Title word cross-reference

(a, b) [DJM94]. (f, g) [CDD+15]. (k, 2) [EMMM94]. (κ − κ) [KT91]. 0
[EE05, PMV05, PM96, SM89b]. 1
[EE05, HV09, JM14, PMV05, PM96, SM89b]. 2 [Ano93c, BDKM94, BAES92,
CS92, CS93b, HSSM07, HH98, KRKS11, KLC05, LXS12, LME95, MD01,
SS94b, TSFZ14, Tur12, WC91, WS95, Wu02, YA11]. 2.5 [MPG17b].
2\log N − 1 [CC14]. 2 × 2 [PD92]. 3 [AA14, AA16, BDRB14, BAL05, BC94,
CW90, CCCM96, GOH+13, GW99, Joh89, NM17, OGRV+12, PYP+10,
PEC95, WC91, W07, WS95, YA11, YB01, ZLS17, Zsa16]. 4
[KMC16, MD01]. 45 [HRF+11]. 4 × 4 [Jia99]. 5 [CCCM96]. *1 [HCZ04]. *2
[HCZ04]. + [OC07]. · [HCZ04]. 2 [ASST05]. 3 [ASST05]. B [YL89]. C3
[HK96]. C3I [PAJC97]. d [DFN+94, DTK11b, LSC00, VB94]. ωW [MRRT07].
G [BFKW13, BNP98]. GF(2m) [SKH15]. h [GS98, KLP10]. hp [PPTV+10].
K [ACU08, BE95, DWG03, DBCF13, HHC98, SHL95, WL11, Amm16,
BVB02, CDL10, DW06, DH91a, GP00, KK98a, PD05, PK04a, PRHB06,
PK07, RP98, SSKS11, San99, SAOKM03, SGR03, SLP+98, SZ00b, SDG17,
TT98, WCH +17, WS97b, YTH07, YD98, ZHT16. k(n − k) [Lin03]. κ [XL95].
L [ZBW +17]. LTQn [XHZZ16]. LU [FHL +15]. M
[YL90, ABBD14, WTB +08]. N
[AY89, IHM05, NTA96, SHT +95, AKPT99, BVB02, GL90, NS94, PK04a,
RP98, SAOKM03, WS97b, XL95, YTH07, YD98]. n2 [CL85]. n2 [PK07].
n × n [COS +95, NS94]. O(1) [GP94, Wan07]. O(ln 2N) [BNP02].
O(log2(min(m, n))) [XL11]. O(log2n) [JBL01]. O(log n) [GS99]. O(n) [DLV11]. Ω [MRRT07]. P
[BK97, PMV05, YBX +13]. P3E [HSJP87]. P4 [ANP07]. ϕ [AK07]. ± 2b
[Nas94]. q [DP00, Lat98]. QR [BDG +15, FHL +15, ZLRP91].

- [MD01]. -alliances [CDD +15]. -ary [BVB02, DP00, Lat98, PK04a, RP98,
SAOKM03, TT98, WS97b, XL95, YTH07, YD98, SHL95]. -Bandwidth
[BM97]. -banyan [YL89]. -based [AK07]. -Best [BE95]. -Body
[SHT +95, IHM05]. -Chain [BNP98]. -clustering [CDDL10]. -connected
[DW06]. -coverage [Amm16]. -Cube [RP98, PK04a]. -Cubes
[XL95, BVB02, SAOKM03, WS97b, YTH07, YD98]. -D [An093e, BAES92,
CS93b, SS94b, CW00, GW99, LXLS12, PEC95, Wu02, YB01]. -delta [YL89].

- Dimensional
[AKPT99, CCCM96, DFN +94, VB94, DTK11b, KLC05, LSC00, SGR03].
-disjoint [KMC16]. -dominating [DW06]. -Extra-Stage [SZ00b].
[GS98, PRHB06]. -limited [WTB +08]. -Means [DBCF13]. -MSA
[DW03]. -packing [TSFZ14]. -page [HSSM07]. -Pairwise [GP00].
[AY89]. -reader [HV09]. -Reducing [GS00]. -relations [KLP10].
-satisfiability [Joh98]. -sparse [ANP07]. -stage [CC14]. -systems
[DJM94, HHC98, PD05]. -way [KK98a, ACU08]. -width [DH91a]. -writer
[HV09].

/compute [KAS07]. /many [KSG13].

0/1 [LSS88].

1 [HV05, MF94]. 1-Writer [HV95]. 10 [LB12]. 10-Gigabit [HC05]. 16S
[ZFWF06]. 1D [PA04].

2 [ACYS08, AAL95, AR97, BLPV95, BSGM90, CDH84, DPSD08, FPD93,
GH90, SI91, SMKL93]. 2-D [AR97, BLPV95]. 2000 [Wee01]. 2002 [Sni03],
3 [BFG94, KMC16, MKY+97]. 3-D [BFG94, MKY+97]. 3D [Ab03a, CGW+03, GS03a, MJ03, NPF+96].

4 [BAM93]. 42 [Ano97c]. 46 [Ano97g].

5 [LAD+96, PTC+93]. 53 [Ano00d].

60 [Ano00b, Ano00c]. 66 [Ano93e, CS93b].

71 [LS+11a].

80 [Ano97k]. 802.11 [BCD00, ZBR11]. 802.11e [FA07]. 802.11n [GZY14a].

Accelerating [DFST13, GAOHGI17, SKH15, SHT+08, WD13, YL12, XZB14, AM12a, VBDRC13]. acceleration [DFST13, GAOHGI17, SKH15, SHT+08, WD13, YL12, XZB14, AM12a, VBDRC13]. accelerators [DF12, MLK12, RBN11]. Access [ALLM11, ADS98, Bal90, BP02, Bit92, BR95c, CW93, CH92, DP00, FY96, HP00, OS93, San98, WMG01, ZRC99, AM13, BGLA03, BR91b, BC11, Che90, DFP06a, ETS14, FA07, FC90, FLC14, HC91, KKK11a, KGN11, Lan09, LZ11, LWZZ12, LC11, MLZY17, MM07c, NKK16, Pad91, SM89a, SR88b, SR90, WTS03, WBR13]. Accesses [MRRV98, SR97a, SR97b, JZ05]. Accident [CCW14]. accrual [CRJ10b]. accumulations [SAF05]. Accuracy [EH01a, PKK91, CRWX12]. Accurate [DD95, KK88, BFKW13, CGL+14, GJ12, HDT+05, HZDP12]. Accurately [LC13]. ACE [PL98]. achieve [LCB16]. Achieving [EH01a, KEA95, NPY+97]. Acknowledgment [Gra10a, KL08a]. Acoustic [LPLFMC+12]. across [SGdSS13]. Action [Sie16]. Actions [WR95]. Activated [NPP+02]. Active [SKH96, DB86, HOE+09, KV10, PMV05, PMV06, PSGS17, SI13, YT05]. active/active [HOE+09]. Activity [AS00, CW93, HES11]. Activity-Based [AS00]. actor [ASM09, YpGyLlC13]. actors [GE85]. ActorSpace [CA94]. actuator [KPKP12, SCN12]. Acyclic [GY92, AFM09, BP89, Zim90]. Ad [Ano01e, GS01b, LC14b, RBP+11, TM10, XG03, AP03, AH11, AH12, ALF03, BFG+03, BM11, BGLA03, BOP06, BDF01, BN03, Boun03, CNS03, CW95, CYZ06, CDCD05, DW06, DMB+03, DB08, EBE08, FCW11, FVCL05].
FGL+11, GAGPK03, GS03b, GMS06, GMXA07, HW03, HJ07, JLWX11, KK06, Kim11, KSK15, KNS06, LAZC00, LR03a, LPX05a, LW06a, LW14, LR03b, LHT08, NMN+14, OSL05, OM10, OMSGNSG05, Pat01, SNC12, SSM+06, SGS08, SKMM04, SJS11, TC13, VA03, WTB+08, WGS08, WBTM09, XHG03, XWC+08, YC04, YSS11, YWW12, ZMC06]. ad-hoc [BOP06, CYZ06, KSK15, LHW14, NMN+14]. Ada [Lun90]. Adaptable [Zim96, LLLC15, LFGM17]. adaptation [BK08, GBMZ07, KGN11, LS06, NZY+11]. Adapting [DKRI09, Wei02, WRW13]. Adaptive [ASH+01, AA93, AA16, AMN00, ACPT15, AYIE98, ACFK07, BLPA05, BOT13, BPR99, BL90, Bov02, CS00, CGM14, CLT96, DY99, DHB02, DMB97, DM99, FLS+97, ISM07, JK00, KR97, KKGS01, KG10, KLLK98, KB01, Lan94, LLL06, LPK+10, LC11, LME95, LEB98, ME04, MV88, MD92, MTS90, OB98, OR97, PW96, PRS97, PIB+01, RDS02, SS06, SSKK7, SJ95, SB02, SS0B02, SLG06, SHT+95, TC04, Ten90, UBES10, VMMB10, WCE97, WA02, WL10, YIY97, ZHLQ12, ZM94a, AOSM05, AGMS04, AF17, BM17a, BCFF05, BMT12, BBS13, BEN12, CL03a, CMMN10, CP04b, CDCD05, CAF+11, DMB+03, DLW+12, DAB+14, ESA03, GA08, GA16, HNSA07, HK15, IZ12, KK17, KMF+05, KK508, LST17, LY91, LHX+16, LA04, MCD+06, MSA04, MPG17a, MPN17, NKK16, OPG08, OS04, PPTV+10, SMO14, SB12, SLN09]. adaptive [SMB10, SHC14, TLY12, TKHG04, TT07, WW04, ZXYO11, ZWRI07]. adaptively [Mit07]. Adaptivity [OH02]. ADDAP [DHR96]. Addendum [An092a]. Adders [NR86]. Adding [MSZ05]. addition [OB88]. Additional [LP97, CKN07]. Address [KY96, SL97, TR96, YQTV12, WZ13, YGZ+10, YC12]. Addressable [Win85, KRM14]. Addresses [CGL+95]. Addressing [ZLPP01, Ho91, TY90a]. adjacent [CFJW13]. Adjusted [TDBL13]. adjusting [MC91]. ADM [Pad93]. administration [LB17]. Admission [MBO11, AAA+10, MCZ14, RKK06, XYL10, YJKD10]. ADMs [FSZ07]. Ads [BA01a]. advance [CRH11]. Advanced [BW95a, HDCM11, PGS17, SD88a, TSD08, PLL+03, SHT+08]. Advancement [Lan09]. Advancement [LZ11, LVR90]. Advances [GA16]. advantage [CL03b]. advantages [CCLS94]. Adversarial [GBMZ07]. adversary [DOCS14]. advertisement [WG09]. advertisement-based [WG09]. advice [DP12]. AES [ABO+17]. Affecting [DVW94]. Affine [DR95, DRR96, Dja06, DQR+09]. Affine-by-State [DR95]. Affinity [TTG95, HD10]. After [DRR96]. against [SCC+06, XCH08]. Agate [CZPP16]. Agent [Ser97, FCC07, GZMC08, Rao16, SS06, YZS15]. agent-based [FCC07, Rao16, SS06]. agents [AK06, CSWD03, FP17, KERUM04, MS05, SGAC14]. aggregate [AMT13, Yan09]. aggregated [Wei13]. aggregates [CH95, CH95]. aggregation [BCO+12, CDR09a, CDR09b, JBA15, JBS14, JHPL13, SSKS11, XHZ+10, Zsa16]. Aging [BM17a, LC14a]. Aging-aware [BM17a].
agreement [AP16, GCS06, HC11, LLW12, REK10a, REK10b]. **Ahead** [PL93, mH14, SHL+13, TG04]. **AHMW** [BMT12]. **AI** [Ull84]. **Aid** [AP16, GCS06, HC11, LLW12, REK10a, REK10b]. **Air** [FL86, YBM13]. **Airshed** [SS00]. **Algebra** [CDH84, DVW94, KL01a, WM92, Eme13, FHL+15, ICQO+12, Joh87, LKD14, RG87]. **Algebraic** [PL06, Pat90, SHL+13, TG04]. **Algorithm** [AAP01, AE95, AM97b, AMS94, Als01, AS95, Ano96b, Ano96a, ABC+09a, ABZ95, Bai94, BCC95, BGR96, BS97, BPS96, BOSW94, BE95, BDD09, Bou92, BX93, BHR95, CLZ02, CGKK97, CCM01, CB99, CSW08, CS93b, CP92, CTZ99, CF98, CRFS94, DA97, DM90a, DMB97, DS01, DS84, DH94, DAU99, KL01a, WM92, Eme13, FHL+15, ICQO+12, Joh87, LKD14, RG87]. **Algorithm-based** [GRR93, mYyF92, BDDL09, LP88]. **Algorithm-system** [CSW08]. **algorithm/implementation** [HVW16]. **Algorithmic** [Gao89, SCB08, BBH+17, CG11, JF12, LS05]. **Algorithms** [ANT02, AaJS01, AKP95, ABM+92, BJ96, BJ99, Bah00, BPJG92, BLPV95, BGJDL02, BAES92, BAGS95, BBM+02, Ben15, BSDE96, BOP06, BPR99, BSS99, BMRC98, BMRC99, Bro96, BA01b, CTD99, CDY97, Cha94, CGO+96, CDH84, COS+95, CN93, CP91, CHR94, CWP98, CA95b, DS95b, DP98, DHB02, DP99, DM92, DSH90, DFTC99, DBKF90, DKMV01, EP90, ESMG96, EMMM94, EL97, FTM+14, Fer95, FR96b, FA95, FY97, FTC00, GGG4, GP94, GV94, GM96, GHSJ96, GMM00, HHH94, HQPT99, HCWS94, HR92a, HP97b, HTB98, HO94, IK93, IK94, Iq92, IM00, JW94, OH94, PO99, PR99, PRS97, PM92, RR95a, Ren11, RP95, SAOKMA02, SZ00b, SCC92, SR94, Shu95, SM00, TU92, TZ00, WSRM97]. **Algorithm** [WD94, WA02, WLID02, XWC+08, YZY96, mYyF92, ZB97, AOS+05, AT03, AA10, ALM+16, AA14, AA16, ALLM11, AK07, ATH91, AGMS04, Ara90, BFG+03, Bad04, BC05, BCF05, BSG90, BCI95, BFKW13, BH05, BBL04, Cal06, CR91, CDDL10, CCC14, CM03, CV90, CK13, CLOL17, CS92, Che89, Ch90, CZ90, CRC+02, COF+17, CSW+17, DHH13, DK08, DK11, DNO96, DLV11, DB08, DM90b, DB86, Eno04, EE05, ED05, FZW12, Fei03, FZS97, GLW14, GPX08, GGR89, GT04, Gue86, GL12, GB06, GAOGH97, HJ90a, HES10, HSS10, HSE11, HSY10, HR94, HLM+90, HVW16, HL07, HWY+10, Kal04, KR10b, KWH13, KR06, Kim17, KM03, KA91, Koc91, KIH15, LVP08, LSS88, LASS15, LMZ04, LO91, LLT12, LUI14, LW16b, LB89, LP88, MD07, MM07a, Mar88, McD99, MMS09, MM07c, MP08, MMS90, NHO+13]. **algorithm** [OS04, OT86, PDP17, PK05a, PB15, PHS04, PB09, QJ05, RH05, RG03, RBG17, RKS87, SPP09, SCJ+08, SMP17, SA08, SKK91, SM08b, SW+17, TLQS12, TAt11, Ter16, TKHG04, TYA16, TFSZ14, WLLL16, WSH+03, WV97, Wan07, WG08, WGC09, WCL+13, WWW17a, WJ12, XHY07, XL11, XQ07, XYZW14, YC09, YME06, YO11, YSS11, YZLT09, ZZ09, ZFWF06, ZQM11, dOBG+15, CMR10, KM17, LY12]. **Algorithm-based** [GRR93, mYyF92, BDDL09, LP88]. **Algorithm-system** [CSW08]. **algorithm/implementation** [HVW16]. **Algorithmic** [Gao89, SCB08, BBH+17, CG11, JF12, LS05]. **Algorithms** [ANT02, AaJS01, AKP95, ABM+92, BJ96, BJ99, Bah00, BPJG92, BLPV95, BGJDL02, BAES92, BAGS95, BBM+02, Ben15, BSDE96, BOP06, BPR99, BSS99, BMRC98, BMRC99, Bro96, BA01b, CTD99, CDY97, Cha94, CGO+96, CDH84, COS+95, CN93, CP91, CHR94, CWP98, CA95b, DS95b, DP98, DHB02, DP99, DM92, DSH90, DFTC99, DBKF90, DKMV01, EP90, ESMG96, EMMM94, EL97, FTM+14, Fer95, FR96b, FA95, FY97, FTC00, GGG4, GP94, GV94, GM96, GHSJ96, GMM00, HHH94, HQPT99, HCWS94, HR92a, HP97b, HTB98, HO94, IK93, IK94, Iq92, IM00, JW94,
JS94, KRC00, KAM94, KLZ97, KG94, KA99, LHS97, LSH96, LHHB+01, LLCC02, MB96a, MMR98, MS94, MMVR97, Man97, MT96, Mat93, MHC95, MK92, MS98, MS99b, Nak95, Nas94, PAH+98, PAJC97, Pov99, Pra93, QZ94]. Algorithms

[QOvdG01, RS96a, RR95b, Raj01, RSS96, Ram92, RDS02, RSW90, SH90, SS96, San95, San99, San02, SZB92, SY01, Sto90, SYG92, Ten90, TVS97, TC96, TFV+15, UD96, VB94, VR95, WNA+94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YMR93, dBL95, AL04, ANEA13, Ara13, ACCP12, AAC10, AF17, ARVZ14, ACFK07, BC06, BKC+15, BBBC12, BMT12, BS87, BAS06, BOS+91, BKCM17, BFG04, BRPR06, BPP05, BM08, CM04, CP10a, CF88, CRH11, CNS03, Che86, Che90, CRSB13, CRA+08, CRD17, CW06, CW11, CW03a, DH91a, DJ16, Dja04, Dja06, DCA+15, DUD96, VB94, VR95, WNA+94, WR97, WA02, WD92, WN94, WT92, WHT00, WHT02, YMR93, dBL95, AL04, ANEA13, Ara13, ACCP12, AAC10, AF17, ARVZ14, ACFK07, BC06, BKC+15, BBBC12, BMT12, BS87, BAS06, BOS+91, BKCM17, BFG04, BRPR06, BPP05, BM08, CM04, CP10a, CF88, CRH11, CNS03, Che86, Che90, CRSB13, CRA+08, CRD17, CW06, CW11, CW03a, DH91a, DJ16, Dja04, Dja06, DCA+15, DUK15, DJT03, DM94, FHL+15, Fen90, FBRW03, FG08, FJSW90, FM85, FVCL05, GMM12, GP07, GZY14a, GI14a, GI90, GI91, GIW06, GI03a, GI07, Han89, HSSM07, HSW04, ICQO+12]. algorithms

[IC05, JMS86, JST12, JBM91, KR10a, KHT+14, KJD03, KS08, KAP90, KSSG14, KK10, KMS10, KBK+06, KS91, KMP+06, KR11, LW90, LLL06, LW06a, LN+12, LS88, Lin91, LS91, LS03, LLW07, LNA00, LV97, LV98, LSS+16, MM04, MPZ09, MCAS12, Meg91, MCT06, MRS+14, MM07b, MS88, MK16, MG90, MV91, MSA10a, MSA10b, MAR87, NTN12, Nik04, OA10, PKN10, PD05, PY09c, PL03a, PH16, PPSV15, PA04, PS14, PRG88, PS88, RTCC91, SM89, SS06, SH91, ST87, SPH13, SAF05, SZW05, SG08, SD88b, SSVC10, Sto87, TY90a, TW87, TK08, TWQS12, Tur12, VS16, WC91, WCW03, Wi91, ZC09b, dVCP06]. Align [BR95c]. aligning [LB09]. Alignments [BRR01, CGO+96, DRR96, Mil99, MJ01, SS94a, BB08, BF91b, BMARW07, LC91a, PT06, SK09, SPRG+12].

alignments [BW09, ST85]. All-Output-Port [ST02, ST06]. all-pairs [KS91, DCA+15]. All-Port [RJMC95, Dim04]. all-reduce [PY09c].

All-to-All [HP95, LHS97, LW02, Ede91, LR03b, PW16, ZTFK16].

All-Port [RJMC95, Dim04]. all-reduce [PY09c].

Almost [HP95, LHS97, LW02, Ede91, LR03b, PW16, ZTFK16].

All-to-All [HP95, LHS97, LW02, Ede91, LR03b, PW16, ZTFK16].

Align [BR95c]. aligning [LB09]. Alignments [BRR01, CGO+96, DRR96, Mil99, MJ01, SS94a, BB08, BF91b, BMARW07, LC91a, PT06, SK09, SPRG+12].

alignments [BW09, ST85]. All-Output-Port [ST02, ST06]. all-pairs [KS91, DCA+15]. All-Port [RJMC95, Dim04]. all-reduce [PY09c].

All-to-All [HP95, LHS97, LW02, Ede91, LR03b, PW16, ZTFK16].

All-Port [RJMC95, Dim04]. all-reduce [PY09c].

Almost [HP95, LHS97, LW02, Ede91, LR03b, PW16, ZTFK16].

All-to-All [HP95, LHS97, LW02, Ede91, LR03b, PW16, ZTFK16].

Allocating [BPRG04, Hag97, SEP96, SC+08]. Allocation [AM97b, AER92, CS00, yCM98, DSST95, DY99, DL99, DL01, Hwa97, KKG90, KLZ90, Moh96, NS97, OM84, PT01, SM94, SD97, SP96, YL98, Zhu92, ALH+09, AKSM90, AAA+10, ADD17, ATZ07, ACCP12, AH06, BMB+08, BG96, Bat95, BSH98, BSS+13, BPW05, CDS10, DW12, DM09c, ERS09, GNT04, GDB05, HWY+10, HB11, JL11, KR0a, KR10b, KWH13, LHF91, LC91b, Li05, LL10, LL12a, LL12b, LDAP+94, MCC04, MLK+16, NVK+11, PKN10, PM05, PBS08, RHL03, SS+16, SNC12, SCMS12, SML+13, SS+06, SSV10, SZB16, SS+07, TFS15, ZG13, ZI08].

Allocations [BE95, CT96, SC+08]. Almost [JBP00, SS95, EB13].

Almost [JBP00, SS95, EB13]. almost-optimal [EB13]. Alphabetic [LP96a]. alternate [LS03].

Alternating [BC94, HWY+10]. Alternative [GW99, Pad93, CBV08, GB06, Ros85]. Alternatives [BAHP01, NB99].

Alternator [IB06]. ALU [KF90b]. Always [BBR01, AD10]. always-on
Application-Specific [PP92, SK93, SS94b]. Applications
[ABDS02, Ano96i, AFT00, BOSW94, BMRC98, CCRS92, CA95a, CDF01,
DRC90, DS84, EH01a, FR98, FBK98, GCB00, GT02, HS94b, KR97, LLS93,
MHC95, MB92, MBK+S92, NB93, NSPPC02, OS96a, PGRP17, RS92c,
SSOB02, SFC17, TFV+15, UZSS96, VH93, WMG01, Wei02, ALM+S16,
AKSM08, ARMS+S05, AC16, AGMJ06, BBCLL04, BCD+S15, BAS06, BHLT14,
BM04b, CCG+S14, CGM+S14, CC08, CMSML10, CP05, CBM+S08,
CP10b, CCM+S06, CDAN14, Dim91, ED ¨O05, ESA03, FCML13, FPF14,
FRM15, GLC14, GYAB11, GVBB+S13, GTN+S06, GST09, GJA08, GRR+S13,
HS94a, HC09, HA91, HL07, KJD03, KA05, KBC+S10, Kri91, LWCC15,
LLFG17, MMAL06, MLK12, NVK+S11, NC13, OZT12, Oza04, PCMM+S17,
PMAL11, PA15, PCLP16, PLL+S03, PF04, RJKL11, SV08, SM89a, SC+S08,
SWW+S17, SR16, SSGZ13, TDM05, TOR+S14, U184, VB08].

applications [VM03, YH07, ZVL11, ZSW14, dSS11, FTM+S14].

Applied [CB96, BDDL09, EE05, HSLL04, PR06]. apply [NZ17]. Applying
[PEC95, CCK11]. Approach
[AAL95, AM93, Bev02, BR02, BST01, CCM92, CY95, CLZ00, DM95, Fer92,
FKT96, FKKC97, GG94, GZ97, HC97, HLJ98, KCRB99, KSB94, LS95,
LV95, LLCL98, MSES+S02, RJY96, RAS96, SL95, SP96, SZ00a, TC92,
WSRM97, WA02, Won99, WLD02, AP9+S1, Ara90, AF+S11, AH+S06, BM11,
BAS06, BW09, BCK+S13, CTS17, CvdBL+S08, CHX+S17, CZZ+S17, DBC03,
DDK+S15, DQR+S09, FZC+S05, FGZ+S03, GZ+S08, GDL+S11, GWWL+S4,
GRA+S08, GXY+S13, IC+S+S12, JLM+S8, Job+S9, KYS+S3, KZ+S1, KMS+S06,
LXS+S11, LHO+S4, LC07, MHL+S6, MS+S, MRR+S, NTN+S2, NHO+S13, Ozt+S11,
SU+S7, SCS+S08, SD+S17, SK+S1, TM06, TB+S05, TXXL+S4, TY+S7, TM+S0, VB+S8,
WZQ+S13, XRB+S2, YF09, YAA+S0, YW+S15, ZHH+S5, ZS+S3, ZFL+S9, ZTG+S17].

Approaches
[CHGM01, QM+S, CB+S, KERUM04, KA+S, PR+S6, Upa+S3, dGP+S6]. Approximate
[JS+S, LH+S4, ST+S2, CLOL17, KERUM04, MM+S7]. Approximating
[FMM+S8, PBS+S8]. Approximation [FV97, GM+S+S, HP+S7, JST+S2, KERUM04,
MM+S7, NTT+K17]. Approximations [Gon+S8, BFM+S6]. AQOR [XG+S3]. Araneola [MK+S8a].
arbiter [Bhu+S7]. arbitrarily [ZV+S6]. Arbitrary
[ERL+S0, KA+S, SS+S5, ZY+S6, Ara+S0, BCF+S4, SGE+S1, Wag+S9, FII+S4].

arbitration [ASD+S0, HR+S+S, KS+S3]. Arc [CA+S5, Ros+S9]. architecting
[CC+S+S]. Architectural [DZ+S+S, GSP+S2, HPT+S, KC+S9a, MT+S6,
MG+S3, TGP+S6, WSS+S3, FZC+S05, JBY+S+S, NXTK+S17]. Architecture
[AG+S, AB+S5, BBD+S1, BAH+S1, DH+S5, Gao+S3, Ger+S8, GES+S3, GM+S5,
HP+S7a, HGC+S6, IWM+S7, KC+S4, LBL+S5, MW+S0, MAP+S, MK+S+S, MKY+S+S,
MO+S7, MT+S5, MEM+S17, NGS+S5, OD+S5, OY+S0, Pad+S3, PSS+S7, PS+S,
ST+S2, SSYG+S7, SH+S8, S+S+S9, YPC+S6, ZHY+S4, Zim+S6, ACYS+S8, AA+S,
AA+S6, AC+S8, ABO+S+S, BB+S7, BGA+S2, BCC+S3, CQ+S+S, CLML+S15,
CTCX+S8, CCE+S3, CD+S+S, CS+S7, FCS+S1, GHS+S6, JS+S8, JX+S6, K+S+S7,
KH+S2, KRL+S7, KH+S9, LLK+S3, LAD+S+S, LHH+S1, LLY+S, LSL+S6,
MCM+11, MM07b, MYD+11, MBH+08, MP08, NW88, NVK14, PPP14, PCCM+17, PK10, PGP+12, PTK+13, SDD04, SR88a, SAB+92, SLKK12, SR91, WTWZ16, WL92, XJS03, YFBY17, ZV09a, ZMZJ17, ZPK+14, VRG17. architecture-based [CTCX08]. Architectures [AGW98, ABDS02, BBR94, CCC90, CT93, CS93c, CP01, CBdCD00, DUSH94, DSMH90, DS02, DT01, DRSB01, DT92, EP90, EL97, FTM+14, FPS12, FY97, GGG93, KS95, KM97, KG94, LB90, LC90b, LR93, LR94, MSd+95, PP96, PA94, PD92, SH90, SS94a, TG99, ZMPE00, ZL93, AA14, AP03, ABC+09b, AG12, BKC+15, BS87, CCK88, Che86, CGC16, CKLCK04, CKLCK05, CJ17, CPO+03, DKRC+15, DKU15, FPS11, GSWW04, GS91a, GMS+13, GMSS+11, HDMC11, HSW04, JJ12, Joh87, Joh91, KHT+14, KF00a, LM05, LS88, Lla17, LV07, MSGS+13, MP10, Pad91, PR06, PLD87, R09G1, SLG06, SS94b, SGdSS13, TKG04, TRS+12, VM03, WQZ+13, WJD91, vS91, TFV+15]. Archive [FTK14, JKIE13]. Area [BCD00, CLR90, CDR12, KF95a, NIR86, Wei98, ABO+17, HZY04, HL07, JK15, KCD08, KMF+05, LMJC11]. Area-maximizing [CDR12]. Area-Time [NIR86, CLR90]. Ariadne [MM15]. Arithmetic [AK93, CL88, Dav17, DPR85, Gro85, Irw88, KK88, KM88, SS94a, Sch87, Si90, SL90, Tay87]. Arithmetic/Logical [AK93]. ARM [AG12]. Arnold [Ano00d]. arrangement [Lin03, NAK04, Ten16]. Array [AW95, BCF97, BL00, CT93, CW+95, ER97, GKH96, GE94, HCP+99, HCS+00, HZC90, HLJ98, HLJ01, KR96, KHS96, KC98, KB97, LP96b, LTH97, MJ10, MBK+92, MT97b, NVK14, OM90, RSB96, Ste95, S09G4, Tse90, WS93, Win85, dR09, BB85b, BPP05, CS10, DS04a, GP05, Lee91, Man13, MM07b, NAK04, PLB78, SI86, ST87, SCC+06, YTH07]. array-based [CS10]. Arrays [Ano94, BAGS95, BPST96, BP02, BR95c, CGO+96, Cor93, GP93, GW99, Guo94, IKP85, KL90, KEA95, KL84, KBG92, MM00, MD01, MT93b, MK93, MFS93, MFS96, RFM94, RCB93, Swa98, TBVP00, TC96, WCF04, WHT00, BBD90, CL03b, DMFCCM03, Del90, Dja04, Dja06, EL91, GMH+91, JWSG14, KT89, KT91, KLL87, LB89, Li90, OT86, RIZ90, SSM89, Sch89b, ST89, SKK91, Ume85, WAS88, WCF14, X11]. Art [KM92, PSC+16, WCO+09]. article [Ano96l, Ano97k, Ano00d, CS93b]. artifacts [LZ08]. Artificial [MT85, NS92, Piu01, TVO92, KH89, VO89, VM95]. arts [NDW17, BNSP99]. any [BV102, DPO00, Lat98, PK04a, RP98, SAOKM03, SL95, TT90, WS97b, XL95, YTH07, YD08]. ASCEND [Nas94]. Aspect [BZL14, MO97]. Aspect-oriented [BZL14]. aspects [Gao89]. Assembling [KES07]. assembly [ABC07]. Asserting [ASST05]. Assessing [BCD+15]. assessment [CG17, FGL+11, LC14a, LY08]. Assign [CYZ06]. assigned [HMR15]. Assigning [CC09]. Assignment [Cza13, HBCM99, HB97, KLZ97, SSZ10, SS93, Ste95, VWHL96, WW97, ABB14, Bat05, BPRS04, CS10, GDL+11, GZY14a, JZZ11, Kim11,
LZLX11, NDP13, PLY15, QGL+09, SLKK13, UAKI06, WZ91, YZX11.

Assignments [LL98, Sin87]. **Assisted** [HILLY95, GM13, KO12, LVP07, MBBD13, NS12, RG06]. **Associate** [Ano16k]. **Associations** [GPJA10]. **Associative** [AA93, DM92, NSM98, Par96, PL98, TJCB10, VR94, HDCM11, Kr91, LL90, SR88a, SI89, YBM13]. **assumption** [Pen11]. **assumptions** [MS15]. **Asymmetric** [BNS00, ZR00]. **Asymmetry** [AP91b]. **Asymptotic** [GM94a]. **Asymptotically** [Li10, Dja04]. **Asynchronism** [UD96]. **Asynchronous** [Bah00, BSS99, BS00, CS95c, CA95b, ESMG96, KVN17, MS02, MM93, MR94a, MR94c, OY00, The02, ATDH13, BB03, CPA+11, CRC+02, DGFGK05, DBCF13, DB86, DPBNT12, FKK+04, GLGLBG12, IRRS16, Kak15, KMS10, KS13, MM04, MEMEMH17, RV13, RLH03]. **Asynchronous/Synchronous** [OY00]. **asynchrony** [WCYR08]. **ATAPE** [PW17]. **ATExpert** [KW93]. **ATM** [WR97]. **atmosphere** [KVN17]. **Atomic** [HV95, JBP00, WR95, van96, BOT13, GNS09, HV90]. **Atomicity** [Na02, RHHL12]. **attack** [JXW06]. **Attacking** [ZHY+15]. **attacks** [CH06b, KMMZ06, LLWC17, SCC+06, UGG+11, XYG07, XCH08, YXX13]. **attribute** [LS+11a, LS+11b]. **attributed** [LKB+15]. **attributes** [Par05]. **auction** [GVBB13, RA11, ZG13]. **auction-based** [ZG13]. **auction-inspired** [GVBB13]. **audiences** [LMB+17]. **Audit** [HLS12]. **augmentation** [BCH15]. **Augmented** [MKY+97, KM17, Lo92]. **Auralization** [FJ93]. **Aurora** [Lu01]. **Authentic** [GPJA10, SZMK13]. **Authentication** [ZBR11, CL09, LMJC11, NC09]. **Author** [Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano98i, Ano99a, Ano99b, Ano99c, Ano99h, Ano99p, Ano00c, Ano01d, Ano11g, Ano11h, Ano12c, Ano12d, Ano12e, Ano13a, Ano13b, Ano14a, Ano14b, Ano14e, Ano14f]. **Author-Title** [Ano98i, Ano99b, Ano00c, Ano01i, Ano01h, Ano02d, Ano03b, Ano04b, Ano04a, Ano10a, Ano11j, Ano12m, Ano14f]. **authority** [ZCMY12]. **auto** [KKR14, KGN11]. **auto-adaptation** [KGN11]. **auto-tuning** [KKR14]. **automata** [EM11, GKS15, MS86, MBO11, TM10, ZBW+17]. **automata-based** [EM11]. **Automated** [NM95, NC97, CV16]. **Automatic** [ABC07, AD12, CGO+96, DHR96, KBC+01, LC92, LZZ+11, MJ01, NCB+17, SEP96, AAD05, GLC14, GFPC14, NVK+11]. **Automatically** [DR98, TG99, DSEP17]. **automaton** [Cap87, LSZZ15]. **automaton-based** [LSZZ15]. **automorphisms** [DH91b]. **automotive** [RAN+17]. **autonomic** [AZC13, ATZ07, CP05, LS10, XRB12]. **autonomous** [CKT11, CKMP17, WZZ+17, XCH08, ZV09a, ZWW17, OY07]. **autonomy** [LFH+03, ML89]. **Availability** [HJD+01, LS01, AGMS16, DB08, Fu10, HOE+09, LKM12, PF08, PMMMA15].
Available [NKC+97]. Average [DF95, Li06b, MDD97, NSM98, Li06a, WWW17a, XBK07]. Average-case [Li06b, Li06a]. AVL [MD98]. avoid [DP16]. Avoidance [MJ94, BB85a, BPRS04]. Avoiding [SI13]. Award [Ros07]. awards [OY13]. Aware [ALF03, AH12, AYB+15, BM17a, BPA06, CCW14, CWP12, CKML12, EB09, EHL+15, FCW11, FGZ03, Fu10, HMV07, HMR15, HK05, HK04, HV13, JAB12, JHF+17, KKK11a, KK11, KCR14, KDH08, KBC+10, LBG15, LFS16, LR14, LDZ+14, LZI+11, LW16a, LNAL17, LY13, LHL14, MBD13, MHLZ16, MLK+16, MMK+11, NP09, OS04, OMT+17, RBN11, SNMB16, SJB12, SKK14, SP13, STK11, SK05a, SZL10, TLLV10, TVT+17, UM17, VMMB10, WQL14, WMY+17, XCL30, YZX11, YJDK10, ZVL15, ZYO11, ZTFK16, ZWQ+16, ZVo9b, ZCo4, Sic16]. awareness [LWZZ12, LR03b]. Axiom [ABLP17]. Axiom-based [ABLP17]. Azriel [Ano04r].

BA92, CGKK97, CC91, CRV94, CS95b, CKL99, CGA98, CHGM01, DA97, DR98, FF98, FKK97, GS01a, GRR93, Gup92, GS01b, HP00, HB97, HK01, HSJP87, KCRB99, KSP+92, KCDZ95, Lat95, LAZC00, LZ02, MSC96, MB93, MG98, NTA96, NB93, NM02, OM84, Pad93, PN97a, PN97b, PA97, PL95, PM96, PAJC97, RL96, RSD94, RMC97, RSRN01, SM96, SSRV94, WLY01, WSRM97, WSA+94, Won99, WLID02, XH91, mYyF92, YB01, Zia92, eW95, AA10, AL04, ASM09, ASKTZ13, ALLM11, AHG12, AK07, ARM+05, ABC+09b, ATZ07, AYB+15, AP16, ABLP17, ABF+14, BCM06, BJPPM+08, BB03, BNB16, BOY10, BCMV15, BCH15, BDBR14, BFKW13, BDDL09, BEN12, BM08, BYH+17, BBB11, CL03a, CG12, CLMRL15, CK08. based [CK13, CTCX08, CP10b, CS10, CHX+17, CLOL17, Chi95, CL09, CVJ09, CHC05, CRJ10a, CGW03, CZZY09, CJ17, CTT16, CAF11, CKMP17, CRD12, DKKV15, DE91, DB11, DKC14, DRST02, DRT07, DWYB10, DQR+09, EDØ05, ESQG+14, EM11, FLL14, FCML13, FCC07, FLCB10, FGL+11, GOH+13, GMMP12, GPJA10, GTGLSA12, GBA08, GL12, GA16, GMXA07, GXV13, HW03, HBS17, HV09, HC09, HLM+90, HWY+10, IHH+16, IYH+17, JXW06, JP09, JHY+15, JM14, KKV05, KKR14, KERUM04, KJD03, KyLPC17, KA08, KKS+12, KKLJ14, KR06, KKTZ13, KC04, LC14a, LHKL03, LSH+13, LLLY08, LL07, LZI+11, LMJC11, LW16a, LIWC17, LN+12, LS03, LU14, LHT08, LZC11, LSZZ15, LLDL15, LPLFMC+12, LVB07, LS06, LP88, MCC04, MCD5+06, MAGL13, MM15, MP10, MMS09, MAKWZ13, Mit07, MM07c, MBO11, MSAZ10a, MSAZ10b, MBH+08, MRRT07, MZZC12, MCT14]. based [NSKN17, NJ91, NCA+12, NTN12, NC09, NH+13, NC13, Nic07, NAK04, No12, OM10, Ozt11, PRP09, PARB14, PDP17, PK05b, PMAL11, PVP06, PF04, RLPI4, Raoo16, RA11, RTZ11, RSCQ17, SSM+16, SMPMLVS11, SHSH17, SCG10, SS06, SP08, SPH13, SX08, She09, SLW10, ST12, Ski16, ST85, SK11, TR89, TBG+17, TFMS15, TW15, TKKH17, TC13, TJC10, TWQS12, TT07, UM17, VD04, VMB10, VB08, WCC02, WG09, WW12, WCL+13, WRW13, WYW15, WWW17b, WMG13, WD13, WLW09, XYH07, XCL10, XLHT13, XQ10, YL12, YAA10, ZG13, ZCK+02, ZV09a, ZAAB17, ZW13, ZPK+14, ZLL14, ZV12, ZGG+14, dSAJ15, dGP06, SM92a, WAS96, ZNOQ3, HRF+11, HC91, KKS08, PLD87, TOR+14, ZBR11]. bases [GPT06a, SK90]. basic [BM04a, Joh87]. Basis [TR96]. Batch [LL98]. batched [CK06, HSH10]. Batcher [NT93]. Batching [DSST95]. Bayesian [DKC14, FBRW03, NZA13, YWAT13]. be [BNP02, HBS17, KSSK16, STKW12]. beacons [DWX10, TDC05]. Beamforming [BL90]. Before [HCR12]. Behavior [Abr96, BDF92, BN02, BST01, CMT93, FJ93, LZ08, BS92, CL14, JZK04, dAMFDs13, RA11]. Behavior-Based [BN02]. behaviour [CMMN10]. Benchmark [PAJC97, DMS+16, GN15, GREC91, Num07, Num08, Num09, WRHR91]. Benchmarking [BBR13, KA99, YYLC11]. Benchmarks [WAS95, JV06, KC17]. Bends [OS97]. Bene [CIM03]. Benefit [BHK17, Wei02]. Benefits [FR92, SS99, Wei98, GK04]. Benes
[DD96, Qia97]. Best [BE95, Mue13, OY13, Phi13, Rob09, SP96, Sni03, Bar05, FPP+08, MAM05, QGZP17, WAE03, Ros07]. best-effort [Bar05, MAM05, QGZP17]. Best-Fit [SP96]. better [AM06, STKW12].

Biconnected [Kar02, Hoh90]. bicriteria [BFG04, BFM06]. Dimensional [BP02]. Bids [BA01]. BiELL [ZGG+14]. Big [AS13, AS15, SFC17, ACPT15, FRM15, KKKG14, NXXK17, WWW17b, YBX+13, ACB+15].

Bimodal [KC95, UM17]. Binary [AS94, CS95a, DS93, Efe96, HIKM94, HKMU98, Ee96, HIKM94, HKMU98, HM10, HR92a, Iq92, JH94, LF96a, LI92, OOW95, SYO94, Wag93, BL89, CJDC10, DH91a, LFZ+17, Wag89, HRJ94]. Bisection [BL95].

Binomial [DP00, WFL08]. bins [BBFN12, BFFN14]. Bio [Hua17]. Bio-Grid [Hua17]. bioinformatics [TZ06]. bioinspired [MPZ09, MCT06, dVCP06]. biological [AFM03, BBA06, BA06, BMARW07, SK09, SMB10]. biology [AB03b, TZ06]. Bipartite [DS84, LPS+98, DKU15, SM89b]. bipartitioning [ERS90, PB15]. bis [Fen90]. Bisectors [BEE00]. Bit [HPT+97, MO97, MT97b, SI91, CL90, Ede91, GPX08, KL98, KII15].

block-level [FLCB10]. Block-Structured [FBK98, DAB+14]. Blocking [BHK+94, ASES15, ESQ+11, KR17, MPN17, QS05]. Blocks [CWW96, RJKL11]. Bloom [SMPMLVL11]. Blue [FGM+03]. BlueCube [CC506]. Bluetooth [CC506, SLW90, WTS03]. board [Ano02e, Ano02f, Ano03c, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o, Ano04p, Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z].
Ano16i, Ano16j, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f. **Board** [Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l]. **Body** [HP95, SHT+95, IHH05, YJL16]. **Boltzmann** [KA89, WCO+09, ZA91]. **Bone** [AFK14]. **Boolean** [ESCV15, HJ90c, JH92b]. **Boosting** [AC16, FGP05]. **Border** [DRST02, HR90]. **Border-based** [DRST02]. **Both** [WAE03]. **Bottleneck** [WW98]. **Bottom** [LXZ13]. **Bottom-up** [LXZ13]. **Bound** [GZ97, PM96, SCS+08, SW90, YZLT09]. **Bound-consistency** [Kub17]. **Boundaries** [Wor93]. **Boundary** [Lin91, RBD08, SCC+06, SMP17, TRS+12, ZQMM11]. **Bounded** [AW95, BBN93, CLT96, GP97, Pra93, SN93, BD05, BPRG04, JM14, LMZ04, MRRT07, NP09, Sta17, TK07]. **Bounding** [Lun99]. **Bounds** [ADS01, BBH+98, DL98, JR95, LP95, Lun94, WW97, FT04, FZS07, ITTO4, KMS07, LXLS12, LYW+16, Mat06, NDP13]. **Branch** [GZ97, MCC04, PM96, SCS+08, YZLT09]. **Branch-and-bound** [WAE03]. **Broadcast** [DHB02, OS96a, Pel95, RS96a, RS92c, San99, VB94, AA10, BG05, CB15, FVLB09, KYS13, KG10, KGN89, LDZ+14, LDZ+17, LSWC14, LSSZ15, MT14, MPS16, MRRT07, PYF08, SGS08, TR08, WWW17a, WL05]. **Broadcast-based** [AA10, MRRT07]. **Broadcast-Efficient** [OS96a]. **Broadcasting** [BNS00, BPvW96, BMMS01, BOS+95, CW00, CCC92, DLP99, Fra92, FV97, GP97, HIKM94, Lat98, ST02, ST06, SCD99, Wu94, dBL95, oPP00, Che05, CMS04, FMR05, HS06, Ho91, KR87, LR03b, LSWC14, OWK14, SZ03, Wu03, ZA05]. **Broadcasts** [WD92]. **Broker** [HR00]. **Brown** [DTK11a]. **Browsing** [SF90]. **Brujin** [AN97, CT96, FT04, HOS94, MVM04, Swa98]. **Brunotte** [Tát11]. **Brzezinski** [Ano96I]. **BSP** [CTZ99, GS98, GLC01, HH01, HM99, KP00, RGD03]. **BTS** [KKK+11]. **Bubble** [DF94, PIB+01]. **buddy** [LC91b]. **budget** [ZVL15, dR09]. **budget-aware** [ZVL15]. **budgeted** [Sta17]. **Buffer** [FM99a, HV95, MSSE02, PY09b, WLID02, PW05, CV16, CHX+17, HV90, IH16, PBS08, SCC+06, WCWO17, WYW15]. **buffer-based** [HV90]. **Buffer-Optimal** [HV95]. **Buffer-Safe** [FM99a]. **Buffered** [AA95, JK84]. **bufferless** [MIM07, LMI12]. **buffers** [DW04, EKNS17, HM06, WAS88, ZCF+17]. **build** [ZHH15]. **Building** [HW97, IK03, RJKL11, SK93, ZW13, CZ90, HSS10]. **Bulk** [GV94, Lu01, FW03]. **Bulk-Data** [Lu01]. **Bulk-Synchronous** [GV94]. **burst** [WCWO17]. **Bus** [CKL99, DVZ96, FZVT02, FY96, GKM89, LPZ99, TVS97, VB02, dR09, BPP05, CLM90, D04a, JSWB92, MS88, MHBB06, TJCB10, YB90, YGZ+10]. **Bus-Based** [CKL99, TJC10]. **Bus-Connected** [DVZ96]. **Buses** [CL96, HQPT99, IM00, KC98, LS94, NS94, TVT96, TBPV00, WHT00].
C [CD98, DZZD01, EFG+14, HCM11, LS85, ZH99]. C-AMTE [HCM11].
C2FPGA [CSJ+13]. C3 [Ano04c]. C3- [Ano04c]. CA [Chi95]. Cache [DS95a, Da99, GS96, HP97a, LY98, LY01, LF92, NB93, PL95, PY96, RL96, San95, TTG95, Yan93, BW89, CWLD05, CK13, CDAN14, DK04, GJG88, GVA+08, HCM11, HZY04, HC09, HSMB91, KK11, LC11, LZLX11, MPG17a, MA11, SYUY07, SS17, VRGS17, YCC05]. Cache-Affinity [TTG95].
AZC13, AM12a, ACCP12, BYH+17, CL14, CXY14, DKRC+15, FRM15, GYAB11, HRM17, JAB12, KSSK16, LWZZ12, LQM+12, MHLZ16, MXSL12, MMK+11, SWW+17, TKX+13, XRB12, YYLC11, ZV14, ZLL14, ZHT16.

cloud-oriented [GYAB11, HRM17, MXSL12]. **clouds** [ACPT15, ACB+15, CKMP17, KM17, KKLJ14, LTWW12, NC13, NKK16, ZG13, ZVL15].

Cluster

[AFT+00, BAHP01, GS01a, HS00, JM00, JKV15, LS01, MKC01, PT01, ARM+05, BMARW07, CDS10, FW05, FLCRB10, GRR13, HW03, IEWK17, JGMY17, LAK10, LML+10, LU14, LZC11, LB17, MAR05, MSJ05, MBH+08, NDP13, NVK+11, OC07, PKW+10, PSPR05, PVPM06, RLP14, SAOKZ05a, SAOKZ05b, SBC¸12b, SMH14, TC04, VM03, WLL16, ZBF05].

Cluster-to-cluster [JKV15].

Clustered [CP99, MF94, GZY14b, HRC09, NS12, SFT13, Wan06].

Clustering [ASM09, GY92, HJ07, TZ07, TM10, WSH+03, WHT00, ASKTZ13, AYB+15, BM16, BM17b, BF13, CDDL10, CLC+17, DBCF13, DKM10, GYP13, GWH06, KKH17, LK15, LLW07, MCC04, RIZ90, SAL10, SX08, WMM09, YBX+13, YÖ11, YWW12, ZMCP11].

CM [BSGM90, LAD+96, PTC+93, Sab94, SF91]. **CM-2** [BSGM90, SF91]. **CM-5** [LAD+96, PTC+93].

CMOS [KR14].

CMPs [AFA13, DKKR09, FLC14, HRF+11, OOSGVG+16]. **CMV** [WDDK09].

co-allocation [NVK+11]. **Co-Design** [RBG17, BBH+17]. **co-evolutionary** [HD10].

co-optimization [HVV16]. **Co-optimizing** [AHA+16].

Coarse [BR96, BM04b, CDRC99, DFRCU99, HK96, NS97, SR97a, SR97b, TF01, CT94]. **Coarse-Grained** [BR96, CDRC99, HK96, SR97a, SR97b]. **Coarsening** [DR98].

Code [Bec96, FK89, JH94, NS97, RNSB96, BCM87, Gao89, LS06, SY04].

code-based [LS06].

Codes [BVH02, Lat98, AM13, CP10a, GRR+05, HR90, LWR+03].

coding [DFHH13, ZY12]. **CODISC** [MA11].

Coevolutionary [Ser97].

Cogenerator [KSP+92].

cognitive [FCZ+12, MKC+09].

cognizant [LK13].

Cographs [LO94, LO91].

Coherence

[ABP92, CKL99, DS95a, DSS95, GS96, HP97a, HF96, KS95, LY98, LY01, PL95, San95, SDS99, CDAN14, CRD12, GPM05, GVA+08, MPG17a].

Coherence-Miss [SDS99].

Coherency [TJ92].

Coherent [PY96, SYYU07].

cohort [AKBD10].

coin [AAC10].

Coincident [ZLPP01].

Cointegration [THN+93].

Coir [SG96].

collaboration [ABCM07, LR14].

Collaborative
[CH06b, MA11, WW07, CJDC10, DBLB+12, FM07, GCS06, LLWC17, NKK16, RJKL11, Wan06, XQ04]. **Collapsar** [JXW06]. **Collection** [BS90, KS00, RW01, Amm16, HMV07, JLM08, ZWW17]. **Collection-Oriented** [BS90]. **Collective** [LSH96, BGM+08, GDP08, GQ06, HLM+90, KQ03]. **Collectives** [Zah12]. **Collectors** [VRM10]. **College** [NDW17]. **Collision** [HLZ+17, YB95, JBS14, SK05b]. **Collision-free** [JBS14]. **Collision-tolerant** [LDZ+17]. **Collusion** [AFD+11]. **Combinator** [BM17b, BBR13, BOS+91, BRP03, CCS06, CNS03, CHC05, DB11, DKUC¸15, DW04, EDH+17, FW05, GB13, GP05, HK05, IB04, JJ12, JZZ+17, KYL05, KSG03, Lai86, LAK10, Lo92, Lun90, LNM09, LWCG14]. **Communication** [AAM00, BD00, CQ95, LHS00, RMM+91, LHP07, MBBD13, PGP+12, TKG+17]. **Communicator** [KF90b]. **Community** [CTC+10, Tríº09, ZLL14]. **Compact**
[CDF01, CJ99a, CJY04, CI03, NCTT09, NKV14]. Compact-Port [CDF01].

Compaction [BHR91, Kar95, WD94]. Comparative

[AAD02, GS00, QM01, HA91, PL03b]. Comparing [GGW96, YL98].

Comparison [BSB+01, DRSB01, Fre96, GY92, JNW96, KA08, KA99, OP98, SSOB02, SAC+98, Tay02, AFM03, AG12, FGZ03, GHC+17, JKE13, MP10, NSKN17, SMB10, SS94b, ZTFK16]. Comparisons [YBM13].

Comparative [AAD02, GS00, QM01, HA91, PL03b]. Comparing [GGW96, YL98].

Comparison [BSB+01, DRSB01, Fre96, GY92, JNW96, KA08, KA99, OP98, SSOB02, SAC+98, Tay02, AFM03, AG12, FGZ03, GHC+17, JKE13, MP10, NSKN17, SMB10, SS94b, ZTFK16]. Comparisons [YBM13].
SNCP12, TZ06, WW03]. Computations
[AGF94, AMN00, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93,
CQ95, CGA98, DUSH94, DN94, GR96, GK98, HH97, HJ01, HF02, KL01a,
KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94,
Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03,
BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03,
RV13, SSKÇ15, SBÇ12a, ST89, SC04, SK91, SMH+14, SS94b, TG04, WJ14].
computations/applications [KHC03]. Compute
[ABM+92, CM92, CTZ99]. Compute-Intensive [ABM+92]. computed
[ABM+92, CM92, CTZ99]. Computations [KHC03]. Computer
[ADN94, AN95b, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93,
CQ95, CGA98, DUSH94, DN94, GR96, GK98, HH97, HJ01, HF02, KL01a,
KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94,
Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03,
BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03,
RV13, SSKÇ15, SBÇ12a, ST89, SC04, SK91, SMH+14, SS94b, TG04, WJ14].
computations/applications [KHC03]. Compute
[ABM+92, CM92, CTZ99]. Compute-Intensive [ABM+92]. computed
[ABM+92, CM92, CTZ99]. Computations [KHC03]. Computer
[ADN94, AN95b, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93,
CQ95, CGA98, DUSH94, DN94, GR96, GK98, HH97, HJ01, HF02, KL01a,
KME92, KC99a, KS02, LPZ99, Man94, MR94a, MP93, MNM98, NRS95, Nas94,
Nic94, OS96b, OSZ98, OP98, SV00, WB96, ZB97, ZYO02, AAD05, AFM03,
BD11, CG10, DMCFCM03, EL91, FXW03, IEWK17, Joh87, KME89, KHK03,
RV13, SSKÇ15, SBÇ12a, ST89, SC04, SK91, SMH+14, SS94b, TG04, WJ14].
computations/applications [KHC03]. Compute
[ABM+92, CM92, CTZ99]. Compute-Intensive [ABM+92]. computed
[ABM+92, CM92, CTZ99]. Computations [KHC03]. Computer
[ADN94, AN95b, AP94, Ano92a, BR95a, BDKM94, BW95a, Cas93, CN93,
Concentrate [LW95]. Concentration [JL05]. Concepts [TAS99, MAGL13, NKSA17, ZZ90]. Concerning [IPK85]. Concurrency [Ahu90, ADD17, KCV99, LZCY09, MS96, NMS93, RM90, SRI14, UBES10]. Concurrent [AyJ93, CCN92, CMN12, DBLB+12, FPD93, IM94, Joh94, MM04, RSD94, RS92d, WCF94, WW96, W93, WT92, BE13, CTS17, Chi95, CMT92, DB08, FJSW90, GV86, KME89, Par89, ST05, TK07, Chi95]. Condition [SJ96]. Conditional [CSS11, CW09, ERA95, RLS96]. Conditions [DJ98, HM96, MI92, Ste17]. Condor [HS97]. Condors [BZH06]. confidentiality [ZHT16]. configurable [ZMZJ17]. configuration [BL05, FVCL05, LB17, NP09, VAS+13, WZ13, WLST16]. Configurations [LK94]. configured [ZV06]. Conflict [BP02, CH92, DPP06a, HV97]. Conformance [CY95]. Congestion [BDF01, AA10, BM11, ESGQ+14, XWC+08, YJKD10]. Conjugate [Bas97, Mc89, GLW14, LR14]. Connected [Ann94, ADM+94, BJ96, BACH95b, yCM98, CCC92, CWW+95, CT94, CY96, CDP95, DVZ96, Fer93, HMM94, KRKS11, LH92, MD01, Moli96, SR94, Tze93, Zhu92, ZYO02, dBL95, BB85b, BBd90, Car90, DW06, GP07, HJ97, HSW04, HR89, HR90, JT88, JPD17, JL05, KO12, KT91, KF90a, LC90a, LC91b, Li06b, LV88, MPH05, PB90, RAj04, SI86, ST06, SSM89, SC91a, TR08, YME06, YSS11, YWW12, ZAAB17, HWW96]. Connecting [FT94]. Connection [AyJ93, GHS98, ML89, LXS12, TT07, YSL08, CM93, CRFS94, EHS94, LAD+96, LTR+96, Sab84]. connection-based [TT07]. connection-level [YSL08]. Connectionist [MBK+92, TR89]. Connections [Goe94, TC03]. Connectivity [WIl92, ASM09, BCMV15, DH91a, OMSGNS05, SK89a, Ten16]. Conquer [CTZ99, AY89, BW09, GDL+11, Sto87]. conscious [GYA11, OC07]. consensus [AA1+15, ISM07, LHW14, MR09, WTC08a, WTC08b, WWW17a, WCYR08, XBK07, DS04b]. consequences [YBM13]. Conservation [FLS+07, XS11]. Conservative [LA93, BD04]. Considerations [Ger98, VWHL96]. considering [MLMSMG12]. Consistency [Bir94, CA95b, GAC+92, SS08, Fei03, HCO9, Kub17, LC11, RHH12, WDDK09, X005]. Consistency-driven [SS08]. Consistent [KCDZ95, HK08, JLM08, LFA05]. constancy [Ebn04]. Constant [BGS95, BPP05, BTZ98, COS+95, DS01, KBG92, RO92, TVS97]. Constant-Time [BGS95, COS+95, DS01]. Constrained [AZ01, BSE96, BSH97, MMVR97, RL95, BKS05, CHX+17, HP06, JHF+17, JZZ+17, KSI04, KSK15, LFS16, LL10, Li16, MSK+16, VMMB10, WT+08, XLL15, YAK15, ZVO9b, ZWWX16]. Constraint [GH92, LP97, Mon94, CLL09, UAPM07]. constraint-based [Ozt11]. Constraints [BA96, KB96b, LTWY95, van96, AP91a, AY89, ACU08, DUW86, FVLBO9, Li06b, SZB16, SSM+07, VRM10, WMY+17, YA11]. Construct [BW96]. Constructing [CCS06, CS06a, Hal05, HS12, HSS94b, Lai15, YWW12, BBL04, DW06, GC07, LMZ04, LH04, OMSGNS05, WC91, WJ12, YSS11, YZLT09]. Construction
Constructions

consumer [GLGBG12, KK11]. consumption

container [AZW13]. containers [Str12]. contemporary [VM03].

Contended [AFA13]. Content [Li99, SLW10, Win85, Bar05, FM07, KTP17, KRM14, NKK16, SZ09, ST12, SCK03, SK11, ZW13]. Content-Addressable [Win85]. Content-based [ST12, SK11, ZW13].

Contents [PSGS17]. Context [AHG12, Cou93, Ano04d, BPA06, IB04, YK04, Sie16]. context-aware [BPA06, Sie16]. context-sensitive [Ano04d, YK04]. contexts [KHT'14]. contextual [Ana14]. Continuous [JHPL13, NH93, MCDS'06, TCS'+10, dGP06]. continuously [AKSM08]. Continuum [MP96]. contraction [LGK'+12, SMH'+14]. Contractions [BBN93, IEWK17, Ros89]. contributions [RGU08]. Control [AGW98, AGW01, BJR91, BBM'02, BCLR96, BCD00, BDF01, DSST95, ESA03, FR96a, FT94, KSP'+92, LM96, MS96, Nie94, OS93, SG96, THBF07, WLD02, AA10, Ahu90. AAA'+10, BCO'+12, BWP'+11, BMF05, CF88, CG17, CPW12, Che89, CLM90, FL86, GL12, GAOHG17, HCZ04, JTZZ11, KNS91, Kim11, KGN11, LL90, LZY90, LCW05, LWLD12, LL12a, MLZY17, MG09, MBO11, MCZ14, RCG'+11, RKK06, SRI14, TG04, WR13, WJD91, XYL06, XWC'+08, YBM13, YJD10, ZM17, ZBW'+17]. Control-Memory [BCLR96]. controllable [ZHT16]. Controlled [CGSV93, Li99, MG91, SD99, SDO0]. controls [YS08]. convection [CEGS07]. convergecast [KK06, PLY15]. Convergence [GCM95, ÚD96, YBOY97, CDD'+15, Tor89]. converging [BHK17].

correction [FC14, SMH91]. Convex [DS84, DFRCU99, LP97, Wu02, DDNS06, GSO3a, RBDO8]. Convexity [BOS'+95, BGOS95]. convolutional [ZLS17]. convolver [Kep03]. cool [LFS16]. Cooled [SWHB17]. cooling [ML'+16, SWHB17]. cooperation [YQTV12]. Cooperative [BW95b, LTWW12, SZL10, DDG'+17, FCML13, FZ14, GRDB05, GY14b, KK10, NP09, TC13, TVT'+17, WLL16, XHZ'+10, YpGYL13, YF07]. Coordinated [DDG'+17, VPHM06, MCZ14]. Coordinating [OZJT17]. Coordination [DZ97, LZIP, CHC05].

Copy [Ano93e, CS93b, CS92]. CoQoS [LZI'+11]. CORBA [CCC'+04, LWR'+03, MSAF04, RSR04, WZH00]. CORDIC [CL88, HBH93]. Core [BCR96, PL94, AFA13, AA16, AR17, ABLP17, BBBC12, BLMB13, CMMT13, CKK'+13, DWYB10, GZG'+17, GKS15, Hsu17, JHF'+17, KSG13, MBO11, MCZ14, RCG'+11, RKK06, SRI14, TG04, WR13, WJD91, XYL06, XWC'+08, YBM13, YJD10, ZM17, ZBW'+17].
KKB+06, KR11, LKS14, LNAL17, LSC+15, LHT08, LLS+16, MBBD13, MAHKZ12, MGRKK14, PCMM+17, PGP+12, PTK+13, PR13, RLA+16, RLA+17, Raj04, SNMB16, SFT+13, SCB09, Sol13, SAJ13, Trä09, TCHC12, WJV07, WQZ+13, WH17, ZXB14, Zha11. core-based [LHT08].

corrigendum [LSS+11a, MSAZ10a, REK10a, WTC08a]. corrupted [DP16].
cortical [NFHL13]. Coscheduled [KCD08]. Coscheduling [ABM+92, NBSD99]. Coset [Oru87]. cosmology [LTL06]. Cost [AZ01, Ano92c, BC01, DT97, FM99a, GPS96, HCS+00, JH92a, JLRA97, KER01, LO96, Nic07, PP96, QM01, SC95, WC91, Wei02, AM12a, AD12, BJ03, CL09, DKUC15, ESQ+11, GJXZ05, HS12, JLIW11, KSK15, LMZ04, Li17, MSM09, MP15, SSM+07, Yan09, YGZ+10, YLYC11, ZJ06].

coupled-cluster [SMH+14]. Coupling [GT02, YWD08]. course [Bog17, LB17, PSGS17]. courses [Kum17]. Cover [Ano04c, ANP07, DDNS06, KO12]. Coverability [SP90]. coverage [Amm16, DGBN14, GM14a, HWC08, PSRS12, PCX+11, PCX+14, REZ17, WMW09, ZC04]. coverage-oriented [ZC04]. covering [KCR14, ST12].

cross-architecture [YFBY17]. cross-layer [WCL+13]. Cross-scale [IEWK17].
crossbar [CP01, KJ84, OK01, PD02, KK17, LW89, McA89, WJ90, ZPK+14].
cryptographic [ABO+17]. CSA [Ebe94]. CSD [KHT+14]. Cube [BCH95b, JH94, MS85, RP98, Tze93, AP91b, JT88, JL05, KF90a, PK04a, ST06, LH05]. Cube-Connected
[BCH95b, Tze93, JT88, JL05, KF90a, ST06]. Cubes
HJ90c, HTHH02, JH92b, Lat98, XL95, BVBo2, CW09, CFJW13, FLPJ07,
LFZ+17, SAOKM03, WFZJ12, WS97b, XHZ216, YTH07, YD98. Cubic
CP98, BM14, MP88, YME06. cuckoo [CSW+17]. CUDA
BSH15, CBM+08, CB11, Cza13, KRKS11, KME09, dIAMCFN12. CUURRE
[KS95, MMCL+17]. Cyclic [OP96, PT97, SSG93, BD05, HS03, PK05a, Sch87, ST87, SPH13, LY12].
cyclic-by-rows [ST87]. Cylindrical [WN94].

D [AA14, Ano92a, Ano93e, BAES92, CS93b, GOH+13, SS94b, AA16, AR97,
BLPV95, BFG94, BDRB14, BAL05, BC94, CW00, CS92, DSAUM99, GW99,
HHK796, HKT94, KRKS11, LXXS12, LME95, MKY+97, MPG17b, NM17,
OGV+12, PYP+09, PEC95, Wan07, WS95, Wu02, YA11, YB01, ZLS17,

Daemon [KY02]. DAG [CJ99a, CJY04, DQR+09, XLHT13, ZS13]. Dags
[BCLR96, BSS+13, CDR12]. daisy [GRV08, MVB05]. Dandelion [CP10a].
Dandelion-like [CP10a]. DARPA [WRHR91]. Data
[AOS+05, AL04, AAL95, ALS91, AS13, AS15, Ano96j, Ano00d, ADM+94,
BV02, BCD95, Bal90, BBB+96, BHS+94, BR95c, BR02, BS09, BS11,
CGN+13, CDY97, CK08, CGL+95, CP92, CHR94, CRFS94, DOP98, DRC90,
DSARM99, DSRT02, DHR96, DSD+97, DSS95, Fahl6, FMP98, FKCK97,
FMW+94, GG94, GP93, GC01, GDN+98, GS96, Guo92, HK01, HJD+01,
ISZBM99, JW94, JS86, JB93, KR97, KL930, KRS01, LSCA93, LZ02,
LAS+97, LY98, LY01, LO96, LL95, LSWC14, Lu01, MD13, MS85, MRRV98,
MK92, MK93, MNB95, MNN98, NBP98, Nic94, OK02, OP98, Ozt11,
PHB96, PH91, PL98, PT97, QZ94, QH96, RSW90, Ros99, RW93, SS98,
SMH94, SG99, SR97a, SR97b, SAC+98, SSHC00, SHT+95, SSG97, SYG97,
SIR2, Ste95, SC91b, Str12, SV00, SFC17, SG96, TSC01]. Data
[TR96, BG90b, VBM90, WB94, WNA+94, WPPK94, WSS93, Wei02, WS97a,
ZMCP11, ZTFK16, ZRC99, AAA+15, Anm16, AH12, AGWY11, ACPT15,
Ara90, AG12, AYB+15, AEY12, BFH+17, BCO+12, BH86, BR91b, BEN12,
CK06, CF88, CK07, CGC16, CLC+17, CW15, CLL09, CZ90, CTT16,
CCT08, Cuz11, Cuz13, DF17, DTK11a, ESTA94, EDO05, FCW11, FRM15,
FP03, Gao89, KYB11, GE85, GS91a, GA08, GLGLBG12, GM14b, GBA08,
GB11, HMV07, HLS03, HSMB91, HP06, HA05, JLY12, JBS14, JHPL13,
data

Data-aware [ZTFK16, AYB15, VMMB10]. data-center [FP03]. Data-Driven [JB93, VBM90, WSS93, BH86, KHK03, NCB17]. Data-Flow [BG90b, GE85]. data-gathering [LLW07]. Data-Intensive [BM95, CS95b, FCF00, MFS93, Ahu90, BA06, CG86, PF08, Ram89]. Databases [BM95, CS95b, FCF00, MFS93, Ahu90, BA06, CG86, PF08, Ram89]. datacenter [MG09]. Dataflow [BG86, BCF97, BPN90, BJP91, BH93, GGB93, Gao93, LB90, MNB95, NBM93, RSBN01, SA93, SBKB90, VV90, YMR93, Bi90, ESCV15, KLL87, TBG17]. Dataflow-Based [RSBN01]. dataraces [SSS07]. dataset [YLYC11]. datasets [CLOL17, Y ¨O11, YLB15, ZB09]. DAWGS [CM92]. dBBle [SLWW05]. DCC [BCD00]. DCell [WFLJ16]. DCT [Jia99]. DDE [WS97b]. DDS [SMPMLVLS11]. Deadline [LTWY95, RCG11, LFS16, MGSG12]. Deadline-sensitive [RCG11]. deadlines [BSMH08, KSS07, WMG13, WL05]. Deadlock [Ano96l, BHRS95, CP01, CMS92, KS94, Li92, MJ94, PA97, PA01, SJ96, TT07, ZN01, AA14, BB85a, XL11]. Deadlock-Free [CMS92, Li92, PA97, PA01, SJ96, ZN01, TT07, AA14]. Deadlocks [RP95, WP02, LJ05]. deal [ESGQ14]. Dealing [BK50s, FP03]. DEAR [ALF03]. debug [BBCLL04]. Debugger [MB96b, BBCLL04]. Debugging [MI92, MLC+90, SG93, CV16, LZZ+11]. Decaying [GM96]. Decentralised [AM11, DW12, GHK+12, GMXA07, HS97, BH1K7, Che89, MAPF14, SL06, WZQ+13, mYA91]. Decidability [FP17]. Decision [ADS01, BF01, LF906, KC04, PP06]. Decision-Tree [BF91]. declustering [WZZ+17]. decoder [MC17]. decoding [CP10a]. Decomposable [KS08]. Decomposition [Bai94, BCD02, CP92, HJ90c, HB893, KBG92, LS95, NPY+97, PE93, QZ94, Ara90, ACFK07, CvdBL+08, CZZ+17, Luk85, OT86, SK09, TW87, XWC+08, ZWR107]. Decompositions [ABCP96, KRW96, ORU87]. decoupled [CTC08, DBC03]. Decreasing
dedicated [AM07, MAR05, WLNL06, ZV09b]. deep [ZWW17]. defense [XCH08]. definite [KK86]. Degenerate [HF96]. Degradable [BBR94, CGA98, LH92, RCB93]. degradation [NSTN91, WCYR08]. Degree [DS96, Pra93, RL05, BCF14, BPBR11, KSK15, LVP08, Sta17]. Degree-Constrained [RL95]. degrees [ZDC06]. Deister [WZZ+17]. Delaunay [ABC+09a, ABC+09b]. Delay [AZ01, AH11, GZW+17, Hu11, GL12, HWWH08, LMZ04, MD07, SGR03, WW12, LWY15, YA11, YWG15, ZWW17, KSSK16]. Delay-Constrained [AZ01]. delay-guaranteed [HWWH08]. delay-optimal [MD07]. Delay-sensitive [Hu11]. Delay-tolerant [AH11, WYW15]. Delays [GM94a, G98, KL01b, RW+13, Sta04]. Deleting [WE13]. Delivery [CLZ02, CLV95, THGY15, AH11, Bar05, KNS06, SZ09, WGCZ09, XYD06]. Dellat [THGY15]. Delta [KJ84, YL89]. Demand [DSST95, HLL+95, JSB95, BSW07, FVLB09, HZDP12, KyLPC17, LSZZ15, NKK16, SFEF06, WL05, XG03, YYLC11]. demands [SLW10]. Dendritic [WCKD06]. denial [KMMZ06]. denial-of-service [KMMZ06]. Dense [DVW94, FHL+15, ICQO+12, LKD14, RM10]. densities [DHK04]. Density [MC17, WCXL11]. Dependable [SM92a, WLD02]. Dependability [MJJ05, NPGV10]. Dependence [GSC+93, KK95, Xue97, CCA+92, Psa96]. dependences [NCT+07]. Dependencies [KBG92, TC96, BSMH08]. Dependency [GP94, CSJ+13]. dependency-timing [CSJ+13]. dependent [AL04, BH05, LSWC14]. deployable [YC12]. deployment [EM11, TWQS12, VHI08, ZC04]. depth [BP89, LH04, PV07]. depth-first [PV07]. deques [ST08b]. derivatives [PK04a]. describe [JWH+17]. description [MRS+14]. Descriptor [Bal90]. descriptors [LNW+12]. Design [AFA13, AC16, A92, BAH01, BCD00, CGKK97, Car95, CCC90, CT93, CAB94, CW93, CKK+13, DBKF90, DVW94, ES96, EMP+96, FC90, FR96a, Fer92, GRV08, GFP+92, Ger98, GR97, GSP02, HP97b, JHH92, JZZ+17, LL90, Lee91, LH92, LLS93. LLKY13, MKC01, MP10, MVB05, MG09, MML07, NBU93, NJ91, Nie94, NSPP02, SO93, PA01, PI90, RCB93, RBG17, RPS93, RKK97, SAOKZ05a, SAOKZ05b, SRK95, Sol13, SHC93, SOG94, TTH12, WNA+94, WH97, XKM94, ZPK+14, Ada17, ABLP17, BBH+17, BZL04, CG11, CSJ+13, CK13, Che86, CHX+17, Chi95, CC96, DFHH13, DE91, EFG+14, FHL+15, Fer90, FCG+14, FD86, GREC91, HDT+05, HWWH08, KMC16, LUI+14, Lon04, LV07, MCM+11, Nap90, OMT+17, PLD87, RGD03, RA11, SDS10, TM06, TB90, VRGS17, VH98, VLL+14, WSG91, Wu11, ZMZJ17, ZY12]. design [ZV09b, ZJF16]. designed [BSH15]. Designing [BBC12, BC01, CB06, DH91b, GP93, GMS+13, GB93, KT95, NS92, Oru87, SRGB90, TC96, YCH+10, YFBY17, KAS07]. Designs [HCS+00, LHM95, MO1, Oru94, Bhu87, CP04b, MC17, Man13, PGRP17, Sch89b, WAS88]. Desktop [LSH+13, CCEE03, AAD10]. Detect [XCH08, UGG+11]. Detecting [CL14, CK97, NCT+07, SKK14, Tse95, YXX13]. Detection

Disaster [SZB16]. disasters [FP03]. Disciplines [MSd+95]. disconnected [LR03a, MCS14]. Discovery [CHGM01, AOS+05, FZ14, KOA09, KKS09, MCK+09, REZN17, RSL12, SMPMLVLS11, She09, SK11, TDC05, ZMG+16].

Discrete [Ano02v, AB93, BBM+02, Bamb10, DMSH90, Lin93b, Lin93c, LLCL98, NC97, Pra93, AZC13, CV109, CRC+02, IIH16, Li16, SS17, TKHG04, ZS09, ZCK+02].

Discrete-Event [DMSH90, Pra93]. Discrete-Time [BBM+02].

discretization [SWLZ17].

Disjoint [BGR96, GT97, GP90, NS90, RSS99, WB01, HBAD15, KMC16, Lai14, Lai15, Lai17, Lin03, LS03, MT14, SMP17, TDM05, WFLJ16]. Disk [CT93, Cor93, ER97, GP93, LP96b, MKC01, MKR93, MFS93, Raj01, RCB93, CL03b, JPD17, KR12, NC13, NZY+11, XS11].

Diskless [PKD97]. Disks [KR11, MT93b, MB93, MFS96, CkLCK04, CkLCK05, CO07, RWB+13, VA07].

dispatch [YZS15]. Dispersing [Gil94]. displays [Tap05]. disruptive [SI13].

Dissemination [AHZ11, DF17, MCdS+06, MSF+13]. Distance [BV802, CW00, CDF01, DS01, DF95, NM17, ST02, DS04a, El07, Hsi04, M08, ST06, Tur12, WCWH03]. distance- [Tur12]. Distance-Hereditary [CDF01, Hsi04]. Distance-Insensitive [ST02, ST06]. DistDLB [LTL06].

DistOpt [CLRW00]. Distrub [LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Distribute [LW95].

Distrib- [LW95].

Distributed [AAA+15, AE95, AL99, AM97a, AM97b, AMN00, AF96, AK17, AaJS01, Alu97, AS13, Ay197, Ano96j, Ano96l, Ano97], An999g, Ano92v, Ano02u, AB17, ABCP96, BR95a, BR96, BFTV87, BGLA03, BCV94, Bas97, BWP+11, BA01a, BCh95a, BAS06, BPR99, Bir94, BCD00, BCR96, Bou02, BSB+01, BHR95, BNSP99, BS09, CS00, CG11, CTD99, CCM01, CC08, CL91a, CS93a, Cha94, Cha96, CKK00, CN503, CC94, CK07, CDJL90, CB95, CWP98, CM92, CA95b, CLRW00, CJ99b, CP99, CWD11, Cuz11, DWG03, DY99, DA97, DUSH94, DS95b, DO98, DMSH90, DN94, DSW94, DSAUM99, DAYA02, DL99, DH95, dADB96, EP90, FR96a, FFK97, FTM+14, FKS97, FSS11, FM99b, FY97, FTC00, FBDC99, GHY10, GDP08, GP07, GCKM97, GM94a, GMSS+11, GZY14a, Gra99, Gup92, GKH96, GHSJ96, HR00, HBCM99].

Distributed [Haw97, HK01, HP97b, HWLR14, HWY+10, HLJ01, JPD17, JF95, JKD+15, JSM94, JNW96, JRR99, KKG90, KY02, KSSL16, KRC00, KS97a, KDO+13, KKH17, KHS96, Kel00, KB96a, KCV99, KSK15, KS00, KC94, KRS13, KS94, KS02, KKTZ13, KC99b, Lan09, Las12, LWY97, LTH97, LZ02, LC90b, LHM95, Li99, Li01, LLCL17, Lin93c, LLW07, LHT08, Lon04, LK11, Lu01, LS01, MI92, Man97, MS99a, MLC+90, MT97a, Mat93, MSGS+13, MS90, MNK12, MFS96, MSST99, MK08b, NSS97, NTA96, NBP98, NM02, OY13, OK01, PH96, PAM94, PA96, PB99, PSRS12, PK07, PBB+17, PRS14, PM92, RSB96, ROK95, RS92c, RDS02, RJY96, RGS00, RAS96, Rost07, RP95, SHSH17, SM94, Sch89a, Seb95, SRGB90, SZW05, Shu95, Sin87, Sin93, SS94a,
Distributed [SBAM96, TH11, TT10, The02, TSC01, TAS+01, TG97, TSFZ14, TB90, Tse95, TY95, Wan01b, WCWH03, WW98, Wee01, WRC+02, WM01, WLD02, WUG99, Wn02, XKB07, wXH00, XQ04, YH97, YB01, ZV06, ZM94b, van96, AT03, ALH+09, AAFV04, AL04, Ahu90, AGMS04, ACCP12, AAI+15, AM11, AMK+07, AH06, BFG+03, BCV05, BMB+08, BLPA05, BBCQ13, BG89, BNP02, Bar05, BB03, BCMV15, BHLT14, BRP03, BK08, BFL+13, BD04, BMF05, BH05, BGM+08, BCF+94, BKFP04, BIBL04, CSWD03, CG86, Car95, CGG+09, CJA09, CI86, CVD+08, CTCX08, CS08, CKWT17, CLM90, CKL05, CGG+09, CJA09, CI86, CTT16, CP0+03, CTT08, CK91, Cuz13, Cyb89, DK08, DB11, DM04, DRT07, DMM06, DH04, DIT03, EBE08, ESA03, EHL+15, ES12, FPF14, FCC07, Fer90, FL86, FKR+17, FX06, Fu10, FLC14, Gai87, GYAB11, GCS06, GOS90, GWL94, GC05, GL12, GL90, GN15, HJ90a, HLM+90, HKW05, HD10, HL07, HHK15, ITT04, IB04, IS06, JF12, JKIE13, JLM08, JZZ+17, JZ05, Joh91, Kak15, KHW13, KUA07, KSG13, KK06, KMZ06, KAS07, KDC08, Kim11, KKS+12, KL05, KS13, KBD05, KP05, KC04, Lai86, LTL06, Las13, LLL06, LVP08, LL90, LJo5, LY91, LZC09, LASS15, LVR90, LC91a, LVP07, LB09, Lop13, LA04, LCM+06, LSZJ15, Lun90, LM09, MLZY17, MD07, MM07a, MSM09, MAPF14, MHPR05, MA11, MB08, MS86, MTS90, MM07c, MFPV08, NSAS10, NTD12, NDW17, NPo9, OFS03, PK99, PK10, PK05b, PRHB06, PGS06, PL03a, PC11, PH16, PMD011, Pop91, PF04, RLP14, Ram89, RLH03, RAM+17, RKS87, SSKS11, SW12, SDTD04, SSS88]. distributed [SMP15, SU87, SB15, SC04, She09, SCS+08, SCMS12, SK90, SXZ06, SCM13, ST14, SKK91, SLKK13, SK89b, SM04, TLLV10, TG04, TBZB05, TZH+06, TXLL14, TM10, TVT+17, TWQS12, VB08, WW07, WTC08a, WTC08b, WL11, WW04, WL92, WD13, WSLS11, WZQ+13, XYH07, XQ07, YZZ15, YLB+15, YWG15, ZCK+02, Z09a, ZCYM12, ZTFK16, ZWRI07, ZBW+17, ZWL03, dG91, DLLL11]. Distributed-Memory [AMN00, CB95, CJ99b, DYE99, Gup92, GHKS96, GHSJ96, KRC00, KHS96, NSS97, PHB96, RGS00, Soh96, BGM+08, CPO+03, GL90, ITT04, LC91a, Pop91]. distributed-Web [KCD08]. distributing [TY90a].

Distribution

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRR01, BR02, CLZ00, DHR96, KL01a, LAS+97, LL98, MMN98, SLW10, SSY97, AS09, Fei03, FM07, GRV08, GBA08, HSW04, LLL06, LT07, L17, MV05, NM17, PV89, SOS0, WZZ+17, YJ16, ZWL03</td>
<td>distributions</td>
</tr>
<tr>
<td>BKMT14, Nic07, PCX+11, PCX+14</td>
<td>Distributively [VR94, FPP+08].</td>
</tr>
</tbody>
</table>

Divergence [Tor89].
Divergent [RMHR17].
diversity [SSFP11].

Divide [AY89, CTZ99, BW09, GDL+11, Sto87].
divide-and-conquer [BW09, GDL+11, Sto87].

Divisible [VB02, BD11, CG12, CVJ09, DW04, HV13, LML+10, MLDG12, MBV05, ZV06].

Division [HP00, QMCL94, ZLP01, DAV17, EL91, HRG+11].

DMON [HP97a].

DNA [GPX08, JV09].

Do [LTG14, CCC7, CCC90, KMS10].

Do-All [KMS10].

Doan [Ano92c].

Document [ZWL03, UGG+11, XCZL03, ZMCP11].
[CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11].

Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].

Dominating [RDL95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12].

dollar [SSM+07]. Domain [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11].

Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].

Dominating [RDL95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12].

dollar [SSM+07]. Domain [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11].

Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].

Dominating [RDL95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12].

dollar [SSM+07]. Domain [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11].

Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].

Dominating [RDL95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12].

dollar [SSM+07]. Domain [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11].

Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].

Dominating [RDL95, DW06, HJ07, JPD17, WCWH03, YSS11, YWW12].

dollar [SSM+07]. Domain [CZZ+17, KRS13, KRS14, NPY+97, MRS+14, SK09, SS11].

Domain-Specific [KRS13, KRS14, MRS+14]. Domains
[DR95, BMF05, dGP06]. dominance [EE05]. dominated [AM12b].
ear earthquake [KME09]. EB [SM92b]. EB-Equivalence [SM92b]. ECC [CL09, GCS06]. ECC-based [CL09]. ECG [ZAAB17]. ECHO
[HASB16, SAL10]. EcliPSe [RS92d]. EDAs [MMAL+06, dGP06]. eddy [SM04]. EDF [dOCS14]. Edge [BGR96, BS97, GT97, HBAD15, LSH96,
TDM05, WB01, CL85, DJT03, GDP08, Lin03, SS03]. Edge-Coloring [LSH96, GDP08]. Edge-Disjoint [BGR96, WB01, TDM05, Lin03]. Edges
[HHC98, BKC17, FPP+08]. editing [RS90b]. editor
[WW03, AB03b, Ano11, Ano02g, Cas93, Che92, Cho93, Her92, Kri92,
Lin93b, Pan09, Pra16, Sch90, Sto90]. Editor-in-Chief [Pra16]. Editorial
[AS15, Ano94e, Ano95k, Ano96k, Ano02e, Ano02f, GHS94, GHS95,
GHS96, GHS97, Hol17, Kae92, DF12, Ano03c, Ano03d, Ano03e, Ano03f,
Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03m, Ano04f, Ano04g,
Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano04o,
Ano04q, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h,
Ano11i, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g,
Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c,
Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k,
Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h,
Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p,
Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x,
Ano14y, Ano14z, Ano15, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e,
Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a, Ano16b, Ano16c,
Ano16d, Ano16e].
Editors
[Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano17a, Ano17b, Ano17c,
Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l].
editors
[XX05, AP93, AL99, Ano01], Ano01k, Ano02h, Ano02i, Ano16k,
BD00, DOP98, ES97, GG93, GC95, JW94, MC93, NT90, OW01, PN97a,
PN97b, PA96, SH92a, TFV+15, BG90b, TY95, WC05]. educating
[LMB+17]. education [Hua17, MBG+17, Nee17, NKSA17]. Effect
[ACD+93, IS06, BL05, ZJ05]. Effective
[Ano97k, BC01, GM96, HH97, KO11, LT96, MAR05, QM01, TC92, VHG93,
WLD02, YZS96, AM12a, BV13, BCK+13, Cza13, DK04, FZW12, FWM+10,
FIH04, JLLW11, KHW13, NAK04, SNC02, WM+17, YCH+10, ZJ06].
Effectiveness [GMM00, HKT+91, KS97a, LKK94, NRS95, MA11, TC03].
Effects
[AMB95, DZD01, KB06b, ÚD96, CK88, HLS03, KG04, SPBR91].
Efficiency
[EH01a, GG01, AHG12, AG12, BC11, BYH+17, ESC15, FRM15,
FCP+15, GSWW04, HRM17, HJLR12, LB12, LZSL06, Ren11, Sl86,
SWB17, SHC14, YF09]. Efficient
[AOSM04, AP94, AZC13, AKP95, AG86, AMK+07, BCO+12, BM16,
BGH+03, BAGS95, BAH04, BRP03, BJK+96, BDH+97, BMM07, CM04,
CRK+09, CKK00, CCC92, CPW12, CN93, CS95c, DDNS06, EP90, EL97,
FGG08, FKB98, FMR05, GPT06a, Gao93, GR96, GCKM97, GM94b, GR97,
GP00, GKS96, GNW96, HQPT99, HH01, HSLI04, HASB16, HHC98,
HBH93, HNO4, Hwa97, IR12, Iq92, JBS14, JB93, KPC96, KHS96, KK10,
KLZ97, KKB+06, KS13, KR11, KA97, KBG92, LJ05, LHHH11, LDP+14,
LY01, MD01, MLDG12, MB13, Mat93, MHC95, MS99b, NB93, NT93, NIR86, ND12, OS96a, OK01, OP96, Pad91, Par98, PA97, PP13, Pen11, Pra93, RV13, RS99, RSC96, Rao16, RMU14, Ric98, RIMC95, San02, SMP15, SW96, Sch13, SSHC00, SMP17, Sin87, SWLZ17, SCLL10, TU92, TR96, Tur12.

Efficient [VB02, VBM90, WRC +02, WHT00, XMN92, YD98, YZLT09, ZB97, Zhu92, ZH07, dSAJ15, AAH17, AFA13, ARI17, Ara13, BFH +17, BM11, BKC +15, BK13, BOY10, BR91a, Bic90, BCK +13, BHK17, CKN07, CP10b, CGW +03, CMN12, DKG10, ESGQ +11, EDH +17, GKS15, GT04, GLD06, GYP13, HSS10, HS06, HRJ94, Hsi04, IEWK17, Joh87, KTP17, KylPC17, KL05, KSSK16, KA05, Lai14, LMZ04, LW16a, LS91, LSC +15, LR03b, LHP07, Lon04, LLDL15, LA06, MGSG12, MO7, MSF +13, MPS16, MPN17, MAHKZ12, NF16, Nic07, PPSV15, PVGG06, RM11, RLA +16, RLA +17, RFS +12, SB12, SX08, SZMK13, SM08b, TLY12, TGPUC16, TMK +17, UBES10, VRGS17, WJV07, Wan07, WTC08a, WTC08b, WMW09, WLST16, WTWZ16, WIB12, WH17, WGCZ09, XHZ +10, YSS11, YLB +15, ZCMY12, ZLL14, ZB03, ZWWX16, ZHLQ12, ZHO03, LM09].

Efficiently [MT95, Coh90, CCM +06, FP03].

Effort [Bar05, MAM05, QGZP17].

EFS [MSK +16].

EGEE [VPHML06].

Egress [MCAS12].

Eigenanalysis [TYA16].

Eigensolver [ABGV11].

Eigenvalue [Kau94, LYL08].

Eigenvectors [VGAB08, ZB03].

Eisenstein [HBAD15, HS17].

Elastic [FGG17].

Elasticity [MMVL11].

Elderly [HRM17].

Electing [SK94].

Election [AS96, KB96a, DLV11, DGDF10, KGN89, Pel90, SS05].

Electric [IWM97].

Electrical [MO97].

Electron [DAG +17, FCG04, FGG08].

Electronic [WH97, AA93].

Electrophysiological [HES11].

Element [BCV94, CSSY94, PPTV +10, FC14, KME09, Ren11].

Elementary [FK89].

Elements [GB93, KNS91].

Eleven [BSB +01].

Eliminating [DR98].

Elimination [BPST96, BMM97, CS95b, Cap87, ESGQ +11, KA91, Vel89].

Elimination-Based [CS95b].

Elliptic [PSE +01, BGH +03, SKH15].

ELLPACK [ZGG +14].

ELLPACK-based [ZGG +14].

ELM [CLOL17].

EM-4 [BAM93].

EM-KDE [EHL +15].

Embed [SKK91].

Embedded [WA02, BM17a, CkLCK04, CkLCK05, CRJ10b, DQR +09, FW +10, GZ +17, GSWW04, KR06, LLLC15, LCB16, MBR08, MGRRK14, PRHB06, XLL15, YXZ11, FW +10].

Embedded-TM [FW +10].

Embedding [ANS97, Am94, AM93, BL89, CCM96, CS95a, Efe91, Efe96, HMU98, HJ90c, LSC00, LPS +09, Lin03, NPT +96, PW16, PM92, QM01, RWY93, SHL95, SLP +09, TT98, TL96, Var91, Wag89, Wag93, Wag94, Wan01a, Wn85, WFL98, BG90a, FLPJ07, FT04, LFZ +17, PW17].

Embeddings [GH93, HM01, HOS94, KC98, MT93a, OS97, OD95a, CL91a, GNW03, YTH07].

Emergency [HPB +10].

Emerging [Ano02v, BKC +15, KHT +14].

Emitter [FPM +14].

Emitter-coupled [FPM +14].

Empirical [FTC00, LR93, LGK +12, NXTK17, XZ96].

Employing [AGMJ06, PKW +10].

Empty [Deh90].

Emulating [KMS10].

Emulation [KMS10].
Emulations [RGD03]. Enabled

Enabled [MWL00, CSL15, CCN06, GRJ15, KTF03, ZHLQ12].

Encodings [JH94, LST17]. Emulations [RGD03].

Encoded [AAL95, CP10a, WLCZ15, ZWQ16].

Encryption [JH94, CLV95]. Encoding [AAL95, CP10a, WLCZ15, ZWQ16].

Encrypted [SWW17, ZHT16]. Encryption [ZAAB17]. End

[Ano08, Ano09, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, ZLCJ12, FGP05, GBMZ07, HPSM91, WG11, XLL15].

End-to-end [ZLCJ12, WG11, XLL15].

endpoint [GBMZ07].

End-systems [GBMZ07].

endpoint [Ano14g].

End-to-end [ZLCJ12, WG11, XLL15].

end-systems [GBMZ07].

End-to-end [ZLCJ12, WG11, XLL15].

End-to-end [Ano08, Ano09, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, ZLCJ12, FGP05, GBMZ07, HPSM91, WG11, XLL15].

Energy-aware [LBMG15, LNAL17, LY13, LR14, MMK11].

Energy-efficient [DKM10, GYP13, LK13, LW16a, LSC15, MGSG12, PLR07, QSL08, RM11, SP13, SSGZ13, WH17, XHZ10, AGH12, CV16, ECLV12, FRM15, FKL08, GHI10, GTN06, GL12, HP06, HRM17, JH94, ZWLQ12].

Energy-Friendly [MSK16].

energy-performance [ECLV12]. energy/power [OMT17]. energy/power-aware [OMT17].

ENF [CK97].

Enforcing [KMF05, Kub17].

Engine [KSL85, Ram92, HVW16, XTN12, SD88b, XP10].

Engineering [LWR16, BCD15, CCE17, Gai87, Nee17, PRHB06].

Engines [SD00].

Enhanced [WLID02, DZC17].

Enhanced [BOSW94, MD13, OPG08, OS96b, OSZ98, LLDL15, dOBI15].

EnhancedBit [ARD14].

Enhancement [KJ84, TC92, DK04, NQM12, RH05, RM90, TBG17].

enhancements [LÜ14].

Enhancing [AYIE98, CGN13, CRA13, GRR13, HWL14, dAMF13, OM10, QGP17, CCH09, JBY15, VA03, WXZ05].

Ensuring [JF95].

enterprise [BJPPM09, CCEB03, LSH13]. entities [Ahu90].

entity [MPN17].

Entropy [CCB03]. Entropy

[TVO92, VO89, DFHH13, WMW09]. Entropy-Driven [TVO92].

enumeration [SSTP09, SR90, WCH17].

envelope [GC07].

Envelopes [BMRC98].

Environment [AT94, AD95, ALL99, AA95, BB93, CP97, CLZ02, CSML10, CCRS92, CHR94, CB96, DKY01, DRSB01, GYAB11, KZ96, KC99b, LC90b, LAS97, Li99, MHH93, RS92b, RSD94, SG93, SRGB90, SS00, WH97, ZL93, AOS95, CK88, CC06, JLWX11, KVHS07, KSS97, KK10, LLY08, MAR05, MLK12, MML07, SSKS11, SSM96, WD13].

Environment-conscious [GYAB11].

Environments [CT99, CLRW00, CP99, KR96, KR97, KER01, LTH97, PR97, PRG88, SSK96, WSRM97,
WSA+94, ATZ07, BAL05, BPA06, BH05, BSMH08, CLL09, DBC03, DWX10, ECLV12, FRM15, JS86, KV10, KAS07, KLJ+11, Ksh12, LY91, LSH+13, LW+03, LM+10, LSWC14, MK08a, NP09, PP06, SJ92, SZB16, SZL10, SJS11, TZN11, TG03, WMES12, WG11, YT05, YCC05, YWG15.

Ephemeral [AGMS16], epidemic [AHZ11, MSF+13], epidemiological [Rao16], epistatic [HLS03]. EPPLS [CLC+17]. epochs [PBS08]. EPPOD [WH97]. EPLS [CLC+17]. epochs [PBS08]. EPPOD [WH97]. EPSILON [GH90]. EPSILON-2 [GH90]. equal [ST85]. Equation [DM90a, RW01, Gao86, JGMY17, LYL08, WJ14]. Equations [IK94, MV94, PSE+01, QOvdG01, TH02, CM03, GGR89, GS91b, SPH13, Ter16]. Equivalence [OO85, CM04, SM92b]. equivalencing [ES12]. era [MBG+17, SC10]. Ercegovac [Ano92a]. EREW [DL98, HS94a, ZK94]. Error [Lat98, Par92, WCF94, BGBC+16, DFHH13, OWK14, PKN08, RIZ90]. Error-Correction [Lat98]. error-prone [OWK14]. error-resilient [DFHH13]. Essay [Mil93]. Essential [DSS95]. establishing [GPJA10]. establishment [SZMK13]. estimate [BKK+11], estimates [TDBL13]. Estimating [CCK88, LGL13, MK92]. Estimation [CP92, Fah96, KC17, PKN08, SPVvH03, ZRN+14, DLLL11]. estimator [SIY14]. Ethernet [HeF05, KYL05, PYF08]. Euclidean [DS01, DS04a]. Eulerian [Kal04]. EUROGRID [LBE03]. European [LBE03]. evaluate [dOCS14]. evaluating [AFNT17, BL96, BC01, CLRW00, FW05, HCS+00, HKT94, LR94, RS92h, SS99, TTG95, ZYH94]. Evaluation [ATM01, BPJG92, BS92, BCD00, BM95, CT93, CEF+95, CP01, CP04b, CP91, CP92, DT01, FR96a, FTC00, GGD93, GS96, GS00, HJ90b, HN91, yHy97, JB93, KCD95, LLS93, LPL96b, MT95, MS85, MK91, MB92, MJ01, NBP98, PEC95, PTC+93, RCB93, RNSB96, RKK97, SM92a, SD99, SOG94, THBF97, TH02, VBM90, AB13, Bat05, CkLCK04, CkLCK05, CC96, CB11, DMS+16, DMS8, GRV8, GE85, GS91a, HW03, HBS17, LL90, LZY11, LN+12, MS88, MV905, MGRRK14, Sch89b, SWP90, SA11, Sol13, SE15, WL00, XQ07, XWC+08, YL12]. evaluator [MS87, MP88]. evasion [YpGyLlC13]. Even [NT93]. Event [Ano02v, AB93, Bou02, CK97, DMSH90, Lin93b, Lin93c, Pra93, AZC13, BM17b, BXA08, CK08, CM12, FX10, JKD+15, LVR90, SW12, Tay05, WZQ+13, ZZ90, ZCK+02]. Events [Yen01]. Eventually [LFA05]. everybody [KSSK16]. everything [CCM+06]. everything-shared [CCM+06]. Evolution [JM00, RBB17, HWY+10, Li10, Ngu06, WRW13]. Evolutionary [Ano99g, MSSE02, SD97, SS97, ZO97, AC89, BH05, COF+17, GB06, HD10, RSC+08]. evolvable [KKKP12]. Evolving [GR96, OH02]. Exact [RS09b, OFS03, PB15, Ps96, XP10]. examination [FL86, SMH91]. examples [FK89]. Exchange [VB94, WS97b, XL92, XL95, Dim04, HSW04, NKK16, PW16]. Exchanging [GPT06b]. Exclusion [AE95, Cha94, Cha96, FTC00, GGG93, KY02, KUFM02, NTA96, NM02, Sin93, YZY96, AK07, Ara13, BAS06, CW05, CH06a, CB06, DGFGK05, Gos90, LASS15, MM07c, NTN12]. executed
executing \cite{AKSM08, CDJ+89, QJO5, Sol13}. Execution \cite{CC90, Cou93, D95, Gup92, GH96, LS96, LT90, M95, MM93, Mer96, Mir91, NBM93, NS97, ND99, OKB95, RSD94, RHH96, RSBN01, SCMB90, SA93, Sun02, WB96, ARM+05, Bc90, CC87, DeG88, DKRI09, ECV15, FCC07, GYY14, GK04, LFS16, LR14, LPK+10, MSM99, PP13, RG06, SS06, WLS16, dKG10}. Executions \cite{LMCF90, FCP15, KVNV17, RV13}. expandable \cite{SSB91}. Expanding \cite{Zia92, RM10}. Expansion \cite{LY12, SL89}. Expected \cite{Ros99, CLL09, SSS88, SC91a}. expected-time \cite{CLL09}. Experience \cite{FTK14, SH92, CHG97, HBJ98, MJ01, PTC93, YM93, ZHY04, Bad04, CT94, GHC17}. Experimenting \cite{AD95}. Experiments \cite{ITY92, CF88, LYW16}. Expert \cite{DSW94}. Explicit \cite{CP90, DS02, Fre96, RCG15}. exploit \cite{YCH10, ZPI06}. exploitation \cite{PVGG06, VFAD17}. Exploiting \cite{CB15, CKK00, FLB98, FY97, HT00, JBY+05, KLS14, MN95, NMS93, SH92, VFB13, WYTX12, CDAN14, GXZ05}. exploits \cite{GBM07}. exploration \cite{BKC15, CKK13, LLKY13, TKKH17, TD07}. Exploring \cite{LR93, NXTK17, PCMM17}. expression \cite{GS91a, WSH03}. Expressions \cite{GKHS96, Mer96, DeG88, DM90b, JK89, LGK12, MP88}. expressiveness \cite{HdR13}. Extended \cite{BLG01, LWOG02, Rec84, EI07, YWW12}. Extending \cite{BBCLL04, CMR10}. Extensibility \cite{MB96b, LFH+03}. Extensible \cite{FLCB10, HGFF10, ZWL03}. extensions \cite{DPSD08, Oza04, JM00}. external \cite{DO89, JZK04}. Extra \cite{SZ00b}. extracting \cite{BC15}. Extraction \cite{YB01, CLC17, HP06, LLS16, MM15, Pla08, Raj08, WJV07, dAT17}. Extrapolated \cite{DM17}. Extrema \cite{AFS96, RKS87}. extremal \cite{FSV14}. Extreme \cite{SFT13, YZW15}. fabrics \cite{ZR14}. face \cite{CMN12, NHO+13}. Factor \cite{GG01}. Factored \cite{BSGM90}. factorization \cite{FHL+15, MXY91, SH06, ZLRP91}. Factors \cite{BP98, LL88}. Faddeeva \cite{CF98}. failed \cite{Tri09}. failovers \cite{SI13}. Failure \cite{AAI+15, FCF00, F10, JAB12, BKMT14, DGFGK05, FX10, HK05, KIE13, KV10, LGZ+10, LFA05, MFVP08, PCLP16, YF07, JKE13}. Failure-aware \cite{Fu10, JAB12}. Failures \cite{ADS01, DT02, VR94, VR95, DGDF10, GPT06a, HRC09, LY10, MR09, RL03, SCMS12}. Fair \cite{ALH+09, BHTL14, KY02, TAU16, GNT04, KS03, KDOM8, LAS15, SPC+17, SCG10, XWC+08, ZL14, ZQMM11}. fairness \cite{Ara13, SHC14, ZLCJ12}. False \cite{HF96, KG04, LLWC17}. families \cite{FSV17}. family \cite{NS90, ZDC06}. farm \cite{TBZB05}. farms \cite{JTZ11}. Fast \cite{ABCP96, BC06, BV13, BF97, CK06, Cor93, DP00, D04a, DPRW85, EM89, FZC05, FR96b, GM94b, GIL94, GSC96, GZ97, GXZ05, HZA+15, HN91, IK94, JNW96, KK06, KSSG14, Lat98, LH09, PH91, PA04, PT97, RHH96,}
SS03, San98, SR94, SHT+95, SGS08, SA08, SDG08, ST05, TF01, YZY96, YD98, YB01, AGMS16, BC05, BBBC12, BFKW13, BHK17, Cal06, Kep03, KA91, KP05, LLS07, PH16, ST85, TS91, WWW17a, WJ12, Yan04, LLCL98.

Faster [BMM97, GS03a, LS05, CM03].

Fat [Zah12, CI03, CS06b, ESGQ+11, ESGQ+14, SK05b, YMLP14]. fat-stack [CS06b]. Fat-tree [Zah12, SK05b]. fat-trees [ESGQ+11, ESGQ+14, YMLP14]. Fattened [GMVRGS16].

Fault [AE95, AM97a, AM95, ABBD14, BXA08, BSS97, BMM97, BW95b, BKMT14, BPA06, BCH95b, CLMRL15, CRV94, CL93, CKN07, CY95, CC94, CDR09b, CF98, DBCF13, FY86, FM99b, GNS09, GRR93, HGCC96, HTHH02, JBA15, KP00, Lan94, LBT94, LFZ+17, LGG08, LC96, MD01, MMR598, MPG17b, Pak89, PB95, Pin01, PKD97, PM92, RLS96, SCC92, SS05, UR94, VR95, WIKC97, WW97, Wun94, XCS06, XHZZ16, mYYF92, YBOY97, mYA91, ZYO02, AA14, AA16, ANEA13, AOSM05, ARVZ14, BB77, BJ15, BDDL09, BPP05, CL91a, CW09, CWL+07, CDR09a, CMT92, CMS04, CAF+11, DTK11a, DH91b, EBE08, FLPJ07, FZ90, JBS14, KG10, LCC+05, LHL14, LO05, LGFM17, LP88, PR06, PL06, PAS15, TCHC12, ZV09b, ZJ06]. Fault-Detection [CY95]. Fault-Induced [WIKC97]. Fault-Sensitive [VR95]. fault-tolerance [BJ15]. Fault-Tolerant [AE95, AM97a, AM95, BW95b, BCH95b, CRV94, CL93, CC94, FM99b, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, WIKC97, Wun94, YBOY97, ZYO02, ABBD14, BKMT14, BPA06, CKN07, GNS09, JBA15, LFZ+17, XCS06, XHZZ16, mYA91, AA14, AA16, ANEA13, AOSM05, CL91a, CMT92, CMS04, DTK11a, DH91b, FLPJ07, JBS14, KG10, PR06, PL06, TCHC12, ZV09b, ZJ06].

Faults [LT96, WFL98, CP17, ISM07]. Faulty [GP97, HIKM94, Pel95, RS96a, Tse95, TL96, Wan01a, Wu02, YTR94, pPM00, Che05, DD96, PKD97, SKK91, YTH07]. FCFS [Ara13].

BGM+08, CCC+04, CV16, CHX+17, DV13, DMB+03, FGM+03, GRDB05, GM13, GFPC14, HSH10, HDT+05, HRM17, KTP17, KKS+12, KL05, KBC+10, LV15, LS06, MCM+11, MJ03, PMAL11, RBN11, RGD03, RW02, SAL10, SMH+14, SGdS13, TZH+06, WTWZ16, WHW+17, WMG13, YT05, YLB+15, dAT17. Frameworks [KRS13, KRS14, DAB+14]. Fraud [BST01]. Free [BP02, CMS92, CG02, CH92, DP00, HPT02, HS93, KM97, Li92, PA01, RP98, SJ96, SH98, ZN01, AA14, AKBD10, CB06, DFP06a, Dav17, FKKR16, HV99, HSY10, HA06, JBS14, KL12, LASS15, MYM10, MKM16, Pen11, SD91, SSdB+10, ST05, ST08b, TT07, VBDRC13, Zah12, dOBG+15]. Free-Space [KM97, RP98, SH98]. free-surface [VBDRC13]. FREP [KR12]. frequency [MYD+11, RTZ11]. Frequent [AAP01, LT10]. Friendly [MSK+16]. Frog [KM17]. FSI [KHT+14]. FTN [Seb91]. full-access [SR88b, SR90]. full-text [SWW+17]. Fully [BNP02, Fer95, KP00, SJ95, CP04b, DM90b, DTK11a, tH90, SI89, TR08, YME06, LM09]. Fully-distributed [DTK11a]. Function [AGG98, HLJ98, MJ94, SB02, ABO+17, BNBR16]. Function-Composition [HLJ98]. Functional [AB84, Mah95, SC95, QSL+08, WMY+17, YJB91]. Functions [TG97, VR94, AMT13, MM15, RMU14]. Fundamental [GL92]. Funnels [SZ00a]. Further [PMV06]. Fusing [TJT96]. Fusion [AMB95, STN92, QSL+08]. Future [AE88, KS95, MKN12, ACB+15, ECL12, LY13, MKN14, PSC+16]. Fuzzy [BCF97, TZI11, KKTZ13, KC04, NC09, SMO14, ESC15]. fuzzy-based [NC09]. fuzzy-decision [KC04].

Gallop [Wei98]. Game [AaJS01, BS00, KK10, PC11, Sch89a, YpGyLiC13, Zep91]. Game-Theoretic [AaJS01, PC11]. Game-Tree [BS00, Sch89a]. Games [DKY01]. gamma [KMC16, VR86]. Gang [FR92, FR96a]. gap [BJS03, KLJ+11, KR17].

GAPP [KA91]. Garbage [KS00]. gas [OGRV+12, KZ96]. Gate [OM90, NKV14, WFC14]. Gate-Array [OM90]. gateway [KKKP12].

gather [BM04b]. Gathering [Lat98, JLY12, LLW07]. gating [CZPP16, ZCF+17]. Gaussian [Dav17, HO94].

Gaussian [BPST96, BMN97, Cap87, DPR85, HAC17, KA91, Vel89, WL11]. GbE [LB12]. GCD [Psa96]. GCSPNs [Buc92]. GEL [LTIK05]. GEMM [JM15]. gene [WSH+03, WCE10, FGM+03]. Genehunter [CPO+03]. General [Ano96l, BHR95, CG02, GFB+92, KL08b, Seb95, VA07, AZW13, BCFF05, CBM+08, CYZ06, CW15, FK89, GFPC14, LB09, LV15, LCB16, MSAZ10a, MSAZ10b, OFS03, PK05a, Pel90, RGD03]. General-Purpose [GBF+92, KL08b, CBM+08, LCB16, RGD03]. Generalization [GC95]. Generalizations [Orn94].

Generalized [AKPT99, Bai94, BETD94, BR91b, DMCFCM03, Fer93, FAM96, JH92b, Lee94, PE93, SSB91, WIKC97, XL92, XL95, YN92, ZLPP01, FK89, HSH10,
KMP+06, Luk85, Nic88, TDM05, WRW13, YCC05, ZLMC14. **generals** [CBV08]. generated [MTM10]. Generating [AAK+13, AMS94, Bec96, CGL+95, CJ07, GHSJ96, SS96, SCMHI3, SOG94, TH02, Wri91].

Generation [ASR93, AAP01, AS94, CCM01, DT97, Kap93, KHS96, KBC+01, Lin93a, NC97, RGS00, RNSB96, SSHC00, ABC+09a, ABC+09b, AFM09, Arbs89, BCK+13, FK89, Gao89, GMXA07, HPB+10, LK13, LC92, Meg91, NAB+11, RKK06, SB04, Trå09, Zsa16]. **generator** [WSG91].

Generators [Alu97, Bro96, PK89]. Generic [PA01, AK07, GM13]. Genetic [ANT02, CGKK97, KRSZ02, KA97, OA10, PAJC97, WSRM97, WA02, WL02, AL04, ALM+16, ANEA13, AB13, BCFF05, DK11, HSSM07, KM03, LA04, PKN10]. Genetic-Algorithm [WSRM97]. Genetic-Algorithm-Based [WSRM97]. genomes [KESA07, SPRG+12]. genomic [HLS03].

Generators [Alu97, Bro96, PK89]. Generic [PA01, AK07, GM13]. Genetic [ANT02, CGKK97, KRSZ02, KA97, OA10, PAJC97, WSRM97, WA02, WL02, AL04, ALM+16, ANEA13, AB13, BCFF05, DK11, HSSM07, KM03, LA04, PKN10]. Genetic-Algorithm [WSRM97]. Genetic-Algorithm-Based [WSRM97]. genomes [KESA07, SPRG+12]. genomic [HLS03].

Geocast [CL03a]. Geographic [AD10, LAGK07, SJS11]. Geographical [PFJ04]. geocast [CL03a]. Geographic [AD10, LAGK07, SJS11]. Geographical [PFJ04].

Geometric [ANT02, CGKK97, KRSZ02, KA97, OA10, PAJC97, WSRM97, WA02, WL02, AL04, ALM+16, ANEA13, AB13, BCFF05, DK11, HSSM07, KM03, LA04, PKN10]. Genetic-Algorithm [WSRM97]. Genetic-Algorithm-Based [WSRM97]. genomes [KESA07, SPRG+12]. genomic [HLS03].

GIGABIT [HeF05]. given [DDNS06]. Global [BLPV95, KCRB99, LWY97, LA93, MT95, MI92, Mat93, OK02, Par96, TG97, Vae94, WT09, Yue01, AU98, CK08, DK04, GJG88, GVBB13, JLM08, Lun90, MS15, SK89a, VB08, WWW17a, Zha12, dOCS14, YQTV12].

GIGABIT [HeF05]. given [DDNS06]. Global [BLPV95, KCRB99, LWY97, LA93, MT95, MI92, Mat93, OK02, Par96, TG97, Vae94, WT09, Yue01, AU98, CK08, DK04, GJG88, GVBB13, JLM08, Lun90, MS15, SK89a, VB08, WWW17a, Zha12, dOCS14, YQTV12].

GIGABIT [HeF05]. given [DDNS06]. Global [BLPV95, KCRB99, LWY97, LA93, MT95, MI92, Mat93, OK02, Par96, TG97, Vae94, WT09, Yue01, AU98, CK08, DK04, GJG88, GVBB13, JLM08, Lun90, MS15, SK89a, VB08, WWW17a, Zha12, dOCS14, YQTV12].

GPS [AKBD10]. GPS-free [AKBD10]. GPU [YJL16, BCMV15, BDRB14, BFKW13, BHS13, CSL15, CMTM13, CW15, DV13, DFFH13, DCA+15, Eme13, FSV14, FSV17, GMM12, GLW14, GKS15, GMS+13, HV16, IHH16, JMY17, JsSJC+15, KP17, KNN13, KC17, LLK13, LST+13, LPLFM+12, MB13, NFHL13, PDP17, PDB13, RV13, Ren11, RMU14, RRS+08, Sch13, SSI11, SCMHI3, SDG17, SA08, Sk116, SDG08, TH11, TSD08, TRS+12, TYA16, VBDRC13, WLL16, WD13, WH17, YLL17, ZH15, ZWQ+16, dSAJ15]. GPU-accelerated [DCA+15, Eme13].

GPU-based [BCMV15, BDRB14, BFKW13, GMM12, PDP17, Sk116].

GPU-Investigations [Sch13]. GPU-sorting [SA08]. GPUs [ASES15, BBBC12, BBR13, BCK+13, COV13, CGN+13, DP16, GOH+13, IBP08, JM15, LMGLGL17, LW16b, LV15, MBW16, NSKN17, NHO+13, PVR17, RGU08, SHT+08, TH13, ZSW14, ZGG+14]. Graceful [AA14]. Gracefully [BBR13, CGA98, LH92, RCB93]. Gradient
GrADSolve [VD04]. Grain [FR92, LFA96, Mah95, NS97, SA93, CT94, FW05, GSWW04, PL03b, TKHG04]. Grad [BR96, CDRC99, CLZ00, DRFCU99, HK96, PY96, SR97a, SR97b, WD94, BM04b, FSD04, GVA+08, IKS87, IBP08, Man13, MPV12, ZCF+17]. Gram [ZLRP91]. Grammatical [RBB17]. grand [SIY14, SAB+92]. Granularity [CDH84, WCL+13]. GRAP [FGL+11]. Graph [AyJ93, CCM01, CHGM01, GJP96, HJ90c, Kar95, KK98, CM03, CSJ+13, DeG88, DCA+15, GHC+17, HLM+90, KSSG14, LK15, MPV12, NHTK17, PK07, PS14, Ros89, SSKC¸15, SW91, SGR03, SMT15, WCC02, WCH+17, YFBY17, ZNQ93]. Graph-Based [CHGM01]. graph-partitioning [GHC+17, SW91]. graphene [KRM14]. graphene-CMOS [KRM14]. graphic [SKH15]. Graphical [CMT93]. Graphics [BHS13, DDGK13, ATDH13, BK13, CBM+08, KME09, PYP+10, SCB08, SIY14, ZMCP11, Eme13, GLGLBG12, YL12, YJL16]. Graphs [ANS97, AKPT99, AS96, AKP95, BS97, BP98, CP98, CA95a, CDF01, DDD98, DS84, DH94, EMM94, FA95, GY92, GS98, GSG+93, GS99, HOS94, IZ95, JR95, JSS92, KK98a, KW02, KA97, OS97, PRW94, Par98, RDL95, TL96, VB96, WIK97, WLD00, AAK+13, ANP07, BC06, BKS05, BD05, BCF14, BKCM17, CP04a, CDDL10, CDS10, DM17, FT04, GKM10, Hsi04, HS03, JPD17, Lin03, Lo92, LKB+15, MHPR05, MSZ05, NCA+12, Nik04, PD05, PK04b, SS03, SP90, TBG+17, Ten16, TSFZ14, WWW17a]. Grasping [KR17]. Gray [BVB02, HHM94, HRJ94, JH94]. Gray-Scale [HHM94]. Gray-to-binary [HRJ94]. Great [KF90b]. Greater [Ebe94]. Greedy [KNS06, BGM+08, HDJ08, KHW13, LLS07, Cho90, dOBG+15]. green [AG12, BFH+17, WCL+13]. Grex [BK13]. Grid [AKPT99, BR02, BAK+03, Hua17, MD13, SDG08, TFO1, AAH17, CP10b, CCEB03, CGW+03, EI07, FGZ03, JdSJ+15, KRKS11, KV10, LBOE03, LFH+03, LL12a, LLWC17, LB09, MC03, PF04, SMB10, SZL10, TLQS12, VDO4, WH17, ZV09b, dKG+10, AOS+05, ABCM07, BAS06, CS06a, CTT08, CCN06, DBC03, DW12, EDO05, GBA08, KTF03, KVHS07, KKS08, LCC+05, LSH+13, LLL08, Li05, LL07, LTIK05, LS10, LR05, MCT06, RAB08, SBJ12, SV08, SAOKZ05a, SAOKZ05b, SXX06, SFSF06, TY09, TMM06, TD07, VPHML06, WS06, YT05, YWD08]. grid-aware [FGZ03]. Grid-Based [BR02, CP10b, VDO4, KKS08, GBA08, LLY08]. Grid-computing [AK+03, SAOKZ05a, SAOKZ05b]. Grid-enabled [KTF03]. GridBench [TD07]. gridding [GOH+13]. gridding-accelerated [GOH+13]. Grids [CCCM96, HKMU98, HOS94, AC07, BMT12, DHHJ11, GVBB13, GRDB05, GM14b, JVO9, LKS14, LL10, Mit07, PHS04, SMO14, YZS15, AAD10, ABCM07, GNT+06, GJA08, NGO06, SNC12, TZ06, VB08, WW03, WLL08]. grooming [FMM+08, WG08, WCL+13]. Grøstl [ABO+17]. ground
Group [KKLJ14, LLW12, RGVB00, CJDC10, CHC05, Dim91, EDH+17, LC14b, LHT08, dAMFdS13, MM07c, TC13, XO05]. Group-based [KKLJ14, TC13]. Group-shared [LHT08]. Grouping [CWP98]. Groups [Oru87, WL08, LH02, CHC05, GCS06, LKM12, MS05, Ros89]. Growing [CRFS94, WLR90, IZ12, MGG03, OGRV+12]. growth [WCKD06]. GSM [TM06]. GSPN [CCM92, CCM01, SM92b]. guarantee [JM14, MZZC12]. guaranteed [HWWH08, LNA12, LNAL17, NGQM12, PY09a, WCWO17]. Guaranteeing [Sch91]. Guarantees [MS00, OY00, ESCV15]. Guessing [DKY01]. Guest [WW03, AP93, AL99, AB03b, Ano01j, Ano01k, Ano01l, BD00, Cas93, Che92, Cho93, DOP98, ES97, GGB93, GC95, Her92, JW94, Kri92, Lin93b, MC93, NT90, OW01, PN97a, PN97b, Pan09, PA96, Sch90, SH92a, Sto90, TFV+15, BG90b, TY95, WC05]. Guidelines [Ano00d, Ros99].

h [CP04a]. HA03094L [Ano04e]. Hadoop [FRM15, GYY+14, HWLR14, YLB+15]. Half [RS94]. Half-Duplex [RS94]. Hamiltonian [DP98, Hsi04, HBAD15, LSC00, Nik04, Wan01a, WCC02, YTH07]. Hamiltonicity [HTTH02, Ste17]. handheld [WL04]. Handling [BW09, CV09, SYG92, KV10, LN+12]. Handoff [SK05a, FCZ+12, ZBR11]. Happened [HCR12]. Happened-Before [HCR12]. happy [KSSK16]. Hard [DJ98, GFPC14, BRR01]. Hardware [DGNW13, GS00, MD01, MCA12, RPS93, SCC+06, SHA17, TF92, The02, TH08, VH93, Zsa16, ABC+09a, AF06, ABO+17, BJS03, CV16, CGC16, CP17, CM12, FWM+10, GKS15, GVA+08, HDJ08, Hus17, JI12, KDO+13, KC17, MTM10, Nik03, NAK04, PVG09, QGZP17]. Hardware-accelerated [DGNW13, Zsa16]. Hardware-Efficient [MD01]. hardware-generated [MTM10]. Hardware-Only [GS00]. hardware-software [CV16]. Hardware/software [SSC+06]. hardwares [SKH15]. Hardwired [DM88]. harmony [ES12]. HARNESS [MSS00]. harnessing [VPHML06]. HARP [SSB98]. harvest [WS06]. harvesting [RB12]. Hash [SX08, TT10, ABO+17, HKW05, TC04]. Hash-based [SX08]. hashed [HSMB91]. Hashing [WPBN94, YB95, HCD11]. having [BSMH08]. Hawkeye [ZFS07]. Hazards [AGG98]. HBS [CK13]. HCL [Pfe90]. HD [GB11]. HDL [DSE17]. Head [ESGQ+11]. Head-of-Line [ESGQ+11]. health [ZAB17]. Heap [DP98, ZK94]. heat [LGG08]. Height [LP96a]. Height-Limited [LP96a]. Helary [Ano96]. Help [IR12]. helper [DKRI09]. Hereditary [CDF01, Hsi04]. Heterogeneity [Las12, Las13, XLL15, BKS05, CL03b, XQ07]. Heterogeneity-driven [XLL15]. Heterogeneous [ANT02, Ano97k, BSS97, BPR99, BS+01, CP97, CA94, CEF+95, DAYA02, DBP94, EKNS17, HS94b, IHC97, KL01a, KRM14, LAS+97, LIHB+01, MAS+99, MS+95, MP96, NRS95, NDZA99, PP92, SC91b, WR97, WSRM97, Won99, YZ96, ALM+16, AAD10, Amn16, ALF03, BK+16, BD05, BCF05, BR08, BRP03, BKCM17, BEN12, BH05, BSMH08,
BSS+13, CSW08, CCK+08, CCK11, CDR09b, CGW+03, CJ17, DK08, DK11, DÖ06, FMR05, GRV08, GNT04, GZY14a, GWWL94, GMA07, GAOHG17, Hus17, JST12, KH17, KUA07, KyLPC17, KSG13, KSS+07, KAS07, KMS+06, KL13, LR06, LLL06, LKY13, LMR05, LL12b, LDP+14, LLY15, LNAL17, LPX05b, LV15, LFGM17, LLS07, LXZ13, MGSG12, MV05, MTS90, NFH13, ND12, NP09, PK08, PK10, PP13, PTA08, Pla08, QJ05, QGL+09, REK10a, REK10b, RN04, SSFP11, SSM+16, SS11].

heterogeneous [SX08, SCS+08, SCMS12, SZMK13, SHL+13, SS+06, TLLL10, TLLV10, TFMS15, TG03, UAKI06, VBF13, WQL14, WTWZ16, WSG91, WJ12, WGL11, WYTX13, WJ14, XLHT13, YLL17, YH07, ZMG+16, ZTFK16, ZHLQ12, VBF13, VFAD17].

HeteroMPI [LR06].

Heuristic [BA92, DDD98, EHMN95, KLZ97, XH93, DK11, HS06, KJD03, KKS+12, PKN10, PM05, SWP90, VB08, YFBY17].

heuristic-genetic [DK11].

Heuristics [BSB+01, GY92, GJP96, IAS+92, KUA07, TSC01, AKSM08, JST12, KA08, LLS07, ZHO03].

heuristics-based [KA08].

HEVC [Lla17].

hexagonal [GSSS03].

HHN [YP96].

HiCOO [YQTV12].

hidden [HB11].

Hiding [HF02, WL92].

Hierarchical [AGF94, Buc92, BM95, CAB94, FR96a, HR92b, HR92a, yHY97, KZ96, LLJ00a, MS00, MD13, OM90, SHT+95, TM06, TJ92, Tan84, TW89, TTH12, VSIR91, WHT00, YQTV12, YP96, AAH17, AGMS04, BMT12, BAS06, CCK13, DE91, DM04, EDH+17, GY10, IZ12, LK13, LTL06, RH05, RR05, SS05, TLQS12, WCWO17, WLL08, ZZ90, dSS11].

Hierarchical-Memory [VSIR91].

Hierarchies [VN93, BW89, DTK11b].

hierarchy [Pad91, WYTX13].

High

[ABDS02, BJ99, BBH+97, BNSP99, CY99, CD98, DS02, DYL+12, FGKT97, FC14, FM99b, GP03, HES10, JSCB95, JLR97, KMKD97, KS95, KRS13, KRS14, KRS01, LC97, LS01, MR94b, MBG+17, Nee17, NK+97, NTC03, PF08, PVG09, PBB+17, SWHB17, TF92, TMM06, VFAD17, AM13, ARI17, AB03b, AGWY11, BSW07, BDDL09, CCC+04, CBP02, CTCX08, Cuz11, Cuz13, DK08, DB08, DFL12, DAB+14, DMS+16, FHL+15, FGP05, Fu10, GOH+13, GTN+06, GMSS+11, HOE+09, HRG+11, HCZ04, HT90, HVW16, ICQO+12, JBY+05, KVN17, KSB11, KME09, LWR+03, LSXX14, LV07, LZSL06, MSGS+13, MG09, MLK12, Nap90, No12, NRM+09, PK07, SPR+12, SD91, SC04, SAB+92, SA11, SR91, SGdSS13, VAS+13, WRW13, ZW13, ZWQ+16, dAT17, MMVL11].

High-Availability [LS01, Fu10].

high-dimensional [HT90, PK07, WRW13].

high-end [FGP05].

High-Level

[BBH+97, KRS13, KRS14, CCC+04, DMS+16, SGdSS13].

high-order [KME09].

High-Performance

[BNSP99, CY99, FGKT97, JLRA97, KMKD97, KRS13, KRS14, KRS01, PBB+17, NTC03, AB03b, CBP02, Cuz11, Cuz13, DF12, FHL+15, GMSS+11, HRG+11, HCZ04, ICQO+12, JBY+05, LWR+03, LSXX14, LV07, MSGS+13, NRM+09, SD91, SC04, ZW13, ZWQ+16].

High-Priority [TF92].

high-radix [MG09, VAS+13].

high-resolution [GOH+13].

High-Speed

[BBH+97, SR91].

High-Temperature [SWHB17].

High-Throughput

[FM99b, BSW07, HVW16].

Higher [GSSS03, HS17, AM06].

Highly
43

HLR [FCF00]. HMPv6 [CKML12]. Hoang [Ano92c]. Hoc [Ano92c]. Honeypot [KMMZ06]. Hot [LKK94, NS95, TY90a]. hot-spot [TY90a]. hotspots [MLG05]. Homogenous [LS97, BM17a, CRJ10a, GHS86, OOSGVG+16, SCJ+08]. Homology [DKKV15]. Homonymous [AAI+15]. Honeycomb [BPRS04]. Honeyfarm [JXW06]. Honeypot [KMMZ06]. Hop [BSW07, FCW11, FCZ+12, JLWX11, JM14, MAM05, MPV12, NC09, RF5+12, RB12, YMG01, ZMG+16, CSW+17]. Horizons [BP95]. Host [LLWC17]. Host-based [LLWC17]. Hosting [SSVC10]. Hostload [DKC14]. Hot [LKK94, NS95, TY90a]. Hot-spot [TY90a]. Hotspots [MLG05]. Hough [BA95, CP91, Fer93, GZ97, JS94, SSL04]. Householder [BDG+15]. HPC [ECLV12, GYAB11, NKSA17, NC13, PCLP16, RMHR17, SCB09, WMES12, YFS+15]. HPF [CA96, HLJ01, KHS96, SS00]. Hull [DFRCU99]. Hulls [GS03a]. Hunt [MP15]. Hut [SHT+95]. HW [RBG17]. HW/SW [RBG17]. Hybrid [Dah99, FA07, Gao93, LWC14, NBM93, OS93, PA15, YS11, ALM+16, AC89, BAM05, CCQ+06, CB15, CJ17, DK11, FX06, GLC14, JAB12, FY13, MB5+12, MK5+11, No12, PAR14, SCS+08, SHL09, SSL04, SA08, TT17, WLL16, WHW+17, YLL17, MMCL+17]. Hydrodynamic [HC97]. Hydrodynamics [PAH+98, VBDRC13]. Hyperbolic [SSK96]. Hyperconcentrator [CL90]. Hypercontexts [LM05]. Hypercube [AGF94, AM93, BKT95, BC94, CS93c, DP98, DMSH90, DRC90, DFN+94, FAM96, FPD93, GGD93, GT97, GBG93, HGCC96, IK93, IK94, JR92, JB98, KB96b, KM91, Lan94, LH92, LLJ00b, LEB98, Man94, MP93, MW95, MYD95, NSLK99, NT93, Nas94, OM90, RS94, Raj96, SY04, SCC92, SY01, Sto90, TL9W4, TL96, TC92, WIKC97, Wag93, Wag94, XMN92, YP96, Zia92, Cap87, CCS06, CS10, DE91, Efe91, EAL90, ERS90, Joh87, KAP90, LEN90, LSS88, LS91, MVM04, MAR87, RS90a, RS90b, RIZ90, SW90, TMK+17, TS91, Wag89, Yan04, ZLR91, YN92]. Hypercube-Based [Zia92, DE91]. Hypercube-Connected [LH92]. Hypercubes [AD95, AERBL92, Ann94, CL93, CCC96, CS95a, CCR94, Efe96, Fag92, FM96, Fra92, GPO0, GH93, HM01, HOS94, Kav93, KF95b, L92, LBT94, LW95, LT96, Moh97, OD95a, OP96, Pel95, PM92, RS96a, RJMC95, SHL95, ...
SR95, TT98, WW97, Wan01a, Wu94, WFL98, YTR94, BG90a, BM04a, BOS+91, BL89, CL91a, CL91b, Che05, Ede91, FT04, GT04, GNW03, HNSA07, Ho91, HRJ94, LW90, Lai14, Lai17, SS89, Var91, WIB12, Wu85, Wu03, XCS06. Hypergraph [DKUC¸15, ACU08, CBD+09, DHK04, KJD03, TK08]. hypergraphs [STA12]. Hypermeshes [OK01, Szy95]. Hyperoctrees [DFN+94]. Hyperplane [HS93]. Hyperreconfigurable [LM05]. hyperspectral [PVPM06, Pla08]. Hypersphere [AM93]. Hyperspherical [RLP14]. Hyperstar [AAD98]. hypertree [LTD+93].

I-Caching [MM93]. I/O [AW95, CkLCK04, CkLCK05, Cho93, CQ95, CD95, DD93, DT01, DLW+12, DJT03, EH01a, GGD93, GFPC14, JSCB95, JSWB92, LTH97, MLG05, NsPPC02, No12, WHW+17, WLWW09]. I/O-Intensive [EH01a, CkLCK04, CkLCK05]. IaaS [LQM+12, NC13, NKK16]. IBM [ASH+01, BAHP01, BR95b]. IC [CMR10]. IC-scheduling [CMR10]. IceCube [AAA+15]. IceProd [AAA+15]. ICT [CT17]. Id [HCAA93]. ideas [Sch14]. Identification [CS95b, EBE08, FCC07, ZAAB17]. Identification- [CS95b]. Identify [XYG07]. Identifying [HS03, LT10]. Idle [CW93, CM92]. IDOS [BA01a]. IEEE [Ano93a, BCD00, FA07, HB11, VHH08, ZBR11]. II [HR92a, KHT+14, RLA+17, SMO14, SAOKZ05b, SR97b]. III [CP10b]. ILU [SZW05]. Image [BJ96, BM95, ELS94, HSJP87, HC95, KSL85, KC99b, LWY97, MWL00, MG98, NGS85, OS98, RG87, SR94, SD88b, WS95, ZM94a, CDJ+89, CCN06, GSWW04, HLBM16, IK87, Kep03, KM03, Lee91, LLS+16, MG03, PI90, Pfe90, Sto87, SA90, UAPM07, Wan07, WRHR91, WGCZ09, dAT17, FC14]. Image-Processing [KSL85, SDD88b]. Image-to-Mesh [FC14]. imagery [PVPM06, Pla08]. Images [SYO94, Ara90, CL85, DH91a, NAK04]. imaging [KDO+13]. Immediate [Ksh12]. immersive [MBH+08]. immune [HD10]. Impact [Buc92, Koe00, Tze91, YAA10, GSWW04, HHS12, HRF+11, MLG05, RB+11, SFT+13, SYU07, WCF14]. Impacts [PCX+11, PCX+14].

IMPATIENT [GOH+13]. Implementation [ABGV11, AS95, BAHP01, BHS+94, CP91, CP92, CS95c, DM90a, DBKF90, EP90, HS97, HBH93, KM91, MSS00, NT93, NsPPC02, OS98, OP98, PAJC97, RL02, RW01, SDS10, Shu95, SM00, Sk196, SE15, SOG94, TVO92, VBM90, XM92, YB01, ADV14, BFTR87, BG89, CEGS07, CP10b, CPW12, CPO+03, FGG08, GKS15, Gro85, HES11, JK89, JM15, KHT+14, KTF03, KA91, KP05, ML89, MCAS12, MP10, MML07, O005, OGRV+12, PLD87, SM08b, SA11, Sol13, SMKL93, TR89, Tay87, XWC+08, YÖ11, dAMCFN12]. Implementations [DT01, KL04, SAC+98, WPBK94, BCM06, BRPR06, GNS09, ICQO+12, Tät11, TJA16, YBM13]. Implementing [BC94, Ch90, DRC90, GSC96, HK08, MT95, DM90b, OB88, TR16, YFBY17]. Implications [AH94, BS96a, GTN+06, MT96, MG93, SH92b, TSA97]. Implicit [BAM93, Fre96]. Implicitly [SAC+98]. importance [MLMSMG12]. imposed [BKS91]. impossibility [AP16]. Improve
[CB02, DS95a, SKH96, CDR09a, CSW+17, GLC14, VRM10]. Improved [AM97b, AS91, CLZ02, Che05, CP10b, DL98, FT04, GJP96, HSH10, JR95, KLC05, MIh99, PB95, TC13, Tsn07, Wor93, Ara13, Bad04, GMVRGS16, TDC05, dAMCFN12]. Improvement [yCM98, IAS+92, CZZ+17].

Improvements [GCB00, WSS93, DPSD08]. Improving [yCM98, IAS+92, CZZ+17]. Improvements [GCB00, WSS93, DPSD08]. Improving [AM13, AHG12, CLG+16, CRWX12, CKWT17, CAF+11, Dah99, DK04, GT02, GYY+14, GP05, GMM00, HKH15, Kan05, KZ11, LTL06, MBR08, SLKK12, WTB+08, AA10, CCK88, SAL10, SK11, YF09, MMCL+17].

IMSuite [GN15]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].

incentive [CG12, YAA10]. in-network [BCO+12, JF12]. in-order [KMF+05]. incentive [CG12, YAA10, ZCMY12]. incentive-based [CG12, YAA10].
Insensitive [ST02, ST06]. insertion [SS17]. INSIGNIA [LAZC00]. inspired [CMMN10, GVBB13, HD10]. Instance [SM94]. instances [PDB13, ZG13]. Instantly [TOR+14]. institute [Nee17]. Instruction [AGG98, LPU97, Gro85, PYP+10, Sch89b]. instruction-systolic [PYP+10]. Instructions [dSR00, Sol13]. Instrumentation [GP91]. instruments [CKK+13]. Integer [DL98, Fag92, SS96, KKVI05, VM95]. InteGrade [dKG+10]. Integral [Ten90]. Integrated [BDHF90, DAYA02, OY00, PW96, WAE03, YSL08, ZR00, ZMC06, HC09, SKMM04, WCL+13, XYDL06, XHY07, YWG15]. Integrating [Bir94, DT11, DRST02, FKT96, Lu01, OK02, PY96, KKKP12, YT05]. Integration [ISZBM99, KL84, LY01, YJKD10, Ano04d, HMOV17, Kun17, YK04, ZMZJ17]. integrity [BCO+12, LZSL06]. Intel [FPD93, LG14, SMKL93, Zha11]. Intelligence [MT85]. Intelligent [IAS+92, KSP+92, SH98, ZL93, CDJ+89, She09, WJD91]. Intel [KVNV17]. Intended [CTC11]. Intensive [ABM+92, BS09, BS11, CA95a, EH01a, SW90, CkLCK04, CkLCK05, DF17, HWLR14, KAS07, MLK+16, RBN11, Ren11, SC04, VB08, WZZ+17, WG11, ZMC01]. inter [FKLB08, GZG+17, Kan05]. inter-core [GZG+17]. inter-node [FKLB08]. inter-procedural [Kan05]. Interaction [CCM92, DH95, LLCC02, HWLR14, YJL16]. interaction-intensive [HWLR14]. interactions [CK08, PARB14]. Interactive [LHM95, RGS00, CTS17, HSS17, MAR05, TSD08, TD07]. Interactive-Rate [RGS00]. Interconnect [HP97a, WLY01, AHA+16, MG09, UM17]. Interconnected [DH95, EH01b, Guo94, KM97, QMCL94, GMH+91, MeA89, SGAC14, TRSS06]. Interconnection [AAD98, AA95, BETD94, CW01, CJA09, DVZ96, FD86, KRSZ02, KAM94, Lat95, LYL93, MLW+97, MSSH01, MC93, MJ94, OM84, OOS8, Pad93, PL93, SW96, SZB92, Sz95, TH02, Tze91, VB06, Wan96, Wan01b, Wi92, YYW00, ZMP00, ZZW00, dBL95, ARI17, BM14, BDjQ86, BHR91, BR91a, Bhu87, BJ15, BR91b, CM04, COK04, CS06b, DE91, FJC04, GJ12, Har91, JBM91, KMC16, KRL87, LK90, LLKY13, MHBW86, Pak89, Par05, PW16, PW17, SSB91, SL89, SH89, WCC02, Wi90, ZDC06]. Interconnections [LLJ00b, SL97, THN+93, Oza04, YB90]. Interconnectivity [DS+97]. Interconnects [ES97, HP00, MO97, MG93, PEC95, independent [SNCP12]. Interdisciplinary [NKSA17, CCE+17, Hua17]. interest [Ano16l, REZNI17, CTC11]. Interest-Intended [CTC11]. Interface [BAHP01, BF97, BDH+97, CD98, IWM97, PS01, RS92c, JM15, KTF03]. interfaces [NGQM12]. interference [BPRS04, GZG+17, KDH08]. interference-aware [KDH08]. interleaved [NC09]. interlock [CCK88]. intermediate [YYLC11]. Intermittent [DT02]. Internal [Bal90, JZK04]. International [OY13, R17, Sn03, Wee01]. Internet [Bar05, KA08, MXSL12, MZZC12, She09, TB90, WLI02, XO05]. Internet-based [She09, XO05]. interoperability [AZW13]. Interpolation
Interpretation [FAGW95]. Interpretive [PH00]. Interprocedural [HHKT96, CK88]. Interrupting [AST12]. Intersecting [FSV17]. Interval [CI03, PT01, Sch87, BBCQ13, MHLZ16, Sta04]. Interworking [WH08]. intra [GM13, Kan05]. intra-procedural [Kan05]. intrachip [MCM +11]. Intrinsic [PAS15]. Introducing [CCE +17, Ada17]. Introduction [AP93, AL99, AB03b, Ano01j, Ano01k, Ano01l, Ano02g, Ano02h, Ano02i, BB, Cho92, Cho93, DOP98, ES97, GB93, Gau06, GC95, Her92, JW94, KR92, KR94, LR05, MC93, MGS +06, MKN14, NT90, OW01, PN97a, PN97b, PA96, PR97, Sch90, SH92a, Sto90, BG90b, TY95, IB04, TFV +15, WW03, WC05]. introductory [Bog17]. invader [ISAZ07]. Intrusion [BN02, WL11, LLLY08]. invalidation [MC03]. inventory [GAOHG17]. Inverse [CTZ99, Lla17]. Investigation [LCB16]. investigation [CD95, GKS15, PHW +13]. Investigations [Sch13]. Invited [Ano01m]. invocation [BBB +06]. invocations [BGV14]. IOV [DYL +15, GRJ +15]. IP [HZY04, HC09, JPB05, JBY +05, KERUM04, LAZC00]. IP-Based [LAZC00, JBY +05]. iPACS [KCR14]. IPDPS [YO13, Ben15, Mue13, Phi13, Rob09]. iPSC [DHR96, FPD93, SMKL93]. iPSC /2 [FPD93, SMKL93]. iPSC /860 [DHR96]. IPv6 [WZ13]. IRISGrid [VPHML06]. Irregular [Ano96i, DUSH94, FTM +14, FR98, FBK98, FY97, KK98a, LWP02, MRRV98, Nic94, NsPPC02, FGRP17, RWK95, TFV +15, WP02, AC16, CB06, FCP +15, GRR +05, LWCC15, MSA10a, MSA10b, PCMM +17, PA15, SPBR91, ZSW14]. Irregularly [MN98]. ISA [SPFP11, SPC +17, SM08b]. Island [CGKK97, GB06]. Island-Based [CGKK97]. islands [dGP06]. islands-based [dGP06]. Iso [KF95a]. Iso-rectangles [KF95a]. ISODATA [DASAUM99]. Isomorphism [GS99, KW02, Pla13]. isosurface [WJ07, ZB09]. Issue [AP93, AL99, AS13, Ano95i, Ano96j, Ano96i, Ano97j, Ano99g, Ano01e, Ano02v, BD00, BS09, Chi92, CDJL09, CDJL11, DOP98, Dek00, DT92, ES97, FTM +14, FR98, GC95, GMSS +11, GS01a, Gra09, JW94, KRS13, KRS14, KRS01, Lan09, Lin93b, LK10, Mir91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB +17, Sch90, SH92a, SB97, Sto90, SFC17, TFV +15, BG90b, TY95, Wee01, YW91, ZO97, AB03b, BOP06, BS11, DFI2, FPS11, FPS12, Gra10a, Irw88, IB04, KL08a, KL08b, LZ11, Las12, LK11, MSGS +13, MKN14, PR51, RLA +16, RLA +17, Raj08, SXZ06, TH11, WW03, XJS03, dVC06]. Issues [Ano05j, Ano00e, Ano00f, Ano00g, Ano00h, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t, DVW94, MFS93, Nie94, PS01, THBF97, BAK +03, GCY +04, TB90]. Item [AAP01, San99]. items [LT10, ST14]. iterated [KHW13]. Iteration
Iteration-level [CC87]. Iterative [AR97, YS11].

J [LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Jacobi [EP90, HBAD15, HS17, MVV91, MV94, RS08, ST87, TYA16, ZB97].

Jacobi-Type [MV94, MVV91]. James [Ano92c].

JLSS [LSS+11a, MSAZ10a, PCX+14, REK10a, WTC08a]. Jacobi [EP90, HBAD15, HS17, MVV91, MV94, RS08, ST87, TYA16, ZB97].

Kernel [MBBD13, GM13, IBP08, KC17, SK91, dSAJ15]. Kernel-assisted [MBBD13, GM13]. kernelized [PDP17]. key [BCD+15, GMXS06, GTGLSA12, GMXA07, LAK10, LLW12, REK10a, REK10b, SZMK13, SB04, ZWQ+16, ZHT16]. key-based [GTGLSA12]. keys [PPC04]. Kinetic [RW01, LMB+17]. Knapsack [FR96b, Ten90, EE05, LSS88, LS91, PMV05, WYW15, GT04].

Kronecker [JD12, LN+12]. Krylov [BSGM90]. Kutta [KR06].

L [Ano00d, CS93b, CP04a, CRJ10a]. L [Ano93e]. L2 [KK11, Zha11].

Languages
[BS90, KBC+01, KR513, KR514]. Large [ABDS02, ANO92c, BP01, BMCP98, EFE96, PGK98, GK93, HJ92a, LGK98, L593a, O501, PTZ06, SR95, SM04, VN93, WRC+02, AM13, IBM08, BKC+15, BA06, IBM05, CC16, CS06a, CLOL17, CV909, DV13, DB11, DBCF13, DHK04, DLW+12, HR99, KESA07, KSSL16, KBC+10, LGZ+10, LLY08, LZY11, LWCG14, MMYL10, MVIP17, NAB+11, PP13, PDB13, PK07, RV02, SS17, SMT15, VM03, WCWO17, XHY07, YH07, YO11, ZV09a, ZVL11].

Large-eddy [SM04].

Large-Scale
[ABDS02, BMCP98, LGK98, OK01, VN93, WRC+02, AM13, BMCP98, LK98, OK01, VN93, WBRT13, BMB+08, BMF05, CC16, CS06a, CLOL17, CV909, DV13, DB11, DBCF13, DHK04, DLW+12, HR99, KESA07, KSSL16, KBC+10, LGZ+10, LLY08, LZY11, LWCG14, VM03, WCWO17, XHY07, YH07, YO11, ZV09a, ZVL11].

Large-size [CV909]. large/irregular [AM13]. Larger [Mah95]. largest [Deh90]. LARPBS [dR09].

Large/irregular [AM13].

Large-size

Layer
[GMTA94, BM96a, KMC16, LGK+12, ML05, Str12]. Lazy [GSC96, MYD95, DS04b].

Learning-TCP
[BM11]. Leashing [DHS06]. Least
[CB95, HLS03, KAP90, ZYO02, BBd90, SMK19, TBZB05, XB07].

least-mean-square
[XBK07]. Least-Squares
[CB95, ZYO02, HLS03, KAP90, BBd90, SMK19]. LED [MLW+97]. Lee [BVB02]. legacy [LWR+03]. Legion [LHF+03]. Length
[BL04, K17, MP08]. lengths [KIH15]. Level
[AC16, BBH+97, BSS97, CD08, GS98, HKT+91, HW96, Kav93, K907, KR513, KRS13, KL84, MB94b, MHC95, Qia97, RP95, SSHC00, SBK90, AY09, ACU08, BBH+17, CCC+04, CLMRL15, CS87, CTX08, DAB+14, DMS+16, FCN10, GAC+17, HES10, IKS87, LC14a, LPLFMC+12, MAJ05, MEMEM17, OWK14, OMT+17, PRH06, Pfe90, Ren11, RFP08, SS17, SGdSS13, VD04, WCKD06, WMS12, YSL08]. level-set [HES10]. Leveled
[PR94, BMIM07]. levels [Kum17, Li16, Wu03]. Leveraging [SSF11].

LeWI
[GLC14]. Lexicographic [AMS94, DT97]. Lexicon [Haw97]. liberal
Libraries [KBC+01, ZRC99]. Library [BMCP98, CJ99b, DYLW04, FKKC97, GLC01, HWW96, SKH96, LR06, LGK+12, RR05, ZSW14, VBF13, VFAD17]. Library-Based [FKKC97]. Life [HSJP87]. Lifetime [HP06, LL12b, Li14, LZC11, VRM10]. lifting [IIH16]. lifting-based [IIH16]. Light [RGBV00, Koc91, PR12, Wan06, WZZ+17]. light-trails [PR12]. Light-Weight [RGBV00, Wan06, WZZ+17]. Lightweight [HS00, MSF+13, CL09, KP17, Kim17, MP10]. like [CP10a, CTC11, FR96b, GL90]. Limit [MO97]. Limitations [BKS91, LS97]. Limited [yHY97, LP96a, LK98, BKS05, DW04, VS16, WTB+08, Zsa16]. limits [DW04, dSS11]. Line [BDKM94, BMMS01, DGBN14, LTY96, RR95b, Yen01, BS92, DMCFCM03, DJ98, EL88, GH89b, GC07, KM88, LHK03, SSL04, SL90, ESGQ+11]. Line-sweep [DMCFCM03]. Linear [Bah00, BBM+02, BMM97, BCL95, CDH84, CCC92, DTVW94, IPK85, IK94, KL01a, KP95b, LP97, PM96, Pov99, RFFM94, RS92b, ST89, TBPV00, ZZC92, dR09, BGH+03, BAH04, BPP05, Car90, CM03, CEGS07, CP10b, D804a, Dja06, FHL+15, GPT06a, GRV08, Gao66, GS91b, HR89, ICQO+12, Jhy87, KKV05, K189, LKD14, MP88, MP87, MVB05, NCTT09, TFMS15, Ter16, X4YW14, YTH07, YO11]. linearizability [KKW17]. Linearization [FZV02]. Linearly [BBd90, PB90]. Lines [HKMU98, Wri91]. Link [GDP08, MLW+97, SJS11, VR94, VR95, WFL98, FCZ+12, LST17, MCA12, MVP17, RH05, SW90, WTS03]. link-bound [SW90]. link-selection [RH05]. Linkage [CPO+03]. linked [Han89, HAI05, ST08b]. Links [AaJS01, KJS84, RS94, WW97, W79a, AGMS16, KPR88]. Linpack [Num07, Num08]. Linux [BP01]. Liquid [SWHB17]. List [BBH+98, SP96, SGS09, LL8810, FPF14, Han89, LPX05b, Vis87, WLL16]. Lists [BP02, VSR91, ST08b]. live [GRJ+15, WMES12]. Load [Ano97]. BEE00, BM08, CS93a, CR04, CLZ00, DHB02, DMB97, DLLK17, DSW94, Ef96, EE05, FMP98, FLS+97, FM99b, GJK53, Gil94, GM96, HS97, HILLY95, HLT99, H994, HC97, JR92, JW89, KGV94, L9K4, LHHV95, LT94, LL98, MDD97, MP96, NLS99, NFE97, OB98, PB99, QY94, SBC12a, SH92, SHT+95, SB97, SBAM96, TSHH01, TT98, Wan96, WS97b, XYKA08, XL92, XH93, XL95, ZLP97, ZXP09, ZN94b, vS91, A5S11, AGMS04, ACCP12, AES15, BCTV05, BFH90, BRPR06, BD04, CSWD03, CBD+09, CV09, Ch090, CRC+02, Cy89, DB11, DLW+12, DW04, DM94, GRV08, GLC14, GC05, H990a, HLM+W0, IC05, IS06, JL05, JLI1, KKS08, KC04, LTB02, LTL06, LLL06, LHKK03, LY91, MLG12, MPV12, MVB05, MTS90, Mit07, MGG03, NHO+13, Nik03, PC11, PA04, RN04, SU87, SB15, SX08, TBZB05, TKHG04]. load [TVT+17, YLJ16, YA10, YMLP14, ZV06, ZS14, ZLMA14, dG91]. load-adaptive [TKHG04]. Load-Balanced [LT94, NFE97, XYKA08, YMLP14]. Load-Balancing [DHB02, FM99b, H094, HC97, Wan96, SB12a, ZXP09, NHO+13, YLJ16]. load-sharing [SU87]. Loads [KC95, VB02, CG12, GRV08, HV13, LML+W0, MVB05, ZV06]. Local

M [Ano92a, FC95, LZSL06, ZBF05]. M-TREE [LZSL06]. M-VIA [ZBF05]. M2M [TKG17]. MAC [CCHC09, ZYZ14b, Los08, TLY12]. Machine [BG86, BDHF90, CA95b, MB93, RSCQ17, SYO94, SR97a, SR97b, TVS97, TKG17, ZL93, AES11, BH86, CL14, HS96, HPSM91, KHT14, KSN91, KA89, Ros85, SM86, Upa13, WF99, ZG13, CM93, CRFS94, CGSV93, EHS94, LAD96, LST13, LTD93, Sab94, TKG17]. Machines [BR96, BP99, BCR96, CWP98, ERL90, Gup92, HKH96, HB97, HLJ01, KRC00, KHS96, KLS90, LW97, MK92, PAM94, RS94, RWK95, RGS00, SCMB90, SA97, YFS15, Zak01, AE88, CG11, Fen90, Fu10, GA90, IKS87, KR90, KR10b, Koc91, KP05, LC91a, Mar88, MAR87, SW90, Ume85, ZL93, AES11, BH86, CL14, HS86, HPSM91, KHT14, KNS91, KA89, Ros85, SM86, Upa13, WF99, ZG13, CM93, CRFS94, CGSV93, EHS94, LAD96, LST13, LTD93, Sab94, TKG17].

Macropipelines [WAS88]. Magnetic [CCN06]. Main [DM99, BBH17]. Maintaining [HS94a, LMP10, LY98, YC04]. maintenance [CDCD05, MAPF14, WDDK09, XO05]. Major [SSL04]. majority [ZWS09]. makespan [LZ05, SSM07, TFMS15]. Making [LLT12, LFA96, VR95]. Making-a-stop [LLT12]. Malleable [FZWL12]. malware [TY17]. manage [ASD09]. manageable [dAMFdS13]. Management [AS13, AS15, BR96, CJKK00, CY99, HLY95, HTL99, JM00, KER01, LZ02, LO96, RDS02, RSB01, TJ92, WLID02, YD98, ZRC99, AM11, BVG14, CKMP17, Fu10, FX10, GPT06a, GJG88, GBA08, HCM11, HMV07, HC09, HHS12, HSL104, HK15, JH96, KK11, KLJ11, LCC05, LC11, LAGK07, MBS12, MLMSMG12, NAB11, NTC03, PY09b, PF04, RWB13, RAN17, SNMB16, SDTD04, SS08, SB12, SK05a, SL06, TZ07, TZ11, TB90, WYW15, WZZ17, XR12, ZMC06, ZV12, ZHO03, dKG10, SHSH17].

Manager [Gai87]. Managers [AB84]. Managing [AKBD10, FGT97, SEP96, SS17]. MANET [YAA10]. MANETs [Hu11, YA11, ZA05]. Manipulation [PH91]. Manipulator [MS85, NS90]. Many [HP95, SR97b, AFA13, AA16, ARI17, BBBC12, CKN93, CHF17, PCMM17, PTK13, PR13, RLA16, RLA17, TCHC12, ZLS17].

Many-Body [HP95]. many-core [AFA13, AA16, ARI17, BBBC12, CKN93, CHF17, PCMM17, PTK13, PR13, RLA16, RLA17, TCHC12]. many-cores [ZLS17]. Many-to-One [SR97b]. manycore [ETS14, FCP15]. map [IZ12, IB04, CKML12]. Mapped [BF97]. Mapper [AM93]. Mapping [AGG98, BR08, BB501, BA92, CN93, CHF94, CW92, Dja04, GH89a, GW99, IAS92, KBG92, LW90, LW97, MM00, MAS99, NB93, SH90, Ser97, SBAM96, TBG17, XH91, ZZ90, BS87, BLMB13, CGM14, CDAN14, DFST13, DQR09, FLL14, HA91, KSS97, KMS96, LW16a, LB89, Lo92, LLS07, PMAL11, YWG15, ZWR07]. Mappings [BP02, DP00, Iq92, SR97a, SR97b, SHHC00]. MapReduce
Memory [AD95, ACD+93, ADN00, AH05, ADS98, AS91, BR96, BS96, BRR96, BF97, BCR96, CB95, CP91, CWP98, CA95b, CJ99b, DS95a, DY99, DA97, DUSH94, DP00, DH95, DM99, DT92, EP90, FY97, GAG+92, Gra09, Gup92, GKS96, GHSJ96, Haw97, HMR15, HPT02, HA92, HA05, HLJ01, IWM97, JF95, KRC00, KS97a, KHS96, Ke100, KC94, LWV97, LK98, Li01, LA93, MF94, MR94c, MS98, MG91, NS97, OS98, PHB96, PAM94, PA96, PB99, PL95, PY96, RL96, RS96, RK95, RJY96, RG90, SL95, Shu95, SS94a, SDS99, Soh96, SC91b, SB84, SN93, T93, TGG95, TY95, VSIR91, VS96, VN93, WW96, WD94, Wil92, YW91, YMR93, YB01, Y98, Zak01, AM13, AL04, BC06, BMM08, BB17, BJ93, BS92, BGM+08, BCF+94, CBP02].

memory [Car95, CC16, CGM14, CJA09, CPO+03, CK91, CDAN14, Cyb89, DFP06a, DT11, DI91, ETS14, EKNS97, FZC+05, FJC04, FWM+10, FL94, GJ98, Gra10b, GL90, HFCM11, HGFF10, HHA14, H17, HC91, IH16, IRRS16, ITT04, J91, KKR14, KRM14, KKLJ14, KMS10, KP95, LL90, LC91a, MTM10, MK+16, NST91, Nik03, No12, Pad91, PK95b, PL93a, Pop91, QGL+09, QGZP17, RFPAG08, RH92, RSCQ17, SYUU97, SB91, SDS04, TW98, TGU96, WL92, YGZ+10, YL90, ZPK+14, ZL89, ZFL89, ZL91, ZPK+14, ZLWL12, ZFL89, MP10].

Memory-Access [HMR15]. memory-based [No12]. Memory-Bounded [SN93]. Memory-Electric [IWM97]. Memory-side [HA05]. memoryless [BKMT14]. Merge [NT93, SM00]. Merging [VSIR91, AY09, DO89]. Mesh [AP94, Ann94, AD+94, yCM98, CCC92, CWW+95, C196, CY96, CDP95, EL97, EH91b, FZVT02, Fer93, GPJA10, HHH94, IM00, JF95, JS94, JB98, KB01, LJJ00b, LME95, MD01, MP96, Moh96, Nak95, NSS99, OS96a, RO92, RR95a, RR95a, SP96, SR94, SM00, Zh92, ZYO02, ABC+99a, ABC+99b, BB85b, CL93a, Car90, CWL+07, Dja04, DAB+14, Ef91, FLL14, GDL+11, GH98b, GA16, HWWH08, HWC08, HR89, HR90, KKK11a, KDH08, KT91, L90, L90a, L91b, Li06b, LC11, LWLD12, Los08, LB07, LV88, ML05, MBR08, NPGV10, PB90, RA94, SI86, SM89, SC91a, SS10, SS94b, SZ03, VHO8, WXCL11, WH08, WB11, XYA08, YSL08, FC14]. mesh-based [CL93a, LB07]. Mesh-Connected [Ann94, AD+94, yCM98, CCC92, CWW+95, CY96, CDP95, Fer93, HHH94, MD01, Zh92, ZYO02, BB85b, Car90, HR89, HR90, KT91, LV88, PB90, SI86, SM89, SC91a].

mesh-NoC-based [FLL14]. Meshes [BLPV95, BPCW96, BA97, BSDE96, BM97, BOS94, BOS+95, BGOS95, CW00, COS+95, CL96, DS01, FF98, HCWS94, HJ60c, LS95, LSC00, LS94, MT93a, NP1+96, NS94, O97, OS96b, OSZ98, OB98, RYW93, ST02, SKK97, SJ95, VB94, WCE97, Wu02, YTR94, YCY+00, BG16, BM04a, CI03, CZZ+17, DV13, GLD06, KLC05, LWC15, LXLS12, Mat06]. Meshing [YIY97].

Message [An94e, An95k, BB93, BKT95, BDH+97, CW92, CZZ90, CD98, DSM90, dADB96, GBES93, GHS94, GHS95, GHS97, HNM02, Is97, Kar92, LK96, Li92, LW95, MMCL+17, MD92, PY96, Pra16, SCMB90, WTC08a, WTC08b, WTC08c, WTC09].
Mini-applications [BCD +15]. Minimal [CLT96, SJ95, SR90, Xue97, ZAW94, MS15, OMSGNSG05, SR88b].

Minimization [OKB95, THGY15, JZF +15, KR10a, Li17, LZLX11, QSL +08, RTZ11, TFMS15, VA07, YWG15]. Minimize [Als01, SBAM96, KSG03].

Minimized [SCJ +08]. Minimizing [KER01, LZ05, LO96, ZWW17, TKX +13]. Minimum [CW00, DH94, Li92, RDL95, BC06, BPBR11, BBL04, HS12, tH90, KO12, KSK15, LVP08, LY10, LMZ04, OMSGNSG05, SL89, WCWH03, YZLT09, YWW12, YLYC11]. minimum-spanning-tree [tH90].

Mining [GC01, HK01, KRS01, SMT15, Zak01, CTT08, Cuz11, Cuz13, GJA08, WD13, WZQ +08, mirroring [BL05]. Miss [SDS99, CK13]. Misses [DSS95].

Mitigating [KMMZ06]. mitigation [WCF14]. mix [Ahu90]. Mixed [CDY97, MRR +02, NDZA99, SV00, van96, BKS91, FCS91, Kal04].

Mixed-Mode [NDZA99, BKS91, FCS91]. Mixed-Technology [MRR +02]. Mixing [FHL +15, Li10]. MKCE [RW01]. MMR [CCQ +06]. Mobile [Ano01e, BD00, BN02, BST01, CS00, CCK +08, DKY01, DL01, GS01b, KER01, LAZC00, LC14b, Pat01, PRS97, SMR96, THGY15, WLID02, ZR00, AKBD10, AP03, AH12, Ana14, Ano04d, AK06, BWP +11, BN03, Bou03, CSDW03, CWS03, CW05, CDG05, CWD11, DB08, DWX10, EBE08, EM11, FCM13, FCC07, FP17, GRDB05, GZMC08, HKW05, KERUM04, Kim11, Lan09, LZ11, LZCY09, LPX05a, LL10, LC11, LHW14, Li17, LLW07, LHT08, LS06, MS05, MXSL12, MSJ05, MKM16, NSA11, MNM +14, RB12, RKK06, REZN17, SNCP12, SGAC14, SY04, SGS08, SJS11, TZ07, TZ11, TM06, TC13, TY17, TWQS12, VA03, VPM10, XHG03, XG03, YK04, YCC05, YSS11, ZMC06, ZHO03, HC09, RBP +11].

Mobile-Process-Based [SMR96]. Mobility [FCF00, GCB +00, KO12, BEN12, CKT11, FX06, HC09, RKK06, RBP +11, SK05a]. Mobility-assisted [KO12]. modal [AM11, BWP +11].

Mode [NDZA99, WSA +94, BKS91, FCS91, YZX11]. Model [AGW01, AISS97, Ano97k, BPJG92, BA97, CC91, DL98, DKUC15, DG94, DF94, FTL92, Ga093, GS98, GDN +98, HK96, HR92b, HR92a, JRR99, KSP +02, KV99, MRRV98, MNB95, NDZA99, OKB95, QY94, SAN94, SAC +98, SSK69, WSA +94, YZS96, eW95, AAS16, AHZ11, ASES15, BMB +08, BBBC12, Bir90, BG05, CBD +09, CH06a, CAK13, CDJ +89, CRC +02, DZC17, DJH11, DKC14, DRT07, GJ12, IEW17, JLRX11, Ko14, KyLPC17, KC17, LR14, LMGGLG17, LFH +03, LZY11, LTKS09, LA06, LGK +12, LXZ13, MM06, MMVL11, NSK17, NSTM11, NJ91, O005, RSR04, RH12, SSS07, SL90, SK05b, TR89, TJCB10, VHH08, WW17b, XY14, YJJ91, ZAJ1, dR09, GB06, KR11]. Model-Based [KSP +02]. model-driven [ASES15, LGK +12]. Modeling [ATM01, CR91, CCM92, Ch92, CM93, CLR00, DI91, FMW +94, GHC +17, JZ05, JZK04, KNS91, LP96b, PLD14, Pat01, PMMMA15, Q505, RP98, SCM99, SFT +13, SCK03, SS00, TK07, AP91c, FX06, HES11, JWH +17, Joh01, KME09, KKK +11b, LWCC15, LC13, LF03, MCM +11, MSA11, NSA11, RA11, SV08, YL12, YZW +15]. Modelling
[Wu11, HNSA07, KME89, KKTZ13, SAOKM03, Sie16]. **Models** [AGW98, Ano96l, ABM92, Bir94, BSS99, BHR95, CDY97, CDF01, Cuz11, Cuz13, GAG+92, MM00, MLC+90, RHH96, SM92a, SS0B02, SM92b, ClkLCK04, CkLCK05, CJA09, DHH04, GLGLBG12, Har91, HK05, JKIE13, KVNV17, MMAL06, Nes10, PL03a, PF91, Pop91, Rao16, SS06, SRI14, TJCBI0, YQTV12, ZZ90, dG91]. **modern** [EFG14, YFS15]. **Modern** [GGW96, SSG93]. **Modifications** [PM92]. **Modified** [WS97b, ZLRP91, GLW14]. **modify** [CH06a]. **Modular** [AM95, DD93, FC95, RAS96, BM17a, CBP02, Dja06, ZBW17]. **modularity** [GK04, LK15]. **Module** [AM97b, EL91, MC91, ZFL89]. **Modules** [DP00]. **Modulo** [YL90]. **Moldability** [CB02]. **moldable** [SBC12b]. **Molecular** [ES96, NPY97, SPVvH03, TSA97, FGM03, PARB14, PTK13, WYTX13, XLHT13]. **molecules** [BOT13]. **moment** [RMU14]. **moments** [TRS12]. **Monitoring** [CSMML10, MLC90, ST14, TG97, ZNQ93, ASKO16, ACPT15, CL14, CK08, FEH+14, LFS16, SB12, WZQ+13, YT05, ZFS07]. **monitors** [TH08]. **Monotone** [HJDH01]. **monotonic** [MAHKZ12]. **Monsoon** [HCAA93, NCA93]. **Monte** [Bro96, PAS15, ZS13]. **MOOC** [MBG17]. **morphological** [SSL04]. **Moset** [MSJ05]. **Most** [BS97, HHC98, TAS01]. **mother** [MC03]. **motifs** [RSL12]. **Motion** [CP92, RR95b, OPG08]. **movement** [AKBI0, KSB11]. **movements** [CKT11]. **MP** [CDH84]. **MPEG** [AAL95, CLV95]. **MPEG-2** [AAL95]. **MPEG-Enc** [CLV95]. **MPI** [PS01, ATM01, BA06, BDH+97, CEGS07, DPS05, DPS08, FLK08, GM13, HcF05, KLY05, LC97, MBBD13, NCS10, NCB+17, PARB14, WLN06, ZAI12, dLAMCF12]. **MPI-2** [DPS08]. **MPI-CUDA** [dLAMCF12]. **MPI-FM** [LC97]. **MPICH** [KTF03]. **MPICH-G2** [KTF03]. **MPP** [DM90a]. **MPSoC** [FLL14, LZLX11, OMT+17, ZXY01]. **MPSoC** [DMS16]. **MPSoCs** [LW16a, TmB+17]. **MR** [MF94]. **MR-1** [MF94]. **MRI** [G0H+13, SHT+08]. **MSA** [BFK13]. **MST** [Fer95]. **Mukesh** [Ano96l]. **Multi** [ACU08, BG86, BBH+17, BA95, FPFI4, LK15, MAM05, MCZ14, NBP98, OMT+17, PKNI0, TVRS17, SR88a, Ser97, SM00, VLL+14, WW96, WJ92, YMG01, AHZ11, AGMJ06, BSW07, BWP+11, BLMB13, COV13, CMM13, CCHC09, CLL09, COF+17, DMCMF03, DWYB10, FCW11, FCZ+12, FM07, GD+11, GKS15, GCS06, GZY14b, GB11, HRM17, Hu11, HUS17, ICQ+12, IHI+17, JJ12, JLVN11, JV06, KSG13, Kep03, KVS07, KKN13, KUN17, LKS14, LL07, LSS+11a, LSS+11b, LZY11, LNL17, LS03, LSC+15, LY13, LPLFMC+12, LLS+16, Man13, MB13, MPV12, MPN17, MAHKZ12, MGRR14, MSZ12, NDP13, NFHL13, NVK+11, NC09, PYP+10, PKW+10, QSL+08, QGL+09, RLA+16, RLA+17, RB12, RR05, RA11, SNMB16, SFT+13, SCB09, SML+13, SZZ10, SAJ13, SMB10, STA17, Str12, ST05, TGPUC16, TRS+12, Trä09, TCHC12, VBDRC13, VFAD17, WCL+13, WQ14, WQZ+13]. **multi** [WH17, XL11, YS15, ZMG+16, ZXB14, ZLS17]. **multi-** [KSG13, ZLS17]. **multi-many-core** [KSG13]. **multi-accelerator** [ICQ+12]. **Multi-Agent** [Ser97, YS15]. **multi-attribute**
[LSS+11a, LSS+11b]. multi-bank [QGL+09]. multi-budgeted [Sta17]. multi-channel [CHC09, CLL09, GDL+11, GZY14b, SSZ10, ZMG+16]. multi-chip [TCHC12]. multi-cluster [NVK+11, SGL+13]. multi-core [BLMB13, CMMT13, DWYB10, GKS15, Hus17, LKS14, LNAL17, LSC+15, LS+16, MAHKZ12, RLA+16, RLA+17, SNMB16, SFT+13, SCB09, SAJ13, WQZ+13, WH17, ZXB14]. multi-cores [TGPUC16]. multi-CPU [TR+12]. multi-criteria [LL07]. multi-device [VFAD17].

Multi-dimensional
[NBP98, DMCFCM03, GB11, KVHS07, KKN13, LZY11]. multi-epidemic [AHZ11]. multi-functional-unit [QSL+08]. multi-GPU [LPLFMC+12, MB13, NFFGL13, TR+12, VBDRC13]. multi-granularity [WCL+13]. Multi-heuristic [PKN10]. Multi-hop [MAM05, YMG01, BSW07, FCW11, FCZ+12, LJWX11, MPV12, NC09, RB12, ZMG+16]. Multi-level [ACU08, OMT+17]. multi-link [FCZ+12]. Multi-Mesh [SM00]. multi-message [FM07]. multi-modal [BWP+11]. Multi-objective [FFP14, COV13, COF+17]. Multi-operand [SR88a]. multi-party [GCS06]. multi-pass [MPN17]. multi-phase [Man13]. multi-policy [SMB10]. Multi-processor [Wil92, LY13, RR05]. multi-processors [JJ12]. multi-radio [FCZ+12, GDL+11, SSZ10]. multi-rafting [PKW+10]. multi-rate [Hu11]. Multi-Ring [BA95, BG86]. multi-robot [IH+17]. multi-sensory [HRM17]. multi-service [RA11]. multi-target [NDP13]. Multi-tenant [PVRS17]. multi-thread [DWYB10, ST05]. Multi-threaded [BBH+17, LK15, Kep03, PYP+10]. Multi-tier [MCZ14, MZZC12, WQL14]. multi-unit [XL11]. multi-valued [Str12]. Multi-Version [WW96]. multi-year [Kum17]. multi-zone [AGMJO6, JV06]. multi/many [Trä09]. multi/many-core [Trä09]. multiagent [JL11]. Multibody [JBL02]. Multicast [AZ01, ABP98, CLZ02, GK98, LEN90, Lahn94, LHBB+01, LME95, Mck94, RJMC95, RMC97, SY01, WB01, Yan00, CSV08, CWD11, DDG+17, GMZC08, GSQ03b, HL07, KDH08, LMZ04, LHT08, MAGL13, MK08a, PY09a, RA11, SKMM04, WW12, XLG+06, YF07, YCH+10]. Multicasting [BETD94, FF98, GON98, GSQ01b, LBT94, WE13, LSSX14, WCC02, XCS06]. Multichannel [HP97a, Mck94]. Multicomponent [RW01]. Multicomputer [ASB97, DG94, GBES93, HILLY95, JR95, LK96, MLW+97, PA01, R99, XHR9, AP91a, CC96, DB86, GJ12, L60b, RS90b, Yan04]. Multicomputers
[AG94, CSSY94, CW92, DY99, DFRUC99, GGD93, Lan94, LME95, LEB98, NSLK99, OK10, PHB96, RS92a, RSB96, SP96, SCC92, SB84, Swa98, TJ92, WN94, XH91, XM92, YB01, GH9a, HSMB91, RS90a]. Multicore [PSGS17, ABC+09b, BM17a, BSS+13, CN14, CP17, DUKU15, FWM+10, FCP+15, GZG+17, KHT+14, KyLPC17, LK13, LLLC15, LM16, MBBD13, ND12, NZ17, PP13, SFFP11, SP+17, SP13, SC10, WLST16, WCO+09, PPP14]. multicores/many [MBBD13]. multicores/many-core [MBBD13]. multicores [CRSB13, LCB16, SS17]. Multidimensional
Multifaceted [Won99].
Multifluid [LW16b].
Multigauge [LR94].
Multigrain [ABC+09b].
Multigrid [MT96, MHC95, PSE+01, IHM05, MRS+14, WH17], multihop [CDCD05, HW03, ZLCJ12].
Multilevel [BW89, KK98a, KK98b, SKK97, KL15, MMS09, PAS15, SZW05, TK08].
MultiMedia [CCQ+06, ALL99, AZ01, GC95, JSCB95, LBL95, Won99, WUG99, ZR00, AM12a, LVP07, ZV09a, ZVL11].
Multimedia-on-Demand [JSCB95].
Multimessage [Gon98].
Multinode [VB94].
Multipacket [MS94, RR95a].
multipartitioning [DMFCFM03].
Multipath [LYL93, KPR88, OM10, SH89, WGS08].
multiperiodic [TW89].
multiple-bus [MHBW86, YB90].
Multiple-Pass [Wan96].
Multiple-Writer [KS97a].
Multiplexed [HP00, HRG+11].
Multiplexing [AM95, PD92, QMCL94, QM01, ZLPP01].
Multiplication [Fag92, Li01, NFEG97, ASES15, CLR90, EL91, ITT04, LV15, MBW16, MPG17b, PR13, SKH15].
Multiplier [MS87].
Multiprocessors [AMB95, AM95, BJ99, Bas97, BS96a, BL96, BC01, BLG01, CB95, DS95a, DJ98, DZDZ01, DT92, GY92, GZ97, HJ91, HA92, KS98, KB96b, KAT97, LK98, LA93, MB92, MS98, MG91, NS97, NPP+02, PH91, PY96, PT97, RL96, RJ96, SMH94, SCM99, SY01, SDS99, SD00, SC91b, TTG95, VSIR91, YW91, YMR93, JL98, AP91b, BC05, CLM90, CRJ10a, Cyb89, FZC+05, FGP05, Gai90, GL90, HCM11, HRG+11, KA03, KK11, LEN90, LE91, LPK+10, LWCG14, NSTM91, Nk03, RFPG08, SPBR91, SD91, SMH91, SA90, YB90, dOCS14].
Multiprogrammed [MS98, NSS97, NPP+02, YL98].
multiprogramming [DI91].
Multirate [HJDH01].
Multireader [HV95].
Multiresolution [KZ96, ZM94a, CL85].
Multiscalar [VS99].
multiscale [BFL+13].
Multisearch [ADM+94].
Multiset [AFS96].
Multistage [AA95, BETD94, LC96, OM84, PL93, SZB92, TH02, Tz91, UR94, Wan96,
Wan01b, YWP00, ATH91, BJ15, CM04, FZ90, HJ90b, Har91, JB91, LK90, MV04, PW16, PW17, SH89]. Multistage-Network [UR94]. Multistart [Cza13]. multistep [GGR89]. multiswapped [Ste17]. multitask [LST+13]. Multithreaded [BJK+96, BLG01, GGR93, GRS97, KC99a, Lum99, PS01, RN5B96, RSBN01, SAC+98, SYG97, TG99, YMR93, ABC+09a, CN14, LLCL15, NZ17, SLG06, TKHG04]. Multithreading [BL96, FKT96, KPC96, LK13]. multitonic [Sei05]. Multiuser [BAL05, ZRC99]. Multivalued [HV95, HV09]. Multivariate [HK01, MMAL+06]. multiversioned [Ahu90]. Multiway [SM00]. municipal [LHX+16]. Munin [Car95]. Muntz [Ano92a]. MUPPET [MSS88]. Mutual [AE95, Cha94, Cha96, DFGK05, FTC00, GBG93, KY02, Kak15, KUFS02, NTA96, Sin93, XG+06, YZY96, AK07, ARA13, BAS06, CW05, CH06a, CB06, Gos90, LASS15, MM07c, NTN12, Ram89]. MVAMIN [JBM91]. Myrinet [KB01b, QG05].
RD05, RSL12, SSB91, SS05, STKW12, SY04, SK89a, Sta17, SMKL93, TM06, TDP15, TCHC12, VM95, VHH08, VR86, VRM10, WL11, WG11, YK04, ZWS09, ZY12, ZWR10, dG91, AA14, SLW10, ZCF \(^{+17}\). **Network-Based** [GS01a, OM84, PN97a, PN97b, CVJ09, KJD03]. **Network-on-chip** [GJ12, LY13, AA14, ZCF \(^{+17}\)]. **Network-on-Chips** [LK10]. **network-When** [STKW12]. **Networked** [FGKT97, HS97, LHM95, OYE07, BW09, HP06, JL11, SS08, XLL15]. **Networking** [Ano01e, GCY \(^{+04}\), Bou03, DWYB10]. **Networks** [AAD02, AZ01, AS97, ABP92, Ann94, Ano92c, Ano93e, Ano00d, AA95, BSS97, BAES92, BC95a, BETD94, BCD00, BDF01, BCH95b, CP97, CT96, CS00, CAB94, CS93b, CC94, CS95c, DS95b, DHB02, DF96, D93, DL01, D95, DG91, DC94, FCF00, FT94, GGN93, GPJA10, G98, GHKS98, GO95, GPS06, GB93, GS01b, HI9M94, HY97, HLCZ00, HJDH01, RJ92, J92a, JLA97, J94, KKG90, KI01a, KRSZ02, KAM94, KB96a, KL01b, KR98, KJS85, L05, LBL95, LYL93, Lee94, LLJ00a, LAZC00, LPS \(^{+98}\), LWOG02, LHBB \(^{+01}\), LC14b, LP95, MS00, Man94, MLW \(^{+97}\), MSH90, MS85, Mck94, MD07, NRS95, NSS99, NS92, OD95a, Ola01, O85, ORu87, ORu94, OK01, PRW94, PA97, PA01, PL93, Piu01, PKD97, Pra93, QML94, Qia97, QM01, RS96b, RP98, RC97, Ros99, RLS96, SW96]. **Networks** [SEI05, SB92, SLP \(^{+98}\), SF90, SC99, Sz95, THGY15, TVO92, TH02, VB02, WM92, Wan96, WR97, Wan01b, WB01, WP02, WAS95, W92, WT92, WP00, Yan00, Y92, YMG01, YP96, ZZC92, AP91a, AS97, AGMS16, AAD03, AB05, A90, AMM16, AP03, AH11, AH12, AHG12, Ana14, AMT13, Arb89, AYB \(^{+15}\), ABLP17, ALF03, BFG \(^{+03}\), BM11, BC05, BS07, BGLA03, BS03, BW \(^{+11}\), BOY10, BDJQ86, BHR91, BR91a, BPRS04, BOP06, BNS87, B089, BR91b, BC11, BN03, BZL04, BMIM07, CO3, CM04, CG12, CB15, CC14, CCW14, CNS03, CKN07, CW05, CS06b, CCK \(^{+08}\), CS10, CTC \(^{+10}\), CRWX12, CG16, CS92, CDR09a, CDR09b, CY06, CGG \(^{+09}\), CDD05, CPA \(^{+11}\), CRSB13, CM03, CKML12, CMS04, CT04, CTT16, DF17, DW06, DLL11, DK11, DD96, DMB \(^{+03}\), DGBN14, DB08]. **networks** [DBCF13, Dim04, DDM01, DFP06, DH04, EAL90, EBE08, EM11, EDH \(^{+17}\), FCW11, FCML13, Fei03, FY86, FZ90, FCZ \(^{+12}\), FJ06, FJK08, FMM \(^{+08}\), FVC05, FD86, FG \(^{+11}\), FZ14, GHY10, GPT06a, GJ12, GRV08, GDP08, GP07, GCC \(^{+04}\), GS03, GDL \(^{+11}\), GH89a, GAGP03, GYP13, GZ14b, GM14a, GB11, GL12, GJX05, G503b, GMX07, HW03, HZA \(^{+15}\), HMY07, HJ07, H89b, Har91, HS06, HZY04, HS12, HRC \(^{+11}\), HT06, HDT \(^{+05}\), H0h90, HL07, HZDP12, HJL12, HB1D15, HS17, HAC17, ISAZ07, ISAZ10, IB04, JF12, JT88, JLY12, JBA15, JBS14, JHPL13, JMM91, JLYW11, JBY \(^{+05}\), JKV15, KTP17, KKV05, KSS16, KS04, KKK11a, KK06, KOA09, KIM11, KKKP12, KSK15, KNG89, KMK \(^{+05}\), KZ11, KKS09, KMS07, KDH08, KKK \(^{+11b}\), KKTZ13, KH89, KGN11, KNS06, LA15, LBMG15, LZ08, LK90, LR06, LDZ \(^{+17}\), LHKL03, LY10]. **networks** [LNA12, LR03a, LCW05, LPX05a, LW06a, LT07, Li10, LC11, LMJC11, LWL12, LL12b, LHW14, LSXX14, Li14, LS03, LC07, LR03b, LLW07]
LHT08, LZC11, LHL14, LDS16, LHP07, Los08, MLG05, MAGL13, MM04,
MAM05, MSM09, MYM10, MAPF14, MV88, MPV12, MA11, MSZ05,
MCS14, MS88, MVBo5, MBRO8, MYD+11, MKC+09, MAJJ05, MVM04,
MVP17, MOBo11, MSAZ11, MBHW86, MK08b, NPGV10, NJ91, NSA11,
NFHL13, NC09, NMN+14, NZA13, OWK14, OM10, OMSGNSG05, Pak89,
Par05, PK05a, PL06, PLY15, Pel90, PCX+11, PCX+14, PSC+16, PKW+10,
PW16, PW17, PV07, Pla08, PLR07, PB09, RM10, RM11, REK10a, REK10b,
RLP14, RFS+12, RKK06, RBP+11, RA11, RHL08, SCN12, SAOKZ05a,
SAOKZ05b, SMP15, SB12, SX08, SZ09, SZMK13, SGAC14, SSZ10, SGS08,
SKMM04, SK05a, SL89, SR88b, SR90, Ste17, SK05b, SCLL10].

networks

networks-on-chip

Neural

Neural-Network

Neuro

Neuro-Chip [MT97b].

Neurocomputing [Ebe94].

euromatrix [MHLZ16].

Neurocomputing [Ebe94].

neural [VO89].

neutrosophic [MHLZ16].

Newest [AK17].

Next

Next-generation

nexus [LC14a, FKT96].

NIC [JBY+05], nine

[NM17].

nn [HRF+11].

NMC [SANY94].

No [KF90b, IR12].

NoC [AA16, CZPP16, CAF+11, FLL14, HRF+11, LZI+11, LW16a, LK11].

NoC-based [HRF+11, CAF+11, LZI+11, LW16a].

NoCs

CG17, LK10, MP10].

Node

AAD03, HAC17, KKS09, AKBD10, DLLL11, DM17, FKLBO8, GM13, KH17,
Lai14, Lai15, Lai17, LDS16, PCX+11, PCX+14, RMHR17, TR08, Zah12].

node-disjoint [Lai14, Lai15, Lai17].

Node-independent [HAC17].

Node-ranking [AAD03].

Nodes

GP07, NSLK09, SS95, CK91, DB86, LKS14, NM17, SI13, WGS08, XYG07].
nonsensical [SFT+13].

Non

[BH05, TVT+17, BGH+03, BFBN14, BKMT14,
CLL09, GOH+13, GRDB05, GTGLSA12, KK10, KR17, Lai86, Li06a, MM07c,
MAR05, NVK14, QS05, WMY+17, WLN06, ZPK+14].

non-blocking

KR17, QS05].

non-Cartesian [GOH+13].

non-clairvoyant [Li06a].

Non-cooperative [TVT+17, GRDB05, KK10].

non-dedicated

MAR05, WLN06].

non-deterministic [GTGLSA12].

Non-evolutionary
OLSR-aware [KKK11a]. **Omega** [Ano93e, CS93b, SZ00b, GL90, CS92]. **omega-like** [GL90]. **on-chip** [KH12, LNA12, LLKY13, LLT12, LWCG14, MYD+11, UM17].

On-demand [YLYC11, BSLW07, FVLB09, HZDP12, LSZZ15, NKK16, SFEF06, WL05, XG03]. **On-Line** [BDKM94, LTY96, Yen01, DJ98, EL88, LHK03, KM88, SLXX14, LLT12, LWCG14, MYD+11, UM17].

On-demand [YYLC11, BSW07, FVLB09, HZDP12, LSZZ15, NKK16, SFEF06, WL05, XG03]. **On-Line** [BDKM94, LTY96, Yen01, DJ98, EL88, LHK03, KM88, SL90].

One [Ano93e, Bog17, CS93b, LP95, PTA08, SR97a, SR97b, YAS98, ZB97, BSBR11, Che05, CS92, Deh90, Lai14, Yan04]. **One** [Deh90].

One [Ano93e, CS93b, CS92]. **One** [CS93a, CA95a, CW92, CA96, DS95b, DP00, DLP99, DT97, DF90, Ede91, FLPJ07, FM96, FXW03, FA95, FAM96, FY96, GS91a, HV95, HKM98, HM01, Ho91, HJD+01, IZ95, JP95, JLY12, JBP00, KERUM04, KUFM02, KS97b, KW02, Lai17, LHS97, LSC00, LK94, LCW05, LL12b, Li14, LO94, LO96, LV88, LS01, MS94, Man97, MW95, Nak95, OS96b, OSZ98, OH02, PM05, PP06, PK05a, Fel95, PL94, PV07, PM96, RR95b, San99, San02, SJ95, SZ00b, Sin87, SV00, TR08, WL90, WLY01, WR97, WS95, WS97a, WN94, Wu94, WHT02, Wu03, WLL08, YA11, ZV14, ZWS09, ZWRI07, oPP00, ANP07, BM04a, BSBR11, BS92, CV90].
CMS04, CZ90, DKKV15, Dja04, EB13, Gue86, HDJ08, Li10]. **optimal** [LH04, LS05, Lis90, LCB16, MD07, MPG17b, NW88, NZA13, PY09c, Pel90, PW16, PA04, PLR07, RTZ11, SGR03, SSM89, SGE91, VS16, VAS+13, WC91, WIB12, XWC+08, ZQMM11]. **optimality** [HV09]. **Optimally** [TBPV00, GC07]. optimisation [AD12, LL07]. optimising [PVRS17]. Optimistic [HF02, NH93, PW96, SS93, DWG03, JLM08, QS05]. Optimization [BLG01, CGN+13, CLRW00, DDGK13, FM99a, FCF00, HA92, KCRB99, KZ96, KLS90, LWY97, MBW16, MC17, OK02, PMAL11, RL02, RNSB96, SMH94, TRSS06, VSM96, WCO+09, ALM+16, ATH91, AF06, BCM87, BNBR16, BDGR13, BHLT14, BYH+17, CMMT13, CCK11, CI86, DJH11, GZG+17, GL12, HVW16, JZZ+17, KA89, KKB+06, KLL87, LL10, LQI+12, LGK+12, NS12, Ozti11, QS05, Ren11, RR+08, SS11, SCC+06, SZD07, SK90, Str12, WMW09, WCL+13, WRW13, WQL14, WMG13, Wol88, XHT13, YWD08, ZV12, ZI08, ZWX16]. Optimization-based [PMAL11]. Optimizations [BW95a, DUSH94, HKT94, KY96, RSB96, ZHH99, ABC+09a, CZPP16]. Optimize [DRR96, HLJ01, SF05]. Optimized [ABDS02, Bar05, WJ14, Ana14, BKS91, DCC14, TW15]. Optimizer [HLLY95]. Optimizer-Assisted [HLLY95]. Optimizing [CC16, CG86, JST12, KRC00, KR06, LMR05, LM16, NCTT09, PGRP17, Sbr94, SBC12b, WCW017, WGM01, WLWW09, WG11, WSLC11, AFNT17, AHH+16, ARM+05, DV13, GYY+14, MSM09, ZGG+14]. Optimum [BH91, LP96a]. Opto [AA93]. Opto-electronic [AA93]. Optoelectronic [HPT+97, MLW+97, MB93, HNSA07]. orchestration [RCG+11]. Order [AMS94, B992, CLZ02, DT97, BCM06, BG05, CB15, GA90, KKW17, KFM+05, KME09, MP87]. Ordered [GS98, HCR12, TS91, CG10, JHW99, KKS+12, Tay05, YLB+15]. Ordering [KK98b, PRS97, RS96a, ZH97, CH05, Zah12]. Orders [SH97,Sta04]. ordinary [GGR89]. Organization [AP04, AAH17, CT04, Ull84]. organizing [BW98]. orientations [AFM90]. Oriented [BS90, CSSY94, CS95b, Fer92, HS00, SG96, Bet90, BZLI04, Chi95, CTT08, CSW+17, DZC17, DWYB10, GYAB11, Hdr13, HRM17, KW13, KBD05, Kum17, MXSL12, PSSG17, RKK06, SGM10, SF60F, YBZ91, ZCO4]. Origin2000 [SSOB02]. ORION [PRP09]. ORN [SK11]. Orthogonal [AR97, JD12, Wu02, GS91b, HC91, SM89a]. orthogonal-access [HC91]. Orthogonally [CF98]. Other [Kap93, Kum17]. OTIS [ZMPE00, ZXP09]. Out-of-Core [BCR96, Raj04, KKB+06, KR11, WJ07]. outcomes [NKS017]. Outplanar [GS99, KW02, TSFZ14]. Output [ASR93, GC07, PD92, Ros99, ST02, GS03a, PY09a, ST06]. Output-sensitive [GC07, GS03a]. outsourcing [CXY14]. Overall [LO96, SEP96, XL11]. overcome [KG04]. overflow [SSC+06]. Overhead [DR98, JNW96, KS00, SD00, BCM87, BD04, CX05, FGP05, LMGGL17, SC91a, SZ09]. overheads [DI91]. Overlap [QH96, ALTV13]. Overlapped
Overlapping [CQ95, Wil92, CH05, KSG03].
Overlap [PRP09, BHK17, CMN10, EDH17, GZMC08, HK04, LSS+11a, LSS+11b, LCM+06, RA11, SB12, XLG+06, YF07].
Overlays [HASB16, ZH07].
overloading [AOSM04].
oversubscription [KKLJ14].
Overview [EMP+96, KS93, ABC+88, SSZ10].

P [ASST05, dR09, PMV06].
P2MCMD [LC07].
P2P [CWL05, DW12, EDH17, FZ14, GB11, GJXZ05, LZY11, MAPF14, RHL08, She09, SZ09, SHL09, SK11, WCXL11, YCH+10].
P2P-based [She09].
PACK [BR96].
PACK/UNPACK [BR96].
Package [HS97, KOW97, KXMN94, CP0+03].
packages [DAB+14, PL03b].
Packet [GHKS98, G095, JK00, LYL93, LS94, NS95, OY00, PRW94, PV89, RD05, SL97, ZY12, BMIM07, CK13, EKNS17, HBS17, HDM11, KMF+05, K10, Nap90, OS04, PV09a, UM17, YSL08].
packet-level [YSL08].
packet-size [OS04].
packet-switched [Nap90].
packets [GRV97].
Packing [Hwa97, LTW+90, CRD12, SF05, TSFZ14].
Page [LE91, NPP+02, HSSM07, MTM10, TH08].
Pagenumber [KRSZ02].
pages [Ano96l, Ano97k, Ano00d].
Paging [DM99, Li17].
Pair [DP98].
Pairs [BGR96, TU92, KS91].
Pairwise [GP00, CO8].
PaMeLA [GDL+11].
Pancake [BS03, KAM94].
pancyclicity [XHZZ16].
panel [Rob09].
Paper [Ano01m, Ros07, OY13].
Papers [Ano95i, Ano95j, Ano96j, Ano96i, Ano97i, Ano97j, Ano98k, Ano98i, Ano98j, Ano99g, Ano99d, Ano99e, Ano99f, Ano00a, Ano00e, Ano00f, Ano00g, Ano00h, Ano01c, Ano01d, Ano01e, Ano01n, Ano01o, Ano01p, Ano01q, Ano01r, Ano01s, Ano01t, Ano01u, Ano01v, Ano01w, Ano01x, Ano01y, Ano01z, Ano01-27, Ano01-28, Ano01-29, Ano01-30, Ano01-31, Ano01-32, Ano02q, Ano02r, Ano02s, Ano02t, Ano02k, Ano02l, Ano02m, Ano02n, Ano02o, Ano02p, Ben15, Sn03, Mue13, Phi13, Rob09].
Para [CD98].
Paradigm [KBD05, RS92d, Bamm05, CVJ09, LK15, MS15, SY16].
Paradigm-oriented [KBD05].
Paradigms [Ano99g, CEF+95, YMR93, XQ04].
Paragon [CCRS92].
Parallel [AS93, AAGW01, AT94, AGF94, AAL95, ANT02, AISS97, AP94, AB01, AAJ97, AIU97, AFM03, AS13, AS97, AS95, AH94, Ano92a, Ano93a, Ano96j, Ano97l, Ano97k, Ano99g, Ano00d, Ano02v, ABZ95, AKP95, ADM+94, AS94, ADS98, AB93, BK95, BJ96, BR96, BCD95, BBD+91, Bai94, BW08, BBH+97, Bale90, BDF96, BGR96, BS97, BCF94, BFG94, BN94, BB93, BBM+02, BV13, BL94, Bev02, BBH+98, BKCM17, BP95, BEE00, BS90, BHS+94, BDHF90, BP95, BR95c, BRPR06, BMARW07, BMRC98, BMRC99, BS00, BTZ98, BRO96, BX93, BDH+97, BA01b, BTG02, BMCP98, BM95, BN99, BS09, CP97, CMT93, CP98, CGK97, COV13, Cac93, CC91, CDY97, CDRC99, CB99, CKK00, CVD1+08, CRS92, CGL+95, CCM90, CS95b, CP10b, CW93, CA95a, CW+95, Chi92, CV91, CDJL09].
Parallel [CN93, CP92, Cho93, CHR94, CY96, CWP98, CB96, CQ95, CRD17, CGA98, CH92, CP94, CA95b, CHGM01, CRFS94, CLZ00, CBdCD00, Cuz11,
DFHH13, DM90a, DM95, DOP98, DP00, DM92, DRC90, DH91a, DS84, DO89, DH94, DDGK13, DN94, DJM94, DSW94, DT01, DSD+97, DBFK90, DD95, D97, DJT03, ES96, ERL90, ERA95, EMM94, ELS94, ES97, EHS94, EHNN95, Fuh96, FLL14, FZWL12, FBRW03, FGC17, FTM+14, Fer95, FR96b, Fer92, FMP98, FLS+97, FPS11, FC95, FKKC97, FJ93, FMW+94, Fre96, FT94, GF94, GP94, GCB+00, GGN93, GV94, Ger98, GBES93, GGD93, GJ99, GJ97, GJ96, GJ95, GSP02, Gra90, GL92, GH96b, GHH92, GHW06, GK93, GHSJ96, GS99, GRR+05, Hag97, HHHM94, HK96, HH97, HGCC96, Han89, HES11, HB97, HB98, HP95]. Parallel

[HR92b, HR92a, HHC98, HP97b, HN91, HTB98, HR89, IK94, IZ95, IWM97, IHM05, JW94, JBL02, JSM94, Jia99, KR97, KF95a, KME92, Kap93, KSA95, Kar92, KB98b, Kan94, KZ96, KKN13, KR98, KB01, KE93, KS93, Kri92, KRS13, KW02, KG94, CM92, KA97, KC99b, LSCA93, Lan09, LWCC15, LP96a, LST+13, LSH96, LS88, Linh91, Linn93b, LA93, LO94, LLCC02, LP97, LK11, LFA96, LMB+95, MB96a, MFH93, M99, MM93, MLS99a, MMC97, MR94a, MPZ09, MTT96, MB96b, MP93, MSGS+93, MS90, MHC95, MB92, MSd+95, MMAL06, Mer96, Mi93, Mi91, MB93, MG98, Moh96, MSAZ10a, MNK12, MS99b, MS97, Nas94, NFE97, NMS93, NS97]. Parallel

[Ngo06, NT90, NKC+97, NH93, Nic94, Nie94, Nik04, NZA13, NS93, NDZ99, NS92, NPY+97, OO05, OY00, OB98, OY13, OP98, ORR03, OR97, PH91, PD05, PP96, PDP17, PH00, Par98, PE93, Par96, PL03a, PL94, PCX+14, Pla08, PAH+98, PAJC97, PBB+17, PSE+01, QZ94, QH96, Qovd01, REK10a, Raj01, RSS96, Ram92, RL02, RS92b, Re84, RW01, RGS00, RPS93, RSL12, RW90, RJA97, Ros99, Ros07, RW93, SS93, SH90, SS96, San98, SM96, San02, SAOKMA02, SH97, SG93, Sch90, SM89b, SW96, Sch91, SdS97, SAF05, SR97a, SR97b, SAC+98, She06, SS92, SSHC00, STN92, Shu95, SGS99, Si90, SM00, SR95, SSRV94, SB93, SC95, Sk96, Sl96, SL87, SL97, SLKK13, SIR92, SK93, SMKL03, Ste95, SSK96, SUC+91, SF90]. Parallel

[SYG92, SS97, Szy95, TH11, Tat11, TSA97, TW87, Teu90, TAS+01, TR96, THBF97, TV092, TZ90, TK98, TF01, UAPM07, Upa13, VSM96, VGAB08, WB94, WCE97, WLY01, WM92, WNA+94, WPPK94, WB96, WTO08a, WMW90, WRW13, WSA+94, WD94, Wec01, Wei98, WMG01, Wei02, WA02, WAS95, WS95, WS97a, Wor93, Wri91, WT92, WH97, WHT00, WHT02, XP10, YBX+13, YZ96, YWAT13, YB95, YIY97, YB01, YP96, Zak01, Zep91, ZYH94, ZK94, ZB97, Zhn92, ZH99, ZM94a, ZO97, ZYO02, ZA91, ACY93, AKDM15, Ada17, ALS91, ABG90, AP91c, ATH91, Ara90, AE88, ANP97, AG86, AB13, ACFK07, Bad04, BC05, BCM87, BB87, BCBL04, BKC+15, BM08, BA06, BCF05, BAH04, BNBR16, BFH90, BS87, BSG90, BR91b, BKM+14, BGM+08, Bo07, BCK+13, BSH15, CK88, CP10a, CTS17]. Parallel

[CR91, CDS10, CSML01, CCE+17, CCS06, CRL04, CEGS07, Che86, CC87, CZZ+17, CLOL17, CFJW13, CKWT17, CJ07, CT94, CDJ+89,
CL85, CZ90, CB06, CD95, CK91, CM12, CB11, DFP06a, DRT07, DM90b, DM90c, DQR*09, DUW86, DLW+12, DAG+17, DRR13, DM94, DWHL87, Ebn04, EB13, ESTA94, EE05, Ei07, FCG04, FGG08, FKB17, FCS91, FSD04, FKR+17, FCG+14, GMPM12, GVBB89, GS91a, GP91, GT04, GMVRGS16, GWWL94, GAC+17, GS03a, GC07, GB06, HM06, HSS10, HOE+09, HSH10, Hdr13, HS86, HA91, Hsi04, HSS17, mH14, JT88, JSWB92, JMS86, JL05, JJ12, JST12, JP09, JZ05, JV06, JZF+15, KKR14, KESA07, KR10a, KR10b, KHT+14, KV88, Kep03, KHOK13, KSSG14, KBC10, KP05, KIH15, LBMG15, LT07, [Li06a, Li06b, LT07, LY12, LMB+17, LTKS90, LC92, LH04, LS05, LH09, LÜ14, LZZ+11, LTG14, LGL13, LF03, Luk85, ME04, Mar88, MV88, McD89, MCT06, MP87, MMK+11, MAR05, NVK+11, NDW17, NW88, Nic07, NZY+11, NCTT09, OS04, OTKT12, PB90, PPC04, PMAL11, PPTV+10, PA15, PK89, PPSV15, PF91, PVPM06, PHS04, Pop91, PF04, PRG88, QJ05, Raj08, RSR04, RGD03, Rao16, RAN+17, RG87, Ros89, RSW91, RTCG91, RBB17, IS86, SS03, SPBR91, SV88, SB9, SC91a, SS06, SSTP09, Sch14, SPH13, SC04, SZW05, SF05, SK91, SCMHI3, SA08, Ski16, SMH+14, Sta04, SDG08, SDis+10, SR03, SR16, SHC14, SSGZ13, TM06, TW89, Ter16, TRS06, TS91, Tr09, UGG+11, VD04, VS16, Va07, Vis87, WL90, WLL16, WC91, WVJ07, WBTM09, WLCZ15, WRHR91, WJD91, WZ91, WIB12]. parallel

parallel [WF89, WLWW09, WGCZ09, XL11, XS11, XYZW14, YJB91, YÖ11, YZLT09, YBM13, Zha11, ZFL89, ZJ06, ZFWF06, ZBW+17, dVCP06, dGP06, CPO+03, Cza13, FTK14, KR11, Ree84, YÖ11]. Parallel-depth [BP89]. parallel-processing [Trö99]. Parallel/Distributed [KZ96]. Parallelisation [HSSM07, Kal04, AD12]. Parallelism [Bec96, BAM93, Bog17, GN+13, DRST02, FM85, FKKC97, FY97, GSG+93, HKT+91, KRCO0, MR94b, MK92, SSG93, SW91, SH92b, SV00, SG96, GV86, HS03, Irw88, MM15, Ozt11, PVGG06, RS08, RSCQ17, SCB09, TAB+17, VBF13, WTXY13, ZWLL12, DeG88]. Parallelization

UNPACK [BR96]. vector [Sol13]. write
[GN09, IR12, IRS16]. people [HRM17]. per-core [LSC+15]. per-object
Percolation [MSH09]. Perfect [BAES92, AB05]. Perfectly [Lin93a].
perform [EL91]. Performance
[AP91a, Abr96, ABDS02, AP93, ACD+93, ATM01, AYIE98, AH94, Ano92a, Ane97k, AA95, BJ09, BHH+97, BPJG92, BCV94, BS96a, BAMM05, BL96, BCD00, BP01, BLS99, CTD99, yCM98, CY99, CGKY12, CB02, CP99, DS95a, Dah99, DPD08, DY99, DS02, DWYB10, DW04, DF94, ER97, FR92, FRM15, Fer92, FGTK79, FP93, GCB+00, GE85, GT02, GM94a, GGD93, GLGLBG12, GDN+98, GM99, GRR93, GBA08, GK93, GK04, HMBW07, HCS+00, HCAA93, HSMB91, HP97b, HN91, HLL+95, yHY97, HTL99, JG05, JSCB95, JVO6, JB93, JLR97, Joh91, KME92, KMCD07, KC95, KS95, KMS07, KRS13, KRS14, KB96b, KG04, KEA95, KJ84, KRS01, KLS87, KMB91, LC97, LCS93, LLY93, LP96b, LPU97, LPX05a, LNW+12, LTD+93, LFW+16, LHVV95, LDCZ97, Lmu94, MF94, MT95, MSA04, MM06].
Performance [MSC96, MB92, MSAZ11, MS96, MBG+17, NSKN17, NPB98, NCA93, NSA11, Nce17, NKC+97, OD95b, PARB14, PH00, PS93, PD92, PEC95, PCT+93, PAJC97, PBB+17, PS01, RPS93, RW93, RG08, SMM94, SSG93, SPBR91, SV08, SRR93, SG93, SB02, SL+98, SKH96, TLY12, THBF97, TTG95, TH02, Tze91, VMS96, VH08, WAS95, WF99, WLID02, XQ07, XUN96, YB90, Yan93, YZ96, YI96, YAS98, Yan00, YB95, YMG01, YAK15, ZNQ93, AM13, AA10, ARI17, AB03b, AP91c, AD12, BL05, BW89, BCD+15, Bat05, BCFF05, BDGR13, BKS91, BH86, BJ03, BDDL09, CK06, CF88, CB92, CG17, CCE+17, CBM+08, CKWT17, CCEB03, CKLC04, CKLC90, CC96, CSW+17, Cuz11, Cuz13, CK08, DJH11, DF12, DLYL12, ETS14, ECLV12, FHHL15, FGP06, FJSW90, FCP+15, FDS6, GJ12, GRV08, GMSS+11, GST09, GY+14]. performance [HW03, HES01, HNSA07, HHS12, HRG+11, HCZ04, Hdr13, HAO11, Hcf05, HC91, ICQO+12, JST12, JBY+05, KVN17, KyLPC17, KCR14, KZ11, KC17, KKS08, LWCC15, LL90, LC13, LWR+03, Lio6b, LSXX14, LB12, LZZ+11, LGL13, LCB16, LBG07, LGK+12, MC17, MSGS+13, MRS+14, MVBO5, MG09, MBO11, MLK12, MBH+08, MGRRK14, NSTH91, Nap90, ND12, NTC03, No12, NRM+09, OS10, PCMM+17, Par05, PRHB06, PHW+13, PVRS17, RH05, RM90, RTCG91, SPRG+12, SSSF11, SAOKZ05a, SAOKZ05b, SCB08, SD91, SC04, SAB+92, SA11, SE15, SR16, TTH12, TB09, TM06, TD07, TWT+08, WSO6, WH08, WG11, YA110, YZ+15, ZY+15, ZW13, ZWQ+16, DAT17].
Performance-constrained [YAK15]. Performance-Driven [CP99].
performance-portable [MRS+14]. performance/cost [AP91c].
Performances [MS99a]. performing [GA90, VM95]. Perimeter
[FK95a, KOA09]. Periodic
[Abr96, BNP98, BMM+02, RDS02, WCF94, FXW03]. Peripheral [MBK+92].
periphery [ABL17]. perishable [GAOHG17]. Permutation
[AKP95, CL93, DT97, GT97, IZ95, Oru87, Oru94, QM01, RDL95, TBPV00,

Port [CDF01, RJMC95, ST02, Dim04, ST06]. Portability [SGdSS13, ETS14, PHW+13]. Portable [BK95, BHS+19, LPW02, RRH96, LFGM17, MRS+14, MLK12]. portal [FKR+17, PLL+03]. portals [BAK+03]. Porting [KME09]. Ports [AW95]. positive [KK86]. possibly [MCS14]. Potato [NS95]. Potential [MK92, ARD14].

Power [CG17, Ebe94, EB09, KCR14, MAHKZ12, TVT96, WQL14, ARI17, AG12, BAPRS91, CZPP16, DZC17, HMV07, JHF+17, KK11, LM16, LB12, MGRRK14, Ren11, SZL10, TJCB10, TVT+17, WTB+09, YBX+15, YA11, YZW+15, YJKT09, ZV12, ZCF+17, dR09].

Power-aware [EB09, KCR14, WQL14, SZL10]. power-constrained [JHF+17, WTB+08]. power-gating [CZPP16]. Power-performance [CG17]. pp [Ano92a, Ano92c, Ano93e, BS96c]. PPM [LW16b]. PRA* [EHMN95]. Practical [Ger98, HCWS94, HR92b, HR92a, KK95, SGS99, YZS96, LXW+11, McD89].

pre-assigned [HMR15]. pre-execution [RG06]. Pre-Processed [SJS11].

Pre-run-time [VWH96]. prearranged [SW90]. Precedence [JR95, KB96b, MMVR97, BKS05, DUW86, Li06b, XLL15, ZV09b]. precision [BGBC+16]. Precluding [Yen01]. Preconditioned [BSGM90, CP10b].

preconditioner [GLW14]. preconditioners [SZW05]. Predicate [TG04, Yen01, AMK+07]. Predicates [CK97, GCKM97, RS92b, Ksh12, SKK14]. Predictability [SB12].

Predictable [CKK00, SB12]. Predicting [FFK97, Lun99, SSG93, SZD07, SFT04, Wei02, BCD+15]. Prediction [ASK016, Ano97k, AYB+15, CTD99, KL01b, PH00, YZS96, YI96, ARVZ14, CDB04, DZC17, DGC14, LGZ+10, LC14a, LKM12, MVP17, PMdO11, SM08a, SK05a]. Prediction-based [AYB+15]. Predictions [DD95, XZS96, LSL+13, NVK+11]. Predictive [DSW94, BYH+17, RK06, SNMB16]. predictor [GGR89].

Preface [Ano01-33, Ola01]. preferences [WMY+17]. Prefetch [SD00, Zha11]. Prefetching [BL96, KS97a, LY98, LY01, MG91, SMH94, SG99, SD00, HD10, HA05, LAK10].
Prefix
[HJ01, MP93, San02, AFM03, BS03, EB13, Han89, LH04, LS05, LH09, SPH13].
prefix-based [SPH13]. Pregel [XYZW14]. Preliminaries [NBM93].
preprocessing [FSZ07]. Presence
[ADS01, LT96, HZA+15, ISM07, RLH03, SAOKM03, WE13, WSLC11].
preserved [SWW+17]. Preserving [NA02, CXY14, JP09, OMSGNSG05].
pricing [GRDB05, ZV12]. primary [AOSM04, BB03]. primary-backup
[AOSM04]. prime [YLB90]. Primitives [FAM96, AF17, BBH+17].
Principal [AHG12]. principle [GXYZ13]. Principles
[KAS07, DAG+17, FK89]. Prior [KHN17]. priorities [BSM08, KSS+07].
prioritized [LASS15, LW89]. Priority [BM97, BTZ98, Joh94, JNW96, KB96b, San98, TF92, FC90, HM06, MAKWZ13, MM07c, SR16, ST05].
priority-based [MM07c]. prism [Ros85]. Privacy
[CXY14, LLDL15, LZSL06, SWW+17]. privacy-preserved [SWW+17].
Privacy-preserving [CXY14]. Private
[REK10a, REK10b, CKMP17, LTWW12, RFPAG08]. Pro [KV10].
pro-active [KV10]. Proactive
[RLH03, TXLL14, WMES12, DW12, FX10, HOVC09, SZ09]. Probabilistic
[CWL+07, DM92, SCMS12, ESCV15, JHPL13, MK08b, SU87, WMG13, ZA05].
probability [DJH11, GXYZ13, KNS06, LNAL17, LXL12, NGQM12].
probability-based [GXYZ13]. probe [ZFWF06]. Problem
[AS95, AM93, AST05, BSH15, CLRW00, CRFS94, GP00, HH01, HC97,
Kau94, KBC+01, KLZ97, LF92, NW88, RDL95, TU92, TZ00, WH97, Zia92,
AY89, ANP07, BCMV15, BB85a, BSG90, BFG04, BMF06, Bož90, DM90c,
EE05, FZWL12, FM+08, GT04, HSSM07, Hsi04, HC11, HM05, Joh89,
KS91, LM05, LSS88, LW+03, LY108, LCCL10, LS91, LH09, MGG03,
Ngo06, OA10, PMV05, PBS08, PDB13, Sch13, SU87, Sta17, WLL16,
WCEA10, WZ91, WMG13, Cza13]. problem-size-independent [LH09].
Problem-Solving [KBC+01, LW+03]. Problems
[Ano96i, Ano99g, ADS01, BK95, BOS+95, BEE00, BGO95, BMCP08, CB95,
DS02, ESMG96, FR96b, FR98, FT94, GL92, KL01a, LSH96, MS94, MP96,
MS99b, OR97, RS96b, Ser97, SN93, Ten90, TF01, WM92, WLR90, WHT02,
WH98, ATH91, AG86, BGH+03, BS03, BBd90, CMMT13, CEGS07, KGJ03,
LW06a, Lin91, Los08, LGG08, LV88, MPZ09, Nik04, PPPS15, WRW13,
WMG13, YS11, ZTFK16]. procedural [Kan05]. procedure [Kub17].
procedures [DWHL87]. Process [CCM92, IAS+92, Kar95, KSP+92,
KOW97, Qia97, Ric98, SMR96, SS93, SF90, Ara90, Bic90, Gai87, Gai90,
HRF+11, Lo92, MEMEH11, SGT17, TKX+13, WMES12].
Processes [DZ97, VWHL96, BFTV87, GKL5, MAR05]. Processing
[AyJ93, AK93, AGWY11, CS95b, DDGI13, Emc13, GC95, GLGLBG12,
HPT+97, HJSIP87, HR90, IWM97, KSL85, Kr92, LWY97, LS97, LS85, LT94,
MSH90, MT85, NSM98, NMS93, OY13, Ros07, SH90, Sni03, SD88b, SSK96,
SWC+91, TAS+01, THBF97, VB02, Wee01, WRC+02, WSS93, Wei98, WA02, YL12, YJL16, ZM94a, ZM94b, AAA+16, ATDH13, AM11, BB87, BK13, BH13, CC08, CRL04, CCN06, CM12, DW04, EKNS17, GWW04, GWWL94, HBS17, HR89, JMS86, JDK+15, KL08b, KNS91, KKN13, Lee91, LB12, LKB+15, MS86, PYP+10, PI90, PGP+12, PVM06, Ren11, RAN+17, RG87, RTCG91, SCB08, SIY14, SK98b, Sto87, SCLL10, SI13, SA90, TZH+06, Trä09, WW07, Wan07, WJD91, WL10, XHY07, XQ04, ZMCP11, ZHH15, Ano93a, PRS14]. Processor [AW95, AERBL92, Ann94, BG86, CW93, CWW+95, CkLCK04, CkLCK05, DY99, DDD98, GW99, Goe94, Guo94, HO94, Hwa97, JB98, KC98, KF90b, KB92, LS91, Msd+95, MOh96, MNN98, MBK+92, NSS97, OS98, Par96, PT01, RKK97, SS93, SHC93, SS97, WCF94, YD98, YL98, Zha02, ACYS08, Bat05, Bod89, CL85, DL11, Dlh90, Gro85, HK08, HA05, KR11, KR87, Lee91, LC13, Li05, LY13, MM07b, OT86, PLD87, PR13, RR05, RLH03, S86, S89, SS89, SYH+13, SK91, ST85, SAJ13, SE15, TR08, Wi92, XP10, YBM13, LTKS90]. Processor-efficient [LS91]. Processor-embedded [CkLCK04, CkLCK05]. processor-in-memory [HA05]. processor-node [TR08]. Processors [CMS92, DBKF90, GR96, Hag97, HQPT99, HBB93, JR95, LPU97, MP96, AR17, AHeC90, BM17a, BD05, Bat05, BB85b, BR91b, CBM+98, CN4, CCK13, CKK+13, CRSB13, CK91, DDF+17, DPRW85, DWYB10, IC05, JJ12, JH+17, Jzf+15, KK88, LV15, NS12, NZ17, PK89, SP+17, SNM16, SC91a, SP13, XTN12, ZX14]. producer [KK11]. producer-consumer [KK11]. Product [AAD02, GE94, MSC96, CI03, Dim04, Dja06, ISA07, ISA10, JD12, ASA11, ST85]. Production [BBD+91, HKT+91, KM91, KM92, Nie94, Sch91, DM90c, GF89, HS86, SM6, TDBL13]. productivity [VFAD17]. Products [ANS97, WLD00, CP10b]. Professor [Ano04r]. profiles [YWAT13]. Profiling [BST01, KC17]. profit [LWZZ12, AM06, KSSK16, ZV12]. Profit-driven [LWZZ12]. Program [BDF92, BE95, DBP94, DD95, ERL90, Fer92, FJ93, GSG+93, LSCA93, LMC90, LAs+07, MDD97, MI93, NM93, PP96, PS01, RRS+08, SH92b, The02, WF93, YB01, ZYH94, GJG88, Kan05, RM90, ESA03]. programmable [AC89, HHA14, MM07b, PYP+10]. Programming [AT94, AM93, ABS84, BK95, BJ99, BCD95, Bail90, BN94, BB93, CP97, COV13, CCRS92, CCM92, CEf+95, CBicCD00, C99b, DRR13, FC95, Fer96, FB99b, GP94, GGW96, GAG+92, GLC01, HR00, JW94, JRR99, NT90, PA94, PM96, RA96, SS002, Sn95, SC95, VBF13, VFAD17, ZWC92, AE88, AB13, BMM05, Bog17, Bo97, BHS13, CK88, CCC+04, CTS17, CCE+17, DRT07, EE05, ECG9, EAS03, FGC17, GL89, HD13, HSS17, IEWK17, KKV10, KSG13, KZ11, MSS88, RSR04, RR05, RSW91, Ssd1B+10, TFMS15, YQTV12]. programming-based [KKVI05]. Programs [AH94, BB93, BCR96, BLG01, CMT93, CDY97, GCM+95, CMS92, DR98, dADB96, ERA95, Fai96, Gup92, GHSJ96, HLJ01, Kar92, KY96, LP97, Lum94, Lum99, Mah95, MJ92, QZ94, QH96, RJ97, RWA97, RY93, SIK93, SG93, SSHC00, SK93, TR96, TG97, YJ96, ZN01, ZH99, AY09, Bi90, CC16, CAK13,
DeG88, FKLBO8, GÖÖ16, HK08, HS03, LPK+10, LC91a, LC92, LZZ+11, McD89, NCT+07, Nic07, Pop91, SCMH13, THSS87, ZXB14. Progressive [RGS00, YIY97]. Project [BSH15, FCO90]. Projection [AAP01, HSJP87, FGL+11, NCA+12]. Projection-Based [HSJP87]. projections [KM03], PROLOG [SS97], promoting [ACM07], probe [DDG+17, GK15, MFVP08, OWK14], Pronto [PF08], PROOF [YJB91]. proofs [AP16], Propagation [CDP95, DF94, AAFV04, BEN12, CKN07, CDB04, KMMZ06, PLR07]. Propagations [WD92], proper [NGQM12]. Properties [BR95a, CW01, DC94, GK93, KAM94, YN92, NS90, PL06, WMY+17]. properties-aware [WMY+17], property [PB09]. proportionality [KR12, KCR14]. proposals [RFPAG08]. Protecting [SY04, LZSL06]. protection [DHS06, Lop13, YGZ+10]. protein [FGZ03, GZ08, LYL08, LVBO7, Ngo06, YL12]. Protocol [BMMS01, BHK17, CKL99, GRS97, GS96, GS01b, HP00, KUFM02, KB96a, LL98, Seb95, The02, AMT13, ARD14, ALF03, BOY10, CL03a, CCHC09, CS08, CL09, CHC05, EBE08, Eri88, EDH+17, GCS06, GZY14b, HLS12, HZDP12, LS06, Lun90, LM09, MCDs+06, MAGL13, MPG17a, NPGV10, NSA11, PGS06, SMPMLVLS11, TLY12, ZP106, ZWS09, ZLCJ12, SJS11]. Protocols [AS00, DS95a, Dah99, Dol97, DSS95, GS00, HNM02, KCDZ95, AP03, BW89, BS07, BPA06, CXY14, CB06, CDAN14, FW05, GS03b, JBY+05, KLP10, LPX05a, LOS08, MAM05, MMCL+17, MS15, OSLO5, RFS+12, Seb91, VA03, WTC08a, WTC08b, WCY08, mYA91]. proton [KDO+13]. Prototype [CSSY94, KYL05]. Prototyping [DN94, WH97, PRG88]. Provable [KMP+06]. Provably [DP99]. proving [Zah12]. proving [SHSH17]. provisioning [JAB12, KM17, Kim17, MZZC12, MCZ14, NF16]. proxies [TC04]. Proximity [OSZ98, CJDC10, SX08]. proxy [HC09, KERUM04, ZVL11]. proxy-based [HC09]. pruning [MCC04]. PSIST [GZ08]. PTAs [LoW06a]. PTNet [BFH+17], PTRAN [ABC+88], PTW [PW06]. public [AM06, SSX14]. publish [ZW13]. publish/subscribe [ZW13]. Publisher [Ano04d]. Pull [DLLL11]. Pulse [ZLPP01]. Purpose [SAB+92]. Purpose [GBF+92]. CBM+08, CW15, KLO8b, Lo92, LCB16, RGD03]. pursuit [YpGyLJ13]. pursuit-evasion [YpGyLJ13]. Push [DLLL11, AS95]. Push-Relabel [AS95]. puzzling [SPVvH03]. PVM [KOW97, LDZ97, SKH96, WAS95, ZPI06]. PVM-Based [WAS95]. PVMe [BR95b]. Pyramid [DS93, RL95, Tan84, LW90, Ros85, WW04]. Pyramids [NPi+96]. pyrosequencing [SPR+12]. Python [DPS05, DPD08].

QAP [BMCP98]. QC [ACYS08]. QC-2 [ACYS08]. QCD [IBP08]. QoS [BOY10, CS08, CKML12, DMB+03, D006, Kim11, Kim17, KKK+11b, LL07, LZZ+11, MS00, NP09, OY00, SJB12, TBH07, XY07, XG03, YSL08, YJKD10]. QoS-aware [CKML12, LZZ+11, NP09, YJKD10]. QR [Kau94].
Read/write [IRRS16, GNS09, IR12]. Reader [JB00, HV09].
readers [FKKR16]. reads [SPRG+12]. Ready [JM00].
[AA95, AK93, Ano92c, BPJ92, BA96, BA01b, CS93a, Cha94, DJ98,
EMP+96, GMM00, JH92a, KS97b, Lee93, LTY96, LM96, LML+10, MMRS98,
MMVR97, Moh97, MSST99, OY00, PS93, RDS02, RU99, RAS96, STN92,
THBF97, WLID02, Zim96, van96, AOSM04, AOSM05, BW08, BVGV14,
BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, ED005, FC14,
GZ+17, Gos90, HOVC09, HA06, HV13, HL07, JZ+17, KKW17,
LH03, LZCY09, MLGD12, MAM05, MAKWO13, MVS17, NA06, QJ05,
RLH03, TZH+06, WL05, XO05, ZHI15, ZB03, ZQMM11, ZHLQ12].
Real-Time [AA95, AK93, Ano92c, BPJ92, BA96, BA01b, CS93a, Cha94,
DJ98, EMP+96, GM00, JH92a, KS97b, LTY96, LM96, MMRS98,
MMVR97, Moh97, MSST99, OY00, PS93, RDS02, RU99, RAS96, STN92,
THBF97, WLID02, Zim96, van96, LML+10, AOSM04, AOSM05,
BVGV14, BDGR13, CCK11, CRJ10a, CRJ10b, CCN06, DKRC+15, ED005,
FC14, GZ+17, Gos90, HOVC09, HA06, HV13, HL07, JZ+17, KKW17,
LH03, LZCY09, MLGD12, MAM05, MAKWO13, MVS17, NA06, QJ05,
RLH03, TZH+06, WL05, XO05, ZHI15, ZQMM11, ZHLQ12].
realistic [KNS06, SJS11]. Real-TimeTalk [EMP+96]. rearrangeability [DD96].
Rearrangeable [CS93c, HJDH01, FY86, Pak95]. Rearrangement [BVBO2, GL92].
Reasoning [PS88, Ste95, eW95]. recall [BGBC+16]. recipients [Ros07].
reciprocal [SL90]. reciprocity [HBF12]. Reclaiming [GMM00, MMVR97].
reclamation [HMBW07]. Recognition
[BMRC99, RG08, SP96, WPKH94, LQ91, PD05]. recommendation
[COF+17]. reconfigurability [ZYX01]. Reconfigurable
[AT94, BAGS95, BSB96, BBR94, BM97, BA95, BG05, COS+95,
CCG+09, DS01, EL97, EH01b, FZVT02, HQPT99, HCWS94, JP95, JS94,
JD98, KF90a, LS95, LPZ99, LR93, MD01, MG03, M0797b, Nak95, NS94,
OS96a, TVS97, TBPV00, WH00, dR90, AM13, AHA+16, BM04a, BP05,
CDJ+89, DS04a, FX06, HPSM91, Lla17, Mat06, MP08, PP14, PVG09, SI89,
SL89, TRSS96, TJCB10, WJ91]. Reconfiguration
[CGA98, QCML94, UR94, YTR94, BAPRS91, DBLB+12, HBS17, JWSG14,
LMG15, LHX+16, PSMR05, ZBW+17]. Reconstructing
[BDG+15, OOW95]. reconstruction
[BDRB14, FCG04, FGG08, HS10, KM03, OGRV+12]. reconstructions
[SH+08]. Recovery [CP01, FC00, JF95, L09, LS01, MFS93, BG05,
DW03, MM04, MM06, MS02, PGS06, TTH12, ZWY+15]. rectangle
[Deh90, LV98]. rectangles [KF95a]. Rectangular
[WW96, Dj94, SB12a]. Rectilinear [Nic94]. Recurrence
[CP94, Car90, MP87]. Recurrences [BCZ95, GP94, NTT09]. Recurrent
[WT92]. Recursive [CW01, CB95, CTZ99, GHSJ96, KC99b, Lee94, LT07,
RS92b, SC99, ZY002, AKM15, ERS90, MM15, SMKL93, DC94]. red
[BE13]. red-black [BE13]. Redaction [SWC+91]. redirect [ACCP12].
Redistribution [PT97, RSB96, BB+06, GP05]. Reduce
Reduced [AP94, CC87, Gro85, HJ90b, LC13]. reduced-instruction-set [Gro85].
Reducible [DH94]. Reducing [BCM87, BD04, FGP05, GS00, IIH16, PB90, SS93, CK13, CX05, RBW+13].
Reliability [BDGR13, GP93, GST09, HHC98, MT93b, TLLV10, AH06, HHK15, JST12, KHW13, MS09, QJ05, TLQS12, TTH12, TYH09, VM10, WWW17b, XS11].
Reliability-aware [TLLV10]. reliability-driven [QJ05, TLQS12]. reliability-oriented [KHW13]. Reliable [AAH17, BG05, DMM99, GSN98, LHP07, MPS16, Tze93, AA16, ACPT15, HOVC09, KS04, KL05, MK08a, MRRT07, OWK14, ZW13].
Representational [Ebe94]. representations [BHR91, NCTT09].
Representative [BW96]. representing [BR91a, NAK04]. reproducible [PKZ05]. reprogrammable [LY15]. reprogramming [MAGL13, ZTGL17].
Reputation [HBC15, LS10, SL06]. reputation-driven [LS10]. request [XHY07, ZV14]. requesting [XO05].
Requests [TSC01, BPRG04]. require [AF17]. Requirement [DDD98, HV13]. Requirement-aware [HV13].
Requirements [CZPP16, DÔ06, MVM04]. rerouting [JWSG14]. Research [Ano01-34, GLW14, Kum17, MLZY17, WZ13, Hua17, Lan09, LZ11, PSGS17].
Research-oriented [Kum17, PSGS17]. reservation [RKK06]. reservations [CRH11].
Resettable [AKD06]. Resetting [YH97]. Residual [DRR96, SR95]. residue [DPRW85, PH16, Tay87]. resilience [WXZ05].
resemblance [CCN06]. Resource [AB84, BVGV14, BMF05, BSH15, BKK+11, CCK00, GMM00, ISAZ10, KM17, MMVR97, NSTD91, OMS4, RDS02, RSBN01, SM94, SZMK13, SSVC10, YT05, ZIO8, ALH+09, AB03a, AB05, AKSM08, AAA+10, ADD17, ATZ07, BMB+08, BSMH08, BSS+13, CDS10, CRH11, CKMP17, DW12, ESCV15, Fu10, HSL04, HHK15, JAB12, JK98, JHF+17, LCC+05, LC91b, LL10, LL12a, LS10, MAPF14, MZZC12, MCZ14, NF16, RCG+11, RKK06, RLM03, SSM+16, SNC12, Sh09, SM08, SCMS12, TFMS15, TKX+13, VMMB10, XL11, ZLL14]. resource-constrained [VMMB10]. Resource-efficient [SZMK13]. Resources [HS94b, ASKO16, AM06, AM07, AM11, LKM12, LZI+11, LDP+14, NVK+11, NAK04, SSM+06, SSM+07, YZS15]. respectable [GHK+12]. response [DHK04, HPB+10, VA07]. restart [NC13]. restarts [GK15]. restoration [UAPM07]. Restricted [Fra92, MSSE02, BS03, BMM08, DeG88, JZF+15]. Restrictions [Li92].
result [Lon04]. resultants [Eme13]. Results [IPK85, Sch91, SH92b, BR95b, HSH10, SZ03]. Retargetability [MB96b].
Retraction [PCX+14]. Retrieval [AA93, CLV95, KTP17, KV88, Lon04, SWW+17]. REU [Hua17]. Reuse [BC11, CCHC09, DSEP17, DK04]. revealing [AF17]. Reversal [NTA96, Ede91]. reversals [BS03]. Reverse [LP97, JWX06, NNM+14].
Riccati [MV94]. Rigid [JBL02, LF03]. Ring [BA95, CMS92, FFK97, Goe94, GH96, HJD+01, MBK+02, ZB97, BG86, LISKY13, LLDD15, MM04, PV17, RM10, RKS87, YC04, ZWS09]. Ringed [DVZ96]. Rings [FKSW97, GR96, KY02, KUFM02, LHS07, LSC00, MS94, Man97, YTR94, CL91a, FKK+04, LC92, LW06b, PR12, Sill90, Tsy07, WT09].
RISC [HC91, LPU97, MSC96]. RISC-based [HC91]. RESE [AZW13].
rising [ORR03]. risk [FGL+11, PVRS17]. RMF [YT05]. RMI [CCK+08].
RNS [PH16]. road [IB04, SWLZ17]. roadway [XCLR07]. Robin [CMS04].
robot [IIH+17]. robots [ZBW+17]. robust
[BS8+13, KR515, SSM+07, ZMG+16, AKSM08, BCCQ13, GA90, LDS16,
MSF+13, SSM+16, SNCP12, TZH+06], robustness
[CKWT17, Par05, SSM08]. Roe [dIAMCFN12]. Role
[Cha95, Won99, BCD+15]. Role-Based [Won99]. Rollback
[JF95, AAFV04]. Rollbacks [SS93]. rooline [KC17, NSKN17], root
[EL91, LXW+11]. Rosenberg [Ano00d]. Rosenfeld [Ano04r]. ROSS
[CBP02]. Rotation [HC95, HBH93, Ara90, EL88]. Round [CMS04]. route
[CDCD05, LPP05a]. Rout
[FF98, NSSS99, RMCM97, XM092, MVM04, SAOKM03, WCC02]. Router
[DRSB01, MBR08, MYD+11, XYKA08, CCQ+06].
Routers [CP01, CP04b, ZCF+17]. routine [IBP08]. Routing
[ASH+01, AZ01, AaJS01, BLPV95, BPr98, BA97, BA01a, BW95b,
BD01, BN03, CRV94, CL93, CW01, CS10, CL96, CC94, CLT96, CCR94,
CS93c, CDF01, CG02, Dol97, DG94, EL97, GG01, GHK98, G905, GT97,
HCWS94, HJHD01, IM00, JR92, KLLK98, LS94, LTW95, LT96, Li92,
LM95, LW95, LEB98, MS00, MS94, MW95, MR03, MJ94, NSSS99, NS95,
OM90, PR94, Par96, PA01, PL93, RS94, RS96b, RH05, RO92,
RR95a, RW97, SJ95, SJ96, SB02, SZB92, TBVP00, WLY01, Wan96, WN94,
WLD00, YBOY97, PIB09, AA14, AA16, AD10, ABF+14, BSW07, BOY10,
BR91b, BPA06, CI03, CL03a, CC14, CS06b, CS08, CD05, CMN12,
CAF+11, CL90, DMB+03, DJH11, EB09, GHY10, GDL+11, GAGPK03,
GLD06, GTCGLS01, HNSA07, Hu11, HL07]. routing
[JHJRL02, JL05, JLV11, KSL04, KPL01, KSK15, KMF+05, KO90, KT91,
KNS06, LPP05a, LS03, LTL12, LGK07, LY13, LH05, LLDL15, McDS+06,
MP916, MBR08, MVM04, MSAZ10a, MSAZ10b, NJ91, O904, OS05, OM10,
RD05, RFS+12, RB12, RHL98, SW12, Sch13, SLW95, SWLZ17, SK05b,
SJ11, TC04, TCHC12, TT07, VA03, WTB+08, WGS08, WW12, WCL+13,
XH03, XG03, YME06, YMP04, Zh12, ZV06, ZMC06, ZW11, ALF03].
Routings [WIKC97]. row [Mat06]. row/column [Mat06]. rows [ST87].
RPC [BF97, VD04, WSG91]. RRAM [TOR+14]. RRAM-based
[TOR+14]. rRNA [ZFWF06]. Rule
[KM91, Minr91, N9e94, SWC+91, XH91, McDS+06, Oza04]. Rule-Based
[XH91, McDS+06]. Rule-Firing [Nie94]. Rules [RS94, SM29b, SDC+91].
Run [FB98, FY97, LPU97, LLY15, LFA96, MDD97, PM92, SCMB90,
GF89, LW16b, LTC14, NVK+11, SFT04, VWH96, XL11]. Run-Time
[FB98, FY97, LPU97, LFA96, PM92, SCMB90, LLY15, GF89, XL11].
Runge [KR06]. Running [CCM+06, FG05, GRR13, dSS11]. Runs
[Lin93a]. Runtime [Bir94, BJK+96, KR97, KPC96, NS97, NSPC02, PT97,
BGA12, LFS16, LMY+11, SP13, SK91, TDBL13].
S [AGWY11, ASST05, BPJG92]. S-Nets [BPJG92]. SABA [ZVL15].
YI96, YWD08, AL04, ALM+16, AAD10, AOSM04, AOSM05, ALLM11, AH12, AM12b, BKS05, BGLA03, BHLT14, BFG04, BFM06, BKMT14.

scheduling [BH05, Cal06, CG11, CG12, CRJ10a, CRJ10b, CGW+03, CRA+08, CMR10, CDR12, CJY04, DBC03, DK08, DK11, DP16, DUV86, DRR13, DJT03, EHL+15, FA07, FW05, FPF14, GDP08, GYAB11, GVBB13, GK15, GMVRGS16, GFPC14, GP05, HSH10, HDJ08, HV13, JLY12, JHF+17, JBS14, KH17, KA03, KYS13, KKK11a, KM17, KUA07, KVHS07, KV10, Kim17, KK10, KSKK16, KDH08, KBC+10, KMP+06, KA05, LDZ+14, LDZ+17, LHK03, LWZZ12, LC90a, Li05, Li06a, Li06b, LL07, LQM+12, LW16a, Li16, LNAL17, LML+10, LSC+15, LYW+16, LPX05b, Lo92, MGS912, MLDG12, Mar88, MCAS12, MKK+11, MAHKZ12, MS86, MAR05, NSAS10, NH0+13, ND12, OA10, ORR03, PY09a, PK05a, PW17, PDB13, QJ05, QSL+08, QGL+09, SSFP11, SPC+17, SJ12, SMO14, SV15, SP13, SLG06, SCJ+08, SWP90, STK11, SZL10, SR16, SHC14, TLL10, TLLV10, TLQS12, TDBL13, TG03].

scheduling [BH05, Cal06, CG11, CG12, CRJ10a, CRJ10b, CGW+03, CRA+08, CMR10, CDR12, CJY04, DBC03, DK08, DK11, DP16, DUV86, DRR13, DJT03, EHL+15, FA07, FW05, FPF14, GDP08, GYAB11, GVBB13, GK15, GMVRGS16, GFPC14, GP05, HSH10, HDJ08, HV13, JLY12, JHF+17, JBS14, KH17, KA03, KYS13, KKK11a, KM17, KUA07, KVHS07, KV10, Kim17, KK10, KSKK16, KDH08, KBC+10, KMP+06, KA05, LDZ+14, LDZ+17, LHK03, LWZZ12, LC90a, Li05, Li06a, Li06b, LL07, LQM+12, LW16a, Li16, LNAL17, LML+10, LSC+15, LYW+16, LPX05b, Lo92, MGS912, MLDG12, Mar88, MCAS12, MKK+11, MAHKZ12, MS86, MAR05, NSAS10, NH0+13, ND12, OA10, ORR03, PY09a, PK05a, PW17, PDB13, QJ05, QSL+08, QGL+09, SSFP11, SPC+17, SJ12, SMO14, SV15, SP13, SLG06, SCJ+08, SWP90, STK11, SZL10, SR16, SHC14, TLL10, TLLV10, TLQS12, TDBL13, TG03].

Scheduling [TXLL14, TDP15, Tsu07, UM17, VD04, VMMB10, VB08, VS16, WJD91, WAE03, WL05, WL10, WBR13, XQ07, XLL15, XLHT13, YGW15, ZV06, ZVL15, ZTFK16, ZY12, ZV09b, ZS13, ZQMM11, ZHLQ12, ZLMM+14, dOCS14, FZWL12].

schema [TMK+17].

Schemas [Arb89, BG90a].

Scheme [BDF01, FY96, JB93, KK98a, LO96, MYD95, OS96a, Wu94, YD98, AOSM05, BBS13, CWLD05, EL88, ESGQ+11, GPJA10, GMXA07, HC09, HOVC09, KVHS07, KRL87, LTBO2, LHF91, LAK10, LH+16, LMJC11, LSZ12, LDD15, NC09, RS08, SSCP12, SZ09, SKMM04, TDC05, TC13, TCHC12, WL04, WW12, WW04, XYD16, XLHT13, YGZ+10, YJJ16, YAA10, YC12, ZCMY12, ZWWX16, ZBR11].

Schemes [yCM98, FM99b, GG01, LL95, LS01, SKK97, WRC+02, ZLLP01, AAD03, BLP05, BR91b, CI03, CMK12, GJXZ05, HDM11, HSM91, JWS91, MM06, SHH17, TW89].

Schmidt [ZLRP91].

Science [BKK+11].

Scalable [CCRS92, DUSH94, FMW+94, GT02, HS94b, KBC+01, AOS+05, AE88, BCD+15, CXY14, EFG+14, NTC03, VM03, WHW+17, YLCL11].

SCO [WTS03].

SCP [VB08].

SCP-based [VB08].

screening [AT03].

scripting [LMY+11].

Scrolling [Tay05].

SCSI [HZY04].

SCSI-to-IP [HZY04].

SCCTP [ZP06].

sculpture [LMB+17].

SDF [EC89].

SDFGs [BLMB13].

SDSM [CCM+06].

sea [ZWW17].

Seamless [HR00].

Search [BOSW94, BS00, BCM98, BSH15, CDRC99, Cza13, DM95, DM92, EHMN95, Fen90, LYM02, SIR92, BP02, B89, CTT16, CCLS94, CSW+17, ES12, GHI10, GJXZ05, KA05, LSS+11a, LSS+11b, MS09, MB13, PRHB06, Par9, PSC+16, PSPV15, PVEG06, RM10, RM11, RHL08, SP08, Sch13, SHL09, WGC09, YF09, Zep91, ZH07, CB11].

Searching [NBP98, NMS98, SH97, SGAC14, BA06, KIH15, LTWW12, Sch89a].

Section [Seb95].

Sections [BW96].

Secure [BKT95, CPA+11, ZHT16, ZBR11, GTGLS12, JZZ+17, KTP17, LAK10, LWN12, REK10a, REK10b, SXX14, Sic16].

Securing [SL06].

Security [SZ206, BAK+03, DZC17, LZS06, LCM+06, NZZ+11, OMO10, SEF06, TKG+17, VA03, XQ07, ZVL15, ZAAB17].

security-aware [ZVL15].
sediment [CvdBLo8]. SeeMore [LMB+17]. Segmentation
[KC99b, MG98, KYS13, MGGO3]. Segments
[RR95b, GC07, SWLZ17]. Seidel [HO94]. seismic [KSSL16]. Selected
[Ben15]. Selecting [NGM12, SSG93, KERUM04]. Selection
[JK00, LK96, PT01, Raj96, RW97, RCY97, Raj01, SH97, SB02, VS99,
WSA+94, WRC+02, Bad04, CKML12, EDÖ05, GM14b, KHN17, LGK+12,
MLHZ16, RH05, RAB08, RD05, RTZ11, SSS88, WLST16, CTC11].
selection-based [EDÖ05]. selections [JW89]. selective [XYG07].
selectivity [CTT16, GÖÖ16]. selectivity-driven [CTT16]. Self
[Ano02u, AS96, ABZ95, BGJDL02, Bec96, BCCD02, BAGS95, BPBR11,
CDD+15, CW05, CT04, DB08, DoI97, DPBNT12, FZ14, GH02, GS03b,
HPT07, HPT02, HNM02, JMI4, KY02, LLC15, Lla17, MM07a, NM02,
PK05c, SZ92, SEP96, ASKTZ13, BFG+03, BBS13, BR91b, BF04,
BZH06, CDDL10, CAK13, CAA+08, DLV11, DJ16, GKL10, IZ2, KO11,
KO90, LBMG15, LHX+16, LSH+13, dAMFD13, MYM10, MC91, NJ91,
PPTV+10, SLW05, TWQS12, TuR12, WRW13, ZBW+17]. self-adapting
Self-Allocating [SEP96]. self-correction [LSH+13]. self-deployment
[TVQS12]. self-manageable [dAMFD13]. Self-organization [CT04].
self-organizing [BF04, BZH06, KO11, MYM10]. Self-reconfigurable
[Lla17]. self-reconfiguration [LBMG15, ZBW+17]. Self-reproducible
[PK05c]. Self-Routing [SZ92, BR91b, KO90, NJ91, SLW05].
Self-scaling [FZ14]. Self-Scheduling [BCC96, CRA+08]. self-similarity
[ASKTZ13]. Self-Simulation [BAGS95]. Self-Sorting [ABZ95].
Self-Stabilization [GH02, HPT02]. Self-Stabilizing
[Ano02u, AS96, BGJDL02, BCCD02, DoI97, HNM02, KY02, NM02, BPBR11,
CDD+15, CW05, DB08, DPBNT12, GS03b, JM14, MM07a, BFG+03, BBS13,
CDDL10, CAK13, DLV11, DJ16, GKL10, TuR12]. Self-tuning [HPT07].
selfish [WGS08]. Semantic [FKJG08, RHL08, CM93, EHL+15, KLJ+11,
LR05, LKB+15, MLZY17, MA11, NSAS10, ZH07]. Semantics [JK89, HK05].
Semi [DS04b, XZ96, CTT16, KMS+06]. Semi-empirical [NZS96].
Semi-passive [DS04b]. semi-static [KMS+06]. semi-structured [CTT16].
Semiconductor [DM90a]. Semidirect [WLD00]. semifast [GS09]. sense
[BC11]. Sensed [DSAUM99]. sensing [HP06, ZRN+14]. Sensitive
[VR95, Ano04d, CP05, GS03a, GC07, Hu11, JL11, OWK14, PFJ04, RCG+11,
WCX11, YK04]. Sensitivity [HJ90a]. Sensor
[KS04, LDZ+14, LDP+14, STN92, THGY15, ASM09, Amm16, AHG12,
Ana14, AMT13, AYB+15, BAX08, BWP+11, BOY10, BPA06, BEN12, BZLI04,
CCW14, CKN07, CRWX12, CDR09a, CDR09b, CT04, DW06, DLLLI1,
DGBN14, DK11, DMP06b, DH04, EM11, GNY10, GDP08, GGY+04,
PYP13, GZY14b, GM14a, HZA+15, HVM07, HS12, HP06, HZDP12, HJ1R12,
IB04, JF12, JLY12, JBS14, JHL13, KKV10, KSSL16, KOA09, KO11, KO12,
KKK12, KKTZ13, KGN11, LDZ+17, LYT10, LL12a, LL12b, LI14, LÜ14,
LLW07, LZC11, LDS16, LHP07, MAGL13, MSOM09, MYM10, MK08b, NSA11,
NC09, OMSGNSG05, PFJ04, PLY15, PCX+11, PCX+14, PLR07, PB09, RM10, RM11, REK10a, REK10b, RLP14, RB12, SCN12, SS08, SZMK13, SCLL10, SJS11, TBHA07, TLY12, TDC05, TCS+10, TWQS12, VRM10, WW07, WMW09, WL11, WL10, XCLR07, XQ04, XHZ+10, YpGyLlC13. sensor [ZW11, ZTGL17, ZC04, dOBG+15, OEY07]. sensor-actuator [KKKP12, SCN12]. Sensor-centric [KSI04]. sensorial [VO89]. sensors [AKBD10, AD10, BFKP04, Cal06, CJDC10, DWX10, REZN17]. sensory [HRM17]. separating [HSS10]. Sequence [JP09, Zak01, AFM03, BCF14, BW09, BFKW13, BMARW07, DKKV15, FCS91, JV09, PTZ06, SPRG+12, SMB10, TMM06]. Sequence-preserving [JP09]. sequencer [BCM06]. sequencer-based [BCM06]. Sequences [Swa98, TR96, BNBR16, CJ07, LVBO7, SK09, Sei05]. Sequencing [CRL04]. Sequential [KF05b, BFTV87, Fen90, SBCI2b, SLKK13, XZB14]. sequentially [HK08]. Serial [EMMM94, MT97b, BOI91, CR91, CL90, SD88a, SI91]. serial-data [SD88a]. Serializable [Sch91]. Serializing [HHS12]. Series [CA95a]. Server [ALL99, AYI97, CM92, HBCM99, JSCB95, RUI99, HC09, JTZZ11, OS04, PM05, TBZB05, WSLW09, ZSLC11, ZVI11, ZI08]. server-side [ZVL11]. Servers [FM99b, AAA+10, Bar05, BPOR04, CSWO03, DLW+12, KCD08, LY12, LWY+16, MZZC12, PSHP05, Wan06, WDDK09, ZW03]. Service [CTTO8, JRR99, LAZC00, RGVB00, ABF+14, DB08, FZ14, HOE+09, JM14, KMMZ06, KKKP12, LNA12, LC07, MHLZ16, MXSL12, MCZ14, NP09, PY09b, RA11, SB12, SFEF06, SMB10, SSVC10, TR16, WMY+17, WS06, Yan09, ZI08]. service-aggregate [Yan09]. Service-oriented [CTTO8, SFEF06]. Services [ZR00, AK06, AM07, KSSK16, LCC+05, LWZZ12, XJS03, YWD08, YAK15]. session [LAK10, MZZC12]. sessions [TK07]. Set [Als01, BCD95, DM92, HCR12, KF95a, KSA95, KHS06, RDL95, AFD+11, AP16, BD05, CC87, DW06, Gro58, HES10, HJO7, HDMC11, JPD17, Lon04, MHLZ16, Nie07, SZW05, WCW03, WCKD06, YSS11, ASST05]. Set-Based [BCD95]. set-distributions [Nie07]. Sets [AAP01, CGL+95, EP90, GT97, Pov99, FS014, FSV17, KCR14, Lon04, MP08, PK07, SHC14, YY12, dOCS14]. Several [CP92, MCAS12]. shader [YP+10]. SHadoop [GYY+14]. ShadowObjects [JRR99]. shallow [CvdBL+08, dAMCFN12]. shape [NCA+12]. share [PVGG06]. share-nothing [PVGG06]. Shared [AGW98, AGW01, AD95, BS96a, BJS03, CP91, D95a, DH95, GDN+98, HV95, HS00, HPTO2, HTL99, HA92, JF95, JHF+17, KRC00, KS97a, Ke00, KC94, KY96, LK98, LA93, LT94, Lu01, MF94, MS98, MG91, MSST99, PY96, RL96, RJY96, S0D99, SC91b, TJ92, TTG95, TTY95, WII92, YW91, YMR93, YL98, Zak01, AL04, AAC10, BC06, Car95, CCM+06, CDAN14, D191, ENK17, FZC+05, IRS16, KK14, KL10, KMS10, LLI+11, BHT08, NSTM91, OC07, Pad91, PY09b, PK05b, RFPAG08, SB15, SAJ13, SS17, SM04, TGPUC16, TK07, WL92, ZLW12].
shared-coin [AAC10]. Shared-Memory [BS96a, CP91, DS95a, HA92, KS97a, LK98, MF94, MG91, SDS99, TTG95,YW91,YL98, Zak01, BC06, DI91, FZC+05, KKR14, KMS10, NTS91, PK05b, RFPAG08].

Shared-Nothing [LT94]. Shared-Noting [HTL99].

Short [OP96]. shop [Boız09]. Short [ESTA94, KLC05, MBS+12, PARB14].

Silence [DKY01, FJ93]. Silent [DJ16]. Silicon [THN+93, HRG+11]. SIMD [AB93, BAES92, Che05, CP94, CD95, FAGW95, GGW96, GSWW04, HCS+00, HC04, Ho91, IK93, IKS87, JMS86, KNS91, KLS90, LWOG02, ML89, NT93, Nas94, RS96a, RS90b, Ren11, SI91, Ume85, WSA+94, WLR90, ZLRP91].

Simulating [DS02, DN94, LC90b, NFHL13, eW95, AAK+13, GN15, WCKD06].

Simulation [ABDS02, Ano92c, Ano02v, AS91, AB93, BAGS95, Bou02, Cha96, CZPP16, DMH90, DS93, EH01a, GGN93, JH92a, KZ96, LZ02, Lin93b, Lin93c, LA93, LLCC02, MHF93, MRR+02, NH93, Prah93, RSD94, RS92d, SMR96, SH92b, SSRV94, SS93, The02, ZL93, AZW13, AZC13, BBH+17, BM04a, BD04, BAL05, BMF05, CGL+14, CvdBL+08, CTCX08, DAG+17, FGM+03, FCG+14, GRR+05, HDR+05, Koc91, LVR90, Mat06, NSKN17, PARB14, PLD14, PTK+13, Q505, RW02, Rao16, WBTM09, WF89, ZZ90, ZCK+02].

Simulation-Based [RSD94, SSRV94]. Simulations [AS93, Ger98, GM94b, HP95, KP00, LHM95, NM95, PAH+98, RPS93, AM12a, DB11, FC14, FIJ04, LTL06, SDG08, SM04, VBDRC13]. simulative [WH08]. simulator [CZPP16, DOCS14]. Simultaneous [CW93, ABC+09a, BPRG04, Che90, FC90, LY10, MR09, PTZ06, SLG06].

SINGHALH [Ano96]. Single [ALL99, HLM16, JBP00, MWL00, TZ00, LPLFM+12, RFS+12, SSFP11, SP+17, PR13]. Single-Chip [PR13].

single-hop [RFS+12]. single-ISA [SSF11, SP+17]. Single-Source
Single-System-Image [MWL00]. Singular
Sink [THGY15, LLDL15]. sink-location
sinks [RB12]. Sisal [FCO90, PAM94]. Site
situation [LR03b]. sixth [Arb89]. Size [COS+95, CLT96, AST12, CVJ09, EB13, GSWW04, JM14, LH09, NW88, OS04]. size-independent [EB13]. sizes [GPT06b, SMT15]. Skeletons
Sink [THGY15, LLDL15]. sink-location [LLDL15]. sinks [RB12]. Sisal [FCO90, PAM94]. Site
situation [LR03b]. sixth [Arb89]. Size [COS+95, CLT96, AST12, CVJ09, EB13, GSWW04, JM14, LH09, NW88, OS04]. size-independent [EB13]. sizes [GPT06b, SMT15]. Skeletons
Sink [THGY15, LLDL15]. sink-location [LLDL15]. sinks [RB12]. Sisal [FCO90, PAM94]. Site
situation [LR03b]. sixth [Arb89]. Size [COS+95, CLT96, AST12, CVJ09, EB13, GSWW04, JM14, LH09, NW88, OS04]. size-independent [EB13]. sizes [GPT06b, SMT15]. Skeletons
[LJKS02, Tay02, BM14, SSM89]. **Sort-Last** [Tay02]. **Sorted** [SH97]. **Sorters** [BNP98]. **Sorting**

[ABZ95, CQ95, DL98, FKK+04, FY96, HQPT99, HBJ98, JP95, Lee94, Lin93a, MP93, NS94, OS96a, RW97, SCC92, SS92, SM00, VN93, WRC+02, Che89, FCS91, KR11, MS88, PB90, SSM89, Sei05, SA08, TW15, Ull84, ZFL89].

Sorts [ZAW94, SI86]. **SOC** [PP92]. **Sound** [DKY01, CKK+13]. **Source** [AY09, TZ00, LPX05a, LCCL10, NCB+17, ZSW14]. **sources** [Lon04]. **SP** [ASH+01]. **SP1** [BR95b]. **Space** [BW96, BH93, DY99, GG01, GRS97, KM97, KY96, LZ02, NC97, PPSV15, RP98, SH98, WA02, WS97a, AD12, Ara13, ACFK07, BBM08, CKK+13, Dja04, HY09, KA05, LKY13, MSM09, ST12, SZB16, MSS00, YQT12]. **Space-Based** [LZ02]. **Space-Efficiency** [GG01]. **Space-efficient** [PPSV15, Ara13]. **space-optimal** [Dja04]. **space-optimality** [HV09]. **Space-Time** [WA02]. **Spaces** [RS92a].

Spanners [RL95]. **Spanning** [FA95, KC98, KC99b, WB01, BFG+03, BC05, BC06, BPBR11, BBL04, CFJW13, GHY10, tH90, HAC17, KG10, LVP08, Lin03, OMSGNSG05, Ten16, TDM05, WFJZ12, WIB12]. **Sparse** [Bas97, BW95a, KK98b, Man94, MSC96, NFEG97, PR13, Shn95, UZSS96, Win85, AAD05, ANP07, ASES15, BC06, CP10b, GMMP12, LHW14, LV15, MBW16, PB15, She06]. **Spatial** [GSG+93, CRWX12]. **Spatial-Temporal** [GSG+93, CRWX12]. **Spatially** [DS02, Rao16, SBC+12a]. **spatially-explicit** [Rao16]. **SPEAR** [RG06]. **Special** [AP93, AL99, AB03b, AS13, Ano95i, Ano95j, Ano96j, Ano97j, Ano99g, Ano02v, BOP06, BD00, BS09, BS11, CHi92, CDJL09, CDJL11, DOP98, Dek00, DF12, DT92, ES97, FTM+14, FR98, FPS11, FPS12, GC95, GMSS+11, GSO1a, Gra09, Irw88, IB04, JW94, KL08b, KRS13, KRS14, KRS01, Lan09, LZ11, Las12, Lin93b, LK10, MSGS+13, Min91, MNK12, NT90, Ola01, PN97a, PN97b, PA96, QGB+17, RLA+16, RLA+17, Raj08, Sch90, SXZ06, SH92a, SB97, Sto90, SFC17, TH11, TFV+15, GB90b, TY95, Wee01, XJS03, YW91, ZO97, dVCP06, Cuz11, Gra10a, KL08a, KL11, MKN14, PR14, WW03]. **Specialized** [QOvdG01]. **Speciating** [GB06]. **Specific** [KRS13, KRS14, PP92, SK93, MRS+14, SS94b]. **Specification** [AS00, BR95a, BN94, RS97, RFL+13]. **Specifications** [LSCA93, BCM06]. **Spectral** [SANY94, SSB98, AT03, BCM06]. **spectral-screening** [AT03]. **spectral** [FCZ+12]. **Speculation** [AC16, FKKR16]. **Speculative** [RG06, MG09]. **Speed** [BBH+97, Fer95, LI16, PVG09, SR91, WCYR08, HP97a]. **speeds** [LFS16]. **Speedup** [AMB95, DBP94, FFK97, Lnm99, NS93, YH07, NW88, SC91a]. **speedups** [Vis87]. **spikes** [ST08a]. **spin** [AK07, FPM+14]. **spin-transistor** [FPM+14]. **Spinning** [BHK+94]. **Spintronic** [NKV14]. **Spite** [VR94, DB08]. **Spline** [BNBR16, CWW+95, CY96, GM95, Meg91]. **Spline-based** [BNBR16]. **split** [WCWH03]. **split-stars** [WCWH03]. **splitting** [PVGG06, WSH+03]. **SPMD** [Gup92, LZZ+11, OKB95, RW93]. **SPMD-style** [LZZ+11]. **SpMV** [YLL17, ZGG+14]. **spoofing** [KMMZ06].
Sporadic [MAPF14, dOCS14]. Spot [LKK94, TY90a]. spots [LK90]. Spread [REZN17, SIY14]. square [BB85b, EL91, LTW+90, XBK07]. squared [RIZ90]. Squares [CB95, ZY002, BBd90, HLS03, KAP90, LTW+90, SMKL93]. Squashed [BG90a]. Squid [SP90]. Squared [RIZ90]. Squares [CB95, ZYO02, BBd90, HLS03, KAP90, LTW+90, SMKL93]. Squashed [BG90a]. Squid [SP08]. SR [DYL+12, GRJ+15]. SR-IOV [DYL+12]. SRAM [JP09, WCF14]. SRAM-based [JP09]. SS [CLOL17]. St [BCM15]. St-connectivity [BCM15]. Stability [Wor93, KMS07, LXW+11, WCF14]. Stabilization [CG02, GH02, HPT+14, NA02, DDNT10]. Stabilization-Preserving [NA02]. Stabilizer [AD02]. Stabilizing [Ano00u, AS96, BGJDL02, BBCD02, DGDF10, Dol97, GH96, HNM02, KY02, Kar02, NM02, AFNT17, ADD17, BFG03a, BFG03b, BBS13, BPBR11, BDP16, CDDL10, CDD15, CW05, CAK13, DLV11, DB08, DJ16, DPBNT12, GK10, GS03, JM14, MM07a, PV07, Tur12]. stable [AMK07, SKK14, SLW10]. Stack [PVGG06, CS06b, HSY10]. stackable [SSX14]. Stage [FT94, SZ00b, CC14, HDJ08]. staging [EDO05]. Staircase [Mck94]. Stalling [BHH05]. Standard [CB99, PF08]. Star [FA95, KAM94, Lat95, LK94, M94, OS97, PRW94, RW97, RY93, RLS96, SAOKMA02, dBL95, AAD03, CM03, DFP06a, FMM+08, PK04b, SS05, WCC02]. star-access [DFP06a]. Star-Connected [dBL95]. Stardust [CP97]. Stars [MR03, WCWH03]. starvation [LASS15]. starvation-free [LASS15]. stable [AMK07, SKK14, SLW10]. State [FKB17, HB97, HNM02, KM92, LSH+13, NC97, PSC+16, ASKO16, AD12, CWLD05, GÖÖ16, GFC14, KA05, LMR05, LW06b, MSM09, WCO+09]. State-based [LSH+13]. State-of-the-art [PSC+16, WCO+09]. State-Space [NC97, MSM09]. Statement [AMB95, DR95, ALS91]. Statements [KHS96, SOG94]. Static [Kop97, TG97, FZ90]. Static [AKSM08, BN90, BS+90, BSMMH08, CC91, ERA95, GF89, KKK+11b, LC90a, LA04, M3d+95, OD95b, SSM+06, YMLP14, BSS+13, DK08, KA08, KMS+06, McD90, PC11, SSM08, SWP90, SSM+07, ZXY011]. Statically [LBR90, Mat06]. station [GPT06a, RBD08]. Stations [DKMV01, DDNS06]. statistics [GA90]. steady [LMR05]. steady-state [LMR05]. Stealing [Ano00d, LS97, Ros99, DKKV15]. Stein [QOvdG01]. Steiner [LY10, Sta17]. Step [CW00, Bog17, KKR14, Yan04]. steroids [Bar05]. sticker [GPX08]. Sticky [Kop97]. STICS [HZY04]. Stigmergic [PR06]. STLMA [NKV14]. STM [HHS12, PGRP17]. Stochastic [CTD99, FX06, HPT+97, JSS92, QZ94, RS92d, SSM+16, SSM08, ZS13, BM11, CMT92, MM06, MS86, MBO11, WMG13]. Stochastic-based [SSM+16]. stop [LLT12]. Stopping [BSS99, AMT13]. Storage [CLV95, HLL+95, LL05, BL05, BCK+09, CGG+09, FLCB10, HZY04, HK04, JWH+17, KR12, MAPIF14, MPG17a, SSX14, SWW+17, WCWO17, WWW17b, XCLR07, YYLC11, ZY09a, ZYW+15, ZGG+14, ZWWX16]. Store [CP90, NS95, VA07]. Store-and-Forward [NS95]. stores [ZWQ+16]. Storm [KKH17]. straight [G07, WR91]. Strategic [RA11]. Strategies [AM07, BDjQ86, BHK+94, BCR96, CP92, CGA98, DL01, FF98, GJG88,
GM99, LK98, LHM95, Lun94, MS99a, OP98, SMH94, VB02, VA03, YB95,
YL98, Zhu92, ZM94b, BMARW07, BHS13, CGM14, DM94, GRV08, GM14b,
HV13, MV05, PP06, RAB08, SSGZ13, Wu11]. Strategy
[CS00, GM00, HHC98, KBC+01, MD13, PAM94, RS92b, ASD09, ASES15,
BBM08, CTT16, DLW+12, EM11, GOH+13, GRDB05, GMVRS16, GLD06,
Hsi04, JF12, LY91, LL07, LVP07, Ngo06, SK09, TLLV10, TW15, WCC02,
WYW15, ZV06, ZVL11, ZV14, ZVL15]. Stream [HPT+97, WQZ+13,
AAK+13, ARSM+05, AM11, CK08, Ef07, GOO16, KKH17, RAN+17, ZHH15].
stream-based [ARM+05]. Streaming
[CS00, GMM00, HHC98, KBC+01, MD13, PAM94, RS92b, ASD09, ASES15,
BBM08, CTT16, DLW+12, EM11, GOH+13, GRDB05, GMVRS16, GLD06,
Hsi04, JF12, LY91, LL07, LVP07, Ngo06, SK09, TLLV10, TW15, WCC02,
WYW15, ZV06, ZVL11, ZV14, ZVL15]. Stream [HPT+97, WQZ+13,
AAK+13, ARSM+05, AM11, CK08, Ef07, GOO16, KKH17, RAN+17, ZHH15].
stream-based [ARM+05]. Streaming
[CS00, GMM00, HHC98, KBC+01, MD13, PAM94, RS92b, ASD09, ASES15,
BBM08, CTT16, DLW+12, EM11, GOH+13, GRDB05, GMVRS16, GLD06,
Hsi04, JF12, LY91, LL07, LVP07, Ngo06, SK09, TLLV10, TW15, WCC02,
WYW15, ZV06, ZVL11, ZV14, ZVL15]. Stream [HPT+97, WQZ+13,
AAK+13, ARSM+05, AM11, CK08, Ef07, GOO16, KKH17, RAN+17, ZHH15].
stream-based [ARM+05]. Streaming
Supertoroidal [DF95]. supervision [BPA06]. supplier [SK11].

Support [AL99, AH94, CP99, FBK98, KR97, KC99a, LTH97, LFH+03, MBL+92, NS97, PL95, RPS93, TF92, YFS+15, BAL05, CCQ+06, CCC+04, CCK+08, DRR13, GB13, HPB+10, Hus17, JBY+05, Kim11, RR05, SD10, SK91, SAB+92, SR14, TYH09, TGPUC16, ZBR11, ZWRI07, LST+13].
supported [YPCW16]. Supporting [HA06, Sto87, WLNL06, BSW07, LSZZ15, SKMM04, ZTGL17]. suppression [DZC17]. SURFACE [CWW+95, CY96, VBDR13]. surrogate [UAPM07].

Swapped [Par05, ZXP09]. Sweep [GGN93, DMCF03, GM14a, KMP+06, CMR10]. Switch [ASH+01, CRD12, OK01, PD92, CL90, LHKL03, WLWW09]. Switch-based [CRD12, LHKL03, WLWW09]. Switchable [SB84]. Switched [CCR94, CS93c, GGN93, LK96, WB01, EB09, KYL05, LWC14, Nap90, PYF08].

Switches [KJ84, PL93, TF92, MG09, PY09a, PY09b, VAS+13]. Switching [DRS01, GB09, Guo94, LYL93, OY00, ST02, BKCM17, BMIM07, CC14, KG10, LCC10, LWLD12, PL06, ST06, STKW12, ZPK+14]. Sybil [YXX13].

Symbol [OWK14]. Symbol-level [OWK14]. Symbolic [VI96, CJY04]. Symmetric [BJ99, DHE09, HOE+09, JH01, Kau04, Oro87, ABGV11, ADV14, BC05, BW08, BB85b, EM89, KA03, VGAB08].

Symmetrical [IM94, QY94]. Symmetry [Ke100, HT90, MJ03]. Symposium [OY13, Wee01, Ros07, Sni03]. SYN [XCH08]. Synapse [Ram92].

Synchronization [ASB97, AGW98, ABP92, AH94, BA96, Cha95, CTC+10, FR92, GVA+08, JLRA97, MRV98, OKB95, PB95, RL96, RSS99, The02, WUG99, XMN92, CRA+08, FZC+05, HMBW07, HLA06, HLS12, HZDP12, LA06, PB09, TG04, Tau16]. Synchronized [LNA12, JS86, XLL15].

Synchronizing [DKMV01]. Synchronous [BCV05, CS95c, GV94, NSLK99, SKR93, Sch91, Soh96, ABBD14, DGD01, FXW03, KVN17, MCS14, MEMEM17, PK05a, TBG+17, WTC08a, WTC08b]. synchronously [SP90]. synchrony [CB15].

Synthesis [HLJO1, Lis90, PP92, CTK+13, HDT+05, KKB+06]. Synthesize [HLJ98, DSEP17]. synthesized [MC17]. Synthesizes [Ram92].

Synthesizing [SL89, Che66]. Synthetic [Pop91, AAK+13]. Sysplex [NK+97].

System [BK95, BBD+91, BA01a, Bev02, BMM97, BJK+96, CP92, CP99, DHR96, DSD+97, DH95, DT92, FKB17, FPD93, GH90, HBCM99, HCS+00, HLL+95, HWLR14, Kav93, KMB91, LP96b, Lu01, MWL00, MKY+97, MBL+92, MO97, MS96, NK+97, NPPC02, SEP96, SG96, Tse95, UR94, wXH00, ZMPE00, dR09, ABC+88, AMK+07, BL05, BCK+09, BGA12, BMF05, BPP05, BSS+13, BYH+17, CBP02, Car95, CLMRL15, CSW08, CCEB03,
[CDJ]+89, CK91, DS04a, DJ91, DTK11a, DLW+12, DB86, DMS+16, EC89, Fer90, GTGLSA12, HJ90a, HM06, HLBM16, HHA14, Hus17, JW89, KHN17, KCD08, KSB11, KMF+05, KS13, KC04, LFH+03, LC91b, LLWC17, LY13, MM07a, MK08a, MC03, NAK04, NTC03, No12, OYE07, PKN08, PKN10, PLD14, PK05b, RV13, RAN+17, SPRG+12, SSM+16, SFT+13, SC04, SK91, SSX14, SSL04, SM86, VD04, Wan06]. **system**

[WHW]+17, WS06, WZQ+13, WYTX13, YCH+10, YLB90, ZV09a, ZMC06, ZHH15, ZJ06, AGW91, HCAA93, Sie16, Ski16]. **System-Level**

[Kav93]. **Systematic**

[IAS+92, KK95, LB89, WAS88, ZTGL17]. **Systems**

[ASH+92, LB89, WBC93, WAS88, ZTGL17]. **Systems**

[WUG99, XH91, YH97, ZR00, Zia92, ZM94b, van96, AL04, ALM+16, AA16, AAK+13, AOSM04, AOSM05, AD12, AFM09, AF06, ACCP12, AAI+15, ABBD14, AH06, BM+08, BBCQ13, BB03, BGD13, BW09, BRP03, BJ03, BK08, BS92, BKMT14, BD04, BPW05, CUL05, CRK+09, CF88, Car90, CCS06, CKWT17, CTC11, CV90, CRJ10b, CGW+03, CRI06, CP17, CAF+11, COF+17, CSW+17, DZC17, DK08, DFP06a, DB11, DNT10, DGF05, DGF10, DM04, DWY10, DM90c, DQ+09, DÔ06, DL12, DW04, DH11b, FJC04, FWM+10, FPS11, FLB10, FZ10, GM12, GS99, GL89, GNT04, GMVR16, G090, G91b, GWL94, GC05, GRR13, GMBZ07, GF89, HRC09, Hal05, HC09, HOE+09, HBC15, HCZ04, HS86, HA06, HP06, HA91, HA05, HHK15, IRS16, IS06, JSWB92, JMS86, JKE13, JST12, JLM08, JL11]. **systems**

[JZZ+17, JHH+17, Kak15, KKR14, KHH13, KME99, KVV17, KUA07, KLY17, KSG13, KAS07, KL05, KMS10, Kub17, KMS+06, Lai86, LLLC15, LFS16, LB02, LTL06, LGZ+10, Lan90, LZ11, LLL06, Lee90, LHF91, LHK03, LJ05, LAK10, LZCY99, LASS15, LZ05, LC90a, Li06b, LVP07, LQM+12, LNN17, LW89, LPLFMC+12, Lop13, LCM+06, LLS07, LM09, LZ13, LLW12, MGS12, MLMS12, MB13, MP10, MK+11, MAHK12, MAKW13, MS86, MTS90, MFPV08, MLK12, MSK+16, MBH+08, MGRR14, NFHL13, ND12, NZY+11, OS04, PMV05, PMV06, PRHB06, PC11, PH16, PTA08, PF91, PM011, GQZ17, RLA+16, RLA+17, RLI03, RN04, SSFP11, SW12, SDD04, SP08, SP13, SFT+13, SYU+07, SS08, SCB90, SU87, She09, SCS+08, SCMS12, SXZ06, SHLN09, SY04, SHL+13, SCJ+08, Sie16, SLKK13,
92

SI13, ST05, TLLL10, TLLV10, TLQS12, TFMS15, TW89, Ter16]. systems [TRSS06, TB90, TCHC12, UAKI06, VMMB10, VS16, WCO17, WXZ05, WTC08a, WTC08b, WDDK09, WLST16, WZZ+17, WWW17b, WSG91, Wu11, WSLC11, XHY07, XQ07, XLL15, XLYT13, Yan04, YLL17, YL89, YQTV12, YZW+15, YLYC11, YXZ11, ZZ90, ZAAB17, ZFS07, ZWY+15, ZTFK16, ZV09b, ZQMM11, ZBW+17, Zim90, dG91, dlAMCFN12, FPS12].

Systolic [AMS94, BPST96, BMM97, BL90, CDR90, GE94, IPK85, KL84, LM00, Meg91, MV94, MT97b, Ram92, TY90b, Tse90, Win85, WD92, CL85, Dja06, EL91, KT89, KH89, LB95, Lis90, MP88, PYP+10, PS88, Sch09b, ST87, ST89, THSS87, Ume85, WAS88, Zim90].

T [CRJ10a, PTK+13]. T-L [CRJ10a]. Tables [TT10, ASD09, HKW05].

Tabu [BKS05, CMM97, CMM00, DGG+15, TP+15].

Tall-Skinny [BDG+15]. TAM [CGSV93]. Target [ERL90, CJDC10, KO11, NDP13, WW07, YCC05].

target-driven [YCC05].

task [CRK+09, VRS17].

Technical [Ano93a].

Techniques [ADM+94, CS95b, Dah99, ELS94, FY97, Gil94, GS00, HILLY95, HTL99, JSCB95, KGV94, NPY+97, PA96, PYF08, RSH99, Tay02, UZS96, AOSM04, BBR13, CDB04, CDR09a, CD95, FM85, Gao89, GRR+05, KA08, LPK+10, LP88, MBW16, Pla08, RM11, Raj08, RG87, SF06, TZ07].

Technology [Ano02v, ER97, GC95, MKY+97, MRR+02, OB88, PBB+17, TMM06].

Telegraphos [KMKD97]. Telemedicine [CY99].

Telescience
[PLL⁺03]. Telescoping [KBC⁺01]. Temperature [SWHB17, ZWWX16].
temperature-constrained [ZWWX16]. template [EFG⁺14, RS90a].
Templates [ADS98, DP90]. Temporal [GSG⁺93, Lo92, RJA97, SHL⁺13,
VWHL96, BK93, CRWX12, WCF14, XYZW14]. temporary [Wan06]. Ten
[TAS⁺01, KA08]. tenant [PVRS17]. tensor [IEWK17, LGK⁺12, SMH⁺14].
Terabit [SH98]. term [BV13, LKM12, MBS⁺12]. Terminal [HHC98, Li17].
terminals [HB11]. Terminating [Lin93c, MS15]. Termination
[AS93, CW93, HTB98, KHK03, Lai86, Ric98, Tse95, BFTV87, CV90, Eri88,
MD07, MFVP98]. ternary [GNW03, KRM14]. Test [GRS97, PKK91, Soh96,
WW97, ALLM11, DWHL87, LTG14, NCA⁺12, ALLM11].
test-and-treatment [DWHL87]. testbed [HGFF10, LBE03]. testbeds
[VPHML06]. Testing [CY95, GFB⁺92, GS99, KW02, WG93]. tests [Psa06].
tetrahedral [ZZ⁺17, LWCC15]. text [BV13, SWW⁺17, WD13]. Their
[Kop97, BM08, CRWX12, Si86, TDM05]. Themes [RCY97].
Theory [HC97, LZC11, CKT11]. Theory
[CC08, DM90a, PTA08, VBM90, ZLCJ12, BDJQ86, BM08, GRDB05, Zim90].
Thermal [SHSH17, LFS16, SNMB16]. thermal-aware [LFS16]. thermally
[TKKH17]. thin [ST08a]. thinking [CCE⁺17]. Thinning [KLP10]. Thread
[OTKT12, CGM14, CDAN14, DWYB10, KL13, RSCQ17, SLG06, ST05].
thread-parallelism [RSCQ17]. Threaded
[NS97, BBH⁺17, Kep03, KL15, PYP⁺10, CGSV93]. threading [Ngo06].
Threads [GSC96, LFA96, SEP96, TG99, DKRI09, PMdO11, PL03b].
Threats [SFEF06, TKG⁺17]. Three
[FCG04, FLS⁺97, FT94, GG01, GH96, KR98, NEG85, PD92, SSG93, SS020,
YMR93, ANEA13, LW06b, LDS16, YJL16, ZF07]. three-body [YJL16].
Three-Dimensional [FLS⁺97, KR98, NEG85, FCG04, ANEA13, LDS16].
Three-Stage [FT94]. three-state [LW06b]. Threshold
[CGA98, NKV14, PAM94, Nik04]. Threshold-Based [CGA98]. throttle
[XCH08]. Through-Wafer [MLW⁺97]. Throughput
[FM99b, HWC08, HB11, JR22, MMVL11, BS07, BLMB13, DW12, GRR13,
HVV16, HWLR14, KSB11, LMR05, LH⁺16, LNC13, SA11].
Throughput-coverage [HWC08]. Throwing [Tse95]. tickets [LMJC11].
tier [ZZC12, MCZ14, WQL14]. Tight [BBH⁺98, FSZ07, Mat06, CH06a].
tiled [JHF⁺17, WQZ⁺13]. Tiler [PCMM⁺17]. Tiling
[AR97, CWW96, RY92, Xue97, KSG03]. Time
[AA95, AK93, Ana14, An92c, ADS01, BPJG92, BBM⁺02, BA96, BM04a,
BOSW94, BH93, BGOS95, BTZ98, BA01b, CW00, CB15, CS93a, Cha94,
COS⁺95, DP98, DS01, DJ98, DD95, EL97, EMP⁺96, Fgh96, FBK98, FY97,
GS99, GMM00, HRG⁺11, HAJ92, JR95, JH92a, KF95b, KSB7b, KEA95,
LTWY95, LTY96, LPU97, LVR90, LM96, LAS⁺97, LFA96, MMR98, MT95,
MMVR97, Mat93, MDD97, Moh97, MSST99, MS99b, Nas94, NIR86, NH93,
NP09, OY00, OOW95, OS96b, OSZ98, PW96, PLY15, Pe90, Pe95, PS93,
PM96, PM92, QMCL94, RDS02, RU99, RAS96, Ric98, SCMB90, STN92.
Sun02, THBF97, TVS97, WBTM09, WA02, WS97a, WLID02, ZLPP01, Zim96, van96, AOSM04, AOSM05, ACCP12, BNP02, BVGV14, BDGR13, Bog17, BPP05, BKK+11, CH06a, CCK11, CRJ10a, CRJ10b, CLL09, CLR90, CCN06.

time [DLV11, DKRC+15, DHK04, EDØ05, FC14, FKL08, GZG+17, Gos90, GF89, GREC91, HOVC09, HA06, HV13, HL07, HZDP12, JZZ+17, KKR14, KSSL16, KKW17, KRL87, KSG03, LFS16, LR14, LHK03, Lee03, LST17, LZCY09, LLY15, Li16, LML+10, Lis90, Lo92, MHLZ16, MLDG12, MAM05, MAKWZ13, NA06, NVK+11, QJ05, RLH03, SL68, SS11, SZB16, TBZB05, TZH+06, WVLH96, VA07, Wan07, WTC08a, WTC08b, WL05, XL11, XO05, ZHH15, ZQMM11, ZHLQ12, ACD93, CBP02, CX05].

Time-aware [MHLZ16].

Time-bounded [NP09].

Time-Division [QMCL94, ZLPP01].

Time-division-multiplexed [HRG+11].

Time-domain [SS11].

Time-Efficient [EL97, MS99b].

Time-Optimal [BOSW94, OS96b, OSZ99, Pe90, Pe94].

Time-optimized [Ana14].

Time-parallel [WBMT09].

Time-scale [ACCP12].

Time-sliced [KRL87].

Time-Step [CW00].

Time-step-based [KRL87].

Time-targeted [BKK+11].

Timed [NM95].

timeliness [ISM07].

times [SFT04].

timestamps [MS02].

Timing [SHL+13].

Tlib [RR05].

TM [FKKR16, FWM+10].

Toeplitz [GOH+13, ABGV11, ADV14, BBd90, HM99, Ter16, VGAB08].

Toeplitz-based [GOH+13].

Together [WLID02].

Token [AE95, BGJDL02, CP90, FFK97, GH96, HP00, YZY96, CRD12, HSW04, PV07].

Token-Based [AE95, BGJDL02, HP00].

Token-Chasing [YZY96].

Tokens [SA93, SGAC14].

Tolerance [BS97, Bu01, PM92, mYyF92, BJ15, BDDL09, CLMRL15, CWL+07, CDR09a, LCC+05, LH05, LFGM17, LP88, Pak89, PAS15].

Tolerant [AE95, AM97a, AM95, BMM97, BW95b, BCH95b, CRV94, CL93, CC94, CF98, FM99b, GRR93, HGCC96, HTHH02, KP00, Lan94, LBT94, LC96, MD01, PB95, PKD97, SCC92, SS95, WIKC97, Wu94, YBOY97, ZYO02, AA14, AA16, ANA13, AOSM05, AH11, ABBD14, BB87, BXA08, BKM14, BPA06, BPP05, CL91a, CK97, CDR09b, CMT92, CMS04, DBCF13, DTK11a, DH91b, FLPJ07, GNS09, JBA15, JBS14, KG10, LDZ+17, LFZ+17, LGG08, MP17b, NCB+17, PR06, PL06, TCHC12, WW12, WYW15, XCS06, XHZZ16, mYA91, ZV09b, ZJ06].

Tolerate [VR95].

Tolerating [DT02, GS00, MG91].

tomography [BDRZ14, FC04, FGG08, KSSL16, KDO+13, PLL+03, XTN12].

Tool [BN94, DBKF90, ZNQ93, Ada17, KKV10, PF04, TD07].

toolbox [EFG+14].

Tools [Bal90, Cas93, MLC+90, MSH90, NT90, DMS+16, FEN+14, GAC+17, MC03, YT05].

Top [SSKS11, Sch89b, TAH+01, IRRS16].

Top-down [Sch89b].

Topics [Ana16l, Kum17].

topography [SK05a].

topography-aware [SK05a].

Topological [DC94, Par05, YN92, PL06].
Topologies [ZY96, YMG01, SL89]. Topology [CCM92, DS96, Seb95, TKKH17, WLY01, AP91b, AHA+16, DB08, GL12, GL90, KBC+10, LCW05, LMP10, MBBD13, Seb91]. topology-aware [KBC+10, MBBD13, TOPSYS [BB93]. Tori [LHS97, MT93a, Man97, AB03a, GLD06, LXLS12]. Tornado [HK04].
toroidal [AB05]. Torus [CT96, RMC97, WB01, YMG01, DM17, Lai15, RH05]. Total [CW00, CHC05, BCM06, BG05, CB15, Dim04, SL89]. TPC [DZDZ01].
TPC-C [DZDZ01]. Trace [JKIE13, LC13]. Traces [MTM10, NRM+09].
Tracing [RGSO0, BM16, BM17b, CDB04, CS17]. Track [MD01].
tracks [MTM10, NRM+09]. Tracing [RGS00, BM16, BM17b, CDB04, CS17]. Track [MD01].
Tracking [BFKPO4, CJD10, IHH+17, KO11, NDP13, TCS+10, WW07]. Trade [BCLR96, G9K9, LPR90, CLR90, ECLV12, LCB16]. Trade-Off [BCLR96, G9K9, LPR90, ECLV12]. trade-offs [CLR90, LCB16]. Tradeoff [TSHH01, HWC08].
traditional [BBCLL04]. Traffic [AA95, DSS95, FT94, KC95, LK94, OY00, TF92, CRD12, FL86, FM+08, LK90, LHL14, MPG17a, OOSVG+16, SAKM03, MKM04, WG08, YBM13, Zah12]. traffic-aware [LHL14].
trails [PR12]. Training [LWQG02, SMKL93, ZLS17]. transaction [SI13, YWD08, Yan09]. Transactional [AM12b, Gra09, Gra10b, MP10, BCA12, CGM14, DT11, FWM+10, GKK+13, HGF10, KR17, GQZP17, RSCQ17, SD10].
transactions [CC16, FGG17, MLM12, UBES10]. Transceiver [DKMV01]. Transfer [Lu01, CK06, JKVI5, LGG08, WH1]. transferability [CS11]. Transfers [NSS09, GLGLBG12, LMG17, SCMH13]. Transform [BA95, CP91, D901, Fer93, GZ97, HN91, JS94, Lla17, CVJ09, DS04a, DPRW98, ESTA99, FSD04, IHH16, SSL04, TKNH04, LCL18].
Transformation [MG98, SC91b, WD92, FM85, GJG88, MRR07, Tur12]. Transformations [HBH09, OK02, JV09, Kan05]. Transformer [LLL15].
Transforming [LLW16b]. transforms [TS09]. Transient [DT02, PAH+08, GPT06a]. transistor [FPM+14]. transistors [LC14a].
transition [SP13]. transition-aware [SP13]. Transitive [AW95, YMR93]. Translating [FPP06]. translation [NCB+17]. translators [YL09].
Transmission [DP99, JK00, BDRB14, CPA+11, HOVC09, OS04, OSMNSG05, YA11]. transmitting [BR91a]. Transparent [LMY+11, GVA+08, LLY1].
Transparency [AFT+00, KL+11]. Transport [GRSO9, MSH90, NPGV10, PKW+10, WCL+13]. transportation [OO05]. Transpose [CT96, ZMP00, BG16, SAKM03]. Transposing [Swa98].
transposition [Edw91]. transputer [LC92]. TRAP [GRS97]. Traps [SD00].
travel [KSSL16]. travel-time [KSSL16]. traveling [WMG13]. traversal [BBS13, CMN12, YFB17]. Traversals [OO95, E107, HMR15].
TreadMarks [LDCZ97]. treasure [MP15]. treatment [DWHL87]. Tree [AAP01, AS96, BBR94, BM97, BCLR96, BE95, BF01, BS00, COS+95].
DVZ96, FA95, Goe94, GS01b, HR92a, KC99b, LPS+98, OD95a, OOW95, PL94, SLP+98, Skn96, Tze91, Wag94, AB13, BFG+03, BM14, BC05, BE13, BPR11, BBL04, CG12, CRD17, DJ16, EB09, FMM+08, FJSW90, GA90, HSS10, HMR15, HSW04, h900, IKS87, KG10, KSK15, LY10, Li10, Mit07, OC07, PV07, Sch89a, SAF05, SK05b, TG03, TR16, WW12, Wu85, Zah12, LZSL06, BBCQ13, GB11]. tree-connected [HSW04]. Tree-Dags [BCLR96]. Tree-Related [OD95a]. tree-structured [GA90, IKS87]. Trees [AP94, AS94, ADS98, BBN93, BP02, CS95a, DM95, DP00, DLS00, DJM94, DLP99, DS93, Efe96, HKMU98, HM01, HS94a, HHC98, Iqb92, LP96a, MD98, PM92, ST02, SHL95, TT98, Wag93, WW96, WB01, WFL98, oPP00, BNP02, BL89, BMIM07, CI03, CS06a, CFJW13, CDR09a, DGNW13, Efe91, ESGQ1+11, ESGQ+14, GHI10, GZ08, GNW03, HAC17, JLY12, KKN13, LVP08, LM04, Lin03, LHT08, LFZ1+17, OMSGNSG05, PD05, PPC04, SKK91, TDM05, Wag89, WL90, WC91, WFZJ12, WIB12, YZLT09, YMLP14, Zep91].

Trellis [LCM+06, SGdSS13]. Trends [ACB+15, ER97, KKKG14, HBS13]. Triangular [IK94]. Triangularization [KK86, CDR90, EM89]. Triangularizations [Par92]. Triangulation [DFRCU99, LS95]. Tridiagonal [CTZ99, Kau94, CK91, EM89]. Tridiagonalization [BB85b, BW08]. trigger [FMR05]. trigger-broadcasting [FMR05]. triumph [Sch14]. true [CP04b]. trust [GTGLSA12, LZY11, LAGK07, MLMSMG12]. trusted [SFEF06]. TrustGuard [SL06]. trustworthy [MLHZ16]. Truthful [WGS08]. tsunami [NSKN17]. tumors [HES11]. Tunability [CKK00]. Tuning [CSMML10, SB02, ABGV11, HPT07, KKR14, MYD+11, MML07]. Tunnel [ZBR11]. Tunnel-based [ZBR11]. Tuple [STKW12, DRT07]. Turbulence [LLCC02]. TWD[M] [LLJ00b]. twig [LSZZ15]. Twisted [HHTH02, AP91b, FLPJ07, LFZ+17, WFZJ12, XHZ16]. Two [AaJS01, BNS00, ABH+17, BP01, Cha94, CCC92, CEF+95, DD96, DKU15, Gos90, GT97, Hwa97, KLZ97, KL84, LHS97, LP96b, LK94, LLCC02, NA04, Qia97, RFPA08, RP95, SSM89, SSHC00, YCY+00, AB05, ARM+05, CFF88, CG86, CB11, Deh90, FSV17, HDJ08, Hsi04, JD12, LC91b, MP10, PMV06, SCN012, SS94b, WLL16, dIAMCFN12]. Two- [Hwa97]. Two-Dimensional [LP96b, YCY+00, NA04, AB05, Deh90, LC91b]. two-fixed-endpoint [Hsi04]. two-layer [dIAMCFN12]. Two-Level [KL84, Qia97, RP95, SSHC00, BBH+17]. two-list [WLL16]. Two-pass [DD96]. two-phase [SNCP12]. two-stage [HDJ08]. Two-Variable [CC92]. Two-Way [LK94, LLCC02]. Type [HO94, SC91b, BFH90, QGL+09, MV94, MVV91]. types [RJKL11].

TYPHOOON [HKW05].

[MGG03]. unbounded [SP90]. Uncertainty [ADS01, ZC04]. Uncertainty-aware [ZC04]. unchoking [ARD14]. uncoordinated [LDZ+14]. undergraduate [GAC+17, Kum17]. understand [BCFF05]. Understanding [BDF92, DBKF90, ECLV12, NEG85, XS11, CDJ+89, WRHR91]. underwater [ZWW17]. undirected [STA12]. uneven [SMT15]. unfair [KY02]. unicast [SKMM04]. Unidirectional [KY02, KUFM02, RMC97]. unification [RM90]. Unified [AGG98, BL90, CP10a, DM95, JBL02, Aum16, ABO+17, IHH16, KH89, XR12]. Uniform [AS94, BGJDL02, DR95, GM95, KY02, SR88b, TT98, TC96, VN93, Xue97, ZM94b, BBFN14, CLL09, KSG13, LW06b, Mar88, MM07c]. uniformity [BBB11]. Uniformization [DHK04, NH93]. Unifying [RCY97]. Union [KF95a, ST14]. unique [WCWH03]. unison [DPBNT12]. Unit [AGW98, BHS13, JPD17, KNS91, MM88, QSL+08, SIY14, SAJ13, XL11, ZMCP11]. Units [AM97a, AGG98, DDGK13, YJJL16, ATDH13, BK13, DP16, KLO8b, SCB08, Eme13, GLGLBG12, YL12]. Universal [BBS13, CS06b]. universality [SH99]. unification [AH90]. unknown [MJ03]. Unlabeled [Man97]. Unleashing [ARD14]. unrelated [CG11]. Unreliable [KB96a, AM06, DDG+17, KRS15]. Unstructured [OB98, WCE97, ACFOK07, FZ14, LWCC15, MSZ05, YF09]. Unsupervised [BST01, SDAUM99]. untraceability [CL09]. unwinding [Nec88]. updatable [MLZY17]. Update [GS96, LSH96, BM11, RTCC91]. Updating [JSM94, SDS99, AEF11, JBA15, KAP90]. upon [AFM09]. Upper [LXLS12, NDP13, GC07]. URL [XR12]. Usage [BS96a, IHH16]. Use [BW96, BST01, Kar92, NVK+11, SV00, MSZ05, NA04, SSM08]. Used [LL95]. Useful [Bal90, GSG+93, FM85]. Useless [Yen01]. User [GRS97, KOW97, KKK06, WСХL11, LC11, MAJJ05, NGQMI2]. User-Level [KOW97, MAJJ05]. User-Space [GRS97]. Users [BST01, ZR00, SY04]. Using [Ay93, BA97, BCLR96, BLG01, CCRS92, CP92, CB02, DS95a, DHH02, DMSH90, DWX10, FR96a, FZTV02, FA95, HPT+97, HK01, HS97, HC97, Hwa97, KJ84, KA97, Lat98, LMCF90, LPZ99, LFA96, LL98, MD98, MP96, MS86, Moh96, MF93, NH93, NS92, NPY+97, OS93, PH91, Par92, Par96, PK97, SSG93, SM92a, SEP96, SP96, SM00, SD00, SL97, SIR92, SWC+91, SK96, Swa98, TSC91, TR96, VRM10, WPKK94, WW96, WSRM97, WB01, WRC+02, WS97a, WCY98, XH91, YMG01, ZMP00, dOCS14, ASKO16, AMF03, AZC13, ASST05, AD12, Ara90, AK06, Bar05, BD05, BANN05, BCMV15, BHL14, BS92, BSH15, CL14, COV13, CSWD03, CJDCT10, CF88, CK08, CydBL+08, CKN07, CBM+08, CDB04, CH06b, CRWX12, CMT92, CL85, DDG+17, DPRW85, DKRI09, DJT03, DH91b, DWHLS7, EE05, EI07]. using [ES12, FTK14, FM07, FCS91, GZ08, GRDB05, GCS06, HDCM11, HSH10, HC91, JTTZ11, JP09, JMGY17, JZK04, KLO8b, KRKS11, Kan05, KDO+13, KKH17, KM17, KR12, KME09, KC17, KR06, KKB+06, KA05, LKK15, LTE10].
LY10, LR03a, LST+13, LSWC14, LA04, MHLZ16, MM06, MS02, MRS+14, MK08b, MC03, NCTT09, Ozt11, PKN08, PKN10, PP13, PBS08, PVG09, Pla08, RBN11, RB12, SMO14, SBC12a, SSM89, SS07, SCB09, ST12, SGAC14, SCJ08, SIY14, SDG17, SA08, SK05a, SFEF06, SM08b, SLKK13, SL06, SMT15, TRS+12, TDP15, TMM06, TKX+13, UAPM07, WCF14, WZZ+17, Wu03, WBRT13, XCS06, XLHT13, ZV06, ZV09a, ZS13, ZBW+17, ZHO03].

virtualized [AAA+10, CP17, KLJ+11, KKLJ14, SJB12, SSVC10]. viruses [MJ03]. visibility [BSG90]. Vision [LR94, MBL+92, MHC95, MAR87, WHT02, Kri91, WJD91]. vision/image [WJD91]. Visual [BN94, SRGB90]. Visualization [BB03, Cas03, Cou03, KS93, MI93, NT90, MBH+08, NCA93, RV13, TSD08, WGCZ09, ZB09, ZWR107]. Visualizations [LSCA93, SK93]. Virtual [BSG90]. Vision [LR94, MBL+92, MHC95, MAR87, WHT02, Kri91, WJD91]. vizualizations [LSCA93, SK93]. Visualizing [RW93, SKR93, ZWRI07]. Vital [BS97, HHC98]. VLIW [BB93, BB85a, BBR94, CCC90, CHX+17, FG85, Gue86, KM97, KLL87, MB96a, MS87, ML89, MRR+02, MT85, MT97b, NEG85, OB88, OT86, PR06, TU92, TF92, WSS93]. VLSI-suited [GS91b]. VM [JXW06]. VM-based [JXW06]. VOD [SK11, Bar05, LC07, YCH10]. voice [WTS03]. volatile [CDR12, NK14, ZPK14]. Voltage [FKL08]. Volume [Ano92a, Ano92c, Ano93e, Ano96l, Ano97k, Ano00d, Ano01g, Ano01h, Ano02d, Ano03b, Ano04a, Ano08, Ano09, Ano10a, Ano10b, Ano11j, Ano11k, Ano12m, Ano12n, Ano14f, Ano14g, Ano15k, BS96c, CS93b, WS97a, ACFK07, LWCC15, Ano92b, Ano93b, Ano93c, Ano93d, Ano94a, Ano94b, Ano94c, Ano94d, Ano95a, Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano95h, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano96g, Ano96h, Ano97a, Ano97b, Ano97c, Ano97d, Ano97e, Ano97f, Ano97g, Ano97h, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano98h, Ano99a, Ano99b, Ano99c, Ano00b, Ano00c]. Volumes [Ano98l, Ano99h]. volunteer [LKM12]. Voronoi [RR95b, SZ03]. Voting [LO96, AFD11, ZWS09]. vs [Wol88]. VSS [Pen11]. vulnerability [OTKT12].

[BS97, MD13, CDDL10, DM17, Sta17, SZB16]. weighting [CRA+08]. well [EB09]. well-nested [EB09]. WFR [FKKR16]. WFR-TM [FKKR16]. whole [Kan05]. whole-program [Kan05]. Wide [WM92, We98, HL07, JKV15]. Wide-Area [We98, JKV15]. width [DH91a]. WFR [FKKR16]. WFR-TM [FKKR16]. whole [Kan05]. whole-program [Kan05]. Wihidum [JKD+15]. wildfire [DFST13]. Wimpy [LNC13]. window [BM11, LVP07]. window-assisted [LVP07]. winners [PL03a]. Wire [yHY97]. Wire-Limited [yHY97]. Wireless [BCD00, BD00, BD01, Bou03, GPJA10, GMS06, JK00, KKGS01, LDZ+14, MS00, Ola01, THGY15, WL05, AS09, Amm16, AP03, AHG12, AYB+15, BFG+03, BM11, BS07, BXY08, BW+11, BOY10, BPRS04, BOP06, BC11, BN03, BPA06, CCW14, CKN07, CCK+08, CRWX12, CL09, CMS04, DW06, DLL11, DM+03, DGBN14, DHJ11, DKM10, DFP06b, EBE08, EM11, FCW11, FCML13, GHY10, GDP08, GP07, GCH+04, GDL+11, GYP13, GZY14b, GM14a, GL12, GMX07, HZA+15, HMV07, HJ07, HS12, HWW08, HWC08, HZDP12, JF12, JLY12, JBS14, JHPL13, JLKX11, KKV05, KSL04, KMK11a, KOA09, KO11, KO12, KSK15, KZ11, KK10, KDH08, KKTZ13, KGN11, KNS06, LZ08, LAN09, LZ11, LDZ+17, LY10, LC05, LW06a, LC11, LMJ11, LWLD12, LL12b, LS03, LÜ14, LR03b, LW07, LZC11, LSWC14, LDS16, Los08, MAGL13, MPV12, MA11]. wireless [MBR08, NPGV10, NSA11, NC09, NM17, NQGM12, OWK14, PL05, PMR07, RM10, RM11, RLP14, REZ17, SCN12, SZM13, SS10, SKM04, SK05a, SLL10, TBHA07, TLY12, TM10, VHR08, VRM10, WW07, WTB+08, WMW09, WBTM09, WL11, WCX11, WH08, WBR13, XYKA08, XHZ+10, YPGY11, YSL08, YXZ11, ZMG+16, ZW11, ZBR11, ZLC12, ZTGL17, dOBG+15, LDP+14]. Wireless/Mobile [MS00]. Wires [GO95]. within [BPBR11, THN+93]. without [FKKR16, FLS07, HP95, H91, MS02, OS97, RCG+11, SA93, WW12, X005]. WK [DC94, SC99]. WK-Recursive [DC94, SC99]. WLAN [HB11]. WLANs [CCHC09, FA07, GZY14a]. WMNs [LHX+16]. Wolfe [Psa96]. Work [BKC+15, BM04a, DKKV15, KM17]. worker [BMT12, HSLL04]. workers [KRS15]. workflow [ALM+16, FFP14, FCC07, RCG+11, WHW+17, YLYC11, YWG15, ZVL15]. workflows [BKK+11, KHN17, TYH09]. Workload [DZD01, IM94, SSY97, FP05, GNT04, KyLPC17, LLLY08, LTG14, LF03, SSFP11, YJL16]. Workloads [FTK14, MKC01, AM12b, CCQ+06, CKL04, CLC05, LLY15, MLK+16, WD13]. workshop [SAB+92]. Workstation [AY97, HN91, KMMD09, LC97, PN97a, PN97b, WB96, M04]. Workstations [AS97, AM00d, ABM+92, BSS97, BDH+97, CP97, CM92, DSAUM99, DZ97, HS97, HWW96, JLR09, KR98, LS97, LHHB+01, MDD97, NBSD09, PDK97, Ros99, ZLP97, BMARW07, CDB04, PY09c, Pla08]. world [FL86, MAGL13, MSZ05, MVP17, MMS09]. worlds [WAE03]. Worm [NS05]. Wormhole [BPLV95, BPvW96, DG94, DRSB01, FF98, LME95, LEB98, NSS99, PA97, RP98, RJMC95, RMC97, SJ95, SJ96, SB02, WB01, XMN92, HNSA07, Lei03, SAOKM03, WCC02]. Wormhole-Routed
REFERENCES

[FF98, NASS99, RJMC95, RMC97, XMIN92, SAOKM03, WCC02]. Wormhole-Switched [WB01]. Write [DS95a, CH06a, CG10, SLKK12]. write-only [SLKK12]. Writeback [KE93]. Writer [JBP00, KS97a, HV09, HV95]. writers [FKKR16]. writing [DBLB+12]. wrong [SYUU07]. wrong-path [SYUU07]. WSAN [Wu11]. WSN [BCO+12]. WSNs [LLDL15, MCDS+06, NDP13, SMP17]. Wukong [MXSL12]. WWW [AYI97, AYIE98].

References

Ahmed:1993:AOE

Atiquzzaman:1995:PBM

Aci:2010:NCC
Cigdem Inan Aci and Mehmet Fatih Akay. A new congestion control algorithm for improving the performance of a

Ahmed:2014:GDF

Ahmed:2016:AFT

Almeida:2010:JAC

Aartsen:2015:IFD

Aspnes:2010:CSC

Al-Ayyoub:1998:HIN

Al-Ayyoub:2002:CSP

Al-Ayyoub:2003:NRS

Adle:2005:TAP

REFERENCES

Al-Azzoni:2010:DSH

Agbaria:2004:QRP

Abdullah:2017:REH

Arevalo:2015:FDH

Altman:2001:RTP

Ajwani:2013:GST

Akramullah:1995:DPA

Agarwal:2001:TPA

Arvind:1984:RMF

Ayani:1993:PDE

REFERENCES

Allen:1988:OPA

Antonopoulos:2009:ASH

Antonopoulos:2009:MDM

Andrade:2007:AGA

Awerbuch:1996:FDN

REFERENCES

[ABM+92] Mikhail J. Atallah, Christina Lock Black, Dan C. Marinescu, Howard Jay Siegel, and Thomas L. Casavant. Models and algorithms for coscheduling compute-intensive tasks on a network

1989. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[ACFK07] Cevdet Aykanat, B. Barla Cambazoglu, Ferit Findik, and Tahsin Kurc. Adaptive decomposition and remapping algo-

REFERENCES

Ammari:2010:FCG

Apopei:2012:APL

Adams:2017:PTT

Altisen:2017:CSS

Atallah:1994:MTP

Auletta:1998:MTA

Attiya:2001:TBD

Alonso:2014:BPI

Arvind:1988:FSP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

May 2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Anagnostopoulos:2012:PPC

Ahuja:1990:CCM

Anagnostopoulos:2011:AMM

Alexandrov:1997:LIL

REFERENCES

Anger:1990:SSL

Alam:1993:RTO

Artail:2006:MPI

Anderson:2007:GLS

Alkamper:2017:DNV

Akcan:2010:MCM

REFERENCES

REFERENCES

Ali:2008:SHR

Ahmad:1999:SIS

Aguilar:2004:DDL

Avudainayagam:2003:DDE

Agarwal:2009:FDP

Ahmad:1999:DSM

Amory:2011:NTS

Ahmad:2016:HGA

Albert:1991:DPC

Alsuwaiyel:2001:PAP

Ahmad:2013:MCO

Aluru:1997:LFR

Antonio:1993:HMN

Alam:1995:CMF

REFERENCES

Ahuja:1997:UCF

Ajith:1997:IAM

Asaduzzaman:2006:UUP

Asaduzzaman:2007:SCP
Asaduzzaman:2011:DMB

Angeli:2012:CEC

Attiya:2012:TSR

Abed:2013:IPC

Al-Mouhamed:1995:ELF

REFERENCES

REFERENCES

[AMT13] Antonio Fernández Anta, Miguel A. Mosteiro, and Christo-
pher Thraves. An early-stopping protocol for computing ag-
gregate functions in sensor networks. Journal of Parallel and
Distributed Computing, 73(2):111–121, February 2013. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731512002286.

[Ana14] Christos Anagnostopoulos. Time-optimized contextual infor-
mation forwarding in mobile sensor networks. Journal of
Parallel and Distributed Computing, 74(5):2317–2332, May
2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
science/article/pii/S0743731514000185.

[ANE13] Asmaa Al-Naqi, Ahmet T. Erdogan, and Tughrul Ar-
slan. Dynamic fault-tolerant three-dimensional cellular
 genetic algorithms. Journal of Parallel and Distributed
Computing, 73(2):122–136, February 2013. CODEN JPD-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0743731512002262.

[Ann94] F. Annexstein. Embedding hypercubes and related net-
works into mesh-connected processor arrays. Journal of Parallel and Distributed Computing, 23(1):72–79, Octo-
ber 1994. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1994.1120/production;

105–120: A. Kapelnikov, R. R. Muntz, and M. D. Ercegovac,
“A Methodology for Performance Analysis of Parallel Com-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).
REFERENCES

REFERENCES

Anonymous:1993:EVN

Anonymous:1994:AIVa

Anonymous:1994:AIVb

Anonymous:1994:AIVc

Anonymous:1994:AIVd
Anonymous:1994:EM

Anonymous:1995:AIVa

Anonymous:1995:AIVb

Anonymous:1995:AIVc

Anonymous:1995:AIVd

REFERENCES

Anonymous:1995:AIVe

Anonymous:1995:AIVf

Anonymous:1995:AIVg

Anonymous:1995:AIVh

Anonymous:1995:CPSa

Anonymous:1995:CPSb

Anonymous:1995:EM

Anonymous:1996:AIVa

Anonymous:1996:AIVb

Anonymous:1996:AIVc

REFERENCES

Anonymous:1996:CPSb

Anonymous:1996:CPSa

Anonymous:1996:EA

Anonymous:1996:EVN

Anonymous:1997:AIVa

REFERENCES

Anonymous:1997:AIVb

Anonymous:1997:AIVc

Anonymous:1997:AIVd

Anonymous:1997:AIVe

Anonymous:1997:AIVf
REFERENCES

[Ano97k] Anonymous. Volume 38, number 1 (1996), in the article “An Effective and Practicale Performance Prediction Model for Parallel Computing on Nondedicated Heterogeneous NOW,” by Yong Yan, Xiaodong Zhang, and Yong-
REFERENCES

REFERENCES

Anonymous:1998:AIVe

Anonymous:1998:AIVf

Anonymous:1998:AIVg

Anonymous:1998:AIVh

Anonymous:1998:CPb

REFERENCES

Anonymous:1999:E

Anonymous:2000:ACP

Anonymous:2000:AIV

Anonymous:2000:ATI

REFERENCES

Anonymous:2001:Aa

Anonymous:2001:Ab

Anonymous:2001:ACPa

Anonymous:2001:ACPb

Anonymous:2001:ACPc

REFERENCES

Anonymous:2001:AI

Anonymous:2001:AIV

Anonymous:2001:ATIb

Anonymous:2001:ATIa

Anonymous:2001:GEIa

Anonymous:2001:GEIb

REFERENCES

Anonymous:2001:PAFe

Anonymous:2001:PAFf

Anonymous:2001:PAFg

Anonymous:2001:PAFh

Anonymous:2001:PAFi

REFERENCES

REFERENCES

2001. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Anonymous:2001:PAFp

Anonymous:2001:PAFq

Anonymous:2001:PAFr

Anonymous:2001:PAFs

Anonymous:2001:P

Anonymous:2001:RN

Anonymous:2002:Aa

Anonymous:2002:Ab

Anonymous:2002:AI

Anonymous:2002:ATI

Anonymous:2002:EBa

Anonymous:2002:EBb

Anonymous:2002:GEIa

REFERENCES

REFERENCES

Anonymous:2002:PAc

Anonymous:2002:PAd

Anonymous:2002:PAe

Anonymous:2002:PAf

Anonymous:2002:PAFa

REFERENCES

Anonymous:2002:PAFb

Anonymous:2002:PAFc

Anonymous:2002:PAFd

Anonymous:2002:SSD

Anonymous:2002:SIP
REFERENCES

REFERENCES

REFERENCES

Anonymous:2009:EVR

Anonymous:2010:EVA

Anonymous:2010:EVR

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd
Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EVA

Anonymous:2011:EVR

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

REFERENCES

Anonymous:2012:EB1

Anonymous:2012:EVA

Anonymous:2012:EVR

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

REFERENCES

[Ano13i] Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 73(9):??, September 2013. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-

Anonymous:2013:EBj

Anonymous:2013:EBk

Anonymous:2014:EBa

Anonymous:2014:EBb

Anonymous:2014:EBc

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing, 74*(11):ifc, November 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2014:EBe

Anonymous:2014:EVA

Anonymous:2014:EVR

Anonymous:2015:EBa

Anonymous:2015:EBBb

Anonymous:2015:EBc

Anonymous. Editorial Board. *Journal of Parallel and Distributed Computing*, 85(??):ifc, November 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2015:EBj

Anonymous:2015:EVR

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd
REFERENCES

169

[Ano16j] Anonymous. Editorial Board. Journal of Parallel and Distributed Computing, 98(??):ifc, December 2016. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Anonymous:2016:NAE

Anonymous:2016:TI

Anonymous:2017:EBa

Anonymous:2017:EBb

Anonymous:2017:EBc

Anonymous:2017:EBd

REFERENCES

Anonymous:2017:EBe

Anonymous:2017:EBf

Anonymous:2017:EBg

Anonymous:2017:EBh

Anonymous:2017:EBi

Anonymous:2017:EBj
REFERENCES

Anonymous:2017:EBk

Anonymous:2017:EBl

Asdre:2007:OPS

Andreae:1997:ECP

Alba:2002:HCP
REFERENCES

[Agrawal:1993:SIP]

[Alnuweiri:1994:EPC]

[An:2003:GAP]

[Attiya:2016:CBI]

[Andonov:1997:OOT]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Afek:2012:ISJ

Adamo:1994:PEP

Achalakul:2003:DSS

Anzt:2013:BAR

Antonio:1991:HPA

Al-Tawil:2001:PME

Khalid Al-Tawil and Csaba Andras Moritz. Performance modeling and evaluation of MPI. *Journal of Parallel and Dis-
REFERENCES

Ardagna:2007:SBR

Aboelaze:1995:PAB

Abramson:1989:DCU

Asher:2009:SLM

Ashouri:2015:PPB
REFERENCES

Amoretti:2013:EAC

Al-Zoubi:2013:RGS

Bultan:1992:NMH

Bhandarkar:1995:HTR

Bergmans:1996:CSR

Lodewijk Bergmans and Mehmet Akšit. Composing synchronization and real-time constraints. *Journal of Parallel and Dis-
REFERENCES

Ben-Asher:1997:ORM

Ben-Asher:2001:DRA

Bruda:2001:CSR

Battre:2006:MFP

Bader:2004:IRA

Ben-Asher:1992:DSA

Ben-Asher:1995:ESS

Bah:2000:AIA

Ben-Asher:2004:EPS

REFERENCES

188

REFERENCES

REFERENCES

Bartoli:2003:ABD

Bertrand:2006:DRR

Busnel:2011:UPS

Barnat:2012:DFL

Belkouch:2002:SSD
Balle:2004:ETD

Baldoni:2013:VTR

Bojanczyk:1990:LCA

Bahr:1991:PPS

Berenbrink:2012:BBR

Berenbrink:2014:BNU

Bal:1997:PHL

Bhatt:1998:TBP

Bender:2017:TLM

REFERENCES

REFERENCES

REFERENCES

[Bader:2005:FPS]

[Bader:2006:FSM]

[Borgonovo:2011:REW]

[BCC95]

[Bagrodia:1995:USB]

REFERENCES

REFERENCES

REFERENCES

198

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bischof:2000:PLB

Boukerche:2012:DBA

Benoit:2015:ISP

Bhattacharya:1994:MGM

REFERENCES

REFERENCES

Blazewicz:2013:IMG

Borgdorff:2013:FDM

Bilo:2006:PAB

Baiardi:1987:DIN

Barahona:1986:PAM

REFERENCES

REFERENCES

REFERENCES

[Brzezinski:1995:DMG]

[Bhuyan:1987:AIN]

[Bic:1990:POM]

[Bic:1990:PO]

[Brodtkorb:2013:GPU]

[Bhu87]
REFERENCES

REFERENCES

Blumofe:1996:CEM

Beck:1991:CFD

Baldoni:2008:DQD

Bilas:2003:SVM

Baden:1995:PPP

Biyani:2008:ADA

Basaran:2013:GEM

Banerjee:2015:WEP

Bhuiyan:2017:PAS

Byun:2011:BRC

Eun-Kyu Byun, Yang-Suk Kee, Jin-Soo Kim, Ewa Deelman, and Seungryoul Maeng. BTS: Resource capacity estimate for time-targeted science workflows. *Journal of Par-
REFERENCES

Bouguerra:2014:FTS

Berg:1991:LIM

Bansal:2005:DHT

Bhattacharya:1995:CCS

Bier:1989:EBT
REFERENCES

REFERENCES

REFERENCES

Bahmani:2016:ECU

Baharvand:2017:AAA

Bahmani:2017:SCE

Boukerche:2007:PSL

Bai:2008:MMR

Brungger:1998:SLS

Boukerche:2005:RCL

Busch:2007:EBP

Bhuvaneswari:1997:NFG

Bermond:2001:BPL

REFERENCES

Boxer:1998:SPA

Boxer:1999:SPA

Bendjoudi:2012:AHM

REFERENCES

REFERENCES

REFERENCES

Bongiovanni:1989:PDS

Bilardi:1995:HPC

Barth:1998:RPG

Brightwell:2001:SPT

Bertossi:2002:MCF

[BP02] Alan A. Bertossi and Cristina M. Pinotti. Mappings for conflict-free access of paths in bidimensional arrays, circular lists, and complete trees. Journal of Parallel and Distributed Computing, 62(8):1314–1333, August 1, 2002. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Boukerche:2006:FTW

Blin:2011:SSM

Balaji:1992:NPN

Beck:1990:SSD

Bourgeois:2005:CTF

Bhat:1999:ACA

Prashanth B. Bhat, Viktor K. Prasanna, and C. S. Raghavendra. Adaptive communication algorithms for distributed

REFERENCES

Boppana:1995:MAA

Bae:1996:PUC

Boukerche:2002:DGB

Benoit:2008:MPS

Bromley:1996:QNG

REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[BS92]

[BS96a]

[BS96b]

REFERENCES

Braun:2001:CES

Beresford-Smith:1996:OAC

Bertolazzi:1990:PAV

Berryman:1990:KMP

Bukata:2015:SRC

Libor Bukata, Premysl Sucha, and Zdenek Hanzálek. Solving the resource constrained project scheduling problem using the parallel tabu search designed for the CUDA platform.
REFERENCES

[BSS+13] Luis Diego Briceño, Jay Smith, Howard Jay Siegel, Anthony A. Maciejewski, Paul Maxwell, Russ Wakefield, Abdullah Al-Qawasmeh, Ron C. Chiang, and Jiayin Li. Robust static resource allocation of DAGs in a heteroge-

REFERENCES

Buchholz:1992:HVG

Berka:2013:PRT

Bae:2002:DRB

Basanta-Val:2014:RMP

REFERENCES

[BW89] Jean-Loup Baer and Wen-Hann Wang. Multilevel cache hier-
archies: organizations, protocols, and performance. *Journal of
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[BW95a] Aart J. C. Bik and Harry A. G. Wijshoff. Advanced com-
piler optimizations for sparse computations. *Journal of
Parallel and Distributed Computing, 31*(1):14–24, November
15, 1995. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1995.1141/production;

[BW95b] Douglas M. Blough and Hongying Y. Wang. Cooperative di-
agnosis and routing in fault-tolerant multiprocessor systems.
Journal of Parallel and Distributed Computing, 27(2):205–
211, June 1995. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1995.1083/production;
1995.1083/production/pdf.

space partitioning to construct representative simple sections.
Journal of Parallel and Distributed Computing, 34(1):95–110,
April 10, 1996. CODEN JPDCER. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1996.0048/production;
1996.0048/production/pdf.

[BW08] Yihua Bai and Robert C. Ward. Parallel block tridiagonal-
ization of real symmetric matrices. *Journal of Parallel and
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).
Bharadwaj:2009:HBS

Bein:2011:DNC

Brown:1993:PQA

Banerjee:2008:FTM

Bui:2017:EEC

Butt:2006:SOF

REFERENCES

Brooks:2004:AOD

Callsen:1994:OHC

Cheng:1995:ORS

Conrad:1995:APA

Coelho:1996:OCH

Peter R. Cappello. Gaussian elimination on a hypercube automaton. *Journal of Parallel and Distributed Computing*, 4
REFERENCES

Carlson:1990:SLR

Carter:1995:DMD

Casavant:1993:TMV

Choi:1995:RLS

Clarke:1996:LSP

REFERENCES

Cason:2015:THT

Catalyurek:2009:RHM

Costa:2000:PLP

Che:2008:PSG

Carothers:2002:RHP

REFERENCES

Cavendish:2008:DXP

Chakrabarty:2014:IRA

Carvalho:2016:OMT

Chen:1990:DVA

Chen:1992:EMF

Cao:2004:FAH

[CCC+04] Jiannong Cao, Min Cao, Alvin S. T. Chan, Gengfeng Wu, and S. K. Sajal K. Das. A framework for architecting and high-

Chan:1996:DED

Cesar:2017:ICT

Chien:2003:EAP

Chang:2009:NMC

Callahan:1988:EII

REFERENCES

Costa:2006:ROA

Crane:2006:GEM

Caminero:2006:MMR

Chiu:1994:FRC

Chase:1992:PPP

REFERENCES

Chang:2006:BCH

Chang:2014:AAL

Cook:1995:ISS

Coulaud:1998:PHL

Cruz:2014:DTM

REFERENCES

Chen:2004:RWP

Choi:2005:RDR

Carrier:2015:SSI

Caron:2010:SSC

Cicerone:2001:CPR

REFERENCES

REFERENCES

REFERENCES

Connolly:1998:FTF

Cheng:2013:DAT

Ceri:1986:OJB

Cobb:2002:SGL
Clauss:2010:ICO

Carroll:2011:DAM

Carroll:2012:IBD

Casu:2017:PPA

Colajanni:1998:TBR

Chen:2016:FHA

Chockler:2009:RDS

Calegari:1997:PIB

Chow:2012:PTS

Chatterjee:1995:GLA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

便于阅读的自然文本：

REFERENCES

[CKK+13] Jiwon Choi, Myeongsu Kang, Yongmin Kim, Cheol-Hong Kim, and Jong-Myon Kim. Design space exploration in many-core processors for sound synthesis of plucked string

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cordasco:2010:EIS

Clark:1992:CDF

Clementi:2004:RRO

Ciardo:1992:ACF

Cai:1993:GVB

Choi:1993:EAM

REFERENCES

Chen:1995:CTT

Couch:1993:CCS

Cano:2013:PMO

Culler:1990:ETS

Choudhary:1991:IEH

REFERENCES

Cruz:1999:TPD

Choi:2001:ECA

Calamoneri:2004:HLS

Choi:2004:EQD

Chandra:2005:TAA

REFERENCES

Caminiti:2010:UPE

Chen:2010:PIE

Cinque:2017:IHF

Choudhury:2011:SMT

Conant:2003:PGI

REFERENCES

REFERENCES

Chen:2012:ILA

Cheng:1992:OCA

Chang:1993:OLS

Cheng:1993:VNA

Choi:1993:RCS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

W. M. Charles, E. van den Berg, H. X. Lin, A. W. Heemink, and M. Verlaan. Parallel and distributed simulation of sediment dynamics in shallow water using particle decomposition
Chin:2009:HLS

Chu:1992:OMN

Cheng:1993:SAD

Cang:2000:TSO

Chang:2001:RPR

Rocky K. C. Chang and Hong Y. Wang. Routing properties of a recursive interconnection network. *Jour-

REFERENCES

REFERENCES

REFERENCES

Chen:1999:HPT

Cybenko:1989:DLB

Chlebikova:2006:ARG

Cole:1990:OPA

Czapinski:2013:EPM

Chen:2016:SNP
Lizhong Chen, Di Zhu, Massoud Pedram, and Timothy M. Pinkston. Simulation of NoC power-gating: Requirements,

REFERENCES

Drummond:1996:DBD

Draeger:2017:MPF

Dahlgren:1999:TIP

Macedo:2013:EGC

deAndrade:2017:OFH

David:2017:LLD

Dhodhi:2002:ITT

Drezner:1986:AAS

Derhab:2008:SSA

REFERENCES

Delevacq:2013:PAC

Das:2006:EAP

Delaet:2010:SSM

Dandamudi:1991:HBH

DeGroot:1988:TCE

[Deh90] Frank Dehne. Computing the largest empty rectangle on one-
and two-dimensional processor arrays. *Journal of Parallel and
Distributed Computing*, 9(1):63–68, May 1990. CODEN JPD-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[Dek00] Eliezer Dekel. Special issue on Java on clusters. *Jour-
nal of Parallel and Distributed Computing*, 60(10):1155–
1158, October 2000. CODEN JPDCE. ISSN 0743-

[DF90] Pradeep K. Dubey and Michael J. Flynn. Optimal pipelin-
19, January 1990. CODEN JPDCE. ISSN 0743-7315 (print),
1096-0848 (electronic).

for pipeline performance. *Journal of Parallel and Distributed
Computing*, 23(3):330–337, December 1994. CODEN JPD-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

[DF95] Richard N. Draper and Vance Faber. The diameter and
average distance of supertoroidal networks. *Journal of
Parallel and Distributed Computing*, 31(1):1–13, November
15, 1995. CODEN JPDCE. ISSN 0743-7315 (print),
com/links/doi/10.1006/jpdc.1995.1140/production;
1995.1140/production/pdf.
REFERENCES

Du:2006:LLA

Diallo:1999:SCH

DiGregorio:2013:AWS

deSouzaSilva:1991:QNM

Draper:1994:CAM

REFERENCES

1991. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Dominic:1998:CLS

Devismes:2016:SSS

Djamegni:2004:MRM

Djamegni:2006:CMPE

Dhanapala:2011:RRW

Deo:1994:PCT

Durand:2003:PSU

Ding:2004:IEB

Daoud:2008:HPA

Daoud:2011:HHG

REFERENCES

Marc de la Asunción, José M. Mantas, Manuel J. Castro, and E. D. Fernández-Nieto. An MPI-CUDA implementation of an improved Roe method for two-layer shal-

REFERENCES

REFERENCES

REFERENCES

[Dimitrakopoulou:2017:NNE]

[Dasgupta:1997:VAL]

[Das:2003:AFQ]

[Darte:2003:GMM]

[Duenha:2016:MBH]
Liana Duenha, Guilherme Madalozzo, Thiago Santiago, Fernando Moraes, and Rodolfo Azevedo. MPSoCBench: a benchmark for high-level evaluation of multiprocessor system-on-chip tools and methodologies. *Journal of Parallel and Dist-
REFERENCES

Dasgupta:1999:PGA

Das:2000:OMQ

Dereniowski:2012:DMA

Defour:2016:SSS

Dubois:2012:SSB

Swan Dubois, Maria Potop-Butucaru, Mikhail Nesterenko, and Sébastien Tixeuil. Self-stabilizing Byzantine asyn-

Diniz:1998:LCE

dAuriol:2009:OPB

Dehne:1990:IDS

Dion:1996:CAN

Dummler:2013:PSS

Duato:2001:CRA

Diaz:2002:BBC

Diaz:2007:TCB

Dekel:1984:PMA

[Datta:2001:CTA] Amitava Datta and Subbiah Soundaralakshmi. Constant-time algorithm for the Euclidean distance transform on reconfig-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Eom:2001:AEA

Eshaghian:2001:OIR

Eom:2015:EKL

Evett:1995:PMP
REFERENCES

Evett:1994:PKR

Es:2007:ARG

Eugster:2017:HPP

Ercegovac:1988:LSC

Ercegovac:1991:MPM

Ercal:1997:TEM

Eshaghian:1994:OTP

Evans:1989:FTS

Esnaashari:2011:CLA

Emeliyanenko:2013:CRG

REFERENCES

REFERENCES

Jesus Escudero-Sahuquillo, Pedro J. Garcia, Francisco J. Quiles, Sven-Arne Reinemo, Tor Skeie, Olav Lysne, and Jose Duato. A new proposal to deal with congestion in

REFERENCES

[Fragopoulou:1995:OCA]

[Fallah:2007:HPC]

[Fagin:1992:LIM]

[Fan:1995:CSM]

[Fahringer:1996:CTE]

REFERENCES

Fan:1990:DAS

Foster:1995:FML

Foteinos:2014:HQR

Feng:2007:DPI

Fang:2000:FRH

REFERENCES

REFERENCES

lel and Distributed Computing, 63(10):916–926, October 2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Feldman:1997:PSD

Feng:2017:PPP

Fernandez:2008:EPI

Felber:2017:ET

REFERENCES

Faverge:2015:MLQ

Fujiwara:2004:PER

Francioni:1993:BSA

Fernandez:2004:ICM

Ferreira:2006:LSP

REFERENCES

Fatourou:2016:WTW

Freeh:2008:JTD

Foley:2017:OWP

Fizzano:1997:DJS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Flich:2012:SIC

Feitelson:1992:GSP

Feitelson:1996:EDC

Ferreira:1996:FSP

Ferreira:1998:SII
Fraigniaud:1992:CAB

Freeh:1996:CIE

Feller:2015:PEE

Fleury:2004:DFG

Fort:2014:FES

Fort:2017:ITF

[FSV17] Marta Fort, J. Antoni Sellarès, and Nacho Valladares. Intersecting two families of sets on the GPU. *Journal of
REFERENCES

[FTK14] Dror G. Feitelson, Dan Tsafrir, and David Krakov. Experience with using the Parallel Workloads Archive. Journal
REFERENCES

[FVCL05] Fernanda P. Franciscani, Marisa A. Vasconcelos, Rainer P. Couto, and Antonio A. F. Loureiro. (re)configuration algo-
REFERENCES

Fang:2009:SDB

Falsafi:2005:ESP

Ferri:2010:ETE

Fu:2006:SMA

Fu:2010:QEC

REFERENCES

Furno:2014:SSC

Fang:2005:FSS

Fernandez-Zepeda:2002:UBL

Fan:2012:EAA

Goodrich:1990:PRO

REFERENCES

Gunney:2016:APB

Grossman:2017:PTT

Gharachorloo:1992:PDM

Goff:2003:PRA

Gait:1987:DPM

Gait:1990:SPM

Gustafson:2006:SIM

Gu:2011:HTN

Gu:2008:PAA

Germain:1993:CAM

Gupta:1993:MEH

REFERENCES

[GCY+04] Deepak Ganesan, Alberto Cerpa, Wei Ye, Yan Yu, Jerry Zhao, and Deborah Estrin. Networking issues in wireless sensor net-
REFERENCES

Gardellin:2011:GPD

Goodeve:1998:TMS

Gandham:2008:LSW

Gaudiot:1985:PES

Gusev:1994:NMV

REFERENCES

Gerbessiotis:1998:PCP

Gupta:1989:SRT

Garzon:1992:DTG

Gonzalez-Ferez:2014:GFD

Gabarro:1994:ACD

REFERENCES

REFERENCES

Gouda:1996:STR

Ghosh:2002:SSS

Guo:2017:MAE

Guesgen:1992:TMP

Guerraoui:2012:DPR

REFERENCES

Slavko Gajin and Zoran Jovanovic. An accurate performance model for network-on-chip and multicomputer inter-

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. Compiling array expressions for efficient exe-

1992. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Gao:2014:RCG

Ghose:1994:DCC

Gil:1994:FES

Gopi:1995:PAC

Gil:1996:ELB

Graham:1999:PSS

Goglin:2013:KGS

Gorain:2014:AAS

Grace:2014:DRP

R. Kingsy Grace and R. Manimegalai. Dynamic replica placement and selection strategies in data grids — a comprehensive survey. *Journal of Parallel and Distributed Com-

REFERENCES

Gonzalez:1998:CAM

Gedik:2016:PFS

Goscinski:1990:TAM

Glenn:1991:IMP

Gibson:1993:DDA
Galil:1994:PAD

Gasieniec:1997:BBF

Gu:2000:EAP

Guo:2005:ICS
REFERENCES

Gandhi:2007:DAC

Gaur:2010:PBS

Greenberg:1996:CCC

Gaibisso:2006:EMT

Goldman:2006:EMD

Geng:2008:DSA

REFERENCES

2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Gao:1996:TES

Grahn:2009:SIJ

Grahn:2010:ASI

Grahn:2010:TM

Ghosh:2005:PSJ

Gustafson:1991:DSF

John Gustafson, Diane Rover, Stephen Elbert, and Michael Carter. The design of a scalable, fixed-time computer bench-

[GS00] Håkan Grahn and Per Stenström. Comparative evaluation of latency-tolerating and -reducing techniques for hardware-

REFERENCES

Goldstein:1996:LTI

Gill:1993:STA

Goswami:2002:DPP

Garcia:2003:HDH

REFERENCES

REFERENCES

November 2004. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Gong:2013:EEC

Gu:2014:SIM

Guil:1997:FHT

Gao:2008:PSA

Gan:2017:DAO
Zhihua Gan, Mingquan Zhang, Zhimin Gu, Hai Tan, and Jizan Zhang. Delay analysis and optimization for inter-core inter-

Gotthelf:2008:GOM

Gong:2014:DCA

Gong:2014:MCC

Houstis:1991:CPA

Hudak:1992:CTO

REFERENCES

Hughes:2005:MSP

Holman:2006:SLF

Hussain:2017:NIS

Hagerup:1997:AIT

Haldar:2005:CRV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Herbordt:1994:PAO

Herbordt:2004:ACH

Hu:2010:IIC

Hanna:2011:AHS

Hoare:2008:TSH

HerondeCarvalhoJunior:2013:CSE

Hoare:2005:FDS

Herath:1992:GEI

Hajihashemi:2010:HPC

Hassan:2011:PID

Hyde:1996:ADS

[HF96] Randall L. Hyde and Brett D. Fleisch. An analysis of degenerate sharing and false coherence. *Journal of
Hybinette:2002:LHO

Hameenanttila:1996:FHN

Harmanci:2010:ETM

Hamdi:1997:RFE

He:2001:CEB

Hussain:2014:PPM

Ho:1998:EPS

Hussin:2015:IRR

REFERENCES

Hall:1996:ICF

Hambrusch:1994:PAG

Heber:2012:ISC

Han:1994:BFB

REFERENCES

Hu:2001:MRM

Huc:2012:ERS

Hambrusch:1996:PMC

Hershberger:2001:DMR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hosseini:1990:AGC

Hanlon:2003:LSF

Hori:2012:ANS

Helmbold:1996:TRC

Huang:1999:BBA

Heun:2001:ODE

Haghighi:2006:PPQ

Hart:2007:PMR

Herrmann:2015:MAT

Han:2007:AAI

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

He:2009:SAA

Hohberg:1990:HFB

Hollingsworth:2017:E

Heydemann:1994:EHG

Hernandez-Orallo:2009:PBS

Hendrickson:1995:PMB

Bruce Hendrickson and Steve Plimpton. Parallel many-body simulations without all-to-all communication. *Journal of Parallel and Distributed Computing*, 27(1):15–25,
REFERENCES

Ha:1997:SDC

Homer:1997:DPP

Ha:2000:NTB

Hong:2006:MLD

Bo Hong and Viktor K. Prasanna. Maximum lifetime data sensing and extraction in energy constrained networked sensor

Han:2010:FIN

Hurson:1991:RMB

Hands:1997:PSB

Hoepman:2002:SSW

REFERENCES

REFERENCES

REFERENCES

Homer:1994:SPC

Hou:1997:IDL

Harris:2000:LOO

Hwang:2003:IPP

REFERENCES

REFERENCES

[Hendler:2010:SLF]

[Hillis:1990:ESH]

[Herlihy:2006:RSN]

[Hribar:1998:TDP]

[Huang:2002:FTH]

REFERENCES

[HWHY10] Xiaomeng Huang, Yongwei Wu, Guangwen Yang, Weiming Zheng, and Jinlei Jiang. Distributed bandwidth allocation...

REFERENCES

.coden jpdcer. issn 0743-7315 (print), 1096-0848 (electronic).

Ibrahim:2008:FGP

Iqbal:2005:PAD

Igual:2012:FAD

Ibrahim:2017:CSE

Izaguirre:2005:PMS

Hussein A. H. Ibrahim, John R. Kender, and David Elliot Shaw. Low-level image analysis tasks on fine-grained tree-

REFERENCES

Imbs:2016:RWS

Irwin:1988:SIP

Iyengar:2006:ENL

Imani:2007:CIP

Imani:2010:RPC

Islam:1997:CMP

Izumi:2007:ATC

Itzkovitz:1999:TID

Irony:2004:CLB

Irakliotis:1997:OME

REFERENCES

REFERENCES

Jhumka:2014:EFT

Jin:2005:ENA

Jha:2012:ODC

Joselli:2015:NGN

Janssens:1995:ECR

REFERENCES

Jabeen:2012:ASN

Jodra:2017:SPE

James:1992:DLC

Johnsson:1992:GSP

Johnsson:1994:BCE

REFERENCES

Jang:2012:OWS

Jaen-Martinez:2000:JME

Johnen:2014:SSS

Jhurani:2015:GII

Jamieson:1986:FAS

REFERENCES

REFERENCES

Jegou:1986:DSP

Jenq:1994:RMA

Jadav:1995:TSH

Jia:1994:PNU

Jungnitz:1992:ATC

Jeannot:2012:OPR

Jain:1992:SPO

Jain:1988:ACC

Jayasinghe:2011:TAM

Jin:2006:PCM

Haoqiang Jin and Rob F. Van der Wijngaart. Performance characteristics of the multi-zone NAS parallel benchmarks.
REFERENCES

Joshi:2009:ADS

Juang:1989:LBO

JaJa:1994:SID

Jing:2017:MLD

Jiang:2014:FRS

REFERENCES

REFERENCES

[Kar95] Dino Karabeg. Process partitioning through graph compaction. *Journal of Parallel and Distributed Comput-
REFERENCES

REFERENCES

REFERENCES

[KBC+10]

[KBD05]

[KBG92]

[KC94]

REFERENCES

Konstantinidis:2017:QRM

Kim:2008:CDW

Keleher:1995:ESB

Kim:2014:IPA

Kandemir:1999:MBA

Kim:1999:CMD

Koutsonikolas:2008:IAF

Karonis:2013:DHA

Kotz:1993:CWP

Kulasinghe:1995:AMP

Keleher:2000:ISS

Kepner:2003:MTF

Karaata:2001:MCL

REFERENCES

Kumar:1994:SLB

Kung:1989:USA

Koohi:2012:SAC

Khokhar:2003:TDD

Kanemitsu:2017:PNS

Kim:2017:QPT

Kumar:1984:PEB

Kaznachey:2003:NNB

Kumar:1986:TPD

Kirchner:1988:AAV

Konda:1995:SFD

Kim:2011:LAL

Kennedy:2017:CNB

Krishnan:2006:ESC

Kahol:2001:ADD

Karunaratne:2017:DSC

REFERENCES

Kas:2011:OAC

Krimer:2011:STA

Kambatla:2014:TBD

Kim:2012:RSG

Kim:2014:GBM

REFERENCES

Kim:2013:PMD

Kalinnik:2014:OAT

Korkhov:2008:GBV

Konwar:2009:NDN

Kim:2012:PDM

Jinwoo Kim, Minyoung Kim, Mark-Oliver Stehr, Hyunok Oh, and Soonhoi Ha. A parallel and distributed meta-heuristic framework based on partially ordered knowledge sharing. Journal of Parallel and Distributed Computing, 72(4):564–578, April 2012. CODEN JPDCER. ISSN 0743-7315 (print),
REFERENCES

Kumarage:2013:DAD

Kadayif:2005:ILP

Kobus:2017:RRT

Kung:1984:WSI

Kalinov:2001:HDC

REFERENCES

REFERENCES

[V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, Aravind Srinivasan, and Sibylle Zust. Provable algorithms for...

Koppelman:1990:SRP

Khedr:2011:ETT

Khedr:2012:MAM

Khedr:2009:PDW

Kochevar:1991:SLS

Koppelman:1997:SSB

[KPC96] Vijay Karamcheti, John Plevyak, and Andrew A. Chien. Runtime mechanisms for efficient dynamic multithreading. *Jour-
REFERENCES

Kothari:1988:MNC

Kumar:1987:APM

Kaddoura:1997:RSP

Knop:1998:PLT

Santosh Khasanvis, Mostafizur Rahman, and Csaba Andras Moritz. Heterogeneous graphene-CMOS ternary content addressable memory. *Journal of Parallel and Distrib-
REFERENCES

Kumar:2001:SIH

Krishnamoorthy:2013:SIJ

Krishnamoorthy:2014:IJS

Konwar:2015:RNS

REFERENCES

[KS94] A. D. Kshemkalyani and M. Singhal. On characterization and correctness of distributed deadlock detection. *Jour-
REFERENCES

Kontothanassis:1995:HPS

Karlsson:1997:EDP

Khemka:1997:OMR

Kogan:2000:RRC

[KS00] Dmitry Kogan and Assaf Schuster. Remote reference counting: Distributed garbage collection with low communication

REFERENCES

Kavianpour:1994:NAC

Kissel:2011:PSH

Koziris:2003:PSM

Kegel:2013:DTU

Kshemkalyani:2012:IDP

Kannan:2004:SCE

Kim:2015:DFD

Kent:1985:PPI

Karsai:1992:MBI

Kim:2007:DMT

[KSS+07] Jong-Kook Kim, Sameer Shivle, Howard Jay Siegel, Anthonj A. Maciejewski, Tracy D. Braun, Myron Schneider, Sonja Tideman, Ramakrishna Chitta, Raheleh B. Dilmaghani, Rohit Joshi, Aditya Kaul, Ashish Sharma, Siddhartha Sripada,

Kollias:2014:FPA

Koutsandria:2016:CEH

Kamath:2016:DTT

Kumar:1989:DLS

Kunde:1991:RMM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lejeune:2015:FSF

Latifi:1995:MTI

Latifi:1998:FBG

Lee:2000:IIB

REFERENCES

Lazar:1995:BAM

Lakhlef:2015:EAP

Liang:1990:SJS

Li:1990:SPA

Li:1990:SJS

REFERENCES

Lin:2007:PSA

Li:2011:APU

Lee:2013:AMS

Laurenciu:2014:CTN

Lim:2014:PGM

Lorenzon:2016:IDG
Arthur Francisco Lorenzon, Márcia Cristina Cera, and Antonio Carlos Schneider Beck. Investigating different general-

REFERENCES

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Lewis:2003:SES

Lampka:2016:KIC

Liu:2017:FTE

Ltaief:2008:FTA

Lu:2012:EPM

Lee:1991:VLA

Libeskind-Hadas:2001:MAH

Li:2011:EPA

Lee:2003:LSS

Lee:2003:DLB

Liu:2014:OTA

Li:1995:DDD

Loh:2007:REC

Lam:1997:OAA

Liu:2008:DRC

REFERENCES

REFERENCES

[Li14] Keqin Li. Optimal number of annuli for maximizing the lifetime of sensor networks. *Journal of Parallel and Dis-
REFERENCES

Li:2014:ETC

Li:2016:ETC

Li:2017:LDM

Lin:1991:PAB

Lin:1993:POG

Lin:1993:SIP
REFERENCES

Lin:1993:TDD

Lin:2003:EED

Lisper:1990:STO

Li:1986:SSN

Lee:2005:EDR

Lee:2002:PPR

Luszczek:2014:LBD

Lee:1994:ECR

Lazaro:2012:LTA

Lee:2014:EMC

Lee:1990:DPE

REFERENCES

REFERENCES

[LLDL15] Jun Long, Anfeng Liu, Mianxiong Dong, and Zhi Li. An energy-efficient and sink-location privacy enhanced scheme for WSNs through ring based routing. *Journal of Parallel
REFERENCES

Lee:2000:HNO

Lee:2000:THT

Lee:2013:DSE

Lau:2006:ALD

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

Liu:2005:ILS

Li:1999:PMC

Li:2012:OOS

Ligon:1993:EME

Ligon:1994:EMA

Li:2003:CDA

Lindsey:2003:EEA

Ludwig:2005:ISM

Lastovetsky:2006:HTM

Lang:2014:ETE

REFERENCES

 Li:1985:VCV

 Lin:1988:PVR

 Lin:1991:PEH

 Leung:1994:MPR

 Lai:1995:TRM

 Leutenegger:1997:LCS

Lundberg:2001:ORS

Lin:2003:LBL

Lin:2005:FOP

Lufei:2006:FMC

Liang:2010:RDS

[L10] Zhengqiang Liang and Weisong Shi. A reputation-driven scheduler for autonomic and sustainable resource sharing in

REFERENCES

REFERENCES

537

Lee:2017:NNL

Liu:2014:DBD

Li:2014:DPM

Luckow:2015:PDA

Liu:2015:ABI

REFERENCES

Lin:1993:PCC

Liu:2014:HMC

Lee:1997:PAO

Lian:2005:GGE

Lin:1990:PPC

REFERENCES

REFERENCES

REFERENCES

Lavault:2008:DAA

Li:1990:TAD

Liu:1989:APC

Lai:1990:MPA

Lin:1995:MPR

Li:2006:SAA

REFERENCES

Li:2012:CSC

Li:2002:EKF

Liu:2002:PSA

Li:2003:EHP

Lee:1997:GOM

Li:2002:PPR

REFERENCES

REFERENCES

Leff:1991:ASL

Lim:1998:MCC

Lim:2001:EIC

Lin:2008:AIS

Lee:2010:RMS

Yiming Li, Shao-Ming Yu, and Yih-Lang Li. Parallel solution of large-scale eigenvalue problem for master equation in protein folding dynamics. *Journal of Parallel and Distributed Computing*...

REFERENCES

REFERENCES

Coden JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Li:2011:MDT

Liu:2011:APD

Mershad:2011:CCD

Maia:2013:MRP

Maheshwari:1995:PSP

REFERENCES

Min-Allah:2012:PER

Mohamed:2005:DUL

Min-Allah:2013:LPF

Manoj:2005:MHC

Manzini:1994:SMC
REFERENCES

REFERENCES

REFERENCES

Ma:2013:KAT

Mullen:2017:LDH

Morillo:2008:APC

Morgan:1992:RAP

Marsh:1992:OSS

Rami Melhem and Donald Chiarulli. Optical computing and interconnection systems: Guest Editors’ introduction. *Journal
REFERENCES

Myers:2003:NMI

Maier:2017:OLD

McAulay:1989:CGO

Martinez:2012:HIS

Ma:2004:BBT

Melab:2006:GCP

Muppala:2014:MTS

Miller:1992:AQM

Medidi:1998:PDU

Mahapatra:2001:HEH

Mahapatra:2007:EDO

Mansouri:2013:EDH

Meyer:1997:ALA

Mahanti:2004:ADP

Megson:1991:SAB

Muhammad:2017:ALA

Merrall:1996:PEN

Mabbs:1994:PAM

Mourad:1993:RID

Mourad:1996:SPR

[MFS96] Antoine N. Mourad, W. Kent Fuchs, and Daniel G. Saab. Site partitioning for redundant arrays of distributed disks. *Jour-
REFERENCES

Mittal:2008:TDC

Mowry:1991:TLT

Murdocca:1993:AIR

Moga:1998:PMB

REFERENCES

[mH14] Wen mei Hwu. What is ahead for parallel computing. *Journal of Parallel and Distributed Computing*, 74(7):2574–2581, July 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Mudge:1986:AMB

Memin:1995:EPN

Madisetti:1993:MEP

Ma:2016:TTC

McLendon:2005:FSC

William McLendon III, Bruce Hendrickson, Steven J. Plimpton, and Lawrence Rauchwerger. Finding strongly connected components in distributed graphs. *Journal of Parallel and
REFERENCES

[Manabe:1992:GCD]

[Mil93]

[Mil99]

[Mir91]

[Mit07]

[MJ94]

REFERENCES

Sourav Mukherjee and Hillol Kargupta. Distributed probabilistic inferencing in sensor networks using variational approximation. *Journal of Parallel and Distributed Computing*, 68
REFERENCES

Memik:2001:DES

Mittal:2009:NDC

Mondal:2016:PPA

Moritz:2014:IJS

Marchand:1997:OAD

Philippe J. Marchand, Ashok V. Krishnamoorthy, Gökçe I. Yayla, Sadik C. Esener, and Uzi Efron. Optically augmented 3-D computer: System technology and archi-
REFERENCES

REFERENCES

[MLZY17] Li Ma, Peng Leng, Yong Zhong, and Wenyin Yang. Research on semantic of updatable distributed logic and its application in access control. Journal of Parallel and Distributed Computing, 103(??):104–112, May 2017. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

REFERENCES

Morajko:2007:DID

Mahesh:1998:SAF

Moser:1990:WBA

Meyerhenke:2009:NDB

REFERENCES

Montero:2011:EMH

Manimaran:1997:NAR

Miller:1995:EDS

Moritz:2012:SIJ

REFERENCE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[MRR+02] Dale E. Martin, Radharamanan Radhakrishnan, Dhananjai M. Rao, Malolan Chetlur, Krishnan Subramani, and Philip A.

Melin:1998:SSC

Membarth:2014:TPP

REFERENCES

REFERENCES

Mahadevan:2000:HAQ

Manivannan:2002:ARU

Macedo:2005:MGA

Michail:2015:TPP

Majumdar:2004:PAC

Moraveji:2010:CGM

[Matos:2013:LER] Miguel Matos, Valerio Schiavoni, Pascal Felber, Rui Oliveira, and Etienne Riviè re. Lightweight, efficient, robust epi-

REFERENCES

REFERENCES

[MVB05] Wong Han Min, Bharadvaj Veeravalli, and Gerassimos Barlas. Design and performance evaluation of load distribution strategies for multiple divisible loads on heterogeneous linear daisy
REFERENCES

REFERENCES

[NAB+11] Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise, and Alexandra Carpen-Amarie. BlobSeer: Next-generation...

References

[NF16] Peter P. Nghiem and Silvia M. Figueira. Towards efficient re-
source provisioning in MapReduce. *Journal of Parallel and
Distributed Computing*, 95(??):29–41, September 2016. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731516300077.

Load-balanced sparse matrix-vector multiplication on par-
allel computers. *Journal of Parallel and Distributed Com-
puting*, 46(2):180–193, November 1, 1997. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

[NFHL13] Andrew Nere, Sean Franey, Atif Hashmi, and Mikko Li-
pasti. Simulating cortical networks on heterogeneous
multi-GPU systems. *Journal of Parallel and Distributed Com-
puting*, 73(7):953–971, July 2013. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL
http://www.sciencedirect.com/science/article/
pii/S0743731512000408.

[Ngo06] Alioune Ngom. Parallel evolution strategy on Grids for the
protein threading problem. *Journal of Parallel and Distributed Com-
puting*, 66(12):1489–1502, December 2006. CODEN JPDC-
CER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[NMQM12] Jianwei Niu, Yuhang Gao, Meikang Qiu, and Zhong Ming.
Selecting proper wireless network interfaces for user experi-
ence enhancement with guaranteed probability. *Journal of
Parallel and Distributed Computing*, 72(12):1565–1575, De-
cember 2012. CODEN JPDCER. ISSN 0743-7315 (print),
com/science/article/pii/S0743731512002134.
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[NKC+97] Jeffrey M. Nick, Gary M. King, Jen-Yao Chung, Nicholas S. Bowen, and Ching-Shan Peng. Parallel sysplex: a scalable,
REFERENCES

REFERENCES

Nyland:1997:ASP

Noeth:2009:SSC

Nakanishi:1995:ESC

Nation:1990:DPP

REFERENCES

Nayebi:2011:PML

Nam:2010:MQS

Nagasu:2017:FBT

Nam:1999:SLB

Nastou:1998:ACA
Panagiotis E. Nastou, Dimitrios N. Serpanos, and Dimitrios G. Maritsas. Average case analysis of searching in associative processing. *Journal of Parallel and Distributed Com-

Neamatollahi:2012:IBA

Numrich:2007:NSL

Numrich:2008:CFL

Numrich:2009:CFS

Netto:2011:URT

Nicol:1988:PSP

REFERENCES

Oliker:1998:PPL

Ohn:2007:PCC

Ohring:1995:IHE

O'Keefe:1995:SBM

Olariu:2007:AAN

Stephan Olariu, Mohamed Eltoweissy, and Mohamed Younis. ANSWER: AutoNomouS netWorked sEnsoR system. *Journal

REFERENCES

[OBoyle:2002:ILD]

[Oboyle:1995:SMS]

[Olariu:2001:PSI]

[Opper:1984:RAM]

[Olukotun:1990:HGA]
REFERENCES

[OOSGVG+16] Marta Ortín-Obón, Darío Suárez-Gracia, María Villarroya-Gaudó, Cruz Izu, and Víctor Viñals. Reactive circuits:

Olariu:1995:RBT

Ouyang:1996:VEC

Orlando:1998:CIS

Oh:2008:OEO

REFERENCES

2008. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

Onaga:1986:WAL

Oz:2012:TVP

Olariu:2001:GEI

Ostovari:2014:SLR

Ofek:2000:CAS

REFERENCES

Krishnan Padmanabhan. Efficient architectures for data access in a shared memory hierarchy. *Journal of Parallel and
Padmanabhan:1993:SBA

Plimpton:1998:PTD

Ponnuswamy:1997:PBB

Pakzad:1989:FTA

REFERENCES

Peng:2011:EVF

Plateau:1991:MSM

Prodan:2004:ZGM

Pedone:2008:PHA

Pfeiffer:1990:HLL

REFERENCES

Park:2004:GFS

Patterson:2012:SCM

Pedrero:2017:ROS

Paul:2006:FSC

Panda:1991:FDM

Parashar:2000:IPP

[PH00] Manish Parashar and Salim Hariri. Interpretive performance prediction for parallel application development. Jour-

REFERENCES

Psarris:1991:ABT

Page:2008:SDH

Page:2010:MHD

Penoff:2010:ETL

Peir:1993:LAR

Peng:1994:SOP

Petersen:1995:MCC

Potter:1998:AAC

Peinado:2003:PSW

REFERENCES

2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Pietracaprina:2015:SEP

Paszynski:2010:PDS

Pani:2006:SAA

Pal:2012:SLT

Pichel:2013:SMV

Ravi Prakash, Michel Raynal, and Mukesh Singhal. An adaptive causal ordering algorithm suited to mobile computing environments. *Journal of Parallel and Distributed
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Plank:2001:PAC

Pinar:2008:ODP

Ponnusamy:1993:EPE

Peng:2013:SSM

Parmentier:2006:LSM

[PTZ06] Gilles Parmentier, Denis Trystram, and Jaroslaw Zola. Large scale multiple sequence alignment with simultaneous phy-

Peleg:1989:PDR

Petit:2007:OSS

Perez-Vidal:2009:HSF

Pontelli:2006:SST

Plaza:2006:CCB

Prades:2017:MTV

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Pages</th>
<th>Volume</th>
<th>Issue</th>
<th>Publisher</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
</table>

1992. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Rozier:1997:DEP

Rashad:2006:UMO

Rotem:1987:ADA

Richards:1995:DCP

Ramachandran:1996:CBS

Randall:2002:PIA

Rahmani:2016:SIE

Rahmani:2017:SIE

Ravindran:2003:PRA

REFERENCES

REFERENCES

REFERENCES

[Ryan:1995:TLD]

[Rak:1998:MFS]

[Reynolds:1993:DPA]

[Rajasekaran:1995:RAM]
Rajasekaran:1995:OMA

Rauber:2005:TLS

Ryoo:2008:POC

Ranka:1990:ITM

Ranka:1990:SES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sanchez-Artigas:2010:EPP

Sandhu:1995:ADS

Sanders:1998:RPQ

Santos:1999:ONO

Santos:2002:OEA

REFERENCES

Sarbazi-Azad:2005:DPNb

Su:1984:DPM

Skillicorn:1993:CP

Sohn:1997:SID

Schwiebert:2002:PTA

REFERENCES

Sun:2004:MKN

Shamsi:2012:PSO

Sharma:2015:LBD

Stoyenko:1996:LBM

Saule:2012:LBS

Shen:2004:HPD

Sun:2010:RAL

Schenk:2008:APS

Shafi:2009:NPM

Sheu:1992:FTS

Shao:2006:HSO

Su:1999:BIW

Sarkar:2010:POF

Schwandt:1987:IAB

Schaeffer:1989:DGT

Schroder:1989:TDI

Schaefer:1990:SIM

REFERENCES

Schmolze:1991:GSR

Schulz:2013:ELS

Schreiber:2014:FBI

Shin:2008:TSA

Shi:2003:MOC

Su:2010:ESQ

Stantchev:2008:FPP

Singh:2017:NAA

Schoneveld:1997:TAP

Skeppstedt:1999:ECC

Shriraman:2010:ITD

[SEP96] Charles Severance, Richard Enbody, and Paul Petersen. Managing the overall balance of operating system threads on a mul-

REFERENCES

REFERENCES

Sanchez:1999:SDP

Shi:2014:SBH

Szafaryn:2013:TPA

Schwiegelshohn:1991:OPA

Saxena:2003:DOC

REFERENCES

REFERENCES

REFERENCES

Silverman:1990:PPA

Sinclair:1987:ECO

Singhal:1993:TDM

Singh:1995:FPN

Sridhar:1992:RSP

Shin:2014:GSE

Seon-Ho Shin, Eun-Jin Im, and MyungKeun Yoon. A grand spread estimator using a graphics processing unit. *Journal of Parallel and Distributed Computing*, 74(2):2039–2047, February 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Schwiebert:1995:OFA

Schwiebert:1996:NSC

Salehi:2012:QPA

Sun:2011:PPC

REFERENCES

Seog Chung Seo, Taehong Kim, and Seokhie Hong. Accelerating elliptic curve scalar multiplication over GF(2ᵐ)
REFERENCES

Shen:2014:DSL

Sisodia:2004:NSS

Sarukkai:1993:MVP

Smitley:1989:SMT

Sips:1990:NML

Seznec:1995:OMS

REFERENCES

[Spacey:2013:PPD] Simon Spacey, Wayne Luk, Daniel Kuhn, and Paul H. J. Kelly. Parallel partitioning for distributed systems us-

REFERENCES

Solomonik:2014:MPT

Steck:1993:PIR

Salimi:2014:TSU

Sarma:2015:ERW

REFERENCES

REFERENCES

Soliman:2013:DIE

Stotts:1990:CGC

Sharma:1996:SA

Schmidt:2008:SE

REFERENCES

Shieh:2013:ETA

Saltz:1991:PEI

Saez:2017:TCF

Seal:2013:RPC

Saeed:2012:HPM
REFERENCES

[SPvH03] H. A. Schmidt, E. Petzold, M. Vingron, and A. von Hae-
seler. Molecular phylogenetics: parallelized parameter esti-
mation and quartet puzzling. *Journal of Parallel and Dis-
tributed Computing*, 63(7–8):719–727, July/August 2003. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[SR88a] Isaac D. Scherson and Smil Ruhman. Multi-operand arith-
metic in a partitioned associative architecture. *Journal of Par-
allel and Distributed Computing*, 5(6):655–668, December
1988. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[SR88b] M. A. Sridhar and C. S. Raghavendra. Uniform minimal full-
access networks. *Journal of Parallel and Distributed Comput-
0743-7315 (print), 1096-0848 (electronic).

networks: enumeration and characterization. *Journal of Par-
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[SR91] James A. Storer and John H. Reif. A parallel architecture
for high-speed data compression. *Journal of Parallel and Dis-
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

image component labeling with local operators on mesh
connected computers. *Journal of Parallel and Distributed Com-
inging*, 23(3):455–461, December 1994. CODEN JPDC-
ER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL

Shen:1990:VVE

Skyrme:2014:SSS

Siu:1995:TMP

Saad:1989:DCH

Shi:1992:PSR

Laura A. Sanchis and Matthew B. Squire. Parallel algorithms for counting and randomly generating integer partitions. *Journ-
Szuba:1997:PEC

Scheiman:1999:EBC

Subhlok:2000:APM

Sajith:2003:FPE

September 2003. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Shi:2005:LEH

Scheutz:2006:AAD

Sha:2008:CDD

Shams:2011:OFD

Sridharan:2017:DDC

Sen:1991:GSI

Arunabha Sen, Abhutt Sengupta, and Subir Bandyopadhyay. Generalized supercube: an incrementally expandable intercon-
REFERENCES

REFERENCES

[Sundriyal:2013:ESS]

[Shih:2000:EIG]

[Stoica:1996:HMC]

[Sariyuce:2015:RGC]

[Sagy:2011:TVA]
Guy Sagy, Izchak Sharfman, Daniel Keren, and Assaf Schuster. Top-k vectorial aggregation queries in a distributed environ-

Sim:2004:MLR

Scherson:1989:TNO

Shivle:2006:SAR

Sugavanam:2007:RSA

Salehi:2016:SBR

[SSM+16] Mohsen Amini Salehi, Jay Smith, Anthony A. Maciejewski, Howard Jay Siegel, Edwin K. P. Chong, Jonathan Apo-

Shestak:2008:SRM

Shan:2002:CTP

Sivasubramaniam:1994:SBS

Santoro:1988:ECD

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[STKW12] Justin Y. Shi, Moussa Taifi, Abdallah Khreishah, and Jie Wu. Tuple switching network-when slower may be better. *Jour-
REFERENCES

Xian-He Sun. Scalability versus execution time in scalable systems. Journal of Parallel and Distributed Computing, 62
REFERENCES

Subhlok:2000:OUM

Sanjay:2008:PMP

Stout:1990:IHC

Savage:1991:PGP

Schikarski:1996:EPM

Saiedian:2012:CER

Swarztrauber:1998:TAM

Stolfo:1991:PPR

Shoukourian:2017:AEC

REFERENCES

Shieh:2004:PNU

Swami:1992:AHS

Scheuermann:1994:CBI

Sendag:2007:IWP

Shavit:2000:CFD

Xing Su, Minjie Zhang, and Quan Bai. Coordination for dynamic weighted task allocation in disaster environments with time, space and communication constraints. *Journal
REFERENCES

Shen:2007:PLP

Subrata:2010:CPA

Shi:2013:REA

Shen:2005:DBI

Szymanski:1995:HOI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ting:2013:IGB

Tsai:2012:SFT

Tu:2010:SCO

Tsouloupas:2007:GTI

Tang:2013:JSA

Thaeler:2005:IIL
[TDC05] Andrew Thaeler, Min Ding, and Xiuzhen Cheng. iTPS: an improved location discovery scheme for sensor networks with

Touzene:2005:EDS

Tripathy:2015:DTS

Teng:1990:APA

Teng:2016:SCA

Terekhov:2016:HSP

Tufo:2001:FPD

Tarplee:2015:SLP

Tumeo:2015:SIA

Tomlinson:1997:MFG

Tang:1999:APT

Termehchi:2003:POT

Tarafdar:2004:PCS

Titos-Gil:2016:ASE

Huang:1990:FPM

Shing tsaan Huang. A fully pipelined minimum-spanning-tree constructor. *Journal of Parallel and Distributed Computing,*
Tutsch:2002:GSE

Tikir:2008:HMD

Talbi:2011:SIJ

Talbi:2013:MG

Tokhi:1997:PEI

REFERENCES

Thirumalai:1996:ECA

Traff:2008:OBF

Tian:2016:LSP

Traff:2009:WPP

Toharia:2012:SBD

Tatarchuk:2008:AIM

Tseng:1990:SAP

Tseng:1995:DTW

Trejo-Sanchez:2014:DAM

Taylor:2001:BLV

Tsur:2007:ISR

Trdlička:1998:EAC

Turner:2007:DFC

Talia:2010:EDQ

Torrellas:1995:EPC

REFERENCES

REFERENCES

Flux, sorting, and supercomputer organization for AI applications. *Journal of Parallel and Distributed
REFERENCES

Unlu:2017:BPA

Umeo:1985:CSM

Upadhyaya:2013:PAM

Uyar:1994:FRN

Ujaldon:1996:PTS

REFERENCES

Venkatraman:2003:SER

Verma:2007:GSP

VandeGeijn:1994:GCO

vanderStok:1996:AOR

Varadarajan:1991:ESN

REFERENCES

Valdez-Balderas:2013:TAS

Vinas:2013:EHP

Vin:1990:EDD

Vadhiyar:2004:GGB

Veldhorst:1989:GEP

REFERENCES

Vo:2014:MPU

VandenBout:1995:TIM

Vetter:2003:CCL

Vengerov:2010:ADA

Vitter:1993:LSS

VanHulle:1989:EDA

Vazquez-Poletti:2006:CHI

Varma:1986:PPG

Venkatesan:1994:CAF

Venkatesan:1995:MFS

Valls:2017:TFA

Joan J. Valls, Alberto Ros, María E. Gómez, and Julio Sahuquillo. The Tag Filter Architecture: an energy-efficient

REFERENCES

[Varman:1991:MML]

[VanderWijngaart:1996:AOS]

[Veen:1990:RCD]

[Verhoosel:1996:ITC]

[West:2002:GAA]
REFERENCES

REFERENCES

[WBRRT13] Di Wu, Lichun Bao, Amelia C. Regan, and Carolyn L. Talcott. Large-scale access scheduling in wireless mesh net-

Wehe:2010:SPG

Wang:1994:SPC

Wang:2014:AIS

Wang:2017:PMC

Wang:2006:PLS

Kai Wang, Anthony Chang, Laxmikant V. Kale, and Jonathan A. Dantzig. Parallelization of a level set method

Wang:2013:CLO

Williams:2009:OLB

Wang:2003:DAF

Wan:2017:OCD

Wen:2011:UDS

REFERENCES

REFERENCES

Wu:2009:PPI

Wang:2008:TMR

Wu:1997:EPS

Wu:2008:IWM

Wlotzka:2017:EEM

[WIKC97] Koichi Wada, Takaharu Ikeo, Kimio Kawaguchi, and Wei Chen. Highly fault-tolerant routings and fault-induced
REFERENCES

Weil:1991:DIS

Wang:2007:ESP

Wah:1990:OPE

Wilson:1992:HSM

Wang:2004:COS

Wu:2005:WRT

REFERENCES

Weyland:2013:MFS

Wang:2009:PEE

Wang:2017:CQC

Woo:1994:ORA

Wang:1994:MQF

Mu-Cheng Wang, Wayne G. Nation, James B. Armstrong, Howard Jay Siegel, Shin Dug Kim, Mark A. Nichols,

[Wol88]

[Won99]

[Wor93]

[WP02]

REFERENCES

[WR97] Xiaodong Wang and Vwani P. Roychowdhury. Optimal communication algorithms for heterogeneous computing over

Watson:1994:BBM

Wei:1991:DSG

Wang:2003:CAM

Wu:2011:OSP

Wang:1997:TMS

Weiss:1993:AID

Wu:1992:CAL

Wang:2009:GDC

Wang:2008:IRP

Wang:2008:CMT

REFERENCES

REFERENCES

Wang:2012:DMT

Wang:2017:LAB

Wang:2017:NRM

Xu:2000:PDC

Wang:2005:AER

REFERENCES

Wang:2017:DLW

Xiao:2007:DAC

Xiao:2008:ADA

Xing:2007:LCS

Xiang:2006:FTM

Xiao:2003:SLA

Xue:2003:AHQ

Xu:1991:MRB

Xu:1993:HMD

Xu:2003:LRA

Xia:2007:DIR

REFERENCES

REFERENCES

[XLL15] Guoqi Xie, Renfa Li, and Keqin Li. Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems. *Journal of Parallel and Distributed Computing*, 83(??):1–12, September 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
REFERENCES

Xie:2011:URB

Xu:2012:MTB

Xue:1997:CMT

Xu:2008:DDM

Xia:2006:IAC
Zhonghang Xia, I-Ling Yen, Donglei Du, and Peng Li. An integrated admission control scheme for the delivery of streaming

REFERENCES

REFERENCES

Yoo:2010:ISL

Yuan:2015:PCE

Yang:1993:PCM

Yang:2000:PMB

Yang:2004:FPO
REFERENCES

[YB01] Yanhong Yuan and Prith Banerjee. A parallel implementation of a fast multipole-based 3-D capacitance extraction program on distributed memory multicomputers. Journal of Parallel and Distributed Computing, 61(12):1751–1774, December 1, 2001. CODEN JPDCER. ISSN 0743-

REFERENCES

Yoo:1998:FEP

Yen:2001:PUE

Yang:2007:CFD

Yang:2009:NAI

You:2017:DIH

Yang You, Haohuan Fu, David Bader, and Guangwen Yang. Designing and implementing a heuristic cross-architecture combination for graph traversal. *Journal of Parallel and
REFERENCES

Yang:2015:SSV

Yang:2010:LCM

Yen:1997:RVC

Yero:2007:SSA

[YJKD10] Ki Hwan Yum, Yuho Jin, Eun Jung Kim, and Chita R. Das. Integration of admission, congestion, and peak power control in

Yaseen:2016:LBW

Yau:2004:CSM

Yoon:1989:BDN

Yue:1998:CPA

Yaseen:2012:AKB

[YL12] Ashraf Yaseen and Yaohang Li. Accelerating knowledge-based energy evaluation in protein structure modeling with
REFERENCES

Yoon:1990:MTP

Yin:2015:GHD

Yang:2017:HCM

Yang:2006:OSP

Yuan:2001:PMH

REFERENCES

Yu:2008:ICL

Yin:2011:EAC

Yang:2005:RRM

Yang:2007:HCL

Yang:1994:RRM

REFERENCES

Yu:2012:CME

Yu:2013:DSA

Yuan:2011:DMC

Yu:2009:EPB

Yang:1996:EPP

Zhang:2005:DPB

Zhai:2017:EEI

Zahavi:2012:FTR

Zaki:2001:PSM

Zwietering:1994:MNL

Zhu:2017:DPC

Zou:2004:UAC

Zoni:2017:BEF

Zeigler:2002:QBF

Zhang:2012:EIS

Zhou:2006:NFI

Zeppenfeld:1991:PSB

Zhu:1989:NPS

Zhang:2007:SAT

Zhu:2006:PCA

Zaman:2013:CAB

REFERENCES

Zheng:2014:BBE

Zhu:1999:COP

Zhu:2007:ESS

Zhang:2011:RLP

Zhang:2015:HAB

Zhang, Kai; Hu, Jiayu; Hua, Bei. A holistic approach to build real-time stream processing system with GPU. *Journal of Parallel and Distributed Computing*, 83(??):44–57, September 2015. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
Zhu:2012:AEE

Zomaya:2003:SOU

Zhu:2016:SCI

Zhu:1992:EPA

Zhou:2008:RAO

Ziavras:1992:PEH

Zimmermann:1990:TAS

Zimmermann:1996:RAR

Zhu:2006:CCE

Zhang:1994:PHO

Zeigler:1993:SEI

REFERENCES

REFERENCES

Zhang:2017:DIS

Zambonelli:2001:DFI

Zhang:1993:MGT

Zomaya:1997:SIP

REFERENCES

REFERENCES

[Zhao:1999:DMM]

[Zhang:2014:PVS]

[Zheng:2013:SDS]

[Zsaki:2016:HAG]

[Zhang:2014:COS]
Tao Zhang, Wei Shu, and Min-You Wu. CIRRE: an open-source library for load balancing and characterizing irregular applications on GPUs. *Journal of Parallel and Distributed Computing*, 74(10):2951–2966, October 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
Zhang:2016:DAT

Zhu:2017:RSA

Zeng:2006:DSS

Zeng:2009:NDA

Zheng:2009:DCA

ZV09b Qin Zheng and Bharadwaj Veeravalli. On the design of communication-aware fault-tolerant scheduling algorithms for precedence constrained tasks in grid computing systems with dedicated communication devices. *Journal of Parallel and
Zheng:2012:UBP

Zeng:2014:OMR

Zeng:2011:NSS

Zeng:2015:SSA

Zheng:2000:DCG

REFERENCES

Zhang:2011:BRE

Zhao:2013:BRH

Zhuo:2003:DRD

Zhao:2016:THP

Zhu:2007:OPD

[ZXP09] Chenggui Zhao, Wenjun Xiao, and Behrooz Parhami. Load-bala-
balancing on swapped or OTIS networks. *Journal of Par-
CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
tronic).

[ZXYO11] Yuping Zhang, Chun Jason Xue, Chengmo Yang, and Alex
OraIoglu. Migration-aware adaptive MPSoC static schedules
with dynamic reconfigurability. *Journal of Parallel and Dis-
tributed Computing*, 71(10):1400–1410, October 2011. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731511001353.

design of MIMO and network coding. *Journal of Parallel
and Distributed Computing*, 72(3):376–388, March 2012. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
article/pii/S0743731511002309.

[ZYH94] Xiaodong D. Zhang, Yong Yan, and Keqiang Q. He. Lat-
tency metric: An experimental method for measuring and
evaluating parallel program and architecture scalability. *Jour-
nal of Parallel and Distributed Computing*, 22(3):392–410,
September 1994. CODEN JPDCER. ISSN 0743-7315 (print),

[ZYO02] Albert Y. Zomaya, Adrian Yates, and Stephan Olariu. Fault-
tolerant recursive least-squares computations on a mesh-
connected parallel processor. *Journal of Parallel and Dis-
tributed Computing*, 62(7):1142–1167, July 1, 2002. CO-
DEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES
