A Complete Bibliography of Publications in the *Journal of Mathematical Cryptology*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

07 May 2021
Version 1.06

Title word cross-reference

(2, 2) [PS20]. (2, 2) [AJZT19]. \((n + 1) \) [ZMD20]. \((p^r - 1)/3 \) [BW09]. 1 [SW07a]. 2 [AJZT19, Gau07, Hit09, SW07a]. 3 [CC15, LL15, MW12]. 4 [Kar10]. 5 [HL19]. 6 [Kar10]. \(ax \equiv b \mod n \) [GP13]. \(\text{GL}_d(F_{p^n}) \) [TNS20]. k [AMW07, BW09]. \(F_{24m}^* \) [Kar10]. \(F_{36m}^* \) [Kar10]. \(F_p \) [BW09]. \(F_{p^2} \) [DM20]. \(F_{p^k} \) [Duq11]. \(Q(\mathbb{C}^2) \) [BS19]. \(\mathcal{M}_p \) [WP11]. \(Q \) [WP11]. MST\(_3\) [BCM09]. \(n \) [DSS20, ZMD20]. \(N = p^r q^l \) [LPS17]. \(p \) [KMNN19]. \(p + q \) [MA17]. \(\rho \) [Oka12]. MST\(_3\) [SvT10]. \(S \) [ZMD20].

-ary [KMNN19]. -bit [ZMD20]. -boxes

2019 [DKKS20]. 256 [DT17].

7 [GZ14].

Advanced [Sch08]. adversary [Dow15]. AE [ASB+18]. Affine [CLS16, HWCD11]. Against
aggregation [HS15b]. Agrawal [PS08].
agreement [Mul11]. AJP S[CG20]. al. [MU10]. algebra [BCSV20, KU18, RZ18].
Algebraic [BF09, Par18, TKF +20].
algbras [Ano20]. algorithm [BGMP08, BP20, BDJ14, JLLRL20, Pop17].
Algorithms [CCH +20, AR15, DSG21, Eke21, FJ13, NV08, PP18]. alternating [SW15].
Among [KT20]. Analogue [DSGKS20b]. Analysis [KU15, KU18, Maz12, YYS +17, CDK18, HVV14, Mu08, NM08, Nan09, OPSB13, PSU13, Sch17, Sch08, Wun19].
analyze [FJ13].
Annual [CLS20, CLY20]. anonymous [SSA17]. Aperiodic [BdW12, SvT13, vT18].
Application [DKKS20, Duq11, GGD20, Tis11].
Applications [BBPS20, GPR17, BP20, FL08, FS11, JN16]. approach [BF09, CAR20, CLS16].
approaches [HS15b, TKF +20]. Approximate [CCH +20, Laa20].
approximations [SS16a]. argument [Mic08]. Ariffin [Bla10]. arithmetic [ATW08, Duq11, Gau07, HST10, HL09].
arrays [MN07]. ary [KMNN19]. asymmetric [AR15, Jia14].
asymptotic [KMP08]. Attack [KMU02, TW20, AK17, BBP +20, BF09, HF07, Mor08, MU10, Sch17, Wun19].
Attacks [Joy20, BS19, DHS20, GKL15, HL10, KMP08, KhK10, MSP12, Mu08, PS08, Pou16, WS09]. attribute [AL11].
auction [KMNN19]. Authenticated [BLLN21, TJSJ20, ASB +18].
authentication [ACP10, FHLMW08, JCK +18, LU08, MU10, PS20]. automated [Kob07, Kob12]. auxiliary [Kus18].
avalanche [LC07]. average [AL07].
Balanced [Rei21, CLS09]. barrier [MPST16]. Based [PGS20, TSJL20, ACP10, BCM11, BGGJ20, CDK18, CG20, GKL15, Gau07, HS08, Jia14, Ku015, Ku18, LMPW15, Mu08, PS15, Per12, RZ18, RST07, S09, UJ20]. bases [BF09, FS08]. Beat [DM20]. Bent [Rei21, FM13]. Bergman [BT12]. Better [PP18]. between [BBP +20]. bias [DS18].
Biggs [Bla09].
Binary [ATW08, LMPW15, SW07a]. birthday [HF07, MPST16, MSP12]. Bit [TW20, ZMD20]. blind [FS11],
blinding [DSG21]. BLISS [TW20]. block [DR07, SS17, Sch08, ZLA21].
Boolean [BC12, CJS16, CLS09, CC15, CLS16, ZLA21]. Bound [DM20, Kus18]. bounds [BDJ14, SS17, YYTK20]. boxes [ZMD20].
breaking [MPST16], Brezing [Yoo15].
Bringer [CWZ12], broadcast [AL07].
calculus [LL15, YYTK20]. Can [DM20].
Capitulation [AJZT19]. carry [FJ13].
Challenging [MPST12]. channel [Sch08]. characterisation [HS15a]. Characteristic [MR20, HST10].
class [AR15, CGK13]. Classes [AY15, AJZT19, WL13].
classical [BBP +20]. cloud [PSU13]. CM [JLLRL20].
codes [BBB +18, FHLMW08, JCK +18, LdV19, PS20, Per12].
coding [FL08, PSU13]. colexicographically [HM07]. Collision [BDJ14]. collisions [BS07].
coloring [ADPS14]. combinatorics [MN07]. combined [DSG21].

DAGS [BBB +18]. Data [BCIV20, SS17, SU14]. decentralized [Pop17], decreasing [YYS +17], decryption [YYS +14]. DeepBKZ [Yas20], defeat [DSS20], degree [Hit09, KW19], degrees [TKF +20]. Delegating [DKKS20], delegation [ZSN20]. Dembowsk [AOY15]. density [FS09]. Dependent [FGG +20], descent [KMP08], design [GPR17]. Designing [BBPS20], detailed [Wun19]. Devastating [TW20], differential [DT17], differential-zero [DT17], differentials [DR07]. Diffie [KM08, Kus18, Par18]. Dimensions [MR20]. Discrete [HKP +20, MR20, B12, Bla09, Bla10, BDJ14, CI14, Eke21, Gal12, KM08, Sho10]. Discretisation [MP20], disguised [Mor08], distinguisher [Gal12], Distortion [GPRS09], distributed [DGG +15]. Distribution [LS07, BS07, Jus14, Jus15, Maz12, Po08, vzGS09]. Distributions [MP20, DR07]. Divisor [CCH +20], dragon [SSS11]. DSA [PN16], dual [NP19, Yas20]. duality [Csi20]. Dyadic [BBPS20, BBB +18, Per12].

ECC [Joy20], ECDLP [DM20, YYTK20]. Editor [CLS20]. Edwards [BG16], effect [Mur12], effectiveness [KMP08, Mur12]. Efficient [BBPS20, DEF14, HST10, DGG +15, FM13, SSS11, SW07b, WS09].
the text in the image is a page from a document with several named entities and technical terms. The page seems to be discussing various mathematical and cryptographic concepts, including elements, elements, and specific algorithms and protocols such as ElGamal, Elliptic, EMAC, EMAC, and various other cryptographic techniques and terms. The page also mentions various authors and titles, indicating a rich discussion on complex topics within the field of cryptography and related mathematics.
Greatest [CCH+20], GRH [Bis11].
Gröbner [BF09], Group [DKKS20, PGS20, Bla09, CBW07, HWCD11, JLLR20, KU15, Kus18, RST07, SW15, Zaj13]. groups [GKL15, Rei17, SS09]. Grover [BP20], GS [BBB+18].
Halevi [SPS19, YYS+14], hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].
hardness [APS15, BS19, BBGS19]. Hash [CDS20, DSGKS20b, NSW09, TNS20, ACP10, AN20, CL09, FJ13, KHK10, MPST16, MSP12, OS14, WC07]. hash-function [ACP10]. hashing [FSV09, LMPW15].
Halevi [SPS19, YYS+14]. Hard [HS08].

look [HL09, Kob07, KM08, Kob12, KM13, Men07, SS16a], low [ATW08], lower [Kus18]. LPS [PP18], LWE [BGGJ20, DSGKS20a, MP20].

MAC [ABD+13, JN16], maps [GPRS09].

masking [Sch08], Masthead [Ano13].

Math. [GZ14], MathCrypt [CLS20, CLY20]. Mathematical [Gut09].

Mean [MU10], Mean-set [MU10].

Methods [JP20, DSG21, HL09, JCK+18, Sch08].

Micali [Jus14, Jus15], MICKEY [Tis11].

monotone [CJST16]. MOV [Sch17]. MQQs [CGK13]. MR3101014 [GZ14].

multi-receiver [FHLMW08]. multicasting [Maz12]. Multicollision [KHK10].

multicubic [LPS20]. multilevel [JSN13].

Multiparty [BGK+20, ADPS14, CS21]. Multiple [DT17, FM13]. multiplicative [Kus18]. multivariate [AÖY15, BFP09, CGK13, HF07, SSS11, TJBY13].

naive [YYTK20]. negation [AL11].

network [FL08, PS08]. networks [HS15b].

NIKE [JU20]. NLFSRs [OPSB13]. Non [BGK+20, TW20, BT12, CDN18, CEM15, Jus14, Jus15, KM08, Sha14].

Non-Constant [TW20]. non-idealness [Sha14]. Non-Interactive [BGK+20, CEM15]. non-linear [CDN18].

non-representable [BT12]. non-residues [Jus14, Jus15]. non-standard [KM08].

Nonsmooth [Tis11]. norm [GP09]. normal [SS16a]. note [CS21]. notations [SPSS12].

Numerical [LNR09]. NutMiC [DKKS20].

One [BK09, TW20, Bl10, PS15].

pair [NP19]. pairing [Box12, CDK18, Duq11, FK18, GÖS07, Oka12, Sha14, Sho10, Yoo15].

pairing-based [CDK18]. pairing-friendly [Box12, FK18, Oka12, Sha14, Yoo15].

Password-Authenticated [TSJL20].

password-based [Jia14]. path [PP18].

path-finding [PP18]. Perfect [GD13, CL09, WC07]. period [BW09].
permutation [BBP19, LMPW15].
permutations [AGH17]. Persistent [Jia14].
pipe [MPST16]. Pisot [FS08]. PKA
[AR15]. PMAC [NM08]. Points
[KT20, BG16, LS07]. poker [JWW12].
Pollard [BDJ14]. Poly [SS11].
Poly-dragon [SSS11]. Polya [CLS16].
polyAl [GKL15, KU15].
polyAl-group-based [KU15].
Polylogarithmic [Mie08].
polymatroids [MFP10].
polynomial [KMNN19, CWZ12,
DSS20, JLLRL20, WL13, ZSN20].
Polynomials [HKP +20, AOY15, KV19, TJBY13]. PoRs
[LdV19]. possessing [SU14]. Power
[JLNN20, ACP10, TKF +20]. practical
[BFJT212, CAR20, NV08]. practice [HL10].
Predicate [NP19]. predistribution [PS15].
Prefix [CLS20, CLY20, JP20]. Prefix
[FGG +20]. Prefix-Dependent [FGG +20].
presence [Dow15, Sch08]. preserving
[ZN20]. prime [CDK18, Hin08, TKF +20].
primes [ACP10, FS09, vzGS13]. primitive
[SS09, Yoo15]. primitives
[BFJN20, CDN18]. Principal [LPS20].
Privacy [ZN20]. Privacy-preserving
[ZN20]. private
[DGG +15, HL10, KU20, SW07a].
Probability [DR07]. Problem
[CCH +20, HJKTP20, LPS20, BT12, BBGS19,
Bla09, BJa010, HS2020, Kus18, NV08].
problems [BCSV20, HS08, KM08, TKF +20].
Proceedings [CLS20, CLY20]. processes
[SW07a]. Processing [BCIV20]. Product
[DKKS20, MP20, OS14]. products [AL11].
proof [Kar20a, Kar20b, NP19, PSU13, PSU18].
proof-of-retrievability [PS13].
properties [CJST16, ZMD20]. Protecting
[Joy20]. protocol [CWZ12, KU18, KU20,
LU08, MU10, SW07b, jWW12, WS09].
protocols [AK17, BCM11, SW07a]. prover
[PS18]. proving [Kob07, Kob12]. proxy
[SSA17]. Pseudo [Ano20, BGMP08, Pop17].
Pseudo-free [Ano20]. pseudo-random
[Pop17]. pseudorandom [Nan09, vzGS09].
Public
[SvT10, AL11, BCM09, CAR20, CBW07,
GGD20, KNP13, SPSS12, SSS11, WP11].
public-attribute [AL11]. public-key
[CAR20, CBW07, GGD20, SPSS12].
quadratic
[AÖY15, CGK13, HF07, HS08, Jus14, Jus15].
Quantum
[CI14, Eke21, BS19, BP20,
BBP +20, CJS14, DJP14, JLLRL20].
quantum-resistant [DJP14]. quartic
[AJZT19, DEF14]. Quasi
[HKP +20, Per12].
quasi-dyadic [Per12]. Quasi-subfield
[HKP +20]. quasigroups [CGK13]. query
[SW07a]. quotient [MU08].
Rabin
[Böc09]. Ramanujan [PP18].
Random
[MU08, BGMP08, Pop17]. randomized
[Böc09]. range [YYS +14].
rational [MW12]. ratios [HL19]. RC4
[BGMP08, DS18]. realization [SvT10].
realizing [PS15]. receiver [FHLMW08].
reconstruction [SW07a]. Recovering
[FGG +20]. recovery [BFJT12]. Recursive
[BC12, CL09]. reduced [DT17].
reduced-round [DT17]. reducing [BP20].
reduction [Wun19]. refinement [LS18].
regular [DSG21, MSP12]. relations
[DS18, SPSS12]. relying [BS19]. Remarks
[RM20, FMS09]. repairable [LS18].
representable [BT12]. Representation
[DM20]. representations [CQS11, HM07].
requirements [NSW09]. reset [WS09].
Residue
[JLNN20, CS21]. residues
[JS14, Jus15]. resilient
[Ala17, CAR20, HS15b, KNP13]. resistance
[MSP12]. resistant [DJP14]. restricted
[BBGS19]. results [DS18, SW07a].
Rethinking
[ATW08]. Retraction
[Kar20b]. retrievability [PSU13, PSU18].
retrieval [SW07a]. Revisited
[Joy20, AN20, Laa20, NP16, SS16b].
Revisiting [JN16], rho [BDJ14], Richelot [CDS20], Rigorous [SS17], Ring [DSGKS20b, Joy20, BT12, BGGJ20, DSGKS20a, MP20], Ring-LWE [DSGKS20a, MP20], Ring-LWE-based [BGGJ20], Rings [PGS20, Bis11, JCK+18], Rivest [HV14], RNS [Duq11], robust [JSN13, PS20], Roos [DS18], Root [DM20], rotate [FJ13], Rotation [Rei21, CC15, CLS16], round [BK09, DT17, Mie08, SW15, SW07a], RSA [DSG21, Hin08, HL10, LPS17, MA17], safe [AK17, vzGS13], same [SU14], samples [BBGS19], SAP [GGD20], scheme [HV14, HSWZ20, Maz12, Mul11, PS08, SSA17, SPS19, TL15], Schemes [BLLN21, BGGJ20, DKKKS20, BPB19, BS19, GD13, HS15a, JSN13, LS18, MFP10, MU14, PS13, PS20, Pou16, SS16b], Schmidt [YYS+17], Schnorr [NSW09], search [MA17, RZ18], Second [CLS20, Gut09], Secret [Csi20, DC14, GD13, HS15a, HL19, JSN13, MFP10, CEM15], Secrets [FGG+20], Secure [Dow15, BK09, CS21, FL08, JSN13, KNP13, Maz12, PSU13, SSA17, SW07b, SW07a, S16b, WS09], Security [FS11, HV14, OPSB13, ACP10, AL11, BBP19, CDGM14, EOS07, GS07, Hin08, MPST16, NM08, Nan09, NP16, SPSS12, DSGKS20a], Self [GZ13, Yas20, GZ14], Self-dual [Yas20], Self-pairings [GZ13, GZ14], Semaev [YYTK20], semigroups [Ci14], Sensitivities [ZLA21], sensor [HS15b, PS08], sequences [AMW07, BW09, LS07], server [LS07a], set [Gal12, MU10], setting [CDK18], seven [DS17], sharing [Csi20, DC14, GD13, HS15a, HL19, JSN13, MFP10], shifted [LU08], Short [LPS20, BS19, YYS+17, Yas20], shortest [NV08], Sibert [MU10], side [Sch08], Sidelnikov [BW09], SIDH [UJ20], SIDH-based [UJ20], Sieve [NV08, Grz20], Sieving [MR20], Sign [TW20], Signature [DSGKS20, HSWZ20, NP16, SS16b], signatures [BDW12, FS11, HS08, NP19, NSW09, Rei17, SVT13, vT18], Signcryption [BBP19, SSA17], SIKE [BP20], Simplified [GOS07], six [GD13], size [AL11, BBP+20], SKENO [CEM15], small [HST10, HL19, HL10, Hit09], SNFS [Sill07], solutions [GP13], solve [Zaj13], solver [RZ18], solvers [LRN09], solving [BPB09, Bla09, BDJ14, GP09, MP08, TKF+20], Some [FL08, FSM09, SW07a, AJZT19, BC12, DS18, FS09, HL10, LS07], space [JLLRL20], sparse [AK17, FK18], Special [DSG20, CGK13, FS09], specified [PS15], Square [DM20], squared [YYS+17], squared-sum [YYS+17], squeezing [CDGM14], Srivastava [Par12], standard [KM08], Statistical [BS07], Stickel [Mu11], Stochastic [DSG21, Sch08], storage [PS13], stream [FMS09, Tis11], streams [DG+15], Strict [LC07], Strongly [SVT13, AR15, vT18], structure [DS17, JN16, JSN13], structures [GD13], subexponential [ADPS14, CJS14, JLLRL20], subexponential-time [JLLRL20], subfield [HST10, HKP+20], subgroups [Kar10, MU08], Submission [DSGKS20], subsequences [BW09], Subset [vzGS09], sum [HF07, YYS+17, vzGS09], summary [EOS07], summation [KW19], supersingular [CK20, DP14, GPRS09], superspecial [CDS20], support [AL11], Survey [GGD20, LS18], Symbol [JLNN20], symbols [CS21], Symmetric [Rei21, CDN18, CLS09, CC15, CLS16, TL15, ZLA21], System [RM20, NP19], systems [BPB09, Mie08, WP11, Zaj13], Takes [TW20], Tame [Rei17], technique [NP19], Techniques [UJ20], terms [FM13], test [Boc09], th [DSS20], their [EOS07].
Theorem [Kar20b, CLS16, Kob07, Kob12, Kar20a].
theorem-proving [Kob07, Kob12].
theoretic [BFJN20, JP20]. Theory [CC15, GPR17, PSU13].
theta [Gau07].
Thompson [RST07]. Three [MR20, BCM11]. threshold [JSN13, LS18, PS20].
Tillich [TNS20].
Time [LL15, TW20, CJS14, JLLRL20].
Time-memory [LL15]. Timing [TW20].
torsion [MW12]. trace [BG16, FM13].
transfer [FS11]. transmission [AL07, Dow15]. Tropical [RM20, KU18].
truncated [FJ13]. trustless [Pop17].
twisted [BG16, BDFM21]. Two [LMPW15, PS08, GPRS09, Mie08, SW07b].
two-flow [SW07b].
two-permutation-based [LMPW15].
two-round [Mie08]. TWOOA [FHLMW08]. Type
[TNS20, AJZT19, EOS07, Jus14, Jus15].
unbounded [DGG15]. uncloaking [KMU20]. Unconditionally [JSN13, SS16b, PSU13, SW07a].
Unconditionally-secure [JSN13].
universal [ACP10, Ano20]. upper [SS17].
use [BP20]. Using [FJ13, Rei21, BBB+18, BF09, CDS20, FK18, Kus18].
v1.3 [BLLN21]. Valued [BCIV20]. values [Oka12]. Vandermonde [DSS20]. variant
[CCH+20, Gr20, LPS17]. variants [HL10, Mul11]. vector [NV08]. vectors
[BF09, YYS+17, Yas20]. verifiable [ZSN20].
via [CS21, DM20, NP19]. view [MP08].
Volume [CLS20, CLY20]. Voronoi [Laa20].
VSH [BS07].
way [PS15]. weak [AÖY15, BFJT12].
weight [FS08, HM07]. weighted [HS15a].

weights [BC12]. Weil [HF07, KMPS10].
Weng [Yoo15]. wide [MPST16]. witnesses
[PR20]. Witt [BF09]. Workshop [Gut09].
xor [FJ13].
Zémor [TNS20]. zero [BG16, DT17, SW07b].
zero-knowledge [SW07b].

References

AlMashrafi:2013:IMI

Alomair:2010:PPS

Asghar:2014:SCG
REFERENCES

Antal:2017:MCP

Azizi:2019:CIC

Asghar:2017:WIP

Attrapadung:2011:FEP

Alawatugoda:2017:LRK

Aly:2007:ELC

Araujo:2020:CHR

REFERENCES

Anonymous:2013:M

Anonymous:2017:F

Anonymous:2018:Fa

Anonymous:2018:Fb

Anonymous:2018:Fc

Anonymous:2018:Fc

Anonymous:2019:Fa

Anonymous:2019:Fb
REFERENCES

Anonymous:2019:F

Anokhin:2020:PFF

Alam:2015:CWD

Albrecht:2015:CHL

Accardi:2015:CSA

AlMahri:2018:FF

Avanzi:2008:RLG

REFERENCES

Banegas:2018:DKE

Bindel:2019:EHL

Banegas:2020:DED

Biasse:2020:TBC

Bansal:2019:SSI

REFERENCES

REFERENCES

[BGK+20] Dan Boneh, Darren Glass, Daniel Krashen, Kristin Lauter, Shahed Sharif, Alice Silverberg, Mehdi Tibouchi, and Mark Zhandry. Multiparty non-interactive key exchange and more from isogenies on ellip-

Choi:2007:CHP

Cusick:2015:TRS

Cheon:2020:ACV

Carlet:2014:LSO

Claude Carlet, Jean-Luc Danger, Sylvain Guilley, and Houssem Magharebi. Leakage squeezing: optimal implementation and security evaluation.

Chatterjee:2018:CPB

Chakraborti:2018:ONL

Castryc:2020:HFS

CDG14

Claude Carlet, Jean-Luc Danger, Sylvain Guilley, and Houssem Magharebi. Leakage squeezing: optimal implementation and security evaluation.
REFERENCES

19

19

Chen:2015:SSK

Coron:2020:ICA

Chen:2013:SCM

Childs:2014:QCD

Childs:2014:CEC

Carlet:2016:CPM

Colo:2020:OSI

REFERENCES

REFERENCES

REFERENCES

Delaplace:2020:CWB

Demirkiran:2008:CHC

Dowden:2015:SMT

Daemen:2007:PDC

Dehkordi:2017:CCG

Dey:2018:GRB

Doroz:2020:FNE

Dugardin:2021:SMD

Dachman-Soled:2020:SRL

Dachman-Soled:2020:TRA

DiScala:2020:CNV

Duquesne:2011:RAA

Ekerå:2021:QAC

Engelbert:2007:SMT

Ferradi:2020:RSP

Fuji-Hara:2008:TCM

Field:2013:UCT

Fotiadis:2018:GPF

Fancsali:2008:SAF

Flori:2013:ECF

Fischer:2009:SRF

Simon Fischer, Willi Meier, and Dirk Stegemann. Some remarks on FCSRs and implica-
REFERENCES

David Garber, Delaram Kahrobaei, and Ha T. Lam. Length-based

Galbraith:2007:SPC

Galbraith:2009:DMS

Gaal:2009:SNE

Grzeskowiak:2020:VLS

Gutierrez:2009:FSW

Gupta:2017:ADT

Grozek:2013:CS

Otokar Grošek and Štefan Porubský. Coprime solutions to \(ax \equiv b \pmod{n} \). *Journal of Mathematical Cryptology*, 7(3):217–224, 2013. CODEN ????. ISSN 1862-2976 (print), 1862-2984 (electronic).

Gutierrez:2009:FSW

S. D. Galbraith and Chang-An Zhao. Self-pairings on hyperelliptic curves. *Journal of Math-
REFERENCES

REFERENCES

Heuberger:2007:MWC

Hartung:2008:ISB

Hameed:2015:CIW

Henry:2015:LAR

Hakuta:2010:EAS

Hoffstein:2020:SSF

Haridas:2014:SAM

Hisil:2011:EAG

Jirakitpuwapat:2018:NMC

Jiang:2014:PAP

Jao:2020:STP

Joye:2020:PEA

Jha:2016:RSG

Joye:2020:EPR

REFERENCES

Joux:2020:PNT

Jhanwar:2013:USI

Justus:2014:DQR

Justus:2015:DQR

Wei:2012:FMP

Karabina:2010:FCC

Karmakar:2020:EPF

Karmakar:2020:REP

Kortelainen:2010:MAG

Koblitz:2008:ALN

Koblitz:2013:ALH

Kaji:2019:PEP

Karabina:2010:AEW

Kotov:2020:AKP

Kurosawa:2013:NLR

Koblitz:2007:ALA

REFERENCES

Li:2007:SAC

Lamberger:2009:NSC

Lavauzelle:2019:GCP

Laine:2015:TMT

Lesavourey:2020:SPI

Luykx:2015:TPB

Lu:2017:CR

Lange:2007:DSS

References

[MU10] Natalia Mosina and Alexander Ushakov. Mean-set attack:

Myasnikov:2014:CMC

Mullan:2011:CVS

Murphy:2012:ELH

Moody:2012:FEC

Nandi:2009:ISA

Nandi:2008:ISA

Nandi:2016:SJS

Nandi:2019:PSP

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
</table>

References:

- Paterson:2013:CTF
- Paterson:2018:MPP
- Reid:2021:UIE
- Raddum:2018:MSB
- Schindler:2008:ASM

Scholl:2017:IEC

Sha:2014:NIC

Shokrieh:2010:MPD

Sica:2020:FH

Silverman:2007:OPS

Sipasseuth:2019:EGG

Sepahi:2012:NSN

Saxena:2009:CPB

REFERENCES

REFERENCES

Stinson:2007:SRQ

Stinson:2007:EST

Sparr:2015:RFK

Tischhauser:2011:NCA

Tassa:2013:OEM

Takahashi:2020:AAS

Tsaban:2015:CMS

Tomkins:2020:NZT

[Hayley Tomkins, Monica Nevins, and Hadi Salmasian. New Zémor–Tillich type hash functions over $\text{GL}_2(F_p)$. *Journal of Mathematical Cryptology*, 14(1):]
REFERENCES

REFERENCES

ISSN 1862-2976 (print), 1862-2984 (electronic).

REFERENCES

Yokoyama:2020:CBS

Zajac:2013:NMS

Zhang:2021:SBS

Zhou:2020:CPB

Zhang:2020:PPV