A Complete Bibliography of Publications in the
Journal of Mathematical Biology

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

18 June 2024
Version 1.32

Title word cross-reference

$$(n, 2) \[2872]. (\tau, \alpha, \rho) \[32]. 1 \[1159]. 2 [570, 3026, 2660, 3031, 70]. 2:1 [890].$$
$$2n = 40 [2815]. 3 [2779, 3010, 1707, 1368, 2948]. + [3192, 1836]. 2^+ [1413]. 2$$
$$[3396]. \nu [3477]. A [1340]. A\beta [3158]. B [1340]. B_2 [3236]. \beta$$
$$[2197, 3532, 1176, 2692, 2767, 1849]. d [2657]. F [3320]. F_{\alpha} [1921]. G \cdot U$$
$$[1402]. i [3559]. k [2294]. K^+ [1495]. \kappa [2358]. L^\infty [2509]. \lambda [246].$$
$$\lambda = \alpha_1 + (\alpha_2 + \alpha_3 \lambda) e^{-\lambda} [2489]. m [3425]. M^5 [1609]. N$$
$$[3531, 933, 840, 482, 418, 481, 480, 581]. n: m [315]. \omega [246]. p [3615, 2813]. q$$
$$[3361]. R^3 [419]. R^4 [419]. R_0 [2060, 784, 2942, 2395, 2127, 1430]. R_5 [2745]. T$$

-cells [1176]. -component [570]. -D [1159]. -dimensional [840, 70, 1368].

/CD8 [3192].

2 [3476, 3507]. 2D [2343, 2417].

60th [2485]. 65th [2992, 2109].

Adaptation [3551, 3202, 1194, 2253, 2255, 860, 1053, 676, 2322, 385, 616, 2474, 386].

additivity [1253]. ADE [3470]. adherent [2240]. adhesion [1791, 2724, 922, 2971, 2573, 1780, 2647, 2223, 2564, 2248, 3620].

advance-delay-differential [619]. Advanced [293]. advancing [3539].
advantage [934]. advantageous [317, 474, 2982]. advantages [1546].
Advection [1180, 3250, 1750, 493, 3372, 1187, 2484, 2070, 2910, 3299, 3377, 3638].
advective-diffusion [3372]. advective [2320, 3310, 3117]. adversity [2887].
Aedes [2750, 2770, 2067]. aegypti [2750, 2770]. Aerodynamics [585].
aeruginosa [1541]. affect [1552]. affecting [764].
Africa [3476]. African [1758]. after [208, 1406, 3316, 2389, 3198].
Age [349, 1632, 1567, 1562, 2163]. affinity [305].
African [1758]. after [208, 1406, 3316, 2389, 3198].
age-and-cyclin-structured [1737]. age-class-structured [2982].
age/age-stage [3467]. ageing [2947]. agent [3226, 2764, 3498, 3341, 1792].
age-aggregate-based [3226, 2764, 3341, 1792]. Agents [1554]. ages [2321, 2815, 2751, 3266, 1573].
age-aggregates [3212, 2815, 2621, 2513, 3266, 1573].
age-aggregating [1177].
Aggregation [370, 1200, 2197, 1096, 1791, 1840, 2602, 2425, 705, 3344, 2303, 1399, 714, 2394, 2676, 2857, 1419, 927, 1487, 1141, 928].
age-aggregations [2041].
Age-related [493, 819]. aging [60, 1031]. agr [1879]. agreement [2601].
4

canalicular [908]. canard [2994, 3063]. Canard-induced [3063]. Canards [1553, 2182].
cancellous [1148]. cancer [3095, 1953, 2108, 2097, 530, 2144, 2139, 2507, 2557, 3362, 3453, 2516, 1210, 3491, 2254, 3367, 3568, 3381, 3288, 3585, 3514, 3174, 1804, 3012, 1792].
capacity [649, 3085, 3099, 3193, 2316, 3573]. capillaries [1388, 655, 233].
cardiorespiratory [1738]. Cardiovascular [2950, 1497, 1755, 1539, 924].
Carlo [3223, 2747, 3498]. carnivore [432]. carriage [2784].
catalysed [1344, 1490]. catalysis [305]. catalysts [2624]. catalytic [279].
catalyzed [265, 2293]. catastrophe [1133, 60, 699, 738]. catastrophes [437, 1401, 647].
Catastrophic [1557, 2497]. category [3604]. catenin [2692, 2767, 1849].
Caterpillars [3104]. catheterised [1840]. cations [46].
Cattaneo [1380, 1395, 1396]. cattle [2295, 1430]. Cauchy [3312]. causal [2150, 1852].
cause [552, 3591, 3527, 3216]. caused [3477, 1941]. cavities [2939].
Cayley [2081]. CD4 [3192, 3079, 1836]. CD8 [3192, 2766, 2048]. celebration [3520].
coin [2716]. coinfection [3531]. cointegrated [2682]. Coleochaete [2368].
coli [238, 2244, 2295]. collage [2147]. collagen [1901, 2210]. collapse
[1575, 1083, 3070, 1200]. collaterally [1817, 3248]. collecting [413].
collection [3418]. collections [1064]. collective
[3269, 3603, 3009, 2689, 3570, 2493, 2514]. Colless [3061, 3385]. collisions
[1753]. collocation [409]. colon [3288]. colonic [2692, 2767]. colonies
[1221, 3199, 3161, 861, 937, 3570]. colonisation [2531]. colony
[1551, 462, 1134, 3161, 3070, 2158]. Color [185, 290, 10, 386].
colorectal [2139, 3174]. colored [2603]. Colorimetry [1520]. colours
[1520]. colours- [1520]. column [802, 2522, 3210]. combating [3086, 2552, 2553].
combination [2822]. Combinatorial [1912, 3017, 2303, 3615, 2383, 359].
Combinatorics [2225, 2009, 2744]. combine [2846]. combined
[3326, 3209]. combining [82, 2072]. Comments [108]. common [701, 1022, 1066, 1331].
communicating [2184]. communication [1612, 3537, 728]. communities
[926, 1026, 714, 3175, 752, 3203, 35, 2809, 3595, 1973, 1128].
community [2457, 396, 2478, 1530, 1412, 3616, 3512, 3370, 1411, 2929, 1756, 1692, 2374, 1890].
community-dynamical [1412, 1411]. commuting [3580]. compact
[2848, 3169]. compactness [2132]. comparable [716]. Comparative
[3140, 1558, 1237, 3165, 3608]. comparing [3480]. comparison
[1336, 3095, 793, 1795, 3223, 662, 3542, 3364, 2398]. compartment
[351, 1724, 3544, 1762, 3259, 2786]. Compartmental
[294, 3178, 3030, 3632, 3414, 725, 2178, 2576]. compartmentalized [2963].
Compatibility [1595, 1070]. compatible [90, 3313]. Compensation
[739, 1709]. competent [1516]. Competing
[1640, 616, 839, 3020, 980, 423, 905, 545, 662, 594, 2006, 591]. Competition
[1408, 1173, 1874, 1105, 1098, 3227, 1610, 2269, 3497, 2228, 938, 1091, 730, 1378, 855, 986, 93, 3040, 1965, 2491, 2634, 1920, 215, 1805, 1516, 932, 3082].
competitors [752]. complementary [80, 738]. Complete
[574, 3139, 23, 1713]. completely [310]. Complex
[3004, 1122, 1307, 3850, 36, 2412, 3277, 3063, 1777, 1584, 2479, 2738, 3365, 2330, 1137, 1744, 1077, 2571, 400]. complexes [2421, 3058, 2594].
complexity [3416]. compliance [2622]. complicated [661, 1163, 2862].
component [570, 3145, 3157, 2174, 611, 388, 2444, 1712]. components
compositions [62]. compounds [1983]. compressive [3403]. compromise
[697, 735, 9]. computable [2739]. computation
[2263, 784, 2126, 2818, 2802, 2213, 336, 3279, 3482, 3599]. Computational
26

[1574, 1186, 974, 1676, 1504]. **Host-Pathogen** [1544, 1503, 2203, 3331].

host-symbiont [3595]. **hosts** [2004, 1767, 2385]. **Household**
[1959, 2457, 2726, 3566, 1907, 2089, 1973]. **households** [2457, 2500, 1973].

HP [2658]. **HTLV** [2045]. **HTLV-I** [2045].

Human [1458, 3503, 1500, 648, 1415, 1473, 182, 1246, 1247, 29, 3032, 972, 1738, 2692, 2767, 1182, 3303, 3229, 611, 766, 2390, 1479, 783, 941, 2967, 3279, 3568, 3173, 3376, 3064, 1894, 1268, 3299, 2046].

humans [1497, 2412, 2700, 3471, 1627].

hump [3591, 986]. **hump-shaped** [3591].

hungry [514, 550, 551]. **hunter** [3145]. **hunter-gatherers** [3145].

Huxley [772, 2902, 1553].

Hybrid [3142, 1624, 2671, 3476, 1985, 1003, 2560, 3159, 2401, 3560, 3159, 3346, 3128, 3630, 3263].

Hybridisation [1522]. **hydra** [2073, 2001].

Hydraulic [2306].**hydrodynamic** [2628]. **hydrogen** [2306].

hydrolysis [265]. **hydroxypropionic** [2779]. **hyper** [2836].

hyper-radiosensitivity [2836]. **Hyperbolic** [2041, 2425, 2741, 1810, 1899, 1493, 3067].

hyperbolicity [2658].

hypercycle [613, 89].

Hypercycles [732].

Hyperelastic [2476, 3403].

hyperexcitability [3477].

hypersensitivity [3477].

hypertension [3443].

hypnozoite [3630, 3578].

hypothalamic [1972].

hypothalamic-pituitary-adrenal [1972].

hypothesis [2802, 164, 2941, 278, 104, 3196].

hypothesis [1942, 2856, 2017, 2826, 3486].

identifiability [3292, 1166, 2175, 3316, 3397, 3395, 2211, 3026, 3562, 2215, 1476, 3270, 2088].

Identification [1812, 2275, 3576, 908, 2408, 517, 2516, 1838, 2826, 2174, 1937, 2802, 164, 2941, 278, 104, 3196].

Identifying [1390].

ill [1436].

illness [2933].

illumination [290].

Illustrating [1390].

IM [2263].

image [849, 1729].

image-driven [1729].

images [2760].

imitation [1677].

immersed [2062, 2213].

immigration [2951, 1734, 2388, 1949, 638, 3598].

immobilized [161].

immobilizer [1028].

Immune
[998, 2458, 2832, 3394, 1454, 3422, 3629, 2838, 320, 3191, 2352, 3550, 2887, 1161, 2010, 2690, 318, 424, 1526, 3098, 2229, 1732, 1516, 2048, 2179, 3420, 1982].

immune-mediated [3098].

immunity
[1503, 1113, 2004, 3566, 2458, 733, 2580, 1898, 3253, 3544, 3525, 1535, 331, 761, 3452, 3258, 3630, 3318, 3448, 1841, 2554, 2307, 988].

immunization [3488].

Immuno [2458, 1398, 3406, 3054, 2350, 3554].

Immuno-epidemiological [3406, 3054, 2350, 3554].

Immuno-epidemiology [2458].

immuno-selection [1398].

immunocompetent [3489].

immunodeficiency [743].

immunological [403, 3471].

immunology [73, 118, 255].

Immune [3500, 2247, 2720]. implant [2177, 2098]. implants [1761].

Implications [3438, 3098, 2349, 2440, 2219, 3238, 3605, 3629, 1837, 2390]. Implicit [3302, 2393, 1038, 3577]. Implicit-explicit [1038]. imply [2821].

Importance [2419, 3466]. important [2823]. impossibility [1491]. impracticalities [3090]. impracticality [602].

Incidence [1351, 2741, 2751, 1535, 721, 816, 1952, 2124, 569, 650, 1869, 3518, 3339, 3412, 1693, 988]. includes [1393]. including [1497, 1985, 2104, 2857].

Inclusions [1350, 2947]. Inclusive [1058, 1550]. Incompatibilities [3274]. incompatible [602].

Incompetence [2793]. incomplete [1833]. incompressible [3332].

indeterminacy [2738]. index [3236, 2954, 3061, 2436, 2189, 2313, 2493].

indicator [2163]. indicators [3224, 2626]. indices [3611, 2212, 3385, 3628, 3262, 3017]. Indirect [3196, 2447, 2867].

Indiscriminate [508]. Individual [2420, 1875, 1795, 2839, 3220, 2799, 1009, 1673, 3005, 962, 3359, 714, 999, 2855, 2455, 2947, 2110, 2121, 1419, 3318, 2583, 1692, 1748].

Individual-based [1875, 1795, 1673, 3005, 3359, 2947, 1692]. individuals [3291, 3347, 2422, 3204, 1487, 3450]. induce [1725]. Induced [682, 1160, 2228, 3212, 3566, 1772, 1302, 3592, 3591, 146, 1176, 3530, 3063, 1766, 1531, 2592, 3317, 1240, 3340, 328, 2690, 3122, 2672, 1466, 2666, 1676, 44, 3396, 3403, 3298, 3271, 3288, 1521, 2172, 1566, 2229, 2442, 3623, 1502, 3220]. induces [3620]. Inducing [2290]. industrial [2558]. inequality [2545].

infections [3467, 2323, 3478, 2412, 2790, 3629, 2335, 3181, 2085, 1012, 761, 753, 1868, 3609, 1141, 1465, 2143, 1613, 2186, 3460, 1727, 3524].

Infectious [1591, 3584, 3167, 2805, 248, 2311, 3222, 784, 831, 3353, 2841, 3432, 3521, 214, 3438, 2345, 374, 587, 2616, 917, 882, 2178, 1313, 2386, 2583, 2652, 3390, 2185, 2403, 2749, 2246, 1481, 2630, 2808, 3563, 1111, 1081].

INFER [3508]. Inference [3356, 641, 806, 3472, 1670, 3338, 2, 2359, 2764, 3449, 2175, 2572, 2706].

integro [3265, 2772, 3375, 3606, 2378, 1751]. integro-difference [2772, 3375, 3606, 1751]. integro-differential [3265, 2378].
Integrodifference [2357, 2827, 2297, 2299, 3493, 1326, 2135, 3322, 3101, 3540, 2903, 1719, 2999].
integrodifferential [965]. intensities [24]. inter [2535, 2791, 1552].
interactive [609, 3427]. intercellular [1449]. interchange [3127, 2482].
interferential [3393]. interlocking [467]. interlocus [578, 606].
intermediate [1533]. intermediate-virulence [1533].
Intermediates [2624]. Intermingled [1471]. intermingling [1926].
intermittent [2112, 2305]. Internal [2612, 2608, 2931, 2363, 2588, 2853, 281, 2712, 1682, 2309, 2776, 3386].
Internal-Stores [2612]. internalization [3514]. Internodons [1036].
inrahost [2082]. intrarenal [3443]. Intraspecific [432, 1499, 2410, 1566].
intratumoral [2837]. intravenous [1224]. intrinsic [316, 3085].
Introducing [1850, 3230]. Introduction [203, 1697, 3418, 2943, 2750].
Invariant [1789, 374]. invariants [2631, 1814, 2534, 3184, 1515, 1602, 2706].

Model [317, 474, 1348, 1134, 2530, 3625, 1182, 2971, 719, 3267, 192, 1231, 1098, 2622, 1899, 1067, 516, 92, 3066, 38, 2513, 2527, 3252, 1896, 28, 3266, 1955, 3446, 2536, 3629, 1530, 918, 3504, 2401, 517, 922, 1223, 352, 2489, 2843, 2156, 3601, 1154, 1147, 2153, 3029, 537, 651, 389, 2684, 2194, 2529, 3458, 2914, 1738, 2578, 1857, 2912, 2528, 1308, 1810, 3214, 3444, 2797, 3101, 3400, 3586, 1286, 2051, 3484, 3344, 2692, 1484, 2414, 286, 832, 1824].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].

modelling [2938, 3028, 1344, 1405, 3466, 2639, 2434]. Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 2551, 1456].
Mold [1590, 1661]. Molecular [115, 2150, 1528, 2703, 3033, 308, 1498, 2538, 3413, 1760, 2734].
monoxide [297]. Monte [3223, 2747, 3498]. Moran [1895, 2714, 3301, 2633, 2507, 2530, 3081, 3091, 3583, 1854, 2877].
morphogenetic [496, 79]. morphogens [1514]. morphological [3235, 1832, 2795]. morphology [1047, 1475, 3321]. Morris [1175, 2156].
motion [2619, 3458, 3344, 666, 1609, 1431, 2983, 2502, 2035, 3473]. motivated [1, 3601, 3242]. motor [3189, 3032, 2629, 792, 2272].
n [93, 1307]. NaCl [2249]. Nagumo
[772, 619, 12, 566, 1842, 132, 249, 269, 37, 125, 47]. Nested
[1595, 2687, 2352, 3452]. net [1298, 1265, 1261, 3320]. nets
[739, 2094, 3076, 173, 2773, 2708]. network
[3292, 3395, 3401, 2683, 2387, 2123, 2673, 2905, 1364, 2211, 1225, 2687, 2832, 3394, 1711, 1943, 3383, 2779, 1929, 3063, 1562, 2748, 3407, 3615, 3512, 3228, 1552, 2859, 3097, 2721, 2395, 2429, 1919, 1192, 2089, 775, 1937, 2490, 2427, 1441, 2290, 3049, 2428, 2499, 2918, 3150]. Networks
[2626, 824, 825, 3218, 1583, 2733, 3174, 877, 998, 1150, 2635, 3497, 2974, 1170, 2285, 2374, 3342, 2922, 2220, 1710, 3188, 3397, 2571, 1855, 3149, 2273, 2533]. Neumann [2754]. Neural
normalized [2422]. norms [745]. Northern [2736]. nosocomial [3524].
Note [1600, 960, 48, 1924, 738, 3062, 811, 1019, 935, 492]. nothing [494].
nucleation [2602]. nucleotide [170, 1355]. nucleotides [2059, 1561].
nucleus [2365]. Number [1522, 494, 621, 1939, 2003, 2208, 1345, 2083, 2203,
2853, 271, 3179, 1543, 310, 1494, 2394, 3159, 3346, 2050, 2126, 2942, 3529,
225, 2155, 324, 1442, 1781, 1131, 1973, 1121, 2831, 1693, 2125, 2140, 2813,
2185, 2403, 1340, 1438, 1735, 2523, 1828]. numbers [3284, 2157, 3345, 985,
3093]. Numerical [723, 1417, 8, 619, 1343, 2194, 1284, 2613, 2276, 827, 1846,
936, 960, 1385, 3347, 2602, 3072, 1285, 741, 409, 2574, 3075, 2038, 3217,
1372, 410, 3587, 884, 1214, 1761, 655, 600, 3480, 1823]. nurse [131].
nutrient [769, 919, 461, 120, 1162, 992, 221, 1227, 2241, 2899, 1283, 925,
1095, 839, 1152, 1332]. nutrient-phytoplankton-zooplankton [1227]. nutri
tent-taxis [2899]. nutrients [1563, 3210]. nystagmus [1545].
objective [1894, 2702]. objects [143, 1779, 673]. oblate [477]. Oblique
[420]. observational [1509]. observed [2731, 1540, 3483, 1651, 1340].
obtain [2375]. obtained [2077]. occasion [2485, 2109]. Occupancy
[3276, 2232, 2171]. occurrence [2994, 2639]. occurring [729, 2921, 394].
ODE [1364, 3550, 2215, 2975, 2615, 3271]. ODEs [1643, 2184].
ODEs-homogenization [2184]. Odo [2109]. oesophagus [3608]. off [2277].
offs [2375, 3324]. Ohta [251]. old [2697]. oldest [842]. olfaction [1691].
olfactory [1319]. oligodendrocytes [1294]. oligomers [3158].
Oligomorphic [1970]. olive [2055]. omnivory [365]. One
[246, 24, 380, 166, 1791, 1345, 1225, 1432, 313, 2328, 1724, 1472, 2668, 1728,
3214, 264, 2557, 986, 852, 1310, 836, 225, 487, 688, 3391, 1835, 1192, 3122,
2137, 180, 598, 1441, 1389, 2290, 1881, 1028, 799, 2537, 2865, 1014, 819].
One- [166, 598]. one-compartment [1724]. One-dimensional
[246, 1791, 1225, 1432, 1472, 3214, 2557, 852, 836, 3391, 1192, 3122, 2137,
1441, 1389, 1028, 2537, 1014, 819]. one-hump [986]. One-locus
[24, 1345, 225, 487, 1835, 1881]. one-prey [1310]. only [2552, 2553]. onset
[2122, 1370, 1278, 3354]. onto [860]. Ontogenetic [2120]. ontogenetic [3601].
oocytes [189]. Open
[3456, 2965, 1534, 939, 2744, 1908, 2064, 2320, 3310, 11, 3117, 1712, 3074].
on-open [3074]. Open-minded [2965]. Operating [3360]. operators
[2482]. operator [489, 2685, 3204, 407, 3169]. operators [2598]. Operon
[3268, 1879]. opioid [2890]. Opposition [628]. optical [2735, 2413].
Optimal
[3584, 1158, 2890, 2108, 2097, 312, 529, 2407, 2879, 2770, 1208, 1454, 3411,
2536, 2579, 1928, 3195, 1110, 2903, 2010, 3428, 3506, 2953, 805, 2160, 73,
118, 255, 1974, 2990, 599, 3460, 2709, 2698, 3074, 2876, 3421, 1152, 1332,
2723, 3095,
papillomavirus [3303, 3568]. Parabolic
[1080, 1008, 1947, 2425, 3458, 2899, 671, 2964, 76]. parabolic-elliptic [2964].
parabolic-parabolic [1947]. paradigm [3009, 2158, 2821]. paradox
Paramecium [235, 196]. Parameter
[891, 431, 2408, 3066, 1114, 2215, 757, 1954, 164, 2941, 3198, 3581, 2606, 2151,
2060, 793, 1507, 2601, 3026, 802, 3576, 1822, 908, 1690, 2134, 1067, 2473, 2694,
1729, 2029, 1838, 2826, 2148, 17, 2985, 1495]. Parameterization [3092].
parameterized [2503]. parameters
[552, 1540, 3094, 32, 3550, 1552, 2691, 2891, 1451, 806, 1619]. Parametric
[1303, 1592, 2516, 3243, 2984, 2175, 3156]. parametrized [2868]. Parasite
[3637, 901, 465, 2128, 1533, 1232, 1163, 2997, 2046]. parasite-host [2128].
Parasites [405, 1260, 510, 1374]. parasitic
[242, 756, 753, 731, 1292, 1291, 863]. parasitism [1453, 3502, 1607].
parasitoid [1186, 2668, 974, 697, 1676, 1504, 1574]. Pareto [2238]. parity
[2716, 1790, 432]. parsimonious [3558, 2859]. Parsimony [2049, 3429, 2906, 2037].
Part [1534, 3274, 1513, 1650, 550, 551, 1461, 1462]. Partial
Partially [1651, 1926, 3393, 1680]. particle
[2628, 1902, 904, 1439, 3449, 1487, 3341, 1071, 2502]. particles
[1135, 1525, 2394, 1368]. particular [2586]. partition [2314]. Partitioning
[2530, 1261, 3637, 1667]. partitions [2946, 2846]. partnership
[2721, 2395, 952]. partnerships [1023, 3459, 1448]. passage
[3060, 3068, 3475]. passages [911]. passive [432]. past [732].
Patch [1757, 621, 1786, 1366, 2420, 2777, 3069, 2159, 3484, 2406, 2636, 3303,
3543, 3557, 1254, 1945, 3529, 1645, 2960, 3375, 3437, 2171, 3082].
patch-selection [2406]. Patch-size [1757]. patches
[1975, 3257, 1295, 1911, 3146]. patchy
[2071, 338, 1868, 3261, 2298, 2299, 3206, 3121, 3022, 2283, 2755]. patent
[2021]. Path [2987, 3234, 2940, 2783, 3245]. Pathogen [1544, 958, 1503, 2105,
730, 1274, 1097, 1731, 2203, 1955, 374, 2429, 1526, 2350, 2374, 3331].
pathogen-immune [1526]. pathogens
[1408, 1767, 2039, 1725, 2497, 3452, 2124, 2459, 1428]. pathological [2700].
pathologies [1755]. pathology [3627]. paths [1455, 2421]. pathway
[2190, 2205, 1849, 2568]. pathways [373, 58, 3585, 1958, 2343]. patient
[3300, 3489]. patients [3489, 2990, 2560]. Pattern
[592, 355, 81, 964, 2243, 93, 1312, 1986, 2510, 2549, 3594, 1235, 1281, 1282,
2425, 1285, 3004, 1001, 1101, 2527, 2547, 2376, 2194, 803, 102, 1741, 79, 152,
3011, 3487, 2692, 861, 1552, 184, 1873, 161, 893, 287, 1699, 478, 2011, 2913,
615, 1601, 2460, 2233, 1038, 1504, 1028, 321, 3123, 3016]. patterning
[3235, 1634, 3010, 198, 2198]. Patterns
[1235, 831, 9, 1786, 1775, 123, 1167, 1739, 2870, 976, 2380, 1505, 1862, 3576,
990, 1324, 2504, 3504, 1857, 2797, 3101, 3400, 170, 246, 226, 276, 3002, 1474,
populations

porous

poroviscoelastic

posedness

position

Positional

positioning

Positive

possibility

Possible

Post

post-buckling

post-burn

post-introduction

post-transcription

Post-transcriptional

post-translational

postantibiotic

posteriori

potassium

Potential

potentially

Pour

power

power-law

powerful

powers

Pozón

practical

practice

practices

PRC

pre

pre-epileptic

precaution

Precipitation

precise

precision

precision-cut

prediction

predation

predation-induced

Predator

Predator-mediated

predator-one

predator-prey

predators

predictability

predicted

Predicting

Prediction

Predictive

predicts

Preface

preference

Results [707, 1, 715, 3351, 916, 300, 369, 3081, 471, 2636, 1078, 3385, 452, 786, 2400, 2245, 179, 885].

RNABC [1708]. RNAs [1705]. road [3107]. robber [2129]. robots [2765].

stability

Stability-instability

stabilization

Stabilized

stabilizing

Stable

stacked

Stage

Stage-specificity

stage-structured

Staged

stages

standard

standing

Staphylococcus

starvation

State

State-dependent

state-space

states

statespace

Static

stationarity

Stationary

Statistical

status

status-based

STDP

STDP-based

Steady

Steady-state

steady-states

stealing

Steiner

stem

stenotic

sterile

sterilization

sterilizing

Stevens

stiff

stiffness

stimulated

stimulation

stimulus

stimulus-dependent

Stochastic
stochastic

stochastically [1158, 2387, 1891]. stochasticity

[1316, 3415, 948, 2360, 2361, 2545, 1255]. stochastique [2556]. stocking

[268, 299, 3305, 866]. Stoichiometric [3342]. Stoichiometric

[2712, 1682, 770]. stored [2807]. Stores [2612, 2608]. Storing [98]. strain

[1503, 2228, 2323, 796, 2202, 2580, 1327, 3054, 2857, 754, 3390, 3143, 3497]. strains [1113, 1097, 1370, 55, 2459, 3531, 2501, 2652, 3524]. strand

[2930, 3562, 2205, 120, 1863, 1476, 3270, 2337, 351, 1164, 2524, 2019, 2691, 1707]. Structure [3106, 2466, 2218, 2981, 3454, 2726, 3566, 2888, 440, 3325, 2430, 2725, 2226, 733, 1933, 362, 2032, 2052, 2445, 1734, 2018, 2849, 2757, 1024, 216, 2823, 2534, 3184, 820, 3286, 1293, 1921, 3261, 2740, 1309, 2840, 1536, 513, 432, 1912, 638, 483, 3188, 1174, 3538]. Structured

[1648, 2703, 3597, 1295, 1361, 3178, 2893, 3380, 2421, 1541, 3020, 3163, 1362, 1551, 853, 2458, 1478, 2420, 708, 1164, 2575, 2526, 971, 1653, 1737, 1875, 1009,
[1963, 2229, 1929]. swallowing [3608]. swarm [1551, 1134, 1826, 2864, 1193].
swarm-colony [1551]. swarm [1221, 999]. swarms [1146].
switched [3036]. switches [3255, 3416].
trait-based [2716]. trait-substitution [3065]. traits
[3380, 1688, 955, 2670, 3277, 3304, 2496, 2453, 3531, 1057, 2691, 2221].
trajectories [2270, 270]. transcendental [63]. transcription
[2987, 3548, 3268, 2595, 2006]. transcriptional [2365, 1844]. transduction
[960, 2114, 1978, 2207]. transsectional [748].
transsectional/circumferential [748]. transfection [3316]. transfer
[3041, 3135, 2934, 2933, 459, 3196, 2886]. transfers [2438, 2521]. transform
[3294, 134]. transformations [2391, 2163].
Transformed [1893]. Transgenic [1381]. Transient
[626, 1006, 293, 1313, 1381, 1502, 777, 996, 280, 114, 147, 2045, 3186, 3486, 2229].
transients [3354]. Transit [2576, 391, 492]. Transition
[2058, 226, 2324, 2706, 2991, 3336, 3145, 734, 2874, 1762, 2739, 3031, 2814, 987, 2132]. Transitions
[3057, 2019, 1811, 3271, 2644].
Translating [999]. translation [2987, 3268, 3316]. translational
[1364, 434, 1097, 675, 1533, 1713, 1428, 3460, 3273]. transplant [985].
transportation [2386]. transposable [841, 595, 1770, 694]. trap [256].
traps [122]. travel [3538]. travel-related [3538]. Traveling
[1225, 1472, 3137, 3145, 3308, 2068, 1187, 1906, 856, 1695, 2833, 613, 830, 1379, 1785, 1920, 37, 1647, 3118, 1371, 1383, 993]. traveling-wave [830].
Travelling
Travelling-wave [1681]. treat [1103, 2144]. Treatment [3212, 3478, 2300, 1541, 548, 2677, 2858, 1454, 1830, 1296, 3164, 3549, 3459, 152, 3453, 3618, 1297, 1329, 1642, 3339, 3412, 3098, 2652, 1521, 957, 3604, 2007, 2471].
Treatment-induced [3212, 1521]. treatments [3405, 3300, 3209]. Tree
[2873, 2710, 1942, 3395, 2606, 2955, 3338, 3293, 2957, 2042, 758, 3407, 2907, 2033, 2660, 2906, 2859, 2351, 1847, 2369, 1706, 2706, 149, 2639, 1703, 2273].
Tree-based [2873]. tree-child [2273]. tree-grass [2639]. Tree-hierarchy
[2710]. tree-representable [2660]. Trees [1595, 2970, 1720, 1942, 2261, 1887, 1862, 3225, 3127, 3240, 2954, 3061, 2848, 2049, 2436, 3015, 3138, 2744, 2820, 3045, 3385, 654, 1717, 1718, 2762, 2976, 3038, 1024, 2846, 1570, 2589, 2713, 3159, 3634, 1337, 2596, 3313, 2873, 2572, 3018, 2037, 3398, 1386, 819]. tri
[1196, 1040, 2546, 1740, 1082, 2708]. tri-LGT-nets [2708]. tri-phasic [1740].
tri-trophic [1196, 1040, 2546, 1082]. trials [160]. tribute [2485]. trichome
two-type [2388]. type
[3579]. type-reproduction [2126]. types
[801, 626, 851, 645, 2247, 2185, 2403, 3246, 2167]. Typhimurium [1971].
typhoid [2794]. Typical [2270]. tyrosine [2114].
ubiquitin [3266]. Uhlenbeck [2606]. ultrametrics [2100, 2660].
Unbounded [3120, 2134]. unbranched [373]. uncertain
[3178, 3351, 2743, 243]. uncertainties [3263]. Uncertainty
[2591, 3012, 2979, 2200, 3636, 2140, 1864]. Uncovering [1897].
under-reporting [2302, 2649]. underdominant [3274]. Understanding
[911, 2450, 1505, 2605, 3561, 2078]. Unequal [1468, 740]. unexpected [1320].
unfolding [2589]. unidirectional [1509]. unidirectionally [3049].
unidirectionally-coupled [3049]. Unified [2314]. Uniform
[3029, 1245, 2228, 1926, 1114, 1659, 258, 1475, 2658]. UniFrac [2802].
Unifying [3518, 1917, 1835, 1100]. uninvadable [850]. Uniqueness
[1647, 1140, 2422, 702, 843, 1226, 782, 3279, 480, 1000]. United [3507].
universal [1322, 1560, 2377, 3447, 2516]. Universality [3247]. universally
[788]. unlabelled [559]. Unlinked [305]. unpredictable [1228, 1345, 3416].
unprotected [2034]. unranked [2957]. Unravelling [1169]. unreported
[2826]. Unrestricted [305]. unrooted [1942]. unstable [1194, 2107].
unstructured [1411, 3614]. unveiling [3509]. updating [3186, 3486]. upon
[2181, 3618, 569]. upper [2407, 2933]. Upscaling [3341]. uptake
[2760, 281, 3309, 1805, 1283, 600, 3366, 1095, 1152, 1332]. uptake-diffusion
[3366]. upwards [2136]. urban [2440]. urchin [2233]. urea [413]. ureteric
Use [55, 3287, 148, 1739, 2489, 403, 1652, 1404, 340, 2773, 1768]. used [2400].
useful [1549]. user [1778]. users [2122]. Using
[3047, 2504, 3094, 2539, 1662, 2889, 3292, 3468, 2796, 1169, 1073, 2452, 2584, 2147, 915, 1724, 2747, 2433, 2348, 1445, 1797, 2094, 1765, 2649, 2736, 2856, 2294, 1002, 1561, 3407, 3636, 1584, 2388, 3141, 1568, 3461, 1838, 410, 1476, 2282, 3352, 3205, 2891, 2427, 2239, 1479, 43, 2795, 2990, 3514, 3092, 2343, 1930, 1803, 1732, 2948, 2706, 935, 1705, 321, 1159, 3599, 2715, 1619]. Utah
[2291]. utricular [2483].
V [45, 601]. V-shaped [601]. Vaccination
[3253, 2186, 3584, 1559, 3326, 2726, 2402, 2879, 3411, 2579, 2919, 3303, 3462, 3204, 3470, 3365, 2953, 1250, 2239, 2583, 1614, 2709, 2985, 2965].
Vaccinations [1589]. Vaccine [2705, 3584, 3460]. vaccines
[2247, 2383, 3471]. vacuum [2939]. vagal [1579]. validate [1826]. validated
[3448, 1355]. validation [1164, 504, 2200, 1937, 1389, 2195]. validity [3510].
valley [1912]. Value [2318, 2039, 40, 3061, 1834, 2436, 1582, 1718, 2189, 3018, 2093]. valued [3088, 1688, 3592, 2722, 1547, 2166]. values [3044, 3015, 3615, 1451, 1451, 3451].

REFERENCES

[1363, 1382, 1832, 822, 928, 3451]. wounds [2072]. Wright
[2882, 2991, 2252, 2714, 537, 719, 3125, 3091, 2447, 613, 1572, 384, 3546].

X [169]. xenology [2820, 2660, 2949]. Xenopus [1899].

Y-Chromosome [2274]. Year [1378, 2209]. yeast [589, 1937, 935, 1876].
yeasts [55]. yield [1227, 888]. yielding [901]. Yolky [2183, 2117]. young
[633]. Yule [2212, 1763, 2572].

References

Anonymous:1974:ERM

Foias:1974:BHI

Schafer:1974:IDP

Lebowitz:1974:TAG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[95] M. E. Fisher and Dr. B. S. Goh. Stability in a class of discrete time models of interacting populations. *Journal of Mathematical Biology*, 4

Allwright:1977:GSC

Palm:1977:WLS

Oguztoreli:1977:KSM

Ginzburg:1977:LCP

Heuch:1977:EFF

Lange:1977:CLI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Angelika Wörz-Busekros. Polyploidy with an arbitrary mixture of chromosome- and chromatid segregation. *Journal of Mathematical Bi-
REFERENCES

103

REFERENCES

104

Kainer:1979:FMR

Parthasarathy:1979:MMB

Milstein:1979:PIC

Krikorian:1979:VMT

Peil:1979:OML

Frisch:1979:SMP

Grasman:1979:MSR

Kane:1979:SMX

Erickson:1979:SPN

Cohen:1979:MSI

Mimura:1979:SPI

Ermentrout:1979:TON

Coffman:1979:GPN

Kishimoto:1979:ESL

Brauer:1979:SRT

Glass:1979:SMP

Karlin:1979:RNS

Rothe:1979:SAR

Miller:1979:SMD

REFERENCES

Dietz:1979:EIV

Bailey:1979:IMV

Anonymous:1979:I

Poulsen:1979:MPR

anderHeiden:1979:DPS

Wichmann:1979:ABS

REFERENCES

REFERENCES

131

Elderkink:1982:SDP

Akin:1982:CSG

Tuljapurkar:1982:WUP

Shukla:1982:MFW

Cohen:1982:NCB

DiBlasio:1982:AEA

REFERENCES

REFERENCES

[369] D. J. Daley, Peter Hall, and C. C. Heyde. Further results on the survival of a gene represented in a founder population. Journal of Mathematical-
REFERENCES

Wagner:1984:EDG

Shigesada:1984:EIC

Heijmans:1984:HHM

Gopalsamy:1984:PPA

Fishman:1984:MSP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[568] S. A. L. M. Kooijman. What the hen can tell about her eggs: egg development on the basis of energy budgets. Journal of Mathematical
Liu:1986:INI

Alexander:1986:SOT

Cressman:1986:EGT

Tyson:1986:CGD

Plant:1986:MAS

Rogers:1986:CCS

cycle length. Journal of Mathematical Biology, 23(2):269–282, February
1986. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic).

February 1986. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-
1007/BF00276963.pdf.

(2):284, February 1986. CODEN JMBLAJ. ISSN 0303-6812 (print),
article/10.1007/BF00276964.

[578] Marjorie A. Asmussen. The dynamics of interlocus associations in the
three locus hitchhiking model. Journal of Mathematical Biology, 23
(3):285–304, April 1986. CODEN JMBLAJ. ISSN 0303-6812 (print),
1007/BF00275250.

[579] F. Andrietti. Two-dimensional standing gradient osmotic flow: a gener-
alization of the “isotonic convection approximation”. Journal of Math-
ematical Biology, 23(3):305–318, April 1986. CODEN JMBLAJ. ISSN
com/article/10.1007/BF00275251.

in the gradostat. Journal of Mathematical Biology, 23(3):319–339, April
1986. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic).

deterministic non-reducible n-type epidemic. Journal of Mathematical
Perelson:1986:MBM

Scalia-Tomba:1986:AFS

Anonymous:1986:Ab

Niklas:1986:AET

Edelstein-Keshet:1986:MTP

Lefevre:1986:TBC

REFERENCES

REFERENCES

REFERENCES

Cushing:1986:PLV

Artzrouni:1986:RCG

Brannan:1986:RSI

Belic:1986:MMH

Morton:1986:TCM

Udayabaskaran:1986:SIB

Hadeler:1986:HTW

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

DeYoung:1988:PAF

Arzberger:1988:ERI

Arzberger:1988:RGR

Bergh:1988:SDA

Lui:1988:CCE

Anonymous:1988:Ac

Christiansen:1988:EML

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>N. Limić</td>
<td>On stochastic compartmental models</td>
<td>27(1)</td>
<td>1</td>
<td>105–113</td>
<td>1989</td>
<td>link</td>
</tr>
<tr>
<td>194</td>
<td>Hal Smith and Betty Tang</td>
<td>Competition in the gradostat: the role of the communication rate</td>
<td>27(2)</td>
<td>2</td>
<td>139–165</td>
<td>1989</td>
<td>link</td>
</tr>
</tbody>
</table>

REFERENCES

Schaalje:1989:RAR

Kirkpatrick:1989:QGM

Ellner:1989:CSD

Swetina:1989:FSM

Kurata:1989:ATC

Vance:1989:NMP

REFERENCES

REFERENCES

Invernizzi:1991:QAH

Basten:1991:BPM

Griffiths:1991:WLO

Lin:1991:UEE

Anonymous:1991:A

Szucs:1991:SMDb

REFERENCES

[958] Kazunori Sato, Hirotsugu Matsuda, and Akira Sasaki. Pathogen invasion and host extinction in lattice structured populations. *Journal of Mathe-
REFERENCES

Gradl:1994:LTB

Bell:1994:NMM

Gavrilets:1994:MMV

Edelstein-Keshet:1994:SMT

Nisbet:1994:PDC

Dillon:1994:PFG

REFERENCES

REFERENCES

Schwegler:1994:FCC

Franke:1994:PEO

Takada:1994:RBT

Zhou:1994:PSD

Shnol:1994:SRB

Chiu:1994:ACS

Beltrami:1994:MRV

Hoppensteadt:1994:RSC

Witelski:1994:AST

Pruss:1994:PAD

Gyllenberg:1994:QSD

Av-Ron:1994:RTP
REFERENCES

Hillen:1996:TMC

Watanabe:1996:SCC

Gimelfarb:1996:SAR

Schwarz:1996:MTM

Soto-Treviño:1996:PBR

vandenBosch:1996:DID

Rinaldi:1996:RBS

REFERENCES

REFERENCES

Satulovsky:1997:SIL

Glendinning:1997:MAC

Behncke:1997:OMF

Kirzhner:1997:MDU

Nagylaki:1997:DMM

Dodd:1997:POA

REFERENCES

REFERENCES

REFERENCES

Sanchez-Garduno:1997:TWP

Powell:1997:CSF

Lewis:1997:AMW

Kirschner:1997:OCC

vanHerwaarden:1997:SEP

Teso:1997:SPB

REFERENCES

REFERENCES

REFERENCES

1136 Jay H. Beder and Richard Gomulkiewicz. Computing the selection gradient and evolutionary response of an infinite-dimensional trait. *Journal
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yannacopoulos:1999:EDV

Wiegmann:1999:SSI

Henson:1999:CAS

Percus:1999:ILD

Lu:1999:PGA

Yi:1999:NFD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Buono:2001:MCPa

Buono:2001:MCPb

Roose:2001:MMP

Engelborghs:2001:NBA

Chaplain:2001:STP

ElHoussif:2001:DSS

Teng:2001:EDS

Baake:2001:MRT

Hsu:2001:GAM

Zacher:2001:PSA

Luchsinger:2001:SMP

Luchsinger:2001:ALT

Lemire:2001:ESS

REFERENCES

REFERENCES

Dreyer:2001:ASA

Diekmann:2001:FAG

Chen:2001:IGI

Berezovskaya:2001:PAR

Martin:2001:PPM

Xiao:2001:GDR

Sherratt:2001:NMM

Pradines:2001:CLP

Edelstein-Keshet:2001:MAF

Ponomarev:2001:RBD

Hsu:2001:RDR

Bahlo:2001:CTT

REFERENCES

[1359] Gabriele Grassi, Mario Grassi, Anne Kuhn, and Reinhard Kandolf. Determination of hammerhead ribozyme kinetic constants at high molar

REFERENCES

Hans F. Weinberger. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. *Journal of Mathematical Biology*
Layton:2002:NMR

Whitaker:2003:DBB

Hwang:2003:DEE

Esteva:2003:CDS

DeLeenheer:2003:FCC

Weinberger:2003:SST

Cristini:2003:NST

Waxman:2003:NES

Wiuf:2003:IPH

Mitchener:2003:BAF

Salathe:2003:MAO

Ottesen:2003:VPF

Ghosal:2003:SMI

Lakin:2003:WBM

Martcheva:2003:PAE

Culshaw:2003:MMC

Eshel:2003:EDS

REFERENCES

[1401] Maria-Josefina Hernandez and Ignacio Barradas. Variation in the outcome of population interactions: bifurcations and catastrophes. *Journal...

REFERENCES

[1430] Aline de Koeijer, Hans Heesterbeek, Bram Schreuder, Radulf Oberthur, John Wilesmith, Herman van Roermund, and Mart de Jong. Quantifying BSE control by calculating the basic reproduction ratio R_0 for

[1436] Rachel Norman, David Ross, M. Karen Laurenson, and Peter J. Hudson. The role of non-viraemic transmission on the persistence and dynamics of a tick borne virus — louping ill in red grouse (*Lagopus lagopus scoticus*) and mountain hares (*Lepus timidus*). *Journal of Mathematical Biology*

[1442] Sabin Lessard and John Wakeley. The two-locus ancestral graph in a subdivided population: convergence as the number of demes grows...

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ballyk:2005:GAC

Jung:2005:MMC

Fowler:2005:DRM

Codling:2005:CSS

Anguige:2005:MAA

Dolak:2005:KMC

Foppa:2005:BRN

Hethcote:2005:SCP

Akman:2005:EMI

Getto:2005:DAC

Parvinen:2006:FVA

REFERENCES

REFERENCES

Anderson:2006:FAC

Guedon:2006:AGN

Farcot:2006:GPC

DeLeenheer:2006:GSC

Hopfner:2006:SMF

Baker:2006:MIC

REFERENCES

REFERENCES

[1608] Julia Heßeler, Julia K. Schmidt, Udo Reichl, and Dietrich Flockerzi. Co-
existence in the chemostat as a result of metabolic by-products. Journal of Mathematical Biology, 53(4):556–584, October 2006. CODEN JM-
BLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic). URL http://

[1609] Thomas Hillen. M mesoscopic and macroscopic models for mes-
enchymal motion. Journal of Mathematical Biology, 53(4):585–616,
October 2006. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

[1610] Masato Iida, Masayasu Mimura, and Hirokazu Ninomiya. Diffusion,
cross-diffusion and competitive interaction. Journal of Mathematical
Biology, 53(4):617–641, October 2006. CODEN JMBLAJ. ISSN 0303-
6812 (print), 1432-1416 (electronic). URL http://link.springer.com/

[1611] Maia Martcheva, Horst R. Thieme, and Thanate Dhirasakdanon. Kol-
mogorov’s differential equations and positive semigroups on first mo-
671, October 2006. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

[1612] Johannes Müller, Christina Kuttler, Burkard A. Hense, Michael Roth-
baller, and Anton Hartmann. Cell-cell communication by quorum sensing
702, October 2006. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

[1613] Muntaser Safan, Hans Heesterbeek, and Klaus Dietz. The minimum ef-
fort required to eradicate infections in models with backward bifurcation.

Shim:2006:ASE

Smith:2006:DDM

Rudnicki:2006:MEP

Picchini:2006:MEH

Alford:2006:RWS

Wiuf:2006:CEP

McMillen:2006:ERM

Deutsch:2006:EES

Grover:2006:DA

Muller:2006:GMR

Preziosi:2006:HMM

Wood:2006:LSN

Inaba:2007:ASH

Broom:2007:EKS

Iber:2007:MSS

Sun:2007:ADW

Ellner:2007:SSP

Baake:2007:MSA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pfaffelhuber:2007:AGP

Lemon:2007:TWB

Li:2007:GDM

Edwards:2007:SHE

Jones:2007:ERP

Trewenack:2007:DST

[1685] Abbey J. Trewenack, Kerry A. Landman, and Ben D. Bell. Dispersal and settling of translocated populations: a general study and a New Zealand

REFERENCES

Zhao:2008:RIP

Metzler:2008:PRS

Tjaden:2008:PSN

Sato:2008:PPS

Sarver:2008:FFL

Wang:2008:RFK

REFERENCES

REFERENCES

REFERENCES

Barnett:2008:ASS

Mouser:2008:MPC

Futakata:2008:FAR

Adams:2008:GDD

Ruan:2008:CHB

VanCleve:2008:SLP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kooijman:2009:WEC

Gautrais:2009:AFM

Keener:2009:IMR

Kuwamura:2009:MMP

Anguige:2009:ODM

Zhang:2009:MAB

REFERENCES

Macklin:2009:MMN

Anderson:2009:MDI

Byrne:2009:IBC

Chaplain:2009:P

Cristini:2009:NSS

ORourke:2009:LQT

Owen:2009:AVR

Painter:2009:MCM

Preziosi:2009:MMT

Rockne:2009:MMB

Sinek:2009:PDP

Szymanska:2009:MMI

REFERENCES

Zhu:2009:STN

Ermentrout:2009:SSA

Reiter:2009:EDG

Frenod:2009:EMV

Domijan:2009:BOC

de-Camino-Beck:2009:GTM

Gerberry:2009:SMC

DeLeenheer:2009:FAT

Lalam:2009:QAP

Javierre:2009:MAP

Broom:2009:GTM

REFERENCES

Pozrikidis:2010:NSB

Liu:2010:MTC

Karev:2010:MTS

Mirams:2010:MTA

Pedersen:2010:ITS

REFERENCES

REFERENCES

REFERENCES

McWalter:2010:RRI

Smith:2010:ATP

vonWangenheim:2010:SCR

Jagers:2010:PSP

Kelkel:2010:SRD

Cattiaux:2010:CWC

REFERENCES

REFERENCES

Wang:2011:PPS

Andersson:2011:SSE

Miller:2011:NPE

Gyllenberg:2011:NSC

Blackstone:2011:MCI

Souplet:2011:ISD

Ainseba:2011:GDH

Biler:2011:LMS

Jones:2011:CMT

Lambert:2011:SAD

Kwok:2011:PGL

Forsyth:2011:PGG

REFERENCES

Huang:2011:GAD

Andasari:2011:MMC

Mente:2011:PEN

Delgado-Eckert:2011:MHR

Lee:2011:MFV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nicolas Bacaër. The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality.

REFERENCES

REFERENCES

REFERENCES

Wu:2012:HSS

Bokes:2012:EAD

Wang:2012:PON

Mori:2012:EMP

Curuksu:2012:ACS

Rebelo:2012:PSF
REFERENCES

Smith:2012:PBP

Nabi:2012:TOC

Li:2012:JEM

Taylor:2012:MPE

Northcott:2012:CPV

Diao:2012:EDT

REFERENCES

Hautphenne:2012:MBT

Priklopil:2012:IBU

Stroyan:2012:VDM

Mirrahimi:2012:EST

Weng:2012:PST

Hodge:2012:CMN

Inaba:2012:NPB

ElKhatib:2012:RDM

Domijan:2012:IGS

Jin:2012:SIP

Smith:2012:ICS

Lee:2012:BOS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hanes:2012:MRV

Moulton:2012:BEC

Leviyang:2012:ASP

Clote:2012:PNR

Henkel:2012:MSP

Guo:2012:TDI

Depperschmidt:2013:BRP

Breban:2013:REP

George:2013:MMN

Serna:2013:AUB

Bertuzzi:2013:EOS

Gyllenberg:2013:HOD

REFERENCES

REFERENCES

Stankova:2013:IPD

Kooijman:2013:YEP

Nakaoka:2013:SSS

vanGils:2013:LBN

DeRoos:2013:OSA

Metz:2013:DIB

[2132] Xuefeng Wang and Qian Xu. Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem. *Journal of Mathematical Biology, 66*(6):1241–1266, May 2013. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-
Boissard:2013:TFB

Faye:2013:LSU

Wang:2013:EIE

Bearon:2013:HSC

Malerba:2013:PRR

Clarelli:2013:FDM

REFERENCES

Avdonin:2013:DDP

Lu:2013:IPB

Doebeli:2013:SCG

Cai:2013:MBE

Koch:2013:ERR

Ditlevsen:2013:MLN

REFERENCES

REFERENCES

REFERENCES

Argasinski:2013:ETE

Clancy:2013:EPH

Desroches:2013:ICE

Kooijman:2013:EYE

Muller:2013:ADC

Shuai:2013:ETR

Safan:2013:VBC

Kitayimbwa:2013:RBM

Wendl:2013:CTM

Hartmann:2013:ETP

Claus:2013:SAS

REFERENCES

REFERENCES

Mikhal:2013:DAV

Wei:2014:SCS

Hartung:2014:PNI

Zheng:2014:VMB

Moulton:2014:SGK

Allen:2014:MSC

REFERENCES

[2318] Vincent Calcagno, Ludovic Mailleret, Éric Wajnberg, and Frédéric Grognard. How optimal foragers should respond to habitat changes: a reanalysis of the marginal value theorem. *Journal of Mathematical Biology*, 69(5):1237–1265, November 2014. CODEN JMBLAJ. ISSN 0303-
REFERENCES

REFERENCES

Krivan:2014:ATI

Prokopiou:2014:MAM

Luzyanina:2014:MMC

Cantini:2014:SAS

Massarelli:2014:EPP

REFERENCES

REFERENCES

Lin:2015:DSEa

Lin:2015:DSEb

Madzvamuse:2015:CDD

Caiazzo:2015:CHS

Jabbari:2015:MMR
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Evans:2015:PPE

Bruni:2015:OWS

Croft:2015:PIP

Antunes:2015:QGE

Roques:2015:ECN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2451] M. Umar Qureshi and N. A. Hill. A computational study of pressure wave reflections in the pulmonary arteries. Journal of Mathematical Bi-

[2468] Martin Ritchie, Luc Berthouze, and Istvan Z. Kiss. Beyond clustering: mean-field dynamics on networks with arbitrary subgraph com-
REFERENCES

Chalub:2016:FLP

Cha:2016:SMR

Xiao:2016:CTI

Sainudiin:2016:ARD

Gholami:2016:IPF

REFERENCES

Pfab:2016:RPP

Johnston:2016:CAP

Gou:2016:HMS

Jin:2016:RSS

Costa:2016:SEE

Ibanez-Marcelo:2016:SEE

REFERENCES

Yang:2016:MMS

Pacheco:2016:EDC

Metz:2016:FDA

Kisdi:2016:ADS

Geritz:2016:MIN

[2502] Chunmei Shi, Lingling Zhao, Junjie Wang, Chiping Zhang, Xiaohong Su, and Peijun Ma. Micro-object motion tracking based on the probability hypothesis density particle tracker. *Journal of Mathematical Bi-

REFERENCES

Du:2016:PES

Bendahmane:2016:TPD

Guiver:2016:RSP

Silva:2016:CFH

Davis:2016:MMD

REFERENCES

[2525] Paul A. Roberts, Eamonn A. Gaffney, Philip J. Luthert, Alexander J. E. Foss, and Helen M. Byrne. Retinal oxygen distribution and

[Dawes:2016:LPF]

[Economou:2016:DSE]

[Drmota:2016:SAE]

[Esser:2016:PDL]

[Sherratt:2016:WDC]

[Jonathan A. Sherratt. When does colonisation of a semi-arid hillslope generate vegetation patterns? *Journal of Mathematical Biology*, 73(1):]

REFERENCES

Weber:2016:IAG

Wang:2016:STF

Subbey:2016:ESI

Liu:2016:AST

Delaporte:2016:MPS

Yuan:2016:DIR

Ada W. C. Yan, Pengxing Cao, and James M. McCaw. On the extinction probability in models of within-host infection: the role of latency and immunity. *Journal of Mathematical Biology*, 73(4):787–813,

[2560] Daniel Sánchez-Taltavull, Arturo Vieiro, and Tomás Alarcón. Stochastic modelling of the eradication of the HIV-1 infection by stimula-

Kan:2016:MTS

McClenery:2016:ESN

Perthame:2016:DBR

Wang:2016:MFE

Menichini:2016:MMT

Yang:2016:EIA

REFERENCES

REFERENCES

Abeliovich:2016:HCS

Dumont:2016:NTN

Doutor:2016:OVS

Chung:2016:DTS

Belavkin:2016:MFL

Zhao:2016:ZVL

Songnian Zhao, Yan Kuang, Chih-Hang Wu, David Ben-Arieh, Marcelo Ramalho-Ortigao, and Kaiming Bi. Zoonotic visceral leishmaniasis transmission: modeling, backward bifurcation, and optimal control. *Journal
REFERENCES

Peng:2016:PID

Gandolfi:2016:SSE

Bigan:2016:NSC

Rodriguez:2016:ECP

Schlagel:2016:RMM

Berman:2017:PRI

Lladser:2017:RPI

Layer:2017:PTE

Massaccesi:2017:NDS

Paniello:2017:EOG

Manhart:2017:EDE

Saez:2017:GRR

Bordewich:2017:FPT

Banks:2017:NSE

REFERENCES

REFERENCES

[2636] Eric Foxall and Nicolas Lanchier. Survival and extinction results for a patch model with sexual reproduction. *Journal of Mathematical Bi-
Abdelrazec:2017:MAR

Cai:2017:GPV

Yatat:2017:IMF

Bokes:2017:GEN

DONofo:2017:TBF

REFERENCES

REFERENCES

Armbruster:2017:EPC

Olobatuyi:2017:RDM

Lombardo:2017:DPM

Clamer:2017:HCM

Promislow:2017:EBG

gust 2017. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416 (elec-
tronic). URL http://link.springer.com/article/10.1007/s00285-
016-1089-y; http://link.springer.com/content/pdf/10.1007/

016-1091-4; http://link.springer.com/content/pdf/10.1007/
s00285-016-1091-4.pdf.

1007/s00285-016-1085-2; http://link.springer.com/content/

017-1093-x; http://link.springer.com/content/pdf/10.1007/
s00285-017-1093-x.pdf.

http://link.springer.com/content/pdf/10.1007/s00285-016-1092-
3.pdf.

Zhou:2017:DTM

Iron:2017:MCS

Besse:2017:LTT

Lanzarone:2017:BEA

REFERENCES

http://link.springer.com/article/10.1007/s00285-017-1113-x;
http://link.springer.com/content/pdf/10.1007/s00285-017-1113-x.pdf.

REFERENCES

Lin:2017:SSM

Langlois:2017:NPD

Cen:2017:BAG

Zhao:2017:DFB
REFERENCES

REFERENCES

Kuan-Wei Chen, Kang-Ling Liao, and Chih-Wen Shih. The kinetics in mathematical models on segmentation clock genes in ze
REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s00285-017-1154-1;

Hening:2018:SPG

Sherborne:2018:MFM

Yan:2018:ASM

Evans:2018:RHO

Garcia-Nieto:2018:PME

[Bao:2018:FBM]

[Koslicki:2018:EPI]

[Ho:2018:BBD]

[Mattei:2018:CDA]

Christen:2018:MSE

Just:2018:OEM

Crewe:2018:DFU

Gavryushkin:2018:CDT

Manda:2018:MCW

Zhichun Yang, Chuangxia Huang, and Xingfu Zou. Effect of impulsive controls in a model system for age-structured population over a patchy environment. *Journal of Mathematical Biology, 76*(6):1387–1419,
REFERENCES

REFERENCES

REFERENCES

Gunog Seo and Gail S. K. Wolkowicz. Sensitivity of the dynamics of the general Rosenzweig–MacArthur model to the mathematical form of the functional response: a bifurcation theory ap-

REFERENCES

REFERENCES

REFERENCES

Barbour:2018:LAM

Baake:2018:PVD

Michalaki:2018:AAT

Eikenberry:2018:MMC

McClelland:2018:EEL

REFERENCES

REFERENCES

REFERENCES

[2821] Takuji Oba and Jun Kigami. Why does invasion imply substitution? Beyond the paradigm of invasion fitness. *Journal of
REFERENCES

Moore:2018:OCT

Jaramillo:2018:HCS

Zheng:2018:MMA

Diekmann:2018:KPH

REFERENCES

http://link.springer.com/article/10.1007/s00285-018-1215-0;

[2849] Simona Grusea, Willy Rodríguez, Didier Pinchon, Louînes Chikhi, Simon Boitard, and Olivier Mazet. Coalescence times for three genes

Iggidr:2019:SES

Miller:2019:IWP

Hening:2019:AHP

Duong:2019:DNI

Canizo:2019:EEG

Kruff:2019:RMS

Ge:2019:IAP

Lemarre:2019:GMM

Camacho:2019:BMT

Gray:2019:CTT

Amorim:2019:ANM

Yegorov:2019:OCB

deSouza:2019:FPM

Bayen:2019:SSO

[2878] Térence Bayen and Pedro Gajardo. On the steady state optimization of the biogas production in a two-stage anaerobic digestion
REFERENCES

REFERENCES

REFERENCES

Alqawasmeh:2019:PSS

Kesmia:2019:NDT

Li:2019:PSE

Guan:2019:CNS

He:2019:DCR

REFERENCES

REFERENCES

Geiss:2019:BMG

Kaouri:2019:SMM

Wang:2019:PEP

Choi:2019:IPE

During:2019:AIM

REFERENCES

Gonzalez-Parra:2019:RVT

Felipe:2019:DAB

Yamakou:2019:SFN

Hening:2019:HIS

Allard:2019:BST

REFERENCES

REFERENCES

577

Subramanian:2019:SGG

Hellmuth:2019:ACF

Williams:2019:CDD

Almarashi:2019:EII

Franco:2019:BPS

[2957] Filippo Disanto, Pasquale Miglionico, and Guido Narduzzi. On the unranked topology of maximally probable ranked gene tree topolo-

REFERENCES

Zadorin:2019:NSC

Salako:2019:CCS

Xin:2019:OMI

Obatake:2019:OBM

Pargaei:2019:MSC

[2967] Meena Pargaei, B. V. Rathish Kumar, and Luca F. Pavarino. Modeling and simulation of cardiac electric activity in a human cardiac

REFERENCES

REFERENCES

Buttenschön:2019:CRW

Dragicevic:2019:CRC

Ramos:2019:KMC

Kunisch:2019:IIE

Soares:2019:DAA
REFERENCES

[2992] Odo Diekmann, Sergey Gavrilets, Mats Gyllenberg, Simon Levin, and Mark Lewis. Special issue of the *Journal of Mathematical Biology* to

Cantrell:2020:EDS

Poggiale:2020:APP

Maciel:2020:ESM

Labrum:2020:MAE

REFERENCES

REFERENCES

REFERENCES

Bacaer:2020:DMP

Wattis:2020:MMT

Donde:2020:UPP

Bai:2020:BRR

Ho:2020:CML
Lam Si Tung Ho, Vu Dinh, Frederick A. Matsen IV, and Marc A. Suchard. On the convergence of the maximum likelihood estimator for the transition rate under a 2-state symmetric model. *Journal of Mathematical Biology*, 80(4):1119–1138, March 2020. CODEN JMBLAJ. ISSN

[3042] Chunyi Gai, David Iron, and Theodore Kolokolnikov. Localized out-
breaks in an S-I-R model with diffusion. Journal of Mathematical Bi-
ology, 80(5):1389–1411, April 2020. CODEN JMBLAJ. ISSN 0303-
6812 (print), 1432-1416 (electronic). URL http://link.springer.com/
com/content/pdf/10.1007/s00285-020-01466-1.pdf.

[3043] Ahmad Alhasanat and Chunhua Ou. On the conjecture for the pushed
wavefront to the diffusive Lotka–Volterra competition model. Journal of
Mathematical Biology, 80(5):1413–1422, April 2020. CODEN JMBLAJ.
ISSN 0303-6812 (print), 1432-1416 (electronic). URL http://link.
springer.com/content/pdf/10.1007/s00285-020-01467-0.pdf.

[3044] Wei-Jian Bo, Guo Lin, and Shigui Ruan. The effect of initial
values on extinction or persistence in degenerate diffusion compe-
tition systems. Journal of Mathematical Biology, 80(5):1423–1458,
April 2020. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416
s00285-020-01468-z; http://link.springer.com/content/pdf/

[3045] Manuela Geiß, Marcos E. González Laffitte, Alitzel López Sánchez,
Dulce I. Valdivia, Marc Hellmuth, Maribel Hernández Rosales, and
Peter F. Stadler. Best match graphs and reconciliation of gene trees
with species trees. Journal of Mathematical Biology, 80(5):1459–1495,
April 2020. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416
s00285-020-01469-y; http://link.springer.com/content/pdf/

[3046] Fabian Freund. Cannings models, population size changes and multiple-
merger coalescents. Journal of Mathematical Biology, 80(5):1497–1521,
April 2020. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416
s00285-020-01470-5; http://link.springer.com/content/pdf/
REFERENCES

Baker:2020:EM

Loy:2020:MPL

Gulbudak:2020:ISA

Finkelstein:2020:SSP

Friedman:2020:AMM

Seirin-Lee:2020:TSF

Anderson:2020:TDP

Ito:2020:DOC

Francis:2020:MFP

Coronado:2020:MVC

REFERENCES

REFERENCES

[3083] Pavol Bokes, Alessandro Borri, Pasquale Palumbo, and Abhyudai Singh. Mixture distributions in a stochastic gene expression model with de-

[3089] Frank Boahen and Nicolas Doyon. Modelling dendritic spines with the finite element method, investigating the impact of geometry on

REFERENCES

Eigentler:2020:IMV

Diekmann:2020:CFD

Cai:2020:RID

Linz:2020:CTF

Ei:2020:CMS

REFERENCES

REFERENCES

Tsai:2020:PDT

Li:2020:TWS

Brechmann:2021:USM

Nagahara:2021:MTP

Lopez:2021:DCI

VanGorder:2021:TCP

REFERENCES

Tourigny:2021:CMR

Favero:2021:DPC

Wang:2021:LVC

Collienne:2021:CNN

Kurasov:2021:ASS

Engwer:2021:EEG

REFERENCES

Robin:2021:RMS

Clement:2021:SNM

Martinez:2021:GDC

McAvoy:2021:FPE

Drozhzhin:2021:FOE

Djidjou-Demasse:2021:WHB
Ramsès Djidjou-Demasse, Samuel Alizon, and Mircea T. Sofonea. Within-host bacterial growth dynamics with both mutation and horizontal gene transfer. *Journal of Mathematical Biology, 82*(3):??, February 2021. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416

REFERENCES

Lu:2021:HMC

Shi:2021:ATS

Borri:2021:QER

Fu:2021:TWT

Zhang:2021:DPT

Liu:2021:SSS

[3147] Yue Liu, Elisabeth G. Rens, and Leah Edelstein-Keshet. Spots, stripes, and spiral waves in models for static and motile cells. *Journal of Math-
REFERENCES

Pybus:2021:RBM

Bouin:2021:EAD

Pijpers:2021:NPM

Izuhara:2021:FSF

Andrade-Restrepo:2021:RDM

Gomez-Corral:2021:TDV

Schaller:2021:CBM

Allen:2021:SMI

Kumar:2021:MMG

Reichenbach:2021:SPN

Guo:2021:DNH

Ting Guo, Zhipeng Qiu, Mingwang Shen, and Libin Rong. Dynamics of a new HIV model with the activation status of infected cells. *Journal of Mathematical Biology*, 82(6):??, May 2021. CODEN JMBLAJ.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

Elbasha:2021:VHI

Girardin:2021:DFC

Guilberteau:2021:MBB

Hobolth:2021:MPT

Kozlov:2021:GSA

Le:2021:IID

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ndongo:2022:CBM

Palacios:2022:EBT

Terauds:2022:NAA

Zhang:2022:GAR

Pieschner:2022:IAM

Ji:2022:SDI

REFERENCES

Dean:2022:NDG

Yang:2022:CDH

Degond:2022:MSV

Song:2022:ADE

Zheng:2022:IRP

Wu:2022:ESS

[3335] Bin Wu. Evolutionary stability is sensitive on the conflict between reproduction and survival: proofs. *Journal of Mathematical Biology*, 85(2):???., August 2022. CODEN JMBLAJ. ISSN 0303-6812 (print),
REFERENCES

[3341] Q. Peng and F. J. Vermolen. Upscaling between an agent-based model (smoothed particle approach) and a continuum-based model for...

[3347] Miguel Ballesteros and Guillermo Garro. A model and a numerical scheme for the description of distribution and abundance of individu-

REFERENCES

REFERENCES

[3370] Josef Hofbauer and Sebastian J. Schreiber. Permanence via invasion graphs: incorporating community assembly into modern coexistence the-
Mazari:2022:SEO

Giunta:2022:DME

Campo:2022:GTM

Huang:2022:SBL

Li:2022:WSC

REFERENCES

Eduardo Cerpa, Matías Courdurier, Esteban Hernández, Leonel E. Medina, and Esteban Paduro. A partially averaged system to model neuron

[Browne:2023:VID]

[Allman:2023:TBS]

[Porter:2023:TMS]

[Xu:2023:ILG]

[Wicke:2023:EDB]

Min-Jhe Lu, Wenrui Hao, Bei Hu, and Shuwang Li. Bifurcation analysis of a free boundary model of vascular tumor growth with a
REFERENCES

[3410] Liqiong Pu, Zhigui Lin, and Yuan Lou. A West Nile virus nonlocal model with free boundaries and seasonal succession. *Journal of Mathematical Biology*,
REFERENCES

Delmas:2023:OVV

Pan:2023:CSM

Plesa:2023:SAH

Diekmann:2023:SPI

Barendregt:2023:HCE

Ji:2023:SEC

[3416] Juping Ji, Russell Milne, and Hao Wang. Stoichiometry and environmental change drive dynamical complexity and unpredictable switches...
REFERENCES

Deng:2023:VDI

Ma:2023:MTH

Villar-Sepulveda:2023:GCT

Ban:2023:MAT

Cantrell:2023:EDR

Zhang:2023:CAD

REFERENCES

Yoon:2023:SBA

Huynh:2023:IDD

Zhang:2023:MPS

Lu:2023:RPB

Hill:2023:IID

Heggerud:2023:NDL

REFERENCES

[3462] Yu-Jhe Huang, Jong Juang, Tai-Yi Kuo, and Yu-Hao Liang. Forward-backward and period doubling bifurcations in a discrete epidemic model with vaccination and limited medical resources. *Journal of Mathematical Biology, 86*(5):??, May 2023. CODEN JMBLAJ. ISSN 0303-6812 (print),
REFERENCES

Alebraheem:2023:NMM

Kribs:2023:ITD

Moyles:2023:DSI

Wang:2023:IAG

Vu:2023:WCW

Buckwar:2023:SHM

Evelyn Buckwar, Martina Conte, and Amira Meddah. A stochastic hierarchical model for low grade glioma evolution. *Journal of Mathematical
REFERENCES

Richter:2023:SDG

Hiremath:2023:DDM

Xue:2023:AIS

Ribeiro:2023:CAP

Zitouni:2023:SIC

Katsaounis:2023:SDE

REFERENCES

[3497] Mengfeng Sun and Xinchu Fu. Competitive dual-strain SIS epidemiological models with awareness programs in heterogeneous networks:

REFERENCES

REFERENCES

REFERENCES

[3530] Violette Doublet, Lionel Roques, Etienne K. Klein, François Lefèvre, and Thomas Boivin. Seed predation-induced Allee effects, seed dispersal and masting jointly drive the diversity of seed sources during population expansion. *Journal of Mathematical Biology*, 87(3):??, September 2023. CODEN JMBLAJ. ISSN 0303-6812 (print),
REFERENCES

Le:2023:QND

Bertsch:2023:RBT

Wieder:2023:GEF

Wright:2023:MRR

Walker:2023:WPS

Overwater:2023:ELF

[3536] Marcus Overwater, Daniel Pelletier, and Mike Steel. The expected loss of feature diversity (versus phylogenetic diversity) following rapid

[3542] Aaron Li, Danika Kibby, and Jasmine Foo. A comparison of mutation and amplification-driven resistance mechanisms and their impacts
REFERENCES

Grumbach:2023:EDA

Elgart:2023:PAA

Nguyen:2023:IRD

Roitershtein:2023:ESE

Bhaumik:2023:FPE
REFERENCES

Fromion:2023:SMR

Guo:2023:GDT

Guillen-Gonzalez:2023:FPT

Alfaro:2023:AHE

Abtout:2023:ADL

Linz:2023:ESS

[3559] Maike L. Morrison and Noah A. Rosenberg. Mathematical bounds on Shannon entropy given the abundance of the i-th most abundant taxon.
REFERENCES

Cammarota:2023:LVM

Ball:2023:IHS

Dallaston:2023:ECC

Phan:2023:SDH

Ding:2023:IPS

Navas-Zuloaga:2023:MFA

[3576] Lili Chang, Xinyu Wang, Guiquan Sun, Zhen Wang, and Zhen Jin. A time independent least squares algorithm for parameter identification of Turing patterns in reaction–diffusion systems. *Journal of Mathematical
REFERENCES

REFERENCES

[3587] Léo Meyer, Magali Ribot, and Romain Yvinec. A Lifshitz-Slyozov type model for adipocyte size dynamics: limit from Becker–Döring
REFERENCES

[Holland:2024:DBM]

[Otunuga:2024:TGP]

[Benaim:2024:WCP]

[Cronin:2024:PIP]

[Cordoni:2024:SMV]

[3604] Jing Wang, Hongyong Zhao, and Hao Wang. The role of natural recovery category in malaria dynamics under saturated treatment. *Jour-

[3610] Kaitlyn Toth and Dan Wilson. The influence of synaptic plasticity on critical coupling estimates for neural populations. *Journal of Mathematical Biology*, 88(3):??, March 2024. CODEN JMBLAJ. ISSN 0303-

[3622] Adam Mielke, Mads Peter Sørensen, and John Wyller. Memory effects in disease modelling through kernel estimates with oscillatory time history.

Kerry Manson. The robustness of phylogenetic diversity indices to extinctions. *Journal of Mathematical Biology*, 89(1):??, July 2024. CODEN JMBLAJ.

