A Bibliography of Publications in *Journal of Parallel and Distributed Computing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

10 August 2018
Version 1.99

Title word cross-reference

(a, b) [DJM94]. (f, g) [CDD+15]. (k, 2) [EMMM94]. (κ − κ) [KT91]. 0
[dADC18, EE05, PMV05, PM96, SM89b]. 1
[dADC18, EE05, HV09, JM14, PMV05, PM96, SM89b]. 2 [Ano93e, BDKM94, BAES92, CHCG18, CS92, CS93b, HSSM07, HHC98, KRKS11, KLC05, LXLS12, LME95, MD01, SS94b, TSFZ14, Tur12, WC91, WS95, Wu02, YA11].
2.5 [MPG17b]. 2 log _N_ − 1 [CC14]. 2 × 2 [PD92]. 3
[AA14, AA16, BDRB14, BAL05, BC94, CW00, CCCM96, GOH+13, GW99, Joh89, LLFJ18, NM17, OGRV+12, PYP+10, PEC95, WC91, Wan07, WS95, YA11, YB01, ZLS17, Zsa16]. 4 [KMC16, MD01]. 45 [HRF+11]. 4 × 4 [Jia99].
5 [CCCM96]. *1 [HCZ04]. *2 [HCZ04]. + [OC07]. − [HCZ04]. 2 [ASST05]. 3
[ASST05]. B [YL89]. C^3 [HK96]. C^3 [PAJ97]. d
[DFN+94, DTK11b, LSC00, VB94]. øW [MRRT07]. G [BFKW13, BNP98],
GF(2") [SKH15]. h [G98, KL10]. hp [PPTV+10], K
[ACU08, BE95, DWG03, DBCF13, HHC98, SHL95, WL11, Amm16, BVB02, CDDL10, DW06, DH91a, GP00, KK98a, PD05, PK04a, PRHB06, PK07,
[135x646]RP98, RDA18, SSKS11, San99, SAOKM03, SGR03, SLP+98, SZ00b, SDG17, TT98, WCH+17, WS97b, YTH07, YD98, ZHT16. \( k(n - k) \) [Lin03]. \( K_{1,3} \) [LLFJ18]. \( \kappa \) [XL5]. \( L \) [ZBW+17]. \( LTQ_n \) [XHZZ16]. \( LU \) [FHL+15]. \( M \) [YLB90, ABBD14, WTBl+08]. \( N \) [AY99, IHE05, NT86, SHT+95, AKP99, BBD02, GL09, LLFJ18, NS94, PK04a, RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. \( v^2 G \) [CL85]. \( m \) [PK07]. \( n \times n \) [COS+95, NS94]. \( O(1) \) [Can18, GP94, Wan07]. \( O(\log 2N) \) [BNF92]. \( O(\log_2(\min(m,n))) \) [XL11]. \( O(\log_n n) \) [JBL02]. \( O(\log m, \log N) \) [CC14]. \( O(\log\log N) \) [DP98]. \( O(\log N) \) [GS99]. \( O(n) \) [DLV11]. \( \Omega \) [MRRT07]. \( P \) [BM97, PMV05, YBX+13]. \( P^3 E \) [HSJ97]. \( P^4 \) [ANP07]. \( \phi \) [AK07]. \( \pm 2^b \) [Nas94]. \( q \) [DP00, Lat98]. \( QR \) [BDG+15, FHL+15, ZLPRP].


/}compute [KAS07]. /man}y [KSG13].

0/1 [LSS88].

1 [HV95, MF94]. 1-type [GA18]. 1-Writer [HV95]. 10 [LB12]. 10-Gigabit [HCF05]. 113 [KN18]. 16S [ZFWF06]. 1D [PA04].

3 [BFG94, KMC16, MKY+97]. 3-D [BFG94, MKY+97]. 3D [AB03a, CGW+03, GS03a, MJ03, NPI+96].

4 [BAM93]. 42 [Ano97c]. 46 [Ano97g].

5 [LAD+96, PTC+93]. 53 [Ano00d]. 5G [DAPR18].

60 [Ano00b, Ano00c]. 66 [Ano93e, CS93b].

71 [LSS+11a].

80 [Ano97k]. 802.11 [BCD00, ZBR11]. 802.11e [FA07]. 802.11n [GZY14a]. 802.11s [VHH08]. 860 [DHR96].

90 [HLJ98]. 90D [BCF+94]. 90D/HPF [BCF+94].

Ad

Adaptable

Adaptation

Adapting

Adaptive

Addendum

Additional

Addressable

Addresses

Addressing

Affine

Affinity

Agent-based

agents

Advancement

Advances

Advantage

advantages

Adversarial

adversary

advertisement

advertisement-based

advice

Advisor

AES

Affecting

Affine

Affinity

after

against

Agate

Agent

agent-based

agents
aggregate [AMT13, Yan09]. aggregated [WE13]. aggregates [Chi95, Chi95]. aggregation [BCO+12, CDR09a, CDR09b, JBA15, JBS14, JHPL13, SSKS11, XHZ+10, ZSCX18, Zsa16]. Aging [BM17a, LC14a].

Aging-aware [BM17a]. agreement [AP16, GCS06, HC11, LLW12, REK10a, REK10b]. Ahead [PL93, mH14, SLH+13, TG04, TLL+18]. AWMW [BMT12]. AI [Ull84]. Aid [DBKF90, CVK+18b]. aided [SV18, ZMC06]. air [FL86, YBM13]. Airshed [SF80]. Algebra [CDH84, DVW94, KL01a, WM92, Eme13, FHL+15, ICQO+12, Jia87, LKD14, RG87]. Algebraic [PL06, Pat01, BAH04, BM08, CM03]. Algorithm [AAP01, AE95, AM97b, AMS94, Ano96a, Ano96b, Ano98e, Ano96l, AS95, ABC+09a, ABZ95, Bai94, BCC95, BGR96, BS97, BPST96, BOW94, BE95, BDDL09, Bou02, BX93, BHR95, CLZ02, CGKK97, CCM01, CB99, CWS08, CS03b, CP02, CTT99, CF08, CRFS94, DA97, DM90a, DMB97, DS01, DS84, DH94, DSAUM99, DLP99, DT97, FY96, FT94, GGN93, Ger98, GRR93, GP00, GH99, Haw97, HH01, HBJ98, H094, HM99, Hwa97, IZ95, JP95, Jia99, JK00, KRS02, Kar02, KSA95, KK99b, Kau94, KF95b, KS97b, KW02, KA97, KC99b, LP96a, LO94, LHVW95, LP97, LWP02, MT97a, Mi99, MV94, MSTA99, NTA96, NM02, PR99, PE93, Par96, PL94, PB95, PM96, PRS97, PM92, RR95a, Ren11, RP95, SAOKMA02, SZ00b, SCC92, SR94, Slu95, SM00, TU92, TZO0, WSR97]. Algorithm-Based [GRR93, mYyF92, BDDL09, LP88]. Algorithm-system [CSW08]. Algorithmic [Gao89, SCB08, BBH+17, CG11, JF12, LS05]. Algorithms [ANT02, AaJS01, AKP95, ABM+09, BJ96, BJ99, Bah00, BPJG92, BLPV95,
BGJDL02, BAES92, BAGS95, BBM+02, Ben15, BSDE96, BOP06, BPR99, BSS99, BMRC98, BMRC99, Bro96, BA01b, CTD99, CDY97, Cha94, CGO+96, CDH84, COS+95, CN93, CP91, CHR94, CWPF98, CA95b, DS95b, DP98, DHB02, DP99, DM92, DMSH90, DFRCU99, DBKF90, DKMV01, EP90, ESMG96, EMMM94, EL97, FTM+14, Fer95, FR96b, FA95, FV97, FTC00, GG94, GP94, GV94, GM96, GHSJ96, GMM00, HHM94, HQPT99, HCWS94, HR92a, HP97b, HO94, IK93, IK94, Iq92, IM00, JW94, JS94, KRC00, KAM94, KLZ97, KG94, KA99, LSH96, LHHB01, LLCC02, MB96a, MMRS98, MS94, MMVR97, Man97, MT96, Mat93, MHC95, MK92, MS98, MS99b, Nak95, Nas94, PAH+98, PAJC97, Pov99, Pra93, QZ94.

**Algorithms**

[QOvdG01, RS96a, RR95b, Raj01, RSS96, Ram92, RDS02, RSW90, SH90, SS96, San95, San99, San02, SZB92, SY01, Sto90, SYG92, Ten90, TVS97, TC96, TEF+15, ÜD96, VB94, VR95, WNA+94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YMR93, dBL95, AL04, ANEA13, ASC+18, Ara13, ACCP12, AAC10, AF17, ARVZ14, ACFK07, BC06, BKC+15, BBBC12, BMT12, BS87, BAS06, BOS+91, BKCM17, BFG04, BRR06, BPP05, BM08, CM04, CP10a, CF88, CRH11, CNS03, Che86, Che91, CRSB13, CRD17, CB06, Cuz11, Cuz13, DS04a, DH91a, DJ16, Dja04, Dja06, DCA+15, DUK15, DJT03, DM94, FHL+15, Fen90, FBRW03, FGG08, FJSW90, FM85, FVCL05, GMMP12, GP07, GZY14a, GM14a, Gos90, GK10, GHS06.

**align**

[BR95c, BR91b, BMARW07, LC91a, PTZ06, SK09, SPRG+12, SRT+18]. alignments

[BR901, CGO+96, DRR96, Mil99, MJ01, SS94a, BBM08, BFK12, BR91b, BMARW07, LC91a, PTZ06, SK09, SPRG+12, SRT+18]. alignments

**All-Output-Port**

[MR95c, Dim04]. all-pairs [KS91, DCA+15].

**All-Port**

[BJMc95, Dim04]. all-reduce [PY09c]. All-to-All

[HP95, LHS97, LWP02, Ede91, LR03b, PW16, ZTFK16]. Alleviating

[Tze91]. alliances [CDD+15]. Allocating

[BPRG04, Hag97, SEP96, SCS+08]. Allocation

[AM97b, AERBL92, CS00, yCM98, DSSST95, DY99, DL99, DL01, Hwa97, KKGS01, KLS90, Moli96, NSS97, OMS84, PT01, SM94, SdS97, SP96, YL98, Zhn92, ALH+09, AKSM08, AAA+10, ADD17, ATZ07, ACCP12, AH06, BMB+08, BG86, Bat05, BSMH08, BSS+13, BPW05, CCA18, CDS10, CPLY18, DW12, DM09c, ERS90, GNT04, GRDB05, HWY+10, HB11, JL11,
KR10a, KR10b, KHW13, KS18, LHF91, LC91b, Li05, LL10, LL12a, LL12b, LDP+14, MCC04, MLK+16, NVK+11, PKN10, PM05, PBS08, RLH03, SSM+16, SNCP12, SCW+18, SCMS12, SHL+13, SSM+06, SSVC10, SZB16, SSM+07, TFSM15, ZG13, ZI08]. **Allocations** [BE95, CT96, SSM08].

Almost [JBP00, SS95, EB13].

almost-optimal [EB13].

Alphabetic [LP96a].

alternate [LS03].

Alternating [BC94, HWY+10].

Alternative [GW99, Pad93, CBW08, GB06, RS08].

Alternatives [BAHP01, NBSD99].

Alternatives [GW99, Pad93, Ano92a, BCV94, BCF97, BN94, Bhu87, BDF01, BLG01, Buc92, CK88, CC91, CSMML10, CAB94, DLLX97, ES06, Fra92, GM94a, GSG+93, GCM95, GC01, HLM+90, HC97, HF96, IM94, JV09, KME92, Kop97, LW89, LDS16, MF94, MT93b, MM93, MS99a, MRR+02, MT96, MDD97, MBW86, NBM93, NGR98, OD95b, OS93, PD92, Piu01, PAJC97, RM90, RKS93, RKS87, SM89a, SLP+98, SWP90, SWBH17, SHC93, ST08a, VSM96, WCF14, XL92, ABC+88, AK14, BCFF05, BB17, BFL13, BC11, BM08, BF13, CK06, CSL15, CTK11, CH06b, CWL+07, CPO+03, FCR90, FCS91, FD86, FX06, GZG+17, GBA08, HCC+17, HRC09, HSH10, HA91, HB11, IKS87, IC05, JF12, JT88, JB91, KME89, KA08, KK10, KKK+11b, KG04, KLL87, LMSK18, LdSB+18, Li06a, Li06b, LpJS+18, LZC11, LH05].

analysis [LP88, MM06, McD89, MAKWZ13, MBO11, MEMEH17, NSK17, Pak89, PL06, PHB06, PI90, Pfe90, PL03b, PLK+18, RM90, RGU08, SMW18, TLY12, TMM06, VLF18, WSH+03, WF89, Wu11, XL+18, Yan09, YH07, ZFS07, ZKZF18, ZPK+14, DFL17].

Analytic [BS96b, BS96c, Har91].

Analytical [DG94, HW03, QY94, SAOKM03, AHZ11, AP91c, Bat05, BFH09, KyLPC17].

Analytics [AS13, AS15, CJ17, Eck18, KKKG14, PS14, PAG+18, YLB+15].

Analyzing [CRA09, CMT92, HfF05, KG94, LMCF90, LB12, MSH90, MBH+08, RB12, WXZ05].

Anatomy [ZBF05].

Anchored [KS03].

anchors [MKM16].

AND-parallelism [DcG88].

AND/OR [RP95].

Android [TY17].

Animate [MLB+92].

Animation [RGS00, JdSJ+15].

Anisotropic [PSE+01, E107].

ANMR [BM17a].

Annealing [Bev02, BA92, HB97, RSS96, Soh96, XH91, AH06, BG89, dADC18].

Annotated [KBC+01].

Announcement [Ano93a, Ano96k, Ano01c, Ano01d, Ano01e, Ano01a, Ano01b, Ano02a, Ano02b, GHS96, Kai92, Ano00a].

anonymous [AFM09, FKK+04, KS13, MSJ05, XLG+06].

answer [BYG+18, OeY07].

Ant [COV13, CGN+13, CLA+18, DDGK13, RL02, CCK11, Ski16].

antenna [CCHC09].

Anticipative [WLD02].

Any [RCY97].

Apache [KKH17].

APHID [BS00].

API [HLS12].

Appea
applicability [Can18]. Application
[AS97, AYIE98, BB03, BSS97, CKK00, CCC92, ES96, HMV07, Kop97,
 OGRV$^+$12, PH00, PP92, Ser97, SM92b, SK93, WLST16, dKG$^+$10, AHA$^+$16,
 AA$^+$15, BM16, BCM06, BMT12, CP05, CD95, CKMP17, DBC03, DKRI09,
 DWYB10, FGM$^+$03, FCP$^+$15, GP91, HSS17, KME09, Kub17, LIW16a, Li17,
 LS06, MLZY17, MCM$^+$11, OS05, PVP18, PL06, PGS06, PS14, PVRS17,
 SL90, SFT04, SS94b, VD04, WW18b, WJ14, YO11, dGP06].
Application-aware [HMV07]. Application-based [BB03].
application-level [VD04]. application-sensitive [CP05].
Application-Specific [PP92, SK93, SS94b]. Applications
[ABDS02, Ano96i, AFT$^+$00, BOSW94, BMRC98, CCRS92, CA95a, CDF01,
 DRC90, DS84, EH01a, FR98, FKB98, GCB$^+$00, GT02, HS94b, KR97, LLS93,
 MHC95, MB92, MBK$^+$92, NB93, NSPPC02, OS96a, PGRP17, PJ18, RS92c,
 SS0B02, SFC17, TFV$^+$15, UZS96, VH93, WMG01, Wei02, ALM$^+$16,
 AKSM08, ARM$^+$05, AC16, AGM06, BBC04, BCD$^+$15, BAS06, BHL14,
 BM04b, CCA18, CCC$^+$04, CGL$^+$14, CM14, CC08, CSML10, CP05,
 CBM$^+$08, CP10b, CCM$^+$06, CDAN14, Dim91, ED$^+$05, ESA03, FCML13,
 FPF14, FRM15, GQZ18, GLC14, GYAB11, GYBB13, GTN$^+$06, GST09,
 GJA08, GRR13, HC09, HSLL04, HA91, HL07, KJD03, KHK03, KAS07,
 KBC$^+$10, Kri01, LWCC15, LFGM17, MMAL$^+$06, MLK12, NLB$^+$18, NMS$^+$18,
 NVK$^+$11, NC13, OTK12, Oza04, PMM17, PH18, PAL11, PA15,
 PCLP16, PLL$^+$03, PF04, RCG18, RJL11, SV08, SM89a, SCS$^+$08, SWW$^+$17].
applications [SR16, SSGZ13, TP18, TPLY18, TDM05, TOR$^+$14, UKX$^+$13, Uli84, VB08,
 VM03, WIR$^+$18, YH07, ZVL11, ZZJ$^+$18, ZSW14, ZXR18, dSS11, FTM$^+$14].
Applied [CB96, BDDL09, EE05, HSLL04, PR06]. apply [NZ17]. Applying
[PEC95, CCK11]. Approach
[AAL95, AM93, Bev02, BR02, BST01, CCM92, CY95, CLZ00, DM95, Fer92,
 FK96, FKKC97, G194, G297, HC97, HLJ98, KCRB99, KSB94, LS95,
 LW95, LLCL98, MSSE02, RJY96, RAS96, SL95, SP96, SZ00a, TC92,
 WSRM97, WA02, Won99, WLD02, AP91c, Ara90, AFD$^+$11, AH06, AJG18,
 AS18, BM11, BAS06, BW09, BCK$^+$13, CTS17, CvdBL$^+$08, CHX$^+$17,
 CZZ$^+$17, CMP18, DBC03, DKKV15, dADC18, DQR$^+$09, FZC$^+$05, FGZ03,
 GZ08, GDL$^+$11, GWL194, GBA08, GXYZ13, ICQO$^+$12, JLM08, Job89,
 KYS13, KSC17, KZ11, KCFP18, KMS$^+$06, LXW$^+$11, LH04, LC07, MHLZ16,
 MS05, MCF09, MLCF$^+$18, MGRRK14, NTN12, NHO$^+$13, OPR18, Ozt18,
 RK18, SW18, SU87, SCS$^+$08, SDG17, SK11, TM06, TBZB05, TP18, TXXL14,
 TY17, TM10, VLW18, VB08, WYY$^+$18, WZQ$^+$13, WLZ$^+$18, XR12,
 XLH18, YF09, YAA10, YDTZ18, YYG15, ZHH15, ZS13, ZFL89]. approach
[ZTGL17]. Approaches [CHGM01, FMIF18, QM01, CB11, DBA$^+$18,
Approximate [JSS92, LHW14, LRS18, ST12, CLOL17, JHL+18, KERUM04, MM07b]. Approximating [FMM+08, PBS08]. Approximation [FV97, GM14a, HP97b, JST12, DVL15, FZWL12, LVP08, LW06a, MK08b, PSRS12]. Approximations [Gou98, BFM06]. AQOR [XG03]. Araneola [MK08a]. arbit [Blu87], arbitrarily [ZV06]. Arbitrary [ERL90, KA97, SS95, ZY96]. Arbitrarily [ZV06]. Arbitrary [ERL90, KA97, SS95, Ara90, BCF14, SGE91, Wag89, FII04]. arbitration [ASD09, HRG+11, KS03]. Arc [CA95b, Ros89]. Architectural [CCC+04]. Architectural [DZDZ01, GSP02, HPT+97, KC99a, MT96, MG03, TGUPC16, WSS93, FZC+05, JBY+05, NTK17]. Architecture [AGW01, ABZ95, BBD+91, BAHP01, DH95, DB18, Gao93, Ger98, GBES93, GM95, HP97a, HGCC96, IWM07, KC94, LBL95, MWL00, MS00, MAM05, MKY+97, MO97, MT85, MEMEMH17, NE85, OD95b, OY00, Pad93, PGSIS17, PS01, STN92, SY97, SH98, VS99, YPCW16, ZY94, Zim96, ACY08, AA10, AA16, AC89, ABO+17, BJS18, BB87, BGA12, BBCQ13, CCQ+06, CLMRL15, CTCCX08, CCEB03, CDJ+89, CS17, FSB18, FCS91, GRZ+18, GHS86, JS86, JXW06, KK17, KNHH18, KH12, KRL87, KH89, LLLY13, LA+96, LHH11, LLY15, LSL06, MC+11, MM07b, MYD+11, MBH+08, MP08, NW88, NVK14, PPD+14, PCMM+17, PK05b, PYP+10, PGP+12, PTK+13, SDDT04, SR88a, SAB+92, SLKK12, SR91, WTWZ16, WL92, XJS03, YFBY17, ZV09a, ZMISIS17, ZPK+14, KCS18, VRG17]. architecture-based [CTCCX08]. Architectures [AGW98, ABDS02, BBR94, CCM92, CCC90, CT93, CS93c, CP01, CBICD00, DUSH94, DMSH90, DS02, DT01, DRSB01, DT92, EP90, EL97, FTM+14, FPS12, FY97, GGB93, KS95, KM97, KG94, LB90, LC90b, LR93, LR94, MSd95, PP96, PA94, PD92, SH90, SS94a, TG99, ZMPE00, ZL93, AA14, AP03, ABC+09a, AKB+09b, AG12, BKC+15, BS87, BYG+18, CCK88, Che86, CGC16, ClKLC04, ClKLC05, CIJ17, CPO+03, DKRC+15, DKU15, FPS11, GSWW04, GSK10a, GMS+13, GMSS+11, HDMC11, HSW04, JJ12, Joh87, Joh11, KHT+14, KF90a, LM05, LS88, Lla17, LV07, MSGS+13, MP10, Pad91, PR06, PL87, RCGB19, SLG06, SS94b, SdS13, TKHG04, TRS+12, VM03, WQZ+13, WJD91, vS91, TFV+15]. Archive [FTK14, JKIE13]. Area [BCD00, CLR90, CDR12, KF95a, NIR86, WE98, ABO+17, CHCG18, HZY04, HL07, JKV15, KDC08, KMF+05, LdSB+18, LMJC11]. Area-maximizing [CDR12]. Area-Time [NIR86, CLR90]. Ariadne [MM15]. Arithmetic [AK93, CL88, DAV17, DPRW85, Gro85, Irw88, KK88, KM88, SR88a, Sch87, SI90, SL09, Tay87]. Arithmetic/Logical [AK93]. ARM [AG12]. Arnold [An00]. arrangement [Lin03, NAK04, Ten16]. Array [AW95, BCF97, BL90, CT93, CWW+95, ER97, GKH96, GE94, HQPT99, HCS+00, HC204, HLJ98, HLJ01, KRW96, KS96, KC98, KR87, LP96b, LTH97, MLI99, MJ01, MBK+92, MT97b, NVK14, OM90, RSB96, Ste95, SOG94, Tse09, WSS93, Win85, dR09, BB85b, BPP05, CS10, DS04a, GP05, Lee91, Man13, MM07b, NAK04, PL87, SI86, ST87, SSC+06, YTH07]. array-based [CS10]. Arrays
[Ann94, BAGS95, BPST96, BP02, BR95c, CGO+96, Cor93, GP93, GW99, Guo94, IPK85, KLS90, KEA95, KL84, KBG92, MM00, MD01, MT93b, MRK93, MFS93, MFS96, RFBM94, RCB93, Swa98, TBPV00, TC96, WCF94, WHT00, BBd90, Can18, CL03b, DMCFCM03, Deh90, Dja04, Dja06, EL91, GMH+91, JWSG14, KT89, KT91, KL87, LB89, Lis90, OT86, RIZ90, SSM89, Sch98b, ST98, SKK91, Ume85, WAS88, WCF14, XS11]. Art
[KM92, PSC+16, WCO+09]. article [Ano96l, Ano97k, Ano00d, CS93b].
artifacts [LZ08]. Artificial
[MT85, NS92, Piu01, TVO92, KH89, VO89, VM95]. arts [NDW17, BNSP99].
ary [BVB02, DP00, Lat98, LLFJ18, PK04a, RP98, SAOKM03, SHL95, TT98, WS97b, XL95, YTH07, YD98]. AS008S [Ano04c].
ASSAT [SEP96]. ASCEND [Nas94]. Aspect [BZLI04, MO97]. Aspect-oriented [BZLI04].
aspects [Gao89]. Aspen [UMM+18]. Aspen-based [UMM+18].
Assembling [KESA07], assembly [ABCM07]. Asserting [ASST05].
Assessing [BCD+15]. assessment [CG17, FGL+11, LC14a, LY08]. Assign [CYZ06]. assigned [HMR15]. Assigning [CCK11]. Assignment [Cza13, HBCM99, HB97, KLZ97, SSZ10, SS93, Ste95, VWHL96, WW97, ABBD14, Bat05, BPRS94, CS10, GQZ18, GDL+11, GZY14a, JTZZ11, Kim11, LXLX11, NDP13, PLY15, QGL+09, SLKK13, UAK106, WW18b, WZ91, YZX11]. Assignments [LL98, Sin87]. Assisted [HlLY95, GM13, HM+18, KO12, LVP07, MBB13, NS12, RG06, SRT+18]. Associate [Ano16k]. Associations [GPJA10]. Associative
[AA93, DM92, NSM98, Par96, PL98, TJCB10, VR94, HDCM11, Kri91, LL90, SR88a, SI89, YBM13]. assumption [Pen11]. assumptions [MS15]. Assurance [BK08, WLL08, XHY07]. Asymmetric
[BN94, ZR00, KNHH18, SP+17]. asymmetry [AP91b]. Asymptotic
[GM94a]. Asymptotically [Li10, Dja04]. Async [ARP18]. Asynchronism
[U06]. Asynchronous
[Bah00, BSS99, BS00, CS95c, CA95b, ESMG96, KVN17, MS02, MM93, MR94a, MR94c, OY00, TP18, The02, WT92, ATDH13, BB03, CPA+11, CRC+02, DGF10, DBCF13, DB86, DPBNT12, FKK+04, GLB12, IRRS16, KAK15, KMS10, KS13, MM04, MEM17, RV13, RLH03, SMO+18]. Asynchronous/Synchronous [OY00]. asynchrone [WCYR08]. ATAPE [PW17]. ATEExpert [KVN17]. Atomic
[AV95, JBP00, WR95, van96, BOT13, GNS09, H09]. Atomicity
[NA02, RHIH12]. attack [BK18, JXW06, KCFP18]. Attacking [ZXY+15]. attacks
[CH06b, KMMZ06, LLWC17, SCC+06, UGG+11, XYG07, XCH08, YXX13]. attention [PLSM18]. attribute [LSS+11a, LSS+11b]. attributed
[BCH15]. Augmented [MKY97, KM17, Lo92]. Auralization [FJ93]. Aurora [Lu01]. Authentic [GPJA10, SJK13]. Authentication

Balanced 

Balancing [Ano97j, BEE00, DHB02, DLLX97, DSW94, Efe96, FMP98, FLS+97, FM99b, Gil94, GM96, HLLY95, HTL99, HO94, HC97, JR92, KG94, LKV94, LHV95, MP96, NSL99, O94, Q94, SH92a, SHT+95, SB97, TSHH01, Wan96, WS97b, XH93, X95, ZLP97, ZM94b, AES11, AGMS04, BCV05, BFH09, BFR06, BO98, CS93, CB94, CRC+02, Cyb89, DB11, DLW+12, DM94, EE05, Ga90, GC14, GC05, GJ90a, HLM+90, IC05, JL+11, JW89, KKS08, KMG99, G91, vS91].

Balls [BBFN12, BBFN14]. Bandwidth [BM97, Ch95, KK17, PY09a, PY09c, BHK17, CCHC09, DK04, HWY+10, HB97, HK17, H11, LAZC00, LZ02, MSC96, MB93, MG98, NTA96, NB93, NM02, OM84, Pad93, FN97b, PA97, PL95, PM96, PAJC97, R16, R94, RM97, SR98, SSMG18]. bandwidth-efficient [BHK17].


Banker [MMS90]. Banyan [PL06, Kop97, WN94, ZN00, YL89].

Banyan-Hypercube [YN92]. Bargaining [GRDB05].

Barnes [SHT+95]. Barriers [Cha95, JLA97, OD95, SBS99, XMN92].

Bases [BS12].
based [LLDL15, LPLFMC +12, Lop18, LACJ18, LVBO7, LS06, LP88, LLFJ18, MCC04, MCFdS06, MAGL13, MM15, MP10, MMS09, MAKWZ13, Mit07, MM07c, MB11, MH18, MSAZ10a, MSAZ10b, MBH08, MRRT07, MZZC12, MCZ14, NSKN17, NJ91, NCA+12, NTN12, NC09, NHO+13, NC13, Nic07, NAK04, No12, OM10, OJP+18, Ozt11, PRF09, PARB14, PLSM18, PDP17, PK05b, PMAL11, PVPM06, PF04, RLP14, RT18, Rao16, RA11, RTZ11, RDA18, RSCQ17, SSM+16, SMPMLVLS11, SSSH17, SCG10, SS06, SP08, SPH13, SX08, She09, SLW10, ST12, Ski16, ST85, Suk18, SK11, TR89, TGB+17, TFMS15, TW15, TKKH17, TC13, TJCB10, TWQS12, TT07, UMM+18, UM17, VD04, VETT18, VMIB10, VB08, VS18, WCC02, WGC09, WW12, WCL+13, WRW13, WYW13, WW17b, WMC+18, WWY+18, WXZ+18, WIR+18, WMG13, WD18, WD13]. based [WLWW09, WCCH18, WWA+18, XHY07, XCLR07, XLHT13, XO05, YWJ+18, YL12, YHWY18, YYW+18, YAA10, ZG13, ZCK+02, ZV09a, ZAAB17, ZFT+18, ZW13, ZPK+14, ZLL14, ZV12, ZGG+14, ZXGD18, dSAJ15, dGP06, SM92a, WAS95, ZNQ93, HRF11, HC91, KKS08, PLD87, TOR+14, ZBR11]. bases [GPT06a, SK90].


Beamforming [BL90]. Before [HCR12]. Behavior [Abr96, BDF92, BN02, BST01, CMT93, FJ93, LZ08, ACD+18, BS92, CL14, JZK04, dAMFds13, RA11]. Behavior-Based [BN02]. behaviour [CMMN10]. belief [HMY+18]. Benchmark [PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].


Bidimensional [BP02]. Bids [BA01a]. BiELL [ZGG+14]. Big [AS13, AS15, AKP18, LWWQ18, SFC17, ACPT15, Eck18, FRM15, KKKG14, NXTK17, RBA+18, SMW18, WW17b, YBX+13, ACB+15]. Bimodal [KC95, UM17]. Binary [AS94, CS95a, DS93, Efe96, HIKM94, HM199, HM01, HR92a, Iqb92, JH94, LP96a, Li92, OOW95, SYO94, Wag93, ASC+18,
BL89, Can18, CJDC10, DH91a, LFZ$^+$17, Wag89, WD18, HRJ94. Binding [LBL95]. Binomial [DP00, WFL98]. bins [BBFN12, BBFN14]. Bio [Hua17]. Bio-Grid [Hua17]. bioinformatics [TZ06]. bioinspired [MPZ09, MCT06, dVCP06]. BioGrid [Hua17]. bioinformatics [TZ06]. bioinspired [MPZ09, MCT06, dVCP06]. Biological [AFM03, BBM08, BA06, BW09, BMARW07, SK09, SMB10]. biology [AB03b, TZ06]. biometric [CNLGRL18]. Bipartite [DS84, LPS$^+$98, DKU15, SM89b]. bipartitioning [ERS90, PB15]. bis [Fen90]. bis-sequential [Fen90]. Bisection [DS84, LPS$^+$98, DKU15, SM89b]. bisecting [ERS90, PB15]. Bit [HPT$^+$97, MO97, MT97b, SI91, Ede91, GPX08, KM88, KIH15]. bit-parallel [KIH15]. bit-pipelined [KM88]. Bit-Rate [MO97]. Bit-Serial [MT97b, SI91, CL90]. Bitonic [BM14, FC91, TW15]. Bits [HPT$^+$97, MO97, MT97b, SI91, CL90]. BitTorrent [ARD14, CTC11, LXZ13]. BitTorrent-like [CTC11]. bivalued [Zep91]. Black [PSC$^+$16, BE13, SGAC14]. Blackboard [CC91]. BlackOut [ZCF$^+$17]. BLAS [HWW96]. BLITZEN [BDHF90]. BlobCR [NC13]. BlobSeer [NAB$^+$11]. Block [ADV14, CT96, FBK98, GHSJ96, PT97, WSA$^+$94, ATDH13, BW08, DAB$^+$14, FLCB10, GPX08, KR06, MRT18, PP13, Sch87, SPH13, SZW05, WZZ$^+$17, XLW$^+$18]. block-asynchronous [ATDH13]. Block-Based [WSA$^+$94, KR06]. block-level [FLCB10]. Block-Structured [FBK98, DAB$^+$14]. Blocking [BHK$^+$94, ASES15, CASD18, DBA$^+$18, ESGQ$^+$11, KR17, MPN17, QS05]. Blocks [CWW96, RJKL11]. Bloom [SMPMLVLS11]. Blue [FGM$^+$03]. BlueCube [CCS06]. Bluetooth [CCS06, SLWW05, WTS03]. BMB [WD18]. Board [Ano18s, Ano18t, Ano18u, Ano18q, Ano02e, Ano02f, Ano03c, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano03m, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano17a]. Board [Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18r]. Body [HP95, SHT$^+$95, CHCG18, HIM05, YJL16]. Boltzmann [KA89, WCO$^+$09, ZA91]. Bone [AFK14]. Boolean [ESCV15, HJ90c, JH92b]. boosting [AC16, FGP05]. Border [DRST02, HR90]. Border-based [DRST02]. both [WTY$^+$18, WAE03]. Bottleneck [WW98]. Bottom [LXZ13]. bottom-up [LXZ13]. bound-consistency [Kub17]. Boundaries [Wor93]. boundary
Characterization

[BF01, KS94, MR94b, RJA97, WP02, DWYB10, LJ86, SR90, WH08].

Characterizing

[HRF +11, MS96, ZSW14].

Chare

[SK91].

Chasing

[YZY96].

Check

[MC17, LXW +11].

checking

[BBBC12, CM04, CAK13, MMN +18, SSS07, SCC +06, XYZW14].

Checkpoint

[LACJ18, PT01, JLM08, MM04, NC13, PGS06, WCWO17].

Checkpoint-Restart

[LACJ18, NC13].

Checkpointing

[ARVZ14, PKD97, WF96, AAFV04, JLM08, LM09, MM06, MM07a, QS05],

checkpoints

[AD10].

Checksum

[Par92].

CHEMAS

[XYG07].

chemical

[CP10b, MMAL +06, XLHT13].

Cheng

[Ano93e].

chess

[WW18b].

chessboard

[E˙I07].

Chief

[Pra16].

Chinese

[XLW +18].

Chip

[ASH +01, BJS18, MT97b, BYG +18, DMS +16, GJ12, HCM11, HRG +11, KK11, KH12, KKK +11b, LNA12, LLKY13, LSXX14, LLT12, LY13, LHLMI4, LWC14, MYD +11, PMCC18, SAJ13, TCHC12, UM17, AA14, ALLM11, LK11, MEMEH17, ORWT +18, PR13, ZCF +17],

chip-multiprocessors

[LWC14].

Chips

[LK10, RGAN18].

Choice

[SB02, BL05].

Choices

[FR96a, BBFN12].

Cholesky

[GLW14, MVV91].

Choosing

[HBCM99].

Chordal

[Mar97, BCH15, WT09].

chordal planar

[PD05].

Cilk

[BJK +06].

cipher

[GPX08].

Circle

[KSB94].

circles

[Wri91].

Circuit

[CB99, CCR94, CS93c, GGN93, LK96, EB09, LC14a, LWC14, YTH07].

circuit-level

[LC14a].

Circuit-Partitioned

[CB99].

Circuit-Switched

[CCR94, CS93c, GGN93, LK96, LWC14].

Circuits

[KM97, BAH04, EB13, HBS17, LH04, LS05, LH09, MH18, OOSGVG +16, TT07].

Circular

[BP02, CDP95, JG88, RGU08].

circulation

[Nes10, PV07].

cities

[DFL07].

city

[DSK18].

clairvoyant

[Li06a].

CLAP

[KK17].

CLAP-NET

[KK17].

Class

[BNP98, BSB +01, CAB94, CN93, HR00, LYL13, MAS +09, Nas94, TL96, WN94, WL00, EB13, FY86, LLS07, Pk98, SP90, Ume85].

Classes

[Par98, FP17, LLL06].

Classification

[DSAUM99, BCM06, Bod89, COV13, CK13, DH04, PDP17, TPLY18].

classifier

[SDG17, UGG +11].

classifying

[Luc18].

clean

[CXX +18].

Client

[GM99, HC09, ST08a, TC04].

Client-Server

[GM99, HC09].

client-side

[TC04].

Clients

[ALL99, GZ14a, Yan09].

clinical

[KDO +13].

Clique

[FTL92, SSTP09, WCH +17].

cliques

[CKO04, SMT15].

Clock

[ASB97, PD92, PB95, PB09].

Clock-Regulated

[PD92].

Clocks

[DKMV01, YH97, AKD06, TPLY18].

Cloning

[DGD98, RMHR17].

Clos

[HJZH01].

Closed

[TR96].

Closure

[YMR93].

Closures

[AW95].

cloth

[GRR +05].

Cloud

[CDJ10, CDJ11, FEH +14, PR13, VS18, ASKO16, AZC13, AM12a, ACCP12, BYH +17, CL14, CCA18, CXY14, CTKA17,..]
DKRC + 15, FRM15, FCJG + 18, FMIF18, GQZ18, GYAB11, HRM17, HMY + 18, JAB12, KVA18, KS18, KSSK16, LWZZ12, LQM + 12, LGM18, MHLZ16, MYYY17, MXSL12, MMK + 11, PLSM18, PH18, RT18, SMW18, SWW + 17, TLW18, TKX + 13, VD18, WCCH18, gWW18, XLC + 18, XRB12, XSYG18, YYLC11, ZV14, ZLL14, ZHT16, NLB18]. Cloud-based [WCCH18]. Cloud-centric [VS18]. Cloud-oriented [GYAB11, HRM17, MXSL12].

Cloudlets [TPS + 18]. Clouds [ACPT15, ACB + 15, CKMP17, KM17, KKLJ14, LTWW12, LWWQ18, NC13, NKK16, PVP18, ZG13, ZYL15]. Cluster [AFT + 00, BAHPO1, GS01a, HS00, JM00, JKV15, LS01, MKC01, PT01, ARM + 05, BMARW07, CCA18, CDS10, FW05, FLCB10, GRR13, HW03, IEWK17, JGMY17, LA10, MLM + 10, L14, LZC11, LB17, LB18, MAR05, MSJ05, MBH + 08, NDP13, NKP + 11, OC07, PKW + 10, PSSR05, PVPM06, RL14, SAOKZ05a, SAOKZ05b, SBC + 12b, SHL + 13, SMH + 14, TC04, VM03, WLL16, ZBF05].

Cluster [AFT + 00, BAHP01, GS01a, HS00, JM00, JKV15, LS01, MKC01, PT01, ARM + 05, BMARW07, CCA18, CDS10, FW05, FLCB10, GRR13, HW03, IEWK17, JGMY17, LA10, MLM + 10, L14, LZC11, LB17, LB18, MAR05, MSJ05, MBH + 08, NDP13, NKP + 11, OC07, PKW + 10, PSSR05, PVPM06, RL14, SAOKZ05a, SAOKZ05b, SBC + 12b, SHL + 13, SMH + 14, TC04, VM03, WLL16, ZBF05].

Cluster-based [SAOKZ05a, SAOKZ05b]. Clustered [CP99, MF94, GZY14b, HRC09, Lop18, NS12, SFT + 13, Wan06]. Clustering [ASM09, GY92, HJ07, TZ07, TM10, WSH + 03, WHT00, ASKT13, AYB + 15, AS18, BM16, BM17b, BF13, CDDL10, CLC + 17, DBCF13, DMK10, GYP13, GWH06, KKH17, LA10, LLW07, MCC04, RIZ90, SAL10, SX08, TLW18, WMW09, YBX + 13, Y011, YWW12, ZMCP11].

Cluster-based [MCC04]. Clusters [AY97, BJ99, BP01, BDH + 97, Dek00, KMKD97, KR98, LC97, PN97a, PN97b, WB06, Wei02, ARP18, BCFF05, BS03, DCA + 15, FMR05, Fu10, GJA08, GYY + 14, HV13, JM14, KKH17, KLY05, KCR14, ME04, MMV11, PYF08, PY09c, QJ05, QS05, uRIL + 18, SS11, SM04, TC03, VBDR13, WQL14, WLNL06, WH17, WLWW09, YH07, YJKD10, ZB09, ZMCP11, ZI08, ZHLQ12].


Coarsening [DR98]. Code [Bec96, FK89, JH94, NS97, RNSB96, BCM87, Gao89, LS06, MNM + 18, SY04].

code-based [LS06]. Codes [BVB02, Lat98, AM13, CP10a, GRR + 05, HR90, LWR + 03]. coding [DFHH13, ZY12]. CODISC [MA11]. Coevolutionary [Ser97, ADDB18]. Cogenerator [KSP + 92]. cognitive [FCZ + 12, GDCC18, MKC + 09].

cogizant [LK13]. Cographts [LO94, LO91]. Coherence
Coherence-Miss [SDS99]. Coherent [PY96, SYYU07]. Coherency [TJ92].

Coherence [AKBD10]. Coin [AAC10]. Coincident [MPG17a].

Collision [LDZ+17, JBS14, SK05b]. Collision-free [JBS14].

Collision-tolerant [LDZ+17]. Colony [CG+13, RL02, SK16].

Coloring [LSH96, DJT03, GDP08, GKL+90]. Coloring-aware [ZBF05].

Communication [BPR99, BKT95, BCR96, CCRS92, CGL+95, CSH94].

Communication-aware [ZV09b]. Communication-Computation [QH96].

Communication-Efficient [HQPT99]. Communication-Free [HS93].

Communication-induction [LM9]. Communication-intensive [MLK+16].
[Xue97]. communication-optimal [MPG17b]. Communications
[AMN00, BD00, CQ95, DRR96, LLJ00a, SC91a, SHC93, TSC01, WA02,
YMG01, ZR00, EB09, GMH+91, LHP07, MBBD13, PGP+12, TP18, TKG+17].
Communicator [KF90b]. community [CTC+10, LpJS+18, Trä09, ZLL14].
community-based [ZLL14]. Compact
[CDF01, CJ99a, CJY04, CI03, NCTT09, NKV14]. Compact-Port [CDF01].
Compaction [BHR91, Kar95, WD94]. Comparative
[AAD02, GS00, QM01, HA91, PL03b]. Comparing [GGW96, YL98].
Comparison [BSB+01, DRSB01, Fre96, GY92, JNW96, KA08, KA99, OP98,
SSOB02, SAC+98, Tay92, AFM03, AG12, FGZ03, GHC+17, JKE13, MP10,
NSKN17, SMB10, SS94b, ZTFK16]. Comparisons [YBM13].
compass [AKBD10, XKMN94]. compass-free [AKBD10]. compatible [MP08].
compensation [Yun09]. Competition [eW95, TR89, WSCL11].
Competition-Based [eW95, TR89]. Competitive
[DLLX97, GS96, Ser97, SHC14, LHHH11, VM95]. Competitive-Update
[GS96]. competitiveness [K15]. Compilation
[BCR96, CA96, HHIK96, PA96, MH18, PAG+18, WQZ+13]. Compile
[Fah96, HA92, LPU97, PM96]. Compile-Time
[Fah96, HA92, LPU97, PM96]. compiled [KYL05]. Compiler
[ABDS02, BW95a, CGSV93, HKT94, KRC00, LY98, LY01, NS12, RJY96,
SD99, SD00, Tse90, VV90, WB94, DK04, RG06, Sab94]. Compiler-assisted [NS12]. Compiler-Controlled [SDS99].
Compiler-Directed [LY98, LY01, RJY96]. Compiler-Optimized
[ABDS02]. Compiling
[BS90, BCF+94, DRR96, GKH96, KHS96, SSCH00, SB93, DeG88, LC91a].
Complement [YAS98]. complementary [ZPK+14]. Complete
[BP02, Efe96, HMKU98, HM01, SP96, SCL95, TT98, Wag94, ZW00, LFZ+17,
MP209]. completely [SPC+17]. completion [KSG03]. Complex
[GPS96, HASB16, CM12, DF17, HHA14, JKD+15, RBP+11, SW12].
Complexity
[BH93, CMS92, Dja06, FAGW95, Fra92, GRV97, Gon98, JBL02, Tay02, AEF11,
BPW05, CH06a, DUW86, FWM+10, SSS88, Sol13, THSS87, WG08, XL11].
complexity-effective [FWM+10]. compliance [AM06]. Component
[AHG12, HHM94, SR94, CT94, Hdr13, KRKS11, VLW18].
Component-based [AHG12]. component-oriented [HdR13]. Components
[BJ96, Kar02, BBB+06, Hoh90, LWR+03, MHPR05].
Composed [SM92a]. Composing [BA96]. compositing [WGCZ09].
Composition [HLJ98, Tay02, CJ17, WMY+17]. compositions [FZ14].
Comprehensive [DG94, GM14b, uRIL+18, Upa13, ZAB18]. compressed
[WBTM09]. Compression
[SYO94, CW15, CD95, JKV15, KP17, NRM+09, SR91, AHG12]. Comput
[KN18b, LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Computation
[AM97a, AISS97, BCV94, BP95, BA01b, CA95a, GM94a, GM95, HR92b,
HR92a, JSS92, KF95a, KS00, LHM95, PB99, QH96, Sch90, Sin87, SA93,
TR96, Win85, CR96, CXY14, CL85, DB11, DHK04, DWHL87, JT88, KSG03, Lee90, LMB+17, LGM18, MCS14, NCTT09, PK07, RMU14, SS11, SD88a, SZ03, VGAB08, WL04, WT09, WCO+09, XLH18, YJL16, YJB91].

Computation-Intensive [CA95a].

Computational [APV18, DRC90, JBL02, KRW96, CR07, Num08, Num09, AAH17, AB03b, AGMJ06, CXY14, CL85, DB11, DHK04, DWHL87, JT88, KSG03, Lee90, LMB+17, LGM18, MCS14, NCTT09, PK07, RMU14, SS11, SD88a, SZ03, VGAB08, WL04, WT09, WCO+09, XLH18, YJL16, YJB91].

Computations [AGF94, AMN00, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93, CQ95, DUSH94, DN94, GR96, GK98, HH97, HJ01, HJ02, KL01a, KME92, KC99a, KS02, LPZ99, Man94, MP93, MNM98, NRS95, Nas94, Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03, BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03, RV13, SS94b, TG04, WJ14].

computations/applications [KHK03].

Computing [AW95, AL99, AM97b, ANT02, Ano97k, Ano01e, Bai94, Bir94, BD00, BSB01, BNSP99, BS09, BS11, CA94, CE95, CDJL09, CDJL11, CP99, Deh90, DAYA02, DBP94, DB18, Eme13, ELS94, ES97, FF97, FTM+14, FPP+08, GRK97, GSO1a, HC99, HH98, KASA95, KMDK97, Kri92, KRS13, KC99b, KSS+97, KK11, LFA96, ML01, ML01, MS99, MG93, MNK12, MBG+17, NA06, Nec17, OY00, PN97a, PN97b, Pat01, PT01, PRS97, PBB+17, SM94, SdS97, SLL18, SL95, SFC17, SS97, Szy95, TPS+18, TJC010, BG09b, VR94, WR97, WSRM97, Wei98, WF96, WLD02, wXH00, YZ96, ZO97, ALM+16, AAK+13, AC99, AZC13, AM12a, AMT13, ASC+18, Arb89, AM06, ACB+15, ABLP17, BC06, BW09, BFL+13, BDD09, Bot03, BH05, BSM08].

computing [BHS13, BLZ+18, BYH+17, BAK+03, CMMT13, CC06, CVK+18b, CWS08, CTKA17, CV09, CDR12, DK08, DD17, DF12, DÖ06, ELS8, EFG+14, ES12, FP14, FC04, FKR+17, FP17, Fu10, FX10, GQZ18, GMSS+11, GWWL94, GAC+17, GRZ+18, HES10, Han89, HZL18, mH14, IB04, JHL+18, JdSJC+15, KHW13, KDO+13, KSS+08, KV97, KV10, KCR14, KL05, KCPF18, KBD05, KDS18, KO04, KMS+06, LTL06, Las12, Las13, LCC+05, Lii05, LZY11, LS10, LY08, LML+10, LPX05b, LB18, LR05,
computing [TLLV10, TFMS15, TRSS06, TXLL14, UAKI06, VD04, WS06, 
WG11, gWW18, XQ04, XLHT13, YLL17, YWJ+18, YC04, YLZW18, 
YBM13, ZAB18, ZKZF18, ZLL14, ZV09b, ZB03, ZFWF06, ZHO03, Ano99g, 
AS13, Ano97j, BS09, CDJL92, Cuz11, FPS11, GMSS+11, Gra09, KRS13, 
KRS14, Lan09, Las12, MMVL11, TH11]. Concentrate [JL05]. 
Concentration [JL05]. Concept [DFLO17]. Concepts [TAS+01, MAGL13, NKSA17, ZZ90]. Concerning [IPK85]. Concurrency 
[Ahu90, ADD17, KCV99, LZCY09, MS96, NMS93, RM90, SRI14, UBES10]. 
Concurrent [AyJ93, ACHY18, CMMC2, CMN12, DLBL+12, FPD93, IM94, Joh94, MM04, 
RSD94, RS92d, WCF94, WW96, WG93, WT92, BE13, CTS17, Chi95, CMT92, 
DB08, FJSW90, GV86, KME89, PVP18, Par89, SW18, ST05, TK07, Chi95]. Condition [S936]. Conditional [CSS11, CW09, ERA95, LRS96]. 
Conditions [DJ98, HM96, MI92, Ste17]. Condor [HS97]. Condors [BZH06]. 
Confident [YDZ+18]. confidentiality [ZHT16]. configurable [ZMZJ17]. 
configuration [BL05, FVCL05, LB17, NP09, VAS+13, WZ13, WLST16]. 
Configurations [LK94]. configured [ZV06]. Conflict 
[BP02, CH92, DP00, DFP06a, HV09]. Conflict-Free 
[BP02, CH92, DP00, DFP06a, HV09]. Conformance [CY95]. conforming 
[LGM18]. Congestion 
[BDF01, AA10, BM11, ESGQ+14, ESGQ+18, XWC+08, YJKD10]. Conjugate 
[Bas97, McA89, GLW14, LR14]. Connected 
[Ann94, ADM+94, BJR6, BCH95b, yCM98, CCC92, CWW+95, CT94, CY96, 
CDP95, DVZ96, Fer93, HHM94, KRKS11, LH92, MD01, Mol96, SR94, Tz93, 
Zhu92, ZY002, DLBL95, BBd95, BBd90, BJ18, Car90, DW06, GP07, HJ07, 
HSW04, HR89, HR90, JT88, JPD17, JL05, KO12, KT91, KF90a, LC90a, 
LC91b, Li06b, LV88, MHRP05, PB90, Raj04, SI66, ST06, SSM89, SC91a, 
TR08, YME06, YSS11, YWW12, ZAA17, HWW96]. Connecting [FT94]. 
Connection [AyJ93, GHKS98, ML89, LXLS12, TT07, YSL08, CM93, 
CRFS94, EHS94, LAD+96, LTD+93, Sab94]. connection-based [TT07]. 
connection-level [YS08]. Connectionist [MBK+92, TR89]. Connections 
[Goe94, TC03]. Connectivity 
[Wil92, ASM09, BCMV15, DH91a, OMSGNSG05, SK89a, Ten16]. Conquer 
[CTZ99, AY89, BW09, GDL+11, Sto87, TP18]. conscious [GYAB11, OC07]. 
consensus [AAI+15, ISM07, LHW14, MR09, WTC08a, WTC08b, WW17a, 
WCYR08, XKB07, S04b]. consequences [YBM13]. Conservation 
[FLS+97, XS11]. Conservative [LA93, BD04]. Considerations 
[Ger98, VWHL96]. considering [MLMSMG12]. Consistency 
[Bar94, CA95b, GAG+92, SS08, Fei03, HC09, Kub17, LC11, LHZ+18, RHH12, 

controllable [ZHT16]. Controlled [CGSV93, Li99, MG91, SDS99, SD00]. controls [YSL08]. convection [CEGS07]. convergecast [KK06, PLY15]. Convergence [GCM95, ÚD96, YBOY97, CDD+15, PH18, Tor89]. converging [BHK17]. conversion [FC14, SMH91]. Convex [DS84, DFRCU99, LP97, Wu02, DDNS06, GS03a, RBD08]. Convexity [BOS+95, BGOS95]. convolution [XLW+18]. convolutional [ZLS17]. convolver [Kep03]. cool [LFS16]. Cooled [SWHB17]. cooling [MLK+16, SWHB17]. cooperation [YQTV12]. Cooperative [BW95b, LTWW12, SZL10, ADDB18, DDB+17, FCML13, FZ14, GRDB05, GZY14b, KK10, LMG18, NP09, TC13, TVT+17, WLL16, WHC+18, XHZ+10, YpGyLlC13, YF07]. Coordinated [DDG+17, VPHML06, MCZ14]. Coordinated [DDG+17, VPHML06, MCZ14]. Coordinating [DZ97, LZI+11, CHC05]. Coordination [DRST02, FCZ+12, SCN12, SZB16, BDP16, DRT07, MS05, Wu11]. Coping [BGBC+16]. coprocessor [KVNV17, SA11, ZMZJ17]. Coprocessors [SS99]. Copy [Ano93e, CS93b, CS92]. CoQoS [LZI+11]. CORBA [CCC+04, LWR+03, MSAF04, RSR04, wXH00]. CORDIC [CL88, HBH93]. Core [BCR96, PL94, AFA13, APRA18, AA16, AR17, ABLP17, AVAH18, BBBC12, BLMB13, CMST13, CHLL18, CKK+13, DBA+18, DWYB10, GZG+17, GS18, GKS15, Hus17, JHF+17, KSG13, KKB+06, Kr11, LKS14, LNAL17, LSC+15, LHT08, LLS+16, MBBD13, MZC18, MAHKZ12, MGRK14, PCMM+17, PHP+12, PR13, RLA+16, RLA+17, Raj04, SNMB16, SFT+13, SCB09, Sol13, SAJ13, Trä09, TCHC12, WJW07, WQZ+13, WH17, ZXB14, Zha11]. core-based [LHT08]. core-periphery [ABLP17]. Core [BCR96, PL94, AFA13, APRA18, AA16, AR17, ABLP17, AVAH18, BBBC12, BLMB13, CMST13, CHLL18, CKK+13, DBA+18, DWYB10, GZG+17, GS18, GKS15, Hus17, JHF+17, KSG13, KKB+06, Kr11, LKS14, LNAL17, LSC+15, LHT08, LLS+16, MBBD13, MZC18, MAHKZ12, MGRK14, PCMM+17, PHP+12, PR13, RLA+16, RLA+17, Raj04, SNMB16, SFT+13, SCB09, Sol13, SAJ13, Trä09, TCHC12, WJW07, WQZ+13, WH17, ZXB14, Zha11]. core-based [LHT08]. core-periphery [ABLP17].
[Amm16, DGBN14, GM14a, HWC08, PSRS12, PCX+11, PCX+14, REZN17, WMW09, YDZ+18, ZC04]. coverage-oriented [ZC04]. covered [CHCG18]. covering [KCR14, ST12]. coverings [Bod89]. Covers [ABCP96]. Covert [BKT95]. Cowichan [ASST05]. CPS [CHX+17]. CPU


criticality [ZZJ+18]. Cross [IEWK17, SJS11, WXZ+18, CI03, KPR88, LST+13, WCL+13, YFBY17]. cross-architecture [YFBY17]. cross-layer [WCL+13]. Cross-scale [IEWK17]. Cross-Site [WXZ+18]. Crossbar [CP01, KJ84, OK01, PD92, KK17, LW89, McA89, Wil90, ZPK+14]. crossed [CW09, CFJW13]. crossing [HSSM07, JD12]. Crosstalk [Qia97].

cryptographic [ABO+17]. cryptosystems [AVAH18]. CSA [Ebe94]. CSD [KHT+14]. Cube [BCH95b, JH94, MS85, RP98, Tze93, AP91b, JT88, JL05, KF90a, PK04a, ST06, LH05].

Cube-Connected [BCH95b, Tze93, JT88, JL05, KF90a, ST06]. Cubes [HJ90c, HTHH02, JH92b, Lat98, XL95, BVB02, CW09, CFJW13, FLPJ07, LFZ+17, LLFJ18, SAOKM03, WFZJ12, WS97b, XHZZ16, YTH07, YD98].


cyber-enabled [GQZ18, LMXJ18, ZXMR18]. Cyber-Physical [QGB+17, HRM17, CSW+17, JWH+17, LLWC17]. Cycle [An000d, KK95, LS97, Ros99, HDT+05, LLFJ18]. cycle-accurate [HDT+05]. Cycle-Stealing [An000d, Ros99]. cycled [LDZ+17, LDZ+14]. Cycles [BCH95b, Tze93, Wan01a, dBL95, HBAD15, JT88, JL05, JD12, KF90a, LdSB+18, PK04b, ST06]. Cycletrees [VB96]. Cyclic [OP96, PT97, SSG93, BD05, HS03, PK05a, Sch87, ST87, SPH13, LY12].

cyclic-by-rows [ST87]. Cylindrical [WN94].

D [AA14, Ano92a, Ano93c, BAES92, CS93b, GOH+13, SS94b, AA16, AR97, BLPV95, BFG94, BDRB14, BAL05, BC94, CW00, CS92, DSAUM99, GW99,
HHKT96, HKT94, KRKS11, LXLS12, LME95, MKY+97, MPG17b, NM17, OGRV+12, PYP+10, PEC95, Wan07, WS95, Wu02, YA11, YB01, ZLS17, Zsa16]. D-ISODATA [DSAUM99]. D-NoC [AA16]. DADO [SM86].

Daemon [KY02, BBD18]. DAG [SAUM99]. D-NoC [AA16]. DADO [SM86].

Daemon-like [CP10a]. Dark [SDS+18]. Dark-Silicon [SDS+18].

DARPA [WRHR91]. Data [AOS+05, AL04, AAL95, ALS91, AS13, AS15, Ano96], Ano00d, ADM+94, BV02, BCD95, Bal90, BBB+06, BHS+94, BR95c, BR02, BS09, BS11, CGN+13, CDY97, CK08, CGL+95, CP92, CHR94, CRFS94, DOP98, DRC90, DSAUM99, DRST02, DSD97, DSS95, Fah96, FMP98, FKKC97, FMW+94, GG94, GP93, GC01, GDN+98, GS96, Gup92, HK01, HJD+01, ISZBM99, JW94, JS86, JB93, KR97, KLS90, KRS01, LSCA93, LZ02, LAS+97, LY98, LY01, LO96, LL95, LSWC14, Lu01, LWWQ18, MD13, MS85, MRRV98, MK92, MRK93, MNB95, MNM98, NBP98, Nic94, OK02, OP98, Ozt11, PHB96, PH91, PL98, PT97, QZ94, QH96, RSW90, Ros99, RW93, SS89, SMH94, SG99, SR97a, SR97b, SAC+98, SSHC00, SHT+95, SS94a, SYSG97, SIR92, Ste95, SC91b, Str12, SV00, SFC17, SG96].

Data [TSC01, TR96, BG90b, VBM90, WB94, WNA+94, WPKK94, WSS93, Wei02, WS97a, XMMD17, ZMCP11, ZTFK16, ZRC99, AAA+15, ASB18, Amm16, AH12, AGYW11, ACPT15, Ara90, AG12, APK18, AYEY15, AK18, ARDQ18, AS18, BFF+17, BCO+12, BH86, BR91b, BEN12, CK06, CF88, CMR+18, CK07, CGC16, CLC+17, CPLY18, CW15, CLL09, CZ90, CTT16, CTT08, Cuz11, Cuz13, DF17, DMG18, DTK11a, Ekk18, ESTA94, EDO05, ECP+18, FCW11, FRM15, FP03, Gao89, GYAB11, GE85, GSA1a, GJA08, GLGLBG12, GM14b, GBA08, GB11, HMV07, HLS03, HSMB91, HP06, HA05, JLY12, JBS14, JHPL13, JHL+18, JZ05, JW+17, JsSJC+15, JK15, KKKG14, KA08, KHK03, KAS07, KCR14, KSB11, KL05, KKTZ13, LHF91, LWZZ12, LC91a, LC11, LY12, LLWC17, LLW07, LSZZ15, LZ15, LS15, Lon04, LA04, LGK+12, LSZJ15, MCdS+06, ME04].

Data [MLK+16, MP08, NBL+18, NS90, NCT+07, NCA+12, NCB+17, NAB+11, NKK16, NAK04, NTC03, OWK14, OM10, OJP+18, Pad91, PSR05, PS14, PLR07, Psa96, RBN11, RT98, RB12, Ren11, RMU14, RBA+18, RAN+17, RJKL11, SMW18, SS08, SC04, SCW+18, SCM13, SM08a, SK05a, SD88a, SWW+17, SR91, ST08a, TR89, TBHA07, TZH+06, TK07, TVT+17, TLW18, VETT18, VMBM10, VB08, VRM10, WCWO17, WSH+03, WT09, WZZ+17, WW+17, WCH+17, WW18a, WL05, WG11, WLZ+18, XHZ+10, XSYG18, YBX+13, YAK15, ZV14, ZKZF18, ZV12, ZWW17, ZSCX18, ZHT16, ACB+15, LSZZ15, PJ18, RAB08, WLL08]. Data [KAS07]. Data-aware [ZTFK16, AYEY15, VMMB10]. Data-center [FP03]. Data-Driven [JB93, VBM90, WSS93, BH86, KHK03, NCB+17, WLZ+18]. Data-Flow [BG90b, GE85]. Data-gathering [LLW07]. Data-Intensive [BS09, ZMCP11, RBN11, SC04, VB08, WZZ+17, WG11]. Data-oriented
Data-Parallel [AAL95, Ano00d, BCD95, BHS+94, CGL+95, DSD+97, FKKC97, KR97, OP98, QZ94, QH96, Ros99, RW93, SAC+98, SSHC00, Ste95, WB94, WNA+94].

Data-stream-based [CK08].

Database [DSW94, HILLY95, HTL99, LLS93, LHM95, MB93, RSD94, YMR93, BH86, CI86, HPSM91, LY91, LZCY09, TR16, XLC+18]. Databases [BM95, CS95b, FCF00, MFS93, Ahu90, BA06, CG86, PF08, PLK+18, Ram89].

datacenter [CPLY18, MG09]. Dataflow [BG86, BCF97, BPN90, BJ91, BH93, GGB93, Gao93, HCAA93, LB90, MNB95, NBM93, RSBN01, SA93, SBBK90, VV90, YMR93, Bic90, ESCV15, KLL87, TBG+17]. Dataflow-Based [RSBN01].

dataraces [SSS07].

dataset [YYLC11].

datasets [CLOL17, KSJC17, KN18a, KN18b, YO11, YLB+15, ZB09].

DAWGS [CM92]. day [TLL+18], day-ahead [TLL+18]. dBBlue [SLWW05].

DCC [BCD00]. DCell [WFLJ16]. DCT [Jia99]. DDE [WS97b].


deal [ESGQ+14]. Dealing [BKS05, FP03]. DEAR [ALF03].

debug [BBCLL04, MH18]. Debugger [MB96b, BBCLL04].

Debugging [MI92, ML+90, SG93, CV16, LZZ+11]. Decaying [GM96].

Decentralised [YZS15, DBCF13]. Decentralized [AM11, DW12, GHH+12, GMXA07, HS97, AS18, BHK17, Che89, MAPF14, SL06, WZQ+13, mYA91].

Decidability [FP17].

Decision [ADS01, BF01, LFA96, KDSS18, KC04, PP06, SV18]. Decision-Tree [BF01].

declustering [WZZ+17], decoder [MC17], decoding [CP10a].

Decomposable [KS08]. Decomposition [Bai94, BCD02, CP92, HJ90c, HBH93, KBG92, LS95, NPY+97, PE93, QZ94, Ara90, ACFK07, CvdBL+08, CZZ+17, Luk85, OT86, SK09, TW87, WD18, XWC+08, ZW107].

Decompositions [ABCP96, KRW96, Oro87].

decoupled [CTCX08, DBC03].

decreasing [TSHH01]. dedicated [AM07, MAR05, WLNL06, ZV09b].

deep [CXQ+18, HMY+18, HKK+18, TLL+18, WW18b, WDS+18, ZWW17, MLCF+18]. defense [XCH08].

define [KK86], Degenerate [HF96]. Degradable [BBR94, CGA98, LH92, RCB93]. degradation [NSTN91, WCYR08].

Degree [DS96, PRA93, RL95, BC14, BPBR11, KSK15, LVP08, ST17].

Degree-Constrained [RL95], degrees [ZDC06]. Deister [WZZ+17].

Delaunay [ABC+09a, ABC+09b]. Delay [AZ01, AH11, GZG+17, Hu11, GL12, HWWH08, LMZ04, MD07, NLB+18, SGR03, WW12, WYW15, WHC+18, WHS+18, YA11, YWG15, ZWW17, KSSK16]. delay-aware [WHC+18]. Delay-Constrained [AZ01]. delay-guaranteed [HWHH08].
delay-optimal [MD07]. Delay-sensitive [Hu11, NLB+18]. Delay-tolerant [AH11, WYW15]. Delays [GM94a, GK98, KL01b, RWB+13, Sta04]. Deleting [BCK+09, PPC04]. deliveries [WE13]. Delivery [CLZ02, CLV95, THGY15, AH11, Bar05, KMF+05, KNS06, SZ09, WGCZ09, WLZ+18, XYDL06]. Dellat [THGY15]. Delta [ASB18, KJ84, YL89]. Demand [DSST95, HLL+95, JSCB95, BSW07, FVLB09, HZDP12, KyLPC17, LSZZ15, NKK16, SFEF06, WL05, XG03, YLYC11]. demands [SLW10]. dendritic [WCKD06]. Denial [BK18, KMMZ06]. Denial-of-Service [BK18, KMMZ06]. denoising [TLL+18]. Dense [DVW94, FHL+15, ICQO+12, LKD14, RM10]. densities [DHK04]. Density [MC17, WCXL11]. Dependability [SM92a, WLID02]. Dependable [MAJJ05, NPGV10]. Dependence [GSG+93, KK95, Xue97, CC87, NCA+12, Psa96]. dependences [NCT+14]. Dependencies [KBG92, TC96, BSMH08]. Dependency [GP94, CSJ+13]. dependency-timing [CSJ+13]. dependent [AL04, BH05, LSWC14]. deployable [YC12]. deployment [EM11, SMO+18, TWQS12, VHH08, ZC04]. depth [BP89, LH04, PV07, YWJ+18]. depth-first [PV07]. deques [ST08b]. derivatives [PK04a]. describe [JWH+17]. description [MRS+14]. Descriptor [Bal90]. descriptors [LNW+12]. Design [AF1A3, AM17, AC16, Ano92c, BAHPO1, BCD00, CGKK97, Car95, CCC90, CT93, CAB94, CW93, CTKA17, CTK+03, DBKF90, DVW94, ES96, EMP+96, FC90, FR96a, Fer92, GRV08, GFB+92, Ger98, GRS97, GSP02, HP97b, JH92a, JZZ+17, LL90, Lee91, LH92, LLS93, LLLY13, MKC01, MP10, MVB05, MG09, MML07, NBM93, NJ91, Nie94, NSPC02, OS93, PA01, PI90, PMCC18, RCB93, RBG17, RPS93, RKK97, SDS+18, SAOKZ05a, SAOKZ05b, SRK95, Sol13, SHC93, SOG94, TTH12, WNA+94, WH97, XKN94, ZPK+14, Ada17, ABLP17, BBH+17, BZL04, CG11, CSJ+13, CK13, Che86, CHX+17, Chi95, CC06, DFHH13, DE91, EFG+14, FHL+15, Fer90, FCG+14, FD86, GREC91, HDT+05, HWWH08, HKK+18, KMC16, LU14, Lon04, LVB07, MCM+11, Nap90, ORWT+18, OMT+17, PLDS7, RGD03, RA11, SDS10, TM06, TB90, VRGS17]. design [VHH08, VLL+14, WS91, Wu11, ZMJJ17, ZY12, ZV09b, ZFWF06]. designed [BHS15]. Designing [BBBC12, BC01, CB06, DH91b, FP18, GP93, GMS+13, GB93, KT89, NS92, Orut87, SGRB90, TC96, YCH+10, YBY17, KAO97]. Designs [HCS+10, LHM95, MD01, Oru94, Bhu87, CP04b, MC17, Man13, PGR17, Sch89b, WAS88]. Desktop [LSH+13, CCEB03, AAD10]. Detect [XCH08, UGG+11]. Detecting [CL14, CK97, NCT+07, SKK14, Tse95, YXX13]. Detection [Ano96l, BN02, BHR95, BST10, CW93, CY95, CDP95, dADB96, GCKM97, GS96, HTHB98, ISZB99, KSB94, KS94, LLLY08, MRRS98, Par92, PAH+98, Ram89, RP95, SL97, SJS11, WCF94, YHYW18, AFD+11, AMK+07, BXA08, CRK+09, CV90, CH06b, DKKV15, DFP06b, Eri88, FM85, GDCC18, Gue86,
GH89b, HMY⁺18, IZ12, KHK03, KCFP18, Ksh12, KKTZ13, Lai86, LLLC15, LJ05, LLWC17, LHLM14, MD07, MFVP08, NHO⁺13, PH16, RLP14, ST12, SMP17, TRS⁺12, TY17, TCS⁺10, WL11, WXZ⁺18, XL11, XTN12, XSYG18, YF07, YDZ⁺18. **Detections** [Yen01]. detector [SLG06]. detectors [AAI⁺15, BGBC⁺16, DGFGK05, LFA05, MFVP08].  


Development [BR95b, FSD04, KHT⁺14, PH00, AM17, DBC03]. deviation [XBK07]. Device [DM90a, PVP18, VFAD17, ALF03]. devices [Ano04d, Kim17, MXSL12, WL04, WCF14, YK04, ZV09a, ZV09b]. **DEVS** [PK05c]. **DGIN** [KMC16]. DGIN-3 [KMC16]. DHT [BJPPM⁺08, CTT16, HASB16, SP08, SX08, ZH07]. DHT-based [BJPPM⁺08, CTT16, SP08]. DHTs [GTGLSA12, SAL10].  

**DI-multicomputer** [CC96]. **Diagnosing** [Qia97]. **Diagnosis** [BW95b, Kav93, KF95b, RFM94, Wan01b, eW95, CAF⁺11, FY86, FZ90, VS18, Yan04].  

**Diagnostics** [DMG18]. diagonal [PRHB06]. Diagram [RR95b]. diagrams [SZ03]. Diameter [DF95, LP95, RS96b, RLS96, WIKC97, BBD18, BBL04, CW09, SOLW05].  


**Dilation** [CC96, LST17]. Dilation- [CC96]. Dimension [CFJW13, HSW04, RS96b, WS97b, XL92, XL95]. Dimension-adjacent [CFJW13]. Dimension-exchange [HSW04]. Dimensional [AKPT99, CCCM96, DFN⁺94, FLS⁺97, Hwa97, KR98, LHS97, LP96b, LP95, NGE95, TC96, VB94, YCY⁺00, ANE13, AB05, DMFCFM03, Dhe90, DTK11b, FCG04, GSSS03, GB11, HT90, HS17, KVHS07, KLC05, KKN13, KN18a, KN18b, LSC00, LC91b, LZY11, LDS16, NBP98, NAK04, PTA08, PK07, SGR03, WRW13]. dimensionality [BV13]. dining [AFNT17]. DINO [RMHR17, RSW91]. Direct [FLC14, GV94, LLCC02, SWBH17, TF01, ACFK07, ACU08, PPTV⁺10, Tum18]. Directed [GY92, LSC00, LY98, LY01, RJ96, BD05, MTA10, TDP15, WCWH03, Wu03]. Direction [BEN12, BC94, Ebe94, MS910a, MS910b]. Direction-based [BEN12, MS910a, MS910b]. directional [CCH09]. directions [ACB⁺15, PSC⁺16]. Directive [MM15]. Directive-based [MM15]. Directory [GS00, JSM94, RFPAG08, SB15, VRGS17]. disaster [SZB16].
disasters [FP03]. Disciplines [MSd+95], disconnected [LR03a, MCS14].
Discovery [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVLS11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, Bou02, DMSH90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHH16, Li16, SS17, TKHG04, ZZ90, ZCK+02].
Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].
discretization [SWLZ17]. disease [VS18, ZXGD18]. Disjoint [BGR96, GT97, GP00, NS90, RKS99, WB01, HAD15, KMC16, Lai14, Lai15, Lai17, Lin03, LS03, MT14, SMP17, TDM05, WFLJ16].
Disk [CT93, Cor93, ER97, GP93, Lin93b, Lin93c, LLCL98, NC97, Pra93, SRT+18].
Disk-assisted [SRT+18]. Diskless [PKD97]. Disks [KR11, MT93b, MB93, MFS96, CKLCK04, CKLCK05, OCO7, RWB+13, VA07].
dispatch [YZS15]. Dispersing [Gil94], displays [Tay05], disruptive [SI13].
dissemination [AHZ11, DF17, MCDs+06, MSF+13, WW18a]. Distance [BVB02, CW00, CDF01, D95, NM17, ST02, DS04a, E ˙I07, Hsi04, MBR08, ST06, Tur12, WCWH03].
Distance-Hereditary [CDF01, Hsi04]. Distance-Insensitive [ST02, ST06]. DistDLB [LTL06].
DistOpt [CLRW00]. Distrib [KLN18b, LSS+11a, MSAZ10a, PC+14, REK10a, WTC08a].
Distribute [LY95]. Distributing [LY95]. Distributed [AAA+15, AE95, AL99, AM97a, AM97b, AMNO, AF96, AK17, AaJS01, Ahs97, AS13, AY97, An96j, An96l, An97j, Ao99g, An902v, An902u, ABLP17, ABCP96, BR95a, BR96, BFTV87, BGLA03, BCV94, Bas97, BWP+11, BA01a, BCh95a, BAS06, BPR99, Bir94, BCD00, BC096, Bou02, BS04a, E ˙I07, Hsi04, MBR08, ST06, Tur12, WCWH03].
Distance [Tur12]. Distance-Hereditary [CDF01, Hsi04]. Distance-Insensitive [ST02, ST06]. DistDLB [LTL06].
Distrib [KL98, LSS+11a, MSAZ10a, PC+14, REK10a, WTC08a]. Distributed [LY95]. Distributed [AAA+15, AE95, AL99, AM97a, AM97b, AMNO, AF96, AK17, AaJS01, Ahs97, AS13, AY97, An96j, An96l, An97j, Ao99g, An902v, An902u, ABLP17, ABCP96, BR95a, BR96, BFTV87, BGLA03, BCV94, Bas97, BWP+11, BA01a, BCh95a, BAS06, BPR99, Bir94, BCD00, BC096, Bou02, BS04a, E ˙I07, Hsi04, MBR08, ST06, Tur12, WCWH03].
[GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. Do-All [KMS10]. Doan [Ano92c]. Document [ZWL03, UGG+11, XCZL03, ZMCP11].
[CCZ+17, KRS13, KRS14, NPY+07, MRS+14, SK09, SS11, WMC+18]. Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b]. Dominating [RD95, DW06, HI07, JPD17, WCWH03, YSS11, YWW12].
[OOW95, ST08b]. down [Sch89b]. DPI [HVW16]. DRAM [ZLH+18]. DRAM/NVM [ZLH+18]. DRAM [ZLH+18].
[CBO9, CP99, FM99a, JB93, The02, TVO92, VBM90, WSS93, ASES15, BHS6, CTT16, GK04, HK03, LWZZ12, LS10, LGK+12, MBS+12, NCB+17, QJ05, SS08, SS18, TLQS12, VO89, WLZ+18, XLL15, YCC05]. drives [GFFC14].
DSDV [BDF01]. DSM [BJ93, ISZBM99, NPP+02, Nik03]. DSMS [KG04]. DSP [DSEP17]. DSPONE48 [DSEP17]. DSS [FGP05, MKC01].
DTN [VV90]. DTNs [MPS16, Yan09]. Dual
[ACCP12, LSXX14, XWC+08, ZW00, MAJJ05, WCC02, WL05]. dual-Hamiltonian-path-based [WCC02]. Duane [BS96c]. due [BS91].
Duplex [RS94]. Duplication
[BA97, DA97, BK05, BD05, STK11, TLLL10, WCEA10]. duplications [SCJ+08]. during [VWHL96]. duty [LDZ+17, LDZ+14]. duty-cycled
[LDZ+17, LDZ+14]. DV [CSW+17]. DV-Hop [CSW+17]. DVFS
[CG17, ECLV12, LSC+15, RTZ11]. DVFS-based [RTZ11]. DV [ZHLQ12].
DVS-enabled [ZHLQ12]. Dwarf [DTK11a]. Dyn [WLNLO]. Dyn-MPI
[WLNLO]. Dynamic [AGF94, AL99, AAD10, NEA13, Ano97]. BR95a, BJPPM+08, BP90, BR02, CJ99a, CDAN14, Cyb89, DB11, DL01, FCC07, Fer95, FMP98, GP94, GM14b, HM01, HC97, KKGS01, KCSS18, KR10a, KVA18, KPC96, KC99a, LHKL03, LPS+08, LL98, MAS+99, MD13, MSD+95, MSSE02, Moh97, MNN98, NPP+02, NP+97, OOSVG+16, PH96, QMCL94, RDS02, Rie98, RGVB00, RN04, San95, SSHS17, SZ00a, SLP+98, SSB98, SB97, SS17, SG96, TT10, TDP15, WCE97, WJD91, WLD02, XL92, XH93, ZLP97, ZA05, ZM94b, Ano04d, BCV05, BCCQ13, BGLA03, BN02, BC03, BFC14, BK08, CBD+09, CSML10, CW05, CPLY18, CG+09, CDDC05, CKML12, CWD11, DLV+12, EE05, Fei03, FX90, FKB10, GOE16, GCS06, GFFC14, GBA08, IC05, JBA15, KZ11, KMS07, KMS+06, LTB02, LGZ+10, LLY08, LC91b, LPX05a, Li10, LLY15].
dynamic [LS06, LLW12, MYY+17, MC91, MK08a, MCS14, Mit07, MML07, NDP13, NLB+18, NCT+07, NHO+13, PKN08, PKN10, PM05, PSSR05, PW17, QJ05, RK18, RCG18, SBBM16, SS+16, SS06, SS07, SDD07, SCK03, SLG06, SSDB+10, SZB16, TZ07, TW15, TH08, TMK+17, TT07, WW12, WXZ+18, XLC+18, YK04, YS11, ZXYO11, ZCS+18].
Dynamic-warp [NHO+13]. Dynamically [JB98, KSS+07, PPP14, dSR00, SB84, GK15, Kep03, Lai86, Mat06, ORWT+18]. Dynamics
[ES96, JBL02, NPY+97, PAH+98, TSA97, AGMJ06, CvdBL+08, CMPS18, DAG+17, GBMZ07, LYL08, PARB14, PTK+13, WYTX13].

e-infra-structure [HPB+10]. E-ODMRP [OPG08]. e-payments [CSS11].
ECC [CL09, GCS06]. ECC-based [CL09]. ECG [ZAAB17]. EcliPSe [RS92d]. EDAs [MMAL+06, dGP06]. eddy [SM04]. EDF [dOCS14]. Edge
[BGR96, BS97, GT97, HBAD15, LSH96, TPS+18, TDM05, WB01, CL85, DJT03, GDP08, KCPF18, Lin03, LWQ18, SS03, YWJ+18, ZCS+18].

Edge-Coloring [LSH96, GDP08]. Edge-Disjoint
[BGR96, WB01, TDM05, Lin03]. Edges [HHC98, BKCM17, FPP+08].
editing [RS90b]. editor [WW03, AB03b, Ano011, Ano02g, Cas93, Che92, Cho93, Her92, Lin93b, Pan09, Pra16, Sch90, Sto90]. Editor-in-Chief
[Pra16]. Editorial
[AS15, Ano94e, Ano95k, Ano96k, Ano99i, Ano02e, Ano02f, Ano18s, Ano18t, Ano18u, Ano18q, GHS94, GHS95, GHS96, GHS97, Hol17, Kai92, SLL18, DF12, Ano03c, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano03m, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j].
Editorial
[Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18r]. editors
[XX05, AP93, AL99, Ano01j, Ano01k, Ano02h, Ano02i, Ano02k, BD00, DOP98, ES97, GGB93, GC95, JW94, MC93, NT90, OW01, PN97a, PN97b, PA96, SH92a, TFV+15, BG90b, TY95, WC05]. Edu [PGKV18]. Edu-2016
[PGKV18]. educating [LMB+17]. education
[APV18, BLZ+18, CVK+18b, Hua17, MBG+17, Nee17, NKSA17, NSDZ18].
Effect [ACD+93, IS06, BL05, JZ05]. Effective
[Ano97k, BC01, GM96, HH97, KO11, LT96, MAR05, QM01, TC92, VH93, WLD02, YZS96, AM12a, BV13, BCK+13, Cza13, DK04, FZW12, FWM+10, FI04, JLWX11, KHW13, NAK04, SNC12, WMY+17, YCH+10, ZJ06]. Effectiveness
[GMM00, HKT+91, KS97a, LKK94, NRS95, MA11, TC03].
Effects [AMB95, DZDZ01, KB96b, ÜD96, CK88, HLS03, KG04, SPBR91].
Efficiency [EH01a, GG01, LdSB+18, AG12, AG12, BC11, BYH+17, ESCV15, FRM15, FCP+15, GSWW04, HRM17, HJJLR12, LB12, LZSL06, Ren11, SI86, SWHB17, SCH14, VETT18, YF09]. Efficient [AOSM04, AP94, AZC13, AKP95, AG86, AMK07, BCO12, BM16, BGH+03, BAGS95, BAH04, BRP03, BJK+96, BDH+97, BMIM07, CM04, CRK+09, CKK00, CCC92, CPW12, CN93, CS95c, DDNS06, EP90, EL97, FG080, FBK98, FMR05, GPT06a, Gao93, GR96, GCKM97, GM94b, GRS97, GP00, GKHS96, GW03, HQPT99, HH01, HSLL04, HASB16, HHC98, HB93, HO94, Hwa97, IR12, Iq92, JBS14, JB93, KC96, KHS96, KK10, KL97, KKB+06, KS13, KA11, KBG92, LJ05, LHHH11, LDP+14, LY01, MD01, MLDG12, MB13, Mat93, MHC95, MS99b, NT93, NIR86, ND12, OS96a, OK01, OP96, Pad91, Par98, PA97, PP13, Pen11, Pra93, RV13, RSS99, RB96, Ra016, RMU14, Ric98, RJMC95, San02, SMP15, SW96, Sch13, SSGG18, SSHC00, SMP17, Sin87, SWLZ17, SCLL10, TU92, TR96]. Efficient [Tur12, VB02, VBM90, WRC+02, WHT00, WCCH18, XMH02, YD98, YL06, ZBT97, Zha92, ZH07, dSAJ15, AAI17, AFA13, AR17, Ara13, BHF+17, BM11, BKC+15, BK13, BOY10, BR91a, BBD18, BCK+13, BH91, BZW+18, CMR+18, CKN07, CP10b, CGW+03, CMN12, DKE10, ESGQ+11, EDH+17, GDCC18, GKS15, GT04, GLD06, GYM13, HSS10, HS06, HRJ94, Hsi04, HZHS18, IEWK17, Joh87, KTP17, KVA18, KyLPC17, KL05, KSSK16, KA05, LA14, LMZ04, LW16a, LS91, LSC+15, LR03b, LZY+18, LHP07, Lon04, LLDL15, LA06, MGSG12, MD07, MSF+13, MPS16, MPN17, MAHK12, MCP+18, NMS+18, NF16, Nie07, PPSV15, PVGQ06, RM11, RLA+16, RLF+12, RT18, RGAN18, SB12, SX08, SMK13, SM09b, Tam18, TLY12, TGPUC16, TMK+17, TLL+18, UEB10, VRGQ17, WJW07, Wan07, WTC08a, WTC08b, WMW09, WLST16]. Efficient [WTWZ16, WCH+18, WIB12, WH17, WGCZ09, gWW18, XLC+18, XZG+10, YSS11, YLB+15, ZCMY12, ZLL14, ZSCX18, ZB03, ZWWWX16, ZHLQ12, ZTG17, ZHO03, LM09]. Efficiently [MT95, Coh90, CCM06, FP03]. effort [Bar05, MAM05, QGZP17]. EFS [MSK+16]. EGEE [VPHML06]. egress [MCAS12]. eigenanalysis [TYA16]. eigensolver [ABG11]. Eigenvalue [Kau94, LLY08]. eigenvalues [VGAB08, ZB03]. Eisenstein [HBAD15, HS17]. Elastic [FGG17]. elasticity [MMVL11]. elderly [HRM17]. Electing [SK94]. Election [AS96, KB96a, DLV11, DGDF10, FKK+04, KG89, Pel90, SS05]. Elections [FM96]. Electric [IMW97, AK18]. Electrical [MO97]. electricity [TLL+18]. electron [DAG+17, FCG04, FGG08]. Electronic [WHQ7, AA93]. electrophysiological [HES11]. Element [BCV94, CSSY94, PPTV+10, FC14, KME09, Ren11]. elementary [FK89]. Elements [GB93, KNS91]. Eleven [BSB+01]. Eliminating [DR98]. Elimination [BPST96, BMM97, CS95b, Cap97, ESGQ+11, KA91, Vel89]. Elimination-Based [CS95b]. Elliptic [PSE+01, BHG+03, SKH15]. ELLPACK [ZGG+14]. ELLPACK-based [ZGG+14]. ELM [CLOL17].
EM-4 [BAM93], EM-KDE [EHL+15], embed [SKK91]. Embedded [WA02, BM17a, CNLGLR18, CkLCK04, CkLCK05, CRJ10b, DQR+09, FWM+10, GZG+17, GSWW04, KRO6, LLLC15, LCB16, MBR08, MGRRRK14, PRHB06, XLL15, YZX11, FWM+10]. Embedded-TM [FWM+10].

Embedding
[ANS97, Ann94, AM93, BL89, CCCM96, CS95a, Efe91, Efe96, HKMU98, HJ90c, LSC00, LPS+98, Lin03, NPI+96, PW16, PM92, QM01, RWY93, SL95, SLP+98, TT98, TLW94, TL96, Var91, Wag93, Wag94, Wan01a, Wu85, WFL98, BG90a, FLPJ07, FT04, LFZ+17, PW17, YLZW18]. Embedded-TM [FWM+10].

Embedding
[ANS97, Ann94, AM93, BL89, CCCM96, CS95a, Efe91, Efe96, HKMU98, HJ90c, LSC00, LPS+98, Lin03, NPI+96, PW16, PM92, QM01, RWY93, SL95, SLP+98, TT98, TLW94, TL96, Var91, Wag93, Wag94, Wan01a, Wu85, WFL98, BG90a, FLPJ07, FT04, LFZ+17, PW17, YLZW18]. Embedded-TM [FWM+10].

Embeddings
[GH93, HM01, HOS94, KC98, MT93a, OS97, OD95a, CL91a, GNW03, LLFJ18, YTH07].

emergency
[HPB+10]. Emerging
[Ano02v, BKC+15, KHT+14].

Emitter
[FPM+14]. Emitter-coupled
[FPM+14].

Empirical
[FTC00, LR93, LGK+12, NXTK17, XZS96].

Employing
[AGMJ06, PKW+10]. empty
[Deh90]. Emulating
[KMS10].

Engendering
[JH94, PRW94, LST17]. Emulations
[RGD03].

Enabling
[MWL00, CSL15, CCN06, GQZ18, GRJ+15, KTF03, LMXJ18, TODQ18, ZXMR18, ZHLQ12]. Enabling
[ETS14, FCG+14, JKIE13, SP08, TT10, ZP10, ZDKV15].

Encoded
[JH94, CLV95]. encoders
[TLL+18]. Encoding
[ECVL12, FRM15, FCJG+18, FCP+15, FKL08, GYH10, GDCC18, GTN+06, GL12, HP06, HMR17, JZZ+17, JZF+15, KRO6, KSI04, LCB16, LL12b, LZX11, LDDL15, LCB16, MMK+11, NS12, OMT+17, PCMM+17, RWB+13, RLA+16, RLA+17, RFS+12, RT18, RTZ11, TLY12, UMM+18, VRG17, WMW09, WLST16, gWW18, XS11, YL12, ZX15, YAK15, ZW11, ZWY+15, ZWW16, ZHQL12, MSK+16]. Energy-aware
[GQZ18, LBMG15, LNAL17, LLY13, FCJG+18, LR14, MMK+11].

energy-constrained
[JZZ+17, KSI04]. Energy-efficient
[KMF+05, Kub17]. Engine
[KS85, RMB16, HVW16, XTN12, SD88b, XP10].

engineer
[GS18]. Engineering
[LWR+03, BCD+15, CCE+17, Gai87, Nec17, PRHB06]. Engines [SD00].
Enhance [WLID02, DZC17]. Enhanced
[BOSW94, MD13, OPG08, OS96b, OSZ98, RK18, LLDL15, dOBB+15].
EnhancedBit [ARD14]. Enhancement
[KJ84, TC92, DK04, KS18, NGQM12, RH05, RM90, TBG+17].
enhancements [ESGQ+18, LÜ14]. Enhancing
[AYIE98, CGN+13, CRA+08, GRR13, HWLR14, dAMFdS13, MH18, OM10, QGZP17, VETT18, CCHC09, JBY+05, VA03, WX05].
ensemble [SV18]. Ensuring
[JF95]. enterprise [BJPPM+08, CCEB03, LSH+13]. entities
[Ahu90]. entity [MPN17]. Entropia [CCEB03]. Entropy
[TV092, V089, DFHH13, WMW09]. Entropy-Driven [TV092].
enumeration [SSTP09, SR90, WCH+17]. envelope [GC07]. Envelopes
[BMRC98]. Environment
[AT94, AD95, ALL99, AA95, BB93, CP97, CLZ02, CSMM910, CCRS92, CHR94, CB96, DKY01, DRSB01, GYAB11, KZ96, KC99b, LC90b, LAS+97, LI99, MIFH93, RS92b, RSD94, SG93, SRGB90, SS00, WH97, ZL93, AOS+05, BLZ+18, CK88, CCS06, JIWX11, KVHS07, KSS+07, KK10, LLLY08, MYYY17, MAR05, MLK12, MML07, SS11, SSM+06, VD18, WD13].
Environment-conscious [GYAB11]. Environments
[CTD99, CLRW00, CP99, KRW96, KR97, KER01, LTH97, PRS97, PRG88, SSK96, WSR979, WSA+94, ATZ07, BAL05, BPA06, BH05, BSMH08, CKTA17, CLL09, DBC03, DWX10, ECP+18, ECLV12, FRM15, FCJG+18, FMIF18, JS86, KV10, KAS07, KLJ+11, KCFP18, Ksh12, LY91, LSH+13, LWR93, LML+10, LSWC14, MK08a, NP09, PP06, SJB12, SZB16, SZL10, SS11, TZH11, TG03, W MES12, WL11, YT05, YCC05, YWG15, ZLWZ18].
Ephemeral [AGMS16]. epidemic [AHZ11, LpJS+18, MS+13].
epidemiological [Rao16]. epistatic [HL03]. EPLS [CL+]. epochs
[PB08]. EPPOD [WH97]. EPSILON [GH90]. EPSILON-2 [GH90].
equal [ST85]. Equation [DM90a, RW01, Gao86, JGMY17, LYL08, WJ14].
Equations [IK94, MV94, PSE+01, QOvdG01, TH02, CM03, GGR89, GS91b, SPH13, Ter16]. Equivalence [OO85, CM04, SM92b]. equivalencing [ES12].
era [MBG+17, SC10]. Ercegovac [Ano92a]. EREW [DL98, HS94a, ZK94].
Erlang [CLG+]. Erratum [Ano92c, Ano93c, Ano96l, BS96c].
Error [Lat98, Par92, WCF94, BGBC+16, DFHH13, OKW14, PKN08, RIZ90].
Error-Correction [Lat98]. error-prone [OKW14]. error-resilient
[DFHH13]. Essay [Mi93]. Essential [DSS95]. establishing [GPJA10].
establishment [SZMK13]. estimate [BK+11]. estimates [TDBL13].
Estimating [CCK88, LGL13, MK92]. Estimation
[CP92, Faz96, KC17, PKN08, SPV903, gWW18, ZRN+14, DLLL11].
estimator [S1Y14]. Ethernet [HC105, KLY05, PYF08]. Euclidean
[DS01, DS04a]. Eulerian [Kal04]. EUROGRID [LBE03]. European
[LBE03]. evaluate [DOCS14]. Evaluating [AFNT17, BL96, BC01, CLRW00, FW05, HCS+00, HKT94, LR94, MNN+18, RS92b, SS99, TTG95, ZYH94].
Evaluation
express [APRA18].

expression [GS91a, WSH’03]. Expressions
[GRKHS96, Mer96, DeG88, DM90b, JK89, LGK’12, MP88], expressiveness
[Hdr13]. Extended [BLG01, LWOG02, Ree84, El07, LWWQ18, YWW12].

Extending [BBC104, CMR10]. Extensibility [MB09b, LFH’03].

Extensible [FLCB10, HGFF10, ZWL03]. extensions
[DP98, Oza04, J000]. external [DO89, JZK04]. Extra [SZ00b].

extracting [BCH15]. Extraction
[YB01, CLC’17, HP06, LSS’16, MM15, Pla08, Raj08, WJV07, dAT17].

Extrapolated [DM17]. Extrema [AFS96, RKS87]. extremal [FSV14].

Extreme [SFT’13, YZW’15].

fabrics [ZRn’14]. face [CMN12, NHO+’13]. Factor [GG01]. Factored
[BSM90]. factorization [CASD18, FH’15, MVV91, S06, ZLRP91].

Factors [BP89, EL88]. Faddeeva [CF98]. failed [Tr’09]. failovers [SI13].

Failure
[AA’15, FCF00, Fu10, JAB12, BKMT14, DGFGK05, FX10, HK05, JKE13,
KV10, LGZ’10, LFA05, MFVP08, PCLP16, YF07, YHYW18, JKE13].

Failure-aware [Fu10, JAB12]. Failures [ADS01, DT02, VR94, VR95,
DGDf10, GPT06a, HRC09, LY10, MR90, RLH03, SCMS12]. Fair
[ALH’09, BHLT14, KY92, KNHH18, Tau16, GNT04, KS03, KDH08, LASS15,
SPC’17, SCG10, XWC’08, ZLL14, ZQMM11]. Fair-share [KNHH18].

fairness [Ara13, SCh14, ZLCJ12]. False [HF96, KG04, LLWC17]. families
[FSV17]. family [NS90, ZDC06]. farm [TBZB05]. farms [JTZZ11, MCP’18].

Fast
[ABCP96, BC06, BV13, BF97, CK06, CXX’18, Cor93, DP00, DS04a,
DPRW85, EM98, FZC’05, FR96b, GM94b, Gil94, GSC96, GZ97, GJXZ05,
HZA’15, HN91, IK94, JNW96, KK06, KSSG14, Lat98, LH09, PH01, PA04,
PT97, RHH96, S03, San98, SR94, SHT’95, SGS08, SA08, SGD08, ST05,
TPLY18, TF01, YZ96, YD98, YB01, AGMS16, BC05, BBB12, BFKW13,
BHK17, Ca06, Can18, Kep03, KA01, KP05, LLS07, PH16, ST85, TS91,
WWW17a, WJ12, XHL18, Yan04, CVK’18a, LLCL98]. Faster
[BBM97, GS03a, LS05, CM03]. Fat
[Zah12, CI03, CS06b, ESGQ’11, ESGQ’14, SK05b, YMLP14]. fat-stack
[CS06b]. Fat-tree [Zah12, SK05b]. fat-trees
[ESGQ’11, ESGQ’14, YMLP14]. Fattened [GMVRGS16]. Fault
[AE95, AM97a, AM95, ABBD14, BXA08, BS97, BMM97, BW95b, BKMT14,
BP06, BCH95b, CLMR15, CRV94, CL93, CKN07, CY95, CC94, CDR09b,
CF98, DBCF13, FY86, FM99b, GNS09, GRR93, HGHH96, HTTH02, JBA15,
KP00, Lan94, LBT94, LFZ’17, LGG08, LC96, MD01, MMRS98, MPG17b,
Pak89, PB95, Pu01, PKD97, PM92, RLS96, SCC92, SS95, UR94, VR95,
WK1197, WW97, Wu94, XCS06, XHZZ16, mYyF92, YBOY97, mYA91,
ZY002, AA14, AA16, ANEA13, AOSM05, ARVZ14, BB87, BJ15, BDDL09,
BPP05, CL91a, CW09, CWL’07, CDR09a, CM92, CMS04, CAF’11,
DTK11a, DH91b, EBE08, FLP107, FZ90, JBS14, KG10, LCC’05, LHM14,
Fault-Detection [CY95]. Fault-Induced [WIKC97]. Fault-Sensitive [VR95]. Fault-tolerance [BJ15]. Fault-Tolerant [AE95, AM97a, AM95, BW95b, CRV94, CL93, CC94, FM99b, HGCC96, HTHH02, KPO0, Lan94, LBT94, LC96, MD01, PB95, PK97, SCC92, WIKC97, Wu94, YBOY97, ZYO02, ABBD14, BKMT14, BPA06, CKN07, GNS09, JBA15, LFZ +17, XCS06, XHZ216, mYA91, AA14, AA16, ANEA13, AOSM05, CL91a, CMT92, CMS04, DTK11a, DH91b, FLJP07, JBS14, KG10, PR06, PL06, TCHC12, ZV09b, ZJ06]. Faults [LT96, WFL98, CP17, ISM07, LLFJ18]. Faulty [GP97, HIKM94, NSLK99, Pel95, RS96a, Tse95, TL96, Wan01a, Wu02, YTR94, oPP00, Che05, DD96, PK04b, SKK91, YTH07]. FCFS [Ara13]. FDM [ORR03]. FDM/FEM [ORR03]. FDTD [SS11]. feasibility [MAKWZ13, RB12]. Feasible [ESGQ +18]. feature [CLC +17, DKC14, LLS +16, PLSM18, PFJ04]. features [CGC16, LMXJ18, dAT17]. federate [CTCX08]. federated [SB12, TODQ18]. federated-IoT-enabled [TODQ18]. federation [CTC +10]. Feedback [MTM10, HWL18]. Feedback-directed [MTM10]. FEM [ORR03]. fetch [AK07]. fetch-and- [AK07]. few [Sch14]. FFT [ABZ95, HR92a, JMS86, JGMY17, RKK97, Tay87, WJ14]. FFTs [BH93]. Fibonacci [An97]. Field [BA92]. fields [CDR90, El07]. FIFO [BCLR96]. File [FPD93, GL92, HWLR14, KE93, MS96, WDDK09, WGM01, ZLH +18, CTC11, DT11, DLW +12, HOE +09, KYS13, KUA07, LHZ +18, LCM +06, MXSL12, No12, SC04, SZ09, SSX14, Wan06, WZZ +17, ZJ06]. file-sharing [KUA07]. Files [BNS90, JSM94, Lin93a, WRC +02, ARDQ18, BCK +09, Che89, WJ12]. Filling [BFG94, ST12]. Filter [IWOG02, VRGS17, SMPMLVS11]. filter-based [SMPMLVS11]. filtered [KLB +15]. Filtering [BTG02, CH06b, Kep03, PVG09, ZCK +02]. financial [PVRS17]. find [Hoh90]. Finding [AFS96, BS97, BE95, CCC92, DH94, DWHL87, FSV14, FTL92, HHC98, KRSZ02, Kar02, MT97a, MHP05, OMSGSG05, PG06, SH92b, RKS87, WCW03]. Fine [CLZ00, FR92, IBP08, LFA96, Man13, MPV12, NS97, PY96, SA93, WD94, CHLL18, FW05, FSD04, GVA +08, IK87, PL03b, TKHG04, ZCF +17, LM09]. Fine-Grain [FR92, LFA96, FW05, PL03b, TKHG04]. Fine-Grained [PY96, WD94, IBP08, Man13, CHLL18, FSD04, GVA +08, IK87, ZCF +17]. Finite [BCV94, CSSY94, HB97, HNM02, WLD00, CDR90, FC14, HM06, HT90, KNL90, LWCC15, S11, Si90, PPTV +10]. finite-difference [SS11]. finite-element [KMO09]. Finite-State [HNM02]. FIR [GLD06]. FireGrid [HPB +10]. Firehose [KM97]. FIRing [KM91, Nic94]. first [DAG +17, Lai86, MB13, MP87, MAKWZ13, PV07, SWMH17, TBZB05, ZCS +18]. first-order [MP87]. first-principles [DAG +17]. fission [GO016]. Fit [SP96, HLS03]. fitness [YXW +18]. Fitting [CY96, MRRV98, LYZ +18]. Fixed [GHKS98, HCWS94, KP17, ACU08, BCM06, GREC91, Hsi04, MT14, ZDC06].
Flexible [CCR94, ESMG96, HGCC96, JWSG14, RS92c, VB96, CS17, HCM11, LL12a, MM07b, PR06, SDS10]. Flexibly [SA90]. flip [LDS16].
Floating [CNLGL18, MRK93, Can18, Dav17, Gro85, MP08]. Floating-point [CNLGL18, Gro85, MP08]. flock [BZH06]. Flooding [TWQS12]. Flooding [BCF14, XCH08]. Flow [AS95, BJP91, ESMG96, JBA15, LLS93, LM96, MK92, BG90b, BAMM05, Boz09, CF88, CWP12, Gao89, GE85, JTZZ11, KM17, LHF91, MG09, Oza04, TR89, TBZB05, TY90b]. flow-time [TBZB05]. flows [SM89b, VBDRC13].
Flexible [CCR94, ESMG96, HGCC96, JWSG14, RS92c, VB96, CS17, HCM11, LL12a, MM07b, PR06, SDS10]. Flexibly [SA90]. flip [LDS16].
Floating [CNLGL18, MRK93, Can18, Dav17, Gro85, MP08]. Floating-point [CNLGL18, Gro85, MP08]. flock [BZH06]. Flooding [TWQS12]. Flooding [BCF14, XCH08]. Flow [AS95, BJP91, ESMG96, JBA15, LLS93, LM96, MK92, BG90b, BAMM05, Boz09, CF88, CWP12, Gao89, GE85, JTZZ11, KM17, LHF91, MG09, Oza04, TR89, TBZB05, TY90b]. flow-time [TBZB05]. flows [SM89b, VBDRC13].
frequencies [LSB+18]. frequency [MYD+11, RTZ11]. Frequent 
[AAP01, LT10, YZG18]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI [KHT+14]. FTN 
[Seb91]. Full [Ano18v, BBN93, SWW+17, SR88b, SR90, HH97]. full-access 
[SR88b, SR90]. full-text [SWW+17]. Fully [BNP02, Fer95, KP00, SJ95, CP04b, DM90b, DTK11a, tH90, SI89, TR08, YME06, LM09].

fully-distributed [DTK11a]. Function 
[AGG98, HLJ98, MYD+11, RTZ11]. Functional 
[AB84, Mah95, SC95, QSL+08, WMY+17, WD18, YJB91]. Functions 
[TG97, VR94, AMT13, CMR+18, MM15, RMU14, WD18]. Fundamental 
[GL92]. Funnels [SZ00a]. Further [PMV06]. Fusing [TVT96]. Fusion 
[AM93, STN92, ECP+18, QSL+08]. Future 
[AE88, KS95, MK12, PJ18, ACB+15, ECLV12, LY13, MKN14, PSC+16]. 
Fuzzy [BCF97, DFL017, TZ11, KKTZ13, KC04, NC09, SMO14, ESCV15]. fuzzy-based [NC09]. fuzzy-decision [KC04].
KBC+, Lin93a, NC97, RGS00, RN5B96, SSHC00, ABC+, 09a, ABC+, 09b, AFM09, Arb89, BCK+, FK89, Gao89, GNZ18, GMX07, HPB+, 10, LK13, LC92, Meg91, NAB+, 11, ORW+, 18, RKK06, SB04, Trä09, Zsa16].

**generator** [Pet18, WSG91].

Generators [Alu97, Bro96, PK89].

**Generic** [PA01, AK07, GM13].

**Genetic** [ANT02, CGKK97, KRSZ92, KA97, OA10, PajC97, WSRM97, WA02, WLID02, AL04, ALM+, 16, ANEA13, AB13, BCK+, DK11, H5S07, KM03, LA04, PKN10].

**Genetic-Algorithm** [WA02].

**Genetic-Algorithm-Based** [WSRM97].

**genomes** [KESA07, SPRG, 12].

**genomic** [HLS03].

**genre** [WIR, 18].

**geocast** [CL03a].

**Geographic** [AD10, LAGK07, SJS11].

**Geographical** [PFJ04].

**geographically** [ZWL03].

**Geometric** [Abr96, BMRC99, CDRC99, GM96, KV88, WPKK94, AG86, CMN12, KK06, MRS, 14, TSFZ14].

**Geometric-Decaying** [GM96].

**Geometry** [DRC90].

**Geomulticast** [AP03].

**GET** [HLS12].

**GET/PUT** [HLS12].

**GF** [KA91].

**GHSOM** [IZ12].

**Gigabit** [HcF05].

**given** [DDNS06].

**Global** [BLPV95, KCRB99, LWY97, LA93, MT95, MI92, Mat93, OK02, Par96, TG97, Van94, WT09, Yen01, AY89, Car90, CK08, DK04, GJG88, GVBB13, JLM08, Lm90, MS15, SK89a, VB08, WWW17a, Zh912, ZLZ18, dOCS14, YQTV12],

**globally** [CWP12, NZA13, LNA12].

**globally-aware** [CWP12].

**glueless** [RFPAG08].

**GMA** [ZFSo7].

**GMAC** [GZMC08].

**Gnutella** [BAL05].

**Goal** [CJ17].

**Goal-based** [CJ17].

**goals** [TdAR18].

**Godson** [PTK+13].

**Godson-T** [PTK+13].

**GOM** [YLBI+15].

**GOM-Hadoop** [YLBI+15].

**Good** [BEE00, DP99, SK94].

**Google** [DKC14].

**Goscinski** [BCC95].

**Gossip** [FCML13, AS18, FM07, LT10, WWW17a].

**Gossip-based** [FCML13].

**Gossiping** [FV97, GRV97, SGS08].

**GPGPU** [DFST13, OFGR+12, WGM13, YPCW16].

**GPGPUs** [AFK14].

**GPS** [AKBD10].

**GPS-free** [AKBD10].

**GPU** [YJL16, ARP18, BCMV15, BDRB14, BFKW13, BHS13, CSL15, CMMT13, CW15, DV13, DBA+, DFHH13, DCA+, Eme13, FSV14, FSV17, GMM12, GLW14, GKS15, GMS+, HV16, HI16, JGMY17, JDJJC+, K17, KKN13, KC17, LR14, LLY13, LST+, LPLMC+, MB13, MRT18, NFH13, PDP17, PDB13, RV13, Ren11, RMU14, ROB+, RRS+, Sch13, SS11, SCM13, SDG17, SA08, Ski16, SDG08, TH11, TSD08, TRS+, TY16, VBDRC13, VLB18, WLL16, WD13, WH17, XLH18, YLL17, ZMCP11, ZHI15, ZWQ+, dSAJ15, dMS18].

**GPU-accelerated** [DCA+, Eme13].

**GPU-based** [BCMV15, BDRB14, BFKW13, DBA+, GMMP12, PDP17, Ski16].

**GPU-Investigations** [Sch13].

**GPU-sorting** [SA08].

**GPUDirect** [ARP18].

**GPUs** [ASES15, AVA18, BBBC12, BBR13, BCK+, COV13, CNG+, DP16, G0H+, IBP08, J15, LMCLGL17, LW16b, LV15, MBW16, NSKN17, NOH+, PVR17, RGS08, SHT+, TH13, ZSW14, ZZG+].

**Graceful** [AA14].

**Gracefully** [BBR94, CGA98, LH92, RCB93].

**Gradient** [Bas97, BM08, GLW14, LR14, PB09].

**gradients** [McA89].

**GrADSolve** [VD04].

**graduate** [APV18].

**Grain** [FR92, LFA96, Mah95, NS97, SA93].

**GrADSolve** [VD04].

**Graduate** [APV18].

**Grain** [FR92, LFA96, Mah95, NS97, SA93].
CT94, FW05, GSWW04, PL03b, TKHG04]. Grained
[BR96, CDRC99, CLZ00, DFRCU99, HK96, PY96, SR97a, SR97b, WD94,
BM04b, CHLL18, FSD04, GVA+08, IKS87, IBP08, Man13, MPV12, ZCF+17].
Gram [ZLRP91]. Grammatical [RBB17]. grand [SIY14, SAB+92].
Granularity [CDH84, WCL+13]. GRAP [FGL+11]. Graph
[AYJ93, CCM01, CHGM01, GJP96, HJ90c, Kar95, KK98, LA95, MJS95,
OSZ98, SAOKMA02, TVS97, TLW94, WCE97, ZW00, BKC+15, BDKQ86, BCK+13,
BM08, CM03, CSJ+13, DeG88, DCA+15, GHC+17, HLM+90, KSSG14, LK15,
MPZ09, MMS09, NTTK17, PK07, PS14, RGAN18, R089, SSKR15, SW91,
SMT15, WCC02, WCH+17, YFBY17, ZCS+18, ZRQ93]. Graph-Based [CHGM01].
graph-partitioning [GHC+17, SW91]. graphene [KR14].
Graphics [BHS13, DDGK13, ATDH13, BK13, CLA+18, CBM+08, KL08b, KME09,
YP+10, SCB08, SIY14, ZMCP11, Eme13, GLGLBG12, YL12, YJL16].
Graphs [ANS97, AKPT99, AS96, AKP95, BS97, BP98, CP98, CA95a, CDF01,
DDD98, DS84, DH94, EMMM94, FA95, GY92, GS98, GSG+93, GS99, HOS94,
IZ95, JR95, JSS92, KK98a, KW02, KA97, OS97, PRW94, Par98, RDL95,
TL96, VB96, WIKC97, WLD00, AAK+13, ANP07, BC06, BKS05, BD05,
BCF14, BKC17, CD04a, CDCL10, CD10, DM17, FT04, GK10, HS14,
HS03, JPD17, Lith03, Lo92, LKB+15, MP10R05, MSZ05, NCA+12, NDK04,
PD05, PK04b, SS03, STMZ18, SP90, TBG+17, Ten16, TSNZ14, WWW17a].
Grasping [KR17]. Gray [BVB02, HHM94, HRJ94, JH94]. Gray-Scale
[HHM94]. Gray-to-binary [HRJ94]. Great [KF90b]. Greater [Ebe94].
Greedy
[KNS06, BGM+08, HDJ08, KWH13, LLS07, STMZ18, Ch090, Do08+15].
Green [DAPR18, AG12, BFI+17, WCL+13]. Grex [BK13]. Grey
[FGL+11]. Grid [AKPT99, BR02, BAK+03, Hua17, MD13, SDG08, TF01,
AAH17, CP10b, CCEB03, CGW+03, EJ07, FGZ03, JSJ+15, KRKS11,
KV10, LBE03, LFH+03, LL12a, LLWC17, LB09, MC03, PF04, SMB10,
SL10, TLQ12, VD04, WH17, ZV09b, dKG+10, AOS+05, ABCM07, BAS06,
CS06a, CTT08, CCN06, DB03, DW12, ED05, GBA08, KTF03, KV07,
KK08, LCC+05, LSH+13, LLY08, Li05, LL07, LTIK05, LS10, LTR05,
MCT06, RAB08, SJ12, SV08, SAOKZ05a, SAOKZ05b, SXX06, SSM+06,
SFE06, TYH09, TM06, TD07, VPHLM06, WS06, YT05, YWD08].
grid-aware [FGZ03]. Grid-Based
[BR02, CP10b, VD04, KK08, GBA08, LLY08]. Grid-computing
[BK+03, SAOKZ05a, SAOKZ05b]. Grid-enabled [KTF03]. GridBench
[TD07]. gridding [GOH+13]. gridding-accelerated [GOH+13]. Grids
[CCCM96, HKMU98, HOS94, ACFK07, ARDQ18, BMT12, DJH11, GVBB13,
GRDB05, GM14b, JV09, LKS14, LL10, MIT07, PHS04, SMO14, YZS15,
AAD10, ABCM07, GTN+06, GJ108, NGO06, SNCP12, TZ06, VB08, WW03,
WLL08. grooming [FMM+08, WG08, WCL+13]. Grøstl [ABO+17].
ground [BFKP04]. Group [CWZ+18, KKLJ14, LLW12, RGVB00, CJDC10,
CHC05, Dim91, EDH+17, LC14b, LHT08, dAMFds13, MM07c, TC13, XO05].
Group-based [CWZ+18, KKLJ14, TC13]. group-shared [LHT08].
Grouping [CWP98]. Groups
[Oru87, WLD00, ARDQ18, CHC05, GCS06, LKM12, MS05, Ros89, WLZ+18].
Growing [CRFS94, WLR90, IZ12, MGG03, OGRV+12]. growth [WCKD06].
GSM [TM06]. GSPN [CCM92, CCM01, SM92b].
Guarantee [JM14, MZZC12].
guaranteed [HWWH08, LNA12, LNAL17, NGQM12, PY09a, WCWO17].
Guaranteeing [Sch91]. Guarantees [MS00, OY00, ESCV15].
Guessing [DKY01].
Guidelines [Ano00d, Ros99].
h [CP04a]. HA03094L [Ano04e]. Hadoop
[FRM15, GYY+14, HWL18, HWLR14, YLB+15]. Half [RS94]. Half-Duplex
[RS94]. Hamiltonian
[DP98, Hsi04, HBAD15, LSC00, LLFJ18, Nik04, Wan01a, WCC02, YTH07].
Hamiltonicity [THTH02, Ste17]. handheld [WL04]. handle [RK18].
Handling [BW09, CVJ09, SYG92, KVA18, KV10, RN+12]. Handoff
[SK05a, FCZ+12, ZBR11]. Happened [HCR12]. Happened-Before
[HCR12]. happy [KSSK16]. Hard [DJ98, GFPC14, BRR01].
Hardware [BK18, DGNW13, GS00, MD01, MCAS12, RPS93, SCC+06, SHA17, TF92,
Theo2, TH08, VH93, Zsa16, ABC+09a, AF06, ABO+17, BDM18, BJ03,
CV16, CGC16, CP17, CM12, FWM+10, GKS15, GYA+08, HDJ08, Hus17,
JJ12, KDO+13, KC17, LMSK18, MTM10, Nik03, NAK04, PVG09, PAG+18,
QGZP17, SV18]. Hardware-accelerated [DGNW13, Zsa16].
Hardware-Efficient [MD01]. hardware-generated [MTM10].
Hardware-Only [GS00]. hardware-software [CV16].
Hardware/software [SCC+06]. hardwares [SKH15]. Hardwired [DM88].
harmony [ES12]. HARNESS [MSS00]. Harnessing [MTL+18, VPHML06].
HARP [SSB98]. harvest [WS06]. harvesting [RB12]. Hash
[LACJ18, SX08, TT10, ABO+17, HKW05, SRT+18, TC04]. Hash-based
[SOX08]. hashed [HSMB91]. Hashing [WPKK94, YB95, HDCM11]. having
[BSM08]. Hawkeye [ZFS07]. Hazards [AGG98]. HBS [CK13]. HCL
[ESGQ+11]. health [ZAAB17]. healthcare [SMW18, VS18]. Heap
[DP98, ZK94]. heat [LGG08]. Height [LP96a]. Height-Limited [LP96a].
Helary [Ano96]. Help [IR12]. helper [DKR10]. herd [KS18]. Hereditary
[CDF01, Hsi04]. Heterogeneity
[Las12, Las13, XLL15, BKS05, CL03b, LpJS+18, XQ07].
Heterogeneity-driven [XLL15]. Heterogeneous

[ANT02, Ano97k, BSS97, BPR99, BSs99, BF99, CA94, CEF+95, DAYA02, DBP94, EKNS97, HS94b, HC97, KL01a, KRM14, LAS+97, LHHB+01, MAS+99, MSd+95, MP96, NRS95, NDZA99, PP92, SC91b, WR97, WSRM97, WMC+18, Won99, YZS96, ALM+16, AAD10, Amn16, ALF03, BKC+15, BD05, BCFF05, BR08, BRP03, BKCM17, BEN12, BH05, BSMM08, BSS+13, CSW08, CCK+08, CCK11, CDR09b, CGW+03, CJ17, DK08, DK11, DÖ06, FMR05, GQZ18, GRV08, GNT04, GZY14a, GWWL94, GAOHG17, Hus17, JST12, KHN17, KUA07, KyLPC17, KSG13, KSS+07, KAS07, KN18a, KN18b, KMS+06, LK17, LR06, LLL06, LLKY13, LMR05, LL12b, LDP+14, LLY15, LNAL17, LPX05b, LV15, LFGM17, LLL07, LXZ13, MGSG12, MV05, MTS90, NFD13, NHFL13, ND12, NP09, OPR18, OJ+18, PKN08, PKN10, PTA08, PLA08, QJ05, QGL+09, REK10a.

heterogeneous [REK10b, RGAN18, RN04, SSFP11, SSM+16, SS11, SX08, SCs+08, SCMS12, SZMK13, SHL+13, SSM+06, TLL10, TLLV10, TFMS15, TG03, UAK06, VLB18, VBF13, WQL14, WTW16, WSG91, WJ12, WG11, WYTX13, WJ14, XLHT13, YLL17, YH07, ZMG+16, ZTFK16, ZLWZ18, ZSCX18, ZHLQ12, VBF13, SFAD17]. HeteroMPI [LR06]. Heuristic

[BA92, DDD98, EHMN95, KLZ97, XH93, DK11, HS06, KJD03, KKS+12, PKN10, PM05, SWP90, VB08, YFBY17]. heuristic-genetic [DK11].

Heuristics

[BSb+01, GY92, GP96, IAS+92, KUA07, TSC01, AKSM08, JST12, KA08, LLS07, ZHO03]. heuristics-based [KA08]. HEVC [Lla17]. hexagonal [GSSS03]. HHI [YP96]. HiCOO [YQTV12]. hidden [HB11].

Hiding

[HF02, WI92]. Hierarchical

[AG94, Buc92, BM95, CAB94, FR96a, HR92b, HR92a, yHY97, KZ96, LLJ00a, MS00, MD13, OM90, SHT+95, TM06, TJ92, TN48, TW89, TTH12, VSIR91, WHT00, YQTV12, YPF96, AAAH, AGMS04, BJS18, BM12, BSB06, CKO04, DE91, DM04, EDH+17, GHY10, IZ12, LK13, LTL06, RH05, RR05, SS05, TLQS12, WCW017, WLL08, ZZ90, dSS11].

Hierarchical-Memory [VSIR91]. Hierarchies [VN93, BW89, DTK11b]. hierarchy [Pad91, WYTX13]. High

[ABDS02, BJ99, BBH+97, BYG+18, BNSP99, CLA+18, CY99, CD98, DS02, DYL+12, DB18, FGK79, FC14, FM99b, GP93, HES10, JSCB95, JLD97, KMK97, KS95, KRS13, KRS01, LC97, LS01, MR94b, MB+17, Nce17, NKC+97, NTC03, PF08, PVP09, PB+17, SWHB17, TF92, TMM06, VFAD17, XMD17, AM13, AR17, AB03b, AGWY11, BSW07, BDLD09, CCC+04, CBP02, CVK+18b, CTX08, Cuz11, Cuz13, DK08, DB08, DF12, DAB+14, DMS+16, FHL+15, FGPO5, Fu10, GOH+13, GTN+06, GMSS+11, HOE+09, HRG+11, HC04, HT90, HVW16, IQC+12, JBY+05, KVN17, KSB11, KME09, LMSK18, LWR+03, LSXX14, LB18, LVBO7, LZL06, MSGS+13, MZC18, MG09, MLK12, Nap90, No12, NRM+09, PK07, PGKV18, SPRG+12, SD91, SC04, SAB+92, SA11, SR91, SADSS13, VAS+13, WRW13, ZW13, ZWQ+16, dAT17, MMVL11]. High-Availability [LS01, Fu10].

high-dimensional [HT90, PK07, WRW13]. high-end [FGPO5]. High-Level
[BBH+97, KRS13, KRS14, BYG+18, CCC+04, DMS+16, SGdSS13].

high-order [KME09]. High-Performance
[BNSP99, CY99, FGKT97, JLRA97, KMKD97, KRS13, KRS14, KRS01, PBB+17, NTC03, AB03b, CBP02, Cuz11, Cuz13, DF12, FHL+15, GMSS+11, HRC+11, HCZ04, ICQO+12, JBY+05, LWB+03, LSXX14, LB18, LV07, MGS+13, NRM+09, PGK18, SD91, SC04, ZW13, ZWQ+16].

High-Priority [TF92].

high-resolution [GOH+13].

High-Throughput [FM99b, CLA+18, BSW07, HW16]. Higher
[GSSS03, HS17, AM06].

Highly
[BDHF90, CAB94, DF17, Joh94, KHT+14, MD01, NKC97, VH93, WIKC97, AFA13, ATH91, GV86, SM08b, SMT15, Ter16]. Hint [CK13]. Hint-based
[CK13].

Historical
[SFT04].

history
[WBTM09].

Hints
[GLC14].

Histogramming
[BJ96].

histograms
[CL14].

historical
[SFT04].

history
[WBTM09].

HLA-based
[DB11].

HLR
[FCF00].

HLS-based
[MH18].

HMIPv6
[CKML12].

HMVFS
[HLHZ+18].

Hoang
[Ano92c].

Hoc
[Ano01e, BDF01, GSO1b, LAZC00, Pat01, RBP+11, TM10, AP03, AH11, AH12, ALF03, BFG+03, BM11, BGLA03, BOP06, BN03, Bon03, CNS03, CW05, CY206, CDCD05, DW06, DMB+03, DB08, EBE08, FCW11, FVCL05, FGL+11, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LR03a, LPX05a, LW06a, LHW14, LC14b, LR03b, LHT08, MMN+04, OSL05, OM10, OMSGN05, SNC12, SSM+06, SGS08, SKMM04, SJS11, TC13, VA03, WTB+08, WGS08, WBTM09, WHS+18, XHG03, XWC+08, XG03, YC04, YSS11, YWW12, ZMC06].

HOG
[RBG17].

hole
[LZC11, PSC+16, SGAC14, YDZ+18, dOBG+15]. holistic
[WL10, ZHH15].

Homogeneous
[LS97, BM17a, CRJ10a, BGS86, OOSGVG+16, SCJ08]. homology
[DKKV15]. anomalous
[AA+15].

Honeycomb
[BPRS04]. honeyfarm
[JXW06].

Honeypot
[KMMZ06].

hop
[BSW07, FCW11, FCZ+12, JLWX11, JM14, MAM05, MPV12, NC09, RFS+12, RB12, YMG01, ZMG+16, CSW+17].

Horizons
[BP95]. host
[LLWC17]. host-based
[LLWC17]. hosting
[SSVC10]. hostload
[DKC14].

Hot
[KK94, NS95, TY90a]. hot-spot
[TY90a]. hotspots
[ML05].

Hough
[BA95, CP91, Fe19, GZ97, JS94, SSL04]. Householder
[BDG+15].

HPC
[AP18, CVK+18b, ECLV12, GYAB11, NKSA17, NC13, PCLP16, uRIL+18, RBA+18, RMHR17, ROE+18, SCB09, WMES12, YFS+15]. HPF
[BCF+94, CA96, HLJ01, KHS96, SS00]. Hull
[DFRCU99]. hulls
[GS03a].

human
[CWZ+18, WDS+18]. hunt
[MP15].

Hut
[SHT+95].

HW
[RBG17].

HW/SW
[RBG17].

Hybrid
[BJL18, DBA+18, Dha99, DR18, FA07, Gao93, LWG14, NBM03, OS93, PA15, VD18, YS11, ZLH+18, ALM+16, AC89, BAMM05, CCQ+06, CB05, CJ17, DK11, FX06, GLC14, HZL18, JAB12, KS18, KSJC17, LY13, LH+18, MBS+12, MKK+11, No12, PARB14, SCS+08, SHLN09, SSL04, SA08, TY17, WLL16, WHW+17, YLL17, ZFT+18, MMCL+17].

Hydrodynamic
[HC97],
Hydrodynamics [PAH+98, VBDRC13]. Hyperbolic [SSK96].

hyperconcentrator [CL90]. hypercontexts [LM05]. Hypercube
[AGF94, AM93, BKT95, BC94, CS93c, DP98, DMSH90, DRC90, DFN+94,
FAM96, FPD93, GGD93, GT97, GBG93, HGCC96, IK93, IK94, JR92, JB98,
KB96b, KM91, Lan94, LH92, LLJ00b, LEB98, Man94, MP93, MW95,
MYD95, NSL99, NT93, Nas94, OM90, RS94. Raj96, SYO94, SCC92, SY01,
Sto90, TLW94, TL96, TC92, WIKC97, Wag93, Wag94, XMN92, YP96, Zia92,
Cap87, CS06, CS10, DE91, Efe91, EAL90, ERS90, Joh87, KAP90, LNS90,
LSS88, LS91, MVN04, MAR87, RS90a, RS90b, RJZ90, SW90, TMK+17,
T91, Wag89, Yan04, ZLRP91, NY92]. Hypercube-Based [Zia92, DE91].

Hypercube-Connected [Zia92, DE91]. Hypercube-Connected
[LH92]. Hypercube
[AD95, AERBL92, Ann94, CL93, CCCM96, CS95a, CCR94, Efe96, Fag92,
FM96, Fra92, GP00, GH93, HM01, HOS94, Kav93, KF95b, Li92, LBT94,
LR95, LT96, Moh97, OD95a, OP96, Pel95, PM92, RS96a, RJMC95, SHL95,
SR95, TT98, WW97, Wan01a, Wa94, WFL98, YTR94, BG90a, BM04a,
BOS+91, BL89, CL91a, CL91b, Che05, Ede91, FT04, GT04, GNW03, HNSA07,
Ho91, HRJ94, LW90, Lai14, Lai17, SS89, Var91, WIB12, Wu85, Wu03, XCS06].

Hypergraph [DKUC15, ACU08, CBD+09, DHK04, KJD03, TK08]. hypergraphs
[STA12]. Hypermeshes [OK01, Szy95]. Hyperoctrees
[DFN+94]. Hyperplane [HS93]. Hyperreconfigurable [LM05].

hyperspectral [PVPM06, Pla08]. Hypersphere [AM93]. Hyperspherical
[RLP14]. Hyperstar [AAD98]. hypertree [LTD+93].

I-Caching [MM93]. I/O [AW95, ClkLCKO4, ClkLCK05, Cho93, CQ95, CD95,
DD93, DT01, DLW+12, DJT03, EH01a, GGD93, GFPC14, JSCB95, JSWB92,
LTH97, MLG05, NSS99, NsPPC02, No12, WHW+17, WLWW09]. I/O-Intensive
[EH01a, ClkLCK04, ClkLCK05]. IaaS
[LQM+12, NC13, NKK16]. IBM [ASH+01, BAHP01, BR95b]. IC [CMR10].
IC-scheduling [CMR10]. IceCube [AAA+15]. IceProd [AAA+15]. ICS
[HM+18]. ICT [CTS17]. Id [HCAA93]. ideas [Sch14]. Identification
[CS05b, EBE08, FCC07, MMN+18, ZAAB17]. Identification-
[CS95b]. Identify [XYG07]. Identifying [HS03, LT10]. Idle [CW93, CM92]. IDOS
[BA01a]. IEEE [Ano93a, BCD00, FA07, HB11, VHH08, ZBR11]. II
[HR92a, KHT+14, RLA+17, SMO14, SAOKZ05b, SR97b]. III [CP10b]. ILU
[SZW05]. Image [BJ96, BM95, ELS94, HSJP87, HC95, KSL95, KCS95, LW97,
MWL00, MG98, NEG95, OS98, RS90a, SG87, SR94, SD88b, WS95,
ZM94a, CDJ+89, CCN06, GSWW04, HLBM16, IKS87, Kep03, KM03, Lee91,
LMK12, LLS+16, MGG03, P90, Pfe90, Sto97, SA90, UAPM07, Wan07,
WRHR91, WJD91, WGCZ09, dAT17, FC14]. Image-Processing
[KSL85, SD88b]. Image-to-Mesh [FC14]. imagery [PVPM06, Pla08]. Images
[SYO94, Ara90, CL85, DH91a, NAK04]. imaging [KDO+13]. Immediate
[Ksh12]. immersive [MBH+08]. immune [HD10]. Impact
[Buc92, Cle00, Tze91, YAA10, GSWW04, HHS12, HRF+11, MLG05,
RBP+11, SFT+13, SYYU07, WCF14]. Impacts [PCX+11, PCX+14].
IMPATIENT [GOH+13]. Implementation [ABGV11, AS95, BAHp01, BHS+94, CP91, CP92, CS95c, DM90a, DBKF90, EP90, HS97, HBH93, KM91, MSS00, NT93, NsPPC02, OS98, OP98, PAJC97, RL02, RW01, SD510, Shu95, SM00, Ski96, SE15, SOG94, TV092, VBM90, XMN92, YB01, ADV14, BFTV87, BG89, CEGS07, CP10b, CWP12, CP93, CPO03, FGG08, GKS15, Gro85, HES11, HVW6, JK89, JM15, KHT+14, KTF03, KA91, KP05, ML89, MCAS12, MP10, MML07, MRT18, MO05, OGRV+8, PLDS7, SM08b, SA11, Sol13, SMK13, TR93, T787, TdAR18, WXC+08, YO11, dLAMCFN12].

Implementations [DT01, KL84, SAC+98, WPKK94, BCM06, BRPR06, GNS09, IQOO12, Tat11, TYA16, YBM13]. Implementing [BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17].

Implications [AH94, BS96a, GTN+06, HKK+18, MT96, MG93, SH92b, TSA97]. Implicit [BAM03, Fre96, HWL18]. Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. impossibility [AP16]. Improve [CB902, DS95a, SKH66, CDR99a, CSW+17, GLC14, VRM10]. Improved [AM97b, AS91, CLZ02, Che95, CP10b, DL98, FT04, GJP96, HSH10, JR95, KLC05, Mii99, PB95, TC13, Tsu07, Wor93, Ara13, Bad04, GMVRG16, TDC05, dLAMCFN12]. Improvement [yCM98, IAS92, CZZ+17].

Improvements [GCP+00, WSS93, DPSD08]. Improving [AM13, AHG12, CLG+16, CRWX12, CKWT17, CAF+11, Dah99, DK04, GT02, GYY+14, GP05, GMM00, HHK15, Kan05, KZ11, LTL06, MB08, SLKK12, WTB+08, AA10, CCK88, SAL10, SK11, YF09, MMCL+17].

IMSuite [GN15]. In-Memory [SLL18, LHZ+18, VETT18, ZKZF18]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10]. inclusion [Kak15, RFPAG08, dLS18]. Incomplete [OD95a, PK04a, SCD09, TC92, CASD18, GLW14]. Incompletely [BSG190]. inconsistency [Ram89, TK07]. Incorporating [AISS97, VWHL96, WTY+18]. increasing [RS08]. Incremental [ESCV15, ZN01, LY08, LRS18]. incrementally [SSB91, YC12]. independence [GK10]. Independent [BSB+01, Ger98, HAG97, MAS+99, NMS93, PS93, WFZJ12, AFD+11, AK06, AY09, CL91b, CFJW13, EB13, HAC17, Li06a, LH90, LB09, SSL07, PDB13, SSM+16, SB12, SZW05, SSM+07, WCF14, WIB12, YWD08]. independent-gate [WCF14]. independently [XCH08]. Index [Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99d, Ano99e, Ano00b, Ano00c, Ano01f, Ano01g, Ano01i, Ano01l, Ano02c, Ano02d, Ano03a, Ano04b, Ano04a, Ano08, Ano09, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k,
KHS96, SSHC00, Ano03b, KN18a, KN18b, LSZZ15, PCLP16]. indexes
[OC07]. indexing [FKJG08, GZ08, WIR+18]. Indian [Nee17]. indirect
[Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08]. Inductive [Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08]. Inductive [Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08]. Inductive [Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08]. Inductive [Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08]. Inductive [Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08].
Interconnection [AAD98, AA95, BETD94, CW01, CJA09, DYZ96, FD86, KRSZ92, KAM94, L95, MLW+97, MSH90, MC93, MJ94, OM84, O085, Pad93, PL93, SW96, SZB92, Szy95, TH02, Tze91, VB96, Wan96, Wan01b, Wil92, YWP00, ZMPE00, ZW00, dBL95, ARI17, BM14, BDjQ86, BHR91, BR91a, Bhu87, BJ15, BR91b, CM04, COO85, CS06b, DE91, FJC04, GJ12, Har91, JBM91, KMC16, KRL87, LK90, LK91, MHBW86, Pak89, Par05, PW16, PW17, PMCC18, SS91, SL89, SH89, WCC02, Wil90, W01b, Wil90, ZDC06].

Interconnections [LLJ00b, SL97, THN+93, Oza04, YB90].

Interconnectivity [DSD+97].

Interconnects [ES97, HP00, MO97, MG93, PEC95].

interdependent [SNCP12].

Interdisciplinary [NKSA17, CCE+17, Hua17].

interest [Ano16l, REZN17, CTC11].

Interest-Intended [CTC11].

Interface [BAHP01, BF97, DH+97, CD98, IWM97, PS01, RS92c, JM15, NSDZ18, KTF03].

interfaces [NGQM12].

interference [BPRS04, GZG+17, KDH08, WHS+18].

interference-aware [KDH08].

interleaved [NC09].

interlock [CCK88].

intermediate [YYLC11].

Intermittent [DT02].

Internal [Ba90, JZK04].

International [OY13, Ros07, Sni03].

Internet [Bar05, BJ18, CMPS18, DAPR18, ECP+18, HMY+18, KA08, MXSL12, MZZC12, PJ18, She09, TB90, WHC+18, WLID02, WCH18, X005, YWJ+18].

Internet-based [She09, XO05].

interoperability [AZW13].

Interplay [ZXGD18].

Interpolation [CWW95, Goe94, SAOKMA02, Nic07, PHS04, Sch89b, SDG08].

Interpretation [FAGW95].

Interpretive [PH00].

Interprocedural [HHKT96, CK88].

Interrupting [AST12].

Intersecting [FSV17].

Interval [CI03, PT01, Sch87, BBCQ13, MHLZ16, Sta04].

intra [GM13, Kan05].

intra-node [GM13].

intra-procedural [Kan05].

intrachip [MC13].

Intrinsic [PAS15].

Introducing [CCE+17, Ada17, BLZ+18].

Introduction [AP93, AL99, AB03b, Ano01j, Ano01k, Ano01l, Ano02, Ano02g, Ano02i, BD00, Cas93, Che92, Cho92, Cho93, DOP98, ES97, GGB93, Gau06, GC95, Her92, JW94, Kri92, KRS14, Lin93b, LK11, LR05, MC93, MG93, MGS+06, MK14, NT90, OW01, PN97a, PN97b, PA96, PRS14, Sch90, SH92a, Sto90, BG90b, TY95, IB04, TFV+15, WW03, WC05].

introductory [Bog17].

intruder [ISAZ07].

Intrusion [BN02, WL11, LLLY08].

invalidation [OF03].

invention [MC03].

inventory [GAOHHG17].

Inverse [CTZ99, Lla17].

Inversion [SW96, mYyF92].

inverted [WJ12].

Investigating [LCB16].

Investigation [CD95, GKS15, PHW+13].

Investigations [Sch13].

Invited [Ano01m].

invocation [BBB+06].

invocations [BVG14].

IoT [DBW+18, GRZ+18, LWWQ18, PH18, SCW+18, TODQ18, VS18, XYW+18, ZXR18].

IoT-based [XYW+18].

IoTDeM [LWWQ18].

IOV [DYL+12, GRJ+15].

IP [HZY04, HC09, J09, JBY+05, KERUM04, LAZC00].

IP-Based [LAZC00, JBY+05].

iPACS [KR14].

IPDPS
iPSC [DHR96, FPD93, SMKL93]. iPSC/2 [FPD93, SMKL93]. iPSC/860 [DHR96].

Irregular [Mue13, Pan09, Phi13, Rob09]. iPSC/2 [FPD93, SMKL93]. iPSC/860 [DHR96].

Irregular [VPHML06]. IPv6 [WZ13]. IRISGrid [KNHH18, SSFP11, SPC17, SM08b]. Island [CGKK97]. Island-Based [CGKK97]. islands [dGP06]. islands-based [dGP06]. Isomorphism [GS99, KW02, Pla13]. isosurface [WJV07, ZB09]. Issue [AP93, AL99, AS13, Ano95i, Ano96j, Ano96i, Ano97j, Ano99g, Ano01e, Ano02v, BD00, BS09, Chi92, CDJL09, CDJL11, Dop00, DT92, ES97, FTM+14, FR98, GC95, GMSS+11, GS01a, Gra09, JW94, KRS13, KRS14, KRS01, Lan09, Lin93b, LK10, Mir91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, Sch90, SLL18, SH92a, SB97, Sto90, SFC17, TFV+15, BG90b, TY95, Wee01, XMMD17, YW91, ZO97, AB03b, BOP06, BS11, Cuz11, DB18, DB18, FPS11, FPS12, Gra10a, Irw88, IB04, KRS01, LZ11, Las12, HK01, MKN14, PRS14, RLA+16, RLA+17, Raj08, SXZ06, TH11, WW03, XJS03, dVCP06]. Issues [Ano95], Ano00e, Ano00f, Ano00g, Ano00h, Ano00k, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t, DVW94, MFS93, Nie94, FS01, THBF97, BAK+03, GGY+04, TB99]. Item [AAP01, San99]. Items [LT10, ST14]. Iterated [KHW13]. Iteration [BW96, CC87, RS92a, YBX+13]. Iteration-level [CC87]. Iterations [AR97, CASD18, YS11]. Iterative [Bal00, BSS99, CTD09, CHR94, CG10, ESMG96, IPK85, LPX05b, ÜD96, WB96, BRBL14, CF88, CRC+02, FGG08, KMS+06, NVK+11, VGAB08]. Iterator [Lon04]. iTPS [TDC05].

J [KN18b, LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Jacobi [CASD18, EP90, HBAD15, HS17, MV91, MV94, RS08, ST87, TAYA16, ZB97]. Jacobi-Type [MV94, MV91]. James [Ano92c]. Janus [DMG18]. JAVA [MSS00, AST12, AFT+00, BVGV14, CCK+08, Dek00, GCB+00, GLC01, HR00, HS00, JM00, MWL00, SCB09]. Java-Enabled [MWL00]. JBSP [GLC01]. JDP [MSGS+13]. Jean [Ano96i]. Jean-Michel [Ano96i]. Jerzy [Ano96i]. JESSICA [MWL00]. JMX [JM00]. Job [FKSW97, Li05, TDBL13, DBA+18, EHL+15, FCC07, GRDB05, GMVRS16, GYY+14, LC90a, MLK+16, MS86]. Jobs [CB02, CL91b, HSH10, LYW+16, LF03, MLG05, QJ05, SF05, SHC14]. Join [HTL99, LT94]. Joins [CG86, CTKA17, CKWT17]. Joint [AAA+10, AF06, ABF+14, LYW+16, LZLX11, CCA18, DGD+11, ZY12]. Jones [NHO+13]. Jordan [Dav17]. Josephus [LH05]. Journal
[Deh90]. **LARPBS** [dR09]. Last [Tay02, RFPAG08, SS17]. last-level [RFPAG08]. **Latency** [GS00, HF02, KUFM02, LDZ+14, MR94c, MG91, RJY96, THGY15, ZHY94, CRD12, CM12, Dav17, IS06, KS03, NCB+17, PRHB06, RM11, SLKK12, TVT+17, WL92]. latency-tolerant [NCB+17]. **Latency-Tolerating** [GS00]. lattice [AVAH18, GMS06, IBP08, WCO+19]. law [NZ17, SC10, CN14]. Laws [FLS+97]. Layer [BNSP99, KNS06, PKW+10, WCL+13, dIAMCFN12]. Layered [DDD98, SSK96, CI03, LHF91, LL12a]. Layers [ZAW94]. **Layout** [MB96a, KMC16, LGK+12, MLG05, Str12]. Lazy [GSC96, MYD95, DS04b]. LDU [MVV91]. LEACH [NSA11]. Leader [AS96, SS05, DLV11, DGDF10, Pel90]. Leaders [SK94]. leakage-aware [KK11]. Leaping [KM17]. Learning [BM11, CW92, MBG+17, WT92, AC89, CXQ+18, EM11, HSS17, HKK+18, HHK15, KCFP18, LGZ+10, LHHH11, MS86, MCZ14, NZA13, OPR18, PSGS17, RT18, RSCQ17, SM08b, TXLL14, TM10, Tor89, Upa13, VM95, WRW13, WDS+18, XRB12]. learning-based [MCZ14, RSCQ17]. Learning-TCP [BM11]. Leashing [DHS06]. Least [CB95, HLS03, KAP90, ZYO02, SMKL93, TBZB05, XBK07]. least-mean-square [XBK07]. Least-Squares [CB95, ZYO02, HLS03, KAP90, BBd90, SMKL93]. LED [MLW+97]. Lee [BV02]. legacy [LWR+03]. Legion [LFH+03]. Length [BL94, KP17, MP08]. lengths [KIH15]. LEON3 [TdAR18]. Let [CVK+18b]. Level [AC16, BBH+97, BSS97, CD98, GS98, HKT+91, HW96, Kav93, KOW97, KRS13, KL84, MR94b, MHC95, Qia97, RP95, SSHC00, SKB90, AY09, ACU08, BBH+17, BYG+18, CCC+04, CLMR15, CC87, CTCX08, DAB+14, DMS+16, FLCB10, GAC+17, HES10, IKS87, LC14a, LPLFMC+12, MAJJO5, MEMEMH17, OWM14, OMT+17, PRHB06, Pfe90, Ren11, RFPAG08, SS17, SGDSS13, YSL08]. level-set [HES10]. Leveled [PRW94, BMIM07]. levels [Kum17, Li16, Wu03]. Leveraging [SSFP11]. LeWI [GLC14]. Lexicographic [AMS94, DT97]. Lexicon [Haw97]. liberal [NDW17]. Libraries [KBC+01, ZRC99]. Library [BMCP98, CJ99b, DVW94, FKKC97, GLC01, HW96, SKH96, HZHS18, LR06, LGK+12, RR05, ZSW14, VFA17]. Library-Based [FKKC97]. Life [HJSF87]. lifetime [HP06, LL12b, Li14, Lzc11, VRM10]. lifting [IIH16]. lifting-based [IIH16]. Light [RGVBO, Koe91, PR12, Wan06, WZZ+17, ZFT+18]. light-trails [PR12]. Light-Weight [RGVBO, Wan06, WZZ+17, ZFT+18]. Lightweight [HS00, MFS+13, Cl09, KP17, Kim17, MP10]. like [CP10a, CTC11, CR96b, GL90]. Limit [MO97]. Limitations [BKS91, LS97]. Limited [yHY97, LP96a, LK98, BSK05, DW04, SSGG18, VS16, WTB+08, Zsa16]. limits [DW04, dSS11]. Line [BDKM94, BMMS01, DGBN14, LTY96, RR95b, Yen01, BS92, DMCFCM03, DJ98, EL88, GH89b, GC07, KM88, LHK03, SSL04, SL90, ESGQ+11].
line-sweep [DMCFCM03]. Linear
[Bah00, BBM+02, BMM97, BCZ95, CDH84, CCC92, DVW94, IPK85, IK94,
KL01a, KF95b, LP97, PM96, Pov99, RFM94, RS92b, ST89, TBPV00, ZZC92,
dR09, BGH+03, BAH04, BPP05, Car90, CM03, CEGS07, CP10b, DS04a,
Dja06, FHL+15, GPT06a, GRV08, Gao86, GS91b, HR89, ICQO+12, Job87,
KKVI05, KT89, LMXJ18, LKD14, MP88, MP87, MVB05, MRT18, NCTT09,
TFMS15, Ter16, XYZW14, YTH07, YÖ11].
linearizability [KKW17].
Linearization [FZVT02]. Linearly [BBd90, PB90]. Lines
[HKMU98, Wri91]. Link [GDP08, MLV+97, SJS11, VR94, VR95, WFL98,
FCZ+12, LST17, MCAS12, MVP17, RH05, SW90, WTS03]. link-bound
[SW90]. link-selection [RH05]. linkage [CPO+03]. linked
[Han89, HA05, ST08b]. Links
[AaJS01, KJ84, RS94, WW97, Wan01a, AGMS16, KPR88]. Linpack
[Num07, Num08]. LinuX [LACJ18, BP01]. Liquid [SWHB17]. List
[BBH+98, SP96, SGS99, TLLL10, FPF14, Han89, LPX05b, Vis87, WLL16].
Lists [BP02, VSIR91, ST08b]. live [GRJ+15, WMES12]. Load
[Ano97], BEE00, BM08, CS93a, CRL04, CLZ00, DBH02, DMB97, DLLX97,
DSW94, Efe96, EE05, FMP98, FL$^+$97, FM99b, GK98, Gli94, GM96, HS97,
HLLY95, HLT99, HO94, HC97, JR92, JW89, KGV94, LK94, LHVV95, LT94,
LI98, MDD97, MP96, NSLK99, NFE97, OB98, PB99, QY94, SBC12a,
SH92a, SHT+95, SB97, SBAM96, TSHH01, TT98, Wan96, WS97b, XYK08,
XL92, XH93, XL95, ZLP97, ZXP09, ZM94b, vS91, AES11, AGMS04.
ACCP12, ASE15, BCV05, BFH09, BFMT+18, BRPR06, BD04, CSW03,
CBD+09, CV09, Cho90, CRC$^+$02, Cyb89, DB11, DLW+12, DW04, DM94,
GRV08, GLC14, GC05, HJ90a, HLM$^+$90, IC05, IS06, J05, J11, KNNH18,
KK08, KC04, LTB02, LTL06, LHL03, LY91, MLDG12, MPV12,
MV05, MTS90, Mit07, MGG03, NHO+13, NK03, PC11, PA04, RN04, SU87,
SB15, SX08]. load [TBZB05, TKHG04, TLL+18, TTV+17, YJL16, YAA10,
YMLP14, ZV06, ZSW14, ZLMC14, dG91]. load-adaptive [TKHG04]. Load-Balanced
[LT94, NFE97, XYK08, YMLP14]. Load-Balancing
[DHB02, FM99b, HO94, HC97, Wan96, SB12a, ZXP09, NHO+13, YJL16].
load-sharing [SU87]. Loads
[KC95, VB02, CG12, GRV08, HV13, KVA18, LML+10, MV05, ZV06].
Local [AD02, BSS99, BCD00, CGL+95, FLS$^+$97, HR00, SR94, ADD17,
AK07, BMAW05, CKN07, GJG88, GTGLSA12, GNZ18, LMJC11, MS88,
MAR05, ROB+18, Sch13, WWW17a, XSS06]. local-spin [AK07]. localities
[GJXZ05]. Locality [BS96a, CL96, FJG06, GXYZ13, JL11, KR06, KRC99,
KR06, MNB95, SCM99, SHT+95, EHL+15, FP06, Kan05, KR06, LL13,
Ozt11, SD07, SKK14, SRT+18, WLL08, XCL03, ZWQ+16].
locality-aware [EHL+15, SKK14, XCL03, ZWQ+16]. locality-cognizant
[LC13]. Locality-sensitive [JL11, SRT+18]. Localization
[DFP06b, AKBD10, CCW14, CRWX12, DLL11, LDS16, MKM16, WDS+18].
localized [Cal06, KNS06, LS03]. locally [AMK+07, LFZ+17, XHZ16].
locate [DWX10]. located [SB12a]. Location [KER01, Li17, LS03].
LAGK07, MMRS98, XCLR07, ABF+14, BJL18, CZ90, DBW+18, HCM11, LLDL15, OJP+18, TZ07, TZI11, TDC05, TR16, ZMC06, ZHO03, dOBG+15].

**location-aided** [ZMC06]. **Location-based** [LS03, ABF+14].
**Location-centric** [XCLR07]. **location-free** [dOBG+15].

**Lock** [DR98, SSdlB+10, ST08b, CB06, Dim91, HSY10, HA06, ST05, X05]. **Locking** [MS98, XO05, DM04, LZX11]. **Lock-up** [SD91].

**Locks** [JNW96, AFA13, CG10, UBES10]. **Lock-free** [SSdlB+10, ST08b, CB06, HSY10, HA06, ST05].

**Lock-up-free** [SD91]. **Lockup** [HZL18].

**Lo`eve** [FSD04]. **Log** [NTA96, ZFT+18]. **log-based** [ZFT+18].

**Logarithmic** [Nas94, OOW95, AF17]. **Logarithmic-Time** [Nas94]. logging [CZZY09, DWG03, JLM08, MMCL+17, MMCL+17]. **LogGP** [AISS97].

**LogP** [AISS97, BHPP05, RGD03].

**Long** [AISS97, GO95, LKM12, Lin93a, NV95, LKM12]. **long-distance** [TDC05].

**Long-term** [LKM12]. **Longest** [MS99b, PK04b]. **Long-term** [LKM12].

**Longest** [MS99b, PK04b]. **Look-Ahead** [PL93, SHL+13, TG04]. **Look-Up** [HZL18].

**Lookahead** [NIR86, SF05].

**Looking** [LKD14]. **lookup** [JP09].

**Loop** [AMB95, BCH95a, BCZ95, CG02, DR95, DS95b, Nic88, OK02, PB99, QGL+09, AL04, KSG03, MP08, NCT+07, QSL+08].

**look-carried** [NCT+07]. **Loop-Free** [CG02].

**Looping** [Ano92a, KME92].

**Loops** [CCC90, CWW96, DRR96, HS93, KK95, KGC92, SCMB90, SG99, Xue97, CC87, SGE91].

**Loosely** [SKR93, AajhC90, BMF05]. **losses** [HZA+15].

**lossless** [CW15, PY09b]. **lossy** [GYP13]. **lost** [LdSB+18].

**Low** [AZ01, Ano92c, Aey12, CM12, DAV17, IKS87, JH92a, JNW96, JLRA97, KS00, MC17, MHC95, SD00, ABO+17, CBP02, CL09, GE85, GJXZ05, HZL18, KS03, KK11, MGRRK14, NVK14, Pfn90, RM11, SZ09, Sol13, SLWV05, YGZ+10].

**low-area** [ABO+17]. **low-complexity** [Sol13]. **Low-cost** [AZ01, Ano92c, JH92a, JLRA97, CL09, GJXZ05, YGZ+10].

**Low-Density** [MC17]. **low-latency** [KS03].

**Low-Level** [MC17]. **low-memory** [CBP02].

**Low-Overhead** [SD00, SZ09]. **low-power** [KK11, MGRRK14]. **low-resolution** [GE85].

**Lower** [BMRC98, JR95, LPS+98, TC96, WW97, FT04, ITT04, NDP13].

**Lower-Dimensional** [TC96]. **Lowest** [MAK2Z13]. **LPAR** [BK95].

**LQ** [BBM+02]. **LQR** [ZMZJ17]. **LR** [CB96]. **LTL** [AD12].

**LU** [OT86, She06]. **LUT** [HZL18, WD18]. **LUT-based** [WD18].

**LXCloud** [LACJ18].

**LXCloud-CR** [LACJ18]. **Lyapunov** [MV94, QoVdG01].

**M** [Ano92a, GA18, FC95, LZS06, ZBF05].

**M-TREE** [LZS06].

**M-VIA** [ZBF05].

**M2M** [TKG+17].

**MAC** [CCH09, Gzy14b, LS08, TLY12].

**Machine** [BG86, BDHF90, CA95b, LWOG02, MB93, RSCQ17, SY094, SR97a, SR97b, TVS97, TKG+17, ZL93, AES11, BH86, CL14, FMIF18, HS86,
HPSM91, KHT+14, KS18, KNS91, KA89, KCFP18, Ros85, SM86, Upa13, WF89, ZG13, CM93, CRFS94, CGSV93, EHS94, LAD+96, LST+13, LTD+93, Sab04, TKG+17. Machines [BR96, BPN90, BCR96, CWP98, ERL90, Gup92, GHKS96, HK96, HB07, HLJ01, KRC00, KHS96, KLS90, LW97, MK92, PM94, RS94, RWK95, RG00, SSG93, SCMB90, San02, TSH97, YFS+15, Zdk01, AE88, CG11, Fen90, FX06, Fu10, GA90, IKS87, KR10a, KP05, LC91a, Mar88, MAR87, RT18, SW90, Ume85, ZA91].

macroeconomic [BMB+08], macropipelines [WAS88], magnetic [CCN06]. Main [DM99, BHH+17]. Maintaining [HS94a, LMP10, LY98, YC04].

maintenance [CDCD05, MAPF14, WDDK09, XO05], Major [SSL04].

Majority [ZWS09]. makespan [LZ05, SSM+07, TFMS15]. Making [LLT12, LFA96, VR95, ZKZF18].


manageable [GRZ+18, dAMFdS13]. Management [AS13, AS15, BBH+17]. Maintaining [HS94a, LMP10, LY98, YC04].

MANETs [Hu11, YA11, ZA05]. Manipulation [PH91]. Manipulator [MS85, NS90]. Many [CHLL18, HP95, SR97b, AFA13, APRA18, AA16, AR17, BBBC12, CKK+13, JHF+17, Lai14, LTG14, MZC18, PCMM+17, PTK+13, PR13, RLA+16, RLA+17, TCHC12, ZLS17]. Many-Body [HP95].

Many-core [CHLL18, AFA13, APRA18, AA16, AR17, BBBC12, CKK+13, JHF+17, KSG13, MBBD13, MZC18, PCMM+17, PTK+13, PR13, RLA+16, RLA+17, Tri09, TCHC12]. many-cores [ZLS17]. Many-to-One [SR97b].

manycore [ETS14, FCP+15]. Map [IZ12, IB04, CKML12]. Mapped [BF97].

Mapper [AM93]. Mapping [AGG98, BR08, BS+01, BA92, CN93, CHR94, CW92, Dja04, GH89a, GW99, IAS+92, KB92, LW90, LW97, MM00, MAS+99, NB93, SH90, Ser97, SBAM96, TGB+17, XH91, ZZ90, BS87, BLBM13, CGM14, CAD14, DFST13, DQR+09, FLL14, HA91, KSS+07, KMS+06, LW16a, LB90, LS07, PMAL11, YWJ+18, YWG15, ZWR07].

Mappings [BP02, DP00, Iqb92, SR97b, SSHC00]. MapReduce [ALT13, AM17, BK13, BD11, CCA18, CLOL17, GYY+14, LYW+16, LWQ18, NMS+18, NF16, Pla13, uRIL+18, SMT15, VETT18, WTW16, WD13].

MapReduce-based [VETT18, WD13]. Maps [DP12]. MaRCO [ALT13].

Markov [ASKO16, DHK04, GA18, NH93, PF91]. Markovian [BC11, VM95]. MASC [TJCB10]. Mass [HLL+95]. Massive
[SANY94, FCG+14, JWH+17, ZB09]. Massively
[BS90, BDHF90, DAG+17, EHMN95, GGN93, GBES93, JBL02, Kri92, KP05, MM93, MT96, NDZA99, NS92, PE93, Sch90, SRK95, TSA97, UGG+11, WT92, YP96, BB87, BBCLL04, GP91, HS86, JJ12, Koc91, RBB17, SPBR91, SMH+14, TS91, WZ91, LTKS90]. master
[BMT12, HSLL04, LZ05, LYL08, YH07]. master-worker [BMT12]. Matching [BL94, DS84, DAYA02, HBS17, LO94, Par98, WSRM97, DKEU15, GK10, KSJC17, KSSG14, MPN17, MM07b, RS90a]. matchings [SM89b]. matchmaking [LR05]. materials [CXX+18, DAG+17]. Mathematical
[HNSA07, DJH11, ZA91]. Matlab [MJ01]. MatlabMPI [KA04]. Matrices [BMT12, HSLL04, LZ05, LYL08, YH07]. Matrix
[BG16, CT96, CTZ99, DBKF90, GK98, GE94, KCRB99, KK98b, LPZ99, Li01, Man94, MSC96, NFEG97, Par92, PKD97, SW96, TLW94, UZSS96, WM92, Win85, mYF92, AAD05, ASES15, BB85b, CP10b, CLR90, Dja06, Ed91, EL91, EM89, GA18, ITT04, KK86, LV15, MBW16, MS87, MPG17b, NJ91, NCTT90, OT86, PB15, PR13, SAOKM03, ST89, SM06b, SAJ13, SE15, ZB03]. Matrix-Based [KCRB99]. matrix-transpose [SAOKM03]. Matrix-Vector
[GB98, MSC96, NBEG97, CP10b, CLR90, MBW16, PR13]. Matter
[FGM+03]. MAWS [AK06]. Max [DP98]. Maxcut [HP97b]. maxima
[GS03a]. Maximal
[MSC96, Ros99, AH06, CDR12, DW12, KNS06, Li14, MA11]. Maximum
[Als01, AS95, BLMB13, DDT92, FT92, HP06, KEA95, Par98, mYF92, AF+11, SM9b, WMW90]. Maximum-throughput [BLM13]. maxmin
[ZLCJ12]. may [STK12]. Maze [EL97]. Mbps [MLW+97]. MDS2
[ZFS07]. me [MP16]. Mean [BA92, JBM91, LZ05, XB07]. Means
[DDBC13]. Measure [ASR93, Kav93, PS93, SK89a]. Measurement
[FPD93, KL01b]. measurements [ASKT13, JKIE13, JZK04]. Measures
[GRR93, DGBN14]. Measuring [ZYH94, DI91]. Mechanism
[Bal90, BCD00, JSM94, CG11, CG12, CMR+18, CCW14, GYY+14, GVA+08, HCM11, KO11, MBO11, PMd011, RA11, She09, XO05, YF07, ZBW+17]. Mechanisms
[KPC96, KC99a, ASK016, KV10, ALM01]. Media
[WUG99, HK05, KLP10, XYDL06, XHY07]. media-based [XHY07]. Median
[CCC92]. medical [CCN06, KDO+13, TSD08]. Medium
[MSST99, KGN11, WLNL06]. medium-scale [WLNL06]. membership
[LC14b]. membrane [YLZW18]. membranes [PMV05, PMV06]. Memoriam [An04r]. Memories
[CH92, PH91, Stn95, Yan93, GKK+13, KR17]. Memory [AD95, ACD+93, AMN00, Aha97, ADS98, AS91, BR96, Bas97, BS96a, BCL96, BF97, Bit92, BCR96, CB95, CP91, CWP98, CA95b, CJ99b, DS95a, DY99, DA97, DUSH94,
DP00, DH95, DM99, DT92, EP90, FY97, GAG+,92, Gra09, Gup92, GKHS96, GHSJ96, Haw97, HMR15, HPT02, HA92, HA05, HLJ01, IWM97, JF95, KRC00, KS97a, KHS96, Kel00, KC94, LW97, LK98, Li01, LA93, MF94, MR94c, MS98, MG91, NS97, OS98, PHB96, PAM94, PA96, PB99, PL95, PY96, RL96, RSB96, RW95, RJY96, RGS00, SL95, SLL18, Shu95, SS94a, SDS99, Soh96, SC91b, SB84, SN93, Tam18, TJ92, TGG95, TY95, VSIR91, VS16, VN93, WW96, WD94, Wl92, YW91, YMR93, YB01, YL98, Zak01, ZLH+,18, AM13, AL04, ACHY18, BC06, BBS92, BGM+,08, BCF+,94, CBP02, Car95, CC16, CGM14, CJA09, CPO+,03, CK91, CDAN14, Cyb89, DFP06a, DT11, DI91, ETS14, Eij18, EKNS17, FZC+,05, FJC04, FWM+,10, FLC14, GJG88, Gra10b, GL90, HDCM11, HGFF10, HMBW07, HZHS18, HHA14, Hus17, HC91, IH16, IRRS16, ITT04, Joh91, KKR14, KRM14, KKLJ14, KMS10, KP05, LL90, LC91a, LHZ+,18, Lop18, MTM10, MSK+,16, NSTN91, Nik03, No12, Pad91, PK05b, PL03a, Pop91, QGL+,09, QGZP17, RFPAG08, RHH12, RSCQ17, SSGG18, SYUY07, SB15, SZD07, SDSL90, TST04, TW96, TGPUC16, VETT18, WL92, YGZ+,10, YLB90, ZKZ18, ZPK+,14, ZLWL12, ZFL89, HZL18, MP10.

Memory-Access [Bit92]. Memory-aware [HMR15]. memory-based [Na12]. Memory-Bounded [SN93]. Memory-Electric [IWM97]. Memory-side [HA05]. memoryless [BKMT14]. mental [Eij18]. Merge [NT93, SM90]. Merging [VSIR91, AY09, DO89]. Mesh [AP94, Ann94, ADM+,94, yCM98, CCC92, CWW+,95, CL96, CY96, CDP95, EL97, EH01b, FZVT02, Fer93, GPJA10, HHH94, IM00, JP95, JS94, JB98, KB01, LLJ00b, LME95, MD01, MP96, Mocl96, Nak95, NSSS99, OS96a, RO92, RR95b, RR95a, SP96, SR94, SF00, Zhu92, ZYO02, ABC+,09a, ABC+,09b, BB85b, CL03a, Car90, CWL+,07, Dja04, DAB+,14, Efe91, FL14, GDL+,11, GH99b, GAI6, GNZ18, HWWH08, HWC10, HR89, HR90, KKK11a, KDH08, KT91, L208, LC90a, LC91b, Li06b, LC11, LWLD12, Lo80, LB07, LV88, MLG05, MB08, NPVG10, PB09, Ra04, Si86, SSM89, SC91a, SSZ10, SS94b, SZ03, VHH08, WCXL11, WH08, WBR01, XYKA08, YSL08, FC14]. mesh-based [CL03a, LB07]. Mesh-Connected [Ann94, ADM+,94, yCM98, CCC92, CWW+,95, CY96, CDP95, Fer93, HHH94, MD01, Zhu92, ZYO02, BB85b, Car90, HR89, HR90, KT91, LV88, PB09, Si86, SSM89, SC91a]. mesh-NoC-based [FL14]. Meshes [BLPV95, BPwW96, BA97, BSDE96, BM97, BOSW94, BOS+,95, BGOS95, CW90, COS+,95, CL96, DS01, FF08, HCWS94, HJ90c, LS95, LSC00, LS94, MT93a, NP+,96, NS94, OS97, OS96b, OS98, OB98, RW93, ST02, SKK97, SJ95, VB94, WCE97, Wu02, YTR94, YCY+,00, BG16, BM04a, CI03, CZZ+,17, DV13, GLD06, KLC05, LWCC15, LXLS12, Mat06, dMS18]. Meshing [YIY97]. Message [A094e, A095k, BB93, BKT95, BD+,97, CW92, CZZY09, CD98, DMSH90, dADB96, GBES93, GHS94, GHS95, GHS97, HNM02, Is197, Kar92, LR96, LI92, LW95, MMCL+,17, MD92, PY96, Pra16, SCMB90, WTC08a, WTC08b, XH93, ZN01, BHR91, BR91a, BPW05, CV90, CPA+,11, DDNT10, FM07,
Minimization [OKB95, THGY15, CPLY18, JZF+15, KR10a, Li17, LZLX11, QSL+08, RTZ11, TFMS15, VA07, YWG15]. Minimize [Als01, SBAM96, KSG03]. minimized [SCJ+08]. Minimizing [KER01, LZ05, LO96, ZWW17, FSZ07, TKX+13, WHS+18]. Minimum [CW00, DH94, Li92, RDL95, WW97, BC06, BPPR11, BBD18, BBL04, HS12, tH90, KO12, KSK15, LVP08, LY10, LMZ04, OMSGNSG05, SL89, WCWH03, YZLT09, YWW12, YYLCL11]. minimum-spanning-tree [tH90]. Mining [GC01, HK01, KRS01, SMT15, Zak01, CTTO8, Cuz11, Cuz13, GJA08, WD13, WZQ+13]. mirrored [BL05]. Miss [SDS99, CK13]. Misses [DSS95]. mitigating [KMMZ06]. Mitigation [BK18, WCF14]. mix [Aln90]. Mixed [CDY97, MRR+02, NDZA99, SV00, van96, BKS91, FCS91, Kal04, ZZJ+18, ZLWZ18]. mixed-criticality [ZZJ+18]. Mixed-Mode [NDZA99, BKS91, FCS91]. Mixed-Technology [MRR+02]. MixHeter [ZLWZ18]. Mixing [FHL+15, Li10]. MKCE [RW01]. MM [Won99]. MMR [CCQ+06]. Mobile [Ano01e, BD00, BN02, BST01, CS00, CCK+08, DKY01, DL01, GS01b, KER01, LAZC00, LC14b, MS00, Pat01, FR97, SMR96, THGY15, TPS+18, WLID02, ZR00, AKBD10, AP03, AH12, Ana14, Ano04d, AK06, BWP+11, BN03, Bou03, CSWD03, CNS03, CW05, CDCD05, CWD11, DB08, DWX10, EBE08, EM11, FCML13, FCC07, FP17, GQZ18, GRDB05, GZMC08, HKW05, KERUM04, Kim11, Lan09, LZ11, LZCY09, LPX05a, LL10, LC11, LHW14, Li17, LLW07, LHT08, LS06, MS05, MXSL12, MSJ05, MKM16, NSA11, NMN+14, PVP18, RB12, RKK06, REZNI17, SNCP12, SGAC14, SMO+18, SY04, SGS08, SJS11, TZ07, TZ11, TM06, TC13, TY17, TWQS12, VLY18, VA03, VRM10, WW18a, XHG03, XG04, YCO4, YCC05, YSS11, ZMC06, ZHO03, HC09, RBP+11]. Mobile-Process-Based [SMR96]. Mobility [FCF00, GCB+00, KO12, BEN12, CKT11, FX06, HC09, RKK06, RBP+11, SK05a]. Mobility-assisted [KO12]. modal [AM11, BWP+11]. Mode [NDZA99, WSA+94, BKS91, FCS91, YZZ11]. Model [AGW01, AIS97, AM17, Ano97k, BPJG92, BA97, CC91, DL98, DUKU+15, DG94, DF94, FTL92, Gao93, GS98, GDN+98, HK06, HR92b, HR92a, JRR99, KSP+92, KCV99, MRRV98, MNB95, NDZA99, OKB95, QY94, SANY94, SAC+98, SS18, SSK96, WSA+94, YZS96, eW95, AAH17, ASKO16, AHZ11, ASES15, BMB+08, BBBC12, Bi90, BG05, CBD+09, CH06a, CABI13, CXX+18, CDJ+89, CRC+02, DZC17, DJH11, DKC14, DRT07, GJ12, HMY+18, IEWK17, JLWX11, Kal04, KyLPC17, KC17, LR14, LMGLGL17, LHF+03, LZY11, LMXJ18, LMKS90, LA06, LGK+12, LWQ18, LXZ13, MM06, MMN+18, MMVL11, NSKN17, NSTM19, NJ91, OO05, RSR04, RHR12, SSS07, SL90, SK05b, TR89, TLL+18, TJCB10, VHH08, WWW17b, gWW18, XYZW14, YJB91, ZA91, dR09, GB06, KR11]. Model-Based [KSP+92]. Model-driven [SS18, ASES15, LGK+12]. Modeling [ATM01, CR91, CCM92, Chin02, CM93, CLRW00, Df91, FMW+94, GHC+17, JZ05, JZK04, KNS91, LP96b, LpJS+18, PLD14, Pat01, PMMMA15, Q105, RP98, SC999, SFT+13, SCK03, SS00, TK07, AP91c, FX06, HES11, 60
JWH+17, Joh91, KME09, KKK+11b, BWCC15, LC13, LF03, MCM+11, MSAZ11, NSA11, ORWT+18, RA11, SV08, UMM+18, YL12, YZW+15.

**Modelling** [Wu11, HNSA07, KME89, KKTZ13, RK18, SAOKM03, Sie16].

**Models** [AGW98, Ano96l, ABM+92, BDF92, Bir94, BSS99, BHRS95, CD97, CDF01, Cuz11, Cuz13, GAG+92, MM00, MLC+90, RHH96, SM92a, SS02, SM92b, CKLCK04, CKLCK05, CJA09, DHK04, Eij18, GLG012, Har91, HK13, KVN17, MM+13, NES10, RA11, SV08, UMM+18, YL12, YZW+15].

Modern [EFG+14, GS18, YFS+15].

**Moderns** [GGW96, SSG93].

**Modifications** [PM92].

**Modified** [WS97a, ZLRP91, GLW14].

**Modifying** [CH06a].

**Modular** [AM95, DD93, FC95, RAS96, BM17a, CBP02, Dja06, ZBW+17].

**Modularity** [GK04, LK15].

**Module** [AM97b, EL91, MC91, ZFL89].

**Modules** [DP00].

**modulo** [YLB90].

**Moldability** [CB02].

**moldable** [SBC12b].

**Molecular** [ES96, NPY+97, SPVvH03, TSA97, FGM03, PARB14, PTK+13, WYTX13, XLHT13].

**molecules** [BOT13].

**moment** [RMU14].

**moments** [TR+12, XLH18].

**Monitoring** [CSMM10, MLC+90, ST14, TG97, ZNQ93, ASKO16, ACPT15, CL14, CK08, FEH+14, KDSS18, LFS16, SB12, WZQ+13, YTO5, YDZ+18, ZFS07].

**monitors** [TH08].

**Monotone** [HJDH01].

**monotonic** [MAHKZ12].

**Monsoon** [HCAA93, NCA93].

**Monte** [Bro96, PAS15, ZS13].

**MOOC** [MBG+17].

**morphological** [SSL04].

**Mosaic** [MSJ05].

**Most** [BS97, HHC98, TAS+01].

**motifs** [RSL12].

**Motion** [CP92, RR95b, OP08].

**movement** [AKBD10, KS11].

**movements** [CKT11].

**MP** [CDH84].

**MPEG** [AVL95, CLV95].

**MPEG-2** [AVL95].

**MPEG-Encoded** [CLV95].

**MPI** [PS01, ATM01, BA06, BDH+97, CEGS07, DPS05, DPD08, FKL08, GM13, HFO5, KLY05, LC97, MBBB13, NES10, NCB+17, PAR14, TPLY18, WLNL06, ZAH12, dAMCFN12].

**MPI-2** [DPS08].

**MPI-CUDA** [dAMCFN12].

**MPI-FM** [LC97].

**MPICH** [KTF03].

**MPICH-G2** [KTF03].

**MPP** [DM90a].

**MPSOC** [FLL14, LZLX11, OMT+17, XZQ01].

**MPSOCBench** [DMS+16].

**MPSOCs** [LW16a, TBG+17].

**MR** [MF94, uRIL+18].

**MR-Advisor** [uRIL+18].

**MRI** [GOH+13, SHT+08].

**MSA** [BKF13].

**MST** [Fer95].

**Mukesh** [Ano96l].

**Multi** [ACU08, BG86, BH+17, BA95, FP01, PK15, MA05, MCZ14, NBP98, OMT+17, PK10, PRS17, SR88a, SR97, SM00, VLL+14, WW96, WI92, YM01, AZH11, ADD18, AGM06, AVA18, BW07, BW+11, BLMB13, COV13, CMT13, CCH09, CL109, COF+17, DBA+18, DMCFCM03, DWBY10, FCW11, FCZ+12, FM07, GDL+11, GS18, GKS15, GCS06, GZY14b, GB11, HML17, Hu11, HUT17, ICQO+12, III+17, JJ12, JLWX11, JV06, KVA18, KSG13, Kep03, KVHS07, KKN13, KN18a, KN18b, KUM17, LKS14, LL07, LSS+11a, LSS+11b, LZY11, LNL17, LS03, LSC+15, LY13, LPLFMC+12, LLS+16, MAN13, MB13, MP12, MZC18, MPN17, MAHK12, MGRK14, MZZC12, NDP13, NFH13, NVK+11, NC09, PYP+10, PKW+10, QLS+08, QGL+09, RLA+16, RLA+17, RB12, RR05, RA11, ROB+18, SNMB16, SFT+13,
NSLK99, OK01, PHB96, RS92a, RSB96, SP96, SCC92, SB84, Swa98, TJ92, WN94, XH91, XMN92, YB01, GH89a, HSMB91, RS90a. Multicore
[PSGS17, ABC+09b, BM17a, BSS+13, CN14, CP17, DUKU15, FWM+10, FCP+15, GZG+17, KHT+14, KyLP17, KNHH18, LK13, LLLC15, LM16, MBBD13, ND12, NZ17, PP13, SSFP11, SPC+17, SSGG18, SP13, SC10, WLST16, WCO+09, PPP14]. multicore/many-core [MBBD13].

multicore [ABC+09b, BM17a, BSS+14, CN14, CP17, DUKU15, FWM+10, GZG+17, KHT+14, KyLP17, KNHH18, LK13, LLLC15, LM16, NSAS10, Par92, SM94, TVS97, VSIR91, VB02, WNA+94, Wan96, AFO14, ACU08, BTA13, BFWK13, BSMB10, BFKP04, Car90, CDS10, CHK05, CCLS94, DMB+03, DUKU15, GRV08, IEWK17, JSWB92, JTZZ11, JM15, JP90, JW89, KAP90, KSS+07, KR87, KUM17, KHI15, LLI06, LY10, LPX05a, LDP+14, LSUC14, LYB07, LWQW18, MBW86, PTZ06, PHS04, PLK+18, SK09, SPRG+12, ST03, SRT+18, YB09, ZWXW16, TJC110]. multi-bus [MBW86, YB90]. Multiple-Pass [Wan96]. Multiple-Writer [KS97a]. multiplex [ZBG18]. Multiplexed [HP00, HRG+11]. Multiplexing [AM95, PD92, QMCL94, QM01, ZLPP01]. Multiplication [Fag92, Li01, NFEC97, ASES15, CLR90, EL91, ITT04, LV15, MBW16, MPG17b, PR13, SHK15]. multiplier [MS87]. Multipliers [SRK95, BOI91]. Multipole [SHT+95, YB01, KP05]. Multipole-Based [YB01]. multiprecision [MS87]. multiprefix [Coh90]. Multiprocessing [CD84, MBK+92, ABC+88, JS86, ZWL12]. Multiprocessor [BW95b, CKL99, CP91, DS96, DRC90, DFN+94, GH90, GMM00, HP00, HC95, HN91, KS97b, LMC02, LF92, LMT94, MF94, MMRS98, MT95, MMVR97, MD92, OM90, PL95, PM96, PP92, QY94, RS92b, SEP96, Soh96, WF93, XZS96, ZNQ93, AA10, AOSM05, BHR91, BR91a, BYG+18, BS92, CR1+10b, DI91, DMS+16, GL89, HDT+05, HA91, HC91, JWSG14, KA05, Lee90, LHK03, Li16, LW89, LVB07, McA89, PK05a, PI90, SK09, SM99a, SYU07, TS91, YL89, ZZ90, ZQMM11]. Multiprocessors [AMB95, AM95, BJ99, Bas97, BS96a, BL96, BC01, BLG01, CB95, DS95a, DJ98, DZDZ01, DT92, GY92, GZ97, HJ01, HA92, KSB94, KB96b, KA97,
LK98, LA93, MB92, MS98, MG91, NB93, NS97, NPP+02, PH91, PY96, PT97, RL96, RJY96, SMH94, SCM99, SY01, SDO99, SC91b, TTG95, VSIR91, YW91, YMR93, YL98, AP91b, BC05, CLM90, CRJ10a, Cyb89, FZC+05, FGP05, Gai90, GL90, HCM11, HRG+11, KA03, KK11, LEN90, LE91, LPK+10, LWG14, NSTN91, Nik03, RFPAG08, SPBR91, SD91, SMH91, SA90, YB90, dOCS14]. Multiprogrammed [MS98, NSS97, NPP+02, YL98].


BF97, BST01, CGKK97, CW01, Cha95, CW92, DLLX97, DSAUM99, DVZ96, DR18, DBP94, DDKV01, DH95, ESMG96, ES12, FFK97, FAM96, FTL92, GRS97, GS01a, GH93, HH97, HPT+97, KC95, Kop97, LST17, LS97, LK94, LK10, LC96, MM00, MJ94, MSS88, NBSD99, OM84, PN97a, PN97b, Pat01, RCY97, RJY96, SM00, SBAM96, SS95, TSC01, Tze91, UR94, WMG01, YZY96, ZLP97, ZMPE00, ZW00, dBL95, AP91b, AHA+16, AR17, Ano04d, AF06, AM11, BHE+17, BM14, BCO+12, BXA08, Bat05, BWP+11, BJ15, BAL05, BPA06, CKO04, CMMN10, CMR+18, CKN07, CLG+16, CDB04, CWL+07, CWP12, Che89, CV09, DE91, DAPR18, DYL+12, FK89, Gai87, GJ12, GZMC08, HWWH08, HD10, HWC08, HMY+18, IZ12, IS06].

network [JF12, JXW06, Joh89, JZK04, KERUM04, KJD03, KMC16, KO11, KO12, KCD08, KRS15, KH12, KO90, KPR88, LT10, LAD+96, LSS+11a, LSS+11b, LB12, LTD+93, LY08, LLI12, LUI1, LR13, LRS18, LWC14, Nap90, NS09, NM17, NQGQ12, O005, PL06, RH05, RD05, RCG18, RGAN18, RSL12, SMW18, SSB91, SCW+18, SS05, STK12, SY04, SK89a, Sta17, SMKL93, TM06, TDP15, TCHC12, VM95, VHH08, VR86, VRM10, WL11, WW18b, WMC+18, WG11, WLZ+18, WWA+18, WSS+18, YK04, YLZW18, ZWS09, ZY12, ZWR07, dG91, AA14, SLW10, SLG+18, ZCF+17]. network-aware [RCG18]. Network-Based [GS01a, OM84, PN97a, PN97b, CV09, KJD03].

Network-on-Chip [BJS18, GJ12, LY13, AA14, ZCF+17].

Network-on-Chips [LK10]. network-When [STK12]. Networked [FGKT97, HS97, LHM95, OEY07, BW09, FX10, HP06, JL11, SS08, XLL15].

Networking [Ano01e, GCY+04, Bou03, DWYB10]. Networks [AAD02, AZ01, AS97, ABP92, Am94, An92c, An93e, An00d, AA95, BSS97, BAES92, BCH95a, BETD94, BCD00, BDF01, BCH95b, CP97, CT96, CS00, CAB94, CS93b, CC94, CS95c, DS95b, DHB02, DP99, DS93, DL01, DF95, DZ97, DC94, FCF00, FT94, GGN93, GPJA10, GK98, GHKS98, GO95, GPS96, GB93, GS01b, HIKM94, yHY97, HLCZ00, HJDH01, HJD+01, JR92, JH92a, JLR07, JH94, KRG01, KL01a, KRSZ02, KAM94, KB96a, KL01b, KR09, KJ84, Lnt95, LBL95, LLY93, Lee94, LLJ00a, LAZC00, LPS+98, LWOG9, LHHB+01, LC14b, LP95, MS00, Man94, MLW+97, MSH90, MS85, Mck94, MDD97, NRS95, NSSS99, NS02, OD95a, Ola01, OOS5, Oru87, Oru94, OK01, PRW94, PA97, PA01, PL93, P101, PKD97, Prat93, QMCL94, Qia97, QM01, RS96b, RP98, RM97, Ros99, RLS96, SW96].

Networks [Sei05, SZB92, SLP+98, Szo00, SF90, SC09, Sz95, THGY15, TQ092, TH02, VB02, WM92, Wan96, WR97, Wan01b, WB01, WP02, WA95, Wil92, WT92, YWP00, Yan00, YN92, YMG01, YP96, ZZC92, AP91a, AS09, AGMS16, AAD03, AB05, Am96, AP03, AH11, AH12, AHG12, Ana14, AM13, Arb89, AYB+15, ABLP17, ALF03, AS18, BFG+03, BM11, BC05, BS07, BGLA03, BS03, BWP+11, BOY10, BDJQ86, BHR91, BR91a, BPRS04, BOP06, Bhu87, Bod89, BR91b, BC11, BN03, BJL18, BZL10, BM07, CI03, CM04, CG12, CB15, CC14, CCW14, CNS03, CKN07, CW05, CS06b, CCK+08, CS10, CTC+10, CRX12, CG16, CHCG18, CS92, CDR09a, CDR09b, CYZ06, CGG+09, CD05, CPA+11, CRSB13, CM93,
networks [DD96, DMB+93, DGBN14, DB08, DBW+18, DBCF13, Dim04, DKM10, DF06b, DH04, EAL90, EBE08, ESGQ+18, EM11, EDH+17, FCW11, FCML13, Fei03, FJ06, FJG06, FKJG08, FMM+08, FVCL05, FDS6, FGL+11, FZ14, GHI01, GPT06a, GJ12, GRV08, GDP08, GP07, GCY+04, GDC+18, GSS03, GD+11, GH89a, GAGPK03, GYP13, GZY+14b, GM14a, GB11, GL12, GJXZ05, GS03b, GMXA07, HW03, HZA+15, HMV07, HJ07, HJ90b, Har91, HS06, HZY04, HS12, HRG+11, HST06, HD+05, Hoh90, HL07, HZDP12, HJLR12, HMY+18, HBA+15, HS17, HAC17, ISA07, ISAZ10, IB04, JF12, JT88, JLY12, JBA15, JBS14, JHPL13, JBM91, JLWX11, JBP+05, JK15, KTP17, KKS16, KSO4, KKK11a, KK06, KOA09, Kim11, KKKP12, KSK15, KGN89, KMF+05, KZ11, KKS09, KMS07, KD08, KKK+11b, KKTZ13, KH89, KGN11, KNS06]. networks [Lai15, LBMM15, LZ08, LK90, LR06, LDZ+17, LHKL03, LY10, LNA12, LR03a, LCW05, LPX05a, LJ06a, LT07, Li10, LC11, LMJ11, LWLD12, LL12b, LHW14, LSXX14, Li14, LpJS+18, LG08, LS03, LC07, LR03b, LIW07, LHT08, LZC11, LHL14, LDS16, LHP07, Los08, MLG05, MAGL13, MM04, MAM05, MSM09, MYM10, MAPF14, MV88, MPV12, MA11, MSZ05, MCS14, MS88, MV05, MR08, MYD+11, MKC+09, MAJ10, MVM04, MVP17, MBO11, MSA11, MHBW86, MK08b, NPGV10, NJ10, NSA11, NFH13, NC09, NMN+14, NZA13, OWK14, OM10, OMSGNS05, Pak89, Par05, PK05a, PL06, PLY15, Pe90, PCX+11, PCX+14, PSC+16, PKW+10, PW16, PW17, Pla08, PLR07, PMCC18, PB09, RM10, RM11, REK10a, REK10b, RLP14, RFS+12, RKK06, RBP+11, RA11, RHL08, SC12, SAOKZ05a, SAOKZ05b, SMP15, SB12, SX08, SZ09, SZMK13]. networks [SGAC14, SSZ10, SG08, SMK04, SK05a, SL89, SR88b, SR90, Ste17, SK05b, SCL10, SK11, SJS11, SH89, TBHA07, TLY12, TODQ18, TDC05, TC13, TMK+17, TM010, TDM05, TR08, TCS+10, TWQS12, VO89, Var91, VA03, VRM10, WCC02, WW07, WGT08, WMB08, WBTM09, WW12, WCL+13, WYW15, WFLJ16, WWWW18, Wa18a, WCL13, WYW15, WFLJ16, WWWW18a, Wh90, Wh95, Wh05, Wh06, WLR05, WX40, XCY10, XCA08, XCLR07, XCH03, XQ04, XWC+08, XHZ+10, XG03, YpGyLC13, YME06, YF09, YDZ+18, YL89, YS08, YWW12, Z06, ZMC+16, ZMC06, ZW11, ZBL11, ZLCJ12, ZCMI+12, ZXP09, ZXD18, ZSCX18, ZDC06, ZTGL17, ZL17, ZHO03, ZC04, dOBG+15, ALLM11, LDZ+14, LDP+14, LL11, MLCFH+18, MR03, MEMEH17, PR09, RBP+11]. networks-on-chip [HRG+11, KKK+11b, LHL14, ALLM11, LL11, MEMEH17]. Neural [AA93, Ano92c, BST01, CW92, FTL92, HPT+97, JH92a, KJD03, Kri92, LWQ02, MM00, MLCFH+18, Mon94, NS92, Pin01, Ram92, TV092, WT92, ZZ09, eW95, Arb89, FK89, GH89a, Joh89, KH89, ORGV+12, PG+12, SMKL93, Tor89, TDP15, VM95]. Neural-Network [CW92]. Neuro [MT97b]. Neuro-Chip [MT97b]. Neurocomputer [GFB+92, Ram92]. Neurocomputing [Ebe94]. neuronal [VO89]. neutrino [AAA+15]. neutrosophic [MHLZ16]. Newest [AK17]. Next
Next-generation

NAB\textsuperscript{+11}, HPB\textsuperscript{+10}, RKK06, SB04. \textbf{Nodes}

NAB\textsuperscript{+11}, HPB\textsuperscript{+10}, RKK06. \textbf{NIC} [JBY\textsuperscript{+05}]. nine

DM17. \textbf{nm} [HRF\textsuperscript{+11}]. \textbf{NMC} [SANY94]. \textbf{NN} [ZHT16]. No [KF90b, IR12].

NoC [AA16, CZPP16, CAF\textsuperscript{+11}, FLL14, HRF\textsuperscript{+11}, LZI\textsuperscript{+11}, LW16a, LK11].

\textbf{NoC-based} [HRF\textsuperscript{+11}, CAF\textsuperscript{+11}, LK11]. NoCs [BK18, CG17, LK11].

\textbf{Node} [AAD03, HAC17, KKS09, AKBD10, DLL11, DM17, FKLBO8, GM13, KHN17, KVA18, Lai14, Lai15, Lai17, LDS16, PCX\textsuperscript{+11}, PCX\textsuperscript{+14}, RMHR17, TR08, ZH12]. \textbf{node-disjoint} [Lai14, Lai15, Lai17]. \textbf{Node-independent} [HAC17]. \textbf{Node-ranking} [AAD03].


WHW\textsuperscript{+17}, WLWW09. **O-Intensive** [EH01a, CkLCK04, CkLCK05].

**obfuscation** [MMN\textsuperscript{+18}]. **Object**

[CSSY94, CS95b, DR98, GCB\textsuperscript{+10}, HS00, JRR99, KC99a, LLS93, LTH97, Lop13, SG96, WPKK94, WLID02, WH97, ACFK07, Chi95, HD10, KC04, LLLC15, LFH\textsuperscript{+03}, LC11, SK90, SCK03, TCS\textsuperscript{+10}, YJB91, ZV09a].

**Object-Based** [DR98, WLID02, ZV09a]. **Object-Oriented** [CSSY94, CS95b, HS00, SG96, Chi95, YJB91].

**object-space-parallel** [ACFK07]. **objective** [ADDB18, COV13, COF\textsuperscript{+17}, FPF14, L¨U14, MMK\textsuperscript{+11}].

**objectives** [FEH\textsuperscript{+14}]. **objects** [CLZ00, CDP95, HPT02, Kap93, SBAM96, VWHL96, Won99, van96, AEF11, SB15].

**Oblivious** [CRSB13, IM00, ABBD14, YME06]. **OBQA** [ESGQ\textsuperscript{+11}]. **observability** [MH18].

**observations** [RTZ11, ZHO03]. **observatory** [AAA\textsuperscript{+15}].

**obstacles** [SJS11]. **obstructed** [DWX10]. **Obtaining** [AFT\textsuperscript{+00}, VAS\textsuperscript{+13}].

**Occam** [LC92]. **Occamflow** [GL89]. **Ocean** [SAC\textsuperscript{+98}, SH92b, Nes10]. **Octree** [FLS\textsuperscript{+97}].

**Octrees** [BFG94]. **Odd** [DS96, NT93, SL95, ZDC06]. **Odd-Even** [NT93].

**ODEs** [FKB17, KKR14, Wor93]. **ODMRP** [OPG08]. **OFDMA** [UM17].

**off-line** [BS92]. **off-the-shelf** [PF08, ZB09]. **offer** [Tr¨a09]. **offloading** [WL04].

**offs** [CLR90, LCB16]. **OLAP** [DKRC\textsuperscript{+15}]. **Olden** [CR96]. **OLSR** [KKK11a]. **OMNI-aware** [KKK11a]. **Omega** [Ano93e, CS93b, S200b, GL90, CS92]. **one** [Deh90].

**One** [Ano93e, Bog17, CS93b, LP95, PTA08, SR97a, SR97b, Lai14, Yan04].

**One-Copy** [Ano93e, CS93b, CS92]. **One-Dimensional** [LP95, PTA08]. **One-Sided** [ZB97]. **one-step** [Yan04]. **one-to-all** [Che05].

**One-to-Many** [SR97b, Lai14]. **One-to-One** [SR97a]. **Online** [CRH11, DTK11b, HCWS94, KKR14, LQM\textsuperscript{+12}, LHMJ14, QM01, ZLMC14, AZC13, BFG04, BJ18, CXX\textsuperscript{+18}, DFLO17, Li06a, SCH14, TZ111, WWY\textsuperscript{+18}].

**Only** [G500, SLKK12]. **ONOC** [TKKH17]. **OnRamp** [FKR\textsuperscript{+17}]. **onto** [BR08, BS90, BS\textsuperscript{+11}, DAYA02, Dja04, DQR\textsuperscript{+10}, ERL90, ERS90, GH9a, GW99, KMS\textsuperscript{+06}, LLS07, MM00, MAS\textsuperscript{+99}, XH91].

**Ontology** [PRP09]. **Ontology-based** [PRP09]. **OP2** [GMS\textsuperscript{+13}]. **opacity** [KKW17]. **Open** [CA94, ZSW14]. **open-source** [ZSW14]. **OpenCL** [AB13, MC17, PHW\textsuperscript{+13}, RBB17, STR12, dat17]. **OpenMP** [AGMJ06, CCM\textsuperscript{+06}, HLCZ00, LNW\textsuperscript{+12}, LA06, PARB14]. **OpenMP-based** [LNW\textsuperscript{+12}]. **operator** [SR88a]. **Operating** [MBL\textsuperscript{+92}, SEP96, CDJ\textsuperscript{+89}]. **Operation** [HLJ01, Coh90, KNS91]. **Operational** [RHH96]. **Operations** [BTZ98, DP98, FAGW95, HTL99, HLJ98, KSA95, PDK97, Van94, ZK94, BM04b, DT11, LMR05, JSWB92]. **operators** [CL85, TG03]. **Operators** [BDKM94, SR94, SMO14, WH17]. **opportunistic**
Opportunities [PJ18].

opportunity [KS03]. opposition [WRW13]. opposition-based [WRW13].

OPS5 [GF89, HS86].

Optical
[AK93, Ano93e, BA97, BC01, CS93b, CLM90, DP99, DSD+97, DR18, ELS94, ES97, GB93, HP97a, HQPT99, IWM97, LLJ00a, LLJ00b, LPZ99, MR03, MC93, MB93, MG93, OS97, OS93, PEC95, QM01, RP98, SHC93, SL97, Szy95, SH98, THN+93, TBPV00, WLY01, WHT00, YW00, YM01, ZME00, ZLPP01, CS10, CS92, KK17, KH12, LY13, McAS9, NAK04, PLD14, WG08, dr09].

Optically
[DH95, EH01b, Guo94, KM97, MKY+97, QMLC94, GMH+91, TRSS96].

Optimal
[AMS94, AH12, AR97, AKPT99, BNS00, BSM+02, BSDE96, BOS+91, BOSW94, BHK+94, CW00, CS93a, CA95a, CW92, CA96, DS95b, DP00, DLP99, DT97, DF90, DED91, FLPJ07, FM96, FXW03, FA95, FAM96, FY96, GSN9a, HV95, HKMU98, HM01, Ho91, HJD+01, IZ95, JP95, JLY12, JBP00, KERUM04, KUFM02, KS97b, KW02, Lai17, LHS97, LSC00, LC04, LCW05, LL12b, Li14, LO94, LO96, LV88, LS01, MS94, Man97, MW95, Nak95, OS96b, OSZ98, OH02, PM05, PP06, PK05a, Pel95, PL94, PV07, PM96, RR95b, San99, San02, SJ95, SZ00b, Sin87, SV00, TR08, WL90, WLY01, WR97, WS95, WS97a, WN94, Wu94, WHT02, Wu03, WLL08, YA11, ZV14, ZWS90, ZWR07, oPP00, ANP07, BM04a, BPBR11, BS92, CV90, CM04, CZ90, DKKV15, Dha04, Gue86, HDJ08, Li10].

optimality [HV09].

Optimally
[TBPV00, GC07]. optimisation [AD12, LL07]. optimising [PVRS17].

Optimistic
[HF02, NH93, PW96, SS93, DWG03, JLM08, QS05].

Optimization
[BLG90, BOS94, CLA+13, CLRW00, DDGK13, FM99a, FCF00, HA92, KRCB99, KZ96, KLS90, LWY97, MBW16, MC17, OKO2, PMAL11, RL02, RN89b, SMH94, TRSS06, VSM96, WCO+09, AL1+06, ATH91, AF06, APK18, ADDB18, BCM87, BNBR13, BDGR13, BH14, BHY+17, CMMT13, CCI11, CI86, DJJ11, GZG+17, GL12, HVW16, JZZ+17, KS18, KA99, KKB+06, KLL87, LL10, LQM+12, LGK+12, MZC18, NS12, OZ01, Q605, RCG18, Ren11, RRS+08, SS11, SCC+06, SZ00, SK90, Str12, TPS+18, WMW09, WCL+13, WR13, WQL14, WMG13, WLL13, XLH18, YWD08, ZZJ18, ZY12, ZJ08, ZW0X16].

Optimization-based
[PMAL11].

Optimizations
[BW95a, DUSH94, HKT94, KY96, RSB96, SZ99, ABC+09a, CZPP16].

Optimize
[DR96, HLJ01, SF05, TdAR18]. Optimized
[ABDS02, Bar05, LMXJ18, WJ14, Ana14, BKS91, DKC14, Pet18, TW15].

Optimizer
[HLL95]. Optimizer-Assisted [HLL95]. Optimizing
[CC16, CG86, JST12, KRC00, KR06, LMR05, LM16, NCTT09, PGRP17, Sab94, SC12b, WCW17, WMG01, WLWW09, WGL11, WSLC11, AFNT17, AHA+16, ARM+05, DV13, FMIF18, GY+14, MS09, ZGG+14].

Optimum
[BHK17, LP96a]. Opto [AA93]. Opto-electronic [AA93].
Optoelectronic [HPT+97, MLW+97, MB93, HNSA07]. orchestration [PVP18, RCG+11]. Order [AMS94, Bit92, CLZ02, DT97, BCM06, BG05, CB15, GA90, KKW17, KMF+05, KME09, MP87]. Ordered [GS98, HCR12, TS91, CG10, JW89, KKS+12, SW18, Tay05, YLB+15]. Ordering [KK98b, PRS97, RS96a, ZB97, CHC05, Zah12]. Orders [SH97, Sta04]. ordinary [GGR89]. Organization [AP94, AAH17, CT04, HKK+18, Ull84]. organizations [BW89]. organizing [BFK04, BZH06, IZ12, KO11, MYM10]. orientations [AFM09]. organizing [BS90, CSSY94, CS95b, Fer92, BG05, Chi95, CTT08, CSW+17, DZYB10, GYAB11, HdiR13, HRM17, KHW13, KBD05, Kum17, LWQW18, MXSL12, PSGS17, RKK06, SCG10, SK90, SF6E06, WWY+18, YJB01, ZC04]. Origin2000 [SSOB02]. ORION [PRP09]. ORN [SK11]. Orthogonal [AR97, JD12, Wu02, G90, HS00, SG96, Bic90, BZLI04, Chi95, CTT08, CSW+17, DZYC17, DWYB10, GYAB11, HdiR13, HRM17, KHW13, KBD05, Kum17, LWQW18, MXSL12, PSGS17, RKK06, SCG10, SK90, SF6E06, WWY+18, YJB01, ZC04]. Overhead [DR98, JNW96, KS00, SD00, BCM87, BD04, CX05, FGP05, LMGLGLG17, SC91a, SZ09]. overheads [DI91]. overweight [QH96, ALTV13]. Overlapping [CQ95, Wil92, CHC05, KG03]. Overlay [PRP09, BHK17, CMMN10, EDH+17, GZMC08, HK04, LSS+11a, LSS+11b, LCM+06, RA11, SB12, XLC+06, YF07]. overlays [HASB16, ZH07]. overloading [AOSM04]. oversubscription [KKLJ14]. overview [EMP+96, KS93, ABC+88, SSZ10].

P [ASST05, dR09, PMV06]. P2MCMDC [LC07]. P2P [CWLD05, DW12, EDH+17, FZ14, GB11, GJXZ05, LZY11, Luc18, MAPF14, RHL08, She09, SZ09, SHLNO9, SK11, WCXL11, YCH+10]. P2P-based [She09]. PA [SRT+18]. PA-Star [SRT+18]. PACK [BR96]. PACK/UNPACK [BR96]. Package [HS97, KOW97, XKMN94, CPO+03]. packages [DAB+14, PL03b]. Packet [GH97, GO95, JK00, LYL93, LS94, NS95, OY00, PRW94, PV89, RD05, SL97, ZY12, BMIM07, C13K, EKNS17, HBS17, HDCM11, KMF+05, KK10, Nap90, OS04, PY09a, UM17, YSL08]. packet-level [YSL08]. packet-size [OS04]. packet-switched [Nap90]. Packets [GRL97]. Packing [Hwa97, LTW+90, CRD12, SF05, TSEF14]. Page [Ano18v, Ano18w, Ano18x, LE91, NPP+12, HSSM07, MTM10, TH08]. Pagenumber [KRSZ02]. pages [Ano96f, Ano96g, Ano00d, CS93b]. Paging [DM99, Li17]. PAHON [DR18]. Pair [DP98]. Pairs [BGR96, TU92, KS91, DCA+15]. Pairwise [GP00, CK08]. PAME [YLZ18]. PaMeLA [GDL+11]. Pancake [BS03, KAM94]. panycyclicity
[XHZZ16]. panel [Rob09]. Paper [Ano01m, Ros07, OY13]. Papers [Ano95i, Ano95j, Ano96], Ano96i, Ano97i, Ano97j, Ano98k, Ano98i, Ano98j, Ano90c, Ano90d, Ano90e, Ano91n, Ano91o, Ano91p, Ano91q, Ano91r, Ano91s, Ano91t, Ano91u, Ano91v, Ano91w, Ano91x, Ano91y, Ano91z, Ano91-27, Ano91-28, Ano91-29, Ano91-30, Ano91-31, Ano92k, Rob09].

Para [CD98]. Paradigm [KBD05, BAMM05, CVJ09, KDSS18, LK15, MSJ05, Sie16]. Paradigm-oriented [KBD05]. Paradigms [KBD05, BAMM05, CVJ09, KDSS18, LK15, MSJ05, Sie16].

Paradigm [KBD05, BAMM05, CVJ09, KDSS18, LK15, MSJ05, Sie16]. Paradigm [KBD05, BAMM05, CVJ09, KDSS18, LK15, MSJ05, Sie16].

Parallel [CD98]. Parallel [CDJL09, CN93, CP92, Cho93, CHR94, CY96, CWP98, CB96, CQ95, CRD17, CGA98, CH92, CP94, CA95b, CHGM01, CRFS94, CLZ00, CBdCD00, Cuz11, DFINH13, DM90a, DM95, DOP98, DP00, DM92, DRC90, DH91a, DS84, DO89, DH94, DDGK13, DN94, DJM94, DSW94, DT01, DSD+97, DKBF90, DD95, DZ97, DJT03, ES96, ERL90, ERA95, EMM94, ELS94, ES97, EHS94, EHMN95, Fah96, FLL14, FZWL12, FBRW03, FGcF17, FTM+14, Fer95, FR96b, Fer92, FMP98, FLS+97, FPS11, FC95, FKKC97, FJ93, FMW+94, Fre96, FT94, GG94, GP94, GCB+00, GGN93, GV94, Ger98, GE95, GGG93, GGD93, GMSS+11, GJ96, GC01, GSC96, GM95, GSP02, Gra09, GL92, GH98b, GH92, GWH06, GNZ18, GKR3, GHSJ96, GS99, GRR+05, Hage97, HH94, HK96, HH97, HGCC96, Han89, HES11, HB97, HB98].

Parallel [HR95, HR92b, HR92a, HHC98, HP97b, HN91, HTB98, HR98, HK99, IZ95, IWM97, IWM97, JH05, JH05, Jia99, KR97, KF95a, KME92, Kap93, KSA95, Kar92, KK98b, Kau94, KZ96, KKN13, KR08, KB01, KKS08, KE93, KS93, Kri92, KRS13, KW02, KG94, KV94, KM92, KA97, KC99b, LASC95, LAN9, LWCC15, LP96b, LAS+97, LMCF90, LWY97, LTH97, LJKS02, LS97, LC90b, LAS+97, LPZ99, Li01, LWOG02, LYL08, LSS+11a, LST+13, LSH96, LSH96, Lin91, Lin93b, LA93, LO94, LLCC02, LP97, LV11, LFA96, KLB+15, MB96a, MHF93, Mah95, MM93, MS99a, MLC+90, MR94a, MPZ90, MT96, MB96b, MP93, MSG+13, MSH90, MD98, MZC18, MHC95, MB92, MSd+95, MMAL+06, Mer96, Mib93, Mir91, MB93, MG98, Moh96, MSZ10a, MNK12, MS96, MS99b, NSS97, Nas94, NEF97]. Parallel
parallel [Ter16, TRSS06, TS91, Trä09, TLW18, UGG⁺11, VD04, VS16, VA07, Vis87, WL90, WLL16, WC91, WJV07, WBTM09, WLCZ15, WRHR91, WJD91, WZ91, WIB12, WF89, WLMW09, WGCZ09, XL11, XS11, XYZW14, YJB91, YÖ11, YZLT09, YDTZ18, YBM13, Zha11, ZFL89, ZJ06, ZFW90, ZBW⁺17, dVCPO6, dGP06, CPO⁺03, Cza13, FTK14, KR11, Ree84, YÖ11].

Parallel-depth [BP89].

Parallel-processing [Trä09].

Parallel/Distributed [KZ96]. Parallelisation [HSSM07, Kal04, AD12]. Parallelism [Bec96, BAM93, Bog17, CGN⁺13, DRST02, FM85, FKKC97, FY97, GSG⁺93, HKT⁺91, KRC00, MK92, SSG93, SW91, SH92b, SV00, SG96, XMMD17, GV86, HS03, Irw88, MM15, Ozt11, PVGG06, RS08, RSCQ17, SCB09, TBC⁺17, VBF13, WYTX13, ZLWL12, DeG88].

Parallelization [BPST96, BF01, DHR96, HO94, KR97, Kub17, NM95, NC97, Pov99, SANY94, UZSS96, WCKD06, AAD05, AGMJ06, CVJ09, IBP08, LMY⁺11, MPN17, Nes10, SGE91, WCEA10]. parallelisations [CCLS94]. Parallelized [DR98, MJ01, SPvH03, ZMZJ17]. Parallelizing [HWW96, LLS⁺16, RHH96, Tse90, WCH⁺17, DMCFCM03]. Parameter [FCF00, ZRN⁺14, APK18, LZY⁺18, SPvH03, DAPR18]. Parameterized [dR09, NSTN91, PW96]. Parameterizing [TSHH01]. Parameters [Ker90, WRW13]. Parametric [DR95]. parametrisation [MLCFH⁺18].

Parentheses [MW95]. Pareto [BFM06]. Parity [CT93, MC17, MKR93].

Part [RLA⁺16, RLA⁺17, SAOKZ05a, SAOKZ05b]. Partial [FY96, HBS17, HHC98, SH97, VB94, DGD10, IR12, JL05, LÜ14, Ros89, TR16, Vel89].

Partially [FI04, KKS⁺12, SKK91, Tay05]. participants [GHK⁺12]. participation [AK18]. Particle [BTG02, PAH⁺98, SDG08, CvdBL⁺08, LTKS90, VBDRC13].


Partition [SCG10, LM05]. Partitionability [SZZ09b]. Partitionable [LC14b, NMS93, SB84, CL91b, LC90a, LC91b, PW17]. Partitioned [CB99, LJKS02, Y196, CG86, Gai90, GÖÖ16, Mat06, OT86, SR88a, SM08a, MR03].

Partitioner [SSB98]. Partitioning [Als01, AYIE98, BW96, Bou02, CN93, GK98, HS93, Kar95, KK98a, KKB98b, Lee90, Mah95, Moh96, MF96, Nic94, PHB96, PB99, TG99, WCE97, WF93, AHA⁺16, ACU08, CP05, DKUC15, DHK04, ES12, GHIC⁺17, LVP07, LSXX14, LZX11, MI07, PA04, PTA08, RMU14, SW91, STA12, SLKK13, TK08].

Partitions [SS96, MMS09, SBC⁺12a, partner [FCC07]. party [GC06].

PARULEL [SWC⁺91]. Pascal [PLD87, Ree84]. Pascal-based [PLD87].

Pass [Wan96, DD96, MPN17]. passable [VR86]. Passing [BB93, BDH⁺97, CW92, CD98, dADB96, GBE93, HNM02, IS97, Kar92, KTF03, LK96, MD92, PY96, PS01, SCMB90, XH93, ZN01, BPW05, DDNT10, GH89a, Hal05, IRR16, Kak15, KMS10, KS13, LR06, PS14, She06, TGPUC16, v991].

Patches [GM95]. Path [BLG01, DP00, FF98, HTB98, IZ95, LK96, MKM16, NTA96, OC07, RMC97, TU92, TZ00, ATH91, ANP07, CHCG18, DGNW13, DM90b, EDÖ05, Hsi04, KS91, LS03, LLFJ18, NS90, Ros89, SYYU07, VLL+14, WCC02, YME06, YC12, DCA+15]. Path-Based [FF98, RMC97]. Paths [BGR96, BP02, GT97, GP00, DMB+03, FLPJ07, Lai14, Lai15, Lai17, MT14, NCA+12, PK04b, WFLJ16]. Pattern [AA93, BMRC99, LW95, Lon04, PDP17]. Patternlets [Ada17]. Patterns [AM17, GSP02, KS02, LL95, AM13, Ada17, BHR91, BR91a, CTS17, ETS14, HHA14, HKK+18, KIH15, NAK04, RGU08, SPBR91]. Paving [AP91a]. Performance [BAES92, AB05]. Perfectly [Lin93a]. perform [EL91]. Performance [AP91a, AB03b, AP91c, AD12, BL05, BW89, BCD+15, Bat05, BČFF05, BDGR13, BKS91, BH86, BJS03, BDDL09, CK06, CF88, CBP02, CG17, CCE+17, MKD97, KC95, KS95, KMS07, KRS13, KRS14, KB96b, KG04, KEA95, KJ94, KRS01, KLL87, KMB91, LC97, LL93, LLY93, LP96b, LPU97, LPX05a, LN+12, LT+93, LW+16, LHW95, LDCZ97, Lun94, MF94, MT95, MSAF04].
Performance-constrained [YAK15]. Performance-Driven [CP99].

Performance-portable [MRS +14]. performance/cost [AP91c].
Performances [MS99a]. performing [GA90, VM95]. Perimeter [KF95a, KOA09]. Periodic [Ab96, BNP98, BBM +02, RDS02, WCF94, FXW03].
Peripheral [MBK +92]. periphery [ABLP17]. perishable [GAOHG17].
Permutation [AKP95, CL93, DT97, GT97, IZ95, Oru87, Oru94, QM01, RDL95, TBPV00, WS97a, YWP00, HR90, RO09]. Permutations [AMS94, BP98, CS93c, JH92b, Kap93, RS94, MR03, VR86].
Permuting [Cor93]. PERP [ZYW +15]. persistent [ST14, TC03]. Personal [ZR00, HBF12].
Personalized [LHS97, RWK95, Ede91, PW16]. perspective [FSP18, HRM17, LNC13, Los08, NKT17, RBP +11, Wun07]. perspectives [WH08, PRS14]. perturbation [CHX +17]. Pervasive [NDW17, KKKP12, Ksh12, Sice16]. Pessimistic [MMCL +17, Yan04].

Petascale [SBB17, WTYX13]. Petersen [SGR03]. Petri [BPJG92, BDF92, CH92, HMR92, NM95, SP90].

phases [BKS91, GA18, SZD07, SSGZ13]. PHAST [DGNW13].
Phi [CHLL18]. philosophers [AFNT17]. Phi [KVVN17]. PHOEBUS [MB93, KSB11].
Phone [BN02, BST01]. photon [FLL14]. photon-mapping [FLL14]. Photonic [APRA18, Qia97, RKK97]. Photonic-based [APRA18]. phylogenetic [FBRW03]. phylogenetics [SPVvH03]. phylogeny [PTZ06].
Pilot [LSZJ15]. Pilot-Data [LSZJ15]. pin [AP91a]. pin-out [AP91a]. Ping [LF92]. Ping-Pong [LF92]. PIOUS [MS96]. Pipe [KSL85, SD88b].
Pipeline [DT97, DF94, VSM96, BR08, JS86, PW17, ZWRI07]. Pipelined
KK95, SGS99, YZS96, FSP18, LXW+11, McD89, Suk18. Practice [PTA08].
Practicle [Ano97k], PRACTAM [AS91, DL98, HS94a, PRW94, Pra93, ZK94].
PRAMs [MR94c, FII04, GM94b]. Pre
[VWHL96, GDCC18, HMR15, RG06, SJS11]. pre-assigned [HMR15].
pre-detection [GDCC18], pre-execution [RG06], Pre-Processed [SJS11].
Pre-run-time [VWHL96], prearranged [SW90]. Precedence
[JR95, KB96b, MMVR97, BKS05, DUW86, Li06b, XLL15, ZV09b]. Precise
[KSJC17]. precision [BGBC+16]. Precluding [Yen01]. Preconditioned
[BSGM90, CP10b]. preconditioner [GLW14]. preconditioners [SZW05].
preconditioning [CASD18]. Predicate [TG04, Yen01, AMK^07].
Predicates [CK97, GCKM97, RS92b, Ksh12, SKK14]. Predictability
[SB12]. Predictable [CKK00, SB12]. Predicting
[FFK97, Lum99, SSG93, SZD07, SFT04, Wei02, BCD+15]. Prediction
[ASKO16, Ano97k, AYB+15, CTD99, DBW+18, KL01b, PH00, WDS+18,
WYA+18, YZS96, YI96, ARV14, CDB04, CXX+18, CHX+18, DZC17,
DKC14, KVA18, LGZ+10, LC14a, LKM12, LWQ18, MVP17, PMdO11,
urIL+18, SM08a, SK05a, WWY+18]. Prediction-based
[AYB+15, DBW+18]. Predictions [DD95, XZS96, LSH+13, NVK+11].
Predictive [DSW94, BYH+17, RKK06, SNMB16]. predictor [GGR89].
predictor-corrector [GGR89]. preemptable [LQM+12]. Preemption
[MS98, SJB12]. Preemption-Safe [MS98]. Preemptive
[GAGPK03, JTZZ11, Mar88]. Preface [Ano01-33, Ola01]. preferences
[WMY+17, WTY+18]. Prefetch [SD00, Zha11]. Prefetching [BL96, KS97a,
LY98, LY01, MG91, SMH94, SG99, SD00, HD10, HA05, LAK10, SSGG18].
Prefix
[HJ01, MP93, San02, AFM03, BS03, EB13, Han89, LH04, LS05, LH09, SPH13].
prefix-based [SPH13]. Pregel [XYZW14]. Preliminaries [NB93].
Preparing [GS18]. preprocessing [FSZ07]. Presence
[ADS01, LT96, HZA+15, ISM07, RLH03, SAOKM03, WE13, WSLC11].
preserved [SWW+17]. Preserving [NA02, CXY14, JP09, OMSGNSG05].
pricing [GRD05, ZV12]. primary [AOSM04, BB03]. primary-backup
[AOSM04]. prime [YL80]. Primitives [FAM96, AF17, BBH+17].
principal [VLIW18, AGH12]. principle [GXYZ13]. Principles
[KAS07, DAG+17, FK89]. Prior [KHN17]. priorities [BSM08, KSS+07].
prioritized [LASS15, LW89]. Priority [BM97, BTZ98, Jnh94, JNW96,
KB96b, San98, TF92, FC90, HM06, MAKWZ13, MM07c, SR16, ST05].
priority-based [MM07c]. prism [Ros85]. Privacy
[CXY14, BJL18, LL15, LZS06, SWW+17]. privacy-preserved
[SWW+17]. Privacy-preserving [CXY14]. Private
[REK10a, REK10b, CKMP17, LTWW12, RFPAG08]. Pro [KV10].
Pro-active [KV10]. Proactive
[RLH03, TXLL14, WMES12, DW12, FX10, HOVC09, SZ09, WWY+18].
Probabilistic
[CW+07, DM92, SCMS12, ESCV15, JHPL13, MK08b, SU87, WMG13, ZA05].
probability [DJH11, GXYZ13, KNS06, NLAL17, LXLS12, NGQM12].
probability-based [GXYZ13]. probe [ZFWF06]. Problem
[AS95, AM93, ASST95, BSH15, CLRW00, CRFS94, GP00, HH01, HC97,
Kau94, KBC+01, KLz97, LF92, NW88, RDL95, TU92, TZ00, WH97, Zia92,
AY89, ANP07, BCMV15, BB85a, BSG90, BFG04, BFM06, Bož09, DBA+18,
dADC18, DM90c, EE05, FZWL12, FMM+08, GT04, HSSM07, Hsi04, HC11,
IHM05, Joh89, KS91, LM05, LSS88, LWR+03, LY08, LCCL10, LS91, LH99,
MG03, Ngo06, Oa10, PMV05, PBS08, PDB13, Sch13, SU87, Sta17, WLL16,
WCEA10, WZ91, WMG13, Cza13]. problem-size-independent [LH99].
Problem-Solving [KBC+01, LWR+03]. Problems
[Ano96i, Ano99g, ADS01, BK95, BOS+95, BEE00, BGOS95, BMCP98, CB95,
DS02, ESMG96, FR96b, FR98, FT94, GL92, KL01a, LSH96, MS94, MP96,
MS99b, OR97, RS96b, Ser97, SN93, Ten90, TF01, WM92, WLR90, WHT02,
WH08, ATH91, AG86, BGH+03, BS03, BBd90, CMMT13, CEOS07, KJD03,
LW06a, Lin91, Los80, LGG08, LV88, MPZ90, Men18, Nik04, PPSV15,
WRW13, WMG13, YS11, ZTFK16]. procedural [Kan05]. procedure
[Kub17]. procedures [DWHL87]. Process [CCM92, IAS+92, Kar95,
KSP+92, KOW97, Qia97, Ric98, SMR96, SS93, SF90, Ara90, Bic90, Gai87,
Gai90, GA18, HRF+11, Lo92, MEMEH17, SDG17, TKX+13, WMES12].
Processes [DZ97, VVHL96, BFTV87, GK15, MAR05]. Processing
[Ay93, AK93, AGWY11, CS95b, DDGK13, Eme13, GC95, GLGLBG12,
HPT+97, HSJP87, HR90, IWM97, KSL85, Kri92, LWW97, LS97, LS85, LT94,
MSH90, MT85, NSM98, NMS93, OY13, Ros07, SH90, Sni03, SS98, SSK06,
SWC+91, TAS+01, THBF97, VB02, Wee01, WRC+02, WSS93, Wei98, WA02,
YL12, YJL16, ZM94a, ZM94b, AAA+15, ATDH13, AM11, BB87, BK13,
BH13, CC08, CLA+18, CRL04, CLHL18, CCM06, CM12, DFLO17, DW04,
EKN17, GSWW04, GWVL94, HBS17, HR89, JMS86, JKD+15, KLO8b,
KNS91, KKN13, KN18a, KN18b, Lee91, LB12, LKB+15, MTL+18, MS86,
NLB+18, PYP+10, P190, PGP+12, PVM06, RCG18, Ren11, RAN+17,
RG87, RTG91, SC08, SIY14, SS18, SK89b, Sto87, SCLL10, SI13, SA90,
TZH+06, Tri09, VETT18, WW07, Wan07, WJD91, WL10, XHY07, XQ04,
ZMCP11, ZHH15]. Processing [Ano93a, PRS14]. Processor
[AW95, AERBL92, Amh94, BG86, CW93, CWW+95, CkLCK04, CkLCK05,
DY99, DDG98, GWW99, Goe94, Guo94, Hwa97, JB98, KC98, KF90b,
KBC92, LS91, MSd+95, Moh96, MNM98, MBK+92, NSS97, OS98, Par96,
PT01, RKK97, SS93, SHC93, SS97, WCF94, YD98, YL98, Zhoa92, ZYO02,
ACYS08, Bat05, Bod89, CL85, CL85, DK11, Deh90, Ei07, Gro85, HK08,
HA05, Kri91, KR87, Lec91, LC13, Li05, LY13, MM07b, OT86, PLD87, PR13,
RR05, RLH03, SI86, SI89, SSM89, SHL+13, SKK91, ST85, SAJ13, SE15,
TR08, TDAR18, WIR+18, WI92, XP10, YBM13, LTKS90]. Processor-efficient
[LS91]. Processor-embedded [CkLCK04, CkLCK05]. processor-in-memory
[HA05]. processor-node [TR08]. Processors
producer-consumer [KK11].

Product [AAD02, GE94, MSC96, CI03, Dim04, Dja06, ISAZ07, ISAZ10, JD12, MSAZ11, ST85].

Production [BBD91, HKT91, KM91, KM92, Nie94, Sch91, DM90c, GF89, HS86, SM86, TDBL13].

productivity [VFAD17].

Products [ANS97, WLD00, CP10b].

Profit [LWZZ12, AM06, KSSK16, ZV12].

Profit-driven [LWZZ12].

Program [BDF92, BE95, DBP94, DD95, ERL90, Fer92, FJ93, GSG93, LSC93, LMCF90, LAS+97, MDD97, Mi93, NBM93, PP96, PS01, RRS+08, SH92b, Th92, WF93, YB01, ZYH94, GJG88, Kan05, RM90, ESA03].

programmable [AC89, HHA14, MM07b, PYP+10].

Programming [AT94, AM93, AB84, BK95, BJ99, BCD95, Bal90, BN94, BB93, CP97, COV13, CCRS92, CCC92, CEF+95, CBdC00, CJ99b, DRR13, FC95, Fre96, FBDC99, GP94, GWW96, GAG+92, GLC01, HR00, JW94, JRR99, NT90, PA94, PM96, RAS96, SS0B02, Sin95, SC95, VBF13, VFAD17, ZZC92, AE88, AB13, AJG18, BAMM05, BYG+18, Bog17, Boz09, BHS13, BLZ+18, CK88, CCC+04, CTS17, CCE+17, DRT07, Eij18, EE05, EC89, ESA03, FGcF17, GL89, Hdr13, HSS17, IEWK17, KKVI05, KSG13, KZ11, MSS88, RK18, RSR04, RR05, RSW91, SsdB+10, TFMS15, YQTV12].

programming-based [KKVI05].

Programs [AH94, BB93, BCR96, BLG01, CMT93, CDY97, CGL+95, CMS92, DR98, dADB96, ERA95, Fah96, Gu92, GHSJ96, HLJ01, Kar92, KY96, LP97, Lum94, Lan99, Mah95, Mi92, QZ94, QH96, RJA97, RW93, SKR93, SG93, SHH00, SK93, TR96, TG97, YI96, ZN01, ZH99, AY90, BC90, CC16, CAK13, DeG88, DGM18, FKLBO8, GÔÔ16, HK08, HS03, LPK+10, LC91a, LC92, LZZ+11, MCD99, NCT+07, Ni97, Pop91, SCM11, THSS87, YDTZ18, ZX83].

Progressive [RGS00, YIY97].

Project [BSH15, FCO90].

Projection [AAP01, HSJP87, FGL+11, NCA+12].

Projection-Based [HSJP87].

projections [KM03].

PROLOG [SS97].

promoting [ABC97].

prone [DDG+17, GK15, MFVP08, OWK14].

Pronto [PF08].

PROOF [YJB91].

proofs [AP16].

Propagation [CDP95, DF94, AAF04, CMT93, CDY97, FGL+11, NCA+12].

Propositions [WD92].

proper [NGQM12].

Properties [BR95a, CW01, DC94, GKK93, KAM94, YN92, NS90, PL06, WMY+17, YDZ18].

properties-aware [WMY+17].

property [PB09].

proportionality [KR12, KCR14].

Proposal [HPT+97, ESGQ+14, NKK16, VO89].

proposals [RFPAG08].

Protecting [SY04, LZSL06].

Protocols [BMMS01, SD06, Lop13, Lop18, YGZ+10].

protein [FGZ03, GZ08, LYL08, LVB07, Ngo06, WDS+18, YL12].

Protocol [BMMS01, SD06, Lop13, Lop18, YGZ+10].
BK17, CKL99, GRS97, GS96, GS01b, HP00, KB96a, LL98, Seb95, Tho02, AMT13, ARD14, ALF03, BDM18, BOY10, CL03a, CCHC09, CS08, CL09, CHC05, EBE08, Eri88, EDH+17, GCS06, GZY14b, HLS12, HZDP12, LS06, Lun90, LM09, MCDs+06, MAGL13, MPG17a, NPGV10, NSA11, PGSM80, SMPMLVL11, TLY12, WCCH18, ZPI06, ZWS09, ZLCJ12, SJS11]. Protocols [AS00, DS95a, Dah99, Dol97, DSS95, GS00, HNM02, KCDZ95, AP03, BW89, BSW07, BPA06, BJL18, CXY14, CB06, CDAN14, FW05, GS03b, JBY05, KL10, LPX05a, Los08, MAM05, MMCL+17, MS15, OSL05, RFS+12, Seb91, VA03, WTC08a, WTC08b, WCYR08, mYA91]. proton [KDO+13]. Prototype [CSSY94, KYL05]. Prototyping [DN94, WH97, PRG88]. Provable [KMP06, LZY18]. Provably [DP99]. providing [Zah12]. proving [SHSH17]. provisioning [JAB12, KM17, Kim17, MCZ14, NF16]. proxies [TC04]. Proximity [OSZ98, CJDC10, SX08]. proxy [HC09, KERUM04, ZVL11]. proxy-based [HC09]. pruning [MCC04]. PSCR [MRT18]. pseudo [CVK+18a]. pseudo-spectral [CVK+18a]. PSIST [GZ08]. PSO [ADDB18]. PTAs [LW06a]. PTNet [BFH+17]. PTW [PW96]. public [AM06, AVAH18, SX14]. public-key [AVAH18]. publish [ZW13]. publish/subscribe [ZW13]. Purpose [GFB+92, CBM+08, CW15, KL08b, Lo92, LCB16, RGD03]. proxies [TC04]. PVM-Based [WAS95]. PVM-Based [WAS95]. PVMe [BR95b]. Pyramid [DS03, RL95, Tan84, LW90, Ros85, WW04]. Pyramids [NP1+96]. pyrosequencing [SPRG+12]. Python [DS05, DPSD08]. QAP [BMCP98]. QC [ACYS08]. QC-2 [ACYS08]. QCD [IBP08]. QoE [KS18]. QoS [BOY10, CS08, CKML12, DMB+03, DÖ06, Kim11, Kim17, KKK+11b, LL07, LZZ+11, MS00, NP09, OY00, SJB12, TBHA07, XHY07, XG03, YSL08, YJKD10]. QoS-aware [CKML12, LZZ+11, NP09, YJKD10]. QR [Kau94]. QSM [RGD03]. Quadratic [Cza13, WNA+94, MP88]. Quadrature [MD92]. Quadtree [IK93, WF90]. quadtrees [HR98]. Qualitative [Buc92, WMY+17, WTY+18]. Quality [LACZ00, NZZ+11, AH11, AH12, DV13, FC14, LNA12, SS08]. Quality-aware [AH12]. quality-of-service [LNA12]. Quantifying [AASFV04, FX10, LDCZ07, Nik03]. Quantitative [Buc92, NBM93, YZW+15, GXYZ13, KC17, MMAL+06, WMY+17, WTY+18, ZI08]. Quantization [ZCK+02, Nic88]. Quantization-based [ZCK+02]. Quantized [FKB17]. quartet [SPVvH03]. Quasi [AB05, Nik04]. Quasi-perfect [AB05]. quasi-threshold [Nik04]. Quasirandom [B096, CJ07]. queries [AY89]. queries [BBCQ13, CI86, LSZZ15, LKB+15, PAG+18, RHL08, SSSK11]. Query [AyJ93, CS95b, DM92, HASB16, SK90, PRP09, CHLL18, GB11].
JHL\textsuperscript{+}18, KSI04, KKN13, NSAS10, SCLL10, WL10, ZHT16. Querying [TT10, DTK11b]. Query [BTZ98, CLT96, Jol94, RO92, Che90, CP04b, ESGQ\textsuperscript{+}11, ACYS08]. queued [PY09a]. Queuing [dG91, HM06, KS03, MGRRK14]. Queues [BM97, BCLR96, Kop97, PD92, San98, FC90, ST05]. Quicksort [BX93, CV91]. quiescent [MRRT07]. Quorum [NM02]. Quorum-Based [BM97, BCLR96, Kop97, PD92, San98, FC90, ST05]. Quicksort [BX93, CV91]. quiescent [MRRT07]. Quorum [NM02]. quorums [BJPPM\textsuperscript{+}08].

R [Ano92a, BG90a, KKN13, LMY\textsuperscript{+}11, TR16, ZFS07]. R-GMA [ZFS07].
R-tree [TR16]. R-trees [KKN13]. Race [HM96, ISZBM99]. Racetrack [HZL18]. radiation [KVNV17]. RADIC [CLMRL15]. radii [OMSNSG05]. Radio [CGKK97, CDB04, FCZ\textsuperscript{+}12, GPT06a, GDLC\textsuperscript{+}11, KK06, MKC\textsuperscript{+}09, RFS\textsuperscript{+}12, SSZ10]. Radio-wave [CDB04]. Radiosity [SHT\textsuperscript{+}95, YIY97].

radial [Ano92a, BG90a, KKN13, LMY\textsuperscript{+}11, TR16, ZFS07]. R-GMA [ZFS07].
Radiation [KVNV17]. RADIC [CLMRL15]. radii [OMSNSG05]. Radio [CGKK97, CDB04, FCZ\textsuperscript{+}12, GPT06a, GDLC\textsuperscript{+}11, KK06, MKC\textsuperscript{+}09, RFS\textsuperscript{+}12, SSZ10]. Radio-wave [CDB04]. Radiosity [SHT\textsuperscript{+}95, YIY97].

R [Ano92a, BG90a, KKN13, LMY\textsuperscript{+}11, TR16, ZFS07]. R-GMA [ZFS07].
R-tree [TR16]. R-trees [KKN13]. Race [HM96, ISZBM99]. Racetrack [HZL18]. radiation [KVNV17]. RADIC [CLMRL15]. radii [OMSNSG05]. Radio [CGKK97, CDB04, FCZ\textsuperscript{+}12, GPT06a, GDLC\textsuperscript{+}11, KK06, MKC\textsuperscript{+}09, RFS\textsuperscript{+}12, SSZ10]. Radio-wave [CDB04]. Radiosity [SHT\textsuperscript{+}95, YIY97].

randomization [CJ07, FI04]. Randomized [AFM09, BDF01, CDCD05, HBJ98, HT06, LW06b, MVM04, RR95a, Raj96, San98, Vis87, Bad04, DJT03, SK05b]. Randomly [SS96]. Range [SIR92, GB11, KKN13, MKM16, PAR14, TDC05, YWAT13]. range-free [MKM16]. ranges [CHCG18, CYZ06]. Ranking [SGS99, AAD03, Vis87]. Rapid [PRHB06, CL85, XSYG18]. rapidly [Li10]. rare [BV13]. raster [Wri91]. Rate [MO97, OJP\textsuperscript{+}18, RGS00, UD96, AGWY11, GA18, Hu11, MAHKZ12, SWC\textsuperscript{+}18]. Rate-based [OJP\textsuperscript{+}18]. Ratio [MO97]. Rational [GM95, KM88]. Ray [RGS00, CDB04, CS17]. Ray-Tracing [RGS00, CDB04]. Raynal [Ano96l]. RC [VV90]. RCC [HH97]. RCC-Full [HH97]. Re [FVCL05, LMJC11, PRHB06, RCG18]. re-authentication [LMJC11]. re-engineering [PRHB06]. re-optimization [RCG18].
Reachability [CCM01]. reaction [XLHT13]. Reactivation [CW93].
Reactive [DLS00, OOSVGV\textsuperscript{+}16, HPT07, NPGV10]. Reactor [KS08].
Read [IRR16, AM12b, CH06a, CG10, GNS09, IR12]. read-dominated [AM12b]. read-modify-write [CH06a]. read-write [CG10]. Read/write [IRR16, GNS09, IR12]. Reader [JBP00, HV09]. readers [FKKR16]. reads [SPRG\textsuperscript{+}12]. Ready [JM00]. Real [AAL95, AK93, Ano92c, BPJG92, BA96, BA01b, CS93a, Cha94, DJ98, EMP\textsuperscript{+}96, GMM00, JH92a, KS97b, Lee03, LTY96, LM96, LML\textsuperscript{+}10, MMRS98, MMVR97, Moh97, MSST99, OY00, PS93, RDS02, RU99, RAS96, STN92, THBF97, WLID02, Zim96, van96, AOSM04, AOSM05, BW08, BVGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC\textsuperscript{+}15, EDM05, FSP18, FC14, GZG\textsuperscript{+}17, Gos90, HOVC09, HA06, HV13, HL07, JLWX11, JZZ\textsuperscript{+}17, JHL\textsuperscript{+}18, KK17, LHK03, LZCY09, MLDG12,
MAM05, MAKWZ13, MVP17, NA06, QJ05, RLH03, TZH+06, WL05, XO05, ZZJ+18, ZHH15, ZB03, ZQMM11, ZHLQ12. **Real-Time** [AAI95, AK93, Ano92c, BPJG92, BA96, BA01b, CS93a, Cha94, DJ98, EMP+96, GMO00, JH92a, KS97b, LTY96, LM96, MMR98, MMVR97, Moh97, MSST99, OY00, PSD02, RU99, RAS96, STN92, THBF97, WLD02, Zim06, van06, LML+10, AOSM04, AOSM05, BVGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, EDJO05, FC14, GZG+17, Gos90, HOVC09, HA06, HV13, HL07, JZZ+17, JHL+18, KKW17, LH03, LZCY09, MLDG12, MAM05, MAKWZ13, QJ05, RLH03, TZH+06, WL05, XO05, ZZJ+18, ZHH15, ZQMM11, ZHLQ12]. realistic [KNS06, SJS11]. RealTimeTalk [EMP+96]. rear [CXQ+18]. rear-end [CXQ+18]. rearrangeability [DD96]. Rearrangeable [CS93c, HJHDH01, FY86, Pak89]. Rearrangement [BVB02, GL92]. Reasoning [PS88, Ste95, eW95]. recall [GBGC+16]. recipients [Ros07]. reciprocal [SL90]. reciprocity [HBF12]. Reclaiming [GMM00, MMVR97]. reclamation [HMBW07]. Recognition [BMRC99, RGU08, SP96, WPPK94, CNLGLR18, CWZ+18, LQ091, PD05, RK18]. recommendation [COF+17, LMXJ18, WTY+18]. recommender [HDLW18]. reconfigurability [ZXY011]. Reconfigurable [AT94, BAGS95, BSDE96, BBR94, BM97, BA95, BG095, COS+95, CGG+09, DS01, EL97, EH01b, FZVT02, HQPT99, HCWS94, JP95, JS94, JB98, KF90a, LS95, LPZ99, LR93, MD01, MG93, MT97b, Ns95, NS94, ORWT+18, OS96a, TVS97, TB900, WHT00, dR90, AM13, AHA+16, BM04a, BPP05, CDJ+89, DS04a, FX06, HZL18, HPSM91, Lla17, Mat06, MP08, PPP14, PVG09, SL89, SL98, TRSS06, TJC10, WJD91]. Reconfiguration [CGA98, QMCL94, UR94, YTR94, BAPRS91, DMG18, DBLB+12, HBS17, JWSG14, LBMG15, LHX+16, FSPR05, ZB+17]. Reconstructing [BDG+15, OOW95]. reconstruction [BDRB14, FCC04, FGG08, HES10, KM03, OGRV+12]. reconstructions [SHT+08]. recoverable [ZSCX18]. Recovery [CP01, FCF00, JF95, LY10, LS01, MFS93, BG05, DWG03, MM04, MM06, MS02, PG06, TTH12, ZYW+15]. rectangle [Deh00, LV88]. rectangles [KF95a]. Rectangular [CWW96, Dja04, SBC+12a]. Rectilinear [Nic94]. Recurrence [CP94, Car90, MP87]. Recurrences [BCZ95, PT94, NCTT09]. Recurrent [WT92]. Recursive [CW01, CB95, CTZ99, GHSJ96, KC99b, Lee94, LT07, SRS92b, SCD99, ZY002, AKDMN15, ERS90, MM15, SMIKL93, DC94]. red [BE13]. red-black [BE13]. Redaction [SWC+91]. redirect [ACCP12]. Redistribution [PT07, RS96, BB+96, GP05, KHH18]. Reduce [KLS90, SRS99, CRD12, LMGLGL17, LMR05, Lns09, MP08, PY09c]. Reduced [AP94, CC87, Gro85, HJ90b, LC13]. reduced-instruction-set [Gro85]. Reducible [DH94]. Reducing [BCM87, BD04, FGG05, GS00, IIH16, PB90, SS93, CK13, CX05, RWB+13]. Reduction [PA97, RJY96, SSG93, SM92b, BV13, LS88, Sch87, SPH13, ST08a, YAK15]. redundancy [BM17a, RMHR17]. Redundant


resource-constrained [VMMB10]. Resource-efficient [SZMK13]. Resources [HS94b, ASKO16, AM06, AM07, AM11, LKM12, LZR^+11, LDF^+14, NVK^+11, NSDZ18, NAK04, SSM^+06, SSM^+07, YZS15]. respectable [GHK^+12]. Response [TPS^+18, DHK04, HPB^+10, VA07]. Restart [LACJ18, NC13]. restarts [GK15]. restoration [UAPM07]. Restricted [Fra92, MSSE02, BS03, BBO08, DeG88, JZF^+15]. Restrictions [Li92]. result [Lon04]. results [Ene13]. Results [IPK85, Sch91, SH92b, BR95b, HSH10, SZ03]. Retargetability [MB96b].


Riccati [MV94]. Rigid [JBL02, LF03]. Ring [BA95, CMS92, FFK07, Goe94, GH96, HJD^+01, MBK^+92, ZB97, BG86, LLK13, LLDL15, MM04, PV89, RM10, RKS87, YC04, ZWS09]. Ringed [DVZ96]. Rings [FKS97, GR96, KY02, KUFM02, LHS97, LSC00, MS94, Man97, YTR94, CL91a, FKK^+04, LC92, LW06b, PR12, SMO^+18, Sil90, Tsu07, WT09].

RISC [HC91, LPU97, MSC96]. RISC-based [HC91]. RISE [AZW13].
rising [ORR03]. risk [FGL+11, PVRS17]. RMF [YT05]. RMI [CCK+08].
RNS [PH16]. road [IB04, SWLZ17]. roadway [XCLR07]. Robin [CMS04].
robot [IIH+17]. robots [ZBW+17]. Robust
[BS8+13, KR5+15, PVP18, SSM+07, ZMG+16, AKSM08, BBCQ13, GA90,
LDS16, LZY+18, MSF+13, SSM+16, SNCP12, TZH+06]. robustness
[CKWT17, Par05, SSM08, TdAR18]. Roe [dlAMCFN12]. Role
[Cha95, Won99, BCD+15]. Role-Based [Won99]. Rollback
[EF95, AAFV04]. Rollbacks [SS93]. roofline [KC17, NSKN17]. root
[EL91, LXW+11]. Rosenberg [Ano00d]. Rosenfeld [Ano04r]. ROSS
[CBP02]. Rotation [HC95, BHH93, Ara90, EL88]. Round [CMS04]. route
[CDCD05, LPX05a]. Routec
[FF98, NISS99, RMC97, XMN92, MVM04, SAOKM03, WCC02]. Router
[DRSB01, PIB+01, MBR08, MYD+11, XYKA08, CCQ+06].
Routers [CP01, CP04b, ZCF+17]. routine [IB09]. Routing
[ASH+01, AZ01, AaJS01, BLPV95, BPv96, BP98, BA7, BA01a, BW96b,
BDF01, BN03, CRV94, CL93, CW01, CS10, CL96, CC94, CLT96, CCR94,
CS93c, CDF01, CG02, Dol97, DG94, EL97, GG01, GHK98, GO95, GT97,
HCWS94, HJBD01, IM00, JR92, KLLK98, LS94, LTWW95, LTY96, Li92,
LME95, LW95, LE98, MS00, MS94, MW95, MR03, MJ94, NISS99, NS95,
OM00, PRW94, PA97, PA01, PL93, RS94, RS96b, RHO5, ROD2,
RR59a, RW97, SJ95, SJ96, SB02, SZ92, TBPV00, WLY01, Wan96, WGN94,
WLD00, YBO97, PRP90, AA91, AA91, AD92, ABB+14, BSW07, BOY10,
BR91b, BPA06, CI03, CL03a, CC14, CS06b, CS08, CHCG18, CDC05,
CMN12, CAF+11, CL90, DMB+03, DJH11, DBW+18, EB09, GHy10,
GDL+11, GAGP03, GLD06, GTGLSA12, HNSA07]. routing
[Hu11, HL07, HJLR12, JL05, JLWX11, KS04, KLP10, KSK15, KFF+05,
KOR90, KTV91, KNS06, LPX05a, LS03, LTL12, LAGK07, LY13, LH95,
LDDL15, MCD9+06, MPS16, MBR08, MVM04, MSAZ10a, MSAZ10b, NJ91,
OS04, OSL05, OM00, RD05, RFS9+12, RB12, RHL08, SW12, Sch13, SLW90,
SLW17, SK05b, SJ91, TC04, TCHC12, TTO7, VA03, WBT+08, WGS08,
WW12, WCL+13, WHC+18, WWA+18, XHG03, XG03, YME06, YMLP14,
Zah12, ZV06, ZMC06, ZW11, ALF03]. Routings [WIKC97]. row [Mat06].
row/column [Mat06]. rows [ST87]. RPC [BF97, BD04, WSG91]. RRAM
[TOR+14]. RRAM-based [TOR+14]. rRNA [ZF96F06]. Rule
[KM91, Mir91, Nio94, SWC9+1, XH91, MC9+06, Oza04]. Rule-Based
[XH91, MC9+06]. Rule-Firing [Nie94]. Rules [RSD94, SM92b, SWC9+1].
Run [FBK98, FY97, LPU97, LLY15, LFA96, MDD97, PM92, SCMB90,
GF89, LW16b, LGT14, NVK+11, SFT04, VWH96, XL11]. Run-Time
[FBK98, FY97, LPU97, LFA96, PM92, SCMB90, LLY15, GF89, XL11].
Runge [KR06]. Running [CM9+06, FGP05, GRR13, dSS11]. Runs
[Lin93a]. Runtime [Bir94, BJK96, KR97, KPC96, NS97, NSPP02, PT97,
BGA12, KNHH18, LFS16, LMY+11, SP13, SK91, TDBL13].
S [AGWY11, ASST05, BPJG92]. S-Nets [BPJG92]. SABA [ZVL15].
sacrificing [FKKR16]. Safe [FM99a, MS98, CDD+15, HV09]. safety [Wu03, XCS06, XCLR07]. SAGE [Num09]. salesman [WMG13]. Sampling [OS96a, SS92, BBB11, SMP15]. SAMR [CP05, LTL06]. SAN [SM92a]. SAN-Based [SM92a]. sandboxing [SFEF06]. SAT [SHA17]. Satellite [TZH+06]. Satisfaction [GHH92]. Satisfiability [GHH92, Joh89]. Saturation [Tze91]. SAUCE [HSS17]. save [FKLB08]. Saving [DKY01, SSGZ13]. Sawchuk [Ano93e]. Scala [GKK+13]. Scalability [AS13, AS15, AYI97, BM17b, BMRC99, CSWD03, CSSY94, CSML10, CAB94, CLV95, CBdCD00, Con93, DA97, DD93, DKRC+15, DM04, DSW94, DFRCU99, DDS+97, DT92, DM94, FR96b, FPS12, GH02, HA92, JJ12, KA03, KP00, KH12, KC94, KGV94, LZ02, Li01, LWP02, NKC+97, NRM+09, NPY+97, PA94, PGP+12, Pra93, QGB+17, RBA+18, SMH94, SN03, Sun02, SFC17, TFMS15, TCS+10, WPKK94, WW96, XKMN94, ZMP00, ZBO9, ZXR18, ZLS17, AKDMN15, ACPT15, ADDB18, BGM+08, CGL+14, CS08, CAK13, CJ17, CD95, DKKV15, DS04a, FPS11, GZ08, GM13, GRZ+18, GREC91, HSY10, HWC08, KHT+14, KCFP18, LHK03, LC07, LB09, MK08a, MVP17, NKK16, ND12, RB0H+18, SSTP09, Ter16, TCHC12, WJV07, WCEA10, XCLZ03, XJS03, YQTV12, SLG+18]. Scalar [VH93, SKH15, Sol13]. scalar/vector [Sol13]. ScalaTrace [NRM+09]. Scale [ABDS02, BMCP98, FZVT02, GK93, IHM94, KL84, LK98, MYM10, OK01, RFM94, VN93, ACCP12, BM16, BMB+08, BM05, CC16, COL17, DB11, DBCF13, DLS+12, IEWK17, KEA07, KSSL16, KBC+10, LGZ+10, LY08, LZY11, Luc18, LWCG14, NAB+11, PTZ06, RW02, SFT+13, VM03, WCWO17, WLNL06, WBRT13, XY07, YZW+15, ZV09a, ZVL11]. Scale-free [MYM10]. Scalable [BMRC98]. scaled [KNNH18]. scaler [VD18]. scales [PLK+18]. Scaling [CVK+18a, SSS07, TBVP00, YFS+15, FKL08, FZ14, Num07, VD18, YÖ11]. Scan [KB96b]. scanners [CCN06]. scatter [BM04b, LMR05, dSAJ15]. scatter-based [dSAJ15]. scattering [DB86, LPLFMC+12]. scatternet [SLWW05]. SCC [LTG14]. SCDN [SLW10]. scenario [DBW+18]. scene [OVG+12]. schedule [KSG03]. Scheduled [LB90, HA06]. Scheduler [NPP+02, HDJ08, HHI04, KS03, LS10, LB09, SCG10, ZLWZ18, MSK+16]. Scheduler-Activated [NPP+02]. schedules [CDR12, JdA06, DQR+09, ZXYO11]. Scheduling [AGF94, ALL99, AMN00, AGG98, AS97, AYE98, AKPT99, AjHcC90, BPJ92, BD05, BPN90, Bec96, BD11, BCLR96, BSH15, CDY97, CL91b, PLL99, CJ99a, DA97, DR95, DDD98, DP99, DS84, DAYA02, DÖ06, DJ98, ERL90, ERA95, FAW95, FVLB09, FR92, FR96a, FKS07, Gai90, GR96, GY92, GM99, HO94, JSCB95, JWBB92, JR95, JZF+15, KS97b, KB96b, KA97, KA99, LPU97, LYG02, Luy94, MMR98, Mah95, MD13, MSd+95, MSSE02, MYD95, Moh97, MSST99, NSSS99, OH02, PKN08, PR12, PAM94, PS93]
PM96, QM01, RU99, RAN+17, SCMB90, Ser97, SH92a, dSR00, Sta04, SD88b, SYG92, TSC01, TTG95, VB02, VWHL96, WCF94, WSRM97, WA02, WUG99, YI96, YWDL08, AL04, ALM+16, AAD10, AOSM04, AOSM05, ALLM11, AH12, AM12b, BKSN05, BGLA03, BHLT14, BFG04, BFM06, BKM14]. scheduling

[BH05, Ca10, CG11, CG12, CHLL18, CRJ10a, CRJ10b, CGW03, CRA08, CMR10, CDOR12, CJY04, DBA18, DBO13, DK08, DK11, DP16, DUR86, DRR13, DJT03, EHL+15, FA07, FW05, FPP14, FCJG+18, GDP08, GYAB11, GVB03, GK15, GMVRG16, GPQC14, GP05, HSH10, HDJ08, HV13, JLY12, JHF+17, JBS14, KHN17, KA03, KVA18, KYS13, KKK11a, KM17, KUA07, KV10, Kim17, KNH18, KK10, KSSK16, KDH08, KBC+10, KMP+06, KA05, LDZ+14, LDZ+17, LH03, LWZL12, LC90a, Li05, Li06a, Li06b, LL07, LQM+12, LW16a, Li16, LNA17, LML+10, LCS+15, LY+16, LPX05b, Lo92, MGSG12, MLG12, MAR88, MCAS12, MMK+11, MAHKZ12, MS86, MAR05, NSAS10, NHO+13, ND12, OA10, OPR18, ORR03, PY09a, PK05a, PW17, PDB13, QJ05, QSL+08, QGL+09, RBA+18, SSF11, SPC+17, SJ12, SMO14, SV08, SP13, SLG06, SCJ+08, SWP90, SS18]. scheduling

[STK11, SZL10, SR16, SHC14, TLLL10, TLQS12, TB13, TG03, TXLL14, TDP15, Tsu07, UM17, VD04, VMMB10, VB08, VS16, WDJ91, WAE03, WL05, WL10, WBR13, gWW18, XQ08, XLL15, YW15, ZV06, ZVL13, ZTFK16, ZY12, ZV09b, ZS13, ZMQM11, ZHLQ12, ZLMC14, dOS14, FZW12]. schemas

[TMK17]. Schemas

[Arb89, BG90a]. Scheme

[BDF01, FY96, JB93, K99a, LO96, MYD95, O05, AK18, BBS13, CWLD05, DBW+18, EL88, ESGQ+11, GP1A0, GMX07, HC09, HOVC09, KVHS07, KRL87, LT02, LHF91, LAK10, LH+16, LMJC11, LSZ15, LLDL15, NC09, RS08, SNC12, SO9, SM04, TD05, TC13, TCHC12, WL04, WW12, WW04, XYDL06, XLL13, YGZ+10, YJL16, YAA10, YC12, ZCM12, ZSCX18, ZW16, ZBR11]. Schemes

[yCM98, FM99b, GG01, LL95, LS01, SKK97, WRC02, ZLPP01, AAD03, BLPA05, BR91b, CI03, CKML12, GJXZ05, HCM11, HSMB91, JWS14, MM06, SH17, TW89]. Schmidt [ZLPR91]. science

[APV18, BKK+11]. Scientific

[CCRS92, DUSH94, FMW+94, GT02, HS94b, KBC+01, AOS+05, AE88, BCD+15, CYX14, EFG+14, NTC03, VM03, WHW+17, YYLC11, ZKZF18]. SCO


[BOSW94, BS00, BCP98, BHS15, CDD99, Cza13, DM95, DM92, EHN95, Fen90, LYC02, SIR92, AMM+18, BN02, BP89, Can18, CTT16, CCLS94, CSW+17, ES12, GHY10, GJXZ05, KA05, LSS+11a, LSS+11b, MSM09, MB13, PRHB06, Par89, PSC+16, PPSV15, PVGG06, RM10, RM11, ROB+18, RHL08, SP08, Sch13, SHL09, Tam18, WGC09, WWA+18, YF09, Zep91, ZCS+18, ZH07, CB11]. searchable [WCCH18]. Searching
sensing [GDCC18, HP06, ZRN +14]. Sensitive [VR95, Ano04d, CP05, GS03a, GC07, Hu11, JL11, NLB +18, OWK14, PFJ04, RCG +11, SRT +18, WCXL11, YK04, ZZJ +18]. Sensitivity [HJ90a]. Sensor [KSI04, LDZ +14, LDP +14, STN92, THGY15, ASM09, Amm16, AHG12, Ana14, AMT13, AYB +15, BXA08, BWP +11, BOY10, BPA06, BNI12, BJL18, BZLJ04, CCW14, CKN07, CRWX12, CDR09a, CDR09b, CT04, DW06, DLLL11, DGBN14, DJH11, DKM10, DFP06b, DH04, EM11, ECP +18, GHY10, GDP08, GCC +14, GYP13, GZY14b, GM14a, HZA +15, HMKV07, HLS2, HP06, HZDP12, HJJR12, IB04, JF12, JLY12, JBS14, JHPL13, KKV105, KSSL16, KOA09, KO11, KO12, KKKP12, KKTZ13, KGN11, LDZ +17, LY10, LL12a, LLI12b, LL14, LLI14, LLW07, LZC11, LUS16, LHP07, MAGL13, MSM09, MYM10, MK08b, NCA1, NC09, OMSGNSG05, PFJ04, PLY15, PCX +11, PCX +14, PLR07, PB09, RM10, RM11, REK10a, REK10b, RLP14, RB12, SCN12, SS08, SZMK13, SCLL10, SJS11, TBHA07, TLY12, TDC05, TCS +10, TWC012, VRM10, WW07, WMW09, WL11, WL10, WWA +18]. sensor [XCLR17, XQ04, XHZ +10, YpGyL13, YDZ +18, ZZJ +18, ZSCX18, ZTLG17, ZC09, dOBG +15, OEY07]. sensor-actuator [KKKP12, SCN12]. Sensor-centric [KSI04]. sensorial [VO89]. sensors [AKBD10, AD10, BFKP04, Cal06, CJDC10, DWX10, REZ11]. sensory [HRM17]. sentiment [XLW +18]. separable [MRT18]. separating [HSS10]. Sequence [JP09, Zal01, AFM03, BBM08, BCF14, BW09, BFKW13, MARW07, DKKV15, FCS91, JV09, PTZ06, SPRG +12, SMB10, SRT +18, TMM06]. Sequence-preserving [JP09]. sequencer [BCM06]. sequencer-based [BCM06]. sequencers [CHC05]. Sequences [Swa98, TR96, BNNR16, CJ07, LV07, SK09, S05]. sequencing [CRL04]. Sequential [KF95b, BFTV87, Fen90, SBC12b, SLKK13, ZXB14]. sequentially [HK08]. Serial [EMMM94, MT97b, BOI91, CR91, CL90, SD88a, S19]. Serial-data [SD88a]. Serializable [Sch91]. serializing [HHS12]. Series [CA95a]. Series-Parallel [CA95a]. Server [ALL99, AYI97, CM92, GM99, HBCM99, JSCB95, RU99, HCO9, JTTZ11, OS04, PM05, TBZB05, WLWW09, WSLC11, WLZ +18, ZVL11, ZCS +18, ZI08]. server-side [ZVL11]. Servers [FM99b, AAA +10, Bar05, BPRG04, CSWD03, DLW +12, KCD08, LY12, LYW +16, MZZC12, PSR05, Wan06, WDDK09, ZWL03]. Service [BK18, CTT08, JRR99, LAZC00, RGVBO0, ABF +14, CCA18, DB08, FZ14, HOE +09, J14, KMMZ06, KKKP12, LNA12, LC07, LB18, MHLZ16, MXXL12, MCZ14, NP09, PY09b, RA11, SB12, SFEF06, SMB10, SSSC10, TR16, WMY +17, WTY +18, WWY +18, WS06, Yan09, YHY18, ZI08]. service-aggregate [Yan09]. service-based [YHY18]. Service-oriented [CTT08, SFEF06, WWY +18]. Services [ZR00, AK06, AM07, KSSK16, LCC +05, LWZZ12, LMXJ18, MCP +18, SCW +18, Suk18, XJS03, YWD08, YAK15]. session [LAK10, MZZC12].
sessions [FSP18, TK07]. Set
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets
[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD+11, AP16, BD05, BYG+18, CCS87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several
[AP16, BD05, BYG+18, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].
Koc91, MRRT07, MC03, Nes10, YAA10, BJ99. **Simplex** [Shu95, ASC+18].

**Simulated** [Bev02, BH86, HB97, HC91, RSS96, Soh96, XH91, AH06, BG89, dADC18, GE85, Ume85]. **Simulating** [DS02, DN94, LC90b, NFHL13, eW95, AAK+18, GE85, Ume85].

**Simulation** [ABDS02, Ano92c, Ano02v, AS91, AB93, BAGS95, Bou02, Cha96, CZPP16, DMSH90, DS93, EH01a, GGN93, JH92a, LZ02, Lin93b, Lin93c, LA93, LCC02, MHF93, MRR+02, NH93, Pra93, RSD94, RS92d, SMR96, SH92b, SSRV94, Soh96, XH91, AH06, BG89, dADC18, GE85, Ume85].

**Simulation-Based** [RSD94, SSRV94]. **Simulations** [ASR93, Ger98, GM94b, HP95, KP00, LHM95, NM95, PAH+98, RPS93, AM12a, DB11, FC14, FII04, LT06, SDG08, SM04, VBDRC13], **simulative** [HW03]. **simulator** [CZPP16, dOCS14].

**Simultaneous** [CW93, ABC+09a, BPRG04, Che90, LY10, MR09, PTZ06, SLG06, WIR+18]. **Singhal** [Ano96]. **Single** [ALL99, HLBM16, JBP00, MWL00, TZ00, KNHH18, LPLFMC+12, RFS+12, SSFP11, SPC+17, ZCS+18, PR13]. **Single-Chip** [PR13]. **single-hop** [RFS+12]. **single-ISA** [KNHH18, SSFP11, SPC+17]. **Single-Source** [TZ00]. **Single-System-Image** [MWL00]. **Singular** [Bai94, HBH93, PE93, Luk85]. **Sink** [THGY15, LLDL15]. **sink-location** [LLDL15]. **sinks** [RB12]. **SIR** [ZXGD18]. **SIR-based** [ZXGD18]. **Sisal** [FCO90, PAM94]. **Site** [MFS96, WXZ+18, LFH+03, Hua17]. **situation** [LR03b]. **sixth** [Arb89]. **Size** [COS+95, CLT96, AST12, ASC+18, CYJ09, EB13, GSWW04, JM14, LH09, WW88, OS04]. **size-independent** [EB13].

**size** [GPT06b, SMT15]. **Skeletons** [GSP02, Ski96, BR08, MPS16]. **Skew** [SYG92]. **skewing** [TW89]. **Skinny** [BDG+15]. **skyline** [SLL10]. **SLA** [ATZ07, AM06, RT18, SMW18]. **Slack** [KR10b, FKL08, KR10a]. **Slackmin** [PDP17]. **Slant** [ESTA94]. **slave** [LZ05, YH07]. **Sleep** [YZX11].

**Sleep-aware** [YZX11]. **sleeping** [GDCC18]. **sliced** [KRL87]. **slices** [DSEP17]. **Sliding** [OS98, MTL+18]. **sliding-window** [MTL+18]. **slimmed** [YMLP14]. **slot** [PLY15]. **slots** [ABBBD14]. **Slotted** [HQPT99, MSST99]. **Slow** [HZA+15]. **slowness** [STKW12].

**Small** [CDH84, CTKA17]. **small-large** [CTIA17]. **small-world** [MSZ05]. **Smaller** [HH01]. **Smallest** [Wu02, ASC+18]. **Smart** [ESGQ+11, HPT+97, MKC01, CkLCK04, CkLCK05, DFL017, HRM17, KDS18, LLWC17, MCP+18, YZS15].

**smartphone** [CWZ+18]. **smartphones** [LM16]. **smooth** [ZBR11].

**Smoothed** [JK00, PAH+98, CL14, VBDRC13]. **smoothers** [WH17]. **smoothing** [HT06]. **SMP** [Bev02, FGP05, KA03]. **SMPs** [BJ99, BC05, BJS03, FW05, HLCZ00].

**SMT** [ABC+09b]. **SMT-based** [ABC+09b]. **Snap** [BDP16, DDNT10, ADD17, PV07, FGcF17, MT85].

**Snap-stabilization** [DDNT10]. **Snap-stabilizing** [BDP16, ADD17, PV07].
snapshot [AEF11, IR12]. Snapshots [Mat93, AST12, KS13]. Snooping [Dah99]. SOAP [ASKTZ13]. SoC [BLMB13, RBG17, ZAAB17]. social [CMMN10, MPS16, RGAN18, SK89b, WBRT13]. Socially [LGM18]. Socially-conforming [LGM18]. SoCs [LZ11]. soft [AOSM05, BGB17]. Software [AL99, CR96, CH94, CLRW00, GKK9+13, GS00, Gro85, HS94b, KCDZ95, Ke00, KB01, KS95, MLC99, MG91, NT90, SG99, San95, SZ00, TY90a, VSM96, KX94, ABC99a, CV16, CMT92, DP16, DSY06, GS18, KG04, LZSL06, LKD14, NHO9+3, RSCQ17, SCC9+6, SMH91, ZMZJ17]. Software-Based [KCDZ95, NHO9+3]. Software-Controlled [MG91]. Software-Only [GS00]. Solaris [Lun99]. solid [GFPC14]. solid-state [GFPC14]. Solution [DM90a, FL97, LF92, OH02, PW96, RW01, AY89, ANP07, Bat05, DP16, GA18, GS91b, HC11, KKR14, LYL08, LFGM17, WZ91, YS11, ZAAB17]. Solutions [Ano99g, BCMV15, CLRW00, RS96b, AG86, BAH04, LZ08, TK97+17]. Solver [BMM97, CY94, FKB17, ADV14, BAMA05, CVK9+8, CP10b, CK91, Dav17, GV86, Gao86, KBB9+06, LPLFMC9+12, MP87, PP13, PPTV9+10]. Solvers [CHR94, CP94, MS99a, TF01, FHL9+15, KR06, SHA17]. Some [BDKM94, DKMV01, IPK85, KAM94, Oru94, Par98, RTZ11, SI86, SZ03, ZHO03, AG86, BS03, BD98, Q6, MS15]. Some [CS08]. Song [An097k]. Sophia [GTGLSA12]. sophomore [GAC9+17]. Sort [LJKS02, Tay02, BM14, SSM89]. Sort-Last [Tay02]. Sorted [SH97]. Sorters [BNP98]. Sorting [ABZ95, CQ95, DL98, FKK9+04, FY96, HQPT99, HB98, JP95, Lee94, Lin93a, MP93, NS94, OS96a, RW97, SCC92, SS92, SM00, V93, WRC9+02, Che89, FCS91, KR11, MS88, PB90, SSM89, SI05, SA08, TW15, U184, ZFL89]. Sorts [ZAW94, SI86]. SOS [PP92]. Sound [DKY01, CKK9+13]. Source [AY90, TZ00, BJ18, LF05a, LCCL10, MH18, NCB9+17, ZSW14]. source-to-source [MH18]. sources [AK18, Lon04]. SP [ASH9+01]. SP1 [BR95b]. Space [BW96, BH93, DH99, GG01, GW99, GR97, KM97, KY96, LZ02, NC97, PPSV15, RP98, SDS9+18, SH98, WA02, WS97a, AD12, ARA13, ACJ97, BBM08, CKK9+13, DJA04, HV09, KA05, LLC99, MS09, ST12, SZB16, MSS00, YQTV12]. Space-Based [LZ02]. Space-Efficiency [GG01]. Space-efficient [PPSV15, ARA13]. space-optimal [Dja04]. space-optimality [HV09]. Space-Time [WA02]. Spaces [RS92a]. Spanners [RL95]. Spanning [FA95, KC98, KC99b, WB01, BFG9+03, BC05, BC06, BBP11, BB01, BBL04, CFW13, GHY10, tH90, HAC17, KG10, LVP08, Lin03, OMSGNSG05, RDA18, TN16, TDM05, WZ12, WIB12]. spark [ZKZF18]. Sparse [Bas97, BW95a, KK98b, Man94, MSC96, NFEG97,
PR13, Shu95, UZSS96, Win85, AAD05, ANP07, ASES15, BC06, CP10b, CASD18, GMMP12, LHW14, LV15, MBW16, PB15, She06. Spatial [GSG+93, NPY+97, CCHC09, CRWX12, JF12, MLG05, NAK04, TR16, WCF14]. Spatial-Temporal [GSG+93, CRWX12]. Spatially [DS02, Rao16, SBC,12a]. spatially-explicit [Rao16]. SPEAR [RG06]. Special [AP93, AL99, AB03b, AS13, Ano95i, Ano95j, Ano96j, Ano96i, Ano97], [Ano99g, Ano01e, Ano02v, BOP06, BD00, BS09, BS11, Chi92, CDJL09, CDJL11, DOP98, Dek00, DF12, DB18, DT92, ES97, FTM+14, FR98, FPS11, FPS12, GC95, GMSS+11, GS01a, Gra09, Irw88, IB04, JW94, KLOb, KRS13, KRS14, KRS01, Lan09, LZ11, Las12, Lin93b, LZ11, MSGS+13, Mir91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, RL+16, RL+17, Raj08, Sch90, SLL18, SXZ06, SH92a, SB97, St090, SFC17, TH11, TFV+15, BG90b, TY95, Wee01, XMMD17, XJS03, YW91, ZO97, dVCP06, Cuz11, Gra10a, KL08a, RLA+16, RLA+17, Raj08, Sch90, SLL18, SXZ06, SH92a, SB97, St090, SFC17, TH11, TFV+15, BG90b, TY95, Wee01, XMMD17, XJS03, YW91, ZO97, dVCP06, Cuz11, Gra10a, KL08a, LK11, MKN14, PRS14, WW03]. Specialized [QOvdG01]. Speciating [GB06]. Specific [KRS13, KRS14, PP92, SK93, MRS+14, SS94b]. Specification [AS00, BR95a, BN94, RSW90, BFL+13]. Specifications [LSCA93, BCM06]. Spectral [SANY94, SSB98, AT03, CVK+18a, CH06b]. spectral-screening [AT03]. spectrum [FCZ+12, GDCC18]. Speculation [AC16, FKKR16]. Speculative [RG06, MG09]. Speed [BBH+97, Fer95, LI16, PVG09, SR91, WCYR08, HP97a]. speeds [LFS16]. Speedup [AMB95, DBP94, FFK97, Lmm99, SN93, YH07, NW88, SC91a]. speedups [Vis87]. spikes [ST08a]. spin [AK07, FPM+14]. spin-transistor [FPM+14]. Spinning [BHK+94]. Spintronic [NVK14]. Spite [VR94, DB08]. Splice [BNBR16, CWW+95, CY96, GM95, Meg91]. Splice-based [BNBR16]. split [WCWH03]. split-stars [WCWH03]. splitting [PVGG06, WSH+03]. SPMD [Gup92, LZZ+11, OKB95, Ren11, RW93, WSA+94]. SPMD-style [LZZ+11]. SpMV [YLL17, ZGG+14]. spoofing [KMMZ06]. Sporadic [MAPF14, 4OCS14]. Spot [LKK94, TY90a]. spots [LKB90]. Spread [REZ17, SIY14]. spreading [LpJS+18, XGD18]. square [BB85b, EL91, LTW+90, XBK07]. squared [RIZ90]. Squares [CB95, ZY02, BBd90, HLS03, KAP90, LTW+90, SMKL93]. Squashed [BG90a]. Squid [SP08]. SR [DYL+12, GRJ+15]. SR-IOV [DYL+12]. SRAM [JP09, WCF14]. SRAM-based [JP09]. SS [CLOL17]. st [BCM15]. st-connectivity [BCM15]. Stability [Wor93, KMS07, LXW+11, WCF14]. Stabilization [CG02, GH02, HPT02, NA02, DDN10]. Stabilization-Preserving [NA02]. Stabilizer [AD02]. Stabilizing [AN02a, AS96, BGJL02, BCCD02, DGDF10, Do97, GH96, HNM02, KY02, Kar02, NM02, AFNT17, ADD17, BFG+03, BBS13, BPBR11, BBD18, BDP16, CDDL10, CDD+15, CW05, CAK13, DLV11, DB08, DJ16, DPBNT12, GIK10, GS03b, JM14, MM07a, PV07, Tur12]. stable [AMK+07, SKK14, SLW10]. Stack [PVGG06, CS06b, HSY10]. stackable [SSX14]. stacked [TL+18]. Stage [FT94, SZ00b, CC14, HDJ08]. staging [ELO05]. Staircase [Mck94].
stalling [BHPP05]. **Standard** [CB99, PF08]. **Star** [FA95, KAM94, Lat95, LK94, MJ94, OS97, OS93, PRW94, RW97, RYW93, RLS96, SAOKMA02, dBL95, AAD03, CM03, DFP06a, FMM+08, PK04b, SS05, WCC02, SRT+18]. **star-access** [DFP06a]. **Star-Connected** [dBL95]. **Stardust** [CP97]. **Stars** [FA95, KAM94, Lat95, LK94, MJ94, OS97, OS93, PRW94, RW97, RWY93, RLS96, SAOKMA02, dBL95, AAD03, CM03, DFP06a, FMM+08, PK04b, SS05, WCC02, SRT+18]. **star-access** [DFP06a]. **Star-Connected** [dBL95]. **Stardust** [CP97]. **Stars** [MR03, WCWH03]. starvation [LASS15]. starvation-free [LASS15]. stash [YPCW16]. **State** [FKB17, HB97, HNM02, KM92, LSH+13, NC97, PSC+16, ASKO16, ASB18, AD12, CWLD05, GÖÖ16, GFPC14, KA05, LMR05, LW06b, MSM09, WCO+09]. **State-based** [LSH+13]. **State-of-the-art** [PSC+16, WCO+09]. **State-Space** [NC97, MSM09]. **Statement** [AMB95, DR95, ALS91]. **Statements** [KHS96, SOG94]. **States** [Kop97, TG97, FZ90]. **Static** [FKB17, HB97, HNM02, KM92, LSH+13, NC97, PSC+16, ASKO16, ASB18, AD12, CWLD05, GÖÖ16, GFPC14, KA05, LMR05, LW06b, MSM09, WCO+09]. **Statically** [LB90, Mat06]. **station** [GPT06a, RBD08]. **Stations** [DKMV01, DDNS06]. **Statistical** [CMPS18]. **Statistics** [GA90]. **steady** [LMR05]. **steady-state** [LMR05]. **Stealing** [ANO00d, LS97, Ros99, DKKV15]. **Stein** [QOVDG01]. **Steiner** [LY10, Sta17]. **Step** [CW00, Bog17, KKR14, Yan04]. **Steroids** [Bar05]. **Sticker** [GPX08]. **Sticky** [Kop97]. **STICS** [HZY04]. **Stigmergic** [PR06]. **STLA** [NKV14]. **STM** [HHS12, PGRP17]. **Stochastic** [CTD99, FX06, HPT+97, JSS92, ZQ94, RS92d, SSM+16, SSM08, ZS13, BM11, CMT92, MM06, MS86, MBO11, WW18b, WMG13]. **Stochastic-based** [SSM+16]. **Stop** [LLT12]. **Stopping** [BSS99, AMT13]. **Storage** [CLV95, HLL+95, LL95, BL05, BCK+09, CCG+09, FLCB10, HZY04, HK04, HZHS18, JWH+17, KR12, Luc18, MAPF14, MPG17a, SSX14, SWW+17, WCO17, WWW17b, XCLR07, XSYG18, YLYC11, ZV09a, ZYW+15, ZFT+18, ZGG+14, ZWX16]. **Store** [CP90, NS95, VA07]. **Store-and-Forward** [NS95]. **stores** [ZWQ+16]. **Storm** [KKH17]. **straight** [GC07, Wri91]. **Strategic** [RA11]. **Strategies** [AM07, BDIQ86, BHK+94, BCR96, CP92, CGA98, DL01, FF98, GJG88, GM99, LK98, LHM95, Lum94, MS99a, OP98, SMH94, VB02, VA03, YB95, YL98, Zhu92, ZM94b, BMARW07, BHS13, CGM14, DM94, GRV08, GM14b, HV13, MV05, PP06, RAB08, ROB+18, SSGZ13, Wu11]. **Strategy** [CS00, GMM00, HHC98, KBC+01, MD13, PAM94, RS92b, ASD09, ASE15, BBM08, CTT16, DLW+12, EM11, GOH+13, GRDB05, GMVRS16, GLD06, Hsi04, JF12, KVA18, KS18, LY91, LL07, LVP07, Ngs06, PLSM18, SK09, SRT+18, TLLV10, TW15, WCC02, WYW15, ZV06, ZVL11, ZV14, ZVL15]. **Stream** [HPT+97, WQZ+13, AAK+13, ARM+05, AM11, CK08, DFLO17, EJ07, GÖÖ16, KKH17, MTL+18, RCG18, RAN+17, SS18, ZHH15]. **stream-based** [ARM+05]. **Streaming** [PS14, CGKY12, GRR13, GHC+17, HK05, JHL+18, LCC10, WCXL11, XYDL06]. **Streams** [MM93, WUG99, AGWY11, LVP07, LY08, ST14]. **StreamTMC** [WQZ+13]. **Stretch** [GG01, SBçi12b]. **stride** [AM13]. **String**
[BL94, RS90b, CKK+13, Kri91, MM07b]. strings [SCS+08]. Stripping [CT93]. Strongly [SZB92, MHPR05]. Structural
[AGG98, SM92b, RBOH+18]. Structure [DL99, FMP98, MNB95, PL98, Tze93, AFK14, BB85a, CZ90, FGZ03, GV86, GB11, HK05, JdSJCl+15, Lis90, LLFJ18, MJ03, MSZ05, NZA13, Par89, Tam18, XLHT13, YL12, YC04].
structure-aware [HK05]. structure-based [XHTL13]. Structured
[BE95, FBK98, KB01, Lun94, MRRV98, NM98, WM92, CWLD05, CGKY12, CTT16, DAB+14, FJG06, FKJG08, GA90, GWH06, IKS87, SRI14, WXZ05].
Structures [Ano96j, ADM+94, CCRS92, DOP98, DRC90, Gup92, SI92, ZM94a, AEY12, FCG04, GZ08, HA05, NT07, Zsa16].
stub [WSG91]. students [Ada17, APV18, AJG18]. Studies
[GT02, HCAA93, CCE+17, SCB08]. Study [AAD02, BJ96, BA01b, BS96b, BS96c, Cha96, GK98, Hag97, HPT+97, HBJ98, MS99a, NB09, Oru94, QM01, RSD94, SSG91, SS99v4, WNA+94, WLR90, YMR93, AP91b, Bad04, BJ18, CBM+08, CCK+08, CHLLL81, CT94, DI91, FRM15, GRR+05, HJ90a, Hdr13, HA91, LGZ+10, LPX05a, MCAS12, NTK17, PCMM+17, PP13, PTK+13, ROE+18, TB90, TDAR18, WLCZ15, WMG13, ZKZ18]. Style
[S00, LZZ+11]. subcellular [WDS+18]. subclasses [CP04a].
Subcubes [SR95]. subdomain [EGS07]. subgraph [Pla13].
subgraphs [BCH15].
Submachine [ZW13]. subscriptions [ST12]. Subsequence [MS99b]. subset
[AVAH18, WLL16]. subset-sum [WLL16]. substitution [GPX08].
Substrate [KMKD97]. Substring [CB96]. Subsystem [GGD93]. subtasks
[SSM+06]. Subtree [DP00]. subunit [RK18]. succinct [BHR91].
Sufficient [sj96, Ste07, AJHC90]. Suffix [DP98, CS06a, GZ08]. suitable [PGS06].
suite [GN15]. Suited [PRS97, GS91b]. sum [AVAH18, WLL16]. summary
[Rob09]. summation [HIM05]. Summing [Sant02]. sums [HLS03].
Super [WLY01, PW17, SAOKZ05a, SAOKZ05b, SE15]. super-matrix [SE15]. super-pipeline [PW17].
Supercomputer [CB92, GH98, SHB97, UI94]. Supercomputers
[AP93, CR94, CP94, LF03, TDBL13]. Supercomputing
[Ano96i, FR98, HRC09, KRS15]. superconcentration [JL05].
Superconcurrent [NRS95]. supercube [SSB91]. SuperNode [AT94].
superposition [dSAJ15]. Superscalar [LP097, LC13]. Superstabilizing
[KUFM02]. Supertoroidal [DF95]. supervision [BPA06]. supplier [SK11].
Support
[AL99, AH94, CP99, FBK98, KR97, KC99a, LTH97, LFH+03, MBL+92, NS97, PL95, RPS93, TF92, YFS+15, BAL05, CCQ+06, CCC+04, CCK+08, DRR13, GB11, HPB+10, Hus17, JBY+05, Kim11, NSDZ18, RR05, SRS10, SK91, SAB+92, SRL14, TYH09, TGPC16, ZBR11, ZWRI07, LST+13].
supported [YPCW16]. Supporting
[HA06, Sto87, WLN96, BSW07, LSZZ15, SKMM04, ZTGL17]. supportive
[FCG+18]. suppression [DZC17]. Surface [CWW+95, CY96, VDRC13].
surrogate [UAPM07]. surveillance [PLSM18, SMP17]. Survey
[BCH95a, GHKS98, CGC16, DAB+14, FEH+14, FMIF18, GM14b, GK10, HLBM16, HBC15, JHL+18, SCN12, SRI14, SHA17, TKG+17, Upa13, ZAB18].

Survivable [HWWH08]. susceptibility [DFST13]. suspect [XYG07].
sustainability [AK18]. sustainable [LS10]. sustained [RMHR17].
SVD [CL88, RS08, ZB97].

SW [RBG17]. swap [FPP+08]. Swapped [Par05, ZXP09].

Sweep [GGN93, DMCFCM03, GM14a, KMP+06, CMR10].

Switch [ASH+01, CRD12, OK01, PD92, CL90, LHKL03, WLWW09].

Switch-based [CRD12, LHKL03, WLWW09]. Switchable [SB84].

Switched [CCR94, CS93c, GGN93, LK96, WB01, EB09, KYL05, LWCG14, Nap90, PYF08]. Switches [KJ84, PL93, TF92, MG09, PY09a, PY09b, VAS+13].

Switching [GGN93, DMCFCM03, GM14a, KMP+06, CMR10].

Symmetrical [IM94, QY94]. Symmetry [Kel00, HT90, MJ03]. Symposium [OY13, Wee01, Ros07, Sni03]. SYN [XCH08]. Synapse [Ram92]. Synchronization [ASB97, AGW98, ABP92, AH94, BA96, Cha95, CTC+10, FR92, GVA+08, JLRA97, MRRV98, OKB95, PB95, RL06, RSS99, The02, WUG99, XMN92, CRA+08, FZC+15, HMBW07, HA06, HLD12, PL06, STKW12, ZPK+14]. Sybil [YX13]. Symbol [OWK14]. Symbol-level [OWK14]. Symbolic [YI96, CJY04, WD18].

Symmetric [BJ99, DHB02, DZDZ01, HOE+09, HJ01, Kau94, Ory87, ABGV11, ADV14, BC05, BW08, BB85b, EM89, KA03, VGAB08]. Symmetrical [IM94, QY94].

Symbol [OWK14]. Symbol-level [OWK14]. Symbolic [YI96, CJY04, WD18].

Systematic [BK95, BBD+91, BA01a, Bev02, BMM97, BJK+96, CP92, CP99, DHR96, DSD+97, DH95, DT92, FKB17, FPD93, GH90, HBCM99, HCS+00, HLL+95, HWLR14, Kav93, KMB91, LP96b, Lu01, MVL00, MKY+97, MBL+92, MO97, MS96, NKC+97, NSPPC02, SEP96, SG96, Tsc95, UR94, wXH00, ZME00, ZLL+18, dR09, ABC+88, AMK+07, BL05, BCK+09, BGA12, BM05, BPP05, BSS+13, BYH+17, BJ18, CBP02, Car95, CLMRL15, CS08, CCEB03, CDJ+89, CK91, DS04a, DI91, DTK11a, DLW+12, DB86, DMS+16, EC89, Fer90, GTGLSA12, HJ90a, HM06, HLBM16, HWL18, HMY+18, Hua14, Hus17, JW89, KHN17, KCD08, KSB11, KMF+05, KS13, KCO4, LMK18, LFH+03, LC91b, LLWC17, LY13, LHZ+18, MM07a, MK08a, MC03, NAK04, NTC03, No12, OEY07, PKN08, PKN10, PLD14, PK05b, RV13, RBA+18, RAN+17, SPRG+12, SSM+16, SFT+13]. System [SC04, SK91, SSL04, SLG+18, SM06, SV18, VD04, Wan06, WHW+17, WS06, WZQ+13, WYTX13, gWW18, YCH+10, YXW+18, YLB90, ZV09a,
ZMC06, ZHH15, ZFT+18, ZKZF18, ZW13, ZJ06, AGWY11, HCAA93, Sie16, Ski16. System-Level [Kav93]. system-on-chip [DMS+16, LY13].

Systematic [IAS+92, KK95, LB89, WAS88, ZTGL17]. Systems [ASH+01, AM97a, AM97b, AMN00, AS13, AS15, Ano92c, Ano02u, ADS98, Bah00, BBM+02, BBR94, BPR99, BW95b, Bou02, BN02, BS+01, BS96b, BS96c, Cas93, CS03a, Cha94, CKK00, CY95, CK97, Cho93, CBdCD00, DSST95, DA97, DS96, DSW94, DAYA02, DG94, EMP+96, FGKT97, FTC00, GCKM97, GM99, GRR93, GK93, GMM00, HKT+91, HNM02, HILLY95, HTL99, HM99, IM94, IK94, ISZBM99, JR95, JH92a, JF95, JSM94, JRR99, KS97a, KBC+01, KCV99, KE93, KS93, KM91, KM92, LH92, LF92, LT94, MMR98, MAS+99, MT95, MMVR97, MM93, MRR+02, MC93, Mir91, NSS97, NMS93, Nie94, NDZA99, OM84, PA96, PB99, PT01, Pov99, PP92, QY94, QGB+17, Raj01, RDS02, RAS96, SM94, Sch91, Ser97, SL95, SRGB90, SSRV94, Sun02, SFC17, THN+93, TH02, TY95, Wil92, WF93, WF96].

Systems [WUG99, XH91, YH97, ZR00, Zia92, ZM94b, van96, AL04, ALM+16, AA16, AAK+13, AOS04, AOS05, AD12, AFM99, AF06, ACCP12, AA1+15, ABBD14, AH06, BMB+08, BCCQ13, BB03, BGDR13, BW09, BRP03, BS03, BK08, BS92, BKMT14, BD04, BP95, CWLD05, CNGLR18, CRK+09, CF88, Car90, CCS06, CKWT17, CTC11, CV09, CRJ10b, CASD18, CI86, CP17, CAE+11, COF17, CSW17, DZC17, DK08, DFP06a, DB11, DDNT10, DFGK05, DGD10, DM04, DWYB10, DM90c, DQR+09, DÖ06, DLBL+12, DW04, DH91b, JC04, FWM+10, FPS11, FLC610, FX10, GMMP12, GZG+17, GL89, GNT04, GMVRGS16, Gos90, GS91b, GWVL94, GC90, GRR13, GBM07, GF89, HRC09, Ha05, HC90, HOE+09, HBC15, HCS04, HS86, HA06, HP06, HA91, HA05, HHK15, IRS16, IS06, JSWB92, JMS86, JKL00, JST12]. systems [JLM08, JL11, JZZ+17, JWH+17, Kaka15, KKR14, KW13, KMS98, KVNV17, KU07, KyLP17, KS91, KA97, KL05, KMS10, Kub17, KMS+06, Lai66, LLLC15, LFS16, LT02, LTL06, LGZ+10, Lan09, LZ11, LLL06, Lee09, LH91, LHK03, LJ05, LAK10, LZCY09, LASS15, LZ05, LC90a, Li06b, LVP07, LQM+12, LNAL17, LW89, LPLFM+12, Lop13, Lop18, LCM+06, Luc18, LSS07, LM90, LZX13, LL12, MGS92, MGLSM92, MB13, MP10, MMK+11, MAHKZ12, MAKWZ13, MS86, MTS90, MFVP08, MLK12, MK+16, MBH+08, MGRR14, MRT18, NLB+18, NFHL13, ND12, NZY+11, OS04, OPR18, PMV05, PMV06, PRH10, PH16, PTA08, PF91, PM0011, QGZP17, RLA+16, RLA+17, RLH03, ROE+18, RN04, SSFP11, SW12, SHTD04, SP08, SP13, SFT+13, SYU17, SS08, SCB90, SU78, She09, SCS+08, SCMS12, SX06, SHL09, SY04, SHL+13].

systems [SCJ+08, SS18, Sie16, SLKK13, SI13, ST05, TLL10, TLL10, TLQ12, TFMS15, TW89, Ter16, TRSS06, TB90, TCH12, UAKI06, VM10, VS16, WCW017, WXZ05, WTC08a, WTC08b, WDDK09, WSLT16, WZZ+17, WWW17b, WY+18, WSG91, Wu11, WSLC11, XHY07, XQ07, XLI15, XLHT13, Yan04, YLL17, YHWH18, YL89, YQTV12, YZW+15, YYLC11,
YZX11, ZAB18, ZZ90, ZAAB17, ZZJ+18, ZFS07, ZWY+15, ZTFK16, ZV09b, ZQMM11, ZBW+17, Zin90, dG91, dLAMCFN12, FPS12, ORWT+18.

Systems-on-Chip [ORWT+18]. Systolic
[AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH89, LB89, Lis90, MP88, PYP+10, PS88, Sch99b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

Systems-on-Chip [ORWT+18]. Systolic
[AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH89, LB89, Lis90, MP88, PYP+10, PS88, Sch99b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

Systems-on-Chip [ORWT+18]. Systolic
[AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH89, LB89, Lis90, MP88, PYP+10, PS88, Sch99b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

T [CRJ10a, PTK+13]. T-L [CRJ10a]. Table [HZL18, LACJ18]. Tables
[TT10, ASD09, HKW05]. Tabu [BSH15, Cza13, CB11]. Tackling [SMT15].

tag [CRK+09, VRGS17]. Tagging [GHH92].
tailing [YDZ+18]. taint [WXZ+18].
taking [CL03b]. Talent [JL11]. Tall [BDG+15]. Tall-Skinny [BDG+15]. TAM [CGSV93]. Target
[ERL90, CJDC10, KO11, NDP13, WW07, YCC05]. target-driven [YCC05].
targeted [BKK+11]. targets [BFKP04, CRWX12].

Task
[AKPT99, AH06, CDY97, DA97, DDD98, DAYA02, DL99, DRST02, ERS90, FZWL12, FKKC97, FY97, HBCM99, HKT+91, JTZZ11, KLZ97, KA97, KA99, LL98, MSSE02, Moh97, SMO14, SD97, SZ00b, SCJ+08, SS94a, SV00, SBB90, SY92, UAK106, UR94, VS99, WSM97, YCY+00, AAK+13, AJG18, BKS05, BD05, Bat05, CDS10, DK08, DK11, DDG+17, DO06, GQZ18, JLI11, KH13, Kim17, KA05, LLO6, Li16, LSC+15, LZX11, MCC04, OA10, PKN10, PK05a, PA15, SP13, SPW90, STK11, SZB16, TDP15, VS16, YGW15, ZTFK16, dOCS14]. task-based [AJG18].

Task-Level [HKT+91, SBK90]. task-scheduling [Kim17]. tasking
[Lun90]. Tasks [ABM+92, BSB+01, DJ98, ERL90, Hat97, Lat95, LWY97, MAS+99, MMVR97, NMS93, PS93, RDS02, Sin87, AOSM05, BFMT+18, BHLT14, BH05, BSMH08, CCK11, CDJ+89, DRR13, GK15, HMR15, HWL14, IKS87, KUA07, KSS+07, KMS+06, LMGLGL17, LHO3, Li06a, Li06b, LQM+12, LB09, LLS07, PK05a, PDB13, RR05, SS+16, SBC+12b, SNC12, SS+07, XL11, ZV09b, ZHQL12, dSS11].

Technology
[FEH+14, HM96, Sin93, HBC15]. TCP [BM11, VLL+14]. TDFL [SBK90].

TDM [LLJ00b]. Teaching [CTS17, EJ18, LB18, PBB+17, PGKV18, Ada17, FKR+17, GAC+17, HS17, Kunn17]. teamwork [NKSA17]. TEASE [ZBR11].

Technical [Aono93a]. Technique
[BN94, CLV95, DAYA02, Fer95, KBC92, PM96, ZLPP01, ASKTZ13, CX05, CRD12, DeG88, EE05, KK11, Nes10, Nic88, PVGG06, RBB17, WCF14].

Techniques
[ADM+94, CS05, Dah99, ELS94, FY97, Gil94, GS97, HLL95, HTL99, JSCB95, KGV94, NPY+07, PA96, PYF08, RSS99, Tay02, UZS96, ARP18, AOSM04, BBR13, CDB04, CDRO9a, CD95, FM95, Gao89, GRR+05, KA08, LKP+10, LP88, MBW16, Pla08, RM11, Raj08, RG87, SFEF06, TZ07].

Technology [Aono92v, ER97, GC95, MKY+97, MRR+02, OB88, PBB+17, PGKV18, TMM06]. TEES [ZWWX16].

Telematics [Cy99]. Telescience [PLL+03]. Telescoping [KBC+01].

Temperature [SWHB17, ZWWX16]. temperature-constrained
time
[DLV11, DKRC+15, DHK04, EDÖ05, FC14, FKLBO8, GZG+17, Gos90, GF89, GREC91, HOVC09, HA06, HV13, HL07, HZDP12, JZZ+17, JHL+18, KKR14, KSSL16, KKW13, KL87, KSG03, LFS16, LR14, LHK03, Lee03, LZCY09, LLY15, Li16, LML+10, Lis90, Lo92, MHLZ16, MLDG12, MAM05, MAKWZ13, NA06, NVK+11, QJ05, RLHO3, S186, SS11, SZB16, TBZB05, TZH+06, TPS+18, VWHL96, VA07, Wan07, WTC08a, WTC08b, WL05, XL11, XO05, ZZJ+18, ZHH15, ZQMM11, ZHQL12, AC+93, CBP02, CX05].
time-aware [MHLZ16]. Time-bounded [NP09]. Time-Division
[QMCL94, ZLPP01]. Time-division-multiplexed [HRG+11]. time-domain
[SS11]. Time-Efficient [EL97, MS99b]. Time-Optimal
[BOSW94, OS96b, OSZ98, Pel90, Lis90]. Time-optimized [Ana14].
Time-parallel [WBTM09]. time-scale [ACCP12]. time-sliced [KRL87].
Time-Varying [KE95]. Timed [NM95]. timeliness [ISM07]. times
[SFT04]. timestamps [MS02]. Timing
[ADS01, BSS99, CB99, Kar92, CSJ+13, FVLB09, ISM07, KKK+11b].
Timing-Driven [CB99]. TlnMANN [VM95]. Title
[An098l, An099h, Ano00c, Ano01i, Ano02d, Ano03b, Ano04a, Ano18v, Ano18w, Ano18x]. TLA [SHL+13]. Tlib [RR05]. TM
[FKK16, FWM+10]. Toeplitz
[GOH+13, ABGV11, ADV14, BBd90, HM99, Ter16, VGAB08].
Toeplitz-based [GOH+13]. Together [WLID02]. Token [AE95, BGJD02, CP90, FF97, GH06, HP00, ZY96, CRD12, HSW04, PV07]. Token-Based
[AE95, BGJD02, HP00]. Token-Chasing [ZY96]. Tokens
[SA93, SGAC14]. Tolerance
[BS97, Piu01, PM92, mYF92, BJ15, BDDL09, CLML15, CWL+07, CDR09a, LCC+05, LH05, LFGM17, LP88, Pak89, PAS15]. Tolerant
[AE95, AM97a, AM95, BMM97, BW95b, BCH95b, CRV94, CL93, CC94, CF98, FM99b, GRR93, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, SS95, WIKC97, Wu94, YBO97, ZYO02, AA14, AA16, ANEA13, AOSM05, AH11, ABBD14, BB87, BXA08, BKM14, BPA06, BPP05, CL91a, CKN07, CDR09b, CMT92, CMS04, DBCF13, DTK11a, DH91b, FLJP07, GNS09, JBA15, JBS14, KG10, LDZ+17, LFZ+17, LGG08, MPG17b, NCB+17, PR06, PL06, TCHC12, WW12, WWY15, XCS06, XHZ16, mYA91, ZV09b, ZJ06]. Tolerate [VR95]. Tolerating
[DT02, GS00, MG91]. tomography
[BDRB14, FCG04, FGGO8, KSSL16, KDO+13, PLL+03, XTN12]. Tool
[BN94, DBKF90, ZNQ93, Ad17, ACD+18, KKV05, PF04, uRIL+18, TD07].
toolbox [EFG+14]. Tools [Bal90, Cas93, MLC+90, MSH90, NT90, DMS+16,
FEH$^+$14, GAC$^+$17, MC03, YT05. Top [SSKS11, Sch89b, TAS$^+$01, IRRS16]. Top- [SSKS11]. Top-down [Sch89b]. Topics [Ano16l, Kum17]. Topography [SK05a]. Topography-aware [SK05a]. Topological [DC94, Par05, YN92, PL06]. Topologies [YZY96, YMG01, SL89]. Topology [CCM92, DS96, Seh95, TKKH17, WLY01, WHS$^+$18, AP91h, AHA$^+$16, DB08, GL12, GL90, KBC$^+$10, LCW05, LMP10, MBBD13, PMCC18, RCG18, Seh91]. Topology-aware [KBC$^+$10, MBBD13]. TOPSYS [BB93]. Tori [LHS97, MT93a, Man97, AB03a, GLD06, LXLS12]. Tornado [HK04]. toroidal [AB05]. Torus [CT96, RMC97, WB01, YMG01, DM17, Lai15, RH05]. Total [CW00, CHC05, BCM06, BG05, CB15, Dim04, SL89]. TPC [DZDZ01]. TPC-C [DZDZ01]. Trace [JKIE13, LC13]. traces [MTM10, NRM$^+$09]. Tracing [RGSO00, BM16, BM17b, CDB04, CS17]. Track [MD01]. Tracking [BFKPO4, CJDC10, IIH$^+$17, KO11, NDP13, PLSM18, TCS$^+$10, WW07, WXZ$^+$18]. Trade [BCLR96, GK98, LPU97, CLR90, ECLV12, LCB16]. Trade-Off [BCLR96, GK98, LPU97, ECLV12]. trade-offs [CLR90, LCB16]. Tradeoff [TSSH01, HWC08, NLB$^+$18]. Tradeoffs [MP15, CGKY12, PCMM$^+$17, SDS10, YZW$^+$15]. Trading [MPG17a, ZLL14]. traditional [BBCLL04]. Traffic [AA95, DSS95, FT94, KC95, LK94, OY00, TF92, BJ18, CRD12, FL86, FMM$^+$08, LK90, LHL14, MP17a, OOSGVC$^+$16, SAOKM03, SKMM04, WB01, YMG01, DM17, Lai15, RH05, WHS$^+$18, AP91b, AHA$^+$16, DB08, GL12, GL90, KBC$^+$10, LCW05, LMP10, MBBD13, PMCC18, RCG18, Seh91]. traffic-aware [LHLM14]. trails [PR12]. Training [LWOG02, SMKL93, ZLS17]. transaction [SI13, YWD08, Yan09]. Transactional [AM12b, Gra09, Gra10b, MP10, BGA12, CGM14, DT11, FWM$^+$10, GKK$^+$13, HGF10, KR17, QGZP17, RSCQ17, SDS10]. transactions [CC16, FGGL17, MLMSMG12, UBE510]. Transceiver [DKMV01]. Transfer [Liu01, APK18, CK06, JKV15, LGG08, WH17]. transferability [CSS11]. Transfers [NSSS99, GLGLGL12, LMGLGL17, SCMH13]. Transform [BA05, CP91, DS01, Fe93, GZ07, HN91, JS94, Lla17, CV09, DSO4a, DPRW85, ESTA94, FSD04, IHH16, SSL04, TKG04, CVK$^+$18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRR07, Tur12]. Transformations [HHB93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91]. Transient [DT02, PAH$^+$98, GPT06a]. transistor [FPM$^+$14]. transistors [LC14a]. transition [SP13]. transition-aware [SP13]. Transitive [AW95, YMR93]. Translating [FP06]. translation [NCB$^+$17]. translators [YLB90]. transmissible [YHWY18]. Transmission [DP99, JK00, BDRB14, CHCG18, CPA$^+$11, HOVC09, OS04, OMSGNS05, WHC$^+$18, YA11]. transmitting [BR91a]. Transparent [LMY$^+$11, GVA$^+$08, GRZ$^+$18, LLY15]. Transparently [AFT$^+$00, KLI$^+$11]. Transport [GRS97, MSH90, NPGV10, PKW$^+$10, WCL$^+$13]. transportation [OO05]. Transpose [CT96, ZMPE00, BG16, SAOKM03]. Transposing [Swa98]. transposition [Ede91]. transputer [LC92]. TRAP [GRS97]. Traps [SD00]. travel [KSSL16]. travel-time [KSSL16]. traveling [WKM13]. traversal
[BBS13, CMN12, YFBY17]. **Traversals** [OO95, E107, HMR15].

**TreadMarks** [LDCZ97]. **treasure** [MP15].

**Traversals** [OOW95, E107, HMR15]. **TreadMarks** [LDCZ97]. **treasure** [MP15].

**Tree** [AAP01, AS96, BBR94, BCLR96, BE95, BS00, COS+95, DVZ96, FA95, Goe94, GS01b, HR92a, KC99b, LPS+98, OD95a, OOW95, PL94, SL98, Sk96, Tze91, Wag94, ASC+18, AB13, BFG+03, BM14, BC05, BE13, BPBR11, BBD18, BBL04, CG12, CRD17, DJ16, EB09, FMM+08, FJSW90, GA90, HSS10, HMR15, HSW04, th90, IKS87, KG10, KSK15, LY10, Li10, Mit07, OC07, PV07, Sch89a, SAF05, SV18, SK05b, TG03, TR16, WW12, Wu85, Zah12, LZSL06, BBCQ13, GB11]. **tree-connected** [HSW04].

**Tree-Dags** [BCLR96]. **Tree-Related** [OD95a]. **tree-structured** [GA90, IKS87]. **Trees** [AP94, AS94, ADS98, BBN93, BP02, CS95a, DM95, DP00, DLS00, DJM94, DLP99, DS93, Efe96, HKMU98, HM01, HS94a, HHC98, Iqb92, LP96a, MD98, PM92, ST02, SHL95, TT98, Wag93, WW96, WB01, WFL98, oFP00, BNP02, BL89, BMIM07, CI03, CS96a, CFJW13, CDR09a, DGNW13, Efe91, ESG+11, ESG+14, GHY10, GZ08, GNN03, HPT07, HAC17, JLY12, KKN13, LVM04, Lin03, LHT08, LFZ+17, OMSN+05, PD05, PPC04, RDA18, SKK91, TDM05, Wag89, WL90, WC91, WJZ12, WIB12, YZTL09, YMLP14, Zep91]. **Trellis** [LCM+06, SGdSS13].

**Trends** [ACB+15, ER97, KKK14, BHS13]. **Triangular** [K94, CASD18, dMS18]. **Triangularization** [KK96, CDR90, EM89]. **Triangularizations** [Par92]. **Triangulation** [DFRCU99, LS95]. **Tridiagonal**

**Triadiagonalization** [BB85b, BO90]. **trigger** [FM05]. **trigger-broadcasting** [FM05]. **trimming** [CS+18]. **triumph** [Sch14]. **Trojan** [BK18]. **true** [CP04b]. **trust** [GTGLSA12, LZY11, LMXJ18, LAGK07, MLMSM12]. **trusted** [SFEF06]. **TrustGuard** [SL06]. **trustworthy** [MLZ16]. **Truthful** [WG08]. **TSGL** [ACD+18]. **tsunami** [NSKN17]. **TT-XSS** [WXZ+18]. **tumors** [HE11].

**Tunability** [CCK00]. **Tuning** [CSMML10, SB02, TDAR18, ABGV11, APK18, HPT07, KKK14, MYD+11, MML07, uRIL+18]. **Tunnel** [ZBR11].

**Tunnel-based** [ZBR11]. **Tupple** [STKW12, DRT07]. **Turbulence** [LLCC02, PLK+18]. **TWD** [LLJ00b]. **twig** [LSZZ15].

**Twisted** [HHTH02, AP91b, FLP+07, LFZ+17, WJZ12, XHZZ16]. **Two** [AAJ95, BNS00, BBH+17, BP01, Cha94, CCC92, CEF+95, DD96, DKU15, Gos90, GT97, Hwa97, KLZ97, KL84, LHS97, LP96b, LK94, LLCC02, NAK04, Qia97, RFPA+08, RP95, SM98, SHC00, YCY+00, AB05, ARM+05, CF88, CG96, CB11, Deh90, FSV17, HDJ08, Hsi04, JD12, LC91b, MP10, PM06, SNPC12, SS94b, WLL16, dALMCFN12]. **Two** [Hwa97]. **Two-Dimensional** [LP96b, YCY+00, NAK04, AB05, Deh90, LC91b]. **two-fixed-endpoint** [Hsi04]. **two-layer** [dALMCFN12]. **Two-Level** [KL84, Qia97, RP95, SHC00, BBH+17]. **two-list** [WLL16]. **Two-pass** [DD96]. **two-phase** [SNPC12]. **two-stage** [HDJ08]. **Two-Variable** [CCC92]. **Two-Way** [LK94, LLCC02]. **Type**
types

UC [BCD95]. UCT [AKPT99]. UDP [ZBF05]. UET [AKPT99].


underwater [ZWW17].}
using [EE05, EI07, ES12, FTK14, FM07, FCS91, GZ08, GRDB05, GCS06, HDCM11, HSH10, HWL18, HMY18, HC91, JTZZ11, JP09, JGMY17, JZK04, KL08b, KRKS11, Kan05, KDO13, KKH17, KM17, KS18, KSJC17, KR12, KME09, KC17, KR06, KKB10, KA05, LT10, LY10, LR03a, LST13, LSWC14, LA04, MHLZ16, MM06, MS02, MZC18, MRS14, Men18, MK08b, MC03, MRT18, NMS18, NCTT09, OPR18, Ozt11, PKN08, PKN10, PP13, PBS08, PVG09, Pla08, RBN11, RB12, SMO14, SC12a, SM89, SSS07, SCB09, ST12, SGAC14, SC17, SIY14, SDG17, SA08, SK05a, SFEF06, SM08b, SLKK13, SL06, SMT15, Tam18, TRS12, TPLY18, TDP15, TMM06, TKX13, UAPM07, WCF14, WZZ17, WDS18, WD18, Wu03, WBRT13, XCS06, XLHT13, ZV06, ZV09a, ZS13, ZBW17, ZHO03].

using/for [MZC18].


[AK17, WFLJ16, XYZW14, XHZZ16]. Vertex-disjoint [WFLJ16]. vertex-pancyclicity [XHZZ16]. vertically [LHF91, SM08a]. vertices [ACU08]. Very [OP96, DHK04, MYM10, PDB13, YÖ11]. VForce [MLK12]. via [AM13, AKBD10, AD10, BM17b, BP98, CJ07, CVJ09, CRA+08, CMR10, ECLV12, HVW16, HBF12, KNHH18, LÜ14, MTM10, MS15, MBR08, NS95, PRHBO6, PS14, YSZ15, ZV06, ZBF05]. Viable [KLLK98]. victim [XCH08]. Video [AAL95, CLV95, DSST95, HLL+95, JK00, RU99, ZRC99, Bar05, LP07, LY12, YAK15]. Video-on-Demand [DSST95, HLL+95].

video-sharing [YAK15]. View [Bue92, BBB11]. Views [LMCF90, Won99, BB03]. viewshed [CSL15]. Viola [NHO+13]. Virtual [AD95, BAH01, BF97, DRSB01, KS97a, KLLK98, KKS08, LM96, Mat93, NC13, PA97, PL95, TJ92, BJS03, BAL05, CL14, FMIF18, FX06, Fu10, KS03, KS18, KNHH18, PY09a, PK05b, PVRS17, RT18, TT07, WDDK09, YLZW18, ZG13, ZV06, ZJ06, BBCQ13, DHS06]. Virtual-Channel [PA97]. virtualization [DYL+12, FLCLB10, GTN+06].

virtualized [AAA+10, CP17, KLJ+11, KKLJ14, SJB12, SSVC10]. viruses [MJ03]. visibility [BSG90]. Vision [LR94, MBL+92, MHC95, MAR87, WHT02, Kri91, WJD91]. vision/image [WJD91]. Visual [BN94, PLSM18, SRGB90, BLZ+18, PLK+18]. Visualization [BB93, Cas93, Cou93, KS93, Mi93, NT90, MBH+08, NCA93, RV13, TSD08, WGCZ09, ZB09, ZWRI07]. Visualizations [LSCA93, SK93]. Visualizing [RW93, SKR93, ZNQ93, ACD+18]. Vital [BS97, HH98]. VLIW [NS12, dSR00]. VLSI [BB85a, BBR94, CCC90, CHX+17, FM85, GS91b, Gue86, KM97, KLL87, MB96a, MS87, ML89, MRR+02, MT85, MT97b, NE85, OB88, OT86, PR06, TU92, TF92, WSS93]. VLSI-suited [GS91b]. VM [JXW06]. VM-based [JXW06]. VOD [SK11, Bar05, LC07, YCH+10]. voice [WTS03]. volatile [CDR12, HZHS18, NKV14, ZPK+14]. voltage [FKLB08]. Volume [Ano92a, Ano92c, Ano93e, Ano96l, Ano97k, Ano00d, Ano01a, Ano11h, Ano01h, Ano02d, Ano04a, Ano08, Ano09, Ano10a, Ano10b, Ano11l, Ano11k, Ano12a, Ano12b, Ano14f, Ano14g, Ano15k, BS96c, CS93b, WS97a, ACFK07, LWCC15, Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano99a, Ano99b, Ano99c, Ano00b, Ano00c]. Volumes [Ano98l, Ano99b].


Walks [BA01a, Li10]. warehousing [DTK11a]. warning [XCLR07]. warp [NHO+13, ACD+93, CBP02, CX05, PW96]. Warping [WS95, WS97a]. water [CvdBL+08, dAMCFN12]. Watershed [MG98]. Wave [CDP95, BBS13, CDB04, KVN17]. WaveCluster [YO11]. wavefront [OT86]. Wavelength [HP00, CS10, MVM04, TKKH17]. wavelength-based [TKKH17]. wavelength-routed [MVM04]. Wavelet [HK01, CVJ09, HHH16, TKH04]. Wavelet-Based [HK01]. Way [LK94, LLCC02, APV18, ACU08, KK98a, Sch14, VPHM06]. WCET [LZH11]. WDM [CS10, DP99, MVM04, OS93, PR12, WG08]. Weak [RHH12]. Weakest [Bit92]. weakly [HJ07, YWW12]. weakly-connected [YWW12]. Weather [RHH96]. Web [KCD08, CCA18, CVK+18b, FKR+17, HSS17, Suk18, ASKTZ13, AK06, BLPA05, CSWD03, CSK03, TC03, TC04, TK07, UGC+11, Wan06, XJS03, ZWL03]. web-based [CVK+18b, Suk18]. web-portal [FKR+17]. Weight [RDL95, RGVBO0, Tse95, YI96, JM14, LVP08, Wan06, WZZ+17, WW18b, ZFT+18]. weight-based [JM14]. Weight-Throwing [Tse95]. Weighted [BS97, MD13, BFMT+18, CDDL10, DM17, Sta17, SZB16]. weighting [CRA+08]. well [EB09]. well-nested [EB09]. WFR [FKKR16]. WFR-TM [FKKR16]. whole [Kan05]. whole-program [Kan05]. Wide [WM92, We98, Can18, HL07, JKV15]. Wide-Area [We98, JKV15]. width [DH91a]. Wihidum [JKD+15]. wildfire [DFST13]. Wimpy [LNC13]. window [BM11, LVP07, MTL+18]. window-assisted [LVP07]. winners [PL03a]. Wire [yHY97]. Wire-Limited [yHY97]. Wireless [BJS18, BCD00, BD00, BDF01, Bou03, GPJA10, GMS06, JK00, KKGS01, LDZ+14, MS00, Ols01, THGY15, WL05, ASM09, Amm16, AP03, AHG12, AYB+15, BFG+03, BM11, BSW07, BXA08, BWP+11, BOY10, BPRS04, BOP06, BC11, BN03, BPA06, BJL18, CCW14, CKN07, CCK+08, CRWX12, CHCG18, CLL09, CMS04, DW06, DLL11, DMB+03, DGBN14, DHH11, DCM10, DFPO6b, EBE08, EM11, FCW11, FCML13, GGY10, GDP08, GPO7, GCV+04, GDL+11, GYP13, GZ14b, GM14a, GL12, GMXA07, HZA+15, HMY07, HJ07, HS12, HWW08, HWO08, HZDP12, JF12, JLY12, JBS14, JHPL13, JLWX11, KVK05, KSI04, KKK11a, KOA09, KO11, KO12, KSK15, KZ11, KK10, KDH08, KKTZ13, KGN11, KNS06, LZ08, Lan09, LZ11, LDZ+17, LY10, LCW05, LW06a, LC11, LMJC11, LMLD12, LL12b, LS03, LU14, LR03b, LLW07, LZC11, LSWC14, LDS16, Los08]. wireless [MAGL13, MPV12, MA11, MBRO8, NPGV10, NSA11, NC09, NM17, NGQ12, OWK14, PLY15, PLR07, RM10, RM11, RLP14, REZ17, SCN12, SZMK13, SSZ10, SKMM04, SK05a, SCLL10, TBHA07, TLY12, TM10, VHH08, VRM10, WW07, WTB+08, WMW09, WBTM09, WL11, WCXL11, WH08, WBRT13, WWA+18, XXYA08, XHZ+10, YpGYLC13, YSL08, YZX11, ZMG+16, ZW11, ZBR11, ZLCJ12, ZSCX18, ZTGL17, dOBS+15, LDP+14]. Wireless/Mobile [MS00]. Wires [GO95]. within [BPBR11, THN+93]. without [FKKR16, FSZ07, HP95, Ho91, MS02, OS97, RCG+11, SA93, WW12, XO05].
WLANs [CCHC09, FA07, GZY14a]. WMNs [LHX+16]. Wolfe [Psa96].
Work [BKC+15, BM04a, DKKV15, KM17]. worker [BMT12, HSLL04].
workers [KRS15]. workflow [ALM+16, FPFI14, FCC07, RCG+11, WHW+17, YYLC11, YWG15, ZVL15]. workflows [BKK+11, KHN17, PVP18, TYH09].
Workload [DZDZ01, IM94, SSYG97, GNT04, KylPc17, LLLY08, LTG14, LF03, SSFP11, YJL16]. Workloads [FTK14, MKC01, AM12b, CCQ+06, CKLCK04, CKLCK05, LLY15, MLK+16, WDB+13, ZLWZ18]. world [SAB+92].
Workstation [AYI97, HN91, KMKD97, LC97, PN97a, PN97b, WB96, ME04].
Workstations [AS97, ANo00d, ABM+92, BSS97, BDH+97, CP97, CM02, DSAUM99, Dz97, HS97, HW96, JLRa97, KR98, LS97, LHBB+01, MDD97, NSD99, PKD97, Ros99, ZLP97, BMARW07, CDB04, PY09c, Pia08]. worlds [FL86, GS18, MAGL13, MZSO90]. Worm [NS95]. Wormhole [BLPv95, BpTv96, DG94, DRSB01, FF98, LME95, LEB98, NSS99, PA97, RP98, RMC95, RMC97, SJ95, SJ96, SB02, WB01, XMN92, HNSA07, Lee03, SAOKM03, WCC02]. Wormhole-Routed [FF98, NSS99, RMC95, RMC97, XMN92, SAOKM03, WCC02].
Wormhole-Switched [WB01]. Write [DS95a, ACHY18, CH06a, CG10, GNS09, IR12, IRRS16, SLK12].
write-once [ACHY18]. write-only [SLKK12]. Writeback [KE93]. Writer [JB00, KS97a, HV09, HV95]. writers [FKKR16]. writing [DBLB+12].
Yan [ANo97k]. Yao [STMZ18]. year [Kum17]. yield [CAF+11]. Yields [FY96]. Yong [ANo97k]. Yongsheng [ANo97k].
ZENTURIO [PF04]. Zernike [TRSt+12, XLMH18]. zero [WCYR08]. Zhang [ANo97k]. ZMesh [PMCC18]. zone [AGMJ06, JV06]. ZRAM [BMCP98]. Zynq [RBG17, ZAAB17].

References

REFERENCES


Almeida:2010:JAC


Aartsen:2015:IFD


Aspnes:2010:CSC


Al-Ayyoub:1998:HIN

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
Arevalo:2015:FDH


Altman:2001:RTP


Ajwani:2013:GST


Akramullah:1995:DPA

REFERENCES


Agarwal:2001:TPA


Arvind:1984:RMF


Ayani:1993:PDE


AlBdaiwi:2003:RPT


Aluru:2003:GEI


[ABF\textsuperscript{+}14] Marwane Ayaida, Mohtadi Barhoumi, Hacène Fouchal, Yacine Ghamri-Doudane, and Lissan Afilal. Joint routing and location-based service in VANETs. *Journal of Parallel and


<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Date</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Coden</th>
<th>Issn</th>
<th>URL</th>
</tr>
</thead>
</table>


References

Aspnes:2018:CUW


Andreolini:2015:ASR


Aykanat:2008:MLD


Abderazek:2008:QPQ


Agarwala:1995:ESV

REFERENCES

Afek:2002:LS


Ammari:2010:FCG


Apopei:2012:APL


Adams:2017:PTT


Altisen:2017:CSS

Atashpendar:2018:SPC


Atallah:1994:MTP


Auletta:1998:MTA


Attiya:2001:TBD

REFERENCES


REFERENCES

Aspnes:2012:LCD


Ardagna:2006:JOH


Attiya:2017:PLA


Abellan:2013:DEC


Araujo:2011:MIS

REFERENCES


REFERENCES

Ayguade:2006:ENO


Antonis:2004:HAD


Akrida:2016:ENR


Abu-Ghazaleh:1998:MCU

REFERENCES


Anagnostopoulos:2012:OQA


Ajwani:2016:COA


Anagnostopoulos:2012:PPC


Ahuja:1990:CCM


Anagnostopoulos:2011:AMM

REFERENCES


REFERENCES

[AK07] James H. Anderson and Yong-Jik Kim. A generic local-spin
fetch-and-φ-based mutual exclusion algorithm. Journal of
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[AK17] Martin Alkämper and Robert Klöfkorn. Distributed newest
vertex bisection. Journal of Parallel and Distributed
Computing, 104(??):1–11, June 2017. CODEN JPDCER.
pii/S0743731516301782.

[AK18] Gagangeet Singh Aujla and Neeraj Kumar. SDN-based
energy management scheme for sustainability of data cen-
ters: An analysis on renewable energy sources and elec-
tric vehicles participation. Journal of Parallel and Dis-
tributed Computing, 117(??):228–245, July 2018. CODEN
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0743731517302149.

[AKBD10] Hüseyin Akcan, Vassil Kriakov, Hervé Brönnimann, and Alex
Delis. Managing cohort movement of mobile sensors via GPS-
free and compass-free node localization. Journal of Parallel
and Distributed Computing, 70(7):743–757, July 2010. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[AKD06] Anish Arora, Sandeep S. Kulkarni, and Murat Demirbas. Re-
settable vector clocks. Journal of Parallel and Distributed
ISSN 0743-7315 (print), 1096-0848 (electronic).

[AKDMN15] Faisal N. Abu-Khzam, Khuzaima Daudjee, Amer E. Mouawad,
and Naomi Nishimura. On scalable parallel recursive back-
tracking. Journal of Parallel and Distributed Computing, 84


Aguilar:2004:DDL


Avudainayagam:2003:DDE


Agarwal:2009:FDP


Ahmad:1999:DSM


Amory:2011:NTS

Ahmad:2016:HGA


Ahmad:2013:MCO


Albert:1991:DPC


Alsuwaiyel:2001:PAP

REFERENCES


Ajith:1997:IAM


Asaduzzaman:2006:UUP


Asaduzzaman:2007:SCP


Asaduzzaman:2011:DMB


Angeli:2012:CEC

REFERENCES


REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES

Anonymous:1994:EM


Anonymous:1995:AIVa


Anonymous:1995:AIVb


Anonymous:1995:AIVc


Anonymous:1995:AIVd

REFERENCES


REFERENCES

Anonymous:1995:CPSb


Anonymous:1995:EM


Anonymous:1996:AIVa


Anonymous:1996:AIVb


Anonymous:1996:AIVc


Anonymous:1996:AIVd

Anonymous:1996:AIVe


Anonymous:1996:AIVf


Anonymous:1996:AIVg


Anonymous:1996:AIVh

REFERENCES

Anonymous:1996:CPSb


Anonymous:1996:CPSa


Anonymous:1996:EA


Anonymous:1996:EVN


Anonymous:1997:AIVa

REFERENCES


Anonymous:1997:AIVb


Anonymous:1997:AIVc


Anonymous:1997:AIVd


Anonymous:1997:AIVe


Anonymous:1997:AIVf

REFERENCES

Anonymous:1997:AIVg

Anonymous:1997:AIVh

Anonymous:1997:CP

Anonymous:1997:CPS

Anonymous:1997:VNA
Anonymous. Volume 38, number 1 (1996), in the article “An Effective and Practice Performance Prediction Model for Parallel Computing on Nondedicated Heterogeneous NOW,” by Yong Yan, Xiaodong Zhang, and Yong-


REFERENCES

Anonymous:1998:AIVe

Anonymous:1998:AIVf

Anonymous:1998:AIVg

Anonymous:1998:AIVh

Anonymous:1998:CPb
REFERENCES


REFERENCES

Anonymous:1999:CPa

Anonymous:1999:CPb

Anonymous:1999:CPc

Anonymous:1999:CPS

Anonymous:1999:CAT
REFERENCES

Anonymous:1999:E


Anonymous:2000:ACP


Anonymous:2000:AIV


Anonymous:2000:ATI


Anonymous:2001:AI


Anonymous:2001:AIV


Anonymous:2001:ATIb


Anonymous:2001:ATIa


Anonymous:2001:GEIa


Anonymous:2001:GEIb

REFERENCES


Anonymous:2001:PAFe


Anonymous:2001:PAFf


Anonymous:2001:PAFg


Anonymous:2001:PAFh


Anonymous:2001:PAFi

REFERENCES


Anonymous:2001:PAFp


Anonymous:2001:PAFq


Anonymous:2001:PAFr


Anonymous:2001:PAFs


Anonymous:2001:P


Anonymous:2001:RN

REFERENCES


REFERENCES


Anonymous:2002:GEIb


Anonymous:2002:GEIc


Anonymous:2002:N


Anonymous:2002:PAa


Anonymous:2002:PAb

REFERENCES

Anonymous:2002:PAc

Anonymous:2002:PAAd

Anonymous:2002:PAE

Anonymous:2002:PAF

Anonymous:2002:PAFa


Anonymous:2002:PAFb


Anonymous:2002:PAFc


Anonymous:2002:PAFd


Anonymous:2002:SSD


Anonymous:2002:SIP


<table>
<thead>
<tr>
<th>Anonymous:2003:EBg</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2003:EBh</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2003:EBi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2003:EBj</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2003:EBk</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2004:ATI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2004:AI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2004:CA</th>
</tr>
</thead>
</table>


REFERENCES


Anonymous:2011:EBe


Anonymous:2011:EBf


Anonymous:2011:EBg


Anonymous:2011:EBh


Anonymous:2011:EBi


Anonymous:2011:EVA

REFERENCES

Anonymous:2011:EVR


Anonymous:2012:EBa


Anonymous:2012:Ebb


Anonymous:2012:Ec


Anonymous:2012:Ed


Anonymous:2012:Ee

REFERENCES


REFERENCES

Anonymous:2012:EB1


Anonymous:2012:EVA


Anonymous:2012:EVR


Anonymous:2013:EBa


Anonymous:2013:Ebb


Anonymous:2013:EBc

REFERENCES


Anonymous:2013:EBd


Anonymous:2013:EBe


Anonymous:2013:EBf


Anonymous:2013:EBg


Anonymous:2013:EBh


Anonymous:2013:EBi

[Ano13i] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 73(9):??, September 2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2013:EBj


Anonymous:2013:EBk


Anonymous:2014:EBa


Anonymous:2014:EBb


Anonymous:2014:EBc


Anonymous:2014:EBd

REFERENCES

Anonymous:2014:EBe


Anonymous:2014:EVA


Anonymous:2014:EVR


Anonymous:2015:EBa


Anonymous:2015:EBb


Anonymous:2015:EBc

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>


**Anonymous:2015:EBd**


**Anonymous:2015:EBe**


**Anonymous:2015:EBf**


**Anonymous:2015:EBg**


**Anonymous:2015:EBh**


**Anonymous:2015:EBi**

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 85(?):ifc, November 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2015:EBj


Anonymous:2015:EVR


Anonymous:2016:EBa


Anonymous:2016:EBb


Anonymous:2016:EBc


Anonymous:2016:EBd

REFERENCES

Anonymous:2016:EB


Anonymous:2016:EBf


Anonymous:2016:EBg


Anonymous:2016:EBh


Anonymous:2016:EBi


Anonymous:2016:EBj

Anonymous:2016:NAE


Anonymous:2016:TI


Anonymous:2017:EBa


Anonymous:2017:EBb


Anonymous:2017:EBc


Anonymous:2017:EBd

REFERENCES


[Ano17j] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 107(??):ifc, September 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2017:EBk


Anonymous:2017:EBl


Anonymous:2017:EBm


Anonymous:2018:EBa


Anonymous:2018:EBb


Anonymous:2018:EBd

REFERENCES

Anonymous:2018:EBk


Anonymous:2018:EBl


Anonymous:2018:EBm


Anonymous:2018:EBn


Anonymous:2018:EBo


Anonymous:2018:EBp

[Ano18o] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 118 (part 1)(??):ii, August 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2018:EBq

Anonymous:2018:EBr

Anonymous:2018:EBs

Anonymous:2018:EBCa

Anonymous:2018:EBCb

Anonymous:2018:EBCc
REFERENCES

Anonymous:2018:FTP

Anonymous:2018:TPa

Anonymous:2018:TPb

Asdre:2007:OPS

Andreae:1997:ECP


REFERENCES


REFERENCES


Arabnia:1990:PAA


Aravind:2013:SSE


Arbib:1989:SNN


Atlidakis:2014:EUP


Azari:2018:DRA


AlFaisal:2017:NPE

Faiz Al Faisal, M. M. Hafizur Rahman, and Yasushi Inoguchi. A new power efficient high performance intercon-
REFERENCES

Angelov:2005:EOT


Agostini:2018:GAE


Aupy:2014:CAF


Aumann:1991:IMU


Atkinson:1994:UGB

REFERENCES


Anderson:1995:PIP


Antonoiu:1996:SSL


Anastasiadis:1997:PAS


Anand:2000:FVA


REFERENCES

Aparicio:2018:PAC


Alfaro:2009:NSM


Ashari:2015:MDB


Abali:2001:ARN

REFERENCES


Afek:2012:ISJ


Adamo:1994:PEP


Achalakul:2003:DSS


Anzt:2013:BAR


Antonio:1991:HPA


Al-Tawil:2001:PME

Khalid Al-Tawil and Csaba Andras Moritz. Performance modeling and evaluation of MPI. *Journal of Parallel and Dis-
REFERENCES


REFERENCES


[Abdullah:1993:CQP] Naim Abdullah and Jie yong Juang. Concurrent query processing for logic inference using the connection graph. *Jour-


Bhandarkar:1995:HTR


Bergmans:1996:CSR


Ben-Asher:1997:ORM


Ben-Asher:2001:DRA


Bruda:2001:CSR

REFERENCES


REFERENCES


REFERENCES


REFERENCES

1071, September 2005. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


Balasubramanian:1987:FTM


Bemmerl:1993:VMP


Bartoli:2003:ABD


Bertrand:2006:DRR


Busnel:2011:UPS

Barnat:2012:DFL


Belkouch:2002:SSD


Balle:2004:ETD


Baldoni:2013:VTR


Bojanczyk:1990:LCA

Bahr:1991:PPS


Blin:2018:SSM


Berenbrink:2012:BBR


Berenbrink:2014:BNU


Bal:1997:PHL

REFERENCES

Bhatt:1998:TBP


Bender:2017:TLM


Bui:2004:DAC


Benner:2002:PAL

REFERENCES

Batista:2008:PSB

Barak:1993:BCF

Bertossi:1994:RTA

Bernaschi:2013:BCT

Bernard:2013:UAS
REFERENCES


Bruno:1994:IAD


Bianchini:2001:DEC


Bader:2005:FPS


Bader:2006:FSM


Borgonovo:2011:REW

REFERENCES

Baldoni:1995:CGA


Bagrodia:1995:USB


Bononi:2000:DPE


Barrett:2015:ARM

REFERENCES


REFERENCES


Bhatt:1996:STD


Bailey:1987:RCO


Baldoni:2006:CTO


Bernaschi:2015:SSC


Bagaa:2012:EDA


<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>
REFERENCES


REFERENCES


REFERENCES

Boukerche:2012:DBA


Benoit:2015:ISP


Bhattacharya:1994:MGM


Bevilacqua:2002:MAP

REFERENCES


Bilo:2004:EAO


Berenbrink:2009:NAM


Baccour:2017:PEG


Brooks:2004:TMT


Blazewicz:2013:IMG

### REFERENCES


Barbosa:1989:DIS


Baru:1990:SER


Tzeng:1990:SID


Boichat:2005:RTO


Bekesi:2016:MTM


Baldassin:2012:TRS

REFERENCES


REFERENCES


REFERENCES

[Brzezinski:1995:DMG]

[Blelloch:1994:IPN]

[Brodtkorb:2013:GPU]

[Bhuyan:1987:AIN]

[Bic:1990:POM]
Lubomir Bic. A process-oriented model for efficient execution of dataflow programs. *Journal of Parallel and Distributed
Birman:1994:IRC


Bitar:1992:WMA


Bader:1996:PAI


Bader:1999:SMP


Bistouni:2015:PNM

REFERENCES 228


**Bui:2018:IAF**


**Blumofe:1996:CEM**


**Bradbury:2018:HOP**


**Beck:1991:CFD**


**Baldoni:2008:DQD**

Roberto Baldoni, Ricardo Jiménez-Peris, Marta Patiño-Martínez, Leonardo Querzoni, and Antonino Virgillito. Dy-

**Bilas:2003:SVM**


**Bahrami:2018:NHA**


**Baden:1995:PPP**


**Biyani:2008:ADA**


**Basaran:2013:GEM**

REFERENCES


[BKMT14] Mohamed Slim Bouguerra, Derrick Kondo, Fernando Mendonca, and Denis Trystram. Fault-tolerant scheduling on par-

**Berg:1991:LIM**


**Bansal:2005:DHT**


**Bhattacharya:1995:CCS**


**Bier:1989:EBT**


**Bojanczyk:1990:USA**


[BLMB13] Alessio Bonfietti, Michele Lombardi, Michela Milano, and Luca Benini. Maximum-throughput mapping of SDFGs on

**Bakiras:2005:ASD**


**Barnett:1995:GCA**


**Broll:2018:VPE**


**Buker:1995:PEH**


Baddar:2014:BSC


Bahmani:2016:ECU


Baharvand:2017:AAA


Bahmani:2017:SCE


Boukerche:2007:PSL


REFERENCES


REFERENCES


REFERENCES

166–182, February 1989. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES

time-optimal multiple search algorithm on enhanced meshes,
with applications. *Journal of Parallel and Distributed
ISSN 0743-7315 (print), 1096-0848 (electronic). URL

atomic capture of multiple molecules. *Journal of Parallel
and Distributed Computing*, 73(9):1251–1266, September
2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
science/article/pii/S0743731513000543.

for distributed discrete event simulation systems. *Journal of Parallel and Distributed Computing*, 62(9):1454–1475,
September 1, 2002. CODEN JPDCER. ISSN 0743-7315 (print), 1096-

[Bou03] Azzedine Boukerche. Wireless and mobile ad hoc networking
0743-7315 (print), 1096-0848 (electronic).

[BOY10] Jalel Ben-Othman and Bashir Yahiya. Energy efficient and QoS
2010. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).
REFERENCES

Bozejko:2009:SFS


Bongiovanni:1989:PDS


Bilardi:1995:HPC


Barth:1998:RPG


Brightwell:2001:SPT

REFERENCES


REFERENCES

Barnett:1996:BMW


Brodsky:2005:CBA


Bernhard:1991:EMR


Boppana:1991:GSA


Babaoglu:1995:SVD

REFERENCES


REFERENCES


REFERENCES


Surendra Byna and Xian-He Sun. Special issue of the Journal of Parallel and Distributed Computing: Data-intensive com-


REFERENCES


REFERENCES


REFERENCES

Brodal:1998:PPQ


Buchholz:1992:HVG


Berka:2013:PRT


Bae:2002:DRB

REFERENCES

Basanta-Val:2014:RMP


Baer:1989:MCH


Bik:1995:ACO


Blough:1995:CDR


Bik:1996:UIS


Bobda:2018:HLS


Bui:2017:EEC


Butt:2006:SOF


Brooks:2004:AOD


Callsen:1994:OHC

REFERENCES


[CAF+11] Caroline Concatto, João Almeida, Guilherme Fachini, Marcos Hervé, Fernanda Kastensmidt, Érika Cota, and Marcelo

Chen:2013:TSM


Calinescu:2006:FLA


Cannizzo:2018:FVA


Cappello:1987:GEH


Carlson:1990:SLR

Carter:1995:DMD


Casavant:1993:TMV


Chow:2018:UJI


Choi:1995:RLS


Clarke:1996:LSP

REFERENCES


REFERENCES


Correia:2008:BGA


Chen:1987:ILP


Castagnetti:1991:SAP


Chiang:1994:DFT


Choi:1996:DPE

References


[CCC92]  Yen-Cheng Chen, Wen-Tsuen Chen, and Gen-Huey Chen. Efficient median finding and its application to two-variable lin-


**Callahan:1988:EII**


**Chen:2008:MJR**


**Chen:2011:ART**


**Crowl:1994:AMP**


**Caselli:1992:TPI**

REFERENCES


Cruz:2014:DTM


Chen:2004:RWP


Choi:2005:RDR


Carrier:2015:SSI


Caron:2010:SSC

REFERENCES


REFERENCES


[CDRC99] Albert Chan, Frank Dehne, and Andrew Rau-Chaplin. Coarse-grained parallel geometric search. *Journal of Parallel and Dis-
REFERENCES

Casanova:2010:CRA

Chakrabarti:1997:MSA

Chen:1995:ETP

Chau:2007:MIP
REFERENCES


REFERENCES

Clauss:2010:ICO

Carroll:2011:DAM

Carroll:2012:IBD

Casu:2017:PPA

Colajanni:1998:TBR
Chen:2016:FHA


Chockler:2009:RDS


Calegari:1997:PIB


Chow:2012:PTS


Chatterjee:1995:GLA

REFERENCES


Casanova:2014:VSA

Castro:2014:ATM

Cecilia:2013:EDP

Chatterjee:1996:AAA
REFERENCES


REFERENCES


REFERENCES


Chi:2007:GPQ


Coetzee:2017:GBC


Cholvi:2009:IDM


Cao:2010:CTT


Cosnard:2004:CDR

REFERENCES

Callahan:1988:AIS

Cox:1991:TSS

Chiu:1997:DEE

Camp:2006:FBD

Chandra:2008:DSB

Chang:2013:HBC
REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES

Culler:1990:ETS

Choudhary:1991:IEH

Choudhary:1992:PIE

Conn:1994:PRS

Cabillic:1997:SEP
REFERENCES


[CP04a] Tiziana Calamoneri and Rossella Petreschi. L (h,1)-labeling subclasses of planar graphs. *Journal of Parallel and Dis-
REFERENCES


Choi:2004:EQD


Chandra:2005:TAA


Caminiti:2010:UPE


Chen:2010:PIE


Cinque:2017:IHF


**Chen:2018:CMD**


**Conant:2003:PGI**


**Clement:1995:OCC**


**Carmona:1991:MSP**

REFERENCES


Charcranoon:2004:LSP


Chowdhury:2013:OAM


Chalasani:1994:FTR


Chen:2012:ILA


Cheng:1992:OCA

REFERENCES


[CS95b] Yaw-Huei H. Chen and Stanley Y. W. Su. Identification-and elimination-based parallel query processing techniques for
REFERENCES


Chen:2008:SSD

Chen:2010:RWA

Collinson:2017:CAF

Chandrasekaran:2013:CDT

Cauchi-Saunders:2015:GEX

Caymes-Scutari:2010:SDM
P. Caymes-Scutari, A. Morajko, T. Margalef, and E. Luque. Scalable dynamic monitoring, analysis and tuning environment for parallel applications. *Journal of Parallel and Dis-
REFERENCES


Carbunar:2011:CPT


Carey:1994:PSO


Chen:2008:ASS


Cui:2017:NOC


Cao:2003:SLB


REFERENCES  

Chiang:2011:IIP

Interest-Intended Piece Selection in BitTorrent-like peer-to-peer file sharing systems.  
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).  

Chen:2008:DFA

A decoupled federate architecture for high level architecture-based distributed simulation.  
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Casanova:1999:SPP

Stochastic performance prediction for iterative algorithms in distributed environments.  
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).  

Cheng:2017:DES

Design and evaluation of small-large outer joins in cloud computing environments.  
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).  

Capel:2017:TCP

Teaching concurrent and parallel programming by patterns:

**Congiusta:2008:SOM**


**Comito:2016:DSD**


**Climent:1999:BRD**


**Cuzzocrea:2011:SIJ**


February 2009. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Chatterjee:2018:SFF


Chaudhury:2018:LHW


Chu:1992:OMN


Cheng:1993:SAD


Cang:2000:TSO

[CW00] Songluan Cang and Jie Wu. Time-step optimal broadcasting in 3-D meshes with minimum total communication dis-
REFERENCES


REFERENCES


REFERENCES


[dADB96] Lúcia Maria de A. Drummond and Valmir C. Barbosa. Distributed breakpoint detection in message-passing pro-


REFERENCES


REFERENCES


REFERENCES

**Donaldson:1994:PSH**


**Dhurandher:2018:LPB**


**Duh:1994:TPW**


**Djidjev:2015:APS**


**DeBenedictis:1993:MS**

[DD93] Erik P. DeBenedictis and Juan Miguel Del Rosario. Modular scalable I/O. *Journal of Parallel and Distributed Computing*,
Driscoll:1995:APP


Das:1996:TPR


Das:1998:HMP


Davtyan:2017:CCT

REFERENCES


Delevacq:2013:PAC


Das:2006:EAP


Delaet:2010:SSM


Dandamudi:1991:HBH


DeGroot:1988:TCE

REFERENCES


REFERENCES

Das:2006:CFS


Du:2006:LLA


Diallo:1999:SCH


DiGregorio:2013:AWS


deSouzaSilva:1991:QNM

REFERENCES


REFERENCES


REFERENCES


REFERENCES


Daoud:2011:HHG


Di:2014:GHP


eSilva:2010:AEM


Daily:2015:WSB


Dimokas:2010:EED

REFERENCES


REFERENCES

Dolev:2001:SSG


Dessmark:1998:IBI


DiStefano:1999:EKT


Dong:2001:DCA


Della-Libera:2000:RDT


Datta:2011:TSS


Dong:2012:DAL


Duprat:1988:HPE


Darling:1990:PAS

Dining:1990:FPA

Dixit:1990:APP

Davarakis:1992:PPA

Dutt:1994:SLB

Das:1995:UAP

Dramitinos:1999:ARP
George Dramitinos and Evangelos P. Markatos. Adaptive and reliable paging to remote main memory. *Journal of


Darte:2003:GMM


Dias:2018:JDR


Duenha:2016:MBH


deMiras:2018:GIT


Davis:1990:DDE

Demeure:1994:PSP


Dekel:1989:PEM


Dogan:2006:SMT


deOliveira:2015:ELF


deOliveira:2014:UAS

REFERENCES


[Dalcin:2005:MP]


[Dalcin:2008:MPP]


[Djamegni:2009:RBA]


[Darte:1995:ASS]


[Diniz:1998:LCE]


REFERENCES


References


Dines:1997:OIS


DeLucas:2017:DMA


Souza:2000:DSV


Dubois:1995:EMD

[DS95] Michel Dubois, Jonas Skeppstedt, and Per Stenstrom. Essential misses and data traffic in coherence protocols. *Jour-
REFERENCES


Djamegni:1997:COP


Dickens:2001:ECI


Delaet:2002:TTI


Demsky:2011:IFO

Doka:2011:BDF


Doka:2011:OQD


Das:1994:COI


Dolev:1986:PCS


DAmato:2013:CGF

REFERENCES


REFERENCES


REFERENCES


El-Boghdadi:2009:PAR

El-Boghdadi:2013:CAO

Eberbach:1994:CDG

Elhadeef:2008:DFI

Ebner:2004:PAC

Engstrom:1989:SPS
Bradley R. Engstrom and Peter R. Cappello. The SDEF programming system. *Journal of Parallel and Distributed Computing*,...


REFERENCES


REFERENCES


El-Rewini:1995:SSC


Eriksen:1988:TDP


El-Rewini:1990:SPP


Ercal:1990:TAH


Eisenhauer:1996:DAP

REFERENCES


REFERENCES


Escudero-Sahuquillo:2014:NPD


Escudero-Sahuquillo:2018:FEC


ElBaz:1996:AIA


El-Sharkawy:1994:SDP


Fan:1995:CSM


Fahringer:1996:CTE


Fragopoulou:1996:OCP


Fukuda:1999:MVM

REFERENCES


REFERENCES


Damián Fernández-Cerero, Agnieszka Jakóbik, Daniel Grzonka, Joanna Kolodziej, and Alejando Fernández-Montes.

Fan:2013:GBC


Feo:1990:RSL


Francesquini:2015:EEP


Fineberg:1991:EAM


Fan:2011:CAD

Xiaopeng Fan, Jiannong Cao, and Weigang Wu. Contention-aware data caching in wireless multi-hop ad hoc networks.


REFERENCES


REFERENCES


REFERENCES


Fu:2011:GGR

Fitch:2003:BMA

Foglia:2005:RCO

Ferrari:2003:GAA

Faverge:2015:MLQ
Mathieu Faverge, Julien Herrmann, Julien Langou, Bradley Lowery, Yves Robert, and Jack Dongarra. Mixing LU and QR factorization algorithms to design high-performance dense linear algebra solvers. *Journal of Parallel and Distributed Computing*, 85(??):32–46, November 2015. CO-
REFERENCES

Fujiwara:2004:PER


Francioni:1993:BSA


Fernandez:2004:ICM


Ferreira:2006:LSP


Ford:1990:PCT

REFERENCES


Fatourou:2016:WTW


Freeh:2008:JTD


Foley:2017:OWP


Fizzano:1997:DJS


Foster:1996:NAI

REFERENCES


Roy Friedman and Daniel Mosse. Load-balancing schemes for high-throughput distributed fault-tolerant servers. *Jour-
REFERENCES


REFERENCES


Flich:2012:SIC


Feitelson:1992:GSP


Feitelson:1996:EDC


Ferreira:1996:FSP


Ferreira:1998:SII

REFERENCES


Fort:2014:FES


Fort:2017:ITF


Flammini:2007:MNA


Funabiki:1994:PAT


Fidanova:2004:ILB


Fu:2000:EEM

Shiwa S. Fu, Nian-Feng Tzeng, and Jen-Yao Chung. Empirical evaluation of mutual exclusion algorithms for dis-
REFERENCES


Pierre Fraigniaud and Sandrine Vial. Approximation algorithms for broadcasting and gossiping. *Journal of
Franciscani:2005:RCA

Fang:2009:SDB

Falsafi:2005:ESP

Ferri:2010:ETE

Fu:2006:SMA


REFERENCES


Goodrich:1990:PRO

Gunney:2016:APB

Garimella:2018:ESR

Grossman:2017:PTT

Gharachorloo:1992:PDM
REFERENCES


Gutierrez-Alcoba:2017:AAP


Gaudiot:2006:I


Guha:1993:DON


Gustafson:2006:SIM


Gu:2011:HTN


Gu:2008:PAA

Yunfeng Gu, Azzedine Boukerche, and Regina B. Araujo. Performance analysis of an adaptive dynamic Grid-based ap-

Germain:1993:CAM


Gupta:1993:MEH


Guirguis:2007:AEE


Ghafoor:1995:SIM

Goil:2001:PIP

Grosu:2005:NLB

Gupta:2007:OSA

Garti:2000:OMP

Garg:1997:EDC
Giraud-Carrier:1995:ACG


Giruka:2006:DMP


Ganesan:2004:NIW


Gao:2018:CPD


Gardellin:2011:GPD


REFERENCES


REFERENCES


REFERENCES


REFERENCES


**Ghosh:2002:SSS**


**Guo:2017:MAE**


**Guesgen:1992:TMP**


**Guerraoui:2012:DPR**


**Grammatikakis:1998:PRF**

REFERENCES


[GJA08] Leonid Glimcher, Ruoming Jin, and Gagan Agrawal. Middleware for data mining applications on clusters and Grids.
REFERENCES


REFERENCES


[GL12] Jinsong Gui and Anfeng Liu. A new distributed topology control algorithm based on optimization of delay and
REFERENCES


REFERENCES


<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNT04</td>
<td>Fair workload allocation policy for heterogeneous systems.</td>
<td>Journal of Parallel and Distributed Computing</td>
<td>64(4)</td>
<td>507</td>
<td>519</td>
<td>2004</td>
<td>CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).</td>
</tr>
<tr>
<td>GNW03</td>
<td>Efficient embeddings of ternary trees into hypercubes.</td>
<td>Journal of Parallel and Distributed Computing</td>
<td>63(6)</td>
<td>619</td>
<td>629</td>
<td>2003</td>
<td>CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).</td>
</tr>
<tr>
<td>GNZ18</td>
<td>Parallel adaptive mesh refinement method based on bubble-type local mesh generation.</td>
<td>Journal of Parallel and Distributed Computing</td>
<td>117(??)</td>
<td>37</td>
<td>49</td>
<td>2018</td>
<td>CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).</td>
</tr>
</tbody>
</table>
REFERENCES


REFERENCES


Guo:2005:ICS


Gandhi:2007:DAC


Gaur:2010:PBS


Greenberg:1996:CCC


Gaibisso:2006:EMT

Goldman:2006:EMD


Geng:2008:DSA


Gai:2018:EAT


Gao:1996:TES


Grahn:2009:SIJ


Grahn:2010:ASI

Håkan Grahn. Acknowledgment to special issue reviewers. *Journal of Parallel and Distributed Computing*, 70(10):1085,
October 2010. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


REFERENCES


[GSC96] Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler. Lazy threads: Implementing a fast parallel call. *Jour-
REFERENCES

Gill:1993:STA


Goswami:2002:DPP


Garcia:2003:HDH


Girault:2009:RVP

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


[GTGLSA12] Raúl Gracia-Tinedo, Pedro García-López, and Marc Sánchez-Artigas. Sophia: a local trust system to secure key-based rout-


REFERENCES


REFERENCES

Wu:2018:MME


Grimshaw:1994:MAC


Gupta:2013:LPR


Gerasoulis:1992:CCH


Garg:2011:ECS

Saurabh Kumar Garg, Chee Shin Yeo, Arun Anandasivam, and Rajkumar Buyya. Environment-conscious scheduling of


REFERENCES

[426]

Gan:2017:DAO

Gotthelf:2008:GOM

Gong:2014:DCA

Gong:2014:MCC

Houstis:1991:CPA
Hudak:1992:CTO


Hughes:2005:MSP


Holman:2006:SLF


Hussain:2017:NIS


Hagerup:1997:AIT


Haldar:2005:CRV

[Hal05] Sibsankar Haldar. Constructing regular variables in message passing systems. *Journal of Parallel and Distributed Com-


REFERENCES


[HBF12] Yi Hu, Laxmi N. Bhuyan, and Min Feng. Peer-to-peer indirect reciprocity via personal currency. *Journal of Par-
REFERENCES


REFERENCES


REFERENCES


Herbordt:1994:PAO

Herbordt:2004:ACH

Hu:2010:IIC

Hanna:2011:AHS

Hoare:2008:TSH
HerondeCarvalhoJunior:2013:CSE


Hoare:2005:FDS


Herath:1992:GEI


Hajihashemi:2010:HPC


Hassan:2011:PID


Hyde:1996:ADS

[HF96] Randall L. Hyde and Brett D. Fleisch. An analysis of degenerate sharing and false coherence. *Journal of
Hybinette:2002:LHO


Hameenanttila:1996:FHN


Harmanci:2010:ETM


Hamdi:1997:RFE

REFERENCES

He:2001:CEB


Hussain:2014:PPM


Ho:1998:EPS


Hussin:2015:IRR

REFERENCES

Hall:1996:ICF

Hambrusch:1994:PAG

Heber:2012:ISC

Han:1994:BFB
REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES

Hu:2000:ONS


Hwang:1998:FCA


Hwang:2001:AOS


Hsieh:1995:PMS

REFERENCES


Hua:1995:OAL


Hosseini:1990:AGC


Hanlon:2003:LSF


Hori:2012:ANS


Helmbold:1996:TRC

REFERENCES


Huang:1999:BBA


Heun:2001:ODE


Haghighi:2006:PPQ


Hart:2007:PMR


Herrmann:2015:MAT


Han:2007:AAI


Huda:2018:MTD


Horiguchi:1991:PEP


Howell:2002:FSS

Hashemi-Najafabadi:2007:MPM


Ho:1991:OBS


Huang:1994:ELB


He:2009:SAA


Hohberg:1990:HFB


Hollingsworth:2017:E

REFERENCES


Heydemann:1994:EHG


Hernandez-Orallo:2009:PBS


Hendrickson:1995:PMB


Ha:1997:SDC


Homer:1997:DPP

[HP97b] Steven Homer and Marcus Peinado. Design and performance of parallel and distributed approximation algorithms


REFERENCES


REFERENCES


Hillyer:1986:EOP


Huang:1993:CFH


Higham:1994:MBT


Homer:1994:SPC


Hou:1997:IDL

Chao-Ju Hou and Kang G. Shin. Implementation of decentralized load sharing in networked workstations using the


REFERENCES


**He:2010:IRS**


**Hsieh:2004:EPS**


**Hinkle:1987:NLP**


**Heymann:2004:ERM**


**Hiranandani:1991:PHC**


**Han:2010:EPA**

[HSS10] Yijie Han, Sanjeev Saxena, and Xiaojun Shen. An efficient parallel algorithm for building the separating tree. *Journal


Hribar:1998:TDP


Huang:2002:FTH


Hua:1999:PLB


Hu:2011:DSR


Iyengar:2004:SII


Ibrahim:2008:FGP


Iqbal:2005:PAD


Igual:2012:FAD


Ibrahim:2017:CSE

Izaguirre:2005:PMS


Ikuzawa:2016:RMU


Irwansyah:2017:FBM


Ibarra:1993:QBA


Ibarra:1994:FPA

REFERENCES


Imbs:2012:HWN


Imbs:2016:RWS


Irwin:1988:SIP


Iyengar:2006:ENL


Imani:2007:CIP


Imani:2010:RPC

Islam:1997:CMP


Izumi:2007:ATC


Itzkovitz:1999:TID


Irony:2004:CLB


Irakliotis:1997:OME

REFERENCES


Ibarra:1995:OSP


Ippoliti:2012:GAG


Javadi:2012:FAR


Johnson:1993:PED


Joy:1998:HDR

REFERENCES


Jaramillo-Botero:2002:UFM

Jiang:1991:MMV

Jayanti:2000:AOS
REFERENCES


Jha:2017:SRA


Jiang:2018:SRT


Ji:2013:CDA


Jiang:1999:PAD


Jung:2015:CCD


Jan:2005:CLB


Jiang:2011:LST


Jiang:2008:OCM


Johnson:1997:LCH

REFERENCES

http://www.idealibrary.com/ 
links/doi/10.1006/jpdc.1996.1273/production/pdf; 


http://www.idealibrary.com/links/ 


Yuxin Jing, Hanpin Wang, Yu Huang, Lei Zhang, Jiang Xu, and Yongzhi Cao. A modeling language to describe massive


Jiang:2017:DOS


Korst:1989:COB


Koc:1991:FAG


Kwok:1997:ESA


Kwok:1999:BCT

Kang:2003:SSS


Kepner:2004:M


Kwok:2005:MTS


Khan:2008:CAT


Kai:1992:EA


Kakugawa:2015:MIA

REFERENCES


REFERENCES


REFERENCES


[KBC+01] Ken Kennedy, Bradley Broom, Keith Cooper, Jack Dongarra, Rob Fowler, Dennis Gannon, Lennart Johnsson, John

**Kravtsov:2010:SFL**


**Kuang:2005:PPO**


**Kyriakis-Bitzaros:1992:EDT**


**Krishnamoorthy:1994:SDS**

REFERENCES


Rafal Kozik, Michal Chora’s, Massimo Ficco, and Francesco Palmieri. A scalable distributed machine learning approach for attack detection in edge computing environments. *Journal of Parallel and Distributed Computing*, 119(??):18–26, September 2018. CODEN JPDCE. ISSN 0743-7315 (print), 1096-
Kim:2014:IPA


Kandemir:1999:MBA


Kalathingal:2018:DDI


Kim:1999:CMD

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES


Keleher:2000:ISS

Kepner:2003:MTF

Karaata:2001:MCL

Kamal:2004:OAA

Kalyanaraman:2007:AGL
Kuo:1990:RCC

Kuszmaul:1990:NNA

Kankanhalli:1995:APC

Khanna:1995:LTA

Kumar:1994:ASP
Kudlur:2004:PAM


Karmakar:2010:ABF


King:1989:REB


Kuntz:2011:VAA


Kumar:1994:SLB

REFERENCES


Kung:1989:USA


Koohi:2012:SAC


Khokhar:2003:TDD


Kanemitsu:2017:PNS


Kaushik:1996:EIS


Kumar:1984:PEB


Kaznachey:2003:NNB


Kumar:1986:TPD


Kirchner:1988:AAV


Kond:1995:SFD


Karypis:1998:MWP

REFERENCES


Kennedy:2017:CNB


Krishnan:2006:ESC


Kahol:2001:ADD


Karunaratne:2017:DSC


Kas:2011:OAC

Miray Kas, Ibrahim Korpeoglu, and Ezhan Karasan. OLSR-aware channel access scheduling in wireless mesh networks. *Journal of Parallel and Distributed Computing*, 71(9):1225–1235, September 2011. CODEN JPDCER. ISSN 0743-
REFERENCES


Kosar:2005:FRE


Kaeli:2008:ASI


Kaeli:2008:SIG


Kim:2005:IGS


Kim:2011:TBS

REFERENCES


Kornerup:1988:LAU


Kuo:1991:IMR


Kuo:1992:SAP


Krishnamoorthy:1997:FAF


Knoll:2003:VPG


KM88


KM91


KM92


KM97


KM03

Kaur:2017:RPW


Kuo:1991:PCS


Khanna:2016:GND


Kapelnikov:1989:MMA


Kapelnikov:1992:MPA


Komatitsch:2009:PHO

[KME09] Dimitri Komatitsch, David Michéa, and Gordon Erlebacher. Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA. *Journal of


[KMS+06] Yu-Kwong Kwok, Anthony A. Maciejewski, Howard Jay Siegel, Ishfaq Ahmad, and Arif Ghafoor. A semi-static approach to mapping dynamic iterative tasks onto heterogeneous


REFERENCES


Kochevar:1991:SLS

Koppelman:1997:SSB

Konuru:1997:MUL

Kim:2000:FSF
REFERENCES


REFERENCES


[KS91] Vipin Kumar and Vineet Singh. Scalability of parallel algorithms for the all-pairs shortest-path problem. *Journal of Par-
REFERENCES


Kraemer:1993:VPS


Kshemkalyani:1994:CCD


Kontothanassis:1995:HPS


Karlsson:1997:EDP

REFERENCES


REFERENCES


**Kissel:2011:PSH**


**Koziris:2003:PSM**


**Kegel:2013:DTU**


**Kshemkalyani:2012:IDP**


**Kannan:2004:SCE**

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Kollias:2014:FPA

Koutsandria:2016:CEH

Kamath:2016:DTT

Kumar:1989:DLS

Kunde:1991:RMM

Karonis:2003:MGG
Nicholas T. Karonis, Brian Toonen, and Ian Foster. MPICH-G2: a Grid-enabled implementation of the Message Passing...


Kumar:2017:ROT


Katz:1988:GRP


Khoo:2010:PAF


Kang:2018:DSS


Khoo:2007:MDS


Kashyap:2017:ASM

[Amlesh Kashyap, Sathish S. Vadhiyar, Ravi S. Nanjundiah, and P. N. Vinayachandran. Asynchronous and synchronous models of executions on Intel Xeon Phi coproces-]

**[Kohn:1993:A]**


**[KW02]**


**[Krishnamurthy:1996:AOS]**


**[Kakugawa:2002:USS]**

Kee:2017:AMB

Karin:2013:SAF

Kim:1996:FMO


REFERENCES

Leiserson:1996:NAC


Liu:2007:LVT


Lai:1986:TDD


Lai:2014:ECO


Lai:2015:CAS

REFERENCES


[Lastovetsky:2013:HPD]


[Lejeune:2015:FSF]


[Latifi:1995:MTI]


[Latifi:1998:FBG]


REFERENCES


REFERENCES

Lu:1996:FTM


Lauria:1997:MFH


Lin:2007:PSA


Li:2011:APU


Lee:2013:AMS

Laurenciu:2014:CTN


Lim:2014:PGM


Lorenzon:2016:IDG


Lee:2005:RMF


Li:2010:SSP

REFERENCES


Lu:1992:SCP


Lublin:2003:WPS


Lowenthal:1996:UFG


Larrea:2005:ECF


Losada:2017:PAF


Lewis:2003:SES


**Lampka:2016:KIC**


**Liu:2017:FTE**


**Ltaief:2008:FTA**


**Lu:2012:EPM**


**Lobachev:2013:EPP**


Li:2018:SCC


Lan:2010:SDM


Lee:1992:DGD


Lin:2004:NAC


Loh:2005:JCA


Lin:2009:FPS

Yen-Chun Lin and Li-Ling Hung. Fast problem-size-independent parallel prefix circuits. Journal of Parallel and
REFERENCES


REFERENCES


Lin:1993:SIP


Lin:1993:TDD


Lin:2003:EED


Lisper:1990:STO


Li:1986:SSN


Lee:2005:EDR

LJ05 Soojung Lee and Kil Hong Joo. Efficient detection and resolution of OR deadlocks in distributed systems. *Journal of


REFERENCES


Lugowski:2015:PPF


Luszczek:2014:LBD


Lee:1994:ECR


Lazaro:2012:LTA


Lee:2014:EMC

REFERENCES


**REFERENCES**


REFERENCES

Long:2015:EES

Lv:2018:HCP

Lee:2000:HNO

Lee:2000:THT
REFERENCES


Lee:2013:DSE


Lau:2006:ALD


Lai:2015:SAM


Leu:2008:DWD


Lee:1993:OFC


**Luo:2007:RFG**


**Lu:2016:PIF**


**Lin:2012:MSN**


**Liu:2007:DCA**


**Lv:2012:GKA**


REFERENCES

Li:2016:OPC

Li:2017:SKP

LeBlanc:1990:APP

Lin:1995:AMW

Lazaro-Munoz:2017:TRM


[LMXJ18] Weimin Li, Jun Mo, Minjun Xin, and Qun Jin. An optimized trust model integrated with linear features for cyber-enabled recommendation services. *Journal of Parallel and


Lima:2012:PEO


Lin:1991:NRA


Lo:1992:TCG


Lin:1994:OPM


Lin:1996:OVS

Long:2004:DRS


Lopriore:2013:OPD


Lopriore:2018:PBP


Loscri:2008:MPW


Luk:1988:AAB


Lin:1995:BDO

REFERENCES


Lee:2010:AET


Lopez-Portugues:2012:ASS


Li:1998:LBD


Leung:1997:RTV


Lai:1995:TRM


Leutenegger:1997:LCS


Lundberg:2001:ORS


Lin:2003:LBL

Lin:2005:FOP


Lufei:2006:FMC


Liang:2010:RDS


Lee:2000:OEM


Lin:2015:EET

Lapolla:1993:DPP


Liang:1996:PAE


Lerida:2013:SBP


Lee:1988:HAK


Li:2011:CSF

[LSS+11a] Ruixuan Li, Wei Song, Haiying Shen, Weijun Xiao, and Zhengding Lu. Corrigendum to “A flabellate overlay network for multi-attribute search” [J. Parallel Distrib. Com-
REFERENCES


Jianhua Li, Liang Shi, Chun Jason Xue, and Yinlong Xu. Dual partitioning multicasting for high-performance on-chip networks. *Journal of Parallel and Distributed Comput-


Li:2007:RCP


Lahiri:2010:IFI


Lan:2002:NDL


Lin:1993:PCC


Liu:2014:HMC

REFERENCES


REFERENCES

Liu:2012:CPS


Leung:1995:RMR


Leung:1996:LRR


Lu:2001:IBD


Lin:2014:PAE

[LÜ14] Hui Lin and Halit Üster. A parallel algorithm with enhancements via partial objective value cuts for cluster-based wireless sensor network design. *Journal of Parallel and
REFERENCES


Lucchese:2018:PNC


Luk:1985:PMC


Lundberg:1990:PRG


Lundberg:1994:PBM


Lundberg:1999:PBS

REFERENCES


Lu:1988:OAR


Liu:2015:FGS


Low:2007:DHP


Li:2007:WAV


Lavault:2008:DAA

REFERENCES


REFERENCES


Li:2002:EKF


Liu:2002:PSA


Li:2003:EHP


Lu:2018:IIB


Lee:1997:GOM


Lee:1997:GOM

REFERENCES


REFERENCES


Ling:2016:JSM


Lee:2002:SBC


Leung:2005:MMF


Landfeldt:2008:BAS


Landfeldt:2011:SIA


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Li:2011:MDT


Liu:2018:CFB


Liu:2011:APD


Mershad:2011:CCD


Maia:2013:MRP

Maheshwari:1995:PSP


Min-Allah:2012:PER


Mohamed:2005:DUL


Min-Allah:2013:LPF


Manoj:2005:MHC

REFERENCES


REFERENCES


**Martel:1988:PAP**


**Mnaouer:2005:ESL**


**Maheswaran:1999:DMC**


**Mattern:1993:EAD**

Matsumae:2006:TBS


Menasce:1992:MPE


Mitkas:1993:POD


MacPherson:1996:PAV


May:1996:REP


REFERENCES

[MBL+92] B. Marsh, C. Brown, T. LeBlanc, M. Scott, T. Becker, P. Das, J. Karlsson, and C. Quiroz. Operating system support for an-

[MBO11] Lynda Mokdad and Jalel Ben-Othman. Admission control mechanism and performance analysis based on stochastic au-
tomata networks formalism. *Journal of Parallel and Dis-
tributed Computing*, 71(4):594–602, April 2011. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[MBR08] O. Mirabella, Lo Bello, and A. Raucea. Improving routing in long-distance wireless mesh networks via a distributed embed-

[MBS+12] Paulo Ditarso Maciel, Jr., Francisco Brasileiro, Ricardo Araújo Santos, David Candeia, Raquel Lopes, Marcus Carvalho, Renato Miceli, Nazareno Andrade, and Miranda Mow-
bray. Business-driven short-term management of a hy-
brid IT infrastructure. *Journal of Parallel and Distributed Computing*, 72(2):106–119, February 2012. CODEN JPDC-
pii/S0743731511002176.

[MBW16] Marco Maggioni and Tanya Berger-Wolf. Optimization tech-
niques for sparse matrix-vector multiplication on GPUs. *Journal of Parallel and Distributed Computing*, 93–94(??):66–86, July 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
science/article/pii/S0743731516300028.
REFERENCES


[MCAS12] Raúl Martínez, José M. Claver, Francisco J. Alfaro, and José L. Sánchez. Hardware implementation study of several new egress link scheduling algorithms. *Journal of Parallel and Distributed Computing*, 72(8):975–989, August 2012. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES


Muralidhar Medidi and Narsingh Deo. Parallel dictionaries using AVL trees. *Journal of Parallel and Distributed Com-


REFERENCES


REFERENCES


REFERENCES


REFERENCES

Monien:2006:I

Ma:2012:EED

Hwu:2014:WAP

Monson:2018:EDO

Mudge:1986:AMB


REFERENCES


References


[MKC01] Gokhan Memik, Mahmut T. Kandemir, and Alok Choudhary. Design and evaluation of a smart disk cluster for
REFERENCES


Maresca:1989:CAS


Marinescu:1990:MMD


Martin:2018:ENE


Mamat:2012:ERT


Mache:2005:ISL

Moore:2012:VEP


Meng:2016:CCA


Manzanares-Lopez:2012:ICU


May:1997:MLT


REFERENCES


Mohapatra:1996:PAU


Mohapatra:1997:DRT


Monfroglio:1994:NLC


Meyer:1987:PFO


Mathias:1988:SEL


Martinez-Perez:2009:PBA


Marinescu:1994:SAP


Marinescu:1994:HLC


Martel:1994:APM


Mei:2003:RPP


Makarenko:1987:VMM


Mikkilineni:1988:ESA


Makedon:1994:OAM


Moyer:1996:CCC


Michael:1998:NAP

REFERENCES

Manzini:1999:DPS


Myoupo:1999:TEP


Mahadevan:2000:HAQ


Manivannan:2002:ARU

Macedo:2005:MGA


Michail:2015:TPP


Majumdar:2004:PAC


Moraveji:2010:CGM


Moraveji:2010:GMD


Moraveji:2011:PMC

REFERENCES


REFERENCES

McLeod:1990:PAT


Mohamed:2005:MAR


Morad:2016:EEF


Manoj:2009:SSS


Muhlenbein:1988:NPM


Migliardi:2000:DJS

[MSS00] Mauro Migliardi, Simon Schubiger, and Vaidy Sunderam. A distributed JAVA SPACE implementation for HARNESS. *Journal of Parallel and Distributed Computing*, 60(10):1325–1340, October 2000. CODEN JPDCER. ISSN 0743-
REFERENCES

Middendorf:2002:EAD


Mukherjee:1999:DSA


Merugu:2005:ASU


Moldovan:1985:SVA

Ma:1993:EAM


Malhotra:1993:RAR


Maillet:1995:EIG


Matheson:1996:AMA


Masuzawa:1997:AFC

Toshimitsu Masuzawa and Nobuki Tokura. An algorithm for finding the causal distributed breakpoint. *Journal
REFERENCES


Mirchandaney:1990:ALS


Mueller:2013:BPI


Martinez:1988:APL


Moonen:1994:JTS


Min:2005:DPE


Mohan:2004:RRW

REFERENCES


Mohan:2017:SML


Moonen:1991:JTA


Mayr:1995:ORP


Ma:2000:JJE


Mao:2012:WCO

REFERENCES

Yuan:1991:FTD


Mohapatra:1995:LSS


Mishra:2011:RRA


Marinescu:2010:SFS


Yeh:1992:ABF

Ma:2017:SAA


Melab:2018:POU


Muppala:2012:RBR


Nesterenko:2002:SPA


Nagy:2006:CNN


REFERENCES


REFERENCES


Angeles Navarro, Francisco Corbera, Rafael Asenjo, Rosa Castillo, and Emilio L. Zapata. A data dependence test based on the projection of paths over shape graphs. *Journal of


REFERENCES


REFERENCES


[NGQM12] Jianwei Niu, Yuhang Gao, Meikang Qiu, and Zhong Ming. Selecting proper wireless network interfaces for user experience enhancement with guaranteed probability. *Journal of
REFERENCES


Niculescu:2007:CEP


Nieman:1994:IDC


Nikolopoulos:2003:QCB


Nikolopoulos:2004:PAH


Ngai:1986:RAT


Navaneethan:1991:DNS

Nick:1997:PSS


Nicolae:2016:TSD


Neumann:2017:ITH


Nukala:2014:STL


Nan:2018:DTD

Yucen Nan, Wei Li, Wei Bao, Flavia C. Delicato, Paulo F. Pires, and Albert Y. Zomaya. A dynamic tradeoff data processing framework for delay-sensitive applications in Cloud
REFERENCES 635


REFERENCES

Ng:1996:EPM


Nikolopoulos:2002:SAD


Nyland:1997:ASP


Noeth:2009:SSC


[Nak95]  

[NS90]  

[Nor92]  

[Nig94]  

[New95]  


[NSDZ18] Linh B. Ngo, Ashwin Trikuta Srinath, Jeffrey Denton, and Marcin Ziolkowski. Unifying computing resources and access interface to support parallel and distributed comput-
REFERENCES


Nagasu:2017:FBT


Nam:1999:SLB


Nastou:1998:ACA


No:2002:DIP

REFERENCES

Naik:1997:PAM

Narahari:1999:RST

Nanda:1991:RCS

Ni:1990:SIS
Nassimi:1993:EIB


Naimi:1996:LDM


No:2003:HPS


Neamatollahi:2012:IBA


Numrich:2007:NSL

REFERENCES


[NZ17] James Nutaro and Bernard Zeigler. How to apply Amdahl’s law to multithreaded multicore processors. *Journal of Parallel and Distributed Computing*, 107(??):1–2, September 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Nikolova:2013:PGO

Nijim:2011:QSA

Omara:2010:GAT

Oklobdzija:1988:IAV

Oliker:1998:PPL
Ohn:2007:PCC


Ohring:1995:IHE


O'Keefe:1995:SBM


Olariu:2007:AAN


OBoyle:2003:TGE

REFERENCES


REFERENCES


[OOSGVG+16] Marta Ortín-Obón, Darío Suárez-Gracia, María Villarroya-Gaudó, Cruz Izu, and Víctor Viñals. Reactive circuits:


REFERENCES

2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


or Parallel and Distributed Computing, 4(4):404–422, August 1987. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


REFERENCES

Panwar:1994:MPS

Pande:1996:SIC

Park:1997:EDF

Park:2001:GDM
REFERENCES


Pal:2014:PMH


Pauli:2015:IFT


Patsouris:2001:AMA


Park:1990:RCC


Pfluegl:1995:NIA


Peng:2014:RNS


Percus:1992:PAC


Panda:2005:PRA


Pinel:2013:SVL


Papakostas:2017:PPC

REFERENCES


REFERENCES


Parashar:2000:IPP


Phatak:2016:NDA


Park:2018:AAA


Palermo:1996:DDP


Phillips:2013:BPI

REFERENCES


**Piccialli:2018:TID**


**Percus:1989:RNG**


**Parhami:2004:IAC**


**Park:2004:LPC**


**Park:2005:OTS**


**Park:2005:DVS**

REFERENCES

Park:2005:SRD


Plaku:2007:DCG


Plank:1997:FTM


Psarris:1991:ABT


Page:2008:SDH


Page:2010:MHD

Andrew J. Page, Thomas M. Keane, and Thomas J. Naughton. Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system. *Journal of Par-
Penoff:2010:ETL


Peir:1993:LAR


Peng:1994:SOP


Petersen:1995:MCC

REFERENCES


REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


**Prakash:1992:SSA**


**Paquette:2006:ODS**


**Park:2013:EHE**


**Park:2004:DKB**


REFERENCES


[Protopopov:2001:MMP]

[Plimpton:2014:SDA]

[Psarris:1996:BWG]

[Peng:2016:BHS]


REFERENCES

Plank:2001:PAC


Pinar:2008:ODP


Ponnusamy:1993:EPE


Peng:2013:SSM

REFERENCES


Plaza:2006:CCB


Prades:2017:MTV


Palaniswamy:1996:PTW


Petagon:2016:EOA


Petagon:2017:VVA


REFERENCES


[Qiu:2017:SIS]


[Qiu:2009:LSB]


[Quislant:2017:ESB]


[Quinn:1996:UCC]


[Qiao:1997:TLP]
Qin:2005:DRD


Qiao:2001:CSC


Qiao:1994:DRO


Quintana-Orti:2001:SPA

Quaglia:2005:MON

Qiu:2008:EML

Qian:1994:AML

Qi:1994:SDP

Rezvani:2011:SBM
Mohammad Hossein Rezvani and Morteza Analoui. Strategic behavior modeling of multi-service overlay multicast networks based on auction mechanism design. *Journal of Para-


2011. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


[Ravindran:2002:ARM(341,367),(666,428)]

[Reeves:1984:PPE]

[Rahman:2010:CPK]

[Rahman:2010:PKA]

[Ren:2011:ALP]
Da Qi Ren. Algorithm level power efficiency optimization for CPU–GPU processing element in data intensive SIMD/SPMD computing. Journal of Parallel and Distributed Computing, 71
Razafindralambo:2017:SSP


Rangarajan:1994:PDW


Ros:2008:TPI


Rajasekaran:2012:CEE


Ritter:1987:IAT

REFERENCES


REFERENCES


REFERENCES

Rotem:1987:ADA


Richards:1995:DCP


Ramachandran:1996:CBS


Randall:2002:PIA


Rahmani:2016:SIE

[RLA+16] Amir M. Rahmani, Pasi Liljeberg, Jose L. Ayala, Hannu Tenhunen, and Alexander V. Veidenbaum. Special issue on energy


Requena:2014:EDP


Rotaru:2004:DLB


Roh:1996:GOE


Rajasekaran:1992:CQR


Robert:2009:BPP


Rios:2018:EPM


REFERENCES


REFERENCES


REFERENCES

Ramakrishnan:1999:ETN


Rice:1990:SDP


Rosing:1991:DPP


Ranjbari:2018:LAB


Rover:1991:SPA


Sanguthevar Rajasekaran and David S. L. Wei. Selection, routing, and sorting on the star graph. *Journal of
REFERENCES


REFERENCES


Santos:2002:OEA


Sela:1994:MPN


Sarbazi-Azad:2003:AMW


Sarbazi-Azad:2002:PAL

REFERENCES


REFERENCES

Schwiebert:2002:PTA


Sun:2004:MKN


Shamsi:2012:PSO


Sharma:2015:LBD


Stoyenko:1996:LBM


Skillicorn:1995:CCP


Shen:2004:HPD


Sun:2010:RAL


Schenk:2008:APS


Shafi:2009:NPM


Sheu:1992:FTS

Shao:2006:HSO


Su:1999:BIW


Sarkar:2010:POF


Schwandt:1987:IAB


Schaeffer:1989:DGT


Schroeder:1989:TDI

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Schaefer:1990:SIM


Schmolze:1991:GSR


Schulz:2013:ELS


Schreiber:2014:FBI


Shin:2008:TSA


Shi:2003:MOC

[SCK03] W. Shi, E. Collins, and V. Karamcheti. Modeling object characteristics of dynamic Web content. *Journal of Para-
REFERENCES

lel and Distributed Computing, 63(10):963–980, October 2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Su:2010:ESQ


Salisbury:1999:MCL


Saltz:1990:RTS


Silber-Chaussumier:2013:GDT


Shestak:2012:PRA

Salarian:2012:CWS


Shestak:2008:HBB


Shen:2018:DAR


Smith:1988:ASD


Stewart:1988:SAP

Scheurich:1991:LFC


Skeppstedt:2000:CCP


Stantchev:2008:FPP


Singh:2017:NAA


Schoneveld:1997:TAP


[SFT+13] Seetharami Seelam, Liana Fong, Asser Tantawi, John Lewars, John Divirgilio, and Kevin Gildea. Extreme scale com-

[Sarkkai:1993:SPD]

[Sundaresan:1996:COO]

[Sanchez:1999:SDP]

[SGAC14]
REFERENCES


REFERENCES


[Szymanski:1989:UMM]


[Sammur:1990:MSP]


[Shirazi:1992:GEI]


[Singh:1992:FEP]


[Sarnath:1997:PSS]


REFERENCES


REFERENCES


REFERENCES


REFERENCES


Shin:2006:ADT


Song:2018:SDS


Spacey:2012:ICL


Spacey:2013:PPD


Shen:2018:ESI

Shen:1998:PAD


Shen:2010:SSC


Song:2005:DLD


Stolfo:1986:DPS


Scherson:1989:AAO


Schieber:1989:PAM

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Sanders:1992:DEU


Simone:1992:AEE


Satyanarayanan:1994:MIR


Sinha:2000:PSA


Stone:2004:LES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Skillicorn:2008:DPV


Soliman:2008:HEI


Sousa:2010:AMP


Strout:1991:ECS


Saavedra:1994:POD


Solomonik:2014:MPT

Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton, and James Demmel. A massively parallel tensor con-


Shukla:2017:EDB


Sanchez-Monedero:2011:BFB


Sang:1996:MPB


Svendsen:2015:MMC


Sahoo:2018:SBH

Prasan Kumar Sahoo, Suvendu Kumar Mohapatra, and Shih-Lin Wu. SLA based healthcare big data analysis and computing in cloud network. *Journal of Parallel and Distributed Computing*, 119(??):121–135, September 2018. CO-
REFERENCES

Sun:1993:SPM

Shah:2012:ERT

Snir:2003:BPI

Salami:2016:PAP

Stichnoth:1994:GCA
REFERENCES

Sohn:1996:PST

Soliman:2013:DIE

Stotts:1990:CGC

Sharma:1996:SAM
REFERENCES

Schmidt:2008:SES

Shieh:2013:ETA

Saltz:1991:PEI

Saez:2017:TCF

Seal:2013:RPC
REFERENCES


REFERENCES

Shi:1994:FAI

Sridhar:1995:CLS

Shankar:1997:RDAa

Shankar:1997:RDAb
Sudarsan:2016:CPP


Shen:1990:VVE


Skyrme:2014:SSS


Siu:1995:TMP


Sundfeld:2018:PSD

Daniel Sundfeld, Caina Razzolini, George Teodoro, Azzedine Boukerche, and Alba Cristina Magalhaes Alves de Melo. PA-Star: a disk-assisted parallel A-Star strategy with locality-

[Saad:1989:DCH]


[Shi:1992:PSR]


[Som:1993:NPP]


[Sinh:1994:DTA]


[Squier:1994:CTA]

REFERENCES


Ramtin Shams and Parastoo Sadeghi. On optimization of finite-difference time-domain (FDTD) computation on hetero-

**Sridharan:2017:DDC**


**Shukla:2018:MDS**


**Sen:1991:GSI**


**Simon:1998:HDS**


**Stivala:2010:LFP**


Kuei-Ping Shih, Jang-Ping Sheu, Chua-Huang Huang, and Chih-Yung Chang. Efficient index generation for compil-


REFERENCES


Shestak:2008:SRM


Shan:2002:CTP


Sivasubramaniam:1994:SBS


Santoro:1988:ECD


Shacham:2007:SMC


Stamoulis:2017:MBW


Stewart:1995:RAD


Stewart:2017:SCH


Sinnen:2011:CAS


Shi:2012:TSN


Si:2018:PGF

[STMZ18] Weisheng Si, Quincy Tse, Guoqiang Mao, and Albert Y. Zomaya. On the performance of greedy forwarding on


[Suk18] Oleg Sukhoroslov. Building web-based services for practical exercises in parallel and distributed computing. *Journal of
REFERENCES


Sun:2002:SVE


Subhlok:2000:OUM


Sanjay:2008:PMP


Struharik:2018:SHA

Stout:1990:IHC


Savage:1991:PGP


Schikarski:1996:EPM


Saiedian:2012:CER


Sagonas:2018:CAA


Swarztrauber:1998:TAM

REFERENCES


REFERENCES


Scheuermann:1994:CBI


Sendag:2007:IWP


Shavit:2000:CFD


Shen:2000:PKE

SUBRATA:2003:SRC


SHEN:2009:PLO


SENGUPTA:1992:SRA


SU:2016:CDW


SHEN:2007:PLP


SUBRATA:2010:CPA

84–91, February 2010. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[Shi:2013:REA]

[Shen:2005:DBI]

[Szymanski:1995:HOI]

[Tamada:2018:MEP]

[Tanimoto:1984:HCL]


REFERENCES


REFERENCES


Tsai:2012:SFT


Tu:2010:SCO


Tsouloupas:2007:GTI


Tuzov:2018:TSF


Tang:2013:JSA

Thaeler:2005:IIL


Touzene:2005:EDS


Tripathy:2015:DTS


Teng:1990:APA


Teng:2016:SCA

Terekhov:2016:HSP


Tamir:1992:HSH


Tufo:2001:FPD


Tarplee:2015:SLP


Tumeo:2015:SIA

Antonino Tumeo, John Feo, Oreste Villa, Simone Secchi, and Timothy G. Mattson. Special issue on Architectures and Algorithms for Irregular Applications (AAIA) — Guest Editors’ introduction. *Journal of Parallel and Distributed Computing*, 76(??):1–2, February 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elect-
REFERENCES

Tomlinson:1997:MFG


Tang:1999:APT


Termehchi:2003:POT


Tarafdar:2004:PCS


Titos-Gil:2016:ASE

Rubén Titos-Gil, Oscar Palomar, Osman Unsal, and Adrian Cristal. Architectural support for efficient message passing
Huang:1990:FPM


Tutsch:2002:GSE


Tikir:2008:HMD


Talbi:2011:SIJ


Talbi:2013:MG

Tokhi:1997:PEI


Theodoropoulos:2002:DSA


Tang:2015:DDL


Tewksbury:1993:TCO

REFERENCES


[TKG+17] Gurkan Tuna, Dimitrios G. Kogias, V. Cagri Gungor, Cengiz Gezer, Erhan Taskin, and Erman Ayday. A survey on


REFERENCES


Tsai:2018:PMD


Tan:2012:PAA


Talbi:2006:HPA


Torkestani:2010:CWA


Toce:2017:EHL


Trombetti:2006:HPC

REFERENCES


REFERENCES


REFERENCES


REFERENCES


Talia:2010:EDQ


Torrellas:1995:EPC


Thomasian:2012:HRD


Takaoka:1992:EVA


Turau:2012:ETD


Tollenaere:1992:PIC

Tom Tollenaere, Marc M. Van Hulle, and Guy A. Orban. Parallel implementation and capabilities of entropy-driven artifi-


REFERENCES

[TW89] Gerard Tel and Harry A. G. Wijshoff. Hierarchical parallel
memory systems and multiperiodic skewing schemes. *Journal
of Parallel and Distributed Computing*, 7(2):355–367, October
1989. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848
(electronic).

optimized bitonic sorting strategy with midpoint-based dy-
namic communication. *Journal of Parallel and Distributed

[Tu:2012:FBD] Zhiliang Tu, Qiang Wang, Hairong Qi, and Yi Shen. Flock-
ing based distributed self-deployment algorithms in mo-
bile sensor networks. *Journal of Parallel and Distributed

[TXLL14] Zhao Tong, Zheng Xiao, Kenli Li, and Keqin Li. Proac-
tive scheduling in distributed computing — a reinforce-
ment learning approach. *Journal of Parallel and Dis-

[TY90a] Peiyi Tang and Pen-Chung Yew. Software combining algo-
rithms for distributing hot-spot addressing. *Journal of Parallel
and Distributed Computing*, 10(2):130–139, October 1990. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).
REFERENCES


[TZ00] Jesper L. Träff and Christos D. Zaroliagis. A simple parallel algorithm for the single-source shortest path problem on pla-


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


Veanes:1996:NCF


Veeravalli:2002:ESS


Venugopal:2008:SBH


Valdez-Balderas:2013:TAS


Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada, and Juan Touriño. Enhancing in-memory efficiency for MapReduce-based data processing. *Journal of Parallel and


REFERENCES


REFERENCES


REFERENCES


REFERENCES

Venugopalan:2016:MLA

Verma:2018:CCI

Varman:1991:MML

VanderWijngaart:1996:AOS
Veen:1990:RCD


Verhoosel:1996:ITC


West:2002:GAA


Weissman:2003:ISB


Wagner:1989:EAB

REFERENCES

Wagner:1993:EAB


Wagner:1994:ECT


Wang:1996:LBM


Wang:2001:EHC


Wang:2001:DDM


REFERENCES


REFERENCES


Wu:2005:GEI

Wang:2002:DHP

Wu:2018:ESS

Walshaw:1997:PDG

Wehe:2010:SPG


[WCL13] Xingwei Wang, Hui Cheng, Keqin Li, Jie Li, and Jiajia Sun. A cross-layer optimization based integrated routing and groom-


Wong:1992:TBP


Weemeeuw:1994:FGP


Wittek:2013:ATM


Wisniewski:2018:BSB


Wang:2009:CFC


Wei:2018:PHP


Wilkin:2013:MPA


Weems:2001:SII


Weissman:1998:GBW

REFERENCES


REFERENCES


Tsai-Wei Wu and Hung-Yun Hsieh. Interworking wireless mesh networks: Problems, performance characterization, and per-
REFERENCES

Wlotzka:2017:EEM


Wen:2018:EED


Wu:2018:TCM


Wu:2000:EPA


REFERENCES


REFERENCES

Wu:2010:AHS


Wang:2011:IDI


Wang:2015:CSP


Wu:2000:RCC


Wong:2002:GAP

REFERENCES


Wu:2009:OSP


Wan:2001:ORB


Wu:2018:DDA


Wang:1992:PSN


Wang:2018:HDA


Hongbing Wang, Peisheng Ma, Qi Yu, Danrong Yang, Jiajie Li, and Huanhuan Fei. Combining quantitative constraints with qualitative preferences for effective non-functional properties-aware service composition. *Journal of
REFERENCES


REFERENCES


Weems:1991:DIU

Wright:1991:PAG

Wang:2013:PDE

Wittenbrink:1995:OPI

Wittenbrink:1997:TSO
REFERENCES


Wu:2011:OSP


Wang:1997:TMS


Weiss:1993:AID


Wu:1992:CAL


Wang:2009:GDC

[WT09] Xianbing Wang and Yong Meng Teo. Global data computation in chordal rings. *Journal of Parallel and Distributed Comput-

Wang:2008:IRP


Wang:2008:CMT


Wang:2008:MTE


Wu:2003:SLS


Wang:2016:MEM


REFERENCES


Wang:2018:DSW

Wu:2018:PBO

Wang:2017:LAB

Wang:2017:NRM

Wang:2018:PAB
Xu:2000:PDC


Wang:2005:AER


Wang:2018:TXN


Wu:2013:EHP


Wang:2015:KBB


REFERENCES


REFERENCES


REFERENCES


Xiao:2018:UCC


Xhafa:2017:SIS


Xu:1992:EIB


Xue:2005:LRL


Xia:2010:PEI


Xu:2004:DCP

Yingyue Xu and Hairong Qi. Distributed computing paradigms for collaborative signal and information process-


REFERENCES


<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Yang:1990:PMB


Yen:1995:PHC


Yuan:2001:PIF


Yuan:2013:CAT


Yener:1997:FTC

REFERENCES

Yan:2013:PPP

Yen:2004:MRS

Yoon:2012:IDP

Yin:2005:GTD

Yang:2010:DEP
REFERENCES

DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


You:2015:SSV


Yang:2010:LCM


Yen:1997:RVC


Yero:2007:SSA


Ye:2018:DTS

REFERENCES


REFERENCES

Yum:2010:IAC


Yaseen:2016:LBW


Yau:2004:CSM


Yoon:1989:BDN


Yue:1998:CPA


REFERENCES

Yildirim:2011:PWL


Yun:1996:HHN


Yu:2016:ASR


Yan:2013:CPE


Yu:2012:HHC

REFERENCES


[Yu:2011:HDI]

[Yu:2008:ICL]

[Yin:2011:EAC]

[Yang:2005:RRM]

[Yang:2007:HCL]

[YTR94]
REFERENCES


REFERENCES

Yuan:2011:DMC


Yin:2018:ADE


Yu:2009:EPB


Yang:1996:EPP


Ye:2015:DDD

REFERENCES

Yu:2015:QMP


Yuan:2011:SAM


Yan:1996:FTC


Zwietering:1991:PBM


Zhang:2005:DPB


REFERENCES


Zhu:2017:DPC


Zou:2004:UAC


Zoni:2017:BEF


Zeigler:2002:QBF


Zhang:2012:EIS

REFERENCES

Zhang:2018:ABF


Zhou:2006:NFI


Zeppenfeld:1991:PSB


Zhu:1989:NPS


Zhang:2007:SAT


Zhang:2018:LWL

Zheng Zhang, Dan Feng, Zhipeng Tan, Laurence T. Yang, and Jiayang Zheng. A light-weight log-based hybrid stor-


REFERENCES


[ZHT16] Youwen Zhu, Zhiqiu Huang, and Tsuyoshi Takagi. Secure and controllable $k$-NN query over encrypted cloud
REFERENCES


Zheng:2018:HVF


Zhao:2014:TEF


Zhu:2014:OVS


Zaki:1997:CDL


Zheng:2001:GCP

S. Q. Zheng, Keqin Li, Yi Pan, and M. Cristina Pinotti. Generalized coincident pulse technique and new addressing schemes for time-division multiplexing optical buses.
REFERENCES


REFERENCES


REFERENCES


REFERENCES

Zhong:2018:ESR


Zhang:2014:COS


Zhang:2016:DAT


Zhu:2017:RSA


Zeng:2006:DSS


[ZVL15] Lingfang Zeng, Bharadwaj Veeravalli, and Xiaorong Li. SABA: a security-aware and budget-aware workflow schedul-
REFERENCES


Dongfang Zhao, Ke Wang, Kan Qiao, Tonglin Li, Iman Sadooghi, and Ioan Raicu. Toward high-performance key-value stores through GPU encoding and locality-aware encod-
REFERENCES

Zhu:2007:OPD


Zhang:2009:OPR


Zheng:2017:MDS


Zhou:2016:TNM


Zhang:2015:PAB

REFERENCES


REFERENCES


