A Bibliography of Publications in *Journal of Parallel and Distributed Computing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 May 2018
Version 1.95

Title word cross-reference

(a, b) [DJM94]. (f, g) [CDD+15]. (k, 2) [EMMM94]. (κ − κ) [KT91]. 0
[EE05, PMV05, PM96, SM89b]. 1
[EE05, HV09, JM14, PMV05, PM96, SM89b]. 2 [Ano93e, BDKM94, BAES92,
CS92, CS93b, HSSM07, HHC98, KRKS11, KLC05, LXL12, LME95, MD01,
SS94b, TSFZ14, Tur12, WC91, WS95, Wu02, YA11]. 2.5 [MPG17b].
2logN−1 [CC14]. 2 × 2 [PD92]. 3 [AA14, AA16, BDRB14, BAL05, BC94,
CW00, CCCM96, GOH+13, GW99, Joh89, NM17, OGRV+12, PYP+10,
PEC95, WC91, Wan07, WS95, YA11, YB01, ZLS17, Zsa16]. 4
[KMC16, MD01]. 45 [HRF+11]. 4 × 4 [Jia99]. 5 [CCCM96]. *1 [HCZ04]. *2
[HCZ04]. + [OC07]. - [HCZ04]. 2 [ASST05]. 3 [ASST05]. B [YL89]. C3
[HK96]. C3I [PAJC97]. d [DFN+94, DTK11b, LSC00, VB94]. ∞ [MRRT07].
G [BFKW13, BNP98]. GF(2m) [SKH15]. h [GS98, KLP10]. hp [PPTV+10].
K [ACU08, BE95, DWG03, DBCF13, HHC98, SHL95, WL11, Amm16,
BVB02, CDDL10, DW06, DH91a, GP00, KK98a, PD05, PK04a, PRHB06,
PK07, RP98, RDA18, SSKS11, San99, SAOKM03, SGR03, SLP+98, SZ00b,
SDG17, TT98, WCH+17, WS97b, YTH07, YD98, ZHT16. $k(n - k)$ [Lin03]. κ
[XL95]. L [ZBW+17]. LTQ_n [XHZZ16]. LU [FHL+15]. M
[YL90, ABBD+08, WT8+08]. N
[AY98, HMO05, NT96, SHT+95, AKPT99, BVBO02, GL90, NS94, PK04a,
RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. $\nabla^2 G$ [CL85]. nn [PK07].
$n \times n$ [COS95, NS94]. $O(1)$ [Can18, GP94, Wan07]. $O(\log 2N)$ [BNP92].
$O(\log_2(\min(m, n)))$ [XL11]. $O(\log_2 N)$ [JBL02]. $O(\log \tilde{m}, \log N)$ [CC14].
$O(\log \log N)$ [BNP92]. $O(\log N)$ [BP99]. $O(n)$ [DLV11]. Ω [MRTR07]. P
[BM97, PMV05, YBX+13], P^3E [HSJP87]. P_4 [ANP07]. ϕ [AK07]. $\pm 2^b$
[Nas94]. q [DP00, Lat98]. QR [BP92, FHL+15, ZLRP91].

-alliances [CDD+15]. -ary [BVBO02, DP00, Lat98, PK04a, RP98, SAOKM03,
TT98, WS97b, XL95, YTH07, YD98, SHL95]. -Bandwidth [BM97].
-banyan [YL89]. -based [AK07]. -Best [BE95]. -Body [SHT+95, IHM05].
-Chain [BNP98]. -clustering [CDDL10]. -connected [DW06]. -coverage
[Anm11]. -Cube [RP98, PK04a]. -Cubes
[XL95, BVBO02, SAOKM03, WS97b, YTH07, YD98]. -D
[Auc093e, BAES92, CS93b, SS94b, CW00, GW99, LXLS12, PEC95, Wu02, YB01]. -delta
[YL89]. -Dimensional
[AKPT99, CCCM96, DFN+94, VB94, DTK11b, KLC05, LSC00, SGR03]. -disjoint
[KMC16]. -dominating [DW06]. -Extra-Stage [SZ00b].
[GS98, PRH06]. -limited [WTB+08]. -Means [DBCF13]. -MSA
[GL90]. -optimistic [DWG03]. -packing [TSFZ14]. -page [HSSM07].
-Pairwise [GP00]. -Partite [EMMM94, SLP+98]. -PIC
[YBX+13]. -plex
[WCH+17]. -queens [AY89]. -reader [HV09]. -Reducing
[GS00]. -relations [KLP10]. -satisfiabiliy [Joh89]. -sparse [ANP07]. -stage
[MD01]. -Trees [DJM94, HHC98, PD05]. -way [KK98a, ACU08]. -width
[DH91a]. -writer [HV09].

/compute [KAS07]. /many [KSG13].

0/1 [LSS88].

1 [HV95, MF94]. 1-Writer [HV95]. 10 [LB12]. 10-Gigabit [HeF05]. 113
[KN18b]. 16S [ZFWF06]. 1D [PA04].

2 [ACYS08, AAL95, AR97, BLPV95, BSGM90, CDH84, DPSD08, FPD93,
GH90, SI91, SMKL93]. 2-D [AR97, BLPV95]. 2000 [Wee01]. 2002 [Si03].
3 [BFG94, KMC16, MKY+97]. 3-D [BFG94, MKY+97]. 3D [AB03a, CGW+03, GS03a, MJ03, NPI+96].

4 [BAM93]. 42 [Ano97c]. 46 [Ano97g].

5 [LAD+96, PTC+93]. 53 [Ano00d].

60 [Ano00b, Ano00c]. 66 [Ano93e, CS93b].

71 [LSS+11a].

80 [Ano97k]. 802.11 [BCD00, ZBR11]. 802.11e [FA07]. 802.11n [GZY14a]. 802.11s [VHH08]. 860 [DHR96].

90 [HLJ98]. 90D [BCF+94]. 90D/HPF [BCF+94].

Access [ALLM11, ADS98, Bal90, BP02, Bit92, BR95c, CW93, CH92, DP00, FY96, HP00, OS98, San98, WMC01, ZRC99, AM13, BGLA03, BR91b, BC11, Che90, DFP06a, ETS14, FA07, FC90, FLC14, HC91, KKK11a, KGN11, Lan90, L11Z, L11W, L11Z, MYY11, MM07c, NKK16, Pad91, SM99a, SR88b, SR90, WT03, WBR13]. access-aware [MYY17].

Accesses [MRRV98, SR97a, SR97b, JZ05]. Accident [CCW14]. accrual [CRJ10b]. accumulations [SAF05]. Accuracy [EH01a, PKK91, CRWX12]. Accurate [DD95, KK88, BFKW13, CGL+14, GJ12, HDT+05, HZDP12].

Accurately [LC13]. ACE [PL98]. achieve [LCB16]. Achieving [EH01a, KEA95, NPY+97, XLC+18]. Acknowledgment [Gra10a, KL08a].

Acoustic [LPLFMC+12]. across [SGdS13]. Action [Sie16]. Actions [WR95]. Activated [NPP+02]. Active [SKH96, DB86, HOE+09, KV10, PMV05, PMV06, PSGS17, SI13, YT05].

active/active [HOE+09]. Activity [AS00, CW93, HES11]. Activity-Based [AS00]. actor [ASM09, YpGyLIC13]. actors [GE85]. ActorSpace [CA94]. actuator [KKKP12, SCN12]. Acyclic [GY92, AFO99, BP89, Zim90]. Ad [Ano01e, GS01b, LC14b, RBP+11, TM10, XG03, AP03, AH11, AH12, ALF03, BFG+03, BM11, BGLA03, BOP06, BDF01, BN03, Bout03, CNS03, CW05].
ad-hoc [BOP06, CYZ06, KSK15, LHW14, NMN+14]. Ada [Lun90]. Adaptable [Zim96, LLLC15, LFGM17]. adaptation [BK08, GBMZ07, KGN11, LS06, NZY+11, WMC+18, WWY+18]. Adapting [DKR09, Wei02, SW18, WRW13]. Adaptive [ASH+01, AA93, AA16, AMN00, ACPT15, AYTE98, ACFK07, BLPA05, BOT13, BPR99, BL90, Bon02, CS00, CGM14, CLT96, DY99, DHB02, DMB97, DM99, FLS+97, ISM07, JK00, KR97, KKGS01, KG10, KLLK08, KB01, Lan94, LLO6, LKP+10, LC11, LME95, LEB98, ME04, MV88, MD92, MTS90, OB98, OR97, PW96, PRS97, PIB+01, RDS02, SS06, SKK97, SJ95, SB02, SSOB02, SLG06, SHT+95, TC04, Ten90, UBES10, VMMB10, WCE97, WA02, WL10, YIY97, ZHLQ12, ZM94a, AOSM05, AGMS04, AF17, BM17a, BCFF05, BMT12, BBS13, BEN12, CL03a, CMNN10, CP04b, CDD05, CAF+11, DMB+03, DLW+12, DAB+14, ESA03, GBA08, GA16, GNZ18, HNSA07, HK15, IZ12, KK17, KMF+05, KKS08, LST17, LY91, LHX+16, LA04, MDS+06, MSAF04, MPG17a, MPN17, NKK16, OPG08, OS04, PPT+10, SMO14, SB12]. adaptive [SHLN09, SMB10, SJC14, TLY12, TKHG04, TT07, WW04, ZXYO11, ZWIR07]. adaptively [Mit07]. Adaptivity [OH02]. ADDAP [DHR96]. Addendum [Ano92a]. Adders [NIR86]. Adding [MSZ05]. addition [OB88]. Additional [LP97, CRM14]. Address [KY96, SL97, TR96, YQTV12, WZ13, YGZ+10, YC12]. Addressable [Win85, KRM14]. Addresses [CGL+95]. Addressing [ZLP01, Ho91, TY90a]. adjacent [CFJW13]. adjusted [TDBL13]. adjusting [MC91]. ADM [Pad93]. administration [LB17]. Admission [MBO11, AAA+10, MCZ14, RKK06, XYDL06, YJK10]. ADMs [FSZ07]. Ads [BA01a]. advance [CHR11]. Advanced [BW95a, HDMC11, MCP+18, PSGS17, SD88a, TSD08, PLL+03, SHT+08]. Advancement [Lan09, LZ11, LVR90]. Advances [GA16]. advantage [CL03b]. advantages [CCLS94]. Adversarial [GBMZ07]. adversary [dOCS14]. advertisement [WGO9]. advertisement-based [WGO9]. advice [DP12]. AES [ABO+17]. Affecting [DVW94]. Affine [DR95, DRR96, Dja06, DQR+09]. Affine-by-Statement [DR95]. Affinity [TT95, HD10]. after [DR96]. against [SCC+06, XCH08]. Agate [CZHP16]. Agent [Ser97, FCC07, GZMC08, Rao16, SS06, YZS15]. agent-based [FCC07, Rao16, SS06]. agents [AK06, CSWD03, FP17, KERUM04, MS05, SGAC14, BJ18]. aggregate [AMT13, Yan09]. aggregated [WE13]. aggregates [Ch95, Ch95]. aggregation [BCO+12, CDR09a, CDR09b, JBA15, JBS14, JHPL13, SSKS11, XHZ+10, ZSCX18, Zsa16]. Aging [BM17a, LC14a]. Aging-aware [BM17a].
agreement [AP16, GCS06, HC11, LLW12, REK10a, REK10b]. Ahead [PL93, mH14, SHL+13, TG04, TLL+18]. AHMW [BMT12]. AI [Ull84]. Aid [DBKF90]. aided [SV18, ZMC06]. air [FL86, YBM13]. Airshed [SS00].

Algorithm [AAP01, AE95, AM97b, AMS94, Als01, AS95, Auo93e, Auo96l, AS96, ABC09a, ABZ95, Baj94, BCC95, BGR96, BS97, BPST96, BOW94, BE95, BDDL09, Bou02, BX93, BHR95, CLZ02, CGKK97, CCM01, CB99, CSW08, CS93b, CF92, CTZ99, CF98, CRFS94, DA97, DM90a, DMB97, DS01, DS84, DH94, DSAUM09, DLP99, DT97, FY96, FT94, GGN93, Ger98, GRR93, GP00, GS99, Haw97, HH01, HBJ98, HOF94, HM99, Hwa97, IZ95, JP95, Jia99, JK00, KRZ92, Kau02, KSA95, KKD98, KLF95, KS97b, KW02, KA97, KC99b, LP96a, LO94, LHVW95, LP97, LWP02, MT97a, Mi99, MV94, MSST99, NT96, NM02, Par98, PE93, Par96, PL94, PB95, PM96, PRS97, PM92, RR95a, Ren11, RP95, SAOKMA02, SZ00b, SCC92, SR94, Slu95, SM00, TU92, TZ00, WSRM97].

Algorithm [WD94, WA02, WLD02, XWC08, YZY96, mYyF92, ZB97, AOS05, AT03, AA10, ALM16, AA14, AA16, ALLM11, AK07, ATH91, AGMS04, Ara90, ADDB18, ARQ18, BFG03, Bad04, BC05, BFF05, BSG90, BCI15, BFKW13, BBD18, BH05, BBL04, Cal06, CR91, CDDL10, CC14, CM03, CV90, CK13, CLOL17, CS92, Che89, Cho90, CZ90, CRC02, COF17, CSW17, DFHH13, DK08, DK11, DNS06, DLV11, DB08, DM90b, DB86, Ebn04, EE05, ED005, FZWL12, Fei03, FSZ07, GLW14, GPX08, GGR89, GT04, Gu86, GL12, GB06, GAOH17, HJ90a, HES10, HSS10, HES11, HSY10, HRJ94, HLM190, HVW16, HL07, HWY10, Kal04, KR10b, KHW13, KK06, Kim17, KM03, KA91, Koc91, KHH15, LP08, LSS88, LASS15, LMZ04, LO91, LLT12, LU14, LW16b, LB89, LP88, MD07, MM07a, Mar88, McD89, MMS09, MM07c].

algorithm [MP08, MMS90, NHO13, OS04, OT86, PDP17, PK05a, PB15, PH04, PQ09, RH05, RGD03, RT18, RBG17, RDA18, RKS87, SSTP09, SCJ08, SAMP17, SA08, SKK91, SM08b, SWW17, TLQS12, Tät16, TKG04, TYA16, TWF714, WLL16, WSH03, WJ07, Wan07, WGO8, WGC09, WCL+13, WW17a, WJ12, gWW18, XHY07, XL11, XQ07, XZYW14, XYG18, Yan04, YME06, YWJ18, Y011, YSS11, YZLT09, ZZ90, ZFWF06, ZQMM11, dOBD15, CMR10, KM17, LY12].

Algorithm [GRR93, mYyF92, BDDL09, LP88]. Algorithm-system [CSW08].

algorithm/implementation [HWH16]. Algorithmic [Gao89, SCB08, BBH17, CG11, JF12, LS05]. Algorithms [ANT02, AasJS01, AK95, ABM02, BJ96, BJ99, Bah00, BPJG92, BLPV95, BGJL02, BAES92, BAGS95, BBM02, Ben15, BSE96, BOP06, BPR99, BSS99, BMRC98, BMRC99, Bro96, BA01b, CTD99, CDY97, Cha94, CGO096, CDH84, COS05, CN93, CP91, CHR94, CWP98, CA95b, DS95b, DP98, DH02, DP99, DM92, DMSH90, DFRUC99, DBKF90, DMV01, EP90, ESM96, EMN94, EL97, FTP+14, Fer95, FR96b, FA95, FY97, FTC00, GG94, GP94, GV94, GM96, GHJS96, GMM00, HHHM94, HQPT99,
HCWS94, HR92a, HP97b, HTB98, HO94, IK93, IK94, Iqb92, IM00, JW94, JS94, KRC00, KAM94, KLZ97, KG94, KA99, LHS97, LSH96, LHHB+01, LLCC02, MB96a, MMR98, MS94, MMVR97, Man97, MT96, Mat93, MHC95, MK92, MS98, MS99b, Nak95, Nas94, PAH+98, PAJC97, Pov99, Pra93, QZ94].

Algorithms

[QOvdG01, RS96a, RR95b, Raj01, RSS96, Ram92, RDS02, RSW90, SH90, SS96, San95, San99, San02, SZB92, SY01, Sto90, SYG92, Ten90, TVS97, TC96, TVF+15, UD96, VB94, VR95, WNA+94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YMR93, dBL95, AL04, ANEA13, ASC+18, Ara13, ACCP12, AAC10, AF17, ARVZ14, AFK07, BC06, BKC+15, BBBC12, BMT12, BS87, BAS06, BOS+91, BKCM17, BF04, BRPR06, BPP05, BM08, CP04, CF88, CRH11, CNO03, Che86, Che05, CRSB13, CRA+08, CRD17, CB06, Cuz11, Cuz13, DS04a, DH91a, DJ16, Dja04, Dja06, DCA+15, DKU15, DJT03, DM94, FHL+15, Fen90, FBRW03, FG08, FJSW90, FM85, FVCL05, GMMP12, GP07, GZY+14a, GM14a, Gos90, GK10, GH89b, GWH06, GS03a, GC07, GN15, Han89, HSSM07, HSW04].

algorithms

[ICQO+12, IC05, JMS86, JST12, JBM91, KR10a, KHT+14, KJD03, KS08, KAP90, KSSG14, KK10, KMS10, KKB+06, KS07, KMP+16, LS03, LLW07, LA04, LV07, LG80, LV88, LS+16, MM04, MPZ09, MCAS12, MC01, MK14, MM7b, MS88, MKM16, MG03, MV91, MA+10, MAR7, NT12, Nik04, OA10, PKN10, PD05, PY09c, PL03a, PH16, PPS15, PA04, PS14, PRG88, PS88, RTCC91, SSM89, S106, SM89b, ST87, SPH13, SA05, SZW05, SGS08, SD88b, SSV10, Sto87, TY09, TW87, TK08, TW95, Tur12, VS16, WC91, WCWH03, Wri91, YZG18, ZV09b, dVC06].

Align

[BR95c].

aligning

[LVB07].

Alignment

[BRR01, CGO+96, DRR96, Mil99, MJ01, SS94a, BBM08, BFKW13, BR91b, BMARW07, LC91a, PT06, SK09, SPR+12, SRT+18].

alignments

[BW09, ST85].

All-Output-Port [ST02, ST06].

all-pairs [KS91, DCA+15].

All-Port [BJMC95, Dim04].

all-reduce [PY09c].

All-to-All

[HP95, LHS97, LWP02, Ede91, LR03b, PW16, ZTFK16].

Alleviating

[Tze91].

alliances [CDD+15].

Allocating

[BPRG04, Hag97, SEP96, SCs+08].

Allocation

[AM97b, AERBL92, CS99, yCM98, DSST95, DY99, DL99, DL01, Hwa97, KKG01, KLS90, Moh96, NSS97, OM84, PT01, SM94, Sd97, SP96, YL98, ZHU97, ALH+09, AKSM08, AAA+10, ADD17, ATZ07, ACCP12, AH06, BMB+08, BG86, Bat05, BSM88, BSS+13, BPRW05, CDS01, DW12, DM90c, ERS90, GNT04, GRD05, HWY+10, HB11, JL11, KR10a, KR10b, KWH13, LHF91, LC91b, Li05, LL01, LL12a, LL12b, LDP+14, MCC04, MLK+16, NFK+11, PKN10, PM05, PBS08, RLH03, SSM+16, SNP12, SCM12, SHL+13, SSM+06, SSVC10, ZSB16, SSM+07, TFS05, ZG13, ZI08].

Allocations [BE95, CT96, SSM08].

Almost [JB90, SS95, EB13].

almost-optimal [EB13].

Alphabetic [LP96a].

alternate [LS03].

Alternating [BC94, HWY+10].

Alternative
[GW99, Pad93, Can18, CBV08, GB06, Ros85]. **Alternatives**
[BAP01, NBS99]. **alternator** [LW06b]. **ALU** [KF90b]. **Always**
[BRR01, AD10]. **always-on** [AD10]. **ambiguities** [RK18]. **ambiguity**
[LD816]. **Amdahl** [CN14, NZ17, SC10]. **Among**
[OO85, GM94b, KS03, NMS93, ST12, ZWY+15]. **AMR**
[GW06, RV13]. **AMTE** [HCM11]. **Analyses** [KY96]. **Analysis**
[ABr96, Ano92a, BCF97, BN94, Blu87, BDF01, BLC01, Buc92, CK88, CC91, CSMM10, CAB94, DLLX97, ES96, Fra92, GM94a, GSG93, GCM95, GC01, HLM+90, HC97, HF96, IM94, JV09, KME92, Kp97, LW89, LDS16, MF94, MT93b, MM93, MS99a, MRR+02, MT96, MDD97, MBBW86, NBM93, NSM98, OD05b, OS93, PD92, Piu01, PAJC97, RPS93, RK87, SM89a, SLP+98, SWP90, SWHB17, SJC93, ST08a, VSM96, WCF14, XL92, ABC+88, AFK14, AK18, BCF05, BBH+17, BFG04, BFL+13, BC11, BM08, BF13, CK06, CSL15, CKT11, CH06b, CWL+07, CPO+03, FC90, FCS91, FD86, FX06, GZG+17, GBA08, GHC+17, HRC09, HSH10, HA91, HB11, IKS87, IC05, JF12, JT88, JBM91, KME89, KA08, KK10, KKK+11b, KG04, KLL87, LMSK18, LSDB+18, Li06a, Li06b, LZH11, LH05, LP88]. **analysis**
[MM06, McD89, MAKWZ13, MBO11, MEMEMH17, NIKS94, Pak89, PL06, PRH06, P09e, PL03b, RM90, RCO08, TLY12, TMM06, WSH+03, WF89, Wu11, XLIW+18, Y09, Y07, ZFS07, ZPK+14, DFLO17]. **Analytic**
[BS96b, BS96c, Har91]. **Analytical** [DG94, HW03, QY94, SAOKM03, AH11, AP91c, Bat05, BFH09, KyLPC17]. **Analyses**
[AS13, AS15, CJ17, KKKG14, PS14, PAG+18, YLB+15]. **Analyzing**
[CRA09a, CMT92, HcF05, KG94, LMCF90, LB12, MSH90, MBH+08, RB12, WX05]. **Anatomy** [ZBF05]. **Anchored** [KS03]. **anchors**
[MMK16]. **AND-parallelism** [DeG88]. **AND/OR** [RP95]. **Android**
[TY17]. **Animate** [MLB+92]. **Animation** [RGS00, JdSJC+15]. **Anisotropic**
[PSE+01, EI07]. **ANMR** [BM17a]. **Annealing**
[BE02, B09, HB97, R96, Soh96, XH91, AH06, BG89]. **Annotated**
[KBC+01]. **Announcement** [Ano93a, An96k, Ano01c, An01d, An01e, An01a, An01b, An02a, An02b, GS96, Kj92, An00a]. **annuli** [Li14]. **Anomalous** [MSH90]. **anomaly** [DFP06b, IZ12, KKTZ13, RL14]. **anonymous**
[AFM09, FKK+04, KS13, MSJ05, XLG+06]. **answer**
[BYG+18, OY07]. **Ant**
[COV13, CNG+13, CLA+18, DDGK13, RL02, CCK11, Ski16]. **antenna**
[CCHC09]. **Anticipative** [WLID02]. **Any** [RCY97]. **Apache** [KKH17]. **APHID** [BS00]. **API** [HLS12]. **Appear**
[Ano00e, An00f, An00g, An00h, An01a, An01b, An01c, An01d, An01e, An01f, An01g, An01h, An01i, An01j, An01k, An01l, An01m, An01n, An01o, An01p, An01q, An01r, An01s, An01t, An01u, An01v, An01w, An01x, An01y, An01z, An01-27, An01-28, An01-29, An01-30, An01-31, An01-32, An02a, An02b, An02e, An02f, An02g, An02h, An02i, An02j, An02k, An02l, An02m, An02n, An02o, An02p]. **applicability** [Can18]. **Application**
[AS97, AYIE98, BB03, BSSS97, CKK00, ECC92, ES96, HMV07, Kp97, OGRV+12, PH00, PP92, Ser97, SM92b, SPK93, WLS16, dKG+10, AHA+16]
AAI+15, BM16, BCM06, BMT12, CP05, CD95, CKMP17, DBC03, DKRI09, DWYB10, FGP+03, FCP+03, GP91, HSS17, KME09, Kub17, LW16a, Li17, LS06, MLZY17, MCM+11, OSLO5, PL06, PGS06, PS14, PVRS17, SL90, SFT04, SS94b, VD04, WW18, WJ14, YÖ11, dGP06. Application-aware [HMV07]. Application-based [BB03], application-level [VD04]. application-sensitive [CP05]. Application-Specific [PP92, SK93, SS94b]. Applications [ABDS02, Ano96i, AFT+00, BOSW94, BMRC98, CCRS92, CA95a, CDF01, DRC90, DS4, EH01a, FR98, FBR98, GCB+00, GT02, HS94b, KR97, LLS93, MHC95, MB92, MBK+92, NB93, NSPPC02, OS96a, PGFP17, PJ18, RS92c, SSOB02, SFC17, TFV+15, UZSS96, VHI3, WMG01, We02, ALM+16, AKSM08, ARM+05, AC16, AGMJ06, BCL15, BAS06, BHLT14, BM04b, CCC+06, CGL+14, CGM14, CC08, CMSML10, CP05, CBM+08, CP10b, CC+06, CDN14, Din91, ED05, ESA03, FCML13, FPF14, FRM15, GQZ18, GLC14, GYAB11, GVBB13, GTN+06, GST09, GA08, GRR13, HC09, HSL04, HA91, HL07, JK03, KHK03, KAS07, KBC+10, Kri91, LWCC15, LFGM17, MMAL+06, MLK12, NLB+18, NIK+11, NC13, OTKT12, Oza04, PCMM+17, PMAL11, PA15, PCLP16, PLL+03, PF04, RG18, RJKL11, SV08, SM99a, SCS+08, SWW+17, SR16, SSGZ13]. applications [TP18, TDM05, TOR+14, TKX+13, Ull84, VB08, VM03, YH07, ZVL11, ZZJ+18, ZSW14, dSS11, FT+14]. Applied [CB96, BDDL09, EE05, HSL04, PR06]. apply [NZ17]. Applying [PEC95, CCK11]. Approach [AAL95, AM93, Bev02, BR02, BST01, CCM92, CY95, CLZ00, DM95, Fer92, FKT96, FKKC97, GG94, GZ97, HC97, HLJ98, KCRB99, KSB94, LS95, LW95, LLCL98, MSSE02, RY96, RAS96, SL95, SP96, SZ00a, TC92, WSRM97, WA02, Won99, WLID02, AP91c, Ara90, AFD+11, AH06, BM11, BAS06, BW09, BCK+13, CTS17, CVdBL+08, CHX+17, CZZ+17, DBC03, DKKV15, DQR+09, FZC+05, FZG03, GZ08, GDL+11, GWL94, GBA08, GXYZ13, ICQO+12, JLM08, Jol89, KYS13, KSJC17, KZ11, KMS+06, LXW+11, LH04, LC07, MHLZ16, MS05, MSM09, MLCFH+18, MGRRK14, NTO12, NH+13, OPR18, Ozt11, RK18, SW18, SU87, SCS+08, SDG17, SK11, TM06, TBZB05, TP18, TXLL14, TY17, TM10, VB08, WWY+18, WZQ+13, XRB12, XLH18, YF09, YAA10, YWG15, ZHH15, ZS13, ZFL89, ZTGL17]. Approaches [CHGM01, FMIF18, QM01, CB11, DBA+18, KERUM04, KA05, PR06, Upa13, dGP06]. Approximate [JS92, LH14, ST12, CLO17, JHL+18, KERUM04, MM07b]. Approximating [FMM+08, PB08]. Approximation [FV97, GM14a, HP97b, JST12, Mat93, DUK15, FZWL12, LP08, LW06a, MK08b, PSRS12]. Approximations [Gon98, BFM06]. AQOR [XG03]. Araneola [MK08a]. arbiter [Bhu87]. arbitrarily [ZV06]. Arbitrary [ERL90, KA97, SS95, ZZ96, ARA90, BCF14, SGE91, WAG89, FII04]. arbitration [ASD09, HRG+11, KS03]. Arc [CA95b, ROS89]. architecing [CCC+04]. Architectural [DZZ01, GP02, HPT+97, KC99a, MT96,
MG93, TGPUC16, WSS93, FZC$$^+$$05, JBY$$^+$$05, NXTK17.
Architecture

[AGW01, ABZ95, BBH91, BAHPO1, DH95, Gao93, Ger98, GBES93, GM95, HP97a, HGCC96, IWM97, KC94, LBL95, MWL00, MS00, MAM05, MKY$$^+$$97, MO97, MT85, MEMEH17, NENG85, OD95b, OY00, Pad93, PSGS17, PS01, ST592, SSY97, SH98, VS99, YPCW16, ZYH94, Zim96, ACYS08, AA10, AA16, AC89, ABO$$^+$$17, BB87, BGA12, BBCQ13, CCQ$$^+$$06, CLMR15, CTCX08, CCEB03, CDJ$$^+$$89, CS17, FCS91, GHS86, JS86, JXW06, KK17, KNH18, KH12, KRL87, KH89, LLKY13, LCD$$^+$$96, LHHH11, LLY15, LZSL06, MCM$$^+$$11, MM07b, MYD85, MBH$$^+$$08, MP08, NW88, NKV14, PPK14, PCMM$$^+$$17, PK05b, PYP$$^+$$10, PGP$$^+$$12, PTK$$^+$$13, SDD04, SR88a, SAB$$^+$$92, SLKK12, SR91, WTWW16, WL92, XJS03, YFBY17, ZV09a, ZMZJ17, ZPK$$^+$$14, VRGS17].
architecture-based [CTCX08].

Architectures

[AGW98, ABDS02, BBR94, CCM92, CCC90, CT93, CS93c, CP01, CbCD00, DUSH94, DMSH90, DS02, DT01, DRSB01, DT92, EP90, EL97, FTM$$^+$$14, FPS12, FY97, GGB93, KS95, KM97, KB94, LB90, LC90b, LR93, LR94, MS$$^+$$95, PP96, PA94, PD92, SH90, SS94a, TG99, ZMEP00, ZL93, AA14, AP03, ABC$$^+$$09a, ABC$$^+$$09b, AG12, BKC$$^+$$15, BS87, BYG$$^+$$18, CCK88, Che86, CGC16, CKL90, CKL95, CJ17, CPO$$^+$$03, DKRC$$^+$$15, DKU15, GSWW04, GS91a, GMS$$^+$$13, GMSS$$^+$$11, HDCM11, HSW04, JJ12, Joh87, Joh91, KHT$$^+$$14, KF90a, LM05, LS88, Lla17, LVB07, MSGS$$^+$$13, MP10, Pad91, PR06, PLD87, RTCG91, SLG06, SS94b, SGdSS13, TKHG04, TRS$$^+$$12, VM03, WQZ$$^+$$13, WJD91, vS91, TFV$$^+$$15].
Archive [FTK14, JKIE13].
Area [BCD00, CLR90, CDR12, KF95a, NIR86, Wei98, ABO$$^+$$17, HZY04, HL07, JKV15, KCD08, KMF$$^+$$05, LdSB$$^+$$18, LMMJ11].
Area-maximizing [CDR12].
Area-Time [NIR86, CLR90].
Ariadne [MM15].
Arithmetic [AK93, CL88, Dav17, DPRW85, Gro85, Irw88, KK88, KM88, SR88a, Sch87, Sil90, SL90, Tay87].
Arithmetic/Logical [AK93].
ARM [Ano00d].
Arnold [Ano96l, Ano97k, Ano00d, CS93b].
Arrangement [Lin03, NAK04, Ten16].
Array [AW95, BCF97, BL90, CT93, CW$$^+$$95, ER97, GKH96, GE94, HQPT99, HCS$$^+$$00, HC204, HLJ98, HLJ01, KRW96, KHS96, KC98, KR87, LP96b, LTH97, Mi99, MJ01, MBK$$^+$$92, MT97b, NKV14, OMO90, RSB96, Ste95, SOG94, Tse90, WSS93, Win85, dR09, BB85b, BPP05, CS10, DS04a, GP05, Lee91, Man13, MM07b, NAK04, PLD87, SI86, ST87, SSC$$^+$$06, YTH07].
array-based [CS10].
Arrays [Ano94, BAGS95, BPST96, BP02, BR95c, CGO$$^+$$96, Cor93, GP93, GW99, Guo94, IP95, KLS90, KEA95, KL84, KBG92, MM00, MD91, MT93b, MK93, MFS93, MF96, RFM94, RCB93, Swa98, TBPV00, TC96, WCF04, WHT00, BBd90, Can18, CL03b, DMCFCM03, Deh90, Dja04, Dja06, EL91, GMH$$^+$$91, JWSG14, KT89, KT91, KLL87, LB89, Lis90, OT86, RIZ90, SSM89, Sch98b, ST98, SSK91, Ume85, WAS88, WCF14, XS11].
Art [KM92, PSC$$^+$$16, WC$$^+$$09].
Articulation [Ano96l, Ano97k, Ano00d, CS93b].
Arts [NDW17, BNSP99].
ary [BVB02, DP00, Lat98, PK04a, RP98, SAOKM03, SHL95, TT98, WS97b,
Assembling [KEA07]. assembly [ABC07]. Asserting [ASS05]. Assessing [BCD+15]. assessment [CG17, FGL+11, LC14a, LY08]. Assign [CYZ06]. assigned [HMR15]. Assigning [CCK11]. Assignment [Cza13, HBCM99, HB97, KLZ97, SSZ10, SS93, Ste95, VWHL96, WW97, ABBD14, Bet05, BPR04, CS10, GQZ18, GDL+11, GZY14a, JTZ11, Kim11, LZLX11, NDP13, PLY15, QGL+09, SLKK13, UAK106, WW18, WZ91, YZX11]. Assignments [LL98, Sin87]. Assisted [HLLY95, GM13, KO12, LVP07, MBBD13, NS12, RG06, SRT+18]. Associate [Ano16k]. Associations [GPJA10]. Associative [AA93, DM92, NSM98, Par96, PL98, TJC10, VR94, HCD11, Kri91, LL90, SR88a, SI89, YBM13]. assumption [Pen11]. assumptions [MS15]. Assurance [BK08, WLL08, XHY07]. Asymmetric [BNS00, ZR00, KNHH18, SPC+17]. asymmetry [AP91b]. Asymptotic [GM94a]. Asymptotically [Li10, Dja04]. Async [ARP18]. Asynchronism [UD96]. Asynchronous [Bah00, BSS99, BS00, CS95c, CA95b, ESMG96, KYNV17, MS02, MM93, MR94a, MR94c, OY00, TP18, The02, WT92, ATDH13, BB03, CPA+11, CRC+02, DGF05, DBFC13, DB86, DPBNT12, FKK+04, GLGBLG12, IRRS16, Kak15, KMS10, KS13, MM04, MEMM17, RV13, RLH03]. Asynchronous/Synchronous [OY00]. asynchrony [WCY08]. ATAPE [PW17]. ATExpert [KW93]. ATM [WR97]. atmosphere [KVN17]. Atomic [HV95, JBP90, WR95, van96, BOT13, GNS09, HV09]. Atomicity [NA02, RHH12]. attack [BK18, JXW06]. Attacking [ZCH15]. attacks [CH06b, KMMZ06, LLWC17, SCC+06, UGG+11, XY07, XCH08, YXX13]. attribute [LS+11a, LSS+11b]. attributed [LKB+15]. attributes [Par05]. auction [GVB13, RA11, ZG13]. auction-based [ZG13]. auction-inspired [GVB13]. audiences [LMB+17]. Audit [HLS12]. auditing [XLC+18]. augmentation [BCH15]. Augmented [MKY+97, KM17, Lo92]. Auralization [FJ09]. Aurora [Lu01]. Authentic [GPEA10, SZMK13]. Authentication [ZBR11, CL09, LMJ11, NC09]. Author [Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99h, Ano00b, Ano00c, Ano01f, Ano01g, Ano01i, Ano01h, Ano02a, Ano02b, Ano03a, Ano03b, Ano04b, Ano04a, Ano10a, Ano11j, Ano12m, Ano14f]. Author-Title [Ano98l, Ano99h, Ano00c, Ano01i, Ano01h, Ano02d, Ano03b]. authority [ZCMY12]. auto [CXX+18, KKR14, KGN11, TLL+18]. auto-adaptation [KGN11]. auto-clean [CXX+18]. auto-encoders [TLL+18]. auto-tuning [KKR14]. autoencoder [WMC+18]. automata
Automata-based [EM11, RT18].

Automated [NM95, NC97, CV16].

Automatic [ABCM07, AD12, CGO+96, DHR96, KBC+01, LC92, LZZ+11, MJ01, NCB+17, SEP96, AAD05, AM17, GLC14, GFPC14, MLCFH+18, NVK+11].

Automatically [DR98, TG99, DSEP17].

automation [HKK+18].

automaton [Cap87, LSZZ15, Pet18].

automaton-based [LSZZ15].

automorphisms [DH91b].

automotive [RAN+17].

autonomic [AZC13, ATZ07, CP05, LS10, RDA18, XRB12].

autonomous [CKT11, CKMP17, WZZ+17, XCH08, ZV09a, ZWW17, OY07].

availability [LFHI+03, ML89].

Availability [HJD+01, LS01, AGMS16, DB08, Fu10, HOE+09, KVA18, LKM12, PF08, PMMA15].

Available [NKC+97].

Average [DF95, Li06b, MDD97, NSM98, Li06a, WWW17a, XBK07].

Average-case [Li06b, Li06a].

AVL [MD98].

avoid [DP16].

Avoidance [MJ04, BB05a, BPRS04].

Avoiding [SI13].

Award [Ros07].

awards [OY13].

Aware [ALF03, DR18, AH12, AYB+15, BM17a, BPA06, CCW14, CW12, CKML12, EB09, EHL+15, FCW11, FGZ03, Fu10, GQZ18, HMS07, HMR15, HK05, HK04, HWL18, HV13, JAB12, JHF+17, KKK11a, KK11, KCR14, KDH08, KBC+10, LBGM15, LFS16, LR14, LDZ+14, Lzh+11, LIW16a, LNAL17, LY13, LML14, MBBD13, MLH16, MYYY17, MLK+16, MMK+11, NP09, ORWT+18, OS04, OMT+17, OJP+18, RBN11, RCG18, SNMB16, SJB12, SKK14, SP13, STK11, SK05a, SZL10, TLL10, TVT+17, UM17, VMM10, WQL14, WMY+17, XZC16, ZWC15, ZXYO11, ZTFK16, ZWQ+16, ZV09b, ZC04, SIE16].

awareness [LWZZ12, LR03b, ZXGD18].

Axiom [ABLP17].

Axiom-based [ABLP17].

Azriel [Ano04r].

B [CWW+95, CY96, GM95, HS94a, Meg91, OC07, PPC04, WW96].

B&B [BMT12, DBA+18].

B-Spline [CWW+95, CY96, GM95, Meg91].

B-Trees [HS94a, WW96, PPC04].

back [HPSM91, KMMZ06, LD14, WMES12].

back-end [HPSM91].

back-propagation [KMMZ06].

backbone [HWW08].

backbones [KERUM04, XHG03].

backends [IEWK17].

Backfilling [SF05, GMVRG16].

Backplane [SH98].

backpropagation [SM08b].

backtracking [AKDM15].

backup [AOSM04, HOVC09].

bad [Sch14].

bag [BHLT14, dSS11].

bag-of-tasks [BHLT14, dSS11].

Balance [SE96, CCK88, ZW11, ZWY+15].

Balanced [GJF96, LT94, NFEG97, PB09, SA93, SBM19, ASES15, BNP02, GHY10, LCW05, SB15, XYKA08, YMLP14].

Balancing [Ano97].

BEE00, DHB02, DMB97, DLLX7, DSW94, E696, FMP98, FLS+97, FM99b, Gil94, GM96, HILLY95, HTL99, HO94, HC97, JR92, KGV94, LR94, LHVW95, MP96, NSLK99, OB08, QY94, SH92a, SHT+95, SB97, TSHH01, Wan96, WS97b, XL92, XH93, XL95, ZLP97, ZM94b, AES11, AGMS04, BCV05, BFH09, BFMT+18, BRPR06, BD04, BM08, CSWD03, CBD+09, CRC+02, Cyb89, DB11, DLW+12, DM94, EE05, Gao89, GLC14, GC05, HJ90a, HLM+90, IC05, JL05, JL11, JW89, KKS08, KCO4, LTBO2, LTL06, LHK03.
MPV12, Mit07, NHO+13, Nik03, PC11, PA04, RN04, SBÇ12a, SX08, TVT+17,
YJL16, YAA10, ZV06, ZV14, ZSW14, ZXP09, ZLMC14, dG91, vS91]. \textbf{Balls}
[BBFN12, BBFN14]. \textbf{Banded} [Pox99, ORR03]. \textbf{Bandwidth}
[BM97, Cha95, KK17, PY09a, PY09c, BHK17, CCHC09, DK04, HJ90b,
HW¥+10, HB11, MSK+16]. \textbf{bandwidth-efficient} [BHK17]. \textbf{Banerjee}
[PKK91, Psa96]. \textbf{Banerjee-Wolfe} [Psa96]. \textbf{Bank} \[QGL+09\]. \textbf{Banker}
[MMS90]. \textbf{Banyan} [PL06, Kop97, WN94, Yan00, YN92, YL89].
\textbf{Banyan-Hypercube} [YN92]. \textbf{Bareiss} [HM99]. \textbf{Bargaining}
[GRDB05]. \textbf{Barnes} \[SHT+95\]. \textbf{Barrier} [Cha95, JLRA97, OD95b, RSS99, XMN92].
\textbf{Bargain} \[MMS09, MAKWZ13, Mit07, MM07c, MBO11, MH18, MSAZ10a,
MSAZ10b, MBH+08, MRRT07, MZZC12, MCZ14, NSKN17, NJ91, NCA+12,
NTN12, NC09, NHO+13, NC13, Nic07, NAK04, No12, OM10, OJP+18,
Ozt11, PRP09, PARB14, PDP17, PK05b, PMAL11, PVPM06, PF04, RL14,
RT18, Rao16, RA11, RTZ11, RDA18, RSCQ17, SM+16, SAMPMLVLS11,
SHSH17, SCG10, SS06, SP08, SPH13, SX08, She09, SLW10, ST12, Ski16,
ST85, SK11, TR89, TG+17, TFMS15, TW15, TKKH17, TC13, TJCB10,
TWQS12, TT07, UM17, VD04, VMMB10, VB08, VS18, WCC02, WGC09,
WW12, WCL+13, WRW13, WYW15, WWW17b, WMC+18, WYY+18,
WMG13, WD13, WLMW09, WCC18, WWA+18, XYH07, XCLR07,
Based [SM92a, WAS95, ZNQ93, HRF11, HC91, KKS08, PLD87, TOR+14, ZBR11].

Bases [GPT06a, SK90]. Basic [BM04a, Joh87]. Basis [TR96]. Batch [LL98].

Batched [CK06, HSH10]. Batcher [NT93]. Batching [DSST95]. Bayesian [DKC14, FBRW03, NZA13, YWAT13].

Bases [GPT06a, SK90]. Basic [BM04a, Joh87]. Basis [TR96]. Batch [LL98].

Batched [CK06, HSH10]. Batcher [NT93]. Batching [DSST95]. Bayesian [DKC14, FBRW03, NZA13, YWAT13].
PP13, Sch87, SPH13, SZW05, WZZ + 17, XLW + 18]. block-asynchronous [ATDH13]. Block-Based [WSA + 94, KR06]. block-level [FLCB10]. Block-Structured [FBK98, DAB + 14]. Blocking [BHK + 94, ASES15, DBA + 18, ESGQ + 11, KR17, MPN17, QS05]. Blocks [CWW96, RJKL11]. Bloom [SMPMLVLS11], Blue [FGM + 03]. BlueCube [CCS06]. Bluetooth [CCS06, SLWW05, WTS03]. Board [Ano18n, Ano18o, Ano18p, Ano18i, Ano18l, Ano18m, Ano02e, Ano02f, Ano03c, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano03m, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h]. Body [HP95, SHT + 95, IHM05, YJL16]. Boltzmann [KA89, WCO + 09, ZA91]. Bone [AFK14]. Boolean [ESCV15, HJ90c, JH92b]. boosting [AC16, FGP05]. Border [DRST02, HR90]. Border-based [DRST02]. both [WWT + 18, WAE03]. Bottleneck [WW98]. bottom [LXZ13]. bottom-up [LXZ13]. Bound [GZ97, PM96, AMM + 18, CH06a, Knb17, MCC04, SCS + 08, SW90, YZLT09]. bound-consistency [Kub17]. Boundaries [Wor93]. boundary [Lin91, RBD08, SCC + 06, SMP17, TRS + 12, ZQMM11]. Bound [AW95, BBN93, CLT96, GP97, Pra93, SN93, BD05, BPRG04, JM14, LMZ04, MRRT07, NP09, Sta17, TK07]. Bounding [Lun99]. Bounds [ADS01, BBH + 98, DL98, JR95, LPS + 98, LP95, Lun94, WW97, FT04, FSZ07, ITT04, KMS07, LXL12, LYW + 16, Mat06, NDP13]. Branch [GZ97, MCC04, PM96, AMM + 18, SCS + 08, YZLT09]. Branch-and-bound [MCC04, SCS + 08, YZLT09]. Branches [ERA95]. brawny [LNC13]. breadth [MB13]. Breaking [FJ93]. Breakpoint [dADB96, MT97a]. breast [HES11, XTN12]. Bridge [HR00]. Bridged [EAL90, LCM + 06]. bridging [BJS03, KLJ + 11]. Broadband [XP10, XTN12]. Broadcast [DHB02, OS96a, Pei95, RS96a, RS92c, San99, VB94, AA10, BG05, CB15, FVLB09, KYS13, KG10, KGN98, LDZ + 14, LDZ + 17, LSCW14, LSZZ15,_MT14, MPS16, MRRT07, PYF08, SGS08, TR08, WWW17a, WL05]. broadcast-based [AA10, MRRT07]. Broadcast-Efficient [OS96a]. Broadcasting [BNs00, BPvW96, BMMS01, BOS + 95, CW00, CCC92, DLP99, Fra92, FV97, GP97, HIKM94, Lat98, ST02, ST06, SCD99, Wu94, dB95, oPP00, Che05, CMS04, FM05, HS06, Ho91, KR87, LR03b, LSCW14, OWK14, SZ03, Wu03, ZA05]. Broadcasts [WD92]. Broker [HR00]. Brown
15

Brzezinski [Ano96l].
BSP [CTZ99, GS98, GLC01, HH01, HM99, KP00, RGD03]. BTS [BKK+11].
Bubble [DF94, PIB+01, GNZ18]. bubble-type [GNZ18]. buddy [LC91b].
budget [ZVL15, dR09]. budget-aware [ZVL15]. budgeted [Sta17]. Buffer
[FM99a, HV95, MSSE02, PY09b, WLID02, BPW05, CHX+17, HV90, IH16, PB08, SCC+06, WCWO17, WYW15]. buffer-based [HV90].
Buffer-Optimal [HV95]. Buffer-Safe [FM99a]. Buffered [AA95, KJ84].
budgetless [BMM07, LLT12]. buffers [DW04, EKNS17, HM06, WAS88, ZCF+17]. build [ZHH15].
Bulk-Data [Lu01]. Bulk-Synchronous [GV94].
burst [WY15]. Bus [CKL99, DZV96, FZVT02, FY96, GKY98, LPZ99, TVS97, VB02, dR09, BP05, CLM90, DS04a, JSWB92, MS88, MHWB86, TJC910, YB90, YGZ+10].
Bus-Based [CKL99, TJC910]. Bus-Connected [DZV96]. Buses [CL96, HQPT99, IK93, RJKL11, SK93, ZW13, CZ90, HSS10]. Bulk
[GV94, Lu01, FXW03]. Bulk-Data [Lu01]. Bulk-Synchronous [GV94].
C [CD98, DZDZ01, EFG+14, HCM11, LS85, ZH99]. C-AMTE [HCM11].
C2FPGA [CSJ+13]. CA [Ano94c]. CA [Chu95]. Cache
[DS95a, Dah99, GS96, HP97a, LY98, LY01, LF92, NB93, PL95, PY96, RL96, San95, TTG95, Yan93, BW99, CWLD05, CK13, CDAN14, DK04, GJ98, GVA+08, HCM11, HZ94, NS94, TVT96, TBPV00, WHT99, ZLPP01, BG16, Car90, JW99, KRL87, Mat96]. Business
[CBV08, DPBNT12, HC11, IRRS16, LHW14, MT14, PP06].

C [CD98, DZDZ01, EFG+14, HCM11, LS85, ZH99]. C-AMTE [HCM11].
C2FPGA [CSJ+13]. C [Ano94c]. C [Chu95]. Cache
[DS95a, Dah99, GS96, HP97a, LY98, LY01, LF92, NB93, PL95, PY96, RL96, San95, TTG95, Yan93, BW99, CWLD05, CK13, CDAN14, DK04, GJ98, GVA+08, HCM11, HZ94, NS94, TVT96, TBPV00, WHT99, ZLPP01, BG16, Car90, JW99, KRL87, Mat96]. Business
[CBV08, DPBNT12, HC11, IRRS16, LHW14, MT14, PP06].

Chordal [Man97, BCH15, WT09]. chordal planar [PD05]. Cilk [BJK+96].

cipher [GPX08]. choices [Wri91].

Circuit [CB09, CCR94, CS93c, GGN93, LK96, EB09, LC14a, LWCG14, YTH07].

circuit-level [LC14a]. Circuit-Partitioned [CB99]. Circuit-Switched [CC94, CS93c, GGN93, LK96, LWCG14].

Circuits [KM97, BAH04, EB13, HBS17, LH04, Ls05, LH09, MH18, OOSVG16, TT07]. Circular [BP02, CDP95, JT88, RGU08]. circulation [Nes10, PV07].

cities [DFLO17].

Client [GM99, HC09, ST08a, TC04]. Client-Server [GM99, HC09]. client-side [TC04].

Clients [ALL99, GZY14a, Yan09]. clinical [KDO+13]. Clique [FTL92, SSTP09, WCH+17]. cliques [CKO04, SMT15].

Clock [AS97, PD92, PB95, PB09]. Clock-Regulated [PD92].

Clouds [BD05, YH97, AKD06].

clothing [Luc18]. clean [CXX+18].

Clouds [CDJL09, CDJL11, FEH+14, PR13, VS18, ASKO16, AZC13, AM12a, ACCP12, BYH+14, CL14, CXY14, CTKA17, DKRC+15, FRM15, MFIM18, GQZ18, GYAB11, HRM17, JAB12, KVA18, KSSK16, LWZ12, LQM+12, LGM18, MHZ16, MYYY17, MXML12, MMK+11, RT18, SWW+17, TLW18, TX+13, WCCH18, gWW18, XL+18, XR12, XSYG18, YYLC11, ZL14, ZLL14, ZHT16, NLLb18].

cloud-based [WCCH18].

cloud-centric [VS18].

cloud-oriented [GYAB11, HRM17, MXML12]. clouds [ACPT15, ACB+15, CKMP17, KM17, KKLJ14, LTWW12, NC13, NKK16, ZG13, ZVL15].

Cluster [AFT+00, BAH01, GS01a, HS00, JM00, JK15, LS01, MKC01, PT01, ARM+05, BMARW07, CDS10, FW05, FLCB10, GRR13, HW03, IEWK17, JGMY17, LA10, LML+10, LÜ14, LZZ11, LB17, LB18, MAR05, MS05, MBH+08, NDP13, NVK+11, OC07, PKW+10, PVR05, PVPM06, RLP14, SAOKZ05a, SAOKZ05b, SB12b, SHL+13, SMH+14, TC04, VM03, WLL16, ZBF05].

clustering [AYI97, BJ99, BP01, BDH+97, Dek00, KMKD97, KR98, LC97, PN97a, PN97b, WB96, Wei02, ARP18, BCFF05, BJS03, DCA+15, FMR05, Fu10, GJA08,
Common-bus [MS88]. Communication [BPR99, BKT95, BCR96, CW00, CCRS92, CGL+95, CS95c, DUSH94, DS95b, ESMG96, Fah96, FM99a, FPS11, FKT96, FGKT97, FA95, FAM96, Fra92, GRV97, GBES93, GM94a, GK98, GPS96, HQPT99, HH01, HP95, HS93, HA92, IM94, ITT04, Job87, KL01b, KLS90, KS00, KS02, LHS97, LZ02, LR03a, LO96, LWP02, Mck94, MRRV98, MLK+16, MSST99, PP96, PB99, QH96, RFS+12, RWK95, RS92c, RU99, RMC97, SCM99, SS99, SOG94, SSK96, SBAM96, SKH96, TF92, TSHH01, TSC01, VM03, WR97, XKN94, Xue97, ZH99, AFA13, ARP18, ALTV13, AM12a, BM17b, BFTV87, BCM87, BBR13, BOS+91, BRP03, CCSV06, CNS03, CHC10, DB11, DKUC15, DW04, Ede91, EDH+17, FW05, GPT06a, GM13, GP05, HK05, IB04, JJ12, JZZ+17, KLY05, KSG03, Lai86, LAK10, Lo92, Lun90, LM09].

communication [LWC14, LLW12, dAMFds13, MAM05, MCM+11, MPG17b, NRM+09, PB90, REK10a, REK10b, SS99, SPBR91, SAL10, SRI14, SLKK12, Sta04, SW90, SZB16, SSGZ13, TW15, YCH+10, YQTV12, ZBF05, ZV09b, FPS12].

Communications [AMN00, BD00, CQ95, DRR96, LLJ00a, SC91a, SHC93, TSC01, WA02, YM901, ZR00, EB09, GMH+91, LHP07, MBBD13, PGP+12, TP18, TKG+17]. Communicator [KF90b]. community [CTC+10, TR909, ZLL14].

community-based [ZLL14]. Compact [CDF01, CJ99a, CJI04, CI03, NCTT09, NKV14]. Compact-Port [CDF01]. Compaction [BHR91, Kar95, WD94]. Comparative [AAD02, GS01, MQ01, HA91, PL03]. Comparing [GGW96, YL98].

Comparison [BSB+01, DRSB01, Fre96, GY92, JW96, KA80, KA99, OP98, SSOB02, SAC+98, Tay02, AFM03, AG12, FGZ03, GCH+17, JIE13, MP10, NSKN17, SMB10, SS94b, ZTFK16]. Comparisons [YBM13]. compass [AKBD10, XKN94]. compass-free [AKBD10]. compatible [MP08]. compensation [Yan09]. Competition [eW95, TR96, WSLC11].

Competition-Based [eW95, TR96]. Competitive [DLLX97, GS96, Ser97, SHC14, LHHH11, VM95]. Competitive-Update [GS96]. competitiveness [GK15]. Compilation [BCR96, CA96, HHT96, PA96, MH18, PAG+18, WQZ+13]. Compile [Fah96, HA92, LPW97, PM96]. Compile-Time [Fah96, HA92, LPW97, PM96]. compiled [KLY05]. Compiler [ABDS02, BW95a, CGSV93, HKT94, KRC00, LY98, LY01, NS12, RJY96, SDS99, SD00, Tse90, VV90, WB94, DK04, RG06, Sab94]. Compiler-assisted [NS12]. Compiler-Controlled [SDS99]. Compiler-Directed [LY98, LY01, RJY96]. Compiler-Optimized
ABDS02. Compiling [BS90, BCF®94, DRR96, GKHS96, KHS96, SSHC00, SB93, DeG88, LC91a].

Complement [YAS98]. complementary [ZPK®14]. Complete [BP02, Efe96, HKMU98, HM01, SP96, SHL95, TT98, Wag94, ZW00, LFZ®17, MPZ09]. completely [SPC®17]. completion [KSG03]. Complex [GPS96, HASB16, CM12, DF17, HHA14, JKD®15, RBP®11, SW12].

Complexity [BH93, CMS92, Dja06, FAGW95, Fra92, GRV97, Gon98, JBL02, Tay02, AEF11, BPW05, CH06a, DUW86, FWM®10, SSS88, Sol13, THSS87, WG08, XL11]. complexity-effective [FWM®10]. compliance [AM06]. Component [AHG12, HMM94, SR94, CT94, HdR13, KRKS11]. Component-based [AHG12], component-oriented [HdR13]. Components [BJ96, Kar02, BBB®06, Hoh90, LWR®03, MHPR05]. Composed [SM92a].

Composing [BA96], compositing [WGCZ09]. Composition [HLJ98, Tay02, CJ17, WMY®17]. compositions [FZ14]. Comprehensive [DG94, GM14b, Upa13, ZAB18]. compressed [WTM09]. Compression [SY094, CW15, CD95, KV15, KP17, NRM®09, SR91, AHG12]. Comput [KN18b, LSS®11a, MSAZ10a, PCX®14, REK10a, WTC08a]. Computation [AM97a, AISS97, BCV94, BP95, BA01b, CA95a, GM94a, GM95, HR92b, HR92a, JSS92, KF95a, KS00, LHM95, PB99, QH96, Sch90, Sin87, SA93, TR96, Win85, CR96, CXY14, CL85, DB11, DHK04, DWHL87, JT88, KSG03, Lee90, LMB®17, LGM18, MCS14, NCTT09, PK07, RMU14, SS11, SD88a, Sz03, VGAB08, WL04, WT09, WCO®09, XHL18, YJL16, YJB91].

Computation-Intensive [CA95a]. Computational [DRC90, JBL02, KRW96, KR97, Num08, Num09, AAH17, AB03b, AGMJ06, CCE®17, CS06a, DHS06, KHT®14, LBE03, MJ03, Pen11, RBN11, SM014, SNCP12, TZ06, WW03]. Computations [AGF94, AMN00, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93, CQ95, CGA98, DUSH94, DN94, GR96, GK98, HH97, HJ01, HF02, KL01a, KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94, Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03, BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03, RV13, SSKC15, SB12a, ST89, SC04, SK91, SMH®14, SS94b, TG04, WJ14].

computations/applications [KHK03]. Compute [ABM®92, CM92, CTZ99]. Compute-Intensive [ABM®92, KAS07].

computed [KDO®13]. Computer [BCH95a, BS96b, BS96c, Cha94, CDP95, HMM94, IWM97, Kri91, LLS93, LR94, MKY®97, NSS97, PEC95, VV90, WF93, WHT02, BDRB14, Eme13, Gai87, GE85, Gos90, GREC91, HR89, HR90, Irw88, JW89, KK86, LMB®17, LB17, LV88, MP08, PSC®16, SAB®92, Ve189, WJD91, PR13]. Computers [Alu97, ADM®94, AB93, BS90, BR95c, yCM98, CCC92, Chi92, CY96, CJ99b, Fer93, KL01a, KGV94, Li01, MT96, MSC96, MYD95, Mol96, NFE97, NS92, PE93, Rec84, RW01, SR94, Shu95, Sto90, Tan84, TC92, VSM96, WLR90, Yan93, YP96, Zhu92, ZM94a, AM13, ALS91, AP91c, BGM®08]
BCF+94, Car90, CT94, GMS06, JL05, KESA07, LR06, Li16, ML89, PB90, Raj04, Sab94, Sch87, WRHR91, ZLRP91. Computing [AW95, AL99, AM97b, ANT02, Ano97k, Ano99g, Ano01e, Bai94, Bir94, BD00, BSb+01, BDH+97, BNSP99, BS09, BS11, CA94, CEF+95, CDJL09, CDJL11, CP99, Deh90, DAYA02, DBP94, Eme13, ELS94, ES97, FFK97, FTM+14, FPP+08, FGKT97, GR97, GS01a, HGCC96, HS00, HHC98, KSA95, KMKD97, Kri92, KRS13, KS95b, LAS+97, LFA96, LSO1, Mwl00, MAS+99, MSGS+13, MC93, MNK12, MBG+17, NA06, Nee17, OY00, PN97a, PN97b, Pat01, PT01, PRS97, PUB+17, SM94, SD97, SR95, SFC17, SS97, Szy95, TJC810, BG90b, VR94, WR97, WSR97, Wei98, WF06, WLD02, wXH00, YZS96, ZO97, ALM+16, AAK+13, AC89, AZC13, AM12a, AMT13, ASC+18, Arb89, AM06, ACB+15, ABLP17, BC06, BW09, BFL+13, BDLO9, Bou03, BH05, BSH13, BYH+17, BAK+03]. computing [CMMT13, CCS06, CTA17, CVJ09, CDR12, DK08, DDG+17, DF12, DÖ06, EL88, EFG+14, ES12, FF14, FC04, FKR+17, FP17, Fu10, FX10, GQZ18, GMSS+11, GWLW94, GAC+17, HES10, Han89, HZL8, hM14, IB04, JHL+18, JdSJC+15, KHW13, KDO+13, KS08, KVHS07, KV10, KCR14, KL05, KBD05, KC04, KMS+06, LTL06, Las12, Las13, LCC+05, Li05, LZY11, LS10, LY08, LML+10, LPX05b, LB18, LR05, LUK85, LSO7, MYYY17, ME04, MCT06, MZC18, MMS09, MMK+11, MSJ05, MKn14, MC03, NXTK17, NWD17, NAK04, NRM+09, Oza04, PLD14, RB011, Raj04, Ren11, RRS+08, SBJ12, SS+16, SAOKZ05a, SAOKZ05b, Sch14, SFT+13, SCS+08, SAB+92, Sie16, SFE06, SZL10, SB04, ST08a, TZ07, TZI11, TLL10, TLLV10, TFMS15, TRSS06, TXLL14, UAI06, VD04, WS06, WG11, gWW18, XQ04, XLHT13, YLL17, YWJ+18, YO04, YLZW18]. computing [YBM13, ZAB18, ZLL14, ZV09b, ZB03, ZFWF06, ZHO03, Ano99g, AS13, AN97j, BS09, CDJL9, Cuz11, FPS11, GMSS+11, Gra09, KR13, KRS14, Lan09, Las12, MMVL11, TH11]. Concentrate [LW95]. Concentration [JL05]. Concept [DFLO17]. Concepts [TAS+01, MAGL13, NKS17, ZZ10]. Concerning [IPK85]. Concurrency [Ah90, ADD17, KCV99, LZC99, MS96, NMS93, RM90, SRI14, UB010]. Concurrent [AyJ93, ACHY18, CCM92, CMN12, DLBL+12, FPD93, IM94, Jh94, MM04, RS94, RS92d, WCF94, WW96, WG93, WT92, BE13, CTS17, Ch195, CMT92, DB08, FJSW90, GV86, KME89, Par89, SW18, ST05, TK07, Ch195]. Condition [SJ96]. Conditional [CSS11, CW09, ERA95, RLS96]. Conditions [DJ98, HM96, MI92, Ste17]. Condor [HS97]. Condors [BZH06]. confidentiality [ZHT16]. configurable [ZMZJ17]. configuration [BL05, FVCL05, LB17, NP09, VAS+13, WZ13, WLST16]. Configurations [LK94]. configured [ZV06]. Conflict [BP02, CH92, DP00, DFP06a, HV09]. Conflict-Free [BP02, CH92, DP00, DFP06a, HV09]. Conformance [CY95]. conforming [LM18]. Congestion [BDFO1, AA10, BM11, ESGQ+14, ESHQ+18, XWC+08, YJKD10]. Conjugate [Bas97, Ma89, GLW14, LR14]. Connected
[FCW11, STK11, LW16a]. contention-free [KH12]. Contents [PSGS17]. Context [AHG12, Cou93, Ano04d, BPA06, IB04, ORWT+18, YK04, Sie16]. context-aware [BPA06, ORWT+18, Sie16]. context-sensitive [Ano04d, YK04]. contexts [KHT+14]. contextual [Ana14]. continued [Ano18n, Ano18o, Ano18p]. Continuous [JHPL13, NH93, Luc18, MCdS+06, TCS+10, dGP06]. continuously [AKSM08]. Continuum [MP96]. contraction [LGK+12, SMH+14]. Control [AGW98, AGW01, BJP91, BBM+02, BCLR96, BCD00, BDF01, DSST95, Esa03, FR96a, FT94, KSP+92, LM96, MS96, Nie94, OS93, SG96, THBF97, WLD02, AA10, Ahn00, AAA+10, BCO+12, BWP+11, BMF05, BJ18, CF88, CG17, CWP12, Che89, CLM90, ESGQ+18, FL86, GL12, GAOGH17, HCZ04, JTTZ11, KNS91, Kim11, KGN11, LL90, LZCY09, LCW05, LWLD12, LL12a, MLZY17, MG09, MBO11, MCZ14, RCG+11, RKK06, SRJ14, TG04, WR13, WJD91, WKS+18, XYL06, XLW+18, XWC+08, YBM13, YJKD10, ZMZJ17, ZBW+17]. Control-Memory [BCLR96]. controllable [ZHT16]. Controlled [CGSV93, Li99, MG91, SDS99, SD00]. controls [YSL08]. convection [CEGS07]. convergecast [KK06, PLY15]. Convergence [GCM95, UD96, YBO97, CCD+15, Tor89]. converging [BHK17]. conversion [FC14, SMH91]. Convex [DS84, DFRCU99, LP97, Wu02, DDNS06, GS03a, RBD08]. Convexity [BOS+95, BGOS95]. convolution [XLW+18]. convolutional [ZLS17]. convolver [Kep03]. cool [LFS16]. Cooled [SWHB17]. cooling [MLK+16, SWHB17]. cooperation [YQTV12]. Cooperative [BW95b, LTWW12, SZL10, ADDB18, DDG+17, FCML13, FZ14, GRDB05, GZY14b, KK10, LGM18, NP09, TC13, TVT+17, WLL16, XHZ+10, YpGyLiC13, YF07]. Coordinated [DDG+17, VPHM06, MCZ14]. Coordinating [DZ97, LZI+11, CHC05]. Coordination [DRST02, FCZ+12, SCN12, SZB16, BDP16, DRT07, MS05, Wu11]. Coping [BGBC+16]. coprocessor [KVN17, SA11, ZMZJ17]. Coprocessors [SS99]. Copy [Ano93e, CS93b, CS92]. CoQoS [LZI+11]. CORBA [CCC+04, LWR+03, MSAF04, RSR04, wXH00]. CORDIC [CL88, HBH93]. Core [BCR96, PL94, AFA13, APRA18, AA16, ARI17, ABLP17, BBBC12, BLMB13, CMMT13, CCK+13, DBA+18, DWYB10, GZG+17, GKS15, Hus17, JHF+17, KSG13, KKB+06, KR11, LKS14, LNAL17, LSC+15, LHT08, LLS+16, MBBD13, MZC18, MAHKZ12, MGRRK14, PCMM+17, PGP+12, PTK+13, PR13, RLA+16, RLA+17, Raj04, SNMB16, SFT+13, SCB09, Sol13, SAJ13, Trão9, TCHC12, WJF07, WQZ+13, WH17, ZX14, Zha11]. core-based [LHT08]. core-periphery [ABLP17]. Cored [GS01b]. Cored-Based [GS01b]. cores [CVK+18, LNC13, LTG14, TGPUC16, ZLS17]. Correct [JF95]. Correcting [BA01b]. Correction [Lat98, LSH+13]. Correctness [BCC95, GG94, KS94]. corrector [GGR89]. correlations [FX10, WQZ+13]. corresponding [BS03]. Corrigendum [KN18b, LSS+11a, MSAZ10a, REK10a, WTC08a]. corrupted
Cut-Through [DRSB01, KLLK98]. cuts [LÜ14]. Cyber [HRM17, QGB+17, CSW+17, DZC17, GQZ18, JWH+17, LLWC17].
cyber-enabled [GQZ18]. Cyber-Physical [QGB+17, HRM17, CSW+17, JWH+17, LLWC17]. Cycle [Ano00d, KK95, LS97, Ros99, HDT+05]. cycle-accurate [HDT+05].
Cycle-Stealing [Ano00d, Ros99]. cycled [LDZ+17, LDZ+14]. Cycles [BCH95b, Tze93, Wan01a, dBL95, HBA15, JT88, JD12, KF90a, LdSB+18, PK04b, ST06].
Cycletrees [VB96]. Cyclic [OP96, PT97, SSG93, BD05, HS03, PK05a, Sch87, ST87, SPH13, LY12].
cyclic-by-rows [ST87]. Cylindrical [WN94].

D [AA14, Ano92a, Ano93e, BAES92, CS93b, GOH+13, SS94b, AA16, AR97, BLPV05, BFG94, BDRB14, BAL05, BC94, CW00, CS92, DSAUM99, GW99, HHTK96, HKT94, KRRS11, LLXS12, LME95, MKY+97, MPG17b, NM17, OGRV+12, PYP+10, PEC95, Wan07, WS95, Wu02, YA11, YB01, ZLS17, Zsa16].

D-Isodata [DSAUM99]. D-NoC [AA16]. DADO [SM86].

Daemon [KY02, BBD18]. DAG [CJ99a, CJY+04, DQR+09, XLHT13, ZS13].

Dags [BCLR96, BSS+13, CDR12]. Daisy [GRV08, MVB05]. Dandelion [CP10a]. Dandelion-like [CP10a]. DARPA [WRHR91]. Data [AOS+05, AL04, AAL95, ALS91, AS13, AS15, Ano96j, Ano00d, ADM+94, BVB02, BCD95, Bal90, BHH+94, BR95c, BR02, BS09, BS11, CGN+13, CDY97, CK09, CGL+95, CP92, CHR94, CRFS94, DOP98, DRC90, DSAUM99, DRST02, DHR96, DSD+97, DSS95, Fsh96, FMP98, FKK97, FMW+94, GG94, GP93, GC01, GDN+98, GS96, Gup92, HK01, HDF+01, ISZBM99, JW94, JS86, JB93, KR97, KLS90, KRS01, LSCA93, LZ02, LAS+97, LY98, LY01, LO96, LL95, LSWC14, Lu01, MD13, MS85, MRRV98, MK2, MKR93, MNB95, MNN98, NBP98, Nic94, OK02, OP98, Ozt11, PHS96, PH91, PL98, PT97, QZ94, QH96, RSW90, Ros99, RW93, SS99, SMH94, SG99, SR97a, SR07b, SAC+98, SSHC00, SHT+95, SS94a, SSYG97, SR92, Ste95, SC91b, Str12, SV00, SFC17, SG96, TSC01].

Data [TR96, BG90b, VBM90, WB94, WNA+94, WPKK94, WSS93, Wei02, WS97a, XMMD17, ZMCP11, ZTFK16, ZRC99, AAA+15, AS18, Amm16, AH12, AGWY11, ACPT15, Ara90, AG12, AYB+15, AEY12, AK18, ARDQ18, BFH+17, BCO+12, BH6, BR91b, BEN12, CK06, CF88, CMR+18, CKN07, CG16, CLC+17, CW15, CLL09, CZ90, CTT16, CTT08, Cuz12, Cuz13, DF17, DTK11a, ESTA94, EDÖ05, FCW11, FRM15, FP03, Gao89, GYAB11, GE85, GS91a, GA08, GLGLBG12, GM14b, GBA08, GB11, HMV07, HLS03, HSMB91, HP06, HA05, JLY12, JBS14, JHPL13, JHL+18, JZ05, JWH+17, JsSJC+15, JKV15, KKKG14, KA08, KH03, KAS07, KCR14, KSB11, KL05, KKTZ13, LH91, LWZ12, LC91a, LC11, LY12, LLWC17, LLW07, LSZZ15, Lon04, LA04, LGK+12, LSZJ15, MCD5+06, ME04, MLK+16, MP08, NLM+18, NS90, NCT+07, NCA+12, NCB+17, NAB+11].

Data [NKK16, NAK04, NTC03, OWK14, OM10, OJP+18, Pad91, PSPR05, PS14, PLR07, Ps96, RBN11, RT18, RB12, Ren11, RMU14, RBA+18, RAN+17].
RJKL11, SS08, SC04, SCMH13, SM08a, SK05a, SD88a, SWW+17, SR91,
ST08a, TR89, TBHA07, TZH+06, TK07, TVT+17, TLW18, VMMB10, VB08,
VRB10, WCWO17, WSH+03, WT09, WZZ+17, WWW17b, WCH+17, WL05,
WG11, XHZ+10, XSYG18, YBY+13, YAK15, ZV14, ZV12, ZWW17,
ZSCX18, ZHT16, ACR+15, LSZJ15, PJ18, RAB08, WLL08]. data- [KAS07]. Data-aware
[ZTFK16, AYB+15, VMMB10]. data-center [FP03]. Data-Driven
[JB93, VBMB07, BH86, KHK03, NCB+17]. Data-Flow
[BG90b, GE85]. data-gathering [LLW07]. Data-Intensive
[BS09, ZMCP11, RC011, VB08, WZZ+17, WG11]. Data-Parallel
[AL95, Aoo00d, BCD95, BHS+94, CGL+95, DSD+97, FKKC97, KR97,
OP98, QZ94, QH96, Ros99, RW03, SAC+98, SSHC00, Ste95, WB94, WHN+94]. Data-stream-based [KAS07]. Database
[BSMH08, KSS+07, WMG13, WL05]. Deadlock
[Ano96l, BHR95, CP01, CMS92, KS94, Li92, MJ94, PA97, PA01, SJ96,
TT07, ZN01, AA14, BB85a, XL11]. Deadlock-Free
[CMS92, Li92, PA97, PA01, SJ96, ZN01, TT07, AA14]. Deadlocks
[RP95, WP02, LJ05]. deal [ESGQ+14]. Dealing [BKS05, FP03]. DEAR
[ALF03], debug [BBCL04, MH18]. Debugger [MB96b, BBCLL04].
Decaying [GM96]. Decentralised [YZS15, DBCF13]. Decentralized
[AM11, DW12, GHK+12, GMXA07, HS97, BHK17, Che89, MAPF14, SL06, WZZ+13, nYA91].
Decidability [FP17]. Decision [ADS01, BF01, LFA96, KC04, PP06, SV18].
Decision-Tree [BF01], declustering [WZZ+17]. decoder [MC17].
decoding [CP10a]. Decomposable [KS08]. Decomposition
[Bai94, BCD02, CP92, HJ90c, HBB93, KBG92, LS95, NPY+97, PE93,
QZ94, Ara90, ACBF07, CvdBL+08, CZZ+17, Luk85, OT86, SK09, TW87,
XWC+08, ZWR07]. Decompositions [ABCP96, KRW96, Oryu87].
decoupled [CTCX08, DBC03]. Decreasing [TSSH01]. dedicated
[AM07, MAR05, WLNL06, ZV90b]. deep
[CXQ+18, HSK+18, TLL+18, WPPW18, WDS+18, ZWW17, MLCFH+18].
defense [XCH08]. definite [KK86]. Degenerate [HF96]. Degradable
[BBR94, CGA98, LH92, RCB93]. degradation [NSTN91, WCYR08].
Degree [DS96, Pra93, RL95, BCF14, BPBR11, KSK15, LVP08, Sta17].
Degree-Constrained [RL95]. degrees [ZDC06]. Deister [WZZ+17].
Delanay [ABC+09a, ABC+09b]. Delay
[AZ01, AH11, GZG+17, Hu11, GL12, HWWH08, LMZ04, MD07, NLB+18,
SGR03, WW12, WY15, WHS+18, YA11, YWG15, ZWW17, KSSK16].
Delay-Constrained [AZ01], delay-guaranteed [HHW08].
delay-optimal [MD07]. Delay-sensitive [Hu11, NLB+18]. Delay-tolerant
[AH11, WYW15]. Delays [GM94a, GK98, KL01b, RWB+13, Sta04].
Deleting [BCK+09, PPC04]. deliveries [WE13]. Delivery
[CLZ02, CLV95, THGY15, AH11, Bar05, KMF+05, KNS06, SZ09, WGCZ09, XYL06].
Dellat [THGY15]. Delta [ASB18, KJ84, YL89]. Demand
[DSST95, HLL+95, JSCB95, BW07, FVLB09, HWWH08, KyLPC17, LSZZ15,
NKK16, SFEP06, WL05, XG03, YLY11]. demands [SWL10]. dendritic
[WCKD06]. Denial [BK18, KMMZ06]. Denial-of-Service
[BK18, KMMZ06]. denoising [TLL+18]. Dense
[DVW94, FHL+15, ICQ0+12, LKD14, RM10]. densities [DHK04]. Density
[MC17, WCXL11]. Dependability [SM92a, WLID02]. Dependable
[MAJ05, NPGV10]. Dependence
[GSG+93, KK95, Xue97, CC87, NCA+12, Psa96]. dependences [NCT+07].
Dependencies [KBG92, TC96, BSMH08]. Dependency
[GP94, CSJ+13]. dependency-timing [CSJ+13]. dependent
[AL04, BH05, LSWC14]. deployable [YC12]. deployment
[EM11, TWQS12, VHH08, ZC04]. depth
[BP89, LH04, PV07, WYJ+18]. depth-first [PV07]. deques [ST08b].
derivatives [PK04a]. describe [JWH+17]. description [MRS+14].
Descriptor [Bal90]. descriptors [LNW+12]. Design
[AFA13, AM17, AC16, Ane92c, BAHP01, BCD00, CGKK97, Car95, CCC90,
CT93, CAB94, CW93, CTKA17, CCK+13, DBKF90, DVW94, ES96,
EMP+96, FC90, FR96a, Fer92, GRV08, GFB+92, Ger98, GRS97, GSP02,
HP97b, JH92a, JZZ+17, LL90, Lee91, LH92, LLS93, LLKY13, MKC01, MP10,
MV05, MG09, MML07, NM93, NJ91, Nie94, NsPPC02, OS93, PA01, PI90,
PMCC18, RCB93, RBG17, RPS93, RKK97, SAOKZ05a, SAOKZ05b, SR95,
Sol13, SHC93, SOG94, TTH12, WNA+94, WH97, XMNN94, ZPK+14, Ada17,
ABPL17, BBH+17, BZL04, CG11, CSJ+13, CK13, Che96, CHX+17, Chi95,
CC96, DFHH13, DE91, EFG+14, FHL+15, Fer90, FCG+14, FD86, GREC91,
HDT+05, HWWH08, HKK+18, KMC16, LÜ14, Lon04, LVB07, MCM+11,
Nap90, ORWT+18, OMT+17, PLD87, RGDO3, RA11, SIS10, TM06, TB90,
VRGS17, VHH08]. design
[VLL+14, WSG91, Wn11, ZMZJ17, ZY12, ZVO09b, ZWF06]. designed
[BSS15]. Designing [BBBC12, BC01, CB06, DH91b, GP93, GMS+13, GB93,
KT89, NS92, ORu87, SRGB90, TC96, YCH+10, YFYB17, KAS07]. Designs
[HCS+00, LHM95, MD01, ORu94, Bhu87, CP04b, MC17, Man13, PGRP17,
Sch89b, WASS88]. Desktop [LH+13, CCEB03, AAD10]. Detect
[XCH08, UGG+11]. Detecting
[CL14, CK97, NCT+07, SKK14, Tse95, YXX13]. Detection
[Ano96l, BN02, BHR95, BST01, CW93, CY95, CDP95, dADB96, GCKM97, GS96, HTB98, ISZB99, KSB94, KS94, LLY08, MMRS98, Par92, PAH+98, Ram89, RP95, SL97, SJ11, WCF94, AFD+11, AMK+07, BXA08, CRK+09, CV90, CH06b, DKKV15, DFPO6b, Eri88, FM85, GDCC18, Gue86, GH89b, IZ12, KHK03, Ksh12, KKTZ13, Lai86, LLLC15, LJ05, LLWC17, LHL14, MD07, MFVP08, NHO+13, PH16, RLP14, ST12, SMP17, TRS+12, TY17, TC+10, WL11, XL11, XTN12, XSYG18, YF07]. Detections [Yen01].
detector [SLG06]. detectors [AAI+15, BGBC+16, DGFGK05, LFA05, MFVP08]. detention [JXW06]. Determinacy [BN94]. determination [MJ03]. Determining [GRR93, LAS+97, DH91a]. Deterministic [AS91, BBCD02, OS96a, GTGLSA12, SGS08, WZZ+17, ZLWL12]. Development [BR95b, FSD04, KHT+14, PH00, AM17, DBC03]. deviation [XBK07]. Device [DM90a, VFAD17, ALF03]. devices [Ano04d, Kim17, MXSL12, WL04, WCF14, YK04, ZV09a, ZV09b]. DEVS [PK05c]. DGIN [KMC16]. DGIN-3 [KMC16]. DHT [BJPPM+08, CTT16, HASB16, SP08, SX08, ZH07]. DHT-based [BJPPM+08, CTT16, SP08]. DHTs [GTGLSA12, SAL10]. DI-multicomputer [CC96]. Diagnosing [Qia97]. Diagnosis [BW95b, Kav93, KF95b, RMM94, Wan01b, eW95, CAF+11, FY86, CZ09, VS18, Yan04].
diffusion-type [BFH09]. Digit [BOI91]. Digital [ZRC99, NAK04, PR06]. Digitized [HHM94, Ara90]. Digraphs [BMMS01, TZ00, BP89]. Dilated [Iqb92, Qia97]. Dilation [CCC96, LST17]. Dilation- [CCC96]. Dimension [CFJW13, HSW04, RS96a, WS97b, XL92, XL95]. Dimension-adjacent [CFJW13]. Dimension-exchange [HSW04]. Dimensional [AKPT99, CCM96, DFN+94, FLS+97, Hwa97, KR98, LHS97, LP96b, LP95, NENG85, TC96, V94, YX0+00, ANEA13, AB05, DMCFCM03, Deh90]. DTK11b, FCG04, GSSS03, GB11, HT90, HS17, KHV07, KLC05, KKN13, KN18a, KN18b, LSC00, LC91b, LZY11, L16, NBPO8, NA04, PTA08, PK07, SGR03, WRW13]. dimensionality [BV13]. dining [AFNT17]. DINO [RMHR17, RSW91]. Directed [FLC14, GY94, LLCC02, SWHB17, TF01, ACFK07, ACU08, PPTV+10]. Directed [GY92, LSC00, LY98, LY01, RJY96, BD05, MTM10, TDP15,
WCWH03, Wu03. Direction [BEN12, BC94, Ebe94, MSAZ10a, MSAZ10b]. Direction-based [BEN12, MSAZ10a, MSAZ10b]. Directional [CCHC09]. directions [ACB+15, PSC+16]. Directive [MM15]. Directive-based [MM15]. Directory [GS00, JSM94, RFPAG08, SB15, VRGS17]. disaster [SZB16]. disasters [FP03]. Disciplines [MSd+95]. disconnected [LR03a, MCS14]. Discovery [CHGM01, AOS+05, FZ14, KOA09, KKS09, MKC+09, REZN17, RSL12, SMPMLVLS11, She09, SK11, TDC05, ZAB18, ZMG+16]. Discrete [Ano02v, AB93, BBM+02, Bou02, DMSH90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV109, CRC+02, IIH16, L16, SS17, TKHG04, Z90, ZCK+02]. Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02]. discretization [SWLZ17]. disease [VS18, ZXGD18]. Disjoint [BGR96, GT97, GP93, NS90, R99, WB01, HBAD15, KMC16, Lai14, Lai15, Lai17, Lin03, LS03, MT14, SMP17, TDM05, WFLJ16]. Disk [CT93, Cor93, ER97, GP93, LP96b, MKC01, MRK93, MFS93, Raj01, RCB93, CL05b, JPD17, KR12, NC13, NZY+11, SRT+18, XS11]. disk-assisted [SRT+18]. Diskless [PKD97]. Disks [KR11, MT93b, MB93, MFS96, CkLCK04, CkLCK05, OC07, RWB+13, VA07]. dispatch [YZS15]. Dispersing [Gil94]. displays [Tay05]. disruptive [SI13]. dissemination [AH11, DF17, MCdS+06, MSF+13]. Distance [BVB02, CW00, CDF01, DS01, DF95, NM17, ST02, DS04a, EI07, Hsi04, MBR08, ST06, Tur12, WCHR03]. distance- [Tur12]. Distance-Hereditary [CDF01, Hsi04]. Distance-Insensitive [ST02, ST06]. DistDLB [LTL06]. DistOpt [CLRW00]. Distrib [KN18b, LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Distribute [LW95]. Distribute- [LW95]. Distributed [AAA+15, AE95, AL99, AM97a, AM97b, AM00, AFS96, AK17, Aas01, Auh97, AS13, AY97, Ano96j, Ano097, Ano99g, Ano02v, Ano02u, ABLP17, ABCP96, BR95a, BR96, BFTV87, BGLA03, BCV94, Bas97, BWP+11, BA01a, BCH95a, BAS06, BPR99, Bir94, BCD00, BCN96, Bout02, BS+01, BHS09, BNS99, B90, C90, CG11, CTD09, CCM01, CC08, CL91a, CS93a, Cha94, Cha96, CCK00, CNS03, CC94, CK97, CDLJ09, CB95, CWP98, CM92, CA95b, CCLR00, CJ99b, CP99, CWD11, Cuz11, DWG03, DY99, DA97, DUSH94, D95b, DOP98, DMSH90, DFL017, DN94, DSW94, DSAUM99, DAY02, DL99, DH95, dADB96, EP90, FR96a, FF97, FTM+14, FK97, FKW97, FPS11, FM99b, FY97, FTC00, FB09, GHY10, GDP08, GP07, GCK97, GM94a, GMSS+11, GZY14a, Gra09, Gup92, GHS96, GHSJ96, HR00]. Distributed [HBCM99, Haw97, HK01, HP97b, HLV14, HWY+10, JL01, JPD17, JF95, JD+15, JMS94, JNW96, JRR99, KKG501, KRY02, KSSL16, KRC00, K97a, KDO+13, KKH17, KHS98, Kel00, KB96a, KZ96, KC99, KSK15, KS00, KC94, KRS13, KS94, KS02, KKTZ13, KC99b, Lan09, Las12, LHY97, LTH97, LZ02, LC90b, LHM95, L99, L101, LLW17, Lin93c, LLW07, LHT08, Lon04, LACJ18, LK11, Lu01, LS01, MI92, Man97, MS59a, MLC+90, MT97a, Mat93, MSGS+13, MSS00, MNK12, MFS96, MSST99, MK08b, NSS97, NTA96,
NBP98, NM02, OY13, OK01, PHB96, PAM94, PA96, PB99, PSRS12, PK07,
PBB+17, PRS14, PM92, RSB96, RWK95, RS92c, RDS02, RJY96, RGS00,
RAS96, Ros07, RP95, SHSH17, SM94, Sch89a, Seb95, SRGB90, SZW05,
Shu95, Sin87, Sin93, SS94a, SM08a]. Distributed

[Sni03, Soh96, SIR92, SBAM96, TH11, TT10, The02, TSC01, TAS+01, TG97,
TSFZ14, TB90, Tse95, TY95, Wan01b, WCWH03, WW08, Wee01, WRC+02,
WMG01, WF96, WLID02, WUC99, Wu02, XBK07, wXH00, XQ04, YH97,
YB01, ZV06, ZM94b, van96, AT03, ALH+09, AAFV04, AL04, Ahu90, AGMS04,
AFS09, ACCP12, AAI+15, AM11, AMK+07, AH06, BFG+03, BCV05,
BMB+08, BLPA05, BCDQ13, BG89, BNP02, Bar05, BB03, BCMV15, BHLT14,
BRP03, BK08, BFL+13, BD04, BMF05, BH05, BGM+08, BFKP04,
BBL04, BJ18, CSWD03, CG12, Car95, CGL+14, CG86, CV90, CvdBL+08,
CTC08, CS08, CKWT17, CLM90, CkLCK04, CkLCK05, CGG+09, CJA09,
CI86, CTT16, CPO+03, CTT08, CK91, Cuz13, Cyb89, DK08, DB11, DM04,
DRT07, DKM10, DHK04, DTK11a, DH04, DJT03, EBE08, ESA03, EHL+15].

distributed

[ES12, FPF14, FCC07, Fer90, FL86, FKR+17, FX06, Fu10,
FLC14, Gai87, GYAB11, GCS06, Gos90, GWWL94, GC05, GL12, GL90,
GN15, HJ90a, Hol09, HLM+90, HKW05, HD10, HL07, HHHK15, ITT04, IB04,
IS06, JF12, JKEI13, JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07,
KSC13, KK06, KMMZ06, KAS07, KDC08, Kin11, KKS+12, KL05, KS13,
KBD05, KP05, KC04, Lai86, LTL06, Las13, LLL06, LVP08, LL00, LJ05,
LY91, LZCy09, LASS15, LVR90, LC91a, LVP07, LB09, Lop13, Lop18, LA04,
LCM+06, LSZJ15, Lmt90, LM09, MLZY17, MD07, MM07a, MSM09, MAPF14,
MHP05, MA11, MBR08, MS86, MTS90, MM07c, MFVP08, NSAS10,
NTN12, NDW17, NP09, OFS03, OPR18, PK08, PK05b, PRH06,
PGR06, PL03a, PC11, PH16, PMD01, Pop91, PF04, RLP14, Ram98, RLH03].

distributed [ES12, FPF14, FCC07, Fer90, FL86, FKR+17, FX06, Fu10,
FLC14, Gai87, GYAB11, GCS06, Gos90, GWWL94, GC05, GL12, GL90,
GN15, HJ90a, Hol09, HLM+90, HKW05, HD10, HL07, HHHK15, ITT04, IB04,
IS06, JF12, JKEI13, JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07,
KSC13, KK06, KMMZ06, KAS07, KDC08, Kin11, KKS+12, KL05, KS13,
KBD05, KP05, KC04, Lai86, LTL06, Las13, LLL06, LVP08, LL00, LJ05,
LY91, LZCy09, LASS15, LVR90, LC91a, LVP07, LB09, Lop13, Lop18, LA04,
LCM+06, LSZJ15, Lun90, LM09, MLZY17, MD07, MM07a, MSM09, MAPF14,
MHP05, MA11, MBR08, MS86, MTS90, MM07c, MFVP08, NSAS10,
NTN12, NDW17, NP09, OFS03, OPR18, PK08, PK05b, PRH06,
PGR06, PL03a, PC11, PH16, PMD01, Pop91, PF04, RLP14, Ram98, RLH03].

distributed [ES12, FPF14, FCC07, Fer90, FL86, FKR+17, FX06, Fu10,
FLC14, Gai87, GYAB11, GCS06, Gos90, GWWL94, GC05, GL12, GL90,
GN15, HJ90a, Hol09, HLM+90, HKW05, HD10, HL07, HHHK15, ITT04, IB04,
IS06, JF12, JKEI13, JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07,
KSC13, KK06, KMMZ06, KAS07, KDC08, Kin11, KKS+12, KL05, KS13,
KBD05, KP05, KC04, Lai86, LTL06, Las13, LLL06, LVP08, LL00, LJ05,
LY91, LZCy09, LASS15, LVR90, LC91a, LVP07, LB09, Lop13, Lop18, LA04,
LCM+06, LSZJ15, Lun90, LM09, MLZY17, MD07, MM07a, MSM09, MAPF14,
MHP05, MA11, MBR08, MS86, MTS90, MM07c, MFVP08, NSAS10,
NTN12, NDW17, NP09, OFS03, OPR18, PK08, PK05b, PRH06,
PGR06, PL03a, PC11, PH16, PMD01, Pop91, PF04, RLP14, Ram98, RLH03].

distributed [ES12, FPF14, FCC07, Fer90, FL86, FKR+17, FX06, Fu10,
FLC14, Gai87, GYAB11, GCS06, Gos90, GWWL94, GC05, GL12, GL90,
GN15, HJ90a, Hol09, HLM+90, HKW05, HD10, HL07, HHHK15, ITT04, IB04,
IS06, JF12, JKEI13, JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07,
KSC13, KK06, KMMZ06, KAS07, KDC08, Kin11, KKS+12, KL05, KS13,
KBD05, KP05, KC04, Lai86, LTL06, Las13, LLL06, LVP08, LL00, LJ05,
LY91, LZCy09, LASS15, LVR90, LC91a, LVP07, LB09, Lop13, Lop18, LA04,
LCM+06, LSZJ15, Lun90, LM09, MLZY17, MD07, MM07a, MSM09, MAPF14,
MHP05, MA11, MBR08, MS86, MTS90, MM07c, MFVP08, NSAS10,
NTN12, NDW17, NP09, OFS03, OPR18, PK08, PK05b, PRH06,
PGR06, PL03a, PC11, PH16, PMD01, Pop91, PF04, RLP14, Ram98, RLH03].

Distributed-Memory [AMN00, CB95, CJ99b, DY99, Gup92, GKHS96,
GHSJ96, KRC00, KHS96, NSS97, PHB96, RGS00, Soh96, BGM+08, CPO+03,
GL90, ITT04, LC91a, Pop91]. distributed-Web [KCD08].

Distributively [VR94, FPP+08].

divergence [Tor89]. Divergent [RMHR17]. diversity [SSFP11].

divide-and-conquer [BW09, GDL+11, Sto87]. Distribive [VB02, BD11,
CG12, CVJ09, DW04, HV13, KVA18, LML+10, MLDG12, MVB05, ZV06. **Division** [HP00, QMCL94, ZLPP01, Dav17, EL91, HRG+11]. **DMON** [HP97a]. **DNA** [GPX08, JV09]. **do** [LTG14, CC87, CCC90, KMS10]. **Do-All** [KMS10]. **Doan** [Ano92c]. **Document** [ZWL03, UGG+11, XCZL03, ZMCP11]. **document-similarity** [UGG+11]. **Documents** [ALL99, Fei03]. **doing** [MBG+17]. **dollar** [SSM+07]. **Domain** [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11, WMC+18]. **Domain-Specific** [KRS13, KRS14, MRS+14]. **Domains** [DR95, BMF05, dGP06]. **dominance** [EE05]. **dominated** [AM12b]. **Dominating** [RDL95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12]. **domination** [GP07, GK10]. **Don’t** [BL94]. **DOOR** [Won99]. **DOOR/MM** [Won99]. **dOpenCL** [KSG13]. **Double** [GVBB13, XLHT13]. **down** [Sch89b]. **DPI** [HVW16]. **Draw** [Mil93]. **Drawing** [CP98, DP12]. **drawings** [JD12]. **drift** [HES11]. **drive** [LTG14]. **Driven** [CB99, CP99, FM99a, JB93, The02, TVO92, VBM90, WSS93, ASES15, BH86, CTT16, GKO4, KHKO3, LWZZ12, LS10, LGK+12, MBS+12, NCB+17, QJ05, S008, SS18, TLQS12, VO89, XLL15, YCC05]. **drives** [GFPC14]. **DSDV** [BDF01]. **DSM** [BJS03, ISZBM99, NPP+02, Nik03]. **DSMs** [KG04]. **DSP** [DSEP17, QSL+08]. **DSPONE48** [DSEP17]. **DSS** [FGP05, MKC01]. **DTN** [VV90]. **DTNs** [MPS16, Yan09]. **Dual** [ACCP12, LSXX14, XWC+08, ZW00, MAJ05, WCC02, WL05]. **dual-Hamiltonian-path-based** [WCC02]. **Duane** [BS96c]. **due** [BKS91]. **Duplex** [RS94]. **Duplication** [BA97, DA97, BKS05, BD05, STK11, TLLL10, WCEA10]. **duplications** [SCJ+08]. **during** [VWHL96]. **duty** [LDZ+17, LDZ+14]. **duty-cycled** [LDZ+17, LDZ+14]. **DV** [CSW+17]. **DV-Hop** [CSW+17]. **DVFS** [CG17, ECLV12, LSC+15, RTZ11]. **DVFS-based** [RTZ11]. **DVS** [ZHLQ12]. **DVS-enabled** [ZHQL12]. **Dwarf** [DTK11a]. **Dyn** [WNL06]. **Dyn-MPI** [WNL06]. **Dynamic** [AGF94, ALL99, AAD10, ANE13, Ano97j], BR95a, BPJP+08, BP90, BR02, CJ99a, CDAN14, Cyb89, DB11, DL01, FCC07, Fer95, FMP98, CP94, GM14b, HM01, HC97, KKG01, KR10a, KVA18, KPC96, KCC9a, KS97a, LHLK03, LPS+98, LL98, MAS+99, MD13, MSd+95, MSSE02, Moh97, MMN98, NPP+02, NPY+97, OOSGVG+16, PHB96, QMCL94, RDS02, Ric98, RGVB00, RN04, San95, SHSH17, SZ00a, SLP+98, SS98, SB97, SS17, SG96, TT10, TDP15, WCE97, WJD91, WLID02, XL92, XH93, ZLP97, ZA05, ZM94b, Ano04d, BCV05, BBCQ13, BGLA03, BN02, BB03, BCF14, BK08, CBD+09, CSML01, CW05, CGG+09, CDC05, CKML12, LDW+12, EE05, Fei03, FXW03, FKL08, GOÖ16, GCS06, GFPC14, GBA08, IC05, JBA15, KZ11, KMS07, KMS+06, LTB02, LGZ+10, LLL08, LC91b, LPX05a, Li10, LLY15, LS06, LLW12]. **dynamic** [MYYYY17, MC91, MK08a, MCS14, MII07, MML07, NDP13, NLB+18, NCT+07, NHO+13, PKN08, PKN10, PM05, PSR05, PW17, QJO5, RK18, RCG18, SNMB16, SS+16, SS06, SSS07, SZD07, SCK03, SLG06, Ssl+10, SZB16, TZ07, TW15, TH08, TMK+17, TT07, WW12, XLC+18, YK04, YS11,
ZXYO11]. dynamic-warp [NHO+13]. Dynamically [JB98, KSS+07, PPP14, dSR00, SBS4, GKI5, Kep03, Lai86, Mat06, ORWT+18]. Dynamics [ES96, JBL02, NPY+97, PAH+98, TSA97, AGMJ06, CvdBL+08, DAG+17, GBMZ07, LYL8, PARB14, PTK+13, WYTX13].

EDAs [MMAL+06, dGP06]. eddy [SM04]. EDF [dOCS14]. Edge [BGR96, BS97, GT97, HBAD15, LSH96, TDM05, WB01, CL85, DJT03, GDP08, Lin03, SS03, YWJ+18].
Edge-Coloring [LSH96, GDP08]. Edge-Disjoint [BGR96, WB01, TDM05, Lin03]. Edges [HHCH98, BKCM17, FPP+08].
editing [RS90b]. editor [WW03, AB03b, Ano11, Ano02g, Cas93, Che92, Clo93, Her92, Kri92, Lin93b, Pan09, Pra16, Sch90, Sto90]. Editor-in-Chief [Pra16]. Editorial
[AS15, Ano94e, Ano95k, Ano96k, Ano99i, Ano02e, Ano02f, Ano18n, Ano18o, Ano18p, Ano18i, Ano18j, Ano18l, Ano18m, GHS94, GHS95, GHS96, GHS97, Hol17, Kai92, DF12, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano03n, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Anol1i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h].
Editorial
[Ano15i, Ano15j, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18k].
editors [XO05, AP93, AL99, Ano01j, Ano01k, Ano02h, Ano02i, Ano16k, BD00, DOP98, ES97, GGB93, GC95, JW94, MC93, NT90, OW01, PN97a, PN97b, PA96, SH92a, TFV+15, BG90b, TY95, WC05]. educating [LMB+17]. education [Hua17, MBG+17, Nee17, NKSA17]. Effect
[ACD+93, IS96, BL05, JZ05]. Effective
[Ano97k, BC01, GM96, HH97, KO11, LT96. MAR05, QM01, TC92, VH93, WL102, YZ96, AM12a, BV13, BCK+13, Cza13, DK04, FZWL12, FW+10, FI+04, JLLW11, KHW13, NAK04, SNC12, WMY+17, YCH+10, ZJ06]. Effectiveness [GMM00, HKT+91, KSS97a, LKK94, NRS95, MA11, TC03].
Effects [AMB95, DZDZ01, KB96b, UD96, CK88, HLS03, KG04, SPBR91]. Efficiency [EH01a, GG01, LdSB+18, AHG12, AG12, BC11, BYH+17, ESCV15, FRM15, FCP+15, GSWW04, HRM17, HJLR12, LB12, LZSL06,
Efficient

[AOSM04, AP94, AZC13, AKP95, AG86, AMK+07, BCO+12, BM16, BGC+03, BAGS95, BAH04, BRP03, BJK+96, BDH+97, BMIM07, CM04, CRK+09, CKK00, CCC92, CWP12, CN93, CS95c, DDNS06, EP90, EL07, FGS08, FBK98, FMR05, GPT06a, Gao93, GR96, GCKM97, GM94b, GRS97, GP00, GKH06, GNW03, HPT99, HH01, HSL04, HASB16, HHC98, HBH93, HO94, Hwa97, IR12, Iqb92, JBS14, JB93, KPC96, KHS96, KK10, KLB+97, KSB3, KR11, KA97, KBA+92, LJ05, LHHH11, LD+14, LY01, MLDG12, MB13, Mat93, MHC95, MS99b, NB93, NT93, NIR86, ND12, OS96a, OK01, Par98, PA97, PP13, Pen11, Pra93, RV13, RSK99, RSB96, Rao16, RMY04, Ric98, RJMC95, San02, SMP15, SW96, Sch+13, SSHC00, SMP17, Sin87, SWLZ17, SCLL10, TU92, TR96, Tur12].

Efficient

[VB02, VBM90, WRC+02, WHT00, WCCH18, XMN92, XHL18, YD98, YZLT09, ZB97, Zha92, ZH07, dSAJ15, AHH17, AFA13, ARJ17, Ara13, BF+17, BM11, BKC+15, BK13, BOY10, BR91a, Bie90, BBD18, BCK+13, BHK17, CMR+18, CKN07, CP10b, CGW+03, CMN12, DKL01, ESQG+11, EDH+17, GDC18, GKS15, GT04, GLD06, GYP13, HSI10, HSO6, HRJ94, Hsi04, IEWK17, JKH17, KPA18, KyLPC17, KL05, KSSK16, KA05, KLR13, Lai14, LMZ04, LW16a, LS91, LSC+15, LR03b, LHF07, Lon04, LL15, LA06, MRS91, SMP16, MPN17, MAHK12, MCP+18, NF16, Nic07, PPSV15, PGG06, RM11, RLA+16, RLA+17, RFS+12, RT18, SB12, SX08, ZMK13, SM08b, TLY12, TGPUC16, TMK+17, TLL+18, UBE10, VRG17, WJVO7, Wan07, WTC08a, WTC08b, WM09, WLL16, WTWZ16, WIB12, WH17, WGCC09, gWW18, XLC+18, XHZ+10].

efficient

[YSS11, YLB+15, ZCMY12, ZLL14, ZSCHX18, ZB03, ZWWX16, ZHLQ12, ZTGL17, ZHO03, LM09].

Efficiently

[MT95, Coh90, CCM+06, FP03].

EFS

[MSK+16].

EGEE

[VPHML06].

effort

[Bar05, MAM05, QGZP17].

EFS

[MSK+16].

eigenanalysis

[TYA16].

eigensolver

[ABGV11].

Eigenvalue

[Kau94, LYL08].

eigenvalues

[VGAB08, ZB03].

Eisenstein

[HBAD15, HS17].

Elastic

[FGG17].

elasticity

[MVML11].

electrophysiological

[HES11].

Element

[BCV94, CSSY94, FTVT+10, FTVT10, GKN98, Pel90, S005].

Election

[AS96, KB+96, DLY11, DGDF10, FKK+04, GKN89, Pel90, S005].

Elections

[FM96].

Electric

[IWM97, AK18].

Electrical

[MO97].

electricity

[TLL+18].

electron

[DAG+17, FGG04, GFG08].

Electronic

[WH97, AA93].

electrophysiological

[HES11].

Element

[BCV94, CSSY94, FTVT+10, FC14, KME09, Ren11].

elementary

[FK98].

Elements

[GB93, KNS91].

Eleven

[BS+91].

Eliminating

[DR98].

Elimination

[BPS96, BMIM97, CS95b, Cap87, ESQG+11, CA91, Vel89].

Elimination-Based

[CS95b].

Elliptic

[PSE+01, BGH+03, SKH15].

ELLPACK

[ZGG+14].

ELLPACK-based

[ZGG+14].

ELM

[COL17].

EM

[BA93].

EM-KDE

[EHL+15].

embed

[SKK91].

Embedded

[WA02, BM17a, CNLGR08, CC05, CC05, CRJ10b, DQR+09, FWM+10, GZG+17, GSWW04, KR06, LLL15, LCB16, MB08, MGRRK14, PRHB06, XLL15, YZXS11, FWM+10].

Embedded-TM

[FWM+10].
Embedding [ANS97, Am94, AM93, BL89, CCCM96, CS95a, Efe91, Efe96, HKMU98, HJ90c, LSC00, LPS98, Lin03, NP196, PW16, PM92, QM01, R WY93, SHL95, SL98, TT98, TLW94, TL96, Var91, Wag89, Wag93, Wag94, Wan01a, Wan05, WFL98, BG90a, FLP07, FT04, LFW17, PW17, YLZW18].

Embeddings [GH93, HM01, HOS94, KC98, MT93a, OS97, OD95a, CL91a, GN93, YTH07].

emergency [HPB10]. Emerging [An02v, BKC15, KHT14]. Emitter [FPM14]. Emitter-coupled [FPM14]. Empirical [FTC00, LR93, LGK12, NXTK17, XZS96]. Employing [AGMJ06, PKW10]. empty [Deh90]. Emulating [KMS10]. Emulation [JH94, PRW94, LST17]. Emulations [RGD03]. Enabled [MWL00, CSL15, CCN06, GQZ18, GRJ15, KTF03, ZHLQ12]. Enabling [ETS14, FCG14, JKIE13, SP08, TT10, ZPI06, ZCF17, DKKV15].

Encoded [JH94, CLV95]. encoders [TLL18]. Encoding [AAL95, CP10a, WLCZ15, ZWQ16]. encrypted [SWW17, ZHT16]. encryption [WCCH18, ZAAB17]. End [An08, An09, An10a, An10b, An11], An12m, An12n, An14f, An14g, An15k, ZLCJ12, CXQ18, FGP05, GBMZ07, HPSM91, ORWT18, WG11, XLL15].

end-systems [GBMZ07]. End-to-end [ZLCJ12, WG11, XLL15]. enDebug [CV16]. endpoint [Hsi04]. endurance [WCWO17]. Energy [ALF03, BOY10, BYH17, DKM10, DKB01, FWM10, GQZ18, GYP13, KR12, LK13, LBMG15, LL10, LW16a, Li16, LNAL17, LSC15, LR03b, LY13, MGSG12, PLR07, QS108, RM11, SP13, SSG13, WH17, XHZ18, ZZ118, AGH12, AK18, CV16, ECLV12, FRM15, FCP15, FKB08, GYH10, GCDC18, GTN06, GL12, HP06, HRM17, JZZ17, JZF18, KI10a, KSI04, KyLPC17, KCR14, KSSK16, LR14, LCW05, LL12b, LZC11, LLDL15, LCB16, MMK11, NS12, OMT17, PCMM17, RFB13, RLA16, RLA17, RFS12, RT18, RTZ11, TLY12, VRS17, WMW09, WLST16, gWW18, XS11, YL12, YSZ15, YAK15, ZW11, ZWY15, ZWW16, ZHLQ12, MSK16].

Energy-aware [GQZ18, LBMG15, LNAL17, LY13, LR14, MMK11]. energy-constrained [JZZ17, KSI04]. Energy-efficient [DKM10, GYP13, LK13, LW16a, LSC15, MGSG12, WH17, XHZ18, GDCC18, KyLPC17, KSSK16, LLDL15, TLY12, VRS17, WMW09, WLST16, ZHLQ12]. Energy-Friendly [MSK16]. energy-performance [ECLV12]. energy/power [OMT17]. energy/power-aware [OMT17]. ENF [CK97]. Enforcing [KMF05, Kub17]. Engine [KSL85, Ram92, HVW16, XTN12, SD88b, XP10]. Engineering [LWR03, BCD15, CCE17, Gai87, Nec17, PRHB06]. Engines [SD00].

Enhance [WLID02, DZC17]. Enhanced [BOSW94, MD13, OPG08, OS96b, OSZ98, RK18, LLDL15, dOBB15]. EnhancedBit [ARD14]. Enhancement [KJ84, TC92, DK04, NGQM12, RH05, RM90, TBG17]. enhancements [ESGQ18, LU14]. Enhancing
ensemble [SV18]. Ensuring [JF95]. enterprise [BJPPM+08, CCEB03, LSH+13]. entities [Ahu90].

type [MPN17]. Entropy [CCEB03]. Entropy

ensuring [JF95]. enterprise [BJPPM+08, CCEB03, LSH+13]. entities [Ahu90].

ensemble [SV18]. Ensuring [JF95]. enterprise [BJPPM+08, CCEB03, LSH+13]. entities [Ahu90].

ensemble [SV18]. Ensuring [JF95]. enterprise [BJPPM+08, CCEB03, LSH+13]. entities [Ahu90].
evaluator [MS87, MP88]. evasion [YpGyLiC13]. Even [NT93]. Event [Ano02v, AB93, Bou02, CK97, DMSH90, Lin93b, Lin93c, Pra93, AZC13, BM17b, BXA08, CK08, CM12, FX10, JK+D+15, LVR90, SW12, Tay05, WZQ+13, ZZ90, ZCK+02]. Events [Yen01]. Eventually [LFA05].
everybody [KSSK16]. everything [CCM+06]. everything-shared [CCM+06]. EvoDeep [MLCFH+18]. Evolution [JM00, RBB17, HWY+10, Li10, Ngs06, SV18, WRW13]. Evolutionary [Ano99g, MSSE02, SdS97, SS97, YLZW18, ZO97, AC89, BH05, COF+17, GB06, HD10, MLCFH+18, SCS+08]. evolvable [KKKP12]. Evolving [GR96, OH02]. Exact [RS96b, OFS03, PB15, Psa96, XP10]. examination [FL86, SMH91]. examples [FK89]. Exchange [VB94, WS97b, XL92, XL95, CMR+18, Dim04, HSW04, NKK16, PW16]. Exchanging [GPT06b]. Exchange [AE95, Cha94, Cha96, FTC00, GBG93, KY02, KUFM02, NTA96, NM02, Sin93, YZY96, AK07, Ara13, BAS06, CW05, CH06a, CB06, DGFGK05, Gos90, LASS15, MM07c, NTT12, RDA18].
executed [SP90]. executing [AKSM08, CDJ+89, QJ05, Sol13]. Execution [CC90, Cou93, DD95, Gup92, GKHS96, HS86, LAS+97, LTIK05, Mah95, MM93, Mer96, Mir91, NBM93, NS97, NDZA99, OKB95, RSD94, RHH96, RSBN01, SCMB90, SA93, Sun02, WB96, ARM+05, Bic90, CCS7, DeG88, DKRI09, ESCV15, FCC07, GYY+14, GK04, LFS16, LR14, LPK+10, MSM09, MTL+18, PP13, RG06, SS06, WLST16, dKG+10]. Executions [LMCF90, FCP+15, KVNV17, RV13]. expandable [SSB91]. Expanding [Zia92, RM10]. Expansion [LY12, SL89]. Expectation [YZG18]. Expected [Ros99, CLL09, SSS88, SC91a]. expected-time [PLL09]. Experience [FTK14, SH92b, Chi95, NGQM12]. Experiences [ARM+05, CDH84, GRJ+15]. experiment [PF04]. Experimental [BJ96, BFG04, CKT11, FCS91, Hag97, HBJ98, MJ01, PTC+93, YMR93, ZYH94, Badi04, CTF17, GHC+17]. Experimenting [AD95]. Experiments [RS92d, CF88, LYW+16]. Expert [DSW94]. Explicit [CP90, DS02, Fre96, RCG+94, Rao16]. exploit [YCH+10, ZPI06].
exploitation [PVG06, VFAD17]. Exploiting [CB15, CKN00, DL99, FKLB08, FY97, HT90, JBY+05, LKS14, MNB95, NM93, SH92b, VBF13, WYT13, ZLWL12, CDAN14, GJXZ05]. exploits [GBMZ07]. exploration [BKC+15, CKK+13, LKY13, TKK17, TD07]. Exploring [ARP18, LR93, NXXK+17, PCMM+17, ROB+18]. express [APRA18]. expression [GS91a, WSH+03]. Expressions [GKHS96, Mer96, DeG88, DM90b, JK89, LGK+12, MP88]. expressiveness [HdR13]. Extended [BLG01, LWOG02, Rees84, El07, YWW12]. Extending [BBCL04, CMRL0]. Extensibility [MB96b, LFH+03]. Extensible [FLCB10, HGFF10, ZLWL03]. extensions [DPSD08, Oza04, JM00]. external [DO89, JZK04]. Extra [SZ00a]. extracting [BCH15]. Extraction [YB01, CLC+17, HP06, LLS+16, MM15, Pla08, Ra08, WJP07, dAT17]. Extrapolated [DM17]. Extrema [AFS96, RKS87]. extremal [FS14]. Extreme [SFT+13, YZW+15].
fabrics [ZRN+14]. face [CMN\textsubscript{12}, NHO+13]. Factor [GG01]. Factored [BSGM90]. factorization [FHL+15, MVV91, She06, ZLRP91]. Factors [BP98, EL88]. Faddeeva [CF98]. failed [Tr\textsubscript{a09}]. failovers [SI13]. Failure [AA1+15, FCFO0, Fu10, JAB12, BKMT14, DGFGK05, FX10, HK05, JKE13, KV10, LGZ+10, LFA05, MFVP08, PCLP16, YF07, JKE13]. Failure-aware [Fu10, JAB12]. Failures [ADS01, DT02, VR94, VR95, DGDF10, GPT06a, HRC09, LY10, MR09, RLH03, SCMS12]. Fair [ALH+09, BHLT14, KY02, KNHH18, Tau16, GNT04, KS03, KDH08, LASS15, SPC+17, SCG10, XWC+08, ZLL14, ZQMM11]. Fair-share [KNHH18]. fairness [Ara13, SHC14, ZLCJ12]. False [HF96, KG04, LLWC17]. families [FSV17]. family [NS00, ZDC06]. farm [TBZB05]. farms [JTZZ11, MCP+18]. Fast [ABC96, BC96, BV13, BF97, CK06, CXX+18, Cor93, DP00, DS04a, DPRW85, EM89, FZC+05, FR96b, GM94b, Gil94, GSC96, GZ97, GJXZ05, HZA+15, HN91, IK94, JNW96, KK06, KSSG14, Lat98, LH09, PH91, PA04, PT97, RHH96, SS03, San98, SR94, SHT+95, SGS08, SA08, SDG08, ST05, TF01, YZY96, YD98, YB01, AGMS16, BC05, BBBC12, BFKW13, BHK17, Cal06, Can18, Kep03, KA91, KP05, LLS07, PH16, ST85, TS91, WWW17a, WJ12, XLH18, Yan04, CVK+18, LLCL98]. Faster [BMM97, GS03a, LS05, CM03]. Fat [Zah12, CI03, CS06b, ESGQ+11, ESGQ+14, SK05b, YMLP14]. fat-stack [CS06b]. Fat-tree [Zah12, SK05b]. fat-trees [ESGQ+11, ESGQ+14, YMLP14]. Fattened [GMVRGS16]. Fault [AE95, AM97a, AM95, ABBD14, BXA08, BSS97, BMM97, BW95b, BKMT14, BPA06, BCR95b, CLMRL15, CRV94, CL93, CKN07, CY95, CC94, CDR09b, CF98, DBCF13, FY86, FM99b, GNS09, GRR93, HGCC96, HTH02, JBA15, KP90, Lan94, LBT94, LFZ+17, LG08, LC96, MD01, MMM98, MPG17b, Pak89, PB95,Pin01, PKD97, PM92, RLS96, SCC92, SS95, UR94, VR95, WIKC97, WW97, WU94, XCS06, XHZZ16, mYyF92, YBOY97, mYA91, ZYO02, AA14, AA16, ANA13, AOM50, ARV14, BB87, BJ15, BDD09, BPP05, CL91a, CW09, CWL+07, CDR09a, CMT92, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLPJ07, FZ09, JBS14, KG10, LCC+05, LHM14, LH05, LFGM17, LP88, PR06, PL06, PAS15, TCHC12, ZV09b, ZJ06]. Fault-Detection [CY95]. Fault-Induced [WIK97]. Fault-Sensitive [VR95]. fault-tolerance [BJ15]. Fault-Tolerant [AE95, AM97a, AM95, BW95b, BCR95b, CRV94, CL93, CC94, FM99b, HGCC96, HTH02, KP00, Lan94, LBT94, LFZ+17, LG08, LC96, MD01, PB95, PKD97, SCC92, WIKC97, WU94, YBOY97, ZYO02, ABBD14, BKMT14, BPA06, CKN07, GNS09, JBA15, LFZ+17, XCS06, XHZZ16, mYA91, AA14, AA16, ANA13, AOM50, CL91a, CMT92, CMS04, DTK11a, DH91b, FLPJ07, JBS14, KG10, PR06, PL06, TCHC12, ZV09b, ZJ06]. Faults [LT96, WFL98, CP17, ISM07]. Faulty [GP97, HIKM94, NLSK99, Pel95, RS96a, Tse95, TL96, Wan01a, Wu02, YTR94, oPP00, Che05, DD96, PK04b, SKK91, YTH07]. FCFS [Ara13]. FDM [ORR03]. FDM/FEM [ORR03]. FDTD [SS11]. feasibility
[MAKWZ13, RB12]. Feasible [ESGQ+18]. feature
[CLC+17, DKC14, LLS+16, PFJ04]. features [CGC16, dAT17], federate
[CTCX08], federated [SJB12], federation [CTC+10]. Feedback
[MTM10, HWL18]. Feedback-directed [MTM10]. FEM [ORR03]. fetch
[AK07]. fetch-and- [AK07]. few [Sch14], FFT
[ABZ95, HR92a, JMS86, JGMY17, RKK97, Tay87, WJ14]. FFTs [BH93].
Fibonacci [Ahl97]. Field [BA92]. fields [CDR90, Eio7]. FIFO [BCLR96].
File [FPD93, GL92, HWLR14, KE93, MS96, WDDK09, WMG01, CTC11,
DT11, DLW+12, HOE+09, KYS13, KUA07, LHZ+18, LCM+06, MXSL12,
No12, SC04, SZ09, SSX14, Wan06, WZZ+17, ZJ06]. file-sharing [KUA07].
Filling [BFG94, ST12]. Filter [LWOG02, VRGS17, SMPMLVLS11].
filter-based [SMPMLVLS11]. filtered [LKB+15]. Filtering
[BTG02, CH06b, Kep03, PV07, ZCK+02]. financial [PVRS17]. find
[Hoh90]. Finding [AFS96, BS97, BE95, CARR92, DH94, DWHL87, FSU14,
FTL92, HHC98, KRSZ02, Kar02, MT97a, MHP95, OMGSNGS95, PGS06,
SH92b, RKS87, WCWH03]. Fine
[CLZ00, FR92, IBP08, LFA96, Man13, MPV12, NS97, PY96, SA93, WD94,
FW05, FSD04, GVA+08, IKS87, PL03b, TKHG04, ZCF+17, LM09].
Fine-Grain [FR92, LFA96, FWS05, PL03b, TKHG04]. Fine-Grained
[PY96, WD94, IBP08, Man13, FSD04, GVA+08, IKS87, ZCF+17]. Finite
[BCV94, CSSY94, HB97, HNM02, WL00, FC14, HM06, HT90, KME09,
LWCC15, SS11, SII09, PPTV+10]. finite-difference [SS11].
Finite-element [KME09]. Finite-State [HNM02]. FIR [GLD06]. FireGrid
[HPB+10]. Firehose [KM97]. Firing [KM91, Nie94]. first
[DAG+17, Lai86, MB13, MP87, MAKWZ13, PV07, SWB17, TBZB05].
first-order [MP87]. first-principles [DAG+17]. fission [GÖO16]. Fit
[SP96, HLS03]. Fitting [CY96, MRRV98]. Fixed
[GHK98, HCWS94, KP17, ACU08, BCM06, GRE91, Hsi04, MT14, ZDC06].
Fixed-Connection [GHK98]. fixed-time [GRE91]. flabellate
[LS9+11a, LSS+11b]. flags [TAR18]. FLAME [ICQO+12]. flash [No12].
Flexible [CCR94, ESMG96, HGCC96, JWSG14, RS92c, VB96, CS17,
HC11, LL12a, MM07b, PR06, SD10]. Flexibly [SA90]. flip [LDS16].
Floating [CNLGR18, MK93, Can18, Dav17, Gro85, MP08].
Floating-point [CNLGR18, Gro85, MP08]. float [BZH06]. Flocking
[TWSQ12]. Flooding [BCF14, XCH08]. Flow
[AS05, BJ91, ESMG96, JBA15, LLS93, LM96, MK92, BG90b, BAMP95,
Bo09, CF88, CPW12, Gao89, GE85, JTZ11, KM17, LHF91, MG09, Oza04,
TR89, TBZB05, TY90b]. flow-time [TBZB05]. flows [SMS89b, VBRD13].
flowshop [CB11]. flowtime [LZ05]. fluid [AGMJ06, CVK+18]. fluids
[JdSJ15]. flush [CK06]. Flux [Ull84]. FM [LC97]. FMM [LPLFMC+12].
focus [DSEP17]. fog [JHL+18]. Folded [Wan01a, Lai14, Lai17, SGR03].
folding [LYL08]. food [CXX+18]. FORALL [ALS91]. forces
[Num08, Num09]. Forecast [RHH96]. forecasting [TLL+18]. forest [BC06].
fuzzy-based [NC09]. fuzzy-decision [KC04].

Gallop [Wei98]. Game
[AaJS01, BS00, KK10, PC11, Sch89a, YpGyLJ13, Zep91]. Game-Theoretic
[AaJS01, PC11]. Game-Tree [BS00, Sch89a]. Games [DKY01]. gamma
[KMC16, VR86]. Gang [FR92, FR96a]. gap [BJS03, KLJ+11, KR17].
GAPP [KA91]. Garbage [KS00]. gas [OGR+12, KZ96]. Gate
[OM90, NKV14, WCF14]. Gate-Array [OM90]. Gap [FR92, FR96a].
gens [BJS03, KLJ+11, KR17]. GAPP [KA91]. GATHERING [Lat98, JLY12, LLW07].
gathering [BM04b]. Gathering [Lat98, JLY12, LLW07].
gate [OM90, NKV14, WCF14]. Gate-Array [OM90]. gateway [KKKP12].
Grasping [KR17].

Great [KF90b]. Greater [Ebe94].

Greedy [KNS06, BGM+08, HDJ08, KHW13, LLS07, STMZ18, Cho90, dOBG+15].

Green [AG12, BFH+17, WCL+13]. Grey [BK13, Grey [HHM94]].

Greater [Ebe94].

Greedy [KNS06, BGM+08, HDJ08, KHW13, LLS07, STMZ18, Cho90, dOBG+15].

Green [AG12, BFH+17, WCL+13]. Grey [BK13, Grey [HHM94]].

Greater [Ebe94].

Grid-Based [BR02, CP10b, VD04, KKS08, dOBG+15]. Grid-Computing [BAK+03, SAOKZ05a, SAOKZ05b]. Grid-Enabled [KTF03, Grid] [TD07]. Gridding [GOH+13]. Gridding-Accelerated [GOH+13].

Grids [CCM96, HKMU98, HOS94, ACFK07, ARDQ18, BMT12, DJH11, GVBB13, GRDB05, GM14b, JV09, LKS14, LL10, Mit07, PHS04, SM014, YZS15, AAD10, ABCM07, GTN+06, GJA08, Ngo06, SNCP12, TZ06, VB08, WW03, WLL08].

Grooming [FMM+08, WG08, WCL+13].

Grøstl [ABO+17].

Ground [BFK04]. Group [KKLJ14, LLW12, RGVB00, CJDC10, CHC05, Dim91, EDH+17, LC14b, LHT08, dAMfDS13, MM07c, TC13, XO05].

Group-Based [KKLJ14, TC13].

Group-Shared [LHT08]. Grouping [CP04a]. Groups [Oru87, WLD00, ARDQ18, CHC05, GCS06, LKM12, MS05, Ros89].

Growing [CRFS94, WLR90, IZ12, MGG03, OGRV+12].

Growth [WCKD06]. GSM [TM06].

GSPN [CCM92, CCM01, SM92b]. Guarantee [JM14, MZZC12].

Guaranteed [HWWH08, LNA12, LNAL17, NGQM12, PY09a, WCWO17].

Guaranteeing [Sch91].

Guarantees [MS00, OY00, ESCV15].

Guessing [DKY01].

Guest [WW03, AP93, AL99, AB03b, Ano01i, Ano01k, Ano01l, Ano02g, Ano02i, Ano02i, BD00, Cas93, Che92, Che93, DOP98, ES97, GGB93, GC95, Her92, JW94, Kri92, Lin93b, MC93, NT90, OW01, PN97a, PN97b, Pan09, PA06, Sch90, SH92a, Sto90, TFV+15, BG90b, TY95, WC05].

Guidelines [Ano00d, Ros99].

h [CP04a].

HA03094L [Ano04e]. Hadoop [FRM15, GYY+14, HWL18, HWLR14, YLB+15].

Half [RS94]. Half-Duplex [RS94].

Hamiltonian [DP98, Hsi04, HBD15, LSC00, Nik04, Wan01a, WCC02, YTH07].

Hamiltonicity [HTHH02, Ste17]. Handled [WL04]. handle [RK18].

Handling [WB09, CVJ09, SYG92, KVA18, KV10, LNW+12]. Handoff
Happened [HCR12]. Happened-Before [HCR12].

Happened [HCR12].

happy [KSSK16].

Hard [DJ98, GFPC14, BRR01].

Hardware [BK18, DGNW13, GS00, MD01, MCAS12, RPS93, SCC+06, SHA17, TF92, Theo2, TH08, VIH93, Zsa16, ABC+09a, AF06, ABO+17, BJS03, CV16, CGC16, CP17, CM12, FWV+10, GKS15, GVA+08, HDJ08, HS17, JJ12, KDO+13, KC17, LMSK18, MTM10, NK03, NAK04, PVG09, PAG+18, QGZP17, SV18].

Hardware-accelerated [DGNW13, Zsa16].

Hardware-Efficient [MD01].

hardware-generated [MTM10].

Hardware-Only [GS00].

hardware-software [CV16].

Hardware/software [SCC+06].

hardwares [SKH15].

Hardwired [DM88].

harmony [ES12].

HARNESS [MSS00].

Harnessing [MTL+18, VPHML06].

HARP [SSB98].

harvest [WS06].

Hawkeye [ZFS07].

Hazards [AGG98].

HBS [CK13].

HCL [Pfe09].

HD [GB11].

HDL [DSEP17].

Head [ESGQ+11].

Head-of-Line [ZAAB17].

healthcare [VS18].

Heap [LACJ18, SX08, TT10, ABO+17, HKW05, SRT+18, TC04].

Hash [LACJ18, SX08, TT10, ABO+17, HKW05, SRT+18, TC04].

Hash-based [HSMB91].

Hashing [WPKK94, YB95, HDCM11].

having [BSMH08].

Heterogeneity [Las12, Las13, XLL15, BKS05, CL03b, XQ07].

Heterogeneity-driven [XLL15].

HeteroMPI [LR06].

Heuristic [BA92, DDD98, EHMN95, KL97, XH93, DK11, HS06, KJD03, KKS+12, PKN10, PM05, SWP90, VB08, YFBY17].

heuristic-genetic [DK11].

Heuristics [BSB+01, TY92, GJP96, IAS+92, KUA07, TSC01, AKSM08, JST12, KA08, LLS07, ZHO03].

heuristics-based [KA08].

HEVC [Lla17].

hexagonal [GSSS03].

HHN [YP96].

HiCOO [YQTV12].

hidden [HB11].

Hiding [HF02, WL92].

Hierarchical [AGF94, Buc92, BM95, CAB94, FR96a, HR92b, HR92a, yHY97, KZ96].
Hierarchical-Memory

Hierarchies [VN93, BW89, DTK11b]. hierarchy [Pad91, WYTX13]. High [ABDS02, BJ99, BBH+97, BNSP99, CLA+18, CY99, CD98, DS02, DYL+12, FGKT97, FC14, FM99b, GP93, HES10, JSCB95, JLRA97, KMKD97, KS95, KRS13, KRS14, KRS01, LC97, LS01, MR94b, MBG+17, Nee17, NKC+97, NTC03, PF08, PVG09, PBB+17, SWHB17, TF92, TM06, VFAD17, XMMID17, AM13, AR17, AB03b, AGWY11, BSW07, BDDL09, CUP04, CBP02, CTCX08, Cuz11, Cuz13, DK08, DB08, DF12, DAB+14, DMS+16, FHL+15, FGP05, Fu10, GOH+13, GYN+06, GMSS+11, HOE+09, HRG+11, HZC04, HT90, HVW16, ICQO+12, JBY+05, KVNV17, KSB11, KME09, LMSK18, LWR+03, LSXX14, LB18, LVB07, LZSL06, MSGS+13, MZC18, MG09, MKL12, Nap90, No12, NRM+09, PK07, SPRG+12, SD91, SC04, SAB+92, SA11, SR91, SGdSS13, VAS+13, WRW13, ZW13, ZWQ+16, dAT17, MMVL11].

High-Availability [LS01, Fu10]. high-dimensional [HT90, PK07, WRW13]. high-end [FGP05]. High-Level [BNSP99, CY99, FGKT97, JLRA97, KMKD97, KS95, KRS13, KRS14, KRS01, PBB+17, NTC03, AB03b, CBP02, Cuz11, Cuz13, DF12, FHL+15, GMSS+11, HRG+11, HZC04, ICQO+12, JBY+05, LWR+03, LSXX14, LB18, LVB07, LZSL06, MSGS+13, MZC18, MG09, MKL12, Nap90, No12, NRM+09, PK07, SPRG+12, SD91, SC04, SAB+92, SA11, SR91, SGdSS13, VAS+13, WRW13, ZW13, ZWQ+16, DAT17, MMVL11]. High-Priority [TF92]. high-radix [MG09, VAS+13]. high-resolution [GOH+13]. High-Speed [BBH+97, SR91]. High-Temperature [SWHB17]. High-Throughput [FM99b, CLA+18, BSW07, HVW16]. Higher [GSSS03, HS17, AM06]. Highly [BDHF90, CAB94, DF17, JH94, KHT+14, MD01, NKC+97, VH93, WIKC97, AFA13, ATH91, GV86, SM08b, SMT15, Ter16]. Hint [CK13]. Hint-based [CK13]. Hints [GLC14]. Histogramming [BJ96]. histograms [CL14]. historical [SFT04]. history [WBTM09]. HLA [DB11]. HLA-based [DB11]. HLR [FCF00]. HLS [MH18]. HLS-based [MH18]. HMFS [LHZ+18]. HMIPv6 [CKML12]. Hoang [Ano92c]. Hoc [An001e, BDF01, GS01b, LAZC00, Pat01, RBP+11, TM10, AP03, AH11, ALF03, BFG03, BM11, BGLA03, BOP06, BN03, Bon03, CNS03, CW05, CYZ06, CDCD05, DW06, DMH+03, DB08, EBE08, FW11, FCL05, FGL+11, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LR03a, LPX05a, LW06a, LW14, LC14b, LR03b, LHT08, NMN+14, OSL05, OM10, OMSGNSG05, SNC012, SSM+06, SGS08, SKMM04, SJS11, TC13, VA03, WT0+08, WGS08, WBTM09, WHS+18, XHG03, XWC+08, XG03, YC04, YSS11, YWW12, ZMC06]. HOG [RBG17]. hole [LZC11, PSC+16, SGAC14, dOBG+15]. holistic [WL10, ZHH15]. home [HRM17]. Homogeneous
[LS97, BM17a, CRJ10a, GHS86, OOSGVG+16, SCJ+08]. homology
[DKKV15]. homonymous [AAI+15]. honeycomb [BPRS04]. honeyfarm [JXW06]. Honeytop [KMMZ06]. hop
[BSW07, FCW11, FCZ+12, JLWX11, JM14, MAM05, MPV12, NC09, RFS+12, RB12, YM01, ZMG+16, CSW+17]. Horizons [BP95]. host
[LLWC17]. host-based [LLWC17]. hosting [SSVC10]. hostload [DKC14].
Hot [LKK94, NS95, TY90a]. hot-spot [TY90a]. hotspots [MLG05]. Hough [BA95, CP91, GZ97, JS94, SSL04]. Householder [BDG+15]. HPC
[ECLV12, FYAB11, NKS17, NC13, PCLP16, RBA+18, RMHR17, ROE+18, SCB09, WMES12, YFS+15]. HPF [BCF+94, CA96, HLJ01, KHS96, SS00].
Hull [DFRCU99]. hulls [GS03a]. human [WDS+18]. hunt [MP15]. Hut
[SHT+95]. HW [RBG17]. HW/SW [RBG17]. Hybrid
[BJL18, DAB+18, Dah99, DR18, Fa07, Gao03, LWC14, NBM93, OS93, PA15, YS11, ALM+16, AC89, BAMS95, CCQ+06, CB15, CJ17, DK11, FX06, GLC14, HZL18, JAB12, KSJC17, LY13, LH+18, MBS+12, MMK+11, No12, PARB14, SC+08, SHL09, SSL04, SA08, TY17, WLL16, WHW+17, YLL17, MCL+17]. Hydrodynamic [HC97]. Hydrodynamics
[HAS+98, VBDRC13]. Hyperbolic [SSK96]. hyperconcentrator [CL90].
Hypercontexts [LM05]. Hypercube [AGF94, AM93, BK95, BC94, CS93c, DP98, DSMH90, DRC90, DFN+94, FAM96, FP93, GGD93, GT97, GB93, HGC96, IK93, IK94, JR92, JB98, KB96b, KM91, Lam94, LLH92, LLJ00b, LEB98, Man94, MP93, MW95, MY95, NSL99, NT93, Nas94, OM90, RS94, Raj96, SYO94, SNC92, SY01, Sto00, TL94, TL96, TC92, WLC97, Wag93, Wag94, XMN92, YP96, Zia92, Cap87, CCS06, CS10, DE91, Efe91, EAL90, ERS90, Jol97, KAP90, LEM90, LSS88, L89, MVM04, MAR87, R89a, RS90b, RIZ90, SW90, TMK+17, TS91, Wag89, Yan04, ZLRP91, YN92].
Hypercube-Based [Zia92, DE91]. Hypercube-Connected [LH92]. Hypercubes
[AD95, AERBL92, Ann94, CL93, CCM96, CS95a, CCR94, Ef96, Fag92, FM96, Fra92, GP00, GH93, HM01, HOS94, Kav93, KF95b, L92, LBT94, LW95, LT96, Moh97, OD95a, OP96, Pel95, PM92, RS96a, RJMC95, SHL95, SR95, TT98, WW97, Wan01a, Wu94, WFL98, YTR94, BG0a, BM04a, BOS+91, BL9, CL9a, CL9b, Che05, Ede01, FT04, G04, GW03, HNS07, Ho91, HR94, LW90, Lai14, Lai17, S89, Var91, WIB12, Wu85, Wu03, XCS06]. Hypergraph [DKUC+15, ACU08, CBD+09, DHK04, KJD03, TK08]. hypergraphs [STA12]. Hypermeshes [OK01, Szy95]. Hyperoctrees

I-Caching [MM93]. I/O [AW95, CkLCK04, CkLCK05, Cho93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, EH01a, GGD93, GFFC14, JSCB95, JSBW12, LTH19, MLG05, NS899, NPBC02, No12, WHW+17, WLW09].
I/O-Intensive [EH01a, CkLCK04, CkLCK05] IaaS
IBM [ASH01, BAHP01, BR95b]. IC [CMR10]. IC-scheduling [CMR10]. IceCube [AAA15]. IceProd [AAA15]. ICT [CTS17]. Id [HCA93]. ideas [Sch14]. Identification [CS95b, EBE08, FCC07, ZAAB17]. Identification- [CS95b]. Identify [XYG07]. Identifying [HS03, LT10]. Idle [CW93, CM92]. IDOS [BA01a]. IEEE [Ano93a, BCD00, FA07, HB11, VHH08, ZBR11]. II [HR92a, KHT+14, RLA+17, SMO14, SAOKZ05b, SR97b]. III [CP10b]. ILU [SZW05]. Image [BJ96, BM95, ELS94, HSJP87, HC95, KSL85, LMK91, LNY97, MWL00, MG98, NEG85, OS98, RS90a, RG87, SR94, SD88b, WS95, ZM94a, CDJ+89, CCN06, GSWW04, HLBML6, IKS87, Kep03, KM03, Lee91, LMSK18, MLS+16, MG03, PI90, Pfe90, Sto87, SA90, UAPM07, Wan07, WRHR91, WJD01, WGCZ09, dAT17, FC14]. Image-Processing [KSL85, SD88b]. Image-to-Mesh [FC14]. imagery [PVPM06, Pla08]. Images [SYO94, Ara90, CL85, DH91a, NAK04]. imaging [KDO+13]. Immediate [Ksh12]. immersive [MBH08]. immune [HD10]. Impact [Buc92, Kel00, Tze91, YAA10, GSWW04, HHS12, HRF+11, MLG05, RBP+11, SFT+13, SYYU07, WFC14]. Impacts [PCX+11, PCX+14]. IMPATIENT [GOH+13]. Implementation [ABGV11, AS95, BAHP01, BHS+94, CP91, CP92, CS95c, DM90a, DBKF90, EP90, HS97, HBH93, KM91, MSS00, NT93, NSPC02, OS98, OP98, PAJC97, RL02, RW01, SDS10, Snt95, SM00, SK96, SE15, SOC94, TV092, VBM90, XMN29, YB01, ADV14, BFTV87, BG99, CECS07, CP10b, CPW07, CPO+03, FGG08, GKS15, Gro85, HES11, HVW16, JK89, JN15, KHT+14, KTF03, KA91, KP05, ML89, MCAS12, MP10, MML07, MRT16, O05, OGRV+12, PLD87, SM08b, SA11, Sol13, SMKL93, TR89, Tay87, TdAR07, WMC+08, YÖ11, dALMCFN12]. Implementations [DT01, KL84, SAC+98, WPKK94, BCM06, BRPR06, GNS09, ICQO+12, Tåt11, TYA16, YBM13]. Implementing [BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17]. Implications [AH94, BS96a, GTN+06, HKK+18, MT96, MG93, SH92b, TSA97]. Implicit [BAM93, Fre96, HWL18]. Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. impossibility [AP16]. Improve [CB02, DS95a, SKH96, CDR09a, CSW+17, GLC14, VRM10]. Improved [AM97b, AS91, CLZ02, Che05, CP10b, DL98, FT04, GJP96, HSH90, JR95, KLC05, Mi99, PB95, TC13, Tsu07, Wor93, Ara13, Bad04, GMVRG16, TDC05, dALMCFN12]. Improvement [yCM98, IAS+92, CZZ+17]. Improvements [GCB+00, WSS93, DPSD08]. Improving [AM13, AHG12, CLG+16, CRWX12, CKWT17, CAF+11, Dah99, DK04, GT02, GYY+14, GP05, GMM00, HHK15, Kan05, KZ11, LTL06, MBR08, SLKK12, WT8+08, AA10, CCK88, SAL10, SK11, YF09, MMCL+17]. IMSuite [GN15]. in-memory [LHZ+18]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMMY12]. incentive-based [CG12, YAA10]. inclusion [Kak15, RFPAG08]. Incomplete [OD95a, PK04a, SCD99, TC92, GLW14]. Incompletely [BSGM90].
inconsistency [Ram89, TK07]. Incorporating [AIS97, VWHL96, WTY+18]. increasing [RS08]. Incremental [ESCV15, ZN01, LY08]. increamentally [SSB91, YC12]. independence [GK10]. Independent [BSB91, Ger98, Hag97, MAS+99, NMS93, PS93, WFZJ12, AFD+11, AK06, AY09, CL91b, CFJW13, EB13, HAC17, Li06a, LH09, LB09, LLS07, PDB13, SSM+16, SBÇ12b, SZW05, SSM+07, WCF14, WIB12, YW08]. independent-gate [WCF14]. independently [XCH08]. Index [Ano92b, Ano93b, Ano93c, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99d, Ano99e, Ano01f, Ano01g, Ano01i, Ano01l, Ano02c, Ano02d, Ano03a, Ano04b, Ano04a, Ano08, Ano09, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, KHS96, SSHC00, Ano03b, KN18a, KN18b, LSSZ15, PCLP16]. indexes [OC07]. indexing [FKJG08, GZ08]. Indian [Nee17]. indirect [Ho91, HBF12]. Induced [WIKC97, LM09]. Induction [BF01]. indulgent [WCYR08]. Industrial [MS99a, KKTZ13]. Inexact [Pla13]. Inexpensive [MT93b]. Inference [AyJ93, FBRW03, PTZ06, XP10, YWAT13]. inferencing [MK08b]. InfiniBand [ARP18, ASD09, ESGQ+14, ESGQ+18, GRJ+15]. InfiniBand-based [ESGQ+14, ESGQ+18]. influence [MCS14]. Influential [TAS+01]. Info [NTN12]. Info-based [NTN12]. Information [Bal90, BS96a, CY99, LA93, Oza04, AHZ11, AH11, Ana14, CKN07, DB86, JLWX11, KTP17, LY91, LSWC14, MP15, Pla08, Ps96, Raj08, RFPAG08, SSS07, SFT04, TKG+17, XCS06, XQ04, ZFS07]. Informed [LM09]. infostations [BPRG04]. Infrastructure [GC01, AFA13, HPB+10, JAB12, KKKP12, LC+10, MBS+12, SW12, SWBH17, ZCYM12]. infrastructures [Ano04d, BJPPM+08, FPF14, NAB+11, TD07, YK04]. Inherent [WW98, CB15]. Initial [dGP06, YS11]. Initializing [Nak95]. initiation [MM04]. Initiatives [Hua17]. injected [GK15]. injection [CP17, LIWJC17]. Injured [Wu93, Wu03]. inner [Li90, ST85]. input [LY08, NAK04, PV05]. Insensitive [ST02, ST06]. insertion [SS17]. INSIGNIA [LAZC00]. inspired [CMMN10, GVB13, HD10]. Instance [SM94]. instances [PDB13, ZG13]. Instantly [TOR+14]. institute [Nee17]. Instruction [AGG98, LPU97, Gro85, PYP+10, Sch89b]. instruction-systolic [PYP+10]. Instructions [dSR00, Sol13]. Instrumentation [GP91]. instruments [CKK+13]. Integer [DL98, Fag92, SS96, KKVI05, VM95]. InteGrade [dKG+10]. Integral [Ten90]. Integrated [BDHF90, DAYA02, OY00, PW96, WA03, YSL08, ZR00, ZM06, NC09, SKMM04, WCL+13, XYDL06, XY07, YWG15]. Integrating [Bir94, DT11, DRST02, FKT96, Lu01, OK02, PY96, KKKP12, YT05].
Integration [ISZBM99, KL84, LY01, YJKD10, Ano04d, HMV07, Kum17, YK04, ZMZJ17].
integrity [BCO+12, LZSL06]. Intel [FPD93, LTG14, SMKL93, Zha11].
Intelligent [AS+92, KSP+92, SH98, ZL93, CDJ+89, She09, WJD91]. Intel [KVVN17].
Intended [CTC11]. Intensive [ABM+92, BS09, BS11, CA95a, EH01a, SW90, CkLCK04, CkLCK05, DF17, HWLR14, KAS07, MLK+16, RBN11, Ren11, SC04, VP08, WZZ+17, WG11, ZMCP11]. Inter [FKLB08, GZG+17, Kan05].
Inter-core [GZG+17]. Inter-node [FKLB08]. Inter-procedural [Kan05].
Interaction [CCM92, DH95, LLCC02, HWLR14, YJL16].
interactive [DK97, GZG+17, Kan05].
interaction-intensive [HWLR14]. interactions [CK08, PARB14].
Interactive [LHM95, RG500, CTS17, HSS17, MAR05, TSD08, TD07].
Interactive-Rate [RGS00]. Interconnect [HP97a, WLY01, AHA+16, MG09, UM17].
Interconnected [DH95, EHO1b, Guo94, KM97, QMCL94, GMH+91, McA89, SGAC14, TRSS06].
Interconnection [AAD98, AA95, BETD94, CW01, CJA09, DZ96, FD86, KRSZ02, KAM94, Lat95, LYL93, MLW+97, MSH90, MC93, MJ94, OM84, OO85, Pad93, PL93, SW96, SZB92, Szy95, TH02, Tze91, VB96, Wan96, Wan01b, Wil92, YWP00, ZMPE00, ZW00, dBL95, ARI17, BM14, BDQ86, BHR91, BHR91a, Bhu87, BJ15, BR91b, CM04, CKO04, CS06b, DE91, FCJC04, GJ12, Har91, JBM91, KMC16, KRL87, K90, LLKY13, MHW86, Par89, Par95, PW16, PW17, PMCC18, SSB91, SL89, SH89, WCC02, Wil90, ZDC06].
Interconnections [LLJ00b, SL97, THN+93, Oza04, YB90].
Interconnectivity [DSD+97]. Interconnects [ES97, HP00, M097, MG93, PEC95].
derpendent [SNCP12].
Interdisciplinary [NKSA17, CCE+17, Hua17].
interest [Ano16d, REZN17, CTC11]. Interest-Intended [CTC11]. Interface [BAHP01, BF97, BD+97, CD08, IWM97, PS01, RS92c, JM15, KT03].
Interfaces [NGQM12]. interference [BPR04, GZG+17, KDH08, WHS+18].
interference-aware [KDH08]. interleaved [NC09]. interlock [CCK88].
intermediate [YLCL11]. Intermittent [DT02]. Internal [Bal90, JZK04].
International [OY13, Ros07, Sni03, Wec01]. Internet [Bar05, BJ18, CX+18, KA08, MXLSL2, MZZC12, PJ18, She09, TB90, WL02, WCC18, XO05, YWJ+18]. Internet-based [She09, XO05].
interoperability [AZW13]. Interplay [ZGD18]. Interpolation [CWW+95, Goe94, SAOKMA02, Nic07, PHS04, Sch89b, SDG08].
Interpretation [FAGW95]. Interpretive [PH00]. Interprocedural [HHK09, CK88]. Interrupting [AST12].
Interrupting [FSV17]. Interval [CI03, PT01, Sch87, BBCQ13, MHLZ16, Sta04]. Interworking [WH08].
intra [GM13, Kan05]. intra-node [GM13]. intra-procedural [Kan05].
intra-chip [MCM+11]. Intrinsic [PAS15]. Introducing [CCE+17, Ada17].
Introduction [AP93, AL99, AB03b, Ano01j, Ano01k, Ano01l, Ano02g, Ano02h, Ano02i, BD00, Cas93, Che92, Cho93, DOP98, ES97, GGB93, Gau06, GC95, Her92, JW94, Kr92, KRS14, Lz93b, LK11, LR05, MC93, MG5+06,
Large-eddy [SM04]. Large-Scale [ABDS02, BMCP98, LK98, OK01, VN93, WBRT13, BMB08, BMF05, CC16, CLOL17, DB11, DBCF13, DLW12, KESA07, KSSL16, KBC10, LGZ10, LZY11, Luc18, LWC14, MYM10, MVP17, NAB11, PP13, PDB13, PK07, RW02, SS17, SMT15, VM03, WCWO17, XHY07, YH07, YÖ01, ZV09a, ZVL11].

Large-size [CVJ09]. Large/irregular [AM13]. Larger [Mah95]. largest [Deh90]. LARPBS [dR09]. Last [Tay02, RFPAG08, SS17]. last-level [RFPAG08]. Latency [GS00, HF02, KUFM02, LDZ14, MR94c, RJY96, THGY15, ZYH94, CRD12, Dav17, IS06, KS03, NCB17, PRHB06, RM11, SLKK12, TVT17, WL92]. latency-tolerant [NCB17].

Latency-Tolerating [GS00]. lattice [GMS06, IBP08, WCO09]. law [NZ17, SC10, CN14]. Laws [FLS97]. Layer [BNSP99, KNS06, PKW10, WCL13, dlAMCFN12]. Layered [DDD98, SSK96, CI03, LHF91, LL12a]. Layers [ZAW94]. Layout [MB96a, KMC16, LGK12, MLG05, Str12]. Lazy [GSC96, MYD95, DS04b].

Leashing [DHS06]. Least [CB05, HLS03, KAP90, ZYO02, BBd90, SMKL93, TBZB05, XBK07]. least-mean-square [XBK07]. Least-Squares [CB05, ZYO02, HLS03, KAP90, BBd90, SMKL93]. LED [MLW17]. Lee [BV02]. legacy [LWR03]. Legion [LFH03]. Length [BL04, KP17, MP08]. lengths [KIH15]. LEON3 [TaAR18]. Level [AC16, BBH17, BSS97, CD98, GS98, HKT11, HW1996, Kav93, KOW97, KRS13, KRS14, KL84, MR94b, MHC95, Qia97, RP95, STHC00, SBK90, AYO09, ACU08, BBH17, BYG18, CCC104, CLMRL15, CC87, CTX08, DAB14, DMS16, FLCB10, GAC17, HESS10, IKS87, LC14a, LPLFMC12, MAJJ05, MEMEH17, OWK14, OMT17, PRHB06, PFe90, Ren11, RFPA08, SS17, SGdSS13, VD04, WCD06, WMES12, YS08]. level-set [HES10]. Leveled [PRW94, BMIM07]. levels [Kum17, Li16, Wu03].

light-trails [PR12]. Light-Weight [RGVB00, Wan06, WZZ+17].
Lightweight [HS00, MSF+13, CL09, KP17, Kim17, MP10]. like
[CP10a, CTC11, FR96b, GL90]. Limit [MO97]. Limitations [BKS91, LS97].
Limited [yHY97, LP96a, LK98, BKS05, DW04, VS16, WT+08, Zsa16].
limits [DW04, dSS11]. Line [BDKM94, BMMS01, DGBP+94, LTY96, RR95b, Yen01, BS92, DMCFCM03, DJ98, EL88, GH89b, GC07, KM88, LHK03, SS04, SL90, ESGQ+11].
line-sweep [DMCFCM03]. Linear [Bah00, BBM+02, BMMS97, BCZ95, CDH84, CCC92, DV94, IPK85, IK94, KL01a, KF95b, LP97, PM96, Pov99, RFS94, RS92b, ST89, TBPV00, ZZC92, dR09, BGH+03, BAH04, BPP05, Car90, CM03, CEGS07, CP10b, DS04a, Dja06, FHL+15, GPT06a, GRV08, Gao86, GS91b, HR89, ICQO+12, Job87, KKV05, KTV98, LK98, LK98, MAK05, DM08, VS16, Zsa16].
linearizability [KKW17]. Linearization [FZVT02]. Linearly [BBd90, PB90]. Lines [HKMU98, Wri91]. Link [GDP08, MIW+97, SJS11, VR94, VR95, WFL98, FCZ+12, LST17, MCAS12, MVP17, RH05, SW90, WTS03]. link-bound [SW90]. link-selection [RH05].
linkage [CPO+03], linked [Han89, HA05, ST08b]. Links [AaJS01, KJ84, RS94, WW97, Wan01a, AGMS16, KPR88]. Linpack [Num07, Num08]. LinuX [LACJ18, BP01]. Liquid [SWHB17]. List [BBH+98, SP96, SGS99, TLLL10, FPF14, Han89, LPX05b, Vis87, WLL16].
Lists [BP02, VSIR91, ST08b]. Load [Ano97j, BEE00, BM97, CS89a, CRL04, CLZ00, DHB02, DMB97, DLM97, DSW94, EF96, EE05, FMP98, FLS+97, FM99b, GKH8, GM96, HS97, HIL95, HLT99, HO94, IC97, JR92, JW89, KG94, LK94, LHV95, LT94, LL98, MDD97, MP96, NS99, NFF97, OB98, PB99, QY94, SBC12a, SH92a, SHT+95, SB97, SBAM96, TSH91, TT98, Wan96, WS97b, XYK08, XL92, XI93, XL95, ZLP97, ZXP09, ZM94b, vS91, AES11, AGMS04, ACCP12, ASES15, BCT05, BFH09, BFMT+18, BRPR06, BD04, CSWD03, CBD+09, CV09, CH09, CRC+02, CB09, DB11, DLW+12, DW04, DM94, GRV08, GLC14, GC05, HJ90a, HLM+90, IC05, IS06, JL05, JL11, KNHH08, KKS08, KC04, LT02, LTL06, LLL06, LHK03, LY91, MLDG12, MPV12, MV05, MTS09, Mit07, MGG03, NHO+13, Niki03, PC11, PA04, RN04, SU87, SB15, SX08]. load [TBZB05, TKHG04, TLL+18, TVT+17, YJ16, YAA10, YMLP14, ZV06, ZWS14, ZLML14, dG91]. load-adaptive [TKHG04].
Load-Balanced [LT94, NFF97, XYK08, YMLP14]. Load-Balancing [DHB02, FM97b, HO94, HC97, Wan96, SBC12a, ZXP09, NHO+13, YJ16].
load-sharing [SU87]. Loads [KC95, VB02, CG12, GRV08, HV13, KVA18, LML+10, MV05, ZV06]. Load [AD02, BSS99, BCD00, CGL+95, FL5+97, HR00, SR94, ADD17, AK07, BMAW07, CKN07, GJG85, GTGLS12, GNZ18, LMJC11, MS88, MAR05, ROB+18, Sch13, WW17a, XCS06]. local-spin [AK07]. localities [GJXZ05]. Locality [BS96a, CL96, FJG06, GXYZ13, JL11, KCRB99, KRC00, MNB95, SCM99, STH+95, EHL+15, FPP06, Kan05, KR06, LD13,
Ozt11, SZD07, SKK14, SRT+18, WLL08, XCLZL03, ZWQ+16]. locality-aware [EHL+15, SKK14, XCLZL03, ZWQ+16]. locality-cognizant [LK13]. Locality-sensitive [JL11, SRT+18]. Localization [DFP06b, AKBD10, CCW14, CRWX12, DLLL11, LDS16, MKM16, WDS+18]. localized [Cal06, KNS06, LS03]. locally [AMK+07, LFZ+17, XHZZ16]. locate [DWX10]. located [SBC¸12a]. Location [KER01, Li17, LS03, LAGK07, MMRS98, XCLR07, ABF+14, BJL18, CZ90, HCM11, LLDL15, OJP+18, TZ07, TZ11, TDC05, TR16, ZMC06, ZHO03, dOBG+15]. location-aided [ZMC06]. Location-based [LS03, ABF+14]. Location-centric [XCLR07]. location-free [dOBG+15]. Lock [DR98, SSdlB+10, ST08b, CB06, Dim91, HSY10, HA06, ST05, XO05]. Lock-free [SSdlB+10, ST08b, CB06, HSY10, HA06, ST05]. Locking [MS98, XO05, DM04, LZLX11]. lockless [HMBW07]. Locks [JNW96, AFA13, CG10, UBES10]. Lockup [SD91]. Lock-up-free [SD91]. Lo`eve [FSD04]. Log [NTA96]. Logarithmic [Nas94, OOW95, AF17]. Logarithmic-Time [Nas94]. logging [CZZY09, DWG03, JLM08, MMCL+17, MMCL+17]. LogGP [AISS97]. Logic [AyJ93, CC91, CBdCD00, Mon94, NKV14, Tan84, DeG88, FPM+14, MLZY17, MV88, MC91, NAK04, SK90, WF89, XYZW14]. logic-oriented [SK90]. Logical [AK93, YMG01]. LogP [AISS97, BHPP05, RGD03]. Long [AISS97, GO95, LKM12, Lin93a, KVNV17, MBR08, TDC05]. long-distance [MBR08]. long-term [LKM12]. Longest [MS99b, PK04b]. Look [PL93, SHL+13, TG04, HZL18]. Look-Ahead [PL93, SHL+13, TG04]. Look-Up [HZL18]. Look-ahead [NIR86, SF05]. Looking [LKD14]. lookup [JP09]. Loop [AMB95, BCH95a, BCS95, CG02, DR95, DS95b, Nic88, OK02, PB99, QGL+09, AL04, KSG03, MP08, NCT+07, QSL+08]. loop-carried [NCT+07]. Loop-Free [CG02]. Looping [Ano92a, KME92]. Loops [CCC90, CWW96, DRR96, HS93, KK95, KBC92, SCMB90, SG99, Xue97, CC87, SGE81]. Loosely [SKR93, AjiHc90, BMF05]. losses [HZA+15]. lossless [CW15, PY09b]. lossy [GYP13]. lost [LdB+18]. Low [AZ01, Ano92c, AEY12, CM12, Dav17, IKS87, JH92a, JNW96, JLRA97, KS00, MC17, MH95, SD00, AB0+17, CBPC02, CL09, GE85, GJXZ05, HZL18, KS03, KK11, MGRK14, NKF14, PF90, RM11, SZ09, Sol13, SLWW05, YGZ+10]. low-area [AB0+17]. low-complexity [Sol13]. Low-contention [AEY12]. Low-Cost [AZ01, Ano92c, JH92a, JLRA97, CL09, GJXZ05, YGZ+10]. Low-Density [MC17]. low-latency [KS03]. Low-Level [MHC95, IKS87, PF90]. low-memory [CBP02]. Low-Overhead [SD00, SZ09]. low-power [KK11, MGRK14]. low-resolution [GE85]. Lower [BMRC98, JR95, LPS+98, TC96, WW97, FT04, ITT04, NDP13]. Lower-Dimensional [TC96]. Lowest [MAKW13]. LPAR [BK95]. LQ [BBM+02]. LQR [ZMZJ17]. LR [CB96]. LTI [AD12]. LTL [BBBC12]. LU [OT86, She06]. LUT [HBL18]. LXCloud [LACJ18]. LXCloud-CR [LACJ18]. Lyapunov [MV94, QOvG01].
M [Ano92a, FC95, LZSL06, ZBF05]. M-TREE [LZSL06]. M-VIA [ZBF05]. M2M [TKG+17]. MAC [CCHC09, GZY14b, Los08, TLY12]. Machine
[BG86, BDHF90, CA95b, LWOG02, MB93, RSCQ17, SYO94, SR97a, SR97b, TVS97, TKG+17, ZL03, AES11, BH86, CL14, FMIF18, HS86, HPSM91, KHT+14, KNS91, KA89, Ros85, SM86, Upa13, WF89, ZG13, CM93, CRFS94, CGSV93, EHS94, LAD+96, LST+13, LTD+93, Sab94, TKG+17]. Machines
[BR96, BPN90, BCR96, CWP98, ERL90, Gup92, GKHS96, HK96, HB97, HLJ01, KRC00, KHS96, KLS90, LWY97, MK92, PAM94, RS94, RWK95, RGS00, SSG93, SCBM90, San02, TSA97, YFS+15, Zak01, AE88, CG11, Fen90, FX06, Fu10, GA90, IKS87, KR10a, KR10b, Koc91, KP05, LC91a, LC91b, Mar88, MAR87, RT18, SW90, Ume85, ZA91].
macroeconomic [BMB+08]. macropipelines [WAS88]. magnetic [CCN06]. Main [DM99, BBH+17].
machines [BR96, BPN90, BCR96, CWP98, ERL90, Gup92, GKHS96, HK96, HB97, HLJ01, KRC00, KHS96, KLS90, LWY97, MK92, PAM94, RS94, RWK95, RGS00, SSG93, SCBM90, San02, TSA97, YFS+15, Zak01, AE88, CG11, Fen90, FX06, Fu10, GA90, IKS87, KR10a, KR10b, Koc91, KP05, LC91a, Mar88, MAR87, RT18, SW90, Ume85, ZA91].
Maintaining [HS94a, LMP10, LY98, YC04]. maintenance [CDCD05, MAPF14, WDDK09, XO05].
Major [SSL04], majority [ZWS09]. makespan [LZ05, SSM+07, TFMS15]. Making [LLT12, LFA96, VR95].
[AS13, AS15, BR02, CCK00, CY99, HILLY95, HTL99, JM00, KER01, LZ02, LO96, RDS02, RSBN01, T992, WLD02, YD98, ZRC99, AM11, AK18, BVGV14, CKMP17, Fu10, FX10, GPT06a, GJG88, GBAM98, HCM11, HMLT97, HCO9, HHS12, HSL10, HIK15, JWH+17, KK11, KLJ+11, LCC+05, LC11, LAGK07, MBS+12, MLMSMG12, MCP+18, NAB+11, NTC03, OJP+18, PY09b, PF04, RKB+13, RAN+17, SNMB16, SDDT04, SS08, SB12, SK05a, SL06, TZ07, T911, TB90, WYY15, WZZ+17, XRB12, ZMC06, ZV12, ZHO03, dKG+10, SHSH17]. manager [Gai87]. Managers [AB84].
Managing [AKBD10, FGKT97, SEP96, SS17]. MANET [YAA10].
MANETs [Hu11, YA11, ZA05]. Manipulation [PH91]. Manipulator
[MS85, NS90]. Many [BP02, DP00, Iqb92, SR97b, SSHC00]. MapReduce
Mark [Ano92c]. Marked [JSS92]. Marker [MG98].
Marker-Based [MG98]. Market [CKMP17]. Market-based [CKMP17].
Marking [BBH+98]. Markovian [ASKO16, DHK04, NH93, PF91]. Markovian
[BC11, VM95]. MASC [TJCB10]. Mass [HLL+95]. Massive
[SANY94, FCG+14, JWH+17, ZB09]. Massively
[BS90, BDHF90, DAG+17, EHMIN95, GGN93, GBS93, JBL02, Kri92, KP05,
MM93, MT96, NDZA99, NS92, PE93, Sch90, SRK95, TSA97, UGG+11,
WT92, YP96, BB87, BBCLL04, GP91, HS86, JJ12, Koc91, RBB17, SPBR91,
SMH+14, TS91, WZ91, LTKS90]. Master
[BMT12, HSLL04, LZ05, LYL08, YH07]. Master-worker [BMT12].
Matching [BL94, DS84, DAYA02, HBS17, LO94, Par98, WSRM97, DKU15,
GK10, KSJC17, KSSG14, MPN07b, RS90a]. Matchings [SM89b].
Matchmaking [LR05]. Materials [CXX+18, DAG+17]. Mathematical
[HNSA07, DJH11, ZA91]. Matlab [MJ01]. MatlabMPI [KA04]. Matrices
[Bas97, BSGM90, SH97, BW08, JM15, ORR03, VGAB08, WF90]. Matrix
[BG16, CT96, CTZ99, DBKF90, GK98, GE94, KCRB99, KK98b, LPZ99,
Li01, Man94, MSC96, NFE97, Par92, PKD97, SW96, TLW94, UZSS96,
WM92, Wn95, mYYF92, AAD05, ASE05, BB85b, CP10b, CLR90, Dja06,
Ede91, EL91, EM89, ITT04, KK86, LV15, MBW16, MS87, MPG17b, N91,
NCTT09, OT86, PB15, PR13, SA0K03, ST89, SM08b, SA13, SE15, ZB03].
Matrix-Based [KCRB99]. Matrix-inverse [SAOKM03]. Matrix-Vector
[GK98, MSC96, NFE97, ASE05, CP10b, CLR90, MBW16, PR13]. Matter
[FGM+03]. MAWS [AK06]. Max [DP98]. Maxcut [HP97b]. Maxima
[GS03a]. Maximal
[CWW96, GS99, KW02, BCH15, SSTP09, SMT15, TSZF14, WCH+17].
Maximally [Gao86]. Maximization [YZG18, LHX+16, LL12b, VLL+14].
Maximize [SSFP11]. Maximizing [YZG18, LHX+16, LL12b, VLL+14].
Maximizing [SSFP11]. Maximum
[Als01, AS95, BLMB13, DDD98, FTL92, HP06, KEA95, Par98, mYYF92,
AFD+11, SM98b, WMW09]. Maximum-throughput [BLMB13]. Maximin
[ZLCJ12]. may [SKT92]. Maze [EL97]. Mbps [MLW+97]. MDS2
[ZFS07]. me [MP01]. Mean [BA92, JMB91, LZ05, XBK07]. Means
[DBC+13]. Measure [AS93, Kav93, PS93, SK98a]. Measurement
[FP093, KL01b]. measurements [ASKTZ13, JKIE13, ZJK04]. Measures
[GR93, DGBN14]. Measuring [ZYH94, DI91]. Mechanism
[Bal90, BCD00, JSM94, CG11, CG12, CMR+18, CCW14, GYY+14, GVA+08,
HCM11, K011, MBO11, PMO11, RA11, She09, X005, YF07, ZBW+17].
Mechanisms [KPC06, K99a, ASKO16, KV10, ALLM11]. Media
[WUG99, K05, KLP05, XYDL06, XHY07]. media-based [XHY07].
Medium [CCC92]. medical [CCN06, KDO+13, TS08]. Medium
[MSST99, KGN11, WLN06]. medium-scale [WLN06]. membership
[LC14b]. membrane [YLZ18]. membranes [PM05, PM06].
Memoriam [Ano03r]. Memories
[CH92, PH91, Sin95, Yan93, GKK+13, KR17]. Memory
[AD95, ACD+93, AMN00, Alh97, ADS98, AS91, BR96, Bas97, BS96a,
BCLR96, BF97, Bit92, BCR96, CB95, CP91, CWP98, CA95b, CJ99b, DS95a, DY99, DA97, DUSH94, DP00, DH95, DM99, DT92, EP90, FY97, GAG92, Gra92, GKH96, GHSJ96, Haw97, HMR15, HPT02, HA92, HA05, HLJ01, IWM97, JF95, KRC00, KS97a, KHS96, Kel00, KC94, LFWY97, LK98, L101, LA93, MF94, MR94c, MS98, MG91, NSS99, OS98, PHB96, PAM94, PA96, PB99, PL95, PY96, RL96, RSB96, RW95, RJY96, RGS00, SL95, Shu95, SS94a, SDS99, Soh96, SC91b, SB84, SN93, TJ92, TTT95, TY95, VSIP91, VS16, VN93, WW96, WD94, Wil92, YW91, YMR93, YB01, YL98, Zak01, AM13, AL04, ACHY18, BC06, BM08, BBH97.

Memory [CBP02, Car95, CC16, CGM14, CJA09, CPO03, CK91, CDAN14, Cyb89, DFP06a, DT11, DI91, ETS14, EKNS17, FZC05, FJC04, FWM10, FLC14, GJG88, Gra10b, GL90, HMC11, HHF10, HMBW07, HHA14, Hus17, HC91, IHH16, IRRS16, ITT04, Joh91, KKR14, KRM14, KKLJ14, KMS10, KP05, LL90, LC91a, LHZ18, Lop18, MTM10, MSK16, NSTN91, Nik03, No12, Pad91, PK05b, PL03a, Pop91, QGL09, QGZP17, RFPAG08, RHH12, RSCQ17, SYU07, SB15, SZD07, SDS10, SM04, TW89, TGPUC16, WL92, YGZ10, YLB90, ZPK14, ZLWL12, ZFL89, HZL18, MP10].

Merging [VSIR91, YA09, DO89]. Mesh [AP94, Ann94, ADM94, yCM98, CCC92, CWW95, CLT96, CY96, CDP95, EL97, EH01b, FZVT02, Fer93, GPJA10, HHM94, IM00, JF95, JS94, JB98, KB01, LLJ00b, LME95, MD01, MP96, Moh96, Nak95, NSS99, OS96a, RO92, RR95b, RR95a, SP96, SR94, SM00, Zhu92, ZYO02, ABC09a, ABC09b, BB85b, CL03a, Car90, CWW95, Dja04, DAB14, Efe91, FLL14, GBD06, GLD11, GH99b, GA16, GNZ18, HWZH08, HWC08, HR89, HR90, KKK11a, KDH08, KT91, LST08, LC90a, LC91b, Li06b, LC11, LWDC12, LVS08, LB07, LV88, MG05, MBR08, NPGV10, PB90, Raj04, SI86, SSM89, SC91a, SSZ10, SS94b, SZ03, VDI11, WH08, WBRT13, XYKA08, YSL08, FC14].

mesh-based [CL03a, LB07]. Mesh-Connected [Ann94, ADM94, yCM98, CCC92, CWW95, CY96, CDP95, Fer93, HHM94, MD01, Zhu92, ZYO02, BB85b, Car90, HR89, HR90, KT91, LV88, PB90, SI86, SSM89, SC91a].

mesh-NoC-based [CL03a, LB07]. Meshes [BLPV95, BpW96, BA97, BSDE96, BM97, BOSW94, BOS95, BG95, CW00, COS95, CL96, DS01, FF08, HCWS94, HJ90c, LSG95, LSC00, LS94, MT93a, NP196, NS94, OS97, OS96b, OS98, OB98, RWY93, ST02, SK97, SJ95, VB94, WCE97, Wu02, YTR94, YCY00, BG16, BM04a, CI03, CZZ17, DV13, GLD06, KLC05, LWCC15, LKL12, MATLAB].

Meshing [YIY97].

Message [Ano94c, An95k, BB93, BKT95, BDH97, CW92, CZZY09, CD98, DMSH90, dADB96, GBES93, GHS94, GHS95, GHS97, HNM02, IML97, KAR92, LK96, Li92, LW95, MM97, MD92, PY96, Pra16, SCMB90, WTC08a, WTC08b]
XH93, ZN01, BHR91, BR91a, BPW05, CV90, CPA+11, DDNT10, FM07,
GH89a, GK04, HZA+15, Hal05, IRRS16, JLM08, JZZ+17, Kak15, KMS10,
KS13, LR06, LR03a, PS14, She06, TW87, TGPUC16, vS91, KTF03, PS01].

message-driven [GK04]. message-optimal [CV90]. Message-Passing
[CW92, dADB96, GBES93, HNM02, MD92, XH93, ZN01, DDNT10, GH89a,
IRRS16, Kak15, KMS10, KS13, LR06]. Messages
[AISS97, DLP99, FBDC99, LTWY95, LTY96, SKH96, ASKTZ13, BD04,
CI90, GPT06b, KLC05, XLL15].

Messages
[AISS97, DLP99, FBDC99, LTWY95, LTY96, SKH96, ASKTZ13, BD04,
CI90, GPT06b, KLC05, XLL15].

Messengers
[FBDC99].

Meta
[SWC+91, D¨O06, GVBB13, KKS+12, LGZ+10, ZHO03].

meta-heuristic
[KKS+12]. meta-heuristics
[ZHO03].

meta-learning
[LGZ+10].

Meta-rules
[SWC+91]. meta-scheduling
[GVBB13]. meta-task
[D¨O06].

metacomputers
[Li05, LCM+06]. metacomputing
[BG+03].

metaheuristics
[ZHO03].

Metaheuristics
[TH11, TH13]. Metalevel
[Zim96]. metaphor
[SK89b].

Metasystems
[GWWL94]. Method
[AC16, BC94, GHH92, KLLL98, PB99, WS97b, XL92, XL95, ZYH94, AST12,
ABC+99b, ATDH13, BFH09, BR91a, BBB+06, CLC+17, CW15, DM17,
GN18, KP05, LR14, Luk85, Mit07, MVP17, MRT18, ORR03, SHL+13,
SMKL93, WCKD06, XWC+08, YLL17, ZBO3, dAMCFN12, PPTY+10].

Method-Level
[AC16]. Methodological
[Bev02]. methodologies
[DMS+16, PGS17]. Methodology
[Ano92a, BJ99, KME92, LR93, MB92, NMS93, PA94, PA01, SK93, CSJ+13,
Che86, DSEP17, GL89, KME89, LdSB+18, MSAZ10a, MSAZ10b, OMT+17, PF91].

Methods
[Bas97, BG90, BR95c, Cas93, FGKT97, GL92, Kap93, KB01, Par92,
SHT+95, Wor93, XH93, BDjQ86, BM08, CEGS07, DKUC+15, EE05, KG04,
LWCC15, PAS15, SWP90, SSZ10, UAPM07, VGAB08].

Metric
[RJA97, ZYH94, KC17, Luc18, SSMS08, Sta17]. metrics
[BSW07, DKUC+15, PARB14]. MIC
[WTWZ16]. Michel
[Ano96l]. micMR
[WTWZ16]. micro
[KKH17, KC17]. micro-benchmarks
[KC17].

micro-clusters
[KKH17]. microarchitecture
[Zha11]. Microarray
[BF13, WSI+03].

microClAn
[BF13]. Microelectronic
[THN+93].

microrobot
[BBMG15]. microcontroller
[FCG04].

Microwave
[THN+93].

Middleware
[BNSP99, GJ90, SB04, AZW13, Ano04d, CTT08, KAS07,
MSAF04, PF04, STDT04, SMPMLVSL11, YK04, dKG+10].

middleware-based
[PF04]. mid-point
[TW15]. midpoint-based
[TW15].

Migratable
[KOW97]. Migration
[AMB95, CLZ00, Lat95, NPP+02, SZ00b, ZYO11, CR96, CLC+17, FMF18,
Gai90, GRJ+15, HSMB01, JTZZ11, LY12, TH08, WMES12, XYKA08].

Migration-aware
[ZYO11]. migrations
[TKX+13]. Migratory
[GS96].

Millenium
[TAS+1].

time [PGP+12]. million-core [PGP+12].

MIMD
[BCF+94, Cj99b, FAGW95, GGW96, GP91, HPSM91, MSC96, OD95b,
PK89, RS90a, Shn95, UR94, VSM96, Vel89, YBM13]. MIMDIX
[MHF93].

MIMO
[AD12, GZY14b, ZY12]. Min
[DP98, CRV94, QN93]. MIN-Based
[ZN93, CRV94]. MIN-Graph
[ZN93]. Min-Max-Pair
[DP98]. mincut
Mini-applications \([BCD^+15] \). Minimal \([CLT^96, SJ^95, SR^90, Xue^97, ZAW^94, MS^15, OMSGNSG^05, SR^88b] \).

Minimization \([OKB^95, THGY^15, JZF^+15, KR^{10a}, Li^17, LZLX^11, QSL^+08, RTZ^11, TFMS^15, VA^07, YWG^15] \). Minimize \([Al^01, SBAM^96, KSG^03] \).

Minimized \([SCJ^+08] \). Minimizing \([KER^01, LZ^05, LO^96, ZWW^17, FSZ^07, TKX^+13, WHS^+18] \). Minimum \([CW^00, DH^94, Li^92, RDL^95, WW^97, BC^06, BPBR^11, BBL^04, HS^12, tH^90, KO^12, KSK^15, IVP^08, LY^10, LMZ^04, OMSGNSG^05, SL^89, WCHW^03, YZL^09, YWW^12, YLY^11] \). minimum-spanning-tree \([tH^90] \). Mining \([GC^01, HK^01, KRS^01, SMT^15, Zak^01, CTT^08, Cuz^11, Cuz^13, GA^08, WD^13, WZ^+13] \). mirrored \([BL^05] \). Miss \([SDS^99, CK^13] \). Misses \([DSS^95] \).

Mitigating \([KMMZ^06] \). Mitigation \([BK^18, WCF^14] \). mix \([Ahn^90] \). Mixed \([CD^97, MRR^+02, ND^99, SV^00, van^96, BK^91, FCS^91, Kal^04, ZZ^+18, ZL^+18] \).

Mobile \([An^01e, BD^00, BN^02, BST^01, CS^00, CCK^+08, DY^01, DL^01, GS^01b, KER^01, LAZ^00, LC^14b, MS^00, Pat^01, PR^97, SM^96, THGY^15, WLID^02, ZR^00, AK^00, AP^03, AH^12, Ana^14, An^04d, AK^06, BWP^+11, BN^03, Bou^03, CS^03, CNS^03, CW^05, CDC^05, CWD^11, DB^08, DX^10, EB^08, EM^11, FCL^13, FCC^17, FP^17, GQZ^18, GRD^05, GZ^14, HKW^05, KERUM^04, Kim^11, Lan^09, LZ^11, LZ^09, LP^05a, LL^10, LC^11, LH^14, Li^17, LL^07, LHT^08, LS^06, MS^05, MX^12, MS^05, MK^16, NSA^11, NM^+14, RB^12, RK^06, RE^17, SN^12, SG^14, SY^04, SG^08, SJ^11, TZ^07, TZ^11, TM^06, TC^13, TY^17, TW^12, VA^03, VR^10, X^10, XG^13, XG^03, YK^04, YC^04, YCC^05, YSS^11, ZMC^06, ZH^13, HC^09, RB^+11] \). Mobile-Process-Based \([SMR^96] \). Mobility \([FC^00, GC^+00, KO^12, BE^02, CK^11, FX^06, HC^09, RK^06, RB^+11, SK^05a] \). Mobility-assisted \([KO^12] \). modal \([AM^11, BW^+11] \).

Mode \([ND^99, WA^+94, BK^91, FCS^91, YZ^11] \). Model \([AG^01, AI^97, AM^17, An^09, BK^97, BA^97, CC^91, DL^98, DK^15, DG^94, DF^94, FTL^92, Gao^93, GS^98, GD^+98, HK^96, HR^92b, HR^92a, JR^99, KSP^+92, KCV^99, MRR^98, MNB^95, ND^99, OB^95, QY^94, SANY^94, SAC^+98, SS^11, SSK^96, WSA^+94, YZ^96, eW^95, AAH^17, AS^16, AZ^11, ASES^15, BB^12, Bi^09, BG^05, CB^+09, CH^06a, CA^13, CXX^+18, CDJ^+89, CRC^+02, DZ^11, DJ^11, DK^14, DRT^07, GJ^12, IE^17, JK^11, JL^11, Kal^04, Ky^17, KC^17, LR^14, LM^17, LF^+03, LZ^11, LTK^10, LA^06, LG^+12, LX^13, MM^06, MMV^11, NSKN^17, NSTM^11, NJ^11, OO^05, RSR^04, RHH^12, SSS^07, SL^09, SK^05b, TR^89, TLL^+18, TJC^10, VHI^08, WW^17b, gWW^18, XYZW^14, YJB^91, ZA^11, dR^09, GB^06, KR^11] \). Model-Based \([KSP^+92] \). Model-driven \([SS^18, ASES^15, LG^+12] \).

Modeling \([AT^01, CR^91, CCM^92, Chi^92, CM^93, CLR^00, DI^01, FM^+94, GHC^+17, JZ^05, JZK^04, KNS^91, LP^96b, PL^14, Pat^01, PMMA^15, QS^05] \).
SSZ10, SAJ13, SMB10, Sta17, Str12, ST05, TGPUC16, TRS+12, Trä09].

WN94, XH91, XMN92, YB01, GH89a, HSMB91, RS90a. Multicore [FSGS17, ABC+09b, BM17a, BSS+13, CN14, CP17, DKU15, FWM+10, FCP+15, GZG+17, KHT+14, KyLPC17, KNNH18, LK13, LLLC15, LM16, MBBD13, ND12, NZ17, PP13, SSFP11, SPZ+17, SP13, SC10, WLST16, WSO+09, PPP14]. multicore/manycl multicore/manycore [MBBD13]. multicore [CRSB13, LCB16, SS17]. Multidimensional [GC01, LS94, RS92a, KT91, LB89, PMV05, QSL+08, SC91a]. Multifaceted [Won99]. multifluid [LM16, GZG+17, KHT+14, KyLPC17, KNHH18, LK13, LLLC15, LM16, MBBD13, ND12, NZ17, PP13, SSFP11, SPZ+17, SP13, SC10, WLST16, WSO+09, PPP14]. Multigauge [LR94]. multigrain [ABC+09b]. Multigrid [MT96, MHC95, PSE+01, IHM05, MRS+14, WH17]. multihop [CDCD05, HW03, ZLCJ12]. Multilevel [BW89, KK98a, KK98b, SKK97, LLSP09, PAS15, SZW05, TK08]. MultiMedia [CCQ+06, ALL99, AZ01, GC95, JSCB95, LBL05, Won99, WUG99, ZR00, AM12a, LVP07, ZV09a, ZVL11]. Multimedia-on-Demand [JSCB95]. Multimessage [Gon98]. Multinode [VB94]. Multipacket [MS94, RR95a]. multipath [LY93, KPR88, OM10, SH98, WGS08]. multiphase [Tw89]. Multiple [ALL99, ADS98, BOSW94, BO5+95, CCCC92, DLP99, FGKT97, GH93, KS97a, KC98, KJ84, KM91, LMEF90, LSC00, NSAS10, Par92, SM94, TSV97, VIS91, VB02, WNA+94, Wan96, AFK14, ACU08, BXA08, BOT13, BFKW13, BSIIH08, BFPK04, Car90, CDS10, CHC05, CCLS94, DMB+03, DKU17, GRV08, IEWK17, JSWLB92, JTZ11, JM15, JP09, JPSW9, KAP90, KS+07, KR87, LUM17, LK15, LLI16, LY10, LPX05a, LD+14, LSWC14, LV07, MVB05, MBW86, PT206, PHS04, SK09, SPRG+12, SI13, SZ03, SRT+18, YB90, ZWXX16, TJCB10]. multiple-bus [MHBW86, YB90]. Multiple-Pass [Wan96]. Multiple-Writer [KS97a]. multiplex [XZGD18]. Multiplexing [AM95, PD92, QMC14, QM01, ZLPP01]. Multiplication [Lag92, Li01, NFEC97, ASES15, CLR90, EL91, ITT04, LV15, MBW16, MP97, PR13, SKH15]. multiplier [MS87]. Multipliers [SRK95, BOI91]. Multipole [HHT+95, YB01, KP03]. Multipole-Based [YB01]. multiprecision [MS87]. multiprefix [Coh90]. Multiprocessing [CDH84, MBK+92, ABC+88, JS86, ZWL12]. Multiprocessor [BW95b, CCL99, CP91, DSR90, DFN+94, GH90, GMM00, HP00, HC95, HN91, KS97b, LVC02, LF92, Lunt94, MF94, MMRS98, MT95, MMV97, MD92, OM90, PL95, PM96, PP92, QY94, RS92b, SEP96, S0h96, WF93, XZ96, ZQ93, A10, AO8M05, BHR91, BR91a, BYG+18, BS92, CRJ10b, DI91, DMS+16, GL89, HDT+05, H91, HC91, JWSG14, KA05, Lee90, LHK03, Li16, LW98, LV07, MaAS9, PK05a, PI09, SK09, SM98a, SYZ007, TS91, YL89, ZNA9, ZQMM11]. Multiprocessors [AMB95, AM95, B399, BS96a, BS96b, BL96, BC01, BLG01, CB95, DS95a, DJ98, DZDZ01, DT92, GY92, GZ97, HJ01, HA92, KSB94, KB96b, KA97, JK98, LA93, MB92, MS98, MG91, NB93, NS97, NPP+02, PH91, PR96, PT97, RL96, RJY96, SMH94, SCM99, SY01, SDS99, SD00, SC91b, TTG95, VSIR91, YW91, YM93, YL98, AP91b, BC05, CLM90, CRJ10a, Cyb89,
Multiprogrammed
[MS98, NSS97, NPP02, YL98]. multiprogramming [DI91].

Multiresolution
[KZ96, ZM94a, CL85].

Multiscalar
[VS99]. multiscale [BFL13]. Multithreading
[BL96, FKT96, KPC96, LK13].

Multiset
[AFS96]. Multistage
[AA95, BETD94, LC96, OM84, PL93, SZB92, TH02, Tze91, U99, WN96, W901b, YWP00, AT91, BJ15, CM04, FZ90, HJ90b, Har91, JBM91, LK90, MVM04, PW16, PW17, SH98].

Multistage-Network
[UR94]. Multistart
[Cza13]. multistep
[GGR89].

multiswapped
[Ste17]. multiswapped
[BJK+96, BLG01, GGB93, GR97, KC99a, Lu99, RNSB96, RSBN01, SAC+98, SSG97, TG99, YM93, ABC+09a, CN14, LLC15, NZ17, SLG06, TP18, TKG94].

Multiway
[SM00]. municipal
[LHX16].

Munin
[Car95].

Muntz
[Ano92a].

MUPPET
[MSS88].

Mutual
[AE95, Cha94, Cha96, DGFGK05, FTC00, GBG93, KY2, Kak15, KU98, NA06, NMN14, SDG17, Wan07].

NEAT
[LST17].

Necessary
[SJ96].

Negotiation
[LL98].

Neighbor
[HA92].

Nearest-Neighbor
[OS96b].

Nested
[DR95].

Netfinity
[BAHP01].

Network
[AA93, AAD98, ABM+92, ABCP96, BBH+97, BCM92, BA95, BC01, BF97, BST01, CGKK97, CW01, Cha95, CW92, DLI97, DSAUM99, DV96, DR18, DBP94, DVM91, DH95, ESMG96, ES12, FFK97, FAM96, FTL92, GR97, GS01a, GB93, HH97, HPT+97, KC95, Kop97, LST17, LS97, LK94, LK10, LK13].
LC96, MM00, MJ94, MSS88, NBSD99, OM84, PN97a, PN97b, Pat01, RCY97, RJY96, SM00, SBAM96, SS95, TSC01, Tze91, UR94, WMG01, ZY96, ZLP97, ZMPE00, ZW00, dBL95, AP91b, AHA+16, ARl17, Ano04d, AF06, AM11, BFH+17, BM14, BCO+12, BXA08, Bat05, BWP+11, BJ15, BAL05, BPA06, CKO04, CMNI0, CMR+18, CKNO7, CLG+16, CDB04, CWL+07, CWP12, Che89, CVJ09, DE01, DYL+12, FK89, Gai87, GJ12, GZMC08, HWWH08, HD10, HWC08, IS06, JF12, JXW06, Joh89]. network [JZK04, KERUM04, KJD03, KMC16, KO11, KO12, KCD08, KRS15, KH12, KO90, KPR88, LT10, LAD+96, LSS+11a, LSS+11b, LB12, LTM+93, LY08, LTI12, LUI14, LYL13, LWCG14, Nap90, NS90, NM17, NGQM12, OO05, PL06, RH05, RCG18, RSL12, SSB91, SS05, STKW12, SY04, SK98a, Sta17, SMKL93, TM06, TDP15, TCHC12, VM95, VHH08, VR86, VRM10, WL11, WW18, WM+18, WGI11, WMA+18, WSS+18, YK04, YLZ18, WZS09, ZY12, ZWR07, dG91, AA14, SLW10, ZCF+17]. network-aware [RCG18]. Network-Based [GS01a, OM84, PN97a, PN97b, CVJ09, KJD03].

network-on-chip [GJ12, LY13, AA14, ZCF+17]. Network-on-Chips [LK10]. network-When [STKW12].

Networking [Ano01e, GCY+04, Bou03, DWYB10]. Networks [AAD02, AZ01, AS97, ABP92, Ann94, Ano92c, Ano93e, Ano00d, AA95, BSS97, BAES92, BCH95a, BETD94, BCD00, BCH95b, CP97, CT96, CS00, CAB94, CS93b, CC94, CS95c, DS95b, DHB02, DP99, DS93, DL01, DF95, DZ97, DC94, FCF00, FT94, GGN93, GPJA10, GK98, GHKS98, GO95, GPS96, GB93, GS01b, HIKM94, yHY97, HLCZ00, HJDH01, HDD+01, JR92, JH92a, JLRA97, JH94, KKG501, KL01a, KRSZ02, KAM94, KB96a, KL01b, KR98, KJ84, Lat95, LBL95, LLY93, Lee94, LL00a, LAZCO0, LPS+98, LWOG02, LHHD+01, LC14b, LP95, MS00, Man94, MLW+97, MSH90, MS85, Mck94, MD97, NRS95, NSS99, NS92, OD95a, Ola01, OO85, Otu87, Otu94, OK01, PR04, PA97, PA01, PL93, Pia01, PKD97, Pra03, QMCL94, Qia97, QM01, RS96b, RP98, RMC97, Ros99, RLS96, SW96]. Networks [Sei05, SZB92, SLP+98, SZ990, SF90, SCD99, Szy95, THGY15, TVO92, TH02, VB02, WM92, Wan96, WR97, Wan01b, WB01, WP92, WAS95, Wil92, WT92, WW90, Yan90, YN92, YM90, YP96, ZZC92, AP91a, ASM9, AGM06, AAD03, AB05, Amm16, AP03, AH11, AH12, AHG12, Ana14, AMT13, Arb89, AYB+15, ABPL17, ALF03, BFG+03, BM11, BCV05, BS07, BGLA03, BS03, BW+11, BOY10, BDQ86, BHR91, BR91a, BPR04, BOP06, Blu87, Bod89, BR91b, BC11, BN03, BJL18, BZL04, BM07, CI03, CM04, CG12, CB15, CC14, CCW14, CNS03, CKNO7, CW05, CS06b, CCK+08, CS10, CTC+10, CRX12, CCG16, CS92, CDR09a, CDR09b, CYZ06, CGG+09, CDC05, CPA+11, CRSB13, CM93, CKM12, CMS04, CT04, CTT16, DF17, DW06, DLL11, DK11, DD96, DMB+03, DGBN14].

g networks [DB08, DBCF13, Dim04, DKM10, DFP06b, DH04, EAL90, EBE08, ESGQ+18, EM11, EDH+17, FCW11, FCML13, Fei03, FY86, FZ90, FCZ+12, FJG06, FKJG08, FMM+08, FVCL05, FD86, FGL+11, FZ14, GHY10,
networks [LR06, LDZ +17, LHKL03, LY10, LNA12, LR03a, LCW05, LPX05a, LW06a, LT07, Li10, LC11, LMJC11, LWLD12, LL12b, LHW14, LSXX14, Li14, LGM18, LS03, LC07, LR03b, LLW07, LHT08, LJC11, LHL14, LDS16, LHP07, Los08, MLG05, MAGLI3, MM04, MAM05, MSM09, MYM09, MYM10, MAPF14, MV88, MPV12, MA11, MSZ05, MCS14, MS88, MVB05, MBR08, MYD +11, MKC +09, MAJ05, MVM04, MVP17, MBO11, MSAZ11, MHBW86, MK08b, NPGV10, NJ91, NSA11, NFHL13, NC09, NMN +14, NZA13, OWK14, OM10, OMSGNSG05, Pak89, Par05, PK05a, PL06, PLY15, Pe90, PCX +11, PCX +14, PSC +16, PKW +10, PW16, PW17, PV07, Pua08, PL07, PMCC18, PB09, RM10, RM11, REK10a, REK10b, RLP14, RFS +12, RKK06, RBP +11, RA11, RHL08, SCN12, SAOKZ05a, SAOKZ05b, SMP15, SB12, SX08, SZ09, SZMK13, SGAC14, SSZ10, SGS08, SKMM04, SK05a].

Neural-Chip [HRG +11, KKK +11b, LHLM14, ALLM11, KK11, MEMEH17]. Neuro [AA93, Ano92c, BST01, CW92, FT192, HPT +97, JH92a, KJD03, Kri92, LWOG02, MM00, MLCFH +18, Mon94, NS92, Phu01, Ram92, TVO92, WT92, ZGC92, eW95, Arb89, FK99, GH89a, Joh89, KH89, OGRV +12, PGP +12, SMKL93, Tor99, TDF15, VM95].

Neutrosophic [MHLZ16]. Neutrosophic-Set [HMR16]. Neutrosophic-Set-based [HMR16].

[BK18, CG17, LK10, MP10]. **Node** [AAD03, HAC17, KKS09, AKBD10, DLL11, DM17, FKLBO8, GM13, KHN17, KVA18, Lai14, Lai15, Lai17, LDS16, PCX+11, PCX+14, RMHR17, TR08, Zah12]. **node-disjoint** [Lai14, Lai15, Lai17]. **Node-independent** [HAC17]. **Node-ranking** [AAD03]. **Nodes** [GP97, NSLK99, SS95, CK91, DB86, LKS14, NM17, SI13, WGS08, XYG07]. **noise** [SFT+13]. **Non** [BH05, TVT+17, BGH+03, BBFN14, BMTK14, CLL09, GOH+13, GRDB05, GTGLSA12, KK10, KR17, Lai86, Li06a, MM07c, MAR05, NKV14, QSO5, WYNL06, ZPK+14]. **non-blocking** [KR17, QSO5]. **non-Cartesian** [GOH+13]. **non-clairvoyant** [Li06a]. **Non-cooperative** [TVT+17, GRDB05, KK10]. **non-dedicated** [MAR05, WLN06]. **non-deterministic** [GTGLSA12]. **Non-evolutionary** [BH05]. **non-first-in-first-out** [Lai86]. **non-functional** [WMY+17]. **non-linear** [BGH+03]. **non-memoryless** [BMTK14]. **non-uniform** [BBFN14, CLL09, MM07c]. **non-volatile** [NKV14, ZPK+14]. **Nonatomic** [Sin95]. **Nonblocking** [JSM94, MS98]. **Noncooperative** [GC05]. **Nondedicated** [Ano97k, YZ996]. **nondense** [WF90]. **Nondeterministic** [CY95]. **nonequivalent** [NJ91]. **Nonexpansive** [Bah00]. **Nonlinear** [AM93, DB86, ESMG96, MHC95, BNBR16, CEGS07, GMMP12, KKK+06, Kub17]. **Nonloop** [Bee96]. **Nonoblivious** [FY96]. **Nonredundant** [Wu94]. **nonscaling** [Zha11]. **Nonuniform** [AA95, LR96, KR97, LL90, OP98, WLR90]. **normal** [ZB03]. **Normally** [TOR+14]. **NoSQL** [Luc18]. **Note** [Ano01-34, Ano02j, Pel95, Num07, Ano04d]. **Notes** [THSS87]. **Nothing** [LT94, PVGG06]. **notice** [PCX+14]. **Notification** [ABP92]. **notifications** [APRA18]. **Noting** [HTL99]. **notion** [LJ86]. **Novel** [GMSS+11, LYCO2, LLCL98, OS96a, CWLD05, CCHC09, CLC+17, COF+17, CSW+17, GB11, Hus17, JDJSJC+15, LTB02, LMJC11, MGS+13, SDG17, SKMM04, WLL16, YF09, ZV09a, ZVL11, ZBR11, ZYW16]. **NP** [BRR01, MPZ09]. **NP-Hard** [BRR01]. **NSGA** [SMO14]. **NT** [BAHP01]. **Null** [DMSH90, BD04]. **NUMA** [FCP+15, LE91, WF93]. **Number** [Ahu97, Ano92a, Ano92c, Ano93c, Ano96l, Ano97k, Ano00d, Bro96, BS96c, CS93b, SS95, ZAW94, DDDN06, FSZ07, HSSM07, IC05, Li14, PK89, Pet18, PH16]. **Numbers** [NS94, Can18, JD12]. **Numerical** [BK95, Ben15, LLCC01, RW01, EF+14, NAK04]. **NUTS** [LK90]. **NVIDIA** [JM15, KME09].

O [AW95, Cm93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, GGD93, GFPC14, JSCB95, JSW92, LTH97, MLG05, NSSS99, NPCC02, No12, WHW+17, WLW09]. **O-Intensive** [EH01a, CkLCK04, CkLCK05]. **Object** [CSSY94, CS95b, DR98, GCB+00, HS00, JRR99, KC99a, LLS93, LTH97, Lop13, SG96, WPKK94, WLDI02, WH97, ACFK07, Chi95, HD10, KC04, LLLC15, LFH+03, LC11, SK90, SCK03, TCS+10, YJB91, ZVO9a]. **Object-Based** [DR98, WLID02, ZV09a]. **Object-Oriented**
object-space-parallel

objectives

objectives

oblivious

oblivious

obstacles

obstructed

obstructed

obtaining

obtaining

obscuring

obscuring

obstacles

obstacles

obtaining

obtaining
THN+93, TBPV00, WLY01, WHT00, YWP00, YMG01, ZMPE00, ZLPP01, CS10, CS92, KK17, KH12, LY13, McAS9, NAK04, PLD14, WG08, dR09.

Optically [DH95, EH01b, Guo94, KM97, MKY+97, QMCL94, GMH+91, TRSS06].

Optimal [AMS94, AH12, AkR97, BNS00, BM+02, BSD96, BOS+91, BOSW94, BHK+94, CW00, CS93a, CA95a, CW92, CA96, DS95b, DP00, DLP99, DT97, DF90, Ede91, FLJ07, FM96, FXW03, FA95, FAM96, FY96, GS91a, HV95, HKMU98, HM01, Ho91, HJD+01, IZ95, JF95, JLY12, JB90, KERUM04, KUFM02, KZ94, LCW05, LL12b, Li14, LO94, LO96, LV88, LS01, MS94, Man97, MW95, Nak95, OS96b, OSZ98, OH02, PM05, PK05a, Pe195, PL94, PV07, PM06, RR95b, San99, San02, SJ95, SZ00b, Sin87, SV00, TR08, WL90, WLY01, WR97, WS95, WS97a, WN94, Wu94, WHT02, Wu03, WLL08, YA11, ZV14, ZWS09, ZW907, oPP00, ANP07, BM04a, BPBR11, BS92, CV90, CMS04, CZ90, DKKV15, Dja04, Gue86, HDJ08, Li10].

Optimal [LH04, LS05, Lis90, LCB16, MD07, MPG17b, NW88, NA13, PY09c, Pe190, PW16, PA04, PLR07, RTZ11, SGR03, SS94, SG91, VS16, VAS13, WC91, WIB12, XWC+08, ZQMM11]. optimality [HV09]. Optimally [TBPV00, GC07]. optimisation [AD12, LL07]. optimising [PVRS17].

Optimistic [HF02, NH93, PW96, SS93, DW03, JML08, QS05].

Optimization [BLG01, CGN+13, CLA+18, CLRW00, DDGK13, FM99a, FC00, HA92, KCRB99, KZ96, KL90, LNY97, MBW16, MC17, OK02, PMAL11, RL02, RNSB96, SMH94, TRSS06, VSM96, WCO+09, ALM+16, ATH91, AF06, ADDB18, BCM87, BNBR16, BDGR13, BHLT14, BYH+17, CMMT13, CCK11, CI86, DJH11, GZG+17, GL12, HVW16, JZZ+17, KA99, KBB+06, KLL87, LL10, LQM+12, LGK+12, MZC18, NS12, Ozt11, QS05, RCG18, Ren11, RRS+08, SS11, SCC+06, SZD07, SK90, Str12, WMW09, WCL+13, WR13, WQL14, WMM13, WSLC11, XH12, XHL8, YWD08, ZZJ+18, ZV12, ZI08, ZWWX16]. Optimization-based [PMAL11].

Optimizations [BW95a, DUSH94, HKT94, KY96, RSB96, ZH99, ABC+09a, CZP16].

Optimize [DRR96, HLJ01, SF05, TdAR18]. Optimized [ABDS02, Bar05, WJ14, Ana14, BKS91, DCO14, Pet18, TW15]. Optimizer [HILLY95]. Optimizer-Assisted [HILLY95]. Optimizing [CC16, CG86, JST12, KRC00, KR06, LMR05, LM16, NCTT09, PGRP17, Sab94, SCB12b, WCG01, WM01, WLW09, WG11, WSLC11, AFNT17, AHA+16, ARM+05, DV13, FMIF18, GYY+14, MSM09, ZGG+14].

Optimum [BHK17, LP96a]. Opto [AA93]. Opto-electronic [AA93].

Optoelectronic [HPT+97, MLW+97, MB93, HNSA07]. orchestration [RCC+11]. Order [AMS94, Bit92, CLZ02, DT97, BCM06, BG05, CB15, GA90, KKW17, KMF+05, KME09, MP87]. Ordered [GS98, HCR12, TS91, CG10, JW89, KKS+12, SW18, Tay05, YLB+15].

Ordering [KK98b, PR97, RS96a, ZB97, CHC05, Zah12]. Orders [SH97, Sta04]. ordinary [GGR89]. Organization
organizations [BW89]. organizing [BFKP04, BZH06, IZ12, KO11, MYM10]. orientations [AFM09]. Oriented [BS90, CYY94, CS95b, Fer92, HS00, SG96, Bie90, BZLI04, Chi95, CTT08, CSW+17, DZC17, DWYB10, GYAB11, HdR13, HRM17, KHW13, KBD05, Kum17, MSSL12, PSGS17, RKK06, SCG10, SFEF06, WWY+18, YJB91, ZC04]. Origin2000 [SSOB02]. ORION [PRP09]. ORN [SK11]. Orthogonal [AR97, JD12, Wu02, GS91b, HC91, SM89a]. orthogonal-access [HC91]. Orthogonally [CP98]. Other [Kap93, Kum17]. OTIS [ZMPE00, ZXP09]. Out-of-Core [BCR96, Raj04, KKB+06, KR11, WJV07]. outcomes [NKSA17]. outer [CTKA17]. Outerplanar [GS99, KW02, TSFZ14]. output [ASR93, GC07, PD92, Ros99, ST02, GS03a, PY09a, ST06]. Output-sensitive [GC07, GS03a]. outsourced [XLC+18]. outsourcing [CXY14]. Overall [LO96, SEP96, XL11]. overcorrect [KG04]. overflow [SCC+06]. Overhead [DR98, JNW96, KS00, BCM87, BD04, CX05, FGP05, LMGLGLG17, SC91a, SZ09]. overheads [DI91]. Overlap [QH96, ALTV13]. Overlapped [Lin93a, KNS91, SWLZ17]. Overlapping [CQ95, Wil92, CHC05, KSG03]. Overlay [PRP09, BHK17, CMMN10, EDH+17, GZMC08, HK04, LSS+11a, LSS+11b, LCM+06, RA11, SB12, XLM+06, YF07]. Overlays [HASB16, ZH07]. overloading [AOMS04]. oversubscription [KKLJ14]. Overview [EMP+96, KS93, ABC+88, SSZ10].

P [ASST05, dR09, PMV06]. P2MCMD [LC07]. P2P [CWLD05, DW12, EDH+17, FZ14, GB11, GJXZ05, LZY11, Luc18, MAPF14, RHL08, Sho09, SZ09, SHLN09, SK11, WCXL11, YCH+10]. P2P-based [She09]. PA [SRT+18]. PA-Star [SRT+18]. PACK [BR96]. PACK/UNPACK [BR96]. Package [HS97, KOW97, XMMN94, CPO+03]. packages [DAB+14, PL03b]. Packet [GHKS98, GO95, JK00, LYL93, LS94, NS95, OY00, PRW94, PV95, RD05, SL97, ZY12, BMIM07, CK13, EKNS17, HBS17, HDMC11, KMF+05, KB10, Nap90, OS04, PY09a, UM17, YSL08]. packet-level [YSL08]. packet-size [OS04]. packet-switched [Nap90]. Packets [GRV97]. Packing [Hwa97, LTW+90, CRD12, SF05, TSFZ14]. Page [LE91, NPP+02, HSSM07, MTM10, TH08]. Pagenumbers [KRSZ02]. pages [Ano96i, Ano97k, Ano00d, CS93b]. Paging [DM99, Li17]. PAHON [DR18]. Pair [DP98]. Pairs [BGR96, TU92, KS91, DCA+15]. Pairwise [GP00, CK08]. PAME [YLZW18]. PaMeLa [GDL+11]. Pancake [BS03, KAM94]. pancyclicity [XHZZ16]. panel [Rob09]. Paper [Ano01m, Ros07, OY13]. Papers [Ano95i, Ano95j, Ano96j, Ano96i, Ano97i, Ano97k, Ano98i, Ano98j, Ano99g, Ano99d, Ano99c, Ano99f, Ano00a, Ano00e, Ano00f, Ano00g, Ano00h, Ano01c, Ano01d, Ano01e, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t, Ano02k, Ano02l,
Ano02m, Ano02n, Ano02o, Ano02p, Ben15, Sni03, Mue13, Phi13, Rob09].

Para [CD98]. Paradigm
[KBD05, RS92d, BAMM05, CVJ09, LK15, MSJ05, Sie16].

Paradigm-oriented [KBD05]. Paradigms
[Ano99g, CEF+95, YMR93, XQ04]. Paragon [CCRS92]. Parallel
[AS93, AGW01, AT94, AGF94, AAL95, ANT02, AISS97, AP94, Als01, AaJ99, Aih97, AF93, AS13, AS95, AH94, Ano92a, Ano93a, Ano96j, Ano97], Ano97k, Ano99g, Ano00d, Ano02v, ASC+18, ABZ95, AKP95, ADM+94, AS94, AD98, ABN93, BK95, B96, BCD95, BBD+91, B94, BOW8, BBH+97, Bal90, BDF92, BGR96, BS97, BGV94, BN94, BB93, BBM+02, BV13, BL94, Bev02, BBH+98, BKCM17, BP95, BEE00, BS90, BHS+94, BDF90, BP95, BR95c, BRPR06, BMARW07, BMRC98, BS00, BTZ98, Bro96, BX93, BDH+97, BA01b, BTG02, BMCP98, BM95, BNSP99, BS09, CP97, CMT93, CP98, CGKK97, COV13, Cas93, CC91, CD97, CDC99, CB99, CKB00, CvdBL+08, CCRS92, CGL+95, CCC90, CS95b, CP10b, CW93, CA95a, CWW+95, Chi92, CV91]. Parallel
[CDJL09, CN93, CP92, Cho93, CH96, CWP98, CB96, CQ95, CRD17, CGA98, CH92, CP94, CA95b, CHGM01, CRFS94, CLZ00, CbCd00, Cuz11, DFFH13, DM90a, DM95, DOP98, DP00, DM92, DRC90, DH91a, DS84, DO89, D94, DDG13, DN94, DSW94, DT91, DSD+97, DBK90, DD95, D97, DJT03, ES96, ERL90, ERA95, EMM94, ELS94, ES97, EHS94, EHNN95, Fre96, FLL14, FZW12, FRW03, FGeF17, FT+14, Fer95, FR96b, Fer92, FMP98, FLS+97, FPS11, FC95, FKKC97, FJ93, FMW+94, Fre96, FT94, GG94, PG94, GCB+00, GGN93, GY94, Ger98, GBR93, GG93, GMSS+11, GJ96, GC01, GSC96, GM95, GSP02, Gra99, GL92, GH92, GH92, GWH06, GNZ18, GK93, GHSJ96, GS99, GRR+05, Hag97, HHH94, HK96, HHH7, HGCC96, Han89, HES11, HB97, HB99]. Parallel
[HP95, HR92b, HR92a, HWC98, HP97b, HN91, HTB98, HR98, IK94, IZ95, IVM97, HJ94, J91, J94, KR97, KF95a, KME92, Kap93, KSA95, Ka92, KK98b, Kan94, KZ96, KKN13, KR98, KB01, KKS08, KE93, KS93, K92, KRS13, KW02, KG94, KGV94, KM92, KA97, KC99b, LSC93, Lan09, LWW15, LP96a, Las12, LMC90, LYY97, LTH97, LJKS02, LS97, LC90b, LAS+97, LPZ99, Li01, LWO02, LLY08, LSS+11a, LST+13, LSH96, LS88, Lin91, Lin93b, LA93, LO94, LLC02, LP97, KL11, LFA96, LKB+15, MB96a, MHL93, Mah95, MS99a, MLC+90, MR94a, MP90, MT96, MB96b, MP93, MSGS+13, MS90, MD98, MZC18, MHC95, MB92, Msd+95, MMAL+06, Mer96, Mil93, Mir91, MB93, MG98, Moh96, MAZ90a, MNK12, MS95b, MB96, MN94, NFEG97]. Parallel
[NMS93, NS97, N94, NT90, NK+97, NH93, Nic94, Nie94, Nik04, NZA13, NS02, NDZ99, NS92, NPY+97, QQ05, OY00, OB98, OY13, OP98, ORR03, OR97, PH91, PD05, PP96, PDP17, PH00, Par98, PE93, Par96, PL03a, PL94, PCX+14, Pl08, PAH+98, PAJC97, PBB+17, PRS14, PFSE+01, QZ94, QH96, QOvdG01, REK10a, RAj01, RSK96, Ram92, RL02, RS92b, Ree84, RW01, RGS00, RPS93, RSL12, RSW90, RIZ90, RJA97, Ros99, Ros07, RW93.
SSG93, SH90, SS96, San98, SM96, SH97, SG93, Sch90, SM98b, SW96, Sch91, SD97, SAF05, SR97a, SR97b, SAC+98, She06, SS92, SSHC00, STN92, Shu95, SGS99, Sil90, SM00, SRK95, SSRV94, SB93, SC95, Ski96, Sni03, SL97, SLKK13, SIR92, SK93, SMKL93, Ste95, SSK96].

Parallel [SWC+91, SF90, SYG92, SS97, Sz95, TH11, Tát11, TSA97, TW87, Ten09, TAS+01, TR96, THBF97, TVO92, TZ00, TK08, TF01, UAP07, Upa13, VSM96, VGAB08, WB94, WCE97, WLY01, WM92, WNA+94, WP0K94, WS96, WTC08a, WMW90, WRW13, WSA+94, WD94, Wee01, Wei98, WMG01, Wei02, WA02, WAS95, WS97a, Wor93, Wi91, WT92, WH97, WHT00, WHT02, XP10, YBX+13, YZS96, YWAT13, YB95, YLI97, YB01, YP96, Zak01, ZHY94, ZK94, ZB97, Zhu92, ZH99, ZM94a, ZO97, ZYO02, ZA91, ACYS08, AKDMN15, Ada17, ALS91, ABV11, AP91c, ATH91, Ara90, AMM+18, AE88, ANP07, AG68, ADDB18, AB13, ACFK07, Bad04, BC05, BCM87, BB87, BBCLO4, BK+15, BM08, BA06, BCF05, BAIH04, BNBR16, BFH09, BS87, BSG90, BR91b, BKMT14, BGM+08, Boz09, BCK+13]. Parallel [BSH15, CK88, CP10a, CTS17, CR91, CDS10, CSMM10, CCE+17, CCS06, CRL04, CE8G07, Che86, CC87, CZZ+17, CLO17, CFJW13, CKWT17, CJ07, CT94, CDJ+89, CL85, C90, CB06, CD95, CK91, CM12, CB11, DFP06a, DRT07, DM90b, DM90c, DQR+09, DUW86, DLW+12, DAG+17, DRR13, DM94, DWHL87, Ebn04, EB13, ESTA94, EE05, E07, FCG04, FG08, FKB17, FCS91, FSD04, FKR+17, FCG+14, GMMP12, GVBB13, GGR89, GS91a, GP91, GT04, GMVRGS16, GWWL94, GAC+17, GS03a, GC07, GB06, HM06, HSS10, HOE+09, HSH10, HD13, HS86, HA91, Hsi04, HSS17, mH14, JT88, JSWB92, JMS86, J05, JJ89, JP09, JZ05, JV06, JZ89, KCR14, KN18a, KN18b, KM03, Koc91, KSSG14, KBC+10, KK86, KS91, KMP+06].

Parallel [KP05, KIH15, LBMR15, LTSS2, LPM+17, LTKS90, LC92, LH04, LS05, LH09, LÜ14, LZZ+11, LGT14, LGL13, LF03, LK86, ME04, Mar88, MV88, McD89, MCT06, MTR+18, Men18, MP87, MMK+11, MAR05, NVK+11, NDW17, NW88, Nie07, NZY+11, NCTT90, OS04, OTK12, PB90, PPC04, PMAL11, PPTV+10, PA15, PK98, PPSV15, PF91, PVPM06, PHS04, Pop91, PF04, PRG88, QJ05, Ra08, RSR04, RD90, Rao16, RAN+17, ROB+18, RG87, Rs09, RSW91, RTCCG19, RB87, SI68, SS03, SBR91, SV08, SB9, SC91a, SS06, SSTP09, Sch14, SP13, SC04, SW05, SF05, SK91, SCMH13, SA08, SK16, SMH+14, Sta04, SGD08, SSD10, SR91, SR16, SDC14, SRT+18, SSGZ13, TM06, TW89, Te86, TRSS06, TS91, Tr09, TLW18, UUG+11, VD04, VS16]. Parallel [VA07, Vis87, WL90, WLL16, WC91, WLV07, WBMT09, WLCZ15, WRHR91, WJD91, WZ91, WIB12, WFS9, WLW09, WGCZ09, XL11, XS11, XZ14, YB91, Y011, YZT09, YBM13, Zha11, ZFL89, ZJ06, ZFW06, ZBW+17, dVC06, dGP06, COP+03, Cza13, FTK14, KR11, Ree84, YW].

Parallel-depth [BP89]. Parallel-processing [Tr09].
[AA93, BMRC99, LW95, Lon04, PDP17]. **Patternlets** [Ada17]. **Patterns** [AM17, GSP02, KS02, LL95, AM13, Ada17, BHR91, BR91a, CTS17, ETS14, HHA14, HKK+18, KIH15, NAK04, RGO8, SPBR91]. payments [CSS11]. **PBS** [GPJA10]. **PC3** [AHG12]. **PCB** [wXH00]. **PCG** [ORR03]. **PCS** [FCF00]. **PCT** [AT03, KDO+13]. **PdCube** [CAB94]. **PDC** [AYB+15, KUM17]. **PDE** [CHR94, GV86]. **PDES** [PW96]. **PEACE** [BNSP99]. peak [YJKD10]. **PEC** [LP95, RS96b]. **Pedagogy** [GAC+17].

Peer

[HBF12, LCCL10, NMN+14, Tmk+17, ALH+09, ABCM07, BCK+09, BAL05, BbB11, CTC11, CKGY12, FJG06, FKJG08, FVCIL05, HK04, LKS14, LC07, LW12, MSZ05, OSL05, SAL10, WXZ05, WGC09, WDDK09, YF09, ZCMY12].

Peer-to-Peer [LCCL10, TMK+17, HBF12, NMN+14, ALH+09, ABCM07, BCK+09, BAL05, CTC11, FJG06, FKJG08, FVCIL05, HK04, LKS14, LC07, MSZ05, OSL05, SAL10, WXZ05, WGC09, WDDK09, YF09, ZCMY12].

[AP91a, Abr96, ABDS02, AP93, ACD+93, ATM01, AYIE98, AH94, Ano92a, Ano97k, AA95, BJ99, BbB11, CTC11, CKGY12, FJG06, FKJG08, FVCIL05, HK04, LKS14, LC07, LW12, MSZ05, OSL05, SAL10, WXZ05, WGC09, WDDK09, YF09, ZCMY12].
performance-constrained [YAK15]. Performance-Driven [CP99].
Performance-portable [MRS+14]. performance/cost [AP91c].
Performances [MS99a]. performing [GA90, VM95]. Perimeter [KF95a, KOA09]. Periodic
[ABr96, BNP98, BBM+02, RDS02, WCF94, FXW03]. Peripheral [MBK+92].
periphery [ABL17]. perishable [GAOHG17]. Permutation [AKP95, CL93, DT97, GT97, IZ95, Oru87, Oru94, QM01, RDL95, TBPV00, WS97a, YWP00, HRJ94, JL05, KO90]. Permutations
[AMS94, BP98, CS93c, JH92b, Kap93, RS94, MR03, VR86]. Permuting [Cor93]. PERP [ZYW+15]. persistent [ST14, TC03]. Personal
[ZR00, HBF12]. Personalized [LHS97, RWK95, Ede91, PW16]. perspective
[HRM17, LNC13, Los88, NXTK17, RBP+11, Wan07]. perspectives
[WH08, PRS14]. perturbation [CHX+17]. Pervasive
[NDW17, KKKP12, Ksh12, Sie16]. Pessimistic [MCM+17, Yan04].
Petascale [SWHB17, WYTX13]. Petersen [SGR03, Petri
[BPJG92, BDF92, Chi92, Fer92, NM95, SP90]. Petri-Net [NM95]. Pfair
[HA06]. Pfair-scheduled [HA06]. Phase
[AT94, DRR96, LC91a, Man13, SNC12]. Phase-Reconfigurable [AT94].
phases [BKS91, SZD07, SSGZ13]. PHAST [DGNW13]. philosophers
[AFN17]. Phi [KVNV17]. PHOEBUS [MB93, KSB11]. Phone
[BN02, BST01]. photon [FLL14]. photon-mapping [FLL14]. Photonic
[APR18, Qia97, RKK97]. Photonic-based [APRA18]. phylogenetic
[FBRW03]. phylogenetics [SPVvH03]. phylogeny [PTZ06]. Physical
[QGB+17, SNMB16, WH97, BC11, BPA06, CSW+17, DZC17, FD86, HMR17, JWH+17, KNS06, LLWC17]. Physical-aware [SNMB16]. physics
[CP10b, GTN+06]. PIC [SDG08, YBX+13]. Picture [HHM94]. pictures
[LSZJ15]. pin [AP91a]. pin-out [AP91a]. Ping [LF92]. Ping-Pong [LF92].
PIOUS [MS96]. Pipe [KSL85, SD88b]. Pipeline
[DT97, DF94, VSM96, BR08, JS86, PW17, ZWR107]. Pipelined
[GÖÖ16, GMI+91, KSL85, KL84, LPZ99, MP93, PH91, Pov99, RFM94, RS92b, SG99, SY00, TG03, dR09, BDGR13, BPP05, CCK88, DS04a, Gao86, Gao89, th90, KM88, KSG03, LHHH11, MP08, PYF08, SD88b]. pipelined-loop-compatible [MP08]. pipelines [JP09, WG11]. Pipelining
[LYC02, MK92, WGCZ09, DF90, JS86, KR06]. Pivoting
[mYyF92, ADV14, Vel89]. Pixel [Tay02]. Pixels [HPT+97]. Placement
[CB99, HJD+01, FMIF18, GM14b, ISAZ10, KL05, LE91, MTM10, PFJ04,
precision [BGBC16]. Precluding [Yen01]. Preconditioned
[BSGM90, CP10b]. preconditioner [GLW14]. preconditioners [SZW05].
Predicate [TG04, Yen01, AMK+07]. Predicates
[CK97, GCKM97, RS92b, Ksh12, SKK14]. Predictability [SB12].
Predictable [CKK00, SB12]. Predicting
[FFK97, Lam99, SSG93, SZD07, SFT04, Wei02, BCD+15]. Prediction
[ASKO16, Ano97k, AYA+15, CTD99, KL01b, PH00, WDS+18, WWA+18,
YZ96, Y196, ARVZ14, CDB04, CXX+18, CXQ+18, DZC17, DKC14, KVA18,
LGZ+10, LC14a, LKM12, MVP17, PMO11, SM08a, SK05a, WWY+18].
Prediction-based [AYB+15]. Predictions
[DD95, XZ96, LSH+13, NVK+11]. Predictive
[DSW94, BYH+17, RKK06, SNMB16]. predictor [GGR89].
predictor-corrector [GGR89]. preemptable [LQM+12]. Preemption
[MS98, SB12]. Preemption-Safe [MS98]. Preemptive
[GAGPK03, JTZZ11, Mar88]. Preface [Ano01-33, Ola01]. preferences
[WMY+17, WTY+18]. Prefetch [SD00, Zha11]. Prefetching
[BL96, KS97a, LY98, LY01, MG91, SMH94, SG99, SD00, HD10, HA05, LAK10].
Prefix
[HJ01, MP93, San02, AFM03, BS03, EB13, Han89, LH04, LS05, LH09, SPH13].
prefix-based [SPH13]. Pregel [XYZW14]. Preliminaries [NB93].
preprocessing [FSZ07]. Presence
[ADS01, LT96, HZA+15, ISM07, RLH03, SAOM03, WE13, WSLC11].
preserved [SWW+17]. Preserving [NA02, CXY14, JP09, OMSGN05].
pricing [GRDB05, ZY12]. primary [AOSM04, BBS03]. primary-backup
[AOSM04]. primary [YL90]. Primitives [FAM96, AF17, BHH+17].
Principal [AHG12]. principle [GXY13]. Principles
[KA07, DAF+17, FK89]. Prior [KH+17]. priorities [BSMH08, KSS+07].
prioritized [LASS15, LW89]. Priority [BM97, BTZ98, Joh94, JNW96,
KB96b, San98, TF92, FC90, HM06, MAKWZ13, MM07c, SR16, ST05].
priority-based [MM07c]. prism [Ros85]. Privacy
[CXY14, BJL18, LLDL15, LZSL06, SWW+17]. privacy-preserved
[SWW+17]. Privacy-preserving [CXY14]. Private
[REK10a, REK10b, CKMP17, LTWW12, RFPAGO8]. Pro [KV10].
Pro-active [KV10]. Proactive
[RLH03, XTLL14, WAMES12, DW12, FX10, HOVC09, SZ09, WWY+18].
Probabilistic
[CWL+07, DM92, SCMS12, ESCV15, JHPL13, MK08b, SU87, WMG13, ZA05].
probability [DJI11, GXY13, KNS06, LNAL17, LXLS12, NGQM12].
probability-based [GXY13]. probe [ZFWF06]. Problem
[AS95, AM93, ASST05, BSH15, CLRW00, CRFS94, GP00, HH01, HC97,
Kau94, KBC+01, KLZ97, LF92, NW88, RDL95, TU92, TZ00, WH97, Zia92,
AY89, ANP06, BGMV15, BB85a, BSG90, BFG04, BF06, Boz90, DBA+18,
DM90c, EE05, FZW12, FMM+08, GT04, HSSM07, Hsi04, HC11, IHR05,
Joh94, KS91, LM05, LSS88, LWR+03, LYL08, LCL10, LS91, LH09, MGG03,
Ngo06, OA10, PMV05, PBS08, PDB13, Sch13, SU87, Sta17, WLL16, WCEA10, WZ91, WMG13, Cza13. problem-size-independent [LH09].

Problem-Solving [KBC +01, LWR +03]. Problems [Ano96i, Ano99g, ADS01, BK95, BOS +95, BEE00, BGOS95, BMCP98, CB95, DS02, ESMG96, FR96b, FR98, FT94, GL92, KL01a, LSH96, MS94, MP96, MS99b, OR97, RS96b, Ser97, SN93, Ten90, TF01, WM92, WLR90, WHT02, WH08, ATH91, AG86, BGH +03, BS03, BBd90, CMMT13, CEOS07, KJD03, LW06a, Lin91, Los08, LGG08, LV88, MPZ09, Men18, Nik04, PPSV15, WRW13, WMG13, YS11, ZTFK16]. procedural [Kan05]. procedure [Kub17]. procedures [DWHL87]. Process [CCM92, IAS +92, Kar95, KSP +92, KOW97, Qia97, Ric98, SMR96, SS93, SF90, Ara90, Bic90, Gai97, Gai90, HR +11, Lo92, MEMEMH17, SDG17, TKX +13, WMES12]. process-and-data-decomposition [Ara90]. process-level [WMES12]. process-oriented [Bic90]. process-time [Lo92]. Processed [SJS11]. Processes [DZ97, VWHL96, BFTV87, GK15, MAR05]. Processing [AyJ93, AK93, AGWY11, CS95b, DDK13, Eme13, GC95, GLGLBG12, HPT +97, HSJP87, HR90, IWM97, KSL85, Kri92, LW97, LS97, LS85, LT94, MS90, MT85, NSM98, NMS93, OY13, Ros07, SH90, Sni03, SD88b, SSK96, SWC +91, TAS +01, THBF97, VB02, Wee01, WRC +02, WSS93, Wei98, WA02, YL12, YLM94, YM94b, AAA +15, ATD13, AM11, BB87, BK13, BHS13, CC08, CLA +18, CRL04, CCN06, CM12, DFLO17, DW04, EKNS17, GSWW04, GWWL94, HBS17, HR89, JMS86, JKD +15, KL98b, KNS91, KKN13, KN9a, KN18b, Lee91, LB12, LKB +15, MTL +18, MS86, NLB +18, PYP +10, PH90, PGP +12, PVPM06, RCG18, Ren11, RAN +17, RG87, RTCG91, SCB90, SIY14, SS18, SK89b, Sto87, SCLL10, SI13, SA90, TZH +06, Trä09, WW07, Wan07, WJD91, WL10, XHY07, XQ04, ZMCP11, ZHH15, Ano93a, PRS14]. Processor [AW95, AERBL92, Ann94, BG86, CW93, CWW +95, CkLC04, CkLC05, DY99, DDD98, GW99, Goe94, Guo94, HO94, Hwa97, JB98, KF98, KF90b, KBG92, LS91, MS +95, Moh96, MN98, MBK +92, NS97, OS98, Par96, PT01, RKK97, SS93, SHC93, SS97, WCF94, YD98, YL98, ZHU92, ZYO02, ACYS08, Bat05, Bod89, CL88, CL85, DK11, Deh90, EI07, Gru85, HK08, HA05, Kri91, KR87, Lee91, LC13, Li05, LY13, MM67b, OT86, PLD87, PR13, RR05, RLH03, SIE6, SIE9, SSM89, SHL +13, SSK91, ST85, SAJ13, SE15, TR08, TdAR18, Wi92, XP10, YBM13, LTKS90].

Processor-efficient [LS91]. Processor-embedded [CkLC04, CkLC05]. processor-in-memory [HA05]. processor-node [TR08]. Processors [CMS92, DBKF90, GR96, Hag97, HQPT99, HHB93, JR95, LPU97, MP96, AR17, AJHcC90, BM17a, BD05, Bat05, BB5b, BR91b, CBM +08, CN14, CK11, CkK +13, CRB13, CK91, DDG +17, DPRW85, DWYB10, IC05, JJ12, JHF +17, JZF +15, KK88, LV15, NS12, NZ17, PK89, SP +17, SNMB16, SC91a, SP13, XTN12, ZXB14]. producer [KK11]. producer-consumer [KK11]. Product [AAD02, GE94, MSC96, CI03, Dim04, Dja06, ISAZ07, ISAZ10, JD12, MSAZ11, ST85]. Production [BB +91, HKT +91, KM91, KM92, Nie94, Sch91, DM90c, GF89, HS86, SM86, TDBL13]. productivity
Products [ANS97, WLD00, CP10b]. Professor [Ano04r].

Profiles [YWAT13]. Profiling [BST01, KC17]. Profit [LWZZ12, AM06, KSSK16, ZV12]. Profit-driven [LWZZ12]. Program [BDF92, BE95, DBP94, DD95, ERL90, Fer92, FJ93, GSG+93, LSCA93, LMCF90, LAS+97, MDD97, MiH93, NBM93, PP96, PS01, RRS+08, SH92b, The02, WF93, YB01, ZYH94, GJG88, Kan05, RM90, ESA03].

Programmable [AC89, HHA14, MM07b, PYP+10]. Programming [AT94, AM93, BB93, BCR96, BLG01, CMT93, CDY97, CGL+95, CMS92, DR98, dADB96, ERA95, Fah96, Gup92, GHSJ96, HLJ01, Kar92, KY96, LP97, Lum94, Lun99, Mah95, Mi92, QZ94, QH96, RAJ97, RW93, SKR93, SG93, SSHC00, SK93, TR96, TG97, YI96, ZN01, ZH99, Ay09, Be90, CC16, CAK13, DeG88, FKB08, GÖÖ96, HK08, HS03, LPK+10, LC92, LZZ+11, McD89, NCT+07, Nic07, Pop91, SkM13, THSS87, ZXB14]. Progressive [RGS00, YIY97]. Project [BSH15, FCO90]. Projection-Based [HSJ87].

Projections [KM03]. PROLOG [SS97]. Promoting [ABCM07]. Prone [DDG+17, GY15, MFV08, OWK14]. Pronto [PF08]. PROOF [YJB91].

Proofs [AP16]. Propagation [CDP95, DF94, AAFV04, BEN12, CKN07, CDB04, KMMZ06, PLR07].

Protein [FGZ03, GZ08, LLY08, LV07, NQ06, WDS+18, YLI].

Protocol [BMMS01, BHK17, CKL99, GRS97, GS96, GS01b, HP00, KUW02, KB96a, LL98, Seb95, The02, AMT13, ARD14, ALF03, BOY10, CL03a, CCHC09, CS08, CL09, CHC05, EBE08, Eri88, EDH+17, GCS06, GZy14b, HLS12, HZDP12, LS06, Lun90, LM09, Mcds+06, MAGL13, MPG17a, NPGV10, NSA11, PGS06, SMPMLVLS11, TLY12, WCC18, ZPI06, ZWS09, ZLCJ12, SJS11].

Protocols [AS00, DS95a, Doss99, Doss95, GS00, HN02, KCD95, AP03, BW89, BSW07, BPA06, BIL18, CXY14, CBO6, CDAN14, FW05, GS03b, JBY+05, KLP10, LPX05a, Los08, MAM05, MMCL+17, MS15, OSL05, RFS+12, Seb01, VA03, WTC08a, WTC08b, WCY08, mYA91].

Proton [KDO+13]. Prototype [CSS94, KYL05]. Prototyping
Provable [KMP+06]. Provably [DP99]. providing [Zah12]. proving [SHSH17]. provisioning
[JA91, KM17, Kim17, MZC12, MCZ14, NF16]. proxies [TC04]. Proximity [OSZ98, CJDC10, SX08]. proxy [HC09, KERUM04, ZVL11].
Publisher [Ano04d]. Pull [DLLL11]. Pulse [ZLP01]. Purdue [SAB+92]. Purpose [GBF+92, CBM+08, CW15, KL08b, LCB16, RGD03].
[SPvH03]. PVM [KOW97, LDCZ97, SKH96, WAS95, ZP106]. PVM-Based [WAS95]. PVMe [BR95b]. Pyramid
[DS93, RL95, Tan84, LW90, Ros85, WW04]. Pyramids [NPI+96]. pyrosequencing [SPRG+12]. Python [DPS05, DPSD08].
QAP [BMCP98]. QC [ACYS08]. QC-2 [ACYS08]. QCD [IBP08]. QoS
[BOY10, CS08, CKML12, DMB+03, D06, Kim11, Kim17, KKK+11b, LL07, LJI+11, MS00, NP09, OY00, SJ12, TBHA07, XHY07, XG03, YSL08, YJKD10]. QoS-aware [CKML12, LJI+11, NP09, YJKD10]. QR [Kau94].
QSM [RGD03]. Quadratic [Cza13, WNA+94, MP88]. Quadrature [MD92]. Quadtree [IK93, WF90]. quadtrees [HR89]. Qualitative
[Buc92, WMY+17, WT+18]. Quality
[LAZC00, NZY+11, AH11, AH12, DV13, FC14, LNA12, SS08]. quality-aware [AH12]. quality-of-service [LNA12]. Quantifying
[AFFV04, FX10, LDCZ97, Nik03]. Quantitative [Buc92, NBM93, YZW+15, GXYZ13, KC17, MMAL+06, WMY+17, WI+18, ZI08]. Quantization
[ZCK+02, Nic88]. Quantization-based [ZCK+02]. Quantized [FKB17].
quartet [SPVvH03]. Quasi [AB05, Nik04]. Quasi-perfect [AB05].
 quasi-threshold [Nik04]. Quasirandom [Bro96, CJ07]. queens [AY89]. queries
[BBCCQ13, CI86, LSZZ15, LKB+15, PAG+18, RHL08, SSKS11]. Query
[AyJ93, CS95b, DM92, HASB16, SK90, PRP09, GB11, JHL+18, KSI04, KKN13, NSAS10, SCLL10, WL10, ZHT16]. Querying
[TT10, DTK11b]. Queue
[BTZ98, CLT96, Jel94, R092, Che90, CP04b, ESGQ+11, ACYS08]. queued [PY09a]. Queueing [dG91, HM06, KS03, MGRRK14]. Queues
[BM97, BCLR96, Kop97, PD92, San98, FC90, ST05]. Quicksort
[BX93, CV91]. quiescent [MRR07]. Quorum [NM02]. Quorum-Based
[NM02]. quorums [BJPPM+08].
Radio [CGKK97, CDB04, CCS06, FCZ+12, GPT06a, GDCC18, GDL+11, KK06, MKC+09, RFS+12, SSZ10]. Radio-wave [CDB04]. Radiosity [SHT+95, YIY97]. Radix [BVBO2, BDKM94, LJKS02, MG09, MRT18, VAS+13]. Radi- [BVBO2, BDKM94]. radix-4 [MRT18]. RAFT [MYD+11]. RAID [CT93, TTH12]. railing [PKW+10]. Raking [BCZ95]. Ramos [DBLB+12]. Ranch [LMP10]. Random [Alu97, BA01a, BBS13, PK89, SR97a, SR97b, SLP+98, SS97, AGMS16, BBFN12, BCK+13, DJH11, Li06b, Li10, Pet18, SMP15, SCMS12, SKK91]. randomization [CJ07, FF10]. Randomized [AFM09, BDF01, CDCD05, HBJ98, HT06, LW06b, MVM04, RR95a, Raj96, San08, Vis87, Bad04, DJT03, SK05b]. Randomly [SS96]. Range [SIR92, GB11, KKN13, MKM16, PARB14, TDC05, YWAT13]. range-free [MKM16]. ranges [CYZ06]. Ranking [SGS99, AAD03, Vis87]. Rapid [PRHB06, CL85, XSYG18]. rapidly [Li10]. rare [BV13]. raster [Wri91]. Rate [MO97, OJP+18, RGS00, ¨UD96, AGWY11, Hu11, MAHKZ12]. Rate-based [OJP+18]. Ratio [MO97]. Rational [GM95, KM88]. Ray [RGS00, CDB04, CS17]. Ray-Tracing [RGS00, CDB04]. Raynal [Ano96l]. RC [VV90]. RCC [HH97]. RCC-Full [HH97]. Re [FVCL05, LMJC11, PRHB06, RCG18]. re-authentication [LMJC11]. re-engineering [PRHB06]. Reachability [CCM01]. reaction [XLHT13]. Reactivation [CW93]. Reactive [DL800, OOSGVG+16, HPT07, NPGV10]. Reactor [KKSO8]. Read [IRRS16, AM12b, CH06a, CG10, GNS09, IR12]. read-dominated [AM12b]. read-modify-write [CH06a]. read-write [CG10]. Read/write [IRRS16, GNS09, IR12]. Reader [JBP00, HV09]. readers [FKKR16]. reads [SPRG+12]. Ready [JM00]. Real [AAL95, AK93, Ano92c, BPJG92, BA96, BA01b, CS93a, Cha94, DJ98, EMP+96, GMM00, JH92a, KS97b, Lee03, LTY96, LM96, LML+10, MMRS98, MMVR97, Moli97, MSST99, OY00, PS93, RDS02, RU99, RA96, STN92, THBF97, WL02, Zim96, van96, AOSM04, AOSM05, BW08, BVG14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, ED005, FC14, GZG+17, Gos90, HOVC09, HA06, HV13, HL07, JWX11, JZZ+17, JHL+18, KKW17, LHK03, LZCY09, MLDG12, MAM05, MAKWZ13, MVP17, NA06, QJ05, RLH03, TZH+06, WL05, XO05, ZZZ+18, ZHH15, ZB03, ZQMM11, ZHLQ12]. Real-Time [AAL95, AK93, Ano92c, BPJG92, BA96, BA01b, CS93a, Cha94, DJ98, EMP+96, GMM00, JH92a, KS97b, LTY96, LM96, MMRS98, MMVR97, Moli97, MSST99, OY00, PS93, RDS02, RU99, RA96, STN92, THBF97, WL02, Zim96, van96, Lee03, LML+10, AOSM04, AOSM05, BVG14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, ED005, FC14, GZG+17, Gos90, HOVC09, HA06, HV13, HL07, JZZ+17, JHL+18, KKW17, LHK03, LZCY09, MLDG12, MAM05, MAKWZ13, QJ05, RLH03, TZH+06, WL05, XO05, ZZZ+18, ZHH15, ZQMM11, ZHLQ12]. realistic [KNS06, SJS11]. RealTimeTalk [EMP+96]. rear [CQ+18]. rear-end
rearrangeability [DD96]. Rearrangeable [CS93c, HJDH01, FY86, Pak89]. Rearrangeable [BVB02, GL92]. Reasoning [PS88, Ste95, eW95]. recipients [Ros07]. reciprocal [SL90]. reciprocity [HBF12]. Reclaiming [GMM00, MMVR97]. Reclamation [HMBW07]. Recognition [BMRC99, RGU08, SP96, PD05, RK18]. recommendation [COF17, WTY18]. recommender [HWL18]. reconfigurability [ZXYO11]. Reconfigurable [AT94, BAGS95, BSE96, BBR94, BM97, BA95, BGOS95, COS+95, CGG+09, DS01, EL97, EH01b, FZVT02, HQPT99, HCWS94, JP95, JS94, JB98, KS90a, LS95, LPZ99, LR93, MD01, MG93, MT97b, Nak95, NS94, ORWT+18, OS96a, TVS97, TBPV00, WHT00, dR09, AM13, AHA+16, BM04a, BPP05, CDJ+89, DS04a, FX06, HZL18, HPSM91, Lla17, Mat06, MP08, PPP14, PVG09, SI89, SL89, TRSS06, TJCB10, WJD91]. Reconfiguration [CGA98, QMCL94, UR94, YTR94, BAPR91, DDBL+12, HBS17, JWSG14, LBMG15, LHX+16, PSPR05, ZBW+17]. Reconstructing [BDG+15, OOW95]. reconstruction [BDRB14, FCG04, FGG08, HES10, KM03, OGRV+12]. reconstructions [SHT+08]. recoverable [ZSCX18]. Recovery [CP01, FCF00, FGG08, HES10, KM03, OGRV+12]. Redaction [SC10]. redirect [ACCP12]. Redistribution [PT97, RB96, BBB+06, GP05, KNHH18]. Reduce [KL90, SD99, CRD12, LMGL17, LMR05, LM90, MP08, PY09c]. Reduced [AP94, CC97, Gro85, HJ90b, LC13]. reduced-instruction-set [Gro85]. Reducible [DH94]. Reducing [BCM87, BD04, FGP05, GS00, IIH16, PB90, SS93, CK13, CX95, RBW+13]. Reduction [PA97, RJY96, SSG93, SM92b, BV13, Li17, LS88, Sch87, SP93, ST08a, YAK15]. redundancy [BM17a, RMHR17]. Redundant [CTK11, MT93b, MFS93, MFS96]. RedoxSTM [PGRP17]. Reevaluating [SC10]. Reference [KS00, CH06a, FPP06, SPRG+12, WL92]. references [SYYU07]. refillable [ALH+09]. refined [Mit07]. Refinement [FLS+07, NA02, ASC+18, DAB+14, GA16, GNZ18, Mit07]. refinement-tree [Mit07]. reflectance [YWAT13]. Reflections [Zim96]. reflective [KKK12]. reformulation [LHT08]. refresh [OPG08]. Region [CRFS94, WLR90, DDNS06, MGG03, TYH09]. Regions [GS01b]. Register [JP90, YPCW16]. registers [GNS09]. Regression [HK01, MZZC12]. Regression-based [MZZC12]. Regular [KBB92, NIR86, SZB92, SS92, SS95, TC96, TL96, El07, Hal05, Lee90, Li10, WG08]. Regularizing [SSKC15].
Regulated [PD92]. \textit{regulation} [RSCQ17]. reindexing [DQR +09].

reinforcement [HHK15, OPR18, TXLL14, XRB12]. \textit{ReKonf} [PPP14].

Relabel [AS95]. Related
[Ann94, Do97, JR92, Man94, MS99b, OD95a, BBFN12]. \textit{Relating} [TJCB10].

Relation [HCR12], relational [TR16]. Relations
[O085, CG86, CC87, KLP10]. Relationship [MDD97, XS11]. relationships
[CRWX12]. \textit{Relaxation} [MHC95, Tor89, ATDH13, RS08]. \textit{Relaxing}
[KKW17], \textit{relay} [LR03a], \textit{relaying} [TBHA07]. Release
[KCDZ95, LTWY95]. \textit{Reliability} [BDGR13, GP93, GST09, HHC98, MT93b, TLLV10, AH06, HHK15, JST12, KHW13, MSM09, QJ05, TLQS12, TTH12, TWH09, VRM10, WWW17b, WWY +18, XS11]. \textit{Reliability-aware}
[TLLV10]. \textit{reliability-driven} [QJ05, TLQS12]. \textit{reliability-oriented}
[KHW13]. Reliable
[AAH17, BG05, DM99, GS01b, KGN89, LHP07, MPS16, Tze93, AA16, ACPT15, HOVC09, KSI04, KL05, MK08a, MRRT07, OWK14, ZW13]. reloading [BBS13]. \textit{Relocation} [YCY +00]. \textit{ReLog} [ZTGL17]. \textit{Remapping}
[OR97, ACFK07, FXW03, YGZ +10]. \textit{Remappings} [CA96]. \textit{remark}
[PMV06]. \textit{Remote} [DM99, KS00, WMG01, BVGV14, BBB +06, CH06a, Lon04, MSJ05, WGCZ09, ZWR07]. \textit{Remotely} [DAUM99]. Removal
[KK95, SSL04]. \textit{Renaming} [Gil94, AP16]. \textit{Rendering}
[Tay02, WS97a, ACFK07, FLL14, WJ07]. rendezvous
[DHJ11, MP15, PHS04]. \textit{renewable} [AK18]. \textit{Rent}
[Oza04]. \textit{reordering}
[LMGLGL17]. Repartitioning [NNM98, PP96, SKK97, CB +09].

\textit{Replacement} [CKL99, BV13, YCC05]. \textit{Replay} [ZN01, NRM +09]. \textit{Replica}
[RAB08, GM14b, WL08]. \textit{Replicable} [AMM +18]. \textit{Replicas}
[HJJ +01, TR16, ZWS09]. \textit{Replicated}
[JSM94, LO96, RJKL11, STA12, ASB18]. \textit{Replication}
[CA95a, JRR99, Li99, MD13, ARDQ18, DS04b, KA08, KR12, LA04, SZ09, WW12, WWW17b, ZWL03]. \textit{replication-based} [WWW17b]. \textit{replications}
[ZV14]. \textit{Report} [FCO90, SAB +92, Kum17]. \textit{repositories}
[KUA07].

\textit{Representation}
[CJ99a, TLW94, CJY04, EHS04, JZ05, VOS94, WF90, Wri91].

\textit{Representational} [EB94]. \textit{representations} [BHR91, NCTT09].

\textit{Representative} [BW96]. \textit{representing} [BR91a, NAK04]. \textit{reproducible}
[PK05c]. \textit{reprogrammable} [LLY15]. \textit{reprogramming} [MAGL13, ZTG17].

\textit{Reputation} [HC15, LS01, SL06]. \textit{reputation-driven} [LS10]. \textit{request}
[XHY07, ZV14]. \textit{requiring} [XO05]. \textit{Requests} [TSC01, BPRG04]. \textit{require}
[AF17]. \textit{Requirement} [DDD98, HV13]. \textit{Requirement-aware} [HV13].

\textit{Requirements} [CZPP16, DÖ06, MVM04]. \textit{rerouting} [JSWG14]. \textit{rescue}
[WWA +18]. \textit{Research}
[AN001-34, GLW14, Kum17, MLZY17, WZ13, Hua17, Lan09, LZ11, PGS17].

\textit{Research-oriented} [Kum17, PGS17]. \textit{reservation} [KK06]. \textit{reservations}
[CRH11]. \textit{Resettable} [AKD06]. \textit{Resetting} [YH97]. \textit{Residual}
[DRR96, SR95]. \textit{residue} [DPRW85, PH16, Tay87]. \textit{resilience} [WX05].
Router [DRSB01, PIB+01, MBRO8, MYD+11, XYKA08, CCQ+06].

Routers [CP01, CP04b, ZCF+17]. routine [IBP08]. Routing [ASH+01, AZ01, AaJS01, BLPV95, BPvW96, BP98, BA97, BA01a, BW95b, BDF01, BN03, CRV94, CL93, CW01, CS10, CL96, CC94, CLT96, CCR94, CS93c, CDF01, CG02, Dof97, DG94, EL97, GG01, GHKS98, G095, GT97, HCWS94, HJDD01, IM00, JR92, KLLL98, LS94, LTWY95, LTY96, Li92, LMF95, LEB98, MS00, MS94, MW95, MR03, MJ94, NSSS99, N95, OM00, PRW94, Pa96, PA97, PA01, PL93, RS94, RS96b, RH05, RO92, RR95a, RW97, SJ95, SJ96, SB02, SZ92, TBPV00, WLY01, Want96, WN94, WLD00, YBOY97, PRP09, AA14, AA16, AD10, ABE+14, BSW07, BOY10, BR91b, BPA06, CI03, CL03a, CC14, CS06b, CS08, CDD05, CM12, CAF+11, CL90, DMB+03, DJH11, EB09, G010, GD+11, GAGPK03, GLD06, GTGLS12, HNSA07, Hu11, HL07].

Routing [WIKC97]. row [Mat06]. row/column [Mat06]. rows [ST87].

CAB94, CLV95, CBdCD00, Cou93, DA97, DD93, DKRC+15, DM04, DSW94, DFRUC99, DSD'97, DT92, DM94, FR96b, FPS12, GH02, HA92, JI92, KA03, KP00, KH92, KC94, KGV94, LZ02, Li01, LWP02, NKC'97, NRM+09, NPY+97, PA94, PGP+12, Pra93, QGB+17, RBA+18, SMH94, SN93, Sun02, SFC17, TFMS15, TCS+10, WPKK94, WW96, XMKM94, ZMPE00, ZB09, ZLS17, AKDMN15, ACPT15, ADDB18, BGM08, CGL+14, CS08, CAK13, CJ17, CD95, DKKV15, DS04a, FPS11, GZ97, GM13, GREC91, HSY10, HWC08, KHT+14, LH03, LC07, LB09, MK08a, MVP17, NKK16, ND12, SSTP09, Ter16, TCHC12, WCEA10, XCS03, XQTV12.

Scalar [VH93, SKH15, Sol13]. scalar/vector [Sol13]. ScalaTrace [NRM+09]. Scale [ABDS02, BMCP98, FZVT02, GK93, HHM94, KL84, LK98, MYM10, OK01, RFM94, VN93, ACCP12, BM16, BMB+08, BMF05, CC16, CLOL17, DB11, DBCF13, DLW+12, IEWK17, KESA07, KSSL16, KBC+10, LGZ+10, LYL08, LZY11, Luc18, LWCG14, NAB+11, PTZ06, RW02, SFT+13, VM03, WCW017, WLNL06, WBRT13, XHY07, YZW+15, ZV09a, ZVI11].

Scale-free [MYM10]. Scaleable [BMRC98]. scaled [KNHH18]. Scaling [CVK+18, SSS07, TBVPV00, YFS+15, FKLB08, FZ14, Num07, YO11]. Scan [KB96b]. scanners [CCN06]. scatter [BM04b, LMR05, dSAJ15]. scattering [DB86, LPLFMC+12]. scatternet [SLWW05]. SCC [LTG14]. SCDN [SLW10]. scene [OGRV+12]. schedule [KSG03]. Scheduled [LB90, HA06]. Scheduler [NPP+02, HDJ08, HHA14, KS03, LS10, LB09, SCG10, ZLWZ18, MSK+16]. Scheduler-Activated [NPP+02]. schedules [CDR12, Dja06, DQR+09, ZXYO11]. Scheduling [AGF94, ALJ99, AMN00, AGG98, AS97, AYIE98, AKPT99, AhHeC90, BPJ92, BD05, BPN90, AGG98, AS97, AYIE98, AKPT99, AhHeC90, BPJ92, BD05, BPN90, BeC96, BD11, BCLR96, BSH15, CDY97, CL91b, CLL90, CJS99a, DA97, DR95, DDD98, DP99, DS46, DAYA02, DÖ06, DJ98, ERL90, ERA95, FAGW95, FVLB09, FR92, FR96a, FKSW97, GaI90, GR96, GY92, GM99, H904, JSCB95, JSWB92, JR95, JZF+15, KS97b, KKB96b, KA97, KA99, LPUG97, LYC02, Lun94, MMR98, MAH95, MD13, MS4+95, MSSE02, MYD95, Moh97, MSST99, NSSS99, OH02, PK08, PR12, PAM94, PS93, PM96, QM01, RR99, RAN+17, SCMB90, Ser97, SH92a, dSR00, Sta04, SD88b, SYG92, TSC01, TTG95, VB02, VWH96, WCF94, WSRM97, WA02, WUG99, YI96, YWDQ08, AL04, ALM+16, AAD10, AOSM04, AOSM05, ALLM11, AH12, AM12b, BKS05, BGLA03, BHL14, BFH04, BFHM06, BKMT14]. scheduling [BH05, Cal06, CG11, CG12, CRJ10a, CRJ10b, CGW+03, CRA+08, CMR10, CDR12, CJY04, DBA+18, DBC03, DK08, DK11, DP16, DUW86, DRR13, DJT03, EHL+15, FA07, FW05, FPFI14, GDP08, GYAB11, GVBB13, GK15, GMVRGS16, GFPC14, GP05, HSH10, HDJ08, HV13, JLY12, JHF+17, JBS14, KHN17, KA03, KVA18, KYS13, KKK11a, KM17, KUA07, KVHS07, KV10, Kim17, KNHH87, KK10, KSSK16, KD08, KBC+10, KMP+06, KA05, LDZ+14, LDZ+17, LH03, LWZZ12, LC09a, Li05, Li06a, Li06b, LL07, LQM+12, LW16a, Li16, LNAL17, LML+10, LSC+15, LY+W+16, LPX05b, Lo92, MGSG12, MLGD12, Mar88, MCAS12, MMK+11, MAHKZ12, MS86,
MAR05, NSAS10, NHO⁺13, ND12, OA10, OPR18, ORR03, PY09a, PK05a, PW17, PDB13, Q05, QSL⁺08, QGL⁺09, RBA⁺18, SFSP11, SPC⁺17, SJB12, SMO14, SV08, SP13, SLG06, SCJ⁺08, SWP90, SS18, STK11, SZL10.

scheduling
[SR16, SHC14, TLLL10, TLV10, TLLQS12, TDBL13, TG03, TXLL14, TDP15, Tsu07, UM17, VO04, VMB10, VB08, VS16, WJD91, WAE03, WL05, WL10, WBRT13, gWW18, XQ07, XLL15, XLHT13, YWG15, ZV06, ZVL15, ZTFK16, ZY12, ZV09b, ZS13, ZQMM11, ZHQL12, ZLMC14, dOCS14, FZWL12].

schema
[SR16, SHC14, TLLL10, TLLQS12, TDBL13, TG03, TXLL14, TDP15, Tsu07, UM17, VO04, VMB10, VB08, VS16, WJD91, WAE03, WL05, WL10, WBRT13, gWW18, XQ07, XLL15, XLHT13, YWG15, ZV06, ZVL15, ZTFK16, ZY12, ZV09b, ZS13, ZQMM11, ZHQL12, ZLMC14, dOCS14, FZWL12].

science
[SR16, SHC14, TLLL10, TLLQS12, TDBL13, TG03, TXLL14, TDP15, Tsu07, UM17, VO04, VMB10, VB08, VS16, WJD91, WAE03, WL05, WL10, WBRT13, gWW18, XQ07, XLL15, XLHT13, YWG15, ZV06, ZVL15, ZTFK16, ZY12, ZV09b, ZS13, ZQMM11, ZHQL12, ZLMC14, dOCS14, FZWL12].
MHLZ16, RH05, RAB08, RD05, RTZ11, SSS88, WLST16, CTC11.

selection-based [EDO05]. selections [JW89]. selective [XYG07].

selectivity [CTT16, GÖÖ16]. selectivity-driven [CTT16]. Self
[Ano02u, AS96, ABZ95, BGDJLD02, Bec96, BBD02, BAGS95, BPBR11,
CDD+15, CW05, CT04, DB08, Dol97, DPBNT12, FZ14, GH02, GS03b,
HPT07, HPT02, HNM02, JM14, KY02, LLCL15, Lla17, MM07a, NM02,
PK05c, SZB92, SEP96, ASKTZ13, BFG+03, BBS18, BB91b, BFKP04,
BZH06, CDDL10, CAK13, CRA+08, DLV11, DJ16, GK10, IZ12,
KO11, KO90, LBMG15, LHX+16, LSH+13, dAMFDs13, MYM10, MC91,
NJ91, LPTV+10, SLWW05, TWSQ12, Tur12, WRW13, ZBW+17].

self-adapting [WRW13]. self-adaptive [LHX+16, PPTV+10].

self-adjusting [MC91]. Self-Allocating [SEP96]. self-correction
[LSH+13]. self-deployment [TWSQ12]. self-manageable [dAMFDs13].

Self-organization [CT04]. self-organizing
[BFKP04, BZH06, KO11, MYM10]. Self-reconfigurable [Lla17].

self-reconfiguration [LBMG15, ZBW+17]. Self-reproducible [PK05c].

Self-Routing [SZB92, BB91b, KO90, NJ91, SLWW05]. Self-scaling [FZ14].

Self-Scheduling [Bec96, CRA+08]. self-similarity [ASKTZ13].

Self-Simulation [BAGS95]. Self-Sorting [ABZ95]. Self-Stabilization
[GH02, HPT02].

Self-Stabilizing [Ano02u, AS96, BGDJLD02, BBD02, Dol97, HNM02,
KO90, NM02, BPBR11, CDD+15, CW05, DB08, DPBNT12, GS03b,
DJ16, GK10, Tur12].

Self-tuning [HPT07]. selfish [WGS08]. Semantic [FKJG08, RHL08, CM93, EHL+15,
KLJ+11, LR05, LKB+15, MLZY17, MYXY+10, MA11, NSAS10, ZH07].

Semantics [JK89, HK05, CTT16].

Semi [DS04b, XZS96, CTT16, KMS+06]. Semi-empirical [XZS96].
Semi-passive [DS04b]. semi-static [KMS+06]. semi-structured [CTT16].

Semiconductor [DM90a].

Semicomponent [WLD00]. semifast [GNS09]. sense [BC11].

Sensed [DSAUM99]. sensing [GDCC18, HP06, ZRN+14]. Sensitive
[VR05, Ano04d, CP05, GS03a, GC07, Hu11, JL11, NLB+18, OWK14, PFJ04,
RCG+11, SRT+18, WCXL11, YK04, ZZJ+18].

Sensitivity [HJ00a]. Sensor
[KS04, LDZ+14, LDP+14, STN92, THGY15, ASM09, Amm16, AHG12,
Ana14, AMT13, AYB+15, BXA08, BWP+11, BOY10, BPA06, BEN12,
BJL18, BZL04, CCW14, CKN07, CRWX12, CDR09a, CDR09b, CT04,
DW06, DLLL11, DBG14, DJH11, DKM10, DFP06b, DH04, EM11, GHY10,
GPD08, GCY+04, GYP13, GZY14b, GM14a, HZA+15, HVM07, HS12, HP06,
HZDP12, HJLR12, IB04, JF12, JLY12, JBS14, JHPL13, KKV05, KSSL16,
KO09, KO11, KO12, KKKP12, KKTZ13, KGN11, LDZ+17, LY10, LL12a,
LL12b, LI14, LÜ14, LW07, LZC11, LDS16, LHP07, MAGL13, MSM09,
MYM10, MKO8b, NSA11, NC09, OMSGNSG05, PFJ04, PLY15, PCX+11,
PCX+14, PLR07, PB09, RM10, RM11, REK10a, REK10b, RLP14, RB12,
SCN12, SS08, ZMK13, SCLL10, SJS11, TBHA07, TLY12, TDC05, TCS+10,
TWSQ12, VRM10, WW07, WMW09, WL11, WL10, WWA+18, XCLR07].
sensor \[XQ04, XHZ^{+10}, YpGyLiC13, ZW11, ZSCX18, ZTGL17, ZC04, dOBG^{+15}, OYE07\], \textit{sensor-actuator} \[KKKP12, SCN12\]. \textbf{Sensor-centric} \[KSI04\]. \textbf{sensorial} \[VO89\]. sensors \[AKBD10, AD10, BFKP04, Cai06, CJDC10, DWX10, KZJN17\]. \textit{sensory} \[HRM17\]. \textit{sentiment} \[XLW^{+18}\]. separable \[MRT18\]. separating \[HSS10\].

\textbf{Sequence} \[JP09, Zak01, AFM03, BBM08, BCF14, BW09, BFKW13, BMARW07, DKKV15, FC91, JV09, PTZ06, SPRG^{+12}, SMB10, SRT^{+18}, TMM06\]. \textbf{Sequence-preserving} \[JP09\]. sequencer \[BCM06\]. \textbf{sequencer-based} \[CHC05\]. \textbf{sequencers} \[AKBD10, AD10, BFKP04, Cal06, CJDC10, DWX10, REZN17\]. \textbf{Sequences} \[Swa98, TR96, BNR16, CJ07, LVB07, SK09, Sei05\]. \textbf{sequencing} \[CRL04\]. \textbf{Sequential} \[KP95b, BFTV87, Fen90, SBC12b, SLKK13, ZXB14\]. sequentially \[HK08\].

\textbf{Serial} \[EMMM94, MT97b, BOI91, CR91, CL90, SD88a, SI91\]. serial-data \[SD88a\]. \textbf{Serializable} \[Sch91\]. \textbf{serializing} \[HHS12\]. \textbf{Series} \[CA95a\]. \textbf{Series-Parallel} \[CA95a\]. \textbf{Server} \[ALL99, AY97, CM92, GM99, HBCM99, JSCB95, RU99, HC09, J109, OS04, PM05, TBZB05, WJW03, WSLC11, ZVL11, ZI08\]. server-side \[ZVL11\]. Servers \[FM99b, AAA^{+10}, Bar05, BPRG04, CSWD03, DLW^{+12}, KCD08, LY12, LYSW^{+16}, MZZC12, PSPR05, Wan06, WDDK09, ZWL03\]. Service \[BK18, CT08, JRR99, LAZC00, RGV00, AFB^{+14}, DB08, FZ14, HOE^{+09}, JMI09, KMMZ06, KKKP12, LNA12, LC07, LB18, MHLZ16, MXSL12, MCZ14, NP09, PY09b, RA11, SB12, SFEF06, SMB10, SSVC10, TR16, WMY^{+17}, WTY^{+18}, WWY^{+18}, WS06, Ya09, ZI08\]. service-aggregate \[Yan09\].

\textbf{Service-oriented} \[CT08, SFEF06, WWY^{+18}\]. \textbf{Services} \[ZR00, AK06, AM07, KSSK16, LCC^{+05}, LWZJ12, MCP^{+18}, XJS03, YWD08, YAK15\]. \textbf{session} \[LAK10, MZZC12\]. \textbf{sessions} \[TK07\]. Set \[Als01, BCD95, DM92, HCR12, KF95a, KSA95, RHSM96, RL95, AF^{+11}, AM16, BD05, BYG^{+18}, CC87, DW06, Gro85, HES10, HJ07, HCM11, JPD17, Lon04, MHLZ16, Nic07, SZW05, WCHW03, WCKD06, YSS11, ASST05\].

\textbf{Set-Based} \[BCD95\]. \textbf{set-distributions} \[Nic07\]. \textbf{Sets} \[AAP01, CGL^{+95}, EP90, GT97, Pov99, XMMD17, FSV14, FSV17, KCR14, Lon04, MP08, PK07, SW18, SHC14, YWW12, dOCS14\]. \textbf{Several} \[CP92, MCAS12\]. \textbf{Sh} \[PPP^{+10}\]. \textbf{SHadoop} \[GGY^{+14}\].

\textbf{ShadowObjects} \[JRR99\]. \textbf{shallow} \[CdV18, dAMCFN12\]. \textbf{shape} \[KSIJC17, NCA^{+12}\]. \textbf{share} \[KNHH18, PVGG06\]. \textbf{share-nothing} \[PVGG06\]. \textbf{Shared} \[AGW98, AGW01, AD95, BS96a, BJS03, CP91, DS95a, DH95, GDN^{+98}, HV95, HS00, HPT02, HTL99, HA92, JF95, JHH^{+17}, KRC00, KS97a, Ke00, KF94, KF96, LK98, LA93, LT94, Lu01, MF94, MS98, MG91, MSST09, PY96, RL96, RJY96, SDB99, SC91b, TJ92, TTT95, TY95, Wil92, YW91, YMR93, YL98, Zak01, AL04, AAC10, BC06, Car95, CCM^{+06}, CDAN14, DJ91, EKNS17, FZC^{+05}, IRRS16, KKR14, KLP10, KMS10, LZ1^{+11}, LTH08, NSTN91, OC07, Pad91, PY09b, PK05b, RFPAG08, SB15, SAJ13, SS17, SM04, TGPUC16, TK07, WL92, ZHL11\]. \textbf{shared-coin}
[AAC10]. **Shared-Memory** [BS96a, CP91, DS95a, HA92, KS97a, LK98, MF94, MG91, SDS99, TTG95, YW91, YL98, Zak01, BC06, DJ91, FZC+05, KKR14, KMS10, NSTM91, PK05b, RFPAG08]. **Shared-Nothing** [LT94].

Shared-Noting [HTL99].

Sharing [CS93a, DY99, HS97, HF96, CTC11, Cho90, IS06, KUA07, KK11, KKS+12, KG04, LY91, LS10, MTS90, SU87, SSX14, TBZB05, WTS03, XCZL03, YAK15].

Shear [SSM89]. **Shear-sort** [SSM89].

shelf [PF08, ZB09].

Shield [SSX14].

Shifts [OP96].

shop [Boż09, DBA+18].

Short [ESTA94, KLC05, MBS+12, PARB14]. **short-range** [PARB14]. **short-term** [MBS+12].

shortest [BGR96, DCA+15, HTB98, IZ95, KC99b, TU92, TZ00, ATH91, DGNW13, KS91, Lai15, Lai17, YME06]. **shortest-path** [KS91, YME06].

Shot [TRS+12].

shrew [CH06b].

SHRIMP [BF97].

shrink [REZN17].

Shuffle [BAES92, JH92b, Pad93, PA97, JT88, Var91].

Shuffle-Based [Pad93, PA97]. **Shuffled** [KM17]. **Shuffles** [Ano93e, CS93b, CS92]. **shuffling** [BBB11].

side [CK88, HA05, TC04, XCH08, ZVL11, WHW+17]. **Sided** [ZB97].

SIEVE [SG93].

Signal [PH16, RK18].

Signal-processing [RTCG91].

Silence [DKY01, FJ93].

Silent [DJ16].

Silicon [THN+93, HRG+11].

SIMD [AB93, BAES92, Che05, CP94, CD95, FAGW95, GGW96, GSWW04, HCS+00, HCZ04, Ho91, IK93, IK87, JMS36, KNS91, KLS90, LWOG02, ML89, NT93, Nas94, RS96a, RS90b, Ren11, Sl91, Ume85, WSA+94, WLR90, ZLRP91].

SIMD/SPMD [Ren11, WSA+94].

similarities [CL14].

similarly [HW03].

simulator [CZPP16, dOCS14].

Simultaneous [CW93, ABC+09a, BPRG04, Che90, FC90, LY10, MR09, PTZ06, SLG06].

Singhal [Ano96l].

Single [ALL99, HLBM16, JBP00, MWL00, TZ00].
Socially-conforming [LGM18]. SoCs [MAJ05]. Socially-conforming [LGM18]. SoCs [LZI11]. soft [AOS05, BGBC16]. Software [AL99, CR96, CHR94, CLRW00, GKK13, GS00, Gro85, HS94b, KCDZ95, Kel00, KB01, KSR95, MLC10, MG91, NT90, SG99, SAN95, SZ00a, TY90a, VSD96, XMKM94, ABC10, CV16, CMT92, DP16, DHS06, KG04, LZSL06, LK14, NHO13, RSCQ17, SCC10, SMH91, ZMZ17]. Software-Based [KCDZ95, NHO13]. Software-Controlled [MG91]. Software-Only [GS00]. Solaris [Lum99]. solid [GFPC14]. solid-state [GFPC14]. Solution [DM90a, FLS10, LF92, OH02, PW06, RWO1, AY89, ANP07, BAO05, DP16, GS91b, HC11, KKR14, LYL08, LFGM17, WZ91, YS11, ZAAB17]. Solutions [Ano99g, BCMV15, CLRW00, RS96b, AG86, BAH04, LZ08, TKG17]. Solver [BMM07, CSSY94, FKB17, ADV14, BAMM05, CVK18, CP10b, C91, DAV17, GV86, Gao86, KKB10, LPLFMC12, MP87, PP13, PPTV10].
Solvers [CHR94, CP94, MS99a, TF01, FHL+15, KR06, SHA17]. Solving [BCZ95, Boz09, BMCP98, BSH15, Car90, CRFS94, GL92, IK94, JGYM17,
KL01a, KBC+01, Men18, Mon94, PMV05, PDB13, QOvdG01, WM92, WLR90, WH97, CMMT13, CM03, GGR89, GT04, Knb17, LWR+03, MRT18, PF91, Ter16, WLL16, WRW13. Some [BDKM94, DKMV01, IPK+85, KAM94, Oru94, Par98, RTZ11, SI86, SZ03, ZHO03, AG86, BS03, BDq86, MS15].

SoMR [CS08]. Song [Ano97k]. Soph [GAG+17]. Sort [LJKS02, Tay02, BM14, SSM89]. Sort-Last [Tay02].

Sorted [SH97]. Sorters [BNP98]. Sorting [AB95, CQ95, FKK+04, FY96, HQPT99, HBJ98, JP95, Lee94, Lin93a, MP93, NS94, OS96a, RW97, SCC92, SS92, SM00, VN93, WRC+02, Che89, FCS91, KR11, MS88, PB90, SSM89, Sei05, SA08, TW15, U1184, ZFL89]. Sorts [ZAW94, SI86]. SOS [PP92]. Sound [DKY01, CKK+13]. Source [AY09, TZ00, BJL18, LCCL10, MH18, NCB+17, ZSW14].

source-to-source [MH18]. sources [AK18, Lon04]. SP [ASH+01]. SP1 [BR95b]. Space [BW96, BH93, DY99, GG01, GW99, GR97, KM97, KY96, LZ02, NC97, PPSV15, RP98, SH98, WA02, WS97a, AD12, Ara13, ACFK07, BBN08, CJK+13, Dja04, HV09, KA05, LKY13, MSM09, ST12, SZB16, MSS00, YQT12]. Space-Based [LZ02]. Space-Efficiency [GG01].

Space-efficient [PPSV15, Ara13]. space-optimal [Dja04]. space-optimality [HV09]. Space-Time [WA02]. Spaces [RS92a].

Spanners [RL95]. Spanning [FA95, KC98, KC99b, WB01, BFG+03, BC05, BC06, BPR11, BBD18, BBL04, CFJW13, GHI04, tH90, HAC17, KG10, LVP08, LIN03, OMSGNS05, RDA18, Ten16, TDM05, WZJ12, WIB12]. Sparse [Bas97, BW95a, KK98b, Man94, MSC96, NFEG97, PR13, SH95, UZZS96, Win85, ADD05, ANP07, ASES15, BC06, CP10b, GMMP12, LHW14, LV15, MBW16, PB15, She06]. Spatial [GG93, NPY+97, CCH09, CRWX12, JF12, MLG05, NAK04, TR16, WCF14]. Spatial-Temporal [GG93, CRWX12]. Spatially [DS02, RAO16, SBC12a]. spatially-explicit [Rao16]. SPEAR [RG06]. Special [AP93, AL99, AB03b, AS13, Ano95i, Ano95j, Ano96j, Ano97j, Ano99g, Ano01e, Ano02v, BOP06, BD00, BS09, BS11, CDJ09, CDJ11, DOP98, DK00, DF12, DT92, ES97, FTM+14, FR98, FPS11, FPS12, GC95, GMSS+11, GSO1a, Gra09, Irw88, IB04, JW94, KL08b, KRS13, KRS14, KRS01, Lan90, LZ11, Las12, Lin93b, LK10, MSGS+13, Mir91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, RLA+16, RLA+17, Raj08, Sch90, SXZ06, SH92a, SB97, Sto90, SFC17, TH11, TVF+15, BG90b, TY95, Wee01, XMMD17, XJS03, YW91, ZO97, dVCP06, Cuz11, Gra10a, KL08a, KL11, MKNI4, PRS14, WW03]. Specialized [QOvdG01]. Speciating [GB06]. Specific [KRS13, KRS14, PP92, SK93, MRS+14, SS94b]. Specification [AS00, BR95a, BN94, RSW90, BFL+13]. Specifications [LSCA93, BCM06].

Spectral [SANY94, SS98, AT03, CVK+18, CH06b]. spectral-screening [AT03]. spectrum [FCZ+12, GDC18]. Speculation [AC16, FKKR16]. Speculative [RG06, MG09]. Speed [BBH+97, Fer95, LI16, PVG09, SR91, WCYR08, HP97a]. speeds [LFS16]. Speedup [AMB95, DBP94, FFK97, Lun99, SN93, YH07, NW88, SC91a].
speedups [Vis87]. spikes [ST08a]. spin [AK07, FPM+14]. spin-transistor [FPM+14]. Spinning [BHK+94]. Spintronic [NKV14]. Spite [VR94, DB08]. Spline [BNBR16, CWW+95, CY96, GM95, Meg91]. Spline-based [BNBR16]. split [WCWH03]. split-stars [WCWH03]. splitting [PVGG06, WSH+03]. SPMD [Gup92, LZZ+11, OKB95, Ren11, RW93, WSA+94]. SPMD-style [LZZ+11]. SpMV [YLL17, ZGG+14]. spoofing [KMMZ06]. Sporadic [MAPF14, dOCS14]. Spot [LKK94, TY90a]. spots [LK90]. Spread [REZN17, SIY14]. spreading [ZXGD18]. square [BB85b, EL91, LTW+90, XBK07]. squares [RIZ90]. Squares [CB95, ZYO02, BBd90, HLS03, LTW+90, SMKL93]. Squashed [BG90a]. Squid [SP08]. SR [DYL+12, GRJ+15]. SR-IOV [DYL+12]. SRAM [JP09, WCF14]. SRAM-based [JP09]. SS [CLOL17]. st [BCMV15]. st-connectivity [BCMV15]. Stability [Wor93, KMS07, LXX+11, WCF14]. Stabilization [CG02, GH02, HPT02, NA02, DDNT10]. Stabilization-Preserving [NA02]. Stabilizer [AD02]. Stabilizing [An02a, AS96, BGJDL02, BBCD02, DGDF10, Dol97, GH96, HNM02, KY02, Kar02, NM02, AFNT17, ADD17, BFG+03, BBS13, BDP16, CDDL10, CDF+15, CW05, CAF+13, DLV11, DB08, DJ16, DPBN12, GKI0, GS03b, JM14, MM07a, PV07, Tur12]. stable [AMK+07, SKK14, SLW10]. Stack [PVGG06, CS06b, HSY10]. stackable [SSX14]. stacked [TLL+18]. Stage [FT94, ZS00b, CC14, HDJ08]. staging [EDº05]. Staircase [Mck94]. stalling [BHPP05]. Star [CB99, PF08]. Star [FA95, KAM94, LA95, LP94, MJ94, OS97, OS93, PRW94, RW97, RWY93, RLS96, SAKMA02, dBL95, AAD03, CM03, DF06a, FM+08, PK04b, SS05, WCC02, SRT+18]. star-access [DF06a]. Star-Connected [dBL95]. Stardust [CP97]. Stars [MR03, WCWH03]. starvation [LASS15]. starvation-free [LASS15]. stash [YPCW16]. State [FKB17, HB97, HNM02, KM92, LSH+13, NCM07, PSC+16, ASKO16, ASB18, AD12, CWL05, GÖÖ16, GFPC14, KA05, LMR05, LW06b, MSM09, WCO+09]. State-based [LSH+13]. State-of-the-art [PSC+16, WCO+09]. State-Space [NC97, MSM09]. Statement [AMB95, DR95, ALS91]. Statements [KHS96, SOG94]. States [Kop97, TG97, FZ90]. Static [AKSM08, BPN90, BS+91, BSMH08, CC91, ERA95, GF89, KKK+01, LC90a, LK94, LA04, Msd+95, OD95b, SSM+06, YLM14, BSS+13, DK08, KA08, KSM+06, McD99, PC11, SSM08, SWP90, SSM+07, ZYO11]. Statistically [LB90, Mat06]. station [GPT06a, RBD08]. Stations [DKMV01, DDNS06]. statistics [GA90]. steady [LMR05]. steady-state [LMR05]. Stealing [An00a, LS97, Ros99, DKKV15]. Stein [QOvdG01]. Steiner [LY10, Sta17]. Step [CW00, Bog17, KKR14, Yan04]. steroids [Bar05]. sticker [GPX08]. Sticky [Kop97]. STICS [HZY04]. Stigmersonic [PR06]. STL [NKV14]. STM [HHS12, PGRP17]. Stochastic [CTD99, FX06, HPT+97, JSS92, QZ94, RS92d, SSM+16, SSM08, ZS13, BM11, CMT92, MM06, MS86, MBO11, WW18, WMG13]. Stochastic-based
[SSM+16]. stop [LLT12]. Stopping [BSS99, AMT13]. Storage [CLV95, HLL+95, LL95, BL05, BCK+09, CGG+09, FLCB10, HZY04, HK04, JWH+17, KR12, Luc18, MAPF14, MPG17a, SSX14, SWW+17, WCWO17, WWW17b, XCLR07, XSYG18, YYL11, ZV09a, ZYW+15, ZGG+14, ZWWX16]. Store [CP90, NS95, VA07]. Store-and-Forward [NS95]. stores [ZWQ+16]. Storm [KKH17]. straight [GC07, Wri91]. Strategic [RA11]. Strategies [AM07, BDjQ86, BHK+94, BCR96, CP92, CGA98, DL01, FF98, GJG88, GM99, LK98, LHM95, Lu94, MS99a, OP98, SMH94, VB02, VA03, YB95, YL98, Zha92, ZMI94b, BMARW07, BHS13, CGM14, DM94, GRV08, GM14b, HV13, MV05, PP06, RA08, ROB+18, SSGZ13, Wu11]. Strategy [CS00, GMM00, HHC98, KBC+01, MD13, PAM94, RS92b, ASD09, ASES15, BBM08, CTT16, DLW+12, EM11, GOH+13, GRD05, GMVGRS16, GLD06, Hsi04, JF12, KVA18, LY91, LL07, LVP07, Ngo06, SK09, SRT+18, TLL10, TW15, WCC02, WYW15, ZV06, ZVL11, ZV14, ZVL15]. Stream [HPT+97, WQZ+13, AAK+13, ARM+05, AM11, CK08, DFO17, Ei07, GÔÔ16, KKH17, MTL+18, RCG18, RAN+17, SS18, ZHH15]. stream-based [ARM+05]. Streaming [PS14, CGKY12, GRR13, GHC+17, HK05, JHL+18, LCCL10, WCXL11, XYDL06]. Streams [MM93, WUG99, AGWY11, LVP07, LY08, ST14]. StreamTMC [WQZ+13]. Stretch [GG01, SBC¸12b]. stride [AM13]. String [BL94, RS90b, CKK+13, Kri91, MM07b]. strings [SCS+08]. Striping [CT93]. Strongly [SZB92, MHPR05]. Structural [AGG98, SM92b]. Structure [DL99, FMP98, MNB95, PL98, Tze93, AFK14, BB85a, CZ90, FGZ03, GV86, GB11, HK05, JdSJC+15, Lis90, MJ03, MSZ05, NZA13, Par89, XLHT13, YL12, YC04]. structure-aware [HK05]. structure-based [XLHT13]. Structured [BE95, FBK98, KB01, Lu94, MRV98, MNN98, WM92, CWLD05, CGKY12, CTT16, DAB+14, FJG06, FKJG08, GA90, GWH06, IKSS7, SZ09, SR14, WXZ05]. Structures [Ano96j, ADM+94, CCRS92, DOP98, DRC90, Gup92, SIR92, ZM94a, AEY12, FC04, GZ08, HA05, LJ86, NCT+07, Zas16]. stub [WSG91]. students [Ada17]. Studies [GT02, HCAA93, CCE+17, SCB08]. Study [AAD02, BJ96, BA01b, BS96b, BS96c, Cha96, GKB98, Hag97, HPT+97, HBJ98, MS99a, NBP98, Otu94, QM01, RSD94, SS93, SRR94, WNA+94, WLR90, YMR93, AP91b, Bad04, BJ18, CBM+08, CCT+08, CT94, DI91, FRM15, GRR+05, HJ90a, Hdr13, HA91, LGZ+10, LPX05a, MCAS12, NXTK17, PCMM+17, PP13, PTK+13, ROE+18, TB90, TdAR18, WLCZ15, WMG13]. Style [SS00, LZZ+11]. subcellular [WDS+18]. subclasses [CP04a]. Subcubes [SR95]. subdomain [CEG07]. subgraph [Pla13]. subgraphs [BCH15]. submachine [PP06]. Submesh [SP96]. subproblem [SMT15]. subscribe [ZW13]. subscriptions [ST12]. Subsequence [MS99b]. subset [WLL16]. subset-sum [WLL16]. substitution [GPX08]. Substrate [KMKD97]. Substring [CB96]. Subsystem [GGD93]. subtasks [SSM+06]. Subtree [DP00]. subunit [RK18]. succinct [BHR91]. Sufficient [SJ96, Ste17, AjHcC90]. Suffix [DP98, CS06a, GZ08]. suitable [PGS06].
suite [GN15]. Suited [PRS97, GS91b]. sum [WLL16]. summary [Rob09]. summation [IHM05]. Summing [San02]. sums [HLS03]. Super [WLY01, PW17, SAOKZ05a, SAOKZ05b, SE15]. super-[SAOKZ05a, SAOKZ05b]. super-matrix [SE15]. super-pipeline [PW17]. Supercomputer [CB02, GHS86, SWHB17, Ull84]. Supercomputers [AP93, CRV94, CP94, LF03, TDBL13]. Supercomputing [Ano96i, CRV94, CP94, LF03, TDBL13]. Supercomputer [CB02, GHS86, SWHB17, Ull84]. Supercomputers [AP93, CRV94, CP94, LF03, TDBL13]. Support [AL99, AH94, CP99, FBK98, KR97, KC99a, LTH97, LFH+03, MB1+92, NS97, PL95, RPS93, TF92, YFS+15, BAL05, CCQ+06, CCC+04, CCK+08, DRR13, GB11, HPB+10, Hus17, JBY+05, Kim11, RR05, SIDS0, SK91, SAB+92, SRI14, TYH09, TGPUC16, ZBR11, ZWRI07, LST+13]. supported [YPCW16]. Supporting [HA06, Sto87, WLNL06, BSW07, LSZZ15, SKMM04, ZTGL17]. suppression [DZC17]. Surface [CWW+95, CY96, VBDRC13]. surrogate [UAPM07]. surveilance [SMP17]. Survey [BCH95a, GHKS98, CGC16, DAB+14, FEH+14, FMIF18, GM14b, GK10, HLBM16, HBC15, JHL+18, SCN12, SRI14, SHA17, TKG+17, Upa13, ZAB18]. Survivable [HWWH08]. susceptibility [DFST13]. suspect [XYG07]. sustainability [AK18]. sustainable [LS10]. sustained [RMHR17]. SVD [CL88, RS08, ZB97]. SW [RBG17]. swap [FPP+08]. Swapped [Par05, ZXP09]. Sweep [GGN93, DMCFCM03, GM14a, KMP+06, CM10]. Switch [ASH+01, CRD12, OK01, PD92, CL90, LHKL03, LWW09]. Switch-based [CRD12, LHKL03, LWW09]. Switchable [SB84]. Switched [CCR94, CS93c, GGN93, LK96, WB01, EB09, KYL05, LWC14, Nap90, PY08]. Switches [KJ84, PL93, TF92, MG09, PY09a, PY09b, VAS+13]. Switching [DRBS01, GB93, Guo94, LYL93, OYO0, ST02, BKCM17, BMIM07, CC14, KG10, LCCL10, LWW12, STK12, ZPK+14]. Sybil [YXX13]. Symbol [OWK14]. Symbol-level [OWK14]. Symbolic [YI96, CJY04]. Symmetric [BJ99, DHB02, DZDZ01, HOE+09, HJ01, Kaut94, Oru87, ABGV11, ADV14, BC05, BW08, BB85b, EM99, KA03, VGAB08]. Symmetrical [IM94, QY94]. Symmetry [Ke00, HT90, MJ03]. Symposium [OY13, WEC01, Ros07, Sni03]. SYN [XCH08]. Synapse [Ram92]. Synchronization [ASB97, AGW98, ABF92, AH94, BA96, Cha95, CTC+10, FR92, GVA+08, JLR97, MRV98, OKB95, PB95, RL69, RSS99, The02, WUG99, XMS92, CRA+08, FZC+05, HMBW07, HA06, HLS12, HZDP12, LA06, PB09, TG04, Tau16]. Synchronized [LNA12, JS86, XLL15]. Synchronizing [DKMV01]. Synchronous [BCV05, CS95c, GV94, NSLK99, OY00, SKR93, Sch91, Soh96, ARP18, ABBD14, DGDF10, FXW03, KVNV17, MCS14, MEMEMH17, PK05a, TBG+17, WTC08a, WTC08b]. synchronously [SP90]. synchrony [CB15]. Synthesis
Synthesize [HLJ98, DSEP17]. synthesized [MC17]. Synthesizes [Ram92]. Synthesizing [SL89, Che86]. Synthetic [Pop91, AAK+13]. Sysplex [NKC+97]. System [BK95, BBD+91, BA01a, Bev02, BMM97, BJK+96, CP92, CP99, DHR96, DSD+97, DH95, DTF92, FKB17, FPD93, GH90, HBCM99, HCS+00, HLL+95, HWLR14, Kaw93, KMB91, LP96b, Lu01, ML00, MKY+97, MBL+92, MO97, MS96, NKC+97, NsPPC02, SEP96, SG96, Tse95, Ur94, wXH00, ZMPE00, dr09, ABC+88, AMK+07, BL05, BCK+09, BGA12, BMF05, BP05, BSS+13, BYH+17, BJ18, CBP02, Car95, CLMRL15, CSW08, CCE03, CDJ+89, CK91, DS04a, DI91, DTK11a, DLW+12, DB86, DMS+16, EC89, Fer90, GTGLSA12, HJ90a, HM06, HLB16, HWE18, HHA14, Hus17, JW89, KHN17, KCD08, KSBI11, KMF+05, KS13, KC04, LMSK18, LFH+03, LC91b, LLWC17, LY13, LHZ+18, MM07a, MK08a, MC03, NAK04, NTC03, No12, OYE07, PK08, PKN0, PKN10, PL14, PK05b, RV13, RBA+18, RAN+17, SPRG+12, SS+16, SST+13, SC04, SK91, SX14]. system [SSL04, SM86, SV18, VDA04, Wan06, WWH+17, WS06, WZQ+13, WTX13, gWW18, YLB90, ZMC06, ZHH15, ZJ03, ZJ06, AGWY11, HCAA93, Sie16, Sk16]. System-Level [Kav93]. Systematic [IAS+92, KK95, LB89, WAS88, ZTGL17]. Systems [ASH+01, AM97a, AM97b, AMN00, AS13, AS15, Ano92c, Ano02a, ADS98, Bah00, BBM+02, BBR94, BPR99, BW95b, Bou02, BN02, BSB+01, BS96b, BS96c, Cas93, CS93a, Cha94, CKK00, CY95, CK97, Cho93, CBdCD00, DSS95, DA97, DS96, DSW94, DAYA02, DG94, EMP+96, FGKT97, FTOC00, GCM97, GM99, GRR93, GK93, GMM00, HKT+91, HNM12, HILLY95, HTL99, HM99, IM94, IK94, ISZBM99, JR95, JH92a, JF95, JSM94, JRR99, KS97a, KBC+01, KCV99, KE93, KS93, KM91, KM92, LH92, LF92, LT94, MMRS98, MAS+99, MT95, MMVR97, MM93, MRR+02, MC93, Mis91, NSS97, NMS93, Nie94, NDZA99, OM84, PA96, PB99, PT01, Pov99, PP92, QY94, QGB+17, Raj01, RDS02, RAS96, SM94, Sch91, Ser97, SL95, SRGB90, SSR94, Sun02, SFC17, THN+93, TH02, TY95, WIL92, WF93, WF96]. Systems [WUG99, XH91, YH97, ZR00, Zia92, ZM94b, van96, AL04, ALM+16, AA16, AAK+13, AOSM04, AOSM05, AD12, AFM09, AF06, ACCP12, AAI+15, ABD14, AH06, BBM+08, BOB93, BB03, BDGR13, BW09, BRP03, BS03, BK08, BS92, BKMT14, BD04, BPW05, CWLD05, CNLRL18, CRK+09, CS88, Car90, CCS06, CKWT17, CTIC11, CVJ09, CR10b, CGW+03, C16, CP17, CAF+11, COF+17, CSW+17, DZC17, DK08, DFP06a, DB11, DDNT10, DFGK05, DGD10, DM04, DWEY10, DM90c, DQR+09, DÖ8, DDBL+12, DW04, DH91b, FC04, FW0+10, FPS11, FLB10, FX10, GMMP12, GZG+17, GLS9, GNT04, GMVRGS16, Gos90, GS91b, GWWL94, GC05, GRR13, GMZ07, GF89, HC09, Hal05, HC09, HOE+09, HBC15, HCZ04, HS86, HA06, HP06, HA91, HA05, HHK15, IRRS16, IS06, JSWB92, JMS86, JKIE13, JST12, JLM08]. systems
[JL11, JZZ+17, JWH+17, Kak15, KKR14, KHW13, KVA18, KME89, KVNV17, KUA07, KyLPC17, KSN13, KAS07, KL05, KMS10, Kubi17, KMS+06, Lai86, LLLC15, LFS16, LTBO2, LTL06, LGZ+10, Lan09, LZ11, LLL06, Lee90, LHF91, LHK03, LJ05, LAK10, LZCY09, LASS15, LZ05, LC90a, Li06b, LVP07, LQM+12, LNAL17, LW89, LPLFMC+12, Lop13, Lop18, LCM+06, Luc18, LLS07, LM09, LXZ13, LLW12, MGSG12, MLMSMG12, MB13, MP10, MMK+11, MAHKZ12, MAKWZ13, MS86, MTS90, MFVP08, MLK12, MSK+16, MBH+08, MGRRK14, MRT18, NLF13, ND12, NZY+11, OS04, OPR18, PMV05, PMV06, PRHB06, PC11, PH16, PTA08, PF91, PMA011, QGZP17, RLA+16, RLA+17, RLH03, ROE+18, RN04, SSSF11, SW12, SDDT04, SP08, SPH13, SFT+13, SYU07, SS08, SCB09, SU87, Sche09, SCSt+08, SCMS12, SXZ06, SHLN09, SY04, SHT+13, SJC+08, SS18]. systems

[Tie16, SLKK13, SI13, ST05, TLLL10, TLLV10, TLQS12, TW89, Ter16, TRSS06, TB90, TCHC12, UAKI06, VMMP10, VS16, WCWO17, WXX05, WTC08a, WTC08b, WDDK09, WLST16, WZZ+17, WWW17b, WWY+18, WSG91, Wu11, WSLC11, XHY07, XQ07, XL15, XLT13, Yan04, YLL17, YL89, YQTV12, YZW+15, YYLC11, YZX11, ZAB18, ZZ90, ZZAB+17, ZSJ+18, ZFS07, ZYW+15, ZTFK16, ZVV1b, ZMQM11, ZBW+17, Zim90, dG91, dlAMCFN12, FPS12, ORWT+18]. Systems-on-Chip

[ORWT+18]. Systolic [AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, Meg91, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WZ92, CL85, Dja06, EL91, KNL11, KB89, KB98, Lis90, MP88, PYP+10, PS88, Scb99, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

T [CRJ10a, PTK+13]. T-L [CRJ10a]. Table [HZL18, LACJ18]. Tables [TT10, ASD09, HKW05]. Tabu [BSH15, Cza13, CB11]. Tackling [SMT15].
tag [CRK+09, VGG+17]. Tagging [GHH92]. Taking [CL03b]. Talent [TL11]. Tall [BDG+15]. Tall-Skinny [BDG+15]. TAM [CGSV93]. Target [ERL90, CJD10, KO11, NDP13, WW07, YCC05]. target-driven [YCC05].
targeted [BKK+11]. targets [BFKPO4, CRWX12]. Task

[AKP799, AH06, CDY97, DA97, DDD89, DAY02, DL99, DRST02, ERS90, FZW12, FKKC97, FMY97, HBCM99, HKT+91, JTZ11, KLZ97, KA97, KA99, LL98, MSSE02, Mol97, SMO14, Sds97, SZ00b, SCJ+08, SS94a, SV00, SBK90, SYG92, UAKI06, UR94, VS99, WSRM97, YCY+00, AAK+13, BKS05, BD05, Bat05, CDS10, DKO8, DKL11, DDG+17, DQU06, GQZ18, JL11, KHW13, Kim17, KA05, LLL06, Li16, LSC+15, LZLX11, MCC04, OA10, PK10, PK05a, PA15, SP13, SWP90, STK11, SZB16, TDP15, VS16, YWG15, ZTFK16, dOCS14].

Task-Level [HKT+91, SBK90]. task-scheduling [Kim17]. tasking

[Lun90]. Tasks [ABM+92, BB89, DJ98, ERL90, Hag97, Lat95, LWY97, MAS+99, MMV97, NMS93, PS93, RDS02, Sin87, AOSM05, BFMT+18, BHLT14, BH05, BSMH08, CCK11, CDJ+89, DRR13, G15, HMR15, HWLR14, IKS87, KUA07, KSS+07, KMS+06, LMGLGL17, LHK03, Li06a, Li06b, LQM+12, LB09, LLS07, PK05a, PDB13, RR05, SS+16, SBÇ12b, SNC12, SS+07, XLL15, ZVV1b, ZHLQ12, dSS11]. Taxonomy
[FEH⁺14, HM96, Sin93, HBC15]. TCP [BM11, VLL⁺14]. TDFL [SBKB90]. TDM [LLJ00b]. Teaching
[CTS17, LB18, PBB⁺17, Ada17, FKR⁺17, GAC⁺17, HSS17, Kum17].
technique [NKA17]. TEASE [ZBR11]. Technical [Ano93a]. Technique
[BNK94, CLV95, DAYA02, Fer95, KGB92, PM96, ZLPP01, ASKTZ13, CX05,
CRD12, DeG88, EE05, KK11, Nes10, Nic88, PVGG01, RBB17, WCF14].
Techniques [ADM⁺94, CS95b, Dah99, ELS94, FY97, Gil94, GS00, HILLY95,
HTL99, JSCB95, KGV94, NPY⁺97, PA96, PYF08, RSS99, Tay02, UZZ96,
ARP18, AOSM04, BBR13, CDB04, CD95, FM85, Gao89, GRR⁺05,
KA08, LPK⁺10, LP88, MBW16, Pla08, RM11, Raj08, RG87, SFEF06, TZ07].
Technology
[Ano02v, ER97, GC95, MKY⁺97, MRR⁺02, OB88, PBB⁺17, TMM06].
TEES [ZWWX16]. Telegraphos [KMKD97]. Telemedicine [CY99].
telescience [PLL⁺03]. Telescoping [KBC⁺01]. Temperature
[SWHB17, ZWWX16]. temperature-constrained [ZWWX16]. template
[EFG⁺14, RS90a]. Templates [ADS98, DP00]. Temporal [GSG⁺93, Lo92,
RJA97, SHEL⁺13, VWHL96, BKS91, CRWX12, WCF14, XYZW14, DFL17].
temporary [Wan06]. Ten [TAS⁺01, KA08]. tenant [PVRS17]. tensor
[IEWK17, LGK⁺12, SMH⁺14]. Terabit [SH98]. term
[BV13, LKM12, MBS⁺12]. Terminal [HHC98, Li17]. terminals [HB11].
Terminating [Lin93c, MS15]. Termination [ASR93, CW93, HTB98,
KHK03, Lai86, Ric98, Tse95, BFTV87, CV90, Eri88, MD07, MFVP08].
ternary [GNW03, KRM14]. Test [GRS97, PKK91, Soh96, WW97, ALLM11,
DWHL87, LTC14, NCA⁺12, ALLM11]. test-and-treatment [DWHL87].
testbed [HGF10, LE03]. testbeds [VPHML06]. Testing
[CY95, GFB⁺92, GS99, KW02, WG93]. tests [Psa96]. tetrahedral
[CZZ⁺17, LWCC15]. text [BV13, PAG⁺18, SWW⁺17, WD13]. Their
[Kop97, BM08, CRWX12, S86, TDM05]. Themes [RCY97]. Theorem
[SHSH17]. Theoretic [AaJS01, KK10, MGRRK14, PC11]. Theoretical
[HC97, LZC11, CTK11]. Theory
[CC08, DM90a, PTA08, VBM90, ZLC12, BDJQ96, BM08, GRDB05, Zim90].
Thermal [SHSH17, LFS16, OJP⁺18, SNMB16]. thermal-aware [LFS16].
thermally [TKKH17]. Theta [STMZ18]. thin [ST08a]. Things
[NLB⁺18, WCC18, WYJ⁺18]. thinking [CCE⁺17]. Thinning [KLP10].
Thread
[OKTK12, CGM14, CDAN14, DWYB10, LK13, RSCQ17, SLG06, ST05].
thread-parallelism [RSCQ17]. Threaded
[N97, BBH⁺17, Kkp03, LK15, PYP⁺10, CGSV93]. threading [Ngo06].
Threads [GSC96, LFA96, SEP96, TG99, DKRI09, PMdO11, PL03b].
threads [SFEF06, TKG⁺17]. Three
[FCG04, FLS⁺97, FT94, GG01, GH96, KR98, NEG85, PD92, SSG93, SSOB02,
YMR93, ANEA13, LW06b, LDS16, YJL16, ZFS07]. three-body [YJL16].
Three-Dimensional [FLS⁺97, KR98, NEG85, FCG04, ANEA13, LDS16].
Three-State [FT94]. three-state [LW06b]. Threshold
[BFMT+18, CGA98, NKV14, PAM94, Nik04]. **Threshold-Based** [CGA98]. throttle [XCH08]. **Through-Wafer** [MLW+97]. **Throughput** [FM99b, HWC08, HB11, JSS92, MMVL11, BS07, BLMB13, CLA+18, DW12, GRR13, HVW16, HWLR14, KSB11, LMSK18, LMR05, LH+X16, LNC13, SA11]. **Throughput-coverage** [HWC08]. **Throwing** [Tse95]. **tight** [MM+17]. **Tier** [MZZC12, MCZ14, WQL14]. **Tiling** [AR97, CWW96, RS92a, Xue97, KSG03]. **Tiling-driven** [BBH+98, FSZ07, Mat93, MZZC12, MCZ14, WQL14]. **Tight** [BBH+98, FSZ07, Mat93, CH06a]. **Tiled** [JHF+17, WQZ+13]. **Tilera** [PCMM+17]. **Tiling** [AR97, CWW96, RS92a, Xue97, KSG03]. **Time** [AAL95, AK93, Ana14, Ano92c, ADS01, BPJG92, BA96, BM04a, BOSW94, BH93, BG0S95, BTZ98, BA01b, CW00, CB15, CS93a, Cha94, COS+05, DP98, DS01, DJ08, DD95, EL97, EMP+96, Fakh96, FBK98, FY97, GS99, GM00, HRG+11, HA92, JR95, JH92a, KF95b, KS97b, KEA95, LTWY95, LTY96, LP97, LAS+97, LFA96, MMRS98, MT95, MMVR97, Mat93, MDD97, Moh97, MSST99, MS99b, Nas94, NIR86, NH93, NP09, OY00, OOW95, OS96b, OSZ98, PW96, PLY15, Pe90, Pe95, PS93, PM96, PM92, QMCL94, RDS02, RU99, RAS96, Ric98, SCMB90, STN92, Sun02, THBF97, TV97, WBTM09, WA02, WS97a, WLID02, ZLPP01, Zim96, van96, AOSM04, EOSM05, ACCP12, BP902, BVG14, BDG13, Bog17, BPP05, BK9+11, CH96a, CCK11, CRJ0a, CRJ10b, CLL09, CLR90, CCN06]. **time** [DLV11, DKRC+15, DHK04, EO05, FC14, FKLB08, GZG+17, Gos90, GF89, GRE9, HOVC09, HA96, HV93, HL07, HZDP12, JZZ+17, JHL+18, KK14, KSL16, KKW17, KSL16, LFS16, LR14, LHK03, Lee03, LST17, LZCY99, LLY15, Li16, LML+10, Lis90, Lo92, MHLZ16, MLDG12, MA05, MAKWZ13, NA06, NVK+11, QJ05, RLH03, SI86, SS11, SZB16, TBZ05, TIZ+06, VWHL96, VA07, Wan07, WTC08a, WTC08b, WL05, XL11, X005, ZZ+18, ZH15, QMM11, ZHLQ12, ACD+93, CBP02, CX05]. **time-aware** [MHZ16]. **Time-bounded** [NP09]. **Time-Division** [QMCL94, ZLPP01]. **Time-division-multiplexed** [HRG+11]. **time-domain** [SS11]. **Time-Efficient** [EL97, MS99b]. **Time-Optimal** [BOSW94, OS96b, OSZ98, Pe90, Lis90]. **Time-optimized** [Ana14]. **Time-parallel** [WBTM09]. **time-scale** [ACCP12]. **time-sliced** [KRL87]. **Time-Step** [CW00]. **time-step-based** [KK14]. **time-targeted** [BKK+11]. **Time-Varying** [KEA95]. **Timed** [NM95]. **timeliness** [IS07]. **times** [SFT04]. **timestamps** [MS02]. **Timing** [AD95, BSS99, CB99, Kar92, CSJ+13]. **Timing-Driven** [CB99]. **TlMANN** [VM95]. **Title** [Ano98l, Ano99h, Ana01a, Ano01h, Ana02d, Ana03b, Ana04a]. **TLA** [SHL+13]. **Tlib** [RR05]. **TM** [FKKR16, FWM+10]. **Toeplitz** [GOH+13]. **Together** [WLID02]. **Token** [AE95, BGJDL02, CP90, FFK97, GH96, HP00, YY96, CRD12, HSW04, PV07]. **Token-Based** [AE95, BGJDL02, HP00]. **Token-Chasing** [YY96]. **Tokens** [SA93, SGAC14]. **Tolerance** [BSS97, Piu01, PM92, mYY92, BJ15, BDDL09, CLMRL15, CWL+07].
CDR09a, LCC⁺⁰⁵, LH05, LFGM17, LP88, Pak89, PAS15]. Tolerant [AE95, AM97a, AM95, BMM97, BW95b, BCH95b, CRV94, CL93, CC94, CF98, FM99b, GRR93, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, SS95, WIKC97, Wu94, YBOY97, ZYO02, AA14, AA16, ANEA13, AOSM05, AH11, ABBD14, BB87, BXA08, BKMT14, BPA06, BPP05, CL91a, CKN07, CDR09b, CMT92, CMS04, DBCF13, DTK11a, DH91b, FLPJ07, GNS09, JBA15, JBS14, KG10, LDZ⁺¹⁷, LFZ⁺¹⁷, LGG08, MPG17b, NCB, NCB⁺¹⁷, PR06, PL06, TCHC12, WW12, WW15, XCS06, XHZ16, mYA91, ZV09b, ZJ06]. Tolerate [VR95]. Tolerating [DT02, GS00, MG91]. Tomography [BDRB14, FCG04, FGG08, KSSL16, KDO⁺¹³, PLL⁺⁰³, XTN12]. Tool [BN04, DBKF90, ZNQ93, Ada17, KKVI05, PF04, TD07]. toolbox [EFG⁺¹⁴]. Tools [Bal90, Cas93, MLC⁺⁹⁰, MSH90, NT90, DMS⁺¹⁶, FEH⁺¹⁴, GAC⁺¹⁷, MC03, YTM⁺⁰⁵]. Top [SSKS11, Sch89b, TAS⁺⁰¹, IRRS16]. Top-down [Sch89b]. Topics [Ano16l, Kum17]. Topography [SK05a]. Topography-aware [SK05a]. Topological [DC94, Par05, YN92, PL06]. Topologies [YZ96, YMG01, SL89]. Topology [CCM92, DS96, Seb95, TKKH17, WLY01, WHS⁺¹⁸, AP91b, AHA⁺¹⁶, DB08, GL12, GL90, KBC⁺¹⁰, LCW05, LMP10, MBBD13, PMCC18, RCG18, Seb91]. Topology-aware [KBC⁺¹⁰, MBBD13]. TOPSYS [BB93]. Tori [LHS97, MT93a, Man97, AB03a, GLD06, LXLS12]. Tornado [HK04]. toroidal [AB05]. Torus [CT96, RMC97, WB01, YM01, DM17, Lai15, RH05]. Total [CW00, CHC05, BCM06, BG05, CB15, Dim04, SL89]. TPC [DZDZ01]. TPC-C [DZDZ01]. Trace [JKIE13, LC13]. traces [MTM10, NRM⁺⁰⁹]. Tracing [RGS00, BM16, BM17b, CDB04, CS17]. Tracking [MD01]. Tracking [BFKP04, CJD10, IHH⁺¹⁷, KO11, NDP13, TCS⁺¹⁰, WW07]. Trade [BCLR96, GK98, LP97, CLR90, ECLV12, LCB16]. Trade-Off [BCLR96, GK98, LP97, ECLV12]. trade-offs [CLR90, LCB16]. Tradeoff [TSHH01, HWC08, NLB⁺¹⁸]. Tradeoffs [MP15, CGKY12, PCMM⁺¹⁷, SDS10, YZW⁺¹⁵]. Trading [MPG17a, ZLL14]. traditional [BBCL04]. Traffic [AA95, DSS95, FT94, KC95, LK94, OY00, TF92, BJ18, CRD12, FL86, FMM⁺⁰⁸, LK90, LLM14, MPG17a, OOSVG⁺¹⁶, SAOKM03, SKM04, WG08, YBM13, ZAH⁺¹²]. traffic-aware [LHLM14]. trails [PR12]. Training [LWOG02, SMKL93, ZLS17]. transaction [SI13, YWD08, Yan09]. Transactional [AM12b, Gra09, Gra10b, MP10, BGA12, CGM14, DT11, FWM⁺¹⁰, GKK⁺¹³, HGF⁺¹⁰, KR17, QGZP17, RSCQ17, SDO10]. transactions [CC16, FGG17, MLMSMG12, UBES10]. Transceiver [DKM01]. Transfer [Lu01, CK06, JKV15, LGG08, WH17]. transferability [CSS11]. Transfers [NSSS99, GLGLBG12, LMGLGLG17, SCMH13]. Transform [BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPR08, ESTA94, FSD04, IHH⁺¹⁶, SSL04, TKHG04, CVK⁺¹⁸, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12].
Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91]. Transient [DT02, PAH*98, GPT06a]. transistor [FPM*14]. transistors [LC14a].

transition [SP13]. transition-aware [SP13]. Transitive [AW95, YMR93].

Translating [FP06]. translation [NCB*17]. translators [YLB90].

Transmission [DP99, JK00, BDRB14, CPA*11, HOVC09, OS04, OMSGNSG05, YA11]. transmitting [BR91a]. Transparent [LC92].

Transparently [AFT*00, KLJ*11]. Transport [GRS97, MSH90, NPGV10, PKW*10, WCL*13]. transportation [OO05].

Transpose [CT96, ZMPE00, BG16, SAOKM03]. Traps [SD00]. Travel-time [KSSL16]. traveling [WMG13].

Trees [AAP01, AS96, BBR94, BM97, BCLR96, BE95, BF01, BS00, COS*95, DVZ96, FA95, Goe94, GS01b, HR92a, KC99b, LPS*98, OD95a, OOW95, PL94, SLP*98, Sli96, Tze91, Wag94, ASC*18, AB13, BFG*03, BM14, BC05, BE13, BPBR11, BBD18, BBL04, CG12, CR17, DJ16, EB09, FMM*08, FJSW90, GA90, HSS10, HMR15, HSW04, th90, IKS87, KG10, KSK15, LY10, Li10, Mit07, OC07, PV07, Sch89a, SAF05, SV18, SK05b, TG03, TR16, WW12, Wu85, Zah12, LZSL06, BBCQ13, GB11].

tree-connected [HSW04].

Tree-Dags [BCLR96]. Tree-Related [OD95a]. tree-structured [GA90, IKS87]. Trees [AP94, AS94, ADS98, BBN93, BP02, CS95a, DM95, DP00, DLS00, DJM94, DLP99, DS93, Efe96, HKMU98, HM01, HS94a, HHC98, Iqv92, LP96a, MD98, PM92, ST02, SLH95, TT98, Wag93, WW96, WB01, WFL98, ePP90, BNP02, BL89, BMIM07, CI03, CS06a, CFJW13, CDR09a, DGNW13, Efe91, ESGQ*11, ESGQ*14, GHY10, GZ08, GW90, HPT07, HAC17, JLY12, KKN13, LVP08, LMZ04, Lin03, LHT08, LFZ*17, OMSGNSG05, PD05, PPC04, RDA18, SKK91, TDM05, Wag94, WL00, WC01, WFZJ12, WIB12, YZLT09, YMLP14, Zep91].

Trellis [LCM*06, SGdSS13]. Trends [ACB*15, ER97, KKKG14, BHS13].

Triangular [IK94]. Triangularization [KK86, CDR90, EM89].

Triangularizations [Par92]. Triangulation [DFRCU99, LS95].

Tunability [CK00]. Tuning [CSMM10, SB02, TdAR18, ABGV11, HPT07, KKR14, MYD*11, MML07]. Tuned [ZBR11]. Tunnel-based [ZBR11]. Tuple [STKW12, DRT07].
Turbulence [LLCC02]. TWDM [LLJ00b]. twig [LSZZ15]. Twisted [HTHH02, AP91b, FLPJ07, LFZ+17, WFZJ12, XHRZ16]. Two [AaJS01, BNS00, BBH+17, BP01, Cha94, CCC92, CEF+95, DD96, DKU15, Gos90, GT97, Hwa97, KLZ97, KL84, LHS97, LP96b, LK94, LLCC02, NAK04, Qia97, RFPAG08, RP95, SSM89, SSHC00, YCY+00, AB05, ARM+05, CF88, CG86, CB11, Deh90, FSV17, HDJ08, Hsi04, JD12, LC91b, MP10, PMV06, SNCP12, SS94b, WLL16, dIAMCFN12]. Two- [Hwa97]. Two-Dimensional [LP96b, YCY+00, NAK04, AB05, Deh90, LC91b]. Two-fixed-endpoint [Hsi04]. two-layer [dIAMCFN12]. Two-Level [KL84, Qia97, RP95, SSHC00, BBH+17]. two-list [WLL16]. Two-pass [DD96]. two-phase [SNCP12]. two-stage [HDJ08]. Two-Variable [CCC92]. Two-Way [LK94, LLCC02]. Type [HO94, SC91b, BFH09, GNM19, QGL+09, MV94, MVV91]. types [ASB18, RJKL11]. TYPHOON [HKW05].

[BW96, BST01, Kar92, NVK+11, SV00, ACHY18, MSZ05, NAK04, SSMS08].

Used [LL95]. Useful [Bal90, GSG+93, FM85]. Useless [Yen01]. User [GRS97, KW97, RKK06, WCXL11, LC11, MAJJ05, NGQM12]. User-Level [KOW97, MAJJ05]. User-Space [GRS97].

[AST01, ZR00, RÖE+18, SY04]. Using [AyJ93, BA97, BCLR96, BLG01, CCRS92, KOW97, RKK06, WCXL11, LC11, MAJJ05, NGQM12].

Using [GRS97, KOW97, RKK06, WCXL11, LC11, MAJJ05, NGQM12]. Using [LL95]. Useful [Bal90, GSG+93, FM85]. Useless [Yen01].

User [GRS97, KOW97, MAJJ05]. User-Space [GRS97].

vectorization [Wol88]. vectorized [TP18]. Vectors [TR96, BDG+15]. Vehicle [DH04, Sch13]. Vehicles [CXQ+18, AK18, BJ18, ZWW17]. VERDI [SRGB90]. verifiable [CXY14, XLC+18]. Verification [AS00, BR95a, MB96a, SHSH17, AM17, Eri88, LAGK07]. Verifying [WG93]. Versatile [CGL+14, DVZ96]. versatility [KGN11]. Version [WW96, LHZ+18]. versions [BSMH08]. versus [FBD99, GST09, JL11, LPU97, Sun02, TSHH01]. Vertex [AK17, WFLJ16, XYZW14, XHZZ16]. Vertex-disjoint [WFLJ16]. vertex-pancyclicity [XHZZ16]. vertically [LHF91, SM08a]. vertices [ACU08]. Very [OP96, DHHK04, MYM10, PDB13, YÖ11]. VForce [MLK12]. via [AM13, AKBD10, AD10, BM17b, BP98, CJ07, CVJ09, CRA+08, CMR10, ECLV12, HVW16, HBF12, KNHH18, LÜ14, MTM10, MS15, MBR08, NS95, PRHB06, PS14, YZS15, ZV06, ZBF05]. Viable [KLK98]. victim [XCH08]. Video [AAL95, CLV95, DSST95, HLL+95, JK00, RU99, ZRC99, Bar05, LVP07, LY12, YAK15]. Video-on-Demand [DSST95, HLL+95]. video-sharing [YAK15]. View [Bue92, BB11]. Views [CMT93, LMCF90, Won99, BB03]. viewsed [CSL15]. Viola [NHO+13]. Virtual [AD95, BAHP01, BF97, DRSB01, KS97a, KLLL98, KKS08, LM96, Mat93, NC13, PA97, PL95, TJ92, BJS03, BAL05, CL14, FMIF18, FX06, Fu10, KS03, KNHH18, PY09a, PK05b, PVR17, RT18, TT07, WDD09, YLZ18, ZG13, ZV06, ZF05]. Virtual-Channel [PA97]. virtualization [DYL+12, FLCB10, GTN+06]. virtualized [AAA+10, CP17, KLJ+11, KKLJ14, SJB12, SSVC10]. viruses [MJ03]. visibility [BSG90]. Vision [LR94, MBL+92, MHC95, MAR87, WHT02, Kri91, WJD91]. vision/image [WJD91]. Visual [BN94, SRGB90]. Visualization [BB93, Cas93, Cou93, KS93, Mii93, NT90, MBH+98, NCA93, RV13, TSD08, WGCZ09, ZB09, ZW1]. Visualizations [LSCA93, SK93]. Visualizing [RW93, SKR93, ZNQ93]. Vital [BS97, HH98]. VLIW [NS12, dSR00]. VLSI [BB85a, BBR94, CCA99, CHX+17, FM85, GS91b, Gue86, KM97, KLL87, MB96a, MS87, ML89, MRR+02, MT85, MT97b, NE85, OB88, OT86, PR06, TUF92, TF92, WSS93]. VLSI-suited [GS91b]. VM [JXW06]. VM-based [JXW06]. VOD [SK11, Bar05, LC07, YCH+10]. voice [WTS03]. volatile [CDR12, NV14, ZPK+14]. voltage [FKL08]. Volume [Ano92a, Ano92c, Ano93a, Ano96l, Ano97k, Ano00d, Ano01g, Ano11, Ano11h, Ano02d, Ano03b, Ano04a, Ano08, Ano09, Ano10a, Ano10b, Ano11, Ano11k, Ano12n, Ano12n, Ano14f, Ano14g, Ano15k, BS96c, CS93b, WS97a, ACFK07, LWCC15, Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano99a, Ano99b, Ano99c, Ano00b, Ano00c]. Volumes
volunteer [LKM12]. Voronoi [RR95b, SZ03]. Voting
[OTKT12].

WAEl [GMS06]. Wafer [KL84, MLW+97, RFM94]. Wafer-Scale
[KL84, RFM94]. Wait [FKKR16, HPT02]. Wait-Free [HPT02, FKKR16].
woke [JLY12]. wake-up [JLY12]. Walk [SLP+98, BBS13, RM11, SMP15].
Walks [BA01a, Li10]. warehousing [DTK11a]. warning [XCLR07]. warp
[NHO+13, ACD+93, CBP02, CX05, PW96]. Warping [WS95, WS97a].
water [CvdBL+08, dAMCFN12]. Watershed [MG98]. Wave
[CDP95, BBS13, CDB04, KVNV17]. WaveCluster [Y¨O11]. wavefront
[OT86]. Wavelength [HP00, CS10, MVM04, TKKH17]. wavelength-based
[TKK17]. wavelength-routed [MVM04]. Wavelet
[HK01, CV09, HHI16, TKHG04]. Wavelet-Based [HK01]. Way
[LK94, LLCC02, ACU08, KK98a, Sch14, VPHML06]. WCET [LZLX11].
WDM [CS10, DP99, MVM04, OS93, PR12, WG08]. Weak [RHH12].
Weakest [Bit92]. weakly [HJ07, YWW12]. weakly-connected [YWW12].
Weather [RHH96]. Web
[KCD08, FKR+17, HSS17, ASKTZ13, AK06, BLPA05, CSWD03, SCK03,
TC03, TC04, TK07, UGG+11, Wan06, XCLZ03, XJS03, ZWL03].
web-portal [FKR+17]. Weight
[RDL95, RGV800, Tse95, YJ96, JM14, LVP08, Wan06, WZZ+17, WW18].
weight-based [JM14]. Weight-Throwing [Tse95]. Weighted
[BS97, MD13, BFM+18, CDDL0, DM17, Sta17, SZB16]. weighting
[CRA+08]. well [EB09]. well-nested [EB09]. WFR [FKKR16]. WFR-TM
[FKKR16]. whole [Kan05]. whole-program [Kan05]. Wide
[WM92, We98, Can18, HLO7, JKV15]. Wide-Area [We98, JKV15]. width
[DH91a]. Wihuidum [JKD+15]. wildfire [DFST13]. Wimpy [LNC13].
window [BM11, LVP07, MTL+18]. window-assisted [LVP07]. winners
[PL03a]. Wire [HY97]. Wire-Limited [HY97]. Wireless
[BCD00, BD00, BDF01, Bou03, GPJA10, GMS06, JK00, KGG01, LDZ+14,
MS00, Ola01, THGY15, WL05, ASM09, Amm16, AP03, AHG12, AYB+15,
BFG+03, BM11, BS07, BXA08, BWP+11, BOY10, BPRS04, BOP06, BC11,
BN03, BPA06, BJ18, CCW14, CKN07, CCK+08, CRWX12, CLL09, CSM04,
DW06, DLLL11, DMB+03, DGBN14, DJH11, DKM10, DF06b, EBE08,
EM11, FCW11, FCM13, GHL0, GDP08, GP07, GCC+04, GDL+11,
GYP13, GY14b, GM14a, GL12, GMXA07, HZA+15, HMV07, HLO7, HS12,
HWWH08, HWC08, HZDP12, JF12, JLY12, JBS14, JHPL13, JLV11,
KVK15, KSL04, KKK11a, KOA09, KO11, KKO12, KSK15, KZ11, KK10,
KDF08, KKTZ13, KGN11, KNS06, LZ08, Lan09, LZ11, LDZ+17, LY10,
LC05, LW06a, LC11, LMJC11, LWLD12, LL12b, LS03, L¨U14, LR03b,
LW17, LZC11, LSWC14, LDS16, Los08, MAGL13, MPV12]. wireless
[MA11, MBR08, NPGV10, NAD11, NC09, NM17, NGQM12, OWK14, PLY15,
PLR07, RM10, RL11, RLP14, REZ17, SCN12, SZMK13, SSZ10, SKMM04,
SK05a, SCLL10, TBHA07, TLY12, TM10, VHH08, VRM10, WW07, WTB+08, WMW09, WBTM09, WL11, WCXL11, WH08, WBRTOA13, WWA+18, XYKA08, XH+10, YpGyL13, YSL08, YZX+11, ZMG+16, ZW11, ZBR11, ZLCJ12, ZSCX+18, ZTGL17, dOBG+15, LDP+14. Wireless/Mobile [MS08]. Wires [GB95]. within [BPPR11, THN+93]. without [FKKR16, FSZ07, HP95, Ho91, MS02, OS97, RCG+11, SA93, WW12, X005]. WK [DC94, SC99]. WK-Recursive [DC94, SC99]. WLAN [HB11]. WLANs [CCHC09, FA07, GZY14a]. WMNs [LHX+16]. Wolfe [Ps96]. Work [BKC+15, BM04a, DKKV15, KM17]. worker [BMT12, HSLL04]. workers [KR15]. workflow [ALM+16, FFP14, FCC07, RCG+11, WHW+17, YYYL11, YWG15, ZVL15]. workflows [BKK+11, KH17, TYH09]. Workload [DZD01, IM94, SSY97, GNP05, KYP17, LLY08, LTLG14, LF03, SSFP11, YJL16]. Workloads [FTK14, MKC01, AM12b, CQ+06, CkLCK04, CkLCK05, LLY15, MLK+16, WD13, ZLWZ18]. workshop [SAB+92]. Workstation [AYI97, RN91, KMKD97, LC97, PN97a, PN97b, WB96, ME04]. Workstations [AS97, AN00d, ABM+92, BSS97, BDH+97, CP97, CM92, DSAUM99, DZ97, HS97, HWW96, JPLA17, LLY08, LTG14, LF03, SSFP11, YJL16]. Workshops [FTK14, MKC01, AM12b, CQ+06, CkLCK04, CkLCK05, LLY15, MLK+16, WD13, ZLWZ18]. worlds [WAE03]. Worm [NS95]. Wormhole [BLP05, BVW96, DG94, DRS01, FF98, LME95, LEB98, NSE09, PA97, RP98, RMC95, RMC97, SJ95, SJ96, SB02, WB01, XM092, HNSA07, Lee03, SAKOM03, WCC02]. Wormhole-Routed [FF98, NSE09, RMC95, RMC97, XM092, SAKOM03, WCC02]. Wormhole-Switched [WB01]. Write [DS95a, ACHY18, CH06a, CG10, GNS09, IR12, IRRS16, SLK12]. write-once [ACHY18]. write-only [SLK12]. Writeback [KE93]. Writer [JB00, KS97a, HV09, HV95]. writers [FKKR16]. writing [DBL+12]. wrong [SYYU07]. wrong-path [SYYU07]. WSN [Wu11]. WSNs [PP15, MCD5+15, NDP13, SMP17]. Wukong [MLX12]. WWW [AYI97, AYE98].

References

Almeida:2010:JAC

Aartsen:2015:IFD

Aspnes:2010:CSC

Al-Ayyoub:1998:HIN

REFERENCES

Al-Ayyoub:2002:CSP

Al-Ayyoub:2003:NRS

Adle:2005:TAP

Al-Azzoni:2010:DSH

Agbaria:2004:QRP

Abdullah:2017:REH

[AAH17] Aref M. Abdullah, Hesham A. Ali, and Amira Y. Haikal. Reliable and efficient hierarchical organization model for

REFERENCES

[Agarwal:2001:TPA]

[Arvind:1984:RMF]

[Ayani:1993:PDE]

[AlBdaiwi:2003:RPT]

[Aluru:2003:GEI]
REFERENCES

REFERENCES

REFERENCES

Alonso:2011:ITP

Avin:2017:DCC

Atallah:1992:MAC

At:2017:LAU

Andrews:1992:NMN

Abrams:1996:GPA

Arguello:1995:PAS

Akingbehin:1989:HAP

Anjo:2016:DML

Assuncao:2015:BDC

REFERENCES

[Andreolini:2015:ASR] Mauro Andreolini, Michele Colajanni, Marcello Pietri, and Stefania Tosi. Adaptive, scalable and reliable monitor-

Aykanat:2008:MLD

Abderazek:2008:QPQ

Agarwala:1995:ESV

Afek:2002:LS

Ammari:2010:FCG

[AD10] Habib M. Ammari and Sajal K. Das. Forwarding via checkpoints: Geographic routing on always-on sensors. *Journal of
REFERENCES

[ADM+94] Mikhail J. Atallah, Frank Dehne, Russ Miller, Andrew Rau-Chaplin, and Jyh-Jong Tsay. Multisearch techniques: Parallel data structures on mesh-connected computers. Jour-
REFERENCES

Auletta:1998:MTA

Attiya:2001:TBD

Alonso:2014:BPI

Arvind:1988:FSP

[AF06] Danilo Ardagna and Chiara Francalanci. Joint optimization of hardware and network systems. *Journal of Parallel and
REFERENCES

Atallah:1986:EPS

Aroca:2012:TGD

Ahmad:1994:HSD

Altman:1998:UFI

Ayguade:2006:ENO
REFERENCES

May 2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Andrade:2011:PHD

Anik:1994:PIS

Attiya:2006:TAM

Anagnostopoulos:2011:DTD

Anagnostopoulos:2012:OQA

Ajwani:2016:COA

Anagnostopoulos:2012:PPC

Ahuja:1990:CCM

Anagnostopoulos:2011:AMM

Alexandrov:1997:LIL

REFERENCES

REFERENCES

REFERENCES

[ALH+09] Sachin Agarwal, Moshe Laienfeld, Andrew Hagedorn, Ari Trachtenberg, and Murat Alanyali. Fair and distributed peer-

Ahmad:1999:DSM

Amory:2011:NTS

Ahmad:2016:HGA

Albert:1991:DPC

REFERENCES

[AM07] Shah Asaduzzaman and Muthucumaru Maheswaran. Strategies to create platforms for differentiated services from dedi-

REFERENCES

3. Ammari:2016:UFI

 Mayez Al-Mouhamed and Homam Najjari. Adaptive scheduling of computations and communications on distributed-

REFERENCES

REFERENCES

Anonymous:1993:AIVb

Anonymous:1993:AIVc

Anonymous:1993:EVN

Anonymous:1994:AIVa

Anonymous:1994:AIVb
REFERENCES

Anonymous:1994:AIVc

Anonymous:1994:AIVd

Anonymous:1994:EM

Anonymous:1995:AIVa

Anonymous:1995:AIVb

REFERENCES

REFERENCES

Anonymous:1995:AIVh

Anonymous:1995:CPSa

Anonymous:1995:CPSb

Anonymous:1995:EM

Anonymous:1996:AIVa

REFERENCES

Anonymous:1996:AIVb

Anonymous:1996:AIVc

Anonymous:1996:AIVd

Anonymous:1996:AIVe

Anonymous:1996:AIVf
Anonymous:1996:AIVg

Anonymous:1996:AIVh

Anonymous:1996:CPSb

Anonymous:1996:CPSa

Anonymous:1996:EA

REFERENCES

Anonymous:1996:EVN

Anonymous:1997:AIVa

Anonymous:1997:AIVb

Anonymous:1997:AIVc
REFERENCES

Anonymous:1997:AIVd

Anonymous:1997:AIVe

Anonymous:1997:AIVf

Anonymous:1997:AIVg

Anonymous:1997:AIVh

REFERENCES

Anonymous:1997:CP

Anonymous:1997:CPS

Anonymous:1997:VNA

Anonymous:1998:AIVa

Anonymous:1998:AIVb

REFERENCES

REFERENCES

Anonymous:1999:AIVa

Anonymous:1999:AIVb

Anonymous:1999:AIVc

Anonymous:1999:CPa

Anonymous:1999:CPb

REFERENCES

Anonymous:2000:AIV

Anonymous:2000:ATI

Anonymous:2000:EVN

Anonymous:2000:PAFa

REFERENCES

Anonymous:2001:ATIa

Anonymous:2001:GEIa

Anonymous:2001:GEIb

Anonymous:2001:GEIc

Anonymous:2001:IP

Anonymous:2001:PAFa

Anonymous:2001:PAFb

REFERENCES

Anonymous:2001:PAFm

Anonymous:2001:PAFn

Anonymous:2001:PAFo

Anonymous:2001:PAFp

Anonymous:2001:PAFq

Anonymous:2001:PAFr

REFERENCES

Anonymous:2001:PAFs

Anonymous:2001:P

Anonymous:2001:RN

Anonymous:2002:Aa

Anonymous:2002:Ab

Anonymous:2002:Ai

REFERENCES

Anonymous:2002:ATI

Anonymous:2002:EBa

Anonymous:2002:EBb

Anonymous:2002:GEIa

Anonymous:2002:GE Ib

Anonymous:2002:GE Ic
Anonymous:2002:N

Anonymous:2002:PAa

Anonymous:2002:PAb

Anonymous:2002:PAc

Anonymous:2002:PAd

Anonymous:2002:PAe

Anonymous:2002:PAf

Anonymous:2002:PAFa

Anonymous:2002:PAFb

Anonymous:2002:PAFc

REFERENCES

Anonymous:2002:PAFd

Anonymous:2002:SSD

Anonymous:2002:SIP

Anonymous:2003:AI

Anonymous:2003:ATI

Anonymous:2003:EBa

Anonymous:2003:EBb

REFERENCES

Anonymous:2003:EBk

Anonymous:2004:ATI

Anonymous:2004:AI

Anonymous:2004:CA

Anonymous:2004:CSM

Anonymous:2004:CH

Anonymous:2004:EBa

Anonymous:2004:EBb

REFERENCES

Anonymous:2004:EBk

Anonymous:2004:EBl

Anonymous:2004:MPA

Anonymous:2008:EVR

Anonymous:2009:EVR

Anonymous:2010:EVA

Anonymous:2010:EVR

REFERENCES

REFERENCES

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EVA

Anonymous:2011:EVR

Anonymous:2012:EBa

Anonymous:2012:EBo

REFERENCES

REFERENCES

REFERENCES

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

Anonymous:2013:EBd

Anonymous:2013:EBe

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:EBh

Anonymous:2013:EBi

Anonymous:2013:EBj

Anonymous:2013:EBk

Anonymous:2014:EBa

Anonymous:2014:EBb

Anonymous:2014:EBc

Anonymous:2014:EBd

Anonymous:2014:EBe

Anonymous:2014:EVA

Anonymous:2014:EVR

REFERENCES

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBf

REFERENCES

Anonymous:2015:EBg

Anonymous:2015:EBh

Anonymous:2015:EBi

Anonymous:2015:E Bj

Anonymous:2015:EVR

Anonymous:2016:EBa
REFERENCES

Anonymous:2016:Ebb

Anonymous:2016:Ebc

Anonymous:2016:Ebd

Anonymous:2016:Ebe

Anonymous:2016:Ebf

Anonymous:2016:Ebg

[Ano16g] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 95(?):ifc, September 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

REFERENCES

Anonymous:2017:EBb

Anonymous:2017:EBc

Anonymous:2017:EBd

Anonymous:2017:EBe

Anonymous:2017:EBf

Anonymous:2017:EBg

REFERENCES

Anonymous:2017:EBh

Anonymous:2017:EBi

Anonymous:2017:EBj

Anonymous:2017:EBk

Anonymous:2017:EBl

Anonymous:2017:EBm

[Ano17m] Anonymous. Editorial Board. Journal of Parallel and Distributed Computing, 110(??):ifc, December 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2018:EBa

Anonymous:2018:EBb

Anonymous:2018:EBd

Anonymous:2018:EBe

Anonymous:2018:EBf

Anonymous:2018:EBg

REFERENCES

Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2018:EBj

Anonymous:2018:EBk

Anonymous:2018:EBI

Anonymous:2018:EBm

REFERENCES

Anonymous:2018:EBn

Anonymous:2018:EBCa

Anonymous:2018:EBCb

Anonymous:2018:EBCc

Asdre:2007:OPS

Andreea:1997:ECP

[ANS97] Thomas Andreea, Michael Nolle, and Gerald Schreiber. Embedding Cartesian products of graphs into de Bruijn
REFERENCES

REFERENCES

REFERENCES

February 2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Arbib:1989:SNN

Atlidakis:2014:EUP

Azari:2018:DRA

AlFaisal:2017:NPE

Angelov:2005:EOT

678–691, June 2005. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Agostini:2018:GAE

Aupy:2014:CAF

Aumann:1991:IMU

Atkinson:1994:UGB

Anderson:1995:PIP

REFERENCES

REFERENCES

REFERENCES

Anzt:2013:BAR

Antonio:1991:HPA

Al-Tawil:2001:PME

Ardagna:2007:SBR

Aboelaze:1995:PAB
REFERENCES

REFERENCES

25, 1998. CODEN JPDCER. ISSN 0743-7315 (print),

Abdullah:1993:CQP

[AyJ93] Naim Abdullah and Jie yong Juang. Concurrent query pro-
cessing for logic inference using the connection graph. Journal of Parallel and Distributed Computing, 17(4):282–297,
April 1993. CODEN JPDCER. ISSN 0743-7315 (print),

Alrabiah:2001:DCL

[AZ01] Tawfig Alrabiah and Taieb Znati. Delay-constrained, low-
cost multicast routing in multimedia networks. Journal of Parallel and Distributed Computing, 61(9):1307–1336,
September 1, 2001. CODEN JPDCER. ISSN 0743-

Amoretti:2013:EAC

Efficient autonomic cloud computing using online discrete
pii/S0743731513000336.

Al-Zoubi:2013:RGS

[AZW13] Khaldoon Al-Zoubi and Gabriel Wainer. RISE: a general
2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Bultan:1992:NMH

Bhandarkar:1995:HTR

Bergmans:1996:CSR

Ben-Asher:1997:ORM

Ben-Asher:2001:DRA

Bruda:2001:CSR

Battre:2006:MFP

Bader:2004:IRA

Ben-Asher:1992:DSA

Ben-Asher:1995:ESS

REFERENCES

REFERENCES

REFERENCES

Barlas:2005:VSO

Basermann:1997:CGL

Bertier:2006:DME

Bataineh:2005:TAS

Bertolazzi:1985:VSD

REFERENCES

REFERENCES

REFERENCES

[BBM+02] Peter Benner, Ralph Byers, Rafael Mayo, Enrique S. Quintana-Ortí, and Vicente Hernández. Parallel algorithms

REFERENCES

[BČFF05] Victor E. Bazterra, Martin Čuma, Marta B. Ferraro, and Julio C. Facelli. A general framework to understand parallel performance in heterogeneous clusters: analysis of a new adaptive parallel genetic algorithm. *Journal of Parallel and

REFERENCES

Bhatt:1996:STD

Bailey:1987:RCO

Baldoni:2006:CTO

Bernaschi:2015:SSC

Bagaa:2012:EDA

[BCO+12] Miloud Bagaa, Yacine Challal, Abdelraouf Ouadjaout, Noureddine Lasla, and Nadjib Badache. Efficient data ag-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Benoit:2015:ISP

Bhattacharya:1994:MGM

Bevilacqua:2002:MAP

Bilas:1997:FRS

REFERENCES

[BFG04] Vittorio Bilò, Michele Flammini, and Roberto Giovannelli. Experimental analysis of online algorithms for the bicriteria scheduling problem. *Journal of Parallel and Distributed Com-
puting, 64(9):1086–1100, September 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Bilo:2006:PAB

Berenbrink:2018:TLB

Baiardi:1987:DIN

Barahona:1986:PAM

Barbosa:1989:DIS

Baru:1990:SER

REFERENCES

Barberou:2003:EME

Beauquier:2002:TBS

Bao:2003:DDC

Bozdag:2008:FSG

Bokka:1995:CTC

REFERENCES

[Bohm:1993:DTS]

[Boyer:2005:NEA]

[Boguslavsky:1994:OSS]

Bukhari:2017:OBP

Bertin:2014:FSB

Bilardi:2005:SL

Berner:1991:CMP

Brzezinski:1995:DMG

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

Bansal:2005:DHT

Bhattacharya:1995:CCS

Bier:1989:EBT

Bojanczyk:1990:USA

Bertossi:1994:PSM

Bianchini:1996:EPM

REFERENCES

Bachmat:2005:ECC

Broberg:2001:POU

Bonfietti:2013:MTM

Bakiras:2005:ASD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Boukerche:2003:WMA

Ben-Othman:2010:EEQ

Bozejko:2009:SFS

Bongiovanni:1989:PDS

Bilardi:1995:HPC

Barth:1998:RPG

References

REFERENCES

REFERENCES

[Bo02] Azzedine Boukerche and Amber Roy. Dynamic grid-based approach to data distribution management. *Journal-
REFERENCES

Benoit:2008:MPS

Bromley:1996:QNG

Bhat:2003:ECC

Bosque:2006:PCI

Boudet:2001:ADA
REFERENCES

REFERENCES

[Buck:1996:EVN]

[BS96c]

[BS97]

[Brockington:2000:AAP]

[Bass:2003:PPR]
REFERENCES

REFERENCES

Blathras:1999:TML

Briceno:2013:RSR

Burge:2001:UNN

Bai:2007:SHT

REFERENCES

[BVB02] Myung M. Bae, R. Venkatesan, and Bella Bose. Data rearrangement between radix-k and Lee distance gray codes in
REFERENCES

REFERENCES

[BXA08] Torsha Banerjee, Bin Xie, and Dharma P. Agrawal. Fault tolerant multiple event detection in a wireless sensor network.
REFERENCES

Bobda:2018:HLS

Bui:2017:EEC

Butt:2006:SOF

Brooks:2004:AOD

Callsen:1994:OHC

[CAF+11] Caroline Concatto, João Almeida, Guilherme Fachini, Marcos Hervé, Fernanda Kastensmidt, Érika Cota, and Marcelo

REFERENCES

Cheng:1995:ORS

Conrad:1995:APA

Coelho:1996:OCH

Chen:1994:DAC

Conatto:2011:IYN

Chen:2013:TSM

Calinescu:2006:FLA

Cannizzo:2018:FVA

Cappello:1987:GEH

Carlson:1990:SLR

REFERENCES

Cirne:2002:UMI

Cong:2006:DIP

Czapinski:2011:TST

Cason:2015:THT

REFERENCES

REFERENCES

REFERENCES

[CCS06] Chao-Tsun Chang, Chih-Yung Chang, and Jang-Ping Sheu. BlueCube: Constructing a hypercube parallel computing and

REFERENCES

Chen:2004:RWP

Choi:2005:RDR

Carrier:2015:SSI

Caron:2010:SSC

Cicerone:2001:CPR

REFERENCES

Chakrabarti:1997:MSA

Chen:1995:ETP

Chau:2007:MIP

Carlson:1988:PCD

REFERENCES

[CGB] Cobb:2002:SGL

[Claus:2010:ICO]

[CG10] Pierre-Nicolas Clauss and Jens Gustedt. Iterative computations with ordered read-write locks. *Journal of Parallel and
Carroll:2011:DAM

Carroll:2012:IBD

Casu:2017:PPA

Colajanni:1998:TBR

Chen:2016:FHA

REFERENCES

Chronopoulos:2003:EGB

Colbourn:1992:CFA

Chen:2006:TBR

Chen:2006:CDF

Chang:1994:CTA

REFERENCES

REFERENCES

Chen:1992:GEI

Chen:2005:IOA

Cook:2001:APG

Chiola:1992:SIP

Chien:1995:CAC

REFERENCES

REFERENCES

[CLC+17] Yunliang Chen, Fangyuan Li, Jia Chen, Bo Du, Kim-Kwang Raymond Choo, and Houcine Hassan. EPLS: a novel...

REFERENCES

Cordasco:2010:EIS

Cerrato:2018:EDE

Clark:1992:CDF

Clementi:2004:RRO

Ciardo:1992:ACF

Cai:1993:GVB

Laizhong Cui, Peng Ou, Xianghua Fu, Zhenkun Wen, and Nan Lu. A novel multi-objective evolutionary algorithm for recommendation systems. *Journal of Parallel

REFERENCES

Culler:1990:ETS

Choudhary:1991:IEH

Choudhary:1992:PIE

Conn:1994:PRS

Cabillic:1997:SEP

REFERENCES

[CP04a] Tiziana Calamoneri and Rossella Petreschi. L (h,1)-labeling subclasses of planar graphs. *Journal of Parallel and Dist-

REFERENCES

Chalasani:1994:FTR

Chen:2012:ILA

Cheng:1992:OCA

Cheng:1993:OLS

Cheng:1993:VNA

[CS93b] L. Cheng and A. A. Sawchuk. Volume 16, number 1 (1992), in the article “A One-Copy Algorithm for 2-D Shuffles for Optical Omega Networks,” by L. Cheng and A. A. Sawchuk,
REFERENCES

REFERENCES

REFERENCES

[CSW+17]

[CT94] Akok Choudhary and Rajeev Thakur. Connected component labeling on coarse grain parallel computers: an
REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

[Chang:2009:CFD]

[Chlopkowski:2015:GPL]

[Cui:2011:DDM]

[Chen:2007:PAM]

[Cai:2005:NSC]

[Chung:1998:PAP]
Yongwha Chung, Cho-Li Wang, and Viktor K. Prasanna. Parallel algorithms for perceptual grouping on distributed
REFERENCES

REFERENCES

Chen:2018:REC

Chen:2018:FAC

Chen:2014:PPV

Cheung:1995:FDA

Chung:1996:PBS

Kuo-Liang Chung and Wen-Ming Yan. Parallel B-spline surface fitting on mesh-connected computers. *Journal of
REFERENCES

Chen:1999:HPT

Cybenko:1989:DLB

Chlebikova:2006:ARG

Cole:1990:OPA

Czapinski:2013:EPM

Chen:2016:SNP

Chen:2017:DDA

Ci:2009:MFB

Darbha:1997:TDB

Dubey:2014:SHL
Anshu Dubey, Ann Almgren, John Bell, Martin Berzins, Steve Brandt, Greg Bryan, Phillip Colella, Daniel Graves,

Drummond:1996:DBD

Draeger:2017:MPF

Dahlgren:1999:TIP

Macedo:2013:EGC

Raimundo José de Araújo Macêdo, Allan Edgard Silva Freitas, and Alírio Santos de Sá. Enhancing group commu-

dAT17

Dav17

DAYA02

DB86

REFERENCES

Dongarra:1990:TAD

deAzevedo:1995:BAS

Droz-Bartholet:2012:RCW

Donaldson:1994:PSH

Duh:1994:TPW

REFERENCES

REFERENCES

Draper:1995:DAD

Doallo:2012:SIE

DAngelo:2017:HID

Dai:2013:PDE

DiGregorio:2013:AWS

dSouzaeSilva:1991:QNM

Draper:1994:CAM

Dash:2014:LCM

Delporte-Gallet:2010:SLE

Delporte-Gallet:2005:MEA

Delling:2013:PHA

delaOssa:2006:IAA

Luis delaOssa, José A. Gámez, and José M. Puerta. Initial approaches to the application of islands-based parallel EDAs in continuous domains. *Journal of Parallel and Distributed Computing, 66*(8):991–1001, August 2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Dehne:1991:PAD

Dutt:1991:DFT

Dekel:1994:PAF

[DHR96] Anne Dierstein, Roman Hayer, and Thomas Rauber. The AD-DAP system on the iPSC/860: Automatic data distribution

REFERENCES

REFERENCES

Daily:2015:WSB

Dimokas:2010:EED

Dornstetter:2001:SAS

Dehne:2015:SRT

Ding:2009:AAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Das:2000:OMQ

Dereniowski:2012:DMA

Defour:2016:SSS

Dubois:2012:SSB

Despain:1985:FFT
REFERENCES

REFERENCES

REFERENCES

Dahlgren:1995:UWC

Das:1995:OCA

Das:1996:NTO

Datta:2001:CTA

REFERENCES

[DSS95] Michel Dubois, Jonas Skeppstedt, and Per Stenstrom. Essential misses and data traffic in coherence protocols. *Jour-
REFERENCES

REFERENCES

REFERENCES

References

September 1990. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

El-Boghdadi:2009:PAR

El-Boghdadi:2013:CAO

Eberbach:1994:CDG

Elhadef:2008:DFI

Ebner:2004:PAC

Engstrom:1989:SPS

[EC89] Bradley R. Engstrom and Peter R. Cappello. The SDEF programming system. *Journal of Parallel and Distributed Computing*,...
Etinski:2012:UFE

Edelman:1991:OMT

Evropeytsev:2017:ECG

Eltayeb:2005:PSB

ElBaz:2005:LBM

REFERENCES

Eugster:2017:HPP

Ercegovac:1988:LSC

Ercegovac:1991:MPM

Ercal:1997:TEM

Eshaghian:1994:OTP

REFERENCES

REFERENCES

Esteves:2015:IDE

Escudero-Sahuquillo:2011:OSC

Escudero-Sahuquillo:2014:NPD

Escudero-Sahuquillo:2018:FEC

EL Baz: 1996: AIA

El-Sharkawy: 1994: SDP

Edwards: 2014: KEM

el Ayeb: 1995: ABD

Fragopoulou: 1995: OCA

REFERENCES

Fallah:2007:HPC

Fagin:1992:LIM

Fan:1995:CSM

Fahringer:1996:CTE

Fragopoulou:1996:OCP

Paraskevi Fragopoulou, Selim G. Akl, and Henk Meijer. Optimal communication primitives on the generalized hyper-

REFERENCES

Frache:2014:EDS

Fan:2013:GBC

Feo:1990:RSL

Francesquini:2015:EEP

Fineberg:1991:EAM

Samuel A. Fineberg, Thomas L. Casavant, and Howard Jay Siegel. Experimental analysis of a mixed-mode parallel architecture using bitonic sequence sorting. *Journal of Parallel and
References

Fan:2011:CAD

Feng:2012:CML

Franklin:1986:INP

Fatema:2014:SCM

Fei:2003:NCA
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Page Range</th>
<th>Date</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Page Range</th>
<th>Date</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Faverge:2015:MLQ

Fujiwara:2004:PER

Francioni:1993:BSA

Fernandez:2004:ICM

Ferreira:2006:LSP
REFERENCES

Fan:2007:OFT

Flaherty:1997:ALR

Fortes:1985:PDT

Flocchini:1996:OEL

Fahringer:1999:BSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fort:2017:ITF

Flammini:2007:MNA

Funabiki:1994:PAT

Fidanova:2004:ILB

Fu:2000:EEM

REFERENCES

Franciscani:2005:RCA

Fang:2009:SDB

Falsafi:2005:ESP

Ferri:2010:ETE

Fu:2006:SMA

REFERENCES

REFERENCES

[Gai87] Jason Gait. A distributed process manager for an engineering network computer. *Journal of Parallel and Distributed Com-

REFERENCES

[GCS06] Venkata C. Giruka, Saikat Chakrabarti, and Mukesh Singhal. A distributed multi-party key agreement protocol for dynamic

Garzon:1992:DTG

Gonzalez-Ferez:2014:GFD

Gabarro:1994:ACD

Gavoille:2001:SER

Gao:1993:DMA

REFERENCES

[GHC+17] Yong Guo, Sungpack Hong, Hassan Chafi, Alexandru Iosup, and Dick Epema. Modeling, analysis, and experimental com-

Guo:2005:FLC

Gupta:1993:PPL

Ghose:1998:LPT

Gursoy:2004:PMB

Nabil Guellati and Hamamache Kheddouci. A survey on self-
stabilizing algorithms for independence, domination, coloring,
and matching in graphs. *Journal of Parallel and Distributed
ISSN 0743-7315 (print), 1096-0848 (electronic).

Chryssis Georgiou and Dariusz R. Kowalski. On the com-
petitiveness of scheduling dynamically injected tasks on pro-
cesses prone to crashes and restarts. *Journal of Parallel and
Distributed Computing*, 84(?):94–107, October 2015. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731515001252.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sa-
dayappan. Compiling array expressions for efficient exe-
cution on distributed-memory machines. *Journal of Par-
allel and Distributed Computing*, 32(2):155–172, February
1, 1996. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1996.0011/production;

Daniel Goodman, Behram Khan, Salman Khan, Mikel Luján,
and Ian Watson. Software transactional memories for Scala.
Journal of Parallel and Distributed Computing, 73(2):150–163,
February 2013. CODEN JPDCER. ISSN 0743-7315 (print),
com/science/article/pii/S0743731512002304.

Michael J. Gibson, Edward C. Keedwell, and Dragan A. Savić.
An investigation of the efficient implementation of cellular
automata on multi-core CPU and GPU hardware. *Journal of Parallel and Distributed Computing*, 77(?):11–25, March 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
science/article/pii/S0743731514002044.
REFERENCES

Gaudiot:1989:OMP

Gupta:1990:OOL

Guan:1992:PMS

Gui:2012:NDT

Gu:2001:JBP

Garcia:2014:HIA

[GLC14] Marta Garcia, Jesus Labarta, and Julita Corbalan. Hints to improve automatic load balancing with LeWI for hy-

REFERENCES

[GM13] Brice Goglin and Stéphanie Moreaud. KNEM: a generic and scalable kernel-assisted intra-node MPI communica-
REFERENCES

Gorain:2014:AAS

Grace:2014:DRP

Guo:1991:PCO

Gupta:2000:NSI

[GMXA07] Ananya Gupta, Anindo Mukherjee, Bin Xie, and Dharma P. Agrawal. Decentralized key generation scheme for cellular-

Gupta:2015:IBS

Gupta:2003:EET

Georgiou:2009:FTS

Georgiadis:2004:FWA

Gupta:2003:EET

Guo:2018:PAM
REFERENCES

Greenberg:1995:PRN

Goertzel:1994:LIP

Gai:2013:MIG

Gonzalez:1998:CAM
REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Guay:2015:EEL

Gross:1985:SIF

Gu:1993:DPM

Gutierrez:2005:PTI

Guirado:2013:ETS

REFERENCES

Gotze:1991:VSO

Grahn:1996:ECU

Gerbessiotis:1998:OLG

Gupta:1999:SLT

Grahn:2000:CEL

[GS00] Häkan Grahn and Per Stenström. Comparative evaluation of latency-tolerating and -reducing techniques for hardware-

Govindarajan:2001:SIC

Gupta:2001:CBT

Gupta:2003:FOS

Gupta:2003:SSM

REFERENCES

Goldstein:1996:LTI

Gill:1993:STA

Goswami:2002:DPP

Garcia:2003:HDH

Gunney:2006:PCA

Wu:2018:MME

Grimshaw:1994:MAC

Gupta:2013:LPR

Gerasoulis:1992:CCH

Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors. *Journal of Parallel and Distributed Computing, 16*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Haldar:2005:CRV

Han:1989:PAC

Harrison:1991:AMM

Hidalgo:2016:EEC

Hawking:1997:DMA
REFERENCES

Hu:2012:PPI

Hu:1993:EIS

Helman:1998:RPS

Hager:2017:MCC
Sven Hager, Daniel Bendyk, and Björn Scheuermann. Matching circuits can be small: Partial evaluation and reconfiguration for FPGA-based packet processing. Journal of Parallel and Distributed Computing, 109(??):42–49, November 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

REFERENCES

Herbordt:2000:SEP

Herbordt:1994:PAO

Herbordt:2004:ACH

Hu:2010:IIC

Hanna:2011:AHS

REFERENCES

[Hoare:2008:TSH]

[HerondeCarvalhoJunior:2013:CSE]

[HDT+05]

[Her:1992:GEI]

[Hajihashemi:2010:HPC]

[Hassan:2011:PID]
Hyde:1996:ADS

Hybinette:2002:LHO

Hameenanttila:1996:FHN

Harmanci:2010:ETM

REFERENCES

REFERENCES

REFERENCES

Hac:1990:SSL

Harper:1990:ERB

Ho:1990:EMB

Helman:2001:PCS

Han:2007:CWA
REFERENCES

Hu:2001:PDR

Hu:2001:MRM

Huc:2012:ERS

Hambrusch:1996:PMC

Hershberger:2001:DMR

[HK01] Daryl E. Hershberger and Hillol Kargupta. Distributed multivariate regression using wavelet-based collective data min-

REFERENCES

Hu:2000:ONS

Hwang:1998:FCA

Hwang:2001:AOS

Hsieh:1995:PMS

Hua:1995:OAL

Hosseini:1990:AGC

Hanlon:2003:LSF

Hori:2012:ANS

Helmbold:1996:TRC

Huang:1999:BBA

Heun:2001:ODE

Haghighi:2006:PPQ

Hart:2007:PMR

Ho:1991:OBS

Huang:1994:ELB

He:2009:SAA

Hohberg:1990:HFB

Hollingsworth:2017:E

Heydemann:1994:EHG

Hernández-Orallo:2009:PBS

Hendrickson:1995:PMB

Ha:1997:SDC

Homer:1997:DPP

REFERENCES

Hoepman:2002:SSW

Ha:2007:STR

Hamdi:1999:CES

Hung:1989:PPL

Yubin Hung and Azriel Rosenfeld. Parallel processing of linear quadtrees on a mesh-connected computer. Journal of Parallel

1986. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

He:2007:PGA

Houle:2004:DEA

Hendler:2010:SLF

Hillis:1990:ESH

Herlihy:2006:RSN

Hribar:1998:TDP

References

Huang:2002:FTH

Hua:1999:PLB

Hu:2011:DSR

Huang:2017:RSB

Habetha:2003:ASP

Hwang:1997:EPA

Huang:2008:TCT

Hsieh:2018:KAR

Hua:2014:ETH

REFERENCES

Huang:2018:RMB

He:2004:SSI

Ieumwananonthachai:1992:IPM

Iyengar:2004:SII

Ibrahim:2008:FGP

Iqbal:2005:PAD

[IC05] Saeed Iqbal and Graham F. Carey. Performance analysis of dynamic load balancing algorithms with variable number of

REFERENCES

REFERENCES

Jaramillo-Botero:2002:UFM

Jiang:1991:MMV

Jayanti:2000:AOS

Jhumka:2014:EFT

Jin:2005:ENA

Hyun-Wook Jin, Pavan Balaji, Chuck Yoo, Jin-Young Choi, and Dhabaleswar K. Panda. Exploiting NIC architectural support for enhancing IP-based protocols on high-performance

Jha:2012:ODC

Joselli:2015:NGN

Janssens:1995:ECR

Jabeen:2012:ASN

Gene Eu Jan and Ming-Bo Lin. Concentration, load balancing, partial permutation routing, and superconcentration on

Jiang:2011:LST

Jiang:2008:OCM

Johnson:1997:LCH

Jiang:2011:CIC

REFERENCES

REFERENCES

Jiang:2009:SPP

Jallu:2017:DCC

JaJa:1992:LBR

Jain:1995:ILB

Joshi:1999:SPM

REFERENCES

[Jegou:1986:DSP]

[Jenq:1994:RMA]

[Jadav:1995:TSH]

[Jia:1994:PNU]

Haoqiang Jin and Rob F. Van der Wijngaart. Performance characteristics of the multi-zone NAS parallel benchmarks.
Joshi:2009:ADS

Juang:1989:LBO

JaJa:1994:SID

Jing:2017:MLD

Jiang:2014:FRS

REFERENCES

REFERENCES

REFERENCES

Karaata:2002:SAF

KAS07

Kau94

Kavianpour:1993:NMS

REFERENCES

Kravtsov:2010:SFL

Kuang:2005:PPO

Kyriakis-Bitzaros:1992:EDT

Krishnamoorthy:1994:SDS

Kim:1995:NPU

REFERENCES

February 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Kim:1999:CMD

KCV99

Koutsonikolas:2008:IAF

KDH08

Karonis:2013:DHA

KDO+13

Kotz:1993:CWP

REFERENCES

Kumar:1994:ASP

Kudlur:2004:PAM

Karmakar:2010:ABF

King:1989:REB

Kuntz:2011:VAA

Kumar:1994:SLB

Kung:1989:USA

Koohi:2012:SAC

Khokhar:2003:TDD

Kanemitsu:2017:PNS

Kaushik:1996:EIS

Kannan:2014:HSC

Kang:2013:EIG

Kusudo:2015:BPA

Kim:2011:DCA

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Kim:2011:LAL

Kennedy:2017:CNB

Krishnan:2006:ESC

Kahol:2001:ADD

Karunaratne:2017:DSC

REFERENCES

Kas:2011:OAC

Krimer:2011:STA

Kambatla:2014:TBD

Kim:2012:RSG

Kim:2014:GBM

REFERENCES

Kim:2013:PMD

Kalinnik:2014:OAT

Korkhov:2008:GBV

Konwar:2009:NDN

Kim:2012:PDM

REFERENCES

Komatitsch:2009:PHO

Koibuchi:2005:EOP

Katevenis:1997:TSH

Khattab:2006:HBP

Kumar:2006:PAP

V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, Aravind Srinivasan, and Sibylle Zust. Provable algorithms for

Kim:2018:FSS

Kim:2019:MOO

Kuruvila:2006:GLR

Koppelman:1990:SRP

Khedr:2011:ETT

Khedr:2012:MAM

REFERENCES

Sung-Ryul Kim and Kunsoo Park. Fully scalable fault-tolerant simulations for BSP and CGM. *Journal of Parallel and Dis-
REFERENCES

Kurzak:2005:MPI

Kaczmarski:2017:FLL

Karamcheti:1996:RME

Kothari:1988:MNC

Kumar:1987:APM

REFERENCES

Krishnamoorthy:2014:IJS

Konwar:2015:RNS

Kapoor:2002:GAF

Kaddoura:1996:ADN

REFERENCES

501

Kissel:2011:PSH

Koziris:2003:PSM

Kegel:2013:DTU

Kshemkalyani:2012:IDP

Kannan:2004:SCE

Khalid:2017:PSM

[KSJC17] Shehzad Khalid, Bushra Sabir, Sohail Jabbar, and Naveen Chilamkurti. Precise shape matching of large shape datasets
REFERENCES

Koutsandria:2016:CEH

Kamath:2016:DTT

Kumar:1989:DLS

Kunde:1991:RMM

Karonis:2003:MGG

REFERENCES

[Kum17] Sandeep Kumar. Research-oriented teaching of PDC topics in integration with other undergraduate courses at multiple levels: a multi-year report. *Journal of Parallel and
REFERENCES

REFERENCES

Liu:2007:LVT

Lai:1986:TDD

Lai:2014:ECO

Lai:2015:CAS

Lai:2017:OCN

Alexey Lastovetsky. Special issue of Journal of Parallel and Distributed Computing: Heterogeneity in parallel and distributed computing. *Journal of Parallel and
Lastovetsky:2013:HPD

Lejeune:2015:FSF

Latifi:1995:MTI

Latifi:1998:FBG

REFERENCES

[LB17] Pedro López and Elvira Baydal. On a course on computer cluster configuration and administration. *Journal of
Lopez:2018:THP

Lesyng:2003:EXE

Lazar:1995:BAM

Lakhlef:2015:EAP

Liang:1994:FTM

REFERENCES

REFERENCES

Laurenciu:2014:CTN

Lim:2014:PGM

Lorenzon:2016:IDG

Lee:2005:RMF

Li:2010:SSP

REFERENCES

REFERENCES

Lu:1992:SCP

Lublin:2003:WPS

Lowenthal:1996:UFG

Larrea:2005:ECF

Losada:2017:PAF

Lewis:2003:SES

REFERENCES

Li:2018:SCC

Lan:2010:SDM

Lee:1992:DGD

Lin:2004:NAC

Loh:2005:JCA

Lin:2009:FPS

Yen-Chun Lin and Li-Ling Hung. Fast problem-size-independent parallel prefix circuits. Journal of Parallel and
REFERENCES

Liu:2014:OTA

Li:1995:DDD

Loh:2007:REC

Lam:1997:OAA

Liu:2008:DRC

Litow:1995:PCL

Li:2014:ABC

Leng:2016:SAR

Liu:2018:HHM

Li:1992:MDF

REFERENCES

Li:1999:CRD

Li:2001:SPM

Li:2005:JSP

Li:2006:ACA

Li:2006:ACP

Lee:2002:PPR

Lang:1990:NTS

Li:1994:OSL

Lee:1996:PSM

Lee:1998:LCS

Louri:2010:SIN

Louri:2011:ISI

LaFratta:2013:EEM

LaSalle:2015:MTM

Lee:1990:DPE

Liu:1995:XSS

Lu:1998:NPD

Li:2007:UBQ

Li:2010:ECR

Chunlin Li and Layuan Li. Energy constrained resource allocation optimization for mobile grids. *Journal of Parallel and
REFERENCES

Li:2012:FLC

Li:2012:OEA

Llamocca:2017:SRA

Ling:2002:PAP

Liu:1998:NAF

LeBlanc:1990:APP

Lin:1995:AMW

Lazaro-Munoz:2017:TRM

Li:2011:NRA

REFERENCES

Lee:2012:GSF

Li:2017:EAS

Liang:2013:WBC

Lima:2012:PEO

Lin:1991:NRA

REFERENCES

[LP96b] Chiung-San Lee and Tai-Ming Parng. Performance modeling and evaluation of a two-dimensional disk array system. *Jour-

Li:2012:OOS

Ligon:1993:EME

Ligon:1994:EMA

Li:2003:CDA

Lindsey:2003:EEA

REFERENCES

REFERENCES

REFERENCES

LaPolla:1993:DPP

Liang:1996:PAE

Lerida:2013:SBP

Lee:1988:HAK

REFERENCES

REFERENCES

Li:2007:RCP

Lahiri:2010:IFI

Lan:2002:NDL

Lin:1993:PCC

Liu:2014:HMC

REFERENCES

[LÜ14] Hui Lin and Halit Üster. A parallel algorithm with enhancements via partial objective value cuts for cluster-based wireless sensor network design. *Journal of Parallel and
REFERENCES

Lucchese:2018:PNC

Luk:1985:PMC

Lundberg:1990:PRG

Lundberg:1994:PBM

Lundberg:1999:PBS

Li:1990:TAD

Liu:1989:APC

Lai:1990:MPA

Lin:1995:MPR

Li:2006:SAA

Liu:2006:RTS

REFERENCES

Li:2016:EEC

Lin:2016:TMP

Langguth:2015:PPM

Luo:2014:HCS

Li:2012:CSC
Li:2002:EKF

Liu:2002:PSA

Li:2003:EHP

Lee:1997:GOM

REFERENCES

Ly:1998:MCC

Ly:2001:EIC

Ly:2008:AIS

Lee:2010:RMS

Ly:2012:CCE

[Liu:2011:APD]

[MA11]

[Maia:2013:MRP]

[Mah95]

REFERENCES

Manjunathaiah:2013:FGM

Martalo:2014:SDR

Mudge:1987:VAH

Martel:1988:PAP

Mnaouer:2005:ESL

Maheswaran:1999:DMC

Mattern:1993:EAD

Matsumae:2006:TBS

Menasce:1992:MPE

REFERENCES

Mullen:2017:LDH

Morillo:2008:APC

Morgan:1992:RAP

Marsh:1992:OSS

Mokdad:2011:ACM
Mirabella:2008:IRL

Maciel:2012:BDS

Maggioni:2016:OTS

Martinez:1991:SAD

Melhem:1993:OCI

Myers:2003:NMI

Daniel S. Myers and Michael P. Cummings. Necessity is the mother of invention: a simple grid computing system using

Maier:2017:OLD

McAulay:1989:CGO

Martinez:2012:HIS

Ma:2004:BBT

McDowell:1989:PAS

REFERENCES

REFERENCES

REFERENCES

Muhammad:2017:ALA

Menouer:2018:SCP

Merrall:1996:PEN

Mabbs:1994:PAM

Mourad:1993:RID

[MFS93] Antoine N. Mourad, Kent W. Fuchs, and Daniel G. Saab. Recovery issues in databases using redundant disk ar-

REFERENCES

Ma:2016:TTC

McLendon:2005:FSC

Manabe:1992:GCD

Miller:1993:WDW

REFERENCES

Milosavljevi:1999:IAA

Miranker:1991:SIP

Mitchell:2007:RTB

Misic:1994:RFD

Milosavljevi:2001:EEA

[135x681] REFERENCES

[135x681] 584

Miranker:1991:SIP

Mitchell:2007:RTB

Misic:1994:RFD

Milosavljevi:2001:EEA

[336x681]
REFERENCES

Marinescu:2003:CFS

Mendelson:1992:EPP

Melamed:2008:ASR

Mukherjee:2008:DPI

Memik:2001:DES

Mittal:2009:NDC

[MKC+09] Neeraj Mittal, Srinivasan Krishnamurthy, R. Chandrasekaran, S. Venkatesan, and Yanyan Zeng. On neighbor discovery in

Mondal:2016:PPA

Moritz:2014:IJS

Marchand:1997:OAD

Maresca:1989:CAS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Pages</th>
<th>Title Link</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[M Manning:1993:AAE

[M Mahapatra:2000:MNN

[M Mandal:2004:CCI

[M Mandal:2006:PAD

[M Mandal:2007:SSA

REFERENCES

Michailidis:2007:PAP

Mittal:2007:PBD

Mastoras:2015:ADB

Mendiburu:2006:PEC

Meyer:2017:HMP

Mezmaz:2011:PBO

REFERENCES

REFERENCES

REFERENCES

Mestre:2017:TEP

Mei:2016:CMR

Mei:2012:FGL

Martinez-Perez:2009:PBA

Marinescu:1994:SAP
REFERENCES

Mostefaoui:2007:ISS

Melin:1998:SSC

Membarth:2014:TPP

REFERENCES

Myllykoski:2018:SSB

McMillen:1985:ECD

Mirchandaney:1986:USL

Makarenko:1987:VMM

Mikkilineni:1988:ESA

Makedon:1994:OAM

REFERENCES

Mahadevan:2000:HAQ

Manivannan:2002:ARU

Macedo:2005:MGA

Michail:2015:TPP

REFERENCES

Matos:2013:LER

McIntosh-Smith:2013:SIJ

McLeod:1990:PAT

Mohamed:2005:MAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mohapatra:1995:LSS

Mishra:2011:RRA

Marinescu:2010:SFS

Yeh:1992:ABF

Ma:2017:SAA

REFERENCES

REFERENCES

REFERENCES

Nastea:1997:LBS

Nere:2013:SCN

Ngom:2006:PES

Niu:2012:SPW

Nicol:1993:OPS

REFERENCES

Nguyen:2013:SBD

Nicolau:1988:LQG

Niculescu:2007:CEP

Nieman:1994:IDC

Nikolopoulos:2003:QCB

Nikolopoulos:2004:PAH

Ngai:1986:RAT

Navaneethan:1991:DNS

Nick:1997:PSS

Automated parallelization of timed Petri-Net simulations. *Journal of...

No:2012:NFM

Nogueira:2009:TBD

Natalizio:2010:RDT

Ng:1996:EPM

Nikolopoulos:2002:SAD

Nyland:1997:ASP

Noeth:2009:SSC

Nakanishi:1995:ESC

Nation:1990:DPP

REFERENCES

[Nigam:1994:SNR]

[Neves:1997:TRS]

[Nagpal:2012:CAE]
REFERENCES

[NSM98] Panagiotis E. Nastou, Dimitrios N. Serpanos, and Dimitrios G. Maritsas. Average case analysis of searching in associative processing. *Journal of Parallel and Distributed Comput-
puting, 54(2):133–161, November 1, 1998. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL
1998.1461/production/ref.

[No:2002:DIP]
Jaechun No, Sung soon Park, Jesus Carretero Perez, and
Alok Choudhary. Design and implementation of a paral-
lel I/O runtime system for irregular applications. Jour-
nal of Parallel and Distributed Computing, 62(2):193–220,
February 1, 2002. CODEN JPDCER. ISSN 0743-

[Naik:1997:PAM]
Vijay K. Naik, Sanjeev K. Setia, and Mark S. Squillante.
Processor allocation in multiprogrammed distributed-memory
parallel computer systems. Journal of Parallel and Dis-
tributed Computing, 46(1):28–47, October 10, 1997. CODEN JPDC-

[Narahari:1999:RST]
Bhagirath Narahari, Sunil Shende, Rahul Simha, and S. R.
Subramanya. Routing and scheduling I/O transfers on
wormhole-routed mesh networks. Journal of Parallel and Dis-
tributed Computing, 57(1):1–13, April 1999. CODEN JPDC-
1998.1506/production; http://www.idealibrary.com/
links/doi/10.1006/jpdc.1998.1506/production/pdf;
1998.1506/production/ref.

Neamatollahi:2012:IBA

Numrich:2007:NSL

Numrich:2008:CFL

Numrich:2009:CFS

Netto:2011:URT

Nicol:1988:PSP

REFERENCES

REFERENCES

REFERENCES

Ortigosa:2003:PSP

Oruc:1987:DCP

Oruc:1994:SPN

Ochoa-Ruiz:2018:MFE

Ofek:1993:DAH

Yoram Ofek and Moshe Sidi. Design and analysis of a hybrid access control to an optical star using WDM. *Journal of Parallel and Distributed Computing*, 17(3):259–265, March 1993. CODEN JPDCER. ISSN 0743-7315 (print),
REFERENCES

REFERENCES

Isıl Oz, Haluk Rahmi Topcuoğlu, Mahmut Kandemir, and Oguz Tosun. Thread vulnerability in parallel ap-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Daniël M. Pelt and Rob H. Bisseling. An exact algorithm for sparse matrix bipartitioning. *Journal of Parallel and
REFERENCES

Prasad:2017:KTT

Pedersen:2008:ABA

Penmatsa:2011:GTS

Paun:2016:FIH

Panyala:2017:EPE

Peng:2011:ISN

Peng:2014:RNS

Percus:1992:PAC

Panda:2005:PRA

Pinel:2013:SVL

REFERENCES

Peng:2011:EVF

Petrica:2018:FOC

Plateau:1991:MSM

Prodan:2004:ZGM

Pedone:2008:PHA

June 1991. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Parashar:2000:IPP

Phatak:2016:NDA

Palermo:1996:DDP

Phillips:2013:BPI

Plimpton:2004:PRA

Steven J. Plimpton, Bruce Hendrickson, and James R. Stewart. A parallel rendezvous algorithm for interpolation between

REFERENCES

Percus:1989:RNG

Parhami:2004:IAC

Park:2004:LPC

Park:2005:OTS

Park:2005:DVS

Park:2005:SRD

REFERENCES

REFERENCES

Penoff:2010:ETL

Peir:1993:LAR

Peng:1994:SOP

Petersen:1995:MCC

Potter:1998:AAC

REFERENCES

[PM92] Foster J. Provost and Rami Melhem. A distributed algorithm for embedding trees in hypercubes with modifications for run-

[PMdO11] P. D. M. Plentz, C. Montez, and R. S. de Oliveira. AS prediction mechanism for distributed threads systems. *Journal of Parallel and Distributed Computing*, 71(10):1367–1376,

Poplawski:1991:SMD

Povitsky:1999:PPA

Prakash:1992:SSA

Pande:1996:PRV

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Pani:2006:SAA

Pal:2012:SLT

Pichel:2013:SMV

Prasad:1993:ESP

Prasanna:2016:MEC

REFERENCES

Purtilo:1988:EPP

Park:2006:RPR

Pagani:2009:OOB

Prakash:1997:ACO

Prasanna:2014:IJS

Psarris:1996:BWG

Peng:2016:BHS

Prieto:2001:PMA

Petit:2017:ROC

Perez:2005:NFD

Patt-Shamir:2012:DAC

Prylli:1997:FRB

Plank:2001:PAC

Pinar:2008:ODP

REFERENCES

Ponnusamy:1993:EPE

Peng:2013:SSM

Parmentier:2006:LSM

Peleg:1989:PDR

Petit:2007:OSS

REFERENCES

[Petagon:2016:EOA] Roselin Petagon and Jeeraporn Werapun. Embedding the optimal all-to-all personalized exchange on multistage inter-

Petagon:2017:VVA

Poulsen:1996:IFG

Pan:2009:BGM

Pan:2009:BML

Patarasuk:2009:BOA

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

[QMCL94] Chunming M. Qiao, R. Melhem, D. Chiarulli, and S. Levitan. Dynamic reconfiguration of optically interconnected

Quintana-Ortí:2001:SPA

Quaglia:2005:MON

QSL+08

Qi:1994:SDP

Rezvani:2011:SBM

Rahman:2008:RSS

Rajasekaran:1996:RSH

Rajasekaran:2001:SAP

Rajasekaran:2004:CCM

Rajasekaran:2008:SIP

Ramarao:1989:DMI

Ramacher:1992:SNS

Rho:2017:SPD

Rao:2016:EPS

Ren:1996:MAP

Rao:2012:AMH

Reuther:2018:SSS

Russo:2017:MPG

REFERENCES

REFERENCES

Rahman:2005:RPE

Rodriguez:1996:POW

Roy:2012:WAX

Rostami:2008:SRS

Richard:1998:EVT

Golden G. Richard III. Efficient vector time with dynamic process creation and termination. *Journal of Par-

REFERENCES

[RLA+16] Amir M. Rahmani, Pasi Liljeberg, Jose L. Ayala, Hannu Tenhunen, and Alexander V. Veidenbaum. Special issue on energy efficient multi-core and many-core systems, Part I. Journal of Parallel and Distributed Computing, 95(??):1–2, September 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-

March 1990. CODEN JPDC. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

[Rotaru:2004:DLB]

[Roh:1996:GOE]

[Rajasekaran:1992:CQR]

[Robert:2009:BPP]

[Rios:2018:EPM]

Rodrigo:2018:TUH

Rosenfeld:1985:PMA

Rosenfeld:1989:ACP

Rosenberg:1999:GDP

Rosenberg:2007:BPA

Rajasekaran:1995:OMA

Rauber:2005:TLS

Ryoo:2008:POC

Ranka:1990:ITM

Ranka:1990:SES

Ramanujam:1992:TMI

J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicomputers. *Journal of Parallel and
REFERENCES

REFERENCES

Raghavendra:1996:ESD

Rajasekaran:2008:RSI

Ramaswamy:1996:OEA

Roh:2001:RMD

Rughetti:2017:MLB

** REFERENCES **

[RW97] Sanguthevar Rajasekaran and David S. L. Wei. Selection, routing, and sorting on the star graph. *Journal of

Soliman:2013:SMU

Sanchez-Artigas:2010:EPP

Sandhu:1995:ADS

Sanders:1998:RPQ

Santos:1999:ONO

REFERENCES

REFERENCES

Schwiebert:2002:PTA

Sun:2004:MKN

Shamsi:2012:PSO

Sharma:2015:LBD

Stoyenko:1996:LBM

REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

lel and Distributed Computing, 63(10):963–980, October 2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Su:2010:ESQ

Salisbury:1999:MCL

Saltz:1990:RTS

Silber-Chaussumier:2013:GDT

Shestak:2012:PRA

REFERENCES

Stantchev:2008:FPP

Singh:2017:NAA

Schoneveld:1997:TAP

Skeppstedt:1999:ECC

Seiferas:2005:NSM

Severance:1996:MOB

Seredynski:1997:CCM

Stotts:1990:BPP

Shmueli:2005:BLO

Sun:2017:SIS

Smith:2006:CST

Smith:2004:PAR

Seelam:2013:ESC

Sarukkai:1993:SPD

Sundaresan:1996:COO

Sanchez:1999:SDP

Shi:2014:SBH

Szafaryn:2013:TPA

Schwiegelshohn:1991:OPA

REFERENCES

[Siewe:2016:TMS] François Siewe. Towards the modelling of secure pervasive computing systems: a paradigm of Context-Aware Se-

Silverman:1990:PPA

Sinclair:1987:ECO

Singhal:1993:TDM

Singh:1995:FPN

Sridhar:1992:RSP

REFERENCES

Seznec:1995:OMS

Song:1997:POP

Srivatsa:2006:SDR

Shin:2006:ADT

Spacey:2012:ICL

REFERENCES

Scherson:1989:AAO

Schieber:1989:PAM

Sanders:1992:DEU

Simone:1992:AEE

Satyanarayanan:1994:MIR

Sinha:2000:PSA

Solomonik:2014:MPT

Steck:1993:PIR

Salimi:2014:TSU

Sarma:2015:ERW

REFERENCES

REFERENCES

[SP08] Cristina Schmidt and Manish Parashar. Squid: Enabling search in DHT-based systems. *Journal of Parallel and Dist-
Shieh:2013:ETA

Saltz:1991:PEI

Saez:2017:TCF

Seal:2013:RPC

Saeed:2012:HPM

REFERENCES

Schmidt:2003:MPP

[SPVvH03] H. A. Schmidt, E. Petzold, M. Vingron, and A. von Hae-seler. Molecular phylogenetics: parallelized parameter esti-
mation and quartet puzzling. *Journal of Parallel and Dis-
tributed Computing*, 63(7–8):719–727, July/August 2003. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

Scherson:1988:MOA

[SR88a] Isaac D. Scherson and Smil Ruhman. Multi-operand arith-

Sridhar:1988:UMF

[SR88b] M. A. Sridhar and C. S. Raghavendra. Uniform minimal full-

Sridhar:1990:MFA

Storer:1991:PAH

Shi:1994:FAI

[SR94] Hongchi C. Shi and G. X. Ritter. A fast algorithm for image component labeling with local operators on mesh

Sridhar:1995:CLS

Shankar:1997:RDAa

Shankar:1997:RDAb

Saad:1989:DCH

Shi:1992:PSR

Som:1993:NPP

Sinharoy:1994:DTA

Squier:1994:CTA

REFERENCES

REFERENCES

[Sridharan:2017:DDC]

[Shukla:2018:MDS]

[Sen:1991:GSI]

[Simon:1998:HDS]

[Stivala:2010:LFP]

Alex Stivala, Peter J. Stuckey, Maria Garcia de la Banda, Manuel Hermenegildo, and Anthony Wirth. Lock-free parallel dynamic programming. Journal of Parallel and Distributed

REFERENCES

REFERENCES

REFERENCES

[ST87] Uwe Schwiegelshohn and Lothar Thiele. A systolic array for cyclic-by-rows Jacobi algorithms. *Journal of Parallel and Dis-
Schwiegelshohn:1989:LSA

Salinger:2002:BAO

Sundell:2005:FLF

Salinger:2006:BAO

Sun:2008:ARD

Sundell:2008:LFD

Shen:2012:ACD

Singh:2014:MPI

Stadtherr:2004:SIO

Selvitopi:2012:RPU

Stamoulis:2017:MBW

REFERENCES

REFERENCES

Shoukourian:2017:AEC

Song:2017:ERT

Shirazi:1990:AEH

Song:2017:PPF

Shen:2008:HBP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Tuzov:2018:TSF

Tang:2013:JSA

Thaeler:2005:IIL

Touzene:2005:EDS

Tripathy:2015:DTS

Kyle M. Tarplee, Ryan Friese, Anthony A. Maciejewski, and Howard Jay Siegel. Scalable linear programming based re-

REFERENCES

2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Tewksbury:1993:TCO

Taylor:1987:NCS

Tamir:1992:HCM

Trahan:2010:RPM

Totok:2007:MCW

Alexander Totok and Vijay Karamcheti. Modeling of concurrent Web sessions with bounded inconsistency in shared data.
REFERENCES

[Trifunovic:2008:PMA]

[Tuna:2017:SIS]

[Thulasiraman:2004:FGL]

[Tinati:2017:TET]

[Tziritas:2013:MRC]

Nikos Tziritas, Samee Ullah Khan, Cheng-Zhong Xu, Thanasis Loukopoulos, and Spyros Lalis. On minimizing the resource consumption of cloud applications using process

[TLQS12] Xiaoyong Tang, Kenli Li, Meikang Qiu, and Edwin H.-M. Sha. A hierarchical reliability-driven scheduling al-

[Toce:2017:EHL]

[TMM06]

[Tor89]

[TOR+14]

[TP18]

Loïc Thébault and Eric Petit. Asynchronous and multi-threaded communications on irregular applications using vectorized divide and conquer approach. *Journal of Parallel and Distributed Computing*, 114(??):16–27, April 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

REFERENCES

Tatarchuk:2008:AIM

Tseng:1990:SAP

Tseng:1995:DTW

Trejo-Sanchez:2014:DAM

Taylor:2001:BLV

Tsur:2007:ISR

Trdlicka:1998:EAC

Turner:2007:DFC

Talia:2010:EDQ

Torrellas:1995:EPC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Venkatraman:2003:SER

Verma:2007:GSP

VandeGeijn:1994:GCO

vanderStok:1996:AOR

Varadarajan:1991:ESN

Villar:2013:OOC

Varvarigos:1994:PMB

Veanes:1996:NCF

Veeravalli:2002:ESS

Venugopal:2008:SBH

REFERENCES

Vo:2014:MPU

VandenBout:1995:TIM

Vetter:2003:CCL

Vengerov:2010:ADA

Vitter:1993:LSS

REFERENCES

[VRGS17] Joan J. Valls, Alberto Ros, María E. Gómez, and Julio Sahuquillo. The Tag Filter Architecture: an energy-efficient

West:2002:GAA

Weissman:2003:ISB

Wagner:1989:EAB

Wagner:1993:EAB

Wagner:1994:ECT

Wang:1996:LBM

Wang:2001:EHC

Wang:2001:DDM

Wang:2006:LWC

Wang:2007:ETA

REFERENCES

REFERENCES

[WCC18] Libing Wu, Biwen Chen, Kim-Kwang Raymond Choo, and Debiao He. Efficient and secure searchable encryption pro-

REFERENCES

REFERENCES

2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1991. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

[WMG01] Jon B. Weissman, Mahesh Marina, and Michael Gingras. Optimizing remote file access for parallel and distributed network applications. *Journal of Parallel and Distributed
REFERENCES

REFERENCES

REFERENCES

Wang:1994:SDP

Wang:2014:PAO

Wei:2013:SSC

Williams:1995:CAA

Wang:1997:OCA

Wei:2002:ESS

Weems:1991:DIU

Wright:1991:PAG

Wang:2013:PDE

REFERENCES

REFERENCES

Weiss:1993:AID

Wu:1992:CAL

Wang:2009:GDC

Wang:2008:IRP

Wang:2008:CMT

REFERENCES

Wu:2002:DFS

Wu:2003:OBI

Wu:2011:MAS

Woo:1999:MSS

Wang:2007:CSP

Wang:2012:DMT

Wang:2018:DSW

Wu:2018:PBO

WWW17a]

[Wang:2017:LAB

Wang:2017:NRM

Wang:2018:PAB

Xu:2000:PDC

Wang:2005:AER

Wu:2013:EHP

REFERENCES

[XHZZ16] Xirong Xu, Yazhen Huang, Peng Zhang, and Sijia Zhang. Fault-tolerant vertex-pancyclicity of locally twisted cubes
REFERENCES

[XL11] Xiang Xiao and Jaehwan John Lee. A parallel multi-unit resource deadlock detection algorithm with $O(\log_2(\min(m, n)))$

[XLL15] Guoqi Xie, Renfa Li, and Keqin Li. Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

Yang:1998:POC

Yang:1990:PMB

Yen:1995:PHC

Yuan:2001:PIF

Yuan:2013:CAT

Man (Mike) Yuan, Johnnie W. Baker, and Will C. Meilander. Comparisons of air traffic control implementa-

REFERENCES

Yin:2005:GTD

Yang:2010:DEP

Chang:1998:PIA

Yoo:2000:TRT

Yoo:1998:FEP

Yang You, Haohuan Fu, Shuaiwen Leon Song, Amanda Randles, Darren Kerbyson, Andres Marquez, Guangwen Yang,

Yang:2010:LCM

Yen:1997:RVC

Yero:2007:SSA

Hsu:1997:PEW

Yin:2015:GHD

Yang:2017:HCM

Yu:2018:PEM

Yang:2006:OSP

Yuan:2001:PMH

REFERENCES

Yuan:2014:SLB

Young-Myers:1993:EST

Youssef:1992:TPG

Yildirim:2011:PWL

Yun:1996:HHN

Yu:2016:ASR

Yan:2013:CPE

Yu:2012:HHC

Yu:2011:HDI

Yu:2008:ICL
REFERENCES

Yin:2011:EAC

Yang:2005:RRM

Yang:2007:HCL

Yang:1994:RRM

Yew:1991:SIS

Ye:2013:PBI

Jing Ye, Andrew M. Wallace, Abdallah Al Zain, and John Thompson. Parallel Bayesian inference of range and re-

Yu:2012:CME

Yu:2013:DSA

Yuan:2011:DMC

Yin:2018:ADE

Yu:2009:EPB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Xuehai Zhang, Jeffrey L. Freschl, and Jennifer M. Schopf. Scalability analysis of three monitoring and information sys-

REFERENCES

Zhu:1992:EPA

Zhou:2008:RAO

Ziavras:1992:PEH

Zimmermann:1990:TAS

Zimmermann:1996:RAR

Zhu:2006:CCE

REFERENCES

REFERENCES

REFERENCES

Zhang:2011:DID

Zeng:2016:RND

Zane:2000:SNA

Zhang:2017:DIS

Zambonelli:2001:DFI

REFERENCES

Zhang:1993:MGT

Zomaya:1997:SIP

Zarrelli:2006:EPE

Zhao:2014:DAC

REFERENCES

REFERENCES

Zeng:2014:OMR

Zeng:2011:NSS

Zeng:2015:SSA

Zheng:2000:DCG

Zhang:2011:BRE

REFERENCES

Zhao:2013:BRH

Zhuo:2003:DRD

Zhao:2016:THP

Zhu:2007:OPD

Zhang:2009:OPR

Zheng:2017:MDS

[ZWW17] Huanyang Zheng, Ning Wang, and Jie Wu. Minimizing deep sea data collection delay with autonomous un-

Zhao:2009:LBS

Zhang:2011:MAA

Zhao:2012:PSJ

Zhang:1994:LME

Zomaya:2002:FTR

REFERENCES

discrete event models to multiprocessor systems: concepts, al-
gorithm, and simulation. *Journal of Parallel and Distributed
0743-7315 (print), 1096-0848 (electronic).

Lagrange neural networks for linear programming. *Journal
of Parallel and Distributed Computing*, 14(3):354–360, March
1992. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848
(electronic).

Energy optimization of security-sensitive mixed-criticality ap-
plications for distributed real-time systems. *Journal of Par-
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731518300911.