Title word cross-reference

$(\nu, \mu, s, 1 - \sigma)$ [2995]. -1 [1754]. 0 [1255]. 1
[812, 955, 1192, 1359, 1558, 1641, 1795, 1858, 2652, 2707, 3276]. 2
[177, 316, 384, 486, 593, 600, 658, 742, 769, 823, 865, 1174, 1260, 1276, 1306, 1310, 1658, 1748, 1779, 2002, 2252, 2581, 2597, 2644]. 3 [248, 263, 336, 384, 403, 530, 600, 646, 869, 1002, 1006, 1021, 1061, 1078, 1236, 1276, 1310, 1339, 1579, 1737, 1779, 1780, 1838, 1888, 2107, 2529, 2581, 2746, 2755, 3367, 3434, 3479]. 4
α [2740, 3118, 3567, 3650]. $A\xi = b$ [276]. $Ax = b$ [228]. B [1612, 1776]. β
[3022]. C [1612, 1776]. C^0 [440, 1161, 1273, 1639, 1729, 1974, 2013, 3059, 3256].
C^1 [3722]. C_∞ [578]. D [737, 1400, 2024, 2630]. $\Delta \cdot B$ [582]. Div(Y) = f [571].
ℓ^2 [2316]. ℓ^6 [2316]. ℓ_0 [2353, 3546]. ℓ_1 [1190, 1318, 1583, 2039, 2713]. ℓ_2
[1190, 1628]. ℓ_p [2963]. ϵ [104, 247]. EQ^rot [1195, 1739]. f [948]. $F_j(x)$
[278, 283]. $f \in L^2$ [571]. fp [790]. G^1 [1373]. H
[473, 1194, 1213, 1491, 1733, 1951, 1999, 2064, 2253, 2535]. $H(\text{curl})$ [3676].
\(H(\text{div})\) [3347]. \(h/p\) [2205]. \(H^{-1}\) [2928, 3553]. \(H^1\) [456, 1573, 2267, 3481, 3575]. \(H^{1/2}\) [631]. \(H^2\) [742, 1355, 2882]. \(H^\infty\) [116]. \(H_0^1\) [2980]. \(hp\) [301, 307, 344, 447, 500, 547, 608, 757, 894, 866, 971, 1155, 1470, 1988, 3056, 3079, 3156]. \(j = -1/2\) [278]. \(j = -3/2\) [283]. \(j = 1/2\) [278]. \(K\) [1147, 2223, 2348, 2724, 3283]. \(L\) [3622]. \(L2 - 1\tau\) [3118]. \(L^1\) [716, 1782, 2292]. \(L^2\) [456, 812, 1915, 2288, 3003]. \(L^\infty\) [571]. \(L^\infty(H^1)\) [3118]. \(L^p\) [1683, 2595]. \(l_0\) [1121]. \(L_1\) [1426, 1669, 1685, 1986, 1990, 2077, 2094, 2494, 2902, 3271, 3516]. \(L_{1/2}\) [1595]. \(L_2\) [31, 736, 1426, 1986, 2072, 3271, 3516]. \(L_\infty\) [736]. \(L_k\) [3293]. \(M\) [110, 2633, 3752]. \(M_1\) [625]. \(M_2\) [1793]. \(R^2\) [2640]. \(H^1\) [2890]. \(L^2(\Omega)\) [3120]. \(\mathcal{H}\) [1476, 2302]. \(\mathcal{L}_\varepsilon\) [998]. \(\mathcal{M}\) [1653, 1970, 2171]. \(O(N\log N)\) [1218]. \(N\) [199, 621, 1611, 2557, 3348]. \(n^+ - n^-\) [1284]. \(O\) [2348]. \(O(1/k)\) [1818]. \(O(2)\) [1048]. \(p\) [295, 547, 640, 673, 808, 1049, 1491, 1893, 1895, 1999, 2029, 2147, 2253, 2273, 2304, 2420, 3045, 3079, 3343]. \(p(x)\) [1490]. \(P_1\) [1064, 1165, 1371, 1659, 2835]. \(P_N\) [976]. \(P_N P_M\) [1107, 1329, 2751]. \(Q\) [3358]. \(Q_1\) [2835]. \(Q_2\) [181]. \(qd\) [2080]. \(R^2\) [978]. \(R^n\) [998]. \(S\) [3752]. \(S_N\) [3265]. \(SO(3)\) [2024]. \(t\) [3244]. \(\tau\) [1202]. \(\theta\) [576]. \(V\) [1997]. \(\tilde{H}\) [2749]. \(x^{(k)} = b^{(k)}\) [629]. \(Z\) [2497]. \(Z_2\) [933].

/3 [1400].

Order [2391].

2 [1400]. 2D [2106, 2134, 2319, 3041, 3105, 3159, 3247, 3491, 3511, 3740].
2D/3D [3041]. 2nd [3276]. 2nd-MGFM [3276].

3D [1557, 2230, 2389, 2977, 2995, 3041, 3082, 3148, 3255].

4-Point [3172]. 40/40 [2348]. 40Sedimentation [2692]. 4D [3134]. 4th [1937, 3426].

5 [182].

6000 [152]. 60th [2231].

90 [182].

Applying [128].

appropriate [96].

Approximants [1953].

Approximate [247, 804, 1216, 1249, 1799, 1857, 2215, 2720, 2854, 2867, 2941, 3015, 3130, 3244].

Approximation [23, 51, 67, 93, 95, 138, 151, 171, 190, 396, 547, 759, 801, 824, 1160, 2395, 2419, 2558, 2573, 2759, 2787, 2846, 2854, 3015, 3120, 3445, 3675].

Arbitrary-Lagrangian [1525, 2843]. Arbitrary-Order [2397, 2613, 3722].

Areas [3184]. Arguments [1975, 3069]. Arisen [1697]. Arising [34, 377, 1433, 1507, 1826, 1923, 2132, 2587, 2715, 2841, 3208, 3474, 3497, 3622].

asymmetric [13, 48]. Asymptotic
[12, 578, 900, 945, 1305, 1361, 1368, 1492, 1630, 1829, 2284, 2412, 2471, 2522, 2543,
2624, 2756, 2861, 2985, 3181, 3265, 3406, 3510, 3607, 3680, 3745].
Asymptotic-Preserving [1368, 3181, 3406]. Asymptotically
[1368, 3181, 3406]. Asymptotics-Based [2346]. Atlases
[1005]. Atmosphere
[1965, 2230, 2351, 2665]. Atmospheric
[279, 325, 1333]. Atom
[401, 413, 423]. Atoms
[674, 745]. Attached
[181]. Attention
[3416]. Attentional
[3416]. Attenuating
[227]. Attraction
[1642]. Augmentation
[2836]. Augmented
[986, 990, 1032, 1508, 1514, 1520, 1728, 1731, 1815, 1857, 1937, 2570, 2850, 3015, 3136, 3233, 3383, 3389, 3558, 3641]. Auto
[309, 2777]. Auto-Adaptive
[309]. Autoencoders
[3423]. Automatic
[307, 2507]. Automatically
[3465]. Auxiliary
[492, 1379, 1848, 2572, 2831, 2866, 2905, 3256, 3278, 3301, 3664]. Average
[2275]. Averaging
[562, 2144]. AVF
[1521]. Avoiding
[1917]. Aware
[2351, 3365]. Axially
[2471]. Axis
[3258]. Axisymmetric
[345, 520, 533, 934, 1019, 1028, 1803, 3083, 3621]. B
[328, 1699]. B-Spline
[1699]. Babich
[1609]. Babuska
[1176]. Back
[1337, 3291]. Background
[2937]. Backscattering
[326]. backtracking
[2430]. Backward
[1375, 1698, 1708, 2132, 2223, 2370, 2375, 2540, 2590, 2642, 2806, 2819, 2875, 2925, 3221, 3288, 3402, 3422, 3550]. Bad
[2260]. Baer
[884]. Balakhtov
[2688, 2824]. Bakhvalov-Type
[2688, 2824]. Balance
[939, 952, 1305, 1621, 2530, 2654, 2684, 3140]. Balanced
[548, 936, 948, 952, 957, 1033, 1102, 1133, 1179, 1197, 1409, 1558, 1592, 1597, 1621, 1830, 1832, 2460, 2530, 2605, 2710, 2812, 2824, 2852, 2876, 2903, 2937, 3030, 3221, 3223, 3237, 3262, 3517, 3536, 3654, 3718]. Balanced-Norm
[3221]. Balancing
[201, 2350, 2987, 3104]. Ball
[3477, 3572, 3606]. Banach
[2723, 3254, 3537]. Band
[2592, 2773, 3017]. Banded
[2757]. Bandwidth
[1822]. Barotropic
[874, 3680]. Barrier
[2046]. Barriers
[314]. Barycentric
[2101, 2277, 2637, 3056]. Barycentric-Based
[3056]. Barbilai
[1318, 1595, 2895]. Base
[1559]. Based
Bypass [558, 3387].

Cancellation [2414]. Canonical [1606, 1671, 1672]. Cantor [100].
Caputo [1358, 1855, 2111, 2119, 2125, 2141, 2391, 2589, 2700, 3250]. Carbuncle [2229, 3717]. Cardiac [406, 1288, 3721].
Carleman [1087]. Carlo [149, 298, 714, 920, 1538, 2433, 2564, 2878, 2912, 3046, 3173, 3324, 3351, 3748].
Cartesian [410, 613, 787, 1009, 1136, 1332, 1492, 1546, 1664, 1889, 2499, 2644, 3403].
Cascadic [1780]. Case [82, 158, 175, 226, 358, 635, 804, 910, 936, 1031, 1306, 1413, 1649, 2121, 2544].
Central [360, 433, 525, 536, 552, 885, 1150, 1306, 1367, 1409, 1596, 1693, 1759, 1830, 2068, 2275, 2368, 2469, 2498, 2728, 2943, 3073, 3223, 3517, 3569, 3635].
Characteristic-Featured [2571]. Characteristic-Wise [2852].
[423]. Circulation [172, 279, 408, 416, 1268, 1699, 2240]. Class
[46, 199, 273, 474, 548, 626, 721, 741, 744, 802, 803, 896, 917, 1018, 1024, 1067, 1220, 1302, 1331, 1376, 1514, 1690, 1709, 1728, 1751, 1835, 1877, 1905, 1931, 2101, 2102, 2107, 2121, 2164, 2188, 2272, 2468, 2479, 2649, 2721, 2767, 2821, 2838, 2906, 2937, 3018, 3070, 3128, 3172, 3196, 3215, 3359, 3497, 3568, 3690, 3693]. Classes
[3527]. Classical [401, 413, 423, 745, 1053, 1456, 2573]. Classification
[361, 987, 1239, 1544, 2141, 2250, 2283, 2848, 2993, 3149, 3426, 3465, 3531]. Coefficients
[162, 519, 560, 578, 590, 732, 791, 909, 1038, 1042, 1319, 1350, 1405, 1434, 1523, 1585, 1762, 1937, 1957, 2075, 2145, 2308, 2349, 2376, 2433, 2525, 2583, 2620, 2634, 2772, 2907, 2942, 3101, 3151, 3256, 3306, 3417, 3712]. Coercivity
[1660, 2214]. Combined

Dimensional-Splitting [3740]. **Dimensional/Two** [2496].

Dimensionality [1923, 3446]. **Dimensions** [120, 199, 499, 507, 557, 671, 625, 671, 714, 791, 1142, 1149, 1206, 1486, 1623, 1899, 2156, 2241, 2391, 2429, 2552, 2570, 2873, 2946, 3013, 3028, 3274, 3313, 3357, 3608, 3632]. **Diode** [779, 1284]. **Dirac** [278, 283, 677, 1227, 1833, 1886, 2201, 2803, 3415].

Dirac-Delta [1886]. **Direct** [23, 32, 136, 170, 186, 236, 298, 502, 531, 537, 610, 667, 741, 1070, 1218, 1320, 1565, 1765, 1775, 1942, 2040, 2042, 2224, 2554, 3090, 3296, 3337, 3454, 3557].

Direction [1022, 1307, 1387, 1421, 1510, 1549, 1551, 1568, 1702, 1861, 2124, 2348, 2402, 3038, 3368, 3433, 3502, 3673]. **Directional** [1650]. **Directly** [1198].

Dirichlet [796, 1516, 1527, 1553, 1562, 2061, 2468, 2724, 2846, 2955, 3120, 3179, 3705, 3713]. **DIRK** [2046]. **Disappearance** [1231]. **Discontinuous** [2295].

Discovery [3177]. **Discrepancy** [1307, 1389]. **Discrete

Divergence [22, 61, 303, 453, 614, 1052, 1289, 1559, 2022, 2063, 2064, 2161, 2244, 2289, 2331, 2381, 2676, 2807, 3048, 3169, 3217, 3421, 3513, 3598, 3653].

Divergence-Conforming [2676, 3513]. Divergence-Free [22, 303, 453, 614, 1052, 1559, 2064, 2381, 3048, 3421].

Domains [81, 98, 124, 155, 323, 432, 440, 469, 504, 553, 613, 746, 757, 762, 796, 805, 856, 978, 988, 1068, 1088, 1093, 1113, 1275, 1295, 1297, 1299, 1511, 1513, 1518, 1546, 1590, 1689, 1738, 1871, 1888, 1895, 1918, 2047, 2066, 2134, 2213, 2279, 2330, 2374, 2421, 2428, 2440, 2458, 2499, 2653, 2667, 2675, 2893, 2935, 2983, 3103, 3178, 3235, 3298, 3315, 3337, 3369, 3395, 3472, 3474, 3551, 3578, 3659, 3681, 3749].

Dose [1793]. Double [637, 847, 1194, 2213, 2307, 2697, 2954, 3049, 3312, 3605, 3668, 3739].

Double-Diffusion [3312, 3668]. Double-Scale [847]. Doubling [340].

Drinfel’d [2833]. Driven [211, 524, 537, 1187, 1395, 1511, 1699, 1700, 1732, 1994, 2081, 2493, 2690, 2788, 2836, 2984, 3091, 3166, 3316, 3385, 3387, 3425, 3501, 3528].

dynamo [121].

EDG [3415]. Edge [559, 564, 784, 913, 1003, 1031, 1036, 1338, 1351, 2051, 2303, 2622, 2687, 3230, 3331, 3593]. Edges [693, 1483, 1819, 1990, 2071, 2410, 2855, 3028, 3061, 3661]. Editorial [85].

Efficient
Efficient [13, 194, 582, 902, 1871, 1906, 1914, 2109, 2429, 2469, 2683, 2944, 3271, 3359, 3386, 3392].

Efficiently [3500].

Eigen [794].

Eigen-Problems [794].

Eigenfunctions [1811, 2065, 3016].

Eigenmodes [1139].

Eigenpair [1049, 3153].

Eigenpairs [3648].

Eigenproblem [48, 769, 2523].

Eigensolution [1423].

Eigensolver [3230].

Eigensolvers [768].

Eigenspace [1563].

Eigenvalue [517, 870, 871, 1029, 1126, 1153, 1224, 1225, 1298, 1422, 1639, 1730, 1741, 1755, 1775, 1867, 1908, 2015, 2036, 2079, 2087, 2191, 2204, 2220, 2270, 2304, 2305, 2357, 2385, 2459, 2511, 2562, 2604, 2717, 2726, 2855, 2905, 2973, 2996, 3059, 3095, 3178, 3236, 3281, 3325, 3327, 3328, 3344, 3383, 3386, 3391, 3482, 3534, 3572, 3579, 3619, 3695, 3724, 3732, 3745].

Eigenvalues [13, 612, 624, 724, 1060, 1157, 1249, 1325, 1357, 1479, 1598, 1620, 1654, 1720, 1811, 1908, 2080, 2549, 2551, 3350, 3540, 3551].

eigenvectors [13, 93].

Eikonal [395, 1057, 1354, 1607, 2651, 3108].

Einfeldt [2899].

Einstein [734, 1420, 1910, 2485, 3386].

Elastic [510, 518, 658, 698, 823, 1044, 1187, 1610, 1714, 1784, 1816, 2122, 2682, 2909, 3327, 3448, 3749].

Elastica [1215, 3047].

Elasticity [499, 518, 545, 585, 919, 983, 1005, 1180, 1240, 1350, 1427, 1504, 1540, 2529, 2749, 3163, 3175, 3222, 3272, 3410, 3427, 3443, 3503, 3515, 3661, 3737].

Elastodynamics [1631, 1885, 2252].

Elastoplasticity [330].

Elastostatic [1838].

Electric [1446, 1841, 2856, 2888].

Electrical [2663, 3036, 3733].

Electro [1326].

Electro-osmotic [1326].

Electrochemical [3421].

Electrochemistry [253, 2746].

Electrodynamics [1829].

Electrohydrodynamic [3591].

Electrolytes [1084].

Electrolytes/Dielectrics [1084].

Electromagnetic [244, 246, 260, 366, 401, 413, 414, 423, 560, 878, 888, 1092, 1771, 2742, 2792, 3012, 3121, 3659, 3676, 3681].

Electromagnetics [331, 444, 557, 1222].

Electromigration [720].

Electron [220, 825, 1359, 2441, 2704].

Electronic [355, 1153, 1565].

Electrons [424].

Electrostatic [1084].

Element \textsuperscript{[290, 301, 305, 308, 322, 329, 352, 355, 447, 464, 510, 513, 530, 531, 717, 793, 802, 853, 857, 899, 976, 1054, 1097, 1141, 1153, 1173, 1214, 1227, 1240, 1249, 1306, 1325, 1340, 1437, 1515, 1524, 1553--]
Error-Correcting [3268]. Error-Estimator-Based [418].
Error-Landscape [963]. Errors [61, 195, 586, 887, 1079, 1107, 1158, 1915].
Escape [1081]. ESDIRK [2588]. Essential [2970]. Essentially [675, 928, 1030, 1077, 1448, 1584, 1594, 1825, 1884, 1979, 2098, 2478, 2720, 3377].
2504, 2541, 2612, 2739, 2770, 2777, 2788, 2826, 3044, 3071, 3111, 3180, 3220, 3250, 3284, 3320, 3382, 3496, 3563, 3576, 3614, 3665, 3716. **Exponential-Type** [3576]. **Exponentially** [16, 209, 238, 1801, 2408, 3130]. **Exponentials** [3302]. **Expression** [1005]. **Extended** [168, 1569, 1842, 1865, 2299, 2463, 2573, 2626, 2983, 3111, 3410, 3530]. **Extended-Rational** [3111]. **Extending** [872]. **Extensible** [689]. **Extension** [578, 602, 627, 630, 701, 940, 1099, 1624, 1863, 3337]. **Extensions** [748, 813, 1275, 1769, 1858, 2666]. **Exterior** [551, 704, 862, 1097, 1272, 2066, 2110, 2483, 3247, 3395]. **External** [543, 1695]. **Extracellular** [406]. **Extracting** [674]. **Extraction** [1956, 3412]. **Extragradient** [2431, 2910, 2936, 2988, 3049, 3537]. **Extrapolated** [1168, 1356, 2890, 3103, 3300]. **Extrapolation** [133, 249, 269, 891, 1029, 1196, 1292, 1546, 1780, 2353, 2601, 2836, 3696]. **Extrimal** [218, 1157, 1297, 2748]. **Extreme** [1654, 2947, 3325, 3458]. **Extrinsic** [751]. **Eye** [1154].

Faber [3716]. **Face** [3461]. **Faces** [3225]. **Facet** [2142, 3513]. **Facing** [349, 3741]. **Factor** [77, 1363, 1711, 1938, 2502]. **Factored** [1057]. **Factoring** [2372]. **Factorization** [1485, 2031, 2480, 2691, 2807, 3125, 3289, 3461]. **Factorizations** [2618]. **Factors** [1037, 1057, 2687, 3052, 3162, 3407]. **Families** [888]. **Family** [89, 438, 967, 1110, 1238, 1495, 1684, 1837, 2880, 3318, 3328, 3393]. **Far** [1229, 1447]. **Far-Field** [1229, 1447]. **Farin** [3469]. **Fast** [72, 150, 251, 409, 421, 534, 579, 622, 714, 741, 746, 753, 794, 826, 875, 890, 930, 972, 1057, 1092, 1142, 1189, 1218, 1219, 1276, 1354, 1363, 1390, 1444, 1445, 1447, 1455, 1484, 1506, 1517, 1607, 1615, 1625, 1671, 1672, 1690, 1838, 1864, 1882, 1955, 1984, 1986, 1996, 2071, 2084, 2091, 2096, 2138, 2165, 2166, 2190, 2216, 2233, 2324, 2333, 2352, 2388, 2546, 2617, 2640, 2651, 2720, 2800, 2838, 2858, 2906, 2911, 2920, 2927, 3000, 3016, 3038, 3056, 3090, 3129, 3172, 3240, 3265, 3366, 3393, 3472, 3493, 3541, 3554, 3613, 3627, 3674, 3685, 3743]. **Faster** [1034]. **Fat** [291]. **Fault** [2213]. **Faust** [252]. **FC** [1239]. **FD** [1412, 2893, 3363, 3431, 3620]. **FDEs** [2525]. **FDM** [1899]. **FDTD** [750, 1710, 2192, 2888, 3101, 3313]. **Feasibility** [1583]. **FEAST** [3628]. **Feature** [2157, 2836, 3420, 3697]. **Featured** [2571]. **FEEC** [3659, 3681]. **Feedback** [139, 843, 1679, 1736, 2476, 2664, 2690, 3139]. **FEM** [353, 500, 795, 971, 1053, 1061, 1089, 1599, 1638, 1846, 1887, 1907, 1975, 2007, 2064, 2243, 2330, 2380, 2483, 2555, 2620, 2743, 2803, 2960, 3025, 3118, 3221, 3272, 3370, 3398, 3549, 3664]. **FEM/DG** [795]. **FEM/SBFEM** [1061]. **FEMs** [1251, 1258, 1303, 1535, 1879, 2402, 2416, 2602, 2811, 2994, 3443]. **Fermi** [278, 283, 677]. **FETI** [350]. **Few** [162, 2174]. **Feynman** [83, 1375, 1686, 1997, 2136, 2642, 2902]. **FFT** [241, 2728]. **FFT-Based** [2728]. **FFTs** [1006]. **FGMRES** [223]. **Fiber** [743]. **Fibers** [563]. **Fictitious** [355, 725, 1343, 1763, 1988, 3395]. **Fidelity** [1266, 1394, 1685, 1782, 2230, 2292]. **Field** [187, 247, 312, 715, 720, 801, 943, 1229, 1370, 1420, 1446, 1772, 1788, 1841, 2018, 2021, 2161, 2226, 2395, 2462, 2727, 2756, 2841, 2866, 2931, 3161, 3174, 3219,

Fractional-in-Space [1892, 2382, 2675]. Fractional-Order [2548, 3296].

Fractional-Step [532]. Fractional/Normal [2846, 3179]. fractions [141].

Fracture [751, 3066, 3541]. Fractured [2152, 2522, 2733, 3061]. Fractures [1358].

Frame [1072, 1120, 1121, 1212, 1395, 1523, 1700, 2146]. Frames [1085, 1094, 1279, 1819].

Framework [589, 681, 892, 1144, 1164, 1214, 1329, 1337, 1369, 1448, 1452, 1530, 1646, 1746, 2601, 2893, 2912, 3024, 3091, 3106, 3121, 3238, 3321, 3557, 3589, 3646, 3659, 3681, 3689]. Frankel [1075, 1344]. Fréchet [135].

Fully [255, 307, 609, 731, 773, 774, 909, 929, 985, 1013, 1078, 1158, 1261, 1328, 1355, 1425, 1647, 1718, 1772, 1892, 1932, 2048, 2082, 2166, 2196, 2215, 2241, 2313, 2417, 2569, 2608, 2635, 2697, 2828, 2859, 2868, 2889, 2959, 3013, 3048, 3084, 3124, 3132, 3162, 3300, 3311, 3362, 3399, 3428, 3437, 3439, 3520, 3521, 3627, 3700].

Fully-Connected [3162, 3311, 3700]. Fully-Decoupled [3399].

Hemivariational
Hemodynamics
Hermite
Hermite-Based
Hermitian
Herrmann
Herrmann-Johnson
Herschel
Hessian
Heteroepitaxy
Heterogeneities
Heuristic
Hexagonal
Hexahedral
HHO
Hidden
Hidden-Layer
Hidden-Memory
Hierarchial
Hierarchy
High
High-Order
High-Accuracy
High-Contrast
High-Dimensional
High-Frequency
High-Index
High-Order
High-fidelity
[341, 868, 974, 1080, 1095, 1144, 1221, 1298, 1462, 1484, 1576, 1609, 1714, 2320, 2321, 2380, 2412, 2461, 2534, 2603, 2604, 2781, 2954, 3156, 3336, 3370, 3395, 3504, 3518, 3534, 3624, 3744, 3750].
[2714, 2932, 3067, 3167, 3509, 3595].
[284, 644, 758, 982, 1206, 1404, 1488, 1539, 2105, 2398, 2585, 2675, 2822, 3060, 3157, 3265, 3474, 3506, 3701].
[595, 972, 1204].
[2129, 3328].
[2129].
[1102].
[202, 244, 268, 282, 326, 330, 373, 378, 422, 444, 480, 483, 525, 529, 552, 565, 632, 739, 748, 762, 816, 865, 867, 889, 923, 995, 1018, 1054, 1077, 1122, 1170, 1191, 1205, 1236, 1323, 1332, 1348, 1446, 1496, 1519, 1525, 1546, 1576, 1645, 1665, 1687, 1689, 1695, 1707, 1719, 1750, 1760, 1820, 1843, 1890, 1899, 1917, 1919, 1925, 2023, 2133, 2136, 2173, 2192, 2232, 2241, 2288, 2335, 2375, 2391, 2443, 2475, 2530, 2584, 2593, 2640, 2652, 2728, 2771, 2796, 2809, 2839, 2863, 2978, 3030, 3033, 3057, 3062, 3199, 3225, 3228, 3237, 3313, 3397, 3527, 3566, 3567, 3617, 3627, 3682].
[2391].
[2997].
[911, 3175].
[2230].
Hyperbolic
[18, 24, 128, 269, 1023, 1799, 1863, 1952, 2544, 2625, 2800, 3086, 3168, 3334].
Hyperbolic/Parabolic [1597]. Hyperbolically [1284]. Hyperbolicity [937, 3356].
Hyperconcentrated [955]. Hypercube [78, 82, 169, 252].
Hypercubes [217]. Hypergraph [3269]. Hypergraphs [2029].
Hyperparameters [3394]. Hypersingular [1112, 1292]. Hypersurfaces [724, 2666].
Hyperviscous [142]. Hypothesis [1036]. HyROMnet [3319].

IgA-DG [2920]. II [47, 59, 153, 236, 374, 582, 630, 671, 729, 759, 933, 1031, 1287, 1539, 1550, 2265, 3024, 3226, 3685].
Ill-Conditioning [3487]. Ill-Posed [828, 1188, 1432, 2316, 2864, 3037, 3371, 3739]. ILU [178]. Image [26, 195, 310, 376, 397, 650, 727, 801, 814, 826, 833, 881, 986, 1032, 1084, 1120, 1121, 1129, 1130, 1178, 1212, 1215, 1252, 1266, 1290, 1360, 1364, 1391, 1395, 1470, 1483, 1499, 1523, 1570, 1589, 1628, 1660, 1685, 1700, 1703, 1721, 1782, 1786, 1850, 1864, 2006, 2144, 2214, 2280, 2297, 2309, 2362, 2548, 2578, 2595, 2776, 2817, 2853, 2976, 3009, 3035, 3047, 3154, 3187, 3233, 3240, 3257, 3271, 3311, 3422, 3522, 3553, 3560, 3662, 3720, 3741]. Images [72, 131, 146, 384, 494, 674, 1394, 1851, 1896, 1897, 2315]. Imaginary [3258].
Imaging [1000, 2507, 2857]. IMEX [1503, 1921, 2543, 3032, 3075, 3181, 3285, 3317, 3718]. Immediate [3026].
Immobile [3306, 3562]. Impact [692]. Impedance [2663, 3036, 3733].
Implicit [71, 117, 118, 126, 215, 261, 279, 325, 392, 484, 491, 533, 628, 680, 690, 742, 968, 1014, 1130, 1175, 1322, 1328, 1381, 1387, 1510, 1568, 1607, 1612, 1614, 1652, 1665, 1667, 1668, 1702, 1715, 1748, 1776, 1778, 1827, 1855, 1882, 1925, 1931, 1932, 1943, 1945, 1995, 2042, 2124, 2127, 2179, 2203, 2211, 2212, 2218, 2221, 2222, 2223, 2226, 2257, 2282, 2386, 2422, 2423, 2438, 2439, 2490, 2500, 2518, 2539, 2568, 2572, 2600, 2606, 2675, 2686, 2693, 2694, 2766, 2979, 2980, 3044, 3214, 3219, 3253, 3343, 3441, 3662, 3754].
Method

Method

Method

Method

Method
Method

Method

Methodology

Methods

Methods

Methods

Methods

Methods

Methods

Methods

Methods
Model

Modification [201, 2899]. Modified [69, 183, 222, 228, 276, 336, 341, 576, 694, 719, 931, 951, 1226, 1344, 1441, 1455, 1484, 1584, 1691, 1836, 2035, 2169, 2320, 2321, 2478, 2593, 2820, 2910, 2994, 3112, 3170, 3276, 3491, 3545, 3582, 3605, 3635, 3638].

O [475]. Oberbeck [1692]. Object [242]. Object-Oriented [242].

Objective [2266]. Objectives [2923, 3430]. Objects [246, 260, 2264, 2265].

Observability [624]. Observables [820]. Observation [2846].

Observations [2695]. Observed [2869]. Obstacle [418, 1109, 1914, 2517, 2584, 2716]. Obstacles [1272, 1784, 2319, 3660, 3699].

One-Dimensional/Two-Dimensional [2496].

One-Norm [2327].

One-Parameter [1773, 3069].

One-pass [119].

One-Phase [71, 2771].

One-sided [559, 735, 1453].

One-step [1926].

One-Way [2336, 3289].

Online [933, 1048, 1506, 1777].

Only [2657].

Ono [3548].

onto [1671, 1672, 3610].

Open [933, 1048, 1506, 1777].

OpenCL [1964].

Operator-integration-factor [77].

Operator-Splitting [2328, 2329, 3040, 3240].

Optical [806, 1359, 2192, 3454].

Optics [375, 886, 1655, 2913, 3058].

Optima [2009].

Optimal [116, 775, 795, 1132, 1262, 1588, 1594, 1989, 2267, 2367, 2419, 2544, 2573, 2643, 2688, 2759, 2811, 2837, 2896, 2959, 2979, 3071, 3131, 3308, 3362, 3453, 3463, 3584, 3606].

Optimal-Order [3575].

Optimality [812, 1141, 1413, 1915].

Optimally [1927, 3655].

Optimisation [468].

Optimization [76, 208, 234, 404, 415, 604, 807, 1004, 1029, 1126, 1248, 1285, 1309, 1360, 1388, 1405, 1746, 1758, 1857, 2072, 2053, 2187, 2258, 2425, 2479, 2507, 2562, 2607, 2632, 2669, 2695, 2708, 2713, 2722, 2750, 2797, 2871, 2972, 2973, 3042, 3133, 3136, 3196, 3200, 3314, 3361, 3414, 3418, 3433, 3462, 3532, 3641, 3686, 3693].

Optimization-Based [1746].

Optimizations [1794, 3261].

Optimized [218, 514, 632, 1170, 1526, 1552, 1877, 2200, 2367, 2593, 2720, 2759, 2935].

Optimizer [3261].

Option [1214, 1503, 2060, 2097, 2610].

Options [654, 755, 759, 824, 852, 1063, 1242, 2096, 2545, 3317, 3649, 3731].

Orbits [401, 413].

Order [244, 268, 343, 373, 422, 440, 480, 485, 516, 525, 552, 598, 624, 662, 663, 679, 748, 782, 816, 867–869, 923, 967, 972, 1018, 1118, 1147, 1159, 1161, 1192, 1223, 1274, 1277, 1286, 1287, 1299, 1314, 1323, 1332, 1382, 1424, 1446, 1496, 1519, 1525, 1546, 1566, 1613, 1645, 1665, 1687, 1689, 1707, 1724, 1750, 1760, 1860, 1874, 1890, 1917, 1919, 2069, 2133, 2136, 2187, 2192, 2212, 2232, 2364, 2442, 2456, 2458, 2475, 2530, 2540, 2584, 2640, 2648, 2721, 2796, 2809, 2828, 2939, 3052, 3123,
62

Preserving

Pressure

Pressure-Correction [2399].

Pressure-Robust [2477, 2914, 3205, 3401]. Pressure-Stabilized [1501, 2413].

Problems [22, 95, 121, 205, 291, 321, 450, 541, 708, 1019, 1029, 1081, 1106, 1199, 1247, 1343, 1393, 1405, 1410, 1427, 1489, 1504, 1516, 1527, 1556, 1588, 1595, 1623, 1668, 1743, 1744, 1808, 1826, 1867, 1907, 1914, 2059, 2061, 2087, 2094, 2150, 2174, 2257, 2269, 2304, 2307, 2318, 2357, 2377, 2385, 2405, 2413, 2419, 2517, 2604, 2646, 2669, 2676, 2694, 2707, 2712, 2799, 2837, 2879, 2892, 2914, 3059, 3094, 3177, 3178, 3216, 3221, 3222, 3276, 3278, 3327, 3435, 3397, 3411, 3437, 3439, 3482, 3487, 3503, 3534, 3539, 3579, 3587, 3619, 3670, 3674, 3705].

Professor [1916, 2231, 2488]. Profile [642, 643]. Program [1649].

Projection-Decoupling [3132]. Projections [387, 1587, 2142, 3463].

Propagator [1082]. Proper [2453, 2662, 3326, 3466, 3477]. Properties
Rachford [212, 2473, 3693]. Radau [369, 1051, 3463]. Radial
[863, 883, 1039, 1148, 1358, 1412, 1416, 1433, 1497, 1513, 1518, 1617, 1701, 1758,
1883, 2066, 2071, 2092, 2110, 2194, 2347, 2531, 2630, 2760, 3714]. Radiance
[384]. Radiating [59]. Radiation [401, 413, 423]. Radiative
[459, 625, 1371, 2145, 2251, 2842, 2980, 3072, 3080, 3181, 3356, 3417, 3607]. Radii
[84, 100, 247, 1542, 1582, 1621, 1921, 1957, 2195, 2199, 2318, 2396, 2433, 2455,
2667, 3046, 3050, 3168, 3444, 3699, 3708]. Randomized [2867, 3203, 3231, 3707].
Randomly [3152]. Range [1366, 2650, 3031, 3530]. Rank
[1186, 1549, 1721, 1755, 1786, 1846, 2006, 2195, 2333, 2365, 2480, 2776, 2854,
2863, 2945, 3015, 3035, 3093, 3099, 3150, 3231, 3263, 3323, 3355, 3475, 3554,
3656]. Rank-1 [3099]. Rank-Adaptive [2863]. Rank-One
[2333, 3263]. Rannacher [2768]. RANS
[232, 2294, 2670]. Rao [3689]. Rapid
[3747]. Rate [264, 1267, 1661, 1989, 2444, 2915, 2984, 3478]. Rates
[146, 2754, 3107, 3673]. Ratio [2797]. Rational
[173, 253, 265, 506, 554, 835, 1302, 1590, 1594, 2101, 2128, 2277, 2834, 2885, 2925,
3111, 3315]. Ratios [2035, 3384]. Raviart
[1357, 1399, 1437, 1441, 1713, 2015, 3082, 3141, 3310]. Ray
[1120, 2284]. Rayleigh
[58, 403, 2240, 2271, 2459]. Rayleigh-Marangoni
[403]. RBF
[1412, 1831, 1953, 1964, 2173, 2222, 2340, 2553, 2870, 3126, 3222, 3363, 3371,
3431, 3543]. RBF-Based [2340]. RC
[2624]. Reachable [387]. Reacting
[39, 274, 489, 964, 3512]. Reaction
[32, 230, 243, 781, 801, 836, 855, 893, 924, 946, 979, 1043, 1191, 1210, 1412, 1536,
1585, 1602, 1613, 1757, 1777, 1998, 2108, 2135, 2162, 2217, 2282, 2298, 2326,
2518, 2645, 2675, 2683, 2759, 2824, 2828, 2927, 2953, 3069, 3221, 3385, 3536,
3723, 3751]. Reaction-Diffusion
[1536, 3069]. reactions [109]. Reactive
[203, 250, 456, 3407]. Reactor [223]. Real
[78, 1414, 2941, 3099, 3445]. Realistic
[1965, 3351]. realizability [157]. Realization
[323, 3692]. Really
[1941]. Rearrangement
[1126, 2729, 2748]. Rebuilding
[912]. Rebuilding-Divergency
[912]. Receding
[2293]. Recipes
[910]. Recognition
[3461]. Recombination
[1446]. Reconstructing
[1990, 2762, 3660]. Reconstruction
[26, 162, 187, 271, 310, 415, 494, 521, 567, 587, 598, 606, 828, 879, 889, 917, 997,
1002, 1018, 1021, 1115, 1120, 1130, 1131, 1179, 1208, 1282, 1283, 1334, 1382,
1483, 1543, 1586, 1589, 1603, 1604, 1624, 1627, 1674, 1675, 1717, 1721, 1737,
1883, 1941, 1942, 2026, 2028, 2040, 2146, 2200, 2315, 2417, 2536, 2552, 2554,
2588, 2680, 2704, 2779, 2795, 2901, 3019, 3187, 3238, 3262, 3297, 3310, 3343,
3441, 3530, 3531, 3638, 3644, 3656, 3699, 3712, 3733, 3741]. Reconstructions
[944, 1205, 1622, 2586, 2663, 2720, 2873, 3126, 3615]. Recovering
[565, 1015, 1509]. Recovery
[295, 635, 652, 814, 864, 883, 1153, 1207, 1395, 1410, 1437, 1533, 1641, 1700, 1813,
1976, 2260, 2303, 2380, 2768, 2769, 2883, 3023, 3154, 3258, 3311, 3331, 3456,
3516, 3522, 3719]. Recovery-Based
[1533, 2883, 3023]. Rectangular
[81, 124, 598, 700, 702, 919, 983, 1177, 1238, 1240, 1474, 1511, 1844, 2051, 2630,
3484]. Rectified
[3342]. Recurrence
[1181, 2907]. Recursive
[1041, 2035]. Red
[3280]. Redistancing
[1394]. Redistribution
[659, 1151, 3386]. Reduced
[277, 333–335, 843, 988, 992, 1010,
[3228, 3341]. **Residual-Type** [1466]. **Residuals** [1558]. **Resilience** [2278]. **Resistance** [1402]. **Resistive** [470]. **Resolution**
[444, 1160, 1670, 1733, 1951]. **RKG2** [985]. **RNG** [240]. **Roadmap** [1804]. **Roaming** [2918]. **Robin** [1686, 2748, 2935, 2994, 3573]. **Robinson** [2070]. **Robots** [2991]. **Robust**
S [1710, 3669]. **S-FDTD** [1710]. **S-ROCK** [3669]. **Saddle**
[120, 2473, 2616, 2928, 3135, 3137, 3340]. Saddles [2264, 2265]. Saha [165].
Saint [1409]. Saint-Venant [1409]. Sample [3689]. Sampled [3154].
Sampling [3451, 3454, 3568, 3571, 3748]. SAT [2698, 2961]. satisfaction [81].
Satisfying [617, 632, 981, 1378, 1464, 1677, 2368, 2799, 3304, 3465].
Saturable [2668]. Saturation [219]. Saul [2488, 2489]. SAV [2314, 2548, 2832, 2866, 2891, 2979, 3003, 3220, 3382, 3553, 3671, 3678].
Schemes [71, 113, 191, 795, 798, 890, 893, 1083, 1133, 1174, 1208, 1252, 1260, 1262, 1429, 1442, 1593, 1616, 1655, 1740, 1767, 1863, 2103, 2109, 2162, 2469, 2497, 2558, 2604, 2614, 2622, 2738, 2774, 2855, 2800, 2977, 2979, 3002, 3048, 3308, 3334, 3362, 3428, 3441, 3448, 3452, 3696, 3752].

Skew-Symmetry, Skewed, Slowness, Slightly, Slip, Slit, Slope, Slot, Slow, Slowing, Slit, Slightly, Slipping, Smaller, Slightly, Slow, Smaller, Slightly, Slowly, Slightly, Solver, Solving, Solvers, Solute, Solution, Solution-Domain-Decomposition, Solvent, Solver, Solving, Small, Smith, Sojourn, Solar, Solely, Solidification, Solid, Solution, Smoothing, Slightly, Slightly, Slowly, Slightly, Solid, Solution-Domain-Decomposition, Solvent, Solver, Solving, Slightly, Slowly, Slightly, Slowly,

Solving
[35, 106, 128, 398, 944, 1319, 1387, 1432, 1616, 1697, 2659, 3178, 3354]. Some
[139, 159, 182, 222, 292, 295, 627, 747, 840, 1205, 1292, 1498, 1561, 1585, 1907,
1960, 2048, 2113, 2204, 2235, 2266, 2551, 3483, 3497, 3655]. SOR [716]. SORAS
524, 531, 587, 601, 624, 641, 644, 693, 747, 761, 803, 835, 862, 880, 882, 934, 993,
1015, 1063, 1068, 1078, 1214, 1225, 1235, 1246, 1272, 1312, 1341, 1369, 1385, 1488,
1509, 1559, 1573, 1634, 1643, 1650, 1725, 2010, 2019, 2029, 2036, 2066, 2110, 2238,
2434, 2475, 2514, 2574, 2675, 2834, 2894, 2948, 3039, 3087, 3097, 3144, 3157, 3229,
3315, 3330, 3395, 3419, 3486, 3500, 3551, 3583, 3603, 3661, 3742]. Spectral
[22, 30, 47, 153, 171, 200, 226, 266, 279, 309, 321, 325, 328, 349–
351, 394, 404, 460, 467, 491, 513, 518, 537, 539–541, 543, 545, 551, 584, 630, 645,
718, 725, 790, 857, 889, 905, 1007, 1091, 1104, 1166, 1202, 1206, 1207, 1222, 1233,
1280, 1342, 1422, 1541, 1572, 1587, 1623, 1650, 1748, 1801, 1840, 1847, 1856, 1870,
1886, 1934, 2111, 2120, 2204, 2225, 2273, 2282, 2291, 2300, 2301, 2326, 2369, 2384,
2385, 2506, 2529, 2538, 2610, 2693, 2832, 2847, 2848, 2959, 2960, 3008, 3055, 3056,
3082, 3089, 3186, 3272, 3310, 3398, 3411, 3455, 3474, 3511, 3578, 3753]. Spectral
[12, 24, 33, 68, 80, 86, 89, 103, 124, 137, 140, 142, 155, 159, 170, 174, 194, 346, 555,
549, 669, 704, 755, 759, 805, 824, 1019, 1067, 1093, 1346, 1532, 1534, 1618, 1724,
1754, 1871, 1909, 1988, 2218, 2298, 2518, 2759, 3034, 3287, 3359, 3572.
Spectral-Element [143, 805, 1222, 1225]. spectral-element-low-order [86].
Spectral-Galerkin [1643, 3097, 3315, 3486, 3511, 3572]. Spectral/
[447, 1988, 3056]. Spectrally [2360]. Spectrally-Consistent [2360].
Spectroscopy [1041]. Spectrum [67, 1383, 2220, 2874]. Spectrum-Free
[2874]. Speed [232, 907, 1170, 2133, 2861, 2899, 3476]. Speed-Up [907].
Speeds [1154, 2042, 3356]. SPH [1456, 2876]. SPH-ALE [2876]. Sphere
[121, 886, 918, 1040, 1204, 1328, 1339, 1701, 2948]. Spheres
[183, 3371]. Spherical [422, 551, 2036, 2842, 2878, 3034, 3276, 3377, 3551, 3689, 3713].
Spherically [2471]. Spheroidal [1754, 1822, 2035]. Spill [1777]. Spin [1420].
Spin-1 [1420]. Spiral [1006]. Spirals [1379]. Spline [119, 176, 356, 709, 1012,
1356, 1398, 1512, 1699, 2004, 2028, 2063, 2683, 2792, 3479]. Splines
[1571, 2836, 3506]. Split [696, 879, 1583, 2723, 2780, 2938, 3057, 3133, 3669].
Split-form [2938, 3057]. Splits [3469]. Splitting
[61, 77, 146, 193, 207, 224, 311, 502, 507, 875, 913, 1031, 1178, 1243, 1405, 1440,
1455, 1508, 1583, 1789, 1840, 2058, 2328, 2329, 2364, 2473, 2481, 2498, 2545, 2725,
2727, 2770, 2845, 2851, 2875, 2930, 3040, 3055, 3240, 3257, 3258, 3348, 3369, 3422,
3493, 3605, 3693, 3702, 3733, 3740]. splitting-integrating [146]. Splitting-up
Square [617, 972, 2332, 2866, 2977, 3558]. Square-Root [3558]. Squared
[2283]. Squares [301, 321, 322, 420, 468, 531, 541, 725, 1086, 1185, 1552, 1668,
1836, 2342, 2657, 2825, 3125, 3150, 3176, 3277, 3451, 3533, 3571, 3730].
Squares/Reduced [2452]. Squares/Relaxation [2181]. Stabilities [2791].
Stability [15, 158, 309, 314, 332, 361, 369, 425, 483, 502, 503, 534, 586, 638, 718,
739, 742, 749, 860, 882, 921, 982, 997, 1039, 1078, 1098, 1103, 1205, 1210, 1220,
1244, 1292, 1300, 1313, 1344, 1355, 1440, 1456, 1471, 1486, 1603, 1604, 1612, 1631,
1662, 1663, 1701, 1732, 1757, 1759, 1769, 1776, 1778, 1828, 1925, 1945, 2026, 2048,
2072, 2073, 2075, 2120, 2139, 2188, 2218, 2340, 2401, 2411, 2456, 2465, 2502, 2529,
2545, 2661, 2665, 2685, 2727, 2766, 2785, 2789, 2822, 2848, 2894, 2929, 2962, 2979,
2995, 3001, 3020, 3057, 3122, 3237, 3295, 3402, 3405, 3451, 3510, 3550, 3609, 3704].
stability [43]. Stabilization [80, 226, 301, 549, 653, 841, 932, 1207, 1473, 1504,
1556, 1797, 1982, 2106, 2476, 2563, 2614, 2664, 2698, 2859, 2960, 3398, 3717].
Stabilized
[107, 449, 466, 842, 988, 1310, 1343, 1417, 1501, 1537, 1554, 1555, 1692, 1719, 1907,
2169, 2226, 2413, 2423, 2674, 2766, 2805, 3167, 3220, 3222, 3255, 3363].
Stabilizing [3478]. Stable [419, 517, 552, 554, 571, 691, 788, 798, 799, 803, 810,
833, 917, 987, 1018, 1059, 1065, 1143, 1229, 1239, 1277, 1282, 1283, 1370, 1386,
1431, 1481, 1495, 1560, 1593, 1714, 1718, 1724, 1770, 1772, 1789, 1791, 1804, 2057,
2070, 2076, 2172, 2177, 2178, 2185, 2186, 2192, 2205, 2207, 2227, 2394, 2406, 2467,
2474, 2498, 2515, 2528, 2559, 2605, 2605, 2656, 2696, 2745, 2752, 2753, 2767,
2808, 2884, 2886, 2900, 2931, 2938, 2940, 2946, 2958, 3011, 3029, 3040, 3041, 3057,
3082, 3085, 3172, 3174, 3185, 3206, 3285, 3367, 3379, 3390, 3424, 3460, 3485, 3495,
3530, 3588, 3591, 3625, 3679, 3680, 3714, 3746]. Stable [480, 851, 1477, 1556,
1678, 1740, 1788, 1971, 2131, 2190, 2439, 2968, 3168, 3434, 3684, 3696, 3727, 3752].

82

[1083, 2678]. **Two-Norm** [1217]. **Two-Parameter** [204, 2996]. **Two-Phase** [371, 615, 618, 676, 792, 809, 849, 1053, 1231, 1370, 1386, 1524, 1557, 1712, 1718, 1772, 1888, 2614, 2950, 3041, 3345, 3373, 3399, 3597, 3621, 3637].

Two-Point [3011]. **Two-Scale** [176, 353, 3109]. **Two-Sided** [2349, 2993].

Two-Stage [1721, 3035]. **Two-Step** [860, 1010, 1223, 1698, 1781, 2479, 2502, 3191, 3288]. **Twogrid** [3504].

Type [101, 163, 308, 559, 652, 661, 701, 848, 856, 857, 926, 1045, 1055, 1070, 1091, 1117, 1199, 1280, 1466, 1493, 1510, 1580, 1612, 1742, 1776, 1799, 1816, 1826, 1845, 1927, 1949, 1952, 2124, 2126, 2137, 2141, 2151, 2215, 2445, 2462, 2476, 2497, 2536, 2569, 2573, 2579, 2624, 2688, 2723, 2731, 2824, 2844, 2941, 3005, 3037, 3051, 3102, 3220, 3328, 3352, 3502, 3549, 3576, 3622, 3719, 3723, 3727]. **Types** [2493, 2693].

Ultra [2287, 2509, 2897]. **Ultra-Weak** [2287, 2509, 2897]. **Ultrasound** [1851]. **Ultraspherical** [3583].

Ultra-Short [859]. **Ultrasonic** [1851]. **Ultrasonic** [2287, 2509, 2897].

Ultra-sonic [2287, 2509, 2897]. **Ultrasound** [1851]. **Ultrasonic** [2287, 2509, 2897].

Under-Expanded [1722]. **Under-Sampled** [3154].

Unbalanced [703, 805, 978, 1088, 1093, 1299, 1509, 1680, 1871, 2116, 2341, 2603, 2675, 2983, 3107, 3315, 3438, 3474, 3548]. **Uncertain** [2016, 2145, 3417, 3577].

Uncertainties [3744]. **Uncertainty** [761, 1530, 1650, 2319, 2495, 2912].

Unconditional [1535, 1739, 1887, 1945, 2151, 2388, 2811, 2832, 2979, 3419, 3567].

Unconditionally [691, 851, 1239, 1431, 1560, 1714, 1740, 1769, 1770, 1791, 1879, 2070, 2135, 2227, 2361, 2474, 2753, 2802, 2900, 2986, 3025, 3029, 3088, 3174, 3390, 3424, 3485, 3495, 3588, 3591, 3625, 3696, 3723]. **Unconditioned** [3172].

Unconstrained [807, 1619]. **Under-Expanded** [1722]. **Under-Sampled** [3154]. **Underdetermined** [2904]. **Underlying** [269, 759]. **Undersampled** [1589].

Understanding [386, 3409]. **Unequal** [3334]. **Unequal-Size** [3334].

Unfitted [2827, 2950, 3070, 3123, 3141, 3337, 3410, 3539, 3621, 3664, 3703].

Unforced [120]. **Uniaxial** [1456]. **Unidirectional** [1319]. **Unified** [602, 730, 858, 892, 915, 1353, 1581, 2163, 2922, 3063, 3283, 3573, 3603, 3607, 3646].

Uniform [176, 403, 606, 889, 941, 1039, 1244, 1302, 1338, 1453, 1547, 1558, 1747, 1760, 1811, 1819, 1858, 1997, 2028, 2029, 2059, 2071, 2410, 2526, 2550, 2636, 2687, 2688, 2927, 2995, 3068, 3379, 3466, 3488, 3665]. **Uniformly** [766, 1853, 2387, 2707, 3207]. **Unifying** [3238].

Unilateral [1454, 2716, 3521, 3538]. **Uniquely** [2178, 2696, 3588]. **Unisolvence** [3468].

Unisolvency [3204]. **Unit** [2948, 3342]. **Unity** [1296, 1433, 1482, 1617, 2088, 2340, 2630]. **Univariate** [2907]. **Universal** [3139, 3647]. **Unknown** [2397]. **Unmodified** [2107]. **Unrestricted** [1147].

Unsplit [782]. **Unsteady** [34, 224, 281, 328, 345, 558, 1236, 1608, 1932, 2457, 2588, 2703, 3735].

Unstructured [208, 298, 404, 414, 540, 630, 730, 758, 906, 1027, 1062, 1119, 1131, 1197, 1208, 1336, 1525, 1578, 1674, 1675, 1745, 1843, 1858, 2104, 2180, 2368, 2553, 2679, 2844, 2862, 2966, 3026, 3215, 3498]. **Unstructured-Mesh** [1062].

Unsupervised [3264]. **Unsymmetric** [18]. **Update** [332, 523, 1872]. **Updating** [2001, 2904, 3457]. **upon** [2697]. **Upper** [1217, 1249, 1357, 3281].
Upscaled [2250]. Upwind
[118, 347, 433, 536, 848, 941, 956, 1025, 1105, 1661, 1693, 2199, 2308, 2469, 2583,
2738, 2838, 2943, 3086, 3147, 3223, 3463, 3517, 3569, 3625, 3671].
Upwind-Biased [2308, 2583, 3086, 3147, 3463]. Upwind-Difference [1105].
Upwind-SAV [3671]. URV [3244]. Use [133, 220, 547, 702, 1657, 1694].
Using [205, 241, 259, 276, 277, 326, 377, 383, 523, 547, 702, 1657, 1694].
Use [133, 220, 547, 702, 1657, 1694]. Using [205, 241, 259, 276, 277, 326, 377, 383,
[28, 106, 144, 185, 198, 222, 297, 317, 440, 500, 503, 723, 762, 833, 895, 1051, 1093,
1302, 1313, 1346, 1457, 1513, 1538, 1623, 1749, 1753, 1790, 1817, 1913, 1934, 2034,
2111, 2119, 2125, 2352, 2531, 2669, 2670, 2740, 2898, 3149, 3158, 3303, 3352, 3380,
3629, 3645, 3690, 3707]. Valued [95, 589, 644, 685, 870, 1394, 2182, 2705].
Variable [110, 283, 370, 590, 626, 791, 987, 1038, 1042, 1239, 1269, 1350, 1370,
1544, 1842, 2075, 2100, 2133, 2141, 2283, 2308, 2349, 2376, 2576, 2583, 2671, 2708,
2740, 2772, 2831, 2866, 2993, 3030, 3077, 3129, 3131, 3206, 3219, 3301, 3306, 3388,
3426, 3460, 3495, 3531, 3576, 3591, 3612, 3650, 3664, 3702, 3751].
Variable-Coefficient [987, 1239]. Variable-Flux [2576]. Variable-Order
[2740, 3129, 3131, 3306, 3531, 3576, 3612, 3650]. Variable-Time-Step [3751].
Variables [123, 2169, 2572]. Variably [2340, 2836, 3306]. Variance
[2260, 2936, 3372, 3561]. Variance-Based [2936]. Variant
[905, 2424, 2858, 3414]. Variants [2117, 2726]. Variation
[397, 525, 639, 650, 986, 1252, 1290, 1364, 1570, 1637, 1786, 1851, 2114, 2292, 2480,
2548, 2704, 2817, 3107, 3264, 3323, 3349, 3542]. Variation-Based [1252].
Variational
[273, 726, 826, 847, 1056, 1266, 1270, 1327, 1335, 1613, 1660, 1676, 1703, 1816,
1960, 2283, 2309, 2351, 2390, 2431, 2462, 2542, 2663, 2672, 2780, 2875, 2910,
2936, 2941, 2988, 3045, 3049, 3121, 3133, 3134, 3251, 3316, 3357, 3595, 3623, 3715].
Variational-Hemivariational [3595]. Variations [1070, 1765]. Various
[3530]. Varying [560, 609, 1156, 2230]. Vector
[870, 888, 930, 1394, 1432, 2182, 2183, 2726, 2889]. Vector-Valued [870, 2182].
Vectorial [3542]. Vectors [1157]. Velocity [247, 313, 702, 934, 1019, 1052,
1174, 1652, 2109, 2161, 2217, 2436, 3171, 3198, 3237, 3502, 3513].
Velocity-Based [3237]. VEM [3348]. Venant [1409]. Verifiability [3316].

Wave

Wave [102, 113, 161, 1477, 1754, 2573, 2781, 3296, 3426].
Wave-Type [2573].
Wavefield [3202].
Waveform [399, 1877, 2624, 3581].
Waveguides [1103, 3660].
Wavelength [275].
Wavelet [132, 221, 303, 323, 407, 409, 497, 585, 586, 639, 823, 1008, 1088, 1120, 1121, 1216, 1395, 1523, 2060].
Wavelet-Based [1008].
Wavelets [241, 2736].
Wavenumber [191, 1822, 3370, 3744].
Waves [59, 275, 393, 457, 501, 518, 660, 818, 823, 837, 942, 994, 1062, 1150, 1253, 1912, 2054, 2339, 2709, 2909].
Wavy [2615].
Wavy-Wall [2615].
Way [2336, 3289].
Weak [362, 857, 858, 961, 994, 1187, 1273, 1274, 1304, 1317, 1383, 1442, 1475, 1524, 1673, 1797, 1805, 1826, 1885, 2012, 2062, 2152, 2195, 2287, 2289, 2357, 2509, 2526, 2707, 2718, 2754, 2897, 3232, 3281, 3376, 3443, 3634, 3665, 3740].
Weakly [41, 767, 794, 818, 916, 1237, 1267, 1410, 1435, 1530, 1572, 1709, 1724, 1870, 1987, 2069, 2238, 2434, 2483, 2565, 2636, 2737, 3143, 3153, 3486, 3597, 3601].
Weakly-Intrusive [1530].
Weight [2275].
Weighted [580, 732, 928, 1028, 1030, 1077, 1320, 1448, 1575, 1584, 1587, 1594, 1689, 1726, 1811, 1847, 1884, 1886, 1944, 1979, 2036, 2098, 2455, 2478, 2577, 2720, 2963, 2970, 3004, 3534, 3689].
Weighting [1115].
Weights [258, 1248, 1314, 1584, 2046, 2497].
Well [87, 99, 548, 936, 948, 952, 957, 998, 1033, 1102, 1133, 1179, 1197, 1409, 1558, 1592, 1597, 1621, 1804, 1830, 1832, 1993, 2530, 2605, 2710, 2712, 2772, 2812, 2852, 2876, 2903, 2937, 2987, 3030, 3223, 3237, 3262, 3517, 3631, 3718].
Well-Balanced [548, 936, 948, 952, 957, 1033, 1102, 1133, 1179, 1197, 1409, 1558, 1592, 1597, 1621, 1830, 1832, 2530, 2605, 2710, 2812, 2852, 2876, 2903, 2937, 3030, 3223, 3237, 3262, 3517, 3718].
Well-Balancing [2987].
Well-conditioned [998].
Well-Posedness [87, 99, 2712, 2772, 3631].
Weller [1980, 2055].
Wendroff [603, 926, 928, 1472, 1759, 1792, 1799, 2536, 2730, 3442].
Wendroff-Type [1799].
WENO-Z [2103].
WENO3 [1651, 2221].
WENO5 [2661].
Wet [1179, 2710, 2987, 3262].
Wet/Dry [1179, 2987].
Wetting [985].
Where [3239].
Whitham [721].
Whole [3186, 3424].
Wide [2927, 2722].
Width [1156].
Wiener [546].
Wigner [2024, 2341, 2669].
Willmore [780, 2147].
Wilson [2833].
Wind [1278, 1699].
Wind-Driven [1699].
Wise [209, 1262, 1992, 2852].
Within [586].
REFERENCES

Yawed [337]. Yee [750]. Yield [2236]. Yuan [3014].

References

REFERENCES

Domaradzki:1987:NSD

Kopriva:1987:PAS

Bullister:1987:NST

Smith:1987:AFE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[81] Andreas Karageorghis. A note on the satisfaction of the boundary conditions for Chebyshev collocation methods in rectangular do-
REFERENCES

Jackson:1991:CSP

Zhang:1991:SRD

Halton:1991:RSF

Anonymous:1991:ES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Babovsky:1992:ETC

Dattoli:1992:ANR

Berger:1992:HGM

Yakhot:1992:AQT
REFERENCES

REFERENCES

Jeng:1992:ALI

Iqbal:1992:OPA

Goldhirsch:1993:MDS

Zheligovsky:1993:NSK

REFERENCES

REFERENCES

[140] Ivar Lie. Multidomain solution of advection problems by Cheby-
64, March 1994. CODEN JSCOE. ISSN 0885-7474 (print), 1573-
1007/BF01573177; http://link.springer.com/content/pdf/10.
1007/BF01573177; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=9&issue=1&spage=39-64.

[141] Shun-Shii Lin. A chained-matrices approach for parallel computa-
tion of continued fractions and its applications. *Journal of Scientific Com-
1007/BF01573178; http://link.springer.com/content/pdf/10.
1007/BF01573178; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=9&issue=1&spage=65-80.

[142] John P. Boyd. Hyperviscous shock layers and diffusion zones: Mono-
tonicity, spectral viscosity, and pseudospectral methods for very high
81–106, March 1994. CODEN JSCOE. ISSN 0885-7474 (print),
1007/BF01573179; http://link.springer.com/content/pdf/10.
1007/BF01573179; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=9&issue=1&spage=81-106.

[143] W. Couzy and M. O. Deville. Spectral-element preconditioners for the
Uzawa pressure operator applied to incompressible flows. *Journal of Sci-
com/article/10.1007/BF01578382; http://link.springer.com/
content/pdf/10.1007/BF01578382; http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7474&volume=9&issue=2&spage=
107-122.

[144] Yong Luo and Matthew J. Yedlin. Polynomial time-marching for non-
9(2):123–136, June 1994. CODEN JSCOE. ISSN 0885-7474 (print),
REFERENCES

REFERENCES

Marion:1994:SCM

Zampieri:1994:CNS

Olsson:1994:NBH

Sei:1995:DAN

Solomonoff:1995:RDF

REFERENCES

REFERENCES

Yang:1995:MRA

Kukharkin:1995:CSF

Manoranjan:1996:SIP

Sukoriansky:1996:LES

REFERENCES

Ciccoli:1996:ADD

Bowman:1996:WPS

Cao:1996:PML

REFERENCES

REFERENCES

REFERENCES

Marco:1997:AMO

Geer:1997:EAA

Arsham:1997:AGM

Borue:1997:TCD

Dai:1997:GPR

Dai:1997:NAS

Kastner:1997:SET

Funaro:1997:IPI

Succi:1997:LKT

Wu:1997:PSC

REFERENCES

REFERENCES

[236] Alexandr Konstantinov and Steven A. Orszag. Renormalization group-based transport modeling of premixed turbulent combustion. II. Fi-

REFERENCES

REFERENCES

REFERENCES

Kvernadze:1999:LDB

Ganguly:1999:NTB

Parter:1999:LGL

Branden:1999:CAH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Albukrek:2002:DFW

Funaro:2002:SD

Fischer:2002:SEM

Schatzman:2002:TNC

Demkowicz:2002:FAA

REFERENCES

Kress:2002:DCM

Furst:2002:ASO

Puppo:2002:NEP

Pasquetti:2002:HOA

Proot:2002:LSS

Gerritsma:2002:ADL

Berrone:2002:TRW

Jardak:2002:SPC

Thomas:2002:SIS

Fibich:2002:CNB

REFERENCES

151

REFERENCES

Coppola:2002:GSI

Jameson:2003:AVH

Chorfi:2003:HGS

Liu:2003:VGA

[360] Knut-Andreas Lie and Sebastian Noelle. An improved quadrature rule for the flux-computation in staggered central difference schemes in mul-

[365] Huiyuan Li and Heping Ma. Shifted Chebyshev collocation domain truncation for solving problems on an infinite interval. *Journal of
REFERENCES

Nordstrom:2003:HOF

Kwon:2003:PET

Liu:2003:FOS

Jackiewicz:2003:SGR

REFERENCES

REFERENCES

Kruzik:2003:CMM

Merriman:2003:USO

Mitchell:2003:ORS

Rault:2003:SVI

Ruuth:2003:SSV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

URL http://link.springer.com/content/pdf/10.1023/B%3AJOMP.
0000027953.74841.8c; http://www.springerlink.com/openurl.
asp?genre=article&issn=0885-7474&volume=21&issue=1&spage=1-
30.

[418] R. Li, W. B. Liu, and H. P. Ma. Moving mesh method with error-
0000027953.74841.8c; http://www.springerlink.com/openurl.
asp?genre=article&issn=0885-7474&volume=21&issue=1&spage=31-
55.

[419] Ken Mattsson, Magnus Svärd, and Jan Nordström. Stable and ac-
ccurate artificial dissipation. *Journal of Scientific Computing*, 21
(1):57–79, August 2004. CODEN JSCOEB. ISSN 0885-7474
content/pdf/10.1023/B%3AJOMP.0000027955.75872.3f; http://
volume=21&issue=1&spage=57-79.

2004. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/content/pdf/10.1023/B%3AJOMP.
0000027956.13510.5a; http://www.springerlink.com/openurl.
asp?genre=article&issn=0885-7474&volume=21&issue=1&spage=81-
90.

[421] Elena Braverman, Boris Epstein, and Moshe Israeli. A fast spectral
subtractional solver for elliptic equations. *Journal of Scientific Com-
puting*, 21(1):91–128, August 2004. CODEN JSCOEB. ISSN 0885-
content/pdf/10.1023/B%3AJOMP.0000027957.39059.6b; http://
volume=21&issue=1&spage=91-128.
REFERENCES

REFERENCES

Sagaut:2004:F

Sengupta:2004:HAC

Sengupta:2004:NSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2005:EAM

Tourigny:2005:OMF

Madzvamuse:2005:MGF

REFERENCES

REFERENCES

http://link.springer.com/content/pdf/10.1007/BF02728980;
http://link.springer.com/content/pdf/10.1007/s10915-004-4630-
x;

[479] Z. Jackiewicz. Construction and implementation of general lin-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/article/10.1007/BF02728981;
http://link.springer.com/content/pdf/10.1007/BF02728981;
http://link.springer.com/content/pdf/10.1007/s10915-004-4631-
9; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=25&issue=1&spage=29-49.

[480] J. C. Butcher. High order A-stable numerical methods for stiff prob-
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/article/10.1007/BF02728982;
http://link.springer.com/content/pdf/10.1007/BF02728982;
http://link.springer.com/content/pdf/10.1007/s10915-004-4632-
8; http://www.springerlink.com/openurl.asp?genre=article&

[481] Ernst Hairer. Important aspects of geometric numerical integra-
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/article/10.1007/BF02728983;
http://link.springer.com/content/pdf/10.1007/BF02728983;
http://link.springer.com/content/pdf/10.1007/s10915-004-4633-
7; http://www.springerlink.com/openurl.asp?genre=article&

[482] U. M. Ascher and R. I. McLachlan. On symplectic and multisym-
plectic schemes for the KdV equation. *Journal of Scientific Comput-
REFERENCES

REFERENCES

REFERENCES

Sengupta:2006:HAS

Koko:2006:UCG

Feng:2006:AFE

Schroll:2006:BHF

REFERENCES

Nielsen:2006:DTG

Kopriva:2006:MID

Jakobsson:2006:FOC

Gottlieb:2006:F

Z. Belhachmi, C. Bernardi, S. Deparis, and F. Hecht. An efficient discretization of the Navier–Stokes equations in an axisym-

REFERENCES

REFERENCES

Sofronov:2006:SAG

Staalberg:2006:HOA

Talbot:2006:PSM

Wan:2006:BWA

Xenophontos:2006:UCE

Xing:2006:HOW

Xu:2006:SMS

Yee:2006:NLF

Xiao-yong:2006:SHG

Brown:2006:ESH

REFERENCES

[565] Sigal Gottlieb, David Gottlieb, and Chi-Wang Shu. Recovering high-order accuracy in WENO computations of steady-state hyperbolic sys-

REFERENCES

REFERENCES

REFERENCES

Serna:2006:FOW

Evje:2006:CVN

Yee:2006:ELD

REFERENCES

REFERENCES

[600] Matthias K. Gobbert, Samuel G. Webster, and Timothy S. Cale. A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/

Han Chen, Chohong Min, and Frédéric Gibou. A supra-convergent finite difference scheme for the Poisson and heat equations on ir-

Kloucek:2007:ACB

Diener:2007:OHO

Ohmori:2007:FFF

Lorcher:2007:DGS

REFERENCES

Chan:2007:TVW

Huang:2007:PDA

Bialecki:2007:NDD

Kitzhofer:2007:ENSa

REFERENCES

REFERENCES

Selle:2008:USM

Yokoi:2008:NMF

Gelb:2008:DES

Liu:2008:NSF

Chen:2008:BPC

Macdonald:2008:NSD

Carrillo:2008:NSD

Cockburn:2008:CLC

[703] Houde Han, Zhongyi Huang, and R. Bruce Kellogg. A tailored finite point method for a singular perturbation problem on an un-

[716] R. Glowinski, T. Kärkkäinen, T. Valkonen, and A. Ivanikov. Nonsmooth SOR for L^1-fitting: Convergence study and discussion of re-
REFERENCES

REFERENCES

REFERENCES

[733] Qiang Zhang and Zi-Long Wu. Numerical simulation for porous medium equation by local discontinuous Galerkin finite element

REFERENCES

Bjøntegaard:2009:FTP

Jung:2009:NSC

Castro:2009:HOE

Higueras:2009:CSS

Liu:2009:OYF

REFERENCES

Zhu:2009:SEM

Platte:2009:HFC

Binford:2009:ENR

Zhu:2009:HWS

Di:2009:CDG

Svard:2009:SCA

Cockburn:2009:F

deDios:2009:UCI

Brenner:2009:PEC

[767] Susanne C. Brenner, Thirupathi Gudi, and Li yeng Sung. A posteriori error control for a weakly over-penalized symmetric interior

[780] Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. *Journal of
Zhu:2009:ADG

Abarbanel:2009:LTP

Jung:2009:EPD

Sarra:2009:EDF

Hughes:2009:BLA

Zhang:2009:SDG

Kupiainen:2009:CEB

Rahunathan:2009:SIC

REFERENCES

[793] Liang Ge, Wenbin Liu, and Danping Yang. Adaptive finite element approximation for a constrained optimal control problem via multi-
REFERENCES

Chen:2009:FCM

Yan:2009:RMF

Ng:2009:GPS

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-009-9300-6;

asymptotically stable semi-Lagrangian scheme in the quasi-neutral
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
009-9302-4; http://link.springer.com/content/pdf/10.1007/
s10915-009-9302-4; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=41&issue=3&spage=341-365.

[799] Ken Mattsson, Frank Ham, and Gianluca Iaccarino. Stable bound-
ary treatment for the wave equation on second-order form. Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9305-
1; http://www.springerlink.com/openurl.asp?genre=article&

[800] Chang-Yeol Jung and Roger Temam. Finite volume approxima-
tion of one-dimensional stiff convection–diffusion equations. Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9304-
2; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=41&issue=3&spage=384-410.

[801] Ming Xiang, Shaozhong Deng, and Wei Cai. A sixth-order im-
age approximation to the ionic solvent induced reaction field. Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9307-

[810] Adrian Sescu, Abdollah A. Afjeh, Ray Hixon, and Carmen Sescu. Conditionally stable multidimensional schemes for advective equa-
REFERENCES

Brenner:2010:IPF

Dolejsi:2010:OIM

Cockburn:2010:BCD

Wang:2010:CME

Wen:2010:HON

Bergot:2010:HOF

Chen:2010:EES
REFERENCES

[827] Pengtao Sun, Long Chen, and Jinchao Xu. Numerical studies of adaptive finite element methods for two dimensional convection-
REFERENCES

REFERENCES

Shih:2010:TFP

Burger:2010:AMM

Pironneau:2010:P

Burman:2010:IPC

Yasuda:2010:TPS

Celiker:2010:HDG

Wise:2010:USF

Yang:2010:NAA

REFERENCES

[861] D. Sármány, F. Izsák, and J. J. W. van der Vegt. Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-
REFERENCES

REFERENCES

REFERENCES

[887] Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby. Quantification of errors introduced in the numerical approximation and

Nicholls:2010:BPM

Viswanathan:2010:RNU

Xiong:2010:FSF

Qiao:2011:SEA

REFERENCES

REFERENCES

Jung:2011:SRP

vanderLaan:2011:MCE

Ray:2011:TFH

Zhang:2011:TOE

REFERENCES

[914] A. Karageorghis. Efficient MFS algorithms for inhomogeneous poly-
tronic). URL http://link.springer.com/article/10.1007/s10915-
010-9416-8; http://link.springer.com/content/pdf/10.1007/

Maxwell’s equations in dispersive media. *Journal of Scientific Comput-
ing*, 47(1):1–26, April 2011. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
010-9417-7; http://link.springer.com/content/pdf/10.1007/

additive Schwarz preconditioners for a weakly over-penalized symmetric
tronic). URL http://link.springer.com/article/10.1007/s10915-
010-9419-5; http://link.springer.com/content/pdf/10.1007/

[917] P. E. Vincent, P. Castonguay, and A. Jameson. A new class of high-order
energy stable flux reconstruction schemes. *Journal of Scientific Comput-
ing*, 47(1):50–72, April 2011. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
010-9420-z; http://link.springer.com/content/pdf/10.1007/s10915-010-9420-z; http://www.springerlink.com/
Zhang:2011:PEM

Chen:2011:CRM

Yilmaz:2011:IPL

Motamed:2011:LSF

REFERENCES

Yang:2011:PTG

Lu:2011:SSW

Feng:2011:AGM

Zeiser:2011:FMV

Chaudhry:2011:FEA

Dedner:2011:GSA

Cliffe:2011:APE

Abdellatif:2011:SDA

REFERENCES

REFERENCES

References

REFERENCES

Munoz-Ruiz:2011:CWB

Perrier:2011:CMS

Ricchiuto:2011:CPG

Begnudelli:2011:HSF

REFERENCES

http://link.springer.com/article/10.1007/s10915-010-9428-4;
http://link.springer.com/content/pdf/10.1007/s10915-010-9428-4;

Verstappen:2011:WDE

Baudouin:2011:ATM

Behrens:2011:NFM

Christlieb:2011:IPT

Chamard:2011:CME

Zhang:2011:NBS

Chen:2011:TGM

Constantin:2012:NRR

Zhang:2012:MPS

[986] Chunlin Wu, Juyong Zhang, Yuping Duan, and Xue-Cheng Tai. Augmented Lagrangian method for total variation based image restora-
REFERENCES

308

Kormann:2012:DSS

Deparis:2012:SRB

Laminie:2012:DPP

Hahn:2012:ALM

REFERENCES

REFERENCES

- Stefan:2012:SEE

- Lui:2012:OSR

- Lin:2012:GED

- Turnes:2012:ECD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Goudenege:2012:HOF

Bustinza:2012:EEL

DElia:2012:VDA

Luo:2012:FSM

REFERENCES

Zhao:2012:EAC

Bjontegaard:2012:SAP

deFrutos:2012:STG

Corem:2012:NAD

Fishelov:2012:RAS

Gao:2012:HOW

Gottlieb:2012:SCA

[1079] James King, Hanieh Mirzaee, and Jennifer K. Ryan. Smoothness-
increasing accuracy-conserving (SIAC) filtering for discontinuous
Galerkin solutions: Improved errors versus higher-order accuracy. Jour-
JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/article/10.1007/s10915-012-9593-8;
http://link.springer.com/content/pdf/10.1007/s10915-012-9593-
8; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=53&issue=1&page=102-128.

[1080] M. Medvinsky, S. Tsynkov, and E. Turkel. The method of differ-
ence potentials for the Helmholtz equation using compact high or-
ber 2012. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
012-9602-y; http://link.springer.com/content/pdf/10.1007/
s10915-012-9602-y; http://www.springerlink.com/openurl.asp?
See erratum [1095].

[1081] Z. Schuss. The narrow escape problem — a short review of re-
2012. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
012-9590-y; http://link.springer.com/content/pdf/10.1007/
s10915-012-9590-y; http://www.springerlink.com/openurl.asp?

[1082] Hillel Tal-Ezer, Ronnie Kosloff, and Ido Schaefer. New, highly ac-
curate propagator for the linear and nonlinear Schrödinger equa-
2012. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
012-9583-x; http://link.springer.com/content/pdf/10.1007/
s10915-012-9583-x; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=53&issue=1&page=211-221.
REFERENCES

REFERENCES

[1091] Ziqing Xie, Xianjuan Li, and Tao Tang. Convergence analysis of spectral Galerkin methods for Volterra type integral equa-
REFERENCES

[1108] Sangita Yadav, Amiya K. Pani, and Neela Nataraj. Superconvergent discontinuous Galerkin methods for linear non-selfadjoint and indefinite

Zou:2013:NHE

Zhai:2013:FFO

Li:2013:NSP

Sidi:2013:CNQ

REFERENCES

REFERENCES

Benning:2013:HOT

Bihari:2013:TMU

Dong:2013:XRC

Dong:2013:EAM

[1122] Frédéric Gibou, Chohong Min, and Ron Fedkiw. High resolution sharp
computational methods for elliptic and parabolic problems in complex
2013. CODEN JSOCOE. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
012-9660-1; http://link.springer.com/content/pdf/10.1007/
s10915-012-9660-1.pdf.

[1123] Youngsoo Ha, Chang Ho Kim, and Myungjoo Kang. Simulations of
supersonic astrophysical jets and their environments using level set
2013. CODEN JSOCOE. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
012-9606-7; http://link.springer.com/content/pdf/10.1007/
s10915-012-9606-7.pdf.

[1124] Bo Huang, Shiqian Ma, and Donald Goldfarb. Accelerated linearized
February 2013. CODEN JSOCOE. ISSN 0885-7474 (print), 1573-
1007/s10915-012-9592-9; http://link.springer.com/content/

[1125] Matthew Jemison, Eva Loch, and Mark Sussman A coupled
level set-moment of fluid method for incompressible two-phase
2013. CODEN JSOCOE. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
012-9614-7; http://link.springer.com/content/pdf/10.1007/
s10915-012-9614-7.pdf.

[1126] Chiu-Yen Kao and Shu Su. Efficient rearrangement algorithms for
shape optimization on elliptic eigenvalue problems. *Journal of Sci-
cientific Computing*, 54(2–3):492–512, February 2013. CODEN JS-
COEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/article/10.1007/s10915-012-9629-0;
http://link.springer.com/content/pdf/10.1007/s10915-012-9629-
0.pdf.
REFERENCES

REFERENCES

REFERENCES

Bi:2013:PEE

Abreu:2013:NMD

Chen:2013:RCM

Brenner:2013:AFE

Tang:2013:HOC

Tao Tang, Hehu Xie, and Xiaobo Yin. High-order convergence of spectral deferred correction methods on general quadrature nodes.

REFERENCES

REFERENCES

REFERENCES

Hao:2013:CCC

Khanna:2013:HPN

Ren:2013:NAH

Wang:2013:MMS

Bacuta:2013:MGU

He:2013:TLN

Rubio:2013:ETE

Marquez:2013:DPT

Croisille:2013:HCI

REFERENCES

Chen:2013:IFC

Higueras:2013:SSR

Melenk:2013:GDM

Min:2013:EHO

Antil:2013:TSG

REFERENCES

Zhao:2014:CFA

Zarghami:2014:HPM

Zhang:2014:EAC

Feng:2014:LDG

Wang:2014:OPW

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES
Abgrall:2014:RFV

Johnston:2014:LPB

DAmbrosio:2014:LTS

Arandiga:2014:WDM

Zhang:2014:TDL

Debojyoti Ghosh and James D. Baeder. Weighted non-linear compact schemes for the direct numerical simulation of compressible, tur-

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9829-x;
http://link.springer.com/content/pdf/10.1007/s10915-014-9829-x.pdf.

Kocher:2014:VST

Pincock:2014:HOF

DeRosis:2014:CBI

Martinez:2014:EDN

Roth:2014:SLM

REFERENCES

Liao:2014:SCM

Starinshak:2014:NLS

Yu:2014:SEM

Hong:2015:NAS

Gerhard:2015:HOD

REFERENCES

Bialecki:2015:FDS

Huang:2015:SAL

Xu:2015:DPN

Wang:2015:UMC

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9852-y;

Hu:2015:APE

Chen:2015:NFG

Liu:2015:DES

Addam:2015:FDA

Yao:2015:CAM

REFERENCES

Suncica Canic, Benedetto Piccoli, Jing-Mei Qiu, and Tan Ren. Runge–Kutta discontinuous Galerkin method for traffic flow model...

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9916-z;

http://link.springer.com/content/pdf/10.1007/s10915-014-9915-0.pdf.
REFERENCES

REFERENCES

REFERENCES

D. Choï, L. Gallimard, and T. Sassi. A posteriori estimates for a natural Neumann–Neumann domain decomposition algorithm on a uni-

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9958-2;

REFERENCES

REFERENCES

Zhang:2015:HMN

Chen:2015:RIB

Nissen:2015:SDM

Zheng:2015:LPF

Wasserman:2015:IRF

Wang:2015:FSB

Choi:2015:PFS

Guzman:2015:MNS

Guo:2015:ECL

Guo:2015:GHS

Bernardi:2015:PAI

Caliari:2015:IPM

[1496] Sheng-Gwo Chen, Mei-Hsiu Chi, and Jyh-Yang Wu. High-order algorithms for Laplace–Beltrami operators and geometric invariants over
REFERENCES

Sarvesh Kumar and Ricardo Ruiz-Baier. Equal order discontinuous finite volume element methods for the Stokes problem. *Journal of Scientific...
Kadalbajoo:2015:SOA

Shi:2015:NSM

Dauge:2015:TNI

Choi:2015:FDC

Crouseilles:2015:CNS

Guillen-Gonzalez:2015:STS

F. Guillén-González and J. Koko. A splitting in time scheme and augmented Lagrangian method for a nematic liquid crystal problem. *Jour-

REFERENCES

Kolomenskiy:2016:AGA

Cai:2016:NAA

Fok:2016:LFO

Chen:2016:WFB

Ginting:2016:AWG

Boscheri:2016:EQF

REFERENCES

REFERENCES

Carr:2016:MFP

Gong:2016:FEM

Fu:2016:SMF

Fu:2016:ESM

deFrutos:2016:GDS
REFERENCES

Gurkan:2016:EHD

Ma:2016:IDT

Lamichhane:2016:MFE

Li:2016:NSW

Chen:2016:GSA

Tong:2016:HOM

Oisin Tong, Aaron Katz, Yushi Yanagita, Alex Casey, and Robert Schaap. High-order methods for turbulent flows on three-dimensional

Barkouki:2016:ARB

Mirzargar:2016:SIA

Zhang:2016:SGS

He:2016:ISA

Kim:2016:MNL

Kolev:2016:MPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Das:2016:LSP

Oberman:2016:AFD

Yu:2016:NIF

Lee:2016:BDM

Heuer:2016:SCL

Yang:2016:DTD

Cai:2016:PPH

Qu:2016:NFI

Sheng:2016:CCN

Ma:2016:APG

REFERENCES

Hayashi:2016:CAC

Winokur:2016:SPS

Schmidtmann:2016:RBW

Pandit:2016:EIC

Ding:2016:SML

REFERENCES

Shuqin Wang, Jinyun Yuan, Weihua Deng, and Yujian Wu. A hybridized discontinuous Galerkin method for 2D fractional convection-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yoon:2016:SSS

Gupta:2016:PEA

Rotundo:2016:EAB

Chen:2016:DDT

REFERENCES

REFERENCES

Hou:2016:TSL

Zaghi:2016:AWP

Djoko:2016:NSS

Cheng:2016:SOW

REFERENCES

Wang:2017:GMS

Brus:2017:PSI

Chang:2017:LSO

Tang:2017:UCT

Li:2017:SOS

REFERENCES

REFERENCES

Zhang:2017:OSS

Zhang:2017:SML

Li:2017:EEM

Michoski:2017:SNC

Guo:2017:RBF
[1758] Jingyang Guo and Jae-Hun Jung. Radial basis function ENO and WENO finite difference methods based on the optimization of shape

REFERENCES

REFERENCES

Bras:2017:AIE

Su:2017:TLP

Pan:2017:ECM

Li:2017:TSF

REFERENCES

REFERENCES

Wang:2017:CSP

Zorio:2017:ALW

Li:2017:LGP

Khan:2017:EAS

Bernardi:2017:CAT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1838] Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma, Xiaolin Chang, and Qiang Huang. The boundary element method with a fast multi-

Pang:2017:EBC

Lakoba:2017:LTS

Gatto:2017:EPH

Stiller:2017:NWS

Hakula:2017:PEU

Chalmers:2017:SMS

REFERENCES

REFERENCES

REFERENCES

Suarez:2017:RSW

Shi:2017:USAb

Luo:2017:PFE

Deng:2017:NOM

Baffet:2017:HOAb

[1890] Daniel Baffet and Jan S. Hesthaven. High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equa-

REFERENCES

Gao:2017:MMF

Rui:2017:BCF

Gao:2017:TSO

Yano:2017:KML

Pitton:2017:ARB

[1904] Giuseppe Pitton and Gianluigi Rozza. On the application of reduced basis methods to bifurcation problems in incompressible fluid
REFERENCES

[1909] Xu hong Yu and Ben yu Guo. Spectral method for vorticity-stream function form of Navier–Stokes equations in an infinite channel with slip

Wu:2017:RNM

Guzman:2017:FEM

Brink:2017:HFE

Hao:2017:IAB

REFERENCES

Yat Tin Chow, Jérôme Darbon, Stanley Osher, and Wotao Yin. Algorithm for overcoming the curse of dimensionality for time-dependent

Zhou:2017:SLD

Zhu:2017:ARM

Zhu:2017:NTF

Cavoretto:2018:OSL

Bi:2018:PEE

Zhou:2018:FLT

REFERENCES

[1961] Immanuel Martini, Bernard Haasdonk, and Gianluigi Rozza. Certified reduced basis approximation for the coupling of viscous and invis-

REFERENCES

Jiang:2018:EBI

Minjeaud:2018:HOC

Karaa:2018:OEA

Yi:2018:FDH

Karakashian:2018:TLA

Cao:2018:CSI

Kim:2018:HFD

[1979] Chang Ho Kim, Kwang-II You, and Youngsoo Ha. Hybrid finite difference weighted essentially non-oscillatory schemes for the compressible ideal

Seo:2018:CAM

Li:2018:HOP

Rebollo:2018:HOL

Li:2018:DFV

Liu:2018:FFD

REFERENCES

REFERENCES

Dunst:2018:SOC

Huber:2018:SCS

Tang:2018:WCP

Mukam:2018:SCA

An:2018:OEE

Zhao:2018:FFD
[1996] Meng Zhao, Hong Wang, and Aijie Cheng. A fast finite difference method for three-dimensional time-dependent space-fractional diffusion

Chen:2018:UCC

Ghasemi:2018:TAN

Meng:2018:VCP

Li:2018:BCF

Zhao:2018:NUR

Ivorra:2018:ALN

REFERENCES

Svard:2018:RCS

Addam:2018:SAW

Zhang:2018:GSC

Lai:2018:MBL

Deng:2018:LCC

REFERENCES

s10915-017-0493-9; https://link.springer.com/content/pdf/10.1007/s10915-017-0493-9.pdf.

Chen:2018:LFT

Hao:2018:HMP

Hong:2018:ESM

Deng:2018:SCT

Wang:2018:SSW

Yang:2018:NAC

Huang:2018:SMS

Pareschi:2018:SPS

Latu:2018:FAI

Feng:2018:IPD

REFERENCES

REFERENCES

REFERENCES

Jeong:2018:PMC

Dubuis:2018:AAT

Cockburn:2018:SPD

Higueras:2018:OBL

Fatone:2018:IDD

Chen:2018:ESA

Wang:2018:JPB

Na:2018:EMS

Sun:2018:SAH

Buli:2018:LDG
[2053] Matteo Giacomini. An equilibrated fluxes approach to the certified
descent algorithm for shape optimization using conforming finite ele-
ment and discontinuous Galerkin discretizations. *Journal of Scientific
Computing*, 75(1):560–595, April 2018. CODEN JSCOEB. ISSN 0885-
content/pdf/10.1007/s10915-017-0545-1.pdf.

[2054] Bernardo Cockburn, Zhixing Fu, Allan Hungria, Liangyue Ji, Manuel A.
Sánchez, and Francisco-Javier Sayas. Stormer-Numerov HDG meth-
624, May 2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-017-0547-z; https://link.springer.com/content/pdf/
10.1007/s10915-017-0547-z.pdf.

[2055] Lisl Weynans. Super-convergence in maximum norm of the gradient for
637, May 2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-017-0548-y; https://link.springer.com/content/pdf/
10.1007/s10915-017-0548-y.pdf.

[2056] Zuoqiang Shi, Stanley Osher, and Wei Zhu. Generalization of
the weighted nonlocal Laplacian in low dimensional manifold model.
JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL https://link.springer.com/article/10.1007/s10915-017-
0549-x; https://link.springer.com/content/pdf/10.1007/s10915-
017-0549-x.pdf.

[2057] Lucas Friedrich, David C. Del Rey Fernández, Andrew R. Winters,
Gregor J. Gassner, David W. Zingg, and Jason Hicken. Conservative and stable degree preserving SBP operators for non-
May 2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-017-0563-z; https://link.springer.com/content/pdf/
10.1007/s10915-017-0563-z.pdf.
REFERENCES

Zhang:2018:OSI

Wen:2018:SSN

Dang:2018:DRS

Rachh:2018:IEF

Mu:2018:WGM

REFERENCES

REFERENCES

s10915-017-0595-4; https://link.springer.com/content/pdf/10.1007/s10915-017-0595-4.pdf.

Klinge:2018:SSP

Chung:2018:GPE

Lin:2018:SCA

Sen:2018:ESS

Long:2018:TBN

REFERENCES

REFERENCES

REFERENCES

Ha:2018:SOW

Delgadillo:2018:FGA

Jang:2018:RIE

Abdi:2018:LBR

Lemaire:2018:ESJ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cao:2018:MFV

Wang:2018:GSA

Zhong:2018:GMS

Chen:2018:FFF

Guo:2018:ALD

REFERENCES

REFERENCES

[2187] Harbir Antil, Enrique Otárola, and Abner J. Salgado. Optimization with respect to order in a fractional diffusion model: Analysis, approximation
REFERENCES

REFERENCES

REFERENCES

Liu:2018:MDG

Yang:2018:HSD

Ge:2018:SGS

Wu:2018:HOL

Wissink:2018:SRS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Aghili:2018:ARH

Antonietti:2018:FNI

Bona:2018:FEM

Cao:2018:SRD

Cascavita:2018:HDM

Guanglian Li and Ke Shi. Upscaled HDG methods for Brinkman equations with high-contrast heterogeneous coefficient. *Journal...

REFERENCES

Herrero:2019:SMR

Dimarco:2019:CLD

Rueda-Ramírez:2019:TEE

Sun:2019:TSO

Baeza:2019:CWS

REFERENCES

REFERENCES

References

Ke:2019:AFD

Moxey:2019:IEB

You:2019:NMM

Zhang:2019:EES

Kimura:2019:GFS

[2299] Masato Kimura, Hirofumi Notsu, Yoshimi Tanaka, and Hiroki Yamamoto. The gradient flow structure of an extended Maxwell vis-

REFERENCES

REFERENCES

[2324] Hongfei Fu and Hong Wang. A preconditioned fast parareal finite difference method for space–time fractional partial differen-

REFERENCES

Oltean:2019:PPP

Bernal:2019:IMM

Lin:2019:HOR

Zhai:2019:AWG

Herrmann:2019:ESF

Solano:2019:HOH

E:2019:MPN

Offner:2019:EBD

Wang:2019:ENM

[2377] Xiang Wang, Xing Li, Lei-Hong Zhang, and Ren-Cang Li. An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem. *Journal of Scientific
REFERENCES

Dong:2019:MCM

Chan-Wai-Nam:2019:MLS

Du:2019:SLD

Fu:2019:EDF

Xie:2019:EDP

[2382] Jianqiang Xie and Zhiyue Zhang. An effective dissipation-preserving fourth-order difference solver for fractional-in-space nonlinear wave equa-

REFERENCES

Ruo Li, Pingbing Ming, Ziyuan Sun, and Zhijian Yang. An arbitrary-order discontinuous Galerkin method with one unknown per element.
REFERENCES

[2402] Dongfang Li, Chengda Wu, and Zhimin Zhang. Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth

[2407] Yuanzhen Cheng, Alina Chertock, Michael Herty, Alexander Kurganov, and Tong Wu. A new approach for designing moving-water equilib-

Duan:2019:ECS

Jallepalli:2019:EAL

Churchill:2019:DEN

Higueras:2019:SSP

Jacobs:2019:ASH

[2417] Christophe Berthon, Arnaud Duran, Françoise Foucher, Khaled Saleh, and Jean De Dieu Zabsonré. Improvement of the hydrostatic recon-

[2422] David Shepherd, James Miles, Matthias Heil, and Milan Miha-
ijović. An adaptive step implicit midpoint rule for the time in-
tegration of Newton’s linearisations of non-linear problems with
applications in micromagnetics. *Journal of Scientific Comput-
ing*, 80(2):1058–1082, August 2019. CODEN JSCOE B. ISSN
link.springer.com/content/pdf/10.1007/s10915-019-00965-8.pdf

gauge-invariant method for the time-dependent Ginzburg–Landau equa-
CODEN JSCOE B. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
https://link.springer.com/article/10.1007/s10915-019-00968-
5; https://link.springer.com/content/pdf/10.1007/s10915-019-
00968-5.pdf

[2424] Yan-Fei Xiang, Yan-Fei Jing, and Ting-Zhu Huang. A new projected
variant of the deflated block conjugate gradient method. *Journal of Sci-
entific Computing*, 80(2):1116–1138, August 2019. CODEN JSCOE B.
link.springer.com/content/pdf/10.1007/s10915-019-00969-4.pdf

[2425] Honglin Yuan, Xiaoyi Gu, Rongjie Lai, and Zaiwen Wen. Global opti-
mization with orthogonality constraints via stochastic diffusion on man-
CODEN JSCOE B. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
https://link.springer.com/article/10.1007/s10915-019-00971-
w; https://link.springer.com/content/pdf/10.1007/s10915-019-
00971-w.pdf

[2426] Ruisheng Qi and Xiaojie Wang. Optimal error estimates of Galerkin fi-
nite element methods for stochastic Allen–Cahn equation with additive
CODEN JSCOE B. ISSN 0885-7474 (print), 1573-7691 (electronic). URL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2460] Pranjal and David Silvester. Balanced iterative solvers for linear nonsymmetric systems and nonlinear systems with PDE origins.

REFERENCES

[2470] Nattaporn Chuenjarern and Yang Yang. Fourier analysis of local discontinuous Galerkin methods for linear parabolic equations on overlapping

Xie:2019:CEE

Shen:2019:EST

Wahlsten:2019:SIF

Chertock:2019:PSI

Gustafsson:2019:SAH

Sever:2019:SUC

Liu:2019:ODT

Wang:2019:GSP

Sjogreen:2019:ESM

Ben-Artzi:2019:CCS

REFERENCES

REFERENCES

REFERENCES

Lundquist:2020:SAF

Meena:2020:PPF

Oberman:2020:PDE

Zaky:2020:SIG

Zhao:2020:NHS

[2525] Cui:2020:UCW

[2526] Li:2020:ATS

REFERENCES

Chen:2020:SEA

You:2020:FCF

Yang:2020:OMM

Yao:2020:TFO

Harris:2020:AZI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2575] Xiaole Li, Yulong Xing, and Ching-Shan Chou. Optimal energy conserving and energy dissipative local discontinuous Galerkin meth-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2625] Yuan Xu, Xiong Meng, Chi-Wang Shu, and Qiang Zhang. Superconvergence analysis of the Runge–Kutta discontinuous Galerkin methods...

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Liu:2020:PFV

Chen:2020:NMS

Jin:2020:CSM

Guo:2020:NPB

Guo:2020:SIH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:2020:USE

Caucao:2020:FMF

Abgrall:2020:ASS

Du:2020:TFA

Li:2020:MAL

[2705] Hayley Guy, Alen Alexanderian, and Meilin Yu. A distributed active subspace method for scalable surrogate modeling of function valued out-

[2710] Xin Liu. A well-balanced and positivity-preserving numerical model for shallow water flows in channels with wet–dry fronts. *Journal of

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lundquist:2021:SDA

Allen:2021:SAM

Choi:2021:VDE

Kao:2021:ERP

Fu:2021:LFG

REFERENCES

[2754] Meng Cai, Siqing Gan, and Xiaojie Wang. Weak convergence rates for an explicit full-discretization of stochastic Allen–Cahn equation with

[2759] Xiangcheng Zheng, V. J. Ervin, and Hong Wang. Optimal Petrov–Galerkin spectral approximation method for the fractional diffu-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zhu:2021:FSG

Palitta:2021:MET

Li:2021:UMB

Lepe:2021:EEF

Luo:2021:QCD

REFERENCES

REFERENCES

Kometa:2021:OPT

Guo:2021:UNM

Bonaventura:2021:SOF

Geist:2021:NSP

Gautier:2021:GCN

Li:2021:LHO

REFERENCES

REFERENCES

[2901] Taibai Fu, Beiping Duan, and Zhoushun Zheng. An effective finite element method with singularity reconstruction for fractional convection-

REFERENCES

vanGestel:2021:ECE

Mu:2021:DPR

Prazeres:2021:SGD

Du:2021:TGA

Desquilbet:2021:SPC

Guglielmi:2021:PRC

[2918] Nicola Guglielmi, María López-Fernández, and Mattia Manucci. Pseudospectral roaming contour integral methods for convection–diffusion...

Dehghan:2021:VEM

Chen:2021:BEI

Feireisl:2021:NAM

Jian:2021:FIW

Gu:2021:PMS

Nasab:2021:ORK

[2935] Yaguang Gu and Felix Kwok. On the choice of Robin parameters for the optimized Schwarz method for domains with non-conforming

Yang:2021:VBS

LeFloch:2021:CWB

Kopriva:2021:SFS

Borcea:2021:ROM

Chan:2021:MBE

REFERENCES

REFERENCES

[2952] Ram Manohar and Rajen Kumar Sinha. A posteriori error estimates for parabolic optimal control problems with controls acting on lower di-
REFERENCES

REFERENCES

[2963] Minghui Li, Wen Li, and Mingqing Xiao. The nonconvex tensor robust principal component analysis approximation model via the weighted ℓ_p-norm regularization. *Journal of Scientific Computing*, 89(3):??, December 2021. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691...
References

Fishelov:2021:OCT

Qin:2021:NSC

Tsoutsanis:2021:CFV

Chellappa:2021:TSS

Li:2021:CBE

Feng:2021:FRH

REFERENCES

[2981] Xiaoxue Qin, Luchan Zhang, and Yang Xiang. A three-dimensional continuum simulation method for grain boundary motion incorporat-

REFERENCES

REFERENCES 711

Zhou:2022:ALE

Diaz-Adame:2022:FOW

Antonietti:2022:SAP

Wang:2022:LFD

Hou:2022:SOE

Li:2022:PBW

[3010] Vladimir Druskin, Alexander V. Mamonov, and Mikhail Zaslavsky. Distance preserving model order reduction of graph-Laplacians and

REFERENCES

Jin:2022:NNN

Abreu:2022:CPS

Hendy:2022:RST

Worku:2022:SFS

Du:2022:NLP

REFERENCES

REFERENCES

REFERENCES

Gassner:2022:SIE

vanGestel:2022:CEC

Xi:2022:NMU

Loya:2022:HMD

Zhao:2022:SDM

Fu:2022:HOD

REFERENCES

Jeremy Chouchoulis, Jochen Schütz, and Jonas Zeifang. Jacobian-free explicit multiderivative Runge–Kutta methods for hyperbolic conservation

Boscheri:2022:CCS

Cao:2022:OSC

Li:2022:CPP

Wang:2022:LCB

Mossier:2022:ADG

Peng:2022:RBM

Yuan Xu, Di Zhao, and Qiang Zhang. Local error estimates for Runge–Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with

[3092] Ram Manohar and Rajen Kumar Sinha. Local a posteriori error analysis of finite element method for parabolic boundary control problems. *Jour-
Jiang:2022:LCR

Liu:2022:NSM

Li:2022:PPE

Kuzmin:2022:BPF

Jia:2022:SSG

Adak:2022:CAV

D. Adak, D. Mora, and S. Natarajan. Convergence analysis of virtual element method for nonlinear nonlocal dynamic plate equation. *Jour-
REFERENCES

Lin:2022:RAE

Antoine:2022:GFA

Law:2022:HOF

Li:2022:NDF

Kuhn:2022:IEG

Qian:2022:MRL

[3104] Elizabeth Qian, Jemima M. Tabeart, and Akil Narayan. Model reduction of linear dynamical systems via balancing for Bayesian inference. *Jour-
REFERENCES

Khandelwal:2022:PPE

Huang:2022:SAR

Ming:2022:NHM

Zhou:2022:EEF

Pinto:2022:VFS

Kang:2022:ESB

[3122] Yuanyuan Kang and Hong lin Liao. Energy stability of BDF methods up to fifth-order for the molecular beam epitaxial model without slope

REFERENCES

DAmore:2022:SST

Huang:2022:CRN

Zeng:2022:MEA

Yin:2022:CHI

Germain:2022:DTD

Ri:2022:NCU

REFERENCES

Shokeen:2022:PHM

Keram:2022:AHI

Beltran:2022:ADD

Ling:2022:PPS

Zhong:2022:ESG

Chun:2022:DCP

[3187] Qiuxiang Zhong, Ryan Wen Liu, and Yuping Duan. Spatially adapted first and second order regularization for image reconstruction: From

[3193] Abram Rodgers, Alec Dektor, and Daniele Venturi. Adaptive integration of nonlinear evolution equations on tensor manifolds. *Journal of Scien-
REFERENCES

REFERENCES

745

Jikun Zhao, Tianle Wang, and Bei Zhang. The stabilized nonconforming virtual element method for linear elasticity problem. *Journal of Scien-

Tuan Anh Dao and Murtazo Nazarov. A high-order residual-based viscosity finite element method for the ideal MHD equations. *Journal of
REFERENCES

[3234] Ben-Zheng Li, Xi-Le Zhao, Teng-Yu Ji, Xiong-Jun Zhang, and Ting-Zhu Huang. Nonlinear transform induced tensor nuclear norm for tensor completion. Journal of Scientific Computing, 92(3):??, Septem-
REFERENCES

REFERENCES

Avrachenkov:2022:RLG

Liang:2022:WGF

Wu:2022:IDN

Zhu:2022:TCI

Sun:2022:EEE

Kang:2022:EPE

REFERENCES

Ji:2022:SSO

Shi:2022:CHO

Xu:2022:CVE

Zhang:2022:SAC

Lyu:2022:SFO

S. R. Siva Prasad Kochi and M. Ramakrishna. A discontinuous Galerkin overset scheme using WENO reconstruction and subcells for
REFERENCES

Huang:2022:THJ

Cavalcante:2022:MFA

Fu:2022:NAS

Liu:2022:EQA

Sun:2022:SOQ

[3313] Na Gong and Wanshan Li. High-order ADI–FDTD schemes for Maxwell’s equations with material interfaces in two dimensions. *Journal of

Wu:2022:FCR

Chang:2022:GRR

Cheng:2022:RNM

Zhu:2022:FDM

Wu:2022:CAL

REFERENCES

Li:2022:CES

Zhang:2022:TGV

He:2023:EQT

Gruber:2023:MMC

Huang:2023:CPF

Nonino:2023:PBS

Yan:2023:KBM

Zeng:2023:RPC

Huang:2023:MLM

Marino:2023:SNL

Wang:2023:TGF

REFERENCES

REFERENCES

REFERENCES

[3387] Pierfrancesco Siena, Michele Girfoglio, Francesco Ballarin, and Gianluigi Rozza. Data-driven reduced order modelling for patient-specific
REFERENCES

Hou:2023:IES

Dang:2023:EEE

Carter:2023:SOU

Xu:2023:MMN

Watanabe:2023:EAV

[3398] Sixtine Michel, Davide Torlo, Mario Ricchiuto, and Rémi Abgrall. Spectral analysis of high order continuous FEM for hyperbolic PDEs on

[Qian:2023:FDA]

[Wang:2023:SRN]

[Leng:2023:PEA]

[Fang:2023:SSP]

[Calhoun:2023:CNG]

REFERENCES

REFERENCES

REFERENCES

Izuchukwu:2023:SCF

Romor:2023:NLM

Tang:2023:UES

Hamadi:2023:DDK

Zlotnik:2023:CPC

REFERENCES

Kheirfam:2023:CPI

Yamaleev:2023:HOP

Cheridito:2023:CCE

Lee:2023:PHM

Ma:2023:FDD

Huang:2023:GTM

[3438] Lei Huang, Jiawang Nie, and Ya-Xiang Yuan. Generalized truncated moment problems with unbounded sets. *Journal of Scientific Comput-
REFERENCES

[3444] Serpil Yalcin Kuzu. Random forest based multiclass classification approach for highly skewed particle data. *Journal of Scientific Comput-
Wang:2023:SGA

Ivagnes:2023:TML

Ma:2023:EEF

Yang:2023:RDS

Ma:2023:FCM

Wang:2023:PNP

REFERENCES

REFERENCES

[3462] Qinsi Wang and Wei Hong Yang. Proximal quasi-Newton method for composite optimization over the Stiefel manifold. Journal of Scien-
REFERENCES

[3479] Ming-Jun Lai and Jinsil Lee. Trivariate spline collocation methods for numerical solution to 3D Monge–Ampère equation. *Journal of Scienc-
REFERENCES

Bilel Bensaid, Gaël Poëtte, and Rodolphe Turpault. Deterministic neural networks optimization from a continuous and energy point of view.
REFERENCES

Liang:2023:LSM

Zhang:2023:NEI

Calvo:2023:STO

Armentano:2023:REB

Hu:2023:CAN
REFERENCES

REFERENCES

Cédric Boulbe, Blaise Faugeras, Guillaume Gros, and Francesca Rapetti. Tokamak free-boundary plasma equilibrium computations in presence of

REFERENCES

REFERENCES

Pechstein:2023:UTN

Liang:2023:RHT

Chu:2023:OOC

Garrappa:2023:CAE

Kent:2023:EAS

Patane:2023:SLT

REFERENCES

Meng:2023:DGM

Zhao:2023:ATR

Li:2023:ANA

Li:2023:MCF

Cheng:2023:STD

Xie:2023:OEE

[3590] Zhuohang Wu and Yu xin Ren. The compact and accuracy preserving limiter for high-order finite volume schemes solving compressible flows.
REFERENCES

Abhinav Singh, Alejandra Foggia, Pietro Incardona, and Ivo F. Sbalzarini. A meshfree collocation scheme for surface differential op-

REFERENCES

Hillebrand:2023:ALN

Garcke:2023:UFE

Cen:2023:CTM

Xia:2023:VDV

Li:2023:PTB

Acosta-Soba:2023:UES

Daniel Acosta-Soba, Francisco Guillén-González, and J. Rafael Rodríguez-Galván. An unconditionally energy stable and positive upwind DG

REFERENCES

Bai:2023:CSI

Liu:2023:MPS

Li:2023:PNC

Rodgers:2023:IIN

Sujanani:2023:ASI

Franco:2023:MIN

Frerichs-Mihov:2023:UDN

Bracco:2023:DDN

Diethelm:2023:NAS

Zhu:2023:UPD

Peng:2023:UAA

Jia:2023:CPQ

[3648] Zhigang Jia, Qianyu Wang, Hong-Kui Pang, and Meixiang Zhao. Computing partial quaternion eigenpairs with quaternion shift. *Journal of
Chen:2023:ISA

Huang:2023:REA

Buccini:2023:EIG

Ma:2023:ACI

Ye:2023:CMM

REFERENCES

Vo:2023:HOT

Cesmelioglu:2023:AEH

Carrasco:2023:NMF

Komori:2023:SRM

Li:2023:AVE

Huang:2023:SPU

REFERENCES

Berthon:2023:AVG

Jin:2023:CRP

Zhang:2023:FNO

Zeng:2023:ADD

Benatia:2023:BBH

Vacek:2023:GLN

REFERENCES

Li:2023:OEE

Bhoriya:2023:ESD

Arun:2023:APE

Guclu:2023:CBF

Fu:2023:MEP

REFERENCES

REFERENCES

REFERENCES

Xu:2024:NDD

Yang:2024:USC

Chevyrev:2024:FER

Serkh:2024:PFM

Askham:2024:RWF

Zheng:2024:PSA

[3700] Wen-Jie Zheng, Xi-Le Zhao, Yu-Bang Zheng, and Ting-Zhu Huang. Provable stochastic algorithm for large-scale fully-connected tensor net-

Zhang:2024:HFV

Hu:2024:NAC

Chen:2024:SNS

Moradi:2024:SSP

Tushar:2024:VEM

Liu:2024:DCU

Ahmadi-Asl:2024:RAT

Wang:2024:AAS

Cances:2024:PEA

Chu:2024:MAI

Yang:2024:DGM

REFERENCES

Baumgart:2024:SSH

Birke:2024:WBS

Chen:2024:RTP

Jia:2024:LLI

Huynh:2024:CAV

Adak:2024:CCA
REFERENCES

Kovacs:2024:UPE

Bozorgnia:2024:ILE

Li:2024:NMF

Dong:2024:NBI

Xu:2024:HOA

Li:2024:PEE

[3728] Lingfeng Li, Xue-Cheng Tai, Jiang Yang, and Quanhui Zhu. A priori error estimate of deep mixed residual method for elliptic PDEs. *Journal
REFERENCES

Haidar:2024:FBP

Wang:2024:LSV

Zhang:2024:PDM

Ji:2024:DRM

Xu:2024:EEI

Seal:2024:DSW

Neumayer:2024:TBI

Benedusi:2024:MEC

Yu:2024:PPR

Pulch:2024:HEU

Ye:2024:SOT

[3745] Shuyu Ye, Qiang Ma, Qinglin Tang, Junzhi Cui, and Zhihui Li. Second-order three-scale asymptotic analysis and algorithms for Steklov eigenvalue problems in composite domain with hierarchical cavities. *Journal of Scientific Computing*, 98(3):??, March 2024. CODEN JSCOEB.
Ersing:2024:ESD

Eto:2024:RNM

Song:2024:SCM

Yao:2024:RHP

Verfurth:2024:HOF

Pei:2024:CSA

Lifang Pei, Yifan Wei, Chaofeng Zhang, and Jiwei Zhang. Convergence and superconvergence analysis of a nonconforming finite element variable-time-step BDF2 implicit scheme for linear reaction–diffusion...

