A Complete Bibliography of Publications in the
Journal of Mathematical Chemistry

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 May 2020
Version 1.20

Title word cross-reference

(1, 1, 1) [2593]. (1, 12) [614]. (2 + 1) [3020, 3016, 3112]. (2n + 1) [1486].
(\delta(x_0 - |x|)/|x|^{(n-2)/2})/(\delta(x_0 + |x|)/|x|^{(n-2)/2}) [569]. (k, 6) [849]. (M_1 - M_2)
[277]. (n + 1) \times (n + 1) [788]. (n, n + 1) [1176, 1223, 1227]. (p, q)
[2199, 2313, 2065]. (SU_2 \otimes (SU_2 \otimes S_n^+)) [459]. (p, q) [2177]. + [2743].
–Ze^2/r [1665]. 1 [3106, 942, 1043, 2061, 1000]. 1/2 [400, 501, 502, 523]. 12
[879]. 2 [2940, 3009, 942, 2923, 2216, 1092, 1067, 2480, 2339, 1182, 1372, 2127,
1592, 1430, 672, 2857, 1864, 2273]. 26 [1182]. 2p [2660]. 2 \times m \times n
[419]. 3 [942, 1163, 2555, 1791, 1444, 1286, 3036, 586, 1182, 1075, 1380, 2127,
183, 1592, 249, 2791, 1339]. 3, 16 [191]. 3, 17 [191]. 4
[2928, 1163, 2491, 2183, 2569, 1298, 194]. 4(3) [3026]. 4f^{12} [2229]. 4f^2 [2229],
5 [2981, 1141]. 5(3) [2334]. 5(4) [2143]. 6 [879, 860, 798]. 60 [322]. 6 \leq n \leq 20
[A]_n(S_n) [277]. [n - 1, 1] \otimes [\lambda]L_{nn} [322]. + [2743]. + [1232], − [953]. −^{11} [614].
1 [2968]. 3 [134, 192]. 15 [2272]. 2 [2968]. 2^+ [1513]. 2^\Pi [953, 1296, 1260]. 3
/non [1019, 1156].

09 [1688].

3D [1180]. 3rd [908].

4 [305, 933]. 4-dihydro-4-oxo-1- [1621]. 42 [1455]. 4B [3132].

5 [1102]. 5-b [2420]. 5-dihydro-1H-3-oximidazol-1-oxyl [1102].
5-pyrimidinyl [1102]. 5-tetramethyl-4 [1102].

6 [978]. 6D [3085]. 6D-hypercube [3085].

8-naphthyridines [1621]. 8th [384].

= [1096].

ab-initio [1546]. ABC [2753, 2948, 501, 502, 2736, 2821]. ABCD [501, 502].
accelerators [2489]. acceptable [1312]. acceptance [530]. accomplished [3073]. according [1858, 213, 212, 279, 1360]. accounting [2155, 3070].
accumulation [2019]. Accuracy [2339, 338, 2169, 1321, 2738, 1344, 521, 1360]. acetic [2631, 1844].
activator-inhibitor [3103, 3055]. active [169]. activities [1704, 2133].
Activity [1067, 1763, 319, 186, 2831, 128, 165, 1200, 1801, 92, 2265, 2442, 2601, 1621, 2133].
Acyclic [1031, 1090, 853, 868, 171, 260, 86, 643, 1298, 1239, 626, 1601]. Adapted [2937, 2373, 1393, 2435, 2710, 2847, 2047, 412, 2260].
Advances [1923]. Advection [663, 2488]. advection-diffusion [2488].
analyzed Analytical

and/or Anderson

androstanediones angle

angle-dependent anharmonicities anhydrase Animals

anisotropic annealing ANNs ANs Ansatz Anti

anticancer Apparent

any antibiotic antibody/antigen

antimagic Antisymmetric Application

application Applied Approaching
chemical [1485, 1825, 160, 1610, 2674, 1601, 34, 2838, 1662, 2525, 1625, 2881, 430, 484, 64, 65, 3133, 2422, 1835, 2698, 2487, 487, 2520, 551, 1076].
Chemical/Biochemical [926].
chemically [138, 22, 157, 2036, 2779].
chemically-powered [2779].
chemicals [2173, 1699].
Chemist [913].
chemistry-related [1930, 2156].
chemists [1396].
chemomechanical [704].
Chemostat [1022, 1024, 2168, 1007, 1515, 1584, 1504, 1356, 1310, 1373, 1276, 1512, 1583, 1195, 1240, 1594, 1254, 1317, 1374, 1231, 1340, 1301, 2610, 2165].
chemostat-type [1584].
chemotherapy [3098].
Chen [2872, 1978].
Chidsey [2261].
Chirality [130, 904, 4, 29, 1072, 1138, 1108, 1089, 144, 143, 486, 2598, 629, 2209, 2027, 2584, 2585, 383, 394, 2543, 5, 158, 604, 454, 493, 1319, 1380, 582, 571, 1304, 368, 432, 369, 2027, 2451].
Chiralization [22].
chloride [1827].
chloronaphthalenes [2137].
chlorophyll [2617].
choice [1282, 1850].
choosing [2567].
Christoffel [135].
chromatogram [2226].
chromatography [2976].
chromen [1976].
Chromophores [248].
chronoamperometry [1334, 1377, 1714, 1715].
chronoamperometrical [1957].
circles [149].
circuit [107, 303, 185].
Circuits [786, 431].
circulant [2852, 2531].
Circular [767, 611, 706, 553, 2565].
circumscribed [2613].
cis [2539, 2961, 2711].
cis- [2539, 2948].
Clar [2823, 15, 2217, 375, 2326, 1073, 818, 998, 1117, 1732].
clarification [2545].
Class [907, 911, 1172, 1224, 1896, 3117, 2249, 2812, 657, 2346, 1194, 1303, 1045, 2639, 559, 235, 3119, 2031, 2638, 2637, 2997, 2581, 2813, 973, 1311, 3028].
classes [61, 2892, 357, 1828, 1913, 449].
classic [1878, 20].
Classical [951, 1286, 932, 1116, 2590, 467, 2386, 416, 1881, 3137, 1241, 610, 2242, 1994, 2247, 1194, 1303, 427, 2198, 219, 3058, 2267, 245, 2743].
Classification [1646, 2039, 387, 212, 2728, 93, 427, 371, 578, 3024, 112, 236, 2273].
classified [213].
Classifying [316].
Clebsch [97].
clinical [1661, 1389, 2255].
clock [477, 664].
close [2316].
Closed [887, 2221, 2711, 601, 1357, 798, 709, 1665, 1366, 608, 586, 228, 485, 2073, 2295, 2489, 548, 1349, 235, 1993].
Closed-Form [887, 601].
closer [2055].
cloth [2786].
cloud [1915].
clouds [1989, 2058, 1440].
Cluj [1419].
Cluster [529, 1134, 902, 876, 1942, 220, 1902, 1994, 94, 2788, 2469, 2708, 533, 322].
Clustering [1079, 1095, 166, 2081].
clusterized [1675].
clusters [2653, 2906, 2771, 2290, 1555, 2918, 3035, 2570, 13, 2972, 1685, 242, 277, 525].
CMB [1933, 1927, 2158].
CML [3041].
CMMSE [1684, 2886, 2887, 3099, 3043, 3017, 2890, 3027, 2889, 3102, 2476, 3097, 1688].
complexity-based [1558]. Compliance [1349]. component
[2920, 1578, 2478, 1214, 1604, 2035, 1909, 2327, 2749, 1285]. Components
[818, 2773, 744, 1910, 513, 1776, 2661, 1611]. composed [2973]. composite
[2479, 2212]. composition [1887, 2269, 970, 2706]. compositions
[2653, 2066]. compound [3124, 2911]. Compositions [872, 171, 2341, 25, 1457,
1458, 991, 2027, 2028, 263, 13, 162, 92, 2263, 3119, 1069, 670, 2197, 1293].
comprising [2167]. Computation
[1113, 756, 792, 2817, 953, 839, 782, 2721, 3128, 2528, 3053, 1226, 135, 186,
2496, 3010, 2742, 265, 1394, 1336, 1785, 150, 2704, 1899, 1839].
Computational [3085, 1055, 792, 2817, 953, 839, 782, 2721, 3128, 2528, 3053,
1226, 135, 186, 2496, 3010, 2742, 265, 1394, 1336, 1785, 150, 2704, 1899, 1839].
computationally [2734]. computations [2688, 554]. compute [39].
Computer [171, 260, 25, 1003, 1032, 2166, 2506, 1930, 193, 462, 986, 530,
1194, 1303, 2055, 1100, 1409]. Computer-aided [171]. Computer-assisted
concatenation [3076]. concealed [82, 274]. concentrate [1932].
Concentration [2502, 2095, 1995, 3011, 2849, 1768, 1704, 1999, 1824, 989,
1195, 1733, 1193, 2422]. concentrations [2492, 2369, 3136, 2512]. concentric
[850, 102, 789, 80, 2358, 333, 2865, 449]. concerned [2111]. Concerning
[866, 1298, 711]. Concise [870]. condensates [2438, 3091]. condensation
[712]. condensed [2613, 1263]. Condition [905, 3135, 51, 989, 1644, 2745].
conditional [1790]. Conditions
[1062, 1628, 2757, 3108, 707, 656, 1334, 2438, 2297, 2970, 333, 2904, 1943, 372,
405, 235, 1043, 2475, 2618, 1238, 1819, 1541, 2195, 2428, 1938, 449]. Condon
[659, 608, 3078]. Conductance [781]. conducting [1212, 1824]. conduction
[425]. conductive [2750]. Conductivities [2495]. conductivity [2479, 2233].
Conference [959, 3015, 3017]. confidence [536]. Configuration
[785, 1948, 2358, 2452, 279, 2169, 2814, 315, 2269, 730, 326, 463, 2706].
Configurational [253, 1721, 434, 159]. Configurations [263, 1817, 99, 1398].
Confined [762, 2276, 3049, 2818, 950, 1100, 2630]. Confinement
[822, 877, 2187, 2183]. confirmative [2749]. confluent [36, 2639].
conformation [962, 2235, 2182, 1497, 1719, 565]. Conformational
[1187, 2314, 2153, 1388, 202, 155, 191, 2788, 636, 701, 67]. conformationally
[100]. conformations [316, 341, 1261]. conformers [445, 2753, 2948, 517].
confused [1688]. Congress [384]. Conic [1188]. conical [2539]. conicality
[2160]. Conjecture [884, 883, 2573, 855, 949, 957, 1632, 1735, 1860, 141,
2603, 2670, 2731, 2782, 3071, 137, 229, 1298, 373, 2716, 2076, 2634].
conjectures [336, 555]. conjugacy [2812, 2659, 1834, 1920, 2657].
Conjugated [786, 1023, 1088, 1031, 933, 868, 978, 2496, 1265, 153, 252, 643,
1189, 172, 70, 1332, 185, 73]. conjugated-circuit [185]. Connect [1090].
connected [1163, 1313, 1111, 2821]. connecting [377]. Connection
[932, 1308, 2082, 1805, 3004, 1327, 1648, 95, 1967, 2652]. Connections
Connectivity
Consecutive
Consequences
Conserving
Conservation
Consistent
Consisting
Constancy
Constant
Construction
Constructive
Consuming
Consumption
Consuming
Consumption
Controlling
Control
Controlled
Controllability
Controlled
control

correspondence [104]. Corresponding [933, 303, 1201]. corrupted [2431].

Corzo [2785].

CoSMEP [2203].

Coset [929, 1154, 109, 110, 161]. Cosets [929, 1154].

CoSMEP [2203].

cost [2544, 2786, 2511].

Costa [3015].

Cotangent [835].

Cotes [1956, 1357, 1993].

Coulomb [1940, 1396, 2287, 2466, 1156, 919, 971, 1050, 1659, 1769, 2042, 1132, 1133, 228, 2605, 2668, 1635, 401, 758, 1742, 2083].

Coulombic [3010, 2817].

Coulson [209, 18, 952, 1051, 103, 1752, 70, 285].

Count [896, 1128, 1417, 2266, 225, 1000, 1732].

Counterexamples [2063, 373].

Counts [264, 1390, 2134, 153, 2088, 2100].

Coupled-Cluster [902, 533].

Coupling [572, 2314, 1743, 3041, 2199, 2628, 2505, 1349, 1734, 1629, 436, 2229, 2968, 2912, 2441, 2440, 1620, 1727].

course [1577].

Cubes [3053].

Creative [798].

Cremer [1914].

Criteria [3093, 1795, 190, 3047].

Criterion [752, 564, 2001, 2260, 162].

Critical [14, 747, 1628, 2478, 3035, 345, 1768, 2267, 1803, 1967, 1727].

Cross [756, 768, 3132, 1260, 1823, 349].

cross-diffusion [1823].

cross-section [1260].

Cross-Term [768].

Cross-Validated [756].

Crossings [1945].

crosslinked [2693].

crosslinking [2115].

Crossover [2212, 2268].

Crowed [3061].

Crowley [2165].

Crystalline [981, 1493, 1918].

Crystallization [774, 1924].

Crystallographic [428].

Crystalline [981, 1493, 1918].

Crystallography [428].

Cyanobacteria [3121].

Density-based [1105].

Deoxyribonucleic [2685].

Dependence [1256, 876, 253, 1236, 2732, 2095, 2249, 1243, 191, 1645, 2008, 683, 159, 2442].

Dependency [1830].

Dependent [888, 887, 1556, 1494, 2873, 2408, 2533, 2035, 1741, 1247, 2169, 2184, 2419, 2896, 2281, 2056, 1678, 2618, 2512, 654, 2604, 1165, 2699, 389, 390, 1044].

depend [1395, 1670].

deposition [2562].

derivations [678].

derivative [685, 1745, 1871, 2392, 2908, 2647, 2995, 3117, 2920, 2967, 3083, 2283, 2893, 1671, 201, 2633, 3026, 2903, 2381, 2930, 1500, 1845, 2835, 3030, 2697, 2853].

derivative-modified [1671].

Derivatives [820, 872, 1754, 1798, 2060, 2029, 2118, 2178, 2253, 2410, 2322, 2544, 2524, 2549, 2472, 2632, 2595, 2673, 2623, 2662, 2691, 2709, 2908, 1559, 2842, 2809, 2734, 2746, 2587, 991, 1585, 2048, 2049, 1050, 1246, 1874, 2566, 1840, 2733, 2867, 1430, 2507, 2511, 1904, 2098, 2317, 2370, 2455, 2607, 2648, 2594].

derive [279].

Derived [6, 1894, 547, 1716, 1069, 1988, 1076, 459, 555, 260].

Desargues [2906].

describe [2357, 1918, 2850].

described [2136].

describing [1808, 1234].

Description [570, 870, 1208, 718, 2254, 2344, 2504, 564, 1989, 2188, 2649, 3071, 2307, 1421, 2382, 2274, 1408].

descriptions [248].

Descriptor [848, 2457, 1440, 2233, 1708].

Descriptors [1070, 1123, 2273, 1763, 1351, 1615, 2555, 427, 1380, 1372, 1354, 1476, 1623, 1898, 2008, 2269, 2345, 2432, 2551, 2527, 2619, 163, 2607, 1788, 3068, 1565, 1551, 1621, 2340].

Design [1932, 2862, 305, 2411, 510, 2193, 1497, 1426, 2056, 2911].

designing [2609, 2655].

desired [1582].

desorption [1069, 2194].

destroyed [2327].

Desymmetrization [144].

detachment [2521].

detailed [1990, 131, 1825, 1544, 2520].

Details [126].

Detect [1933, 131, 2158].

Detection [1085, 2072, 1634].

deterioration [2430].

Determinable [525].

Determinacy [614].

determinant [113, 2807, 2251, 2953, 522, 482].

determinants [3062, 2852].

Determination [1175, 1187, 2482, 1538, 1362, 1277, 1770, 1957, 1447, 1047, 1842, 2864, 2295, 2513, 683, 2799, 2912, 64].

Determine [772, 2351, 2265, 2442, 2601].

determined [2939, 278, 251, 2706].

Determining [890, 2069, 2059, 1662, 2805, 1932, 2187, 71, 1790, 2108, 2157, 1335, 2650].

Deterministic [774, 1686].

detour [1581].

detoxification [3082].

Deuterated [734].

deuterium [192].

Development [2752, 2655, 2632, 1526, 3084, 623, 426, 2776, 763, 764].

developments [1508, 85].

Deviation [1729, 1538, 2565].

deviations [1792].

devices [456, 1767].

Devil [703].

devising [6].

Dewar [2907].

dewetting [2694].

DFT [2058].

Di-Substitution [872].

Diabatic [886, 898, 974, 1971, 2412].

diagnosis [81].

diagnostic [2829, 2255, 2651].

diagnostics [1139, 1245, 1389, 1453, 1454, 1901, 2579, 2580, 2602, 2702].
diagrammatics [1942]. Diagrams [846, 761, 87, 1585, 18, 1495].
diamagnetic [1378]. diameter [1250, 1298, 1239, 1063]. Diamond [2150, 1104, 1979, 284].
diamondoids [2150]. Diastereomeric [820].
diatomic [2034, 2032, 1556, 1514, 2879, 2614, 113, 2513, 659, 2099, 1481, 2985, 2149, 1469, 1980, 35, 732, 545].
diatomic [1942]. Diagrams [846, 761, 87, 1585, 18, 1495].
diamagnetic [1378]. diameter [1250, 1298, 1239, 1063]. Diamond [2150, 1104, 1979, 284].
diamondoids [2150]. Diastereomeric [820].
diatomic [2034, 2032, 1556, 1514, 2879, 2614, 113, 2513, 659, 2099, 1481, 2985, 2149, 1469, 1980, 35, 732, 545].
diatomic [1942]. Diagrams [846, 761, 87, 1585, 18, 1495].
diamagnetic [1378]. diameter [1250, 1298, 1239, 1063]. Diamond [2150, 1104, 1979, 284].
diamondoids [2150]. Diastereomeric [820].
diatomic [2034, 2032, 1556, 1514, 2879, 2614, 113, 2513, 659, 2099, 1481, 2985, 2149, 1469, 1980, 35, 732, 545].
diatomic [1942]. Diagrams [846, 761, 87, 1585, 18, 1495].
diamagnetic [1378]. diameter [1250, 1298, 1239, 1063]. Diamond [2150, 1104, 1979, 284].
diamondoids [2150]. Diastereomeric [820].
extreme [2391]. extreme-ultraviolet [2391]. extruder [2046].

First-order [547]. First-order [2674, 2130, 1692, 1655, 1225, 2105, 1966, 1612, 652, 699, 1904, 2317, 2381, 2455, 2930, 1500, 1845, 1222, 1264, 2302, 2648, 3030, 2594].

Fitting [755, 832, 1194, 1303, 1717, 3046, 2201, 1678, 1756]. fittingness [2584, 2585].

food [2517, 1356, 1310, 1373, 1276, 1823, 1254, 1317, 1231]. food-limited [2517].

Mathematical [1483, 1455]. Mathematical [1483, 1455].

methods

objective [2567, 2970, 2056, 1550]. objects [2012, 2243, 117, 183, 692].
Obrechkoff [3109, 3033]. observability [606, 662]. observable [1335, 1766].
observation [1749, 2025]. observe [1795]. Obstacles [383]. Obtain
[928, 870, 521, 2018]. Obtained [1016, 2786, 3074]. Obtaining
[2990, 2369, 2854]. octagonal [543]. Octahedral
[910, 2728, 2936, 1895, 2753, 2948]. octan [2940]. octan- [2940]. octanol
[1551]. octet [1274]. odd [294, 2171]. ODE [2221]. ODEs [1891, 1234].
offset [3105]. Ogilvie [1308]. Ol [2940, 1976]. Old [870, 2463]. Olender
[731]. oligomeric [2121]. Omega [1420, 1421]. on-axis [222]. once [399].
oncology [2255]. oncolytic [3098]. One
[1113, 2939, 1050, 872, 2657, 1138, 748, 933, 1708, 825, 1727, 2278, 492, 1224,
2514, 2647, 2832, 2951, 746, 2249, 2879, 414, 470, 1277, 1868, 273, 283, 2715,
2820, 323, 2664, 2625, 1205, 1284, 1447, 1595, 1659, 1769, 1053, 2297, 2247, 1778,
251, 2126, 2718, 1612, 1488, 1569, 2627, 1907, 64, 1044, 1054, 1253, 356, 332].
one- [1868, 332]. one-body [1612]. one-centre [356]. One-dimensional
[1727, 1224, 2514, 2832, 470, 2715, 2820, 323, 2297]. One-electron
[1138, 746, 283]. one-electronic [251]. One-Forms [748]. One-Parameter
[825, 64, 1044, 1054, 1253]. One-range
[1050, 1205, 1284, 1447, 1595, 1659, 1769, 1907]. One-sided [1113]. One-two
[1708]. ones [1067]. only [2809, 694]. onto [1095, 2085, 1911]. Open
[1151, 68, 77, 892, 1956, 581, 3000, 550, 2870, 1366, 1595, 336, 1349, 572, 1455,
518, 2987, 131, 2536, 1534, 146, 1786]. Open-Ended [892, 2536].
open-shell [572, 1534]. opening [2041]. Operation [802]. Operational
[1407, 1414, 2033, 2338, 3054]. operations [2396]. operator
[2373, 673, 2231, 1984, 2985, 97, 332, 363, 2062, 26, 542, 1501, 2428, 1939].
Operators [1028, 1153, 409, 2397, 2406, 1804, 2468, 139, 140, 2748, 2556,
1216, 2062, 2680, 2365, 2275, 1039, 1382, 532, 715, 2749, 2195].
Oppenheimer [2148, 886, 2153, 1161]. Optical [1543, 1545]. Optimal
[91, 2340, 2739, 416, 1881, 1686, 1924, 1653, 1592, 1799, 2921, 2233, 2340,
2891, 3022, 2901, 2995, 3117, 1800, 744, 367, 2386, 149, 2888, 2567, 2798, 3067,
1336, 2795, 2855, 1538, 2975, 3125, 1565, 1551, 1621, 1784, 3069, 2834].
optimally [500]. optimisation [2056]. Optimization
[764, 1080, 1085, 740, 2636, 1013, 1959, 1676, 2431, 2651, 1931, 1874, 1842,
1497, 2970, 2055, 203, 1879, 2563, 1322]. Optimized
[763, 764, 1426, 1139, 1901, 2580, 3006, 2110, 2283, 2017, 1597, 2935, 2909,
1773, 1525, 2213, 1535, 2954, 2844, 2050, 2914, 2816, 2255]. optimizing
[2216]. optimum [185]. orbit [2341, 2906]. Orbital
[846, 190, 318, 2117, 1350, 1456, 2867, 1269, 1235, 1624, 1629, 1623, 1787,
1802, 1790, 2213, 616, 1788, 2192, 106]. orbital-communications [1629].
Orbitals [836, 917, 920, 919, 1017, 854, 1027, 1119, 1155, 2287, 505, 362, 145,
971, 1321, 1379, 1246, 1338, 1385, 1483, 1468, 1471, 1475, 1447, 1595, 1604,

QSPR [471, 744, 931, 2378, 2534, 2983, 3004, 977, 2555, 1255, 1106, 1372, 2607, 3047, 1565, 1551, 1601]. QSPR-model [1601]. QSPRs [2197].
quadrangle [2574]. Quadratic [1022, 2402, 2271, 2254, 3000, 550, 1007, 1053, 2390, 2439, 436, 2192, 1573].
quadrature [1451, 2040, 2718, 625, 624]. quadratures [2704]. quadruplets [2298, 2299, 2584, 2585]. Quadrupling [1072]. quadropole [2362].
Qualitative [2168, 2079, 11, 2601, 4, 1647, 30, 31]. Quality [789, 500, 2323, 1739]. Quantification [2602, 1453, 2072, 2740, 2702, 2809, 2920]. quantify [2565, 2094].
Representation [496, 1092, 1141, 1075, 1797, 2397, 1655, 1578, 2827, 1369, 2540, 2547, 2858, 259, 2089, 2090, 231, 2833, 2035, 426, 427, 1299, 2184, 2700, 1207, 1180, 2126, 1852, 473, 2104, 958, 2038, 2423, 2707, 2791, 1259, 418, 73, 173, 988, 1988, 1947, 2204, 1739, 1879, 1810, 2050, 2459, 2460].

Represented [898, 2352]. representing [155, 1045].

Repro [815].

Resonance [1085, 792, 1390, 2134, 1169, 16, 892, 1139, 1389, 1453, 1443, 1901, 2072, 2255, 2431, 2608, 2651, 2580, 2602, 2741, 2794, 2773, 2702, 3066, 2967, 2863, 2122, 2374, 1012, 1726, 616, 2926, 1919]. resonances [2701, 2715, 1642]. resonant [843, 1221, 1000, 1345, 2697, 2853]. resource [2292, 1583]. resources [2409].

Respect [1172, 1236, 1176, 434, 1553, 3041, 1575, 1500, 1845, 998].

rigid [2705, 2653, 1130, 2465, 468, 2862, 546, 1944, 1844, 469, 739].

Role [865, 2984, 1139, 1545, 2187, 407, 2621, 33, 1622, 662, 1976, 615]. Root
[827, 2647, 231, 201]. Roothaan [1366, 1471, 1595]. roots
[2901, 2952, 2482, 2891]. Rosen [1052, 1124, 1963, 1882, 608, 2227, 3002].
Rota [277]. rotating [20]. rotation
[204, 1814, 1477, 563, 485, 613, 1350, 1456, 2661, 1329, 1511, 1670].
rotation-angular [1814, 1350, 1456]. rotation-vibration [1477]. rotational
[3051, 538, 2360]. rotation-vibration [1477]. rotational。
rotation-vibration [1477]. rotational-vibration [1477]. rotational.
2720, 3033, 2648, 2522, 2775, 2835, 3030, 1614, 2078, 2697, 2853, 2719, 2594.

sextets [15, 998]. sextuple [284, 2650]. Sham [2426].
Shape-invariance [1280]. Shape-similarity [693]. shaped [954, 41, 1742, 2078]. Shapes [790, 791, 46, 44, 183, 1918].
silica [1897, 2433, 1981]. silica-supported [1981]. silicate [2663, 2871].
six-step
sixth-order
Sixth
sixth-[2392, 2632, 2595, 2673, 2623, 2662, 2691, 2709, 2938, 2908, 3116, 2764, 2734, 2746, 2733, 2851, 2855, 2381, 3081]. Sixth [967, 2908, 2904, 2903, 3125].
sixth-[2392, 2632, 2595, 2673, 2623, 2662, 2691, 2709, 2938, 2908, 2764, 2734, 2746, 2733, 2851, 2855, 2381, 3081]. Six-[2392, 2632, 2595, 2673, 2623, 2662, 2691, 2709, 2938, 2908, 2764, 2734, 2746, 2733, 2851, 2855, 2381, 3081]. Sixth [967, 2908, 2904, 2903, 3125].
size-consistency [413]. size-extensive [1941]. Sizes [2771, 2053, 7]. Skeletal [2917, 424, 3074]. skeleton [1461, 1462]. skeletons [2862, 4]. skew
stereogenicity/RS [2028]. stereogenicity/stereoisomerism [2028].
stereographs [155]. stereoisogram [2028].
stereoisograms [2027, 2028, 2450, 2451, 2452, 1585].
stereoisomeric [2048, 2450]. stereoisomerism [1761, 2028].
Stereoisomers [1173, 1154, 991, 1585, 2298, 2585, 1811, 2299, 2371, 2372, 2584].
stereoselection [71]. stereoskeletons [2491].
Stern [552].
Stieltjes [2854].
stiff [1891, 1234, 1322, 1358].
Stiffness [371].
Still [875].
Stirred [802, 2964, 699, 738].
stirred-tank [699].
STO [1167].
stoichiometric [3121].
stoichiometry [715].
STOs [2600, 1160].
stranded [2070]. strategies [1924, 394].
strategy [1094, 2944, 279, 280, 666, 2331].
Stratospheric [1360].
strength [683, 725].
streptokinase [1191].
Stretching [844].
strictly [131].
String [160, 1411].
strings [89].
Strip [1128, 3013].
strips [2672, 3127].
strong [691, 1049, 1743].
Strongly [96, 1941, 3007].
Strontium [2506].
Structural [2560, 803, 947, 2436, 2357, 2923, 2535, 182, 1204, 551, 218, 626, 2315, 30, 31, 2919].
Structurally [786, 2000].
structure-activity [1763, 319, 2831, 128, 165, 2133].
structure-based [1497].
structure-preserving [3062, 2531, 2897].
structure-properties [471].
structure-property [233, 1539].
Structure/formula [1701].
structured [1811, 2631, 1378].
studied [1411].
Study [186, 1276, 1231, 798, 1340, 2068, 2705, 2875, 329, 2433, 3083, 951, 1324, 2290, 193, 1202, 2572, 2670, 2225, 88, 2513, 2448, 266, 10, 1685, 1801, 1667, 2788, 2656, 2718, 513, 514, 593, 2208, 2439, 533, 2516, 1691, 1100, 1323, 1911, 2116, 2348, 2641, 739, 1534, 636, 701, 2687, 1939, 1409, 1688, 1544, 1547, 1694, 2487].
studying [3114].
Sturm [2231, 2082, 1068].
Sturmian [618, 708, 851, 2605].
Sturmians [549, 691, 2287].
styrene [1981].
sub [2100]. subclass [2526].
subdivision [3053].
Subduced [780, 929, 109, 2049].
Subduction [110, 109].
Subductions [929].
Subgraph [446, 1016].
Subgraph-driven [446].
Subgraphs [1424, 81, 229, 1539].
Subgroup [770, 2586].
subgroups [421].
subject [1556, 1404].
subnetworks [1985, 131].
suboptimal [2292].
subsequent [1753].
subset [1694].
subspace [1850, 1647].
Subspaces

systems [2127, 2126, 2306, 2925, 1215, 2141, 513, 1349, 1354, 1235, 1787, 1802, 2690, 1036, 2989, 1455, 2676, 235, 2474, 1378, 2405, 2294, 2516, 1859, 2729, 73, 1290, 2416, 2822, 2536, 634, 2175, 1616, 537, 2212, 2458, 2233, 116, 1756, 1193, 591, 2239, 2723, 694, 522, 560, 622, 111, 211, 1322, 1358, 1330, 1649, 2083, 1446, 1759, 2792].

REFERENCES

Rouvray:1987:EFa

Anonymous:1987:LW

Sumners:1987:KTM

King:1987:CATa

King:1987:CATb

REFERENCES

Filip:1987:NAD

Otto:1987:CRE

Randic:1987:ECP

El-Basil:1987:ACT

Kirby:1987:FCG

Schneider:1987:QAM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fujita:1990:ECS

Fujita:1990:SCR

Xiaofeng:1990:RKB

Trinajstic:1990:CPH

Estrin:1990:PEC

Bhalekar:1990:GPI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mezey:1991:HHP

Ponec:1991:TAC

Plavsic:1991:CCM

Fabic-Petrac:1991:SCR

Djrasovic:1991:LPA

Surjan:1991:NSE

Ptak:1991:DET

Cioslowski:1991:POO

Klasing:1991:PCD

Vikic-Topic:1991:MDL

Buyukbingol:1991:NPM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Peluso:1992:TAE

Silvi:1992:MLD

Laszlo:1992:EPA

Kurti:1992:EUC

Arteca:1992:CDM

Mezey:1992:EF

vasi. A massively parallel approach to the quasiclassical reactive scat-
CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (electronic). URL

[256] Maurice Kibler and Tidjani Négadi. On quantum groups and their po-
tential use in mathematical chemistry. *Journal of Mathematical Chem-
istry*, 11(1):13–25, December 1992. CODEN JMCHEG. ISSN 0259-
article/10.1007/BF01164192.

[257] Paul G. Mezey. Similarity analysis in two and three dimensions using
lattice animals and polycubes. *Journal of Mathematical Chemistry*, 11
(1):27–45, December 1992. CODEN JMCHEG. ISSN 0259-9791 (print),
1007/BF01164193.

model of protein structure. *Journal of Mathematical Chemistry*, 11
1007/BF01164194.

[259] Eugeny V. Babaev and Nikolai S. Zefirov. Ring-transformation graphs
and their application to degenerate heterocyclic rearrangements. *Journal

generation of acyclic graphs based on local vertex invariants and topologi-
ical indices. Derived canonical labelling and coding of trees and alkanes.
REFERENCES

REFERENCES

REFERENCES

Taylor:1993:FCG

Cioslowski:1993:ETE

Arteca:1993:SLS

Nicholson:1993:PGA

Chartrand:1993:RCT

Klein:1993:RD

Chou:1993:GRN

125

Brunvoll:1993:MAE

Lee:1993:EEG

Babic:1993:IBG

Chen:1993:CCS

Guo:1993:EAG

Fujita:1993:EDG

REFERENCES

REFERENCES

REFERENCES

[322] F. P. Temme. On general forms for structure of some \([n-1,1] \otimes [\lambda]L_{nn}\)
inner tensor products with \(6 \leq n \leq 20\), (60) for \(n\) even, in the context of
spin cluster problems of multiquantum NMR. *Journal of Mathematical
com/article/10.1007/BF01165561.

[323] Richard W. Freedman and Fred Gornick. Further reflections on the one-
167–176, December 1993. CODEN JMCHEG. ISSN 0259-9791 (print),
1007/BF01165562.

[324] A. Tone, L. Lain, and J. Millan. Contraction algorithms for third-order
reduced density matrices: Symmetric group approach. *Journal of Math-
springer.com/article/10.1007/BF01165563.

springer.com/article/10.1007/BF01165564.

[326] Zbigniew Zimpel. The metric properties of the reduced nuclear con-
205–208, December 1993. CODEN JMCHEG. ISSN 0259-9791 (print),
1007/BF01165565.

[327] Kurt Mislow and Pietro Poggi-Corradini. Shape space of achiral
simplexes. *Journal of Mathematical Chemistry*, 13(1):209–211, De-
cember 1993. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-
1007/BF01165566.
REFERENCES

[333] G. Magela e Silva, L. A. C. Malbouisson, A. Naves de Brito, and J. D. M. Vianna. Functional analysis concepts and Hartree–Fock in-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[406] Mihaly Mezei and Katalin Bencsáth. Long-range contribution to inverse-distance power and Morse energy and pressure terms of a molecular

REFERENCES

[418] S. Roszak and K. Balasubramanian. Unresolved mathematical problems in the representation of potential energy surfaces by many-body

REFERENCES

REFERENCES

REFERENCES

Chauvin:1995:CAVc

Pota:1995:UFM

Cyvin:1995:ASN

Li:1995:NAN

Korobov:1995:HCK

Singh:1995:MTT

[459] F. P. Temme. On mixed vs. exclusively-bosonic $\left\{ \lambda \right\} : p \leq 2^2$ (SU2$x S_n$) irrep sets over $\{ \hat{H}_n \}$ carrier subspaces, in the structure of (SU2 \otimes S_n) \otimes (SU2 \otimes S_n)$^+$-derived Liouville space of NMR spin dynamics. *Journal of Mathematical Chemistry*, 18(1):91–95, March 1995. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (electronic). URL http://link.springer.com/article/10.1007/BF01166605.
REFERENCES

REFERENCES

REFERENCES

Pogliani:1996:GTP

Blinder:1996:CPF

Carbo:1996:QMS

Bracken:1996:NTI

Witwit:1996:ELS

Baldridge:1996:PIS

REFERENCES

REFERENCES

Simon:1996:GTT

Ming:1996:EFD

Cendra:1996:GFP

Demiralp:1996:ULB

Bowden:1996:SARa

Bowden:1996:SARb

[502] G. J. Bowden, T. Heseltine, and M. J. Prandolini. Some analytical results for ABC, ABCD, and XBCD coupled spin 1/2 systems. II. Journal
REFERENCES

Randic:1996:HOF

Fernandez:1996:APB

Hoffman:1996:VDE

Hollauer:1996:PSM

Molina:1996:ASPa

Molina:1996:ASPb

REFERENCES

[525] F. P. Temme. Determinable partitional modelling of Cayleyan $SU(n \leq n/2) \times S_{n} \downarrow G\mathcal{M}\mathcal{R}$ spin symmetries of isotopomeric cage-clusters: Specific $S_{n} \geq 12 \supset \ldots \supset D_{3}$ group chains, for S_{n}-modules in high-n weak-branching limit. *Journal of Mathematical Chemistry*, 20(2):311–329, September 1996. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (electronic). URL http://link.springer.com/article/10.1007/BF01165351.

REFERENCES

REFERENCES

Piecuch:1997:CEE

Kier:1997:CAM

Huillet:1997:CAB

Roy:1997:CNC

Taneri:1997:BAT

Hoffman:1997:RPF

Farinha:1997:NLL

Wieland:1997:CCC

Liu:1997:GSB

Panja:1997:GPC

Brunvoll:1997:ETL

Mackay:1997:RH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

177

Hornburger:1998:DCA

Knopfmacher:1998:AIE

Grimaldi:1998:GMC

Antippa:1998:BEH

Balinska:1998:GWV

REFERENCES

REFERENCES

Anglada:1999:AWI

Arrighini:1999:MAA

Evans:1999:NTL

Merkin:1999:RFI

Nitta:1999:GTA

Li:1999:MEO

REFERENCES

[712] Yung Park. Effect of transient condensation of a supercooled gas on

[713] T. E. Simos. A new explicit Bessel and Neumann fitted eighth algebraic

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pinsky:2001:CSM

Simos:2001:MPF

Handrock-Meyer:2001:MDD

Wang:2001:AFA

Micheletti:2001:SDS

Okrasinski:2001:MEU

REFERENCES

[830] A. Torre, L. Lain, R. Bochicchio, and R. Ponec. Topological population analysis from higher order densities II. The correlated case. *Jour-
References

[Paul Caylor McKinney. Schrödinger equation solutions for the central field power potential energy II. $V(r) = -V_0(r/a_0)^{2\nu-2}, 0 \leq \nu \leq 1$, the bound states. *Journal of Mathematical Chemistry*, 32(4):405–410, November 2002. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (electronic). URL http://link.springer.com/article/10.1023/A:1022957623388.]

[F. Aluffi-Pentini, V. De Fonzo, and V. Parisi. A novel algorithm for the numerical integration of systems of ordinary differential equations...

REFERENCES

REFERENCES

REFERENCES

Petitjean:2004:SSS

Arteca:2004:TSM

Yan:2004:PPS

Marmorino:2004:STL

Baronas:2004:EDL

Paldus:2004:GMS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[948] L. V. Kalachev and K. R. Schneider. Global behavior and asymptotic reduction of a chemical kinetics system with continua of equilibria. Jour-
alers

Arimoto:2005:PFCa

Qiao:2005:AAR

Berberan-Santos:2005:CQS

Cash:2005:CFH

He:2005:CQT

Aktas:2005:ESS

Metin Aktas and Ramazan Sever. Exact solution of Schrödinger equation with deformed ring-shaped potential. Journal of Mathematical Chem-

REFERENCES 234

Anastassi:2005:TFR

Psihoyios:2005:SAO

Sakas:2005:FMM

Hao:2005:ADG

Rodrigues:2005:ICE

Guseinov:2005:CME

REFERENCES

REFERENCES

REFERENCES

[1000] Heping Zhang and Jinghua He. A comparison between 1-factor count and resonant pattern count in plane non-bipartite graphs. *Journal of
Kotdawala:2005:AMF

Liu:2005:RI

Ivanauskas:2005:CSS

Taseli:2005:SHW

Hollas:2005:AIT

Morales:2005:TEE

Huang:2005:TDCa

Karimi:2005:E

Marmorino:2005:IWI

King:2005:CDK

Varon:2005:TNR

Shiu:2005:RTP

REFERENCES

[1018] Myriam Segre de Giambiagi, Marçal Oliveira de Neto, and Amarilis V. Finageiv de Neder. Cooperative effect of CH···O bonds in models

REFERENCES

REFERENCES

250

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zhang:2007:MRI

Hua:2007:UGM

Doslic:2007:FGE

Duchowicz:2007:NMD

Carbo-Dorca:2007:EPR

Doslic:2007:GFN

REFERENCES

Gholamreza Faridfathi and Ramazan Sever. Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian screened Coulomb poten-

REFERENCES

Khadikar:2007:TEA

Sanchez:2007:MMR

Ikhdair:2007:AEE

Wang:2007:OCG

Fujita:2007:GTF

REFERENCES

REFERENCES

278

REFERENCES

Yousefi:2007:EEW

Ren:2007:DHCb

Lin:2007:LET

Naujikas:2007:MEP

Fenstad:2007:DHP

Edgal:2007:PNN

REFERENCES

REFERENCES

Guseinov:2008:UCC

Jia:2008:PDE

Sun:2008:ADB

Wang:2008:FNT

Li:2008:MEU

Zhao:2008:FSA

Estrada:2008:GSS

Zivkovic:2008:IFQ

Wang:2008:AMH

Duchowicz:2008:ANR

Cai:2008:DFF

Doslic:2008:SNF

Arimoto:2008:RST

Randic:2008:RDL

He:2008:RPR

Peuker:2008:AET

Guo:2008:SUB

Vukicevic:2008:AKN

REFERENCES

Marmorino:2008:ABS

Jesudason:2008:FRC

Guseinov:2008:UTCa

Volpe:2008:PCA

Guo:2008:CDH

Carbo-Dorca:2008:MALa

REFERENCES

Carbo-Dorca:2008:MALb

Carbo-Dorca:2008:MALc

Sanctuary:2008:IDF

Cai:2008:IVD

Lim:2008:SSR

Zhao:2008:FSP

REFERENCES

Trif:2008:MPS

Yuan:2008:PIG

He:2008:QCR

Cai:2008:IVJ

Liu:2008:PCC

Li:2008:RRS

REFERENCES

REFERENCES

[Bielinska-Waz:2008:CSS]

[Zawadzka:2008:ASP]

[Pedersen:2008:QSS]

[Lim:2008:CBO]

[Banaji:2008:ETN]

[Pang:2008:AMT]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Baowan:2008:TMF

Velasco:2008:SOD

Duchowicz:2008:POR

Cai:2008:KAN

Hosoya:2008:KSH

Wang:2008:MRB

REFERENCES

REFERENCES

Gabarro-Arpa:2008:CPM

Belkic:2008:UDG

Karimi:2008:RSC

Mezey:2008:E

Brouder:2008:DIG

Cassam-Chenai:2008:SAP

REFERENCES

REFERENCES

Guttmann:2009:MF1

Alvarez:2009:HOM

Simpao:2009:TCAb

Nagy:2009:P

Brinkmann:2009:NFD

Jantschi:2009:SPV

Kutnar:2009:INP

Lijnen:2009:OAF

Kutnar:2009:DLF

Lijnen:2009:DTM

Kutnar:2009:AKN

Klavdija Kutnar, Jelena Sedlar, and Damir Vukicević. On the anti-Kekulé number of leapfrog fullerenes. *Journal of Mathematical Chemistry*, 45(2):431–441, February 2009. CODEN JMCHEG. ISSN 0259-

Trobec:2009:CPM

Vizitiu:2009:TF

Vukicevic:2009:AFK

Vukicevic:2009:PZM

Mezey:2009:QUM

Mezey:2009:ERB

REFERENCES

Vukicevic:2009:FFC

Belkic:2009:GCS

Farkas:2009:PFL

Nalewajski:2009:MSC

Zivkovic:2009:ETO

Guseinov:2009:UUO

REFERENCES

Nalewajski:2009:CTP

Balaban:2009:PP

Lin:2009:EKE

Capela:2009:RAA

Nalewajski:2009:MPE

Belkic:2009:EQT

Belkic:2009:URM

Plakhutin:2009:CCO

Mamedov:2009:CTCa

Batagiannis:2009:UBPa

Batagiannis:2009:UBPb

Jorge Martínez and Alejandro Toro-Labbé. Erratum: The reaction force. A scalar property to characterize reaction mecha-

Livadiotis:2009:ATSa

Livadiotis:2009:ATSb

Alpar-Vajk:2009:BRD

Guseinov:2009:TCO

Lim:2009:CIA

[1481] Sameer M. Ikhdair and Ramazan Sever. Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. *Jour-

REFERENCES

Bucknum:2009:CTC

Berkdemir:2009:NAD

Suarez:2009:TCD

Avery:2009:ACI

Kang:2009:NCO

Huang:2009:BSM

REFERENCES

Heuberger:2009:CTM

Szmytkowski:2009:DAL

Pipek:2009:KEO

Zhou:2009:RDK

Li:2009:NAM

Nelson:2009:ACM

Donnell:2009:SGM

Li:2009:SRG

Guo:2009:ZZP

Baeurle:2009:MMP

Ivanauskas:2009:CMY

Kardos:2009:FGE

Arimoto:2009:NRS

Hu:2009:APP

Panopoulos:2009:TOS

Anastassi:2009:NMD

Anastassi:2009:NMC

Vlachos:2009:HOM

Hideaki Takahashi, Fumihiro Miki, Hajime Ohno, Ryohei Kishi, Suguru Ohta, Shin ichi Furukawa, and Masayoshi Nakano. Hydration effects on

Psihoyios:2009:FN

Tsitouras:2009:SDR

Zenkevich:2009:AP

Garoufalis:2009:OG

Zdetsis:2009:MSG

Garoufalis:2009:OP

Zheng:2009:CBM

Anastassi:2009:FRK

Zhou:2009:ECI

Rech:2009:PFH

Hasanov:2009:ANI

Zhang:2009:NLZ

REFERENCES

Shuping:2010:SAS

Meng:2010:DAM

Fujita:2010:CDS

Karimi:2010:CGA

Laszlo:2010:MCM

Puida:2010:MMA

[1588] Mantas Puida, Feliksas Ivanauskas, and Valdas Laurinavicius. Mathematical modeling of the action of biosensor possessing variable parame-

REFERENCES

[1600] B. A. Mamedov and E. Çopuroğlu. Erratum: Calculation of three-center nuclear attraction integral over Slater type orbitals in molecular coordinate system using Löwdin α-radial function and Guseinov’s two-center

REFERENCES

REFERENCES

Niehaus:2010:CID

March:2010:SMM

Yilmaz:2010:SSE

Carbo-Dorca:2010:MSP

Szederkenyi:2010:CSD

Lee:2010:SND

REFERENCES

Nalewajski:2010:ANA

Wang:2010:HBM

Lee:2010:RMM

Kardos:2010:CEC

Ajadi:2010:ACC

Nalewajski:2010:EIC

REFERENCES

Berberan-Santos:2010:MBI

Zhao:2010:DAL

Klein:2010:CMG

Zhao:2010:ISF

Guseinov:2010:EII

Hasanov:2010:ANI

[1660] Alemdar Hasanov, Burhan Pektas, and Umit Kadiroglu. An analysis of nonlinear ion transport problem including arbitrary valences of oxi-
REFERENCES

Miranda-Quintana:2010:FTC

Belkic:2010:RTI

Belkic:2010:RTD

Strekalov:2010:TTW

Gligor:2010:NMS

REFERENCES

REFERENCES

Lima:2010:NMO

Guirao:2010:CCL

Rey-Ronco:2010:MSI

Berberan-Santos:2010:GFM

Meena:2010:MME

Zhao:2010:ASC

[1694] Xuezhuang Zhao, Zhenfeng Shang, Zucheng Li, Xiufang Xu, Guichang Wang, Ruifang Li, and Yun Li. Approximate symmetry characteristics using fuzzy-subset theory study for chiral transitions of allene-1,3,-dihalides. *Journal of Mathematical Chemistry*, 48(2):187–223, August

Liu:2010:APL

Barabas:2010:SAA

Hasanov:2010:IUDb

Hasanov:2010:IUDc

Natarajan:2010:NCD

Milani:2010:NSN
REFERENCES

Mansour:2010:TWP

Stadler:2010:MGC

Xing:2010:SCI

Quina:2010:CDS

Safouhi:2010:IPC

Masia-Perez:2010:GMNa

REFERENCES

366

REFERENCES

[1746] Alla P. Toropova, Andrey A. Toropov, Emilio Benfenati, Danuta Leszczynska, and Jerzy Leszczynski. QSAR modeling of measured bind-

Koga:2010:EPR

Delgado:2010:SEN

Li:2010:DMR

Killingbeck:2010:PAF

Hariharan:2010:HWM

Mateljevic:2010:EPC

REFERENCES

[1769] I. I. Guseinov. Evaluation of potential of electric field produced by molecule using symmetrical one-range addition theorems for Coulomb–

REFERENCES

REFERENCES

Cassam-Chenai:2011:RSP

Carbo-Dorca:2011:MAL

Sikiric:2011:CPR

Benson:2011:SAS

Calogero:2011:NRE

REFERENCES

REFERENCES

Szmytkowski:2011:DAL

Huang:2011:PAD

Rogerson:2011:MSS

Santosa:2011:IPR

Baronas:2011:MCS

Marmorino:2011:ELB

[1850] M. G. Marmorino. Eigenvalue lower bounds with Bazley’s special choice of an infinite-dimensional subspace. *Journal of Mathematical Chem-
REFERENCES

REFERENCES

Yuan:2011:DIO

Arribas:2011:CUE

Roy:2011:DFC

Arimoto:2011:PFC

Maheswari:2011:ASN

Thiagarajan:2011:AES

...

Sanchez:2011:NAA

Randic:2011:NCP

Besalu:2011:GGP

Zheng:2011:SSH

Varga:2011:NIU

Chakraborty:2011:FWK

Bayanov:2011:NSV

Dey:2011:ONL

Gu:2011:ESM

Jin:2011:AJP

Liu:2011:CBT

Carbo-Dorca:2011:QSV

[Besalu:2011:DES]

[Carbo-Dorca:2011:GDE]

[Jablan:2011:NGD]

[March:2011:SSC]

[Anderson:2011:BTW]

[Baowan:2011:MAW]

Li:2012:GFH

Ke:2012:LBN

Skakauskas:2012:NSK

DAmbrosio:2012:PEE

Rogerson:2012:SSB

Kessler:2012:EPC

REFERENCES

REFERENCES

REFERENCES

[1955] Lesław K. Bieniasz. Automatic simulation of electrochemical transients by the adaptive Huber method for Volterra integral equations involving kernel terms $\exp[-\alpha(t - \tau)]e^{\tau\left[\beta(t - \tau)\right]^{1/2}}$ and $\exp[-\alpha(t - \tau)]daw\left[\beta(tr)\right]^{1/2}$. *Journal of Mathematical Chemistry*, 50(4):765–781, April 2012. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (electronic). URL http://link.springer.com/article/10.1007/s10910-011-9923-3.

Demiralp:2012:PFDb

Dong:2012:ESM

Pisanski:2012:FGT

Karimi:2012:CGA

March:2012:EMC

Zhang:2012:PCB

REFERENCES

Rajasingh:2012:PHN

Arimoto:2012:MMM

Simos:2012:HOC

Hutem:2012:NES

Indira:2012:AEN

Lee:2012:GFI

Wu:2012:LYC

Xing:2012:SFS

PonRani:2012:MMS

Barany:2012:EDM

Estrada:2012:RCD

REFERENCES

Li:2012:DMR

Izmailov:2012:SAM

Fujita:2012:STBa

Fujita:2012:STBb

Alolyan:2012:NHT

Molina-Espiritu:2012:ITC

[2030] Moyocoyani Molina-Espíritu, Rodolfo O. Esquivel, Juan Carlos Angulo, Juan Antolín, and Jesús S. Dehesa. Information-theoretical complexity

REFERENCES

Puida:2012:MEC

Rosenfeld:2012:EPI

Ozay:2012:CSS

LeDell:2012:CNP

Killingbeck:2012:CPQ

Quapp:2012:TCR

420

[2058] Ramon Carbó-Dorca. Quantum similarity matrices column set as holograms of DF molecular point clouds. *Journal of Mathematical Chem-
REFERENCES 423

REFERENCES

Nalewajski:2013:ITM

Rosenfeld:2013:ESIa

Demiralp:2013:CLRa

Demiralp:2013:CLRb

Lebedev:2013:SPR

Strekalov:2013:CET

[2109] Ramon Carbó-Dorca and Emili Besalú. EMP as a similarity measure: a geometric point of view. *Journal of Mathematical Chemistry*, 51(1):
REFERENCES

Fang:2013:NOE

Carbo-Dorca:2013:ACC

Carbo-Dorca:2013:PMH

Paldus:2013:SBI

Chen:2013:LTB

Milani:2013:EGA

[2115] G. Milani. Effective GA approach for a direct evaluation of reaction kinetic within EPDM accelerated sulphur crosslinking. Journal of Math-
Skakauskas:2013:NSL

Liu:2013:CBF

Aloyan:2013:HOF

Pereira:2013:ANS

Bianchi:2013:BKI

Das:2013:EPM

[2121] Biswajit Das, Kinshuk Banerjee, and Gautam Gangopadhyay. Entropy production of a mechanically driven single oligomeric enzyme: a conse-
REFERENCES

REFERENCES

Mukherjee:2013:SETa

Oyewumi:2013:BSS

Hariharan:2013:HAM

Thamwattana:2013:MIB

Amore:2013:PCU

REFERENCES

Milani:2013:DMA

Vigo-Aguiar:2013:MMC

Rey-Ronco:2013:TME

Alonso:2013:NLP

Lopez:2013:NGR

Demiralp:2013:PEAa

REFERENCES

[2178] Ibraheem Alolyan and T. E. Simos. A new four-step Runge–Kutta type method with vanished phase-lag and its first, second and third deriva-

REFERENCES

Cai:2013:QHM

Besalu:2013:CSM

Tuna:2013:NPM

Neto:2013:MNG

Reuben:2013:PSM

Miskinis:2013:ETS

[2207] P. Miskinis. An example of a two-stage chemical reaction whose kinetics may be found in an analytical form. *Journal of Mathematical Chemistry*, 51(7):1822–1834, August 2013. CODEN JMCHEG. ISSN

REFERENCES

Cataldo De Blasio, Claudio Carletti, Tapio Westerlund, and Mika Järvinen. On modeling the dissolution of sedimentary rocks in acidic

REFERENCES

REFERENCES

Tunga:2013:NMM

Li:2013:QSS

Szczepanik:2013:MSM

Mamedov:2013:AEM

Roy:2013:MCI

Raychaudhury:2013:ICM

REFERENCES

[2269] Roman F. Nalewajski. Communications in molecules: local and multi-configuration channels and their entropic descriptors of bond multiplicity
REFERENCES

Avery:2014:MIS

Zhao:2014:SFS

Padmanabhan:2014:GSA

Biring:2014:NAM

Chikayama:2014:SMC

Donovan:2014:LTL

[2292] Ashley Donovan, Vincent Beltrani, and Herschel Rabitz. Local topology at limited resource induced suboptimal traps on the quantum control

Fujita:2014:SIEb

Wallner:2014:ALN

Nalewajski:2014:PEM

Wazwaz:2014:VIM

Padmanabhan:2014:SAW
REFERENCES

[2309] Krishnan Balasubramanian. Generalization of the Harary–Palmer power group theorem to all irreducible representations of object and color

REFERENCES

REFERENCES

REFERENCES

Damian Mikulski, Krzysztof Eder, and Jerzy Konarski. Approximate analytical solutions of the stationary radial Schrödinger equation with...
REFERENCES

Toranzo:2014:FMN

Rudan:2014:PTA

Roy:2014:RVS

Pohjoranta:2014:MFP

Zhang:2014:DAS

EMELIANENKO:2014:ERC

YANG:2014:DSM

BISPO:2014:AST

FUJITA:2014:TAA

JIWARI:2014:CMT

MIKULSKI:2014:SQM

[2360] Damian Mikulski, Krzysztof Eder, and Jerzy Konarski. The supersymmetric quantum mechanics theory and Darboux transformation for the

REFERENCES

[2371] Shinsaku Fujita. Symmetry-itemized enumeration of RS-stereoisomers of allenes. I. The fixed-point matrix method of the USCI approach com-
REFERENCES

478

Fujita:2014:SIEd

Alcoba:2014:SAF

Liu:2014:RGG

Sumetpipat:2014:CNN

Chu:2014:EAV

[2406] Muzaffer Ayvaz and Metin Demiralp. Probabilistic evolution approach to the expectation value dynamics of quantum mechanical operators, part
REFERENCES

Mikulski:2014:FIE

Fernandez:2014:CEL

Gutman:2014:FML

Alolyan:2014:HTF

Duan:2014:MDD

[2417] Guido Dell’Acqua and Alberto Maria Bersani. On the appropriate use of asymptotic expansions in enzyme kinetics. *Journal of Mathematical

REFERENCES

REFERENCES

Zhou:2015:FPT

Zhou:2015:EFP

Tikhonov:2015:QAP

Carbo-Dorca:2015:QPD

Baas:2015:STL

Chung:2015:MDT

REFERENCES

[2451] Shinsaku Fujita. Stereoisograms for three-membered heterocycles: II. Chirality, RS-stereogenicity, and ortho-stereogenicity on the basis of the

REFERENCES

Martinez-Araya:2015:WDD

Thilagam:2015:NLH

Turulski:2015:DGFa

Turulski:2015:EDGa

Turulski:2015:DGFb

Turulski:2015:EDGGb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Amore:2015:SES

Milani:2015:IRN

Reis:2015:AVM

Gan:2015:HBF

Banerjee:2015:DHV

Frolov:2015:TPI

[2531] Qiong-Xiang Kong and Ji-Teng Jia. A structure-preserving algorithm for linear systems with circulant pentadiagonal coefficient matrices. *Journal-
REFERENCES

Penfold:2015:EIM

Fernandez:2015:ACE

Carbo-Dorca:2015:LSE

Gabor:2015:RNR

Steel:2015:SSA

Goedgebeur:2015:RGI

Amovilli:2015:EPN

Banerjee:2015:CCI

Carbo-Dorca:2015:IRPa

Lente:2015:ASR

Barthel:2015:TEA

REFERENCES

[2548] Genyuan Li, Roberto Rey de Castro, Xi Xing, and Herschel Rabitz. Sparse and nonnegative sparse D-MORPH regression. *Journal of Math-

REFERENCES

[2559] Risong Li and Yu Zhao. Remark on positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. *Journal of Math-
REFERENCES

Mihaly Mezei. Use of circular variance to quantify the deviation of a macromolecule from the spherical shape. *Journal of Mathematical Chemistry*, 53(10):2184–2190, November 2015. CODEN JMCHEG. ISSN 0259-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Tikhonov:2016:QAP

Belkic:2016:QFP

Carbo-Dorca:2016:AED

Tachibana:2016:TDR

Morales:2016:EIC

Wei:2016:PMR

REFERENCES

REFERENCES

Feliksas Ivanauskas, Pranas Katauskis, and Valdas Laurinavicius. Impact of convective transport and inert membrane on action of the bio-catalytic
REFERENCES

Carrillo:2016:OPC

Roul:2016:NAS

Roul:2016:ENA

Nogueira:2016:LCB

Tratnik:2016:DLS

REFERENCES

N_2O reaction over supported catalysts. Journal of Mathematical
Chemistry, 54(6):1306–1320, June 2016. CODEN JMCHEG. ISSN 0259-

[2642] Francisco M. Fernández and Javier Garcia. Unitary transformations of a
family of two-dimensional anharmonic oscillators. Journal of Mathemat-
ical Chemistry, 54(6):1321–1326, June 2016. CODEN JMCHEG. ISSN

[2643] Dánıel András Drexler and János Tóth. Global controllability of chemi-
2016. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10910-
016-0626-7.

[2644] L. Bayón, J. A. Otero, P. M. Suárez, and C. Tasis. Solving linear un-
branched pathways with Michaelis–Menten kinetics using the Lambert
W-function. Journal of Mathematical Chemistry, 54(7):1351–1369, Au-
gust 2016. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (elec-
1007/s10910-015-0579-2; http://link.springer.com/article/

[2645] Eulalia Martínez, Sukhjit Singh, José L. Hueso, and Dharmendra K. Gupta. Local convergence of a family of iterative meth-
ods for Hammerstein equations. Journal of Mathematical Chemistry,
54(7):1370–1386, August 2016. CODEN JMCHEG. ISSN 0259-

[2646] Iulia Martina Bulai and Ezio Venturino. Biodegradation of organic
pollutants in a water body. Journal of Mathematical Chemistry,
REFERENCES

REFERENCES

Yahya:2016:QIE

Bastos:2016:QMP

Alolyan:2016:FTS

Tobias:2016:FOC

Pota:2016:SDF

REFERENCES

REFERENCES

Zhao:2017:SDA

Kaatz:2017:KMC

Thilagam:2017:TMD

Frolov:2017:ACB

Carbo-Dorca:2017:TGM

Yanping Yang, Xiong You, and Yonglei Fang. Runge–Kutta–Nyström methods with equation dependent coefficients and reduced phase

[2704] Bernie D. Shizgal, Nicholas Ho, and Xingwei Yang. The compu-
tation of radial integrals with nonclassical quadratures for quantum
chemistry and other applications. *Journal of Mathematical Chem-
istry*, 55(2):413–422, February 2017. CODEN JMCHEG. ISSN 0259-

mechanical treatment to predict monolayer ordering: a study of
chain interactions and comparison with molecular dynamics simula-
2017. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (elec-
1007/s10910-016-0682-z; http://link.springer.com/article/
10.1007/s10910-016-0682-z.

[2706] Jan Turulski. Dimension of the Gibbs function topological mani-
fold: 3. Configuration entropy determined by the isotopic composition of binary
2017. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (elec-
1007/s10910-016-0686-8; http://link.springer.com/article/

[2707] Evrim Korkmaz Özay and Metin Demiralp. Weighted tridiagonal matrix
enhanced multivariate products representation (WTMEMPR) for de-
composition of multiway arrays: applications on certain chemical system
2017. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (elec-
1007/s10910-016-0687-7; http://link.springer.com/article/

[2708] Josef Paldus. Externally and internally corrected coupled cluster
approaches: an overview. *Journal of Mathematical Chemistry*,
55(2):477–502, February 2017. CODEN JMCHEG. ISSN 0259-

REFERENCES

Gluzman:2017:ASS

Fernandez:2017:TDK

Luo:2017:FCH

Mamedov:2017:AEZ

Mittal:2017:SOD

References

Das:2017:TPF

Lente:2017:ASR

Imran:2017:SFA

Jang:2017:QPM

Fan:2017:BBO

Saha:2017:ILC

Nadarajah:2017:MPH

Carbo-Dorca:2017:NVS

Basilevsky:2017:CTK

Medvedev:2017:TSS

Berg:2017:HOC

Diudea:2017:TCG

Estrada:2017:AM

Xu:2017:TDS

Killingbeck:2017:ANJ

REFERENCES

[2744] Z. Huang, H. S. Sidhu, I. N. Towers, Z. Jovanoski, and V. V. Gubernov. Properties of combustion waves in a model with competitive exothermic
Yardimci:2017:SDS

Berg:2017:TSS

Basilevsky:2017:MRT

Demiralp:2017:ZIL

Tuna:2017:ZIL

Lu:2017:CWM

[2750] Nan Lu, Yuxiang Bu, and Guimei Luo. Cu-wire-mediated dipyrimidine base pairs as the building blocks for conductive and magnetic Cu–DNA
REFERENCES

REFERENCES

2017. CODEN JMCHEG. ISSN 0259-9791 (print), 1572-8897 (electronic).

Berg:2017:ESS

Dillon:2017:OIP

Restrepo:2017:JMC

Ke:2017:RQP

Tratnik:2017:GPI

Thylwe:2017:NFS

Ma:2017:ECE

Bieniasz:2017:SCR

Konguetsof:2017:GFT

Selmi:2017:HFH

Sahin:2017:EET

Pasca:2017:TIT

Carbo-Dorca:2017:RGF

REFERENCES

REFERENCES

Liemert:2018:FRT

Cortez:2018:CAL

Talabis:2018:PEC

Arceo:2018:RSK

Fang:2018:HFD

REFERENCES

[2833] Zeynep Gündogar and Metin Demiralp. Block tridiagonal matrix enhanced multivariate products representation (BTMEMPR). *Journal
REFERENCES

561

Zheng:2018:NTS

Yang:2018:MTD

Ohta:2018:CVP

Awonusika:2018:SFR

Turulski:2018:BSS

Valko:2018:IEC

[2845] Felipe A. Díaz-Alvarado, Jenny Miranda-Pérez, and Ignacio E. Grossmann. Search for reaction pathways with p-graphs and reaction blocks:

REFERENCES

565

Pandey:2018:INN

Gao:2018:TDO

Arockiaraj:2018:HWW

Fernandez:2018:CKE

Celebre:2018:AAW

Milani:2018:RBK

REFERENCES

Alqahtani:2018:NSS

Yao:2018:NFS

Paldus:2018:VBA

Dharmani:2018:MGG

Boumali:2018:SPD

Verma:2018:CMT

Amit Kumar Verma and Sheerin Kayenat. On the convergence of Mickens’ type nonstandard finite difference schemes on Lane–Emden

570

REFERENCES

REFERENCES

Cordero:2018:CTC

Fang:2018:TDR

Magrenan:2018:SLM

Argyros:2018:ISC

Macias-Diaz:2018:TWS

Macias-Diaz:2018:SPC

Demiralp:2018:PER

Kalay:2018:SEP

Ozdemir:2018:UEF

Behl:2018:OSM

Garcia:2018:EAS

[2902] Gonzalo Cerruela García, Nicolás García-Pedrajas, Irene Luque Ruiz, and Miguel Ángel Gómez-Nieto. An ensemble approach for in silico pre-

Maroju:2018:SDF

Magrenan:2018:BCS

Belkic:2018:ELF

Balasubramanian:2018:RJT

Fujita:2018:HEK

REFERENCES

Kipriyanov:2018:BNM

Yan:2018:NRK

Mushtaq:2018:CAS

Mushtaq:2018:CPC

Li:2018:SRC

Doslic:2018:PEA

Zhao:2018:SME

Belkic:2018:VRC

Singh:2018:OHA

Chen:2018:NTS

Elyukhina:2018:GNP

Skakauskas:2018:MNC

[2924] V. Skakauskas, P. Katauskis, and R. Ciegis. Modelling of the NO + CO reaction over inhomogeneous surfaces. *Journal of Mathematical Chemi-
Mendoza:2018:PEW

Thylwe:2018:HPR

Hao:2018:EMS

Balasubramanian:2018:CMG

Yang:2018:CEA

REFERENCES

REFERENCES

580

Doslic:2018:MI

Hao:2018:NRK

Din:2018:NCC

Andova:2018:DBIb

Meral:2018:MAN

He:2018:EFD

[2947] Jianfeng He, Yun Zhao, and Jing Li. The ensemble folding dynamics of EF-hand domain in parvalbumin from a Monte Carlo simulation. Journal of Mathematical Chemistry, 56(10):3115–3125, November 2018. CODEN
Sakiyama:2018:ECO

Huang:2018:HIM

Wang:2018:PPK

Belkic:2019:DCE

Belkic:2019:ATR

REFERENCES

Yadav:2019:FEA

Pina-Villalpando:2019:NSF

DeBortoli:2019:ORK

Alolyan:2019:NMS

Sakiyama:2019:TEZ

Alalwan:2019:TMN

REFERENCES

[3010] Francisco M. Fernández. Comment on: "On the computation of eigenvalues of the anharmonic Coulombic potential". *Journal of Mathematical
REFERENCES

REFERENCES

Pestana:2019:CGA

Zafar:2019:GCF

Martinez-Perez:2019:SRL

Yang:2019:TMV

Argyros:2019:ELC

Rodriguez:2019:IID

[3038] Kexiang Xu, Fang Gao, Kinkar Chandra Das, and Nenad Trinajstić. A formula with its applications on the difference of Zagreb in-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Balasubramanian:2020:CCH

Bayon:2020:ILP

Krajnak:2020:PSS

Mihalka:2020:VPN

Hao:2020:PFF

REFERENCES

Putthikorn:2020:EBD

Hua:2020:ISB

Tong:2020:CPF

Rodriguez-Velazquez:2020:CRP

Balasubramanian:2020:ERS

Valenzuela:2020:HBB

[3106] K. Aarthika, V. Shanthi, and Higinio Ramos. A non-uniform difference scheme for solving singularly perturbed 1D-parabolic reaction-

REFERENCES

REFERENCES

Tandon:2020:CAR

Alici:2020:GSS

Chen:2020:PFF

Lin:2020:CPF

Belkic:2020:TCS

Xavier:2020:IPP

REFERENCES

