A Complete Bibliography of Publications in the
Journal of Mathematical Physics: 2020–2024

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

13 September 2023
Version 1.08

Title word cross-reference

#P [67]. #P-complete [67].

(2 < p < 4) [203]. (k,a) [1484]. (n + 1) [870]. (p,k) [971]. (p,q) [1233]. (t2,t3) [1170]. (Ug(]\infty,\infty\))].l1(1\in\i
1 [510]. 1/ [280]. 1/2 [645, 885, 510]. 1/2-BPS [510]. 1D [1341, 1455].

2-BPS [510]. 2D [1095, 1099, 1362, 992, 1298, 1333, 1297, 1494, 1444, 1188, 1209, 1467, 1044, 1175, 1009, 1489, 1086].

3 [695]. 3- [695]. 3D [1095, 1060, 1444, 1207, 1210, 1343, 1422, 1425, 1340, 1381, 1478].

4-regular [1056].

Boussinesq
[80, 1099, 1175, 1241, 684, 12, 975, 1283, 1465, 1422, 540, 839]. box
[970, 786, 492]. box-shaped [492]. BPS [900, 510]. brackets [1440, 301].
Bragg [1390, 1318]. braid [126]. braided [126, 880]. braiding [673].
branching [1033]. branches [555]. breakdown [284]. breaking
[1299, 206, 1246, 1169, 224, 1192, 100, 1064]. breather [864]. breathers
Bulk [1351, 1258, 933, 1051]. bump [1216]. bundles [763, 644, 30, 804, 1256].
Burgers [613]. BV [1163].

C [241]. Caffarelli [772]. Cahn [1214, 1381, 911]. Calabi [139].
Calculation [639]. calculations [33]. calculi [686]. calculus
cancellation [1400]. cancer [1136]. Canonical [1410, 508, 256, 627].
carrying [69]. Cartan [371, 461, 1036]. cartoon [394]. case
[208, 883, 861, 379, 157, 209, 796, 1208, 1059, 280, 1380]. cases [1430].
Cauchy
[992, 490, 832, 1330, 1209, 654, 302, 844, 1476, 1029, 531, 939, 871, 23].
causal [254, 367]. causality [516, 72, 1321]. cavitation [520, 1468, 770].
cavity [947, 417, 1067]. Cayley [1333, 979, 300]. cell [1136, 1460, 1323].
cell-to-cell [1323]. cellular [743, 1095, 290, 1053]. center [41, 1324, 161].
central [827, 1271, 1043, 1040, 892, 1508, 433, 1235]. centrally [662]. CFT
[1097]. chain [541, 565, 1162, 784, 687, 799, 49, 358, 645, 300, 375, 1462].
chains [683, 1258, 1178, 348, 1389, 1317, 1455, 1366]. Chandra [914].
Change [802]. changes [856]. changing
[118, 1023, 488, 730, 16, 314, 926, 729, 1173]. channel [850, 101]. channels
[177, 1161, 1083, 620, 623, 253, 1221, 250]. Chaos [1086]. Chaotic [332].
Chaplygin [530, 1063, 1252, 936, 1248, 94, 1432]. characteristic [345, 1407].
characteristics [747]. Characterization [716, 463, 237].
Characterizations [1042]. characterized [595]. characters [348, 1239].
Charge [1346, 1383, 69, 663, 1074, 353]. Charged
[1232, 1474, 663, 404, 1051]. charged-particle [663]. charges [753, 1007].
Chebyshev [1073]. Chemical [1331]. chemically [991]. chemicals [816].
chemo [537]. chemo-repulsion [537]. chemotaxis
[57, 816, 818, 533, 732, 1143, 939, 1024]. chemotaxis-Navier [939].
chemotaxis-Stokes [1024]. Chern [489, 73, 370, 574, 996]. chevron [162].
choice [947]. Choquard [653, 579, 1244, 386, 733, 17, 153, 1105].
Choquard-type [1244, 17]. choreographic [294]. CHSH [740]. Chua
[1477]. circle [1111, 402]. circuit [561, 1477]. circuits [949, 401]. circulant
[1435, 572]. Circular [712]. CKP [718]. class [330, 1452, 118, 597, 259, 1363,
910, 1244, 927, 229, 834, 969, 488, 1125, 232, 17, 730, 151, 184, 1384, 266, 646,
436, 33, 252, 843, 869, 1340, 1429, 1296, 278, 873, 590]. classes
[1499, 1450, 875]. Classical [766, 369, 1000, 1440, 1519, 1196, 563, 1038, 722,
177, 1222, 344, 98, 1036, 687, 539, 1065, 1083, 128, 243, 524, 1313, 227, 955,
1367, 646, 1149, 968, 361, 1394, 1395, 375, 353, 247, 281, 390]. Classification
[1148, 115, 489, 1414, 140, 429, 114, 650, 1158, 8, 5, 6, 568, 1512, 696, 416, 505].
Clifford [1095, 134, 297, 67, 949, 743, 1178]. climate [994]. close
[1088, 1329, 1327]. CMA [439]. co [1410, 169, 125]. co-tropical [169]. coalescing
[959]. coarse [281]. coarse-grained [281]. cocycles [672]. code
[1434]. codes [101, 429, 1160]. codimension [1267]. COE [640]. coefficient
[1109]. coefficients [168, 355, 1074, 802, 824]. Coexisting [805]. Coexistence
[551]. Coherent
[244, 78, 591, 648, 1289, 526, 548, 321, 668, 1396, 97, 323, 334, 550, 738, 1319].
cohomogeneity [256]. cohomogeneity-one [256]. Cohomologies [1497]. Cohomology
[1150, 845, 139, 363]. cohomotopy [555]. coincidence [1219]. collection [1528]. Collective
[172, 996, 484]. combustion [1344]. Comment [652, 115, 195, 651, 447, 808, 970, 114,
196, 384, 8, 351, 1336]. common [177, 465]. communication [98]. communications
[890]. Commutative [789, 624, 780, 292, 324, 1503]. commutativity [1034].
commutator [1257]. Commutators [1238]. compact
[1104, 1250, 373, 1466, 1525]. compactification [625, 1118]. compactness
[1306]. comparison [798, 1263]. compatibility [1039, 554]. competing
[840, 877, 300, 1384, 571]. competitive [1335]. Complementarity [641]. Complete
[331, 256, 404, 853, 67, 139, 1473, 305]. Complex [918, 1006, 190, 1483, 1052,
1435, 473, 954, 358, 1456, 826, 865, 293, 617, 1451, 632, 1505, 913].
Complexity [1437, 971, 1168, 857, 889]. component
[1299, 1066, 777, 462, 55, 764, 765, 152, 534, 165, 1247]. components [1425].
[608, 417, 991, 679, 992, 838, 1172, 575, 577, 1254, 812, 1206, 1063, 352, 1274,
1493, 938, 60, 75, 22, 453, 167, 1341, 61, 1210, 1343, 89, 21, 480, 1340, 23].
computation [44, 672]. computer [822]. computer-assisted [822]. computers [34]. Computing
[1312, 381, 1404]. concave [996]. concentrated [1276, 601]. Concentration
[1182, 1468, 857, 520, 877, 164, 770, 418, 1105]. conceptual [13, 54]. concise
[621, 1294]. Condensate [1504]. condensates [881, 1115, 737, 492, 152, 315].
condensation [543, 1113, 380]. condensed [1391, 449]. condition
[741, 47, 690, 332, 1441, 1303, 1086]. conditional [43, 1003, 1080, 802].
conditions [91, 1363, 1062, 1254, 1446, 1137, 941, 1266, 535, 52, 932, 888,
1144, 232, 393, 963, 1005, 1457, 325, 1423, 278, 982]. conductance [319].

environment, epidemic, Equality, equation, environment, epidemic, Equality
15

initial-value [1011, 953]. Instability
[1231, 515, 208, 797, 202]. instanton [342]. insulated [1380]. insulators
[1178, 1241, 875, 1117, 412, 229, 1191, 1192, 227, 337, 1239]. Integral
[322, 719, 964, 1055, 249, 1284, 189, 269, 1259, 450, 64]. integral-partial
[450]. integrals [68, 179, 1322, 132, 931, 1443, 334, 399, 221, 806]. Integrated
[1096, 1020, 447, 7, 319, 60, 176, 1420]. interaction
[1507, 110, 549, 692, 105, 383, 1021, 1053, 1049]. interactions
[984, 872, 84, 954, 40, 866, 282, 428, 300, 1072, 907]. intercritical [1296]. Inverse
[1151, 568, 1148, 1081]. isentropic [520, 577, 1376, 812, 530, 230, 22, 231, 94, 770, 775]. Ising
[541, 1288, 967, 224, 105, 300, 335]. isochrone [825]. isolated [363, 982]. isometric [1305]. isometries [1492]. Isomonodromic

J [652, 1337, 653, 115, 385, 197, 195, 651, 447, 808, 970, 606, 448, 835, 1095, 54, 114, 196, 479, 1374, 1203, 1293, 865, 932, 1133, 384, 8, 607, 269, 1487, 80, 351, 6, 1336, 988]. Jacobi
[106, 1166, 544, 527, 682, 834, 42, 444, 402, 404, 931, 1186, 923]. Jacobsthal

Kelvin [635, 797]. Kepler [1002]. kernel [168, 719]. kernels [191, 1242].
Kerr [1293, 932, 84, 1226, 888, 86]. Kertész [1329]. Keyfitz [866].
[539, 1023, 878, 131, 730, 1431, 748, 925, 418, 1105, 909, 1173, 1027]. Kirchhoff-like [1431]. Kirchhoff-type
[1474, 604, 236, 558, 328, 844, 931, 316, 631, 729]. klystrons [1045].
knots [1387, 832]. known [392, 1019]. Kontsevich [1277].
Korepin [151]. Korteweg [811, 1206, 352, 769]. Korteweg-de
Krawtchouk [440, 1196]. Krein [820]. Kretschmann [1221].

[376, 524, 1185]. Lagrangian [1451, 855]. Lagrangians [1408, 228].
Laguerre [1065, 444, 637, 226]. lake [1030]. Landau
[473, 954, 358, 1351, 624, 1147, 169, 973, 307, 88, 846, 1140, 222, 538, 632, 1310].
landscape [1168]. Langevin [184, 707, 1280]. Laplace
[1509, 814, 1084, 965, 1027]. Laplacian
[653, 1306, 579, 346, 109, 116, 20, 603, 1516, 1253, 658, 935, 1025, 305, 841, 471].
Large [597, 1040, 1155, 707, 732, 1366, 225, 601, 53, 549, 1209, 1523, 1059, 1508, 506, 607, 1098, 167, 1210, 1343, 564, 354, 226]. Large-scale [1155].
large-solutions [1210]. large-time [167]. larger [873]. largest [637].
lattices [292, 429, 443, 864, 362, 553, 582]. Law
[1508, 403, 1300, 355, 233, 681, 712, 19, 1493, 1417, 478]. law-preserving
layer [459, 1339, 1442, 680]. layers [1102]. leading [685, 846]. learning
[1461]. learning-assisted [1461]. Least [1023, 488, 730, 16, 1372, 723, 1408].
[686, 494, 1227],. Left-covariant [686, 494]. Legendre
[267, 964, 1013]. Leibniz [507],. Lemma [586]. Lenells [1448, 1423]. length
Level [883, 111, 408, 133, 1498, 176, 669, 1331]. levels [88]. Levinson [617].
Lichnerowicz [921]. Lie [115, 114, 8, 6, 695, 495, 713, 1069, 1497, 736, 525, 1334, 1291, 28, 715, 650, 1386, 389, 1451, 1107, 782, 968, 5, 260]. Liénard
[115, 114, 404, 8, 5, 6],. Lifespan [1144, 906]. Lifshitz

1271, 413, 465, 650, 985, 1526, 1233, 1464. source
[1344, 866, 387, 533, 868, 1462, 200]. sources [1266, 419]. Space

space-periodic [1309]. Space-time [710, 614, 801, 509]. spaces
[1187, 1242, 917, 220, 763, 204, 1034, 660, 1459, 575, 1358, 1517, 1084, 979, 820, 1113, 1495, 373, 1290, 509, 1275, 977, 186, 240, 432, 1292, 1285, 280, 391, 337, 1167, 238, 1295, 1379, 925, 1489, 1309].

space-time [710, 614, 801, 509].

spaces [1187, 1242, 917, 220, 763, 204, 1034, 660, 1459, 575, 1358, 1517, 1084, 979, 820, 1113, 1495, 373, 1290, 509, 1275, 977, 186, 240, 432, 1292, 1285, 280, 391, 337, 1167, 238, 1295, 1379, 925, 1489, 1309].

spacetime [217, 359, 1509, 1166, 398, 626, 1267, 1510, 18, 1226, 1293, 934, 883].

spacetimes [516, 1227, 72, 514, 1129, 629, 952, 1164, 894, 1405, 748, 1464, 982]. spacing [883].

state [309, 1037, 423, 1071, 1387, 311, 1145, 1282, 496, 386, 236, 941, 856, 357, 657, 1171, 105, 1468, 591, 164, 1072, 770, 556, 505, 1302, 1434, 622, 483, 271, 1173].

991, 1357, 1402, 1438, 670, 809, 482, 501, 1385, 1274, 891, 656, 1489, 1478.

statistics-Interpolating [334]. steady [1030, 940, 1339, 1494, 261, 1305, 1138, 44, 1492, 564, 435].

Twisted [736, 555, 495, 640, 48, 714, 1377, 672]. twistor [1517]. Two [1154, 727, 108, 1372, 541, 1365, 110, 676, 1052, 860, 84, 1078, 333, 431, 1299, 1288, 967, 1136, 1124, 205, 808, 109, 1291, 45, 140, 1442, 429, 655, 777, 1236, 1192, 10, 124, 957, 293, 454, 816, 60, 393, 119, 170, 194, 133, 176, 533, 231, 819, 770, 1102, 869, 353, 152, 354, 115, 165, 1247, 23, 1356].
two-level [408, 133, 176]. Two-parameter [727]. two-periodic [1365].
two-phase [205, 231, 170, 194, 124, 819, 1102, 315, 23, 1356]. Two-dimensional.
two-electron.
two-layer.
two-level.
two-parameter.
two-periodic.
two-phase.
two-body.
two-component.
two-cut.
two-level.
[495, 1130, 1153, 1069, 27, 140, 128]. vertical [905]. very [601]. VI [149]. via
[476]. viscoelastic [1342, 612, 1493, 1431, 200, 1031]. viscoelasticity [517].

Viscosity
[1186, 1276, 420, 838, 1442, 352, 615, 933, 122, 975, 61, 942, 450, 464, 582].
Viscous [60, 600, 608, 19, 167, 1295, 460, 1309].
Vlasov
[486, 1379, 773, 172, 1460, 1141, 209, 486, 1341, 1100, 353]. Vogel [715].
volumes [760]. Vortex
[1030, 12, 80, 315, 1276, 601, 1444, 510, 1517, 1138, 1049, 377, 538, 1457].

vortic [705]. vortices [142, 166, 1176, 805, 76]. vortices-antivortices [166].
Vorticity [1167, 601, 1049]. Vries [811]. vs [1218, 1288, 816, 1316, 847, 641].

Walker [1129, 272]. walks [800, 624, 1409, 1196, 1286, 901]. wall
[1162, 500, 312, 1486]. Wannier [385, 3, 171, 1470]. Wasserstein [892].

Wasserstein-1 [892]. water [720, 797, 994]. Wave
[163, 1064, 491, 912, 1010, 356, 182, 1342, 1344, 1299, 233, 734, 206, 701, 600,
1246, 421, 947, 18, 866, 608, 414, 352, 274, 1202, 1405, 419, 227, 748, 1208,
1318, 130, 272, 141, 332, 631, 750, 824, 1269, 200, 1325, 1429]. wave-like
[748]. wave-particle [947]. Wavefunctions [173, 1154, 666]. waveguide
[48]. wavelet [297, 1484]. waves
[1231, 780, 208, 90, 1490, 680, 1168, 908, 1480, 257, 202, 700, 616, 534, 271, 71].
way [1049]. WDVV [469]. Weak
[1029, 1260, 773, 1136, 837, 777, 812, 1385, 932, 888, 20, 905, 1213, 1307, 641,
427, 61, 731, 1465, 165, 1204, 1024, 841, 278]. weakly [1020, 388, 1429].
Wei
[249]. weight [568, 118, 1523, 226]. weighted
[1187, 1365, 51, 762, 1150, 1333, 1213, 553, 976]. weights [814]. Weil [986].

Weil-Petersson [986]. Weizsäcker [56]. welding [263]. Well
[1362, 59, 235, 244, 276, 1424, 1023, 660, 577, 55, 905, 1209, 693, 1467, 994, 1061, 1070, 153,
1353, 1140, 203, 975, 1343, 996, 480, 534, 871, 1025, 1426, 199, 418, 1310].
Well-posedness
[1362, 59, 235, 660, 577, 55, 905, 1209, 1467, 994, 1140, 975, 1343, 480, 534, 871, 1025, 1426, 199, 1310].
Werner [1221]. Weyl
[1260, 1153, 109, 478, 1290, 781, 125, 131]. Which [898, 1220, 932, 888].

white [1174]. Whitham [534]. whole [977]. Wick [1436]. Wick-ordered
[1436]. wide [927]. Weichert [404]. Wigner [1372, 919, 711, 245, 787].
Wilczek [504]. Willmore [974]. Wilson [1035, 95, 186, 342, 32]. Wilsonian
[897]. Winding [1350]. wires [771]. wiretap [1161]. wise [984]. without
[1298, 1136, 1297, 1137, 608, 905, 1492, 399, 540, 1308, 452]. Witt
[1095, 743].

37
REFERENCES

Witten [1111, 558]. WKB [448, 143, 25, 633]. Wong [1147, 632, 1215, 689].

XY-interactions [300].

Yaglom [739]. Yamabe [514]. Yang
[570, 1006, 1134, 1314, 1068, 715, 343, 1373, 958, 968, 915, 594, 1092].
Yangian [292]. Yangians [997, 1294]. Yau [139]. Ye
[1192, 242]. Yukawa [1399].

Zakai [1147, 632, 1215, 689]. Zakharov [1490, 160, 1170].
[397, 1477, 352, 437, 520, 3, 385, 286, 1226, 1293, 598, 963, 1248, 1234, 1422, 23, 1206]. zero-average

References

[1] Bruce R. Johnson and Joseph O. Hirschfelder. The radial reduced
Coulomb Green’s function. Journal of Mathematical Physics, 20(12):
2484–2501, December 1979. CODEN JMAPAQ. ISSN 0022-2488
(print), 1089-7658 (electronic), 1527-2427. URL http://jmp.aip.org/
resource/1/jmapaq/v20/i12/p2484_s1. See erratum [479].

analysis of the Hegerfeldt paradox. Journal of Mathematical Physics, 41
(9):6093–6115, September 2000. CODEN JMAPAQ. ISSN 0022-2488
(print), 1089-7658 (electronic), 1527-2427. See comment [351].

in periodic zero flux magnetic fields. Journal of Mathematical Physics,
52(11):112103, November 2011. CODEN JMAPAQ. ISSN 0022-2488
(print), 1089-7658 (electronic), 1527-2427. URL http://jmp.aip.org/
resource/1/jmapaq/v52/i11/p112103_s1. See erratum [385].

Ajey K. Tiwari, S. N. Pandey, M. Senthilvelan, and M. Lakshmanan. Classification of Lie point symmetries for quadratic Liénard type equation $\ddot{x} + f(x)\dot{x}^2 + g(x) = 0$. *Journal of Mathematical Physics*, 54(5):053506, May 2013. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427. See erratum [6], comments [8, 114], and response [115].

A. Paliathanasis and P. G. L. Leach. Comment on “Classification of Lie point symmetries for quadratic Liénard type equation $\ddot{x} + f(x)\dot{x}^2 + g(x) = 0$” [j. math. phys. 54, 053506 (2013)] and its erratum [j. math. phys. 55, 059901 (2014)]. *Journal of Mathematical Physics*, 57(2):024101, February 2016. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427. See [5].

REFERENCES

[23] Xin Zhong. Strong solutions to the Cauchy problem of two-dimensional compressible non-isothermal nematic liquid crystal flows with vacuum

Bao:2020:SLL

Fujiié:2020:SWP

Morioka:2020:NSE

DeSole:2020:SQV

Isaac:2020:GGL

De:2020:QDI

[37] Jaume Llibre and Amar Makhlouf. On the periodic solutions of the relativistic driven harmonic oscillator. Journal of Mathematical Physics,

January 2020. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

REFERENCES

REFERENCES

[85] Benito A. Juárez-Aubry, Tonatiuh Miramontes, and Daniel Sudarsky. Semiclassical theories as initial value problems. *Journal of Mathematical Physics*
REFERENCES

Xuan:2020:PDF

Ismail:2020:AIM

Rougerie:2020:HQH

Xi:2020:DRC

Hadadifard:2020:SRR

Bian:2020:GSM

Deng:2020:ASM

DeGregorio:2020:RFC

Song:2020:GLB

Frappat:2020:DPO

delasCuevas:2020:MSO

Koussa:2020:PFC

Chitambar:2020:EMB

Heinosaari:2020:RPO

REFERENCES

[114] Roberto Iacono. Comment on “Classification of Lie point symmetries for quadratic Liénard type equation $\ddot{x} + f(x)\dot{x}^2 + g(x) = 0$” [j. math. phys. 54, 053506 (2013)]. *Journal of Mathematical Physics*, 61(4):044101, April 2020. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427. See [5, 115].

REFERENCES

Chittaro:2020:CEI

Inoue:2020:NSA

Odake:2020:RRM

Huguet:2020:MSF

Motegi:2020:CPF

Xu:2020:GST

Saanouni:2020:PWT

REFERENCES

Zhu:2020:RSS

Kalantarova:2020:GBS

Wu:2020:WPN

Mao:2020:ECG

Yang:2020:WSR

Chen:2020:ETS

REFERENCES

REFERENCES

Fernandez:2020:CAI

Ismail:2020:RCA

Falek:2020:EBO

Feola:2020:RSE

Zhang:2020:GWP

Yu:2020:GEN

[214] Koen Groenland, Carla Groenland, and Reinier Kramer. Stimulated Raman adiabatic passage-like protocols for amplitude transfer generalize to

[221] Michael Tsamparlis and Antonios Mitsopoulos. Quadratic first integrals of autonomous conservative dynamical systems. *Journal of Mathematical

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[304] Anouar Bahrouni, Vicentiu D. Radulescu, and Patrick Winkert. Robin fractional problems with symmetric variable growth. *Journal of Mathe-
REFERENCES

Zeng:2020:EEB

Ramos:2020:SRE

Qiu:2020:ABS

Ammari:2020:CPB

Assaad:2020:MST

Kaikina:2020:SNS

Chen:2020:GSS

Jianqing Chen and Qian Zhang. Ground state solution of Nehari-pohozaev type for periodic quasilinear Schrödinger system. *Journal of
Mathematical Physics, 61(10):101510, October 2020. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

Wang:2020:COW

Calogero:2020:NAS

Ramakrishna:2020:ACS

Roldan:2020:UPR

Coletti:2020:LTR

Sato:2020:SMN

Kalvoda:2020:NFS

Tomáš Kalvoda and Frantisek Stampach. New family of symmetric orthogonal polynomials and a solvable model of a kinetic spin chain. Jour-
REFERENCES

nal of Mathematical Physics, 61(10):103305, October 2020. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

REFERENCES

REFERENCES

[373] Guo Liu, Tianxiu Lu, Xiaofang Yang, and Anwar Waseem. Further discussion about transitivity and mixing of continuous maps on compact...

Stachura:2020:NEB

Loring:2020:CFH

Anerot:2020:NTT

Mietzsch:2020:VLD

Moya-Cessa:2020:CTD

DeNittis:2020:EEL

Guo:2020:MBS

[386] Lun Guo and Qi Li. Multiple bound state solutions for fractional Choquard equation with Hardy–Littlewood–Sobolev critical exponent.
Jiang:2020:ISD

Dong:2020:BIW

Mishra:2020:OHL

vandeVen:2020:CLM

Santos:2020:HFN

Alhaidari:2020:SSE

Maioli:2020:ESL

Alan C. Maioli and Alexandre G. M. Schmidt. Exact solutions for the Lippmann–Schwinger equation in two dimensions and invisibility condi-

[400] Shousuke Ohmori and Yoshihiro Yamazaki. Ultradiscrete bifurcations for one dimensional dynamical systems. *Journal of Mathematical Physics*,
REFERENCES

REFERENCES

2020. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Krasnov:2021:CSM]

[Xiong:2021:RVL]

[John:2021:CPF]

[Mann:2021:EAA]

[Bhojraj:2021:QAR]

[Huber:2021:PMT]

[Stedman:2021:EST]

REFERENCES

Cammarota:2021:NDR

Zhu:2021:PAL

Jian:2021:ALL

Chen:2021:ABN

Chen:2021:EAS

Amarel:2021:RRE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

Koch:2021:GMR

Figotin:2021:PCE

deLeon:2021:SCM

Baez:2021:OSC

Wu:2021:SLN

Cosco:2021:TIM

Zhang:2021:SNR

REFERENCES

Huh:2021:BCS

Fan:2021:BCF

Jiang:2021:GEL

Fan:2021:LWP

Wang:2021:GSN

Boer:2021:EMS

REFERENCES

Hainzl:2021:APB

Lopez:2021:SLD

Sadurni:2021:HDA

Znojil:2021:EPD

Lin:2021:CSS

Grewcoe:2021:DFT

Acik:2021:GSS

REFERENCES

REFERENCES

Yamagata:2021:MLD

Pereg:2021:QBC

Debbasch:2021:QWS

Tlas:2021:CEI

Frob:2021:SDQ

Kaninsky:2021:DLC

Ripley:2021:SHF

Zhang:2021:ATD

Lyu:2021:ALE

Caceres:2021:ERP

Tan:2021:CAE

Berkolaiko:2021:CMT

Saidani:2021:CVC

REFERENCES

Friedmann:2021:ERF

Bourgine:2021:QWS

Eder:2021:SFB

Kozlowski:2021:SDR

Skrypnyk:2021:CVC

Kachkovskiy:2021:PDM

Mouayn:2021:CSS

REFERENCES

REFERENCES

[661] E. Choreño, R. Valencia, and D. Ojeda-Guillén. Algebraic approach and Berry phase of a Hamiltonian with a general SU (1, 1) symme-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

You:2021:RCN

Zhu:2021:TVS

Djenidi:2021:MTO

Nguyen:2021:LDP

Bonnemain:2021:LCC

Andraus:2021:LTS

Lenzi:2021:STF

Yuriy Stepanov, Hendrik Herrmann, and Thomas Guhr. Generic features in the spectral decomposition of correlation matrices. *Journal of
Yang:2021:CHF

Braga:2021:ANI

Dorodnitsyn:2021:DSW

Nikitin:2021:SSP

Berkowitz:2021:AES

Figueiredo:2021:ELE

[744] Michael Walter and Freek Witteveen. Hypergraph min-cuts from quantum entropies. *Journal of Mathematical Physics*, 62(9):092203, September...

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beck:2021:FHI

Bardos:2021:DLV

Ammari:2021:BSC

Zhang:2021:IDR

Saanouni:2021:ICN

He:2021:GCW

Zhong:2021:EIP

[792] Laurent Freidel, Christophe Goeller, and Etera R. Livine. The quantum gravity disk: Discrete current algebra. *Journal of Mathematical Physics*
REFERENCES

REFERENCES

Forrester:2021:DDL

Bercu:2021:AAR

Kostrobij:2021:GDE

Takatsu:2021:CCC

Veliev:2021:SOP

Levin:2021:GPH

Han:2021:CVA

REFERENCES

[Sopenko:2021:ITD]

[Inoue:2021:AAN]

[Morchio:2021:MTO]

[Burbanks:2021:RCA]

[Liu:2021:RIM]

[Wei:2021:MPS]

[Ramond:2021:NMI]

Fabbri:2021:ARI

Fu:2021:STC

Giusti:2021:EDR

Buoso:2021:SAB

Guo:2021:RCA

Dong:2021:ASC

REFERENCES

[859] Jin-Yan Zhu and Yong Chen. A new form of general soliton solutions and multiple zeros solutions for a higher-order Kaup–Newell equation. *Journal-
REFERENCES

164

REFERENCES

[872] Badreddine Benhellal. Spectral analysis of Dirac operators with delta interactions supported on the boundaries of rough domains. *Journal of
REFERENCES

Mathematical Physics, 63(1):011507, January 2022. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

Zhu:2022:UAR

Hintz:2022:QMS

Ndogmo:2022:ICF

Ramos:2022:EBE

Fan:2022:MCP

Butorac:2022:HAA

Henheik:2022:ATT

REFERENCES

Physics, 63(1):011901, January 2022. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

[Cercle:2022:LCF]

[Kyriakopoulos:2022:RIS]

[Yang:2022:DIA]

[Byeon:2022:AFD]

[Liu:2022:SLT]

[Ma:2022:WDC]

Carbonaro:2022:RPI

Lewandowski:2022:HSB

Briet:2022:SOD

Liu:2022:ATT

Derezinski:2022:MAR

Feinberg:2022:WMC

Zuniga-Galindo:2022:GLZ

REFERENCES

REFERENCES

[914] Volodymyr Mazorchuk and Rafael Mrden. \(f_{\epsilon}^{-}-\text{Harish-Chandra modules for } f_{\epsilon}^{+}\)\(|\text{times}|\mathcal{L}(\Delta)\). Journal of Mathematical Physics, 63(2):021701, February 2022. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

REFERENCES

February 2022. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

REFERENCES

[941] Masaru Hamano and Masahiro Ikeda. Equivalence of conditions on initial data below the ground state to NLS with a repulsive inverse power potential. *Journal of Mathematical Physics*, 63(3):031509, March 2022. CO-
REFERENCES

176

왔면서, 63(3):032201, March 2022. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

Farshi:2022:MLR

Cameron:2022:AFH

Fournodavlos:2022:FDF

Hohmann:2022:MFF

Pires:2022:IVF

Chen:2022:RAS

Omiste:2022:ICM

[955] Juan J. Omiste, Rosario González-Férez, and Rafael Ortega. An introduction to classical monodromy: Applications to molecules in external
REFERENCES

REFERENCES

REFERENCES

Jingxuan Zhang. Adiabatic theory for the area-constrained Willmore flow. *Journal of Mathematical Physics*, 63(4):041503, April 2022. CO-
REFERENCES

DEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

REFERENCES

[999] Apurba Das and Satyendra Kumar Mishra. The L_∞-deformations of associative Rota–Baxter algebras and homotopy Rota–Baxter

REFERENCES

Wang:2022:REC

Araneda:2022:SDY

Mohamed:2022:ACS

An:2022:NAF

Xu:2022:AAD

REFERENCES

1020 Lea Boßmann. Low-energy spectrum and dynamics of the weakly interacting Bose gas. *Journal of Mathematical Physics, 63*(6):061102,
REFERENCES

Nam:2022:DBG

Bershtein:2022:NSV

Chen:2022:LES

Ye:2022:BWS

Yuan:2022:GWP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1052] Ahmad Barhoumi, Pavel Bleher, Alfredo Deaño, and Maxim Yattselev. Investigation of the two-cut phase region in the complex cubic

REFERENCES

[1063] Zhoutong Lei and Zhiqiang Shao. The limit behavior of Riemann solutions to the Euler equations of compressible fluid flow for the mod-

Zhu:2022:WBP

Han:2022:ARS

Guo:2022:RCL

Zhang:2022:CFB

Huang:2022:A1Y

REFERENCES

REFERENCES

[1085] Shuyuan Guo, Gang Meng, Ping Yan, and Meirong Zhang. Optimal maximal gaps of Dirichlet eigenvalues of Sturm–Liouville operators. *Journal-
REFERENCES

Zhu:2022:CLH

Wen:2022:RAS

Bodineau:2022:CED

Brennecke:2022:RSF

Katkov:2022:MMH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1140] Ikkei Shimizu. Local well-posedness of the Landau–Lifshitz equation with helicity term. *Journal of Mathematical Physics*, 63(9):091505,

[1145] Na Cui and Hong-Rui Sun. Ground state solution for a nonlinear fractional magnetic Schrödinger equation with indefinite potential. *Journal of Mathematical Physics*, 63(9):091510, September 2022. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658
REFERENCES

REFERENCES

[1156] Anton Kapustin and Nikita Sopenko. Local Noether theorem for quantum lattice systems and topological invariants of gapped
REFERENCES

REFERENCES

[1182] Benoît Collins and Félix Parraud. Concentration estimates for random subspaces of a tensor product and application to quantum information theory. Journal of Mathematical Physics, 63(10):102202, October 2022. CODEN JMPAQ. ISSN 0022-2488 (print), 1089-7658
REFERENCES

He:2022:UAN

Wood:2022:SPA

Selvam:2022:RFD

Frassek:2022:ESI

Jia:2022:RSB

REFERENCES

REFERENCES

Navier-Stokes.

[1209] Huanyuan Li. Global well-posedness to the Cauchy problem of 2D non-homogeneous Bénard system with large initial data and vacuum. *Journal of Mathematical Physics, 63*(11):111506, November 2022. CODEN

Yang:2022:DSR

Liu:2022:EMB

Shapiro:2022:CSM

Curtright:2022:PVG

Heimendahl:2022:AOA

vomEnde:2022:WBH

Kiessling:2022:DDS

Boucetta:2022:KTD

Panah:2022:TDL

Chen:2022:GCM

Chen:2022:LQV

[1236] Tom Hutchcroft. Sharp hierarchical upper bounds on the critical two-point function for long-range percolation on \mathbb{Z}^d. *Journal of Mathematical

Wang:2022:UMQ

Palheta:2022:CRM

Yang:2022:MUC

Zhu:2022:LTA

Nakata:2022:IDD

REFERENCES

Li:2022:RSA

Samprogna:2022:STA

Fang:2022:SSC

Kim:2022:SBR

Roy:2022:SDP
REFERENCES

LaRacuente:2022:QFM

Junge:2022:MTI

Higuchi:2022:SFA

Henheik:2022:IBC

Galloway:2022:CNC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1305] Siran Li and Marshall Slemrod. From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady

Bahrouni:2023:PIF

Liu:2023:AEW

Yuan:2023:ETG

daVeiga:2023:FDD

Zhang:2023:GWP

REFERENCES

2488 (print), 1089-7658 (electronic). URL https://pubs.aip.org/aip/jmp/article/64/1/011516/2870454/Global-well-posedness-of-perturbed-
Navier-Stokes.

[1311] H. W. Braden, Sergey A. Cherkis, and Jason M. Quinones. Construction of exact solutions to Nahm’s equations for the multi-
monopole. Journal of Mathematical Physics, 64(1):011701, January 2023. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658

[1312] Alexandr Garbali and Andrei Neguț. Computing the r-matrix of
the quantum toroidal algebra. Journal of Mathematical Physics,
64(1):011702, January 2023. CODEN JMAPAQ. ISSN 0022-
2488 (print), 1089-7658 (electronic). URL https://pubs.aip.org/
aip/jmp/article/64/1/011702/2870589/Computing-the-R-matrix-
of-the-quantum-toroidal.

[1313] Gahng Sahn Lee, Arim Song, and Uhi Rinn Suh. Dirac reductions and
classical W-algebras. Journal of Mathematical Physics,
64(1):011703, January 2023. CODEN JMAPAQ. ISSN 0022-
2488 (print), 1089-7658 (electronic). URL https://pubs.aip.org/
aip/jmp/article/64/1/011703/2870613/Dirac-reductions-and-classical-W-algebras.

equation on Cur(sl_2(C)). Journal of Mathematical Physics,
64(1):011704, January 2023. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658
(electronic). URL https://pubs.aip.org/aip/jmp/article/64/1/
011704/2870604/Conformal-Yang-Baxter-equation-on-Cur-sl2-C.

[1315] Marco Falconi and Nikolai Leopold. Derivation of the Maxwell–
Schrödinger equations: a note on the infrared sector of the radia-
tion field. Journal of Mathematical Physics, 64(1):011901, January 2023. CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658
(electronic). URL https://pubs.aip.org/aip/jmp/article/64/1/
REFERENCES

REFERENCES

[1337] Gianmarco Bet, Anna Gallo, and Francesca R. Nardi. Erratum: “Metastability for the degenerate Potts model with negative exter-
See [1279].

[1342] Wenhui Chen and Yan Liu. Asymptotic profiles and singular limits for the viscoelastic damped wave equation with memory of
REFERENCES

Cao:2023:MPS

Han:2023:SEI

Hahn:2023:WNS

Cornean:2023:BEC

Muller:2023:SST

REFERENCES

REFERENCES

REFERENCES

Katkov:2023:EMM

Yoldas:2023:QHE

Gu:2023:ILI

Watson:2023:BMD

Gao:2023:ERF

[1384] Yahui Niu, Shuying Tian, and Pingping Yang. Local uniqueness of multi-peak solutions to a class of Schrödinger equations with com-

Szabados:2023:OFM

Giraldi:2023:TGC

Ruskai:2023:LAR

Blanco:2023:DFA

Goswami:2023:MGH

Mastropietro:2023:ACL

Dinar:2023:LDB

DeNittis:2023:NLF

Carstea:2023:SAB

DellAtti:2023:CDN

Alhaidari:2023:RCP

Rivas:2023:NCF

Zhang:2023:LSA

Argota-Quiroz:2023:QRG

Watanabe:2023:GSD

Bruzda:2023:BCC

Geisler:2023:ASN

Bhattacharya:2023:CFP

Celerier:2023:SSRb

Ju:2023:PUI

Chandre:2023:CNB

Zhang:2023:PEA

Guan:2023:BAE

[1448] Yongshuai Zhang, Deqin Qiu, and Jingsong He. Explicit N-th order solutions of Fokas–Lenells equation based on revised Riemann–

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Steininger:2023:CPP

Ginoux:2023:ZHB

Zhong:2023:LSM

Brugues:2023:CSS

McCarney:2023:EIW

REFERENCES

REFERENCES

[1491] Lintao Liu, Kaimin Teng, Jie Yang, and Haibo Chen. Properties of minimizers for the fractional Kirchhoff energy functional. *Journal of Math-
REFERENCES

[Sato:2023:NIT]

[Liu:2023:GSS]

[Fang:2023:TSS]

[Li:2023:SSR]

[Dinh:2023:LTD]

[1496] Van Duong Dinh, Mohamed Majdoub, and Tarek Saanouni. Long time dynamics and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with spatially growing nonlinearity. *Journal
REFERENCES

278

Chtioui:2023:CDO

Primc:2023:CRA

Algethami:2023:QSC

Poletaeva:2023:LMS

Schulz-Baldes:2023:SLS

REFERENCES

Anapolitanos:2023:VWI

Pathirana:2023:LLN

Anco:2023:ALR

Gasperin:2023:SFN

Martin:2023:SAH

REFERENCES

