
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

03 February 2024
Version 1.62

Title word cross-reference

2 [CJ14a, CV12, HYWA09, RSD23b, SMT+17].
[20 [NPS+20].]
3 [ARLB18, AGD+20, BAT+22, VRBS16, BLKM23, BCT+13, CKC+18, CMK+21, CJ14a, CBK+22, CH14, CRKP22, FRB08, KSB+08, KYEB15, KKC17, KWWI17, LKC15, LDK+18, LKK+22, LDP+20, MRG22, SCL17, SKRX13, TJ13b, TTS22, TZE14, VOB19, WL22a, XLLB06, XCF08, XDX14, XPD12, ZJS10, ZMC15, ZCB+22].
4 [LCSP14]. K [VOB19]. κ [MP10]. μ
[RFDT15]. $\Sigma \Delta$ [GGTG+20]. T
[YYC07, MPZ21]. $\Theta(\sqrt{n})$ [CV12]. V_{th}
[MP10].

-Angle [CFK22]. -Bit [LCSP14]. -D
[HYWA09]. -depth [CV12]. -means
[VOB19]. -Phase [SMT+17]. -Qubit
[NPS+20]. -SNE [MPZ21]. -tree [YYC07].

/high [MP10]. /high- [MP10].

1 [LZBW20]. 100Gb/s [XLL+18]. 10nm
[GVRR17]. 14nm [TGCJ16]. 19 [KKNM22].
1S1R [BSL+18].

2 [ZLWB20]. 2.0 [BLKM23]. 2006 [CS07].
2007 [LC08]. 2008 [Bah09]. 2011
[AD14, SN10]. 22nm [TGCJ16].

a-Si [HCTK08]. ABC [PPM+13].
Abnormality [TW22]. Abstraction
[DRL+19]. Accelerate
Approach [BM15, BBB+22, BS15, DRSR14, DJ16, JRLR15, LDK+18, SMR23, SMR+21, ZY18, ZGSA15, CQZK14, RT08, SZSS10].

Approaches [EDZ+23, SMZ+19].

Approximate [AHHS21, GP17, JLL+17, LQYL19, MEHT1, SJKS20, SVA+18, SBT20, TT20].

Approximation [HYPW22]. Arbitrary [Mog14]. Architecting [KBM21, Mit17].

Architectural [ABM21, Mit16, VO06, WKL16].

Architectures [AMH+24, AM18, BYHT18, CRKP22, CNH12, CTT+20, DPB11, GLL+21a, GLL+21b, JOF+15, JMKM21, JRJ22, LZXL22, LLX+18a, LZBW20, LDP+20, LPM+19, MAC+21, NLL+17, SGR+12, VK18, VDB+16, VOB19, WX15, YYBK19, ZLB+22, ZLWB20, ZK19, dLBHC22, CQZK14, CV12, CA11, MTC+08, Moh12, PDLS06, PDL07, SCI+09, TWL09, TCSV09, ZJS09a, ZJS10, ZJS09b].

architecture-level [Moh12].

Architectures [ACM+20, AMF+15, CMM+18, CD17, CCWCC15, DJ16, ERGK21, GCO+11, GMGA23, GNY+22, KK23, LGL15, MSB+22, MPZ21, Rez23, RMG15, Shu09, WZL16, YJ18, YP17, BPH+11, CDG+12, Deh05, FGZ14, KWFH12, WVGP13, XLLB06, ZMT13].

Area [CKC+18, CCH16, KCWL+16, PFRR17, XZR+22, RT07]. Area-efficient [XZR+22].

Arithmetic [JLL+17, PAP+22, VMNI08, Gla14, WL22a].

AroMa [CMZR23]. Array [KKY+20, LZXL22, LYWW13, MZZ23, MTC+08].

Arrays [BSL+18, CEW+13, CCH16, HHD+23, WHL+21, ZJK22, CCTP08, CSKM13].

Artifact [KRP+21]. Artificial [Dea14, KBM21, WLJC21, XYJ+21].

ASBUS [YW18]. ASIE [KWG+20]. ASL [ALY+21]. Assays [GCB14]. assembled [GRS05].

Assessment [RNN+22, VOB19].

Assignment [YJ18, SLS+14, ZS08].

Assurance-An [HML+23]. assured [MEHT21]. Asymmetric [CJ16, GVRRI, GJ17, GZZ+21, LPW18].

Asynchronous [GRPT13, GTGTG+20, KWG+20, SM11, VGZ11, VSM19, ZSYX11, CB09].

Audio [HYPW22]. Audit [SPS+24].

Authentic [FTR23].

Authentic/Counterfeit [FTR23].

Authentication [Bis17, IGR+16, MKMS22, RDS24].

Authorization [ASMK22]. Autoencoders [HYPW22]. Automata [DPB11, TNWD20, dLBHC22, DWL10].

Automated [DMR06, GJC17, WJWM23, XHSC07, ZS08].

Automation [WD22, ZCB+22, CZ05].

Autonomous [LPB+15]. Auxiliary [LDZ22]. Aware [GLMG+15, GUP11, MPM13, MKW+14, NPS+20, PFRR17, PRG+15, SLJC22, WX15, DJH+19, DLL+19, LKHY19, MSC19, RHB+20, RMBC12, SAAR20, STA+12, TMG+21, YWH+13].

Backside [DDR+16a]. ballastic [HYWA09, PFOL07]. bar [KKY+20].

Barely [ABS+12]. Barnes [MPZ21]. Based [AIK21, BBB+16, BSY+16, BYHT18, CZW+19, DCP+21, DDP20, DPK+15, DJH+19, FYJ+17, GCO+11, GRPT13, GG17, GLMG+15, GUP11, MPM13, MKW+14, NPS+20, PFRR17, PRG+15, SLJC22, WX15, DJH+19, DLL+19, LKHY19, MSC19, RHB+20, RMBC12, SAAR20, STA+12, TMG+21, YWH+13].
HFLZ22, HC15, HYPW22, KXY16, KBC+23, KHC+22, KT20, LTPK16, LPB+15, LQYL19, LLX+18b, IYW22, MZZ23, MPM13, MSB+22, MKSW17, MAC+21, NLL+17, NPA+12, OBLD14, QGW20, RNN+22, STSG17, SGR+12, SSF+15, TZZ14, VAK18, VDB+16, VSRR15, WX15, WL19, WLJC21, XLL+18, YXW+12, YLF+17, YYPK17, ZJ11, ZCX+17, ZY18, ZF15, AMH+24, ABR+21, ABM21, ASK23, AHS22, BBR+22, Bis21, CKA23, CZ05, CHN09, DMR06, Deh05, DBS+21, FSD22, GD12, Gla14, GCTF20, HON21, HRR19, HSM+05, IBO22, KPM22, KKY+20, KKNM22, LYEK22, LJ10, LDK+18, LDP+20, LTO22, MDS21, MKMS22, MSCS19, MEHT15, MN06, MS20, NLF+20, RSBA23, Rez23, RDS24, RCYB22, SZZS10, SAAR20, SPR18, SC06, TCSV09, TR13, VOB19, WW+19, WYZ+20, WL22a. based [XYJ+21, XZR+22, YYBK19, ZLB+22, ZCDD19, ZH20, WZSC09].

biochemical [RBGC14]. Biochips [BMB18, GCB14, HRR19, LBB+18, MPM13, OGB18, CZ05, DJRM09, DDM+06, RMBC12, RBGC14, C06, C08, XHSC07, X08, YYC07]. BioFoundries [DHK+23].

Bioinformatic [Gui13]. Biological [BBR+23]. Biology [Dea14, FHHK14, HD14, MHW14, MSW14, OBLD14, VMV13].

Built-In [MRG22, CBK+22, IBO22]. Bulk [BS16]. Bundled [SMT+17].

Bundled-Data [SMT+17]. Bundling [SBR19].

Carbon [DLW08, GRPT13, HC15, LKK+22, HZY+12, MN06, SXL+12]. Carry [MGZ+17]. Case [AGD+20, PPM+13, SCT+22, HCTK08].

CBRAM [MKSW17]. CBRAM-Based [MKSW17]. Cell [BTC+13, GG17, MGMU22, SFD17, XZR+22, SW107].

Cell-based [XZR+22]. Cells [CMJ14, DSB16, KCWL+16, MS17, CWL+13].

Cellular [DPB11, LLX+18b, TNWD20, XLM+18, CCTP08, DLW10]. center [BPB+12, KMD12, SMR+12]. centers
Comparative [DDR+16a, JLL+17, KWC+20, KST+22, KCWL+16]. Compare [REL+22]. Comparison [LLSO17, PYSJ22].

Compartmentalization [RD22]. Compatible [KCD+15, KCC+14].

Compression [MCH+22]. Compressive [QGW+20]. Compressors [GP+17].

Computation [AL+17, CVK+15, HVB+22, HSZ+17, MSB+22, MMD+20, TNW+20, YLF+17, ZLB+22, YWH+13, WDT+14]. Computation-In-Memory [HVB+22, MSB+22, ZLB+22].

Computing [Ano+18, ASP+18, BY+18, BOAC+20, BH+17, CQZ+21, DMY+15, EDCL+22, FY+17, FSD+22, GIS+22, HN+15, JRLR+15, KZ+15, KKK+22, KWW+17, LGL+15, LP+17, Mit+16, MS+20, NLL+17, NV+14, NYL+20, NHL+17, PAF+18, RCY+22, SJKS+20, SCL+23, SVA+18, SBR+19, SDSS+14, SK+16, SHB+21, SPR+18, TTS+22, TSM+17, TV+17, VAK+18, WYZ+20, WD+22, XNK+18, ZSPC+19, ZK+18, AMA+14, KMD+12, KT+14, MHL+08, McK+07, PG+12, VO+06, WZC+09, WDH+09, YW+13].

Computing-In-Memory [KKK+22, WYZ+20]. CONCEALING [RDM+21]. CONCEALING-Gate [RDM+21]. Conditional [PS+17]. Configuration [Bis+17]. configuring [RT+08].

Conservative [PPM+13]. consideration [LWH+14]. Considerations [MRR+12, UMB+18, ZM+22, BJ+10, WOW+10]. considering [RYT+07, SLS+14].

Constructions [CA+23]. Consumption [FC+18, LBJ+16, LY+13]. Contactless [RDM+21]. Content [GG+17].

Contradictory [DK+16]. Control [GY+17, GCB+14, QGW+20, RSD+23b, XZC+10]. control-path [XZC+10].

Controllable [MG+17]. Controllable-Polarity [MGZ+17].

Controlled [Che+15, DNH+11, HZ+14, MSB+22, SX+12]. Converting [TDS+14].

Convolution [HYA+20, KPM+22, SPR+18]. Convolution-over-time [SP+18].

Convolutional [AH+17, DK+21, KRP+21, LXX+18a, LPM+19, ORC+24, PJ+17, PSL+19, ZTR+20, ZH+20]. Coprocessor [ASP+18]. Core [BKJ+19, DMY+15, KDM+22, KPF+16, Re+23, YWF+18, DJ+19]. correlated [MLW+23]. Correlation [AAM+13].

Cortically [DBS+21]. Cosine [DB+14, KSA+22]. COSMO [GIS+22].

Cost [GL+21a, GC+17, HSZM+17, KXY+16, KHC+22, LCP+14, LNL+19, MRG+22, LBG+08, TR+10]. Cost-competitive [KHC+22]. Cost-Effective [MRG+22].

Cost-Efﬁcient [GL+21a]. count [MCT+18].

Counter [HON+21]. Counterfeit [TF+23].

Countering [LYE+22].

Deposited [LLSO17, BPH+11].

Device-type [ACY+21, BOAC+20, CKB20, GBLD15, KT20, LZCX22, MZZ23, NPA+12, PDL15, STSG17, TFZ+21, TMG+21, JRC+13, MHL08, RT08, YW13].

DFR [BY18]. Diagnosis [WHL+21, DJRM09, DM+06]. Digital [HZSA14]. diagram [LYJ+14]. Diamond [ATW+22]. Digit [KSA+22]. Digital [BMB18, Che15, GGL+14, HM14, HLS14, IBO22, KZL15, LBB+18, MPM13, OGB18, DJRM09, DM+06, KT14, LZCX22, RMBC12, RBGC14, SC08, XHSC07, XC08, YYYC07, ZX10].

Digital-Microfluidic [LLB+18]. dilution [RBGC14]. Dimension [ST20].

Dimensional [GUP11, MLK+08, WFCX09, XS14].

Directed [CKB20]. Direction [HMP+22]. Direction-aggregated [HMP+22].

Directional [NVW+22]. Disassembly [PRV+20]. Disease [XYJ+21].

displacements [SWJ07]. dissipation [MHL08]. Distance [CV11, TT20]. Distributed [AAO21, LGYC21, NHL+17, AMVG12, STA+12, VMN08].

DNNS [JMKM21]. Domain [KWC+20, Mit17, SBZT20, XDX14]. Domain-Wall [Mit17, SBZT20]. Dormant [DRG21]. Dot [DBP11, TNWD20, DWW10, WD+09].

DPA [DLTSA20, ZJ11]. DRAM [YYBK19]. DRAM-Flash [YYBK19].

DRAMs [BJ10]. Driven [LHW+17, BGX+21, GMM12, WDG+20, XS14]. driver [HCTK+08]. Droplet [GHHW19, HRR19, MPM13, XHSC07, XC08]. Droplet-Aware
Dropout [IBO22], Drug [HLH+12], DSE [WDG+20], DSP [TWL09], DTA [TMG+21], DTA-PUF [TMG+21], Dual [DLTSNA20], MFA+13, PAF18, PP21, YJ18, MP10, dual- [MP10], Dual-Mode [PAF18], Dual-Rail [DLTSNA20], Durable [BGX+21], duty [GD12], DVFS [MKW+14], ZF15, DWT [SGR+12], Dynamic [CThG15], GB18, JOF+15, MRH12, MEHT21, QGW20, SMT21, SHB+21, TMG+21, YMW21, ZMC15, AMVG12, DLL+19, WWJ09. Dynamically [AIK21, ZJS09a, ZJS09c, ZJS10b, ZJS10].

Early [Ko12], XLW+18, ZJK22, ZGSA15. Early-Stage [ZGSA15], Easy [DDR+16b]. ECC [PFRR17], ECDSA [BBB+16], ECG [SCZ+12, ZBF+22], Ecosystem [OK22]. Edge [COZ+21], KK23, MZZ23, MGMU22, SPS+24, XZL+21. Editor [CLKG17, SCLW19a, Ano18]. Editorial [CS07, Cha10, CFK22, HVB21, IN05, JHPG22, Kar20, McK07, Nar08, SLCJ22, SK16, TSB15, TSMCB17, TV17, XCF08, ZLWB20, Shu09]. Editors [CLSD18, FNO+19, GMGA23, SCLW19b].

EEG [KRP+21], Effect [CV11, LYWW13, XPD12, HZY+12]. Effective [MRG22, MKG+23, ZBF+22], effects [MLK+08]. Efficiency [CMM+18], LLSO17, TKBM12, YMW21, ZSO8]. Efficient [BYHT18, CQL21a, CQL21b, CRKP22, DDG+22, DJRM09, GLL+21a, GLL+21b, HN12, HHD+23, KDM22, KT20, LKC15, LPW18, MGMU22, MAKA23, NV14, NAY24, PJS217, PSR17, PAF18, RDS23b, SVA+18, SMT14, SMT+17, SPR18, TZR20, VSRR15, WGY21, XLW+18, ANR+14, BY18, BS21, GD12, KSB+08, LML+19, LYL19, MS20, MSC+21, PT12, TR13, XZR+22, SM11]. Elastic [PHS+15, ZM22]. Elasticity [GOGCK11]. Electric [RFDT15]. Electrical [YLR+23].

[LLX+18b, AHS22, HON21, RCYB22].
FPGAs [AAO21, RT07, ZPL+20]. FPIC [JDPH+23].
Framework [CJ15, FKM22, FMW+22, HFLZ22, KAS+22, KBC+23, KPFM16, LPB+15, LH20, LLX+18b, NPH18, PRG+15, RCYB22, SDSI14, XYJ+21, ZJK22, MCT10]. Fredkin [DJ08]. Free [DBG+14, GLM+15, LKC15, Mog14, WRWW17, YL14].
Fundamentals [PLC+13]. Fusing [ORC+24]. Future [BLKM23, DLTSNA20, GMGA23, KAB+21, RSD23b, CA11, MN06].

GALS [PCD+11]. Gap [LDPPB21].
Garbage [DBG+14, Mog14, TR10].
Garbage-Free [DBG+14, Mog14].
GARDENIA [XCS+19]. gas [HYWA09].
Gate [HC15, LSH14, RDM+21]. Gated [BJ10, JRJ22]. Gated-diode [BJ10].
Gated-RRAM [JRJ22]. Gates [AHZS16, CJ14a, DWK+16, HZSA14, DJ10].
Gating [HN12, ZF15]. Geckos [GSC17].
gem5 [CJ15]. gem5-PVT [CJ15].
Generalized [WHL+21, RBG14].
Generation [AMH+24, HYLPW22, KK23, MKG+23, TW22, WJWM23, XCS+19].
Generator [CAK23]. Generators [LTIP16, ST20]. Genes [AAF13].
Genetic [BBB+22, MZ1+14].
Genetic-algorithm-based [BBB+22].
genomics [GN08]. geographically [AMVG12].
Geometric [DSB16]. Global [DDP20, XPD12]. GPgpu [LCY19, TWLL19, WX15]. GPU [BS21, CRKP22, LLX+18a, LML+19, MPZ21].
GPU-Outperforming [LLX+18a].
GPUOPT [BS21]. GPUs [SPS+24, ZCX+17]. Gradient [HYPW22, HHD+23]. Grain [SMT+17, MLK+08]. grained [BLKM23].
Graph [CRKP22, FSD22, MDS21, PP21, XCS+19].
Graph-based [FSD22]. Graphene [DDP20, HC15, KHR+15, WLJC21, WZSC09].
Graphene-Based [WLJC21, WZSC09]. green [AMVG12, PG12]. greener [GD12].
Grid [ZGSA15]. Guarantees [GYM+17].
Guarding [DCSA22]. Guest [CLKG17, CFW22, JHGP22, SCLW19a, SLJC22, Shu09, SK16, TSB15, TSMCB17, ZLWB20, Ano18, CLSD18, FNO+19, GMGA23, SCLW19b]. Guided [MCH22, WDG+20].
H [HCTK08]. Hack [MLP+20]. Hamming [RSBA23, TT20]. Hardening [LBB+18].
Hardware [ASB+21, ABR+21, ALY+21, ASK23, AHS22, ATW+22, BJB+22, BSY+16, BGX+21, BHL219, BWL+21, BVM+19, CRSSBR21, CLKG17, CLSD18, CQL21a, CQL21b, CCWCC15, CKWK18, DBS+21, DRG21, DCSA22, EFRB22, FMP+21, GCC+23, GFZ13, HIH18, HML+23, IGRG19, KPM22, KKY+20, KRG+23, KCD15, KKNM22, LQYL19, LFDS22, LLL18, LCK19, MEHT21, MAC+21, MPR+22, MKG+23, PISM17, SLC+17, SBR19, SCLW19b, SCLW19a, SLJC22, WYZ+20, WHB+21, XLW+18, ZLGL21, TMM+07].
Hardware-accelerated [KKNM22].
Hardware-Assisted [MPR+22].
Hardware-Aware [SLJC22].
Hardware-Based [LQYL19, MAC+21].
Hardware-oriented [AHS22].
Hardware-Software [IGGR19].
Harvesting [RSD+23a, RFDT15, ZSXY11, KP10, MCT10, WOW+10, WCISA10].
Hashing [JCK23]. HDL [OSLT06]. HDLQ [OSLT06]. Heart [XYJ+21]. Hermitian [AHSZ16, HZSA14]. Heterogeneous
[AAFM13, BHL19, CTP14, HTM18, IASK20, KHR+15, LGL15, LDP+20, MMD+20, SM19, VK18]. Heterojunction
Hierarchy [PHS+15, VSRR15]. High
[ASP+18, BYHT18, BH17, CJ16, CRKP22, GN08, HRR19, LTKP17, LML+19, LZX+21, MTC+08, PAB+17, PSY+18, PAC+22, SC08, WL22b, XLL+18, ZM22, Be11, BPH+11, CA11, LMC+11, MN06, PFOL07, RMBC12, WWJ09, ZS08, SM11]. high-
[MP10]. high-efficiency [ZS08]. High-level
[MTC+08, PAC+22, SC08, ZM22].
High-Performance
[ASP+18, BH17, CJ16, CRKP22, PSY+18, HRR19, LMC+11, Be11, BPH+11, LMC+11, WWJ09, SM11].
High-Speed
[BYHT18, LTKP16, PAB+17, XLL+18]. high-throughput
[CA11, RMBC12].
Higher [ST20]. Highlights [DR11]. Highly
[HN12, MGM22]. Highly-Efficient
[MGM22]. History [Ko12]. HMC
[HTM18]. Holistic [BAT+22].
Homogeneous [HRR19]. Horse [DRG21].
hosting [AMVG12]. HPC [KK23]. HTM
[ZK19]. Human [KWW17]. Human-Scale
[KWW17]. Hut [MP22]. HW [JRLR15].
HW/SW [JRLR15]. Hybrid
[DJ16, DLL+19, HAV+22, HH11, LNL19, LQYL19, LWM+14, LWY22, NAY24, PH+15, PAP+22, SMT21, WDW13, YLR+23, YYPK17, YYYK19, CB09, CJ14b, LBGR08, LMC+11, RT07, SCI+09, ZJS09a, ZJS09b, ZJS10]. Hypercolumn
[PSL+19]. Hyperdimensional [SBR19].
Hypervectors [SBR19].

IBM [NPS+20]. IC
[BLKM23, CH14, SMZ+19]. iConn [LGL15].
ICs [ARLB18, BLKM23, CKC+18, CBK+22, FRB08, MRG22, RSBA23, SCL17, TZS14, XS14, ZCB+22]. Identification
[KRP+21, SMZ+19, CWT14]. identify
[PT12]. Idle [SLC+17]. IEEE [Shu09].
IEEE/ACM [Shu09]. II [ZS09c]. ILP
[ZMT13]. Image [BWL+21, CLZ+22, MGMU22, MCH22, PSR17, LM13]. Images
[ATW+22, KBC+23, XZL+21].
IMFlexCom [PAF18]. Impact
[BS16, DNHL11, KAKSP14, KKC17, KMC+22, LZX+21, MKG18]. Implantable
[BY12, HLH+12, Ko12, MGS+12, SSN12, SCZ+12]. Implants [MLP+20].
Implementation [VDK+21, CRSSBMR21, JOF+15, LFDS22, LLX+18b, LMM18, PCD+11, SSN12, XLW+18].
Implementations [BVM+19, DBG+14]. Implementing [SMR+12]. Implicant
[PT14a]. Implicant-Implicit [PT14a].
Implications [KAB+21, VO06]. Implicit
[PT14a]. Improve [HSZM17]. Improved
[DRSR14, DRG21, PT14a, PSMR17, ZJ11].
Improvement [RBHG21, XZR+22, YMWH21, ANR+14, FRB08]. Improving
[AHPC21, CMM+18, MPZ21, ON15, RBHG21, SCL17, YWF18]. In-Field
[BMB18]. In-Memory [HFLZZ22, HHD+23, NHP+17, PAF18, TT20, KMC+22].
In-storage [ORC+24]. Incoherent
[YLR+23]. Incremental [XLW+18].
independent [Tah06]. indoor [WOW+10].
Induced [PAC+22, VDB+16]. Inductor
[TZS14]. Inductor-Based [TZS14].
inductors [SXL+12]. Inexact
[KT14, MGM22]. Inference [KGW+20, KKNM22, MZZ23, WWZ+22, ZCDD19].
Information
[AAFM13, HLS14, PRV+20, DWL10]. information-theoretic [DWL10].
Inherently [ABR+21]. Initialization
[KKY+20]. Injection [DDR+16a, JCK23, JW+17, LDPB21, PHS+23]. Inkjet
[RHB+20]. InSpire [VTK22, CZQK15, DBS+21, BY18, CQZK14]. instability
[KCC+14]. Integer [DBG+14, WL22a].
MSB+22, Mit17, NYL+20, NHL+17, PHS+15, PAF18, RMW+17, RCYB22, SMR23, SBTZ20, SBR19, TT20, WWZ+22, WDW13, WRWW17, WHB+21, WZL16, WL22b, YYPK17, YBYK19, YXD+17, ZSPC19, ABS+12, AKW+13, CSMK13, KMC+22, KSG14, PR13, SKRX13, TCSV09, VMI108, WYZ+20, ZLB+22, ZJS09a.

Memory-bound [KHCT+22].
Memory-Centric [KPPB17, NYL+20, GNY+22].
Memory-Ecient [HHD+23].
Memory-Storage [YYPK17].
Memristive [ASB+21, ANT22, CZQK15, GLMG+15, KZL15, MRR12, NAY24, SAAR20, TT20, UMB+18, WKL16, YW13, ZJK22, ZK18].

Memristor [ASB+18, BYHT18, MZZ23, QGW20, ZLB+22, dLBHC22].
Memristor-Based [BYHT18, QGW20, ZLB+22].
Memristor-CMOS [ASP+18].
Memristors [CHA20], mesh [EWKNW07].

Meshless [KTM08].
Metamaterial [NVW+22].
Metamaterial-enabled [NVW+22].
Method [BBB+16, DDP20, DLL+19, GCO+11, MZZ23, PP21, XYM18, YYPK19, ZXY11, HM+08].

Methodology [AHHS21, CMJ14, CH14, MLW+23, CB09].
Methods [CZQK15, TSMCB17, CCTP08].
microarchitecture [PHS+15].
microarchitectures [XCF08].
Microarrays [SKB13].
Microdevices [VMV13].
Microfluidic [BMB18, GCB14, HD14, LBB+18, MPM13, OGB18, DJRM09, DMM+06, RMBC12, RBGC14, SC08, XHSC07, XCO8, YYCO7, ZXC10].

Microflows [GHHW19, CZ05, SC06].
Microfluidics-based [CZ05, SC06].

Microscope [ATW+22].
Migration [AIK21, IASK20].
Millimeter [MKW+14, KK12].
Millimeter-Wave [MKW+14].
Million [AVK16].
Million-Qubit [AVK16].
Minimization [CCH16, LJI18].
Minimum [LCSP14].
MINLP [BM15].
Mitigate [ZH20].
Mitigation [NLK+13, WYZ+20, ZLGL21].
Mitigations [ASK23].
Mixed [DRL+19, LPM+19].
Mixed-Criticality [DRL+19].
mixing [RBCG14].
MLC [AM18, LWH+17].
MLC/TLC [AM18].
MN [PHS+15].
MN-MATE [PHS+15].
MNEMOSENE [ZLB+22].

mNoC [PDL15].
Mobile [TWL19, TSMCB17, YYPK17, WDH+09].
Mode [BSS16, PAF18].
Models [BM15, CCWCC15, FYJ+17, FCR23, MZR+14, MMD+20, REL+22, WHL+21, DLVW08, MHL08, MTC+08, ZC07].

Modelling [FMW+22, KBC+23, LYEK22, LTKP16, MN06, SSN12, SCT+22, TGCJ16, TKBM12, ZM22, ZF15, KCC+14, KSG14, PODL07].

Models [ASMK22, KMS+20, KCD15, KKNM22, MHW14, WJWM23, FRB08].

Modern [MPZ21].
Modular [FMM22, MHW14].

Module-Based [MPM13].
Modules [TGCJ16].
Molecular [AGR+23, CNHL08, DPB11, GPW+15, PDL15, SCT+22, WDW13, KSG14, KTWO8, MHL08, RYT+07].

Molecular-Spin-Qubit [SCT+22].

Monitoring [AUDS22, EFRB22, MGS+12].

Monolayer [RMW+17].
Monolithic [CKC+18, CMK+21, CBK+22, KKC17, LKK+22, TTS22, ZCB+22, BCT+13, XDX14].

MOS [KZM+15].

Motion [MGU22].

MRAM [AKW+13, DSB16, NLW+20, PAF18, SFD17, SMT21, STSG17, VDB+16, ZCDD19].
MRAM-Based [VDB+16, ZCDD19].

N [AM18]. NANA [PDL06]. Nano [GKT+18, YLF+17, CB09, LDL10, MP10, PDL06, SCI+09, ZMT13, ZJS10, ZC07, MRR12, ZJS09c, ZJS09a, ZJS09b].
nano-architectures [ZMT13].
nano-CMOS [MP10, SCI+09, ZC07].
Nano-Oscillator-Based [YLF+17].
Nano-Oscillators [GKT+18].
nano-scale [LDL10, PDL06].
nanoCMOS [ZJS10, ZJS09c, ZJS09a, ZJS09b].
NANOARCH [Bah09].
NANOARCH07 [Shu09].
nanoarchitectures [Tah06, Tah09].
Nanology [FGZ14, GRS05].
nanocavities [EDCL+22].
nano-floating point [AGR+23, WWG+19, WWJ09].
nanocrossbar [GUP11].
nanodevice [GCO+11, WZSC09].
nanodevice-Based [GCO+11].
nanodevices [CZQK15].
nanoelectronic [LZBW20, TSMCB17, YL14].
nanofabrics [SRD06].
nanofabric [LZBW20].
nanomagnet [CNH12].
nanomagnetic [VGZ11].
nanometer [CCTP08].
nanometer-scale [CCTP08].
nanophotonic [BS20, ISI+18, LLSO17, LKL+18, NPA+12, PDL15, XYM18, LMC+11, SX11].
nanopipelined [PT14b].
nanoribbon [HC15, KHR+15].
nanoribbon-CMOS [KRR+15].
nanoribbons [DDP20].
nanoscale [BOA+20, JRC+13, NLK+13, Shu09, CQZK14, EWKNW07, Nar05, RT07, RT08, WZSC09].
nanostructures [HYWA09].
nanosystem [TWL09].
nanotechnology [KB19].
nanotube [GRPT13, HC15, LKK+22, DLWW08, HZY+12, MN06, SXL+12].
nanotube-Based [GRPT13, MN06].
nanowire [Deh05, RKM15].
nanowire-based [Deh05].
nanowires [SRD+06].
navigating [CTT+20].
nBTI [KCC+14, LSH14, SLS+14, YWH+13].
nBTI-aware [YWH+13].
Near [DK21, GVR17, KXY16, Mit16, NPA+12, OPL15].
Obfuscation [CZW+19, GCTF20]. Object [KBC+23]. Objectives [DWK16].
Observing [TGCJ16]. OFDM [GLL+21a].
Operation [MPM13]. Operations [CVK15]. Optical [BPS19, VRBS16, DWK+16, GB18, HAV+22, JDPH+23, NPA+12, PAB+17, RDM+21, XLL+18, YLR+23, YXW+12, ZY18, ZLGL21, CA11, EDC+12].
Optical-Electrical [YLR+23]. Optical-Electronic [YXW+12].
Optimization [DKK+15, DWK+16, DDK+18, LLX+18b, LCY19, LKL+18, LW+20, PFRR17, Rez23, TGCJ16, YJ18, ZY18, ZGSA15, DLWW08, KKY+20, LWH14, WFCX09, ZJS09c].
Optimizes [BBR19, CWL+13].
Optimize [DJ16]. Optimized [CRSSBMR21, CCWCC15, KKKK18, MS17, MCT18, ON15, WGY21, WL22b].
Optoelectronic [WL22a, TR10].
Optoelectronic [PAP+22]. Oracle [GCJ17]. Order [CKWK18]. Ordering [WGY21]. Organizing [DK09, RMG15, LDL10, PDL07]. oriented [AHS22]. Oscillation [MSB+22].
Oscillation-Based [MSB+22]. Oscillator [FYJ+17, HON21, YLF+17, SXL+12, ZFT13].
Oscillator-Based [FYJ+17]. Oscillators [GKT+18].
Outperforming [LLX+18a]. outputs [TR10].
Overhead [LTM22, SLC+17, ZJ11, ZPL+20, EFRB22, Tahl09]. Overlay [PAB+17]. Overview [HML+23].

Papers [SN10]. paradigm [LBGR08, WZSC09]. Parallel [BAT+22, Dea14, FSD22, ISI+18, DJRM09, STA+12].
Parallelism [DK21, JOF+15, GNO+1].
parameter [RYT+07]. Parameterized [REL+22]. Parametric [FRB08]. Parasitic [ZH20].
Passive [GSC17]. Path [Bis21, CKWK18, GB18, VAK18, WRWW17, CWT14, ZXC10].
Path-based [Bis21]. Path-Setup [GB18].
Pathology [CLZ+22]. paths [ANR+14].
PEAL [AHHS21]. Peres [DJ08]. Performance [AVK16, AHS22, ASP+18, BSS16, BHI17, CDG+12, CKC+18, CJ16, CRKP22].
DNNH11, HTMH18, KDMT22, LYWW13, MKW+14, ON15, PSY+18, RBHG21, SCL17, VAK18, VOB19, YWF18, Bea11, BPH+11, DLWW08, HRR19, LMC+11, LML+19, LCT12, MN06, PFOL07, RT07.
productivity [SMR+12]. Products [TFZ+21]. Profiled [RBHG21].

Programmable [AMF+15, DPB11, Deh05, WDH+09].

Programming [CD22, KAS+22, KMS+20].

Programs [WWC23]. Project [TMM+07].

Pruning [AHS17]. PUF [AHPC21, DSB16, FMT22, KT20, LYEK22, MKMS22, RDS24, TMG+21, VDB+16, XZR+22].

PUF-based [LYEK22]. PUF-Cash [FMT22]. PUFs [AHS22, HON21, IGR+16]. PVFS [JOF+15]. PVT

[CMJ14, CJ14a, CJ15, TGCJ16, YJ18].

QCA [CNHL08, CHN09, DPB11, DK09, Glai4, GPW+15, HMS+05, LRN05, MHL08, OSJ06, SWJ07, SDSS14, TCSV09].

QCA-based [CHN09]. QCOR [MMD+20].

Quantifying [HLS14, NPH18]. Quantitative [SPS+24]. Quantization [CQZ+21, KKK22, XLW+18]. Quantized [LNL19].

Quantum [AUDS22, AVK16, AHS16, ATW+22, BM15, BH17, CD22, CVK15, CV11, DD14, DPB11, GCJ17, HZSA14, HSZM17, KAS+22, LCP14, LCJ14, MMD+20, MCT18, NV14, PSY+18, RHD14, SCT+22, ST20, TNWD20, VAK18, WD22, CKA23, CV12, DML10, MTC+08, TR10, VO06, VMNI08, WDH+09].

Quantum-Classic [MMD+20].

Quantum-Dot [DPB11, TNWD20, DML10].

Quantum-Logic [AHSZ16]. Quasi [LZCX22]. Quasi-digital [LZCX22].

Quaternary [SJXS20]. Qubit [AVK16, MCT18, NPS+20, SCT+22].

QuickRecall [JRLR15]. Quit [WGY21].

QuTiBench [BHLD19].

[CLW+13, LPW18, RKM15, ZCX+17].

[QGW20]. Ray [KBC+23]. RCG [ZBF+22].

Real [WRWW17, ZCX+17]. RealTime [DRL+19, GSC17, JWJ+17, KR18, KPFM16, SPS+24, SM19, TWLL19, ZBF+22, LWX+14].

Realization [BSL+18, PP21]. Realizing [SDSS14]. Reasonable [CNHL08].

Recognition [KC+18, KSA+22, PSR17, TZR20].

Reconciliation [LARK20]. Reconfigurable [CEW+13, CCH16, CDP17, CNH12, GZZ+21, KPPB17, KZ15, NLL+17, VK18, WHL+21, EWKNW07, Sek07, SC06, Tah06, ZJS09a, ZJS09c, ZJS09b, ZJS10].

Reconfigurable [MEHT21].

Reconstruction [ZBF+22]. Recorder [SCZ+12]. Recovery

[KCC+14, Sek07, ZXC10]. Recurrent [LZXL22, LLJL18, SBZT20]. Recycle [BS20].

REDEL [LKC15]. Redesign [YXD+17].

Reduced [SGR+12]. Reducing [FC18, LBJ+16]. Reduction [LSH14].

Reductions [MMAK23]. Redundancy

[ABR+21, WDW13, SC06, WWJ09].

Redundant [HH11]. Reed [LJ14].
Type [YJ18].

Unified [YYPK17]. Uniform [SMT+17]. Unipolar [LP17]. Unit [KHC+22]. Units [BH17, Gla14]. Universal [CZQK15, CVK15, MP10]. Unsupervised [ASB+21, ATW+22, KSA+22, LYL19, SPR18]. Updates [FKM22]. Use [KMS+20]. Using [AVK16, ALY+21, ATW+22, Bis21, CHA20, CJ16, CKWK18, DS816, DPB11, DLM+19, EDCL+22, GKT+18, GOGCK11, GGTG+20, GUP11, GSC17, GJ17, HZSA14, HLH+12, JRJ22, KPM22, KR18, KSA+22, KWW17, LBJ+16, LQL19, LP17, LMM18, MDS21, MSB+22, Mit17, MGST22, MSC+21, NPS+20, PFRR17, PT14a, PAF18, PB21, RBHG21, RDS24, SCL17, SBZT20, SPS+24, TZR20, TFZ+21, TNWD20, VSR15, YLR+23, YJ18, ZCDD19, BSL+18, BPH+11, CMJ14, DRSR14, HMS+05, JRC+13, KRP+21, KT14, KK12, KCD15, LBGR08, LSH14, MJM09, MHR+08, PAF+22, RBGC14, SZSS10, SPR18, SXL+12, SC06, YYC07, ZFT13, ZJT+14, KSB+08]. Utility [LHW+17]. Utilizing [LDZ22, WDH+09].

Volatile [KHR+15, RKM15, STSG17, WL22b, YYPK17, XYL+17, ZPL+20, RCYB22]. Voltage [Che15, FERB22, IBO22, JOF+15, KKK18, MSB+22, SCL17, SXL+12].

Voltage-Controlled [MSB+22]. voltages [MMJ09, WDH+09]. vs [CJ14a, DKK+15, KCW+20].

Vulnerabilities [PAC+22]. Vulnerability [BGX+21, HON21, SKRX13].

Wafer [KKC17, KWW17, MHR+08].

Wafer-Bonding [KKC17]. wafer-to-wafer [MHR+08]. Wall [KWC+20, Mi17, SBZT20]. walled [SXL+12]. Warp [MPZ21]. Wave [KDMT22, MKW+14, EWKNW07].

Wavelength [LKL+18]. waves [KK12].

Wide-Warp [MPZ21]. Width [DS816].

REFERENCES

LWM+14, MKMS22, MGS+12, MKW+14, NVW+22, RSD23b, RDS24, TKBM12, CDG+12, GD12, WOW+10, WVGPI3].

wires [DK09], wise [HYA+20]. Within [KXY16], without [ABR+21]. Wordline [LYWW13]. Wordline/Bitline [LYWW13].

Workload [PRG+15, SLS+14].

Workload-Aware [PRG+15]. World [MKW+14]. Wormhole [SHAC19].

WoSAR [AD14]. Write [AM18, GLMG+15, KXY16, LHW+17, NLW+20, WX15, WL22b]. Write-Aware [WX15]. Write-Optimized [WL22b].

Wires [VSRR15].

X [DDG+22, KBC+23]. X-Ray [KBC+23].

Yield [PFRR17, SC06, FRB08].

Z [HZSA14]. Zallocator [WL22b]. Zero [KXY16, TNWD20, BPB+12]. Zero-Energy [TNWD20].

References

Abate:2013:ILH

Alam:2021:VCS

Abane:2021:VCS

Alam:2021:ADN

Anagnostopoulou:2012:BAM

Alaghi:2017:TAE

Abellan:2017:EPN

Ascia:2020:EDR

Avritzer:2014:ISI

Arka:2020:MCP

Ardesi:2023:TMF

Ayub:2021:PPE

A:2021:IQF

Anwar:2017:SPD

Anandakumar:2022:DAF

Arabzadeh:2016:QLS

Adavally:2021:DAP
Shashank Adavally, Mahz-

Apalkov:2013:STT

Alawad:2017:SCS

Alasad:2021:RSH

Alsuwaiyan:2018:MMT

Araujo:2014:SAE

Azghadi:2015:PST

Mostafa Rahimi Azghadi,

Ahmed:2024:DTR

Abbasi:2012:DGD

Anonymous:2018:GEI

Arasu:2014:RIL

Alam:2022:SMM

Alqah tani:2018:SLA

Adnan:2021:DRM

Ali:2023:CTB

Alam:2022:CTB

Athreyas:2018:MCA

REFERENCES

Bartley:2023:BOR

Beausoleil:2011:LSI

Biernacki:2021:SDS

Britt:2017:HPC

[BH17] Keith A. Britt and Travis S. Humble. High-performance computing with quantum processing units. ACM Journal on Emerging Technologies in
REFERENCES

Blott:2019:QBN

Biswas:2017:SA

Biswas:2021:NCI

Bhat:2023:SF

Bhoj:2010:GDF

Bhanu:2019:FTN

Bhat:2023:SFG

[Bio21] Saman Biookaghazadeh, Pravin Kumar Ravi, and Ming Zhao.

Yu Bi, Kaveh Shamsi, Jianming Yuan, Pierre-Emmanuel Gaillardon, Giovanni De Micheli, Xunzhao Yin, X. Sharon Hu, Michael Niemier, and Yier Jin. Emerging technology-based design of primitives

Bouvier:2019:SNN

Bhunia:2012:ISI

Botero:2021:HTA

Bai:2018:DEE

Bontupalli:2018:EMB

Cianchetti:2011:LLH

Mark J. Cianchetti and David H. Albonesi. A low-

Chakraborty:2009:SAD

Chaudhuri:2022:BST

Chen:2016:AMS

Carmona:2008:FMA

Chen:2018:CLA

Coussy:2015:FBN

Philippe Coussy, Cyrielle Chavet, Hugues Nono Wouafo, and Laura Conde-Canencia.

ChagasRibeiroDaRosa:2022:KQP

Chang:2012:PED

Chittamuru:2017:SRS

Chen:2013:SAR

Chen:2022:GES

Chen:2014:CTS

[CH14] Fu-Wei Chen and Tingting Hwang. Clock-tree synthesis with methodology of reuse

Chakrabarty:2010:E

Cambou:2020:CAS

Cheng:2015:SSC

Crocker:2009:DFQ

Chaudhuri:2014:VDS

Chen:2014:ULL

Chen:2015:GPF

Xianmin Chen and Niraj K. Jha. gen5-PVT: a framework for FinFET system simulation under PVT variations.

Chaudhuri:2016:ULL

Canto:2023:RCK

Crites:2020:DPM

Chang:2018:PPA

Cui:2018:HTD

Cao:2017:GEI

REFERENCES

CODEN ????: ISSN 1550-4832 (print), 1550-4840 (electronic).

REFERENCES

REFERENCES

Chung:2014:DET

Cui:2020:LSN

Choi:2012:DQA

Chien:2015:FTO

Chuang:2008:SRS

Chen:2013:CCB
Yiran Chen, Weng-Fai Wong, Hai Li, Cheng-Kok Koh, Yaojun Zhang, and Wujie Wen. On-chip caches built
REFERENCES

Chen:2014:CRP

Chakrabarty:2005:DAM

Chabi:2015:CUS

Cui:2019:SMB

DeVos:2014:DGF

Dey:2021:SCB

[DBS+21] Sumon Dey, Lee Baker, Joshua Schabel, Weifu Li, and Paul D. Franzon. A scalable cluster-based hierarchi-

Dang:2021:BCP

Dubey:2022:GML

DeVos:2014:MCC

Danial:2022:EXD

Davids:2006:MFD

Das:2020:GRM

Donald:2008:RLS

Dehghani:2016:NAO

Dinakarrao:2019:ATR

Datta:2009:EPT

Dysart:2009:OWR

Das:2021:CNM

De:2015:ASC

Delgado-Lozano:2020:PDR

Deng:2008:CNT

Datta:2006:ADF

Kushal Datta, Arindam Mukherjee, and Arun Ravindran. Automated design flow for diode-based nanofabrics. *ACM Journal on Emerging Technologies in Computing*

February 2019. CODEN ????
ISSN 1550-4832.

REFERENCES

Giacomo Ghidini and Sajal K. Das. Energy-efficient Markov chain-based duty cycling

Patricia Gonzalez-Guerrero, Tommy Tracy II, Xinfei Guo, Rahul Sreekumar, Marzieh Lenjani, Kevin Skadron, and Mircea R. Stan. Towards on-node machine learning for ultra-low-power sensors using asynchronous ΣΔ streams.

REFERENCES

Garg:2012:TDL

Guiducci:2008:HPP

Gebregiorgis:2022:SMC

Galceran-Oms:2011:MTU

Gorantla:2017:DA

Graziano:2015:PVE
Mariagrazia Graziano, Azzurra Pulimeno, Ruixu Wang, Xiang Wei, Massimo Ruo Roch, and Gianluca Piccinini. Process variability and electrostatic analysis of molecular QCA. ACM Journal on Emerging Tech-

Golnari:2017:PCE

Guo:2021:RMS

Han:2022:PSO

Hossain:2015:MGN

Huang:2008:RAF

Huang:2014:FMD

Han:2022:PBC

Haron:2011:RRN

Huang:2023:LRG

Hamilton:2018:SHE

Huang:2012:IRD

Hanninen:2014:QII

Hadjam:2014:RED

Hosseini:2021:BPN

Hasan:2023:EEV

Huang:2022:DAA

Huang:2005:TBQ

Henry:2012:TNH

Hammerstrom:2015:ISI

Dan Hammerstrom and Vijaykrishnan Narayanan. In-
REFERENCES

Zhezhi He, Li Yang, Shaahin Angizi, Adnan Siraj Rakin, and Deliang Fan. Sparse BD-Net: a multiplication-less DNN with sparse binarized

Huang:2022:GBB

Huo:2009:SBN

Houshmand:2014:DDH

Huang:2012:PDT

Islam:2020:FPM

Ince:2022:DFB

Mehmet Ince, Bora Bilgic, and Sule Ozev. Digital fault-based built-in self-test and

Imani:2019:HSC

Iyengar:2016:SPS

Javaheripi:2023:AAH

Jessurun:2023:FNS

REFERENCES

Jin:2022:GET

Jiang:2017:RCC

Jha:2021:DED

Jafri:2015:AID

Jackson:2013:NES

Jones:2022:SNA

Alexander Jones, Aaron Ruen, and Rashmi Jha. A spiking neuromorphic architecture using Gated-RRAM for associative memory. *ACM

[KKim:2021:SDB] Heewoo Kim, Aporva Amar-nath, Javad Bagherzadeh, Nishil Talati, and Ronald G. Dreslinski. A survey describing beyond Si transistors and exploring their im-

REFERENCES

Koblah:2023:FOD

David Selasi Koblah, Ul\-bert J. Botero, Sean P. Costello,\nOlivia P. Dizon-Paradis,\nFatemeh Ganji, Damon L. Woodard, and\nDomenic Forte. A fast ob-\nject detection-based frame-\nwork for via modeling on\nPCB X-ray CT images. ACM\nJournal on Emerging Tech-\nnologies in Computing Sys-\ntems (JETC), 19(4):34:1-\n34:??, October 2023. CO-\nDEN ???? ISSN 1550-
4832 (print), 1550-4840 (elec-\ntronic).

Kulkarni:2021:AAI

Sourabh Kulkarni, Sachin\nBhat, and Csaba Andras\nMoritz. Architecting for arti-
ficial intelligence with emerg-
URL https://dl.acm.org/
doi/10.1145/3445977.

Kulfluoglu:2014:RMN

Haldun Küflowergülü, Cathy\nChancellor, Min Chen, Claude\nCirba, and Vijay Reddy. Re-
covery modeling of nega-
tive bias temperature insta-
ibility (NBTI) for SPICE-
compatible circuit aging simu-
lators. ACM Journal on\nEmerging Technologies in\nComputing Systems (JETC),\n12(4):38:1-38:??, July 2016.\nCODEN ???? ISSN 1550-
4832 (print), 1550-4840 (elec-
tronic).

Krishmar:2015:LSS

Jeffrey L. Krishmar, Philippe\nCoussy, and Nikil Dutt. Large-
scale spiking neural net-\nworks using neuromorphic\nhardware compatible models.\nACM Journal on Emerging\nTechnologies in Computing\nsystems (JETC), 11(4):36:1-
36:??, April 2015. CODEN ????\nISSN 1550-4832 (print), 1550-
4840 (electronic).

Kim:2016:CAP

Moon Seok Kim, William\nCane-Wissing, Xueqing Li,\nJack Sampson, Suman Datta,\nSumeet Kumar Gupta, and\nVijaykrishnan Narayanan.
Comparative area and para-
sitics analysis in FinFET and\nheterojunction vertical TFET\nstandard cells. ACM Journal\non Emerging Technologies in\nComputing Systems (JETC),\n12(4):38:1-38:??, July 2016.\nCODEN ???? ISSN 1550-
4832 (print), 1550-4840 (elec-
tronic).
Karkar:2022:TPE

Kooli:2022:TTI

Khasanvis:2015:LPH

Komerath:2012:RBP

Kim:2023:ISI

Koneru:2017:IEC

Abhishek Koneru, Sukeshwar Kannan, and Krishnendu Chakrabarty. Impact of electrostatic coupling and wafer-bonding defects on delay testing of monolithic 3D integrated circuits.

Kim:2022:EPS

Kim:2018:DNN

Kulkarni:2022:HAS

Krishnan:2022:ICI

Kant:2012:EDC

Krishna Kant, Muthukumar Murugan, and David H. C. Du. Enhancing data center sustainability through energy-adaptive computing.
REFERENCES

Kim:2020:PSA

Ko:2012:EHC

Kocak:2010:IDT

Kulkarni:2016:RTA

K:2022:CHA

Karam:2017:MCR

REFERENCES

REFERENCES

Kang:2020:AAS

Kumar:2017:THS

Khouzani:2016:FEP

Khayambashi:2015:ARA

Kim:2015:RDN

Kang:2015:SEU

Wang Kang, Yue Zhang, Zhaohao Wang, Jacques-Olivier Klein, Claude Chappert, Dafné Revelosona, Gefei Wang, Yongguang Zhang, and Weisheng Zhao. Spintronics: Emerging ultra-low-power circuits and systems beyond MOS technology. *ACM Journal on Emerging Tech-
Lu:2018:RHM

Li:2008:ADP

Layer:2016:RSP

Lebeck:2008:IDS

Lin:2014:QQM

Louri:2019:LHS

Laurent:2021:BGB

Liu:2022:DAA

Li:2022:HIH

Liu:2022:2022

Li:2015:ICI

Lu:2021:LNT

Li:2020:LNL

Li:2019:LLP

[LHHZ19] Sumin Li, Kaixin Huang, Linpeng Huang, and Jiashun

REFERENCES

ISSN 1550-4832 (print), 1550-4840 (electronic).

Li:2019:TBH

Loomis:2018:FIT

Liu:2017:CPU

Le:2015:END

Lou:2019:MSA
REFERENCES

Lin:2014:POF

[228x603] Liu:2014:CHP

[228x593] Liu:2014:CSN

[228x593] Luo:2022:ACT

[228x593] Lalouani:2022:CMA

[228x593] Liu:2019:EEF

REFERENCES

Liang:2013:EWB

Li:2020:ISI

Li:2022:QDQ

Liu:2021:RAR

Lee:2022:SAS

Mexis:2021:LAH

Nico Mexis, Nikolaos Athanasios Anagnostopoulos, Shuai Chen, Jan Bambach, Tolga Arul, and Stefan Katzenbeisser. A lightweight architecture for hardware-based security in the emerging era of systems of systems. *ACM Journal on Emerging Tech-
REFERENCES

Mishra:2022:ICG

Mishra:2022:ICG

Munoz-Coreas:2018:CQO

McKee:2007:ESI

Madhavan:2021:TSM

Masadeh:2021:QAA

REFERENCES

Monta:2023:SCS

Munoz-Martinez:2023:SST

Mintz:2020:QLE

Mishra:2009:LPF

Massoud:2006:MDC

Machida:2014:JCT
Fumio Machida, Victor F. Nicola, and Kishor S. Trivedi. Job completion time on a

REFERENCES

[ON15] Oluleye Olorode and Mehrdad Nourani. Improving performance in sub-block caches with optimized replacement
Okafor:2024:FSN

Pundir:2022:ASV

Parveen:2018:IEE

Peng:2022:DNN

Jiaxin Peng, Yousra Alka-bani, Krunal Puri, Xiaoxuan Ma, Volker Sorger, and Tarek El-Ghazawi. A deep neural network accelerator using residue arithmetic in a hybrid optoelectronic system.
REFERENCES

Paul:2021:SSI

Plana:2011:SDI

Patwardhan:2007:SOD

Jaidev Patwardhan, Chris Dwyer, and Alvin R. Lebeck. A self-organizing defect tolerant SIMD architecture.

Patwardhan:2006:NNS

Pang:2015:MLN

Paul:2007:PBC

Praveen K. Pilly, Nigel D. Stepp, Yannis Liapis, David W. Payton, and Narayan Srinivasa. Hypercolumn spars-

Prasad:2006:DSA

Panda:2017:EEI

Potok:2018:SCD

Palaniswamy:2012:EHI

Palaniswamy:2014:ITL

Pierce:2014:NTN

REFERENCES

Prodan:2007:DDE

Pano:2022:RCA

Quadir:2016:SCS

Qian:2020:MBC

Rueckauer:2022:NAC

Roy:2014:TAG
REFERENCES

Robissout:2021:IDL

Rahman:2014:AQT

Rahman:2021:CGO

Roessler:2022:SEL

Roy:2024:SLA

Ruffini:2022:NFB

Rahman:2021:CGO

Rahman:2021:CGO

Rahman:2021:CGO

Rahman:2021:CGO

Rahman:2021:CGO
REFERENCES

Ronen:2022:BMP

Reza:2023:MLE

Romani:2015:SSC

Rasheed:2020:CAP

Rahman:2015:NVR

Roy:2012:CAL
REFERENCES

Saswat Kumar Ram, Sauvagya Ranjan Sahoo, Banee Bandana Das, Kamalakanta Mahapatra, and Saraju P. Mohanty. Eternal-thing 2.0: Analog-Trojan-resilient ripple-less solar harvesting system for sus-

[Schmuck:2019:HOD] Manuel Schmuck, Luca Benini, and Abbas Rahimi. Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hyper-

Seo:2019:GEIa

Seo:2019:GEIb

Sun:2012:NMD

Sen:2014:RRC

Sekanina:2007:EFR

REFERENCES

Shea:2019:HSD

Sego:2012:IDC

Sisejkovic:2021:CSL

Sayed:2021:DBP

Singhvi:2017:FGU

Saeed:2019:ISA

Singh:2010:CPD

Singh:2011:ISI

Srivasan:2018:SBU

Shaﬁ:2024:RUD

Savage:2006:RAN

John E. Savage, Eric Rachlin, André DeHon, Charles M.
REFERENCES

Shi:2015:ISI

Sitik:2015:FBL

Salam:2012:ICL

Shafaei:2014:CSR

Smith:2020:HDQ

Sheikh:2012:EPA
REFERENCES

Sunny:2021:SSP

Senni:2017:NVP

Sarwar:2018:EEN

Schulhof:2007:SRC

Soeken:2016:ELB

Shang:2011:INC

Srivastava:2012:CLV

Ashok Srivastava, Yao Xu, Yang Liu, Aashwani K. Sharma, and Clay Mayberry. CMOS LC voltage controlled oscillator design using multi-walled and single-walled carbon nanotube wire inductors. *ACM Journal on Emerging...
REFERENCES

REFERENCES

[TM+07] Gianluca Tempestiti, Daniel Mange, Pierre-Andre Mudry,

Mohammad M. A. Taha and Christof Teuscher. Approximate memristive in-memory Hamming distance circuit.
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages, Year</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Vacca:2011:ASN

Vanwinkle:2018:SSH

VanMeter:2008:ADM

Venken:2013:SBM

VanMeter:2006:AIQ

Vu:2019:CAP

Beuningen:2016:PPR

Anja Von Beuningen, Luca Ramini, Davide Bertozzi, and Ulf Schlichtmann. PROTON+: a placement and routing tool for 3D optical

Ved:2019:PPA

Venkatesan:2015:EEA

Volkel:2022:DDI

Wang:2020:CDF

Wenck:2010:SST

Wille:2022:ISI

REFERENCES

Wang:2009:UQD

Wille:2014:ISI

Wang:2013:HRD

Wang:2021:HTA

Wang:2021:QWY

Wu:2009:SCD

Wang:2021:QWY

Wang:2021:HTA

Wu:2021:DRS

Witharana:2023:AGS

Wang:2019:TBN

Wang:2022:OUN

Wang:2022:ZHT

Wang:2021:GBA

He Wang, Nicoleta Cucu Lau-

REFERENCES

Wan:2022:ARA

Wang:2015:WAS

Wang:2017:ACP

Wang:2020:HSS

Wu:2016:RCA

Wang:2009:ENP

Xu:2008:IDR

Xie:2008:ESI

Xu:2019:GGP

Xie:2014:TCP

Xu:2007:ADP

Xie:2006:DSE

Xu:2018:IHS
Shi Xu, Zhang Luo, Mingche Lai, Zhengbin Pang, and

References
REFERENCES

131

4832 (print), 1550-4840 (electronic).

[Zhu:2022:DAT]

[Zand:2019:CPI]

[Zhang:2021:FLI]

[Zangi:2015:MDP]

[Zhang:2013:DTU]
ZHuo:2015:CLA

ZH20

ZH20:2009:DSE

ZH20:2009:HNCa

ZH20:2009:HNCb

ZH20:2011:FBP

ZH20:2011:FBP

ZH20:2011:FBP

Zhang:2010:LPN

Zhao:2014:SRS

Zyarah:2018:STM

Zyarah:2019:NAH

Zahedi:2022:MTA

Zhou:2021:AMH

Jun Zhou, Mengquan Li, Pengxing Guo, and Weichen Liu. Attack mitigation of

Zhang:2020:GEA

Zaeemi:2022:HLM

Zhang:2015:DCP

Zamani:2013:IFV

Zhan:2008:AMA

[ZS08] Yong Zhan and Sachin S. Sapatnekar. Automated module assignment in stacked-Vdd designs for high-efficiency

Zhao:2019:LST

Zhang:2011:NPD

Zhao:2015:STD

Zhao:2010:ICP

Zhang:2018:LBT