A Complete Bibliography of the *Journal of Number Theory* (2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 March 2023
Version 1.19

Title word cross-reference

(1, 2) [202]. (2, 2n, 3) [582]. (χ, b) [769]. 0 [188]. 1/2 [496]. 16 [61]. 2
[543, 552]. {a, 3a} [453]. An [136]. α [780]. αβ [305, 461]. AX + C [203]. b
[370]. spt(n) [734]. \(^3 \binom{n}{2} = \binom{n}{2} + d \) [69]. C [550]. C1 [616]. C_{np} [712]. D
[533, 640]. d(n) [630]. \(\Delta(1)(x) \) [613]. E5 [281, 445]. E7 [281]. E_{7,3} [907]. En
[845]. \(\ell \) [532]. F [640, 760]. f(q) [429]. F1 [670]. F_n + a(10^n - 1) = k! [751].
F_n \pm F_m = y^n [318]. F_q[t] [626]. \(\frac{1}{2} + \epsilon, \chi_D \) [702]. G [301, 447]. \(\Gamma
[331, 571, 744]. \Gamma^*(k) [578]. \Gamma^+(2) [381]. \Gamma^+(N) [584]. \Gamma^+(n) [542]. GL(2)
[254, 258]. GL(2) \times GL(2) [741]. GL(3) [258]. GL_2(F) [401]. GL_3(R) [586].
GL_N [748]. GSp(4) [835]. GSp_4(Z_p) [849]. h^1 \neq h_1 [412]. \(\mathbb{Z} \) [470]. j
[169, 692, 897]. K [36, 105, 174, 257, 804, 916]. \(K^x K^x \) [808]. L
[14, 19, 38, 43, 73, 74, 87, 115, 119, 120, 150, 177, 233, 250, 267, 270, 286, 292, 293,
339, 341, 344, 346, 362, 388, 434, 474, 528, 548, 581, 556, 601, 619, 626, 673, 685, 694, 699, 730, 741, 746, 766, 778, 810, 825, 832, 834, 885, 846, 885. \(L(\frac{1}{2}, \chi) \) [135]. \(L(s) + L(2s) + \cdots + L(Ns) \) [806]. \(L^2(F_2((T))) \) [865]. \(L^2(Q_2) \) [865]. \(\lambda \) [385, 880]. \([\alpha + \beta] \) [410]. \(m \) [131, 570, 855]. \(M_{22} \) [493]. \(N \) [235]. \(\mathbb{P}^n \) [34]. \(Q \) [24, 44, 223, 340, 493, 755]. \(Q(-5l) \) [445]. \(Q(\zeta_{2k+1}) \) [532]. \(\mathbb{Z}/p\mathbb{Z} \) [198]. \(\mathbb{Z}[[x]] \) [182]. \(\mathbb{Z}_m \times \mathbb{Z}_n \) [240]. \(\mathbb{Q}(\sqrt{m}) \) [232]. \(p \) [471]. \(pm \) [471]. \(\text{GL}(2) \) [53, 60, 177, 809]. \(\text{GL}_2 \) [75, 120]. \(\text{GL}_3 \times \text{GL}_1 \) [120]. \(\text{GL}_n \) [82]. \(\text{PGL}_n(\mathbb{R}) \) [12]. \(\text{SL}(3) \) [223]. \(\text{SL}_2(\mathbb{F}_p) \) [31]. \(\text{Co}_3 \) [10]. \(mn \leq x \) [240]. \(\mu \) [594]. \(N \) [55, 218, 244, 491]. \(N(D) \) [640]. \(p \) [17, 46, 58, 125, 213, 319, 388, 401, 434, 490, 491, 525, 532, 565, 589, 574, 589, 650, 665, 719, 785, 799, 810, 870, 885, 902, 903]. \(P^+(n) \) [378]. \(P^+(n+1) \) [378]. \(\text{PGL}_2\mathbb{Q} \) [762]. \(\psi_n^2 \) [480]. \(q \) [300, 738, 888]. \(R \) [40, 414]. \(R^2 \) [465]. \(S \) [130, 293, 733]. \(S(t) \) [536]. \(S_1(t) \) [536]. \(\sigma \) [17]. \(\sigma(2n+1) \geq \sigma(2n) \) [218]. \(\text{SL}(3, \mathbb{Z}) \) [910]. \(\text{SL}_2(\mathbb{O}) \) [828]. \(\text{SL}_2(\mathbb{Z}) \) [883]. \(\text{SL}_3(\mathbb{Z}) \) [882]. \(\sum_{j=1}^k j F_{j+1} = F_n^2 \) [259]. \(T \) [53, 412, 417, 546, 548, 553, 741, 800]. \(\theta_3(q) \) [241]. \(U(1) \) [192]. \(U(n+1) \times U(n) \) [558]. \(U_{2n+1} \times \text{Res}_{E/F} \text{GL}_m(m > n) \) [233]. \(U_p \) [316]. \(\varepsilon \) [46]. \(\varphi_n \) [480]. \(x \) [36]. \(x^2 + y^2 + z^2 + k \) [632]. \(x^6 + ax^3 + b \) [727]. \(X_0(14) \) [402]. \(X_0(N) \) [798]. \(X_0(p) \) [336]. \(y^2 = x^3 + ax \) [377]. \(Y^2 = X^6 + 1 \) [78]. \(Z \) [159, 168]. \(Z^n \) [500]. \(Z_p \) [525, 555]. \(\zeta \) [331]. \(\zeta(1/2+it) \) [375, 536]. \(\zeta(s) \) [847]. \(||a^x - b^y|| = k \) [709]. \(\|L(1, \chi)\| \) [376, 629, 753].

Congruences [17, 188, 265, 316, 360, 434, 454, 471, 494, 721, 734]. Congruent
[495, 512, 680]. Conjecture [22, 34, 67, 72, 95, 137, 191, 225, 228, 238, 243,
307, 347, 351, 352, 354, 361, 372, 378, 398, 434, 483, 511, 512, 533, 558, 634, 643,
679, 689, 723, 752, 797, 803, 852, 868, 871, 915]. conjectures
connection [109, 880]. connections [29]. Consecutive
Constant [152, 169, 881]. constants [34, 109, 313, 593, 666]. constraints
[500]. constructed [531]. Constructing [146, 359, 460]. Construction
[677, 845]. Constructions [168, 611]. containing [425]. continuation
Continuous [488]. contributions [344]. continuation [133, 767]. Continued
[3, 40, 148, 221, 384, 475, 666, 732, 840, 850, 887].
Coprime [610]. coreacts [495]. correlation [51, 312, 502, 908]. correlations
[588, 622, 826]. correspondence [339, 513, 559]. correspondences [77, 309].
critère [713]. criteria [413, 420]. criterion [663, 915]. Critical
[120, 528, 575, 633, 685]. crop [488]. crystal [222]. crystalline [84, 665].
[13, 14, 38, 302, 334, 404, 472, 640, 682, 754, 823, 884]. cubic-line [334]. cubics
[303, 817]. curve [78, 138, 208, 326, 426, 447, 542, 664, 765, 827]. curves
[43, 77, 88, 104, 121, 158, 172, 181, 187, 199, 228, 251, 284, 262, 266, 302, 309,
317, 327, 336, 340, 363, 380, 404, 407, 418, 436, 443, 467, 469, 480, 499, 512, 520,
524, 564, 597, 692, 726, 740, 791, 796, 811, 851, 884, 897]. Cusp
[12, 65, 177, 278, 312, 589, 623, 627, 648, 877]. Cuspidal
[258, 466, 596, 769, 798, 858, 908]. cycle [118]. cycles [63, 323, 399, 671, 755].
cylic [170, 472, 526, 637, 754, 836]. cyclotomic
[27, 452, 470, 479, 549, 677, 718, 880].
Dai [634]. Davenport [109, 159]. David [539]. December [246, 477, 758].
decidability [779]. decomposable [214]. decomposition [324, 770].
Dedekind [155, 216, 379, 394, 696, 814]. Deducing [491]. defined
[264, 727, 844]. definition [801]. Deformations [651]. degeneracy [262].
degenerate [30, 79]. degeneration [447]. Degree
[62, 65, 144, 204, 306, 639, 841, 856, 870]. degree-2 [841]. del [204, 639]. delta
[53]. Demaillie [34]. denominators [752]. dense [710, 844]. Densities
[92, 132, 344]. Density
[28, 153, 154, 346, 417, 491, 494, 503, 683, 698, 765, 786, 827]. d'entiers [105].
ed'Erdoes [105]. derivative [74]. derivatives [103, 499, 764]. descent

G.C.D. [28]. Galois
[13, 18, 32, 84, 110, 111, 122, 146, 154, 178, 201, 231, 314, 325, 326, 335, 359, 492, 493, 594, 647, 693, 712, 720, 731, 775, 791, 808, 820, 849, 870]. Gamma [75, 587].

growing [756]. growth [258, 304, 327, 466, 644].

having [28, 105, 565, 725, 731]. Hayes [549]. Hecke
Heegner [63]. Heilbronn [159]. Helleseth [585]. Herbrand [915].

Hermitian [473, 507, 621]. Heron [172, 740]. Heyman [634]. high [592].

higher-dimensional [567]. Hilbert [107, 184, 245, 274, 424, 502, 540, 541, 567, 593, 605, 607, 611, 612, 764, 771, 826, 834].

holomorphy [779]. homogeneous [782]. homology [395]. Honda [17].

Hyperbola [56, 321]. Hyperbolic [411, 740, 822]. Hyperelliptic [135, 228, 377, 418, 524, 851].

hyperplanes [662]. hyperquadrics [221]. hypersurfaces [202, 214].
Metacommutation [23]. metaplectic [223, 292, 769]. method [53, 809, 812].
metric [220, 406]. Metrical [166]. middle [279]. middle-third [279].

noncongruence [752]. noncorrelated [386]. nondegenerate [507].
Obstructions [164, 319]. Octic [107]. October [210, 441, 705]. Odd
[227, 364, 400, 417, 491, 505, 680, 735, 862]. odd-regular [400]. often [630].
Ohno [686]. Ohno-type [686]. oldforms [686]. One
[93, 95, 334, 346, 359, 616, 639, 728, 756, 856]. One-level [346, 765].
only [780]. open [820]. operators [102, 267, 316, 601, 655].
Ohno-type [94, 564]. Optimality [848].
Parabolic [648]. oldforms [648]. One
[93, 95, 334, 346, 359, 616, 639, 728, 756, 856]. One-level [346, 765].
only [780]. open [820]. operators [102, 267, 316, 601, 655].
Ohno-type [94, 564]. Optimality [848].
Parabolic [648]. oldforms [648]. One
[93, 95, 334, 346, 359, 616, 639, 728, 756, 856]. One-level [346, 765].
only [780]. open [820]. operators [102, 267, 316, 601, 655].
Ohno-type [94, 564]. Optimality [848].
Parabolic [648]. oldforms [648]. One
[93, 95, 334, 346, 359, 616, 639, 728, 756, 856]. One-level [346, 765].
only [780]. open [820]. operators [102, 267, 316, 601, 655].

Smallness \cite{792}. Smarandache \cite{263}. smooth \cite{181, 294}. Solution \cite{749}. solutions \cite{318, 415, 625, 628, 703, 709, 751}. solving \cite{785}. Some \cite{18, 58, 107, 197, 257, 297, 300, 337, 352, 457, 458, 464, 465, 497, 534, 567, 666, 685, 777, 898}. some\ns \cite{20}. Sophie \cite{364, 532}. space \cite{60, 91, 507, 543, 756}. spaces \cite{55, 265}. spanning \cite{865}. sparse \cite{780, 785}. Special \cite{146, 177, 465, 546, 548, 625, 628, 703, 709, 751}. specialization \cite{704}. specified \cite{811}. spectra \cite{62}. Spectral \cite{55, 854}. Spectrum \cite{475, 523}. speed \cite{304}. sphere \cite{37}. spheres \cite{55, 145}. spin \cite{6, 414, 757, 902}. spinor \cite{430}. split \cite{121, 177, 835}. splitting \cite{866}. spoof \cite{595}. sporadic \cite{407}. Square \cite{120, 244, 614, 632, 681, 688, 834, 847, 877}. square-free \cite{244, 632}. Square-reflexive \cite{681}. squarefree \cite{476, 635}. squares \cite{173, 279, 521, 627, 855, 891}. stability \cite{658}. stable \cite{222}. standard \cite{284, 366}. Stark \cite{901}. statistic \cite{763}. Stein \cite{72}. Steinberg \cite{395, 882}. Stern \cite{674}. strategy \cite{898}. stretched \cite{790}. Strong \cite{173, 266, 875}. stronger \cite{109}. strongly \cite{61}. structure \cite{118, 231, 335, 712, 773, 808}. structures \cite{125, 201, 655, 878}. study \cite{178, 690, 859}. Sturm \cite{646}. Sturm-type \cite{646}. Sturmian \cite{200}. Subconvexity \cite{12, 586, 741, 794}. subcovers \cite{791}. subgeneral \cite{484}. subgroup \cite{515, 597, 811}. subgroups \cite{224, 240, 449, 519, 637, 752, 882}. sublattices \cite{772}. submodules \cite{717}. subrings \cite{590, 779}. subschemes \cite{484}. subsequence \cite{256}. Subspace \cite{214, 484, 782}. sufficiently \cite{34}. Sum \cite{7, 68, 127, 256, 279, 371, 390, 514, 627, 638, 687, 696, 787, 893, 910}. sum-of-divisors \cite{68}. Sums \cite{20, 59, 155, 189, 209, 224, 251, 256, 278, 297, 312, 315, 321, 343, 379, 432, 454, 521, 534, 551, 552, 560, 572, 585, 626, 675, 694, 724, 749, 766, 793, 800, 809, 829, 855, 863, 877, 908}. sunsets \cite{153, 291, 724}. Sun \cite{351, 352}. sup \cite{12}. sup-norms \cite{12}. Super \cite{16}. Super-isolated \cite{16}. Supercuspidal \cite{748, 760}. supernormal \cite{763}. supersingular \cite{460, 492}. supplements \cite{389}. surface \cite{204, 437}. surfaces \cite{64, 110, 129, 156, 245, 322, 334, 424, 448, 481, 620, 639, 704, 801, 822, 881}. Surjectivity \cite{647}. survey \cite{508, 510}. Swinnerton \cite{66, 871}. Swinnerton-Dyer \cite{66, 871}. symbol \cite{174, 605, 804}. symmetric \cite{120, 348, 528, 636, 699, 770, 834}. symplectic \cite{346, 849}. systems \cite{10, 104, 166, 285, 625, 677, 828}. Systolic \cite{726}.
REFERENCES

XIII [598].

Yau [107, 653].

References

Debry:2016:RAI

Chang:2018:ANZ

Daowsud:2018:CFR

[10] Nicholas M. Katz, Antonio Rojas-León, and Pham Huu Tiep. Rigid local systems with monodromy group the Conway group Co3. *Journal of Num-

REFERENCES

REFERENCES

References

REFERENCES

Stephan Ramon Garcia, Florian Luca, Kye Shi, and Gabe Udell. Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients

REFERENCES

Kishore:2020:IC

Yamamoto:2020:IEN

Choi:2020:FCR

Xiong:2020:MPR

Saunders:2020:DEI

Gao:2020:MQH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[158] Sumit Giri. Short average distribution of a prime counting function over families of elliptic curves. *Journal of Number Theory*, 212(??):376–408,

REFERENCES

REFERENCES

Martindale:2020:HMP

Anonymous:2020:PS

Anonymous:2020:EBi

Griffin:2020:ECL

Jenkins:2020:CCM

Chen:2020:HDL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[267] Bernardo Bianco Prado and Kim Klinger-Logan. Linear operators, the Hurwitz zeta function and Dirichlet L-functions. *Journal of Number The-

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

Horinaga:2021:NHA

Goswami:2021:SFC

Lepetit:2021:LIV

Jeon:2021:MCI

Aygin:2021:MPC

Shang:2021:GSD

Chen:2021:UDA

REFERENCES

REFERENCES

Young:2021:ASH

Pollak:2021:RIG

Hu:2021:SHD

Boylan:2021:OCS

Dabrowski:2021:SDC

Kebli:2021:NIS

REFERENCES

[337] Daniel A. Goldston, Sidney W. Graham, Apoorva Panidapu, Janos Pintz, Jordan Schettler, and Cem Y. Yldrım. Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers II. *Journal of Number Theory*, 221(??):222–231, April
Wang:2021:AAF

Henniart:2021:ACF

Lozano-Robledo:2021:PMD

Smit:2021:SIN

Huang:2021:UBP

Nien:2021:CTG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Amdeberhan:2021:APS

Biswas:2021:ACM

Anonymous:2021:PJc

Anonymous:2021:EBg

Lee:2021:EZF

Ash:2021:SHM

Eum:2021:RNS

[396] Ick Sun Eum. On the representation numbers satisfying partially multiplicative relations. *Journal of Number Theory*, 224(??):1–12, July
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gao:2021:AWC

Shu:2021:RNJ

Jana:2021:JEP

Burrell:2021:DEN

Matsuzawa:2021:DRI

Asayama:2021:TPD

REFERENCES

REFERENCES

[Sato:2021:ECA]

[Mishou:2021:JUT]

[Reutenauer:2021:QNF]

[Salami:2021:CRP]

[Zhang:2021:SVP]

[Adedji:2021:DP]
Kouëssi Norbert Adédji, Bo He, Ákos Pintér, and Alain Togbé. On the Diophantine pair \{a, 3a\}. Journal of Number Theory, 227(?):330–351,
Mizuno:2021:CR

Anonymous:2021:PN

Anonymous:2021:EBk

Maarefparvar:2021:PGS

Shen:2021:SIM

Banks:2021:APC

REFERENCES

Voutier:2021:GCV

Fieker:2021:CER

Wang:2021:PCM

Chen:2021:CSQ

He:2021:GST

Khale:2021:BVT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2022:EBc

Pal:2022:FDG

Gekeler:2022:DMF

Gekeler:2022:DMFb

Hattori:2022:CDM

Choi:2022:BSW

REFERENCES

REFERENCES

Anonymous. Editorial Board. *Journal of Number Theory*, 233(??):ifc, April 2022. CODEN JNUTA9. ISSN 0022-314X (print), 1096-1658 (elec-
REFERENCES

REFERENCES

Roy:2022:PFC

DelCorso:2022:HFE

Zou:2022:HDM

Rapinchuk:2022:SFR

Lu:2022:GLP

Gonzalez:2022:DP

REFERENCES

REFERENCES

REFERENCES

Isham:2022:LBN

Sachpazis:2022:MFS

Thackeray:2022:BFH

Bayless:2022:HMC

Kundu:2022:AIR

Andersen:2022:OSP

Anonymous:2022:PJa

Anonymous:2022:EBf

Ginzburg:2022:DDC

Florez:2022:NRS

Hasanalizade:2022:CZR

Imamoglu:2022:KSF

Keith:2022:PCC

REFERENCES

REFERENCES

Languasco:2022:UEE

Hilberdink:2022:HOP

Vukusic:2022:CTM

Zhou:2022:SFV

Lee:2022:AES

Ma:2022:GBD

REFERENCES

Chen:2022:SAG

Bandini:2022:DCF

Garai:2022:CER

Pal:2022:ACA

Agrawal:2022:DOI

Ertl:2022:NPV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[684] Aaron Pollack and Gordan Savin. Modular forms on indefinite orthogonal groups of rank three. *Journal of Number Theory*, 238(??):611–675,
REFERENCES

[703] Preda Mihăilescu and Michael T. Rassias. Double exponential lower bounds for possible solutions in the Second Case of the Fermat Last
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mosunov:2022:AGB

Holm:2022:DAB

Shahidi:2022:RRM

Li:2022:ARI

Tanaka:2022:RTM

Mulay:2022:AIV

Yamamoto:2022:TSR

REFERENCES

REFERENCES

REFERENCES

Baier:2022:DAP

Espinoza:2022:BHZ

Dawsey:2022:SPS

Hughes:2022:DMV

Comeau-Lapointe:2022:OLD

Lin:2022:FCE

Caginalp:2022:PRA

Kim:2022:RNR

Wu:2022:PFC

Walji:2022:DSP

Liu:2022:GVL

Kim:2022:MVF

REFERENCES

REFERENCES

REFERENCES

[791] Peter Beelen, Leonardo Landi, and Maria Montanucci. Classification of all Galois subcovers of the skabelund maximal curves. *Journal of Number
REFERENCES

REFERENCES

REFERENCES

Hajdu:2023:EPR

Pankowski:2023:ZCN

Heap:2023:PPA

Minac:2023:APE

Hu:2023:JCM

Palacios:2023:FEA

REFERENCES

REFERENCES

[823] Zhilin Luo, Qinghua Pi, and Han Wu. Bias of root numbers for Hilbert newforms of cubic level. Journal of Number Theory, 243(??):62–116,
REFERENCES

Bernstein:2023:PGI

Stucky:2023:SMA

Hauke:2023:PCH

Arala:2023:DSP

Noguchi:2023:MST

Adolphson:2023:HSR

REFERENCES

REFERENCES

REFERENCES

Maletto:2023:GRB

Ernvall-Hytonen:2023:EFS

Dokchitser:2023:NHC

Murakami:2023:WFG

Chiloyan:2023:IFI

Meiners:2023:SZF

REFERENCES

Raska:2023:RMR

Hoshi:2023:NOT

Kristensen:2023:BTF

Li:2023:BVC

Ding:2023:PSL

Anonymous:2023:PAa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Honnor:2023:CTF

Mondal:2023:DIA

Chattopadhyay:2023:RCQ

Adersh:2023:NSK

Boylan:2023:JES

Lei:2023:LIE

Katsurada:2023:TKM

[907] Hidenori Katsurada and Henry H. Kim. Twisted Koecher-Maass series of the Ikeda type lift for the exceptional group of type $E_{7,3}$. *Journal of Num-
REFERENCES

Hou:2023:TCS

Hindes:2023:IPQ

Chanana:2023:SFC

Khaochim:2023:EBT

Miezaki:2023:PNH

Ray:2023:DDF

