A Complete Bibliography of the *Journal of Number Theory* (2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 May 2022
Version 1.12

Title word cross-reference

(1, 2) [200]. (2, 2n, 3) [580]. 0 [186]. 1/2 [494]. 16 [59]. 2 [63, 76, 699]. 3 [186]. 3k – 4 [203]. 4 [202]. 5 [92, 186]. 7 [92, 186]. 8k + 3 [678]. > [291]. 2 [297, 541]. \(d \) [464]. \(A \) [541, 550]. \{a, 3a\} [451]. \(A_n \) [134]. \(\alpha \beta \) [303, 459]. \(AX^d + C \) [201]. \(b \) [368]. \(\binom{n}{k} = \binom{n}{d} + d \) [67]. \(C \) [548]. \(C_1 \) [614]. \(D \) [531, 638]. \(d(n) \) [628]. \(\Delta_{(1)}(x) \) [611]. \(E_5 \) [279, 443]. \(E_7 \) [279]. \(\ell \) [530]. \(F \) [638]. \(f(q) \) [427]. \(F_1 \) [668]. \(F_n \pm F_m = 2^n \) [316]. \(F_q[t] \) [624]. \(\frac{L}{L}(1/2 + e, \chi_D) \) [700]. \(G \) [299, 445]. \(\Gamma \) [329, 569]. \(\Gamma^*(k) \) [576]. \(\Gamma^+(2) \) [379]. \(\Gamma^+(N) \) [582]. \(\Gamma^0(n) \) [540]. \(GL(2) \) [252, 256]. \(GL(3) \) [256]. \(GL_2(F) \) [399]. \(GL_3(R) \) [584]. \(h^1 \neq h_1 \) [410]. \(\hat{Z} \) [468]. \(j \) [167, 690]. \(k \) [34, 103, 172, 255]. \(L \) [12, 17, 36, 41, 71, 72, 85, 113, 117, 118, 148, 175, 231, 248, 265, 268, 284, 290, 291, 337, 393, 342, 344, 360, 386, 432, 472, 526, 546, 579, 584, 599, 617, 624, 671, 683, 692, 694, 697]. \(L(1/2, \chi) \) [133]. \(\lambda \) [383]. \(\alpha + \beta \) [408]. \(m \) [129, 568]. \(M_{22} \) [491]. \(N \) [233]. \(\mathbb{P}_{\alpha} \) [32]. \(\mathbb{Q} \) [22, 42, 221, 338, 491]. \(\mathbb{Q}(-5l) \) [443]. \(\mathbb{Q}(\zeta_{2\ell+1}) \) [530]. \(\mathbb{Z}/p\mathbb{Z} \) [196]. \(\mathbb{Z}[[x]] \) [180].
Almost-prime \[\mathbb{Z}_m \times \mathbb{Z}_n \ [238]. \ Q(\sqrt{7}) \ [200]. \ p \ [469]. \ pm \ [469]. \ GL(2) \ [51, 58, 175]. \ GL_2 \ [73, 118]. \ GL_3 \times GL_1 \ [118]. \ GL_n \ [80]. \ PGL_n(\mathbb{R}) \ [10]. \ SL(3) \ [221]. \ SL_2(\mathbb{F}_p) \ [29]. \ Co_3 \ [8]. \ mn \leq x \ [238]. \ \mu \ [592]. \ N \ [53, 216, 242, 489]. \ N(D) \ [638]. \ p \ [15, 44, 56, 123, 211, 317, 386, 399, 432, 488, 489, 523, 530, 563, 567, 572, 587, 648, 656, 663]. \ \psi^+(n) \ [376]. \ \psi^+(n+1) \ [376]. \ \theta_3(q) \ [239]. \ U(1) \ [190]. \ U(n+1) \times U(n) \ [556]. \ \varphi_n \ [478]. \ x \ [34]. \ x^2 + y^2 + z^2 + k \ [630]. \ X_0(14) \ [400]. \ X_0(p) \ [334]. \ y^2 = x^5 + ax \ [375]. \ Y^2 = X^6 + 1 \ [76]. \ Z \ [157, 166]. \ Z^n \ [588]. \ Z_p \ [523, 553]. \ \zeta \ [329]. \ \zeta(1/2 + it) \ [373, 534]. \ [L(1, \chi)] \ [374, 627].

-\text{adic} \ [15, 123, 317, 386, 399, 432, 563, 572, 587, 648, 656, 663]. \ -\text{ary} \ [129]. \ -\text{aspect} \ [51]. \ -\text{class} \ [44, 699]. \ -\text{conjectures} \ [44]. \ -\text{continued} \ [38]. \ -\text{coordinates} \ [34]. \ -\text{divisible} \ [166]. \ -\text{extension} \ [468]. \ -\text{extensions} \ [134, 523]. \ -\text{factor} \ [569]. \ -\text{function} \ [15, 329]. \ -\text{functions} \ [12, 17, 36, 71, 72, 85, 113, 118, 148, 157, 231, 248, 265, 284, 290, 291, 299, 337, 342, 344, 360, 386, 432, 472, 484, 526, 584, 599, 617, 624, 671, 692, 694, 697]. \ -\text{generalized} \ [34]. \ -\text{groups} \ [412]. \ -\text{harmonic} \ [550]. \ -\text{invariant} \ [167, 690]. \ -\text{invariants} \ [383, 592]. \ -\text{layered} \ [255]. \ -\text{modules} \ [544, 546]. \ -\text{motivic} \ [551]. \ -\text{multipartition} \ [415]. \ -\text{operators} \ [314]. \ -\text{orbits} \ [303]. \ -\text{parts} \ [128]. \ -\text{products} \ [298]. \ -\text{rationality} \ [530]. \ -\text{repunits} \ [368]. \ -\text{scheme} \ [668]. \ -\text{series} \ [117, 339, 683]. \ -\text{spheres} \ [53]. \ -\text{th} \ [172, 531, 567]. \ -\text{torsion} \ [488]. \ -\text{tuple} \ [568]. \ -\text{values} \ [41, 175, 268, 546, 579].

1 [291]. \ 1 \text{-}\text{498} \ [554]. \ 167 \ [87]. \ 186 \ [266]. \ 195 \ [449]. \ 196 \ [110].

2019 \ [503]. \ 202 \ [369]. \ 2020 \ [208, 227, 244]. \ 2021 \ [269, 286, 308, 326, 347, 371, 390, 406, 425, 439, 453, 475]. \ 2022 \ [514, 554, 577, 600, 615, 657]. \ 206 \ [181]. \ 209 \ [307]. \ 216 \ [370]. \ 217 \ [599].

A1 \ [6]. \ A2 \ [6]. \ ABC \ [155, 343]. \ Abel \ [90]. \ Abelian \ [3, 14, 37, 57, 152, 198, 254, 273, 362, 449, 479, 518, 527, 546, 570, 670, 675]. \ abélienne \ [527]. \ Absolutely \ [82, 311, 668]. \ Absolutely \ [362]. \ action \ [108]. \ Addendum \ [87]. \ Additive \ [27, 52, 70, 102, 233, 389]. \ adeles \ [127]. \ Adelic \ [127, 645]. \ adic \ [15, 123, 317, 386, 399, 432, 563, 572, 587, 648, 656, 663]. \ admitting \ [574]. \ affine \ [164, 660]. \ affinoids \ [206]. \ after \ [146]. \ algebra \ [58, 188]. \ Algebraic \ [1, 19, 50, 60, 62, 87, 101, 106, 293, 329, 380, 432, 438, 484, 494, 565, 614, 634]. \ Algebraicity \ [290, 526]. \ algebras \ [9, 21]. \ algorithm \ [702]. \ Algorithmic \ [384]. \ Alladi \ [336]. \ Almost \ [104, 135, 149, 199, 335, 353, 511, 591, 620]. \ Almost-prime \ [104, 149]. \ along \ [120]. \ alternating \ [195, 456]. \ among \ [33]. \ analog \ [79, 273]. \ analogs \ [382]. \ analogue \ [50, 261, 361]. \ Analogues \ [336].

factor, factorial, factorizations, Fibonacci, finite, Finite, Fixation, Fredholm, French, Frobenius, full, function, functions, further, G.C.D., Galois, Gap

one-level operators

Oppenheim [283]. Optimal [190, 428]. or

ordinary orthogonal [16, 681, 682]. orthogonality [697]. oscillation [233].

overconvergent [649, 655]. overpartitions [83, 224, 492, 501].

P. [462]. packings [35, 205]. Padé [365]. Pages

Pisot [531]. place [147]. Plancherel [505]. plane [179]. Plausible

plus [458]. plus/minus [458]. Pohst [460]. Poincaré [403]. point

position [482]. positive [197, 275, 489, 493, 525, 660]. possible [413, 701].

Potentially [333, 466]. pour [103]. power

premiers [103]. prescribed [215, 280, 322, 595]. prime [20, 103, 104, 149, 156, 172, 175, 180, 222, 258, 294, 357, 362, 444, 558, 597, 674, 678, 686].

prime-order [258]. Primes [20, 21, 25, 66, 123, 124, 126, 135, 155, 176, 192, 240, 335, 408, 419, 483, 519, 530, 589, 591, 607].

Progressive [66, 86, 167, 211, 296, 305, 422, 423].

primitively [418]. principal [412, 447]. principle [134, 321, 381, 413, 659].

pro [523]. pro- [523]. probabilistic [338]. Problem

proof [189, 352, 489, 650]. properties [83, 129, 255, 385, 388, 484, 626].

Quadratic [17, 40, 81, 85, 93, 112, 159, 171, 176, 179, 205, 219, 342, 393, 398, 400,

Thompson [405]. Three [27, 376, 636, 682]. threefolds [105, 651]. time
[112]. topological [190]. topology [332]. Torsion
[37, 325, 438, 488, 561, 595, 668, 690]. torsors [613]. totally [82, 175, 386].
totient [66, 74, 79, 84, 251, 608]. towers [331, 656]. trace [293]. traces [139].
transcendental [22, 280]. transfer [100]. Transformation [39, 146].
translates [103]. trees [671]. triangles [170, 346, 353]. triangular [193].
Triple [310, 386]. triples [111, 618]. truncated [141]. tuple [568]. tuples
[320, 360, 438, 488, 561, 595, 668, 690]. Type-I [342].
Typically [690].

u042d [484]. Ultraproduct [506]. unconditional [112, 489]. Undecidable
Unique [570]. uniqueness [13, 181]. unit [435, 470, 634]. unitary
universality [447, 661]. unnormalized [681]. Unramified [142, 511, 565].
upper [89, 172].

[12]. valued [141, 403, 581]. Values [20, 41, 101, 104, 117, 118, 128, 175, 187,
191, 195, 246, 248, 268, 281, 296, 299, 415, 417, 429, 430, 446, 456, 472, 526, 544,
546, 550, 551, 576, 579, 630, 635, 659, 669, 683, 684, 693, 698, 700].
Vandermonde [549]. Vanishing [72, 130, 175, 202, 403, 650]. variable [91].
Variation [522]. Variations [349, 411, 508, 641]. varieties
vector-valued [403]. vectors [71, 663]. Venkatesh [345]. verification
[345, 374]. version [64, 525]. versions [461]. vertical [637]. very [32]. via
[45, 51, 226, 409, 445, 584]. Vinogradov [150, 483]. volume [537].

[36, 55, 466, 494, 590, 695]. Weighted [174, 433, 672]. weights [399, 605]. Weil
[64, 213, 557, 583, 675]. Weil-étale [64]. Weil-restricted [557]. well [40].
well-rounded [40]. Weyl [51, 187, 220]. which [34, 216, 699]. Whittaker
[198, 529, 622].

XIII [596].

Yau [105, 651].

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[64] Thomas H. Geisser and Takashi Suzuki. A Weil-étale version of the Birch and Swinnerton-Dyer formula over function fields. *Journal of Number
REFERENCES

Li:2020:NBH

Garcia:2020:PRB

Gallegos-Ruiz:2020:DE

Anonymous:2020:PAb

Anonymous:2020:EBd

Diamantis:2020:ATC

REFERENCES

Mitra:2020:NDW

Giard:2020:MMN

Yamada:2020:APN

Kishore:2020:IC

Yamamoto:2020:IEN

Choi:2020:FCR

Xiong:2020:MPR

Saunders:2020:DEI

Gao:2020:MQH

Verzobio:2020:PDS

Perucca:2020:ARA

Eum:2020:CLC

Ito:2020:LTF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Argaez-Garcia:2020:PPS

Anonymous:2020:PO

Anonymous:2020:EBj

Baker:2020:ERS

Kerr:2020:LPR

Ji:2020:STM

Xiong:2020:SWF

REFERENCES

REFERENCES

[232] Simone Coccia and Dragos Ghica. A variant of Siegel’s theorem for Drinfeld modules. *Journal of Number Theory*, 216(??):142–156, November...
REFERENCES

Dai:2020:OTA

The:2020:EPH

Gotze:2020:DSN

Banerjee:2020:GCG

Villanueva-Gutierrez:2020:MLI

Sui:2020:ETC

REFERENCES

REFERENCES

[251] Driss Essouabri and Oswaldo Velásquez Castañón. Domain of meromorphy of a class of Bateman-like totient zeta functions. *Journal of Number
REFERENCES

REFERENCES

REFERENCES

Stephen D. Cohen, Hariom Sharma, and Rajendra Sharma. Primitive values of rational functions at primitive elements of a finite field.

REFERENCES

REFERENCES

Anonymous:2021:EBc

Hulse:2021:TCS

Young:2021:ASH

Pollak:2021:RIG

Hu:2021:SHD

Boylan:2021:OCS

Dabrowski:2021:SDC

REFERENCES

[328] David Ginzburg and David Soudry. Two identities relating Eisenstein series on classical groups. *Journal of Number Theory*, 221(??):1–108,

REFERENCES

Nien:2021:CTG

Bui:2021:TCO

vanFrankenhuijsen:2021:TRA

Waxman:2021:LOT

Marcil:2021:NVC

Andrica:2021:PRT

REFERENCES

REFERENCES

[360] Guohua Chen and Xiaoguang He. Lower bound for higher moments of the mixed product of twisted L-functions. *Journal of Number Theory,*

Kundu:2021:AKF

Hwang:2021:ASP

Fuchs:2021:FFV

Bouganis:2021:SFA

Prevost:2021:DCR

Pongsriiam:2021:LAP

REFERENCES

Languasco:2021:NVL

Jedrzejak:2021:RFH

Wang:2021:TCH

Nguyen:2021:KND

Kerr:2021:PPC

Choi:2021:NZC

REFERENCES

REFERENCES

Eum:2021:RNS

Mastrostefano:2021:MPS

Hajdu:2021:SCC

Su:2021:EPH

Kim:2021:DOR

Assaf:2021:EIN

REFERENCES

[413] Preda Mihăilescu. Improved lower bounds for possible solutions in the Second Case of the Fermat Last Theorem and in the Catalan Equation.
REFERENCES

REFERENCES

REFERENCES

[Adedji:2021:DP] Kouëssi Norbert Adédji, Bo He, Ákos Pintér, and Alain Togbê. On the Diophantine pair \{a, 3a\}. Journal of Number Theory, 227(??):330–351,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hatton:2021:KDM

Reis:2021:ACP

Bringmann:2021:ADR

Cohen:2021:PCH

Singh:2021:CEQ

Anonymous:2022:EBa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lim:2022:RSG

Guo:2022:PRC

Shkredov:2022:SAG

Koyama:2022:FES

Simonic:2022:EEU

Kim:2022:CMG

REFERENCES

Anonymous:2022:EBc

Pal:2022:FDG

Gekeler:2022:DMFa

Gekeler:2022:DMFb

Hattori:2022:CDM

Choi:2022:BSW
REFERENCES

REFERENCES

REFERENCES

100

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Isham:2022:LBN

Sac:

Thackery:

Bayless:

Kundu:

Andersen:

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Languasco:2022:UEE

Hilberdink:2022:HOP

Vukusic:2022:CTM

Zhou:2022:SFV

Lee:2022:AES

Ma:2022:GBD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[682] Aaron Pollack and Gordan Savin. Modular forms on indefinite orthogonal groups of rank three. *Journal of Number Theory*, 238(??):611–675,
REFERENCES

REFERENCES

[701] Preda Mihailescu and Michael T. Rassias. Double exponential lower bounds for possible solutions in the Second Case of the Fermat Last