A Complete Bibliography of Publications in the
Journal of Mathematical Biology

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 September 2023
Version 1.23

Title word cross-reference

(\(n, 2\)) [2872]. (\(\tau, \alpha, \rho\)) [32]. 1 [1159]. 2 [570, 3026, 2660, 3031, 70]. 2:1 [890].
2\(n = 40\) [2815]. 3 [2779, 3010, 1707, 1368, 2948]. ++ [3192, 1836]. 2+[1413]. 2
[3396]. \(\nu\) [3477]. \(A\) [1340]. \(A\beta\) [3158]. \(B\) [1340]. \(B_2\) [3236]. \(\beta\)
[2197, 1176, 2692, 2767, 1849]. \(d\) [2657]. \(F\) [3320]. \(F_{st}\) [1921]. \(G \cdot U\) [1402]. \(k\)
[2294]. \(K^+\) [1495]. \(\kappa\) [2358]. \(L^\infty\) [2509]. \(\lambda\) [246]. \(\lambda = \alpha_1 + (\alpha_2 + \alpha_3 \lambda) e^{-\lambda}\)
[2489]. \(m\) [3425]. \(M^3\) [1609]. \(n\) [933, 840, 482, 418, 481, 480, 581]. \(n: m\) [315].
\(\omega\) [246]. \(p\) [2813]. \(q\) [3361]. \(R^3\) [419]. \(R^4\) [419]. \(R_0\)
[2060, 784, 2942, 2395, 2127, 1430]. \(R_5\) [2745]. \(T\) [2126, 2557]. \(G\) [3480]. \(\times\)
[1307]. \textit{Daphnia} [2662]. \(X\) [2713, 833]. \(X_4\) [2745].

-\textit{actin} [3320]. -\textit{amyloid} [2197]. -\textit{ary} [3361]. -\textit{catenin} [2692, 2767, 1849].
-\textit{cells} [1176]. -\textit{component} [570]. -\textit{D} [1159]. -\textit{dimensional} [840, 70, 1368].
-\textit{hydroxypropionic} [2779]. -\textit{level} [933]. -\textit{linked} [833]. -\textit{mer} [2294]. -\textit{mers}
[2294]. -\textit{order} [3425]. -\textit{parameter} [3026]. -\textit{periodic} [2557]. -\textit{person} [482].

/CD8 [3192].

2 [3476, 3507]. 2D [2343, 2417].

60th [2485]. 65th [2992, 2109].

conservation [1125, 1889, 1866, 3398]. conserving [3105, 3176].
consideration [106, 158]. considered [514, 550, 551]. consist [3329].
Consistency [1255, 1619]. Consistent [1522, 3297, 1847, 1258, 1693].
Constrained [2831]. Constraint [1534, 209, 349]. constraints [3380, 2771, 999, 1458, 821, 1905, 2443, 2822, 3130, 2545, 3019, 3233].
constructed [1561, 3186]. Construction [2375, 821, 1560, 610, 2124]. constructs [2191]. consumer [1026, 3384, 2897, 3522, 1075, 799, 2214].
Continuous-time [3223, 2619, 1714, 121]. continuously [3483].
cylinder-like [748]. cylindrical [3440]. cytokine [3399]. cytokines [2686].
cytomechanics [1047]. cytometry [1044, 1166]. cyton [1732]. cytoplasm [2365].
cytoplasmic [3148]. cytoskeletal [1974, 981]. cytotoxic [505].

D [3010, 1707, 2948, 1159]. damage [3432, 871, 909]. Dangerous [2616].
dans [419, 2556, 2656, 3027]. Daphnia [1888, 692]. Daphnias [2121].
Darcy [3321]. Darwinian [2255, 3251, 1053, 3014]. Darwinism [2289]. Data
[3487, 2434, 2943, 1336, 819, 853, 3294, 2094, 2926, 1069, 3215, 2017, 2275, 3498, 2595, 1838, 3448, 2539, 1916, 2837, 2587, 3092, 2901, 1705].
Data-driven [2434]. datasets [3509]. Dating [2943]. day [3064].
day-to-day [3064]. DeAngelis [2661]. death [490, 1244, 2281, 2656, 1473, 254, 2590, 2058, 3406, 1467, 2739, 3435, 731, 303, 2947, 647, 699, 738, 3186, 3486]. death-Birth [3486, 3186].
declining [946]. Decline [3073]. Decomposable [1615, 1747]. Decomposition
[216, 3183, 2729, 1635, 1703]. decompositions [1742]. Decoupled
[2872, 2103]. decouples [3309]. decrease [1424]. decreases [1668]. deep
Defining [2337, 2743]. definite [1333]. definition [2060, 784, 1834, 2126, 33].
definitions [2648]. deforestation [3250]. deformation [2885, 2564, 1032].
deforming [1902, 3279]. degenerate [3044, 2899, 1000, 1107, 1106, 76].
degradation [968, 975, 1173, 2191, 3280]. degrade [2270].
degradation-and-fire [2270]. degree [2123, 1919, 2089]. degrees [2623]. Delay

[3254, 2360, 2361, 1742, 3088, 2180, 3415, 2812, 603, 2814, 3513, 2678, 1255]. demographically [1194]. demographics [883, 3021]. Demography
dendrites [2142]. dendritic [567, 3089, 2000, 2224, 1687, 1149]. dendro
[2224]. dendro-dendritic [2224]. dengue
[1182, 1375, 1098, 2335, 3470, 3488, 3054]. densities [3348]. Density
[929, 1719, 1248, 1328, 194, 1237, 894, 2336, 1963, 470, 2128, 312, 3025, 2032, 2164, 2588, 1766, 883, 1172, 208, 686, 999, 85, 640, 830, 2732, 1297, 1318,

Diffusion-driven [862]. diffusion-ODE [2615]. diffusions [1728, 3057].

Diffusive [1581, 819, 3043, 442, 2510, 2252, 2296, 416, 2661, 1379, 3363, 401, 458, 1065, 2184, 259, 3280, 3333, 3209, 3282]. diffusivities [862, 1202].

dimers [1229]. dimorphism [2544]. dioecious [190, 1046, 838, 845].
dioxide [3241, 281, 2522]. diploid [1088, 2804, 1018, 2465, 1293, 1770, 1418, 2659, 2472, 1277]. diploids [2168].

2375, 2495, 3024, 2187, 1469, 2453, 2972, 785, 820, 2459, 956, 1391, 3337, 693, 2700, 887, 3258, 2010, 2781, 2616, 2827, 1341, 1682, 2029, 2429, 2809.

dynamics [2845, 119, 2699, 1365, 1839, 2057, 2627, 3259, 2061, 3310, 1838, 2327, 950, 475, 2538, 1423, 2745, 2999, 1055, 3132, 3133, 2947, 2498, 1579, 1924, 2851, 887, 3258, 2010, 2781, 2616, 2827, 1341, 1682, 2029, 2429, 2809].

dysrhythmias [907, 1744, 1890, 3019, 2922, 957, 1519, 3246, 1710, 2179, 2985, 2865, 1077, 3028, 2950, 1106, 1185, 1305, 2283, 3331, 2307, 2774, 2561, 3080, 3273, 3427, 2066, 2700, 400, 1081, 2533].

earliest [2981].

Early [3109, 1403, 2306, 3158, 2602, 975, 2448, 530, 1260, 1422, 751, 1034, 1770, 1313, 3098, 3354].

eco [2439, 2478, 3261].

eco-evolutionary [2439, 2478].

Ecological [2180, 2720, 400, 1081, 2533].

ecology [1439, 2232, 2058, 2952, 2086, 1299, 2063, 1858, 2917, 814, 3371, 2110, 2494, 3169, 614, 1635, 1581].

Economy [2418].

Ecosystem [313, 1211, 3481, 149, 2746].

Ecosystems [3382, 440, 3250, 106, 87, 1663, 267, 2639, 3016].

Edge [2155, 1274, 1143, 3284, 2995, 2599, 2178, 3486, 2167].

edge-based [2178].

edge-length [3284].

Effective [1938, 1891, 1919, 2089, 1202, 1494, 2313, 2416].

effectively [439].

Effectiveness [3243, 2039].

Efficiency [3349].

Efficient [2263, 1701, 2803, 3092].

efflux [3150].

effort [2073, 199, 1613].

egg [623, 568, 1787, 2540].

egg-larval [623].

eggs [568, 2183, 2117].

Eigen [624].

Eigenanalysis [284].

eigenmodes [1351].

Eigensolutions [2886].

eigenvalue [2456, 2416, 2754, 2680, 512].

Eikonal [2981, 834].
eikonal-curvature [834]. either [2817]. elastic [2869, 3252, 1620, 1389].
elasticity [915]. electric [3089, 1745, 682, 872, 2967, 3514, 2537]. electrical
[3402, 1176, 3388, 2224]. electro [3279]. electro-mechanical [3279].
electrocardiology [420]. electrodiffusion [2843, 1842]. electrodiffusive
[3211]. electrolyte [2024, 2069, 3187]. electroneutral [3187].
Electropermeabilization [2222]. electrophysiology [2454, 2160].
electroporated [3501]. electrostatic [2939].
element [1986, 3089, 2843, 595, 410, 1770, 3279, 1754, 3514, 2072].
Elementary [2665, 2427, 2973]. elements [841, 694].
elicited [1579]. elimination [2096, 505, 2600].
ellinguis [1286]. elliptic [814, 2964].
elongation [2065, 1630, 387, 582]. Embeddability [3454, 3026]. embedded
[1852]. embedding [3213]. embeds [2156, 2935].
embryo [3010, 2233]. Embryonic [1787, 975, 2909, 2506, 928].
EMDUniFrac [2802]. emergence [2255, 3448, 979]. emerging [2457, 1693].
emphasis [1983]. Empirical [246]. enable [3453]. enables
[3400, 3523, 2698]. encephalitis [1543]. encircled [2604]. encode
[3218, 2273]. Encoding [1717]. encodings [2044]. end [2599, 3320, 1111].
endangered [2424]. endemic [214, 374, 2960, 843, 1020]. endemcity [433].
endocrine [1884]. endosome [1501]. endotacticity [2475]. endothelial
[3116, 1690]. endowed [3380]. endurance [766]. enemies [2643, 2672].
Energetics [1825, 938, 2120]. energies [2577]. Energy [1261, 2891, 1336,
2336, 1091, 3372, 2939, 568, 1787, 1457, 754, 1701, 2235, 2343].
engineered [1568, 2191]. engulfing [3523]. enhanced
[1677, 1392, 1579, 2786]. enhancement [525]. enrichment
[1013, 1460, 1790, 432]. ensemble [1700, 1701]. Ensuring [2750].
Entanglement [1515, 1602]. enterica [1971]. Entrainment
[2567, 1934, 601, 1741, 345, 495]. Entropy
[907, 1455, 850, 2854, 2645, 1935, 3071, 340]. entropy-based [2645]. entry
[2160]. Enumeration [2848, 3313, 2193]. environment
[3167, 523, 2176, 1764, 2208, 2281, 2231, 2411, 2556, 2656, 3027, 1216, 1517,
1752, 371, 2911, 174, 266, 3277, 1223, 2528, 338, 1347, 3202, 696, 243, 398, 848,
1315, 3340, 757, 35, 1868, 277, 3121, 227, 718, 3339, 3412, 166, 2378, 687, 737,
213, 599, 2867, 3232, 3366, 979, 296, 3022, 3282, 3505, 2283, 2755, 2963, 3417].
environmental
[2180, 2105, 1571, 2603, 1037, 948, 3305, 3416, 2124, 941, 1197, 2374, 2396].
environmentally [1533]. environments [3020, 301, 2549, 3200, 3155, 3103,
332, 390, 2071, 316, 304, 2797, 3101, 2102, 2406, 1671, 3085, 2732, 2852, 3040,
2050, 2126, 2942, 2357, 3099, 3193, 1645, 54, 2360, 2361, 2320, 3310, 3117,
2754, 1668, 2319, 1936, 1886, 1481, 361, 483, 618, 1625, 1510].
environment [2556, 2656, 3027]. Enzyme
[716, 265, 3094, 3319, 161, 1850, 305, 394, 1434, 1490]. enzyme-catalysed
[1434, 1490]. enzyme-catalyzed [265]. enzyme-substrate [716]. enzymes
[892]. enzymic [716]. Ephaptic [1745]. Ephedra [585]. Epidemic
[2945, 3445, 406, 1589, 2352, 1973, 2140, 2635, 1408, 2228, 3178, 1023, 1923,
epidemic
Epidemics
Epidemiologic
Epidemiological
epidemiology
epidermis
epileptic
Epistasis
epistatic
epithelial
epithelium
epitope
EPO
equal
Equation
equation-free
Equilibria
Equilibrium
equilibration
Equivalence
Erk
ERK
Erlang
Erlang-distributed
Erratum
exhibiting [1291, 3220]. exhibits [2918]. Existence
[724, 503, 702, 2766, 1379, 337, 175, 1785, 407, 249, 2599, 2669, 1000, 447, 16,
existence-uniqueness [3279]. exit [2641]. exotic [2817]. expanding [3403].
Expansion [1945, 2783, 3320, 794]. expansions [43]. expectancy [2039].
expectations [2974]. Expected [2059, 1237, 2588, 1732]. experiment [735].
Experimental [1, 2807, 2400, 1509, 1389]. experimentally [1540].
experimentation [1691]. experiments [2150, 256, 1893, 3154, 321, 3451, 294].
explicit [1276, 3302, 2914, 107, 3307, 1443, 2221, 1038, 1268].
exploration [2698]. Exploring [3468, 2438, 3244, 2545]. Exponential [2854, 1416, 153, 2446].
exposed [1473]. exposure [1724]. exposures [2350]. expression [2409, 1044, 2022, 2056, 2640, 3083, 2810, 2695, 3464, 1671, 3192, 1678, 2157, 3423, 1771, 2462, 1886, 2782, 3246, 1258, 3472, 2250].
expressions [2974, 3480]. extant [1340]. extended [2094, 1815, 1238, 2116].
Extending [2185, 2403]. extension [2308, 2216]. extent [3129].
facilitation [802]. facing [3107]. Factor [2195, 3116, 55, 1579, 1409, 3096].
failed [3513]. Failure [1830, 1497, 2347, 1413]. Fair [2189, 2436]. families [1455, 1476, 1616].
farmers [3145]. farms [2558]. Farris [3294]. Fast [3449, 1560, 3027, 2945, 2115, 1721, 2465, 3344, 1914, 1556, 2462, 3057, 1695, 541]. fast-or-slow [3344].
fast-slow [2462]. fat [3216]. fatal [788, 1133, 2841]. fatalities [3179].
fate [2617, 3523]. favor [1533]. favors [2128]. fear [2569]. Feasibility [3382].
femoral [827]. fencing [2368]. Fenichel [3319]. Fennoscandia [3479].
Function-valued, functional, functional-integral, functionalized, functionals, functions, fundamental, fungal, funnels, fusion, futile, fuzzy.

G, G-CSF, G-protein, G-Quadruplex, G2, G2-checkpoint, Gain, Gain-induced, gaits, Gallerkin, Games, game-theoretic, game-theoretical, Games, gametic, gametophytic, gamma, gap, gap-junction, gapped, gas, gases.

gastric, GATA, gated, gatherers, Gause, Gause-type, Gauss, Gaussian.

Gene, Gene-culture, gene-type, gene/species, Genealogical, Genealogical-tree, genealogies.

General, Generalist, Generalization, Generalizations, Generalized, generating, generations, generator, generic, genes, genesis.
Jacobian [2275], jellyfish [3244], JMB [1696], joint [2437], joining [3051], Joint [2029, 1758, 3032, 3225, 2926, 1644, 597], Jones [1189], journal [1219, 2992], jugular [2363], jump [3172, 2724, 1540, 836, 2916, 2899, 2250], jump-diffusion [3172], jumps [2164, 1130, 2819, 599], junction [1511], junctional [1745], junctions [2710], Juvenile [826, 1606], juvenile-adult [1606], Karl [2679, 2825, 1604], Karl-Peter [2825], Karlin [14], keep [1571, 2887], Keller [1947, 1483, 3067, 1083, 1342, 3391, 2964], Kermack [2003, 2704], kernel [1475], kernels [3100], key [1072, 2463], kidney [780, 162, 2764, 2249], killer [318, 424], Kimura [604, 3026, 251], kin [1746, 1835, 1043], kinases [2114], kind [271, 636],Kinematics [1115, 2217, 1708], Kinetic [3190, 1542, 3006, 244, 2779, 3094, 2041, 2692, 1359, 3053, 105, 2568, 2980, 3247], Kinetics [2394, 1556, 3494, 740, 182, 2717, 2747, 45, 3319, 2096, 716, 441, 403, 559, 1850, 3316, 3271, 951, 2343, 394, 600, 1997], Kingman [2379], Kirkpatrick [2851], Kleptoparasitic [1633, 1444], Kleptoparasitism [1833, 2757], knot [2078], knowledge [2762, 2545, 3456], knowledge-based [3456], Kolmogorov [1757, 1433, 1611, 1722, 284, 1155], KPP [2115, 3048, 3059, 1000], Krebs [735], Kries [386], Kupffer [2550], Kuramoto [3492], L [1064], L. [3], L1 [3423], label [1838], label-structured [1838], labeled [2976, 1714], labeling [2543], labelled [1570, 2327], labor [3506], lack [108], lactate [2306], lactating [319], lag [681, 64, 2819, 2327, 2749, 3333], lagoon [1532], lagopus [1436, 1436], Lagrangian [1902, 1988, 3246], lags [1167, 1552, 113], Lake [3452, 2736], lamellipod [1308, 533], lamellipodial [2008, 2502], lamellipodium [2599], lamprey [342], landscape [1253, 3394, 2232, 1640, 1423, 1518], Landscapes [1523, 2893, 2581, 3447, 2946, 1640, 3311, 2298, 2299, 2539, 2343, 1191, 1912, 2774], Langerhans [1511], Langevin [2689], language [1387, 1251], lanternfly [3345], Laplacian [2752], Large [2870, 1947, 3177, 1067, 1459, 693, 3382, 3401, 2440, 2469, 3338, 3496, 280, 3284, 1564, 1265, 2121, 2175, 297, 2988, 2558, 2696, 2813, 1927, 638, 2562, 1768, 2877], Large-sample [1067, 3338], large-scale [2175], large-time [1927], larvae [3283], larval [853, 623], ‘Lassoing’ [2042], last [1121], lasting [3076], latency [2784, 2463, 1868, 3465, 2554, 2307], latency-age [3465], latency-age/stage-structured [3465], Latent [3100, 3478, 2085, 2895, 917, 1330, 3509, 2246, 2565], latently [2560, 1836], lateral [2401, 3087], Lattice [1529, 904, 1143, 1954, 375, 958, 1089], Lattice-Boltzmann [1529], lattice-gas [1954], lattices [3105, 1312, 3176], Law [3321, 2875, 2549, 895, 809], layer [420, 2392, 2132], layers [2454], LDL [1805], LDL/VLDL [1805], lead [182], leader [3226], leading [2599], leaf [1460, 2969, 281, 2418, 1495], leaf-reconstructible [2969], leak [2024, 2069].
lockdown [3296]. Locked [3355].
Locking [860, 890, 315, 1482, 177, 345, 393, 2224].
lockdown [1281, 1282, 342, 890, 3244, 1835, 2434].
Logistisches [523].
Long [2677, 3251, 3328, 3400, 3076, 959, 1057, 3185, 743, 1898, 1605, 1348, 3459, 1292, 598, 278, 3354, 870, 1744, 1054]. Long-lasting [3076]. Long-period [1744].
Long-range [3400].
Lotka [3382, 3043, 2510, 715, 1215, 1874, 3496, 607, 416, 2366, 734, 515, 141, 2778, 663, 1769, 3203, 134, 1993, 216, 3065, 653, 401, 458, 1206, 2329, 259, 72, 620, 1089, 1333, 2116, 361, 3281, 810, 3126, 3324].
Louping [1436]. Low [3392, 1365, 2920, 2022, 3032, 3474, 2473, 2627, 2836, 1701, 3388, 909, 3476, 2523, 1077].
[115, 2150, 1528, 2703, 3008, 3033, 308, 1498, 2538, 3413, 1760, 2734].
Moment-flux [2562]. Moments [858, 391, 99, 904, 741, 2301, 110, 747].
monodomain [2454]. monoecious [910, 923]. monogonont [1239, 1349].
monolayer [1690]. monolayers [2011]. monomolecular [1626, 3245].
Monostability [3255]. Monotone [1361, 1762, 3021, 323, 929, 810].
morphogen-controlled [1649]. morphogenesis [355, 698, 152, 2764, 1034, 779, 172, 421, 478, 1016, 231, 615, 179, 1079, 519].
morphogenetic [496, 79]. morphogens [1514]. morphological [3235, 1832, 2795]. morphology [1047, 1475, 3321]. Morris [1175, 2156].
mort [2656]. mortality [2228, 2470, 1766, 686, 2678, 3331, 1031]. mosaics
[48]. mosquito
[2637, 2737, 2674, 2915, 2390, 3021, 2883, 2227, 3080, 3436, 3417, 3334].
mosquito-borne [3417]. mosquitoes [2267, 1607, 2076, 2699, 3283, 2720].
motility [2408, 922, 2291, 2463, 2038, 2282, 1781, 533, 819, 2774]. motion
[2619, 3458, 3344, 666, 1609, 1431, 2983, 2502, 2035, 3473]. motivated
[1, 3242]. motor [3189, 3032, 2629, 792, 2272]. motor-driven [2629].
motors [2937, 1776, 3320]. mountain [1436]. mouse [2815, 1675]. move
[2532]. Movement
[1509, 1545, 2737, 29, 2232, 1380, 1395, 1396, 2041, 1493, 1788, 2014, 100, 1723,
[875, 943, 3052, 634, 1715, 317, 474, 873, 874, 1377, 1654, 704, 1340, 2982].
n [93, 1307]. NaCl [2249]. Nagumo
[2623, 1244, 2496, 448, 1811, 2023, 2965]. Near-critical [2623].
near-optimal [2965]. nearest [3127, 2482]. nearest-neighbor [2482]. Necessary [2585, 1925, 3519, 2127, 386]. necrosis [930, 1480, 827]. necrosis
[772, 619, 12, 566, 1842, 132, 249, 269, 37, 125, 47]. Nested
[1595, 2687, 2352, 3452]. net [1298, 1265, 1261, 3320]. nets
[739, 2094, 3076, 173, 2773, 2708]. network
[3292, 3395, 3401, 2683, 2387, 2123, 2673, 2905, 1364, 2211, 1225, 2687, 2832, 3394, 1711, 1943, 3383, 2779, 1929, 3063, 1562, 2748, 3407, 3512, 3228, 1552, 2859, 3097, 2721, 2395, 2429, 1919, 1192, 2089, 775, 1937, 2490, 2427, 1441, 2290, 3048, 2499, 2918, 3150]. Networks
[2970, 1548, 2280, 2959, 3058, 1900, 2726, 2945, 3361, 2515, 2535, 2791, 2902, 3115, 2452, 3239, 2708, 3358, 2169, 933, 1822, 3025, 2790, 3039, 2043, 1567, 3330, 3137, 1827, 2052, 3323, 3048, 3037, 1672, 3336, 2969, 2096, 2044, 2651, 2303, 2607, 3034, 2268, 3051, 3215, 2757, 2976, 3183, 2753, 3285, 1570, 2589, 2482, 2479, 2331, 3306, 2759, 2566, 2353, 3519, 2155, 3307, 1036, 2738, 2275, 3128, 1859, 2809, 3365, 1905, 3104, 3461, 3463, 1863, 2282, 112, 3495, 1924, 1665, 1666, 2315, 2386, 2330, 1819, 3263, 973, 2873, 1974, 2070, 2079, 2101, 2785, 2468, 1267, 2600, 2292, 2626, 824, 825, 3218]. networks
[1583, 2733, 3174, 877, 998, 1150, 2635, 3497, 2974, 1170, 2285, 2374, 3342,
oxygenation [233].

p62 [3266], p62-ubiquitin [3266].
Pace [3189].
Pacemaker [659].
Pacemakers [705, 601], paclitaxel [1473], page [2083], pain [3388].
Pair [940, 2013, 1583, 1143, 713, 994, 1290], pair-edge [1143], pair-formation [994, 1290].
Pair-level [1583].
Pairing [1048, 1814].
Pairs [1402].
Pairwise [2945, 2030, 2704].
Pancreas [1884].
Pancreatic [3144, 1176].
Pandemic [1939, 3296].
Paper [1924, 1656].
Papers [354].
Papillomavirus [3303].
Parabolic [1080, 1008, 1947, 2425, 3458, 2899, 671, 2964, 76].
Parabolic-elliptic [2964].
Parabolic-parabolic [1947].
Paradigm [3009, 2158, 2821].
Paradox [2716, 1790, 432], parallel [2937, 803, 1749], paralog [1616].
Paramecium [235, 196].
Parameter [891, 431, 2408, 3066, 1114, 2215, 757, 1954, 164, 2941, 3198, 2606, 2151, 2060, 793, 1507, 2601, 3026, 802, 1822, 908, 1690, 2134, 1067, 2473, 2694, 1729, 2029, 1838, 2826, 2148, 17, 2985, 1495].
Parameterization [3092], parameterized [2503].
Parameters [552, 1540, 3094, 32, 1552, 2691, 2891, 1451, 806, 1619].
Parametric [1303, 1592, 2516, 3243, 2984, 2175, 3156].
Parasite [901, 465, 2128, 1533, 1232, 1163, 2997, 2046].
Parasite-host [2128].
Parasites [405, 1260, 510, 1374].
Parasitic [242, 756, 753, 731, 1292, 1291, 863].
Parasitism [1453, 3502, 1607].
Parasitoid [1186, 2668, 974, 697, 1676, 1504, 1574], Pareto [2238].
Parsimony [2238].
Parasitic [242, 756, 753, 731, 1292, 1291, 863].
Passage [3060, 3068, 3475], passages [911].
Passing [2704].
Passive [432].
Past [732].
Patch [1757, 621, 1786, 1366, 2420, 2777, 3069, 2159, 3484, 2406, 2636, 3303, 1254, 1945, 1645, 2960, 3375, 3437, 2171, 3082].
Patch-selection [2406].
Patch-size [1757].
Paths [373, 58, 1958, 2343], path [2190, 2205, 1849, 2568].
Pathways [373, 58, 1958, 2343]
Pathogen-immune [1526].
Patterns: [3235, 1634, 3010, 198, 2198].

Payoffs: [3311].

PC12: [2205].

PCR: [2731].

PD: [3423, 3230].

PD-L1: [3423].

PDEs: [3359, 3498].

PDGF: [3207].

PDGF-driven: [3207].

Peaks: [3447].

Pedigrees: [133, 2088, 3078].

Pelagic: [2746].

Pelagic-benthic: [2746].

Peptides: [2856].

Perception: [527, 690, 57, 10, 3456, 185].

Perfused: [459].

Perfusion: [2786].

Peripherally: [159].

Periphery: [2617].

Perivascular: [311].

Permanence: [3370, 688, 1433, 1452, 1206, 1769, 653, 2475, 2776, 1128].

Permeability: [536, 2396, 137].

Permeable: [287, 598].

Persist: [276, 753, 2390, 994, 1290, 1788, 3181, 327, 3182].

Perspective: [3383, 2050, 1055, 2492, 952, 1054].

Perturbation: [2890].

Perturbations: [2890, 971, 1002, 2738].

Perturbative: [2092].

Pertussis: [2186].

Pesticide: [3070].

Pesticides: [2087].

Peter: [2679, 2825].

Phage: [2027].

Phagocytosis: [1073].

Pharmaceutical: [3195].

Pharmacodynamic: [1456].

Pharmacokinetic: [2622, 1456].

Pharmacokinetic/Pharmacodynamic: [1456].
52

Quasi-stationary [995]. Quasi-steady [1434, 3510, 1490].
Quasi-steady-state [3148, 1150, 3319, 1238]. quasispecies [2644, 2871].

removals [516, 3486]. removed [1023, 2422]. Renal
[413, 702, 780, 1372, 1597]. renewal [731, 2900, 588]. renewing [3265]. renin
[3443]. renin-angiotensin [3443]. reorganization [2605]. reorientation
[1540]. repair [209, 625]. repair-misrepair [625]. repeated [1025, 2586].
Repetitive [125, 772]. replacement [403]. replanting [1081]. replicas
[2025]. replicates [1421]. replicating [3181]. replication
[1190, 997, 158, 747, 1516, 1820]. replication-competent [1516].
replicator [1641, 3163, 2923, 3328, 3134, 1424, 3265]. replicas
[1025, 2586]. replicates [167]. replicating [3181]. replication
[1190, 997, 158, 747, 1516, 1820]. replication-competent [1516].
reporting [2302, 2649]. represent [1372]. representable [2660].
Representation [178, 2421, 1276, 1402, 265, 3102, 3001, 2856, 2353, 2103, 2920].
representations [2621, 3364]. represented [369, 298]. representing [16].
repressilator [1623]. repression [556, 1678, 488, 546, 881, 639]. reproduce
[3455, 150, 174, 129, 2203, 3504, 1834, 1543, 1582, 646, 1017, 3345, 1451].
repulsion [3067, 2719]. required [2364, 1613]. requirements [3294, 2080].
[1836]. resetting [1979, 2137]. reshuffling [2963]. Resident
[3103, 1488, 1944].
Resident-invader [3103, 1488]. Residual [1480, 1070, 2087]. Resistance
[2575, 1216, 2701, 1896, 3452, 3511, 1941, 2046]. resistant [1260, 2259].
resolution [2379]. resolving [2806]. Resonance
[1764, 1741, 1677, 1213, 1201, 269]. Resource
[1588, 3481, 801, 1013, 1917, 1026, 1105, 2018, 2463, 3384, 2897, 3522, 295, 2036, 2245, 1075, 1404, 3408, 979, 3071, 3124, 2698, 799, 2865].
resource-dependent [3408]. resource-limited [2463]. resources
[1576, 1537, 1928, 3462, 1682, 2794, 2608, 1125, 3126, 2612]. respect [2859].
respiration [972, 1755, 78]. respirationssystems [61]. respiratory
[1246, 1247, 1497, 192, 2933, 3287, 3309, 61, 3376]. respond [2318].
[3089, 3393, 3422, 2593, 320, 2806, 1981, 27, 1732]. responsive [3275].
responsiveness [1102]. rest [3177, 3376, 3019]. resting [3216]. restricted
[2540]. restriction [1877]. result [868, 565, 1608, 879, 2916, 2385]. resulting
[2532]. Results [707, 1, 715, 3351, 916, 300, 369, 3081, 471, 2636, 1078, 3385, 452, 756, 2400, 2245, 179, 885]. reticulation [1905]. retina [59, 1006].
Retinal [2525]. retreat [3090, 2173, 2258]. retrieval [3434]. retroviral
[2560]. returns [2498]. revealing [3221]. reveals [2364, 3207]. reversal
[1851]. reversals [1173]. reverse [2542, 2672]. Reversible [2474].
searching, searchlight, seashells, season, seasonality, seasons, Secondary, second-order, secondary, secretion, secretory, section, sections, sedentary, sediments, Seed, seeding, Segel, segmental, segregation, SEIDR, SEIR, SEIQR, SEIRS, sensitivity, sensing, separable, Separation, seq, Sequence, sequences.
State-dependent [2312, 1496, 2928]. state-space [1246, 1247, 3556]. states [3072, 850, 3069, 373, 3048, 323, 1157, 3372, 1114, 7, 2939, 3108, 277, 2567, 2309, 2572, 3271, 639, 2922, 1735, 2132, 1964, 2624, 3507].

stiffness [2916, 2863]. stimulated [759, 3148]. stimulation [596, 3393, 125, 878, 2560]. stimulus [2632, 1819, 2989].

stimulus-dependent [1819]. Stochastic [1720, 3167, 1269, 2176, 2617, 2986, 2439, 903, 2328, 1772, 3131, 2478, 1270].

stochastic [2406, 1067, 3055, 323, 3464, 759, 131, 3165, 2268, 2533, 2461, 999, 995, 2936, 3040, 3075, 3175, 3183, 1564, 670, 1678, 1872, 625, 1945, 2074, 1873, 1501, 2157, 2958, 3128, 2610, 324, 3309, 2082, 1262, 1263, 725, 2546, 3261, 2084, 2567, 2171, 2921, 2884, 2941, 1527, 2330, 1651, 2811, 3207, 1617, 153, 2462, 3050, 2334, 195, 2620, 1668, 2040, 1577, 599, 1760, 1987, 1727, 2428, 109, 747, 2499, 483, 618, 612, 2782, 1100, 3246, 3281, 50, 2295, 3420, 294, 2704, 1820, 1153, 2935, 591, 1031, 3324, 2250, 2434, 2566, 324]. stochastically [1158, 2387, 1891]. stochasticity [3136, 3415, 948, 2360, 2361, 2545, 1255].

storage [2712, 1682, 770]. stored [2807]. Stores [2612, 2608]. Storing [98].

851, 1571, 3302, 2579, 2406, 3081, 1488, 2496, 1491, 1144, 3453, 1640, 2242, 2995, 2239, 1800, 482, 1353, 2754, 73, 118, 255, 2034, 2586, 3136, 1496, 2877.

strong-migration [220, 1249, 897]. stronger [2657]. strongly [2496].

Structural [2930, 2205, 120, 1863, 1476, 3270, 2337, 351, 1164, 2524, 2019, 2691, 1707].

Structure [3106, 2466, 2218, 2881, 3454, 2726, 2888, 440, 3325, 2430, 2725, 2226, 733, 1933, 362, 2032, 2052, 2445, 1734, 2018, 2849, 2757, 1024, 216, 2823, 2534, 3184, 820, 3286, 1293, 1921, 3261, 2740, 1309, 2840, 1536, 513, 432, 1912, 638, 483, 3188, 1174].

Structured [1648, 2703, 1295, 1361, 3178, 2893, 3380, 2421, 1541, 3020, 3163, 1362, 1551, 853, 2458, 1478, 2420, 708, 1164, 2575, 2526, 971, 1653, 1737, 1875, 1009, 1119, 1349, 1673, 3276, 3251, 1211, 3328, 503, 561, 622, 982, 2828, 1896, 2536, 1530, 343, 1138, 1301, 1898, 2662, 3102, 3001, 3000, 1726, 2507, 1286, 2674, 1049, 1918, 2456, 1467, 1639, 1459, 3054, 3164, 327, 800, 1317, 1352, 1412, 1204, 1640, 2416, 1116, 1338, 786, 1632, 2126, 2814, 2487, 3194, 1452, 3257, 2678, 1835, 2781, 229, 311, 3345, 700, 632, 3465, 2968, 3259, 1838, 2705, 2999, 1476, 1809, 1652, 805].

structured-population [1551]. structures [2193, 2683, 1648, 2314, 906, 1812, 1402, 1700, 2059, 2083, 2225, 2660, 2477, 2653, 2944, 1704, 467, 1701, 1707, 1706]. studies [1397, 2067, 2795]. study [3095, 2617, 2458, 2452, 2168, 504, 2177, 2692, 3303, 2297, 2276, 2365, 3350, 2124, 1908, 410, 2941, 105, 2642, 2350, 2451, 3388, 3489, 1761, 655, 600, 2763, 1456, 1685, 2398]. Studying [2165, 2764, 123]. sub [1535, 1809, 3476].

sub-optimal [1535]. sub-population [1869]. Sub-Saharan [3476].

subjected [909]. submitted [723]. Submultiplicative [390].

subpopulation [1174]. subspace [3050]. substitutable [1537].

Substitution [1809, 3065, 2534, 3184, 2821]. Substrate [968, 3490, 3252, 716, 1359]. substrates [1850]. substructure [2313].

Travelling-wave [1681]. treat [1103, 2144]. Treatment [3212, 3478, 2300, 1541, 548, 2677, 2858, 1454, 1830, 1296, 3164, 3459, 152, 3453, 1297, 1329, 1642, 3339, 3412, 3098, 2652, 1521, 957, 2007, 2471].

Treatment-induced [3212, 1521]. treatments [3405, 3300, 3209]. Tree [2873, 2710, 1942, 3395, 2606, 2955, 3338, 3293, 2957, 2042, 758, 3407, 2907, 2033, 2600, 2906, 2859, 2351, 1847, 2369, 1706, 2706, 149, 2639, 1703, 2273].

two [2652, 3354, 3136, 3390, 1388, 2369, 457, 540, 3064, 3143, 1870, 1295, 1035, 2269, 498, 648, 3497, 1994, 3408, 1911, 2680, 3208, 3082, 2167, 1207, 934, 2833, 2398, 2877, 3027]. two-allele [1345, 886, 24, 252, 2718].

Two-boundary [2641]. two-cycle [3516]. two-deme [2253].

Two-dimensional [579, 153, 2324, 1246, 3155, 3444, 2297, 666, 2894, 598].
two-stage [2878, 3426]. two-step [716, 1210]. two-strain [2580, 3390, 3143].
two-thresholds [3086]. two-trophic [3350, 3354]. two-type [2388].
type-reproduction [2126]. types [801, 626, 851, 645, 2247, 2185, 2403, 3246, 2167].
typhoid [2794]. Typhimurium [1971]. Tyrosine [2114].
ubiquitin [3266]. Uhlenbeck [2606]. ultrametrics [2100, 2660].
ultrasensitive [2593]. Ultrasensitivity [2310, 1989, 1850].
unidirectional [1509]. unidirectionally [3049].
V [45, 601]. V-shaped [601]. Vaccination
[3253, 2186, 1559, 3326, 2726, 2402, 2879, 3411, 2579, 2919, 3303, 3462, 3204,
3470, 3365, 2953, 1250, 2239, 2583, 1614, 2709, 2985, 2965]. Vaccinations
[1589]. Vaccine [2705, 3460]. vaccines [2247, 2383, 3471]. vacuum [2939].
vagal [1579]. validate [1826]. validated [3448, 1355]. validation
[2318, 2039, 40, 3061, 1834, 2436, 1582, 1718, 2189, 3018, 2093]. valued
[3088, 1688, 2722, 1547, 2166]. values [3044, 3015, 1451, 3451]. Valveless
[1389]. Variability
[2622, 3088, 2409, 706, 1571, 2593, 961, 1017, 501, 1987, 1732, 2246]. Variable
[2096, 2608, 1408, 1752, 332, 390, 3077, 1182, 1347, 1039, 1227, 3257,
433, 3230, 553, 1141, 744, 2555, 296, 361, 2612]. variable-environment [296].
[2673, 2212, 1424, 2313, 2455, 1121, 2141, 3062, 3472]. variance-to-mean
[3472]. variant [3448]. Variation
[1401, 1806, 2091, 604, 2018, 781, 24, 3318, 594, 1844, 512]. variational
[1637]. Variations [1702, 174, 1037, 3244, 1547]. varied [3048]. variety
[1417]. Various [2206, 319, 3411, 2728, 1174]. vary [253]. varying
[894, 1959, 1169, 290, 428, 776, 304, 2465, 2159, 537, 398, 452, 1891, 2357, 35,
2390, 3518, 1007, 1866, 862, 1481, 326, 2675]. vas [1597]. Vascular
[1329, 3116, 1584, 459, 1337, 3404, 1793, 1799]. vascularized
[930, 1803]. vasoconstricted [3514]. vector [1598, 2638, 3302, 1098, 2736,
479, 1639, 3521, 2903, 1932, 224, 2953, 3143, 2257, 1912, 3022, 2283, 3315].
vector-bias [3143]. vector-borne [1598, 3302, 1639, 2953, 2257, 2283].
vector-host [2638, 1098]. Vectorial [3269]. Vegetation
[1523, 2830, 2527, 2797, 3101, 3400, 2531, 3366, 3505]. veins [2363, 1575].
velocities [1202]. velocity [1540, 1728, 1811, 1664, 717, 2899, 794].
velocity-jump [2899]. venereal [203, 207]. ventral [1634]. ventricular
[151]. versal [1631]. versatile [1364]. version [2657]. versions [3165].
versus [1752, 2425, 826, 3302, 962, 3161, 855, 3202, 1063, 1338, 2487, 1642,
1194, 430, 3388, 1054]. vertebrate [1885]. Vertex [3351]. vertical
[314, 2886, 1557]. vertically [434]. very [2817]. vesicle [2573, 3482, 2550].
vesicles [3148]. Vessel [1337]. vessels [2213, 847, 2492]. vestibular [2080].
via [3234, 2151, 2799, 3223, 2858, 2779, 3330, 1639, 3183, 3370, 3229, 2491,
2634, 3217, 1448, 2339, 2855, 3014, 2284, 2217, 2386, 2501, 2927, 1712, 2132,
3456, 2543, 2950, 3221, 1703]. viabilities [390]. viability
[711, 807, 1061, 913, 117, 487, 809, 821, 538, 658, 2982]. Viable [1086, 736].
vic [1631]. view [3160, 2799, 2469, 1052, 2332, 2103, 3245]. viewpoint
[2418]. villi [795]. villous [137]. viraemic [1436]. Viral [3422, 2179, 2805,
991, 3394, 330, 3446, 2199, 2751, 2933, 3181, 1865, 2394, 2029, 1836, 1870].
virtual [3489]. virulence [2128, 730, 1533, 2997]. Virus [3394, 2335, 2267,
3326, 2832, 2412, 202, 1375, 2674, 1543, 1421, 3337, 3287, 2699, 2061, 1878,
2953, 1436, 2031, 3448, 3410, 3021, 2834, 1516, 2932, 3209, 3488, 3452].

X [169]. xenology [2820, 2660, 2949]. Xenopus [1989].

References

Anonymous:1974:ERM

Foias:1974:BHI

Schafer:1974:IDP

Lebowitz:1974:TAG

REFERENCES

Green:1974:FNA

Hader:1974:NSD

Tuffner-Denker:1974:PGM

Rubinow:1975:MMN

Walther:1975:ENC

Swartz:1975:DPE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[95] M. E. Fisher and Dr. B. S. Goh. Stability in a class of discrete time models of interacting populations. *Journal of Mathematical Biology*, 4
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fukshansky:1978:TLA

Holgate:1978:SGA

Glass:1978:SOM

DaRonch:1978:CSC

Jakobsson:1978:FCTb

Notohara:1978:UOT

REFERENCES

[155] Angelika Wörz-Busekros. Polyploidy with an arbitrary mixture of chromosome- and chromatid segregation. *Journal of Mathematical Bi-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

106

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gonzalez-Guzman:1980:MPP

Harrison:1980:PPP

Rakitzis:1980:KAB

Lin:1980:AMD

Ermentrout:1980:ODT

Lin:1980:REP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Livshits:1981:PDP

Saunders:1981:EC

deMottoni:1981:CSP

Brill:1981:CTI

Anonymous:1981:A

Rand:1982:HBS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Elderkin:1982:SDP

Akin:1982:CSG

Tuljapurkar:1982:WUP

Shukla:1982:MFW

Cohen:1982:NCB

DiBlasio:1982:AEA
REFERENCES

REFERENCES

Conley:1982:CMT

Webb:1982:RRE

Weiss:1982:CPP

Martonen:1982:TBS

Tuljapurkar:1982:PDV

Cushing:1982:PPM

REFERENCES

[369] D. J. Daley, Peter Hall, and C. C. Heyde. Further results on the survival of a gene represented in a founder population. *Journal of Mathemati-
Macken:1982:ACS

Chesson:1982:SER

Yanagida:1982:SSD

Dibrov:1982:DSS

Kemper:1982:EEE

Notohara:1982:LMN

REFERENCES

REFERENCES

REFERENCES

Dougherty:1982:GDM

Campbell:1982:EVE

Weiss:1982:MPT

Volz:1982:GAS

Hoppensteadt:1982:PLB

Shapiro:1982:MCO

Ishii:1982:GSS

REFERENCES

[Harrison:1982:ASI]

[Hastings:1982:DSS]

[Nagylaki:1982:AMQ]

[anderHeiden:1982:DPD]

[Kishimoto:1982:DLV]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1983:Ec

Solimano:1983:EGA

Helland:1983:DMD

Eshel:1983:CIM

Diekmann:1983:GFS

Hansen:1983:RLM

Heyde:1983:AAA

[452] C. C. Heyde. An alternative approach to asymptotic results on genetic composition when the population size is varying. *Journal of Mathemat-
1. Murray: 1983: MDS

5. Schoen: 1983: RSH

REFERENCES

REFERENCES

Gopalsamy:1984:GAS

Ellner:1984:ABS

Eshel:1984:SPS

Mackey:1984:DRI

Diekmann:1984:SCS

Hunding:1984:BNR

Murray:1984:CTM

REFERENCES

REFERENCES

Hoppe:1984:PLU

Weiss:1984:NRG

DalPasso:1984:AER

Akin:1984:OCR

Keith:1984:PES

Granero-Porati:1984:TOM

Gregorius:1984:CGF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Liu:1986:INI

Alexander:1986:SOT

Cressman:1986:EGT

Tyson:1986:CGD

Plant:1986:MAS

Rogers:1986:CCS

REFERENCES

Webb:1986:MPC

Anonymous:1986:E

Anonymous:1986:Aa

Asmussen:1986:DIaAa

Andrietti:1986:TDS

Tang:1986:MIG

Radcliffe:1986:ASP

REFERENCES

Hudson:1986:DMT

Belair:1986:PPS

Tallis:1986:JAD

Morrish:1986:POT

Ryan:1986:OHL

Sod:1986:NSO
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Allen:1987:PEC

Cushing:1987:ESI

Hastings:1987:CCE

Rumschitzki:1987:SPE

Janssen:1987:SRM

Alt:1987:TBC

REFERENCES

Buhler:1987:SMM

Anonymous:1987:Aa

Hunding:1987:BTS

Hoppe:1987:STN

Tavare:1987:BPI

Smith:1987:OMS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Boucher:1988:CIC

Liou:1988:GSP

Vlad:1988:SMA

Farkas:1988:MBD

Misra:1988:IEM

Boucher:1988:RSI

Beretta:1988:OSM
REFERENCES

Thieme:1988:WPP

Langlais:1988:LTB

Moody:1988:BPM

Anonymous:1988:Ab

Hardin:1988:APC

Mesterton-Gibbons:1988:OCD

Britton:1988:SDR

REFERENCES

REFERENCES

REFERENCES

188

Pakes:1989:CNS

Cromme:1989:CTA

Arino:1989:ABN

Darden:1989:NMC

Scheib:1989:AMR

Castillo-Chavez:1989:RLI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

199

REFERENCES

REFERENCES

Lui:1991:PSE

Mesterton-Gibbons:1991:EPD

Hethcote:1991:SEM

Arino:1991:ABN

Cantrell:1991:ESH

Wollkind:1991:DIO

REFERENCES

REFERENCES

REFERENCES

Burger:1991:MCP

Mogami:1992:CBT

Gurney:1992:LLC

Jenkins:1992:SMP

Timm:1992:DDI

Oelschlager:1992:SPI

REFERENCES

Hahnfeldt:1992:EDD

Mitnura:1992:FBT

Hoppe:1992:ARG

Hoppe:1992:SPM

Athreya:1992:RDS

Pollak:1992:SPS

REFERENCES

REFERENCES

REFERENCES 214

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Moll:1993:AWM

Sherratt:1993:AAE

Lui:1993:DDS

Adam:1993:EMV

Zhivotovsky:1993:HSS

Teramoto:1993:RDD

REFERENCES

Hadeler:1993:PFM

Pal:1993:EBF

Wagner:1993:WDB

Athreya:1993:RDS

Prior:1993:EGS

Lu:1993:GAB

REFERENCES

Model:1994:SFP

Glendinning:1994:ICM

Crowe:1994:NET

Burger:1994:MLM

Kuznetsov:1994:CDM

Sato:1994:PIH

Kazunori Sato, Hirotugu Matsuda, and Akira Sasaki. Pathogen invasion and host extinction in lattice structured populations. *Journal of Mathe-
REFERENCES

REFERENCES

REFERENCES

Schwegler:1994:FCC

Franke:1994:PEO

Takada:1994:RBT

Zhou:1994:PSD

Shnol:1994:SRB

Chiu:1994:ACS

Beltrami:1994:MRV

Hoppensteadt:1994:RSC

Witelski:1994:AST

Pruss:1994:PAD

Gyllenberg:1994:QSD

Av-Ron:1994:RTP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Diekmann:1996:E

Eshel:1996:CCE

Hammerstein:1996:DAP

Weissing:1996:GVP

Marrow:1996:EDP

Dieckmann:1996:DTC

Matessi:1996:LTE

Taylor:1996:IFA

Hofbauer:1996:EDB

Morimoto:1996:DME

Cressman:1996:ESS

Smith:1996:DSS

Henson:1996:HMI

REFERENCES

Liberman:1996:CPI

Merino:1996:CCT

Mogilner:1996:SCD

Fierro:1996:LSA

Gourley:1996:MSD

Gatton:1996:MPT

M. Gatton, W. Hogarth, A. Saul, and P. Dayananda. A model for predicting the transmission rate of malaria from serological data. *Journal
REFERENCES

Herrero:1996:CCK

Wikan:1996:ORG

Cooke:1996:ASE

Bonneuil:1997:VPP

Charter:1997:HCM

Baake:1997:BHD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shukla:1997:MDC

Chavez-Ross:1997:MCO

Sturis:1997:LGB

Schreiber:1997:GSP

Collings:1997:EFR

Hanson:1997:PGR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Abbiw-Jackson:1998:GIO

Kirschner:1998:MIT

He:1998:GSC

Roberts:1998:SPM

Bernard:1998:QBS

Henson:1998:LMM

REFERENCES

Nagylaki:1999:CMS

Bees:1999:NLB

Grunbaum:1999:ADE

Mackey:1999:NCG

Esteva:1999:MDD

Lasota:1999:CDS
REFERENCES

Happel:1999:ARC

Stadler:1999:RFM

LoFaro:1999:TRN

Mogilner:1999:NLM

LoFaro:1999:AVM

Epstein:1999:ISS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Calsina:2000:MMP

Jones:2000:MMS

Schley:2000:LSC

vandenDriessche:2000:SSE

Rocheleau:2000:SAP

Anonymous:2000:LDN

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume, Issue, Pages</th>
<th>URL</th>
</tr>
</thead>
</table>

REFERENCES

REFERENCES

Boucher:2001:ASM

So:2001:SPT

Feng:2001:IDT

Hsieh:2001:EDD

Curtu:2001:ORN

Iwasaki:2001:IBP

Huang:2001:PMR

Stacey:2002:MCO

Billings:2002:ECN

Gourley:2002:DFL

Agur:2002:UPS

Tonnelier:2002:WPD

Abundo:2002:APE

Krenz:2002:VDF

Hwang:2002:FVL

Cui:2002:AMM

Slade:2002:CAT

Li:2002:APF

Eshel:2002:LTG

Calsina:2002:HBS

Biscari:2002:CEM

Chapman:2002:SES

Gyllenberg:2002:ESE

Parvinen:2002:EBD

REFERENCES

[1359] Gabriele Grassi, Mario Grassi, Anne Kuhn, and Reinhard Kandolf. Determination of hammerhead ribozyme kinetic constants at high molar

[1365] Torsten Lindström. On the dynamics of discrete food chains: Low- and high-frequency behavior and optimality of chaos. *Journal of Mathematical-
REFERENCES

Layton:2002:NMR

Whitaker:2003:DBB

Hwang:2003:DEE

Esteva:2003:CDS

DeLeenheer:2003:FCC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1401] Maria-Josefina Hernandez and Ignacio Barradas. Variation in the outcome of population interactions: bifurcations and catastrophes. *Jour-

REFERENCES

Y. Timofeeva and S. Coombes. Wave bifurcation and propagation failure in a model of Ca2+ release. *Journal of Mathematical Biology*, 47(3):249–269, August 2003. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

REFERENCES

[1430] Aline de Koeijer, Hans Heesterbeek, Bram Schreuder, Radulf Oberthir, John Wilesmith, Herman van Roermund, and Mart de Jong. Quantifying BSE control by calculating the basic reproduction ratio R_0 for

[1436] Rachel Norman, David Ross, M. Karen Laurenson, and Peter J. Hudson. The role of non-viraemic transmission on the persistence and dynamics of a tick borne virus — loping ill in red grouse (*Lagopus lagopus scoticus*) and mountain hares (*Lepus timidus*). *Journal of Mathematical Biology*
REFERENCES

Calsina:2004:SMR

Song:2004:MNR

Cantrell:2004:DRD

Gammack:2004:MRM

Osan:2004:MSW

Lessard:2004:TLA

[1442] Sabin Lessard and John Wakeley. The two-locus ancestral graph in a subdivided population: convergence as the number of demes grows

REFERENCES

307

Ahlbrandt:2004:MEP

Tornoe:2004:GBP

Ledder:2004:DEB

Gunther:2004:HLD

Greenman:2004:LAS

Barnes:2004:MIE

REFERENCES

Enciso:2004:SMT

Mjolhus:2005:SSP

Beamish:2005:CDO

Morale:2005:IPS

Geritz:2005:RID

Baake:2005:AMP

Tang:2005:SDI

Batzel:2005:CRC

Liu:2005:AMD

Burger:2005:MAI

Scholz:2005:MHG

Koerber:2005:DSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Goriely:2005:GIC

Allegretto:2005:PSM

Golinski:2005:ECF

Yin:2005:GMF

Gomes:2005:DBE

Sanchez:2005:GAG

REFERENCES

[Ballyk:2005:GAC]

[Jung:2005:MMC]

[Fowler:2005:DRM]

[Codling:2005:CSS]

[Anguige:2005:MAA]

REFERENCES

REFERENCES

Anderson:2006:FAC

Guedon:2006:AGN

Farcot:2006:GPC

DeLeenheer:2006:GSC

Hopfner:2006:SMF

Baker:2006:MIC

REFERENCES

REFERENCES

Imhof:2006:EGD

Litcanu:2006:SPA

Schreiber:2006:HPD

Chow:2006:SMT

Baer:2006:MLC

Ross:2006:SMM

Shi:2006:PRD

Meyer:2006:FRE

Miller:2006:FLE

Thygesen:2006:DTS

Grafen:2006:TFR

Sharkey:2006:PLA

Kobayashi:2006:MMR

Whitman:2006:ATI

Morozov:2006:PAP

O'Hely:2006:DAA

Alt:2006:EES

Llabres:2006:ACT

REFERENCES

Sumner:2006:EIP

Hillen:2006:P

Levin:2006:KHB

Colijn:2006:HFS

Cushing:2006:JAM

Esteva:2006:MPP

REFERENCES

REFERENCES

REFERENCES

Buffoni:2007:MPP

Panaretos:2007:POB

Mukandavire:2007:SSH

Breda:2007:SAA

Lessard:2007:PFS

Varea:2007:SBB
REFERENCES

REFERENCES

[1685] Abbey J. Trewenack, Kerry A. Landman, and Ben D. Bell. Dispersal and settling of translocated populations: a general study and a New Zealand

REFERENCES

REFERENCES

Bielecki:2008:MNF

Martcheva:2008:KDE

Kettemann:2008:DAS

Chen:2008:EEE

Boldin:2008:SCI

Durinx:2008:ADP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ambrosi:2009:TPT

Dickinson:2009:MAP

Galle:2009:SCT

Hillen:2009:UGP

Kalaidzidis:2009:MOT

Kuusela:2009:CMC

Mogilner:2009:MCM

Stelling:2009:SCC

Verdier:2009:MCI

Westerhoff:2009:SBT

Li:2009:ETW

Allen:2009:SPD

REFERENCES

REFERENCES

Zhu:2009:STN

Ermentrout:2009:SSA

Reiter:2009:EDG

Frenod:2009:EMV

Domijan:2009:BOC

REFERENCES

McWalter:2010:RRI

Smith:2010:ATP

vonWangenheim:2010:SCR

Jagers:2010:PSP

Kelkel:2010:SRD

Cattiaux:2010:CWC

REFERENCES

REFERENCES

Kim:2010:TEC

Terekhov:2010:AAP

Bobrowski:2010:ABM

DeLeenheer:2010:SAR

Small:2010:UBP

REFERENCES

REFERENCES

REFERENCES

Huang:2011:GAD

Andasari:2011:MMC

Mente:2011:PEN

Delgado-Eckert:2011:MHR

Lee:2011:MFV
REFERENCES

REFERENCES

REFERENCES

Richard:2011:SPN

Sasaki:2011:ODA

Bailly-Bechet:2011:EMN

Vinther:2011:MMH

Pellis:2011:EGR

REFERENCES

REFERENCES

Reddy:2012:RRB

Hsu:2012:LVC

Taati:2012:IDB

Bryant:2012:LBS

Billiard:2012:GSM

Wei:2012:FDS

REFERENCES

[2003] Nicolas Bacaër. The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality.

REFERENCES

REFERENCES

[2026] Carlota Rebelo, Alessandro Margheri, and Nicolas Bacaër. Persistence in seasonally forced epidemiological models. *Journal of Mathematical...
REFERENCES

REFERENCES

Inaba:2012:NPB

ElKhatib:2012:RDM

Domijan:2012:IGS

Jin:2012:SIP

Smith:2012:ICS

Lee:2012:BOS

REFERENCES

Li:2012:IBM

Jourdain:2012:LFE

Li:2012:GMO

Band:2012:MMA

Zhao:2012:GDR

Dumont:2012:MSS
REFERENCES

Li:2012:TWS

Mori:2012:MPP

Ramirez:2012:PPU

Cantrell:2012:ESI

Vermolen:2012:FEM

Liz:2012:HEB

REFERENCES

REFERENCES

Geritz:2012:MEW

Tang:2013:TCI

Thatte:2013:RPS

Ma:2013:EDH

Bichsel:2013:EFE

Blyuss:2013:ESD

Lin:2013:LPT

Tosin:2013:IBV

Durzinsky:2013:REP

Rueffler:2013:WLC

Felii:2013:VEP

Bertuzzi:2013:OSC

REFERENCES

REFERENCES

Metz:2013:CIE

Hadeler:2013:QEH

Shaw:2013:EIB

Geritz:2013:GDP

Benson:2013:CMS

REFERENCES

Stankova:2013:IPD

Kooijman:2013:YEP

Nakaoka:2013:SSS

vanGils:2013:LBN

DeRoos:2013:OSA

Metz:2013:DIB

Corson:2013:TSO

Ball:2013:NTC

Kisdi:2013:CMS

Roberts:2013:CNG

Inaba:2013:DCT

REFERENCES

[2132] Xuefeng Wang and Qian Xu. Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem. *Journal of Mathematical Biology*, 66(6):1241–1266, May 2013. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

REFERENCES

REFERENCES

Kuang:2013:MNP

ORegan:2013:CSP

Cressman:2013:TPP

Nagaiah:2013:OCA

Kong:2013:LDS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mikhal:2013:DAV

Wei:2014:SCS

Hartung:2014:PNI

Zheng:2014:VMB

Moulton:2014:SGK

Allen:2014:MSC

Barbi:2014:DTC

Veloz:2014:RNE

Miller:2014:RLS

Kavian:2014:CEM

Sakamoto:2014:MAP

Schwemmer:2014:RPL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ducrot:2014:CPT

Garcia-Penarrubia:2014:MMC

Musgrave:2014:IEPa

Musgrave:2014:IEPb

An:2014:QMP

REFERENCES

[2318] Vincent Calcagno, Ludovic Mailleret, Éric Wajnberg, and Frédéric Grognard. How optimal foragers should respond to habitat changes: a reanalysis of the marginal value theorem. *Journal of Mathematical Biology*, 69(5):1237–1265, November 2014. CODEN JMBLAJ. ISSN 0303-
REFERENCES

[2324] Wassim Abou-Jaoudé, Madalena Chaves, and Jean-Luc Gouzé. Links between topology of the transition graph and limit cycles in a two-dimensional piecewise affine biological model. *Journal of Mathematical Biology*
REFERENCES

REFERENCES

REFERENCES

Lin:2015:DSEa

Lin:2015:DSEb

Madzvamuse:2015:CDD

Caiazzo:2015:CHS

Jabbari:2015:MMR

Holcman:2015:PTR

Fontbona:2015:NLL

Fernandez-Sanchez:2015:LMM

Wang:2015:FPC

Sargsyan:2015:AFG

Richard:2015:ESP

REFERENCES

REFERENCES

REFERENCES

Uecker:2015:AGI

Ngonghala:2015:POB

Fimmel:2015:CCS

Severino:2015:BLS

Millan:2015:IDR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2439] Sylvain Billiard, Régis Ferrière, Sylvie Méléard, and Viet Chi Tran. Stochastic dynamics of adaptive trait and neutral marker driven by co-evolutionary feedbacks. *Journal of Mathematical Biology*, 71(5):1211–1242, November 2015. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

REFERENCES

Privault:2015:CFM

[2446] Nicolas Privault and Stéphane Guindon. Closed form modeling of evo-

lutionary rates by exponential Brownian functionals. Journal of Mathe-

matical Biology, 71(6–7):1387–1409, December 2015. CODEN JMBLAJ.

ISSN 0303-6812 (print), 1432-1416 (electronic). URL http://link.springer.

Goudenege:2015:WFM

Chalmers:2015:BDM

Barbour:2015:CDS

Kebir:2015:UHS

Qureshi:2015:CSP

[2451] M. Umar Qureshi and N. A. Hill. A computational study of pressure wave reflections in the pulmonary arteries. Journal of Mathematical Bi-
Broom:2015:SDM

Kooi:2015:MDT

Coudiere:2015:TLM

Margheri:2015:CBV

Gaubert:2015:DLM

Martin Ritchie, Luc Berthouze, and Istvan Z. Kiss. Beyond clustering: mean-field dynamics on networks with arbitrary subgraph com-

Jukka Corander, Odo Diekmann, and Timo Koski. A tribute to mats gyllenberg, on the occasion of his 60th birthday. *Journal of Mathematical Biology*.
REFERENCES

Hamza:2016:EP1

Jin:2016:PVE

Vasilyeva:2016:ASP

Diekmann:2016:CEU

Nakaoka:2016:DHI

Jiang:2016:HCC

REFERENCES

REFERENCES

REFERENCES

486

REFERENCES

Ryan:2016:MCD

Bernuau:2016:SIA

Hanin:2016:UMM

Wolkowicz:2016:ELG

Berestycki:2016:PCP

Martini:2016:CBM

REFERENCES

[2525] Paul A. Roberts, Eamonn A. Gaffney, Philip J. Luthert, Alexander J. E. Foss, and Helen M. Byrne. Retinal oxygen distribution and

REFERENCES

Weber:2016:IAG

Wang:2016:STF

Subbey:2016:ESI

Liu:2016:AST

Delaporte:2016:MPS

Yuan:2016:DIR

REFERENCES

[2560] Daniel Sánchez-Taltavull, Arturo Vieiro, and Tomás Alarcón. Stochastic modelling of the eradication of the HIV-1 infection by stimula-

REFERENCES

REFERENCES

REFERENCES

Peng:2016:PID

Gandolfi:2016:SSE

Bigan:2016:NSC

Rodriguez:2016:ECP

Schlagel:2016:RMM

Berman:2017:PRI

Lladser:2017:RPI

Layer:2017:PTE

Massaccesi:2017:NDS

Fung:2017:SAD

Ge:2017:BEE

Lee:2017:NAP

Ane:2017:PTC

Golubitsky:2017:HSN

REFERENCES

[2636] Eric Foxall and Nicolas Lanchier. Survival and extinction results for a patch model with sexual reproduction. *Journal of Mathematical Bi-
Abdelrazec:2017:MAR

Cai:2017:GPV

Yatat:2017:IMF

Bokes:2017:GEN

DONofrio:2017:TBF

REFERENCES

REFERENCES

He:2017:PZD

Diekmann:2017:EVD

Gallinato:2017:FBP

Morsky:2017:HRE

REFERENCES

REFERENCES

Cushing:2017:BTE

Rebuli:2017:HMC

Madec:2017:BIG

Ball:2017:HNE

Farkas:2017:MWI

REFERENCES

Hajnova:2017:TPB

Dessalles:2017:SAA

Sample:2017:LWS

Hautphenne:2017:HOB

Tournier:2017:ORA

REFERENCES

REFERENCES

[2717] Kuan-Wei Chen, Kang-Ling Liao, and Chih-Wen Shih. The kinetics in mathematical models on segmentation clock genes in ze-
REFERENCES

REFERENCES

REFERENCES

Hilhorst:2018:DTF

Renault:2018:MTS

Kong:2018:SOM

Molina:2018:SFP

Chigansky:2018:WCO

REFERENCES

Hening:2018:SPG

Sherborne:2018:MFM

Yan:2018:ASM

Evans:2018:RHO

García-Nieto:2018:PME

REFERENCES

Zhang:2018:MMA

Clote:2018:RFK

Francis:2018:BPN

Song:2018:GHB

Bliman:2018:ESI

Fan:2018:GSM

Cael:2018:LCP

Huang:2018:GSE

Pellacci:2018:BDS

Yang:2018:EIC

[2755] Zhichun Yang, Chuangxia Huang, and Xingfu Zou. Effect of impulsive controls in a model system for age-structured population over a patchy environment. *Journal of Mathematical Biology*, 76(6):1387–1419,
REFERENCES

Coron:2018:SMS

Hadjichrysanthou:2018:MKN

Nadin:2018:HBF

Johnston:2018:CEE

REFERENCES

Wang:2018:AMM

Girel:2018:ESP

Emerick:2018:MSM

Ren:2018:RDW

Seo:2018:SDG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2821] Takuji Oba and Jun Kigami. Why does invasion imply substitution? Beyond the paradigm of invasion fitness. *Journal of
Moore:2018:OCT

Jaramillo:2018:HCS

Zheng:2018:MMA

Diekmann:2018:KPH

REFERENCES

REFERENCES

REFERENCES

Li:2019:HWD

Hoppe:2019:SNC

Wang:2019:EWS

Disanto:2019:ECC

Grusea:2019:CTT

[2849] Simona Grusea, Willy Rodríguez, Didier Pinchon, Louïes Chikhi, Simon Boitard, and Olivier Mazet. Coalescence times for three genes

REFERENCES

Kelk:2019:FMP

Coron:2019:IDE

Lange:2019:FCC

Roberts:2019:SIM

Oliveri:2019:RPC

REFERENCES

REFERENCES

Gray:2019:CTT

Amorim:2019:ANM

Yegorov:2019:OCB

deSouza:2019:FPM

Bayen:2019:SSO

[2878] Térence Bayen and Pedro Gajardo. On the steady state optimization of the biogas production in a two-stage anaerobic digestion

Buonomo:2019:OTP

Giaroli:2019:RMC

Allen:2019:MFN

Burden:2019:SDS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gonzalez-Parra:2019:RVT

Felipe:2019:DAB

Yamakou:2019:SFN

Hening:2019:HIS

Allard:2019:BST

REFERENCES

Abboud:2019:DLI

Li:2019:BSR

Barnard:2019:ETP

Eble:2019:CPF

Meleard:2019:BDM

D. Franco, C. Guiver, H. Logemann, and J. Perán. Boundedness, persistence and stability for classes of forced difference equations arising in

[2957] Filippo Disanto, Pasquale Migliorino, and Guido Narduzzi. On the unranked topology of maximally probable ranked gene tree topolo-
Kuehn:2019:GFF

Anderson:2019:DBE

Li:2019:DAP

Tian:2019:SDR

Espejo:2019:SBP

Zadorin:2019:NSC

Salako:2019:CCS

Xin:2019:OMI

Obatake:2019:OBM

Pargaei:2019:MSC

[2967] Meena Pargaei, B. V. Rathish Kumar, and Luca F. Pavarino. Modeling and simulation of cardiac electric activity in a human cardiac

REFERENCES

REFERENCES

Laurent-Gengoux:2019:MAM

Mata:2019:RFA

Wang:2019:DBS

Asfaw:2019:SPH

Albert:2019:PIA

REFERENCES

Perepelitsa:2019:ALL

Gao:2019:HFP

Rogg:2019:OED

Burden:2019:TDS

Diekmann:2020:SIJ

[2992] Odo Diekmann, Sergey Gavrilets, Mats Gyllenberg, Simon Levin, and Mark Lewis. Special issue of the *Journal of Mathematical Biology* to

Cantrell:2020:EDS

Poggiale:2020:APP

Maciel:2020:ESM

Labrum:2020:MAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lam Si Tung Ho, Vu Dinh, Frederick A. Matsen IV, and Marc A. Suchard. On the convergence of the maximum likelihood estimator for the transition rate under a 2-state symmetric model. *Journal of Mathematical Biology*, 80(4):1119–1138, March 2020. CODEN JMBLAJ. ISSN

Durell:2020:LPN

Hendriksen:2020:POC

Clote:2020:RNS

Hening:2020:CEP

Chauve:2020:CSG

REFERENCES

Berry:2020:UEE

Du:2020:FKE

Rahman:2020:DUC

Popovic:2020:DDC

Gross:2020:JDR

REFERENCES

Seirin-Lee:2020:TSF

Anderson:2020:TDP

Ito:2020:DOC

Francis:2020:MFP

Coronado:2020:MVC

REFERENCES

Berardo:2020:IBD

Akin:2020:CDM

Wilson:2020:OOL

Hening:2020:HSS

Enahoro:2020:LLI

Dalziel:2020:GAP

[Vigeland:2020:RCP]

[Ishaku:2020:AOC]

[Zhang:2020:MDW]

[Ferreira:2020:FPM]

[Wang:2020:PAT]

[Bokes:2020:MDS]

[3083] Pavol Bokes, Alessandro Borri, Pasquale Palumbo, and Abhyudai Singh. Mixture distributions in a stochastic gene expression model with de-

Guo:2020:MRM

Guo:2020:ECC

Chen:2020:TTP

Tonello:2020:BAL

Allen:2020:RVS

Boahen:2020:MDS

[3089] Frank Boahen and Nicolas Doyon. Modelling dendritic spines with the finite element method, investigating the impact of geometry on
REFERENCES

REFERENCES

Ahrabi:2020:MPM

Watson:2020:MMG

Krishnan:2020:MIM

Rhodes:2020:IIM

Jagers:2020:PES

Thong:2020:LLR

REFERENCES

REFERENCES

REFERENCES

Tourigny:2021:CMR

Favero:2021:DPC

Wang:2021:LVC

Collienne:2021:CNN

Kurasov:2021:ASS

Engwer:2021:EEG

REFERENCES

Ingemar Kaj, Sylvain Glémin, Daniah Tahir, and Martin Lascoux. Analysis of diversity-dependent species evolution using concepts in population genetics. *Journal of Mathematical Biology*, 82(4):??,
REFERENCES

[3147] Yue Liu, Elisabeth G. Rens, and Leah Edelstein-Keshet. Spots, stripes, and spiral waves in models for static and motile cells. *Journal of Math-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gomez-Corral:2021:TDV

Schaller:2021:CBM

Allen:2021:SMI

Kumar:2021:MMG

Reichenbach:2021:SPN

Guo:2021:DNH

REFERENCES

REFERENCES

Wang:2021:SIH

Aftalion:2021:PMC

Dimarco:2021:KME

Friedman:2021:AMM

Hurry:2021:MIB

Jagers:2021:APE

REFERENCES

REFERENCES

Semple:2021:TEO

Streipert:2021:ADP

Xue:2021:IBM

Zhang:2021:ITP

Bolzoni:2021:OCS

Calleri:2021:CTS

Fabiana Calleri, Giovanni Nastasi, and Vittorio Romano. Continuous-time stochastic processes for the spread of COVID-19 disease simulated

Bedekar:2021:RDM

Bienvenu:2021:RSS

Brocchieri:2021:EDD

Capera-Aragones:2021:DEM

Caputo:2021:ATN

Collienne:2021:DCT

REFERENCES

REFERENCES

Lorenzi:2021:EDS

Lotstedt:2021:DCM

Ma:2021:SEE

Martinez:2021:MII

Pasquini:2021:CHM

REFERENCES

Roy:2022:FPF

Vaghi:2022:MSM

Yu:2022:HCL

Alfaro:2022:MSH

Allman:2022:ISN

Cheek:2022:CTM

REFERENCES

Alonzo:2022:SBG

Coron:2022:PBM

Demers:2022:IVE

Gao:2022:IVH

Garnier:2022:LHT

Hening:2022:ERS
REFERENCES

Ndongo:2022:CBM

Palacios:2022:EBT

Terauds:2022:NAA

Zhang:2022:GAR

Pieschner:2022:IAM

Ji:2022:SDI

REFERENCES

REFERENCES

[3335] Bin Wu. Evolutionary stability is sensitive on the conflict between reproduction and survival: proofs. *Journal of Mathematical Biology, 85*(2):??, August 2022. CODEN JMBLAJ. ISSN 0303-6812 (print),

[3341] Q. Peng and F. J. Vermolen. Upscaling between an agent-based model (smoothed particle approach) and a continuum-based model for
REFERENCES

Unterberger:2022:SDA

Kroumi:2022:AAC

Elias:2022:AMC

Lewkiewicz:2022:TSP

Huber:2022:HNP

Ballesteros:2022:MNS

[3347] Miguel Ballesteros and Guillermo Garro. A model and a numerical scheme for the description of distribution and abundance of individu-

REFERENCES

REFERENCES

[3370] Josef Hofbauer and Sebastian J. Schreiber. Permanence via invasion graphs: incorporating community assembly into modern coexistence the-

REFERENCES

Eduardo Cerpa, Matías Courdurier, Esteban Hernández, Leonel E. Medina, and Esteban Paduro. A partially averaged system to model neuron

Min-Jhe Lu, Wenrui Hao, Bei Hu, and Shuwang Li. Bifurcation analysis of a free boundary model of vascular tumor growth with a

Al-Darabsah:2023:SHM

Ghosh:2023:ADI

Hall:2023:ESB

Tang:2023:PDR

Muller:2023:CTS

Pu:2023:WNV

[3410] Liqiong Pu, Zhigui Lin, and Yuan Lou. A West Nile virus nonlocal model with free boundaries and seasonal succession. *Journal of Mathematical Biology*

Zhao:2023:BRR

Othmer:2023:ISC

Barrett:2023:ATG

Wang:2023:HSM

Yin:2023:OCD

Lunz:2023:OCB

Snyman:2023:PRF

Luckhaus:2023:FBP

Schmiegelt:2023:APC

Fierro:2023:CDM

Ulloa:2023:TGR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heggerud:2023:NDL</td>
<td>Niche differentiation in the light spectrum promotes coexistence of phytoplankton species: a spatial modelling approach.</td>
<td>Christopher M. Heggerud, King-Yeung Lam, and Hao Wang</td>
<td>Journal of Mathematical Biology</td>
<td>86(4)</td>
<td>??</td>
<td>April 2023</td>
<td>CODEN JMBLAJ. ISSN 0303-6812 (print),</td>
</tr>
</tbody>
</table>
REFERENCES

Fok:2023:SSR

Melo:2023:FSP

Villar-Sepúlveda:2023:CGC

Smith:2023:IRA

Egberts:2023:STD

Berestycki:2023:EMH

REFERENCES

DellaMarca:2023:SMV

Crona:2023:GFL

Pell:2023:EVV

Lindwall:2023:FPI

Zhang:2023:PMS

Webb:2023:BAC

REFERENCES

[3462] Yu-Jhe Huang, Jonq Juang, Tai-Yi Kuo, and Yu-Hao Liang. Forward-backward and period doubling bifurcations in a discrete epidemic model with vaccination and limited medical resources. *Journal of Mathematical Biology*, 86(5):??, May 2023. CODEN JMBLAJ. ISSN 0303-6812 (print),
REFERENCES

Loutchko:2023:SMB

Fralix:2023:MAS

Liu:2023:GSL

Xu:2023:IQM

Bai:2023:AIM

Arachchilage:2023:EHE

Alebraheem:2023:NMM

Kribs:2023:ITD

Moyles:2023:DSI

Wang:2023:IAG

Vu:2023:WCW

Buckwar:2023:SHM

Evelyn Buckwar, Martina Conte, and Amira Meddah. A stochastic hierarchical model for low grade glioma evolution. *Journal of Mathematical
REFERENCES

Lawley:2023:SFP

Siewe:2023:HDT

Lemaire:2023:IMT

Cao:2023:TSL

Zhang:2023:BDG

REFERENCES

[3497] Mengfeng Sun and Xinchu Fu. Competitive dual-strain SIS epidemiological models with awareness programs in heterogeneous networks:

REFERENCES

Salazar:2023:IEP

Djidjou-Demasse:2023:GBT

Nareddy:2023:MPP

Clark:2023:AMI

Pakkanen:2023:UIP

