A Complete Bibliography of the *Journal of Number Theory* (2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

06 April 2024
Version 1.29

Title word cross-reference

(1, 2) [203]. (2, 2) [947]. (2, 2n, 3) [583]. (4, 2, p) [945]. (χ,b) [770]. (m – 1, 1) [967]. 0 [189]. 1/2 [497]. 1/2 < \Re(s) < 1 [999]. 16 [62]. 2 [66, 79, 702, 813, 852, 913]. 3 [189, 751, 756, 923, 1041]. 3k – 4 [206]. 4 [205]. 5 [95, 189]. 7 [95, 189, 753]. 8k + 3 [681]. > [294]. 1 [1022]. 2 [214]. 2 [300, 544]. 4 [467]. n [761]. \(n_{F_k} \) [1079]. A [544, 553, 1091]. \{a, 3a\} [454]. A_n [137]. abc [995]. α [781]. αβ [306, 462]. AX^d + C [204]. b [371]. spt_k(n) [735].

\(\binom{n}{d} = \binom{n}{d} + d \) [70]. \(\mod p^k \) [927]. C [551]. C_1 [617]. C_{p^k} [713]. D [534, 641].

d(n) [631]. \(\Delta_{11}(x) \) [614]. E_5 [282, 446]. E_7 [282]. E_{7,3} [908]. E_8 [846]. \ell [533, 956]. F [641, 761]. f(q) [430]. F_1 [671]. \(F_n \pm a(10^m – 1)9 = k! \) [752]. \(F_n \pm F_m = y^a \) [319]. \(F_0(T) \) [627, 1012]. \(\frac{L}{2}(1/2 + \varepsilon, \chi_D) \) [703]. G [302, 448]. \(\Gamma [332, 572, 745]. \Gamma_p(k) [579]. \Gamma_p\prime(2) [382]. \Gamma_p\prime(N) [585]. \Gamma_p\prime(N) [543]. GL(2) [255, 259]. GL(2) \times GL(2) [742]. GL(2) \times GL(3) [1007]. GL(3) [259]. GL(3)L [1007]. GL_2(D) [1038]. GL_2(F) [402]. GL_3(R) [587]. GL_N [749]. GSp(4) [533].
[836]. GSp\(_4\)(Z\(_p\)) [850]. \(h^1 \neq h_1\) [413]. \(\hat{Z}\) [471]. \(j\) [170, 693, 898]. \(K\)
[37, 106, 175, 258, 805, 917, 938, 1045, 1078]. \(K^G K^{G^2}\) [809]. \(L\)
[15, 20, 39, 44, 74, 75, 88, 116, 120, 121, 151, 178, 234, 251, 268, 271, 287, 293, 294,
340, 342, 345, 347, 363, 389, 435, 475, 529, 549, 582, 587, 602, 620, 627, 674, 686,
695, 697, 700, 731, 742, 747, 767, 779, 811, 826, 833, 835, 847, 886, 920, 925,
948, 963, 976–978, 991, 1017, 1023, 1031, 1063, 1070]. \(L(\frac{1}{2}, \chi)\) [136].
\(L(\frac{1}{2}, \text{Sym}^2 f \times g)\) [1104]. \(L(\frac{1}{2}, GR^2 f \times g)\) [7]. \(L(s) + L(2s) + \cdots + L(6s)\) [807].
\(L^2\) [954]. \(L^2(F_2(T))\) [866]. \(L^2(Q_2)\) [866]. \(\lambda\) [386, 881, 959, 1024]. \(\langle \alpha + \beta \rangle\)
[411]. \(m\) [132, 571, 856]. \(M_{22}\) [494]. \(N\) [236]. \(p^n\) [35]. \(Q\)
[25, 45, 224, 341, 494, 756, 923]. \(Q(\langle \zeta_{2k+1} \rangle)\) [533]. \(Z/pZ\) [199].
\(Z\langle x \rangle\) [183]. \(Z_m \times Z_n\) [241]. \(Q(\langle p \rangle_{p})\) [740]. \(Q(\langle \overline{\varphi} \rangle)\) [233]. \(p\) [472]. \(pm\) [472].
\(GL(2)\) [54, 61, 178, 810]. \(GL_2\) [76, 121]. \(GL_3 \times GL_1\) [121]. \(GL_1\) [83]. \(PGL_1(R)\)
[13]. \(SL(3)\) [224]. \(SL_2(F_p)\) [32]. \(Co_3\) [11]. \(mn \leq x\) [241]. \(\mu\) [595]. \(N\)
[56, 219, 245, 492, 944]. \(N(D)\) [641]. \(p\) [18, 47, 59, 126, 214, 320, 389, 402, 435,
491, 492, 526, 533, 566, 570, 575, 590, 651, 659, 666, 720, 786, 800, 811, 871, 886,
903, 904, 920, 922, 925, 927, 929, 952, 1042, 1076, 1079, 1081, 1088, 1092].
\(p + 2k_1 + \cdots + 2k_r\) [1055]. \(P^\pm(n)\) [379]. \(P^\pm(n+1)\) [379]. \(p_2(n, k)\) [953].
PGL_2\(Q\) [763]. \(\psi^2\) [481]. \(q\) [301, 739, 889]. \(R\) [41, 415, 930]. \(R^2\) [466]. \(S\)
[131, 294, 734]. \(S(t)\) [537]. \(S_1(t)\) [537]. \(\sigma\) [18, 1072]. \(\sigma(2n + 1) \geq \sigma(2n)\) [219].
\(SL(3, \overline{Z})\) [911]. \(SL_2\) [1071]. \(SL_2(o)\) [829]. \(SL_2(Z)\) [884]. \(SL_3(Z)\) [883].
\(\sum_{i=1}^{k} \frac{F_p^i}{F_n^i} = \frac{F_p^k}{F_n^k}\) [260]. \(T\) [54, 413, 418, 547, 549, 554, 742, 801, 1057]. \(\theta_3(q)\) [242].
\(\times\) [925]. \(U(1)\) [193]. \(U(n + 1) \times U(n)\) [559]. \(U_{2n+1} \times \text{Res}_{E/F}GL_m(m > n)\)
[234]. \(U_p\) [317]. \(\varepsilon\) [47]. \(\varphi\) [1072]. \(\varphi_n\) [481]. \(x\) [37]. \(x^2 + y^2 + z^2 + k\) [633].
\(x^6 + ax^3 + b\) [728]. \(X_0(14)\) [403]. \(X_0(N)\) [799]. \(X_0(p)\) [337]. \(y^2 = x^5 + az\) [378].
\(y^2 = X^6 + 1\) [79]. \(Z\) [160, 169, 1062, 1096]. \(Z^n\) [591]. \(Z_p\) [526, 556]. \(\zeta\) [332].
\(\zeta(1/2 + it)\) [376, 537, 1030]. \(\zeta(s)\) [848, 999]. \(\|a^x - b^y\| = k\) [710]. \(|L(1, \chi)|\)
[377, 630, 754].

-adic [18, 126, 320, 389, 402, 435, 566, 575, 590, 651, 659, 666, 720, 739, 786, 801,
811, 852, 871, 886, 899, 903, 920, 925, 927, 929, 952, 1088, 1092]. -arithmetic
-diamond [938]. -dimensional [923]. -divisible [169]. -elongated [813].
-extension [471]. -extensions [137, 526, 713]. -factor [572]. -factors
[745, 770]. -function [18, 332, 742, 811, 835, 886, 1062]. -functions
[15, 20, 39, 74, 75, 88, 116, 121, 151, 160, 234, 251, 268, 287, 293, 294, 302, 340, 345,
347, 363, 389, 435, 475, 529, 587, 602, 620, 627, 674, 695, 697, 700, 731, 767,
779, 826, 833, 836, 920, 925, 963, 976–978, 991, 1007, 1017, 1023, 1031, 1063, 1070].
-generalized [37, 1045]. -Genocchi [956]. -groups [415]. -harmonic [553].
-indivisible [917]. -invariant [170, 693, 898]. -invariants
[547, 549, 1091]. -motives [413, 551]. -motivic [554]. -multipartition [418].
-products [301]. -rank [1078]. -rational [800]. -rationality [533,904,1042].
tuple [571]. -values [44,178,271,549,582,747,948].

Arithmetic

Arithmetically [937]. arrangements [335]. Artin
[175, 176, 200, 620, 669, 697, 873, 1042]. Arithno-Chowla [1042]. ary
[135, 132]. Asai
[76, 340]. Aspect
[39, 54, 770, 771, 825, 826, 928]. Artin-Chowla [1042].

Asai
[76, 340]. Associated
[89, 585, 638, 648, 683, 743, 808, 828, 944, 972, 1017, 1087]. associated
[256]. Asymptotic
[93, 123, 168, 277, 502, 625, 628, 634, 677, 838, 945, 1029].

Asymptotics
[6, 758, 963]. Atkinson
[848]. Attached
[367]. Attack
[370]. Attractor
[1065]. Attractors
[733]. August
[163, 409, 918]. Automata
[1048]. Automatic
[180]. Automorphic
[39, 300, 770, 771, 825, 826, 928]. Automorphism
[119, 365, 743]. Automorphisms
[970]. Average
[2, 59, 156, 159, 269, 638]. Averages
[638, 977]. Avoiding
[422]. Ax
[982]. Ayant
[106]. Backward
[870, 1018]. Balanced
[532, 625, 886]. Banff
[651]. Banks
[138]. Barnes
[763]. Barry
[465]. Base
[58, 864, 997, 998]. Based
[600]. Bases
[277, 439, 477, 895, 935]. Basilica
[694]. Basis
[544, 566, 692, 740, 1057]. Calculating
[48, 641]. Cantor
[280]. Calculating
[48, 641]. Capitulation
[530, 916]. Carlitz
[550, 552, 553, 555, 674, 737]. Carmichael
[460]. Cartan
[122]. Case
[416, 559, 704, 834, 840, 857, 957]. Catalan
[416, 436]. Category
[551]. Central
discriminants [32]. Disjointness [31, 1046]. displays [654]. Distance [600, 726]. distances [146]. distinct [1093].

eigenvalues [266, 921]. eight [327]. Eisenstein
[134, 224, 309, 331, 382, 412, 585, 597, 736, 751, 815, 906, 952, 1044, 1086, 1088].
elementary [161, 265, 858, 1054]. elements [60, 299, 327, 640]. Elliott
endomorphisms [343, 545, 845]. Engel [305]. ensemble [136]. Entire
[855]. equal [209, 349, 840]. equation
[70, 96, 152, 260, 270, 319, 416, 524, 576, 710, 752, 811]. Equations
[37, 87, 220, 399, 520, 536, 583, 626, 629, 712, 806, 840, 980, 1053, 1071, 1085, 1101].
Equidistribution [51, 213, 438, 1029]. equilateral [356]. equivalence
[422, 832]. equivalent [336, 937]. Equivariant [549]. Eratosthenes [1001]. Erdos
ergodicity [838]. Erratum [113]. error [217, 241, 447, 689, 848, 1084].
Esnault [653]. Estimate [400, 1030]. Estimates

level [345, 347, 361, 472, 542, 543, 545, 636, 656, 736, 766, 824, 831, 956, 1057, 1063].
levels [95, 189]. Lewin [690]. Li [969]. Lie [19, 191, 659, 1083]. lift [908, 1009].
lifting [493]. lifts [61, 469, 880, 905, 922, 925, 1083]. like [254, 433, 476]. limit
[412, 571, 634]. limits [590]. Lindemann [982]. line
[30, 335, 474, 576, 634, 652, 715, 978]. Linear
[31, 80, 208, 285, 302, 333, 526, 659, 662, 717, 847, 907, 987]. linearized
[987, 1077]. linearly [564]. Liouville [165]. Littlewood
434, 461, 559, 560, 572, 606, 616, 617, 662, 724, 751, 797, 836, 946, 1071].
local-global [616, 724, 797]. localization [813]. locally [336, 1038]. Log
Logarithmic [240, 563]. Logarithmic-type [563]. Logarithms [92, 501].
logic [1048]. Long [589]. Long-range [589]. Longest [369]. loops [927].
[151].

Maass [61, 103, 908, 911, 912]. MacMahon [599]. Mahler
[81, 94, 104, 283, 404, 996]. Main [435, 916, 948, 964]. manifolds [738]. Manin
[679, 714, 1000]. many [35, 158, 303, 744, 965, 978]. mapping [25]. maps
[84, 501, 699, 705, 747, 756, 842, 1094]. March [49, 311, 843, 1014]. Markov
[237, 265, 831, 1103]. max [1097]. maximal [46, 365, 390, 398, 792, 866, 1028].
Maximum [327, 480]. May [97, 350, 580, 874, 1050]. Mazur [18, 73]. Mean
[136, 192, 251, 447, 638, 689, 734, 765, 773, 848, 892, 1006, 1017, 1062].
mean-value [765]. means [100]. measure [81, 154, 404, 996]. measures [94].
mediants [675]. Medvedovsky [531]. meet [262]. memorial [540].
Meromorphic [716, 779, 960]. meromorphy [254]. Mertens [594].
Metacommutation [24]. metaplectic [224, 293, 770, 1009, 1071]. method
middle [280]. middle-third [280]. minima [937]. Minimal
[58, 200, 277, 359, 390, 392, 538, 664, 893]. Minkowski [135]. minus [266, 461].
missing [354, 725]. mixed [363]. Möbius [148, 149, 892, 1046]. mock
[430, 483]. Mod [470, 472, 1076]. Mod- [1076]. model [341, 969]. models
[31, 80, 165, 836]. Moderate [281]. Modular
[57, 78, 103, 185, 189, 197, 245, 246, 271, 275, 291, 303, 307, 310, 322, 334, 337, 357,
367, 396, 425, 427, 438, 469, 472, 496, 497, 500, 510, 520, 529, 541–
544, 575, 593, 599, 643, 646, 647, 678, 685, 712, 716, 727, 779, 782, 784, 811, 829,
838, 884, 907, 913, 920, 931, 947, 960, 972, 990, 1008, 1053, 1057]. modularity
moduli [5, 113, 142, 176, 255, 615, 840]. modulo
[59, 214, 381, 589, 735, 1031, 1079]. moment [7, 20, 39, 287, 826, 991, 1104].

self-maps [1094]. Selmer [267, 364, 496, 669, 1060]. semi [215, 521].
semi-abelian [521]. semi-decomposable [215]. semiabelian [1094].
semigroups [910]. semistable [33, 525]. September [186, 428, 660, 940].
sequence [29, 257, 371, 499, 1045]. Sequences [57, 89, 132, 170, 172, 180, 182,
213, 358, 384, 387, 432, 502, 532, 589, 623, 673, 675, 788, 931, 944, 981, 1036, 1084].
Series [16, 22, 103, 104, 120, 134, 184, 223, 309, 314, 331, 342, 354, 382, 385, 406,
412, 415, 417, 447, 488, 524, 585, 597, 683, 686, 701, 736, 815, 851, 906, 908, 952,
[60, 125, 129, 133, 154, 262, 398, 426, 612, 664, 668, 717, 774, 788, 893, 983,
1027, 1073, 1099]. seven [210, 531, 977]. several [1101]. Severi [111]. sextic
[328, 405, 477]. Shafarevich [471]. Shapiro [127, 358, 931, 1035]. Sharifi
[362]. shears [51]. Sheats [739, 889]. shells [466]. Shifted
[23, 129, 515, 592, 808, 810, 1064, 1095]. Shimura [317, 863, 995, 1098]. Shintani
[1065]. Shioda [1013]. Short
[21, 159, 279, 486, 627, 697, 744, 1006, 1012]. short-sum [697]. shortest [453].
Shparlinski [635]. shuffle [523, 554]. shuffle-type [523]. sides [560]. Sidon
[668, 717, 1099]. Siegel
 sieve [5, 113, 615, 1001]. sigma [929]. Sign [165, 614]. signature
[583, 600, 945, 947, 967]. Signatures [318]. signs [160]. simple
[19, 24, 54, 202, 365, 408]. simplicial [972]. Simply [895]. Simultaneous
[179, 722, 842, 949, 1007]. single [206]. singular [142, 447, 495, 504, 840].
singularities [65]. site [150]. sixth [826]. Skabelund [792]. Skałba [869].
[126, 261, 338, 370, 381, 466, 688, 837, 894, 1084]. small-exponent [370].
smallest [775]. Smallness [793]. Smarandache [264]. smooth [182, 295].
Solution [750]. solutions [319, 416, 626, 629, 704, 710, 752]. Solving
[61, 92, 508, 544, 757, 969, 1057]. spaces [56, 266]. spacing [274]. spanning
[866]. Sparse [781, 786, 1073]. Special
[147, 178, 466, 547, 549, 672, 701, 833, 899, 1023, 1091]. specialization [705].
Specializations [1013]. specified [812]. spectra [63]. Spectral
[56, 855, 1023]. Spectrum [476, 524, 935]. speed [305]. sphere [38]. spheres
splitting [867]. spoof [596]. sporadic [408]. Square
[121, 245, 615, 633, 682, 689, 835, 848, 878, 980, 1017, 1032]. square-free
[245, 633, 1032]. Square-reflexive [682]. squarefree [477, 636, 1002].
squares [174, 280, 522, 628, 856, 892, 1012, 1026, 1069]. stability [659, 994].
[1029, 1078]. Stein [73]. Steinberg [396, 883]. Stern [675]. Stieltjes [1037].
stochastic [1084]. strategy [899]. stretched [791]. string [1095]. strip
[1070]. Strong [174, 267, 876]. stronger [110]. strongly [62]. structure
[119, 232, 336, 713, 774, 809]. structures [126, 202, 656, 879]. study

triangular [196, 727, 864, 1069]. trigonometric [743]. trinomials [728].

violating [797]. visibility [772, 949]. Vologodsky [720]. volume [540].

REFERENCES

XIII [599].

Yau [108, 654, 1005]. Yui [988].

References

Debry:2016:RAI

Chang:2018:ANZ

Daowsud:2018:CFR

Salami:2019:RPC

Baier:2019:LSI

McMeekin:2019:APS

Sun:2019:DFM

Bordelles:2019:SIE

Anonymous:2020:PAA

Anonymous:2020:EBa

REFERENCES

[113] Stephan Baier and Rajneesh Kumar Singh. Erratum to “Large sieve inequality with power moduli for function fields” [J. Number The-
Cipu:2020:DPI

Grantham:2020:UIR

Bordignon:2020:EBE

Anonymous:2020:PJa

Anonymous:2020:EBf

Cerbu:2020:CSM

Jung:2020:DSA

Li:2020:DAP

Zhai:2020:SIE

Wang:2020:TSD

Czerniawska:2020:AGA

Moreschi:2020:PVU

Zmija:2020:RSC

[132] Blażej Žmija. Recurrence sequences connected with the m-ary partition function and their divisibility properties. *Journal of Number The-

REFERENCES

REFERENCES

REFERENCES

Beshaj:2020:WGC

Kwon:2020:NVS

Horiba:2020:GTS

Li:2020:CMA

Florez:2020:ERL

Badr:2020:QPS

Paran:2020:TPG

REFERENCES

Dixit:2020:CUP

Martindale:2020:HMP

Anonymous:2020:PS

Anonymous:2020:EBi

Griffin:2020:ECL

Jenkins:2020:CCM

REFERENCES

Beyerl:2020:RCB

Xu:2020:SRM

Huicochea:2020:NPD

Booher:2020:RAS

Peltomaki:2020:APF

Tsang:2020:HGS

REFERENCES

Tsushima:2020:GRA

Argaez-Garcia:2020:PPS

Anonymous:2020:PO

Anonymous:2020:EBj

Baker:2020:ERS

Kerr:2020:LPR

Ji:2020:STM

REFERENCES

REFERENCES

[234] Kazuki Morimoto and David Soudry. On L-functions for U_{2n+1} × Res_{E/F}GL_m(m > n). *Journal of Number Theory*, 216(??):83–141,
REFERENCES

[Sui:2020:ETC]

[Wakhare:2020:TCJ]

[Ji:2020:PBC]

[OSullivan:2020:RCE]

[Bars:2020:BQM]

[Milio:2020:MPH]
REFERENCES

Anonymous:2020:PD

Anonymous:2020:EB1

Murty:2020:CVL

Lowry-Duda:2020:NRP

Elma:2020:PRD

Sardari:2020:RGE

References

Murakami:2021:CIN

Anonymous:2021:PMa

Anonymous:2021:EBc

Hulse:2021:TCS

Young:2021:ASH

Pollak:2021:RIG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Huber:2021:RTC

Wang:2021:TCS

Chen:2021:LBH

Kundu:2021:AKF

Hwang:2021:ASP

Fuchs:2021:FFV

REFERENCES

Wang:2021:TCH

Nguyen:2021:KND

Kerr:2021:PPC

Choi:2021:NZC

Sgobba:2021:DOI

Choi:2021:GPD

REFERENCES

Biswa:2021:ACM

Anonymous:2021:PJc

Anonymous:2021:EBg

Lee:2021:EZF

Ash:2021:SHM

Eum:2021:RNS

[Hajdu:2021:SCC]

[Su:2021:EPH]

[Kim:2021:DOR]

[Assaf:2021:EIN]

[Choi:2021:QT]

[Ounaies:2021:RBZ]

Oliveira:2021:RPC

Zunar:2021:NVV

Yu:2021:MTI

Khaqan:2021:ECT

Anonymous:2021:PAb

Anonymous:2021:EBh

Song:2021:NPF

Yanbo Song. A note on primes of the form \(\alpha p + \beta\). *Journal of Number Theory*, 225(??):1–17, August 2021. CODEN JNUTA9. ISSN 0022-314X

REFERENCES

[430] Kevin Gomez and Eric Zhu. Bounds for coefficients of the $f(q)$ mock theta function and applications to partition ranks. *Journal of Number
Peng:2021:OSS

Bravo:2021:CVG

Akhilesh:2021:MZV

Connes:2021:QIF

Kim:2021:CAA

Gao:2021:AWC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[481] Paul Voutier and Minoru Yabuta. The greatest common valuation of φ_n and ψ_n^2 at points on elliptic curves. *Journal of Number Theory*,

REFERENCES

REFERENCES

REFERENCES

Hatton:2021:KDM

Reis:2021:ACP

Bringmann:2021:ADR

Cohen:2021:PCH

Singh:2021:CEQ

Anonymous:2022:EBa

Anonymous:2022:PFJ
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2022:EBe

Pal:2022:FDG

Gekeler:2022:DMFa

Gekeler:2022:DMFb

Hattori:2022:CDM

Choi:2022:BSW

REFERENCES

REFERENCES

108

Buraczewski:2022:CLT

Kakuhama:2022:LDG

Leung:2022:USD

Aryan:2022:ELG

Serban:2022:FRA

Nakamura:2022:FEZ

REFERENCES

REFERENCES

REFERENCES

[596] Nickolas Andersen, Spencer Durham, Michael J. Griffin, Jonathan Hales, Paul Jenkins, Ryan Keck, Hankun Ko, Grant Molnar, Eric Moss, Pace P.

Frendreiss:2022:CPP

Trbovic:2022:TNE

Andrews:2022:MPA

Kolossvary:2022:DBN

Hejda:2022:TQF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lee:2022:AES

Ma:2022:GBD

Li:2022:EOJ

Pritsker:2022:HAI

Essouabri:2022:MVM

Das:2022:PPS

REFERENCES

Lazda:2022:NED

Upton:2022:DSA

Anonymous:2022:PS

Anonymous:2022:EBi

Micheli:2022:LGP

Ganguly:2022:KTA

Kim:2022:MUC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

134

REFERENCES

[725] Hùng Viêt Chu, Dylan King, Noah Luntzlara, Thomas C. Martinez, Steven J. Miller, Lily Shao, Chenyang Sun, and Victor Xu. Generalizing

[738] Séverin Philip. Variétés abéliennes CM et grosse monodromie finie sauvage. (French) Abelian CM manifolds and big finite wild mon-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dawsey:2022:SPS

Hughes:2022:DMV

Comeau-Lapointe:2022:OLD

Lin:2022:FCE

Caginalp:2022:PRA

Kim:2022:RNR

REFERENCES

Jindal:2022:FLP

Kaneko:2022:DER

Jin:2022:NNO

Wang:2022:MQM

Martinez-Ranero:2022:EDA

Kuperberg:2022:PPD

REFERENCES
REFERENCES

Andersen:2023:HSP

Nathanson:2023:UEF

Wu:2023:GOC

Kim:2023:STC

Yoo:2023:RCD

Koperecz:2023:TRF

REFERENCES

REFERENCES

[833] Adrien Morin. Special values of L-functions on regular arithmetic schemes of dimension 1. *Journal of Number Theory*, 243(??):412–474,
REFERENCES

REFERENCES

Fowler:2023:ETS

Martin:2023:CFN

Barsakci:2023:SRP

Anonymous:2023:PMa

Anonymous:2023:EBc

Ghioca:2023:ZDO
REFERENCES

REFERENCES

REFERENCES

Forst:2023:ZMP

Cheng:2023:EMS

Aoki:2023:CBA

Chung:2023:FCE

Ding:2023:CRA

Li:2023:PPD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[903] Amiya Kumar Mondal and Santosh Nadimpalli. On the duality involution for p-adic general spin groups. *Journal of Number The-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[947] Patrick Bieker. Invariants for the Weil representation and modular units for orthogonal groups of signature (2,2). *Journal of Number Theory*,

REFERENCES

REFERENCES

[972] Ernst-Ulrich Gekeler. On Drinfeld modular forms of higher rank VI: the simplicial complex associated with a coefficient form. *Journal of Number Theory*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Charlier:2024:PAB

Yang:2024:LVZ

Dao:2024:BMO

Fan:2024:IRS

Kumchev:2024:EBL

Anonymous:2024:PF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1054] Claudio Quadrelli. Massey products in Galois cohomology and the elementary type conjecture. *Journal of Number Theory*, 258(??):40–65, May 2024. CODEN JNUTA9. ISSN 0022-314X (print), 1096-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

