20]. \text{ quadrature-finite} [\text{LYS}^{+22b}, \text{LSY}^{+23}]. \text{ quadrilateral} [\text{BW}23, \text{GYW}20, \text{KRL}21, \text{PP}22b]. \text{ quads} [\text{MN}22]. \text{ quadtree} [\text{BF}22]. \text{ quadtrees} [\text{CPK}22, \text{PPV}^{+21}]. \text{ quality} [\text{HW}20b]. \text{ quantification} [\text{AB}23, \text{BO}^{+22}, \text{BCP}21, \text{C}^{+22}, \text{C}20, \text{EPL}22, \text{FI}^{+20}, \text{GN}22, \text{GGE}20, \text{KP}23b, \text{KL}^{+22}, \text{KWF}20, \text{NY}21, \text{PM}^{+23}, \text{SS}21, \text{SC}23, \text{SB}^{+23}, \text{TB}20, \text{XF}21b, \text{XF}21a, \text{ZBB}21]. \text{ Quantifying} [\text{KNP}20]. \text{ Quantitative} [\text{FS}22b, \text{MM}21a, \text{LTK}^{+22}]. \text{ quantities} [\text{LC}22, \text{YL}21b, \text{VGG}23]. \text{ Quantum} [\text{Le}21a, \text{TS}20, \text{AAP}^{+21}, \text{AFL}22, \text{BS}^{+23}, \text{CZ}20b, \text{HKR}23, \text{HXZ}23, \text{JLY}22, \text{JLY}23, \text{LHW}^{+23}, \text{MR}23b, \text{PL}^{+23b}, \text{VCCN}^{+23}, \text{WLZ}21]. \text{ Quasi} [\text{BFS}23, \text{PLM}23a, \text{SS}22b, \text{BL}20, \text{CH}20, \text{CC}^{+21}, \text{CF}20, \text{G}^{+22}, \text{GLC}^{+22}, \text{Lee}21, \text{LAT}^{+22}, \text{MDG}20, \text{NTSM}20, \text{SHL}^{+20}, \text{WZ}23b, \text{SS}22d]. \text{ quasi-gas} [\text{CCE}^{+21}]. \text{ quasi-geostrophic} [\text{CH}20]. \text{ quasi-incompressible} [\text{GCL}^{+22}, \text{SHL}^{+20}]. \text{ quasi-Newton} [\text{Lee}21]. \text{ quasi-optimal} [\text{MDG}20]. \text{ Quasi-periodic} [\text{BFS}23, \text{PLM}23a, \text{BL}20, \text{WZ}23b]. \text{ quasi-similarity} [\text{NTSM}20]. \text{ Quasi-Spectral} [\text{SS}22b, \text{SS}22d]. \text{ quasi-static} [\text{LAT}^{+22}]. \text{ quasi-symmetry} [\text{G}^{+22}]. \text{ quasi-uniform} [\text{CF}20]. \text{ quasidiffusion} [\text{GA}20]. \text{ quasilinear} [\text{Bre}20, \text{HAG}23, \text{ZC}22a]. \text{ Quasiperiodic} [\text{DS}23c].
quasiperiodicity [CSX21]. quasistatic [AR22, KC20a]. quiescent [NTSM20].

Reactive [DFJ20, ARC22, AMK+21, CYY22, CCW20, DT22a, FS21, HKS20, MRdB21, PCF21, PJW21, VACE21, YYB23].
reactivity [LLB+23, reactor [DJ22]. Real [PB20b, RLH22, DS22a, DeW20, GTDB22, HPA22, HP21a, LVK+22, MHWY21, PSCK23, UBT22].
real-fluid [MHWY21]. real-gas [DeW20]. real-space [HPA22].
reentrant [PH21]. reference [MNG+22, The21, Yan21a]. refined [HdB21, LKEM21, MSW22, XL21]. Refinement
[AM22, ADM22, AWB + 20, BB20c, CAF + 22, DS23b, DMRB20, FCL23, FWG22, GQF23, KRL21, LLW20a, tLjTbZ22, MZC + 22, NGZD22, RAZA21, SC22c, ZPW + 23, Der23]. refinements [GGM + 23]. reflectivities [ZC22b, ZC22c]. reflectivities

[BCIR22, RtTI20]. refinement [DD22b].

reinterpretations [ZC22b, ZC22c]. reflectivities

[BCIR22, RtTI20]. refinement [DD22b].

regeneration [LZPM22]. regime [CY23, GMD22, LSC + 20c, SZ21, ZGK + 22].

regions [AZ22, KOM + 22, KDB + 20]. region [Gar21, MP21, Sar21a].

regions [RGH + 22]. Registration [FTZ22]. Registration-based [FTZ22].

Regression [STG20, ABOS22, CZ23, GLSZ22, LT20a, MRT + 22]. regressive [GZ20].

regret [TAVD21]. Regular [CBCF20, CY21, KDL23].

regularisation [van22]. regularity [CWW22].

Regularization [LGZ21, BCIR22, DD22a, ESJ23, HYCL23, JKZS21, LLW20b, PBJ23, WSAZ22, ZLL23]. Regularized [BY20, ZMSX20, ZXY22, LY20a, NCC21, SL22a, WCM + 21]. reinforced [LLZL20]. reinforcement

reinitialization [AAM20, HCL22, XSA + 21]. Reinterpretation [AÖR22, XY20b]. reinterpreted [XHY23]. rejections [CSASS21]. related [ABH21, tLjTbZ22, WZ22]. relation [EL23, NG20]. relations [HXFD20, XHD21]. Relative [WCA + 20, TAVD21, YZK20]. relativistic [AZ22, BK23, CDT22a, CCY + 20, CKT21, CW22a, DT20, DT21a, DT22b, DT22c, LDM + 21, Li23, LKG + 20, NNL + 20, Ume23, WNZ20, WLH21]. relativistically [XLT + 20]. relaxation [ADP22, AKKM23, CW22b, DF20, FBC20, GKPT22, HKMR20, HRG20, JZZ22, KMR23, LLZ23a, LHWZ21, LZY + 22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZZH22, GM23].

reparametrization [ÁAL + 21, BGR20]. reparametrization-neutral [ÁAL + 21]. repetitive [DS20]. replica [LWZ22, LMZ23]. represent [DM21].

resampling [FCM + 20a, IL23]. research [DSA23, SI22]. reservoir [AT20, EAK20, FMS21, LFP + 21, LTD + 21, LTE23, LO23, LLW + 20, WR23b].

reservoirs [RHR20, TH23, ZA21, dSLdA + 22]. Residual [CORJ + 23, ZCCN23, AÖR22, AR20, CGJM21, CX21, GB22b, HBEK23, LKEM21, LRAQ22, LZCC22, RMJ23, SLNM21, TL21, VM22, WTX + 21, YZK23].

Residual-based [CORJ + 23, RMJ23, SLNM21]. resistance [BVRS22, Da22]. resistive [BWG + 20, LL22, RRHH + 21, TCK + 22]. resolution [AFV20, CCB22, DS22a, DT22a, DYMC20, HKS20, HZ22a, KIHB21, LSQ21, AAA23, PB22, Poé23, RRL + 23, SST + 23, SFNMF + 21, VBB + 23, WZTZ21,

ruptures [YKdHC20].

[GM23, LYY20, LC23, LY23]. scientific
[CHZ21, EDC23, PMZ23, THH22]. SDE [AB22]. SDEs [CY22a].
SDIRK [WZ21b]. Sea
[MK21, BABD21, CPT23, CFM22, LGL23a, hSMLS23]. Sea-ice
[MK21, hSMLS23]. search [HL22a]. Second
[CKT21, CDLX23, GPS20, GCL22, KLB23, LYZW21, LD20b, LCWH23,
PCF21, PGCC22, XGCW20, ZEG20, ZZZ20, ZH21, Abg20, AuIL20,
AAKW20, AKKM23, BDL20, CCWX22a, CZZ21, CZ20a, CY22b, CLJ20,
CBB23, CGM23, CX22a, Den23, FGKY22, FGTY23, HJ22, HLA22b, KS11,
KBB21, IL23a, ILTZ20, Mar23, MR23a, MQ20, MKM23, Mon21, NT20,
Nis20c, Nis22b, OR21, SLC20, RSWD21, SY21, SKCM22, SAM23, TPK20,
TEA23, VCN21, XHLH23, Yan21c, YLY22, YH22a, ZHY22, ZL22].
second-harmonic [VCNC21]. second-kind [HJ22, KS11, SLD20].
Second-order [CKT21, CDLX23, GPS20, KLB23, LD20b, LCWH23, PCF21,
PGCC22, XGCW20, ZZZ20, ZH21, Abg20, AAW20, CCWX22a, CZZ21,
CX22a, Den23, FGKY22, FGTY23, HJ22, HLA22b, KS11, KBB21, ILTZ20,
Mar23, MR23a, MQ20, MKM23, Mon21, NT20, Nis20c, Nis22b, OR21,
PSL20, RSWD21, SY21, SKCM22, SAM23, TPK20, TEA23, VCN21,
XHLH23, Yan21c, YLY22, YH22a, ZHY22].
Second-order-in-time [AKKM23]. Secondary [DS23c, CH20]. section
[CCAR22, DC22a]. Seebeck [Kan20]. sEFVM [BHVJ22]. Segel
[HS23, QLY21, WZC22]. segmentation [KTD20]. segregated [ZZC20].
segregation [SS23]. Seidel [BEP20, LXD20]. seismic
[DW21, HRMY20, LRW21b, MMS22, WUG22, XDBL21, YKdH20].
seismicity [Z21]. selected [TPY22]. selection
[BL19, BL20, CCL22, GY21, HRY22, MB23, QSZ20, AS20, CS21a,
DE23, GRC22, HL22a, LCC23b, MPSP22, SLWRG21, TPYX22, XDCF21].
[HRY22]. self-assembly [LCC23]. self-consistent
[GRC22, HL22a, MPSP22, XDCF21]. self-diffusion [DE23].
self-gravitating [SLWRG21]. Self-induced [BL19, BL20]. Self-paced
[GYZ21]. Self-similar [QSZ20, CS21a]. semantic [HBF21, ZSC20].
Semi [BE20, GKL21, GY23, POe22, STEK17, STEK22, T21, Y21, ZA20,
AAH20, BFG22, BB20a, BBD20, BZC22, BHH21, BCR22, BP21,
BD21, BMG23, BBL23, CBQ21, CYY20, CZ22b, CGG23, CBY21a,
CBY21b, DCQ20, JPA21, JLRZ20, KBB21, KSI23, KEY20, LG22a,
LM21a, LL21d, LCC23a, LCL23, PK20, DM23a, PP22c, PS22c, QHZ22,
RK21, SY23, SH22, UBT22, XGCW20, YJ23, ZEG21, ZJZK20, ZX22].
semi-adapted [Y23]. Semi-analog [POe22, SH22]. semi-analytical
[KEY20]. Semi-automatic [BGH21]. semi-classical [JLRZ20].
semi-discretized [JPA21]. Semi-global [STEK17, STEK22].
Semi-implicit
[T21, BB20a, BBD20, BZC22, BP21, BD21, CYY20, KBB21, KSI23,
Semi-Lagrangian [YM21, ZA20, BFG22, BCR22, BMG+23, CBQ21, CGZ23, CBRY21a, CBRY21b, DCGQ20, LCG22a, LCC+23a, LCCL23, PK20, DM23a].

Semi-permeable [QHZ+22]. Semi-smooth [BE20].

Semi-structured [AAH+20]. Semi-supervised [RK21].

Semi-soft [YM21, ZA20, BFG22, BCR22, BMG+23, CBQ21, CGZ23, CBRY21a, CBRY21b, DCGQ20, LCG22a, LCC+23a, LCCL23, PK20, DM23a].

Semi-resolved [CZ22b].

Sensitivity [FGB+20, KP23a, Bha20, CHDB23, CBCF20, DLZ23, FJG+20, KCP20, SJGC21, YS22].

Sensitivity-driven [FGB+20]. Sensitivity-enhanced [KP23b].

Sensitivity-driven [FGB+20].

mall-scale [WDL+21a]. Smoluchowski [Osi20]. Smooth
[HSS21, JW21, BE20, CLT21, HJ22, HP22a, QG21, RS23a, Rec23, Ste22].
Smoothed [BHJV22, YKLL21, BOB21b, BOB21a, BKMC21, BTL23,
FGZ20, GLF23, He22, LMZ+21a, OYK+22, SDA+21, ZRH20, ZZZH23,
ZXD22, ZAA23, BZC+22, FQSW23, HP21a, KEY20, LZPM22, LFL+22].
smoother [SMV22]. smoothing [CM20, CLT21, CMS23]. smoothness
[FPT20, Vev21, WWZ20, WWLZ21, ZWQG23]. Sobolev
[Kar22]. sodium [FSDB20]. soft [BPG21, XLHB22]. solar
[ACML20a, ACML20b, IK23a, MFG22]. Smaller
[SMV22]. smoothing [CM20, CLT21, CMS23]. smoothness
[FPT20, Vev21, WWZ20, WWLZ21, ZWQG23]. Smoothed
[HSS21, JW21, BE20, CLT21, HJ22, HP22a, QG21, RS23a, Rec23, Ste22].
Smoothed
[SMV22]. smoothing [CM20, CLT21, CMS23]. smoothness
[FPT20, Vev21, WWZ20, WWLZ21, ZWQG23].
RUG20, RHR20, SGMT20, SGB⁺21b, SPF21, Ser23, hSMLS23, TKGB23, WHN⁺20, WH22a, dLF23]. solves [TR21]. Solving
[AL21, BG20b, CHOS21, CPM22, FY20, GZ21, GWZ22, HLZ20, HJ22, HXQL23, MKV20, MFG22, PZ21, PMACG21, WCC23, ZLS22, ADK⁺21, ARÁFTO23, BRT22, Bat20b, BAK22, BL22, CCLL20, CCE22, CLDC20, CT23, VVL21, VMBS20, WWG20, WSAZ22, WZWZ23, WL22, Xie22, YJH23, YAX20, YNT20, ZA20, ZGLL20, ZWZL22, ZC23, ZZZG23, ZL22]. some
[CSASS21, DM21, FBCD22, TPPA22, YL21b]. Sommerfeld
[KS21b]. sonic
[AG21, CWX23, YWN20, YI23]. sorption [ACR23]. sound
[AMM⁺20b, PCD23, TWY⁺22b]. source [BCIR22, CGLZ23, Don23, ER22, FZ21, GBLT20, JL21a, KTDG22, KHS20, RtTB20, SHM23b, TWY⁺22b, WHN⁺20, WZZ23, YS22, ZL23, ZH20]. sources
[Ara20, ADM⁺21, BS20, KSHJ20, LCL⁺22b, LRW21b, WGB22]. Space
[BBQ⁺21, CBA⁺21, KSW22, PZ20, TCR⁺20, An21a, AMM20a, BTEK22, CCWX22b, DGW20, EDC⁺23, EMS⁺21, GJLD20, HPA22, HLB20, HCF⁺23, HR20, HCL20, KSTT22, LCH20, LDM⁺21, Lin20b, LN21b, LY22c, MFS⁺22, MPMD20, OGM20, PDM23, PS22b, PPHO22, SPGG23, VRK21a, WX20, XLXC20, XLLH21, XY20a, YI23, YLNT20, YWLL21, YZZZZ22, ZJZ20, ZLZ22b, ZLZ23, BDFT23]. space-fractional
[DGW20, YWLL21, YZZZZ22, ZJZ20]. Space-homogeneous
[PZ20]. Space-time
[BBQ⁺21, CBA⁺21, KSW22, PZ20, TCR⁺20, An21a, AMM20a, BTEK22, GJLD20, HR20, LY22c, MPMD20, PM22b, SPGG23, VRK21a]. space/time
[HVD23]. spaces
[AFGLM20, BCD22, GKNÖ23, HW20a]. spacetimes
[BL21a]. Spalart
[LMFV22a, LMFV22b]. Spalart-Allmaras
[LMFV22a]. spanwise
[FWNT21]. spanwise-averaged
[FWNT21]. Sparse
[AR21, MY23, RR21a, BPJ22, BKB23, DFG⁺23, ELSV22, FGB⁺20, GHTC21, HBF21, KTDG22, KKN20, LSL20, PQBB23, PRPK23, SKP⁺21, SSW22, TJ22, WD21c, WCC23, XZW21, XD22, ZX2L23, BDFT23]. sparsely
[WLPK20]. sparsity [HR22]. sparsity-constrained [HR22]. Spatial
[LKEM21, MAPS20, ABÁFTO23, BL20, FOL23, JT22, LP21, LL20a, LZZ22a, LM21c, Mon21, TRC22, XK21, XBR21, YKL21, ZLZ22b, ZLZ23]. spatial-temporal
[JT22, XK21]. Spatially
[WZ23b, BBB23, BBS23, FSW22, LSL20, YSC23]. spatially-filtered
[BBB23, BBS23]. spatially-homogeneous [YSC23]. spatio
[HL20c, KLF22, LSZ⁺23, ZB21c]. spatio-temporal
[HL20c, KLF22, LSZ⁺23, ZB21c]. spatiotemporal
[KH21a, RRL⁺23]. Special
[EFS⁺20, Z20, CKT21, CW22a, DT20, DT21a, DT22b, DT22c].
species
[ATCS20, DS23a, DFJ22, FN22, HHK+23, LLWX22, RWDG22, XYL22].
specific [LVK+22, LC23, QCWC23, WK20]. spectra [KKL+23]. Spectral
[CMSS21, GB22a, HB21, LN21a, LN21b, MFS+22, NdlLPL21, Sac22, SS22b,
VVRWT21, YJH23, YNT20, ZZ23a, ARR23, AS20, BCJM20, BCF22,
CMRR21, DLL22, DW22, EDLF20, EPL21, EPL22, FDP20, FBS23, FHT21,
Gao22, GFG22, GLLM22, HBFB20, HKJ21, HLM+20, HP23, HQ20, HPPZ20,
KS21b, KD21b, LP20a, LRW21a, LLWX22, MGV22, MBE21, MAPS20,
NS23, Nic22, PDM23, Pan20a, PKL+21, PLKM22, RMA20, RRFK+21,
SRH21, SHS+20, SW22, SSPV20, SS22c, St20, TH23, TNF23, TWY+22b,
VMBS20, WMS21, WWG20, Wan23, WD23, XSC21, XHLH23, Yua21,
ZB21b, ZBY21, ZH23, ZZ23a, ZSY21, ZWY21, ZH23, ZJZK20, ZFG21,
ZH23, ZSL23, ZWY21, ZH23, ZJZK20, ZFG21, ZMG+22, SS22d, VPDD22].
[SAPS20]. Spectral/hp [MFS+22]. Spectrally [Ste22, MR23b]. speed
[Bar21b, DLM+23, HBFB20, HZ22b, LTK+22, NKA+20, TPK20, ZBY+23].
speed-up [LTK+22]. speeds [DEvW20]. SPEM [ZSL+23]. SPH
[HZHL22, LBSR20, LKJL22, NFL+21a, NFL+21b, PRO22, REC+22, RZH20,
SLOZ21b, SLOZ21a, SPAC23, VOL23, WKBB21, YKLL21, YRHN22, ZRH21,
ZYL23a, ZMZY23, ZBY23, ZSY21, ZZ23a, ZZ23b, ZSY21, ZZ23a, SPH-ASR
[YKLL21]. SPH-MLS [REC+22]. sphere
[Ba20, BP22, CLXS23, CVM23, EJV22, GCDT22, GLWY22, HT21a, HSM20,
tH22, LP20a, SGT23, TN23, Vre20, Vre21b]. spheres [Vre17, Vre21a].
spherical [AR20, BR23, BFG23, CMS+22a, DW20a, Gar20, Gar21, GFF20,
LS22, LHM20, MJ232, RGLN22, SL20a, SOV21, SBC20, YMY+22, ZQC+23].
spike [KSST21]. spin [KVQE21]. SPINN [RR21a]. spinor [CL21]. spline
[BBF20, FBCD22, GFF20, LBSR20]. spline-based [GFF20]. splines
[BMG+23, FBCD22, HP22a]. Split
[KSBG20, CND22, GMR20, GU20, HRRHG21, KK22b, Lak20, LJW+22,
Li20, MKB20, MTW23, MD20b, SDKL21, SBL22, SKTK21, ZDC20].
split-step [Lak20, Li20, SDKL21, ZDC20]. splitting
[ARB+21, AAKW20, BCWD21, BL20, BGSP22, CQA21, DS22b, EPV21,
EOP20, EK21, GPHAPR+22, LLSX23, LLCJ23, LQX22b, LQX22a, LZ20a,
LLWX21, LWW21, LW23, OQVM22, Sac22, SL22b, Tow20, XLZ21, XG22,
XMZ+23, Yn21, ZBY21, ZMZY23, ZBY23, ZSY21, ZZ23b, ZOG21b, ZSY21].
splittings [GPHAPR+22]. splitting-based [GPHAPR+22]. splittings
[LS22a, BG20a]. SPOD [LMS+22]. spray
[TTSP21]. spreading [HRR21]. Spurious
[Gin21, AWB+20, CE21, DNO23, IKP22, JP22, SKTK21, XLS22]. SQP
[FVM23]. SQP-based [FVM23]. square [GLF23, LSZY20, YK22].
square-based [LSZY20]. Squares [GTKA20, GKA22, LKEM21, BGST21,
CCL20, CCL21, CZCY23, DVS22, HWDM22, JRY+20, LCWJ20, PC21a,
PR23, SMSAGG22, TB21, ZC22b, ZC22c]. SRS [WNZ20]. SDDC [PBN+21].
stabilisation [MAPS20]. stabilised [DPX23, NYY22, SPF21]. Stability
[CS22, KD21b, LQX22b, LQX22a, PCQL20, RV20, RC20b, TC22, BCF22,
CMR21, CN21, DZJ22, DBC+22, DS23c, GS22, GFY20, GLT+20, HBFB20,
HP22b, IK23b, KBCH20, LW22b, Mar23, MD20c, OY21, RUG20, RWBS21, SW23, SPGG23, WMT20, ZHY22, ZLL23. Stability-enhanced [PCQL20].

stabilization

[CMS+22b, DHM21a, GQR23, KMF23, KV23c, TT22a, XBD+20]. stabilize [ZOG22]. Stabilized [LBT+23, Wan23, AC23, CdS22, EJ23b, FGF22, FCWT22, LT20b, TCK+22, WGY+21, Yan21b, ZJZK20].

stabilized-Invariant [Yan21b]. Stabilized [ZOG22].

stable [WKW+22, WLZ21, YD20, Yan21b, Yan21c, YTWK23, YYD+22, ZEG21, ZY20b, ZOWW20, ZDT23, ZR20, ZH21].

stage [BJ21, CCW20, FLW20a, GWC+22, KS22b, LLQ+23, LC22, SL22c, SL23, WZ21b, ZLW+22a].

staggered

statistically [AFGLM20, BTV22, ER22, LAT+22]. statistically [RRFK+21]. Stationary

[CL20a, CSA21, EPV21, LY22c, MP21, NG22, QH23, XS22a, XS23]. statistical [BT22, DCSG22, QH23, WKA+20]. statistical-stochastic [QH23]. statistically [CFM22]. statistics

[BCJM20, CDJM21, Che20, GKA22, KAC22, ZTK23]. statistics-informed [ZTK23]. Steady

[JP22, GSW21, GLK20, JLL22, KM22b, LZZ21a, LRAQ22, Liu20a, LFZ21, MD20c, PSRM20, RA21, SZW+20, WX22, YZSD21, ZCNC23, ZG20]. steady-state [GSW21, KM22b, PSRM20, SZW+20, WX22].

[DWZ20, GNZ23, HBG+21, HPRW20, LDFM+21, QXY23, ZXX23, AKKM23, BDI+21, BDP23, BRS22, HPW21b, KZC23, KS21c, LCCJ23, LW21, SX20, SZQS23, XF23, ZNK23]. structured

[AAH+20, APR22, MRY20, MSWH22, NGZ22, RAZA21]. structures [BBKB21, BFST23, CCER20, DAI22, DYG22, FCP21, GZ20a, HYSS22, HR+22, HPW21b, IT22, LZ22, MMS22, XZ21, QS20, TF20, YK20a, YXL22]. studies [AFF+23, KSW22, QUE+23, SES21, SN23]. Study [AMGCL21, Lak20, AMK+21, BPS23, BJL21, CPG20, DS21, FCY+20, GB22a, LTK+22, MM22, NM23, POS+20, Par22, RWY21, SGLP23, TZ20, TGM23, VGG23, ZQS+21, ZQL+22]. studying

[GM23, MH22b]. Sub

[HdB20, MH22b, MCBA20, OLP23, PS22b, QJW22, ZB21b]. sub-cooled [MCBA20]. Sub-grid [HdB20, OLP23, PS22b]. Sub-grid-scale [MH22b]. sub-scale [QJW22]. Subcell

[LNF20, SGT23, AAL+21, CT22, DF22, GN20, GPNZ23, LLN22, MRK+20b, MRK+20c, MZ20, MR23a, PBN+21, RNN23, SAM23, WZ21a]. Summation-by-parts [SGT23, AAL+21, CT22, GN20, GPNZ23, LLN22, MRK+20b, MRK+20c, MZ20, PBN+21, SAM23, WZ21a]. Super

[LKM22, SSMA21, CX22b, KML23, RRL+23, WSAZ22].
Super-convergence [LKM22, KML23]. super-convergent [CX22b].
super-Gaussian [WSAZ22]. super-resolution [RRL+23].
Super-time-stepping [SSMA21]. superconductors [ER22].
Superconvergence [LCBW23]. Superconvergent [LCWJ20].
super-Gaussian [WSAZ22]. super-resolution [RRL+23].
Super-time-stepping [SSMA21]. superconductors [ER22].
supercritical [WH22a, YFY22, HHVM20]. supermesh [CF20, XMY22].

target [AN21b, LHT21, RTBI20, SBab20, WK20]. target-fixed [LHT21]. target-specific [WK20]. targets [USRH20].
Theorem [ODM23]. Theoretical [EL23]. Theory [ACD23, CHZ+21, KNG22, KGN22]. Theories [EL23].

Thermal [BOB21a, Ani21, CKLZ23, CCW20, DC22a, EM20, FADJ20, FS21, GA20, GDB23, GFG22, Kan20, KM22b, KLZ20, MMZR21, MH22a, PGM22, TLW20, TYBW23, TBG20, WLL+23]. thermal-compositional-reactive [CCW20]. thermal-fluid-structure [WLL+23]. thermally [XYL22].

Thermodynamically [HGZ23, PMT+22, KLS+20, KWDS22, PAA21].

Thermometry [BAK22]. thick [BFST23]. thin [ACML20a, ACML20b, BW20, BBKB21, CCPS21, CCPS23, CMPZ22, FCGR23, HYS22, Hig20, LWL22, PH22, QERT20, VSS21, VACE21].

Thin-film [ACML20a, ACML20b, PH22]. THINC [KCX+21, TFWX22].

Three [CPX21, CS21c, HRR21, HHLS22, LW20b, TTP22, XZNZ23, ZCY23, ABH21, BGS22a, BSA22, BDL+20, BY20, Cam21, CCM+22, CJLL21, DDL22, DYGC22, FSW22, FZ20a, FGG22, FGL+22, FLW+23, GHY22a, Gao22, GPMH20, GHP+23, GL20, GZ21, HSG+22, IW23, JW20, JLL22, KJY20, KZC23, LCG23, LSW20, LNZ+20, LJZK21, LRT22a, LC23, OY2+22, PJR23, PLV20, RZ23, SL20a, SOV21, SKC22, Suk23, Tak23, VCN+21, XY20a, XB20, YLNT20, YS21, JCY23, ZY20b, ZGLL20, ZPG21, ZWZ22, ZPG22, ZS+22, ZXY22].

Three-dimensional [CS21c, TTP22, XZNZ23, ZCY23, Cam21, CCM+22, FSW22, FZ20a, FG22, FGL+22, GHY22a, GHP+23, GZ21, HSG+22, JLL22, KZC23, LCG23, LRT22a, LC23, OYK+22, PJR23, PLV20, RZ23, SL20a, SOV21, SKC22, Tak23, VCN+21, XY20a, YS21, JCY23, ZY20b, ZGLL20, ZPG21, ZWZ22, ZPG22, ZXY22].

Throughput [ZQ21]. Tightly [HT23]. tilts [PV20].
CELV22, CA22a, CCN23, CSdP+, 22, DGGL22, DEvW22, DW21, DGW20, DFJ20, DV22, EDFL20, EPL21, FVM22, Fei23, FGKY22, FGTY23, FTPB23, FH23, FPT23, FY22, FOL23, GCVI22, GM23, GJLD20, GMB+, 22, GTDB22, GA20, GDB23, GPHAPR+, 22, GFG22, GMA23, GR21, GKA22, GW20, GLLM22, GLY22, HBF20, HPA22, HSM20, HZB+, 21, HVD23, HTV+, 22, HR20, HL20a, HX21, HL20b, HRG20, HY2H22, HLH21, JL21a, KSTT22, KTDG22, KS22a, KCS21, KSI+, 23, KSW22, KLZ23, KNS21, KNS21c].\time

Time-Accurate [BFM21, CMR21, Yan21c]. Time-adaptive [BFST23].
time-averaged [SSW22]. Time-dependent [AH21, AFL22, AFGLM20, AMB22b, BDS23, BG20a, CZ22a, DGW20, FPT23, GMB+, 22, GR21, HPA22, KCS21, Nis23, PB20b, PMF20, PM21b, PH22, PTT22, PM22b, PC22, Qi22, QHLL20, QCZ22, QW22, RMA20, RLH22, RC20a, RV20, RS23b, RC20b, STEK17, STEK22, SSW22, SYAM23, Sev21, SWF21, SSMA21, SES21, SFGNMG22, SP22, SPPG23, SZQS23, Tak23, TCS22, TFC22, TCR+, 20, TB23, Un21, VRK21a, VL20, VdGP20, WRBK20, WMTQ20, WTX+, 21, WZ22, WP23, Wan23, WDK22, WGU+, 22, XHLH23, YLNT20, YZdCNS21, Yan21c, YWCL22, YY22, Yin21, YL21a, ZS22a, ZRH20, ZY20b].

time-harmonic [AHG21, DV22, MDG20]. time-implicit [ATCS20].
time-integration [GCVI22], time-marching [TCS22].
time-spectral [EDLF20, HBF20, RMA20].
time-splitting [Yin21]. Time-step [LK20, CC22b, DEvW22, HTV+, 22].
time-stepping [DGGL22, FH23, KSI+, 23, LJW+, 22, LWF23, LLTY23, ILT20, NAZ22, SP22].
time-stepping-varying [GLLM22]. time-steps [LOL22].
time-variant [CL20c]. time-variational [Chi23, SWF21]. time-space [KSTT22].
time/relaxation [LB20, WC22, WQ22, YM22, ZS22a].

Time-Parallel [BBCD22, KBCH20, MDF21].
time-parallel [CT22a, CC22a].
time-variational [Ch23, SWF21]. time/relaxation [KSTT22].
times [LZY+, 22b].
time-stepping [BBCD22, KBCH20, MDF21].
tips [CC22a].
tissue [KSHJ20].
tissues [TBW22].

Tomography [DNW23, DZC+, 23, FY20, KLZ23, RB22].
tool [Suk23].
toolbox [CDJ21].
topography [GKPT22, ZDT23].
topological [BH23, CMPZ22, WZL21, ZPW+, 23].
topologies [RBPRST20, YYB23].

Topography [DZL+, 22, DAJ22, FADJ20, GMNY23, DFJ20, GBC+, 20, GDAP20, HCL22,
Treecode [VGK21]. Treecode-accelerated [VGK21]. Trend [HJJL20].

[BMV22, CL23a, GNZ23, KB22b, MZ22, TB21, TVL+22]. uniaxial
[DG23, Nic22]. unidirectional [ZOG21a]. Unified [LLZ+20a, LZX20, XCL+21, YK20a, ZZML20, BCP22, BNT23, CLDC20, CN22, Den23, DBD21, FZLL20, FJ21, FHJ22, GPHAP+22, JN20, KRL21, MS20a, MHW22, SSS20, SS22b, SS22d, WLP21, XLC20, ZWL23, ZG20, ZZY21]. uniform

VMS-based [PCB22]. VOF [ADJ23, CS21c, DeW22, GSPH20, KCC$^+$21, LWC$^+$21, MMZ21, WYS20, XZNZ23, ZNZ2, ZOB20, SLF23a]. VOF-IBM [LWZ$^+$21]. void [WBN21].

volume-conserved [San20, Sar21a, SCB20, SWG+20, SGW+23, SEG21b, SBVM20, SMRW22, SST+23, TV22, TJM23, The21, TPB22, TKGB23, UI20, VMO21, WLF21, WZW21, XDLX21, XM20, Yan21c, YLY22, YM+22, ZOG22, ZB21a, ZCY23, ZL21b, ZXX23, ZS20, GAB22b, HMV22, KB22a, PJR23].

volume-ﬁltering [DHK23].

Volume-of-Fluid [FMB20, KIHB21, MKB20, BSP21, FGL+22, GH23, HZTN21, IMJ20, KKS+21c, SCB20, SYL23, XS20, KB22a, PJR23]. Volume-of-Fluid-based [MS20a].

Volume-preserving [BGNZ22, Baj23, LW21, The21, WHL21].

vortices [MM21a]. Vorticity [WK21b, GGCvR22, HP21b, MD20c, MS20b].

vorticity-Bernoulli-pressure [MS20b]. vorticity-velocity [GGCvR22].

voxels [TB23].

vortices [MM21a]. Vorticity [WK21b, GGCvR22, HP21b, MD20c, MS20b].

vorticity-Bernoulli-pressure [MS20b]. vorticity-velocity [GGCvR22].

voxels [TB23].

vortices [MM21a]. Vorticity [WK21b, GGCvR22, HP21b, MD20c, MS20b].

vorticity-Bernoulli-pressure [MS20b]. vorticity-velocity [GGCvR22].

voxels [TB23].

vortices [MM21a]. Vorticity [WK21b, GGCvR22, HP21b, MD20c, MS20b].

vorticity-Bernoulli-pressure [MS20b]. vorticity-velocity [GGCvR22].

voxels [TB23].

vs [HPRW20].

VSPH [FGZ20]. VT [FCWS22, LYS22a].

Wachspress [LCL22a]. wakefield [BD20b]. walk [CC20]. Wall [KS21d, BDWC23, CDBS21, CLW22, DA23, DOL23, HP23, HBF22, HLA22b, IK23b, LN22, LZX+22b, LWWH23, NFL+21b, Nis21, PEA20, PO21, vNGB22, DA23].

wall-bounded [HBF22, HLA22b, PEA20, PO21]. Wall-modeled [KS21d, vNGB22, DA23].

wall-resolved [LWWH23].

walls [AF20, LP23b].

warm-start [ZHRB23]. Wasserstein [FOL23, GN22, LL20b, WX22].

waterflooding [LO23].

wave [ALM23, AD21, AP20, An21a, AMM20a, AHWZ20, BDT21, BBM23, BB21, BFL20, CDL21, CHSS20, CP20, CELV22, DHMT21, DH20, DSG20, DZ23, Dup21, DFW22, EGN23, FL21, FGD+21, GC20b, GAC20, HYQ20, HHS20, HLA20a, HY21, JLRZ20, KTDG20, KSTT22, KS22a, KMS20, LSC20a, LPP+20, LW20, LLZ+20a, LL23, LC22, LD20b, LZ20, LL23b, MDG20, MGL21, MMRP22, NTS20, NT20, NT23, OP20, OKTD21, RB21, SL22c, SL23, SCdHJ20, TBM22, TPPA22, TLB20, VEC21, WZ22, XG22, XBRL21, XCL+21, XHLH23, YG21a, YG21b, ZMZY23, ZJSX22, ZDC20, ZLW22b, ZLZ23, ZPK22, van22].

wave-induced [ZMZY23].

wave-mode [WZ22].

wave-packets [EGN23].

wave-particle [LLZ+20a, LZ20, XCL+21].

wave-scattering [FBL20].

wave-structure
wavefield [LKvM⁺²²]. Waveform [GM⁺²³, AN⁺²¹b, AL⁺²¹, BS⁺²⁰, CJT⁺²⁺⁰, DW⁺²¹, EEG⁺²², HRG⁺²⁰, LY⁺²³].

waveguides [NPD⁺²⁰, SML⁺²⁰]. Wavelet [RH⁺²¹, HM⁺²¹a, HDML⁺²³, HHRA⁺²⁰, Pan⁺²⁰b, ZDC⁺²⁰]. Wavelet-based [LH⁺²¹, HM⁺²¹a, HDML⁺²³, HHRA⁺¹⁹, Pan⁺²⁰b, ZDC⁺²⁰].

wavelet [LH⁺²¹]. wavenumber [FCL⁺²¹, KK⁺²²b]. Wavelet-based [LH⁺²¹].

wavepackets. Waves [AM⁺²⁰b, CL⁺²⁰, CLJ⁺²⁺⁰, DDVO⁺²¹, DLM⁺²⁺³, DV⁺²², DS⁺²³c, KFS⁺²¹, LML⁺²¹, PB⁺²⁰a, Pan⁺²⁰a, SSS⁺²², TGM⁺²³, TTP⁺²², VEC⁺²¹, WGB⁺²², WZ⁺²³b, WGU⁺²⁺², YKD⁺²²]. way [CZ⁺²²b, CBBI⁺²⁰, JHJ⁺²⁺⁰, LW⁺²⁺⁰b, PEA⁺²⁰, PA⁺²¹, RR⁺²², ZMY⁺²³, ZT⁺²³].

WCAWE [RA⁺²³]. WCNS [WZWZ⁺²³]. WCSPH [LZX⁺²⁺²b]. Weak [BBDT⁺²¹, MB⁺²¹, TLK⁺²³, XR⁺²⁺², ZBY⁺²², BD⁺²⁺³, CW⁺²⁺³, CWM⁺²⁺³, CAG⁺²⁺⁰, Heu⁺²¹, NTSM⁺²⁰, OWHN⁺²², PT⁺²³, Svi⁺²², ZZ⁺²³]. weak-constraint [PT⁺²³].

WeakIdent [TLKK⁺²³]. Weakly [YA⁺²¹, AD⁺²¹, BBD⁺²⁺⁰, CCPS⁺²³, CB⁺²³, CWW⁺²⁰, GW⁺²⁺³, JKZ⁺²¹, ILN⁺²¹, MA⁺²¹, RZH⁺²⁰, SPAC⁺²³, ZRH⁺²⁺³, ZZZH⁺²³]. weakly-compressible [JKZ⁺²¹, SPAC⁺²³]. Weber [WGY⁺²⁺²].

weight [DW⁺²⁺³, GC⁺²⁺⁻²⁰, GAC⁺²⁺, KKN⁺²⁺³, SCdHJ⁺²⁺⁺²⁰]. weight-adjusted [GC⁺²⁺⁻²⁰, GAC⁺²⁺, SCdHJ⁺²⁺⁺²⁰]. Weighted [LS⁺²⁺³, SSK⁺²⁺², BSA⁺²⁺², BS⁺²⁺², BFG⁺²⁺⁺³, CLT⁺²⁺³, CW⁺²⁺⁺³, CTCS⁺²⁺², CMNS⁺²⁺¹, GAB⁺²⁺²⁺⁺², HLH⁺²⁺³, KR⁺²⁺³, LKEM⁺²⁺¹, LCW⁺²⁺³, LWR⁺²⁺³, Nis⁺²⁺⁻²⁰a, PDM⁺²⁺³, SAP⁺²⁺², WQZ⁺²⁺³, WTX⁺²⁺⁻²¹, WZZZ⁺²⁺², WABK⁺²⁺¹, LKEM⁺²⁺¹]. weighting [CSLC⁺²⁺¹, PMS⁺²⁺³, SB⁺²⁺⁻²⁺³]. weights [CD⁺²⁺³, ZQ⁺²⁺²]. welding [CFS⁺²⁺²].

Well [AR⁺²⁺³, CMPR⁺²⁺³, FP⁺²⁺³, GLK⁺²⁺³, HKJ⁺²⁺¹, KNG⁺²⁺², GLWY⁺²⁺³, Hig⁺²⁺³, HXX⁺²⁺³, HLQ⁺²⁺³, JTW⁺²⁺³, JH⁺²⁺³, KHS⁺²⁺³, KL⁺²⁺³, LPM⁺²⁺³, LG⁺²⁺³, Liu⁺²⁺³, ND⁺²⁺³, NME⁺²⁺³, PGMT⁺²⁺³, RWQ⁺²⁺³, TP⁺²⁺³, YXY⁺²⁺³, ZDT⁺²⁺³]. Well-balanced [CMPR⁺²⁺³, GLK⁺²⁺³, MN⁺²⁺³, PPP⁺²⁺³, ZZ⁺²⁺⁻²⁺³]. Well-conditioned [HKJ⁺²⁺¹]. Well-posedness [FP⁺²⁺³, KNG⁺²⁺²]. Wendroff [BKC⁺²⁺³, DSZ⁺²⁺², FL⁺²⁺³, LSTZ⁺²⁺¹, SSS⁺²⁺²]. WENO [SZ⁺²⁺², BGF⁺²⁺³, BD⁺²⁺², CW⁺²⁺³, CKN⁺²⁺², SCdHJ⁺²⁺⁺²⁰]. WENO-NN [BS⁺²⁺², wet [Liu⁺²⁺¹]. wet-dry [Liu⁺²⁺¹]. wettabiliy [XLH⁺²⁺²]. wet [Abg⁺²⁺³, LLD⁺²⁺², LX⁺²⁺³, WJK⁺²⁺²]. white [ZX⁺²⁺⁺², while [DN⁺²⁺³, white [ZMK⁺²⁺³]. whole [DV⁺²⁺³, KBSF⁺²⁺⁺²]. wide [MM⁺²⁺¹b, SH⁺²⁺⁺³]. width [PLM⁺²⁺³]. Wiechert [KK⁺²⁺⁺²³]. Wiener [LJ⁺²⁺⁺³]. Wigner [QC⁺²⁺³, ZCH⁺²⁺³]. Wilbraham [RS⁺²⁺⁺²]. wildfire [CPH⁺²⁺⁺²]. Wilkins [LS⁺²⁺²⁺², Ser⁺²⁺³]. Willmore [MS⁺²⁺⁺³]. wind [BJR⁺²⁺³, IK⁺²⁺⁺³, LSTZ⁺²⁺¹]. Windowed [PC⁺²⁺³]. wing [RK⁺²⁺⁺²⁺², wise [DY⁺²⁺⁺²⁺², RGS⁺²⁺⁺²]. within
REFERENCES

wormhole [YZK23].

Yang [DOQ23]. yeast [HST22a]. Yee’s [DLP21].

References

REFERENCES

Allaire:2023:ACS

Azpiroz:2020:ENS

Abgrall:2020:LEA

Abgrall:2021:E

Ackermann:2021:MST
Sina Ackermann, Carina Bringedal, and Rainer Helmig. Multiscale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. *Journal of Computational Physics*, 429(??):Article 109993,
REFERENCES

An:2021:CSE

Anderson:2020:CCO

Anderson:2020:COS

Astuto:2023:FDG

[ACHG+21]

[ACML20a]

[ACML20b]

[ACR23]
REFERENCES

REFERENCES

REFERENCES

Angus:2023:IPC

Antoine:2020:PCM

Alvarez:2023:DTN

An:2022:PTD

Alauzet:2022:PAA
F. Alauzet, L. Frazza, and D. Papadogianinis. Periodic adjoints and anisotropic mesh adaptation in rotating frame for high-fidelity RANS turbomachinery applications. *Journal of Computational Physics*, 450(??):Article 110814, February 1,
Abreu:2023:RFP

Abreu:2020:NRP

Afanasiev:2021:LIT

Ammari:2021:TDH

Adriaens:2021:ASM

Xavier Adriaens, François Henrotte, and Christophe Geuzaine. Adjoint state method for time-harmonic scattering prob-
REFERENCES

Amini:2023:IMN

Akram:2020:PAR

Appelo:2020:EBD

Ammari:2020:OSN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2020:EBc

Anonymous:2020:EBd

Anonymous:2020:EBe

Anonymous:2020:EBf

Anonymous:2020:EBg

Anonymous:2020:EBh

REFERENCES

REFERENCES

Anonymous:2020:EBu

Anonymous:2020:EBv

Anonymous:2020:EBw

Anonymous:2020:EBx

Anonymous:2021:Aa

Anonymous:2021:Ac

REFERENCES

REFERENCES

Anonymous:2021:Oa

Anonymous:2021:Sa

Anonymous:2021:Ab

Anonymous:2021:Ad

Anonymous:2021:Db

Anonymous:2021:Fb

Anonymous:2021:Jb

Anonymous:2021:Jf

REFERENCES

REFERENCES

Anonymous: 2021: EBc

Anonymous: 2021: EBd

Anonymous: 2021: EBe

Anonymous: 2021: EBf

Anonymous: 2021: EBg

Anonymous: 2021: EBh

REFERENCES

Anonymous:2021:EBi

Anonymous:2021:EBj

Anonymous:2021:EBk

Anonymous:2021:EBl

Anonymous:2021:EBm

Anonymous:2021:EBn
REFERENCES

REFERENCES

REFERENCES

Anonymous:2022:Da

Anonymous:2022:Fa

Anonymous:2022:Ja

Anonymous:2022:Je

Anonymous:2022:Jc

Anonymous:2022:Ma

Anonymous:2022:Mc

Anonymous:2022:Na
REFERENCES

Anonymous:2022:Oa

Anonymous:2022:Sa

Anonymous:2022:Ab

Anonymous:2022:Ad

Anonymous:2022:Db

Anonymous:2022:Fb

Anonymous:2022:Jb

Anonymous:2022:Jf
REFERENCES

REFERENCES

Anonymous:2022:EBc

Anonymous:2022:EBd

Anonymous:2022:EBe

Anonymous:2022:EBf

Anonymous:2022:EBg

Anonymous:2022:EBh

REFERENCES

Anonymous:2022:EBi

Anonymous:2022:EBj

Anonymous:2022:EBk

Anonymous:2022:EBl

Anonymous:2022:EBm

Anonymous:2022:EBn

REFERENCES

Anonymous:2022:EBo

Anonymous:2022:EBp

Anonymous:2022:EBq

Anonymous:2022:EBr

Anonymous:2022:EBs

Anonymous:2022:EBt

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2023:Md

Anonymous:2023:Ob

Anonymous:2023:Sb

Anonymous:2023:EBa

Anonymous:2023:EBb

Anonymous:2023:EBc

Anonymous:2023:EBd

REFERENCES

REFERENCES

Anonymous:2023:EBq

Anonymous:2023:EBr

Anonymous:2023:EBs

Anonymous:2023:EBt

Anonymous:2023:EBu

Abgrall:2022:REE

REFERENCES

Amlani:2020:SHO

Abdulla:2021:IPL

Armstrong:2022:NSC

Abouhussein:2023:CFE

Almeida:2022:APS
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Reference Title</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiranashvili, Shalva, Radziunas, Mindaugas, Bandelow, Uwe, Busch, Kurt, and Ciegis, Raimondas</td>
<td>Additive splitting methods for parallel solutions of evolution problems</td>
<td>Journal of Computational Physics, 436(??):Article 110320, July 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716</td>
</tr>
</tbody>
</table>

Aurenzt:2020:SUS

Abrantes:2020:CRU

Africa:2023:MFH

AlKubaisy:2023:HPA

Al-Salami:2021:HOF

Jabir Al-Salami, Mohamed M. Kamra, and Changhong Hu. A high order flux reconstruction interface capturing method

REFERENCES

Baldauf:2021:HEV

Michael Baldauf. A horizontally explicit, vertically implicit (HEVI) discontinuous Galerkin scheme for the 2-
dimensional Euler and Navier–Stokes equations using terrain-
following coordinates. Journal of Computational Physics,
446(??):Article 110635, December 1, 2021. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999121005301.

Barnes:2021:ISF

Barsukow:2021:TMD

Barnes:2022:TED

Batista:2020:MIS

Batista:2020:PMM

David Batista. A preconditioned, multilevel Mimetic Finite Difference method for solving the pressure–velocity system. Journal of Computational Physics, 408(??):Article 109272, May 1,
Bacigaluppi:2023:PLH

Beardsell:2020:CES

Berezo:

Bonilla:2020:MPF

Bauinger:2021:IFG

REFERENCES

Bauinger:2023:MPI

Baumgart:2023:NES

Buhendwa:2022:CSP

Baumgart:2023:ACS

Bads:2021:SFP

Mehdi Badsi, Christophe Berthon, and Anaïs Crestetto. A stable fixed point method for the numerical simulation of a kinetic collisional sheath. Journal of Computational
REFERENCES

Bremer:2022:ATV

Bermudez:2020:SSI

Barucq:2021:LSI

Bay:2020:BCB

Bale:2021:OSD

Rahul Bale, Amneet Pal Singh Bhalla, Boyce E. Griffith, and Makoto Tsubokura. A one-sided direct forcing immersed

Banks:2020:HOA

Boustani:2021:IBF

Bresch:2023:MJC

Bonetti:2023:NMW

REFERENCES

REFERENCES

REFERENCES

Bergmann:2022:ASI

Bao:2020:JSM

Barua:2023:SIP

Boscheri:2022:CCI

Bertaglia:2021:UQV
Giulia Bertaglia, Valerio Caleffi, Lorenzo Pareschi, and Alessandro Valiani. Uncertainty quantification of viscoelas-

[Boscarino:2022:LVG]

[Both:2021:DDL]

[Baars:2021:AAM]

[Boscheri:2020:HOC]

Bourgeois:2020:NMA

Bozonnet:2021:TOB

Basic:2022:LDD

Bode:2023:HSC

Becache:2023:HSM

Éliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, and Antoine Tonnoir. The Half-Space Matching method for elastodynamic scattering problems in unbounded domains. *Journal of Computational Physics*, 490(??):??, October 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
REFERENCES

REFERENCES

Barna:2023:PBP

Baara:2021:TDA

Billuart:2023:WCB

Bilbao:2023:EEE

Bui:2020:SSN

Quan M. Bui and Howard C. Elman. Semi-smooth Newton methods for nonlinear complementarity formulation of
Bayat:2022:SNM

Beneddine:2023:NIF

Bocharov:2020:IMS

Barnett:2022:QAM

REFERENCES

Bassenne:2021:TAH

Barnett:2023:NNA

Bouchut:2021:DDG

Bachini:2021:IFE

Boutsikakis:2023:QPB

REFERENCES

REFERENCES

[BGH21] Agnieszka Borowska, Diana Giurghita, and Dirk Husmeier. Gaussian process enhanced semi-automatic approximate Bayesian computation: parameter inference in a stochastic differential equation system for chemotaxis. *Journal of Computa-
REFERENCES

Bonito:2022:LAL

Bao:2022:VPP

Bucelli:2023:SLC

Beaufort:2020:ASM
REFERENCES

REFERENCES

Butler:2020:OED

Babbar:2022:LWF

Bhoriya:2023:HOF

REFERENCES

REFERENCES

Brady:2021:FHO

Bai:2022:SCT

Bourgeois:2022:GMP

Banjai:2020:NAS

Bourne:2023:SCP

Emily Bourne, Philippe Leleux, Katharina Kormann, Carola Kruse, Virginie Grandgirard, Yaman Güclü, Martin J. Kühn, Ulrich Rüde, Eric Sonnendrücker, and Edoardo Zoni. Solver

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bezgin:2021:DDP

Bezgin:2022:WNM

BenHassanSaidi:2022:CDS

Bukreev:2023:CLB

Bures:2021:PLI

Lubomír Bures, Yohei Sato, and Andreas Pautz. Piecewise linear interface-capturing volume-of-fluid method in ax-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Capdeville:2023:GKP

Capdeville:2023:GKP

Chi:2020:DGC

Chi:2020:DGC

Chan:2023:GPR

Chan:2023:GPR

Choi:2020:GBC

Choi:2020:GBC

Choi:2021:STR

Choi:2021:STR

Youngsoo Choi, Peter Brown, William Arrighi, Robert Anderson, and Kevin Huynh. Space-time reduced order model

Ching:2020:TWC

Codina:2023:ESL

Chung:2020:RSC

Casquero:2021:DCI

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES

Christensen:2022:FAN

Colera:2022:NCH

Cheung:2023:LLR

Colnago:2020:HOI

Chetverushkin:2021:CMM

Chertock:2023:LCD

Chen:2020:GMA

Cohen:2020:EIS

Cai:2021:LSR

Cai:2022:SAD

REFERENCES

[CDX22] Yuyan Chen, Bin Dong, and Jinchao Xu. Meta-MgNet: Meta multigrid networks for solving parameterized partial difference-
References:

Cui:2023:SCD

C:2021:SSE

Chowdhury:2022:ECF

Cances:2020:ECP

Isabelle Cheylan, Tom Fringand, Jérôme Jacob, and Julien Favier. Analysis of the immersed boundary method for turbulent fluid-structure interaction with lattice Boltzmann method. *Journal of Computational Physics*, 492(??):??, November 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CHZ22] Yat Tin Chow, Fuqun Han, and Jun Zou. A direct sampling method for simultaneously recovering electromagnetic inhomogeneous inclusions of different nature. *Journal of
References

REFERENCES

REFERENCES

Chen:2021:SOA

Cai:2020:SSC

Chen:2020:AGP

Chen:2020:NAT

Chen:2020:KBC

REFERENCES

Cheng:2020:EFB

Clain:2021:VHO

Chow:2022:CDA

Chai:2020:FDD

Cheng:2020:NIC

REFERENCES

Chen:2021:CSL

Chang:2020:EMC

Chan:2022:ESM

Chen:2023:NAD

<table>
<thead>
<tr>
<th>Citation</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Publication Date</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Costa:2021:EVH

Cichino:2022:NSF

Chandrashekar:2020:PCF

Coatléven:2021:PNE

Coatléven:2022:NEM

REFERENCES

Coco:2020:MGP

Cao:2023:RBE

Chung:2020:CMM

Capodaglio:2022:LTS

Chartrand:2022:MGM

Chris Chartrand and J. Blair Perot. A method for generating moving, orthogonal, area preserving polygonal meshes. *Jour-
REFERENCES

REFERENCES

REFERENCES

Chiarini:2021:DSN

Cai:2021:ELD

Cirrottola:2021:ADU

Ciallella:2020:EST

Cai:2020:TCL

Jiaxiang Cai and Jie Shen. Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs. *Journal of Computational
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Article Number</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>

Hanahchim Choung, Vignesh Saravanan, Soogab Lee, and Hae-seong Cho. Nonlinear weighting process in ghost-cell im-

REFERENCES

REFERENCES

[Chen:2023:HOA]

[Chen:2021:DNT]

[CX22b] Bernardo Cockburn and Shiqiang Xia. An adjoint-based superconvergent Galerkin approximation of eigenvalues. Journal of Computational Physics, 449(??):Article 110816, January 15,
Choi:2021:PTD

Chassagneux:2022:NAS

Chen:2022:SOT

Cai:2023:UAM

Cheng:2022:PFC

REFERENCES

Chen:2023:CBC

Cheng:2022:SSN

Chen:2020:NSO

Chen:2020:BIP

Chaikovskii:2022:CAF

REFERENCES

Chen:2022:SRC

Chang:2023:HDD

Chen:2023:ENI

Chen:2020:MPR

Cheng:2020:DGM
Jian Cheng, Fan Zhang, and Tiegang Liu. A discontinuous Galerkin method for the simulation of compress-

Chen:2020:INB

Chen:2022:VBR

Chai:2021:SOA

Da:2022:MRF

[DA23] Eron T. V. Dauricio and João Luiz F. Azevedo. A wall model for external laminar boundary layer flows ap-

REFERENCES

Dargaville:2020:SAA

Deka:2020:NGG

Desmons:2021:GHO

Du:2022:CDF

Du:2022:NCG

REFERENCES

REFERENCES

Dahmen:2022:CEN

DeVita:2021:FES

Duchemin:2022:MMA

Duan:2021:FIP

Dai:2022:HPW

Deng:2023:UFN

Deriaz:2023:HOA

Dabaghi:2023:TAS

Denner:2020:CFV

REFERENCES

REFERENCES

[DGGL22] Victor DeCaria, Sigal Gottlieb, Zachary J. Grant, and William J. Layton. A general linear method approach to the design and optimization of efficient, accurate, and easily implemented time-stepping methods in CFD. *Journal
REFERENCES

Diaz:2022:PAC

Duchemin:2023:EER

Dubois:2022:MLF

Dominguez:2020:ODF

Dominesey:2022:ROM

Dominesey:2023:ROM

Dunton:2020:PEM

Dutt:2021:HOM

Dalmon:2020:FMI

Alexis Dalmon, Kalyani Ketheswaran, Guillaume Mialhe, Benjamin Lalanne, and Sébastien Tanguy. Fluids-membrane

REFERENCES

Dusson:2023:OPE

Hurtado-de-Mendoza:2022:NMA

Dao:2022:ESA

Dunning:2020:AMR

Dai:2022:MSP

REFERENCES

Ding:2020:CGE

Dolejsi:2021:NST

Delmas:2022:PHO

Duong:2022:ARS

Datta:2023:CEH

REFERENCES

S. Dargaville, R. P. Smedley-Stevenson, P. N. Smith, and C. C. Pain. Goal-based angular adaptivity for Boltzmann

Ding:2020:CFD

Du:2022:ISW

Duan:2020:HOA

Duan:2021:ESA

Duan:2021:HOA

Deucher:2022:HRA

Duan:2022:ASI

Duan:2022:HOA

Dupuy:2020:AAP

REFERENCES

Dong:2022:CHE

Du:2022:EHH

Du:2022:HOB

Dong:2022:SHO

Dorschner:2020:FMR

[DZ22]

[DZ23]

[DZC+23]

[DZJ22]

Estivalezes:2022:PIB

Esmaeili:2020:GDT

Egan:2022:NIG

Elias:2020:ESE

Evans:2019:ANS

Evans:2020:CAN

Elarif:2021:TFB

Efendiev:2020:SIA

Evstatiev:2021:NEA

REFERENCES

Etter:2023:CPR

Egan:2020:XRC

Exposito:2023:WPD

Egan:2021:DNS

REFERENCES

Ellison:2023:GP

Esmaily:2023:SFS

Ellison:2022:GPB

Ewert:2021:HAS

Engel:2023:BUM

Efendiev:2023:MHR

Eldredge:2022:MIL

Efendiev:2023:NTE

Efendiev:2022:EHE

Elman:2022:SAG

Ejtehadi:2020:MDG

Exl:2021:PMD

Einkemmer:2020:LRP

Einkemmer:2023:RCD

Esquivel:2021:FDS

REFERENCES

Equivel:2022:MEF

Efendiev:2021:TSA

Epstein:2022:DSR

Eremin:2022:ECC

Epp:2023:FCS

Eriksson:2023:BIM

Faghihifar:2022:ER

Fleischmann:2020:SSM

Feppon:2020:TOT

REFERENCES

[FHA20] Nico Fleischmann, Stefan Adami, Xiangyu Y. Hu, and Niko-
laus A. Adams. A low dissipation method to cure the
grid-aligned shock instability. *Journal of Computational
Physics*, 401(?):Article 109004, January 15, 2020. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999119307090.

discontinuities. *Journal of Computational Physics*, 423
(??):Article 109802, December 15, 2020. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999120305763.

[Fuhg:2022:MDE] Jan N. Fuhg and Nikolaos Bouklas. The mixed Deep En-
ergy Method for resolving concentration features in finite
strain hyperelasticity. *Journal of Computational Physics*,
451(?):Article 110839, February 15, 2022. CODEN JCT-
PAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0021999121007348.

[Frambati:2022:PUS] Stefano Frambati, Hélène Barucq, Henri Calandra, and Julien
Diaz. Practical unstructured splines: Algorithms, multi-patch
spline spaces, and some applications to numerical analysis.
Journal of Computational Physics, 471(?):??, December 15,
2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
article/pii/S002199912200688X.

[Farquhar:2022:GBH] Megan E. Farquhar, Kevin Burrage, Rodrigo Weber Dos San-
tos, Alfonso Bueno-Orovio, and Brodie A. J. Lawson. Graph-
based homogenisation for modelling cardiac fibrosis. *Journal
of Computational Physics*, 459(?):??, June 15, 2022. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999122001887.
REFERENCES

REFERENCES

Fei:2023:TRM

Feliu-Faba:2020:MLP

Ferreiro-Ferreiro:2020:GOD

Fernandez:2023:PFE

Fernandez-Fidalgo:2021:RDW

Feliu-Faba:2021:AID

Farcas:2020:SDA

Fomenko:2021:ABI

Franceschini:2022:SPF

REFERENCES

[FL23b] Guosheng Fu and Chun Liu. High-order variational Lagrangian schemes for compressible fluids. *Journal of Com-
REFERENCES

Kejie Fu, Mingjie Liao, Yangshuai Wang, Jianjun Chen, and Lei Zhang. Adaptive multigrid strategy for geometry optimization of large-scale three dimensional molecular mechan-

Franc:2023:CSC

Fehn:2020:HMM

Filbet:2022:FPM

Franca:2022:MLS

Fu:2023:HOS

[FOL23] Guosheng Fu, Stanley Osher, and Wuchen Li. High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems.
REFERENCES

Fumagalli:2023:WPV

Falcone:2020:MSI

Fryklund:2023:IEM

Feng:2023:ESS

REFERENCES

REFERENCES

REFERENCES

Gonzalez:2021:LNM

Gowers:2020:DAD

Gaudreault:2022:HON

Guo:2022:SOA

Gallice:2022:ESP

REFERENCES

Guan:2022:SPT

Girault:2022:CMC

Galassi:2022:ATI

Garon:2020:MAB

Gumerov:2021:LGF
Nail A. Gumerov and Ramani Duraiswami. Laplace Green’s functions for infinite ground planes with local roughness. \textit{Journal of Computational Physics}, 447(??):Article 110673, Decem-

REFERENCES

Gopinath:2022:AIE

Guo:2020:ELB

Garcia:2022:SED

Grimberg:2020:SPB

Gawlik:2020:CFE

REFERENCES

Gawlik:2022:FEM

Gabbard:2022:IIM

Gorodetsky:2020:GAC

Gu:2023:HOW

Giunzioni:2023:CPS

Viviana Giunzioni, John E. Ortiz G., Adrien Merlini, Simon B. Adrian, and Francesco P. Andriulli. On a Calderón preconditioner for the symmetric formulation of the electron-

REFERENCES

Gao:2020:STA

Giuliani:2020:MLD

Gross:2022:FPT

Gumerov:2023:RCM

Garg:2021:SDC

REFERENCES

[Glaubitz:2023:MDS]

[Guermond:2022:HRT]

[Garritano:2022:EEA]

[Guo:2020:IFE]

[Glaubitz:2021:SHO]
Jan Glaubitz. Stable high-order cubature formulas for experimental data. *Journal of Computational Physics*, 447
Gu:2023:HOP

Gao:2023:NSP

Glowinski:2020:CTB

Grosheintz-Laval:2020:WBF

References

[Guillot:2020:PFB] Louis Guillot, Arnaud Lazarus, Olivier Thomas, Christophe Vergez, and Bruno Cochelin. A purely frequency based Floquet–Hill formulation for the efficient stability computation...
REFERENCES

Guan:2023:TOR

Garg:2020:UJF

Ghasemi:2020:CDC

Gao:2022:WGA

Gu:2023:QRB

Yiqi Gu and Michael K. Ng. Quadrature rule based discovery of dynamics by data-driven denoising. *Journal of Computational Physics*, 486(??):??, August 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

REFERENCES

Gomez:2023:MCM

Gonzalez-Pinto:2022:UFS

Gagliardi:2022:CAM

Guermond:2020:SOI

Giussani:2020:TPV

Guo:2022:LRT

Gao:2023:MLA

Girfoglio:2021:PGR

Girfoglio:2023:HPD

Ghilani:2020:PPF

Mustapha Ghilani, El Houssaine Quenjel, and Mazen Saad. Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are

[Gradinaru:2021:HWS]

[Giacomin:2022:GCS]

[Grigoriu:2020:DBI]

[Gaudreault:2018:KFA]

REFERENCES

Gaudreault:2021:CKF

Gu:2020:BPE

Goyman:2021:HAS

Gjesteland:2022:ESC

Gerster:2023:SCH

[GTDB22]

Gross:2020:MMM

Giga:2020:NCS

Gu:2020:PTI

Gao:2023:ALB

Giuliani:2022:SSG

Andrew Giuliani, Florian Wechsung, Antoine Cerfon, Georg Stadler, and Matt Landreman. Single-stage gradient-based
stellarator coil design: Optimization for near-axis quasi-

REFERENCES

Gong:2020:AHO

Hoagland:2021:HAA

Huang:2023:CGS

Hackemack:2021:DGS

Huang:2021:SES
REFERENCES

Heldmann:2023:PTU

Hyde:2021:OSS

Hertel:2022:CLM

Haas:2020:TSA

Hernandez:2021:SPN

Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Structure-preserving

Huang:2022:MLM

Hope-Collins:2023:ADC

He:2023:GPP

Huang:2020:DAB

REFERENCES

Henri:2022:GLS

Huang:2023:PR

Hageman:2020:SGM

Hageman:2021:RTS

Harnish:2023:AWM

He:2022:MFS

Heumann:2021:GMW

Ho:2023:AOL

Holst:2020:ETE

Hepp:2020:MEA

REFERENCES

Hassanaly:2022:ASU

Hachem:2021:DRL

Hong:2023:TCH

Haghani-Hassan-Abadi:2021:PCM

Haack:2023:NSM

REFERENCES

REFERENCES

Huang:2023:CCP

Hitz:2021:CMM

Hwang:2020:TEK

Hartung:2021:LML

Harlim:2021:MLP

REFERENCES

Hu:2023:MMC

Huang:2023:HOP

Hariharan:2021:WCU

Heidel:2021:TPM

Hitz:2020:PRM

REFERENCES

REFERENCES

Huang:2020:CEC

Huang:2021:CCM

Huang:2022:CCP

Huang:2022:ICA

Hao:2020:DCS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hong:2022:GEL

Horvath:2020:EMC

Harris:2022:SCS

Halvic:2023:NIM

Hu:2020:UHM

[HQ22] Hong:2022:GEL

[HR22] Harris:2022:SCS

[HR23] Halvic:2023:NIM

Hajishariﬁ:2023:NID

Hateley:2020:DLS

Hashemi:2021:TDM

Hennemann:2021:PES

Huang:2022:HOC

[HRWP22] Qian-Min Huang, Yu-Xin Ren, Qian Wang, and Jian-Hua Pan. High-order compact finite volume schemes for solving the Reynolds averaged Navier–Stokes equations on the unstructured mixed grids with a large aspect ratio. *Journal of
REFERENCES

He:2022:SAS

Huang:2023:BPP

Horsten:2020:HFK

Hyman:2022:FTT

REFERENCES

REFERENCES

Huang:2022:BPP

Hao:2021:MMA

Howard:2020:NLM

Hamfeldt:2021:CFD

Howard:2021:CLS

[HT21b] Amanda A. Howard and Alexandre M. Tartakovsky. A conservative level set method for N-phase flows with a free-

Hall:2021:GGI

Hennink:2021:PBS

Huhn:2023:PDM

Horstmann:2022:CTS

Huang:2020:AMQ

Huet:2023:COA

Huang:2022:MRM

Huang:2020:IDD

Hou:2021:RSS

REFERENCES

REFERENCES

Hu:2022:SSH

Hu:2022:RHD

Hu:2022:MCC

Huang:2022:RHO

Han:2021:AIA

Hao:2021:FCD

He:2022:SSM

Han:2021:CPH

Han:2023:ENO

Huang:2022:DDD

Ianniello:2020:AME

Idesman:2020:NPS

Iijima:2021:ECF

Issan:2023:PSW

Izsak:2023:ISA

Marian G. S. Izsak and Hans-Jakob Kaltenbach. Improvement of the stability and accuracy of solid-wall immersed boundary...

Federico Izzo, Olof Runborg, and Richard Tsai. Corrected trapezoidal rules for singular implicit boundary inte-
REFERENCES

Jacquier:2021:NIR

Jain:2022:ACP

Jaiswal:2022:ESS

Jaiswal:2022:NLB

Jain:2023:ADI

REFERENCES

Jabbarzadeh:2020:NMI

Jettestuen:2021:LCM

Jost:2021:DFI

Janodet:2022:MPA

Joshaghani:2022:VST

REFERENCES

(JJ21) Philip E. Johnson and Eric Johnsen. A simple, optimally convergent, parameter-free discretization of diffusive terms

Johnson:2020:CDG

Johnson:2020:ARA

Jagtap:2020:AAF

Jandaghian:2021:EWC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Jin:2022:STA

Jiang:2021:SFI

Jiang:2020:LIE

Jakobsen:2020:CSS

Ji:2020:AIF
Haifeng Ji, Zhifeng Weng, and Qian Zhang. An augmented immersed finite element method for variable coefficient ellip-

...

REFERENCES

Kromer:2022:FBV

Kuzmin:2022:UFE

Kromer:2023:TOA

Kelley:2020:MIG

Keita:2021:MCP

REFERENCES

Kolahdouz:2021:SIL

Kassen:2022:IBS

Kasolis:2020:IBM

Keniley:2020:DET

Krath:2021:EPO

REFERENCES

Kuhn:2021:AML

Kumari:2021:GNA

Kozak:2020:WIL

Kuzmin:2020:SFL

Kong:2023:EESa

Kou:2022:EAI

Kemm:2023:NIM

Kostorz:2020:SAB

Kou:2023:CVP

Konrad:2022:DDL

Khokhlov:2021:GCM

Klahn:2020:AEA

Kang:2020:IHD

Kopriva:2022:TFOb

Kontolati:2023:IPM

Kolasinski:2020:SMM

Khodkar:2021:DDP

Kumar:2021:MSI

Krause:2022:MTA
REFERENCES

Khoromskij:2020:RST

Koch:2020:NCW

Kim:2021:EHR

Kivva:2021:FCT

Kulka:2022:TAC

REFERENCES

REFERENCES

Khatri:2020:CEL

Kwon:2021:DBI

Kan:2023:PCI

Kim:2021:FSM

REFERENCES

Keshavarzzadeh:2020:GNQ

Kaltenbacher:2022:DKL

Kim:2020:CES

Kenamond:2021:IDB

Kenamond:2021:PPC

Kuhl:2021:ACV

Kritsuk:2021:HON

Kubo:2021:LSB

Kim:2022:MCM

Sejin Kim, Inmyoung Kim, and Donghyun You. Multi-condition multi-objective optimization using deep reinforcement learning. *Journal of Computational Physics*, 462(??):??, August 1,
Kim:2020:DUL

King:2022:HOS

Kallinderis:2023:DMI

Kromer:2023:SOA

Kou:2022:DDE

[KLF22] Jiaqing Kou, Soledad Le Clainche, and Esteban Ferrer. Data-driven eigensolution analysis based on a spatio-temporal Koop-
References

REFERENCES

REFERENCES

Kochi:2023:SCU

Kelly:2023:PBO

Koliesnikova:2021:UF

Keaveny:2011:ASK

REFERENCES

Koch:2020:MTP

Khanwale:2023:PBS

Kulesza:2021:DOA

Karam:2021:LCR

Kucherova:2021:CMP

[KSST21] Anna Kucherova, Selma Strango, Shahar Sukenik, and Maxime Theillard. Computational modeling of protein conformational

Kahana:2020:OSB

Kahana:2022:PID

Katrutsa:2023:EDM

Kushch:2020:NAM

Katsoulakis:2020:DDV

REFERENCES

REFERENCES

Kou:2023:EBP

Kou:2022:ESL

Kusch:2020:IAS

Kusch:2022:LRP

Kolahdouz:2023:SIL

[KWR+23] Ebrahim M. Kolahdouz, David R. Wells, Simone Rossi, Kenneth I. Aycock, Brent A. Craven, and Boyce E. Griffith. A sharp interface Lagrangian–Eulerian method for

Koch:2022:NMD

Kawai:2022:GRM

Kong:2023:EESb

Lozano:2021:IFS

Lakoba:2020:SIF

REFERENCES

Luo:2021:MDG

Lucor:2022:SCS

Li:2022:IPG

Li:2021:ESP

REFERENCES

labanda:2023:epm

linga:2020:tef

laurent:2021:rgc

lahiri:2020:ssa

linot:2023:sno

REFERENCES

[LCC+23a] Hongtao Liu, Mengyu Chen, Xiaofeng Cai, Yong Cao, and Giovanni Lapenta. A combined immersed finite element and con-

Li:2020:EHO

Lyu:2020:NSC

Labeurthre:2022:HOW

Lai:2022:SRM

Linders:2020:ASA

Liu:2020:SOL

Luders:2022:PCA

Li:2021:ESS

Li:2021:ASN

Le:2021:QFP
Hai P. Le. Quantum Fokker–Planck modeling of degenerate electrons. *Journal of Computational Physics, 434*(*??*):Article 110230, June 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
REFERENCES

Li:2021:SFH

Lee:2021:EBQ

Lopez:2021:NIE

Lemoine:2020:AGM

Lepage:2021:AMI

Levy:2022:POT

Li:2021:LDS

Long:2022:VVI

Laurent:2021:DCF

Liu:2020:ENA

Chen Liu, Florian Frank, Christopher Thiele, Faruk O. Alpak, Steffen Berg, Walter Chapman, and Beatrice Riviere. An efficient numerical algorithm for solving viscosity contrast

REFERENCES

REFERENCES

REFERENCES

Li:2022:ICT

Li:2020:SSF

Li:2021:CMM

Li:2022:NSL

Li:2023:ECP

Ju Liu. On the design of non-singular, energy-momentum consistent integrators for nonlinear dynamics using energy splitting and perturbation techniques. *Journal of Computational Physics*, 487(??):??, August 15, 2023. CO-

Liu:2023:HOM

Lan:2022:HOM

Lin:2021:ATF

Latimer:2021:SAS

REFERENCES

Lee:2023:GPB

Luo:2023:FPI

Leiter:2023:TSB

Lan:2023:OSB

Luo:2020:FIH

Li Luo, Lulu Liu, Xiao-Chuan Cai, and David E. Keyes. Fully implicit hybrid two-level domain decomposition algorithms for...

Lundquist:2022:MDS

Li:2021:RDG

Lin:2021:PTT

Li:2022:CMF

Li:2022:CCL

Liu:2020:OSI

Lu:2020:MAM

Lan:2023:DNB

Li:2023:NNT

Liao:2020:SON

REFERENCES

REFERENCES

Liu:2020:EMD

Lipnikov:2020:CHO

Liu:2020:PFE

Lundgren:2020:EFD

Lamaakel:2021:GIS
Oumaima Lamaakel and Georgios Matheou. Galilean invariance of shallow cumulus convection large-eddy simulations.
REFERENCES

REFERENCES

REFERENCES

Lou:2021:PIN

Lundquist:2020:EEM

Lye:2020:DLO

Lario:2022:NNL

Lopez-Menchon:2022:PMC

Liu:2021:NST

Liu:2021:DNS

Lin:2023:BDE

Lauren:2021:SPI

Lui:2021:SCS

S. H. Lui and Sarah Nataj. Spectral collocation in space and time for linear PDEs. *Journal of Computational

Lianlei Lin, Naxian Ni, Zhiguo Yang, and Suchuan Dong. An energy-stable scheme for incompressible Navier–Stokes equations with periodically updated coefficient matrix. *Journal of Computational Physics*, 418(??):Article 109624, October 1,
REFERENCES

Li:2023:IBP

Li:2020:FVW

Li:2022:PFC

Liu:2023:PDA

Lee:2020:MMS

Lu:2020:MCS

Lee:2021:EST

Lima:2023:CMC

Lozano:2023:SMD

Liu:2023:MCA

REFERENCES

A. Alvarez Laguna, T. Pichard, T. Magin, P. Chabert, A. Bourdon, and M. Massot. An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasmas at low-pressure. *Journal of Computational Physics*, 419(??):Article 109634, October 15, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

[Lindberg:2021:HOF] Ludvig Lindeberg, Ylva Ljungberg Rydin, and Leighton M. Watson. A high-order finite-difference scheme to model the

[Lai:2022:SAI]

[Lipnikov:2023:CHO]

[Lam:2020:ESA]

[Li:2020:NSO]

REFERENCES

REFERENCES

REFERENCES

Liu:2021:WGF

Li:2023:FST

Liu:2020:HOL

Li:2020:GPR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Article</th>
<th>Date</th>
<th>URL</th>
</tr>
</thead>
</table>

Lecointre:2022:HON

Liu:2020:LSP

Lu:2020:TWC

Laurain:2021:OCV

Li:2022:MIS

Liu:2021:SPO

Liu:2023:CER

Li:2020:NCM

Li:2023:SMB

Liu:2022:PPT

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LYZW21]</td>
<td>Li, Yakun; Yu, Wenkai; Zhao, Jia; Wang, Qi</td>
<td>Second order linear decoupled energy dissipation rate preserving schemes for the Cahn–Hilliard-extended-Darcy model. Journal of Computational Physics, 444(??):Article 110561, November 1,</td>
</tr>
</tbody>
</table>

[LZPM22] Ming-Kang Li, A-Man Zhang, Yu-Xiang Peng, and Fu-Ren Ming. An improved model for compressible mul-

[Li:2022:ALEa]

[Li:2022:AIB]

[Li:2022:DDL]

[Liu:2022:FCS]

[Li:2021:ACF]

[MBDS23] A. Martin, S. Brisard, S. Deleville, and K. Sab. Assessment of the equivalent inclusion method for the nu-
REFERENCES

[MD22] Mehdi Mosharaf-Dehkordi. A fixed point multi-scale finite volume method: Application to two-phase incompressible fluid flow through highly heterogeneous porous media. *Journal of Computational Physics*, 462(??):??, August 1,

REFERENCES

Montanino:2022:FEF

Moura:2022:SHE

Mazzia:2020:VEM

Modave:2020:CTH

[MHW22] Lijie Mei, Li Huang, and Xinyuan Wu. A unified framework for the study of high-order energy-preserving integrators for solving Poisson systems. *Journal of Computational Physics*, 450(?):Article 110822, February 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Milan:2021:DLA

Moon:2020:APD

Mirjalili:2020:CDI

Mao:2023:IGP

Mao:2021:VIP

REFERENCES

Mantravadi:2023:HDE

Meng:2020:CNN

Mehlmann:2021:SID

Maric:2020:USG

Matsunaga:2020:MSM

Mirjalili:2023:AEB

Milcent:2020:MFA

Mehmani:2023:MPM

Moldovan:2021:MEK

Moldovan:2022:OPI

Mirjalili:2021:CEC

Mirjalili:2022:CCE

Mir:2023:DRP

Mukundan:2022:HMF

Muller:2023:SIF

REFERENCES

492

Munoz-Matute:2021:EBD

Moufid:2022:EAD

Mazzieri:2022:EAM

Morinishi:2023:CLE

Malan:2021:GVM

REFERENCES

Mu:2022:SCG

Millmore:2020:MPS

Mantri:2021:WBD

MacLean:2022:AMG

Mowlavi:2023:OCP

Maurer:2020:GGG

Marx:2022:REF

Magnetta:2022:VFC

Massa:2022:AES

REFERENCES

REFERENCES

Mezzadri:2020:SOM

Magiera:2022:MCM

Mattsson:2023:ISP

Mouton:2023:DNM

Miller:2022:NNB

Sean T. Miller, Nathan V. Roberts, Stephen D. Bond, and Eric C. Cyr. Neural-network based collision operators for the Boltzmann equation. *Journal of Computa-

Mortier:2022:MAP

Morvillo:2021:SPA

Meyers:2021:KOM

Magiera:2020:CAN

Manzanero:2020:ESDa

Manzanero:2020:ESDb

Manzanero:2020:FES

Moes:2023:EMD

Morita:2022:ABO
Maury:2020:NHC

Morse:2021:RSE

Maes:2020:USF

Mullner:2020:NSM

Mabuza:2020:LPN

REFERENCES

Metivet:2021:DRS

Matsunaga:2022:AFS

Mies:2023:EJD

Meehan:2022:EAP

Miao:2022:NCS

Ma:2020:IBL

Mehmani:2022:PNM

Meng:2023:SGP

Maltsev:2023:HDG

Chenchen Mou, Xianjin Yang, and Chao Zhou. Numerical methods for mean field games based on Gaussian processes and Fourier features. *Journal of Computational Physics*, 460(??):??, July 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print),
REFERENCES

REFERENCES

Nasu:2022:NCM

Nguyen:2022:HOS

Negrini:2021:SIT

Nakao:2022:ELR

Napier:2020:UMA
John Napier and Emmanuel Detournay. An unstructured mesh algorithm for simulation of hydraulic fracture. *Journal of
REFERENCES

REFERENCES

REFERENCES

Nishikawa:2020:HPS

Nishikawa:2020:LRS

Nishikawa:2020:RNF

Nishikawa:2021:HPS

Nishikawa:2022:AFV

REFERENCES

Nikl:2022:HOC

Ni:2022:IBM

Navas-Montilla:2023:FWB

Nikan:2021:NEF

Najafiyazdi:2023:LES

REFERENCES

REFERENCES

REFERENCES

OBrien:2020:MIB

Orlando:2022:EID

Ou:2022:DGC

Oppenheimer:2023:MSP

Owen:2020:TIM

Oblapenko:2020:VSH

Oblapenko:2022:HDS

Ovadia:2021:BCF

Ong:2020:IBP

Onder:2023:DLI

Orsi:2023:FIS

Ong:2021:IBP

OReilly:2020:ECS

Olivier:2023:FIV

OLeary:2022:SPI
Oruc:2021:EMM

Osinsky:2020:LRM

Ong:2022:IBP

Ouaknin:2021:PAS

Oliva:2022:TFW

Paul Valsecchi Oliva, Yue Wu, Cuiyu He, and Hao Ni. Towards fast weak adversarial training to solve high dimensional parabolic partial differential equations using XNODE-WAN.
REFERENCES

Ohmichi:2021:MFT

Ouyang:2022:HSP

Petrov:2020:PAM

Pakseresht:2021:DCP

REFERENCES

Panokratoras:2020:CPC

Park:2022:NSM

Paciorri:2020:ADS

Patil:2020:RTR

Poette:2022:EUC

Gaël Poëtte and Emeric Brun. Efficient uncertain k_{eff} computations with the Monte Carlo resolution of generalized Polynomial Chaos based reduced models. *Journal
References

References

REFERENCES

REFERENCES

REFERENCES

[PJA22] Gang Pang, Songsong Ji, and Xavier Antoine. Accurate absorbing boundary conditions for two-dimensional peridynam-

Pulliam:2020:IEP

Pathak:2023:TDN

Pant:2021:TPM

Piao:2020:ETT

REFERENCES

Peng:2023:ELR

Panchal:2021:HEE

Peng:2021:HOL

Paul:2022:NEB

Pham:2022:DGS

Poëtte:2023:MLM

Popinet:2020:VLN

Panda:2020:MIP

Pan:2022:ABG

Pan:2022:HOA

Mikhail Panfilov, Stéphane Popinet, Viatcheslav Vostrikov, Zharasbek Baishemirov, and Abdumaulen Berdyshev. Numerical modeling of fluid flow through multiscale fractured-

Pathak:2020:ISN

Prado:2021:DDD

Parish:2023:IDC

Patsatzis:2023:DDC

REFERENCES

REFERENCES

[QHLL20] Changxin Qiu, Xiaoming He, Jian Li, and Yanping Lin. A domain decomposition method for the time-dependent Navier-Stokes–Darcy model with Beavers–Joseph interface condition

Qiu:2021:TOP

Qian:2021:LTT

Qu:2020:SSS

Quan:2022:ESL

Qian:2021:PES

Qian:2023:CAS

Qian:2023:ECS

Qiao:2023:SPN

Rondeau:2021:TPM

[RA21] Maxime Rondeau and R. Arès. On the test particle Monte-Carlo method to solve the steady state Boltzmann equation, the congruity of its results with experiments and its potential for shared memory parallelism. *Journal of Computational Physics*, 444(??):Article 110590, November 1, 2021. CO-
Rumpler:2023:MMW

Roy:2023:SDS

Ranocha:2022:NNF

Ranocha:2023:DGD

Runnels:2021:MPF

Brandon Runnels, Vinamra Agrawal, Weiqun Zhang, and Ann Almgren. Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with
REFERENCES

[Rojas:2021:RPE] Diego Rojas, Radouan Boukharfane, Lisandro Dalcin, David C. Del Rey Fernández, Hendrik Ranocha, David E. Keyes, and

[Riffaud:2021:DMR]

[Reynolds-Barredo:2020:NES]

[Ricketson:2020:ECA]

[Roth:2020:SAD]

REFERENCES

REFERENCES

Resseguier:2022:RTE

Ramezanian:2020:OPS

Rangarajan:2020:ABA

Rath:2023:IPR

REFERENCES

REFERENCES

Rueda-Ramirez:2023:ESG

Rueda-Ramirez:2021:ESN

Ren:2023:PPI

Renganathan:2023:CMC

REFERENCES

Rivero-Rodriguez:2021:ACB

Ramani:2020:MMR

Rapaka:2020:EPS

Ray:2020:RBC

Ramani:2023:FDS

Rosenberger:2023:NPE

Rocha:2020:MMM

Regazzoni:2022:CEM

Romero:2020:MDL

Ren:2021:SIB

REFERENCES

Romijn:2020:IRD

Ranjan:2020:RAS

Rodgers:2020:SAH

Remmerswaal:2022:PIR

Ryan:2022:FVA

REFERENCES

Ren:2023:FAF

Rezavand:2020:WCS

Sabelfeld:2020:SSA

Sacchetti:2022:SSM

Stanziola:2021:HES

Spencer:2022:ANI

Shi:2020:PNM

Stiernstrom:2023:BOS

Sanderse:2020:NLS

REFERENCES

REFERENCES

Schmidmayer:2020:AMF

Sanderse:2021:NPF

Stammer:2023:MEM

Sharan:2022:HOD

Shiea:2020:NFV

Mohsen Shiea, Antonio Buffo, Marco Vanni, and Daniele L. Marchisio. A novel finite-volume TVD scheme to overcome non-realizability problem in quadrature-based moment methods. *Journal of Computational Physics*, 409(??):Article 109337,
Svolos:2020:USD

Shallcross:2022:ECB

Stanier:2022:CIP

Strafella:2022:LFS

Sturdevant:2022:EFG
Benjamin J. Sturdevant and Luis Chacón. Eliminating finite-grid instabilities in gyrokinetic particle-in-cell simulations. *Journal of Computational Physics*, 464(??):??, September 1,
REFERENCES

[sCpLL+22] Shu sheng Chen, Jinping Li, Zheng Li, Wu Yuan, and Zheng hong Gao. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. *Journal
REFERENCES

REFERENCES

[Semenikhin:2021:IAN] Igor Semenikhin. Improving accuracy of the numerical solution of Maxwell’s equations by processing edge singularities of the electromagnetic field. *Journal of Computational
REFERENCES

Serezkin:2023:HHR

Skene:2021:PTA

Sevilla:2021:IHM

Strahan:2023:PRE

Solan-Fustero:2022:PBR

REFERENCES

REFERENCES

[Sha21] DanHua ShangGuan. A general purpose strategy for realizing the zero-variance importance sampling and calculat-

Siegel:2023:GTA

Shen:2020:ESF

Schwarzmeier:2023:CFS

Shands:2023:MMC

REFERENCES

Scullard:2020:ASS

Sugaya:2022:TFS

Simonnet:2023:CNE

Singh:2021:AEA

Sierra:2021:ABS
REFERENCES

REFERENCES

REFERENCES

Sun:2021:ASVb

Sun:2021:ASVa

Sun:2022:TVB

Schlottke-Lakemper:2021:PHD

REFERENCES

REFERENCES

Sirignano:2023:PCM

Saez-Mischlich:2022:PHO

Saberi:2022:RAV

Song:2022:SPL

Shiroto:2022:CME

REFERENCES

[SPdF20] Marcos Sandim, Afonso Paiva, and Luiz Henrique de Figueiredo. Simple and reliable boundary detection for meshfree particle methods using interval analysis. Journal of Computational Physics, 420(??):Article 109702, November 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Shen:2020:CSI

Schwander:2021:COS

Shahmardi:2021:FEH

Shahane:2021:HOA

Shi:2022:CPN

Yanyan Shi and Yajuan Sun. Contact-PIC numerical methods for simulating Vlasov–Poisson–Fokker–Planck problem. *Journal of...

[Sousa:2022:CUQ]

[Sousa:2022:LSV]

[Sousa:2022:UQS]

[Schwarz:2023:MTC]

Scillitoe:2021:UQD

Schlachter:2020:WEN

Skaras:2021:STS

Sengupta:2020:GSA

[SSX22] Jiawei Sun, Chi-Wang Shu, and Yulong Xing. Multisymplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise. *Journal of

REFERENCES

REFERENCES

Shahane:2023:SIM

Svard:2021:ESB

Svard:2022:LES

Schoutrop:2021:MTP

Schimming:2021:NME

Hailong Sheng and Chao Yang. PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries. *Journal of Computational Physics*, 428(??):Article 110085, March 1,

REFERENCES

Su:2021:UF

S:2019:AMH

S:2020:CAM

Sun:2023:FSP

Su:2020:CWF

REFERENCES

[TCK+22] Qi Tang, Luis Chacón, Tzanio V. Kolev, John N. Shadid, and Xian-Zhu Tang. An adaptive scalable fully im-
References

[Tavelli:2020:STA]

[Tan:2022:SHO]

[Tro:2023:SOD]

[Tschigale:2020:IBM]
REFERENCES

REFERENCES

Tiwari:2022:MAL

Tang:2020:RAT

Toosi:2021:GIE

Touboul:2020:TDS

Tang:2020:DLB

REFERENCES

REFERENCES

REFERENCES

E. F. Toro, B. Saggiorato, S. Tokareva, and A. Hidalgo. Low-dissipation centred schemes for hyperbolic equations in conservative and non-conservative form. *Journal of Computa-

REFERENCES

Takahashi:2022:NEA

Terekhov:2022:FVM

Tominec:2022:URB

Tong:2020:HOA

Tang:2022:ADD

REFERENCES

REFERENCES

Villa:2023:MRM

Vidal-Codina:2023:ORM

Vidal-Codina:2021:NHD

Velasco:2020:KF

vandenBos:2020:ASB
REFERENCES

Vu:2023:AMC

vanGestel:2023:ADG

Vauchel:2023:MEN

Vaughn:2021:TAG

vanLeer:2021:TUU

Vermeire:2020:OEP

Vermaak:2022:TEE

Vasques:2020:SAS

Vakilipour:2021:FCA

REFERENCES

Vermeire:2021:AIE

vanNoordt:2022:IBM

Vergnaud:2023:IHO

Veilleux:2022:SSD

Vorobev:2020:PFM

Vermaak:2021:MPT

Vreman:2020:IBO

Vreman:2021:CSO

Vreman:2021:CIB

REFERENCES

Valseth:2021:SFM

Viquerat:2021:DSO

Villa:2021:UIL

Villa:2022:SSP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Wang:2021:AHA]

[Wang:2021:BSL]

[Wang:2022:CCL]

[Wang:2023:APP]

REFERENCES

REFERENCES

REFERENCES

Wang:2023:EMC

Wu:2023:EBC

Wang:2020:ASB

Wang:2022:VIN

Wang:2021:IEM

Wang:2020:MGK

Wang:2021:DLF

Warne:2022:MMM

REFERENCES

[WR23c] Johan Winges and Thomas Rylander. Huygens’ surface excitation for the finite element method applied to Maxwell’s

References

REFERENCES

REFERENCES

[Wang:2022:DLI]

[Wang:2022:IED]

[Wang:2022:LBP]

[Wang:2021:DFE]

Wen:2020:DLA

[WYS20]

Wang:2020:MFM

[WZ20]

Worku:2021:SA

[WZ21a]

Wu:2021:PIT

[WZ21b]

Wang:2022:FWM

Xiaoyi Wang and Jianfeng Zhang. Fast wave-mode separation in anisotropic elastic reverse time migration using the phase velocity-related Poynting vector. *Journal of

REFERENCES

Wang:2021:NIF

Wang:2023:EHM

Wang:2023:DDM

Xu:2020:BSD

Xia:2022:HOA
Qing Xia, Jeffrey W. Banks, William D. Henshaw, Alexander V. Kildishev, Gregor Kovačić, Ludmila J. Prokopeva, and Donald W. Schwendeman. High-order accurate schemes for

[XCL+21] Xiaocong Xu, Yipei Chen, Chang Liu, Zhihui Li, and Kun Xu. Unified gas-kinetic wave-particle methods V: Di-

Xiong:2022:CAS

Xu:2020:DPD

Xu:2022:PCL

Xuan:2021:DLS

REFERENCES

Xiao:2021:LTL

Xiong:2022:SMO

Xie:2020:SOS

Xu:2023:NPP

Xing:2022:HMA

Xu:2023:HDD

Xu:2022:PFM

Xiao:2021:FRK

Xia:2023:LBD

Xie:2022:EFE

REFERENCES

[XLZ21] Jianqiang Xie, Dong Liang, and Zhiyue Zhang. Energy-preserving local mesh-refined splitting FDTD schemes for two

[Xuan:2020:HOP]

[Xiao:2022:SRP]

[Xu:2023:IPO]

[Xie:2020:TDC]

REFERENCES

Xu:2021:DLB

Xu:2022:ANN

Yang:2021:WCN

Yan:2021:GOR

Yang:2021:EES

Yan:2021:NFD

Yanaoka:2023:ICN

Ye:2020:LCB

Yu:2022:DFT

Yeung:2022:LRD

REFERENCES

Yan:2020:HTM

Yan:2023:HET

Yang:2021:FFE

Yang:2020:SCP

Yang:2020:RDE

Zhiguo Yang and Suchuan Dong. A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. Jour-
Yu:2022:MRL

Ying:2021:NBP

Yatsuyanagi:2022:DFM

Yang:2021:MLT

Yang:2021:CFE

Yang:2021:FEI

Yu:2020:HOA

Yang:2020:HAC

Yang:2022:NAF

REFERENCES

REFERENCES

673

Yeo:2020:UME

You:2020:DRM

Yang:2022:NAS

Ye:2020:MRI

Younes:2023:EDG

[YKFH23] Anis Younes, Behshad Koohbor, Marwan Fahi, and Hussein Hoteit. An efficient discontinuous Galerkin — mixed finite el-

[YLK23] Junxiang Yang, Yibao Li, and Junseok Kim. Modified multiphase diffuse-interface model for compound droplets in contact
REFERENCES

Yu:2023:CMF

Yang:2020:UMF

Yin:2021:CFD

Yang:2021:RSI

Yousefi:2020:NWB

Yee:2020:QPF

Yu:2022:IBM

Yushutin:2020:NMP

Yao:2022:VLP

Wenqi Yao and Weiqing Ren. Vapor–liquid phase transition in fluctuating hydrodynamics: the most probable transition path and its computation. *Journal of Computational Physics*, 467(??):??, October 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Yao:2021:TDM

Yang:2022:CMF

Yamamoto:2022:MCS

Yang:2023:ADN

Yang:2021:HOT

Zhiqiang Yang, Yi Sun, Junzhi Cui, and Qiang Ma. A high-order three-scale reduced homogenization for nonlinear heterogeneous materials with multiple configurations. *Journal of Computational Physics*, 425(??):Article 109900, January 15,
REFERENCES

REFERENCES

References

[YZK23] Haijian Yang, Zhaoni Zhu, and Jisheng Kou. A minimum-type nonlinear complementarity simulator with constrained pressure

REFERENCES

[ZBY+23] Zhen-Xi Zhao, Giuseppe Bilotta, Qin-Er Yuan, Zhao-Xin Gong, and Hua Liu. Multi-GPU multi-resolution SPH framework towards massive hydrodynamics simulations and

science/article/pii/S00219999119304954. See corrigendum [ZCQ20a].

REFERENCES

Zeng:2022:DNN

Zinchenko:2021:AFH

Zhou:2020:MLR

Zhang:2021:CDD

REFERENCES

Zhang:2021:HMS

Zhou:2020:DUG

Zhang:2021:AEL

Zou:2022:CST

Zhang:2020:MRB

REFERENCES

Zhao:2020:BTI

Zhao:2021:SOD

Zhan:2023:NTS

Zhang:2022:MSM

Zhang:2021:LRB
REFERENCES

REFERENCES

Zhang:2022:MPM

Zhao:2023:DDP

Zhao:2022:CHO

Zhao:2023:DMC

Zhao:2020:SSI

Zhu:2020:PFM

Zhang:2021:CHO

Zhang:2021:TOS

Zhang:2021:STH

Zhang:2021:RFI

[ZL21d] Zhiming Zhang and Yongming Liu. A robust framework for identification of PDEs from noisy data. Journal of
REFERENCES

Zou:2022:FDM

Zhao:2022:CPM

Zhong:2020:NSP

Zeng:2023:CAL

REFERENCES

Zhou:2023:SDE

Zhao:2022:SMS

Zhang:2020:HHO

Zhang:2020:REK

Zhao:2023:SLF

Hadi Zolfaghari and Dominik Obrist. A high-throughput hybrid task and data parallel Poisson solver for large-scale simulations of incompressible turbulent flows on distributed GPUs. *Journal of Computational Physics*, 437(?):Article 110329, July 15,

Zhang:2020:NCM

Zamolo:2020:AGU

Zhang:2022:MKE

Zygiridis:2022:EOF

Zhu:2021:GSI

Lianhua Zhu, Xingcai Pi, Wei Su, Zhi-Hui Li, Yonghao Zhang, and Lei Wu. General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows. *Journal of Computational Physics*, 430(??):Article 110091, April 1,
Zhang:2023:ETT

[ZPW+23]

Zhao:2020:HWS

[ZQ20]

Zhang:2023:CMDa

[ZQC+23]

Zhou:2022:SMF

REFERENCES

Zhang:2020:DCT

Zhang:2021:MRS

Zhu:2020:NTT

Zhang:2021:RCM

Zhao:2021:HMC

REFERENCES

 Zeifang:2022:ITD

 Zhang:2022:GSA

 Zulian:2022:CAN

 Zhang:2023:IMS

 Zhang:2022:KFR

Zahr:2020:IST

Zheng:2021:HOC

Zhang:2022:PFM

Zhang:2023:FAP

Zheng:2021:NIM

REFERENCES

REFERENCES

Zhang:2022:CFE

Zaleski:2020:SIN

Zhang:2022:HOI

Zeng:2022:PCC

[ZYL+23b] Zhao Zhang, Xia Yan, Piyang Liu, Kai Zhang, Renmin Han, and Sheng Wang. A physics-informed convolutional neural network for the simulation and prediction of two-phase

-ZZ23c] Zhuang Zhao and Min Zhang. Well-balanced fifth-order finite difference Hermite WENO scheme for the shallow water equations. *Journal of Computational Physics*, 475(??):??, Febru-
REFERENCES

Zhang:2020:RES

Zhu:2022:DRM

Zheng:2020:PIS

Zhao:2020:URS

ZZC20

ZZH22

ZZK20

ZZML20

ZZN22
REFERENCES

[ZZYX20] Jianli Zhao, Qian Zhang, Yang Yang, and Yinhua Xia. Conservative discontinuous Galerkin methods for the non-

