Title word cross-reference

2 [CJ14a, CV12, HYWA09, RSD23b, SMT+17].
20 [NPS+20]. 3
2 [ARLB18, AGD+20, BAT+22, VRBS16, BLKM23, BCT+13, CKC+18, CMK+21, C14a, CBK+22, CH14, CRKP22, FRB08, KSB+08, KYEB15, KKC17, KWWI17, LKC15, LDK+18, LKK+22, LDP+20, MRG22, SCL17, SHR13, T13b, TTS22, TYS14, VOB19, WL22a, XBB06, XCF08, XDX14, XPD12, ZJS10, ZMC15, ZCB+22]. 4
2 [LCSP14]. K [VOB19], κ [MP10], μ
2 [RFT15]. $\Sigma\Delta$ [GGTG+20]. T
2 [YYC07, MPZ21]. $\Theta(\sqrt{7})$ [CV12]. V_{th}
2 [MP10].

-Antagon [CFK22]. -Bit [LCSP14]. -D
2 [HYWA09]. -depth [CV12]. -means
2 [VOB19]. -Phase [SMT+17]. -Qubit
2 [NPS+20]. -SNE [MPZ21]. -tree [YYC07].

/high [MP10]. /high- [MP10].

1 [LZBW20]. 100GBd [XLL+18]. 10nm
1 [GVRR17]. 14nm [TGCJ16]. 19 [KKNM22].
1S1R [BSL+18].

2 [ZLWB20]. 2.0 [BLKM23]. 2006 [CS07].
2007 [LC08]. 2008 [Bah09]. 2011
[AD14, SN10]. 22nm [TGCJ16].

-a-Si [HCTK08]. ABC [PPM+13].
Abnormality [TW22]. Abstraction
[DRL+19]. Accelerate
Accelerating

Adapting

Accumulation-Mode

accessibility

AccHashtag

Adaptive

Assembly

Adiabatic

Address

Addressing

Adversarial

Application-dependent

Application-independent

Application-Level

Application-Specific

Applications

Analysis

Analyzing

Analytic

Analytical

Annotating

Anonymity

Anonymously

Anonymous

Ant

Anti

Anti-Reverse

API

Application

Application-driven

Application-independent

Application-Level

Application-Specific

Applications
KHC+22, KT20, LTKP16, LPB+15, LQYL19, LLD18b, LWY22, MZZ23, MPM13, MSB+22, MKSW17, MAC+21, NLL+17, NPA+12, OBLD14, QGW20, RNN+22, STSG17, SGR+12, SSF+15, TSZ14, VAK18, VDB+16, VSRR15, WX15, WL19, WLJC21, XLL+18, YXW+12, YLF+17, YYPK17, ZJ11, ZCX+17, ZY18, ZF15, AMH+24, ABR+21, ABM21, ASK23, AHS22, BBB+22, Bis21, CKA23, CZ05, CHN09, DMR06, Doh05, DBS+21, FSD22, GD12, Gla14, GCTF20, HON21, HRR19, HMS+05, IBO22, KPM22, KKY+20, KKKM22, LYEK22, LJ10, LDK+18, LDP+20, LTO22, MDS21, MKMS22, MCS19, MEHT21, MN06, MS20, NLW+20, RSBA23, Rez23, RDS24, RCYB22, SSZS10, SAAR20, SPR18, SC06, TCSV09, TR13, VOB19, WWG+19, WYZ+20, WL22a. based [XYJ+21, XZB19, YYBK19, ZLB+22, ZCDD19, ZH20, WZSC09].

Challenging BPH [SMZ +20, Ko12, Nar05, Res23, MN06, YW13].

Characteristics [KKK+18]. Characterization [ASK23, AMA+14, LCY19, NLW+20, TJ13b, KWFH12].

Charge [RFDT15]. Check [LBJ+16]. Check-Pointing [LBJ+16]. Checking [MZR+14]. Checks [ABR+21]. chemically [CNHL08]. Chip [ASK23, BS21, VRBS16, BJK19, Bis17, Bis21, CLKG17, CMM+18, CZQK15, CKC+18, CWW18, CTP14, DJ16, FNO+19, GMA23, KST+22, KDMT22, KK23, LDK+18, LW+14, LWY22, MMS19, PDL15, PRG+15, QCF+16, Res23, SCLW19a, TJS14, VK18, VSM19, WWX+17, XYM18, ACM+20, BPH+11, CLSD18, CDG+12, CWL+13, CJ14b, CA11, DLI+19, GMM12, KMC+22, LMC+11, LWX+14, SCLW19b, VWPG13, ZFT13, ZXC10, PCD+11, YXW+12].

Circuit [ACH+17, CJ16, DRSR14, GRPT13, GCJ17, GB18, HSZM17, KHR+15, LZW+20, MCT18, NPH18, PB21, SAAR20, TT20, TGCJ16, TW22, TSMC17, VAK18, ZLWB20, BJ10, DLW+08, KCC+14, MRH12, MJJ09, Moh12, SZZS10, XDX+13].

Circuits [AUDS22, AMF+15, BM15, BS15, Che15, CV11, DDP20, DD14, DWK+16, DNHL11, HM14, HLS14, HN12, JLL+17, KZW+15, KKC17, LKK+22, LCSP14, MZR+14, MJ11, PP21, PLC+13, RHB+20, SMZ+19, SM11, SMT+17, TJ13b, TSB15, VGZ11, WWG+19, ZXR+22, ZM22, BCT+13, HZ+12, KT+14, LNW+05, LWH14, LJ14, MHL08, MN06, PSM+06, Sek07, TR10, TR13, WFCX09, XCF+08].

Circular [Bi21]. Classical [DD14, MMD+20].

Classification [BYHT18, JLL+17, KPPB17, NYL+20].

Classifier [MSC+21]. Classifiers [LQYL19, LDZ22]. Clock [CH14, Che15, ANR+14, MRH12, XPD12].

Clock-Controlled [Che15]. Clock-Tree [CH14]. Clocking [PP21, SSF+15].

Cloud [DHK+23, KKK+23, PHS+15, AMA+14].

CLU [DK21]. Cluster [DBS+21, YKB+19].

Cluster-based [DBS+21, YKB+19].

Clustering [DSSR14]. Clusters [PMM+13, RT07].

CMOS [ASP+18, CB09, Che15, HNL+12, KHR+15, MP10, Nar05, NAY+24, RT07, RYT+07, SCI+09, SXL+12, ZJS+09a, ZJS+09c, ZJS+09b, ZJS10, ZC07, MRR12].

CMOS-Memristive [NAY+24].

CMOS-nano [CB09].

CMOS/ [MRR12].

CMOS/molecular [RTY+07].

CMPS [GB18, SKRX13].

CNFET [MGMU22, PFOL07].

CNN [DCP+21, KPM+22].

Co [GKT+18, IGGR19, KKY+20]. Co-design [IGGR19].

Co-optimization [KKY+20].

Co-Processor [GKT+18].

Codelign [WWX+17].

Cofactor [SSP14].

Cognitive [KLZ+15].

Coherent [GB18].

Color [LM13].

Combating [LPW18].

Combination [VMV13].

Combination [SBR19].

Combined [ZFT13].

Communication [KDMT22].

Compact [JMKM21, SCT+22, DLPW08].

Comparative [DDR+16a, JLL+17].

Crossbar [BS15, DDG+22, DKK+22, KWC+20, KST+22, KKY+20, LYWW13, PRG+15, SS15, ZGSA15, XDX14]. Cross-bar [KKY+20]. Cross-device [DDG+22].

Cross-Layer [BS15, DKK+15, KST+22, PRG+15, SS15, ZGSA15, KWC+20].

Cross-Point [LYWW13]. cross-power [XDX14]. Crossbar [BSL+18, KZL15, LLS017, MZZ23, NHL+17, UMB+18, WDW13, WRWW17, YL14, ZJK22, ZH20, ZK18, CQZK14, Tah09, ZMT13].

Crossbar-based [ZH20]. Crossbars [MS19, PDL15]. Crossover [RHB+20].

Current [AMH+24, KKKK18, MGK18, RDFT15].

Current-Voltage [KKKK18]. Cyber [LBB+18]. Cyber-Physical [LBB+18].

Cycles [JRLR15]. cycling [GD12].

D [CV12, ARLB18, AGD+20, BAT+22, VRBS16, BLKM23, BCT+13, CKC+18, CMK+21, CJ14a, CBK+22, CH14, CRKP22, FRB08, HYWA09, KSB+08, KYEB15, KKC17, KWW117, LKC15, LDK+18, LKK+22, LDP+20, MRG22, SCLI17, SKRX13, TJ13b, TTS22, TZX14, VOB19, WL22a, XLBB06, XCF08, XDX14, XPD12, ZJS10, ZMC15, ZCB+22].

D-IC [BLKM23, CH14]. D-NoC [VOB19].

D-ReG [LD+20]. DAC [CS07, LC08].

DAHM [AMVG12]. Dark [KDMT22].

Data [ACM+20, FHFK14, NLW+20, PSM+06, SMT+17, SCZ+12, VTKT22, ZPL+20, AMVG12, ABS+12, BPB+12, KMD12, SMR+12, ZJS09a, VTKT22].

Dataflow [GLL+21b]. Dataset [JDPH+23].

DC [TZS14]. DCT [BBB+22]. DDRx [HTMH18]. De-obfuscation [GCTF20].

Deadline [SN10]. Deadlock [LKC15].

DeepPeep [JMKM21]. Defect [FCR23, GUP11, WDW13, WHL+21, YL14, DWL10, PDL07, SCI+09, Tah06, Tah09, TWL09, XCO8, YYC07]. Defect-Aware [GUP11]. Defect-Free [YL14].

defect-tolerant [YCYC07, ZMT13].
defect/error [TWL09].
defect/error-tolerant [TWL09].

Defects [CHN09, FMW+22, KKC17, MRG22].

Defending [LDZ22]. Defenses [BGX+21].

degradation [Edi14, SLS+14]. Delay [BY18, CMJ14, CKWK18, Gla14, GCTF20, KKC17, LMM18, SMT+17, TGCJ16, CWT14, TR10]. Delay-based [Gla14, GCTF20]. Delay/Power [TGCJ16].

Delivery [HLH+12, WXW+17, ZSXY11, ZS08].

Demand [HLH+12]. Denoising [XLZ+21].

Dense [SBR19]. Denser [RMW+17].

dependability [PUB07, TG07].

Dependence [NPA+12].

Dependent [AMF+15, ZWL+15, LYL19].

Deployment
Deposited [LLSO17, BPH+11].
Depth [HYA+20, PP21, CV12].
Depth-bounded [PP21]. Depth-wise [HYA+20]. Depth-wise [KRP+21].
Depthwise-Separable [KRP+21]. Descent [HHD+23]. Describing [KAB+21]. Design
[ASB+21, AMH+24, ACH+17, AHS22, AGR+23, BBB+22, BKJ19, BSY+16, CZ05, CJI6, CTP14, CTT+20, DKK+15, DRL+19, FSDT23, GRPT13, GP17, GG17, GJ17, HM14, JMKM21, JWJ+17, KHC+22, KT20, LPB+15, LDK+18, LPW18, LML+19, LZBW20, LZCX22, MRR12, MSB+22, MS20, MCT18, NPH18, NV14, OBLD14, PCD+11, PUBV07, RDM+21, Re23, SFD17, SAAR20, SS15, SN11, TJ13a, TR10, TR13, TTS22, TS615, TSMCB17, UMB+18, WOW+10, WD22, XLB06, XZR+22, ZJK22, ZJS09a, ZLBW20, ZSPC19, ZCB+22, ZGSA15, dLBHC22, BJ10, BCT+13, CB09, CDG+12, CJ14b, CNHL08, DMR06, DLWW08, Gl414, GR505, HML+05, HZY+12, IGGR19, KP10, LBGR08, LMC+11, MLK+08, MRH12, MN06, Nar05, OSLO06, RMBC12, SSL+12, WFCX09, XDX14, XHSC07, ZC07, ZXC10, ZJS09c].
design-considerations [BJ10].
Design-time [AMH+24]. Designing [AVK16, DBG+14, RYT+07, TKBM12].
Designs [ACJ17, FNO+19, SM19, TSS14, ANR+14, ZS08]. Detect [JWJ+17, TFR23].
Detecting [JCK23]. Detection [ABM21, ATW+22, BYHT18, CKW18, DRG21, GLL+21a, HHI18, KSCB+23, KPFM16, MGMU22, MLG+20, MKG+23, SGR+12, TW22, ZFT13]. Detection-Based [KBC+23]. Detector [LTKP16].
Dimensional [GUP11, MLK+08, WFCX09, XS14].
DINOS [VTKT22]. diode [BJ10, DMR06]. diode-based [DMR06]. diodes [LM13].
Directed [CKB20]. Direction [HMP+22]. Direction-aggregated [HMP+22].
Directional [NVW+22]. Disassembly [PRV+20]. Disease [XYJ+21].
displacements [SWJ07]. dissipation [MHL08]. Distance [CV11, TT20].
Distributed [AAO21, LGYC21, NLY+17, AMVG12, STA+12, VMN08].
distributed-memory [VMN08].
Distribution [MGST22, RSBA23, XPD12].
Disturbance [ZC+17]. Diverse [OK22].
Division [XLL+18]. DL [DDG+22].
DMAC [RSD23b]. DNA [MT14, SKB13, VTKT22]. DNN
[HYA+20, LTO22, MMAK23, SPS+24].
DNNs [JMKM21]. Domain
[KWC+20, Mit17, SBZT20, XDX14].
Domain-Wall [Mit17, SBZT20]. Dormant [DRG21].
Dot [DPB11, TNWD20, DLW10, WD1+09].
DPA [DLTSA20, ZJ11]. DRAM [YYKB19]. DRAM-Flash [YYKB19].
DRAMs [BJ10]. Driven [LHW17, BGX+21, GMM12, WDG+20, XS14].
driver [HCTK08]. Droplet [GHHW19, HRR19, MPM13, XHSC07, XCS08]. Droplet-Aware
[MPM13]. droplet-interference [XHSC07].

Efficient [CThG15, GB18, JOF+15, MRH12, MEHT21, QGW20, SMT21, SHB+21, TMG+21, YMWH21, ZMC15. AMVG12, DLL+19, WWJ09]. Dynamically [AIK21, ZJS09a, ZJS09c, ZJS10].

Early [Ko12, XZL+18, ZJK22, ZGSA15]. Early-Stage [ZGSA15]. Easy [DDR+16b].

ECC [PPRR17]. ECDSA [BBB+16]. ECG [SCZ+12, ZBF+22]. Ecosystem [OK22].

Edge [CQZ+21, KK3, MZZ23, MGMU22, SPS+24, XZL+21]. Editor [CLKG17, SCLW19a, Ano18].

Editors [CS07, Cha10, CFFK22, HVB22, IN05, JHGP22, Kar20, McK07, Nar08, SLCJ22, SK16, TSB15, TSMCB17, TV17, XCF08, ZLWB20, Shu09].

Electro [CThG15, GB18, JOF+15, MRH12, MEHT21, QGW20, SMT21, SHB+21, TMG+21, YMWH21, ZMC15, AMVG12, DLL+19, WWJ09]. Dynamically [AIK21, ZJS09a, ZJS09c, ZJS10].

Electro-Photonic [ACJ17, DEW+23]. Electroencephalography [TKBM12].

Electrograms [ZBF+22]. Electromagnetics [CFK22]. Electron [CEW+13, CCH16, WHL+21, HYWA09].

Electronics [BY12, CFFK22, Ko12, HCTK08, WZSC09].

Emerging [BSY+16, DMYT15, DLTSNA20, FMP+21, FNO+19, GBLD15, KZW+15, KBM21, MSB+22, MAC+21, MPR+22, TSB15, WZSC09, BC08, Edi14, PUBV07].

Embedded [FKM22, JCK23, JWJ+17, LBJ+16, SMR23, TZR20, WHB+21, MCT10].

Embedding [HHI18, SWK+16].

Embryonics [TMM+07].

End-to-End [FKM22]. Energy [ACH+17, BY18, CMM+18, CRKP22, DNHL11, GD12, KT20, LKC15, LLSO17, LML+19, LYWW13, LJJ18, LYL19, MS20, NAY+21, NAY24, PAF18, RFDT15, SVA+18, SCLW19b, SCLW19a, STA+12, SMT+17, SPR18, TKBM12, TNWD20, VSRR15, ZSXY11, KMD12, KSB+08, KP10, MHL08, MCT10, SMR+12, WOW+10, WCA01, SM11].

Energy-Efficient [CRKP22, KT20, LKC15, NAY24, PAF18, SVA+18, SMT+17, SPR18, VSRR15, BY18, GD12, LML+19, LYL19, MS20, SM11].

Energy-Neutral [LPB+15].

Engine [ERGK21, KGW+20, ZK18].

Engineering
[BWL+21, CCW18, QCF+16]. Engines
[AL17, WWZ+22]. Enhanced
[AHS22, PYSJ22]. enhancement [SC06].
Enhancing [FMTP22, KMD12].
Ensembles [WGY21]. Entanglement
[ST20]. Environment [RNN+22, OSLT06].
Epidemiology [KKNM22]. Epilepsy
[SSN12]. Epileptic [SGR+12]. equation
[KTW08]. Era
[KDMT22, MAC+21, SMR+21, TSMCB17].
Error [AHHS21, GYM+17, NPS+20,
LWX+14, ZXC10]. Error-Aware [NPS+20].
Error-Tolerant [GYM+17, TWL09].
Errors [LPW18, SKRX13]. ESN
[GLL+21a]. ESOP [DRSR14]. Estimation
[CMJ14, GCJ17]. Eternal [RSD+23a].
Eternal-thing [RSD+23a]. Eucalyptus
[AMA+14]. Evaluating
[CMZR23, RT07, SJKS20]. Evaluation
[CTP14, DRL+19, GRS05, IBO22, JLL+17,
MKW+14, WGY21, CDG+12]. Events
[KWG+20]. EVHA [AML+23].
Evolutionary [HM14, Sek07]. Evolving
[TG07]. Examples [HMP+22, HYPW22].
Exascale [DMYT15]. Execution [MPM13].
Existing [WWC23]. Exit [XWW+18].
Explainable [AML+23]. Explained
[MLP+20]. Explicit [ABR+21]. Exploiting
[ACM+20, DK21, JMK21, KXY16,
SLC+17, VDB+16]. Exploits [WYZ+20].
Exploration [LDK+18, WKL16, ZJK22,
TJ13a, XLBB06, ZJS09a, ZC07]. Exploring
[KAB+21, RD22, SKRX13]. Extended
[PPM+13]. Extensible [KASKP14].
Extension [MMD+20]. Extracting
[NPS+20]. Extraction [YL14]. Extractor
[RFDT15]. Extreme [KKK22].

Fabric [DPB11]. Fabrication
[CCH16, VDB+16]. Fabrication-Induced
[VDB+16]. Fabrics [NLK+13]. Failure
[KYEB15, KKY+20, PFRR17, VAK18].
Failure-Aware [PFRR17]. Fast [KBC+23,
SMT21, SKB13, WDG+20, YL14, ZCSG21].

Fault [ABR+21, BBB+16, BKK19, CBK+22,
CVK15, DJ6, FMM+22, HH11, IBO22,
JCK23, JW+17, LDPPB21, LCK19,
MGZ+17, PHS+23, SL+17, VAK18,
DMM+06, SCI+09]. Fault-Based
[BBB+16, IBO22]. Fault-Injection
[JCK23, PHS+23]. Fault-Tolerant
[BKK19, CVK15, DJ6, HH11, LCK19,
MGZ+17, AB+21]. faults [CHN09].
Feature [SPR18]. Feedback [BY18].
Ferroelectric [WLY22].
Ferroelectric-Based [WLY22]. Field
[AGR+23, ATW+22, BMB18, KR18,
NPA+12, WG+19, HZY+12].
Field-coupled [WG+19].
Field-Coupling [AGR+23]. field-effect
[HZ+12]. Fields [CTG+15]. File [WX15].
Files [ZXC+17]. File [BSS16]. Fine
[BLK23, SMT+17, MLK+08]. Fine-Grain
[SMT+17, MLK+08]. Fine-grained
[BLK23]. FinFET [BJ10, BSS16, CMJ14,
CJ14a, CJ14b, CJ15, DLTSNA20, FCR23,
GJ17, KCWL+16, LJ10, MMJ09, SSF+15,
TJ13a, TJ13b, TGCJ16, YJ18, ZJ11].
FinFET-Based [SSF+15, ZJ11, LJ10].
FinFETs [CJ16, GVR17, GJ17].
Fingerprinting [Bis21]. Firmware
[FKM22]. Flash [HC15, YYB19]. Flexible
[BKK19, KRP+21, MAAK23, PAF18,
HCTK08, LWH14]. Flip [AM18].
Flip-N-Write [AM18]. Floating
[HC15, NV14]. Flow
[GC14, ZPL+20, DMR06, ZJS09c]. Fluidic
[WWG23]. fluids [RGC14]. Fluidic [HD14].
fly [IAS20]. Folding [MAAK23]. Forest
[MPZ21]. Form [CTT+20]. Formal
[CCTP08, GYM+17]. Formalizing
[FHFK14]. formulation [YCY07].
formulations [ZMT13]. Fortifying
[LT22]. FPGA [AHPC21, AHS22, BRZ21,
CKA23, GL+21a, HON21, LL+18a,
LL+18b, LL+19, LMM18, RCYB22].
FPGA-Based
[LL+18b, AHS22, HON21, RCYB22].

H [HCTK08]. Hack [MLP+20]. Hamming [RSB23, TT20]. Hardening [LBB+18].

[KTW08]. Integrated
[BS15, ISI+18, KKC17, KHC++22, LKK++22, MMAAK23, NLK++13, TJJ3b, TW22, XC08, XLL++18, XZC10, Bea11, BCT+13, HCTK08, MN06, WFCX09, XCF08]. Integration
[AAMF13, KWW117, MLK+08, SX11].

Integrity [CMZR23, PB21]. Intel
[RBG+22]. Intellectual [BIs21].

Intelligence [Dea14, KMB21, XYJ+21].

Intelligence-based [XYJ+21]. Inter
[CMK+21, CBK++22]. Inter-Layer
[CBK++22]. Inter-tier [CMK+21].

Interaction [CV11]. Interactions
[NPA+12]. Interconnect
[BPS19, KMC++22, MN06, MTC+08].

interconnection [LJ10]. Interconnects
[DDP20, LSO17, LKL++12, Bea11].

Interface [WKL16, XDX14]. interference
[XHSC07]. Intermittent [RCYB22].

Intermittently [ZPL++20]. Internet
[MPR++22]. Interpolation [ZCSG21].

Interpreting [GCB14]. interstitial [SC06].

Intracardiac [ZBF++22]. Introduction
[Ano18, AD14, BC08, Bah09, BY12, CLKG17, CLSD18, CQL21a, CQL21b, DR11, DHK+23, Edi14, FSST23, FMP+21, FNO+19, GMGA23, Gui13, HN15, KK23, KP10, LC08, LZBW20, MPR+22, MSW14, PG12, PR13, SCLW19b, SCLW19a, SX11, SS15, SN11, TTS22, WDT14, WD22].

Intrusion [BYHT18]. Investigating
[MLK+08]. Investigation [GCTF20]. IoT
[EFBR22, KT20, LYK22, RSD+23a, RDS24, STSG17, TFZ+21, TW22].

IoT-based [RDS24]. IP
[ASMK22, GCC++23, OK22, SMZ+19].

IP/IC [SMZ+19]. Iris
[TZR20, LMC+11].

irregular [LDL10]. Irreversible [HLS14].

Issue [BY12, CQL21a, CQL21b, DMYT15, DR11, DHK+23, FSST23, FMP+21, GMGA23, Gui13, HN15, KK23, LZBW20, MPR+22, MSW14, SS15, SLCJ22, SK16, SN11, TTS22, TSB15, TSMCB17, TV17, WDT14, WD22, ZLWB20, AD14, BC08, CS07, Edi14, MCK07, PG12, PR13, XCF08].

JETC [BC08, SLCJ22, TV17, ZLWB20].

JETC/TODAES [BC08]. Job [MNT14].

joint [BC08]. JTAG [PB21]. Junction
[VDB+16]. Junctionless [BSS16].

Keeping [ABS+12]. Kernels [LCY19]. Ket
[CD22]. Key [BBB+16, CKA23, MKS22].

Key-Sharing [MKMS22]. Kilobyte
[TFZ+21]. Kilocore [ACJ17]. KNN
[MPZ21]. Kogge [BSL+18]. Kronecker
[TFZ+21].

L2 [PAB+17]. lab [ZXC10]. lab-on-chip
[ZXC0]. labeling [EWKNW07].

Laboratories [DHK++23]. Language
[CTT+20, MMD+20, OBLD14]. Large
[Bea11, KCD15, LGYC21, PDL15, SWK+16].

Large-Scale [KCD15, Bea11, LGYC21].

Large [DDR+21a, LKL++18]. Lasers [FC18].

Last [MLW+20]. Last-level [MLW+20].

Latency [DKK++23, CA11]. Layer
[BS15, VRS16, CBK++22, DKK++15, KST++22, LLS017, NVW+22, PRG+15, SS15, ZGSA15, KWC+20]. layout
[RMBC12]. LC [SXL+12]. LDPC
[LPW18].

Leakage [CMJ14, CJ16, MLW+23, CJ14b, GJ17, LSH14]. Leakage/Delay [CMJ14].

learnable [YYBK19]. Learning
[ASB+21, ABM21, ASMK22, ATW+22, AAO11, AMF+15, BILW+21, CLKG17, CLSD18, CZQK15, CQL21a, CQL21b, CMZR23, DCP+21, DGD+22, DJH+19, DCSA22, FMTP22, GCC+23, GGTG+20, HON21, KPPB17, KRG+23, KSA+22, KPFM16, LDZ22, LGYC21, MEHT21, MS19, PSR17, PSY+18, Rez23, RBHG21, SAAR20, SCLW19b, SCLW19a, SLCJ22, SMR+21, SPR18, STNP21, TWLL19, WL22a, YLR+23, ZY18, ZK18, ZK19, CQZK14].

Learning-Based [ZY18]. Learning-Part
[CQL21a]. less [HYA+20, RSD+23a]. Level
[ARLB18, CCW18, CZW+19, DRL+19].
Leveraging [PRV+20, SMR23], library [LCJ14], life [ZJT+14], light [WOW+10].

Locking [LZ+21, SMR+21]. Log [LH20]. Log-Structured [LH20]. Logic [AHHS+16, CJ14a, CJ16, CNH12, GCO+11, GUP11, GVRR+17, KT20, LCP14, LP17, LZX+21, LMM+18, MS17, NLL+17, PT14a, SJKS20, SMR23, SSP14, SMR+21, SWK+16, VGZ11, ANR+14, CJ14b, DJ08, HMS+05, LJ14, LCT12, MTC+08, PT12, TR13, ZMT13].

Low [AHHS+21, BS20, CJ16, Che15, EFRB22, GBL15, GLMG+15, HHD+23, IBO22, KZW+15, KHR+15, KR18, LTM22, LNL19, MGS+12, MMJ09, PRG+15, PSL+19, QGW20, RMV+17, SLC+17, STSG17, SGR+12, SM19, SSF+15, Tah09, TSB15, ZJS10, ZJ11, ZPL+20, ABS+12, CJ14b, CA11, ERGK21, GGTG+20, GJ17, KT14, LBGR08, LMC+11, MFA+13, WDH+09].

Low-Cost [LN19, LBGR08]. low-latency [CA11]. Low-overhead [EFRR22, Tah09].

Low-Power [GBLD15, GLMG+15, KHR+15, KR18, PRG+15, PSL+19, QGW20, RMV+17, SGR+12, AHHS21, BS20, MMJ09, SM19, ZJS10, ABS+12, KT14, LBGR08, LMC+11, WDH+09].

Low-Rank [HHD+23]. Low-Swing [SSF+15]. LTPS [LBGR08].

Manufacturing [CZ+19, MRG22]. Manufacturing-Based [CZ+19]. Many [DMY+15, KDM+22, KPFM16].

Many-Core [DMY+15, KDM+22, KPFM16, Rez23].

Manycores [PBS+15]. Map [RGM+15]. Mapping [FC18, GCO+11, GUP11, MZZ+23, ZMT13].

Memcapitative [TT+21]. Memories [CC+15, HH11, KWC+20, LBJ+16, SBT20, SCZ+12, YYPK+17, GRS05, RYT+07].

Memory [AIK21, ANT+22, DK21, GNY+22, GLMG+15, G17, GIS+22, HTMH18, HVBB22, HFLZ22, HC15, HHD+23, IASK20, JRJ+22, KPPB17, KHR+15, KKK18, KMS+20, KKK22, KHC+22, LKK+22, LHHZ19, LML+19, LH20, LFDS22, LYWW13, MDS21, MRR+12, MSB+22, Mit17, NYL+20, NHL+17,
PHS+15, PAF18, RMW+17, RCYB22, SMR23, SBZT20, SBR19, TT20, WWZ+22, WDW13, WRW17, WHB+21, WZL16, WL22b, YYPK17, YYBK19, XRD+17, ZSPC19, ABS+12, AKW+13, CSKM13, KMC+22, KSG14, PR13, SKRX13, TCSV09, VMN108, WYZ+20, ZLB+22, ZJS09a.

Memory-bound [KHC+22].

Memory-Centric [KPPB17, NYL+20, GNY+22].

Memory-Efficient [HHD+23].

Memory-Storage [YYPK17].

Memristive [ASB+21, ANT22, CZQK15, GLMG+15, KZL15, MRR12, NAY24, SAAR20, TT20, UMB+18, WKL16, YW13, ZJK22, ZK18].

Memristor [ASP+18, BYHT18, MZZ23, QGW20, ZLB+22, dLBHC22].

Memristor-Based [BYHT18, QGW20, ZLB+22].

Memristor-CMOS [ASP+18].

Memristors [CHA20]. mesh [EWKNW07].

meshless [KWH08].

Mesh [KHC+22].

Metamaterial-enabled [NVW+22].

Metamaterial [NVW+22]. Method [BBB+16, DDP20, DLL+19, GCO+11, MZZ23, PP21, XYM18, YBYK19, ZSXY11, MHM+08].

Methodology [AHHS21, CMJ14, CH14, MLW+23, CB09].

Methods [CZQK15, TSMCB17, CCTP08]. metrics [SMR+12]. Metrics [HSZM17].

Microarchitectural [GOGCK11].

Microarchitecture [MLK+08]. microarchitectures [XCF08].

Microarrays [SKB13]. Microdevices [VMV13]. Microfluidic [BMB18, GCB14, HD14, LBB+18, MPM13, OGB18, DJRM09, DDM+06, RBMC12, RBG14, SC08, XHSC07, XC08, YYYC07, XZC10].

Microfluidics [GHHW19, CZ05, SC06]. microfluidics-based [CZ05, SC06].

Million-Qubit [AVK16]. Minimization [CCH16, LJJ18]. Minimum [LCSP14].

MINLP [BM15]. Mitigate [ZH20].

MLC [AM18, LHW+17]. MLC/TLC [AM18].

MN [PHS+15]. MN-MATE [PHS+15].

MNEMOSENE [ZLB+22]. mNoC [PD15]. Mobile [TWLL19, TSMCB17, YYPK17, WDH+09].

Mode [BSS16, PAF18]. Model [BM15, CCWCC15, FYJ+17, FCR23, MZR+14, MMD+20, REL+22, WHL+21, DLW+08, MHC14, WJWM23, FRB08].

Modern [MPZ21]. Modular [FKM22, MHW14]. Modularization [FHFK14].

Modulation [MGK18, NVW+22]. Modulator [LZZC22].

Module [MPP13, LJC14, ZS08].

Module-Based [MPP13]. Modules [TGCJ16].

Molecular [AGR+23, CNHL08, DPB11, GPW+15, PDL15, SCT+22, WDW13, KSG14, KTW08, MHL08, RYT+07]. Molecular-Spin-Qubit [SCT+22]. Monitoring [AUDS22, EFRB22, MGS+12].

Monolayer [RMW+17]. Monolithic [CKC+18].

Monolithic-Spin-Qubits [SCT+22].

Monitoring [AUDS22, EFRB22, MGS+12]. Monolayer [RMW+17]. Monolithic [CKC+18].

Monolithic-Spin-Qubits [SCT+22].

Motion [MGU22]. MRAM [AKW+13, DSB16, NLW+20, PAF18, SFD17, SMT21, STSG17, VDB+16, ZCDD19].

MRAM-Based [VDB+16, ZCDD19].

N [AM18]. NANA [PDSL06]. Nano [GKT+18, YLF+17, CB09, LDL10, MP10, PDSL06, SCI+09, ZMT13, ZJS10, ZC07, MRR12, ZJS09c, ZJS09a, ZJS09b].
nano-architectures [ZMT13]. nano-CMOS [MP10, SCI+09, ZC07]. Nano-Oscillator-Based [YLF+17]. Nano-Oscillators [GKT+18]. nano-scale [LD10, PDSL06]. nano/CMOS [ZJS10, ZJS09c, ZJS09a, ZJS09b].

Near-Field [GVRR17]. Near-Field [NPA+12].

NEMS [HN12]. Neoteric [SMR23]. net [BPB+12, HYA+20, TWLL19, WL22a].

net-zero [BPB+12]. Nets [DRG21].

Network [ABR+21, ASK23, ACM+20, BS21, BJK19, Bis17, Bis21, CMM+18, CD17, CCWCC15, DJ16, GMGA23, GCTF20, HFLZ22, HM21, IGGR19, KKKK18, KKK22, LD18, LQYL19, LQYL19, LDP+20, LLX+18a, LNL19, LQYL19, LDP+20, LLX+18b, LJJ18, LYL19, LPM+19, MZZ23, MS20, MSC+21, NAY24, ORC+24, OK22, PAP+22, PSL+19, RBG+22, SBZT20, SVA+18, SM19, SPR18, WL19, XLW+18, YMW21, ZH20, ZBF+22].

Neuro [CZK15, CQZK14].

Neuro-Inspired [CZQK15, CQZK14].

Neuroevolution [AAO21].

Neuroevolutionary [SMR23].

Neurogenesis [KZ19]. Neuromemristive [KZ19]. Neuromemristive [KSA+22].

Neuromorphic [ASB+21, AMH+24, ANO18, AMF+15, BOAC+20, HN15, JRJ22, KZL15, KCD15, MKSW17, PSY+18, RMG15, SAAR20, SHB+21, SPR18, WKL16, ZWL+15].

Neuromorphic [ACJ17, AGD+20, DRL+19, HAV+22, KEB15, MK+14, VOB19, ZF15].

Neural [DDG+20]. NML [DNHL11].

NN [ASK22]. NN-Lock [ASMK22].

NoC [ACJ17, AGD+20, DRL+19, HAV+22, KEB15, MK+14, VOB19, ZF15].

NoC-Based [CF15].

NoCARS [GMGA23].

NoCs [FC18, GB18, LKC15, LKC19, RSD23b, SHAC19, ZY18, ZL22].

Nodes [PHS+15, GGTG+20, YWH+13].

Nodes [GVR17, IWM+14, TGCCJ16].

Noise [CLZ+22]. Noise-Tolerant [CLZ+22].

Noisy [DDG+20, XCT+22].

Non [GKT+18, MCT18, RCYB22, STSG17, YXK18, YKP17, YXD+17, ZPL+20].

Non-Boolean [GKT+18].

Non-Restoring [MCT18].

Non-Volatile [STSG17, WL22b, YXYK17, YXD+17, ZPL+20, RCYB22].

Nonhierarchical [PPM+13]. Noninvasive [TFR23].

Nonlinear [KKK18].

Nonvolatile [HC15, LBJ+16, SCZ+12, SKRX13].

NORM [RCYB22].

Novel [DJ16, FCR23, JDP+23, LH20, MGMU22, SKB13, TTS14, ZSYX11, RT08].

Network [ABR+21, ASK23, ACM+20, BS21, BJK19, Bis17, Bis21, CMM+18, CD17, CCWCC15, DJ16, GMGA23, GCTF20, HFLZ22, HM21, IGGR19, KKKK18, KKK22, LD18, LQYL19, LQYL19, LDP+20, LLX+18a, LNL19, LQYL19, LDP+20, LLX+18b, LJJ18, LYL19, LPM+19, MZZ23, MS20, MSC+21, NAY24, ORC+24, OK22, PAP+22, PSL+19, RBG+22, SBZT20, SVA+18, SM19, SPR18, WL19, XLW+18, YMW21, ZH20, ZBF+22].

Network-on-Chip [ABR+21], network-enabled [WVGP13].

Network-on-Chip [ASB23, BS21, BJK19, Bis17, Bis21, CMM+18, DJ16, GMGA23, LD18, MS21, MDCS19, PDL15, VKB18, VSM19, ACM+20, BPH+11, CD17, CVQ+12, WWP13, YXY+12}.
NP [WWG19]. **NP-complete** [WWG19].
NCT [CV12]. **NTRU** [CRSSBM121].
NUCA [PAB17]. **Number**
[HH11, LTKP16, WL19]. **Numbers**
[GIS19]. **Nxf** [RBG17].

Obfuscation [CZW19, GCF20]. **Object**
[KBC13]. **Objectives** [DWB16].
Observing [TGCJ16]. **OFDM** [GLL21].
Off [KK23, FSD23, ZFT13]. **Off-Chip**
[KK23, WXW17, ZFT13]. **Offline**
[LKL18, MT14]. **offs** [CDG12]. **Oligo**
[VTKT22]. **On-Chip**
[CLKG17, CZQK15, CKC18, KDMT22,
KK23, LWM18, LWY22, SCLW19a, TZZ14,
XYM18, CLSD18, CWL13, KMC122,
LWX14, SCLW19b, CA11, LMC11].
On-Device [ZK19]. **on-node**
[GGTG20]. **On-the-fly** [IAK20]. **On/Off**
[WXW17]. **On/Off-Chip** [WXW17]. **One**
[HSZM17, WRWW17]. **One-Step**
[WRWW17]. **One-Way** [HSZM17]. **Online**
[AUDS22, LJJ18, ZPL20]. **Open**
[BBR23, FCR23]. **OpenQL** [KAS22].
Operation [MPM13]. **Operations**
[CVK17]. **Optical**
[BPB19, VRBS16, DWK16, GB18,
HAV22, JDPH23, NPA12, PAB17,
RDM21, XLI18, YLR23, XYW12,
ZYY18, ZLGL21, CA11, EDCL22].
Optical-Electrical [YLR23].
Optical-Electronic [XYW12].
Optimization
[DDK15, DWK16, LDK18, LLI18b,
LCY16, LKL18, NLW20, PFRR17, REZ23,
TGCJ16, YJ18, ZY18, ZSGA15, DLW08,
KKY20, LW11, WFCX09, ZJS09c].
Optimizations [SB19, CWL13].
Optimize [DJ16]. **Optimized**
[CRSSBM12, CCWC15, KKKK18, MS17,
MCT18, ON15, WGY21, WL22b].
Optoelectronic [WL22a]. **Oracle**
[GCJ17]. **Order** [CKWK18]. **Ordering**
[ND16]. **Organizing**
[DK09, RMG15, LDX10, PDL17]. **oriented**
[AHS22]. **Oscillation** [MSB17].
Oscillation-Based [MSB17]. **Oscillator**
[BYJ17, HON21, YLF17, SXL12, ZFT13].
Oscillator-Based [BYJ17]. **Oscillators**
[GK17]. **Off** [BWL17].
Outperforming [LLX18a]. **outputs**
[TR07]. **Overhead** [LTM22, SLC17, ZJ11,
ZLP20, EFRB22, Tah09]. **Overlay**
[PAB17]. **Overview** [AML17].
Performance-aware [STA+12].
Performance-Temperature [HTM18].
Permutation [GCTF20]. Persistent
[KMS+20, LHHZ19, LH20, WL22b].
Perspective [RSBA23], Perspectives
[BWL+21, TTS22]. Phase [FYJ+17,
RNN+19, SMT+17, WZL16, JRC+13].
Phase-Based [RNN+22]. Phase-Change
[WZL16]. Photonic
[ACJ17, BS21, BPH+11, CDP+17, DEW+23,
EDCL+19, FC18, KST+22, VK18].
Photronics
[DCP+21, STNP21, XNK18, Bea11].
Photronics-Based [DCP+21]. Physical
[DCSA22, LBB+18, NVW+22, TMG+21,
UMB+18, BCT+13, HZY+12]. Physically
[LTM22]. PicoServer
[KB1+08]. Piezoelectric [RFDT15]. pillar
[MFA+13]. PIM [REL+22]. Pin
[WWX+17, XHSC07]. pin-constrained
[XHSC07]. Pipeline
[SM11]. Piracy
[SMZ+19]. PLA
[CHN12]. Placement
[BM15, VRBS16, BKJ19, CKB20, LWH14,
RHB+20, WWG+19, YYC07, LRN05].
Plane [LDZ22]. PLAs
[CHN09]. Plasticity
[AFM+15, LYL19, WLJC21]. Platform
[ZM22]. Pluggable
[VSM19]. Point
[LYWW+13, NV14]. Pointing
[LBJ+16]. Points
[AUDS22]. Polarity
[MGZ+17]. Policies
[AIK21, ON15]. Polyhedral
[HFLZ22]. Polyhedral-Based
[HFLZ22]. Polynomial
[CRSSBMR21]. Polynomials
[LP17]. Pooling
[ZMC15]. portability
[GN08]. Portable
[KAS+22]. Post
[CAK23, GCC+23, MGG22, XH14].
Post-manufacturing
[XS14]. Post-Manufacturing
[MG22]. Post-processing
[GCC+23]. Post-quantum
[CAK23]. Potential
[SJKS20]. Power
[BS21, CKC+18,
CMK+21, Che15, DJH+19, FC18, GBLD15,
GLMG+15, HN12, JRLR15, KZW+15,
KHR+15, KR18, LBJ+16, LHW+17, LTO22,
LWM+14, LKL+18, MGS+12, MGST22,
MSC+21, PRG+15, PSL+19, QGW20,
RMW+17, STSG17, SGR+12, TGCJ16,
TW22, TSB15, WXW+17, ZJ11, ZSXY11,
ZY18, ZGSA15, ZF15, ABS+12, ANR+14,
AHHS21, BS20, ERGK21, GM12,
GGTG+20, KT14, KK12, LJJ10, LGBR08,
LMC+11, MMJ09, MP10, MFA+13, SM19,
WDH+09, XDX14, ZS08, ZJS10, ZFT13].
Power-based
[LTO22]. Power-efficient
[BS21, MCM+21, ANR+14]. Power-Gating
[HN12, ZF15]. Power-Utility-Driven
[LHW+17]. Powered
[JRLR15, ZPL+20, WCA10]. Powerful
[VMV13]. PPU
[GYM+17]. Practical
[HAV+22]. Prefetching
[FAV+23, XS14]. pre-bond
[XS14]. Pre-silicon
[FAV+23]. Precise
[WDG+20]. Precision
[HM12, LWY22]. Predict
[BS20]. Prediction
[MK17]. Predictions
[SMT12]. Predictive
[DKK+15, ZC07]. Prefetch
[YYB+19]. Pressure
[MGS+12]. Prevent
[ASM22]. Prevention
[MLP+20]. Primitive
[GRPT13]. Primitives
[ABR+21, BSY+16, HSB+05]. Principal
[AHP+21]. Printed
[PB21, HBB+20]. Privacy
[FMTP22]. Proactive
[PRG+15]. Probabilistic
[AHHS21, KSG14, ZCDD19, K14].
Probability
[VAK18]. Probes
[SBK13]. Probing
[RDM+21]. problem
[EWKN07]. Problems
[AAO21]. Process
[CMK+21, GPW+15, KAKSP14, LK11+22,
MGK18, SCL17, XYM18, ZM22, XPD12].
Process-Variation-Tolerant
[XYM18]. Processing
[AL17, BH17, CLZ+22, KWG+20, KHC+22,
MGU22, YYJ+21, XCS+19, GLBH12,
GCC+23, Gla14, KT14, LMB13].
Processing-in-wire
[Gla14]. Processor
[GKT+18, GYM+17, KR17, KZL15,
Mit17, STSG17, WXW+17, YJ18].
Processors
[HAV+22, KAKSP14, KAB+21, PRG+15,
SLC+17, WKL16, ZMC15, ZWL+15].
Productivity
[SMR+12]. Products
[TFZ+21]. Profile [RBHG21]. Programmable

Reference [AMH+24, MGK18]. Reflection
[MGST22]. ReG [LDP+20]. Register
[CGZ19, WXY15, ZCZ17, TCS09].
Regular [DDR+16], Regularization
[YMH21]. Regulators [BOA22].
Reinforcement
[AAO21, DJS+19, FMT22]. rejuvenation
[AMA+14, CNP14, MNT14, ZJT+14].
Relativistic [M11]. Release [HLH+12].
Release-on-Demand [HLH+12].
Reliability [ANR+14, BAT+22, HCT08,
KYE15, LYW13, LBB+18, SHB+21,
CWT14, DJH+19, DKB09, Edi14, TMM+07].
Reliable
[CBA23, KT20, XZ+22, MK07, WJW09].
Rematerialization [SBR19].
Repercussions [SFS+24]. Replacement
[ON15]. replicating [TMM+07].
Representation [BBR+23, WL19].
ReRAM [BOA+20, FSD22, KKY+20,
LKK+22, LDP+20, WL19]. ReRAM-Based
[WL19, KKY+20, LDP+20]. ReRAMs
[MSB+22]. Research [WGW+19].
Reservoir [BY18, LMM18]. Residue
[HH11, PAF+22]. Resilience [ACM+20].
Resiliency [SFD17, WWZ+22]. Resilient
[ALY+21, LCT12, LZX+21, OK22, RDM+21,
RSD+23a]. Resistance [ZJ11, ZH20].
Resistant [VDK+21]. Resistive [BSL+18,
DSB16, KKK18, WRW17, ZH20].
resonant [LM13]. Resonator [ZGL21].
Resource [AVK16, NV14, OGB18, PHS+15,
TZR20, TMG+21]. Resource-Constrained
[OGB18, TMG+21]. Resource-Efficient
[NV14, TZ20]. Resource
[CMJ14, MGST22]. Restoring [MCT18].
Restricted [YP17]. Resulting [SDS+14].
Retail [KK12]. Rethinking [WZL16].
Retrieval [BBB+16]. Reuse [GZ14].
Reverse [BLW+21, CCW18, QCF+16].
Reversible
[DRS14, DBG+14, DDR+16b, DJ08, HM14,
LCPS14, MG14, NV14, SMZ+19, SZS+10,
SDS+14, SPP+14, SWT+16, WDT14, CW08,
LJ14, PSM+06, TR10, TR13]. Review
[JLL+17, PYSJ22]. RF [CFK22, BSS16].
RF/Analog [BSS16]. RIMEP2 [HM14].
Ring [HON21, ZFT13, ZGL21]. Ripple
[MGZ+17, RSD+23a]. Ripple-Carry
[MGZ+17]. Ripple-less [RSD+23a].
RMDDS [LJ14]. RNNFast [SBZ+20].
RNNs [TFZ+21]. RO [AHPC21].
RO-PUF [AHPC21]. Robust [AB+21,
AMH+24, BMB18, CQZK14, GRPT13,
GJ17, LZX+21, LDZ22, MK18, NAY24,
PPM+13, SAAR20, CB09, WWP13].
Robustness [BS15]. Root [MCT18].
Router [Bis17, DRL+19, KPFM16, CA11].
Routing [VBBS16, DDP20, HRR19, LKC15,
LDL10, MKW+14, PHS+23, RHB+20,
VOB19, WGW+19, RT07, XC08].
RRAM [JR22, NTL+17]. RRAMs [FMW+22]. RT
[ZBF+22]. RT-RCG [ZBF+22]. RTL
[LDPB21, WJWM23]. Rule [OBDL14].
Rule-Based [OBDL14]. runtime [GMM12].
SaARSP [LZL22]. SABER [VDK+21].
SAF [MZZ23]. Safety [SFS+24]. Sampling
[QGW20]. Saviors [ABM21]. Scalable
[BPS19, BS21, C15, DBS+21, GLL+21b,
GB18, MT14]. Scale
[KCD15, KWW17, PDL15, Bea11, CCT10,
LDL10, MGY21, PDL06]. scaled
[LBGR08]. Scaling
[BSS16, JOF+15, LYW13, WSA10].
SCALPEL [RD22]. Scan
[RSBA23, WFCX09, HCT08, XS14].
Scan-based [RSBA23]. Scan-chain
[WFCX09]. ScatterVerif [MGST22].
Scheduling [BM15, MS019, OGB18,
SM19, STA+12, ZJT+14]. Scheme
[CHA20, GLMG21, GB18, MKM22,
MGK18, MSC+21, WRW17, XS14].
Schemes [NV+22, SM+21, GD12].
SCKVdd [CH15]. Scoring [ABFM13].
SCT [RT08]. Search [ZBF+22]. Searches
[MT14]. Secret [BBB+16]. Section
[SCLW19b, BNS09, LCS08, Moh12]. Secure
[ALY+21, CFK22, FKM22, MKM22,
[FSDT23, FMP+21, LYEK22, LCK19, Rez23, VGZ21, ZCB+22, MN06, Mobi12].
solver [KTW08]. Sort [GUP11]. Sorting [ANT22, MSC+21]. SOT [PAF18].
SOT-MRAM [PAF18]. Source [Bis17, KR18]. Sources [BGX+21]. Space
[LDK+18, ZJK22, TJ13a, XLBB06, ZJS09a].
SPARCNet [PJS17]. Spare [BKJ19].
Sparse [HIH18, HYA+20, PJS17, RMG15].
Sparification [PSL+19]. Sparsity
[YMWH21]. Spatial [KWFH12, LTO22].
Spatio [MMAK23]. Spatio-Temporal
[MMAK23]. Special
[BY12, CQL21a, CQL21b, DMTY15, DR11, DHK+23, FSDT23, FMP+21, GMGA23, Gui13, HN15, KK23, LZW20, Moh12, MPR+22, MSW14, SCLW19b, SS15, SLCJ22, SK16, SN11, TTS22, TSB15, TSMCB17, TV17, WD22, ZLW20, AD14, BC08, Balh09, CS07, Edi14, LC08, McK07, PG12, PR13, WDT14, XCF08]. specialized
[BC08]. Specific [DKK+15, FC18].
Specification [MMD+20, OBL14].
spectrally [KWTW08]. Speech [CKC+18].
Speed
[BYHT18, LTKP16, PAB+17, XLL+18].
Speedup [KAKSP14]. SPICE [KCC+14].
SPICE-compatible [KCC+14]. Spike
[AMF+15, LYL19, MSC+21, ZWL+15].
Spike-Time-Dependent [ZWL+15].
Spike-Timing-Dependent [AMF+15].
Spike-timing-dependent-Plasticity
[LYL19]. Spiking
[ASB+21, BVM+19, CThG15, HIH18, JRR22, KCD15, LZXL22, LJL18, LYL19, MSC+21, NAY24, RBG+22, SPR18, VOB19].
Spin
[AKW+13, MS17, SCT+22, VSR15, WYZ+20, YLF+17, CSKM13, CWL+13, EWKNW07, MFA+13, XZR+22].
Spin-based [WYZ+20]. Spin-Torque
[YLF+17]. Spin-transfer
[AKW+13, XZR+22, CWL+13, MFA+13].
spin-transfer-torque [CSKM13].
spin-wave [EWKNW07]. SpinNaker

[PCD+11]. Spintronic
[AMH+24, IGR+16, SBT20].
Spintronic-based [AMH+24]. Spintronics
[KZW+15]. Spin [CZW+19]. Splitters
[DWK+16]. Square [MCT18]. SRAM
[GJ17, KHC+22, RKM15, TFR23]. SRAMs
[RMW+17]. SSS [DLL+19]. Stabilized
[Che15]. stacked
[KWFM12, MHM+08, SKRX13, ZS08].
stacked-Vdd [ZS08]. stacking
[KSB+08, MHM+08]. Stage [ZGS15].
Stand [RFDT15]. Stand-By [RFDT15].
Standard [CMJ14, KCWL+16, MS17].
STAP [dLBHC22]. State
[MDS21, ABS+12]. Static [DLL+19].
Static-dynamic [DLL+19]. Statistical
[LTTP16, YJ18]. STDP [SAAR20, PR18].
STDP-based [SAAR20, PR18]. Stealthy
[CMZ13]. Step [WRWW17]. STIFT
[MMAK23]. Stitch [MDS21]. Stochastic
[ACH+17, AL17, EDCL+22, GIS+22, KKNM22, LNL19, LQYL19, LP17, LMM18, MIZ+14, MKSW17, MS19, MS20, NLL+17, NPH18, PHS+23, ZCDD19]. stochastically
[GRS05]. Stone [BSL+18]. Storage
[SCZ+12, VSR15, VT17, YPK17, ORC+24]. strain [LWH14]. Strategies
[SFD17, FRB08, GR05]. Strategy
[MSCS19]. Stream [GLL+21b]. Streaming
[GTMG17, KR18, GQW20]. Streams
[GTTG+20]. stretching [MRH12].
Structure [DDR+16b, YPK17].
Structured [AHS17, LH20]. structures
[PSM+06]. STT
[AKW+13, LPW18, NLW+20, PFRR17, SFD17, SMT21, VDB+16, ZCX+17].
STT-MRAM [AKW+13, SMT21].
STT-MRAM-based [NLW+20].
STT-RAM [LPW18]. STTRAM
[GG17, MGK18, WX15]. STTRAM-Based
[GG17, WX15]. studies [CNPR14]. Study
[DDR+16a, KWC+20, KST+22, PP+13, PSY+18, SCT+22, YLF+17, CB09, HCTK08].
styles [CJ14b]. Sub
[GVRR17, ON15, RFDT15, WOW+10].
Sub- [RFDT15]. Sub-10nm [GVRR17].
Sub-Block [ON15]. sub-mW [WOW+10].
Subcrossbar [YL14]. Substrate [PAB+17].
Success [NPS+20]. Suite [XCS+19]. Sum
[KKK22]. Super [GVRR17].
Super-Threshold [GVRR17].
Supercapacitor [LPB+15].
Superconducting [GB18].
Sub- [ON15].

Super-Block [YL14].

Subcrossbar [YL14]. Substrate [PAB+17].
Success [NPS+20]. Suite [XCS+19]. Sum
[KKK22]. Super [GVRR17].
Super-Threshold [GVRR17].
Superconducting [GB18].
Sub- [ON15].

Super-Block [YL14].

Subcrossbar [YL14]. Substrate [PAB+17].
Success [NPS+20]. Suite [XCS+19]. Sum
[KKK22]. Super [GVRR17].
Super-Threshold [GVRR17].
Superconducting [GB18].
Sub- [ON15].

Super-Block [YL14].
[CJ16, CJ14b, ERGK21, GGTG+20, GJ17, KZW+15, KT14, MGS+12, STSG17, TSBI15].
[KZW+15, MGS+12, STSG17, ERGK21, GGTG+20]. Uncertainty [RPBA21].
Unclonable [LTM22, TMG+21, UMB+18]. Underlapped [GVRR17]. U-Net [CLZ+22].
Unified [YYPK17]. Uniform [SMT+17]. Unipolar [LP17]. Unit [KHC+22]. Units
[BH17, Gla14]. Universal [CZQK15, CVK15, MP10]. Unsupervised
[ASB+21, ATW+22, KSA+22, LYL19, SPR18]. Updates [FKM22]. Use
[KMS+20]. Using [AVK16, ALY+21, ATW+22, Bis21, CHA20, CJ16, CKWK18, DSB16, DPB11, DLL+19, EDCL+22, GKT+18, GOGCK11, GGTG+20, GUP11, GSC17, GJ17, HZSA14, HLH+12, JRJ22, KPM22, KR18, KSA+22, KWWI17, LBJ+16, LQYL19, LP17, LMM18, MDS21, MSB+22, Mit17, MGST22, MSC+21, NPS+20, PFRR17, PT14a, PAF18, PB21, RBHG21, RDS24, SCL17, SBZT20, SPS+24, TZR20, TFZ+21, TNWD20, VSR15, YLR+23, YJ18, ZCDD19, BSL+18, BPH+11, CMJ14, DRSR14, HMS+05, JRC+13, KRK+21, KT14, KK12, KCD15, LBRG08, LSH14, MMJ09, HHH+08, PAP+22, RBGC14, SZSS10, SPR18, SXL+12, SC06, YCY07, ZFT13, ZJT+14, KSB+08]. Utility
[LHW+17]. Utilizing [LDZ22, WDD+09].

Validation [SSN12]. Variability
[GPW+15, NLK+13, VDB+16]. Variable
[DKK+15]. Variable-Latency [DKK+15].
Variation [GLMG+15, MZZ23, MGK18, XYM18, ZM22, MRH12, ZMT13].
Variation-Aware [GLMG+15].
variation/defect [ZMT13].
variation/defect-tolerant [ZMT13].
Variations [CMK+21, CMJ14, CJ14a, CJ15, DSB16, KAKSP14, SCL17, TGCJ16, YJ18, RYT+07, XPD12]. varying [NVW+22].
Vdd [ZS08]. Vector [KHC+22]. Vectors
[MKG+23]. Vehicular [LTM22].
Verification
[EDZ+23, MGST22, PB21, ZM22]. Versus
[DDR+16a, AGD+20]. Vertical
[BLKM23, KCWL+16, LKC15]. Via
[KBC+23, TZZ14, PHS+23, WWJ09, YWF18, ZLGL21]. Vias [CBK+22].
vibration [WCSA10]. Victims [ABM21]. Video
[QGW20]. Viewpoint [GFZ13].
virtual [Sek07]. virtualized [MNT14].
Virtualizing [WWC23]. Vision [AML+23].
VLW [SLC+17]. VLSI
[AMF+15, DKK+15, MRH12, YP17].
Volatile
[KHR+15, RKM15, STSG17, WL22b, YYPK17, YXD+17, ZPL+20, RCYB22].
Voltage
[Che15, EFRB22, IBO22, JOF+15, KKKK18, MSB+22, SCL17, SXL+12].
Voltage-Controlled [MSB+22]. voltages
[MMJ09, WDD+09]. vs
[CJ14a, DWK+16, KWC+20].
Vulnerabilities [PAC+22]. Vulnerability
[BGX+21, HON21, SRKX13].

Wafer [KKC17, KWWI17, HHH+08].
Wafer-Bonding [KKC17]. wafer-to-wafer
[HHH+08]. Wall
[KWC+20, Mit17, SBZT20]. walled
[SXL+12]. Warp [MPZ21]. Wave
[KDMT22, MKW+14, EKWWN07].
Wavelength [LKL+18]. waves [KK12].
Way [BS20, HSZM17, RPBA21]. Wear
[LHHA19]. Wear-aware [LHHZ19]. Web
[AMVG12]. Weight [RSBA23]. Welded
[GBCJ17]. while [RYT+07]. Wide [MPZ21].
Wide-Warp [MPZ21]. Width [BSM16].
Widths [GZZ+21]. wire [Gla14, SXL+12].
Wireless
[ACM+20, CMM+18, DJ16, LPB+15, LWM+14, MKMS22, MGS+12, MKW+14, NVW+22, RSD23b, RDS24, TKBM12,
CDG+12, GD12, WOW+10, WVGP13].
\textbf{wires} [DK09]. wise [HYA+20]. \textbf{Within} [KXY16]. without [ABR+21]. Wordline [LYWW13]. Wordline/Bitline [LYWW13]. \textbf{Workload} [PRG+15, SLS+14]. \textbf{Workload-Aware} [PRG+15]. World [MKW+14]. Wormhole [SHAC19]. WoSAR [AD14]. Write [AM18, GLMG+15, KXY16, LHW+17, NLW+20, WX15, WL22b]. \textbf{Write-Aware} [WX15]. \textbf{Write-Optimized} [WL22b]. \\
\textbf{Yield} [PFRR17, SC06, FRB08].

Z [HZSA14]. \textbf{Zallocator} [WL22b]. Zero [KXY16, TNWD20, BPB+12]. \textbf{Zero-Energy} [TNWD20].

\section*{References}

\textbf{Abate:2013:ILH}

\textbf{Asseman:2021:ADN}

[ABS+12] Vlasia Anagnostopoulou, Summit Biswas, Heba Saadeldeen,

Alaghi:2017:TAE

Abellan:2017:EPN

Ascia:2020:EDR

Avritzer:2014:ISI

Arka:2020:MCP

Ardesi:2023:TMF
Yuri Ardesi, Umberto Garlando, Fabrizio Riente, Giuliana Beretta, Gianluca Piccinini, and Mariagrazia Graziano.
REFERENCES

Taming molecular field-coupling for nanocomputing design.

Apalkov:2013:STT

Alawad:2017:SCS

Alasad:2021:RSH

Alsuwaiyan:2018:MMT

Araujo:2014:SAE

Azghadi:2015:PST

[Mostafa Rahimi Azghadi, Saber Moradi, Daniel B. Fasnacht, Mehmet Sirin Ozdas, and Giacomo Indiveri. Programmable spike-timing-dependent plasticity learning circuits in neuromorphic
Ahmed:2024:DTR

Hasan:2023:EEV

Abbasi:2012:DGD

Anonymous:2018:GEI

Arasu:2014:RIL

Ashok:2022:HTD

Acharya:2022:TPO

Ahsan:2016:DMQ

CODEN ???? ISSN 1550-4832 (print), 1550-4840 (electronic).

Bahar:2009:ISS

Bagherzadeh:2022:HSR

Barenghi:2016:FBS

Barbareschi:2022:GAB

Bartley:2023:BOR

Bahar:2008:IJA

Bobba:2013:CTP

Beausoleil:2011:LSI

Biernacki:2021:SDS

REFERENCES

[Bhat:2023:SFG] Sachin Bhat, Mingyu Li, Sourabh Kulkarni, and Csaba Andras Moritz. SkyBridge 2.0:
REFERENCES

REFERENCES

Bi:2016:ETB

[BSY+16]

Bouvier:2019:SNN

[BVM+19]

Bhunia:2012:ISI

[BY12]

Bai:2018:DEE

[BY18]

Botero:2021:HTA

[BYHT18]

Bontupalli:2018:EMB
Venkataramesh Bontupalli, Chris Yakopcic, Raqibul Hasan, and Tarek M. Taha.

Chen:2014:CTS

Chakrabarty:2010:E

Cambou:2020:CAS

Chen:2014:ULL

Xianmin Chen and Niraj K. Cheng:2015:SSC

Crocker:2009:DFQ

Chaudhuri:2014:VDS

Chen:2014:ULL

Xianmin Chen and Niraj K.
REFERENCES

[Chen:2015:GPF]

Chen:2015:GPF

[Chaudhuri:2016:ULL]

Chaudhuri:2016:ULL

[Chang:2018:PPA]

Chang:2018:PPA

[Cui:2018:HTD]

Cui:2018:HTD

Xiaotong Cui, Elnaz Koopahi, Kaijie Wu, and Ramesh Karri. Hardware Trojan detection using the order of path delay.

[Cao:2017:GEI]

[Cao:2018:GEI]

[Chen:2022:AUA]

[Chaudhuri:2014:ALD]

[Chatterjee:2021:PMM]

[Catania:2018:IEE]

Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, Maurizio Palesi, and Davide Patti. Improving energy efficiency in wireless network-on-chip architectures. ACM Journal on Emerging Tech-
ISSN 1550-4832.

Chen:2023:AED

Chen:2021:ISIa

ISSN 1550-4832 (print), 1550-4840 (electronic).

Chen:2021:ISIb

ISSN 1550-4832 (print), 1550-4840 (electronic).

Chen:2008:MQD

ISSN 1550-4832 (print), 1550-4840 (electronic).

Cotroneo:2014:SSA

Cotroneo:2014:SSA

REFERENCES

[Chabi:2014:RLA]

REFERENCES

15:??, May 2013. CODEN ???? ISSN 1550-4832 (print), 1550-4840 (electronic).

ChappetDeVangel:2015:RSD

Chung:2014:DET

Cui:2020:LSN

Choi:2011:EQI

Choi:2012:DQA

Chien:2015:FTO

Chuang:2008:SRS

Chen:2013:CCB

Chen:2014:CRP

Chakrabarty:2005:DAM

Chabi:2015:CUS

Cui:2019:SMB

DeVos:2014:DGF

Alexis De Vos, Stéphane Burignat, Robert Glück, Torben Egidius Mogensen, Holger Bock Axelsen, Michael Kirkedal Thomsen, Eva Rotenberg, and Tetsuo Yokoyama. De-

[Davids:2006:MFD] Daniel Davids, Siddhartha Datta, Arindam Mukher-

REFERENCES

Donal:2008:RLS

Dehghani:2016:NAO

CODEN ??? ISSN 1550-4832 (print), 1550-4840 (electronic).

[Dinakarrao:2019:ATR]

REFERENCES

Das:2021:CNM

Du:2019:SSA

De:2015:ASC

Delgado-Lozano:2020:PDR

Deng:2008:CNT

deLima:2022:SAD

Delgado-Lozano:2020:PDR

Deng:2008:CNT
REFERENCES

Dridi:2019:DMA

Datta:2014:IRC

Das:2016:MPU

Deb:2016:GVS

Dai:2010:ITA

El-Derhalli:2022:TAO

Editors:2014:ISI

Erata:2023:SAT

Eliahu:2021:MME

Eshaghian-Wilner:2007:SWN

Elkanishy:2022:LOH

Fusella:2018:RPC

Moritz Fieback, Guilherme Car.

scheme for all-optical dynamic circuit switched NoCs in cache coherent CMPs.

Gaillardon:2015:SLP

Grissom:2014:IAC

Gaikwad:2023:HIA

Ghosh:2017:AQC

Gaillardon:2011:MNB

Guo:2020:PNO

[GIS+22] Saransh Gupta, Mohsen Imani, Joonseop Sim, Andrew Huang, Fan Wu, Jaeyoung Kang, Yeseong Kim, and Tajana Simunic Rosing. COSMO: Computing with stochastic numbers in memory. *ACM Journal on Emerging Technologies in Comput-
REFERENCES

[102x681]ing Systems (JETC), 18(2): 37:1–37:25, April 2022. CO-
DEN ???? ISSN 1550-4832. URL https://dl.acm.org/
doi/10.1145/3484731.

FinFET SRAM design using multiparameter asymmetric
FinFETs. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 13(2):26:1–26:??, March 2017. CO-
DEN ???? ISSN 1550-4832.

[GK18] Neel Gala, Sarada Krithivasan, Wei-Yu Tsai, Xueqing Li, Vi-
jaykrishnan Narayanan, and V. Kamakoti. An accuracy
tunable non-Boolean co-
processor using coupled nano-
oscillators. ACM Journal on Emerging Technologies in
DEN ???? ISSN 1550-4832.

[Gla14] Michael Gladstein. Delay-
based processing-in-wire for
design of QCA serial deci-
nal arithmetic units. ACM Journal on Emerging Tech-
nologies in Computing Sys-
tems (JETC), 10(2):13:1–
13:??, February 2014. CO-
DEN ???? ISSN 1550-4832 (print), 1550-4840 (elec-
tronic).

[Gan:2021:CED] Victor M. Gan, Yibin Liang, Lianjun Li, Lingjia Liu, and
Yang Yi. A cost-efficient digital ESN architecture on
FPGA for OFDM symbol detection. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 17(4):47:1–47:15, October 2021. CO-
DEN ???? ISSN 1550-4832. URL https:/
/dl.acm.org/doi/10.1145/3440017.

[Gong:2021:SES] Shijun Gong, Jiajun Li, Wenyan Lu, Guihai Yan,
and Xiaowei Li. ShuntFlow-
Plus: an efficient and scalable dataflow accelerator architec-
ture for stream applications. ACM Journal on Emerging
59:24, October 2021. CO-
DEN ???? ISSN 1550-4832. URL https:/
/dl.acm.org/doi/10.1145/3453164.

[Ghofrani:2015:LPV] Amirali Ghofrani, Miguel-Angel Lastras-Montaño, Siddharth Gaba, Melika Pay-
adaptive write scheme for access-transistor-free memristive memory. ACM Journal on Emerging Technologies in
REFERENCES

2015. CODEN ???? ISSN 1550-4832 (print), 1550-4840 (electronic).

Ganguly:2023:GEI

Garg:2012:TDL

Guiducci:2008:HPP

Gebregiorgis:2022:SMC

Galceran-Oms:2011:MTU

Gorantla:2017:DAC

REFERENCES

Huang:2014:FMD

Han:2022:PBC

Haron:2011:RRN

[102x681]REFERENCES
[102x681]63

Huang:2014:FMD

Hamilton:2018:SHE

Huang:2012:IRD

REFERENCES

???? ISSN 1550-4832 (print), 1550-4840 (electronic).

Zhezhi He, Li Yang, Shaahin Angizi, Adnan Siraj Rakin, and Deliang Fan. Sparse BD-Net: a multiplication-less DNN with sparse binarized

REFERENCES

CODEN ????? ISSN 1550-4832. URL https://dl.acm.org/doi/10.1145/3588032. [JOF+15]

Jin:2022:GET

Jiang:2017:RCC

Jha:2021:DED

Jafri:2015:AID

Jackson:2013:NES

Jones:2022:SNA

Alexander Jones, Aaron Ruen, and Rashmi Jha. A spiking neuromorphic architecture using Gated-RRAM for associative memory. ACM
REFERENCES

Jayakumar:2015:QHS

Jiang:2017:SLD

Karri:2020:E

Khammassi:2022:OPQ

REFERENCES

Koblah:2023:FOD

Krichmar:2015:LSS

Kulakarni:2021:AAC

Krichmar:2015:LSS

Krichmar:2015:LSS

Kim:2016:CAP

REFERENCES

Karkar:2022:TPE

Kooli:2022:TTI

Khasanvis:2015:LPH

Komerath:2012:RBP

Kim:2023:ISI

Koneru:2017:IEC
Abhishek Koneru, Sukeshwar Kannan, and Krishnendu Chakrabarty. Impact of electrostatic coupling and wafer-bonding defects on delay testing of monolithic 3D integrated circuits.
Kim:2022:EPS

Kim:2018:DNN

Kulkarni:2022:HAS

Krishnan:2022:ICI

Kant:2012:EDC

Krishna Kant, Muthukumar Murugan, and David H. C. Du. Enhancing data center sustainability through energy-adaptive computing.
Kim:2020:PSA

Ko:2012:EHC

Kocak:2010:IDT

Karam:2017:MCR

Ko:2018:RTL

Koylu:2023:SML

Khatwani:2021:FME

Ku:2022:UDR

Kgil:2008:PUS

Kumawat:2014:PMA

REFERENCES

?? ?? ISSN 1550-4832 (print), 1550-4840 (electronic).

Kang:2020:AAS

Kumar:2017:THS

Khouzani:2016:FEP

Khayambashi:2015:ARA

Kim:2015:RDN

Kang:2015:SEU
REFERENCES

Li:2014:SAB

Liu:2012:RAP

Liu:2019:MML

Lee:2018:DSE

Liu:2010:RSO

Li:2020:RRB
Laurent:2021:BGB

Liu:2022:DAA

Li:2022:HIH

Li:2015:ICI

Lu:2021:LNT

Li:2020:LNL

Li:2019:LLP

[LHHZ19] Sumin Li, Kaixin Huang, Linpeng Huang, and Jiashun

Li:2017:PUD

Lee:2010:FBP

Lin:2014:RRM

Liu:2018:OAE

Lee:2015:REE

Lee:2022:RMC

REFERENCES

Li:2019:TBH

Loomis:2018:FIT

Liu:2017:CPU

Le:2015:END

Lou:2019:MSA

Lin:2014:POF

Liu:2014:CHP

Liu:2014:CSN

Luo:2022:ACT

Lalouani:2022:CMA

Liu:2019:EEF

Liang:2013:EWB

Li:2020:ISI

Li:2022:QDQ

Liu:2021:RAR

Lee:2022:SAS

Mexis:2021:LAH

Nico Mexis, Nikolaos Athanasiadis Anagnostopoulos, Shuai Chen, Jan Bambach, Tolga Arul, and Stefan Katzenbeisser. A lightweight architecture for hardware-based security in the emerging era of systems of systems. *ACM Journal on Emerging Tech-
REFERENCES

Mojumder:2013:DPS

Motaman:2018:IPV

Mehrabani:2022:NHE

Majerus:2012:WUL

Mosavirik:2022:SVE

Mohammadi:2017:FTR

REFERENCES

Ma:2008:MCE

Miyakawa:2008:MST

Mittal:2016:SAT

Mittal:2017:STA

Matherat:2011:RCC

Mondal:2023:TGT

Anindan Mondal, Debasish Kalita, Archisman Ghosh, Suchismita Roy, and Bibhash

REFERENCES

Monta:2023:SCS

Munoz-Martinez:2023:SST

Mintz:2020:QLE

Mishra:2009:LPF

Massoud:2006:MDC

Machida:2014:JCT
Fumio Machida, Victor F. Nicola, and Kishor S. Trivedi. Job completion time on a

Maity:2022:CEB

Mahalingam:2012:DCS

Manem:2012:DCM

Mankalale:2017:OSC

Mondal:2019:SST

Mondal:2020:EED

Mayahinia:2022:VCO

Mukhopadhyay:2021:PES

Manna:2019:TAT

Myers:2014:ISI

Mohanthy:2014:SOS

Metodi:2008:HLI

REFERENCES

Madsen:2014:SMC

Ma:2023:MMT

Narayanan:2008:E

Nowshin:2024:TEE

Ni:2017:DMC

Narayanan:2013:VNF
Pritish Narayanan, Michael Lechtenburg, Jorge Kina, Prachi Joshi, Pavan Panchapakesan, Chi On Chui, and

Nooraiepour:2022:TVM

Oberortner:2014:RBD

Oneal:2018:RCS

Olney:2022:DNT

Olorode:2015:IPS

Oluwey Olorode and Mehrdad Nourani. Improving performance in sub-block caches with optimized replacement
REFERENCES

Okafor:2024:FSN

[PAC+22]
Pundir:2022:ASV

Parveen:2018:IEE

Peng:2022:DNN
Jiaxin Peng, Yousra Alkabani, Krunal Puri, Xiaoxuan Ma, Volker Sorger, and Tarek El-Ghazawi. A deep neural network accelerator using residue arithmetic in a hybrid optoelectronic system.
REFERENCES

Paul:2021:SSI

Pang:2015:MLN

Plana:2011:SDI

Jaidev Patwardhan, Chris Dwyer, and Alvin R. Lebeck. A self-organizing defect tolerant SIMD architecture.

Patwardhan:2007:SOD

Paul:2007:PBC

Pang:2015:MLN

 REFERENCES

Pajouhi:2017:YAE

Pande:2012:ISI

Park:2015:MME

Patooghy:2023:SNC

Page:2017:SHA

Peper:2013:BCF

REFERENCES

REFERENCES

Prodan:2007:DDE

Quadir:2016:SCS

Panoff:2022:RCA

Rueckauer:2022:NAC

Roy:2014:TAG

REFERENCES

Ronen:2022:BMP

Reza:2023:MLE

Rasheed:2020:CAP

Rahman:2015:NVR

Roy:2012:CAL

REFERENCES

Rodriguez:2015:TSS

Rakshit:2017:MTS

Riaz:2022:SAP

Rioja:2021:USC

Ray:2023:SCI

Ram:2023:ETA
Saswat Kumar Ram, Sauvagya Ranjan Sahoo, Banee Bandana Das, Kamalakanta Mahapatra, and Saraju P. Mohanty. Eternal-thing 2.0: Analog-Trojan-resistant ripple-less solar harvesting system for sus-

Manuel Schmuck, Luca Benini, and Abbas Rahimi. Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hyper-

REFERENCES

Seo:2019:GEIb

Seo:2019:GEIa

Simoni:2022:TCM

Sun:2012:NMD

Sen:2014:RRC

Sekanina:2007:EFR
REFERENCES

REFERENCES

Shea:2019:HSD

Sego:2012:IDC

Sisejkovic:2021:CSL

Samant:2023:NAL

Singhvi:2017:FGU

[Saeed:2019:ISA]

[Singh:2010:CPD]

[Singh:2011:ISI]

[Srivinasan:2018:SBU]

[Shafi:2024:RUD]

[Savage:2006:RAN]

John E. Savage, Eric Rachtlin, André DeHon, Charles M.

Shi:2015:ISI

Sitik:2015:FBL

Salam:2012:ICL

Shafaei:2014:CSR

Smith:2020:HDQ

Sheikh:2012:EPA

Sunny:2021:SSP

Senni:2017:NVP

Sarwar:2018:EEN

Schulhof:2007:SRC

Soeken:2016:ELB

Shang:2011:INC

Srivastava:2012:CLV

REFERENCES

Tyrrell:2007:ED

Tang:2016:DPM

Tang:2013:DSE

Tang:2013:TCT

Tolbert:2012:MDA

Tsiokanos:2021:DPD

Tempesti:2007:SRH

[TMM07] Gianluca Tempesti, Daniel Mange, Pierre-Andre Mudry,

Mohammad M. A. Taha and Christof Teuscher. Approximate memristive in-memory Hamming distance circuit.
REFERENCES

REFERENCES

Tann:2020:REE

Vannynbach:2018:QCP

Tida:2014:NTS

Vatajelu:2016:SMB

Uddin:2018:DCM

Beirendonck:2021:SCR

REFERENCES

<table>
<thead>
<tr>
<th>References</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>

REFERENCES

Wan:2022:ARA

Wang:2015:WAS

Wang:2017:ACP

Wang:2020:HSS

Wang:2009:ENP

Wu:2016:RCA
Xu:2008:IDR

Xie:2008:ESI

Xu:2019:GGP

Xie:2014:TCP

Xu:2007:ADP

Xie:2006:DSE

Xu:2018:IHS

Shi Xu, Zhang Luo, Mingche Lai, Zhengbin Pang, and

Xu:2021:MCC

[XZL+21]

Xu:2022:ASP

[YLF+17]

Yuan:2014:FEA

[YL14]

Yogendra:2017:CST

[YLR+23]

Yang:2023:HOE

Mingdai Yang, Qiwen Lou, Ramin Rajaei, Mohammad Reza Jokar, Junyi Qiu, Yuming Liu, Aditi Udupa, Frederic T. Chong, John M. Dallesasse, Milton Feng, Lynford L. Goddard, X. Sharon Hu, and Yanjing Li. A hybrid optical-electrical analog deep learning accelerator using incoherent...

Yang:2021:DRA

Yang:2017:VAR

Yang:2018:IAC

Yang:2013:NAC

Yu:2017:RMA

REFERENCES

Ye:2012:TBH

Yoon:2019:SLC

Yuh:2007:PDT

Zhang:2022:RRN

Zhao:2007:PTM

REFERENCES

131

4832 (print), 1550-4840 (electronic).

Zhuo:2015:CLA

Zhang:2020:MPR

Zhang:2011:FBP

Zaman:2022:EDS

Zhang:2009:DSE

Zhang:2009:HNCb

Zhang:2009:HNCa

[WJS09c] Wei Zhang, Niraj K. Jha, and Li Shang. A hybrid Nano/CMOS dynamically re-

Zhang:2010:LPN

Zhao:2014:SRS

Zyarah:2018:STM

Zyarah:2019:NAH

Zahedi:2022:MTA

Zhou:2021:AMH

Jun Zhou, Mengquan Li, Pengxing Guo, and Weichen Liu. Attack mitigation of

Zhang:2020:GEA

Zaeemi:2022:HLM

Zhang:2015:DCP

Zhang:2020:LOO

Zhan:2008:AMA

[ZS08] Yong Zhan and Sachin S. Sapatnekar. Automated module assignment in stacked-Vdd designs for high-efficiency

Zhao:2019:LST

Zhang:2011:NPD

Zhao:2015:STD

Zhao:2010:ICP

Zhang:2018:LBT