Title word cross-reference

(a, b) [DJM94]. (f, g) [CDD+15]. (k, 2) [EMMM94]. ($\kappa - \kappa$) [KT91]. 0
[dADC18, EE05, PMV05, PM96, SM89b]. 1
[dADC18, EE05, HV09, JM14, PMV05, PM96, SM89b]. 1 – m [SJG19]. 2
[Ano93e, BDKM94, BAES92, CHCG18, CS92, CS93b, DJDK19, HSSM07,
HHC98, KRKS11, KLC05, LXLS12, LME95, MD01, SS94b, TSFZ14, Tur12,
WC91, WS95, Wu02, YA11]. 2.5 [MPG17b]. $2 \log N - 1$ [CC14].
2 × 2 [PD92].
3 [AA14, AA16, BDRB14, BAL05, BC94, CW00, CCCM96, GOH+13, GW99,
Joh89, LLFJ18, NM17, OGRV+12, PYP+10, PEC95, WC91, Wan07, WS95,
YA11, YB01, ZLS17, Zsa16]. 4 [KMC16, MD01]. 45 [HRF+11]. 4 × 4 [Jia99].
5 [CCCM96]. 1 [HCZ04]. 2 [HCZ04]. $^+$ [OC07]. · [HCZ04]. 2 [ASST05].
3 [ASST05]. B [YL89]. C^3 [HK96]. $C^3 I$ [PAJC97]. d
[DFN+94, DTK11b, LSC00, VB94]. ωW [MRRT07]. G [BFKW13, BNP98],
GF(2^n) [SKH15]. h [GS98, KLP10]. hp [PPTV+10], K
[ACU08, BE95, DWG03, DBCF13, HHC98, SHL95, WL11, Amm16, BVB02,
CDDL10, DW06, DH91a, GP00, KK98a, PD05, PK04a, PRHB06, PK07,
RP98, RDA18, SSKS11, San99, SAOKM03, SGR03, SLP+98, SZ00b, SDG17, TT98, WCH+17, WS97b, YTH07, YD98, ZHT16. \(k(n - k) \) [Lin03]. \(K_{1,3} \) [LLFJ18]. \(k \) [XL95]. \(L \) [ZBW+17]. \(LTQ_n \) [XHZZ16]. \(LU \) [FHL+15]. \(M \) [YL90, ABBD14, SJG19, WTB+08]. \(N \) [AY89, IHM05, NTA96, SHT+95, AKPT99, BVB02, GL90, LLFJ18, NS94, PK04a, RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. \(\nabla V \) [CL85]. \(n \times n \) [CL85]. \(O(1) \) [Can18, GP94, Wan07]. \(O(\log 2N) \) [BNP02]. \(O(\log_2(\min(m,n))) \) [XL11]. \(O(\log_2 n) \) [JBL02]. \(O(\log m, \log N) \) [CC14]. \(O(\log \log N) \) [DP00]. \(O(\log N) \) [GS99]. \(O(n) \) [JBL02]. \(P \) [BM97, PMV05, YBX+13]. \(P^3E \) [HSJP87]. \(P_4 \) [ANP07]. \(\phi \) [AK07]. \(\pm 2^b \) [Nas94]. \(\kappa \) [XL95]. \(L \) [ZBW+17]. \(LTQ_n \) [XHZZ16]. \(LU \) [FHL+15]. \(M \) [YLB90, ABBD14, SJG19, WTB+08]. \(N \) [AY89, IHM05, NTA96, SHT+95, AKPT99, BVB02, GL90, LLFJ18, NS94, PK04a, RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. \(\nabla V \) [CL85]. \(n \times n \) [CL85]. \(O(1) \) [Can18, GP94, Wan07]. \(O(\log 2N) \) [BNP02]. \(O(\log_2(\min(m,n))) \) [XL11]. \(O(\log_2 n) \) [JBL02]. \(O(\log m, \log N) \) [CC14]. \(O(\log \log N) \) [DP08]. \(O(\log N) \) [GS99]. \(O(n) \) [DLV11]. \(\Omega \) [MRRT07]. \(\Omega \) [BNP02]. \(\Omega \) [XL95, BVB02, LLFJ18, SAOKM03, WS97b, YTH07, YD98]. \(\Omega \) [BB98, AL95, AR97, BLPV95, BSGM90, CDH84, DPS08, FPD93, GH90, SI91, SMKL93]. \(\Omega \) [AR97, BLPV95]. \(\Omega \) [Wee01]. \(\Omega \) [Sni03]. \(\Omega \) [Pan09]. \(\Omega \) [Rob09]. \(\Omega \) [Phi13]. \(\Omega \) [Mue13].

- alliances [CDD+15], -ary [BVB02, DP00, Lat98, LLFJ18, PK04a, RP98, SAOKM03, SJG19, TT98, WS97b, XL95, YTH07, YD98, SHL95]. -Bandwidth [BM97], -banyan [YL89], -based [AK07], -Best [BE95]. -Body [SHT+95, IHM05], -Chain [BNP98], -clustering [CDDL10], -connected [DW06], -coverage [Amm16], -covered [CHCG18], -Cube [RP98, PK04a], -Cubes [XL95, BVB02, LLFJ18, SAOKM03, WS97b, YTH07, YD98], -D [Ano93e, BAES92, CS93b, SS94b, CW00, GW99, LXLS12, PEC95, Wu02, YB01]. -delta [YL89]. -Dimensional [AKPT99, CCCM96, DFN+94, VB94, DTK11b, KLC05, LSC00, SGR03]. -disjoint [KMC16], -dominating [DW06], -Extra-Stage [SZ00b]. -Gaussian [WL11], -hop [JM14], -Item [San99], -labeling [CP04a], -Level [GS98, PRH06], -limited [WTB+08], -Means [DBCF13], -MSA [BFKW13], -mutual [RD18], -nearest [SDG17], -NN [ZHT16], -omega [GL90], -optimistic [DWG03], -packing [TSFZ14], -page [HSSM07]. -Pairwise [GP00], -Partite [EMMM94, SLP+98], -PIC [YBX+13], -plex [WCH+17], -queens [AY89], -reader [HV09], -Reducing [GS00], -relations [KLP10], -satisfiability [Joh89], -sparse [ANP07], -stage [CC14], -structure [LLFJ18], -systems [ZBW+17], -Terminal [HHC98], -time [DLV11], -Track [MD01], -Trees [DJM94, HHC98, PD05], -way [KK98a, ACU08], -width [DH91a], -writer [HV09].

/compute [KAS07]. /many [KSG13].

0/1 [BW18, LSS88]. 0/1-Knapsack [BW18].

1 [HV95, MF94], 1-Knapsack [BW18], 1-type [GA18], 1-Writer [HV95], 10 [LB12], 10-Gigabit [HcF05], 113 [KN18b], 16S [ZFWF06]. 1D [PA04].

2 [ACYS08, AAL95, AR97, BLPV95, BSGM90, CDH84, DPS08, FPD93, GH90, SI91, SMKL93]. 2-D [AR97, BLPV95]. 2000 [Wee01], 2002 [Sni03], 2006 [Ros07], 2007 [Pan09], 2008 [Rob09], 2010 [Phi13], 2011 [Mue13].

3 [BFG94, KMC16, MKY+_97]. 3-D [BFG94, MKY+_97]. 3D [AB03a, CGW+_03, GS03a, MJ03, NPI+_96].

4 [BAM93]. 42 [Ano97c]. 46 [Ano97g].

5 [LAD+_96, PTC+_93]. 53 [Ano00d]. 5G [DAPR18].

60 [Ano00b, Ano00c]. 66 [Ano93e, CS93b].

71 [LSS+_11a].

80 [Ano97k]. 802.11 [BCD00, ZBR11]. 802.11e [FA07]. 802.11n [GZY14a]. 802.11s [VHH08]. 860 [DHR96].

90 [HLJ98]. 90D [BCF+_94]. 90D/HPF [BCF+_94].

Abstract [CGSV93, RJKL11]. Abstraction [DDO+_18, GDN+_98, IRRS16, LSZJ15, HCR12]. Abstractions [KB01]. ACAS [MBR19]. accelerate [SJVRVS19, SDG17]. Accelerated [AB13, EI07, DGNW13, DCA+_15, Eme13, GOH+_13, KDO+_13, LMSK18, SHA17, WLL16, Zsa16]. Accelerating [AVAH18, DFST13, GAOHG17, RCG18, SKH15, SHT+_08, WD13, YL12, YZG18, XZB14, ZCS+_18, AM12a, VBDRC13].

Access [ALLM11, ADS98, Bal90, BP02, Bit92, BR95c, CW93, CH92, DP00, FY96, HP00, OS93, San98, WMG01, ZRC99, AM13, BGLA03, BR91b, BC11, Cle90, DFP06a, ETS14, FA07, FC90, FLC14, HC91, KKK11a, KGN11, Lan09, LZ11, LWZZ12, LC11, LS19, MLZY17, MM07c, NDF18, NKK16, Pad91, SM89a, SR88b, SR90, TODQ18, WTS03, WBR13]. access-aware [MYYY17]. AccessAuth [TODQ18]. Accesses [MRRV98, SR97a, SR97b, JZ05]. Accident [CCW14]. accrual [CRJ10b]. accumulations [SAF05]. Accuracy [EH01a, PKK91, CRWX12]. Accurate [DD95, KK88, BFKW13, CGL+_14, GJ12, HDT+_05, HZDP12]. Accurately [LC13]. ACE [PL98]. achieve [LCB16]. Achieving [EH01a, KEA95, NPY+_97, XLC+_18]. Acknowledgment [Gra10a, KL08a]. Acoustic [LPLFMC+_12]. across [MB19, SGdSS13]. Action [Sie16].

Actions [WR95]. Activated [NPP+_02]. Active [SKH96, DB86, HOE+_09, KV10, PMV05, PMV06, PSGS17, SI13, YT05].
active/active [HOE+09]. Activity
[AS00, CW93, CWZ+18, HES11, SZR+18, Udd19]. Activity-Based [AS00]. actor [ASM09, YpGyLC13]. actors [GE85]. ActorSpace [CA94]. actuator [KKKP12, SCN12]. Acyclic [GY92, AFM09, BP89, Zim90]. Ad [Ano01e, GS01b, LC14b, RBP+11, TM10, XG03, AP03, AH11, AH12, ALF03, BFG+03, BM11, BGLA03, BOP06, BDF01, BN03, Bout03, CNS03, CW05, CY06, CDC05, DW06, DMB+03, DB08, EBE08, FCW11, FVCL05, FGL+11, GAGKP03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LAZC00, LR03a, LPX05a, LW06a, LHW14, LR03b, LHT08, MNM+14, OSL05, OM10, OMSGNSG05, Pat01, SCN12, SSM+06, SGS08, SKMM04, SJS11, TC13, VA03, WT+08, WGS08, WBTM09, WHE+18, XHG03, XWC+08, YC04, YSS11, YWW12, ZMC06].

ad-hoc [BOP06, CY06, KSK15, LH14, NMN+14]. Ada [Lun90]. Adaptable [Zim96, LLLC15, LFGM17]. adaptation [BK08, GBMZ07, KGN11, LS06, NZY+11, WMC+18, WYY+18, YHWW18a]. Adapting [DKR09, We02, SW18, WRW13]. Adaptive [ASH+01, AA93, AA16, AMN00, ACPT15, AYIE98, AFC07, BLPA05, BOT13, BPR99, BL90, Bout02, CS00, CGM14, CLT96, DAB+14, DAB02, DMB97, DM99, FLG+97, ISM07, JK00, KR97, KKS01, KG10, KLLK98, KB01, Lan94, LLL06, LPS+10, LC11, LME95, LEB98, ME04, MV88, MD92, MTS90, OB98, OR97, PW96, PR97, PIB+01, RDS02, SS06, SKK97, SJ95, SB02, SSOB02, SLG06, SHT+05, TC04, Tew90, UBES10, VMMR10, WCE97, WA02, WL0, YIY97, ZHLQ12, ZM94a, AOSM05, AGMS04, APK18, AF17, BM17a, BCF05, BMT12, BBS13, BEN12, CL03a, CMMN10, CP04b, CDC05, CAN+11, DMB+03, DIW+12, DAB+14, ESA03, GBA08, GA16, GN18, HNSA07, HHH15, IZ12, KK17, KMF+05, KKS08, LST17, LY91, LXH+16, LW18, LA04, MCD+06, MSAF04, MPG17a, MPN17, NKK16, OP98, OS04, PPTV+10]. adaptive [SMO14, SB12, SHL09, SMB10, SHC14, TLY12, TKHG04, TT07, WW04, ZXY01, ZLZC18, ZW01]. adaptively [Mit07]. Adaptivity [OH02]. ADDAP [DHR96]. Addendum [Ano92a]. Adders [NIR86]. Adding [MSZ05]. addition [OB88]. Additional [LP97, CKNO7]. Address
Affine-by-Statement [DR95]. Affinity [TTG95, HD10]. after [DRR96]. against [SCC+06, XCH08]. Agate [CZPP16]. Agent [Ser97, FCC07, GZMC08, Rao16, SS06, YZS15, YHWY18a]. agent-based [FCC07, Rao16, SS06, YHWY18a]. agents [AK06, CSWD03, FP17, KERUM04, MS05, SGAC14, SMO⁺18, BJ18]. aggregate [AMT13, Yan09]. aggregated [WE13]. aggregates [Chi95, Chi95]. Aggregation [MBMC19, BCO⁺12, CDR09a, CDR09b, JBA15, JHS13, SSKS11, XHZ⁺10, ZSCX18, Zsa16]. Aging [BM17a, LC14a]. Aging-aware [BM17a]. agreement [AP16, GC06, HC11, LLW12, REK10a, REK10b]. Ahead [PL03, mH14, SHL⁺13, TG04, TLL⁺18]. AHMW [BMT12]. AI [Ull84]. Aid [DBKF90, CVK⁺18b]. aided [SV18, ZMC06]. air [FL86, YBM13]. Airshed [SS00]. Algebra [CDH84, DVW94, KL01a, WM92, Eme13, FHL⁺15, ICQO⁺12, Job87, LKD14, RG87]. Algebraic [PL06, Pat01, BAH04, BM08, CM03]. Algorithm [AAP01, AE95, AM97b, AMS94, Als01, AS95, Ano93e, Ano96i, AS96, ABC⁺09a, ABZ95, Bai94, BCC95, BGR96, BS97, BP96, BOSW94, BE95, BDDL09, Bou02, BX93, BHR95, CLZ02, CGKK97, CCM01, CB99, CWW8, CSH9b, CP92, CTZ99, CF98, CRFS94, DA97, DMR90a, DMB97, DS01, DS84, DH94, DSAM99, DLP99, DT97, FY96, FT94, GGN93, Ger98, GRR93, GP09, GS99, Haw97, HH01, HB98, H994, HM99, Hwa97, IZ95, JPF95, Jia99, JK00, KRSZ02, Kuo02, KSA95, KK98a, Kua94, KF95b, KS97b, KW02, KA97, KC99b, LP96a, LO94, LIH95, LP97, LWP02, MT97a, Ml99, MV94, MSST99, NT06, NM02, Par98, PE93, Par96, PL94, PB95, PM96, PRS97, PM92, RR95a, Ren11, RP95, SOKMA02, SZ00b, SCC92, SR94, SH95, SM00, TU92, TZ00, WSR97]. Algorithm [WD94, WA02, WLID02, WXC⁺08, ZZ96, mYF92, ZB97, AOS⁺05, AT03, AA10, ALM⁺16, AAA1, AA16, ALM11, AK07, ATH91, AGMS04, Ara90, ADDB18, ARQ⁺18, BCF⁺03, Bad04, BC05, BCF⁺05, BSG90, BCH15, BFKW13, BBD18, BH05, BBL04, CA06, CR91, CDDL10, CC14, CM03, CV90, CK13, CLO17, CPLY18, CS92, Che89, Cho90, C90, CRC⁺02, COF⁺17, CSW⁺17, DFFH13, DK08, DK11, DDNS06, DL11, DB08, DM90b, DB86, Em04, EE05, EDO05, FZW12, Fe03, FSZ07, GLW14, GP08, GGR98, GT04, Gue86, GL12, GB06, GAOGH17, H90a, HES10, HSS10, HES11, HSY10, HR94, HLM⁺90, HVW16, HL07, HWY⁺10, Kal04, KR10b, KHW13, KK06, Kim17, KM03, KA91, Koc91, KHI15, LVP08, LSS88, LASS15, LMZ04, LLCZ19, LO91, LLI12, LU14, LW16b, LB89, LD07, MM07a, Ma98, MD98]. algorithm [MMS09, MM07c, MP08, MMS09, NHO⁺13, OS04, OT06, PDP17, PK05a, PB15, PH04, PB09, Q105, RH05, RD03, RT18, RBG17, RBOH⁺18, RDA18, RKS87, SST09, SCJ⁺08, SMP17, SA08, SSK91, SM08b, SWW⁺17, Tam18, TLQ12, T111, Ter16, TKHG04, TY16, TFSZ14, WLL16, WSH⁺03, WJV07, Wan07, WG08, WGC09, WCL⁺13, WWW17a, WJ12, gW18, XY07, XL11, XQ07, XYZ14, XSYG18, Yan04, YME06, YWJ⁺18, Y101, YSS11, YZLT09, ZZ90, ZF06, ZQMM11, DOBG⁺15, CRM10, KM17, LY12].
Algorithm-Based [GRR93, mYyF92, BDDL09, LP88]. Algorithm-system [CSW08]. algorithm/implementation [HVW16]. Algorithmic [Gao89, SCB08, BBM +17, CG11, JF12, LS05]. Algorithms [ANT02, AaJS01, AKP95, ABM +92, BJ96, BJ99, Bah00, BPJG92, BLPV95, BGJDL02, BAES92, BAG95, BBM +02, Ben15, BSE96, BOP06, BPR99, BSS99, BMRC98, BMRC99, Bro96, BA01b, CTD99, CDY97, Cha94, CGO +96, CDH84, COS +95, CN93, CP91, CHR94, CWP98, CA95b, DS95b, DP98, DHB02, DP99, DM92, DMSH90, DFRCU99, DBKF90, DKKM01, EP90, ESMG96, EMMM94, EL97, FTM +14, Fer95, FR96b, FA95, FV97, FTC00, GG94, GP94, GV94, GM96, GHSJ96, GMM00, HMM94, HQPT99, HCWS94, HR92a, HP97b, HO94, IK93, IK94, Iq92b, IM00, JW94, JS94, KRC00, KAM94, KLZ97, KG94, KA99, LHS97, LSH96, LHBB +01, LLCC02, MB96a, MMRS98, MS94, MMVR97, Man97, MT96, Mat93, MHC95, MK92, MS98, MS99b, Nak95, Nas94, PAH +98, PAJC97, Pov99, Pra93, QZ94]. Algorithms [QOvdG01, RS96a, RR95b, RAj01, RSS96, Ram92, RDS02, RSW90, SH90, SS96, San95, San99, San02, SZB92, SY01, Sto90, SY92, Ten90, TVS97, TC96, TFV +15, UD96, VB94, VR95, WNA +94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YM93, dBL95, AL04, ANEA13, ASC +18, Ara13, ACCP12, AAC10, AF17, ARVZ14, ACFK07, BC06, BKC +15, BBBC12, BMT12, BSS87, BAS06, BOS +91, BKC17, BFG04, BRPR06, BPP05, BM08, CM04, CP10a, CF88, CRH11, CNS03, Che05, CRS13, CRA +08, CRD17, CB06, Cuz11, Cuz13, DS04a, DH91a, DJ16, Dja04, Dja06, DCA +15, DUK15, DJT03, DM94, FHL +15, Fen90, FBRW03, FGG08, FJSW90, FM85, FVCL05, GMMP12, GP07, GZY14a, GM14a, Gos90, G10, GH98b, GWH06, GS03a, GC07, GN15, Han89, HSSM07, HSW04]. algorithms [ICQO +12, IC05, JSM86, JST12, JBM91, KR10a, KHT +14, KJD03, KS08, KA90, KSSG14, KK10, KMS10, KKB +06, KS91, KMP +06, KR11, LW90, LLL06, LW06a, LNW +12, LS88, Lin91, LS91, LS03, LW07, LA04, LVB07, LGG08, LV88, L+S +16, MM04, MPZ09, MCAS12, Meg91, MCT06, MRS +14, MM07b, MS88, MK16, MGG03, MVV91, MSAZ10a, MA110b, MAR87, NTT12, Nik04, OA10, PK91, PD05, PH18, PY09c, PL03a, PH16, PPSV15, PA04, PS14, PRGS8, PS88, RTCG91, SSM89, SS06, SM89b, ST87, SP13, SAF05, SZW05, SG08, SHRM19, SD88b, SVS10, Sto87, TY90a, TW87, TK08, TWQ12, Tur12, VAF19, VS16, WC91, WCH03, WR91, YZG18, ZGJ +18, ZV09b, ZXMR18, dVCP06]. Align [BR95c]. aligning [LVB07]. Alignment [BR01, CCG +96, DRR96, Mi99, MJ01, SS94a, BM08, BFWK13, BR91b, BMARW07, LC91a, PTZ06, SK90, SPRG +12, SRT +18]. alignments [BW09, ST85]. All-Output-Port [ST02, ST06]. all-pairs [KS91, DCA +15]. All-Port [RJMC95, Dim04]. all-reduce [PY09c]. All-to-All [HP95, LHS97, LWP02, Ede91, L03b, PW16, ZTFK16]. Alleviating [Tze91]. alliances [CDD +15]. Allocating [BPRG04, Hag97, SEP96, SCS +08]. Allocation [AM97b, AERBL92, CS00, yCM98, DSST95, DY99, DL99, DL01, Hwa97,
KKGS01, KLS90, Moh96, NSS97, OM84, PT01, SM94, SdS97, SP96, YL98, Zhu92, ALH+09, AKSM08, AAA+10, ADD17, ATZ07, ACCP12, AH06, BMB+08, BG86, Bat05, BSMH08, BSS+13, BPW05, CCA18, CDS10, CPLY18, DW12, DM90c, ERS90, GNT04, GRDB05, HWY+10, HB11, JL11, KR10a, KR10b, KHW13, KS18, LHF91, LC91b, Li05, LL10, LL12a, LL12b, LDP+14, MCC04, MLK+16, NVK+11, PKN10, PM05, PBS08, RLH03, SSM+16, SNCP12, SCW+18, SCMS12, SHL+13, SSM+06, SSVC10, SZB16, SSM+07, TFMS15, YYWZ19, ZG13, ZI08]. Allocations [BE95, CT96, SSMS08]. Almost [JBP00, SS95, EB13]. almost-optimal [EB13]. Alphabetic [LP96a]. alternate [LS03]. Alternating [BC94, HWY+10]. Alternative [GW99, Pad93, Can18, CBV08, GB06, Ros85]. Alternatives [BAHP01, NBSD99]. alternator [LW06b]. ALU [KF90b]. Always [BRR01, AD10]. always-on [AD10]. ambiguities [RK18]. ambiguity [LDS16]. Amdahl [CN14, NZ17, SC10]. Among [OO85, GM94b, KS03, MT93a, NMS93, ST12, ZYW+15, ZCW19]. AMR [GWH06, RV13]. AMTE [HCM11]. Analyses [KY96]. Analysis [Abr96, Ano92a, BCV94, BCF97, BN94, Bhu87, BDF01, BLG01, Buc92, CK88, CC91, CSMM10, CAB94, DLLX97, ES96, Fra92, GM94a, GSG93, GCM95, GC01, HLM+90, HC97, HF96, IM94, JV09, KME92, Kop97, LW89, LDS16, MF94, MT93b, MM93, MS99a, MRR+02, MT96, MDD97, MBHW86, NBM93, NMS98, OD05b, OS93, PD92, Pi01, PAJC97, RPS93, RKS87, SLM93, SLP+98, SWP90, SWHB17, SHC93, ST08a, VSM96, WCF14, XL92, ABC+88, AFK14, AK18, BCFF05, BBH+17, BFG04, BFL+13, BC11, BM08, BF13, CK06, CSL15, CKT11, CH06b, CWL+07, CWCW18, CPO+03, FC90, FCS91, FD86, FX06, GZG+17, GBA08, GHC+17, HRC09, HSH10, HA91, HB11, IK87, IC05, JF12, JT88, JMB91, KME89, KA08, KK10, KKK+11b, KG04, KLL87, LMSK18, LdSB+18, Li06a, Li06b, LpJS+18, LZC11]. analysis [LH05, LP88, MM06, McD89, MAKW13, MBO11, MEMEMH17, NSKN17, Pak89, PL06, PRHB06, PI90, Pfe90, PL03b, PLK+18, RM90, RGG08, SMW18, TLY12, TMM06, VLW18, WSH+03, WF89, Wu11, XLW+18, Yan09, YH07, ZFS07, ZKZF18, ZPK+14, DFLO17]. Analytic [BS96b, BS96c, Har91, Ale19b, LWC+18]. Analytical [DG94, HW03, QY94, SAOKM03, AHZ11, AP91c, Bat05, BFH09, KyLPC17]. Analytics [AS13, AS15, CJ17, Eck18, KKKG14, PS14, PAC+18, VLGV+18, YLB+15]. analyze [LZN19]. Analyzing [CDR09a, CMT92, HcF05, KG94, LMCF90, LB12, MSH90, MBH+08, PB19, RB12, WXZ05]. Anatomy [ZBF05]. Anchored [KS03]. anchors [MKM16]. AND-parallelism [DeG88]. AND/OR [RP95]. Android [TY17]. Animate [MBL+92]. Animation [RGS00, JdSJC+15]. Anisotropic [PSE+01, El07]. ANMR [BM17a]. Annealing [Bev02, BA92, HB97, RSS96, Soh96, XH91, AH06, BG89, dADC18]. Annotated [KBC+01]. Announcement [Ano93a, Ano96k, An001c, Ano01d,
Ano01e, Ano01a, Ano01b, Ano02a, Ano02b, GHS96, Kai92, Ano00a. annuli [Li14]. **Anomalous** [MSH90]. anomaly [AKK+19, DFP06b, IZ12, KKTZ13, MBR19, RLP14]. anomaly-based [MBR19]. anonymous [AFM09, FKKC97, GZ97, HC97, HLJ98, KCRB99, KS95, LW95, LCC92, MSSE02, RJY16, RAS96, SL95, SP96, SZ00a, TC92, WSRM97, WA02, Won99, WLID02, AP91c, Ara90, AFD+11, AH06, AJG18, Ant [COV13, CLA+18, DFP06b, IZ12, KKTZ13, MBR19, RLP14]. Anonymous [AKK+19, DFP06b, IZ12, KKTZ13, MBR19, RLP14]. Anonymous-based [MBR19]. Anonymous [AFM09, FKKC97, GZ97, HC97, HLJ98, KCRB99, KS95, LW95, LCC92, MSSE02, RJY16, RAS96, SL95, SP96, SZ00a, TC92, WSRM97, WA02, Won99, WLID02, AP91c, Ara90, AFD+11, AH06, AJG18, Antannual [Li14]. **Antennae** [Li14]. Antenna [COV13, CLA+18, DFP06b, IZ12, KKTZ13, MBR19, RLP14]. Antenna-based [MBR19]. Antennas [COV13, CLA+18, DFP06b, IZ12, KKTZ13, MBR19, RLP14]. Antennas-based [MBR19]. Antenna’s [COV13, CLA+18, DFP06b, IZ12, KKTZ13, MBR19, RLP14]. Antenna-based’s [MBR19]. Antenna’s-based [MBR19]. Antenna-annual [Li14]. **Antennas-annual** [Li14]. Antenna’s-annual [Li14]. Antenna’s-annual-based [MBR19]. Antenna’s-annual-based’s [MBR19]. Antenna’s-annual-based’s-based [MBR19]. Antenna’s-annual-based’s-based’s [MBR19].
Approaches [CHGM01, FMIF18, QM01, CB11, DBA18, KERUM04, KWZ19, KA05, PR06, Upa13, dGP06]. Approximate [JSS92, LHW14, LRS18, ST12, CLOL17, JHL18, KERUM04, MM07b]. Approximating [FMM08, PBS08]. Approximations [Gon98, BFM06]. AQOR [XG03]. Araneola [MK08a]. arbiter [Bhu87]. arbitrarily [ZV06]. Arbitrary [ERL90, KA97, SS95, YZY96, Ara90, BCF14, SGE91, Wag89, FII04].

Architectures [AGW01, ABZ95, BBD91, BAHP01, DH95, DB18, Gao93, Ger98, GBES93, GM95, HP97a, HGG93, IWM97, KC94, LBL95, MWL00, MS00, MAM05, MKY+97, MO97, MT85, MEMEMH17, NENG85, OD95b, OY00, Pad93, PSGS17, PS01, STN92, SSYG97, SH98, VS99, YPCW16, ZHY94, Zim96, ACYS08, AA10, AA16, AC89, ABO17, BJS18, BB87, BGA12, BBCQ13, CCEB03, CDJ90, CS17, FSP18, FCS91, GRZ+18, GHS66, JS86, JXW06, KK17, KNHH88, KH12, KRL87, KH89, LLLY13, LAD+96, LHH88, LLY15, LZS60, MCM+11, MM07b, MYD+11, MBH+08, MP08, NW88, NKV14, PPP14, PCMM+17, PK05b, PYP+10, PGP+12, PTK+13, SNT04, SZR+18, SR88a, SAB+92, SLKK12, SR91, WTWZ16, WL92, XJS03, YFBY17, ZV09a, ZMZJ17, ZPK+14, KCSS18, VRGS17]. architecture-based [CTCX08].

Architectures [AG98, ABDS02, BBR94, CCM92, CCC90, CT93, CS93c, CP01, CBdCD00, DUSH94, DMSH90, DS02, DT01, DRSB01, DT92, EP90, EL97, FTM+14, FPS12, FY97, GGB93, KS95, KM97, KG94, LB90, LC90b, LR93, LR94, MSd+95, PP96, PA94, PD92, SH90, SS94a, TG99, ZMPE00, ZL93, AA14, AP03, ABC+09a, ABC+09b, AG12, BKC+15, BS87, BYG+18, CCK88, Che86, CGC16, CKLCK04, CKLCK05, CJ17, CPO+03, DKRC+15, DKU15, FPS11, FTM+19, GSWW04, GS91a, GMS+13, GMSS+11, HDMC11, HSW04, JDT12, JH87, JH91, KHT+14, KD90a, LM05, LS88, Lla17, LB07, MGS+13, MP10, Pad91, PR06, PLD87, RCG91, SLG06, SS94b, SGdSS13, TKHG04, TRS+12, VM03, WQZ+13, WJD91, vS91, TVF+15]. Archive [FTK14, JKIE13]. Area
[BCD00, CLR90, CDR12, KF95a, NIR86, ABO+17, CHGC18, HZY04, HL07, JKV15, KCD08, KMF+05, LdSB+18, LMJC11]. **Area-maximizing** [CDR12]. **Area-Time** [NIR86, CLR90]. **Ariadne** [MM15]. **Arithmetic** [AK93, CL88, Dav17, DPRW85, Gro85, Irw88, KK88, KM88, SR88a, Sch87, SL90, SL90, Tay87]. **Arithmetic/Logical** [AK93]. **ARM** [AG12]. **Arnold** [Ano00d]. **arrangement** [Lin03, NAK04, Ten16]. **Array** [AW95, BCF97, BL90, CT93, CWW+95, ER97, GKHS96, GE94, HQPT99, HCS+00, HCZ04, HL98, HLJ01, KRW96, KHS96, KC98, KR87, LP96b, LTH97, Mil99, MJ01, MBK+92, MT97b, NKV14, OM90, RS96, Ste95, SOG94, Tse90, WSS93, Win85, dR09, BB85b, BPP95, CS10, DS04a, GP95, Lee91, Man13, MM07b, NAK04, PLD87, SI86, ST87, SCC+06, YTH07]. **array-based** [CS10]. **Arrays** [Ann94, BAGS95, BPST96, BP02, BR95c, CGO+96, Cor93, GP93, GW99, Gu99, IPK85, KLS90, KEA95, KL84, KBG92, MM00, MD01, MT93b, MRK93, MFS93, MFS96, RFM94, RCB93, Swa98, TBPV00, TC96, WCF94, WHT00, BBd90, Can18, CL03b, DMCFCM03, Deh90, Dja04, Dja06, EL91, GMH+91, JWS94, KT89, KT91, KLL7, LB99, Lis90, OT86, RIZ90, SSM99, Sch89b, ST89, SKK91, Ume85, WAS88, WCF14, XS11]. **Art** [KM92, PSC+16, WCO+09]. **article** [Ano96l, Ano97k, Ano00d, CS93b]. **artifacts** [LZ08]. **Artificial** [MT85, NS92, Pin01, TVO92, KH9, VO99, V95]. **arts** [NDW17, BNSP99]. **ary** [BV02, DP90, Lat98, LLJ18, PK04a, RP98, SAOKM03, SHL95, SJG19, TT98, W97b, XL95, YTH07, YD98]. **AS088** [Ano04c]. **ASAT** [SEP96]. **ASCEND** [Nas94]. **Aspect** [BZLI04, MO97]. **Aspect-oriented** [BZLI04]. **aspects** [Gao89]. **Aspen** [UMM+18]. **Aspen-based** [UMM+18]. **Assembling** [KESA07]. **assembly** [ABC07]. **Asserting** [ASST05]. **Assessing** [BCD+15]. **assessment** [CG17, FGL+11, LC14a, LY08, SJVRVVS19]. **Assign** [CYZ06]. **assigned** [HMR15]. **Assigning** [CCK11]. **Assignment** [Cza13, HBCM99, HB97, KL97, SS10, SS93, Ste95, VWHL96, WW97, ABBD14, Bat05, BPRS04, CS10, GQZ18, GDL+11, GZ14a, JTZZ11, Kim11, LZXL11, NDP13, PLY15, QGL+09, SLKK13, UAKI06, WW18b, WZ91, YZX11]. **Assignments** [LL98, Sin87]. **Assisted** [HILLY95, GM13, HMY+18, KO12, LVP07, MBBD13, NS12, RG06, SRT+18]. **Associate** [Ano16k]. **Associations** [GPJA10]. **Associative** [A93, DM92, NS98, Par96, PL98, TJCB10, VR94, HDMC11, Kri91, LL90, SR88a, SI89, YBM13]. **assumption** [Pen11]. **assumptions** [MS15]. **Assurance** [BK08, WLL08, XHY07]. **assured** [AKK+19]. **Asymmetric** [BSN00, ZR00, CMC+19, KNNH18, SPC+17]. **asymmetrically** [ATKT19]. **asymmetry** [AP91b]. **Asymptotic** [GM94a]. **Asymptotically** [Li10, Dja04]. **Async** [ARP18]. **Asynchronism** [UD96]. **Asynchronous** [Bal00, BSS99, BS00, CS95c, CA95b, ESMG96, KVN17, MS02, MM93, MR94a, MR94c, OY00, TP18, The02, WT92, ATDH13, BB03, CPA+11, CRC+02, DGF05, DBCF13, DB86, DBN12, FKK+04, GLGLB12,
IRRS16, Kak15, KMS10, KS13, MM04, MEMEMH17, RV13, RLH03, SMO+18. Asynchronous/Synchronous [OY00]. asynchrony [WCYR08]. ATAPE [PW17]. ATEExpert [KW93]. ATM [WR97]. atmosphere [KVNV17]. Atomic [HV95, JBP00, WR95, van96, BOT13, GNS09, HV09]. Atomicity [NA02, RHH12]. attack [BK18, JXW06, KCFP18]. Attacking [ZWY+15]. attacks [CH06b, KMMZ06, LLWC17, SCC+06, UGG+11, XYG07, XCH08, YXX13]. attention [PLSM18]. attribute [LSS+11a, LSS+11b]. attributed [LKB+15]. attributes [Par05]. auction [GVBB13, RA11, ZG13]. auction-based [ZG13]. auction-inspired [GVBB13]. audiences [LMB+17]. audio [WIR+18]. Audit [HLS12]. auditing [XLC+18]. augmentation [BCH15]. Augmented [MKY+97, KM17, KAA+19, Lo92, MKW18]. Auralization [FJ93]. Aurora [Lu01]. Authentic [GPJA10, SZMK13]. Authentication [ZBR11, BDM18, CL09, LMJC11, NC09, PRN+19, TODQ18]. Author [Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99h, Ano00b, Ano00c, Ano01f, Ano01g, Ano01i, Ano01h, Ano02c, Ano02d, Ano03a, Ano03b, Ano04b, Ano04a, Ano10a, Ano11j, Ano12m, Ano14f]. Author-Title [Ano98l, Ano99h, Ano00c, Ano01i, Ano01h, Ano02d, Ano03b]. authority [ZCMY12]. Auto [PSB+19, CXX+18, KKR14, KGN11, MBR19, TLL+18, VD18]. auto-adaptation [KGN11]. auto-clean [CXX+18]. auto-encoders [TLL+18]. auto-encoder [MD98]. auto-scaler [VD18]. auto-scaling [MBR19]. Auto-tuned [PSB+19]. auto-tuning [KKR14]. autoencoder [WMC+18]. automata [EM11, GKS15, MS86, MBO11, RT18, TM10, ZBW+17]. automata-based [EM11, RT18]. Automated [NM95, NC97, CV16]. Automatic [ABCM07, AD12, CGO+96, DHR96, HZZ+19, KBC+01, LC92, LZZ+11, MJ01, NCB+17, SEP96, AAD05, AM17, GLC14, GFPC14, MLCFH+18, NVK+11]. Automatically [DR98, TG99, DSEP17]. automation [HKK+18]. automaton [Cap87, LSZZ15, Pet18]. automaton-based [LSZZ15]. automorphisms [DH91b]. automotive [RAN+17]. automatic [AZC13, ATZ07, CP05, LS10, RDA18, XRB12]. autonomous [CKT11, CKMP17, WZZ+17, XCH08, ZV09a, ZWW17, OYE07]. autonomy [LFH+03, ML89]. Availability [HJD+01, LS01, AGMS16, DB08, Fu10, HOE+09, KVA18, LKM12, LAC18, PF08, PMMMA15]. Available [NKC+97]. Average [DF95, Li06b, MDD97, NSM98, Li06a, WWW17a, XB07]. Average-case [Li06b, Li06a]. AVL [MD98]. avoid [DP16]. Avoidance [MJ94, BB85a, BPRS04]. Avoiding [SI13]. Award [Ros07]. awards [OY13]. Aware [ALF03, DR18, DKK18, SDS+18, AH12, AYB+15, BM17a, BPA06, CWZ+18, CCW14, CWP12, CHCG18, CKML12, EB09, EHL+15, FCW11, FCJG+18, FGZ03, Fu10, GQZ18, GPSH19, HMV07, HMR15, HK05, HK04,
Axiom [ABLP17]. Axiom-based [ABLP17].

B [CWW+95, CY96, GM95, HS94a, Meg91, OC07, PPC04, WW96]. B&B [BMT12, DBA+18]. B-Spline [CWW+95, CY96, GM95, Meg91]. B-Trees [HS94a, WW96, PPC04]. back [HPSM91, KMMZ06, LKD14, WMES12]. back-end [HPSM91]. back-propagation [KMMZ06]. backbone [HWWH08]. backbones [KERUM04, XHG03]. backends [IEWK17].

Bareiss [HM99]. bargaining [GRDB05]. Barnes [SHT+95]. Barrier [Cha95, JLRA97, OD95b, RSS99, XMR92]. barriers [HS12]. Base [DKMV01, RBD08, DDNS06]. Based [AE95, AS00, Ano99g, BCD95, BPGJ92, BGJDL02, BMM97, BN02, BR02, BA92, CGKK97, CC91, CRV94, CS95b, CKL99, CGA98, CHG90, DA97, DR98, FF98, FKFC97, GS01a, GRR93, Gup92, GS01b, HP00, HB97, HK01, HSJ87, KCRB99, KSP+92, KCDZ95, Lat95, LAZC00, LZ02, MSC96, MB93,
Behavior-Based [BN02]. Behaviour [CMMN10]. belief [HMY+18]. Benchmark
[PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].
Benchmarking [BBR13, KA99, YYLC11]. Benchmarks
[PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].
Benchmarking [BBR13, KA99, YYLC11]. Benchmarks
[PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].
Benchmarking [BBR13, KA99, YYLC11]. Benchmarks
[PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].
Benchmarking [BBR13, KA99, YYLC11]. Benchmarks
[PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].
Benchmarking [BBR13, KA99, YYLC11]. Benchmarks
[PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91].
BlueCube [CCS06]. Bluetooth [CCS06, SLWW05, WTS03]. BMB [WD18]. BMMI [SJG19]. BMMI-tree [SJG19]. Board [Ano18v, Ano18w, Ano18x, Ano18q, Ano02e, Ano02f, Ano03c, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano03m, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15j, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano17a].

Board [Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano18u, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19j].

Body [HP95, SHT+95, CHCG18, IHM05, YJL16]. Boltzmann [KA89, WCO+09, ZA91]. Bone [AFK14]. Boolean [ESCV15, HJ90c, JH92b, OT19]. Boosting [AC16, FGP05]. Border [DRST02, HR90]. Border-based [DRST02]. both [WTY+18, WAEO3].

Bottleneck [WW98]. bottom [LXZ13]. bottom-up [LXZ13]. Bound [GZ97, PM96, AMM+18, CH06a, Kuk17, Li19, MCC04, SCS+08, SW90, YZLT09]. bound-consistency [Kub17]. Boundaries [Wor93]. boundary [Lin91, RBD08, SCC+06, SMP17, TRS+12, ZQMM11]. Bounded [AW95, BBN93, CLT96, GP97, Pra93, SN93, BD05, BPRG04, JM14, LMZ04, MRR07, NP09, Sta17, TK07]. Bounding [Lun99]. Bounds [ADS01, BBH+98, DL98, JR95, LPS+98, LP95, Lun94, WW97, FT04, FSZ07, ITT04, KMS07, LXL512, LYW+16, Mat06, NDP13]. brain [ROB+18].

broad [LMB+17]. Broadband [XP10, XTN12]. Broadcast [DH02, OS96a, Pel95, RS96a, RS92c, San99, VB94, AA10, BG05, CB15, FVLB09, KYS13, KG10, KGN9, LDZ+14, LDZ+17, LSWC14, LSZZ15, MT14, MPS16, MRR07, PF08, SGS08, TR08, WW17a, WIR+18, WL05, dAAD+19].

broadcast-based [AA10, MRR07]. Broadcast-Efficient [OS96a]. Broadcasting [BNS00, BPvW96, BMM01, BOS+95, CW00, CCC92, DLP99, Fra92, FV97, GP97, HIKM94, Lat98, ST02, ST06, SCD99, Wu94, dBL95, oPP00, Che05, CMS04, FMR05, HSO6, Ho91, KR87, LR03b, LSWC14, OWK14, SZ03, Wu03, ZA05]. Broadcasts [WD92]. Broker [HR00]. Brown [DTK11a]. Browsing [SF90]. Brujin
Brunotte [Tát11].

Brzezinski [Ano96l].

BSP [CTZ99, GS98, GLC01, HH01, HM99, KP00, RGD03]. BTS [BKK+11].

Bubble [DF94, PIB+01, GNZ18]. bubble-type [GNZ18]. buddy [LC91b].

budget [ZVL15, dR09]. budget-aware [ZVL15]. budgeted [Sta17]. Buffer
[FM99a, HV95, MSSE02, PY09b, WLID02, BPW05, CHX+17, HV09, IH16, PBS08, SCC+06, WCWO17, WYW15]. buffer-based [HV09].

Buffer-Optimal [HV95]. Buffer-Safe [FM99a]. Buffered [AA95, KJ84].

bufferless [BMM07, LTT12]. buffers [DW04, EKNS17, HM06, WAS88, ZCF+17]. build [ZHH15].

Building [Haw97, IK93, RJKL11, SK93, Suk18, ZW13, CZ19, HSS10]. Bulk [GV94, Lu01, FW03]. Bulk-Data [Lu01]. Bulk-Synchronous [GV94].

burst [WCWO17]. Bus [CKL99, DVZ96, FZT02, FY96, GKS99, LPZ99, TVS97, VB02, dR09, BPP05, CLM90, DS04a, JSWB92, MS88, MHBW86, TJCB10, YB90, YGZ+10].

Bus-Based [CKL99, TJCB10]. Bus-Connected [DVZ96]. Buses [CL96, HQPT99, IM00, KC98, LS94, NS94, TVT96, TBPV00, WHT00, ZLPP01, BG16, Car90, JW89, KRL87, Mat06]. Business [MBS+12].

[CBV08, DPBNT12, HC11, IRSS16, LHW14, MT14, PP06].

C [CD98, DZDZ01, EFG+14, HCM11, LS85, ZH99]. C-AMTE [HCM11].

C2FPGA [CSJ+13]. C3 [Ano04c]. C3- [Ano04c]. CA [Chi95]. Cache
[DS95a, Dah99, DKGK18, GS96, HP97a, LY98, LY01, LF92, NB93, PL95, PY96, RL96, San95, TSG95, Yan93, BW89, CWL05, CK13, CDAN14, DK04, FABG+19, GJG88, GVA+08, HCM11, HZ04, HCO9, HSB91, KK11, LC11, LBLX11, MYSY17, MGP17a, MA11, SYYS07, SS17, VRGS17, WLZ+18, YC05]. Cache-Affinity [TTG95]. Cache-Based [RL96].

cache-coherent [SYU07]. Caches [DS95a, YAS98, ATKT19, DMI+19, EHL+15, NSAS10, RFPAG08, SD91, SS17].

Caching [BS96b, BS96c, CS17, KC99a, KE93, MM93, BLPA05, CR96, FCW11, FCML13, LAK10, LVP07, MA11, OC07, TC03, TC13, ZVL11].

CAFES [MCM*11]. calculation [SL90]. calculations [HT90, KVNV17].

Calculus [PL98, SC95]. calibration [MMAL*06, SDG17]. Call [Ano95i, Ano95j, Ano96j, Ano96i, Ano97i, Ano98i, Ano98j, Ano99g, Ano99d, Ano99e, Ano00a, Ano00b, Ano01c, Ano01d, Ano01e, GSC96, LGK+12, RKK06]. Calls [Ano98k]. Can [KKST16, BNP02, HBS17]. cancer [XTN12]. Capabilities [FRA92, MMRS98, TVO92, FEH+14, RBN11].

capabilities-aware [RBN11]. Capability [Gue94, JLWX11, SP96, YWP00, BJ15, Ho91, HK04, dOBG+15]. capability-aware [HK04]. capable [SMP17]. Capacitance [YB01].

Capacity [ACD+93, MO97, TODQ18, ACCP12, BKK+11, JHPL13].

cellular-based [GMXA07]. center [BFH+17, CGC16, FP03, SCW+18, ZLJ+19]. centered [LWCC15]. centers [AG12, AK18, GYAB11, MB19, MLK+16, OJP+18, RT18, TVT+17, YAK15, ZV12]. centrality [JL11, SSKC¸15, WBR+13]. centric [KTP17, KS04, VS18, XYZW14, XCLR07]. CFD [BAMM05, Kao04, MS99a]. CGM [KP00]. Chain [BNP98, Lm94, ASKO16, GRV08, MVB05]. chained [BM14, CMR+18]. chained-cubic [BM14]. Chains [NH93, LBMG15]. Challenges [NKSA17, PJ18, PSC+16, SAB+92]. changes [DB08]. Channel [AM95, BN00, BPR04, BKT95, CS00, DSS95, GCMK97, HP00, JKO0, KKGS01, LM06, LWL12, PA97, SSZ10, BGLA03, CCHC09, CLLO9, DRT07, GDL+11, GZY14a, GZY14b, KK11a, Kim11, ZMG+16]. channel-based [DRT07]. channels [CK06, KS03, Lee03, LSWC14]. chaos [DZC17].

chaos-oriented [DZC17]. Characteristics [DKK18, LHVW95, BCD+15, GF89, JV06, LTB+93, LF03, RGA18, SC03, SWHB17, VM03]. Characteristics-Aware [DJK18]. Characterization [BF01, Ks94, MR94b, RJS97, WP02, WY1B0, LJJ6, SR90, WH08]. Characterizing [HRF+11, MS96, ZSW14]. Chare [SK01]. chart [LZ19]. Chasing [YZZ96]. Check [MC17, LXW+11]. checking [BBBC12, CM04, CKA13, MMN+18, SSS07, SCC+06, XYZW14].

[ASH+01,BJS18,MT97b,BYG+18,DJDK19,DR19,DMS+16,GJ12,HCM11,HRG+11,KK11,KH12,KKK+11b,LNA12,LLKY13,LSXX14,LLT12,LY13,LHLM14,LWCG14,MYD+11,PMCC18,SAJ13,TCHC12,UM17,AA14,ALLM11,FK11,MEEMH17,ORWT+18,PR13,ZCF+17].

Closures [AW95]. cloth [GRR+05]. Cloud [CDJL09,CDJL11,FEH+14,LAC18,PR13,VS18,ASKO16,ASHO19,AKK+19,Ale19b,Ale19a,AZC13,AM12a,ACCP12,BYH+17,CL14,CCA18,CXY14,CTK17,DKRC+15,FRM15,FCJG+18,FMI18,GQZ18,GBAS19,GPSH19,HRM17,HMY+18,JAB12,KVA18,KBC19,KS18,KSSK16,LIWZ12,LQM+12,LLB+18,LMG18,MHLZ16,MYYY17,MXX12,MMK+11,MA19,PLSM18,PH18,RT18,MW18,SWW+17,SLZ+19,TKR+19,TLW18,TX+13,VD18,WCH18,gWW18,XML+18,XRB12,XYG18,YYWZ19,YYLC11,ZV14,ZL14,ZHT16,NLB+18].
cloud-based [GBAS19,WCH18]. Cloud-centric [VS18]. cloud-of-things [TKR+19]. cloud-oriented [GBAS19,HRM17,MXX12]. cloudlets [TPS+18]. clouds [ACPT15,ACB+15,CKMP17,KM17,KKJ14,LYJ+19,LTWW12,LWQ18,BR19,NC13,NK16,VLP18,ZG14,ZVL15]. Cluster [AFT+00,BAHP01,GS01a,HS00,JM00,JKV15,LX01,MC01,PT01,AR+05,BMAR07,CCA18,CD10,FW05,FLCB10,GRR13,HW03,
collectors [VRM10]. college [NDW17]. Collision
[LDZ+17, YB95, CQX+18, JBS14, MBMC19, SK05b]. collision-free
Colony [CGN+13, CLA+18, DDGK13, RL02, Ski16, CCK11]. color [Ebn04].
Coloring [LSH96, BGM+08, GDK08, GK10, HLM+90, KJD03].
Colorings [GJP96, Ros89]. colouring [SS03]. column [Mat06]. COMA
[CKL99]. combination [DKC14, YFBY17]. Combinations [Kap93].

Combinatorial
[Ben15, Kap93, KA89, ZG13, CMMT13, CCLS94, Men18, PPSV15, WMG13].
Combine [BLPV95, Van94]. Combined [GDCC18, OY00, CF88, VAS+13].
Combining [AAC10, CMMT13, LKK94, LC96, SZ00a, SR16, UBE10, WMY+17, WR95, BCC+18, GWWL94, HDJ08, TY90a]. Comments
[Cha94, GRV08, Pan09]. Commercial [DZDZ01, MKC01, NKC+97].
commit [mYA91]. Committee [Ano93a, BDP16]. Commodity
[PVPM06, MC03, ZB09, ZXB14]. Common [MS99b, ALH+09, MS88, FII04].
common-bus [MS88]. communicating [BFTV87, DRR13, SSM+06].
Communication [BPR99, BKT95, BCR96, CW00, CCRS92, CGL+95, CS95c, DUSH94, DS95b, ESMG96, Fak96, FM99a, FPS11, FT96, FGKT97, FA95, FAM96, Fra92, GRV97, GBES93, GM94a, GK98, GPS96, HQPT99, HH01, HP95, HS93, HA92, IM94, ITT04, Jods7, KL01b, KLS90, KS00, KS02, LHS97, LZ02, LR03a, LO96, LWP02, Mck94, MRRV98, MLK+16, MST99, PP96, PB99, QH96, RFS+12, RWK95, RS92c, RU99, RMC97, SCM99, SS99, SOG94, SSK96, SBAM96, SKH96, TF92, TSHH01, TSC01, VM03, WR97, XKN94, Xue97, ZH99, AFA13, ARP18, ALT13, AM12a, BM17b, BFTV87, BCM87, BBR13, BOS+91, BRP03, CCS06, CNS03, CHC05, DB11, DKUC15, DAPR18, DW04, Ede91, EDH+17, FW05, GPT06a, GM13, GP05, HK03, IB04, JJ12, JZZ+17, KYN05, KSG03, Lai86, LAK10, LO92, Lm90].

communication [LM09, LWCG14, LLW12, dAMFds13, MAM05, MTL+18a, MCM+11, MPG17b, NRM+09, PB90, REK10a, REK10b, SS89, SPBR91, SAL10, SR14, SLKK12, Sta04, SW90, SZB16, SSGZ13, Tam18, TW15, YCH+10, YQTV12, ZBF05, ZV09b]. communication-aware [ZV09b]. Communication-Computation [QH96].
Communication-Minimal [Xue97]. communication-optimal [MPG17b].
Communications [AMN00, BD00, CQ95, DRR96, LLJ00a, SC91a, SHC93, TSC01, WA02, YM01, ZR00, EB09, GMH+91, LHP07, MBBD13, PG+12, TP18, TKG+17].
Communicator [KF90b]. community [CTC+10, LpJS+18, Trää09, ZLL14].

community-based [ZLL14]. Compact
[CDF01, CJ99a, CJY04, CI03, NCTT09, NVK14]. Compact-Port [CDF01].
Compaction [BHR91, Kar95, WD94]. Comparative
[AAD02, GS00, QM01, SJVRVS19, HA91, PL03b]. Comparing
[GGW96, YL98]. Comparison [BS+01, DRSB01, Fre96, GY92, JNW96,
KA08, KA99, OP98, SSOb02, SAC+98, Tay02, AFM03, AG12, FGZ03, GHC+17, Jkie13, MP10, NSKN17, SMB10, SS94b, ZTFK16. Comparisons [YBM13]. compass [AKBD10, XKMN94]. compass-free [AKBD10]. compatible [MP08]. compensation [Yan09]. Competition [eW95, TR89, WSLC11]. Competition-Based [eW95, TR89]. Competitive [DLLX97, GS96, Ser97, SHC14, LHHH11, VM95]. Competitive-Update [GS96]. competitiveness [KL15]. Compilation [BCG96, CA96, HHK96, PA96, MH18, PAG+18, WQZ+13]. Compile [Fah96, HA92, LP97, PM96]. Compile-Time [Fah96, HA92, LP97, PM96]. compiled [KYL05]. Compiler [ABDS02, BW95a, CGS93, KRC00, LY98, LY01, NS12, RJY96, SFS99, SD00, Tse90, VV90, WB94, DK04, RG06, Sab94]. Compiler-assisted [NS12]. Compiler-Controlled [SFS99]. Compiler-Directed [LY98, LY01, RJY96]. Compiler-Optimized [ABDS02]. Compiling [BS90, BCF+94, DRR96, GKH96, KHS96, SSHC00, SB93, DeG88, LC91a]. Complement [YA98]. complementary [ZPK+14]. Complete [BP02, Feg96, HKM98, HM01, SP96, SHL95, TT98, Wag94, ZW00, LFZ+17, MP09]. completely [SPC+17]. completion [KSG03]. Complex [DO+18, GPS96, HASB16, CM12, DF17, HHA14, JKD+15, RBP+11, SW12, SJG19]. Complexity [BH93, CMS92, Dja06, FAGW95, Fra92, GRV97, Gou98, JBL02, Tay02, AEF11, BPW05, CH06a, DUW86, FWM+10, SSS88, SoI13, THSS87, WG08, XL11]. complexity-effective [FWM+10]. compliance [AM06]. Component [AHG12, HSM94, SR94, CT94, H213, KRKS11, VLLW18]. Component-based [AHG12]. component-oriented [H213]. Components [BJ96, Kar02, BBB+06, Hoh90, LWR+03, MHP05]. Composed [SM92a]. Composing [BA96]. compositing [WGCZ09]. Composition [HLJ98, Tay02, CJ17, WMY+17]. compositions [FZ14]. Comprehensive [DG94, GM14b, uRIL+18, Upa13, ZAB18]. compressed [WBTM09]. Compression [SY04, CW15, CD95, JK15, KP17, NRM+09, SR91, AHG12]. Comput [KN18b, LSS+11a, MAZ10a, PCX+14, REK10a, WTC08a]. Computation [AM97a, Aiss97, BCV94, BP95, BA01b, CA95a, GM94a, GM95, HR92b, HR92a, JSS92, KF95a, KSG03, Lee90, LMB+17, LGM18, MCS14, NCTT09, PK07, RMU14, SS11, SD88a, SZ03, VGB08, WL04, WT09, WCO+09, XLH18, YJL16, YJB91]. Computation-Intensive [CA95a]. Computational [APV18, DRC90, JBL02, KRW96, KRT97, Num08, Num09, AAH17, AB03b, AGM96, CCE+17, CS06a, DH506, KHT+14, LBE03, MS19, MJ03, Pen11, RB11, SMO14, SNC12, TZ06, WW03]. Computations [AGF94, AMN00, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93, CQ95, CGA98, DUSH94, DN94, GR96, GH98, HH97, HJ01, HF02, KL01a,
computations/applications

KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94, Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03, BD11, CG10, DMCFMC03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03, RV13, SSKC15, SBC12a, ST89, SC04, SK91, SMH+14, SS94b, TG04, WJ14.

Computers [KHK03]. Compute [ABM+92, CM92, CTZ99]. Compute-Intensive [ABM+92, KAS07].

KME+92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94, Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03, BD11, CG10, DMCFMC03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03, RV13, SSKC15, SBC12a, ST89, SC04, SK91, SMH+14, SS94b, TG04, WJ14].
ZB03, ZFWF06, ZHO03, Ano99g, AS13, Ano97j, BS09, CDJL09, Cuz11, FPS11, GMSS+11, Gra09, KRS13, KRS14, Lan09, Las12, MMVL11, TH11. **Concentrate** [LW95]. **Concentration** [JL05]. Concept [DFLO17]. Concepts [TAS+01, MAGL13, NKSA17, ZZ90]. **Concerning** [IPK85]. **Concurrency** [Ahu90, ADD17, KCV99, LZCY09, MS96, NMS93, RM90, SRI14, UBES10]. **Concurrent** [AyJ93, ACHY18, CCM92, CMN12, DLBL+12, FPD93, IM94, Joh94, MM04, RSD94, RS92d, WCF94, WW96, WG93, WT92, BE13, CTS17, Chi95, CMT92, DB08, FJSW90, GV86, KME89, PVP18, Par89, SW18, ST05, TK07, Chi95]. **Condition** [SJ96]. **Conditions** [LK94]. **Confident** [YDZ+18]. **Confidentiality** [ZHT16]. **Configurable** [ZMZJ17]. **Configurations** [LK94]. **Conformity** [LGM18]. **Concurrent** [AyJ93, ACHY18, CCM92, CMN12, DLBL+12, FPD93, IM94, Joh94, MM04, RSD94, RS92d, WCF94, WW96, WG93, WT92, BE13, CTS17, Chi95, CMT92, DB08, FJSW90, GV86, KME89, PVP18, Par89, SW18, ST05, TK07, Chi95]. **Conflict** [BP02, CH92, DP00, DFP06a, HV09]. **Conflict-Free** [BP02, CH92, DP00, DFP06a, HV09]. **Conformance** [CY95]. **Conforming** [LGM18]. **Connection** [AyJ93, GHKS98, ML89, LXLS12, TT07, YSL08, CM93, CRFS94, EHS94, LAT+96, LTD+93, Sab94]. **connection-based** [TT07]. **connection-level** [YSL08]. **Connectionist** [MBK+92, TR89]. **Connections** [Goe94, TC03]. **Connectivity** [Wil92, ASM09, BCMV15, DH91a, OMSGNSG05, SK89a, Ten16]. **Conquer** [CTZ99, Ay89, BW09, GDL+11, Sto87, TP18]. **Conscious** [YAB11, OC07]. **consensus** [AAI+15, ISM07, LHW14, MR09, WTC08a, WTC08b, WWW17a, WCYR08, XBK07, DS04b]. **consequences** [YBM13]. **Conservation** [FLS+97, SHRM19, XS11]. **Conservative** [LA93, BD04]. **Considerations** [Ger98, VWHL96]. **considering** [MLMSMG12]. **Consistency** [Bir94, CA95b, GAG+92, SS08, Fei03, HC09, KUb17, LC11, LHZ+18, RHH12, WDDK09, XO05]. **Consistency-driven** [SS08]. **Consistent** [KCDZ95, HK08, JLM08, LFA05]. **consolidation** [MA19, RT18, ZLCZ18]. **constancy** [Ebn04]. **Constant** [BGOS95, BPP05, BTZ98, COS+95, DS01, KBG92, RO92, TVS97]. **Constant-Time** [BGOS95, COS+95, DS01]. **Constrained** [AZ01, BSDE96, BSH15, MMVR97, RL95, BKS05, CHX+17, HP06, JHF+17, JZZ+17, KSI04, KSK15, LFS16, LL10, Li16, MSK+16, VMMB10, WTB+08].
XLL15, YAK15, ZV09b, ZWWX16]. Constraint
[GH92, LP97, Mon94, CLL09, Ozt11, UAPM07]. constraint-based [Ozt11].
Constraints
[BA96, KB96b, LTWY95, van96, AP91a, Ay89, ACU08, DUW86, FVLB09, L06b, SZB16, SM+07, VRM10, WHS+18, YA11]. Construct
[BW96]. Constructing
[CCS06, CS06a, Hal05, HS94b, Lai15, MKW18, YWW12, BBL04, DW06, GC07, LMZ04, LH04, OMSGNSG05, WC91, WJ12, YSS11, YZLT09].
Construction
[BCH95b, DM95, DFN+94, DJM94, BFG+03, CFJW13, JPD17, JM14, Lai14, Lai17, LT07, L05, OOSGVG+16, SB12, WIB12].
Constructions
[FA95, HV95, HV09]. constructor [tH90]. Constructs
[Ano92a, KME92]. consumer [GLGLBG12, KK11]. consumption
[AH12, GHY10, LCW05, LM16, RTZ11, TKX+13, XLPL19, ZW11]. Contact
[PAH+98]. container [AZW13]. Containers
[LACJ18, LAC18, Str12].
contemporary [VM03]. contended [AFA13]. Context
[Li99, SLW10, Win85, Bar05, DMF+19, Feo03, FM07, KTP17, KRM14, N16, SZ09, ST12, SCK03, SK11, WLZ+18, ZW13].
Content-Addressable [Win85]. content-based [ST12, SK11, ZW13].
Contention
[BCD00, FCW11, LKK94, STK11, AEY12, FA07, HHS12, JW89, KH12, LW16a, N19, Nik03, SW18, Z12].
Contention-aware
[FCW11, STK11, LW16a]. contention-free
[KH12]. Contents
[PSGS17].
Context
[AHG92, CWZ+18, Cou93, Ano04d, BPA06, IB04, ORWT+18, YK04, Sie16]. Context-aware
[CWZ+18, BPA06, ORWT+18, Sie16]. context-sensitive
[Ano04d, YK04]. contexts
[KHT+14]. contextual
[Ana14]. continued
[Ano18v, Ano18w, Ano18x]. Continuous
[JHPL13, NH93, Luc18, MCdS+06, TCS+10, dGP06]. continuously
[AKSM08]. Continuum
[MP96]. contraction
[LGK+12, SMH+14].
Contractions
[BBN93, IEWK17, Ros89]. Contribution
[AS19]. contributions
[RGU08]. contributory
[SA19]. Control
[AGW08, AGW01, BJ91, BBM+02, BCLR96, BCD00, BDF01, DSST95, EAS03, FR96a, FT94, KSP+92, LM96, MS96, N03, SG96, THBF97, WLD02, AA10, A09, AAA+10, BCO+12, BWP+11, BMF05, BJ18, CF88, CG17, CWP12, Che89, CLM90, ESGQ+18, FL86, GL12, GAOGH17, HC04, HMY+18, JTTZ11, KNS11, K07, KGN11, LL90, LZC09, LCW05, LWLD12, LL12, MLZ17, MG09, MO11, MCZ14, RCG+11, RKK06, SRI14, TG04, WRW13, WJ19, WHS+18, XYD06, XLW+18, XWC+08, YBM13, YIKD10, ZMZJ17, ZBW+17]. Control-Memory
[BCLR96].
controllable
[ZHT16]. Controlled
[CGSV93, Li99, MG91, SDS99, SD00, BYT19]. controls
[YSL08]. convection
[CEGS07]. convergecast
[KK06, PLY15]. Convergence
[GCM95, UD96, YBOY97, CDD+15, PH18, Tor89]. converging
[BHK17]. conversion
[FC14, SMH91]. Convex
[DS84, DFRCU99, LP97, Wu02, DDNS06, GS03a, RDD08]. Convexity
convolution [XLW'18]. convolutional [ZLS17]. convolver [Kep03]. cool [LFS16]. Cooled [SWHB17]. cooling [MLK'16, SWHB17]. cooperation [YQT'12]. Cooperative [BW'95b, LTW'12, SZL'10, ADDB'18, DDG'17, FCML'13, FZ'14, GRDB'05, GZY'14h, KKL'0, LGM'18, NP'09, TC'13, TVT'17, WLL'16, WHC'18, XHZ'10, YpGyLiC'13, YF'07]. Coordinated [DDG'17, VPHML'06, MCZ'14]. Coordinating [DZ'97, LZX'11, CHC'05]. Coordination [DRST'02, FCZ'12, SCN'12, ZBL'16, DRT'07, MS'05, Wu'11]. copies [RS'19]. Coping [BGBC'16, BCC'18]. coprocessor [KVNV'17, SA'11, ZMZJ'17]. Coprocessors [SS'99]. Copy [Ano'93e, CS'93b, CS'92]. CoQoS [LZX'11]. CORBA [CCC'04, LWR'03, MSAF'04, RSR'04, wX'00]. CORDIC [CL'88, HBH'93]. Core [BCR'96, DDO'18, PL'94, AFA'13, APRA'18, AAA'16, ARI'17, ABLP'17, AVAH'18, BBBC'12, BLMB'13, CMMT'13, CHL'18, CKK'13, CMMT'13, CHLL'18, CKK'13, CMC'19, DBA'18, DWYB'10, FTM'19, GZG'17, GS'18, GKS'15, Hus'17, JHF'17, KSG'13, KKB'06, KR'11, LWC'18, LKS'14, LNAL'17, LSC'15, LHT'08, LSS'16, MMBD'13, MZC'18, MAHKZ'12, MGRRK'14, PCMM'17, PGP'12, PTK'13, PR'13, RLA'17, Raj'04, SNMB'09, Sol'13, SAJ'13, SHRM'19, Tr'09, TCHC'12, WJVO'07, WQZ'13, WH'17, ZXB'14, Zha'11]. core-based [LHT'08]. core-periphery [ALBP'17]. Cored [GS'01b]. Cored-Based [GS'01b]. cores [CVK'18a, LNC'13, LGT'14, TGP'16, ZLS'17]. Correct [JF'95]. Correcting [BA'01b]. Correction [Lat'98, LSH'13]. Correctness [BCC'95, GG'94, KS'94]. corrector [GGR'89]. correlations [FX'10, WQZ'13]. corresponding [BS'03]. Corrigendum [KN'18b, LSS'11a, MSAZ'10a, REK'10a, WTC'08a]. corrupted [DP'16, XSYG'18]. cortical [NFHL'13]. Coscheduled [KCD'08]. Coscheduling [ABM'92, NBSD'99]. Coset [Oru'87]. cosmology [LTL'06]. Cost [AZ'01, Ano'92c, BC'01, DJDK'19, DT'97, FM'99a, GPS'96, HCS'00, JH'92a, JLRA'97, KER'01, LO'96, Nic'07, PP'96, QM'01, SC'95, WC'91, Wei'02, AMU'19, AP'91c, AMI'12a, AD'12, BJS'03, CPLY'18, CL'09, DKUC'15, ESQ'11, GJX'05, HS'12, JLWX'11, KSK'15, LMZ'04, Li'17, MSM'09, MP'15, NML'19, SSM'07, Yan'09, YGZ'10, YYLC'11, ZJ'06]. Cost-Driven [FM'99a]. Cost-Effective [BC'01, AMU'19, AMI'12a, JLWX'11, NML'19, ZJ'06]. Cost-efficient [Nic'07, ESQ'11]. Cost-Optimal [DT'97, WC'91]. cost-performance [BJS'03]. Costs [Fah'96, WF'90, PB'90]. CoT [HMY'18]. coterie [SGR'03]. Coteries [WRC'02]. Count [MPS'16]. Countering [SEF'06]. Counting [AP'16, KS'00, SS'96, WW'98, WW'04]. Counting-based [AP'16]. coupled [AjHcC'90, BBB'06, BMF'05, FPM'14, IEWK'17, SMH'14, SA'90]. coupled-cluster [SMH'14]. Coupling [GT'02, YWD'08]. course [Bob'17, Eck'18, LB'17, LB'18, PSG'17]. courses [FSP'18, Kum'17]. Cover [Ano'04e, ANP'07, DDNS'06, KO'12]. Coverability [SP'90]. Coverage [ZCW'19, Amn'16, DBG'14, GM'14a, HWC'08, PSR'12, PCX'11, PCX'14, REZN'17, WMW'09, YDZ'18, ZC'04]. coverage-oriented [ZC'04]. covered
covering [KCR14, ST12]. coverings [Bod89]. Covers [ABCP96].

Covert [BKT95]. Cowichan [ASST05]. CPS [CHX + 17]. CPU

[DV13, DBA + 18, GKS15, KJL + 11, LR14, LLKY13, Ren11, TRS + 12, TYA16, VLIW18, WLL16, WTWZ16, YLL17]. CPU-GPU [DV13]. CPU/GPU

[LR14]. CPUs [AVAH18]. CR [LACJ18]. crash

[BG05, DDG + 17, DGD10, ISM07, MFVP08, MR09, PMHM19].
crash-faults [PMHM19]. crash-prone [DV13]. CPU-GPU [LR14].

CPUs [AVAH18]. CR [LACJ18]. crash [BG05, DDG + 17, MFVP08, MR09, PMHM19].
crash-faults [PMHM19]. crash-prone [DV13]. CPU-GPU [LR14].

Cross [IEWK17, SJS11, WXZ + 18, CI03, KPR88, LST + 13, WCL + 13, YFY17].
cross-architecture [YFY17]. cross-layer [WCL + 13]. Cross-scale

[IEWK17]. Cross-Site [WXZ + 18]. Crossbar

[CP01, KJ84, OK01, PD92, KK17, LW89, McA89, Wil90, ZPK + 14]. crossed

[CW09, CFJW13]. crossing [HSSM07, JD12]. Crossstalk [Qia97]. crowd

[KDSS18]. crowdsourced [VGLV + 18]. crypto [SA11]. cryptographic

[ABO + 17]. cryptosystems [AVAH18]. CSA [Ebe94]. CSD [KHT + 14].

Cubes [BCH95b, JH94, MS85, RP98, Tze93, AP91b, JT88, JL05, KF90a, ST06, LH05].

Cubes-Connected

[BCH95b, Tze93, JT88, JL05, KF90a, ST06]. Cubes [HJ90c, HTHH02,

JH92b, Lat98, XL95, BV02, CW09, CFJW13, FLP07, LFZ + 17, LLFJ18, MKW18, SAOKM03, WFZJ12, WS97b, XHZZ16, YTH07, YD98].

Cubic [CP08, BM14, MP88, YME06]. cuckoo [CSW + 17]. CUDa

[BSH15, CBM + 08, CB11, Cza13, KRKS11, KME09, dIAMCFN12]. CUIRRE

[ZSW14]. Cumulative [Ano98l, Ano99h]. currency [HBF12]. Current

[K95, MMCL + 17]. curriculum [NDW17]. Curve

[LYZ + 18, Gue86, SKH15]. curves [ST12]. Customized [Isl97, ZLP97]. Cut

[DRSB01, KLLK98, CRD17]. Cut-Through [DRSB01, KLLK98]. cuts

[LU14]. CUTsets [DH94]. Cyber [HRM17, QGB + 17, CWCW18, CSW + 17,

DZC17, GQZ18, JWH + 17, LLWC17, LMJX18, MMN + 18, SLG + 18, ZXR18].

cyber-enabled [GQZ18, LMJX18, ZXR18]. Cyber-Physical

[QB + 17, HRM17, CSW + 17, JWH + 17, LLWC17]. cyberthreat [KAA + 19].

Cycle [Ano00d, KK95, LS97, Ros99, DHT + 05, LLFJ18]. cycle-accurate

[HDT + 05]. Cycle-Stealing [Ano00d, Ros99]. cycled [LDZ + 17, LDZ + 14].

Cycles [BCH95b, Tze93, Wan01a, dBL95, HBAD15, JT88, JL05, JD12,

KF90a, LdSB + 18, PK04b, ST06]. CYcleTrees [VB96]. Cyclic

[OP96, PT97, SSG09, BD05, HS03, PK05a, Sch87, ST87, SPH13, LY12].

cyclic-by-rows [ST87]. CYlindrical [WN94].
27

MPG17b, NM17, OGRV^+12, PYP^+10, PEC95, Wan07, WS95, Wu02, YA11, YB01, ZLS17, Zsa16]. **D-ISODATA** [DSAUM99]. **D-NoC** [AA16]. **DADO** [SM86]. **DADTA** [ZLCZ18]. **Daemon** [KY02, BBD18]. **DAG** [CJ99a, CJY04, DQR^+09, Tam18, XLHT13, ZS13]. **Dags** [BCLR96, BSS^+13, CDR12]. **daisy** [GRV08, MVB05]. **Dandelion** [CP10a]. **Dandelion-like** [CP10a]. **Dark** [SDS^+18]. **Dark-Silicon** [SDS^+18]. **DARPA** [WRHR91]. **Data** [AOS^+05, AL04, AAL95, ALS91, AS13, AS15, Aro06], ADM^+94, BV02, BCD95, Bal90, BBB^+06, BHS^+94, BR95c, BR02, BS09, BS11, CGN^+13, CDY97, CK08, CGL^+95, CP92, CHR94, CRFS94, DOP98, DRC90, DSAUM99, DRST02, DSR96, DSS95, DSD97, DSS95, Fah96, FMP98, FKCG97, FMM^+94, GG94, GP93, GC01, GDN^+98, GS96, Gup92, HK01. **Data-aware** [KAS07]. **Data-center** [FP03]. **Data-Driven** [JB93, VBM90, WS93, HKH03, NCB^+17, WLZ^+18]. **Data-Flow** [BG90b, GE85]. **data-gathering** [LLW07]. **Data-Intensive**
Data-oriented [LWWQ18]. Data-Parallel
[AAL95, Ano06d, BCD95, BHS+94, CGL+95, DSD+97, FKKC97, KR97,
OP98, QZ94, QH96, Ros99, RW93, SAC+98, SSHC00, Ste95, WB94, WNA+94].

Data-stream-based [CK08]. Database
[DSW94, HILLY95, HTL99, LLS93, LHM95, MB93, RSD94, YMR93, BH86,
C186, HPSM91, HY91, LZCY09, LLB+18, TR16, XLC+18].

Database [DSW94, HILLY95, HTL99, LLS93, LHM95, MB93, RSD94, YMR93, BH86,
C186, HPSM91, HY91, LZCY09, LLB+18, TR16, XLC+18].

Databases [BM95, CS95b, FCF00, MFS93, Ahu90, Ale19b, BA06, CG86, GPSH19, PF08,
PLK+18, Ram89].

datacenter [CPLY18, MG09, YYWZ19].

datacenters [PRN19].

datacentres [PRN19].

Dataflow [BG86, BCF97, BPN90, BJP91, BH93, GGB93, Gao93,
HCAA93, LB90, MN99, NM93, RSBN01, SA93, SBKB90, VV90, YMR93,
Bi90, ESCV15, KLL87, TBG+17]. Dataflow-Based [RSBN01].

Dataflow-Based [RSBN01].

dataraces [SSS07].

dataset [YYLC11].

datasets [CLOL17, KSJC17, KN18a, KN18b, Y+11, YLB+15, ZB09].

DAWGS [CM92]. day [TLL+18]. day-ahead [TLL+18]. dBBlue [SLWW05]. DCC
[BCD00]. DCell [WFLJ16]. DCT [Jia99, VAF19]. DDE [WS97b]. DDoS
[CH06b]. DDDS [SMPMLVLS11].

Deadline [LTWY95, RCG+11, SCW+18, LFS16, MGSG12]. Deadline-aware
[SCW+18]. Deadline-sensitive [RCG+11]. deadlines
[BSM08, KSS+07, WMG13, WL05]. Deadlock
[Ano96L, BYT19, BHR95, CP01, CMS92, KS94, Li92, MJ94, PA97, PA01,
SJ96, TT07, ZN01, AA14, BB85a, XL11]. Deadlock-Free
[CMS92, Li92, PA97, PA01, SJ96, ZN01, TT07, AA14]. Deadlocks
[RP95, WP92, LJ05]. deal [ESGQ+14]. Dealing [BSK05, FP03]. DEAR
[AL03]. debug [BBCCL04, MH18]. Debugger [MB96b,BBCCL04].

Debugging [MI92, ML99, SG93, CV16, LZZ+11]. Decaying [GM96].

Decentralised [YZS15, DBCF13]. Decentralized [AM11, DW12, GHK+12,
GMA07, HS97, AS18, BH17, Che89, MAPF14, SL06, WZQ+13, YA19].

Decidability [FP17]. Decision
[ADS01, BF01, LFA96, AKK+19, KDS18, KC04, PP06, SV18].

decision-making [AKK+19]. Decision-Tree [BF01]. declustering
[WZZ+17]. decoder [MC17]. decoding [CP10a]. Decomposable [KS08].

Decomposition [Bai94, BCCD02, CP92, HJ90c, HBB93, KBG92, LS95,
NPY+97, PE93, QZ94, Ara90, ACFK07, ChvBL+08, CZZ+17, Luk85, OT86,
SK09, TW87, WD18, XWC+08, ZWRI07]. Decompositions
[ABC96, CRW96, Oru87]. decoupled [CTCX08, DBC03]. Decreasing
[TSSH01]. dedicated [AM07, MAR05, WN06, ZV09b]. deep [CXQ+18,
HM+18, HSKK+18, TLL+18, WW18b, WDS+18, ZW17, MLCFH+18].

defense [XCH08]. definite [KK86]. Degenerate [HF96]. Degradable
[BR94, CGA98, LH92, RCB93]. degradation [NSTN91, WCY08].

Degree [DS96, Pr93, RL95, BCF14, BPB11, KSK15, LVP08, St17].

Degree-Constrained [RL95]. degrees [ZDC06]. Deister [WZZ+17].

Delaunay [ABC+09a, ABC+09b]. Delay [AZ01, AH11, GZG+17, Hu11,
GL12, HWH08, LMZ04, Li19, MD07, NLB+18, SGR03, WW12, WYW15,
WHC+18, WHS+18, YA11, YWG15, ZWW17, KSSK16]. delay-aware
[WHC+18]. Delay-Constrained [AZ01]. delay-guaranteed [HWWH08].
delay-optimal [MD07]. Delay-sensitive [Hu11, NLB+18]. Delay-tolerant
[AH11, WYW15]. Delays [GM94a, GK98, KL01b, RWB+13, Sta04].
Deleting [BCK+09, PPC04]. deliveries [WE13]. Delivery
[CLZ02, CLV95, THGY15, AH11, Bar05, KMF+05, KNS06, SZ09, WGCZ09,
WLZ+18, XYDL06]. Dellat [THGY15]. Delta [ASB18, KJ84, YL89].
Demand [DSST95, HLL+95, JSCB95, BSW07, FVLB09, HZDP12,
KyLPC17, LSZZ15, NKK16, SFEF06, WL05, XG03, YYLC11]. demands
[SLW10]. dendritic [WCKD06]. Denial [BK18, KMMZ06].
Density [MC17, BAT+19, WCXL11]. Dependability [SM92a, WLID02].
Dependable [MAJJ05, NPGV10]. Dependence
[GSG+93, KK95, Xue97, CC87, NCA+12, PSA96]. dependences [NCT+07].
Dependencies [KG92, TC96, BSMH08]. Dependency [GP94, CSJ+13].
dependency-timing [CSJ+13]. dependent [AL04, BH05, LSWC14].
deployable [YC12]. deployment
[EM11, SMO+18, TWQS12, VHH08, ZC04]. depth
[BP89, LH04, PV07, YWJ+18]. depth-first [PV07]. deques [ST08b].
derivatives [PK04a]. describe [JWH+17]. description [MR8+14].
Descriptor [Bal90]. descriptors [LNW+12]. Design [AFA13, AM17, AC16,
AN092c, BAH01, BCD00, CGKK97, Car95, CCC90, CT93, CAB94, CW93,
CTKA17, CKK+13, DR19, DBKF90, DVW94, ES96, EMP+96, FC90, FR96a,
Fer92, GRV08, GF9+92, Ger98, GRS97, GSP02, HP97b, JH92a, JZZ+17,
LI90, Lee91, LH92, LLS93, LKY13, MKC01, MP10, MV05, MG09, MML07,
NBM93, NJ91, NIE94, NSPC02, OS93, PA01, PI90, PMCC18,
RCB93, RBG17, RPS93, RKK97, SDS+18, SAOKZ05a, SAOKZ05b, SRK95,
Sol13, SHC94, SOG94, TTH12, WNA+94, WH97, XKMN94, ZPK+14, Ada17,
ABLP17, BHH+17, BZLJ04, CG11, CSJ+13, CK13, Che86, CHX+17, Ch95,
CC96, DFHH13, DE91, EFG+14, FHL+15, Fer90, FC+14, FDB6, GRC91,
HDT+05, HVW98, HKK+18, KM16, LÜ14, Lon04, LVB07, MCCM+11,
Nap90, ORW+18, OMT+17, PL087, RGD03, RA11, SD10, TM06, TB00].
design
[VRGS17, VHH08, VLL+14, WSG91, Wu11, ZMZJ17, ZY12, ZV09b, ZWF06].
designed [BSH15]. Designing
[BBBC12, BC01, CB06, DH91b, FSP18, GP93, GM+13, GB93, KT89, NS92,
Oru87, SRGB0, TC96, YCH+10, YBY17, KAS07]. Designs
[HCS+00, LHM95, MD01, Oru94, Blu87, CP04b, MC17, Man13, PGR17,
Sch89b, WAS88]. Desktop [LSH+13, CCEB03, AAD10]. Detect
[XCH08, UGG+11]. Detecting
[CL14, CK97, NCT+07, SKK14, Tse95, YXX+13]. Detection
[AN096l, BN02, BHR95, BST01, CW93, CY95, CD95, dABB96, GCK97,
GS96, HTB98, ISZM99, KSB94, KS94, LLLY08, MM098, Par92, PAV+98,
Detections [Yen01]. detector [DMI19, SLG06]. detectors [AAI15, BGBC16, DGFGK05, LFA05, MFVP08]. detention [JXW06]. Determinacy [BN94]. determination [MJ03]. Determining [GRR93, LAS97, DH91a]. Deterministic [AS01, BBCD02, OS96a, GTGLSA12, SGS08, WZZ17, ZLWL12]. Development [BR95b, FSD04, KHT14, PH00, AM17, DBC03]. deviation [XBK07]. Device [DM90a, PVP18, VFAD17, ALF03]. devices [Ano04d, Kim17, MXSL12, WLO4, WCF14, YK04, ZV09a, ZV09b]. DEVs [PK05c]. DGIN [KMC16]. DGIN-3 [KMC16]. DHT [BJPPM08, CTT16, HASB16, SP08, SX08, ZH07]. DHT-based [BJPPM08, CTT16, SP08]. DHTs [GTGLSA12, SAL10]. DI-multicomputer [CC96]. Diagnosing [Qia97]. Diagnosis [BW95b, Kav93, KF95b, RFM94, Wan01b, eW95, CAF11, FY86, FZ90, VS18, Yan04]. Diagnostics [DMG18]. diagonal [PRHB06]. Diagram [RR95b]. diagrams [SZ03]. Diameter [DF95, LP95, RS96b, RLS96, WIKC97, BBD18, BBL04, CW09, SLWW05]. Diameters [Als01]. DICE [CKL99]. Dictionaries [MD98]. dictionary [GA90]. difference [HT90, SS11]. Differences [LDCZ97]. Different [GAG92, PD92, Bhu87, CG17, GPT06b, LCB16, MM06, Sh06]. differential [GGR91, WRW13]. differentiated [AM07]. differentiation [MCZ14, ZIO8]. Diffraacting [DLS00, HPT07]. Diffusion [DM17, SKK97, BFH09, CEGS07, HES11, MMS09, RN04, ZXGD18, Zsa16]. diffusion-based [MMS09]. diffusion-drift [HES11]. diffusion-limited [Zsa16]. diffusion-type [BFH09]. Digit [BOI91]. Digital [ZRC99, NAK04, PR06]. Digitized [HHM94, Ara90]. Digraphs [BMMS01, TZ00, BP89]. Dilated [Iqb92, Qia97]. Dilation [CCCM96, LST17]. Dilation- [CCCM96]. Dimension [CFJW13, HSW04, RS96a, WS97b, XL92, XL95]. Dimensional [CFJW13]. Dimension-exchange [HSW04]. Dimensional [AKPT99, CCCM96, DFN94, FLS97, Hwa97, KR98, LHS97, LP96b, LP95, NEG85, TC96, VB94, YCY90, ANEA13, AB05, CMR19, DMCFCM03, Deh09, DTK11b, FCG04, GSS03, GB11, HT90, HS17, KVHS07, KLC05, KKN13, KN18a, KN18b, LSC00, LC91b, LZY11, LDS16, NBP98, NAK04, PTA08, PK07, SGR03, WRW13]. dimensionality [BV13]. dining [AFNT17]. DINO [RMHR17, RSW91]. Direct [FLC14, GV94, LLCC02, SWH17, TF01, ACFK07, ACU08, PPTV10, Tam18]. Directed [GY92, LSC00, LY98, LY01, RJY96, BD05, MTM10, TDP15, WCWH03, Wu03]. Direction [BEN12, BC94, Ebe94, MSAZ10a, MSAZ10b]. Direction-based

Discover [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

discretization [SWLZ17]. disease [VS18, ZXGD18].

Discovery [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

Discover [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

Discover [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

Discretization [SWLZ17].

Discover [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

Discover [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

Discover [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVSL11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, DMSh90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV09, CRC+02, IHI16, Ll16, SS17, TKHG04, ZZ90, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].
RDS02, RJY96, RGS00, RAS96, Ros07, RP95, SHSH17, SM94, Sch89a, Seb95, SRGB90, SZW05, Shu95, Sin87, Sin93. Distributed [SS94a, SM08a, Sn03, Soh96, SLG+18, Sir92, SBAM06, TH11, TT10, The02, TSc01, TAS+01, TG97, TSFZ14, TB90, Tse95, TY95, Wan01b, WCWH03, WW98, Wee01, WRC+02, WMG01, WF96, WLID02, WUG99, Wu02, XBK07, wXH00, XQ04, YH97, YB01, ZV06, ZM94b, van96, AT03, ALH+09, AAFV04, AL04, Ahn90, Ale19b, AGMS04, AFM09, ACCP12, AAI+15, AM11, AMK+07, AH06, BFG+03, BCV05, BM+08, BLPA05, BBCQ13, BG98, BNP02, Bar05, BB03, BCMV15, BOKS19, BHLT14, BRP03, BK08, BFL+13, BD04, BMF05, BH05, BGM+08, BCF+94, BLZ+18, BFKP04, BBL04, BJ18, CSWD03, CG12, Car95, CGL+14, CG86, CV90, CvdBL+08, CVK+18b, CTCX08, CS08, CTKW17, CLM00, CKLCK04, CKLCK05, CGG09, CJ+09, CI86, CTT16, CPO+03, CTT08, CK91, Cuz13, Cyb89, DK08, DB11, DM04, DRT07]. Distributed [DKM10, DHK04, DTK11a, DH04, DJT03, Eij18, EBE08, ESA03, EHL+15, ES12, FPF14, FCC07, Fer90, FL86, FKR+17, FX06, Fru10, FLC14, Gai87, GYAB11, GCS06, Gos90, GWWL94, GC05, GL12, GL90, GN15, HJ90a, Hoh90, HLM+90, HKW05, HD10, HL07, HHK15, ITT04, IB04, IS06, JF12, JKE13, JLM08, JZZ+17, Jz05, Jzh91, Kak15, KHW13, KUA07, KSG13, KK06, KMMZ06, KAS07, KCD08, Kim11, KKS+12, KL05, KCFP18, KS13, KBD05, KP05, KC04, Lai86, LL19, LTL06, Las13, LLL06, LV08, LL00, LJ05, LY91, LZY09, LASS15, LVR90, LC91a, LV07, LdPLC+19, LB09, LL18, Lop13, Lop18, LS19, LA04, LCM+06, LszJ15, Lun90, LM09, MLZY17, MD07, MM07a, MS09, MAPF14, MHP05, MA11, MBMC19, MBR08, MS66, MTS90, MM07c, MFV08, NSAS10, NML+19, NTN12, NDW17, NSDZ18, NP09]. Distributed [OF03, OPR18, PK08, PKN10, PK05b, PRHB06, PG06, PL03a, PC11, PH16, PM0111, Pop91, PGKV18, PF04, PRN+19, RLP14, Ram89, RH03, RAN+17, RDA18, RKS87, SSK11, SW12, SDTD04, SS88, SM15, SU87, SB15, SC04, She09, SCS+08, SCMS12, SK90, SXZ06, SS18, SCM13, ST14, SKK91, SLKK13, SK89b, SM04, Suk18, TLV10, TG04, TBB05, TZH+06, TXL14, TM10, TVT+17, TWQS12, VB08, WW07, WTC08a, WTC08b, WL11, WLM+18, WW04, WHC+18, WL92, WD13, WSLC11, WZQ+13, XY07, XQ07, YZ15, YHY18a, YHY18b, YLB+15, YZG18, YWY15, ZAB18, ZCK+02, ZV09a, ZZJ+18, ZCMY12, ZTFK16, ZWR07, ZBW+17, ZWL03, dG91, DLLL11]. Distributed-Memory [AMN00, CB95, C99b, DY99, Gup92, GHS96, GHSJ96, KRC00, KHS96, NSS97, PBH96, RCG00, Soh96, BGM+08, CPO+03, GL90, ITT04, LC91a, Pop91]. Distributed-Web [KCD08]. distributing [TY90a]. Distribution [BRR01, BR02, CLZ00, DHR96, KL01a, LAS+97, LL08, MNM98, SLW10, SSYG97, ASM09, Fei03, FM07, GRV08, GBA08, HSW04, LLL06, LT07, Li17, MV06, NM17, PV89, SS06, WZZ+17, gWW18, YJL16, ZWL03]. distributions [BKMT14, Nic07, PCX+11, PCX+14]. Distractively [VR94, FPP+08]. DITVA [KCSS18]. divergence [Tor89]. Divergent [RMHR17]. diversity [SSFP11]. Divide
[AY89, CTZ99, BW09, GDL^+11, Sto87, TP18]. **divide-and-conquer**

[BW09, GDL^+11, Sto87]. **Divisible** [VB02, BD11, CG12, CVJ09, DW04, HV13, KVA18, LML^+10, MLGD12, MVB05, ZV06]. **Division**

[HP00, QMCL94, ZLPP01, Dav17, EL91, HRG^+11]. **DMON** [HP97a]. **DNA**

[GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All**

[Ano92c]. **Document** [ZWL03, UGG^+11, XCZL03, ZMCP11].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. **DNA**

[GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All**

[Ano92c]. **Document** [ZWL03, UGG^+11, XCZL03, ZMCP11].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].

document-similarity [UGG^+11]. **Documents** [ALL99, Fei03]. **doing** [MBG^+17]. **dollar** [SSM^+07]. **DOM** [WXZ^+18].

DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10].
dynamic
[LPX05a, Li10, LLY15, LS06, LLW12, MYYY17, MC91, MK08a, MCS14,
Mit07, MML07, NDP13, NLB+18, NCT+07, NHO+13, PKN08, PKN10, PM05,
PSPR05, PW17, QJ05, RK18, RCG18, SNMB16, SM+16, SS06, SSS07,
SZD07, SCK03, SLG06, SdBl+10, SZB16, TZ07, TW15, TH08, TMM+17,
TT07, YY12, WXZ+18, XLC+18, YK04, YS11, ZXYO11, ZCS+18].
dynamic-warp [NHO+13]. Dynamically
[JB98, KSS+07, PPP14, dSR00,
SB84, GK15, Kep03, Lai86, Mat06, ORWT+18]. Dynamics
[ES96, JBL02, NPY+97, PAH+98, TSA97, AGMJ06, CvdBL08, CMPS18,
DAG+17, GBMZ07, LYL08, PARB14, PTK+13, WYTX13].
e-infrastructure [HPB+10]. E-ODMRP [OPG08]. e-payments [CSS11].
E-R [BG90a]. Eagle [KS18]. Early [GRJ+15, AMT13]. early-stopping
[AMT13]. earthquake [KME09]. EB [SM92b]. EB-Equivalence [SM92b].
ECC [CL09, GCS06]. ECC-based [CL09]. ECG [ZAAB17]. ECHO
[HASB16, SAL10]. EcliPSe [RS92d]. ecosystem [LZN19]. EDAs
[MMAL+06, dGP06]. eddy [SM04]. EDF [dOCS14]. Edge
[AMU+19, BGR96, BS97, GT97, HRH18, HBAD15, LSH96, TPS+18,
TDM05, TPJ+19, WB01, WZX+19, Ale19b, Ale19a, CL85, DJT03, GDP08,
JTC+18, KCFP18, LBT19, LYJ+19, Lin03, LWWQ18, MS19, MA19,
PRN+19, SS03, Udd19, WZH+19, YWJ+18, ZCS+18]. Edge-Coloring
[LSH96, GDP08]. Edge-Disjoint [BGR96, WB01, TDM05, Lin03].
Edge-of-things [AMU+19]. edge/cloud [Ale19b, MA19]. Edges
[HHC98, BKCM17, FPP+08]. editing [RS90b]. editor
[WW03, AB03b, Aono11, Aono02g, Cas93, Che92, Cho93, Her92, Kri92,
Lin93b, Pan09, Pra16, Sch90, Sto90]. Editor-in-Chief [Pra16]. Editorial
[AS15, Aono94c, Aono95k, Aono96k, Aono99i, Aono02e, Aono02f, Aono18v,
Aono18w, Aono18x, Aono18q, GHS94, GHS95, GHS96, GHS97, Hol17, Kai92, SLL18,
DF12, Aono03c, Aono03d, Aono03e, Aono03f, Aono03g, Aono03h, Aono03i,
Aono03j, Aono03k, Aono03l, Aono03m, Aono04f, Aono04g, Aono04h, Aono04i,
Aono04j, Aono04k, Aono04l, Aono04m, Aono04n, Aono04o, Aono04p, Aono04q,
Aono11a, Aono11b, Aono11c, Aono11d, Aono11e, Aono11f, Aono11g, Aono11h,
Aono11i, Aono12a, Aono12b, Aono12c, Aono12d, Aono12e, Aono12f, Aono12g,
Aono12h, Aono12i, Aono12j, Aono12k, Aono12l, Aono13a, Aono13b, Aono13c,
Aono13d, Aono13e, Aono13f, Aono13g, Aono13h, Aono13i, Aono13j,
Aono13k, Aono14a, Aono14b, Aono14c, Aono14d, Aono14e, Aono15a,
Aono15b, Aono15c, Aono15d, Aono15e, Aono15f, Aono15g, Aono15h, Aono15i,
Aono15j]. Editorial
[Aono16a, Aono16b, Aono16c, Aono16d, Aono16e, Aono16f, Aono16g,
Aono16h, Aono16i, Aono16j, Aono17a, Aono17b, Aono17c, Aono17d,
Aono17e, Aono17f, Aono17g, Aono17h, Aono17i, Aono17j, Aono17k,
Aono17l, Aono17m, Aono18a, Aono18b, Aono18c, Aono18d, Aono18e,
Aono18f, Aono18g, Aono18h, Aono18i, Aono18j, Aono18k, Aono18l,
Aono18m, Aono18n, Aono18o, Aono18p, Aono18r, Aono18s, Aono18t,
Aono19a, Aono19b, Aono19c, Aono19d, Aono19e, Aono19f, Aono19g,
Aono19h, Aono19i, Aono19j]. editors [XO05, AP93, AL99, Aono11j,
Aono01k, Aono02h, Aono02i, Aono16k,
BD00, DOP98, ES97, GGB93, GC95, JW94, MC93, NT90, OW01, PN97a, PN97b, PA96, SH92a, TFV+15, BG90b, TY95, WC05. Edu [PGKV18].

Edu-2016 [PGKV18]. Educating [LMB +17, Edu2016 [PGKV18].

Education [APV18, BLZ +18, CVK97a, Hua17, MBG97a, MC93, NT90, OW01, PN97a, PN97b, PA96, SH92a, TFV+15, BG90b, TY95, WC05].

Effects [ACD +93, IS06, BL05, JZ05]. Effect [ACD +93, IS06, BL05, JZ05].

Effective [Ano97k, BC01, GM96, HH97, KO11, LT96, MAR05, QM01, TC92, VH93, WLID02, YZ96, AMU+19, AM12a, BV13, BCK+13, Cza13, DJDK91, DK04, FZWL12, FWM+10, FI04, JLLX11, KHW13, LQJ+19, NML+19, NAK04, SCP12, WMY+17, YCH+10, ZJ06].

Effectiveness [GMM00, HKT +91, KS97a, LKK94, NRS95, MA11, TC03].

Effects [AMB95, DZDZ01, KB96b, UD96, CK88, HLS03, KG04, SPBR91].

Efficiency [EH01a, GG01, LdSB+18, AHG12, AG12, BC11, BYH+17, ESCV15, FRM15, FCP+15, GSWW04, HRM17, HJLR12, LB12, LZSL06, PB19, Ren11, SB66, SWHB17, SHC14, VETT18, YF09]. Efficient [TR96, Tur12, VB02, VBM90, WRC02, WHT00, WCCH18, XMM92, XLH18, YD98, YZ109, ZB97, Zhn92, ZH07, dSAJ15, AAI17, AFA13, AR17, Ale99a, Ara13, AS19, BFH+17, BM11, BKC+15, BK13, BOY10, BR91a, Bic90, BBD18, BCK+13, BHK17, CWZ+18, CMR+18, CKN07, CP10b, CGW+03, CMN12, DCM10, ESGQ+11, EDH+17, FTM+19, GDC18, GKS15, GT04, GLD06, GYP13, HSS10, HS06, HRJ94, Hsi04, HZHS18, IEWK17, JLS87, KTP17, KVA18, KylPC17, KHK18, KL05, KSSK16, KA05, KZ13, Lai14, LMZ04, LW16a, LLB+18, LS91, LSC+15, LR03b, LZY+18, LL18, LCJ+18, LHP07, Lon04, LLDL15, LA06, MGSG12, MD07, MFS+13, MPS16, MPN17, MAHKZ12, MCP+18, NMS+18, NF16, Nic07, PPSV15, PVGG06, RM11, RLA+16, RLA+17, RFS+12, RT18, RGAN18, SB12, SX08, SZMK13, SM08b, SJJ19, Tami18, TLY12, TGPUC16].

Efficiently [TMK+17, TLL+18, UBES10, VRGS17, VAF19, WJW06, Wan07, WTC08a, W但现在不提供整篇文档的详细内容。
eigenanalysis [TYA16]. eigenvalue
[KA94, LYL08]. eigenvalues [VAGB08, ZB03]. Eisenstein
[HBAD15, HS17]. Elastic [FGG17]. elasticity [MMVL11]. elderly
[HRM17]. Electing [SK94]. Election
[AS96, KB96a, DLV11, DGDF10, FKKB04, KGN89, PeL90, SS05]. Elections
[FM96]. Electric [IWM97, AK18, AKSZ19]. Electrical [MO97]. electricity
[TLL+18]. electron [DAG+17, FCG04, FGG08]. Electronic [WH97, AA93].
electrophysiological [HES11]. Element
[BCV94, CSSY94, PPTV+10, FC14, KME09, Ren11]. elementary [FK98].
Elements [GB93, KNS91]. Eleven [BSB+01]. Eliminating [DR98].
Elimination [BPST96, BMM97, CS95b, Cap87, ESGQ+11, KA91, Vel89].
Elimination-Based [CS95b]. Elliptic [PSE+01, BGH+03, SKH15].
ELLPACK [ZGG+14]. ELLPACK-based [ZGG+14]. ELM [CLOL17].
EM-4 [BAM93]. EM-KDE [EHL+15]. embed [SKK91]. Embedded
[WA02, BM17a, CNLGRSL18, CKLCK04, CKLCK05, CRJ10b, DQR+09,
FWM+10, GZG+17, GSWW04, KR06, LLLC15, LCB16, MBR08, MGRK14,
PRHB06, XLL15, XLPL10, YZX11, FWM+10]. Embedded-TM [FWM+10].
Embedding
[ANS97, Anu100, AM93, BL89, CCCM96, CS95a, Efe91, Efe96, HKMU98,
HJ90c, LSC00, LPS+98, Lin03, NPI+98, PW16, PM92, QM01, RWY93,
SL95, SL9+08, TT98, TL96, Var91, Wag93, Wag94, Wan01a, Wan10, WFL98,
BG90a, FLPJ07, FT04, LFZ+17, PW17, YLZB18]. Embeddings
[GH93, BM01, HOS94, KC98, MT93a, OS97, OD95a, CL91a,
GNW03, LFL18, YTH07]. emergency [HPB+10]. Emerging
[Ano02v, BK15, KHT+14]. Emitter [FPM+14]. Emitter-coupled
[FPM+14]. Empirical [FT00, LR93, LGK+12, NTTK17, XZ99].
Employing [AGM06, PKW+10]. empty [Deh90]. Emulating [KMS10].
Emulation [JH94, PRW94, LST17]. Emulations [RGD03]. Enabled
[MWL00, CSL15, CCN06, GQZ18, GRJ+15, KTF03, LMXJ18, NML+19,
SLZ+19, TODQ18, ZMR18, ZHLQ12]. Enabling [ETS14, FCG+14,
JKIE13, SP08, SA19, TT10, ZFI+06, ZCF+17, DKKV15, HRH18].
Encoded
[JH94, CLV95]. encoders [TLL+18]. Encoding
[AAL95, CP10a, WLC15, ZWQ+16]. encrypted [SWW+17, ZHT16].
encryption [WCCH18, ZA17]. End [Ano08, Ano09, Ano10a, Ano10b,
Ano11]. Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, ZLJ12,
CXQ+18, FGP05, GBMZ07, HPSM91, ORWT+18, WGL11, XLL15].
end-systems [GBM17]. End-to-end [ZLCJ12, WGL11, XLL15]. enDebug
[C16]. endpoint [Hsi04]. endurance [WCW017]. Energy
[AKSZ19, ALF03, BOY10, BYH+17, DCM10, DKn01, FWM+10, GQZ18,
GYP13, KR12, LK13, LBGM15, LL10, LW16a, Li16, LNAL17, LSC+15,
LR03b, LY13, MGSG12, MTL+18a, NMS+18, PLR07, QSL+08, RM11, SP13,
SSGZ13, WHC+18, WH17, XHZ+10, ZZJ+18, AHG12, AK18, CV16,
ECL12, FRM15, FCJG+18, FCP+15, FKL08, GHY10, GDC18, GNT+06,
GL12, GSH19, HP06, HRM17, JZZ+17, JZF+15, KR10a, KSI04, KyLPC17,
KCR14, KSSK16, LR14, LCW05, LL12b, LLCZ19, Li19, LJC11, LLDDL15, LC16, MMK11, NS12, OMT17, PCMM17, PB19, RWB13, RLA16, RLA17, RFS12, RT18, RTZ11, TLY12, UMM18, VRGS17, WMW09, WIST16, gWW18, XS11, XLPL19, YL12, YZS15, YAK15, ZW11, ZYW15, ZWX16, ZLCZ18, ZHLQ12, MSK16]. Energy-aware [GQZ18, LBMG15, LNAL17, LY13, FCJG18, LAL16, RAL17, RFS12, RT18, RTZ11, TLY12, UMM18, VRGS17, WMW09, WIST16, ZHLQ12]. Energy-Friendly [MSK16].

energy-performance [ECLV12]. energy/power [OMT17].

energy/power-aware [OMT17]. ENF [CK97]. Enforcing [KMF05, Kub17].

engineer [GS18]. Engineering [LWR03, BCD15, CCE17, Gai87, Nee17, PRHB06]. Engines [SD00].

Enhance [WLID02, DZC17]. Enhanced [BOSW94, MD13, OPG08, OS96b, OSZ98, RK18, LLDDL15, dOBG15].

EnhancedBit [ARD14]. Enhancement [KJS4, TC92, DK04, KS10, NGQM12, RH05, RM90, TBG17].

enhancements [ESQG18, LU14]. Enhancing [AYE98, CGN13, CRA10, GRR13, HWL14, dAMF13, MH18, OM10, QGZP17, VET18, CCH09, JBY05, VA03, WXZ05]. ensemble [KBC19, SV18]. Ensuring [JF95]. enterprise [BJPPM08, CCEB03, GSASA19, LSH13]. entities [Alu90]. entity [MPN17].

entropia [CCEB03]. Entropy [TV092, VO89, DFHH13, WMW09]. Entropy-Driven [TV092].

enumeration [STTP99, SR90, WCH17]. envelope [GC07]. Envelopes [BMRC98].

Environment [AT94, AD95, ALL99, AA95, BB93, CP97, CLZ02, CS0M10, CCRR92, CHR94, CB96, DKY01, DRB01, GYAB11, KZ96, KC99b, LC90b, LAS97, L19, MHF03, RS92b, RSD94, SG93, SRB90, SS00, WH97, ZL93, AOS10, AKBZ19, BLZ18, C888, CCS06, JWLX11, KVHS07, KSS+07, KK10, LLLY08, LL18, MYY17, MAR05, MLK12, MML07, SS011, SSM+06, VD18, WD13].

Environment-conscious [GYAB11]. Environments [CTD99, CLRW00, CP99, KRW96, KR97, KER01, LTH97, PRS97, PRG88, SSK96, WSRM97, WSA94, ATZ07, BAL05, BPA06, BH05, BSMH08, CTKA17, CLL09, DBC03, DWX10, ECP18, ECLV12, FRM15, FCJG18, FMM18, JS66, KV10, KAS07, KLJ11, KCFP18, KSH12, LHY1, LSH13, LWR+03, LML10, LSCL14, MK08a, NP09, PP06, SJ12, SJ12, SZB16, SL10, SI95, SI11, TIZ11, TG03, WME12, WG11, YT05, YCC05, YWG15, ZLW18].

Ephemeral [AGMS16]. epidemic [AHZ11, LpJS18, MSF13].

Equation [DM90a, RW01, Gao86, JGMY17, LYL08, WJ14].
Equations [IK94, MV94, PSE+01, QOvdG01, TH02, CM03, GGR89, GS91b, SPH13, Ter16]. Equivalence [OO85, CM04, SM92b]. equivalencing [ES12]. era [MBG+17, SC10]. Ercegovac [Ano92a]. EREW [DL98, HS94a, ZK94]. Erlang [CLG+16]. Erratum [Ano92c, Ano93c, Ano96l, Ano00d, BS96e]. Error [Lat98, Par92, WCF94, BBGBC+16, DFHH13, OKW14, PKN08, RIZ90]. Error-Correction [Lat98]. error-prone [DKK+11]. estimates [TDBL13]. Evaluating [AFNT17, Ale19b, BL96, BC01, CLRW00, FW05, HCS+00, HKT94, LR94, MMN+18, RS92b, SS99, TTG95, ZYH94]. Evaluation [ATM01, BPJG92, BS92, BCD00, BM95, CT93, CEF+95, CP01, CP04b, CP91, CP92, DT01, FR96a, FTC00, GGD93, GS96, GS00, HJ90b, HN91, yHY97, JB93, KDZ95, LLS93, LLY93, LP96b, MT95, MS85, MKC01, MB92, MJ01, NBP98, PEC95, PTC+93, RCB93, RNSB96, RKK97, SM92a, SOD94, THBF97, TH02, VBM90, ASHO19, AB13, Bat05, CTKA17, CLCK04, CkLCK05, CC96, CB11, dADC18, DR19, DMS+16, DM88, GRV08, GE85, GS91a, HW03, HBS17, LL90, LZY11, LN+12, MS88, MVBO5, MGRRK14, PMCC18, Sch89b, SWP90, SA11, SoL13, SE15, WL90, WLZ+18, XQ07, XWC+08, YL12]. evaluation [SP90]. exchanging [AKSM08, CDJ+89, QJ05, Sol13]. execution [SP90, executing [AKSM08, CDJ+89, QJ05, Sol13]. Exchange [VB94, WS97b, XL92, XL95, CMR+18, Dim04, ECP+18, HSW04, NKK16, PW16]. Exchanging [GPT06b]. Examination [FL86, SMH91]. examples [FK89]. exascale [APV18].
DeG88, DKRI09, ESCV15, FCC07, GYY+14, GK04, LFS16, LR14, LPK+10, Li19, MSM09, MTL+18b, PP13, PSB+19, uRIL+18, RG06, SS06, WLST16, dKG+10. Executions [LMCF90, FCP+15, KVNV17, RV13], exercises [Suk18], expandable [SSB91]. Expanding [Zia92, RM10]. Expansion [LY12, SL89]. Expected [Ros99, CLL09, SSB91]. Expectation [YZG18]. Expected-time [CLL09]. Experience [FTK14, SH92b, Chi95, LBT19, NGQM12]. Experience [ARM+05, CDH84, GRJ+15]. Experiment [PF04]. Experimental [BJ96, BFG04, CKT11, FCS91, Hag97, HBJ98, MJ01, PTC+93, YMR93, ZHY94, Bad04, CT94, dADC18, GHC+17]. Experimenting [AD95]. Experiments [RS92d, CF88, LYW+16]. Expert [DSW94]. Explicit [CP90, DS02, Fre96, RCG+11, Rao16]. exploited [YCH+10, ZPI06]. Exploitation [PVGG06, VFA17]. Exploiting [CB15, CCK00, DL99, FTM+19, FKL08, FY07, HT90, JBY+05, LKS14, MNB95, NMS93, RGAN18, SH92b, VBF13, WYX13, ZLWL12, CDAN14, GJXZ05]. exploits [GBM07]. Exploration [SDS+18, BKC+15, CKK+13, OT19, TKKH17, TD07]. Exploring [ARP18, LR93, NXX+17, PCM+17, ROB+18]. express [APRA18]. expression [GS91a, WSH+03]. Expressions [GKH96, Mer96, DeG88, DM90b, JK89, LGK+12, MP88]. expressiveness [HdR13]. Extended [BLG01, LWOG02, Rec84, Ei07, LWQW18, YWW12]. Extending [BBCL04, CMR10]. Extensibility [MB06b, LFH+03]. Extensible [FLCB10, HGFF10, ZWL03]. extensions [DPSD08, Oza04, JM00]. external [DO89, JZK04]. Extra [SZ00b]. extracting [BCH15]. Extraction [YB01, CLC+17, HP06, LLS+16, MM15, Pla08, Raj08, WJV07, dAT17]. Extrapolated [DMM17]. Extrema [AFS96, RKS87]. extremal [FSV14]. Extreme [SFT+13, YZW+15].

fabrics [ZRN+14]. face [CMN12, NHO+13]. facilitate [UDD19]. Factor [GG01]. Factored [BSG09]. factorization [CASD18, FHL+15, MVV91, OT19, She06, ZLRP91]. Factors [BP98, EL88]. Faddeeva [CF98]. fail [BCC+18]. fail-stop [BCC+18]. failed [Trå09]. failovers [SI13]. Failure [AAI+15, FCF00, Fu10, JAB12, BKMT14, DGFGK05, FX10, HK05, JKIE13, KV10, LGZ+10, LFA05, MFVP08, PCLP16, YF07, YHWY18b, JKE13]. Failure-aware [Fu10, JAB12]. Failures [ADS01, DT02, VR94, VR95, DGDF10, GPT06a, HRC09, LY10, MR09, RLH03, SCMS12]. Fair [ALH+09, BHLT14, KY02, KNHH18, Tau16, AS19, GNT04, KS03, KDH08, LASS15, SPC+17, SCG10, XWC+08, ZLL14, ZQMM11]. Fair-share [KNHH18]. fairness [Ara13, SHC14, ZLC12]. False [HF96, KG04, LLWC17]. families [FSV14]. family [NS90, ZDC06]. farm [TBZB05]. farms [JTTZ11, MCP+18]. Fast [ABCP96, BC06, BV13, BF97, CK06, CXX+18, Cor93, DP00, DS04a,
DPRW85, EM89, FZC+05, FR96b, GM94b, Gil94, GSC96, GZ97, GJXZ05, HZA+15, HN91, IK94, JNW96, KK06, KSSG14, Lat98, LH09, PH91, PA04, PT97, RHH96, SS03, San98, SR94, SHT+95, SG08, SA08, SDG08, ST05, TPLY18, TF01, ZYY96, YD98, YB01, ZLZ+19, AGMS16, BC05, BBBC12, BFKW13, BHK17, Cal06, Can18, Kep03, KA91, KP05, LLS07, PH16, STS5, TS91, WWW17a, WJ12, XLH18, Yan04, CVK18a, LLCL98]. Faster
[BMM97, GS03a, LS05, CM03]. Fat
[Zah12, CI03, CS06b, ESGQ+11, ESGQ+14, SK05b, YMLP14]. Fat-stack
[CS06b]. Fat-tree
[Zah12, SK05b]. Fat-trees
[ESGQ+11, ESGQ+14, YMLP14]. Fattened
[GMVRGS16]. Fault
[AE95, AM97a, AM95, ABBD14, BXA08, BSS97, BMM97, BW95b, BKMT14, BPA06, BCH95b, CLMRL15, CRV94, CL93, CKN07, CY95, CC94, CDR09b, CF98, DBCF13, FY86, FM99b, GNS09, GRR93, HGC96, HTH02, JBA15, KP00, Lan94, LBT94, LFZ+17, LGG08, LC96, MD01, MMRS98, MPG17b, Pak89, PB95, Pin01, PKD97, PM92, RLS96, SCC92, SS95, UR94, VR95, WIKC97, WW97, Wu94, XCS06, XHZZ16, mYyF92, YBOY97, mYA91, ZYO02, AA14, AA16, ANEA13, AOSM05, ARV14, BB87, BJ15, BDDL09, BPP05, CL91a, CW09, CWL+07, CDR09a, CMT92, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLPJ07, FZ90, FABG19, JBS14, KG10, LCC+05, LHL14, LH05, LGFM17, LC18, LP88, PR06, PL06, PAS15, TCH12, ZVO9b, ZJ06]. Fault-Detection
[CY95]. Fault-Induced
[WIKC97]. Fault-Sensitive
[VR95]. fault-tolerance
[BJ15]. Fault-Tolerant
[AE95, AM97a, AM95, BW95b, BCH95b, CRV94, CL93, CC94, FM99b, HGC96, HTH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, WIKC97, WW97, Wu94, YBOY97, ZYO02, ABBD14, BKMT14, BPA06, CKN07, GNS09, JBA15, LFZ+17, XCS06, XHZZ16, mYA91, AA14, AA16, ANEA13, AOSM05, ARV14, BB87, BJ15, BDDL09, BPP05, CL91a, CW09, CWL+07, CDR09a, CMT92, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLPJ07, FZ90, FABG19, JBS14, KG10, LCC+05, LHL14, LH05, LGFM17, LAC18, LP88, PR06, PL06, PAS15, TCH12, ZVO9b, ZJ06]. Faults
[LT96, WFL98, CP17, ISM07, LLFJ18, PMHM19]. Faulty
[GP97, HIKM94, NSLK99, Pel95, RS96a, Tse95, TL96, Wan01a, Wu02, YTR94, oP00, Che05, DD96, PK04b, SKK91, YTH07]. FCFS
[Ara13]. FDM
[ORR03]. FDM/FEM
[ORR03]. FDTD
[SS11]. feasibility
[MAKW13, RB12]. Feasible
[ESGQ+18]. feature
[CLC+17, DKC14, LLS+16, PLSM18, PFJ04]. features
[CGC16, LMXJ18, dAT17]. federate
[CTCX08]. federated
[SJBJ12, TODQ18]. federated-IoT-enabled
[TODQ18]. federation
[CCTC+10]. Feedback
[MTM10, HWL18]. Feedback-directed
[MTM10]. FEM
[ORR03]. fetch
[AK07]. fetch-and-
[AK07]. few
[Sch14]. FFT
[ABZ95, HR92a, JMS86, JGMY17, RKK97, Tay87, VAF19, WJ14]. FFTs
[BH93]. Fibonacci
[Alu97]. Field
[BA92]. fields
[CDR90, EL07, LdPLC+19]. FIFO
[BCLR96]. File
[FPD93, GL92, HWLR14, KE93, MS96, WDDK09, WMG01, ZLH+18, CTC11, DT11, DLW+12, HOE+09, KYS13, KUA07, LHZ+18, LCM+06, MXSL12, No12, SC04, SZ09, SSX14, Wan06, WZZ+17, ZJ06]. file-sharing
Forward [Lia17, NS95, dOBG+15]. Forwarding [AD10, GS01b, Ana14, HDCM11, KHK18, LWW18, STMZ18, WTB+08, XYG07]. foundation [DHS06]. Foundations [BFL+13]. four [FZ90]. Fourier [CVK+18a, LLCL98, DPRW85, HN91, TS91]. FP [WB94]. FPGA [CNLGRL18, CS17, HBS17, IIH+17, MH18, NSKN17, Pet18, SA11, TYA16, TOR+14, WLCZ15, WIR+18]. FPGA-based [HBS17, IIH+17, NSKN17, WIR+18]. FPGAs [AD12, LdSB+18, MC17, MSSE02, NMS+18, WD18].

Fractal [ASKTZ13, LS06]. Fraction [GP97]. fractions [CR91]. fragment [CZZY09]. frame [SCG10]. Frames [LNA12]. Framework [AGG98, CLRW00, EMP+96, GHSJ96, KZ96, KK95, LAZC00, Sin95, ZM94b, AAA+15, AMU+19, Amm16, AM12a, AC16, AK06, BK13, BA06, BCFF05, BMT12, BGM+08, BJ18, CCA18, CCC+04, CV16, CHX+17, CMPS18, DV13, DMB+03, FGM+03, GRDB05, GM13, GFPC14, HSH10, HDT+05, HRM17, HRH18, KTP17, KKS+12, KL05, KBC+10, LV15, LS06, MCM+11, MJ03, Men18, MBR19, NLB+18, PMAL11, PAG+18, RBN11, RGD03, RW02, ROB+18, SAL10, SMH+14, SGdSS13, TZH+06, TLW18, VS18, WTZW16, WHW+17, WXZ+18, WMG13, YT05, YLB+15, dAT17]. Frameworks [KRS13, KRS14, DAB+14, uRIL+18, UMM+18, ZKZF18]. Fraud [BST01]. Free [BP02, CMS92, CG02, CH92, DP00, HPT02, HS93, KM97, Li92, PA01, RP98, SJ06, SH98, ZN01, AA14, AKB10, ACH18, CB06, DFP06a, Dav17, FKKR16, HV09, HSY10, HA06, JBS14, KH12, LASS15, LW18, MYM10, MBMC19, MKM16, Pen11, SD91, SSdB+10, ST05, ST08b, TT07, VBDRC13, Zah12, dOBG+15]. Free-Space [KM97, RP98, SH98]. free-surface [VBDRC13]. FREP [KR12]. frequencies [LdSB+18]. frequency [MYD+11, RTZ11]. Frequent [AAP01, LT10, YZG18, BMLLC+19]. Frequently [LL95]. Friendly [MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI [KHT+14]. FTN [Seb91].

Fully [Ano18y, Ano18z, BBN93, SWW+17, SR88b, SR90, HH97]. full-access [SR88b, SR90]. full-text [SWW+17]. Fully [BNP02, Fct95, KP00, SJ95, CP04b, DM90b, DTK11a, tH90, SI89, TR08, YME06, LM09]. fully-distributed [DTK11a]. Function [AGG98, HLJ98, MJ94, SB02, ABO+17, BNBR16, LRS18]. Function-Composition [HLJ98]. Functional [AB84, Mah95, SC95, QSL+08, WMY+17, WD18, YJB91]. Functions [TG07, VR94, AMT13, CMR+18, MM15, RMU14, SJVRVVS19, WD18]. Fundamental [GL92]. Funnels [SZ00a]. Further [PMV06]. Fusing [TVT96]. Fusion [AMB95, STN92, ECP+18, QSL+08]. Future [AE88, KS95, MNK12, PJ18, ACB+15, ECVL12, LY13, MKN14, PSC+16]. Fuzzy [BCF97, DFL017, TZI11, KKTZ13, KC04, NC09, SMO14, ESCV15]. fuzzy-based [NC09]. fuzzy-decision [KC04].
G [GDL+11, GA18]. G-PaMeLA [GDL+11]. G/M/1 [GA18].
G/M/1-type [GA18]. G2 [KTF03]. Galactica [WL92]. Gallop [Wei98].
Game [AaJS01, BS00, KK10, JTC+18, Sch89a, YpGyLIC13, Zep91].
Game-Theoretic [AaJS01, PC11]. Game-Tree [BS00, Sch89a]. Games [DKY01].
gamma [KMC16, VR86]. G-PaMeLA [GDL+11]. G/M/1 [GA18].
G/M/1-type [GA18]. G2 [KTF03]. Galactica [WL92]. Gallop [Wei98].
Game [AaJS01, BS00, KK10, JTC+18, Sch89a, YpGyLIC13, Zep91].
Game-Theoretic [AaJS01, PC11]. Game-Tree [BS00, Sch89a]. Games [DKY01].
gamma [KMC16, VR86]. G-PaMeLA [GDL+11]. GA18. Games [DKY01].
G/M/1-type [GA18]. G2 [KTF03]. Galactica [WL92]. Gallop [Wei98].
Game [AaJS01, BS00, KK10, JTC+18, Sch89a, YpGyLIC13, Zep91].
Game-Theoretic [AaJS01, PC11]. Game-Tree [BS00, Sch89a]. Games [DKY01].
gamma [KMC16, VR86]. G-PaMeLA [GDL+11]. GA18. Games [DKY01].
G/M/1-type [GA18]. G2 [KTF03]. Galactica [WL92]. Gallop [Wei98].
Game [AaJS01, BS00, KK10, JTC+18, Sch89a, YpGyLIC13, Zep91].
Game-Theoretic [AaJS01, PC11]. Game-Tree [BS00, Sch89a]. Games [DKY01].
gamma [KMC16, VR86].
[PL03a]. **Goal** [CJ17, XLPL19]. **Goal-based** [CJ17]. **goals** [TdAR18].

Godson [PTK+13]. **Godson-T** [PTK+13]. **Golgi** [FTM+19]. **GOM** [YLB+15]. **GOM-Hadoop** [YLB+15]. **Good** [BEE00, DP99, SK94]. **Google** [DKC14].

Godson-T [PTK+13]. **Golgi** [FTM+19]. **GOM** [YLB+15]. **GOM-Hadoop** [YLB+15]. **Good** [BEE00, DP99, SK94]. **Google** [DKC14]. **Goscinski** [BCC95].

Goal [CJ17, XLPL19]. **Goal-based** [CJ17]. **goals** [TdAR18].

Godson [PTK+13]. **Godson-T** [PTK+13]. **Golgi** [FTM+19]. **GOM** [YLB+15]. **GOM-Hadoop** [YLB+15]. **Good** [BEE00, DP99, SK94]. **Google** [DKC14]. **Goscinski** [BCC95]. **Gossip** [FCML13, AS18, FM07, LT10, WWW17a]. **Gossip-based** [FCML13]. **Gossiping** [FV97, GRV97, SGS08]. **gossipings** [KLC05].

GPGPU [DFST13, KWZ19, OGRV+12, SJVRVVS19, WMG13, YPCW16]. **GPGPUs** [AFK14, DKK18]. **GPS** [AKBD10, LWW18]. **GPS-free** [AKBD10, LWW18].

GPU [YJL16, ARP18, BCMV15, BDRB14, BFKW13, BHL13, CSL15, CMMT13, CMR19, CW15, DV13, DBA+18, DFHH13, DCA+15, Eme13, FSV14, FSV17, GMMP12, GLW14, GKS15, GMS+13, HVW16, IHH16, JGMY17, JdSJC+15, KP17, KNN13, KC17, LR14, LLKY13, LST+13, LPLFMC+12, MB13, MRT18, NFHL13, PDP17, PDB13, RV13, RS19, Rn11, RMU14, ROB+18, RRS+08, Sch13, SS11, SCM13, SDG17, SA08, Sk16, SDG08, TH11, TSD08, TRS+12, TYA16, VBDR13, VLW18, WLL16, WD13, WH17, XLH18, YLL17, ZMCP11, ZHH15, ZWQ+16, dSAJ15, dMS18].

GPU-accelerated [DCA+15, Eme13]. **GPU-based** [BCMV15, BDRB14, BFKW13, DBA+18, GMMP12, PDP17, Sk16].

GPU-Investigations [Sch13]. **GPU-sorting** [SA08]. **GPUTDirect** [ARP18]. **GPUs** [ASES15, AVAH18, BBBC12, BBR13, BCK+13, COV13, CGN+13, DP16, GOH+13, IBP08, JM15, LMGGLG17, LIZ+19, LWB+16, MBW16, NSK17, NHO+13, PVRS17, RGU08, SHT+08, TH13, ZSW14, ZGG+14].

Graceful [AA14]. **Gracefully** [BBR94, CGA98, LH92, RCB93]. **Gradient** [Bas97, BM08, GLW14, LR14, PB09]. **gradients** [McA89]. **GrADSolve** [VD04]. **Gradal** [ADDP19]. **graduate** [APV18]. **Grain** [FR92, LFA96, Mah95, NS97, SA93, CT94, FW05, GSWW04, PL03b, TKHG04].

Grained [BR96, CDR99, CL200, DFRCU99, HK96, PY96, SR97a, SR97b, WD94, BM04b, CHLL18, FSD04, GVA+08, IK87, IBP08, Man13, MPV12, ZCF+17]. **Gram** [ZLRP91]. **Grammatical** [RB17]. **grand** [SI14, SAB+92].

Granularity [CDH84, WCL+13]. **GRAP** [FGL+11]. **Graph** [AyJ93, CCM01, CHGM01, GJP96, HJ90c, Kar95, KK98b, KCS98, KAA99, Lat95, MJ94, OSZ98, RW97, RW93, RLS96, SOAKMA02, TVS97, TLW94, WCE97, ZW00, BK+15, BDQ86, BCK+13, BM08, CM03, CSJ+13, DeG88, DCA+15, GHC+17, HLM+90, KSSG14, KL15, MPZ09, MMS09, NXY17, PK07, PS14, RGA18, Ros89, SKC15, SW91, SGR03, SMT15, WCC02, WCH+17, YFBY17, ZCS+18, ZNQ93]. **Graph-Based** [CHGM01].

graph-partitioning [GHC+17, SW91]. **graphene** [KR14]. **graphene-CMOS** [KRM14]. **graphic** [SKH15]. **Graphical** [CMT93].

Graphics [BHS13, DDGK13, ATDH13, BK13, CLA+18, CBM+08, KL08b, KME09, PYP+10, SCB08, SIY14, ZMCP11, Eme13, GLGLBG12, YL12, YJL16].

Graphs [ANS97, AKPT99, AS96, AKP95, BS97, BP98, CP98, CA95a, CDF01,
Grasping [KR17]. Gray [BVB02, HHM94, HRJ94, JH94]. Gray-Scale [HHM94]. Great [KF90b]. Greater [Ebe94]. Greedy [KNS06, BGM +08, HDJ08, KHW13, LLS07, STMZ18, Cho90, dOBG +15]. Green [DAPR18, AG12, BFH +17, WCL +13]. Grex [BK13]. Grey [FGL +11]. Grid [AKPT99, BR02, BAK +03, Hu17, MD13, SDG08, TF01, AAH17, CP10b, CCEB03, CGW +03, El07, FGZ03, JdSJ +15, KRKS11, KV10, LBE03, LFH +03, LL12a, LLWC17, LB09, MC03, PF04, SMB10, SZL10, TLQS12, VD04, WH17, ZV09b, dKG +10, AOS +05, ABCM07, BAS06, CS06a, CTT08, CCN06, DBC03, DW12, ED05, GBA08, KTF03, KVHS07, KKS08, LCC +05, LSH +13, LLY08, Li05, LL07, LT05, LS10, LR05, MCT06, RAB08, SJB12, SV08, SAOKZ05a, SAOKZ05b, SXZ06, SSM +06, SF06, TYH09, TMM06, TD07, VPHML06, WS06, YT05, YWD08]. grid-aware [FGZ03]. Grid-Based [BR02, CP10b, VD04, KKS08, GBA08, LLY08]. Grid-computing [BAK +03, SAOKZ05a, SAOKZ05b]. Grid-enabled [KTF03]. GridBench [TD07]. gridding [GOH +13]. gridding-accelerated [GOH +13]. Grids [CCM96, HKMU98, HOS94, AFK07, ARDQ18, BMT12, DJH11, GVBB13, GRDB05, GM14b, JV09, LKS14, LL10, Mit07, PHS04, SMO14, YZ15, AAD10, ABCM07, GTN +06, GJA08, Ngo06, SNCPI2, TZ06, VB08, W003, WLL08]. grooming [FM +08, W008, WCL +13]. Grøstl [ABO +17]. ground [BFK04]. Group [CZW +18, KKLJ14, LLW12, GVG00, CJDC10, CHC05, Dim91, EDH +17, LC14b, LH08, dAMFD13, MM07c, TC13, XO05]. Group-based [CZW +18, KKLJ14, TC13]. group-shared [LHT08]. Grouping [CPW98]. Groups [Oru87, WLD00, ARDQ18, CHC05, GCS06, LKM12, MS05, Ros89, WLZ +18]. Growing [CRFS94, WLR90, IZ12, MGG03, OGRV +12]. growth [WCKD06]. GSM [TM06]. GSPN [CCM92, CCM01, SM92b]. guarantee [JM14, MZZC12]. guaranteed [HWWH08, LNA12, LNL17, NGQM12, PY09a, WCW017]. Guaranteeing [Sch91]. Guarantees [MS00, OY00, ESCV15]. Guessing [DKY01]. Guest [WW03, AP93, AL99, AB03b, An01j, An01k, An02i, An02g, An02h, An02i, BD00, Cas93, Che92, Che93, DOP98, ES97, GGB93, GC95, Her92, JW94, Kr92, Lin93b, MC93, NT90, OW01, PN97a, PN97b, Pan09, PA96, Sch90, SH92a, Sto90, TFV +15, BG90b, TY95, WC05]. Guidelines [An000d, Ros99].

h [CP04a]. HA03094L [An04e]. Hadoop
[FRM15, GYY+14, HWL18, HWLR14, YLB+15]. Half [RS94]. Half-Duplex [RS94]. Hamiltonian
[DP98, Hsi04, HBA15, LSC00, LLFJ18, Nik04, Wan01a, WCC02, YTH07]. Hamiltonicity [HTHH02, Ste17]. Handheld [WL04]. handle [RK18].
[Las12, Las13, XLL15, BKS05, CL03b, KWZ19, LpJS+18, XQ07]. Heterogeneity-driven [XLL15]. Heterogeneous
[ANT02, Ano97k, BSS97, BPR99, BSB+01, CP97, CA94, CET+95, DAYA02, DBP94, EKN17, HS94b, HC97, KL01a, KRM14, LAS+97, LHBB+01, MAS+99, MSd95, MP06, NRS95, NDZA99, PP92, SC91b, WR97, WSRM97, WMC+18, Won99, YZS96, ALM+16, AAD10, Amm16, ALF03, BKC+15, BD05, BCFF05, BR08, BRP03, BKC+17, BEN12, BH05, BSMH08, BSS+13, CSW08, CCK+08, CCK11, CDR09b, CGW+03, CJ17, DK08, DK11, D06, FMR05, GQZ18, GRV08, GNT04, GZY14a, GWL94, GMX07, GAOHG17, Hus17, JST12, KHN17, KUA07, KyLPC17, KSG13, KSS+07, KAS07, KN18a, KN18b, KMS+06, LK13, LWC+18, LR06, LLL06, LLKY13, LMR05, LLL2b, LDL+14, LLY15, LNAL17, LLCL19, LPX05b, LV15, LFGM17, LLS07, LZX13, MGSG12, MV05, MTS90, NDP13, NFHL13, ND12, NP09, OPR18, OJP+18, PKN08, PKN10, PP13, PSB+19, PTA08, PLA08]. heterogeneous [QJ05, QGL+09, REK10a, REK10b, RGAN18, RN04, SSFP11, SSM+16, SS11, SX08, SCS+08, SCMS12, SZMK13, SHL+13, SSM+06, TLL10, TLLV10, TFM15, TG03, UAK06, VLB18, VBF13, WQL14, WTWZ16, WSG91, WJ12, WG11, WYTX13, WJ14, XLHT13, XLPL19, YLL17, YH07,
ZMG+16, ZTFK16, ZLWZ18, ZSCX18, ZHLQ12, VAF19, VBF13, VFAD17. **HeteroMPI** [LR06]. **Heuristic** [BA92, DDD98, EHNN95, KLZ97, XH93, DK11, HS06, KJD03, KKS+12, PKN10, PM05, SWP90, VB08, YFBY17]. **heuristic-genetic** [DK11]. **Heuristics** [BSB+01, GY92, GJP96, IAS+92, KUA07, TSC01, AKSM08, JST12, KA08, LLS07, ZHO03]. **heuristics-based** [KA08]. **HEVC** [Lla17]. **hexagonal** [GSSS03]. **HHN** [YP96]. **HiCOO** [YQTV12]. **hidden** [HB11]. **Hiding** [HF02, WL92]. **Hierarchical** [AGF94, Buc92, BM95, CAB94, FR96a, HR92b, HR92a, yHY97, KZ96, LJ00a, MS00, MD13, OM90, SHT+95, TM06, TJ92, Taa84, TW89, TTH12, VSIR91, WHT00, YQTV12, YP96, AAh7, AGMS04, BJS18, BMT12, BAS06, CkO04, De91, Dr19, DM04, EDH+17, GHy10, IZ12, LK13, LTL06, RH05, RR05, SS05, TLQS12, WCWO17, WLL08, ZZ90, dSS11]. **Hierarchical-Memory** [VSIR91]. **Hierarchies** [VN93, BW89, DTK11a]. **hierarchy** [Ale19b, Pad91, WYTX13]. **High** [ABDS02, BJ99, BBH+97, BYG+18, BN99, CLA+18, CY99, CD98, DS02, DYL+12, DB18, FGKT97, FC14, FM99b, GP93, HES10, JSCB95, JLRA97, KMKD97, KS95, KR513, KRS14, KRS01, LC97, LS01, MR94b, MBG+17, Nee17, NKC+97, NTC03, PFO8, PVG09, PBB+17, SWHB17, TF92, TMM06, TP9+19, VFAD17, XMMD17, AM13, AR17, AB03b, AGWY11, BS07, BAT+19, BDDL09, CCC+04, CBP02, CVK+18b, CTCX08, Cuz11, Cuz13, DK08, DB08, DKK18, DF12, DAB+14, DMS+16, FHL+15, FG05, Fu10, GOH+13, GTN+06, GMSS+11, HOE+09, HRG+11, HCZ04, HT90, HVW16, ICQ+12, JBY+05, KVN17, KSB11, KME09, LWC+18, LMSK18, LWR+03, LSXX14, LJZ+19, LB18, LAC18, LB07, LZSL06, MSGS+13, MZC18, MG09, MLK12, Nap90, No12, NR5+99, PK07, PGK18, SPRG+12, SD91, SC04, SAB+92, SA11, SR91, SGdSS13, VAS+13]. **high** [WRW13, ZW13, ZWQ+16, dAT17, MMVL11]. **High-Availability** [LS01, Fu10]. **high-dimensional** [HT90, PK07, WRW13]. **high-end** [FGP05]. **High-Level** [BBH+97, KRS13, KRS14, BYG+18, CCC+04, DMS+16, SGdSS13]. **high-order** [KME09]. **High-Performance** [BN99, CY99, FGKT97, JLRA97, KMKD97, KRS13, KRS14, KRS01, PBB+17, TP9+19, NTC03, AB03b, CBP02, Cuz11, Cuz13, DF12, FHL+15, GMSS+11, HRG+11, HCZ04, ICQ+12, JBY+05, LWR+03, LSXX14, LJZ+19, LB18, LB07, MSQS+13, NR5+99, PGK18, SD91, SC04, ZW13, ZWQ+16]. **High-Priority** [TF92]. **high-radix** [MG09, VAS+13]. **high-resolution** [GOH+13]. **High-Speed** [BBH+97, SR91]. **High-Temperature** [SWHB17]. **High-Throughput** [FM99b, CLA+18, BS07, HVW16]. **Higher** [GSSS03, HS17, AM06]. **Highly** [BDHF90, CAB94, DF17, JKH94, KHT+14, MD01, NKC+97, WH93, WIKC97, AF13, ATH91, GV86, SM08b, STM15, Ter16]. **Hint** [CK13]. **Hint-based** [CK13]. **Hints** [GL14]. **Histogramming** [BJ96]. **histograms** [CL14]. **historical** [SFT04]. **history** [WBTM09]. **HLA** [DB11]. **HLA-based** [DB11]. **HLR** [FCF00]. **HLS** [MH18]. **HLS-based** [MH18]. **HMFS** [LHZ+18].
HMIPv6 [CKML12]. HMVFS [ZLH +18]. Hoang [Ano92c]. Hoc [Ano01e, BDF01, GS01b, LAZC00, Pat01, RBP +11, TM10, AP03, AH11, AH12, ALF03, BFG +03, BM11, BGLA03, BOP06, BN03, Bon03, CNS03, CW05, CYZ06, CDCD05, DW06, DB +03, DB08, EBE08, FCW11, FVCL05, FGL +11, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LR03a, LPX05a, LW06a, LHW14, LC14b, LR03b, LHT08, NMM +14, OSL05, OM10, OMSGNSG05, SNCP12, SSM +06, SGS08, SKMM04, SJS11, TC13, VA03, WTB +08, WGS08, WBTM09, WHS +18, XHG03, XWC +08, XG03, YC04, YSS11, YYW12, ZMC06]. HOG [RBG17]. hole [LZC11, PSC +16, SGAC14, YDZ +18, dOBG +15]. holistic [WL10, ZHH15]. home [HRM17]. Homogeneous [LS97, BM17a, CRJ10a, GHS86, OOSGVG +16, SCJ +08]. homology [DKKV15]. homonymous [AAI +15]. honeycomb [BPRS04]. honeyfarm [JXW06]. Honeypot [KMMZ06]. hop [BSW07, FCW11, FCZ +12, JLWX11, JM14, KHK18, MAM05, MPV12, NC09, RFS +12, RB12, YMGO1, ZMG +16, CSW +17]. Horizons [BP95]. host [LLWC17]. host-based [LLWC17]. hosting [SSVC10]. hostload [DKC14]. Hot [LKK94, NS95, MB19, TY90a, GPHS19]. Hot-N-Cold [GPHS19]. hot-spot [MB19, TY90a]. hotspots [MLG05]. Hough [BA95, CP91, Fer93, GZ97, JS94, SSL04]. Householder [BDG +15]. HPC [APV18, CKV +18b, ECLV12, GYAB11, NKS17, NC13, PCLP16, uRL +18, RBA +18, RMHR17, ROE +18, SCB09, WMES12, YFS +15]. HPF [BCF +94, CA96, HJ01, KHS96, SSL04]. HTM [PB19]. Hull [DFRCU99]. hulls [GS03a]. human [CWZ +18, WDS +18]. hunt [MP15]. Hut [SHT +95]. HW [RBG17]. HW/SW [RBG17]. Hybrid [BJL18, DBA +18, Dah99, DR18, FA07, Gao93, LWC14, NBM93, OS93, PA15, VD18, YS11, ZHL +18, ALM +16, AC89, BAMM05, CCQ +06, CB15, CJ17, DK11, FX06, GLC14, HZL18, JAB12, KS18, KSJC17, LY13, LH +18, MBS +12, MMK +11, No12, PARB14, SC +08, SHLN09, SSL04, SA08, TY17, WLL16, WHW +17, YLL17, ZFT +18, MWCL +17]. Hydrodynamic [HC97]. Hydrodynamics [PAH +98, VBDR13]. Hyperbolic [SSK96, SHRM19]. hyperconcentrator [CL90]. hypercontexts [LM05]. Hypercube [AGF94, AM93, BKT95, BC94, CS93c, DP98, DMSH90, DR90, DFN +94, FAM96, FP93, GGD93, GT97, GBG93, HGC96, IK93, IK94, JR92, JB98, KB96b, KM91, Lan94, LH92, LL00b, LEB98, Man94, MP93, MW95, MYD95, NSL99, NT93, Nas94, OM90, RS94, Raj96, SY04, SCC92, SY01, Sto90, TLW94, TL06, TC92, WIK97, Wag93, Wag94, XMN92, YP96, Zia92, Cap87, CSM06, CS10, DE91, Efe91, EAL90, ERS90, Joh87, KAP90, LEN90, LSS88, LS91, MVM04, MAR87, RS90a, RS90b, RIZ90, SW90, TMK +17, TS91, Wag89, Yan04, ZLR91, YN92]. Hypercube-Based [Zia92, DE91]. Hypercube-Connected [LH92]. Hypercubes [AD95, AERBL92, Ann94, CL93, CCCM96, CS95a, CCR94, Efe96, Fag92, FM96, Fra92, GP00, GH93, HM01, HOS94, Kav93, KF95b, LH92, LBT94, LW95, LT96, Moh97, OD95a, OP96, Pel95, PM92, RS96a, RJMC95, SHL95,
SR95, TT98, WW97, Wan01a, Wu94, WFL98, YTR94, BG90a, BM04a, BOS+91, BL89, CL91a, CL91b, Che05, Ede91, FT04, GT04, GNW03, HNSA07, Ho91, HRJ94, LW90, Lai14, Lai17, SS89, Var91, WIB12, Wu85, Wu03, XCS06]. Hypergraph [DKUC¸15, ACU08, CBD09+09, DHK04, KJD03, TK08]. hypergraphs [STA12]. Hypermeshes [OK01, Szy95]. Hyperoctrees [DFN94]. Hyperplane [HS93]. Hyperreconfigurable [LM05]. hyperspectral [PVPM06, Pla08]. Hypersphere [AM93]. Hyperspherical [RLP14]. Hyperstar [AAD98]. hypertree [LTD93]. I-Caching [MM93]. I/O [AW95, CkLCK04, CkLCK05, Cho93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, EH01a, GGD93, GFPC14, HZZ+19, JSCB95, JSWB92, LTH97, MLG05, NSSS99, No12, WHW+17, WLWW09]. I/O-Intensive [EH01a, CkLCK04, CkLCK05, HZZ+19]. IaaS [LQM+12, NC13, NKK16]. IBM [ASH+01, BAHP01, BR95b]. IC [CMR10]. IC-scheduling [CMR10]. IceCube [AAA+15]. IceProd [AAA+15]. ICS [HMY+18]. ICT [CTS17]. Id [HCAA93]. ideas [Sch14]. Identification [CS95b, EBE08, FCC07, GSASA19, MMN+18, ZAAB17]. Identification- [CS95b]. Identify [XYG07]. Identifying [HS03, LT10]. Idle [CW93, CM92]. idling [CFI+18]. IDOS [BA01a]. IEEE [Ano93a, BCD00, FA07, HB11, VHH08, ZBR11]. II [HR92a, KHT+14, RLA+17, SM014, SAOKZ05b, SR97b]. III [CP10b]. ILU [SZW05]. Image [BJI6, BM95, ELS94, HSJP87, HC95, KSL85, KC99b, LWY97, MWL00, MG98, NEG85, OS98, RS90a, RG87, SR94, SD88b, WS95, ZM94a, CDJ+89, CCN06, GSWW04, HLBM16, IK87, Kep03, KM03, Lee91, LMSK18, LLS+16, MG03, P190, Pfe90, Sto87, SA90, UAPM07, Wan07, WRHR91, WJD91, WGCZ09, dAT17, FC14]. Image-Processing [KSL85, SD88b]. Image-to-Mesh [FC14]. imagery [PVPM06, Pla08]. Images [SYO94, Ar090, CL85, DH91a, NAK04]. imaging [KDO+13]. Immediate [Ksh12]. immersive [MBH+08]. immune [HD10]. Impact [But92, Kel00, Tze91, YAA10, GSWW04, HHS12, HRF+11, ML05, RBP+11, SFT+13, SYU07, WCF14]. Impacts [PCX+11, PCX+14]. IMPATIENT [GOH+13]. Implementation [ABGV11, AS95, BAHP01, BHS+94, CP91, CP92, CS95c, DM90a, DBKF90, EP90, HS97, HBH93, KM91, MSS00, NT93, NSP02, OS98, OP98, PAJC97, RL02, RW01, SD10, Shu95, SM00, Ski96, SE15, SOG94, TQO92, VB90, XMN92, YB01, ADV14, BFTV87, BG99, CEGS07, CP10b, CPW12, CPO+03, FGG08, GKS15, Gro85, HES11, HVW16, JK89, JM15, KHT+14, KTF03, KA91, KP05, ML89, MCAS12, MP10, MML07, MRT18, OO05, OGRV+12, PLD87, SM08b, SA11, Sol13, SMKL93, TR89, Tay87, TdAR18, XWC+08, YÖ11, dIAMCFN12]. Implementations [DT01, KL84, SAC+98, WPKK94, BCM06, BRPR06, GN509, ICQO+12, Tát11, TYA16, YBM13]. Implementing [BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17]. Implications [AH94, BS96a, GTN+06, HKH+18, MT96, MG93, SH92b, TSA97]. Implicit
Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. impossibility [AP16]. Improve
[BAM93, Fre96, HWL18]. Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. impossibility [AP16]. Improve
[CB02, DS95a, SKH96, CDR09a, CSW+17, GLC14, VRM10]. Improved
[AM97b, AS91, CLZ02, Che05, CP10b, DL98, FT04, GJP96, HSH10, JR95, KLC05, Mi99, PB95, TC13, Ts07, Wor93, Ara13, Bad04, GMVRGS16, TDC05, dIAMCFN12]. Improvement [yCM98, IAS+92, CZZ+17]. Improvements [GCB+00, WSS93, DFS08]. Improving
[AM13, AHG12, CLG+16, CRWX12, CKWT17, CAF+11, Dah99, Dk04, GT02, GYY+14, GP05, GMM00, HKH15, Kan05, KZ11, LTL06, MBR08, SLKK12, WTB+08, AA10, CCK88, KW19, LBT19, SAL10, SK11, YF09, MML+17].
IMSuite [GN15]. In-Memory
[SLL18, LLL+18, HZ+18, VETT18, ZKZF18]. in-network [BCO+12, JF12].
in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based
[BG12, YAA10]. inclusion [Kak15, RFPAG08, dMS18]. Incomplete
[OD95a, PK04a, SCD99, TC92, CASD18, GL14]. Incompletely [BSM90].
inconsistency [Ran89, TK07]. Incorporating
[AISS97, VWH96, WTY+18]. increasing [RS08]. Incremental
[ESCV15, ZN01, LY08, LRS18]. incrementally [SSB91, YC12].
independence [GK10]. Independent
[BSB+01, Ger98, Hg97, MAS+99, NMS93, PS93, WFZJ12, AFD+11, AK06, AY09, CL91b, CFJW13, EB13, HAC17, Li06a, LH09, LB09, LLS07, PDB13, SSM+16, SCC+12b, ZW05, SSM+07, WCF14, WBI12, YWD08].
independent-gate [WCF14]. independently [XCH08]. Index
[Ano92b, Ano93b, Ano93c, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99d, Ano00b, Ano00c, Ano01f, Ano01g, Ano01i, Ano01h, Ano02c, Ano02d, Ano03a, Ano04b, Ano04a, Ano05, Ano10a, Ano10b, Ano11j, Ano11k, Ano12n, Ano14f, Ano14g, Ano15k, AS19, KHS96, SSHC00, Ano03b, KN18a, KN18b, LSZ+15, PCL16]. indexes
[OC07]. indexing [FKJG08, GZ08, WIR+18]. Indian [Nec17]. indirect
[Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent
[WCYR08]. Industrial [MS99a, HMY+18, KKTZ13]. Inexact [Pia13].
Inexpensive [MT93b]. Inference
[Av93, FBRW03, PZ06, RFP+19, SHK19, XP10, YW13]. inferencing
[MK08b]. InfiniBand
[ARP18, ASD09, ESGQ+14, ESGQ+18, GRJ+15, PK05b].
InfiniBand-based [ESGQ+14, ESGQ+18]. influence [MCS14]. Influential
[TAS+01]. Info [NTN12]. Info-based [NTN12]. Information
[Bal90, BS96a, CY99, LA93, Oza04, AHZ11, AH11, Ana14, CKN07, DB86, JLWX11, KTP17, LY91, LSC14, MP15, Pla08, Psa96, Raj08, RFPAG08, SHK19, SSS07, SFT04, TKG+17, XCS06, XQ04, YDZ+18, ZFS07]. Informed
interdependent [SNCP12].

Interdisciplinary [NKSA17, CCE+17, Hua17]. interest

Interdisciplinary [NKSA17, CCE+17, Hua17]. interest

Interest-Intended [CTC11]. Interface

LAD [DFP06b]. LaDAR [YWAT13]. Lagged [Alt97]. Lagrange [Goe94, SAOKMA02, ZCC92]. Lagrangian [Kao4, BHLT4, Kao4]. lags [LY91]. Lamport [Lo92, TPLY18]. LAN [HWW96]. LAN-Connected [HWW96]. Lanczos [Bar97]. Landmark [XHG03]. Language [BCD95, BBH+97, BN94, BHS+94, CC91, DRST02, FCO90, FC95, FKKC97, FMW+94, LS85, Chi95, ESA03, JWH+17, LMY+11, MRS+14, PLD87, Pe90, RK18, RSW91, ESA03, LT14, SBK90]. Languages [BS90, KBC+01, KRS13, KRS14]. Large [ABDS02, AFG+19, Ano92c, BP01, BMCP98, Efe96, Fag92, Gk98, Gk93, Jg9a, Lk98, Lm9a, Ok01, PTZ06, Sr95, Sm04, VN93, WRC+02, WBR13, XMMD17, AM13, BMc+08, BKc+15, BA06, BMF05, CC16, CS06a, CLL17, CTKA17, CVJ09, DV13, DB11, DBCF13, DHK04, DLW+12, HRC09, KES07, KSSL16, KSJC17, KBC+10, LGZ+10, LLY08, LZY11, Lnc04, Lnc18, LWC14, MYM10, MBMC19, MVP17, NAB+11, PP13, PB19, PDB13, PK07, PLK+18, RW02, SS17, SM15, VM03, WCO17, XHY07, YHR07, YO11, ZV09a, ZVL11].

Large-eddy [SM04]. Large-Scale [ABDS02, BMCP98, Lk98, Ok01, VN93, AFG+19, WR13, BMM+08, BMMF05, CC16, CLL17, DB11, DBCF13, DLW+12, KES07, KSSL16, KBC+10, LGZ+10, LLY08, LZY11, Lnc18, LWC14, MBMC19, PB19, VM03, WCO17, XHY07, YHR07, ZV09a, ZVL11].

large-size [CVJ09]. large/irregular [AM13]. Larger [Mahr95]. largest [Dnh90]. LARPBS [Dr90]. Last [Tay02, DMI+19, FABG+19, RFPA08, SS17]. last-level [DMI+19, RFPA08]. Latency [GS00, HF02, KUFM02, LDZ+14, Mr94c, MG91, RJY96, THG15, ZYH94, ASA18, CRD12, CM12, DAV17, IS06, KS03, MS19, NCB+17, PRHB06, RM11, SLKK12, SLZ+19, TVT+17, WL92]. latency-tail-tolerance [SLZ+19]. latency-tolerant [NCB+17]. Latency-Tolerating [GS00]. lattice [AVAH18, GMS06, IBP08, WCO+09]. law [NZ17, SC10, CN14]. Laws [FLS+97, SHRM19]. Layer [BNSP99, DDo+18, KNS06, PKW+10, WCL+13, YWWZ19, dLAMCFN12].
Layered [DDD98, SSK96, CI03, LHF91, LL12a]. Layers [ZAW94]. Layout [MB96a, KMC16, LGK+12, MLG05, Str12]. Lazy [GSC96, MYD95, DS04b].

Learning-TCP [BM11]. Leashing [DHS06]. Least [CB95, HLS03, KAP90, BBd90, SMKL93, TBZB05, XBO97]. Least-Mean-Square [XBO97]. LED [MLW+97]. Lee [BVB02]. legacy [LWR+03]. Legion [LFH+03]. Length [BL94, KP17, MP08]. lengths [KIH15]. LEON3 [TaAR18]. Let [CVK+18b].

Level [AC16, BBH+97, BSS97, CD98, GS98, HKT+91, HWW96, Kav93, KOW97, KRS13, KRS14, KL94b, MHC95, Qia97, RP95, SSHC00, SBB90, AYO9, ACU08, BBH+17, BYG+18, CCC+04, CLMRL15, CC87, CTX08, DMI+19, DAB+14, DMS+16, FAG+19, FLCB10, GAC+17, HES10, IKS87, LC14a, LPLFCMC+12, MAJ10, MEMEHI17, OWK14, OMT+17, PRHB06, Pe90, Ren11, RPAG08, SS17, SGdSS13, VD04, WCKD06, WMES12, YSL08].

lifting [IIH16]. lifting-based [IIH16]. Light [RGVB00, Koc91, PR12, Wan06, WZZ+17, ZFT+18]. light-trails [PR12]. Light-Weight [RGVB00, Wan06, WZZ+17, ZFT+18]. Lightweight [HS00, MSF+13, CL09, KP17, Kim17, MP10]. like [CP10a, CTC11, FR96b, GL90]. Limit [MO97]. Limitations [BKS91, LS97].

Limited [yHY97, LP96a, LK98, BKS05, DW04, SSGG18, VS16, WTB+08, Zsa16]. limits [DW04, dSS11]. Line [BDKM94, BMMS01, DGBN14, LTY96, RR95b, Yen01, BS92, DMCFCM03, DJ98, EL88, GH98b, GC07, KM88, LHK03, SSL04, SL90, ESGQ+11].

line-sweep [DMCFCM03]. Linear [Bah00, BBM+02, BMM97, BC95, CDH84, CCC92, DVW94, IPK85, IK94, KL01a, KF95b, LP97, PM96, Pov99, RFM94, RS92b, ST89, TBVP00, ZCC92, dR09, BGH+03, BAH04, BPP05, Car90, CM03, CMR19, CEQS07, CP10b, DS04a, Dj06, FHL+15, GPT06a, GRV08, Gao86, GS91b, HR89, ICQO+12].
[Joh87, KKV105, KT89, LMXJ18, LWXX19, LKD14, MP88, MP87, MVB05, MRT18, NCTT09, TPMS15, Ter16, XYZW14, YTH07, YÖ11].

linearizability [KKW17]. Linearization [FZVT02]. Linearly [BBd90, PB90]. Lines [HKMU98, DJDK19, Wri91]. Link [GDP08, MLW+97, SJS11, VR94, VR95, WFL98, FCZ+12, LST17, MCAS12, MVP17, RH05, SW90, WTS03]. link-bound [SW90]. link-selection [RH05]. linkage [CPO+03]. linked [Han89, HA05, ST08b]. Links [AaJS01, KJ84, RS94, WW97, Wan01a, AGMS16, KPR88, SHK19].

Linpack [Num07, Num08]. LinuX [LACJ18, BP01, LAC18]. Liquid [SWHB17]. Lists [BBH+98, SP96, SGS99, TLLL10, FFp14, Han89, LPX05b, Vis87, WLL16].

Load [Ano97j, BEE00, BM08, CS93a, KGV94, SH92a, SHT+95, SB97, SBAM96, TSHH01, TT98, Wan96, WS97b, XYKA08, XL92, XH93, XL95, ZLP97, ZXP09, ZM94b, vS91, AES11, AGMS04, ACCP12, ASES15, BCV01, DMB97, DLLX97, DSW94, Ee96, EE05, FMP98, FLS+97, FM99b, GK98, Gil94, GM96, HS97, HILLY95, HTL99, HO94, HC97, JR92, JW89, KGV94, LH94, LHVW95, LT94, LL98, MDD97, MP96, NSL99, NFEG97, OB98, PB99, QY94, SBÇ12a, SH92a, SHT+95, SB97, SBAM96, TSHH01, TT98, Wan96, WS97b, XYKA08, XL92, XH93, XL95, ZLP97, ZXP09, ZM94b, vS91, AES11, AGMS04, ACCP12, ASES15, BCV01, BFRPr06, BD04, CSWD+03, CBD+09, CV09, Cho90, CRC+02, Cyb98, DB11, DW04, DM94, GRV08, GLC14, GCO5, HJ90a, HLM+90, IC05, IS06, JL05, JL11, KNNH18, KKS08, KC04, LT02, LT06, LLL06, LHKL03, LY91, MLDG12, MV12, MVB05, MTS90, Mit07, MGG03, NHO+13, Nik03, PC11, PA04, PRN+19, RN04, SU87, SB15]. load [SX08, TBZB05, TKG04, TLL+18, TVT+17, YJL16, YAA10, YMLP14, ZV06, ZSW14, ZXMC14, dG91]. load-adaptive [TKHG04]. Load-Balanced [LT94, NFEG97, XYKA08, YMLP14]. Load-Balancing [DHB02, FM99b, HO94, HC97, Wan96, SBÇ12a, ZXP09, NHO+13, YJL16].

Load-sharing [SU87]. Loads [KC95, VB02, CG12, GRV08, HV13, KVA18, LML+10, MV05, ZV06]. Local [AD02, BSS99, BCD00, CGL+95, FLS+97, HR00, SR94, ADD17, AK07, BMARW07, CKN07, GJG88, GTGLSA12, GNZ18, LMLJC11, MS88, MAR05, ROB+18, Sch13, WWW17a, XCS06]. local-spin [AK07]. localities [GJXZ05]. Locality [BS96a, CL96, FJG06, GXYZ13, JL11, KCRB99, KRC00, MBN95, SCM99, SHT+95, EHL+15, FPP06, Kna05, KR06, LK13, Ozt11, SZ07, SKK14, SRT+18, WLL08, XZMC07, ZWO+16]. locality-aware [EHL+15, SKK14, XZMC07, ZWQ+16]. locality-cognizant [LK13]. Locality-sensitive [JL11, SRT+18]. Localization [DFP06b, AKBD10, CCW14, CRWX12, DLL11, LLS16, MKM16, WDS+18]. localized [Ca06, KNS06, LS03]. locally [AMK+07, LFZ+17, XHZS16]. locate [DWX10]. located [SBC12a]. Location [KER01, Li17, LS03, LAGK07, MMRS98, XCLR07, ABF+14, BJL18, CZ90, DBW+18, HCM11, KHK18, LL15L15, OJP+18, T0Z7, TZH11, TDC05, TR16, TKR+19, ZMC06, ZHO03, dOBG+15]. location-aided [ZMC06]. Location-based [LS03, ABF+14]. Location-centric [XCLR07].
location-free \([dOBG^+15]\). Lock\([DR98, SsdB^+10, ST08b, CB06, Dim91, HSY10, HA06, ST05, XO05]\).

Lock-free \([SsdB^+10, ST08b, CB06, HSY10, HA06, ST05]\). Locking\([MS98, XO05, DM04, LZLX11]\). Lockless\([HMBW07]\). Locks\([JNW96, AFA13, CG10, UBES10]\). Lockup\([SD91]\). Lockup-free\([SD91]\).

Lo`eve \([FSD04]\). Log\([NTA96, ZFT^+18]\). log-based\([ZFT^+18]\). Logarithmic\([Nas94, OOW95, AF17]\). Logarithmic-Time\([Nas94]\). logging\([CZZY09, DWG03, JLM08, MMCL^+17, MMCL^+17]\). LogGP\([AISS97]\). Logic\([AyJ93, CC91, CBdCD00, Mon94, NKV14, Tan84, DeG88, FPM^+14, LZLX11, MS99b, PK04b]\). Logical\([AK93, YMG01, TPLY18]\).

Looking\([LKD14]\). lookup\([JP09]\). Look\([PL93, SHL^+13, TG04, HZL18]\). Look-Ahead\([PL93, SHL^+13, TG04]\). Look-Up\([HZL18]\). Lookahead\([NIR86, SF05]\).

Long\([AISS97, BHPP05, RGD03]\). Long-distance\([MBR08]\). Long-range\([MBR08]\). Long-term\([LM12]\). Longest\([MS99b, PK04b]\).

Longest-Dimensional\([TC96]\). Lowest\([MAKWZ13]\). LPAR\([BK95]\). LQ\([BBM^+02]\). LQR\([ZMZJ17]\). LR\([CB96]\). LTI\([AD12]\). TFT\([BBBC12]\). LU\([OT86, She06]\). LUT\([HZL18, WD18]\). LUT-based\([WD18]\). LXCloud\([LACJ18]\). LXCloud-CR\([LACJ18]\). LXCloudFT\([LAC18]\). Lyapunov\([MV94, QovdG01]\).

M\([Ano92a, GA18, FC95, LZSL06, ZBF05]\). M-TREE\([LZSL06]\). M-VIA\([ZBF05]\). M2M\([TKG^+17]\). MAC\([CCHC09, GZY14b, Los08, TLY12]\). Machine\([BG86, BDHF90, CA95b, IVOG02, MB93, RSCQ17, SYO94, SR97a, SR97b, TVS97, TKG^+17, ZL93, ZLZ^+19, AES11, BH86, CL14, FMIF18, HS86, HPSM91, KHT^+14, KS18, KNS91, KA89, KCFP18, LCJ^+18, MBRC98, JR95, LPS^+98, TC96, WW97, FT04, IIT14, Li19, NDP13]\).
Ros85, SM86, Upa13, WF89, ZG13, ZLCZ18, CM93, CRFS94, CGSV93, EHS94, LAD+96, LST+13, LTD+93, Sab94, TKG+17. **Machines** [BR96, BPN90, BCR96, CWP98, ERL90, Gup92, GKHS96, HK96, HB97, HLJ01, KRC00, KHS96, KLS90, LWY97, MK92, PAM94, RS94, RWK95, RGS90, SSG93, SCMB90, San02, TSA97, YFS+15, Zak01, AE88, CG11, Fen90, Fu06, Fu10, GA90, IKS87, KR10a, KR10b, Koc91, KP05, LC91a, Mar88, MAR87, RT18, SW90, Ume85, ZA91]. macroeconomic [BMB+08].

Majority [ZWS09]. make [AS19]. makespan [LZ05, SSM+07, TFMS15]. Making-a-stop [LLT12]. malicious [HMY+18]. Malleable [FZWL12]. malware [TY17]. manage [ASD09]. manageable [GRZ+18, dAMFdS13]. Management [AS13, AS15, BR02, CKK00, CY99, HLSL95, HL99, JShL04, KER01, LZ02, LO96, RDS02, RSBN01, T92, WLID02, YD98, ZRC99, AM11, AK18, BVG14, CKMP17, Fu10, FX10, GPT06a, GJG88, GBA08, HCM11, HMV07, HC09, HHS12, HSL04, HHK15, JSH+17, KK11, KLJ+11, LCC+05, LC11, LJQ+19, LGK07, MBS+12, MLMSMG12, MCP+18, NAB+11, NTC03, OJP+18, PY09b, PF04, RWB+13, RAN+17, SNMB16, SDDT04, SS08, SB12, SA19, SK05a, SLG+18, SL06, TZ07, Tzii11, TB90, WYW15, WZZ+17, XRB12, ZMC06, ZV12, ZH03, dKG+10, SHSH17]. manager [Gai87]. Managers [AB84]. Managing [AKBD10, FGKT97, SEP96, SLZ+19]. MANET [YAA10]. MANETs [Hu11, YA11, ZA05]. Manipulation [PH91]. Manipulator [MS85, NS90]. Many [CHLL18, DDO+18, HP95, SR97b, AFA13, APRA18, AA16, ARI17, BBBC12, CKK+13, FTM+19, JHF+17, Lai14, LCW+18, LTG14, MZC18, PCMM+17, PTK+13, PR13, RLA+16, RLA+17, TCHC12, ZLS17, dCPD19].

Many-Body [HP95]. Many-Core [DDO+18, CHLL18, AFA13, APRA18, AA16, ARI17, BBBC12, CKK+13, FTM+19, JHF+17, KSL13, LMCW+18, MBBD13, MZC18, PCMM+17, PTK+13, PR13, RLA+16, RLA+17, TCHC12, ZLS17, dCPD19]. Many-to-One [SR97b]. manycore [ETS14, FCP+15]. map [IZ12, IB04, CKML12]. Mapped [BF97]. Mapper [AM93]. Mapping [AGG98, BR08, BS+01, BA92, CN93, CHR94, CW92, Dja04, GH89a, GW99, IAS+92, KBG92, LW90, LWY97, MM00, MAS+99, NB93, SH90, Ser97, SBAM96, TBB+17, XH91, ZZ90, BS87, BLMB13, CGM14, CDAN14, DFT13, DQR+09, FLL14, HA91, KSS+07, KSM+06, LW16a, LB89, Lo92, LS07, ML+18a, PMAL11, YWJ+18, YWG15, ZWRI07]. Mappings [BP02, DP00, Iqhk92, SR97a, SR97b, SHHCO0]. MapReduce [ALTV13, AM17, BK13, BD11, CCA18, CLOL17, GYY+14, LYW+16, LWWQ18, NMS+18, NF16, Pla13, uRIL+18, SM15, VETT18, WTWZ16, WD13]. MapReduce-based [VETT18, WD13]. maps [DP12]. MaRCO [ALTV13]. Marginal [WLID02]. Marine [YWJ+18]. maritime [WAW+18]. Mark
Markov [ASKO16, DHK04, GA18, NH93, PF91]. Markovian [BC11, VM95].
[CH92, PH91, Sin95, GKK+13, KR17]. Memory [AD95, ACD+93, AMN00, Ahn97, ADS98, AS91, BR96, Bas97, BS96a, BCLR96, BF97, Bit92, BCR96, CB95, CP91, CWP98, CA95b, CJ99b, DS95a, DY99, DA97, DUSH94, DP90, DH95, DM99, DT92, EP90, FY97, GAG+92, Gra09, Gup92, GKH96, GJS96, HGW97, HMR15, HPT02, HA92, HA05, HC94, KL00, K94c, KS97a, KHS96, Kel00, KC94, LBY97, LI98, Li01, LA93, MF94, MR94c, MS98, MG91, NS97, OS98, PHB96, PAM94, PA96, PB99, PL95, PY96, RL96, RSB96, RY96, RGS00, S95, SLL18, Shu95, SS94a, S95, Soh96, SC91b, SB84, SN93, Tam18, TJ92, TTTG95, TY95, VSIR91, VS16, VN93, WW96, WD94, W91, W91, YMR93, YB01, YL98, Zak01, ZLH+18, AM13, AL04, ACHY18, BC06, BMM08, BH+17, BJS03, BBD18].

[BS92, BGM+08, BCF+94, CBP02, Car95, CC16, CMG94, CJ99a, CPO+03, CK91, CDAN14, Cyb89, DFP06a, DT11, DI91, ETS14, Eij18, EKNS17, FZC+05, FFC04, FWM+10, FLCL, GGR98, Gra10b, GL90, HDM11, HGFF10, HMBW97, HHA14, Hus17, HC91, IH16, IRS16, ITT04, Joh91, KKR14, KRM14, KKLJ14, KMS10, KP05, LL90, LC91a, LLB+18, LHZ+18, Lop18, MTK10, MSK+16, NSTM91, N03, N01, N91, N95, PK05b, PL03a, Pop91, QGL+09, QGP05, RS19, RFPAG08, RHH12, RSCQ17, SGG18, SYB97, SB15, SZ07, S04, TW98, TGPUC16, VET18, W92, YGZ+10, YLD90, ZKF18, ZPK+14, ZWL12, ZFL89, HZL18, MP10].

Memory-Access [Bit92]. Memory-aware [HMR15]. memory-based [No12]. Memory-Bounded [SN93]. Memory-Electric [IWM97]. Memory-side [HA05]. memoryless [BKMT14]. mental [Eij18]. Merge [NT93, SM00]. Merging [VSIR91, AY09, DO89]. Mesh [AP94, Am94, ADM+94, yCM98, CCC92, CWW+95, CLT96, CY96, CDP95, DR19, EL97, EH01b, FZVT02, Fer93, GPJA10, HMM94, IM00, JP95, JS94, JB98, KB01, LL00b, LME95, MD01, MP96, Moh96, Nak95, NSS99, OS96a, RO92, RR95b, RR95a, SP96, SR94, SM00, Z92, ZYO02, ABC+09a, ABC+09b, BB85b, CL03a, Car90, CWL+07, DJDK19, Dja04, DAB+14, Efe91, FL14, GDL+11, GH99a, GA16, GNZ18, HWH98, HWC08, H98, HR90, K90, KKK11a, KHK18, KD90, KT91, LZ90, LC90a, LC91b, Li06b, LC11, LWL12, Los89, LV87, LV88, MLG05, MBR08, NPGV19, PB90, Ra04, SI86, SSMS99, SC91a, SSZ10, SS94b, SZ03, VHH08, WXL11, W90, WBRT13, XY98a, YSL08, FC14]. mesh-based [CL03a, LB05]. Mesh-Connected [Am94, ADM+94, yCM98, CCC92, CWW+95, CY96, CDP95, Fer93, HMM94, MD01, Z92, ZYO02, BB85b, Car90, HR90, KT91, LV88, PB90, SI86, SSMS99, SC91a]. mesh-NoC-based [FL14]. Meshes [BR96, BS96, BM97, BOS94, POS+95, BGOS95, CW90, COS+95, CL96, DS01, FF98, HCWS94, HJ9c, LS95, LSC00, LS94, MT93a, NPI+96, NS94, OS97, OS96b, OSZ98, OB98, RW93, ST02, SKK7, SJ95, VB94, WCE97, Wu02, YTR94, YCY+00, BG16, BM04a, CI03, CZZ+17, DV13, GLD06, KLC05, LWCC15, LXL12, Mat06, dMS18]. Meshing
[YIY97]. Message
[Ano94e, Ano95k, BB93, BKT95, BDH+97, CW92, CZZY09, CD98, DMSH90, dADB96, GBES93, GHS94, GHS95, GHS97, HNM02, Isl97, Kar92, LK96, Li92, LW95, MMCL+17, MD92, PY96, Pra16, SCMB90, WTC08a, WTC08b, XH93, ZN01, BHR91, BR91a, BPW05, CV90, CPA+11, DDNT10, FM07, GH98a, GK04, HZA+15, Hal05, IRRS16, JLM08, JZZ+17, Kak15, KMS10, KS13, LR06, LR03a, PS14, She06, TW87, TGPUC16, vS91, KTF03, PS01].
message-driven [GK04].
message-optimal [CV90].
Message-Passing [CW92, dADB96, GBES93, HNM02, MD92, XH93, ZN01, DDNT10, GH89a, IRRS16, JLM08, JZZ+17, Kak15, KMS10, KS13, LR06].
Messages [AISS97, DLP99, FBDC99, LTWY95, LTY96, SKH96, ASKTZ13, BD04, CL90, GPT06b, KLC05, XLL15].
Messengers [FBDC99].
Meta [SWC+91, D¨O06, GVBB13, KKS+12, LGZ+10, ZHO03].
meta-heuristic [KKS+12].
Meta-rules [SWC+91].
meta-scheduling [GVBB13].
meta-task [D¨O06].
metacomputers [Li05, LCM+06].
metacomputing [BGH+03].
metadata [HOE+09, ZV14].
messaging [MMK+11, ROB+18, TLW18, WMG13].
Metaheuristics [TH11, TH13].
Metasystems [GWWL94].
Methods [AC16, BC94, GHH92, KLLK98, PB99, WS97b, XL95, ZHY94, AST12, Ale19a, ABC+09b, ATDH13, BFH09, BR91a, BBB+06, CLC+17, CW15, DM17, GNZ18, KP05, LR14, Lu85, Mit07, MVP17, MA19, MRT18, ORR03, SML93, WCKD06, XWC+08, YLL17, ZB03, dIAMCFN12, PPTV+10].
Method-Level [AC16].
Methodological [Bev02].
methodologies [DMS+16, PSGS17].
Methodology [Ano92a, BJS99, KME92, LR93, MB92, NMS93, PA94, PA01, SKR93, SK93, CSJ+13, Che86, DSEP17, GL89, KME92, LD+18, MSAZ10a, MSAZ10b, OMT+17, PF01].
Methods [Bas97, BSGM90, BR95c, Cas93, FGKT97, GL92, Kap93, KB01, Par92, SHT+05, Wor93, XH93, BDjQ86, BM08, CEGS07, DKUC15, EE05, KGD04, LWCC15, PAS15, SWP90, SSZ10, SHRM19, UAPM07, VAB08].
Metric [RJA97, ZHY94, KC17, Luc18, SSMS08, Sta17].
metrics [BSW07, DKUC15, PARB14].
MGR [DAPR18].
MIC [WTWZ16].
Michel [Ano96l].
micMR [WTWZ16].
micro [KKH17, KC17].
micro-benchmarks [KKH17].
microarchitecture [Zha11].
Microarray [BF13, WSH+03].
MicroClAn [BF13].
Microelectronic [THN+93].
micro-rack [LBGM15].
microscope [FCG04].
Microwave [XTN12].
Middleware [BNSP99, GAJO8, SB04, AZW13, An04d, CTT08, KAS07, MSAF04, PF04, SHTD04, SMPMLVSL11, YK04, dKG+10].
middleware-based [PF04].
midpoint [TW15].
midpoint-based [TW15].
Migratable [KOW97].
Migration [AMB95, CLZ00, Lat95, NPP+02, SZ00b, ZXY01, CR96, CLC+17, FMIF18, Gai00, GRJ+15, HSMB91, JTZZ11, LY12, MB19, TH08, WMES12, XYKA08, ZLZ+19].
Migration-aware [ZXY011].
migrations [TKX+13].
Migratory [GS96].
Millenium [TAS+01].
million [PGP+12].
million-core [PGP+12].
MIMD
MIMDIX [MHF93].
MIMO [AD12, GZY14b, ZY12].
Min [DP98, CRV94, ZNQ93].
MIN-Based [ZNQ93, CRV94].
MIN-Graph [ZNQ93].
Min-Max-Pair [DP98].
mincut [ERS90].
Mini [BCD+15].
mini-applications [BCD+15].
Minimal [CLT96, SJ95, SR90, Xue97, ZAW94, MS15, OMSGNSG05, SR88b].
Minimization [OKB95, THGY15, CPLY18, JZF+15, KR10a, Li17, Li19, LZX11, QSL+08, RTZ11, TFM15, VA07, YWG15].
Minimize [Alp01, SBAM96, KSG03].
mimimized [SCJ+08].
Minimizing [KER01, LZ05, LO96, XLPL19, ZZW17, FSZ07, TKX+13, WHS+18].
Minimum [CW00, DH94, Li92, RDL95, WW97, BC06, BPBR11, BBD18, BBL04, HS12, tH90, KO12, KSK15, LVP08, LY10, LMZ04, OMSGNSG05, SL89, WCWH03, YZLT09, YWW12, YYLC11].
Minimum-spanning-tree [tH90].
Mining [GC01, HK01, KRS01, SMT15, Zak01, CTT08, Cuz11, Cuz13, GJA08, WD13, WZQ+13, BMLLC+19].
mirrored [BL05].
Miss [SDS99, CK13].
Misses [DSS95].
mitigating [KMMZ06].
Mitigation [BK18, WCF14].
mixed [Ahu90].
Mixed [CDY97, MRR+02, NDZA99, van96, BKS91, FCS91, Ka04, ZJ+18, LWZ18].
mixed-criticality [ZJ+18].
Mixed-Mode [NDZA99, BKS91, FCS91].
Mixed-Technology [MRR+02].
MixHeter [LWZ18].
Mixing [FHL+15, Li10].
MKCE [RW01].
MM [Won99].
MMR [CCQ+06].
Mobile [Ano01e, BD00, BN02, BST01, CS00, CCK+08, DKY01, DL01, GS01b, KER01, LAZC00, LC14b, MS00, Pat01, PRS97, SMR96, THGY15, TPS+18, WLID02, ZR00, AKBD10, AP03, AH12, Ana14, Ano04d, AK06, BN03, Bout03, CSWD03, CN503, CW05, CDCD05, CWD11, DB08, DWX10, EBE08, EM11, FCM13, FCC07, FP17, GQZ18, GRDB05, GZMC08, HKW05, KER04, Kim11, LL19, Lan09, L11, LZCY09, LPX05a, LL10, LC11, LH14, Li17, LLW07, LHT08, LW18, LS06, MS05, MXSL12, MS05, MKM16, NSA11, NMM+14, PVP18, PMHM19, RB12, RKK06, REZN17, SNC12, SGAC14, SM0+18, SY04, SGS08, SJS11, T07, TZ11, TM06, TC13, TY17, TWQS12, VLW18, VA03, VRM10, WW18a, WZQ+19, WZH+19, XHGG03, XG03, YK04, YC04, YCC05, YSS11, ZM06, ZHO03, HC09, RBP+11].
Mobile-Process-Based [SMR96].
Mobility [FCF00, GCB+00, KO12, BEN12, CCK11, FX06, HCO9, LL19, LZN19, RKK06, RBP+11, SK05a].
Mobility-assisted [KO12].
mobility-aware [LL19].
modal [AM11, BWP+11].
Mode [NDZA99, WSA+94, BKS91, FCS91, YZX11].
Model [AGW01, AISS97, AM17, Ano97k, BPJG92, BA97, CC91, DL98, DKUC15, DG94, DF94, FTl92, Gao93, GS98, GDN+98, HK96, HR92b, HR92a, JRR99, KSP+92, KCV99, MRR98, MN95, NDZA99, OKB95, QY94, SANY94, SAC+98, SS18, SSK96, WSA+94, YZS96, eW95, AAH17, ASK016, AHZ11, AES15, BMB*08, BBBC12, Bie90, BG05, CBD+09, CH06a, CAK13, CXX+18, CDJ+89, CRC+02, DZC17, DJH11, DKC14, DRT07, GJ12, GSP19, HMY+18, IEWK17, JLWX11, Kal04, KyLPC17, KC17, LR14, LMGLGLG17,
Model-Based [KSP+92]. Model-driven [SS18, ASES15, LGK12].

Modeling [ATM01, CR91, CCM92, Chi92, CM93, CLRW00, DDO18, DI91, FMW+94, GHC+17, JZ05, JZK04, KNS91, LP96b, LpJS+18, PLD14, Pat01, PMMMA15, QSO5, RP98, SCM99, SFT+13, SCK03, SS00, TK07, AP91c, FX06, HES11, JWH+17, Joh91, KNS91, LP96b, LpJS18, PLD14, Pat01, PMMMA15, QS05, RP98, SCM99, SFT+13, SCK03, SS00, TK07, AP91c, FX06, HES11, JWH+17, Joh91, KME09, KKK11b, LWCC15, LC13, LF03, MCM+11, MSAZ11, NSA11, ORWT+18, RA11, SV08, UMM+18, YL12, YZW15].

Modelling [Wu11, HNSA07, KME89, KKTZ13, RK18, SAOKM03, Sie16].

Models [AGW98, Ano96l, ABM+92, BDF92, Bir94, BSS99, BHRS95, CDY97, CDF01, Cuz11, GAG+92, MM00, MLC+90, RHH96, SM92a, SSOB02, SM92b, ASA18, CkLCK04, CkLCK05, CJA09, DHK04, Eij18, FTM+19, GLGLBG12, Har91, HK05, KJIE13, KVVN17, MMAL06, Nes10, PL03a, PF91, Pop91, Rao16, SZ+18, SS06, SRI14, TJCB10, YQTV12, ZZ90, dG91].

modern [EFG+14, GS18, YFS+15].

Modes [GGW96, SSG93].

Modifications [PM92]. Modifed [WS97b, ZLRP91, GLW14]. modify [CH06a].

Modular [AM95, DD93, FC95, RAS96, BM17a, CBP02, Dja06, ZBW17].

modularity [GK04, LK15].

Module [AM97b, EL91, MC91, ZFL89]. Modules [DP00].

modulo [YL90]. Moldability [CB02]. moldable [SBC+12b].

Molecular [ES96, NPY+97, SPVvH03, TSA97, FGM+03, PARB14, PTK+13, WYTX13, XLHT+13]. molecules [BOT13]. moment [RMU14]. moments [TRS+12, XLH18].

Monitoring [CSMMML10, LMC+90, ST14, TG97, ZNQ93, ASKO16, ACPT15, BOKS19, CL14, CK08, FEH+14, KDSS18, LFS16, SB12, WZ+13, YT05, YDZ+18, ZFS07, ZCW19]. monitors [TH08].

Monotone [HJDH01].

Monsoon [HCAA93, NCA93].

Monte Carlo [Bro96, PAS15, ZS13].

MOOC [MBG+17].

morphological [SSL04].

Moset [MSJ05].

Most [BS97, HHC98, TAS+01]. mother [MC03]. motifs [RSL12].

Motion [CP92, RR95b, OPG08]. movement [AKBD10, KSB11].

movements [CKT11].

MP [CDH84].

MPEG [AA+95]. MPEG-Encoded [CLV95].

MPEG-2 [AAL95].

MPI [PS01, ATM01, BA06, BDH+97, CECS07, DPO5, DPDS08, FKLB08, GM13, HeF05, KYL05, LC97, MBBD13, Nes10, NCB+17, PARB14, TPLY18, WLNL06, Zah12, dAMCFN12].

MPI-2 [DPDS08].

MPI-CUDA [dAMCFN12].

MPI-FM [LC97].

MPICH [KTF03].

MPICHT [KTF03].

MPP [DM90a].

MPSoC [FFL14, LZX11, OMT+17, ZXYO11].

MPSoC-Bench [DMS+16].

MPSoCs [LW16a, MTL+18a, TBG+17].

MR [MF94, uRIL+18].

MR-1 [MF94].

MR-Advisor [UuRIL+18].

MRI [GOH+13, SHT+08].

MSA [BFK13].

MST [Fer95].

Mukesh [Ano96].

Multi [ACU08, BG86, BBH+17, BA95, FPF14, PK15, MAM05, MCZ14, NBP98, OMT+17, PKN10, PVRS17, SR88a, Ser97, SM00, VLL+14, WW96, Wl92, YMG01, AHZ11, ADDB18, AGMJ06].
AVAH18, BSW07, BWP+11, BLMB13, COV13, CMMT13, CCHC09,
CMC+19, CLL09, COF+17, DBA+18, DMCFCM03, DWYB10, FCW11,
FCZ+12, FM07, FTM+19, GDL+11, GS18, GKS15, GCS06, GZY14b, GB11,
GSASA19, HRM17, Hu11, Hus17, ICQO+12, IIH+17, JJ12, JLMX11, JV06,
KVA18, KSG13, Ke03, KVHS07, KKN13, KN18a, KN18b, KHK18, Kum17,
LKS14, LL07, LSS+11a, LSS+11b, LZY11, LNAL17, LS03, LSC+15, LY13,
LPLFMC+12, LLS+16, MS19, Man13, MB13, MPV12, MZC18, MPN17,
MAHKZ12, MGRRK14, MZZC12, NDP13, NFHL13, NVK+11, NC09,
PYP+10, PKW+10, QSL+08, QGL+09, RLA+16, RLA+17, RB12, RR05,
RA11, ROB+18, SNMB16, SFT+13, SCB09, SHL+13, SSZ10, SAJ13.
multi [SHRM19, SMB10, Sta17, Str12, ST05, TGPUC16, TRS+12, Tra09, TCHC12,
VBDRC13, VFAD17, WCL+13, WQL14, WQZ+13, WH17, gWW18, XL11,
YZS15, YHWY18a, ZMG+16, ZXB14, ZLS17, dCPD19, DAPR18].
multi- [KSG13, ZLS17]. multi-/many-core [KSG13]. multi-accelerator
[ICQO+12]. Multi-Agent [Ser97, YZS15]. multi-attribute
[LLS+11a, LSS+11b]. multi-bank [QGL+09]. multi-budgeted [Sta17].
multi-channel [CCHC09, CLL09, GDL+11, GZY14b, SSZ10, ZMG+16].
multi-chip [TCHC12]. multi-cloud [KVA18]. multi-cluster
[NVK+11, SHL+13]. multi-core [AVAH18, BLMB13, CMMT13, CMC+19,
DBA+18, DWYB10, FTM+19, GS18, GKS15, Hus17, LKS14, LNAL17,
LSC+15, LLS+16, MAHKZ12, MGRRK14, RLA+16, RLA+17, SNMB16,
SFT+13, SCB09, SAJ13, SHRM19, WQZ+13, WH17, ZXB14]. multi-cores
[TGPUC16]. multi-CPU [TRS+12]. multi-criteria [LL07]. multi-device
[VFAD17]. Multi-dimensional
[NBP98, DMCFCM03, GB11, KVHS07, KKN13, KN18a, KN18b, LZY11].
[LPLFMC+12, MB13, NFHL13, ROB+18, TRS+12, VBDRC13].
multi-granularity [WCL+13]. Multi-heuristic [PKN10]. Multi-hop
[MAM05, YMG01, BSW07, FCW11, FCZ+12, JLMX11, KHK18, MPV12,
NC09, RB12, ZMG+16]. Multi-level [ACU08, OMT+17]. multi-link
[FCZ+12]. Multi-Mesh [SM00]. multi-message [FM07]. multi-modal
[BWP+11]. multi-model [gWW18]. Multi-objective
[FFP14, ADDB18, COV13, COF+17]. Multi-operand [SR88a].
Multi-parameter [DAPR18]. multi-party [GCS06]. multi-pass [MPN17].
Multi-processor [Wil92, LY13, RR05, SHRM19]. multi-processors [JJ12].
multi-radio [FCZ+12, GDL+11, SSZ10]. multi-railing [PKW+10].
multi-rate [Hu11]. Multi-Ring [BA95, BG86]. multi-robot [IIH+17].
[GSASA19]. multi-swarm [dCPD19]. multi-target [NDP13].
Multi-tenant [PVRS17, YHWY18a]. multi-thread [DWYB10, ST05].
Multi-threaded [BBH+17, LK15, Ke03, PYP+10]. Multi-tier
[MCZ14, MS19, MZZC12, WQL14]. multi-unit [XL11]. multi-valued
[Str12]. Multi-Version [WW96]. multi-year [Kum17]. multi-zone
[AZ01, ABP92, CLZ02, GK98, LEN90, Lan94, LHHB+01, LME95, Mck94, RJMC95, RMC97, SY01, WB01, Yan00, CS08, CWD11, DDG+17, GZMC08, GS03b, HL07, KDH08, LMZ04, LHT08, MAGL13, MK08a, PY09a, RA11, SKMM04, WW12, XLG+06, YF07, YCH+10]. Multicasting
[BETD94, FF98, Gon98, GS01b, LBT94, WE13, LSXX14, WCC02, XCS06]. Multichannel [HP97a, Mck94, WIR+18]. Multicomponent [RW01]. Multicomputer [ASB97, DG94, GBES93, HLLY95, JR95, LK96, MLW+97, PA01, RU99, XH93, AP91a, CC96, DB86, GJ12, Li06b, RS90b, Yan04]. Multicounters
[AGF94, CSSY94, CW92, DY99, DFRCU99, GGD93, Lan94, LME95, LEB98, NSLK99, OK01, PHB96, RS92a, RSB96, SP96, SCC92, SB84, Swa98, TJ92, WN94, XH91, XMM92, YB01, GH90a, HSMR91, RS90a]. Multicore
[PSGS17, ABC+09b, BM17a, BSS+13, CN14, CP17, DR19, DKU15, FWM+10, FCP+15, GZG+17, KHT+14, KyLPC17, KNH18, LK13, LLLC15, LM16, MBBD13, ND12, NZ17, PP13, SSFP11, SPC2+17, SSGG18, SP13, SC10, WLST16, WCO+09, PPP14]. multicore/many [MBBD13]. multicore/many-core [MBBD13]. multicores [CRSB13, LCB16, SS17]. Multidimensional
[GC01, LS94, RS92a, dADC18, KT91, LB89, PMV05, QSL+08, SC91a, SJG19]. Multifaceted [Won99]. multifluid [LW16b]. Multigauge [LR94]. multigrain [ABC+09b]. Multigrid
[MT96, MHC95, PSE+01, IHM05, MRS+14, WH17]. multihop
[CDCD05, HW03, ZLCJ12]. Multilevel
[BW89, KK98a, KK98b, SKK97, LK15, MMS09, PAS15, SZW05, TK08]. Multimedia
[CCQ+06, ALL99, AZ01, GC95, JSCB95, LBL95, Won99, WUG99, ZR00, AFG+19, AM12a, LYP07, ZV09a, ZVL11]. Multimedia-on-Demand [JSCB95]. Multimessage [Gon98]. Multinode
[VB94]. Multipacket [MS94, RR95a]. multipartitioning [DMFCM03]. Multipath
[LY93, KPR88, OM10, SH89, WGS08]. multiperiodic [TW89]. Multiple
[ALL99, ADS98, BOSW94, BOS+95, CCC92, DLP99, FGKT97, GH93, KS97a, KC98, KJ84, KM91, LMCF90, LSC00, NSAS10, Par92, SM94, TV997, VSR91, VB02, WNA+94, Wan96, AAFK14, ACU08, BXA08, BOT13, BFKW13, BSMH08, BFKP04, Car90, CDS10, CHC05, CCLS94, DMB+03, DUK15, GVR08, IEWK17, JSWB92, JTZZ11, JM15, JP09, JW89, KAP90, KSS+07, KR87, Kums17, KIHI15, LLL06, LY10, LPX05a, LDP+14, LSWC14, LV07, LWQ18, MVB05, MHBW86, PT06, PHS04, PLK+18, SK09, SPRG+12, SI13, SZ03, SRT+18, YB90, ZWWX16, TJCB10]. multiple-bus
[AM95, PD92, QMCL94, QM01, ZLPP01]. Multiplication
[Fag92, Li01, NFEG97, ASES15, CLR90, EL91, ITT04, LV15, MBW16, MPG17b, PR13, SKH15]. multiplicity [PMHM19]. multiplier [MS87].
Multipliers [SRK95, BOI91]. Multipole [SHT+95, YB01, KP05].
Multipole-Based [YB01]. multiprecision [MS7]. multiprefix [Coh90].
Multiprocessing [CDH84, MBK+92, ABC+88, JS86, ZLWL12].
Multiprocessor [BW95b, CKL99, CP91, DS96, DRC90, DFN+94, GH90,
GMM00, HP00, HC95, HN91, KS97b, LYC02, LF92, Lun94, MF94, MMR98,
MT95, MMVR97, MD92, OM90, PL95, PM96, PP92, QY94, RS92b, SEP96,
Soh96, WF93, XZS96, ZNQ93, AA10, AOSM05, BHR91, BR91a, BYG+18,
BS92, CRJ10b, Di91, DMS+16, GL89, HDT+05, HA91, HC91, JWSG14,
KA05, Lee90, LHK03, Li16, LW89, LBV07, McA89, PK05a, PL90, SK09,
SM89a, SYYU07, TS91, YL89, ZZ90, ZQMM11]. Multiprocessors
[AMB95, AM95, BJ99, Bas97, BS96a, BL96, BC01, BLG01, CB95, DS95a,
DJ98, DZDZ01, DT92, GY92, GZ97, HJ01, HA92, KB96b, KA97,
LK98, LA93, MB92, MS98, MG91, NB93, NS97, NPP+02, PH91, PY96, PT97,
RL96, RJY96, SMH94, SCM99, SY01, SDS99, SD00, SC91b, TTG95, VSIR91,
YW91, YMR93, YL98, AP91b, BC05, CLM90, CRJ10a, Cyb89, FZC+05,
FGP05, Ga90, GL90, HCM11, HRG+11, KA03, KK11, LEN90, LE91,
LPK+10, LWCG14, NSTM91, Nik03, RFPAG08, SPBR91, SD91, SMH91,
SA90, YB90, DOCS14]. Multiprogrammed [MS98, NSS97, NPP+02, YL98].
multiprogramming [DI91]. Multirate [HJDH01]. Multireader [HV95].
Multiresolution [KZ96, ZM94a, CL85, SHRM19]. Multiscalar [VS99].
multiscale [BFL+13]. Multisearch [ADM+94]. Multiset [AFS96].
Multistage [AA95, BET94, LC96, OM84, PL93, SZB92, TH02, Tze91,
UR94, Wan96, Wan01b, YWP00, ATH91, BJ15, CM04, FZ90, HJ90b, Har91,
JBM91, LK90, MVM04, PW16, PW17, SH89]. Multistage-Network [UR94].
Multistart [Cza13]. multistep [GGR89]. multiswapped [Ste17].
multitask [LST+13]. Multithreaded [BJK+96, BLG01, GGB93, GRS97,
KC99a, Lu90, PS01, RNSB96, RSBN01, SAC+98, SYYG97, TG99, YMR93,
ACD+18, ABC+09a, CN14, LLLC15, NZ17, SLG60, TP18, TKHG04].
Multithreading [BL96, FKT96, KPC96, LK13]. mutitonic [Sei05].
Multiuser [BAL05, ZRC99]. Multivalued [HV95, HV09]. Multivariate
[HK01, MMAL+06]. multiversioned [Ahu90]. Multiway [SM00].
municipal [LHX+16]. Munin [Car95]. Muntz [Ahu90]. MUPPET
[MS88]. musical [WIR+18]. Mutual
[AE95, Cha94, Cha96, DGFGK05, FTC00, GBG93, KY02, Kak15, KUFM02,
NTA96, NM02, Sin93, XLG+06, YZY96, AK07, Ara13, BDM18, BAS06,
CW05, CH06a, CB06, Gos90, LASS15, MM07c, NTN12, Ram89, RDA18].
multiply [WW18a]. MVAMIN [JBM91]. myoelectric [BAT+19].
Myrinet [KL01b, Q505].

N [BM17a, GPSH19]. N-modular [BM17a]. name [TB90]. NAND [No12].
nanoarchitectures [FCG+14]. nanophotonic [HRG+11]. nanoscale
[PLD14, ZRN+14]. nanotechnology [MKN14, MNK12]. NAP [KF90b].
NAS [JV06, WAS95]. Natural [LS95, VB96]. NC [L91, RDL95]. Near
[FTL92, HA92, SAN99, UR94, CCN06]. Near-Maximum [FTL92].
Near-Neighbor [HA92]. Near-Optimal [San99]. Nearest
[HH01, OS96b, HJL+18, KS08, NA06, NMN+14, SDG17, Wan07].
Nearest-Neighbor [OS96b]. Nearest [NAS94, SSM89]. NEAT [LST17].
Necessary [SJ96]. Necessity [MC03]. need [LTG14]. needed [IR12].
needs [CHLL18]. Negotiation [LL98]. Neighbor [HA92, OS96b, UR94, HJL+18, KS08, MKC+09, Wan07, ZMG+16].
Neighborhood [JdSJC+15, LYC02]. neighbors [NA06]. neighbours [HJL+18, KS08, MKC+09, Wan07, ZMG+16].
NEAT [LST17]. Nested [BHS+94, CWW96, DR96, HS93, KGB92, Mer96, RSS99, SCB09, AGMJ06, BFTV87, EB09].
Nets [DR95]. Net [BPJG92, BDF92, Chi92, Fer92, SP90, KK17, NM95, WL92]. Netfinity [BAHP01]. Nets [BPJG92, BYT19, CMT92, ESCV15]. Network [AA93, AAD98, ABM+92, ABCP96, BJS18, BBH+97, BCCD02, BA95, BC01, BF97, BSB01, CGK97, CW01, Cha95, CW92, DLL97, DSAUM99, DV96, DR18, DBP94, DWMV01, DH95, ESMG96, ES12, FFK97, FAM96, FTI92, GR97, GS97, GH93, HH97, HPT+97, KC95, Kop97, LST17, LS97, LK94, LK10, LC96, MM00, MJ94, MSS88, NS99, OM98, PN97a, PN97b, Pat01, RCB97, RJY96, SM00, SBAM96, SS95, TSC01, Tze91, UR94, WMG01, YZ96, ZLM97, ZMP97, ZW00, dBL95, AP91b, AHA+16, AR97, Ano4d, AF06, AM11, AS19, BFH+17, BM14, BOC+12, BXA08, Bat05, BW+11, BJ15, BAL05, BPA06, CK004, CMN10, CMR+18, CK07, CLG+16, CDM04, CWL+07, CWP12, Che89, CV09, DE91, DR19, DAPR18, DY+12, FK89, Gai87, GJ12, GZMC08, HWWH08, HD10, HWC08, HMY+18].
network [IZ12, IS06, JF12, JXW96, Joh89, JZK04, KERUM04, KJD03, KMC16, KO11, KO12, KCD08, KRS15, KH12, KO90, KPR88, LT10, LAD+96, LSS+11a, LSS+11b, LB12, LTD+93, LY08, LTT12, LU14, LY13, LRS18, LWC94, Nap90, NS90, NM17, NGQM12, OO05, PL06, RH05, RD05, RCG18, RGAN18, RSL12, SMW18, SSB91, SHK19, SCW+18, SS05, STK12, SY04, SK90a, Sta17, SMKL93, TM06, TDP15, TCH12, VM95, VHH08, VR68, VRM10, WL11, WW18b, WM+18, WG11, WLZ+18, WHS+18, YK94, YLZ18, ZWS09, ZY12, ZW10, AA14, SLW10, SLG+18, ZCF+17]. network-aware [RCG18]. Network-Based [GB91]. Network-on-Chip [BJS18, DR19, GJ12, LY13, AA14, ZCF+17]. Network-on-Chips [LK10].
network-When [STKW12]. Networked [FGKT97, HS97, LHM95, OEY07, BW90, FX10, HP06, JL11, SS08, XLL15]. Networking [Ano01e, CCF+04, Bou03, DWYB10]. Networks [AAD02, AZ01, AS97, ABP92, Am94, Ano93, Ano00, AA95, BS97, BAES92, BCH95a, BETD94, BCD00, BDF01, BCH95b, CP97, CT96, CS00, CAB94, CS93b, CC94, CS95c, DS95b, DHB02, DP99, DS93, DL01, DF95, DZ97, DC94, FCF00, FT94, GGN93, GPJA10, GK98, GHKS98, GO95, GPS96, GB93, GS01b, HIKM94, yHY97, HLCZ00, HJDH01, HJD+01, JR92, JH92a, JLR97, JH94, KKG01, KL01a, KRSZ02, KAM94, KB96a, KL01b,
networks [Sei05, SZB92, SLP+98, SZ00b, SF90, SCD99, Szy95, THGY15, TVO92, TPJ+19, TH02, VB02, WM92, Wan96, WR97, Wan01b, WB01, WP02, WAS95, Won92, WT92, YWP00, Yan00, YN92, YMG01, ZC92, AP91a, ASM09, AGMS16, AAD03, AB05, Amm16, AP03, AH11, AH12, AHG12, Ana14, AMT13, Arb89, AYB+15, ABLP17, ALF03, AS18, BFG+03, BM11, BSV07, BLGA03, BS03, BWP+11, BOY10, BDJQ86, BHR91, BR91a, BPRS04, BOP06, Bhu87, Bod89, BR91b, BC11, BN03, BJ18, BZL04, BMIM07, CI03, CM04, CG12, CB15, CFI+18, CC14, CCW14, CNS03, CKN07, CW05, CS06b, CCK+08, CS10, CTC+10, CRWX12, CGC16, CHG18, CS92, CDR09a, CDR09b, CYZ06, CGG+09, CDCD05, CPA+11, CRSB13, CM93, CKML12, CMS04, CT04, CTT16, DF17, DW06]. networks [DLLL11, DK11, DD96, DMB+03, DGBN14, DB08, DBW+18, DBCF13, Dim04, DKK10, DFP06b, DH04, EAL90, EBE08, ESGQ+18, EM11, EDH+17, FCW11, FCML13, Fei03, FY86, FZ90, FCZ+12, FJG06, FKJG08, FMM+08, FVCL05, FD68, FGL+11, FZ14, GHY10, GPT06a, GJ12, GRY08, GDP08, GP07, GCY+04, GDCC18, GSSS03, GDL+11, GH89a, GAGPK03, GYP13, GZI+14, GZJ01, GL12, GJXZ05, GZ03b, GMX07, HW03, HZA+15, HMV07, HJ10, HI09b, HR11, HZ06, HZ04, HS12, HRC+11, HT06, HDT+05, Hoh90, HL07, HZDP12, HJLR12, HMY+18, HBB01, HS17, HAC17, ISA07, ISAZ10, IB04, JF12, JT88, JLY12, JBA15, JBS14, JHPL13, JB91, JLWX11, JPY+05, JK15, KTP17, KKV05, KSSL16, KS10, KKK11a, KKO6, KAO09, Kim11, KKKP12, KSK15, KHK18, KGN89, KMF+05, KZ11, KKS09, KMS07, KDH08, KKK+11b, KKTZ13]. networks [KH89, KGN11, KNS06, Lai15, LL19, LBMG15, LZ08, LK90, LR06, LDZ+17, LHK03, LY10, LNA12, LR03a, LCW05, LPX05a, LW06a, LT07, Li10, LC11, LMLC11, LWLD12, LL12b, LHW14, LSXX14, Li14, LPJS+18, LGM18, LWXX19, LS03, LC07, LR03b, LLW07, LHT08, LZC11, LHL14, LDS16, LW18, LHP07, Lao08, MLG05, MAGL13, MM04, MAM05, MSM09, MYM10, MAPF14, MV88, MPV12, MA11, MSZ05, MBMC19, MCS14, MS88, MB05, MBR08, MYD+11, MKC+09, MAJ05, MVM04, MYP17, MBO11, MS11, MHBW86, MK08b, MGTV10, NJ91, NMA11, NFHL13, NC09, NMN+14, NZA03, OWK14, OM10, OMSGNS05, Pak89, Par05, PK05a, PL06, PLY15, Pe90, PCX+11, PCX+14, PSC+16, PKW+10, PW16, PW17, PV07, Pla08, PL07, PMCC18, PB09, RM10, RM11, REK10a, REK10b, RLP14, RFS+12, RKK06, RBP+11, RA11, RHL08, SCN12, SAOKZ05a]. networks [SAOKZ05b, SFP15, SB12, SX08, SZ09, SZMK13, SGAC14, SSZ10, SGS08, SKM04, SK05a, SL89, SR88b, SR90, Ste17, SK05b, SCLL10, SK11, SJS11, SH89, TBHA07, TLY12, TODQ18, TDC05, TC13, TMK+17, TM10, TDM05,
TR08, TCS+10, TWQS12, VO89, Var91, VA03, VRM10, WCC02, WW07, WG08, WTB+08, WGS08, WMW09, WBTM09, WW12, WCL+13, WYW15, WFLJ16, WW18a, WCX11, Wil90, Wu85, WTS03, WH08, WL10, WBRT13, XKA08, XCLR07, XHG03, XQ04, XWC+08, XHZ+10, XG03, YpGyLlC13, YME06, YP90, YDZ+18, YSL89, YWW12, ZV06, ZMG+16, ZMC06, ZW11, ZBR11, ZLCJ12, ZCMY12, ZXP09, ZXGD18, ZSCX18, ZDC06, ZTGL17, ZLS17, ZHO03, ZC04, dOBG15, ALLM11, LDZ+14, LDP+14, LK11, MLCFH+18, MR03, MEMEMH17, PRP09, RBP11.

networks-on-chip [HRG+11, KKK+11b, LHLM14, ALLM11, LK11, MEMEMH17]. Neural [AA93, Ano92c, BST01, CW92, FTL92, HPT+97, JH92a, KJD03, Kri92, LWOG02, MM00, MLCFH+18, Mon94, NS92, Piw01, Ram92, TVO92, WT92, ZZ92, eW95, Arb89, FK89, GH89a, Joh89, KH89, OGRV+12, PGP+12, SMKL93, Tor89, TDP15, VM95]. Neural-Network [AA93, Ano92c, BST01, CW92, FTL92, HPT+97, JH92a, KJD03, Kri92, LWOG02, MM00, MLCFH+18, Mon94, NS92, Piw01, Ram92, TVO92, WT92, ZZ92, eW95, Arb89, FK89, GH89a, Joh89, KH89, OGRV+12, PGP+12, SMKL93, Tor89, TDP15, VM95].

Neural-Network [AA93, Ano92c, BST01, CW92, FTL92, HPT+97, JH92a, KJD03, Kri92, LWOG02, MM00, MLCFH+18, Mon94, NS92, Piw01, Ram92, TVO92, WT92, ZZ92, eW95, Arb89, FK89, GH89a, Joh89, KH89, OGRV+12, PGP+12, SMKL93, Tor89, TDP15, VM95]. Neural-Network [AA93, Ano92c, BST01, CW92, FTL92, HPT+97, JH92a, KJD03, Kri92, LWOG02, MM00, MLCFH+18, Mon94, NS92, Piw01, Ram92, TVO92, WT92, ZZ92, eW95, Arb89, FK89, GH89a, Joh89, KH89, OGRV+12, PGP+12, SMKL93, Tor89, TDP15, VM95].

NoSQL [Luc18]. Note [Ano01-34, Ano02j, NCRK19, Pel95, Num07, Ano04d]. Notes [THSS87]. Nothing [LT94, PVGG06]. notice [PCX14].

Notification [ABP92]. notifications [APRA18]. Noting [HTL99]. notion [LJ86]. Novel [GMSS11, PLSM18, SDG17, SKMM04, WLL16, WXZ18, YF09, ZV09a, ZVL11, ZBR11, ZWWX16, ZLCZ18]. NP [BRR01, MPZ09]. NP-Hard [BRR01].

NSGA [SMO14]. NT [BAHP01]. Null [DSMH90, BD04]. NUMA [FCP15, LE91, PB19, WF93]. Number [Alu97, Ano92a, Ano93e, Ano96l, Ano97k, Ano00d, Bro96, BS96c, CS93b, SS95, ZAW94, DDNS06, FSZ07, GA18, HSSM07, IC05, Li14, PK89, Pet18, PH16]. Numbers [NS94, Can18, JD12]. Numerical [BK95, Ben15, LLCC02, SS95, ZAW94, DDNS06, FSZ07, GA18, HSSM07, IC05, Li14, PK89, Pet18, PH16].

NVHT [HM18]. NVIDIA [JM15, KME09]. NVM [ZLH18].

O [AW95, Cho93, CQ95, CD95, DD93, DT01, DLW12, DJT03, GGD93, GFPC14, JSCB95, JSWB92, LTH97, MLG05, NNSS99, NsPC02, No12, WHW17, WLLW09]. O-Intensive [EH01a, CkLCK04, CkLCK05, HZZ19]. obfuscation [MMN18]. Object [CSSY94, CS95b, DR98, GCB00, HS00, JRR99, KC99a, LLS93, LTH97, Lop13, SG96, WPKK94, WLID02, WH97, ACFK07, Chi95, HD10, KC04, LLLC15, LFH03, LC11, SA19, SK90, SCK03, TCS10, YJB91, ZV09a].

Object-Based [DR98, WLID02, ZV09a]. Object-Oriented [CSSY94, CS95b, HS00, SG96, Chi95, YJB91]. object-space-parallel [ACFK07]. objective [ADDB18, COV13, DR98, GCB00, HS00, JRR99, KC99a, LLS93, LTH97, Lop13, SG96, WPKK94, WLID02, WH97, ACFK07, Chi95, HD10, KC04, LLLC15, LFH03, LC11, SA19, SK90, SCK03, TCS10, YJB91, ZV09a].

off-line [BS92]. off-the-shelf [PF08, ZB09]. offer [Trä09]. offloading [Ale19a, LYZ19, WL04]. offs [CLR90, LCB16]. OLAP [DKRC15]. Olden [CR96]. OLSR [KKK11a]. OLSR-aware [KKK11a]. Omega [Ano93c, CS93b, ZS00b, GL90, CS92]. omega-like [GL90]. omnipotent [BBD18]. OmpSs [PSB19]. on-chip [BYG18, DJDK19, KH12, LNA12, LLKY13, LSXX14, LTL12, LWC14, MYD11, PMCC18, UM17].

On-demand [YYLC11, BSW07, FVLB09, HZDP12, LSZZ15, NKK16].
SFEF06, WL05, XG03. On-Line
[BDKM94, LTY96, Yen01, DJ98, EL88, LHK03, KM88, SL90]. on-machine
[AES11]. once [ACHY18]. One [Ano93e, Bog17, CS93b, LP95, PTA08,
SR97a, SR97b, YAS98, ZB97, BPBR11, Che05, CS92, Deh90, Lai14, Yan04].
one- [Deh90]. One-Copy [Ano93e, CS93b, CS92]. One-Dimensional
[LP95, PTA08]. One-Sided [ZB97]. one-step [Yan04]. one-to-all [Che05].
One-to-Many [SR97b, Lai14]. One-to-One [SR97a]. One-Dimensional
[LP95, PTA08]. One-Sided [ZB97]. one-step [Yan04].

ONoC [TKKH17]. OP2 [GMS+13]. on-source [ZSW14].

OpenCL [AB13, MC17, PSB+19, RBB17, Str12, DAT17].

OpenMP [AGMJ06, CCM+06, HLCZ00, LNW+12, LA06, PARB14].

OpenMP-based [LNW+12]. Operating [MBL+92, SEP96, CDJ+89, FABG+19].

OnRamp [FKR+17]. onto [BR08, BS09, BS+91, DAYA02, Dja04, DQR+09,
ERS90, GH93, GW99, KMS+06, LLS07, MM00, MAS+99, XH91].

Operations [BTZ98, DP98, FAGW95, HTL99, KSA95, PKD07, Van94, ZK94,
BM04b, DT11, LMR05, SLZ+19, JSWB92]. operator [CL85, TG03].

Operators [BDKM94, SR94, SOM09, WH17]. Opportunistic
[LYJ+19, AM07, DBW+18, LWW18, WW18a, WWA+18, dKG+10].

Opportunites [PJ18, ATKT19]. opportunity [KS03]. opposition
[WRW13]. opposition-based [WRW13]. OPTS5 [GF89, HS86]. Optical
[AK93, Ano93e, BA97, BC01, CS93b, CLM90, DP99, DSD+97, DR18, ELS94,
ES97, GP93, HP97a, HQPT99, IWM97, LLJ00a, LLJ00b, LP99, MR03, MC93,
MB93, MG93, OS97, OS93, PEC95, QM01, RP98, SHC93, SL97, Szy95, SH98,
THN+93, TBVP00, WLY01, WHT00, WLY01, WMP00, YMG01, ZMPE00, ZLPP01,
CS10, CS92, KK17, KH12, LY13, Ma89, NAK04, PDL14, WGO8, dR09].

Optically
[DH95, EH01b, Guo94, KM97, MKY+97, QMCL94, GMH+91, TRS06].
Optimal [AMS94, AH12, AR97, AKPT99, BNS00, BBM+02, BSDE96,
BOS+91, BOWS94, BHK+94, CW00, CS93a, CA95a, CW92, CA96, DS95b,
DP00, DLP99, DT97, DF90, Ede91, FLPJ07, FM96, FXW03, FA95, FAM96,
FY96, GS91a, HV95, HKMU98, HM01, Ho91, HJ+01, IZ95, JP95, JLY12,
JBP00, KERUM04, KUMF02, KS97b, KW02, Lai17, LHS97, LSC00, LK94,
LCW05, LLL12b, Li14, Li19, LO94, LO96, LV88, LS01, MS94, Man97, MW95,
Nak95, OS96b, OSZ98, OH02, PM05, PP06, PK05a, Pe95, PL94, PV07,
PM96, RR95b, San99, San02, SJ95, SZ00b, Sin87, SV00, TR08, WL90,
WLY01, WR97, WS95, WS97a, WN94, Wu94, WHT02, Wu03, WLL08, YA11,
ZV14, ZWS09, ZWR107, oPP00, ANP07, BM04a, BPBR11, BS92, CV90,
CMS04, CZ90, DKKV15, Dja04, EB13, Gue86, HDJ08]. optimal
[Li10, LH04, LS05, Lis90, LCB16, MD07, MPG17b, NW88, NZA13, PY09c, Pel90, PW16, PA04, PLR07, RTZ11, SGR03, SSM89, SGE91, Tami18, VS16, VAS+13, WC91, WIB12, XWC+08, ZQMM11]. optimality [HV09].

Optimally [TBPV00, GC07]. optimisation [AD12, LL07]. optimising [AD12, LL07].

Optimistic [HF02, NH93, PW96, SS93, DWG03, JLM08, QS05].

Optimization [BLG01, CGN+13, CLA+18, CLRW00, DDGK13, FM99a, FCF00, HA92, KCRB99, KZ96, KLS90, LWY97, MBW16, MC17, OK02, PMAL11, RL02, RNSB96, SMH94, TRSS06, VSM96, WCO+09, ALM+16, ATH91, AF06, APK18, ADDB18, BCM87, BNBR16, BDGR13, BHLT14, BYH+17, CMIT13, CCK11, CI86, DJH11, GZG+17, GL12, HVW16, JZZ+17, KS18, KKB+06, KLL87, LL10, LQM+12, LBT19, LGK+12, MZC18, NS12, Ozt11, QS05, RCG18, Ren11, RSS+08, SS11, SCC+06, SZD07, SK90, Str12, TPS+18, WMW09, WCL+13, WR13, WQL14, WMG13, Wol18, XLHT13, XLI18, YWD08, ZZJ+18, ZI08, ZWWX16, dCPD19].

Optimize [DRR96, HLJ01, SF05, TdAR18]. Optimized [ABDS02, Bar05, LMXJ18, WJ14, Ana14, BKS91, DKC14, Pet18, TW15].

Optimizer [HlLLY95]. Optimizer-Assisted [HlLLY95].

Ordering [KK98b, PRS97, RS96a, ZB97, CHC05, Zah12]. Orders [SH97, Sta04]. ordinary [GGR89]. Organization [AP94, AAH17, CT04, HKK+18, Ull84]. organizations [BW89]. organizing [BFKP04, BZH06, IZ12, KO11, MYM10]. orientations [AFM09].

Oriented [BS90, CSSTY94, CS95b, Fer92, HS00, SG96, Bi90, BZL14, Chi95, CTT08, CSW+17, DZC17, DWYB10, GYAB11, HD13, HRM17, KWH13, KBD05, KUN17, LWWQ18, MXSL12, PPGS17, RKK06, SCCG10, SK90, SFEF06, WWY+18, YBB91, ZC04]. Origin2000 [SSOB02]. ORION [PRP09]. ORN [SK11].

Orthogonal [AR97, JD12, Wu02, GS91b, HC91, SM99a].

orthogonal-access [HC91]. Orthogonally [CP98]. Other [Kap93, KU17].

OTIS [ZMPE00, ZXP09]. Out-of-Core [BCR96, Ra94, KKB+06, KR11, WJV07]. outcomes [NKSA17]. outer [CTKA17]. Outerplanar [GS99, KW02, TSFZ14]. Output [ASR93, GC07, PD92, Ros99, ST02, GS03a, PY09a, ST06].

Output-sensitive [GC07, GS03a]. outsourced [XLC+18]. outsourcing [CXY14]. Overall [LO96, SEP96, XLI11]. overcome [KG04]. overflow
73

Overhead [DR98, JNW96, KS00, SD00, BCM87, BD04, CX05, FGP05, LMGLGLG17, SC91a, SZ09]. Overheads [DI91]. Overlap [QH96, ALTV13]. Overlapped [Lin93a, KNS91, SWLZ17]. Overlapping [CQ95, Wil92, CHC05, KSG03]. Overlay [PRP09, BHK17, CMMN10, EDH+17, GZMC08, HK04, LSS+11a, LSS+11b, LCM+06, RA11, SB12, XLG+06, YF07]. Overlays [HASB16, ZH07].

overloading [AOSM04]. oversubscription [KKLJ14]. Overview [EMP+96, KS93, ABC+88, SSZ10].

P [ASST05, dR09, PMV06]. P2MCMDC [LC07]. P2P [AS19, CWLD05, CFI+18, DW12, EDH+17, FZ14, GB11, GJXZ05, LL19, LZY11, Luc18, MAPF14, RS19, RHL08, She09, SZ09, SHLN09, SK11, WCX11, YCH+10]. P2P-based [She09]. PA [SRT+18]. PA-Star [SRT+18]. PACK [BR96]. PACK/UNPACK [BR96]. Package [HS97, KOW97, KXMN94, CPO+03]. packages [DAB+14, PL03b]. Packet [GHKS98, GO95, JK00, LYL93, LS94, NS95, OY00, PRW94, PV89, RD05, SL97, ZY12, BMIM07, CK13, EKNS17, HB17, HDCM11, KMF+05, KK10, Nap90, OS04, PY09a, UM17, YSL08]. packet-level [YSL08]. packet-size [OS04]. packet-switched [Nap90]. Packets [GRV97]. Packing [Hwa97, LTW+90, CRD12, SF05, TSFZ14]. Page [Ano18y, Ano18z, Ano18-27, Ano18-28, LE91, NPP+02, HSSM07, MTM10, TH08]. Pagenumber [KRSZ02]. pages [Ano96l, Ano97k, Ano00d, CS93b]. Paging [DM99, Li17]. PAHON [DR18].

Pair [DP98]. Pairs [BGR96, TU92, KS91, DCA+15]. Pairwise [GP00, CK08]. PAME [YLZW18]. PaMeLA [GDL+11]. Pancake [BS03, KAM94]. pancyclicity [XHZZ16]. panel [Rob09]. Paper [Ano01m, Ros07, OY13]. Papers [Ano95i, Ano95j, Ano96j, Ano96i, Ano97i, Ano97j, Ano98k, Ano98i, Ano98j, Ano99g, An00a, An00b, An00c, An00d, An00e, An00f, An00g, An00h, An01c, An01d, An01e, An01n, An01o, An01p, An01q, An01r, An01s, An01t, An01u, An01v, An01w, An01x, An01y, An01z, An01-27, An01-28, An01-29, An01-30, An01-31, An01-32, An02q, An02r, An02s, An02t, An02k, An02l, An02m, An02n, An02o, An02p, Ben15, Sni03, Mue13, Phi13, Rob09].

Para [CD98]. Paradigm [KBD05, RS92d, BAMB05, CVJ09, KDSS18, JK15, MSJ05, SIE16]. Paradigm-oriented [KBD05]. Paradigms [Ano99g, CEF+95, YMR93, XQ04]. Paragon [CCRS92]. Parallel [AS93, AGW01, AT94, AGF94, AAL95, ANT02, AISS97, AP94, Als01, Aa, JS01, Alu97, AFM03, AS13, AS97, AS95, Aa, AH94, Ano92a, Ano93a, Ano96j, Ano97j, Ano97k, Ano99g, An00d, An02v, ASC+18, ABZ95, AKP95, ADM+94, AS94, ADS98, AB93, BK95, BJ96, BR96, BCD95, BB+91, Bai94, BW08, BBH+97, Bal90, BDF92, BGR96, BS97, BCV94, BFG94, BN94, BB93, BBM+02, BV13, BL94, Bev02, BBH+98, BKM17, B95, BEE00, BS90, BHS+94, BDHF90, BP89, BR95, BRFR06, BMAR07, BMR09, BMRC98, BMRC99, BS00, BTZ98, Bro96, BX93, BDH+97, BA01b, BTG02, BUMP98, BW18,
BM95, BNSP99, BS09, CP97, CMT93, CP98, CGKK97, COV13, Cas93, CC91, CDY97, CDR99, CB99, CKK00, CvdBL+08, CCRS92, CGL+95, CCC90, CS95b, CP10b, CW93, CA95a, CWW95, Chi92]. Parallel

[CV91, CDJL09, CN93, CP92, Cho93, CH94, CY96, CWP98, CB96, CQ95, CRD17, CGA98, CH92, CP94, CA95b, CHGM01, CRFS94, CLZ00, CBD4D00, Cuz11, DDO+18, DFHH13, DM90a, DM95, DP09, DP00, DM92, DRC90, DH91a, DS84, DO89, DH94, DDK13, DN94, DJM94, DSW94, DT01, DSD+97, DBKF90, DD95, DZ97, DJT03, ES96, ERL90, ERA95, EMM94, ELS94, ES97, EHS94, EHM95, Fhl96, FLL14, FZW12, FBRW03, FGcF17, FTM+14, Fer95, FR96b, Fer92, FMP98, FLS+97, FPS11, FC95, FKCC97, FJ93, FMW+94, Fre96, FT94, GG94, GP94, GCB+00, GGN93, GV94, Ger98, GBE93, GGD93, GMSS+11, GJP96, GC01, GSC06, GM95, GSP02, Gra99, GL92, GH99b, GH99, GW06, GNZ18, GK93, GHSJ96, GS99, GRR+05, Hag97, HHM94, HK96, HH97, HGCC96, Han89]. Parallel

[HES11, HB97, HB98, HP95, HR92b, HR92a, HH98, HP97b, HN91, HTB98, HR99, IK94, IZ95, IWM97, IHC05, JW94, JBL02, JSM94, Jia99, KR97, KF95a, KME92, Kap93, KSA95, Kar92, KK98b, Kau94, KZ96, KKN13, KR98, KB01, KKS08, KE93, KS93, Kri92, KRS13, KW02, KG94, KG94, KM92, KA97, KC99b, LSCA93, Lan09, LWCC15, LP96a, Las12, LMCF90, LW97, LTH07, LJKS02, LS97, LC90b, LAS+97, LP99, Li01, LWG02, LYL08, LSS+11a, LST+13, LSH96, LS88, Lin91, Lin93b, LA93, LO94, LLCC02, LP97, LL11, LFA96, LKB+15, MB96a, MFF93, MHS93, MS99a, MLC+90, MR94a, MPZ09, MT96, MB96b, MP93, MSG+13, MSH90, MD98, MZC18, MHC95, MB92, MSd95, MMAL+06, Mer96, Mil93, Mr91, MB93, MG98, Moh96, MSAZ10a, MNK12, MS96, MS99b]. Parallel

[NSS97, Nas94, NFEG97, NMS93, NS97, Ngo06, NT90, NKC+97, NH93, Nic94, Nie94, Nik04, NZA13, NPPC02, NDZA99, NS92, NPY+97, O005, OY00, OB98, OY13, OP98, ORR03, ORG97, OT19, PH91, PD05, PP96, PDP17, PH00, Par98, PE93, Par96, PL03a, PL94, PCX+14, Pla08, PAH+98, PAJC97, PBB+11, PRS14, PSE+01, QZ94, QH96, QQvdG01, REK10a, Raj01, RS96, Ram92, RL02, RS92b, Rere48, RW01, RGS00, RPS93, RSL12, RSW90, RIZ90, RJA97, Ros99, Ros07, RW93, SSG93, SH90, SS96, Sun98, SM96, San02, SAOKMA02, SH97, SG97, Sch90, SM98, SW96, Sch91, Sd97, SAF05, SR97a, SR97b, SAC+98, She06, SSE92, STHC00, STN92, Shu95, SGS99, SII90, S09, SR95, SSV94, SB93, SC95, Ski96, Sni03, Soh96, SL97, SHR19, SLK13]. Parallel

[SIR92, SK93, SMKL93, Ste95, SSK96, SWC+91, SF90, SYG92, SS97, Szy95, TH11, Tåt11, TSA97, TW87, Ten90, TÅS+01, TR96, THBF97, TVO92, TZO0, TK08, TF01, UAPM07, Upa13, VSM96, VGAB08, WB94, WCE97, WLY01, WM92, WNA+94, WPKK94, WB96, WTC08a, WMW09, WRW13, WSA+94, WD94, Wee01, Wei98, WMG01, Wei02, WA02, WAS95, WS95, WS97a, Wor93, Wrr91, WT92, WH97, WHT00, WHT02, XP10, YBX+13, YZS96, YWAT13, YB95, YIY97, YB01, YP96, Zak01, Zep91, ZYH94, ZK94, ZB97, Zhut92, ZH99, ZM94a, ZO97, ZYO02, ZA91, dCPD19, ACY08, AKDMN15,
Ada17, ALS91, ABG11, AFG†19, AP91c, ATH91, Ara90, AMM†18, AE88, ANP07, AG86, ADDB18, AB13, AJG18, AFCFK07, Bad04, BC05, BCM87, BB87, BBCLL04, BKC†15, BBM08, BA06, BCFF05, BAH04, BNBR16].

parallel [BFH09, BS87, BSQG09, BR91b, BMKMT14, BGM08, Boz09, BCK†13, BSH15, CK88, CP10a, CTS17, CR91, CDS10, CSMML10, CCE†17, CCS06, CRL04, CEGS07, CVK†18b, Che86, CCS87, CZZ†17, CQL01, CFW13, CKWT17, CBT94, CMJ†19, C85, C90, CB06, CD95, CK91, CM12, CB11, DADC18, DFQF06a, DMG18, DRT07, DM90b, DM90c, DQR†09, DUW86, DLW†12, DAG†17, DRR13, DM94, DWHL87, Ebm04, EBSA94, EE05, EI07, FCG04, FGG08, FKB17, FCS91, FSD04, FKR†17, FCG†14, GMP12, GVBB13, GGR89, GS91a, GP91, GT04, GMVRGS16, GWWL94, GAC†17, GS03a, GC07, GB06, HM06, HSS10, HZZ†19, HOE†09, HSH10, HD13, HS86, HA91, Hsi04, HSS17, mH14, JT88, J5WB92, JMS86, JL05, JJ12, JST12, JP09, JZ05, JVF†15, KKR14, KESA07, KR10a, KR10b, KHT†14]. parallel

[KV88, Kep03, KH03, KKS†12, KCR14, KN18a, KN18b, KM03, Koc91, KSSG14, KBC†10, KK86, KS91, KMP†06, KP05, KIH15, LBMG15, LT02, Las13, LPK†10, Li06a, Li06b, LT07, LY12, LMB†17, LJZ†19, LTLSK90, LC92, LH04, LS05, LH09, LU14, LZZ†11, LTTG14, LGL13, LF03, Luk85, ME04, Mar88, MV88, MdG90, MCT06, MTL†18b, Men18, MP87, MKM†11, MAR05, NVK†11, NDW17, NSDZ18, NW88, NC07, NZZY†11, NCTT09, OS04, OTKT12, PB90, PC04, PMAL11, PPTV†10, PA15, PK89, PPSV15, PF91, PVM06, PHS04, Pop91, PGG04, PRG88, QJ05, RA08, RSR04, RGD03, Rao16, RAN†17, ROB†18, RG87, Ros89, RSW91, RTCG91, RBB17, SS06, SS03, SPBH91, SV08, SI89, SC91a, SS06, SSTP09, Sch14, SPH13, SC04, SZW05, SF05, SK91, SCM13, SA08, SK16, SMH†14, Sta04, SD08].

Parallel [SSdlB†10, SR91, SR16, Suk18, SHC14, SRT†18, SSGZ13, TM06, Tam18, TW89, Ter16, TRS06, TS91, Trä09, TLW18, UGG†11, VD04, VS16, VA07, Vis87, WL90, WLL16, WC91, WJ07, WB09, WLCZ15, WHHR91, WJ91, WZ91, WIB12, WF09, WLWW09, WCZ09, XL11, SX11, XYZV14, JBY19, YO11, YZL09, YDZT18, YBM13, Zha11, ZFL89, ZJ06, ZJF06, ZBW†17, dVCP06, dGP06, CPO†03, Cza13, FTK14, KR11, Ree84, YÖ11].

Parallel-depth [BP89]. parallel-processing [Trä09].

Parallel/Distributed [KZ96]. Parallelisation [HSSM07, Kal04, AD12].

Parallelism [Bec96, BAN93, Bog17, CGN†13, DRST02, FM85, FKKC97, FY97, GS†93, HKT†91, KRC00, MR94b, MK92, SG93, SW91, SH92b, SV00, SG96, XMMD17, GV86, HS03, Irw88, MM15, Ozt11, PVGG06, RS08, RSCQ17, SCB09, TBO†17, VFB13, WYTX13, ZLWL12, DeG88].

Parallelization [BPST96, BF01, DHR96, HO94, KR97, KUB17, NM95, NC97, Pov99, SANY94, UZ896, WCKD06, AAD05, AGMJ06, CV09, IB08, LMY†11, MPN17, NES10, SGE91, WCE10]. parallelizations [CCLS94]. Parallelized [DR98, MJ01, SPVH03, ZM17]. Parallelizing [HWW96, LLS†16, RHH96, Tse90, WCH†17, DMCFCM03]. Parameter [FCF00, ZRN†14, APK18, LZY†18, SPVH03, DAPR18]. Parameterized
Penalties [SDS99], penalty [CK13], people [HRM17], per-core [LSC15], per-user [LC11], Perceptron [ZAW94], Perceptual [CWP98], Percolation [MSH90], Perfect [BAES92, AB05], Perfectly [Lin93a], perform [EL91], Performance [AP91a, Abr96, ABDS02, AP93, ACD+93, ATM01, AM119, AH94, Ano92a, Ano97k, AA95, B399, BBH+97, BPJG92, BCV94, BS96a, BAMB05, BL96, BCD00, BP01, BLG01, BNP99, CTD99, yCM98, CY99, CKY12, CB02, CP99, DS95a, DH99, DPS08, DY99, DS02, DWB10, DW04, DB18, DF94, ER97, FR92, FRM15, Fer92, FGKT97, FPD93, GCB+00, GE85, GT02, GM94a, GGD93, GLGLBG12, GDN+98, GM99, GRR93, GBA08, GK93, GK04, HMBW07, HCS+00, HCAA93, HP97b, HN01, HLT99, IC05, JSCB95, JV06, JB93, JLRA97, J091, KME92, KM9D97, KC95, KS95, KMS07, KRS13, KRS14, KB96b, KG04, KEA95, KJ84, KRS01, KLL87, KMB01, LC97, LL93, LYL93, LP96b, LP97, LPX05a, LNW+12, LTH+93, LW+16, LHVV95, LDCZ97, Lu94, MF94, MT95, MSAF04].

Performance [MM06, MSC96, MB92, MSAZ11, MS96, MB+17, NKB17, NBP98, NCA93, NSA11, Nee17, NKC+97, OD95b, PARB14, PH00, PS93, PD92, PEC95, PTC+93, PAJC97, PBB+17, PS01, RPS93, RW93, RCU08, SMH94, SSG93, SPBR91, SV08, SKR93, SG93, SB02, SLP+98, SKH96, TLY12, THBF97, TTT95, TPJ+19, TH02, TdAR18, Tze91, VSM96, VHH08, WAS95, WF98, WLLD02, XMMD17, XQ07, XZS06, YB90, Yan93, YZS96, Y96, YAS98, Yan00, YB95, YM01, YAK15, ZQN93, AM13, AA10, AR17, AB03b, AP91c, AD12, BL05, BW99, BCD+15, Bat05, BCF05, BDGR13, BKS91, BH86, BJS03, BDL09, CK06, CF88, CB02, CG17, CCE+17, CVK+18b, CBM+08, CKWT17, CCEB03, CL04, CKL05, CC96, CSW+17, Cuz11, Cuz13, DK08, DR19, DJH91, DKK18, DF12, DYL+12, ETS14, ECLV12, FHL+15, FGP05, FJSW90].

Performance [FCP+15, FD86, GJ12, GRV08, GMSS+11, GST09, GYY+14, HW03, HES10, HNS07, HHS12, HRG+11, HC04, HD13, HA91, He05, HC91, ICQO+12, JST12, JBY+05, KVNV17, KlP17, KZG91, KCR14, KZ11, K17, KS08, LWC+18, LWCC15, LL90, LC13, IWR+03, Li06b, LSX14, LJZ+19, LB12, LZZ+11, LGL13, LB18, LCB16, LV07, LGK+12, LWQ18, MC17, MSRS+13, MZC18, MRS+14, MV05, MG09, M011, MLK12, MBH+08, MGRRK14, NTSN91, Nap90, ND12, NTC03, No12, NRM+09, OSL05, PCMM+17, Par05, PRB06, PB19, PHW+13, PVR17, PGKV18, RH05, RM00, RTGC91, SPRG+12, SSFP11, SA0KZ05a, SA0KZ05b, SCB08, SD91, SC04, STMZ18, SAB+92, SA11, SE15, SR16, TTH12, TB90, TMM06, TD07, UMM+18, WTB+08, WS06, WH08, WG11, WLZ+18, YAA10, YZW+15, YYYW19, ZWY+15, ZKZF18, ZW13, ZWQ+16, ZLC18, dAT17].

DZC17, DKC14, KVA18, LGZ+10, LC14a, LKM12, LWQ18, MVP17, PMdO11, uRL+18, SM08a, SK05a, Udd19, WWY+18, WZH+19.

Prediction-based [AYB+15, DBW+18]. **Predictions**

[DD95, XZS96, LSH+13, NVK+11]. **Predictive**

[DSW94, BYH+17, RKK06, SNMB16]. **predictor** [GGR89].

predictor-corrector [GGR89], **preemptable** [LQM+12]. **Preemption**

[MS98, SJB12]. **Preemption-Safe** [MS98]. **Preemptive**

[GAGPK03, JTZZ11, Mar88]. **Preemption** [MS98, SJB12].

Preface [Ano01-33, Ola01]. **preferences**

[WMY+17, WTY+18]. **Prefetch** [SD00, Zha11].

Prefetching [BL96, KS97a, LY98, LY01, MG91, SG99, SD00, HD10, HA05, LAK10, SSGG18].

Prefix [HJ01, MP93, San02, AFM03, BS03, EB13, Han89, LH04, LS05, LH09, SPH13].

prefix-based [SPH13]. **Pregel** [XYZW14]. **Preliminaries** [NBM93].

Preparing [GS18]. **preprocessing** [FSZ07]. **Presence** [ADS01, LT96, HZA+15, ISM07, PMHM19, RLH03, SAOKM03, WE13, WSLC11].

preservation [GSASA19], **preserved** [SWW+17]. **Preserving**

[NA02, AKK+19, CXY14, JP09, OMSGNSG05, TKR+19, WML+18].

prevention [BYT19]. **pricing** [AKSZ19, GRDB05, ZV12]. **primary**

[AOSM04, BB03]. **primary-backup** [AOSM04]. **prime** [YLB90]. **Primitives**

[FAM96, AF17, BBH+17]. **principal** [VLW18, AHG12]. **principle**

[GXYZ13]. **Principles** [KAS07, DAC+17, FK89]. **Prior** [KHN17, SHK19].

priorities [BSMH08, KSS+07]. **prioritized** [LASS15, LW89]. **Priority**

[BM97, BTZ98, Joh94, JNW96, KB96b, San98, TF92, FC90, HM06, MAKWZ13, MM07c, SH16, ST05]. **priority-based** [MM07c]. **prism** [Ros85].

Privacy [AKK+19, CXY14, ZLJ+19, BJL18, GSASA19, LLDL15, LZSL06, SWW+17, TKR+19, WML+18]. **Privacy-aware** [ZLJ+19].

privacy-preservation [GSASA19]. **privacy-preserved** [SWW+17].

Privacy-preserving [AKK+19, CXY14, WML+18]. **Private**

[REK10a, REK10b, CKMP17, LTWW12, RFPA08, SHK19]. **privileges**

[LS19]. **Pro** [KV10]. **Pro-active** [KV10]. **Proactive** [RLH03, TXLL14, WMES12, DW12, FX10, HOVC09, KAA+19, SZ09, WWY+18].

Probabilistic

[CWLT+07, DM92, SCMS12, ESCV15, JHPL13, MK08b, SU87, WMG13, ZA05].

probability [DJH11, GXYZ13, KNS06, LNAL17, LXL12, NGQM12].

probability-based [GXYZ13]. **probe** [ZWFW06]. **Problem**

[AS05, AM93, ASTT05, BSH15, CLRW00, CRFS94, GP00, HH01, HC97, Kau94, KBC+01, KLZ97, LF92, NW88, RD195, TU92, TZ00, WH97, Zia92, AY89, ANP07, BCMV15, BB85a, BG90, BFM06, Boz09, BW18, DBA+18, dADC18, DM90c, EE05, FZWL12, FMM+08, GT04, HSSM07, Hsi04, HC11, IHL05, Joh89, KS91, LM05, LSS88, LWR+03, LY08, LCCL10, LLCZ19, LS91, LH09, MG03, NGO06, OA10, PM05, PBS08, PDB13, Sch13, SU87, Sta17, WLL16, WCEA10, WZ91, WMG13, Cza13].

problem-size-independent [LH09]. **Problem-Solving**

[KBC+01, LWR+03]. **Problems**
[Ano96i, Ano99g, ADS01, BK95, BOS+95, BEE00, BGOS95, BMCP98, CB95, DS02, ESMG96, FR96b, FR98, FT94, GL92, KL01a, LSH96, MS94, MF96, MS99b, OR97, RS96b, Ser97, SN93, Ten90, TF01, WM92, WLR90, WHT02, WH08, ATH91, AG86, BGH+03, BS03, BBd90, CMMT13, CEGS07, KJD03, LW06a, Lin91, Los08, LGG08, LV88, MPZ09, Men18, Nik04, PPSV15, WHR13, WMG13, YS11, ZTFK16, dCPD19]. procedural [Kan05].

procedure [Kub17]. procedures [DWHL87].
Process [CCM92, IAS+92, Kar95, KSP+92, KOW97, Qia97, Ric98, SMR96, SS93, SF90, Ale19b, Ara90, Bic90, Gal87, Gal90, GA18, HRF+11, Lo92, MEMEMH17, SDG17, TKX+13, WMES12].

Processes [DZ97, VWHL96, BFTV87, GK15, MAR05]. Processing [AyJ93, AK93, AGWY11, CS95b, DDGK13, Eme13, GC95, GLGLBG12, HPT+97, HSJP87, HR90, IWM97, KSL85, Kri92, LWY97, LS97, LS85, LT94, MSH90, MT85, NSM98, NM93, OY13, Ros07, SH90, Sni03, SD88b, SSK06, SWC+91, TAS+01, THBF97, VAF19, VB02, Wee01, WRC+02, WSS93, We98, WA02, YL12, YL16, ZM94a, ZM94b, AAA+15, ATDH13, AM11, BB87, BK13, BAT+19, BHS13, CC08, CLA+18, CRL04, CHLL18, CCN06, CM12, DFLO17, DW04, EKNS17, GSWW04, GWWL94, HBS17, HR89, JMS86, JKD+15, KL08b, KNS91, KKN13, KN18a, KN18, Lee91, LB12, LL18, LKB+15, MTL+18b, MS86, NLB+18, PYP+10, PI90, PGP+12, PVM06, RCG18, Ren11, RAN+17, RG87, RTCG91, SCB08, SIY14, SS18, SK98b, Sto87, SCLL10, SI13, SA90, TZH+06, Træ09, VETT18, WW07, Wan07, WJD91, WL10].

processing [XHY07, XQ04, ZMCP11, ZHH15, Ano93a, PRS14]. Processor [AW95, AERBL92, Am94, BG86, CW93, CWW+95, CkLCK04, CkLCK05, DY99, DDD98, GW99, Geo94, Guo94, HO94, Hwa97, JB98, KC98, KF90b, KB92, LS91, Msd+95, Moh96, MMN08, MBK+92, NN97, OS98, Par06, PTO1, RKK97, SS93, SNC93, SS97, WCF94, YD98, YL98, Zh89, ZY002, ACYS08, BA05, Bod89, CL85, CL85, DK11, Deh90, EI07, Gro85, HK08, HA05, Kri91, KR87, Lee91, LC13, Li05, LY13, MM07b, OT86, PDL87, PR13, RR05, RLH03, SI86, SI89, SSM89, SML+13, SK91, ST85, SAJ13, SE15, SHRM19, TR08, TaDR18, WIR+18, Wil92, XP10, YBM13, LTKS90].

Processor-efficient [LS91]. Processor-embedded [CkLCK04, CkLCK05], processor-in-memory [HA05].

processor-node [TR08]. Processors [CMS92, DBKF90, GR96, HEG97, HQPT99, HBB93, JR95, LPU97, MP96, AR17, AHc90, BM17a, BD05, Bar05, BB85b, BR91b, CBM+08, CN14, CK11, CH11, CKK13, CRIB13, CMC+19, CK91, DDG+17, DPRW85, DRYB10, FSP18, IC05, JI12, JHF+17, JZP+15, KK88, LV15, NS12, NZ17, PK89, SPC+17, SNMB16, SC91a, SP13, ZXT12, ZXB14].
producer [KK11].

producer-consumer [KK11].

Product [AAD02, AFG+19, GE94, MSC96, CI03, Dim04, Dia06, ISAZ07, ISAZ10, JD12, MSA11, ST85]. Production [BBD+91, HKT+91, KM91, KM92, Nie94, Sch91, DM90c, GF89, HS86, SM86, TDBL13]. productivity [VFAD17].

Products [ANS97, WL00, CP10b].
Professor [Ano04r]. **profiles** [YWAT13]. **Profiling** [BST01, KC17, uRIL+18]. **Profit** [LWZZ12, AM06, KSSK16, LLCZ19, ZV12]. **Profit-driven** [LWZZ12]. **Program** [BST01, KC17, uRIL+18]. **Profit** [LWZZ12, AM06, KSSK16, LLCZ19, ZV12]. **Profit-driven** [LWZZ12]. **Program** [BDF92, BE95, DBP94, DD95, ERL90, Fer92, FJ93, GSG+93, LSCA93, LMCF90, LAS+97, MDD97, Mi93, NBM93, PP96, PS01, RRS+08, SH92b, The02, WF93, YB01, ZYH94, GJG88, Kan05, RM90, ESA03].

programmability [KWZ19]. **programmable** [AC89, HHA14, MM07b, PYP+10]. **Programming** [AT94, AM93, AB84, BK95, BJ99, BCD95, Bal90, BN94, BB93, CP97, COV13, CCRS92, CCC92, CEF+95, CBdCD00, CJ99b, DRR13, FC95, Fre96, FBDC99, GP94, GGW96, GAG+92, GLC01, HR00, JW94, JRR99, NT90, PA94, PM96, RAS96, SSOB02, Sin95, SC95, VBF13, VFAD17, ZCC92, AE88, AB13, AJG18, BAMM05, BYG+18, Bog17, Boz09, BHS13, BLZ+18, CK88, CCC+04, CTS17, CCE+17, CMR19, DRT07, Eij18, EE05, EC89, FBDC99, GP94, GGW96, GAG+92, GLC01, HR00, JW94, The02, WF93, YB01, ZYH94, GJG88, Kan05, RM90, ESA03]. **programming-based** [KKVI05]. **Programs** [AH94, BB93, BCR96, BLG01, CMT93, CDY97, CGL+95, CMS92, DR98, dADB96, ERA95, Fah96, Gup92, GHSJ96, HLJ01, Kar92, KY96, LP97, Lun94, Lun99, Mah95, Mi92, QZ94, QH96, RJA97, RW93, SKR93, SG93, SSHC00, SK93, TR96, TG97, YI96, ZN01, ZH99, Bi90, CC16, CAK13, DeG88, DMG18, FKLBO8, GÖÖ16, HK08, HS03, LPK+10, LC19a, LC92, LZZ+11, McD89, NCT+07, Nic07, Pop91, SCMH13, THSS87, YDTZ18, ZXB14].

Progressive [RGS00, YIY97]. **Project** [BSH15, FCO90]. **Projection** [AAP01, HSJP87, FGL+11, NCA+12]. **Projection-Based** [HSJP87]. **projections** [KM03]. **PROLOG** [SS97]. **promoting** [ABCM07]. **prone** [DDG+17, GK15, MFVP08, OWK14]. **Pronto** [PF08]. **PROOF** [YJB91]. **proofs** [AP16]. **propagated** [SHK19]. **Propagation** [CDP95, DF94, AAFV04, BEN12, CKN07, CDB04, KMMZ06, PLR07]. **Propagations** [WD92]. **proper** [NGQM12]. **Properties** [BR95a, CW01, DC94, GK93, KAM94, YN92, NS90, PL06, WMY+17, YDTZ18].

properties-aware [WMY+17]. **property** [PB09]. **proportionality** [KR12, KCR14]. **Proposal** [HPT+97, ESGQ+14, NKK16, VO89]. **proposals** [RFPAG08]. **Protected** [LS19]. **Protecting** [LY04, LZSL06]. **protection** [DHS06, Lop13, Lop18, YGZ+10]. **protein** [FGZ03, GZ08, LYL08, LVBO7, Ngo06, WDS+18, YL12]. **Protocol** [BMMS01, BHK17, CXL99, GRS97, GS96, GS01b, HP00, KUFM02, KB96a, LLL9, Sch95, The02, AMT13, ARD14, ALF03, BDM18, BOY10, CL03a, CCHC99, CS08, CL09, CHC05, EBE08, Eri88, EDH+17, GCS06, GZY14b, HLS12, HZDP12, LS06, Lun90, LM09, MCD+06, MAGL13, MPG17a, NPGV10, NSA11, PGS06, SMPMLVLS11, TLY12, WCCH18, ZPI06, ZWS09, ZLCJ12, SJ11]. **Protocols** [AS00, DS95a, Dahl99, Do97, DSS95, GS00, HNM02, KCDZ95, AP03, BW89, BSW07, BPA06, BJL18, CXY14, CB06, CDAN14, FW05, GS03b, JBY+05, KLP10, LPX05a, Los08, MAM05, MMCL+17, MS15,
quorums [BJPPM+08].

R [Ano92a, BG90a, KKN13, LMY+11, TR16, ZFS07]. R-GMA [ZFS07].
radiation [KVN17]. RADIC [CLMRL15]. radii [OMSGNSG05].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11,
KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity
[SHT+95, YIY97]. Radix

[258x646]

[HZL18]. radiation [KVN17]. RADIC [CLMRL15]. radii [OMSGNSG05].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11,
KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity
[SHT+95, YIY97]. Radix

[258x646]

[HZL18]. radiation [KVN17]. RADIC [CLMRL15]. radii [OMSGNSG05].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11,
KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity
[SHT+95, YIY97]. Radix

[258x646]

[HZL18]. radiation [KVN17]. RADIC [CLMRL15]. radii [OMSGNSG05].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11,
KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity
[SHT+95, YIY97]. Radix

[258x646]

[HZL18]. radiation [KVN17]. RADIC [CLMRL15]. radii [OMSGNSG05].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11,
KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity
[SHT+95, YIY97]. Radix

[258x646]

[HZL18]. radiation [KVN17]. RADIC [CLMRL15]. radii [OMSGNSG05].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11,
KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity
[SHT+95, YIY97]. Radix

[258x646]
AOSM05, BVGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, ED005, FC14, GZG+17, Gos90, HOVC09, HA06, HV13, HL07, JZZ+17, JHL+18, KKW17, LHK03, LZY09, MLGD12, MAM05, MAKWZ13, QJ05, RLH03, SA19, TZH+06, WL05, XO05, ZZJ+18, ZHH15, ZQMM11, ZHLQ12. realistic [FTM+19, KNS06, SJ11]. RealTimeTalk [EMP+06]. rear [CXQ+18]. rear-end [CXQ+18]. rearrangeability [DD96]. Rearrangeable [CS93c, HJDH01, FY86, Pak89]. Rearrangement [BVB02, GL92]. Reasoning [PS88, Ste95, eW95]. recall [BGBC+16]. recipients [Ros07]. reciprocal [SL90]. reciprocity [HBF12]. Reclaiming [GMM00, MMVR97]. reclamation [HMBW07]. Recognition [BMRC99, RGU08, SP96, WPKK94, CNLGR18, CWZ+18, LO91, PD05, RK18, SZR+18]. recommendation [COF+17, LMXJ18, WTY+18]. recommendations [WZH+19]. recommender [HWL18, ZLJ+19]. reconfigurability [ZXYO11]. Reconfigurable [AT94, BAGS95, BSDE96, BBR94, BM97, BA95, BGOS95, COS+95, CGG+99, DS01, EL97, EH01b, FZVT02, HQPT99, HCWS94, JP95, JS94, JB98, KF90a, LS95, LPZ99, LR93, MD01, MG93, MT97b, Nak95, NS94, ORWT+18, OS96a, TVS97, TBPV00, WHT00, dR09, AM13, AHA+16, BM04a, BPP05, CDJ+89, DS04a, FX06, HZL18, HPS91, Lia17, Mat06, MP08, PPP14, PVG09, SI89, SL89, TRSS06, TJCB10, WJD91]. Reconfiguration [CGA98, QMCL94, UR94, YTR94, BAPR91, DMG18, DBL+12, HBS17, JWSG14, LBMG15, LH+16, PSP05, ZBW+17]. Reconfiguring [BDG+15, OW95]. reconstruction [BDRB14, FCG04, FGG08, HES10, KM03, OGRV+12]. reconstructions [SHT+08]. recoverable [ZSCX18]. Recovery [CP01, FCFO0, JF95, LY10, LS01, MFS93, BG05, DWG03, MM04, MM06, MS02, PGS06, TTH12, ZYW+15]. rectangle [Deh90, LV88]. rectangles [KF95a]. Rectangular [CWW96, Dja04, SB12a]. Rectilinear [Nic94]. Recurrence [CP94, Car90, MP87]. Recurrences [BCZ95, GP94, NCT99]. Recurrent [WT92]. Recursive [CW01, CB95, CTZ99, GHSJ96, KC99b, Lee94, LT07, RS92b, SCD99, ZYO02, AKDMN15, ERS90, MM15, SMKL93, DC94]. red [BE13, DMI+19]. red-black [BE13]. Redaction [SWC+91]. redirect [ACCP12]. Redistribution [PT97, RS96, BBB+06, GP05, KNHH18]. Reduce [KLS90, SDS99, CRD12, LMGLGLG17, LM05, LS88, MP08]. Reduced [AP94, CC87, Gro85, HJ90b, LC13]. reduced-instruction-set [Gro85]. Reducible [DH94]. Reducing [BCM87, BD04, FGG05, GS00, IIH16, PB90, S93, ASA18, CK13, CX05, RWB+13]. Reduction [PA97, RJY96, SSG93, SM92b, BV13, BW18, Li17, LS88, MS19, Sch87, SP13, ST08a, YAK15]. redundancy [BM17a, RMHR17]. Redundant [CKT11, MT93b, MFS93, MFS96]. ReduxSTM [PGRP17]. Reevaluating [SC10]. Reference [KS00, CH06a, FPP06, SPRG+12, WL92]. references [SYYU07]. refillable [ALH+09]. refined [Mit07]. Refinement [FLS+97, NA02, ASC+18, DAB+14, GA16, GNZ18, Mit07]. refinement-tree [Mit07]. reflectance [YWT13]. Reflections [Zim96]. reflective [KKKP12].
Research
[Ano01-34, GLW14, Kum17, MLZY17, WZ13, Hua17, Lan09, LZ11, PSGS17].
GA90, LDS16, LZY+18, MSF+13, SSM+16, SNCP12, TZH+06. robustness
[CKWT17, Par05, SSMS08, TdAR18]. Roe [dlAMCFN12]. Role
[Cha95, Won99, BCD+15]. Role-Based [Won99]. Rollback
[JF95, AAFV04]. Rollbacks [SS93]. roofline [KC17, NSKN17]. root
[EL91, LXW+11]. Rosenberg [Ano00d]. Rosenfeld [Ano04r]. ROSS
[CBP02]. Rotation [HC95, HBBH93, Ara90, EL88]. Round [CMS04]. route
[CD05, LMX05a].

Routed
[FF98, NSSS99, RJC95, XMM92, MV94, SAOKM03, WCC02].
Router
[CP01, CP04b, ZCF+17]. routine [IBP08]. Routing
[ASH+01, AZ01, AASJ05, BLBV95, BPW+W96, BP98, BA01a, BW95b,
BF01, BN03, CRV94, CL93, CW01, CS10, CL96, CC94, CL97, CCR94,
CS93c, CDF01, CG02, Do97, DG94, EL97, GG01, GH98, G095, GT97,
HCWS94, HJ99, LM00, JR92, KLLK98, LS94, LTWY95, LT96, Li92,
LM95, LW95, LEB98, MS00, MS94, MW95, MR03, MJ94, N99S99, NS95,
OM90, PRW94, Par96, PA97, PA01, PL93, RS94, RS96b, RH05, RO92,
RR95a, RW97, S95, SJ96, SB02, SZ92, TBP90, WLY01, Wan96, WN94,
WLD90, YBOY97, PR90, AA14, A16, AD10, ABF+14, BS97, BOY10,
BR91b, BPA06, CI03, CL03a, CC14, CS06b, CS08, CH98, CDC05,\nCM12, CA14, CL90, DMB+03, DJDK19, DJH11, DBW+18, EB99,
GH10, GDL+11, GAGPK03, GL06, GTGLS12].

Routing
[CD05, LMX05a]. row
[Mat06].

row/column
[Mat06].

rows [ST87].

S-Nets
[BPJG92].

SABA
[ZV15].

sampling [Fkk16]. Safe [FM99a, MS98, CDF+15, HW09]. safety
[Wu03, XCS06, XCLR07]. SAGE [Num09]. salesman [WMG13]. Sampling
[OS96a, SS92, BBS01, SMP15]. SAMR [CP05, LTL06]. SAN [SM92a].

SAN-Based [SM92a]. sandboxing [SF06]. SAT [SHA17]. satellite
[TZH+06]. Satisfaction [GHH92]. Satisfiability [Soh96, Joh89]. Saturation [Tze91]. SAUCE [HSS17]. Saving [DKY01, SGGZ13]. Sawchuk [Ano93e]. SBCI [AS19]. Scala [GKK+13]. Scalability [AFT+00, BCV94, BP01, DVW94, KS91, KG94, MR94a, PTK+13, QZ94, SSRV94, Sun02, ZHY94, ZFS07, dSS11, CLG+16, CSW08, CP10b, GA16, KR06, LDPLC+19, NSKN17, QGZP17, RM10, YH07]. Scalable [AS13, AS15, AYI97, BM17b, BMRC99, CSSY94, CSMMIL10, CAB94, CLV95, CbDcD00, Cou93, DA97, DD93, DKRC+15, DM04, DSW94, DFRCU99, DDS+97, DT92, DM94, FR96b, FPS12, GH02, HA92, JJ12, KA03, KP00, KH12, KC94, KGV94, LZ02, Li01, LPW02, NKC+97, NRM+09, NPY+07, PA94, PGP+12, Pra93, QGB+17, RBA+18, SMH94, SN03, Sun02, SFC17, TFSM15, TCS+10, VLGV+18, WPKK94, WW96, XKMN94, ZMPE00, ZB09, ZXR18, ZLS17, AKDMN15, ACPT15, ADBB18, BGM+08, CGL+14, CS08, CAK13, CJ17, CD95, DKKV15, DSO4a, FPS11, GZ08, GM13, GRZ+18, GREC91, HSY10, HWC08, KHT+14, KCFP18, LHK03, LLB+18, LC07, LB09, MK08a, MVP17, NKK16, ND12, RBOH+18, SSTP09, Ter16, TCHC12, WJ07, WCEA10, XCLZ03, XJS03, YQTV12, SLG+18]. Scalar [VH93, SKH15, Sol13]. scalar/vector [Sol13]. ScalaTrace [NRM+09]. Scale [ABDS02, BMCP98, FZVT02, G93, H9M4, KL84, L98, MYM10, OK01, RFM94, VN93, AFG+19, ACCP12, BM16, BMB+08, BCC+18, BMF05, CC16, CLV95, CLV95, DBCF13, DLW+12, IEWK17, KESA07, KSSL16, KB93, KL58, MK84, MVP17, NKK16, ND12, RBOH+18, SSTP09, Ter16, TCHC12, WJ07, WCEA10, XCLZ03, XJS03, YQTV12, SLG+18]. Scale-free [MYM10]. Scaleable [BMRC98]. scaled [KNHH18]. scaler [VD18]. scales [PLK+18]. Scaling [CVK+18a, SSS07, TBPV00, YFS+15, FKLBO8, FZ14, MB19, Num07, VD18, YO11]. Scan [KB96b]. scanners [CCN06]. scatter [BM04b, LMR05, dASJ15]. scatter-based [dASJ15]. scattering [DB86, LPLFMC+12]. scatternet [SLWW05]. SCC [LTG14]. SCDN [SLW10]. scenario [DBW+18]. scene [OGRV+12]. schedule [KSG03]. Scheduled [LB90, HA06]. Scheduler [NPP+02, HDJ08, HHA14, KS03, LS10, LB09, SCG10, ZLW18, MSK+16]. Scheduler-Activated [NPP+02]. schedules [CDR12, Dja06, DQR+09, ZXY011]. Scheduling [AGF94, ALL99, AMN00, AGG98, AS97, AYE98, AKPT99, AHeC90, AKT19, BPJ92, BD05, BP90, BD11, BCLR96, BSH15, CDY97, CL91b, CLL09, C90a, DA97, DR95, DDD98, DP99, DS84, DYA02, D006, DJ98, ERL90, ERA95, FAGV95, FVLB09, FR92, FR6a, FKS97, Ga90, GR96, GY92, GM99, H9Q4, JSCB95, JSWB92, JR95, JZF+15, KS97b, KB96, KA97, KA99, LPU97, LYT02, L94, MMRS98, MAH95, MD13, MD1+95, MSSE02, MYD95, Moh97, MSST99, NSS99, OH02, PKN08, PR12, PAM94, PS93, PM96, QM01, RU99, RAN+17, SCMB90, S97, SH92a, dSR00, Sta04, SD88b, SYG92, TSC01, TTG95, VB02, VWHL96, WCF94, WSM97,
WA02, WUG99, YI96, YWD08, AL04, ALM+16, AAD10, AOSM04, AOSM05, ALLM11, AH12, AM12b, BKS05, BGLA03, BHLT14, BFG04, BFM06].

scheduling
[BKMT14, BH05, Ca06, CG11, CG12, CHLL18, CRJ10a, CRJ10b, CGW+03, CRA+08, CMR10, CDR12, CJY04, DBA+18, DBCS03, DK08, DK11, DP16, DUWS6, DRR13, DJT03, EHL+15, FA07, FW05, FPF14, FCJG+18, GDP08, GYAB11, GVBB13, GMRGS16, GFPC14, GP05, HSH10, HDJ08, HV13, JLY12, JHF+17, JBS14, JTC+18, KH17, KA03, KVA18, KYS13, KKK11a, KM17, KUA07, KVHS07, KV10, Kim17, KNHH18, KK10, KSSK16, KDH08, KBC+10, KMP+06, KA05, LDZ+14, LDZ+17, LHK03, LWZ12, LC90a, Li05, Li06a, Li06b, LL07, LQM+12, LW16a, Li16, LNAL17, LBT19, LML+10, LSC+15, LYW+16, LPX05b, Lo92, MSG12, MLDG12, Mar88, MCAS12, MMK+11, MAHKZ12, MS86, MAR05, NSAS10, NHO+13, ND12, OA10, OPR18, ORR03, PY09a, PK05a, PW17, PDB13, QJ05, QSL+08, QGL+09, RBA+18, RSFP11, SPC+17, SJB12, SMO14, SV08, SP13, SLG06].

[SCJ+08, SWP90, SS18, STK11, SZL10, SR16, SHC14, TLLL10, TLLV10, TLQS12, TDBL13, TG03, TXLL14, TDP15, Tsu07, UM17, VD04, VMMB10, VB08, VS16, WJ9D11, WAE03, WL05, WL10, WBRT13, gWW18, XQ07, XLL15, XLHT13, YWG15, ZV06, ZVL15, ZTFK16, ZY12, ZV09b, ZS13, ZQMM11, ZHLQ12, ZLQM14, dOCS14, FZWL12].

[TMK+17].

Schemas [Arb89, BG90a].

Scheme
[BDF01, FY96, JB03, KK98a, OS96a, Wu94, YD98, AOSM05, AK18, BBS13, CWL05, CXQ+18, DBW+18, EL88, ESGQ+11, GPJA10, GMXA07, HC09, HOVC09, KVHS07, KH18, KRL87, LT08, LHF91, LAK10, LHX+16, LMJC11, LNZ15, LL15, NC09, RS08, SNC12, SZ09, SKM04, TDC05, TC13, TCHC12, WL04, WW12, WW04, XYD06, XLHT13, YQZ+10, YJL16, YAA10, YC12, ZQY12, ZSCX18, ZWX16, ZBR11].

Schemes [yCM98, FM99b, GG01, LL95, LS01, SKK97, WRC+02, ZLP01, AAD03, BLP05, BR91b, CI03, CMKL12, GJXZ05, HDMC11, HSMB91, JG14, MM06, SHISH17, TW99].

Schmidt [ZLRP91].

science
[APV18, BKK+11].

Scientific [CCRS92, DUSH94, FMS+94, GTO2, HS04b, KBC+01, AOS+05, AE88, BCD+15, CXY14, EFG+14, NTC03, PB19, VM03, WHW+17, YLC11, ZKZF18].

SCO [WTS03].

SCP [VB08].

SCP-based
[VB08].

screening [AT03].

Scrypting [WXZ+18, LMY+11].

Scrolling [Tay05].

SCSI [HZY04].

SCSI-to-IP [HZY04].

SCTP [ZPI06].

SDF [LMB13].

SDN [AK18].

SDN-based
[AK18].

SDSM [CCM+06].

sea [ZWW17].

Seamless [HR00, ORWT+18].

Search
[CHM84, BM98, BSC13, CDR15, C12, DM15, DM19, EMN95, Fen90, LY12, SIR12, AFG+19, AMM+18, BNP02, BP93, Can18, CTT16, CCLS94, CSW+17, ES12, GY10, GJXZ05, KA05, LSS+11a, LSS+11b, MSM09, MB13, PRH06, Par89, PSC+16, PPSV15, PVRG06, RM10, RM11, ROB+18, RHO08, SP08, Sch13, SHLN09, SJG19, Tam18, WGC09, WWA+18, YF09, Zep91, ZCS+18, ZH07, CB11].

searchable
[WCC18].

Searching
[NBP98, NSM98, SH97, SGAC14, BA06, KIH15, LTWW12, Sch89a].

Secondary [BLZ+18]. Section [Seb95]. Sections [BW96]. Secure [BKT95, CPA+11, PRN+19, ZHT16, ZBR11, BK18, GTGLSA12, JZZ+17, KTP17, LAK10, LLW12, REK10a, REK10b, SSX14, Sie16, WCCH18, ZSCX18].

Securing [SL06]. Security [FCJG+18, SXZ06, BAK+03, DZC17, GSAS19, LZSL06, LCM+06, NZY+11, OM10, SFEF06, TODQ18, TKG+17, VA03, XQ07, ZVL15, ZAAB17, ZZJ+18].

Seidel [HO94]. Seismic [KSSL16]. Selected [Ben15]. Selecting [NGQM12, SSG93, KERUM04]. Selection [JK00, LK96, PT01, Raj96, RW97, RCY97, Raj01, SH97, SB02, VS99, WSA+94, WRC+02, Bad04, CKML12, DMI+19, EDÖ05, GM14b, KHNN, LZY+18, LCJ+18, LGK+12, MHLZ16, RH05, RAB08, RD05, RTZ11, SSS88, WLST16, CTC11].

Selection-Based [EDÖ05]. Selections [JW89]. Selective [SSGG18, XYG07]. Selectivity [CTT16, GOÖ16]. Selectivity-Driven [CTT16]. Self [Ano02u, AS96, ABZ95, BGJDL02, Bec96, BBCD02, BAGS95, BPRR11, CDD+15, CW05, CT04, DB08, Dol97, DPBNT12, FZ14, GH02, GS03b, HPT07, HPT02, HNM02, JM14, KY02, LLLC15, Lla17, MM07a, NM02, PK05c, SZB92, SEP96, ASKTZ13, BFG+03, BBS13, BBD18, BR91b, BFKP04, BZH06, CDDL10, CAK13, CRA+08, DLV11, DJ16, GK10, IZ12, KO11, KO90, LBMG15, LHX+16, LSH+13, dAMFs13, MYM10, MC91, NJ91, PPTV+10, SLWW05, TWQS12, Tur12, WRW13, ZBW+17].

Self-Organization [CT04]. Self-Organizing [BFKP04, BZH06, KO11, MYM10]. Self-Reconfigurable [Lla17]. Self-Reconfiguration [LBMG15, ZBW+17]. Self-Reproducible [PK05c].

Self-Routing [SZB92, BR91b, KO90, NJ91, SLWW05]. Self-Scaling [FZ14]. Self-Scheduling [Bec96, CRA+08]. Self-Similarity [ASKTZ13].

Self-Simulation [BAGS95]. Self-Stabilization [GH02, HPT02]. Self-Stabilizing [Ano02u, AS96, BGJDL02, BBCD02, Dol97, HNM02, KY02, NM02, BPRR11, CDD+15, CW05, DB08, DPBNT12, GS03b, JM14, MM07a, BFG+03, BBS13, BBD18, CDDL10, CAK13, DLV11, DJ16, GK10, Tur12].

sensing [GDCC18, HP06, ZRN+14]. Sensitive [VR95, Ano04d, CP05, GS03a, GC07, Hu11, JL11, NLB+18, OWK14, PFJ04, RCG+11, SRT+18, WCXL11, YK04, ZZJ+18]. Sensitivity [HJ90a]. Sensor [KSI04, LDZ+14, LDP+14, STN92, THGY15, ASM09, Amm16, AHG12, Ana14, AMT13, AYB+15, BXA08, BWP+11, BOY10, BPA06, BEN12, BJL18, BZLJ04, CCW14, CKN07, CRWX12, CDR09a, CDR09b, CT04, DW06, DLLL11, DGBN14, DJH11, DKM10, DFPO06b, DH04, EM11, ECP+18, GHY10, GDP08, GGY+04, GYP13, GZY14b, GM14a, HZA+15, HMV07, HS12, HP06, HZDP12, HJJR12, IB04, JF12, JLY12, JBS14, JHPL13, KKV105, KSSL16, KOA09, KO11, KO12, KKKP12, KKTZ13, KGN11, LDZ+17, LY10, LI12a, LI12b, Li14, LiB+18, LU14, LLW07, LZC11, LWS16, LW18, LHP07, MAGL13, MSM09, MYM10, MBMC19, MK10b, NSA11, NC09, OMSGNSG05, PFJ04, PL15, PX1+14, PRL07, PB09, RM10, RM11, REK10a, REK10b, RL14, RB12, SC12, SS08, SZMK13, SCLL10, SJS11, TBHA07, TLY12, TDC05, TCS+10, TWQ12, Udd19, VRM10, WW07]. sensor [WMW09, WL11, WL10, WWA+18, XCLR07, XQ04, XH+10, YpGyLlC13, YDZ+18, ZW11, ZSC18, ZTL17, ZC04, DOBG+15, OEY07]. sensor-actuator [KKKP12, SCN12]. sensor-based [Udd19]. Sensor-centric [KSI04]. sensor-cloud [LLB+18]. sensorial [VO89]. sensors [AKBD10, AD10, BFKP04, Cal06, CJDC10, DWW10, REZ17]. sensory [HRM17]. sentiment [XLW+18]. separable [XLI+18]. separating [HSS10]. Sequence [JP09, Zaf01, AFc03, BBM08, BCF14, BW09, BFKW13, BMARW07, DKKV15, FCS91, JVO9, PTZ06, SPRG+12, SMB10, SRT+18, TMM06]. Sequence-preserving [JP09]. sequencer [BCM06]. sequencer-based [BCM06]. sequencers [CHC05]. Sequences [Swa98, TR96, BNB16, CJ07, LVBO7, SK09, Sei05]. sequencing [CRL04]. Sequential [KF05b, LWC+18, BFTV87, Fenz90, SBC12b, SLKK13, XZB14]. sequentially [HK08]. Serial [EMMM94, MT97b, BOI91, CR91, CL90, SD88a, SI91]. serial-data [SD88a]. Serializable [Sch91]. serializing [HHS12]. Series [CA95a], Series-Parallel [CA95a]. Server [ALL99, AYI97, CM92, GM99, HBCM99, JSCB95, RU99, HC09, JTZ11, OS04, PM05, TBZB05, WZX+19, WLWW09, WSLC11, WLZ+18, ZVL11, ZCS+18, ZI08]. server-side [ZVL11]. Servers [FM99b, AAA+10, Bar05, BPRG04, CSWD03, DLW+12, KCD08, LY12, LYW+16, MZZC12, PSR05, Wan06, WDDK09, ZW03]. Service [BK18, CTT08, JRR99, LAZC01, NCRK19, RGV00, ABF+14, BCT19, CCA18, DB08, FZ14, HOE+09, JML14, KMZM06, KKKP12, LNA12, LC07, LZN19, LB18, MHLZ16, MXSL12, MCZ14, NP09, PY09b, RA11, SB12, SFE06, SMB10, SSVC10, TR16, TKT+19, WMY+17, WTY+18, WZI+19, WSY+18, YHWW18a, YHWW18b, ZI08]. service-aggregate [Yan09]. service-based [YHWW18a, YHWW18b]. Service-oriented [CTT08, SFE06, WWY+18]. Services [ZR00, AGF+19, AK06, AM07, KSSK16, LCC+05, LWZZ12, LMX18].
LZN19, MCP$^{+18}$, SCW$^{+18}$, Suk18, XJS03, YWD08, YAK15. session [LAK10, MZZC12]. sessions [FSP18, TK07]. Set

[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD$^{+11}$, AP16, BD05, BYG$^{+18}$, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets

[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD$^{+11}$, AP16, BD05, BYG$^{+18}$, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].

Set-Based [BCD95]. set-distributions [Nic07]. Sets

[Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AFD$^{+11}$, AP16, BD05, BYG$^{+18}$, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05].
[ASKTZ13, AFG+19, BHK17, KSSG14, UGG+11]. **Simple** [Ara13, BW96, GPS96, GB93, GS99, KW02, LW06a, PL94, SE15, TZ00, Koc91, MRRT07, MC03, Nes10, YAA10, BJ99]. **Simplified** [AS19]. **Simulated** [Bev02, BH86, HB97, HC91, RSS96, Soh96, XH91, AH06, BG89, DAC18, GE85, Ume85]. **Simulating** [DS02, DN94, LC90b, NFHL13, eW95, AAK+13, GN15, RBOH+18, WCKD06]. **Simulation** [ABDS02, Ano92c, BW96, GPS96, GB93, GS99, KW02, LW06a, PL94, SE15, TZ00, Koc91, MRRT07, MC03, Nes10, YAA10, BJ99]. **Simulating** [DS02, DN94, LC90b, NFHL13, eW95, AAK+13, GN15, RBOH+18, WCKD06]. **Simulation-Based** [RSD94, SSFP11]. **Simulations** [ASR93, Ger98, GM94b, HP95, KP00, LHM95, NM95, PAH+98, RPS93, AM12a, DB11, FC14, FI04, LTL06, SDG08, SM04, VBDR13]. **Simulative** [HW03]. **Simulator** [CW93, ABC+09a, AM12a, DB11, FC14, FI04, LTL06, SDG08, SM04, VBDR13]. **Simultaneous** [CW93, ABC+09a, AM12a, DB11, FC14, FI04, LTL06, SDG08, SM04, VBDR13]. **Sink** [THGY15, LLDL15]. **sink-location** [LLDL15]. **sinks** [RB12]. **SloT** [SA19]. **SIR** [ZXGD18]. **SIR-based** [ZXGD18]. **Site** [MFS96, WXZ+18, LFH+03, Hua17]. **Sixth** [Arb89]. **Size** [COS+95, CLT96, AST12, ASC+18, CV09, EB13, GSWW04, JH09, LCJ+18, NW88, OS04]. **size-independent** [EB13]. **sizes** [GPT06b, SMT15]. **Skeletons** [GSP02, Sk96, BR08, MPS16]. **Skew** [SYG92]. **skewing** [TW89]. **Skinny** [BDG+15]. **skyline** [SCLL10]. **SLA** [ATZ07, AM06, RT18, SMW18]. **Slack** [KR10b, FKLB08, KR10a]. **Slackmin** [PDP17]. **Slant** [ESTA94]. **slave** [LZ05, YH07]. **Sleep** [YZX11]. **Sleep-aware** [YZX11]. **sleeping** [GDC18]. **sliced** [KRL87]. **slices** [DSEP17]. **Sliding** [OS98, MTL+18b]. **sliding-window** [MTL+18b]. **slimmed** [YMLP14]. **slot** [PLY15]. **slots** [ABBD14]. **Slotted** [HQPT99, MSST99]. **Slow** [HZA+15]. **slowdown** [MZZC12]. **smaller** [STKW12]. **Small** [CDH84, CTKA17, GA18, HBS17, JM15, LH04, MAGL13, MSZ05]. **small-large** [CTKA17]. **small-world** [MSZ05]. **Smaller** [HH01]. **Smallest** [Wu02, ASC+18]. **Smart** [ESGQ+11, HPT+97, MKC01, NCRK19, AKK+19, AKSZ19, CkLCK04, CkLCK05, DFLO17, HRM17, HRH18, KDS18, LLWC17, LZN19, MCP+18, NML+19, SLZ+19, Udd19, YZS15, ZLJ+19, ZCW19]. **smartphone** [CWZ+18]. **smartphones** [LM16]. **smooth** [ZBR11]. **Smoothed**
smoothers [WH17]. smoothing [HT06].
SMP [Bev02, FGP05, KA03]. SMPs [BJ99, BC05, BJS03, FW05, HLCZ00].
SMT [ABC+09b]. SMT-based [ABC+09b]. Snap [BDP16, DDNT10, ADD17, PV07, FGeF17, MT85]. Snap-stabilization [DDNT10]. Snap-stabilizing [BDP16, ADD17, PV07]. snapshot [AEF11, IR12]. Snapshots [Mat93, AST12, KS13]. Snooping [Dah99].
SMP [Bev02, FGP05, KA03]. SMPs [BJ99, BC05, BJS03, FW05, HLCZ00].
SMT [ABC+09b]. SMT-based [ABC+09b]. Snap [BDP16, DDNT10, ADD17, PV07, FGeF17, MT85]. Snap-stabilization [DDNT10]. Snap-stabilizing [BDP16, ADD17, PV07]. snapshot [AEF11, IR12]. Snapshots [Mat93, AST12, KS13]. Snooping [Dah99].
Socially-conforming [LGM18]. Socially-conforming [LGM18].
Socially-conforming [LGM18]. Socially-conforming [LGM18].
Solaris [Lun99]. solid [GFPC14]. solid-state [GFPC14].
Software [AL09, CR96, CHR94, CRLW00, GKK+13, GS00, Gro85, HS94b, KCDZ95, Kei00, KB01, KS95, MLC+90, MG91, NT90, SG99, San95, SZZ00a, TY90a, VSM96, XKKM94, ABC+09a, CV16, CMT92, DP16, DHS06, GS18, KG04, LSL06, LKD14, NHO+13, RSCQ17, SCC+06, SMH91, ZMZJ17].
Software-Based [KCDZ95, NHO+13]. Software-Controlled [MG91].
Software-Only [GS00]. Solaris [Lun99]. solid [GFPC14]. solid-state [GFPC14].
Solution [DM90a, FLST97, LF92, OH02, PW96, RW01, AY89, ANP07, Bat05, DP16, GA18, GS91b, HC11, KKR14, LLY08, LFGM17, WZ91, YS11, ZAA17].
Solutions [Ano99g, BCMV15, CLRW00, RS96b, AG86, BAH04, LZ08, OT19, TKG+17].
Solver [BMM97, CSSY94, FKB17, ADV14, BAMM05, CVK+18a, CP10b, CK91, Dav17, GV86, Gao86, KKK+06, LPLFMC+12, MP87, PP13, PPTV+10].
Solvers [CHR94, CP94, MS99a, TF01, FHL+15, KR06, SHA17]. Solving [BCZ95, Boz09, BMCP98, BSH15, Car90, CRFS94, GL92, IK94, JGMY17, KLO1a, KBC+01, Men18, Mon94, PMV05, PDB13, QOvdG01, WM92, WLR90, WH97, BW18, CMMT13, CM03, CASD18, GGR89, GT04, Kuk17, LWL+03, MRT18, PF91, Ter16, WLL16, WRW13, dCPD19]. Some [BDKMK94, DMMV01, KAM94, Oru94, Par98, RTZ11, SL86, ZSO3, ZHO03, AG86, BS03, BDjQ86, MS15]. SoMR [CS08]. Song [Ano97k].
Sophia [GTGLSA12]. sophomore [GAC+17]. Sort [LJK82, Tay02, BM14, SSM89]. Sort-Last [Tay02]. Sorted [SH97]. Sorters [BNP98]. Sorting [ABZ95, CQ95, DL98, FFK+04, FY96, HQPT99, HBJ98, JP95, Lee94, Lin93a, MP93, NS94, OS96a, RV97, SCC92, SS92, SM00, VN93, WRC+02, Che89, FCS91, KR11, MS88, PB90, SSM89, SCI05, SAA08, TW15, Ull84, ZFL89].
Sorts [ZAW94, SI86]. SOS [PP92]. Sound [DKY01, CKB+13]. Source [AY09, TZ00, BJL18, LPX05a, LCL10, MH18, NCB+17, ZSW14].
source-to-source [MH18]. sources [AK18, Lan04]. SP [ASH+01]. SP1 [BR95b]. Space [BW96, BH93, DY99, GG01, GW99, GRS97, KM97, KY96, LZO2, NC97, PPSV15, RP98, SDS+18, SH98, WA02, WZ97b, AD12, ARA13, ACFK07, BBM08, BW18, CKB+13, DJa04, HV09, KA05, LL KY13, MMS99, ST12, SZB16, MSS00, YQTV12]. Space-Based [LZ02]. Space-Efficiency
Space-efficient [PPSV15, Ara13]. space-optimal [Dja04].

space-optimality [HV09]. Space-Time [WAO2]. Spaces
[RS92a, LdPLC+19]. Spanners [RL95]. Spanning
[FA95, KC98, KC99b, WB01, BFG+03, BC05, BC06, BPBR11, BBD18,
BBL04, CFJW13, GHY10, tH90, HAC17, KG10, LVP08, Lin03, MKW18,
OMSNGS05, RDA18, Ten16, TDM05, WFZJ12, WIB12]. spark [ZKZF18].

Sparse [Bas97, BW95a, KK98b, Man94, MSC96, NFEG97, PR13, Shu95,
UZSS96, Win85, ASA18, AAD05, ASES15, BC06, CP10b, CASD18,
GMMP12, LHW14, LV15, MBW16, PB15, She06].

Spatial [GSG+93, CRWX12]. Spatial-Temporal [GSG+93, CRWX12]. Spatially
[DS02, Rao16, SBC+12a]. spatially-explicit [Rao16]. SPEAR [RG06]. Special
[AP93, AL99, AB03b, AS13, Ano95i, Ano96j, Ano96i, Ano97j,
Ano99g, Ano01e, Ano02v, BOP06, BD00, BS09, BS11, Chi92, CDJL09,
CDJL11, DOP98, Dek00, DF12, DB18, DT92, ES97, FTM+14, FR98, FFS11,
FPS12, GC95, GMSS+11, GS01a, Gra09, Irw88, IB04, JW94, KL08b, KRS13,
KRS14, KRS01, Lan09, LZ11, Last2, Lin93b, LK10, MSGS+13, Mir91,
MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, RLA+16, RLA+17,
Raj08, Sch90, SLL18, SX06, SH92a, SB97, Sto90, SFC17, TH11, TFI+15,
BG90b, TY95, Wee01, XMMD17, XJS03, YW91, Z097, dVCP06, Cuz11,
Gra10a, KL08a, LK11, MKN14, PRS14, WW03]. Specialized [QOvdG01].

Speciating [GB06]. Specific [KRS13, KRS14, PP92, SK93, MRS+14, SS94b].

Specification [AS00, BR95a, BN94, RSW90, BFL+13]. Specifications
[LSCA93, BCM06]. specify [LS19]. Spectral
[SANY94, SS98, AT03, CVK+18a, CH06b, GSASA19]. spectral-screening
[AT03]. spectrum [FCZ+12, GDC18]. Speculation [AC16, FKKR16].

Speculative [RG06, MG09]. Speed
[BBH+97, Fer95, Li16, Li19, PVG09, SR91, WCYR08, HP97a]. speeds
[LFS16]. Speedup
[AMB95, DBP94, FFK97, Lum99, SN93, YH07, NW88, SC91a]. speedups
[Vis87]. spikes [ST08a]. spin [AK07, FPM+14]. spin-transistor [FPM+14].

Spinning [BHK+94]. Spintronic [NVK14]. Spite [VR94, DB08]. Spline
[BNBR16, CWW+95, CY96, GM95, Meg91]. Spline-based [BNBR16]. split
[WCWH03]. split-stars [WCWH03]. splitting [PVG06, SFG19, WSH+03].

SPMD [Gup92, LZZ+11, OKB95, Ren11, RW93, WSA+94]. SPMD-style
[LZZ+11]. SpMV [YLL17, ZGG+14]. spoofing [GSASA19, KMMZ06].

Sporadic [DKK18, MAPF14, dOCS14]. Spot [LKK94, MB19, TY90a].

spots [L90]. Spread [REZN17, SIY14]. Spreading
[MBMC19, LpJS+18, ZG18]. square [BB55b, EL91, LTW+90, XKB07].
squared [RIZ90]. Squares
[CB95, ZYO02, BBd90, HLS03, KAP90, LTW+90, SMKL93]. Squashed
[BG90a]. Squid [SP08]. SR [DYL+12, GRJ+15]. SR-IOV [DYL+12].

st-connectivity [BCM15]. Stability [Wor93, KMS07, LXW+11, WCF14].
Stabilization [CG02, GH02, HPT02, NA02, ADDP19, DDNT10].
Stabilization-Preserving [NA02]. Stabilizer [AD02]. Stabilizing
[Ano02u, AS96, BGJDL02, BBCD02, DGDF10, Dol97, GH96, HNM02, KY02,
Kar02, NM02, AFNT17, ADD17, BFG+03, BBS13, BPBR11, BBD18, BDP16,
CDDL10, CDD+15, CW05, CAK13, DLV11, DB08, DJ16, DPBNT12, GK10,
GS03b, JM14, MM07a, PV07, Tur12]. stable [AMK+07, SKK14, SLW10].
Stack [PVGG06, CS06b, HSY10]. stackable [SSX14]. stacked [TLL+18].
Stackelberg [JTC+18]. stacks [ACH18]. Stage [FT94, SZ00b, CC14, HDJ08].
stacking [EDO+05]. Staircase [Mck94]. stacks [ACH18]. Stage
[FT94, SZ00b, CC14, HDJ08]. stacking [EDO+05]. Staircase [Mck94].
stacking [BHFP05]. Standard [CB99, PF08]. Star [FA95, KAM94, Lat95,
LK94, MJ94, OS97, OS93, PRW94, RW97, RWY93, RLS96, SAOKMA02,
dBL95, AAD03, CM03, DFP06a, FMM+08, PK04b, SS05, WCC02, SRT+18].
star-access [DFP06a]. Star-Connected [dBL95]. Stardust [CP97]. Stars
[MR03, WCWH03]. starvation [LASS15]. starvation-free [LASS15]. stash
[YPCW16]. State [FKB17, HB97, HNM02, KM92, LSH+13, NC97, PSC+16,
ASKO16, ASB18, AD12, CWLD05, GÔÔ16, GFPC14, KA05, LMR05,
LW06b, MSM09, WCO+09]. State-based [LSH+13]. State-of-the-art
[PSC+16, WCO+09]. State-Space [NC97, MSM09]. Statement
[AMB95, DR95, AL951]. Statements [KHS96, SOG94]. States
[Kop97, TG97, FZ90]. Static
[AKSM08, BPN90, BS+01, BSMH08, CC91, ERA95, GF89, KKK+11b,
LC90a, LK94, LA04, MS+d95, OD95b, SS+06, YMLP14, BS+13, DK08,
KA08, KMS+06, McD89, PC11, SSMS08, SWP90, SSM+07, ZXYO11].
Statically [LB90, Mat06]. station [GPT06a, RBD08]. Stations
[DKMV01, DDNS06]. statistical [CMPS18]. Statistically [SLZ+19].
statistics [GA90]. statuses [MB19]. steady [LMR05]. steady-state
[LMR05]. Stealing [Ano00d, LS97, Ros99, DKKV15]. Stein [QOvdG01].
Steiner [LY10, Sta17]. Step [CW00, Bog17, KKR14, Yan04]. steroids
[Bar05]. sticker [GPX08]. Sticky [Kop97]. STICS [HZY04]. Stigmergic
[PR06]. STL [NKV14]. STM [HH12, PGRP17]. Stochastic
[CTD99, FX06, HPT+97, JSS92, QZ94, RS92d, SSM+16, SSMS08, ZS13,
BM11, CMT92, MM06, MS86, MBO11, WW18b, WMM13].
Stochastic-based [SSM+16]. stop [BCC+18, LIT12]. Stopping
[BS99, AMT13]. Storage
[CLV95, HLL+95, LL95, BL05, BCK+09, CGG+09, FLCB10, HZ94, HK04,
HZH18, JWH+17, KR12, LJQ+19, Luc18, MB19, MAPF14, MPG17a,
SSX14, SWW+17, WCWO17, WWW17b, XCLR07, XSYG18, YLYC11,
ZV09a, ZWY+15, ZFT+18, ZLZ+19, ZG+14, ZWXX16]. Store
[CP00, NS95, VA07]. Store-and-Forward [NS95]. stores [ZWQ+16].
Storm [KKH17]. straight [GC07, WR91]. Strategic [RA11]. Strategies
[AM07, BDjQ86, BHK+94, BCR96, CP92, CGA98, DL01, FF98, GJGS8,
GM99, LK98, LHM95, Lun94, MS99a, OP98, SMH94, VB02, VA03, YB95,
YL98, Zha92, ZM94b, BMARW07, BHS13, CGM14, DM94, GRV08, GM14b,
HV13, MVB05, PP06, RAB08, ROB+18, SSGZ13, Wu11, dCPD19]. Strategy
Stream [HPT+97, WQZ+13, AAK+13, ARM+05, AM11, CK08, DFLO17, EI07, GÖÖ16, KKH17, MTL+18b, RCG18, RAN+17, SS18, ZHI15].

stream-based [ARM+05]. Streaming [PS14, BOKS19, CGKY12, GRR13, GHC+17, HK05, JHL+18, LCCL10, WCXL11, XYDL06].

Streams [MM93, WUG99, AGWY11, BMLLC+19, LVP07, LY08, ST14, VLGV+18].

StreamTMC [WQZ+13].

Stretch [GG01, SBC¸+12b].

stride [AM13].

String [BL94, RS90b, CKK+13, Kri91, MM07b].

strings [SCS+08].

Striping [CT93].

Strongly [SZB92, MHPR05]. Structural [AGG98, SM92b, RBOH+92].

Structure [DL99, FMP98, AGWY11, BMLLC+19, LVP07, LY08, ST14, VLGV+18].

Subcubes [SR95].

submachine [FPPO6].

Submesh [SP96].

subproblem [SMT15]. subscribe [MS19, ZWI13, dAAD+19]. subscriptions [ST12]. Subsequence [MS99b].

subset [AVAH18, WLL16]. subset-sum [WLL16]. substitution [GPX08].

Substrate [KMKD97]. Substring [CB96]. Subsystem [GGD93].

subtasks [SSM+06].

Subtree [DP00].

subunit [RK18].

Suffix [DP98, CS06a, GZ08].

suitable [PGS06].

suite [GN15].

sum [AVAH18, WLL16].

summarisation [LJQ+19]. summarization [NML+19]. summary [Rob09].

summarization [LJQ+19]. summarization [NML+19]. summary [Rob09].

summarisation [LJQ+19]. summarization [NML+19]. summary [Rob09].

summation [IHM05]. Summing [San02]. sums [HLS03].

Super [WLY01, PW17, SAOKZ05a, SAOKZ05b, SE15].

super-[SAOKZ05a, SAOKZ05b].

super-matrix [SE15].

super-pipeline [PW17].

Supercomputer [CB02, GHS86, SWHB17, Ull84].

Supercomputers [AP93, CRV94, CP94, LF03, TDBL13].

Supercomputing [Ano96i, FR98, HRC09, KRS15].

superconcentration [RL05].

Support
[AL99, AH94, CP99, FBK98, KR97, KC99a, LTH97, LFH+03, MBL+92, NS97, PL95, RPS93, TF92, YFS+15, BAL05, CCQ+06, CCC+04, CCK+08, DRR13, GB11, HPB+10, Hus17, JBY+05, Kim11, NSDZ18, PB19, RR05, RS19, SDS10, SK91, SAB+92, SRI14, TYH09, TGPUC16, ZBR11, ZWR+07, LST+13].
supported [YPCW16].

Supporting
[HA06, Sto87, WNL06, BSW07, LSZZ15, SKMM04, ZTGL17]. supportive [FCJG+18]. suppression [DZC17].
surrogate [UAPM07]. surveillance [NML+19, PLSM18, SMP17]. Survey [BCH95a, GHKS98, CGC16, DAB+14, FEH+14, FMIF18, GM14b, GK10, HLBM16, HBC15, JHL+18, KZWI19, SCN12, SRI14, SHA17, TKG+17, upa13, ZAB18]. Survivable [HWWH08]. susceptibility [DFST13]. suspect [XYG07]. sustainability [AK18]. sustainable [LS10]. sustained [RMHR17]. SVD [CL88, RS08, ZB97]. SW [RBG17]. swap [FPP+08]. Swapped [Par05, ZXP09]. Swarm [LdPLC+19, ZGJ+18, dCPD19]. Sweep [GGN93, DMCFCM03, GM14a, KMP+06, CMR10]. Switch
[ASH+01, CRD12, OK01, PD92, CL90, LHKL03, WLWW09]. Switch-based [CRD12, LHKL03, WLWW09]. Switchable [SB84]. Switched [CCR94, CS93c, GGN93, LGK96, WB01, EB09, KLY05, LWCG14, Nap90, PYF08].

Switches
[KJ84, PL93, TF92, MG09, PY09a, PY09b, VAS+13]. Switching
[DRSB01, GB93, Guo94, LLY93, OY00, ST02, BKCM17, BMIM07, CC14, KG10, LCL10, LWLD12, PL06, ST06, STKW12, ZPK+14]. Sybil [XYY13].

Symbol
[OWK14]. Symbol-level [OWK14]. Symbolic
[Y196, CJY04, WD18]. Symmetric
[B9J99, DHB02, DZD01, HOE+09, HJ01, Kau94, Oru87, ABGV11, ADV14, BC05, BW08, BB85b, EM89, KA03, VGAB08]. Symmetrical [IM94, QY94].

Symmetry
[Kel00, HT90, MJ03]. Symposium [OY13, Wee01, Ros07, Sni03].
SYN [XCH08]. Synapse
[Ram92]. Synchronization
[ASB97, AGW98, ABP92, AH94, BA96, Cha95, CTC+10, FR92, GVA08, JLR97, MRV98, OK99, PB95, RL06, RSS99, The02, WUG99, XMNR2, CRA08, FZC05, HMBW07, HA06, HLS12, HZDP12, LA06, PB09, TG04, Tau16].

Synchronized
[LNAC12, JS86, XLL15]. Synchronizing
[DKMV01]. Synchronous
[BCV05, CS95c, GV94, NSL99, OY00, SKR93, Sch91, Soh96, ARP18, ABBD14, DDF010, FXW03, KVNV17, MCS14, MEMEH17, PK05a, TGB+17, WTC08a, WTC08b]. synchronously [SP90]. synchrony
[CB15]. Synthesis
[HLJ01, Lis90, PP92, BYG+18, CKK+13, HDT+05, KKB+06, TdAR18, WD18]. Synthesize
[HLJ98, DSEP17]. synthesized
[MC17]. Synthesizes
[Ram92]. Synthesizing
[SL99, Che86]. Synthetic
[Pop91, AAK+13]. Sysplex
[NKC+97]. System
[BK95, BDD+91, BA01a, Bev02, BMM97, BJK+96, CP92, CP99, DHR96, DSD+97, DH95, DT92, FKB17, FP93, GH90, HBC02, HCS+00, HLL+95,
HWLR14, Kav93, KMB91, LP96b, Lu01, MWL00, MKY+97, MBL+92, MO97, MS96, NKC+97, NPPC02, SEP96, SG96, Tse95, UR94, wXH00, ZMPE00, ZLH+18, dr09, ABC+88, AMK+07, BL05, BCK+09, BGA12, BM05, BPP05, BSS+13, BYH+17, BJ18, CBP02, Car95, CLMRL15, CSW08, CCEB03, CDJ89, CK91, DS04a, DI91, DTK11a, DLW+12, DB86, DMS+16, EC89, Fer90, GTGLSA12, GSASA19, HJ90a, HM06, HLB16, HWL18, HMY+18, HHA14, Hus17, JW89, KHN17, KCD08, KSB11, KMF+05, KS13, KC04, LFSK18, LF91, LLWC17, LY13, LHZ+18, LAC18, MM07a, MK08a, MC03, NAK04, NTC03, No12, OEF07, PKN08, PK10, PLS14, PK05b, RV13, RBA+18, RAN+17, SPGR+12]. **system** [SSM+16, SFT+13, SC04, SK91, SSX14, SSL04, SLG+18, SM86, SV18, TKR+19, Udd19, VD04, Wan06, WHW+17, WS06, WZQ+13, WYTX+13, gWW18, YCH+10, YXW+18, YLB90, ZV09a, ZMC06, ZHH15, ZFT+18, ZKF18, ZW13, Z06, dAAD+19, AGWY11, HCAA93, Sie16, Ski16].

System-Level [Kav93]. **system-on-chip** [DMS+16, LY13]. **Systematic** [IAS+92, KK95, LB89, WAS88, ZTGL17]. **systemic** [LZN19]. **Systems** [ASH+01, AM97a, AM97b, AMN00, AS13, AS15, Ano92c, Ano02a, ADS98, Bah00, BBM+02, BBR94, BW95b, BU02, BSN04, BS96b, BS96c, Cas93, CS93a, Cha94, CKK00, CY95, CK97, Cho93, CBdCD00, DDO+18, DSST95, DA97, DS96, DSW94, DAYA02, DG94, EMP+96, FGKT97, FTC+97, GM99, GR93, GK93, GMM00, HKT+91, HNM02, HLLY95, HTL99, HM99, IM94, IK94, ISZB99, JR95, JH92a, JF95, JSM94, JRR99, KS97a, KBC+01, KCV+99, KE93, KS93, KM91, KM92, LH92, LF92, LT94, MMMR98, MAS+99, MT95, MMVR97, MM93, MRR+02, MC93, Mr91, NSS97, NMS93, Nie94, NDZA99, OM84, PA96, PB99, PT01, Pov99, PP92, QY94, QGB+17, Raq01, RDS02, RA96, SM94, Sch91, Ser97, SL95, SRGB90, SSVR94, Sm02, SFC+17, THN+93, TH02, TY95, WJ92, WF93].

Systems [WF96, WUG99, XH91, YH97, ZR00, Zia92, ZM94b, van96, AL04, ALM+16, AA16, AAK+13, AOSM04, AOSM05, AD12, AFM90, AF06, ACCP12, AAI+15, ABBD14, AH06, AM97, BCC+13, B03, BDGR13, BOKS19, BW09, BR03, BSJ03, BK08, BS02, BKT14, BD04, BPW05, CWLD05, CNGLRL18, CRK+09, CF88, Car90, CCS06, CKWT17, CTC11, CV09, CR10b, CASD18, CGW+03, Cl86, CP17, CAF+11, COF+17, CSW+17, DZC17, DK08, DFP06a, DB11, DR19, DDNT10, DGF05, DGD10, DM04, DWY10, DM90c, DQR+09, DØ6, DBLB+12, DW04, DH91b, FJC04, FWM+10, FPS11, FLCB10, FX10, GMMP12, GZG+17, GL89, GNTO4, GMVRGS16, Gos90, GS91b, GW1L94, GC05, GRR13, GBZ07, GF98, HRC09, Ha05, HC09, HOE+09, HBC15, HCZ04, HSS86, HA06, HP06, HA91, HA05, HHK15, IRRS16, IS06, JSWB92]. **systems** [JMS86, JKIE13, JST12, JLM08, JL11, JZZ+17, JWH+17, Kak15, KKR14, KHW13, KVA18, KME90, KV007, KUA07, KyLPC17, KSG13, KAS07, KL05, KMS10, Ku17, KMS+06, Lu86, LLC15, LWC+18, LFS16, LT02, LTL06, LGZ+10, Lan09, LZ11, LLL06, Lee90, LHF91, LHK03, LJO5, LAK10, LZGY09, LASS15, LZ05, LC90a, Li06b, LVP07, LQM+12, LNAL17, LLC219,
systems [SU87, She09, SCS08, SCMS12, SXZ06, SHLN09, SY04, SHL+13, SCJ+08, SS18, Sie16, SLKK13, SI13, ST05, TLLL10, TLLV10, TLQS12, TFMIS15, TW89, Ter16, TRSS06, TB90, TCHC12, UAKI06, VMMB10, VS16, WCWO17, WX205, WTC08a, WTC08b, WDDK09, WLST16, WZZT+17, WWW17b, WWY+18, WSG91, Wu11, WSLC11, XHY07, XQ07, XLL15, XLHT13, XLPL19, Yan04, YLL17, YHWY18a, YHWY18b, YL89, YQTV12, YZW+15, YZLN11, ZAB18, ZGJ+18, ZZ90, ZAAB17, ZZJ+18, ZFS07, ZWY+15, ZTFK16, ZLJ+19, ZV09b, ZCW19, ZQMM11, ZBW+17, Zim90, dG91, dlAMCFN12, FPS12, ORWT+18]. Systems-on-Chip [ORWT+18]. Systolic [AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, Meg91, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH89, LB89, Lis90, MP88, PYP+10, PS88, Sch90b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

ten [CRJ10a, PTK+13]. T-L [CRJ10a]. Table [HZL18, LACJ18]. Tables [TT10, ASD09, HKW05]. Tabu [BSH15, Cza13, CB11]. Tackling [SMT15]. tag [CRK+09, VGRS17]. Tagging [GHH92]. tail [SLZ+19]. tailing [YDZ+18]. taint [WZX+18]. Taking [CL03b]. Talent [JL11]. Tall [BDG+15]. Tall-Skinny [BDG+15]. TAM [CGSV93]. Target [ERL90, CJDC10, KO11, NDP13, WW07, YCC05]. target-driven [YCC05]. targeted [BKK+11]. targets [BFKP04, CRWX12]. Task [AKPT99, AH06, CDY97, DA97, DDD98, ERL90, Hag97, Lat95, LWY97, MAS99, MFVR97, NMS93, PS93, RDS02, Sin87, AOSM05, BFMT+18, BH05, BSMH08, CCK11, CDJ+89, DRR13, GKH15, HMR15, HWLR14, IKS87, KUU07, KSS+07, KMS+06, LMGLGLG17, LH03, Li06a, Li06b, LQM+12, LB09, LLS07, PK05a, PDB13, RR05, SSM+16, SBK12b, SNC18, SMM+07, XLLL+15, ZV09b, ZHLQ12, dSS11]. Taxonomy [FEH+14, HM96, Sin93, HBC15]. TCP [BM11, VLL+14].

LW89, LPLFCM+12, Lop13, Lop18, LS19, LCM+06, Luc18, LLS07, LM09, LXYZ13, LLW12, MSG812, MLMSMG12, MB13, MP10, MMK+11, MAHKZ12, MAKWZ13, MS86, MTS90, MFV08, MLK12, MSK+16, MBH+08, MGRK14, MRT18, NLB+18, NFHL13, ND12, NZY+11, OS04, OPR18, PM05, PMV06, PLSM18, PRHB06, PB19, PC11, PSB+19, PH16, PTA08, PF91, PMdO11, QGZ17, RLA+16, RLA+17, RHL03, RÖE+18, RN04, SSFP11, SW12, SDTD04, SP08, SPH13, SFT+13, SYUY07, SS08, SCB09.
TDFL [SBKB90]. TDM [LLJ00b]. Teaching [CTS17, Eij18, LB18, PBB+17, PGKV18, Ada17, FKR+17, GAC+17, HSS17, Kum17]. teamwork [NKSA17]. TEASE [ZBR11]. Technical [Ano93a, Technique [BN94, CLV95, DAYA02, Fer95, KBG92, PM96, ZLPP01, ASKTZ13, CX05, CRD12, DeG88, EE05, KK11, Nes10, Nic88, PVGG06, RBB17, WCF14].

Techniques

[ADM+94, CS95b, Dah99, ELS94, FY97, Gil94, GS00, HILLY95, HTL99, JSCB95, KGV94, NPY+97, PA96, PYF08, RSS99, Toy02, UZZ996, ARP18, AOSM04, BBR13, CDB04, CDR09a, CD95, DJDK19, FM85, Gao89, GR+05, KA08, LPK+10, LP88, MBW16, Pla08, RM11, Raj08, RG87, SFEF06, TZ07].
technologies [SJVRVS19]. Technology [Ano02v, ER97, GC95, MKY+97, MRR+02, OB88, PBB+17, PGKV18, TMM06].

TEES [ZWWX16].

Telegraphos [KMKD97]. Telemedicine [CY99]. Telescience [PLL+03].

Telescoping [KBC+01]. Temperature [SWHB17, ZWWX16]. temperature-constrained [ZWWX16]. template [EFG+14, RS09a].

Templates [ADS98, DF00]. Temporal [GSG+93, Lo92, RJA97, SGL+13, SWHL96, BKS91, CRWX12, WCF14, XYZW14, YD17].

temporary [Wan06]. Ten [TAS+01, KA08]. tenant [PYR17, YHWY18a].

tensor [IEWK17, LGK+12, SMH+14]. Terabit [SH98].

term [BV13, LK12, MBS+12]. Terminal [HHC98, Li17]. terminals [HB11].

Terminating [Lin93c, MS15]. Termination [ASR93, CW93, HTB98, KHK03, Lai86, Ric98, BFTV87, CV90, Eri88, MD07, MFVP08].

ternary [GNW03, KRM14]. Test [GRS97, PKK91, Solh96, WW97, ALLM11, DWHL87, LTG14, NCA+12, dMS18, ALLM11]. test-and-treatment [DWHL87]. testbed [HGF10, LBE03]. testbeds [VPHML06]. Testing [CY95, GFB+92, GS99, KW02, WG93].

tests [Psa96]. tetrahedral [CZZ+17, LWCC15]. test [BV13, PAG+18, SWW+17, WD13].

Their [Kop97, BM08, CRWX12, S86, TDM05]. Themes [RCY97]. Theorem [SHSH17]. Theoretic [AAJS01, KK10, MGRRK14, PC11]. Theoretical [HC97, LCC11, CT11].

Theory [CC08, DM09a, PTA08, VBM90, ZLCJ12, BDQ86, BM08, GRD08, Zim90].

Thermal [SHSH17, LFS18, OJP+18, SNMB16]. thermal-aware [LFS16].

thermally [TKKH17]. theta [LL18, STMZ18]. theta-join [LL18]. thin [ST08a].

things [AMU+19, TKR+19, CMP18, DAP18, ECP+18, HMY+18, LJ+19, MS19, NLB+18, WHC+18, WCCH18, YWJ+18].

thinking [CCE+17]. Thinning [KLP10]. Thread [KCSS18, OKT12, CGM14, CDAN14, DWYB10, LK13, RSCQ17, SLG06, ST05].

thread-parallelism [RSCQ17]. Threaded

[NS97, BBH+17, Kep03, LK15, PYP+10, CGSV93]. threading [Ngo06].

Threading [GSC96, LFA96, SEP96, TG99, DKRI09, PMdO11, PL03b]. threat [HMY+18]. threats [CWW18, MMN+18, SFEF06, TKG+17].

Three [FCG04, FLS+97, FT94, GG01, GH96, KR98, NGE85, PD92, SSG93, SSB02, YMR93, ANEA13, LW06b, LDS16, YJL16, ZFS07]. three-body [YJL16].

Three-Dimensional [FSL+97, KR98, NGE85, FCG04, ANEA13, LDS16].
Three-Stage [FT94], three-state [LW06b]. Threshold [BFMT+18, CGA98, NKV14, PAM94, LWXX19, Nik04]. Threshold-Based [CGA98]. throttle [XCH08]. Through-Wafer [MLW+97]. Throughput [FM99b, HWCO, HB11, JSS92, MMVL11, BS07, BLMB13, CLA+18, DW12, GRR13, HVW16, HWLR14, KSB11, LMSK18, LMR05, LHX+16, LNC13, SA11]. Throughput-coverage [HWC08]. Throwing [Tse95]. tickets [LMJC11], tier [MS19, MZZC12, MCZ14, WQL14]. Tight [BBH+98, FSZ07, Mat06, CH06a]. tile [LCJ+18], tiled [JHF+17, WQZ+13]. Tillera [PCMM+17]. Tiling [AR97, CWW96, RS92a, Xue97, KSG03]. Time [AA95, AK93, Ana14, Ano92c, ADS01, BBJG92, BBM02, BA96, BM04a, BOSW94, BH03, BGOS95, BT298, BA01b, CW00, CB15, CS93a, Cha94, COS+95, DP98, DS01, DJ98, DD95, EM+97, EM+96, Fak96, FBK98, FY97, GS99, GMM00, HRG+11, HA92, JR95, JH92a, KS97b, KEA95, LTWY95, LTY96, LP09, LVR90, LM96, LAS+97, LFA06, MMRS98, MT95, MMVR97, Mat93, MDD97, Moh97, MSST99, MS99b, Nas94, NIR86, NH93, NP99, OY00, OW95, OS96b, OSZ98, PW96, PLY15, Pel90, Pel95, PS93, PM96, PM92, QMCL94, RD502, RU99, RAS96, Ric98, SCMB90, STN92, Sun02, THBF97, TVS97, WBTM09, WA02, WS97a, WLID01, ZLP01, Zim96, van96, AOS04, AOS05, ACC012, BNP02, BVGV14, BDGR13, Bo17, BPP05, BW18, BK8+11, CH96a, CCK11, CRJ10a, CRJ11b, CLL09, CLR90]. time [CCN06, DL11, DKRC+15, DHIK04, EEO+05, FC14, FKK08, GZG+17, Gos09, GF98, GREC90, HOVC90, HA96, HV13, HZDP12, JZ+17, JHL+18, KKR14, KSSL16, KWK17, KSG03, LFS16, LR14, LHK03, Lee03, LST17, LZC99, LL15, Li16, LLB+18, LML+10, Lis90, Lo92, MLHZ16, MLG912, MAM05, MAKLW13, NA06, NVK+11, QJ05, RLH03, SI86, SS11, SA19, SZB16, TBZB05, TZH+06, TPS+18, VWHL96, VA07, Wan07, WTC08a, WTC08b, WL05, XL11, XO05, ZZZ+18, ZHH15, ZQMM11, ZNLQ12, ACD+03, CBP02, CX05]. time-aware [MLH16]. Time-bounded [NP09]. Time-Division [QMCL94, ZLP01]. Time-division-multiplexed [HRG+11]. time-domain [SS11]. Time-Efficient [EL97, MS99b].

Timing-Driven [CB99]. TInMANN [VM95]. Title [Ana98A, Ano99a, Ano00c, Ano01i, Ano02h, Ano03b, Ano04a, Ano18y, Ano18z, Ano18-27, Ano18-28]. TLA [SLH+13]. Tlib [RR05]. TM [FKKR16, FWM+10]. Toeplitz [GOH+13, ABGV11, ADV14, BBd90, HM99, Ter16, VGAB08]. Toeplitz-based [GOH+13]. Together [WLID02]. Token [AE95, BGJL02, CP90, FFK97, GH96, HP00, YZ96, CRD12, HSW04, PV07]. Token-Based [AE95, BGJL02, HP00]. Token-Chasing [YZ96]. Tokens
Tolerance
[BSS97, Piu01, PM92, mYyF92, BJ15, BDDL09, CLMRL15, CWL +07, CDR09a, LCC +05, LH05, LFGM17, LP88, Pak89, PAS15, SLZ +19]. Tolerant
[AE95, AM97a, AM95, BMM97, BW95b, BCH95b, CRV94, CL93, CC94, CF98, FM99b, GRR93, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, SS95, WIKC97, Wu94, YBOY97, ZYO02, AA14, AA16, Anea13, AOSM05, AH11, ABBD14, BB87, BXA08, BKMT14, BPA06, BPR05, CL91a, CKN07, CDR09b, CMT92, CMS04, DBCF13, DTK11a, DH91b, FLPJ07, FABG +19, GNS09, JBA15, JBS14, KG10, LDZ +17, LFZ +17, LAC18, LGG08, MP97b, NCB +17, PR06, PL06, TCHC12, WW12, WWY15, XCS06, XHZZ16, mA91, ZV99b, ZJ06]. Tolerate
[VR95]. Tolerating
[DT02, GS00, MG91]. Tomography
[BDRB14, FCG04, FGG08, KSSL16, KDO +13, PLL +03, XTN12]. Tool
[BN94, DBKF90, ZN93, Ada17, ACD +18, KKVI05, PF04, uRIL +18, TD07]. Toolbox
[EFG +14]. Tools
[Bal90, Cas93, MLC +90, MSH90, NT90, DMS +16, FEH +14, GAC +17, MC03, YT05]. Top
[SSKS11, Sch89b, TAS +01, IRRS16]. Top-down
[Sch89b]. Topological
[DC94, Par05, YN92, PL06]. Topology
[CCM92, DS96, Seh95, TKKH17, WLY01, WHS +18, AP91b, AHA +16, DB08, GL12, GL90, KBC +10, LCW05, LMP10, MBBD13, PMCC18, RCG18, Seh91]. Topology-aware
[KBC +10, MBBD13]. TOPSYS
[BB93]. Toroid
[LHS97, MT93a, Man97, AB03a, GLD06, LXLS12]. Tornado
[HK04]. Toroidal
[AB05]. Torus
[CT96, RMC97, WB01, YMGO, DM17, Lai15, RH05]. Total
[CW00, CHC05, BCM06, BG05, CB15, Dim04, SL89]. TPC
[DZDZ01]. TPC-C
[DZDZ01]. Trace
[JKE13, LC13]. Traces
[MTM09, NRM +09]. Tracing
[RGSO, BM16, BM17b, CDB04, CS17]. Tracking
[MD01]. Transceiver
[DKMV01]. Transfer
[Lu01, APK18, CK06, JK17, LGG08, WH17]. Trading
[BBCLL04]. Traffic
[AA95, DSS95, FT94, KC95, LH94, OY00, TF92, ZCW19, B18, CRD12, FL86, FM +08, LK90, LHLI14, MPG17a, OSGV +16, SA0K03, SKM04, WG08, YBM13, Zah12]. Traffic-aware
[LHLM14]. Trails
[PR12]. Training
[LWOG02, SMKL93, ZLS17]. Tradeoff
[SH01, HWC08, NLB +18]. Tradeoffs
[MP15, CGKY12, PCM +17, SD10, YZW +15]. Trading
[MP17a, AKSZ19, ZLL14]. Traditional
[BBCLL04]. Transactions
[CC16, FGG17, MLMSMG12, UBE10]. Transferring
[SR +18]. Transfers
trusted [SF06],

\textbf{TGLSA12, LZY11, LMXJ18, LAGK07, MLMSMG12].

\textbf{TrustGuard} [SL06]. \textbf{trustworthy} [MLZ16]. \textbf{Truthful} [WGS08]. \textbf{TSGL} [ACD+18]. \textbf{tsunami} [NSKN17]. \textbf{TT-XSS} [WXZ+18]. \textbf{tumors} [HES11].

\textbf{Tunability} [CKK00]. \textbf{tuned} [PSB+19]. \textbf{Tuning} [CSMML10, SB02, TdAR18, ABGV11, APK18, HPT07, KKR14, MYD+11, MML07, uRIL+18]. \textbf{Tunnel} [ZBR11]. \textbf{Tunnel-based} [ZBR11]. \textbf{Tuple} [STKW12, DRT07, LdPLC+19].

\textbf{Tsunami} [NSKN17]. \textbf{TT-XSS} [WXZ+18].

\textbf{Turbulence} [LLCC02, PLK+18]. \textbf{TWDM} [LLJ00b]. \textbf{twig} [LSZZ15].

\textbf{TwiCacy} [SF06], \textbf{trusted} [MLMSMG12].

\textbf{Twisted} [ACD+18].

\textbf{TWDM} [LLJ00b].

\textbf{Two-Variable} [CC92]. \textbf{Two-Way} [LK94, LLCC02].

\textbf{Two-Level} [KL84, Qia97, RP95, SSH00, BBH+17]. \textbf{two-list} [WLL16].

\textbf{Two-Pass} [DD96]. \textbf{two-phase} [SNCP12]. \textbf{two-stage} [HDJ08].

\textbf{Two-Way} [LK94, LLCC02]. \textbf{Type} [H94, SC91b, BFH09, GA18, GNZ18, QGL+09, MV94, MVV91]. \textbf{types} [ASB18, RJKL11].

\textbf{TYPHOON} [HKW05].

\textbf{UC} [BCD95]. \textbf{UCT} [AKPT99]. \textbf{UDP} [ZBF05]. \textbf{UET} [AKPT99].

\textbf{UET-UET} [AKPT99]. \textbf{UET/UET} [AKPT99]. \textbf{UET/UET-UCT} [AKPT99].

\textbf{ultra} [BM16, FABG+19, RW02]. \textbf{ultra-large-scale} [RW02]. \textbf{ultra-low} [FABG+19]. \textbf{ultra-scale} [BM16]. \textbf{ultrasonic} [ZL09].

\textbf{ultrasound} [BDRB14]. \textbf{unauthentic} [MLMSMG12]. \textbf{unbalancing} [MG04]. \textbf{unbiased} [BW18]. \textbf{unbounded} [SP90]. \textbf{Uncertainty} [ADS01, ZC04]. \textbf{Uncertainty-aware} [ZC04]. \textbf{unchoking} [ARD14].

\textbf{uncoordinated} [LD+14]. \textbf{undergraduate} [AJG18, GAC+17, Kum17].

\textbf{understand} [BCFF05]. \textbf{Understanding} [BDF92, DBK90, ECLV12, NEG85, XS11, CD+89, ROE+18, WRHR91].

\textbf{underwater} [LWW18, ZWW17]. \textbf{undirected} [STA12]. \textbf{uneven} [SMT15].

\textbf{Unfair} [KY02]. \textbf{unicast} [SKM04]. \textbf{Unidirectional} [KY02, KUFM02, RMC97]. \textbf{unification} [RM90]. \textbf{Unified} [AGG98, BL90, CP10a, DM95, JBL02, Amm16, ABO+17, IHH16, KH89, LZN19, XRB12].

\textbf{Uniform} [AS94, BGD12, DR95, GM95, KY02, SMO+18, SR88b, TT98, TC96, VN93, Xue97, ZM94b, BBF14, CLL09, KSG13, LW06b, Mar88, MM07c].

\textbf{uniformity} [BBB11]. \textbf{Uniformization} [DHK04, NH93]. \textbf{Unifying} [NSDZ18, RCY97]. \textbf{Union} [KF95a, ST14]. \textbf{unique} [WCWH03]. \textbf{unison} [DPBNT12]. \textbf{Unit} [AGG98, AS+18, BHS13, JPD17, KNS91, KM88, QSL+08, SIY14, SAJ13, X11, ZMCP11].

\textbf{Units} [AM97a, AGG98, DDGK13, YJL16, ATDH13, BK13, CLA+18, DP16, KL08b,}
SCB08, Eme13, GLGLBG12, YL12. Universal
[BS913, LWXX19, ACH18, CS06b]. universality [SH89]. universe
[KB96a, AM06, DGD+17, KRS15]. Unstructured
[OB98, WCE97, ACFK07, FZ14, LL19, LWCC15, MSZ05, YF09].
Unsupervised [BST01, DSAUM99]. untraceability [CL09]. unwinding
[Nic88]. updated [MLZY17]. Update
[GS96, LSH96, BM11, KKH18, LL19, RTCG91]. updates [YZG18].
Updating [JSM94, SDS99, AEF11, JBA15, KAP90]. upon [AFM09].
Upper [LXLS12, NDP13, GC07]. uranium [YDZ+18]. URL [XRB12]. Usage
[BW96, BST01, Kar92, NVK+11, SV00, ACHY18, MSZ05, NAK04, SSM08].
Used [LL95]. Useful [Bal90, GSG+93, FM85]. Useless [Yen01]. User
[GRS97, KOW97, KKK06, WCXL11, CFI+18, LC11, LBT19, MAJJ05, NGQM12]. User-Level [KOW97, MAJJ05]. User-Space [GRS97]. Users
[BST01, ZR00, ROE+18, SY04]. Using
[AyJ93, BA97, BCLR96, BLG01, BMILC+19, CCRS92, CP92, CASD18, CB02, DS95a, DHB02, DMSH90, DWX10, FR96a, FZVT02, FA95, HPT+97, HK01, HS97, HC97, Hwa97, KJ84, KA97, Lat98, LMCF90, LPZ99, LFA96, LL98, MD98, MP96, MS86, Moh96, MF193, NH93, NS92, NPY+97, OS93, PH91, Par92, Par96, PKD97, SSG93, SM92a, SEP96, SP96, SM00, SD00, SL97, SI92, SWC+91, SKH96, Swa98, TSC01, TR96, VR10, WP994, WW96, WSRM97, WB01, WRC+02, WS97a, WCYR08, XLW+18, XH91, YMG01, ZMPE00, dOCS14, ASKO16, Ale9b, AFM03, AZC13, ASST05, AD12, Ara90, AK06, Bar05, BD05, BAMM05, BCMV15, BS92, BSH15, CL14, COV13, CSWD03, CJDCl0, CF88, CK08, CvdBL+08, CKN07, CBM+08, CDB04, CH06b, CRWX12, CMT92, CL85, DDG+17, DJDK19, DFRW85].
using
[DKR90, DJT03, DH91b, DWHLS87, EE05, EI07, ES12, FTK14, FM07, FCG91, G08, GRDB05, GC06, HDMC11, HSH10, HLW10, HMY+18, HC91, JTTX11, JP90, JGMY17, JZK04, KL08b, KRS11, Kan05, KDO+13, KKH17, KM17, KS18, KSJC17, KR12, KME09, KC17, KR06, KKB+06, KA05, LK15, LT10, LY10, LR03a, LST+13, LSWC14, LW18, LA04, MH16, MM06, MS02, MZC18, MRS+14, Men18, MK08b, MC03, MRT18, NMS+18, NCTT09, OPR18, Ozt11, PKN08, PKK10, PP13, PBS08, PVG09, Pla08, RBN11, RB12, SM014, SBC12a, SSM89, SHK19, SSS07, SBC09, SA19, ST12, SGAC14, SCJ+08, SIY14, SDG17, SA08, SK05a, SFE06, SM08b, SLKK13, SL06, SJ19, SMT15, Tan18, TP18, TRS+12, TPLY18, TDP15, TM06, TX+13, UAM07, VLG+18, WCF14, WZZ+17, WDS+18, WD18, Wn03, WBRT13].
using
[XCS06, XLHT13, ZV06, ZV09a, ZS13, ZBW+17, ZHO03]. using/for
[MZC18]. utilities [AM06]. Utility
[CRJ10b, LL07, QH96, ASST05, CRL04, VMMB10, VLL+14]. Utility-based
[LL07, VMMB10]. Utilization [AS91, LT96, ZV12, CCHC09].
Utilization-based [ZV12]. Utilizing [AM06, CM92, LA93, PDP17].
Visualizing [RW93, SKR93, ZNQ93, ACD+93]. Vital [BS97, HHC98]. VLIW [NS12, dSR00]. VLSI [BB85a, BBR94, CCC90, CHX+17, FM85, GS91b, Gue86, KM97, KLL87, MB96a, MS87, ML89, MRR+02, MT85, MT97b, NEG85, OBS88, OT86, PR06, TU92, TF92, WSS93]. VLSI-suited [GS91b]. VM [JXW06, MA19]. VM-based [JXW06]. VOD [SK11, Bar05, LC07, YCH+10]. voice [WTS03]. volatile [CDR12, HZHS18, NKV14, ZPK+14]. voltage [FABG+19, FKLB08]. Volumes [Ano92a, Ano92c, Ano93e, Ano96l, Ano97k, Ano00d, Ano01g, Ano11j, Ano11k, Ano12m, Ano12a, Ano14f, Ano14g, Ano15k, BS96c, CS93b, WS97a, ACFK07, IWCC15, Ano92b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano99a, Ano99b, Ano99c, Ano00b, Ano00c]. Volumes [Ano98l, Ano99h]. volunteer [LKM12]. Voronoi [RR95b, SZ03]. Voting [LO96, AFD+11, ZWS09] vs [Wol88]. VSI [PGKV18]. VSS [Pen11]. vulnerability [OTKT12].

Weighted [BS97, MD13, BFMT+18, CDDL10, DM17, LWXX19, Sta17, SZB16]. weighting [CRA+08]. well [EB09]. well-nested [EB09]. WFR [FKKR16]. WFR-TM [FKKR16]. whole [Kan05]. whole-program [Kan05]. Wide
Wide-Area [Wei98, JKV15].

Wildfire [DFST13].

Wireless [MS00].

Wireless/Mobile [MS00].

Wire [yHY97].

Wire-Limited [yHY97].

Wide-Area [Wei98, JKV15].

Wire [yHY97].

Withum [JKD+15].

Window [BM11, LVP07, MTL+18b].

Window-assisted [LVP07].

Wire [yHY97].

Wire-Limited [yHY97].

Wireless [MS00].

Wireless [LDS16, Los08, MAGL13, MPV12, MA11, MBMC19, MBR08, NPGV10, NSA11, NC09, NM17, NGQM12, OWK14, PLR07, RM10, RM11, RL14, REZ17, SC12, SZMK13, SZZ10, SKMM04, SK05a, SCLL10, TBHA07, TLY12, TM10, VHH08, VRM10, WW07, WTB+08, WMW09, WBTM09, WL11, WXX11, WHO8, WBRT13, WWA+18, XYKA08, XHZ+10, YpGyLC13, YSL08, YXZ11, ZMG+16, ZW11, ZBR11, ZLCJ12, ZSCX18, ZTGL17, dOBG+15, LDP+14].

Wireless/Mobile [MS00].

Wireless [LDS16, Los08, MAGL13, MPV12, MA11, MBMC19, MBR08, NPGV10, NSA11, NC09, NM17, NGQM12, OWK14, PLR07, RM10, RM11, RL14, REZ17, SC12, SZMK13, SZZ10, SKMM04, SK05a, SCLL10, TBHA07, TLY12, TM10, VHH08, VRM10, WW07, WTB+08, WMW09, WBTM09, WL11, WXX11, WHO8, WBRT13, WWA+18, XYKA08, XHZ+10, YpGyLC13, YSL08, YXZ11, ZMG+16, ZW11, ZBR11, ZLCJ12, ZSCX18, ZTGL17, dOBG+15, LDP+14].

Wire [yHY97].

Wire [yHY97].

Wide-Area [Wei98, JKV15].

Wildfire [DFST13].

Wimpy [LNC13].

Wide-Area [Wei98, JKV15].

Wildfire [DFST13].

Wimpy [LNC13].

Wide-Area [Wei98, JKV15].

Wildfire [DFST13].

Wimpy [LNC13].

Wide-Area [Wei98, JKV15].

Wildfire [DFST13].

Wimpy [LNC13].
Wormhole-Switched [WB01]. Write [DS95a, ACHY18, CH06a, CG10, GNS09, IR12, IRRS16, SLKK12].
write-only [ACHY18]. write-once [SLKK12]. Writeback [KE93]. Writer [JBP00, KS97a, HV09, HV95]. writers [FKKR16]. writing [DBLB+12].

XSS [WXZ+18]. XT [YQTV12].

Zynq [RBG17, BAT+19, ZAAB17]. Zynq-based [BAT+19].

References

Ahmed:1993:AOE

Atiquzzaman:1995:PBM

REFERENCES

 REFERENCES

REFERENCES

Arvind:1984:RMF

Ayani:1993:PDE

AlBdaiwi:2003:RPT

Aluru:2003:GEI

AlBdaiwi:2005:QPR

Augusto:2013:APG

REFERENCES

REFERENCES

REFERENCES

Atallah:1992:MAC

At:2017:LAU

Andrews:1992:NMN

Abrams:1996:GPA

Arguello:1995:PAS
REFERENCES

REFERENCES

REFERENCES

Ammari:2010:FCG

Apopei:2012:APL

Adams:2017:PTT

Altisen:2017:CSS

Atashpendar:2018:SPC

REFERENCES

REFERENCES

Aspnes:2012:LCD

Ardagna:2006:JOH

Attiya:2017:PLA

Abellan:2013:DEC

Araujo:2011:MIS
Andrade:2019:LSP

Arbenz:2014:BSA

Aluru:2003:PBS

Arantes:2009:RGA

Adamek:2017:EOS

Alimonti:1996:FED

Aridor:2000:TOS

Atallah:1986:EPS

Aroca:2012:TGD

Ahmad:1994:HSD

REFERENCES

Altman:1998:UFI

Ayguade:2006:ENO

Antonis:2004:HAD

Akrida:2016:ENR

Abu-Ghazaleh:1998:MCU
Nael B. Abu-Ghazaleh and Philip A. Wilsey. Models for control unit synchronization on shared control ar-
REFERENCES

Abu-Ghazaleh:2001:SCP

Andrade:2011:PHD

Anik:1994:PIS

Attiya:2006:TAM

REFERENCES

REFERENCES

REFERENCES

Alelaiwi:2019:EDI

Avudainayagam:2003:DDE

Agarwal:2009:FDP

Ahmad:1999:DSM

Amory:2011:NTS

Ahmad:2016:HGA

Albert:1991:DPC

Alsuwaiyel:2001:PAP

Ahmad:2013:MCO

Aluru:1997:LFR
REFERENCES

138

Antonio:1993:HMN

Alam:1995:CMF

Ahuja:1997:UCF

Ajith:1997:IAM

Asaduzzaman:2006:UUP

Asaduzzaman:2007:SCP

Asaduzzaman:2011:DMB

Angeli:2012:CEC

Attiya:2012:TSR
REFERENCES

Habib M. Ammari. A unified framework for k-coverage and data collection in heterogeneous wireless sensor networks. *Journal of Parallel and Distributed Computing*, 89(??):37–49,
REFERENCES

REFERENCES

REFERENCES

Anonymous:1992:AIV

Anonymous:1992:EVN

Anonymous:1993:AIT

Anonymous:1993:AIVa

Anonymous:1993:AIVb

Anonymous:1993:AIVc

REFERENCES

Anonymous:1993:EVN

Anonymous:1994:AIVa

Anonymous:1994:AIVb

Anonymous:1994:AIVc

Anonymous:1994:AIVd
REFERENCES

com/links/doi/10.1006/jpdc.1994.1160/production;

[Ano94e] Anonymous. Editorial message. *Journal of Parallel and Dis-
ISSN 0743-7315 (print), 1096-0848 (electronic). URL

ary 1995. CODEN JPDCER. ISSN 0743-7315 (print),

REFERENCES

Anonymous:1995:AIVE

[Ano95e]

Anonymous:1995:AIVF

[Ano95f]

Anonymous:1995:AIVG

[Ano95g]

Anonymous:1995:AIVH

[Ano95h]

Anonymous:1995:CPSA

[Ano95i]
REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Anonymous:1995:CPSb

Anonymous:1995:EM

Anonymous:1996:AIVa

Anonymous:1996:AIVb

Anonymous:1996:AIVc

REFERENCES

Anonymous:1996:AIVd

Anonymous:1996:AIVe

Anonymous:1996:AIVf

Anonymous:1996:AIVg

Anonymous:1996:AIVh
REFERENCES

Anonymous:1996:CPSb

Anonymous:1996:CPSa

Anonymous:1996:EA

Anonymous:1996:EVN

Anonymous:1997:AIVa

REFERENCES

Anonymous:1997:AIVb

Anonymous:1997:AIVc

Anonymous:1997:AIVd

Anonymous:1997:AIVe

Anonymous:1997:AIVf

Anonymous:1997:AIVg

Anonymous:1997:AIVh

Anonymous:1997:CP

Anonymous:1997:CPS

Anonymous:1997:VNA

Anonymous. Volume 38, number 1 (1996), in the article “An Effective and Practicable Performance Prediction Model for Parallel Computing on Nondedicated Heterogeneous NOW,” by Yong Yan, Xiaodong Zhang, and Yong-

Anonymous:1998:AIVa

Anonymous:1998:AIVb

Anonymous:1998:AIVc

Anonymous:1998:AIVd

REFERENCES

Anonymous:1998:AIVe

Anonymous:1998:AIVf

Anonymous:1998:AIVg

Anonymous:1998:AIVh

Anonymous:1998:CPb

Anonymous:1998:CPc

Anonymous:1998:CPa

Anonymous:1998:CAT

Anonymous:1999:AIVa

Anonymous:1999:AIVb

Anonymous:1999:AIVc

Anonymous:1999:CPa

Anonymous:1999:CPb

Anonymous:1999:CPc

Anonymous:1999:CPS

Anonymous:1999:CAT

REFERENCES

Anonymous:1999:E

Anonymous:2000:ACP

Anonymous:2000:AIV

Anonymous:2000:ATI

REFERENCES

[Ano00d] Anonymous. Erratum: Volume 59, number 1 (1999), in article
jpdc.1999.1564 “Guidelines for Data-Parallel Cycle-Stealing in
Networks of Workstations,” by Arnold L. Rosenberg, pages 31–
53. Journal of Parallel and Distributed Computing, 60(1):134,
January 2000. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1999.1608/production;
1999.1608/production/pdf. See [Ros99].

Journal of Parallel and Distributed Computing, 60(9):
1154, September 2000. CODEN JPDCER. ISSN 0743-
2000.1662/pdf.

Journal of Parallel and Distributed Computing, 60(10):
1354, October 2000. CODEN JPDCER. ISSN 0743-

of Parallel and Distributed Computing, 60(11):1446,
November 1, 2000. CODEN JPDCER. ISSN 0743-
2000.1671/pdf.

of Parallel and Distributed Computing, 60(12):1568,
REFERENCES

REFERENCES

REFERENCES

Anonymous:2001:GEIc

Anonymous:2001:IP

Anonymous:2001:PAFa

Anonymous:2001:PAFb

Anonymous:2001:PAFc

Anonymous:2001:PAFd

Anonymous:2001:PAFe

Anonymous:2001:PAFf

Anonymous:2001:PAFg

Anonymous:2001:PAFh

Anonymous:2001:PAFi

REFERENCES

Anonymous:2001:PAFj

Anonymous:2001:PAFk

Anonymous:2001:PAFl

Anonymous:2001:PAFm

Anonymous:2001:PAFn

Anonymous:2001:PAFo

Anonymous:2001:PAFp

Anonymous:2001:PAFq

Anonymous:2001:PAFr

Anonymous:2001:PAFs

Anonymous:2001:PP

Anonymous:2001:RN

Anonymous:2002:Aa

Anonymous:2002:Ab

Anonymous:2002:AI

Anonymous:2002:ATI

Anonymous:2002:EBa

Anonymous:2002:EBb

Anonymous:2002:GEIa
Anonymous:2002:GEIb

Anonymous:2002:GEIc

Anonymous:2002:N

Anonymous:2002:PAa

Anonymous:2002:PAb

REFERENCES

Anonymous:2002:PAc

Anonymous:2002:PAAd

Anonymous:2002:PAE

Anonymous:2002:PAf

Anonymous:2002:PAFa

REFERENCES

Anonymous:2002:PAFb

Anonymous:2002:PAFc

Anonymous:2002:PAFd

Anonymous:2002:SSD

Anonymous:2002:SIP

REFERENCES

Anonymous:2003:EBg

Anonymous:2003:EBh

Anonymous:2003:EBi

Anonymous:2003:EBj

Anonymous:2003:EBk

Anonymous:2004:ATI

Anonymous:2004:AI

Anonymous:2004:CA
Anonymous:2004:CSM

Anonymous:2004:CH

Anonymous:2004:EBa

Anonymous:2004:EBb

Anonymous:2004:EBc

Anonymous:2004:EBd

Anonymous:2004:EBe

Anonymous:2004:EBf

REFERENCES

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EVA
REFERENCES

REFERENCES

REFERENCES

Anonymous:2012:EB1

Anonymous:2012:EVA

Anonymous:2012:EVR

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

REFERENCES

Anonymous:2013:EBd

Anonymous:2013:EBe

Anonymous:2013:EBe

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:EBh

[Ano13i] Anonymous. Editorial Board. Journal of Parallel and Distributed Computing, 73(9):??, September 2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2014:EBe

Anonymous:2014:EVA

Anonymous:2014:EVR

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBf

Anonymous:2015:EBg

Anonymous:2015:EBh

Anonymous:2015:EBi

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 85(??):ifc, November 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2015:EBj

Anonymous:2015:EVR

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd

[Ano16d] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 90–91(??):ifc, April 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
Anonymous:2016:EBe

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

[Ano16j] Anonymous. Editorial Board. Journal of Parallel and Distributed Computing, 98(??):ifc, December 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-

Anonymous:2016:NAE

Anonymous:2016:TI

Anonymous:2017:EBa

Anonymous:2017:EBb

Anonymous:2017:EBc

Anonymous:2017:EBd

REFERENCES

[Ano17j] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 107(??):i-fc, September 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2017:EBk

Anonymous:2017:EBl

Anonymous:2017:EBm

Anonymous:2018:EBa

Anonymous:2018:EBb

Anonymous:2018:EBd
Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 112 (part 1)(??):ifc, February 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (ele-
REFERENCES

Anonymous:2018:EBe

Anonymous:2018:EBf

Anonymous:2018:EBg

Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2018:EBj

REFERENCES

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 118 (part 1)(??):ii, August 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

REFERENCES

Anonymous:2018:EBCa

Anonymous:2018:EBCb

Anonymous:2018:EBCc

Anonymous:2018:FTPa

Anonymous:2018:FTPb

Anonymous:2018:TPa
Anonymous. Title page. *Journal of Parallel and Distributed Computing*, 118 (Part 2)(??):i, August 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

REFERENCES

Anonymous:2019:EBf

Anonymous:2019:EBg

Anonymous:2019:EBh

Anonymous:2019:EBi

Anonymous:2019:EBj

Asdre:2007:OPS

REFERENCES

An:2003:GAP

Attiya:2016:CBI

Arslan:2018:BDT

Abellan:2018:PBE

Antonov:2018:CSH
REFERENCES

Andonov:1997:OOT

Arabnia:1990:PAA

Aravind:2013:SSE

Arbib:1989:SNN

Atlidakis:2014:EUP
REFERENCES

Aumann:1991:IMU

Atkinson:1994:UGB

Anderson:1995:PIP

Antonoiu:1996:SSL

Anastasiadis:1997:PAS

REFERENCES

REFERENCES

Alfaro:2009:NSM

Ashari:2015:MDB

Abali:2001:ARN

Al-Sayed:2019:TEC

Al-Sayed:2016:PMF

REFERENCES

Adamo:1994:PEP

Achalakul:2003:DSS

Anzt:2013:BAR

Antonio:1991:HPA

Arslan:2019:SOA

REFERENCES

[AyJ93] Naim Abdullah and Jie yong Juang. Concurrent query processing for logic inference using the connection graph. *Jour-
Alrabiah:2001:DCL

Amoretti:2013:EAC

Al-Zoubi:2013:RGS

Bultan:1992:NMH

Bhandarkar:1995:HTR

Bergmans:1996:CSR

Ben-Asher:1997:ORM

Ben-Asher:2001:DRA

Bruda:2001:CSR

REFERENCES

Battre:2006:MFP

Bader:2004:IRA

Ben-Asher:1992:DSA

Ben-Asher:1995:ESS

Bah:2000:AIA

REFERENCES

208

Ben-Asher:2004:EPS

Banikazemi:2001:DAV

Bai:1994:PAC

Butt:2003:GCP

REFERENCES

REFERENCES

P. Bertolazzi and G. Bongiovanni. A VLSI structure for the deadlock avoidance problem. *Journal of Parallel and Dist-
REFERENCES

REFERENCES

REFERENCES

Bojanczyk:1990:LCA

Bahr:1991:PPS

Blin:2018:SSM

Berenbrink:2012:BBR

Berenbrink:2014:BN

Bal:1997:PHL

[BBM+02] Peter Benner, Ralph Byers, Rafael Mayo, Enrique S. Quintana-Ortí, and Vicente Hernández. Parallel algorithms...

REFERENCES

[Borgonovo:2011:REW]

[Baldoni:1995:CGA]

[Benoit:2018:CSF]

[Bagrodia:1995:USB]

[Bononi:2000:DPE]
Luciano Bononi, Marco Conti, and Lorenzo Donatiello. Design and performance evaluation of a distributed contention control (DCC) mechanism for IEEE 802.11 wireless local

REFERENCES

REFERENCES

REFERENCES

Bleloch:1995:SLR

Boukerche:2000:GEI

Boukerche:2004:RNM

Baskiyar:2005:SDC

Berlinska:2011:SDM

REFERENCES

Bruck:1997:EMP

Blevins:1990:BHI

Bermond:1986:SIN

Bajard:1994:SOL

Barbareschi:2018:PBH

REFERENCES

Bonakdarpour:2016:SSC

Birk:2014:GBI

Billionnet:1995:AFB

Besa:2013:CRB

Beckmann:1996:GSS
REFERENCES

Bischof:2000:PLB

Boukerche:2012:DBA

Benoit:2015:ISP

Bhattacharya:1994:MGM

REFERENCES

REFERENCES

Barahona:1986:PAM

Barbosa:1989:DIS

Baru:1990:SER

Tzeng:1990:SID

Boichat:2005:RTO

Bekesi:2016:MTM

REFERENCES

REFERENCES

REFERENCES

Bistouni:2015:PNM

Bui:2018:IAF

Blumofe:1996:CEM

Bradbury:2018:HOP

Beck:1991:CFD

Basaran:2013:GEM

Boraten:2018:MHT

Banerjee:2015:WEP

Bhuiyan:2017:PAS

Byun:2011:BRC

REFERENCES

Bouguerra:2014:FTS

Berg:1991:LIM

Bansal:2005:DHT

Bhattacharya:1995:CCS

Bier:1989:EBT

Bojanczyk:1990:USA

REFERENCES

Bertossi:1994:PSM

Bianchini:1996:EPM

Bachmat:2005:ECC

Broberg:2001:POU
REFERENCES

REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Ben-Nun:2016:SBP

Becker:1998:NCC

Barillari:2002:FDD

Bar-Noy:2000:OBT

Buttner:1999:APH
Lars Büttner, Jörg Nolte, and Wolfgang Schröder-Preikschat. ARTS of PEACE — a high-performance middleware layer
REFERENCES

April 2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

[BPBR11] Lélia Blin, Maria Gradinariu Potop-Butucaru, and Stephane Rovedakis. Self-stabilizing minimum degree spanning tree

REFERENCES

REFERENCES

REFERENCES

Boukerche:2002:DGB

Benoit:2008:MPS

Bromley:1996:QNG

Bhat:2003:ECC

REFERENCES

[BS96a] Frank Bellosa and Martin Steckermeier. The performance implications of locality information usage in shared-memory
REFERENCES

Buck:1996:ASC

Buck:1996:EVN

Banerjee:1997:PAF

Brockington:2000:AAP

REFERENCES

Beresford-Smith:1996:OAC

Bertolazzi:1990:PAV

Berryman:1990:KMP

Bukata:2015:SRC

Braun:2008:SRA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bein:2011:DNC

Brown:1993:PQA

Banerjee:2008:FTM

Bobda:2018:HLS

Bui:2017:EEC

REFERENCES

REFERENCES

Coelho:1996:OCH

Chen:1994:DAC

Concatto:2011:IYN

Chen:2013:TSM

REFERENCES

Chow:2018:UJI

Choi:1995:RLS

Clarke:1996:LSP

Chandy:1999:PCP
Cirne:2002:UMI

Cong:2006:DIP

Czapinski:2011:TST

Cason:2015:THT

Catalyurek:2009:RHM

REFERENCES

Costa:2000:PLP

Che:2008:PSG

Carothers:2002:RHP

Correia:2008:BGA

Chen:1987:ILP

REFERENCES

REFERENCES

Carvalho:2016:OMT

Cano:2018:FJR

Chen:1990:DVA

Chen:1992:EMF

Cao:2004:FAH

REFERENCES

REFERENCES

Chen:2008:MJR

Chen:2011:ART

Crowl:1994:AMP

Caselli:1992:TPI

Caselli:2001:DAG

REFERENCES

[CCS06] Chao-Tsun Chang, Chih-Yung Chang, and Jang-Ping Sheu. BlueCube: Constructing a hypercube parallel computing and

Chang:2014:AAL

Cook:1995:ISS

Coulaud:1998:PHL

Cruz:2014:DTM

REFERENCES

Chen:1984:MLA

Chu:1989:MIO

Chockler:2009:SIJ

Chockler:2011:SIC

Cucchiara:1995:DCO

REFERENCES

Cosnard:1990:STF

Chitnis:2009:ATI

Chitnis:2009:FTA

Cordasco:2012:SDV

Chan:1999:CGP

Casanova:2010:CRA

REFERENCES

REFERENCES

Connolly:1998:FTF

Cassavia:2018:DCL

Cheng:2013:DAT

Ceri:1986:OJB

Cobb:2002:SGL

Chen:2016:FHA

Chockler:2009:RDS

Calegari:1997:PIB

Chow:2012:PTS

Chatterjee:1995:GLA
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

Chechina:2011:RMA

Cheng:2017:IRP

Clark:1985:SPP

Cavallaro:1988:CAS

Cormen:1990:HSR

REFERENCES

REFERENCES

Cugola:2012:LLC

Chronaki:2019:MPA

Carchiolo:2010:AON

Chakroun:2013:CMC

Clouser:2012:CFT

REFERENCES

Clementi:2004:RRO

Ciardo:1992:ACF

Cai:1993:GVB

Choi:1993:EAM

Che:2014:ALM

REFERENCES

REFERENCES

Choudary:1992:PIE

Conn:1994:PRS

Cabillic:1997:SEP

Calamoneri:1998:ODC

Caminiti:2010:UPE

Chen:2010:PIE

Cinque:2017:IHF

Choudhury:2011:SMT

Chen:2018:CMD

REFERENCES

Chen:2012:ILA

Cheng:1992:OCA

Chang:1993:OLS

Cheng:1993:VNA

REFERENCES

REFERENCES

Chen:2006:CLS

Chen:2006:FSU

Chen:2008:SSD

Chen:2010:RWA

Collinson:2017:CAF
Chandrasekaran:2013:CDT

Cauchi-Saunders:2015:GEX

Caymes-Scutari:2010:SDM

Carbunar:2011:CPT

Carey:1994:PSO

REFERENCES

Chen:2008:ASS

Cui:2017:NOC

Cao:2003:SLB

Chen:1993:DER

Choudhary:1994:CCL

REFERENCES

REFERENCES

[CTD99] Henri Casanova, Michael G. Thomason, and Jack J. Don-garra. Stochastic performance prediction for iterative algo-

rithms in distributed environments. *Journal of Parallel and

Distributed Computing*, 58(1):68–91, July 1999. CODEN JPDC-

CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

[CTKA17] Long Cheng, Ilias Tachmazidis, Spyros Kotoulas, and Grig-

oris Antoniou. Design and evaluation of small-large outer

joins in cloud computing environments. *Journal of Paral-

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-

Teaching concurrent and parallel programming by patterns:

an interactive ICT approach. *Journal of Parallel and

Distributed Computing*, 105(??):42–52, July 2017. CO-

DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-

[CTT08] Antonio Congiusta, Domenico Talia, and Paolo Trunfio.

Service-oriented middleware for distributed data mining on the

15, January 2008. CODEN JPDCER. ISSN 0743-7315 (print),

1096-0848 (electronic).

[CTT16] Carmela Comito, Domenico Talia, and Paolo Trunfio. A dis-

tributed selectivity-driven search strategy for semi-structured

data over DHT-based networks. *Journal of Parallel and
REFERENCES

Chaudhury:2018:LHW

Chu:1992:OMN

Cheng:1993:SAD

Cang:2000:TSO

Chang:2001:RPR

REFERENCES

Cybenko:1989:DLB

Chlebikova:2006:ARG

Cole:1990:OPA

Czapinski:2013:EPM

Chen:2016:SNP

Chen:2017:DDA

[CZZ+17] Jianjun Chen, Dawei Zhao, Yao Zheng, Yan Xu, Chenfeng Li, and Jianjing Zheng. Domain decomposition approach for

REFERENCES

REFERENCES

REFERENCES

Dail:2003:DSA

DiFatta:2013:FTD

Dongarra:1990:TAD

deAzevedo:1995:BAS

Droz-Bartholet:2012:RCW

REFERENCES

deCampos:2019:PMS

DeBenedictis:1993:MS

Driscoll:1995:APP

Das:1996:TPR

Das:1998:HMP

REFERENCES

[DDO+18] Donato D’Ambrosio, Alessio De Rango, Marco Oliverio, Davide Spataro, William Spataro, Rocco Rongo, Giuseppe

REFERENCES

DiGregorio:2013:AWS

deSouzaeSilva:1991:QNM

Draper:1994:CAM

Dash:2014:LCM

Delporte-Gallet:2010:SLE

REFERENCES

[DHR96] Anne Dierstein, Roman Hayer, and Thomas Rauber. The AD-DAP system on the iPSC/860: Automatic data distribution

REFERENCES

[DJM94] N. Deo, A. Jain, and M. Medidi. Parallel construction of \((a, b)\)-trees. *Journal of Parallel and Distributed Com-

Durand:2003:PSU

Ding:2004:IEB

Daoud:2008:HPA

Daoud:2011:HHG

Di:2014:GHP

eSilva:2010:AEM

Do:2018:ACA

Daily:2015:WSB

Dimokas:2010:EED

Dornstetter:2001:SAS

Dehne:2015:SRT

Ding:2009:AAE

Dufosse:2015:TAA

Deveci:2015:HPM

Dolev:2001:SSG

[DKY01] Shlomi Dolev, Ephraim Korach, and Dmitry Yukelson. The sound of silence: Guessing games for saving energy in a mobile environment. \textit{Journal of Parallel and Distributed Com-

Dessmark:1998:IBI

DiStefano:1999:EKT

Dong:2001:DCA

delaAsuncion:2012:MCI

[dlAMCFN12] Marc de la Asunción, José M. Mantas, Manuel J. Castro, and E. D. Fernández-Nieto. An MPI-CUDA imple-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dolev:1997:SSR

Das:1998:SIP

Das:1998:TAH

Dasgupta:1999:PGA

REFERENCES

REFERENCES

Eliezer Dekel and Sartaj Sahni. Parallel matching algorithm for convex bipartite graphs and applications to scheduling.
REFERENCES

Dhodhi:1999:DID

Dines:1997:OIS

DeLucas:2017:DMA

Souza:2000:DSV

REFERENCES

Dubois:1995:EMD

daSilva:2011:SLB

Dan:1995:CAU

Dewan:1994:SPD

REFERENCES

Demsky:2011:IFO

Doka:2011:BDF

Doka:2011:OQD

Das:1994:COI

Dolev:1986:PCS

Dai:2006:CCD

Di:2012:DPR

Damani:2003:DRK

Duval:1987:FTT

Ding:2010:UMB

Ding:2010:PCM

REFERENCES

Du:2001:AES

El-Amawy:1990:BHN

El-Boghdadi:2009:PAR

El-Boghdadi:2013:CAO

Eberbach:1994:CDG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>E-ISSN</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC89</td>
<td>Bradley R. Engstrom and Peter R. Cappello</td>
<td>The SDEF programming system.</td>
<td>Journal of Parallel and Distributed Computing</td>
<td>7(2)</td>
<td>201–231</td>
<td>1989</td>
<td>0743-7315 (print), 1096-0848 (electronic)</td>
<td></td>
</tr>
<tr>
<td>ECP+18</td>
<td>Christian Esposito, Aniello Castiglione, Francesco Palmieri, Massimo Ficco, Ciprian Dobre, George V. Iordache, and Florin Pop</td>
<td>Event-based sensor data exchange and fusion in the Internet of Things environments.</td>
<td>Journal of Parallel and Distributed Computing</td>
<td>118 (Part 2)(??)</td>
<td>328–343</td>
<td>2018</td>
<td>0743-7315 (print),</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

REFERENCES

Evett:1995:PMP

Evett:1994:PKR

Es:2007:ARG

Eijkhout:2018:TDM

Eugster:2017:HPP
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

ElBaz:1996:AIA

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FA07]</td>
<td>Yaser Pourmohammadi Fallah and Hussein Alnuweiri. Hybrid polling</td>
</tr>
<tr>
<td></td>
<td>and contention access scheduling in IEEE 802.11e WLANs. *Journal</td>
</tr>
<tr>
<td></td>
<td>of Parallel and Distributed Computing*, 67(2):242–256, February</td>
</tr>
<tr>
<td></td>
<td>2007. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).</td>
</tr>
<tr>
<td>[FABG+19]</td>
<td>Alexandra Ferrerón, Jesús Alastruey-Benedé, Darío Suárez Gracia,</td>
</tr>
<tr>
<td></td>
<td>Teresa Monreal Arnal, Pablo Ibáñez Marín, and Víctor Viñals Yúfera.</td>
</tr>
<tr>
<td></td>
<td>A fault-tolerant last level cache for CMPS operating at ultra-low</td>
</tr>
<tr>
<td></td>
<td>voltage. Journal of Parallel and Distributed Computing, 125(??):31-</td>
</tr>
<tr>
<td></td>
<td>44, March 2019. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848</td>
</tr>
<tr>
<td>[Fag92]</td>
<td>Barry S. Fagin. Large integer multiplication on hypercubes. *Journal</td>
</tr>
<tr>
<td></td>
<td>CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).</td>
</tr>
<tr>
<td>[FAGW95]</td>
<td>Xianzhi Fan, Nael B. Abu-Ghazaleh, and Philip A. Wilsey. On the</td>
</tr>
<tr>
<td></td>
<td>complexity of scheduling MIMD operations for SIMD interpretation.</td>
</tr>
<tr>
<td></td>
<td>Journal of Parallel and Distributed Computing, 29(1):91–95, August</td>
</tr>
<tr>
<td></td>
<td>15, 1995. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).</td>
</tr>
<tr>
<td>[Fah96]</td>
<td>Thomas Fahringer. Compile-time estimation of communication costs for</td>
</tr>
<tr>
<td></td>
<td>data parallel programs. *Journal of Parallel and Distributed</td>
</tr>
</tbody>
</table>

References

REFERENCES

Fatema:2014:SCM

Fei:2003:NCA

Feng:1990:SAB

Ferrante:1990:PDS

Ferscha:1992:PNA

Ferretti:1993:GHT

Ferragina:1995:TSP

Fleury:1998:SPB

Feldman:1997:PSD

Feng:2017:PPP

Fernandez:2008:EPI

José-Jesús Fernández, Dan Gordon, and Rachel Gordon. Efficient parallel implementation of iterative reconstruction al-

REFERENCES

REFERENCES

REFERENCES

[FLCB10] Michail D. Flouris, Renaud Lachaize, Konstantinos Chasapis, and Angelos Bilas. Extensible block-level storage virtualiza-

REFERENCES

Fahringer:1999:BSC

Friedman:1999:LBS

Fernandess:2007:CCD

Filho:2018:AOV

Flammini:2008:ATG

Feschet:1998:PPD

Fraigniaud:2005:ETB

Francis:1994:DPS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Page Range</th>
<th>Volume</th>
<th>ISSNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FXW03]</td>
<td>Optimal periodic remapping of dynamic bulk synchronous computations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

Fang:2005:FSS

Fernandez-Zepeda:2002:UBL

Fan:2012:EAA

Goodrich:1990:PRO

Gunney:2016:APB

GA90

GA16
REFERENCES

REFERENCES

Guha:1993:DON

Gustafson:2006:SIM

Gu:2011:HTN

Gu:2008:PAA

Germain:1993:CAM

REFERENCES

[GCS06] Venkata C. Giruka, Saikat Chakrabarti, and Mukesh Singhal. A distributed multi-party key agreement protocol for dynamic

[Ganesan:2004:NIW]

[Gao:2018:CPD]

[Gardellin:2011:GPD]

[Goodeve:1998:TMS]

Gandham:2008:LSW

Gaudiot:1985:PES

Gusev:1994:NMV

Gerbessiotis:1998:PCP

Gupta:1989:SRT
REFERENCES

REFERENCES

[GHC+17] Yong Guo, Sungpack Hong, Hassan Chafi, Alexandru Iosup, and Dick Epema. Modeling, analysis, and experimental com-

Guesgen:1992:TMP

Guerraoui:2012:DPR

Grammatikakis:1998:PRF

Gustafson:1986:AHV

REFERENCES

1. **Guo:2005:FLC**

2. **Gupta:1993:PPL**

4. **Gursoy:2004:PMB**

[GLC14] Marta Garcia, Jesus Labarta, and Julita Corbalan. Hints to improve automatic load balancing with LeWI for hy-
REFERENCES

[GM13] Brice Goglin and Stéphanie Moreaud. KNEM: a generic and scalable kernel-assisted intra-node MPI communica-
REFERENCES

REFERENCES

Galiano:2012:GBP

Gupta:2006:WAH

Giles:2013:DOG

Gillan:2011:SIJ

Gomez-Martin:2016:FBI

Gupta:2007:DKG

[GMXA07] Ananya Gupta, Anindo Mukherjee, Bin Xie, and Dharma P. Agrawal. Decentralized key generation scheme for cellular-

Gupta:2015:IBS

Georgiou:2009:FTS

Georgiadis:2004:FWA

Gupta:2003:EET

Guo:2018:PAM

Greenberg:1995:PRN

Goertzel:1994:LIP

Gai:2013:MIG

Gonzalez:1998:CAM

[GÖÖ16] B. Gedik, H. G. Özsema, and Ö. Öztürk. Pipelined fis-
sion for stream programs with dynamic selectivity and par-
titioned state. *Journal of Parallel and Distributed Com-
puting*, 96(??):106–120, October 2016. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0743731516300338.

[Gos90] A. Goscinski. Two algorithms for mutual exclusion in real-
time distributed computer systems. *Journal of Parallel and
Distributed Computing*, 9(1):77–82, May 1990. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[GP91] Raymond R. Glenn and Daniel V. Pryor. Instrumentation for a
massively parallel MIMD application. *Journal of Parallel and
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[GP93] Garth A. Gibson and David A. Patterson. Designing
disk arrays for high data reliability. *Journal of Par-
allel and Distributed Computing*, 17(1–2):4–27, January/
February 1993. CODEN JPDCER. ISSN 0743-7315 (print),

[GP94] Zvi Galil and Kunsoo Park. Parallel algorithms for dynamic
programming recurrences with more than $O(1)$ dependency.
Journal of Parallel and Distributed Computing, 21(2):213–
222, May 1994. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1994.1053/production;
REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Gustafson:1991:DSF

Guay:2015:EEL

Gross:1985:SIF

Gu:1993:DPM

Gutierrez:2005:PTI

[GRR+05] Eladio Gutiérrez, Sergio Romero, Luis F. Romero, Oscar Plata, and Emilio L. Zapata. Parallel techniques in irregular codes: cloth simulation as case of study. *Journal of Par-

[GS99] Srabani Sen Gupta and Bhabani P. Sinha. A simple $O(\log N)$
time parallel algorithm for testing isomorphism of maxi-
mal outerplanar graphs. *Journal of Parallel and Distributed
Computing*, 56(2):144–155, February 1999. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL
1998.1514/production; http://www.idealibrary.com/
1998.1514/production/ref.

[GS00] Håkan Grahn and Per Stenström. Comparative evaluation
of latency-tolerating and -reducing techniques for hardware-
only and software-only directory protocols. *Journal of Par-
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
1006/jpdc.1999.1606; http://www.idealibrary.com/

[GS01a] R. Govindarajan and Anand Sivasubramaniam. Special

[GS01b] Sandeep K. S. Gupta and Pradip K. Srimani. Cored-
based tree with forwarding regions (CBT-FR); a proto-
col for reliable multicasting in mobile ad hoc networks.
Journal of Parallel and Distributed Computing, 61(9):1249–
1277, September 1, 2001. CODEN JPDCER. ISSN 0743-

REFERENCES

Gill:1993:STA

Goswami:2002:DPP

Garcia:2003:HDH

Girault:2009:RVP
REFERENCES

REFERENCES

Gilbert:2006:IVG

Guerra:1986:VAO

Guo:1994:OIP

Gupta:1992:SEP

Gannon:1986:SPH
REFERENCES

REFERENCES

Gong:2013:EEC

Gu:2014:SIM

Guil:1997:FHT

Gao:2008:PSA

REFERENCES

Gan:2017:DAO

Gotthelf:2008:GOM

Gong:2014:DCA

Gong:2014:MCC

Houstis:1991:CPA

[Hal05] Sibsankar Haldar. Constructing regular variables in message passing systems. *Journal of Parallel and Distributed Com-

Han:1989:PAC

Harrison:1991:AMM

Hidalgo:2016:EEC

Hawking:1997:DMA

Hasteer:1997:SAB

Hung:2011:TAB

Hussain:2015:EDH

Hendrikx:2015:RSS

Harchol-Balter:1999:CTA

Hu:2012:PPI

Yi Hu, Laxmi N. Bhuyan, and Min Feng. Peer-to-peer indirect reciprocity via personal currency. *Journal of Par-

Hollis:1995:MIR

Hui:1997:TAH

He:2009:PBI

Hsieh:2011:NSB

Hicks:1993:PSI

REFERENCES

Herbordt:1994:PAO

Herbordt:2004:ACH

Hu:2010:IIC

Hanna:2011:AHS

Hoare:2008:TSH

HerondeCarvalhoJunior:2013:CSE

Hoare:2005:FDS

Herath:1992:GEI

Hajihashemi:2010:HPC

Hassan:2011:PID

Hyde:1996:ADS

[HF96] Randall L. Hyde and Brett D. Fleisch. An analysis of degenerate sharing and false coherence. *Journal of
References

REFERENCES

He:2001:CEB

Hussain:2014:PPM

Ho:1998:EPS

Hussin:2015:IRR

REFERENCES

Hac:1990:SSL

Harper:1990:ERB

Ho:1990:EMB

Helman:2001:PCS

Han:2007:CWA

Hu:2001:PDR

Hu:2001:MRM

Huc:2012:ERS

Hambrusch:1996:PMC

Hershberger:2001:DMR

REFERENCES

REFERENCES

Hua:1995:OAL

Hosseini:1990:AGC

Hanlon:2003:LSF

Hori:2012:ANS

Helmbold:1996:TRC

REFERENCES

Huang:1999:BBA

Heun:2001:ODE

Haghighi:2006:PPQ

Hart:2007:PMR

Herrmann:2015:MAT

Julien Herrmann, Loris Marchal, and Yves Robert. Memory-aware tree traversals with pre-assigned tasks. *Journal of

Hashemi-Najafabadi:2007:MPM

Ho:1991:OBS

Huang:1994:ELB

He:2009:SAA

Hohberg:1990:HFB

Hollingsworth:2017:E

REFERENCES

[Ha:2000:NTB]

[HP00]

[HP06]

[HP06]

[HPB+10]

[HPSM91]
REFERENCES

REFERENCES

Hacker:2009:ACF

[135x681]

[HRH09]

Hernandez:2011:CIP

[135x681]

[HRF11]

Hendry:2011:TDM

[135x681]

[HRG11]

Hossain:2018:ECF

[135x681]

[HRH18]

Ho:1994:EAG

[135x681]

[HRJ94]

Hossain:2017:CPC

Hillyer:1986:EOP

Huang:1993:CFH

Higham:1994:MBT

Homer:1994:SPC

REFERENCES

He:2012:CSB

Hussain:2017:HDE

He:2010:IRS

Hsieh:2004:EPS

Hinkle:1987:NLP

Heymann:2004:ERM

REFERENCES

June 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Hiranandani:1991:PHC

Han:2010:EPA

Hundt:2017:SWA

He:2007:PGA

Houle:2004:DEA

Hendler:2010:SLF

REFERENCES

Hillis:1990:ESH

Herlihy:2006:RSN

Hribar:1998:TDP

Huang:2002:FTH

Hua:1999:PLB

REFERENCES

Hu:2011:DSR

Hu:2011:DSR

Hu:2011:DSR

Hu:2011:DSR

Huang:2017:RSB

Huang:2017:RSB

Huang:2017:RSB

Huang:2017:RSB

Hussain:2017:NHS

Hussain:2017:NHS

Hussain:2017:NHS

Hussain:2017:NHS

Haldar:1995:BOC

Haldar:1995:BOC

Haldar:1995:BOC

Haldar:1995:BOC

Haldar:2009:SOB

Haldar:2009:SOB

Haldar:2009:SOB

Haldar:2009:SOB

Sibsankar Haldar and K. Vidyasankar. On space-optimality of buffer-based conflict-free constructions of 1-writer 1-reader

[Hu:2013:RAS]

[Hsieh:2016:HTD]

[Habetha:2003:ASP]

[Hwang:1997:EPA]
Huang:2008:TCT

Hsieh:2018:KAR

Hua:2014:ETH

Huang:1996:PLB

Hsu:2008:SDG

REFERENCES

REFERENCES

He:2004:SSI

[Xubin He, Ming Zhang, and Qing (Ken) Yang. STICS: SCSI-to-IP cache for storage area networks. Journal of Parallel and Distributed Computing, 64(9):1069–1085, September 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).]

Hao:2019:AGB

Ieumwananonthachai:1992:IPM

Iyengar:2004:SII

Ibrahim:2008:FGP

Iqbal:2005:PAD

[Saeed Iqbal and Graham F. Carey. Performance analysis of dynamic load balancing algorithms with variable number of]

Irwansyah:2017:FBM

Ibarra:1993:QBA

Ibarra:1994:FPA

Ibrahim:1987:LLI

Iannello:1994:CWA

Iwama:2000:ORA

Ibarra:1985:SRC

Iqbal:1992:EAD

Imbs:2012:HWN

Imbs:2016:RWS

Irwin:1988:SIP

Iyengar:2006:ENL

Imani:2007:CIP

Imani:2010:RPC

Islam:1997:CMP

Izumi:2007:ATC

REFERENCES

REFERENCES

Javadi:2012:FAR

Johnson:1993:PED

Joy:1998:HDR

Jesus:2015:FUF

REFERENCES

Jaramillo-Botero:2002:UFM

Jiang:1991:MMV

Jayanti:2000:AOS

Jhumka:2014:EFT

Jin:2005:ENA

Hyun-Wook Jin, Pavan Balaji, Chuck Yoo, Jin-Young Choi, and Dhabaleswar K. Panda. Exploiting NIC architectural support for enhancing IP-based protocols on high-performance

REFERENCE

Jang:2012:OWS

Jaen-Martinez:2000:JME

Johnen:2014:SSS

Jhurani:2015:GII

Jamieson:1986:FAS

REFERENCES

REFERENCES

REFERENCES

CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

Jegou:1986:DSP

Jenq:1994:RMA

Jadav:1995:TSH

Jia:1994:PNU

Malith Jayasinghe, Zahir Tari, Panlop Zeephongseku, and Albert Y. Zomaya. Task assignment in multiple server farms us-

Jiang:2017:DOS

Korst:1989:COB

Koc:1991:FAG

Kwok:1997:ESA

Kwok:1999:BCT

Kang:2003:SSS

Kepner:2004:M

Kwok:2005:MTS

Khan:2008:CAT

Khan:2019:TAP

Kai:1992:EA

REFERENCES

[Kap93] Adam Kapralski. New methods for the generation of permutations, combinations, and other combinatorial objects in paral-
REFERENCES

Karonis:1992:TPP

Karabeg:1995:PPT

Karaata:2002:SAF

Kim:2007:PDD

Kaufman:1994:PQA
REFERENCES

KENNEDY:2001:TLS

KRAVTSOV:2010:SFL

KAUR:2019:IRE

KUANG:2005:PPO

REFERENCES

Kyriakis-Bitzaros:1992:EDT

Krishnamoorthy:1994:SDS

Kim:1995:NPU

Kim:1998:MGE

Karamcheti:1999:ASM

REFERENCES

REFERENCES

[KCSS18] Sajith Kalathingal, Sylvain Collange, Bharath N. Swamy, and André Seznec. DITVA: Dynamic Inter-Thread Vector-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[KHK18] Seong Hoon Kim, Minkeun Ha, and Daeyoung Kim. A multi-hop pointer forwarding scheme for efficient location up-

REFERENCES

Kusudo:2015:BPA

Kim:2011:DCA

Kim:2017:QPT

Kumar:1984:PEB

Kaznachey:2003:NNB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[KKS08] Vladimir V. Korkhov, Valeria V. Krzhizhanovskaya, and P. M. A. Sloot. A Grid-based Virtual Reactor: Parallel perfor-

REFERENCES

Kaeli:2008:SIG

Kim:2005:IGS

Kim:2011:TBS

Kung:1987:PAO

Kim:1998:AVC

REFERENCES

Kautonen:2010:TPR

Knobe:1990:DOA

Kopidakis:1997:TAP

Kornerup:1988:LAU

Kuo:1991:IMR
REFERENCES

[KMS10] Dariusz R. Kowalski, Mariam Momenzadeh, and Alexander A. Shvartsman. Emulating shared-memory Do-All algorithms

Kim:2018:CPH

Kim:2018:CSC

Kim:2018:FSS

Kim:1991:MOO

Kuruvila:2006:GLR

REFERENCES

REFERENCES

Karamcheti:1996:RME

Kothari:1988:MNC

Kumar:1987:APM

Kaddoura:1997:RSP

Knop:1998:PLT

Korch:2006:OLS

Kang:2010:DSA

Kang:2010:SAA

Kundeti:2011:ECS

Kim:2012:FEP

Kuznetsov:2017:GGB

Petr Kuznetsov and Srivatsan Ravi. Grasping the gap between blocking and non-blocking transactional memories. *Journal

REFERENCES

Khasanvis:2014:HGC

Kumar:2001:SIH

Krishnamoorthy:2013:SIJ

Krishnamoorthy:2014:IJS

Konwar:2015:RNS

Kapoor:2002:GAF

Kaddoura:1996:ADN

Kumar:1991:SPA

Kraemer:1993:VPS

REFERENCES

REFERENCES

REFERENCES

[KSG03] N. Koziris, A. Sotiropoulos, and G. Goumas. A pipelined schedule to minimize completion time for loop tiling with com-

REFERENCES
Kent:1985:PP1

Karsai:1992:MBI

Kim:2007:DMT

Kollias:2014:FPA

Koutsandria:2016:CEH

REFERENCES

[KUA07] Kamer Kaya, Bora Uçar, and Cevdet Aykanat. Heuristics for scheduling file-sharing tasks on heterogeneous systems with

[KV10] B. T. Benjamin Khoo and Bharadwaj Veeravalli. Pro-active failure handling mechanisms for scheduling in grid computing

[KW02] Shan-Chyun Ku and Biing-Feng Wang. An optimal simple parallel algorithm for testing isomorphism of maximal outer-
REFERENCES

Khairy:2019:SAA

Krishnamurthy:1996:AOS

Kakugawa:2002:USS

Karwande:2005:MPC

Amit Karwande, Xin Yuan, and David K. Lowenthal. An MPI prototype for compiled communication on Ethernet switched clusters. *Journal of Parallel and Distributed Computing*, 65
Kee:2017:AMB

Karimi:2013:SAF

Kim:1996:FMO

Kolli:2011:DPA

Lin:1993:UGS

Loukopoulos:2004:SAD

Lopez:2006:ESM

Louati:2018:LTH

Louati:2018:LCT

REFERENCES

REFERENCES

[Li:1991:TDB] Keqin Li and Kam-Hoi Cheng. A two-dimensional buddy system for dynamic resource allocation in a partitionable mesh...

[LC11] Yinan Li and Ing-Ray Chen. Adaptive per-user per-object cache consistency management for mobile data access in wireless mesh networks. *Journal of Parallel and
REFERENCES

Li:2014:EAR

Lima:2019:BSS

Liu:2016:AFA

Lemeire:2018:EAM

REFERENCES

Lowenthal:1996:UFG

Larrea:2005:ECF

Losada:2017:PAF

Lewis:2003:SES

Lampka:2016:KIC

REFERENCES

[LHW14] Chuanyou Li, Michel Hurfin, and Yun Wang. Approximate Byzantine consensus in sparse, mobile ad-hoc networks. *Jour-
REFERENCES

[Li01] Keqin Li. Scalable parallel matrix multiplication on distributed memory parallel computers. Journal of Parallel and
REFERENCES

REFERENCES

[Lin93b] Yi-Bing Lin. Special issue on parallel discrete event simulation: Guest Editor's introduction. *Journal of Parallel and
REFERENCES

Patrick A. La Fratta and Peter M. Kogge. Energy-efficient multithreading for a hierarchical heterogeneous multicore through locality-cognizant thread generation. *Journal of Parallel and Distributed Computing*, 73(12):1551–1562, December...
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lee:1993:OFC

Luo:2007:RFG

Lu:2016:PIF

Lin:2012:MSN

Liu:2007:DCA

[LM09] Yi Luo and D. Manivannan. FINE: a Fully Informed aNd Ef-
ficient communication-induced checkpointing protocol for dis-
tributed systems. *Journal of Parallel and Distributed Comput-
ing*, 69(2):153–167, February 2009. CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848 (electronic).

[LM16] Shaosong Li and Shivakant Mishra. Optimizing power con-
sumption in multicore smartphones. *Journal of Parallel and
Distributed Computing*, 95(??):124–137, September 2016. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731516000198.

[LMB+17] Bo Li, John Mooring, Sam Blanchard, Aditya Johri, Melinda
Leko, and Kirk W. Cameron. SeeMore: a kinetic par-
ellel computer sculpture for educating broad audiences on
parallel computation. *Journal of Parallel and Distributed Comput-
ing*, 105(??):183–199, July 2017. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0743731517300230.

[LMCF90] Thomas J. LeBlanc, John M. Mellor-Crummey, and Robert J.
Fowler. Analyzing parallel program executions using multi-
ple views. *Journal of Parallel and Distributed Comput-
ing*, 9 (2):203–217, June 1990. CODEN JPDCER. ISSN 0743-7315
(print), 1096-0848 (electronic).

[LME95] Xiaola Lin, Philip K. McKinley, and Abdol-Hossein Es-
fahanian. Adaptive multicast wormhole routing in 2D
mesh multicomputers. *Journal of Parallel and Distributed Comput-
(print), 1096-0848 (electronic). URL
http://www.idealibrary.com/

Liang:2013:WBC

Lima:2012:PEO

Lin:1991:NRA

Lo:1992:TCG

Lin:1994:OPM

REFERENCES

Li:2018:MAE

Lee:2010:AET

Lopez-Portugues:2012:ASS

Li:1998:LBD

Leung:1997:RTV

Allen Leung, Krishna V. Palen, and Cristian Ungureanu. Run-time versus compile-time instruction schedul-

Lai:1995:TRM

Leutenegger:1997:LCS

Lundberg:2001:ORS

Lin:2003:LBL

Lin:2015:EET

LaPolla:1993:DPP

Liang:1996:PAE

Lerida:2013:SBP

Lee:1988:HAK

J. Lee, E. Shragowitz, and S. Sahni. A hypercube algorithm for the 0/1 knapsack problem. *Journal of Parallel and Distributed
REFERENCES

Li:2011:CSF

Li:2011:FON

Li:2013:PMC

Lee:2017:NNL

Liu:2014:DBD

REFERENCES

Li:2014:DPM

Luckow:2015:PDA

Liu:2015:ABI

Lu:1994:LBJ

Lin:1996:EUH

Li:2007:RCP

Lahiri:2010:IFI

Lan:2002:NDL

Lin:1993:PCC

Liu:2014:HMC

[LTG14] Chen Liu, Pollawat Thanarungroj, and Jean-Luc Gaudiot. How many cores do we need to run a parallel workload: a

REFERENCES

Lars Lundberg. Predicting and bounding the speedup of multithreaded Solaris programs. *Journal of Parallel and Dist-

Christian Lavault and Mario Valencia-Pabon. A distributed approximation algorithm for the minimum degree minimum

Li:1990:TAD

Li:1989:APC

Lai:1990:MPA

Lin:1995:MPR

Li:2006:SAA

Liu:2006:RTS

Tzong-Jye Liu and Lih-Chyau Wu. Randomized three-state alternator for uniform rings. *Journal of Parallel and Dis-

REFERENCES

[Li:2012:CSC]

[LWOG02]

[LWP02]

REFERENCES

[LWZZ12] Young Choon Lee, Chen Wang, Albert Y. Zomaya, and Bing Bing Zhou. Profit-driven scheduling for cloud services with data access awareness. *Journal of Parallel and
Liang:2012:UBC

Li:2011:TPA

Luo:2013:BMH

Leff:1991:ASL

Lim:1998:MCC

REFERENCES

Liu:2011:TAL

Lei:2009:CCM

Li:2011:CCQ

Liu:2011:JTA

Longo:2019:UCM

Lu:2006:MTH

Li:2011:MDT

Liu:2018:CFB

Liu:2011:APD

Mershad:2011:CCD

Mohiuddin:2019:WAV

Maia:2013:MRP

Maheshwari:1995:PSP

Min-Allah:2012:PER

Mohamed:2005:DUL

Min-Allah:2013:LPF

Manoj:2005:MHC

Manzini:1994:SMC

Mans:1997:ODA

Manjunathaiah:2013:FGM

REFERENCES

Martalo:2014:SDR

Mudge:1987:VAH

Martel:1988:PAP

Mnaouer:2005:ESL

Maheswaran:1999:DMC

REFERENCES

REFERENCES

MacPherson:1996:PAV

May:1996:REP

Mastrostefano:2013:EBF

Mansouri:2019:DRM

Ma:2013:KAT
Teng Ma, George Bosilca, Aurelien Bouteiller, and Jack J. Dongarra. Kernel-assisted and topology-aware MPI collective communications on multicore/many-core platforms. *Journal of Parallel and Distributed Computing*, 73(7):1000–1010,
REFERENCES

Mirabella:2008:IRL

Moghaddam:2019:AAB

Maciel:2012:BDS

Maggioni:2016:OTS

Marco Maggioni and Tanya Berger-Wolf. Optimization techniques for sparse matrix-vector multiplication on GPUs. *Journal of Parallel and Distributed Computing, 93–94*(?):66–86, July 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
Martinez:1991:SAD

Melhem:1993:OCI

Myers:2003:NMI

Maier:2017:OLD

McAulay:1989:CGO

Martinez:2012:HIS

REFERENCES

Ma:2004:BBT

McDowell:1989:PAS

Macedo:2006:RBA

Mckinley:1994:MCS

Marcon:2011:CFI

Musat:2018:ASE

Michail:2014:CIC

Melab:2006:GCP

Muppala:2014:MTS

Miller:1992:AQM

Medidi:1998:PDU

Muralidhar Medidi and Narsingh Deo. Parallel dictionaries using AVL trees. *Journal of Parallel and Distributed Com-

REFERENCES

REFERENCES

REFERENCES

Murodca:1993:AIR

Moga:1998:PMB

Minkenberg:2009:DPS

Montoya:2003:LUP

Munir:2014:QTA

REFERENCES

Memin:1995:EPN

Madisetti:1993:MEP

Ma:2016:TTC

McLendon:2005:FSC

Manabe:1992:GCD

REFERENCES

REFERENCES

Mittal:2009:NDC

Mondal:2016:PPA

Moritz:2014:IJS

Mance:2018:CST

REFERENCES

Marchand:1997:OAD

Maresca:1989:CAS

Marinescu:1990:MMD

Martin:2018:ENE

Mamat:2012:ERT

REFERENCES

Phil May, Myunghhee Lee, Scott T. Wilkinson, Olivier Vendier, Zhuang Ho, Steven W. Bond, D. Scott Wills, Martin Brooke, Nan M. Jokerst, and April Brown. A 100 mbps, LED

[MM04] P. S. Partha Sarathi Mandal and Krishnendu Mukhopadhyaya. Concurrent checkpoint initiation and recovery algorithms on

Mastoras:2015:ADB

Meyer:2017:HMP

Mezmaz:2011:PBO

Morajko:2007:DID

Martinelli:2018:EMC

REFERENCES

REFERENCES

Mohapatra:1996:PAU

Mohapatra:1997:DRT

Monfroglio:1994:NLC

Meyer:1987:PFO

Mathias:1988:SEL

Mayr:1993:PPP

Mickle:1996:LBU

Morris:2008:PLC

Meunier:2010:LTM

REFERENCES

REFERENCES

REFERENCES

R. Mirchandaney and J. A. Stankovic. Using stochastic learning automata for job scheduling in distributed processing sys-

REFERENCES

REFERENCES

Moraveji:2010:GMD

Moraveji:2011:PMC

McLay:1996:MSM

Menasce:1995:SDP

Matos:2013:LER

REFERENCES

Intosh-Smith:2013:SIJ

McLeod:1990:PAT

Mohamed:2005:MAR

Morad:2016:EEF

Manoj:2009:SSS

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Muhlenbein:1988:NPM

Migliardi:2000:DJS

Middendorf:2002:EAD

Mukherjee:1999:DSA

Merugu:2005:ASU

Moldovan:1985:SVA

Ma:1993:EAM

Malhotra:1993:RAR

Maillet:1995:EIG

Tahir Maqsood, Nikos Tziritas, Thanasis Loukopoulos, Sajjad A. Madani, Samee U. Khan, Cheng-Zhong Xu, and

REFERENCES

[641]

REFERENCES

Muppala:2012:RBR

Nesterenko:2002:SPA

Nagy:2006:CNN

Nicolae:2011:BNG

Nakano:1995:OIA

REFERENCES

Nardelli:1998:DSM

Nagar:1999:ACN

Nicol:1997:APD

Nghiem:2009:FBI

REFERENCES

REFERENCES

Navarro:2007:DLC

Nistor:2009:OPC

Nie:2012:ESS

Naderan:2013:ULB

Newhall:2017:PPD

Noh:1999:HMM

Neelima:2017:HPC

Nudd:1985:TDV

Nesterov:2010:SPT

Nghiem:2016:TER
REFERENCES

Nastea:1997:LBS

Nere:2013:SCN

Ngom:2006:PES

Niu:2012:SPW

Nicol:1993:OPS

David M. Nicol and Philip Heidelberger. Optimistic parallel simulation of continuous time Markov chains using uniformization. *Journal of Parallel and Distributed Computing*

REFERENCES

[NMN+14] Thao P. Nghiem, Kiki Maulana, Kinh Nguyen, David Green, Agustinus Borgy Waluyo, and David Taniar. Peer-to-
peer bichromatic reverse nearest neighbours in mobile ad-
hoc networks. *Journal of Parallel and Distributed Com-
puting, 74*(11):3128–3140, November 2014. CODEN JPD-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0743731514001294.

Wayne G. Nation, Anthony A. Maciejewski, and Howard Jay
Siegel. A methodology for exploiting concurrency among
independent tasks in partitionable parallel processing systems.
Journal of Parallel and Distributed Computing, 19(3):271–278,
November 1993. CODEN JPDCER. ISSN 0743-7315 (print),

Katayoun Neshatpour, Maria Malik, Avesta Sasan, Setareh
Rafatirad, Tinoush Mohsenin, Hassan Ghasemzadeh, and
Houman Homayoun. Energy-efficient acceleration of MapRe-
duce applications using FPGAs. *Journal of Parallel and
Distributed Computing, 119*(??):1–17, September 2018. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731518300753.

Jaechun No. NAND flash memory-based hybrid file sys-
tem for high I/O performance. *Journal of Parallel and Dis-
tributed Computing, 72*(12):1680–1695, December 2012. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S074373151200189X.

Luís Nogueira and Luís Miguel Pinho. Time-bounded dis-
tributed QoS-aware service configuration in heterogeneous co-
operative environments. *Journal of Parallel and Distributed
ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

Ngo:2018:UCR

Nagasu:2017:FBT

Nam:1999:SLB

Nastou:1998:ACA

REFERENCES

REFERENCES

[OBoyle:2002:ILD]

[Oboyle:1995:SMS]

[Olariu:2001:PSI]

[Opper:1984:RAM]

[Olukotun:1990:HGA]

[OOSGVG+16] Marta Ortín-Obón, Darío Suárez-Gracia, María Villarroya-Gaudó, Cruz Izu, and Víctor Viñals. Reactive circuits:

A. Yavuz Oruc. Designing cellular permutation networks through coset decompositions of symmetric groups. *Journal
REFERENCES

REFERENCES

Haldun M. Ozaktas. Information flow and interconnections in computing: extensions and applications of Rent’s rule. *Journal of Parallel and Distributed Computing*, 64(12):1360–1370,

Hyunmin Park and Dharma P. Agrawal. A generic design methodology for deadlock-free routing in multicomputer net-

Plimpton:1998:PTD

Ponnuswamy:1997:PBB

Pakzad:1989:FTA

Pande:1994:TSS

Parhami:2005:SIN

Pal:2014:PMH

Pauli:2015:IFT

Patsouris:2001:AMA

Park:1990:RCC

REFERENCES

[PB19] Jinsu Park and Woongki Baek. Analyzing and optimizing the performance and energy efficiency of transactional scientific

REFERENCES

Peng:2011:ISN

Peng:2014:RNS

Percus:1992:PAC

Panda:2005:PRA

Pinel:2013:SVL

Frédéric Pinel, Bernabé Dorronsoro, and Pascal Bouvry. Solving very large instances of the scheduling of indepen-

Papakostas:2017:PPC

Park:1993:AGS

Pinkston:1995:AOI

Peleg:1990:TOL

Peleg:1995:NOT

Peng:2011:EVF

Petrica:2018:FOC

Plateau:1991:MSM

Prodan:2004:ZGM

Pedone:2008:PHA

Pfeiffer:1990:HLL

Park:2004:GFS

Prasad:2018:VEK

Patterson:2012:SCM

Pedrero:2017:ROS

[PIB+01] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. M. Prellezo. The adaptive bubble router. *Jour-
REFERENCES

Piuri:2001:AFT

Pixiiali:2018:TID

Percus:1989:RNG

Parhami:2004:IAC

Park:2004:LPC

REFERENCES

Page:2008:SDH

Page:2010:MHD

Penoff:2010:ETL

Peir:1993:LAR

Peng:1994:SOP

REFERENCES

Petersen:1995:MCC

Potter:1998:AAC

Peinado:2003:PSW

Price:2003:CAF

Park:2006:AAT

REFERENCES

Pattanayak:2019:GMR

Perez-Miguel:2015:MAC

Pan:2005:SMK

Pan:2006:FRP

Panda:1997:SIWa

Maciej Paszyński, David Pardo, Carlos Torres-Verdín, Leszek Demkowicz, and Victor Calo. A parallel direct solver for the

REFERENCES

Prasanna:2014:IJS

Palis:1994:PRP

Purushothaman:1988:RAS

Peng:1993:NPM

Protopopov:2001:MMP

Boris V. Protopopov and Anthony Skjellum. A multithreaded Message Passing Interface (MPI) architecture: Performance

Plimpton:2014:SDA

Psarris:1996:BWG

Perez:2019:ATO

Peng:2016:BHS

REFERENCES

REFERENCES

REFERENCES

Plaza:2006:CCB

Prades:2017:MTV

Palaniswamy:1996:PTW

Petagon:2016:EOA

Petagon:2017:VVA
Roselin Petagon and Jeeraporn Werapun. VA-DE: Valuable ATAPE with dynamic embedding and super-pipeline scheduling on partitionable multistage interconnection networks.
REFERENCES

Poulsen:1996:IFG

Pan:2009:BGM

Pan:2009:BML

Patarasuk:2009:BOA

Patarasuk:2008:TPB

[QOvdG01] Enrique S. Quintana-Ortí and Robert van de Geijn. Specialized parallel algorithms for solving Lyapunov and Stein

REFERENCES

REttkowski:2017:HSC

Rafique:2011:CAF

Rinke:2018:SAS

Rezende:2011:IMM

Reddy:1993:DEG

REFERENCES

Rhee:1995:MWD

Ravindran:2002:ARM

Reeves:1984:PPE

Rahman:2010:CPK

Rahman:2010:PKA

Sk. Md. Mizanur Rahman and Khalil El-Khatib. Private key agreement and secure communication for heterogeneous sensor

Vijaya Ramachandran, Brian Grayson, and Michael Dahlin. Emulations between QSM, BSP and LogP: a framework for

Rodriguez:1996:POW

Roy:2012:WAX

Rostami:2008:SRS

Richard:1998:EVT

Rivera:1990:PSE

REFERENCES

[RK18] Elakkiya R. and Selvamani K. Enhanced dynamic programming approach for subunit modelling to handle segmenta-

REFERENCES

REFERENCES

Rachuri:2011:EEL

Robinson:1997:PBM

Rezaei:2017:DDN

Requena:2014:EDP

Rotaru:2004:DLB

REFERENCES

REFERENCES

Rosenfeld:1985:PMA

Rosenfeld:1989:ACP

Rosenberg:1999:GDP

Rosenberg:2007:BPA

Ryang:1995:TLD

Rauber:2005:TLS

Ryoo:2008:POC

Ranka:1990:ITM

Ranka:1990:SES

Ramanujam:1992:TMI

Raschid:1992:PPS

REFERENCES

REFERENCES

[Rajasekaran:2008:RSI]
Rajasekaran:2008:RSI

[Reano:2019:SIN]
Reano:2019:SIN

[Ramaswamy:1996:OEA]
Ramaswamy:1996:OEA

[Roh:2001:RMD]
Roh:2001:RMD

[Rughetti:2017:MLB]
Rughetti:2017:MLB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sunwoo:1990:FCM

Sterling:1993:FGD

Sintorn:2008:FPG

Soliman:2011:FIP

Shamszaman:2019:ECC

REFERENCES

Siegel:1992:RPW

Sabot:1994:OCF

Shaw:1998:CIP

Sevilgen:2005:PAT

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[Soliman:2013:SMU]
Mostafa I. Soliman and Abdulmajid F. Al-Junaid. A shared
matrix unit for a chip multi-core processor. *Journal of Parallel
science/article/pii/S0743731513000488.

[Sanchez-Artigas:2010:EPP]
Marc Sánchez-Artigas and Pedro García López. Echo: a peer-
to-peer clustering framework for improving communication in
DHTs. *Journal of Parallel and Distributed Computing*, 70(2):
126–143, February 2010. CODEN JPDCER. ISSN 0743-7315
(print), 1096-0848 (electronic).

[Sandhu:1995:ADS]
Harjinder S. Sandhu. Algorithms for dynamic software
cache coherence. *Journal of Parallel and Distributed Com-

[Sanders:1998:RPQ]
Peter Sanders. Randomized priority queues for fast par-
allel access. *Journal of Parallel and Distributed Com-

[Santos:1999:ONO]
Eunice E. Santos. Optimal and near-optimal algorithms
for k-item broadcast. *Journal of Parallel and Distributed Com-
REFERENCES

Sarbazi-Azad:2005:DPNa

Sarbazi-Azad:2005:DPNb

Su:1984:DPM

Skillicorn:1993:CP

Sohn:1997:SID

REFERENCES

Saule:2012:LBS

Saule:2012:OSI

Suhler:1990:TTL

Scherson:1991:COE

Strevell:1991:DTT

REFERENCES

Shao:2006:HSO

Su:1999:BIW

Sarkar:2010:POF

Schwandt:1987:IAB

Schaeffer:1989:DGT

Schroder:1989:TDI

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

C. Scheurich and M. Dubois. Lockup-free caches in high-
performance multiprocessors. *Journal of Parallel and Dis-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Jonas Skeppstedt and Michel Dubois. Compiler controlled
prefetching for multiprocessors using low-overhead traps and
prefetch engines. *Journal of Parallel and Distributed Com-
puting*, 60(5):585–615, May 2000. CODEN JPDCER. ISSN

George Stantchev, William Dorland, and Nail Gumerov. Fast
parallel particle-to-grid interpolation for plasma PIC simula-
tions on the GPU. *Journal of Parallel and Distributed Com-
ISSN 0743-7315 (print), 1096-0848 (electronic).

approach to accelerate calibration process of a k-nearest
neighbours classifier using GPU. *Journal of Parallel and Dis-
tributed Computing*, 104(??):114–129, June 2017. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731517300096.

A. Schoneveld, J. F. de Ronde, and P. M. A. Sloot. Task
allocation by parallel evolutionary computing. *Journal of
Parallel and Distributed Computing*, 47(1):91–97, November
25, 1997. CODEN JPDCER. ISSN 0743-7315 (print),
Skeppstedt:1999:ECC

Shriraman:2010:ITD

Santos:2018:DSA

Salceda:2004:MAD

Soliman:2015:SSM
REFERENCES

Stotts:1990:BPP

Shmueli:2005:BLO

Sun:2017:SIS

Smith:2006:CST

Smith:2004:PAR

Seelam:2013:ESC

Seetharami Seelam, Liana Fong, Asser Tantawi, John Lewars, John Divirgilio, and Kevin Gildea. Extreme scale com-

REFERENCES

REFERENCES

REFERENCES

Silverman:1990:PPA

Sinclair:1987:ECO

Singhal:1993:TDM

Singh:1995:FPN

Sridhar:1992:RSP

Shin:2014:GSE

Seon-Ho Shin, Eun-Jin Im, and MyungKeun Yoon. A grand spread estimator using a graphics processing unit. *Journal of Parallel and Distributed Computing*, 74(2):2039–2047, February 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
Schwiebert:1995:OFA

Schwiebert:1996:NSC

Salehi:2012:QPA

Surati:2019:BTP

Sun:2011:PPC

Yan Sun, Qiangfeng Jiang, and Mukesh Singhal. A Pre-Processed Cross Link Detection Protocol for geographic rout-

REFERENCES

REFERENCES

Shin:2006:ADT

Song:2018:SDS

Spacey:2012:ICL

Spacey:2013:PPD

Shen:2018:ESI
REFERENCES

REFERENCES

R. H. Saavedra, Weihua H. Mao, and Kai Hwang. Performance and optimization of data prefetching strategies in

REFERENCES

Sarma:2015:ERW

Shukla:2017:EDB

Sanchez-Moneder:2011:BFB

Sang:1996:MPB

Svendsen:2015:MMC

Michael Svendsen, Arko Provo Mukherjee, and Srikanta Tirthapura. Mining maximal cliques from a large graph us-

Sun:1993:SPM

Shah:2012:ERT

Snir:2003:BPI

REFERENCES

Sridhar:1988:UMF

Sridhar:1990:MFA

Storer:1991:PAH

Shi:1994:FAI

Sridhar:1995:CLS

Shankar:1997:RDAa

Ravi V. Shankar and Sanjay Ranka. Random data accesses on a coarse-grained parallel machine. I. one-to-

REFERENCES

Siu:1995:TMP

Sundfeld:2018:PSD

Saad:1989:DCH

Shi:1992:PSR

Som:1993:NPP

REFERENCES

Arunabha Sen, Abhutt Sengupta, and Subir Bandyopadhyay. Generalized supercube: an incrementally expandable interconnection network. *Journal of Parallel and Distributed Comput-
REFERENCES

Vicent Selfa, Julio Sahuquillo, María E. Gómez, and Crispín Gómez. Efficient selective multicore prefetching under lim-
Sundriyal:2013:ESS

Shih:2000:EIG

Stoica:1996:HMC

Sariyuce:2015:RGC

REFERENCES

REFERENCES

Salehi:2016:SBR

Shestak:2008:SRM

Shan:2002:CTP

Sivasubramaniam:1994:SBS

Santoro:1988:ECD

Shacham:2007:SMC

Schmidt:2009:SPA

Stillwell:2010:RAA

Shu:2014:SSS

Sohn:1997:DWD

Si:2010:OCA

Smith:1985:FIP

Schwiegelshohn:1987:SAC

Schwiegelshohn:1989:LSA

Salinger:2002:BAO

Sinnen:2011:CAS

Shi:2012:TSN

Si:2018:PGF

Shimada:1992:RTP

Stout:1987:SDC

Stout:1990:SIA

REFERENCES

REFERENCES

[Sagonas:2018:CAA]

[Swarztrauber:1998:TAM]

[Stolfo:1991:PPR]

[Shoukourian:2017:AEC]

Shih-Hsien Sheu and Chang-Biau Yang. Multicast algorithms for hypercube multiprocessors. *Journal of Parallel and Dist-
REFERENCES

Shieh:2004:PNU

Swami:1992:AHS

Scheuermann:1994:CBI

Sendag:2007:IWP

Shavit:2000:CFD

Xing Su, Minjie Zhang, and Quan Bai. Coordination for dynamic weighted task allocation in disaster environments with time, space and communication constraints. *Journal

Szymanski:1995:HOI

Tamada:2018:MEP

Tanimoto:1984:HCL

Theys:2001:WTT

Tatrai:2011:PIB

References

REFERENCES

Tsouloupas:2007:GTI

Tuzov:2018:TSF

Tang:2013:JSA

Thaeler:2005:IIL

Touzene:2005:EDS

REFERENCES

Termehchi:2003:POT

Tarafdar:2004:PCS

Titos-Gil:2016:ASE

Huang:1990:FPM

Tutsch:2002:GSE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[TLL+18] Chao Tong, Jun Li, Chao Lang, Fanxin Kong, Jianwei Niu, and Joel J. P. C. Rodrigues. An efficient deep model

REFERENCES

REFERENCES

Tao:2018:AAC

TorrasI.Genis:1989:RNL

Turkyilmaz:2014:RBF

Thebault:2018:AMC

Tu:2019:HPC

Tong:2018:FCM

Tiwary:2018:RTO

Tagamets:1989:DFI

Thirumalai:1996:ECA

Traff:2008:OBF

REFERENCES

REFERENCES

REFERENCES

Trejo-Sánchez:2014:DAM

Taylor:2001:BLV

Tsur:2007:ISR

Trdlicka:1998:EAC

REFERENCES

REFERENCES

Teng:1987:PAM

Tel:1989:HPM

Thanakulwarapas:2015:OBS

Tu:2012:FBD

Tong:2014:PSD

Tang:1990:SCA

REFERENCES

Tsay:1990:SF

Tzeng:1995:SID

Tong:2017:HAM

Torun:2016:FGC

Tian:2009:TCR

Tehranian:2006:RFR

Taheri:2011:FOL

Ucar:2006:TAH

Ucar:2007:PIR

Usui:2010:ALC

Uresin:1996:EAC

Turley:2017:BSN

Turley:2015:BSN

Turley:2013:BSS

Uddin:2019:WSB

Ulmer:2011:MPA

Ullman:1984:FSS

Unlu:2017:BPA

Umeo:1985:CSM

Rahman:2018:MAC

Ujaldon:1996:PTS

REFERENCES

Venkatraman:2003:SER

Verma:2007:GSP

Vazquez:2019:PEF

VandeGeijn:1994:GCO

vanderStok:1996:AOR

REFERENCES

REFERENCES

Venugopal:2008:SBH

Valdez-Balderas:2013:TAS

Vinas:2013:EHP

Vin:1990:EDD

Vadhiyar:2004:GGB
Sathish S. Vadhiyar and Jack J. Dongarra. GrADSolve — a grid-based RPC system for parallel computing with

REFERENCES

REFERENCES

REFERENCES

[VRGS17] Joan J. Valls, Alberto Ros, María E. Gómez, and Julio Sahuquillo. The Tag Filter Architecture: an energy-efficient

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Wang:2018:ESS] Libing Wu, Biwen Chen, Kim-Kwang Raymond Choo, and Debiao He. Efficient and secure searchable encryption pro-

[CODEN JPDCER]

Walshaw:1997:PDG

[WCE97]

Wehe:2010:SPG

[WCEA10]

Wang:1994:SPC

[WCF94]

Wang:2014:AIS

REFERENCES

Wang:2017:PMC

Wang:2006:PLS

Wang:2013:CLO

Williams:2009:OLB

Wang:2003:DAF
REFERENCES

2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Wan:2017:OCD

Wen:2011:UDS

Wu:2008:UAZ

Wong:1992:TBP

Weemueuw:1994:FGP

Wolski:1993:PPN

Wong:1996:CDC

Wu:1998:EBT

Wang:2016:VDP

Wang:2012:IST

REFERENCES

[WGS08] Yongwei Wang, Venkata C. Giruka, and Mukesh Singhal. Truthful multipath routing for ad hoc networks with selfish

Wu:1997:EPS

Wu:2008:IWM

Wlotzka:2017:EEM

Wen:2018:EED

Jeeraporn Werapun, Sarun Intakosum, and Veera Boonjing. An efficient parallel construction of optimal independent span-
REFERENCES

Wada:1997:HFT

Wilkinson:1990:CRC

Wilkinson:1992:OCI

Wing:1985:CAS

Wassi:2018:FBS

REFERENCES

Wei:2012:FAC

Wu:2014:OFC

Weil:1991:DIS

Wang:2007:ESP

Wah:1990:OPE
Wilson:1992:HSM

Wang:2004:COS

Wu:2005:WRT

Wu:2010:AHS

Wang:2011:IDI

Wang:2015:CSP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Wu:2018:DDA

Wang:1992:PSN

Wang:2018:HDA

Wang:2012:PPL

Weissman:2001:ORF
REFERENCES

[WN94] Nam-Sung S. Woo and B. Naylor. Optimal routing algorithms for a class of cylindrical Banyan multicomputers. *Jour-

REFERENCES

[Warnakulasuriya:2002:CDI]

[Wei:2013:SSC]
REFERENCES

[Wri91] William E. Wright. Parallel algorithms for generating the raster representation of straight lines and circles. *Journal of

Wu:2006:GHS

Watson:1994:BBM

Wei:1991:DSG

Wang:2003:CAM

Wu:2011:OSP

REFERENCES

REFERENCES

Miae Woo, Reha Uzsoy, and Arif Ghafoor. Media streams scheduling for synchronization in distributed multimedia.

REFERENCES

Wang:2005:AER

Wang:2018:TXN

Wu:2013:EHP

Wang:2015:KBB

Wein:1991:MPS

[XG03] Qi Xue and Aura Ganz. Ad hoc QoS on-demand routing (AQOR) in mobile ad hoc networks. *Journal of Parallel and
REFERENCES

Xiao:2011:PMU

Xiang:2018:AVD

Xiao:2006:MAO

Xuan:2018:EOA

Xu:2013:DSS

REFERENCES

[XYDL06] Zhonghang Xia, I-Ling Yen, Donglei Du, and Peng Li. An integrated admission control scheme for the delivery of streaming
REFERENCES

Yoo:2010:ISL

Yuan:2015:PCE

Yang:1993:PCM

Yang:2000:PMB

Yang:2004:FPO
Xiaofan Yang. A fast pessimistic one-step diagnosis algorithm for hypercube multicomputer systems. *Journal of Parallel and
REFERENCES

[YB01] Yanhong Yuan and Prith Banerjee. A parallel implementation of a fast multipole-based 3-D capacitance extraction program on distributed memory multicomputers. Journal of Parallel and Distributed Computing, 61(12):1751–1774, December 1, 2001. CODEN JPDCER. ISSN 0743-
REFERENCES

Yuan:2013:CAT

Yener:1997:FTC

Yan:2013:PPP

Yen:2004:MRS
REFERENCES

Yoon:2012:IDP

Yin:2005:GTD

Yang:2010:DEP

Chang:1998:PIA

Yoo:2000:TRT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yu:2016:ASR

Yan:2013:CPE

Yu:2012:HHC

Yu:2011:HDl
Yu:2008:ICL

Yin:2011:EAC

Yang:2005:RRM

Yang:2007:HCL

Yang:1994:RRM

Yew:1991:SIS

Pen-Chung Yew and Benjamin W. Wah. Special issue on shared-memory multiprocessors. *Journal of Parallel and Dist-
Ye:2013:PBI

Yang:2008:SOC

Yun:2015:IAW

Yang:2018:MDM

Yang:2000:PCO

Yin:2018:ADE

Yu:2009:EPB

Yang:1996:EPP

Ye:2015:DDD

Yu:2015:QMP

Yuan:2011:SAM

Yan:1996:FTC

Zwietering:1991:PBM

Zhang:2005:DPB

Zhai:2017:EEI

Xiaojun Zhai, Amine Ait Si Ali, Abbes Amira, and Faycal Bensaali. ECG encryption and identification based security

Zhou:1997:PRO

Zhou:2003:EMC

Zhang:2009:SIV

Zhang:2005:AUM

Zhang:2011:TNT

Zhu:2017:DPC

Zou:2004:UAC

Zoni:2017:BEF

Zeigler:2002:QBF

Zhang:2012:EIS

Zhang:2018:ABF

Zheng:2019:TFM

Zhou:2006:NFI

Zeppenfeld:1991:PSB

Zhu:1989:NPS

Zimmermann:1990:TAS

Zimmermann:1996:RAR

Zhu:2006:CCE

Zhang:1994:PHO

Zhang:2018:MSP

REFERENCES

REFERENCES

Zhao:2014:TEF

Zhu:2014:OVS

Zaki:1997:CDL

Zheng:2001:GCP
REFERENCES

REFERENCES

Ziavras:1994:AMS

Znati:1994:UFD

Zhang:2006:ILM

Zhang:2011:DID

Zeng:2016:RND
REFERENCES

Zane:2000:SNA

Zhang:2017:DIS

Zambonelli:2001:DFI

Zhang:1993:MGT

Zeng Zeng and Bharadwaj Veeravalli. Distributed scheduling strategy for divisible loads on arbitrarily configured dis-

Zeng:2015:SSA

Zheng:2000:DCG

Zhang:2011:BRE

Zhao:2013:BRH

Zhuo:2003:DRD

Zhao:2016:THP

Zhu:2007:OPD

Zhang:2009:OPR

Zheng:2017:MDS

Zhou:2016:TNM

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Zeigler:1990:MHD

Zhu:1992:LNN

Zhan:2018:EOS