A Complete Bibliography of Publications in
Journal of Computational Physics: 2020–2024

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 June 2022
Version 1.19

Title word cross-reference

[ARTB20, LWR20, NMR+22, WGY20, XSC21]. P_N [XJS21]. Φ
[RC20b, HLB20]. Q [SVW21, XG22]. S [PBJ+22]. S_N [YOH+20]. Σ
[NKA+20]. Υ [NKA+20].

-adaptive [NMR+22, WGY20, XSC21]. -adaptivity [ARTB20].
-Algorithm [Ian20]. -body [RIC+22]. -complete [Hua21]. -component
[HLA21]. -continuous [PHHJ22]. -D
[WCZ+20, WZC21, GDAP20, ID20, NFL+21a, Oru21, PBVC22, WK21b].
-nearest-neighbors [GLSZ22]. -phase [HT21b]. -phase- [HLA21]. -point
-TMI/ALE [CPGD20]. -VSPH [FGZ20]. -weighted [LWR20].

1
[Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20f, Ano20h, Ano20i,
Ano20j, Ano20k, Ano20l, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21g,
Ano21f, Ano21h, Ano21i, Ano21j, Ano21k, Ano21l, Ano22a, Ano22b, Ano22c,
Ano22d, Ano22f, Ano22e, Ano22g, Ano22h, Ano22i, SLOZ21a, WMTQ20]. 15
[Ano20m, Ano20n, Ano20o, Ano20p, Ano20q, Ano20s, Ano20r, Ano20t,
Ano20u, Ano20v, Ano20w, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q,
Ano21s, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x, Ano22j,
Ano22k, Ano22l, Ano22m, Ano22o, Ano22p, Ano22r]. 1d
[KSHJ20, BGS22a]. 1d-3d [KSHJ20].

2 [Abg20, KSST21, SLOZ21b]. 2020
[Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20f, Ano20h, Ano20i,
Ano20j, Ano20k, Ano20l, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21f,
Ano21h, Ano21i, Ano21l, Ano21m, Ano21n, Ano21o, Ano21p, Ano21q,
Ano21r, Ano21s, Ano21t, Ano21u, Ano21v, Ano21w, Ano21x]. 2021
[Ano22a, Ano22b, Ano22c, Ano22d, Ano22e, Ano22f, Ano22g, Ano22h,
Ano22i, Ano22j, Ano22l, Ano22m, Ano22n, Ano22p, Ano22r]. 265
[HPA22]. 2P [CDT22a]. 2V [ATCS20].

[SYOS21]. 395 [Pan20b]. 3d [KSHJ20, MND+20].

4th [Kar22].

a-FSI [BCPV21]. A-PINN [YNDH22]. a-posteriori [RHSK21]. A-priori
[GZ21]. ab-initio [PBO20]. ablation [FCBM22]. Abramowitz [GJL20].
Absolutely [LZZ21a]. absorbing [MGA20, PM22, VBA22]. Absorption
angles
Anisotropic
Anisotropy
Annulus
Anode
Anomalies
ANOVA
Anti
Anti-dissipation
Anti-symmetric
Anisotropic
Angular
Application
SEG21a, SKT20, SSK20, TTY22, TWL22, TPPA22, WZ21a.

approximations
[AD20, BT20, FGB+20, GN20, HV20, JTK22, LLM20, LT22, Sin21]. April
[Ano20a, Ano20m, Ano21a, Ano21m, Ano22a, Ano22j]. aquifers [SFP+20],
Arbitrarily [GZW20b, Cam21, HHL20, MHW21, PR20]. Arbitrary
[GBC+20, SOSM20, WZL21, XDLX21, AAM20, ATCS20, BJ21, CCM+22, CBB20, CLP21, DD21, DLY22, EPL21, FHWK21, Hac21, HSXX21, KCS21, KKS21a, KKS21b, KB22a, LZX+22a, LEH+21, PA21, QJQW22, REC+22, RC20a, RRPSS21, TKR22, TSSOA20, TRC22, VVRWT21, ZCL20]. Arbitrary-Lagrangian [GBC+20, WZL21, CLL20].

arbitrary-order [DD21, EPL21, Hac21, KCS21].
arbitrary-species [ATCS20].
arbitrarily [GZW20b, Cam21, HHL20, MHW21, PR20].

architectures [DM21].
architecture [CDL+22]. architectures [DM21].
articular [UD22]. artifacts [LLF+22]. Artificial
[HZB+21, JPAZ21, TR21, XZWH22, BS22b, DHR20, DTB20, FL21, GCVI22, GLWZ22, LJKX21, LHA+21, MRK+20a, MOBR22, MFK21, NIT21, QPW21, RKVX20, SRH21, SLNM21, XZC21, ZB21b, ZLS22, ZQ20]. aspects [MI22b]. ASR [YKLL21]. assembly [JBF21]. assessed [Vre20, Vre21b]. assessment [GFG22, SBC20].

assimilation [AB22, BJ21, CMH20, CCM22, CPH+22, FFGRLS+20, MLCM21, TLD20, YG21]. assisted [JKJ20, WYS20]. associated [GQ22, MCVF22]. Asymptotic

auto [GZ20]. auto-regressive [GZ20]. autoencoder [KCVW22].

autoencoders [GFPO22, LC20]. Automatic
[BGR20, ASBM20, BGV21, FFRT+21]. automatically [Hig22]. Auxiliary
[AST21, YNDH22, AE20, CDT+20, CC22, JZZ22, LL21d, YD20, YX22, YTK22]. avalanches [DSBFN+20]. Avazzadeh [Pan20b]. average [CZ20b].

[MSK+22, BGN22, BSP21, CDT22a, HBF22, HP22, LEM20, MT21, SLOZ21b]. Aymard [Abg20].
B [Abg20, BBF20, LBSR20, YMK21]. **B-PINNs** [YMK21]. **B-spline** [BBF20, LBSR20]. **Backflow** [XBD20]. **background** [DW20a]. **Backscattering** [GCSH22]. **backward** [AB22, CCMC20, LG20, PK20]. **Baer** [CMRR21, LL21b]. **balanced** [GCSH22]. **backward** [AB22, CCMC20, LG20, PK20]. **Baer** [CMRR21, LL21b]. **balance** [Heu21, LP21, LE21b, LWW21, MN21, PCF21, PPP21, PM22]. **balanced** [AR20, CLLL20, CTCS22, DEN22, DSBFN+20, GBLT20, GLK20, GLWY22, Hig22, HLA20c, HXX22, JTW22, KLZ20, LPM+20, Lee21, LG21, Lin21, M21, PPP21, TPK20, WGY20, WY22b, YYX21]. **balanced-force** [HLA20c]. **balances** [Sin21]. **balancing** [TTSP21]. **Balescu** [SHS20]. **band** [CMSS21, ZZY20]. **baroclinic** [LJW22]. **barotropic** [CHT20, LJW22]. **barrier** [BF22]. **Based** [CSY20, ADK+21, AP20, AST21, AHWZ20, AE20, BL22, BF22, BO22, BGR20, BZSF20, BGS22a, Bha20, BZB20, BTEK22, BP21, BJ22, BG20c, BJ2W0, CCLL20, CWL+21, Cha21, CJT+20, CL20d, CGJM21, CHZ+21, CZLC22, CLS20b, CBA+20, CX22a, CX22b, DLZZ21, D20m, DSSSP20, DSPB22, D20m, DD21, Eio22, EDLF20, EFSH20, FZS+21, FBD+22, F21, FL21, FCWS22, FTZ22, FC21, FM20, FWG22, FGL+22, GCVT22, GD20, GN20, GWC+22, GPHAPR+22, GHNS21, Gri20, GYF20, G22, G20h, GBF20, HHAFR21, HPW21a, HSH20, HZTN21, HLM+20, HYQ20, Hc22, HYR+22, HS21, HTL21, HP21b, HP22, HSB20, HT21b, HCCR22, JZSX20, JLR20, KTDG20, KS22a, KBC22, KB22a, KKY+21, KBC22, LJ20, LKEM21, LJ22]. **based** [LLF22, LSC20b, LLNL21, LH21, LZX+22b, LZY22, LZPM22, LW22, LY22a, tJTBZ22, LZX+20, LC22, LS22, LZ21, L20d, MA21, MCVF22, MBM+22, Mon21, MYZ22, NNL+20, NFA21, NBR22, NGK+21, OGV20, On21, PP22a, PKC22, PCL22, PD21, PB22, Puk20, QSZ20, RR21a, RMD20, RS20c, RR20, RBPRST20, RB21, SL20a, SKP+21, ST20, Sar21b, SC22a, SBVM20, SJGC21, SKCM22, SLNM21, TLD20, TL20, TCK+22, TJ21, TSP22, Th22, TSSOA20, TAVD21, TPY22, VM21, WRH20, W20c, WDF22, XDL21, XH22, XK22, XLC22, XBD+20, XZW21, XZWH22, XSA+21, YHC+22, YD20, YZdCS21, YZD21, YA21, YJXS22, YTK22, YAX20, YCC+22, YNT20, YM20, Z20p, Z22a, ZYW21, ZCYS20, ZGL20, ZHL21, ZS21a, ZZ22, ZZY+20, ZWB21, vdB20, FZ22a, TMG20]. **bases** [DCA+22]. **basic** [SLOZ21a]. **basis** [AKWY20, BKMC21, CGJM21, CS21b, DDP20, DW20b, EJ22, FZS+21, KS22c, KL20c, MY22, WQZ20]. **Batch** [JLL20, DFJ22, DL21]. **Bateman** [CS22]. **Bayesian** [Bha20, BS21, BG21, CZ20b, DEB21, LSL20, LW22, MB21, MRT+22, MTWBT21, RBB22, SP4S+21, SKP+21, WMS21, WDL21c, XZ22, YMK21, vdB20]. **BDF** [WZSC22, ZOW20]. **beam** [CA22a, HX21]. **Beavers** [QHLL20]. **behavior** [AYH+21]. **behaviour** [Gin21]. **behind** [MLM+21]. **below** [CDL21]. **belt** [DDR22]. **BEM** [vTB22]. **benchmark** [EAA+21, ZOW20]. **benchmarks** [SLOZ21a]. **bending** [BNN20, Yan21c]. **Benjamin** [RY21]. **Berenger** [HCL20]. **Bernoulli**
Bernstein [EH22, GC20b, Hac21, KdL20]. best [HLM+20].
between [GCV22, GLJB20, HYSS22, Ish22, KKS21a, LZX+22a, MMPD21, NG20, RSWD21, SDA+21, WCL+20, ZTS20]. Beyond [OKTD21, Gin21].
Bézier [GC20b, Hac21, PHHJ22]. BGK [BVT20, BT20, BCR22, BD20a, CKT21, LMK21, MRBS22, TKR22].
body [BPBG21, CRF+21, FADJ20, KBS+21, LT20b, MBM+22, NG22, RIC+22, YJK21, YP22]. body-fitted [FADJ20]. Bogoliubov [GC20a].
Bound [FGKY22, GS20, HSW22, GLY20, JLQY21, LCSZ21, LRT+22b]. Bound-preserving [FGKY22, GLY20, LCSZ21, LRT+22b].
Bound/positivity [HSW22]. boundaries
[CDBS21, CRF+21, Coc20, HJ22, LBN21, Lèv22, TKR22, VACE21, ZCY+21].

Boundary [ASS21, BBF20, CMNS21, HSS21, ZHR20, ZH20, AHG21, AD20, AD21, ALCZ20, ADM+21, BMV22, BBGT21, BZ21, BFG22, BBKB21, BDB21, CHS20, CBCT+21, CAG20, CLS+20a, CLV22, CZLC20, CLLL20, CAT20, CSLC21, CRPB20, CPBB21, DR20, DSZ20, DN21, DC22, EFR21, ELSV22, FZ20a, FJH20, FDP20, FGD+21, GRC+22, Gin21, GAB+22a, GF21, HBFB20, HP21a, Ish22, IRT22, JPAZ21, JLC21, JG21, KS11, KSH22, KEY20, KdMJ+22, KJdM+22, KKY+21, KT20, LS22, LWL22, LM21b, LYL20, Li20, LZX+22b, LZ22b, Lin21, LHT21, LSTZ21, MWY+20, MQ20, MBM+22, MGA20, MD20c, NG22, NFL+21b, NGZD22, NG20, NW22, Nor22, OB20, OL20, OLS21, PSL20, PH22, PL20, QHLL20, RS20b, RFZ22, RRPS21, RGRS21, SM21a, SYOS21, SYOS21, SpdF20, SKT20, SWM21, SRTB21, SC22a, SBL22, SY21, SSMA21, SY21, SSMA21, Sva21, TNB21, TPB22]. **boundary**

[Th22, TF20, VBA22, Vre20, Vre21b, QQ20, WGS+20, WP21, WH22, WKK21, vtWHG+22, XC20, XY20a, XA+21, YL21, YYM+22, YG20, YP22, ZG21, ZHP221, ZZZ20, ZCY+21, ZB21c, CF21, RB21]. **boundary-conforming** [CLLL20]. **Boundary-consistent** [BBF20]. **boundary-lattice** [MWY+20]. **boundary-layer** [HBFB20, MD20c]. **boundary-phase** [SRTB21]. **boundary-value** [SY21]. **bounded** [Ere22, HBF22, Nor22, PEA20, SSG+20]. **boundedness** [MIM20]. **bounds** [CF20]. **Boussinesq** [ADK+21, GFF22, KMS20, LSXC20, PKC22]. **box** [KS22c, KLG+22]. **BR2** [BV22]. **Branching** [FCP21]. **Brinkman** [NYY22]. **brittle** [DAJ22]. **Brownian** [Far20, OSZ21]. **BSDE** [TTY22]. **BSLM** [KKPB20]. **bubble** [KKJ21, SBC20]. **bubbles** [CDJM21, MX22]. **Buckley** [AFV20]. **budget** [CPX21]. **Building** [LRT22a]. **built** [Cie20]. **bulk** [HLA20a, SVW21]. **Burgers** [SFNMF+21]. **buried** [LYZ22]. **butterfly** [CZHY20, LY20b]. **BVD** [CF21, CDX+21].

C0 [EFR21]. **C1** [EFR21]. **CABARET** [GMMS22]. **CABARET-MFSH** [GMMS22]. **Cached** [DS20]. **Cahn** [MRK+20b, NMR+22, QWZ21, CZ20a, CLS20b, CWW20, DWWZ21, Fu20, GHRH22, GCL+22, HLA20b, KLS+20, LYZ21, LQX22b, LQX22a, ILT20, LFT+20, MRK+20c, NS22, NMR+21, VRK21a, WJK20, Yan21b, ZY20b, ZOWW20, ZH21]. **calculating** [Ish22, Sha21]. **calculation** [CEBG22, FCWS22, MHWY21, YS22]. **calculations** [CMS21, DLZZ21, Dup21, MH22a, PMF20, PM21b, TMG20, WLL+20]. **calculus** [THH22]. **Calderón** [FJH20, KBH+22]. **Calibrate** [CGIL+21]. **calibrated** [OA21]. **Calibration** [ZW21, BGS+22b, DEB21, TAVD21]. **Can** [SZW+20, DM21]. **cancellation** [SCL20]. **candidate** [XCZ20]. **canonical** [AKK20]. **capability** [HYZ22]. **capillaries** [VPL20]. **capillary** [AFV20, BV21, DEvW22, FJH21, LGY+20, Pan20a, YZK20, ZGK+22].
Chebyshev-collocation [RS20c].
checkerboard
[DMRG22].
checkpoint [CCN21].
checkpoint-restart [CCN21].
chemical
[HZY22, XYL22].
chemically
[JK20].
chemistry
[BB20a, GCVI22, MLM+21].
chemotaxis [BGH21, LHL+22, QLY21].
Cherenkov [BD20b, LKG+20, NNL+20].
Chimera [KFSM21].
chiral
[KCK21].
Choice
[ZS21a, RRPSS21, ZZH22].
circular
[FZS+21].
circulation
[RSA+22].
Circumventing
[ZNCZ+21].
class
[BGFB20, CCH20, EFR21, HSW22, LCR22, SY21, TT22, WZSC22, WHS22, YZdCNS21, ZWZL22].
classes
[CS20].
Classical
[CLY21, AZ22, DY22b, JLRZ20, ZOWW20].
cleaning
[CPGD21, DFGR20, KK20b].
climate
[WDL+21a].
cloaking
[WYHL21].
cloaks
[CHG21].
Close
[KKCC20].
closed
[RSA+22].
closed-loop
[RSA+22].
closure
[BKY21, HCCR22, PBJ+22, QJQW22, TBW22, WHR20, WZSK22, WSS22].
closures
[YcD20, ZDS+21].
cloud
[RSWD21].
clouds
[PM22].
cluster
[DCA+22, DBC+22, SAL+20].
Clustered
[XCL22].
classical
[CL20d, CGJM21, ELSV22, FTY+22, LSS20, LPZ22, LN21b, RS20c, TFCH22, TJC21, WQZP20, Zha22, ZZY+20].
classical
[CL20d, CGJM21, ELSV22, FTY+22, LSS20, LPZ22, LN21b, RS20c, TFCH22, TJC21, WQZP20, Zha22, ZZY+20].
classical
[BABD21].
Code
[FCW21, FMOJ22].
codes
[MVK20, RMM+22, XLT+20].
coefficient
[JWZ20, Kan20, LNYD20].
coefficients
[DLP21, DL21, HL20a, HL20b, JHY21, LH21, PWH+22].
Coercing
[GJF20].
coil
[GWC+22].
colliding
[RE20].
collision
[CCL21, HQ20, LI21, TBD+20].
collisional
[ASBM20, BBC21, Ere22, LRW21a, WNZ20].
collisional-radiative
[ASBM20].
collisionless
[CEM20, TS20].
collisions
[ALF+22].
collocated
[PBN+21, RBD+21, XJN+20, ZJ22].
collocation
[CL20, CMJ21, ELSV22, FTY+22, LSS20, LPZ22, LN21b, RS20c, TFCH22, TJC21, WQZP20, Zha22, ZZY+20].
collinear
[KVQE21].
combined
[FM20, XCZ20].
Combined
[Mar20, AYH+21, AP22, GZW20a, USRH20, ZXM21].
combined-field
[USRH20].
Combining
[MFK21, Poe22, AL21].
combustion
[FSDB20, TTSP21, TSP22].
Comment
[PSL20, Pan20b].
communications
[HR22].
compact
[CMP+21, CWY21, CTCS22, DBD21, FDP20, HL20a, JZSX20, KSTTT22, LLQC21, MRYS20, PP22a, WABK21, Yin21, ZJSX22].
comparative
[AMK+21, FCY+20, LPG+20].
Comparison
[CCLM22, GCV22, GSFH22, HHVM20, HJI+21, ID20, LGZ21, SDL21, YJSX22, ZSKN22, DY22b, KRL21, TZ20, YLS21, ZOWW20].
compatible
[FTY+22, PGTS21, WCB20].
complement
[HV20, KKS+21c].
complementarity
[BE20].
complete
[BGR20, Hua21, Pan20a].
completely
[KKPB20, WWG20].
Completeness
[DBC+22].
Complex
[DHM21b, CM20, CY22, Cie20, DHMT21, DFW22, GJL20, HZ22b, JHY21, LYL20, LLN22, MWY+20, MBE21, MHYW21, MRZ21, QG21, RUG20,
RS20b, SRTB21, SY21, TB21, WZBV20, XCL22, YGL20, ZOG21b].

Complex-scaling [DHM21b]. Complexity [ASBM20, CF20, Bre20, LBN21].

Complexity-reduction [ASBM20]. compliant [BBKB21]. complicated [SYOS19, SYOS21, TNB21]. component [HLA21, KK22a, LVK+22, MS20a, PAA21, Say22]. components [LW22, Yan21b]. composite [DYGC22, GZW20a, Kus20, MK20].

Complexity-reduction [ASBM20]. compliant [BBKB21]. complicated [SYOS19, SYOS21, TNB21]. component [HLA21, KK22a, LVK+22, MS20a, PAA21, Say22]. components [LW22, Yan21b]. composite [DYGC22, GZW20a, Kus20, MK20].

Compressible [LLO22, TZM+20, ZGK+20, ARTB20, ADP22, AK22, BL22, BB20a, BV20, BV21, BBD+20, BFNK+21, BJL21, CPX21, CSCL20, CLW22, CZL20, CDX+21, CI21a, CPGD21, CSLC21, CRF+21, CHL20, DY22a, DJ20, DS21, FZQ21, FGKY22, FWG22, GQS20, GFJ+20, HFB20, HRY+22, HRRH21, HY22, iij21, JMM20, JM22, JKZS21, JKJ20, KAO+20, KK22a, KDB+20, KCCJ21, KJ22, KK22b, LVK+22, LP20a, LLNL21, LCR22, LZPM22, LZ22b, LLPL22, LMFV22a, LMFV22b, LAN21, MA21, MFRZ22, NGZD22, NZZM21, OY21, PJW21, PKG20, PCB21, PCB22, PBN+21, PLL+21, PRL22, PLKM22, REC+21, Ran22, Ren21, RWBS21, RWDG22, RZH20, RRFK+21, SC22a, SRD20, STKT21, SLOZ21a, SLOZ21b, UBT22, WH22, WABK21, YA21, YP22, ZA20, ZRH20, ZCYS20, ZSQ21, ZWB21].

Comprehensive [TZ20, RWDG22]. compressibility [MRK+20a, NIT21]. Compressible [LLO22, TZM+20, ZGK+22, ARTB20, ADP22, AK22, BL22, BB20a, BV20, BV21, BBD+20, BFNK+21, BJL21, CPX21, CSCL20, CLW22, CZL20, CDX+21, CI21a, CPGD21, CSLC21, CRF+21, CHL20, DY22a, DJ20, DS21, FZQ21, FGKY22, FWG22, GQS20, GFJ+20, HFB20, HRY+22, HRRH21, HY22, iij21, JMM20, JM22, JKZS21, JKJ20, KAO+20, KK22a, KDB+20, KCCJ21, KJ22, KK22b, LVK+22, LP20a, LLNL21, LCR22, LZPM22, LZ22b, LLPL22, LMFV22a, LMFV22b, LAN21, MA21, MFRZ22, NGZD22, NZZM21, OY21, PJW21, PKG20, PCB21, PCB22, PBN+21, PLL+21, PRL22, PLKM22, REC+21, Ran22, Ren21, RWBS21, RWDG22, RZH20, RRFK+21, SC22a, SRD20, STKT21, SLOZ21a, SLOZ21b, UBT22, WH22, WABK21, YA21, YP22, ZA20, ZRH20, ZCYS20, ZSQ21, ZWB21].

Computation [CCER20, FSM+22, WCA+20, BGH21, CL20a, CPX22, CFS+22, CT22, CBCF20, EFR21, EK21, GLT+20, KS22a, LPS21, LM22, MM21a, Nis21, REC+22]. Computational [CCE+21, CP20, KSST21, TACO22, ASW21, AFGML20, AWB+21, CL20b, DV22, DFP+21a, DY22b, DC22, GCVI22, GLJB20, GMMS22, HMY20, HRRA19, KBC20, KRL21, LGV20, LKY+20, LAS22, LMR20, MD20a, MRT+22, MAP+20, NIT21, Pan20b, WRBK20, YCM+20, ZW22, ZAMG20].

SHL\(^{+}\)20, XLHB22, ZY20a, ZR20, ZKY\(^{+}\)20, SS22a. **Contact-PIC** [SS22a]. containerless [SDP20]. contamination [LZ20a]. **continuation** [JWH20, NPD20]. continuous [CHG\(^{+}\)20, CLDC20, FCP21, KK20b, LY22c, MSC\(^{+}\)20, MAPS20, PHHJ22, RMD20, SL20b, SL22a]. **continuing** [SL20b, SL22a]. **Continuum** [LY20a, LZX20, LLZ20b, BD1\(^{+}\)21, BCP22, CHS20, DGL\(^{+}\)22, FM20, JN20, KCK21, KCP20, LSC\(^{+}\)20c, SWG21, XLXC20, ZOG21a]. **continuum-kinetic** [CHS20]. **Contour** [SWM21, CA22a]. contraction [EFO19, EFO20]. **Contrast** [CEL21, AH21, LFT\(^{+}\)20, RSA\(^{+}\)20, YLW21]. **Contrast-independent** [CEL21]. **Control** [TTY22, AR21, BLWL22, BPT\(^{+}\)20, DGW20, FVM22, GGEJ20, HGV\(^{+}\)21, HKKS21, HFB21, LGV20, LW21, LFA21, LHL\(^{+}\)22, MQ20]. controllability [GLJB20]. controllable [WTX\(^{+}\)21]. **Controlling** [DHR20, GPL22, LLO22, SRH21]. Conv [HZ22a]. convected [MBAG21]. **Convection** [PC22, AdS22, DCGQ20, GMRS20, GFG22, GFY20, HSS21, Kiv21, LM21a, LTD\(^{+}\)22, LFZ21, LAS22, MD20b, PKC22, SSPV20, Sev21]. convection-diffusion [DCGQ20, Kiv21, LFZ21, Sev21]. convection-diffusion-reaction [AdS22, SSPV20]. convection-dominated [GFY20, LTD\(^{+}\)22]. convection-pressure [GMRS20, MD20b]. convective [Edo22, KK22b, SKKT21]. **Convergence** [ACHG\(^{+}\)21, JLC21, SN21, TBD\(^{+}\)20, BTCV22, CWW20, CC20, EG20, HA21, JKK20, JW21, LKM22, LJ22, LQX22b, LQX22a, tLjTbZ22, Nis20a, SMRW22]. **Convergent** [JWH20, CX22b, HT21a, JJ21, LZZ21a, MVO\(^{+}\)22, TPPA22, WWG20]. convexification [KNT22]. **Convolution** [HZ22a, FA22]. convolutional [GSW21, GCSH22, LC20, QCZ22, WWFM22, AM22]. convolutions [TPPA22]. cooled [MCBA20]. coordinate [CLT21]. coordinates [Bal21, BSP21, CLS20b, HM21a, MT21, PA20, QSZB20, SOV21, SLOZ21b]. core [LFL\(^{+}\)22]. coregionalization [XKZ21]. Corner [MGA20]. corners [AuIL20, DHM21b]. corona [MFG22, MP21]. coronary [DFP\(^{+}\)21a]. **Corrected** [IRT22, ZA20, HHL20, Kiv21, PA21]. Correcting [JL22, STB\(^{+}\)21]. correction [AÖR22, AF20, BLL19, BLL20, sCpLL\(^{+}\)22, CCH20, DY22a, EOP20, GYWH20, GF21, HMV22, HPPZ20, LRT\(^{+}\)22b, MW22, PEA20, PBJ\(^{+}\)22, PKL\(^{+}\)21, QLY21, Sti20, YYLY22, YOH\(^{+}\)20, ZS22a, ZYW21, ZJ22]. corrector [CEL\(^{+}\)20]. **Corrigendum** [ACML20a, BLL20, EFO20, GRT21, HPA22, LMVF22a, MM22, SNZ20, SYOS21, STEK22, Vre21b, Vre21a, YGJ21a, ZCQ20a, ZC22a]. corrosion [GJLD20]. cosmic [DW20a]. cosmological [BL21a]. Cosserat [AEGV22]. cost [BB20a, DDR22, HYM20, KSS21]. cost-effective [BB20a, DDR22]. **Coulomb** [ALF\(^{+}\)22, HHL20, HL22b]. couple [YGW\(^{+}\)20]. **Coupled** [ACML20a, ACML20b, WCA\(^{+}\)20, ADK\(^{+}\)21, ALF\(^{+}\)22, CBQ21, CBBI20, CIMG21, DEvW22, FSW22, GLSZ22, GNF22, GLJB20, GAB22b, GAC20, HMO\(^{+}\)20, HSS21, JLC22, KGBT20, KSHJ20, LFP\(^{+}\)21, LHFH20, LCJ\(^{+}\)20b.
MD20a, MLM+21, NG22, NMR+22, OYK+22, PEA20, PA21, RSA+22, RR22, SML20, TV22, VMO21, WZSK22, Yan21b, Yan21c, YTK22, ZML20, ZHPZ21, ZJ21.

Coupling
[CDBS21, Li21, SWG21, SWG+20, WW20a, ABH21, AWB+21, BGS22a, CAG20, CS22, DMN22, JHLJ20, KC20b, LG22, LOL22, LW20b, LMN20, MPSP22, MP21, RG22, SWHJ22, vtW22, YKDHC20, ZZML20, ZLW21, Yan21b, Yan21c, YTK22, ZML20, ZHPZ21, ZJ21].

curvature [BTCV22, FO22, LCG22, LW21, ZEG20, ZAMG20]. curve [LZS22a, SM21a]. curve-shortening [SM21a]. curved [AF20, AFGLM20, CBI20, CI21b, CRF+21, Coc20, CMC21, GTKA20, QERT20, RPA22, SOSM20, YLK20, YK20b, ZL21a, ZL22]. curves [JLB21].

cylindrical [CCMC20, CPGD20]. cylindrical [BSP21, FLW20b, SLOZ21b].

D [RG22, WCGZ+20, WZC21, GDAP20, An21a, ATCS20, BGH20, BAK22, BGS22a, BTCV22, BEP+20, BP21, BL21a, BJL21, CDT22a, CMH20, CDL21, CRF+21, CIMG21, CMC21, Da22, DT21a, DFW22, GCCvR22, GPL22, GTDB22, GBLT20, GCSH22, HZTN21, HL202, HBO22, HNF+21, HP21b, ID20, IMJ20, JRY+20, KSTT22, KCS21, LPS21, LP20a, LL20, LDW21, LLCK20, MFG22, MPSP22, MSIM21, ML20, MZ21, NFL+21a, OLS21, Ou21, PWH+22, PBVC22, RG22, SRD20, SLOZ21b, SLOZ21a, Th22, WY22a, WY22b, WGU+22, WZBV20, WK21b, XBR21, ZF20].

damaged [LLZL20]. damped [KS22a, SQSS20]. damping [CCWX22a, CFB22, KSTT22]. Darcy [AKWY20, BMQ20, CY22, GHHR22, LYZ21, NFA21, QHH20, Th22, ZML20]. Darwin [Bar22]. Data [ASSZ21, BT21, CPH+22, DD20, GRL20, GLL20, HSMR20, HZY+22, KV20, KF+22, KLF22, LL21a, MH22a, PR21, WX20, AB22, BJ21, BS22b, BSA21, BSA22, BCSK21, BBA22, CMH20, CHZ+21, CMF22, DD22, DCSG22, DJID20, EHL+20, FFGRLS+20, Gla21, GCC21, HYZH22, KH21a, LSS20,
Data-based [Gri20]. Data-driven [ASSZ21, BT21, CPH22, GLLB20, HSMR20, HZY22, KV20, KFP22, KLF22, LL21c, MH22a, WX20, BSA21, BSA22, BBA22, CHZ21, KH21a, LHA21, MM21a, SWG21, SS21, TTH22, WDL21a, WCM21, WX22, XZWH22, XD22, YMK21, YYL20, ZB21b, ZDS21, ZL21d, ZL21c, ZC22a, ZC22b, ZO21].

debris [GDBFN20]. Debye [ER22, PBCL20].
decaying [GLWY22]. December [Ano20b, Ano21c, Ano21o].
deconvolution [XBD20]. deconvolution-based [XBD20]. Decoupled [ZY20b, CY22, LY202, WZC22, WGY21, WHS22, Yan21c, YTK22, ZHY22, ZH21].
decreasing [FY22, JL21b]. Deep [BCSK21, CCW22, FWNT21, HG20, HRMY20, HWY20, KL20, L 21, LZY22, MH220, TYY22, WCC20, WP21, XZ21, WZ21, XDCF21, ZNCZ21, CCL22, Cha21, CX21, DN21, FY20, FFFY20, GZ20, HMMO20, HNS20, HLZ20, HX20, J20, JKK20, KTDB20, KK20a, KTBP20, KS22c, KKY22, KBC22, LC20, LY22b, LHA21, LZC22, NCC21, OKTD21, SMF20, TLD20, TWL22, THKT21, VRK21b, WL20, WZ20, WCL20, WWFM22, WXZ22, WX20, X 22, XZ22, XZ22, YHC22, YCC22, ZZZ22, FB22, JADS21].

deep-learning [MH220, XNW21]. deep-learning-based [TLD20].

dependencies [VRAM21]. dependent
Diusion-redistanciation [MSIM21].

diusiophoretic [LHM20].
diusive [JJ21, LPZ22, MRBS22, PCQL20].
digital [HP21b, TSS+20].
Dilatancy [BFNK+21, GDBFN+20].
dilute [PM21a].
dimension [KSHJ20, KWS22, LCH20, Lem20, PBCL20, VACE21, ZYD20].
Dimensional [SFP+20, AG21, AdDMT21, ALFN22, AAKW20, BCWD21, BL20, Bal21, Bar21b, BDL+20, Bre20, Cam21, CPX21, CCM+22, CL20b, CSS20, CLS20b, CLJ+20, CS21c, DEN22, DY22a, DM21, DV20, DV21, DZ22, DJID20, EHW21, EHL+20, EMS+21, FSW22, FZ20a, FTZ22, FWG22, FGL+22, GHY22, Ga22, GY22, GZ21, HLZ20, HZD21, HRR21, HGSK22, Hua21, JPAZ21, JLL22, KTB20, KV20, KLG+22, KKY+21, LL20, LSW20, LWR20, LDM+21, LZS22a, LZS22b, LY22a, LJZ21, LRT22a, LY20b, Liu21, LPZ22, MDG20, MCB20, OWHN22, OYK+22, PB20a, PMF20, PLV20, PRL22, QPW21, QSZB20, SL20a, SB21, SOV21, SWM21, SKCM22, SDA+21, TTY22, TL20, TTP22, VCNC+21, XZ22, XS20, XLC22, XY20b, XZW22, XM20, YLT20, YMY+21, YWLL21, YNT20, ZBYZ20, ZZZ22, ZCH22, ZGL20, ZFG21, ZWZL22, ZPGR22, ZSY21, ZQS+21, ZQL+22, aKAK20].
dimensionality [WDH+21].
dimensionally [BVRS22, SBL22].
dimensionally-reduced [BVRS22].
dimensionally-split [SBL22].
dimensions [BY20, CJLL21, FCB22, GL20, GHTC21, JWZ20, KKCC20, LZC+20, MTO21, MK20, SPV20, SH22, TRC22, TPYX22, XY20a].
Diminishing [CF21, DLY22].
dioxide [SFP+20].
Dirac [HP22, AFGLM20, CL20a, Kho20, YX22, Yin21].
Direct [EGTC+21, GF21, JG21, KD20, LMZ21b, QAS20, VRK+21b, WCA+20, WGB22, YK20b, AWB+21, BBGT21, CPX22, DY22a, FSB+20, GMC+20, HM21a, HLY20, KKM21, LCP21a, LHM20, QLY21, RKR20, SG22, SES21, ZB21c].
direct-adjoint [SES21].
Direct-forcing [GF21].
direction [CQA21, LSTZ21].
direction-splitting [CQA21].
directional [CAT20, DGW20].
Directly [HCCR22].
Dirichlet [ASS21, PR21, LS21, YGL20].
discharge [MP21, NBR22].
discharge/drift [MP21].
discharge/drift-region [MP21].
discharges [LZC+20, SW22].
discontinuities [BB20b, Far20].
Discontinuity [BB20b, C21, KK22a].
Discontinuity-driven [BB20b].
Discontinuous [Bal20, BNN20, FCL21, Hac21, Hig20, KJK21, Mar20, ZYD20, AdS22, AOR22, AMB22, AMM+20b, AMM20a, AHWZ20, BL22, Bal21, BZSF20, BCF22, BGG21, BKY21, BWG+20, BV22, BX20, CHS20, CY21, CBQ21, CK20, CLW22, CLDC20, CS21b, CZL20, CBB20, CI21a, CI21b, CX22a, CMRR21, DY22a, DLP21, DCQ20, DH20, DT20, DK21, EM20, FMW20, FHK21, FGY22, FDP20, GK20, GAB22b, GC20b, GAC20, GHTC21, HMV22, HYQ20, HRY+22, HTL21, Hig22, HQ22, HR20, HLY20, HJ21, JTW22, JKJ20, JK20, JJ21, KGBT20, KSG20, LCS22, LSXC20, LWR20,}
LLNL21, LM20a, LSZ21, LMFV22a, LMFV22b, LAN21, MN21, MRK+20a, MRK+20b, MRK+20c, MOBR22, NdlLPL21, NMR+21, NMR+22, PP22a, PWH+22, PBN+21, PH21, PS22a, PKL+21, PLKM22, PD21, PGCC+22, QLY21, RMD20, RBD+21, RRHH+21, RRFK+21, Sar21a, SLWRG21.
discontinuous [SL20b, SL22a, SMAY22, SCdHJ20, SKCM22, SX20, SSX22, TCS22, TJ22, TCR+20, Tow20, VCNC+21, WZL21, XSSS22, YXY21, XY22, YK20b, ZSP20, ZB21b, ZS22a, ZCQ20a, ZCL20, ZZYX20, ZQS20, AM22, DHHR20, PKG20].
discontinuous-Galerkin [SL20b, SL22a].
Discovery [XCZ20, BT21, BCSK21, HZY22, XZW21, XDCF21, ZL21c].
discrepancy [PBJ+22].
Discrete [CJ21, KSK21, SMRW22, ZG20, BO22, BGR20, Cal21, CFM22, DD21, FFY21, GKL21, HL20, HHS22, JLL22, KBCG20, LW20a, MBBV22, PRL22, RR22, SM21a, WY22a, WY22b, XY20b, YGW+20, YZSD21, ZCYS20, ZA21, DSG+22].
discrete-ordinates [BO22].
discretely [YD20].
discretisation [BGGM21, PKG20, PH22].
discretisations [BMV22, CJ21, PP22b].
discretization [AOR22, BS22a, BGH20, BO22, BDM22, BMQ20, CEL+20, CHG+20, CLS+20a, CZLC22, CMS+22b, DSBFN+20, GA20, HMO+20, HLX21, JK20, JJ21, KNLB21, LL21a, LRT+22b, MSC+20, MOBR22, MMRP22, PCK22, RC20b, SKT20, STK21, USRH20, WLZ21, ZS22a, ZPGR22].
discretizations [BTCV22, BL21b, CELV21, FMWK20, HSW21, KK20b, KdL20, LM21c, MBTS20, OP20, PP22a, SAS+21, YOH+20].
discretized [JPAZ21, Kh20, LP20b, WZ21a].
dislocations [PBO20].
disperse [CI21b].
dispersed [PM21a].
Dispersion [KY20, An21a, CKN22, DGW20, LCR22, PCL20, SFNM20, SFNM+F21, ZPK22].
dispersion-dissipation [KY20].
dispersionless [Puk20].
Dispersive [BBH+20, BDT21, CCER20, GKPT22, TCS22].
displacement [VPL20].
displacements [FGKY22, GLY20, JFH21].
dissipation [AK22, sCpLL+22, CDX+21, FFRT+21, FAHA20, FAA20, GMMS22, HYQ20, KD21a, LFA21, LYZ21, LCR22, MM21b, MD20b, PLL+21, RKVV20, TFWX22, TSTH20, WTX+21, WZTZ21].
dissipative [GS20, KK22a, Li22, LL21d, MHW21, SBL22, TCS22, YD20, ZS22b].
distance [GC22, Nis21, WX22].
distillation [KK21].
Distilled [HL20, KSH20, KHS20, SGPW21, ZLC+20, ZO21].
distributed-memory [ZLC+20].
Distribution [STG20, AOR22, Ara20, AR20, BCJM20, KKS21a, KKS21b, LRAQ22, SWG21, ZCYS20].
distributions [HGSK22, TT20, ZOG21a].
disturbance [PA21].
divergence [CBCT+21, DW20b, EOP20, Fu20, GEvWD22, KK20b, LZZ21b, LZLS21].
divergence-conforming [CBCT+21].
divergence-free [DW20b, Fu20, LZZ21b, LZLS21].
dividing [HST22].
DLGA [XC20].
DLGA-PDE [XC20].
DNS [HW20a, PO21].
do [MX22].
domain [ABH21, AMGCL21, An21a, BDT21, BGH20, GBS22a, DMRG22, GSW21, GTDB22, GPS20, HL21, KS21b, L122, LZ20a, LRU20b, LLN22, LLCK20, MD20, MPP22, MP21, MMRP22, OYK+22, QHLL20, RC20b, SGP21,
SJK21, SSG+20, SBVW20, TPB22, Thu22, TLB20, VACE21, VEC21, WRBK20, WCF+21, WY22a, YGL20, ZLW22b. domains [ASS21, BFRG22, CLS+20a, CPK22, Cc20, CCdS20, CNCM21, DSZ20, DS20, GLL22, HR20, Jai22b, LWY+20, LSLH20, QG21, RS20b, RFZ22, RMWS21, Say22, SWF21, YLT20, YLS21, Yua21, ZPGR22]. dominance [ARR21].

effective [HGB20, LFP+21, MJJ21, WNZ20, ZZX20]. Effective [Ce20, LeCXL+20, ABDD20, BB20a, DDR22, LPS21, LAS22]. effectiveness [KS22c]. Effects [SSPV20, BV21, CBCF20, DSSSP20, GDBFN+20, GPSMH20, HPW21a, MH22b, SFP+20, ZGK+22]. efficiency [DCA+22, DBC+22, NG22]. Efficient [BCG+20, BOB21b, BOB21a, CL21, CCM+22, CT22, CLW20, CM20, CI21b, CEBG22, CMC21, FZS+21, HV20, JBF21, LM22, LMN20, PB22, Po22, WL20, XLLH21, Yan22t, YJK21, ZCY+21, ATCS20, BGFR20, BG20a, CGC21, CSM20, CFM22, CD22, DGG22, DWZ20, DJJD20, EDLF20, GLT+20, GFJ+20, HL22a, JI21a, KIH21, KG20, KCCJ21, LCJ20a, LLQC21, LZC+20, LFT+20, LNC+21, LL21d, LX21, LM20c, MNG+22, MYL21, MPMD20, NW20, Oru21, PLL+21, PK20, RS20b, RR22, RBPRST20, SWF21, Sin21, TTY22, TFCH22, T22, Vev21, WRGB20, WGU+22, vWS22, WVL21, Yan21, XBS22, ZQYS20, ZZC20, ZOEL20, vdBSB20]. efficiently [MCBA20]. eigenanalysis [MAPS20]. eigenmodal [MD20c].

electrode [FGD+21]. electrodynamics [KBCH20]. electrohydrodynamic
[LB20, PHP21]. electrohydrodynamics [XSHH20]. electrodynamics
[WLZ21]. electrolyte [WZC21]. electrolyte-dielectric [WZC21].
Electromagnetic [LLZL20, BAK22, CJLL21, CMS+22b, LSY20b, LMUHR22, LMHL21, Par22, PP22c, RC20a, Sem21, USRH20, ZZY21].
electromagnetics [MPSP22, RC20b]. electromechanical [RSA+22].
electrons [CHS20, CDT22a, CCLM22, HPRW20, LCS22, SC22b]. electronic
[DLZZ21, Dup21]. electronics [EC20, Le21a]. electrophysiology
[BBQ+21, DXY22]. electrostatic [Ere22, SGM20, SGM21, TRC22].
electrostatics [CEBG22]. electrostatics [EBM20, BAK22, CJLL21, CMS+22b, LY20b, LMUHR22, LMHL21, Par22, PP22c, RC20a, Sem21, USRH20, ZZY21].
electrostatics [EBM, BAK22, CJLL21, CMS+22b, LY20b, LMUHR22, LMHL21, Par22, PP22c, RC20a, Sem21, USRH20, ZZY21].
Electromagnetic [LLZL20, BAK22, CJLL21, CMS+22b, LSY20b, LMUHR22, LMHL21, Par22, PP22c, RC20a, Sem21, USRH20, ZZY21].
electromagnetics [MPSP22, RC20b]. electromechanical [RSA+22].
electrons [CHS20, CDT22a, CCLM22, HPRW20, LCS22, SC22b]. electronic
[DLZZ21, Dup21]. electronics [EC20, Le21a]. electrophysiology
[BBQ+21, DXY22]. electrostatic [Ere22, SGM20, SGM21, TRC22].
electrostatics [CEBG22]. electrostatics [EBM20, BAK22, CJLL21, CMS+22b, LY20b, LMUHR22, LMHL21, Par22, PP22c, RC20a, Sem21, USRH20, ZZY21].
electrostatics [EBM, BAK22, CJLL21, CMS+22b, LY20b, LMUHR22, LMHL21, Par22, PP22c, RC20a, Sem21, USRH20, ZZY21].
LB21, LDLW21, LYZW21, LNYD20, LBM20, LM20b, LsC LoL +20, MMZR21, M RK +20c, MHW22, MM21c, MM22, NdlXPL21, NMR +21, PM22, PP22c, QWZ21, RC20a, San20, SHL +20, SMAY22, SN21, TT22, VTC20, VSB +21, WZSC22, WLZP21, YT20, Yan21b, Yan21c, ZEG21, ZY20b, ZOWW20, ZHY22, ZPGR22, ZR20, ZH21]. energy- [CCY +20, Ere22, ZPGR22].

energy-and [JM22]. energy-based [AHWZ20, HSW21].

Energy-conserving [GLLM22, KS21c, FZQ22, MM21c, MM22, RC20a, San20].

Energy-consistent [Iij21].

Energy-decreasing [FY22].

Energy-preserving [HHS22, HL20a, MHW21, XLZ21, CS20, JWC20, MHW22, VTC20].

Enriched [BZ20, CHT20, KNLB21, HRR21, WBN21]. enrichment [HW20a].

ensemble [MLCM21, MTWBT21, ZMSX20]. ensembles [YG21]. Entropic [BT20, GT21]. entropies [Ran22].

Entropy [BVRS22].

entry [BVRS22].

equity [BS22b].

Equation [MOBR22, WK21b, ADK +21, An21a, AC +22, AGFLM20, AMM20a, BLF20, BGH20, BO22, BAK22, BG20a, BVT20, BT20, BZ20, BGH21, BY20, CS21, CCL21, CCWX22a, CDT22a, CLDC20, CLY21, CKT21, CWW20, CP20, DS22, EHW21, EJ21, FLZ20, FZ20a, FGD +21, FMI21, FMOJ22, Gar20, GR21, GLLB20, GS20, HPA22, HSW21, HGH20, HA21, HS20, HRRA19, HQ20, HRCG20, HCCR22, HJJL20, JL21a, Jia22a, Jia22b, JWH20, JPAZ21, JWZ20, JRF21, KTDG20, KSTT22, KS22a, Kar22, KS11, LL20, LSC20a, LKEM21, LPP +20, LM21b, LGZ21, LJ22, LSXC20, LYY20, LXD +20, LWR21a, LZX22a, LT22, LQX22a, IJ221, LZ20b, LHWZ21, LM21c, LLSD20, MRK +20c, MBAG21, MGL21, MCVF22, MRBS22, MPM20, NS22, NT20, NMR +21, OP20, OGVM20, PSL20, P20, Pan20b, PZ20, RS20c, RBPRST20, RA21, RYW21, RWMS21, Sar21b, STEK17, STEK22].

equation [SL20b, SL22a, SSPV20, SL22b, SMAY22, SCdHJ20, SMRW22, SQS220, SACT21, TZ21, TZNHD20, TBST20, TBE20, TKR22, TS20, TL21, TPYX22, VRK21a, VMBS20, VVRWT21, WWG20, WZC21, WNB21, WJKW20, WZBV20, Xia21, XFR21c, XG22, YLK20, YCH21, YY22, YW22,
Equations
[CCPS21, ADK+21, AdS22, AG21, AMB22, AST21, AZ22, AHWZ20, AR20, AK21, ARR21, BDT21, BFP21, BL20, BT21, Bal20, Bal21, BBH+20, BGNZ22, Bar21b, BFM21, BM21, BGGM21, BL21a, BP22, BKY21, BWG+20, BDL+20, BP21, BGS+22b, BJL21, CCE+22, CMR21, CP22a, CLW22, CHT20, CHSS20, CZ20a, CCY+20, CCWX22b, CDX22, CSS20, CLS20b, CTCS22, CCE+21, CBRY21a, CBRY21b, CK21, CPK21, CTH20, CCHS20b, CA22a, CCdS20, CDS22, CEM20, DEN22, DY22a, DM21, DLP21, DCGQ20, DH20, DYP20, DWH20, DZ22, DFRG20, DTB20, DVB20, DFP+21b, EOP20, FPT20, FZQ21, FHWK21, FJH20, FWNT21, GCCvR22, GMB+22, GHY22, GLSZ22, GCDT22, GGB20, GBLT20, GNF22, GHNS21, GYZ21, GKPT22, GLWY22, GHTC21, GWZ22, HVM22, HSM20, HNS20, HLM+20, HYQ20, HJ22, HRRHG21, HKS20, Hig22, HKMR20, HMO+20, equations [HHS22, HR20, HL20a, HL20b, HLX21, HLH21, HSW22, HXX22, JHY21, JTW22, JCLK21, JKJ20, JK20, JLQY21, KCS21, KTB20, KBB21, KLS+20, KKP20, Kiv21, KZ21b, KNT22, KCK21, KLZ20, KMF20, KKP20b, LPM+20, LJW+22, LN21a, LN22, LP20a, LG20, LD20a, LCJ20a, Li20, LCSZ21, LZZ21b, LG21, LH21, LY22b, LLO22, LQQX22b, ILTZ20, LNYD20, LW20a, LSLH20, LFZ21, LZL21, LW21, LP22, LWY22, LMYF22a, LMV22b, LM21c, LLSD20, LP20b, LM20c, LCJ+20b, LZCC22, MSC+20, MD20a, MTK22, MRK+20a, Mar20, MHLR22, MOBR22, MB21, MYL21, MM21c, MM22, MD21f, MHY20, NGZ22, NN22, NG20, NW22, OY21, OWHN22, Osi20, PWH+22, PCB21, PCB22, PB20b, PCQL20, PA20, QG21, QW21, QLY21, QW22, Ran22, Ren21, RC20b, RRHH+21, RRHF+21, Su22, SKT20, SHS+20, Sem21, SDKL21, SWF21, SSS20, SM21a, SML20, SX20].

equations [SSX22, Sva21, TCS22, TL20, TWL22, TPK20, TSH20, VVL21, WX22, WCZ+20, WZT221, WK21a, WZSC22, WCB20, wtWHG+22, WX20, WHS22, XBH+22, XLZ21, XSSS22, XZW21, XJS21, XM20, YLNT20, YXY21, YCC+22, YLS21, YMY+21, YWLL21, YGL20, Yua21, YND22, ZL21c, ZBY21, ZZZ22, ZNCZ+21, ZA20, ZCQ19, ZCQ20a, ZQY20, ZG20, ZL21c, ZL21b, ZMY22, ZSM22, ZPG22, ZLW+22a, ZZYX20, ZOG21b, ZH21, ZYD20, ZL22, aKAK20].
equidistribution [KH20].
equilibrat [MX22]. equilibria [HP22]. equilibrium [AAM20, CSCL20, CSS20, EM20, EFR21, GLJB20, HJJL20, JTTZ22, MSIM21, NKT21, PCF21, SVW21, TZ20, WLW+20].
equilibrium-diffusion [CSS20].

EQUIP [CHSS20].

Equivalence [MMPD21].
equivalent [HCL20, MMRP22].
equivariant [GDLL22]. Erdos [CY21].

Error [ZPK22].

Error-optimized [ZPK22].
[BSA22, HLA20c, SSK20]. estimate [KNT22], estimates [Gri20, KS22b].

Estimation [TT20, BLL19, BLL20, BCG +20, BS20, CGJM21, HB21, KC20b, KNP20, KBC22, LG22, LT20a, POS +20, VM22, XLLH21, ZHL21].

estimator [GTDB22, WW20a], estimators [BLWL22, ZS21b], Euler [BLL20, BLL19, Bal21, Bar21b, BDL +20, BJL21, CBBI20, GMRS20, GGB20, HRRHG21, HBF22, HYZ22, JTW22, LP20a, LD20a, LCJ20a, LG21, MS20b, PRL22, Ran22, Ren21, SEG21a, Sva21, TPK20, WX22, WZTZ21, ZHL21].

estimator [GTDB22, WW20a], estimators [BLWL22, ZS21b]. Euler [BLL20, BLL19, Bal21, Bar21b, BDL +20, BJL21, CBBI20, GMRS20, GGB20, HRRHG21, HBF22, HYZ22, JTW22, LP20a, LD20a, LCJ20a, LG21, MS20b, PRL22, Ran22, Ren21, SEG21a, Sva21, TPK20, WX22, WZTZ21, ZHL21].

Euler/Navier [WZTZ21]. Eulerian [LGY +20, CQY21, CLLL20, CCLM22, DKM +20, DDVO21, DGW20, DLY22, EM20, FHWK21, GBC +20, HLA20a, HSXZ21, HQ22, JN20, KKS21a, KVIH20, KBS +21, LG22, LPL +22, LZX +22a, NFL +21b, PM21a, PJW21, QJW22, REC +22, RRPS21, SSM20, SRTB21, TSP22, TKR22, WWYC21, WZL21, YL21b]. Eulerian-Eulerian [PM21a]. Eulerian-Eulerian/Eulerian [PM21a]. Eulerian/Lagrangian [LGY +20]. Evaluation [GJL20, BFL20, CCM +22, KKCC20, NDH20, NMGR21, SL20a, YSTK20].

Evaluation [GJL20, BFL20, CCM +22, KKCC20, NDH20, NMGR21, SL20a, YSTK20].

evaporation [KVH20, RKRW20, ZZN22]. evaporative [PR20]. event [ZSM22].

evolution [ARB +21, BGNZ22, CCE +22, KH21a, Mon21, SM21a].

evolutionary [LINZ21].

Exact [LP21, WHN +20, AMB22, FML21, PWXY22, PP22c, SEG21b, THH22].

Exact-interface-fitted [PWXY22]. exactly [CLLL20, DN21, HR20].

Exceptional [NPD20]. exchange [LWZ22]. exchanges [LP21]. excitations [GC20a].

Exclusive [FA22]. existing [MVO +22]. exit [YZdCNS21].

Explanable [THKT21]. Explicit [BFM21, TBW22, ADP22, BMV22, Bal21, Bar22, BCP22, CMR21, CSY20, CELV21, Cs22, EC20, FGKY22, FCWS22, GTDB22, GFG22, KGBT20, KKPB20, LJW +22, LP21, Liu20b, MYM +21, MYL21, NIT21, NYY22, SC22a, TCS22, VN21, WWG20, WH21, ZQYS20, ZH20, BD20a].

exploring [SvDtTB21]. exploration [HLX21].

explosion [GZW20a, IWY +20].

Exponential [CCHS20b, CEM20, LSC20a, AAKW20, CBQ21, CEMO21, FY22, GJL20, GRT18, GRT21, JW20, Lj22, LL21d, MH21, MMDP21, PC22, YGJ21a, YGJ21b, YYY21].

Expression [RHSK21]. expressions [SL20a]. extend [HMOO20].

Extended [LT21, ACHG +21, CMSS21, LNZL21, LYZW21, XHS21, ZG21].

Extension [SLOZ21b, ÀOR22, LIV +22, PGCC +22, QG21, RGG22, XY20b, ZC22a, ZC22b, ZL22, HSS21]. exterior [THH22]. extinction [PM22].

expansion [SH20].

evaporative [PR20].

event [ZSM22].

exceptional [NPD20]. exchange [LWZ22]. exchanges [LP21]. excitations [GC20a].

Exclusive [FA22]. existing [MVO +22]. exit [YZdCNS21].

explanable [THKT21]. Explicit [BFM21, TBW22, ADP22, BMV22, Bal21, Bar22, BCP22, CMR21, CSY20, CELV21, Cs22, EC20, FGKY22, FCWS22, GTDB22, GFG22, KGBT20, KKPB20, LJW +22, LP21, Liu20b, MYM +21, MYL21, NIT21, NYY22, SC22a, TCS22, VN21, WWG20, WH21, ZQYS20, ZH20, BD20a].

exploring [SvDtTB21]. exploration [HLX21].

explosion [GZW20a, IWY +20].

Exponential [CCHS20b, CEM20, LSC20a, AAKW20, CBQ21, CEMO21, FY22, GJL20, GRT18, GRT21, JW20, Lj22, LL21d, MH21, MMDP21, PC22, YGJ21a, YGJ21b, YYY21].

Expression [RHSK21]. expressions [SL20a]. extend [HMOO20].

Extended [LT21, ACHG +21, CMSS21, LNZL21, LYZW21, XHS21, ZG21].

Extension [SLOZ21b, ÀOR22, LIV +22, PGCC +22, QG21, RGG22, XY20b, ZC22a, ZC22b, ZL22, HSS21]. exterior [THH22]. extinction [PM22].

extract [WNM21]. extraction [LEH +21]. Extrapolated [CRPB20].

extrapolation [KB22b, MYL21]. extreme [DL21, DY22b, Gri20].
extremum [DDR22]. extremum-preserving [DDR22].

flow [SBH21, SBC20, SWG+20, SRV21, SAL+20, Sti20, TLD20, TV22, Ul20, VACE21, Vre17, Vre20, Vre21b, Vre21a, WL20, WCL+20, WNB21, WCM+21, WH22, WZBV20, WGY+21, WK21b, XF21a, XCL+21, XZR21, YHC+22, Yan21c, YA21, YRH22, YZK20, YL21b, YP22, ZC20, ZL21a, ZHP21, ZJ21, ZZZ20, ZF20, ZD21, ZSNN22, vHP22]. flow-acoustic [EK21]. flow-coupled [Yan21c]. Flow-driven [EPL21]. flow-finite [ZJ21]. flow-induced [FTP20, ZHP21]. flow/porous [SWG+20]. flow/porous-medium [SWG+20]. flowfields [MHWY21]. flows [ARTB20, AF20, AKW20, BL22, BDB22, BB20a, BV20, BV21, BBD+20, BL21a, BDMP22, BFK+21, BDB21, BMQ20, Cal21, CCP21, CPX22, CSQL20, CZL20, CD+20, CD+21, CAT20, CBB21, CI21a, CI21b, CRF+21, CCMC20, DCHF21, DDVO21, DSPB22, DevW20, DC21, DJ20, DS21, EGTC+21, EM20, Eld22, EAA+22, EFO19, EFO20, FZL20, FCW21, FWG22, GDBFN+20, GJS20, GMMS22, GYF20, GLK20, GTKA20, GDF21, GZW22, GCL+22, HPW21a, HJK21, HV20, HYSS22, HRY+22, HZHL22, HCL22, HGH20, HBF22, HSZ20, HGB20, HT21b, HYZ22, HLA20b, HLA20c, HLA21, HLA22, HZ22b, HP21b, HJ20, JMM20, JMM22, JKZ21, KLS+20, KL22, KK22a, KSBG20, KCC21, KKS+21c, KD21a, KD20, KK22b, KT20, LL20, LLK21, LWL22, LVK+22, LLW20b, LOL20, LLY20, LNL21, LCR22, LZPM22, LZ22b, LLP22, LZ20a, LY20a, LSZY20, LSC+20c, Liu20a]. flows [LNC+21, LMZ+21a, Liu21, LRT+22b, LCP21b, LFL+22, LLC20, LAN21, LYY22c, MJ21, MA21, MCBA20, MEB21, MM21a, MM21b, MM21c, MM22, MLCM21, MFR22, MAPS20, NZXM21, OLS21, OYK+22, PA21, PCF21, PK22, PM21a, PJW21, PKG20, PRR20, PRL22, PLKM22, PO21, Pop20, REC+22, RUG20, RR22, RWDG22, RZH20, RSA+20, RE20, RE22, SOV21, SCB20, SPF21, SGPW21, SEG21b, SC22a, SAS+21, SRO20, SPZ22, SKTK21, SKCM22, SZW+20, SLOZ21b, SLOZ21a, TT22, TZZ+20, TGS+22, UBT22, U22, VTC20, WQZ20, WYS20, WABK21, XLXC20, XIN+20, XS20, XHH22, XYL22, YGW+20, YZSD21, YLW21, YKL21, YFY22, YL21a, YDC22, ZEG21, NZ20, ZXS22, ZCS20, ZCL20, ZSc+22, ZR20, ZLW+21, ZCY+21, ZNN22, ZSQ21, ZPS+21, ZO21, ZGK+22, ZWB21, ZOEL20, dSLdA+22]. fluctuating [MGP+22, MTK22, RPA22, RPD+21].

Fluid [DJ20, FMB20, KIH21, MS20a, MKB20, VSS21, ASW21, ASS21, BMA21, BV20, BV21, BVR22, BL21a, BPD21, BBKB21, BSP21, CNCP21, CPGD20, DC21, DSS20, DS21, DC22, DGPP22, DFJ20, EG20, FTP20, FAD20, FGL+22, GDL22, HdB20, HLA20a, HZTN21, HSX21, He22, HV21, HL22b, HW20a, HM21b, HS20, HT20, IMJ20, JRY+20, JLCT22, KBS+21, KKS+21c, KCM20, LPM+20, Len20, LLD20, LDL21, LZ+22a, LZ22b, LOL22, LHT21,
LRW21b, LBM20, LSLH20, LT20b, LSZ21, LFL+22, LMR20, LHFW20, MWY+20, MHYW21, ML20, MT21, MRT+22, MD22, MMRP22, MMDMB22, NIT21, NG22, NZXM21, NKA+20, OB20, PPV+21, PBVC22, QKG21, Rei22, RPA22, SOSM20, SBH21, SCB20, SPF21, SRV21, SC22b, TF20, WCM+21, X20, YLW21, YK20a, ZZM20, ZZC20, ZRH21, dKSA21, KB22a.

function-based [ZCYS20]. functional
[AFL22, LRVF22, MYM+22, RPDO+21, TMG20, VGK21, WZ21a, YB22].

Galerkin [LMFV22a, ZCQ20a, ADK+21, AdS22, AÖR22, AMM+20b, AMM20a, AM22, AHW20, BL22, Bal20, Bal21, BZSF20, BCF22, BGGM21, BKY21, BWG+20, BNN20, BV22, BX20, CHS20, CQY21, CBQ21, CK20, CLW22, CLDC20, CZL20, CBBI20, CI21a, CI21b, CX22a, CX22b, CMRR21, DEN22, DY22a, DCGQ20, DH20, DHR20, DT20, DK21, EM20, FMWK20, FHKW21, FGKY22, FCL21, FCY+20, GQR21, GK20, GAB22b, GC20b, GAC20, GHTC21, GLLM22, Hac21, HMV22, HYQ20, HTL21, Hen21, Hig20, Hig22, HSNR20, HQ22, HR20, HLY20, JTW22, JKJ20, JK20, JJ21, KGBT20, KSBG20, KMF20, LCS22, LITD+22, LSXC20, LWR20, LNLN21, LM20a, LSZ21, LMFV22b, LAN21, MSC+20, MN21, MRK+20a, MRK+20b, MRK+20c, Mar20, MOBR22, MAPS20, NdLLPL21, NMR+21, NMR+22, PP22a, PKG20, PZ20, PBN+21, PH21, PS22a, PD21, QLY21, RMD20].

Galerkin [RBD+21, RRHH+21, RRFK+21, SSK20, SLWRG21, SL20b, SL22a, SMAY22, ScdHJ20, SJGC21, SKCM22, SX20, SSX22, TCS22, TCR+20, VCNC+21, WRH20, WTX+21, WZL21, XSSS22, YYX21, YX22, YK20b, Yua21, ZSP20, ZB21b, ZS22a, ZCQ19, ZCL20, ZZ20, ZZXY20, ZQS20, ZYD20].

gas-gas [CZL20]. gas-kinetic

Gaussian
[BKY21, BGH21, CL20b, CHOS21, CCN21, DS20, HRMY20, JLRZ20, LT20a, MRT+22, MYZ22, STG20, STB+21, WLPK20, WSAZ22, XCL22, ZXMK21].
GBS [GRC+32]. GCR [GB22b]. GDM [BBH+20]. Gegenbauer [FA22].
GEGS4 [WMTQ20]. GEGS4-1 [WMTQ20]. GENE [MD+20, RHSK21].
GENE-3D [MND+20]. General
Gradient-consistent [HW20a]. gradient-index [SML20]. gradients [NW20]. grained [BT21, RK21]. graining [CPX21, KK20a]. granular [BFNK+21, EM20, LY20a]. Graph [FBD+22, HTKT21, CCPS21].

Graph-based [FBD+22, HTKT21]. graphed [THH22]. Grassmann [OA21].

Graph-based [FBD+22]. Graph-Informed [HTKT21].

Graph-based [FBD+22]. Graph-Informed [HTKT21].
Helicity [HLX21, GGB22, ZPGR22]. Helicity-conservative [HLX21]. Helicity-conserving [ZPGR22]. Helmholtz [CE21, CCM+22, DMRG22, DZZ22, FJJH20, FCL21, JZL21a, JWH20, LJJ2, MBAG21, SML20, SACT21, TZNHD20, TBG20, WCZ+20, YRC+21, YCC+22].

Helmholtz-curl [YRC+21]. Hemodynamic [AP20, HSXZ21].

Hemodynamic [BCPV21]. Helmholtz [CE21, CCM+22, DMRG22, DZZ22, FJJH20, FCL21, JZL21a, JWH20, LJJ2, MBAG21, SML20, SACT21, TZNHD20, TBG20, WCZ+20, YRC+21, YCC+22]. HEMI [Bai21]. Hexahedral [GHY22, KRL21]. Hexahedrons [ML20]. Heydari [Pan20b]. hidden [HYZH22]. Hierarchical [LSL20, HRG20, LY20b, RV20, TPYX22, XHC22, ZTS20]. hierarchically [WCM+21]. hierarchies [PH22]. Higgs [MPMD20]. High [BGH20, BG20a, BD20a, BP21, CBQ21, CPX22, CF21, CSS20, CPGD21, DT20, DT21b, DT22b, FHWK21, GBC+20, GCDT22, GLY20, HPPZ20, HLY20, HXX22, KS22b, KLN20, KL22, KKSY21, KK21, LJW+22, IVK+22, LCS22, LD20a, LH20, LRAQ22, NFL+21a, NFL+21b, NBR22, NW22, PZX20, Pan20a, PP22b, PBN+21, RMW21, Say22, SBL2, VBA22, WLH21, XBJ+22, XSS22, XM20, YXX21, ZEG21, ZCQ19, ZCQ20a, ZQS20, ARTB20, ALFN22, ASKH21, ADP22, AP20, AH21, AMM+20, BCWD21, BBI+20, BBF20, BL21b, Cam21, CPX21, CBF22, CL20b, CND22, CND+22, CLP21, CCD20, CMRR21, CNCM22, CA22b, CCLM22, DHM21a, DM21, DV20, DV21, DC21, DHR20, DY22b, DJID20, DK21, DGW22, EHL+20, FZQ21, FMWK20, FZ20a, FML21, GDL22, Gao22, Gla21, GZ20b, GY21, GHTC21, HBFB20, HMV22, HPW21a, HL20, HD21, HGS22, HRRH21]. high [HKS20, HGB20, HL20a, HZ22b, dMKJ+22, ILX22, JZL21a, JZSX20, KSTT22, KTBP20, KV20, KBB21, KIIHB21, KLG+22, KL22, KdMJ+22, KJDm+22, KD20, KdL20, LPL+22, LC22a, Li20, LCSZ21, LLQC21, LG21, LCR2, LY22a, LRW21b, LM20a, LSZY20, LF22, LscX+20, LZCC22, MHW21, MHH22, MGA20, Mon21, MAPS20, NS22, NPD20, Nic22, NGK+21, NKA+20, OW2022, PBP21, PM21b, FS22a, PD21, QG21, RUG20, RF22, Ren21, RWDG22, RZH20, RSA+20, SZN19, SZN20, SMSAGG22, SEG21b, SR22, SW21, SFNM+21, SS22b, Z21, TFWX22, TTY22, TCS22, TL20, TCA21, TJ21, TZNHD20, Uil20, VVRWT21, VSB+22, WGY20, WTX+21, WABK21, WZBV20, WGY+21, WLLZ21, X22, XDLX21, XHX22, XCL22, XBL21, YSCM21, YLW21, YJSX22, YOH+20, YCC+22, YW22, ZSP20, ZBY20, ZR21b, ZZZ22, ZWY21, ZML20, ZL21a, ZL21c, ZHR20, ZJ22, ZL22b, ZO21, ZOEL20]. high-contrast [AH21, RSA+20]. high-dimensional [ALFN22, BCWD21, CL20b, DV20, DV21, DJID20, EHL+20, GY21, HL20, HZ21, HGS22, KTB20, KV20, KLG+22, TTY22, TL20, X22, XCL22, ZBY20, ZZZ22]. high-fidelity [AFP22, BBF20, XHX22]. high-frequency
High-order [BGH20, CPX22, CF21, DT20, DT21b, DT22b, FHWK21, GCDT22, GLY20, HPPZ20, KS22b, KL22, KK21, LJW+22, LVK+22, LH20, NFL+21a, NFL+21b, NBR22, NKW22, PXZ20, Pan20a, PP22b, PBN+21, RMWS21, Say22, SBL22, XBH+22, XM20, ZQS20, ADP22, AP20, AMM+20b, BBH+20, BL21b, Cam21, CPX21, CBF22, CND22, CDN+22, CLP21, CQdS20, CMRR21, NC22b, CA22b, CCLM22, DHM21a, DC21, DHR20, DY22b, DK21, DGW22, FML21, GDLL22, Gla21, GZW20b, HGB20, HL20a, HZ22b, dMKJ+22, JZSX20, KBB21, KLF22, KdMJ, KdL20, LCJ20a, Li20, LLQC21, LCR22, LRW21b, LM20a, LsCXL+20, LZC22, MHW22, MGA20, Mon21, NS22, Nic22, PPP21, PM21b, PS22a, PD21, QG21, RUG20, Ren21, SMSAGG22, SEG21b, SRV21, SWF21, SS22b, TFWX22, TJC21, VVRWT21, WGY20, WTX+21, WABK21, WZBV20, XDLX21, XBL21].

High-order [YSCM21, YJSX22, YOH+20, ZSP20, ZML20, ZL21a, ZJSX22].

High-order/low-order [PM21b]. high-plasma-frequency [SZ21].

high-resolution [HKS20, KIHB21]. high-Reynolds-number [YLW21].

high-speed [HBFB20, HZ22b, NKA+20]. high-throughput [ZO21].

Higher [BBW+21, VVL21, VK22, YGL20, ZF20, BL20, CS22, DYGC22, GCSH22, IMJ20, PH22, WHS22, YKB20, ZQS+21].

Higher-order [BBW+21, VK22, YGL20, ZF20, CS22, DYGC22, IMJ20, PH22, WHS22, YKB20, ZQS+21].

Highly [YM21, ZQYS20, BFM21, BBKB21, CMR21, DDR22, FCY+20, HP21b, KDB+20, LL21d, MHW21, MD22, ZD21, dSLdA+22].

highly-concentrated [ZD21]. highly-Stable [BFM21, CMR21].

Hilliard [GLT+20]. Hilliard [CZ20a, GHHR22, LFT+20, ZH21, CWW20, DWWZ21, Fu20, GCL+22, KLS+20, LYZW21, MRK+20b, MRK+20c, NMR+21, NMR+22, QWZ21, VRK21a, WJKW20, Yan21b, ZYW21, ZY20b, ZOWW20].

Hilliard-extended-Darcy [LYZW21].

HLL [FLW20b]. HLLC [CLJ+20, FAA20, HKS20, LXS22b, YJSX22]. HLLC-type [HKS20, LXS22b].

HLLD [MM21b]. HLLE [LLS20]. HLLE-type [LLS20]. HLLEM [HYZ22].

HMC [CSASS21]. hollow [KMK21]. HOLO [PM21b]. homogeneous [GR21, HQ20, PZ20, WZW21].

Homogenization [HL20b, LJ20, BBPR21, CEL+20, GDAP20, LLF+22, YSCM21].

homogenized [ZO21]. homotopy [JWH20]. HOMP [DC21].

Hugoniot [GKL21, LZX22a]. human [DVV22, DFP+21a]. HWENO [JZX20, LSPQ21, LRAQ22]. Hybrid

[FMWK20, HA21, MFK21, ZS21b, AdDMT21, BFG22, BBD+20, CNC21, CCLM22, CCH20, DR20, FQZ21, FJ21, FLW20b, GTRD22, HLM22, HP20b, HPW21b, HS20, Is22, Jai22b, KK22a, LCG22, LSW20, LLCK20, LW+21, MRR20, MMdMB22, NFA21, OYK+22, PM21a, RWBS21, SRTB21, SCL20, SC22b, VPDD22, WX22, XDLX21, XHH22, XY20b, YGW+20, YRC+21, ZML20, ZFG21, ZCQ20b, ZLW22b, ZO21]. hybrid-dimensional

DFJ20, HSM20, HCL22, HT21b, JGM*+22, JFH21, KCX*+21, KD21b, KB22b, LCG22, LLCK20, LHFFH20, MMdMB22, PBGB21, SDP20, The21, VTC20, XSHH20, XSA*+21, ZB21a, ZXBS22, ZY20a, ZOEL20. level-set
Meshfree [GTKA20, SFD20, TKR22, TBP20, WQZP20]. Meshing [tH22].

TTP22, Vre20, Vre21b, WWG20, WZ21b, XSC21, XGCW+20, XHH22, XSSH22, XCL+21, YXY21, YYLY22, YK20b, YGL20, ZX20, ZZZ22, ZGLL20, ZOWW20, ZMSX21, ZWZL22, Zha22, ZHR20, ZXY20, ZQS+21, ZQS20.

Metric [FC21]. Metric-based [FC21]. MgNet [CDX22]. MFSH [GMMS22]. MgNet [CDX22]. MHD [BWG20, GGB22, HPW21b, HLX21, KK20b, LZZ21b, LZLS21, MSC+20, MD21, PHHJ22, RRHH+21, STC+21, TCK+22, ZHY22].

mitigation [BD20]. Mittag [LSC20]. MitTag-Leffler [LSC20]. Mixed [CdS22, AFL22, BPG21, CCHS20a, CP20, FB22, GA20, KSHJ20, KWS22, LP20a, LZCC22, NFA21, NGK+21, PS22a, RSA+20, YK20b].

MOC [FSM+22]. modal

[CLW22, EM20, dMKJ+22, NdILPL21, SKCM22, WX20]. ModalPINN [RHG22]. mode

[CCE+22, CS21b, GLSZ22, JL22, LT20c, LT21, MH22a, NKT21, PA20, PA20, WZ22]. Model

[BW20, Da22, HWD22, LC20, PH22, SL20b, SM21b, ZGLL20, AFV20, AdDMT21, AEVG22, Ara20, BBH+20, BF22, BSR20, BVRS22, BCPV21, BCR22, BD20a, BCP22, BCSK21, BX20, Cal21, CFS+22, CMH20, CNMB20, CY22, CPH+22, CBA+21, CMRR21, CCLM22, DV22, DSBN+20, DC21, DFP+21a, DYGC22, DCSC22, DFP+21b, EH22, EAK20, FCP21, FLZ20, FTT22, FM20, Fu20, FS21, GJL20, GQR21, GT21, GHNS21, GFY20, Hdb21, HZHL22, HSK20, HSMR20, HKMR20, HPRW20, HSR20, HHRA19, HX21, HT20, HT21b, HLA20b, HLA20c, HCL20, HLA21, HLA22, JLL22, JRY+20, KC20a, KAO+20, KV20, KCVW22, KG20, KHS20, KWS22, KCCJ21, KKJ21, Lak20, LP20a, LL21b, LCS22, LSC20b, LYZ21, LZZ2a, LZZ2a, LZS22b, LZPM22, LY20a, LL21c, LRW21b, LHZW21, LMVF22a, LMVF22b, LCJ+20b, MD20a, MCBA20, MH22b, MMR22, MAP+20, NMGR21].
model [NGK+21, NKA+20, OA21, PHP21, Pan20b, PC21a, PBCL20, PAA21, Pop20, QJQW22, QHZ+22, QHLL20, RS20a, RMD20, RSA+22, Rei22, RK21, RB21, SBH21, SEG21a, SVW21, SRTB21, SHL+20, SWHJ22, STC+21, SKCM22, STB+21, SC22b, TLD20, TL20, TKR22, VSB+21, WMS21, WW20a, WCC+20, WNZ20, WCL+20, WWYC21, WCF+21, WCM+21, WY22a, WY22b, WASAZ22, WLZP21, WLZ21, XX22, XC20, XY20b, YHC+22, Yan21b, Yan21c, YRHN22, YFY22, YM20, ZY20b, ZHL21, ZW21, ZAW+20, ZNZ22, ZAMG20, ZKY+20]. model-based [GHNS21].

model-data [DCSG22]. model-form [HWDM22]. modeled [KH21a, KS21d]. Modeling [CMS+22a, CDL+22, EDLF20, GZ20, He22, KSHJ20, PBVC22, ZDC20, AYH+21, ASSZ21, BHVJ22, BABD21, Cha20, CL20b, CHF21, CWH21, CCWX22b, CNC21, DJ22, EFS+20, FTP20, FCWS22, FSDB20, GLLB20, HHAFR21, HZB+21, HLB20, HRR21, HGH20, Hig20, HZ22a, Ian20, JADS21, KNLB21, KWDS22, KSST21, LN22, LBN21, Le21a, LYL20, LRW21a, LE21b, LHA+21, LLZL20, Liu20b, LAS22, MX22, MP21, NBR22, POS+20, PPV+21, PJW21, PB20b, PZNK22, QERT20, RSHK21, RBF+21, RIC+22, RE22, SYOS19, SYOS21, SWHJ22, SML20, SLOZ21b, SLOZ21a, TNB21, WWFM22, WKA+20, XLLH21, XLBH22, XBD+20, XBR21, XD22, YW20, YZSD21, YRC+21, YZK20, YQO20, ZX20, ZTS20, ZZZ20, ZLW22b, ZPK22].

Monotonicity-Preserving \([LVK^22, \text{BB20c}, \text{YM21}]\). Monte Carlo \([ALF^22, \text{BBG}^22, \text{HLZ20}, \text{KFP}^+22, \text{KNP20}, \text{KSK21}, \text{LMG}^+21, \text{LMUHR22}, \text{MRBS}^22, \text{PJW}^21, \text{PZ}^20, \text{PV}^20, \text{PB}^22, \text{Poi}^22, \text{RA}^21, \text{SGMT}^20, \text{SGM}^21, \text{SH}^22, \text{TT}^20, \text{TBD}^+20, \text{VM}^22, \text{YS}^22, \text{Yan}^21a, \text{ZS}^21b]\). Monte-Carlo \([ALF^22, \text{PV}^20, \text{RA}^21, \text{SH}^22]\). MOOD \([\text{BLM}^22]\). Mori \([\text{LL21c}, \text{WRH}^20]\). Mortar \([\text{EFR}^21, \text{ZL}^21a]\). motion \([\text{Li}^21, \text{LX}^21, \text{NTSM}^20, \text{OSZ}^21, \text{ZEG}^20]\). Moving \([\text{GTKA}^20, \text{GKA}^22, \text{MKHI}^20, \text{AR}^20, \text{BBGT}^21, \text{BFG}^22, \text{BR}^22b, \text{CZZ}^21, \text{CP}^22b, \text{Coc}^20, \text{DT}^21a, \text{DT}^22b, \text{GBC}^+20, \text{HR}^20, \text{KH}^20, \text{LL}^20, \text{LWL}^22, \text{LW}^22, \text{LMZ}^21b, \text{LMN}^20, \text{LAN}^21, \text{MK}^+22, \text{NGZ}^22, \text{OB}^20, \text{PD}^21, \text{SM}^21a, \text{SHL}^+20, \text{TKR}^22, \text{Vre}^17, \text{Vre}^21a, \text{WCF}^+20, \text{WZL}^21, \text{XFL}^21, \text{XS}^20, \text{XLB}^22, \text{XLS}^22, \text{XLT}^+20, \text{YWC}^22, \text{ZY}^20a, \text{ZR}^20, \text{ZCY}^+21, \text{ZKY}^+20]\), moving-mesh \([\text{BR}^22b]\). MPAS \([\text{CP}^22a]\). MPFA \([\text{SWG}^+20]\). MPI \([\text{LZC}^+20]\). MPI-based \([\text{LZC}^+20]\). MsRSB \([\text{BKMC}^21]\). Multi-component \([\text{KK}^22a, \text{LVK}^22, \text{MS}^20a, \text{PA}^21, \text{Say}^22]\). Multi-condition \([\text{KKY}^22]\). multi-core \([\text{LFL}^+22]\). Multi-dimensional \([\text{LZC}^+20]\). Multi-domain \([\text{KS}^21b, \text{LLN}^22]\). multi-domains \([\text{Jai}^22b]\). Multi-fidelity \([\text{MK}^21, \text{BS}^22b, \text{Cha}^21, \text{KFP}^+22, \text{MK}^20]\). Multi-frequency \([\text{SH}^22]\). multi-GPU \([\text{SA}^L20]\). multi-grid \([\text{RS}^20b]\). multi-invariant \([\text{MVO}^+22]\). multi-layer \([\text{Hig}^20]\). multi-level \([\text{HSM}^20, \text{KD}^21b]\). multi-material \([\text{KK}^21a, \text{LSLH}^20, \text{VSS}^21, \text{WBN}^21, \text{WWYC}^21, \text{XDLX}^21, \text{XYL}^22, \text{YKHC}^20, \text{ZZML}^20, \text{ZRH}^21, \text{ZW}^22, \text{Zha}^22, \text{ZQS}^20, \text{ZS}^20, \text{ZPS}^+21, \text{ZAL}^+20]\). Multi-objective \([\text{KK}^22a, \text{LVK}^22, \text{MS}^20a, \text{PA}^21, \text{Say}^22]\). Multi-physical \([\text{MN}^20, \text{ZZM}^20]\). Multi-point \([\text{ZJ}^22]\). multi-rate \([\text{YKdHC}^20]\). multi-region \([\text{Gar}^21, \text{Say}^21a]\). Multi-resolution \([\text{LSQ}^21, \text{YDC}^22, \text{YDC}^22, \text{ZS}^20, \text{ZQS}^20, \text{ZS}^20]\). Multi-scale \([\text{ABHI}^21, \text{CD}^22, \text{CdS}^22, \text{EHW}^21, \text{HWDM}^22, \text{LPL}^+22, \text{MD}^22, \text{XF}^21b, \text{XF}^21a, \text{ZPS}^+21]\). Multi-species \([\text{DFJ}^22, \text{YLC}^22]\). Multi-stage \([\text{CCW}^20, \text{SL}^22b]\). Multi-symplectic \([\text{SX}^20]\). Multi-variance \([\text{LZ}^22]\). multiblock \([\text{AD}^20, \text{JLC}^21]\). Multi-component \([\text{SvdtTB}^21, \text{BV}^20, \text{BV}^21, \text{FSB}^+20, \text{FM}^20, \text{LZ}^20a, \text{PLKM}^22, \text{Ren}^21, \text{SBC}^20, \text{YYF}^22]\). Multidisciplinary \([\text{CB}^20, \text{BV}^20, \text{DSS}^20, \text{HM}^20, \text{LZ}^20a, \text{YF}^22]\). Multidimensional \([\text{CZHY}^20, \text{FPT}^20, \text{SBG}^22, \text{BB}^22, \text{KHK}^21, \text{KBC}^20, \text{Lep}^21, \text{MD}^20a, \text{MGT}^+21, \text{SMR}^22, \text{WZ}^21a, \text{ZQL}^+22]\).
Multidirectional [DMRG22]. Multifidelity [PZNK22, GGEJ20].

multifluid [CMS+22b, WHN+20]. multifluid-Maxwell [WHN+20].

Multigrid [BGGM21, RSO20, Ani21, CDX22, Coc20, DC22, FMWK20, HRG20, dMKJ+22, KRL21, MHLR22, MLCM21, PP22a, PWH+22, RAZA21, SMV22, SAL+20, YM20]. multigrid/ensemble [MLCM21]. multigroup [GA20].

Multilevel [GA20, MRBS22, BCWD21, Bat20b, BBG+21, KNP20, LSS20, LY20, MBTS20, TT20, dSLdA+22]. multigrid/ensemble [MLCM21].

Multimaterial [JN20, Qing22]. Multilevel [GA20, MRBS22, BCWD21, Bat20b, BBG+21, KNP20, LSS20, LY20, MBTS20, TT20, dSLdA+22].

Multimaterial [JN20, Qing22]. Multilevel [GA20, MRBS22, BCWD21, Bat20b, BBG+21, KNP20, LSS20, LY20, MBTS20, TT20, dSLdA+22].

Multiphysics [CWL+21, HPPZ20]. multiple [BEP+20, CMS+22a, FVM22, GGCvR22, LW22, LHWWZ21, Oru21, SDF20, VBA22, YSCM21, YTK22, ZTS20].

Multiphysics [CWL+21, HPPZ20]. multiple [BEP+20, CMS+22a, FVM22, GGCvR22, LW22, LHWWZ21, Oru21, SDF20, VBA22, YSCM21, YTK22, ZTS20].

Multiphysics [CWL+21, HPPZ20]. multiple [BEP+20, CMS+22a, FVM22, GGCvR22, LW22, LHWWZ21, Oru21, SDF20, VBA22, YSCM21, YTK22, ZTS20].

Multiphysics [CWL+21, HPPZ20]. multiple [BEP+20, CMS+22a, FVM22, GGCvR22, LW22, LHWWZ21, Oru21, SDF20, VBA22, YSCM21, YTK22, ZTS20].

Multiphysics [CWL+21, HPPZ20]. multiple [BEP+20, CMS+22a, FVM22, GGCvR22, LW22, LHWWZ21, Oru21, SDF20, VBA22, YSCM21, YTK22, ZTS20].
Normalizing [GWZ22]. **Note**

BDB21, CSM20, CS21b, LY20b, WYHL21. OpenFOAM [Sar21a, TGS+22].
opening [KSST21, WBN21]. operator [AAL+21, BCJM20, CWL+21, HZ22a, Kho20, LJ21, IWW21, MRG21, PDPK20, XG22, ZWY21, ZZH22, dSLdA+22]. operators [BFM21, CL20a, CMR21, CS22, FFFY20, FFY21, HM21a, MLM+21, MZ20, W2Z21a]. optical [CSM20, CS21b]. Optimal [BJW20, CHG21, KBCH20, LJ21, LM21b, NY22, TBG20, VL20, AAA+20, BS21, CM20, FCP21, FVM22, HT21a, HKKS21, ID20, LGV20, LLO21, Lév22, MDG20, RE20, Yan21a]. optimally [JJ21]. Optimization [AIN20, GWC+22, MZ20, WK20, ACML20a, ACML20b, BGS22a, BS21, BLWL22, CSY21, CHG+20, CBA+20, CF22, DAZZ21, DGL22, DAJ22, DF20, FFSH21, FADJ20, FFGRLS+20, GDAP20, GLI20, HTV+22, KKN20, KKY22, KNS21, KKY+21, LZLZ21, LFZ21, MQ20, MRT+22, Qia22, VRK+21b, WQ20, ZSP20, ZOG22, ZDS+21]. optimization-based [ZSP20]. optimizations [EAK20]. Optimized [CAG20, DBD21, FBG20, GHY22, HSH20, MYM+21, ZPK22]. optoelectronic [ACML20a, ACML20b]. orbit [KCCR22, RC20a, VCPGR20]. orbit-averaging [VCPGR20]. orbital [DLZZ21]. orbital-updating [DLZZ21]. orbits [AKK20, SJGC21]. order [ARTB20, ADK+21, Abg20, AnIL20, ASKH21, ADP22, AP20, AMM+20b, AAKW20, BFG20B, BH20+20, BHZ20, BF22, BSA22, BG20a, BD20a, BDL+20, BL21b, BBW+21, CBQ21, CCWX22a, Cam21, CPX21, CPX22, CF20, CS+22, CMP+21, CZ21, CF21, CBF22, Cha20, CZ20a, CWHZ21, CKT21, CY22, CSS20, CLJ+20, CP20, CBA+20, CBA+21, CP20, CND22, CDN+22, CLF21, CX22a, CCdS20, CMRR21, CS22, CMC21, CA22b, CCLM22, DHM21a, DCA+22, DC21, DD21, DHR20, DJ22, DY22b, DYG22, DT20, DT21b, DT22b, DFG20, DK21, DFP+21b, DGW22, EAK20, EPL21, FPT20, FZQ21, FMWK20, FHWK21, FZ20a, FZ20b, FZ20c, FZ20d, FZ20e, FZ20f, GBC+20, GLSS22, GDL22, Ga20, GCD2T2, GA20, GQR21, Gl21, GZ20b, GFY20, GPS20, GLY20, GCL+22, Ha21, HM22, HHRH21, HSMR20, HGB20, HHR20, HLR20a, HCL20, HPP20, HLY20]. order [HSW22, HXX22, HZ22b, dMK+21, IM20, JADS21, JS20, KST22, KC21, KS22b, Kar22, KBB21, KCW22, KLN20, KL22, KLF22, KdMJ+22, KdM+22, KC21, KKS21, KD20, K22, KdL20, LWW22, MB21, IVK+22, LI21a, LCS22, LD20a, LCJ20a, L20, L22S21, L2Q21, LG21, LLYZ21, LZZ22, LCR22, LH20, ILTZ20, LRAQ22, LRW21b, LM20a, LSZ20, LD20b, LFZ21, LWY22, LSCL+20, LT20c, LY22c, LZC22, MCYF22, MHW21, MHW22, MQ20, MGA20, Mon21, NS22, NFL+21a, NFL+21b, NKT21, NPD20, NT20, NBR22, Nic22, NGK+21, NK22, Nis20c, Oru21, OA21, OG22, PZX20, Pan20a, PCF21, PP22b, Pan20b, PPP21, PBN+21, PB20, PM21b, PS22a, PH22, PD21, PGCC+22, PG20, QG21, QLY21, RMA20, RUC20, RSW22, RZ22, Ren21, RBF+21, RIC+22, RMWS21, SZN19, SZN20, SMSAG22, San20, Say22, SL20b, SL22a, SEG21b, SRV21, SWF21]. order [SBL22, SY21, SKCM22, SS22b, S221, TF22, TC22, TJ21, TPK20, U120, U221, VVL21, VVR21, VP22, VBA22,
VK22, WW20a, WMTQ20, WGY20, WW20b, WRH20, WCL+20, WTX+21, WLH21, WABK21, WZBV20, WWLZ21, WHS22, XBH+22, XLLH21, XY20a, XGCW+20, XDLX21, XSSS22, XBRL21, XM20, YYY21, YSCM21, Yan21c, YZSD21, YJSX22, YYLY22, YOH+20, Yin21, YK20b, YGL20, YM20, ZSP20, ZEG20, ZEG21b, ZWV21, ZCQ19, ZCQ20a, ZML20, ZL21a, ZL21b, ZHY22, ZLW+22a, ZHR20, ZZ220, ZH21, ZJSX22, ZSQ21, ZQS+21, ZQL+22, ZQ520, ZS20, ZF20, ZL22, ZWB21, vHP22, vLN21].

perturbation [AHG21], perturbed [CHT20, GHNS21, ZG21], petroleum [dSLdA+22], Petrov [LTD+22, WTX+21], PFNN [SY21].

Phase [CY21, HHAFR21, HLA20c, VPL20, Abg20, AdDMT21, ASKH21, BL22, BDMP22, BDR21, BMQ20, BE20, BR22b, Cal21, CSCL20, CZYH20, CY22, CDX+21, CK21, CMRR21, DC21, DLY22, EAA+22, FMS21, Fu20, FY22, FS21, GJLD20, GDBFN+20, GQS20, GNF22, GPSMH20, GCL+22, HZHL22, HK20, HCl22, HJJ+21, HHRA19, HT21b, HLA20b, HLA21, HLA22, IKP22, JMN20, JM22, JTK22, JGR22, KS21a, KLS+20, KHS20, KWDS22, LL21b, LOL20, LLW20a, LDM+21, LYS22, LLPL22, LNC+21, LRT+22, LLCK20, MMZR21, MA21, MCB20, MIM20, MM21c, MM22, MD22, PM21a, Pan20b, QERT20, QHZ+22, QW22, RZH20, RSA+20, SCB20, SRTB21, SRT20, SRO20, SWHJ22, SPF+20, SDA+21, UBT22, VSS21, WLW+20, WZCK21, WZ22, XS20, XZR21, XDF21, Yan21b, Yan21c, YA21, YTK22, YZK20, YQO20, ZEG20, ZXS22, ZY20b, ZW22, ZSsC+22, ZR20]. Phase-change [HHAFR21]. Phase-changing [SCB20].

Positivity \cite{LM20a, DS22, MP21, PCF21, QWZ21, Sar21a, XHD21, XJS21}. Positivity-preserving \cite{FZQ21, GQS20, JTW22, LWYY22, BMQ20, DWWZ21, HSW22, KBB21, KKS21a, LCS22, LZLS21, MGP+22, PBCL20, QLY21, WABK21, YD20, ZCQ19, ZCQ20a, ZYD20}. post \cite{EHL20}. post-processing \cite{EHL20}. posteriori \cite{RHSK21, GCSH22, HMV22}. posteriors \cite{MYM22}. potential \cite{BLF20, Bre20, Dup21, PAA21, RA21, Sac22, SVW21}. potentially \cite{HBF22}. potentials \cite{DHMT21, KKCC20, LM20a, SAH22, TJ22, YW22, Yin21}. Poynting \cite{WZ22}. Practical \cite{WLW20, YLK20}. Prandras \cite{Abg20}. Prandtl \cite{LPL22, DL21}. pre-training \cite{DL21}. precision \cite{CdS22, HL20a}. Preconditioner \cite{BS20, BEP22, HV20, LY20b, NFA21, SBVW20, TZNHD20, YFLL21, YM20}. preconditioners \cite{BL20, BGGM21, CCW20, DMRG22, LM21b, LYY20, PS22b}. Preconditioning \cite{KS21a, ASKH21, BKMC21, CC22, FJH20, FG22, FCWT22, GMD22, JBF21, KB21, KKS21b, LCS22, LZLS21, MGP22, PBCL20, QLY21, WABK21, ZCQ19, ZCQ20a, ZYD20}. Prediction \cite{LM22, AMK22, WCM22}. Predictive \cite{LHA21}. Preface \cite{AACX21}. preferential \cite{TACO22}. presence \cite{DSSSP20, ZHL21}. preserve \cite{HRY22}. preserves \cite{GGB22}. Preserving \cite{LVK22, AAL22, AOR22, APR22, AC22, BB21, BDT21, BMQ20, BAA22, CS20, CDT22a, CZZ21, CP22b, CHSS20, DDR22, DENC21, DC21, DWZ20, DWWZ21, Edo22, EHW21, FC20, FZQ21, FQKY22, GQS20, GE22, GS20, GPS20, GLWY22, GLY20, HBG21, HPBW20, HP21b, HHS22, HL20a, HXZ21, HW22, HWDM22, JMW22, JWC20, JT22, JZQ21, KBC20, KBB21, KKS21b, KS21c, KCC22, KK21, LPM20, LW21, LCS22, LCSZ21, LY22b, Li22, ILT220, Li20a, LZLS21, LW21, LRT22b, LY22, MGP22, MJ22, MHW21, MHW22, MRBS22, NS22, PCF21, PWXY22, PBCL20, PM21b, QLY21, RC20a, SL22a, SAS21, SS20, SX20, TH21, VTC20, WLH21, WABK21, XLZ21, XSS22, XJS21, YM21, YY22, YW22, ZNC21, ZCQ19, ZCQ20a, ZYD20, ZKG22, ZOEL22}. pressure \cite{AF20, AF22, AS21, BA20b, BP21, SCPL22, DSPB22, D2W20, DFT22, FQKY22, GMRS21, HP221a, HT21, Hig22, HP21a, KS22b, LPM20, LRT22b, MD20b, MS20b, NF221a, NF22b, SB21, SW22, SKT21, VMO21, XLS22, YAZ21, YZK20}. pressure-based \cite{BP21, DSPB22, DeV20, HP21a, HT21, VMO21}. pressure-correction \cite{AF20, LRT22b}. pressure-free \cite{SB21}. pressures \cite{GQS20}. prestrained \cite{YKdHC21}. Preventing \cite{SKT21, GF21}. primal \cite{NG20, Nor22, WW20b}. primal-dual \cite{WW20b}. primary \cite{FGL22, MMdMB22}.primitive \cite{LJW22, PCB21}. Prince \cite{NNJ21}.
principle [JLQY21, LPL^+22, ILTZ20, NS22]. Principles [Coa21, GB22a].

Reduced-order [DJ22, WCL+20, ADK+21, CWHZ21, CBA+20, DCA+22, JADS21, KCCJ21, LT20c, LY22c, NKT21, PB20b, RBF+21, RIC+22, San20, WW20a, WRH20, ZWB21]. Reducing [CSASS21, GEvWD22]. reduction [DJ22, WCL+20, ADK+21, CWHZ21, CBA+20, DCA+22, JADS21, KCCJ21, LT20c, LY22c, NKT21, PB20b, RBF+21, RIC+22, San20, WW20a, WRH20, ZWB21]. Reducing [CSASS21, GEvWD22]. reexpression [ASBM20, An21a, AWB+20, BF22, BW20, CGJM21, Da22, DFRG20, EAK20, FTZ22, GFY20, HWDM22, KC20a, KV20, KSK21, LC20, LL21c, OA21, PC21a, Qi22, TL20, VACE21, WCL+20, WDH+21, ZGLL20]. Reducing [CSASS21, GEvWD22]. reexpression [ASBM20, An21a, AWB+20, BF22, BW20, CGJM21, Da22, DFRG20, EAK20, FTZ22, GFY20, HWDM22, KC20a, KV20, KSK21, LC20, LL21c, OA21, PC21a, Qi22, TL20, VACE21, WCL+20, WDH+21, ZGLL20]. Reducing [CSASS21, GEvWD22]. reexpression [ASBM20, An21a, AWB+20, BF22, BW20, CGJM21, Da22, DFRG20, EAK20, FTZ22, GFY20, HWDM22, KC20a, KV20, KSK21, LC20, LL21c, OA21, PC21a, Qi22, TL20, VACE21, WCL+20, WDH+21, ZGLL20].
scale-invariant \cite{DLWW22]. scale-resolving \cite{DEB21}. scaling \cite{DHM21b, KCX21, LPZ22, PCQL20, TPYX22, WZBV20}. scatterer \cite{AL20, ABDD20}. scattering \cite{AHG21, AL21, BGH20, BB21, Bre20, BG20c, BFL20, BY20, CCER20, CE21, CAG20, CMS+22a, CJLL21, FZQQ2, FCY+20, GLWZ22, HR22, HHL20, HL22b, JWH20, KSFM21, LY20b, LUMHR22, MGA20, Par22, PN22, TILWM20, TPPA22, USRH20, VBA22, WRBK20, YLY20]. Scharfetter \cite{Kan20, NBR22]. Scharfetter-Gummel \cite{Kan20}. Scheme \cite{SLOZ21b, SLOZ21a, AT20, APR22, AAKW20, BL22, Bal21, BBH20, BSA20, BSA22, BDI+21, BCP22, CPX21, CPX22, CF21, CHT20, CZ20a, CWY21, CY22, CLJ+20, CWW20, CTCS22, CSY20, CNCM21, DDR22, DLP21, DLWW22, DWWZ21, EJ21, EC20, FCWS22, FVRT+21, FLW20b, Fu20, GCV122, GYWH20, GSQ20, GBLT20, GLLM22, HPA22, HZTN21, HZD21, HYLX22, HLA20b, HLA21, HSS21, HLHI21, IMJ20, JM22, JZ20a, JZSQ20, JLRZ20, JT22, JGR22, KSTT22, KKB20, KK21a, KJ22, KLZ20, LPM+20, LKV+22, LCJ20a, LOL20, LCSZ21, LLQ21, LSW21, LZ22a, LY22b, LZY22, ILTZ20, LNYD20, LRAQ22, LRW21b, LM20a, LD20b, Lin20a, LLS21, Liu21, LWW21, LKG+20, LPW21, LY22c, MGP+22, MN21, MA21, MYL21, MW22, MPMD20, NKW22, PEA20, PZX20, PWXY22, PWI+22, PCB21, PLL+21, FP22c, PV20, PC22, QWZ21, RE20, SOV21, SL22a]. scheme \cite[SQSS20, SS22b, SCL20, SN21, TT22, TCS22, TZ21, TCR+20, TSTH20, Uil20, VL20, VN21, Vet21, WZSC22, WCB20, WS22, WULZ21,}]
WCA$^+$20, AT20, ACHG$^+$21, ACML20a, ACML20b, BBC21, Bre20, CPX22, CFSH20, CC22, CZL20, CDL$^+$22, CKN22, DU20, DDVO21, DSS20, DGS20, DEB21, EGTC$^+$21, FMS21, FBG20, GRC$^+$22, GPSMH20, GDF21, HYSS22, HZ22b, IKP22, JW21, KFSM21, KKSY21, KVQE21, KH21b, KS21d, LCP21a, LFP$^+$21, LDT$^+$21, LL20, LYS22, LW22, LY20a, LSZY20, LSC$^+$20c, LMZ21b, LR22, LHL22, LCJ20b, LWZ21, MKHI20, MSK22, MA21, MFTZ20, MBE21, MHWY21, MD20b, NIT21, ND20, Nic22, NWM21, Pan20a, PLL$^+$21, PLKM22, RMM$^+$22, RKRW20, RKVV20, Sab20, SGB21a, SGPW21, SDKL21, SRD20, SAL$^+$21, SOG$^+$22, SMF20, SS22c, TFCH22, TZ20, TTSP21, TLB20, Vre17, Vre21a, WGY20, WL20, WYHL21, WNB21, XBD20, YWN20, YZSD21, YYM$^+$22, ZXBS22, ZSM22, ZR20, ZZZ$^+$20, ZXX20, ZPS$^+$21, ZF20, dKSA21, dSLdA22, RBBD22.

Simulation-based [XKZ21]. Simulations [HSK$^+$21, ADP22, AK22, AP22, BLL19, BLL20, BZ21, BBF20, BV20, BW20, BD20b, BDB21, BBW$^+$21, CHS20, CDT22a, CCM$^+$22, CDJM21, CCN21, CI21a, CI21b, CFBB21, CA22b, DC22, DTB20, DF22, DG22, EC20, Eroc22, EAK20, EFSH21, FSB$^+$20, FGL$^+$22, GHNS21, HZTN21, HHL20, HL22b, HGB20, HT20, HL20c, HB21, JTK22, KSS21, KL22, KSK21, KD20, LM21a, LWL22, LSC20b, Li21, LMG$^+$21, LCP21b, LKG$^+$20, LMHL21, MN20, MM21c, MM22, MRBS22, NFA21, NKT21, OLS21, PEA20, PHHJ22, PBO20, QAS20, RR20, SGMT20, SGM21, SCB20, SC22c, SOLO21, TCA21, TJ22, VLC$^+$20, VdGP20, WX22, WLW$^+$20, WY22b, XGCW20, YM21, YA21, ZOG22, ZGLL20, ZL21a, ZWZL22, ZLC$^+$20, ZO21, Sva22].

Smoluchowski [Osi20]. Smooth [HSS21, JW21, BE20, CLT21, HJ22, HP22, QG21]. Smoothed [BHVJ22, YKLL21, BOB21b, BOB21a, BKMC21, FGZ20, Hc22, LMZ$^+$21a, OYK$^+$22, SDA$^+$21, ZRH20, HP21a, KEY20, LZPM22, LFL$^+$22]. smoother [SMV22]. smoothing [CM20, CLT21]. smoothness
[FPT20, Vev21, WWZ20, WWLZ21]. Sn [GHY22]. Sobolev [Kar22].

[CPA21, ATCS21, DM21, TPPA22, YL21b]. Sommerfeld [KS21b]. sonic [AG21, YWN20]. sound [AMM20b]. source [BCIR22, ER22, FZ21, GBP20, HLB21, JL21a, KHS20, Rtt2120, WHN20, YS22, ZH20]. sources [Ara20, ADM21, BS20, KSHJ20, LRW21b, WGB22]. Space [BBQ21, CBA21, PZ20, TCR20, An21a, AMM20a, BTEK22, CCM22, DG20, ESM21, GJLD20, HPA22, HLB20, HR20, HCL20, KSTT22, LCH20, LDM21, Liu20, LN21b, LY22c, MPM20, OGVM20, PS22a, VRK21a, WX20, XLC20, XLL21, XY20a, YLN20, YWW21, ZJZ20, ZL22]. some [CSASS21, DM21, TPPA22, YL21b]. Space [BBQ21, CBA21, PZ20, TCR20, An21a, AMM20a, BTEK22, CCM22, DG20, ESM21, GJLD20, HPA22, HLB20, HR20, HCL20, KSTT22, LCH20, LDM21, Liu20, LN21b, LY22c, MPM20, OGVM20, PS22a, VRK21a, WX20, XLC20, XLL21, XY20a, YLN20, YWW21, ZJZ20, ZL22].
space-fractional [DGW20, YWLL21, ZJZK20]. **Space-homogeneous** [PZ20]. **Space-time** [BBQ+21, CBA+21, TCR+20, AMM20a, BTEK22, GJLD20, HR20, LY22c, MPMD20, VRK21a]. **spacetimes** [BL21a]. **Spalart** [LMFV22a, LMFV22b]. **Spalart-Allmaras** [LMFV22a]. **spanwise** [FNT21]. **spanwise-averaged** [FNT21]. **Sparse** [AR21, RR21a, EL20, FGB+20, GHTC21, HBF21, KKN20, LSL20, SKP+21, TJC21, WDL21c, XZW21, XD22, TPSN20]. sparsely [WLPK20]. **sparsity** [HR22]. **sparsity-constrained** [HR22]. **Spatial** [LKEM21, MAPS20, BL20, JTZ22, LP21, LLW20a, LZ22a, LM21c, Mon21, TR22, XZ21, XBL21, YKL21, ZLW22b]. spatial-temporal [JTZ22, XZ21]. spatially [FSW22, LSL20]. spatio [HL20c, KLF22, ZB21c]. spatio-temporal [HL20c, KLF22, ZB21c]. spatiotemporal [KH21a]. **Special** [EFS+20, ZX20, CTK21, DT20, DT21a, DT22a, DT22b]. **specific** [LVK+22, WK20]. **Species** [ATCS20, DFJ22, RWDG22, XYL22]. **Spectral** [CMSS21, GB22a, HBF20, HK21, HLM+20, HQ20, HPP20, KS21b, LD21b, LG20a, MBE21, MAPS20, Nic22, Pan20a, PKL+21, PLK+22, RMA20, RRF+21, SRH21, SHS+20, SW22, SSCP20, SS22b, ST20, VMBS20, WGW20, XSC21, Yua21, ZB21b, ZWY21, ZJZK20, ZJZK20, ZSG+22, SS22c, VPDD22]. spectral-Galerkin [Yua21]. spectral/ [MAPS20]. **speed** [Bar21b, HBF20, HZ22b, NKA+20, TP20]. **speeds** [DEvW20]. **SPH** [YKL21, HZHL22, LBSR20, NLF+21a, NLF+21b, REC+22, RZH20, SLOZ+21a, WKKB21, YRH21, ZSY21, ZZ22a]. **SPH-ASR** [YKL21]. **SPH-MLS** [REC+22]. **sphere** [Bal20, BP22, EJV22, GCD+22, GLWY22, HT21a, HSM20, tH22, LP20a, Vre20, Vre21a]. **spheres** [Vre17, Vre21a]. **spherical** [AR20, CMS+22a, DW20a, Gar20, Gar21, GFF20, LS22, LHM20, SL20a, SOV21, SBC20, YMM+22]. **spike** [KSST21]. **spin** [KVQ21]. **SPINN** [RR21a]. **spinning** [CL21]. **spine** [BBF20, GFF20, LBSR20]. **spine-based** [GFF20]. **spline** [HP22]. **Split** [KSBG20, CND22, GMRS20, GU20, HRRHG21, KK22b, Lak20, LJW+22, LI20, MKB20, MD20b, SDKL21, SBL22, SKTK21, ZDC20]. **split-step** [Lak20, LI20, SDKL21, ZDC20]. **splitting** [AR2+21, AAKW20, BCWD21, BL20, CQA21, DS22, EPV21, EOP20, EK21, GPHAPR+22, LQX22b, LQX22a, LZ20a, LW22, SAC22, SL22a, Tow20, XLZ21, XG22, Yn21, ZWY21, ZOG22b, ZZH22]. splitting-based [GPHAPR+22]. **splittings** [BS22a, BG20a]. **spray** [TTSP21]. spreading [HR21]. **Spurious** [Gin21, AWB+20, CE21, IKP22, SKTK21, XLS22]. **squares** [LS20]. **square-based** [LS20]. **Squares** [GTA20, GKA22, LKEM21, BBGT21, CCL20, CCL21, HDWM22, JRY+20, LCW20, PC21a, SSMAG22, TB21, ZC22a, ZC22b]. **SRS** [WNZ20]. **SSDC** [PBN+21]. **stabilisation** [MAPS20]. **stabilised** [NYY22, SPF21]. **Stability** [CS22, KD21b, LQX22b, LQX22a, PCQL20].
RV20, RC20b, TCS22, BCF22, CMR21, CN21, DC22, GFY20, GLT20, HFB20, KBCH20, MD20c, OY21, RUG20, RWBS21, WMTQ20, ZHY22].

Stability-enhanced [PCQL20]. stabilization
[CMS22b, DTM21a, XBD20]. stabilize [ZOG22]. stabilized [CMS22b, DHM21a, XBD20]. stabilize [ZOG22].

stabilized-Invariant [Yan21b]. Stable [BFM21, BL21b, Gl21, GC22, MBG21, vtW22, Abg20, AD21, AP20, AK22, BBC21, BGB20, BKY21, BWG20, BDMP22, BBCD22, CMR21, Cha20, CT22, CLW22, CW20, CSY20, CND22, CDN22, CMRR21, DMN22, DWZ21, DW20b, DT20, DT21a, DT21b, DT22b, DVB20, FCWS22, FSB20, FAA20, GHHR22, Gar20, GZW20, GMD22, HZL22, HRRHG21, HX21, HY22, HSS21, HSW22, Jai22a, KLS20, KWDS22, LSR20, LS21, LN22, LSC22, LB21, LDLW21, LNY20, LMB20, LmF22a, LmF22b, LcC20, LmF20, MRK20a, MRK20b, MRK20c, MPSP22, NT20, NMR21, NMR22, PHP21, PBN21, QWZ21, QW22, Ren21, RBB21, RHH21, San20, Sar21b, SHL20, SN21, Svi21, TT22, VRK21a, VPDD22, WTX21, WH22, WZSC22, WL21, YD20, Yan21b, Yan21c, ZEG21, ZY20b, ZOWW20, ZR20, ZH21].

stage [BJ21, CCW20, FLW20a, GGC22, LC22, SL22b, WZ21b, ZL22a].

staggered [BBD20, BDI21, DVB20, GS21, KKS21a, KKS21b, LPP20, LL21b, LD20a, OP20, PK22, QPW21, SW20, Vre17, Vre21a, WY22b, XZ21, ZL22b].

staggered-grid [SW20, ZL22b]. staggered-projection [LL21b].

standard [HPRW20]. State
[KB22, MOBR22, AHG21, AMK21, BG21, CL20a, CKT21, Dup21, GSW21, GTDB22, GAB22a, HLB20, HKS20, LLL21a, LZS22a, LRAQ21, Lind20a, PSM20, RA21, SZW20, WX22, ZCH22]. state-space [HL220]. states [AFL22, CL21, GL22, Nkt21, Nis20d]. static [AFGLM20, BTV22, ER22].

Stationary
[CL20, CSA21, EPV21, LY22c, MP21, NG22]. statistical
[DCS22, WKA20]. statistically [CFM22]. statistics
[BC21, CD22, Ch20, GKA22, KAC22]. steady
[GSW21, GLK20, JLL22, LZZ21a, LRAQ22, Lund20a, LFZ21, MD20c, PSM20, RA21, SZW20, WX22, YZSD21, ZG20]. steady-state
[GSW21, PSM20, SZW20, WX22]. steady-state-preserving [Lind20a].

steepness [HR22]. steepness-based [HR22]. Stefan
[FM20, HSS21, WP21]. Steklov [AIN20]. Steklov-Neumann [AIN20].

stellarator [GWC22, VCPGR20]. stellarators [MND20]. stencil
[AD20, XBL21]. stencils [ID20]. step
[AN21b, DEvW22, HVT22, Lak20, LL21a, Li20, LD20b, LKG20, LH20, OCL21, PCB21, PC22, PS20, SDKL21, ZDC20]. stepping
[CP22a, DGGL22, GLLM22, KS22a, LJW22, ILT20, Sev21, SSMA21, VLV20, WGU22, ZRH20, ZY20b]. steps [LO22]. steric [QW21]. stiff
[AD20, BFM21, BB20a, CM21, GC22, VN21]. stir [CF22]. Stochastic
[AKW20, DYGC22, GFPO22, Sab20, SQ20, WK21a, ACHG21, BCP21].
subspaces \[\text{CCMC20, PB20b}.\] substrates \[\text{MN20, XLHB22}.\] substructure \[\text{HRMY20}.\] subsurface \[\text{AT20, CCHS20a, CHF21, LYY20, TLD20, TV22, XZRW21}.\] SubTSBR \[\text{ZL21c}.\] subwavelength \[\text{AH21, DHM21b}.\] successive \[\text{SL22b}.\] suitable \[\text{LHFH20}.\] suite \[\text{PS22b}.\] sum \[\text{LSC20a}.\] Summation \[\text{LNF20, AAL+21, CT22, DFW22, GN20, LLN22, MRK+20b, MRK+20c, MZ20, PBN+21, WZ21a}.\] summation-by-parts \[\text{AAL+21, CT22, GN20, LLN22, MRK+20b, MRK+20c, MZ20, PBN+21, WZ21a}.\] Super \[\text{LKM22, SSMA21, CX22b, WSAZ22}.\] Super-convergence \[\text{LKM22}.\] super-convergent \[\text{CX22b}.\] super-Gaussian \[\text{WSAZ22}.\] Super-time-stepping \[\text{SSMA21}.\] superconductors \[\text{ER22}.\] Superconvergent \[\text{LCWJ20}.\] supercritical \[\text{YFY22, HHVM20}.\] supermesh \[\text{CF20}.\] supersonic \[\text{BEP+20, CPX21}.\] supersonically \[\text{Ian20}.\] supervised \[\text{RK21}.\] Supplemental \[\text{LE21b}.\] Supplemental-frequency \[\text{LE21b}.\] suppressing \[\text{LKG+20}.\] Surface \[\text{CHL20, GKA22, RPA22, ADM+21, BGR20, BDB21, BCC+20, CPGD21, CMNS21, DDVO21, DevW22, GMMS22, HPW21a, HRR21, HMO+20, HT20, HT21b, Ion20, IMJ20, JKZS21, JRY+20, JL21b, KS11, KH20, LB21, LMZ+21a, MJJ21, MKHI20, MSK+22, PSL20, Pop20, VSB+22, XJN+20, XQ20, XLHB22, XZWH22, YKLL21, ZSY21, YK20b}.\] surface-plasma \[\text{VSB+22}.\] surface-tension-driven \[\text{XJN+20}.\] surfaces \[\text{AAM20, BFP21, CL20d, GTA20, GKA22, KBCG20, KT20, LCWJ20, LZLZ21, LY20b, QRT20, SOSM20, TFCH22, TSSOA20, XFL21, XY20a, YLK20, YQO20, dKSA21}.\] surfactant \[\text{YTK22}.\] surfactants \[\text{ZKY+20}.\] Surrogate \[\text{ELSV22, ZTS20, CPH+22, TLD20}.\] surrogates \[\text{RK21}.\] surrounding \[\text{XLT+20}.\] survey \[\text{KLG+22}.\] suspension \[\text{LYL20}.\] suspensions \[\text{KVQ22, QAS20, STWK21, TACO22, UD22, WNB21, WSS22, YCM+20}.\] Sweep \[\text{TR21}.\] Sweep-Net \[\text{TR21}.\] sweeping \[\text{DMRG22, EEG22, GHY22, LJ22, LZ22a, LA21}.\] sweeps \[\text{AAH+20, VRAM21, TZNHD20}.\] symbolic \[\text{BSCG22}.\] Symmetric \[\text{BE+20, Bre20, BCC+20, GDLL22, HSK+21, HLY20, LKM22, Li22, NFA21, XHD21}.\] Symmetric-Gauss \[\text{BE+20}.\] symmetrizing \[\text{AS20}.\] symmetry \[\text{BA22, GWC+22, ZNCZ+21}.\] Symplectic \[\text{AKK20, TXH+21, CS20, CHSS20, SSX22, VK22, Zha22}.\] symplecticity \[\text{SX20}.\] Synge \[\text{CKT21}.\] synthesis \[\text{CHG+20, DCG22}.\] synthetic \[\text{ZPS+21}.\] System \[\text{NCC21, ATCS20, Bat20b, BCF22, BGH21, BCC+20, CMS+22b, DWWZ21, GHHR22, GLLM22, GCL+22, ILX22, KNP20, LCG22, LLNL21, ILNZ21, LFT+20, LL21d, LCJ+20b, MRK+20b, MCVF22, MBTS20, NDH20, NMR+22, PGM22, PBVC22, SZ21, TZW+20, Thu22, YTK22, YRC+21, ZG21}.\] Systematic \[\text{MD21}.\] systems \[\text{AHR20, AAKW20, BCWD21, BPT+20, CMP+21, CZ20b, CM20, CL20c, CX21, CS21b, CBA+21, DFJ22, DFL20, EPL21, FADJ20, GDL22, GKL21, GL}.\]

Taylor [CMP21, Mon21, RS20a, RHSK21, TXH21, WZC+20]. TD [KBCH20].

technique [ADK21, EAK20, GKPT22, KSK21, LZPM22, LLPL22, PCB22, QG21, TSS+20, VEC21, XSC21, YX22]. Techniques [MVO+22, OGG20, FCW21, FMOJ22, JKZS21, JRY+20, KC20b, MYL21, RBPRST20, VLC+20, VK22, WL20, YG21, ZWZL22].

tension [BCC20, CPGD21, CHL20, DEvW22, HPW21a, HT20, HT21b, IMJ20, LMY22, MJ21, XJN20, ZS20]. Tensor [BVT20, HKKS21, AT20, CN21, DV20, DV21, GQ22, Kho20, LJZK21, QP21, RV21, SVW21, TL20, TSSOA20, WGB22, XY20b, XZC21].

Tensorial [LQX22b]. tensors [GDLL22]. term [GBLT20, MFT20, SKT20, WHN+20]. terms [AÖR22, BS22a, JJ21, KSHJ20, PR20, WZ21a, ZH20]. ternary [DWWZ21].

terrain [Bal21]. terrain-following [Bal21]. Test [RA21]. tests [SDA+21]. tetrahedral [AE20, GK20, JBF21, Nis20b, YCH21, ZS20]. tetrahedron [CIMG21]. TgNN [XZRW21]. TgNN-wf [XZRW21]. their [BCJ21, BQ22, BS22, KMS20, LLS20, MAPS20, NdllLPL21, PA20].

Theoretical [tLjTbZ22, KNG22]. Theory [BGW20, CHZ+21, GDF21, AFL22, CSA21, FM20, HJK+21, Ish22, NTS20, RPDO+21, SOS20, SL20b, TMG20, VGB21, XLHB22, XZR21, XDCF21, YB22, ZNY+20].

Theory-guided [CHZ+21, XZR21]. Thermal [BOB21a, Ani21, CZ20b, CCW20, EM20, FADJ20, FS21, GA20, GFG22, Kan20, KL20, MMZ21, MH22a, PGM22, TLWM20, TGB20].

thermochemical [FCW21]. Thermodynamically [PT+22, KL+20, WDKS22, PAA21].

thermometry [BAK22]. thin [ACML20a, ACML20b, BW20, BBKB21, CCPS21, HYSS22, HCL22, Hig20, LW22, PH22, QERT20, VSS21, VACE21]. thin-film [ACML20a, ACML20b, PH22]. THINC [KCX+21, TFWX22]. Third [QLY21, Unf21, LL21a, LWYY22, ZL21b, ZS20, vLN21]. third-order
[LL21a, ZL21b, ZS20, vLN21]. Three

[CPX21, CS21c, HRR21, LW20b, TTP22, ABH21, BGS22a, BSA22, BDL+20, BY20, Cam21, CCM+22, CJLL21, DYGC22, FSW22, FZ20a, FWG22, FGL+22, GHY22, Gao22, GPSMH20, GL20, GZ21, JWZ20, JLL22, KKCC20, LSW20, LZC+20, LJZK21, LRT22a, OYK+22, PLV20, SL20a, SOV21, SKCM22, VCNC+21, XY20a, XS20, YLNT20, Yan21b, YSCM21, ZY20b, ZGLL20, ZFG21, ZWZL22, ZPGR22, ZSsC+22]. Three-dimensional

[CS21c, TTP22, Cam21, CCM+22, FSW22, FZ20a, FWG22, FGL+22, GHY22, GZ21, JLL22, LRT22a, OYK+22, PLV20, SL20a, SOV21, SKCM22, VCNC+21, XS20, YLNT20, ZGLL20, ZFG21, ZWZL22, ZPGR22]. three-domain

[ABH21]. three-field

[BGS22a]. three-phase

[GPSMH20, ZY20b, ZSsC+22]. three-point

[BSA22]. three-scale

[DYGC22, YSCM21]. Three-way

[LW20b]. threshold

[ZEG20]. throughput

[ZO21]. tilts

[PV20]. Time

[AH21, An21a, AL20, BDT21, Bar22, BFM21, Jen20, LKG+20, TLB20, ZLW22b, AHG21, AG21, AFL22, ATCS20, AFGLM20, AMM20a, AAKW20, AL21, BGH20, BB20a, BBQ+21, BG20a, BTEK22, CEMO21, CMR21, CP22a, CL20c, CY22, CBA+21, CELV21, CA22a, DGGL22, DEvW22, DW21, DGW20, DFJ20, EDL20, EPL21, FVM22, FGKY22, FY22, GCVI22, GJLD20, GMB+22, GTDB22, GA20, GPHAP+22, GFG22, GR21, GKA22, GW20, GLLM22, HBF20, HPA22, HSM20, HZB+21, HTV+22, HR20, HL20a, HX21, HL20b, HRG20, HYZH22, HLH21, JL22a, KSTT22, KS22a, KCS21, KNS21, KS21c, LIW+22, LPP+20, LOL22, ILTZ20, ILNZ21, Lin20b, LD20b, LHW22, LR22, LN21b, LY22c, MDG20, MPS22, MBE21, MYL21, MMRP22, MMWD20, NDH20, PKC22, PB20b, PMF20, PM21b, PH22, PC22, Qia22, QHLL20, QCZ22, QW22, RMA20, RC20a, RV20, RC20b, STEK17]. time

[STEK22, Sev21, SWF21, SSMA21, SES21, TCS22, TFCH22, TCR+20, Un21, VRL21a, VL20b, VdGP20, WRBK20, WMTQ20, WTX+21, WX22, WGU+22, YLN20, YZICN21, Yan21c, YW22, Yin21, YL21a, ZS22a, ZRH20, ZY20b]. Time-Accurate

[BFM21, CMR21, Yan21c]. Time-dependent

[AH21, AFL22, AFGLM20, BG20a, DGW20, GMB+22, GR21, HPA22, KCS21, PB20b, PMF20, PM21b, PH22, Qia22, QHLL20, QCZ22, RV20, STEK17, STEK22, VdGP20, Yin21]. Time-domain

[TBL20, BGH20, HLH21, MMRP22, WRBK20]. Time-explicit [Bar22].
time-fractional [CA22a, HL20b, HRG20, ILTZ20, QW22, YW22]. time-harmonic [AHG21, MDG20]. time-implicit [ATCS20].
time-integration [GCVI22]. time-marching [TCS22]. time-parallel

[EDL20, HFB20, RMA20]. time-splitting [Yin21]. Time-step

[LKG+20, DEvW22, HTV+22]. time-stepping [DGGL22, LJW+22, ILTZ20].
time-stepping-varying [GLLM22]. time-steps [LOL22]. time-variant

[CL20c]. time-varying [SWF21]. time-space [KSTT22]. time-stepping
CPX21, DGW22, FJG+20, GRC+22, GCSH22, KL20, KFP+22, KKSY21, LMFV22a, LMFV22b, MND+20, MIH22b, SSG21, SFNMF+21, TSS+20, WGY20, WZSK22, YcD20, YGJ21a, YGJ21b, ZAW+20]. **turbulent** [BJR22, BDB21, CPX22, CMH20, CM20, Che20, CF22, CPBB21, DJID20, DTR20, GFY20, HSMR20, HM21b, JGM+22, KSBG20, KKY+21, KD20, KS21d, LNC+21, LAS22, PJW21, RWDG22, TGS+22, ZO21]. **Tusas** [GNF22]. **TVD** [SBVM20]. twisted [YB22]. Two [CS20, HJH+21, Hua21, XD+20, QERT20, WWG20, YRC+21, AdDMT21, BJ21, BL22, BDMP22, Bre20, BMQ20, BE20, BR22b, Cal21, CSCL20, CY22, CZL20, CLJ+20, CBB20, CNC21, CK21, CMRR21, DEN22, DY22a, DSBFN+20, DC21, DHMT21, DS21, DLY22, FTZ22, FCBM22, Fu20, GDBFN+20, GQS20, GCV22, GL+22, HdB21, HKS20, HCL22, HLA20b, HLA20c, IKP22, JMM20, JM22, JWZ20, JGR22, KBB20, KLS+20, KWDS22, KKY+21, LL20, LKM22, LL21b, LOL20, LLW20a, LWR20, LYS22, LZO22b, LLPL22, LJZK21, ILNZ21, LC22, LY20b, Liu21, LSZ21, LRT+22b, LLCK20, MJJ21, MTO21, MA21, MDG20, MCBA20, MIM20, MM21c, MM22, MP21, MD22, NKA+20, PB20a, PEA20, PA21, PMF20, PLV20, PRL22, QPW21, QSZB20, RWDG22, RAS+20, SBH21, SEG21a, SCB20, SSPV20, SRD20, SWHJ22, SH22, SDA+21, TPYX22, UBT22, WZ21b, XS20, XLZ21, XZRW21]. two [XYL22, XM20, YLW21, YA21, YMY+21, YZK20, YNT20, ZEG20, ZS22a, ZXBS22, ZLW+22a, ZR20, ZSQ21, ZSY21, ZQS+21, ZQL+22, ZF20, ZGK+22, ZOE20, aKAK20, dSLdA+22]. two-derivative [KBB20, ZS22a]. Two-dimensional [Hua21, YRC+21, Bre20, CLJ+20, DEN22, DY22a, FTZ22, LL20, LWR20, LZS22b, LJZK21, LY20b, Liu21, MDG20, PB20a, PMF20, PLV20, PRL22, QPW21, QSZB20, XM20, YMY+21, YNT20, ZSY21, ZQS+21, ZQL+22, aKAK20]. two-dimensions [SSPV20, SH22]. two-domain [MP21]. two-fluid [CNC21, NKA+20, SBH21, SCB20, YLW21]. two-layer [DSBFN+20, Liu21]. two-level [LLCK20]. two-material [XYL22]. two-medium [CZL20, LSZ21, ZSQ21]. Two-phase [HIH+21, QERT20, HSMR20, BL22, BDMP22, BMQ20, BE20, BR22b, Cal21, CSCL20, CY22, CK21, CMRR21, DLY22, Fu20, GDBFN+20, GQS20, GCL+22, HKS20, HCL22, HLA20b, HLA20c, IKP22, JMM20, JM22, JGR22, KLS+20, KWDS22, LL21b, LOL20, LLW20a, LYS22, LLPL22, LRT+22b, LLCK20, MJJ21, MA21, MCBA20, MIM20, MM21c, MM22, MD22, NKA+20, PB20a, PEA20, PA21, PMF20, PLV20, PRL22, QPW21, QSZB20, RWDG22, RAS+20, SBH21, SEG21a, SCB20, SSPV20, SRD20, SWHJ22, SH22, SDA+21, TPYX22, UBT22, WZ21b, XS20, XLZ21, XZRW21]. two [XYL22, XM20, YLW21, YA21, YMY+21, YZK20, YNT20, ZEG20, ZS22a, ZXBS22, ZLW+22a, ZR20, ZSQ21, ZSY21, ZQS+21, ZQL+22, ZF20, ZGK+22, ZOE20, aKAK20, dSLdA+22]. two-scale [HdB21]. two-sided [ILNZ21]. two-species [RWDG22]. two-stage [BJ21, LC22, WZ21b, ZLW+22a]. two-temperature [SEG21a]. two-way [CBB20, PE20, PA21]. type [CWY21, sCpLL+22, CLS20b, CNC21, ER22, KAR22, KL+22, LL21b, LZS22a, LZS22b, LW20a, LLS20, Par22, QPW21, SDKL21, XZC21, ZOWW20, ZQS20, ZS20, HKS20]. type-I [ER22]. types [FZ20a].

U [Abg20, Nis20c]. U-MUSCL [Nis20c]. ultimate [vLN21]. Ultra
ultra-high [TCA21]. Ultra-Weak [BBDT21].
ultrashort [CMSa22a, NTSM20]. ultrasound [SACT21]. ultraspherical [AS20, FHT21, HKJ21]. un-split [MKB20]. unaware [QJQW22].
unbounded [DGS20, GLLM22, Yua21]. uncertain [KNP20, PB22]. uncertainties [PZ20, WK21a, YL21a, ZP20]. Uncertainty [BCPV21, SACT21, GZW20a].
un-collided [FSMa22]. uncollided-flux [FSMa22]. unconditional [PCF21, ZHY22]. Unconditionally [GHHR22, CSY20, FCWS22, HSW22, TT22, WGY20].
uncoupled [VSBa21]. unsteady [CRFa+21, EFO19, EFO20, GTDB22, HGB20, JLL22, JBF21, KZSJ22, KHS20, KKN+21, KL22, Kiv21, KNS21, KHS20, KKN+21, KD20, KB22b, LCG22, LKEM21, LVK+22, LC20, LPP+20, LJ21, LZLZ21, LMZ21b, MO22, MLM+21, MSK+22, MRYS20, MM21c, MM22, MD20c, MS20b, NdlLPL21, Ne20d, unsaturated [AYH+21, KLP20]. unsupervised [CCLL20, CCN21, KL20, KLG+22, SACT21]. up-to [Li20]. updated [BLM22, LNYD20]. Updated [SBVW20, DLZZ21]. Upper [BEK+20]. upscaling [KLPR20, VLCa+20]. uptake [KWS22]. upwind [CF21, DGW20, GKL21, KL20, MD21]. upwinded [WCB20]. Use [GMRS20].

Using [HMMO20, HRG20, XF21c, AAL+21, ASBM20, AHR20, AD21, ALCZ20, AEGV22, AM22, Bal21, BBGT21, BGS+22b, CSASS21, CF21, CCN21, CC22, CBA+20, CP20, DD22, DEvW22, DSZ20, DHMT21, DHR20, DW21, EDLF20, EFR21, FTP20, FZS+21, FADJ20, FC21, FEG20, FMH20, GLSZ22, GZW20a, GKA22, GCSH22, GFF20, GWZ22, Hac21, HPW21a, HSK+21, HLZ20, HRMY20, HTL21, HCL22, HX21, HL20c, HLA20b, HXFD20, HSS21, HWDM22, Iij21, JADS21, JLC21, Kan20, KTB20, KFS21, KTY22, KL20, KL22, Kiv21, KNS21, KHS20, KKY+21, KD20, KB22b, LCG22, LKEM21, LVK+22, LC20, LPP+20, LJ21, LZLZ21, LMZ21b, MO22, MLM+21, MSK+22, MRYS20, MM21c, MM22, MD20c, MS20b, NdlLPL21,
visco-resistive [TCK+22]. visco-thermal [TBM20]. viscoelastic [BCPV21, CA22a, EFO19, EFO20, HKJ21, JRY+20, MWY+20, PBVC22, PG20, XG22, ZLW+21, dKSA21]. viscoelasticity [CDT22b, KKN+22].
viscosities [GHHR22]. Viscosity [Hig20, SS22c, DM21, DHR20, KNT22, LJZK21, LFT+20, MAPS20, QPW21, SRH21, SS22b, SLNM21, Sti20, XZC21, ZB21b]. Visco [TCK+22, TBG20]. visco-thermal [TBG20]. viscoelastic [BCPV21, CA22a, EFO19, EFO20, HKJ21, JRY+20, MWY+20, PBVC22, PG20, XG22, ZLW+21, dKSA21].
volume-conserved [Yan21c]. Volume-of-Fluid [FMB20, KIHB21, MBK20, BSV21, FGL+22, HZTN21, IMJ20, KKS+21c, SCB20, XS20, KB22a].
REFERENCES

[LCWJ20]. Wood [BFL20].

yeast [HST22]. Yee’s [DLP21].

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ammoso:2022:GMM

Aithal:2020:FPC

Alauzet:2021:FBG

Antoine:2020:PCM

An:2022:PTD

Aithal:2020:FPC

Alauzet:2021:FBG

Antoine:2020:PCM

An:2022:PTD

REFERENCES

Alauzet:2022:PAA

Abreu:2020:NRP

Afanasiev:2021:LIT

Ammari:2021:TDH

Arthurs:2021:ATP

Aono:2022:AND

afKlinteberg:2020:FIE

Albert:2020:SIN

Ambartsumyan:2020:SMF

REFERENCES

REFERENCES

Antonietti:2020:HOD

An:2021:TSD

Assous:2021:FWR

Anistratov:2021:NIP

Anonymous:2020:Aa

Anonymous:2020:Ac

REFERENCES

Anonymous:2020:Da

Anonymous:2020:Fa

Anonymous:2020:Ja

Anonymous:2020:Je

Anonymous:2020:Jc

Anonymous:2020:Ma

Anonymous:2020:Mc

Anonymous:2020:Na

REFERENCES

REFERENCES

Anonymous:2020:Jd

Anonymous:2020:Mb

Anonymous:2020:Md

Anonymous:2020:Nb

Anonymous:2020:Ob

Anonymous:2020:Sb

Anonymous:2020:EBa

Anonymous:2020:EBb
Anonymous. Editorial Board. *Journal of Computational Physics*, 401(??):Article 109151, January 15, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
REFERENCES

Anonymous:2020:EBi

Anonymous:2020:EBj

Anonymous:2020:EBk

Anonymous:2020:EBl

Anonymous:2020:EBm

Anonymous:2020:EBn

Anonymous:2020:EBo

REFERENCES

REFERENCES

Anonymous:2020:EBv

Anonymous:2020:EBw

Anonymous:2020:EBx

Anonymous:2021:Aa

Anonymous:2021:Ac

Anonymous:2021:Da

Anonymous:2021:Fa
REFERENCES

Anonymous:2021:Md

Anonymous:2021:Nb

Anonymous:2021:Ob

Anonymous:2021:Sb

Anonymous:2021:EBa

Anonymous:2021:EBb

Anonymous:2021:EBc

Anon Anonymous:2021:EBd

Anon Anonymous:2021:EBe

Anon Anonymous:2021:EBf

Anon Anonymous:2021:EBg

Anon Anonymous:2021:EBh

Anon Anonymous:2021:EBi

Anon Anonymous:2021:EBj

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2022.Jf

Anonymous:2022:Jd

Anonymous:2022:Mb

Anonymous:2022:M

Anonymous:2022:Sb

Anonymous:2022:EBa

Anonymous:2022:EBb

Anonymous:2022:EBc

REFERENCES

Anonymous:2022:EBd

Anonymous:2022:EBe

Anonymous:2022:EBf

Anonymous:2022:EBg

Anonymous:2022:EBh

Anonymous:2022:EBi

REFERENCES

[AP22] Charles Armstrong and Yan Peng. Numerical simulations of capsule deformation in a combined shear flow and DC electric field. *Journal of Computational Physics*, 462(??):??, August 1,
Almeida:2022:APS

Arpaia:2020:WBR

Artemov:2021:SAM

Araki:2020:RVF

Amiranashvili:2021:ASM

Al-Salami, Jabir; Kamra, Mohamed M.; Hu, Changhong. A high order flux reconstruction interface capturing method with a phase field preconditioning procedure. *Journal of..."

Abushaikha:2020:FIM

Anderson:2020:ECT

Ahmad:2020:LMM

Astoul:2020:ARS

Astoul:2021:LBM

REFERENCES

Adia:2021:CLB

Antoine:2022:PMP

Bennis:2021:LTM

Beilina:2022:AFE

Baldau:2020:DGS

[Bal20] Michael Baldauf. Discontinuous Galerkin solver for the shallow-water equations in covariant form on the sphere and the ellip-

Baldauf:2021:HEV

Barnes:2021:ISF

Barsukow:2021:TMD

Barnes:2022:TED

Batista:2020:MIS

REFERENCES

Batista:2020:PMM

Beardsell:2020:CES

Bereozvski:2020:DDM

Bonilla:2020:MPF

Bauinger:2021:IFG

REFERENCES

REFERENCES

REFERENCES

[BCPV21] Giulia Bertaglia, Valerio Caleffi, Lorenzo Pareschi, and Alessandro Valiani. Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model. *Journal of Computational Physics*, 430(??):Article 110102, April 1, 2021. CODEN JCTPAH. ISSN 0021-9991 (print),
Boscarino:2022:LVG

Both:2021:DDL

Baars:2021:AAM

Boscheri:2020:HOC

Bourgeois:2020:NMA

REFERENCES

REFERENCES

126

REFERENCES

[BGGM21] Jack Betteridge, Thomas H. Gibson, Ivan G. Graham, and
Eike H. Müller. Multigrid preconditioners for the hybridised
discontinuous Galerkin discretisation of the shallow water
equations. *Journal of Computational Physics*, 426(??):Article
109948, February 1, 2021. CODEN JCTPAH. ISSN 0021-

[BGH20] Alex Barnett, Leslie Greengard, and Thomas Hagstrom. High-
order discretization of a stable time-domain integral equation
for 3D acoustic scattering. *Journal of Computational
Physics*, 402(??):Article 109047, February 1, 2020. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999119307521.

Gaussian process enhanced semi-automatic approximate Bayesian
computation: parameter inference in a stochastic differential
equation system for chemotaxis. *Journal of Computational
Physics*, 429(??):Article 109999, March 15, 2021. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999120307737.

[BGNY22] Andrea Bonito, Diane Guignard, Ricardo H. Nochetto,
and Shuo Yang. LDG approximation of large deformations of
prestrained plates. *Journal of Computational Physics*, 448(??):Article 110719, January 1, 2022. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
article/pii/S0021999121006148.

[BGNZ22] Weizhu Bao, Harald Garcke, Robert Nürnberg, and Quan
Zhao. Volume-preserving parametric finite element meth-
ods for axisymmetric geometric evolution equations. *Journal of Computational Physics*, 460(??):??, July 1, 2022. CO-
REFERENCES

[Behbahani:2022:SEF] Sara Shokrollahzadeh Behbahani, Hadi Hajibeygi, Denis Voskov, and Jan Dirk Jansen. Smoothed embedded finite-

[Bosma2021:EMR] Sebastian B. M. Bosma, Sergey Klevtsov, Olav Meyner, and Nicola Castelletto. Enhanced multiscale restriction-

Bai:2022:SCT

Banjai:2020:NAS

Balachandar:2019:SIV

Balachandar:2020:CSI

Boscheri:2022:CCA

REFERENCES

[BOMARITO2022:OAC]

[Beker2021:PEL]

[Brenner2020:VAG]

[Badia2022:GDU]

[BONITO2020:DGA]
Andrea Bonito, Ricardo H. Nochetto, and Dimitris Ntogkas. Discontinuous Galerkin approach to large bending deformation of a bilayer plate with isometry constraint. *Journal of Computational Physics, 423(??):Article 109785*, December 15,
REFERENCES

[Bassett:2022:MDD]

[Bassett:2021:ESPa]

[Boscheri:2021:HOP]

[Bihlo:2022:PIN]

REFERENCES

Bhosale:2021:RVM

Burger:2020:ICI

Bailo:2022:PTP

Burbulla:2022:FVM

Bremer:2020:QCA

[135x681] [Bre20] James Bremer. A quasilinear complexity algorithm for the numerical simulation of scattering from a two-dimensional radially symmetric potential. Journal of Computational Physics,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Juan C. Araujo C., Carmen Campos, Christian Engström, and Jose E. Roman. Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures. *Journal of Computational Physics*, 407(??):Article 109220, April 15, 2020. CO-

REFERENCES

Cai:2020:DLS

Crestetto:2022:CHO

Chaillat:2022:EET

Cortesi:2020:FBU
REFERENCES

REFERENCES

[CDL21] Samar Chehade, Michel Darmon, and Gilles Lebeau. 3D elastic plane-wave diffraction by a stress-free wedge for incident...

REFERENCES

REFERENCES

REFERENCES

Chamarthi:2021:HOC

Chung:2022:OMC

Chen:2022:ESA

Cao:2022:MLR

Carcipolo:2020:CMM
REFERENCES

REFERENCES

[CJ21] Elena Celledoni and James Jackaman. Discrete conservation laws for finite element discretisations of multisymplectic PDEs. *Journal of Computational Physics*, 444(??):Article 110520,
REFERENCES

Chen:2021:FAE

Chen:2020:AFM

Chalmers:2020:RCC

Cho:2021:FIA

Cho:2022:NDF

REFERENCES

REFERENCES

Chen:2021:CLV

Chen:2020:ENO

Chandramouli:2020:LSV

Colomes:2021:WSB

Carrillo:2021:OAC

REFERENCES

REFERENCES

Cicchino:2021:NNS

Chiu:2021:AHA

Costa:2021:EVH

Cicchino:2022:NSF

Chandrashekar:2020:PCF

Praveen Chandrashekar, Boniface Nkonga, Asha Kumari Meena, and Ashish Bhole. A path conservative finite vol-

Coatlen:2021:PNE

Coco:2020:MGP

Chung:2020:CMM

Capodaglio:2022:LTS

Chartrand:2022:MGM

REFERENCES

[CPK22] Hyuntae Cho, Yesom Park, and Myungjoo Kang. Solving incompressible Navier–Stokes equations on irregular do-

Cirrottola:2021:ADU

Ciallella:2020:EST

Cai:2020:TCL

Chen:2021:NMS

Chen:2021:RGP

REFERENCES

REFERENCES

REFERENCES

Caflisch:2021:ADN

Chan:2022:ECJ

Cheng:2022:WBW

Chandramoorthy:2021:PFN

Chen:2021:PIM

[CZZ21] Shuqing Chai, Zhen Zhang, and Zhiwen Zhang. A second order accuracy preserving method for moving contact lines with Stokes flow. *Journal of Computational Physics*, 445(??):Article 110607, November 15, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

REFERENCES

REFERENCES

REFERENCES

Diaz:2022:PA

Dubois:2022:MLF

Dominguez:2020:ODF

Du:2020:FUE

Dzanic:2022:PAN

REFERENCES

REFERENCES

REFERENCES

Dalmon:2020:FMI

deKinkelder:2021:NMS

Dong:2021:MBI

Deng:2021:AYS

Don:2022:NRS

REFERENCES

REFERENCES

REFERENCES

Dolejs:2021:NST

Duong:2022:ARS

Delgado-Sanchez:2020:TLS

DeKlerk:2022:VID

dosSantos:2022:ADM

José Cícero Araujo dos Santos, Paulo Roberto Maciel Lyra, João Paulo Rodrigues de Andrade, Artur Castiel Reis de Souza, Ricardo Jorge Morais de Lira Filho, and Darlan Karlo Elisiário

Demou:2022:PBD

Ding:2020:APC

Dargaville:2020:GBA

Ding:2020:CFD

REFERENCES

REFERENCES

Dong:2021:PPE

Ding:2020:SPE

Danis:2022:NDD

Dong:2022:CHE

Dong:2022:SHO

[Hao Dong, Zihao Yang, Xiaofei Guan, and Junzhi Cui. Stochastic higher-order three-scale strength prediction model for composite structures with micromechanical analysis. *Journal of Computational Physics*, 465(?):??, September 15, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716]

REFERENCES

Ekici:2020:MPN

Edoh:2022:NKE

Eslaminia:2022:FWI

Evans:2019:ANS

Evans:2020:CAN

Jonathan D. Evans, Hugo L. França, and Cassio M. Oishi. Corrigendum to “Application of the natural stress formulation for solving unsteady viscoelastic contraction flows”
REFERENCES

Elarif:2021:TFB

EFR21

Efendiev:2020:SIA

EFS+20

Evstatiev:2021:NEA

EFSH21

Egan:2020:XRC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Francu:2020:AMM

Fricke:2020:CLA

Freno:2021:MSM

Feuillet:2021:PER

Freno:2022:CVT

REFERENCES

REFERENCES

Fan:2022:ACP

Ferrero:2022:RBM

Fu:2020:DFH

Fang:2022:PTM

Freret:2022:EAB

REFERENCES

Font:2021:DLS

Fan:2020:SEI

Fu:2022:EDE

Feng:2020:FBH

Feng:2020:FOF

Hongsong Feng and Shan Zhao. A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration. *Journal of Computational

Fu:2021:AGM

Fei:2020:USP

Fan:2021:PPH

Fu:2022:ESE

Fang:2021:EMD

[FZS+21] Hong Fang, He Zhang, Fanli Shan, Ming Tie, Xing Zhang, and Jinghua Sun. Efficient mesh deformation using radial basis functions with a grouping-circular-based greedy algorithm. Jour-

REFERENCES

REFERENCES

[GCV22] Ivan Girault, Mohamed-Amine Chadil, and Stéphane Vincent. Comparison of methods computing the distance between two ellipsoids. *Journal of Computational Physics*, 458(??):??, June 1, 2022. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
REFERENCES

Galassi:2022:ATI

Garon:2020:MAB

Gumerov:2021:LGF

Geoffroy-Donders:2020:DTO

Garres-Diaz:2020:MMS

REFERENCES

REFERENCES

Gopinath:2022:AIE

Guo:2020:ELB

Garcia:2022:SED

Grimberg:2020:SPB

REFERENCES

REFERENCES

REFERENCES

Garg:2021:SDC

Guermond:2022:HRT

Guo:2020:IFE

Glaubitz:2021:SHO

Glowinski:2020:CTB

REFERENCES

[GLSZ22] Zhen Gao, Yifan Lin, Xiang Sun, and Xueying Zeng. A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition cou-

REFERENCES

Gao:2022:AGF

Gouasmi:2022:ESS

Goloviznin:2022:VLD

Garg:2020:UJF

Ghasemi:2020:CDC

Fatemeh Ghasemi and Jan Nordström. On conservation and dual consistency for summation-by-parts based approximations of parabolic problems. *Journal of Computational Physics*, 410(??):Article 109282, June 1, 2020. CO-

References

Giussani:2020:TPV

Guo:2022:LRT

Girfoglio:2021:PGR

Ghilani:2020:PPF

Gradinaru:2021:HWS

Vasile Gradinaru and Oliver Rietmann. Hagedorn wavepackets and Schrödinger equation with time-dependent, homogeneous

Giacomin:2022:GCS

Grigoriu:2020:DBI

Gaudreault:2018:KF

Gaudreault:2021:CKF

REFERENCES

REFERENCES

REFERENCES

Huang:2021:SES

Hyde:2021:OSS

Hertel:2022:CLM

Haas:2020:TSA

Hernandez:2021:SPN
REFERENCES

Huang:2022:MLM

Huang:2020:DAB

Henri:2022:GLS

Hageman:2020:SGM

Hageman:2021:RTS

Tim Hageman and René de Borst. A refined two-scale model for Newtonian and non-Newtonian fluids in fractured poro-
He:2022:MFS

Heumann:2021:GMW

Holst:2020:ETE

Hepp:2020:MEA

Hassanaly:2022:ASU

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Date</th>
<th>URL</th>
</tr>
</thead>
</table>
Hariharan:2021:WCU

Heidel:2021:TPM

Hitz:2020:PRM

Hennessey:2020:HTR

Hou:2020:EPT

[HL20a] Baohui Hou and Dong Liang. Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients. *Journal of Computational Physics*, 421(??):Article 109738, November 15,
REFERENCES

[Huang:2020:CCS]

[Huang:2020:CEC]

[Huang:2021:CCM]

[Huang:2022:CCP]

[Hao:2020:DCS]
REFERENCES

Huang:2021:TDF

Harizanov:2020:ANM

Hu:2021:HCF

Hu:2021:SPN

Huang:2020:HOS

[HLY20] Hongying Huang, Jin Li, and Jue Yan. High order symmetric direct discontinuous Galerkin method for elliptic in-

Haidar:2022:PFV

Hu:2021:ARH

Han:2020:DFM

Holmes:2021:NPI

REFERENCES

Hume:2021:VVM

Holderied:2022:MHE

Hammer:2022:CSC

Huang:2020:HOP

Holderied:2020:SPV

REFERENCES

Sebastian Hennemann, Andrés M. Rueda-Ramírez, Florian J. Hindenlang, and Gregor J. Gassner. A provably entropy stable subcell shock capturing approach for high order split

He:2022:SAS

Horsten:2020:HFK

Han:2020:IWM

Halpern:2021:SPF

REFERENCES

Hamon:2020:PTM

Hijazi:2020:DDP

Huang:2021:SAS

Huang:2022:IKM

Heydari:2022:CFV
REFERENCES

Heid:2021:GFF

Huang:2022:BPP

Hao:2021:MMA

Howard:2020:NLM

Hamfeldt:2021:CFD

REFERENCES

REFERENCES

He:2020:DDA

He:2022:NSI

Hu:2022:SSH

Hu:2022:RHD

Hu:2022:MCC

[HZ22a] Jia-Wei Hu and Wei-Wei Zhang. Mesh-Conv: Convolution operator with mesh resolution independence for flow field modeling. *Journal of Computational Physics*, 452(??):Article 110896,

REFERENCES

Huang:2022:DDD

Ianniello:2020:AME

Idesman:2020:NPS

Iijima:2021:ECF

Inguva:2022:FTM

Venkatesh Inguva, Eugeny Y. Kenig, and J. Blair Perot. A front-tracking method for two-phase flow simulation with no

Isakov:2022:LIC

Ilangakoon:2020:HOA

Izzo:2022:CTR

Ishikawa:2022:LTB

Jacquier:2021:NIR

REFERENCES

Jabbarzadeh:2020:NMI

Jettestuen:2021:LCM

Jost:2021:DFI

Janodet:2022:MPA

Joshaghani:2022:VST
M. S. Joshaghani, V. Girault, and B. Riviere. A vertex scheme for two-phase flow in heterogeneous media. *Journal
REFERENCES

Philip E. Johnson, Loc H. Khieu, and Eric Johnsen. Analysis of recovery-assisted discontinuous Galerkin methods for
REFERENCES

REFERENCES

Jiang:2022:CND

Jin:2021:CAS

Jiang:2022:CLM

Jin:2020:RB

Ji:2022:TDD

REFERENCES

REFERENCES

Jiang:2021:SFI

Jiang:2020:LIE

Jakobsen:2020:CSS

Ji:2020:AIF

Ji:2020:HRB
Xing Ji, Fengxiang Zhao, Wei Shyy, and Kun Xu. A HWENO reconstruction based high-order compact gas-kinetic scheme on unstructured mesh. *Journal of Computational Physics*, 410

REFERENCES

Kumar:2022:SEL

Kolahdouz:2020:IIM

Kappeli:2020:OGC

Kleanthous:2022:ACP

Kolahdouz:2021:SIL

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Title</th>
</tr>
</thead>
</table>
Kumari:2020:DNS

Kuhn:2021:AML

Kumari:2021:GNA

Kozak:2020:WIL

Kuzmin:2020:SFL

Kou:2022:EAI

Kostorz:2020:SAB

Konrad:2022:DDL

Khokhlov:2021:GCM

Klahn:2020:AEA

Kang:2020:IHD

Kolasinski:2020:SMM

Khodkar:2021:DDP

Kumar:2021:MSI

Khoromskij:2020:RST

Boris N. Khoromskij. Range-separated tensor decomposition of the discretized Dirac delta and elliptic operator inverse. *Journal
Koch:2020:NCW

Kim:2021:EHR

Kivva:2021:FCT

Kulka:2022:TAC

Kou:2022:IBM

Jiaqing Kou, Saumitra Joshi, Aurelio Hurtado de Mendoza, Kunal Puri, Charles Hirsch, and Esteban Ferrer. Im-

Kaltenbach:2020:IPC

Kuzmin:2020:LDC

Kuya:2021:HOA

Koga:2022:LDF

REFERENCES

REFERENCES

REFERENCES

Kritsuk:2021:HON

Kubo:2021:LSB

Kim:2022:MCM

Kim:2020:DUL

King:2022:HOS

[KL22] J. R. C. King and S. J. Lind. High-order simulations of isothermal flows using the local anisotropic basis function

Kou:2022:DDE

Kontolati:2022:SUL

King:2020:HOD

Kumar:2020:FUN

REFERENCES

Daria Koliesnikova, Isabelle Ramière, and Frédéric Lebon. A unified framework for the computational comparison of

Keaveny:2011:ASK

Kay:2021:PNM

Klein:2021:MDS

Kormann:2021:ECT

Kuwata:2021:WML

REFERENCES

Kaltenbacher:2022:FTS

Karam:2022:HOP

Kilgour:2022:IBB

Krais:2020:SFA

Kingora:2022:NIF

REFERENCES

Koch:2020:MTP

Kulesza:2021:DOA

Karam:2021:LCR

Kucherova:2021:CMP

Kahana:2022:HOC

Adar Kahana, Fouche Smith, Eli Turkel, and Semyon Tsynkov. A high order compact time/space finite difference scheme for

Koch:2022:NMD

Lozano:2021:IFS

Lakoba:2020:SIF

Luo:2021:MDG

Lucor:2022:SCS

REFERENCES

Li:2021:ESP

Linga:2020:TEF

Laurent:2021:RGC

Lahiri:2020:SSA

Lee:2020:MRD

REFERENCES

Li:2021:BPH

Li:2020:WER

Lespagnol:2020:HOA

Liu:2020:SOL

Li:2021:ESS

REFERENCES

Lemoine:2020:AGM

Lepage:2021:AMI

Levy:2022:POT

Li:2021:LDS

Long:2022:VVI

REFERENCES

REFERENCES

REFERENCES

Lin:2020:DPS

Lin:2021:TFI

Liu:2021:MRT

Li:2020:SSF

Li:2021:CMM

Jun Li. Coupling the molecular motion and collision processes in numerical simulations. Journal of Computational

REFERENCES

REFERENCES

[LLCK20] Li Luo, Lulu Liu, Xiao-Chuan Cai, and David E. Keyes. Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids.
REFERENCES

Li:2020:FSF

Lu:2022:ARL

Leute:2022:ERA

Lallemand:2021:LBM

Liao:2020:SON

Li:2020:SLM

Li:2020:FIR

Li:2020:UGK

Lu:2020:CLP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Landstorfer:2021:MGP

Luo:2021:IWZ

Liu:2022:BFS

Li:2022:SCSa

Li:2022:SCSb

Liu:2022:PTS

Lin:2022:HOR

Lindblom:2022:BTD

Liu:2022:PCB

Laskowski:2022:FOT

REFERENCES

REFERENCES

REFERENCES

Li:2022:PIK

Lee:2021:CSF

Leng:2022:PGM

Li:2021:SFI

Lecointre:2022:HON

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Li:2020:PMR

Li:2022:NFI

Li:2021:SOL

Liang:2020:CSD

Liu:2020:BFM

REFERENCES

Li:2021:DOI

Li:2022:IMC

Li:2022:EHC

Li:2022:HTA

REFERENCES

[Medvedev:2022:FSO] Sergey Medvedev, Igor Chekhovskoy, Irina Vaseva, and Mikhail Fedoruk. Fast sixth-order algorithm based on the generalized Cayley transform for the Zakharov–Shabat system as-

Mosharaf-Dehkordi:2022:FPM

Mittal:2021:MTI

Mattes:2020:QON

Marcian:2022:HL

Mathews:2022:SMR

REFERENCES

REFERENCES

Minoshima:2021:LDH

Mirjalili:2021:CEC

Mirjalili:2022:CCE

Mukundan:2022:HMF

Munoz-Matute:2021:EBD

Judit Muñoz-Matute, David Pardo, and Leszek Demkowicz. Equivalence between the DPG method and the expo-

Marx:2022:REF

Magnetta:2022:VF

Massa:2022:AES

Montecinos:2021:UCH

Monrolin:2021:MST

Munoz-Perez:2020:SGH

McGregor:2022:VSS

Mezzadri:2020:SOM

Mortier:2022:MAP

Manzanero:2020:FES

Morita:2022:ABO

Maurya:2020:NHC

Morse:2021:RSE

Maes:2020:USF
Julien Maes and Cyprien Soulaine. A unified single-field volume-of-fluid-based formulation for multi-component inter-

REFERENCES

Mohan:2021:IRA

Mancini:2022:PMF

Markeeva:2021:QIS

Myers:2021:SET

Martin-Vaquero:2020:SNP

Maurya:2021:NOI

Meng:2022:LFP

Mou:2022:NMM

Marchildon:2020:OMD

Nordstrom:2021:NNE

Jan Nordström and Oskar Ålund. Neural network enhanced computations on coarse grids. *Journal of Computational
REFERENCES

Nguyen:2022:HOS

Negrini:2021:SIT

Napier:2020:UMA

Nath:2020:LDR

Naddei:2021:SME

Fabio Naddei, Marta de la Llave Plata, and Eric Lamballais. Spectral and modal energy transfer analyses of LES using the discontinuous Galerkin method and their application to the variational multiscale approach. Journal of
Nardean:2021:NBN

Nasar:2021:HOC

Nasar:2021:HOV

Nordstrom:2020:RBP

Nair:2022:SCI

Nikl:2021:IRV

Natarajan:2022:MEB

Nicholls:2022:HOS

Nishikawa:2020:FAW

Nishikawa:2020:HPS

Nishikawa:2020:LRS

Nishikawa:2020:RNF

Nishikawa:2021:HPS

Nagata:2021:CAC

Nykeri:2020:TFM

[NKA+20] Georgia Nykeri, Phoevos Koukouvinis, Silvestre Roberto Gonzalez Avila, Claus-Dieter Ohl, and Manolis Gavaises. A

Nayak:2021:DPE

Nikl:2022:HOC

Nikan:2021:NEF

Ntoukas:2021:FES

[NPD20] Benoit Nennig and Emmanuel Perrey-Debain. A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides. *Journal of Computational Physics*, 412(??):Article 109425, July 1, 2020. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716
Nan:2022:HOM

Nguyen:2020:SPL

New-Tolley:2020:HCQ

Nishikawa:2020:ECC

Nordstrom:2022:LNA

REFERENCES

Kian Chuan Ong and Ming-Chih Lai. An immersed boundary projection method for simulating the inextensible vesicle dynamics. *Journal of Computational Physics*, 408(??):Article 109277, May 1, 2020. CODEN JCTPAH. ISSN
Ong:2021:IBP

OReilly:2020:ECS

Oruc:2021:EMM

Osinsky:2020:LRM

Ouaknin:2021:PAS

REFERENCES

Oliva:2022:TFW

Ohmichi:2021:MFT

Ouyang:2022:HSP

Petrov:2020:PAM

Pakseresht:2021:DCP

REFERENCES

REFERENCES

[Pamela:2022:GFG]

[Pan:2021:ESF]

[Pulliam:2020:IEP]

[Pant:2021:TPM]

Peng:2021:HOL

Paul:2022:NEB

Pakravan:2021:SIP

Peng:2020:LRM

Patel:2022:TCP

Pourahmadian:2022:PNF

Pirozzoli:2021:NGS

Poette:2022:EUP

Popinet:2020:VLN

Panda:2020:MIP

Nishant Panda, Dave Osthus, Gowri Srinivasan, Daniel OMalley, Viet Chau, Diane Oyen, and Humberto Godinez. Mesoscale informed parameter estimation through machine learning: a

REFERENCES

Pathak:2020:ISN

Prado:2021:DDD

Peter:2022:AFV

Persson:2022:DGM

Piotrowski:2022:SRP

[PS22b] Zbigniew P. Piotrowski and Piotr K. Smolarkiewicz. A suite of Richardson preconditioners for semi-implicit all-scale atmo-

Padrino:2020:CAS

Perot:2020:FSM

Pukhov:2020:XDM

Poette:2020:NIM

Pereira:2022:PAH

REFERENCES

Pan:2022:NFS

Panuelos:2020:LSD

Pan:2022:EIF

Pareschi:2020:MCS

Padmanabha:2021:SIP

Penwarden:2022:MMP

Pan:2020:HOA

Qin:2020:DNS

Qin:2021:RGC

Qu:2022:LTD

Qin:2020:TPM

Qadeer:2021:SFE

Qiu:2020:DDM

Qin:2022:PFM

Qian:2022:FDR

REFERENCES

Qian:2022:IUS

Qin:2021:IIL

Qiu:2021:TOP

Qian:2021:LTT

Qu:2020:SSS
Feng Qu, Di Sun, Boxiao Zhou, and Junqiang Bai. Self-similar structures based genuinely two-dimensional Riemann solvers in curvilinear coordinates. *Journal of Computational
REFERENCES

[RAZA21] Brandon Runnels, Vinamra Agrawal, Weiqun Zhang, and Ann Almgren. Massively parallel finite difference elastic-

REFERENCES

Rydquist:2022:CRL

Ramirez:2022:ALE

Reis:2022:LBF

Renac:2021:ESR

Ren:2022:FAH

Rabinovich:2022:ECU

Ruiz-Girones:2021:MIG

Raynaud:2022:MEP

Reuber:2020:ABI

Reissmann:2021:AGE

Maximilian Reissmann, Josef Hasselberger, Richard D. Sandberg, and Markus Klein. Application of Gene Expression Programming to a-posteriori LES modeling of a Taylor Green Vor-
REFERENCES

Donya Ramezanian, Dimitri Mavriplis, and Behzad R. Ahrabi.

Russo:2021:FVM

Ramabathiran:2021:SSP

Rodriguez:2021:GLC

Rettinger:2022:EFW

Rueda-Ramirez:2021:SCD

REFERENCES

Sudipta Ray and Sandeep Saha. A reconstruction-based Chebyshev-collocation method for the Poisson equation: an

REFERENCES

REFERENCES

REFERENCES

[SDA+21] Olga Stoyanovskaya, Maxim Davydov, Maxim Arendarenko, Elizaveta Isaenko, Tamara Markelova, and Valeriy Snytnikov. Fast method to simulate dynamics of two-phase medium with intense interaction between phases by smoothed particle hydrodynamics: Gas-dust mixture with polydisperse particles, linear drag, one-dimensional tests. Journal of Computational Physics, 430(??):Article 110035, April 1, 2021. CO-
REFERENCES

Semenova:2021:CSS

Shetabivash:2020:MLS

Sangam:2021:DNA

Setzwein:2021:IHO

Semenikhin:2021:IAN

[Sem21] Igor Semenikhin. Improving accuracy of the numerical solution of Maxwell’s equations by processing edge singularities of the electromagnetic field. Journal of Computational
REFERENCES

Skene:2021:PTA

Sevilla:2021:IHM

Solan-Fustero:2021:AAD

Solovský:2020:DEI

Steinberg:2022:MFI

ShangGuan:2021:GPS

Shen:2020:ESF

Scullard:2020:ASS
REFERENCES

Schlottke-Lakemper:2021:PHD

Sakakibara:2021:FDC

Subramanian:2021:MEP

Shiroto:2022:MEC

Sirignano:2020:DDL

REFERENCES

REFERENCES

REFERENCES

Schussnig:2021:RSF

Shi:2022:IST

Song:2020:SCS

Shen:2020:CSI

Schwander:2021:COS

Shahmardi:2021:FEH

Shahane:2021:HOA

Shi:2022:CPN

Sousa:2022:LSV

Sousa:2022:UQS

REFERENCES

Soler:2020:NCF

Scillitoe:2021:UQD

Schlachter:2020:WEN

Skaras:2021:STS

Sengupta:2020:GSA

REFERENCES

[STEK17] Ido Schaefer, Hillel Tal-Ezer, and Ronnie Kosloff. Semi-global approach for propagation of the time-dependent Schrödinger

REFERENCES

REFERENCES

Tipireddy:2020:CKL

Taghizadeh:2022:EPI

Tangtartharakul:2021:PIP

Tang:2022:ASF

Toosi:2021:GIE

Touboul:2020:TDS

Tang:2020:DLB

Li:2022:TAP

Tlupova:2022:DDS

[Torres-Sanchez:2020:ATF] Alejandro Torres-Sánchez, Daniel Santos-Olíván, and Marino Arroyo. Approximation of tensor fields on surfaces of arbi-
REFERENCES

REFERENCES

425

Teng:2020:CSC

[TZ20]

Tang:2021:SIF

[TZ21]

Tian:2020:_CMP

[TZM+20]

Taus:2020:SSP

[TZNHD20]

Urbano:2022:SIC

A. Urbano, M. Bibal, and S. Tanguy. A semi implicit compressible solver for two-phase flows of real fluids. *Journal
REFERENCES

Usabiaga:2022:NMS

Uilhoorn:2020:NIG

Unfer:2021:TOA

Ubeda:2020:AGR

Vasilyeva:2021:MDR

Maria Vasilyeva, Valentin Alekseev, Eric T. Chung, and Yalchin Efendiev. Multiscale dimension reduction for flow and transport problems in thin domain with reactive boundaries. Journal of Computational Physics, 442(??):Article 110512, October 1,

Vevek:2021:DDT

Vevek:2021:EAC

Vaughn:2021:TAG

vanHooft:2022:FOA

Vorozhtsov:2022:HOS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2021:FDR

Wan:2021:DDF

Wang:2021:AHA

Wang:2021:BSL

Wang:2022:DIM

Wang:2020:IBM

Wolf:2022:EAD

Wang:2020:DLB

Wu:2021:DSL

Wang:2022:ESN

REFERENCES

REFERENCES

[Wang:2020:ASB]

[WLPK20]

[Wang:2020:PAM]

[Wu:2021:ESD]

[Wu:2021:DVK]

[Wu:2021:ESD]

[Wu:2021:DVK]

[Wagner:2021:BMI]

Wang:2020:DAG

Wang:2021:IEM

Wang:2020:MGK

Wang:2021:DLF

Wang:2020:DGA

Wang:2020:WMC

Wang:2020:AEC

Wang:2020:RNN

Wissocq:2022:HLN

Wang:2022:RAS

Siwen Wang, Yuanzhen Shao, Emil Alexov, and Shan Zhao. A regularization approach for solving the super-Gaussian
REFERENCES

Wang:2022:DLF

Wang:2020:TCE

Wu:2021:VHO

Wang:2021:FIM

Wu:2020:SIC

REFERENCES

REFERENCES

Xu:2020:BSD

Xia:2022:HOA

Xu:2021:AAT

Xie:2020:FEI
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[XLXC20] Tianbai Xiao, Chang Liu, Kun Xu, and Qingdong Cai. A velocity-space adaptive unified gas kinetic scheme for
REFERENCES

Xia:2021:FD

Xu:2020:LSS

Xiong:2022:HO

Xie:2020:FOK

Xu:2020:HDR

REFERENCES

REFERENCES

REFERENCES

Ye:2020:LCB

Yu:2022:DFT

Yeung:2022:LRD

Yan:2020:HTM

Yang:2021:FFE

Yan:2022:GBD

Yin:2021:FOC

Yang:2021:EMG

Yang:2022:CPH

Yeo:2020:UME

Haram Yeo and Hyungson Ki. Unified momentum equation approach for fluid-structure interaction problems in-

You:2020:DRM

Ye:2020:MRI

Yang:2021:SPH

You:2021:CFT

[YLW21] Zixuan Yang, Min Lu, and Shizhao Wang. A robust solver for incompressible high-Reynolds-number two-fluid flows with high density contrast. *Journal of Computational Physics*, 441(??):Article 110474, September 15, 2021. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-

Yousefi:2020:NWB

Yee:2020:QPF

Yu:2022:IBM

Yushutin:2020:NMP

Yao:2021:TDM
Hongbo Yao, Zhengyong Ren, Huang Chen, Jingtian Tang, Yuanao Li, and Xu Liu. Two-dimensional magnetotelluric finite
REFERENCES

Yang:2022:CMF

Yamamoto:2022:MCS

Yang:2021:HOT

Yazdanian:2020:FEB

REFERENCES

Yang:2022:LFD

Yuan:2021:ESG

Yao:2022:NST

Yamazaki:2022:CMM

Yin:2021:SPD

REFERENCES

Zhang:2021:IMF

Zhou:2020:CMP

Zhao:2020:RTM

Zapata:2021:CLS

REFERENCES

REFERENCES

Zhu:2022:ELS

Zhan:2022:WFG

Zhang:2020:RDG

Zhang:2019:HOP

Zhang:2020:CHO

REFERENCES

Zhao:2020:HHW

Zhao:2021:EBC

Zhang:2020:DDF

Zinchenko:2021:AFH

Zhou:2020:MLR

REFERENCES

Zhou:2020:DUG

Zhang:2021:AEL

Zou:2022:CST

Zhang:2020:MRB

Zhao:2020:BTI

Zhao:2021:SOD

Zhang:2022:MSM

Zhang:2021:LRB

Zhang:2021:SCP

Zhao:2020:BTH

REFERENCES

Zhang:2022:FDL

Zhao:2021:NCM

Zhang:2022:MPM

Zhao:2022:CHO

Zhang:2020:SSI

REFERENCES

[ZL21d] Zhiming Zhang and Yongming Liu. A robust framework for identification of PDEs from noisy data. *Journal of
REFERENCES

REFERENCES

Zepeda-Nunez:2021:DDC

Zolfaghari:2021:HTH

Zuzio:2020:NEM

Zhang:2021:PHC

Zhao:2021:LRL

Zandsalimy:2022:NAM

Zhang:2020:NCM

Zamolo:2020:AGU

Zhang:2022:MKE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Article Number</th>
<th>Page Numbers</th>
<th>URL</th>
</tr>
</thead>
</table>
Zhou:2021:SHO

Zhang:2020:HEI

Zhao:2020:ESF

Zhao:2021:FEM

Zhang:2020:DCT

REFERENCES

References

Zhai:2021:HOO

Zhang:2022:CFE

Zaleski:2020:SIN

Zeng:2022:PCC

Zan:2021:FPP

Zan, Wanrong; Xu, Yong; Metzler, Ralf; Kurths, Jürgen. First-passage problem for stochastic differential equations with combined parametric Gaussian and Lévy white noises via path integral method. *Journal of Computational Physics*, 435(??):
Zhang:2020:LSM

Zhang:2020:DNI

Zou:2020:PPL

Zhang:2020:WGF

Zhang:2020:RES

REFERENCES

REFERENCES

492

Zeng:2022:ADN