Title word cross-reference

[AF23, BKH20, BAK22, BRZ+23, BGS22a, BTV22, BEP+20, BP21, BL22, CDL21, CG23, CFS23, CRF+21, CIMG21, CNCM21, Da22, DT21a, DFW22, GTDB22, GDA20, GP23, HZTN21, HLB20, HBF22, HNF+21, HP21b, KSTD22, KL23, LPS21, LP20a, LLD20, LZH23, LLCK20, MFG22, MPSP22, MSIM21, ML20, MRZ21, NFL+21a, OLS21, Oru21, PWH+22, PTT22, PCD23, SRD20, SLOZ21b, TWY22a, TBM22, Tlu22, TNF23, WCZ+20, WZ21, WY22a, WY22b, WGU+22, WK21b, XRL21, ZF20, dLF23]. 4
[CMH20, PT23a], 6th [VPDD22], 0 [SHL+20], 2 [KBCH20], sgs [CPX21]. A
[RC20b]. α [BABD21, TT22a], B [Ume23], C [SHL+20], C1 [Bar21a], δ
[FGZ20]. div B = 0 [GGB22], E [Ume23], ε [YcD23], f [LMHL21]. G
[PHHJ22]. H [PT23b]. J [HLB20]. K

[CPX21, Ian20, ZLW23, CPGD20, GLSZ22, SEG22, YcD23]. k_{eff} [PB22]. L

[YLK20]. μ [CCE+22, YYJ+23]. $\mu(I)$ [BFNK+21, LY20a]. N

[HT21b, HLA21, RIC+22, UHZ+24]. $N \log N$ [RMA20]. $O(N)$ [RE20]. ω

[YcD23]. p [ARTB20, LWR20, NMR+22, WGY20, XSC21]. P_N [XJS21]. Φ

[RC20b, HLB20]. Q [SVW21, XG22, ZLW23]. S [PBJ+22, MMKM24]. S_N

[YOH+20, SHM23b]. Σ [NKA+20]. t [KUO23]. τ [AGR23]. T [NKA+20].

-adaptive [NMR+22, WGY20, XSC21]. -adaptivity [ARTB20].

-Algorithm [Ian20]. -body [RIC+22, UHZ+24]. -component [HLA21].

-continuous [PHHJ22]. [?] cross-Umeda:2023:NIR. -CVT [MN22]. -D

[WZC21, GDAP20, ID20, KLZ23, NFL+21a, Oru21, PBVC22, UY22, WCZ+20, WK21b, YU22]. -dimensional [Bal21]. -exact [SEG22]. -frame

[KUO23]. -nearest-neighbors [GLSZ22]. -phase [HT21b].

-Algorithm-Huang:2021:CCM. -point [ID20]. -regularization [DD22a].

[LWR20].

İzmir [MMSW22].

1 [Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20f, Ano20h, Ano20i, Ano20j, Ano20k, Ano20l, Ano21a, Ano21c, Ano21d, Ano21e, Ano21g, Ano21f, Ano21h, Ano21i, Ano21j, Ano21k, Ano21l, Ano22a, Ano22b, Ano22c, Ano22d, Ano22e, Ano22g, Ano22f, Ano22h, Ano22i, Ano22j, Ano22k, Ano22l, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23f, Ano23h, Ano23i, Ano23j, Ano23k, Ano23l, Ano24a, Den23, SLOZ21a, WMTQ20]. 15

[Ano20m, Ano20n, Ano20o, Ano20p, Ano20q, Ano20r, Ano20s, Ano20t, Ano20u, Ano20v, Ano20w, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q, Ano21s, Ano21r, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x, Ano22m, Ano22n, Ano22o, Ano22p, Ano22q, Ano22s, Ano22r, Ano22t, Ano22v, Ano22w, Ano22x, Ano23m, Ano23n, Ano23o, Ano23p, Ano23s, Ano23t, Ano23u, Ano23v, Ano23w, Ano23x, Ano24b]. 1d [KSHJ20, BGS22a]. 1d-3d [KSHJ20].

2 [Abg20, KSST21, SLOZ21b]. 2020

[Ano20a, Ano20m, Ano20n, Ano20o, Ano20c, Ano20d, Ano20e, Ano20f, Ano20g, Ano20h, Ano20i, Ano20j, Ano20k, Ano20l, Ano20m, Ano20n, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21f, Ano21g, Ano21h, Ano21i, Ano21j, Ano21k, Ano21l, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q, Ano21r, Ano21s, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x, Ano21y, Ano21z]. 2021

[Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21f, Ano21g, Ano21h, Ano21i, Ano21j, Ano21k, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q, Ano21r, Ano21s, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x]. 2022
[Ano22a, Ano22m, Ano22b, Ano22c, Ano22o, Ano22d, Ano22p, Ano22e, Ano22q, Ano22g, Ano22s, Ano22f, Ano22r, Ano22h, Ano22t, Ano22i, Ano22j, Ano22v, Ano22k, Ano22w, Ano22l, Ano22x]. 2023
[Ano23a, Ano23m, Ano23b, Ano23n, Ano23c, Ano23o, Ano23d, Ano23p, Ano23s, Ano23f, Ano23r, Ano23h, Ano23t, Ano23i, Ano23u, Ano23j, Ano23v, Ano23k, Ano23w, Ano23l, Ano23x]. 2024
[Ano24a, Ano24b]. 265
[HPA22]. 2P [CDT22a]. 2V [ATCS20].

advection-diffusion [BFG22, FPT23, GTDB22, LCWH23, MTB22, SWF21].
advection-diffusion-reaction [ARR21, BFP21].
advection-dispersion [DGW20].
advection-dominance [ARR21].
advection-dominated [LT20c, SFGNMGN22].
advection-reaction [CCL21].
advection-dominated [LT20c, SFGNMGN22].
advection-reaction [CCL21].
advection-dispersion [DGW20].
advection-dominance [ARR21].
advection-dominated [LT20c, SFGNMGN22].
advection-reaction [CCL21].
advection-dispersion [DGW20].
advection-dominance [ARR21].
advection-dominated [LT20c, SFGNMGN22].
advection-reaction [CCL21].
advection-dispersion [DGW20].
advection-dominance [ARR21].
advection-dominated [LT20c, SFGNMGN22].
advection-reaction [CCL21].
advection-dispersion [DGW20].
advection-dominance [ARR21].
advection-dominated [LT20c, SFGNMGN22].
advection-reaction [CCL21].
CFM22, DJ22, DLMZ22, DW20a, FCM+20a, FBCD22, HDML23, HR22, KLF22, KSBG20, KCP20, LC22, LWWH23, LXY23b, LR23, LLSD20, LM22, MYM+21, MBK21, NPD20, NBR22, PDPK20, RS23a, SHJ+23, TJC21, TSP22, TPPA22, WDL21c, WHS22, XFL21, ZBY+23, SGB+21b. **applied** [DA23, DFP+21a, HP21a, KP23, LPJ+23, PHHJ22, PPHO22, SMK23, ST24, SS22c, TVL+22, WR23c, ZLM+21]. **Applying** [KS11, MRT+22, PSL20, XBRL21, HZTN21]. **Approach** [Yan21b, ABH21, AYH+21, ASW21, ASSZ21, Ale23, ABY23, AN21b, AWB+21, BCG+20, BZSF20, BV20, BF122, Bha20, BTEK22, BNN20, BJR22, BD20b, BBL23, BKN23, CS20, CAF+22, CL20c, CLS20b, CPG22, CA22b, DKM+20, DGGL22, DCHF21, DNP23, DD22b, DW21, Dup21, EDFL20, EFR21, EK21, FSW22, FJ21, GZW20a, GNF22, GQR21, GLJB20, GOF23, GCD20, GTKA20, HLZ20, HRR21, HRRHG21, HGH20, HPX23, HX21, HNZ23a, HJJ21, JYK22, KGBT20, KP23a, KSI+23, KS21b, KNS21, KF23, KHM+22, KV23c, KBC22, LE21b, LHXZ22, LHA+21, LW20a, LL21d, LOLS23, MHA23, MM21a, MRL+23, MBTS20, NdLPL21, NGZ22, NVPP23, OL23, Or21, PA21, PRKS23, PM22a, PZK23, PPH23, PCD23, PEL23, RUG20, RDAB23, RA23, STEK17, STEK22, SLWRG21, SEG21b, SDP20, Sin23, SES21, SY23, SS22b, SS22d, SOB22]. **approach** [SI22, TBM22, TM23, UHZ+24, VMS20, VPDD22, WQ20, WZ20, WS22a, WD23, WKKB21, WL22, XHC22, YGW+20, YTK22, YZH+23, YK20a, ZOG22, ZA21, ZS22b, ZOG21b, ZZ22, ZYY21, ZHRB23]. **approaches** [GNZ23, HA21, JWH20, SPD+21]. **appropriate** [AK22]. **Approximate** [BMQ20, FFY21, Re23, AHR20, AR21, BLWL22, BHH21, CMP23, DNO23, GGEJ20, HBF20, LVK+22, LJJ23, LS22b, MM21b, PJB20, SGB+21b, SFNMF+21, Svi22, WH22a, WPBS22, XF23]. **approximate-factorization** [PJBB20]. **Approximated** [BCdS+23, WLPK20, WDL21b]. **approximating** [QZHD23]. **Approximation** [TSSOA20, ASJ23, AF23, BLF20, BF22, BGY22, CWL+21, CCL22, CMP+21, CDT22b, CY22a, CCH20a, CS23, CGM+23, CX22a, CX22b, CH22, DES23, DD20, DV21, ELS22, FJG+20, GFG22, GS21, GPS20, GCL+22, HLM+20, HRMY20, JYK22, KMS20, LSC20a, LZ22a, LT22b, LM22a, LM22b, MRK+20a, MRK+20b, MRK+20c, MLL+21, MK20, MST23, PS22b, SEG21a, SKT20, SSK20, TMY22, TLL22, TPPA22, UY22, WZ21a, YK22, YZZ22]. **approximations** [AD20, BNP+22, BT20, FK20, GMY+20, GN20, GLY22, HV20, JTK22, LHF23, LLL20, LT22b, LZ24, LOLS23, MR23a, MR23b, Sin21, SAM23, YH22a]. **APR** [MZC+22]. **April** [Ano20a, Ano20m, Ano21a, Ano21m, Ano22a, Ano23a, Ano23m, Ano22m]. **aquifers** [SFP+20]. **Arbitrarily** [GZW20b, Cam21, CL23a, CC23, HHL20, MWH21, PR20, PAG23, ZWW23]. **arbitrarily-shaped** [PAG23]. **Arbitrary** [CLB23, GBC+20, SOSM20, WZL21, XDLX21, AAM20, AD23, ATCS20, BT23, BZ21, CMM+22, CLLL20, CBB20, CT21b, CCAR22, CLP21,
CGM23, DD21, DLY22, EPL21, FHKW21, FX22, Hac21, HSXZ21, KCS21, KKS21a, KKS21b, KB22a, KLB23, KB23, LZX22a, LQXM22, LEH21, Nis22b, PA21, QJQW22, QJL23, REC22, RC20a, RRPSS21, TWY22a, TGR22, TSSOA20, TRC22, VVRWT21, WDK22, YTWK23, ZCL20, ZXX23.

body-fitted [FADJ20]. Bogoliubov [GC20a]. Bogoliubov-de [GC20a].
Boiling [ZZN22, KVH20, MCBA20, SGB+21a, TUCT24, WZCK21].
Bogoliubov [KKJ21, dv23a, AYH+21, AMW22, AWB+20, AWB+21, BSR20,
BGGM22, BVT20, BT20, BZ20, BSK+23, CSY21, CYS23, CTG23, CW22b,
CFJF23, CBA+21, DSSSP20, DBSS+20, DFJ20, DWM23, EC20, EH22b,
Gin21, GFJ+20, HPW21a, HTV+22, HQ20, Jai22b, Jai22c, JLL22,
KS21d, LL20, LLKY21, LRT13, LGZ21, LLWX22, LZ20b, LSZY20, LHWZ21,
LZY+22b, LMK21, LLSD20, LLD+22, MWW+20, MTB22, MST23, MRG22,
MY+23, MRBS22, MR23b, OGM20, PZ20, PAA21, Po¢23, QKG21, Rei22,
RWS21, RR22, RA21, SH23a, Sar21b, SMK23, SM+23a, SOG+22,
SKM22, SMLM23, TKR22, TS20, TYPY22, WZC21, WSA22, WS22,
WTZB23, WGY+21, WLL+23, Xia21, XF21c, XF23, Xie22, YSC23, YYJ+23,
ZHPZ21, ZQC+23, ZZZ20, ZIMA24, ZYY23].
Boltzmann-BGK [BVT20, BT20, DWM23].
boom [YWN20, YI23].
boost [CC20].
bootstrap [CY21].
bootstrapping [MPIG23].
Boris [CC22b].
Bose [CL21, CDLX23, GC20a, LXY23b, MR23b].
Boson [LM22, MPMD20].
both [HCL20].
bottom [AMB22a, ZDT23].
bottomhole [LO23].
Bound [FGKY22, GS20, HSW22, HS23, CYS22, CDW23, DY22d, GLY20, JLYQ21,
KWS23, LCSZ21, LRT+22b, TYC23].
Bound-preserving [FGKY22, CYS22, CDW23, DY22d, GLY20, KWS23, LCSZ21, LRT+22b, TYC23].
Bound/positivity [HSW22, HS23].
boundaries [CDBS21, CRF+21, Co20, CMS23, HJ22, LBN21, Lév22, MMZ22, Ree23, TKR22, VACE21, ZCY+21].
Boundary
[ASS21, BRT22, BBF20, CMNS21, EWN+23, HSS23, Sei22, SAm23, ZHR20,
ZH20, AHG21, AD20, AD21, ALCZ20, ADM+21, BMV22, BBGT21,
BZ21, BFG22, BKK21, BFS23, DBB21, CHS20, CNB+23, CBCT+21,
CAG20, CLS+20a, CLW22, CZLC20, CYS23, CTG23, CZCY23, CLLL20,
CW22b, CFJF23, CAT20, Chi23, CSLC21, CRPB20, CPBB21, CL23b,
D2W3, DA23, DHK23, DR20, DLM+23, DSZ20, DG23, DN21, DLL22,
DLYZ23, DC22b, EFR21, ELSV22, FDH+24, FZ20a, FH23, FH20, FDP20,
FB23, FGD+21, GRC+22, Gin21, GAB+22a, GS22, GOF23, GF21, GKD23,
HBFB20, HF23, HP21a, HP22b, HLA22b, HNZ23b, HXQL23, Ish22, IK23b,
IRT22, JPAZ21, JLC21, JDB+23, JG21, KM22a, KBSF22, KS11, KRG+23,
KSH22, KEY20, KdMJ+22, KJdM+22, KF23, KKY+21, KTO22, LSW21,
LM21b, LLY20, Li20, LZ+22b, LZ22b, LP+23, Lin21, LHT21].
boundary
[LCF+23, LJS+23, LAMC24, LSTZ21, LCDS23, MWW+20, MZ22, MPBG23,
MQ20, MBM+22, MGA20, MD20c, NG22, NFL+21b, NG22D, NLZ+22,
NG20, Nor22a, OB20, OL20, OLS21, OSL22, OCGT22, PSL20, PJ22,
DAGL23, PACG23, PH22, PL20, PPB23, QHLL20, RKA+23, RS20b,
RF22, RRPS21, RS23b, RGR21, SM21a, SYOS19, SYOS21, SPdF20,
SKT20, SW21, SRTB21, SC22a, SBL22, SY21, SSMA21, SNW23, Svä21,
Tak23, TAWD23, TNB21, TPB22, Thu22, TF20, VABA22, Vre20, Vre21b,
WQ20, WGS+20, WP21, WH22b, WKKB21, WLL+23, XC20, XY20a,
XC23b, XSA+21, YLS21, YYM+22, YYB23, YGL20, YP22, YP24, ZG21,
13

Boundary-consistent [BBF20]. boundary-lattice [MWY+20]. boundary-layer [HBF20, MD20c]. boundary-material [NLZ+22].

boundary/multi [CW22b]. boundary/multi-relaxation [CW22b]. bounded [Ere22, HBF22, KGN22, Nor22a, PEA20, PO21, Rec23, SB23, SSG+20]. boundedness [MIM20]. bounds [CF20].

breakdown [NTSM20, XSF23]. breakups [GMD22]. breakdowns [NTSM20].

Carbonate [YZK23]. Cardiac [ASG+23, BPS23, BGQ+20, BBQ+21, BGQ+23, FBD+22, RSA+22].

[BSCG22, BJR22, CZ22b, DGGL22, DEB21, HRG+23, PBN+21, SWHJ22, WZSK22, ZP20, ZAW+20]. **CFD-DEM** [CZ22b]. **CFD-driven** [BSCG22, ZAW+20, WZSK22]. **CFL** [CK20, HZHL22, Liu20b]. **CG** [CMS+22b]. **Challenge** [CaI21]. **change** [BSV22, HHAFR21, HLA22a, LZT+23, LCP23, LYH23, MMZR21, MRL+23, WA23]. **changes** [CMPZ22, GBC+20, HCL22, HF23, KSST21, MS20a]. **changing** [LSTZ21, SCB20]. **channel** [DTB20, HKJ21, XC20, Xie22, XC23a, ZGLL20]. **channels** [CCAR22, Liu20a]. **Chaos** [Po¨e22, RBBD22, Bha20, BKON23, CGC21, EPL21, EPL22, HL20c, KP23a, LT20a, NDH20, Poe23, ST24, PB22, TPSN20, VGG23]. **chaos-informed** [CGC21]. **chaotic** [CBCF20, CF22, HD23, KP23a, WH20a]. **character** [YAX20]. **Characteristic** [CYS23, YMY+21, ABDD20, CCH+23, FL21, FDP20, KFSM21, MZ22, SC22a, TN23, YSN23]. **characteristic-based** [SC22a]. **characteristic-featured** [FL20]. **characterization** [KAC22]. **characterized** [GSOM23]. **charge** [AFF+23, CCY+20, EC20, Ere22, PP22c, SMY22, XC20]. **charge-conserving** [CCY+20, Ere22]. **charge-momentum-energy-conserving** [SMY22]. **charged** [KCCR22, RC20a, RGLN22, SGM21, Ume23, WHL21]. **charged-particle** [KCCR22, RC20a]. **Chaussee** [PJBB20]. **Chebyshev** [BG20c, EDLF20, RS20c, WH22a, YNT20]. **Chebyshev-based** [BG20c, EDLF20]. **Chebyshev-collocation** [RS20c]. **check** [CMGGS23]. **checkerboard** [DMRG22]. **checkpoint** [CCN21]. **checkpoint-restart** [CCN21]. **chemical** [AGR23, GN23c, HZY22, PEL23, XYL22]. **chemically** [DY22d, JK20]. **chemistry** [BCG23, BB20a, GCVI22, LLB+23, MLM+21, PSCK23]. **chemo** [GN23c]. **chemo-hydro-mechanical** [GN23c]. **chemoepitaxial** [LCC+23b]. **chemotaxis** [BGH21, HLY22, QLY21]. **Cherenkov** [BD20b, LKG+20, NNL+20]. **Chimera** [KFSM21, MMZZ22]. **chiral** [KCK21]. **chirality** [FCGKR23]. **Choice** [ZS21a, Kem24, RRPSS21, ZZH22]. **CIAs** [BTK22]. **circle** [Sha23]. **circuit** [BGSP22]. **circular** [FZS+21]. **circulation** [RSA+22]. **Circumventing** [ZNC+21]. **class** [BGFB20, CCH20, EFR21, GLY22, HSV22, LCR22, Mar23, RBC+23, SAP22, SY21, TT22b, TT23, TYC23, WH22a, WZSC22, WHS22, YZdCNS21, ZWZL22]. **classes** [CS20]. **classic** [CDW23, GTWJ24]. **Classical** [CLY21, AZ22, DY22b, JLR22, ZOWW20]. **cleaning** [CPGD21, DFGR20, KKK+20]. **clear** [VT23]. **climate** [WDL+21b]. **clinical** [LAMC24]. **cloaking** [WYHL21]. **cloaks** [CHG21]. **Close** [KKCC20]. **closed** [RSA+22]. **closed-loop** [RSA+22]. **closest** [HCL22]. **closure** [BBB23, BKY21, BKMM24, HCCR22, PB+22, PO23, QJQW22, SS22, TBW22, WH20a, WZSK22, WSS22]. **closures** [YCD+20, YCD23, ZDS+21]. **cloud** [CLKL+23, RSWD21]. **clouds** [PM22a, PLYZN23]. **cluster** [DCA+22, DBC+22, SAL+20]. **Clustered** [XCL22]. **Clustering** [IL23, GHE+23, LKJL22, TACO22, VGG23]. **clusters** [LMUHR22]. **CMP**
...
Complex-scaling [DHM21b]. Complexity
[ASBM20, CF20, Bre20, JLY22, JLY23, LBN21]. Complexity-reduction [ASBM20].
Complexity-compliant [BBKB21]. complicated [SYOS19, SYOS21, TNB21].
component [ADJ23, FTK23, HLA21, JZL+24, KK22a, LIVK+22, LLQ+23, MS20a, PAA21, Say22, TWY22a, ZY+23]. components
[ADJ23, GIKR22, LRT13, LW22a, Yan21b, dv23a]. Composite
[LHCK24, DYGC22, GZW20a, Kus20, MK20]. composites
[LJ20, MBDS23, ZOG21a]. compositional [AdDMT21, BE20, CCW20, FMS21, JW21, LTD+21, LTT21, LYS22a, WLW+20, ZF20]. compound
[YLK23].
Comprehensive [TKK22, TZ20, RWD22, WR23b]. compressibility [MRK+20a, NIT21]. Compressible
[DAGL23, AMB22b, Che23a, DJID20, EGN23, HM22, SC22c]. compromise
[LW22b]. Compton [KKL+23, MTW23, TLWM20]. Comput
[Abg20, ACM20a, BLL20, EFO20, GRT21, HPA22, LMF22a, MM22, SZ20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].

Computation [CCER20, FSM+22, BGA21, GHH21, CL20a, CPX22, CFS+22, CT22, CBCP20, EFPR21, EK21, FLOL23, GLT+20, GKD23, KS22a, KKL+23, LPS21, LGC23, LWL+23, LM22, MM21a, Nis21, REC+22, Wan23, YTK23, YR22, ZS23]. Computational
[AP23, CCE+21, CP20, KST21, LLO22a, TACO22, YLLO23, AS21, AFGLV20, AWB+21, CAE+22, CHCC23, CL20b, DVF22, DFP+21a, DY22b, DC22b, FTPB23, GCV22, GLJB20, MM22, GN23c, HY20, HGZ23, HHIA19, JM23, KBCH20, KSW22, KRL21, KCT+23, LGV20, LWY+20, LAS22, LMR20, MD20a, MRT+22, MAP+20, NIT21, Pan20b, PW22, WRBK20, YCM+20, ZW22, ZJSX23, ZAM20, BCdS+23].
Computationally [DS23a, WLS22]. computations [BHW23, CE21, CFS23, EDC+23, GU20, Nis22a, NÄ21, PB22, RWDG22, RIC+22, SMLM23, VPDD22, ZJSX22]. compute [MCBA20, NPD20].

computed [TTP22]. computer [DEB21, LCL22a, XCL22]. computers [ZLC+20].

concentrated [TTP22]. concentrated [MCBA20, NPD20].

condensation [MR23b]. condensing [CLT21]. condensates [CL21, CDMX23, GC20a, LXY23b]. condensation [MR23b].

condensation-dependent [LBM20]. concentrations [APR22]. concentration-dependent [LBM20]. concentrations [APR22].

conditional [BFC23, SPGG23, TBST20, Che20, CD23, GN23a, HGS22, LT20a, PZ21, ST24, TBSH21]. conditional-value-at-risk [GN23a]. conditioned [HKJ21].

conditional [BBDT21]. conditions [AD21, BZ21, BFG22, BG20b, BFS23, CHS20, Cal21, CLS+20a, CLW22, CK21, CCDS20, DG23, DN21, FZ20a, FH24, FDP20, HP21a, HL22b, HNZ23b, HXQL23, JPAZ21, LM21a, LYL20, LZZ23b, LCF+23, LAMC24, MPB23, MGA20, NFL+21b, NG20, NW22, PJA22, PAGJ23, PT23b, RS23b, SYOS19, SYOS21, SMMA21, Swä21, TAW23, TNP21, TPB22, VBA22, WZW21, WKB21, WLL+23, YLS21, YLM+22, YGL20, BRT22].

conditions-free [HXQL23]. conducting [AWP23, KLP22, USRH20].

conductivities [BCG+20]. conductivity [ILX22, JYK22, Kus20, VSB+22, YST20]. conductor [HLB20].

conductors [LL23a]. cone [HPA22]. configuration [KLP22, LW22a, MNC+22, QC23, SM21b].

conforming [BG22a, CBC21, CDMX23, HSG+22, Jai22c, LRL22, WY22b, XHY23, ZSKN22]. congruity [RA21].

conservative [Yan23, ZB21a, ZLN22, ZSQ21].

conserved [KV23c, LC22, Yan21c].

Constrained [DVS22, RW+24, BS22b, CSY21, CZ23, CX23, CBA+20, FCM+20a, FVM22, FVM23, GZ20, HR22, LZZ21b, LXY23b, MSM21, MD21, SMS23, XD22, YZK23]. Constraint [FCM20b, MRHR20, MCP23, BNN20, CHZ+21, CW22a, DEvW22, KB20b, LKEM21, LL22, LXY23a, PT23a, ZC23]. Constraint-aware [MRHR20].

constraint-preserving [KB20]. constraints [ABBG23, HKKS21, IK23b, KK20a, LVK+22, RR21, WKA+20].

constriction [ZD21]. construct [YG21]. Constructing [LD22].

cut-cell [BL21b, XS20, XLS22, YWN20]. **cut-cell/volume-of-fluid [XS20]**. **cutoff [HQ20]**. **CVT [MN22]**. cyclic [GSOM23, VRAM21]. **cylinder [CCMC20, CPGD20]**. **cylindrical [BSP21, FLW20b, GKRS22, KJB +24, SLO21b]**.

deforming [BZ21, BGNY22, BV22, WGS^+20, YB22].
degenerate [HST22a, RMWS21, SOSM20].
degradation [CGJM21].
degree [PZZ^+23].
DEIM [EAK20, WDH^+21].
DeLISA [LZY22a].
Delta [FGZ20, FCY^+20, Kho20, RKVV20].
delta-Eddington [FCY^+20].
dememorization [ELL^+23].
denoising [GN23b].
dense [AFF^+23, KVQE21, LY20a, PM21a].
dense-to-dilute [PM21a].
dependent [AH21, AFL22, AFGLM20, AMB22b, BDS23, BG20a, CZ22a, DGW20, DH24, FPT23, GMB^+22, GR21, HHK^+23, HPA22, KCS21, LBM20, LKG^+20, NDH20, Nis23, PB20b, PMF20, PM21b, PH22, PTT22, Qia22, QHL20, QCZ22, RHG^+22, RV20, RS23b, STEK17, STEK22, Shi23, VdGP20, WQ20, WCBQ24, XSC21, Yin21, ZSST23, dZBDMC24].
dependence [VRAM21].
dependent [GQS20].
depletion [CS22].
Derivation [SEG21a, SL20b, WLZP21].
derivative [CCdS20, HNS20, KBCH20, ORCVG24, SMR22, YS22, ZS22a, ORCVG24].
derivative-free [HNS20].
Design/analysis [WMTQ20].
designing [WTX^+21].
detected [KKB23, WZ23b].
Detection [KLA23, NKT21, BZSF20, GQF23, HRMY20, HCL22, KYO22, NKA^+20, PB20a, SP4F20, ZSY21].
Determining [KKN^+22].
Deterministic [JBF21, HJLZ23, MR23b, TLWM20, TRC22].
detonation [JLL22].
detonations [OGG20, WTWB23].
developing [HZX23].
Development [CWY21, CI21a, HCL20, JYY22, PBC21, PGM22, RB21, LMLH21, WZSK22, WYS20, ZAW^+20].
device [ZWZL22].
diagonal [KCS21, LJ22, MZ20, MHY20].
diagonal-norm [M22].
diagonalization [WZ21b].
diagonaled [FJBB20].
diagrams [MCBA20].
diaphragm [TVL^+22].
Diatomic [WZX24, XCL^+21, HGH20].
diblock [BCL^+23].
dictionary [MO22].
dielectric [CCER20, LMUHR22, WZC21, WSAZ22, ZR21].
diffeomorphic
Difference [VVRWT21, ĀAL+21, AT20, AD20, ACR23, BHNS23, BKC23, CLS+20a, CBF22, CHF21, CWX23, CLP21, DMN22, DBD21, DSZ20, DYM230, DT21b, DT22c, DF22, EWN+23, FZQ22a, FZ20a, FZo2b, FH24, Gao22, GLY20, HT21a, HPA22, HZD21, HL20a, HCL20, HXX22, HS+22, Ji21, JTK22, JLY22, KSTT22, KLN20, KK22a, KCD+23, LL21a, LG22, LL23a, LG21, LZ22a, LCR22, LSZ+23a, LH20, LR22a, LW23, LRW21b, LCN20, LSZY20, Liu20b, LM20c, MJS23, MR23a, PP22b, PPP21, PTT22, PGP+23, QC21, RF22, RZ23, RA21, RMWS21, SO21, SK23a, SGT23, SSG+20, SLNM21, SAM23, SN21, TCS22, TAWD23, TB23, TVL+22, WCF+21, WZTZ21, WR22, Xa23, XBR21, Yan21a, YLK20, YLN20, YLL21, ZC22, ZA21, ZK23b, ZDT23, ZZ23c, ZSQ21, ZLW22b, ZL22, ZPK22, Bat20b, VP222].

difference—finite [LSZY20].
difference/finite [YLNT20].
differences [AD21].
differencing [AAKW20, BDBB22, FY22, MGRRV23, RRG24, SZQS23].
different [BBL23, CHZ22, GM23b, GHHR22, GCD20, KLA23, LM21c].
differentiability [JF24]. Differentiable [FW24, HF23, LRT22a, LR24].
differentiate [˚AIN21]. Differentiation [CHDB23, HIN+21]. Diffraction [PM22b, PLM23a, CE23, CDL21, LSW20].
Diffuse [ZMWS22, CSM23, DSPB22, JM20, JAW+23, KB22b, LCCM22, MIM20, YTWK23, YLK20, YL22, YLL21, YLY22].
Diffuse-domain [YL20].
Diffuse-interface [JMM20, JAW+23, YLK23].
diffused [PBM23].
Diffusion—redistanciation [MSIM21].
Diffusophoretic [HH20].
diffusive [BM24, JJ21, LP22, MRS22, PC20].
digital [HP21b, TSS+20].
Dilatancy [BFNK+21, GDBF+20]. dilute [PM21a].
Dimension [CD22, Der23, GYC+23, KSHJ20, KWS22, LCH20, Len20, LT23, PBCL20, VACE21, ZYD20].
Dimensional [SFP+20, AG21, AB24, AdD21, ALFN22, ARGK22, AAK20, BCWD21,
dissimilar \cite{PRO22}. Dissipation \cite{KV23d, SYAM23, AK22, sCpLL22, CDX21, DhJV22, DNO23, FFRT21, FAHA20, FAA20, GMMS22, HYQ20, JP23, KD21a, LFA21, LYZW21, LCR22, LSZ23a, LSXSF22, MM21b, MD20b, PLL21, RKVV20, SEG22, TFWX22, TSHT20, WTX21, WZTZ21}. dissipation-adjustable \cite{DhJV22}. Dissipation-based \cite{KV23d, JP23}. dissipative \cite{KV23d, JP23}. distance \cite{ABBG23, GCV22, Nis21, WXZ22}. distillation \cite{KKM21}. Distributed \cite{HLB20, KSHJ20, KHS20, SGPW21, TEA23, ZLC20, ZO21}. distributed-memory \cite{ZLC20}. Distribution \cite{STG20, AOR22, Ara20, AR20, BCJM20, Cai22, KKS21a, KKS21b, LRAQ22, SWG21, ZCY20, ZCCN23}. distributions \cite{HGSK22, LLR23, TT20, ZOG21a}. disturbance \cite{PA21}.
div [BDP23, BDP23b]. div-curl \cite{BDP23b}. divergence \cite{CBCT21, DW20b, EOP20, FZB23, Fu20, GEvWD22, KK20b, LZZ21b, LZLS21, LP23b, SCS22, Toh23, WDS22}.
divergence-conforming \cite{CBCT21}. divergence-free \cite{DW20b, FZB23, Fu20, LZZ21b, LZLS21, SCS22, Toh23, WDS22}.
divergence-preserving \cite{GEvWD22}. dividing \cite{HST22a}. DLGA \cite{XCZ20}. DLGA-PDE \cite{XCZ20}. DLM \cite{PC23}. DLM/FD \cite{PC23}. DNN \cite{CCXX23, LXZ23}. DNS \cite{HW20a, PO21}. do \cite{MX22}. Domain \cite{OLP23, ABH21, AMG23b, AMGCL21, An21a, AZV23, BDT21, BGH20, BGS22a, CZ22b, CYY22, DMRG22, EJ23b, GSW21, GTDB22, GPS20, HLI21, JTT23, KP23a, KS21b, LHLL23, LZ20a, Liu20b, LLN22, LCK20, MDG20, MFSP22, MP21, MMRP22, OYK22, QCWC23, QHLL20, RC20b, SGPW21, SJK21, SS20, SNW23, SBV20, Tak23, TB23, TBP22, Th22, TLB20, TY24, VACE21, VT23, VEC21, WBRK20, WCF23, WY22a, XHL23, YGL20, ZLW22b}. domains \cite{ASS21, BFG22, BDF23, CLS23a, CPK22, Coo20, CBC23, Ccd20, CNC21, DS23a, DS20, DSZ20, FPT23, GLLM22, HR20, HW23, Jai22c, KMR23, KML23, LWY20, LSH20, MF24, QG21, RS23, RFZ22, RMWS21, Say22, SB23, SWF21, YLT20, YTWK23, YLS21, Yua21, ZPGR22}. dominance \cite{ARR21}. dominant \cite{MHY20}. dominated \cite{BBB23, GFY20, LTD22, LT20c, MM21a, MZ23, SFGNMGN22}. Dormand \cite{NNJ21}. DOSnet \cite{LLSX23}. Double \cite{EDC23, YFY22, ZCY20, BNT23, EEG22, HLC23}. Double-flux \cite{YFY22}. double-sweeping \cite{EEG22}. doubly \cite{WNB21, WC23}. doubly-periodic \cite{WNB21}. dozens \cite{SZW23}. DP \cite{KLW24, LHCK24}. DPG \cite{MMPD21}. DPM \cite{SMF20}, drag \cite{BL19, BLL20, SDA21}. drift \cite{CDT22a, MWZ23, NWM21, RPA22, Sab20, SAH22, WDK22, ZWZL22}.
drift-correcting \cite{WDK22}. drift-diffusion \cite{RPA22, ZWZL22}.
drift-kinetic \cite{SAH22}. drift-kinetic-equation \cite{CDT22a}. drift-region \cite{MP21}. DRIPS \cite{LT23}. driven \cite{AHH24, ASSZ21, AMW22, BT21, BB20b, BBH23, BSA21, BSA22, BBA22,
[CJT⁺20, MMSW22]. easily [DGGL22]. EB3 [KDL23]. Eddington
[OPHY23, FCY⁺20, LM21c]. Eddy
[Svā22, EDEV23, FBG20, HLB20, IW23, KS21d, LM21a, LCP21a, LMS23, LWWH23, NMN23, SOG⁺22, SMF20, SS22b, SS22d, XBD⁺20, vNGB22].
eddy-viscosity [EDEV23]. edge
[CHDB23, He22, HSB20, KYO22, LH21, Sem21, FCL21]. edge-based [He22].
eddies [PJR23]. Editor [Abg20]. Editorial
[HGB20, LFP⁺21, MJJ21, MYY⁺23, WNZ20, ZZX20]. Effective [Cie20, LaCXL⁺20, ABDD20, BB20a, DDR22, LPS21, LAS22, TKGB23, XC23a].
effectiveness [KS22d]. Effects
[SPPV20, BEB⁺22, BV21, CBCF20, DSSSP20, DWZ23, FTPB23, GDBFN⁺20, GPSMH20, GN23c, HPW21a, MH22b, SHM23b, SFP⁺20, ZGK⁺22].
efficiency [DCA⁺22, DBC⁺22, GYC⁺23, LW22b, NG22, SLQW22]. Efficient
efficiently [MCBA20]. eigensolution [MCBA20, MCBA20]. eigenanalysis [MAPS20]. eigenmodal [MD20c].
Elastic [AD21, LZS22a, Lkm+22, ALM23, AMM20a, AL20, AL21, ABDD20, BB20b, BY20, CLW20, CGLZ23, CDL21, CC22a, CLJ+20, Dll22, DFW22, GL20, GAC20, HY20, JF20, JAW+23, Kar22, KFS21, LZS22b, LM3a, LMB+23, LTM+23, MD20, TB22, TA23, TY24, WGB22, WZ22, XHZ22, XHL23, Yan21c, YK20a, ZML20, ZS22]. Elastic [CL21, CDLX23, DFG20, GC20a, LXY23b, MR23b].
PM22a, PP22c, QWZ21, RLD24, RC20a, San20, SHL+20, SMY22, SMAY22, energy

Equation

[LT22b, LQX22a, ILNZ21, L20b, LHWW21, LZY+22b, LDC23, LM21c, LLS20, MRK+20c, MBAG21, MGL21, MCVF22, MST23, MRBC22, MRBS22, MR23b, NPMD20, NS22, NT20, NMR+21, OP20, OGVM20, PSL20, PM23, PM20, PCL23, PEL23, QWZW23, R20c, RBPRST20, RA21, RHY21, RMWS21, SH23a, SH23b, Sar21b, STEK17, STEK22, SL20b, SL22b, SPSV20, SL22c, SL23, SMAY22, SCdHJ20, SMRW22, SQSS20, SACT21, SZQS23, TZ21, TLKK23, TZNHD20, TBST20, TBC20, TKR22, TS20, TL21, TEA+23, TPYX22, VRK21a, VMBS20, VVRWT21, WGW20, WZC21, WNB21, Wan22, WJK20, WKK23, WK23, WK24, WZBV20, WC23, Xin2a, XF21c, XG22, YL20, YCH21, YX22, YSC2, YW22, YK20a, Yin21, YFL21, ZW21, ZOW20, Z20, Zha22, ZXY22, ZC23, ZY23, ZL23, aKAK20, vGAT21, PRKS23].

Equation/Variable [PRKS23].

Equation/Variable-free [PRKS23].

Equations

[CCPS21, ADK+21, Ads22, AG21, AMB22a, AAMPR24, ARGK22, AST21, AZ22, AHWW20, AR20, AK21, AF23, ARR21, BDT21, BFP21, BL20, BT21, Bal20, Bal21, BBH+20, BGN22, BDS23, Bar21a, BFM21, BBB23, BB23b, BM21, BCIT22, BGGM21, BL21a, BK23, BP22, BKY21, BWG+20, BDP3a, BDL+20, BP21, BGS+22b, BLK+23, BJL21, BPVE24, BSK+23, BM24, CCE+22, CMR21, CKL23, CP22a, CZ22a, CL22, CHT20, CHSS20, CC20a, CRO+20, CCWX22b, CJ22, CDX22, CN22, CXX23, CSS20, CLO20a, CCT22, CCE+21, CBRY21a, CBRY21b, CK21, CP22, CY23, CS20, CXX23, CGM+23, CX22a, Coc20, CCHS20b, CA22a, CCdS20, Cs22, CESS20, DEN20, D22, DM21, DC23, DS22a, DLP21, DCG20, DH20, DLY23, Don23, DYM20, DOQ23, DGW20, DZ22, DZ23, DFG20, DT20, DV20, DFP+21b, ELL+23].

Equations

equations

[LD20a, LCJ20a, Li20, LCSZ21, LZZ21b, LG21, LH21, LY22b, LLO22b, LQX22b, Lz23, LLLZ23b, LWF23, ILTZ20, LP23a, LNYD20, LCT23, LBT+23, LW20a, LSLH20, LF21, LZLS21, LW21, LP22, LWYY22, LM23b, LJS+23, LZ23, LMFV22a, LFV22b, LY23, LM21c, LLS20, LP20b, LM20c, LL23b, LL23c, LCJ+20b, LZCC22, MSC+20, MD20a, MCF23, MTK22, MRK+20a, Mar20, MHLR22, MOBR22, MPZ23, MB21, MYL21, MTB22, MZ23, MM21c, MM22, MDF21, MBM+23, MHY20, MMM23, NCQ22, NV22, NGZ22, NY22, NG20, NW22, Nor22b, OMP22, OY21, OWHN22, OBB22, Os20, PDM23, PWH22, PCB21, PCB22, PZ22, PB20b, PAA23, PCQL20, PHX23, PA20, PPHO22, QG21, QWZ21, QLY21, QW22, Ran22, RWQX23, Ren21, RS23b, RC20b, RN23, RAB23, RRHH+21, RRFK+21, SLF23a, Sac22, SKT20, SHS+20, Sem21, SDKL21, SWF21, SSS20, SSSX23].

equidistribution

[KH20].

equifinality

[GSOM23].

equilibrates

[MX22].

equilibria

[HP22a].

equilibrium

[AAM20, BJ23, CSCL20, CSS20, EM20, EFR21, FTK23, GLJB20, GN23c, HIJL20, JTT22, MSIM21, NKT21, PFC21, SVW21, Sim23, TZ20, LWL+20, YhCj+23].

equilibrium-diffusion

[CSS20].

equilibriums

[DNO23].

EQUIP

[CHSS20].

Equivalence

[MMPD21].

equivalent

[HCL20, MBDS23, MMRP22, YcD23].

equivalent

[GDLL22, HZ23].

Erdos

[CY21].

Error

[LCG22a, QZHD23, RW23a, ZPK22, ALL22, AR21, BGG22, COR+23, CHG+20, CMH20, CG22, CZC23, CX22a, DMC+23, DM23c, EFS21, GF21, GZ21, HGB20, IW23, JO22, LRV22, LK21, LTM+22, LNM20, PV20, SL22a, SBJ+23, SM21b, SM22, TL21, VM22, ZHL21, ZLW23].

error-controlled

[SL22a].

Error-correcting

[LCG22a].

Error-optimized

[ZPK22].

errors

[BSR20, FA22, GE-WD22, KK22b, STB+21, WS22, XLT+20].

ESAV

[GLLM22].

ESAV-Hermite-Galerkin

[GLLM22].

escape

[Sab20].

ESERK

[MVK20].

ESI

[LL21d].

ESI-SAV

[LL21d].

essentially

[BSA22, GLF23, HLA20c, SK20, WTZZ23].

estimate

[KNT22].

estimates

[Gri20, KS22c, KS22b].
[TT20, BLL19, BLL20, BCG+20, BS20, CGJM21, DM23c, EKPS23, GSOM23, HB21, JO22, KC20b, KNP20, KBC22, LCG22b, LCPW23, LT20a, LAMC24, POS+20, RLL22, RBC+23, SM22, VM22, WK24, XLLH21, ZHL21].

estimator [GTDB22, WW20a]. estimators [BLWL22, ZS21b].

ETD [ZYZ+23]. Euler [BLL20, BLL19, Bal21, Bar21b, BBB23, BB23b, BDL+20, BJL21, CBBI20, CGM+23, DC23, FX22, GMRS20, GGB20, GG+23, HRRHG21, HBF22, HTLY23, IK23b, JTW22, Kem23, KR23, LP20a, LD20a, LCJ20a, LG21, LCT23, MS20b, Nor22b, PRL22, Ran22, RWQX23, Ren21, SEG21a, LF24a, Sva21, TPY20, WZT22, WK+22, YMY+21, YSN23, ZA20, ZS21a, ZL21b]. Euler/Navier [WZT22].

Eulerian

Evaluating [DHMT21, AZV23]. Evaluation [GJL20, KCD+23, AMW22, BFL20, CCM+22, DKM+20, DDVO21, DGW20, DLY22, EM20, EASA23, FHWK21, FX22, GBC+20, GGY22b, HLA20a, HSXZ21, HQ22, JN20, KKS21a, KVH20, KBS+21, KWR+23, LB24, LG22, LPL+22, LZX+22a, LQXM22, MJ23, NCQ22, NFL+21b, PM21a, PJW21, QJQW22, QJL23, REC+22, RMJ23, RRPS21, SOSM20, SRTB21, SMY22, SSP22, TKR22, WWYC21, WZL21, YL21b, ZXX23].

evolution [BB20b, CL20d, TFCH22, YA21, YGL20]. Ewald [BTZ3]. Exact [LP21, Miül23, WHN+20, AMB22a, FML21, LXY23a, PWXY22, Per23, PP22c, SEG21b, SEG22, THH22, AFF+23]. exact-interface-fitted [PWXY22]. exactly [BDZ23, CLLL20, DN21, FZB+23, HR20, WDS22].

Expansion [WK20, BON23, CB23, CZ22b, DBC+22, HHVM20, Kus20, LP+20, Mon21, PDM23, TBST20, WCZ+20].

examples [DHMT21, GKD23, TBSH21, TPSN20, VBA22, WK20].

expensive [WLS22]. experimental [BJW20, Gla21, SM21b, SLOZ21b]. experiments [GMMS22, PC22, RA21].

Formulations

Forward [CCMC20, BS22b, BJW20, CZ22a, CY22a, CCB22, FCY20, GGM23, GWZ22, LG20, LWZ22, LMK21, PMS23, PC21, PSM20, QQ21, VAK20, YMK21, ZZZG23].

Four-way [HC22, KFS20a, LH20b, HSR22, JRD22, LW22a, MZ22, OGG20, PS23, XY20a, YLNT20, YW21, ZL21, ZZZZ22, Yua21, ZJZK20, ZOG21b, ZM22, ZSM22, ZJ21].

Four-phase [HC22, KGN22].

Fourier-based [AWP23, AWP21, BHT21, BHV22, CBA22, CFY20, FMT23, GGM23, HSR22, HTH20, HSP20, JRD22, LW22a, MZ22, YLNT20, YW22, ZL21, ZZZZ22].

Fourier [AWP23, AWP21, BHT21, BHV22, CBA22, CFY20, FMT23, GGM23, HSR22, HTH20, HSP20, JRD22, LW22a, MZ22, YLNT20, YW22, ZL21, ZZZZ22].

Fourier-based [AWP23, AWP21, BHT21, BHV22, CBA22, CFY20, FMT23, GGM23, HSR22, HTH20, HSP20, JRD22, LW22a, MZ22, YLNT20, YW22, ZL21, ZZZZ22].

Fractional [BHNS23, SW23, PS20, QQ21, VAK20, YMK21, ZZZG23].

Fractional-step [BHNS23, SW23, PS20].

Fracture [BBV23, BVR22, DMD22, Cbi23b, Da22, DAZ22, HSC22, KSW22, ND20, NL22, RQ20, SBV20, WY22a, WY22b, XYZ21, ZHP21].

Fracturing [BBV23, BVR22, DMD22, Cbi23b, Da22, DAZ22, HSC22, KSW22, ND20, NL22, RQ20, SBV20, WY22a, WY22b, XYZ21, ZHP21].

Fractured-porous [PP20, PP20].

Fractional [BHNS23, SW23, PS20, QQ21, VAK20, YMK21, ZZZG23].

Fractional-step [BHNS23, SW23, PS20].

Fredholm [H22].

Free [ADK21, ABH21, ASG23, BRZ23, CDL21, CGJ21, KNN22, C22, CM22, DLY23, DW20b, EFR21, EL22, FZB23, Fu20, GQF23, GMMS22, GDB23, HNS20,

free-boundary [EFR21, MZ22].

free-energy [MRK +20c, NMR +21].

free-energy-based [HT21b].

free-flow [SGW +23].

free-stream [ZZZH23].

free-surface [GQF23, HXQL23, JKZS21, LZT +23, LMZ +21a, MSK +22, Pop20, SHM +23a, YYJ +23, ZYL23a, ZZZH23, ZIMA24, ZYY23, ZY24, vdEW23, PRKS23].

freedom [PZZ +23].

freely [SK23a].

freezing [LWZ +21, SDP20].

frequencies [FCGKR23].

Frequency [vHG +22, AMG23b, Ani21, CBF22, EJ23b, GLT +20, HHIK +23, ILX22, JL21a, KP23a, KF23, LE21b, LL23b, MGA20, Shi23, SH22, SZ21, TBM22, TZNHD20, XSC21, YCC +22, ZSST23].

Frequency-dependent [Shi23, XSC21, ZSST23].

frequency-domain [AMG23b, KP23a, TBM22].

Frequency-robust [vHG +22].

Frequent [SYC +23].

frequential [PR24].

friction [CFS +22, GBLT20, WWYC21, YXY21].

frictional [BDMP22, MCT21].

Friedrichs [OKTD21].

friendly [BZC +22].

front [BTCV22, GEvWD22, GHE +23, HW23, IKP22, LTBM23, SLBH23, TZ21, FO22].

front-tracking [BTCV22, HW23, IKP22, SLBH23, FO22].

fronts [CNB +23, Liu21].

Frozen [HXZ23, HRMY20].

FSC [EPL21, EPL22].

FSI [BCPV21].

FSISPH [PR22].

FT [GB22b].

FT-GCR [GB22b].

Fuchsiain [BL21a].

Full [AN21b, EdCC +23, EGG22, AT20, AMG23b, AL21, BS20, DKM +20, DW21, Dup21, LMHL21, MCBA20, QCWC23, TMZ +20, YWN20].

full-body [QCWC23].

full-field [YWN20].

full-potential [Dup21].

full-range [MCBA20].

Full-waveform [AN21b, EdCC +23, AL21].

fully-decoupled [CY22b, Yan21c].

fully-discrete [GTWJ24, HHS22].

fully-implicit [TH23].

fully-ionized [CMS +22b].

Function [BB21, BB23a, CJT +20, CL20c, DYM20, DFJ20, GMB +22, GKR22, GKNÖ23, HZTN21, HYM20, JYY22, KLN20, KL22, LSC20a, LLLL23, LYS +22b, MGL21, MK20, Ste22, TVL +22, TPYX22, WCC23, YDC22, ZCH22, ZCYS20, ZY24].

function-based [LYS +22b, ZCYS20, ZY24].

functional [AFL22, BGSP22, LRVF22, MYM +22, RPDO +21, TMG20, VFK21, WZ21a, YB22].

functionalized [ZOWW20].

functionals [CX22a].

functions [ABBG23, Bar21a, BFL20, CLL22, MCC24, CCM +22, CHKL23, DN21, DW20b, FZS +21, FFL +23, FL23a, GJL20, GD21, Hac21, JKK20, KKN20, KL24, KEY20, KB22b, LCL22a, Li22, LR23, MO22, MMKM24, Per23,
PKL$^{-21}$, PRPK23, PKK22, WQZP20, WSAZ22, WGH23, WWZ20. fusion [BS22b, PGR$^{-23}$].

FV [BBD$^{-20}$, NCQ22, PWH$^{-22}$]. **FV/FE** [BBD$^{-20}$].

Galerkin

[LMFV22a, ZCQ20a, ADK$^{-21}$, AdS22, AÖR22, ARR23, ALM23, AMM$^{+20}$b, AMM20a, ADM22, AM22, AHWZ20, AMM23, BL22a, Bal20, Bal21, BRT22, BZSF20, BCF22, BGGM21, BKY21, BWG$^{-20}$, BBMA23, BNN20, BDP23b, BV20, BPVE24, BX20, CHS20, CQY$^{-21}$, CBQ21, CWW22, CK20, CLW22, CLDC20, CTG23, Che23b, CZL20, CKLM$^{+23}$, CBBI20, CI21a, CI21b, CX22a, CX22b, CCB22, CCN23, CMRR21, DEN22, DY22a, DCGQ20, DH20, DHR20, DMC$^{-23}$, DY22c, DSZ22, DT20, DK21, EM20, EH22b, FMWK20, FHWK21, FGKY22, FCL21, FX22, FCY$^{-20}$, GQR21, GK20, GMSLC24, GAB22b, GC20b, GAC20, GHTC21, GLL22, Hac21, HMV22, HYQ20, HTL21, Heu21, Hig20, Hig22, HSMR20, HQ22, HR20, HLY20, HABG23, HLQZ23, JTW22, JKJ20, JK20, JJ21, KNLB21, KGBT20, KR23, KMF23, KSBG20, KMF20, LCS22, LTD$^{-22}$, LSXC20, LWR20].

Galerkin-Finite [GAB22b, MYJ$^{-23}$].

Galerkin/Hermite [BCF22].

Galilean [LM21a].

Gappy [NS23].

games [ALFN22, FLOL23, HYCL23, LFY21, MYZ22, YLLO23].

gaps [BCJM20].

Gas [Cap23, LLZ23c, MA21, SDA$^{-21}$, BAT23, BJC23, BTKP24, CPX21, CPX22, CZL20, CCE$^{-21}$, DEvW20, EM20, FZLL20, GMNY23, GAB22b, HGH20, HLA22a, JZSX20, JZSX24, Kem23, KWCS23, LVK$^{-22}$, LCJ20a, LLZ$^{-20}$a, LLQC21, LLQ$^{-23}$, LZX20, LJC$^{-20}$b, MZC$^{-22}$, NBR22, PZX20, PZX$^{-22}$, PR20, SH23b, SHER20, SYL23, SYC$^{-23}$, SSS20, SKCM22, SGLP23, SZW$^{-20}$, TZM$^{-20}$, Ufi20, Ufi21, VFB23, WNZ20, WCP23, WZX24, WA23, WABK21, WLZP21, XLC20, XCL$^{-21}$, YGW$^{-20}$, YJSX22, ZCYS20, ZS21a, ZL21b, ZLW$^{-22}$a, ZWLG23, ZZ20a, ZJSX22, ZG20, ZPS$^{-21}$].

Gas-dust [SDA$^{-21}$].

gas-gas [CZL20].

gas-kinetic [CPX21, CPX22, JZSX20, JZSX24, LCJ20a, LLZ$^{-20}$a, LLQC21, LLQ$^{-23}$, LZX20, PZX20, WCP23, WZX24, WLZP21, XCL$^{-21}$, YJSX22, ZL21b, ZLW$^{-22}$a, ZWLG23, ZJSX22].

Gas-liquid [MA21, WABK21].

gas-particle [MZC$^{-22}$, TZM$^{-20}$].

gas-water [CZL20].

gaseous [SFP$^{-20}$, WTZB23].

gases [FHJ22, OBB22, WLZP21, XYL22].

gauge [HJK$^{-21}$].

Gauss

Gauss/anti-Gauss [PPHO22]. Gauss/anti [PPHO22].

General [CD22, SOSM20, ZPS+21, AT20, ASW21, ACE+22, Aro20, BD20a, CS20, DGGL22, GYWH20, GKNÖ23, GKA22, HK20, KAO+20, Len20, LHS22a, LHA+21, NNL+20, PGTS21, RBRPST20, Sha21, TT22b, TT23, YSC23, YH23, ZML20, ZW22, ZZZ20]. generalizable [ZXLH23].

generalisation [GCSH22, RR21b]. General [CD22, SOSM20, ZPS+21, AT20, ASW21, ACE+22, Aro20, BD20a, CS20, DGGL22, GYWH20, GKNÖ23, GKA22, HK20, KAO+20, Len20, LHS22a, LHA+21, NNL+20, PGTS21, RBRPST20, Sha21, TT22b, TT23, YSC23, YH23, ZML20, ZW22, ZZZ20].

Generating [CP22b]. Generation [KKN20, ADM+21, BGR20, CL23a, KL20, KKM21, LPS21, MN22, VCNC+21, WWN+22, YJK21, YkhdC20].

generative [GN22, KS22d, RK21, WW20a, WD23, WKA+20, XZ22]. generator [PWXY22].

[CAT20, CSLC21, JG21, OCGT22]. *ghost-point*
[ACR23, Coc20, CMS23, LL23a]. *Gibbs* [CS21b, RS20c]. *Gilbert*
[CCWX22a, LXD+20, YCH21]. *GINNs* [HTKT21]. *Ginzburg*
[HMXC23, ZOG21b]. *given* [PGS22]. *ghost-point*
[ACR23, Coc20, CMS23, LL23a]. *Gilbert*
[CCWX22a, LXD+20, YCH21]. *GINNs* [HTKT21]. *Ginzburg*
[HMXC23, ZOG21b]. *given* [PGS22].

[ST24]. **Helmholtz** [BRT22, BNT23, CE21, CCM+22, DMRG22, DJ22, FJH20, GLK21, GRKRS22, JL21a, JWH20, LJ22, MBAG21, MCF23, SML20, SACT21, TZNHD20, TGB20, TY24, WCY20, YRC21, YCC+22]. **Helmholtz-curl** [YRC+21]. **Hemodynamic** [AP20, HSXZ21].

SEG22, SRV21, SAP22, SLF23b, SFNMF+21, SS22c, SZ21, SP23, SSS22, TFWX22, TTY22, TCS22, TL20, TWY23, TCA21, TJC21, TZNHD20, TJM23, Ui20, VVWT21, VOL23, VSB+22, WGY20, WTX+21, WTZZ23, WCP23, WABK21, WZB20, WGY+21, WLLZ21, XZ22, XDLX21, XHZ22, XCL22, XBRL21, XHLH23, YSCM21, YLW21, YJSX22, YOH+20, YCC+22, YWLL21, ZBYZ20, ZB21b, ZZ22, ZCZ22, ZLG+23, ZVY21, ZCY23, ZML20, ZL21a, ZL21c, ZC22a, ZC23, ZYZ+23, ZHR20, ZJSX22, ZJSX23, ZBY+23, ZSQ21, ZLW22b, ZO21, ZOEL20, dLF23, vNGB22, Der23].

high-contrast [AH21, RSA+20]. high-dimensional [ALFN22, BCWD21, BPVE24, CNBH23, CL20b, DV20, DV21, DJID20, EHL+20, GW23, GY221, HZD21, HGSK22, KTBP20, KV20, KL+22, LRL23, LD22, ORCVG24, TTY22, TL20, TWY23, XZ22, XCL22, ZBYZ20, ZZZ22, ZCZ22, ZC22a].

high-frequency [ZYZ+23]. high-Mach-number [vNGB22]. High-order [BGH20, BKC23, CPX22, CF21, DY22d, DT20, DT21b, DT22c, FHWK21, FL23b, GCDT22, GLY20, HPPZ20, HRWP22, HNZ23b, HJQ+23, KS22c, KS22b, KL22, KK21, LCL22a, LJW+22, LVK+22, LMS23, LSZ23b, LH20, LSY+23, NFL+21a, NFL+21b, NBR22, NKW22, PZX20, Pan20a, PP22b, PBN+21, PSCK23, PGMT23, RMWS21, Say22, SBL22, XBH+22, XM20, YU22, ZDT23, ZQS20, ASG+23, ADP22, AP20, AZV23, AMM+20b, BBH+20, BL22b, BL21b, CDK+23, Cam21, CPX21, CBF22, Cha23, CND22, CDN+22, CLP21, CCB22, CCdS20, CMRR21, CNMCM21, CA22b, CCLM22, DHM21a, DS22a, DC21, DHR20, DY22b, DY22c, DK21, DGW22, DWM23, EDEV23, FMWK20, FML21, GDL21, GLF23, Gla21, GDB20, GZW20b, HMV22, HGF20, HKRS23, HL20a, HZ22b, dMKJ+22, IW23, JZX20, KS23, KBB21, KLF22, KdMJ+22, KdMJ+22, KdMJ, KL22, KdL20, KV23d, LCJ20a, Li20].

higher [LLQC21, LCR22, LLZ23a, LLQ+23, LRW21b, LM20a, LS23, LYS+22b, LSCL+20, LN24, LZC22, MHW22, MGA20, Mon21, NS22, Nic22, NGK+21, PWL+23, PPP21, PM21b, PS22b, PD21, QG21, RUG20, Ren21, SMSAGG22, SEG21b, SEG22, SRV21, SWF21, SAP22, SS22c, TFWX22, TJC21, VVWT21, WGY20, WTX+21, WTZZ23, WCP23, WABK21, WZBV20, XDLX21, XBR21, XHLH23, YSCM21, YJSX22, YOH+20, ZSPZ20, ZCY23, ZML20, ZL21a, ZC23, ZJSX22, ZJSX23, Der23].

higher-order [PM21b]. high-plasma-frequency [ZS21].

higher-resolution [HKS20, KIHB21, PAA23]. high-Reynolds-number [YFW21]. high-speed [DLI+23, HBFB20, HZ22b, NKA+20, ZBY+23].

high-throughput [ZO21]. Higher

[ASVL23, BBW+21, MMKM24, VVL21, VK22, YGL20, ZF20, BL20, CS22, DYGC22, GM23a, GCSH22, IMJ20, JWZ23, PH22, WHS22, YK20b, ZQS+21].

Higher-continuity [MMKM24]. Higher-order

[ASVL23, BBW+21, VK22, YGL20, ZF20, CS22, DYGC22, GM23a, IMJ20, PH22, WHS22, YK20b, ZQS+21]. Highly
LMZ+21a, LM21c, MGP+22, MTK22, ME22, NKW22, OYK+22, PWL+23, QPW21, QJQW22, RPA22, RRHCG23, RRG24, SDA+21, XLHB22, XZC21, YKLL21, YTK22, ZRH20, ZZZH23, ZBY+23, ZAA23, BZC+22, FQS23, HP21a, KEY20, LZPM22, LFI\textsuperscript{+22]. hydrodynamics/radiation [LM21c]. hydrodynamics/radiation-moment [LM21c]. hydroelastic [ZSL+23]. hydrogel [LZX+22a]. hydrogenic [HSB20]. hydrostatic [CN22, GMMS22, Lee21, LP21, Pop20, RWdBAG23]. hyper [CGJM21, CJW22, HSH20, ZXY22]. hyper-reduced [CJW22]. hyper-singular [ZXY22]. Hyperbolic [GKPT22, YcD20, YcD23, BKC22, BB20c, BL22b, CEMO21, CPGD21, CE20, DD22b, DLW22, DSZ22, GCLM22, GKI21, GS23, GPS20, HVD23, HHN+21, HJLZ23, JHT23, Kiv21, KNG22, KGN22, KMF20, KWF20, KdL20, LZZ21a, LSL21, LF24b, Lin21, LWZ23, LD20b, LsCxL+20, LA21, LSTZ21, LpW21, MD20a, MN21, Mar23, MYM+21, Nic22, Nis20b, Nis21, NG20, PMT+22, PGCC+22, QZHD23, SSK20, SLWRG21, SGB+21b, SAP22, TFWX22, TSTH20, VLV21, XS22a, XS22b, XS23, XGQ+23, XM20, ZZ23b, ZHR20, ZH20, ZCQ20b, ZQ20, ZWQG23]. Hyperbolicity [DEN22]. Hyperbolicity-preserving [DEN22]. hyperelastic [BV22, LQXM22]. hyperelasticity [BLM22, FB22, TCR+20]. hyperparameter [DY22b]. hyperreduction [DY22c, WZ23a]. hypersonic [BEP+20, CCMC20, FCW21, PSCK23, PPB23]. hyperviscous [LCP21a]. hysteresis [ZSsC+22]. hysteretic [YZK20].

IBM [LOL22, LWZ+21]. ice [CPTR23, CFM22, HPH+23, IL23, LGL23a, MK21, hSMLS23, TTP22, ZMY23]. icosahedral [CIMG21]. icosahedral [CS21a, CMS+22b, DevW20, DT20, LZLS21, LF23, MSC+20, OBB22, RRHCG23, WGS23, ZYD20]. ideal-gas [DeW20]. IDENT [HLK+23]. Identification [AP21, JP22, BSCG22, HCF+23, KLP22, NCC21, ZL201, HNH+23]. identify [MNG+22]. Identifying [CDJM21, GGN+20, TLKK23]. identity [TL21].

IEQ [Yan21b]. IGA [LEMK21]. II [BOB21b, CEL+20, CPX21, CKLM+23, CBRY21b, DZ22, DZ23, KGN22, LLO22b, LQX22b, LR24, RRHH+21, TT23, TV22, YK20b]. II. [HJJ+21]. III [LLZ+20a]. illustrations [BBL23]. illustrative [BLL23]. Image [ZBB21, MTB22, YM20]. image-based [YM20]. imaging [LY222, Par22, WGB22, YSTK20]. IMEX [YGJ21a, BDL+20, BP21, KBT20, OBB22, PCQ20, TPK20, YGJ21b].

IMEX-DG [OB22]. IMEX-LDG [PCQ20]. Immersed [DNW23, KBSF22, KnD+22, LML22, Vrc20, Vrc21b, ALM23, ACLZ20, BBGT21, BKBK21, CDMS21, CBCT+21, CQY23, CW22b, CFJF23, CAT20, Chi23, CSL21, CSD20, CPBB21, CL23b, DHK23, Eld22, FDH+24, GGCvR22, GOF23, GF21, GL20, GLL20, GZ21, HP22b, HW23, IK29b, JHY21, JZ20, JGvR23, JDB+23, JG21, KM22a, KBG23, KSH22, KBCG20, KCT+23, KdMJ+22, DF32, KKY+21, KJ20, KKJ21, LS22, LG22, LHT21,

J [Abg20, ACML20a, BLL20, EFO20, GRT21, HPA22, LMVF22a, MM22, SZN20, SYOS21, STEK22, SS22b, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22b].

Jacobi [BCMJ20, CSY20, DM21, FPT20, GHTC21, HA21, KNT22, LPP+20, MYL21, PKL+21]. Jacobian [CT22, GDB23, HBBF20, LL21a].

JSC [DSA23]. July [Ano20f, Ano20r, Ano21f, Ano21r, Ano22f, Ano22r, Ano23f, Ano23r]. Jump [KMF23, BG20b, Cal21, CK21, CCdS20, MST23, WZW21]. jump-diffusion [MST23]. junctions [GLJB20]. June [Ano20g, Ano20a, Ano21g, Ano21s, Ano22g, Ano22s, Ano23g, Ano23s]. justification [BBL].

k-exact [SEG21b]. Kak [DZC+23, YZdCNS21]. Kalliadasis [Abg20].

Kalman [MLCM22, BJ21, HST22b, HSS22, JL22, MLCM21, SSW22, WLZ+24, ZMSX20]. Kapila [ZC23]. Karhunen [LT22b, TBH21, TBST20].

kinetic-ion [SC22b]. kinetics [AGR23, AC23, KOM+22, KAC22]. kink [HCL22].

KIOPS [GRT21, GRT18]. Klein [AZ22, CY23, GLLM22, JWC20, LSH23b, NM21, SQ22, SJ21].

KNOSOS [VCPGR20]. knowledge [CHZ+21]. knowledge-based [CHZ+21].

Kutta [ALMF23, ADP22, AC23, BD20a, BM24, CBQ21, CdS22, FY22, GMA23, JLQ21, KBCH20, KSS21, KS22b, LNP20, Mar20, MYM+21, NC22, NS22, NN21, NV22, SM22, SW23, S23, VLV20, VN21, Ver23, YXY2, ZQ20, ZHR20, ZH20, ZQ20].

Kutta-Summation-By-Parts [LNP20].

Lagrange [BL20, AST21, BLL19, BHK+22, BTM24, CB22, CC22, GMSLC24, HBF22, H23a, LSQ23b, SG21, ZSK22].

leapfrog [CSASS21]. learned [CGZ23]. Learning
[WGSX23, CCL20]. learning-enhanced [CNBH23]. learns [MK20]. Least
[CA21, GTA20, GKA+22, LBZ21, CCL20, CZCY23, DVS22, GL23, HWDM22, JY20+20, LC21, LSZY20, PC21a, PR23, SMSAGG22, TB21, Wan22, WGSX23, ZC22b, ZC22c]. Least-Squares
[OKT21]. library [XZ20, CD22]. Lie [CC22b, ZOG21b]. Liénard
[BLK+23, CL24, HLS20, NT20, Poe23, ZT23]. likelihood
[EKPS23, PWB24]. likelihood-free [PWB24]. limit
[BPT+20, CLY21, CSS20, DW20b, JTZ22, KCK21, LLZ20b, SZ21].
Limitations [CSA21, LR24]. limited [BAT23, DLMZ22, DGPP22, KBC22, LDC23, Par22, Per23, RHG22, YYL20, Yin22]. limited-aperture
[DLMZ22, Par22]. limiter [DSZ22, DK21, GK20, LWR20, ZZ23b]. limiters [CBY23, ZQS20]. Limiting
[BAT23, CLY21, CSS20, DLMZ22, DGPP22, KBC22, Par22, Per23, RHG22, YYL20, Yin22]. limitations [CSA21, LR24]. limited
[BAT23, CLY21, CSS20, DLMZ22, DGPP22, KBC22, Par22, Per23, RHG22, YYL20, Yin22]. limited-aperture
[DLMZ22, Par22]. limiters [DSZ22, DK21, GK20, LWR20, ZZ23b]. linear-scaling
[TPYX22, WZBV20]. linearising [ILX22, Nor22a]. linearity
[MCC+20, PWXY22]. linearization [AFK+23, MMYT23]. Linearized
[NNJ21, HBFB20, IK23b, LSW20, ZHY22]. Linearly
[LLZ23a, CS20, FBG20, JW20, Li22, San20]. lines [BN21, TBG20]. lists [Ale23]. liquid
[FW22]. lithium-ion [FW22]. Load [WY22b, TTSP21, WY20]. Load-balanced [WY22b, WY20]. load-balancing [TTSP21]. loading
[MM21a, WQ20]. Lobatto [RRFK+21]. Local
[Alu22, BBTD21, CP22a, CCH+23, CCCH23, SCS22, Xia21, ARC22, AdS22, BDT21, BCR22, BCD22, CS20, CV23, DCA+22, DCG20, DMC+23, GD21, GHTC21, GN3c3, HVM22, HVD23, HT20, Hua21, KLN20, KL22, LSXC20, LW20a, LW22b, LYS51, MS20a, Mis23, MGA20, NKA+20, PLL+21, QPW21, SRH21, TCS22, TSD020, VSB+21, VBA22, WGS23, WGU+22, XFL21, XLZ21, XCL22, YZH+23, YAX20, Zha22, ZPW+23, ZL22]. Local-basis [Xia23]. localization [BNT21, BSV20, QC23]. localized
[AL20, CGLZ23, C1T+20]. lock [GMMS22]. lock-release [GMMS22]. LOD

Loop [MLCM22, RSA+22]. loosely [BGQ+23]. loosely-coupled [BGQ+23]. Lorentz [BRT22, MBAG21, PBCL20, WHL21, Yan23, ZPK22].

Maxwell-Schrödinger [Suk23].

Maxwell-Stefan [FM20].

May [Ano20i, Ano20u, Ano21i, Ano21u, Ano22i, Ano23i, Ano23u, Ano22u].

MBE [YWCL22].

MC [Poe22, Poe23].

MC-gPC [Poe22].

MCMC [LTK+22, SPdS+21, WDL21b, WDL21c]. ME [EPL22]. ME-FSC [EPL22].

mean [AXWF23, ALFN22, BDMT22, BPT+20, FLOL23, GD20, HYCL23, LCG23, LW21, LFY21, LLO22a, MYZ22, VSBind, YLLO23, ZEG20].

Mesh-Conv [HZ22a]. mesh-free [WZ20]. mesh-incorporated [MKHI20]. Mesh-independent [Bat20a]. mesh-refined [XLZ21]. meshes

[ACÉ+22, AR20, AWB+21, AE20, BGF20, Bar21a, BBPR21, BG21, BFT22, BGS22a, BD20a, BCP22, BL21b, C2K20, CP22b, CW22a, CSY20, CRF+21, CCB22, CF20, DBT+20, DS22a, DD21, DNO23, DSZ22, DK21, FADJ20, GBC+20, GYW20, GHY22a, GK20, HW20b, HLQZ23, IMJ20, JBF21, KKS21a, KKS21b, KSI+23, KFSM21, KRL21, KHM+23, KLB23, KOS23, LM20a, LS23, LWZH23, LMN20, LHF20, MYJ+23, Mar20, Mar23, MRS20, MW22, NNL+20, PP22a, PP22b, PBGB21, PD21, PGTS21, RGR21, SAS+21, SC22b, TNSF23, Tso23, VRAM21, WZZ23, WZL21, XY20b, XM20, YWC22, YCH21, YK20b, ZCQ19, ZCQ20a, ZML20, ZL21a, ZL21b, ZJ22, ZLW+22a, ZCCN23, ZS20, vGAtTBI23].

EHW21, EM20, Eld22, EH22a, EPL21, EPL22, EMS+21, FTP20, FA22,
FTY+22, FDK+24, FZLL20, FJH22, Fei23, FZ20b, FLW20a, FMS21, FFL+23,
FBS23, FBG20, FAHA20, FGD+21, FHT21, FZ23, FMJ21, FMOJ22].

method [FM23b, FM23a, FMB20, FGL+22, FPT23, FCM20b, FZ21, FCL21,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
FX22, GGCvR22, GN23a, GJLD22, GMB+22, GHY22a, GLSZ22, Gao22,
GQF23, GL23, GTDB22, GGB20, GGB22, GHY22b, GSOM23, GTWJ24,
GDAP20, GA20, GU20, GKB23, GP23, GOF23, GH23, GGN+20,
GF21, GLCS23, GMNY23, GLWY22, Gao22, GQF23, GL23, GCL23,
methods [WKW +22, WKK23, WZX24, WZ21b, XSC21, XGCW +20, XHX22, XSSS22, XCL +21, XS22b, XS23, YJH23, YYX21, YYLY22, YZK23, YK20b, YGL20, YH22b, YL24, ZX20, ZZZ22, ZCZ22, ZGLL20, ZOWW20, ZMSX20, ZWZL22, Zha22, ZXY22, ZHR20, ZZYX20, ZMW23, ZQS +21, ZQS20].

MgNet [CDX22]. MGRIT [SdSPS24]. MHD [BGW +20, CWX23, FZB +23, GGB22, HPW21b, HLX21, KK20b, LHF23, LZZ21b, LL22, LZLS21, LFW23, MSC +20, MD21, PHHJ22, RRHH +21, STC +21, TCK +22, ZHY22].

mimicking [MAPS20]. mimics [NG22]. minimal [LZLZ21]. minimalistic [Ale23].

mixing [AMK+21, JDB+23], mixture [SS23, SDA+21], mixtures [BR22a, CCN21, PAA21], MLS [REC+22], mobility [BST23, LZZC+23].
MOC [FSDM+22], modal
[CLW22, EM20, dMKJ+22, NdILPL21, SKCM22, WX20]. ModalPINN
Model
model
model
[WW20a, WCC+20, WNZ20, WCL+20, WWYC20, WCF+21, WCM21, WY22a, WY22b, WSA22, WZZ23, WLZ+24, W23a, WLZP21, WL21, XZ22, XJL23, XC20, Xie22, X23a, XY20b, XHY23, YHC+22, Yan21b, Yan21c, YRH22, YWCL22, YS23, YTWK23, YL23, YFY22, YKHF23, YM20, ZH23, ZHY20b, ZH21, ZW21, ZW23, ZC23, ZYL23a, ZZ23a, ZAW+20, ZZ23b, ZLB22, ZIMA24, ZAG20, ZHY+20, ZXD22, ZAA23, dZBDMC24]. model-based [GHNS21], model-data [DCS22].
model-form [HWDMD22], model-order [BVR22], modeled
[CGL+23, KH21a, KS21d, vNGB22, DA23]. Modeling
[CMS+22a, CDL+22, ELL+23, EDLC20, FS23a, GZ20, He22, KSH20, PBVC22, ZDC20, AYH+21, ASSZ21, AB23, AAPMR24, AHJ23, BHV22, Ben23, BABD21, BBH23, BBMA23, Cha20, CL20b, CHF21, CW21,

modeling [WCF22, WWFM22, WCZ22, WD23, WA23, WKA+20, XLLH21, XHLB22, XBD+20, XBRL21, XD22, YWN20, YZSD21, YRK+21, YZK20, YQO20, ZT20, ZSL+23, ZKY23, ZSL20, ZLW22, ZLW23, ZPK22, dv23a].

modeling-based [YZSD21]. Modelling [LBM20, Abg20, ACR23, BTEK22, BJR22, Cie20, DCHF21, FBD+22, IMJ20, LKV+22, SSG21, SW22, SDP20, VPL20, WR23b, XHLH23, YK24].

models [AP21, ASBM20, AMK+21, AMW22, APR22, BHW23, BGR20, BSCG22, BGS+22b, CDBS21, CDT22b, CL20b, CFM22, Che23b, CBA+20, CY21, DS23a, DS21, DEB21, EDEV23, FGGY23, FFGRLS+20, FY22, GPL22, GDBF2+20, GZ20b, GCD20, GWZ22, HbD20, HSK+21, HZ23, HJK+21, HNR23, HNZ23a, HLA22b, HCC22, HSG+22, IT22, ISM23, JD23, KMS20, KRG+23, KC20b, KS22d, KV23b, KFP+22, KLPR20, LCH20, LPS21, LSL20, LLM20, LT20c, MGV22, MFK21, NFB23, PRKS23, PBJ+22, PS22c, BB22, Poi23, RWdBAG23, RLH22, San20, SKP+21, SBC20, SL20b, SL22b, hSMLS23, SMS23, SM22, SPAC23, T20, TBST20, Tow20, TAVD21, VAK+23, WRH20, WLS22, WZSK22, XLLH21, XCL22, YcD20, YcD23, YJP23, ZA21, ZOG21a, ZHPZ21, ZXLH23, ZWB21, ZSKN22].

online monitoring [DZJ22, MMO20]. monodomain [WCF+21]. monolayers
[Cie20]. Monolithic
[ALMF23, PKC22, CPK22, CMS+22b, HSXXZ21, LHXZ22, XC23b].
Monotonicity [BB20c, LVK+22, YYLY22, GYWH20, OGG20, YM21].
Monotonicity-Preserving [LVK+22, BB20c, YM21].
Monte
[SXZ+23, ALF+22, BBQ+21, DZC+23, Fei23, GN23a, GP23, HLZ20, HJLZ23,
KO+22, KFP+22, KNP20, KSK21, LT22a, LCPW23, LGL23b, LMG+21,
LTK+22, LMUHR22, MRBS22, OGVMM22, PJW21, PZ20, PV20, PB22,
Poc22, RA21, SH23a, SGM20, SGM21, SSX23, Shi23, SBJ+23, SH22, TT20,
TBD+20, VM22, WPBS22, YS22, Yan21a, ZS21b]. Monte-Carlo
[ALF+22, PV20, RA21, SH22].
MOOD [BLM22, BL22b].
Mori
[LL21c, WRH20]. Morphological [WCA+20]. morphology [ZAMG20].
Morse [WKK23]. mortar [EFR21, ZL21a]. most [YR22].
motion
[Li21, LX21, NTSM20, OSZ21, PSJ23, SB23, Ume23, ZEG20]. movement
[PKSH23]. Moving
[GTKA20, GKA22, MKHI20, AR20, BBGT21, BFG22, BSW+22, BR22b,
CNB+23, CZZ21, CP22b, CZCY23, Coc20, CBC+23, DT21a, DT22c,
GBC+20, GLF23, GLCS23, HGZ23, HR20, HLRQZ23, KH20, KHM+22, LL20,
LW22, LW22a, LMZ21b, LJS+23, LMN20, LAN21, MSK+22, MMZZ22,
NGZD22, OB20, PD21, SM21a, SHL+20, TKB22, Vre17, Vre21a, WCF+21,
WZL21, XFL21, XS20, XLHB22, XLS22, XLT+20, YWCB22, YYB23, ZY20a,
ZPW+23, ZDT23, ZR20, ZCY+21, ZKY+20, vGAtTBI23, vdEW23].
moving-least-square [GLF23]. moving-least-squares [CZCY23].
moving-mesh [BR22b]. MPAS [CP22b]. MPFA [SWG+20]. MPI
MR-WENO [LWZ23]. MS [XHS23]. MS-XFEM [XHS23]. MsRSB
[BKMC21]. much [Giv23]. Multi
[ABH21, BPBM23, CCW20, DZ22, EPL22, GQF23, GKN23, HST22b,
KKY22, KS21b, LQ21, LW22, MBK21, MN20, MP21, ODM23, SH22,
SSX22, VKR+22, WZSK22, YDC22, ZJ22, ZBY+23, AF23, ACR23, Bar21b,
BS22b, BDB21, CS20, Cha21, CHS20, CLXS23, CDX+21, Cs22, DS23a,
DFJ22, DhJY+22, DYM2C0, DFJ20, DV22, EHW21, FS22A, FN22,
FBCD22, FTK23, GN23a, Gar21, HHK+23, HSM20, HZHL22, HLL23,
HV2D23, HPX23, Hig20, HHL22, HWM22, HD23, HS+22, Jai22c, JZX24,
JT23, KYO22, KS21a, KK22a, KFP+22, KD21b, LB24, LK22, LMG+22,
LPL+22, LWX22, LLQ+23, LZX23, LSLH20, LPZ22, LTK+22, LFL+22,
LN22, MZI+23, MS20a, MCP23, MK20, MVO+22, MD22, PZ22, PWL+23,
PAA23, PAA21, DM23b, QJL23, RS20b, RZH20, Sar21a, Say22, SL22c, SL23,
SX20, TYY22a, TYB2W2, VSS21, VGG23, VBB+23, WBN21, WWYC21].
multi [WZTZ21, WDS22, WZW23, XF21b, XF21a, XDLX21, XYL22,
YL23, YKdHC20, YZW23, ZZML20, ZRH21, ZW22, Zha22, ZY+23,
ZSST23, ZQS20, ZS20, ZSP+21, SAL+20]. multi-component [FTK23,
KK22a, LVK+22, LLQ+23, MS20a, PAA21, Say22, TYY22a, ZY+23].

Cap23, CLW22, CLDC20, CJW22, CKLM+23, CQA21, CK21, CPK22, CS23, Coc20, DY22a, DD22b, DLY22, DGW22, FZQ21, FZQ22a, FHWK21, Fei23, FQSW23, FWNT21, GGCvR22, GNZ23, GQR23, GS22, GCL+22, HFBEB20, HKMR20, HMO+20, HR20, HRWP22, JGLvR23, JCLK21, JK20, JS22b, KS23, KMR23, KLS+20, KS22b, KSI+23, KPKB20, L21a, LN22, LG20, LD20a, Li20, LCSZ21, LLNL21, LLO22b, LWF23, LZ23, LP20b, MRK+20a, MRK+20b, MHLR22, MOBR22, MDF21, MHY20, NGZD22, NY22, NMR+22, OY21, OB22, PCB21, PCB22, QHDL20, RUG20, RS23b, RRFK+21, Sel22, SP22, UY22, WZT21, WH22b, WJHS23, WH22, YL20, YL21a, ZL21b, ZPGR22, ZLW+22a, ZT23, aKAK20.

Navier [dLF23].

Near [LYZ22, BDWC23, CZLC20, GZW20a, GWC+22, Ish22, LWY+20, PN22, YGJ21a, YGJ21b].

near-axis [GWC+22].

near-boundary [CZLC20].

Near-field [LYZ22, PN22].

near-ground [LWY+20].

near-minimax [YGJ21a, YGJ21b].

nearest [GLSZ22].

easily [CCB22, GLK20, LLKY21].

nearly-conservative [CCB22].

nematic [SVW21, WSS22, CY22b].

neoclassical [VCPGR20].

Nernst [KKJ21, LWYY22, LM23b, QWZ21, QXY23, XC23a, YFLL21, ZGLL20, RA23].

nested [KKN20, VCNC+21, WZT21].

Net [LY22b, TR21].

ets [JCLK21].

Network [TR21, BFM23, BSVM23, BZSF20, CL21, CCL22, CCPS21, CCP23, Cha21, CX21, CCWX22b, Coa21, Coa21, DM21, DD22a, GLWZ22, GDLL22, GWY21, GYC+23, HLL22, HXQL23, HJJL20, HBF21, KCWZ22, LMS+22, LJH23, LHCK24, LLZ22, LLM20, LY22b, LT22b, LC22, LGL23b, MLM+21, MHLR22, MX22, MK20, MRBC22, Mi23, NA21, QCC22, SY21, SMS23, VP21, WRH20, WWFM22, WXZ22, WCZ22, WZ24, XI23, XJ23, XZ23, XZR21, XZWH22, YHC+22, YCC+22, YLY20, YLY21, YYD+22, ZC22a, ZZZG23, ZYL+23b, ZHRB23, ZTK23].

Networks [HTKT21, PZKN22, PZKN23, PJZ+23, RR21a, RHG22, UHZ+24, AHJ23, AK21, ACD23, BA23, BS22b, BZ23, BP22, BTK22, BDMT22, BX20, CWL+21, CA22, CGL+23, CDX22, CHK23, CG23, CFS23, CY21, CDM+23, DDP20, DM23a, DCS23, DHR20, DN21, DW23, FGK22, FFFY20, GCVI22, GSW21, GN22, GZ20, GD23, GCSH22, GYW23, HNS20, HLZ20, HBG+21, HPKS23, HLXZ21, HXFD20, IL23, JKK20, JMA22, JCLK21, JL23, KTBP20, KV20, KWS22, LCG22a, LLY20, LY22a, LWW2, LHY23, LHA+21, LMK21, LAS22, MRHR20, MB23, MK21, MFK21, MN23, NCC21, PZ21, PMACG21, PPK20, PZ22, PGR+23, PMT+22, PHX23, PSM23, PBVC22, PEL23, QZHD23, SRH21, SEG22, SJH+23, SFDW23, SGLP23, TBJ22, TXH+21, WCC23, WKA+20, WL22, XF21c, XSF23, XHD21, YMK21, YIP23, YNDH22, YB20, ZZZG23, ZCZ22, ZNCZ+21, ZLS22, dLF23].

Networks [AM22, BBV23, JADS21].

Neumann [SYOS21, TNP21, AIN20, KBCH20, KD21b, LM21b, MMZZ22, SYOS19, TPB22, XC20].

Neural [AM22, BFM23, BPVE24, DD22a, DLM+23, GD23, HTKT21, JADS21, LMS+22, LLZ22, MRBC22, MPIG23, NÄ21, ORCVG24, PZKN22, PZKN23, PJZ+23, RR21a, RHG22, TR21, UHZ+24, WZ24, AHJ23, AK21, ACD23,
Neural-network [LMS +22, MRBC22, MLM +21].
Neural-network-augmented [BFM23].
neuron [FL21, HLXZ21].
neutral [AAL +21, GRC +22, KSK21].
neutron [DJ22, DJ23, DC22a, GHY22a, Gar20, Gar21, HA21, KWMF22, LKEM21, ZG20].
neutronics [CS22].
neutronics-depletion [CS22].
Neveu [Lak20].
Newton [BE20, CYYS22, GDB23, Lee21, LTT21, LCC +23b, hSMLS23, VdGP20].
Newtonian [BE20, CYYS22, GDB23, Lee21, LTT21, LCC +23b, hSMLS23, VdGP20].
NH [LLZ22].
NH-PINN [LLZ22].
nine [LDM +21].
nine-dimensional [LDM +21].
Nitsche [JDB +23, LT20b, WR23c].
NN [YYD +22].
no [RS23b, GS22, IKP22, DCS23].
noslip [GS22].
No-U-Turn [DCS23].
nodal [BWG +20, CCWX22b, DT20, MSC +20, MRK +20c, NW20, NMR +21, NMR +22, PLKM22, RRHH +21, WVRLG23].
nodal-gradientes [NW20].
node [KDL23].
node-centered [KDL23].
nodes [CS23, MGRVR23, RRKF +21].
NoFAS [WLS22].
Noise [EFSH21, AWB +20, CCM +22, CCHS20b, EK21, HHS22, LVL +23, SQSS20, SSX22, ZL21c].
oises [ZMK21].
oisy [BCSK21, JL22, KTDG22, LMZ23, LLR23, WF32, XZW21, YMK21, Yin22, ZL21d].
[ZJZK20, ZX22, Zha22, ZZYX20, ZOG21b, ZIMA24, ZYY23, ZPS+21].

nonlinearities [KH21a].

Nonlinearly [CND22].

Nonlocal [ELL+23, PDPK20, YYY+22, ALFN22, ASSZ21, DZ22, DZ23, EL23, FYT+22, GLLM22, HZX23, HM21a, JPAZ21, KS21a, LCS22, LTD+22, NS22, VLC+20, ZYW21, ZYY+20].

nonlocally [KCK21].

nonorthogonal [HNF+21].

nonphysical [CW21].

nonsmooth [WZBV20].

Nonstationary [ADK+21, VaB23].

nonuniform [CSY20, lLTZ20, Xie22, ZOG21a].

Nordheim [MR23b].

norm [An21a, CN21, MZ20, YWCIL22].

Normalizing [GWZ22, WLS22, HYCL23].

numerical [HL20c, HLYZ21, HP22b, JF20, JLRZ20, JRD22, KMS20, KKN20, KIH21, KJB+24, KWD22, KV23c, KLPR20, KD20, LLCJ23, LVK+22, Li21, LZ22b, LGL23a, LBM20, LFT+20, LMZ21b, LCW23, LKG+20, MBDS23, MKH20, MFTZ20, MSWH22, MTT+23, MH2Y21, MM+22, MM+23, MP21,
KD20, KK21, KdL20, KV23d, LCL22a, LJW+22, LBN21, LVK+22, LMS23].

order
[LL21a, LL23a, LCS22, LCS23, LD20a, LCJ20a, Li20, LCSZ21, LLQC21, LG21, LYZW21, LZ22a, LCR22, LJ23, LSZ23b, LLZ23a, LLQ+23, IWL+23, LXSF22, LH20, ILTZ20, LRaq22, LWZ23, LRW21b, LM20a, LS23, LSZY20, LD20b, LFZ21, LYS+22b, LWYY22, LSY+23, LJS+23, LZ23, LCWH23, LcXcL+20, LT20c, LN24, LY22c, LZCC22, MZ22, MA23, MCVF22, MH21, MH22, MQ20, MKM23, Mis23, MG20a, Mon21, MCI23, NS22, NFL+21a, NF+21b, NKT21, NP20, NT20, NBR22, NP23, Nic22, NKG+21, Nkw22, Nis20c, Nis22b, NW23, Oru21, OA21, OGG20, PZX20, Pan20a, PCF21, PP22b, PWL+23, Pan20b, PPP21, PB20b, PM21b, PS22b, PH22, PTT22, PSCK23, PD21, PGCC+22, PGMTP23, PGTS21, PPB23, QG21, QZHD23, QLY21, RMA20, RUG20, RSWD21, RFZ22, RZ23, RWQX23, Ren21, RLH22, RRBR+23, RBF+21, RIC+22, RA23, RMWS21, SN19, SN20, SMSAGG22].

order
[San20, Say22, SL20b, SL22b, SEG21b, SEG22, SFR21, SWF21, SBL22, SAP22, SY21, SKCM22, SS22c, SZ21, TFW22, TCS22, TJC21, TjM23, TPK20, Toh23, TEA+23, Uli20, Un21, UY22, VVL21, VVrWT21, VPDD22, VOl23, VBA22, VK22, WW20a, WMTQ20, WGY20, WW20b, WRH20, WCL+20, WTX+21, WLH21, WCF22, WTZZ23, WCP23, WLZ+24, WABK21, WzBV20, WwLZ21, WHS22, XBH+22, XLLH21, XY20a, XGCW+20, XDLX21, XSSSS22, XRLR21, XS22a, XS22b, XHLH23, XMO20, YU22, YYX21, YSCM21, Yan21c, YZSD21, YJSX22, YLY22, YH22a, YZ223, YKH24, YOH+22, Yn21, YK20b, YGL20, YH22b, YM20, ZSP20, ZEG20, ZEG21, ZB21b, ZYW21, ZCY23, ZCQ19, ZCQ20a, ZML20, ZL21a, ZL21b, ZHY22, ZX22, ZLW+22a, ZC23, ZZ23b, ZDT23, ZHR20, ZZ220, ZH21, ZJSX22, ZJSX23, ZZ23c, ZSQ21, ZwQG23, ZQS+21, ZQ+22, ZQS20, ZS20, ZF20, ZL22, aZWy23, ZWB21, dLF23].

order

s [LL20, SAS+21, BHNS23, BCTIT22, HM21b, KR23, KNG22, KGN22, LW22a, Vre17, Vre20, Vre21b, Vre21a]. overview [DM23c].

pairing [DFW22]. paper [Pan20b]. papers [DSA23].

pairing [DFW22]. paper [Pan20b]. papers [DSA23].

pairing [DFW22]. paper [Pan20b]. papers [DSA23].

pairing [DFW22]. paper [Pan20b]. papers [DSA23].

data [AP21, ABDD20, BCPV21, CCWX22a, DWWZ21, GCMV23, LSL20, ZZ22b, MNG+22, PK23, VLC+20, XLLH21].

Particle [BZC+22, FQSW23, HP21a, KEY20, LZP22, LFL+22, MVO+22, RA21, ST+21, TCA21, ALE23, AWP23, ALF+22, AFF+23, AF23, BL19, BL20, BOB21b, BOB21a, BFS23, BBW+21, BTL23, BPT+20,
Penalty [FCL21, SCdHJ20, HNZ23a, KMF23, SY21, aZWy23].

Peng [FCWS22, LYY20].

Peregrine [KMS20].

Peng [FCWS22, LYY20].

Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].

performing [FTP23]

Performance [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].

perfect [LL23a, XYL22].

Perfectly [LL23a, XYL22].

Perfectly [LL23a, XYL22].

Performance [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].

performing [FTP23]

Perfectly [LL23a, XYL22].

Perfectly [LL23a, XYL22].

Perform [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].

Performance [PV22, PO23, ADP22, KSW22, KD20, RBD+21, YJSX22].

performing [FTP23]
plane-wave
planes
plank
planning
plaque
Plasma
plasma-based
Plasma-material
plasmas
plasmon
plasmonic
plasmonics
plastic
Plastic
plasticity
plate
plating
plume
PML
pneumatic
PointNet
point-particle
point-source
point-value
point-wise
Polynomial
Polydisperse
polyatomic
polyhedral
polyhedron
polycrystalline
polyhedrons
polymer
polymeric
Polynomial
polyhedral
polyhedral
polynomial
Polyhedral-Chaotic

Prediction [EMS+21, AAM20, BJW20, DLM+23, DYGC22, HJLY21, KUO23, NKT21, PZZ+23, RLH22, SFGNMG22, SPGG23, SM21b, Y123, ZYL+23b, vdBSB20].

Predictive [EMS+21, AAM20, BJW20, DLM+23, DYGC22, HJLY21, KUO23, NKT21, PZZ+23, RLH22, SFGNMG22, SPGG23, SM21b, Y123, ZYL+23b, vdBSB20].

Predictive/multicorrector [LBC23].

Preface [AACX21].

preferential [TACO22].

presence [DSSSP20, ZHL21].

preservation [XMZ+23].

preserve [HRY+22]. preserves [GGB22]. Preserving

Pressure [ISM+23, Af20, As21, Asj23, Bg20, Bjc23, Bp21, Bbl23, Scpl+22, Cg23, Dsp22, Dev20, Dtb20, Fgy22, Ftk23, Grm20, Hpw21a, Htl21, Hig22, Hpl2a, Htlty23, Ks22c, Ks22b, Lpm+20, Lo23, Lrt+22b, Llz23c, Lcs23, Mdb20, Ms20b, Nb+21a, Nfl+21b, Rs23b, Slp23a, Sbh21, Sw22, Skt21, Mvo21, Xls22, Ya21, Yzk23, Yzk20].

pressure-based [BP21, Dsp22, Dev20, Hpw21a, Htl21, Mvo20].

pressure-correction [Af20, Lrt+22b]. pressure-equilibrium [Ftk23].

pressure-equilibrium-preserving [Bj23].

pressure-free [Sbh21].

pressure-temperature [Slf23a]. pressures [Gqs20, Ks22b]. prestrained [Bgn22].

prestressed [YkdHc20].

preventing [Skt21, Gf21].

primal [Cw22, Lols23, Ng20, Nor22a, smls23, Ww20b].

primal-dual [Cw22, Lols23, smls23, Ww20b].

primary [Fgl+22, Mmdmb22].

primary [Lwj+22, Pcb21, Sel22].

principle [Ab23, Jly21, Lpl+22, Llt20, Ns22, Sb23, Tbr23, Xs22b]. Principles
printing [OYK+22]. prior [LSL20]. priori

probability [BJZ20, CW21, CL20c, YZdCNS21, ZJ23]. probable [YR22]. probe

[CSA21]. probing [GHW21]. Problem

[ZS21a, AN21b, BCI+23, BCIR22, BST23, CEL+20, CZ20b, DLL22, DT22b, ELSV22, FS23b, FCWT22, FZ21, GGM+23, HLB20, HSX22, HHVM20, HJH+21, HNF+21, HSS21, Hua21, ILX22, JLCT22, KS22a, KBCH20, KKB20, KLZ23, LSW20, LDLV21, Lin21, MNG+22, MBM+22, OKTD21, Par22, SS22a, SBVM20, SCL20, UHZ+24, WJKW20, YL24, ZMK21, ZML20, ZHRB23].

problems [ZXY22, ZZZG23, ZYL+23, ZLL23, ZS21b, ZPK22, vHP22].

procedure [ASKH21, LSTZ21]. procedures [LMN20]. Process

[STG20, XCL22, ABE22, BBH23, BGH21, CZ23, CL20b, CDL+22, CS21, GTBD22, HNR23, LTL20a, MRT+22, OYK+22, SDP20, Wan23, ZLC+20].

processing [AG21, BEP+20, DM23c, EHL+20, MTB22, SM21]. processors [LFL+22]. product [AMG23b, CN21, Don23, HKS21, KAZS23].

SBVM20, SLQW22, VVL21, vdBSB20. **Quadrature-based**
[TM23, PO23, SBVM20]. **quadrature-finite** [LYS+22b, LSY+23].
quadrilateral [BW23, GYWH20, KRL21, PP22b]. **quads** [MN22]. **quadtree** [CPK22, PPV+21]. **quality** [HW20b]. **quantification** [AR23, BCPV21, CDT22b, CC20, EPL22, FJG+20, GN22, GGEJ20, KP23b, KLG+22, KWF20, NYZ21, PMZ+23, SSG21, SC23, SBJ+23, TBST20, XF21b, XF21a, ZBB21]. **Quantifying** [KNP20].
Quantitative [FS23b, MM21a, LTK+22]. **quantities** [LC22, YL21b, VGG23]. **Quantum** [Le21a, TS20, AAL+21, AFL22, BCG23, BSZ+23, CZ20b, HKRS23, HXZ23, JLY22, JLY23, LHW+23, MR23b, PLM+23b, VCCN+23, WLZP21]. **Quasi** [BF23, PLM23a, SS22b, AB24, BFL20, CHT20, CCE+21, CF20, GWC+22, GCL+22, Lee21, LAT+22, MDG20, NTSM20, SHL+20, WZ23b, SS22d].
Quasi-Spectral [SS22b, SS22d]. **quasi-static** [LAT+22]. **quasi-symmetry** [GWC+22]. **quasi-uniform** [CF20]. **Quasi-periodic** [DS23c]. **quasiperiodicity** [CSX21].
R [Pan20b]. **Race** [BABD21]. **radar** [MTB22]. **radial** [DW20b, FZS+21, JYY22, KEY20, LLLL23, LYS+22b, TVL+22, WQZP20, WCC23]. **radially** [Bre20, SOBP22]. **radiation**
[BOB21b, BOB21a, BVR22, BRZ+23, BR23, BD20b, CSS20, CLS24, CIMG21, CCH20, DDR22, DW20a, HR23, HNF+21, JTTZ22, KKL+23, LSW20, MH22a, PM22a, PMF20, TR21, TLM20, TYB23, Yan21a, YAX20].
radiation-moment [LM21c]. **Radiative**
Random-batch [DFJ22]. **random-choice** [ZHZH22]. **random-weight** [DW23]. **Randomized** [SPds+21]. **randomly** [FTY+22, KT20]. **Range**
[TL20, ARGK22, CH22, DV23b, DCSG22, EOP20, EHW21, EJ21, EOS23, EMS+21, GQ22, KWMF22, Os20, PMF20, PM21b, PM23, PEI23, ZOG21b]. **Rankine** [GKL21]. **RANS**
[AF21, AHP22, BPJ22, DR20, EDEV23, PB23, ZDS+21, ZAW+20].
RANS-based [BPJ22]. **RANS/LES** [DR20]. **Raphson** [VdGP20]. **rapidly**
Reduced-dissipation reduction-based [CGJM21, ZGLL20].
Reduced-order reduction [ASBM20, An21a, AWB+20, BF22, BFM23, BVR22, Ben23, BW20, CGJM21, CCGC23, CDZ23, Da22, DV23b, DFG20, EAK20, FTZ22, GHE+23, GFY20, HR23, HWDM22, KC20a, KV20, KSK21, LT22a, LCPW23, LC20, LL21c, LT23, MZ23, Mis23, NP23, OA21, PC21a, PR23, PBJ23, Qia22, RA23, TL20, VACE21, WCL+20, WDH+21, WZZ23, YH22b, ZGLL20].
Reduction-based [CGJM21, ZGLL20].
Reinitialization [AAM20, HCL22, SYC+23, XSA+21].
Reinterpretation [AOR22, XY20b].
Reinterpreted [XHY23].
Rejections [CSASS21].
Related [ABH21, HNR23, tLjTbZ22, WZ22].
Regeneration [LZPM22].
Regime [BJC23, CY23, GMD22, LSC+20c, SZ21, ZGK+22].
Regions [AZ22, KOM+22, KDB+20].
Registration-based [FTZ22].
Registration [FTZ22].
Regularization [LGZ21, BCIR22, DD22a, ESJ23, HYCL23, JKZS21, LLW20b, NVPP23, PB23, WSAZ22, ZLL23].
Regularized [BY20, ZMSX20, ZXY22, LY20a, NCC21, SL22a, WCM+21, YP24].
Reinforcement [ABY23, BPBM23, FSWA23, FCL23, HGY+21, KKY22, ND23, PS22a, VRK+21b].
Reinitialization [AAM20, HCL22, SYC+23, XSA+21].
Reinterpretation [AOR22, XY20b].
Reinterpreted [XHY23].
Rejections [CSASS21].
Related [ABH21, HNR23, tLjTbZ22, WZ22].
Relation [EL23, NG20].
Relations [HXFD20, XHD21].
Relationships [YH23].
Relative [WCA+20, TAVD21, YZK20].
Relativistic [AZ22, BKC23, CDT22a, CCY+20, CTK21, CW22a, DT20, DT21a, DT22b].
DT22c, LDM$^+$21, Li23, LKG$^+$20, NNL$^+$20, Ume23, WNZ20, WLH21.

relativistically [XLT$^+$20]. relaxation

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

relaxed [Fei23]. RelaxNet [XF23]. release [GMMS22]. relevance

[ADP22, AKKMR23, CW22b, CHM24, DFJ20, FBG20, GKPT22, HKMR20, HRG20, JZ22, KMR23, LLZ23a, LHWZ21, LZY$^+$22b, LY23, MTB22, TPK20, ZMWS22, ZS22b, ZHZ22, GM23b]. relaxation-learning [LY23].

WTZZ23, WCP23, WDK22, WGU+22, WABK21, WZBV20, WZL21, XLXC20, Xia21, XF21b, XF21a, XDLX21, XG22, XHLH23, YLK20, YGJ21a, Yan21b, YGJ21b, YM21, Yan21c, YRHN22, YWCIL22, YTK22, YH22a, YY22, YKdHC20, YYL20, YWLL21, ZB21a, ZCS20, ZL21b, ZQC+23, ZWLG23, ZZ23b, ZCQ20b, ZQ20, ZJSX22, ZZSX23, ZZ23c, ZSQ21, ZWQG23.

scheme [ZG20, ZPS+21]. schemes

Schmidt [LPL+22]. Schrödinger

[AB24, AST21, AKM23, BLF20, BCJM20, BG20a, CLY21, GMB+22, GR21, GLLM22, JL21a, JPAZ21, JLRZ20, LS23b, MCVF22, MW23, RMWS21, Sac22, STEK17, STEK22, SDKL21, Suk23, WDG20, Was22, WVL21, Zha22].

[MK21, BABD21, CPT23, CFM22, LGL23a, hSMLS23]. Sea-ice [MK21, hSMLS23]. search [HL22a, WZ24]. search-guided [WZ24]. Second [CKT21, CDLX23, GPS20, GCL+22, KLB23, LYZ21, LD20b, LCH23, PCF21, PGCC+22, XGCW+20, ZEG20, ZZZ20, ZH21, Abg20, AuIL20, AAK20, AKM23, BD+20, CCW22a, CZZ21, CZ20a, CY22b, CLJ+20, CBY23, CGM+23, CX22a, Den23, FGKY22, FGTY23, HJ22, HLA22b, KS11, KBB21, LL23a, ILT20, Mar23, MR23a, MQ20, MKM23, M21, NT20,
KCP20, LAMC24, SJGC21, YS22]. Sensitivity-driven [FGB+20].
Sensitivity-enhanced [KP23b]. sensor [KK22a, WTZZ23]. sensors
[CLGA24, KTDG22, KBC22, RHG22]. separate [LLW20a, QCZ22].
separated [DJ22, DJ23, DOL23, EGN23, Kho20]. separation
[BJ21, WZ22, YQO20]. separations [KKM21].
September [Ano20l, Ano21l, Ano21x, Ano22l, Ano22x, Ano23l, Ano23x, Ano20x].
sequence [DD21]. sequences [GGN+20]. Sequential
[LLW20a, LTT21, MTWBT21, FMT23, LTD+21, LTE23, MH22a]. series
[DS22b, HYZH22, JWH20, Mon21, NPD20, TXH+21]. Serre
[GKPT22, TGM23, ZZYX20]. set
[AAM20, BSW+22, BTEK22, BBA22, CSM23, Coc20, DKA+20, DPX23,
DW21, DFJ20, EdCC+23, HRR21, HCL22, HPS23, HT21b, JGM+22, JFH21,
KKY+21, KCX+21, KB22b, LCG22a, LCG22b, LCG23, LZC+23, LTBM23,
LHFH20, MMdMB22, PBGB21, SYL23, SYC+23, SDP20, The21, VTC20,
XSSH20, XSA+21, YYB23, ZXBS22, ZL+23, ZY20a, ZMW23, FFL+23].
set-based [KKY+21]. set/embedded [LPJ+23]. set/finite
[LLW20a, LTT21, MTWBT21, FMT23, LTD+21, LTE23, MH22a]. set/volume
[DS22b, HYYH22, JWH20, Mon21, NPD20, TXH+21]. setting
[EMS+21, TB21]. settling [PC23]. seven [PBM23, QWZW23].
seven-equation [PBM23, QWZW23]. seventh [LWL+23]. seventh-order
[LWL+23]. several [MVK20]. Shallow
[DS22a, DVB20, AG21, AMB22a, AR20, Bal20, BGGM21, BP22, BCC+20,
CKLZ23, CP22a, CNMB20, CN22, CTC22, DEN22, DSBFN+20, Don23,
DT21b, DFP+21b, GDBFN+20, GCDT22, GLYW22, HMV22, HSM20, Hig22,
HLL22, HXX22, HXQL23, HH23, KGBT20, KCWZ22, KLZ20, LCL+22b,
LM21a, LP23a, Liu20a, Lin21, LM20c, NW22, RHR20, SGB+21b, SGT23,
SPF+20, SDPS24, TAWD23, WCB20, YYX21, ZDT23, ZXX23, ZZ23c].
Shallow-water
[DS22a, AG21, Bal20, BP22, BCC+20, GCDT22, HMV22, HSM20]. Sham
[GMB+22, HXX23, TMG20, VGH21, ZNCZ+21, ZH23]. Shape
[CEW23, DLZ23, DW21, AMG23a, Bar21a, BPBM23, CGLZ23, GEvWD22,
GKA22, GLL20, HF23, HMA23, NSS23, TGB20, VRO+21b, WZ23a, WDK22].
shaped [PA21, PR20, PAGJ23, QAS20, SWHJ22, ZZW23]. shapes
[MZM21, PTT22, TWY22a, ZQC+23]. Shared [DFG+23, RA21]. Sharp
[BCL+23, AU2L20, ALL22, BL22a, BBE+22, BPG23, BSW+22, BS2V22,
CSM23, DU20, EdCC+23, JGvR23, KSH22, KBS+21, KWR+23, LCP21b,
LCP23, MR22, MMM23, PR20, PRJ23, PG20, RKA+23, RSWD21, SMD20,
VFB23, XZN23, ZQC+23, ZZN22, ZGK+22]. Sharp-interface [BCL+23,
BL22a, BPG23, BSW+22, DU20, EdCC+23, KSH22, LCP21b, LCP23].
sharpening [CNC21, LLPL22, LLQ+23]. Sharp [CY22b]. shear
[AP22, CNMB20, PWK20]. shearing [WNB21]. sheath [BB21, BMG+23].
sheet [GH23, HPH+23]. sheets [AR22, CLT21, CHP22]. shell [IL23]. shell

Space-time [BBQ+21, CBA+21, KSW22, Mis23, TCR+20, AMM20a, BDP23a, BTEK22, GJL20, HR20, LY22c, MPMD20, PM22b, SPGG23, VRK21a]. space/time [HVD23]. spaces [AFGLM20, FBCD22, GKNÖ23, HW20a]. spacetimes [BL21a]. Spalart [LMFV22a, LMFV22b]. Spalart-Allmaras [LMFV22a].

Special [EFS+20, ZX20, CKT21, CW22a, DT20, DT21a, DT22b, DT22c].

species
[ATCS20, DS23a, DFJ22, FN22, HHK+23, LLWX22, RWDG22, XYL22].
specific [LVK+22, LC23, QCWC23, WK20]. spectra [KKL+23].
special [LVK+22, LC23, QCWC23, WK20].
Stability [CS22, KD21b, LQX22b, LQX22a, PCQL20, RV20, RC20b, TCS22, BCF22, CMR21, CN21, DJZ22, DBC+22, DS23c, FDH+24, GS22, GFY20, GLT+20, HBFB20, HP22b, IKZ23b, KBCH20, LW22b, Mar23, MD20c, OY21, RUG20, RWBS21, SW23, SPGG23, WMTQ20, ZHY22, ZLL23, aZLY23].

Stability-enhanced [PCQL20].

Stabilization [CMS+22b, DHM21a, GQR23, KMF23, KV23d, TT22a, XBD+20]. Stabilized [ZOG22].

Stabilized-Invariant [LBT+23, Wan23, Agr23, CS23, DCL20, FGF22, FCWT22, LT20b, TCK+22, WGY+21].

Stable [BFM21, BL21b, Gla21, GCSH22, LCDS23, MBAG21, van22, Abg20, AD21, AP20, AK22, BBC21, BKG20, BKC23, BKX21, BWG+20, BDMP22, BBDC22, BGQ+23, CMR21, Cha20, CT22, CLW22, CWW20, CWL+23, CSY20, CND22, CDN+22, CMRR21, DMN22, DWZW21, DW20b, DMC+23, DT20, DT21a, DT21b, DT22c, DVB20, EWN+23, FCWS22, FSQ23, FSB+20, FAA20, GLM22, GHHR22, Gar20, GMSLC24, GZW20b, GMD22, HZHL22, HRRHG21, PX21, HYZ22, HS21, HSW22, Jai22b, JRD22, KLS+20, KWD22, KWC23, LBS20, LS22, LN22, LCS22, LB21, LDLW21, LLZ23b, LNYD20, LCT23, LBM20, Liu20b, LMVF22a, LMVF22b, LcSxL+20, MK+20a, MK+20b, MK+20c, MGMV22, MPSP22, NT20, Nor22b, NMR+21, NMR+22, PHP21, PWL+23, PBN+21, PRK23, QWZ21, QW22, RWI+24, Ren21, RBD+21, RRHH+21, RRHC23, San20, Sar21b, SHL+20, SN21, Svi21, TT22b, TT23, TAWD23].

Stage [BJ21, CCW20, DL24, FLW20a, GWC+22, KS22b, LLQ+23, LC22, SL22c, SL23, WZ21b, ZLYW+22a].

Staggered [BBD+20, BDF+23, BDI+21, CS23, DNO23, DLYZ23, DVB20, FZB+23, GS21, KKS21a, KKS21b, LPP+20, LL21b, LD20a, LPE23a, OP20, PKC22, QPW21, SWG+20, SGW+23, SGW+20, SGW+23, GHT23, Vre17, Vre21a, WY22b, ZXCZ21, ZLYW22b].

steady-state [GSW21, KM22b, PSRM20, SZW +20, WX22].
steady-state-preserving [Liu20a].
steady-state-preserving [PSRM20, SZW +20, WX22].
step [AN21b, BHNS23, CC22b, DEvW22, HTV +22, JZSX24, Lak20, LL21a, Li20, LD20b, LKG +20, LHFH20, PCB20, PSRM20, SDKL21, SYAM23, SW23, YWCI22, ZDC20].
steps [ARC22, CP22a, DL24, FH23, GLLM22, KS22a, KV23a, LJTZ20, NA22, NFB23, Sev21, SSMA21, SP22, VLL20, WGU +22, ZRH20, ZY20b].
steps [LOL22].
stein [PT23a].
stellar [GWC +22, LCPW23, VCPGR20].
stellar [GWC +22, LCPW23, VCPGR20].
stellarator [MND +20].
Stefan [BEB +22, FM20, FLS23, HSS21, MRL +23, WP21].
Stein [PT23a].
Steklov [AIN20].
Steklov-Neumann [AIN20].
steepness [HRY +22].
steepness-based [HRY +22].
Stein-based [PT23a].
Stir [CFS +22].
Stochastic [AKWY20, CKLM +23, DYG22, EH22b, FGK22, GFPO22, MPZ23, OP22, SQSS20, WK21a, ACHG +21, AY23, BTZ22, BGH21, BJR22, CGC21, CL20b, CL20c, CHF21, Che23a, CCFGJ23, CCHS20b, DFN22, DFJ22, ELSV22, EPL21, FGB +20, FZLL20, FJ21, FHJ22, GCMV23, GWZ22, HHS22, HHL22, KTBP20, KKS21, KMF20, LSS20, LI20, LP22, MCI23, PZ20, PB20b, QHZ23, RMM +22, SSK20, SC23, SP22, SSL22, TC23, WMS21, WDL +21a, WDL21b, WDL21c, WFC22, WPBS22, XF21b, XF21a, ZMN22, ZMG +22, ZJ23, ZTK23].
Stokes [Sel22, SP22, SMLM23, Th22, UY22, Vrc20, WZT21, WJS23, WZBV20, WSH22, YU22, YCM +20, YLK20, YA21, ZML20, ZL21b, ZPGR22, ZLW +22a, ZH21, ZT23, aKAK20, dLF23].
Stokes-cloud [CKLM +23].
Stokes-Cahn [DD22b, KRM23].
Stokes/Navier-Stokes [MRK +20b, NMR +22].
Stokesian [OSZ21].
storage [GMA23].
strain [FB22, LBC23, ZJ21].
Strang [LQX22b, LQX22a].
Strategies [ADM22, BBDT21, KRL21, KR22, KWF20, LAS22, PJZ +23, SYAM23].

terminus [HPS23]. terms [A¨OR22, BS22a, BKN23, J21, KSHJ20, PR20, SL23, SMS23, WZ21a, ZH20].
tetrahedral [LQX22b, HZX23].
tetrahedron [CIMG21].
TgNN [XZRW21]. TgNN-wf [XZRW21]. their [BCIM20, BBQ+21, DLMZ22, EDC+23, GQ22, KMS20, LLSD20, MBM+23, MAPS20, NdlLPL21, PIZ+23, PA20]. theorem [ODM23]. Theoretical
Theory-guided [ACD23, CHZ+21, WCCZ22, XZRW21]. Thermal
[BOB21a, Ani21, CKLZ23, CZ20b, CCW20, DC22a, EM20, FADJ20, FS21, GA20, GDB23, GFG22, Kan20, KM22b, KLZ20, MMZR21, MH22a, MPBG23, PGM22, RLD24, THLM20, TYBW23, TBC20, WLL+23].
thermoacoustic [LBN21]. thermocapillary [SMK23]. thermochemical [FC2W21, LHW+23]. Thermodynamically
[HGZ23, PMT+22, KLS+20, KWS22, PAA21]. thermometry [BAK22].
thick [BFST23]. thin [AC20a, AC20b, BW20, BBK23, CCPS21, CCPS23, CMPZ22, FC2GKR23, HYSS22, HCL22, Hig20, KJB+24, LWL22, PH22, QERT20, VSS21, VACE21, YL24]. thin-film
[AC20a, AC20b, PH22]. THINC [KC2+21, TFXX22]. Third
[KB23, QLY21, Uni21, XS22b, LL21a, IWWY22, NW23, Toh23, ZL21b, ZS20, vLN21, NV22]. Third-order
[KB23, LL21a, NW23, Toh23, ZL21b, ZS20, vLN21, NV22]. Thomas
[BB23, KAZ23]. thoracic [TVL+22]. Three
Three-dimensional [CS21c, TTP22, XZNZ23, ZCY23, Cam21, CCM+22, FSW22, FZ20a, FWG22, FGL+22, GHY22a, GHP+23, GZ21, HSG+22, JLL22, KZC23, LCG23, LRT22a, LR24, LC23, MF24, OYK+22, PFR23, PLV20, RZ23, SL20a, SOV21, SKCM22, Tak23, VCNC+21, WC23, XS20, YLNT20, YK22, YSN23, ZGLL20, ZFG21, ZWZL22, ZPGR22, ZXY22].

three-domain [ABH21].

three-field [BGS22a].

three-phase [GPSMH20, ZY20b, ZS+22].

three-point [BSA22].

three-scale [DYGC22, YSCM21].

three-temperature [CLS24].

three-way [LW20b].

threshold [ZEG20].

throughput [ZO21].

Tightly [JHT23].

tilts [PV20].

time [KTDG22, KS22a, KCS21, KV23a, KPa24, KSI+23, KSW22, KLZ23, KNS21, KS21c, LBC23, LJW+22, LPP+20, LOL22, LWF23, LLTY23, LLL23, ILT20, ILNZ21, LBT+23, Ln20b, LD20b, LHW21, LR22, LOLS23, LN21b, LY22c, MDG20, MISP22, MBE21, MYL21, MTB2, MS23, MMR22, MPM20, NAZ22, ND20, Nis23, NFB23, NR24, PKC22, PB20b, PMF20, PM21b, PH22, PTT22, PM22b, PC22, Qia22, QZHD23, QHL20, QC22, QW22, QG22, RLH22, RC20a, RV20, RS23b, RC20b, STEK17, STEK22, SSW22, SYA23, Sev21, SWF21, SSA21, SES21, SFGMN22, SP22, SP23, SdSPS24, SQZ23, Tak23, TCS22, TFCH22, TCR+20, TB23, Tot23, Un21, VRK21a, VLV20, VDP20, WRBK20, WMT20, WTX+21, WZ22, WP23, Wan23, WCBQ24, WDK22, WGU+22, XHL23, YLNT20, YZdCNS21, Yan21c, WCI22, WY22, Yin21, YL21a, ZS22a, ZRH20, ZY20b].

Time-Accurate [BFM21, CMR21, Yan21].

Time-Adaptive [BFST23].

Time-averaged [SSW22].

Time-dependent [AH21, AFW22, AMBB2b, BDS23, BG20, CA22a, DGW20, DH24, FPT23, GMB+22, GR21, HPA22, KCS21, Nis23, PB20b, PMF20, PM21b, PH22, PTT22, Qia22, QHL22, QC22, RV20, RS23b, STEK17, STEK22, VDP20, WCBQ24, Yinh21].

Time-domain [TLB20, BG20, HLH21, LLL23, MMR22, Tak23, TB23, WRBK20, XHL23].

Time-explicit [Bar21].

Time-fractional [BSW24, CA22a, FTPB23, GC23, HL20b, HRG20, ILT20, QW22, YWCI22, YW22].

Time-harmonic [AHG21, DV22, MDG20].

Time-implicit [ATCS20].

Time-integration [GCV12].

Time-marching [TCS22].

Time-parallel [CEMO21].
time-periodic [CHM24, MBE21, PR24]. time-relaxed [Fei23].
Time-space [An21a, ZLW22b, Liu20b]. time-spectral
[EDLF20, HFBF20, RMA20]. time-splitting [Yin21]. Time-step
[LKG+20, CC22b, DeW22, HTV+22]. time-stepping
[DGGL22, DL24, FH23, KV23a, KSI+23, LJW+22, IWF23, LLTY23, ILTZ20,
NA22, NFB23, SP22]. time-stepping-varying [GLLM22]. time-steps
[Li22]. time-variant [CL20c]. time-varying [AG21]. time/space
[An21a, ZLW22b, Liu20b]. times [LZY+22b, LTDC23]. timestepping
[BBCD22, KBCH20, MDF21]. tip [CC22a]. tissue [KSHJ20]. tissues
[TBW22]. TM [CWL+23]. TMI/ALE [CPGD20]. Tokamak
[EFR21, BLK+23, GRC+22, Heu21, DAGL23]. tokamaks [CDT22a, HSB20].
tolerant [GB22b, KD20]. tomography
[CJSZ23, DNW23, D2C+23, FY20, KLZ23, RB22]. tool [Suk23].
toolbox [CDJM21]. topography [GBK20, ZDT23]. topological
[BHW23, CMPZ22, ZL21]. topologies [RBPRST20, YYB23].
Topography
[DDZ+22, DAK22, FADJ20, GMNY23, DFJ20, GBC+20, GDAP20, HCL22,
HF23, KKY+21, MQ20, NKA+20, Qia22, TSSOA20, WQ20, YXL22, ZXD22].
toroidal [RBPRST20, WGH23]. toroidally [WGH23]. Torrey
[YLNT20]. Total [Tot23, BBCD22, GU20, tLjTbZ22].
TRAC [AN21b]. Trace [˚AAL+21, LJ22, MBTS20]. tracer [TN23]. tracing
[Bat20a, CIMG21, WCBQ24]. tracking
[BTCV22, CDJM21, GHY22b, GEvW22, GHE+23, HZ22b, HNZ23b, HW23,
IKP22, LMG+21, LTBM23, MZ23, MrdB21, NKT21, PK20, SLBH23, SPZ22,
VMO21, YH23, ZSP22, CRPB20, FO22]. Traction [BDB21].
traffic [BX20, Tow20]. train [WYP22]. trained [WLZ+24]. training
[A21, DD22a, DL21, FL21, GYWG23, HBEK23, HBF21, JD23, LLM20,
OWH22, RK21, SHJ+23]. trains [CDZ23]. trajectories [Sim23].
trajectory [HYCL23, PK20, SFDW23]. trans [WH22a]. trans-
[WH22a]. transcranial [SACT21]. transcritical [BJC23]. Transfer
[Cha21, ADK+21, An21, BOB21a, BRZ+23, BTGA22, CLS+20a, CMC21,
DZP22, DS23b, FLZ20, GA20, GHP+23, GP23, GCS22, HGV+21,
HCCR22, ID20, JD23, JBF21, KSI21, LJ22, LCW23, LHWZ21,
LYT+22b, LLY+23, L20, MS20a, MH22a, MYY+23, MSF+22, NdlLPL21,
OCT22, PT23b, S32, SSS20, SXX23, Sii23, SPF+20, SH22, WGS+20,
WZCK21, XSSS22, XJS21, XZC23, ZCQ19, ZCQ20a, ZSS23, ZST23,
ZYL23a, ZCCN23, ZLW+21, CL23b]. transfer-based [LJ22].
transfer-learning [ZLW+21]. transfers [GMD22]. transfinite
[GD20, ZL21a]. transform [DC22a, JLZ20, MCVF22, MTWBT21, Per23].
transformation [HWD22, MBAG21]. transformers [Cai22]. Transient
[LBM20, AMB22b, BAT23, CMS+22a, CWL+23, EC20, HVD23, LLF23,
RHR20, WMTQ20]. transition [CY21, YR22]. transitional

two-component [ADJ23]. two-derivative [KBCH20, SMR22, ZS22a].

two-dimensions [Sel22, SSPV20, SH22]. two-domain [MP21].

two-phase [HIH+21, QERT20, vdEW23, AdDMT21, BL22a, BBV23, BDM22, BSV22, BMQ20, BE20, BR22b, Cal21, CSCL20, CY22b, Che23b, CK21, CLP22, CMRR21, DLYZ23, DLY22, FQS23, Fu20, GNZ23, GDBFN+20, GQS20, GLZ+22, HKS20, HCL22, HLA20b, HLA20c, IKP22, JMM20, Jai22a, JM22, JM23, JHT23, JGR22, KLS+20, KWDS22, LHC22, LL21b, LOL20, LLY20a, LYS22a, LLPL22, LRT+22b, LTBM23, LLCK20, MJJ21, MA21, MCBA20, MYY+23, MD22, QWZW23, RSA+20, SRD20, SWHJ22, SDA+21, UBT22, WCZ22, WJHS23, WLKR23, XS20, XZRW21, YA21, ZKS22, ZLG+23, ZMWS22, ZWLG23, ZY+23, ZLY+23b, ZMY23, ZL20, ZQG21, ZSQ21, ZF20, ZGK+22, ZOELO20, aKAK20, dSLdA+22].

two-scale [HdDB21].

two-sided [LLNZ21]. two-species [RWDG22]. two-stage [BJ21, DL24, LC22, WZ21b, ZLY+22a].

two-step [JZSX24].

two-temperature [SEG21a]. two-way [CZ22b, CBBI20, PE20, PA21, ZMY23]. type

[BTKP24, CY21, sCpLL+22, CLS20b, CC22b, CNC21, ER22, GCL22, HCD23, Kar22, KLG+22, LL21b, LYS22a, LYS22b, LLTY23, LXZ23, LF24b,
LW23, LW20a, LLS20, Par22, QPW21, SDKL21, XZC21, YZK23, ZOWW20, ZYZ+23, ZQS20, ZS20, HKS20. type-I [ER22]. types [FZ20a].

type-I [ER22]. types [FZ20a].

Unstructured [MB20, BGF20, BLM22, BCP22, CAF+22, CPT23, CZL20, CW22a, CZL22, CDX+21, CRF+21, CCB22, CA22a, DVS22, DBT+20, DSS22, FL21, FBCD22, GCLM22, GK20, HP23, HM21b, HRWP22, HX23, Jai22c, JGM+22, JJSX20, JBF21, KIB21, KLB23, KB23, KOS23, LSZY20, Liu21, LYS+22b, LWW23, LSY+23, LTBM23, LD22, LNM20, LLCK20, LHFH20, MYJ+23, Mar20, Mar23, MNM23, ND20, PP22a, PP22b, PBGB21, RE20, SGB+21a, SEG21b, SEG22, TNP23, Tso23, WY22a, WY22b, WZL21, XJN+20, XDLX21,
XHX22, XM20, YLNT20, ZOG22, ZB21a, ZCY23, ZCCN23, ZJSX22.

[BGNZ22, Baj23, LW21, The21, WLH21]. **volume/finite** [FZB+23].

volumes [KDL23, Rec23]. **Voronoi** [BO22, FGZ20, GBC+20]. **vortex** [BPG21, DT22b, GH23, GNW22, MM21a, NMN23, SL20a, SL22a, BDWC23, RHSK21]. **vortex-dominated** [MM21a]. **vortices** [MM21a]. **Vorticity** [WK21h, GGCvR22, HP21b, JGvR23, MD20c, MS20b]. **vorticity-Bernoulli-pressure** [MS20b]. **vorticity-velocity** [GGCvR22, JGvR23]. **voxels** [TB23]. **vs** [HPRW20]. **VSPH** [FGZ20]. **VT** [FCWS22, LYS22a]. **VT-flash** [LYS22a].

Wachspress [LCL22a]. **wakefield** [BD20b]. **walk** [CC20]. **Wall** [KS21d, BDWC23, CDBS21, CLW22, DA23, DOL23, HP23, HBF22, HLA22b, IK23b, LN22, LZX+22b, LWHH23, NFL+21b, Nis21, PEA20, PO21, vNGB22, DA23]. **wall-bounded** [HBF22, HLA22b, PEA20, PO21]. **Wall-modeled** [KS21d, vNGB22, DA23]. **wall-resolved** [LWHH23]. **walls** [AF20, LP23b].

WAN [OWHN22]. **Wang** [CC20]. **Wannier** [MO22]. **warm** [ZHRB23]. **warm-start** [ZHRB23]. **Wasserstein** [FOL23, GN22, LL20w, WXZ22].

Water [DVB20, AG21, AMB22a, AR20, Bal20, BGGM21, BP22, BCC+20, CKLZ23, CP22a, CNM20, CN22, CZL20, CTC22, DEN22, DS22a, Don23, DT21b, DFP+21b, FSDB20, GCDT22, GLYW22, HMV22, HSM20, Hg22, HXX22, HXQL23, HI23, KGBT20, KMS20, KWS22, KLZ20, LP23a, Liu20a, Liu21, LM20c, NW22, SGB+21b, SGT23, SdSPS24, TAWD23, WZ23b, WCB20, YXY21, ZDT23, ZXX23, ZBY+23, ZZ23c]. **waterflooding** [LO23].

wave [ALM23, AD21, AP20, An21a, AMM20a, AHWZ20, BDT21, BBMT21, BBM23, BDB21, BFL20, CCL24, CDL21, CHSS20, CP20, CELV22, DHMT21, DH20, DGS20, DZ23, Dup21, DFW22, EGN23, FL21, FGD+21, GC20b, GAC20, HYQ20, HNR23, HHS22, HL20a, JHY21, JLRZ20, KTD20, KSTT22, KS22a, KMS20, LSC20a, LPP+20, LSW20, LLZ+20a, LLLL23, LC22, LD20b, LZX20, LL23b, MDG20, MGL21, MMRP22, NTSM20, NT20, NT23, OP20, OKTD21, RB21, SL22c, SL23, SCdH20, TBM22, TAWD23, TPP22, TBL20, VEC21, WZ22, WCBQ24, WXZ24, XG22, XBR21, XCL+21, XHL23, YG21a, YG21b, ZMZY23, ZJSX22, ZDC20, ZL22w, ZL23, ZPK22, van22]. **wave-induced** [ZMZY23]. **wave-mode** [WZ22].

wave-packets [EGN23]. **wave-particle** [LLZ+20a, LZX20, WXZ24, XCL+21]. **wave-scattering** [BFL20].

wave-structure [RB21]. **wavefield** [LKvM+22]. **Waveform** [GM23b, AMG23b, AN21b, AL21, BS20, CJT+20, CHM24, DW21, EdCC+23, EGG22, HRG20, LY23]. **waveguides** [NPD20, SML20]. **Wavelet** [IH21, HM21a, HDML23, HHRA19, Pan20b, ZDC20]. **Wavelet-based** [IH21]. **wavenumber** [FCL21, KK22b]. **wavepackets** [GR21]. **waves** [AB24, AMM+20b, CLW20, CLJ+20, DDV21, DLM+23, DV22, DS23c, KFSM21, LMHL21, LTDC23, MF24, PB20a, Pan20a, SSSS22, TG23, TTP22, VEC21, WGB22, WZ23b, WGU+22, YKdLC20, YL24]. **way** [CZ22b, CBB210, JH210, LW20b, PEA20, PA21, RR22, ZMZY23, ZT23].

WCAWE [RA23]. **WCNS** [WZWZ23]. **WCSH** [LZX+22b]. **Weak**

Yang [DOQ23]. yeast [HST22a]. Yee’s [DLP21].

References

ÅAlund:2021:TPQ Oskar Ålund, Yukinao Akamatsu, Fredrik Laurén, Takahiroy Miura, Jan Nordström, and Alexander Rothkopf. Trace pre-

Alame:2020:VLS

Ali:2024:MSI

Archibald:2022:KLB

Alberts:2023:PII

REFERENCES

Agarwal:2024:SSE

Alsalti-Baldellou:2023:ESS

Allaire:2023:ACS

Azpiroz:2020:ENS

Abgrall:2020:LEA

REFERENCES

Abgrall:2021:E

Ackermann:2021:MST

Akian:2022:LBK

Archibald:2023:SMP

Almuslimani:2023:CSR
REFERENCES

REFERENCES

Ancellin:2023:EGT

Abbaszadeh:2021:ROV

Aubry:2021:ASS

Antonietti:2022:MLB

AlJahdali:2022:PRA

Abdulle:2022:LAD

Athkuri:2020:NAV

Ammosov:2022:GMM

Aithal:2020:FPC

Abhiram B. Aithal and Antonino Ferrante. A fast pressure-correction method for incompressible flows over curved walls. *Journal of Computational Physics*, 421(??):Article 109693,
REFERENCES

[AFK+23] Hector Vargas Alvarez, Gianluca Fabiani, Nikolaos Kazantzis, Constantin Siettos, and Ioannis G. Kevrekidis. Discrete-
REFERENCES

Afanasiev:2021:LIT

Abdulle:2023:OES

Ammari:2021:TDH

Adriaens:2021:ASM

Actor:2024:DDW

REFERENCES

Arthurs:2021:ATP

Aono:2022:AND

afKlinteberg:2020:FIE

Albert:2020:SIN

Athanassoulis:2023:NSP

REFERENCES

Ambartsumyan:2020:SMF

Assous:2020:TRE

Assous:2021:SIA

Amiri:2020:AII

Alexiadis:2023:MAP

[AMG23b] Xavier Adriaens, Ludovic Métivier, and Christophe Geuzaine. Inner product preconditioned trust-region methods for frequency-

Amor-Martín:2021:SAN

Ahmmed:2021:CSM

Antonietti:2020:STD

Antonietti:2020:HOD

REFERENCES

REFERENCES

Anonymous:2020:Mc

Anonymous:2020:Na

Anonymous:2020:Oa

Anonymous:2020:Sa

Anonymous:2020:Ab

Anonymous:2020:Ad

Anonymous:2020:Db

Anonymous:2020:Fb

REFERENCES

Anonymous:2020:Jb

Anonymous:2020:Jf

Anonymous:2020:Jd

Anonymous:2020:Mb

Anonymous:2020:Md

Anonymous:2020:Nb

Anonymous:2020:Ob

Anonymous:2020:Sb

REFERENCES

REFERENCES

Anonymous:2020:EBg

Anonymous:2020:EBh

Anonymous:2020:EBi

Anonymous:2020:EBj

Anonymous:2020:EBk

Anonymous:2020:EBl

REFERENCES

Anonymous:2020:EBs

Anonymous:2020:EBt

Anonymous:2020:EBu

Anonymous:2020:EBv

Anonymous:2020:EBw

Anonymous:2020:EBx

REFERENCES

REFERENCES

REFERENCES

Anonymous:2021:EBa

Anonymous:2021:EBb

Anonymous:2021:EBc

Anonymous:2021:EBd

Anonymous:2021:EBe

Anonymous:2021:EBf

REFERENCES

Anonymous:2021:EBg

Anonymous:2021:EBh

Anonymous:2021:EBi

Anonymous:2021:EBj

Anonymous:2021:EBk

Anonymous:2021:EBl

Anonymous:2021:EBm

Anonymous:2021:EBn

Anonymous:2021:EBo

Anonymous:2021:EBp

Anonymous:2021:EBq

Anonymous:2021:EBr

Anonymous:2022:Aa

Anonymous:2022:Ac

Anonymous:2022:Da

Anonymous:2022:Fa

Anonymous:2022:Ja

Anonymous:2022:Je

Anonymous:2022:Jc

Anonymous:2022:Ma
Anonymous:2022:Mc

Anonymous:2022:Na

Anonymous:2022:Oa

Anonymous:2022:Sa

Anonymous:2022:Ab

Anonymous:2022:Ad

Anonymous:2022:Db

Anonymous:2022:Fb

REFERENCES

Anonymous:2022:Jb

Anonymous:2022:Jf

Anonymous:2022:Jd

Anonymous:2022:Mb

Anonymous:2022:M

Anonymous:2022:Nb

Anonymous:2022:Ob

Anonymous:2022:Sb

REFERENCES

Anonymous:2022:EBg

Anonymous:2022:EBh

Anonymous:2022:EBi

Anonymous:2022:EBj

Anonymous:2022:EBk

Anonymous:2022:EBl

REFERENCES

Anonymous:2022:EBm

Anonymous:2022:EBn

Anonymous:2022:EBo

Anonymous:2022:EBp

Anonymous:2022:EBq

Anonymous:2022:EBr

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2023:EBs

Anonymous:2023:EBt

Anonymous:2023:EBu

Anonymous:2023:EBv

Anonymous:2023:EBw

Anonymous:2023:EBx

Anonymous:2024:Ja

Anonymous. 1 January 2024. *Journal of Computational Physics, 496(??):??*, January 1, 2024. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

Anonymous:2024:Jb

Anonymous:2024:EBa

Anonymous:2024:EBb

Abgrall:2022:REE

Amlani:2020:SHO

Abdulla:2021:IPL

Armstrong:2022:NSC

Abouhussein:2023:CFE

Almeida:2022:APS

Arpaia:2020:WBR

REFERENCES

Allmann-Rahn:2022:PLR

Azaiez:2021:CID

Abgrall:2023:DGS

Abba:2020:DAC

Aurentz:2020:SUS

REFERENCES

REFERENCES

Abushaikha:2020:FIM

Anderson:2020:ECT

Aithal:2023:TAF

Ahmad:2020:LMM

Astoul:2020:ARS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

178

REFERENCES

Barucq:2021:LSI

Bay:2020:BCB

Bale:2021:OSD

Banks:2020:HOA

Bertrand:2023:DDR

Fleurianne Bertrand, Daniele Boffi, and Abdul Halim. Data-driven reduced order modeling for parametric PDE eigenvalue problems using Gaussian process regression. *Journal of*
REFERENCES

REFERENCES

Approximated decompositions for computational continuum mechanics.
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

Efficient estimation of cardiac conductivities: a proper generalized decomposition approach.
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

Factorized structure of the long-range two-electron integrals tensor and its application in quantum chemistry.
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

184

REFERENCES

Bretin:2022:LPF

Boisneault:2023:AST

Boscheri:2023:LSP

Barnafi:2023:PBP

Baara:2021:TDA
REFERENCES

Billuart:2023:WCB

Bilbao:2023:EEE

Bui:2020:SSN

Bayat:2022:SNM

Beneddine:2023:NIF

REFERENCES

Bocharov:2020:IMS

Barnett:2022:QAM

Bryngelson:2023:CMM

Barrett:2022:HSL

Busuioc:2023:WPS

[BFG23] Sergiu Busuioc, Aldo Frezzotti, and Livio Gibelli. A weighted particle scheme for Enskog–Vlasov equation to sim-

- **Bergmann:2022:EFV**

- **Bruno:2020:EQP**

- **Bassenne:2021:TAH**

- **Barnett:2023:NNA**

REFERENCES

REFERENCES

REFERENCES

Bellotti:2022:MFA

Barnett:2020:HOD

Borowska:2021:GPE

Bonito:2022:LAL

Bao:2022:VPP

REFERENCES

[194]

Bucelli:2023:SLC

Beaufort:2020:ASM

Berrone:2022:CNC

Boureima:2022:DCD

REFERENCES

[BHVJ22] Sara Shokrollahzadeh Behbahani, Hadi Hajibeygi, Denis Voskov, and Jan Dirk Jansen. Smoothed embedded finite-volume method (sEFVM) for modeling contact mechanics in deformable faulted and fractured porous media. *Journal

Butler:2020:OED

Babbar:2022:LWF

Bhoriya:2023:HOF

Bosma:2021:EMR

REFERENCES

Brady:2021:FHO

Bai:2022:SCT

Bourgeois:2022:GMP

Banjai:2020:NAS

Bourne:2023:SCP

Emily Bourne, Philippe Leleux, Katharina Kormann, Carola Kruse, Virginie Grandgirard, Yaman Güçlü, Martin J. Kühn, Ulrich Rüde, Eric Sonnendrücker, and Edoardo Zoni. Solver

REFERENCES

REFERENCES

REFERENCES

Bhosale:2021:RVM

Bochkov:2023:NMS

Brenner:2022:EAS

Barnafi:2023:CSS

Burger:2020:ICI

Martin Burger, René Pinnau, Claudia Totzeck, Oliver Tse, and Andreas Roth. Instantaneous control of interacting par-
REFERENCES

REFERENCES

Brinkerhoff:2022:VIG

Brugnoli:2022:DFS

Barucq:2022:LOP

Benedusi:2023:SMF

REFERENCES

REFERENCES

Bezgin:2022:WNM

BenHassanSaidi:2022:CDS

Bukreev:2023:CLB

Bures:2021:PLI

Bauer:2020:TED

REFERENCES

[BSW24] Jonas Beddrich, Endre Süli, and Barbara Wohlmuth. Numerical simulation of the time-fractional Fokker–Planck equation and applications to polymeric fluids. *Journal of Comput-

REFERENCES

[Broms:2024:BMC]

[Bi:2022:ACC]

[Boledi:2022:LSB]

[Bloch:2022:TMM]

[Bohle:2022:CIA]
Tobias Böhle, Mechthild Thalhammer, and Christian Kuehn. Community integration algorithms (CIAs) for dynamical systems on networks. Journal of Computational Physics, 469
Bourgeois:2024:ROS

Brugger:2023:ECF

Bendahmane:2022:OEB

Bempedelis:2020:SAS
REFERENCES

Bonito:2020:ETL

Bendall:2023:IAD

Bohm:2020:ESN

Buli:2020:DGM

Bruno:2020:RIE

REFERENCES

Beck:2020:NNB

Colbrook:2022:CMT

Costa:2022:NAT

Cant:2022:UAM

Caudron:2020:OWC

REFERENCES

REFERENCES

REFERENCES

[CCB22] Manuel Colera, Jaime Carpio, and Rodolfo Bermejo. A nearly-conservative, high-order, forward Lagrange–Galerkin method

Cheung:2023:LLR

Colnago:2020:HOI

Chetverushkin:2021:CMM

Caliari:2022:MIS

Cohen:2020:EIS

Cai:2021:LSR

Cai:2022:SAD

Cai:2020:DLS

Crestetto:2022:CHO

[CCLM22] Anaïs Crestetto, Nicolas Crouseilles, Yingzhe Li, and Josselein Massot. Comparison of high-order Eulerian methods for electron hybrid model. *Journal of Computational

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chamarthi:2021:HOC

Chung:2022:OMC

Chung:2023:DDS

Cheylan:2023:AIB

Chen:2022:ESA

REFERENCES

REFERENCES

REFERENCES

[CHCC23] Yu-Jen Chang, Hsuan-Yu Huang, Ruey-Lin Chern, and Yi-Ju Chou. A multiscale computational framework using ac-

Carson:2020:AMA

Chen:2021:ODA

Chiu:2023:CCD

Chen:2023:CFT

Corot:2020:STC

T. Corot, P. Hoch, and E. Labourasse. Surface tension for compressible fluids in ALE framework. *Journal of Computa-
REFERENCES

Ciaramella:2024:CAO

Chen:2021:SLN

Cagas:2020:PMB

Chen:2020:EQI

REFERENCES

Y. Cai and E. Lorin. Stationary state computation for nonlinear Dirac operators. *Journal of Computational Physics*,...
Chen:2020:AGP

Chen:2020:NAT

Chen:2020:KBC

Cai:2021:EAG

Chen:2023:AHO

Zhiming Chen and Yong Liu. An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation. *Journal of Com-
<table>
<thead>
<tr>
<th>Reference Key</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>URL</th>
</tr>
</thead>
</table>
Cheng:2020:SOC

Cheng:2020:EFB

Clain:2021:VHO

Chow:2022:CDA

Chai:2020:FDD

REFERENCES

Cheng:2020:NIC

Cheng:2024:HOC

Chen:2021:CSL

Chang:2020:EMC

Chan:2022:ESM

Jesse Chan, Yimin Lin, and Tim Warburton. Entropy stable modal discontinuous Galerkin schemes and wall boundary con-

Cartier-Michaud:2023:VAC

Chandramouli:2020:LSV

Colomes:2021:WSB

Carrillo:2021:OAC

Carrillo:2023:WBA

REFERENCES

Coco:2023:GPS

Chin:2021:SEF

Cicchino:2021:NNS

Chen:2022:USG

Carlier:2023:ESB

Chattopadhyay:2023:DLE

Chiu:2021:AHA

Costa:2021:EVH

Cicchino:2022:NSF

REFERENCES

Chandrashekar:2020:PCF

Coatleven:2021:PNE

Coatleven:2022:NEM

Coco:2020:MGP

Cao:2023:RBE

REFERENCES

[Cirrottola:2021:ADU] Luca Cirrottola, Mario Ricchiuto, Algiane Froehly, Barbara Re, Alberto Guardone, and Giuseppe Quaranta. Adaptive deformation of 3D unstructured meshes with curved body fitted bound-

REFERENCES

Carmouze:2020:RSI

Costanzo:2022:PTA

Choung:2021:NWP

Chen:2020:ESG

Chirammel:2023:GFM

REFERENCES

REFERENCES

Chandramoorthy:2021:PFN

Chen:2022:PCP

Cheng:2022:IBM

Chen:2023:DOD

Chen:2021:PIM

REFERENCES

Cheng:2022:PFC

Chen:2023:CBC

Cheng:2022:SSN

Chen:2020:NSO

Chen:2020:BIP

REFERENCES

REFERENCES

REFERENCES

Dauricio:2023:WME

Pascuale:2023:CTB

Desai:2022:TOS

Dusson:2022:ACE

Deshpande:2021:UFG

REFERENCES

Dargaville:2020:SAA

Deka:2020:NGG

Desmons:2021:GHO

Du:2022:CDF

Du:2022:NCG

REFERENCES

[DC23] DeMichele:2023:AEC

[DCGQ20] Ding:2020:SLD

[DCMF21] DeSantis:2021:GMM
REFERENCES

REFERENCES

[Duan:2021:FIP] Yu Duan, Matthew D. Eaton, and Michael J. Bluck. Fixed inducing points online Bayesian calibration for computer models with an application to a scale-resolving CFD simulation. *Journal of Computational Physics*, 434(??):Article 110243, June 1,
Dai:2022:HPW

Deng:2023:UFN

Deriaz:2023:HOA

Dabaghi:2023:TAS

Denner:2020:CFV

Denner:2022:BCT

Deluzet:2023:EPS

Dumbser:2020:GCC

Dugast:2020:RFF

Daus:2022:RBM

Esther S. Daus, Markus Fellner, and Ansgar Jüngel. Random-batch method for multi-species stochastic interacting particle

DeCaria:2022:GLM

Diaz:2022:PAC

Duchemin:2023:EER

Dubois:2022:MLF

Dominguez:2020:ODF

REFERENCES

[DhJV+22] Xi Deng, Zhenhua Jiang, Peter Vincent, Feng Xiao, and Chao Yan. A new paradigm of dissipation-adjustable, multiscale resolving schemes for compressible flows. Journal of...

REFERENCES

Discacciati:2020:COH

Despres:2020:MLD

Dominesey:2022:ROM

Dominesey:2023:ROM

Dunton:2020:PEM

REFERENCES

Don:2022:NRS

Duan:2022:EDA

Dong:2023:KFB

Ding:2023:SRU

Dai:2021:POU

Hurtado-de-Mendoza:2022:NMA

Dao:2022:ESA

Dunning:2020:AMR

Dai:2022:MSP

Dong:2023:SRS

Droniou:2023:PDR

Doherty:2023:SFE

Deck:2020:TEP

Ding:2020:CGE

Dolejsi:2021:NST

Delmas:2022:PHO

Duong:2022:ARS

Datta:2023:CEH

Du:2023:FLM

REFERENCES

[dosSantos:2022:ADM] José Cícero Araujo dos Santos, Paulo Roberto Maciel Lyra, João Paulo Rodrigues de Andrade, Artur Castiel Reis de Souza, Ricardo Jorge Morais de Lira Filho, and Durlan Karlo Elisírio de Carvalho. An algebraic dynamic multilevel and multiscale method with non-uniform mesh resolution and adaptive algebraic multiscale solver operator for the simulation
REFERENCES

Demou:2022:PBD

Ding:2020:APC

Dhulipala:2022:ALM

Dargaville:2020:GBA

REFERENCES

Leonardo Afonso da Silva Inácio and André von Borries Lopes. Comment on “Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios”. *Journal of*
REFERENCES

Dektor:2023:TRR

Duran:2020:ESS

Dasika:2022:CLS

DelCorso:2022:FCM

Drake:2020:FAA

[Kathryn P. Drake and Grady B. Wright. A fast and accurate algorithm for spherical harmonic analysis on HEALPix grids with applications to the cosmic microwave background radiation. Journal of Computational Physics, 416(??):Article 109544,

REFERENCES

[DY22b] Suchuan Dong and Jielin Yang. On computing the hyperparameter of extreme learning machines: Algorithm and application to computational PDEs, and comparison with
REFERENCES

Du:2022:EHH

Du:2022:HOB

Dong:2022:SHO

Dorschner:2020:FMR

REFERENCES

Du:2022:PML

Du:2023:NSN

dezordo-Banliat:2024:SDT

Ding:2023:PIM

Dana:2022:TGS
REFERENCES

REFERENCES

Elzaabalawy:2023:ASR

Ekici:2020:MPN

Edoh:2022:NKE

Eslaminia:2022:FWI

Evans:2019:ANS

Evans:2020:CAN

Elarif:2021:TFB

Efendiev:2020:SIA

Evstatiev:2021:NEA

Etter:2023:CPR

Egan:2020:XRC

REFERENCE

REFERENCES

Ewert:2021:HAS

Engel:2023:BUM

Efendiev:2023:MHR

Eldredge:2022:MIL

Efendiev:2023:NTE

Efendiev:2022:EHE

Elman:2022:SAG

Ejtehadi:2020:MDG

Exl:2021:PMD

Einkemmer:2020:LRP

Einkemmer:2023:RCD

Esquivel:2021:FDS

Esquivel:2022:MEF

Efendiev:2021:TSA

Epstein:2022:DSR

Charles L. Epstein and Manas Rachh. Debye source representations for type-I superconductors, I: the static type I case. *Journ-
REFERENCES

Eremin:2022:ECC

Epp:2023:FCS

Eriksson:2023:BIM

Faghihifar:2022:ERG

Fleischmann:2020:SSM

Feppon:2020:TOT

Fleischmann:2020:LDM

Farago:2020:ABD

Fuhg:2022:MDE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Farcas:2020:SDA

Fomenko:2021:ABI

Franceschini:2022:SPF

Fang:2022:SFM

Fei:2022:USP

Feng:2024:SOH

Fortunato:2021:USE

Fehn:2021:HOA

Fei:2021:HPA

[FL23b] Guosheng Fu and Chun Liu. High-order variational Lagrangian schemes for compressible fluids. Journal of Com-

Kejie Fu, Mingjie Liao, Yangshuai Wang, Jianjun Chen, and Lei Zhang. Adaptive multigrid strategy for geometry optimization of large-scale three dimensional molecular mechan-

Franc:2023:CSC

Fehn:2020:HMM

Filbet:2022:FPM

Franca:2022:MLS

Fu:2023:HOS

[FOL23] Guosheng Fu, Stanley Osher, and Wuchen Li. High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems.
REFERENCES

Fumagalli:2023:WPV

Falcone:2020:MSI

Fryklund:2023:IEM

Feng:2023:ESS

REFERENCES

REFERENCES

Furfaro:2020:TSC

Falabino:2022:CUF

Fang:2022:CFE

Feng:2022:MOB

Feng:2023:DRL

REFERENCES

[Ferrero:2022:RBM] Andrea Ferrero, Tommaso Taddei, and Lei Zhang. Registration-based model reduction of parameterized two-dimensional con-
REFERENCES

- Fu:2020:DFH

- Fang:2022:PTM

- Fang:2023:SBM

- Fan:2024:DHN

- Freret:2022:EAB
 Lucie Freret, Michael Williamschen, and Clinton P. T. Groth. Enhanced anisotropic block-based adaptive mesh refinement for three-dimensional inviscid and viscous compressible flows.
REFERENCES

[FZ20a] Hongsong Feng and Shan Zhao. FFT-based high order central difference schemes for three-dimensional Poisson’s equation with various types of boundary conditions. Journal
REFERENCES

REFERENCES

REFERENCES

[GAC20] Kaihang Guo, Sebastian Acosta, and Jesse Chan. A weight-adjusted discontinuous Galerkin method for wave propagat-

[GBC23] Timon S. Gutleb and José A. Carrillo. A static memory sparse spectral method for time-fractional PDEs. *Journal of

References

Gonzalez:2021:LN

Gowers:2020:DAD

Gaudreault:2022:HON

Guo:2022:SOA

Gallice:2022:ESP

Gérard Gallice, Agnes Chan, Raphaël Loubère, and Pierre-Henri Maire. Entropy stable and positivity preserving

[Gambarini:2023:ROC]

[Guan:2022:SPT]

[Girault:2022:CMC]

[Galassi:2022:ATI]

REFERENCES

REFERENCES

REFERENCES

[GGH+23] Yaguang Gu, Zhen Gao, Guanghui Hu, Peng Li, and Qingcheng Fu. High order well-balanced positivity-preserving scale-invariant AWENO scheme for Euler systems with gravitational
REFERENCES

REFERENCES

Grosheintz-Laval:2020:WBF

Guo:2020:REI

Grogan:2020:DDM

Guo:2022:ECT

Gao:2022:ROM

REFERENCES

REFERENCES

REFERENCES

Giacomin:2022:GCS

Grigoriu:2020:DBI

Gaudreault:2018:KFA

Gaudreault:2021:CKF

Gu:2020:BPE
Yiqi Gu and Jie Shen. Bound preserving and energy dissipative schemes for porous medium equation. Journal

REFERENCES

REFERENCES

Heldmann:2023:PTU

Hyde:2021:OSS

Hertel:2022:CLM

Haas:2020:TSA

Hernandez:2021:SPN

Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Structure-preserving...

Huang:2022:MLM

Hope-Collins:2023:ADC

He:2023:GPP

Huang:2020:DAB

REFERENCES

[Henri:2022:GLS]

[Huang:2023:PRO]

[Hageman:2020:SGM]

[Hageman:2021:RTS]

[Harnish:2023:AWM]
He:2022:MFS

Han:2023:HOS

Heumann:2021:GMW

Ho:2023:AOL

Holst:2020:ETE

Haack:2023:NSM

Higginson:2020:CMC

Hong:2022:TKN

Herty:2021:ADH

Hosseininia:2019:CWM

M. Hosseininia, M. H. Heydari, R. Roohi, and Z. Avazzadeh. A computational wavelet method for variable-order

Helsing:2022:SFS

Huang:2023:CCP

Hitz:2021:CMM

Hwang:2020:TEK

Hartung:2021:LML

REFERENCES

REFERENCES

He:2023:GPS

Hitz:2020:PRM

Hoskins:2023:FHO

Hennessey:2020:HTR

Hou:2020:EPT

Baohui Hou and Dong Liang. Energy-preserving time high-order AVF compact finite difference schemes for nonlin-

[Hu:2020:HTF]

[Hu:2020:RUD]

[Herbst:2022:REL]

[Higginson:2022:CDL]

[Han:2020:ELL]

REFERENCES

Hongying Huang, Jin Li, and Jue Yan. High order symmetric direct discontinuous Galerkin method for elliptic interface problems with fitted mesh. *Journal of Computational Physics*, 409(??):Article 109301, May 15, 2020. CO-

Philipp Hähnel, Jakub Marecek, Julien Monteil, and Fearghal O'Donncha. Using deep learning to extend the range of air pollution monitoring and forecasting. *Journal of Computational Physics*, 408(??):Article 109278, May 1, 2020. COD-
REFERENCES

[Henderson:2023:CMG] Iain Henderson, Pascal Noble, and Olivier Roustant. Covariance models and Gaussian process regression for the wave

REFERENCES

REFERENCES

He:2023:HDN

Howard:2023:MDO

Huang:2020:HOP

Holderied:2020:SPV

Hossain:2023:SSH

[Hajabdollahi:2021:CML]

[Holderied:2021:MKH]

[Hergibo:2023:MFM]

[Hu:2020:FFS]
REFERENCES

REFERENCES

Hajisharifi:2023:NID

Hateley:2020:DLS

Hashemi:2021:TDM

Hennemann:2021:PES

Huang:2022:HOC

Qian-Min Huang, Yu-Xin Ren, Qian Wang, and Jian-Hua Pan. High-order compact finite volume schemes for solving the Reynolds averaged Navier–Stokes equations on the unstructured mixed grids with a large aspect ratio. *Journal of
REFERENCES

He:2022:SAS

Huang:2023:BPP

Horsten:2020:HFK

Hyman:2022:FTT

REFERENCES

REFERENCES

REFERENCES

Horstmann:2022:CTS

Huang:2021:TDL

He:2020:ERS

Hester:2021:IAV

HVD23

REFERENCES

Hou:2021:RSS

Huang:2023:GBF

Huang:2020:LCR

Huang:2023:SFS

Huang:2022:HOW

Guanlan Huang, Yulong Xing, and Tao Xiong. High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers. *Journal of Computational Physics*, 463(?):??, August 15,
Hu:2023:AMC

Huang:2023:EFG

Huang:2023:BMF

Hong:2020:MFF

He:2020:DDA

Xijun He, Dinghui Yang, and Chunjun Qiu. Dispersion-dissipation analysis of triangular numerical-flux-based discontinuous Galerkin method for elastic wave equations. Journal of Computational Physics, 418(??):Article 109630, October 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
He:2022:NSI

Hu:2022:SSH

Hu:2022:RHD

Hu:2022:MCC

Huang:2022:RHO

REFERENCES

Han:2021:AIA

Hao:2021:FCD

He:2022:SSM

Han:2021:CPH

Han:2023:ENO
Huang:2022:DDD

Ianniello:2020:AME

Idesman:2020:NPS

Iijima:2021:ECF

Issan:2023:PSW

[IK23a] Opal Issan and Boris Kramer. Predicting solar wind streams from the inner-heliosphere to Earth via shifted operator inference. *Journal of Computational Physics*, 473(??):??, Jan-
 REFERENCES

JACQUIER:2021:NIR

JAIN:2022:ACP

JAIWAL:2022:ESS

JAIWAL:2022:NLB

JAIN:2023:ADI

Suhas S. Jain, Michael C. Adler, Jacob R. West, Ali Mani, Parviz Moin, and Sanjiva K. Lele. Assessment of diffuse-interface methods for compressible multiphase fluid flows...

Jolivet:2021:DRT

Jin:2021:NNS

Jiang:2023:UMT

Joachim:2023:PAN

REFERENCES

REFERENCES

Jagtap:2020:AAF

Jandaghian:2021:EWC

Jacobs:2021:NSP

Jiang:2021:PDA

REFERENCES

REFERENCES

REFERENCES

Jiang:2021:SFI

Jiang:2020:LIE

Jakobsen:2020:CSS

Ji:2020:AIF

Jeon:2022:DDA

Young Jae Jeon, Hee Jun Yang, and Hyea Hyun Kim. A data-driven approach for a macroscopic conductivity model

Jeong:2022:DWS

Jiang:2024:HBM

Ji:2020:HRB

Ji:2024:TSM

Krasnov:2023:TPT

Kromer:2022:FBV

Kuzmin:2022:UFE

Kromer:2023:TOA

Kelley:2020:MIG
C. T. Kelley, J. Bernholc, E. L. Briggs, Steven Hamilton, Lin Lin, and Chao Yang. Mesh independence of

Keita:2021:MCP

Kumar:2022:SEL

Kolahdouz:2020:IIM

Kappeli:2020:OGC

REFERENCES

Keniley:2020:DET

Krath:2021:EPO

Koshkarov:2022:FNI

Kumari:2023:EFD

Kruk:2021:FVM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kim:2021:EHR

Kivva:2021:FCT

Kulka:2022:TAC

Kim:2024:PPN

Kou:2022:IBM

REFERENCES

Kaltenbach:2020:IPC

Kuzmin:2020:LDC

Kuya:2021:HOA

Koga:2022:LDF

Kuya:2022:MWA

[KK22b] Yuichi Kuya and Soshi Kawai. Modified wavenumber and aliasing errors of split convective forms for compressible flows. *Journal of Computational Physics*, 464(?):??, September 1,
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume and Issue</th>
<th>Page Numbers</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

Keshavarzzadeh:2020:GNQ

Kaltenbacher:2022:DKL

Kim:2020:CES

Kenamond:2021:IDB

Kenamond:2021:PPC

Makrand A. Khanwale, Alec D. Lofquist, Hari Sundar, James A. Rossmanith, and Baskar Ganapathysubramanian.

Kang:2022:VMI

Kashefi:2022:PIP

Kusch:2020:FSG

Kou:2023:JPS

Kim:2023:SCA

Keim:2023:RMN

Katsaounis:2020:BPW

Kopriva:2022:TFOa

Kadeethum:2021:EGD

Krumscheid:2020:QUS

Klyuchinskiy:2021:CTR

Klibanov:2022:NVS

Kalinov:2022:DSM

Kuya:2023:KEE

Kantarakias:2023:SAC

REFERENCES

Kantarakias:2023:SEG

Kuhl:2022:DAM

Kochi:2023:SCU

Kelly:2023:PBO

Koliesnikova:2021:UFC

[KRL21] Daria Koliesnikova, Isabelle Ramière, and Frédéric Lebon. A unified framework for the computational comparison of adaptive mesh refinement strategies for all-quadrilateral and

Kaltenbacher:2022:FTS

Karam:2022:HOPb

Karam:2022:HOPa

Kilgour:2022:IBB

Karam:2023:TFP

Krais:2020:SFA

Kingora:2022:NIF

Koch:2020:MTP

Khanwale:2023:PBS

Kwon:2020:MIB

Kumar:2024:AMG

Karumuri:2020:SFS

Kahana:2020:OSB

Kahana:2022:PID

Adar Kahana, Eli Turkel, Shai Dekel, and Dan Givoli. A physically-informed deep-learning model using time-reversal for locating a source from sparse and highly noisy sensors data. *Journal of Computational Physics*, 470(??):??, December 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
Katrutsa:2023:EDM

Kushch:2020:NAM

Katsoulakis:2020:DDV

Kapidani:2023:HOG

Koellermeier:2023:HMM

Julian Koellermeier and Hannes Vandecasteele. Hierarchical micro-macro acceleration for moment models of kinetic equations. *Journal of Computational Physics*, 488(??):??, September 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print),

REFERENCES

REFERENCES

Koch:2022:NMD

Kawai:2022:GRM

Kong:2023:EESb

Lozano:2021:IFS

Lakoba:2020:SIF

REFERENCES

REFERENCES

REFERENCES

Li:2022:DIM

Lyu:2023:SEP

Liu:2023:AAD

Larios-Cardenas:2022:ECN

Larios-Cardenas:2022:HIS

Luis Ángel Larios-Cárdenas and Frédéric Gibou. A hybrid inference system for improved curvature estimation in

[LCL22a] David Labeurthre, Ansar Calloo, and Romain Le Tellier. High-order Wachspress functions on convex polygons through com-

REFERENCES

Li:2021:BPH

Lin:2023:PPS

Liu:2023:SON

Li:2020:WER

Lespagnol:2020:HOA

REFERENCES

REFERENCES

Lepage:2021:AMI

Levy:2022:POT

Spina:2024:HDG

Liang:2024:NTN

Li:2021:LDS
REFERENCES

[LFY21] Haoya Li, Yuwei Fan, and Lexing Ying. A simple multi-scale method for mean field games. *Journal of Computa-
REFERENCES

Tongtong Li, Anne Gelb, and Yoonsang Lee. Improving numerical accuracy for the viscous-plastic formulation of sea

Liu:2024:OMS

Lee:2021:RMP

Liao:2020:HOA

Li:2021:WBE

Linka:2021:CAN

REFERENCES

REFERENCES

Lin:2020:DPS

Lin:2021:TFI

Lv:2023:DRQ

Liu:2021:MRT

Lin:2021:ABE

Liu:2020:SSP

Liu:2020:MCN

Liu:2021:NWB

Liu:2023:DNS

Liu:2023:HOM

Lan:2022:HOM

Lin:2021:ATF

Latimer:2021:SAS

Lu:2020:TSD

REFERENCES

Lee:2023:GPB

Luo:2023:FPI

Leiter:2023:TSB

Lan:2023:OSB

Luo:2020:FIH
Li Luo, Lulu Liu, Xiao-Chuan Cai, and David E. Keyes. Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids. *Journal of Computational Physics*, 409(??):Article 109312, May

Lallemand:2021:LBM

Li:2022:RDG

Li:2023:SMT

Lee:2021:GUO

Li:2020:VTN

REFERENCES

REFERENCES

Li:2023:CCL

Li:2022:VCF

Li:2023:OSH

Li:2021:CEH

Lin:2023:CHD

REFERENCES

REFERENCES

Lee:2021:OPS

Lou:2021:VEF

Lundow:2022:ECP

Li:2023:PLM

Liu:2023:DMT

REFERENCES

Lou:2021:PIN

[LMK21]

Lundquist:2020:EEM

[LMN20]

Lye:2020:DLO

[LMR20]

Lario:2022:NNL

[LMS+22]

Lederer:2023:HOP

Lopez-Menchon:2022:PMC

Liu:2021:NST

Liu:2021:DNS

Lin:2023:BDE

Lauren:2021:SPI

REFERENCES

REFERENCES

[LOL22] Zhe Li, Guillaume Oger, and David Le Touzé. A partitioned framework for coupling LBM and FEM through an implicit IBM allowing non-conforming time-steps: Application to fluid-structure interaction in biomechanics. *Journal of Computational Physics*, 449(??):Article 110786, January 15,

REFERENCES

Lozano:2023:SMD

Liu:2023:MCA

Lischke:2020:WFL

Limare:2023:HLS

REFERENCES

[Lindeberg:2021:HOF] Ludvig Lindeberg, Ylva Ljungberg Rydin, and Leighton M. Watson. A high-order finite-difference scheme to model the...
REFERENCES

[Lai:2022:SAI]

[Lipnikov:2023:CHO]

[Lam:2020:Esa]

[Li:2020:NSO]

REFERENCES

REFERENCES

REFERENCES

Liang:2022:FOL

Li:2023:ECF

Liu:2023:CGA

Li:2023:SDB

Lin:2020:CSR

Cheng-Chuan Lin and Fu-Ling Yang. Continuum simulation for regularized non-local $\mu(I)$ model of dense granular flows. *Journal of Computational Physics*, 420(?):Article 109708, November 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print),

REFERENCES

Lu:2023:IRP

Li:2020:PMC

Li:2022:FIT

Liu:2022:IHO

REFERENCES

Li:2022:ALEa

Li:2022:AIB

Li:2022:DDL

Liu:2022:FCS

Li:2021:ACF

[LZZ21a] Liang Li, Jun Zhu, and Yong-Tao Zhang. Absolutely convergent fixed-point fast sweeping WENO methods for steady

Marche:2020:CHD

Martaud:2023:GES

Messenger:2021:WSP

Marchner:2021:SPM

Moraes:2022:AAD

REFERENCES

Martin:2023:AEI

Meng:2021:SSS

Meng:2021:MFB

Mitchell:2022:SLB

Moller:2023:DGH

REFERENCES

McClenny:2023:SAP

Muralikrishnan:2020:MAT

Medale:2020:ODF

Modave:2023:HDG

Mou:2023:EDD

[MD20b] Yann Moguen and Erik Dick. Diffusion and dissipation in acoustic propagation simulation by convection-pressure split

Jay Mayfield, Yijin Gao, and Songting Luo. An asymptotic Green’s function method for the wave equation. *Journal of

REFERENCES

Lijie Mei, Li Huang, and Xinyuan Wu. Energy-preserving exponential integrators of arbitrarily high order for conservative or dissipative systems with highly oscillatory solutions. *Journal of Computational Physics*, 442(?):Article 110429, October 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
REFERENCES

Mao:2023:IGP

Mao:2021:VIP

Mantravadi:2023:HDE

Meng:2020:CNN

Mehlmann:2021:SID

Carolin Mehlmann and Peter Korn. Sea-ice dynamics on triangular grids. *Journal of Computational Physics,*
REFERENCES

[ML23] Yashar Mehmani and Kangan Li. A multiscale preconditioner for microscale deformation of fractured porous media. *Journal of Computational Physics*, 482(??):??, June 1,
REFERENCES

Menon:2021:QAK

Minoshima:2021:LDH

Mirjalili:2021:CEC

Mirjalili:2022:CCE

Mir:2023:DRP

REFERENCES

Ilyes Moufid, Denis Matignon, Rémi Roncen, and Estelle Piot. Energy analysis and discretization of the time-domain equiv-

REFERENCES

Menez:2023:AVP

Mistani:2023:JDN

Munoz-Perez:2020:SGH

McGregor:2022:VSS

Miller:2022:NNB

Mortier:2022:MAP

Morvillo:2021:SPA

Meyers:2021:KOM

Magiera:2020:CAN

[MRT+22] Y. Morita, S. Rezaeiravesh, N. Tabatabaei, R. Vinuesa, K. Fukagata, and P. Schlatter. Applying Bayesian op-

Maurya:2020:NHC

Morse:2021:RSE

Maes:2020:USF

Mullner:2020:NSM

Guillaume Mialhe, Sébastien Tanguy, Léo Tranier, Elena-Roxana Popescu, and Dominique Legendre. An extended model

[MVO+22] J. Michel, A. Vergnaud, G. Oger, C. Hermange, and D. Le Touzé. On particle shifting techniques (PSTs): Analysis of ex-

REFERENCES

REFERENCES

Mo:2023:ILB

Mou:2022:NMM

Marchildon:2020:OMD

Ma:2022:FOU

Mirhoseini:2023:MRC

REFERENCES

[Nguyen:2022:HOS] Tuan Dung Nguyen, Christophe Besse, and François Rogier. High-order Scharfetter–Gummel-based schemes and

REFERENCES

Naddei:2021:SME

Naevdal:2023:CCC

Nardean:2021:NBN

Norddine:2023:RPT

REFERENCES

REFERENCES

Natarajan:2022:MEB

Nicholls:2022:HOS

Nikiforov:2023:MGM

Nishikawa:2020:FAW

Nishikawa:2020:HPS

[Nis20c]

[Nis20d]

[Nis21]

[Nis22a]

REFERENCES

REFERENCES

Ntoukas:2022:ESP

Naranjo-Noda:2021:LLR

Na:2020:DNC

Nordstrom:2022:NLP

Nordstrom:2022:SSE

Nguyen:2023:EAN

Nennig:2020:HOC

Nguyen:2023:POD

Nan:2022:HOM

REFERENCES

REFERENCES

Kian Chuan Ong and Ming-Chih Lai. An immersed boundary projection method for simulating the inextensible vesicle dynamics. *Journal of Computational Physics*, 408(??):Article 109277, May 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
Onder:2023:DLI

Orsi:2023:FIS

Ong:2021:IBP

OReilly:2020:ECS

Olivier:2023:FIV

REFERENCES

[OSL22] Kian Chuan Ong, Yunchang Seol, and Ming-Chih Lai. An immersed boundary projection method for solving the

Ouaknin:2021:PAS

Oliva:2022:TFW

Ohmichi:2021:MFT

Ouyang:2022:HSP

REFERENCES

Renato Paciorri and Aldo Bonfiglioli. Accurate detection of shock waves and shock interactions in two-dimensional

[Patil:2020:RTR]

[Poette:2022:EUC]

[Peng:2020:APP]

[Pertant:2021:FVM]

Peters:2022:FDC

Piroozmand:2023:DRR

Panchal:2023:SED

Parsani:2021:HOA

Ponga:2020:LSI

REFERENCES

Piccioli:2022:MBF

Parish:2021:WLS

Perot:2021:MMP

Pudykiewicz:2022:CEE

Pan:2023:DFM

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Ref</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Page Range, Date</th>
<th>CODEN</th>
<th>ISSN (Print), ISSN (Electronic)</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Peng:2023:NGM

Pang:2022:AAB

Pulliam:2020:IEP

Pathak:2023:TDN

Papoutsakis:2020:SCC

Psaros:2022:MLP

Peyvan:2021:FRU

Park:2023:DMM

Peton:2020:IBM

José Miguel Pérez, Soledad Le Clainche, and José Manuel Vega. Reconstruction of three-dimensional flow fields from

REFERENCES

REFERENCES

Pan:2022:HOA

Pinto:2022:SIE

Potluri:2023:HOD

Putz:2022:GAG

Pares:2021:WBH

References

REFERENCES

Padrino:2020:CAS

Perot:2020:FSM

Palitta:2023:SBP

Pironneau:2023:RCR

Petropavlovsky:2022:TDS

Pukhov:2020:XDM

Poette:2020:NIM

Pereira:2022:PAH

Prescott:2024:EML

Pan:2022:NFS

REFERENCES

REFERENCES

[579]

Park:2022:PIN

Penwarden:2022:MMP

Penwarden:2023:MAP

Pan:2020:HOA

Pan:2023:MDF

Qin:2020:DNS

Quan:2023:FEC

Qin:2021:RGC

Qin:2023:HPF

Qu:2022:LTD

Qin:2020:TPM

Qadeer:2021:SFE

Qi:2023:DDS

Qiu:2020:DDM

Qin:2022:PFM

Qian:2023:ECS

Qiao:2023:SPN

Qian:2023:PIN

Rondeau:2021:TPM

Rumpler:2023:MMW

[RA23] Romain Rumpler and Quirin Aumann. MWCAWE: a multivariate WCAWE approach for parametric model order reduction, and a sampling strategy for the bivariate case.
REFERENCES

Robaux:2021:DVN

Rullan:2022:HGS

Rossat:2022:BIU

Ruzayqat:2023:UEU

Rojas:2021:RPE

REFERENCES

JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).

Xuan Ruan, Matthew T. Gorman, Shuiqing Li, and Rui Ni. Surface-resolved dynamic simulation of charged non-spherical particles. *Journal of Computational Physics*, 466(??):??, October 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print),
Ruiz-Girones:2021:MIG

Raynaud:2022:MEP

Reuber:2020:ABI

Reissmann:2021:AGE

Rodriguez:2022:PTR
Rodriguez, Athanasios P. Iliopoulos, Kevin T. Carlberg, Steven L. Brunton, John C. Steuben, and John G. Mi-

Ricardo:2024:EEC

Resseguier:2022:RTE

Ramezanian:2020:OPS

Rangarajan:2020:ABA

Rath:2023:IPR

REFERENCES

REFERENCES

Ramabathiran:2021:SSP

Rodriguez:2021:GLC

Rettinger:2022:EFW

Reyes:2023:ROM

Rueda-Ramirez:2021:SCD

REFERENCES

Ramani:2023:FDS

Rosenberger:2023:NPE

Rocha:2020:MMM

Regazzoni:2022:CEM

Romero:2020:MDL
REFERENCES

[RWH+24] Jacob Rains, Yi Wang, Alec House, Andrew L. Kaminsky, Nathan A. Tison, and Vamshi M. Korivi. Constrained optimized dynamic mode decomposition with control for phys-
REFERENCES

REFERENCES

Stammer:2023:MEM

Sharan:2022:HOD

Shiea:2020:NFV

Svolos:2020:USD

Shallcross:2022:ECB

Shukla:2020:WAD

Stanier:2020:CPH

Chen:2022:ADP

Schroeder:2022:LDF

Stoyanovskaya:2021:FMS

Olga Stoyanovskaya, Maxim Davyдов, Maxim Arendarenko, Elizaveta Isaenko, Tamara Markelova, and Valeriy Snytnikov. Fast method to simulate dynamics of two-phase medium with

REFERENCES

Ser23 A. Serezhkin. HLLEPJ and HLLCEPJ Riemann solvers for the Wilkins model of elastoplasticity. *Journal of Computational Physics*, 492(??):??, November 1, 2023. COD-

Shashkov:2023:AMB

Shi:2023:MPP

Siegel:2023:GTA

Shen:2020:ESF

Schwarzmeier:2023:CFS

Shands:2023:MMC

Scullard:2020:ASS

Sugaya:2022:TFS

Simonnet:2023:CNE

Singh:2021:AEA
[Sin21] Mehakpreet Singh. Accurate and efficient approximations for generalized population balances incorporating co-

Sierra:2021:ABS

Shukla:2021:PPI

Sharma:2023:FDM

Shashkov:2023:MBI

Nao Shima, Yuichi Kuya, Yoshiharu Tanaki, and Soshi Kawai. Preventing spurious pressure oscillations in split convective form discretization for compressible flows. *Journal of Computational Physics*, 427(??):Article 110060, February 15, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716

REFERENCES

REFERENCES

Sakakibara:2021:FDC

Subramanian:2021:MEP

Subramanian:2022:NIE

Shiroto:2022:MEC

Sirignano:2020:DDL

Scherr:2023:VFB

Song:2020:NEP

Suss:2023:HLB

Singh:2022:NTD

Singh:2022:DFV

REFERENCES

REFERENCES

Santelli:2021:FDS

Sousedik:2022:SGM

Su:2023:FOA

Sun:2023:IAD

Sandim:2020:SRB

Shen:2020:CSI

Schwander:2021:COS

Shahmardi:2021:FEH

Shahane:2021:HOA

Shi:2022:CPN

REFERENCES

REFERENCES

REFERENCES

Shi:2020:APU

Sundaram:2022:NOH

Sokolov:2023:HRF

Schneider:2022:EKI

Sun:2022:MSD

[SSX22] Jiawei Sun, Chi-Wang Shu, and Yulong Xing. Multisymplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise. *Journal of

[Ste22] David B. Stein. Spectrally accurate solutions to inhomogeneous elliptic PDE in smooth geometries using function inten-

Schaefer:2017:SGA

Schaefer:2022:CSG

Sadr:2020:GPR

Stiller:2020:SDC

Schoutrop:2021:MTP

Schimming:2021:NME

Semenov:2022:SEM

Spiteri:2023:FSR

Shankar:2021:EHO

REFERENCES

Shen:2023:MDS

Sheng:2021:PPF

Seraj:2023:DTS

Shao:2023:GVL

Shao:2023:GCL

REFERENCES

Sakurai:2019:VPI

Sakurai:2021:CVP

Song:2023:NAO

Su:2021:UFO
REFERENCES

Takahashi:2023:FTD

Trappler:2021:RCN

Tazhimbetov:2023:SFG

Tominec:2021:URF

Tekbas:2023:FDT

Tekbas, Kenan and Jean-Pierre Bérenger. Finite-difference time-domain (FDTD) method with non-homogeneous cells filled with voxels. *Journal of Computational Physics*, 489 (?):??, September 15, 2023. CODEN JCTPAH. ISSN
Tregan:2020:CID

Tissot:2020:OCS

Tang:2022:FSS

Trask:2020:CCS

Tartakovsky:2021:PIM

Tipireddy:2020:CKL

Taghizadeh:2022:EPI

Tushar:2023:DPC

Tangtartharakul:2021:PIP

REFERENCES

REFERENCES

Hart:2022:PPG

Troescher:2023:FIH

Theillard:2021:VPR

Trask:2022:EEP

Taverniers:2021:MIE

REFERENCES

REFERENCES

Toh:2023:CTO

Tot:2023:TTV

Tow:2020:SAL

Thirumalaisamy:2022:HNR

Thomann:2020:ASS

Tiwari:2022:FRC

Tsilifis:2020:SPC

Tu:2022:LSS

Tano:2021:SNA

Tranquilli:2022:DVS

Paul Tranquilli, Lee Ricketson, and Luis Chacón. A deterministic verification strategy for electrostatic particle-in-cell algorithms in arbitrary spatial dimensions using the
REFERENCES

Todorova:2020:QAC

Tsoutsanis:2023:SSA

Thari:2022:ATB

Treleaven:2020:APM

Torres-Sanchez:2020:ATF

REFERENCES

Zengqiang Tan and Huazhong Tang. A general class of linear unconditionally energy stable schemes for the gradient flows, II. *Journal of Computational Physics*, 495(??):??, December 15, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716

Tong:2020:HOA

Tang:2022:ADD

Tan:2022:EPP

Tu:2022:NAS

Houwang Tu, Yongxian Wang, Chunmei Yang, Xiaodong Wang, Shuqing Ma, Wenbin Xiao, and Wei Liu. A novel al-

REFERENCES

Umeda:2023:NIR

Unfer:2021:TOA

Ubeda:2020:AGR

Upperman:2022:PPE

Vabishchevich:2023:SSD

Vasilyeva:2021:MDR

Vadeboncoeur:2023:FPD

vanWout:2022:SEF

Vasilyeva:2023:EDS

Villamizar:2022:HOL

REFERENCES

REFERENCES

Vu:2023:AMC

vanGestel:2023:ADG

Vauchel:2023:MEN

Vaughn:2021:TAG

REFERENCES

Vakilipour:2021:FCA

REFERENCES

A. W. Vreman. Corrigendum to “A staggered overset grid method for resolved simulation of incompressible flow around

REFERENCES

Veiga:2021:AHO

Wenzel:2023:CIR

Wong:2021:PPH

Wang:2022:CLA

Wang:2023:SEL

REFERENCES

Yiran Wang, Eric Chung, and Shubin Fu. A deep learning based reduced order modeling for stochastic underground flow

Sebastian Wolf, Martin Galis, Carsten Uphoff, Alice-Agnes Gabriel, Peter Moczo, David Gregor, and Michael Bader. An efficient ADER-DG local time stepping scheme for 3D HPC

REFERENCES

REFERENCES

REFERENCES

Wagner:2021:BMI

Wang:2020:DAG

Wang:2021:IEM

Wang:2020:MGK

Wang:2021:DLF
REFERENCES

Wissocq:2022:HLN

Wang:2022:RAS

Weady:2022:FCM

Walters:2022:CIF

Wang:2021:GPG

REFERENCES

REFERENCES

[Wang:2022:LBP]

[WYHL21]

[WYP22]

[WYS20]

REFERENCES

(WZ23b) Jon Wilkening and Xinyu Zhao. Spatially quasi-periodic bifurcations from periodic traveling water waves and a method

[XBH+22] Qing Xia, Jeffrey W. Banks, William D. Henshaw, Alexander V. Kildishev, Gregor Kovačič, Ludmila J. Prokopeva, and Donald W. Schwendeman. High-order accurate schemes for

[XCL+21] Xiaocong Xu, Yipei Chen, Chang Liu, Zhihui Li, and Kun Xu. Unified gas-kinetic wave-particle methods V: Di-

Xiong:2022:CAS

Xu:2020:DPD

Xu:2022:PCL

Xuan:2021:DLS

REFERENCES

REFERENCES

[XLZ21] Jianqiang Xie, Dong Liang, and Zhiyue Zhang. Energy-preserving local mesh-refined splitting FDTD schemes for two

Xiao:2023:PCB

Xu:2020:LSI

Xiong:2022:HOA

Xie:2020:FOK

Xu:2020:HDR

REFERENCES

Yang:2021:NFD

Yanaoka:2023:ICN

Ye:2020:LCB

Yu:2022:DFT

Yeung:2022:LRD

REFERENCES

[YD20] Zhiguo Yang and Suchuan Dong. A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. Jour-
Yu:2022:MRL

Ying:2021:NBP

Yatsuyanagi:2022:DFM

Yang:2021:MLT

Yang:2021:CFE

[YH22a] Xiaofeng Yang and Xiaoming He. Numerical approximations of flow coupled binary phase field crystal system: Fully discrete finite element scheme with second-order temporal accuracy and decoupling structure. Journal of Computational Physics, 467(?):??, October 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

[Yu:2022:MOR]

[Yan:2022:GBD]

[Yin:2023:APN]

[Yamashita:2023:SAS]

REFERENCES

Yin:2021:FOC

Yin:2022:ACL

Yan:2023:SMS

Yang:2021:EMG

Ye:2023:IDP

Yang:2022:CPH

Yeo:2020:UME

You:2020:DRM

Yang:2022:NAS

Ye:2020:MRI

[YKdHC20] Ruichao Ye, Kundan Kumar, Maarten V. de Hoop, and Michel Campillo. A multi-rate iterative coupling scheme for simulating dynamic ruptures and seismic waves generation in the prestressed earth. *Journal of Computational
REFERENCES

Guoqiao You and Shingyu Leung. Eulerian algorithms for computing some Lagrangian flow network quantities. *Journal of
REFERENCES

Yue:2024:NSC

Yang:2020:PFD

Yang:2023:MMP

Yu:2023:CMF

Yang:2020:UMF

[YLNT20] Zongze Yang, Fawang Liu, Yufeng Nie, and Ian Turner. An unstructured mesh finite difference/finite element method for the three-dimensional time–space fractional Bloch–Torrey

Yang:2021:BPB

Yin:2021:CMM

Yuan:2022:PAP

Yousefi:2020:NWB

Yee:2020:QPF

REFERENCES

Yu:2022:IBM

Yu:2024:RPI

Yushutin:2020:NMP

Yao:2022:VLP

Yao:2021:TDM
Hongbo Yao, Zhengyong Ren, Huang Chen, Jingtian Tung, Yuanao Li, and Xu Liu. Two-dimensional magnetotelluric finite element modeling by a hybrid Helmholtz-curl formulae system.
Yang:2022:CMF

Yamamoto:2022:MCS

Yang:2023:ADN

Yang:2021:HOT

Yin:2023:CMM

Xi-Yuan Yin, Kai Schneider, and Jean-Christophe Nave. A Characteristic Mapping Method for the three-dimensional...

Yang:2021:FKB

Yang:2023:ACA

Yoon:2020:RMH

Yang:2023:MTN

Zhang:2021:IMF

Zoller:2023:PCS

Zhou:2020:CMP

Zhao:2020:RTM

Zapata:2021:CLS

Zeifang:2021:DDH

Zhou:2021:AST

Zhao:2021:IIU

Zhao:2023:MGM

REFERENCES

Zhang:2023:RDS

Zhan:2022:WFG

Zhang:2020:RDG

Zhang:2019:HOP

Zhang:2020:CHO

[ZCQ20a] Min Zhang, Juan Cheng, and Jianxian Qiu. Corrigendum to “High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations on triangular meshes”

Zeng:2022:DNN

Zinchenko:2021:AFH

Zhou:2020:MLR

Zhang:2021:CDD

Zhang:2023:HOA

Zhihao Zhang, Junming Duan, and Huazhong Tang. High-order accurate well-balanced energy stable adaptive moving mesh finite difference schemes for the shallow water equations with non-flat bottom topography. *Journal of Computational Physics*, 492(??):??, November 1, 2023. CO-

REFERENCES

Zhao:2020:BTI

Zhao:2021:SOD

Zhan:2023:NTS

Zhang:2022:MSM

Zhang:2021:LRB

Zhang:2021:SCP

Zhao:2020:BTH

Zhou:2023:NNW

Zhang:2022:FDL

Zhao:2024:CEF

[ZIMA24] Shan Zhao, Idowu E. Ijaodoro, Mark McGowan, and Emil Alexov. Calculation of electrostatic free energy for the nonlinear Poisson–Boltzmann model based on the dimensionless
REFERENCES

Zhao:2021:NCM

Zhao:2022:MPM

Zhao:2023:DDP

Zhao:2022:CHO

Zhao:2023:DMC
Fengxiang Zhao, Xing Ji, Wei Shyy, and Kun Xu. Direct modeling for computational fluid dynamics and the construction

Zhang:2021:STH

Zhang:2021:RFI

Zou:2022:FDM

Zhao:2022:CPM

Zhong:2020:NSP

Zeng:2023:CAL

Zhang:2023:SRD

Zhang:2022:SEP

Zhao:2021:ATL

Zhang:2022:TSF

REFERENCES

REFERENCES

Zhao:2023:SLF

Zhang:2022:DIR

Zhang:2023:TWC

Zepeda-Nunez:2021:DDC

Zala:2023:COB
[ZNK23] Vidhi Zala, Akil Narayan, and Robert M. Kirby. Convex optimization-based structure-preserving filter for multi-
REFERENCES

Theodoros T. Zygiridis, Aristeides D. Papadopoulos, and Nikolaos V. Kantartzis. Error-optimized finite-difference modeling of wave propagation problems with Lorentz material dispersion.
Zhu:2021:GSI

Zhang:2023:ETT

Zhao:2020:HWS

Zhang:2023:CMDa

REFERENCES

Zhao:2021:FEM

Zhang:2020:DCT

Zhang:2021:MRS

Zhu:2020:NTT

Zhang:2021:RCM
Qinglong Zhang and Wancheng Sheng. A random choice method based on the generalized Riemann problem for the Euler equations in gas dynamics. *Journal of Computational Physics*, 441(??):Article 110431, September 15, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Zhao:2021:HMC

Zeifang:2022:ITD

Zhang:2022:GSA

Zulian:2022:CAN

Zhang:2023:IMS
Zhilang Zhang, Chang Shu, Yangyang Liu, Wei Liu, and Muhammad Saif Ullah Khalid. An improved M-SPEM for modeling complex hydroelastic fluid-structure interaction problems. *Journal of Computational Physics*, 488(??):??, September 1, 2023. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716...
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zhang:2020:WGF

Zhang:2023:SDC

Zhang:2023:FOF

Zhao:2023:WBF

Zhang:2020:RES

Zhu:2022:DRM

Zheng:2020:PIS

Zhan:2020:URS

Zhao:2022:BEM

Zhao:2023:ESM

Zeng:2022:ADN

Zhang:2023:ECS

Zhang:2023:LFS