A Bibliography of Publications in Journal of Parallel and Distributed Computing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

22 February 2018
Version 1.93

Title word cross-reference

(a, b) [DJM94]. (f, g) [CDD+15]. (k, 2) [EMMM94]. (κ − κ) [KT91]. 0
[EE05, PMV05, PM96, SM89b]. 1
[EE05, HV09, JM14, PMV05, PM96, SM89b]. 2 [Ano93c, BDKM94, BAES92,
CS92, CS93b, HSSM07, HHC98, KRKS11, KLC05, LXL312, LME95, MD01,
SS94b, TFSZ14, Tur91, WC91, WS95, Wu02, YA11]. 2.5 [MPG17b].
2logN − 1 [CC14]. 2 × 2 [PD92]. 3 [AA14, AA16, BDRB14, BAL05, BC94,
CW00, CCCM96, GOW+13, GW99, Joli89, NM17, OGRV+12, PYP+10,
PEC95, WC91, Wan07, WS95, WA11, WB01, ZLS17, Zsa16]. 4
[KMC16, MD01]. 45 [HRF+11]. 4 × 4 [Jia99]. 5 [CCCM96]. *1 [HCZ04]. *2
[HCZ04]. +1 [OC07]. +2 [HCZ]. +2 [ASST05]. 3 [ASST05]. B + [YL89]. C3
[HK96]. C3I [PAJC97]. d1 [DFN+94, DTK11b, LSC00, VB94]. oW [MRRT07].
G [BFKW13, BNP98]. GF(2m) [SKH15]. h [GS98, KLP10]. hp [PPTV+10].
K [ACU08, BE95, DWG03, DBCF13, HHC98, SHL95, WL11, Amm16,
BB02, CDDL10, DW06, DH91a, GP00, KK98a, PD05, PK04a, PRHB06,
PK07, RP98, RDA18, SSKS11, San99, SAOKM03, SGR03, SLP+98, SZ00b,
SDG17, TT98, WCH+17, WS97b, YTH07, YD98, ZHT16. \( k(n-k) \) [Lin03]. \( \kappa \) [XL95]. \( L \) [ZBW+17]. \( LTQ_n \) [XHZZ16]. \( LU \) [FHL+15]. \( M \) [YLB90, ABBD14, WTB+08]. \( N \) [AY89, IHM05, NTA96, SHT+95, AKPT99, BVB02, GL90, NS94, PK04a, RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. \( \nabla^2 G \) [CL85]. \( nn \) [PK07]. \( n \times n \) [COS+95, NS94]. \( O(1) \) [Can18, GP94, Wan07]. \( O(\log N) \) [BNP92]. \( O(\log_2(\min(m,n))) \) [XL11]. \( O(\log N) \) [JBL02]. \( O(\log N) \) [CC14]. \( O(\log \log N) \) [DP98]. \( O(\log N) \) [GS99]. \( O(n) \) [DLV11]. \( \Omega \) [MRRT07]. \( P \) [BM97, PMV05, YBX+13]. \( P^3 E \) [HSJP87]. \( P_4 \) [ANP07]. \( \phi \) [AK07]. \( \pm 2^b \) [Nas94]. \( \Omega \) [MRRT07].

- [MD01]. - alliances [CDD+15]. - ary [BVB02, DP00, Lat98, PK04a, RP98, SAOKM03, TT98, WS97b, XL95, YTH07, YD98, SHL95]. - Bandwidth [BM97]. - banyan [YL89]. - based [AK07]. - Best [BE95]. - Body [SHT+95, IHM05]. - Chain [BNP98]. - clustering [CDDL10]. - connected [DW06]. - coverage [Amm16]. - Cube [RP98, PK04a]. - Cubes [XL95, BVB02, SAOKM03, WS97b, YTH07, YD98]. - D [Ano93e, BAES92, CS93b, SS94b, CW00, GW99, LXLS12, PEC95, Wu02, YB01]. - delta [YL89].


/compute [KAS07]. /many [KSG13].

0/1 [LSS88].

1 [HV95, MF94]. 1-Writer [HV95]. 10 [LB12]. 10-Gigabit [HeF05]. 16S [ZWF06]. 1D [PA04].

3 [BFG94, KMC16, MKY*97]. 3-D [BFG94, MKY*97]. 3D [AB03a, CGW+03, GS03a, MJ03, NPI+96].

4 [BAM93]. 42 [Ano97c]. 46 [Ano97g].

5 [LAD+96, PTC+93]. 53 [Ano00d].

60 [Ano00b, Ano00c]. 66 [Ano93e, CS93b].

71 [LSS*11a].

80 [Ano97k]. 802.11 [BCD00, ZBR11]. 802.11e [FA07]. 802.11n [GZY14a]. 802.11s [VHH08].

90 [HLJ98]. 90D [BCF+94]. 90D/HPF [BCF+94].

A* [DM94]. a-cyclic [BD05]. A-GHSOM [IZ12]. A-Star [SRT+18]. A [Ano92a]. AA1 [GCM95]. AAIA [TFV+15]. Abduction [eW95]. Abduction-Based [eW95]. Abductive [eW95]. Absolute [Wor93]. Abstract [CGSV93, RJKL11]. Abstraction [GDN*98, IRRS16, LSZJ15, HCR12]. Abstractions [KB01]. accelerate [SDG17]. Accelerated [AB13, E˙I07, DGNW13, DCA+15, Emel13, GOH+13, KDO+13, LMSK18, SHA17, WLL16, Zsa16]. Accelerating [DFST13, GAOHG17, RCG18, SKH15, SHT+08, WD13,YL12,YZG18, ZXB14, AM12a, VBDRC13]. acceleration [LLY15, UGG+11]. accelerator [CNLRL18, ICQO+12, CP13]. Accelerators [DF12, MLK12, RBN11]. Access [ALLM11, ADS98, Bal90, BP02, Bit92, BR95c, CW93, CH92, DP00, FY96, HP00, OS93, San98, WMG01, ZRC99, AM13, BGLA03, BR91b, BC11, Che90, DFP06a, ETS14, FA07, FC90, FLC14, HC91, KKK11a, KGN11, Lan09, LZ11, LWZZ12, LC11, MLZY17, MYYY17, MM07c, NKK16, Pad91, SM99a, SR88a, SR90, WTS03, WBR13]. access-aware [MYYY17]. Accesses [MRRV98, SR97a, SR97b, JS05]. Accident [CCW14]. accrual [CRJ10b]. accumulations [SAF05]. Accuracy [EH01a, PKK91, CRWX12]. Accurate [DD95, KK88, BFKW13, CGL*14, GJ12, HDT*05, HZDP12]. Accurately [LC13]. ACE [PL98]. achieve [LCB16]. Achieving [EH01a, KEA95, NPY+97, XLC+18]. Acknowledgment [Gra10a, KL08a]. Acoustic [LPLFMC+12]. across [SGdSS13]. Action [Sie16]. Actions [WR95]. Activated [NPP+02]. Active [SKH96, DB86, HOE+09, KV10, PMV05, PMV06, SPSG17, SL13, YT05]. active/active [HOE+09]. Activity [AS00, CW93, HES11]. Activity-Based [AS00]. actor [ASM09, YpGyLC13]. actors [GE85]. ActorSpace [CA94]. actuator [KKP12, SCN12]. Acyclic [GY92, AFM09, BP89, Zim90]. Ad [Ano01e, GS01b, LC14b, RBP+11, TM10, XG03, AP03, AH11, AH12, ALF03, BFG*03, BM11, BGLA03, BOP06, BDF01, BN03, Botu03, CNS03, CW05].
CYZ06, CDCD05, DW06, DMB\textsuperscript{+}03, DB08, EBE08, FCW11, FVCL05, FGL\textsuperscript{+}11, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LAZC00, LR03a, LPX05a, LW06a, LH14, LR03b, LHT08, NMN\textsuperscript{+}14, OSL05, OM10, OMSGNSG05, Pat01, SNC12, SSN\textsuperscript{+}06, SGS08, SKMM04, SJS11, TC13, VA03, WTB\textsuperscript{+}08, WGS08, WBTM09, WHS\textsuperscript{+}18, XHG03, XWC\textsuperscript{+}08, YC04, YSS11, YWW12, ZMC06].

\textbf{ad-hoc} [BOP06, CYZ06, KSK15, LHW14, NMN\textsuperscript{+}14]. \textbf{Ada} [Lun90].

\textbf{Adaptable} [Zim96, LLLC15, LFGM17]. \textbf{adaptation} [BK08, GBMZ07, KGN11, LS06, NZY\textsuperscript{+}11, WWY\textsuperscript{+}18]. \textbf{Adapting} [DKRI09, Wei02, SW18, WRW13]. \textbf{Adaptive} [ASH\textsuperscript{+}01, AA03, AA16, AMN00, ACPT15, AYIE98, ACFK07, BL90, BPR99, BL90, Bou02, CS00, CGM14, CLT96, DY99, DHB02, DMB97, DM99, FLS\textsuperscript{+}97, ISM07, JK00, KR97, KKGS01, KG10, KLLK98, KB01, Lan94, LLL06, LMK14, LME95, LEB98, ME04, MV88, MD92, MTS90, OB98, OR97, PW96, PRS97, PIB\textsuperscript{+}01, RDS02, SS06, SKK97, SJ95, SB02, SS0B02, SLG06, STH\textsuperscript{+}15, TC04, Ten90, UBES10, VMMB10, WCE97, WA02, WL10, YYY97, ZHLQ12, ZM94a, AGS04, AF17, BM17a, BCFF05, BMT12, BBS13, BEN12, CL03a, CMMN10, CP04b, CDCD05, CAF\textsuperscript{+}11, DMB\textsuperscript{+}03, DLW\textsuperscript{+}12, DAB\textsuperscript{+}14, ESA03, GBA08, GA16, HNSA07, HHK15, IZ12, KK17, KKF\textsuperscript{+}05, KKS08, LST17, LY91, LHX\textsuperscript{+}16, LA04, MC05\textsuperscript{+}06, MSA04, MPG17a, MPN17, NKK16, OPG08, OS04, PPTV\textsuperscript{+}10, SMO14, SB12, SHLN09].

\textbf{adaptive} [SMB10, SHC14, TLY12, TKHG04, TTO7, WW04, ZXY011, ZWRJ07]. \textbf{adaptively} [Mit07]. \textbf{Adaptivity} [OH02]. \textbf{ADDAP} [DHR96]. \textbf{Addendum} [Ano92a]. \textbf{Adders} [NI86]. \textbf{Adding} [OB88]. \textbf{Additional} [LP97, CKN07]. \textbf{Address} [KY96, SL97, TR96, YQT12, WZ13, YGZ\textsuperscript{+}10, YC12]. \textbf{Addressable} [Win85, KRM14]. \textbf{Addresses} [CGL\textsuperscript{+}95]. \textbf{Addressing} [ZLPP01, Ho91, TY90a]. \textbf{adjacent} [CFJW13]. \textbf{adjusted} [TDBL13]. \textbf{adjusting} [MC91]. \textbf{ADM} [Pad93]. \textbf{administration} [LB17]. \textbf{Admission} [MB01, AAA\textsuperscript{+}10, MCZ14, RK06, XYL10, YJKD10]. \textbf{ADMs} [FSZ07].

\textbf{Ads} [BA01a]. \textbf{advance} [CRH11]. \textbf{Advanced} [BW95a, HD91, PGS01, SD8a, TSO03, SHT\textsuperscript{+}08]. \textbf{Advancement} [Lan09, LZ11, LVR90]. \textbf{Advances} [GA16]. \textbf{advantage} [CL03b]. \textbf{advantages} [CCLS94]. \textbf{Adversarial} [GBMZ07]. \textbf{adversary} [dOCS14]. \textbf{advertisement} [WGC09]. \textbf{advertisement-based} [WGC09].

\textbf{advice} [DP12]. \textbf{AES} [ABO\textsuperscript{+}17]. \textbf{Affecting} [DVW94]. \textbf{Affine} [DR95, DRR96, Dja06, DQR\textsuperscript{+}09]. \textbf{Affine-by-Statement} [DR95]. \textbf{Affinity} [TTG95, HD10]. \textbf{after} [DRR96]. \textbf{against} [SACC\textsuperscript{+}06, XCH08]. \textbf{Agate} [CZPP16]. \textbf{Agent} [Ser97, FCC07, GZMC08, Rao16, SS06, YZS15].

\textbf{agent-based} [FCC07, Rao16, SS06]. \textbf{agents} [AK06, CSWD03, FP17, KERUM04, MS05, SGAC14]. \textbf{aggregate} [AMT13, Yan09]. \textbf{aggregated} [WE13]. \textbf{aggregates} [Chi95, Chi95].

\textbf{aggregation} [BCO\textsuperscript{+}12, CDR09a, CDR09b, JBA15, JBS14, JHPL13, SSKS11,
XHZ$^+$10, ZSCX18, Zsa16]. Aging [BM17a, LC14a]. Aging-aware [BM17a].
agreement [AP16, GCS06, HC11, LLW12, REK10a, REK10b].
Amen [PL93, mH14, SHL$^+$13, TG04]. AHMW [BMT12]. AI [ULi84]. Aid
[DBKF90]. aided [SV18, ZMC06]. air [FL86, YBM13]. Airshed [SS00].

Algebra [CDH84, DVW94, KL01a, WM92, Eme13, FHL$^+$15, ICQO$^+$12,
Joh87, LKD14, RG87]. Algebraic [PL06, Pat01, BAH04, BM08, CM03].
Algorithm [AAP01, AE95, AM97b, AMS94, Als01, AS95, Ano93e, Ano96l,
AS96, ABC$^+$09a, ABZ95, Bal94, BCC95, BGR96, BS97, BPST96, BOSW94,
BE95, BDDLO9, Bou02, BX93, BHR95, CLZ02, CGKK97, CMM01, CB99,
CSW08, CS93b, CP92, CTZ99, CF98, CRFS94, DA97, DM90a, DMB97,
DS01, DS84, DH94, DSAUM99, DLP99, DT97, FY96, FT94, GGN93, Ger98,
GR93, GP00, GS99, Haw97, HH01, HBJ98, HO94, HM99, Hwa97, IZ95,
JP95, Jia99, JK00, KRJS02, Kar02, KSA95, KKB08, KF95b, KS97b,
KW02, KA97, KC99b, LP09a, LO94, LHVW95, LP97, LW99, MV94,
MV94, NA1996, NM02, Par98, PE93, Par96, PL94, PB95, PM96,
PR997, PM92, RR95a, Ren11, RP95, SAORMA02, SZ00b, SCC92, SR94,
Shu95, SM00, TU92, TZ00, WSRM97]. Algorithm

[WD94, WA02, WLID02, XWC$^+$08, YZY96, mYyF92, ZB97, AOS$^+$05, AT03,
AA10, ALM$^+$16, AA14, AA16, ALLM11, AK07, ATH91, AGMS04, Ara90,
ADD818, ARDQ18, BFG$^+$03, Bad04, BC05, BCF05, BSG90, BCH15,
BFKW13, BH05, BLO4, CRI91, CDDL10, CC14, CM3, CR0, CK13,
CLO17, CS92, Che89, Cho90, C290, CRC$^+$02, COF$^+$17, CSW$^+$17, DFHH13,
DK08, DK11, DDNS06, DLV11, DB08, DM90b, DB86, Eb04, EE05, ED05,
FZWL12, Fei03, FSZ07, GLW14, GPX08, GGR89, GT04, Gue86, GL12,
GB06, GAOG17, HJ90a, HES10, HES11, HSY10, HRJ94, HLM$^+$90,
HVW16, HL07, H11WY$^+$10, Kal04, KR10b, KHW13, KK06, KM17, KM03,
KA91, Koc91, KH15, LVP08, LSS88, LASS15, LMZ04, LO91, LTL12, LU14,
LQ16b, LB9, LP88, MD07, MM07a, Mar88, McD98, MMS09, MM07c, MP08].

algorithm [MMS09, NHO$^+$13, OS04, OT86, PDP17, PK05a, PB15, PHS04,
PB09, QJ05, RH05, RGD03, RT18, RBG17, RDA18, RSK87, SSTP09,
SCJ$^+$08, SMP17, SA08, SKK91, SM08b, SWW$^+$17, TLQS12, Tât11, Ter16,
TKHG04, TYA16, TFZ14, WLL16, WSH$^+$03, WJL07, Wan07, WG08,
WGC09, WCL$^+$13, WWW17a, WJ12, XHY07, XL11, XQ07, XYZ14,
XS17, YJ18, Yan04, YME06, YW$^+$18, YO11, YSS11, YLZL09, ZZ90, ZFWF06,
ZQM11, DOBG$^+$15, CMR10, KM17, LY12].

Algorithm-Based [GRR93, mYyF92, BDDLO9, LP88]. Algorithm-system
[CSW08].

algorithm/implementation [HWW16]. Algorithmic

[Gao89, SCB08, BBH$^+$17, CG11, JF12, LS05]. Algorithms

[ANT02, AaJS01, AKP95, ABM$^+$92, BJ96, BJ99, Bah00, BPJ92, BLP95,
BGJL02, BAES92, BAGS95, BBM$^+$02, Ben15, BSDE96, BOP06, BPR99,
BSS99, BMRC98, BMRC99, Bro96, BA01b, CTD99, CDY97, Cha94,
CGO$^+$96, CDH84, COS$^+$95, CN93, CP91, CHR94, CWP98, CA95b, DS95b,
DP98, DHB02, DP09, DM92, DMSH90, DFRCU99, DBKF90, DKMV01,
EP90, ESMG96, EMM94, EL97, FTM$^+$14, Fer95, FR96b, FA95, FV97,
 Algorithms
[QOvdG01, RS96a, Ra90, RS96, Ram92, RDS02, RSW90, SH90, SS96, San95, San99, San02, SZ92, SY01, Sto90, SY92, Ten90, TS97, TC96, TV95, UD96, VB94, VR95, WNA94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YMR93, dBL95, AL04, AN91, ASC+18, Ara13, ACCP12, AAC10, AF17, ARV14, ACFK07, BC06, BKC04, BZ16, BS17, BGM08, BM08, BM09, CM04, CP10a, CF88, CRH11, CNS03, Che86, Che05, CRSB13, CRA+08, CRD17, CB06, Cuz11, Cuz13, DS04a, DH91, DJ16, Dja04, Dja06, DCA+15, DKU15, DJT03, DM94, FHL+15, Fen90, FBRW03, FGG08, FJSW90, FM85, FVCL05, GMMP12, GP07, GZY14a, GM14a, Go90, GK10, GH91, GWH06, GS03a, GC07, GN15, Han89, HSSM07, HSW01]. algorithms
[ICQO+12, IC05, JMS86, JST12, JBM91, KR10a, KHT+14, KJ03, KS08, KA00, KSSG14, KK10, KMS10, KKB+06, KS91, KMP+06, KR11, LW90, LL06, LW06a, LNW+12, LS88, Lin91, LS91, LS03, LLW07, LA04, LV07, LG08, LV88, LS+16, MM04, MPZ09, MCAS12, Meg91, MCT06, MRS+14, MM07b, MS88, MKM16, MGV03, MVV91, MS10a, MS10b, MAR87, NT12, N04, OA10, PKN10, PD05, PY09c, PL03a, PH16, PSS15, PA04, PS14, PRG88, PS88, RTCC91, SSM89, SS06, SM89b, ST87, SPH13, SA05, SZW05, SG08, SD88b, SSVC10, Sto87, TY09a, TW87, TK08, TWQS12, TUR12, VS16, WC91, WCWH03, Wri91, YZG18, ZV09b, dVCP06]. Align
[BR95c]. align [LVB07]. Alignment
[BR01, CGO+96, DMR99, MJ01, SS94a, BBM08, BFKW13, BR91b, BMARW07, LC91a, PTZ06, SO99, SPRG+12, SRT+18]. alignments
[BW09, ST05]. All-Output-Port [ST02, ST06]. all-pairs [KS91, DCA+15]. All-Port [RJM95, Dim04]. all-reduce [PY09c]. All-to-All
[HP95, LHS97, LWP02, Ede91, LR03b, PW16, ZTFK16]. Alleviating
[Tze91]. alliances [CDD+15]. Allocating
[BPR04, H97, SEP96, SCS+08]. Allocation
[AM97b, AERBL92, CS00, yCM98, DSST95, DY99, DL99, DL01, Hwa97, KKS01, KLS90, Moh96, NSS97, OM84, PT01, SM94, SdS97, SP96, YL98, Zha92, ALH+09, AKSM08, AAA+10, ADD17, ATZ07, ACCP12, AH06, BM+08, BG86, Bat05, BSMH08, BSS+13, BPW05, CDS10, DW12, DM90c, ERS90, GNT04, GRDB05, HWY+10, HB11, JL11, KR10a, KR10b, KHW13, LHF91, LC91b, Li05, LL10, LL12a, LL12b, LDP+14, MCC04, MLK+16, NVK+11, PKN10, PM05, PBS08, RLH03, SSM+16, SNP12, SCMS12, SHL+13, SSM+06, SSVC10, SZB16, SSM+07, TFMS15, ZG13, ZI08]. Allocations [BE95, CT96, SSM08]. Almost [JBP00, SS95, EB13].
almost-optimal [EB13]. Alphabetic [L96a]. alternate [LS03].
Alternating [BC94, HWY+10]. Alternative [GW99, Pad93, Can18, CBV08, GB06, Ros85]. Alternatives [BAHP01, NBSD99]. alternator [LW06b]. ALU [KF90b]. Always [BRR01, AD10]. always-on [AD10]. ambiguity [LDS16]. Amdahl [CN14, NZ17, SC10]. Among [OO85, GM94b, KS03, MT93a, NMS93, ST12, ZWY+15]. AMR [GWH06, RV13]. AMTE [HCM11]. Analyses [KY96]. Analysis [Abr96, Ano92a, BCV94, BCF97, BN94, Blu87, BDF01, BLG01, Buc92, CK88, CC91, CSMMML10, CAB94, DLLX97, ES96, Fra92, GM94a, GSG+93, GCM95, GC01, HLM+90, HCG97, HF96, IM94, JV09, KME92, Kop97, LW89, LDS86, MF94, MT93b, MM93, MS99a, MRR+02, MT96, MHHB86, NBM93, NSM98, OD95b, OS93, PD92, Piu01, PAJC97, RPS93, RKS87, SM89a, SLP+98, SWP90, SWHB17, SNC93, ST08a, VSM96, WCF14, XL92, ABC+88, AFFK14, BCF05, BBH+17, BFG04, BFL+13, BC11, BM08, BF13, CK06, CSL15, CKT11, CH06b, CWL+07, CPO+03, FC90, FCS91, FD86, FX06, GZG+17, GBA08, GHC+17, HRC09, HSH10, HA91, HB11, IKS87, IC05, JF12, JT88, JBM91, KME89, KA08, KK10, KKK+11b, KG04, KLL87, LMSK18, LdSB+18, Li06a, Li06b, LZC11, LH05, LPP8, MM06]. analysis [McD89, MAKWZ13, MBO11, MEMEMH17, NSKN17, Pak89, PL06, PRHB06, P90, P90, PL03b, RM90, RUG08, TLY12, TMM06, WSH+03, WF89, Wu11, Yan09, YH07, ZFS07, ZPK+14, DFLO17]. Analytic [BS96b, BS96c, Har91]. Analytical [DG94, HW03, QY94, SAOKM03, AHZ11, AP91c, Bat05, BFH09, KyLPC17]. Analytics [As13, AS15, CJ17, KKKG14, PS14, PAG+18, YLB+15]. Analyzing [CDR09a, CMT92, HeF05, KG94, LMCF90, LB12, MSH90, MBH+08, RB12, WXZ05]. Anatomy [ZBF05]. Anchored [KS03]. anchors [MKM16]. AND-parallelism [DeG88]. AND/OR [RP95]. Android [TY17]. Analyze [MBL+92]. Animation [RGS00, JdSTC+15]. Anisotropic [PSE+01, Eil07]. ANMR [BM17a]. Annealing [Bev02, BA92, HB97, RS96, Soh96, XHH1, AH06, BG89]. Annotated [KBC+01]. Announcement [Ano93a, Ano96k, Ano01c, Ano01d, Ano01e, Ano01a, Ano01b, Ano02a, Ano02b, GHS96, KAK92, Ano00a]. annuli [Li14]. Anomalous [MSH90]. anomaly [DFP06b, IZ12, KKTZ13, RLF14]. anonymous [AFM90, FK+04, KS13, MSJ05, XLG+06]. ANSWER [OEY07]. Ant [COV13, CGN+13, CLA+18, DDGK13, RL02, CCK1, SkL16]. antenna [CCHC09]. Anticipative [WLID02]. Any [RCY97]. Apache [KKH17]. APHID [BS00]. API [HLS12]. Appear [Ano00e, Ano00f, Ano00g, Ano00h, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t, Ano02k, Ano02l, Ano02m, Ano02n, Ano02o, Ano02p]. applicability [Can18]. Application [AS97, AYIE98, BB03, BSS97, CCK00, CCC92, ES96, HMV07, Kop97, OGRV+12, PH00, PP92, Ser97, SM92b, SK93, WLST16, dKG+10, AHA+16, AAI+15, BM16, BCM06, BMT12, CP05, CD95,
CKMP17, DBC03, DKRI09, DWYB10, FGM+03, FCP+15, G91, HSS17, KME09, Kub17, LW16a, Li17, LS06, MLZY17, MCM+11, OSL05, PL06, PGs06, PS14, PVRs17, SL90, SFT04, SS94b, VD04, WJ14, YÖ11, dGP06].

**Application-aware** [HMV07]. **Application-based** [BB03].

**Application-level** [VD04]. **Application-sensitive** [CP05].

**Application-Specific** [PP92, SK93, SS94b]. **Applications** [ABDS02, Ano96i, AFT+00, BOSW94, BMRC98, CCR92, CA95a, CDF01, DRC90, DS84, EH01a, FR98, FKB98, GCB+00, GT02, HS94b, KR97, LLS93, MHC95, MB92, MBK+92, NSP96a, PGRP17, R92c, SSOB02, SFC17, TFV+15, UZZ99, V93, WMG01, W02, ALM+16, AKSM08, ARM+05, AC16, AGMJ06, BCLL04, BCD+15, BAS06, BHT14, BM+04b, CCC+04, CGL+14, CM14, CC08, CMSM10, CP05, CBM+08, CP10b, CCM+06, CDAN14, Dim91, EDO05, ESA03, FCML13, FPF14, FRM15, GQZ18, GLC14, GYAB11, GYBB13, GTN+06, GST09, GJA08, GR13, HC09, HSL04, HA91, HL07, KJD03, KAS07, KBC+10, Kri91, LWCC15, LF17, MMAL06, NLK12, NVK11, NC13, OTK12, Oza04, PCMM+17, PMAL11, PA15, PCLP16, PLL+03, PF04, RCG18, RJ11, SV08, SM+09, SSSZ13, TP18, TDM05, TÖ14].

**applications** [TKX+13, Ull84, VB08, VM03, YH07, ZVL11, ZSW14, DSS11, FT1+14]. **Applied** [CB96, BDDL09, EE05, HSL04, PR06]. **apply** [NZ17]. **Applying** [PEC95, CCK11]. **Approach** [AAL95, AM93, Bev02, BR02, BST01, CCM92, CY95, CLZ00, DM95, Fer92, FKT96, FKKC97, GG94, GZ97, HC97, HLJ98, KCRB99, KSB94, LS95, LW95, LCL98, MSSE02, R96, RAS96, SL95, SP96, SZ00a, TC92, WSRM97, WA02, Won99, WLID02, AP91c, Ara90, AFD+11, AH06, BM11, BAS06, BW09, BCK+13, CTS17, CvdBL+08, CHX+17, CZZ+17, DBC03, DKKV15, DQR+09, FZC+05, FGZ03, GZ08, GDL+11, GWWL94, GABA08, GYZ13, ICGO+12, JLM08, JH89, KYS13, KSJC17, KZ11, KMS+06, LXW+11, LH04, LC07, MHLZ16, MS05, MSM09, MGRK14, NTN12, NHO+13, Oct11, SW18, SU79, SCS+08, SDG18, SK11, TM06, TBZB05, TP18, TXLL14, TY17, TM10, VB08, WYY+18, WQZ+13, XRB12, XLH18, YF09, YAA10, YWG15, ZHH15, ZS13, ZF19, ZTGL17].

**Approaches** [CHGM01, FMIF18, QM01, CB11, KERUM04, KA05, PR06, UPA13, dGP06]. **Approximate** [JSS92, LW14, ST12, CLOL17, KERUM04, MM07]. **Approximating** [FMM+08, PBS08]. **Approximation** [FV97, GM14a, HP97b, JST12, Mat93, DUK15, FZWL12, LVP08, LW06a, MK08b, PSRS12]. **Approximations** [Gon98, BFM06]. **AQOR** [XG03]. **Araneola** [MK08a]. **arbitrarily** [ZV06]. **Arbitrary** [ERL90, KA97, SS95, YZZ96, Ara90, BCF14, SGE91, Wag89, FII04]. **arbitration** [ASD09, HRG+11, KS03]. **Arc** [CA95b, Ros89]. **architecting** [CCC+04]. **Architectural** [DZDZ01, GSP02, HPT+07, KC99a, MT96, MG93, TGP16, WSS93, FZC+05, JBY+05, NXTK17]. **Architecture** [AGW01, ABZ95, BBD+91, BAHP01, DH95, Gao93, Ger98, GBES93, GM95,
Assembling [KESA07]. assembly [ABCM07]. Asserting [ASST05]. Assessing [BCD+15]. assessment [CG17, FGL+11, LC14a, LY08]. Assign [CYZ06]. assigned [HMR15]. Assigning [CCK11]. Assignment [Cza13, HBCM99, HB97, KLZ97, SSZ10, SS93, Ste95, VWHL96, WW97, ABBD14, Bat05, BPRS04, CS10, GQZ18, GDL+11, GZY14a, JTZZ11, Kim11, LZLX11, NDF13, PLY15, QGL+09, SLKK13, UAKI06, WZ91, YXX11]. Assignments [LL98, Sin87]. Assisted [HhLY95, GM13, KO12, LVP07, MBBD13, NS12, RG06, SRT+18]. Associate [Ano16k]. Associations [GPJA10]. Associative [AA93, DM92, NSM98, Par96, PL98, TJCB10, VR94, HBCM11, Kri91, LL90, SR88a, SL98, YBM13]. assumption [Pen11]. assumptions [MS15]. Assurance [BK08, WLL08, XHY07]. Asymmetric [BNSS00, ZR00, KNHH18, SPC+17], asymmetry [AP91b]. Asymptotic [GM94a]. Asymptotically [Li10, Dja04]. Async [ARP18]. Asynchronism [UD96]. Asynchronous [Bah00, BSS99, BS00, CS95c, CA95b, ESMG96, KVN17, MS02, MM93, MR94a, MR94c, OY00, TP18, The02, W92, ATDH13, BB03, CPA+11, CRC+2, DFGK05, DBCF13, DB86, DPBNT12, FKK+04, GLGLBG12, IRRS16, Kak15, KMS10, KS13, MM04, MEMEMH17, RV13, RLH03]. Asynchronous/Synchronous [OY00]. asynchrony [WCYR08]. ATAPE [PW17]. ATExpert [KW93]. ATM [WR97]. atmosphere [KVN17]. Atomic [HV95, JBP90, WR95, van96, BB01, GNS09, HV09]. Atomicity [NA02, RHH12]. attack [BK18, JW06]. Attacking [ZWY+15]. attacks [CH06b, KMNO06, LLWC17, SCC+06, UGG+11, XHY07, XCH08, YXX13]. attribute [LSS+11a, LSS+11b]. attributed [LKB+15]. attributes [Par05]. auction [GVBB13, RA11, ZG13]. auction-based [ZG13]. auction-inspired [GVBB13]. audiences [LMB+17]. Audit [HLS12]. auditing [XLC+18]. augmentation [BCH15]. Augmented [MKY+97, KM17, Lo92]. Auralization [FJ93]. Aurora [Lu01]. Authentic [GPJA10, SZMK13]. Authentication [ZBR11, CL09, LMJC11, NC09]. Author [Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99d, Ano99e, Ano99f, Ano99g, Ano99h, Ano00b, Ano00c, Ano01f, Ano01g, Ano01i, Ano01h, Ano02c, Ano02d, Ano03a, Ano03b, Ano04b, Ano04a, Ano10a, Ano11j, Ano12m, Ano14f]. Author-Title [Ano98i, Ano99b, Ano00c, Ano01i, Ano01h, Ano02d, Ano03b]. authority [ZCMI12]. auto [KKR14, KGN11]. auto-adaptation [KGN11]. auto-tuning [KKR14]. automata [EM11, GKS15, MS86, MBO11, RT18, TM10, ZBW+17]. automata-based [EM11, RT18]. Automatic [NM95, NC97, CV16]. Automatic
Automatically [DR98, TG99, DSEP17]. automaton [Cap87, LSZZ15, Pet18]. automaton-based [LSZZ15]. automorphisms [DH91b]. automotive [RAN +17]. autonomic [AZC13, ATZ07, CP05, LS10, RDA18, XRB12]. autonomous [CKT11, CKMP17, WZZ +17, XCH08, ZV09a, WW17, OEY07]. availability [HJD +01, LS01, AGMS16, DB08, Fu10, HOE +09, KVA18, LKM12, PF08, PMMMA15]. available [NKC 97]. average [DF95, Li06b, MDD97, NSM98, Li06a, WWW17a, XBK07]. average-case [Li06b, Li06a]. AVL [MD98]. avoid [DP16]. avoidance [MJ94, BB85a, BPRS04]. avoiding [SI13]. award [Ros07]. awards [OY13]. aware [ALF03, AH12, AYB +15, BM17a, BPA06, CCW14, CWP12, CKML12, EB09, EHL +15, FCW11, FGZ03, Fu10, GQZI8, HMV07, HMR15, HK05, HK04, HV13, JAB12, JHF +17, KKK11a, KK11, KCR14, KD08, KBC +10, LBMG15, LFS16, LR14, LDZ +14, LZI +11, LW16a, LNAL17, LY13, LHL14, MBBD13, MHFZ16, MYY17, MLK +16, MML +11, NP09, ORWT +18, OS04, OMT +17, OPJ +18, RBN11, RCG18, SNMB16, SJB12, SKK14, SP13, STK11, SK05a, SZ10, TLL10, TVT +17, UM17, VMB10, WQL14, WMY +17, XCLZ03, YZX11, YJKD10, ZVL15, ZXYO11, ZTFK16, ZWQ +16, ZV09b, ZC04, Sie16]. awareness [LWZZ12, LR03b, ZXGD18]. axiom [ABLP17]. axiom-based [ABLP17]. Azriel [Ano04r]. B [CWW +95, CY96, GM95, HS94a, Meg91, OC07, PPC04, WW96]. B&B [BMT12]. B-Spline [CWW +95, CY96, GM95, Meg91]. B-Trees [HS94a, WW96, PPC04]. back [HPSM91, KMMZ06, LKD14, WMES12]. back-end [HPSM91]. back-propagation [KMMZ06]. backbone [HWWH08]. backbones [KERUM04, XHG03]. backends [IEWK17]. backfilling [SF05, GMVRGS16]. backplane [SH98]. backpropagation [SM08b]. backtracking [AKDMN15]. backup [AOSM04, HOVC09]. bad [Sch14]. bag [BHLT14, dSS11]. bag-of-tasks [BHLT14, dSS11]. balance [SEP96, CCK88, ZW11, ZYW +15]. balanced [GJF96, LT94, NFEG97, PB99, SA93, SBAM96, AES15, BNP02, GHI10, LCW05, SB15, XYKA08, YMLP14]. balancing [Ano97]. bee00, DHB02, DMB97, DLLX97, DS94, Efe96, FMP98, FLS +97, FM99b, Gild94, GM96, HILLY95, HTL99, HO94, HC97, JR92, KG94, LK94, LHV95, MP96, NSL99, OB08, QY94, SH92a, SHT +95, SB97, TSH01, Wan96, WS97b, XL92, XH93, XL95, ZLP97, ZM94b, AES11, AGMS04, BCVO5, BFH09, BFMT +18, BRPR06, BD04, BM08, CSWD03, CBD +09, CRC +02, Cyb89, DB11, DLW +12, DM94, EE05, Gao89, GLC14, GC05, HJ90a, HLM +90, IC05, JL05, JI19, JY98, KKS08, KC04, LTBO2, LTL06, LHKL03, MVP12, Mit07, NHO +13, Nik03, PC11, PA04, RN04, SB12a, SX08, TVT +17, YJL16, YAA10, ZV06, ZV14, ZSW14, ZXP09, ZLMC14, dG91, vS91]. balls [BBFN12, BFFN14]. banded [Pox99, ORR03]. bandwidth

Banyan-Hypercube [YN92]. Bareiss [HM99]. bargaining [GRDB05]. Barnes [SHT'95]. Barrier [Cha95, OD95b, RSS99, XMN92]. based [MBO11, MSAZ10a, MSAZ10b, MBH'08, RRRT07, MZZC12, MCZ14, NSKN17, NJ91, NCA'12, NTN12, NC09, NHO'13, NC13, Nic07, NAK04, No12, OM10, OJP'18, Ozti11, PRP09, PARB14, PDP17, PK05b, PMAL11, PVPM06, PF04, RL14, RT18, Rao16, RA11, RT12, RDA18, RSCQ17, SSM'16, SMPMLVS11, SSSH17, SCG10, SS06, SP08, SPH13, SX08, She09, SLW10, ST12, Skle16, ST85, SK11, TR89, TBG'17, TFMS15, TW15, TKKH17, TC13, TJB10, TWQS12, TT07, UM17, VD04, VMGB10, VB08, WCC02, WGC09, WW12, WCL'13, WRW13, WYW15, WWW17b, WWW17a, WWA'18, WMG13, WD13, WLMW09, WCCH18, WWA'18, XHY07, XCLR07, XLHT13, XO05, YYJ'18, YL12, YAA10, ZG13, ZCK'02, ZV09a, ZAAP17, ZW13, ZPK'14, ZLL14, ZV12, ZGG'14, ZGXD18, dSAJ15, dGP06, SM92a, WAS95, ZNO'93, HRF'11, HC91, KKS08, PLD87, TOR'14]. based [ZBR11]. bases [GPT06a, SK90]. basic [BM04a, Job87]. Basis [TR96]. Batch [LL98]. batched [CK06, HSH10]. Batch [NT93].
Batching [DSST95]. Bayesian [DKC14, FBRW03, NZA13, YWAT13]. be [BNP02, HBS17, KSSK16, STKW12]. beacons [DWX10, TDC05].

Beamforming [BL90]. Before [HCR12]. Behavior [Abr96, BDF92, BN02, BST01, CMT93, FJ93, LZ08, BS92, CL14, JZK04, dAMFdS13, RA11].


burst [DW04, EKNS17, HM06, WAS88, ZCF+17]. build [ZHIH15]. Building [Haw97, IK93, SK93, ZW13, CZ90, HSS10]. Bulk [GV94, Lu01, FXW03]. Bulk-Data [Lu01]. Bulk-Synchronous [GV94].

bufferless [BMIM07, LLT12]. buffers [DV04, EKNS17, HM06, WAS88, ZCF+17]. build [ZHIH15]. Building [Haw97, IK93, SK93, ZW13, CZ90, HSS10]. Bulk [GV94, Lu01, FXW03]. Bulk-Data [Lu01]. Bulk-Synchronous [GV94].
Cassandra [PMMMA15]. Categories [Cou93]. Causal
[CLZ02, MT97a, PRS97, RS92c, CZZY09, EDH+17, FJC04, HCR12]. Causality [MCS14]. cause [LXW+11]. caused [Zha11]. Causal
[CLZ02, MT97a, PRS97, RS92c, CZZY09, EDH+17, FJC04, HCR12]. Causality [MCS14]. cause [LXW+11]. caused [Zha11]. Cayley
[BS03, WLD00]. CBIR [BRPR06]. CBT [GS01b]. CBT-FR [GS01b]. ccNUMA [MTM10]. cDNA [TMM06]. CEA [LY12]. CEFT [ZJ06]. Celeste
[Lis90, ZPK+14]. Cellular [CS00, DL01, DKMV01, Oru87, Tan84, ZR00, ANEA13, EM11, FCG04, GKS15, GMXA07, LMSK18, MAM05, PSRS12, Pet18, ZBW+17]. cellular-based [GMXA07]. center [BFH+17, CGC16, FP03]. centered
[LWCC15]. centers [AG12, GYAB11, MLK+16, OJP+18, RT18, TVT+17, YAK15, ZV14, ZV12]. centrality [JL11, SSK+15, WBRT13]. centric
[KTP17, KSI04, XYZW14, XCLR07]. CFD [BAMM05, KaI04, MS99a]. CGM [KP00]. Chain [BNP98, Lun94, ASKO16, GRV08, MV05]. chained
[BM14, CMR+18]. chained-cubic [BM14]. Chains [NH93, LBMG15]. Challenges [NKSA17, PSC+16, SAB+92]. changes [DB08]. Channel
[AM95, BNS00, BPRS04, BKT95, CS00, DSST95, GCKM97, HP00, JK00, KGS01, LM96, LWD12, PA97, SSZ10, BGLA03, CCHC09, CLL09, DRT07, GDL+11, GZY14a, GZY14b, KKK11a, Kim11, ZMG+16]. channel-based
[DRT07]. channels [CK06, KS03, Lee03, LSWC14]. chaos [DZC17]. chaos-oriented [DZC17]. Characteristics
[LHVW95, BCD+15, GF89, JV06, LTD+93, LF03, SCK03, SWHB17, VM03]. Characterization
[BF01, KSI94, MR94b, RJA97, WP02, DWYB10, LJS6, SR90, WH08]. Characterizing [HRF+11, MS96, ZSW14]. Chare [SK91]. Chasing
[ZYZ+99]. Check [MC17, LXW+11]. checking [BBBC12, CM04, CAK13, SSS07, SCC+06, XYZW14]. Checkpoint
[LACJ18, PT01, JLM08, MM04, NC13, PG06, WCO17]. Checkpoint-Restart [LACJ18, NC13]. Checkpointing
[ARVZ14, PKD97, WF96, AAFV04, JLM08, LM09, MM06, MM07a, QS05]. checkpoints [AD10]. Checksum [Par92]. CHEMAS [XYG07]. chemical
[CP10b, MMAL+06, XLHT13]. Cheng [Aoc93e]. chessboard [E07]. Chief
[Pra16]. Chip [ASH+01, MT97b, DMS+16, GJ12, HCM11, HRG+11, KK11, KH12, KKK+11b, LNA12, LLKY13, LSXX14, LLT12, LY13, LHL14, LWCG14, MYD+11, PMCC18, SAJ13, TCHC12, UM17, AA14, ALM11, LK11, MEMHH17, ORWT+18, PR13, ZCF+17]. chip-multiprocessors
[LWCG14]. Chips [LK10]. Choice [SB02, BL05]. Choices
[FR96a, BBFN12]. Cholesky [GLW14, MV91]. Choosing [HBCM99]. Chordal [Man97, BCH15, WT09]. chordalPlanar
[PD05]. Cilk [BJK+96]. cipher [GPX08]. Circle [KSB94]. circles [Wir91]. Circuit
[CB99, CCR94, CS93c, GGN93, LK96, EB09, LC14a, LWCG14, YTH07]. circuit-level [LC14a]. Circuit-Partitioned [CB99]. Circuit-Switched
[CCR94, CS93c, GGN93, LK96, LWCG14]. Circuits
[WDDK09]. Co [AHA^+16, KN18, RBG17, BBH^+17, HVW16, HD10, NVK^+11, OJP^+18, ASST05]. co-allocation [NVK^+11]. Co-Design [RBG17, BBH^+17]. co-evolutionary [HD10]. co-location [OJP^+18].


code-based [LS06]. Codes [BVB02, Lat98, AM13, CP10a, GRR^+05, HR90, LWR^+03]. coding [DFHH13, ZY12]. CODISC [MA11]. Coevolutionary [Ser97, ADDB18].

cogenerator [KSP^+92]. cognitive [FCZ^+12, GDCC18, MKC^+09].

cognizant [LK13]. Cogeneration [BR96, CDRC99, HK96, SR97a, SR97b]. Coevolutionary [Ser97, ADDB18].


Collapsar [JXW06]. Collection [BS90, KS00, RW01, Amm16, HMV07, JLM08, ZWJW17].

Collection-Oriented [BS90]. Collective [DT01, HK01, TSC01, BRP03, MBBD13, NKK16]. collectives [Zah12].


Coloring [LSH96, BGM^+08, DJT03, GDP08, GKT0, HLM^+90, KJD03].

Colorings [GJP96, Ros89]. colouring [SS03]. COMA [CKL99].

combination [DKC14, YFBJY17]. Combinations [Kap93]. Combinatorial [Ben15, Kap93, KA89, ZG13, CMMT13, CCLS94, Men18, PPSV15, WMG13].

Combine [BLPV95, Van94]. Combined [GDCC18, OY00, CF88, VAS^+13].

Combining [AAC10, CMMT13, LKK94, LK98, LC96, SZ00a, SR16, UBS10, WMY^+17, WR95, GWWL94, HDJ08, TY09a].

Comments [Cha94, GRV08, Pan09]. Commercial [DZDZ01, MKC01, NKC^+97].

commit [mYA91]. Committee [AUA93a, BDP16]. Commodity [PVPM06, MC03, ZBS09, ZPB14]. Common [MS99b, ALH^+09, MS88, FII04].

common-bus [MS88]. communicating [BFTV87, DRR13, SSM^+06].

Communication [BHR99, BCT95, BCR96, CW00, CCRS92, CGL^+95, CS95c, DUSH94, DS95b, ESGM96, Fah96, FM99a, FPS11, FKTM96, FGKT97, FA95, FAM96, Fra92, GRV97, GBES93, GM94a, GK98, GPS96, HQPT99, HH01, HP95, HS93, HA92, IM94, ITT04, Job87, KL01b, KLS90, KS00, KS02, LHS97, LZO2, LR03a, LO96, LWP02, Mck94, MRRV98, MLK^+16, MSST99, PP96, PB99, QH96, RF^+12, RK95, RZ92c, RU99, RMC97, SCM99, SS99,
SOG94, SSK96, SBAM96, SKH96, TF92, TSHH01, TSC01, VM03, WR97, XKN94, Xu97, ZHM, AFA13, ARP18, ALTV13, AM12a, BM17b, BFTV87, BCM87, BBR13, BOS+91, BRP03, CCS06, CNS03, CHC05, DB11, DKUC15, DW04, Ed91, ED+17, FW05, GPT06a, GM13, GP05, HK05, IB04, JJ12, JZZ+17, KY05, KSG03, Lai86, LAK10, Lo92, Lu90, LM09.

communication

[LCF01, LLW12, dAMFds13, MAM05, MCM+11, MPG17b, NRM+09, PB90, REK10a, REK10b, SS99, SBR91, SRI04, SSKL12, Sta04, SW90, SZB16, SSG13, TW15, YCH+10, YQT12, ZBF05, ZV09b, FPI12]. communication-aware [ZV09b]. Communication-Computation [QH96]. Communication-Efficient [HQPT99]. Communication-Free [HS93]. communication-induced [LM09]. communication-intensive [ML+16]. Communication-Minimal [Xue97]. communication-optimal [MPG17b].

Communications

[AMN00, BD00, CQ95, DRR96, LLJ00a, SC91a, SHC93, TSC01, WA02, YMG01, ZR00, EB09, GMH+91, LHP07, MBBD13, PGP+12, TP18, TKG17].

Communicator [KF90b].

community

[CTC+10, Tr+09, ZLL14].

community-based [ZLL14].

Compact

[CDF01, CJ99a, CJ04, CI03, NCTT09, NKV14]. Compact-Port [CDF01].

Compaction [BHR91, Kar95, WD94]. Comparative

[AAD02, GS00, QM01, HA91, PL03b]. Comparing [GGW96, YL98].

Comparison

[BSB+01, DR01, DRSB01, Fre96, GY92, JN96, KA08, KA99, OP98, SSOB02, SAC+98, Ta02, AFM03, AG12, FGZ03, GCH+17, JKE13, MP10, NSKN17, SMB10, SS94b, ZTFK16]. Comparisons [YBM13]. compass [AKBD10, KX94]. compass-free [AKBD10]. compatible [MP08].

compensation [Yan09]. Competition [eW95, TR89, WSLC11].

Competition-Based [eW95, TR89]. Competitive

[DLLX97, GS96, Ser97, SHC14, LHH11, VM95]. Competitive-Update [GS96]. competitiveness [GK15]. Compilation

[BGR96, CA96, HHKT96, PA96, PAG+18, WQZ+13]. Compile

[Fah96, HA92, LP+97, PM96]. Compile-Time

[Fah96, HA92, LP+97, PM96]. compiled [KYL05]. Compiler

[ABDS02, BW95a, CGS93, HKT94, KRC00, LY98, LY01, NS12, RJJ96, SD09, SD00, Tse90, VV90, WB94, DK04, RG06, Sab94].

Compiler-assisted [NS12]. Compiler-Controlled [SDS99].

Compiler-Directed [LY98, LY01, RJJ96]. Compiler-Optimized [ABDS02].

Compiling

[BS90, BCF94, DRR96, GKH96, KHS96, SSSH00, SB93, DeG88, LC91a].

Complement [YAS98]. complementary [ZPK+14]. Complete

[BP02, EKH96, HKMU98, HO01, SP96, SHL95, TT98, Wag94, ZW00, LFZ+17, MPZ09]. completely [SPC+17]. completion [KSG03]. Complex

[GPS96, HASB16, CM12, DF17, HHA14, JKD+15, RBP+11, SW12].

Complexity

[BH93, CMS92, Dja96, FAGW95, Fra92, GVV97, Gou98, JBL02, Ta02, AEF11,
BPW05, CH06a, DUW86, FWM+10, SSS88, Sol13, THSS87, WG08, XL11. complexity-effective [FWM+10]. compliance [AM06]. Component [AHG12, HHM94, SR94, CT94, Hdr13, KRKS11]. Component-based [AHG12]. component-oriented [Hdr13]. Components [BJ96, Kar02, BBB+06, Hoh90, LWR+03, MHPR05]. Composed [SM92a]. Composing [BA96]. composing [WGCZ09]. Composition [HLJ98, Tay02, CJ17, WMY+17]. compositions [FZ14]. Comprehensive [DG94, GM14b, Upa13, ZAB18]. compressed [WBTM09]. Compression [SY094, CW15, CD95, JKV15, KP17, NRM*09, SR91, AHG12]. Comput [LS8+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Computation [AM97a, AISS97, BCV94, BF95, BA01b, CA95a, GM94a, GM95, HR92b, HR92a, JSS92, KF95a, KS00, LHM95, PB99, QH96, Sch90, Sin87, SA93, TR96, Win85, CR96, CXY14, CL85, DB11, DHK04, DWHL87, JT88, KSG03, Lee90, LMB+17, MCS14, NCTT09, PK07, RMU14, SS11, SD88a, SZ03, VGAB08, WL04, WT09, WCO+09, XLH18, YJL16, YJB91]. Computation-Intensive [CA95a]. Computational [DRC90, JBL02, KRW96, KR97, Num08, Num09, AAH17, AB03b, AGMJ06, CCE+17, CS06a, DHS06, KHT+14, LBE03, MJ03, Pen11, RBN11, SMO14, SNCP12, TZ06, WW03]. Computations [AGF94, AMN00, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93, CQ95, CGA98, DUSH94, DN94, GR96, GKO8, HH97, HJ01, HF02, KL01a, KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94, Nic94, OS86b, OSZ98, OP98, SV00, WB96, ZR96, ZYO02, AAD05, AM03, BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Joh87, KME89, KH03, RV13, SSKC15, SB12+2, ST89, SC04, SK91, SMH+14, SS94b, TG04, WJ14]. computations/applications [KHK03]. Compute [ABM+92, CM92, CTZ99]. Compute-Intensive [ABM+92]. computed [KDO+13]. Computer [BCH95a, BS96b, BS96c, Cha94, CDP95, HHM94, IWM97, Kri91, LLS93, LR94, MKY+97, NS97, PEC95, VV90, WF93, WHT02, BDRB14, Eme13, Gai87, GES85, Gos90, GREC91, HR89, HR90, Irw88, JHR10, KK86, LMB+17, LB17, LV88, MP08, PSC+16, SAB+92, Vel89, WJD91, PR13]. Computers [Alu97, ADM+94, AB93, BS89, BR95c, rCM98, CVC92, Chi92, CY96, C399b, Fer93, KL01a, GKV94, Li01, MT96, MSC96, MYD95, Moh96, NFEG97, NS92, PE93, Rec84, RW01, SR94, Shu95, Sto90, Tan84, TC92, VSM96, WLR90, Yan93, YP96, ZNA92, ZM94a, AM13, AL91, AP91c, BGM+08, BCF+94, Car90, CT94, GMS06, JL05, KEA07, LR06, Li16, ML89, PB90, Ra04, Sab94, Sch87, WFRHR91, ZLRP91]. Computing [AW95, AL99, AM97b, ANT02, Ano97k, Ano99g, Ano10c, Ba94, Bir94, BD00, BS8+01, BDH+97, BNS89, BS90, BS91, CA94, CEF+95, CDJL09, CDJL11, CP99, Deh90, DAY02, DBP94, Eme13, ELS94, ES97, FFK97, FTM+14, FPP+08, FGKT97, GRS97, GSO1a, HGCC96, HS00, HHC98, KSA95, KMKD97, Kri92, KRS13, KC99b, LAS+97, KL11, LFA96, LS01, MLW00, MAS+99, MSGS+13, MC93, MK12, MBG+17, NA06, Nee17, OY00, PN97a,
computing

Concentrate

Connection

Connection-based
connection-level [YSL08]. Connectionist [MBK+92, TR89]. Connections [Goe94, TC03]. Connectivity [Wil02, ASM09, BCMV15, DH91a, OMSGNSG05, SK89a, Ten16]. Conquer [CTZ99, AY89, BW09, GDL+11, Sto87, TP18]. conscious [GYAB11, OC07]. consensus [AAI+15, ISM07, LHW14, MR09, WTC08a, WTC08b, WWW17a, WCYR08, XBK07, DS04b]. consequences [YBM13]. Conservation [FLS+97, XS11]. Conservative [LA93, BD04]. Considers [Ger98, VWHL96]. considering [MLMSMG12]. Consistency [Bir94, CA95b, GAG+92, SS08, Fei03, HC09, Kuh17, LC11, RHH12, WDDK09, X005]. Consistency-driven [SS08]. Consistent [KCDZ95, HK08, JLM08, LFA05]....
ESA03, FR96a, FT94, KSP+92, LM96, MS96, Nie94, OS93, SG96, THBF97, WLJD02, AA10, Ahu90, AAA+10, BCO+12, BWP+11, BMF05, CF88, CG17, CWPI2, Che89, CLM90, ESQG+18, FL86, GL12, GAOGH17, HCZ04, JTZZ11, KNS91, Kim11, KGN11, LL90, LZCY09, LCW05, LWLD12, LL12a, MLZY17, MG09, MBO11, MCZ14, RCG06, SRI14, TG04, WRW13, WJD91, WHS+18, XYDL06, XCW+08, YBM13, YJKD10, ZMZJ17, ZBW17.


Cycles [BCH95b, Tze93, Wan01a, dBL95, HBAD15, JT88, JL05, JD12, KF90a, LD3S$^+$18, PK04b, ST06]. Cyclotrees [VB96]. Cyclic [OP96, PT97, SSG93, BD05, HS03, PK05a, Sch87, ST87, SPH13, LY12].
cyclic-by-rows [ST87]. Cylindrical [WN94].
D [AA14, Ano92a, Ano93e, BAES92, CS93b, GOH+13, SS94b, AA16, AR97, BLPV95, BFG94, BDRB14, BAL05, BC94, CW00, CS92, DSAUM99, GW99, HHKT96, HKT94, KRKS11, LXL512, LME95, MKY+97, MPG17b, NM17, OGRV+12, PYR+10, PEC95, Wan07, WS95, Wu02, YA11, YB01, ZLS17, Zsa16]. **D-ISODATA** [DSAUM99].  
**D-NoC** [AA16]. **DADO** [SM86].  
**Daemon** [KY02]. **DAG** [CJ99a, CJY04, DQR09, XLHT13, ZS13].  
**Dags** [BCLR96, BSS13, CDR12]. **daisy** [GRV08, MVB05].  
**Dandelion** [CP10a]. **Dandelion-like** [CP10a].  
**DARPA** [WRHR91]. **Data** [AOS+05, AL04, AAL95, ALS91, AS13, AS15, Ano96j, Ano00d, ADM+94, BV02, BCD95, Bal90, BBB+06, BHS+94, BR95c, BR02, BS09, BS11, CGN+13, CD97, CK08, CGL+95, CP92, CHR94, CRFS94, DOP98, DRC90, DSAUM99, DRST02, DHR96, DSD+97, DSS95, Fak96, FMP98, FKKC97, FMW+94, GG94, GP93, GC01, GDN+98, GS96, Gup92, HK01, HJD+01, ISZBM99, JW94, JS86, JB93, KR97, KLS90, KRS01, LSCA93, LZ92, LAS+97, LY98, LY01, LO96, LL95, LSWC14, Lu01, MD13, MS85, MRRV98, MK92, MK93, MNB95, MNM98, NBP98, Nie94, OK02, OP98, Ozt11, PBB96, PH91, PL98, PT97, QZ94, QH96, RSW90, Ros99, RW93, SS99, SMH94, SG99, SR97a, SR97b, SAC+98, SSHC00, SHT+95, SS94a, SSGY97, SIR92, Ste95, SC91b, Str12, SV00, SFC17, SG96, TSC01]. **Data** [TR96, BG90b, VBM90, WB94, WSS93, Wei02, WS97a, XMMID17, ZMCP11, ZTFK16, ZRC99, AAA+15, ASB18, Amm16, AH12, AG0W11, ACPT15, Ara90, AG12, AYB+15, AEY12, ARDQ18, BFH+17, BCO+12, BH86, BR91b, BEN12, CK06, CF88, CMR+18, CK07, CGC16, CLC+17, CW15, CLL90, CZ90, CTT16, CTT08, Cuz11, Cuz13, DF17, DTK11a, ESTA94, ED06, FCW11, FRM15, FP03, Gao89, GYAB11, GE85, GS91a, GJAO8, GLGLBG12, GM14b, GBA08, GB11, HMV07, HLS03, HSB91, HP06, HA05, JLY12, JBS14, JHPL13, JZ05, JWH+17, JdSJC+15, JKV14, KKKG14, KA08, KH03, KAS07, KCR14, KSB11, KL05, KKTZ13, LHF91, LWZZ12, LC91a, LC11, LY12, LLWC17, LLW07, LSZZ15, LON04, LA04, LGK+12, LSZ15, MCD+06, ME04, MLK+16, MP08, NBL+18, NS90, NCT+07, NCA+12, NCB+17, NAB+11, NKK16]. **data** [NAK04, NTC03, OWK14, OM10, OJP+18, Pad91, P30R05, PS14, PLR07, PS06, RBN11, RT18, RB12, Ren11, RMU14, RBA+18, RAN+17, RJKL11, SS08, SC04, SMH13, SM08a, SK05a, SD88a, SWW+17, SR91, ST08a, TR89, TBHA07, TZH+06, TK07, TVT+17, VMMB10, VB08, VRM10, WCW17, WS+03, WT09, WZZ+17, WWW17b, WCH+17, WL05, WG11, XHZ+10, XSYG18, YBX+13, YAK15, ZV14, ZV12, ZWW17, ZSCX18, ZHT16, ACB+15, LSJ15, RAB8, WLL08]. **data-/compute-intensive** [KAS07]. **Data-aware** [ZTFK16, AYB+15, VMMB10]. **data-center** [FP03]. **Data-Driven** [JB93, VBM90, WS93, BH86, KHK03, NCB+17]. **Data-Flow** [BG90b, GE85]. **data-gathering** [LLW07]. **Data-Intensive** [BS09, ZMCP11, RBN11, SC04, VB08, WZZ+17, WG11]. **Data-Parallel** [AAL95, Ano00d, BCD95, BHS+94, CGL+95, DSD+97, FKKC97, KR97,
OP98, QZ94, QH96, Ros99, RW93, SAC+98, SSHC00, Ste95, WB94, WNA+94].

**Data-stream-based** [CK08]. Database
[DSW94, HILLY95, HTL99, LLS93, LHM95, MB93, RSD94, YMR93, BH86, CI86, HPSM91, LY91, LZCY09, TR16, XLC+18]. Databases
[BMK5, CS95b, FCF00, MFS93, Ahu90, BA06, CG86, PF08, Ram89].

datacenter [MG09]. Dataflow [BG86, BCF97, BPN90, BJP91, BH93, GGB93, HCAA93, LB90, MNB95, NBM93, RSBN01, SA93, SBKB90, VV90, YMR93, Bi90, ENPV+97, KLL87, TBG+17].

dataflow-based [DH95, DSW94, HILLY95, HTL99, LLS93, LHM95, MB93, RSD94, YMR93, BH86, CI86, HPSM91, LY91, LZCY09, TR16, XLC+18]. Databases
[BM95, CS95b, FCF00, MFS93, Ahu90, BA06, CG86, PF08, Ram89].

datacenter [MG09]. Dataflow [BG86, BCF97, BPN90, BJP91, BH93, GGB93, HCAA93, LB90, MNB95, NBM93, RSBN01, SA93, SBKB90, VV90, YMR93, Bi90, ENPV+97, KLL87, TBG+17].

**Database** [DS96, Pra93, RL95, BCF14, BPBR11, KSK15, LVP08, Sta17]. Degree-Constrained [RL95]. degrees [ZDC06]. Deister [WZZ+17].

**Decomposable** [KS08]. Decomposition [Bal94, BCCD02, CP92, HJ90c, HBB93, KBG92, LS95, PE93, QZ94, Ara90, ACF97, CvdBL+08, CZZ+17, Luk85, OT86, SK09, TW87, XWC+08, ZWR107]. Decompositions
[ABC96, KRW06, ORU87]. decoupled [CTCX08, DBC03]. Decreasin
[TSSH01]. dedicated [AM97, MAR05, WLNL06, VZ09]. deep [ZWW17]. defense [XCH08]. definite [KK86]. Degenerate [HF96]. Degradable
[BBR94, CGA98, LH92, RCB93]. degradation [NSTN91, WCYR08]. Degree
[DS96, Pra93, RL95, BCF14, BPBR11, KSK15, LVP08, Sta17].

**Degree-Constrained** [RL95]. degrees [ZDC06]. Deister [WZZ+17].

**Delay** [ABC+09, ABC+09b]. Delay
[AZ01, AH11, GZG+17, Hu11, GL12, HWWH08, LMZ04, MD07, NLB+18, SGR03, WW12, WWW15, WY15, YGW15, ZWW17, KSS16]. Delay-Constrained [AZ01]. delay-guaranteed [HWWH08].

delay-optimal [MD07]. Delay-sensitive [Hu11, NLB+18]. Delay-tolerant
[AH11, WW15]. Delays [GM94a, GK98, KL01b, RWB+13, Sta04].

**Deleting** [BCK+09, PPC04]. deliveries [WE13]. Delivery [CLZ02, CLV95, THGY15, AH11, Bar05, KMF+05, KNS06, SZ09, WGCZ09, XYDL06].

**Dellat** [THGY15]. Delta [ASB18, JK84, YL89]. Demand
[DSST95, HLL+95, JSCB95, BSW07, FVLB09, HZDP12, KyLPC17, LSZZ15, NKK16, SFEF06, WL05, XG03, YLCL11]. demands [SLW10]. dendritic
Denial [BK18, KMMZ06]. Denial-of-Service [BK18, KMMZ06]. Dense [DVW94, FHL+15, ICQO+12, LKD14, RM10].
dependency-timing [CSJ+13]. dependent [AL04, BH05, LSWC14]. deployable [YC12]. deployment [EM11, TWQS12, VHH08, ZC04].
depth [BP89, LH04, PV07, YWJ+18]. depth-first [PV07]. deques [ST08b].
derivatives [PK04a]. describe [JWH+17]. description [MRS+14].
Descriptor [Bal90]. descriptors [LNW+12]. Design [AFA13, AM17, Ano92c, BAHP01, BCD00, CGKK97, Car95, CCC90, CT93, CAB94, CW93, CTKA17, CKK+13, DBKF90, DVW94, ES96, EMP+96, FC90, FR96a, Fer92, GRV08, GFB+92, Ger98, GRS97, GSP02, HP97b, JH92a, JZZ+17, LL90, Lee91, LH92, LLS93, LKY13, MKC01, MP10, MVB05, MG09, MML07, NBM93, NJ91, Nie94, NSPPC02, OS93, PA01, PI90, PMCC18, RCB93, RGB17, RPS93, RKK97, SAOKZ05a, SAOKZ05b, SRK95, Sol13, SHC93, SOG94, TTH12, WNA+94, WH97, XKM94, ZPK+14, Ada17, ABLP17, BBI+17, BZL04, CG11, CSJ+13, CK13, Che86, CHX+17, Chi95, CC96, DFHH13, DE91, EFG+14, FHL+15, Fer90, FCG+14, FD86, GREC91, HDT+05, HWWH08, KMC16, LÜ14, Lon04, LV07, MCM+11, Nap90, ORWT+18, OMT+17, PLD87, RGD03, RA11, SDS10, TM06, TB90, VRGS17, VHH08]. designed [BSH15]. Designing [BBBC12, BC01, CB06, DH91b, GP93, GMS+13, GB93, CT93, CAB94, CW93, CTKA17, CKK+13, DBKF90, DVW94, ES96, EMP+96, FC90, FR96a, Fer92, GRV08, GFB+92, Ger98, GRS97, GSP02, HP97b, JH92a, JZZ+17, LL90, Lee91, LH92, LLS93, LKY13, MKC01, MP10, MVB05, MG09, MML07, NBM93, NJ91, Nie94, NSPPC02, OS93, PA01, PI90, PMCC18, RCB93, RGB17, RPS93, RKK97, SAOKZ05a, SAOKZ05b, SRK95, Sol13, SHC93, SOG94, TTH12, WNA+94, WH97, XKM94, ZPK+14, Ada17, ABLP17, BBI+17, BZL04, CG11, CSJ+13, CK13, Che86, CHX+17, Chi95, CC96, DFHH13, DE91, EFG+14, FHL+15, Fer90, FCG+14, FD86, GREC91, HDT+05, HWWH08, KMC16, LÜ14, Lon04, LV07, MCM+11, Nap90, ORWT+18, OMT+17, PLD87, RGD03, RA11, SDS10, TM06, TB90, VRGS17, VHH08].
Detecting [CL14, CK97, NCT+07, SKK14, Tse95, YXX13]. Detection [Ano96l, BN02, BHR95, BST01, CW93, CY95, CDP95, dADB96, GCKM97, GS96, HTB98, ISZB99, KS94, LLLY08, MMMR98, Par92, PAH+98, Ram89, RP95, SL97, SJS11, WCF94, AFD+11, AMK+07, BXA08, CRK+09, CV90, CH06b, DKKV15, DFP06b, Eri88, FM85, GDC18, Gue86, GH9b, IZ12, KHK03, Ksh12, KKTZ13, Lui86, LLLC15, LJ05, LLWC17, LHM14, MD07, MFPV08, NHO+13, PH16, RLP14, ST12, SMP17, TRS+12, TY17, TCS+10, WL11, XL11, XTN12, XSY18, YF07]. Detections [Yen01].
detector [SLG06]. detectors [AAL+15, BGB+16, DGGK05, LFA05, MFPV08]. detention [JXW06]. Determinacy [BN94]. determination [MJO3]. Determining [GRR93, LAS+97, DH91a]. Deterministic [AS91, BBCD02, OS96a, GTGLSA12, SGS08, WZZ+17, ZLWL12]. Development [BR95b, FSD04, KHT+14, PH00, AM17, DBC03]. deviation [XBK07]. Device [DM90a, VFAD17, ALF03]. devices [Ano04d, Kim17, MXSL12, WL04, WCF14, YK04, ZV09a, ZV09b]. DEVS
DGIN [KMC16], DGIN-3 [KMC16], DHT
DHT-based
DI-multicomputer [CC96], Diagnosing [Qia97], Diagnosis [BW95b, Kav93, KF05b, RMF94, Wan01b, eW95, CAF+11, FY86, FY90, Yan04],
diagonal [PRHB06], Diagram [RR95b], diagrams [SZ03], Diameter
[DF95, LP95, RS96b, RLS96, WIKC97, BBL04, CW09, SLWW05],
Diameters [Als01], DICE [CKL99], Dictionaries [MD98],
dictionary [GA90], difference [HT90, SS11], Differences [LDCZ97], Different
[GAC+92, PD92, Bhu87, CG17, GPT06b, LCB16, MM06, Mhe06],
differential [GRG89, WRW13], differentiated [AM07], differentiation
[MCZ14, ZIO8], Diffraction [DLS00, HPT07], Diffusion
[DM17, SKK97, BFHO9, CEBS07, ESH11, MMS09, RN04, ZKGD18, Zsa16],
diffusion-based [MMS09], diffusion-drift [HES11], diffusion-limited
[Zsa16], diffusion-type [BFH09], Digit [BOI91], Digital
[ZRC99, NAK04, PR06], Digitized [HHM94, ARA90], Digraphs
[BMM01, TZ00, BP89], Dilated [GQ92, Qia97], Dilation
[CCM96, LST17], Dilation- [CCM96], Dimension
[CFJW13, HSW04, RS96a, WS97b, XJL92, XJL95], Dimensional
[CFJW13], Dimension-exchange [HSW04], Dimensional
[AKPT99, CCM96, DFN+94, FLS+97, Hwa97, KR98, LHS97, LP96b, LP95,
NEG85, TC96, VB94, YCV+00, ANEA13, AB05, DMFCM03, Deh90,
DTK11b, FCG04, GSSS03, GB11, HT90, HS17, KVHS07, KLC05, KKN13,
KN18, LSC00, LC91b, LZY11, LDS16, NPB98, NAK04, PCA08, PK07,
SRG03, WRW13]. dimensional [BV13], dining [AFNT17], DINO
[RMHR17, RSW91], Direct
[FLC14, GY94, LLCC02, SWHB17, TF01, ACFK07, ACU08, PPTV+10],
Directed [GY92, LSC00, LLY98, LY01, RJY96, BD05, TM10, TDP15,
WCW03, WO03], Direction [BEN12, BC94, Ehe94, MSZ10a, MSAZ10b],
Direction-based [BEN12, MSZ10a, MSAZ10b], directional
[CCHC09], directions [ACB+15, PSC+16], Directive [MM15], Directive-based
[MM15], Directory [GS00, JSM94, RFPAG08, SB15, VRGS17], disaster
[SZH16], disasters [FP03], Disciplines [MsD+95], disconnected
[LR03a, MCS14], Discovery
[CHGM01, AOS+05, FZ14, KAO99, KKS09, MKE+09, REZ17, RSL12,
SMPMVMLS11, SH09, SK11, TDO10, ZAB18, ZMG+16], Discrete
[Ano02v, AB93, BBM+02, BTO02, DMS90, Lin93b, Lin93c, LLCL98, NC97,
Pra93, AZC13, CVJ09, CRC+02, HI16, LI16, SS17, TJKG20, ZZ90, ZCK+02].
Discrete-Event [DSM90, Pra93], Discrete-Time [BBM+02],
discretization [SWLZ17], disease [ZMG18], Disjoint
[BGR96, GT97, GP00, NS90, RSS99, WB01, HBA15, KMC16, Lai14, LAi15,
Lai17, LI93, LS03, MT14, SMP17, TDM05, WFL16], Disk
[CT93, Cor93, ER97, GP93, LP96b, MKC01, MKR93, MFS93, RAO10, RCB93,
CL03b, JPD17, KR12, NC13, NZY+11, SRT+18, XS11], disk-assisted
[SRT+18]. Diskless [PKD97]. Disks
[KR11, MT93b, MB93, MFS96, CkLCK04, CkLCK05, OC07, RWB+13, VA07].
dispatch [YZS15]. Dispersing [Gil94]. displays [Tay05]. disruptive [SI13].
dissemination [AHZ11, DF17, MCdS+06, MSF+13]. Distance
[BBV02, CW00, CDF01, DS01, DF95, NM17, ST02, DS04a, EÌ07, Hsi04,
MBR08, ST06, Tur12, WCWH03]. distance- [Tur12]. Distance-Hereditary
[CDF01, Hsi04]. Distance-Insensitive [ST02, ST06]. DistDLB [LTL06].
DistOpt [CLRW00]. Distrib
[LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Distribute [LW95].
Distribute- [LW95]. Distributed [AAA+15, AE95, AL99, AM97a, AM97b,
AMN00, AFS96, AK17, AasJS01, Alu97, AS13, AYI07, Ano96j, Ano96l,
Ano97j, Ano99g, Ano02v, Ano02u, ABP017, ABP96, BR95a, BR96,
BFTV87, BGLA03, BCV94, Bas97, BWP+11, BA01a, BCH95a, BAS06,
BPR99, Bir94, BCD00, BCR96, Bou02, BS+01, BHR09, BNSP99, BS00,
CS00, CG11, CTD99, CCM01, CC08, CL91a, CS93a, Cha94, Cha96, CKK00,
CS03, CC94, CK97, CDJL09, CB95, CWP98, CM92, CA95b, CLR000,
C99b, CP99, CWD11, Cuz11, DW03, DY99, DA07, DUSH94, D95b,
DOP98, DMSH09, DFL017, DN94, DSW94, DSAM99, DYA02, DL99,
DH95, dADB96, EP90, FR96a, FF97, FTC14, FKS07, FPS11, FFM99b,
FY97, FTC00, FBDC99, GHY10, GDP08, GP07, GCKM97, GM94a,
GMSS+11, GZ14a, Gra09, Gup92, GHS96, GHS96, HR00]. Distributed
[HBCM99, Haw97, HK01, HP97b, HWL14, HWY+10, HLJ01, JPD17, JF95,
JKD+15, JSM94, JNW96, JRR99, KKG01, KY02, KSSL16, KRC00, KS97a,
KDO+13, KK17, KHS96, Kel00, KB96a, KCV99, KSK15, KS00, KC94,
KR03, KS04, KS94, KS02, KKTZ13, KC99b, Lan09, Las12, LW97, LTH97,
LZ02, LC90b, LM95, L09, L01, LLWC17, Lin93c, LLW07, LHT08, Lon04,
LACJ18, LK11, Lu01, LS01, M92, Man97, MS99a, MLC+90, MT97a, Mat93,
MSG+13, MSS00, MNK12, M06, MSST99, MK08b, NSS97, NTA96,
NP98, NM02, OY13, OK01, PHB96, PAM94, PA96, PB99, PRS02, PK07,
PBB+17, PRS14, PM92, RSB96, RWK95, RS92c, RY96, RGS09,
RAS96, Ros07, RP95, SHS17, SM94, Sch89a, Sch95, SRGB90, SZW05,
Shu95, Sin87, Sin93, SS94a, SM08a, Sn03]. Distributed
[Soh96, SIR2, SBAM96, TH11, TT10, The02, TSC01, TAY+01, TG97,
TSFZ14, TB90, Tse95, T95, Wu01b, WCWH03, WW98, Wcc01, WRC+02,
WMG01, WF96, WLD02, WUG99, Wu02, XBK07, wXH00, XQ04, YH97,
YB01, ZV06, ZM94b, van96, AT03, ALH+09, AAFV04, AL04, Alu90,
AGM04, AM09, ACCP12, AAI+15, AM11, AMK+07, AH06, BFG+03,
BCV05, BMB+08, BLPA05, BCCQ13, BG89, BNP02, Bar05, BB03,
BCM05, BHLT14, BPR03, BK08, BFL+13, BD04, BFM05, BH05, BGL+08,
BCH+94, BFP04, BBL04, CSWA03, CG12, Car95, CGL+14, CG86, CV90,
CvB+08, CTCX08, CS08, CKWT17, CLM90, CkLCK04, CkLCK05,
CGG+09, CJA09, CJS6, CTT16, CPO+03, CTT08, CK91, Cuz13, Cyb89,
DK08, DB11, DM04, DRT07, DKM10, DHK04, DTK11a, DH04, DJT03,
EBe08, ESA03, EHL+15, ES12, FPS14]. distributed
[FCC07, Fer90, FL86, FKR+17, FX06, Fu10, FLC14, Gai87, GYAB11, GCS06, Gos90, GWWL94, GC05, GL12, GL90, GN15, HJ90a, Hoh90, HLM+90, HKW05, HD10, HL07, HHK15, ITT04, IB04, IS06, JF12, JKIE13, JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07, KSG13, KK06, KMMZ06, KAS07, KCD08, Kim11, KKS+12, KL05, KS13, KBD05, KP05, KC04, Lai86, LTL06, Las13, LLL06, LVP08, LL90, LJ05, LY91, LZCY09, LASS15, LVR90, LC91a, LVP07, LB09, Lop13, Lop18, LA04, LCM+06, LSZJ15, Lun90, LM90, MLZY17, MD07, MM07a, MSM09, MAPF14, MHPR05, MA11, MBR08, MS86, MTS90, MM07c, MFVP08, NSAS10, NTN12, NDW17, NP09, OFS03, PKN08, PK10, PK05b, PRHB06, PSG06, PL03a, PC11, PH16, PMdO11, Pop91, PF04, RLP14, Ram89, RLH03, RAN+17, RDA18, RKS87].

distributed [SSKS11, SW12, SSS88, SMP15, SU87, SB15, SC04, She09, SCS+08, SCMS12, SK90, SXZ06, SCMH13, ST14, SKK91, SLKK13, SK89b, SM04, TLLV10, TG04, TBZB05, TZH+06, TXLL14, TM10, TVT+17, TWQS12, VB08, WW07, WTC08a, WTC08b, WL11, WW04, WL92, WD13, WSLC11, WZQ+13, XHY07, XQ07, YZS15, YLB+15, YZG18, YWG15, ZAB18, ZCK+02, ZV09a, ZCMY12, ZTFK16, ZWR07, ZBW+17, ZWL03, dG91, DLLL11].

Distributed-Memory [AMN00, CB95, CJ99b, DY99, Gup92, GHSJ96, KRC00, KHS96, NSS97, PHB96, BGM08, CPO03, GL90, ITT04, Pop91].

distributed-Web [KCD08].

distributing [TY90a].

Distribution [BR01, BR02, CLZ00, DHR96, KL01a, LAS+97, LL98, MNM98, SLW10, SSY97, AS09, Fei03, FM07, GRV08, GBA08, HSW04, LLL06, LT07, Li17, MV05, NM17, PV89, SS06, WZZ+17, YJL16, ZWL03]. distributions [BKMT14, Nie07, PCX+11, PCX+14]. Distributively [VR94, FPP+08].

divergence [Tor89]. Divergent [RMHR17]. diversity [SSFP11]. Divide [AY89, CTZ99, BW09, GDL+11, Sto87, TP18]. divide-and-conquer [BW09, GDL+11, Sto87]. Divisible [VB02, BD11, CG12, CVJ09, DW04, HV13, KVA18, LML+10, MLDG12, MVB05, ZV06]. Division [HP00, QMC94, ZLP01, DAV17, EL91, HRG+11]. DMON [HP97a]. DNA [GPX08, JV09]. do [LTG14, CC87, CCC90, KMS10]. Do-All [KMS10].

Doan [An09c]. Document [ZWL03, UGG+11, XCZL03, ZMCP11].


Domain-Specific [KRS13, KRS14, MRS+14]. Domains [DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].


CTT16, GK04, KHK03, LWZZ12, LS10, LGK+12, MBS+12, NCB+17, QJ05, SS08, TLQS12, V089, XLL15, YCC05. \textit{drives} [GFPC14]. \textbf{DS}, \textbf{DSDV} [BDF01]. \textbf{DSM} [BJS03, ISZBM99, NPP+02, Nik03]. \textbf{DSMs} [KG04]. \textbf{DSP} [DSEP17, QSL+08]. \textbf{DSPONE48} [DSEP17]. \textbf{DSS} [FGP05, MKC01]. \textbf{DTN} [V90]. \textbf{DTNs} [MPS16, Yan09]. \textbf{Dual} [ACCP12, LSXX14, XWC+08, ZW00, MAJJ05, WCC02, WL05].

\textbf{dual-Hamiltonian-path-based} [WCC02]. Duane [BS96c]. due [BKS91].


dynamic [MYYY17, MC91, MK08a, MCS14, Mit07, MML07, NDP13, NLB+18, NCT+07, NHO+13, PKN08, PKN10, PM05, SPR05, PW17, QJ05, RCG18, SNMB16, SSM+16, SSO6, SSO7, SZD07, SCK03, SLG06, SSD+10, SZB16, TZ07, TW15, TH08, TMK+17, TT07, WW12, XLC+18, YK04, YS11, ZXY011].

dynamic-warp [NHO+13]. Dynamically [JB98, KSS+07, PPP14, dSR00, SB84, GK15, Ke03, Lai86, Mat06, ORW+18]. Dynamics [ES96, JBL02, NPY+97, PAH+98, TASA7, AGAJ06, CvdBL+08, DAG+17, GBMZ07, LYL08, PAB14, PTK+13, WYTX13].

e-infrastructure [HPB+10]. \textbf{E-ODMRP} [OPG08]. e-payments [CSS11].

e-R [BG90a]. Early [GRJ+15, AMT13]. early-stopping [AMT13].

earthquake [KME09]. EB [SM92b]. EB-Equivalence [SM92b]. ECC [CL09, GCS06]. ECC-based [CL09]. ECG [ZAAB17]. ECHO [HASB16, SAL10]. EcliPSe [RS92a]. \textbf{EDAs} [MMAL+06, dGP06]. eddy [SM04]. \textbf{EDF} [DOC14]. Edge [BGR96, BS97, GT97, HBAD15, LSH96, TDM05, WB01, CL85, DJT03, GDP08, Lin03, SS03, YW+18].

\textbf{Edge-Coloring} [LSH96, GDP08]. \textbf{Edge-Disjoint} [BGR96, WB01, TDM05, Lin03]. Edges [HHC98, BKCM17, FPP+08].

editing [RS90b]. editor [WW03, AB03b, Ano01l, Ano02g, Cas93, Che92,
Cho93, Her92, Kri92, Lin93b, Pan09, Pra16, Sch90, Sto90]. Editor-in-Chief [Pra16]. Editorial

[AS15, Ano94e, Ano95k, Ano96k, Ano99i, Ano02e, Ano02f, Ano18k, Ano18l, Ano18i, Ano18], GHS94, GHS95, GHS96, GHS97, Hol117, Kai92, DF12, Ano03c, Ano03d, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a].

Editorial [Ano16b, Ano16c, Ano16d, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h]. editors [XO05, AP93, AL99, Ano01j, Ano01k, Ano02h, Ano02i, Ano16k, BD00, DOP98, ES97, GGB93, GC95, JW94, MC93, NT90, OW01, PN97a, PN97b, PA96, SH92a, TFV15, BG90b, TY95, WC05]. educating [LMB17].

education [Hua17, MBG17, Nee17, NKSA17]. Effect [ACD93, IS06, BL05, JZ05]. Effective [Ano97k, BC01, GM96, HH97, KO11, LT96, MAR05, QM01, TC92, VHR93, WLID02, YZS96, AM12a, BV13, BCK+13, Cza13, DK04, FZWL12, FWM+10, FI04, JJWX11, KHW13, NAK04, SNCP12, WMY+17, YCH+10, ZJ06]. Effectiveness [GMM00, HKT+91, KS97a, LKK94, NRS95, MA11, TC03].

Effects [AMB95, DZDZ01, KB96b, U+17, CK88, HLS03, KG04, SPBR91]. Efficiency [EH01a, GG01, LdSB+18, AHG12, AG12, BC11, BYH+17, ESCV15, FRM15, FCP+15, GSWW04, HRM17, HJLR12, LB12, LZSL06, Ren11, S186, SWHB17, SHC14, YF09]. Efficient [AOSM04, AP94, AZC13, AKP95, AG86, AMK+07, BCO+12, BM16, BGI+03, BAGS95, BAH04, BRP03, BJ+96, BDH+97, BMIM07, CM04, CRK+09, CCK00, CCC92, CW12, CN93, CS95c, DDNS06, EP90, EL97, FGG08, FBK98, FRM05, GPT06a, Gae93, GR96, GCKM97, GM94b, GRS97, GP90, GKH96, GNW03, HQPT99, HH01, HSSL04, HASB16, HHC98, HBB93, H094, Hwa97, IR12, Iqb92, JBS14, J93, KPC96, KHS96, KK10, KLZ97, KKB+06, KS13, KR11, KA97, KBG92, L05, LHHH11, LDP+14, LY01, MD01, MLDG12, MB13, Mat93, MHC95, MS99b, NB93, NT93, NIR86, ND12, OS96a, OK01, OP96, Pad91, Par98, PA97, PP13, Pen11, Pra93, RV13, RSS99, RS96, Rao16, RMU14, Ric98, RJMC95, San02, SMP15, SW96, Sch13, SSHC00, SMP17, Sin87, SWLZ17, SCLL10, T92, TR96, Tur12]. Efficient [VB02, VBM90, WRC+02, WHT00, WCCH18, XMN92, XLI18, YD98, YZLT09, ZB97, Zhe92, ZH07, dSAJ15, ACH17, AFA13, AR17, Ara13, BFH+17, BM11, BKC+15, BK13, BOY10, BR91a, Bic90, BCK+13, BHK17, CMR+18, CKN07, CP106b, CGW+03, CMN12, DCM10, ESGQ+11, EDH+17,
GDCC18, GKS15, GT04, GLD06, GYP13, HSS10, HS06, HRJ94, Hsi04, IEWK17, Joh87, KTP17, KVA18, KyLPC17, KL05, KSSK16, KA05, LK13, Lai14, LMZ04, LW16a, LS91, LSC15, LR03b, LHP07, Lon04, LLDL15, LA06, MSF13, MPS16, MPN17, MAHKZ12, NF16, Nic07, PPSV15, PVGG06, RM11, RLA16, RLA17, RFS12, RT18, SB12, SX08, SZMK13, SM08b, TLY12, TGPUC16, TMK17, UBES10, VRGS17, WJV07, Wan07, WTC08a, WTC08b, WMW09, WLST16, WTWZ16, WIB12, WH17, WGCZ09, XLC18, XHZ10, YSS11, YLB15, ZCMY12, ZLL14, efficient [ZSCX18, ZB03, ZWWX16, ZHLQ12, ZHO03, LM09]. Efficiently [MT95, Coh90, CCM06, FP03]. effort [Bar05, MAM05, QGZP17]. EFS [MSK16]. EGEE [VPHML06]. egress [MCAS12]. eigenanalysis [TYA16]. eigen solver [ABGV11]. Eigenvalue [Kau94, LYL08]. eigenvalues [VGAB08, ZB03]. Eisenstein [HBAD15, HS17]. Elastic [FGG17]. elasticity [MMVL11]. elderly [HRM17]. Electing [SK94]. Election [AS96, KB96a, DLV11, DGDF10, FKK04, KGN89, Pel90, SS05]. Elections [FM96]. Electric [IWM97]. Electrical [MO97]. electron [DAG17, FCG04, FGG08]. Electronic [WH97, AA93]. electrophysiological [HES11]. Element [BCV94, CSS94, PPTV10, FC14, KME09, Ren11]. elementary [FK89]. Elements [GB93, KNS91]. Eleven [BSB01]. Eliminating [DR98]. Elimination [BPST96, BMM97, CS95a, Cap87, ESGQ11, KA91, Vel89]. Elimination-Based [CS95a]. Elliptic [PSE01, BGH03, SKH15]. ELLPACK [ZGG14]. ELLPACK-based [ZGG14]. ELM [CLOL17]. EM-4 [BAM93]. EM-KDE [EHL15]. embed [SKK91]. Embedded [WA02, BM17a, CNLGL18, CLCK04, CkLCK05, CRJ10b, DQR10, FWM10, GZG17, GSWW04, KR06, LLLC15, LCB16, MBR08, MGRRK14, PRHB06, XLL15, YZX11, FWM10]. Embedded-TM [FWM10]. Embedding [ANS97, Amn94, AM93, BL89, CCCM96, CS95a, Efe91, Efe96, HKMU98, HJ90c, LSC00, LPS10, Lin03, NPI10, PW16, PM92, QM01, RY93, SHL95, SLFP98, TT98, TLW94, TL96, Var91, Wag89, Wag93, Wag94, Wan01a, Wa85, WFL98, BG90a, FLPJ07, FT04, LF17, PW17, YLZ18]. Embeddings [GH93, HM01, HOS94, KC98, MT93a, OS97, OD95a, CL91a, GWN03, YTH07]. emergency [HPB10]. Emerging [Ano02v, BKC15, KHT14]. Emitter [FPM14]. Emitter-coupled [FPM14]. Empirical [FTC00, LR93, LGK12, NXTK17, XZS96]. Employing [AGM10, PKW10]. empty [Deh90]. Emulating [KMS10]. Emulation [JH94, PRW94, LST17]. Emulations [RGD03]. Enabled [MLW00, CSL15, CCN06, GQZ18, GRJ15, KTF03, ZHLQ12]. Enabling [ETS14, FCG14, JKIE13, SP08, TT10, ZPI06, ZCF17, DKK15]. Encoded [JH94, CLV95]. Encoding [AAL95, CP10a, WLC25, ZWQ16]. encrypted [SWW17, ZHT16]. encryption [WCCH18, ZAB17]. End [Ano08, Ano10, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f,
Ano14g, Ano15k, ZLCJ12, FGP05, GBMZ07, HPSM91, ORWT+18, WG11, XLL15. end-systems [GBMZ07]. End-to-end [ZLCJ12, WG11, XLL15].

enDebug [CV16]. endpoint [Hsi04]. endurance [WCWO17].

energy [ALF03, BOY10, BYH+17, DKM10, DKA01, FWM+10, GQZ18, GYP13, KR12, LK13, LBMG15, LL10, LW16a, Li16, LNAL17, LSC+15, LR03b, LY13, MGSG12, PIR17, QSL+08, RM11, SP13, SSGZ13, WH17, XHZ+10, AHG12, CV16, ECLV12, FRM15, FCP+15, FKL08, GHY10, GDCC18, GTN+06, GL12, HP06, HRM17, JZZ+17, JZF+15, KR10a, KSL04, KyLPC17, KCR14, KSSK16, LR14, LCW05, LL12a, LSC+16, LLDL15, LCB16, MMK+11, NS12, OMT+17, PCMM+17, RWA+13, RLA+16, RLA+17, RFS+12, RT18, RTZ11, TLY12, VRG17, WMW09, WLST16, XS11, YL12, YZS15, YAK15, ZW11, ZBY+15, ZWWX16, ZQL12, MSK+16]. Energy-aware [GQZ18, LBMG15, LNAL17, LY13, LR14, MMK+11]. energy-constrained [JZZ+17, KSI04]. Energy-efficient [DKM10, GYP13, LK13, LW16a, LSC+15, MGSG12, WH17, XHZ+10, GDCC18, KyLPC17, KSSK16, LLDL15, TLY12, VRG17, WMW09, WLST16, ZQL12]. Energy-Friendly [MSK+16].

energy-performance [ECLV12]. energy/power [OMT+17]. energy/power-aware [OMT+17]. ENF [CK97]. Enforcing [KMF+05, Kub17]. Engine [KSL05, Ram92, HVW16, XTN12, SD88b, XP10]. Engineering [LWR+03, BCD+15, CCE+17, Gai87, Nee17, PRHB06]. Engines [SD00]. Enhance [WLID02, DZC17]. Enhanced [BOSW94, MD13, OPG08, OS96b, OSZ98, LLDL15, dOBG+15].

EnhancedBit [ARD14]. Enhancement [KJ84, TC92, DK04, NQM12, RH05, RM09, TBG+17]. enhancements [ESGQ+18, LU14]. Enhancing [AYEI98, CGN+13, CRA+08, GRR13, HWLR14, dAMP+13, OM10, QGZ17, CCHC09, JBY+05, VA03, WXZ05]. ensemble [SV18]. Ensuring [JF95]. enterprise [BJPPM+08, CCEB03, LSH+13]. entities [Ahu90]. entity [MPN17].

Entropia [CCEB03]. Entropy [TV092, VO89, DFHH13, WMW09]. Entropy-Driven [TV092]. enumeration [STTP09, SR90, WCH+17]. envelope [GC07]. Envelopes [BMRC98]. Environment [AT94, AD95, ALL99, AA95, BB93, CP97, CLZ02, CSMM10, CCR92, CHR94, CB96, DKA01, DRB01, GYAB11, KZ96, KC99b, LC90b, LAS+97, LI99, MHH93, RS92b, RS94, SG93, SRG90, SS00, WH97, ZL93, AOS+05, CK88, CCS06, JLVX11, KVS07, KSS+07, KK10, LLLY08, MYYY17, MAR05, MLK12, MML07, SSKS11, SSM+06, WD13].

Environment-conscious [GYAB11]. Environments [CTD99, CLRW00, CP99, KRW96, KR97, KER01, LTH97, PR97, PRG88, SSK96, WSRM97, WSA+94, ATZ07, BAL05, BAP06, BH05, BSMM08, CTKA17, CLL09, DBC03, DWX10, ECLV12, FRM15, FMIF18, JS86, KV10, KAS07, KLC+11, Ksh12, LY91, LSH+13, LWR+03, LML+10, LSWC14, MK08a, NP09, PO06, SJ12, SZB16, SIZ10, SJS11, TIZ11, TG03, WMS12, WG11, YTO5, YCC05, YWGI15, ZLWZ18]. Ephemeral [AGMS16].

epidemic [AHZ11, MSF+13]. epidemiological [RA06]. epistatic [HLS03].
Fat-tree [Zah12, SK05b]. Fat-trees [ESGQ+11, ESGQ+14, YMLP14]. Fattened [GMVRGS16]. Fault [AE95, AM97a, AM95, ABBD14, BXA08, BS97, BMM97, BW95b, BMKT14, BPA06, BCH95b, CLMRL15, CRV94, CL93, CKN07, CY95, CC94, CDR90b, CF98, DBCF13, FY86, FM99b, GNS09, GRR93, HGCC96, HTHH02, JBA15, KP00, Lan94, LB17, LGG08, LC96, MD01, MMRS98, MPG17b, Pak98, PB95, Piu01, PKD97, PM92, RLS96, SCC92, SS95, UR94, VR95, WIK97, WW97, Wu94, XCS06, XZZ16, mYyF92, YBOY97, mYA91, ZYo02, AA14, AA16, ANEA13, AOSM05, ARV14, BB87, BJ15, BDDL09, BPP05, CL91a, CW09, CW17, CDR09a, CMT92, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLJ07, FZ90, JBS14, KG10, LCC+05, LHM14, LH05, LFGM17, LP88, PR06, PL06, PAS15, TCH12, ZVo09b, ZJo06]. Fault-Detection [CY95]. Fault-Induced [WIKC97]. Fault-Sensitive [VR95]. Fault-tolerance [BJ15]. Fault-Tolerant [AE95, AM97a, AM95, BW95b, BCH95b, CRV94, CL93, CC94, FM99b, HGCC96, HTHH02, KP00, Lan94, LB17, LC96, MD01, PB95, PKD97, SCC92, WIK97, Wu94, YBOY97, ZYo02, ABBD14, BMKT14, BPA06, CKN07, GNS09, JBA15, LFZ+17, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLJ07, FZ90, JBS14, KG10, LCC+05, LHM14, LH05, LFGM17, LP88, PR06, PL06, PAS15, TCH12, ZVo09b, ZJo06]. Faults [LT96, WFL98, CP17, ISM07]. Faulty [GP97, HIKM94, NSLK99, Pel95, RS96a, Tse95, TL96, Wan01a, Wu02, YTH94, PP00, Ch05, DD96, PK04b, SK91, YTH07]. FCFS [Ara13]. FDM [ORR03]. FDM/FEM [ORR03]. FDTD [SS11]. feasibility [MAKW13, RB12]. Feasible [ESGQ+18]. feature [CLC+17, DKC14, LLS+16, PFJ04]. features [CGC16, dAT17]. federate [SJB12]. federation [CTC+10]. Feedback [MTM10]. Feedback-directed [MTM10]. fetch [AK07]. fetch-and- [AK07]. few [Sch14]. FFT [ABZ95, HR92a, JMS86, JGMY17, RKK97, Tay87, WJ14]. FFTs [BH93]. Fibonacci [Alu97]. Field [BA92]. fields [CDR90, EI07]. FIFO [BCLR96]. File [FDP93, GL92, HWLR14, KE93, MS96, WDDK09, WMG01, CTC11, DT11, DLW+12, HOE+09, KYS13, KUA07, LCM+06, MXS112, No12, SC04, SZ09, SSX14, Wan06, WZZ+17, ZJo06]. file-sharing [KU07]. Files [BNS00, JSM94, Lin93a, WRC+02, ARDQ18, BCK+09, Che89, WJ12]. Filling [BFC94, ST12]. Filter [LWO2, VGS17, SMPMLVS11]. filtered [SMPMLVS11]. filtered [LKB+15]. Filtering [BTG02, CH06b, Kep03, PVG09, ZCK+02]. financial [PVRS17]. find [Hol90]. Finding [AFS96, BS97, BE95, CCC92, DH94, DWHL87, FSV14, FTL92, HHC98, KRSZ02, Kar02, MT97a, MHRP05, OMSGNSG05, PG06, SH92b, RKS87, WCWH03]. Fine [CLZ00, FR92, IBP08, LFA96, Man13, MPV12, NS97, PY96, SA93, WD94, FW05, FSD04, GVA+08, IK87, PL03b, TKHG04, ZCF+17, LM09].
GM13, GFPC14, HSH10, HDT+05, HRM17, KTP17, KKS+12, KL05, KBC+10, LV15, LS06, MCM+11, MJ03, Men18, NLB+18, PMAL11, PAG+18, RBN11, RGD03, RW02, ROB+18, SAL10, SMH+14, SGdSS13, TZH+06, WTW16, WHW+17, WMG13, YT05, YLB+15, dAT17]. **Frameworks** [KRS13, KRS14, DAB+14]. **Fraud** [BST01]. **Free** [BP02, CMS92, CG02, CH92, DP00, HPT02, HS93, KM97, Li92, PA97, PA01, RP98, SJ96, SH98, ZN01, AA14, AKBD10, CB06, DFP06a, Dav17, FKKR16, HV09, HSY10, HA06, JBS14, KL05, LASS15, MYM10, MKM16, Pen11, SD91, SdLB+10, ST05, ST08b, TT07, VBDRC13, Zah12, dOBG+15]. **Free-Space** [KM97, RP98, SH98]. **free-surface** [VBDRC13]. **FREP** [KR12]. **frequencies** [LdSB+18]. **Frequency** [MYD+11, RTZ11]. **Frequent** [AAP01, LT10, YZG18]. **Frequently** [LL95]. **Friendly** [MSK+16]. **Frog** [KM17]. **front** [ORWT+18]. **front-end** [ORWT+18]. **FSI** [KHT+14]. **FTN** [Seb91]. **Full** [BBN93, SWW+17, SR88b, SR90, HH97]. **full-access** [SR88b, SR90]. **full-text** [SWW+17]. **Fully** [BNP02, Fer95, KP00, SJ95, CP04b, DM90b, DTK11a, tH90, SI89, TR08, YME06, LM09]. **fully-distributed** [DTK11a]. **Function** [AGG98, HLJ98, MJ94, SB02, ABO+17, BNN93, SWW+17, SR88b, SR90, HH97]. **Function-Composition** [HLJ98]. **Functional** [AB84, Mah95, SC95, QSL+08, WM+07, YJB91]. **Functions** [TG97, VR94, AMT13, CMR+18, MM15, RMU14]. **Fundamental** [GL92]. **Funnels** [SZ00a]. **Further** [PMV06]. **Fusing** [TVT96]. **Fusion** [AMB95, STN92, QSL+08]. **Future** [AE88, KS95, MNK12, ACG+15, ECLV12, LY13, MKN14, PSC+16]. **Fuzzy** [BCF97, DFL017, TZ11, KKTZ13, KC04, NC09, SMO14, ESCV15]. **fuzzy-based** [NC09]. **fuzzy-decision** [KC04].

G [GDL+11]. **G-PaMeLA** [GDL+11]. **G2** [KTF03]. **Galactica** [WL92]. **Gallo** [Wei98]. **Game** [AaJS01, BS00, KK10, PC11, Sch89a, YpGyLJ13, Zep91]. **Game-Theoretic** [AaJS01, PC11]. **Game-Tree** [BS00, Sch89a]. **Games** [DKY01]. **gamma** [KMC16, VR86]. **Gang** [FR92, FR96a]. **gap** [BJS03, KL11, KR17]. **GAPP** [KA91]. **Garbage** [KS00]. **gas** [GGRV+12, KZ96]. **Gate** [OM90, NVK14, WCF14]. **Gate-Array** [OM90]. **gateway** [KKKP12]. **gather** [BM04b]. **Gathering** [Ok89]. **gating** [CZPP16, ZCF+17]. **Gauss** [Dav17, H094]. **Gaussian** [BPST96, BM97, Cap87, DPW85, HAC17, KA91, Vei89, WL11]. **GbE** [LB12]. **GCD** [Ps96]. **GCSPNs** [Buc92]. **GEL** [LTIK05]. **GEMM** [JM15]. **gene** [WSH+03, WCEA10, FGM+03]. **Genehunter** [CPO+03]. **General** [Ano96l, BHR05, CG02, GFB+92, KL08b, Sch95, VA07, AZW13, BCF05, CBM+08, CY06, CW15, FK89, GFPC14, LB09, LV15, LCB16, MSAZ10a, MSAZ10b, OFS03, PK05a, Pel90, RGD03]. **General-Purpose** [GFB+92, KL08b, CBM+08, LCB16, RGD03]. **Generalization** [GCM95]. **Generalizations** [Omn94]. **Generalized** [AKPT99, Bai94, BET94, BR91b, DMCFCM03, Fer93, FAM96, JH92b,
Lee94, PE93, SSB91, WIKC97, XL92, XL95, YN92, ZLPP01, FK89, HSH10, KMP+06, Luk85, Nic88, TDM05, WRW13, YCC05, ZLC114. generals [CBV08]. generated [MTM10]. Generating [AAK+13, AMS94, Bec96, CGL+95, CJ07, GHSJ96, SS96, SCMHI13, SOG94, TH02, Wri91]. Generation [ASR93, AAP01, AS94, CCM01, DT97, Kap93, KHS96, KBC+01, Lin93a, NC97, RGS00, RNSB96, SSHC00, ABC+09a, ABC+09b, AFM09, Arb89, BCK+13, FK89, Gao89, GMXA07, HPB+10, JK13, LC92, Meg91, NAB+11, ORW+18, RKK06, SB04, Trä09, Zsa16]. generator [Pet18, WSG91]. Generators [Alu97, Bro96, PK89]. Generic [PA01, AK07, GM13]. Genetic [ASR93, AAP01, AS94, CCM01, DT97, Kap93, KHS96, KBC+01, Lin93a, NC97, RGS00, RNSB96, SSHC00, ABC+09a, ABC+09b, AFM09, Arb89, BCK+13, FK89, Gao89, GMXA07, HPB+10, JK13, LC92, Meg91, NAB+11, ORW+18, RKK06, SB04, Trä09, Zsa16]. genetic [Pet18, WSG91]. Genetic-Algorithm [WA02]. Genetic-Algorithm-Based [WSRM97]. generator [Pet18, WSG91]. Generators [Alu97, Bro96, PK89]. Generic [PA01, AK07, GM13]. Genetic [ASR93, AAP01, AS94, CCM01, DT97, Kap93, KHS96, KBC+01, Lin93a, NC97, RGS00, RNSB96, SSHC00, ABC+09a, ABC+09b, AFM09, Arb89, BCK+13, FK89, Gao89, GMXA07, HPB+10, JK13, LC92, Meg91, NAB+11, ORW+18, RKK06, SB04, Trä09, Zsa16]. generator [Pet18, WSG91]. Generators [Alu97, Bro96, PK89]. Generic [PA01, AK07, GM13]. Genetic [ASR93, AAP01, AS94, CCM01, DT97, Kap93, KHS96, KBC+01, Lin93a, NC97, RGS00, RNSB96, SSHC00, ABC+09a, ABC+09b, AFM09, Arb89, BCK+13, FK89, Gao89, GMXA07, HPB+10, JK13, LC92, Meg91, NAB+11, ORW+18, RKK06, SB04, Trä09, Zsa16]. generator [Pet18, WSG91]. Generators [Alu97, Bro96, PK89]. Genetic [ANT02, CGKK97, KRSZ02, KA97, OA10, PAJC97, WSRM97, WA02, WLID02, AL04, LK13, LC92, Meg91, NAB+11, ORWT+18, RKK06, SB04, Trä09, Zsa16]. GMA [ZFS07]. GMAC [GZMC08]. Gnutella [BAL05]. go [PL03a]. Goal [CJ17]. Goal-based [CJ17]. goals [TDAR18]. Godson [PTK+13]. Godson-T [PTK+13]. GOM [YL+15]. GOM-Hadoop [YL+15]. Good [BEE00, DP99, SK94]. Google [DKC14]. Goscinski [BCC95]. Gossip [FCML13, FM07, LT10, WWW17a]. Gossip-based [FCML13]. Gossiping [KLC05]. GPS [AKBD10].GPS-free [AKBD10]. GPU [YJL16, ARP18, BCM15, BDRB14, BFKW13, BHS13, CSL15, CMMT13, CW15, DV13, DFHH13, DCA+15, Eme13, FSV14, FSV17, GMMP12, GLW14, GKS15, GMS+13, HVW16, IHI16, JGMY17, JDJ15, KPS15, KKH13, KC17, LLKY13, LST+13, LPLFMC+12, MB13, MRT18, NFHL13, PDP17, PDB13, RV13, Ren11, RMU14, ROB+18, RRS+08, Sch13, SS11, SCMHI3, SDG17, SA08, Ski16, SDG08, TH11, TSD08, TRS+12, TYA16, VBDRC13, WLL16, WDI13, WH17, XLIH18, YLL17, ZMCP11, ZHU15, ZWQ+16, dSAJ15]. GPU-accelerated [DCA+15, Eme13]. GPU-based [BCMV15, BDRB14, BFKW13, GMMP12, PDP17, Ski16]. GPU-Investigations [Sch13]. CPU-sorting [SA08]. GPUDirect [ARP18]. GPUs [ASES15, BBBC12, BBR13, BCK+13, COV13, CGN+13, DP16, GOH+13, IBP08, JMI15, LMGLGL17, LW16b, LV15, MBW16, NSKN17, NHO+13, PVR17, RGU08, SHT+08, TH13, ZSW14, ZGG+14]. Graceful
Gracefully [BBR94, CGA98, LH92, RCB93]. Gradient [Bas97, BM08, GLW14, LR14, PB09]. gradients [McA89]. GrADSolve [VD04]. Grain [FR92, LFA96, Mah95, NS97, SA93, CT94, FW05, GSWW04, PL03b, TKHG04]. Grained [BR96, CDR99, CLZ00, DFRCU99, HK96, PY96, SR97a, SR97b, WD94, BM04b, FSD04, GVA08, IKS87, IBP08, Man13, MPV12, PHS04, SMO14, YZS15, AAD10, ABCM07, GTN06, GJA08, NGO06, SNCP12, TZ06, VD04, WW03, WLL08]. Gram [ZLRP91]. Grammatical [RBB17]. grand [SIY14, SAB92]. Granularity [CDH84, WCL13]. GRAP [FGL11]. Graph [AyJ93, CCM01, CHGM01, GJP96, HJ90c, Kar95, KK98a, Lat95, MJ94, OSZ98, RW07, RWY93, RLS96, SAOKMA02, TVS97, TLW94, WCE97, ZW00, BKC15, BDjQ86, BM08, CSJ13, DeG88, DCA15, GHC17, HLM90, KSSG14, LK15, MP09, MMS09, NTK17, PK07, PS14, Ros89, SSKC15, SW91, SGR03, SM15, WCC02, WCH17, YFBY17, ZNQ93]. Graph-Based [CHGM01]. graph-partitioning [GHC17, SW91].

graphene [KRM14]. graphene-CMOS [KRM14]. graphic [SK15].

Graphical [CMT93]. Graphics [BHS13, DDGK13, ATDH13, BK13, CLA18, CBM08, KL08b, KME09, PYP10, SCB08, SIY14, ZMC11, Eme13, GLGLBG12, YL12, YJL16].

Graphs [ANS97, AKPT99, AS96, AKP95, BS97, BP98, CP98, CA95a, CDF01, DDD08, DS84, DH94, EMM94, FA95, GY92, GS98, GSG93, GS99, HO94, IZ95, JS92, KK98a, KW02, KA97, OS97, PRW94, Par98, RDL95, TL96, VB96, WIK97, WLD00, AAK13, ANP07, BC06, BKS05, BD05, BCF14, BKCM17, CP04a, CDDL10, CDS10, DM17, FT04, GK10, Hsi04, HS03, JPD17, Lin03, LK99, MHPR05, MSZ05, NCA12, Nik04, PD05, PK04b, SS03, SP90, TBG17, Ten16, TSFZ14, WWW17a].


Greedy [KNS06, BGM08, HDJ08, HKW13, LLS07, Cho90, dOBG15].

green [AG12, BFP17, WCL13]. Grex [BK13]. Grey [FGL11]. Grid [AKPT99, BR02, BAK03, Hua17, MD13, SDG08, TF01, AAH17, CP01b, CCE03, CGW03, Ei07, FGZ03, JdSJC15, KRS11, KV10, LBE03, LFH03, LL12a, LLWC17, LB09, MC03, PF04, SMB10, SZL10, TLQS12, VD04, WH17, ZV09b, dKG10, AOS06, ABCM07, BAS06, CS06a, CTT08, CC06, BDC03, DW12, ED05, GBA08, KTF03, KVHS07, KKS08, LCC05, LSH13, LLY08, L05, LL07, LTK05, LS10, LR05, MCT06, RAB08, SJB12, SV08, SAOKZ05a, SAOKZ05b, SZX06, SSM06, SFE06, TYH09, TMM06, TD07, VPHM06, WS06, YT05, YW08].

grid-aware [FGZ03].

Grid-Based [BR02, CP10b, VD04, KKS08, GBA08, LLY08].

Grid-computing [BAK03, SAOKZ05a, SAOKZ05b]. Grid-enabled [KTF03]. GridBench [TD07]. gridding [GHO13]. gridding-accelerated [GHO13].

Grids [CCCM06, HKMU98, HOS94, ACFK07, ARDQ18, BMT12, DJH11, GVBB13, GRDB05, GM14b, JV09, LKS14, LL10, Mit07, PHS04, SMO14, YZS15, AAD10, ABCM07, GTN06, GJA08, NGO06, SNCP12, TZ06, VB08, WW03, WLL08].

grooming [FMM08, WG08, WCL13]. Grødstl
Group-based [KKLJ14, TC13]. Grouping [CWP98].

Ground [BFKP04]. Growing [CRFS94, WLKR09, IZ12, MGG03, ORGRV+12]. Growth [WCKD06]. GSM [TM06]. GSPN [CCM92, CCM01, SM92b].

Guarantee [JM14, MZZC12]. Guaranteed [HWWH08, LNA12, LNAL17, NGQM12, PY09a, WCWO17]. Guaranteeing [Sch91]. Guarantees [MS00, OY00, ESCV15].

Guaranteed [HWWH08, LNA12, LNAL17, NGQM12, PY09a, WCWO17].

Guidelines [Ano00d, Ros99].

h [CP04a]. HA03094L [Ano04e]. Hadoop [FRM15, GYY+14, HLWR14, YLB+15]. Half [RS94]. Half-Duplex [RS94]. Hamiltonian [DP09, Hsi04, HBAD15, LSC00, Nik04, Wan01a, WCC02, YTH07].

Hamiltonicity [HTTH02, Ste17]. handheld [WL04]. Handling [BW09, CV09, SYG02, KVA18, KV10, LNW+12]. Handoff [SK05a, FCZ+12, ZBR11]. Happened [HCR12]. Happened-Before [HCR12]. happy [KSSK16]. Hard [DJ98, GFPC14, BR01]. Hardware [BK18, DGNW13, GS00, MD01, MCAS12, RPS93, SCC+06, SHA17, TF92, The02, TH08, VHS03, Zsa16, ABC+09a, AF06, ABO+17, BJ030, CV16, CGC16, CP17, CM12, FWM+10, GKS15, GVA+08, HDJ08, Hs17, JJ12, KDA+13, KC17, LMSK18, MTM10, Nik03, NAK04, PVG09, PAG+18, QGZP17, SV18]. Hardware-accelerated [DGNW13, Zsa16]. Hardware-Efficient [MD01]. hardware-generated [MTM10]. Hardware-Only [GS00].

hardware-software [CV16]. Hardware/software [SCC+06]. hardwares [SKH15]. Hardware [BK18, DGNW13, GS00, MD01, MCAS12, RPS93, SCC+06, SHA17, TF92, The02, TH08, VHS03, Zsa16, ABC+09a, AF06, ABO+17, BJ030, CV16, CGC16, CP17, CM12, FWM+10, GKS15, GVA+08, HDJ08, Hs17, JJ12, KDA+13, KC17, LMSK18, MTM10, Nik03, NAK04, PVG09, PAG+18, QGZP17, SV18]. Hardware-accelerated [DGNW13, Zsa16]. Hardware-Efficient [MD01]. hardware-generated [MTM10]. Hardware-Only [GS00].


Heterogeneity [Hzs12, Las13, XLL15, BKSK05, CL03a, XQ07]. Heterogeneity-driven [XLL15]. Heterogeneous [ANT02, Ano97k, BSS97, BPR99, BSB+01, CP97, CA94, CEF+95, DAYA02, DBP94, EKNS17, HS94b, HC97, KL01a, KRM14, LAS+97, LHHB+01].
MAS'+99, MSd'+95, MP96, NRS95, NDZA99, PP92, SC91b, WR97, WSRM97, Won99, YZ96, ALM'+16, AAD10, Amm16, ALF03, BKC'+15, BD05, BCFF05, BR08, BRP03, BKC17, BEN12, BH05, BSMH08, BSS'+13, CSW08, CCK'+08, CCK11, CDR09b, CGW'+03, CJ17, DK08, DK11, DÖ06, FMR05, GQZ18, GNT04, GZy14a, GWWL94, GMX07, GAOHG17, Hus17, JST12, KHN17, KUA07, KyLPC17, KSG13, KSS'+07, KAS07, KN18, KMS'+06, LK13, LR06, LLL06, LLKY13, LMR05, LLD'+12, LDP'+14, LLY15, LNAL17, LPX05b, LV15, LGM17, LS07, LXZ13, MGS12, MVBl05, MTS90, NDP13, NFHL13, ND12, NP09, OJP+18, PKN08, PKN10, PP13, PTA08, Pla08, QJ05, QGL09, REK10a, REK10b, RN04, SSFP11, SS11, SX08, SCS'+08, SCMS12, SZMK13, SHL'+13, SSM'+06, SSN1, SX08, SCMS12, SZMK13, SHL'+13, SSM'+06, TLLL10, TLLV10, TFMS15, TG03, UAKI06, VBF13, WQL14, WTWZ16, WSG91, WJ12, WG11, WYTX13, WJ14, XLHT13, YLL17, YH07, ZMG'+16, ZTFK16, ZLWZ18, ZSLC18, ZSLQ12, ZB13, ZFAD17.

**HeteroMPI** [LR06]. **Heuristic** [BA92, DDD98, EHMN95, KLZ97, XH93, DK11, HS06, KD03, KKS'+12, PKN10, PM05, SWP90, VB08, YFBY17]. **heuristic-genetic** [DK11]. **Heuristics** [BSB+01, GY92, GJP96, IAS'+92, KUA07, TSCO1, AKSM08, JST12, KA08, LLS07, ZHO03]. **heuristics-based** [KA08]. **HEVC** [Lla17]. **hexagonal** [GSSS03]. **HHN** [YP96]. **HiCOO** [YQT+12]. **hidden** [HB11]. **Hiding** [HF02, WL92]. **Hierarchical** [AGF94, Buc92, BM95, CAB94, FR96a, HR92b, HR92a, yHY97, KZ06, LLJ00a, MS00, MD13, OMP90, SHT'+95, TM06, TJ92, Ten84, TW99, TTH12, VSIR91, WHT00, YQT+12, YP96, AAH17, AGMS04, BMT12, BAS06, CCO04, DE91, DM04, EDH'+17, GY10, IZ12, LK13, LLD06, RH05, RR05, SS05, TLQ12, WCWO17, WLL08, ZZ90, dSS11]. **Hierarchical-Memory** [VSIR91]. **Hierarchies** [VN93, BW89, DTK11b]. **hierarchy** [Pad91, WYTX13]. **High** [ABDS02, BJ99, BBH'+97, BNSP99, CLA'+18, CY99, CD98, DS02, DYL'+12, FGKT97, FC14, FM99b, GP93, HES10, JSCB95, JLR+97, KMKD97, KS95, KRS13, KRS14, KRS01, LC97, LS01, MR94b, MBG'+17, Nee17, NKC'+97, NTC03, PF08, PVG09, PPB'+17, SWHB17, TF92, TMM06, VFAD17, XMMD17, AM13, ARI17, AB03b, AGWY11, BSW07, BDDL09, CCC'+04, CPB02, CTX08, Cuz11, Cuz13, DK08, DB08, DF12, DAB'+14, DMS'+16, FHL'+15, FGPO5, Fu10, GOH'+13, GTN'+06, GMSS'+11, HOE'+09, HRG'+11, HC04, HT90, HVW16, ICQO'+12, JBY'+05, KVNV17, KSB11, KME09, LMSK18, LWRO+03, LSSX14, LV07, LZS06, MSGS'+13, MZC18, MG09, MLK12, Nap90, No12, NRM'+09, PK07, SPRG'+12, SD91, SC04, SAB'+92, SA11, SR91, SGdSS13, VAS'+13, WRW13, ZW13, ZWQ'+16, dAT17, MMVL11]. **High-Availability** [LS01, Fu10]. **high-dimensional** [HT90, PK07, WRW13]. **high-end** [FGPO5]. **High-Level** [BBH'+97, KRS13, KRS14, CCC'+04, DMS'+16, SGdSS13]. **high-order** [KME09]. **High-Performance** [BNSP99, CY99, FGKT97, JLR+97, KMKD97, KRS13, KRS14, KRS01, PBB'+17, NTC03, AB03b, CPB02, Cuz11, Cuz13, DF12, FHL'+15, GMSS'+11,
HRG, HCZ04, ICQO, JBY, LWR, LSXX14, LVB07, MGS, NRM, SD01, SC04, ZW13, ZWQ. High-Priority [TF92].

high-radix [MG09, VAS]. high-resolution [GOH]. High-Speed [BBH, SR91]. High-Temperature [SWH017]. High-Throughput [FM99b, CLA]. Higher [GSSS03, HS17, AM06].

Highly [BDHF90, CAB94, DF17, Joh94, KHT, MD01, NKC, VH93, WIKC07, ATH91, GV86, SM08b, SMT15, Ter16]. Hint [CK13]. Hint-based [CK13]. Histograms [CL14]. historical [SFT04].

history [WBTM09]. HLA [DB11]. HLA-based [DB11]. Hoang [Ano92c]. Hoc [Ano01e, BDF01, GS01b, LAZC00, Pat01, RBP, TM10, AP03, AH11, AH12, ALF03, BFG, BM11, BGLA03, BOP06, BN03, Bon03, CNS03, CW05, CYZ06, CDCD05, DW06, DMB, DB08, EBE08, FCW11, FVCL05, FGL, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LR03a, LPX05a, LW06a, LHW14, LC14b, LR03b, LHT08, NNM, OS05, OM10, OMSGN05, SNC12, SSM, SSO8, SKMM04, SJS05, TCB3, VA03, WBS08, WBTM09, WHS, XHG03, XWC, XG03, YC04, YSS11, YWW12, ZMC06]. HOG [RBG17]. hole [LZC11, PSC]. holistic [WL10, ZHH15]. home [HRM17]. Homogeneous [LS97, BM17a, CRJ10a, GHS86, OOSGV]. homology [DKKV15]. homonymous [AAI, OMSGN].

Honeycomb [JX20, KMMZ06]. hop [BSW07, FCW11, FCZ, JLVX11]. Hybrid [BJL18, Dali99, FA07, Gao93, LWC014, MBM03, OS93, PA15, YS11, ALM, AC, BAMB05, CQ06, CB15, CC16, FX06, GLC14, JAB12, KSJC17, LY13, MBS, MMK, No12, PARB14, SCS, SHLN09, SSL04, SA08, TY17, WLL16, WHW, YLL17, MMCL].

Hydrodynamic [HC97]. Hydrodynamics [PAH, VBDRC].

Hyperbolic [SSK96]. hyperconcentrator [CL90]. Hypercube [AGF94, AM93, BKT95, BC94, CS93c, DP98, DMSH90, DRC90, DFN, FAM96, FPD03, GGD93, GT97, GBG93, HGCC96, IK93, Ik94, JR92, JB98, KB06b, KM09, Lan94, LH92, LLJ00b, LEB98, Man94, MP93, MW95, MYD95, NSL99, NT93, NS94, OM90, RS94, Raj96, SYO94, SCC92, SY01, Sto90, TLW94, TL96, TC92, WIKC97, WAG93, WAG94, XNN92, YPF96, Zia92, Cap87, CCS06, CS10, DE91, Efe91, EAL90, ERS90, Joh87, KAP90,
LEN90, LSS88, LS91, MVM04, MAR87, RS90a, RS90b, RIZ90, SW90, TMK+17, TS91, Wag89, Yan04, ZLRP91, YN92. **Hypercube-Based**
[Zia92, DE91]. **Hypercube-Connected** [LH92]. **Hypercubes**
[AD95, AERBL92, Ann94, CL93, CCCM96, CS95a, CCR94, Efe96, Fag92, FM96, Fra92, GP00, GH93, HM01, HOS94, Kav93, KF95b, L92, LBT94, LW95, LT96, Moh97, OD95a, OP96, Pol95, PM92, RS96a, RJM95, SHL95, SR95, TT98, WW97, Wan01a, Wu94, WFL98, YTR94, BG90a, BM04a, BOS+91, BL89, CL91a, CL91b, Che05, Ede91, FT04, GH93, GWN03, HNSA07, Ho91, HRJ94, LW90, Lai14, Lai17, SS89, Var91, WIB12, Wu85, Wu03, XCS06]. **Hypergraph** [DKUC¸15, ACU08, CBD+09, DHK04, KJD03, TK08]. **hypergraphs** [STA12]. **Hypermeshes** [OK01, Szy95]. **Hyperoctrees** [DFN+94]. **Hyperplane** [HS93]. **Hyperreconfigurable** [LM05]. **Hyperspectral** [PVPM06, Pla08]. **Hypersphere** [AM93]. **Hyperspherical** [RLP14]. **Hyperstar** [AAD98]. **hypertree** [LTD+93].

**I-Caching** [MM93]. **I/O** [AW95, CkLCK04, CkLCK05, Cho93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, EH01a, GGD93, GFPC14, JSCB95, JSWB92, LTH97, MLG05, NSS99, NsPPC02, No12, WHW+17, WLW09]. **I/O-Intensive** [EH01a, CkLCK04, CkLCK05]. **IaaS** [LQM+12, NC13, NKK16]. **IBM** [ASH+01, BAHPO1, BR95b]. **IC** [CMR10]. **IC-scheduling** [CMR10]. **IceCube** [AAA+15]. **IceProd** [AAA+15]. **ICT** [CTS17]. **Id** [HCAA93]. **ideas** [Sch14]. **Identification** [CS95b, EBE08, FCC07, ZAAB17]. **Identify** [XYG07]. **Identifying** [HS03, LT10]. **Idle** [CW93, CM92]. **IDOS** [BA01a]. **IEEE** [Ano93a, BCD00, FA07, HB11, VH08, ZBR11]. **II** [HR92a, KHT+14, RLA+17, SMO14, SAOKZ05b, SR97b]. **III** [CP10b]. **ILU** [SZW05]. **Image** [BJ96, BM95, ELS94, HSJP87, HC95, KSL85, KC99b, LWY97, MWL00, MG98, NEG85, OS98, RS90a, RG87, SR94, SD88b, WS95, ZM94a, CDJ+89, CCN06, GSWW04, HLBM16, IK87, Kep03, KM03, Lee91, LMSK18, LLS+16, MG03, PI90, Pfe90, Sto87, SA90, UAPM07, Wan07, WRHR91, WGCZ09, dAT17, FC14]. **Image-Processing** [KSL85, SD88b]. **Image-to-Mesh** [FC14]. **imagery** [PVPM06, Pla08]. **Images** [SYO94, Ara90, CL85, DH91a, NAK04]. **imaging** [KDO+13]. **Immediate** [Ksh12]. **immersive** [MBH+08]. **immune** [HD10]. **Impact** [Buc92, Kel00, Tze91, YAA10, GSWW04, HHS12, HRF+11, MLG05, RBP+11, SFT+13, SYU07, WCF14]. **Impacts** [PCX+11, PCX+14]. **IMPATIENT** [GOH+13]. **Implementation** [ABGV11, AS95, BAHPO1, BHS+94, CP91, CP92, CS95c, DM90a, DBKF90, EP90, HS97, HB93, KM91, MSS00, NT93, NsPPC02, OS98, OP98, PAJ97, RLO2, RW01, SDS10, Shm95, SM00, Ski96, SE15, SOG94, TVO92, VBM90, XMN92, YB01, ADV14, BFTV87, BG89, CE07, CP10b, CWP12, CPO+03, FGG08, GKS15, Gro85, HES11, JK89, JM15, KHT+14, KTF03, KA91, KP05, ML89, MCAS12, MP10, MML07, MRT18, OO05, OGRV+12, PLB87, SM08b, SA11, Sol13, SMKL93, TR89, Tay87, TdAR18, WXC+08, YO11, dIAMCFN12].
Implementations [DT01, KL84, SAC+98, WPKK94, BCM06, BRPR06, GNS09, ICQO+12, Tát11, TYA16, YBM13]. Implementing [BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17]. Implications [AH94, BS96a, GTN+06, MT96, MG93, SH92b, TSA97]. Implicit [BAM93, Fre96]. Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. impossibility [AP16]. Improve [BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17]. Implications [AH94, BS96a, GTN+06, MT96, MG93, SH92b, TSA97]. Implicit [BAM93, Fre96]. Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. possibility [AP16]. Improve [BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17].
Informed [LM09].

Infostations [BPRG04]. Infrastructure [GC01, AFA13, HPB+10, JAB12, KKKP12, LCM+06, MBS+12, SW12, SWHB17, ZCMY12]. infrastructures [Ano04d, BJPPM+08, FPFW14, NAB+11, TD07, YK04]. Inherent [WW98, CB15]. Initial [dGP06, YS11]. Initializing [Nak95]. initiation [MM04]. Initiatives [Hua17]. injected [GK15]. injection [CP17, LLWC17]. Injured [Wu94, Wu03]. inner [Lis90, ST85]. input [LY08, NAK04, PMV05]. Insensitive [ST02, ST06]. insertion [SS17]. INSIGNIA [LAZC00]. inspired [CMMN10, GVBB13, HD10]. Instance [AS11]. instances [PDB13, ZG13]. Instantly [TOR+14]. institute [Nee17]. Instruction [dSR00, Sol13]. Instrumentation [GP91]. instruments [CKK+13]. Integer [DL98, Fag92, SS96, KKVI05, VM95]. Integrate [dKR+10]. Integral [Teu90]. Integrated [BDHF90, DAYA02, OYO00, PW96, WAE03, YSL08, ZRO0, ZM06, HC09, SM04, WCL+13, XYD06, XHY07, YW15]. Integrating [Bir94, DT11, DRST02, FKT06, Lu01, OK02, PY96, KKKP12, YT05]. Integration [ISZBM99, KL84, LY01, YJKD10, Ano04d, HMV07, Kum17, YK04, ZMZJ17]. Integrity [BC0+12, LZSL06]. Intel [FPD93, LTG14, SMKL93, Zha11]. Intelligence [MT85]. Intelligent [IAS+92, KSP+92, SH98, ZL93, CDJ+89, She09, WJD91]. Intel [KVN17]. Intended [CTC11]. Intensive [ABM+92, BS09, BS11, CA95a, EH01a, SW90, CkLCK04, CkLCK05, DF17, HWLR14, KAS07, MLK+16, RBN11, Ren11, SC04, VB08, WZZ+17, WGI1, ZMC11]. inter [FKLB08, GZG+17, Kan05]. inter-core [GZG+17]. inter-node [FKLB08]. inter-procedural [Kan05]. Interaction [CCM92, DH95, LLCC02, HWLR14, YJL16]. interaction-intensive [HWLR14]. interactions [CK08, PARB14]. Interactive [LHM95, RGS00, CTS17, HSS17, MAR05, TSD08, TD07]. Interactive-Rate [RGS00]. Interconnect [HP97a, WLY01, AHA+16, MG09, UM17]. Interconnected [DH95, EH01a, Guo94, KM97, QMCL94, GMH+91, McA89, SGAC14, TRSS06]. Interconnection [AAD98, AA95, BETD94, CW01, CJA09, DZV96, FD86, KRSZ02, KAM94, Lat95, LYL93, MLW+97, MSH90, MC93, MJ94, OSM4, OO85, Pad93, PL93, SW96, SZB92, Sy95, TH02, Tze91, VB96, Wan96, Wan01b, Wil92, YWP00, ZMPE00, ZW00, dBL95, AR17, BM14, BDFQ86, BHR91, BR91a, Bhu87, BJ15, BR91b, CM04, COK04, CS06b, DE91, FJC04, GJ12, Han91, JBM91, KMC16, KRL87, LK90, LLKY13, MBW86, Pak89, Par05, PW16, PW17, PMCC18, SSB91, SL89, SH89, WCC02, Wil90, ZDC06]. Interconnections [LLJ00b, SL97, THN+93, Oza04, YB90]. Interconnectivity [DS+97]. Interconnects [ES97, HP00, MO97, MG93, PEC95]. interdependent [SNCP12]. Interdisciplinary [NKSA17, CCE+17, Hua17]. interest [Ano16l, REZN17, CTC11]. Interest-Intended [CTC11]. Interface
[BAHP01, BF97, BDH+97, CD98, IWM97, PS01, RS92c, JM15, KTF03]. interfaces [NGQM12], interference [BPRS04, GZG+17, KDH08, WHS+18], interference-aware [KDH08], interleaved [NC09], interlock [CCK88], intermediate [YLC11], Intermittent [DT02], Internal [Bal90, JZK04], International [OY13, Ros07, Sni03, Wee01]. Internet [Bar05, KA08, MXSL12, MZZC12, She09, TB90, WLDI02, WCCH18, XO05, YWJ+18]. Internet-based [She09, XO05]. interoperability [AZW13]. Interplay [ZXGD18]. Interpolation [CWW+95, Goe94, SAOKMA02, Nic07, PHS04, Sch89b, SDG08]. Interpretation [FAGW95]. Interpretive [PH00]. Interprocedural [HHKT96, CK88]. Interrupting [AST12]. Intersecting [FSV17]. Interval [CI03, PT01, Sch87, MHLZ16, Sta04]. Interworking [WH08]. intra [GM13, Kan05]. intra-node [GM13]. intra-procedural [Kan05]. intrachip [MCM+11]. Intrinsic [PAS15]. Introducing [CCE+17, Ada17]. Introduction [AP93, AL99, AB03b, Ano01j, Ano01k, Ano02g, Ano02h, Ano02i, BD00, Cas93, Che92, Cho93, DOP98, ES97, GGB93, Gau06, GC95, Her92, JW94, Kr92, KRS14, Liu93b, LBK11, LR05, MRC93, MGS+06, MKN14, NT90, OW01, PN97a, PN97b, PA96, PRS14, Sch90, SH92a, Sto90, BG90b, TY95, IB04, TFV+15, WW03, WC05]. introductory [Bog17]. Intruder [ISAZ07]. Intrusion [BN02, WL11, LLLY08]. invalidation [OFS03]. invention [MC03]. inventory [GAOHG17]. Inverse [CTZ99, Lla17]. Inversion [SW96, mYyF92]. inverted [WJ12]. Investigating [LCB16]. investigation [CD95, GKS15, PHW+13]. Investigations [Sch13]. Invited [Ano01ma]. invocation [BBB+06]. invocations [BVGV14]. IOV [DYL+12, GRJ+15]. IP [HZY04, HC09, JP09, JBY+05, KERUM04, LAZC00]. IP-Based [LAZC00, JBY+05]. IPACS [KCR14]. IPDPS [OY13, Ben15, Muc13, Pan09, Phi13, Rob09]. iPSC [DHR96, FPD93, SMKL93]. iPSC/2 [FPD93, SMKL93]. iPSC/860 [DHR96]. IPv6 [WZ13]. IRISGrid [VPHML06]. Irregular [Ano96i, DUSH94, FT+14, FR98, FBK98, FY97, KK98a, LWP02, MRRV98, Nic94, NsPPC02, PGRP17, RWK95, TFV+15, WP02, AC16, CB06, FCP+15, GRR+05, LWCC15, MSAZ10a, MSAZ10b, PCMM+17, PA15, SPBR91, TP18, ZSW14]. Irregularly [MMN98]. ISA [KHH18, SSFP11, SCP+17, SM08b]. Island [CGKK97, GB06]. Island-Based [CGKK97]. islands [dGP06]. islands-based [dGP06]. Iso [KF95a]. Iso-rectangles [KF95a]. ISODATA [DSAUM99]. Isomorphism [GS99, KW02, Pla13]. isosurface [WJV07, ZB09]. Issue [AP93, AL99, AS13, Ano95i, Ano96j, Ano96i, Ano97j, Ano99g, Ano01e, Ano02v, BD00, BS09, Chi92, CDJL09, CDJL11, DOP98, Dek00, DT92, ES97, FT+14, FR98, GC95, GMSS+11, GS01a, Gra09, JW94, KRS13, KRS14, KRS01, Lan09, Lin93b, LK10, Mir91, MK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, Sch90, SH92a, SB97, Sto90, SFC17, TFV+15, BG90b, TY95, Wee01, XMMD17, YW91, ZO97, AB03b, BOP06, BS11, Cuz11, DF12, FP11, FP12.
AC16, BBH+97, BSS97, CD98, GS98, HKT+91, HWW96, Kav93, KOW97, 
KRS13, KRS14, KL84, MR94b, MHC95, Qia97, RP95, SSHC00, SKB90, 
AY09, ACU08, BBH+17, CCC+04, CLMRL15, CC87, CTCX08, DAB+14, 
DMS+16, FLCB10, GAC+17, HES10, IKS87, LC14a, LPLFMC+12, MAJ05, 
MEMEMH17, OWK14, OMT+17, PRHB06, Pfe90, Ren11, RFPAG08, SS17, 
SGdSS13, VD04, WCKD06, WMES12, YSL08]. level-set [HES10]. Leveled 
[PRW94, BMIM07]. levels [Kum17, Li16, Wu03]. Leveraging [SSFP11]. 
LeWI [GLC14]. Lexicographic [AMS94, DT97]. Lexicon [Haw97]. 
liberal [NDW17]. Libraries [KBC+01, ZRC99]. Library 
[BMCP98, CJS99b, DWM94, FK1C97, GLC01, HWW96, SKH96, LR06, 
LGK+12, RR05, ZSW14, VBF13, VFAD17]. Library-Based [FK1C97]. Life 
[HSJP87]. lifetime [HP06, LL12b, Li14, LZC11, VRM10]. lifting [IIH16]. 
lifting-based [IIH16]. Light [RGVB00, Koc91, PR12, Wan06, WZZ+17]. 
lightrails [PR12]. Light-Weight [RGVB00, Wan06, WZZ+17]. 
Lightweight [HS00, MSF+13, CL09, KP17, Kim17, MP10]. like 
[CP10a, CTC11, FR96b, GL90]. Limit [MO97]. Limitations [BKS91, LS97]. 
Limited [yHY97, LP96a, LK98, BK05, DW04, VS16, WTB+08, Zsa16]. 
limits [DW04, dSS11]. Line 
[BDMK94, BMMS01, DGBN14, LTY96, RR95b, Yen01, BS92, DMCFCM03, 
DJ98, EL88, GH89b, GC07, KN88, LH03, SSL04, SL90, ESGQ+11]. 
line-sweep [DMCFCM03]. Linear 
[Bah00, BMM+02, BM97, BCZ95, CDH84, CCC92, DWM94, IPK85, IK94, 
KL01a, KF95b, LP97, PM96, Pov99, RFM94, RS92b, ST89, TBPV00, ZZC92, 
dR09, BGG+03, BAH04, PP05, Car90, CM03, CEGS07, CP10b, DS04a, 
DJa06, FHL+15, GPT06a, GRV08, Gao86, GS91b, HR89, ICQO+12, JOb87, 
KK10, KT89, LKD14, MP88, MP87, MV05, MRT18, NCT09, TMF15, 
Ter16, XYZW14, YTH07, YO11]. linearizability [KKW17]. Linearization 
[FZVT02]. Linearly [BBd90, PB90]. Lines [HKMU98, Wri91]. Link 
[GD08, MLW+07, SJS11, VR94, VR95, WFL98, FCZ+12, LST17, MCAS12, 
MVP17, RH05, SW90, WTS03]. link-bound [SW90]. link-selection [RH05]. 
linkage [CPO+03]. linked [Han89, HA05, ST08b]. Links 
[AaJS01, KJ84, RS94, WW97, Wan01a, AGMS16, KPR88]. Linpack 
[Num07, Num08]. LinuX [LACJ18, BP01]. Liquid [SWHB17]. List 
[BBH+98, SP96, SGS99, TLL10, FPF14, Han89, LPX05b, Vis87, WLL16]. 
Lists [BP02, VSIR91, ST08b]. live [GRJ+15, WME12]. Load 
[Ano97]. BEE00, BM08, CS93a, CRL04, CLZ00, DHB02, DM97, DLLX97, 
DS94, Ee96, EE05, FMP98, FLS+97, FM99, G98, Gil94, GM96, HS97, 
HLLY95, HTL99, H044, HC97, JR92, JW89, KGV94, KLG94, LH95, LT94, 
LL98, MDD97, MP96, NIKL99, NFGQ07, OB98, PB99, QY94, SBC12a, 
SH92a, SHT+95, SB97, SBAM96, TSH01, TT98, Wan96, WS97b, XYKA08, 
XL92, XH93, XL95, ZLP97, ZXP09, ZM94b, vs91, AES11, AGMS04, 
ACCP12, ASES15, BCV05, BFH90, BFMT+18, BRPR06, BD04, CSWD03, 
CBD+09, CVJ09, Cho90, CR+02, Cy89, DB11, DLW+12, DW04, DM94, 
GRV08, GLC14, GC05, HJ90a, HLM+90, IC05, IS06, JL05, JL11, KNNH18,
KKS08, KC04, LTB02, LTL06, LLL06, LHKL03, LY91, MLDG12, MPV12, MVZ05, MTS09, Mit07, MGG03, NHO+13, Nik03, PC11, PA04, RN04, SU87, SB15, SX08]. load [TBZB05, TKHG04, TVT+17, YJL16, YAA10, YMLP14, ZV06, ZSW14, ZLXC14, dG91]. load-adaptive [TKHG04]. Load-Balanced [LT94, NFEG97, XYKA08, YMLP14]. Load-Balancing [LT94, NFEG97, XYKA08, YMLP14]. Load-sharing [SU87].

Local [AD02, BSS99, BCD00, CGL+95, FLS+97, HR00, SR94, ADD17, AK07, BMARW07, CKN07, GJG88, GTGLSA12, LMJC11, MS88, MARO5, ROB+18, Sch13, WWW17a, XCS06]. local-spin [AK07]. localities [GJXZ05]. Locality [BS96a, CL96, FJG06, GXYZ13, JL11, KRC00, MNB95, SCM99, SHT+95, EHL+15, FPP06, Kan05, KR06, LZ13, Ozt11, SZD07, SKK14, SRT+18, WLL08, XCS06]. local-spin [AK07].

Locality-aware [EHL+15, SKK14, XCSZ03, ZWQ+16]. locality-cognizant [LK13]. Locality-sensitive [JL11, SRT+18]. Localization [DFP06b, AKB010, CCW11, CRWX12, DPLL11, LDS16, MKM16]. localized [Cal06, KNS06, LS03]. locally [AMK+07, LFZ+17, XHZZ16].

locate [DWX10]. located [SBC+12a]. Location [KER01, Li17, LS03, LAGK07, MMRS98, XCLR07, ABF+14, BJL18, CZ90, HCM11, LLDL15, OJP+18, TZ07, TZ11, TDC05, TR16, ZMC06, ZHO03, dOBG+15]. location-aided [ZMC06]. Location-based [LS03, ABF+14].

Location-centric [XCLR07]. location-free [dOBG+15]. Lock [DR98, SSdlB+10, ST08b, CB06, Dim91, HSY10, HA06, ST05, X005]. Lock-free [SSdlB+10, ST08b, CB06, HSY10, HA06, ST05]. Locking [MS98, X005, DM04, LZLX11]. lockless [HMBW07]. Locks [JN96, AFA13, CG10, UBES10]. Lockup [SD91]. Lockup-free [SD91].


Loop [AMB95, BCH95a, BCZ95, CG02, DR95, DS95b, Nic88, OK02, PB99, QGL+09, AL04, KSG03, MP08, NCT+07, QSL+08]. loop-carried [NCT+07]. Loop-Free [CG02]. Looping [Ano92a, KME92]. Loops [CCC90, CWW96, DRR96, HS93, KK95, KGB92, SCMB90, SG99, Xue97, CC87, SGE91]. Loosely [SKR93, AHcc90, BMF05]. losses [HZA+15]. lossless [CW15, PY09b]. lossy [GBP13]. lost [LdSB+18]. Low [AZ01, Ano92c, AEY12, CM12, Dav17, IKS87, J92a, JNW96, JLRA97,
KS00, MC17, MHC95, SD00, ABO+17, CBP02, CL09, GE85, GJXZ05, KS03, KK11, MGRKK14, NKY14, Pf90, RM11, S09, Sol13, SLWV05, YGZ+10]. low-area [ABO+17]. low-complexity [Sol13]. Low-contention [Aey12]. Low-Cost [AZ01, Ano92c, JH92a, JLRA97, CL09, GJXZ05, YGZ+10].

Low-Density [MC17]. low-latency [KS03]. Low-Level [MC17, IKS87, Pfe90]. low-memory [CBP02]. Low-Overhead [SD00, SZ09]. low-power [KK11, MGRRK14]. low-resolution [GE85].


M [Ano92a, FC95, Lzsl06, ZBF05]. M-TREE [LZSL06]. M-VIA [ZBF05]. M2M [TKG+17]. MAC [CCHC09, Gzy14b, Los08, TLY12]. Machine [BG86, BDHF90, CA95b, LWOG02, MB93, Rscq17, SY09, SR97a, SR97b, TV97, TKG+17, ZL93, Aes11, BH86, CL14, FMIF18, HS86, HPSM91, KH1+14, KNS91, KA89, Ros85, SM86, Upa13, WF89, ZG13, CM93, CRFS94, CGSV93, EH14+96, LSD+13, LTd+93, Sab94, TKG+17]. Machines [BR96, BP90, BCR96, CPW98, ERL90, Gup92, GHK96, HK96, HB97, HLJ01, KRC00, KHS96, KLS90, LWY97, MK92, PAM94, RS94, RWK95, RGS00, SSC93, SCMB90, San02, TAs97, Yfs+15, Zakh1, AE88, CG11, Fen90, Fu10, GA90, IKS87, KR10a, KR10b, Koc91, KP05, LC91a, Ma88, MAR87, RT18, SW90, Ume85, ZA91]. macroeconomic [BMB+08]. macropipelines [Waz88]. magnetic [CCN06]. Main [DM99, BBH+17].

Maintaining [HS94a, LMP10, LY98, YC04]. maintenance [CdcD05, MapF14, Wddk09, X005]. Major [ssl04]. majority [ZWS09]. makespan [LZ05, SSM+07, TFS15]. Making [LLT12, LFA96, VR95]. Making-a-stop [LLT12]. Malleable [FZW/L12]. malware [TY17]. manage [AsD09]. manageable [damFD13]. Management [As13, As15, BR02, CKK00, Cy99, HlLy95, HTL99, JM00, KER01, LZ02, LO96, RDS02, Rsbn01, TJ92, Wlid02, YD98, ZRC99, Am11, BvgV14, CkpM17, Fu10, FX10, GPt06a, Gjg88, GBA08, Hcm11, HwM07, Hc09, HHS12, HslL04, Hhk15, JH1+17, Kl11, KLj+11, Lcc+05, LC11, LAGK07, Mbs+12, MLrSm12, Nab+11, Ntc03, OjP+18, Poy09b, PF04, RWB+13, Ran+17, Snmb16, SdtD04, Ss08, SB12, SK05a, SLO6, Tz07, Tz11, TB90, WyW15, Wzz+17, Xrb12, Zmc06, Zv12, Zho03, dkg+10, Shs17].

Manager [Gai87]. Managers [AB84]. Managing [AKBD10, FgkT97, Sep96, Ss17]. MANET [YAA10]. MANETs [Hu11, Ya11, Za05]. Manipulation [PH91]. Manipulator [Ms85, NS90]. Many [HP95, SR97b, AFA13, APRA18, AA16, ARI17, BBBC12, CKK+13, JHF+17, Lai14, Ltg14, Mzc18, PCMM+17, PTK+13, PR13, RLA+16, RLA+17, TchC12, ZlS17]. Many-Body [HP95]. many-core [AFA13, APRA18, AA16, ARI17, BBBC12, CKK+13, JHF+17, MZC18,
PCMM\textsuperscript{+17}, PTK\textsuperscript{+13}, PR13, RLA\textsuperscript{+16}, RLA\textsuperscript{+17}, TCHC\textsuperscript{12}. many-cores [ZLS17]. Many-to-One [SR97b]. manycore [ETS14, FCP\textsuperscript{+15}]. map [IZ12, IB04, CKML12]. Mapped [BF97]. Mapper [AM93]. Mapping [AGG98, BR08, BSB\textsuperscript{+01}, BA92, CN93, CHR94, CW92, Dja04, GH98a, GW99, IAS\textsuperscript{+92}, KBG92, LW90, LWY97, MM00, MAS\textsuperscript{+99}, NB93, SH90, Ser97, SBAM96, TBC\textsuperscript{+17}, XH91, ZZ90, BS87, BLMB13, CGM14, CDAN14, DFS\textsuperscript{T13}, DQR\textsuperscript{+09}, FLL14, HA91, KSS\textsuperscript{+07}, KMS\textsuperscript{+06}, LW16\textit{a}, LB99, Lo92, LLS07, PM\textit{A}11, YWJ\textsuperscript{+18}, YWG15, ZWR\textit{I}07]. Mappings [BP02, DP00, Iqb92, SR97\textit{a}, SR97\textit{b}, SSHC00]. MapReduce [ALTV13, AM17, BK13, BD11, CLOL17, GYY\textsuperscript{+14}, LYW\textsuperscript{+16}, NF16, Pla13, SMT\textit{I}5, WT\textit{W}16, WD13]. MapReduce-based [WD13]. maps [DP12]. MaRCO [ALTV13]. Marginal [WLID02]. Marine [YWJ\textsuperscript{+18}]. maritime [WWA\textsuperscript{+18}]. Mark [Ano92\textit{c}]. Marked [JS92]. Marker [MG98]. Marker-Based [MG98]. Market [CKMP17]. Market-based [CKMP17]. Marking [BBH\textsuperscript{+98}]. Markov [ASKO16, DHH04, NH93, PF91]. Markovian [BC11, VM95]. MASC [TJCB10]. Mass [HLL\textsuperscript{+95}]. Massive [SANY94, FGC\textsuperscript{+14}, JWH\textsuperscript{+17}, ZB09]. Massively [BS90, BDHF90, DAG\textsuperscript{+17}, EHMI95, GGN93, GBES93, JBL02, Kri92, KP05, MM93, MT96, NDZA99, NS92, PE93, Sch90, SRK95, TSA97, UGG\textsuperscript{+11}, WT92, YP96, BB87, BBCLL04, GP91, HS86, JJ12, Koc91, RBB17, SPBR91, SM\textsuperscript{H}\textsuperscript{+14}, TS91, WZ91, LTK990]. master [BMT12, HSLL04, LZ05, LYL08, YH07]. master-worker [BMT12]. Matching [BL94, DS84, DAYA02, HBS17, LO94, Par98, WSRM97, DKL\textit{U}15, GKI0, KSJC17, KSSG14, MPN17, MM07\textit{b}, RSK90\textit{a}]. matchings [SM89\textit{b}]. matchmaking [LR05]. materials [DAG\textsuperscript{+17}]. Mathematical [HNSA07, DJH11, ZA91]. Matlab [MJ01]. MatlabMPI [KA04]. Matrices [Bas97, BSGM90, SH97, BW08, JM15, ORR03, VGBA08, WF90]. Matrix [BG16, CT96, CTZ99, DBKF90, GKI0, GE94, KCRB99, KKB\textit{b}, LPZ99, LI01, Man94, MSC96, NFE\textit{G}97, Par92, PKD97, SW96, TIL9W4, UZS96, WM92, Win\textit{S}, mY\textit{F}92, AAD05, ASES15, BB85\textit{b}, CP10\textit{b}, CLR90, Dja06, Ed\textit{e}91, EL91, EM89, I\textit{T}04, KKK96, L\textit{V}15, MBW16, MS87, MPG17\textit{b}, NJ91, NCTT09, OT86, PB15, PR13, SAOKM03, ST89, SM08\textit{b}, SAJ13, SE15, ZB03]. Matrix-Based [KCRB99]. matrix-transpose [SAOKM03]. Matrix-Vector [GK98, MSC96, NFE\textit{G}97, ASES15, CP10\textit{b}, CLR90, MBW16, PR13]. Matter [FGM\textsuperscript{+03}]. MAWS [AK06]. Max [DP98]. Maxcut [HP97\textit{b}]. maxima [GS03\textit{a}]. Maximal [CWW96, GS99, KW02, BCI15, SSTP09, SMT\textit{I}5, TSFZ14, WCH\textsuperscript{+17}]. maximally [Gao86]. Maximization [YZG18, LHX\textsuperscript{+16}, LL12\textit{b}, VLL\textsuperscript{+14}]. maximize [SSFP11]. Maximizing [MR98, Ros99, AI06, CDR12, DW12, KNS06, LI14, MA11]. Maximum [Als01, AS95, BLMB13, DDD98, FTL92, HP06, KEA95, Par98, mYF92, AFD\textsuperscript{+11}, SM89\textit{b}, WMW\textit{I}09]. Maximum-throughput [BLMB13]. maxmin [ZLCJ12]. may [STKW12]. Maze [EL97]. Mbytes [MLW\textsuperscript{+97}]. MDS2 [ZFS07]. me [MPS16]. Mean [BA92, JMB91, LZ05, XBK07]. Means
Measure [ASR93, Kav93, PS93, SK89a]. Measurement [FPD93, KL01b]. measurements [ASKTZ13, JKIE13, JZK04]. Measures [GRR93, DGBN14]. Measuring [ZYH94, Di91]. Mechanism [Bal90, BCD00, JSM94, CG11, CMR+ 18, CCW14, GYY+ 14, GVA+ 08, HCM11, KO11, MOB11, Pmd011, RA11, She09, XO05, YF07, ZBW+ 17]. Mechanisms [KPC96, KC99a, ASKO16, KV10, ALLM11]. Media [WUG99, HK05, KLP10, XYDL06, XHY07], media-based [XHY07]. Median [CCC92]. medical [CCN06, KDO+ 13, TSD08]. Medium [MSST99, KGN11, WLNL06]. medium-scale [WLNL06]. membership [LC14b]. membrane [YLZW18]. membranes [PMV05, PMV06]. Memoriam [Ano04r]. Memories [CH92, PH91, Sin95, Yan93, GKK+ 13, KR17]. Memory [AD95, ACD+ 93, AMN00, Atr97, ADS98, AS91, BR96, Bas97, BS96a, BCLR96, BF97, Bit92, BCR96, CB95, CP91, CWP98, CA95b, CJ99b, DS95a, DY99, DA97, DUSH94, DP00, DH95, DM99, DT92, EP90, FY97, GAG+ 92, Gra99, Gup92, GKH96, GHJ96, Haw97, HMR15, HPT02, HA92, HA05, HLJ01, IWM97, JF95, KRC00, KS97a, KH96, Kel00, KC94, LWY97, LK98, LI01, LA93, MF94, MR94c, MS98, MG91, NSS97, OS98, PHB96, PM94, PA96, PB99, PL95, PY96, RLS96, RWK95, RJY96, RGS00, SL95, Shu95, SS94a, SDS99. Soh96, SC91b, SB84, SN93, TJ92, TCG95, TY95, VSR91, VS16, VN93, WW96, WD94, Wi92, YW91, YMR93, YB01, YL98, Zok01, AM13, AL04, ACHY18, BC06, BBM08, BBH+ 17, BJS03, BS92, BGM+ 08, BCF+ 94, CBP02]. memory [Car95, CC16, CGM14, CJA09, COP+ 03, CK91, CDAN14, Cyb89, DFP06a, DT11, DJ91, ET14, EKNS17, FZC+ 05, FJC04, FWM+ 10, FLC14, GJG88, Gra10b, GL90, HDCM11, HGFF10, HMBW07, HHA14, Hus17, HC91, IHH16, IR16, ITT04, Joh91, KKR14, KRM14, KKLJ14, KMS10, KP05, LL90, LC91a, Lop18, MTM10, MSK+ 16, NSTN91, Nik03, No12, Pad91, PK05b, PL03a, Pop91, QGL+ 09, QGZ07, RFPGA9, RRH12, RSCQ17, SYYU07, SB15, SZD07, SIDS10, SM04, TW89, TGPUC16, WL92, YGZ+ 10, YLB90, ZPK+ 14, ZLW07, ZFL89, MP10]. Memory-Access [Bit92]. Memory-aware [HMR15]. memory-based [No12]. Memory-Bounded [SN93]. Memory-Electric [IWM97]. Memory-side [HA05]. memoryless [BKMT14]. Merge [NT93, SM00]. Merging [VSIR91, AY90, DO89]. Mesh [AP94, Am94, AD+ 94, yCM98, CCC92, CWW+ 95, CLT96, CY96, CDP95, EL97, EH01b, FZV02, Fer93, GPJA10, HHH94, IM00, JP95, JS94, JRB98, KB01, LJ00b, LME95, MD01, MP96, Moh96, Nak95, NSS99, OS96a, RO92, RR95b, RR95a, SP96, SR94, SM00, Zhn92, ZY002, ABC+ 09a, ABC+ 09b, BB85b, CL03a, Car90, CWL+ 07, Dja04, DAB+ 14, Efe91, FLL14, GDL+ 11, GH9b, GA16, HWWH08, HWC08, HR89, HR90, KKK11a, KD08, KT91, LZ08, LC90a, LC91b, Li06b, LC11, LWLD12, Los08, LV07, LV88, MLG05, MB08, NPGV10, PB90, Raj04, Sl86, SSM98, SC91a, SSZ10, SS94b, SZ03, VHH08, WCXL11, WH08, WBT13, XYK08, YSL08, FC14]. mesh-based [CL03a, LV07]. Mesh-Connected [Am94, AD+ 94, yCM98, CCC92,
CWW +95, CY96, CDP95, Fer93, HHH94, MD01, Zhu92, ZYO02, BB85b, Car90, HR89, HR90, KT91, LV88, PB90, SI86, SSM89, SC91a.

**mesh-NoC-based** [FLL14]. **Meshes** [BLPV95, BPvW96, BA97, BSDE96, BM97, BOSW94, BOS +95, BGOS95, CW00, COS +95, CL96, DS01, FF08, HCWS94, HJ90c, LS95, LSC00, LS94, MT93a, NP1 +96, NS94, OS97, OS96b, OSZ98, OB98, RWY93, ST02, SKK97, SJ95, VB94, WCE97, Wu02, YTR94, YCY +00, BG16, BM04a, CI03, CZZ +17, DV13, GLD06, KLC05, LWCC15, LXL12, Mat06]. **Meshing** [YHY97].

**Message** [Ano94e, Ano95k, BB93, BKT95, BDH +97, CW92, CZZY09, CD98, DMSH90, dADB96, GBES93, GHS94, GHS95, GHS97, HNM02, Isl97, Kar92, Kk96, Li92, LW95, MMCL +17, MD92, PY96, Pra16, SCMB90, WTC08a, WTC08b, XH93, ZN01, BHR91, BR91a, BPW05, CV90, CPA +11, DDNT10, FM07, GH98a, GK04, HZA +15, Hal05, IRRS16, JLM90, JZZ +17, Kak15, KMS10, KS13, LR06, LR03a, PS14, She06, TW87, TGPUC16, vS91, KTF03, PS01]. **message-driven** [GK04]. **message-optimal** [CV90]. **Message-Passing** [CW92, dADB96, GBES93, HNM02, MD92, XH93, ZN01, DDNT10, GH98a, IRRS16, Kak15, KMS10, KS13, LR06]. **Messages** [AISS97, DLP99, FBDC99, LTWY95, LTY96, SKH96, ASKTZ13, BD04, CL90, GPT06b, KLC05, XLL15]. **Messengers** [FBDC99].

**Meta** [SWC +91, D¨O06, GVBB13, KKS +12, LGZ +10, ZHO03]. **meta-heuristics** [KKS +12]. **meta-learning** [LGZ +10]. **Meta-rules** [SWC +91]. **meta-scheduling** [GVBB13]. **meta-task** [D¨O06]. **metacomputers** [Li05, LCM +16]. **metacomputing** [BGH +03]. **Metadata** [HOE +09, ZV14]. **Metaheuristics** [TH11, TH13]. **Metalevel** [Zim96]. **metaphor** [SK89b].

**Metasystems** [GWWL94]. **Method** [AC16, BC94, GHH92, KLLK98, PB99, WS97b, XL92, XL95, ZYH94, AST12, ABC +09b, ATDH13, BFH09, BR91a, BBB +06, CLC +17, CW15, DM17, KP05, LR14, Luk85, Mit07, MVP17, MRT18, ORR03, SHL +13, SMKL93, WCKD06, XWC +08, YLL17, ZB03, dAMCF12, PPTV +10]. **Method-Level** [AC16]. **Methodological** [Bev02]. methodologies [DMS +16, PSGS17]. **Methodology** [Ano92a, BJ99, KME92, LR93, MB92, NMS93, PA94, PA01, SKR93, SK93, CSJ +13, Che86, DSEP17, GL89, KME89, LdSB +18, MSAZ10a, MSAZ10b, OMT +17, PF91]. **Methods** [Bas97, BSGM90, BR95c, Cas93, FGKT97, GL92, Kap93, KB01, Par92, SHT +95, Wor93, XH93, BDjQ86, BM08, CEGS07, DUKC15, EE05, KG04, LWCC15, PAS15, SWP90, SSZ10, UAPM07, VGAB08]. **Metric** [RJA97, ZYH94, KC17, Luc18, SSMS08, Sta17]. **metrics** [BSW07, DUKC15, PARB14]. **MIC** [WTWZ16]. **Michiel** [Ano96i]. **micMR** [WTWZ16]. **micro** [KKH17, KC17]. **micro-benchmarks** [KC17]. **micro-clusters** [KKH17]. **microarchitecture** [Zha11]. **Microarray** [BF13, WSH +03]. **MicroClAn** [BF13]. **Microelectronic** [THN +93]. **microrobot** [LBMG15]. **microscope** [FCG04]. **Microwave** [XTN12].
Middleware [BNSP99, GJA08, SB04, AZW13, Ano04d, CTT08, KAS07, MSAF04, PF04, SDTD04, SMPMLVLS11, YK04, dKG +10]. middleware-based [PF04]. midpoint [TW15]. midpoint-based [TW15].

Migratable [KOW97]. Migration [AMB95, CLZ00, Lacerb, ZXYO11, CR96, CLC +17, FMI18, Gai96, GRJ +15, HSMB91, JTTZ11, LY12, TH08, WMES12, XYKA08]. Migration-aware [ZXYO11]. Migratory [AMB95, CLZ00, Lat95, NPP02, SZ00b, ZXYO11, CR96, CLC +17, FMIF18, Gai90, GRJ +15, HSMB91, JTZZ11, LY12, TH08, WMES12, XYKA08].


mitigating [KMMZ06]. Mitigation [BK18, WCF14]. mix [Alm90]. Mixed [CDY97, MRR +02, NDZA99, SV00, van96, BKS91, FCS91, Kal04, ZLWZ18]. Mixed-Mode [NDZA99, BKS91, FCS91]. Mixed-Technology [MRR +02]. MixHeter [ZLWZ18]. Mixing [FHL +15, Li10]. MKCE [RW01]. MMR [CCQ +06]. Mobile [Ano01e, BD00, BN02, BST01, CS00, CCK +08, DRY01, DL01, GSO1b, KER01, LAZC00, LC14b, Pat01, PIR97, SMR96, THGY15, WLID02, ZR00, AKBD10, AP03, AH12, Ana14, Ano04d, AK06, BWP +11, BN03, Bou03, CSWD03, CNS03, CW05, CDCC05, CWD11, DB08, DWX10, EBE08, EM11, FCML13, FCC07, FP17, GQZ18, GRDB05, GZMC08, HKW05, KERUM04, Kim11, Lan09, LZ11, LZC09, LPX05a, LL10, LC11, LHW14, Li17, LWW07, LHT08, LS06, MS05, MXSL12, MS05, MKM16, NSA11, NNM +14, RB12, RKK06, REZN17, SNC12, SGAC14, SY04, SGS08, SJS11, TZ07, TZ11, TM06, TC13, TY17, TWQS12, VA03, VMM01, XHG03, GX03, YK04, YC04, YCC05, YX05, ZHO03, HC09, RB +11]. Mobile-Process-Based [SMR96]. Mobility [FCFO0, GCB +00, KO12, BEN12, CKT11, FX06, HC09, RKK06, RB +11, SK05a]. Mobility-assisted [KO12]. modal [AML11, BWP +11]. Mode [NDZA99, WSA +94, BKS91, FCS91, YZXY11]. Model [AGW01, AISS97, AM17, Ano97k, BPJG92, BA97, CC91, DL98, DKUC15, DG94, DF94, FTL92, Gao93, GS98, GD2 +98, HK96, HR92b, HR92a, JRR99, KSP +92, KCV99, MRRV98, MNB95, NDZA99, OKB95, QY94, SANY94,
Multicasting [BETD94, FF98, Gon98, GS01b, LBT94, WE13, LSXX14, WCC02, XCS06].

Multichannel [HP97a, Mck94].

Multicomputer [ASB97, DG94, GBE93, HILLY95, JR95, LK96, MLW+97, PA01, RJ99, XH93, AP91a, CC96, DB86, GJ12, Li06b, RS90b, Yan04].

Multicomputers [AGF94, CSSY94, CW92, DY99, DFRCU99, GGD93, Lan94, LME95, LEB98, NSL99, OK01, PBB96, RSB96, SP96, SCC92, SB84, Swa98, TJ92, WN94, XH91, XM92, YB01, GH94, HSMB91, RS90a].

Multicore [PSGS17, ABC+09b, BM17a, BS+13, CN14, CP17, DKU15, FWM+10, FCP+15, GZG+17, KHT+14, KyLPC17, KNHH18, LK13, LLLL15, LM16, MBBD13, ND12, NZ17, PP13, SFP11, SPC+17, SP13, SC10, WLST16, WCO+09, PPP14].

Multicore/many-core [MBBD13].

Multicores [CRSB13, LCB16, SS17].

Multigrid [MT96, MHC95, PSE+01, IHM05, MRS+14, WH17].

Multihop [CDCD05, HW03, ZLCJ12].

Multilevel [BW89, KK98a, KK98b, LK15, MMS09, PAS15, SZW05, TK08].

Multimedia [CCQ+06, ALL99, AZ01, GC95, JSCB95, LBL95, Won99, WUG99, ZR00, AM12a, LVP07, ZV09a, ZVL11].

Multimedia-on-Demand [JSCB95].

Multimessage [Gon98].

Multimodal [ALL99, ADS98, BOSW94, BOS+95, CCC92, DLP99, FGKT97, GH93, KS97a, KC98, KJ84, KM91, LMCF90, LSC00, NSAS10, Par92, SM94, TVS97, VSIR91, VB02, WNA+94, Wan96, AFK14, ACU08, BXA08, BOT13, BKF13, BS+08, BM04, Cat90, CDS10, CHCO5, CCLS94, DMB+03, DKUC15, GRV08, IEWK17, JSSB92, JTTZ11, JM15, JP09, JW89, KAP90, KSS+07, KR87, Kum17, KIH15, LLL06, LY10, LDP05a, LDP+14, LSWC14, LB07, MBV05, MHBW86, PTZ06, PHS04, SK09, SPRG12, SI13, SZ03, SRT+18, YB90, ZWWX16, TJCB10].

Multiple-Bus [MBBW86, YB90].

Multiple-Driven [Ka96].

Multiple-Writer [KS97a].

Multiplex [MS94, RR95a].

Multiplexing [DMCFCM03].

Multipath [LYL93, KPR88, OM10, SH98, WGS08].

Multiprocessor [BW95b, CKL99, CP91, DS96, DRC90, DFN+94, GH90, GMM00, HP00, HC95, HN91, KS97b, LVC02, LF92, Lun94, MF94, MMRS98, MT95, MMVR97, MD92, OM90, PL95, PM96, PP92, QY94, RS92b, SEP96, Soh96, WFG93, XZS96, ZNQ93, AA10, AOSM05, BHR91, BR91a, BS92, CRJ10b].

Multiprocessing [CDH84, MBK+92, ABC+88, JS86, ZLWL12].

Multiprocessor [BW95b, CKL99, CP91, DS96, DRC90, DFN+94, GH90, GMM00, HP00, HC95, HN91, KS97b, LVC02, LF92, Lun94, MF94, MMRS98, MT95, MMVR97, MD92, OM90, PL95, PM96, PP92, QY94, RS92b, SEP96, Soh96, WFG93, XZS96, ZNQ93, AA10, AOSM05, BHR91, BR91a, BS92, CRJ10b].
Multiprocessors [AMB95, AM95, BJ99, Bas97, BS96a, BL96, BC01, BLG01, CB95, DS95a, DJ98, DZDZ01, DT92, GY92, GZ97, HJ01, HA92, KSB94, KB96b, KA97, LK98, LA93, MB92, MS98, MG91, NB93, NS97, NPP+02, PH91, PY96, PT97, RL96, RJY96, SMH94, SC91b, TTG95, VSIR91, YW91, YMR93, YL98, AP91b, BC05, CLM90, CRJ10a, Cyb89, FZC05, FGP05, Gai90, GL90, HCM11, HRG11, KA03, KK11, LEN90, LE91, LPK+10, LWCG14, NSTN91, Nik03, RFPAG08, SPBR91, SD91, SMH91, SA90, YB90, dOCS14].

Multiprogrammed [MS98, NSS97, NPP+02, YL98].
multiprogramming [DI91].
Multirate [HJDH01].
Multireader [HV95].
Multiresolution [KZ96, ZM94a, CL85].
Multiscalar [VS99].
multiscale [BFL+13].
Multisearch [ADM+94].
Multiset [AFS96].
Multistage [AA95, BETD94, LC96, OM84, PL93, SZB92, TH02, Tze91, UR94, Wan96, Wan01b, YWF90, ATH91, BJ15, CM04, FZ90, HJ90b, Har91, JBM91, LK90, MV04, PW16, PW17, SH89].
Multistage-Network [UR94].
Multistart [Cza13].
multistep [GGR89].
multiswapped [Ste17].
multitask [LST+13].
Multithreaded [BJK+96, BLG01, GGB93, GRS97, KC99a, Lun99, PS01, RNSB96, RSBN01, SAC+98, SYSG97, TG99, YMR93, ABC+09a, CN14, LLLC15, NZ17, SLG06, TP18, TKHG04].
Multithreading [BL96, FKT96, KPC96, KL13].
multitonic [Sei05].
Multiuser [BAL05, ZRC99].
Multivalued [HV95, HV09].
Multivariate [HK01, MMAL+06].
multiversioned [Alm90].
Multiway [SM00].
municipal [LHX+16].
Munin [Car95].
Muntz [Ano92a].
MUPPET [MSS88].
Mutual
[AE95, Cha94, Cha96, DGFGK05, FTC00, GBG93, KY92, Kak15, KUFM02, NT96, NM02, Sin93, XLG+06, YZY96, AK07, Ara13, BAS06, CW05, CH06a, CB06, Gos90, LASS15, MM07c, NTC12, Ram89, RDA18].
MVAMIN [JBM91].
Myrinet [KL01b, QS05].

N
[BM17a].
N-modular [BM17a].
NAND [No12].
nanoarchitectures [FCG+14].
nanophotonic [HRG+11].
nanoscale [PLD14, ZRN+14].
nanotechnology [MKN14, MNK12].
NAP [KF90b].
NAS [JV06, WAS95].
Natural [LS95, VB96].
NC [LO91, RDL95].
Near [FTL92, HA92, SA99, UR94, CCN06].
Near-Maximum [FTL92].
Near-Neighbor [HA92].
Near-Optimal [SA99].
Nearest
[HH01, OS96b, KS08, NA06, NMN+14, SDG17, Wan07].
Nearest-Neighbor [OS96b].
Nearly [Nas94, SS89].
NEAT [LST17].
Necessary [SJ96].
Necessity [MC03].
need [LTG14].
needed [IR12].
Negotiation [LL98].
Neighbor [HA92, OS96b, UR94, KS08, MKC+09, Wan07, ZMG+16].
Neighborhood [JdSJC+15, LYNC02].
neighbors [NA06].
neighbours [NMN+14, SDG17].
NERSC [RÖE+18].
Nested [BHS+94, CWW96, DRR96, HS93, KBG92, Mer96, RSS99, SCB09, AGMJ06, BFTV87, EB09].
Nests [DR95]. **Net** [BPJG92, BDF92, Chi92, Fer92, SP90, KK17, NM95, WL92]. **Netfinity** [BAHP01]. **Nets** [BPJG92, CMT92, ESCV15]. **Network** [AA93, AAD98, ABM+92, ABCP96, BBH+97, BCCD02, BA95, BC01, BF97, BST01, CGKK97, CW01, Cha95, CW92, DLLX97, DSAUM99, DVZ96, DBP94, DKMW1, DH95, ESMG96, ES12, FFK97, FAM96, FTL92, GRS97, GS01a, GH93, HH97, HPT+97, KC95, Kop97, LST17, LS97, LK94, LK10, LC96, MM00, MJ94, MSS88, NBSD99, OM84, PN97a, PN97b, Pat01, RCY97, RJY96, SM00, SBAM96, SS95, TSC01, Tze91, UR94, WMG01, YYY96, ZLP97, ZMEF00, ZW00, dBL95, AP91b, AHI+16, An04d, AP06, AM11, BFH+17, BM14, BOC+12, BAX08, Bat05, BWP+11, BJ15, BAL05, BPA06, CK004, CMN10, CMR+18, CKN07, CLG+16, CDB04, CWL+07, CWJP12, Che89, CVJ09, DE91, DYLP+12, FKG93, Gai87, GZMC08, HDWW08, HD10, HWW08, IS06, JF12, JXXW06, Job89, JZK04].

**network** [KERUM04, KJD03, KMC16, KO11, KO12, KCD08, KRS15, KH12, KO90, KPR88, IT10, LAD+96, LSS+1a, LSS+1b, LB12, LTD+93, LY08, LT12, L14, LY13, LWC14, Nap90, NS90, NM17, NGQM12, O005, PL06, RH05, RD05, RCG18, RSL12, SS91, SS95, STTW12, SY04, SK99a, Sta17, SMKL93, TM06, TDP15, TCHC12, VM95, VHH08, VR86, VRM10, WL11, WG11, WWA+18, WSH+18, YK04, YLZ018, ZWS09, ZY12, ZWR07, dG91, AA14, SLW10, ZCF+17]. **network-aware** [RCG18]. **Network-Based** [GS01a, OM84, PN97a, PN97b, CVJ09, KJD03]. **network-on-chip** [G12, Ly13, AA14, ZCF+17]. **Network-on-Chips** [LK10]. **network-When** [STKW12]. **Networked** [FGKT97, HS97, LHM95, OYE07, BW90, FX10, HP06, JL11, SS08, XLL15]. **Networking** [An001e, GCY04, Bou03, DWY10]. **Networks** [AAD02, A201, AS97, ABP92, Am94, An092c, Ano93e, Ano00d, AA95, BSS97, BAES92, BCFH05, BETD04, BCD00, BDF01, BCF95, CP97, CT96, CS00, CAB94, CS93b, CC94, CS95c, DS95b, DHB02, DF99, D93, DL01, DF95, D297, DC94, DF00, FT94, GGN93, GPJ10, GK98, GHKS98, GO95, GPS96, GB93, GS01b, HIKM94, yHY97, HLCZ00, HJD+01, JR92, JH92a, JLA97, JH94, KKG95, KO12a, KRS92, KAM94, KB96a, KL01b, KR98, KJ84, L89, LBL95, LLY93, L94, LL00a, LAZC00, LPS+98, LWOG02, LHBB01, LC14b, LP95, MS00, Man94, MLW+97, M9H90, MS85, Mck94, MDD18, N9S95, NSS99, NS92, OD95a, O101, O85, O87, OR94, OK01, PRW04, PA97, PA01, PL93, Piu01, PKD97, Pra93, QMC94, Qia97, QM01, R96b, RP08, RMC97, RS99, RLS96, SW96]. **Networks** [Sei05, SZB92, SL+98, SZ00b, SF90, SCD99, Szy95, THGY15, TVO92, TH02, VB02, WM92, W96, WR97, Wan01b, WB01, WP02, WSA95, WII92, WT92, YWP00, Yan00, YN92, YMG01, YP96, ZXC92, AP91a, ASM90, AGMS16, AAD03, AB05, Amm16, AP03, AH11, AH12, AHG12, Ana14, AMT13, Arb89, AYB+15, ABLP17, ALF03, BFG+03, BM11, BC05, BSW07, BGLA03, BS03, BW+11, BOY10, BDQ86, BHR91, BR91a, BPR04, BOP06, Bhu89, Bod89, BR91b, BC11, BN03, BJL18, BZL04, BMIM07, CI03,
Neurocomputing [Ebe94]. neuronal [VO89]. neutrino [AAA+15].
neutrosophic [MHLZ16]. Newest [AK17]. Next
[NAB+11, HPB*10, RKK06, SB04]. Next-generation
[NAB+11, HPB+10, RKK06]. nexus [LC14a, FKT96]. NIC [JBY+05]. nine
NoC [AA16, CZPP16, CAF*11, PLL14, HRF+11, LLI+11, LW16a, L11].
NoC-based [HRF+11, CAF+11, LLI+11, LW16a]. NoCs
[BK18, CG17, LK10, MP10]. Node [AAD03, HAC17, KKS09, AKBD10,
DLL11, DM17, KLLB08, GM13, KH17, KVA18, L14, L15, L17,
LDS16, PCX+11, PCX+14, RMR17, TR08, Z12]. node-disjoint
[L14, L15, L17]. Node-independent [HAC17]. Node-ranking
[AAD03]. Nodes
[GP97, NSLK99, SS95, CK91, DB86, LKS14, NM17, SI13, WGS08, XYG07].
near [SFT+13]. Non [BH05, TVT+17, BGH+03, BBF14, BKM14,
C09, GOH+13, GRDB05, GTGLSA12, KK10, KR17, Li16, Li06a, MM07c,
MAR05, NKV14, Q05, WMY+17, WNL16, ZPK+14]. non-blocking
[KR17, Q05]. non-Cartesian [GOH+13]. non-clairvoyant [L06a].
Non-cooperative [TVT+17, GRDB05, KK10]. non-dedicated
[MAR05, WNL16]. non-deterministic [GTGLSA12]. Non-evolutionary
[BH05]. non-first-in-first-out [Li16]. non-functional [WMY+17].
non-linear [BGH+03]. non-memoryless [BKM14]. non-uniform
[BBF14, C09, MM07c]. non-volatile [NKV14, ZPK+14]. Nonatomic
[S19]. Nonblocking [JSM94, MS98]. Noncooperative [G05].
Non-dedicated [Ano97k, YZS96]. nondense [WF90]. Nondeterministic
[CY95]. nonequivalent [N01]. Nonexpansive [Ba00]. Nonlinear [AM93,
DM09a, ESMG96, MHC95, BN16, CES07, GMMP12, KKB+06, Kub17].
Non-loop [Bec96]. Nonoblivious [FY96]. Nonredundant [Wu94].
nonscaling [Z11]. Nomineform
[AA95, KRW96, K97, LR09, OP98, WLR90]. normal [ZB03]. Normally
[TOR+14]. NoSQL [Luc18]. Note
[Ano01-34, Ano02j, Pe95, Num07, Ano04d]. Notes [THSS87]. Nothing
[LT94, PVGG06]. notice [PCX+14]. Notification [ABP92]. notifications
[APRA18]. Noting [HTL99]. notion [LJS86]. Novel
[GMSS+11, LY02, LLCL98, OS96a, CWL05, CCHC09, CLC+17, COF+17,
CSW+17, GB11, HS17, JSJ+15, LT02, LMJ11, MSGS+13, SDG17,
SKM04, WLL16, YF09, ZV09a, ZV11, Z11, ZWX16]. NP
[BRR01, MPZ09]. NP-Hard [BRR01]. NSGA [SMO14]. NT [BAH01].
Null [DMSH90, BD04]. NUMA [FCP+15, LE91, WF93]. Number
[Alu97, Ano92a, Ano92c, Ano93a, Ano96l, Ano97k, Ano00d, Br06, BS96c,
CS93b, SS95, ZAW94, DDNS06, FSZ07, HSM07, IC05, Li14, PK89, Pet18, PH16].
Numbers [NS94, Can18, J12]. Numerical
[BK95, Ben15, LLCC02, RW01, EFG+14, NAK04]. NUTS [LK90]. NVIDIA
[JM15, KME09].
O [AW95, Cho93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, GGD93, GFPC14, JSCB95, JSWB92, LTH97, MLG05, NSSS99, NaPPC02, No12, WHW+17, WLWW09]. **O-Intensive** [EH01a, CkLCK04, CkLCK05]. **Object** [CSSY94, CS95b, DR98, GCB+00, HS00, JRR99, KC99a, LLS93, LTH97, Lop13, SG96, WPKK94, WLID02, WH97, ACFK07, Chi95, HD10, KC04, LLC15, LFH+03, LC11, SK90, SCK03, TCS+10, YJB91, ZV09a]. **Object-Based** [CSSY94, CS95b, DR98, WLID02, ZV09a]. **Object-Oriented** [CSSY94, CS95b, HS00, SG96, Chi95, YJB91]. **object-space-parallel** [ACFK07]. **objective** [ADDB18, COV13, COF+17, FPF14, LU14, MMK+11]. **objectives** [FEH+14]. **Objects** [CLZ00, CDP95, HPT02, Kap93, SBAM96, VWHL96, Won99, van96, AEF11, SB15]. **Oblivious** [CRSB13, IM00, ABBD14, YME06]. **OBQA** [ESGQ+11]. **observations** [RTZ11, ZHO03]. **observatory** [AAA+15]. **obstacles** [SJS11]. **obstructed** [DWX10]. **Obtaining** [AFT+00, VAS+13]. **Occam** [LC92]. **Occamflow** [GL89]. **Ocean** [SAC+98, SH92b, Nes10]. **Octree** [FLS+97]. **Octrees** [BFG94]. **Odd** [DS96, NT93, SL95, ZDC06]. **Odd-Even** [NT93]. **ODEs** [FBK17, KKR14, Wor93]. **ODMRP** [OPG08]. **OFDMA** [UM17]. **Off** [BCLR96, GK98, LPU97, TOR+14, BS92, ECLV12, PF08, ZB09]. **off-line** [BS92]. **off-the-shelf** [PF08, ZB09]. **offer** [Trä09]. **offloading** [WL04]. **offs** [CLR90, LCB16]. **OLAP** [DKRC+15]. **Olden** [CR96]. **OLSR** [KKK11a]. **OLSR-aware** [KKK11a]. **Omega** [Ano93c, CS93b, S00b, GL90, CS92]. **omega-like** [GL90]. **on-chip** [KH12, LNA12, LKY13, LSXX14, LTL12, LWCG14, MY+11, PMCC18, UM17]. **On-demand** [YYLC11, BS07, FVL09, HZDP12, LSZZ15, NKK16, SFEF06, WL05, XG03]. **On-Line** [BDKM94, LTY96, Yen01, DJ98, EL88, LHK03, Km88, SL90]. **on-machine** [AE11]. **once** [ACHY18]. **One** [Ano93c, Bog17, CS93b, LP95, PTA08, SR97a, SR97b, YAS98, ZB97, BPBR11, Che05, CS92, Deh90, Lai14, Yan04]. **one-** [Deh90]. **One-Copy** [Ano93c, CS93b, CS92]. **One-Dimensional** [LP95, PTA08]. **One-Sided** [ZB97]. **one-step** [Yan04]. **one-to-all** [Che05]. **One-to-Many** [SR97b, Lai14]. **One-to-One** [SR97a]. **Online** [CRH11, DTK11b, HCWS94, KKR14, LQM+12, LHLJ14, MQ01, ZLMC14, AZC13, BFG04, BJL18, DFLO17, Li06a, SHC14, TZZ11, WWY+18]. **Only** [GS00, SLKK12]. **ONoC** [TKKH17]. **OnRamp** [FKR+17]. **onto** [BR08, BS90, BS+01, DAYA02, DJa04, DQR+09, ERL90, ERS90, GH89a, GW99, KMS+06, LLS07, MM00, MAS+99, XH91]. **Ontology** [PRP09]. **Ontology-based** [PRP09]. **OP2** [GMS+13]. **opacity** [KKW17]. **Open** [CA94, ZSW14]. **open-source** [ZSW14]. **OpenCL** [AB13, MC17, PHW+13, RBB17, Str12, dat17]. **OpenMP** [AGMJ06, CCM+06, HLCZ00, LN+12, L06, PARA14]. **OpenMP-based** [LNW+12]. **operand** [SR88a]. **Operating** [MB+92, SEP96, CDJ+89]. **Operation** [HLJ01, Coh90, KNS91]. **Operational** [RHH96]. **Operations** [BTZ98, DP98, FAW95, HTL99, HLJ98, KSA95, PKD97, Van94, ZK94, BM04b, DT11, LMR05, JSWB92]. **operator** [CL85, TG03]. **Operators** [BDKM94, SR94, SMO14, WH17]. **opportunitistic**
[AM07, WWA⁺¹⁸, dKG⁺¹⁰]. opportunity [KS03]. opposition [WRW13].

opposition-based [WRW13]. OPS5 [GF89, HS86]. Optical
[AK93, Ano93e, BA97, BC01, CS93b, CLM90, DP99, DSD⁺⁹⁷, ELS94, ES97, GB93, HP97a, HQPT99, IWM97, LLJ00a, LLJ00b, LPZ99, MR03, MC93, MB03, MG93, OS97, OS93, PEC95, QM01, RP98, SHC93, SL97, Szv95, SH98, THN⁺⁹³, TBPV00, WLY01, WHT00, YWP00, YMG01, ZMPE00, ZLLP01, CS10, CS92, KK17, KH12, LY13, McA89, NAK04, PLD14, WG08, dR09].

Optically
[DH95, EH01b, Guo94, KM97, MKY⁺⁹⁷, QMCL94, GMH⁺⁹¹, TRSS06].

Optimal
[AMS94, AH12, AR97, AKPT99, BNS00, BMM⁺⁰², BSDE96, BOS⁺⁹¹, BSW94, BHK⁺⁹⁴, CW00, CS93a, CA95a, CW92, CA96, DS95b, DP00, DLPP99, DT97, DF90, Ede91, FLFJ07, FM96, FXW03, FA95, FAM96, FY96, GS91a, HV95, HMKM98, HM01, Ho91, HJ⁺⁰¹, IZ95, JP95, JLY12, JBP00, KERUM04, KUFW02, KS97b, KW02, Lai17, LHS97, LSCO00, LK94, LCW05, LL12b, Li14, LO94, LO96, LV88, LS01, MS94, Mun97, MW95, Nak95, OS96b, OSZ98, OH02, PM05, PP06, PK05a, Pcl95, PL94, PV07, PM96, RR95b, San99, San02, SJ95, SZ00b, Sin87, SV00, TR08, WL90, WLY01, WR97, WS95, WS97a, WN94, Wu94, WHT02, Wu03, WLL08, YA11, ZV14, ZWS09, ZWR07, oPP99, ANP07, BM04a, BPBR11, BS92, CV90, CMS04, CZ90, DKKV15, Djo04, EB13, Gue86, HDJ08, Li10].

optimality [HV09].

optimisation [AD12, LL07]. optimising [PVRS17].

Optimistic
[HF02, NH93, PW96, SS93, DWG03, JLM08, QS05].

Optimization
[BLG01, CGN⁺¹³, CLA⁺¹⁸, CLRW00, DDGK13, FM99a, FCF00, HA92, KCRB99, KZ96, KLS90, LWY97, MBW16, MC17, OK02, PML11, RLO2, RNS906, SMH94, TRSS06, VSM96, WCO⁺⁰⁹, ALM⁺¹⁶, ATH91, AF06, ADD818, BCM87, BNBR16, BGDR13, BHLT14, BYH⁺¹⁷, CMMT13, CCK11, CI86, DJH11, GZG⁺¹⁷, GL12, HVW16, JZZ⁺¹⁷, KA89, KKB⁺⁰⁶, KLL87, LL10, LQM⁺¹², LGK⁺¹², MZC18, NS12, Ozt11, QS05, RCG18, Ren11, RRS⁺⁰⁸, SS11, SCC⁺⁰⁶, SZD07, SK90, Str12, WMW09, WCL⁺¹³, WRW13, WQL14, WMG13, Wol88, XLHT13, XLH18, YWD08, ZV12, ZJ08, ZWX16].

Optimization-based [PML11].

Optimizations
[BW95a, DUSH94, HKT94, KY96, RSB96, ZH99, ABC⁺⁰⁹a, CZPP16].

Optimize [DRR96, HLJ01, SF05, TdAR18].

Optimized
[ABDS02, Bar05, WJ14, Ana14, BKS91, DKC14, Pet18, TW15].

Optimizer [HILLY95]. Optimizer-Assisted [HILLY95].

Optimizing
[CC16, CG86, JST12, KRC00, KR06, LMR05, LM16, NCTT09, PGRP17, Sab94, SB12b, WCWO17, WMG01, WLWW09, WG11, WSLC11, AFN17, AHA⁺¹⁶, ARM⁺⁰⁵, DV13, FMIF18, GYY⁺¹⁴, MSM09, ZGG⁺¹⁴].

Optimum [BHK17, LP96a]. Opto [AA93]. Opto-electronic [AA93].

Optoelectronic
[HPT⁺⁹⁷, MLW⁺⁹⁷, MB93, HNSA07]. orchestration
Order [AMS94, Bit92, CLZ02, DT97, BCM06, BG05, CB15, GA90, KK17, KM95+05, KME09, MP87]. Ordered [GS98, HCR12, TS91, CG10, JW89, KKS12, SW18, Tay05, YLB15]. Ordering [KK98b, PRS97, RS96a, ZBH7, CHC05, Zah12]. Orders [SH97, Sta04], ordinary [GGR89]. Organization [AP94, AAH17, CT04, Ull84]. organizations [BW89]. organizing [BFK04, BZH06, IZ12, KO11, MYM10]. orientations [AFM90]. Oriented [APR94, PRS97, RS96a, ZBH7, CHC05, Zah12]. Orders [SH97, Sta04]. ordinary [GGR89]. Organization [AP94, AAH17, CT04, Ull84]. organizations [BW89]. organizing [BFK04, BZH06, IZ12, KO11, MYM10]. orientations [AFM90]. Oriented [APR94, PRS97, RS96a, ZBH7, CHC05, Zah12]. Orders [SH97, Sta04]. ordinary [GGR89]. Other [Kap93, KSS12]. orientations [AFM90]. Oriented [APR94, PRS97, RS96a, ZBH7, CHC05, Zah12]. Orders [SH97, Sta04]. ordinary [GGR89].
Ano98j, Ano99g, Ano99d, Ano99e, Ano99f, Ano00a, Ano00e, Ano00f, Ano00g,
Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32,
Ano02q, Ano02r, Ano02s, Ano02t, Ano02k, Ano02l, Ano02m, Ano02n, Ano02o, Ano02p, Ben15, Sni03, Mue13, Phi13, Rob09]. Para [CD98].

Paradigm [KBD05, RS92d, BAMM05, CVJ09, LK15, MSJ05, Sie16]. Paradigm-oriented [KBD05]. Paradigms [Ano99g, CEF*95, YMR93, XQ04]. Paragon [CCRS92]. Parallel [ASR93, AGW01, AT94, AGF94, AAL95, ANT02, AISS97, AP94, A0s01, AaJS01, A1n97, AFM03, AS13, AS97, AS95, AH94, Ano92a, Ano93a, Ano96j, Ano97j, Ano97k, Ano99g, Ano00d, Ano02v, ASC*18, ABZ95, AKP95, ADM*94, AS94, AD598, AB93, BK95, BJ96, BR96, BCD95, BBD*91, B9194, B908, BBH*97, Bal90, BDF92, BGR96, BS97, BCV94, BFG94, BN94, B993, BBM*02, BV13, BL94, Bev02, BBH*98, BKCM17, BP95, BEE00, BS90, BHS*94, BDHF90, BP89, BR95c, BRFR06, BMARW07, BMRC98, BMRC99, B500, BT298, Bro96, BX93, BDH*97, BA01b, BTG02, BMR98, BM95, BN9595, BS09, CP97, CMT93, CP98, CGKK97, CV013, Cas93, CC91, CDY97, CDRC99, CB99, CKK00, CylB*08, CCR92, CGL*95, CCR80, CS95b, CP10b, CW93, CA95a, CWW*95, Chi92, CV91]. Parallel [CDJL09, CN93, CP92, Cho93, CHR94, CY96, CWP98, CB96, CQ95, CRD17, CG98, CH92, CP94, CA95b, CHGM01, CRFS94, CLZ00, CBdCD00, Cuz11, DFHH13, DM90a, DM95, DOP98, DP00, DM92, DRC90, DH91a, DS84, DO89, DH94, DDGK13, DN94, DJM94, DSW94, DT01, D5D*97, DBKF90, DD95, DZ97, DJT03, ES96, ERL90, ERA95, EMM94, ELS94, ES97, EHS94, EHM95, Fah96, FLL14, FZW01, FBRW03, FGcF17, FTM*14, Fer95, FR96b, Fer92, FMF98, FLS*97, FPS11, FC95, FKKK97, FJ93, FMM*94, Fre96, FT94, GG94, GP94, GCB*00, GGN93, GV94, Ger98, GBES93, GG93, GMSS*11, GJP96, GC01, GSC96, GM95, GSP02, Gra09, GL92, GH98b, GH92, GWH06, GK93, GHSJ96, GS99, GRR*95, Hag97, HMM94, HK96, HH97, HGCC96, Han89, HSE11, HB97, JB98]. Parallel [HP95, HR92b, HR92a, HHC98, HP97b, HN91, HTB98, HR89, IK94, IZ95, IWM97, IHM95, JW94, JBL02, JSM94, Jia99, KR97, KF95a, KME92, Kap93, KSA95, Kar92, KK98b, Kau94, KZ96, KKN13, KR98, KB01, KKS90, KE90, KS93, Kri92, KRS13, KW02, KG94, KG94V, KM92, KA97, KC99b, LSCA93, Lan90, LWWC15, LP96a, Las12, LMC90, LW97, LTH97, LJKS02, L97, LC90b, LAS*97, LPZ99, Li01, LWOG20, LYL08, LSS*11a, LST*13, LSH96, LS88, Lin91, Lin93a, LA93, L904, LLC02, LP97, LK11, LFA96, LB*15, MB96a, MH93, Mah95, MM93, MS99a, MLC*90, MR94a, MPZ09, MT96, MB62b, MP93, MSGS*13, MS90, MD98, MZC18, MHC95, MB92, MS*95, MMAL*96, Mer96, Mil93, Mir91, MB93, MG98, Moh96, MSAZ10a, MNNK12, MS96, MS99b, NSS97, NS94, NFEG97]. Parallel [NMS93, NS97, Ngo06, NT90, NKC*97, NH93, NIE94, NIE94, NIK04, NZA13, NSPC02, NDZA99, NS92, NPY*97, OO05, OY00, OB98, OY13, OP98,
ORR03, OR97, PH91, PD05, PP96, PDP17, PH00, Par98, PE93, Par96, PL03a, PL94, PCX+14, Pla08, PAH+98, PAJC97, PBB+17, PRS14, PSE+01, QZ94, QOvdG01, REK10a, Ra90, RSS96, Ram92, RL02, RS92b, Ree84, RW01, RGS00, RPS93, RSL12, RSW90, RJA97, Ros99, Ros07, RW93, SSG93, SH90, S96, San98, SM96, San02, SAOKMA02, SH97, SG93, Sch90, SM99b, SW96, Sch91, SdS97, SAF05, SR97a, SR97b, SAC+98, She06, SS92, STHC00, STN92, Shu95, SGS99, Sil90, SM00, SRK95, SSRV94, SB93, SC95, Sk96, Sn03, SdS97, SL97, SLKK13, SIR92, SK93, SMKL93, Ste95, SSK96.

Parallel [SWC+91, SF90, SYG92, SS97, Szy95, TH11, Tat11, TSA97, TW87, Ten90, TAS+01, TR96, THBF97, TV092, TZ00, TK08, TF01, UAPM07, Upa13, VSM96, VGAB08, WB94, WCE97, WLY01, WM92, WNA+94, WPKK94, WB96, WTC08a, WMW09, WRW13, WSA+94, WD94, Wec01, Wei98, WMG01, Wei02, WA02, WAS95, WS95, WS97a, W93, W91, W92, WH97, WHT00, WHT02, XP10, YBX+13, YSZ96, YWAT13, Y95, YIY97, Y90, YP96, Zak01, Zep91, ZHY94, ZK94, ZB97, Zhu92, ZH99, ZM94a, ZO97, ZYO02, ZA91, ACYS08, AKDMN15, Ada17, ALS91, ABGV11, AP91c, A91, Arr90, AMM+18, AE88, ANP07, AG86, ADDB18, AB13, ACFK07, Bad04, BC05, BCM87, BB87, BBCLL04, BKC15, BBM08, BA06, BCFF05, BAH04, BNBR16, BFE09, BS87, BSG90, BR91b, BKMT14, BGM+08, Boz09, BCK+13. parallel [BSH15, CK88, CP10a, CTS17, CR91, CDS10, CSMML10, CCE+17, CCS06, CRL04, CE07, CSH96, Che86, CC87, CZZ+17, CL017, CFJW17, CK07, CT94, CDJ+89, CL85, CZ90, CB06, CD95, CK91, CM12, CB11, DFP06a, DRT07, DM90b, DM90c, DQR+09, DUW86, DLW+12, DAG+17, DRR13, DM94, DWH87, Ebn04, EB13, ESTA94, EE05, El07, FCG04, FGG08, FKB17, FCS91, FSD04, FKR+17, FCG+14, GMMP12, GVBB13, GGR89, GS91a, GP91, GT04, GMVRGS16, GWWL94, GAC+17, GS03a, GC07, GB06, HM06, HSS10, HOE+09, HSH10, Hdl13, HS86, HA91, Hsi04, HSS17, mH14, J88, JSW92, JMS86, JL05, JJ12, JST12, JP09, JZ05, JV06, JZF15, KKR14, KE90, KR10a, KR10b, KHT+14, KV88, Kep03, KHK03, KKS+12, KCR14, KN18, KM03, Koc91, KSSG14, KBC+10, KKS96, KS91, KMP+06, KP05]. parallel [KIH15, LBGM15, LTB02, Las13, LPK+10, Li06a, Li06b, LT07, LY12, LMB+17, LTK890, LC92, LH04, LS05, LH09, LU14, LZZ+11, LG14, LGL13, LF03, Lu85, ME04, Mar88, MV88, McD89, MCT06, Men18, MP87, MMK+11, MAR05, NVK+11, NDW17, NW88, Nic07, NZY+11, NCT90, OS04, OTOK12, PB90, PPC04, PMAL11, PPTV+10, PA15, PK89, PPVS15, PF91, PVPM06, PH04, Pop91, PF04, PRG88, QJ05, Ra90, RSR04, RGD03, Rao16, RAN+17, ROB+18, RG87, Ros89, RSW91, RRTG91, RBB17, SI86, SS03, SPBR91, SV08, SI89, SC91a, SS06, SNT09, Sch14, SPH13, SC04, SIZW05, SF05, SK91, SCMHI3, SA08, Ski16, SMH+14, Sta04, SDG08, SSDb+10, SR91, SR16, SHC14, SRT+18, SSGZ13, TM06, TW89, Ter16, TRS05, TS91, Tr09, UGG+11, VD04, VS16, VA07, Vis87, WL90]. parallel [WLL16, WC91, WJ07, WBTM09, WLCZ15, WRHR91, WJD91, W91, WIB12, WF89, WLWW09, WGCZ09, XL11, XS11, XYZW14, YJB91, YO11,
Path-Based [FF98, RMC97]. Paths [BGR96, BP02, GT97, GP00, DMB+03, FLP07, Lai14, Lai15, Lai17, MT14, NCA+12, PK04b, WFLJ16]. Pattern [AA93, BMRC99, LW95, Lon04, PDP17]. Patternlets [Ada17]. Patterns [AM17, GSP02, KS02, LL95, AM13, Ada17, BHR91, BR91a, CTS17, ETS14, HHA14, KIH15, NAK04, RGU08, SPBR91]. payments [CSS11]. PBS [GPJA10]. PC3 [AHG12]. PCB [wXH00]. PCG [ORR03]. PCS [FCF00]. PCT [AT03, KDO+13]. PdBCube [CAB94]. PDC [AYB+15, Kum17]. PDE [CHR94, GV86]. PDES [PW96]. PEACE [BNSP99]. peak [YJKD10]. PEC [LP95, RS96b]. Pedagogy [GAC+17]. Peer [HBF12, LCLL10, NNM+14, TMK+17, ALH+09, ABCM07, BCK+09, BAL05, BBB11, CTC11, CGK12, FJG06, FKJG08, FVCL05, HK04, LKS14, LC07, LLW12, MSZ05, OSL05, SAL10, WXZ05, WGC09, WDDK09, YF09, ZCMY12]. Peer-to-Peer [LCLL10, TMK+17, HBF12, NNM+14, ALH+09, ABCM07, BCK+09, BAL05, CTC11, FJG06, FKJG08, FVCL05, HK04, LKS14, LC07, MSZ05, OSL05, SAL10, WXZ05, WGC09, WDDK09, YF09, ZCMY12]. Penalties [SDS99]. penalty [CK13]. 1 [LSS88]. 860 [DHR96]. active [HOE+09]. applications [KHK03]. BE [BGA12]. column [Mat06]. compute-intensive [KAS07]. cost [AP91c]. Distributed [KZ96]. FEM [ORR03]. for [MZC18]. GPU [LR14]. HPF [BCF+94]. image [WJD91]. implementation [HWW16]. irregular [AM13]. Logical [AK93]. many-core [KSG13, MBB13, Trä09]. MM [Won99]. Mobile [MS00]. OR [RP95]. power-aware [OMT+17]. PUT [HLS12]. software [SCC+06]. SPMD [Ren11, WSA+94]. subscribe [ZW13]. Synchronous [OY00]. UET-UCT [AKPT99]. UNPACK [BR96]. vector [Sol13]. write [GNS09, IR12, IRRS16]. people [HRM17]. per-core [LSC+15]. per-object [LC11]. per-user [LC11]. Perceptron [ZAW94]. Perceptual [CWP98]. Percolation [MSH90]. Perfect [BAES92, AB05]. Perfectly [Lin93a]. perform [EL91]. Performance [AP91a, Abr96, ABDS02, AP93, ACD+93, ATM01, AYIE98, AH94, Ano92a, Ano97k, AA95, BJ99, BHH+97, BPJG92, BCV94, BS96a, BAMM05, BL96, BCD00, BP01, BLG01, BNSP99, CTDO9, yCM98, CY99, CGK12, CB02, CP99, DS95a, Dah99, DPS08, DY99, DS02, DWYB10, DW04, DF94, ER97, FR92, FRM15, Fer92, FGKT97, FP93, GCB+90, GE85, GT02, GM94a, GGD93, GLGBG12, GDN+98, GM99, GRR93, GBA08, GK93, GK04, HMBW07, HCS+00, HCAA93, HSMB91, HP97b, HN91, HLL+95, yHY97, HTL99, IC05, JSCB95, JVO6, JZ93, JLA97, Joh91, KME92, KMKD07, K95, KS95, KMS07, KRS13, KRS14, KB96b, KG04, KEA95, KJ84, KRS01, KLS87, KMB91, LC97, LL93, LYL93, LP96b, LPU97, LPX05a, LNW+12, LTD+93, LYW+16, LHV95, LDCZ97, Lum94, MF94, MT95, MSAF04, MM06]. Performance [MSC96, MB92, MSAZ11, MS96, MBG+17, NSKN17, NBP98, NCA93, NSA11, Ne17, NKC+97, OD95b, PARB14, PH00, PS93, PD92, PEC95, PTC+93, PAJC97, PBB+17, PS01, RPS93, RW93, RGU08, SMH94, SSG93, SPBR91, SV08, SKR93, SG93, SB02, SLP+98, SKH96, TLY12, THBF97, TTG95, TH02, TdAR18, Tze91, VSM96, VHH08, WAS95, WF89,
WLID02, XMMD17, XQ07, XZS96, YB90, Yan93, YZS96, YI96, YAS98, Yan00, YB95, YMG01, YAK15, ZNQ93, AM13, AA10, AR17, AB03b, AP91c, AD12, BL05, BW89, BC9D+15, Bat05, BCFF05, BDGR13, BKS91, BH86, BJ03, BDDL09, CK06, CF88, CBP02, CG17, CCE+17, CBM+08, CKWT17, CCEB03, CkLCK04, CkLCK05, CC96, CSW+17, Cuz11, Cuz13, DK08, DJH11, DF12, DYL+12, ETS14, ECLV12, FHL+15, FGP05, FJSW90, FCP+15, FD86, GJ12, GRV08, GMSS+11. **performance** [GST09, GYY+14, HW03, HES10, HNSA07, HHS12, HRG+11, HCZ04, HddR13, HA91, HeF05, HC91, ICQO+12, JST12, JBY+05, KVN17, KLyPC17, KCR14, KZ11, KC17, KKS08, LWCC15, LI90, LC13, LW1+03, LI06b, LSXX14, LB12, IZZ+11, LGL13, LCB16, IVB07, LGK+12, MC17, MGS+13, MZC18, MRS+14, MV10, MG09, MBO11, MLK12, MBH+08, MGRRK14, NTPM91, Np90, ND12, NRM+09, OSL05, PCMM+17, Par05, PRHB06, PHV+13, PVRS17, RH05, RM90, RYCG91, SPRG+12, SSFP11, SAOKZ05a, SAOKZ05b, SCB08, SD91, SC04, SAB+92, SA11, SE15, SR16, TTH12, TB90, TMM06, TD07, WT1+08, WS06, WH08, WG11, YAA10, YZW+15, ZY+15, ZW13, ZWQ+16, dAT17]. **Performance-constrained** [YAK15]. **Performance-Driven** [CP99]. **performance-portable** [MRS+14]. **performance/cost** [AP91c]. **Performances** [MS99a]. **performing** [GA90, VM95]. **Perimeter** [KF95a, KOA09]. **Periodic** [AB96, BN98, BBM+02, RDS02, WCF94, FXW03]. **Peripheral** [MBK+92]. **periphery** [ABLP17]. **perishable** [GAOG17]. **Permutation** [AKP95, CL93, DT97, GT97, IZ95, Orn87, Orn94, QM01, RDL95, TBPV00, W107a, YWP00, HRJ94, JL05, K90]. **Permutations** [AMS94, BP98, CS93c, JH92b, Kap93, RS94, MR03, VR86]. **Permuting** [Cor93]. **PERP** [ZYZY+15]. **persistent** [ST14, TC03]. **Personal** [ZR00, HBF12]. **Personalized** [LHS97, RWK95, Ede91, PW16]. **perspective** [HRM17, LNC13, Los08, NXTK17, RBP+11, Wan07]. **perspectives** [WH08, PRS14]. **perturbation** [CHX+17]. **Pervasive** [NDW17, KKKP12, Ksh12, Sie16]. **Pessimistic** [MMCL+17, Yan04]. **Petascale** [SWHB17, WYT13]. **Petersen** [SGR03]. **Petri** [BPJG92, BDF92, Chi92, Fer92, NM95, SP90]. **Petri-Net** [NM95]. **Pfair** [HA06]. **Pfair-scheduled** [HA06]. **Phase** [AT94, DRR96, LC19a, Man13, SNC12]. **Phase-Reconfigurable** [AT94]. **phases** [BD19, SZD07, SSG13]. **PHAST** [DGW13]. **philosophers** [AF17]. **Phi** [KVNN17]. **PHOEBUS** [MB93, KSB11]. **Phone** [BN02, BST01]. **photomapping** [FLL14]. **Photonic** [AP提起18, Qia97, RKK97]. **Physical** [QGB17, SNMB16, WH97, BC11, BPA96, CSW17, DZC17, FD86, HRM17, JW1+17, KNS06, LLW17]. **Physical-aware** [SNMB16]. **physics** [CP10b, GTN+06]. **PIC** [SDG08, YB1+13]. **Picture** [HHM94]. **pictures** [FGF17]. **PIID** [WLID02]. **Piece** [CTC11]. **Pilot** [LSJ15]. **Pilot-Data**
pin [AP91a]. pin-out [AP91a]. Ping [LF92]. Ping-Pong [LF92]. PIOUS [MS96]. Pipe [KSL85, SD88b]. Pipeline
[DT97, DF94, VSM96, BR08, JS86, PW17, ZWR107]. Pipelined
[GÖÖ16, GMK+ 91, KSL85, KL84, LPZ99, MP93, PH91, Pov99, RFM94,
RS92b, SG99, SV00, TG03, dR09, BDGR13, BPP05, CCK88, DS04a, Gao86,
Gao89, tH90, KM88, KSG03, LHHH11, MP08, PYF08, SD88b]. pipelined-loop-compatible [MP08]. pipelines [JP09, WG11]. Pipelining
[LYC02, MK92, WGCZ09, DF90, JS86, KR06]. Pivoting
[mYyF92, ADV14, Vel89]. Pixel [Tay02]. Pixels [HPT+ 97]. Placement
[CB99, HJD+ 01, FMIF18, GM14b, ISAZ10, KL05, LE91, MTK10, PFJ04,
PA15, RBD08, VA07, WCWO17, WLL08, WLWW09, WSCL11]. placements
[AB03a, AB05, ZWS09]. placing [DDNS06]. Planar
[SL97, TZ00, CP04a, CZ90, DCA+ 15, PD05]. Plane [OS98, RR95b, CRJ10a].
plane-based [CRJ10a]. Planning [RR95b, CHX+ 17, FL86, MKM16]. plans
[CBV08]. Plants [KSP+ 92]. plasma [SDG08]. Platform
[HS94b, AK06, AM11, BSH15, CS17, CB11, Cza13, FLL14, LTG14]. platform-independent [AK06]. platforms
[AM07, BR08, BLMB13, CGL+ 14, CDR12, FCP+ 15, GZMC08, GAOGH17,
HK08, LMR05, LSC+ 15, LLS+ 16, MBBD13, PP13, PVGG06, SK09, Sche06,
SSVC10, WJ12, WC0+ 09, WJ14, YFS+ 15, dS11]. plex [WCH+ 17].
PODC [KBD05]. Point [Als01, REZN17, BSG90, CBL18, CNLGR18, CZ90,
Dav17, Gro85, MP08, PK07, SSGZ13]. point-to-point [SSGZ13]. Pointer
[Gup92, SCC+ 06]. Pointer-Based [Gup92]. Points [Thor9]. Poisson
[DM90a, JGMY17, WJ14]. polarizations [PMV06]. Policies [DY99, KE93,
ATZ07, BVG14, CG17, FWS05, GHCh+ 17, LE91, MP10, PM05, SS17]. Policy
[GM96, HBCM99, ARD14, EHL+ 15, GNT04, LWLD12, LL12a,
SM10, YCC05]. polling [FA07, GHK+ 12]. Pollution [SS00]. Poly [AF17].
Poly-logarithmic [AF17]. Polygon [KSA95, RBD08]. Polygons [Wu02].
polymorphic [ETS14]. Polynomial
[GPJA10, DM88, MS07, Nic07, Sch89b, Sill90]. Pong [LF92]. pools
[AFD+ 11]. POPS [RD05]. Popularity [SHLN09]. population [MS15]. Port
[CDF01, RJMC95, ST02, Dim04, ST06]. Portability
[SGdSS13, ETS14, PHW+ 13]. Portable
[BF95, BHS+ 94, LWP02, RHH96, LFGM17, MRS+ 14, MLK12]. portal
[FKR+ 17, PLL+ 03]. portals [BWK+ 03]. Porting [KME09]. Ports [AW95].
positive [KK86]. possibly [MCS14]. Potato [NS95]. Potential
[MK92, ARD14]. Power [CG17, Ebe94, EB09, KCR14, MAHKZ12, TVT06,
WQL14, ARI17, AG12, BAPRS91, CZZP16, DZC17, HMV07, JHF+ 17,
KK11, LM16, LB12, MGDRR14, OJP+ 18, Ren11, SGL10, TJC10, TVT+ 17,
WTB+ 08, YBX+ 13, YA11, YZW+ 15, YJKD10, ZV12, ZCF+ 17, dR09].
Power-aware [EB09, KCR14, WQL14, SGL10]. power-constrained
[JHF+ 17, WTB+ 08]. power-gating [CZZP16]. Power-performance
[CG17]. pp [Ano92a, Ano92c, Ano93e, BS96c]. PPM [LW16b]. PRA*
Practical [Ger98, HCWS94, HR92b, HR92a, KK95, SGS99, YZS96, LXW+11, McD89].

Precedence [JR95, KB96b, MMVR97, BKS05, DUW86, Li06b, XLL15, ZV09b]. Precise [KSJC17]. precision [BGBC+16]. Precluding [Yen01]. Preconditioned [BSGM90, CP10b]. preconditioner [GLW14]. preconditioners [SZW05].

Predicate [TG04, Yen01, AMK+07]. Predicates [CK97, GCKM97, RS92b, Ksh12, SKK14]. Predictability [SB12]. Predictable [CKK00, SB12]. Predicting [FFK97, Lan99, SSG93, SZD07, SFT04, Wei02, BCD+15]. Prediction [ASKO16, Ano97k, AYB+15, CTD99, KL01b, PH00, WWA+18, YZS96, YI96, ARVZ14, CDB04, DZC17, DKC14, KVA18, LGZ+10, LCI14a, LKM12, MVP17, PMdD01, SM08a, SK05a, WWY+18]. Prediction-based [AYB+15]. Predictions [DD95, XZS96, LSH+13, NVK+11]. Predictive [DSW94, BYH+17, RKK06, SNMB16]. predictor [GGR89].
probability [DJH11, GXYZ13, KNS06, LNAL17, LXLs12, NGQM12].

problem-based [GXYZ13]. probe [ZFWF06].

Problem [AS95, AM93, ASST05, BSH15, CLRW00, CRFS94, GP00, HH01, HC97, Kau94, KBC+01, KLZ97, LF92, NW88, RDL95, TU92, TZ00, WH97, Zia92, AY89, ANP07, BCMV15, BB85a, BSG90, BFG04, BFM06, Boz09, DM90c, EE05, FZWL12, FMM+08, GT04, HSSM07, Hsi04, HC11, HM05, Jol89, K91, LM05, LSS88, IWR+03, LYL08, LCCL10, LS91, LH09, MGG03, Ng06, OA10, PMV05, PBS08, PDB13, Sch13, SU87, Sta17, WLL16, WCEA10, WZ91, WMG13, Cza13]. problem-size-independent [LH09].

Problem-Solving [KBC+01, LWR+03]. Problems [Ano96i, Ano99g, ADS01, BK95, BOS+95, BEE00, BGOS95, B MCP98, CB95, DS02, ESMG96, FR96b, FR98, FT94, GL92, KLO1a, LSH96, MS94, MP96, MS99b, OR97, RS96b, Ser97, SN93, Ten90, TF01, WM92, WLR90, WHT02, WH08, ATH91, AG86, BGH+03, BS03, BBd90, CM13T, CE9S07, KJD03, LW06a, Lin91, Los80, LGG08, LV98, MPZ09, Men18, Nik04, PPSV15, WR13, WMG13, YS11, ZTFK16]. procedural [Kan05]. procedure [Kub17]. procedures [DWHL87]. Process [CCM92, IAS+92, Kar95, KSP+92, KOW97, Qia97, Ric98, SM96, SF90, Ara90, Bic90, Gai87, Gai90, HRF+11, Lo92, MEMEMH17, SDG17, TKX+13, WMES12].


Processes [DZ97, VWHL96, BFTV87, G K15, MAR05]. Processing [AyJ93, AK93, AGWY11, CS95b, DDGK13, Eme13, GC95, GLGLBG12, HPT+97, HSJPS87, HR90, IWM97, KSL85, Kri92, LWY97, LS97, LS85, LT94, MSH90, MT85, NMS98, OY13, Ros07, SH90, Sn030, SD88b, SSK96, SWC+91, TAS+01, THBF97, VB02, Wee01, WRC+02, WSS93, Wei98, WA02, YL12, YJL16, ZM94a, ZM94b, AAA+15, ATDH13, AM11, BB87, BK13, BHS13, CC08, CLA+18, CRL04, CCN06, CM12, DFLO17, DWO4, EKNS17, GSW04, GWWL94, HBS17, HR89, JMS86, JKD+15, KLO8b, KNS91, KKN13, KN18, Lee91, LB12, LKB+15, MS86, NLB+18, PYP+10, PI90, PGP+12, PVP06, RCG18, Ren11, RAN+17, RG87, RTCG91, SCB08, SY14, SK89b, Sto87, SCLL10, SI13, SA90, TZH+06, Tri09, WW07, Wan07, WJD91, WL10, XHY07, XQ04, ZMCP11, ZHH15, Ano93a, PRS14].

Processor [AW95, AERBL92, Am94, BG86, CW93, CWW+95, ClkLCK04, ClkLCK05, DY99, DDD08, GW99, Goe94, Guo94, H094, Hwa97, J980, KC98, KF00b, KGB92, LS91, MS+95, Moh96, MNM98, MBK+92, NSS97, OS98, Par96, PT01, RKK97, SS93, SHC93, SS97, WCF94, YD98, YL98, Zhu92, ZY002, ACYS08, Bat05, Bod89, CL88, CL85, DK11, DFC90, E070, Gro85, HK08, HA05, Kri91, KR87, Lee91, LC13, Li05, LY13, MM07b, OT86, PLD87, PR13, RR05, RLH03, SI86, SI89, SSN89, SML13, SKK91, ST85, SAJ13, SE15, TR08, TdAR18, WI92, XP10, YBM13, LTFS90]. Processor-efficient [LS91]. Processor-embedded [ClkLCK04, ClkLCK05]. processor-in-memory [HA05]. processor-node [TR08]. Processors
CL09, CHC05, EBE08, Eri88, EDH+17, GCS06, GZY14b, HLS12, HZDP12, LS06, Lun90, LM09, MCd8+06, MAGL13, MPG17a, NPGV10, NSA11, PGS06, SMPMLVLS11, TLY12, WCCH18, ZPI06, ZWS09, ZLCJ12, SJS11]. Protocols [AS00, D95a, Dah99, Dol97, DSS95, GS00, HNM02, KCDZ95, AP03, BW89, BSW07, BJL18, CXY14, CB06, CDAN14, FW05, GS03b, JBY+05, KLP10, LPX05a, Los08, MAM05, MMCL+17, MS15, OSL05, RFS+12, Seb91, VA03, WTC08a, WTC08b, WCYR08, mYA91].


QAP [BMCP98]. QC [ACY808]. QC-2 [ACY808]. QCD [IBP08]. QoS [BOY10, CS08, CKML12, DMB+03, D006, Kim11, Kim17, KKK+11b, LL07, LZF+11, MS00, NP90, OY00, SJB12, TBHA07, XHY07, XG03, YSL08, YJKD10]. QoS-aware [CKML12, LZF+11, NP90, YJKD10]. QR [Kaut+94]. QSM [RGD03]. Quadratic [Cza13, WNA+94, MP88]. Quadrature [MD92]. Quadtree [IK93, WF90]. quadtrees [HR89]. Qualitative [Buc92, WMY+17, WTV+18]. Quality [LAZC00, NZY+11, AH11, AH12, DV13, FC14, LNA12, SS08].

quiescent [MRRT07]. Quorum [NM02]. Quorum-Based [NM02]. quorums [BJPPM08].

R [Ano92a, BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-c [Ano92a, BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-clock [BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-guard [BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-b [Ano92a, BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-clock [BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-guard [BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].

R-guard [BG90a, KKN13, LMY11, TR16, ZFS07]. R-GMA [ZFS07].
THBF97, WLID02, Zim96, van96, Lee03, LML+10, AOSM04, AOSM05, BVGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, EDØ05, FC14, GZG+17, Gos90, HOVC09, HA06, HV13, HL07, JZZ+17, KKW17, LH03, LZCY09, MLDG12, MAM05, MAKWZ13, QJ05, RLH03, TZH+06, WL05, XO05, ZHH15, ZQMM11, ZHLQ12. realistic [KNS06, SJS11]. RealTimeTalk [EMP+96]. rearrangeability [DD96]. Rearrangeable [CS93c, HJDD01, FY86, Pak89]. Rearrangement [BVB02, GL92]. Reasoning [PS88, Ste95, eW95]. recall [BGBC+16]. recipients [Ros07]. reciprocal [SL90]. reciprocity [HBF12]. Reclaiming [GMM00, MMVR97]. reclamation [HMBW07]. Recognition [BMRC99, RGGU09, CNLGLR18, LO91, PD05]. recommendation [COF+17, WTY+18]. reconfigurability [ZXYO11]. Reconfigurable [AT94, BAGS95, BSDE96, BBFR94, BM97, BA95, BGOS95, COS+95, CGG+99, DS01, EL97, EHO1b, FZVT02, HQPT99, HCWS94, JP95, JS94, JB98, KF90a, LS95, LPZ99, LR93, MD01, MG93, MT97b, Nak95, NS94, ORWT+18, OS96a, TVS97, TBPV00, WHT00, dR09, AM13, AHA+16, BM04a, BPP05, CDJ+89, DS04a, FX06, HPSM91, Lla17, Mat06, MP08, PPP14, PVG09, SB9, SL98, TRSS06, TJCB10, WJ91]. Reconfiguration [CGA98, QMCL94, UR94, YTR94, BAPRS91, DBL+12, HBS17, JWSG14, LBGM15, LH+16, PSPR05, ZBW+17]. Reconstructing [BDG+15, OOW95]. reconstruction [BDRB14, FCG04, FGG08, HES10, KM03, OGRV+12]. reconstructions [SHT+08]. recoverable [ZSCX18]. Recovery [CP01, FCF00, JF95, LY10, LS01, MFS93, BG05, DGW03, MM04, MM06, MS02, PG06, TTH12, ZWY+15]. rectangle [Deh90, LV88]. rectangles [KF95a]. Rectangular [CW96, Dja04, SC12a]. Rectilinear [Nic94]. Recurrence [CP94, Car90, MP87]. Recurrences [BCZ95, GP94, NCTT09]. Recurrent [WT92]. Recursive [CW01, CB95, CTZ99, GHS96, KC99b, Lee94, LT07, RS92b, SCDD99, ZY002, AKDMM15, ERS90, MM15, SMKL93, DC94]. red [BE13]. red-black [BE13]. Redaction [SWC+91]. redirect [ACCP12]. Redistribution [PT97, RSB96, BB+06, GP05, KNH18]. Reduce [KL90, SD99, CRD12, LMGLGL17, LMR05, Lm90, MP08, PY09c]. Reduced [AP94, CC87, Gro85, HJ90b, LC13]. reduced-instruction-set [Gro85]. Reducible [DH94]. Reducing [BCM87, BD04, FGP05, GS00, IDH16, PB90, SS93, CK13, CX05, RWB+13]. Reduction [PA97, RJY96, SSG93, SM92b, BV13, Li17, LS88, Sch87, SPH13, ST08a, YAK15]. redundancy [BM17a, RMRH17]. Redundant [CKT11, MT93b, MFS93, MFS96]. ReduxSTM [PGRF17]. Reevaluating [SC10]. Reference [KS00, CH06a, FPP06, SPR+12, WL92]. references [SYYU07]. refillable [ALH+09]. refined [MIt07]. Refinement [FLS+97, NA02, ASC+18, DAB+14, GA16, MIt07]. refinement-tree [MIt07]. reflectance [YWAT13]. Reflections [Zim96]. reflective [KKP12]. reformation [LTH08]. refresh [OPG08]. Region
S [AGWY11, ASST05, BPJG92]. S-Nets [BPJG92]. SABA [ZVL15].
sacrificing [FKKR16]. Safe [FM99a, MS98, CDD+015, HV09]. safety
[Wu03, XCS06, XCLR07]. SAGE [Num09]. salesman [WMG13]. Sampling
[OS96a, SS92, CB911, SMP15]. SAMR [CP05, LTL06]. SAN [SM92a].
SAN-Based [SM92a]. sandboxing [SFEF06]. SAT [SHA17]. satellite
[TZH+06]. Satisfaction [GH92]. Satisfiability [Soh96, Joh89].
Saturation [Tze91]. SAUCE [HSS17]. save [FKLB08]. Saving
[DKY01, SSGZ13]. Sawchuk [Ano93e]. Scala [GK+13]. Scalability
[AFT+00, BCV94, BP01, DVW94, KS91, KG94, MR04a, PTK+13, QZ94.
SSRV94, Sun02, ZYH94, ZFS07, dSS11, CLG+16, CSW08, CP10b, GA16, KR06, NSKN17, QGZP17, RM10, YH07. **Scalable**
[AS13, AS15, AYI97, BM17b, BMRC99, CSWD03, CSMML10, CAB94, CLV95, C8dCD00, Con93, DA97, DD93, DKRC+15, DM04, DSW94, DFRCU99, DSD+97, DT92, DM94, FR96b, FPS12, GH02, HA92, JJ12, KA03, KP00, KH312, KC94, KGV94, L202, Li01, LWP02, NKC+97, NRM+09, NPY+97, PA94, PGP+12, Pra93, QGB+17, RBA+18, SMH94, SN93, Sm02, SFC17, TFMS15, TCS+10, WPKK94, WW96, XMN94, ZMPE00, ZB09, ZLS17, AKDMN15, ACP15, ADD818, BGM+08, CGL+14, CS08, CAC13, CJ17, CD95, DKKV15, DS04a, FPS11, GZ08, GM13, GREC91, HSY10, HWC08, KHT+14, LHK03, LC07, LB09, MK08a, MVP17, NKK16, ND12, SSTP09, Ter16, TCHC12, WJ07, WCEA10, XCS10, YQTV12].

**Scalar** [VH93, SKH15, Sol13]. **Scalar/vector** [Sol13]. **ScalaTrace** [NRM+09].

**Scale** [ABDS02, BMCP98, FZVT02, GK93, HHM94, KL84, LK98, MYM10, OK01, RFM94, VN93, ACCP12, BM16, BMB+08, BMF05, CC16, CLO17, DB11, DBFC13, DLW+12, IEWK17, KESA07, KSSL16, KBC+10, LGZ+10, LLY08, LZY11, Lu18, LWGC14, NAB+11, PTZ06, RW02, SFT+13, VM03, WCWO17, WLN06, WBRT13, XHY07, YZW+15, Z09a, ZVL11]. **Scale-free** [MYM10]. **Scalable** [BMRC98]. **scaled** [KNHH18]. **Scaling** [CVK+18, SSS07, TBPV00, YFS+15, FKLB08, FZ14, Num07, Y¨O11]. **Scan** [KB96b]. **scanners** [CCN06]. **scatter** [BM04b, LMR05, dSAJ15]. **scatter-based** [dSAJ15]. **scattering** [DB86, LPLFMC12]. **scatternet** [SLWW05]. **SCC** [LTG14]. **SCDN** [SLW10]. **scene** [OGRV12]. **schedule** [KSG03]. **Scheduled** [LB90, HA06]. **Scheduler** [NPP+02, HDJ08, HHA14, KS03, LS10, LB09, SCG10, ZLWZ18, MSK+16]. **Scheduler-Activated** [NPP+02]. **schedules** [CDR12, Dja06, DQR+09, ZXY01]. **Scheduling** [AGF94, ALL99, AMN00, AEG98, AS97, AYE98, AKPT99, AHeC90, BPJG92, BD05, BPN90, Bec96, BD11, BCLR96, BSH15, CDY97, CL91b, CLL09, CJ99a, DA97, DR95, DDD98, DP99, DS84, DAY02, DO06, DJ98, ERL90, ERA95, FAGW95, FCW09, FR92, FR96a, FKS97, Gai90, GR06, GY92, GM99, HO94, JSCB95, JSWB92, JR95, JZF+15, KS97b, KB96b, KA97, KA99, LPU97, LYT02, Luy94, MMR89, MAH95, MD13, MS+95, MSSE02, MYD95, Moh97, MSST99, NSS99, OH02, PKN08, PR12, PAM94, PS93, PM96, QM01, RU99, RAN+17, SCMB90, Ser97, SH92a, dSR00, Sta04, SD88b, SYG92, TSC01, TTG95, VB02, VHDL96, WCF94, WS, WA02, WUG99, Y196, YWDO8, AL04, ALM+16, AAD10, AOSM04, AOSM05, ALMM11, AH12, AM12b, BKS05, BGLA03, BHLT14, BFG04, BF04, BM06, BKMT14].

**scheduling** [BH05, Cal06, CG11, CG12, CRJ10a, CRJ10b, CGW+03, CRA+08, CMR10, CDR12, CJY04, DCR03, DK08, DK11, DP16, DUW86, DRR13, DTT03, EHL+15, FA07, FW05, FP14, GD08, GYAB11, GVB13, G15, GMVRGS16, GPC14, GP05, HSH10, HDJ08, HV13, JLY12, JHF+17, JBS14, KHN17, KA03, KVA18, KYS13, KKK11a, KM17, KUA07, KVIH07, KV10, Kim17, KNHH18, KK10, KSSK16, KD08, KBC+10, KMP+06, KA05, KA06, KMY10, OK01, RFS94, VN93, ACCP12, BM16, BMB+08, BMF05, CC16, CLO17, DB11, DBFC13, DLW+12, IEWK17, KESA07, KSSL16, KBC+10, LGZ+10, LLY08, LZY11, Lu18, LWGC14, NAB+11, PTZ06, RW02, SFT+13, VM03, WCWO17, WLN06, WBRT13, XHY07, YZW+15, Z09a, ZVL11].
LDZ$^{+14}$, LDZ$^{+17}$, LHK03, LWZZ12, LC90a, Li05, Li06a, Li06b, LL07, LQM$^{+12}$, LW16a, Li16, LNAL17, LML$^{+10}$, LSC$^{+15}$, LYW$^{+16}$, LPX05b, Lo92, MGSG12, MLDG12, Mar88, MCAS12, MMK$^{+11}$, MAHKZI2, MS86, MAR05, NSAS10, NHO$^{+13}$, ND12, ORR03, PY09a, PK05a, PW17, PDB13, QJ05, QSL$^{+08}$, QGL$^{+09}$, RBA$^{+18}$, SFP11, SPC$^{+17}$, SJ12, SMO14, SV08, SP13, SLG06, SCJ08, SWP90, STK11, SZL10, SR16, SHC14, TLL10, TLLV10]. scheduling [TLQS12, TDBL13, TG03, TXLL14, TDP15, Tsu07, UM17, VD04, VMMB10, VB08, VS16, WJD91, WAE03, WL05, WL10, WBR11, XQ07, XLHT13, YWG15, ZV06, ZL15, ZTFK16, ZY12, ZV09b, ZS13, ZQMM11, ZL1Q12, ZLC14, dOCS14, FZWL12].

schema [TMK$^{+17}$]. Schemas [Arb89, BG90a]. Scheme [BDF01, FY96, JB93, KK98a, LO96, MYD95, OS96a, Wu94, YD98, AOSM05, BBS13, CWLD05, EL88, ESQG$^{+11}$, GPJ10, GMX07, HC09, HOVC09, KVIS07, KRL87, LTB02, LH0F91, LA1K10, LH$^{+16}$, LMJ11, LSZZ15, LLDL15, NC09, RS08, SNCP12, SZ09, SKMM04, TDC05, TC13, TCHC12, WL04, WW12, WW04, XYDL06, XLHT13, YGZ$^{+10}$, YL16, YAA10, YC12, ZMY12, ZSCX18, ZWWX16, ZBR11]. Schemes [yCM98, FM99b, GG01, LL95, LS01, SKK97, WRC02, ZLPP01, AAD03, BLPA05, CI03, CKML12, GJXX05, HDCM11, HSB91, JM00, SHH17, TW89]. Schmidt [ZLRP91]. Schmidt [ZLRP91]. Scientific [CCRS92, DUSH94, FMSW94, GT02, HS94b, AOS05, AE88, BCD15, CXY14, EFG14, NTC03, VM03, WHW17, YL1C11]. SCO [WTS03]. SCP [VB08]. SCP-based [VB08]. screening [AT03]. scripting [LMY11]. Scrollings [Tay05]. SCS [HZY04]. SCS-to-IP [HZY04]. SCTP [ZP106]. sculpture [LMB$^{+17}$]. SDEF [EC89]. SDFGs [BLMB13]. SDMS [CCM$^{+06}$]. sea [ZW11]. Seamless [HR00, ORWT$^{+18}$]. Search [B0SW94, BS00, BMCP98, BSH15, CDCR99, Cza13, DM95, DM92, EHM95, Fen90, LFC02, SIR92, AMM$^{+18}$, BP02, BS90, Can18, CTT16, CCLS94, CSW$^{+17}$, ES12, GHY10, GJXX05, KA05, LSS$^{+11a}$, LSS$^{+11b}$, MS09, MB13, PRHB06, Par99, PSC$^{+16}$, PPSS15, PVGG06, RM10, RML11, ROB$^{+18}$, RHL08, SP08, Sch13, SHLN09, WGC09, WWA$^{+18}$, YF09, Zep91, ZH07, CB11]. searchable [WC11]. Searching [NBP98, NSM98, SH97, SGAC14, BA06, KIH15, LTWW12, Sch89a]. Search [Seb95]. Sections [BW96]. Seidel [HO94]. seismic [KSSL16]. Selection [Ben15]. Selecting [NGQM12, SSG93, KERUMO4]. Selection [JK00, LK96, PT01, RA96, RW97, RCY97, RA01, SH97, SB02, VS99].
WSA +94, WRC +02, Bad04, CKML12, EDÖ05, GM14b, KH17, LGK +12, MHLZ16, RH05, RAB08, RD05, RTZ11, SSS88, WLST16, CTC11. selection-based [EDÖ05]. selections [JW89]. selective [XYG07]. selectivity [CTT16, GÖÖ16]. selectivity-driven [CTT16]. Self [Ano02u, AS96, ABZ95, BGJDL02, BAGS95, BPBR11, CDD +15, CW05, CT04, DB08, Dol97, DPBNT12, FZ14, GH02, GS03b, HPT07, HPT02, HNM02, JM14, KY02, LLC15, Lla17, MM07a, NM02, PK05c, SZB92, SEP96, ASKTZ13, BFG, HAN02, BR91b, BFKP04, BZH06, CDDL10, CAA13, CRA +08, DLV11, DJ16, G10, IZ12, KO11, KO09, LBGM15, LH1 +16, LSH +13, dAMFs13, MYM10, MC91, NJ91, PPTV +10, SLWW05, TWQS12, Tur12, WRW13, ZBW +17]. self-adapting [WRW13]. self-adaptive [LHX +16, PPTV +10]. self-adjusting [MC91]. Self-Allocating [SEP96]. self-correction [LSH +13]. self-deployment [TWQS12]. self-manageable [dAMFs13]. Self-organization [CTT4]. self-organizing [BFKP04, BZH06, KO11, MYM10]. Self-reconfigurable [Lla17]. self-reconfiguration [LBGM15, ZBW +17]. self-reproducible [PK05]. Self-Routing [SZB92, BR91b, KO90, NJ91, SLWW05]. Self-scaling [FZ14]. Self-Scheduling [Bec96, CRA +08]. self-similarity [ASKTZ13]. Self-Simulation [BAGS95]. Self-Sorting [ABZ95]. Self-Stabilization [GH02, HPT02]. Self-Stabilizing [Ano02u, AS96, BGJDL02, BCD02, Dol97, HNM02, KY02, NM02, BPBR11, CDD +15, CW05, DB08, DPBNT12, GS03b, JH14, MM07a, BFG +03, BBS13, CDDL10, CAK13, DLV11, DJ16, G10, Tur12]. Self-tuning [HPT07]. selfish [WGS08]. Semantic [FKJG08, RHL08, CM93, EHL +15, KLJ +11, LR05, LB +15, MLZY17, MA11, NSAS10, ZH07]. Semantics [JK89, HK05]. Semi [DS04b, XZS96, CTT16, KMS +06]. Semi-empirical [XZS96]. Semi-passive [DS04b]. semi-static [KMS +06]. semi-structured [CTT16]. Semiconductor [DM90a]. Semidirect [WLD00]. semifast [GNS09]. sense [BC11]. Sensed [DSAUM99]. sensing [GDCC18, HP06, ZRN +14]. Sensitive [VR95, Ano04d, CP05, GS03a, GC07, Hu11, JL11, NBL +18, OKW14, PFJ04, RCG +11, SRT +18, WCLX11, YK04]. Sensitivity [HJ90a]. Sensor [KSI04, LDZ +14, LDP +14, STN92, THG05, ASM09, Amm16, AHG12, Ana14, AMT13, AYB +15, BXA08, BWP +11, BOY10, BPA06, BEN12, BJ1L8, BZL04, CCW14, CKN07, CRWX12, CDR09a, CDR09b, CTO4, DW06, DLL11, DGBN14, DJH11, DDM10, DFP06b, DH04, EM11, G1Y10, GDP08, GCY +04, GYP13, GZ14b, GM14a, HZA +15, HDMI07, HS12, HP06, HZD912, HJL12, IB04, JF12, JLY12, JBS14, JHPL13, KV101, KSSL16, KOA09, KO11, KO12, KKKP12, KKTZ13, KGN11, LDZ +17, LY10, LL12a, LL12b, LUB14, LLW07, LZC11, LDC16, LHP07, MAGL13, MSM09, MYM10, MK08b, ASA11, NC09, OMSGNSG05, PFJ04, PL05, PC +11, PCX +14, PFR97, PB09, RMD10, RM11, RE010a, RE10b, RLF14, RB12, SCN12, S80, SMK13, SCL10, SSJ11, TBHA07, TLY12, TDC05, TCS +10, TWQS12, VRM10, WW07, WMW09, WL11, WL10, WWA +18, XCLR07].
sensor [XQ04, XHZ+10, YpGyLIC13, ZW11, ZSCX18, ZTGL17, ZC04, dOBG+15, OYE07]. sensor-actuator [KKKP12, SCN12]. Sensor-centric [KSI04]. sensorial [VO89].
sensors [AKBD10, AD10, BFKP04, Cal06, CJDC10, DWX10, REZN17]. sensory [HRM17]. separable [MRT18]. separating [HSS10]. Sequence [JP09, Zak01, AFM03, BBM08, BCF14, BW09, BFKW13, BMARW07, DKKV15, FCS91, JV09, PTZ06, SPRG+12, SMB10, SRT+18, TMM06]. Sequence-preserving [JP09]. sequencer [BCM06]. sequencer-based [BCM06]. sequencers [CHC05]. Sequences [Swa98, TR96, BNBR16, CJ07, LVB07, SK09, Sei05]. Sequences [CRL04]. Sequential [KF05b, BFTV87, Fen90, SBC12b, SLKK13, ZXB14]. sequentially [HK08]. Serial [EMMM94, MT97b, BOI91, CR91, CL90, SD88a, SI91]. serial-data [SD88a]. Serializable [Sch91]. serializing [HHS12]. Series [CA95a]. Server [ALL99, AY97, CM99, HBCM99, JSCB95, RU99, HC09, JZ011, OS04, PM05, TBZB05, WJW09, WSLC11, ZVL11, ZI08]. server-side [ZVL11]. Servers [FM99b, AAA+10, Bar05, BPRG04, CSWD03, DLW+12, KCD08, LY12, LWY+16, MZZC12, PSPR05, Wan06, WDDK09, ZWL03]. Service [BK18, CT08, JRR99, LAC00, RGV00, ABF+14, DB08, FZ14, HOE+09, JM14, KMMZ06, KKKP12, LNA12, LC07, HMLZ16, MXSL12, MZC14, NP09, PY09b, RA11, SB12, SFEF06, SM10, SSV01, TR16, WMY+17, WTY+18, WY+18, WS06, Yan09, Z108]. service-aggregate [Yan09]. Service-oriented [CT08, SFEF06, WYW+18]. Services [ZR00, AK06, AM07, KSSK16, LCC+05, LWZ12, JXS03, YWD08, YAK15]. session [LAK10, MZZC12]. sessions [TK07]. Set [Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS96, RDL95, AF+11, AP16, BD05, CC87, DW06, Gro85, HES10, HJ07, HDCM11, JP17, Lon04, MHLZ16, Nic07, SZW05, WCWH03, WCKD06, YSS11, ASST05]. Set-Based [BCD95]. set-distributions [Nic07]. Sets [AAP01, CGL+95, EP90, GT97, Pov99, XMMD17, FSV14, FSV17, KCR14, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14]. Several [CP92, MCAS12]. shader [YP+10]. SHadoop [GY+14]. ShadowObjects [JRR99]. shallow [CvdBL+08, dIAMCFN12]. shape [KSJC17]. shape [KSSK16, NCA+12]. share [KNHH18, PVGG06]. share-nothing [PVGG06]. Shared [AGW98, AGW01, AD95, BS06a, BJS03, CP91, DS95a, DH95, GDN+98, HV95, HS00, HPT92, HTL99, HA92, JF95, JHF+17, KRC00, KS97a, Ks00, KC94, KY96, LK98, LA93, LT94, Lu01, MF94, MS98, MG91, MSST99, PY96, RL96, RY96, SDO99, SC91b, TJ92, TTT95, TY95, WI92, YW91, YM93, YL98, Zak01, AL04, AAC10, BC06, Car95, CCM+06, CDAN14, DI91, EKNS17, FFZ+05, IRRS16, KCR14, KLP10, KMS10, LNC11, LHT08, NST01, OC07, Pad91, PY09b, PK05b, RFPAG08, SB15, SAJ13, SS17, SM04, TGPUC16, TK07, WL92, ZLWL12]. shared-coin [AAC10]. Shared-Memory [BS06a, CP91, DS95a, HA92, KS97a, LK98,
MF94, MG91, SDS99, TTG95, YW91, YL98, Zak01, BC06, DI91, FZC+05, KKR14, KMS10, NSTN91, PK05b, RFPAG08. **Shared-Nothing** [LT94]. **Shared-Noting** [HTL99]. **Shear** [SSM89]. **Shear-sort** [SSM89]. **Shef** [PF08, ZB09]. **Shield** [SSX14]. **Shifts** [OP96]. **shop** [Bo˙z09]. **Short** [ESTA94, KLC05, MBS+12, PARB14]. **short-range** [PARB14]. **short-term** [MBS+12]. **shortest** [BGR96, DCA+15, HTB98, IZ95, KC99b, TU92, TZ00, ATH91, DGNW13, KS91, Lai15, Lai17, YME06]. **shortest-path** [KS91, YME06]. **Shot** [TRS+12]. **shrew** [CH06b]. **SHRIMP** [BF97]. **shrink** [REZN17]. **Shuffle** [BAES92, JH92b, Pad93, PA97, JT88, Var91]. **Shuffle-Based** [Pad93, PA97]. **Shuffled** [KM17]. **Shuffles** [Ano93e, CS93b, CS92]. **shuffling** [BBB11]. **side** [CK88, HA05, TC04, XCH08, ZVL11, WHW+17]. **Sided** [ZB97]. **SideIO** [WHW+17]. **SIEVE** [SG93]. **sign** [PH16]. **Signal** [RTCG91, SH90, THBF97, WW07, XQ04]. **Signal-processing** [RTCG91]. **Silence** [DKY01, FJ93]. **Silent** [DJ16]. **Silicon** [THN+93, HRG+11]. **SIMD** [AB93, BAES92, Che05, CP94, CD95, FAGW95, GWG96, GSWW04, HCS+00, HCD90, Ho91, IK93, IK87, JMS86, KNS91, KLS90, LWOG02, ML89, NT93, Nas94, RS09a, RS90b, Ren11, SI91, Ume85, WSA+94, WLR90, ZLRP91]. **SIMD/SPMD** [Ren11, WSA+94]. **similarities** [CL14]. **similarity** [ASKTZ13, BKH17, KSSG14, UGG+11]. **Simple** [Ara13, BW96, GB93, GS99, KW02, LW06a, PL94, SE15, TZ00, Koc91, MRKT07, MO3, Nes10, YAA10, BJ99]. **Simplex** [Shu95, ASC+18]. **Simulated** [Bev02, BH86, HB97, HC91, RSS96, Soh96, XH91, AH06, BG89, GE85, Ume85]. **Simulation** [DS02, DN94, LC90b, NFHL13, eW95, AAK+13, GN15, WCKD06]. **Simulation-Based** [RSD94, SSRV94]. **Simulations** [ASR93, Ger98, GM94b, HP95, KP00, LHM95, NM95, PAH+98, RPS93, AM12a, DB11, FC14, FIJ04, LTL06, SDG08, SM04, VBDC13]. **simulative** [HW08]. **simulator** [CZPP16, DOCS14]. **Simultaneous** [CW93, ABC+09a, BPRG04, Che90, FC90, LY10, MR09, PTZ06, SLG06]. **Singhal** [Ano96l]. **Single** [ALL99, HLBM16, JBP00, MWL00, TZ00, KNHH+18, LPLFMC+12, RFS+12, SSFP11, SPC+17, PR13]. **Single-Chip** [PR13]. **single-hop** [RFS+12]. **single-ISA** [KNHH+18, SSFP11, SPC+17].
Oru94, Par98, RTZ11, SI86, SZ03, ZHO03, AG86, BS03, BD|Q86, MS15.  
SoMR [CS08]. Song [Ano97k]. Sophia [GTGLSA12]. sophomore [GAC+17]. Sort [LJKS02, Tay02, BM14, SSM89]. Sort-Last [Tay02].  
Sorted [SH97]. Sorters [BNP98]. Sorting [ABZ95, CQ95, DL98, FKK+04, FY96, HQPT99, HBJ98, JP95, Lee94, Lin93a, MP93, NS94, OS96a, RW97, SCC92, SS92, SM00, VN93, WRC+02, Che89, FCS91, KR11, MS88, PB90, SMM89, Sei05, SA08, TW15, Ull84, ZFL89]. Sorts [ZAW94, Sf96]. SOS [PP92]. Sound [DKY01, CKK+13]. Sources [Lon04]. SP [ASH+01]. SP1 [BR95b]. Space [BW96, BH93, DY99, GG01, GR97, KM97, KY96, LZ02, NC97, PPSV15, RP98, SH98, WA02, WS97a, AD12, Ara13, ACFK07, BBM08, CJKK+13, Dja04, HV09, KA05, LKY13, MMR90, ST12, SZB16, MSS00, YQTV12]. Space-Based [LZ02].  
Space-Efficiency [GG01]. Space-efficient [PPSV15, Ara13]. space-optimal [Dja04]. space-optimality [HV09]. Space-Time [WA02].  
Spaces [RS92a]. Spanners [RL95]. Spanning [FA95, KC98, KC99b, WB01, BFG+03, BC05, BC06, BPPR11, BBL04, CJW13, GY10, tH90, HAC17, KG10, LVP08, Lin03, OMSGNSG05, RDA18, Ten16, TMD05, WFZ12, WIB12]. Sparse [Bas97, BW95a, KK98b, Man94, MFC96, NFEG97, PR13, Shu95, UZSS96, Win85, AAD05, ANP07, ASES15, BC06, CP10b, GMP12, LHW14, LV15, MBW16, PB15, SH06]. Spatial [GS93, NPY+97, CCHC09, CRWX12, JF12, MLG05, NAK04, TR16, WCF14]. Spatial-Temporal [GS93, CRWX12]. Spatially [DS02, Rao16, SBÇ12a]. spatiality-explicit [Rao16]. SPEAR [RG06]. Special [AP93, AL99, AB03b, AS13, Ano95i, Ano95j, Ano96j, Ano97], Ano99g, Ano01c, Ano02v, BOP06, BD00, BS99, BM91, CDJ09, CDJ11, DOP98, DeK00, DF12, DT92, ES97, FTM+14, FR98, FPS11, FPS12, GC95, GMSS+11, GS01a, Gra09, Irw88, IB04, JW94, KL08b, KRS13, KRS14, KRS01, Lan09, LZ11, Las12, Lin93b, LK10, MSGS+13, Mir91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, RAL+16, RLA+17, Raj08, Sch00, SXZ06, SH92a, SB97, Sto90, SFC17, TH11, TFC+15, BG90b, TY95, Wee01, XMMD17, XJS03, YW91, ZOO7, dVCP06, Cuz11, Gra0a, KL08a, LK11, MKN14, PRS14, WW03]. Specialized [QOvdG01]. Speculating [GB06]. Specific [KRS13, KRS14, PP92, SK93, MRS+14, SS94b]. Specification [AS00, BR95a, BN94, RSW90, BFL+13]. Specifications [LSCA93, BCM06]. Spectral [SANY94, SSB98, AT03, CJKK+13, CH06b]. spectral-screening [AT03]. spectrum [FCZ+12, GDC18]. Speculation [AC16, FKKR16]. Speculative [RG06, MG09]. Speed [BBH+97, Fer95, Li16, PVG09, SR91, WCYR08, HP97a]. speeds [LFS16]. Speedup [AMB95, DDP94, FFK97, LMM99, SN93, YH07, NW88, SC91a]. speedups [Vis87]. spikes [ST08a]. spin [AK07, FPM+14]. spin-transistor [FPM+14]. Spinning [BHK+94]. Spintronic [NKV14]. Spite [VR94, DB08]. Spline [BNBR16, CWW+95, CY96, GM95, Meg01]. Spline-based [BNBR16]. split [WCWH03]. split-stars [WCWH03]. splitting
[PVGG06, WSH+03]. **SPMD** [Gup92, LZZ+11, OKB95, RW93].

**SPMD-style** [LZZ+11]. **SpMV** [YLL17, ZGG+14]. **spoofing** [KMMZ06].

**Sporadic** [MAPF14, dOCS14]. **Spot** [LKK94, TY90a]. **spots** [LK90].

**Spread** [REZN17, SIY14]. **spreading** [ZXGD18].

**Square** [BB85b, EL91, LTW+90, XBK07]. **squared** [RIZ90]. **Squares** [CB95, ZYO02, BBd90, HLS03, KAP90, LTW+90, SMKL93]. **Squashed** [BG90a]. **Squid** [SP08].

**SR** [DYL+12, GRJ+15]. **SR-IOV** [DYL+12].

**SRAM** [JP09, WCF14]. **SRAM-based** [JP09].

**SS** [CLOL17]. **st** [BCMV15]. **st-connectivity** [BCMV15]. **Stability** [Wor93, KMS07, LXW+11, WCF14].

**Stabilization** [CG02, HO2, HSY10]. **stackable** [SSX14].

**Stage** [FT94, SZ00b, CC14, HDJ08]. **staging** [ED¨O05].

**Stacking** [Kop97, TG97, HNM02, KM92, LSH+13, NC97, PSC+16, ASKO16, ASB18, AD12, CWLD05, GOO+16, GFPC14, KA05, LMR05, LW06b, MSM09, WCO+09]. **State-based** [LSH+13]. **State-of-the-art** [PSC+16, WCO+09].

**State-space** [NC97, MSM09]. **Statement** [AMB95, DR95, ALS91]. **Statements** [KHS96, SOG94]. **States** [Kop97, TG97, FZ90]. **Static** [AKSM08, BPN90, BS+01, BSMH08, CC91, ERA95, GF89, KKK+11b, LC90a, LK94, LA04, MS+95, OD95b, SS+06, YMLP14, BSS+13, DKO8, KA08, KMS+06, McD89, PC11, SSM08, SWP90, SS+07, ZX011].

**Statically** [LB90, Mat06]. **station** [GPT06a, RBD08]. **Stations** [DKMV01, DNN96]. **statistics** [GA90]. **steady** [LMMR05]. **steady-state** [LMR05].

**Stealing** [An00d, LS97, Ros99, DKKV15]. **Stein** [QOvdG01].

**Steiner** [LY10, Sta17]. **Step** [CW00, Bog17, KKR14, Yan+04]. **steroids** [Bar05]. **sticker** [GPX08]. **Sticky** [Kop97]. **STICS** [HZY04]. **Stigmatic** [Pro06].

**STLA** [KV14]. **STM** [HHS12, PGRP17]. **Stochastic** [CTD99, FX06, HPT+97, JSS+12, QZ94, RS92d, SS+16, SSM08, ZS13, BM11, CMT92, MM06, MS86, MBO11, WMG13].

**Stochastic-based** [SS+16]. **stop** [LLT12]. **Stopping** [BS99, AMT13]. **Storage** [CLV95, HLL+95, LL95, BL05, BCK+09, CGG+99, FLCB10, HZY04, HK04, JWH+17, KR12, Lu18, MAPF14, MPG17a, SSX14, SWW17, WCC17, WWW17].

**Store** [CP90, NS95, VA07]. **Store-and-Forward** [NS95]. **stores** [ZWQ+16].
Storm [KKH17]. straight [GC07, Wri91]. Strategic [RA11]. Strategies
[AM07, BDQ96, BHK+, BCR96, CP92, CGA98, DL01, FF98, GJGS88,
GM99, HK98, LHM95, LUn99, MS99a, OP98, SMH94, VB02, VA03, YB95,
YL98, Zhu92, ZM94b, BMARW07, BHS13, CGM14, DM94, GRV08, GM14b,
HV13, MVB05, PP06, RABo8, ROB+, SSGZ13, Wu11]. Strategy
[CS00, GMM00, HHC98, KBC01, MD13, PAM94, RS92b, ASD09, ASSES15,
BBM08, CTT16, DLW+, EM11, GOH+, GRDB05, GMVGRS16, GLD06,
Hsi04, JF12, KVA18, LY91, LL07, LVP07, Ngo06, SK09, SRT+, TLLV10,
TW15, WCC02, WYW15, ZV06, ZVL11, ZV14, ZVL15]. Stream
[HPT+, WQZ+, AAK+, ARM+, AM11, CK08, DFLO17, EI07,
G0016, KKH17, RCG18, RAN+, ZHH15]. stream-based
[ARM+05]. Streaming
[PS14, CGKY12, GRR13, GHC+, HK05, LCCL10, WCXL11, XYDL06].
Streams [MM93, WUG99, AGW99, LVP07, LY08, ST14]. StreamTMC
[WQZ+13]. Stretch [GG01, SBÇ12b]. stride [AM13]. String
[BL94, RS90b, CCK+, Kri91, MM07b]. strings [SCS08]. Striping
[CT93]. Strongly [SZB92, MHPR05]. Structural [AGG98, SM92b].
Structure [DL99, FMP98, MN95, PL98, Tze93, AFK14, BB85a, C90,
FG203, GV86, GB11, HK05, JdSJC+, Lis90, MJ03, MSZ05, ZNA13, Par89,
XLT13, YL12, YC04]. structure-aware [HK05]. structure-based
[XLT13]. Structured [BE95, FKB98, KB01, LUn94, MRRV98, MNN98,
WM92, CWL05, CGKY12, CTT16, DAB+, FJG06, FKJG08, GA90,
GWH06, IKS87, SZ09, SRI14, WXZ05]. Structures
[Ado96j, ADM+, CC92, DPO98, DRC90, Gup92, IR92, ZM94a, AEY12,
FCG04, GZ08, HA05, LJ86, NCT+, Zsa16]. stub [WSG91]. students
[Ada17]. Studies [GT02, HCAA93, CCE+17, SCB08]. Study
[AAD02, BJ96, BA01b, BS96a, BS96c, Cha96, GKH97, HPT+, HB98,
MS99a, NB98, Ou94, QM01, RSD94, SSG93, SSRV94, WNA+, WLR90,
YMR93, AP91b, Bad04, CBM+, CCK+, CT94, DI91, FRM15,
GRR+, HJ90a, HrD13, HA01, LGZ+, LPX05a, MCAS12, NTK17,
PCMM+, PP13, PTK+, RÖE+, TB90, TdAR18, WLCZ15, WMG13].
Style [SS00, LZZ+11]. subclasses [CP04a]. Subcubes [SR95]. subdomain
[CEGS07]. subgraph [Pla13]. subgraphs [BCH15]. submachine [FP06].
Submesh [SP96]. subproblem [SMT15]. subscriptions [ST12].
Subsequence [MS99b]. subset [WLL16]. subset-sum [WLL16].
substitution [GPX08]. Substrate [KMKD97]. Substring [CB96].
Subsystem [GSGD03]. subtasks [SSM+06]. Subtree [DP00]. succinct
[BHR91]. Sufficient [SJ96, Ste17, AHzC90]. Suffix [DP98, CS06a, GZ08].
suitable [PGS06]. suite [GN15]. Suited [PRS97, GS91b]. sum [WLL16].
summary [Rob09]. summation [IHM05]. Summing [San02]. sums
[HLS03]. Super [WLY01, PW17, SOAZ05a, SAOKZ05b, SE15]. super-
[SAOKZ05a, SAOKZ05b]. super-matrix [SE15]. super-pipeline [PW17].
Supercomputer [CB02, GHS86, SWHB17, UI84]. Supercomputers
[AP93, CRV94, CP94, LF03, TDBL13]. Supercomputing

Supported [YPCW16]. Supporting [HA06, Sto87, WLNL06, BSW07, LSZZ15, SRI14, TYH09, TGPUC16, ZBR11, ZWR107, LST+13].

Survivable [HWWHO8]. susceptibility [DFST13], suspect [XYG07]. sustainable [LS10], sustained [RMHR17]. SVD [CL88, RS08, ZB97]. SW [RBG17]. swap [FP+08]. Swapped [Par05, ZXP09]. Sweep [GGN93, DMCFCM03, GM14a, KMP+06, CMR10]. Switch [ASH+01, CRD12, OK01, PD92, CL90, LHKL03, WLWW09]. Switch-based [CRD12, LHKL03, WLWW09]. Switchable [SB84]. Switched [CCR94, CS93c, GGN93, LG96, WB01, EB09, KYY05, LWCG14, Nap90, PYF08]. Switches [KJ84, PL93, TF92, MG09, PY09a, PY09b, VAS+13]. Switching [DRSB01, GB93, Guo94, LYL93, OY00, ST02, BKCM17, BMIM07, CC14, KG10, LCCL10, LWLD12, PL06, ST06, STKW12, ZPK+14]. Sybil [YXX13]. Symbol [OWK14]. Symbol-level [OWK14]. Symbolic [Y96, CJ94]. Symmetric [BJ99, DHB02, DZDZ01, HOE+09, HJ01, Kau94, Oru87, ABGV11, ADV14, BC05, BW08, BB85b, EM89, KA03, VGAB08]. Symmetrical [IM94, QY94]. Symmetry [Kel00, HT90, MJ03]. Symposium [OY13, Wei01, Ros07, Snu03]. SYN [XCH08]. Synapse [Ram92]. Synchronization [ASB97, AGW98, ABF92, AH94, BA06, Cha95, CTC+10, FR92, GVA+08, JLRA97, MRRV98, OKB95, PB95, RL96, RSS99, The02, WUG99, XMN92, CRA+08, FZC+05, HMBW07, HA06, HLS12, HZDP12, LA06, PB09, TG04, Tau16]. Synchronized [LNA12, JS86, XLL15]. Synchronizing [DKMV01]. Synchronous [BC05, CS95c, GV94, NSLK99, SKR93, Sch91, Soh96, ARP18, ABBD14, DGF10, FXW03, KVN17, MCS14, MEMEMH17, PK05a, TBG+17, WTC08a, WTC08b]. Synchronously [SP90]. synchrony [CB15]. Synthesis [HLJ01, Lis90, PP92, CKK+13, HDD+05, KKB+06, AbdAR18]. Synthesize [HLJ98, DSEP17]. synthesized [MC17]. Synthesizes [Ram92]. Synthesizing [SL89, Che86]. Synthetic [Pop91, AAK+13]. Sysplex [NKC+97]. System [BK95, BBD+91, BA01a, Bem02, BMM97, BJK+96, CP92, CP99, DHR96, DSD+97, DH95, DT92, FKB17, FP93, GH90, HBCM99, HCS+00, HLL+95, HWLR14, Kav93, KMB91, LP96b, Lu01, MLW00, MKY+97, MBL+92].
MO97, MS96, NKC+97, NSPPC02, SEP96, SG96, Tse95, UR94, wXH00, ZMPE00, dR09, ABC+88, AMK+07, BL05, BCK+09, BGA12, BMF05, BP05, BSS+13, BYH+17, CBP02, Car95, CLMRL15, CSW08, CCEB03, CDJ+89, CK91, D904a, DJ91, DTK11a, DLW+12, DB86, DMS+16, EC89, Fer90, GTGLSA12, HJ90a, HM06, HMBL16, HHA14, Hus17, JW89, KHN17, KCD08, KSB11, KMP+05, KS13, KC04, LMSK18, LFH+03, LC91b, LLWC17, LY13, MM07a, MK08a, MC03, NAK04, NTC03, No12, OEY07, PKN08, PK10, PDL14, PK05b, RV13, RBA+18, RAN+17, SPRG+12, SS+16, STF+13, SC04, SK91, SXX14, SSL04, SM86, SV18.  

**System**  
[VD04, Wan06, WHW+17, WS06, WZQ+13, WYTX13, YCH+10, YLB90, ZV09a, ZMC06, ZHH15, ZW13, ZJ06, AGWY11, HCAA93, SIE16, SK16].  
**System-Level**  
[Kav93].  
**System-on-chip**  
[DMS+16, LY13].  
**Systematic**  
[IAS+92, KK95, LB89, WAS88, ZTGL17].  
**Systems**  
[ASH+01, AM97a, AM97b, AMN00, AS13, AS15, Ano92c, Ano02a, ADS98, BAH00, BBM+02, BBR94, BPR99, BW95b, Bou02, BN02, BS+01, BS96b, BS96c, Cas93, CS93a, Cha94, CKK00, CY95, CK97, Che93, CBdCD00, DST95, DA97, DS96, DSW94, DAYA02, DG94, EMP+96, FGKT97, FTC00, GCKM97, GM99, GRR93, GK93, GMM00, HKT+91, HNNM02, HILLY95, HTL99, HMM99, IM94, IK94, ISBM99, JR95, JH92a, JF95, JSM94, JRR99, KS97a, KBC01, KCV99, KE93, KS93, KM91, KM92, LH92, LF92, LT94, MMR98, MAS+99, MT95, MMVR97, MM93, MRR+02, MC93, Mir91, NSS97, NMS93, Nie94, NDZA99, OM84, PA96, PB09, PT01, Pov99, PP92, QY94, QGB+17, Raj01, RDS02, RAS96, SM94, Sch91, Ser97, SL95, SRGB90, SSRV94, Sun02, SFC17, THN+93, TH02, TY95, WJ92, WF93, WF96].  
**Systems**  
[WUG99, XH91, YH97, ZR00, Zia92, ZM94b, van96, AL04, ALM+16, AA16, AAK+13, AOSM04, AOSM05, AD12, AFM90, AF06, ACCP12, AA15, ABBD14, AH06, BMB+08, BBCQ13, BB03, BDGR13, BW09, BPR03, BJS03, BK08, BS92, BKM14, BD04, BPW95, CWL10, CNLGR18, CRK+09, CF88, Car90, CCS06, CKWT17, CTC11, CVJ09, CRJ10b, CGW+03, CI86, CP17, CAF+11, COF+17, CSW+11, DZC17, DK08, DFP06a, DB11, DDNT10, DGFK05, DGDF10, DM04, DWYB10, DM90c, DQR+09, DDO6, DLBL+12, DW04, DH91b, FJC04, FWM+10, FSS11, FLCB10, FX10, GMMP12, GZG+17, GL89, GNT04, GMVRG16, Gos90, GS91b, GWWL94, GC05, GRR13, GBMZ07, GF89, HRC09, Hal05, HC09, HOE+09, HBC15, HCZ04, HS86, HA06, HP06, HA91, HA05, HHK15, IRRS16, IS06, JSWB92, JMS86, JKIE13, JST12, JLM08].  
**systems**  
[JL11, JZZ+17, JWH+17, Kak15, KKR14, KHW13, KVA18, KME89, KVNV17, KUA07, KyLPC17, KSG13, KAS07, KL05, KMS10, Kub17, KMS+06, Lai86, LLCL15, LFS16, LT020, LT06, LGZ+10, Lan09, LZ11, LLL06, Lee90, LHF91, LHK03, LJ05, LAK10, LZCY09, LASS15, LZ05, LC90a, LJ06b, LVP07, LQM+12, LNAL17, LW89, LPLFM+12, Lop13, Lop18, LCM+06, Luc18, LLS07, LM09, LXZ13, LLW12, MGS12, MLM12, MB13, MP10, MKK+11, MAHKZ12, MAKWZ13, MS86, MTS90, MVFP08, MLK12, MSK+16, MBH+08, MRRK14, MRT18, NLB+18, NFHL13, ND12,
NZY⁺¹¹, OS04, PMV05, PMV06, PRHB06, PC11, PH16, PTA08, PF91, Pmd011, QGPZ17, RLA⁺¹⁶, RLA⁺¹⁷, RLH03, RŒ⁺¹⁸, RN04, SSFP11, SW12, SDDT04, SP08, SPH13, SFT⁺¹³, SYUY07, SS08, SCB09, SU87, She09, SCS⁺⁰⁸, SCMS12, SXZ06, SHLN09, SY04, SHL⁺¹³, SCJ⁺⁰⁸, Sie16, SLK13. systems [SI13, ST05, TLLL10, TLQS12, TFMS15, TW89, Ter16, TRSS06, TB90, TCHC12, UAKI06, VMMB10, VS16, WCO17, WXZ05, WTC08a, WTC08b, WDDK09, WLST16, WZZ⁺¹⁷, WWW17b, WWY⁺¹⁸, WSG91, Wa11, WSLC11, XHY07, XQ07, XLH15, XHT13, Yan04, YLL17, YL89, YQTV12, YZW⁺¹⁵, YYLC11, YXZ11, ZAB18, ZZ90, ZAAB17, ZFS07, ZWY⁺¹⁵, ZTFK16, ZV09b, ZQQM11, ZBW⁺¹⁹, Zim90, dG91, dAMCFN12, FPS12, ORWT⁺¹⁸]. Systems-on-Chip [ORWT⁺¹⁸].

Systolic [AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, Meg91, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KTL10a, PTK⁺¹³.

T-L [CRJ10a, PTK⁺¹³]. Table [LACJ18].

tag [CRK⁺⁰⁹, VQRS17]. Tagging [GH92]. Tagging [CL03b]. Talent [JL11]. Tall [BDG⁺¹⁵]. Tall-Skinny [BDG⁺¹⁵]. TAM [CGSV93]. Target [ERL90, CJDC10, KO11, NDP13, WW07, YCC05]. Target-driven [YCC05]. targeted [BKK⁺¹³].

Task [AKPT99, AH06, CDY97, DA97, DDD98, DAYAO2, DL99, DRSOG2, ERS90, FZWL12, FKKC97, FY97, HBCCM99, HKT⁺⁹¹, JTTZ11, KLZ97, KA97, KA99, LI98, MSSE02, Moh97, SM014, SD097, SZ00b, SCJ⁺⁰⁸, SS94a, SV00, SBBK90, SYG92, UAKI06, UR94, VS99, WSRM97, YCY⁺⁰⁰, AAK⁺¹³, BKS05, BD05, Bat05, CDS10, DK08, DK11, DGD⁺¹⁷, DÔO6, GQZ18, JL11, KHW13, Kim17, KA05, LLL06, Li16, LSC⁺¹⁵, LZXL11, MCC04, OA10, PKN10, PK05a, PA15, SP13, SWP90, STK⁺¹¹, SZB16, TDP15, VS16, WYG15, ZTFK16, dOCS14].

Task-Level [HKT⁺⁹¹, SBK90]. task-scheduling [Kim17].

tasking [Lun90]. Tasks [ABM⁺⁹², BS⁺⁰¹, DJ98, ERL90, Hag97, Lat95, LWY97, MAS⁺⁹⁹, MMVR97, NMS93, PS93, RDS02, Sin87, AOSM05, BFM⁺¹⁸, BHTL14, BH05, BSMH08, CCK⁺¹¹, CDJ⁺⁹⁹, DRR13, GKI5, HMR15, HWLR14, IKS87, KUA07, KSS⁺⁰⁷, KMS⁺⁰⁶, LMGLGLG17, LHK03, Li06a, Li06b, LQM⁺¹², LB09, LLS07, PK05a, PDB13, RR05, SSM⁺¹⁶, SCB12b, SNP12, SSM⁺⁰⁷, XLI5, ZV09b, ZHTQ12, dSS11].

Taxonomy [FEH⁺¹⁴, HM96, Sin93, HBC15]. TCP [BM11, VLL⁺¹⁴]. TDPL [SBKB90].

TDM [LLJ00b]. Teaching [CTS17, PBB⁺¹⁷, Ada17, FKR⁺¹⁷, GAC⁺¹⁷, HSS17, KMR17]. teamwork [NKS17]. TECH [ZBR11]. Technical [Ano93a]. Technique [BN94, CLV95, DAYAO2, Fer95, KBG92, PM96, ZLPP01, ASKTZ13, CX05, CRD12, DeG88, EE05, KI11, Nes10, Nic88, PDD11, RBB17, WCF14].

Techniques [ADM⁺⁹⁴, CS95b, Dah99, ELS94, FY97, Gil94, GS00, HLLY95, HTL99, JSCB95, KGV94, NPY⁺⁹⁷, PA96, PFP08, RSS99, Tay02, UZS96, YZ90, JMR11, JZ96, KBGG15, Kyr96, NMS93, PS93, RDS02, Sin87, AOSM05, BFM⁺¹⁸, BHTL14, BH05, BSMH08, CCK⁺¹¹, CDJ⁺⁹⁹, DRR13, GKI5, HMR15, HWLR14, IKS87, KUA07, KSS⁺⁰⁷, KMS⁺⁰⁶, LMGLGLG17, LHK03, Li06a, Li06b, LQM⁺¹², LB09, LLS07, PK05a, PDB13, RR05, SSM⁺¹⁶, SCB12b, SNP12, SSM⁺⁰⁷, XLI5, ZV09b, ZHTQ12, dSS11].

Taxonomy [FEH⁺¹⁴, HM96, Sin93, HBC15]. TCP [BM11, VLL⁺¹⁴]. TDPL [SBKB90].

TDM [LLJ00b]. Teaching [CTS17, PBB⁺¹⁷, Ada17, FKR⁺¹⁷, GAC⁺¹⁷, HSS17, KMR17]. teamwork [NKS17]. TECH [ZBR11]. Technical [Ano93a]. Technique [BN94, CLV95, DAYAO2, Fer95, KBG92, PM96, ZLPP01, ASKTZ13, CX05, CRD12, DeG88, EE05, KI11, Nes10, Nic88, PDD11, RBB17, WCF14].

Techniques [ADM⁺⁹⁴, CS95b, Dah99, ELS94, FY97, Gil94, GS00, HLLY95, HTL99, JSCB95, KGV94, NPY⁺⁹⁷, PA96, PFP08, RSS99, Tay02, UZS96, YZ90, JMR11, JZ96, KBGG15, Kyr96, NMS93, PS93, RDS02, Sin87, AOSM05, BFM⁺¹⁸, BHTL14, BH05, BSMH08, CCK⁺¹¹, CDJ⁺⁹⁹, DRR13, GKI5, HMR15, HWLR14, IKS87, KUA07, KSS⁺⁰⁷, KMS⁺⁰⁶, LMGLGLG17, LHK03, Li06a, Li06b, LQM⁺¹², LB09, LLS07, PK05a, PDB13, RR05, SSM⁺¹⁶, SCB12b, SNP12, SSM⁺⁰⁷, XLI5, ZV09b, ZHTQ12, dSS11].
ARP18, AOSM04, BBR13, CDB04, CDR09a, CD95, FM85, Gao89, GRR+05, KA08, LPK+10, LP88, MBW16, Pla08, RM11, Raj08, RG87, SFEF06, TZ07.

Technology
[Ano02v, ER97, GC95, MKY+97, MRR+02, OB88, PBB+17, TMM06].

TEES [ZWWX16]. Telegraphos [KMKD97]. Telemedicine [CY99].

Telescience [Ano02v, ER97, GC95, MKY+97, MRR+02, OB88, PBB+17, TMM06].

TEES [ZWWX16]. Telegraphos [KMKD97]. Telemedicine [CY99].


tensor [IEWK17, LGK+12, SMH+14]. Terabit [SH98]. term [BV13, LKM12, MBS+12]. Term [HHC98, Li17]. terminals [HB11]. Termination [ASR93, CW93, HTB98, KHK03, Lai86, Ric98, Tse95, BFTV87, CV90, Er88, MD07, MFVP08].

ternary [GNW03, KRM14]. Test [GRS97, PKK91, Soh96, WW97, ALLM11, DWHL87, LTG14, NCA+12, ALLM11]. test-and-treatment [DWHL87]. testbed [HGFF10, LBE03]. testbeds [VPHML06]. Testing [CY95, GFB+92, GS99, KW02, WG93]. tests [Psa96]. tetrahedral [CZZ+17, LWCC15]. text [BV13, PAG+18, SWW+17, WD13]. Their [Kop97, BM08, CRWX12, SI86, TDM05]. Themes [RCY97].

Theorem [SHSH17]. Theoretic [AaJS01, KK10, MGRRK14, PC11]. Theoretical [HC97, LZZC11, CKT11]. Theory [CC08, DM90a, PTA08, VBM90, ZLCJ12, BDJQ18, BM08, GRDB05, Zim90].

Thermal [SHSH17, LFS16, OJP+18, SNMB16]. thermal-aware [LFS16]. thermally [TKKH17]. thin [ST08a]. Things [NLB+18, WCCH18, YWJ+18]. thinking [CCE+17]. Thinning [KLP10]. Thread [OTKT12, CGM14, CDAN14, DWYB10, LK13, RSCQ17, SLG06, ST05]. thread-parallelism [RSCQ17]. Threaded [NS97, BBH+17, Kep03, LK15, PYP+10, CGSV93]. threading [Ngo06]. Threads [GSC96, LFA96, SEP96, TG99, DKRI09, PMdO11, PL03b].

threats [SFEF06, TKG+17]. Three [FCG04, FLS+97, FT94, GG01, GH96, KR98, NEGB5, PD92, SSG93, SSGB02, YMR93, ASEA13, LW06b, LDM16, YJJ+16, ZFS07]. three-body [YJJ+16].

Three-Dimensional [FSL+97, KR98, NEGB5, FCG04, ASEA13, LDM16].

Three-Stage [FT94]. three-state [LW06b]. Threshold [BFMT+18, CGA98, NKV14, PAM94, Nik04]. Threshold-Based [CGA98]. throttle [XCH08]. Through-Wafer [MLW+97]. Throughput [FM99b, HWC08, HB11, JSS92, MMVL11, BSW07, BLMB13, CLA+18, DW12, GRR13, HYW16, HWLR14, KSB11, LMSK18, LMR05, LHX+16, LNC13, SA11]. Throughput-coverage [HWC08]. Throwing [Tse95].

tickets [LMJC11]. tier [MZZC12, MCZ14, WQL14]. Tight [BBH+98, FSZ07, Mat06, CH06a]. tiled [JHF+17, WQZ+13]. Tilera [PCMM+17]. Tiling [AR97, CWW96, RS92a, Xue97, KSG03]. Time [AAL95, AK93, Ana14, Ano92c, ADS01, BPJG92, BBM+02, BA96, BM04a,
BOSW94, BH93, BGOS95, BTZ98, BA01b, CW00, CB15, CS93a, Cha94, COS+95, DP98, DS01, DJ98, DD95, EL97, EMP+96, Fah96, FKB98, FY97, GS99, GM00, HRG+11, HA92, JR95, JH92a, KF95b, KS97b, KEA95, LTWY95, LTY96, LP97, IY90, LM96, LAS+97, LFA96, MRR98, MT95, MMVR97, Mat93, MDD97, Moh97, MSST99, MS99b, Nas94, NIR86, NH93, NP09, OOW95, OS96b, OSZ98, PW96, PLY15, P190, P95, PS93, PM96, PM92, QMCL94, RDS02, RU99, RAS96, Ric98, SCMB90, STN92, Sum02, THBF97, TVS97, WBTM09, WA02, WS97a, WLID02, ZLPP01, Zim96, van96, AOSM04, AOSM05, ACCP12, BNP02, BGV14, BDGR13, BGJDL02, BPP05, BKK+11, CH06a, CCK11, CRJ10a, CRJ10b, CLL09, CLR90, CCN06].

Time [DLV11, DKRC15, DHK04, ED905, FC14, FKLB08, GZG17, Gos90, GF89, GREC91, HOVC09, HA06, HV13, HL07, HZDP12, JZ+17, KKR14, KSSL16, KWL17, KSC03, LFS16, LR14, LHK03, Lee03, LST17, LZCY09, LLY15, LML+10, Lis90, Lo92, MHLZ16, MLDG12, MAM05, MAKWZ13, NA06, NVK+11, QJ05, RLH03, SI86, SS11, SZB16, TBZB05, TZ+06, VWHL96, VA07, Wan07, WTC08a, WTC08b, WL05, XL11, XO05, ZHH15, ZQMM11, ZHLQ12, ACD93, CBP02, CX05].


time-domain [SS11].

Time-Efficient [EL97, MS99b]. Time-Optimal [BOSW94, OS96b, OSZ98, Pel90, Lis90].

Time-parallel [WBTM09]. time-scale [ACCP12]. time-sliced [KRL87].


Time-Varying [KEA95]. Timed [NM95]. timeliness [ISM07]. times [SFT04]. timestamps [MS02].

Timing [ADS01, BSS99, CB99, Kar92, CSJ+13, FVLB09, ISM07, KKK+11b].

Timing-Driven [CB99]. TInMANN [VM95]. Title [Ano98l, Ano99h, Ano00c, Ano01t, Ano01h, Ano02d, Ano03b, Ano04a]. TLA [SHL+13]. Tlib [RR05]. TM [FKKR16, FWM+10]. Toeplitz [GOH+13, ABGV11, ADV14, BB90, HM99, Ter16, VGAB08].

Toeplitz-based [GOH+13]. Together [WLID02]. Token [AE95, BGJDL02, CP90, FFK97, GH96, HP00, ZYY96, CRD12, HSW04, PV07]. Token-Based [AE95, BGJDL02, HP00]. Token-Chasing [YZY96]. Tokens [SA93, SGAC14].

Tolerance [BSS97, Pin01, PM92, mYYF92, BJ15, BDDL09, CLMRL15, CWL+07, CDR09a, LCC+05, LH05, LFGM17, LP88, Pak99, PAS15].

Tolerant [AE95, AM07a, AM95, BMM97, BW95b, BCH95b, CRV94, CL93, CC94, CF98, FM99b, GRR93, HGCCC96, HTHH02, KP00, Lan94, LB94, LC96, MD01, PB95, PKD97, SCC92, SS95, WIKC97, W94, YBOY97, ZY002].

Tolerate [VR95]. Tolerating [BSS97, Pin01, PM92, mYYF92, BJ15, BDDL09, CLMRL15, CWL+07, CDR09a, LCC+05, LH05, LFGM17, LP88, Pak99, PAS15].
tomography
[DT02, GS00, MG91]. Tool
[BDRB14, FCG04, FGG08, KSSL16, KDO+13, PLL+03, XTN12].

Top [SSKS11, Sch89b, TAS+16, IRRS16].
Tool [BN94, DBKF90, ZNQ93, Ada17, KKVI05, PF04, TD07].
Toolbox [EFG14].

Top-down [Sch89b].
Topics [Ano16l, Kum17].

Topography [SK05a].
Topography-aware [SK05a].
Topological [DC94, Par05, YN92, PL06].

Topologies [YZY96, YM90, SL89].
Topology
[CCM92, DS96, Seb95, TKKH17, WLY01, WHS+18, AP91b, AHA+16, DB08, GL12, GL90, KBC+10, LCW05, LMP10, MBBD13, PMCC18, RCG18, Seb91].
Topography-aware [KBC+10, MBBD13].

TORSYS [BB93].

Tori
[LHS97, MT93a, Man97, AB03a, GLD06, LXLS12].
Tornado [HK04].

Traffic
[AA95, DSS95, FT94, KC95, LK94, OY00, TF92, CRD12, FL86, FMM+08, LB90, LHM14, MPG17a, OOSGVG+16, SAOKM03, SKMM04, WG08, YBM13, Zah12].

Traffic-aware [LHLM14].

Trails [PR12].
Training
[LIW02, SMKL93, ZLS17].

transaction
[SI13, YWDO8, Yan09].

Transactional
[AM12b, Gra09, Gra10b, MP10, BGA14, CMG14, DT11, FWM+10, GKK+13, HGGF10, KR17, QGZP17, RSCQ17, SDS10].

Transactions
[CC16, FGG17, LMGLMG12, LMB11, UC10].

Transceiver [DKMV01].

Transistor
[BR91a, TGO97, GPT06a].

transistors [LC14a].

transmission
[BB93, OK02, AM17, YV09, Kan05].

Transformer
[LKY15].

Transforming
[LW16b].

transforms [TS91].

Transitive
[AW95, YMR93].

Translating
[FPP06].

translation [NCB+17].

Translators
[YLB90].

Transmission
[DP99, JK00, BDRB14, CPA+11, HOVC09, QS04, OMSGNSG05, YA11].

transmitting [BR91a].

Transparent
[LMY+11, GVA+08, LLY15].

Transparency
[AFT+00, KLJ+11].

Transport
transportation [OO05]. Transpose [CT96, ZMPE00, BG16, SAOKM03]. Transposing [Swa98]. transposition [Ede91]. transputer [LC92]. TRAP [GRS97]. Traps [SD00]. travel [KSSL16]. travel-time [KSSL16]. traveling [WMG13]. traversal [BBS13, CMN12, YFBY17]. Traversals [OO95, El07, HMR15]. TreadMarks [LDCZ97]. treasure [MP15]. treatment [DWHL87]. Tree [AAP01, AS96, BBR94, BM97, BCLR96, BE95, BF01, BS00, COS+95, DVZ96, FA95, Goe94, GS91b, HR92a, KC99b, LPS98, OD95a, OD95a, PL94, SLP98, SK96, Tze94, AB13, BFG90, BM14, BC05, BE13, BBPR11, BBL04, CG12, CRD17, DJ16, EBO9, FMM90, GA90, HSS10, HMR15, HSW04, tH90, IK94, KG10, KSK15, LY10, Li10, Mit07, OC07, PV07, Sch98a, SAF05, SV18, SK05b, TG03, TR16, WW12, Wu85, Zuh12, LZSL06, BBCQ13, GB11]. tree-connected [HSW04]. Tree-Dags [BCLR96]. Tree-Related [OD95a]. tree-structured [GA90, IK87]. Trees [AP94, AS94, ADS98, BBN93, BP02, CS95a, DM95, DP00, DLS00, DJM94, DLP99, DS93, Efe96, HKMU98, HM01, HS94a, HH89, Hq92, LP96a, MD98, PM92, ST02, SH95, TT98, W99, WW96, WB01, WFL98, oP90, BP02, BS90, BM10, CI03, CS96a, CFJW13, CDR09a, DGNW13, Efe91, ESGQ9, ESGQ9, GHI0, GZ08, GNW03, HPT07, HAC17, JLY12, KKN13, LVM08, L03, LHT98, LFZ97, OMGN05, PD05, PPC04, TSK91, TDM05, W99, WL90, WC91, WFZJ12, W12, YLT09, YMLP14, Z91]. Trellis [LCM96, SGdSS13]. Trends [ACB9, ER97, KKKG94, BHE91]. Triangular [IK94]. Triangularization [KK95, CDR90, EM89]. Triangularizations [Par92]. Triangulation [DFRC09, LS95]. Tridiagonal [CTZ99, Kau94, CK91, EM89, Gao86, MRT18, PP13, SP13, Ter16]. Tridiagonalization [BB95a, BW08]. trigger [FMR05]. trigger-broadcasting [FMR05]. triumph [Sch14]. Trojan [BK18]. true [CR04b]. trust [GTGLSA12, LZY11, LAGK07, MLMSM12]. trusted [SFEF06]. TrustGuard [SL06]. trustworthy [MHLZ96]. Truthful [WGS08]. tsunami [NSK17]. tumors [HES11]. Tunability [CKK00]. Tuning [CSMML10, SB02, TdAR18, ABGV11, HPT07, KKKR14, MYD9, MML07]. Tunnel [ZBR11]. Tunnel-based [ZBR11]. Tuple [STK12, DRT07]. Turbulence [LLCC02]. TWDM [LLJ00b]. twig [LSZZ15]. Twisted [HTHH02, AP91b, FLF07, LFZ97, WFZ07, XZ16]. Two [AAJS01, BB50, BB17, BP01, Cha94, CCC92, CEF95, DD96, DKU15, Goso90, GT97, Hwa97, KLZ97, KL84, LS97, LP96b, LK94, LLLC02, NAK04, Qia07, RPAG08, RP95, SSM99, SSHC00, YCY9, AB05, ARM95, CF88, CG86, CB11, Deh90, FSV17, HDJ80, Hsi04, JD12, LC91b, MP10, MV06, NCP02, SL94, W12, dIAMCFN12]. Two- [Hwa97]. Two-Dimensional [LP96b, YCY9, NAK04, AB05, Deh90, LC91b]. two-fixed-endpoint [Hsi04]. two-layer [dIAMCFN12]. Two-Level
PKD97, SSG93, SM92a, SEP96, SP96, SM00, SD00, SL97, SIR92, SWC+91, SKH96, Swa98, TSC01, TR96, VRM10, WPKK94, WW96, WSRM97, WB01, WRC+02, WS07a, WCYR08, XH91, YM01, ZMPE00, dOCS14, ASKO16, AFM03, AZC13, ASST05, AD12, Ara90, AK06, Bar05, BAMM05, BCMV15, BHLT14, BS92, BSH15, CL14, COV13, CSWD03, CJDC10, CF88, CK08, CvdB1+08, CK07, CBM+08, CDB04, CH06b, CRWX12, CMT92, CL85, DDG+17, DPRW85, DKRI09, DJT03, DH91b, DWHL87, EE05, E ˙I07].

Very [OP96, DHK04, MYM10, PDB13, YÖ11]. VForce [MLK12].

via [AM13, AKBD10, AD10, BM17b, BP98, CJO7, CVJV09, CRA⁺08, CMR10, ECLV12, HVW16, HBF12, KNHH18, ŁU14, MTM10, MS15, MBR08, NS95, PRB06, PS14, YZS15, ZV06, ZBF05]. Viable [KLLK98]. victim [XCH08].

Viable [KLLK98]. victim [XCH08]. Video [AAI95, CLV95, DSSST95, HLL⁺95, JK00, RU99, ZRC99, Bar05, LVP07, LY12, YAK15]. Video-on-Demand [DSST95, HLL⁺95].


Virtual [AD95, BAHPO1, BF97, DRSB01, KS97a, KLLK98, KKS08, LM96, Mat93, NC13, PA97, PL95, TJ92, BJS03, BAL05, CL14, FMIF18, FX06, Fu10, KS03, KNHH18, PY09a, PK05b, PVR17, RT18, TT07, WDDK09, YLZW18, ZG13, ZV06, ZBF05]. Virtual-Channel [PA97].

virtualization [DYL⁺12, FLCB10, GTN⁺06]. virtualized [AAA⁺10, CP17, KLJ⁺11, KKLJ14, SJB12, SSVC10]. viruses [MJ03].

visibility [BSG90]. Vision [LR94, MBL⁺92, MHC95, MAR87, WHT02, Kri91, WJD91]. vision/image [WJD91]. Visualization [BB93, Cas93, Cou93, KS93, Mi93, NT90, MBH⁺08, NCA93, RV13, TSD08, WGCZ09, ZB09, ZWR107]. Visualizations [LSCA93, SK93]. Visualizing [RW93, SKR93, ZNQ93]. Vital [BS97, HHC98]. VLIW [NS12, dSR00].

VLSI-suited [GS91b]. VM [JXW06]. VM-based [JXW06]. VOD [SK11, Bar05, LC07, YCH⁺10]. voice [WTS03].

volatile [CDR12, NKV14, ZPK⁺14]. voltage [FKLB08]. Volume [Ano92a, Ano92c, Ano93e, Ano96l, Ano97k, Ano00d, Ano01g, Ano11i, Ano11h, Ano02d, Ano03b, Ano04a, Ano08, Ano09, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, BS96c, CS93b, WS97a, ACFK07, LWCC15, Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano99a, Ano99b, Ano99c, Ano00b, Ano00c]. Volumes [Ano98l, Ano99h].


WAdL [GMS06]. Wafer [KL84, MLW⁺97, RFM94]. Wafer-Scale [KL84, RFM94]. Wait [FKKR16, HPT02]. Wait-Free [HPT02, FKKR16].

wake [JLY12]. wake-up [JLY12]. Walk [SLP⁺98, BBS13, RM11, SMP15]. Walks [BAM01a, Li10]. warehousing [DTK11a]. warning [XCLR07]. warp [NHO⁺13, ACD⁺93, CBP02, CX05, PW96]. Warping [WS95, WS97a].

water [CvdBL⁺08, dAMCFN12]. Watershed [MG98]. Wave
WaveCluster [YÖ11]. Wavefront [OT86]. Wavelength [HP00, CS10, MVMO4, TKKH17], wavelength-based [TKKH17]. Wavelet [HK01, CV09, IHH16, TKKH04]. Wavelet-Based [HK01]. Way [LK04, LLCC02, ACU08, KK98a, Sch14, VPHML06]. WCET [LZLX11]. WDM [CS10, DP99, MVMO4, OS93, PR12, WG08]. Weak [RHH12]. Weakest [Bit92]. weakly [HJ07, YWW12]. weakly-connected [YWW12]. Weather [RHH96]. Web [KCD08, FKR+17, HSS17, ASKTZ13, AK06, BLPA05, CSWD03, SCK03, TC03, TC04, TK07, UGG11, Wan06, XCLZ03, XJS03, ZWL03]. web-portal [FKR+17]. Weight [RDL95, RGVB00, Tse95, YI96, JM14, LVP08, Wan06, WZZ17]. weight-based [JM14]. Weight-Throwing [Tse95]. Weighted [BS97, MD13, BFMT+18, CDDL10, DM17, Sta17, SZB16]. weighting [CRA+08]. well [EB09]. well-nested [EB09]. WFR [FKKR16]. WFR-TM [FKKR16]. whole [Kan05]. whole-program [Kan05]. Wide [WM92, We98, Can18, HL07, JKV15]. Wide-Area [We98, JKV15]. width [DH91a]. Wihidum [JKD+15]. wildfire [DFST13]. Wimpy [LNC13]. window [BM11, LVP07]. window-assisted [LVP07]. winners [PL03a]. Wire [yHY97]. Wire-Limited [yHY97]. Wireless [BCDO0, BD00, BDF01, Bou03, GPJA10, GMS06, JK00, KKGS01, LDZ+14, MS00, Ola01, THGY15, WL05, ASMO9, Amm16, AP03, AHG12, AYB+15, BFG+03, BM11, BSW07, BXA08, BW++11, BOY10, BPRS04, BOP06, BC11, BN03, BPA06, BJL18, CCW14, CKN07, CCK+08, CRWX12, CLL09, CMS04, DW06, DLLL11, DM+03, DGBN14, DJH11, DKM10, DFP06b, EBE08, EM11, FCW11, FCML13, GHY10, GDP08, GP07, GCY+04, GDL+11, GYP13, GZY14b, GM14a, GL12, GMYA07, HZA+15, HM07, HJ07, HS12, HWWH08, HWC08, HZDP12, IF12, JLY12, JBS14, JHPL13, JLWX11, KKKI05, KSI04, KKK11a, KOA09, KO11, KO12, KSK15, KZ11, KK10, KHD08, KKTZ13, KGN11, KNS06, LZ08, Lan09, LZ11, LD+17, LY10, LCW05, LW06a, LC11, LMJC11, LWLD12, LL12b, LS03, LU14, LR03b, LL07, LZC11, LSWC14, LDS16, Los08, MAGL13, MPV12]. wireless [MA11, MBRO8, NGPV10, NSA11, NC09, NM17, NGQM12, OWK14, PLY15, PR07, RM10, RML11, RLP14, REZN17, SCN12, SZMK13, SSZ10, SKMM04, SK05a, SCLL10, TBA07, TLY12, TM10, VH08, VRM10, WW07, WTB+08, WM09, WBTM09, WL11, WCXL11, WH08, WBRT13, WWA+18, XYKA08, XHZ+10, YPGY11, YSL08, YZX11, ZMG+16, ZW11, ZBR11, ZLCJ12, ZSX18, ZTGL17, dOBG15, LDP+14]. Wireless/Mobile [MS00]. Wires [G095]. within [BPBR+11, THN+93]. without [FKKR16, FSZ07, HP95, Ho91, MS02, OS97, RC++11, SA93, WW12, XO05]. WK [DC94, SC99]. WK-Recursive [DC94, RCG+11]. WLAN [HB11]. WLANs [CCHC09, FA07, GZY14a]. WMNs [LHX+16]. Wolfe [Psa96]. Work [BKC+15, BM04a, DKKV15, KM17]. worker [BMT12, HSLL04]. workers [KRS15]. workflow
References

Ahmed:1993:AOE

Atiquzzaman:1995:PBM


Aci:2010:NCC


Ahmed:2014:GDF


Ahmed:2016:AFT


Almeida:2010:JAC

REFERENCES


Aartsen:2015:IFD


Aspnes:2010:CSC


Al-Ayyoub:1998:HIN


Al-Ayyoub:2002:CSP

REFERENCES


Al-Ayyoub:2003:NRS

Adle:2005:TAP

Al-Azzoni:2010:DSH

Agbaria:2004:QRP

Abdullah:2017:REH

Arevalo:2015:FDH
[AAI+15] Sergio Arévalo, Antonio Fernández Anta, Damien Imbs, Ernesto Jiménez, and Michel Raynal. Failure detectors

Altman:2001:RTP


Ajwani:2013:GST


Akramullah:1995:DPA


Agarwal:2001:TPA

REFERENCES

Arvind:1984:RMF


Ayani:1993:PDE


AlBdaiwi:2003:RPT


Aluru:2003:GEI


AlBdaiwi:2005:QPR

REFERENCES

Augusto:2013:APG


Ateniese:2014:FTO


Allen:1988:OPA


Antonopoulos:2009:ASH


Antonopoulos:2009:MDM

Andrade:2007:AGA


Awerbuch:1996:FDN


Adve:2002:COS


Ayaida:2014:JRL


Alonso:2011:ITP

Pedro Alonso, Miguel O. Bernabéu, Víctor M. García, and Antonio M. Vidal. Implementation and tuning of a parallel symmetric Toeplitz eigensolver. *Journal of Parallel and


Atallah:1992:MAC


At:2017:LAU


Andrews:1992:NMN


Abrams:1996:GPA

REFERENCES


Arguello:1995:PAS


Akingbehin:1989:HAP


Anjo:2016:DML


Assuncao:2015:BDC


Ardagna:2012:DTS

REFERENCES


[ACU08] Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. Multi-level direct $K$-way hypergraph partitioning with multiple con-


REFERENCES

Adams:2017:PTT

Altisen:2017:CSS

Atashpendar:2018:SPC

Atallah:1994:MTP
REFERENCES


REFERENCES


[AF06] Hagit Attiya and Arie Fouren. Poly-logarithmic adaptive algorithms require revealing primitives. *Journal of Paral-


Gladstone M. Arantes, Jr., Felipe M. G. França, and Carlos A. Martinhon. Randomized generation of acyclic orientations upon anonymous distributed systems. *Journal of Parallel
REFERENCES


Adamek:2017:EOS


Alimonti:1996:FED


Aridor:2000:TOS


Atallah:1986:EPS


Aroca:2012:TGD

[AG12] Rafael Vidal Aroca and Luiz Marcos Garcia Gonçalves. Towards green data centers: a comparison of x86 and ARM

Ahmad:1994:HSD


Altman:1998:UFI


Ayguade:2006:ENO


Antonis:2004:HAD

REFERENCES


REFERENCES

Attiya:2006:TAM

Anagnostopoulos:2011:DTD

Anagnostopoulos:2012:OQA

Ajwani:2016:COA

Anagnostopoulos:2012:PPC
Christos Anagnostopoulos, Stathes Hadjiefthymiades, and Panagiotis Georgas. PC3: Principal Component-based Context Compression: Improving energy efficiency in wire-


REFERENCES


[AKDMN15] Faisal N. Abu-Khzam, Khuzaima Daudjee, Amer E. Mouawad, and Naomi Nishimura. On scalable parallel recursive back-


REFERENCES


Alexandre M. Amory, Cristiano Lazzari, Marcelo S. Lubaszewski and Fernando G. Moraes. A new test scheduling algorithm

Ahmad:2016:HGA


Ahmad:2016:HGA

Albert:1991:DPC


Albert:1991:DPC

Alsuwaiyel:2001:PAP


Alsuwaiyel:2001:PAP

Ahmad:2013:MCO


Ahmad:2013:MCO


Ajith:1997:IAM


Asaduzzaman:2006:UUP


Asaduzzaman:2007:SCP


Asaduzzaman:2011:DMB


Angeli:2012:CEC

REFERENCES


REFERENCES


REFERENCES


Anonymous:1992:EVN


Anonymous:1993:AIT


Anonymous:1993:AIVa


Anonymous:1993:AIVb


Anonymous:1993:AIVc

Anonymous:1993:EVN


Anonymous:1994:AIVa


Anonymous:1994:AIVb


Anonymous:1994:AIVc


Anonymous:1994:AIVd

REFERENCES


Anonymous:1995:AIVe


Anonymous:1995:AIVf


Anonymous:1995:AIVg


Anonymous:1995:AIVh


Anonymous:1995:CPSa

REFERENCES


REFERENCES

Anonymous:1996:AIVe


Anonymous:1996:AIVf


Anonymous:1996:AIVg


Anonymous:1996:AIVh

REFERENCES


Anonymous:1997:AIVb

Anonymous:1997:AIVc

Anonymous:1997:AIVd

Anonymous:1997:AIVe

Anonymous:1997:AIVf
REFERENCES


Anonymous:1997:AIVg

Anonymous:1997:AIVh

Anonymous:1997:CP

Anonymous:1997:CPS

Anonymous:1997:VNA
Anonymous. Volume 38, number 1 (1996), in the article “An Effective and Practicile Performance Prediction Model for Parallel Computing on Nondedicated Heterogeneous NOW,” by Yong Yan, Xiaodong Zhang, and Yong-
REFERENCES


Anonymous:1998:AIVa


Anonymous:1998:AIVb


Anonymous:1998:AIVc


Anonymous:1998:AIVd


REFERENCES

Anonymous:1998:CPc

Anonymous:1998:CPa

Anonymous:1998:CAT

Anonymous:1999:AIVa

Anonymous:1999:AIVb

Anonymous:1999:AIVc
Anonymous:1999:CPa


Anonymous:1999:CPb


Anonymous:1999:CPc


Anonymous:1999:CPS


Anonymous:1999:CAT

Anonymous:1999:E


Anonymous:2000:ACP


Anonymous:2000:AIV


Anonymous:2000:ATI

REFERENCES

[An00d] Anonymous. Erratum: Volume 59, number 1 (1999), in article
jpdc.1999.1564 “Guidelines for Data-Parallel Cycle-Stealing in
Networks of Workstations,” by Arnold L. Rosenberg, pages 31–
53. Journal of Parallel and Distributed Computing, 60(1):134,
January 2000. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1999.1608/production;
1999.1608/production/pdf. See [Ros99].

Journal of Parallel and Distributed Computing, 60(9):
1154, September 2000. CODEN JPDCER. ISSN 0743-
2000.1662/pdf.

Journal of Parallel and Distributed Computing, 60(10):
1354, October 2000. CODEN JPDCER. ISSN 0743-

of Parallel and Distributed Computing, 60(11):1446,
November 1, 2000. CODEN JPDCER. ISSN 0743-
2000.1671/pdf.

of Parallel and Distributed Computing, 60(12):1568,
Anonymous:2001:Aa


Anonymous:2001:Ab


Anonymous:2001:ACPa


Anonymous:2001:ACPb


Anonymous:2001:ACPc

REFERENCES


Anonymous:2001:GEIc


Anonymous:2001:IP


Anonymous:2001:PAFa


Anonymous:2001:PAFb


Anonymous:2001:PAFc


Anonymous:2001:PAFd

Anonymous:2001:PAFe


Anonymous:2001:PAFf


Anonymous:2001:PAFg


Anonymous:2001:PAFh


Anonymous:2001:PAFi
REFERENCES

Anonymous:2001:PAFj


Anonymous:2001:PAFk


Anonymous:2001:PAFl


Anonymous:2001:PAFm


Anonymous:2001:PAFn


Anonymous:2001:PAFo

2001. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Anonymous:2001:PAFp


Anonymous:2001:PAFq


Anonymous:2001:PAFr


Anonymous:2001:PAFs


Anonymous:2001:P


Anonymous:2001:RN

Anonymous:2002:Aa


Anonymous:2002:Ab


Anonymous:2002:AI


Anonymous:2002:ATI


Anonymous:2002:EBa


Anonymous:2002:EBb


Anonymous:2002:GEIa


REFERENCES


Anonymous:2002:PAc


Anonymous:2002:PAAd


Anonymous:2002:PAE


Anonymous:2002:PAf

REFERENCES

Anonymous:2002:PAFb


Anonymous:2002:PAFc


Anonymous:2002:PAFd


Anonymous:2002:SSD


Anonymous:2002:SIP

Anonymous:2003:AI


Anonymous:2003:ATI


Anonymous:2003:EBa


Anonymous:2003:EBb


Anonymous:2003:EBc


Anonymous:2003:EBd


Anonymous:2003:EBe


Anonymous:2003:EBf


Anonymous:2004:CSM


Anonymous:2004:CH


Anonymous:2004:EBa


Anonymous:2004:EBb


Anonymous:2004:EBc


Anonymous:2004:EBd


Anonymous:2004:EBe


Anonymous:2004:EBf

REFERENCES

Anonymous:2004:EBg


Anonymous:2004:EBh


Anonymous:2004:EBi


Anonymous:2004:EBj


Anonymous:2004:EBk


Anonymous:2004:EBl


Anonymous:2004:MPA


Anonymous:2008:EVR

REFERENCES

Anonymous:2009:EVR

Anonymous:2010:EVA

Anonymous:2010:EVR

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd
Anonymous:2011:EBe


Anonymous:2011:EBf


Anonymous:2011:EBg


Anonymous:2011:EBh


Anonymous:2011:EBi


Anonymous:2011:EVA

Anonymous:2011:EVR


Anonymous:2012:EBa


Anonymous:2012:EBb


Anonymous:2012:EBc


Anonymous:2012:EBd


Anonymous:2012:EBe

REFERENCES


Anonymous:2012:EBf


Anonymous:2012:EBg


Anonymous:2012:EBh


Anonymous:2012:EBi


Anonymous:2012:EBj


Anonymous:2012:EBk

Anonymous:2012:EB1


Anonymous:2012:EVA


Anonymous:2012:EVR


Anonymous:2013:EBa


Anonymous:2013:EBb


Anonymous:2013:EBc

REFERENCES


[Ano13i] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 73(9):??, September 2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES


REFERENCES


REFERENCES

Anonymous:2015:EBj

Anonymous:2015:EVR

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd
Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 90–91(??):ifc, April 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2016:EBe


Anonymous:2016:EBf


Anonymous:2016:EBg


Anonymous:2016:EBh


Anonymous:2016:EBi


Anonymous:2016:EBj

REFERENCES

Anonymous:2016:NAE


Anonymous:2016:TI


Anonymous:2017:EBa


Anonymous:2017:EBb


Anonymous:2017:EBc


Anonymous:2017:EBd

REFERENCES


Anonymous:2017:EBe


Anonymous:2017:EBf


Anonymous:2017:EBg


Anonymous:2017:EBh


Anonymous:2017:EBi


Anonymous:2017:EBj

REFERENCES

Anonymous:2017:EBk


Anonymous:2017:EBl


Anonymous:2017:EBm


Anonymous:2018:EBa


Anonymous:2018:EBb


Anonymous:2018:EBd

[Ano18c] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 112 (part 1)(??):ifc, February 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2018:EBc


Anonymous:2018:EBf


Anonymous:2018:EBg


Anonymous:2018:EBh


Anonymous:2018:EBi


Anonymous:2018:EBj

REFERENCES

Anonymous:2018:EBk


Anonymous:2018:EBCa


Anonymous:2018:EBCb


Asdre:2007:OPS


Andreae:1997:ECP

REFERENCES


REFERENCES


REFERENCES


Abellan:2018:PBE


Andonov:1997:OOT


Arabnia:1990:PAA


Aravind:2013:SSE


Arbib:1989:SNN

Michael A. Arbib. Schemas and neural networks for sixth generation computing. Journal of Parallel and Distributed Comput-


Distributed Computing, 114(?):28–45, April 2018. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731517303386.

[ARVZ14] Guillaume Aupy, Yves Robert, Frédéric Vivien, and Dou-
nia Zaidouni. Checkpointing algorithms and fault pre-
diction. Journal of Parallel and Distributed Comput-
ing, 74(2):2048–2064, February 2014. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0743731513002219.

[AS91] Yonatan Aumann and Assaf Schuster. Improved memory uti-
lization in deterministic PRAM simulation. Journal of Par-
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[AS94] M. D. Atkinson and J. R. Sack. Uniform generation of bi-
ary trees in parallel. Journal of Parallel and Distributed Com-
puting, 23(1):101–103, October 1994. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

[AS95] Richard Anderson and Joao C. Setubal. A parallel im-
plementation of the Push-Relabel algorithm for the max-
imum flow problem. Journal of Parallel and Distributed Com-
puting, 29(1):17–26, August 15, 1995. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL
1995.1103/production; http://www.idealibrary.com/

[AS96] Gheorghe Antonoiu and Pradip K. Srimani. A self-
stabilizing leader election algorithm for tree graphs. Jour-
REFERENCES


References

Abali:1997:CSM

Almeida:2018:DSR

Aparicio:2018:PAC

Alfaro:2009:NSM

Ashari:2015:MDB
Abali:2001:ARN

Al-Sayed:2016:PMF

Al-Shammary:2013:FSS

Akkaya:2009:CWS
REFERENCES

Abrams:1993:TOM


Anvik:2005:AUC


Afek:2012:ISJ


Adamo:1994:PEP


Achalakul:2003:DSS

REFERENCES


REFERENCES


REFERENCES


Abdullah:1993:CQP


Alrabiah:2001:DCL


Amoretti:2013:EAC


Al-Zoubi:2013:RGS

REFERENCES

Bultan:1992:NMH


Bhandarkar:1995:HTR


Bergmans:1996:CSR


Ben-Asher:1997:ORM


Ben-Asher:2001:DRA

REFERENCES


REFERENCES


Balasundaram:1990:MKU


Boukerche:2005:MVS


Bic:1993:EUI


Berger:2005:PNC


Ben-Asher:1991:PR


Barlas:2005:VSO

REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES

[BBN93] Amnon Barak and Ron Ben-Natan. Bounded contrac-
tions of full trees. Journal of Parallel and Distributed
Computing, 17(4):363–369, April 1993. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL
1993.1035/production; http://www.idealibrary.com/

[BBR94] A. A. Bertossi, M. A. Bonuccelli, and M. Roccetti. Re-
configurable tree architectures for gracefully degradable
VLSI systems. Journal of Parallel and Distributed Com-
puting, 23(3):264–277, December 1994. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

communication techniques for GPUs. Journal of Parallel
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731512002213.

[BBS13] Thibault Bernard, Alain Bui, and Devan Sohier. Uni-
versal adaptive self-stabilizing traversal scheme: Random
walk and reloading wave. Journal of Parallel and Dis-
tributed Computing, 73(2):137–149, February 2013. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731512002560.

[BC94] J. Bruno and P. Cappello. Implementing the 3D alter-
nating direction method on the hypercube. Journal of Paral-
lel and Distributed Computing, 23(3):411–417, Decem-
ber 1994. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1994.1150/production;


REFERENCES


Bagrodia:1995:USB


Bononi:2000:DPE


Barrett:2015:ARM


Bozkus:1994:CFH

REFERENCES

BARTHOU:1997:FAD


BAUMANN:2014:FDG


BAZTERRA:2005:GFU


BERMOND:1995:DLC


REFERENCES


REFERENCES


Boukerche:2004:RNM


Baskiyar:2005:SDC


Berlinska:2011:SDM


Bosilca:2009:ABF


Balbo:1992:UPP


Boukerche:2001:ARC

REFERENCES


Bermond:1986:SIN


Bajard:1994:SOL


Bonakdarpour:2016:SSC


Birk:2014:GBI


Billionnet:1995:AFB


REFERENCES


REFERENCES


REFERENCES


Brooks:2004:TMT


Blazewicz:2013:IMG


Borgdorff:2013:FDM


Bilo:2006:PAB


Berenbrink:2018:TLB

Petra Berenbrink, Tom Friedetzky, Frederik Mallmann-Trenn, Sepehr Meshkinfamfard, and Chris Wastell. Threshold load balancing with weighted tasks. Journal of Parallel and
REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[BJ96] David A. Bader and Joseph JáJá. Parallel algorithms for image histogramming and connected components with an


Beck:1991:CFD


Baldoni:2008:DQD


Bilas:2003:SVM


Baden:1995:PPP


Biyani:2008:ADA

REFERENCES


Adam W. Bojanczyk and Franklin T. Luk. A unified systolic array for adaptive beamforming. *Journal of Parallel and Dis-
REFERENCES


REFERENCES


REFERENCES


Bertossi:2004:TWO


Boxer:2004:CGG


Bronevich:2008:LBA


Badarla:2011:LTS


Baddar:2014:BSC

Bahmani:2016:ECU


Baharvand:2017:AAA


Bahmani:2017:SCE


Boukerche:2007:PSL


Bai:2008:MMR


REFERENCES


REFERENCES


Barillari:2002:FDD


Bar-Noy:2000:OBT


Buttner:1999:APH


Bodlaender:1989:CCP


Bogaerts:2017:OST

Steven A. Bogaerts. One step at a time: Parallelism in an introductory programming course. *Journal of Parallel
REFERENCES


**Balsara:1991:DSM**


**Bertossi:2006:SIA**


**Bertsekas:1991:OCA**


**Bhagavathi:1995:CPM**


**Bhagavathi:1994:TOM**

Bertier:2013:AAC


Boukerche:2002:APA


Boukerche:2003:WMA


Ben-Othman:2010:EEQ


Bozejko:2009:SFS

REFERENCES


REFERENCES


**Bertossi:2004:ASI**


**Bertossi:2004:CAI**


**Bermond:1996:PGE**


**Barnett:1996:BMW**

REFERENCES


REFERENCES


REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[Bolosky:1992:EMM]

[Bellosa:1996:PIL]

[Buck:1996:ASC]

[Buck:1996:EVN]
REFERENCES


Braun:2001:CES


Beresford-Smith:1996:OAC


Bertolazzi:1990:PAV


Berryman:1990:KMP


Bukata:2015:SRC

[BSH15] Libor Bukata, Premysl Sucha, and Zdenek Hanzálek. Solving the resource constrained project scheduling problem using the parallel tabu search designed for the CUDA platform.


[Briceno:2013:RSR] Luis Diego Briceño, Jay Smith, Howard Jay Siegel, Anthony A. Maciejewski, Paul Maxwell, Russ Wakefield, Abdulla Al-Qawasmeh, Ron C. Chiang, and Jiayin Li. Robust static resource allocation of DAGs in a heteroge-
REFERENCES


REFERENCES


REFERENCES

[BW89] Jean-Loup Baer and Wen-Hann Wang. Multilevel cache hier-
archies: organizations, protocols, and performance. Journal of
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[BW95a] Aart J. C. Bik and Harry A. G. Wijshoff. Advanced com-
piler optimizations for sparse computations. Journal of
Parallel and Distributed Computing, 31(1):14–24, November
15, 1995. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1995.1141/production;

[BW95b] Douglas M. Blough and Hongying Y. Wang. Cooperative di-
agnosis and routing in fault-tolerant multiprocessor systems.
Journal of Parallel and Distributed Computing, 27(2):205–
211, June 1995. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1995.1083/production;
1995.1083/production/pdf.

space partitioning to construct representative simple sections.
Journal of Parallel and Distributed Computing, 34(1):95–110,
April 10, 1996. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1996.0048/production;
1996.0048/production/pdf.

[BW08] Yihua Bai and Robert C. Ward. Parallel block tridiagonal-
ization of real symmetric matrices. Journal of Parallel and
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).
REFERENCES


REFERENCES

Brooks:2004:AOD

Callsen:1994:OHC

Cheng:1995:ORS

Conrad:1995:APA

Coelho:1996:OCH


Fabio Cannizzo. A fast and vectorizable alternative to binary search in $O(1)$ with wide applicability to arrays.

[Cappello:1987:GEH]

[Carlson:1990:SLR]

[Carter:1995:DMD]

[Casavant:1993:TMV]

[Choi:1995:RLS]
REFERENCES


REFERENCES

Czapinski:2011:TST


Cason:2015:THT


Catalyurek:2009:RHM


Costa:2000:PLP


Che:2008:PSG

Carothers:2002:RHP


Correia:2008:BGA


Chen:1987:ILP


Castagnetti:1991:SAP


Chiang:1994:DFT


Choi:1996:DPE

REFERENCES


REFERENCES


REFERENCES


**Callahan:1988:EII**


**Chen:2008:MJR**


**Chen:2011:ART**


**Crowl:1994:AMP**


**Caselli:1992:TPI**

REFERENCES

Caselli:2001:DAG


Costa:2006:ROA


Crane:2006:GEM


Caminero:2006:MMR


Chiu:1994:FRC

REFERENCES

Chase:1992:PPP


Chang:2006:BCH


Chang:2014:AAL


Cook:1995:ISS


Coulaud:1998:PHL


REFERENCES


[CDRC99] Albert Chan, Frank Dehne, and Andrew Rau-Chaplin. Coarse-grained parallel geometric search. *Journal of Parallel and Dist-
REFERENCES


Carlson:1988:PCD


Connolly:1998:FTF


Cheng:2013:DAT


Ceri:1986:OJB


Cobb:2002:SGL

Clauss:2010:ICO


Carroll:2011:DAM


Carroll:2012:IBD


Casu:2017:PPA


Colajanni:1998:TBR

Chen:2016:FHA


Chockler:2009:RDS


Calegari:1997:PIB


Chow:2012:PTS


Chatterjee:1995:GLA

[Siddhartha Chatterjee, John R. Gilbert, Fred J. E. Long, Robert Schreiber, and Shang-Hua H. Teng. Generating local addresses and communication sets for data-parallel programs. ]


Culler:1993:TCC


Chronopoulos:2003:EGB


Colbourn:1992:CFA


Chen:2006:TBR


Chen:2006:CDF


Chang:1994:CTA


Cheng:1990:SAQ


Chen:1992:GEI


Chen:2005:IOA


Cook:2001:APG


Chiola:1992:SIP


Chien:1995:CAC

REFERENCES


REFERENCES


REFERENCES

Cholvi:2009:IDM


Cao:2010:CTT


Cosnard:2004:CDR


Callahan:1988:AIS


Cox:1991:TSS


Chiou:1997:DEE


[CKK+13] Jiwon Choi, Myeongsu Kang, Yongmin Kim, Cheol-Hong Kim, and Jong-Myon Kim. Design space exploration in many-core processors for sound synthesis of plucked string
REFERENCES


REFERENCES

Costache:2017:MBA


Chatzigiannakis:2007:FTE


Campbell:2004:HCI


Chechina:2011:RMA


Cheng:2017:IRP


<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
</tr>
</thead>
</table>
| [CLA+18]  | José M. Cecilia, Antonio Llanes, José L. Abellán, Juan Gómez-Luna, Li-Wen Chang, and Wen-Mei W. Hwu. High-throughput ant colony optimization on graphics processing units. *Journal of Parallel and Distributed Com-
REFERENCES

Chen:2017:ENF

Chechina:2016:INS

Chung:2009:SNU

Chiarulli:1990:OBC

Castro-León:2015:FTS
REFERENCES


REFERENCES


REFERENCES


Chandra:2003:FAS


Calamoneri:2004:EAC


Cugola:2012:LLC


Carchiolo:2010:AON


Chakroun:2013:CMC


REFERENCES


[CNS03] Ioannis Chatzigiannakis, Sotiris Nikoletseas, and Paul Spirakis. Distributed communication algorithms for ad hoc mobile


Cano:2013:PMO

Culler:1990:ETS

Choudhary:1991:IEH

Choudhary:1992:PIE

Conn:1994:PRS
Cabillic:1997:SEP


Calamoneri:1998:ODC


Cruz:1999:TPD


Choi:2001:ECA

REFERENCES


[CP17] Marcello Cinque and Antonio Pecchia. On the injection of hardware faults in virtualized multicore systems. *Journal of
REFERENCES


[CR96] Martin C. Carlisle and Anne Rogers. Software caching and computation migration in Olden. Journal of Parallel-
REFERENCES


REFERENCES


REFERENCES

Cheng:1993:VNA


Choi:1993:RCS


Chen:1995:EBT


Chen:1995:IEB

REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


物} 296


REFERENCES


Anando G. Chatterjee, Mahendra K. Verma, Abhishek Kumar, Ravi Samtaney, Bilel Hadri, and Rooh Khurram. Scal-
REFERENCES


Chu:1992:OMN


Cheng:1993:SAD


Cang:2000:TSO


Chang:2001:RPR


Hailong Cai, Jun Wang, Dong Li, and Jitender S. Deogun. A novel state cache scheme in structured P2P systems. *Journal of


REFERENCES


Chen:2017:DDA


Ci:2009:MFB


Darbha:1997:TDB


Dubey:2014:SHL


Drummond:1996:DBD

[dADB96] Lúcia Maria de A. Drummond and Valmir C. Barbosa. Distributed breakpoint detection in message-passing pro-


 REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


Delevacq:2013:PAC


Das:2006:EAP


Delaet:2010:SSM


Dandamudi:1991:HBH


DeGroot:1988:TCE


Dehne:1990:CLE

[Deh90] Frank Dehne. Computing the largest empty rectangle on one- and two-dimensional processor arrays. *Journal of Parallel and
REFERENCES


REFERENCES

Dash:2014:LCM


Delporte-Gallet:2010:SLE


Delporte-Gallet:2005:MEA


Delling:2013:PHA


delaOssa:2006:IAA

Dehne:1991:PAD


Dutt:1991:DFT


Dekel:1994:PAF


Dowd:1995:MNA


Duarte:2004:VCD


Das:2002:ALB


REFERENCES


**Deo:1994:PCT**


**Durand:2003:PSU**


**Ding:2004:IEB**


**Daoud:2008:HPA**


**Daoud:2011:HHG**


REFERENCES


[DlAMCFN12] Marc de la Asunció, José M. Mantas, Manuel J. Castro, and E. D. Fernández-Nieto. An MPI-CUDA implementation of an improved Roe method for two-layer shal-


REFERENCES


Datta:2011:TSS


Dong:2012:DAL


Duprat:1988:HPE


Darling:1990:PAS


Dinning:1990:FPA


Dixit:1990:APP

[DM90c] V. V. Dixit and D. I. Moldovan. The allocation problem in parallel production systems. *Journal of Parallel and Distributed
REFERENCES


Liana Duenha, Guilherme Madalozzo, Thiago Santiago, Fernando Moraes, and Rodolfo Azevedo. MPSoCBench: a benchmark for high-level evaluation of multiprocessor system-on-chip tools and methodologies. *Journal of Parallel and Dist-
REFERENCES

Davis:1990:DDE


Demeure:1994:PSP


Dekel:1989:PEM


Dogan:2006:SMT


deOliveira:2015:ELF


Dasgupta:1999:PGA


Das:2000:OMQ


Dereniowski:2012:DMA


Defour:2016:SSS


Dubois:2012:SSB

[DPBNT12] Swan Dubois, Maria Potop-Butucaru, Mikhail Nesterenko, and Sébastien Tixeuil. Self-stabilizing Byzantine asyn-


REFERENCES

Dingle:1993:SBT


Dahlgren:1995:UWC


Das:1995:OCA


Das:1996:NTO


Datta:2001:CTA

[DS01] Amitava Datta and Subbiah Soundaralakshmi. Constant-time algorithm for the Euclidean distance transform on reconfig-

[Deelman:2002:SSE]


[DS04a]


[Defago:2004:SPR]


[daSilva:2015:ESB]

REFERENCES


REFERENCES


<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[F. Ercal and H. C. Lee. Time-efficient maze routing algorithms on reconfigurable mesh architectures. *Journal


REFERENCES


Eriksen:1988:TDP


El-Rewini:1990:SPP


Ercal:1990:TAH


Eisenhauer:1996:DAP


Eshaghian:1997:SIP

Ezhilarasi:2012:NPU


Ensink:2003:PCL


Esteves:2015:IDE


Escudero-Sahuquillo:2011:OSC


Escudero-Sahuquillo:2014:NPD

Jesus Escudero-Sahuquillo, Pedro J. Garcia, Francisco J. Quiles, Sven-Arne Reinemo, Tor Skeie, Olav Lysne, and Jose Duato. A new proposal to deal with congestion in


elAyeb:1995:ABD


Fragopoulou:1995:OCA


Fallah:2007:HPC


Fagin:1992:LIM


Fan:1995:CSM

REFERENCES


REFERENCES


REFERENCES


Fang:2000:FRH


Fernandez:2004:TDR


Frache:2014:EDS


Fan:2013:GBC


Feo:1990:RSL

Francesquini:2015:EEP

Fineberg:1991:EAM

Fan:2011:CAD

Feng:2012:CML

Franklin:1986:INP
Fatema:2014:SCM


Fei:2003:NCA


Feng:1990:SAB


Ferrante:1990:PDS


Ferscha:1992:PNA


Ferretti:1993:GHT

REFERENCES


[FGG08] José-Jesús Fernández, Dan Gordon, and Rachel Gordon. Efficient parallel implementation of iterative reconstruction al-


Foglia:2005:RCO


Ferrari:2003:GAA


Faverge:2015:MLQ


Fujiwara:2004:PER


Francioni:1993:BSA


Samantha S. Foley, Daniel Koepke, Justin Ragatz, Christa Brehm, Jason Regina, and Joshua Hursey. OnRamp: a web-portal for teaching parallel and distributed computing. *Journal of Parallel and Distributed Computing*, 105(?):138–149,
REFERENCES


[FLCB10] Michail D. Flouris, Renaud Lachaize, Konstantinos Chasapis, and Angelos Bilas. Extensible block-level storage virtualiza-


REFERENCES

Flammini:2008:ATG

Feschet:1998:PPD

Fraigniaud:2005:ETB

Francis:1994:DPS
REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


Fu:1997:RTT


Feng:1990:FDM


Furno:2014:SSC


Fang:2005:FSS


Fernandez-Zepeda:2002:UBL

Fan:2012:EAA


Goodrich:1990:PRO


Gunney:2016:APB


Grossman:2017:PTT


Gharachorloo:1992:PDM

REFERENCES


[135x681]REFERENCES


Goff:2003:PRA


Gait:1987:DPM


Gait:1990:SPM


Gao:1986:MPT


Gao:1989:AAB


Gao:1993:EHD


[GBA08] Yunfeng Gu, Azzedine Boukerche, and Regina B. Araujo. Performance analysis of an adaptive dynamic Grid-based ap-


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[GJA08] Leonid Glimcher, Ruoming Jin, and Gagan Agrawal. Middleware for data mining applications on clusters and Grids.
Gannon:1988:SCL


Gjertsen:1996:PHI


Guo:2005:FLC


Gupta:1993:PPL


Ghose:1998:LPT

Gursoy:2004:PMB


Guellati:2010:SSS


Georgiou:2015:CSD


Gupta:1996:CAE


[GL12] Jinsong Gui and Anfeng Liu. A new distributed topology control algorithm based on optimization of delay and


REFERENCES


REFERENCES


Galil:1994:PAD


Gasieniec:1997:BBF


Gu:2000:EAP


Guo:2005:ICS


2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


Ghosh:2005:PSJ


Gustafson:1991:DSF


Guay:2015:EEL


Gross:1985:SIF


Gu:1993:DPM

References

Gutierrez:2005:PTI


Guirado:2013:ETS


Gomez:1997:EMU


Gargano:1997:CCG


Gallet:2008:CDP

[GRV08] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Comments on “Design and performance evaluation of load distri-


REFERENCES

Grahn:2000:CEL

Govindarajan:2001:SIC

Gupta:2001:CBT
REFERENCES


REFERENCES


Geisler:2002:PCC


Goldman:2004:EPA


Gracia-Tinedo:2012:SLT


Gilbert:2006:IVG


Guerra:1986:VAO

REFERENCES


REFERENCES


[135x681]REFERENCES


[Haw97] David Hawking. A distributed memory algorithm for lexicon building. *Journal of Parallel and Distributed Com-

[Hasteer:1997:SAB]


[Hung:2011:TAB]


[Hussain:2015:EDH]


[Hendrikx:2015:RSS]

Ferry Hendrikx, Kris Buedendorfer, and Ryan Chard. Reputation systems: a survey and taxonomy. *Journal of Parallel and Distributed Computing*, 75(??):184–197, January 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-


REFERENCES


[He:2009:PBI] Weiping He and Ing-Ray Chen. A proxy-based integrated cache consistency and mobility management scheme for client-


REFERENCES


REFERENCES

92–100, February 2010. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


Hajihashemi:2010:HPC


Hassan:2011:PID


Hyde:1996:ADS


Hybinette:2002:LHO


Hameenanttila:1996:FHN


REFERENCES


REFERENCES


Heckmann:1998:OEC


Harvey:1991:ETL


Hiranandani:1994:ECO


Hsiao:2005:TMD


Huang:2007:DMR

REFERENCES


Hsieh:1995:PMS


Hua:1995:OAL


Hosseini:1990:AGC


Hanlon:2003:LSF


Hori:2012:ANS

REFERENCES


REFERENCES


**Hernandez-Orallo:2009:PBS**


**Hendrickson:1995:PMB**


**Ha:1997:SDC**


**Homer:1997:DPP**

REFERENCES


REFERENCES

Hoepman:2002:SSW


Ha:2007:STR


Hamdi:1999:CES

Hung:1989:PPL


Hung:1990:PBC


Heywood:1992:PHMb


Heywood:1992:PHMa


HarEl:2000:JCB


Hacker:2009:ACF

Thomas J. Hacker, Fabian Romero, and Christopher D. Carothers. An analysis of clustered failures on large supercomputing systems. *Journal of Parallel and Distributed Com-
Hernández:2011:CIP


Hendry:2011:TDM


Ho:1994:EAG


Hossain:2017:CPC

REFERENCES


REFERENCES

2010. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


**REFERENCES**


REFERENCES


Huang:1996:PLB


Hsu:2008:SDG


Huang:2010:DBA


Hajisheykhi:2015:SFW


Huang:2012:ADT

He:2004:SSI


Ieumwananonthachai:1992:IPM


Iyengar:2004:SII


Ibrahim:2008:FGP


Iqbal:2005:PAD


Igual:2012:FAD

ICQO+12 Francisco D. Igual, Ernie Chan, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí, Robert A. van de Geijn, and Field G. Van Zee. The FLAME approach: From


REFERENCES

Ibarra:1985:SRC


Iqbal:1992:EAD


Imbs:2012:HWN


Imbs:2016:RWS


Irwin:1988:SIP

REFERENCES

Iyengar:2006:ENL


Imani:2007:CIP


Imani:2010:RPC


Islam:1997:CMP


Izumi:2007:ATC


Itzkovitz:1999:TID


REFERENCES


REFERENCES


Jiang:1999:PAD


Jan:2012:SCA


Jayaraman:1989:SIR


Jiang:2000:PSA


Jayasekara:2015:WDC

Sachini Jayasekara, Sameera Kannangara, Tishan Dahanayakage, Isuru Ranawaka, Srinath Perera, and Vishaka

**Javadi:2013:FTA**


**Jung:2015:CCD**


**Jan:2005:CLB**


**Jiang:2011:LST**

REFERENCES


REFERENCES

Johnsson:1987:CEB


Johnson:1989:NNA


Johnsson:1991:PMD


Johnson:1994:HCP


Jang:1995:OSA


Jiang:2009:SPP

Jallu:2017:DCC


JaJa:1992:LBR


Jain:1995:ILB


Joshi:1999:SPM


Jegou:1986:DSP

Y. Jegou and A. Seznec. Data synchronized pipeline architecture: pipelining in multiprocessing environments. *Journal of


REFERENCES


REFERENCES


Juang:1989:LBO


JaJa:1994:SID


Jing:2017:MLD


Jiang:2014:FRS


Jiang:2006:CVB

Jin:2005:MDD

[135x681] REFERENCES

[135x681]463


Jin:2015:SEM


Johnson:2004:MEN


Jiang:2017:DOS


Korst:1989:COB


Koc:1991:FAG

[135x156][KA91] Cetin K. Koç and Sarath N. Arachchige. A fast algorithm for Gaussian elimination over GF(2) and its implementation on the GAPP. *Journal of Parallel and Distributed Computing*,
REFERENCES


Yu-Kwong Kwok and Ishfaq Ahmad. On multiprocessor task scheduling using efficient state space search approaches. *Journal of Parallel and Distributed Computing*, 65(12):1515–1532,
REFERENCES

December 2005. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


REFERENCES

Kim:2007:PDD


Kaufman:1994:PQA


Kavianpour:1993:NMS


Kim:1996:DEP


Krueger:1996:EPP

REFERENCES

Kohn:2001:PSA


Kennedy:2001:TLS


Kravtsov:2010:SFL

REFERENCES

**Kuang:2005:PPO**


**Kyriakis-Bitzaros:1992:EDT**


**Krishnamoorthy:1994:SDS**


**Kim:1995:NPU**


**Kim:1998:MGE**


REFERENCES


Keleher:2000:ISS


Kepner:2003:MTF


Karaata:2001:MCL


Kamal:2004:OAA


Kalyanaraman:2007:AGL

REFERENCES


REFERENCES


REFERENCES

Koohi:2012:SAC


Khokhar:2003:TDD


Kanemitsu:2017:PNS


Kaushik:1996:EIS


Kannan:2014:HSC


[KJ84] Manoj Kumar and J. R. Jump. Performance enhancement in buffered delta networks using crossbar switches and multiple


REFERENCES


**Kambatla:2014:TBD**


**Kim:2012:RSG**


**Kim:2014:GBM**


**Kim:2013:PMD**


REFERENCES


Kosar:2005:FRE


Kaeli:2008:ASI


Kaeli:2008:SIG


Kim:2005:IGS


Kim:2011:TBS


Kaur:2017:RPW


Kuo:1991:PCS


Khanna:2016:GND


Kapelnikov:1989:MMA


Kapelnikov:1992:MPA


Komatitsch:2009:PHO

Komatitsch, Michéa, and Erlebacher. Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA. *Journal of


[KMS+06] Yu-Kwong Kwok, Anthony A. Maciejewski, Howard Jay Siegel, Ishfaq Ahmad, and Arif Ghafoor. A semi-static approach to mapping dynamic iterative tasks onto heterogeneous


REFERENCES


REFERENCES


REFERENCES

1987. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES


Kshemkalyani:2013:EDS


Karinthi:1995:PAC


Kavianpour:1994:NAC


Kissel:2011:PSH


Koziris:2003:PSM


REFERENCES


REFERENCES

Kamath:2016:DTT


Kumar:1989:DLS


Kunde:1991:RMM


Karonis:2003:MGG


K:2017:ESI


Kaya:2007:HSF

Kubica:2017:PBC


Katayama:2002:LOS


Kumar:2017:ROT


Katz:1988:GRP


Khoo:2010:PAF

B. T. Benjamin Khoo and Bharadwaj Veeravalli. Pro-active failure handling mechanisms for scheduling in grid computing environments. *Journal of Parallel and Distributed Computing*,
REFERENCES

Kang:2018:DSS

Khoo:2007:MDS

Kashyap:2017:ASM

Kohn:1993:A

Ku:2002:OSP

KVA18

KVHS07

KVNV17

KW93

KW02
REFERENCES

Krishnamurthy:1996:AOS


Kakugawa:2002:USS


Karwande:2005:MPC


Kee:2017:AMB

Karimi:2013:SAF


Kim:1996:FMO


Kolli:2011:DPA


Lin:1993:UGS


Lai:1986:TDD

Lai:2014:ECO

Lai:2015:CAS

Lai:2017:OCN

Lee:2010:SKC

Lan:1994:AFT
REFERENCES

Landfeldt:2009:SIJ

Li:1997:DET

Lastovetsky:2012:SIJ

Lastovetsky:2013:HPD
REFERENCES

Lejeune:2015:FSF


Latifi:1995:MTI


Latifi:1998:FBG


Lee:2000:IIB


REFERENCES


Lin:2007:PSA


Li:2011:APU


Lee:2013:AMS


Laurenciu:2014:CTN


Lim:2014:PGM


Lorenzon:2016:IDG

[LCB16] Arthur Francisco Lorenzon, Márcia Cristina Cera, and Antonio Carlos Schneider Beck. Investigating different general-


REFERENCES

Lee:2003:RTW

Lan:1990:MHM

Lu:1992:SCP

Lublin:2003:WPS

Lowenthal:1996:UFG
REFERENCES

Larrea:2005:ECF


Losada:2017:PAF


Lewis:2003:SES


Lampka:2016:KIC


Liu:2017:FTE

REFERENCES


REFERENCES

January 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


[Li:2011:EPA]


Lee:2003:DLB


Liu:2014:OTA


Li:1995:DDD


Loh:2007:REC


Lam:1997:OAA

Liu:2008:DRC


Litow:1995:PCL


Li:2014:ABC


Leng:2016:SAR


Li:1992:MDF


REFERENCES


REFERENCES


Lin:1993:SIP


Lin:1993:TDD


Lin:2003:EED


Lisper:1990:STO


Li:1986:SSN


Lee:2005:EDR

[LJ05] Soojung Lee and Kil Hong Joo. Efficient detection and resolution of OR deadlocks in distributed systems. *Journal of


Lugowski:2015:PPF


Luszczek:2014:LBD


Lee:1994:ECR


Lazaro:2012:LTA


Lee:2014:EMC

REFERENCES


REFERENCES


REFERENCES


[LMB+17] Bo Li, John Mooring, Sam Blanchard, Aditya Johri, Melinda Leko, and Kirk W. Cameron. SeeMore: a kinetic par-


Lin:2010:RTS


Li:2010:MRT


Legrand:2005:OSS


Lee:2018:HAS


Li:2011:TRP


Li:2004:EAC

REFERENCES

1413, December 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


Liu:1997:PAL


Lee:2010:AET


Lopez-Portugues:2012:ASS


Li:1998:LBD

REFERENCES


Leung:1997:RTV


Li:2005:PSM


Liu:2005:ILS


Li:1999:PMC


REFERENCES


Ching-Chi Lin, You-Cheng Syu, Chao-Jui Chang, Jan-Jan Wu, Pangfeng Liu, Po-Wen Cheng, and Wei-Te Hsu.

LaPolla:1993:DPP


Liang:1996:PAE


Lerida:2013:SBP


Lee:1988:HAK


Li:2014:DPM


Luckow:2015:PDA


Liu:2015:ABI


Lu:1994:LBJ


Lin:1996:EUH

REFERENCES


REFERENCES


REFERENCES

Liu:2012:CPS

Leung:1995:RMR

Leung:1996:LRR

Lu:2001:IBD

Lin:2014:PAE
Hui Lin and Halit Üster. A parallel algorithm with enhancements via partial objective value cuts for cluster-based wireless sensor network design. *Journal of Parallel and
REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


Liu:2013:EAR


Leung:2002:NNS


Lee:1993:PEC


Li:2008:PSL


Ling:2016:JSM

Lee:2002:SBC


Leung:2005:MMF


Landfeldt:2008:BAS


Landfeldt:2011:SIA


Liu:2011:TAL


Liu:2011:APD


Mershad:2011:CCD


Maia:2013:MRP


Maheshwari:1995:PSP


Min-Allah:2012:PER

[MAHKZ12] Nasro Min-Allah, Hameed Hussain, Samee Ullah Khan, and Albert Y. Zomaya. Power efficient rate monotonic
REFERENCES

Mohamed:2005:DUL


Min-Allah:2013:LPF


Manoj:2005:MHC


Manzini:1994:SMC


Mans:1997:ODA

Manjunathaiah:2013:FGM


Martalo:2014:SDR


Mudge:1987:VAH


Martel:1988:PAP


Mnaouer:2005:ESL


REFERENCES


REFERENCES


[MC03] Daniel S. Myers and Michael P. Cummings. Necessity is the mother of invention: a simple grid computing system using


REFERENCE


Mansouri:2013:EDH


Meyer:1997:ALA


Mahanti:2004:ADP


Megson:1991:SAB


Muhammad:2017:ALA

REFERENCES


REFERENCES


Minkenberg:2009:DPS


Montoya:2003:LUP


Munir:2014:QTA


Monien:2006:I


Ma:2012:EED


Hwu:2014:WAP

[mH14] Wen mei Hwu. What is ahead for parallel computing. *Journal of Parallel and Distributed Computing*, 74(7):2574–2581, July 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Mudge:1986:AMB

Memin:1995:EPN

Madisetti:1993:MEP

Ma:2016:TTC

McLendon:2005:FSC
William McLendon III, Bruce Hendrickson, Steven J. Plimpton, and Lawrence Rauchwerger. Finding strongly connected components in distributed graphs. Journal of Parallel and
REFERENCES


Manabe:1992:GCD


Miller:1993:WDW


Milosavljevi:1999:IAA


Miranker:1991:SIP


Mitchell:2007:RTB


Misić:1994:RFD

REFERENCES


Sourav Mukherjee and Hillol Kargupta. Distributed probabilistic inferencing in sensor networks using variational approximation. *Journal of Parallel and Distributed Computing*, 68


Philippe J. Marchand, Ashok V. Krishnamoorthy, Gökçe I. Yayla, Sadik C. Esener, and Uzi Efron. Optically augmented 3-D computer: System technology and archi-
REFERENCES

Maresca:1989:CAS


Marinescu:1990:MMD


Mamat:2012:ERT


Mache:2005:ISL


Moore:2012:VEP

Meng:2016:CCA


Manzanares-Lopez:2012:ICU


May:1997:MLT


Ma:2017:RSU

[MLZY17] Li Ma, Peng Leng, Yong Zhong, and Wenyin Yang. Research on semantic of updatable distributed logic and its application in access control. *Journal of Parallel and Distributed Computing*, 103(??):104–112, May 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-


REFERENCES

[MM07b] Panagiotis D. Michailidis and Konstantinos G. Margaritis. A
programmable array processor architecture for flexible approx-
imate string matching algorithms. *Journal of Parallel and Dis-
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

tributed group mutual exclusion algorithm when group access
is non-uniform. *Journal of Parallel and Distributed Comput-
ing*, 67(7):797–815, July 2007. CODEN JPDCER. ISSN 0743-
7315 (print), 1096-0848 (electronic).

based parallelism extraction from recursive functions. *Journal of Parallel and Distributed Computing*, 86(??):16–28, De-
cember 2015. CODEN JPDCER. ISSN 0743-7315 (print),
com/science/article/pii/S0743731515001276.

and C. Ubide. Parallel EDAs to create multivariate calibra-
tion models for quantitative chemical applications. *Journal of Parallel and Distributed Computing*, 66(8):1002–1013, August
2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848
(electronic).

Rechacs, and Emilio Luque. Hybrid Message Pessimistic Log-
ing. Improving current pessimistic message logging protocols.
*Journal of Parallel and Distributed Computing*, 104(??):206–
222, June 2017. CODEN JPDCER. ISSN 0743-7315 (print),
com/science/article/pii/S0743731517300515.

Talbi, A. Y. Zomaya, and D. Tuyttens. A parallel bi-

Morajko:2007:DID


Mahesh:1998:SAF


Moser:1990:WBA


Meyerhenke:2009:NDB

REFERENCES


Moreira:1998:DDD


Miller:1997:LBR


Mohapatra:1996:PAU


Mohapatra:1997:DRT

REFERENCES

Monfroglio:1994:NLC


Meyer:1987:PFO


Mathias:1988:SEL


Mayr:1993:PPP


Mickle:1996:LBU

REFERENCES


REFERENCES


[MRR02] Dale E. Martin, Radharamanan Radhakrishnan, Dhananjai M. Rao, Malolan Chetlur, Krishman Subramani, and Philip A.


Myllykoski:2018:SSB


McMillen:1985:ECD


Mirchandaney:1986:USL


Makarenko:1987:VMM


Mikkilineni:1988:ESA


Makedon:1994:OAM


[MS99b] Jean-Frédéric Myoupo and David Semé. Time-efficient parallel algorithms for the longest common subsequence and related problems. *Journal of Parallel and Distributed Computing*
REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


Ma:2000:JJE


Mao:2012:WCO


Yuan:1991:FTD


Mohapatra:1995:LSS

Mishra:2011:RRA


Marinescu:2010:SFS


Yeh:1992:ABF


Ma:2017:SAA


Melab:2018:POU

Muppala:2012:RBR


Nesterenko:2002:SPA


Nagy:2006:CNN


Nicolae:2011:BNG


Nakano:1995:OIA


REFERENCES


Nicolae:2013:BVD


Natarajan:1993:PVM


Navarro:2012:DDT


Nguyen:2017:ATM


Navarro:2007:DLC

Nistor:2009:OPC


Nie:2012:ESS


Naderan:2013:ULB


Newhall:2017:PPD


Noh:1999:HMM


REFERENCES


[NKK16] Bogdan Nicolae, Andrzej Kochut, and Alexei Karve. Towards scalable on-demand collective data access in IaaS clouds: an


REFERENCES


[No12] Jaechun No. NAND flash memory-based hybrid file system for high I/O performance. *Journal of Parallel and Dist-
REFERENCES


REFERENCES


REFERENCES


REFERENCES

Ni:1990:SIS

Nassimi:1993:EIB

Naimi:1996:LDM

No:2003:HPS

Neamatollahi:2012:IBA
REFERENCES


REFERENCES


REFERENCES


REFERENCES


Othman:2010:EDS


Ovalle-Martinez:2005:FMT


Ouni:2017:MLE


Oruc:1985:ERA


OCearbhaill:2005:PIT


Ortín-Obón:2016:RCD

[OOSGVG+16] Marta Ortín-Obón, Darío Suárez-Gracia, María Villarroya-Gaudó, Cruz Izu, and Víctor Viñals. Reactive circuits:


orPanaite:2000:OBF


Ou:1997:PRA


Ortigosa:2003:PSP


Oruc:1987:DCP


Oruc:1994:SPN

REFERENCES


**Ochoa-Ruiz:2018:MFE**


**Ofek:1993:DAH**


**Olariu:1996:NDS**


**Olariu:1996:TON**

REFERENCES

Obenaus:1997:ESG


Ong:1998:ISM


Oida:2004:PSA


Oliveira:2005:PAH


Olariu:1998:TOP

Stephan Olariu, Ivan Stojmenović, and Albert Y. Zomaya. Time-optimal proximity graph computations on enhanced
Onaga:1986:WAL


Oz:2012:TVP


Olariu:2001:GEI


Ostovari:2014:SLR

Ofek:2000:CAS


Oliker:2013:BPA


Ozaktas:2004:IFI


Ozturk:2011:DLP


Panwar:1994:MPS

REFERENCES


REFERENCES

Padmanabhan:1991:EAD


Padmanabhan:1993:SBA


Polig:2018:HCF


Plimpton:1998:PTD

REFERENCES


REFERENCES


Pauli:2015:IFT


Patsouris:2001:AMA


Park:1990:RCC


Pfluegl:1995:NIA


Pande:1999:CLB

REFERENCES


REFERENCES


REFERENCES

Percus:1992:PAC


Panda:2005:PRA


Pinel:2013:SVL


Papakostas:2017:PPC


Park:1993:AGS


Plateau:1991:MSM


Prodan:2004:ZGM


Pedone:2008:PHA


Pfeiffer:1990:HLL


Park:2004:GFS


Patterson:2012:SCM

Pedrero:2017:ROS


Paul:2006:FSC


Panda:1991:FDM


Parashar:2000:IPP


Phatak:2016:NDA

REFERENCES

Palermo:1996:DDP


Phillips:2013:BPI


Plimpton:2004:PRA


Pennycook:2013:IPP


Parker:1990:DAM


Puente:2001:ABR

[PIB+01] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. M. Prellezo. The adaptive bubble router. *Jour-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>


Page:2010:MHD


Penoff:2010:ETL


Peir:1993:LAR


Peng:1994:SOP


Petersen:1995:MCC

REFERENCES

649


Potter:1998:AAC


Peinado:2003:PSW


Price:2003:CAF


Park:2006:AAT


Plaza:2008:PTI

Plantenga:2013:ISI


Perrott:1987:DIP


Pang:2014:MSN


Peltier:2003:TPA


Powell:2007:EOD


Park:2015:TSA

REFERENCES


REFERENCES


Paszynski:2010:PDS

Pani:2006:SAA

Pal:2012:SLT

Pichel:2013:SMV

Prasad:1993:ESP


REFERENCES


[PSGS17] Salvador Petit, Julio Sahuquillo, María E. Gómez, and Vincent Selfa. A research-oriented course on advanced multi-


REFERENCES


REFERENCES


Deng Pan and Yuanyuan Yang. Buffer management for lossless service in shared buffer switches. *Journal of Parallel and Dis-


REFERENCES


REFERENCES


[RAN+17] Jaeyong Rho, Takuya Azumi, Mayo Nakagawa, Kenya Sato, and Nobuhiko Nishio. Scheduling parallel and distributed pro-


Russo:2017:MPG


Roy:2008:BSP


Rettkowski:2017:HSC


Rafique:2011:CAF


Rezende:2011:IMM

REFERENCES


REFERENCES


Rajasekaran:2012:CEE


Ritter:1987:IAT


Ro:2006:SPE


Ramachandran:2003:EBQ


Reisman:2000:IRA

REFERENCES


REFERENCES


REFERENCES

Roh:2011:RAD


Robinson:1995:EMA


Ray:1996:CDA


Rozier:1997:DEP


Rashad:2006:UMO

[RKK06] Sherif Rashad, Mehmed Kantardzic, and Anup Kumar. User mobility oriented predictive call admission control and re-


REFERENCES


REFERENCES


REFERENCES


Raghavendra:1996:DOB


Raghavendra:1996:ESD


Rajasekaran:2008:RSI


Ramaswamy:1996:OEA


Roh:2001:RMD


REFERENCES

Ram:1996:PSA


Ramakrishnan:1999:ETN


Rice:1990:SDP


Rosing:1991:DPP


Ranjbari:2018:LAB

Rover:1991:SPA


Rizvandi:2011:SOO


Reddy:1999:RTC


Raghavan:2013:EAE


Rover:1993:VPS

References


REFERENCES


REFERENCES


REFERENCES


Sarbazi-Azad:2005:DPNa


Sarbazi-Azad:2005:DPNb


Su:1984:DPM


Skillicorn:1993:CP


Sohn:1997:SID


[SBAM96] Alexander D. Stoyenko, Jan Bosch, Mehmet Aksit, and Thomas J. Marlowe. Load balanced mapping of distributed

[Saule:2012:LBS]


[Saule:2012:OSI]


[Suhler:1990:TTL]


[Scherson:1991:COE]


[Strevell:1991:DTT]

Michael W. Strevell and Harvey G. Cragon. Data type transformation in heterogeneous shared memory multiprocessors.
REFERENCES


Skillicorn:1995:CCP


Shen:2004:HPD


Sun:2010:RAL


Schenk:2008:APS


Shafi:2009:NPM


Sheu:1992:FTS

Jang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung Chang. Fault-tolerant sorting algorithm on hypercube multicomput-

Shao:2006:HSO


Su:1999:BIW


Sarkar:2010:POF


Schwandt:1987:IAB


Schaeffer:1989:DGT

REFERENCES

Schroder:1989:TDI


Schaefer:1990:SIM


Schmolze:1991:GSR


Schulz:2013:ELS


Schreiber:2014:FBI


Shin:2008:TSA

REFERENCES

August 2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


Skeppstedt:2000:CCP

Stantchev:2008:FPP

Singh:2017:NAA

Schoneveld:1997:TAP


REFERENCES


REFERENCES


REFERENCES


Schwiegelshohn:1991:OPA


Saxena:2003:DOC


Sibeyn:1999:PPL


Sinha:2008:FDB


Szymanski:1989:UMM

REFERENCES

1989. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


Sohanghpurwala:2017:HAS


Song:1993:DAO


Sun:2014:COA


Shen:2006:PSL


Shen:2009:PBI

Shen:1995:EAC


Shih:2013:TTL


Shi:2009:PAS


Sardar:2017:TPB


Singh:1995:LBD

REFERENCES


REFERENCES


[SJB12] Mohsen Amini Salehi, Bahman Javadi, and Rajkumar Buyya. QoS and preemption aware scheduling in federated and virtu-


REFERENCES


Singh:1994:EGL


Sleem:2005:HMW


Strumpen:2005:CMR


Saeed:2009:DDS


Sun:2011:OCB

Subramaniam:1996:CLU


Seo:2015:AEC


Skillicorn:1996:PIT


Skinderowicz:2016:GBP


Sitaram:1991:RDA


Schloegel:1997:MDS


Shen:2014:DSL


Sisodia:2004:NSS


Sarukkai:1993:MVP


[SLG06] Chulho Shin, Seong-Won Lee, and Jean-Luc Gaudiot. Adaptive dynamic thread scheduling for simultaneous multi-

**Spacey:2012:ICL**


**Spacey:2013:PPD**


**Shen:1998:PAD**


**Shen:2010:SSC**


Salimi:2014:TSU

Sarma:2015:ERW

Shukla:2017:EDB

Sanchez-Monedero:2011:BFB

Sang:1996:MPB


Stichnoth:1994:GCA


Sohn:1996:PST


Soliman:2013:DIE


Stotts:1990:CGC

Sharma:1996:SAM


Schmidt:2008:SES


Shieh:2013:ETA


Saltz:1991:PEI


Saez:2017:TCF

Seal:2013:RPC


Saeed:2012:HPM


Schmidt:2003:MPP


Scherson:1988:MOA


Sridhar:1988:UMF


Stivala:2010:LFP


Saez:2011:LWD


Saghi:1993:PPS


Sundriyal:2013:ESS


Shih:2000:EIG

REFERENCES


**Shivle:2006:SAR**


**Sugavanam:2007:RSA**


**Salehi:2016:SBR**


**Shestak:2008:SRM**

[SSMS08] Vladimir Shestak, Jay Smith, Anthony A. Maciejewski, and Howard Jay Siegel. Stochastic robustness metric and its use for static resource allocations. *Journal of Parallel and Dis-
REFERENCES


Shan:2002:CTP


Sivasubramaniam:1994:SBS


Santoro:1988:ECD


Shacham:2007:SMC


Schmidt:2009:SPA

Stillwell:2010:RAA


Shu:2014:SSS


Sohn:1997:DWD


Si:2010:OCA


Smith:1985:FIP

Schwiegelshohn:1987:SAC


Schwiegelshohn:1989:LSA


Salinger:2002:BAO


Sundell:2005:FLF


Salinger:2006:BAO


Sun:2008:ARD

Sundell:2008:LFD


Shen:2012:ACD


Singh:2014:MPI


Stadtherr:2004:SIO


Selvitopi:2012:RPU


Stamoulis:2017:MBW

Georgios Stamoulis. The multi-budgeted and weighted bounded degree metric Steiner network problem. *Journal
REFERENCES


Stewart:1995:RAD


Stewart:2017:SCH


Sinnen:2011:CAS


Shi:2012:TSN


Shimada:1992:RTP

Stout:1987:SDC


Stout:1990:SIA


Strzodka:2012:DLO


Shamir:1987:PAL


Sun:2002:SVE


Subhlok:2000:OUM

REFERENCES


Sanjay:2008:PMP


Struharik:2018:SHA


Stout:1990:IHC


Savage:1991:PGP


Schikarski:1996:EPM


[Sagonas:2018:CAA]


[Swarztrauber:1998:TAM]


[Stolfo:1991:PPR]


[Shoukourian:2017:AEC]

[SWHB17] Hayk Shoukourian, Torsten Wilde, Herbert Huber, and Arndt Bode. Analysis of the efficiency characteristics of the first high-temperature direct liquid cooled petascale supercomputer

**Song:2017:ERT**


**Shirazi:1990:AEH**


**Song:2017:PPF**


**Shen:2008:HBP**


**Shi:2006:SIS**

Sheu:2001:MAH


Shieh:2004:PNU


Swami:1992:AHS


Scheuermann:1994:CBI


Sendag:2007:IWP


Tanimoto:1984:HCL


Theys:2001:WTT


Tatrai:2011:PIB


Taubenfeld:2016:FS


Taylor:1987:RAI


[TBPV00] Jerry L. Trahan, Anu G. Bourgeois, Yi Pan, and Ramachandran Vaidyanathan. Optimally scaling permutation


REFERENCES


REFERENCES


REFERENCES


[TLY12] Wee Lum Tan, Wing Cheong Lau, and OnChing Yue. Performance analysis of an adaptive, energy-efficient MAC pro-


Tian:2016:LSP


Tauf:2009:WPP


Toharia:2012:SBD


Tissot:2006:ORO


Tong:1991:OFF

REFERENCES


REFERENCES


REFERENCES


REFERENCES


Tehranian:2006:RFR


Taheri:2011:FOL


Ucar:2006:TAH


Ucar:2007:PIR


Usui:2010:ALC


Uresin:1996:EAC


REFERENCES


Vanhata:2008:PMI


Vishkin:1987:RPS


Vo:2014:MPU


VandenBout:1995:TIM


Vetter:2003:CCL


Venkatesan:1995:MFS


Valls:2017:TFA


Vupputuri:2010:UMD


vHanxleden:1991:LBM


Vijaykumar:1999:TSM

REFERENCES


Verhoosel:1996:ITC


West:2002:GAA


Weissman:2003:ISB


Wagner:1989:EAB


Wagner:1993:EAB

Wagner:1994:ECT


Wang:1996:LBM


Wang:2001:EHC


Wang:2001:DDM

Wang:2006:LWC


Wang:2007:ETA


Wah:1988:SDB


White:1995:PNP


Walinsky:1994:DPF


Wang:1996:PEI

[WB96] X. Wang and E. K. Blum. Parallel execution of iterative computations on workstation clusters. *Journal of
REFERENCES


REFERENCES

Wang:2002:DHP


Wu:2018:ESS


Walshaw:1997:PDG


Wehe:2010:SPG


Wang:1994:SPC

Wang:2014:AIS


Wang:2017:PMC


Wang:2006:PLS


Wang:2013:CLO


Yiwan Wong and Jean-Marc Delosme. Transformation of broadcasts into propagations in systolic algorithms. *Journal of

Weemueuw:1994:FGP


Wittek:2013:ATM


Wang:2009:CFC


Wilkin:2013:MPA


Weems:2001:SII


Richard M. Wolski and John T. Feo. Program partitioning for NUMA multiprocessor computer systems. Journal of
REFERENCES


REFERENCES


REFERENCES


Wu:2002:OPA


Wang:2017:SSS


Werapun:2012:EPC


Wada:1997:HFT

REFERENCES


Wilkinson:1990:CRC


Wilkinson:1992:OCI


Wing:1985:CAS


Wei:2012:FAC


Wu:2014:OFC


Weil:1991:DIS

Frank Weil, Leah H. Jamifson, and Edward J. Delp. Dynamic intelligent scheduling and control of reconfigurable parallel ar-


Wan:2001:ORB


Wang:1992:PSN


Wang:2012:PPL


Weissman:2001:ORF


REFERENCES


[WR97] Xiaodong Wang and Vwani P. Roychowdhury. Optimal communication algorithms for heterogeneous computing over
REFERENCES


REFERENCES


Watson:1994:BBM


Wei:1991:DSG


Wang:2003:CAM


Wu:2011:OSP


Wang:1997:TMS

REFERENCES


Jie Wu. An optimal fault-tolerant nonredundant broadcasting scheme in injured hypercubes. *Journal of Parallel and
REFERENCES


Wu:2002:DFS


Wu:2003:OBI


Wu:2011:MAS


Woo:1999:MSS

Wang:1996:SCB

Wang:1997:MAT

Wattenhofer:1998:IBD

Weissman:2003:GEI

Wattenhofer:2004:CPA
Wang:2007:CSP


Wang:2012:DMT


Wu:2018:PBO


WWW17a


WWW17b


[Wang:2018:PAB]


[Xu:2000:PDC]


[Wang:2005:AER]


[Wu:2013:EHP]

Wein:1991:MPS


Wang:2013:RIA


Wu:2013:DAM


Wang:2017:DLW


Xiao:2007:DAC

REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[YB95] I-Ling L. Yen and Farokh B. Bastani. Parallel hashing: Collision resolution strategies and performance. *Journal of


[YBX+13] Weizhong Yan, Umang Brahmakshatriya, Ya Xue, Mark Gilder, and Bowden Wise. p-PIC: Parallel power iter-


REFERENCES


Yang:2009:NAI


You:2017:DIH


You:2015:SSV


Yang:2010:LCM


Yen:1997:RVC

Yero:2007:SSA


Hsu:1997:PEW


Yang:1996:PPS


Yu:1997:PPR


Yau:1991:PPO

Stephen S. Yau, Xiaoping Jia, and Doo-Hwan Bae. PROOF: a parallel object-oriented functional computation model. *Jour-


REFERENCES


Yaseen:2012:AKB


Yoon:1990:MTP


Yin:2015:GHD


Yang:2017:HCM


Yu:2018:PEM

Yang:2006:OSP


Yuan:2001:PMH


Yuan:2014:SLB


Young-Myers:1993:EST


Youssef:1992:TPG


Weikuan Yu, Xinyu Que, Vinod Tipparaju, and Jeffrey S. Vetter. HiCOO: Hierarchical cooperation for scalable com-

Yu:2011:HDI


Yu:2008:ICL


Yin:2011:EAC


Yang:2005:RRM


Yang:2007:HCL


Yin:2018:ADE


Yu:2009:EPB


Yang:1996:EPP


Ye:2015:DDD


Yu:2015:QMP


[ZB97] B. B. Zhou and R. P. Brent. A parallel ring ordering algorithm for efficient one-sided Jacobi SVD com-
REFERENCES


Yanhe Zhu, Dongyang Bie, Xiaolu Wang, Yu Zhang, Hongzhe Jin, and Jie Zhao. A distributed and parallel control mechanism for self-reconfiguration of modular robots using $L$-systems and cellular automata. *Journal of Parallel and
REFERENCES


Zou:2004:UAC


Zoni:2017:BEF


Zeigler:2002:QBF


Zhang:2012:EIS


Zhou:2006:NFI

Zeppenfeld:1991:PSB


Zhu:1989:NPS


Zhang:2007:SAT


Zhu:2006:PCA


Zaman:2013:CAB


Zheng:2014:BBE

Cong Zheng, Shuo Gu, Tong-Xiang Gu, Bing Yang, and Xing-Ping Liu. BiELL: a bisection ELLPACK-based storage format for optimizing SpMV on GPUs. *Journal of
REFERENCES


[ZHLQ12] Xiaomin Zhu, Chuan He, Kenli Li, and Xiao Qin. Adaptive energy-efficient scheduling for real-time tasks on DVS-enabled heterogeneous clusters. Journal of Parallel and


REFERENCES

Zimmermann:1990:TAS


Zimmermann:1996:RAR


Zhu:2006:CCE


Zhang:1994:PHO


Zeigler:1993:SEI

Zhang:2012:EEM


Zhao:2014:TEF


Zhu:2014:OVS


Zaki:1997:CDL


Zheng:2001:GCP

REFERENCES


REFERENCES


REFERENCES


[ZR00] Guodong Zhang and Stephen S. Rappaport. Integrated multimedia personal communications with asymmetric services for mobile users in cellular systems. *Journal of Parallel


Zhong:2018:ESR


Zhang:2014:COS


Zhang:2016:DAT


Zhu:2017:RSA


Zeng:2006:DSS

REFERENCES


[ZVL15] Lingfang Zeng, Bharadwaj Veeravalli, and Xiaorong Li. SABA: a security-aware and budget-aware workflow schedul-

 Zheng:2000:DCG


 Zhang:2011:BRE


 Zhao:2013:BRH


 Zhuo:2003:DRD


 Zhao:2016:THP

Dongfang Zhao, Ke Wang, Kan Qiao, Tonglin Li, Iman Sadooghi, and Ioan Raicu. Toward high-performance key-value stores through GPU encoding and locality-aware encod-
REFERENCES

Zhu:2007:OPD


Zhang:2009:OPR


Zheng:2017:MDS


Zhou:2016:TNM


Zhang:2015:PAB


REFERENCES


