A Complete Bibliography of Publications in the
Journal of Mathematical Biology

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 January 2018
Version 1.10

Title word cross-reference

G \cdot U [1402]. k [2294]. K^+ [1495]. \kappa [2358]. L^\infty [2509]. \lambda [246].

\lambda = \alpha_1 + (\alpha_2 + \alpha_3 \lambda e^{-\lambda} [2489]. M^5 [1609]. n [933, 840, 482, 418, 481, 480, 581]. n:m [315]. \omega [246]. R^3 [419]. R^4 [419]. R_0 [2060, 784, 2395, 2127, 1430]. T [2126, 2557]. x [1307]. Daphnia [2662]. X [2713, 833].

-structures [2660]. -trees [2713]. -type [418, 481, 480, 581].

1 [1393, 2005, 2187, 2560, 2007].
2D [2343, 2417].

60th [2485]. 65th [2109].

behavioural benefits bent berlese bent
Bernoulli best better
Bernstein best
Beyond BIAcore
biallelic bias
Biased bidomain biennials
Bifurcation BIAcore
biallelic bias
Biased bidomain biennials
Bifurcations bilayers bile

Biochemical biochemical
Bioluminescence biocontrol
Bioconvection biodiverse
Bioenergetics biochemistry
Biology biocontrol
Biomathematics biomembranes
Biomolecular bioreactor biosensor
Bioprocess bioreactor
Bioprocessing block blocking
Biochemical blooms blow
Blood blood-retina
Blinking blow-up

Consequences
[1957, 1329, 1469, 2253, 1318, 1247, 1248, 963, 1328, 1496, 1463].

15

331, 2345, 757, 1868, 917, 882, 2386, 2583, 767, 1662, 1481, 2630, 1519, 2283,
1140, 988, 1081. disequilibria [2530]. disequilibrium [347, 1999, 902].
disjoint [1064]. disk [2177, 1761]. disk-shaped [2177, 1761]. disorientation
[389]. Dispersal [1050, 2206, 2467, 1685, 431, 552, 2071, 1750, 309, 2159,
1154, 2015, 338, 1352, 1746, 398, 448, 1640, 1315, 1426, 1040, 2316, 2242, 2320,
1719, 691, 1353, 2481, 1295, 2288, 1287, 819]. disperse [462, 560]. dispersed
[2270, 944, 1368]. dispersing [697, 217]. Dispersion
[763, 1661, 2518, 698, 2360, 2361, 512]. displacement [139]. disposition
[2264, 2655, 391]. Dissection [671, 1498, 2570, 951]. dissipation [1334].
dissipative [440]. dissociation [2104]. distal [2249]. Distance
[932]. Disturbances [980, 552, 1216, 549]. divalent [46]. divergence [595].
diversity [1991, 1995, 1296, 364, 2082, 2196, 2410, 932]. division
[2409, 740, 2149, 2456, 554, 1183, 2062, 2327, 572, 2368, 2543].
division-linked [2543]. DNA [1560, 2219, 1397, 209, 2032, 389, 1561, 871,
1334, 1524, 1131, 158, 1309, 1259, 2710, 909, 2172, 2163, 1438, 2188, 2565].
DNA-drug [389]. Do [1146, 2204, 1571]. Does
[1316, 2203, 705, 1157, 1424, 2531]. domain
[1649, 1231, 1321, 1842, 1978, 813, 2620]. domain-shape [813]. domains
dominant [53]. done [2521]. dormancy [1790, 2309]. dorso [1634].
dorsal-ventral [1634]. Dose [917, 2407, 2593, 2393, 1406, 909].
Dose-dependent [917]. dose-response [2393]. doses [1265]. dosing
[2505, 1837]. Double [2039, 463, 2437, 154, 2172]. double-strand [2172].
doubling [1324, 1176, 345]. down [2567, 2204]. downwards [1600]. DPD
[2480]. drainage [2542]. drift [1895, 1728, 1835, 1664, 1202]. driven
[1794, 1971, 2439, 345, 1729, 2629, 2260, 2316, 2362, 2239, 870, 1930, 862, 2434].
driving [1818]. Droop [984, 1099]. Drosophila [1634]. Drug
[1260, 2300, 2264, 2655, 1473, 1073, 2122, 1296, 1265, 303, 2061, 1941, 1803,
[2530]. duals [2722]. duct [413]. ductal [1422]. ductus [2201]. due
Duplicates [1593]. duplication [672]. duplications [2521]. duration
[1020]. **during** [1634, 1240, 827]. **dusky** [646]. **Dynamic**
[373, 1773, 1975, 261, 1457, 1261, 882, 2233, 1504, 2702, 1023, 1269, 2441, 2435, 1394, 1952, 1329, 1677, 1122, 1787, 2721, 2395, 893, 1878, 1248, 2612, 2608, 963, 2499, 1328, 1496, 1047]. **Dynamical**
[470, 1535, 650, 2280, 2503, 889, 1463, 903, 2321, 2262, 1530, 1056, 1412, 1367, 1411, 262, 1518, 1387, 1280, 614, 829, 799]. **dynamically**
[2427]. **Dynamics**
[345]. **Early**
[1403, 2306, 2602, 975, 2448, 530, 1260, 1422, 751, 1034, 1770, 1313]. **early-season** [1260]. **echinoids** [1335]. **eco** [2439, 2478]. **eco-evolutionary** [2439, 2478]. **Ecological**
[2180, 1533, 867, 2443, 1532, 2206, 1173, 1056, 2511, 2111, 752, 295, 688, 1883, 1055, 2125, 1128, 1279]. **ecology**
[1439, 2232, 2058, 2086, 1299, 2063, 1858, 814, 2110, 2494, 614, 1635, 1581]. **economy** [2418]. **ecosystem** [313, 1211, 149]. **ecosystems**
[440, 106, 87, 1663, 267, 2639]. **Edge** [2155, 1274, 1143, 2599, 2178, 2167]. **edge-based** [2178]. **edges** [525]. **Editorial** [1218, 1051]. **Effect**
17

2350, 2481, 513, 1125, 2087, 1326, 2135, 819, 1031. Efficient [2263, 1701].

effort [2073, 199, 1613]. egg [623, 568, 1787, 2540]. egg-larval [623]. eggs
[568, 2183, 2117]. Eigen [624]. Eigenanalysis [284]. eignenmodes [1351].
eigenvalue [2456, 2416, 2680, 512]. eikonal [834]. eikonal-curvature [834].
elastic [1620, 1389]. elasticity [915]. electric [1745, 682, 872, 2537].
electrical [1176, 2224]. electrocardiology [420]. electrodiffusion [1842].
electrolyte [2024, 2069]. Electropermeabilization [2222].
electrophysiology [2454, 2160]. element [1986, 505, 2600].
Elementary [2665, 2427]. elements [841, 694]. elicited [1579]. elimination
[2096, 505, 2600]. eneguis [1286]. elliptic [814]. elongation
[2065, 1630, 387, 582]. embedded [1852]. embeddings [2596]. embeds
[2156]. embryo [2233]. Embryonic [1787, 975, 2506, 928]. emergence
enables [2698]. encephalitis [1543]. encircled [2604]. encode
[2273]. Encoding [1717]. encodings [2044]. end [2599, 1111]. endangered [2424].
endemic [214, 374, 843, 1020]. endemicity [433]. endocrine
[1884]. endosome [1501]. endotacticity [2475]. endothelial [1690]. endurance
[766]. enemies [2643, 2672]. Energetics [1825, 938, 2120]. energies [2577].
Energy [1261, 1336, 2336, 1091, 1787, 1457, 754, 1701, 2235, 2343].
gineered [1568, 2191]. enhanced [1677, 1392, 1579]. enhancement [525].
enrichment [1013, 1460, 1790, 432]. ensemble [1700, 1701]. Entanglement
Entropy [907, 1455, 850, 2645, 1935, 340]. entropy-based [2645]. entry
[2160]. enumeration [2193]. environment
[523, 2176, 1764, 2208, 2281, 2231, 2411, 2556, 2656, 1216, 1517, 1752, 371,
174, 266, 1223, 2528, 338, 1347, 696, 243, 398, 848, 1315, 757, 35, 1868, 277,
227, 718, 166, 2378, 687, 737, 213, 599, 979, 296, 2283]. environmental
[2180, 2105, 1571, 2603, 1037, 948, 2124, 941, 1197, 2374, 2396].
environmentally [1533]. environments
[301, 2549, 332, 390, 2071, 316, 304, 2102, 2406, 1671, 2050, 2126, 2357, 1645,
54, 2360, 2361, 2320, 1668, 2319, 1936, 1886, 1481, 361, 483, 618, 1625, 1510].
environment [2556, 2656]. Enzyme
[716, 265, 161, 1850, 305, 394, 1434, 1490]. enzyme-catalysed [1434, 1490].
enzyme-catalyzed [265]. enzyme-substrate [716]. enzymes [892].
enzymic [716]. Ephaptic [1745]. Ephedra [585]. Epidemic
[406, 1589, 2352, 1973, 2140, 2635, 1408, 2228, 1023, 1923, 1366, 2176, 777,
2237, 1598, 1764, 2003, 2411, 2556, 1959, 2123, 2707, 1004, 2422, 1320, 1915,
1670, 967, 1208, 1085, 1209, 1369, 517, 352, 2296, 2528, 1067, 1734, 1766, 1815,
257, 2359, 920, 1039, 1508, 786, 1632, 2623, 2162, 949, 2610, 1868, 1392, 2165,
1330, 418, 481, 480, 581, 348, 555, 1071, 460, 531, 1614, 1930, 426, 425, 2257,
275, 1841, 2030, 2285, 101, 1519, 392, 358, 2704, 2471, 2571, 189, 1242, 1907].
Epidemics [288, 1269, 1398, 1758, 2457, 2673, 2726, 466, 240, 2579, 2302,
2649, 2268, 2533, 1928, 2047, 2353, 2721, 433, 1214, 1730, 2500, 1651, 870,
1583, 83, 2499, 1020, 1111]. épidémie [2556]. Epidemiologic [202, 1220].
Ewens [491, 1854]. Exact

Evolutionary

Examples [594, 1913, 867, 1400]. excessive

variables

Eyewitness [1518, 1990].

factors

fast-slow [2462]. fatal

Favor [1533]. favors [2128]. fear [2569]. feast [602].

Feedback [1376, 1709, 2264, 2655, 2387, 1486, 558, 2640, 2377, 1186, 1852, 337, 2234,
112, 1123, 2249, 1876, 20, 2537]. feedbacks [2439]. Female
[293]. fertilities [1345]. fertility [346, 25, 538, 2127, 457, 1744]. fertilizing
fibrin [2480]. fibroblasts [1893]. fibroblasts/myofibroblasts [1893].
fibronectin [2686]. fibrous [2177, 2476]. fidelity [2014]. field
[2665, 933, 2404, 2134, 496, 79, 2573, 2605, 2282, 2256, 2468, 2141, 1191, 2428,
2499, 864, 2119]. fields [796, 705, 1549, 175, 682, 1912]. fight [2430, 2725].
fighting [2430, 2725, 2453]. fighting-predators-prey [2453]. filament
[1308, 1984, 2599]. filamentary [1531]. filaments [1825]. Filippov
findings [2570]. Finetti [26]. Finite [2633, 1011, 2040, 1253, 1986, 2711,
2681, 741, 250, 1951, 280, 1321, 2394, 324, 410, 1580, 2354, 2072].
finite-element [2072]. Finite-size [2633]. fire
[1225, 2169, 2156, 2164, 2578, 2270, 1482, 1441, 2349, 2639]. fieryly [832].
firing [2134, 1267]. First [1611, 747, 2641, 1877, 1722, 1850, 441]. first-order
[1850]. fish [1788]. Fisher [1757, 2115, 2252, 2714, 537, 2684, 1348, 719, 2447,
1256, 1582, 830, 768, 1572, 384, 1000, 1155, 993]. fishery
[939, 312, 529, 229, 311]. fishes [1759]. fission [450, 1550]. fit [2173, 2258].
Fitness [1388, 1253, 2581, 2090, 2255, 1424, 1317, 929, 1423, 1518, 2498, 2559,
1550, 1191, 1912, 1058, 2544]. fitness-returns [2498]. fitnesses
[1228, 768, 1042, 889]. fittest [1253]. fitting [2422, 2372]. FitzHugh
[1618, 12, 899, 336, 125, 367, 541, 47]. Fixation
[1018, 2469, 99, 1715, 2714, 2313, 1654]. fixed
[2218, 2601, 1596, 2085, 1433, 2161]. fixing [2517]. flagella [1586]. flagellates
[1997, 2253, 579, 431, 1044, 1221, 1166, 1575, 1464, 2236, 702, 780, 2161, 1337,
1568, 2213, 2550, 598, 717, 941, 1846, 2249, 2201, 2392, 2564, 1581, 2480, 795,
1783, 1749, 1661]. Flow-distributed [1997]. flows [1135, 1202]. fluctuating
[1158, 523, 301, 1957, 461, 221, 277, 213, 2319, 1936, 979, 2396]. fluctuation
[1880, 1197, 1255]. Fluctuations [985, 1237, 939, 603, 1132, 1984, 1692].
fluid [2614, 2138, 1839, 1389, 2249, 2130, 2195, 519]. fluid-filled [1389].
fluid-mechanical [519]. fluktuerender [523]. fluorescence [1779]. Flux
[2315, 2591, 1343, 2243, 2427, 116, 1258, 2562, 2702]. Focal [981]. Fokker
foliage [111, 149]. follow [2414]. following [2412, 962, 985, 792]. food
[1196, 1968, 1168, 365, 1321, 545, 966, 1122, 1469, 1365, 2546, 880, 2329, 341,
foods [1461, 1462]. footing [2404]. footprinting [1560]. foragers
[2318, 962]. foraging [1215, 1010, 735]. force [938, 1091, 1343, 2382]. Forced
[302, 2707, 518, 1201, 1934, 2026, 531, 1099]. forcing [365, 984, 2209].
foreign [1768]. forest [956, 2349]. forestry [1125]. Foreword [2145]. form
[803, 478, 2446, 260]. Formal [1741]. Formation
[872, 1523, 1032, 1986, 1818,
gradual [2255]. gradually [469]. Grafen [2333].
granied [2683, 2387]. graining [2077]. grammar [2344]. granulocyte
[29, 559]. granulocytopoiesis [239]. Granulopoiesis [1500, 1406, 1479].

Graph
[1742, 1900, 1665, 1666, 2324, 2052, 2623, 1910, 1442, 1930, 1703, 1828].

graph-automorphism [1930]. Graph-theoretic [1900, 1665, 1666, 1828].

Graphical [2600, 1917]. graphs [2081, 2095, 1930]. grass [2639].

Grey-box [1456]. GRO [2595]. GRO-seq [2595]. Group
[2287, 2113, 1550, 1406, 1479]. group-structured [1835]. Group-theoretic
[1900, 1665, 1666, 1828].

[1778]. Gyllenberg [2485, 2215]. gynodioecy [1410]. gyrotactic [1179].
hypoxia [1694]. Hysteresis [161, 659, 2627, 2290]. hysteresis-type [2290].

IM [2263]. image [849, 1729]. image-driven [1729]. imaging [1677].

Impulsive [1911, 2061, 1496, 2639]. in/on [748]. inactivation [169].

incompatibility [1996, 900, 970, 1019]. incompatible [602]. incomplete [1833].

Inconsistencies [764]. Incorporating [2054, 1791, 2726, 841, 915, 2552, 2533, 2703, 320, 1321, 2317, 2179]. increase [657, 704, 2471]. increased [1316, 2039]. increases [1664]. increasing [343].

Models [788, 1281, 1282, 1548, 1776, 1755, 803, 1222, 846, 919, 714, 713, 1544, 364, 433, 488, 691, 573, 1159, 2337, 891, 1720, 1050, 2218, 223, 1023, 500, 592, 2176, 347, 1088, 1489, 1637, 2060, 1959, 431, 1507, 2602, 2449, 2420, 301, 1091, 470, 708, 2211, 2422, 2323, 1915, 312, 1215, 1670, 1752, 1432, 1875, 2425, 412, 406, 556, 547, 975, 2724, 1795, 2638, 2591, 2590, 1439, 967, 2147, 82, 1492, 2631, 733, 774, 2202, 2717, 727, 1275, 1208, 1898, 396, 2681, 2232, 661, 1209, 1369, 304, 1567, 1061, 2159, 94, 140, 1813, 2670, 1370, 1219].

moderate [1938]. modes [206, 2328, 1962, 779, 2427]. modification [2096, 1901, 1042, 244].

neutral-alleles [296]. neutrality [428]. Neutrally [37]. neutrophil [15].
non-additivity [1253]. non-autonomous [1882]. non-Boolean [97].
non-catastrophic [2497]. non-causal [1852]. non-constant [325, 401, 16].
non-covids [2267]. non-diffusive [2252, 2296]. non-equilibrium [1147].
non-existence [1104]. non-extinction [1874, 699]. Non-hereditary [2049].
non-homogeneous [143]. non-identifiability [2215]. non-isolated [1434].
Non-linear [1179, 200, 854, 234, 40, 1000, 1107, 16]. non-Lipschitzian [2684].
non-local [2518, 2724, 722, 2085, 1868, 1193, 2693]. Non-locality [916].
non-Markovian [377]. non-monotone [929]. non-negative [2017].
non-negligible [1850]. non-nitrogen-fixing [2517]. non-parallel [1749].
non-parametric [2175]. Non-periodicity [1816]. non-progressors [1869].
non-proliferating [909]. non-reducible [418, 481, 480, 581]. non-smooth [2567].
non-uniform [1475]. non-viraemic [1436]. nonautonomous [2228, 2576, 1287, 749].
nocoding [1698, 1705]. nonconstant [918]. non-cooperative [1049]. nonepistatic [178]. nonexistence [724].
nutrient-phytoplankton-zooplankton [1227]. nutrients [1563].
nystagmus [1545].

observational [1509]. observed [1540, 1651, 1340]. observed [729, 394]. ODE [1364, 2215, 2615]. ODEs [1643, 2184].

One [246, 24, 380, 166, 1791, 1345, 1225, 1432, 313, 2328, 1724, 1472, 2668, 1728, 264, 2557, 986, 852, 1310, 836, 225, 487, 688, 1835, 1192, 2137, 180, 598, 1441, 1389, 2290, 1881, 1028, 799, 2537, 1014, 819]. One- [166, 598].

onset [2122, 1370, 1278]. onto [860]. Ontogenetic [2120].

patterning [1634, 198, 2198]. Patterns
[1235, 831, 9, 1786, 1775, 123, 1167, 1739, 976, 2380, 1505, 1862, 990, 1324,
2504, 1857, 170, 246, 226, 276, 1474, 468, 2017, 2667, 750, 2615, 172, 872,
1418, 453, 1016, 1267, 2531, 1897, 1188, 914, 1449, 1032]. payoffs [2180].
PDE [1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
[1165, 1778, 2480]. PDE
2687, 1808, 2638, 2321, 2042, 2205, 2456, 1763, 280, 696, 2364, 809, 464, 1372, 2024, 2069, 2280, 624, 2503, 1355, 1340, 811. property [506].

Regular [683, 548, 706, 707, 778, 228]. Regularity [1335]. regularly [2316].
reticulation [1905]. retina [59, 1006]. Retinal [2525]. retreat [2173, 2258].
[1865, 1301, 2561]. Riemannian [1690]. right [494]. rigidity [57, 1579].
Rigorous [1968, 2168, 2404, 1036]. Ring [1250, 1679, 2244]. rings [563, 977].
rRNA [2193, 1702, 2314, 1402, 1700, 2059, 2083, 2225, 2477, 2009, 2653, 2595, 1698, 1704, 467, 1701, 2334, 1707, 2343, 1708, 1703]. RNABC [1708]. RNAs [1705]. robber [2129]. Robust [2228, 2294, 2511, 1756, 2646, 2136, 1214].
Robustness [1144, 2587, 1822, 2555, 2224]. rock [1656]. rod [1222, 1620].
seasonality [1598, 1939, 2003]. seasonally [2707, 221, 2158, 2026, 531, 870].
seasons [860]. Second [1774, 790, 865, 636, 87, 408, 1987, 747].
Second-order [790, 865, 1987]. secondary [2314, 1402, 1700, 2059, 2083, 2225, 2355, 2477, 1704, 467, 1701, 2389, 1282].
section [1417]. sections [673]. sedentary [462]. Seed [338, 2278, 2068].
Segel [1947, 1483, 1083, 1342]. segmental [342]. segmentation [2717, 1885].
short [732, 2719]. short-range [2719]. should [2318, 2477]. shrimp [1319].
shuffles [1700]. SI [2395]. sib [906]. sides [2716]. sigmoidal [1245]. sign
signalling [2297, 1573, 2198, 1849, 2054, 1449]. signals [2279, 84].
significance [520, 235]. silico [1784]. similar [1947, 271, 1488]. Simple
[2333, 962, 1170, 1322, 339, 103, 2255, 167, 1363, 1382, 1390, 177, 1090, 1407, 1821, 435, 2073, 880, 180, 125, 1163, 574, 179, 1958, 457, 1279, 1368, 648, 2561, 1242]. simplex [2634].
simulations [1275, 1797, 771, 2584, 2106, 2362, 2223, 1712]. Simultaneous [849, 2725, 1181, 1258]. Sinapis [3]. since [2122, 1121]. Single
single-joint [1644]. Single-locus [970, 1061, 1425, 208, 1744].
single-species [2153, 846, 1452, 945, 1287]. Singular
[1573, 419, 2308, 698, 2496, 1002, 1856, 1299, 135]. singularities [2607, 2375].
Singularity [2544, 2022]. singularly [772]. singulière [419]. sink [2594, 44].
sinking [1811]. SIR [2228, 2665, 2237, 2457, 2726, 2707, 1004, 1734, 2023, 2353, 949, 1924, 2158, 2500, 2650, 1841, 1710, 2704]. SIR-models [2650].
SIRS [569, 2186]. SIS [1786, 1923, 1366, 2411, 2556, 2575, 1907, 2528, 1039, 1220, 2162, 2610, 2031, 2571, 1242]. SIS-household-epidemic [1907]. site
[567, 2593, 2014, 758, 2516, 1189, 2616, 628]. site-specific [2516].
site-to-site [2593]. sites [1753, 2104, 2103, 2175, 1131, 1121, 1340]. situ
size-specific [312]. size-spectrum [2716]. size-structured
[1362, 853, 1530, 1286, 1116, 1062, 2639]. sizes [882, 2675]. skeletal [1644].
[2465, 1154, 911, 1556, 598, 2462, 2204]. Slow-fast [2465]. slowing [469].
[2628, 2134, 2567]. snail [2046]. snail-schistosome-human [2046].
snapshots [1165]. SNR [2163]. social [1419, 2143]. Society [1594, 1621].
stochastic

stochastic

stochasticity

stochastique

stocking

Stoichiometric

Stokes

Stokeslet

stomatal

stone

storage

Stores

Storing

strain

strains

strand

strands

Strange

strategic

strategies

Strategy

stream

streams

streetcar

strength

stress

stresses

stretch

striated

strict

Striped

striped

stroboscopic

Strong

strong-migration

stronger

strongly

Structural

Structure

Structured

structured

structured-population

studies

study
053

Transition
transitions
translocated, translocation, Transmission
translating, translational
translocated, translocation, Transmission
transplanted, transplant, transplantation
Transport
transportation, transposable, trap
traps
Travelling, travelling-wave
Travelling-wave
treat, treatment
Treat
Tree
Tree-child, tree-grass
Tree-hierarchy
Tree-representable
Trees
Tri
tri-LGT-nets, tri-phasic
Triphila
Triplet
triplets, tripling
Trojan
trophic
true
truncated, truncations
Tunable
turbulence
Turing
turning
turnover
Two
Two-way

REFERENCES

[2] Prof. Dr. C. Foias. A biological homology inference from ergodic the-

Winfree:1974:PPC

Resnikoff:1974:DGC

Mel:1974:TPE

Green:1974:FNA

Hadeler:1974:NSD

Tuffner-Denker:1974:PGM

Rubinow:1975:MMN

REFERENCES

REFERENCES

REFERENCES

Resnikoff:1975:PF

Peskoff:1975:TDP

Peskoff:1975:PIS

DeLisi:1975:KHP

Abraham-Shrauner:1975:GGC

Sleeman:1975:FNA

REFERENCES

[61] Dipl.-Math. Dr. T. Middendorf and Prof. Dr. H. H. Loeschcke. Mathematische simulation des respirationssystems. (German) [mathematical

REFERENCES

REFERENCES

Karfunkel: 1977: ECR

Jones: 1977: SSH

Estabrook: 1977: WTQ

Anonymous: 1977: E

FitzHugh: 1977: MOV

Grossberg: 1977: PFG

REFERENCES

[Cushing:1977:TDS]

[Fisher:1977:SCD]

[Goh:1977:SGA]

[Primas:1977:TRN]

[Sejnowski:1977:SCN]

[Aase:1977:CMT]

[Hall:1977:AMC]

REFERENCES

REFERENCES

Worz-Busekros:1978:E

Coleman:1978:GPN

Naasell:1978:MMS

Gerald:1978:SLC

Maginu:1978:SPT

Lange:1978:CLT

Hsu:1978:APT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kernevez:1979:HOP

Kainer:1979:FMR

Parthasarathy:1979:MMB

Milstein:1979:PIC

Krikorian:1979:VMT

Peil:1979:OML

Harrison:1979:GSP

Thieme:1979:DDR

Prajneshu:1979:SGM

Hook:1979:EP

Frisch:1979:E

Ludwig:1979:SPS

Nichols:1979:MMP

Douglas:1979:STT

Hethcote:1980:IEM

Mimura:1980:SSC

Ikeda:1980:LVE

Shigesada:1980:SDD

Anonymous:1980:E

Anonymous:1980:A

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[258] Morihiro Notohara and Tokuzo Shiga. Convergence to genetically uniform state in stepping stone models of population genetics. *Journal
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lasota:1981:MTI

Gates:1981:NSN

Capasso:1981:CES

Hethcote:1981:SAM

Campbell:1981:EVE

Gimelfarb:1981:GLM

Asmussen:1982:RDL

Roberts:1982:STH

Garroni:1982:ADP

Badii:1982:ABP

Bailey:1982:SSE

Diekmann:1982:PHB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

West:1982:NSC

Oster:1982:MME

Oja:1982:SNM

Dougherty:1982:GDM

Campbell:1982:EVE

Weiss:1982:MPT

REFERENCES

[398] Alan Hastings. Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal rates. *Journal of Mathe-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Losert:1983:DGG

Banks:1983:PET

Smth:1983:ASP

Longini:1983:MEE

Busenberg:1983:AMV

Kilmer:1983:SDE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Iwasa:1984:BDM

Novick-Cohen:1984:GST

Belgrade:1984:DBD

Fisher:1984:SRD

Gopalsamy:1984:GAS

Ellner:1984:ABS

REFERENCES

REFERENCES

Karlin:1984:OSR

Mahaffy:1984:MGC

Creegan:1984:SRA

Aagaard-Hansen:1984:SDG

Hoppe:1984:PLU

Weiss:1984:NRG

REFERENCES

REFERENCES

Anderson:1984:SSL

Keller:1984:GVD

Akin:1984:EDZ

Cushing:1984:ESE

Comincioli:1984:FSC

Merrill:1984:SMT

REFERENCES

Woods:1985:EME

Hutson:1985:PCG

Campbell:1985:DRP

Weyer:1985:MMC

Botsford:1985:OFP

Chover:1985:EGC

Schwartz:1985:MSR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Scalia-Tomba:1986:AFS

Anonymous:1986:Ab

Niklas:1986:AET

Edelstein-Keshet:1986:MTP

Lefevre:1986:TBC

Timischl:1986:PSR

REFERENCES

REFERENCES

Belair:1986:PPS

Tallis:1986:JAD

Morrish:1986:POT

Ryan:1986:OHL

Sod:1986:NSO

TorrasiGenis:1986:EPC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1987:An

Hunding:1987:BTS

Hoppe:1987:STN

Tavare:1987:BPI

Smith:1987:OMS

Hallam:1987:DEC

REFERENCES

Szucs:1991:SMDa

Keener:1991:ECE

Liberman:1991:MAS

Iizukah:1991:COD

Hoppensteadt:1991:SH

Szucs:1991:SDA

Yang:1991:CPP

Invernizzi:1991:QAH

Basten:1991:BPM

Griffiths:1991:WLO

Lin:1991:UEE

Anonymous:1991:A

Szucs:1991:SMDb

REFERENCES

Hadeler:1993:PFM

Pal:1993:EBF

Wagner:1993:WDB

Athreya:1993:RDS

Prior:1993:EGS

REFERENCES

Gradl:1994:LTB

Bell:1994:NMM

Gavrilets:1994:MMV

Edelstein-Keshet:1994:SMT

Nisbet:1994:PDC

Dillon:1994:PFG
REFERENCES

REFERENCES

of Mathematical Biology, 32(8):841–855, October 1994. CODEN JM-
BLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic). URL http://
link.springer.com/article/10.1007/BF00168801.

in recurrent phytoplankton blooms. Journal of Mathematical Biology
32(8):857–863, October 1994. CODEN JMBLAJ. ISSN 0303-6812 (print),
1007/BF00168802.

[992] Frank C. Hoppensteadt and Paul M. Johnson. Response of a solu-
tivory chain to a nutrient pulse. Journal of Mathematical Biology
32(8):865–867, October 1994. CODEN JMBLAJ. ISSN 0303-6812 (print),
1007/BF00168803.

[993] Thomas P. Witelski. An asymptotic solution for traveling waves of a
nonlinear-diusion Fisher’s equation. Journal of Mathematical Biology,
33(1):1–16, November 1994. CODEN JMBLAJ. ISSN 0303-6812 (print),
1007/BF00160171.

[994] Jan Prüss and Wilhelm Schappacher. Persistent age-distributions for
33, November 1994. CODEN JMBLAJ. ISSN 0303-6812 (print),
1007/BF00160172.

[995] Mats Gyllenberg and Dmitrii S. Silvestrov. Quasi-stationary distribu-
tions of a stochastic metapopulation model. Journal of Mathematical
Biology, 33(1):35–70, November 1994. CODEN JMBLAJ. ISSN 0303-
6812 (print), 1432-1416 (electronic). URL http://link.springer.com/
article/10.1007/BF00160173.

[996] Evyatar Av-Ron. The role of a transient potassium current in a bursting
1994. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic).
REFERENCES

REFERENCES

REFERENCES

Newson:1995:CMP

Ngwa:1995:STP

Kaitala:1995:PDH

Burger:1995:FPA

Steiner:1995:SND

vanHerwaarden:1995:SEM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Skalak:1996:CGR

Schinazi:1996:IPS

Fischbacher:1996:FMP

Beretta:1996:MMD

Lizana:1996:MBM

Schreiber:1996:GSC

REFERENCES

Herrero:1996:CCK

Wikan:1996:ORG

Cooke:1996:ASE

Bonneuil:1997:VPP

Charter:1997:HCM

Baake:1997:BHD

REFERENCES

REFERENCES

REFERENCES

Andreasen:1997:DCI

Gourley:1997:PDI

Skalak:1997:KSG

Huyer:1997:PCS

Hart:1997:SMS

Allegretto:1997:PSC

REFERENCES

Calsina:1997:ABM

Hoppensteadt:1997:WPM

Perlitz:1997:MVN

Kooi:1997:CDB

Ottesen:1997:MBF

Coward:1997:ETF

Shukla:1997:MDC

Chavez-Ross:1997:MCO

Sturis:1997:LGB

Schreiber:1997:GSP

Collings:1997:EFR

Hanson:1997:PGR

REFERENCES

Luo:1998:TMP

Wu:1998:AED

Stiefenhofer:1998:QSS

Gueron:1998:SSD

VandenBerg:1998:OAB

Yakovlev:1998:SMB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Boukal:1999:LFL]

[Barradas:1999:RCV]

[Edwards:1999:TES]

[Hethcote:2000:TSE]

Bees:2000:ITF

Edelstein-Keshet:2000:MSP

Dickinson:2000:GTM

DeGaetano:2000:MMI

Bressloff:2000:TWP

Lopez:2000:UPS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Boucher:2001:ASM

So:2001:SPT

Feng:2001:IDT

Hsieh:2001:EDD

Curtu:2001:ORN

Iwasaki:2001:IBP

REFERENCES

Abundo:2002:APE

Krenz:2002:VDF

Hwang:2002:FVL

Cui:2002:AMM

Slade:2002:CAT

Li:2002:APF

REFERENCES

REFERENCES

Breward:2002:RCC

Schuster:2002:RRB

Weinberger:2002:ALD

Lewis:2002:SSL

Lutscher:2002:MAM

Grassi:2002:DHR

Gabriele Grassi, Mario Grassi, Anne Kuhn, and Reinhard Kandolf. Determination of hammerhead ribozyme kinetic constants at high molar

[1365] Torsten Lindström. On the dynamics of discrete food chains: Low- and high-frequency behavior and optimality of chaos. *Journal of Mathemat-
REFERENCES

Hans F. Weinberger. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. *Journal of Mathematical Biology*

Lessard:2003:CFR

Davydova:2003:YCC

Huang:2003:ETW

Dolak:2003:CMCa

Schliekelman:2003:TDM

Gaffney:2003:ISM

REFERENCES

REFERENCES

Ottesen:2003:VPF

Ghosal:2003:SMI

Lakin:2003:WBM

Martcheva:2003:PAE

Culshaw:2003:MMC

Eshel:2003:EDS

[1401] Maria-Josefina Hernandez and Ignacio Barradas. Variation in the outcome of population interactions: bifurcations and catastrophes. *Jour-

REFERENCES

REFERENCES

[1430] Aline de Koeijer, Hans Heesterbeek, Bram Schreuder, Radulf Oberthur, John Wilesmith, Herman van Roermund, and Mart de Jong. Quantifying BSE control by calculating the basic reproduction ratio R_0 for

Ionides:2004:SMC

Brette:2004:DOD

Kon:2004:PDT

Stoleriu:2004:QSS

Smith:2004:MAD

Norman:2004:RNV

[1436] Rachel Norman, David Ross, M. Karen Laurenson, and Peter J. Hudson. The role of non-viraemic transmission on the persistence and dynamics of a tick borne virus — loping ill in red grouse (*Lagopus lagopus scoticus*) and mountain hares (*Lepus timidus*). *Journal of Mathematical
REFERENCES

[1442] Sabin Lessard and John Wakeley. The two-locus ancestral graph in a subdivided population: convergence as the number of demes grows

REFERENCES

REFERENCES

REFERENCES

Barbour:2004:CSM

Ostby:2004:SMH

MacArthur:2004:RSG

Trapman:2004:BMS

Gedeon:2004:PLI

Byrne:2004:NIK

REFERENCES

Xia:2005:TOI

Abu-Raddad:2005:CSE

Schofield:2005:DHS

Castrejon-Pita:2005:FDB

Vielle:2005:MAM

REFERENCES

REFERENCES

Friedman:2005:MIT

Murase:2005:SAP

Nagylaki:2005:SMP

Cohen:2005:ESM

Hilpert:2005:LBM

Dercole:2005:STC

REFERENCES

REFERENCES

Anderson:2006:FAC

Guedon:2006:AGN

Farcot:2006:GPC

DeLeenheer:2006:GSC

Hopfner:2006:SMF

Baker:2006:MIC

REFERENCES

Shi:2006:PRD

Meyer:2006:FRE

Miller:2006:FLE

Thygesen:2006:DTS

Grafen:2006:TFR

Sharkey:2006:PLA

REFERENCES

REFERENCES

El-Morshedy:2006:GAF

Zhang:2006:MMN

Bacaer:2006:ETV

Belik:2006:SMP

Sparenberg:2006:NGB

Pinto:2006:CPG

REFERENCES

McMillen:2006:ERM

Deutsch:2006:EES

Grover:2006:DA

Muller:2006:GMR

Preziosi:2006:HMM

Wood:2006:LSN

REFERENCES

Inaba:2007:ASH

Broom:2007:EKS

Iber:2007:MSS

Sun:2007:ADW

Ellner:2007:SSP

Baake:2007:MSA

REFERENCES

Pfaelhuber:2007:AGP

Lemon:2007:TWB

Li:2007:GDM

Edwards:2007:SHE

Jones:2007:ERP

Trewenack:2007:DST

[1685] Abbey J. Trewenack, Kerry A. Landman, and Ben D. Bell. Dispersal and settling of translocated populations: a general study and a New Zealand

REFERENCES

REFERENCES

Zhao:2008:RIP

Metzler:2008:PRS

Tjaden:2008:PSN

Sato:2008:PPS

Sarver:2008:FFL

Wang:2008:RFK

REFERENCES

Barnett:2008:ASS

Mouser:2008:MPC

Futakata:2008:FAR

Adams:2008:GDD

Ruan:2008:CHB

VanCleve:2008:SLP

REFERENCES

REFERENCES

REFERENCES

Gernhard:2008:SPG

Bacaer:2008:RET

Gallegos:2008:MMC

Franke:2008:DIM

Bennett:2008:BMC

Zint:2008:HCU

REFERENCES

REFERENCES

REFERENCES

Stelling:2009:SCC

Verdier:2009:MCI

Westerho:2009:SBT

Li:2009:ETW

Allen:2009:SPD

REFERENCES

Macklin:2009:MMN

Anderson:2009:MDI

Byrne:2009:IBC

Chaplain:2009:P

Cristini:2009:NSS

ORourke:2009:LQT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pozrikidis:2010:NSB

Liu:2010:MTC

Karev:2010:MTS

Mirams:2010:MTA

Pedersen:2010:ITS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kim:2010:TEC

Terekhov:2010:AAP

Bobrowski:2010:ABM

DeLeenheer:2010:SAR

Small:2010:UBP

REFERENCES

REFERENCES

REFERENCES

Park:2011:BTL

Schneider:2011:AHE

Allman:2011:IRS

Cessac:2011:DTN

Bowers:2011:DEO

Kang:2011:EED

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

[2003] Nicolas Bacaër. The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality.
REFERENCES

Arino:2012:MMM

Duff:2012:MMS

Sun:2012:MGT

Wu:2012:EGT

Oelz:2012:SLF

REFERENCES

REFERENCES

Hautphenne:2012:MBT

Priklopil:2012:IBU

Stroyan:2012:VDM

Mirrahimi:2012:EST

Weng:2012:PST

Hodge:2012:CMN

Berec:2012:DIS

Rosenbaum:2012:FVA

Eftimie:2012:HKM

Dress:2012:LPT

Conradi:2012:MMA

Gambette:2012:EPN

REFERENCES

REFERENCES

Li:2012:TWS

Mori:2012:MPP

Ramirez:2012:PPU

Cantrell:2012:ESI

Vermolen:2012:FEM

Liz:2012:HEB

Depperschmidt:2013:BRP

Breban:2013:REP

George:2013:MMN

Serna:2013:AUB

Bertuzzi:2013:EOS

Gyllenberg:2013:HOD

REFERENCES

REFERENCES

Stankova:2013:IPD

Kooijman:2013:YEP

Nakaoka:2013:SSS

vanGils:2013:LBN

DeRoos:2013:OSA

Metz:2013:DIB

[2132] Xuefeng Wang and Qian Xu. Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem. *Journal of Mathematical Biology*, 66(6):1241–1266, May 2013. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-
REFERENCES

DeMatteis:2013:RSC

Roberts:2013:EMU

Robinson:2013:NFT

Bressloff:2013:PCT

Reluga:2013:GAD

Clairambault:2013:CTH

REFERENCES

Lassas:2013:FIP

Raol:2013:IPN

Capasso:2013:SIP

Olufsen:2013:PAP

Doumic:2013:EDR

Anderssen:2013:IRM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bacaer:2013:BRN

Taylor:2013:SFM

Saez:2013:MMC

Berthoumieux:2013:IMN

Cardona:2013:EFV

REFERENCES

REFERENCES

REFERENCES

Hirt:2014:MR

Abdelrazec:2014:TDW

Graham:2014:DSE

Stinner:2014:CET

Fernandez:2014:TTC

Oelz:2014:VTP
REFERENCES

Hasenauer:2014:MCM

Gamado:2014:MUR

Ganguly:2014:MCA

Bocker:2014:CGR

Tao:2014:PDE

Al-Husari:2014:CAM

REFERENCES

[2318] Vincent Calcagno, Ludovic Mailleret, Éric Wajnberg, and Frédéric Grognard. How optimal foragers should respond to habitat changes: a reanalysis of the marginal value theorem. *Journal of Mathematical Biology*, 69(5):1237–1265, November 2014. CODEN JMBLAJ. ISSN 0303-
REFERENCES

[2324] Wassim Abou-Jaoudé, Madalena Chaves, and Jean-Luc Gouzé. Links between topology of the transition graph and limit cycles in a two-dimensional piecewise affine biological model. *Journal of Mathematical Biology*
Krivan:2014:ATI

Prokopiou:2014:MAM

Luzyanina:2014:MMC

Cantini:2014:SAS

Massarelli:2014:EPP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lin:2015:DSEa

Lin:2015:DSEb

Madzvamuse:2015:CDD

Caiazzo:2015:CHS

Jabbari:2015:MMR

REFERENCES

Breitsch:2015:CCD

Rodriguez:2015:IDM

Sainudiin:2015:FBR

Cangelosi:2015:NSA

Rudnicki:2015:MPE

VanOosterwyck:2015:CMM

Martinez:2015:CAD

Yoon:2015:BCG

Maxin:2015:MBH

Nakata:2015:GAS

Aviziotis:2015:CGA

Hyrien:2015:SMS

REFERENCES

Evans.2015:PPE

Bruni.2015:OWS

Croft.2015:PIP

Antunes.2015:QGE

Roques.2015:ECN

Bacaër:2015:SSE

Ciupé:2015:MMM

Zumbrun:2015:CMO

Engwer:2015:GFW

Rao:2015:GCE

Hossjer:2015:EES

REFERENCES

Winstanley:2015:CCB

Seki:2015:GMC

Dyson:2015:IVE

Barbour:2015:IPB

Amaris:2015:FTR

Bilge:2015:UEM

REFERENCES

REFERENCES

Zienkiewicz:2015:DDS

Capone:2015:IDS

Fuchs:2015:ESV

Bhatia:2015:ADC

Chan:2015:ESG

Billiard:2015:SDA

Ezgi C. Eren, Ram Dixit, and Natarajan Gautam. Stochastic models for plant microtubule self-organization and structure. *Journal of
REFERENCES

Privault:2015:CFM

Goudenege:2015:WFM

Chalmers:2015:BDM

Barbour:2015:CDS

Kebir:2015:UHS

Qureshi:2015:CSP

M. Umar Qureshi and N. A. Hill. A computational study of pressure wave reflections in the pulmonary arteries. *Journal of Mathematical Bi-

REFERENCES

[2468] Martin Ritchie, Luc Berthouze, and Istvan Z. Kiss. Beyond clustering: mean-field dynamics on networks with arbitrary subgraph com-

Chalub:2016:FLP

Cha:2016:SMR

Xiao:2016:CTI

Sainudiin:2016:ARD

Gholami:2016:IPF

REFERENCES

[2485] Jukka Corander, Odo Diekmann, and Timo Koski. A tribute to mats gyllenberg, on the occasion of his 60th birthday. *Journal of Mathematical Biology*
REFERENCES

Hamza:2016:EPI

Jin:2016:PVE

Vasilyeva:2016:ASP

Diekmann:2016:CEU

Nakaoka:2016:DHI

Jiang:2016:HCC
REFERENCES

Yang:2016:MMS

Pacheco:2016:EDC

Metz:2016:FDA

Kisdi:2016:ADS

Geritz:2016:MIN

[2502] Chunmei Shi, Lingling Zhao, Junjie Wang, Chiping Zhang, Xiaohong Su, and Peijun Ma. Micro-object motion tracking based on the probability hypothesis density particle tracker. Journal of Mathematical Bi-
REFERENCES

469

REFERENCES

of Mathematical Biology, 72(5):1401–1427, April 2016. CODEN JM-
BLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic). URL http://
link.springer.com/content/pdf/10.1007/s00285-015-0913-0.pdf.

Zengji Du and Rui Peng. A priori L^∞ estimates for solutions of a class
of reaction-diffusion systems. Journal of Mathematical Biology, 72(6):
1429–1439, May 2016. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-
1007/s00285-015-0914-z.pdf.

Mostafa Bendahmane, Ricardo Ruiz-Baier, and Canrong Tian. Tur-
ing pattern dynamics and adaptive discretization for a super-diffusive
1465, May 2016. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

Chris Guiver, Markus Mueller, Dave Hodgson, and Stuart Town-
ley. Robust set-point regulation for ecological models with multi-
ple management goals. Journal of Mathematical Biology, 72(6):1467–
1529, May 2016. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-

Jacques A. L. Silva. Cluster formation in a heterogeneous metapop-
ulation model. Journal of Mathematical Biology, 72(6):1531–1553,
May 2016. CODEN JMBLAJ. ISSN 0303-6812 (print), 1432-
1007/s00285-015-0916-x.pdf.

Jason K. Davis and Suzanne S. Sindi. A mathematical model of the
dynamics of prion aggregates with chaperone-mediated fragmentation.
JMBLAJ. ISSN 0303-6812 (print), 1432-1416 (electronic). URL http://
link.springer.com/content/pdf/10.1007/s00285-015-0921-0.pdf.

REFERENCES

[2525] Paul A. Roberts, Eamonn A. Gaffney, Philip J. Luthert, Alexander J. E. Foss, and Helen M. Byrne. Retinal oxygen distribution and

REFERENCES

REFERENCES

[2560] Daniel Sánchez-Taltavull, Arturo Vieiro, and Tomás Alarcón. Stochastic modelling of the eradication of the HIV-1 infection by stimula-

REFERENCES

Kan:2016:MTS

McCleney:2016:ESN

Perthame:2016:DBR

Wang:2016:MFE

Menichini:2016:MMT

Yang:2016:EIA

REFERENCES

Peng:2016:PID

Gandolfi:2016:SSE

Bigan:2016:NSC

Rodriguez:2016:ECP

Schlagel:2016:RMM

REFERENCES

REFERENCES

REFERENCES

Paniello:2017:EOG

Manhart:2017:EDE

Saez:2017:GRR

Bordewich:2017:FPT

Banks:2017:NSE

REFERENCES

REFERENCES

REFERENCES

[2636] Eric Foxall and Nicolas Lanchier. Survival and extinction results for a patch model with sexual reproduction. *Journal of Mathematical Bi-

Pimenov:2017:MAB

Bajeux:2017:ABW

Sardanyes:2017:ATT

Hart:2017:EBT

Zhang:2017:RPW

Mancini:2017:PMC

REFERENCES

REFERENCES

REFERENCES

József Z. Farkas, Stephen A. Gourley, Rongsong Liu, and Abdul-Aziz Yakubu. Modelling *Wolbachia* infection in a sex-structured

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s00285-017-1113-x;
http://link.springer.com/content/pdf/10.1007/s00285-017-1113-x.pdf.

REFERENCES

[2709] Brittany Stephenson, Cristina Lanzas, Suzanne Lenhart, and Judy Day. Optimal control of vaccination rate in an epidemiological model of

REFERENCES

[2725] Mark Broom, Michal Johanis, and Jan Rychtář. The effect of fight cost structure on fighting behaviour involving simultaneous decisions and vari-