A Complete Bibliography of the *Journal of Number Theory* (2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 June 2023
Version 1.22

Title word cross-reference

(1, 2) [202]. (2, 2) [946]. (2, 2n, 3) [582]. (4, 2, p) [944]. (χ, b) [769]. 0 [188]. 1/2 [496]. 16 [61]. 2 [65, 78, 701, 812, 851, 912]. 3 [188, 750, 755, 922]. 3k – 4 [205]. 4 [204]. 5 [94, 188]. 7 [94, 188, 752]. 8k + 3 [680]. > [293]. 2 [299, 543]. 4 [466]. n [760]. A [543, 552]. {a, 3a} [453]. A_n [136]. α [780]. αβ [305, 461]. AX^d + C [203]. b [370]. spt_w(n) [734]. \binom{n}{k} = \binom{m}{d} + d [69]. \text{modp}^k [926]. C [550]. C_1 [616]. C_{p^d} [712]. D [533, 640]. d(n) [630]. \Delta(c)(x) [613]. E_5 [281, 445]. E_7 [281]. E_{7,3} [907]. E_8 [845]. \ell [532, 955]. F [640, 760]. f(q) [429]. F_3 [670]. F_n \pm a(10^m - 1) = kl [751]. F_n \pm F_m = y^a [318]. F_q[t] [626]. \frac{L}{L}(1/2 + \epsilon, \chi_D) [702]. G [301, 447]. \Gamma [331, 571, 744]. \Gamma^*(k) [578]. \Gamma_0^+(2) [381]. \Gamma_0^+(N) [584]. \Gamma_1(N) [542]. GL(2) [254, 258]. GL(2) \times GL(2) [741]. GL(3) [258]. GL_2(F) [401]. GL_3(R) [586]. GL_N [748]. GSp(4) [835]. GSp_4(Z_p) [849]. h^1 \neq h_1 [412]. \mathbb{Z} [470]. j [169, 692, 897]. K [36, 105, 174, 257, 804, 916, 937]. K^x K^{x'}^N [808]. L [14, 19, 38, 43, 73, 74, 87, 115, 119, 120, 150, 177, 233, 250, 267,
270, 286, 292, 293, 339, 341, 344, 346, 362, 388, 434, 474, 528, 548, 581, 586, 601, 619, 626, 673, 685, 694, 696, 699, 730, 741, 746, 766, 778, 810, 825, 832, 834, 835, 846, 885, 919, 924, 947, \(L(\frac{1}{2}, \chi) \) [135]. \(L(s) + L(2s) + \cdots + L(Ns) \) [806]. \(L^2 \) [953]. \(L^2(\mathbb{F}_2(T)) \) [865]. \(\hat{L}^2(\mathbb{Q}_2) \) [865]. \(\lambda \) [385, 880, 958]. \(|\alpha + \beta| \) [410]. \(m \) [131, 570, 855]. \(M_{22} \) [493]. \(\mathbb{N} \) [235]. \(\mathbb{P}^n \) [34]. \(\mathbb{Q} \) [24, 44, 223, 340, 493, 755, 922]. \(\mathbb{Q}(-5l) \) [445]. \(\mathbb{Q}(\zeta_{3n}^+)^+ \) [532]. \(\mathbb{Z}/p\mathbb{Z} \) [198]. \(\mathbb{Z}[x] \) [182]. \(\mathbb{Z}_m \times \mathbb{Z}_n \) [240]. \(\mathbb{Q}(\alpha p_1 p_2) \) [739]. \(\mathbb{Q}(\sqrt{7}) \) [232]. \(\mathbb{p} \) [471]. \(\mathbb{pm} \) [471]. \(\mathbb{GL}(2) \) [53, 60, 177, 809]. \(\mathbb{GL}_2 \) [75, 120]. \(\mathbb{GL}_3 \times \mathbb{GL}_1 \) [120]. \(\mathbb{GL}_n \) [82]. \(\mathbb{PGL}_n(\mathbb{R}) \) [12]. \(\mathbb{SL}(3) \) [223]. \(\mathbb{SL}_2(\mathbb{F}_p) \) [31]. \(\mathbb{C} \) [10]. \(mn \leq x \) [240]. \(\mu \) [594]. \(\mathbb{N} \) [55, 218, 244, 491, 943]. \(\mathbb{N}(D) \) [640]. \(p \) [17, 46, 58, 125, 213, 319, 388, 401, 434, 490, 491, 525, 532, 565, 569, 574, 589, 650, 658, 665, 719, 785, 799, 810, 870, 885, 902, 903, 919, 921, 924, 926, 928, 951]. \(P^+(n) \) [378]. \(P^+(n+1) \) [378]. \(p_A(n, k) \) [952]. \(\mathbb{PGL}_2(\mathbb{Q}) \) [762]. \(\psi \) [480]. \(q \) [300, 738, 888]. \(R \) [40, 414, 929]. \(R^d \) [465]. \(S \) [130, 293, 733]. \((t) \) [536]. \(S_1(t) \) [536]. \(\sigma \) [17]. \(\sigma(2n+1) \geq \sigma(2n) \) [218]. \(\mathbb{SL}(3, \mathbb{Z}) \) [910]. \(\mathbb{SL}_2(\mathbb{O}) \) [828]. \(\mathbb{SL}_2(\mathbb{Z}) \) [883]. \(\mathbb{SL}_3(\mathbb{Z}) \) [882]. \(\sum_{j=1}^k F_j^n = F_q^n \) [259]. \(T \) [53, 412, 417, 546, 548, 553, 741, 800]. \(\theta_3(q) \) [241]. \(\times \) [924]. \(U(1) \) [192]. \(U(n+1) \times U(n) \) [558]. \(U_{2n+1} \times \text{Res}_{E/F} \mathbb{GL}_m(m > n) \) [233]. \(U_p \) [316]. \(\varepsilon \) [46]. \(\varphi \) [480]. \(x \) [36]. \(x^2 + y^2 + z^2 + k \) [632]. \(x^6 + ax^3 + b \) [727]. \(X_0(14) \) [402]. \(X_0(N) \) [798]. \(X_0(2p) \) [336]. \(y^2 = x^6 + 1 \) [78]. \(Y^2 = X^6 + 1 \) [78]. \(Z \) [159, 168]. \(Z^n \) [590]. \(Z_p \) [525, 555]. \(\zeta \) [331]. \(\zeta(1/2 + it) \) [375, 536]. \(\zeta(s) \) [847]. \(\|ax - by\| = k \) [709]. \(|L(1, \chi)| \) [376, 629, 753].

backward [809]. balanced [531, 624, 885]. Banff [650]. Banks [137].
[276, 438, 476, 894, 934]. basilica [693]. basis [543, 565, 691, 739]. Bass
below [227]. Bely’s [527]. Benford [722]. Bernoulli [554]. Berthelot
[652]. Bessel [835]. Bessenrodt [952]. beta [776]. between
[92, 109, 145, 337, 403, 599, 743, 878, 896, 916]. Bianchi [574, 621, 810, 919].
Bias [68, 228, 823, 866]. biases [916]. bidegree [202]. Bielliptic
[244]. Biennial [505]. Bifurcations [914]. Big [63, 737, 849]. bilinear
[321, 793]. Binary [54, 171, 178, 207, 386, 609, 261, 663, 673, 682, 742, 932].
binomial [35]. biprojective [202]. biquadratic [124, 457, 472, 497].

C [282]. Calabi [107, 653]. calculating [47, 640]. Cantor [279].
Capitulation [529, 915]. Carlitz [549, 551, 552, 554, 673, 736]. Carmichael
[459]. Cartan [121]. Case [415, 558, 703, 833, 839, 856, 956]. Catalan
[415, 435]. Category [550]. Central
[23, 43, 74, 270, 474, 528, 570, 633, 730, 804, 858]. Certain
certaines [20]. Cesàro [446]. Ceva [355]. changes [613]. characteristic
[199, 208, 527, 662, 712]. characters [150, 317]. Chebotarev [242, 786].
Chromatic [291]. Chudnovsky [784]. circle [153, 207, 437, 636, 809]. circles
[529, 821, 916]. classical [215, 300, 571, 587, 604]. classicality [781].
Classification [18, 42, 284, 386, 791]. Classifying [731]. closed [426, 484].
closure [232, 870]. CM [120, 156, 275, 664, 737, 792, 862, 876, 945]. CM-points
[156]. co [391]. co-minimal [391]. cocycle [762]. cocycles [621]. coefficient
Cohomology [64, 82, 258, 448, 466, 508, 567, 650, 882, 883]. coincident [293].
colored [929]. Combinations [293, 381]. combinatorics [29, 534]. coming
[564]. Comments [273]. Common [176, 431, 480, 570]. commutative
[490, 515]. commutator [723]. compact [156, 784, 822]. compactification
degenerate [30, 79]. degeneration [447]. Degree
[62, 65, 144, 204, 306, 639, 841, 856, 870]. degree-2 [841]. del [204, 639]. delta
[53]. Demailly [34]. denominators [752]. dense [710, 844]. Densities
[92, 132, 344]. Density
[28, 153, 154, 346, 417, 491, 494, 503, 683, 698, 765, 786, 827]. d’entiers [105].
d’Erdos [105]. derivative [74]. derivatives [103, 499, 764]. descent
Determination [701]. Deuring [273]. developments [642]. Diagonal
[367, 400, 625, 875]. diagonalizable [468]. diamond [937]. Dichotomous
differential [331, 523, 655]. differentials [231, 252]. Digit [438, 776, 914].
digital [489]. digits [304, 353]. dihedral [44, 870]. dimension
[61, 189, 364, 461, 475, 566, 616, 832, 954]. dimensional [61, 236, 567, 922].
dimensions [51, 611, 771]. Diophantine
Dirichlet
discrepancy [612]. discrete [250, 500, 720, 764, 854]. Discriminant
disjointness [30]. displays [653]. Distance [599, 725]. distances [145].
divided [583, 654]. divisibility [28, 131, 169, 383, 779, 871, 913, 945]. divisible
[168, 780, 886]. division [11, 60, 467, 520, 569]. divisor [315, 444, 798, 807].
domains [612, 790]. Double [64, 107, 223, 297, 604, 703, 877, 938]. doubling
[260, 571, 836]. drawn [488]. Drinfeld
[66, 871]. Dynamic [125]. Dynamical [33, 164].

Editorial
[9, 26, 49, 71, 97, 117, 140, 163, 186, 211, 230, 247, 272, 289, 311, 329,
350, 374, 393, 409, 428, 442, 456, 478, 504, 517, 538, 557, 580, 603, 618, 641, 660,
706, 729, 759, 789, 819, 843, 861, 874, 890, 900, 918, 940, 950]. Effective
[141, 262, 285, 489, 527, 629, 657, 774, 782, 911, 925]. Egyptian [795]. Eichler
[635]. eigenform [912]. eigenforms [119, 196, 560]. eigenvalue [711].
eigenvalues [265, 920]. eight [326]. Eisenstein
[133, 223, 308, 330, 381, 411, 584, 596, 735, 750, 814, 905, 951]. elementary
480, 499, 512, 520, 564, 597, 664, 692, 704, 740, 765, 811, 827, 881, 884, 897, 945].
elongated [812]. encoded [808]. Endomorphism [142, 481, 545, 644, 649].
endomorphisms [342, 544, 844]. Engel [304]. ensemble [135]. Entire

Grosswald [238, 372]. group

Infinite [27, 853, 926]. infinitely [157, 302]. inhomogeneous [406, 954].
[41, 206, 262, 264, 322, 336, 476, 565, 586, 628, 690, 697, 739, 828, 830, 850, 893].
[148, 274, 447, 584, 736]. periodic [698, 700, 841]. Periods
[200, 275, 284, 342, 399, 546, 547, 568, 671, 769, 824, 906]. Pezzo [204, 639].
phenomena [236, 837]. phenomenon [273, 609]. physical [859]. Piatetski
Poincaré [405]. point [64, 74, 465, 612, 730, 858, 941]. Points
[4, 21, 34, 63, 156, 202, 262, 264, 302, 322, 326, 336, 355, 380, 404, 424, 440,
451, 460, 480, 499, 520, 563, 698, 771, 790, 841]. Poissonian [51, 502, 826].
polarized [364]. poles [188, 249]. polynomials [93, 106, 130, 184, 203, 212, 245,
274, 357, 383, 422, 479, 681, 718, 731, 738, 747, 750, 775, 780, 782, 785, 805,
815, 864, 879, 888, 909]. popular [198]. position [484]. positive [199, 277, 491,
495, 527, 662]. possible [415, 703]. Potentially [335, 468]. pour [105]. power
[5, 112, 177, 384, 416, 523, 551, 630, 699, 834, 844, 921]. Powers
Preface [506]. premiers [105]. prescribed [217, 282, 324, 597]. primary
[780]. Prime [6, 22, 105, 106, 151, 158, 174, 177, 182, 224, 260, 206, 359, 364, 446,
[22, 23, 27, 68, 125, 126, 128, 137, 157, 178, 194, 242, 337, 410, 421, 485, 521,
532, 591, 593, 609, 734, 777, 780, 786, 827, 866, 872, 884, 896]. Primitive
[414, 449, 866]. principle [136, 323, 383, 615, 661, 796, 856, 945]. pro [525].
pro- [525]. Probabilistic [340, 767]. Problem
[18, 33, 54, 124, 250, 276, 314, 337, 365, 452, 470, 514, 561, 807, 923]. problems
[282, 389, 754, 921]. Product [275, 362, 388, 397, 437, 670, 672, 885].
product-one [672]. products [133, 194, 243, 300, 411, 596, 697, 932]. progress
[164]. progression [181, 209, 600]. progressions [368, 444, 459]. projections
[85, 131, 257, 387, 390, 486, 628, 720, 755, 808, 942]. property
[15, 173, 183, 802, 875]. proportions [920]. pro solvable [615]. Pseudo
Pythagorean [577].

Quadratic [19, 42, 83, 87, 95, 114, 161, 173, 178, 181, 207, 221, 344, 395, 400, 402,
420, 421, 443, 450, 454, 483, 518, 576, 600, 609, 663, 666, 675, 693, 701, 755, 768,
813, 815, 840, 852, 855, 875, 880, 882, 891, 897, 903, 909, 931, 958]. quadratics
[910]. quadrilateral [575]. quantities [742, 957]. quartic
[98, 404, 474, 754, 884]. Quasi [433, 778]. Quasi-inner [433]. quasi-modular
questions [497]. quinary [875]. quotient [244]. quotients

sections [473]. sector [725]. sectors [485]. Selberg
semi [214, 520]. semi-abelian [520]. semi-decomposable [214].
semigroups [909]. semistable [32, 524]. September [185, 427, 659, 939].
sequence [28, 256, 370, 498]. Sequences [56, 88, 131, 169, 171, 179, 181, 212,
357, 386, 431, 501, 531, 685, 700, 735, 814, 850, 905, 907, 951].
Serre [95]. set [205, 279, 282, 307, 780, 827].
sets [59, 124, 128, 132, 153, 261, 397, 425, 461, 663, 667, 716, 773, 787, 892].
Signatures [317]. signs [159]. simple
[18, 23, 53, 201, 364, 407]. Simply [894]. Simultaneous [178, 721, 841, 948].
single [205]. singular [141, 446, 494, 503, 839]. singularities [64]. site [149].
slopes [473]. Slow [100, 287, 756]. Small
[125, 260, 337, 369, 380, 485, 687, 836, 893]. small-exponent [369]. smallest
[774]. Smallness [792]. Smarandache [263]. smooth [181, 294]. Solution
[749]. solutions [318, 415, 625, 628, 703, 709, 751]. solving [785]. Some
[18, 58, 107, 197, 257, 297, 300, 337, 352, 457, 458, 464, 465, 497, 534, 567, 666, 685,
spaces [55, 265]. spacing [273]. spanning [865]. sparse [780, 785]. Special
[146, 177, 456, 548, 671, 700, 832, 898]. specialization [704]. specified
[304]. sphere [37]. spheres [55, 145, 925]. spin [6, 414, 757, 902]. spinor
Square [120, 244, 614, 632, 681, 688, 834, 847, 877]. square-free [244, 632].
Square-reflexive [681]. squarefree [476, 635]. squares
[173, 279, 521, 627, 855, 891]. stability [658]. stable [222]. standard
[284, 366]. Stark [901]. statistic [763]. Stein [72]. Steinberg [395, 882].
Stern [674]. strategy [898]. stretched [790]. Strong [173, 266, 875].
stronger [109]. strongly [61]. structure [118, 231, 335, 712, 773, 808].
structures [125, 201, 655, 878]. study [178, 690, 859]. Sturm [646].
Sturm-type [646]. Sturmian [200, 943]. style [955]. Subconvexity
[12, 586, 741, 794]. subcovers [791]. subgeneral [484]. subgroup
submodules [717]. subrings [590, 779]. subschemes [484]. subsequence
[256]. subset [923]. subset-sum [923]. Subspace [214, 484, 782]. successive
sufficiently [34]. Sum
[7, 68, 127, 256, 279, 371, 390, 514, 627, 638, 687, 696, 787, 893, 910, 923].

Super-isolated [16]. Supercuspidal [748, 760]. supernormal [763].

supersingular [460, 492]. supplements [389]. surface [204, 437]. surfaces
[64, 110, 129, 156, 245, 322, 334, 424, 448, 481, 620, 639, 704, 801, 822, 881].

Swinnerton-Dyer [66, 871]. symbol [174, 605, 804]. symbols [919].
symmetric [120, 348, 528, 636, 699, 770, 834]. symplectic [346, 849]. systems
[10, 104, 166, 285, 625, 677, 828]. Systolic [726].

table [294]. taken [22]. Tamagawa [524, 597, 683]. tame [452, 804]. Tate
[37]. Taylor [241]. tempered [80]. Tensor [168, 547]. term
[209, 216, 240, 446, 688, 750, 847]. terms [28, 171, 346, 926]. Ternary
[195, 400, 600]. Test [73, 114, 730]. th [174, 533, 569, 921]. their

Theor [757]. theorem

Théorème [105]. theorems [58, 68, 166, 182, 296, 489, 587, 895]. theoretic
[690]. Theta [47, 91, 225, 429, 482, 513, 735, 828, 932]. third [279]. Thompson
[407]. Three [29, 378, 638, 684, 711, 839, 886]. threefolds [107, 653]. time
[114]. topological [192]. topology [334]. tori [854, 856, 922]. Torsion
torsors [615]. total [725, 837]. totally [84, 177, 388, 712]. totient
transcendental [24, 282]. transfer [102]. Transformation [41, 148].
transforms [733]. translates [105]. tree [746]. trees [673]. triangle [784].
triangles [172, 348, 355, 740, 816]. triangular [195, 726, 863]. trigonometric
[742]. trinomials [727]. Triple [312, 388, 885, 908]. triples [113, 620].
Triquadratic [799]. triviality [947]. truncated [143]. tuple [570]. tuples
[322, 362, 552, 654, 822, 907]. Twisting [254]. Twists
[72, 78, 177, 402, 443, 668, 765, 884, 891, 953]. Two
[33, 194, 306, 330, 344, 345, 370, 520, 627, 848, 863, 886, 901, 920]. two-division

XIII [598].

Yau [107, 653].

functions [522,714]. Zhi [351,352]. Zhi-Wei [351,352]. Zumkeller [257].

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[64] Dohyeong Kim. Ramification in the cohomology of algebraic surfaces arising from ordinary double point singularities. *Journal of Number Theory,*

REFERENCES

REFERENCES

Tanuma:2020:AIV

Kim:2020:RKE

Goudout:2020:TEK

Franze:2020:APV

Cynk:2020:HMS

Koleda:2020:DRA

REFERENCES

REFERENCES

REFERENCES

Ellers:2020:EBT

Garai:2020:ERR

Lee:2020:HTD

König:2020:UEL

Haynes:2020:HMD

Ray:2020:CCS

Aymone:2020:NMF

REFERENCES

REFERENCES

Booher:2020:RAS

Peltomaki:2020:APF

Tsang:2020:HGS

Hu:2020:CRP

Ren:2020:IPF

Riman:2020:VBG

Grynkiewicz:2020:SSI

REFERENCES

50

Gritsenko:2020:GRI

Toma:2020:ERN

Tsushima:2020:GRA

Argaez-Garcia:2020:PPS

Anonymous:2020:PO

Anonymous:2020:EBj

REFERENCES

[218] Mits Kobayashi and Tim Trudgian. On integers n for which $\sigma(2n + 1) \geq \sigma(2n)$. Journal of Number Theory, 215(??):138–148, October
REFERENCES

Daniel Di Benedetto, Moubariz Z. Garaev, Victor C. García, Diego Gonzalez-Sanchez, Igor E. Shparlinski, and Carlos A. Trujillo. New estimates for exponential sums over multiplicative subgroups and inter-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[256] Jiangtao Peng, Yuanlin Li, Chao Liu, and Meiling Huang. On subsequence sums of a zero-sum free sequence over finite abelian groups.
REFERENCES

REFERENCES

[269] Szabolcs Tengely, Maciej Ulas, and Jakub Zygadło. On a Diophantine
equation of Erdös and Graham. *Journal of Number Theory*, 217(??):
445–459, December 2020. CODEN JNUTA9. ISSN 0022-314X (print),
article/pii/S0022314X20301608.

[270] Kimball Martin and Jordan Wiebe. Zeroes of quaternionic modular forms
and central L-values. *Journal of Number Theory*, 217(??):460–494, De-
cember 2020. CODEN JNUTA9. ISSN 0022-314X (print), 1096-1658
pii/S0022314X2030161X.

(??):1–402, January 2021. CODEN JNUTA9. ISSN 0022-314X (print),
1096-1658 (electronic).

January 2021. CODEN JNUTA9. ISSN 0022-314X (print), 1096-1658
pii/S0022314X20302730.

[273] Mark Watkins. Comments on Deuring’s zero-spacing phenomenon. *Jour-

[274] Angelica Babei, Larry Rolen, and Ian Wagner. The Riemann hypothesis
for period polynomials of Hilbert modular forms. *Journal of Number
science/article/pii/S0022314X20302195.

[275] Urs Hartl and Rajneesh Kumar Singh. Product formulas for periods of
CM abelian varieties and the function field analog. *Journal of Number
Theory*,
REFERENCES

Sun:2021:PNM

Asensouyis:2021:GFP

Ernvall-Hytonen:2021:FHM

Wang:2021:SSM

Anh:2021:MER

Morton:2021:HIta

REFERENCES

REFERENCES

REFERENCES

Griffin:2021:MES

Murakami:2021:CIN

Anonymous:2021:PMa

Anonymous:2021:EBc

Hulse:2021:TCS

Young:2021:ASH
REFERENCES

[320] Soumyarup Banerjee, Manav Batavia, Ben Kane, Muratxhan Kyranbay, Dayoon Park, Sagnik Saha, Hiu Chun So, and Piyush Varyani. Fer-

Shkredov:2021:MHB

Chen:2021:IPT

Haas:2021:LGP

Kim:2021:GEP

Chabert:2021:PFP

Howe:2021:MNP

[326] Everett W. Howe. The maximum number of points on a curve of genus eight over the field of four elements. *Journal of Number Theory*, 220(??):320–329, March 2021. CODEN JNUTA9. ISSN 0022-314X (print),

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Biswa:2021:ACM

Anonymous:2021:PJc

Anonymous:2021:EBg

Lee:2021:EZF

Ash:2021:SHM

Eum:2021:RNS

Mastrostefano:2021:MPS

REFERENCES

Hajdu:2021:SCC

Su:2021:EPH

Kim:2021:DOR

Assaf:2021:EIN

Choi:2021:QT

Ounaies:2021:RBZ
REFERENCES

vonPippich:2021:KLF

Grishkov:2021:AM

Alkan:2021:VCP

Ban:2021:GUP

Mihailescu:2021:ILB

Nordqvist:2021:WRP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Goldfeld:2022:P

Beuzart-Plessis:2022:MPF

Cadoret:2022:UCE

Darmon:2022:AIM

Li:2022:VTS

Dimitrov:2022:CRB

Burungale:2022:EPG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sachpazis:2022:MFS

Thackeray:2022:BFH

Bayless:2022:HMC

Kundu:2022:AIR

Andersen:2022:OSP

Frendreiss:2022:CPP

REFERENCES

REFERENCES

REFERENCES

Chipchakov:2022:FDO

Anonymous:2022:PJb

Anonymous:2022:EBg

Hochfilzer:2022:RAF

Kazalicki:2022:DTK

Karabulut:2022:BHF

Weiss:2022:SAP

Alessandro Languasco and Timothy S. Trudgian. Uniform effective estimates for $|L(1, \chi)|$. *Journal of Number Theory*, 236(??):245–260, July
REFERENCES

Hilberdink:2022:HOP

Vukusic:2022:CTM

Zhou:2022:SFV

Lee:2022:AES

Ma:2022:GBD

Li:2022:EOJ
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[661] Giacomo Micheli, Severin Schraven, and Violette Weger. A local to global principle for expected values. Journal of Number Theory, 238(??):1–16,
REFERENCES

REFERENCES

Jha:2022:MSG

Chakraborty:2022:MNN

Tomita:2022:AEP

Franco:2022:PHC

Zhao:2022:POS

Grishkov:2022:FCM

[673] A. Grishkov, D. Logachev, and A. Zobnin. L-functions of Carlitz modules, resultant varieties and rooted binary trees — I. *Journal of Number Theory*.

REFERENCES

REFERENCES

Ahmad:2022:ABQ

Cao:2022:FES

Keilthy:2022:MMZ

Garcia:2022:EEA

Wang:2022:BPH

Bell:2022:DPP

REFERENCES

Anonymous:2022:PO

Anonymous:2022:EBj

Khan:2022:WVE

Melistas:2022:PAR

Fujita:2022:NNS

Weingartner:2022:NPF

REFERENCES

REFERENCES

Philip:2022:VA

Gekeler:2022:GP

Jakhar:2022:EIB

Lalin:2022:HHT

Acharya:2022:ASF

Mosunov:2022:AGB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Valloni:2023:FDK

Shparlinski:2023:GPM

Assim:2023:GGC

Tamiozzo:2023:THS

Hajdu:2023:EPR

REFERENCES

[831] Francesco Battistoni and Hassan Oukhaba. Arithmetic equivalence for non-geometric extensions of global function fields. *Journal of Number...
REFERENCES

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal of Number Theory, Volume and Issue (Publication Year)</th>
<th>Pages</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>843</td>
<td>Anonymous</td>
<td>Editorial Board</td>
<td>244(??):ific, March 2023</td>
<td>ific</td>
<td></td>
<td>Link</td>
</tr>
<tr>
<td>844</td>
<td>Dragos Ghioca and Sina Saleh</td>
<td>Zariski dense orbits for endomorphisms of a power of the additive group scheme defined over finite fields</td>
<td>244(??):</td>
<td></td>
<td></td>
<td>Link</td>
</tr>
</tbody>
</table>
REFERENCES

Sakai:2023:ACW

Gun:2023:LID

Simonic:2023:AFM

Schleischitz:2023:OTI

Maletto:2023:GRB

Ernvall-Hytonen:2023:EFS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dicks:2023:CRC

Jing:2023:ESP

Kim:2023:QFR

Schwagenscheidt:2023:BTF

Avelar:2023:NBC

Charlier:2023:SAN

REFERENCES

Anonymous:2023:PS

Anonymous:2023:EBi

REFERENCES

Moree:2023:PDE

Keith:2023:PCC

Languasco:2023:NEL

Stokes:2023:CGF

Jeon:2023:CVW

[959] Daeyeol Jeon, Soon-Yi Kang, and Chang Heon Kim. Corrigendum to “On values of weakly holomorphic modular functions at divisors of mer-