Title word cross-reference

(a, b) [DJM94]. (f, g) [CDD+15]. (k, 2) [EMMM94]. (κ − κ) [KT91]. 0
[dADC18, EE05, PMV05, PM96, SM89b]. 1
[dADC18, EE05, HV09, JM14, PMV05, PM96, SM89b]. 1 − m [SJG19]. 2
[Ano93e, BDKM94, BAES92, CHCG18, CS92, CS93b, DJDK19, HSSM07, HHC98, KRKS11, KLC05, LME95, MD01, SS94b, TSFZ14, Tur12, WC91, WS95, Wu02, YA11]. 2.5 [MPG17b]. 2 log N − 1 [CC14]. 2 × 2 [PD92].
3 [AA14, AA16, BDRB14, BAL05, BC94, CW00, CCCM96, GÖH+13, GW99, Joh89, LLFJ18, NM17, OGRV+12, PYP+10, PEC95, WC91, Wan07, WS95, YA11, YB01, ZLS17, Zsa16]. 4 [KMC16, MD01]. 45 [HRF+11]. 4 × 4 [Jia99].
5 [CCCM96]. *1 [HCZ04]. *2 [HCZ04]. + [OC07]. + [HCZ04]. 2 [ASST05]. 3
[ASST05]. B [YL89]. C3 [HK96]. C3I [PAJC97]. d
[DFN+94, DTK11b, LSC00, VB94]. oW [MRRT07]. G [BFKW13, BNP98].
GF(2^n) [SKH15]. h [GS98, KLP10]. hp [PPTV+10]. K
[ACU08, BE95, DWG03, DBCF13, HHC98, SHL95, WL11, Amm16, BVB02, CDDL10, DW06, DH91a, GP00, KK98a, PD05, PK04a, PRHB06, PK07,
RP98, RDA18, SSKS11, San99, SAOKM03, SGR03, SLP+98, SZ00b, SDG17, TT98, WCH+17, WS97b, YTH07, YD98, ZHT16. \(k(n - k)\) [Lin03]. \(K_{1,3}\) [LLFJ18], \(\kappa [XL95]\). \(L [ZBW+17]\). \(LTQ_n [XHZZ16]\). \(LU [FHL+15]\). \(M [YLB90, ABBD14, SJG19, WTB+08]\). \(N [AY89, IHM05, NTA96, AKPT99, BVB02, GL90, LLFJ18, NS94, PK04a, RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. \(\nabla^2 G [CL85]\). \(nn [PK07]\). \(n \times n [\cos^+95, NS94]\). \(O(1) [Can18, GP94, Wan07]\). \(O(\log 2 N) [BNP02]\). \(O(\log n) [JBL11]\). \(O(\log \log N) [DP98]\). \(O(\log N) [GS99]\). \(O(n) [DLV11]\). \(\Omega [MRRT07]\).

\(-\text{alliances} [CDD+15]\. \(-\text{ary} [BVB02, DP00, Lat98, LLFJ18, PK04a, RP98, SAOKM03, SJG19, TT98, WS97b, XL95, YTH07, YD98, SHL95]\).
\(-\text{Bandwidth} [BM97]\. \(-\text{banyan} [YL89]\. \(-\text{based} [AK07]\. \(-\text{Best} [BE95]\).
\(-\text{Body} [SHT+95, IHM05]\). \(-\text{Chain} [BNP98]\). \(-\text{clustering} [CDDL10]\). \(-\text{connected} [DW06]\). \(-\text{coverage} [Amm16]\). \(-\text{covered} [CHCG18]\). \(-\text{Cube} [RP98, PK04a]\). \(-\text{Cubes} [XL95, BVB02, LLFJ18, SAOKM03, WS97b, YTH07, YD98]\).
\(-\text{Delta} [YL89]\). \(-\text{Dimensional} [AKPT99, CCCM96, DF+94, VB94, DTK11b, KLC05, LSC00, SGR03]\).
\(-\text{disjoint} [KMC16]\). \(-\text{dominating} [DW06]\). \(-\text{Extra-Stage} [SZ00b]\).
\(-\text{Gaussian} [WL11]\). \(-\text{hop} [JM14]\). \(-\text{Item} [San99]\). \(-\text{labeling} [CP04a]\). \(-\text{Level} [GS98, PRHB06]\). \(-\text{limited} [WTB+08]\). \(-\text{Means} [DBCF13]\). \(-\text{MSA} [BFKW13]\). \(-\text{mutual} [RDA18]\). \(-\text{nearest} [SDG17]\). \(-\text{NN} [ZHT16]\). \(-\text{omega} [GL90]\). \(-\text{optimistic} [DWG03]\). \(-\text{packing} [TSFZ14]\). \(-\text{page} [HSSM07]\).
\(-\text{Pairwise} [GP00]\). \(-\text{Partite} [EMMM94, SLP+98]\). \(-\text{PIC} [YBX+13]\). \(-\text{plex} [WCH+17]\). \(-\text{queens} [AY89]\). \(-\text{reader} [HV09]\). \(-\text{Reducing} [GS00]\).
\(-\text{relations} [KLP10]\). \(-\text{satisfiability} [Joh89]\). \(-\text{sparsi} [ANP07]\). \(-\text{stage} [CC14]\). \(-\text{structure} [LLFJ18]\). \(-\text{systems} [ZBW+17]\). \(-\text{Terminal} [HHC98]\).
\(-\text{time} [DLV11]\). \(-\text{Track} [MD01]\). \(-\text{Trees} [DJM94, HHC98, PD05]\). \(-\text{way} [KK98a, ACU08]\). \(-\text{width} [DH91a]\). \(-\text{writer} [HV09]\).

/\text{compute} [KAS07]\). /\text{many} [KSG13].

\(0/1 [BW18, LSS88]\). /\text{many} \(0/1\)-\text{Knapsack} [BW18].

\(1 [HV95, MF94]\). \(-\text{Knapsack} [BW18]\). \(-\text{type} [GA18]\). \(-\text{Writer} [HV95]\).
\(10 [LB12]\). \(-\text{Gigabit} [HcF05]\). \(113 [KN18b]\). \(168 [ZFWF06]\). \(1D [PA04]\).

\(2 [ACYS08, AAL95, AR97, BLPV95, BSGM90, CDH84, DPSD08, FPD93, GH90, SI91, SMKL93]\). \(-\text{D} [AR97, BLPV95]\). \(2000 [Wee01]\). \(2002 [Sni03]\). \(2006 [Ros07]\). \(2007 [Pan09]\). \(2008 [Rob09]\). \(2010 [Phi13]\). \(2011 [Mue13]\).

3 [BFG94, KMC16, MKY+97]. 3-D [BFG94, MKY+97]. 3D
[AB03a, CGW+03, GS03a, MJ03, NPI+96].

4 [BAM93]. 42 [Ano97c]. 46 [Ano97g].

5 [LAD+96, PTC+93]. 53 [Ano00d]. 5G [DAPR18].

60 [Ano00b, Ano00c]. 66 [Ano93e, CS93b].

71 [LSS+11a].

80 [Ano97k]. 802.11 [BCD00, ZBR11]. 802.11e [FA07]. 802.11n [GZY14a].
802.11s [VHH08]. 860 [DHR96].

90 [HLJ98]. 90D [BCF+94]. 90D/HPF [BCF+94].

A* [DM94]. a-cyclic [BD05]. A-GHSOM [IZ12]. A-Star [SRT+18]. A.
[Ano92a]. AA1 [GCM95]. AAIA [TFV+15]. Abduction [eW95].
Abduction-Based [eW95]. Abductive [eW95]. Absolute [Wor93].
Abstract [CGSV93, RJKL11]. Abstraction
[DDO+18, GDN+98, IRRS16, LSZJ15, HCR12]. Abstractions [KB01].
accelerate [SDG17]. Accelerated [AB13, E107, DGNW13, DCA+15, Eme13,
GOH+13, KDO+13, LMSK18, SHA17, WLL16, Zsa16]. Accelerating
[AVAH18, DFST13, GAOHG17, RCG18, SH15, SHT+08, WD13, YL12,
YZG18, ZXB14, ZCS+18, AM12a, VBDRC13]. acceleration
[BAT+19, LLY15, NMS+18, UGG+11]. accelerator
[CNLGRL18, ICQ+12, PP13]. Accelerators [DF12, MKL12, RBN11].
Access [ALLM11, ADS98, Bal90, BP02, Bit92, BR95c, CW93, CH92, DP00,
FY96, HP00, OS93, San98, WMG01, ZRC99, AM13, BGLA03, BR91b, BC11,
Che90, DFP06a, ETS14, FA07, FC90, FLC14, HC91, KKK11a, KGN11,
Lan09, Lz11, IWZZ12, LC11, MLZY17, MYY17, MM07c, NSDZ18, NKK16,
Pd91, SM99a, SR88b, SR90, TODQ18, WTS03, WBR13]. access-aware
[MYYY17]. AccessAuth [TODQ18]. Accesses
[MRRV98, SR97a, SR97b, JZ05]. Accident [CCW14]. accrual [CRJ10b].
accumulations [SAF05]. Accuracy [EH01a, PPK91, CRWX12]. Accurate
[DD95, KK88, BFKW13, CGL+14, DJ12, HDT+05, HZDP12]. Accurately
[LC13]. ACE [PL98]. achieve [LCB16]. Achieving
[EH01a, KEA95, NPY+97, XLC+18]. Acknowledgment [Gra10a, KL08a].
Acoustic [LPLFMC+12]. across [SGdSS13]. Action [Sie16]. Actions
[WR95]. Activated [NPP+02]. Active
[SKH96, DB86, HOE+09, KV10, PMV05, PMV06, PSGS17, SI13, YT05].
active/active [HOE+09]. Activity
Activity-Based [AS00], actor [ASM09, YpGyLiC13], actors [GE85], ActorSpace [CA94], actuator [KKKP12, SCN12], Acyclic [GY92, AFM09, BP89, Zim90], Ad [Ano01e, GS01b, LC14b, RBP+11, TM10, XG03, AP03, AH11, AH12, ALF03, BFG+03, BM11, BGLA03, BOP06, BDF01, BN03, Bou03, CNS03, CW05, CYZ06, CDCD05, DW06, DMB+03, DB08, EBE08, FCW11, FVCL05, FGL+11, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLVW11, KK06, Kim11, KSK15, KNS06, LAZC00, LR03a, LPX05a, LW06a, LW14, LR03b, LHT08, MNO+14, OSL05, OM10, OMSGNSG05, Pat01, SNCP12, SSM+06, SGS08, SMKM04, SJS11, TC13, VA03, WTB+08, WGS08, WBTM09, WHS+18, XHG03, XWC08, YC04, YSS11, YWW12, ZMC06], ad-hoc [BOP06, CYZ06, KSK15, LH14, MNO+14], Ada [Lun90], Adaptable [Zim96, LLLC15, LFGM17], adaptation [BK08, GBMZ07, KG11, LS06, NZY+11, WMC+18, WYW18a], Adapting [DKRI09, Wei02, SW18, WRW13], Adaptive [ASH+01, AA93, AA16, AMN00, ACPT15, AYIE98, ACFK07, BLPA05, BOT13, BPR99, BL90, Bou02, CS00, CGM14, CLT96, DY99, DHB02, DMB97, DM99, FL0+97, ISM07, JK00, KR97, KKGS01, KG10, KLLK98, KB01, Lan94, LLY06, LPK+10, LC11, LME95, LEB98, ME04, MV88, MD92, MTS90, OB98, OR97, PW96, PR97, PIB+01, RDS02, SO06, SSK97, SJ95, SB02, SSOB02, SLG06, SH+05, TC04, Ten90, UES10, VMMB10, WCE97, WA02, WL10, YIY97, ZHLQ12, ZM94a, AOSM05, AGM04, APK18, AF17, BM17a, BCFF05, BMT12, BBS13, BEN12, CL03a, CMN10, CP04b, CDCD05, CAF+11, DMB+03, DLW+12, DAB+14, ESA03, GBA08, GA16, GNZ18, HNSA07, HHK15, IZ12, KK17, KMF+05, KKS08, LST17, LHI91, LHX+16, LW18, LA04, MCDs+06, MSAF04, MPG17a, MPN17, NKK16, OPG08, OS04, PPTV+10], adaptive [SMO14, SB12, SHLN09, SMB10, SHC14, TLY12, TKHG04, TT07, WW04, ZXYO11, ZLCZ18, ZWRI07], adaptively [Mit07], Adaptivity [OH02], ADDAP [DHR96], Addendum [Ano92a], Adders [NIR86], Adding [MSZ05], addition [OB88], Additional [LP97, CKN07], Address [KY96, SL97, TR96, YQTV12, WZ13, YGZ+10, YC12], Addressable [Win85, KRM14], Addresses [CGL+95], Addressing [ZLPP01, Ho91, TY90a], adjacent [CFJW13], adjusted [TDBL13], adjusting [MC91], ADM [Pad93], administration [LB17], Admission [MO11, AAA+10, MCZ14, RKK06, XYDL06, YJKD10], ADMs [FSZ07], Ads [BA01a], advance [CRH11], Advanced [BW95a, HDCM11, MCP+18, PH18, PSGS17, SD88a, TSD08, PLL+03, SHT+08, ZXMR18], Advancement [Lun09, LZ11, LVR90], Advances [GA16], advantage [CL03b], advantages [CCLS94], Adversarial [GBMZ07], adversary [dOCS14], advertisement [WGC09], advertisement-based [WGC09], advice [DP12], Advisor [uRIL+18], AES [ABO+17], affected [LdPLC19], Affecting [DVW94], Affine [DR95, DRR96, Dja06, DQR+09], Affine-by-Statement [DR95], Affinity [TTG95, HD10], after [DRR96].
against [SCC+06, XCH08]. **Agate** [CZPP16]. **Agent** [Ser97, FCC07, GZMC08, Rao16, SS06, YZS15, YHWY18a]. **agent-based** [FCC07, Rao16, SS06, YHWY18a]. **agents** [AK06, CSWD03, FP17, KERUM04, MS05, SGAC14, SMO+18, BJ18].

aggregate [AMT13, Yan09]. **aggregated** [WE13]. **aggregates** [Chi95, Chi95]. **Aggregation** [MBMC19, BCO+12, CDR09a, CDR09b, JBA15, JBS14, JHPL13, SSKS11, XHZ+10, ZSCX18, Zsa16]. **Aging** [BM17a, LC14a]. **Aging-aware** [BM17a]. **agreement** [AP16, GCS06, HC11, LLW13, TG04, TLL+18]. **AHMW** [BMT12]. **AI** [Ull84]. **Aid** [DBKF90, CVK+18b]. **aided** [SV18, ZMC06]. **air** [FL86, YBM13]. **Airshed** [SS00]. **Algebra** [CDH84, DVW94, KL01a, WM92, Eme13, FHL+15, ICQO+12, Joh87, KIA06a, LC14a, Shu95, SM00, TU92, TZ00, WSRM97]. **Algorithm** [AAP01, AE95, AM97b, AMS94, Als01, AS95, Aso93c, Aso94a, AS96, ABC+09a, ABZ95, Bai94, BCC95, BGR96, BS97, BPST96, BOSW94, BE95, BDDL09, Bou02, BX93, BHSR95, CLZ02, CGKK97, CCM01, CB99, CSW08, CS93b, CP92, CTZ99, CF98, CRFS94, DA97, DM90a, DMB97, DS01, DS48, DS49, DSAUM99, DLP97, DT97, FY96, FT94, GGN93, Ger98, GRR93, GP00, GSW99, Haw97, HH10, HB98, HO94, HM99, Hwa97, IZ95, JP95, Jin99, JKH00, KRSZ02, KSM02, KSW02, KX97, KA97, KC99b, LP96a, LO94, LHWV95, LP97, LPW02, MT97a, Mi99, MV94, MSST99, NTA96, NM02, Par98, PE93, Par96, PL94, PB95, PM96, PRS97, PM92, RR95a, Ren11, RP95, SAKMA02, SZ00b, SCC92, SR94, Shu95, SM00, TU92, TZO00, WSRM97]. **Algorithm** [WD94, WA02, WLID02, XWC+08, YZY96, mYyF92, ZB97, AOS+05, AT03, AA10, ALM+16, AA14, AA16, ALLM11, AK07, ATH91, AGMS04, Ara90, ADDB18, ARDQ18, BFG+03, Bad04, BC05, BCFF05, BSG90, BCH15, BFKW13, BDD18, BH05, BBL04, Cal06, CR91, CDDL10, CC14, CM03, CV90, CK99b, LP96a, LO94, LHWV95, LP97, LPW02, MT97a, Mi99, MV94, MSST99, NTA96, NM02, Par98, PE93, Par96, PL94, PB95, PM96, PRS97, PM92, RR95a, Ren11, RP95, SAKMA02, SZ00b, SCC92, SR94, Shu95, SM00, TU92, TZO00, WSRM97]. **Algorithm** [MMS09, MM07c, MP08, MMS09, NGO+13, OS04, OT86, PDP17, PK05a, PB15, PH04, PB09, QJ05, RH05, RG03, RT18, RBG17, RBOH+18, RDA18, KRS87, SSTP09, SCJ+08, SMP17, SA08, SKK91, SM08b, SWW+17, Tam18, TLQS12, Táti11, Ter16, TKHG04, TYA16, TSFZ14, WLL16, WSH+03, WJV07, Wan07, WG08, WGC09, WCL+13, WWW17a, WJ12, gWW18, XHY07, XL11, XQ07, XYZ14, XSY18, Yan04, YME06, YWJ+18, YÖ11, YSS11, YZLT09, ZNZ00, ZFWF06, ZQMM11, dOBG+15, CM10, KM17, LY12]. **Algorithm-Based** [GRR93, mYyF92, BDDL09, LP88]. **Algorithm-system**
Algorithmic Algorithms [Gao89, SCB08, BBH`17, CG11, JF12, LS05]. Algorithms [ANT02, AaJS01, AKP95, ABM`92, BJ96, BJ99, Bah00, BPJG92, BLPV95, BGJDL02, BAES92, BAGS95, BBMV`01, EP90, ESMG96, EMMM94, EL97, FTM`14, Fer95, FR96b, FA95, FV97, FCT00, GG94, GP94, GV94, GM96, GHSJ96, GMM00, HMM94, HQPT99, HCWS94, HR92a, HF97b, HTB98, HO94, IK93, IK94, Iq92, IM00, JW94, JS94, KRC00, KAM94, KLZ97, KG94, KA99, LHS97, LSH96, LHBB`01, LLCC02, MB96a, MMRS98, MS94, MMVR97, Man97, MT96, Mat93, MHC95, MK92, MS98, MS99b, Nak95, Nas94, PAH`98, PAJC97, Pov99, Pra93, QZ94]. Algorithms [QOvdG01, RS96a, RR95b, Raj01, RSS96, Ram92, RDS02, RSW90, SH90, SS96, San95, San99, San02, SZB92, SY01, Sto90, SY92, Ten90, TV97, TC96, TFV`15, UD96, VB94, VR95, WNA`94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YMR93, dB95, AL04, AN93, ASC`14, Ara13, ACC12, AAC10, AF17, ARVZ14, ACF07, BC06, BKC`15, BBBC12, BMT12, BS87, BAS06, BOS`91, HKM17, CBF04, BRPR06, BPP05, BM08, CM04, CP10a, CF88, CRH11, CNS03, Che86, Che05, CRSB13, CRA`08, CRD17, CB06, Cuz11, Cuz13, DS04a, DH91a, DJ16, Dja04, Dja06, DCA`15, DKA15, DJT03, DM94, FHL`15, Fen90, FBRW03, FGG08, FJSW90, FM85, FCV05, GMP12, GP07, GZY14a, GM14a, Go90, GKH99, GWH06, GS03a, GC07, GN15, Han89, HSSM07, HSW04]. algorithms [ICQO`12, IC05, JMS86, JST12, JBM91, KR01a, KHT`14, KJD03, KS08, KAP90, KSSG14, KK10, KMS10, KKB`06, KS91, KMP`06, KR11, LW90, LL06, LW06a, LN9`12, LS88, Lin91, LS91, LS03, LLW07, LA04, LV07, LGG08, LV88, LS`16, MM04, MP09, MCAS12, Meg91, MCT06, MRS`14, MM07b, MS88, MKM16, MGG03, MV09, MASZ10a, SAZ10b, MAR87, NT12, Nik04, OA10, PKN10, PD05, PH18, PY09c, PL03a, PH16, PPSV15, PA04, PS14, PRG88, PS88, RTCG91, SSM89, SS06, SM99b, ST87, SPH13, SAF05, SZ05, SG808, SHRM19, SD888, SVSC10, Sto87, TY90a, TW87, TK08, TWQS12, Tu12, VAF19, VS16, WC91, WCWH03, Wi91, YZG18, ZGJ`18, ZY90b, ZXMR18, dVCP06]. Align [BR95c]. aligning [LVB07]. Alignment [BR01, CCO`96, DRR96, Mi99, MJ01, SS94a, BBM08, BFKW13, BR91b, BMARW07, LC91a, PTZ06, SK09, SPRG`12, SRT`18]. alignments [BW09, ST85]. All-Output-Port [ST02, ST06]. all-pairs [KS91, DCA`15]. All-Port [RJMC95, Dim04]. all-reduce [PY09c]. All-to-All [HP95, LHS97, LWP02, Ede91, LR03b, PW16, ZTFK16]. Alleviating [Tze91]. alliances [CDD`15]. Allocating [BPRG04, Hag97, SEP96, SC8`98]. Allocation [AM97b, AERBL92, CS00, yCM98, DSST95, DY99, DL99, DL01, Hwa97, KKGS01, KLS90, Moh96, NSS97, OM84, PT01, SM94, SD97, SP96, YL98].
[BYG+18, OEY07]. **Ant**
[COV13, CGN+13, CLA+18, DDGK13, RL02, CCK11, Ski16]. **antenna**
[CCHC09]. **Anti** [GSASA19]. **Anti-spoofing** [GSASA19]. **Anticipative**
[WLID02]. **Any** [RCY97]. **Apache** [KKH17]. **APHID** [BS00]. **API** [HLS12].
Appear
[Ano00e, Ano00f, Ano00g, Ano00h, Ano01a, Ano01b, Ano01c, Ano01d, Ano01e, Ano01f, Ano01g, Ano01h, Ano01i, Ano01j, Ano01k, Ano01l, Ano01m, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02a, Ano02b, Ano02c, Ano02d, Ano02e, Ano02f, Ano02g, Ano02h, Ano02i, Ano02j, Ano02k, Ano02l, Ano02m, Ano02n, Ano02o, Ano02p].
applicability [Can18]. **Application**
[AS97, AYIE98, BB03, BSS97, CCC92, DKK18, ES96, HMV07, Kop97, OGRV+12, PH00, PP92, Ser97, SM92b, SK93, WLS17, dKC+10, AHA+16, AAI+15, BM16, BCM06, BMT12, CP05, CD95, CKMP17, DBC03, DKK10, DWYB10, FGM+03, FCP+15, GP91, HSS17, KME09, Kus17, LW16a, Li17, LS06, MLZ17, MCM+11, OSN05, PVP18, PL06, PGS06, PS14, PVR17, SL90, SFT04, SS94b, WD04, WW18b, WJ14, YÖ11, dGP06].
Application-aware [HMV07]. **Application-based** [BB03].
application-level [VD04]. **application-sensitive** [CP05].
Application-Specific [PP92, SK93, SS94b]. **Applications**
[ABDS02, Ano96i, AFT+00, BOSW94, BMRC98, CCR09, CCA95a, CDF01, DRC90, DS84, EH01a, FR98, FBK98, GCB+00, GT02, HS94b, KR97, LLS93, MHC95, MB92, MBK+92, NB93, NSPPC02, QS96a, PGR17, PJ18, RS92c, SSOB02, SFC17, TFV+15, UZSS96, VH93, WMG01, Wi02, ALM+16, AKSM08, ARM+05, AC16, AGM06, BBACL04, BCD+15, BAS06, BHL14, BM04b, CCA18, CCC+04, CGL+14, CMG14, CC08, CSML10, CP05, CBM+08, CP10b, CCM+06, CDAN14, Dim91, ED05, ESA03, FCM13, FPF14, FRM15, GQZ18, GLC14, GYAB11, GVBB13, GTN+06, GST09, GA08, GRR13, HZZ+19, HC09, HSSL04, HA91, HL07, KJD03, KHH03, KAS07, KIB+10, Kri91, LWCC15, LFGR17, MMAL+06, MA19, MLK12, NLB+18, NMS+18, NVK+11, NC13, OZKT12, Oza04, PCMM+17, PH18, PMAL11, PA15, PCLP16, PLL+03, PF04, RCG18, RJKL14, SV08, SM90a].
applications [SCS+08, SWW+17, SR16, SSGZ13, TP18, TPLY18, TDM05, TOR+14, TXK+13, ULI84, VB08, VM03, WIR+18, YH07, ZVL11, ZZJ+18, ZSW14, ZXM18, dSS11, FT+14]. **Applied**
[CB96, BDDL09, EE05, HSSL04, PR06]. **apply** [NZ17]. **Applying**
[PEC95, CCK11]. **Approach**
[AAL95, AM93, Bev02, BR02, BST01, CCM92, CY95, CLZ00, DM95, Fer92, FKT96, FKKC97, GG94, GZ97, HC97, HLJ98, KCRB99, KSB94, LS95, LW95, LLCL98, MSSE02, RJY96, RAS96, SL95, SP96, SZ00a, TC92, WSRM97, WA02, Won99, WLID02, AP91c, Ara90, AFD+11, AH06, AJG18, AS18, BM11, BAS06, BW09, BCK+13, CTS17, CvdBL+08, CHX+17, CZZ+17, CPM18, DB03, DKKV15, dADC18, DQR+09, FZC+05, FGZ03, GZ08, GDL+11, GWWL94, GBA08, GXYZ13, ICQO+12, JLM08, Jöh99, KYS13, KBC19, KSJC17, KZ11, KCF18, KMS+06, LL19, LWX+11, LH04,
Approach

[LC07, MHLZ16, MS05, MSM09, MLCFH+18, MBMC19, MGRRK14, NTON12, NHO+13, OPR18, Ozt11, RK18, SW18, SU87, SCS+08, SDG17, SK11, TM06, TBZB05, TP18, TXLL14, TY17, TM10, VLW18, VB08, WML+18, WWY+18, WZQ+13, XRL+18, YF09, YHY+18a, YAA10].

Approaches

[CHGM01, FMIF18, QM01, CB11, DBA+18, KERUM04, KA05, PR06, Upa13, dGP06].

Approximate

[CHGM01, FMIF18, QM01, CB11, DBA+18, KERUM04, KA05, PR06, Upa13, dGP06].

Approximating

[JSS92, LHW14, LRS18, ST12, CLOL17, JHL+18, KERUM04, MM07b].

Approximation

[JSS92, LHW14, LRS18, ST12, CLOL17, JHL18, KERUM04, MM07b].

Araneola

[MM08a, Bhu87].

Arbitrarily

[ZV06].

Arbitrary

[ERL90, KA97, SS95, YZY96, Ara90, BCF14, SGE91, Wag89, FII04].

Arbitration

[ASD09, HRG11, KS03].

Architecture

[AGW98, ABDS02, BBR94, CCM92, CCC90, CT93, CS93c, CP01, CBdCD00, DUSH94, DMS90, DS02, DT01, DRSB01, DT92, EP90, EL97, FTM+14, FPS12, FY97, GGB93, KS95, KM97, KG94, LB90, LC90b, LR93, LR94, MSd+95, PP96, PA94, PD92, SH90, SS94a, TG99, ZMPE00, ZL93, AA14, AP03, ABC+09a, ABC+09b, AG12, BKRC+15, BS87, BYG+18, CCK88, Che86, CGC16, CkLC04, CkLC05, CJ17, CPO+03, DKRC+15, DU15, FPS11, GSWW04, GS91a, GMS+13, GMSS+11, HDM11, HSW04, JJ12, Joh87, Joh01, KHT+14, KE00a, LM05, LS88, Lla17, LV07, MSGS+13, MP10, Pad01, PR06, PLD87, RTCG91, SLG06, SS94b, SGdSS13, TKHG04, TRS+12, VM03, WQQ+13, WJD91, ySS91, TFV+15].

Architectures

[AGW98, ABDS02, BBR94, CCM92, CCC90, CT93, CS93c, CP01, CBdCD00, DUSH94, DMS90, DS02, DT01, DRSB01, DT92, EP90, EL97, FTM+14, FPS12, FY97, GGB93, KS95, KM97, KG94, LB90, LC90b, LR93, LR94, MSd+95, PP96, PA94, PD92, SH90, SS94a, TG99, ZMPE00, ZL93, AA14, AP03, ABC+09a, ABC+09b, AG12, BKRC+15, BS87, BYG+18, CCK88, Che86, CGC16, CkLC04, CkLC05, CJ17, CPO+03, DKRC+15, DU15, FPS11, GSWW04, GS91a, GMS+13, GMSS+11, HDM11, HSW04, JJ12, Joh87, Joh01, KHT+14, KE00a, LM05, LS88, Lla17, LV07, MSGS+13, MP10, Pad01, PR06, PLD87, RTCG91, SLG06, SS94b, SGdSS13, TKHG04, TRS+12, VM03, WQQ+13, WJD91, ySS91, TFV+15].

Archive

[FTK14, JKIE13].

Area

[BCD00, CLR90, CDR12, KF95a, NIR86, Wei98, ABO+17, CHCG18, HZY04, HL07, JKV15, KCD08, KMF05, LdSB+18, LMJ11].

Area-maximizing

[CDR12].

Area-Time

[NIR86, CLR90].

Ariadne

[MM15].

Arithmetic

[AK93, CL88, Dav17, DPRW85, Gro85, Irw88, KK88, KM88, SR88a, Sch87, Sll90, SL90, Tay87].

Arithmetic/Logical

[AK93].

ARM

[AG12].

Arnold
[Ano00d]. arrangement [Lin03, NAK04, Ten16]. Array [AW95, BCF97, BL90, CT93, CW1+95, ER97, GKH96, GE94, HQPT99, HCS+00, HCZ04, HLJ98, HLJ01, KRW96, KHS96, KC98, KR87, LP96b, LTH97, Mil99, MJ01, MKB+92, MT97b, NKV14, OM90, RSB96, Ste95, SOG94, Tse90, WSS93, Win85, dR09, BB85b, BPP95, CS10, DS04a, GP05, Lee91, Man13, MM07b, NAK04, PLD87, SI86, ST87, SCC+06, YTH07]. array-based [CS10]. Arrays [Ann94, BAGS95, BPST96, BP02, BR95c, CGO96, Cor93, GP93, GW99, Guo94, IK95, KLS90, KEA95, KL84, KBG92, MM00, MD01, MT93b, MRK93, MFS93, MRS96, RFM94, RCB93, Swa98, TBPV00, TC96, WCF94, WHT00, Bd90, Can18, CL03b, DMCFCM03, Deh90, Dja04, Dja06, EL91, GMH+91, JW94, KT89, KT91, LLL78, LB89, Lis90, OT86, RIZ90, SSM98, Sch99, ST89, UMK90, WAS88, WCF14, XZ11]. Art [KM92, PSC+16, WCO+09]. article [Ano96l, Ano97k, Ano00d, CS93b]. artifacts [LZ08]. Artificial [MT85, NS92, Pin91, TVO92, KH89, VO99, VM95]. arts [NDW17, BNSP99]. array [BV90, DP00, Lat98, LFFJ18, PK04a, RP98, SAOKM03, SHL95, SJG91, TT98, WS97b, XL95, YTH07, YD98]. AS08S [Ano04c]. ASAT [SEP96]. ASCEND [Nas94]. Aspect [BZL04, MO97]. Aspect-oriented [BZL04]. aspects [Gao97]. Aspen [UM+18]. Aspen-based [UMM+18]. Assembling [KESA07]. assembly [ABCM07]. Asserting [ASST05]. Assessing [BCD+15]. assessment [CG17, FGL+11, LC14a, LY08]. Assign [CYZ06]. assigned [HMR15]. Assigning [CCK11]. Assignment [Cza13, HBCM99, HB97, KLZ97, SSZ10, SS93, Ste95, VWH96, W97, ABB14, Bat05, BPS90, CS10, GQZ18, GDL+11, GZY14a, JTZZ11, Kim11, LZL11, NDP13, PL15, QGL+09, SLK13, UAK106, WW18b, WZ91, YZ11]. Assignments [LL98, Sin87]. Assisted [HILL95, GM13, HMY+18, KO12, LVP07, MBBD13, NS12, RG06, SRT+18]. Associate [Ano16k]. Associations [GPJA10]. Associate [AA93, DM92, NSM98, Par96, PL98, TJC10, VR94, HDMC11, Kri91, LL90, SR88a, SL98, YBM13]. assumption [Pen11]. assumptions [MS15]. Assurance [BK08, WLL08, XHY07]. Asymmetric [BNS00, ZR00, KNHI18, SPC+17]. asymmetry [AP91b]. Asymptotic [GM94a]. Asymptotically [Li10, Dja04]. Async [ARP18]. Asynchronism [UD96]. Asynchronous [BA90, BSS99, BS00, CS95c, CA95b, ESMG96, KYNV17, MS02, MM93, MR94a, MR94c, OY00, TP18, Th02, WT92, ATD13, BB03, CPA+11, CRC+02, DFGK05, DBCF13, DB86, DPBT12, FKK+04, GLGLBG12, IRRS16, KAK15, KMS10, KS13, MM04, MEMEMH17, RV13, RLH03, SMO+18]. Asynchronous/Synchronous [OY00]. asynchrony [WCYR08]. ATAPE [PW17]. ATEExpert [KW93]. ATM [WR97]. atmosphere [KYNV17]. Atomic [HV95, JBP00, WR95, van96, BOT13, GNS90, HV99]. Atomicity [NA02, RHH12]. attack [BK18, JXW06, KCFP18]. Attacking [ZWH+15]. attacks
[CH06b, KMMZ06, LLWC17, SCC+06, UYG+11, XYG07, XCH08, YXX13].
attention [PLSM18]. attribute [LSS+11a, LSS+11b]. attributed [LKB+15].
audiences [LMB+17]. audio [WIR+18]. Audit [HLS12]. auditing [XLC+18]. augmentation [BCH15].
Augmented [MKY+97, KM17, KAA+19, Lo92, MKW18]. Auralization [FJ93].
Aurora [Lu01]. Authentic [GPJA10, SZMK13]. Authentication [ZBR11, BDM18, CL09, NC09, PRN+19, TODQ18].
Author [Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99d, Ano99e, Ano99f, Ano01f, Ano01g, Ano01h, Ano02c, Ano02d, Ano03a, Ano03b, Ano04b, Ano04a, Ano10a, Ano11j, Ano12m, Ano14f].
Author-Title [Ano98l, Ano99h, Ano00c, Ano01i, Ano01h, Ano02d, Ano03b].
authority [ZCMY12].
Auto [PSB+19, CXX+18, KKR14, KGN11, TLL+18, VT18]. auto-adaptation [KGN11].
auto-clean [CXX+18]. auto-encoders [TLL+18]. auto-scaler [VT18].
Auto-tuned [PSB+19]. auto-tuning [KKR14]. autoencoder [WMC+18]. automata
[EM11, GKS15, MS86, MBO11, RT18, TM10, ZBW+17]. automata-based [EM11, RT18].
Automated [NM95, NC97, CV16].
Automatic [ABCM07, AD12, CGO+96, DHR96, HZZ+19, KBC+01, LC92, LZZ+11, MJ01, NCB+17, SEP96, AAD05, AM17, GLC14, GFPC14, MLCFH+18, NVK+11].
Automatically [DR98, TG99, DSEP17]. automation [HKK+18].
automaton [Cap87, LSZZ15, Pet18]. automaton-based [LSZZ15].
automorphisms [DH19]. automotive [RAN+17]. autonomic
[AZC13, ATZ07, CP05, LS10, RDA18, XRB12]. autonomous
[CKT11, CKMP17, WZZ+17, XCH08, ZV09a, ZWW17, OYE07]. autonomy
[LFI+03, ML89]. Availability [HJD+01, LS01, AGMS16, DB08, Fu10, HOE+09, KVA18, LKM12, LAC18, PF08, PMMA15]. Available [NKC+97].
Average [DF95, L106b, MDD97, NSM98, L106a, WWW17a, XBK07].
Average-case [Li106b, Li106a]. AVL [MD98]. avoid [DP16]. Avoidance
[MJ94, BB85a, BPRS04]. Avoiding [SI13]. Award [Ros07]. awards [OY13].
Aware [ALF03, DR18, DKK18, SPS+18, AH12, AYB+15, BM17a, BPA06, CWZ+18, CCW14, CWP12, CHCG18, CKML12, EB09, EHL+15, FCW11, FCJG+18, FGZ03, Fu10, GQZ18, GPSH19, HMV07, HMR15, HK05, HK04, HWL18, HV13, JAB12, JHF+17, KKK11a, KK11, KCR14, KDH08, KBC+10, LL19, LBMG15, LFS16, LR14, LDZ+14, LIZ+11, LW16a, LNAL17, LLZZ19, LY13, LHL12, MBBD13, MHLZ16, MYYY17, MTL+18a, MLK+16, MMK+11, MA19, NP09, ORWT+18, OS04, OMT+17, OJP+18, RBN11, RCG18, SNMB16, SB12, SA19, SKK14, SCW+18, SP13, STK11, SK05a, SZL10, TTLV10, TODQ18, TVT+17, UM17, VMMB10, WQL14, WMY+17,
WHC+18, XZC03, Y0Z11, YJKD10, ZVL15, XYO11, ZTFK16, ZWQ+16, ZV09b, ZC04, Sie16). awareness [HRH18, LWZ12, LR03b, ZGD18]. Axiom [ABL17]. Axiom-based [ABL17]. Azriel [Ano04r].

Balls [BBFN12, BBNF14]. Band [WIR+18]. Banded [Pov99, ORR03]. Bandwidth [BM97, Cha95, KK17, PY09a, PY09c, BH17, CCHC09, DK04, HJ90b, HWY+10, HB11, MSK+16, SSGG18]. bandwidth-efficient [BHK17]. Banerjee [PKK91, Ps96]. Banerjee-Wolfe [Ps96]. bank [QGL+09]. banker [MMS90]. Banyan [PL06, Kop97, WN94, Yan00, YL93]. Banyan-Hypercube [YN92]. Bareiss [HM99]. bargaining [GRDB05]. Barnes [SHT+95]. Barrier [Cha95, JLR97, OD95b, RS99, XMN92]. barriers [HS12]. Base [DKMV01, RBD08, DDNS06]. Based [AE95, AS00, Ano99g, BCD95, BPJ92, BGJDL02, BMM97, BN02, BR02, BA92, CGKK97, CC91, CRV94, CS95b, CKL99, CGA98, CHGM01, DA97, DR98, FF98, FKKC97, GS01a, GRR93, Gu92, GS01b, HP00, HB97, HK01, HSJP87, KCRB99, KSP+92, KDCD95, Lat95, LAZ95, LZ02, MSC96, MB93, MG98, NTA96, NB93, NM02, OM84, Pad93, PN97a, PN97b, PA97, PL95, PM06, PAJC97, RL96, RSD94, RMC97, RSBN01, SMR96, SSRV94, WLY01, WSRM97, WSA+94, Won99, WLID02, XH91, mYyF92, YB01, Zia92, eW95, APRA18, ASA18, AA10, AL04, AS99, ASK13, ALLM11, AH91, AK07, ARM+05, ABC+09b, ATZ07, AYB+15, AP16, AK18, ABL17, ABF+14, AJG18, AS18, AVAH18, BCM06, BJPPM+08, BDM18, BO03, BNBR16, BOY10, BCM15, BCH15, BDRB14, BFKW13, BYG+18, BK18]. based [BAT+19, BDDL09, BEN12, BM08, BYH+17, BBB11, CL03a, CWZ+18.
CG12, CLMRL15, CK08, CK13, CVK+18b, CTCX08, CP10b, CS10, CHX+17, CLOL17, CQX+18, Chi95, CL09, CVJ09, CHC05, CRJ10a, CGV+03, CZZY09, CJ17, CTT16, CAF+11, CKMP17, CRD12, DBA+18, DKKV15, DE91, DB11, DR19, DBW+18, DKC14, DRST02, DRT07, DWYB10, DQR+09, EDØ05, ESQG+14, ESGQ+18, EM11, ECQ+18, FLL14, FCC07, FLCB10, FGL+11, GOH+13, GMMP12, GPJA10, GTGLSA12, GBA08, GL12, GSASA19, GA16, GNZ18, GRZ+18, GMX07, GXYZ13, HW03, HBS17, HV09, HC09, HRH18, HLM+90, HWY+10, HZL18, HMY+18, HH16, IH+17, JXW06, JP09, JTC+18, JBY+05, JM14, KKV05, KK14, KERUM04, KJD03, KyLPC17, KA08, KKS+12, KKLJ14, KR06, KKTZ13, KC04, LK15, LC14a, LHKL03, LSH+18, LZI+11, LMJC11, LW16a, LLWC17]. based [LNW+12, LS03, LÜ+14, LHT08, LZC11, LSZZ15, LZY+18, LCJ+18, LDDL15, LPLFM+12, Lop18, LACJ18, LAC18, LV07, LS06, LP88, LLF18, MCC04, MCDS+06, MAGL13, MM15, MP10, MMS09, MAKWZ13, Mt07, MM07c, MBO11, MH18, MSAM10, MSAM10b, MBH+08, MRRT07, MZZC12, MCZ14, NSK17, N9J1, NCA+12, NTT12, NC09, NHO+13, NC13, Nic07, NAK04, No12, OM10, OJP+18, Ozt11, PRP09, PARB14, PLSM18, PD17, PK05b, PM11, PVP06, PF04, RLP14, RT18, Rao16, RA11, RTZ11, RDA18, RSCQ17, SMW18, SSM+16, SMPMLVS11, SH17, SCG10, SS06, SP08, SP13, SX08, She09, SLW10, ST12, Ski16, ST85, Suk18, SK11, TR89, TBG+17, TFS15, TW15, TKKH17, TC13, TJCB10, TWQS12, TT07, Udd19, UMM+18, UM17, VN04, VETT18, VMMB10, VB08, VS18, WCC02, WGC09, WW12, WCL+13, WRW13]. based [WYW15, WWW17b, WML+18, WM+18, WXY+18, WZ+18, WIR+18, WMS13, WD18, WD13, WLW09, WCC18, WWA+18, XHY07, XCLR07, XLHT13, XO05, YWJ+18, YL12, YHW18a, YHW18b, YXW+18, YYA10, ZG13, ZGJ+18, ZK+02, ZV09a, ZAAB17, ZFT+18, ZW13, ZPK+14, ZLL14, ZV12, ZG+14, ZGJD18, dSAJ15, dAD+19, dGP06, SM92a, WAS95, ZNO13, HRF+11, HCO1, KKS08, PL18, TOR+14, ZBR11]. bases [GPT06a, SK90]. basic [BM04a, Joh87]. Basis [TR96]. Batch [LL98]. batched [CK06, HSH10]. Batcher [NT93]. Batching [DSST95]. Bayesian [DK14, FRW03, LWC+18, NZA13, SHK19, YWAT13]. be [BNP02, HBS17, KSS16, STKL12, BGA12]. beacons [DWX10, TDC05]. Beamforming [BL90]. Before [HCR12]. Behavior [ABR96, BDF92, BN02, BTT01, CM93, FJ03, L08, ACD+18, BS92, CL14, JZK04, LWX19, dAMFl13, RA11]. Behavior-Based [BN02]. behaviour [CMMN10]. belief [HMY+18]. Benchmark [PAJC97, DMS+16, GN15, GREC91, Num+07, Num+09, WRHR91]. Benchmarking [BRR93, KA99, YLLC11]. Benchmarks [WAS95, HZZ+19, JV06, KC17]. Bends [OS97]. Bene [CI03]. Benefit [BHK17, WE02]. Benefits [FR92, SS99, WE98, GKO4]. Benes [DD96, QA97]. Best [BE95, Mue13, OY13, PHI13, ROB09, SP96, SNN03, Bar05, FPP+08, MAM05, QGZP17, WAE03, Ros07]. best-effort
Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f.

Body
[H-P95, SHT+95, CHCG18, IHM05, YJL16]. Boltzmann
[KA89, WCO+99, ZA91].

Bone
[AFK14].

Boolean
[ESCV15, HJ90c, JH92b, OT19].

Boosting
[AC16, FGP05].

Border
[DRST02, HR90]. Border-based
[DRST02]. both
[WTY+18, WAE03].

Bottleneck
[WW98]. bottom
[LXZ13]. bottom-up
[LXZ13].

Bound
[GZ97, PM96, AMM+18, CH06a, Kub17, Li19, MCC04, SCS+08, SW90, YZLT09]. bound-consistency
[Kub17]. Boundaries
[Wor93]. boundary
[Lin91, RBD08, SCC+06, SMP17, TRS+12, ZQMM11].

Bounded
[AW95, BBN93, CLT96, GP97, Pra93, SN93, BD05, BPRG04, JM14, LMZ04, MRRT07, NP09, Sta17, TK07].

Bounding
[Lun99].

Bounds
[ADS01, BBH+98, DL98, JR95, LPS+98, LP95, Lun94, WW97, FT04, FSZ07, ITT04, KMS07, LXLS12, LYW+16, Mat06, NDP13].

Brain
[ROH+18].

Branch-and-bound
[MCC04, SCS+08, YZLT09]. Branches
[ERA95].

Brawny
[LNC13].

breath
[MB13, ZCS+18]. breadth-first
[ZCS+18].

Breaking
[FJ93]. Breakpoint
[dADB96, MT97a]. breast
[HES11, XTN12].

Bridge
[HR00].

Broadband
[XP10, XTN12].

Broadcast
[DHB02, OS96a, Pel95, RS96a, RS92e, San99, VB94, AA10, BG05, CB15, FVLB09, KYS13, KG10, KGN89, LDZ+14, LDZ+17, LSWC14, LSZZ15, MT14, MPS16, MRRT07, PYF08, SGS08, TR08, WWW17a, WIR+18, WL05, dAAD+19].

broadcast-based
[AA10, MRRT07].

Broadcast-efficient
[OS96a].

Broadcasting
[BNS00, BPW96, BMMS01, BOS+95, CW00, CCC92, DLP99, Fra92, FV97, GP97, HIKM94, Lat98, ST02, ST06, SCD99, Wu94, dBL95, oPP00, Che05, CMS04, FMR05, HS06, Ho91, KR87, LR03b, LSWC14, OWK14, SZ03, Wu03, ZA05].

Broadcasts
[WD92].

Brother
[HR00].

Brown
[DTK11a].

Browsing
[SF90].

Brujin
[ANS97, CT96, FT04, HS094, MVM04, Swa98].

Brunottone
[Tat11].

Brzezinski
[Ano96a].

BSP
[CTZ99, GS98, GLC01, HH01, HM99, KP00, RGD03].

Bubble
[DF94, PIB+01, GNZ18].

budget
[ZVL15, dR09]. budget-aware
[ZVL15]. budgeted
[Sta17]. Buffer
[FM99a, HV95, MSSE02, PY09b, WLID02, BPW05, CHX+17, HV95, IIH16, PBS08, SCC+06, WCWO17, WWY15]. buffer-based
[HV95].

Buffer-optimal
[HV95]. Buffer-safe
[FM99a].Buffered
[AA95, KJ84]. bufferless
[BMIM07, LTL12]. buffers
[DW04, EKNS17, HM06, WAS88, ZCF+17]. build [ZHH15]. Building
[Haw97, IK93, RJKL11, SK93, Sk98, ZW13, CZ90, HSS10]. Bulk
[GV94, Lu01, FXW03]. Bulk-Data [Lu01]. Bulk-Synchronous [GV94].
burst [WCC017]. Bus
[CKL99, DVZ96, FVT02, FY96, GK98, LPZ99, TVS97, VB02, dR09, BPP05,
CLM90, D04a, JSW92, M88, MHBW86, TJCB10, YB90, YGZ+10]. Bus-Based
[CKL99, TJC8910]. Bus-Connected [DVZ96]. Buses
[CL96, HPQT99, IM00, KC98, LS94, NS94, TVT96, TBPV00, WHT00,
ZLP01, BG16, Car90, JW99, KRL87, Mat06]. Business [MBS+12].
Business-driven [MBS+12]. Busy [SP96]. Busy-List [SP96]. butterflies
[CI03]. Butterfly [JH94, VAF19, TDM05]. bypass [DOBG+15]. Bypassing
[DKK18]. Byzantine
[CBV08, DPBNT12, HC11, IRSS16, LH14, MT14, PP06].

C [CD98, DZZ01, EFG+14, HCM11, LS85, ZH99]. C-AMTE [HCM11].
C2FPGA [CSJ+13]. C3 [Ano04c]. C3- [Ano04c]. CA [Chi95]. Cache
[DS95a, Dah99, DKK18, GS96, HP97a, LY98, LY91, NS93, PL95,
PY96, RL96, San95, ST95, Yan93, BW89, CWL05, CK13, CDAN14,
DK04, FABG+19, GJG88, GA+08, HCM11, HY94, HO99, HSMB91, KK11,
LC11, ZZX11, MYY17, MPG17a, MA11, SYU17, SS17, VRG17, WLZ+18, YCC05]. Cache-Affinity
[TTG95]. Cache-Based [RL96].
cache-coherent [SYU07]. Caches
[DS95a, YAS98, DMI+19, EHL+15, NSAS10, RFPAG08, SD91, SS17].
Caching [BS96b, BS96c, CS17, KC99a, KE93, MM93, BLPA05, CR96,
FCW11, FCML13, LAK10, LVP07, MA11, OC07, TC03, TC13, ZVL11].
CAFES [MCM+11]. calculation [SL90]. calculations [HT90, KVN17].
Calculus [PL98, SC95]. calibration [MAL+06, SDG17]. Call
[Ano95i, Ano95j, Ano96i, Ano96j, Ano97i, Ano97j, Ano98j, Ano99g,
Ano99d, Ano99e, Ano99f, Ano00a, Ano01c, Ano01d, Ano01e, GSC96,
LGK+12, RRK06]. Calls [Ano98k]. Can [KSSK16, BNP02, HBS17]. cancer
[XTN12]. Capabilities [Fra92, MMR89, TVO92, FEH+14, RBN11].
capabilities-aware [RBN11]. Capability
[Gue94, JLVX11, SP96, YWP00, BJ15, H091, HK04, dOBBG+15].
capability-aware [HK04]. capable [SMP17]. Capacitance [YB01].
Capacity [ACD+93, MO97, TQ18, ACCP18, BKK+11, JHPL13].
Capacity-aware [TQ18]. capture [BOT13, JXW06]. Capturing
[ISZ07]. cards [KME09]. Cares [BL94]. Carlo [Br096, PAS15, ZS13].
carried [NCT+07]. Carrier [DL01, BC11]. Carry [NIR86].
Carry-Lookahead [NIR86]. Cartesian
[GOH+13, ANS97, Dim04, ISAZ10, MSZ11]. carving [RRS+08]. Cascaded
[Wil90]. Case [BA01b, GT02, HPT+97, MS99a, NS98, PP13, SSG93,
WNA+94, WLR90, AGMS16, AES11, BJ18, CCK+08, CHLL18, DI91,
FRM15, GRR+05, Hdi13, HA91, Li06a, Li06b, PCMM+17, ROE+18,
TdAR18, WLCZ15, WMG13, ZKZ18]. CASS [FPS11]. Cassandra
circuit-level [LC14a]. Circuit-Partitioned [CB99]. Circuit-Switched
[CCR94, CS93c, GGN93, LK96, LWC14]. Circuits [KM97, BAH04, EB13,
HBS17, LH04, LS05, LH09, MH18, OOSGVG+16, TT07]. Circular
[BP02, CDP95, JT88, RGU08]. circulation [Nes10, PV07]. cities [DFLO17],
city [HRH18, KDS18]. clairvoyant [Li06a]. CLAP [KK17]. CLAP-NET
[KK17]. Class [BNP98, BSB01, CAB94, CN93, HR00, LYL93, MAS+99,
Nas94, TL96, WN94, WL00, EB13, FY86, LLS07, Pak89, SP90, Ume85].
Classes [Par98, FP17, LLS06]. Classification [DSAUM99, BCM06, Bod89,
COV13, CK13, DH04, PDP17, TPLY18]. classifier [BOKS19, SDG17, UGG+
11]. classifying [Luc18]. clean [CXX+18]. Client [GM99, HC09, ST08a,
TC04]. Client-Server [GM99, HC09]. Client-side [TC04]. Clients
[ALL99, GZY14, Yan09]. clinical [KDO+13]. Clique [FTL92, STP09, WCH+
17]. cliques [BP02, CDP95, JT88, RGU08]. Cloud [CDJL09, CDJL11, FEH+
14, LAC18, PR13, VS18, ASKO16, Ale19, AZC13, AM12a, ACCP12, BYH+
17, CL14, CAA18, CXY14, CTKA17, DKRC+15, FRM15, FCJG+18, FMIF18,
GQZ18, GYAB11, GSASA19, GSY11, HRM17, HMY+18, JAB12, KVA18,
KBC19, KSSH16, LWZZ12, LQM+12, LLB+18, LGM18, MLHZ16, MYY+17,
MXSL12, MMK+11, MA19, PLSM18, PH18, RT18, SWW+17, TKR+19,
TLW18, TKB+13, VD18, WC18, gWW18, XLC+18, XRB12, XYG18, YLYC11,
ZV14, ZLL14, ZHT16, NLB+18]. cloud-based [GSASA19, WC18]. Cloud-centric
[VS18]. cloud-of-things [TR96]. clouds [ACPT15, ACB+15, CM17, KKLJ14,
LYJ+19, LTWW12, LWWQ18, NC13, NKK16, PVP18, ZG13, ZVL15]. Cluster
[AFT+00, BAHPO1, GSO1a, HS00, JM00, JK15, LS01, MKC01, PT01,
ARM+05, BMARW07, CCA18, CDS10, FW05, FLB10, GRR13, HW03,
IEWK17, JGMY17, LAK10, LML+10, LUI4, LZC11, LB17, LB18, MAR05,
MSJ05, MBH+08, NDP13, NVK+11, OC07, PKW+10, PSPR05, PVPM06,
RLF14, SAOKZ05a, SAOKZ05b, SBC12b, SHL+13, SMH+14, TC04, VM03,
WLL16, ZBF05]. cluster-based [FLCB10, HW03, LUI4, MBH+08, PVPM06].
Cluster-to-cluster [JKV15]. Clustered [CP99, MF94, GZI14, HRC09, Lop18,
NS12, SFT+13, Wan06]. Clustering [ASM09, GYJ2, HX07, TZO7, TM10,
WZH+03, WHT00]. ASKTZ13, AYB+15, AS18, BM16, BM17b, BF13, CDDL10,
CLC+17, DBCF13, DKO18, GY13, GW06, KKH17, LK15, LLQ07, MCC04, RIZ90,
SAL10, SX08, TLW18, WM09, YBX+13, YÖ11, YWW12, ZMC11].
clustering-based [MCC04]. Clusters
[AYJ97, B399, BDH+97, Dek00, KMKD97, KR98, LCG97, PN97a, PN97b,
WB96, Wei02, ARP18, BCFF05, BJS03, DCA+15, FMR05, Fu10, GJA08,
GYY+14, HV13, JM14, KKH17, KLY05, KCR14, ME04, MMVL11, PYF08,
common-bus [MS88]. communicating [BFTV87, DRR13, SSM+06].
Communication [BPR99, BKT95, BCR96, CW00, CCRS92, CGL+95, CS95f, DUSH94, DS95b, ESMG96, Fah96, FM99a, FPS11, FKT96, FGKT97, FA95, FAM96, Fra92, GRV97, GBES93, GM94a, Gk98, GPS96, HQPT99, HH01, HP95, HS93, HA92, IM94, ITT04, Job87, KL01h, KLS90, KS00, KS02, LHS97, LZ02, LR03a, LO96, LWP02, Mck94, MRRV98, MLK+16, MSST99, PP96, PB99, QH96, RFS+12, RWK95, RS92c, RU99, RMC97, SCM99, SS99, SOG94, SSK96, SBAM96, SKH96, TF92, TSHH01, TSC01, VM03, WR97, XKMN94, Xue97, ZH99, AFA13, ARP18, ALTV13, AM12a, BM17b, BFTV87, BCM87, BBR13, BOS+91, BRP03, CCS06, CNS03, CHC05, DB11, DKUC15, DAPR18, DW04, Ed91, EDH+17, FW05, GPT06a, GM13, GP05, HK05, IB04, JJ12, JZZ+17, KLY05, KSC03, Lai86, LAK10, Lo92, Lwu90].
communication [LM09, LWCG14, LLW12, dAMFds13, MAM05, MTL+18a, MCM+11, MPG17b, NRM+09, PB90, REK10a, REK10b, SS99, SBPR91, SAl10, SR114, SLKK12, Sta04, SW90, SZB16, SSGZ13, Tam18, TW15, YCH+10, YQT12, ZBF05, ZV09b, FPS12]. communication-aware [ZV09b]. Communication-Computation [QH96]. Communication-Efficient [HQPT99]. Communication-Free [HS93]. communication-induced [LM09]. communication-intensive [MLK+16]. Communication-Minimal [Xue97]. communication-optimal [MPG17b].
Communications [AMN00, BD00, CQ95, DRR96, LLJ00a, SC91a, SHC93, TSC01, WAC02, YMG01, ZR00, EB09, GMH+91, LH07, MBBB13, GP+12, TP18, TKG+17]. Communicator [KF90b]. community [CTC+10, LpJS+18, Tra09, ZL14]. community-based [ZL14].
Compact [CDF01, CJ99a, CjY04, CI03, NCTT09, NKV14]. Compact-Port [CDF01]. Compaction [BHR91, Kar95, WD94]. Comparative [AAD02, GS00, QM01, HA91, PL03b]. Comparing [GGW96, YL98].
Comparison [BSB+01, DRSB01, Fre96, GY92, JNW96, KA08, KA99, OP98, SSB02, SAC+98, Tay02, AFM03, AG12, FGZ03, GHC+17, JKEI13, MP10, NSKN17, SMB10, SS94b, ZTFK16]. Comparisons [YBM13]. compass [AKBD10, XKM94]. compass-free [AKBD10]. compatible [MP08].
Complement [YAS98]. complementary [ZPK14]. Complete
[BP02, Efe96, HKMU98, HM01, SP96, SHL95, TT98, Wag94, ZW00, LFZ17, MPZ09]. completely [SPC17]. completion [KSG03]. Complex [DDO18, GPS96, HASB16, CM12, DF17, HHA14, JKD15, RBP11, SW12, SJG19].

Complexity
[BH93, CMS92, Dja06, FAGW95, Fra92, GRV97, Gon98, JBL02, Tay02, AEF11, BPW05, CHO96, DUW86, FWM10, SSS88, Sol13, THS87, WG08, XL11]. complexity-effective [FWM10]. compliance [AM06]. Component
[BJ96, Kar02, BBB06, KSG03]. completion [KSG03].

Components
[BJ96, Kar02, BBB06, Hoh90, LWR03, MHP05]. Composed
[SM92a]. Composing
[BA96]. compositing
[WGCZ09]. Composition
[HLJ98, Tay02, CJ17, WMY17]. compositions [FZ14]. Comprehensive
[DG94, GM14b, uRIL18, Upa13, ZAB18]. compressed
[WBTM09]. Compression
[SY094, CW15, CD95, JKV15, HP97, SR91, AGH12]. Comput
[KN18b, LSS11a, MSAZ10a, PCX14, REK10a, WTC08a]. Computation
[AM97a, AISS97, BCV94, BP95, BA01b, CA95a, GM94a, GM95, HR92b, HR92a, JSS92, KF95a, KS00, LHM95, PB99, QH96, Sch90, Sin87, SA93, TR96, Win85, CR96, CXY14, CL85, DB11, DHK04, DWHL87, JTT88, KSG03, Lee90, LMB17, LGM18, MCS14, NCTT09, PK07, RMU14, SS11, SD88a, SZ03, VGAB08, WL04, WTB09, WCO09, XLH18, YJL16, YJB91].

Computation-Intensive
[CA95a]. Computational
[APV18, DRC90, JBL02, KRW96, KR97, Num08, Num09, AAH17, AB03b, AGMJ06, CCE17, CS06a, DHS06, KHT14, LBE03, MJ03, Pen11, RBN11, SMO14, SNCP12, TZ06, WW03]. Computations
[AGF94, AMN00, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93, CQ95, CGA98, DUS94, DN94, GR96, GK98, HH97, HJ01, HF02, KL01a, KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MN98, NRS95, Nas94, Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03, BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Jol97, KME89, KHK03, RV13, SSK15, SBG12a, ST89, SC04, SK91, SMH14, SS94b, TG04, WJ14]. computations/applications
[KH03]. Compute
[ABM92, CM92, CTZ92]. Compute-Intensive
[ABM92, KAS07]. computed
[KDO13]. Computer
[BCH95a, BS96b, BS96c, Cha94, CDP95, DB18, HMM94, IWM97, Kr91, LLS93, LR94, MK97, NS97, PEC95, VV90, WFT2, WHT02, BDR14, Em13, FSP18, Gai87, GE85, Gos90, GREC91, HR89, HR90, IWS89, JW89, KK86, LMB17, LB17, LV88, MP08, PSC16, SAB92, Vel89, WJD19, PR13]. Computers
[Ahu97, AD94, AB93, BS90, BR95c, yCM98, CCC92, CH92, CY96, Cj99b, Fer93, KL01a, KGV94, L01, MT96, MSC96, MYD95, Moh96, NFEG97, NS92, PE93, Ree84, RW01, SR94, Shu95, Sto90, Tan84, TC92, VSM96, WLR90, Yan93, YP96, Zhu92, ZM94a, AM13, ALS91, AP91c,
BGM+08, BCF+94, Car90, CT94, GMS06, JL05, KESA07, LR06, Li16, ML89, PB90, Raj04, Sab94, Sch87, WRHR91, ZLRP91]. **Computing**

[AW95, AL99, AM97b, ANT02, Ano97k, Ano99g, Ano01e, Bai94, Bir94, BD00, BSB+01, BDH+97, BNSP99, BS09, BS11, CA94, CEF+95, CDJL09, CDJL11, CP99, DDO+18, Deb90, DAYA02, DBP94, DB18, Eme13, EL59, ES97, FFK97, FGGT97, GRS97, GS05a, HG99, HS00, HHC98, KSA95, KMKD97, Kri92, KRS13, KC99b, LAS+97, LFA96, LS01, MWL00, MAS+99, MSGS+13, MC93, MNK12, MBG+17, NA06, Nee17, PB90, Raj04, Sab94, Sch87, WRHR91, ZLRP91].

Concentrate [LW95].

Concentration [JL05]. **Concept** [DFLO17]. **Concepts** [TAS+01, MAGL13, NKSA17, ZZ90]. **Concerning** [IPK85]. **Concurrency** [Ahu90, ADD17, KCV99, LZZY09, MS96, NMS93, RM90, SRI11, UBES10].

Concurrent

[AY93, ACHY18, CCM92, CMN12, DBLB+12, FPD93, IM94, Joh94, MM04, RSD94, RS92d, WCF94, WW96, WG93, WT92, BE13, CTS17, Ch95, CMT92, DB08, FJSW90, GV96, KME98, PVP18, Par89, SW18, ST05, TK07, Ch95].

Condition [SJ96]. **Conditional** [CSS11, CW09, ERA95, RLS96].

Conditions [DJ98, HM96, MI92, Ste17]. **Condor** [HS97]. **Condors** [BZH06].

Confident [YDZ+18]. **confidentiality** [ZHT16]. **configurable** [ZMZJ17].

configuration [BL05, FVCL05, LB17, NP09, VAS+13, WZ13, WLST16]. **Configurations** [LK94]. **configured** [ZV06]. **Conflict** [BP02, CH92, DP00, DFP06a, HV09]. **Conflict-Free**
[BP02, CH92, DP00, DFP06a, HV09]. Conformance [CY95]. conforming [LGM18].

Conformance [CY95].

Conjugate [Bas97, McA89, GLW14]. Connected [Ann94, ADM+94, BJ96, BCFH95b, yCM98, CCC92, CWW+95, CT94, CY96, CDP95, DVZ96, Fer93, HHM94, KRKS11, LH92, MD01, Moh96, SR94, Tze93, Zhu92, ZYO02, dBl95, BB85b, BBd90, BJ18, Car90, DW06, GP07, HJ07, HSW04, HR89, HR90, JT88, JPD17, JL05, KO12, KT91, KF90a, LC90a, LC91b, Li06b, LV88, MHPR05, PB90, Ra04, SI86, ST06, SSM89, SC91a, TR08, YME06, YSS11, YWW12, ZAAP17, HWY96]. Connecting [FT94].

Connection [AyJ93, GHKS98, ML89, LXLS12, TT07, YSL08, CM93, CRFS94, EHS94, LAD+96, LTD+93, Sab94]. connection-based [TT07]. connection-level [YSL08]. Connectionist [MBK+92, TR89]. Connections [Goe94, TC03]. Connectivity [Wil92, ASM09, BCMV15, DH91a, OMSGNSG05, SK89a, Ten16]. Conquer [CTZ99, AY89, BW09, GDL+11, Sto87, TP18]. conscious [GYAB11, OC07]. consensus [AAI+15, ISM07, LHYW14, MR09, WTC08a, WTC08b, WWY17a, WCYR08, XKB07, DS04b]. consequences [YBM13]. Conservation [FLS+97, SHR19, XSI11]. Conservative [LA93, BD04]. Considereations [Ger98, VWHL96]. considering [MLMSMG12]. Consistency [Bir94, CA95b, GAG+92, SS08, Fei03, HC09, KUB17, LC11, LHZ+18, RHH12, WDDK09, X005]. Consistency-driven [SS08]. Consistent [KCD95, HK08, JLM08, LFA05]. consolidation [MA19, RT18, ZLCZ18].

constancy [Ebn04]. Constant [BG9095, BPP05, BTZ98, COS+95, DS01, KBG92, RO92, TVS97]. Constant-Time [BG9095, COS+95, DS01]. Constrained [AZ01, BSD96, BSH15, MMVR97, RL95, BKS95, CHX+17, HP06, JHF+17, JZZ+17, KSI04, KSK15, LFS16, LL10, Li16, MSK+16, VMMB10, WTB+08, XLL15, YAK15, ZVO9b, ZWXX16]. Constraint [GHH92, LP97, Mon94, CLL09, Ozt11, UAPM07]. constraint-based [Ozt11]. Constraints [BA96, KB96b, LTWW95, van96, AP91a, AY89, ACU08, DUW86, FVLB09, Li06b, SZB16, SSM+07, VRM10, WMY+17, WHS+18, YA11]. Construct [BW96]. Constructing [CC506, CS06a, Hal05, HS12, HS94b, Lai15, MKW18, YWW12, BBL04, DW06, GC07, LMZ04, LH04, OMSGNSG05, WC91, WJ12, YSS11, YZLT09]. Construction [BCH95b, DM95, DFN+94, DJM94, BFG+03, CFJW13, JPD17, JM14, Lai14, Lai17, LT07, LS05, OOSVG+16, SB12, WIB12]. Constructions [FA95, HV95, HV09], constructor [tH90]. Constructs [Ano92a, KME92]. consumer [GLGLBG12, KK11]. consumption [AH12, GGY10, LCW05, LM16, RTZ11, TKX+13, ZW11]. Contact [PAH+98]. container [AZW13]. Containers [LACJ18, LAC18, Str12]. contemporary [VM03]. contended [AFA13]. Content [Li99, SLW10, Win85, Bar05, DMF+19, Fei03, FM07, KTP17, KRM14,
Content-Addressable [Win85]. content-based [ST12, SK11, ZW13].

Contention [BCD00, FCW11, LKK94, STK11, AEY12, FA07, HHS12, JW89, KH12, LW16a, NSTM91, Nik03, SW18, Zah12]. Contention-aware [FCW11, STK11, LW16a]. contention-free [KH12]. Contents [PSGS17].

Context [AHG12, CWZ+18, Cou93, Ano04d, BPA06, IB04, ORWT+18, YK04, Sie16]. Context-aware [CWZ+18, BPA06, ORWT+18, Sie16]. context-sensitive [Ano04d, YK04]. contexts [KHT+14]. contextual [Ana14]. continued [Ano18v, Ano18w, Ano18x]. Continuous [JHPL13, NH93, Luc18, CCS+06, TCS+10, dGP06]. continually [AKSM08]. Continuum [MP96]. contraction [LGK+12, SMH+14].

Contributions [RGU08]. contributory [SA19]. Control [AGW98, AGW01, BJP91, BBM+02, BCLR96, BCD00, BDF01, DSST95, ESA03, FR96a, FT94, KSP+92, LM96, MS96, Nie94, OS93, SG96, THBF97, WLID02, AA10, Atn90, AAA+10, BCO+12, BWP+11, BMF05, BJ18, CF88, CG17, CWP12, Che89, CLM90, ESGQ+18, FL86, GL12, GAOGH17, HCZ04, HMY+18, JTTZ11, KNS91, Kim11, KGN11, LL90, LZCY09, LCW05, LWLD12, LL12a, MLZY17, MG09, MBO11, MCZ14, RCG+11, RKK06, SRI14, TG04, WRW13, WJD91, WHS+18, XYDL06, XLYW18, XWC+08, YBM13, YJKD10, ZMZJ17, ZBW17]. Control-Memory [BCLR96]. controllable [ZHT16]. Controlled [CGSV93, Li99, MG91, SD99, SD00, BYT19]. controls [YSL08].

convex [CGSV93, Li99, MG91, SD99, SD00, BYT19]. convexity [BOS+95, BGS95]. convolution [BOS+95, BGS95]. convolutional [ZLS17].

convolver [Kep03]. cool [LFS16]. Cooled [SWHB17]. cooling [MLK+16, SWHB17]. cooperation [YQTV12]. Cooperative [BW95b, LTWW12, SZL10, ADDB18, DDG+17, FCML13, FZ14, GRDB05, GYZ+14, KK10, LGM18, NP09, TC13, TVT+17, WLL16, WHC+18, XHZ+10, YpGyLIC13, YF07]. Coordinated [DDG+17, VPHML06, MCZ14].

CORBA [CCC+04, JLR+03, MSAF04, SR04, wXH00]. CORDIC [CL88, HBB93]. Core [BCR96, DDO+18, PL94, AFA13, APRA18, AA16, ARI17, ABP17, AVAH18, BBBC12, BLMB13, CMM13, CHL18, CKK+13, DBA+18, DWYB10, GZG+17, GS18, GKS15, Hus17, JHF+17, KSG13, KKB+06, KR11, LWC+18, LKS14, LNAL17, LSC+15, LHT08, LLS+16, MBBD13, MZC18, MAHKZ12, MGRRK14, PCMM+17, PGP+12,
cryptosystems [AVAH18]. CSA [Ebe94]. CSD [KHT+14].
Cube [BCH95b, JH94, MS85, RP98, Tze93, AP91b, JT88, JL05, KF90a, PK04a, ST06, LH05]. Cube-Connected
[BCH95b, Tze93, JT88, JL05, KF90a, ST06]. Cubes [HJ90c, HTHH02, JH92b, Lat98, XLI95, BVB02, CW09, CFJW13, FLP07, LFZ+17, LLFJ18, MKW18, SAOKM03, WFZJ12, WS97b, XHZZ16, YTH07, YD98]. Cubic
[CP98, BM14, MP88, YME06]. cuckoo [CSW+17]. CUDA
[BSH15, CBM+08, CB11, Cza13, KRKS11, KME09, dAMCFN12]. CUIRRE
[ZSW14]. Cumulative [Ano98l, Ano99h]. currency [HBF12]. Current
[KS95, MMCL+17], curriculum [NDW17]. Curve
[LZY+18, Gue86, SKH15]. curves [ST12]. Customized [Ils97, ZLP97]. Cut
[DRSB01, KLLL98, CRD17]. Cut-Through [DRSB01, KLLL98]. cuts
[Lù14]. Cutsets [DH94]. Cyber [HRM17, QGB+17, CWCW18, CSW+17, DZC17, GQQZ18, JWH+17, LLWC17, LMXJ18, MMN+18, SLG+18, XZMR18]. cyber-enabled [GQQZ18, LMXJ18, XZMR18]. Cyber-Physical
[QGB+17, HRM17, CSW+17, JWH+17, LLWC17]. cyberthreat [KAA+19]. Cycle
[Ano00d, KK95, LS97, Ros99, HDT+05, LLFJ18]. cycle-accurate
[HDT+05]. Cycle-Stealing [Ano00d, Ros99]. cycled
[LDZ+17, LDZ+14]. Cycles [BCH95b, Tze93, Wan01a, dBL95, HBAD15, JT88, JL05, JD12, KF90a, LdSB+18, PK04b, ST06]. Cyletrees [VB96]. Cyclic
[OP96, PT97, SSG93, BD05, HS03, PK05a, Sch87, ST87, SPH13, LY12].
cyclic-by-rows [ST87]. Cylindrical [WN94].

D [AA14, Ano92a, Ano93e, BAES92, CS93b, GOH+13, SS94b, AA16, AR97, BLVP95, BFG94, BDR13, BAL05, BC94, CW00, CS92, DJDK19, DSAUM99, GW99, HHHK96, HKT94, KRKS11, LXL91, LME95, MKY+97, MPG17b, NM17, OGRV+12, PYP+10, PEC95, Wan07, WS95, Wu02, YA11, YB01, ZLS17, Zsa16]. D-ISODATA [DSAUM99]. D-NoC [AA16]. DADO
[SMB+6]. DADTA [ZLCZ18]. Daemon [KY02, BBD18]. DAG
[CJ99a, CJY04, DQR+09, Tum18, XLIHT13, ZSI13]. Dags
[BCLR96, BSS+13, CDR12]. daisy [GRV08, MV05]. Dandelion [CP10a]. Dandelion-like [CP10a]. Dark [SDS+18]. Dark-Silicon [SDS+18].

DARPA [WRHR91]. Data
[AOS+05, AL04, AAL95, ALS91, AS13, AS15, Ano96], Ano00d, ADM+94, BVB02, BCD95, Bal90, BB+06, BHS*94, BR95c, BR02, BS09, BS11, CGN+13, CDY97, CK08, CGL*95, CP92, CHER94, CRFS94, DOP98, DRC90, DSAUM99, DRST02, DHR96, DDS95, DSS95, Fhe96, FMP98, FKK97, FMW+94, GG94, GP93, GC01, GDN+98, GS96. Gup92, HK01, HJ+01, ISZM99, JW94, JSL96, JB93, KR97, KLS90, KRS01, LSCA93, LZ02, LAS+97, LY98, LO96, LLI95, LSWC14, Lu01, LWWQ18, MD13, MS85, MRR98, MK92, MK93, MN95, MN98, NBP98, Nic94, OK02, OP98, Ozt11, PHB96, PH91, PL98, PT97, QZ94, QH96, RSW90, RS99, RW93, SS89, SMH94, SG99, SR97a, SR97b, SAC+98, SSHC00, SHT+95, SS94a, SSYG97, SIR92, Ste95, SC91b, Str12, Sv00, SFC17, SG96]. Data
[TSC01, TR96, BG90b, VBM90, WB94, WNA+94, WPKK94, WSS93, Wei02, WS97a, XMMD17, ZMCP11, ZTFK16, ZRC99, AAA+15, AMU+19, ASB18, Amm16, AH12, AGWY11, ACPT15, Ara90, AG12, APK18, AYB+15, AYE12, AK18, ARDQ18, AS18, BFH+17, BCO+12, BHS6, BR91b, BEN12, BMLLC+19, CK06, CF88, CMZ+18, CKN07, CGC16, CLC+17, CPLY18, CW15, CLL09, CZ90, CTT16, CTT08, Cuz11, Cuz13, DF17, DMG18, DTK11a, Eck18, ESTA94, EDÖ05, ECP+18, FCW11, FRM15, FP03, Gao89, GYAB11, GE85, GS91a, GJ08, GLGLBG12, GM14b, GBA08, GB11, HMY07, HLS03, HSBMB91, HP06, HA05, JLY12, JHPL13, JHL+18, JZ05, JWU+17, JdSJC+15, JKV15, KKKG14, KAK08, KL05, KKTZ13, LWC+18, LL19, LHF91, LWZZ12, LC91a, LC11, LY12, LLWC17, LBT19, LLW07, LSZZ15, LWV18, LZ+18]. data [Lon04, LA04, LGK+12, LSZJ15, MCD+06, MEO4, MLK16, MP08, NLB+18, NCT+07, NCA+12, NAB+11, NKK16, NAK04, NTC03, OWK14, OM10, OJP+18, Pad91, PSSR05, PS14, PLR07, Psa96, RBN11, RT18, RB12, Ren11, RMU14, RBA+18, RAN+17, RJKL11, SMW1, SHK19, SS08, SC04, SCW+18, SCMH13, SM08a, SK05a, SD88a, SWW+17, SR91, ST08a, TR99, TBA07, TZH+06, TK07, TVT+17, TLW18, VETT18, VLGV+18, VMMB10, VB08, VRM10, WCO17, WSH+03, WUO9, WZZ+17, WWW17, WCH+17, W18a, WL05, WG11, WLZ+18, XHZ+10, XSYG18, YBX+13, ZA+15, ZLZ+19, ZV14, ZKZF18, ZLT+19, ZW17, ZSCX18, ZHT16, ACB+15, LSZJ15, PJ18, RAB08, WLL08]. data-/compute-intensive [KAS07]. Data-aware [ZTFK16, AYB+15, VMMB10]. data-center [FP03]. Data-Driven [JB93, VBM90, WSS93, BH86, KHK03, NCB+17, WLZ+18]. Data-Flow [BG90b, GE85]. data-gathering [LW07]. Data-Intensive [BS09, ZMCP11, RBN11, SC04, VB08, WZZ+17, WG11]. Data-oriented [LWWQ18]. Data-Parallel [AAJ95, An00d, BCD95, BHS+94, CGL+95, DSD+97, FKKC97, KR97, OP98, QZ94, QH96, Ros99, RW03, SAC+98, SSHC00, Ste95, WB94, WNA+94]. Data-stream-based [CKO8]. Database [DSW94, HILLY95, HTL99, LLS93, LHM95, MB93, RSD94, YMR93, BH86, CI86, HPSM91, LY91, LZC09, LLB+18, TR16, XLC+18]. Databases [BM95, CS95b, FCF00, MFS93, Ahu90, Ale19, BA06, CG86, GPH91, PF08, PLK+18, Ram89]. datarace [CTLY18, MG09]. datacenters [PRN+19]. Dataflow [BG86, BCF97, BP90, BJ90, BH93, GGB93, Gao93, HCA93, LB90, MNB95, NBSN1, SA93, SBKB90, VV09, YMR93, Bi90, ESCV15, KLL87, TBG+17]. Dataflow-Based [RSB01]. dataraces [SLS97]. dataset [YLLC11]. datasets [CLOL17, KSJC17, KN18a, KN18b, YÖ11, WLB+15, ZB09]. DAWGS [CM92]. day [TLL+18]. day-ahead [TLL+18]. dBBlue [SLWW05]. DCC [BCD00]. DCell [WFLJ16]. DCT [Jia99, VAF19]. DDE [WS97b]. DDoS [CH06b]. DDS [SPMLVLS11]. Deadline [LTW95, RCG+11, SCW+18, LTS16, MGS12]. Deadline-aware
[SCW+18]. Deadline-sensitive [RCG+11]. deadlines
[BSMH08, KSS+07, WMG13, WL05]. Deadlock
[Ano96l, BYT19, BHRS95, CP01, CMS92, KS94, Li92, MJ94, PA97, PA01, SJ96, TT07, ZN01, AA14, BB85a, XL11]. Deadlock-Free
[CMS92, Li92, PA97, PA01, SJ96, TT07, ZN01]. Deadlocks
[RP95, WP02, LJ05]. deal [ESGQ+14]. Dealing
[ALF03]. Debug [BBCLL04, MH18]. Debugger
[MB96b, BBCLL04]. Debugging
[MI92, MLC+90, SG93, CV16, LZZ+11]. Decaying
[GM96]. Decentralised [YZS15, DBCF13]. Decentralized
[AM11, DW12, GHK+12, GMXA07, HS97, AS18, BHK17, Che89, MAPF14, SL06, WZQ+13, mYA91]. Decidability
[FP17]. Decision
[ADS01, BF01, LFA96, KDSS18, PP06, SV18]. Decision-Tree
[BF01]. declustering [WZZ+17]. decoder [MC17]. decoding [CP10a].
Decomposable [KS08]. Decomposition
[Bai94, BCCD02, CP92, HH90c, KBG92, LS95, NPY+97, PE93, QZ94, Ara90, ACFK07, CvdBL+08, CZZ+17, Luk85, OT86, SK09, TW87, WD18, XWC+08, ZWR10].
Decompositions
[ABCP96, KRW96, Oru87]. decoupled
[CTCX08, DBC03]. Decreasing [TSHH01]. dedicated
[AM07, MAR05, WLNL06, ZV09b]. deep [CXQ+18, HMY+18, HKK+18, TLL+18, WW18b, WDS+18, ZWW17, MLCFH+18]. defense [XCH08].
definite [KK86]. Degenerate [HF96]. Degradable
[BBR94, CGA98, LH92, RCB93]. degradation [NSTN91, WCYR08].
Degree
[DS96, Pra93, RL95, BCF14, BPBR11, KSK15, LVP08, Sta17]. Degree-Constrained [RL95]. degrees [ZDC06]. Deister
[WZZ+17]. Delaunay
[ABC+09a, ABC+09b]. Delay
[AZ01, AH11, GZG+17, Hu11, GL12, HWWH08, LMZ04, Li19, MD07, NLB+18, SGR03, WW12, WW15, WHC+18, WHD+18, YA11, YW15, ZWW17, KSSK16]. delay-aware
[WHC+18]. Delay-Constrained
[AZ01]. delay-guaranteed
[WW12]. delay-optimal
[MD07]. Delay-sensitive
[Hu11, NLB+18]. Delay-tolerant
[AH11, WW15]. Delays
[GM94a, GK98, KL01b, RWB+13, Sta04].
Deleting
[BCK+09, PPC04]. deliveries
[WE13]. Delivery
[CLZ02, CLV95, THGY15, AH11, Bar05, KMF+05, KNS06, SZ09, WGCZ09, WLZ+18, XYL06]. Dellat
[THGY15]. Delta
[ASB18, KJ84, YL89]. Demand
[DSST95, HLL+95, JSCB95, BSW07, FVLB09, HZDP12, KyLPC17, LSS25, NK16, SFEF06, WL05, XG03, YYLC11]. demands
[SLW10]. dendritic
[WCKD06]. Denial
[BK18, KMMZ06]. Denial-of-Service
[BK18, KMMZ06]. denoising
[TLL+18]. Dense
[DVW94, FHL+15, ICQO+12, LKD14, RM10]. densities
[DHK04]. Density
[MC17, BAT+19, WCXL11]. Dependability
[SM92a, WLID02]. Dependable
[MAJJ05, NPGV10]. Dependence
[GSG+93, KK95, Xue97, CC87, NCA+12, Psa96]. dependences
[NCT+07]. Dependencies
[KBG92, TC96, BSMH08]. Dependency
[GP94, CSJ+13]. dependency-timing
[CSJ+13]. dependent
[AL04, BH05, LSWC14]. deployable
[YCI2]. deployment
depth-first deques [ST08b].

derivatives [PK04a]. describe [JWH'17]. description [MRS'14].

Descriptor [Bal90]. descriptors [LNW'12]. Design [AFA13, AM17, AC16, Ano92c, BAH901, BCD90, CGKK97, Car95, CCC90, CT93, CAB94, CW93, CTKA17, CKK'13, DR19, DBKF90, DVW94, ES96, EMP'96, FC90, FR96a, Fer92, GRV08, GFB'92, Ger98, GRS97, GSP02, HP97b, JH92a, JZZ'17, LL90, Lee91, LL92, LSL93, LLKY13, MKC01, MP10, MVB05, MG09, MML07, NMB93, NJ91, Nie94, NSPPC02, OS93, PA90, PI90, PMCC18, RCB93, RBG17, RPK97, SDS'18, SAOKZ05a, SAOKZ05b, SRK95, Sol13, SH93, SOG94, TTH12, WNA'94, WH97, XKMN94, ZPK'14, Ada17, ABLP17, BBH'17, BHL04, CG11, CSJ'13, CK13, Che96, CHX'17, Chi95, CC96, DFHH13, DE91, EFG'14, FHL'15, Fer90, FCG'14, FD86, GREC91, HDT'05, HWW08, HKK'18, KMC16, LÜ14, Lon04, LVB07, MCM'+11, Nap90, ORWT'18, OMT'17, PLD87, RGD03, RA11, SDS10, TM06, TB90].

design [VRGS17, VHH08, VLL'14, WSG91, WU11, ZMYZ17, ZY12, ZV09b, ZFWF06].

designed [BSSH15]. Designing [BBBC12, BC01, CB06, DH91b, FSP18, GP93, GMS'13, GB93, KT89, NS92, Or97, SRGB90, TC96, YCH'10, YFY17, KAS07].

Designs [HCS'00, LHM95, MD01, Oru94, Bhu87, CP04b, MC17, Man13, PGRP17, Sch99a, WAS88]. Desktop [LSH'13, CCEB03, AAD10]. Detect [XCH08, UGG'11].

Detector [DMI'19, SLG06]. detectors [AAI'15, BGBBC'16, DFGGK05, LFA05, MFVP08]. detention [JXW06].

Determination [BN94]. determination [MJ03]. Determining [GRR93, LAS'97, DH91a]. Deterministic [AS91, BHR95, BST01, CW93, CY95, CDP95, dADB96, GCKM97, GS96, HTHB98, ISZBM99, KS894, KS94, LLLY08, MMR989, Par92, PAH'98, Ram89, RP95, SL97, SJS11, WCF94, YHYW18b, AFD'11, AMK'07, BXA08, CRK'09, CV90, CH06b, DKKV15, DFP06b, Eri88, FM85, GDCC18, Gue96, GH99b, HMY'18, IZ12, KH903, KCFP18, Ksh12, KKTZ13, Lai86, LLC15, LJP5, LLWC17, LHL14, MD07, MFPV08, NOH'13, PMHM19, PH16, RLP14, ST12, SMP17, TRS'12, TY17, TCS'10, WL11, WML'18, WXZ'18, XLI1, XTN12, XSYG18, YF07, YDZ'18].

Detections [Yen01].

detector [DMI'19, SLG06]. devices [AAI'15, BGBBC'16, DFGGK05, LFA05, MFVP08].

Determinacy [BN94]. determination [MJ03].

Development [BR95b, FSD04, KHT'14, PH00, AM17, DBCC'03]. deviation [XBD07].

Devices [DM90a, PVP18, VFD17, ALF03].

DI-multicomputer [CC96]. Diagnosing [Qia97]. Diagnosis [BW95b,
Diagnostics [DMG18]. diagonal [PRHB06]. Diagram [RR95b]. diagrams [SZ03]. Diameter [DF95, LP95, RS96b, RLS96, WIKC97, BBD18, BBL04, CW09, SLWW05].

[BVB02, CW00, CDF01, DS01, DF95, NM17, ST02, DS04a, EI07, Hsi04, MBR08, ST06, Tur12, WCWH03]. distance- [Tur12]. Distance-Hereditary [CDF01, Hsi04]. Distance-Insensitive [ST02, ST06]. DistDLB [LTL06]. DistOpt [CLRW00]. Distrib

[KN18b, LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Distribute [LW95]. Distribute- [LW95]. Distributed [AAA+15, AE95, AL99, AM97a, AM97b, AMN00, AFS96, AK17, AaJS01, Aa97, AS13, AYI97, Ano96j, Ano96i, Ano97j, Ano99g, Ano02v, Ano02u, ABLP17, ABCP96, BR95a, BR96, BFTV87, BGLA03, BCR96, BCR96, BCR96, BCR96, BC95, CWP98, CM92, CA95b, CLRW00, CP99, CWD11, Cuz11, DWG03, DY99, DA97, DUSH04, DS95b, DOP98, DMSH90, DFLO17, DN94, DSW94, DSAU09, DAYA02, DL99, DH95, dADB96, EF90, FR96a, FFK97, FTM+14, FKS97, FP911, FM99b, FY97, FTC00, FD99, GHY10, GDP98, GP97, GCKM97, GM94a, GMSS+11, GZY14a, Gra09, Gup92, GHS96]. Distributed [GHSJ96, HR00, HBMC99, Haw97, HK01, HP97b, HWLR14, HWY+10, HLJ01, JP17, JF95, JD+15, JSM94, JNW96, JRR99, KGS01, KY02, KSSL16, KRC00, KS07a, KD0+13, KKH17, KHS96, Ke00, KB96a, KZ96, KVC99, KSK15, KS00, KC94, KRS13, KS94, KS02, KKTZ13, KC99b, Lan09, Las12, LW97, LTH97, LZ02, LC90b, LHM95, L99, Li10, LLWC17, L93c, LIW07, LHT08, Lon04, LACJ18, LN11, Lu01, LS01, M92, Man97, MS99a, ML9+90, MT97a, Mat93, MS9+13, MS00, MNK12, MF96, MSST99, MK98b, NS97, NTA96, NFB98, NM02, OY13, OK01, PH96, PAM94, PA96, PB99, PSRS12, PK07, JK0+15, JSM94, JNW96, JRR99, KGS01, KY02, RDS02, RJY96, RGS00, RA96, Ros07, RP95, SHSH17, SM94, Sch89a, Seb95, SRG90, SZW05, Shen95, Sin87, Sin93]. Distributed [SS94a, SM08a, Sn03, Soh96, SLG+18, SIR92, SBAM96, TH11, TT10, The02, TSC01, TAS+10, TG97, TSFZ14, TB90, Tse95, TY95, Wan01b, WCWH03, WW98, Wee01, WRC+02, WMG01, WF96, WLID02, WUG99, Wu02, XKB07, wXH00, XQ04, YH97, YB01, ZV06, ZM94b, van96, AT03, AL9+09, AAFV04, AL04, Aih90, Al919, AGMS04, AMF09, ACCP12, AAI+15, AM11, AMK+07, AH96, BFG+03, BC05, BMB+08, BLP05, BBCQ13, B89, BNP02, Bar05, BB03, BCMV15, BOKS19, BHLT14, BK03, BK08, BFL+13, BD04, BMF05, BH05, BGM+08, BCF+94, BLZ+18, BFP04, BBL04, BJ18, CSWD03, CG12, Car95, CGL+14, CG86, CV90, CvpB0L+08, CVK+18b, CTCX08, CS08, CKWT17, CLM00, CkLCK04, CkLCK05, CCG+09, CJA09, CI86, CTT16, CPO+03, CTT8, CK91, Cuz13, Cyb89, DK08, DB11, DM04, DRT07]. Distributed [DKM10, DHK04, DTK11a, DH04, DJT03, Eiji18, EBE08, ESA03, EHL+15, ES12, FFP14, FCC07, Fer90, FL86, FKR+17, FX06, Fu10, FLC14, Gai87, GYAB11, GC06, Gos90, GWL94, GC05, GL12, GL90, GN15, HJ90a, Hoh90, HLM+90, HKW05, HD10, HL07, HHH15, ITT04, IB04, IS06, JF12, JKI13,
JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07, KSG13, KK06, KMMZ06, KAS07, KCD08, Kim11, KKS+12, KL05, KCFP18, KS13, KBD05, KP05, KC04, Lai86, LL19, LTL06, Las13, LLL06, LVP08, LL09, LJ05, LY91, LZY09, LASS15, LVR90, LC91a, LVP07, LdPLC+19, LB09, LL18, Lop13, Lop18, LA04, LCM+06, LSZJ15, Lun90, LM09, MLZY17, MD07, MM07a, MSM09, MAPF14, MA11, MBMC19, MBR08, MS86, MTS90, MM07c, MFVP08, NSA510, NTN12, NDW17, NSDZ18, NP09, OFS03, OPR18].

distributed [PKN08, PKN10, PK05b, PRHB06, PGS06, PL03a, PC11, PH16, PMdo11, Pop91, PGKV18, PF04, PRN+19, RLP14, Ram89, RLH03, RAN+17, RDA18, RKS87, SSKS11, SW12, SDTD04, SSS88, SMP15, SU87, SB15, SC04, She09, SCS+08, SCMS12, SK90, SXZ06, SS18, SCMH13, ST14, SKK91, SLKK13, SK9b9b, SM04, Suk18, TLLV10, TG04, TBZB05, TZH+06, TXLL14, TM10, TVT+17, TWQS12, VB08, WW07, WTC08a, WTC08b, WL11, WML+18, WW04, WHC+18, WL92, WD13, WSLC11, WZQ+13, XHY07, XQ07, YZS15, YHWY18a, YHWY18b, YL+15, YZG18, YW15, ZAB18, ZCK+02, ZV09a, ZZJ+18, ZCMY12, ZTFK16, ZWR07, ZBL+17, ZWL03, dG91, DLLL11].

Distributed-Memory [AMN00, CB95, CJ99b, DY99, Gup92, GKHS96, GHSJ96, KRC00, KHS96, NSS97, PHB96, Soh96, BGM+08, CPO+03, GL90, ITT04, LC91a, Pop91].

distributed-Web [KCD08].

distributing [TY90a].

Distribution [BRR01, BR02, CLZ00, DHR96, KL01a, LAS+97, LL98, MMN98, SLW10, SSYG97, ASM09, Fei03, FM07, GRV08, GBA08, HSW04, LLL06, LT07, Li17, MVBo5, NM17, PV89, SS06, WZ17+17, gWW18, YJL16, ZWL03].

distributions [BKMT14, Nic07, PCX+11, PCX+14].

Distributively [VR94, FPP+08].

DITVA [KCSS18].

divergence [Tor89].

Divergent [RMHR17].

diverse [SSFP11].

Divide [AY99, CTZ99, BW09, GDL+11, Sto87, TP18].

divide-and-conquer [BW09, GDL+11, Sto87].

Divisible [VB02, BD11, CG12, CVJ09, DW04, HV13, KVA18, LML+10, MLDG12, MVBo5, ZV06].

Division [HP00, QMCL94, ZLP01, Dav17, EL91, HRG+11].

DMON [HP97a].

DNA [GPX08, JV09].

do [LTG14, CC87, CCC90, KMS10].

Do-All [KMS10].

Doan [Ano92c].

Document [ZWL03, UGG+11, XCZL03, ZMCP11].

document-similarity [UGG+11].

Documents [ALL99, Fei03].

doing [MBG+17].

dollar [SSM+07].

DOM [WXZ+18].

Domain [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11, WMC+18].

Domain-Specific [KRS13, KRS14, MRS+14].

Domains [DR95, BFM05, dGP06].

dominance [EE05].

dominated [AM12b].

Dominating [RD95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12].

domination [GP07, GK10].

Don’t [BL94].

DOOR [Won99].

DOOR/MM [Won99].

dOpenCL [KSG13].

Double [GVBB13, XLHT13].

Doublly [OOW95, ST08b].

down [Sch89b].

DPI [HVW16].

DRAM [ZLH+18].

DRAM/NVM [ZLH+18].

Draw [Mil93].

Drawing [CP98, DP12].

drawings [JD12].

drift [HES11].

drive [LTG14].

Driven
[CB99, CP99, FM99a, JB93, Theo2, TVO92, VBM90, WSS93, ASES15, BH86, CTT16, GK04, HKH03, LWZ11, LS10, LGK+12, MBS+12, NCB+17, QJ05, SS08, SS18, TLQS12, VO89, WLZ+18, XLL15, YCC05]. drives [GFPC14]. DSDV [BDF01]. DSM [BJS03, ISZBM99, NPP+02, Nik03]. DSMs [KG04]. DSP [DSEP17, QSL+18]. DSPONE48 [DSEP17]. DSS [FGP05, MKC01]. DTN [VV90]. DTNs [MPS16, Yan09]. Dual [ACCF12, LSXX14, XWC+08, ZW00, MAJJ05, WCC02, WL05]. dual-Hamiltonian-path-based [WCC02]. Duane [BS96c]. due [BKS91]. Duplex [RS94]. Duplication [BA97, DA97, BKS05, BD05, STK11, TLLL10, WCEA10]. duplications [SCJ+08]. during [VWHL96]. duty [LDZ+17, LDZ+14]. duty-cycled [LDZ+17, LDZ+14]. DV [CSW+17]. DV-Hop [CSW+17]. DVFS [CG17, ECLV12, LSC+15, RTZ11]. DVFS-based [RTZ11]. DVS [ZHLQ12]. DVS-enabled [ZHLQ12]. Dwarf [DTK11a]. Dyn [WLNL06]. Dyn-MPI [WLNL06]. Dynamic [AGF94, ALL99, AAD10, ANA13, Ano97j, BR95a, BPPM+08, BP090, BR02, CJD99a, CDAN14, Cyb89, DB11, DL01, FCC07, Fer95, FMP98, GP94, GM14b, HM01, HC97, KKGS01, KCSS18, KR10a, KVA18, KPC96, KC99a, KS97a, LHKL03, LPS+98, LL98, MAS+99, MD13, MD15, MSi+95, MSSE02, Moh97, MNM98, NPP+02, NPY+97, OOSGVG+16, PH96, QMCL94, RDS02, Rie98, RGVBO00, RN04, San95, SESH17, SZ00a, SLP+98, SSB98, SB97, SS17, SG96, TT10, TDP15, WCE97, WJD91, WLID02, XL92, XH93, ZLP97, ZA05, ZM94b, Ano04d, BCV05, BBCQ13, BGLA03, BNP02, BB03, BFC14, BK08, CBD+09, CSMM10, CW05, CPLY18, CGG+09, CDCD05, CKML12, CW11, DLW+12, EE05, Fei03, FXW03, FKL08, GOO16, GCS06, FPFC14, GBA08, IC05, JBA15, KZ11, KMS07, KMS+06, LT02, LGZ+10, LLL08, LC91b, LPX05a, Li10, LLY15]. dynamic [LS06, LLW12, MYHY17, MC91, MK08a, MCS14, Mi07, MML07, NDF+18, NPL+18, NCT+07, NHO+13, PK08, PK10, PM05, PTRP05, PW17, QJ05, RK18, RCG18, SBNM16, SSM+16, SS06, SSS07, SZ07, SCK03, SLG06, SSDB+10, SZB16, TZ07, TW15, TH08, TMK+17, TT07, WW12, WZXL+18, XLC+18, YK04, YS11, ZXYO11, ZCS+18]. dynamic-warp [NHO+13]. Dynamically [JB98, KSS+07, PPP14, dSR00, SB84, SK15, Kep03, Lai86, Mat06, ORWT+18]. Dynamics [ES96, JBL02, NPY+97, PAH+98, TASA97, AGM06, CvdBL+08, CMPS18, DAG+17, GBMZ07, LLY08, PARB14, PTK+13, WYTX13].

LYJ$^+$19, Lin03, LWQ$^+$18, MA19, PRN$^+$19, SS03, Udd19, YWJ$^+$18, ZCS$^+$18. Edge-Coloring [LSH96, GDP08]. Edge-Disjoint [BGR96, TDM05, Lin03]. Edge-of-things [AMU$^+$19]. edge/cloud [Ale19, MA19]. Edges [HHC98, BKCM17, FPP$^+$08]. editing [RS90b].

Editor [WW03, AB03b, Ano01l, Ano02d, Cas93, Che92, Cho93, Her92, Kir92, Lin93b, Pan09, Pra16, Sch90, Sto90]. Editor-in-Chief [Pra16]. Editorial [AS15, Ano94e, Ano95k, Ano96k, Ano99i, Ano02e, Ano02f, Ano03g, Ano04f, Ano04h, Ano04i, Ano04j, Ano04k, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j].

Edu-2016 [PGKV18]. educating [LMB$^+$17]. education [APV18, BLZ$^+$18, CVK$^+$18b, Hu17, MBG$^+$17, Nee17, NKS17, NDS18]. Effect [ACD$^+$93, IS06, BL05, JZ05]. Effective [Ano97k, BC01, GM96, HH97, KO11, LT96, MAR05, QM01, SH92a, TFV$^+$15, YZS96, AMU$^+$19, AM12a, BV13, BCK$^+$13, Cza13, DJDK19, DZDZ01, KB96b, ¨UD96, CK88, HLS03, KG04, SPBR91]. Efficiency [EH01a, GG01, LdSB$^+$18, AGH12, AG12, BC11, BYH$^+$17, ESCV15, FMR15, FCP$^+$15, GSWW04, HRM17, HJLR12, LB12, LZSL06, Ren17, Si86, SWHB17, SHe14, VETT18, YF09]. Efficient [AOSM04, AP94, AZC13, AKP95, AG86, AMK$^+$07, BCO$^+$12, BM16, BGI$^+$03, BAGS95, BAH04, BRP03, BJK$^+$96, BDH$^+$97, BMIM07, CM04, CRK$^+$09, CKK00, CCK00, CCC92, CW12, CN93, CS95c, DDNS06, EP90, EL97, FG08, FBM98, FMR05, GPT06a, Gao93, GR96, GCMK97, GM94b, GRS97, GP00, GKHS96, GNW03, HQPT99, HH01, HSLL04, HASB16, HHC98, HHH93, H094, Hwa97, IR12, Iq92, JBS14, JB93, KPC96, KHS96, KK10, KLZ97, KKB$^+$06, KS13, KR11, KA97, KKB92, LJ05, LHHW11, LTD$^+$14, LJZ$^+$19, LY01, MD01, MLDG12, MB13, Mat93, MHC95, MS99b, NB93,
35

NT93, NIR86, ND12, OS96a, OK01, OP96, Pad91, Par98, PA97, PP13, Pen11, Pra93, RV13, RSS99, RS906, Rao16, RMU14, Ric98, RJMC95, San02, SOMP15, SW96, Sch13, SSGG18, SSHC00, SOMP17, Sin87, SWLZ17, SCLL10, TU92. **Efficient** [TR96, Tur12, VB02, VBM90, WRC+02, WHT00, WCCH18, XMN92, XHL18, YD08, YZLT09, ZB97, Zln92, ZH07, dSAJ15, AAH17, AFA13, AR17, Ara13, AS19, BFred17, BM11, BKC+15, BK13, BOY10, BR91a, Bic90, BBD18, BCK+13, BHK17, CWZ+18, CMR+18, CKN07, CP10b, CGW+03, CMN12, DKM10, ESQG+11, EHD+17, GDCC18, GKS15, GT04, GLD06, GYP13, HSS10, HS06, HRJ94, Hsi04, HZHS18, IEWK17, Joh87, KTP17, KVA18, KyLPC17, KHK18, KL05, KSSK16, KA05, LK13, Lai14, LMPZ04, LLB+18, LS91, LSC+15, LR03b, LZY18, LL18, LCJ+18, LHP07, Lon04, LLDL15, LA06, MGS12, MD07, MSF+13, MPS16, MPN17, MAHKZ12, MCP+18, NMS+18, NF17, PPSV15, PVGG06, RM11, RLA+16, RLA+17, RFS+12, RT18, RGA18, SB12, SX08, SMK13, SM08b, SJG19, Tam18, TLY12, TGPUC16, TMLK+17, TLL+18, UBES10]. **efficient** [VRGS17, VAF19, WJV07, Wan07, WTC08a, WTC08b, WMW09, WLST16, WTVZ16, WNC+18, WIB12, WH17, WGCZ09, gWW18, XLC+18, XHZ+10, YSS11, YLB+15, ZCMY12, ZLL14, ZCX18, ZB03, ZWX16, ZLCZ18, ZHLQ12, ZTGL17, ZHO03, LM09]. **Efficiently** [MT95, Coh90, CCM+06, FP03]. **effort** [Bar05, MAM05, QGZP17]. **EFS** [MSK+16]. **EGEE** [VPHML06]. **egress** [MCAS12]. **eigenanalysis** [TYA16]. **eigensolver** [ABGV11]. **Eigenvalue** [Kan04, YL08]. **eigenvalues** [VGAB08, ZB03]. **Eisenstein** [HBAD15, HS17]. **Elastic** [FGG17]. **elasticity** [MMVL11]. **elderly** [HRM17]. **E lecting** [SK94]. **Election** [AS96, KB96a, DLV11, DGDF10, FKK+04, KGN89, PEI+00, SS05]. **Elections** [FM96]. **Electric** [IWM97, AK18]. **Electrical** [MO97]. **electricity** [DL98]. **electrophysiological** [HES11]. **Element** [BCV94, CSM94, PPTV+10, FC14, KME09, Ren11]. **elementary** [FK98]. **Elements** [GB98, KNS91]. **Eleven** [BSB+01]. **Eliminating** [DR98]. **Elimination** [BPST96, BM97, CS95b, Cap87, ESGQ+11, KA09, VNL58]. **Elimination-Based** [CS95b]. **Elliptic** [PSE+01, BGH+03, SKH15]. **ELLPACK** [ZGG+14]. **ELLPACK-based** [ZGG+14]. **ELM** [CLOL17]. **EM-4** [BAM93]. **EM-KDE** [EHL+15]. **embed** [SKK91]. **Embedded** [WA02, BM17a, CNLGL18, CLC04, CkLC05, CRJ16b, DQR+09, FWM+10, GZR+17, GSWW04, KRO6, LLLC15, LCB16, MBR08, MGRKK14, PRHB06, XLL15, YZX11, FWM+10]. **Embedded-TM** [FWM+10]. **Embedding** [ANS97, Am94, AM93, BL89, CCCM96, CS95a, Efe91, Eg96, HKMU98, HJ90c, LSC00, LPS+98, Lin03, NPI+96, PW16, PM92, QM01, RWY93, SHL95, SLP+98, TT98, TL94, TL96, Var91, Wag89, Wag93, Wag94, Wan01a, Wuy85, WFL98, BG90a, FLPJ07, FT04, LFZ+17, PW17, YLZW18]. **Embeddings** [GH93, HM01, HOS94, KC98, MT93a, OS97, OD95a, CL91a, GNW03, LLFJ18, YTH07]. **emergency** [HPB+10]. **Emerging**
Ano02v, BKC+15, KHT+14. Emitter [FPM+14]. Emitter-coupled [FPM+14]. Empirical [FTC00, LR93, LGK+12, NXTK17, XZS96].

Employing [AGMZ06, PKW+10]. empty [Deh90]. Emulating [KMS10].

Emittance [FPM+14]. Empirical [FTC00, LR93, LGK+12, NXTK17, XZS96].

Employing [AGMJ06, PKW+10]. empty [Deh90]. Emulating [KMS10].

Emulation [JH94, PRW94, LST17]. Emulations [RGD03].

Enabled [MWL00, CSL15, CCN06, GQZ18, GRJ+15, KTF03, LMXJ18, TODQ18, ZXMR18, ZHLQ12].

Enabled [ETS14, FCG+14, JKIE13, SP08, SA19, TT10, ZP+06, ZCF+17, DKKV15, HRH18].

Encoded [JH94, CLV95]. Encoders [TLL+18].

Encoging [AAL95, CP10a, WLCZ15, ZWQ+16].

encrypted [SWW+17, ZHT16]. encryption [WCCH18, ZAAB17]. End [Ano08, Ano09, Ano10a, Ano11j, Ano11k, Ano12m, Ano14f, Ano14g, Ano15k, ZLCJ12, CXQ+18, FGP05, GBMZ07, ORWT+18, WG11, XLL15]. end-systems [GBMZ07].

End-to-end [ZLCJ12, WG11, XLL15]. end debug [CV16].

endurance [WCCO17]. Energy [ALF03, BOY10, BYH+17, DKM10, DKY01, FWM+10, GQZ18, GYP13, KR12, LK13, LMG15, LL10, LW16a, Li16, NLAL17, LSC+15, LR03b, LY13, MSG12, MTL+18a, NMS+18, PLR07, QSL+08, RM11, SP13, SSG12, WHC+18, WH17, XH+10, ZZJ+18, AHG12, AK18, CV16, ECLV12, FRM15, FCGJ+18, FCP+15, FKLBO8, GYY10, GDCC18, GTN+06, GL12, GPSH19, HP06, HRM17, JZZ+17, JZF+15, KR10a, KSI04, KyLPC17, KCR14, KSSK16, LR14, LCW05, LL12b, LLCZ19, Li19, LZC11, LLDL15, LCB16, MMK+11, NS12, OMT+17, PCM+17, RWH+13, RLA+16, RLA+17, RFS+12, RT18, RTZ11, TLY12, UMM+18, VRGS17, WMW09, WLST16, gWW18, XS11, YL12, ZYS15, YAK15, ZW11, ZWY+15, ZWWX16, ZLCZ18, ZHLQ12, MSK+16].

Energy-aware [GQZ18, LMG15, LLAL17, LY13, FCJG+18, LR14, LLCL19, MMK+11]. energy-constrained [JZZ+17, KSI04]. Energy-efficient [DKM10, GYP13, LK13, LW16a, LSC+15, MSG12, NMS+18, WHC+18, WH17, XH+10, GDCC18, KylPC17, KSSK16, LR14, LCW05, LL12b, LLCZ19, Li19, LZC11, LLDL15, LCB16, MMK+11, NS12, OMT+17, PCM+17, RWH+13, RLA+16, RLA+17, RFS+12, RT18, RTZ11, TLY12, UMM+18, VRGS17, WMW09, WLST16, gWW18, XS11, YL12, ZYS15, YAK15, ZW11, ZWY+15, ZWWX16, ZLCZ18, ZHLQ12, MSK+16].

Energy-grounding [WCCO17]. energy/power [OMT+17].

energy/power-aware [OMT+17]. ENF [CK97].

Engineering [KMF+05, Kub17]. Engine [KSL85, Ram92, HVW16, XTN12, SD88b, XP10]. engineer [GS18]. Engineering [LWR+03, BCD+15, CCE+17, Gai87, Nec17, PRHB06]. Engines [SD00].

Enhance [WLID02, DZC17]. Enhanced [BOSW94, MD13, OPG08, OS96b, OSZ98, RK18, LLDL15, DOBG+15].

EnhancedBit [ARD14]. Enhancement [KLJ84, TC92, DK04, KS18, NGQM12, RH05, RM90, TBG+17].

enhancements [ESQG+18, LÜ14]. Enhancing [AYE08, CGN+13, CRA+08, GRR13, HWR14, dAMF01, MH18, OM10, QGZP17, VETT18, CCHC09, JBY+05, VA03, WXZ05]. ensemble [KBC19, SV18].

Ensuring [JF95]. enterprise [BJPPM+08, CCEB03, GSASA19, LSH+13]. entities [Ahu90]. entity
[MPN17]. **Entropia** [CCEB03]. **Entropy** [TVO92, VO89, DFHH13, WMW09]. **Entropy-Driven** [TVO92]. **enumeration** [SSTP09, SR90, WCH+17]. **envelope** [GC07]. **Envelopes** [BMRC98]. **Environment** [AT94, AD95, ALL99, AA95, BB93, CP97, CLZ02, CSMM10, CCRS92, CHR94, CB96, DKY01, DRSB01, GYAB11, KZ96, KC99b, LC90b, LAS+97, L99, MFF93, RS92b, RSD94, SG93, SRGB90, SS00, WH97, ZL93, AOS+05, BLZ+18, CK88, CCS06, JLIW11, KVS07, KSS+07, KK10, LLY08, LL18, MYY17, MAR05, ML12, MML07, SSKS11, SSM+06, VD18, WD13]. **Environment-conscious** [GYAB11]. **Environments** [CTD99, CLRW00, CP99, KRW96, KR97, KER01, LTH97, PRS97, PRG88, SSB96, WSRM97, WSA+94, ATZ07, BAL05, BPA06, BH05, BSMH08, CTKA17, CLL09, DBC03, DWX10, ECP+18, ECLVL12, FRM15, FCJG+18, FMI18, JS86, KV10, KAS07, KLJ+11, KCFP18, Ksh12, LY91, LSH+13, LWR+03, LML+10, LSWC14, MK08a, NP09, PP06, SJB12, SZB16, SZL10, SJS11, TZI11, TG03, WME12, WG11, YTO5, YCC05, YWG15, ZLZW18]. **Ephemeral** [AGMS16]. **epidemic** [AHZ11, LpJS+18, MSF+13]. **epidemiological** [Rao16]. **epistatic** [HLS03]. **EPLS** [CLC+17]. **epochs** [PBS08]. **EPPOD** [WH97]. **EPSILON** [GH90]. **EPSILON-2** [GH90]. **equal** [ST85]. **Equation** [DM90a, RW01, Gao86, JGMY17, LYL08, WJ14]. **Equations** [IK94, MV94, PSE+01, QOvdG01, TH02, CM03, GGR89, GS91b, SPH13, Ter16]. **Equivalence** [OO85, CM04, SM92b]. **equivalencing** [ES12]. **era** [MBG+17, SC10]. **Ercegovac** [Ano92a]. **EREW** [DL98, HS94a, ZK94]. **Erlang** [CLG+16]. **Erratum** [Ano92c, Ano93e, Ano96l, Ano00d, BS96c]. **Error** [Lat98, Par92, WCF94, BGB+16, DFHH13, OWK14, PKN08, RIZ90]. **Error-Correction** [Lat98]. **error-prone** [OWK14]. **error-resilient** [DFHH13]. **errors** [BCC+18]. **Essay** [Mii93]. **Essential** [DS95]. **establishing** [GPJA10]. **establishment** [SZMK13]. **estimate** [BKK+11]. **estimates** [TDBL13]. **Estimating** [CCK88, LGL13, MK92]. **Estimation** [CP92, Fahl96, KC17, PKN08, SPVvH03, gWW18, ZRN+14, DLLL11]. **estimator** [SIY14]. **Ethernet** [HcF05, KLY05, PYF08]. **Euclidean** [DS01, DS04a]. **Eulerian** [Kal04]. **EUROGRID** [LBE03]. **European** [LBE03]. **evaluate** [dOCS14]. **Evaluating** [AFNT17, Ale19, BL96, BC01, CLRW00, FW05, HCS+00, HKT94, LR94, MM+18, RS92b, SS99, TTTG95, ZHY94]. **Evaluation** [ATM01, BPJG92, BS92, BCD00, BM95, CT93, CEF+95, CP01, CP04b, CP91, CP92, DT01, FR96a, FTC00, GGD93, GS96, GS00, HJ90b, HN91, yHY97, JB93, KCDZ95, LLS93, LYL03, LP96b, MT95, MS85, MKC01, MB92, MJ01, NBP98, PEC95, PTC+93, RCB93, RNSB96, RKK97, SM92a, SDS99, SOG94, THBF97, TH02, VBM90, AB13, Bat05, CTKA17, CkLCK04, CkLCK05, CC96, CB11, dADC18, DR19, DMS+16, DMS8, GRV08, GE85, GS91a, HW03, HBS17, LL90, LZY11, LW+12, MS88, MVB05, MRRK14, PMCC18, Sch89b, SWP90, SA11, Sol13, SE15, WL90, WLZ+18, XQ07, XWC+08, YL12]. **evaluator** [MS87, MP88]. **evasion** [YpGyLlC13]. **Even** [NT93]. **Event**
[Ano02v, AB93, Bou02, CK97, DMSH90, ECP+18, Lin93b, Lin93c, Pra93, AZC13, BM17b, BXA08, CK08, CM12, FX10, JKD+15, LVR90, SW12, Tay05, WZQ+13, ZZ90, ZCK+02]. Event-based [ECP+18]. Events [Yen01]. Eventually [LFA05]. everybody [KSSK16]. everything [CCM+06]. everything-shared [CCM+06]. EvoDeep [MLCFH+18]. Evolution [JM00, RBB17, HWY+10, Li10, Ngo06, SV18, WRW13]. Evolutionary [Ano99g, MSSE02, SdS97, SS97, YLZW18, ZO97, AC89, BH05, COF+17, GB06, HD10, MLCFH+18, SCS+08]. evolvable [KKKP12]. Evolving [GR96, OH02]. Exact [RS96b, GA18, OFS03, PB15, Psa96, XP10]. examination [FL86, SMH91]. examples [FK98].exscale [APV18]. Exchange [VB94, WS97b, XL92, XL95, CMR+18, Dim04, ECP+18, HSW04, NKK16, PW16]. Exchanging [GPT06b]. Exclusion [AE95, Cha94, Cha96, FTC00, GBG93, KY02, KUFM02, NTA96, NM02, Sin93, YZY96, AK07, Ara13, BAS06, CW05, CH06a, CB06, DGF05, Gos90, LASS15, MM07c, NTN12, RDA18]. exclusive [DMI+19, WW18a]. executed [SP90]. executing [AKSM08, CDJ+89, QJ05, Sol13]. Execution [CC90, Coo93, DD95, Gup92, GKS96, HS86, LAS+97, LIK+05, Mah95, MM93, Mer96, Mir91, NBM93, NS97, NDZA99, OKB95, RSD94, RHH96, RSN01, SCMB90, SA93, SM02, WBB96, ARM+05, Bic90, CC87, CCW18, DeG88, DKR09, ESCV15, FCC07, GYY+14, GK04, LFS16, LR14, LPK+10, Li19, MSM09, MTL+18b, PP13, PSB+19, uRIL+18, RG06, S06, SLW16, dKG+10]. Executions [LMC90, FCP+15, KVNV17, RV13]. exercises [Suk18]. expandable [SSB91]. Expanding [Zia92, RM10]. Expansion [LY12, SL89]. Expectation [YZG18]. Expected [Ros99, CL09, SSS88, SC91a]. expected-time [CLL09]. Experience [FTK14, SH92b, Chi95, LBT19, NGQ12]. Experiences [ARM+05, CDH84, GRJ+15]. experiment [PF04]. Experimental [BJ96, BFG04, CFE11, FCS91, Hag97, HBJ98, MJ01, PTC+93, YMR93, ZYH94, Bt94, CT94, dADC18, GHC+17]. Experimenting [AD95]. Experiments [RS92d, CF88, LYW+16]. Expert [DS94]. Explicit [CP90, DS02, Fre96, RCG+11, Ror16]. exploit [YCH+10, ZPI06]. exploitation [PVG06, VFAD17]. Exploiting [CB15, CKK00, DL99, FKLBB08, FY97, HT90, JBY+05, LKS14, MNB95, NMS93, RAGN18, SH92b, VBF13, WYTX13, ZLWL12, CDAN14, GJXZ05]. exploits [GBM07]. Exploration [SDS+18, BKC+15, CCK+13, LKY13, OT19, TKNK+17, TD07]. Exploring [ARP18, LR93, NTXK17, PCMM+17, ROB+18]. express [APRA18]. expression [GS91a, WSH+03]. Expressions [GKHS96, Mer96, DG88, DM90b, JK89, LGC+15, MP88]. expressiveness [HdR13]. Extended [BLG01, LWG02, Rec84, E107, LWQ18, YWW12]. Extending [BBCLL04, CMR10]. Extensibility [MB96b, LFH+03]. Extensible [FLCB10, HGFF10, ZWL03]. extensions [DPS08, Oza04, JM00]. external [DO89, JZK04]. Extra [SZ00b]. extracting [BCH15]. Extraction
[YB01, CLC+17, HP06, LLS+16, MM15, Pla08, Raj08, WJV07, dAT17].
Extrapolated [DM17]. Extrema [AFS96, RKS87]. extremal [FSV14].
Extreme [SFT+13, YZW+15].

fabrics [ZRN+14]. face [CMN12, NHO+13]. facilitate [Udd19]. Factor [GG01]. Factored [BSGM90]. factorization [CASD18, FHL+15, MVV91, OT19, She06, ZLRP91]. Factors [BP98, EL88].
failovers [SI13]. Failure [AAI+15, FCF00, Fu10, JAB12, BKMT14, DGFGK05, FX10, HK05, JKIE13, KV10, LGZ+10, LFA05, MFVP08, PCLP16, YF07, YHWY18b, JKIE13]. Failure-aware [Fu10, JAB12]. Failures [ADS01, DT02, VR94, VR95, DGDFT10, GPT06a, HRC09, LY10, MR09, RLH03, SCMS12]. Fair [ALH+09, BHLT14, KY02, KNHH18, Tau16, AS19, GNT04, KS03, KD08, LASS15, SPC+17, SCG10, XWC+08, ZLL14, ZQMM11]. Fair-share [KNHH18]. fairness [Ara13, SHC14, ZLCJ12]. False [HF96, KG04, LLWC17]. families [FSV17]. family [NS90, ZDC06]. farm [TBZB05]. farms [JTZZ11, MCP+18]. Fast [ABCF96, BC06, BV13, BF97, CK06, CXX+18, Cor93, DP00, DS04a, DPRWT85, EM89, FZC+05, FR96b, GM94b, Gil94, GSC96, GZ97, GJXZ05, HZA+15, HN91, IK94, JNW96, KK06, KSSG14, Lat98, LH09, PH01, PA04, PT97, RRH96, SS03, Sa98, SR94, SHT+95, SG08, SA08, SDG08, ST05, TPLY18, TF01, YZY96, YD08, YB01, ZLZ+19, AGMS16, BC05, BBBC12, BFKW13, BHK17, Cal06, Can18, Kep03, KA91, KP05, LLS07, PH16, ST85, TS91, WWW17a, WJ12, XLI18, Yan04, CVK+18a, LLCL98]. Faster [BMM97, GS03a, LS05, CM03]. Fat [Zah12, CI03, CS06b, ESGQ+11, ESGQ+14, SK05b, YMLP14]. fat-stack [CS06b]. Fat-tree [Zah12, SK05b]. fat-trees [ESGQ+11, ESGQ+14, YMLP14]. Fattened [GMVGRS16]. Fault [AE95, AM97a, AM95, ABBD14, BXA08, BSS97, BMM97, BW95b, BKMT14, BPA06, BHC95b, CLMR15, CRV94, CL93, CKN07, CY95, CC94, CDR09b, CF98, DBCF13, FY86, FM99b, GNS09, GRR93, HGCC96, HTHH02, JBA15, KP00, Lan94, LBT94, LFZ+17, LGG08, LC96, MD01, MMRS98, MPFG17b, Pak89, PB95, Phu01, PKD97, PM92, RLS96, SCC92, SS95, UR94, VR95, WIKC97, WW97, Wu94, XCS06, XHZZ16, mYyF92, YBOY97, mYA91, ZYO02, AA14, AA16, ANEA13, AOSM05, ARVZ14, BB87, BJ15, BDDL09, BPP05, CL91a, CW09, CWL+07, CDR09a, CMT92, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLP07, FZ90, FABG+19, JBS14, KG10, LCC+05, LHL14, LH05, LGFM17, LAC18, LP88, PR06, PL06, PAS15, TCHC12, ZV09b, ZJ06]. Fault-Detection [CY95]. Fault-Induced [WIKC97]. Fault-Sensitive [VR95]. fault-tolerance [BJ15]. Fault-Tolerant [AE95, AM97a, AM95, BW95b, BHC95b, CRV94, CL93, CC94, FM99b, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, WIKC97, Wu94, YBOY97, ZYO02, ABBD14, BKMT14, BPA06,
CKN07, GNS09, JBA15, LFZ+17, XCS06, XHZZ16, sYA91, AA14, AA16, ANE13, AOSM05, CL91a, CMT92, CMS04, DTK11a, DH91b, FLPJ07, FABG+19, JBS14, KG10, PR06, PL06, TCH12, ZV09b, ZJ06]. Faults
[LT96, WFL98, CP17, ISM07, LLFJ18, PMHM19]. Faulty
[GP97, HIKM94, NSLK99, Pel95, RS96a, Tse95, TL96, Wan01a, Wu02, YTR94, oP900, Che05, DD96, PK04b, SKK91, YTH07]. FCFS [Ara13].

Floating-point [CNLGRL18, Gro85, MP08]. flock [BZH06]. Flocking [TWQS12]. Flooding [BCF14, XCH08]. Flow
[AS95, BJ91, ESMG96, JBA15, LLS93, LM96, MK92, BG90b, BAMM05, Boz09, CF88, CW12, Gao89, GE85, JTZZ11, KM17, LHF91, MG09, Oza04, TR89, TBZB05, TY90b]. flow-time [TBZB05]. flows [SM89b, VBDRC13].
flows [SM89b, VBDRC13]. Flowshop [CB11]. flowtime [LZ05]. fluid [AGMJ06, CVK18a]. fluids
[AGMJ06, CVK18a]. flute [CK06]. FluteDB [LLB18]. Flux [Ull84]. FM [LC97]. FMM [LPLFMC12]. focus [DSEP17]. focusing [FSP18]. fog
[JHL18, WML18, SZR18]. fog-based [WML18]. Folded
[Wan01a, Lai14, Lai17, SGR03]. folding [LYL08]. food [CXX18]. Folded
[CXX18]. Forall [ALS91]. forces [Num08, Num09]. Forecast
[RHH96]. forecasting [TLL18]. forest [BC06]. form [NCB17]. formal
[MBO11, PK05c, PSPR05]. Formalization [BFL13]. format [ZGG14]. Formation
[DU02, KSK15, YZS15]. Forms [TR96, WNA94]. Formulation [JBL02]. Forthcoming
[Ano00e, Ano00f, Ano00g, Ano00h, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t]. FORTRAN
[FC95, AH94, BCF94, HHKT96, HKT94, HLJ98, Sab94]. Forward
[Lla17, NS95, dOBG15]. Forwarding [AD10, GS01b, Ana14, HDCM11, KHK18, LWW18, STMZ18, WTB08, XYG07]. foundation [DHS06]. Foundations [BFL13]. Four
[FZ90]. Fourier
[CVK18a, LLCL98, DPRW85, HN91, TS91]. FP [WB94]. FPGA
[CNLGRL18, CS17, HBS17, IH17, MH18, NSKN17, Pet18, SA11, TYA16, TOR14, WLCZ15, WI18]. FPGA-based
[HBS17, IH17, NSKN17, WI18]. FPGAAs
[AD12, LdSB18, MC17, MSSE02, NMS18, WD18]. FR [GS01b]. Fractal
[ASKTZ13, LS06]. Fraction [GP97]. fractions [CR91]. fragment [CZZY09]. frame
[SCG10]. Frames [SCG10]. Framework
[AGG98, CLRW00, EMP96, GHSJ96, KZ96, KK95, LAZC00, Sin95, ZM94b, AAA15, AMU19, Amm16, AMI12a, AC16, AK96, B1K3, BA06, BCFF05, BMT12, BGM08, BJ18, CCA18, CCC04, CV16, CHX17, CMPS18, DV13, DMB03, FGM03, GRDB05, GM13, GFPC14, HSH10, HDT05, HRM17, HH18, KTP17, KKS12, KL05, KBC10, LV15, LS06, MCM11, MJ03, Men18, NLB18, PMAL11, PAG18, RBN11, RG03, RW02, ROB18, SAL0, SMH14, SGSS13, TZH06, TLW18, VS18, WTWZ16, WHH17, WX18, WMG13, YT05, YLB15, dAT17]. Frameworks
[KRS13, KRS14, DAB14, uRL18, UMM18, ZKF18]. Fraud [BST01]. Free
[BP02, CMS92, CG02, CH92, DP00, HPT02, HS93, KM97, Li92, PA97, PA01, RP98, SJ96, SH98, ZN01, AA14, AKBD10, ACH18, CB06, DFP06a, DAV17, FKKR16, HV99, HSY10, HAO6, JBS14, KH12, LASS15, LWW18, MYM10, MBMC19, MKM16, Pen11, SD91, SSD1+10, ST05, ST08b, TT07, VBDRC13, Zah12, dOBG15]. Free-Space
[KM97, RP98, SH98].
frequency [MYD+11, RTZ11]. Frequent
[AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].

Frequent [AAP01, LT10, YZG18, BM11+19]. Frequently [LL95]. Friendly
[MSK+16]. Frog [KM17]. front [ORWT+18]. front-end [ORWT+18]. FSI
[KHT+14]. FTN [Seb91].
BCK$^+$13, FK89, Gao89, GNZ18, GMXA07, HPB$^+$10, HZZ$^+$19, LK13, LC92, Meg91, NAB$^+$11, ORWT$^+$18, RKK06, SB04, Trä09, Zsa16]. generator [Pet18, WSG91]. Generators [Ahu97, Bro96, PK89]. Genetic [PA01, AK07, GM13]. Genetic Algorithm [ANT02, CGKK97, KRSZ02, KA97, OA10, PAJC97, WSRM97, WA02, WLID02, AL04, ALM$^+$16, ANEA13, AB13, BCFF05, DK11, HSSM07, KM03, LA04, PKN10]. Genetic Algorithm-Based [WSRM97]. Generic [PA01, AK07, PK89]. Generics [Alu97, Bro96, PK89]. Generic Algorithm [ANT02, CGKK97, KRSZ02, KA97, OA10, PAJC97, WSRM97, WA02, WLID02, AL04, ALM$^+$16, ANEA13, AB13, BCFF05, DK11, HSSM07, KM03, LA04, PKN10]. Genetic Algorithm [PA01, AK07, GM13]. Genetic Algorithm-Based [WSRM97].
Grained [BR96, CDR99, CLZ00, DFR099, HK96, PY96, SR97a, SR97b, WD94, BM04b, CHLL18, FSD04, GVA, IKS87, IBP08, Man13, MPV12, ZCF+17].
Grammatical [RBB17].
Grand [SIY14, SAB+92].
Granularity [CDH84, WCL+13]. GRAP [FGL+11].
Graph [AyJ93, CCM01, CHGM01, GJP96, HJ90c, Kar95, KK98b, KC98, KA99, Lat95, MJ94, OSZ98, RW97, RWY93, RLS96, SAOKMA02, TVS97, TLW94, WCE97, ZW00, BKC+15, BDjQ86, BCK+13, BM08, CM03, CSJ+13, DeG88, DCA+15, GHC+17, HLM+90, KSSG14, LK15, MPZ09, MMS09, NXXTK17, PK07, PS14, RGAN18, Ros89, SSK+15, SW91, SGR03, SM+15, WCC02, WCH+17, YFBY17, ZCS+18, ZNQ93]. Graph-Based [CHGM01].
Graph-partitioning [GHC+17, SW91].
Graphene [KRM14].
Graphene-CMOS [KRM14].

graph-partitioning [GHC+17, SW91].
graphe [KRM14].
graphen-CMOS [KRM14].

Grasping [KR17].
Gray [BVB02, HHM94, HRJ94, JI94].

Gray to binary [HRJ94].
Great [KF90b].
Greater [Ebe94].

Greedy

[KS06, BGM+08, HDJ08, KH13, LLS07, STM18, Cho90, DOB+15].

Green [DAPR18, AG12, BFH+17, WCL+13].
Greex [BK13].

Grey [FGL+11].

Grid [AKP99, BR02, BAK+03, Hua17, MD13, SDG08, TF01, AHH17, CP10b, CEEB03, CGW+03, EI07, FGZ03, JDSJC+15, KRKS11, KV10, LBE03, LFH+03, LL12a, LLWC17, LB09, MC03, PF04, SMB10, SLZ10, TLQS12, VD04, WH17, ZV09b, dKG+10, AOS+05, ABCM07, BAS06, CS06a, CT08, CCN06, DBC03, DW12, ED05, GBA08, KTF03, KVH97, KK08, LCC+05, LSH+13, LLY08, Li05, LL07, LTIK05, LS10, LR05, MCT06, RAB08, SJ12, SV08, SAOKZ05a, SAOKZ05b, SXZ06, SM+06, SFE06, TYH09, TMM06, TD07, VPHM06, WS06, YT05, YWD08].

grid-aware [FGZ03].

Grid-Based

[BR02, CP10b, VD04, KK08, GBA08, LLY08].

Grid-computing

[BAK+03, SAOKZ05a, SAOKZ05b].

Grid-enabled [KTF03].

GridBench [TD07].
gridding [GOH+13].
gridding-accelerated [GOH+13].

Grids

[CCCM96, HKM198, HOS94, ACFK07, ARDQ18, BMT12, DHJ11, GVBB13, GRD05, GM14b, JV09, LKS14, LL10, Mit07, PHS04, SM+14, YZ15, AAD10, ABCM07, GTN+06, GA08, Ngo06, SNC12, TZ06, VB08, WW03,]
WLL08]. grooming [FMM+08, WG08, WCL+13]. Grøstl [ABO+17].
ground [BFKP04]. Group [CWZ+18, KKLJ14, LLW12, RGVB00, CJDC10,
CHC05, Dim91, EDH+17, LC14b, LHT08, dAMFds13, MM07c, TC13, XO05].
Group-based [CWZ+18, KKLJ14, TC13]. group-shared [LHT08].
Grouping [CWP98]. Groups [Oru87, WLD00, ARDQ18, CHC05, GCS06, LKM12, MS05, Ros89, WLZ+18].
Growing [CRFS94, WLR90, IZ12, MGG03, OGRV+12]. growth [WCKD06].
GSM [TM06]. GSPN [CCM92, CCM01, SM92b].
Guarantee [JM14, MZZC12]. guaranteed [HWWH08, LNA12, LNAL17, NGQM12, PY09a, WCWO17]. Guaranteeing [Sch91]. Guarantees [MS00, OY00, ESCV15]. Guessing [DKY01].
Guess [WW03, AP93, AL99, AB03b, Ano01j, Ano01k, Ano01l, Ano02g, Ano02h, Ano02i, BD00, Cas93, Che92, Cho93, DOP98, ES97, GGB93, GC95, Her92, JW94, Kri92, Lin93b, MC93, NT90, OW01, PN97a, PN97b, Pan09, PA96, Sch90, SH92a, St090, TFV+15, BG90b, TY95, WC05].
Guidelines [Ano00d, Ros99].

h [CP04a]. HA03094L [Ano04e]. Hadoop [FRM15, GYY+14, HLW18, HWLR14, YLB+15]. Half [RS94]. Half-Duplex [RS94]. Hamiltonian
[DP98, Hsi04, HBAD15, LSC00, LLFJ18, Nik04, Wan01a, WCC02, YTH07].
Hardware [BK18, DGNW13, GS00, MD01, MCAS12, RPS013, SCC+06, SHA17, TF92, The02, TH08, VH03, Zsa16, ABC+09a, AF06, ABO+17, BDM18, BJS03, CV16, CCG16, CP17, CM12, FWM+10, GKS15, GVA+08, HDJ08, Hus17, JJ12, KDO+13, KC17, LMSK18, MTM10, Nik03, NAK04, PVG09, PAG+18, QGZ17, SV18]. Hardware-accelerated [DGNW13, Zsa16].
Hardware-Efficient [MD01]. hardware-generated [MTM10]. Hardware-Only [GS00]. hardware-software [CV16].

Harmony [ES12]. HARNESS [MSS00]. Harnessing [MTL+18b, VPHML06]. HARP [SSB98]. harvest [WS06]. harvesting [RB12]. Hash [LACJ18, SX08, TT10, ABO+17, HKW05, SRT+18, TC04].
Heterogeneity-driven [XLL15]. **Heterogeneous**

[ANT02, Ano97k, BSS97, BPR99, BSB+01, CP97, CA94, CEF+95, DAYA02, DBP94, EKNS17, HS94b, HC97, KL01a, KRMI14, LAS+97, LHBB+01, MAS+99, MSd+95, MP96, NRS95, NDZA99, PP92, SC91b, WR97, WSRM97, WMC+18, Won99, YSZ96, ALM+16, AAD10, Amn16, ALF03, BKC+15, BD05, BCF05, BR08, BRP03, BKCM17, BEN12, BH05, BSMH08, BSS+13, CSW08, CCK+08, CCK11, CDR09b, CGW+03, CJ17, DK08, DK11, DÖ06, FMR05, GQZ18, GRV08, GNT04, GZ14a, GWL94, GMX07, GAOHG17, Hus17, JST12, KH17, KUA07, KyLPC17, KSG13, KSS+07, KAS07, KN18a, KN18b, KMS+06, LK13, LWC+18, LHHB01, KL01a, LHHB01, MAS+99, Msd+95, MP96, NRS95, NDza99, PP92, Sc91b, WR97, WSRM97, WMC+18, Won99, YZS96, ALM+16, AAD10, Amn16, ALF03, BKC+15, BD05, BCF05, BR08, BRP03, BKCM17, BEN12, BH05, BSMH08, BSS+13, CSW08, CCK+08, CCK11, CDR09b, CGW+03, CJ17, DK08, DK11, DÖ06, FMR05, GQZ18, GRV08, GNT04, GZ14a, GWL94, GMX07, GAOHG17, Hus17, JST12, KH17, KUA07, KyLPC17, KSG13, KSS+07, KAS07, KN18a, KN18b, KMS+06, LK13, LWC+18, LR06, LLL06, LLKY13, LLCZ19, LPX05b, LV15, LFGM17, LLS07, LXZ13, MGSG12, MV05, MTS90, NDF93, NFHL13, ND12, NP09, OPR18, OP+18, PKN08, PKN10, PP13, PSB+19, PTA08, Pla08]. **heterogeneous**

Heuristic [BA92, DDD98, EHMN95, KLZ97, XH93, DK11, HS06, KJD03, KKS+12, PKN08, PKN10, PM05, SWP90, VB08, YFB17]. heuristics-based [KA08]. HEVC [Lla17]. **hexagonal** [GSS+03]. HHN [YP96]. **HiCOO** [YQT12]. hidden [HB11]. Hiding [HF02, WL92]. Hierarchical [AGF94, Buc92, BM95, CAB92, FR96a, HR92b, HR92a, yHY97, KZ96, LLJ00a, MS00, MD13, OM90, SHT+95, TM06, TJ92, Tun84, TW89, TTH12, VSIR91, WHT00, VQT12, YP96, AAI7, AGMS04, BJ18, BMT12, BS06, CK004, DE91, DR19, DM04, EDH+17, GHY10, IZ12, LK13, LTL06, RH05, RR05, SS05, TLQ12, WCOW17, WLL08, ZZ90, dSS11]. Hierarchical-Memory [VSIR91]. Hierarchies [VN93, BW89, DTK11b]. hierarchy [Ale19, Pad91, WYT13]. High [ABDS02, BJ99, BBH+97, BYG+18, BNS99, CLA+18, CY99, CD98, DS02, DYL+12, DB18, FGKT97, FC14, FM99b, GP93, HES10, JSCB95, JLR97, KMKD97, KS95, KRS13, KRS14, KRS01, LC97, LS01, MR94b, MBG+17, Nee17, NKC+97, NTC03, PF08, PVB09, PBB+17, SWH17, TF92, TM06, TPJ+19, VFAD17, XMD17, AM13, ARI17, AB03b, AGW11, BSW07, BAT+19, BDDL09, CAC+04, CBP02, CVK+18b, CTCX08, Cuz11, Cuz13, DK08, DB08, DKK18, DF12, DAB+14, DMS+16, FHL+15, FGPO5, Fu10, GOH+13, GNT+06, GMSS+11, HOE+09, HRG+11, HCZ04, HT90, HVW16, ICQO+12, JBY+05, KVNV17, KSB11, KME09, LWC+18, LMSK18, LWR+03, LSXX14, LJ+19, LB18, LAC18, LB07, LZZL06, MSG+13, MZC18, MG09, MLK12, Nap90, No12, NRM+09, PK07, PGKV18, SPRG+12, SD91, SC04, SAB+92, SA11, SR91, SGdSS13, VAS+13]. high
High-Availability [LS01, Fu10]. High-dimensional [HT90, PK07, WRW13]. High-end [FGP05].

High-Level [BBH+97, KRS13, KRS14, BYG+18, CCC+04, DMS+16, SGdSS13].

High-order [KME09].

High-Performance [BNSP99, CY99, FGKT97, JLRA97, KMKD97, KRS13, KRS14, PBB+17, TPJ+19, NTC03, AB03b, CBP02, Cuz11, Cuz13, DF12, FHL+15, GMSS+11, HRG+11, HZC04, ICQO+12, JBY+05, LWR+03, LSXX14, LJZ+19, LB18, LVB07, MSGS+13, NRM+09, PGKV18, SD91, SC04, ZW13, ZWQ+16].

High-Priority [TF92].

High-radix [MG09, VAS+13]. High-resolution [GOH+13].

High-Speed [BBH+97, SR91].

High-Temperature [SWHB17].

High-Throughput [FM99b, CLA+18, BSW07, HVW16]. Higher [GSSS03, HS17, AM06].

HLR [FCF00]. HLS [MH18]. HLS-based [MH18]. HMFS [LHZ+18].

HMIPv6 [CKML12]. HMVFS [ZH+18]. Hoang [An092c]. Hoc [An001e, BDF01, GS01b, LAT00, Pat01, RBP+11, TM10, AP03, AH11, AH12, ALFO3, BFG+03, BM11, BGLA03, BOP06, BN03, Bon03, CNS03, CW05, CYZ06, CDC05, DW06, DMB+03, DB08, EBE08, FCW11, FVCL05, FGL+11, GAGPK03, GS03b, GMS06, GMX07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LR03a, LPX05a, LW06a, LHW14, LC14b, LR03b, LHT08, NNM+14, OSL05, OM10, OMSGNS05, SNC12, SSM+06, SGS08, SKMM04, SJ511, TC13, VA03, WT+08, WGS08, WBTM09, WSH+18, XHG03, XWC+08, XG03, YC04, YSS11, YWW12, ZMC06]. HOG [RBG17]. hole [LZC11, PSC+16, SGAC14, YDZ+18, dOBG+15]. holistic [WL10, ZH15].

Home [HRM17]. Homogeneous [LS97, BM17a, CRJ10a, GHS86, OOSG+16, SCJ+08]. homology [DKKV15]. homonymous [AAI+15]. honeycomb [BPRS04]. honeyfarm [JXW06].

Honeycomb [KMMZ06]. hop [BSW07, FCW11, FCZ+12, JLWX11, JM14, KHK18, MAM05, MPV12, NCO09, RFS+12, RB12, YMG01, ZMG+16, CSW+17]. Horizons [BP95]. host [LLWC17]. host-based [LLWC17]. hosting [SSVC10]. hostload [DKC14]. Hot [LK94, NS95, TY90a, GPSH19]. Hot-N-Cold [GPSH19]. hot-spot [TY90a]. hotspots [MLG05]. Hough [BA05, CP91, Fer93, GZ97, JS94, SSL04]. Householder [BDG+15]. HPC [APV18, CVK+18b, ECLV12, GYAB11, NKSA17, NC13, PCLP16, uRIL+18, RBA+18, RMHR17, RIE+18, SCB09, WMES12, YFS+15]. HPF [BCF+94, CA96, HLJ01, KHS96, SS00]. Hull [DFRCU99]. hulls [GS03a]. human [CWZ+18, WDS+18]. hunt [MP15]. Hut [SHT+95]. HW [RBG17]. HW/SW [RBG17]. Hybrid [BJ18, DBA+18, Dah99, DR18, FA07, Gao93, LWCG14, NMB93, OS93,
PA15, VD18, YS11, ZLH$^+$18, ALM$^+$16, AC89, BAMM05, CCQ$^+$06, CB15, CJ17, DK11, FX06, GLC14, HZL18, JAB12, KS18, KSB17, LY13, LHZ$^+$18, MBS$^+$12, MMK$^+$11, No12, PARB14, SCS$^+$08, SHLN09, SSL04, SA08, TY17, WLL16, WHW$^+$17, YLL17, ZFT$^+$18, MMCL$^+$17]. **Hydrodynamic** [HC97].

Hydrodynamics [PAH$^+$98, VBDRC13]. Hyperbolic [SSK96, SHRM19].

Hypercube [AGF94, AM93, BKT95, BC94, CS93c, DP98, DMSH90, DRC90, DFN$^+$94, FM96, FDP93, GG93, GT97, GBG93, HGCC96, IK93, IK94, JR92, JB98, KB96b, KM91, Lan94, LH92, LLJ00b, LEB98, Man94, MP93, MW95, MY95, NLSK99, NT93, Nas94, OM90, RS94, RaJ96, SYO94, SCC92, SY01, Sto90, TLW94, TL96, TC92, WIKC97, Wag93, Wag94, XMN92, YP96, Zia92, Cap87, CCS06, CS10, DE91, Efa91, EAL90, ERS90, Joh87, KAP90, LEN90, LSS89, LS91, MVM04, MAR87, RS90a, RS90b, RIZ90, SW90, TMK$^+$17, TS91, Wag89, Yan04, ZLRP91, YN92]. **Hypercube-Based** [Zia92, DE91].

Hypercube-Connected [LH92].

Hypercubes [AD95, AERBL92, Ann94, CL93, CCCM96, CS95a, CCR94, Ef96, Fag92, FM96, Fra92, GP00, GH93, HM01, HOS94, Kav93, KF95b, L92, LBT94, LW95, LT96, Moh97, OD95a, OP96, Pel95, PM92, RS96a, RJMC95, SHL95, SR95, TT98, WW97, Wan01a, Wu94, WFL98, YTR94, BG90a, BM04a, BO91, BL99, CL91a, CL91b, Che05, Ede91, FT04, GT04, GNW03, HNSA07, Ho91, HRJ94, LW90, Lai14, Lai17, SS89, Var91, WIB12, Wu85, Wu03, XCS06].

Hypergraph [DKUC¸15, ACU08, CBD$^+$09, DHK04, KJD03, TK08].

Hypergraphs [STA12].

Hypermeshes [OK01, Szy95].

Hyperoctrees [DFN$^+$94].

Hyperplane [HS93].

Hyperreconfigurable [LM05].

Hyperspectral [PVPM06, Pia08].

Hypersphere [AM93].

Hyperspherical [RLP14].

Hyperstar [AAD98].

Hypertree [LTD$^+$93].

I-Caching [MM93]. I/O [AW95, CkLCK04, CkLCK05, Cho93, CQ95, CD95, D93, DT01, DLW$^+$12, DJT03, EH01a, GGD93, GPC14, HZZ$^+$19, JSCB95, JSBW92, LTH97, MLG05, NSS99, NsPPC02, No12, WHW$^+$17, WLWW09].

I/O-Intensive [EH01a, CkLCK04, CkLCK05, HZZ$^+$19].

IaaS [CMR10].

IC [CMR10].

IC-scheduling [CMR10].

IceCube [AAA$^+$15].

IceProd [AAA$^+$15].

ICS [HMY$^+$18].

ICT [CTS17].

IC [HCAA93].

IDOS [BA01a].

IEEE

I/O-Intensive [EH01a, CkLCK04, CkLCK05, HZZ$^+$19].

IceProd [AAA$^+$15].

Identification [CS95b, EBE08, FCC07, GSASA19, MMN$^+$18, ZAAB17].

Identification [CS95b].

Identifying [HS03, LT10].

Idle [CW93, CM92].

idling [CFI$^+$18].

IEEE

Image [B106, BM95, EL94, HSJP87, HC95, KSL95, K99b, LW97, MWL90, MG98, NEG85, OS98, RS90a, RG87, SR94, SD88b, WS95, ZM94a, CD94, CCN06, GSWW04, HBLM, IK93, Kep03, KM03, Lee91, LMSK18, LLS$^+$16, MG03, P90, Pfe90, Sto87, SA90, UAPM07, Wan07, WRHR91, WJD91, WGCZ09, dAT17, FC14].

Image-Processing
[KSL85, SD88b]. **Image-to-Mesh** [FC14]. imagery [PVPM06, Pla08].
Images [SYO94, Ara90, CL85, DH91a, NAK04]. imaging [KDO+13].
Immediate [Ksh12]. immersive [MBH+08]. immune [HD10]. **Impact**
[BC92, Kel00, Tze91, YAA10, GSWW04, HHS12, HRF+11, MLG05,
RBP+11, SFT+13, SYYU07, WCF14]. **Impacts** [PCX+11, PCX+14].
IMPATIENT [GOH+13]. **Implementation** [ABGV11, AS95, BAHP01,
BHS+94, CP91, CP92, CS95c, DM90a, DBKF90, EP90, HS97, HBB93, KM91,
MSS00, NT93, NsPPC02, OS98, OP98, PAJC97, RL02, RW01, SDS10, Shu95,
SM00, Ski96, SE15, SOG94, TVO92, VBM90, XMN92, YB01, ADV14,
BFTV87, BG89, CEGS07, CP10b, CWP12, CPO+03, FGG08, GKS15, Gro85,
HES11, HVW6, JK89, JM15, KHT+14, KTF03, KA91, KP05, ML89,
MCAS12, MP10, MML07, MRT18, OO05, OGRV+12, PLD87, SM08b, SA11,
Sol13, SMKL93, TR89, Tay87, TdAR18, WXC+08, YÖ11, dAMCFN12].
Implementations [DT01, KLS4, SAC+98, WPKK94, BCM06, BRPR06,
GNS09, ICQO+12, Tät11, TYA16, YBM13]. **Implementing**
[BC94, Coh90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17].
Implications [AH94, BS96a, GTN+06, HK+18, MT96, MG93, SH92b, TSA97].
Implicit [BAM93, Fre96, HWL18]. Implicitly [SAC+98]. importance [MLMSM12].
imposed [BKS91]. impossibility [AP16]. Improve
[CB02, DS95a, SKH96, CDR90, OS98, PAJC97, RL02, RW01, SDS10, Shu95,
SM00, Ski96, SE15, SOG94, TVO92, VBM90, XMN92, YB01, ADV14,
BFTV87, BG89, CEGS07, CP10b, CWP12, CPO+03, FGG08, GKS15, Gro85,
HES11, HVW6, JK89, JM15, KHT+14, KTF03, KA91, KP05, ML89,
MCAS12, MP10, MML07, MRT18, OO05, OGRV+12, PLD87, SM08b, SA11,
Sol13, SMKL93, TR89, Tay87, TdAR18, WXC+08, YÖ11, dAMCFN12].
Improvements [GC0+08, WSS93, DS94]. Improving
[AM97a, AS91, CLZ02, Che05, CP10b, DL98, FT04, GP96, HSH10, JR95,
KLC05, Mii99, PB95, TC13, Tsu07, Wor93, Ara13, Bad04, GMVRGS16,
TDC05, dAMCFN12]. **Improvement** [yCM98, IAS92, CZZ+17].
Improvements [GCB+00, WSS93, DPD08]. Improving
[AM97a, AHG12, CLG+16, CRWX12, CKWT17, CAF+11, Dah99, DK04,
GT02, GYY+14, GP05, GM00, HK15, Kan05, KZ11, LTL06, MBR08,
SLKK12, WTB+08, AA10, CKS88, LBT19, SAL10, SK11, YF09, MMCL+17].
IMSuite [GN15]. In-Memory
[SLL18, LB+18, LZH+18, VETT18, ZKF18]. in-network [BCO+12, JF12].
in-order [KMF*05]. incentive [CG12, YAA10, ZCMY12]. incentive-based
[CG12, YAA10]. inclusion [Kak15, RFPA08, dMS18]. Incomplete
[OD95a, PK04a, SCD99, TC92, CAS18, GLW14]. Incompletely [BSG90].
inconsistency [Ram89, TK07]. Incorporating
[AIS97, VWHL96, WTY+18]. increasing [RS08]. Incremental
[ESCV15, ZN01, LY08, LRS18]. incrementally [SSB91, YC12].
independence [GK10]. Independent
[BSB+01, Ger98, Hag97, MAS+99, NMS93, PS93, WFZJ12, AFD+11, AK06,
AY09, CL91b, CFJW13, EB13, HAC17, Li06a, LH09, LB09, LLS07, PDB13,
SSM+16, SBÇ12b, SZW05, SSM+07, WCF14, WIB12, YWD08].
independent-gate [WCF14]. independently [XCH08]. Index
[Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d,
Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h,
Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h,
indexes [OC07]. indexing [FKJG08, GZ08, WIR+18]. Indian [Nee17]. indirect [Ho91, HBF12]. Induction [WIKC97, LM09]. Induced [BF01]. indulgent [WCYR08]. Industrial [MS99a, HMY+18, KKTZ13]. Inexact [Pla13]. Inexpensive [MT93b]. Inference [AyJ93, FBRW03, PTZ06, SHK19, XP10, YWAT13]. inferencing [MK08b]. InfiniBand [ARP18, ASD09, ESGQ+14, ESGQ+18, GRJ+15, PK05b]. InfiniBand-based [ESGQ+14, ESGQ+18]. influence [MCS14]. Influential [TAS+01]. Info [NTN12]. Info-based [NTN12]. Information [Bal90, BS96a, CY99, LA93, Oza04, AHZ11, AH11, Ana14, CKN07, DB86, JLWX11, KTP17, LY91, LSWC14, MP15, Plia08, Psa96, Raj08, RFPAG08, SHK19, SSS07, SFT04, TKG+17, XCS06, XQ04, YDZ+18, ZFS07]. Informed [LM09]. infostations [BPRG04]. Infrastructure [GC01, AFA13, HPB+10, JAB12, KKKP12, LCM+06, MBS+12, SW12, SWHB17, ZCMY12]. infrastructures [Ano04d, BJPPM+08, FPFP14, NAB+11, TD07, YK04]. Inherent [LM09]. injected [GK15]. injection [CP17, LLWC17]. Injured [Wu94, Wu03]. inner [Lis90, ST85]. input [LY08, NAK04, PMV05]. Insensitive [ST02, ST06]. insertion [SS17]. INSIGNIA [LAZC00]. inspired [CMMN10, GVBB13, HD10]. Instance [SM94]. instances [PDB13, ZG13]. Instantly [TOR+14]. institute [Nee17]. Instruction [AGG98, LPU97, Gro85, PYP+10, Sch89b]. instruction-systolic [PYP+10]. Instructions [dSR00, Sol13]. Instrumentation [GP91]. instruments [CKK+13]. Integer [DL98, Fag92, SS96, KKVI05, VM95]. InteGrade [dKG+10]. Integral [Ten90]. Integrated [BDHF90, DAYA02, OY00, PW96, WAE03, YSL08, ZR00, ZMC06, HC09, LMXJ18, SKMM04, WCL+13, XYDL06, XHY07, YWG15]. Integrating [Bir94, DT11, DRST02, FKT96, Luh01, OK02, PY96, KKKP12, YT05]. Integration [ISZBM99, KL84, LY01, YJKD10, Ano04d, HMV07, Kumi17, YK04, ZMZJ17]. integrity [BCO+12, LZZL06]. Intel [CHLL18, FPD93, LGT14, SMKL93, Zha11]. Intelligence [MT85, KAA+19, LdPLC+19, ZGJ+18]. intelligence-based [ZGJ+18]. Intelligent [IAS+92, KSP+92, SH98, ZL93, CDJ+89, KBC19, KDS81, PLSM18, She09, WJD91, YWX+18]. Intel [KVN17]. Intended [CTC11]. Intensive [ABM+92, BS09, BS11, CA95a, EH01a, SW90, CkLC04, CkLC05, DF17, HZZ+19, HWLR14, KAS07, MLK+16, RBN11, Ren11, SC04, VB08, WZZ+17, WG11, ZMCP11]. Inter
[KCSS18, FKL08, GZG+17, Kan05]. inter-core [GZG+17]. inter-node [FKL08]. inter-procedural [Kan05]. Inter-Thread [KCSS18].

Interaction [CCM92, DH95, LLCC02, HWLR14, YJL16]. interaction-intensive [HWLR14]. interactions [CK08, PARB14].

Interactive [LHM95, RGS00, CTS17, HSS17, MAR05, TSD08, TD07]. Interactive-Rate [RGS00]. Interconnect

[HP97a, WLY01, AHA+16, MG09, UM17]. Interconnected [DH95, EH01b, Guo94, KM97, QMCL94, GMH+91, McA89, SGAC14, TRSS06].

Interconnection [AAD98, AA95, BETD94, CW01, CJA09, D2V96, FD86, KRSZ92, Kam94, Lat95, LYL93, MLW+97, MSH90, MC93, MJ94, OM84, O085, Pad93, PL93, SW96, SZB92, Szy95, TH02, Tze91, VB96, Wan96, Wan01b, Wil92, YWP00, ZMPE00, YW00, dBL95, AR17, BM14, BDjQ86, BHR91, BR91a, Bhu87, BJ15, BR91b, CM04, CKO04, CS06b, DE91, FJC04, GJ12, Har91, JMB91, KMC16, KRL87, LX90, LLKY13, MHBW86, Pak89, Par05, PW16, PW17, PMCC18, SSB91, SL89, SH89, WCC02, Wil90, ZDC06].

Interconnections [LLJ00b, SL97, THN+93, Oza04, YB90].

Interconnectivity [DSD+97]. Interconnects [ES97, HP00, MO97, MG93, PEC95]. interdependent [SNCP12].

Interdisciplinary [NKSA17, CCE+17, Hua17]. interest

[An016l, REZN17, CTC11]. Interest-Intended [CTC11]. Interface [BAHP01, BF97, BDH+97, CD98, IWM97, PS01, RS92c, JM15, NSDZ18, KTF03]. interfaces [NGQM12]. interference

[BPRS04, GZG+17, KDH08]. interference-aware [KDH08]. interleaved [NC09]. interlock [CCK88]. intermediate [YYLC11].

Intermittent [DT02]. Internal [Ba90, JZK04]. International [OY13, Ros07, Sn03, Wee01].

Internet [Bar05, BJ18, CXQ+18, CMPS18, DAPR18, ECP+18, HMY+18, KA08, MZSL12, MZC12, PJ18, She09, TB90, WHC+18, WLID02, WCCH18, X005, YWJ+18]. Internet-based [She09, X005]. interoperability [AZW13]. Interplay [ZXGD18].

Interpolation [CWW+95, Goe94, SAOKMA02, Nic97, PHS04, Sch89b, SDG08].

Interpretation [FAG95]. Interpretive [PH00]. Interprocedural [HHKT96, CK88]. Interrupting [AST12]. Intersecting [FSV17]. Interval [CI03, PT01, Sch87, BBCQ13, MHLZ16, Sta04]. Interworking [WH08].

Intra [GM13, Kan05]. intra-node [GM13]. intra-procedural [Kan05].

Intrachip [MCM+11]. Intrinsic [PAS15]. Introducing [CCE+17, Ada17, BLZ+18]. Introduction [AP93, AL99, AB03b, Ano01j, Ano01k, Ano01i, Ano02g, Ano02h, Ano02i, BD00, Cas93, Che92, Cho93, DOP98, ES97, GGB93, GS06, GC95, Her92, JW94, Kri92, KRS14, Lin93b, LK11, LR05, MC93, MG5+06, MKN14, NT90, OW01, PN97a, PN97b, PA96, PRS14, Sch90, SH92a, Sto90, BG90b, TY95, IB04, TFV+15, WW03, WC05].

introductory [Bog17]. intruder [ISAZ07]. Intrusion [BN02, WL11, LLLY08, WML+18]. invalidation [OFS03]. invention [MC03]. inventory [GAOHG17]. Inverse [CTZ99, Lla17]. Inversion
SW96, mYyF92. inverted [WJ12]. Investigating [LCB16]. investigation [CD95, GKS15, PHW13]. Investigations [Sch13]. Invited [Ano01m].
invocation [BBB+06]. invocations [BVG14]. IoT
[Al19, DBW18, GRZ18, HRH18, LWWQ18, MA19, PH18, SCW18, TODQ18, VS18, YXW18, ZGJ18, ZXR18]. IoT-based
[YXW18, ZGJ18]. IoTDeM [LWWQ18]. IOV [DYL12, GRJ15].
IoT [Ale19, DBW18, GRZ18, HRH18, LWWQ18, MA19, PH18, SCW18, TODQ18, VS18, YXW18, ZGJ18, ZXR18].
IoT-based [YXW18, ZGJ18]. IoTDeM [LWWQ18]. IOV [DYL12, GRJ15].
IoT [Ale19, DBW18, GRZ18, HRH18, LWWQ18, MA19, PH18, SCW18, TODQ18, VS18, YXW18, ZGJ18, ZXR18].
IoT-based [YXW18, ZGJ18]. IoTDeM [LWWQ18]. IOV [DYL12, GRJ15].
IoT [Ale19, DBW18, GRZ18, HRH18, LWWQ18, MA19, PH18, SCW18, TODQ18, VS18, YXW18, ZGJ18, ZXR18].
IoT-based [YXW18, ZGJ18]. IoTDeM [LWWQ18]. IOV [DYL12, GRJ15].
IoT [Ale19, DBW18, GRZ18, HRH18, LWWQ18, MA19, PH18, SCW18, TODQ18, VS18, YXW18, ZGJ18, ZXR18].
IoT-based [YXW18, ZGJ18]. IoTDeM [LWWQ18]. IOV [DYL12, GRJ15].
KSSL16, KSJC17, KBC$^+$10, LGZ$^+$10, LYL08, LZY11, Lon04, Luc18, LWCG14, MYM10, MBMC19, MVP17, NAB$^+$11, PP13, PDB13, PK07, PLK$^+$18, RW02, SS17, SMT15, VM03, WCWO17, XHY07, YH07, YÖ11, ZV09a, ZVL11.

Large-eddy [SM04].

Large-Scale [ABDS02, BMCP98, LK98, OK01, VN93, AFG$^+$19, WBRT13, BMB$^+$08, BMF05, CC16, CLOL17, DB11, DBCF13, DLW$^+$12, KESA07, KSSL16, KBC$^+$10, LGZ$^+$10, LYL08, LZY11, Luc18, LWCG14, MBMC19, VM03, WCWO17, XHY07, ZV09a, ZVL11].

large-size [CVJ09].

large/irregular [AM13].

Larger [Mah95].

largest [Deh90].

LARPBS [dR09].

Last [Tay02, DMI$^+$19, FABG$^+$19, RFPAG08, SS17].

last-level [CVJ09].

Large/irregular [AM13].

Larger [Mah95].

largest [Deh90].

LARPBS [dR09].

Last [Tay02, DMI$^+$19, FABG$^+$19, RFPAG08, SS17].

large-size [CVJ09].

Large-Scale [ABDS02, BMCP98, LK98, OK01, VN93, AFG$^+$19, WBRT13, BMB$^+$08, BMF05, CC16, CLOL17, DB11, DBCF13, DLW$^+$12, KESA07, KSSL16, KBC$^+$10, LGZ$^+$10, LYL08, LZY11, Luc18, LWCG14, MBMC19, VM03, WCWO17, XHY07, ZV09a, ZVL11].

Large-Scale [ABDS02, BMCP98, LK98, OK01, VN93, AFG$^+$19, WBRT13, BMB$^+$08, BMF05, CC16, CLOL17, DB11, DBCF13, DLW$^+$12, KESA07, KSSL16, KBC$^+$10, LGZ$^+$10, LYL08, LZY11, Luc18, LWCG14, MBMC19, VM03, WCWO17, XHY07, ZV09a, ZVL11].
Limited
[CHJ97, LP96a, LK98, BKS05, DW04, SSGG18, VS16, WT08, Zsa16].
lifetimes [HS00, MSF13, CL09, KP17, Kim17, MP10].
lift [IIH16].
lifting [IIH16].
Light
[RGVB00, Koc91, PR12, Wan06, WZZ+17, ZFT+18].
light-trails [PR12].
Light-Weight
[RGVB00, Wan06, WZZ+17, ZFT+18].
Lightweight
[H06, MSF+13, CL09, KP17, Kim17, MP10].
like
[CP10a, CTC11, FR96b, GL90].
Limit
[MO97].
Limitations
[BKS91, LS97].
Limited
[yHY97, LP96a, LK98, BKS05, DW04, SSGG18, VS16, WT08, Zsa16].
limitations [DW04, dSS11].
Line
[BDKM94, BMMS01, DGBN14, LTY96, RR95b, Yen01, BS92, DMCFCM03, DJ98, EL88, GH89b, GC07, KM88, LHK03, SL90, ESGQ+11].
line-sweep
[DMCFCM03].
Linear
[Bah00, BBM+02, BMM97, BCZ95, CDH84, CCC92, DVW94, IPK85, IK94, KL01a, KF95b, LP97, PM06, Pov99, RFM94, RS92b, ST98, TBPV00, ZC92, dR09, BG+03, BAH04, BPP05, Car90, CM03, CEGS07, CP10b, DS04a, Dja06, FHL+15, GPT06a, GRV08, Gao86, GS91b, HR89, ICQO+12, Joli87, KKVI+95, KT89, LMXJ18, LWXX19, LKD14, MP88, MP87, MV05, MRT18, NCTT95, TFMS15, Ter16, XYZW14, Y011].
linearizability
[KKW17].
Linearization
[FZVT02].
Linearly
[BBd90, PB90].
Lines
[BDKM94, DJDK19, Wri91].
Link
[GDP08, MLW+97, SJS11, VR94, VR95, WFL98, FCZ+12, LST17, MCAS12, MVP17, RH05, SW90, WTS03].
link-bound
[SW90].
link-selection
[RH05].
linkage
[CPO+03].
linked
[Han89, HA05, ST08b].
Links
[AAJS01, KJ94, RS94, WW97, Wan01a, AGMS16, KPR88, SHK19].
Linpack
[Num07, Num08].
LinuX
[LACJ18, BP01, LAC18].
Liquid
[SWHB17].
List
[BBH98, SP96, SGS99, TLLL10, FPF14, Han89, LPX05b, Vis87, WLL16].
Lists
[BP02, VSIR91, ST08b].
live
[GRJ+15, WMES12].
Load
[Ano97l, BEE00, BM08, CS93a, CRL04, CLZ00, DHB02, DMB97, DLLX97, DS94, Ef96, EE05, FMP98, FLS+97, FM99b, GKB98, GI94, GM96, HS97, HLL95, HTL99, HO94, HC97, JR92, JW89, KGV94, LG94, LH95, LT94, LL98, MDD07, MP96, NLSK99, NEF97, OB98, PB99, QY94, SB12a, SH92a, SHT+95, SB97, SBAM96, TSHH01, TT98, Wan96, WS97b, XYKA08, XL92, XH93, XL95, ZLP97, ZXP09, ZM94b, vS91, AES11, AGMS04, ACCP12, ASES15, BCV05, BFH90, BFM+18, BRPR06, BD04, CSWD03, CBD+09, CVJ09, Cho90, CRC+02, Cyb89, DB11, DLW+12, DW04, DM94, GRV08, GLC14, GC05, HJ90a, HLM+90, IC05, IS06, JL05, JL11, KNHH18, KKS08, KC04, LT02, LTL06, LLL06, LHKL03, LY91, MLDG12, MPV12, MV05, MTS09, Mit07, MGG03, NHO+13, NIK03, PC11, PA04, PR0+19, RN04, SU87, SB15].
load
[SBX08, TBZB05, TKHG04, TLL+18, TVT+17, YJL16, YAA10, YMLP14, ZV06, ZSW14, ZLMC14, dG91].
load-adaptive
[TKHG04].
Load-Balanced
[LT94, NEF97, XYKA08, YMLP14].
Load-Balancing
[DHB02, FM99b, HO94, HC97, Wan96, SB12a, ZXP09, NHO+13, YJL16].
load-sharing
[SU87].
Loads
local-spin [AK07]. localities [GJXZ05]. Locality [BS96a, CL96, FJG06, GXYZ13, JL11, KCRB99, KRC00, MNB95, SCM99, SHT+95, EHL+15, FPP06, Kan05, KR06, LK13, Ozt11, SZD07, SKK14, SRT+18, WLL08, XCZL03, ZWQ+16]. locality-aware [EHL+15, SKK14, XCZL03, ZWQ+16]. locality-cognizant [LK13]. Locality-sensitive [JL11, SRT+18]. Localization [DFP06b, AKBD10, CCW14, CRWX12, DLLL11, LDS16, MKM16, WDS+18]. localized [Cal06, KNS06, LS03]. locally [AMK+07, LFZ+17, XHZZ16]. locate [DWX10]. located [SBC¸12a]. Location [KER01, Li17, LS03, LAGK07, MMRS98, SCM99, SHT+95, EHL+15, FPP06, Kan05, KR06, LK13, Ozt11, SZD07, SKK14, SRT+18, WLL08, XCZL03, ZWQ+16]. location-aided [ZMC06]. Location-based [LS03, ABF+14]. Location-centric [XCLR07]. location-free [dOBG+15]. Lock [DR98, SSdIB+10, ST08b, CB06, Dim91, HSY10, HA06, ST05, XO05]. Lock-free [SSdIB+10, ST08b, CB06, HSY10, HA06, ST05]. Locking [MS98, XO05, DM04, LXLZ11]. lockless [HMBW07]. Locks [JNW96, AFA13, CG10, UBES10] Lockup [SD91]. Lockup-free [SD91]. Lo`eve [FSD04]. Log [NTA96, ZFT+18]. log-based [ZFT+18]. Logarithmic [Nas94, OOW95, AF17]. Logarithmic-Time [Nas94]. logging [CZZY09, DWG03, JLM12, Lin93a, KVNV17, MBR08, TDC05]. LogGP [AISS97]. Logic [AyJ93, CCG11, CBlCD00, Mon94, NKV14, Tan84, DeG88, FPM+14, MLZY17, MV88, MC91, NAK04, SK90, WS99, XYZW14]. logic-oriented [SK90]. Logical [AK93, YMG01, TPLY18]. LogP [AISS97, BHPP05, RGD03]. Long [AISS97, GO95, LMK12, Lin93a, KVN17, MBR08, TDC05]. long-distance [MBR08]. long-range [TDC05]. Long-term [LMK12]. Longest [MS99b, PK04b]. Look [PL93, SHL+13, TG04, HZL18]. Look-Ahead [PL93, SHL+13, TG04]. Look-Up [HZL18]. Lookup [NIR86, SF05]. Looking [LK14]. lookup [JP09]. Loop [AMB95, BCH95a, BCZ95, CG02, DR95, DS95b, Nie88, OK02, PB99, QGL+09, AL04, KS03, MP08, NCT+07, QSL+08]. loop-carried [NCT+07]. Loop-Free [CG02]. Looping [Ano92a, KME92]. Loops [CCC90, CW96, DR996, HS93, KK95, KBB92, SCMB90, SG99, Xue97, CC87, SGE91]. Loosely [SKR93, AjiHeC90, BMF05]. losses [HZA+15]. lossless [CW15, PY09b]. lossy [GYP13]. lost [LdB+18]. Low [AZ01, Ano92c, AEY12, CM12, Dav17, IKS07, JH92a, JNW96, JLRA97, KS00, MC17, MHC95, SD00, ABO+17, CBP02, CL09, FABG+19, GE85, GJXZ05, HZL18, KS03, KK11, KHK18, MGRRK14, NVK14, Pfe90, RM11, SZ09, So13, SLWW05, YGZ+10]. low-area [ABO+17]. low-complexity [So13]. Low-contention [AEY12]. Low-Cost
[AZ01, AN02a, JH92a, JLRA97, CL09, GIX05, YGZ+10]. **Low-Density** [MC17]. **Low-Latency** [KS03]. **Low-Level** [MHC95, IKS87, Pfe90]. **Low-Memory** [CBP02]. **Low-Overhead** [SD00, SZ09]. **Low-Power** [KK11, MGRK14]. **Low-Rate** [KHK18]. **Low-Resolution** [GE85]. **Lower** [BMRC98, JR95, LPS+98, TC96, WW97, FT04, ITT04, Li19, NDP13]. **Lower-Dimensional** [TC96]. **Lowest** [MAKWZ13]. **LPAR** [BK95]. **LQR** [ZMZJ17]. **LR** [CB96]. **LTI** [AD12]. **LUT** [HZL18, WD18]. **LUT-Based** [WD18]. **LXCloud** [LACJ18]. **LXCloud-CR** [LACJ18]. **LXCloudFT** [LAC18]. **Lyapunov** [MV94, QOvdG01].

M [Ano92a, GA18, FC95, LZSL06, ZBF05]. **M-TREE** [LZSL06]. **M-VIA** [ZBF05]. **M2M** [TKG+17]. **MAC** [CCHC09, GZY14b, Los08, TLY12]. **Machine** [BG86, BDHF90, CA95b, LWOG02, MB93, RSCQ17, SYO94, SR97a, SR97b, TVS97, TKG+17, ZL93, ZLZ+19, AES11, BH86, CL14, FMIF18, HS86, HPSM91, KHT+14, KS18, KNS91, KA89, KCFP18, LCI+18, Ros85, SM86, Upa13, WF89, ZG13, ZLCZ18, CM93, CRFS94, CGSV93, EHS94, LAD+15, LST+13, LTD+13, Sab94, TKG+17]. **Machines** [BR96, BPN90, BCR96, CW98, ERL90, Gup92, GKH96, HK96, HB97, HLJ01, KRC00, KHS96, KLS90, LW97, MK92, PAM94, RS94, RK95, RGS00, SSG93, SCMB90, San02, TSA97, YFS+15, Zak01, AE88, CG11, Fen90, Fu10, GA90, Gup92, GKH96, HK96, HB97, HLJ01, KRC00, KHS96, KLS90, LW97, MK92, PAM94, RS94, RK95, RGS00, SSG93, SCMB90, San02, TSA97, YFS+15, Zak01, AE88, CG11, Fen90, Fu10, GA90, IKS87, KR10a, KR10b, Koc91, KP05, LC91a, Mar88, MAR87, RT18, SW90, Ume85, ZA91]. **Macroeconomic** [BMB+08]. **Macropipelines** [WAS88]. **Magnetic** [CCN06, LdPLC+19]. **Main** [DM99, BBH+17]. **Maintaining** [HS94a, LMP10, LY98, YC04]. **Maintenance** [CDCD05, MAPF14, WDDK09, X005]. **Major** [SSL04]. **Majority** [ZWS09]. **Make** [AS19]. **Makespan** [LZ05, SSM+07, TFMS15]. **Making** [LLT12, LFA96, VR95, ZKZ18]. **Making-a-stop** [LLT12]. **Malicious** [HMY+18]. **Malleable** [FZW12]. **Malware** [TY17]. **Manage** [ASD09]. **Manageable** [GRZ+18, dAMFD13]. **Management** [AS13, AS15, BR92, CCK00, CY99, HLLY95, HTL99, JM00, KER01, LZ02, LO96, RDS02, RSN01, TJ92, WLID02, YD98, ZRC99, AM11, AK18, BVGV14, CKMP17, Fu10, FX10, GPT06a, GJG88, GBA08, HCM11, HMV07, HC09, HHS12, HLS04, HHHK15, JWH+17, KK11, KLJ+11, LCC+05, LC11, LAGK07, MBS+12, MLMSM12, MCP+18, NAB+11, NTC03, OJP+18, PY09b, PF04, RWB+13, RAN+17, SNMB16, SDDT04, SS00, SB12, SA19, SK05a, SLG+18, SL06, TZ07, TIZ11, TB90, WYW15, WZZ+17, XRB12, ZMC06, ZV12, ZHO03, dKG+10, SHSH17]. **Manager** [Gai87]. **Managers** [AS84]. **Managing** [AKBD10, FGKT97, SEP96, SS17]. **MANET** [YAA10]. **MANETs** [Hu11, YA11, ZA05]. **Manipulation** [PH91]. **Manipulator** [MS85, NS90]. **Many** [CHLL18, DDO+18, HP95, SR97b, AFA13, APRA18, AA16, ARI17, BBBC12, CCK+13, JHF+17, Lai14, IWC+18, LT14, MZ18, PCCM+17, PKT+13, PR13, RLA+16, RLA+17, TCH12, ZLS17]. **Many-Body** [HP95]. **Many-Core** [DDO+18, CHLL18, AFA13, APRA18,
mYyF92, AFD+11, SM89b, WMW09. Maximum-throughput [BLMB13], maxmin [ZLCJ12]. may [STKW12]. Maze [EL97]. Mbps [MLW+97].
MDS2 [ZFS07]. me [MPS16]. Mean [BA92, JBM91, LZ05, XBK07]. Means [DCF13]. Measure [ASR93, Kav93, PS93, SK89a]. Measurement [FPD93, KL01b]. measurements [ASKTZ13, JME13, JZK04]. Measures [GRR93, DGBN14]. Measuring [ZYH94, Df91]. Mechanism [BaJ90, BCD00, JS99, CG11, CMR+18, CCW14, GYY+14, GVA+08, HCI11, K011, MBO11, PMdO11, RA11, Shf09, X005, Yf07, ZBW+17].
Memoriam [Ano04r]. Memories [CH92, PH91, Sin95, Yan93, GKK+13, KR17]. Memory [AD95, ACD+93, AM00, Ah197, ABS98, AS91, BR96, Bas97, BS96a, BCLR96, BF97, Bit92, BCR96, CB95, CP91, CWP98, CAa95b, CJ99b, DS95a, DY99, DAI97, DUSH94, DP00, DH95, DM99, DT92, EP90, FY97, GAG+92, Gag90, Gup92, GHSH96, GHSJ96, HAW97, HMR15, HPT02, HA92, HA05, HLJ01, IWM97, JF95, KC00, KS97a, KHS96, Kel00, K94, LW97, LK98, L01, LA93, MF94, MR94c, MS98, MG91, NSS97, OS98, PHB96, PAM94, PA96, PB99, PL95, PY96, RL96, RSV96, RV95, RJY96, RGS00, SL95, SLL18, Shu95, SS94a, SDS99, Soh96, SC91b, SB84, SN93, Tam18, TJ92, TTG95, TY95, VSIR91, VS16, VN93, WW96, WD94, Wl92, YW91, YMR93, YB01, YL98, Z0k1, ZLH+18, AM13, AL04, ACHY18, BC06, BBO8, BBH+17, BS03, BB18].
memory [BS92, BGM+08, BCF+94, CBP02, Car95, CC16, CGM14, CJA09, CPO+03, CK91, CDAN14, Cyb89, DFP06a, DT11, DJ11, ETS14, Eij18, EKNS17, FZC+05, FJC04, FWM+10, FLC14, GJG88, Gra10b, GL90, HDCM11, HGFF10, HMBW07, HZHS18, HHA14, Hus17, HC91, IH16, IRRS16, ITT04, Joh11, KKR14, KRM14, KKLJ14, KMS10, KP05, LL90, LC91a, LLB+18, LHZ+18, Lop18, MTM10, MSK+16, NSTD91, Nik03, No12, Pad91, PK05b, PL03a, Pop91, QGL+09, QGZ07, RFPA08, RHR12, RSCQ17, SSGG18, SYU07, SB15, SDO07, SDO10, SM04, TW89, TGPUC16, VETT18, WL92, YGZ+10, YLB90, ZKZF18, ZPK+14, ZLWL12, ZFL89, HZL18, MP10].
Memory-Access [Bit92]. Memory-aware [HMR15]. memory-based [No12]. Memory-Bounded [SN93]. Memory-Electric [IWM97]. Memory-side [HA05]. memoryless [BKMT14]. mental [Eij18]. Merge [NT93, SM00]. Merging [VSIR91, AY09, DO89]. Mesh [AP94, Ann94, ADM+94, CCC92, CWW+95, CLT96, CY96, CDP95, DR19, EL97, EH01b, FZVT02, Fer93, GPJA10, HHM94, IM00, JP95, JS94, JB98, KB01, LJJ00b, LME95, MD01, MP96, Moh96, Nak95, NSS99, OS96a, RO92, RR95b, RR95a, SP96, SR94, SM00, Zhu92, ZYO02, ABC+09a, ABC+09b, BB85b, CL03a, Car90, CWL+07, DJDK19, Dja04, DAB+14,
Efe91, FLL14, GDL+11, GH89b, GA16, GNZ18, HWWH08, HWC08, HR89, HR90, KKK11a, KH18, KD08, KT91, LZ08, LC90a, LC91b, Li06b, LC11, LWLD12, Los08, LV07, LV88, MLG05, MBR08, NPGV10, PB00, Raj04, SI86, SSM89, SC91a, SSZ10, SS94b, SZ03, VHH08, WCXL11, WH08, WBRT13, XYKA08, YSL08, FC14]. mesh-based [CL03a, LVB07].

Mesh-Connected [Ann94, ADM+94, yCM98, CCC92, CWW+95, CY96, CDP95, Fer93, HHM94, MD01, Zhu92, ZYO02, BB85b, Car90, HR89, HR90, KT91, LV88, PB90, SI86, SSM89, SC91a]. mesh-NoC-based [FLL14]. mesh-NoC-based [DR19]. Meshes [BLPV95, BPvW96, BA97, BSDE96, BM97, BOS94, COS+95, CL96, DS91, FF98, HCWS94, HJ90c, LS95, LSC00, LS94, MT93a, NS94, OS97, OS96b, OSZ98, OB98, RWY93, ST02, SKK97, SJ95, VB94, WCE97, Wu02, YTR94, YCY00, BG16, BM04a, CI03, CZZ+17, DV13, GLD06, KLC05, LWCC15, LXLS12, Mat06, dMS18].

Meshing [YIY97]. Message [Ano94e, Ano95k, BB93, BKT95, BDH+97, CW92, CZZY90, CD98, DMSH90, dADB96, GBS93, GHS94, GHS95, GHS97, HNM02, Isl97, Kar92, PK96, LC96, LS96, MMCL+17, MD92, PY96, Pra16, SCMB90, WTC08a, WTC08b, XH93, ZN01, BHR91, BR91a, BPW05, CV90, CPA+11, DDNT10, FM07, GH99a, GKO4, HZA+15, Hal05, IRRS16, Kak15, KMS10, Ks13, LR06, LR03a, Ps14, She06, TW87, TGPUC16, vS91, KTF03, PS01]. message-driven [GK04]. message-optimal [CV09]. Message-Passing [CW92, dADB96, GBS93, HNM02, MD92, XH93, ZN01, DDNT10, GH99a, IR99a, IR99b, Ks13, LR06, LR03a, Ps14, She06, TW87, TGPUC16, vS91, KTF03, PS01]. Messages [AISS97, DLP99, FBDC99, LTWY95, LTY96, SKH96, ASKTZ13, BD04, CL90, GPT06b, KLC05, XLL15]. Messengers [FBDC99]. Meta [SWC+91, D006, GVBB13, KKS+12, LGZ+10, ZHO03]. meta-heuristic [ZHO03]. meta-learning [LGZ+10]. Meta-rules [SWC+91]. meta-scheduling [GVBB13]. meta-task [D006]. metacomputers [Li05, LCM+06]. metacomputing [BGH+03]. metadata [HOE+09, ZV14]. metaheuristic [MMK+11, ROB+18, TLW18, WMD13]. Metaheuristics [TH11, TH13]. Metalevel [Zim96]. metaphor [SK96b]. Metasystems [GWWL94]. Method [AC16, BC94, GH92, KLK98, PB99, WS97b, XL92, XL95, ZHY94, AST12, ABC+09b, ATDH13, BFH09, BR91a, BBB+06, CLC+17, CW15, DM17, GNZ18, KPO5, LR14, Lux85, Mit07, MVP17, MA19, MRT18, ORR03, SHL+13, SMK93, WCKD06, XWC+08, YLL17, ZB03, dAMCFN12, PPTV+10].

Method-Level [AC16]. Methodological [Bev02]. methodologies [DMS+16, PSGS17]. Methodology [Ano92a, BJ99, KME92, LR93, MB92, NMS93, PA94, PA01, SKR93, SK93, CSJ+13, Che86, DSEP17, GL89, KME89, LdSB+18, MSAZ10a, MSAZ10b, OMT+17, PF91]. Methods [Bas97, BSGM90, BR95c, Cas93, FGKT97, GL92, Kap93, KB01, Par92, SHT+95, Wor93, XH93, BJDQ86, BM08, CEGS07, DKU+15, EE05, KG04, LWCC15, PAS15, SWP90, SSZ10, SHRM19, UAPM07, VGAB08]. Metric
metrics
[BSW07, DKUČ15, PARB14]. MGR [DAPR18]. MIC [WTWZ16]. Michel
[Ano96l]. micMR [WTWZ16]. micro [KKH17, KC17]. micro-benchmarks
[BF13, WSH+03]. MicroClAn [BF13]. Microelectronic [THN+93].
Microelectronic [THN+93].
Mobile-Process-Based [SMR96]. Mobility [FCF00, GCB00, KO12, BEN12, CKT11, FX06, HC09, LL19, RKK06, RBP11, SK05a].

Model [AGW01, AISS97, AM17, Ano97k, BPJG92, CC91, DL98, DKUC15, DG94, DF94, FTL92, Gao93, GS98, GDN98, HK96, HR92b, HR92a, JRR99, KSP+92, KCV99, MNB95, NDZA99, OKB95, QY94, SANY94, SAC+98, SSK96, WSA+94, YZS96, eW95, AAH17, ASKO16, AHZ11, ASES15, BMB08, BBBC12, BiC90, BG05, CBD09, CH06a, CXX+18, CDJ+89, CRC02, DZC17, DJH11, DKC14, DRT07, GJ12, GPSH19, HMY+18, IEWK17, JLWX11, Kal04, KyLPC17, KC17, LR14, LMGLGLG17, LFH+03, LMXJ18, LTX19, LTKS90, LCJ18, LA06, LGK+12, LWWQ18, LXZ13, MM06, MMN+18, MMVL11, NTKS90, SL90, SK05b, TR89, TLL+18, TJCB10, VHH08, WWW17b, gWW18, XYZW14, YJB91, ZA91, dR09, GB06, KR11].

Model-Based [KSP+92]. Model-driven [SS18, ASES15, LGK+12].

Modeling [ATM01, CR91, CCM92, Chi92, CM93, CLRW00, DDO18, DI91, FMW+94, GHC+17, JZ05, JZK04, KNS91, LP96b, LpJS+18, PLD14, Pat01, PMMMA15, QSO5, RP98, SCM99, SFT+13, SCK03, SSO2, TK07, AP91c, FX06, HES11, JWH+17, Joh91, KME09, KKK+11b, LWCC15, LC13, LF03, MCM+11, MSAZ11, NIK11, ORW+18, RA11, SV08, UMM+18, YL12, ZYW+15].

Modelling [Wu11, HNSA07, KME89, KKTZ13, RK18, SAOKM03, Sie16].

65

TVS97, VSIR91, VB02, WNA+94, Wan96, AFK14, ACU08, BXA08, BOT13, BFKW13, BSMH08, BFKP04, Car90, CDS10, CHC05, CCLS94, DMB+03, DKUC+15, GRV08, IEWK17, JSWB92, JTZZ11, JM15, JP09, JW89, KAP90, KSS+07, KRY87, Kum17, KIH15, LLL06, LY10, LPX05a, LDP+14, LSWC14, LVB07, LWWQ18, MVB05, MHBW86, PTZ06, PHS04, PLK+18, SK09, SPRG+12, SI13, SZ03, SRT+18, YB90, ZWWX16, TJCB10]. multiple-bus

Multiple-Pass [MHBW86, YB90]. Multiple-Writer [KS97a]. multiplex [ZXGD18]. Multiplexed [AM95, PD92, QMCL94, QM01, ZLPP01]. Multiplexing [Fag92, Li01, NFEG97, ASES15, CLR91, ITT04, LV15, MBW16, MPG17b, PR13, SKH15]. multiplicity [PMHM19]. multiplier [MS87]. Multiprecision [MS87]. multiprefix [Coh90]. Multiprocessing [CDH84, MBK+92, ABC+88, JS86, ZLWL12]. Multiprocessor [BW95b, CKL99, CP91, DS96, DRC90, DFN+94, GH90, GM00, HP00, HC95, HN91, KS97b, LC02, LF92, Lym94, MF94, MMR98, MT95, MMVR97, MD92, OM90, PL95, PM96, PP92, QY94, RS92b, SEP96, Soh96, WF93, XZ96, ZQ93, AA10, AOM50, BHR91, BR91a, BYG+18, BS92, CRJ10b, DI91, DMS+16, GL89, HDT+05, HA91, HC91, JW91, KA05, Lee90, LH03, Li16, LW89, LVB07, McA98, PK05a, PI90, SK09, SM99a, SYYU07, TS91, YL89, ZZ90, ZQMM11]. Multiprocessors [AMB95, AM95, BJ99, Bas97, BS96a, BL96, BC01, BLG01, CB95, DS95a, D98, DZDZ01, DT92, GY92, GZ97, HJ01, HA92, KSB94, KB96b, KA97, LA93, MB92, MS98, MG91, NB93, NS97, NPP+02, PH91, PF96, PT97, RL96, RJY96, SMH94, SCM99, SY01, SD99, SD00, SC91b, TGG95, VSIR91, YW91, YM93, YL98, AP91b, BC05, CLM90, CRJ10a, Cyb89, FZC+05, FG95, Gai90, GL90, HCM11, HRRG+11, KA03, KK11, LEN90, LE91, LPK+10, LWG14, NST91, Nik03, RFPAG08, SPBR91, SD91, SMH91, SA90, YB90, DOC96]. Multiprogrammed [MS98, NSS97, NPP+02, YL98]. multithrea...
mutually [WW18a]. MVAMIN [JBM91]. myoelectric [BAT+19].

Myrinet [KL01b, QS05].

N [BM17a, GSPH19]. N-modular [BM17a]. name [TB90]. NAND [No12].
nanoarchitectures [FCG+14]. nanophotonic [HRG+11]. nanoscale
[PLD14, ZRN+14]. nanotechnology [MKN14, MNK12]. NAP [KF90b].
NAS [JV06, WAS95]. Natural [LS95, VB96]. NC [LO91, RDL95]. Near
[FTL92, HA92, San99, UR94, CCN06]. Near-Maximum [FTL92].
Near-Neighbor [HA92]. Near-Optimal [San99]. Nearest
[HH01, OS96b, JHL+18, KS08, NA06, NMN+14, SDG17, Wan07].
Nearest-Neighbor [OS96b]. Nearly [Nas94, SSM89]. NEAT [LST17].
Necessary [SJ96]. Necessity [MC03]. need [LTG14]. needed [IR12].
needs [CHLL18]. Negotiation [LL98]. Neighbor
[HA92, OS96b, UR94, JHL+18, KS08, MKC+09, Wan07, ZMG+16].
Neighborhood [JdSJC+15, LYC02]. neighbors [NA06]. neighbours
[NMN+14, SDG17]. NERSC [ROE+18]. Nested [BHS+94, CWW96,
DRR96, HS93, KBG92, Mer96, RSS99, SCB09, AGM06, BFTV87, EB09].
Nests [DR95]. Net
[BPJG92, BDF92, Chi92, Fer92, SP90, KK17, NM95, WL92]. Netfinity
[BAPH01]. Nets [BPJG92, BYT19, CMT92, ESCV15]. Network
[AA93, AAD98, ABM+92, ABCP96, BJS18, BBH+97, BBCD02, BA95, BC01,
BF97, BST01, CGKK97, CW01, Cha95, CW92, DLLX97, DSAUM99, DVZ96,
DR18, DBP94, DKKMV01, DH95, ESMG96, ES12, FFK97, FAM96, FTL92,
GRS97, GS01a, GH93, HH97, HPT+97, KC95, Kop97, LST17, LS97, LK94,
LK10, LC96, MM00, MJ94, MSS88, NBS99, OM84, PN97a, PN97b, Pat01,
RCY97, RJY96, SM00, SBAM96, SS95, TSC01, Tze91, UR94, WMG01,
YZ96, ZLP97, ZMPE00, ZW00, dBL95, AP91b, AHA+16, ARI17, Aro04d,
AF06, AM11, AS19, BFH+17, BM14, BCO+12, BXA08, Bat05, BWP+11,
BJ15, BAL05, BPA06, CK004, CMMN10, CMR+18, CKNO7, CLG+16,
CD04, CWL+07, CWP12, Che89, CV09, DE91, DR19, DAPR18, DYL+12,
FK89, Gai87, GJ12, GZMC08, HWW08, HD10, HWC08, HMY+18].
network
[IZ12, IS06, JF12, JXW06, Jb99, JZK04, KERUM04, KJD03, KMC16, KO11,
KO12, KCD08, KRS15, KH12, KO90, KPR88, LT10, LAD+96, LSS+11a,
LSS+11b, LB12, LTD+93, LY08, LL12, LÜ14, LY13, LRS18, LWGC14,
Nap90, NS90, NM17, NGQM12, OO05, PL06, RH05, RD05, RCG18, RGAN18,
RSL12, SMW18, SSB19, SHK19, SCW+18, SS05, STK12, SY04, SK97a,
Sta17, SMK93, TM06, TDP15, TCHC12, VM95, VHH10, VR86, VRM10,
WL11, WW18b, WMC+18, WI11, WLZ+18, WWA+18, WHS+18, YK04,
YLZW18, ZWS09, ZY12, ZWRI07, dg91, AA14, SLW10, SLG+18, ZCF+17].
network-aware [RCG18]. Network-Based
MYM10, MAPF14, MV88, MPV12, MA11, MSZ05, MBMC19, MCS14, MS88, MVBM05, MBR08, MYD+11, MKC+09, MAJJ05, MVPM04, MVP17, MBO11, MSAZ11, MHBW86, MK08b, NPGV10, NJ91, NSA11, NFHL13, NC09, NMN+14, NZA13, OWK14, OM10, OMSGNSG05, Pak89, Par05, PK05a, PL06, PLY15, Pe90, PCX+11, PCX+14, PSC+16, PKW+10, PW16, PW17, PV07, Pla08, PLR07, PMCC18, PB09, RM10, RM11, REK10a, REK10b, RLP14, RF5+12, RKK06, RBP+11, RA11, RHL08, SCN12, SAOKZ05a.

networks
[SaokZ05b, SMP15, SB12, SX08, SZ09, SZMK13, SGAC14, SSZ10, SGS08, SKMM04, SK05a, SL89, SR88b, SR90, Ste17, SK05b, SCLL10, SK11, SJS11, SH89, TBHA07, TLY12, TODQ18, TDC05, TC13, TMK+17, TM10, TDM05, TR08, TCS+10, TWQ12, VO89, Var91, VA03, VMR10, WCC02, WW07, WG08, WTB+08, WGS08, WMW09, WBTM09, WW12, WCL+13, WYW15, WFLJ16, WW18a, Wcxl11, Wl90, Wn85, Wts03, Wh08, Wl10, Wbrt13, Xyka08, XclR07, Xhg03, Xq04, XWC+08, XHz+10, XG03, YpgYJlc13, Yme06, Yf09, Ydz+18, Yl89, Ysl08, Yww12, Zv06, Zmg+16, Zmc06, Zw11, Zbr11, Zlcj12, Zcmj12, Zxp09, Zxgd18, Zscx18, Zdc06, Ztq17, Zls17, Zho03, Zc04, DObg+15, All11, Ldzh+14, Ldp+14, Lk11, Mlcfh+18, Mr03, Memeh17, Prp09, Rbp+11].

networks-on-chip
[HRG+11, KKK+11b, Lhlm14, All11, Lk11, Memeh17]. Neural
[AA93, Ano92c, Bst01, Cw92, Ftl92, Hpt+97, Jh92a, Kjd03, Kri92, Lwog02, MM00, Mlcfh+18, Mon94, Ns92, Piu01, Ram92, Tvo02, Tw92, Zzc92, Ew95, Arb89, Fk89, Gh89a, Joh89, Kh89, Ogrv+12, Pg+12, Smkl93, Tor89, Tdp15, Vm95]. Neural-Network [Cw92]. Neuro [Mt97b]. Neuro-Chip [Mt97b]. Neurocomputer [Gfb+92, Ram92]. Neurocomputing [Ebe94]. neuronal [Vo89]. neutrino [AA+15]. neutrosophic [Mhlz16]. Newest [Ak17]. Next
[Nab+11, Hpb+10, Rkk06, Sb04]. Next-generation
[Nab+11, Hpb+10, Rkk06]. nexus [Lc14a, Fkt96]. NIC [Jby+05], nine [Dm17]. nm [Hrf+11]. NMC [Sany94]. NN [Zht16]. No [Kf90b, Ir12]. NoC
[Aa16, Czpp16, Caf+11, Djdk19, Fll14, Hrf+11, Lzj11, Lw16a, Lk11]. NoC-based [Hrf+11, Caf+11, Lzj+11, Lw16a]. NoCs
[Bk18, Cg17, Lk10, Mp10]. Node [Aad03, Hac17, Kks09, Akbd10, Dl11, Dm17, Fklb08, gm13, kh17, Kva18, Lai14, Lai15, Lai17, Lds16, PCX+11, PCX+14, Rmhr17, Sjg19, Tr08, Zah12]. node-disjoint
[Lai14, Lai15, Lai17]. Node-independent [Hac17]. Node-ranking
[Aad03]. Nodes [Gp97, Slnk09, Ss95, Ck91, Db86, Lks14, Lww18, Nm17, Sl13, Wgs08, Xgy07]. noise [Sft+13]. Non
[Bh05, Tvt+17, Bgh+03, Bbfn14, Bkmt14, Cll09, Goh+13, Grdb05, Gtqls12, Hzhs18, Kk10, Kr17, Lai86, Lii6a, Mm07c, Mar05, Nkv14, Qs05, Wmy+17, Wlnl06, Zpk+14]. non-blocking [Kr17, Qs05]. non-Cartesian [Goh+13]. non-clairvoyant [Li06a]. Non-cooperative
non-dedicated [MAR05, WLNL06].
non-deterministic [GTGLSA12].
non-first-in-first-out [Lai86].
non-functional [WMY+17].
non-linear [BGH+03].
non-memoryless [BKMT14].
non-uniform [BBFN14, CLL09, MM07c].
non-volatile [HZHS18, NKV14, ZPK+14].
Nonatomic [Sin95].
Nonblocking [JSM94, MS98].
Noncooperative [GC05].
Nondedicated [Ano97k, YZS96].
nondense [WF90].
Nondeterministic [CY95].
nonequivalent [NJ91].
Nonexpansive [Bah00].
Nonloop [Bec96].
Nonoblivious [FY96].
Nonredundant [Wu94].
nonscaling [Zha11].
Nontrivial [ACH18].
Nonuniform [AA95, KRW96, KR97, LK90, OP98, WLR90].
nonzero [ASA18].
nonzero-based [ASA18].
normal [ZB03].
Normally [TOR+14].
NoSQL [Luc18].
Note [Ano01-34, Ano02j, Pel95, Num07, Ano04d].
Notes [THSS87].
Nothing [LT94, PVGG06].
note [PCX+14].
Notification [ABP92].
notifications [APRA18].
Noting [HTL99].
notion [LJ86].
Novel [GMSS+11, LYC02, LLCL98, OS96a, BJS18, CWLD05, CCHC09, CLC+17, COF+17, CSW+17, GB11, Hus17, JdSJC+15, LTB02, LMJC11, MSGS+13, PLSM18, SDG17, SKMM04, WLL16, WXZ+18, YF09, ZV09a, ZVL11, ZBR11, ZWWX16, ZLCZ18].
NP [BRR01, MPZ09].
NP-Hard [BRR01].
NSGA [SMO14].
NT [BAHP01].
Null [DSM90, BD04].
NUMA [FCP+15, LE91, WF93].
Number [Alu97, Ano92a, Ano92c, Ano93e, Ano96l, Ano97k, Ano00d, Bro96, BS96c, CS93b, SS95, ZAW94, DDNS06, FSZ07, GA18, HSSM07, IC05, Li14, PK89, Pet18, PH16].
Numbers [NS94, Can18, JD12].
Numerical [BK95, Ben15, LLCC02, RW01, CMPS18, EFG+14, NAK04].
NUTS [LK90].
NVHT [HZHS18].
NVIDIA [JM15, KME09].
NVM [ZLH+18].

O [AW95, Cho93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, GGD93, GFPC14, JSCB95, JSWB92, LTH97, MLG05, NSS99, SpPCC02, No12, WHW+17, WLLW09].
O-Intensive [EH01a, CkLCK04, CkLCK05, HZZ+19].
obfuscation [MMN+18].
Object [CSSY94, CS95b, DR98, GCB+00, HS00, JRR99, KC99a, LLS93, LTH97, Lop13, SG96, WPKK94, WLID02, WH97, ACFK07, Chi95, HD10, KC04, LLLC15, LFH+03, LC11, SA19, SK90, SCK30, TCS+10, YJB91, ZV09a].
Object-Based [FR98, WLLD02, ZV09a].
Object-Oriented [CSSY94, CS95b, HS00, SG96, Ch95, YJB91].
object-space-parallel [ACFK07].
extive [ADD18, COV13, COF+17, FP14, LÜ14, MMK+11].
objectives [FEH+14].
Objects [CLZ00, CDP95, HPT02, Kap93, SBAM96, VWHL96, WG93, Won99, van96, AEFL11, SB15].
Oblivious [CRSB13, IM00, ABD14, YME06].
OBQA [ESGQ+11].
observability [MH18].
observations [RTZ11, ZHO03].
observatory [AAA+15].
obstacles [SJS11].
obstructed [DWX10].
Obtaining [AFT+00, VAS+13].
Occam [LC92].
Occamflow [GL89].
Ocean [SAC+98, SH92b, Nes10].
Octree
Octrees [BFG94]. Odd [DS96, NT93, SL95, ZDC06]. Odd-Even [NT93]. ODEs [FKB17, KKR14, Wor93]. ODMRP [OPG08]. OFDMA [UM17]. Off [BCLR96, GK98, LPU97, TOR+14, BS92, ECLV12, PF08, ZB09]. off-line [BS92]. off-the-shelf [PF08, ZB09]. offer [Trä09]. offloading [LYJ+19, WL04]. offs [CLR90, LCB16]. OLAP [DKRC+15]. Olden [CR96]. OLSR [KKK11a]. OLSR-aware [KKK11a]. Omega [Ano93c, CS93b, SZ00b, GL90, CS92]. omega-like [GL90]. omnipotent [BBD18]. OmpSs [PSB+19]. on-chip [BYG+18, DJDK19, KB12, LNA12, LKY13, LXX14, LTL12, LCG14, MYD+11, PMCC18, UM17]. On-demand [YLYC11, BS90, FVLB09, HZDP12, LSZZ15, NKK16, SFEF06, WL05, XG03]. On-Line [BDKM94, LTY96, Yen01, DJ98, EL88, LHK03, KM88, SL90]. on-machine [AES11]. once [ACHY18]. One [Ano93c, Bog17, CS93b, LP95, PTA08, SR97a, SR97b, YA98, ZB97, BPBR11, Che05, CS92, Deh90, Lai14, Yan04]. one-copy [Deh90]. One-Copy [Ano93c, CS93b, CS92]. One-Dimensional [LP95, PTA08]. One-Sided [ZB97]. one-step [Yan04]. one-to-all [Che05]. One-to-Many [SR97b, Lai14]. One-to-One [SR97a]. Online [CRH11, DTK11b, HCWS94, JTC+18, KKR14, LQM+12, LHM14, QM01, ZLC14, ACZ13, AFG+19, BFG04, BJL18, CXX+18, DFL017, LI06a, SHC14, TIZ11, WY+18]. Only [GS00, SLKK12]. ONoC [TKKH17]. OnRamp [FKR+17]. onto [BR08, BS90, BS+01, DAYA02, Dja04, DQR+09, ERL90, ERS90, GH98a, GW99, KMS+06, LLS07, MM00, MAS+99, XH91]. Ontology [PRP09]. Ontology-based [PRP09]. OP2 [GMS+13]. opacity [KKW17]. Open [CA94, DDO+18, ZSW14]. open-source [ZSW14]. OpenCL [AB13, MC17, PHW+13, PSB+19, RBB17, Str12, DAT17]. OpenMP [AGMJ06, CCM+06, HLCZ00, LNW+12, LA06, PARB14]. OpenMP-based [LNW+12]. operand [SR88a]. Operating [MRL92, SEP96, CDJ+89, FABG+19]. Operation [HLJ01, Cohn90, KNS91]. Operational [RHH96]. Operations [BRZ98, DP98, FGW95, HTL99, HLJ98, KS95, PKD97, Van94, ZK94, BM04b, DT11, LMR05, JSW92]. operator [CL85, TG03]. Operators [BDKM94, SR94, SMO14, WH17]. Opportunistic [LYJ+19, AM07, DBW+18, LWW18, WW18a, WWA+18, dKG+10]. Opportunities [PJ18]. opportunity [KS03]. opposition [WRW13]. opposition-based [WRW13]. OPS5 [SF89, HS86]. Optical [AK93, Ano93c, BA97, BC01, CS93b, CLM90, DP99, DSD+97, DR18, ELS94, ES97, GP93, HP97a, HOPT99, IWM97, LJJ00a, LJJ00b, LPZ99, MR03, MC93, MB93, MG93, OS97, OS93, PEC95, QM01, RP98, SHC93, SL97, Szy95, SH98, THN+93, TBV90, WLY01, WHT00, YWP00, YMG01, ZMPE00, ZLPP01, CS10, CS92, KK17, KH12, LY13, MaE98, NAK04, PLD14, WG08, dR09]. Optically [DH95, EH01b, Guo94, KM97, MKY+97, QMCL94, GMH+91, TRSS06]. Optimal [AMS94, AH12, AR97, AKPT99, BNS00, BBM+02, BSDE96, BS+91, BOW94, BHK+94, CW00, CS93a, CA95a, CW92, CA96, DS95b,
Optimal

Optimisation

Optimization

Optimization-based

Optimistic

Optimations

Optimize

Optimized

Optimizer

Opto-electronic

Optoelectronic

Order

Ordered

Organizations
Orthogonal-access [HC91]. Orthogonally [CP98]. Other [Kap93, Kum17].
Output [AR97, JD12, Wu02, GS91b, HC91, SM89a].
Outerplanar [GS99, KW02, TSFZ14]. Output [ASR93, GC07, PD92, Ros99, ST02, GS03a, PY09a, ST06].
Output-sensitive [GC07, GS03a]. outsourced [XLC+18]. outsourcing [CX YT].
Overlapping [CQ95, Wil92, CHC05, KSG03]. Overlap [QH96, ALTV13].
Overlapped [Lin93a, KNS91, SWLZ17]. Overlapping [CQ95, Wil92, CHC05, KSG03].
Overlays [HASB16, ZH07]. Overloading [AOSM04]. oversubscription [KKLJ14]. Overview [EMP+96, KS93, ABC+88, SSZ10].
Page [Ano18y, Ano18z, Ano18-27, Ano18-28, LE91, NPP+02, HSSM07, MTM10, TH08]. Pagename [KRSZ02]. pages [Ano96l, Ano97k, Ano00d, CS93b]. Paging [DM09, Li17]. PAHON [DR18].
Pair [DP98]. Pairs [BGR96, TU92, KS91, DCA+15]. Pairwise [GP00, CK08]. PAME [YLZW18]. PaMeLA [GDL+11]. Pancake [BS03, KAM94]. pancyclicity [XHZ16]. panel [Rob09]. Paper [Ano01m, Ros07, OY13]. Papers [Ano95i, Ano95j, Ano96j, Ano96i, Ano97i, Ano97j, Ano98k, Ano98i, Ano98j, Ano99i, Ano99j, Ano99d, Ano99e, Ano99f, Ano00a, Ano00c, Ano00f, Ano00g, Ano00h, Ano01c, Ano01d, Ano01e, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t, Ano02k, Ano02l, Ano02m, Ano02n, Ano02o, Ano02p, Ben15, Snl03, Mue13, Phi13, Rob09].
Para [CD98]. Paradigm [KBD05, RS92d, BAMM05, CVJ09, KDSS18, LD15, MSJ05, Sie16]. Paradigm-oriented [KBD05]. Paradigms
[Ano99g, CEF+95, YMR93, XQ04]. **Paragon** [CCRS92]. **Parallel**

[ASR93, AGW01, AT94, AGF94, AAL95, ANT02, AISS97, AP94, A1s01, A1sJ91, Alu97, AFM03, AS13, AS97, AS95, AH94, Ano92a, Ano93a, Ano96j, Ano97j, Ano97k, Ano99g, Ano100d, Ano102v, ASC+18, ABZ95, AKP95, ADM+94, AS94, ADS98, AB93, BK95, BJ96, BR96, BCD95, BBD+91, B194, BW08, BBH97, BAI90, BDF92, BGR96, BS97, BCV94, BFG94, BN94, BB93, BMM02, BV13, BL94, Bev02, BBH+98, BKC17, BP95, BEE00, BS90, BHS94, BDHF90, BP98, BR95c, BR95r, BMRW07, BMRC98, BMRC99, BS90, BTZ98, Bro96, BX93, BDH+97, BA01b, BGT02, BMCP98, BW18, BM95, BNS99, B09, CP97, CMT93, CP98, CGKK97, COV13, Cas93, CC91, CD97, CDC99, CB99, CkkK00, CvdBL+08, CCRS92, CGL+95, CCC90, CS95b, CW95, CH92]. **Parallel**

[CV91, CDJL09, CN93, CP92, Cho93, CHR94, CY96, CWP98, CB96, CQ95, CRD17, CGA98, CH92, CP94, CA95b, CHGM01, CRFS94, CLZ00, CBdCD00, Cuz11, DDO+18, DFHH13, DM90a, DM95, DOP98, DP00, DM92, DRC90, DH91a, DS84, DO89, DH94, DDGK13, DN94, DJM94, DSW94, DT01, DSD+97, DBF90, DD95, DZ97, DJT03, ES96, ERL90, ERA95, EMM94, ELS94, ES97, EHS94, EHM95, Fahl96, FLL14, FZW12, FBRW03, FGcF17, FTM+14, Fer95, FR96b, Fer92, FM98, FLS+97, FPS11, FC95, FKCC97, FJ93, FMW+94, Fre96, FT94, GG94, GP94, GCB00, GGN93, GV94, Ger98, GBE93, GGD93, GMSS+11, GJP96, GC01, GSC96, GM95, GSP92, Gra09, GL92, GH9b, GH92, GWH06, GNZ18, GK93, GHSJ96, GS99, GRR+05, Hag97, HHMR94, HK96, HH97, HGCC96, Han89]. **Parallel**

[HES11, HB97, HB97, HP95, HR92b, HR92a, HC98, HP9b, H91, HTB98, HR98, IK94, IZ95, IWM97, IWM05, JW94, JBL02, JSM94, Jia99, KR97, KF9a, KME92, Kap93, KSA95, Kar92, KK98b, Kau94, KZ96, KKN13, KR98, KB01, KKS08, KE93, KS93, Kri92, KRS13, kW02, KG94, KG94, KM92, KA97, KC99b, LSA93, Lan09, LWCC15, LP99a, LA07, LMCF90, LW97, LT97, LJKS02, LS97, LC90b, LAS+97, LP99, Li01, LWG02, LYL08, LSS+11a, LST+13, LSH96, LSS8, Lin91, Lin93b, LA03, L094, LLCC02, LP97, LK11, LFA96, LKB+15, MB96a, M9H93, Mah95, MM93, MS99a, MLC+90, MR94a, MPZ09, MT96, MB96b, MP93, MSGS+13, MSH90, MD98, MZC18, MHC95, MB92, MSd+95, MMAL90, Mer96, Mi93, Mr91, MB93, MG98, Moh96, MSAZ10a, MNK12, MS96, MS99b]. **Parallel**

[NSS97, Nas94, NFEG97, NMS93, NS97, Ngo06, NT90, NKC97, NH93, Nic94, Nie94, Nik04, NZA13, NSPPC02, NDZA99, NS92, NPY+97, O005, OY00, OB98, OY13, OP98, ORR03, OR97, OT19, PH19, PD95, PP96, PDP17, PH00, Par98, PE93, Par96, PL03a, PL94, PCX+14, PLA08, PAH+98, PAJC97, PBB+17, PRS14, PSE+01, QZ94, QH96, QvovG01, REK10a, Raj01, RSS96, Ram92, RL02, RS92b, Rec84, RW01, RG00, RPS93, RSL12, RS90, RIZ90, RJA97, Ros99, Ros07, RW93, SSG93, SH90, SS96, San98, SM96, S9n2, SAOKMA02, SH97, GC93, Sch90, SM99b, SW96, Sch91, Sd97, SAF05, SR97a, SR97b, SAC+98, Sche06, S892, SSHC00, STN92, Shu95, SGS99, S190, SM00, SRK95, SSRV94, SB93, SC95, Ski96, Sni03, Solf96, SL97, SHRM19, SLKK13].
Parallel
[SIR92, SK93, SMKL93, Ste95, SSK96, SWC+91, SF90, SYG92, SS97, Szy95, TH11, Tät11, TSA07, TWS7, Ten90, TAS+01, TR96, THBF97, TVO92, TZ00, TK08, TF01, UAPM07, Upa13, VSM96, VGAB08, WB94, WCE97, WLY01, WM92, WNA+94, WPKK94, WB96, WTC08a, WMJW09, WRW13, WSA+94, WD94, Wee01, Wei98, WMG01, Wei02, WA02, WAS95, WS95, WSKa77, Wor93, Woh91, WHT00, WHT02, XP10, YBX+13, YZS96, YWAT13, YB95, YIY97, YB01, YP96, Zak01, Zep91, ZYH94, ZK94, ZBK97, Zhub92, ZH99, ZM94a, ZO97, ZYO02, ZA91, ACYS08, AKDMN15, Ada17, AL91, ABGV11, AFG+19, AP91c, ATH91, Ara90, AMM+18, AE88, ANP07, AG86, ADDB18, AB13, AJG18, ACFK07, Bad04, BC05, BCM87, BB87, BCC104, BKC+15, BBM08, BA06, BCF05, BAH04, BNBR16, BFH09].

parallel
[BS87, BSG90, BR91b, BKMT14, BGM+08, Bož09, BCK+13, BSH15, CK88, CP10a, CTS17, CR91, CDS10, CSML10, CCE+17, CCS06, CRL04, CEGL07, CVK+18b, Che86, CC87, CZZ+17, CLOL17, CFJW13, CKWT17, CJ07, CT94, CDJ+89, CL85, CZ90, CB06, CD95, CK91, CM12, CB11, dADC18, DFP06a, DMM8, DRT07, DM90b, DM90c, DQR+09, DUW86, DLW+12, DAG+17, DRR13, DM94, DWHL87, Ebn04, EB13, ESTA94, EE05, EI07, FCG04, FGG08, FKB17, FCS91, FSD04, FKR+17, FCG+14, GMF12, GBV13, GG89, GS91a, GP91, GT04, GMRG16, GWWL94, GAC+17, GS03a, GC07, GB06, HM06, HSS10, HZZ+19, HOE+09, HSH10, Hdi13, HS86, HA91, Hsi04, HSS17, mH14, JT88, JSWB92, JMS86, JL05, JJ12, JST12, JP09, JZ05, JV06, JZF+15, KKR14, KEA07, KR10a, KR10b, KHT+14, KV88, Kep03].

parallel
[KHK03, KKS+12, KCR14, KN18a, KN18b, KM03, Koc91, KSSG14, KBC+10, KK86, KS91, KMP+06, KP05, KHI15, LBMG15, LT02, Las13, LPK+10, Li06a, Li06b, LT07, LY12, LMB+17, LJZ+19, LTKS90, LC92, LH04, LS05, LH09, LŽ+11, LG14, LGL13, LF03, Luk85, ME04, Mar88, MV88, McD98, MCT06, MTL+18b, Men18, MP87, MMK+11, MAR05, NVK+11, NDW17, NDSZ18, NW88, Nic07, NZY+11, NCTT09, OS04, OTKT12, PB90, PCC04, PMALL11, PPTV+10, PA15, PK89, PPSV15, PF91, PVPM06, PHS04, Pop91, PGKV18, PF04, PRG88, QJ05, RA08, RS04, RGD03, Rao16, RAN+17, ROB+18, RG87, Ros89, RSW91, RTGC91, RBB17, SI68, SS03, SPBR91, SV08, SI89, SC91a, SS06, STP09, Sch14, SP13, SC04, SZW05, SF05, SK91, SCMHI3, SA08, Ski6, SMH+14, Sta04, SDG08, SSDIB+10, SR91].

parallel
[SR16, Suk18, SHC14, SRT+18, SSG13, TM06, Tan18, TW89, Ter16, TRSS06, TS91, Trác09, TLW18, UGG+11, VD04, VS16, VA07, Vis87, WL00, WLL16, WC91, WJV07, WBTM09, WLC15, WRHR91, WJD91, WZ91, WIB12, WFG89, WLWW09, WGCZ09, XL11, XS11, XYZW14, YJB91, YO11, YZLT09, YDZ18, YBM13, Zha11, ZFL89, ZJ06, ZWF06, ZBW+17, dVCP06, dGP06, CPO+03, Cza13, FTK14, KR11, Re84, YO11].

Parallelism [Bec96, BAM93, Bog17, CGN+13, DRST02, FM85, FKKC97, FY97, GSG+93, HKT+91, KRC00, MR94b, MK92, SS93, SW91, SH92b, SV00, SG96, XMMD17, GV86, HS03, Irw88, MM15, Ozt11, PVGG06, RS08, RSCQ17, SCB09, TBE+17, VBF13, WTYX13, ZLWL12, DeG88].

Parallelization [BPST96, BF01, DHR96, HO94, KR97, Kub17, NM95, NC97, Pov99, SANY94, UZZS96, WCKD06, AAD05, AGM106, CVJ09, IBP08, LMY+11, MPN17, Nes10, SGE91, WCE91].

Parallelized [DR98, MJ01, SPVvH03, ZMZJ17].

Parallelizing [HWW96, LLS+16, RHH96, Tse90, WCH+17, DMCFCM03].

Parameter [FCF00, ZRN+14, APK18, LZY+18, SPVvH03, DAPR18].

Parameterized [dR09, NSTN91, PW96].

Parameterizing [TSHH01].

Parameters [Fer90, WRW13].

Parametric [DR95].

Parametrisation [MLCFH+18].

Parentheses [MW95].

Pareto [BFM06].

Parity [CT93, MC17, MK93].

ParList [FMP98].

Parser [CB96].

PARSIMONY [GC01].

Part [RLA+16, RLA+17, SAOKZ05a, SAOKZ05b].

Partial [FY96, HBS17, HHC98, HS97, VB94, DGDF10, IR12, JL05, LÜ14, OT19, Ros89, TR16, Vel89].

Partially [FI04, KKS+12, SKK91, Tay05].

participants [GHK+12].

participation [AK18].

Particle [BTG02, PAH+98, SDG08, CvdBL+08, LTNS90, VBDC13].

particle-in-cell [LTNS90].

Particle-To-Grid [SDG08].

Particles [LLCC02].

Particles-Turbulence [LLCC02].

Partite [EMM94, SL+98].

Partition [SCG10, LM05].

Partitionability [SZ00b].

Partitionable [LC14b, NMS93, SB84, CL91b, LC90a, LC91b, PW17].

Partitioned [CB99, LJKS02, YI96, CGS6, Gai90,.GO0+16, Mat06, OT86, SR88a, SM08a, MR03].

Partitioner [SSB98].

Partitioning [Als01, AYIE98, BW96, Bon02, CN93, GK98, HS93, Kar95, KK98a, KK98b, Lee90, Mah95, Moh96, MFS96, Nic94, PFI96, PB99, TG99, WCE97, WF93, ASA18, AHA+16, ACU08, CP05, DKE+15, HKO04, SL+12, GHC+17, LVP07, LSX14, LZX11, M107, PA04, PA08, RMU14, SW01, STA12, SLK13, TK08, IWC+18].

Partitions [SS96, MMS09, SBC+12a].

partner [GCCO7].

party [GCS06].

PARULEL [SWC+91].

Pascal [PLD87, Ree84].

Pascal-based [PLD97].

Pass [Wan96, DD96, MPN17].

passable [VR86].

Passing [BB93, BDH+97, CW92, CD98, dADB96, GES93, HNM02, Is97, Kar92, KTF03, LK96, MD92, PY96, PS01, SCM90, XH93, ZN01, BPW05, DDNT10, GH98a, Ha05, IR116, KAK15, KMS10, KLS06, PS14, She06, TG16, vS91].

Passive [MR03, DS04b, YT05].

Password [Lop18].

Password-based [Lop18].

Past [TAS+01].

patch [GA16, Meg91].

patch-based [GA16].

Patches [GM95].

Path [BLG01, DP00, FF98, HTB98, IZ95, LK96, MKM16, NT96, OC07, RMC97, TU92, T200, ATH91, ANP07, CHCG18, DGNW13, DM90b, EDÖ05, Hsi04, KS91, LS03, LFFJ18, NS90, Ros89, SYYU07, VIL+14, WCC02, YME06, YC12, DCA+15].

Path-Based [FF98, RMC97].

Paths [BGR96, BP02, GT97, GP00, DMB+03, FLP07, Lai14, Lai15, Lai17, MT14, NCA+12, PK04b, WFL16].

Pattern [AA93, BMRC99, LW95, Lon04, PDP17].

Patternlets [Ada17].

Patterns
LZZ+11, LGL13, LB18, LCB16, LVB07, LGK+12, LWWQ18, MC17, MGS+13, MZC18, MRS+14, MVBO5, MG09, MBO11, MLK12, MBH+08, MGRRK14, NSTM91, Nap90, ND12, NTC03, No12, NRM+09, OSL05, PCMM+17, Par05, PRHB06, PHV+13, PVRS17, PGKV18, RH05, RM90, RTCG91, SPRG+12, SSFp11, SAOKZ05a, SAOKZ05b, SCB08, SD91, SC04, STMZ18, SAB+92, SA11, SE15, SR16, TTH12, TB90, TMM06, TDO7, UMM+18, WSB+08, WS06, WH08, WG11, WLZ+18, YAA10, ZYY+15, ZFY+16, ZLCZ18, dAT17].

Precise [JR95, KB96b, MMVR97, BKS05, DUW86, Li06b, XLL15, ZV09b]. Precise [KSJC17].

Preceding [Yen01]. Preconditioned [BSGM90, CP10b]. preconditions [GLW14]. preconditions [SZW05].

Predicates [CK97, GCKM97, RS92b, Ksh12, SKK14]. Predictability [SB12]. Predictable [CKK00, SB12]. Predicting [FFK97, Lun99, SSG93, SZD07, SFT04, Wei02, BCD+15, KBC19].

Prediction [ASKO16, Ano97k, AYB+15, CTD99, DBW+18, KL01b, PH00, WDS+18, WWA+18, YSZ96, YJ96, ARVZ14, CDB04, CXX+18, CXQ+18, DZC17, DKC14, KVA18, LGZ+10, LC14a, LKM12, LWWQ18, MVP17, PMO11, uRL+18, SM08a, SK05a, Udd19, WWY+18]. Prediction-based [AYB+15, DBW+18].

Predictability [SB12]. Predictable [CKK00, SB12]. Predicting [FFK97, Lun99, SSG93, SZD07, SFT04, Wei02, BCD+15, KBC19].
AY89, ANP07, BCMV15, BB85a, BSG90, BFG04, BFM06, Bož09, BW18, DBA+18, dADC18, DM90c, EE05, FZWL12, FMM08, GT04, HSSM07, Hsi04, HC11, IHM05, Joh89, KSS91, LSS88, LWR+03, LYL08, LCCL10, LLCZ19, LSH1, LH09, MG03, Ngo06, OA10, PMV05, PBS08, PDB13, Sch13, SU87, Sta17, WLL16, WCEA10, WZ91, WMG13, Cza13.

problem-size-independent [LH09]. **Problem-Solving** [KBC+01, LWR+03]. **Problems** [Ano96i, Ano99g, ADS01, BK95, BOS+95, BEE00, BGOS95, CB95, DS02, ESMG96, FR96b, FR98, FT94, GL92, KL01a, LSH96, MS94, MP96, MS99b, OR97, RS96b, Ser97, SN93, Ten90, TF01, WM92, WLR90, WH08, ATH91, AG86, BGH+03, BS03, BBD90, CMMT13, CEGS07, KJD03, LW06a, Lin91, Los08, LGG08, LV88, MPZ09, Men18, Nik04, PPV15, WRW13, WMG13, YS11, ZTFK16].

procedural [Kan05]. **procedure** [Kub17]. **procedures** [DWHL87]. **Process** [CCM92, IAS+92, Kar95, KSP+92, KOW97, Qia97, Ric98, SMR96, SS93, SF90, Ale19, Ara90, Bic90, Gai87, Gai90, GA18, HRF+97, HT+90, HRR97, HSJP87, HR90, IWM97, KSL85, Kri92, LWY97, LS97, LS85, LT94, MSH90, MT85, NMS98, NMS93, OY13, Roses07, SH90, Sn03, SD88b, SSK96, SWC+91, TASS+01, TIBF97, VAF19, VB02, Wec01, WRC+02, WSS93, Wei98, WA02, YL12, YJL16, ZM94a, ZM94b, AAA+15, ATD+13, AM11, BB87, BK13, BAT+19, BHS13, CC08, CLA+18, CRL04, CHL18, CCN06, CM12, DFL017, DW04, EKNS17, GSWW04, GWL94, HBS17, HR89, JMS86, JKD+15, KLO8b, KNS91, KKN13, KN18a, KN18b, Lee91, LB12, LL18, LB+15, MTL+18b, MS86, NLB+18, PYP+10, PI90, PGP+12, PVM06, RCG18, Ren11, RAN+17, RG87, RSCG91, SCB08, SIY14, SS18, SK89b, Sto87, SCL10, SI13, SA90, TZH+06, Tr09, VETT18, WW07, Wan07, WJD91, WL10].

processing [XHY07, XQ04, ZMCP11, ZHH15, Ano93a, PRS14]. **Processor** [AW95, AERBL92, Ann94, BG86, CW93, CWW+95, CkLCK04, CkLCK05, DY99, DDD98, GW99, Goe94, Guo94, HO94, Hwa97, JB98, KC98, KF90b, KGB92, LSH91, Msd9+5, Moh96, MNM98, MBK+92, NS97, OS98, Par96, PTO1, RKK97, SS93, SHC93, SS97, WCF94, YD98, YL98, ZH92, ZYO02, ACY08, Bat05, Bod89, CL88, CL85, DK11, Deh90, El07, Gro85, HK08, HA05, Kri91, Lee91, LC13, Line05, MM07b, OT86, PL87, PR13, RR05, RLH03, SI86, SI89, SM89, ShL+13, SKK91, ST85, SAJ13, SE15, SHRM19, TR08, TDAR18, WIR+18, Wiz92, XP10, YBM13, LTKS90].

Processor-efficient [LS91]. **Processor-embedded** [CkLCK04, CkLCK05]. **processor-in-memory** [HA05]. **processor-node** [TR08]. **Processors** [CMS92, DBKF90, GR96, HAG97, HQPT99, HBH93, JR95, LPU97, MP96, AR17, AjHeC90, BM17a, BD05, Bat05, BB85b, BR91b, CBM+08, CN14, CCK11, CHL18, CKK+13, CRSB13, CK91, DGD+17, DPRW85, DWYB10,
FSP18, IC05, JJ12, JHF$^+$17, JZF$^+$15, KK88, LV15, NS12, NZ17, PK89, SPC$^+$17, SNMB16, SC91a, SP13, XTN12, ZXB14. producer [KK11].

producer-consumer [KK11]. **Product** [AAD02, AFG$^+$19, GE94, MSC96, CI03, Dim04, Dja06, ISAZ07, ISAZ10, JD12, MSAZ11, ST85]. **Production** [BBD$^+$91, HKT$^+$91, KM91, KM92, Nie94, Sch91, DM90c, GF89, HS86, SM86, TDBL13]. productivity [VFAD17]. **Products** [ANS97, WLD00, CP10b].

Professor [Ano04r]. **profiles** [YWAT13]. Profiling [BST01, KC17, uRIL$^+$18]. **Profit** [LWZZ12, AM06, KSSK16, LLCZ19, ZV12].

Profit-driven [LWZZ12]. **Program** [BDF92, BE95, DBP94, DD95, ERL90, Fer92, FJ93, GSG$^+$93, LSCA93, LMCF90, LAS$^+$97, MDD97, Mi93, NBM93, PP96, PS01, RRS$^+$08, SH92b, The02, WF93, YB01, ZYH94, GJG88, Kan05, RM90, ESA03]. programmable [AC89, HHA14, MM07b, PYP$^+$10]. Programming [AT94, AM93, AB84, BK95, BJ99, BCD95, Bal90, BB93, CP97, COV13, CCRS92, CCC92, CEF$^+$95, CBdCD00, CJ99b, DRR13, FC95, Fre96, FBDc99, GPP94, GW96, GAG$^+$92, GLC01, HR00, JW94, JRR99, NT90, PA94, PM96, RAS96, SSOB02, Sn95, SC95, VBF13, VFAD17, ZZZ92, AE88, AB13, AJG18, BAMA05, BYG$^+$18, Bog17, Boz09, BHS13, BLZ$^+$18, CK88, CCC$^+$04, CTS17, CCE$^+$17, DRT07, Ej18, EE05, EC89, ESA03, FGcF17, GL89, Hdr13, HSS17, IEW17, KKVI05, KSC13, KZ11, Mss88, RK18, RSR04, RR05, RSW91, SSDlB$^+$10, TFMS15, YQTV12].

programming-based [KKVI05]. **Programs** [AH94, BB93, BCR96, BLG01, CMT93, CDY97, CGL$^+$95, CMS92, DR98, dADB96, ERA95, Fah96, Gup92, GHJS96, HLJ01, Kar92, KY96, LP97, Lun94, Lmn99, Mah95, MI92, QZ94, QI96, RJA97, RW93, SKR93, SG93, SSSH00, SK93, TR96, TG97, YI96, ZN01, ZH99, Ay09, Bic09, CAC16, CAX13, DeG88, DMG18, FLKB08, GO016, HK08, HS03, LPK$^+$10, LC91a, LC92, LZZ$^+$11, McD99, NCT$^+$07, Nic07, Pop91, SCM13, THSS87, YDTZ18, ZXB14].

Progressive [RGS00, YIY97]. **Project** [BSH15, FCO90]. Projection [AAP01, HSJP87, FGL$^+$11, NCA$^+$12]. Projection-Based [HSJP87].

projections [KM03]. **PROLOG** [SS97]. promoting [ABC07]. **prone** [DDG$^+$17, GK15, MFVP08, OWK14]. **Pronto** [PF08]. PROOF [YJB91].

proofs [AP16]. propagated [SHK19]. **Propagation** [CDP95, DF94, AAFV04, BEN12, CKN07, CDB04, KMMZ06, PLR07]. Propagations [WD92]. proper [NGQM12]. **Properties** [BR95a, CW01, DC94, GK93, KAM94, YN92, NS90, PL06, WMY$^+$17, YDTZ18]. properties-aware [WMY$^+$17]. property [PB09]. proportionality [KR12, KCR14]. **Proposal** [HPT$^+$97, ESGQ$^+$14, NKK16, VO89]. proposals [RFPAG08]. Protecting [SY04, LZSL06]. protection [DHS06, Lop13, Lop18, YGZ$^+$10]. protein [FGZ03, GZ08, LYL08, LVB07, Ngo06, WDS$^+$18, YL12]. **Protocol** [BMMS01, BH17, CKL99, GRS97, GS96, GS01b, HP00, KUFM02, KB96a, LL98, Seh95, The02, AM13, ARD14, ALF03, BDM18, BOY10, CL03a, CCHC09, CS08, CS09, CH05, EBE08, Eri88, EDH$^+$17, GCS06, GZY14b, HLS12, HZDP12,
LS06, Lun90, LM09, MCdS+06, MAGL13, MPG17a, NPGV10, NSA11, PGs06, SMPMLVLS11, TLY12, WCCH18, ZP06, ZWS09, ZLCJ12, SJS11.

Protocols [AS00, DS95a, Dah99, Dol97, DSS95, GS00, HNM02, KCDZ95, AP03, BW89, BSW07, BPA06, BJL18, CXY14, CB06, CDAN14, FW05, GS03b, JBY+05, KLP10, LPX05a, Los08, MAM05, MMCL+17, MS15, OSL05, RFS+12, Seb91, VA03, WTC08a, WTC08b, WCYR08, mYA91].

providing [Zah12]. provisioning [SHSH17]. protocol [AS00, DS95a, Dah99, Dol97, DSS95, GS00, HNM02, KCDZ95, AP03, BW89, BSW07, BPA06, BJL18, CXY14, CB06, CDAN14, FW05, GS03b, JBY+05, KLP10, LPX05a, Los08, MAM05, MMCL+17, MS15, OSL05, RFS+12, Seb91, VA03, WTC08a, WTC08b, WCYR08, mYA91].

QAP [BMCP98]. QC [ACYS08]. QC-2 [ACYS08]. QCD [IBP08]. QoE [KS18]. QoS [BOY10, CS08, CKML12, DMB+03, DÖO6, Kim11, Kim17, KKK+11b, LL07, LZZ+11, MS00, NP09, YO00, SJB12, SA19, TBHA07, XY+07, XG03, YZL08, YJ+10]. QoS-aware [CKML12, LZZ+11, NP09, YJ+10]. QR [Kau94]. QSM [RGD03]. Quadratic [Cza13, WNA+94, MP88]. Quadrate [MD92]. Quadtree [IK93, WF90]. quadtrees [HR89]. Qualitative [Buc92, WMY+17, WTY+18]. Quality [LAZC00, NZY+11, AH11, AH12, DV13, FC14, LNA12, SS08]. quality-aware [AH12]. quality-of-service [LNA12]. Quantifying [AAVF04, FX10, LDCZ97, Nik03]. Quantitative [Buc92, NBM93, YZW+15, GXYZ13, KC17, MMAL+06, WMY+17, WTY+18, ZI08]. Quantization [AFG+19, ZCK+02, Nic88]. Quantization-based [ZCK+02]. Quantized [FKB17], quartet [SPvH03]. Quasi [AB05, Nik04]. Quasi-perfect [AB05], quasi-threshold [Nik04]. Quasirandom [Bro96, CJ07]. queens [AY89]. queries [BBCQ13, CI86, LSZ+15, LKB+15, PAG+18, RHL08, SSKS11]. Query [AyJ93, CS95b, DM92, HASB16, SK90, PRP09, CHLL18, GB11, JHL+18, KSI04, KKN13, LL18, NSA10, SCL10, SJG19, WL10, ZHT16]. Querying [TT10, DTK11b]. Queue
[BTZ98, CLT96, Joh94, RO92, Che90, CP04b, ESGQ+11, ACYS08]. queued [PY09a]. Queueing [dG91, HM06, KS03, MGRRK14]. Queues [BM97, BCLR96, Kop97, PD92, San98, ACH18, FC90, ST05]. Quicksort [BX93, CV91], quiescent [MRRT07]. Quorum [NM02]. Quorum-Based [NM02]. quorums [BJPPM+08].

randomization [CJ07, FII04]. Randomized [AFM09, BDF01, CDCD05, HBJ98, HT06, LW06b, MVM04, RR95a, Raj96, San98, Vis97, Bad04, DJT03, SK05b]. Randomly [SS96]. Range [SIR92, GB11, KKN13, MKM16, PAR14, TDC05, YWAT13]. range-free [MKM16]. ranges [CHCG18, CYZ06]. Ranking [SGS99, AAD03, Vis87]. Rapid [PRHB06, CL85, XSYG18]. rapidly [Li10]. rare [BV93]. raster [Wri91]. Rate [MO97, OJP+18, RGS00, UD96, AGWY11, GA18, Hs11, KHK18, MAHKZ12, SCW+18]. Rate-based [OJP+18]. Ratio [MO97].

Reachability [CCM01]. reaction [XLHT13]. Reactivation [CW93]. Reactive [DLS00, OOSGVG+16, HPT07, NPGV10]. Reactor [KK08]. Read [IRRS16, AM12b, CH06a, CG10, GNS09, IR12]. read-dominated [AM12b]. read-modify-write [CH06a]. read-write [CG10]. Read/write [IRRS16, GNS09, IR12]. Reader [JBP00, HV09]. readers [FKKK16]. reads [SPRG+12]. Ready [JM00]. Real [AAL95, AK93, Ano92c, BJPG92, BA96, BA01b, CS93a, Cha94, DJ98, EMP+96, GMM00, JH92a, KS97b, Lee03, LTY96, LM96, LML+10, MMRS98, MMVR97, Moh97, MSST99, OYO0, PS93, RDS02, RU99, RAS96, STN92, THBF97, WLID02, Zim96, van96, AOSM04, AOSM05, BW08, BVGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, EDÖ05, FSP18, FC14, GGZ+17, Gos90, HOVC09, HA06, HV13, HL07, JLWX11, JZZ+17, JHL+18, KK17, LHK03, LZY09, ML0G12, MAM05, MAKWZ13, MVP17, NA06, QJ05, RLH03, SA19, TZH+06, WL05, XO05, ZZJ+18, ZHH15, ZB03, ZQMM11, ZHLQ12]. Real-Time
[AAL95, AK93, Ano92c, BPJG92, BA96, BA01b, CS93a, Cha94, DJ98, EMP+96, GMM00, JH92a, KS97b, LTY96, LM96, MMRS98, MMVR97, Moli97, MSST99, OY00, PS93, RDS02, RU99, RAS96, STN92, THBF97, WLID02, Zim96, van96, Lee03, LML+10, AOSM04, AOSM05, BGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, EDØ05, FC14, GZG+17, Gos90, HOVC09, HA06, HV13, HL07, JZZ+17, JHL+18, KKW17, LHK03, LZCY09, MLDG12, MAM05, MAKWZ13, QJ05, RLH03, SA19, TZH+06, WL05, XØ05, ZZJ+18, ZHH15, ZQMM11, ZHLQ12]. realistic [KNS06, SJS11]. RealTimeTalk [EMP+96]. rear [CXQ+18]. rear-end [CXQ+18]. rearrangeability [DD96]. Rearrangeable [CS93c, HJDH01, FY86, Pak89]. Rearrangement [BVB02, GL92]. Reasoning [PS88, Ste95, eW95]. recall [BGBC+16]. recipients [Ros07]. reciprocal [SL90]. reciprocity [HBF12]. Reclaiming [GMM00, MMVR97]. reclamation [HMBW07]. Recognition [BMRC99, RGU08, SP96, WPKK94, CNLGL18, CWZ+18, LO91, PD05, RK18, SZR+18]. recommendation [COF+17, LMXJ18, WTY+18]. recommender [HWL18]. reconfigurability [ZXYO11]. Reconfigurable [AT94, BAGS95, BSDE96, BBR94, BM97, BA95, BG05, COS+95, CGG+09, DS01, EL97, EHI01b, FZVT02, HQPT99, HCWS94, JP95, JS94, JB98, KF90a, LS95, LPZ99, LR93, MD01, MG93, MT97b, Nak95, NS94, ORWT+18, OS96a, TVS97, TBPV00, WHT00, dr09, AM13, AHA+16, BM04a, BPP05, CDJ+89, DS04a, FX06, HLQ18, HPSM91, Lla17, Mat06, MP08, PPP14, PVG09, SJ89, SL89, TRSS06, TJCB10, WJD91]. Reconfiguration [CGA98, QMCL94, UR94, YTR94, BAPRS91, DMG18, DBLB+12, HBS17, JWSG14, LBMG15, LIH+16, FSPR05, ZBW+17]. Reconstructing [BDG+15, OOW95]. reconstruction [BDRB14, FCG04, FGGO8, HES10, KM03, OGRV+12]. reconstructions [SHT+08]. recoverable [ZSCX18]. Recovery [CP01, FCFO0, JF95, LY10, LS01, MFS93, BG05, DW03, MM04, MM06, MS02, PG06, TTH12, ZWY+15]. rectangle [Deh09, LV88]. rectangles [KF05a]. Rectangular [CWOW96, DJ04, SBG+12]. Rectilinear [Nic94]. Recurrence [CP94, Car90, MP87]. Recurrences [BCZ95, GP94, NCTT09]. Recurrent [WT92]. Recursive [CW01, CB95, CTZ99, GHSJ96, KC99b, Lee94, LT07, RS92b, SC99, ZYO02, AKDMN15, ERS90, MM15, SMKL93, DC94]. red [BE13, DMI+19]. red-black [BE13]. Redaction [SWC+91]. redirect [ACC012]. Redistribution [PT97, RS96, BB+06, GP05, KNNH18]. Reduce [KLS90, SD99, CRD12, LMGLGL17, LMR05, LMS90, MP08, PY09c]. Reduced [AP94, CC87, Gro85, HJ90b, LC13]. reduced-instruction-set [Gro85]. Reducible [DH94]. Reducing [BCM87, BD04, FG05, GS00, IHI16, PB90, SS93, AS18, CK13, CX05, RWB+13]. Reduction [PA97, RJJY96, SS93, SM92b, BV13, BW18, Li17, LS88, Sch87, SPP13, ST08a, YAK15]. redundance [BM17a, RMHR17]. Redundant [CTK11, MT93b, MFS93, MFS96]. ReduxSTM [PGRP17]. Reevaluating [SC10]. Reference [KS00, CH06a, FP06, SPRG+12, WL92]. references
Refillable [ALH+09]. refined [Mit07]. Refinement
[FLS+07, NA02, ASC+18, DAB+14, GA16, GNZ18, Mit07]. refinement-tree
[Mit07]. reflectance [YWAT13]. Reflections [Zim96]. reflective [KKKP12].
reformation [LHT08]. refresh [OPG08]. Region
[CRFS94, WLR90, DDNS06, MGG03, TYH09]. Regions [GS01b]. Register
[JBP00, YPCW16]. registers [GNS09]. Regression [HK01, MZZC12].
Regression-based [MZZC12]. regressive [KBC19]. Regular [KBG92, NIR86, SZB92, SS92, SS95, TC96, TL96, E07, Hal05, Lee90, Li10, WG08].
Regularizing [SSKC¸15]. Regulated [PD92]. regulation [RSCQ17].
reindexing [DQR09]. reinforcement [HHK15, OPR18, TXLL14, XRB12].
ReKonf [PPP14]. Relabel [AS95]. Related
[Ann94, Do97, JR92, Man94, MS99b, OD95a, BBFN12, CMPS18].
Relating [TJCB10]. Relation [HCR12]. relational [TR16]. Relations
[OO85, CG86, CC87, KLP10]. Relationship [MDD97, XS11]. relationships
[CRWX12]. Relaxation [MHC95, Tor89, ATDH13, RS08]. Relaying
[KKW17]. relay [LR03a]. relaying [TBHA07]. Release
[KCDZ95, LTWY95]. Reliability [BDGR13, GP93, GST09, HHC98, MT39b, TLLV10, AH06, HHH15, JST12, KWH13, SM09, JQ05, TLQS12, TTH12, TY09, VRM10, WWW17b, WWY+18, XS11].
Reliability-aware [TLLV10]. reliability-driven [QJ05, TLQS12]. reliability-oriented
[KWH13]. Reliable [AHH17, BG05, DM09, GS01b, KGNI98, LHP07, MPS16, Tze93, AA16, ACPT15, HOVC09, KLS04, KL05, MK08a, MRRT07, OWK14, ZW13, DAPR18]. reloading [BBS13]. Relocation [YCY+00].
ReLog [ZTGL17]. Remapping [OR97, ACFK07, FXW03, YGZ+10]. Remappings
[CA96]. remark [PMV06]. Remote [DM99, KS00, PLK+18, WM04, BVGV14, BBB+06, CH06a, Lon04, MS05, WGCZ09, ZWR07]. Remotely
[DSAUM99]. Removal [KK95, SSL04]. Renaming [Gil94, AP16].
Rendering [Tay02, WS97a, ACFK07, FLL14, WJ07]. rendezvous
[DJH11, MP15, PBS04]. renewable [AK18]. Rent [Oza04]. reordering
[LMGLGLG17]. Repartitioning [MNM98, PP06, SKK97, CBD+09].
repeated [JTC+18]. Replacement [CKL99, BV13, YCC05]. Replay
[ZN01, NRM+09]. Replica [RAB08, GM14b, WLL08]. Replicable
[AMM+18]. Replicas [HJD+01, TR16, ZWS09]. Replicated
[JSN94, L096, RJKL11, STA12, ASB18]. Replication
[CA95a, JRR99, L99, MD13, ARDQ18, BCC+18, DS04b, KA08, KR12, LA04, S09, WW12, WWW17b, ZWL03]. replication-based [WWW17b].
replications [ZV14]. Report [FC090, SAB+92, KUM17]. repositories
[KUA07, VLG+18]. Representation
[CJ99a, TLLW94, C3JY04, EHS94, JZ05, V089, WF90, WTR91].
Representational [Ebe94]. representations [BHR91, NCTT09].
Representative [BW96]. representing [BR91a, NAK04]. reproducible
[PK05c]. Reproducing [CMPS18]. reprogrammable [LLY15].
reprogramming [MAGL13, ZTGL17]. Reputation [HBC15, LS10, SL06].
reputation-driven [LS10]. request [XHY07, ZV14]. requesting [XO05].
Requests [TSC01, BPRG04]. Require [AF17]. Requirement
[DDD98, HV13, WW18a]. Requirement-aware [HV13]. Requirements
[CZPP16, DÖ06, MVM04]. rerouting [JWSG14]. rescue [WWA+18].
Research
[Ano01-34, GLW14, Kum17, MLZY17, WZ13, Hua17, Lan09, LZ11, PGS17].
Research-oriented [Kum17, PGS17]. reservation [RKK06]. reservations
[CRH11]. Resetttable [AKD06]. Resetting [YH97]. Residual
[DRR96, SR95]. residue [DPRW85, PH16, Tay87]. resilience [WXZ05].
resilient [DFHH13, LAGK07, TKKH17]. RESILIENT [ZPK+14]. resizable
[SR16]. resizing [CPLY18]. Resolution [YB95, GOH+13, GE85, LJ05].
Resolution [YB95, GOH+13, GE85, LJ05].
Resolving [LKK94, Zha11]. resonance [CCN06]. Resource
[AB84, BVGV14, BMF05, BSH15, BKK+11, CKK00, GMM00, ISAZ10, KM17, MMVR97, NSTN91, OM84, RDS02, RSN01, SM94, SZMK13, SSVC10, YT05, ZAB18]. Resource-constrained [VMMB10]. Resource-efficient [SZMK13]. Resources
[HS94b, ASKO16, AM06, AM07, AM11, CFI+18, LKM12, LZI+11, LDP+14, NVK+11, NSDZ18, NAK04, SSM+06, SSM+07, YZS15]. respectable [GHK+12]. Response [TPS+18, DHK04, HPB+10, VA07].
Restart [LACJ18, NC13]. restarts [GK15]. restoration [UAPM07].
Restricted [Fra92, MSSE02, BS03, BHM08, DeG88, JZF+15]. Restrictions
[Li92]. result [Lon04]. resultants [Eme13]. Results
[IPK85, Sch91, SH92b, BR95b, HSH10, SZ03]. Retargetability [MB96b].
Rethink [WW18a]. Retraction [PCX+14]. Retrieval
[AA93, CLV95, KTP17, KV88, Lon04, SSM+17]. REU [Hua17]. Reuse
[BC11, CCHC09, DSEP17, DM1+19, DK04]. revealing [AF17]. Reversal
[NTA96, Ede91]. reversals [BS03]. Reverse [LP97, JXW06, NMN+14].
review [ZGJ+18]. Reviewer
[Ano08, Ano09, Ano10b, Ano11k, Ano12n, Ano14g, Ano15k]. reviewers
[Gra10a, KL08a]. revised [KP17]. revisit [LLS07]. revisited
[DJ16, GDP08, GXY13]. Revisiting [MR09, SPH13]. Reward
[SM92a, CMT92]. rewarding [CFT+18]. RF [UM17]. RFID
[CRK+09, CL09]. rhombic [Wil90]. Riccati [MV94]. Rigid [JBL02, LF03].
Rings [BA95, CMS92, FFK97, Goe94, GH96, HJD+01, MBK+92, ZBH, BG86, LLKY13, LLDL15, MM04, PV89, RM10, RKS87, YCO4, ZWS09].
Rings [DVZ96]. Rings
[FKSW97, GR96, KY02, KUFM02, LHS97, LSC00, MS94, Man97, YTR94, CL91a, FKK+04, LC92, LW06b, PR12, SMO+18, Sil90, Tsu07, WT09]. RISC
[HC91, LPU97, MSC96]. RISC-based [HC91]. RISE [AZW13].
risin [ORR03]. risk [FGL+11, PVRS17]. RMF [YT05]. RMI [CCK+08].

S [AGWY11, ASST05, BPJG92]. S-Nets [BPJG92]. SABA [ZVL15]. sacrificing [FKKR16]. Safe [FM99a, MS98, CDD+15, HV09]. safety
SAGE [Num09], salesman [WMG13], Sampling [OS96a, SS92, BBB11, SMP15], SAMR [CP05, LTL06], SAN [SM92a], SAN-Based [SM92a]. sandboxing [SFEF06], SAT [SHA17], satellite [TZH+06], Satisfaction [GHH92], Satisfiability [Soh96, Joh89], Saturation [Tze91], SAUCE [HSS17], save [FKLB08], Saving [DKY01, SSGZ13], Sawchuk [Ano93e], SBCI [AS19], Scala [GKK+13], Scalability [AFT+00, BCV94, BP01, DVW94, KS91, KG94, MR94a, PTK+13, QZ94, SSRV94, Sun02, ZHY94, ZFS07, dSS11, CLG+16, CSW08, CP10b, GA16, KR06, LdPLC+19, CLG+16, CSW08, ZMPE00, ZB09, ZXMR18, ZLS17, AKDMN15, ACPT15, ADDB18, BGM+08, CGL+14, CS08, CAK13, CJ17, CD95, DKKV15, DS04a, FPPS12, GZ08, GM13, GRZ+18, GREC91, HSY10, HWC08, KHT+14, KCFP18, LHK03, LZY11, LC07, LB09, MK08a, MVP17, NKK16, ND12, RBOH+18, SSTP09, Ter16, TCH12, WJ07, WCEA10, XCL03, XJS03, YQTV12, SLG18], Scalar [VH93, SKH15, Sol13], scalar/vector [Sol13], ScalaTrace [NRM+09]. Scale [ABDS02, BMCP98, FZVT02, GK93, IHM94, KL84, LK98, MYM10, OK01, RFM94, VN93, AGF+19, ACCP12, BM16, BMB+08, BCC+18, BMF05, CC16, CLOL17, DB11, DBCF13, DLW+12, IEWK17, KESA07, KSSL16, KBC+10, LGZ+10, LYL08, LZY11, Luc18, LWCG14, MBMC19, NAB+11, PTZ06, RW02, SFT+13, VM03, WCWO17, WNL06, WBRT13, XHY07, YZV+15, ZV09a, ZVL11]. Scale-free [MYM10]. Scaleable [BMRC98]. scaled [KNHH18], scaler [VD18], scales [PLK+18]. Scaling [CVK+18a, SSS07, TBPV00, YFS+15, FKLB08, FZ14, Num07, VD18, YÖ11]. Scan [KB96b]. scanners [CCN06]. scatter [BM04b, LMR05, dSAJ15]. scatter-based [dSAJ15]. scattering [DB86, LPLFMC+12]. scatternet [SLWW05]. SCC [LTG14]. SCFN [SLW10]. scenario [DBW+18], scene [OGRV+12]. schedule [KSG03]. Scheduled [LB90, HA06]. Scheduler [NPP+02, HDJ08, HHA14, KS03, LS10, LB09, SCG10, ZLWZ18, MSK+16]. Scheduler-Activated [NPP+02]. schedules [CDR12, Dja06, DQR+09, ZXYO11]. Scheduling [AGF94, ALL09, AMN00, AGG98, AS97, AYIE98, AKPT99, AjHeC90, BPJG92, BD05, BPN90, Bec96, BD11, BCLR96, BSH15, CDY97, CL91b, CLL09, CJ99a, DA97, DR95, DDD98, DP99, DS84, DAYA02, DÖ06, DJ98, ERL90, ERA95, FAGW95, FVLB09, FR92, FR96a, FKSW97, Gai90, GR96, GY92, GM99, HO94, JSCB95, JSWB92, JR95, JZF+15, KS97b, KB96b, KA97, KA99, LPU97, LYE02, Lun94, MMRS98, Mah95, MD13, MSD+95, MSSE02, MYD95, Moh97, MSST99, NSSS99, OH02, PKN08, PR12, PAM94, PS93,
WGC09, WWA+18, YF09, Zep91, ZCS+18, ZH07, CB11. searchable [WCCH18]. Searching [NBP98, NSM98, SH97, SGAC14, BA06, KIH15, LTWW12, Sch89a]. secondary [BLZ+18]. Section [Seb95]. Sections [BW96]. Secure [BKT95, CPA+11, PRN+19, ZHT16, ZBR11, GTGLSA12, JZZ+17, KTP17, LAK10, LLW12, REK10a, REK10b, SSX14, Siec16, WCCH18, ZSCX18].

Securing [SL06]. Security [BKT95, CPA+11, PRN+19, ZHT16, ZBR11, BK18, GTGLSA12, JZZ+17, KTP17, LAK10, LLW12, REK10a, REK10b, SSX14, Siec16, WCCH18, ZSCX18].

Section [Seb95]. Sections [BW96]. Secure [BKT95, CPA+11, PRN+19, ZHT16, ZBR11, GTGLSA12, JZZ+17, KTP17, LAK10, LLW12, REK10a, REK10b, SSX14, Siec16, WCCH18, ZSCX18].

Selected [Ben15]. Selecting [NGQM12, SSZ93, KERUM04]. Selection [JK00, JK96, PT01, Raj96, RW97, RCY97, Raj01, SH97, SB02, VS99, WSA+94, WRC+02, Bad04, CKML12, DMJ+19, EDÖ05, GM14b, KHN17, LZY+18, LCJ+18, LGK+12, MLZL16, RH05, RAB08, RD05, RTZ11, SSS88, WLST16, CTC11]. selection-based [EDÖ05]. selections [JW89]. selective [SSG18, XYG07]. selectivity [CTT16, GÖÖ16]. selectivity-driven [CTT16].

Self [Ano02u, AS96, ABZ95, BGJD02, Bec96, BBCD02, BAGS95, BPPR11, CDD+15, CW05, CT04, DB08, Dol97, DPBNT12, FZ14, GH02, GS03b, HPT07, HPT02, HMN02, JMJ14, KY02, LLLC15, Lla17, MM07a, NM02, PK05c, SZB92, SEP96, ASKTZ13, BFG+03, BBS13, BBD18, BR91b, BFKP04, BZH06, CDDL10, CAK13, CRA+08, DLV11, DJ16, GK10, IZ12, KO11, KO90, LBMG15, LHX+16, LSH+13, dAMFds13, MYM10, MC91, NJ91, PPTV+10, SLWW05, TWQS12, Tur12, WRW13, ZBW+17].

Self-Simulation [BAGS95]. Self-Sorting [ABZ95]. Self-Stabilization [GH02, HPT02]. Self-Stabilizing [Ano02u, AS96, BGJD02, BBCD02, Dol97, HMN02, KY02, NM02, BPBR11, CDD+15, CW05, DB08, DPBNT12, GS03b, JMJ14, MM07a, BFG+03, BBS13, BBD18, CDDL10, CAK13, DLV11, DJ16, GK10, Tur12].

self-tuning [HPT07]. selfish [WGS08]. Semantic [FKJG08, RHL08, SLG+18, CM93, EHL+15, KLJ+11, LR05, LKB+15, MLZY17, MYY+17, MA11, NSAS10, ZHS07]. Semantics [JK89, HK05, MTL+18b]. Semi [DS04b, ZXS96, CTT16, KMS06].

Semi-empirical [XZS96]. Semi-passive [DS04b]. semi-static [KMS06].
sensing [GDCC18, HP06, ZRN+14]. Sensitive [VR95, Ano04d, CP05, GS03a, GC07, Hu11, JL11, NLB+18, OWK14, PFJ04,
RGC+11, SRT+18, WCXL11, YK04, ZZJ+18]. Sensitivity [HJ09a]. Sensor [KSI04, LDZ+14, LDP+14, STN92, THGY15, ASM09, Anm16, AHG12,
Ana14, AMT13, AYB+15, BXA08, BWP+11, BOY10, BPA06, BEN12,
BJL18, BZLI04, CCW14, CKN07, CRWX12, CDR09a, CDR09b, CT04,
DW06, DLLL11, DGBN14, DJH11, DKM10, DFP06b, DH04, EM11, ECP+18,
GHY10, GDP08, GGY+14, GZY14b, GM14a, HZA+15, HMV07,
HS12, HP06, HZDP12, HJLR12, IB04, JF12, JLY12, JBS14, JHPL13, KKV105,
KSSL16, KOA09, KO11, K012, KKKP12, KKTZ13, KGN11, LDZ+17, LY10,
LL12a, LL12b, Li14, LLB+18, LU14, LLW07, LZC11, LDS16, LWL18, LHLP,
MAGL13, MSM09, MYM10, MBMC19, MK08b, NSA11, NC09, OMSGNSG05,
PFJ04, PLY15, PCX+11, PCX+14, PLR07, PB09, RM10, RM11, REK10a,
REK10b, RLP14, RB12, SCN12, SS08, SZMK13, SCLL10, SJS11, TBHA07,
TLY12, TDC05, TCS+10, TWQS12, Udd19, VRM10, WW07]. sensor [WMW09, WL11, WL10, WWA+18, XCLR07, XQ04, XHZ+10, YPgyLc13,
YDZ+18, ZW11, ZSCX18, ZTGL17, ZC04, dOBG+15, OEY07].
sensor-actuator [KKKP12, SCN12]. sensor-based [Udd19].
Sensor-centric [KSI04]. sensor-cloud [LLB+18]. sensorial [VO89].
sensors [AKBD10, AD10, BFKP04, Cal06, CJDC10, DWX10, REZN17].
sensory [HRM17]. sentiment [XLW+18]. separable [MRT18].
separating [HSS10]. Sequence [JP09, Zak01, AFM03, BBM08, BCF14, BW09, BFKW13, BMARW07,
DKKV15, FCS91, JV09, PT06, SPRG+12, SMB10, SRT+18, TMM06].
Sequence-preserving [JP09]. sequencer [BCM06]. sequencer-based [BCM06]. sequencers [HC05]. Sequences
[Swa98, TR96, BNR16, CJ07, LV07, SK09, Sei05]. sequencing [CRL04].
Sequential [KF05b, LWC+18, BFTV87, Fen90, SBC12b, SLKK13, ZXB14].
sequentially [HK08]. Serial [EMMM94, MT97b, BOI91, CR91, CL90, SD88a, SI91]. serial-data [SD88a].
Serializable [Sch91]. serializing [HHS12]. Series [CA95a, LLB+18].
Series-Parallel [CA95a]. Server [ALL99, AYI97, CM92, GM99, HBCM99, JSCB95, RU99, HC09, JTTZ11,
OS04, PM05, TBZB05, WLWW09, WSLC11, WLZ+18, ZVL11, ZCS+18, ZI08].
server-side [ZVL11]. Servers [FM99b, AAA+10, Bar05, BPRG04, CSWD03, DLW+12, KC08, LY12,
LYW+16, MZZC12, PSSP05, Wan06, WDDK09, ZWL03]. Service [BK18, CTT08, JRR99, LAZC00, RGVB00, AFB+14, BYT19, CCA18, DB08,
FZ14, HOE+09, JM14, KMMZ06, KKKP12, LNA12, LC07, LB18, MHLZ16,
MXSL12, MCZ14, N09, PY09b, RA11, SB12, SFEP06, SMB10, SSVC10,
TR16, TKR+19, WMY+17, WTY+18, WYW+18, WS06, Yan09, YHY18a,
YHY18b, ZI08]. service-aggregate [Yan09]. service-based
Service-oriented [CTT08, SFEF06, WWY+18]. Services [ZR00, AFG+19, AK06, AM07, KSSK16, LCC+05, LWZZ12, LMXJ18, MCP+18, SCW+18, Suk18, XJS03, YWD08, YAK15]. Session [LAK10, MZZC12]. Sessions [ZR00, AFG+19, AK06, AM07, KSSK16, LCC+05, LWZZ12, LMXJ18, MCP+18, SCW+18, Suk18, XJS03, YWD08, YAK15]. Set-Based [BCD95]. Set-distributions [Nic07]. Sets [AAP01, CGL+95, EP90, GT97, Pov99, XMMD17, FSV14, FSV17, KCR14, Lon04, MP08, PK07, SW18, SHC14, YYW12, dOCS14]. Setting [Li19]. Several [CP92, MCAS12]. Shader [PYP+10]. SHadoop [GYY+14]. ShadowObjects [JRR99]. Shadow-sort [SSM89]. Shielded [CWCW18]. Shifts [OP96]. shop [Boz09, DBA+18]. Short [ESTA94, KLC05, MBS+12, PARB14]. short-range [PARB14]. short-term [MBS+12]. Shortest [BGR96, DCA+15, HTB98, IZ95, KC99b, TU92, TZ00, ATH91, DGNW13, KS91, Lai15, Lai17, YME06]. shortest-path [KS91, YME06]. Shot [TRS+12]. shrew [CH06b]. SHRIMP [BF97]. shrink [REZN17]. Shuttle [BAES92, JH92b, Pad93, PA97, JT88, Var91]. Shuffle-Based [Pad93, PA97]. Shuffled [KM17]. Shuffles [Ano93e, CS93b, CS92]. shuffling [BBB11]. side [CK88, HA05, TC04, XCHO8, ZVLI11, WW+17]. Sided [ZB97]. SideIO [WWH+17]. SIEVE [SG93]. SIFT [LJZ+19]. sign [PH16, RK18]. Signal [RTCG91, SH00, THBF97, BAT+19, WW07, XQ04]. Signal-processing [RTCG91]. signature [WML+18]. signature-based [WML+18]. Silence [DKY01, FJ93]. Silent [DJ16, BCC+18]. Silicon [SDS+18, THN+93, HRG+11]. SIMD [AB93, BAES92, Che05, CP94, CD95, FAGW95, GGW96, GSSW04, HCS+00, HCZ04, Ho91, IK93, IKS87, JMS86, KNS91, KLS90, LWOG02, ML89, NT93,
Nas94, RS96a, RS90b, Ren11, SI91, Ume85, WSA+94, WLR90, ZLRP91.

Simulation
[ABDS02, Ano92c, Ano02v, AS91, AB93, BAGS95, Bout02, Cha96, CZPP16, DMSH90, DS93, EH01a, GGN93, JD02, Lin93b, Lin93c, LA93, LCC02, MHF93, MRR+02, NH93, Pra93, RSD94, RS92d, SM96, SH92b, SSRV94, SS93, The02, ZL93, AZW13, AZC13, BBH+17, BM04a, BD04, BAL05, BMF05, CGL+14, CvdBL+08, CTCX08, DAG+17, FGM+03, FCG+14, GRR+05, HDT+05, Koc91, LVR90, MAT06, NSKN17, PARB14, PLD14, PTK+13, QS05, RW02, Rao16, WB10M09, WF89, ZZZ90, ZCK+02]. Simulation-Based [RSD94, SSRV94]. Simulations [ASR93, Ger98, GM94b, HP95, KP00, LHM95, NM95, PAH+98, RPS93, AM12a, DB11, FC14, FI04, LTL06, SDG08, SM04, VBDR13]. simulative [HW03]. simulator [CZPP16, DOC14]. Simultaneous [CW93, ABC+09a, BPRG04, Che90, FC90, LY10, MR09, PTZ06, SLG06, WIR+18]. Singhal [Ano96]. Single [ALL99, HLB16, JBP00, MWL00, TCO0, KNHH18, LPLFMC+12, RFS+12, SSFP11, SPC+17, ZCS+18, PR13]. Single-Chip [FR13]. single-hop [RFS+12]. single-ISA [KNHH18, SSFP11, SPC+17]. Single-Source [TZ00]. Single-System-Image [MWL00]. Singular [Bai94, HBH93, PE93, Luk85]. Sink [THGY15, LLDDL15]. sink-location [LLDL15]. sinks [RB12]. SioT [SA19]. SIR [ZXGD18]. SIR-based [ZXGD18]. Sisal [FC090, PAM94]. Site [MFS96, WXZ+18, LFH+03, Hua17]. situation [HRH18, LR03b]. sixth [Arg89]. Size [COS+95, CL96, AST12, ASC+18, CV90, EB13, GSW04, JM14, LH90, LCJ+18, NW88, OS04]. size-independent [EB13]. sizes [GPT06b, SMT15]. Skeletons [GSP02, Sk96, BR08, MPS16]. Skew [SYG92]. skewing [TW89]. Skinny [BDG+15]. skyline [SCLL10]. SLA [ATZ07, AM06, RT18, SMW18]. Slack [KR10b, FKL08, KR10a]. Slackmin [PDF17]. Slant [ESTA94]. slave [LZ05, YH07]. Sleep [YZX11]. Sleep-aware [YZX11]. sleeping [GDC18]. sliced [KRL87]. slices [DESP17]. Sliding [OS98, MTL+18]. sliding-window [MTL+18]. slimmed [YMLP14]. slot [PLY15]. slots [ABBD14]. Slotted [HQPT99, MSST99]. Slow [HZ+15]. slowdown [MZZC12]. slower [STKW12]. Small [CDH84, CTKA17, GA18, HBS17, JM15, LH04, MAGL13, MSZ05]. small-large [CTKA17]. small-world [MSZ05]. Smaller [HH01]. Smallest [Wu02, ASC+18]. Smartphone [ESGQ+11, HPT+97, MKC01, CkLCK04, CkLCK05, DFLO17, HRM17, HRH18, KDSS18, LLWC17, MCP+18, Udd19, YZS15].
smartphones [LM16]. smooth [ZBR11]. Smoothed
[JK00, PAH+98, CL14, VBDRC13]. smoothers [WH17]. smoothing [HT06].
SMP [Bev02, FP05, KA03]. SMPs [BJ99, BC05, BJJS03, FW05, HLCZ00].
SMT [ABC+09b]. SMT-based [ABC+09b]. Snap
[BDP16, DDNT10, ADD17, PV07, FGcF17, MT85]. Snap-stabilization
[DDNT10]. Snap-stabilizing [BDP16, ADD17, PV07]. snapshot
[AEF11, IR12]. Snapshots [Mat93, AST12, KS13]. Snooping [Dah99].
SOAP [ASKTZ13]. Soc [BLMB13, RBG17, ZAAB17]. social
[CMMN10, MOPS16, RGAN18, SHK19, SK89b, WBRT13]. Socially [LMG18].
Socially-conforming [LMG18]. societies [SA19]. socket [MAJJ05].
SoCs [LZJ+11]. soft [AOSM05, BGBC+16]. Software
[AL99, CR96, CHR94, CLRW00, GKK+13, GS00, Gro85, HS94b, KCDZ95,
Kel00, KB01, KS95, MLC+90, MG91, NT90, SG99, San95, SZ00a, TY90a,
VSM96, XKMN94, ABC+09a, CV16, CMT92, DP16, DHS06, GS18, KG04,
LZSL06, LKD14, NHO+13, RSCQ17, SCC+06, SMH91, ZMZJ17].
Software-Based [KCDZ95, NHO+13]. Software-Controlled [MG91].
Software-Only [GS00]. Solaris [Lun99]. solid [GFPC14]. solid-state
[GFPC14]. Solution
[DM90a, FLS+97, LF92, OH02, PW96, RW01, AY89, ANP07, Bat05, DP16,
GA18, GS91b, HC11, KKR14, LYL08, LFGM17, WZ91, YS11, ZAAB17].
Solutions
[Ano99g, BCMV15, CLRW00, RS96b, AG86, BAH04, LZ08, OT19, TKG+17].
Solver
[BMM97, CSSY94, FKB17, ADV14, BAMM05, CVK+18a, CP10b, CK91,
Dav17, GV66, Gao86, KKB+06, LPLFMC+12, MP87, PP13, PPTV+10].
Solvers [CHR94, CP94, MS99a, TF01, FHL+15, KR06, SHA17]. Solving
[BCZ95, Boz09, BMCP98, BSH15, Car90, CRFS94, GL92, IK94, JGMY17,
KL01a, KBC+01, Men18, Mon94, PMV05, PDB13, QOvdG01, WM92,
WRW13]. Some
[BDKM94, DDKM01, IPK85, KM94, Otu94, Par98, RTZ11, SI86, SZ03,
ZO03, AG86, BS03, BDjQ86, MS15]. SoMR [CS08]. Song [Ano97k].
Sophia [GTGLSA12]. Sophomore [GAC+17]. Sort
[LJKS02, Tay02, BM14, SMM89]. Sort-Last [Tay02]. Sorted [SH97]. Sorters
[BNP98]. Sorting
[ABZ95, CQ95, DL98, FKK+04, FY96, HQPT99, HBJ98, JP95, Lee94, Lin93a,
MP93, NS94, OS96a, RW97, SCC92, SM92, VN93, WRC+02, Che89,
FC891, KRL01, MS88, PB90, SM89, SIO05, SA08, TW15, Ull84, ZFL89].
Sorts [ZAW94, SI86]. SOS [PP92]. Sound [DKY01, CKK+13]. Source
[AY09, TZ00, BJL18, LPX05a, LCC10, MH18, NBC+17, ZSW14].
source-to-source [MH18]. sources [AK18, Lon04]. SP [ASH+01]. SP1
[BR95b]. Space [BW96, BH93, DY99, GG01, GW99, GRS97, KM97, KY96,
LZ02, NC97, PPSV15, RP98, SDS+18, SH98, WA02, WS97a, AD12, Ara13,
ACFK07, BBM08, BW18, CKK+13, Dja04, HV09, KA05, LLKY13, MSM09,
Space-Based [LZ02]. Space-Efficiency [GG01]. Space-efficient [PPSV15, Ara13]. space-optimal [Dja04].
space-optimality [HV09]. Space-Time [WA02]. Spaces [RS92a, LdPLC+19]. Spanners [RL95]. Spanning
[FA95, KC98, KC99h, WB01, BFG+03, BC05, BC06, BPBR11, BBD18, BBL04, CFJW13, GYM10, tH90, HAC17, KG10, LVP08, Lin03, MKW18, OMSGNSG05, RDA18, Ten16, TDM05, WFZJ12, WIB12]. spark [ZKZF18]. Sparse [Bas97, BW95a, KK98b, Man94, MSC96, NFEG97, PR13, Shu95, UZSS96, Win85, ASA18, AAD05, ASES15, BC06, CP10b, CASD18, GMMP12, LHW14, LV15, LWE14, DB18, DT92, ES97, FTM+14, FR98, FPS11, FPS12, GC59, GMSS+13, GS01a, Gra09, Irw88, IB04, JW94, KL08b, KRS13, KRS14, KRS01, Lan09, LZ11, Las12, Lin93b, NK10, MSGS+13, Mir91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, RLA+16, RLA+17, Raj08, Sch90, SLL18, SXZ06, SH92a, SB97, Sto90, SFC17, TH11, TFV+15, BG90b, Ty95, Wee01, XMM17, XJS03, YW91, ZO97, dVCP06, Cuz11, Gra10a, KL08a, LI11, MK14, PRS14, WW03]. Specialized [QOvdG01]. Speciating [GB06]. Specific
[KRS13, KRS14, PP92, SK93, MRS+14, SS94b]. Specification
[AS00, BR95a, BN94, RSW90, BFL+13]. Specifications [LSCA93, BCM06]. Spectral
[SANY94, SSB98, AT03, CVK+18a, CH06b, GSASA19]. spectral-screening [AT03]. spectrum [FCZ+12, GDCC18]. Speculation
[AC16, FKK16]. Speculative [RG06, MG09]. Speed
[BBH+97, Fer95, Li16, Li19, PVG09, SR91, WCY08, HP97a]. speeds
[LFS16]. Speedup
[AMB95, DBF94, FFK97, Lun99, SN93, YH07, NW88, SC91a]. speedups
[Vis87]. spikes [ST08a]. spin [AK07, FPM+14]. spin-transistor [FPM+14].
Spinning [BHK+94]. Spintronic [NKV14]. Spite [VR94, DB08]. Spline
[BNBR16, CWW+95, CY96, GM95, Meg91]. Spline-based [BNBR16]. split
[WCWH03]. split-stars [WCWH03]. splitting [PVG06, SJ91, WSH+03].
SPMD [Gup92, LZZ+11, OKB95, Ren11, RW93, WSA+94]. SPMD-style
[LZZ+11]. SpMV [YLL17, ZGG+14]. spoofing [GSASA19, KMMZ06].
Sporadic [DKK18, MAPF14, oCSS14]. Spot [LKK94, TY90a]. spots
[LK09]. Spread [REZN17, SY14]. Spreading
[MBMC19, LpJS+18, ZXG18]. square [BB85b, EL91, LTW+90, XBB07].
squared [RIZ90]. Squares
[CB95, ZY002, BB09b, HLS03, KAP90, LTW+90, SMKL93]. Squashed
[BG90a]. Squid [SP08]. SR [DYL+12, GRJ+15]. SR-IOV [DYL+12].
st-connectivity [BCMv15]. Stability [Wor93, KMS07, LXW+11, WCF14].
Stabilization [CG02, GH02, HPT02, NA02, ADDP19, DDNT10].
Stabilization-Preserving [NA02]. Stabilizer [AD02]. Stabilizing
[Ano02u, AS96, BGJDL02, BBCD02, DGDF10, Doj97, GH96, HNM02, KY02,
Kar02, NM02, AFNT17, ADD17, BFG+03, BBS13, BPBR11, BBD18, BDP16,
CDD10, CDD+15, CW05, CAK13, DLV11, DB08, DJ16, DPBNT12, G10,
GS03b, JM14, MM07a, PV07, Tur12]. stable [AMK+07, SKK14, SLW10].
Stack [PVGG06, CS06b, HSY10]. stackable [SSX14]. stacked [TLL+18].
Stackelberg [JTC+18]. stacks [ACH18]. Stage
[FT94, SZ00b, CC14, HDJ08]. staging [EDO05]. Staircase [Mck94].
stealing [BHP05]. Standard [CB99, PF08]. Star [FA95, KAM94, Lat95,
LK94, MJ94, OS97, OS93, PRW94, RW97, R Wy93, RLS96, SAOKMA02,
dBL95, AAD03, CM03, DFPr06a, FM+08, PK04b, SS05, WCC02, SRT+18].
star-access [DFP06a]. Star-Connected [dBL95]. Stardust [CP97]. Stars
[MR03, WCWH03]. starvation [LASS15]. starvation-free [LASS15]. stash
[YPCW16]. State [FKB17, HB97, HNM02, KM92, LSH+13, NC97, PSC+16,
ASK016, ASB18, AD12, CWLD05, GÔÔ16, GFPC14, KA05, LMR05,
LW06b, MS09, WCO+09]. State-based [LSH+13]. State-of-the-art
[PSC+16, WCO+09]. State-Space [NC97, MS09]. Statement
[AMB95, DR95, ALS01]. Statements [KHS96, SOG94]. States
[Kop97, TG97, FZ90]. Static
[AKSM08, BPN90, BSM08, CC91, ERA95, GF89, KKK+11b,
LC90a, LK94, LA04, MSd+95, OD95b, SSM+06, YMLP14, BSS+13, DK08,
KA08, KMS+06, Mcd89, PC11, SSMS08, SWP90, SSM+07, ZX011].
Statically [LB90, Mat06]. station [GPT06a, RBD08]. Stations
[DKMV01, DDNS06]. statistical [CMS18]. statistics [GA90]. steady
[LMR05]. steady-state [LMR05]. Stealing
[Ano00d, LS97, Ros99, DKKV15]. Stein [QOvdG01]. Steiner [LY10, Sta17].
Step [CW00, Bog17, KKR14, Yan04]. steroids [Bar05]. sticker [GPX08].
Sticky [Kop97]. STICS [HZY04]. Stigmergic [PR06]. STLTA [NKV14].
STM [HHS12, PGR17]. Stochastic
[CTD99, FX06, HPT+97, JSS92, QZ94, RS92d, SSM+16, SSMS08, ZS13,
BM11, CMT92, MM06, M896, MBO11, WW18b, WMG13].
Stochastic-based [SSM+16]. stop [BCC+18, LLT12]. Stopping
[BS99, AMT13]. Storage
[CLV95, HLL+95, LL95, BL05, BCK+09, CGG+09, FLGB10, HZY04, HK04,
HZHS18, JWH+17, KR12, Luc18, MAPF14, MPG17a, SXX14, SWW+17,
WCWO17, WW17b, XCLR07, XSYG18, YLYC11, ZV09a, ZWY+15,
ZFT+18, ZLZ+19, ZGG+14, ZWWX16]. Store [CP90, SNS05, VA07].
Store-and-Forward [NS95]. stores [ZWQ+16]. Storm [KKH17]. straight
[GC07, Wri91]. Strategic [RA11]. Strategies
[AM07, BDQ86, BHK+94, BCR96, CP92, CGA98, DL01, FF98, GJG88,
GM99, KL98, LHM95, Lun94, MS99a, OP98, SMH94, VB02, VA03, YB95,
YL98, Zhu92, ZM94b, BMARW07, BHS13, CMG14, DM94, GRV08, GM14b,
Superconcurrent [NRS95]. supercube [SSB91]. SuperNode [AT94].
superposition [dSAJ15]. Superscalar [LP97, LC13]. Superstabilizing
[KUFM02]. Supertoroidal [DF95]. supervision [BPA06]. supplier [SK11].
Support
[AL99, AH94, CP99, FKB08, KR97, KC99a, LTH97, LFH+93, MBL+92,
NS97, PL95, RPS93, TF92, YFS+15, BAL05, CCQ+06, CCC+04, CCK+08,
DRR13, GB11, HPB+10, Hus17, JBY+05, Kim11, NSDZ18, RR05, SD10,
SK91, SAB+92, SRI14, TYH09, TGPUC16, ZBR11, ZWR17, LST+13].
supported [YPCW16]. Supporting
[HA06, Sto87, WLNL06, BSW07, LSZZ15, SKMM04, ZTGL17]. supportive
[FCJG+18]. suppression [DZC17]. Surface [CWW+95, CY96, VDBRC13].
supervision [BPA06]. Surveil [BPA06]. Survivable [HWWH08]. susceptibility [DFST13]. suspect [XYG07].
sustainability [AK18]. sustainable [LS10]. sustained [RMHR17]. SVD
[CL88, RS08, ZB97]. SW [RBG17]. Swap [FPP+08]. Swapped
[Par05, ZXP09]. Swarm [LdPLC+19]. Sweep
[GHN93, DMFCHM03, GM14a, KMP+06, CMR10]. Switch
[ASH+01, CRD12, OK01, PD92, CL90, LHKL03, WLYW09]. Switch-based
[CRD12, LHKL03, WLYW09]. Switchable [SB84]. Switched [CCR94,
CS94c, GGN93, HK96, WB01, EB09, KYL05, LWG14, Nap90, PFY08].
Switches [KJ84, PL93, TF92, MG09, PY09a, PY09b, VAS+13]. Switching
[DRSB01, GB93, Guo94, LLY93, OY00, ST02, BKMCM17, BMIM07, CC14,
KG10, LCL10, WLD12, PL06, ST06, STK121, ZPK+14]. Sybil [YXX13].
Symbol [OWK14]. Symbol-level [OWK14]. Symbolic
[YJ96, CY94, WD18]. Symmetric
[BJ99, DSB02, DZD01, HOE+09, HIJ01, Kau94, Otu87, ABGV11, ADV14,
BC05, BW08, BB5b, EM89, KA03, VGAB08]. Symmetrical [IM94, QY94].
Symmetry [KEL00, HT90, MA03]. Symposium [OY13, WCT01, Ros07, Sni03].
SYN [XCH08]. Synapse [Ram92]. Synchronization [ASB97, AGW98,
ABP92, AH94, BA96, Cha95, CTC+10, FR92, GVA+08, JLL97, MRRV98,
OK95, PB95, RL06, RSS99, The02, WUG99, XMN92, CRA+08, FZC+05,
HMW07, HA06, HLS12, HZDP12, LA06, PB09, TG04, Tau16].
Synchronized [LNA12, JS86, XLL15]. Synchronizing [DKM01].
Synchronous [BCV05, CS95c, GV94, NSL99, OY00, SKR93, Sch91, Soh96,
ARP18, ABB14, DGDF10, FXW03, KVN17, MCS14, MEMEMH17,
PK05a, TBG+17, WTC08a, WTC08b]. synchronously [SP90]. synchronization
[CB15]. Synthesis [HL01, Lis90, PP92, BY+18, CKK+13, HDT+05,
KKB+06, TDAR18, WD18]. Synthesize [HLJ98, DSEP17]. synthesized
[MC17]. Synthesizes [RAM92]. Synthesizing [SL89, Che86]. Synthetic
[Pop91, AAK+13]. Sysplex [NK+97]. System
[BK95, BBD+91, BA01a, Bev02, BMM97, BJK96, CP92, CP99, DHR96,
DSD+97, DH95, DT92, FKB17, FPD93, GH90, HBCM99, HCS+00, HLL+95,
HWLR14, Kav93, KMB91, LP96b, Lu01, MWL00, MKY+97, MBL+92, MO97, MS96, NKC+97, NsPPC02, SEP96, SG96, Tse95, UR94, wXH00, ZMPE00, ZLH+18, dR09, ABC+88, AMK+07, BL05, BCK+09, BGA12, BMK05, BPP05, BSS+13, BYH+17, BJ18, CBP02, Car95, CLMRL15, CSW08, CCEB03, CK91, DS04a, DI91, DTK11a, DLW12, DMS+16, EC89, Fer90, GTGLSA12, GSASA19, HJ90a, HM06, HLBM16, HWL18, HMY+18, HHA14, Hus17, JW89, KHN17, KCD08, KSB11, KMF+05, KS13, KC04, LMSK18, LC91b, LLWC17, LY13, LHZ+18, LAC18, MM07a, MK08a, MC03, NAK04, NTC03, No12, OEY07, PKR08, PKN10, PLD14, PK05b, RV13, RBA+18, RAN+12, system

[SSM+16, SFT+13, SC04, SK91, SSX14, SSL04, SLG18, SM86, SV18, TKR+19, Udd19, VD04, Wan06, WHW17, WS06, WZQ+13, WYTX13, gWW18, YCH10, YXW18, YLB90, ZV09a, ZMC06, ZHH15, ZFT+18, ZKZF18, ZW13, Z06, dAAD+19, AGWY11, HCAA93, Sie16, Ski16].

System-Level [Kav93]. System-on-chip [DMS+16, LY13]. Systematic [IAS+92, KK95, LB89, WAS88, ZTLG17]. Systems [ASH+92, AM97a, AM97b, AMN00, AS13, AS15, Ano92c, Ano02u, ADS98, Bah00, BBM02, BBR94, BPR99, BW95b, Bou02, BN02, BS96b, BS96c, Cas93, CS93a, Cha94, CKK00, CY95, CK97, Cho93, CBoCD00, DDD+18, DSST95, DA97, DS96, DSW94, DAYA02, DG94, EMP+96, FGKT97, FTC97, GM99, GRR93, GKS00, HKT+91, HNM02, HLLY95, HTL99, HM99, IM94, IK94, ISZBM99, JR95, JH92a, JF95, JSM94, JRR99, KS97a, KBC+01, KCV99, KE93, KS93, KM91, KM92, LH92, LF92, LT94, MMR98, MAS+99, MT95, MVMR97, MM93, MRR+02, MC93, Mir91, NSS97, NMS93, Nie94, NDZA99, OM84, PA96, PB99, PT01, Pov99, PP92, QY94, QGB+17, Raj01, RDS02, RA96, SM94, Sch91, Ser97, SL95, SRGB90, SSR94, Sun02, SFC17, THN+93, TH02, TY95, W092, WF93].

Systems [WF96, WUG99, XH91, YH97, ZR00, Zia92, ZM94b, van96, AL04, ALM+16, AA16, AAK+13, AOSM04, AOSM05, AD12, AFM09, AF06, ACCP12, AAI+15, ABBD14, AH06, BMB+08, BCCQ13, BB03, BDGR13, BOKS19, BW90, BRP03, BS00, BKMT14, BD04, BPB05, CWLD05, CMLGRL18, CRK+09, CF88, Car90, CCS06, CKWT17, CTC11, CV909, CRJ10b, CASD18, CGW+03, CI86, CP17, CAF+11, COF+17, CSW+17, DZC17, DK08, DFP06a, DB11, DR19, DDNT10, DGFGK05, DGDF10, DM04, DWYB10, DM90c, DQR+09, DO06, DUBL+12, DW04, DH91b, FJC04, FWM+10, FPS11, FLCB10, FX10, GMMP12, GZG+17, GL89, GNT04, GMVRGS16, Gos90, GS91b, GWWL94, GC05, GRR13, GBNM07, GF89, HRC09, Ha05, HC09, HOE+09, HBC15, HCZ04, HSS06, HA06, HP06, HA91, HA05, HHK15, IRRS16, IS06, JSWB92].

systems [JMS86, JKE13, JST12, JLM08, JL11, JZZ+17, JWH+17, Kak15, KKR14, KHW13, KVA18, KME89, KVNV17, KUA07, KyLPC17, KSG13, KAS07, KL05, KMS10, Kub17, KMS+06, Lai86, LLLC15, LWC+18, LFS16, LT02, LTL06, LGZ+10, Lan09, LZ11, LL06, Lee90, LHF91, LHK03, LJ05, LAK10, LZCY09, LASS15, LZ05, LC90a, Li06b, LVP07, LQM+12, LNAL17, LLCL19,
LW89, LPLFMC+12, Lop13, Lop18, LCM+06, Luc18, LLS07, LM09, LXZ13, LWW12, MGSG12, MLMSGM12, MB13, MP10, MMK+11, MAHKZ12, MAKWZ13, MS86, MTS90, MFVP08, MLK12, MSK+16, MBH+08, MGRKR14, MRT18, NLB+18, NFHL13, ND12, NZY+11, OSL14, OPRI18, PMV05, PMV06, PLSM18, PRHB06, PC11, PSB+19, PH16, PTA08, PF91, PMOD11, QGZP17, RLA+16, RLA+17, RHL03, ROE+18, RN04, SSFP11, SW12, SDTD04, SP08, SPH13, SFT+13, SYYU07, SS08, SCB09, SU87, SHE09.

systems [SCS+08, SCMS12, SXZ06, SHLN09, SY04, SHL+13, SCJ+08, SS18, Sie16, SLKK13, SH13, ST05, TLL10, TLLV10, TMS15, TW89, Ter16, TRSS06, TB90, TCHC12, UAKI06, VMMB10, VS16, WCWO17, WXZ05, WTC08a, WTC08b, WDDK09, WLST16, WZZ+17, WWW17b, WWY+18, WSF91, Win85, WD92, CL85, Dja06, EL91, KT89, KH84, MP88, PYP10, PS88, Sch89b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

Systems-on-Chip [ORWT+18]. Systemic

Systolic [AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LJ86, MM00, Meg91, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH84, MP88, PYP10, PS88, Sch89b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

T [CRJ10a, PTK+13]. T-L [CRJ10a]. Table [HZL18, LACJ18]. Tables [TT10, ASD09, HKW05]. Tabu [BSH15, CSA13, CB11]. Tackling [SMT15].

TAM [CGSV93]. Target [ERL90, CJDC10, KO11, NDPI3, WW07, YCC05]. target-driven [YCC05]. targeted [BKK+11]. targets [BFKP04, CRWX12]. Task [AKPT99, AH06, CDY97, DA97, DDD98, DAYA02, DL99, DRST02, ERS90, FZWL12, FKKC97, FY97, HBCM99, HKT+91, JZZ11, KLZ97, KA97, KA99, LL88, MT97b, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH84, MP88, PYP10, PS88, Sch89b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

task [CRK+09, VRGS17]. Task-Level [HKT+91, SBK90]. task-scheduling [Kim17].

tasking [Lun90]. Tasks [ABM+92, BS8+01, DJ08, ERL90, Hag97, Lat95, LWY97, MAS+99, MMVR97, NMS93, PS93, RDS02, Sin87, AOSM05, BFM+18, BHLT14, BH05, BSMH08, CCK11, CDJ+89, DRR13, GK15, HMR15, HWLR14, IKS87, KUA07, KSS+07, KMS+06, LMILGL17, LH03, LI06a, LI06b, LQM+12, LB09, LLS07, PK05a, PDB13, RR05, SM+16, SBQ12b, SSNCP12, SSN+07, XL15, ZV09b, ZHLLQ12, DS11].

Taxonomy [FEH+14, HM96, Sin93, HBC15]. TCP [BM11, VLL+14].
TFDL [SBKB90]. TDM [LLJ00b]. Teaching [CTS17, Eij18, LB18, PBB+17, PGKV18, Ada17, FKR+17, GAC+17, HSS17, Kum17]. team [NKSA17]. TEASE [ZBR11]. Technical [Ano93a]. Technique [BN94, CLV95, DAYA02, Fer95, KBG92, PM96, ZLPP01, ASKTZ13, CX05, CRD12, DeG88, EE05, KK11, Nes10, Nic88, PVGG06, RBB17, WCF14].

Techniques
[ADM+94, CS95b, Dah99, ELS94, FY97, Gil94, GS00, HILLY95, HTL99, JSCB95, KGV94, NPY+97, PA96, PYF08, RS99, Tuy02, UZSS96, ARP18, AOSM04, BBR13, CDB04, CDR09a, CD95, DJDK19, FM85, Gao89, GRR+05, KA08, LPK+10, LP88, MBW16, Pla08, RM11, Raj08, RG87, SFEF06, TZ07].

Technology [Ano02v, ER97, GC95, MRR+02, OB88, PBB+17, PGKV18, TMM06].

template [EFG+14, RS90a]. Templates [ADS98, DP00]. Temporal [GSG+93, Lo92, RJA97, SHL+13, VWH96, BKS91, CRWX12, WCF14, XYZW14, YDTZ18, DFLO17]. temporary [Wan06]. Ten [TAS+01, KA08].

Terminating [Lin93c, MS15]. Termination [ASR93, CW93, HTB98, KHK03, Lai86, Ric98, Tse95, BFTV87, CV90, Eri88, MD07, MFVP08]. ternary [GNW03, KRM14]. Test [GRS97, PKK91, So96, WW97, ALLM11, DWH97, LGT14, NCA+12, dMS18, ALLM11]. test-and-treatment [DWHL87]. testbed [HGF10, LBE03]. testbeds [VPML06]. Testing [CY95, GF8+92, GS99, KW02, WG93]. tests [Ps96]. tetrahedral [CZ+17, LWC15]. text [BV13, PAG+18, SWW+17, WD13]. Their [Kop97, BM08, CRWX12, S86, TMD05]. Themes [RCY97].

Theorem [SHSH17]. Theoretic [AaJS01, KK10, MGRRK14, PC11]. Theoretical [HC97, LZ11, CKT11]. Theory [CC08, DM90a, PTA08, VBM90, LZC12, BDjQ18, BM08, GRD05, Zim90].

Thermal [SHSH17, LFS16, OJP+18, SNMB16]. thermal-aware [LFS16]. thermally [TKKH17]. theta [LL18, STM18]. theta-join [LL18]. thin [ST08a]. things [AMU+19, TKR+19, CMS18, DAPR18, ECP+18, HMY+18, NLB+18, WHC+18, WCCH18, YWW+18]. thinking [CCE+17]. Thinning [KLP10]. Thread [KCSS18, OTKT12, CM14, CDAN14, DWWY10, LK13, RSCQ17, SLG06, ST05]. thread-parallelism [RSCQ17]. Threaded [NS97, BHH+17, KEP03, MK15, PYP+10, CGSV93]. threading [Ngo06].

Threads [GC96, LFA96, SEP96, TG99, DKRI09, PMdO11, PL03b]. threat [HMY+18]. threats [CWCW18, MMN+18, SFEF06, TKG+17]. Three [FCG04, FLS+97, FT94, GG01, GH96, KR98, NEG85, PD92, SSG93, SSOB02, YMR93, ANEA13, LW06b, LDS16, YJL16, ZFS07]. three-body [YJL16].

Three-Dimensional [FLS+97, KR98, NEG85, FCN04, ANEA13, LDS16].

Three-Stage [FT94]. three-state [LW06b]. Threshold
[BFMT+18, CGA98, NKV14, PAM94, LWXX19, Nik04]. Threshold-Based [CGA98]. throttle [XCH08]. Through-Wafer [MLW+97]. Throughput [FM99b, HWC08, HB11, JSS92, MMVL11, BS07, BLMB13, CLA+18, DW12, GRR13, HVLW16, HWLR14, KSB11, LMSK18, LMR05, LHX+16, LNC13, SA11]. Throughput-coverage [HWC08]. Throwing [Tse95]. tickets [LMJC11]. tier [MZZC12, MCZ14, WQL14]. Tight [BBH+98, FSZ07, Mat06, CH06a]. Tile [LCJ+18]. tiled [JHF+17, WQZ+13]. Tilera [PCMM+17]. Tiling [AR97, CW99, RS92a, CH06a]. tile [LCJ+18]. tiled [JHF+17, WQZ+13].

Time [AAL95, AK93, Ana14, Ano92c, ADS01, BPJG92, BBM02, BA96, BM04a, BOSW94, BH93, BGOS95, BTZ98, BA01b, CW00, CB15, CS93a, Cha94, COS+95, DP98, DS01, DJ98, DD95, EL97, EMP+96, Fak96, FBK98, FTY97, GS99, GM00, HRG+11, HA92, JR95, JH92a, KS97b, KEA95, LTWY95, LTY96, LR90, LAS+97, LFA96, MMRS98, MT95, MMVR97, Mat93, MDD97, Moh97, MSST99, MS99b, Nas94, NIR86, NH93, NP09, OYO90, OOW95, OS96b, OSZ98, PW96, PLY15, Pe90, Pe95, PS93, PM96, PM92, QMCL94, RDS02, RU99, RAS96, Rie98, SCMB90, STN92, Sm02, TBBF97, TVS97, WBTM09, WA02, WS97a, WLID02, ZLPP01, Zim96, van96, AOSM04, AOSM05, ACCP12, BP02, BGV14, BGDR13, Bog17, BPP05, BW18, BKK+11, CH06a, CCK11, CRJ10a, CRJ10b, CLL09, CLR90].

time [CCN06, DLV11, DKRC+15, DKO04, EDO05, FC14, FKL108, GZG+17, Gos09, GF89, GREC91, HOVC09, HA06, HV13, HL07, HZDP12, JZZ+17, JHL+18, KKR14, KSSL16, KK17, KRL87, KSG03, LFS16, LR14, LHK03, Lee03, LST17, LQCY90, LLY15, Li16, LBB+18, LML+10, Lis90, Lo92, MHLZ16, MLDG12, MAM05, MAKW13, NA06, NVK+11, QJ05, RLH03, SB86, SS11, SA19, SZB16, TBZ105, TZH+06, TPS+18, VWHL96, VA07, Wan07, WTC08a, WTC08b, WL05, XL11, XO05, ZZJ+18, ZHI15, ZQMM11, ZHLQ12, ACD+93, CBP02, CX05]. time-aware [MHLZ16]. Time-bounded [NP09]. Time-Division [QMCL94, ZLPP01]. Time-division-multiplexed [HRG+11]. time-domain [SS11]. Time-Efficient [EL97, MS99b].

Time-Optimal [BOSW94, OS96b, OSZ98, Pe90, Lis90]. Time-optimized [Ano98c, Ano99b, Ano01i, Ano02d, Ano03b, Ano04a, Ano18y, Ano18z, Ano18-27, Ano18-28]. Time-parallel [WBTM09]. time-scale [ACCP12], time-sliced [KRL87]. time-space [BW18]. Time-Step [CW00]. time-step-based [KKR14]. time-targeted [BK+11]. time-Varying [KEA95]. Timed [NM95]. timeliness [IS07]. times [SFT04]. timestamps [MS02]. Timing [ADS01, BSS99, CB99, Kar92, CSJ+13, FVB09, IS07, KKK+11b].

Timing-Driven [CB99]. TlmMANN [VM95]. Title [Ano98c, Ano99b, Ano00c, Ano01i, Ano02d, Ano03b, Ano04a, Ano18y, Ano18z, Ano18-27, Ano18-28]. TLA [SHL+13]. Tlib [RR05]. TM [FKKR16, FWM+10]. Toeplitz [GOH+13, ABGV11, ADV14, BBd90, HM99, Ter16, VGAB08]. Toeplitz-based [GOH+13]. Together [WLID02]. Token [AE95, BGJL02, CP90, FFK97, GH96, HP00, ZZJ+18, CRD12, HSW04, PV07]. Token-Based [AE95, BGJL02, HF00]. Token-Chasing [ZZJ+18]. Tokens [SA93, SGAC14]. Tolerance
103

[BSS97, Piu01, PM92, mYyF92, BJ15, BDDL09, CLMRL15, CWL+07, CDR09a, LCC+05, LH05, LFGM17, LP88, Pak89, PAS15]. Tolerant
[AE95, AM97a, AM95, BMM97, BW95b, BCH95b, CRV94, CL93, CC94, CF98, FM99b, GRR93, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, SS95, WIKC97, Wu94, YBOY97, ZYO02, AA14, AA16, ANEA13, AOSM05, AH11, ABBD14, BB87, BXA08, BKMT14, BPA06, BPP05, CL91a, CKN07, CDR09b, CMT92, CMS04, DBCF13, DTK11a, DH91b, FLPJ07, FABG+19, GNS09, JBA15, JBS14, KG10, LDZ+17, LFZ+17, LAC18, LGG08, MPG17b, NCB+17, PR06, PL06, TCHC12, WW12, WYW15, XCS06, XHZZ16, mYA91, ZV09b, ZJ06]. Tolerate [VR95]. Tolerating [DT02, GS00, MG91].

tomography [BDRB14, FCG04, FGG08, KSSL16, KDO+13, PLL+03, XTN12]. Tool [BN94, DBKF90, ZNQ93, Ada17, ACD+18, KKVI05, uRIL+18, TD07].
toolbox [EFG+14]. Tools [Bal90, Cas93, MLC+90, MSH90, NT90, DMS+16, FEH+14, GAC+17, MC03, YT05]. Top [SSKS11, Sch89b, TAS+01, IRRS16]. Top- [SSKS11]. Top-down [Sch89b]. topic [dAAD+19]. topic-based [dAAD+19]. Topics [Ano16l, Kum17]. topography-aware [SK05a]. Topological [DC94, Par05, YN92, PL06]. Topologies [YZY96, YM01, SL89]. Topology [CCM92, DS96, Seb95, TKKH17, WLY01, WHS+18, AP91b, AHA+16, DB08, GL12, GL90, KBC+10, LCW05, LMP10, BBBD13, PMCC18, RCG18, Seb91].
topology-aware [KBC+10, BBBD13]. TOPSYS [BB93]. Tori [LHS97, MT93a, Man97, AB03a, GL06, LXLS12]. Tornado [HK04].
toroidal [AB05]. Torus [CT96, RMC97, WB01, YMG01, DM17, Lai15, RH05]. Total [CW00, CHC05, BCM06, BG05, CB15, Dim04, SL89]. TPC [DZDZ01].

TPC-C [DZDZ01]. Trace [JKIE13, LC13]. traces [MTM10, NRM+09]. Tracing [RGS00, BM16, BM17b, CDB04, CS17]. Track [MD01]. Tracking
[BFKP04, CJDC10, IIH+17, KO11, NDP13, PLSM18, TCS+10, WW07, WXZ+18]. Trade [BCLR96, GK98, LPU97, CLR90, ECLV12, LC16].

Trade-Off [BCLR96, GK98, LPU97, ECLV12]. trade-offs [CLR90, LCB16]. Tradeoff [TSHH01, HW08, NLB+18]. Tradeoffs [MP15, CGKY12, PCMM+17, SDS10, YZW+15]. Trading [MPG17a, ZLL14]. traditional
[BBCLL04]. Traffic [AA95, DSS95, FT94, KC95, LK94, OY00, TF92, BJ18, CRD12, FL86, FMM+08, LK90, LHLM14, MPG17a, OOSGVG+16, SAOKM03, SKMM04, WG08, YBM13, Zah12]. traffic-aware [LHLM14]. trails [PR12]. Training [LWOG02, SMKL93, ZLS17].

transaction [SI13, YWD08, Yan09]. Transactional
[AM12b, Gra09, Gra10b, MP10, BGA12, CGM14, DT11, FWM+10, GKK+13, HGFF10, KR17, QGZP17, RSCQ17, SDS10]. transactions
[CC16, FGG17, MLMSM12, UBES10]. Transceiver [DKMV01]. Transfer
[Lu01, APK18, CK06, JKV15, LGG08, WH17]. transferability [CSS11].

Transferring [SZR+18]. Transfers
[NSSS99, GLGLBG12, LMGLGLG17, SCMH13]. Transform
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
[BA95, CP91, DS01, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW85, ESTA94, FSD04, IH16, SSL04, TKHG04, CVK+18a, LLCL98]. Transformation [MG98, SC91b, WD92, FM85, GJG88, MRRT07, Tur12]. Transformations [HBH93, OK02, AM17, JV09, Kan05]. Transformer [LLY15]. Transforming [LW16b]. transforms [TS91].
TrustGuard [SL06], trustworthy [MHLZ16], Truthful [WGS08], TSGL [ACD+18], tsunami [NSKN17], TT-XSS [WXZ+18], tumors [HES11].

Tunability [CKK00], tuned [PSB+19], Tuning [CSMML10, SB02, TdAR18, ABGV11, APK18, HPT07, KKR14, MYD+11, MML07, uRIL+18]. Tunnel [ZBR11], Tunnel-based [ZBR11], Tuple [STKW12, DRT07, LiPLC+19].

Turbulence [LLCC02, PLK+18], TWDM [LLJ00b].

Two [AaJS01, BNS00, BBH+17, BP01, Cha94, CCC92, CEF+95, DD96, DKU15, Gos90, GT97, Hwa97, KLZ97, KL84, LHS97, LP96b, LK94, LLCC02, NAK04, Qia97, RFPAG08, RP95, SSM89, SSHC00, YCY+00, AB05, ARM+05, CF88, CG86, CB11, Deh90, FSV17, HDJ08, Hsi04, JD12, LC91b, MP10, PMV06, SNCP12, SS94b, WLL16, dlAMCFN12].

Two-Dimensional [LP96b, YCY+00, NAK04, AB05, Deh90, LC91b], two-fixed-endpoint [Hsi04]. two-layer [dlAMCFN12].

Two-Level [KL84, Qia97, RP95, SSHC00, BBH+17]. two-list [WLL16]. Two-pass [DD96], two-phase [SNCP12], two-stage [HDJ08]. Two-Variable [CCC92]. Two-Way [LK94, LLCC02]. Type [HO94, SC91b, BFH09, BBH+17, BP01, Cha94, CCC92, CEF+95, DD96, DKU15, Gos90, GT97, Hwa97, KLZ97, KL84, LHS97, LP96b, LK94, LLCC02, NAK04, Qia97, RFPAG08, RP95, SSM89, SSHC00, YCY+00, AB05, ARM+05, CF88, CG86, CB11, Deh90, FSV17, HDJ08, Hsi04, JD12, LC91b, MP10, PMV06, SNCP12, SS94b, WLL16, dlAMCFN12].

Two-Way [LK94, LLCC02]. Type [HOR4, SC91b, BFH09, GA18, GNZ18, QGL+09, MV94, MVV91]. types [ASB18, RJKL11].

UC [BCD95]. UCT [AKPT99]. UDP [ZBF05]. UET [AKPT99].

UET-UCT [AKPT99]. UET/UCT [AKPT99]. ultra [BM16, FABG+19, RW02]. ultra-large-scale [RW02].

ultra-low [FABG+19], ultra-scale [BM16], ultrametric [YZL90].

ultrasound [BDRB14]. unauthentic [MLSMG12], unbiased [BW18], unbounded [SP90].

Uncertainty [ADS01, ZC04]. Uncertainty-aware [ZC04]. unchoking [ARD14].

Uncordinated [LDZ+14], undergraduate [AJG18, GAC+17, Kum17].

understand [BCFF05]. Understanding [BDF92, DBKF90, ECLV12, NEG85, X511, CDJ+89, RÖE+18, WRHR91].

underwater [LWW18, ZWW17], undirected [STA12]. uneven [SMT15].

Unequal [KY02], unicast [SKMM04].

Unidirectional [KY02, KUFM02, RMC97]. unification [RM90].

Unified [AGG98, BL90, CP10a, DM95, JBL02, Amm16, ABO+17, I1H16, KH89, XRB12].

Uniform [AS94, BGJDL02, DR95, GM95, KY02, SMO+18, SRR88b, T799, TC96, VN93, Xue97, ZMG94b, BBNF14, CLL09, KSG13, LW06b, Mar88, MM07c].

uniformity [BBB11]. Uniformization [DHK04, NH93]. Unifying [NSDZ18, RCY97].

Union [KF95a, ST14]. unique [WCWH03].

unison [DPBNT12]. Unit [AGW98, ASC+18, BHS13, JPD17, KNS91, KM88, QSL+08, SIY14, SAJ13, XL11, ZMCP11].

Units [AM97a, AGG98, DDGK13, YJL16, ATDH13, BK13, CLA+18, DP16, KL08b, SCB08, Eme13, GLGLBG12, YL12]. Universal [BBS13, LWXX19, ACH18, CS06b]. universal [SH89]. unversioned [Ahu90]. unknown [MJ03].

Unlabeled [Man97]. Unleashing [ARD14].
UNPACK [BR96]. unrelated [CG11]. Unreliable [KB96a, AM06, DDG+17, KRS15]. Unstructured [OB98, WCE97, ACFK07, FZ14, LL19, LWCC15, MSZ05, YF09]. Unsupervised [BST01, DSAUM99]. untraceability [CL09]. unwinding [Nic88]. updateable [MLZY17]. Update [GS96, LSH96, BM11, HKHK18, RTCG91]. updates [YZG18]. Updating [JSM94, SDS99, AEF11, JBA15, KAP90]. upon [AFM09]. uranium [YDZ+18]. URL [XRB12]. Usage [BS96a, IIH16, KBC19]. Used [LL95]. Useful [Bal90, GSG+93, FM85]. Useless [Yen01]. User [GRS97, KOW97, R¨OE+18, SY04]. Using [AyJ93, BA97, BCLR96, BLG01, BMLLC+19, CCRS92, CP92, CASD18, CB02, DS95a, DHIB02, DMSH90, DWX10, FR96a, FZVT02, FA95, HPT+97, HK01, HS97, HCG7, Hwa97, KJ84, KA97, Lat98, LMCF90, LPZ99, LFA96, LL98, MD98, MP96, MS86, Moh96, MFS93, NH93, NS92, NPY+97, OS93, PH91, Par92, Par96, PKD97, SS93, SM92a, SEP96, SP96, SM90, SD00, SL97, SIR92, SWC+91, SKH96, Swa98, TSC01, TR96, VRM10, WPKK94, WW96, WSRM97, WB01, WRC+02, WS97a, WCYR08, XLW+18, XH91, YMGO1, ZMPE00, dOCS14, ASKO16, AIC19, AFM03, AZC13, ASST05, AD12, Ara90, AK06, Bar05, BD05, BAMM05, BCMV15, BHLT14, BS92, BSH15, CL14, COV13, CSWD03, CJDC10, CF88, CK08, CvdBL+08, CKN07, CBM+08, CDB04, CH06b, CRWX12, CMT92, CL85, DDG+17, DJDK19, DPRW85]. using [DKRI09, DJT03, DH91b, DWHL87, EE05, EL07, ES12, FTK14, FM07, FCS91, GZ08, GRDB05, GCS06, HDCM11, HSH10, HWL18, HMY+18, HC91, JTTZ11, JP09, JGMY17, JZK04, KL08b, KRKS11, Kan05, KDO+13, KKH17, KM17, KS18, KSJC17, KR12, KME09, KC17, KR06, KKB+06, KA05, KL15, LT10, LY10, LR03a, LST+13, LSWC14, LWW18, LA04, MHLZ16, MM06, MS02, MZC18, MRS+14, Men18, MK08b, MC03, MRT18, NMS+18, NCTT09, OPR18, Ozt11, PKN08, PKN10, PP13, PBS08, P VG09, Pla08, RBN11, RB12, SM04, SBC12a, SSM99, SHK19, SSS07, SCB09, SA19, ST12, SGAC14, SCJ+08, SY14, SDG17, SA08, SK05a, SFEF06, SM08b, SLKK13, SL06, SJG19, SMT15, Tam18, TP18, TRS+12, TPLY18, TDP15, TMM06, TXK+13, UAPM07, VLG+18, WCF14, WZZ+17, WDS+18, WD18, Wu03, WBRT13]. using [XCS06, XLHT13, ZV06, ZV09a, ZS13, ZBW+17, ZHO03]. using/for [MZC18]. utilities [AM06]. Utility [CRJ10b, LL07, QH96, ASST05, CRL04, VMMB10, VLL+14]. Utility-based [LL07, VMMB10]. Utilization [AS91, LT96, ZV12, CCHC09]. Utilization-based [ZV12]. Utilizing [AM06, CM92, LA93, PDP17].

MT97b, NEG85, OB88, OT86, PR06, TU92, TF92, WSS93. VLSI-suited [GS91b]. VM [JXV06, MA19]. VM-based [JXW06]. VOD [SK11, Bar05, LC07, YCH+10]. voice [WTS03]. volatile [CDR12, HZHS18, NKV14, ZPK+14]. VOD [SK11, Bar05, LC07, YCH+10]. voice [WTS03]. volatile [FABG+19, FKLB08].

Volume [Ano92a, Ano92c, Ano93e, Ano96l, Ano97k, Ano00d, Ano01g, Ano01i, Ano01h, Ano02d, Ano04a, Ano08, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, BS96a, CS93b, WS97a, ACFK07, IWCC15, Ano97b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98e, Ano98f, Ano98g, Ano98h, Ano99a, Ano99b, Ano99c, Ano00b, Ano00c].

Water [CvdBL98, dAMCFN12]. Watershed [MG98]. Wave [CDP95, BBS13, CDB04, KVN17]. WaveCluster [YÖ11]. wavefront [OT86]. Wavelength [HP00, CS10, MVC04, TKKH17]. wavelength-based [TKKH17]. wavelength-routed [MVM04]. Wavelet [HK01, CV19, IH16, TKHG04]. Wavelet-Based [HK01]. Way [LK94, LCC02, AP18, ACU08, KKK8a, Sch14, VPML06]. WCET [LZLX11]. WDM [CS10, DP99, MVM04, OS93, PR12, WG08]. Weight [RM12, PMH19]. Weakest [Bit92]. weakly [JH07, YWW12]. weakly-connected [YWW12]. wearable [Udd19]. Weather [RHH96]. Web [KCD08, CC18, CKV+18, FKR+17, HSS17, SU18, ASKTZ13, AK06, BLPA05, CSWD03, SC03, TC03, TC04, TK07, UGG+11, Wan06, XCL03, XJS03, ZWL03]. web-based [CKV+18, SU18]. web-portal [FBR+17]. Weight [RL95, RGVB00, Tse95, YL16, JM14, LVP08, Wan06, WZZ+17, WW18b, ZFT+18]. weight-based [JL14]. Weight-Throwing [Tse95].

[PL03a]. **Wire** [yHY97]. **Wire-Limited** [yHY97]. **Wireless**
[BJS18, BCD00, BD01, Bou03, GPJA10, GMS06, JK00, KKGS01, LDZ'14, MS00, Ola01, THGY95, WL05, ASM09, Amm16, AP03, AHG12, AYB'15, BFG'03, BM11, BSN07, BXA08, BWP'11, BOY10, BPRS04, BOP06, BC11, BN03, BPA06, BIL18, CCW14, CKN07, CCK'08, CBWX12, CHCG18, CLL09, CMS04, DW06, DLLL11, DMB'03, DGBN14, DR19, DJH11, DKG10, DPF06b, EBE08, EM11, FCW11, FCML13, GHY10, GDP08, GP07, GCY'04, GDL'11, GYP13, GZY14b, GM14a, GL12, GMX10, HZA'15, HMV07, HJ07, HS12, HWWH08, HWC08, HZDP12, JF12, JLY12, JBS14, JHPL13, JXW11, KKV10, KSI04, KKK11a, KOA09, KO11, KO12, KSK15, KPK18, KZ11, KK10, KDH08, KKTZ13, KGN11, KNS06, LZO8, Lz09, LZ11, LDZ'17, LY10, LCW05, LW06a, LC11, LMJC11, LWLD12, LL12b, LS03, LÜ14, LR03b, LLW07, Lzc11, LSWC14]. **wireless**
[LS16, Los08, MAGL13, MPV12, MA11, MBMC19, MBR08, NPGV10, NTA11, NC09, NM17, NGQM12, OWK14, PLY15, PRL07, RM10, RM11, RLP14, REZ17, SCN12, SZMK13, SSZ10, SKMM04, SK05a, SCLL10, TBHA07, TLY12, TM10, VHI08, VRM10, WW07, WTB'08, WMM09, WBTM09, WL11, WCXL11, WH08, WBR13, WWA'18, XYK10, XZ'10, YpGyL13, YSL08, YZX11, ZMG'16, ZW11, ZBR11, ZLCJ12, ZSCX18, ZTGL17, dOBG'15, LDP'14]. **Wireless/Mobile** [MS00]. **Wires** [GO95]. within [BPBR11, THN'93, ZGJ'18]. without [FKKR16, FSZ07, HP95, H091, MS02, OS97, RCCG11, SA93, WW12, X005]. **WK** [DC94, SCD99]. **WK-Recursive** [DC94, SCD99]. **WLAN** [HB11]. **WLANs** [CCHC09, FA07, GZY14a]. **WMNs** [LHX'16]. Wolfe [Psa96]. **Work** [BKC'15, BM04a, DKKV15, KM17]. worker [BMT12, HSL104]. workers [KRS15]. workflow
[ALM'16, FFP14, FCC07, RCCG11, WHW'17, YYLC11, YWG15, ZVL15]. workflwows [BBK'11, KHN17, PVP18, TYH09]. **Workload**
[DZDZ01, IM94, MA19, SSYG97, FG05, GNT04, KYLC17, LLY08, LTG14, LF03, SSF11, YJL16]. **Workloads** [FTK14, MKC01, AM12b, CCO'06, CKLC04, CKLC05, LL15, MLK'16, WD13, ZLWZ18]. workshop [SAB'92]. **Workstation**
[AY97, HN91, KMKD97, LC97, PN97a, PN97b, WB96, ME04]. **Workstations** [AS97, Ano00d, ABM'92, BBS97, BDH'97, CP97, CM92, DSAUM99, DZ97, HS97, HWW96, JLR97, KR98, LS97, LHHB'01, MDD97, NBSD99, PK97, Ros99, ZLP97, BMARW07, CDB04, PY09c, PLA08]. world [FL56, GS18, MAGL13, MSZ05, MVP17, MMS90]. worlds [WA03]. Worm [NS05]. Wormhole [BLPV95, BPvW96, DG94, DRSB10, FF98, LME95, LE98, NSSS99, PA97, RP98, RJC95, RMC97, SJ95, SJ96, SB02, WB01, XNN92, HNSA07, Lec03, SAOKM03, WC02]. **Wormhole-Routed**
[FF98, NSSS99, RJC95, RMC97, XNN92, SAOKM03, WC02]. **Wormhole-Switched** [WB01]. Write
[DS95a, ACHY18, CH06a, CG10, GNS09, IR12, IR16, SLKK12]. write-once [ACHY18]. write-only [SLKK12]. Writeback [KE93]. Writer
References

Ahmed:2014:GDF

Ahmed:2016:AFT

Almeida:2010:JAC

Aartsen:2015:IFD

Aspnes:2010:CSC

Al-Ayyoub:1998:HIN

Al-Ayyoub:2002:CSP

Al-Ayyoub:2003:NRS

Adle:2005:TAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[ABM+92] Mikhail J. Atallah, Christina Lock Black, Dan C. Marinescu, Howard Jay Siegel, and Thomas L. Casavant. Models and algorithms for coscheduling compute-intensive tasks on a network

1989. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[ACD+18] Joel C. Adams, Patrick A. Crain, Christopher P. Dilley, Christiana D. Hazlett, Elizabeth R. Koning, Serita M. Nelesen,

Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. Multi-level direct K-way hypergraph partitioning with multiple con-

[ADM+94] Mikhail J. Atallah, Frank Dehne, Russ Miller, Andrew Rau-Chaplin, and Jyh-Jong Tsay. Multisearch techniques: Parallel data structures on mesh-connected computers. Jour-
REFERENCES

Auletta:1998:MTA

Attiya:2001:TBD

Alonso:2014:BPI

Arvind:1988:FSP

REFERENCES

REFERENCES

Peter Arbenz, Cyril Flaig, and Daniel Kellenberger. Bone structure analysis on multiple GPGPUs. Journal of Par-

Aluru:2003:PBS

Arantes:2009:RGA

Adamek:2017:EOS

Alimonti:1996:FED

Aridor:2000:TOS

Yariv Aridor, Michael Factor, Avi Teperman, Tamar Eilam, and Assaf Schuster. Transparently obtaining scalability for

[AGW01] Nael B. Abu-Ghazaleh and Philip A. Wilsey. The shared control parallel architecture model. *Journal of Parallel and
REFERENCES

REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Aguilar:2004:DDL

Alelaiwi:2019:EDI

Avudainayagam:2003:DDE

Agarwal:2009:FDP

Ahmad:1999:DSM

Amory:2011:NTS

Ahmad:2016:HGA

Albert:1991:DPC

Alsuwaiyel:2001:PAP

Ahmad:2013:MCO

Attiya:2012:TSR

Abed:2013:IPC

Amato:2017:MTM

Al-Mouhamed:1995:ELF

REFERENCES

Anta:2013:ESP

Alam:2019:ETC

Anagnostopoulos:2014:TOC

Al-Naqi:2013:DFT

Annexstein:1994:EHR

F. Annexstein. Embedding hypercubes and related networks into mesh-connected processor arrays. *Journal of
REFERENCES

Anonymous:1992:AVN

Anonymous:1992:AIV

Anonymous:1992:EVN

Anonymous:1993:AIT

Anonymous:1993:AIVa

Anonymous:1993:AIVb

Anonymous:1993:AIVc

Anonymous:1993:EVN

Anonymous:1994:AIVa

Anonymous:1994:AIVb

REFERENCES

REFERENCES

Anonymous:1995:AIVh

Anonymous:1995:CPSa

Anonymous:1995:CPSb

Anonymous:1995:EM

Anonymous:1996:AIVa

Anonymous:1996:AIVb
REFERENCES

Anonymous:1996:AIVc

Anonymous:1996:AIVd

Anonymous:1996:AIVe

Anonymous:1996:AIVf

Anonymous:1996:AIVg
REFERENCES

Anonymous: 1996: AIVh

Anonymous: 1996: CPSb

Anonymous: 1996: CPSa

Anonymous: 1996: EA

REFERENCES

REFERENCES

Anonymous:1997:CP

Anonymous:1997:CPS

Anonymous:1997:VNA

Anonymous:1998:AIVa

Anonymous:1998:AIVb

REFERENCES

Anonymous:1998:AIVc

Anonymous:1998:AIVd

Anonymous:1998:AIVe

Anonymous:1998:AIVf
REFERENCES

Anonymous:1998:AIVg

Anonymous:1998:AIVh

Anonymous:1998:CPb

Anonymous:1998:CPc

Anonymous:1998:CPa

Anonymous:1998:CAT

REFERENCES

REFERENCES

REFERENCES

Anonymous:2000:PAFb

Anonymous:2000:PAFc

Anonymous:2000:PAFd

Anonymous:2001:Aa

Anonymous:2001:Ab

Anonymous:2001:ACPa

REFERENCES

Anonymous:2001:ACPb

Anonymous:2001:ACPc

Anonymous:2001:AI

Anonymous:2001:AIV

Anonymous:2001:ATIb
REFERENCES

Anonymous:2001:ATIa

Anonymous:2001:GEIa

Anonymous:2001:GEIb

Anonymous:2001:GEIc

Anonymous:2001:IP

Anonymous:2001:PAFa

Anonymous:2001:PAFb

Anonymous:2001:PAFc

Anonymous:2001:PAFd

Anonymous:2001:PAFe

Anonymous:2001:PAFf

REFERENCES

Anonymous:2001:PAFm

Anonymous:2001:PAFn

Anonymous:2001:PAFo

Anonymous:2001:PAFp

Anonymous:2001:PAFq

Anonymous:2001:PAFr
REFERENCES

Anonymous:2001:PAFs

Anonymous:2001:P

Anonymous:2001:RN

Anonymous:2002:Aa

Anonymous:2002:Ab

Anonymous:2002:AI

Anonymous:2002:ATI

Anonymous:2002:EBa

Anonymous:2002:EBb

Anonymous:2002:GEIa

Anonymous:2002:GEIb

Anonymous:2002:GEIc

Anonymous:2002:N

Anonymous:2002:PAa

Anonymous:2002:PAb

Anonymous:2002:PAc

Anonymous:2002:PAd

REFERENCES

Anonymous:2002:PAe

Anonymous:2002:PAf

Anonymous:2002:PAFa

Anonymous:2002:PAFb

Anonymous:2002:PAFc

Anonymous:2002:PAFd

Anonymous:2002:SSD

Anonymous:2002:SIP

Anonymous:2003:AI

Anonymous:2003:ATI

Anonymous:2003:EBa

Anonymous:2003:EBb

REFERENCES

Anonymous:2003:EBc

Anonymous:2003:EBd

Anonymous:2003:EBe

Anonymous:2003:EBf

Anonymous:2003:EBg

Anonymous:2003:EBh

Anonymous:2003:EBi

Anonymous:2003:EBj
Anonymous:2003:EBk

Anonymous:2004:ATI

Anonymous:2004:AI

Anonymous:2004:CA

Anonymous:2004:CSM

Anonymous:2004:CH

Anonymous:2004:EBa

Anonymous:2004:EBb

REFERENCES

REFERENCES

REFERENCES

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

REFERENCES

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EVA

Anonymous:2011:EVR

Anonymous:2012:EBa

Anonymous:2012:EBb

REFERENCES

REFERENCES

[Ano13a]

[Ano13b]

[Ano13c]

[Ano13d]

[Ano13e]

REFERENCES

Anonymous:2014:Ebb

Anonymous:2014:EbC

Anonymous:2014:EbD

Anonymous:2014:EBe

Anonymous:2014:EVA

Anonymous:2014:EVR

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBf

Anonymous:2015:EBg

Anonymous:2015:EBh

Anonymous:2015:EBi

Anonymous:2015:EBj

Anonymous:2015:EVR

Anonymous:2016:EBa

REFERENCES

[Ano16g] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 95(??):ifc, September 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2016:NAE

Anonymous:2016:TI

Anonymous:2017:EBa

REFERENCES

Anonymous:2017:EBh

Anonymous:2017:EBi

Anonymous:2017:EBj

Anonymous:2017:EBk

Anonymous:2017:EBl

Anonymous:2017:EBm

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 110(??):ifc, December 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
Anonymous:2018:EBa

Anonymous:2018:EBb

Anonymous:2018:EBd

Anonymous:2018:EBe

Anonymous:2018:EBf

Anonymous:2018:EBg

Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2018:EBj

Anonymous:2018:EBk

Anonymous:2018:EBl

Anonymous:2018:EBm

REFERENCES

Anonymous:2018:EBn

Anonymous:2018:EBo

Anonymous:2018:EBp

Anonymous:2018:EBq

Anonymous:2018:EBr

Anonymous:2018:EBs

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 120(??):ii, October 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
 Anonymous:2018:EBt

Anonymous:2018:EBu

Anonymous:2018:EB

Anonymous:2018:EBCa

Anonymous:2018:EBCb

Anonymous:2018:EBCc

Anonymous. Editorial board (continued). *Journal of Parallel and Distributed Computing*, 116(?):ii, ???? 2018. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2018:FTPa

Anonymous:2018:FTPb

Anonymous:2018:TPa

Anonymous:2018:TPb

Anonymous:2019:EBa

Anonymous:2019:EBb

REFERENCES

Anonymous:2019:EBc

Anonymous:2019:EBd

Anonymous:2019:EBe

Anonymous:2019:EBf

Asdre:2007:OPS

Andreae:1997:ECP

[ANS97] Thomas Andreae, Michael Nolle, and Gerald Schreiber. Embedding Cartesian products of graphs into de Bruijn
REFERENCES

Alba:2002:HCP

Abdullah:2005:DDA

Al-Omari:2004:EOT

Al-Omari:2005:ASF

REFERENCES

February 2003. CODEN JPDCER. ISSN 0743-7315 (print),
1096-0848 (electronic).

REFERENCES

193

AlFaisal:2017:NPE

Angelov:2005:EOT

Agostini:2018:GAE

Aupy:2014:CAF

Aumann:1991:IMU

REFERENCES

REFERENCES

Ashari:2015:MDB

Abali:2001:ARN

Al-Sayed:2016:PMF

Al-Shammary:2013:FSS

Akkaya:2009:CWS

[ASM09] Kemal Akkaya, Fatih Senel, and Brian McLaughlan. Clustering of wireless sensor and actor networks based on sensor

REFERENCES

REFERENCES

Aboelaze:1995:PAB

Abramson:1989:DCU

Asher:2009:SLM

Ashouri:2015:PPB

Andresen:1997:TSD

REFERENCES

Al-Zoubi:2013:RGS

Bultan:1992:NMH

Bhandarkar:1995:HTR

Bergmans:1996:CSR

Ben-Asher:1997:ORM

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Ben-Asher:1995:ESS

Bahi:2000:AIA

Ben-Asher:2004:EPS

Banikazemi:2001:DAV

REFERENCES

REFERENCES

Berger:2005:PNC

Ben-Asher:1991:PR

Barlas:2005:VSO

Basermann:1997:CGL

Bertier:2006:DME

Bataineh:2005:TAS

Sameer M. Bataineh. Toward an analytical solution to task allocation, processor assignment, and performance evaluation of

Bartoli:2003:ABD

Bertrand:2006:DRR

Busnel:2011:UPS

Barnat:2012:DFL

Belkouch:2002:SSD

Michael A. Bender, Jonathan W. Berry, Simon D. Hammond, K. Scott Hemmert, Samuel McCauley, Branden Moore, Benjamin Moseley, Cynthia A. Phillips, David Resnick, and Arun Rodrigues. Two-level main memory co-design: Multi-threaded

REFERENCES

REFERENCES

[B18] Anne Benoit, Aurélien Cavelan, Franck Cappello, Padma Raghavan, Yves Robert, and Hongyang Sun. Coping with silent and fail-stop errors at scale by combining replication and checkpointing. *Journal of Parallel and Dis-
REFERENCES

Bagrodia:1995:USB

Bononi:2000:DPE

Barrett:2015:ARM

Bozkus:1994:CFH

Barthou:1997:FAD

Baumann:2014:FDG

Bazterra:2005:GFU

Bermond:1995:DLC

REFERENCES

Bruck:1995:CFT

Bhowmick:2015:NAB

Badishi:2009:DFC

Bressan:2013:EEP

Bhatt:1996:STD

REFERENCES

REFERENCES

Ballard:2015:RHV

Benoit:2013:RPO

Bruck:1997:EMP

Blevins:1990:BHI

REFERENCES

REFERENCES

[Billionnet:1995:AFB]

[Besa:2013:CRB]

[Beckmann:1996:GSS]

[Bischof:2000:PLB]

[Boukerche:2012:DBA]
Azzedine Boukerche, Dionyisios Efstatiiou, and Sotiris Nikleseas. Direction-based adaptive data propagation for heterogeneous sensor mobility. *Journal of Parallel and
REFERENCES

Benoit:2015:ISP

Bhattacharya:1994:MGM

Bevilacqua:2002:MAP

Bilas:1997:FRS
Bradford:2001:CPD

Bruno:2013:MMC

Bauer:1994:PDF

Baala:2003:SSD

Bilo:2004:EAO

References
puting, 64(9):1086–1100, September 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Berenbrink:2009:NAM

Baccour:2017:PEG

Brooks:2004:TMT

Blazewicz:2013:IMG

Borgdorff:2013:FDM

Bilo:2006:PAB

Berbrink:2018:TLB

Baiardi:1987:DIN

Barahona:1986:PAM

Barbosa:1989:DIS

Baru:1990:SER

REFERENCES

Barberou:2003:EME

Beauquier:2002:TBS

Bao:2003:DDC

Bozdag:2008:FSG

Bokka:1995:CTC

REFERENCES

REFERENCES

Blelloch:1994:IPN

Brodtkorb:2013:GPU

Bhuyan:1987:AIN

Bic:1990:POM

Birman:1994:IRC

REFERENCES

Boraten:2018:MHT

Banerjee:2015:WEP

Bhuiyan:2017:PAS

Byun:2011:BRC

Bouguerra:2014:FTS

REFERENCES

[BL94] A. A. Bertossi and F. Logi. Parallel string matching with variable length don’t cares. Journal of Parallel and Distributed
REFERENCES

Bianchini:1996:EPM

Bachmat:2005:ECC

Broberg:2001:POU

Bonfietti:2013:MTM

REFERENCES

REFERENCES

Bahmani:2016:ECU

Baharvand:2017:AAA

Bahmani:2017:SCE

Boukerche:2007:PSL

Bai:2008:MMR

REFERENCES

Brungger:1998:SLS

Boukerche:2005:RCL

Busch:2007:EBP

Bustio-Martinez:2019:UHL

Bhuvaneswari:1997:NFG

Bermond:2001:BPL

Boxer:1998:SPA

Boxer:1999:SPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bou03] Azzedine Boukerche. Wireless and mobile ad hoc networking and computing. *Journal of Parallel and Distributed Com-
REFERENCES

Ben-Othman:2010:EEQ

Bozejko:2009:SFS

Bongiovanni:1989:PDS

Bilardi:1995:HPC

Barth:1998:RPG

REFERENCES

REFERENCES

REFERENCES

Babaoglu:1995:SVD

Bernaschi:1995:DRP

Boppana:1995:MAA

Bae:1996:PUC

Boukerche:2002:DGB

[BR02] Azzedine Boukerche and Amber Roy. Dynamic grid-based approach to data distribution management. *Jour-
REFERENCES

Benoit:2008:MPS

Bromley:1996:QNG

Bhat:2003:ECC

Bosque:2006:PCI

Boudet:2001:ADA
Vincent Boudet, Fabrice Rastello, and Yves Robert. Alignment and distribution is not (always) NP-Hard. *Jour-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kostas Blathras, Daniel B. Szyld, and Yuan Shi. Timing
models and local stopping criteria for asynchronous iterative
algorithms. *Journal of Parallel and Distributed Computing*, 58(3):446–465, September 1999. CODEN JPD-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

Myung M. Bae, R. Venkatesan, and Bella Bose. Data rearrangement between radix-k and Lee distance gray codes in
REFERENCES

Bik:1996:UIS

Bai:2008:PBT

Bharadwaj:2009:HBS

Buayen:2018:PTS

Bein:2011:DNC

Brown:1993:PQA

Theodore Brown and Renbing B. Xiong. A parallel quicksort algorithm. *Journal of Parallel and Distributed Com-
REFERENCES

Banerjee:2008:FTM

Bobda:2018:HLS

Bui:2017:EEC

Bi:2019:DPS

Butt:2006:SOF

Brooks:2004:AOD

Callsen:1994:OHC

Cheng:1995:ORS

Conrad:1995:APA

Coelho:1996:OCH

Fabio Cannizzo. A fast and vectorizable alternative to binary search in $O(1)$ with wide applicability to arrays.

[Cappello:1987:GEH]

[Carlson:1990:SLR]

[Carter:1995:DMD]

[Casavant:1993:TMV]

[Chow:2018:UJI]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cesar:2017:ICT

Chien:2003:EAP

Chang:2009:NMC

Callahan:1988:EII

Chen:2008:MJR
[CCK11] Hua Chen, Albert Mo Kim Cheng, and Ying-Wei Kuo. Assign-

REFERENCES

Cameiro:2006:MMR

Caminero:2006:MMR

Chiu:1994:FRC

Chase:1992:PPP

Chang:2006:BCH

REFERENCES

[CDB04] Zhongqiang Chen, Alex Delis, and Henry L. Bertoni. Radio-wave propagation prediction using ray-tracing techniques on a

Choi:2005:RDR

Carrier:2015:SSI

Caron:2010:SSC

Cicerone:2001:CPR

Chen:1984:MLA

REFERENCES

Chu:1989:MIO

Chockler:2009:SIJ

Chockler:2011:SIC

Cucchiara:1995:DCO

Cosnard:1990:STF

REFERENCES

Cassavia:2018:DCL

Cheng:2013:DAT

Ceri:1986:OJB

Cobb:2002:SGL

REFERENCES

Clauss:2010:ICO

Carroll:2011:DAM

Carroll:2012:IBD

Casu:2017:PPA

Colajanni:1998:TBR

Casanova:2014:VSA

Castro:2014:ATM

Cecilia:2013:EDP

Chatterjee:1996:AAA

REFERENCES

Chiola:1992:SIP

Chien:1995:CAC

Cheng:2018:MCN

Chowdhury:1990:GLS

Choudhary:1993:PSG

Chrisochoides:1994:MAS

REFERENCES

REFERENCES

REFERENCES

Chang:2000:EAT

Choi:2013:DSE

Cho:1999:CRP

Chiu:2004:PED

Steve C. Chiu, Wei keng Liao, Alok N. Choudhary, and Mahmut T. Kandemir. Processor-embedded distributed smart disks for I/O-intensive workloads: architectures, performance

REFERENCES

REFERENCES

Contreras:2000:DSF

Chinn:1996:MAR

Chen:1995:SRT

Corradi:2000:POM

REFERENCES

Laizhong Cui, Peng Ou, Xianghua Fu, Zhenkun Wen, and Nan Lu. A novel multi-objective evolutionary algorithm for recommendation systems. *Journal of Parallel

Culler:1990:ETS

Choudhary:1991:IEH

Choudhary:1992:PIE

Conn:1994:PRS

Cabillic:1997:SEP

REFERENCES

[CP04a] Tiziana Calamoneri and Rossella Petreschi. L (h,1)-labeling subclasses of planar graphs. *Journal of Parallel and Dis-
Choi:2004:EQD

Chandra:2005:TAA

Caminiti:2010:UPE

Chen:2010:PIE

Cinque:2017:IHF

Choudhury:2011:SMT

Ashish Choudhury, Arpita Patra, B. V. Ashwinkumar, Kannan Srinathan, and C. Pandu Rangan. Secure message trans-

Chen:2018:CMD

Conant:2003:PGI

Clement:1995:OCC

Carmona:1991:MSP

REFERENCES

Charcranoon:2004:LSP

Chowdhury:2013:OAM

Chalasani:1994:FTR

Chen:2012:ILA

Cheng:1992:OCA

REFERENCES

REFERENCES

P. Caymes-Scutari, A. Morajko, T. Margalef, and E. Luque. Scalable dynamic monitoring, analysis and tuning environment for parallel applications. *Journal of Parallel and Dist-
REFERENCES

REFERENCES

Manuel I. Capel, Antonio J. Tomeu, and Alberto G. Salguero. Teaching concurrent and parallel programming by patterns:

Congiusta:2008:SOM

Comito:2016:DSD

Climent:1999:BRD

Cuzzocrea:2011:SIJ

Cuzzocrea:2013:MAH

Chandrasekaran:1990:MOA

Chlebus:1991:PQ

Chen:2016:EHS

Charles:2008:PDS

Chin:2009:HLS

REFERENCES

February 2009. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Chatterjee:2018:SFF

Chaudhury:2018:LHW

Chu:1992:OMN

Cheng:1993:SAD

Cang:2000:TSO

[CW00] Songluan Cang and Jie Wu. Time-step optimal broadcasting in 3-D meshes with minimum total communication dis-
REFERENCES

REFERENCES

Lizhong Chen, Ruisheng Wang, and Timothy M. Pinkston. Efficient implementation of globally-aware network flow
REFERENCES

Cao:2018:GEG

Chen:1996:TNL

Cao:2018:GEG

Chung:2005:ORT

REFERENCES

Dabey:2014:SHL

Drummond:1996:DBD

Dantas:2018:EEP

Draeger:2017:MPF

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal Name</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dai:2013:PDE

DeMaio:2017:DOT

Dehne:1994:CDH

Das:2006:CFS

Du:2006:LLA

REFERENCES

[DH91b] Shantanu Dutt and John P. Hayes. Designing fault-tolerant systems using automorphisms. *Journal of Parallel and Dis-
REFERENCES

[DHK04] Nicholas J. Dingle, Peter G. Harrison, and William J. Knottenbelt. Uniformization and hypergraph partitioning for the dis-

Di:2014:GHP

eSilva:2010:AEM

Do:2018:ACA

Daily:2015:WSB

Dimokas:2010:EED

Dornstetter:2001:SAS

Dehne:2015:SRT

Ding:2009:AAE

Dufosse:2015:TAA

Deveci:2015:HPM

REFERENCES

Della-Libera:2000:RDT

Datta:2011:TSS

Dong:2012:DAL

Duprat:1988:HPE

Darling:1990:PAS

REFERENCES

Dinning:1990:FPA

Dixit:1990:APP

Davarakis:1992:PPA

Dutt:1994:SLB

Das:1995:UAP

Dramitinos:1999:ARP
George Dramitinos and Evangelos P. Markatos. Adaptive and reliable paging to remote main memory. *Journal of
Desai:2004:SHL

Dimitrakopoulou:2017:NNE

Dasgupta:1997:VAL

Das:2003:AFQ
REFERENCES

REFERENCES

deOliveira:2014:UAS

Dolev:1997:SSR

Das:1998:SIP

Das:1998:TAH

REFERENCES

[DPBNT12] Swan Dubois, Maria Potop-Butucaru, Mikhail Nesterenko, and Sébastien Tixeuil. Self-stabilizing Byzantine asyn-

Diniz:1998:LCE

dAuriol:2009:OPB

Dizaji:2018:PPA

Dehghani:2019:DPE

Dehne:1990:IDS

Dion:1996:CAN

Dummler:2013:PSS

Duato:2001:CRA

Diaz:2002:BBC

REFERENCES

REFERENCES

REFERENCES

Dewan:1994:SPD

Dubois:1992:SIM

Djamegni:1997:COP

Dickens:2001:ECI

REFERENCES

Ding:2010:PCM

Dandamudi:1999:PAS

Dong:2012:HPN

Du:1997:CPP

Dai:2017:COP

Hongjun Dai, Shulin Zhao, and Kang Chen. A chaos-oriented prediction and suppression model to enhance the security for cyber physical power systems. *Journal of Parallel

[Du:2001:AES]

[El-Amawy:1990:BHN]

[El-Boghdadi:2009:PAR]

[El-Boghdadi:2013:CAO]

REFERENCES

[ECP+18] Christian Esposito, Aniello Castiglione, Francesco Palmieri, Massimo Ficco, Ciprian Dobre, George V. Iordache, and

Edelman:1991:OMT

Evropeytsev:2017:ECG

Eltayeb:2005:PSB

ElBaz:2005:LBM

Efe:1991:EMT

[EHLM+15] Youngmoon Eom, Deukyeon Hwang, Junyong Lee, Jonghwan Moon, Minho Shin, and Beomseok Nam. EM-KDE:

Evans:1989:FTS

Esnaashari:2011:CLA

Emeliyanenko:2013:CRG

Ellis:1994:SPA

Eriksson:1996:ORD

REFERENCES

Eberlein:1990:EIJ

Elford:1997:TTD

El-Rewini:1995:SSC

Eriksen:1988:TDP

El-Reini:1990:SPP

Esteves:2015:IDE

Escudero-Sahuquillo:2011:OSC

Escudero-Sahuquillo:2014:NPD

Escudero-Sahuquillo:2018:FEC

REFERENCES

Fallah:2007:HPC

Ferreron:2019:FTL

Fagin:1992:LIM

Fan:1995:CSM

Fahringer:1996:CTE

Thomas Fahringer. Compile-time estimation of communication costs for data parallel programs. Journal of Par-

REFERENCES

[Fang:2000:FRH] Yugang Fang, Imrich Chlamtac, and Hong-Bing Fei. Failure recovery of HLR mobility databases and parameter optimization

REFERENCES

REFERENCES

REFERENCES

[Francioni:1993:BSA]

[Fernandez:2004:ICM]

[Ferreira:2006:LSP]

[Ford:1990:PCT]

[Fox:1989:CGG]

[Fernandez:2017:PQS]

REFERENCES

REFERENCES

Fortes:1985:PDT

Flocchini:1996:OEL

Fahringer:1999:BSC

Friedman:1999:LBS

Fernandess:2007:CCD

REFERENCES

[FMW+94] Rhys S. Francis, Ian D. Mathieson, Paul G. Whiting, Martin R. Dix, Harvey L. Davies, and Leon D. Rot-

REFERENCES

[FR92] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain synchronization. Journal of

REFERENCES

[FSV17] Marta Fort, J. Antoni Sellarès, and Nacho Valladares. Intersecting two families of sets on the GPU. *Journal of Parallel and Distributed Computing*, 104(??):167–178, June 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-

REFERENCES

Funabiki:1992:NNM

Feo:2014:SIJ

Fu:2010:FAR

Fraigniaud:1997:AAB

Franciscani:2005:RCA

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

Garimella:2018:ESR

Grossman:2017:PTT

Gharachorloo:1992:PDM

Goff:2003:PRA

Gait:1987:DPM

REFERENCES

[Guha:1993:DON]

[Gustafson:2006:SIM]

[Gu:2011:HTN]

[Gu:2008:PAA]

[Germain:1993:CAM]
REFERENCES

Ganesan:2004:NIW

Gao:2018:CPD

Gardellin:2011:GPD

Goodeve:1998:TMS

Garzon:1992:DTG

Gonzalez-Ferez:2014:GFD

Gabarro:1994:ACD

Gavoille:2001:SER

Gao:1993:DMA

REFERENCES

REFERENCES

[GHC+17] Yong Guo, Sungpack Hong, Hassan Chafi, Alexandru Iosup, and Dick Epema. Modeling, analysis, and experimental com-

REFERENCES

Gottlieb:1994:EM

Gottlieb:1995:EM

Gottlieb:1996:EA

Gottlieb:1997:EM

Gupta:1996:FGD

REFERENCES

REFERENCES

[GLC14] Marta Garcia, Jesus Labarta, and Julita Corbalan. Hints to improve automatic load balancing with LeWI for hy-

Gomez:2006:FER

Gomez-Luna:2012:PMA

Gao:2014:RCG

Ghose:1994:DCC

REFERENCES

[GM13] Brice Goglin and Stéphanie Moreaud. KNEM: a generic and scalable kernel-assisted intra-node MPI communica-
REFERENCES

Gorain:2014:AAS

Grace:2014:DRP

Guo:1991:PCO

Gupta:2000:NSI
Galiano:2012:GBP

Gupta:2006:WAH

Giles:2013:DOG

Gillan:2011:SIJ

Gomez-Martin:2016:FBI

Gupta:2007:DKG

[GMXA07] Ananya Gupta, Anindo Mukherjee, Bin Xie, and Dharma P. Agrawal. Decentralized key generation scheme for cellular-

Gupta:2015:IBS

Georgiou:2009:FTS

Georgiadis:2004:FWA

Gupta:2003:EET

Guo:2018:PAM

Greenberg:1995:PRN

Goertzel:1994:LIP

Gai:2013:MIG

Gonzalez:1998:CAM

REFERENCES

Gasieniec:1997:BBF

Gu:2000:EAP

Guo:2005:ICS

Gandhi:2007:DAC

Gaur:2010:PBS
Greenberg:1996:CCC

Guo:2019:HCM

Gaibisso:2006:EMT

Goldman:2006:EMD

Geng:2008:DSA

Gupta:1999:SLT

Grahn:2000:CEL

Govindarajan:2001:SIC

Gupta:2001:CBT

Gupta:2003:FOS

Gupta:2003:SSM

Giacaman:2018:PSE

Gumaei:2019:ASC

Goldstein:1996:LTI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wu:2018:MME

Grimshaw:1994:MAC

Gupta:2013:LPR

Gerasoulis:1992:CCH

Garg:2011:ECS

Saurabh Kumar Garg, Chee Shin Yeo, Arun Anandasivam, and Rajkumar Buyya. Environment-conscious scheduling of
HPC applications on distributed cloud-oriented data centers.

Gong:2013:EEC

Gu:2014:SIM

Guil:1997:FHT

Gao:2008:PSA

[Hal05] Sibsankar Haldar. Constructing regular variables in message passing systems. *Journal of Parallel and Distributed Com-

REFERENCES

[HBF12] Yi Hu, Laxmi N. Bhuyan, and Min Feng. Peer-to-peer indirect reciprocity via personal currency. *Journal of Par-

REFERENCES

Herbordt:1994:PAO

Herbordt:2004:ACH

Hu:2010:IIC

Hanna:2011:AHS

Hoare:2008:TSH

REFERENCES

HerondeCarvalhoJunior:2013:CSE

Hoare:2005:FDS

Herath:1992:GEI

Hajihashemi:2010:HPC

Hassan:2011:PID

Hyde:1996:ADS

[HF96] Randall L. Hyde and Brett D. Fleisch. An analysis of degenerate sharing and false coherence. *Journal of
Hybinette:2002:LHO

Hameenanttila:1996:FHN

Harmanci:2010:ETM

Hamdi:1997:RFE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hua:1995:OAL

Hosseini:1990:AGC

Hanlon:2003:LSF

Hori:2012:ANS

Helmbold:1996:TRC
REFERENCES

Huang:1999:BBA

Heun:2001:ODE

Haghighi:2006:PPQ

Hart:2007:PMR

Herrmann:2015:MAT

Julien Herrmann, Loris Marchal, and Yves Robert. Memory-aware tree traversals with pre-assigned tasks. *Journal of
REFERENCES

Hashemi-Najafabadi:2007:MPM

Ho:1991:OBS

Huang:1994:ELB

He:2009:SAA

Hohberg:1990:HFB

Hollingsworth:2017:E

REFERENCES

Heydemann:1994:EHG

Hernandez-Orallo:2009:PBS

Hendrickson:1995:PMB

Ha:1997:SDC

Homer:1997:DPP

[HP97b] Steven Homer and Marcus Peinado. Design and performance of parallel and distributed approximation algorithms

Hands:1997:PSB

Hoepman:2002:SSW

Ha:2007:STR

Hamdi:1999:CES

Hung:1989:PPL

Hung:1990:PBC

Heywood:1992:PHMb

Heywood:1992:PHMa

HarEl:2000:JCB

REFERENCES

REFERENCES

Hossain:2017:CPC

Hillyer:1986:EOP

Huang:1993:CFH

Higham:1994:MBT

Homer:1994:SPC

[HRM17]
[HOS93]
[HS94a]
[HS94b]
REFERENCES

He:2012:CSB

Hussain:2017:HDE

He:2010:IRS

Hsieh:2004:EPS

Hinkle:1987:NLP

Heymann:2004:ERM

REFERENCES

June 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[HYS10] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. *Journal of Parallel and Dis-
REFERENCES

Hu:2011:DSR

Huang:2017:RSB

Hussain:2017:NHS

Haldar:1995:BOC

Haldar:2009:SOB

[Hu:2013:RAS]

[Hsieh:2016:HTD]

[Habetha:2003:ASP]

[Hwang:1997:EPA]
REFERENCES

He:2004:SSI

Hao:2019:AGB

Ieumwananonthachai:1992:IPM

Iyengar:2004:SII

Ibrahim:2008:FGP

Iqbal:2005:PAD

[IC05] Saeed Iqbal and Graham F. Carey. Performance analysis of dynamic load balancing algorithms with variable number of

Irwansyah:2017:FBM

Ibarra:1993:QBA

Ibarra:1994:FPA

Ibrahim:1987:LLI

Iannello:1994:CWA

REFERENCES

REFERENCES

REFERENCES

Javadi:2012:FAR

Johnson:1993:PED

Joy:1998:HDR

Jesus:2015:FUF
Jaramillo-Botero:2002:UFM

Jiang:1991:MMV

Jayanti:2000:AOS

Jhumka:2014:EFT

Jin:2005:ENA

Hyun-Wook Jin, Pavan Balaji, Chuck Yoo, Jin-Young Choi, and Dhabaleswar K. Panda. Exploiting NIC architectural support for enhancing IP-based protocols on high-performance

Gene Eu Jan and Ming-Bo Lin. Concentration, load balancing, partial permutation routing, and superconcentration on

REFERENCES

REFERENCES

Jegou:1986:DSP

Jenq:1994:RMA

Jadav:1995:TSH

Jia:1994:PNU

REFERENCES

Jiang:2014:FRS

Jiang:2006:CVB

Jin:2005:MDD

Jin:2015:SEM

Johnson:2004:MEN

Jiang:2017:DOS

Korst:1989:COB

Koc:1991:FAG

Kwok:1997:ESA

Kwok:1999:BCT

REFERENCES

REFERENCES

[Kap93] Adam Kapralski. New methods for the generation of permutations, combinations, and other combinatorial objects in paral-
REFERENCES

Karonis:1992:TPP

Karabeg:1995:PPT

Karaata:2002:SAF

KAS07

Kaufman:1994:PQA
REFERENCES

Kavianpour:1993:NMS

Kim:1996:DEP

Krueger:1996:EPP

Kohn:2001:PSA

Kennedy:2001:TLS

Kravtsov:2010:SFL

Kaur:2019:IRE

Kuang:2005:PPO

REFERENCES

Kyriakis-Bitzaros:1992:EDT

Krishnamoorthy:1994:SDS

Kim:1995:NPU

Kim:1998:MGE

Karamcheti:1999:ASM

Vijay Karamcheti and Andrew A. Chien. Architectural support and mechanisms for object caching in dynamic multi-threaded computations. *Journal of Parallel and Distributed
REFERENCES

REFERENCES

[KCSS18] Sajith Kalathingal, Sylvain Collange, Bharath N. Swamy, and André Seznec. DITVA: Dynamic Inter-Thread Vector-
Kim:1999:CMD

Koutsonikolas:2008:IAF

Karonis:2013:DHA

Kumar:2018:IDC

REFERENCES

REFERENCES

REFERENCES

[KHK18] Seong Hoon Kim, Minkeun Ha, and Daeyoung Kim. A multi-hop pointer forwarding scheme for efficient location up-

Kanemitsu:2017:PNS

Kaushik:1996:EIS

Kannan:2014:HSC

Kang:2013:EIG

REFERENCES

Kusudo:2015:BPA

Kim:2011:DCA

Kim:2017:QPT

Kumar:1984:PEB

Kaznachey:2003:NNB

REFERENCES

Kumar:1986:TPD

Kirchner:1988:AAV

Konda:1995:SFD

Karypis:1998:MWP

Karypis:1998:PAM

REFERENCES

REFERENCES

[KKS08] Vladimir V. Korkhov, Valeria V. Krzhizhanovskaya, and P. M. A. Sloot. A Grid-based Virtual Reactor: Parallel perfor-

REFERENCES

[Kaeli:2008:SIG]

[Kim:2005:IGS]

[Kim:2011:TBS]

[Kung:1987:PAO]

[Kim:1998:AVC]
REFERENCES

Khanna:2016:GND

Kapelnikov:1989:MMA

Kapelnikov:1992:MPA

Komatitsch:2009:PHO

Koibuchi:2005:EOP

Katevenis:1997:TSH

[KMS10] Dariusz R. Kowalski, Mariam Momenzadeh, and Alexander A. Shvartsman. Emulating shared-memory Do-All algorithms

REFERENCES

REFERENCES

REFERENCES

Korch:2006:OLS

Kang:2010:DSA

Kang:2010:SAA

Kundeti:2011:ECS

Kim:2012:FEP

Kuznetsov:2017:GGB

Petr Kuznetsov and Srivatsan Ravi. Grasping the gap between blocking and non-blocking transactional memories. *Journal
REFERENCES

Kishori M. Konwar, Sanguthevar Rajasekaran, and Alexander A. Shvartsman. Robust network supercomputing with unreliable workers. *Journal of Parallel and Distributed
REFERENCES

Kapoor:2002:GAF

Kaddoura:1996:ADN

Kumar:1991:SPA

Kraemer:1993:VPS

Kshemkalyani:1994:CCD

Kontothanassis:1995:HPS

Karlsson:1997:EDP

Khemka:1997:OMR

Kesavaraja:2018:QEC

Karinthi:1995:PAC

Kavianpour:1994:NAC

Kissel:2011:PSH

Koziris:2003:PSM

N. Koziris, A. Sotiropoulos, and G. Goumas. A pipelined schedule to minimize completion time for loop tiling with com-

Taehong Kim, Seog Chung Seo, and Daeyeong Kim. Distributed formation of degree constrained minimum routing cost tree in wireless ad-hoc networks. *Journal of Parallel and Distributed Computing*, 83(?):143–158, September
REFERENCES

[KUA07] Kamer Kaya, Bora Uçar, and Cevdet Aykanat. Heuristics for scheduling file-sharing tasks on heterogeneous systems with...

Kubica:2017:PBC

Katayama:2002:LOS

Kumar:2017:ROT

Katz:1988:GRP

Khoo:2010:PAF

B. T. Benjamin Khoo and Bharadwaj Veeravalli. Pro-active failure handling mechanisms for scheduling in grid computing

[KW02] Shan-Chyun Ku and Biing-Feng Wang. An optimal simple parallel algorithm for testing isomorphism of maximal outer-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lastovetsky:2013:HPD

Lejeune:2015:FSF

Latifi:1995:MTI

Latifi:1998:FBG

Lee:2000:IIB

[LAZC00] Seoung-Bum Lee, Gahng-Seop Ahn, Xiaowei Zhang, and Andrew T. Campbell. INSIGNIA: An IP-based qual-

Lopez:2018:THP

Lesyng:2003:EXE

Lazar:1995:BAM

Lakhlef:2015:EAP

Liang:1994:FTM

REFERENCES

Li:2019:JOD

Li:1990:SJS

Li:1990:SPA

Li:1991:DAP

Li:1991:TDB

Lin:1992:AGP

REFERENCES

REFERENCES

Lee:2003:RTW

Lan:1990:MHM

Lu:1992:SCP

Lublin:2003:WPS

Lowenthal:1996:UFG

REFERENCES

Losada:2017:PAF

Lewis:2003:SES

Lampka:2016:KIC

Liu:2017:FTE

REFERENCES

Ltaief:2008:FTA

Lu:2012:EPM

Lobachev:2013:EPP

Li:2018:SCC

Lan:2010:SDM

Lee:1992:DGD

Tze Chiang Lee and John P. Hayes. Design of gracefully degradable hypercube-connected systems. *Journal of Par-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lin:2003:EED

Lisper:1990:STO

Li:1986:SSN

Lee:2005:EDR

Lee:2002:PPR

Li:2019:EPO

Zhihao Li, Haipeng Jia, Yunquan Zhang, Shice Liu, Shigang Li, Xiao Wang, and Hao Zhang. Efficient parallel op-

REFERENCES

Liu:1995:XSS

Lu:1998:NPD

Li:2007:UBQ

Li:2010:ECR

Li:2012:FLC

[LL12a] Chunlin Li and Layuan Li. A flexible layered control policy for resource allocation in a sensor grid. *Journal of Parallel and Distributed Computing*, 72(8):925–935, August 2012. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

REFERENCES

Sau-Ming Lau, Qin Lu, and Kwong-Sak Leung. Adaptive load distribution algorithms for heterogeneous distributed systems.

Lai:2015:SAM

Leu:2008:DWD

Lee:1993:OFC

Luo:2007:RFG

Lu:2016:PIF

REFERENCES

Lin:2012:MSN

Liu:2007:DCA

Lv:2012:GKA

Li:2017:DHB

Li:2015:TRT

REFERENCES

Shu Li, Rami Melhem, and Taieb Znati. An efficient algorithm for constructing delay bounded minimum cost multicast trees.
REFERENCES

Lee:2012:GSF

Li:2017:EAS

Liang:2013:WBC

Lima:2012:PEO

Lin:1991:NRA

Lopriore:2018:PBP

Loscri:2008:MPW

Luk:1988:AAB

Lin:1995:BDO

Larmore:1996:PAO

Lee:1996:PME

[LP96b] Chiung-San Lee and Tai-Ming Parng. Performance modeling and evaluation of a two-dimensional disk array system. Jour-
REFERENCES

Liu:1997:PAL

Li:2018:MAE

Lee:2010:AET

Lopez-Portugues:2012:ASS
REFERENCES

[LR03a] Qun Li and Daniela Rus. Communication in disconnected ad hoc networks using message relay. *Journal of Parallel and
Lindsey:2003:EEA

Ludwig:2005:ISM

Lastovetsky:2006:HTM

Lang:2014:ETE

Lukovszki:2018:AIN
REFERENCES

REFERENCES

Lundberg:2001:ORS

Lin:2003:LBL

Lin:2005:FOP

Lufei:2006:FMC

Liang:2010:RDS

[LS10] Zhengqiang Liang and Weisong Shi. A reputation-driven scheduler for autonomic and sustainable resource sharing in

Lee:2000:OEM

Lin:2015:EET

LaPolla:1993:DPP

Liang:1996:PAE

REFERENCEs

REFERENCES

Lee:2017:NNL

Liu:2014:DBD

Li:2014:DPM

Luckow:2015:PDA

Liu:2015:ABI
REFERENCES

Lu:1994:LBJ

Lin:1996:EUV

Li:2007:RCP

Lahiri:2010:IFI

Lan:2002:NDL

REFERENCES

Lan:2006:DIC

Leung:1990:PSS

Liu:2012:CPS

Leung:1995:RMR

Leung:1996:LRR

REFERENCES

Lu:2001:IBD

Lin:2014:PAE

Lucchese:2018:PNC

Luk:1985:PMC

Lundberg:1990:PRG

Lundberg:1994:PBM

Lundberg:1999:PBS

Lu:1988:OAR

Liu:2015:FGS

Low:2007:DHP

[LVB07] Diana H. P. Low, Bharadwaj Veeravalli, and David A. Bader. On the design of high-performance algorithms for aligning multiple protein sequences on mesh-based multiprocessor architectures. *Journal of Parallel and Distributed Computing*, 67(9):

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>

[LWY97] Cheolwhan Lee, Yuan-Fang Wang, and Tao Yang. Global optimization for mapping parallel image processing tasks on dis-

References

REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[Tiantian Liu, Yingchao Zhao, Minming Li, and Chun Jason Xue. Joint task assignment and cache partitioning with cache locking for WCET minimization on MPSoC. *Journal of Parallel and Distributed Computing*, 71(11):1473–1483, November 2011. CODEN JPDCER. ISSN 0743-7315 (print), 1096-]

Mohiuddin:2019:WAV

Maia:2013:MRP

Maheshwari:1995:PSP

Min-Allah:2012:PER

Mohamed:2005:DUL

Min-Allah:2013:LPF

Manoj:2005:MHC

Manzini:1994:SMC

Mans:1997:ODA

Manjunathaiah:2013:FGM

REFERENCES

598

REFERENCES

REFERENCES

Morillo:2008:APC

Morgan:1992:RAP

Marsh:1992:OSS

Merzoug:2019:SAD

Mokdad:2011:ACM

Mirabella:2008:IRL

Maciel:2012:BDS

Maggioni:2016:OTS

Martinez:1991:SAD

Melhem:1993:OCI

Myers:2003:NMI
Daniel S. Myers and Michael P. Cummings. Necessity is the mother of invention: a simple grid computing system using

Mahapatra:2007:EDO

Mansouri:2013:EDH

Meyer:1997:ALA

Mahanti:2004:ADP

Megson:1991:SAB

[MFS93] Antoine N. Mourad, Kent W. Fuchs, and Daniel G. Saab. Recovery issues in databases using redundant disk ar-

REFERENCES

Ma:2012:EED

Hwu:2014:WAP

Monson:2018:EDO

Mudge:1986:AMB

Memin:1995:EPN

REFERENCES

REFERENCES

REFERENCES

Marinescu:2003:CFS

Mendelson:1992:EPP

Melamed:2008:ASR

Mukherjee:2008:DPI

Memik:2001:DES

Mittal:2009:NDC
[MKC+09] Neeraj Mittal, Srinivasan Krishnamurthy, R. Chandrasekaran, S. Venkatesan, and Yanyan Zeng. On neighbor discovery in

REFERENCES

[MLK12] Nicholas Moore, Miriam Leeser, and Laurie Smith King. VForce: an environment for portable applications on high

[MLZY17] Li Ma, Peng Leng, Yong Zhong, and Wenyin Yang. Research on semantic of updatable distributed logic and its application in access control. *Journal of Parallel and
REFERENCES

Manning:1993:AAE

Mahapatra:2000:MNN

Mandal:2004:CCI

Mandal:2006:PAD

Mandal:2007:SSA

REFERENCES

Michailidis:2007:PAP

Mittal:2007:PBD

Mastoras:2015:ADB

Mendiburu:2006:PEC

Meyer:2017:HMP

REFERENCES

REFERENCES

Moritz:2012:SIJ

Moreira:1998:DDD

Miller:1997:LBR

Mohapatra:1996:PAU

Mohapatra:1997:DRT

Monfroglio:1994:NLC

Meyer:1987:PFO

Mathias:1988:SEL

Mayr:1993:PPP

REFERENCES

Mickle:1996:LBU

Morris:2008:PLC

Meunier:2010:LTM

Miller:2015:TBC

Menezo:2017:ACC
Moldaschl:2017:FTC

Mestre:2017:TEP

Mei:2016:CMR

Mei:2012:FGL

Martinez-Perez:2009:PBA

REFERENCES

REFERENCES

Myoupo:1999:TEP

Mahadevan:2000:HAQ

Manivannan:2002:ARU

Macedo:2005:MGA

REFERENCES

Michail:2015:TPP

Majumdar:2004:PAC

Moraveji:2010:CGM

Moraveji:2010:GMD

Moraveji:2011:PMC

McLay:1996:MSM

Menasce:1995:SDP

Matos:2013:LER

McIntosh-Smith:2013:SIJ

McLeod:1990:PAT

REFERENCES

Malhotra:1993:RAR

Maillet:1995:EIG

Matheson:1996:AMA

Masuzawa:1997:AFC

REFERENCES

Mohan:2004:RRW

Mohan:2017:SML

Moonen:1991:JTA

Mayr:1995:ORP

Ma:2000:JJE

REFERENCES

Mao:2012:WCO

Yuan:1991:FTD

Mohapatra:1995:LSS

Mishra:2011:RRA

Marinescu:2010:SFS

REFERENCES

Yeh:1992:ABF

Ma:2017:SAA

Melab:2018:POU

Muppala:2012:RBR

Nesterenko:2002:SPA

REFERENCES

Nagy:2006:CNN

Nicolae:2011:BNG

Nakano:1995:OIA

Nishimura:2004:TDA

Napolitano:1990:DHP

Nassimi:1994:NLT

REFERENCES

REFERENCES

[Nicol:1997:APD]

[Ngiem:2009:FBI]

[Nicolae:2013:BVD]

[Natarajan:1993:PVM]

[Naderan:2013:ULB]

[Newhall:2017:PPD]

[Noh:1999:HMM]

[Neelima:2017:HPC]

[Nudd:1985:TDV]
February 1985. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Niculescu:2007:CEP

Nieman:1994:IDC

Nikolopoulos:2003:QCB

Nikolopoulos:2004:PAH

Ngai:1986:RAT

REFERENCES

Navaneethan:1991:DNS

Nick:1997:PSS

Nicolae:2016:TSD

Neumann:2017:ITH

Nukala:2014:STL

Nan:2018:DTD

[NLBT18]

Nicol:1995:APT

[NM95]

Nesterenko:2002:QBS

[NM02]

Nichols:2017:DDB

REFERENCES

Newman:1995:HPW

Neves:1997:TRS

Nagpal:2012:CAE

Nayebi:2011:PML

Nam:2010:MQS

REFERENCES

REFERENCES

Ni:1990:SIS

Nassimi:1993:EIB

Naimi:1996:LDM

No:2003:HPS

Neamatollahi:2012:IBA

REFERENCES

Ohn:2007:PCC

Ohring:1995:IHE

OKeeffe:1995:SBM

Olariu:2007:AAN

OBoyle:2003:TGE

REFERENCES

[OOSGVG’16] Marta Ortín-Obón, Darío Suárez-Gracia, María Villarroyo-Gaudó, Cruz Izu, and Víctor Viñals. Reactive circuits:

orPanaite:2000:OBF

Orhean:2018:NSA

Ou:1997:PRA

Ortigosa:2003:PSP

Oruc:1987:DCP

A. Yavuz Oruc. Designing cellular permutation networks through coset decompositions of symmetric groups. *Journal
REFERENCES

Olariu:1996:TON

Obenaus:1997:ESG

Ong:1998:ISM

Oida:2004:PSA

REFERENCES

REFERENCES

[Oza04] Haldun M. Ozaktas. Information flow and interconnections in computing: extensions and applications of Rent’s rule. Journal of Parallel and Distributed Computing, 64(12):1360–1370,

Hyunmin Park and Dharma P. Agrawal. A generic design methodology for deadlock-free routing in multicomputer net-

Pinar:2004:FOL

Paudel:2015:HPT

Padmanabhan:1991:EAD

Padmanabhan:1993:SBA

Polig:2018:HCF

Panda:2009:ICG

Parker:1989:CSS

Park:1992:MED

Park:1996:PAG

Parfenoff:1998:EPA

References

- **Parhami:2005:SIN**

- **Pal:2014:PMH**

- **Pauli:2015:IFT**

- **Patsouris:2001:AMA**

- **Park:1990:RCC**

[PBB+17] Sushil K. Prasad, Ioana Banicescu, Martina Barnas, Domingo Giménez, and Andrew Lumsdaine. Keeping up with tech-
REFERENCES

Pedersen:2008:ABA

Penmatsa:2011:GTS

Panyala:2017:EPE

Peng:2011:ISN

REFERENCES

Peng:2014:RNS

Percus:1992:PAC

Panda:2005:PRA

Pinel:2013:SVL

Papakostas:2017:PPC

REFERENCES

Parashar:2000:IPP

Phatak:2016:NDA

Park:2018:AAA

Palermo:1996:DDP

REFERENCES

Phillips:2013:BPI

Plimpton:2004:PRA

Pennycook:2013:IPP

Parker:1990:DAM

Puente:2001:ABR

REFERENCES

Park:2005:DVS

Park:2005:SRD

Plaku:2007:DCG

Plank:1997:FTM

Psarris:1991:ABT

Page:2008:SDH

[PKN08] Andrew J. Page, Thomas M. Keane, and Thomas J. Naughton. Scheduling in a dynamic heterogeneous distributed system using estimation error. *Journal of Parallel and Distributed Comput-

Page:2010:MHD

Penoff:2010:ETL

Peir:1993:LAR

Peng:1994:SOP

Petersen:1995:MCC

Plantenga:2013:ISI

Perrott:1987:DIP

Pang:2014:MSN

Pulido:2018:RVA

Peltier:2003:TPA

Powell:2007:EOD

Pan:2018:VAF

Park:2015:TSA

Provost:1992:DAE

Piriyakumar:1996:OCT

References

REFERENCES

REFERENCES

REFERENCES

[PR06] Danilo Pani and Luigi Raffo. Stigmergic approaches applied to flexible fault-tolerant digital VLSI architectures. *Journal of
REFERENCES

[PRS14] Viktor K. Prasanna, Yves Robert, and Per Stenström. Introduction to the JPDC special issue on Perspectives on Parallel and Distributed Processing. *Journal of Parallel

Palis:1994:PRP

Purushothaman:1988:RAS

Peng:1993:NPM

Protopopov:2001:MMP

REFERENCES

[Psarris:1996:BWG]

[Perez:2019:ATO]

[Peng:2016:BHS]

[Prieto:2001:PMA]

REFERENCES

[Parmentier:2006:LSM] Gilles Parmentier, Denis Trystram, and Jaroslaw Zola. Large scale multiple sequence alignment with simultaneous phy-

Peleg:1989:PDR

Petit:2007:OSS

Perez-Vidal:2009:HSF

Pontelli:2006:SST

Pandey:2018:ROC

Plaza:2006:CCB

[PVPM06] Antonio Plaza, David Valencia, Javier Plaza, and Pablo Martinez. Commodity cluster-based parallel processing of hyper-

Prades:2017:MTV

Palaniswamy:1996:PTW

Petagon:2016:EOA

Petagon:2017:VVA

REFERENCES

Journal of Parallel and Distributed Computing, 70(11):1110–
1118, November 2010. CODEN JPDCER. ISSN 0743-7315
(print), 1096-0848 (electronic).

Qiu:2017:SIS

Meikang Qiu, Saurabh Garg, Rujkumar Buyya, Bei Yu, and
Shiyuan Hu. Special issue on scalable cyber-physical systems.
Journal of Parallel and Distributed Computing, 103(??):1–2,
May 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
science/article/pii/S0743731517300448.

Qiu:2009:LSB

Meikang Qiu, Minyi Guo, Meiqin Liu, Chun Jason Xue, Lau-
rence T. Yang, and Edwin H.-M. Sha. Loop scheduling and
bank type assignment for heterogeneous multi-bank memory.
Journal of Parallel and Distributed Computing, 69(6):546–558,
June 2009. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
0848 (electronic).

Quislant:2017:ESB

Ricardo Quislant, Eladio Gutierrez, Emilio L. Zapata, and
Oscar Plata. Enhancing scalability in best-effort hard-
ware transactional memory systems. Journal of Parallel
and Distributed Computing, 104(??):73–87, June 2017. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731517300084.

Quinn:1996:UCC

Michael J. Quinn and Philip J. Hatcher. On the util-
ity of communication-computation overlap in data-parallel
programs. Journal of Parallel and Distributed Comput-
ing, 33(2):197–204, March 15, 1996. CODEN JPDCER.
ISSN 0743-7315 (print), 1096-0848 (electronic). URL
1996.0038/production; http://www.idealibrary.com/

Qiao:1997:TLP

Chunming Qiao. A two-level process for diagnosing crosstalk
in photonic dilated Benes networks. Journal of Par-
allel and Distributed Computing, 41(1):53–66, February
Qin:2005:DRD

Qiao:2001:CSC

Qiao:1994:DRO

Quintana-Orti:2001:SPA

Quaglia:2005:MON

Qiu:2008:EML

Qian:1994:AML

Qi:1994:SDP

Rezvani:2011:SBM
Mohammad Hossein Rezvani and Morteza Analoui. Strategic behavior modeling of multi-service overlay multicast networks based on auction mechanism design. *Journal of Par-

REFERENCES

Ramarao:1989:DMI

Ramacher:1992:SNS

Rho:2017:SPD

Rao:2016:EPS

Ren:1996:MAP

Rafique:2011:CAF

Rinke:2018:SAS

Rezende:2011:IMM

Reddy:1993:DEG

Ramakrishnan:2011:DSW

REFERENCES

2011. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Ravindran:2002:ARM

Reeves:1984:PPE

Rahman:2010:CPK

Rahman:2010:PKA

Ren:2011:ALP

Da Qi Ren. Algorithm level power efficiency optimization for CPU–GPU processing element in data intensive SIMD/SPMD computing. *Journal of Parallel and Distributed Computing*, 71
Razafindralambo:2017:SSP

Rangarajan:1994:PDW

Ros:2008:TPI

Rajasekaran:2012:CEE

Ritter:1987:IAT

Gerhard X. Ritter and P. D. Gader. Image algebra techniques for parallel image processing. *Journal of Parallel and Dist-

Ro:2006:SPE

Ro:2006:SPE

Remis:2018:ESN

Remis:2018:ESN

Ramachandran:2003:EBQ

Ramachandran:2003:EBQ

Reisman:2000:IRA

Reisman:2000:IRA

Ruiz:2008:RCP

Ruiz:2008:RCP

REFERENCES

Rodrigues:2000:DLW

Rahman:2005:RPE

Rodriguez:1996:POW

Roy:2012:WAX

Rostami:2008:SRS

REFERENCES

Richard:1998:EVT

Rivera:1990:PSE

Rodriguez:1997:MTC

Roh:2011:RAD

Robinson:1995:EMA

REFERENCES

REFERENCES

Rotem:1987:ADA

Richards:1995:DCP

Ramachandran:1996:CBS

Randall:2002:PIA

Rahmani:2016:SIE

Amir M. Rahmani, Pasi Liljeberg, Jose L. Ayala, Hannu Tenhunen, and Alexander V. Veidenbaum. Special issue on energy

REFERENCES

REFERENCES

Ryang:1995:TLD

Raksapatcharawong:1998:MFS

Reynolds:1993:DPA

Rajasekaran:1995:RAM

REFERENCES

(1) Rughetti:2017:MLB

(2) Raschid:1994:SBS

(3) Ribeiro:2012:PDN

(4) Ram:2004:MPP

(5) Ram:1996:PSA

REFERENCES

[RW97] Sanguthevar Rajasekaran and David S. L. Wei. Selection, routing, and sorting on the star graph. *Journal of

Reisin:2001:INS

RW01

Rao:2002:ULS

RW02

R:2013:REM

RWB+13

Ranka:1995:IPC

REFERENCES

Ranka:1993:EMS

Sunwoo:1990:FCM

Sterling:1993:FGD

Sintorn:2008:FPG

Soliman:2011:FIP
Shamszaman:2019:ECC

Siegel:1992:RPW

Sabot:1994:OCF

Shaw:1998:CIP

REFERENCES

REFERENCES

Schwiebert:2002:PTA

Sun:2004:MKN

Shamsi:2012:PSO

Sharma:2015:LBD

Stoyenko:1996:LBM
Alexander D. Stoyenko, Jan Bosch, Mehmet Aksit, and Thomas J. Marlowe. Load balanced mapping of distributed

REFERENCES

[SCC92] Jang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung Chang. Fault-tolerant sorting algorithm on hypercube multicomput-

REFERENCES

August 2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

Stewart:1988:SAP

Scheurich:1991:LFC

Skeppstedt:2000:CCP

Stantchev:2008:FPP

Singh:2017:NAA

Schoneveld:1997:TAP

[SdS97] A. Schoneveld, J. F. de Ronde, and P. M. A. Sloot. Task allocation by parallel evolutionary computing. *Journal of
Skeppstedt:1999:ECC

Shriraman:2010:ITD

Santos:2018:DSA

Salceda:2004:MAD
REFERENCES

REFERENCES

REFERENCES

Szymanski:1998:ATF

Sohanghpurwala:2017:HAS

Song:1993:DAO

Sun:2014:COA

REFERENCES

REFERENCES

Shi:2009:PAS

Soni:2019:PMC

Sardar:2017:TPB

Singh:1995:LBD

Stone:2008:AAM

REFERENCES

REFERENCES

Shin:2014:GSE

Schwiebert:1995:OFA

Schwiebert:1996:NSC

Salehi:2012:QPA

Surati:2019:BTP

Shivangi Surati, Devesh C. Jinwala, and Sanjay Garg. BMMI-tree: a peer-to-peer m-ary tree using $1 - m$ node splitting for

Sun:2011:PPC

Skillicorn:1989:GMN

Stark:1989:SMD

Sheu:1990:QOD

Shu:1991:CKR

Stasko:1993:MBA

REFERENCES

References

Subramaniam:1996:CLU

Seo:2015:AEC

Skillicorn:1996:PIT

Skinderowicz:2016:GBP

Sitaram:1991:RDA
Dipak Sitaram, Israel Koren, and C. M. Krishna. A random, distributed algorithm to embed trees in partially faulty processor arrays. *Journal of Parallel and Distributed Computing*,...
REFERENCES

Smitley:1989:SMT

Sips:1990:NML

Seznec:1995:OMS

Song:1997:POP

Srivatsa:2006:SDR

Shin:2006:ADT

[SLG.06] Chulho Shin, Seong-Won Lee, and Jean-Luc Gaudiot. Adaptive dynamic thread scheduling for simultaneous multi-

[SLP+98] Hong Shen, K. Li, Y. Pan, G. H. Young, and S. Q. Zheng. Performance analysis for dynamic tree embedding in \(k\)-partite net-

Shen:2010:SSC

Song:2005:DLD

Stolfo:1986:DPS

Scherson:1989:AAO

Schieber:1989:PAM

REFERENCES

REFERENCES

Steck:1993:PIR

Salimi:2014:TSU

Shibata:2018:UDM

Sarma:2015:ERW

Shukla:2017:EDB

Sanchez-Monedero:2011:BFB

Sang:1996:MPB

Svendsen:2015:MMC

Sahoo:2018:SBH

REFERENCES

[Sun:1993:SPM]

[Shah:2012:ERT]

[Snir:2003:BPI]

[Salami:2016:PAP]

[Stichnoth:1994:GCA]
REFERENCES

Sohn:1996:PST

Soliman:2013:DIE

Stotts:1990:CGC

Sharma:1996:SAM

Schmidt:2008:SES

Shieh:2013:ETA

Saltz:1991:PEI

Saez:2017:TCF

Seal:2013:RPC

REFERENCES

REFERENCES

Shi:1994:FAI

Sridhar:1995:CLS

Shankar:1997:RDAa

Shankar:1997:RDAb

REFERENCES

[Sundfeld:2018:PSD] Daniel Sundfeld, Caina Razzolini, George Teodoro, Azzedine Boukerche, and Alba Cristina Magalhaes Alves de Melo. PA-Star: a disk-assisted parallel A-Star strategy with locality-

Saad:1989:DCH

Shi:1992:PSR

Som:1993:NPP

Sinharoy:1994:DTA

Squier:1994:CTA

REFERENCES

Subhlok:2000:APM

Sajith:2003:FPE

Shi:2005:LEH

Scheutz:2006:AAD

Sha:2008:CDD

Shams:2011:OFD

Ramtin Shams and Parastoo Sadeghi. On optimization of finite-difference time-domain (FDTD) computation on hetero-

[Sridharan:2017:DDC]

[Shukla:2018:MDS]

[Sen:1991:GSI]

[Simon:1998:HDS]

[Stivala:2010:LFP]
REFERENCES

Saez:2011:LWD

Saghi:1993:PPS

Selfa:2018:ESM

Sundriyal:2013:ESS

Shih:2000:EIG
Kuei-Ping Shih, Jang-Ping Sheu, Chua-Huang Huang, and Chih-Yung Chang. Efficient index generation for compil-

REFERENCES

Schmidt:2009:SPA

Stillwell:2010:RAA

Shu:2014:SSS

Sohn:1997:DWD

Si:2010:OCA

Stamoulis:2017:MBW

Stewart:1995:RAD

Stewart:2017:SCH

Sinnen:2011:CAS

Shi:2012:TSN

Si:2018:PGF

[STMZ18] Weisheng Si, Quincy Tse, Guoqiang Mao, and Albert Y. Zomaya. On the performance of greedy forwarding on

Shimada:1992:RTP

Stout:1987:SDC

Stout:1990:SIA

Strzodka:2012:DLO

Shamir:1987:PAL

Sukhoroslov:2018:BWB

[Suk18] Oleg Sukhoroslov. Building web-based services for practical exercises in parallel and distributed computing. *Journal of
REFERENCES

Sun:2002:SVE

Subhlok:2000:OUM

Sanjay:2008:PMP

Struharik:2018:SHA

Stout:1990:IHC

Savage:1991:PGP

Schikarski:1996:EPM

Saiedian:2012:CER

Sagonas:2018:CAA

Swarztrauber:1998:TAM

REFERENCES

REFERENCES

Subrata:2003:SRC

Shen:2009:PLO

Sengupta:1992:SRA

Su:2016:CDW

Shen:2007:PLP

Subrata:2010:CPA

REFERENCES

Ting:2013:IGB

Tsai:2012:SFT

Tu:2010:SCO

Tsouloupas:2007:GTI

Tuzov:2018:TSF

REFERENCES

Terekhov:2016:HSP

Tamir:1992:HSH

Tufo:2001:FPD

Tarplee:2015:SLP

Tumeo:2015:SIA

[TFV+15] Antonino Tumeo, John Feo, Oreste Villa, Simone Secchi, and Timothy G. Mattson. Special issue on Archi-
REFERENCES

Tomlinson:1997:MFG

Tang:1999:APT

Termehchi:2003:POT

Tarafdar:2004:PCS

REFERENCES

Taylor:1987:NCS

Tamir:1992:HCM

Trahan:2010:RPM

Totok:2007:MCW

Trifunovic:2008:PMA

REFERENCES

Tseng:1996:ECR

Tong:2018:EDM

Tang:2010:LSD

Tang:2010:RAS

Tang:2012:HRD

Thirumalai:1996:ECA

Traffic:2008:OBF

Tian:2016:LSP

Traffic:2009:WPP

Toharia:2012:SBD

October 2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

[Tze91] Nian-Feng Tzeng. Alleviating the impact of tree saturation on multistage interconnection network performance. *Journal
REFERENCES

REFERENCES

REFERENCES

Veanes:1996:NCF

Veeravalli:2002:ESS

Venugopal:2008:SBH

Valdez-Balderas:2013:TAS

Vinas:2013:EHP

[VV03] Jeffrey S. Vetter and Frank Mueller. Communication characteristics of large-scale scientific applications for contemporary

REFERENCES

REFERENCES

Wang:2001:DDM

Wang:2006:LWC

Wang:2007:ETA

Wah:1988:SDB

White:1995:PNP

Walinsky:1994:DPF

REFERENCES

Wang:2013:CLO

Williams:2009:OLB

Wang:2003:DAF

Wan:2017:OCD

Wen:2011:UDS

REFERENCES

Wu:2008:UAZ

Wong:1992:TBP

Weemeeuw:1994:FGP

Wittek:2013:ATM

Wisniewski:2018:BSB

REFERENCES

Weissman:2002:PCB

Wong:1989:PAP

Wise:1990:CQR

Wolski:1993:PPN

Wong:1996:CDC

REFERENCES

[WJ14] Jing Wu and Joseph JaJa. Optimized FFT computations on heterogeneous platforms with application to the Pois-

[WL05] Xiao Wu and Victor C. S. Lee. Wireless real-time on-demand data broadcast scheduling with dual deadlines. *Journal of Par-

Wu:2010:AHS

Wang:2011:IDI

Wang:2015:CSP

Wu:2000:RCC

Wong:2002:GAP

Wu:2008:ORP

Wan:2016:NCA

Weatherly:2006:DMS

Willebeek-LeMair:1990:SNP

Wang:2016:ACS

Shinan Wang, Bing Luo, Weisong Shi, and Devesh Tiwari. Application configuration selection for energy-efficient execution on multicore systems. *Journal of Parallel and

[WMC+18] Xuesong Wang, Yuting Ma, Yuhu Cheng, Liang Zou, and Joel J. P. C. Rodrigues. Heterogeneous domain adapta-

Wang:2009:PEE

Wang:2017:CQC

Woo:1994:ORA

Wang:1994:MQF
REFERENCES

Wei:2002:ESS

Weems:1991:DIU

Wright:1991:PAG

Wang:2013:PDE

Wittenbrink:1995:OPI

Wei:1991:DSG

Wang:2003:CAM

Wu:2011:OSP

Wang:1997:TMS

Weiss:1993:AID

REFERENCES

REFERENCES

Wu:2013:EHP

Wang:2015:KBB

Wein:1991:MPS

Wang:2013:RIA

Wu:2013:DAM

Xue:2003:AHQ

Xu:1991:MRB

Xu:1993:HMD

Xu:2003:LRA

Xia:2007:DIR
REFERENCES

Xu:1995:GDE

Xiao:2011:PMU

Xiang:2018:AVD

Xiao:2006:MAO

Xuan:2018:EOA

REFERENCES

Zhonghang Xia, I-Ling Yen, Donglei Du, and Peng Li. An integrated admission control scheme for the delivery of streaming

You:2010:ISL

Yoo:2010:ISL

[YAA10]

Yuan:2015:PCE

Yuan:2015:PCE

[YAK15]

Yang:1993:PCM

Yang:1993:PCM

[Yan93]

Yang:2000:PMB

Yang:2000:PMB

[Yan00]

Yang:2004:FPO

Xiaofan Yang. A fast pessimistic one-step diagnosis algorithm for hypercube multicomputer systems. *Journal of Parallel and
Yang:2004:CCA

Yang:1998:POC

Yang:1990:PMB

Yen:1995:PHC

Yuan:2001:PIF

REFERENCES

Yuan:2013:CAT

Yener:1997:FTC

Yan:2013:PPP

Yen:2004:MRS

REFERENCES

Yoon:2012:IDP

Yin:2005:GTD

Yang:2010:DEP

Chang:1998:PIA

Yoo:2000:TRT

REFERENCES

Yoo:1998:FEP

Yu:2018:VTP

Yi:2018:CIC

Yen:2001:PUE

Yang:2007:CFD

Yang:2009:NAI

You:2017:DIH

You:2015:SSV

Yang:2010:LCM

Yen:1997:RVC

REFERENCES

REFERENCES

REFERENCES

1990. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Yu:2016:ASR

Yan:2013:CPE

Yu:2012:HHC

Yu:2011:HDI
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[YW91]</td>
<td>Pen-Chung Yew and Benjamin W. Wah</td>
<td>Special issue on shared-memory multiprocessors.</td>
<td>Journal of Parallel and Distributed Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Yu:2012:CME

Yong:2018:IBI

Yu:2013:DSA

Yuan:2011:DMC

Yin:2018:ADE

[YZG18] Jiangtao Yin, Yanfeng Zhang, and Lixin Gao. Accelerating distributed expectation–maximization algorithms with

Yu:2009:EPB

Yang:1996:EPP

Ye:2015:DDD

Yu:2015:QMP

Javad Zarrin, Rui L. Aguiar, and João Paulo Barraca. Resource discovery for distributed computing systems: a

Zahavi:2012:FTR

Zaki:2001:PSM

Zwietering:1994:MNL

Zhou:1997:PRO

REFERENCES

REFERENCES

REFERENCES

Zhang:1994:PHO

Zhang:2018:MSP

Zeigler:1993:SEI

Zhang:2012:EEM

Zhou:2018:DNA

Hang Zhou, Qing Li, Kim-Kwang Raymond Choo, and Hai Zhu. DADTA: a novel adaptive strategy for energy and performance efficient virtual machine consolidation. *Journal of
REFERENCES

Zheng:2018:HVF

Zhao:2014:TEF

Zhu:2014:OVS

Zaki:1997:CDL

REFERENCES

Zhang:2019:CFV

Ziavras:1994:AMS

Znati:1994:UFD

Zhang:2006:ILM

Zhang:2011:DID

Yongpeng Zhang, Frank Mueller, Xiaohui Cui, and Thomas Potok. Data-intensive document clustering on graphics processing unit (GPU) clusters. *Journal of Parallel and Dist-
Zeng:2016:RND

Zane:2000:SNA

Zhang:2017:DIS

Zambonelli:2001:DFI

REFERENCES

[ZQMM11] Dakai Zhu, Xuan Qi, Daniel Mossé, and Rami Melhem. An optimal boundary fair scheduling algorithm for multi-

Zhang:2000:IMP

Zhao:1999:DMM

Zhang:2014:PVS

Zheng:2013:SDS

Zeng:2011:NSS

Zeng:2015:SSA

Zheng:2000:DCG

Zhang:2011:BRE

Zhao:2013:BRH

Yaxiong Zhao and Jie Wu. Building a reliable and high-performance content-based publish/subscribe system. *Journal of Parallel and Distributed Computing*, 73(4):371–382, April 2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Zhuo:2003:DRD

Zhuo:2016:THP

Zhu:2007:OPD

Zhang:2009:OPR

Zheng:2017:MDS

Zhou:2016:TNM

Zhang:2015:PAB

Zhang:2014:ASP

Zheng:2018:IBS

Zhou:2018:SPA

REFERENCES

Zeigler:1990:MHD

Zhu:1992:LNN

Zhan:2018:EOS