A Complete Bibliography of Publications in *The Journal of Scientific Computing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
18 November 2017
Version 1.18

Title word cross-reference

\(o(1/k)\) [1818]. \(O(2)\) [1048]. \(p\) [295, 547, 640, 673, 808, 1049, 1491, 1893, 1895].
\(p(x)\) [1490]. \(P_1\) [1064, 1165, 1371, 1659]. \(P_N\) [976]. \(P_N P_M\) [1107, 1329]. \(Q_4\)
[181]. \(R^2\) [978]. \(R^n\) [998]. \(\tau\) [1202]. \(E Q^{\text{rot}}\) [1739]. \(\theta\) [576]. \(x^{(k)} = b^{(k)}\) [629]. \(Z_2\)
[933].

- Analysis [344]. - Consistency [1612]. - CPR [1329]. - D
[336, 600, 1006, 1061, 1078, 1339]. - D/ [600]. - dimensional [1611].
- Dimensions [621]. - Discontinuous [301, 896]. - Estimation [1202].
- Nonconforming [1064, 1161]. - norm [1573, 1583, 1685]. - Optimality [812].
- Order [673]. - Refinement [1213, 1895]. - Regularized [1318]. - Scheme
[576]. - Stability [742, 1355, 1612, 1776]. - Stage [982].
- Tensors [1653]. - variable [110]. - Version [500, 608, 808, 1155]. - Wave
[948, 1629]. - Weak [1273].

/3 [1400].

2 [1400].

3D [1557].

4th [1917].

5 [182].

90 [182].

A-Posteriori [778]. Absolute [1302]. Absorbing [339, 1446]. Accelerated
[286, 1124, 1190, 1369, 1476, 1704, 1838]. Accelerating [200, 1199, 1538].
Acceleration [259]. Acceptance [1025]. Accuracy [24, 69, 174, 429, 502, 508,
563, 718, 735, 831, 882, 883, 887, 1015, 1017, 1043, 1046, 1060, 1071, 1079, 1103,
1184, 1254, 1332, 1368, 1453, 1456, 1509, 1562, 1581, 1622, 1688, 1753, 1817, 1920].
Accuracy-Conserving [735, 1079, 1254, 1453, 1581, 1920]. Accurate
[209, 238, 419, 487, 519, 544, 598, 662, 681, 744, 817, 890, 1027, 1044, 1082, 1316,
1457, 1492, 1503, 1719, 1750, 1778, 1799, 1801, 1822, 1841, 1843, 1890]. Acoustic
[1321, 1784]. Acoustics [508]. Active [1349, 1897]. Actively [284, 644]. AD
[1239]. Adams [738]. Adaptation [610, 1348, 1415, 1650]. Adapted [638].
Adaptive [105, 134, 190, 206, 221, 277, 282, 309, 329, 407, 411, 464, 470, 473, 505,
510, 530, 536, 564, 609, 613, 615, 675, 763, 792, 793, 823, 837, 913, 976, 1014,
1031, 1088, 1136, 1141, 1146, 1151, 1159, 1165, 1186, 1194, 1216, 1230, 1258, 1267,
Coarse-Graining [713]. coarsening [7]. Coastal [172, 408, 416]. Coaxial
[361, 987, 1239, 1544]. Coefficients [162, 519, 560, 578, 590, 732, 791, 909, 1038,
1042, 1319, 1350, 1405, 1434, 1523, 1585, 1762, 1917]. Coercivity [561],
coherence [49]. Coherent [177, 1426]. Cohesive [751].
[31, 33, 81, 117, 140, 158, 159, 175, 340, 365, 370, 420, 641, 669, 747, 794, 819, 857,
1051, 1078, 1104, 1164, 1202, 1219, 1246, 1263, 1312, 1356, 1369, 1433, 1512, 1582,
1618, 1646, 1709, 1767, 1790, 1870, 1923]. Color [52, 1896]. Colorization
[1660]. Combined [232, 355, 1100, 1365, 1523, 1613, 1780]. Combustion
[216, 231, 236, 962]. Commutative [232, 355, 1100, 1365, 1523, 1613, 1780].
Complete [252, 893, 1099, 1420, 1858]. Complex [202, 305, 504, 644, 1071, 1122, 1140, 1315, 1546, 1598, 1689, 1888]. Complexity
[1354, 1684, 1727, 1918]. Complicated [1295, 1321]. Component [734],
Composite [862, 1272, 1289, 1402, 1859]. Compressible [15, 65, 68, 103, 168,
186, 230, 232, 261, 296, 309, 597, 610, 634, 667, 698, 787, 809, 842, 923, 1083, 1106,
1208, 1320, 1348, 1451, 1452, 1478, 1494, 1616, 1632, 1645, 1869, 1901, 1928].
Compression [586, 833, 1288, 1456, 1890]. Compressive [705, 1318].
Computation [39, 45, 53, 66, 90, 116, 141, 192, 227, 241, 246, 253, 283, 326, 360,
385, 422, 478, 514, 602, 631, 677, 681, 683, 698, 763, 902, 969, 1061, 1154, 1383,
1443, 1563, 1649, 1755, 1841, 1898]. Computational
[37, 161, 331, 444, 490, 619, 1122, 1354, 1396, 1590, 1746, 1804, 1918].
Computationally [1839]. Computations
[13, 78, 82, 205, 657, 706, 724, 820, 1049, 1062, 1083, 1157, 1297, 1390, 1414, 1426,
1469, 1545, 1654, 1672, 1673, 1771, 1817, 1910]. Concave [1516],
Concentrated [393]. Concentration [693, 1037]. Concepts [378].
Condensates [734, 1420, 1910]. Condition [88, 159, 272, 597, 616, 617, 831,
904, 1176, 1312, 1353, 1640, 1656, 1697, 1844, 1854, 1881, 1891]. Conditional
Conditions [4, 36, 74, 81, 99, 171, 196, 224, 262, 280, 289, 339, 412, 543, 595, 601,
737, 757, 788, 796, 819, 994, 1184, 1193, 1229, 1235, 1337, 1356, 1367, 1373, 1446,
1492, 1494, 1544, 1559, 1562, 1567, 1619, 1643, 1659, 1687, 1689, 1909].
Conduction [1226]. Conductivity [1393]. Cones [1649]. Configuration
Domain

Domains

Dominated

Dose

Double

Double-Scale

Doubling

Doubly
downstream

Downwind

DP

Driven

Droplet

Drying

Dual-Level

Dual-Petrov

Dual-Wind

Duality

Early

Earthquake

Editorial

Effect

Effects

efficiency

Eigen

Eigen-Problems

Eigenfunctions

Eigenproblem

Eigensolution

Eigensolvers

Eigenspace

Eigenvalue

Eigenvalues

eigenvectors

Eikonal

Einstein

Elastic

Elastica

Elasticity

Elastodynamics

Elastoplasticity

Electrical

Electro

Electro-osmotic

Electrochemistry

Electrodynamics

Electrolytes

Electrolytes/Dielectrics

Electromagnetic

Electromagnetics

Electromigration

Electron
Element-by-Element [526]. Element-Characteristic [1862].
[88, 105, 171, 182, 333, 421, 440, 496, 700, 724, 741, 754, 778, 897, 975, 1047, 1060, 1064, 1086, 1108, 1109, 1122, 1126, 1145, 1155, 1161, 1162, 1167, 1192, 1193, 1195, 1201, 1209, 1249, 1261, 1263, 1274, 1293–1295, 1299, 1306, 1308, 1319, 1325, 1369, 1372, 1424, 1513, 1516, 1554, 1555, 1573, 1577, 1582, 1588, 1620, 1635, 1643, 1704, 1716, 1740, 1741, 1760, 1765, 1785, 1797, 1801, 1802, 1876, 1900]. Elliptical
[413]. ELPIC [168]. Embedded [246, 762, 787, 1827]. Emission [1008].
Energy-Stable [552, 1679, 1724]. Enforcement [994]. Enforcing [1003].
Engine [381]. Enhanced [561, 735, 1478, 1523, 1732, 1945, 1950].
Enhancement [1118]. ENO [69, 70, 186, 269, 559, 580, 620, 999, 1758].
ENO-Based [999]. Enriched [1399]. Enrichment [1865]. Ensemble
[1430, 1565]. Enstrophy [65]. enthalpy [71]. Entries [1186]. Entropic
[922, 1823]. envelope [29, 79]. Environment [1680]. Environments
[292, 1123]. Epidemic [1903]. Epitaxial [1840]. Equal [772, 1502].
Equal-Order [772]. Equation
1055, 1128, 1162, 1173, 1211, 1274, 1294, 1434, 1454, 1461, 1498, 1501, 1535, 1536, 1553, 1577, 1630, 1682, 1683, 1729, 1756, 1848, 1911.

Estimation
[162, 295, 384, 450, 456, 477, 729, 736, 803, 834, 992, 1127, 1202, 1265, 1287, 1362, 1419, 1436, 1520, 1602, 1626].

Estimator
[418, 647, 1466, 1533, 1835].

Estimators
[273, 295, 1441].

Euler
[18, 36, 44, 56, 261, 274, 630, 677, 705, 742, 865, 945, 953, 1011, 1083, 1138, 1215, 1229, 1286, 1287, 1451, 1452, 1552, 1592, 1598, 1612, 1616, 1632, 1645, 1695, 1789, 1796, 1824, 1832, 1843, 1931].

Euler-Type
[1612].

Euler/Navier
[36].

Eulerian
[375, 395, 398, 491, 588, 1230, 1525, 1609, 1952].

European
[755, 759, 824, 1063].

Eutrophicated
[829].

Evaluation
[214, 502, 1216, 1276, 1447, 1456, 1949].

Evolution
[9, 237, 584, 708, 783, 949, 1001, 1007, 1417, 1510, 1777].

Evolutions
[632].

Evolving
[1379, 1727].

Exact
[757, 819, 1186, 1388, 1844].

Example
[867].

Exceeding
[1845].

Exceptions
[1256].

Exchange
[959].

Excitable
[837, 1467].

Excitation
[1469].

Existence
[1309, 1707].

Expanded
[1722].

Expansion
[104, 247, 278, 634, 671, 1609, 1713, 1773].

Expansions
[546, 706, 1694].

Experiments
[69].

Explicit
[117, 261, 263, 405, 484, 628, 738, 782, 875, 904, 1014, 1322, 1363, 1403, 1407, 1455, 1459, 1612, 1632, 1663, 1664, 1776, 1778, 1827, 1855, 1925, 1942, 1948].

Explicit/implicit
[117].

Exploiting
[1306].

Exploration
[101, 1707].

Explosive
[379].

Exponential
[63, 233, 789, 1015, 1214, 1316, 1368, 1429, 1509, 1615, 1691].

Exponentially
[16, 209, 238, 1801].

Expression
[1005].

Extended
[168, 1569, 1842, 1865].

Extending
[872].

Extensible
[689].

Extension
[578, 602, 627, 630, 701, 940, 1099, 1624, 1863].

Extensions
[748, 813, 1275, 1769, 1858].

Extracellular
[406].

Extracting
[674].

Extrapolated
[1168, 1356].

Extrapolation
[133, 249, 269, 891, 1029, 1196, 1292, 1546, 1689, 1780].

Extremal
[218, 1157, 1297].

Extreme
[1654].

Extrinsic
[751].

Eye
[1154].

Facing
[349].

Factor
[77, 1363, 1711, 1918].

Factored
[1057].

Factorization
[1485].

Factors
[1037, 1057].

Families
[888].

Family
[89, 438, 967, 1110, 1238, 1495, 1684, 1837].

Fast
[1229, 1447].

Fast
[1229, 1447].

Fat
[291].

Faulty
[252].

FC
[1239].

FD
[1412].

FDEM
[315].

FDM
[1899].

FDTD
[750, 1710].

Feasibility
[1583].

Feedback
[139, 843, 1680, 1736].

FEM
[353, 500, 795, 971, 1053, 1061, 1089, 1599, 1638, 1846, 1887, 1907].

FEM/DG
[795].

FEM/SBFEM
[1061].

FEMs
[1251, 1258, 1303, 1535, 1879].

Fermi
[278, 283, 677].

FETI
[350].

few
[162].

Feynman
[83, 1375, 1680].

FFT
[241].

FFTs
[1006].

FGMRES
[223].

Fiber
[743].

Fibers
[563].

Fictitious
Fluid-dynamics [895]. Fluid-Structure [522, 694]. Fluids
[120, 224, 352, 383, 531, 989, 1281, 1428]. Fluorescence [1826]. Flux
[68]. Forces [1695, 1838]. Forchheimer [1066, 1901]. Forcing [586]. Foreword
[386, 799, 857, 1265, 1309, 1909]. Formally [1027]. Format [1755]. Formation
[177, 771]. Forms [492]. Formula
[106, 677, 1686, 1698]. Formulae [1691]. Formulas [382, 590, 790, 1646]. Fort [1075, 1344]. Forward
[349, 1257, 1375, 1708]. Forward-Facing [349]. four [52]. four-color [52]. Fourier
[16, 35, 67, 78, 125, 153, 158, 162, 170, 173, 175, 238, 256, 280, 336, 341, 494, 506, 578, 704, 756, 1003, 1015, 1036, 1070, 1078, 1189, 1338, 1342, 1448, 1483, 1509, 1589, 1725, 1748, 1811, 1819, 1840, 1929]. Fourth
[281, 485, 605, 862, 972, 1044, 1076, 1110, 1113, 1161, 1286, 1287, 1296, 1346, 1373, 1522, 1534, 1562, 1619, 1623, 1672, 1673, 1690, 1780, 1794, 1801, 1826]. Fourth-Order
[281, 485, 605, 862, 1076, 1110, 1373, 1534, 1562, 1619, 1623, 1780, 1794]. Fractional
[532, 1169, 1184, 1260, 1344, 1375, 1376, 1428, 1460, 1470, 1477, 1512, 1517, 1544, 1562, 1568, 1625, 1636, 1658, 1749–1753, 1756, 1821, 1842, 1860, 1862, 1866, 1877, 1878, 1880, 1882, 1890, 1892, 1902, 1913]. Fractional-in-Space
[1892]. Fractional-Step [532]. fractions [141]. Fracture
[751]. Frame
[1072, 1120, 1121, 1212, 1395, 1523, 1700]. Frames [1085, 1094, 1279, 1819]. Framework
[589, 681, 892, 1144, 1164, 1214, 1329, 1337, 1369, 1448, 1452, 1530, 1646, 1746]. Frankel
[1075, 1344]. Fréchet [84]. Fredholm [41, 249, 1634]. Free
[1309]. Free-Surface
[1884]. Frequency
[46, 91, 514, 519, 685, 1371, 1714, 1813]. Frequency-Domain
[1371]. Friction
[938, 945]. Frictional
[936, 994]. Friedrichs
[261, 1361, 1444, 1445]. Frog [915]. Front
[94, 555, 621, 753, 817, 1154]. Front-Tracking [555]. frontal [154]. Fronts
[792, 1179, 1414, 1727]. frontwidth [20]. Full
[1265, 1557]. Fully

Methods

Metric

Meyer

MFS

MHD

Microflows

Microgravity

Microlithographic

Microstructure

Microwave

Milstein

Milstein-Type

Mimetic

Mindlin

Minimal

Minimization

Minimizing

Minimum

miniNode

Minkowski

minmod

Miscible

MISTRAL

Mixed

Mixed-Type

Mixing

Mixture

Modal

Mode

Mode-Locked

Model

Modelling

Moderately

Models

Moderately

Modified

Molecular

Moment

Momentum

Monolithic

Monotone

Monotonically

Nonorthogonal [750]. Nonoverlapping [641]. Nonperiodic [144, 1301].
Nonpolar [1600]. Nonpositivity [1817]. Nonprimitive [1854].
Nonreflecting [197]. Nonrelativistic [1833]. Nonsmooth
[1173, 1318, 1360, 1571, 1857, 1913]. nonsteady [3]. Nonsymmetric
[626, 1134]. Nonuniform [956, 1622]. Nor [705].
O [475]. Oberbeck [1692]. Object [242]. Object-Oriented [242]. Objects
[246, 260]. Observability [624]. Observables [820]. Obstacle
[418, 1109, 1914]. Obstacles [1272, 1784]. Obtain [1027]. Ocean
[172, 229, 408, 416, 435, 1699]. Octree [1136]. Odd [775, 812]. ODEs
[1672, 1673]. Open [933, 1048, 1506, 1777]. Operator
[77, 137, 143, 233, 449, 624, 875, 1029, 1177, 1367, 1455, 1487, 1515, 1811, 1840].
Operator-integration-factor [77]. Operators
Optics [375, 886, 1655]. Optimal [116, 495, 534, 535, 586, 612, 652, 672, 719, 740, 754, 774, 775, 793, 795, 815, 822, 829, 861, 899, 992, 1009, 1045, 1096, 1132, 1173, 1242, 1251, 1262, 1267, 1288, 1293, 1300, 1461, 1485, 1535, 1554, 1555, 1573,
1588, 1625, 1682, 1738, 1754, 1866, 1876, 1879, 1898, 1907, 1915, 1940.

Optimization-Based [1746]. Optimizations [1794]. Optimized [218, 514, 632, 1170, 1526, 1552, 1877].

40

Superposition [685]. Supersingular [1545]. Supersolutions [1049].
Supersonic [1123]. SUPG [1536, 1613]. Support [1432]. Supported [1416].
suppressing [99]. Supra [613]. Supra-Convergent [613].
Surfaces [244, 673, 686, 986, 1085, 1094, 1191, 1255, 1279, 1373, 1379, 1412, 1496, 1506, 1607, 1761, 1897].
Surge [906, 1062].
Surrogate [1950]. SWAN [1062].
Sweeping [579, 622, 890, 1057, 1354, 1444, 1445, 1607, 1784, 1785, 1794, 1929].
Symmetry-Based [1224]. Symplectic [482, 1566].
Symmetry [663, 858, 933, 1048, 1207, 1224, 1885].
Symmetry-Based [1224].
Symmetry-Based [1224].
Symplectic [482, 1566].
Systems [17, 18, 63, 91, 128, 149, 167, 214, 217, 218, 259, 316, 332, 374, 382, 404, 447, 454, 468, 484, 487, 548, 555, 565, 592, 617, 627, 687, 713, 748, 781, 856, 908, 933, 940, 944, 946, 952, 1048, 1099, 1117, 1181, 1305, 1339, 1361, 1369, 1415, 1449, 1458, 1468, 1543, 1566, 1571, 1580, 1598, 1642, 1653, 1674, 1693, 1757].
Tailored [703, 791, 836, 855, 924, 977, 1747, 1908]. Tails [1183]. Tau [815].
Tensor-Train [1755]. Tensors [1323, 1653, 1654]. Term [192, 422, 586, 831, 955, 1313, 1510, 1688, 1902].
Terms [207, 267, 274, 548, 747, 941, 948, 1266, 1782]. Terrain [1333]. Tessellations [843, 1390]. Test [37, 472, 1866].
Theoretical [47, 1505]. Theory [2, 37, 42, 64, 73, 122, 216, 247, 333, 359, 856, 1443]. Thermal [204, 248].
Thermistor [1353]. Thermocapillary [248]. Thermoelectricity [171].
Three-Stage [1896]. Threshold [1127, 1845]. Thresholding
[376, 668, 727, 990, 1032, 1118, 1628, 1864]. TV-Regularization [727].
TV-Stokes [990, 1032]. TVD [118, 318, 471, 922, 1823, 1855]. Two
[54, 293]. Two-Body [647]. Two-Component [734]. Two-Derivative
[927, 975, 979, 1069, 1310, 1577, 1683, 1741, 1878]. Two-Layer
[937, 943, 1156]. Two-Norm [1217]. Two-Parameter
[204]. Two-Phase [371, 615, 618, 676, 792, 809, 849, 1053, 1125, 1231, 1370, 1386, 1524, 1557, 1712, 1718, 1772, 1888]. Two-Scale [176, 353]. Two-Stage [1721]. Two-Step
[860, 1010, 1223, 1698, 1781]. Type [101, 163, 308, 559, 652, 661, 701, 848, 856, 857, 926, 1045, 1055, 1070, 1091, 1117, 1199, 1280, 1466, 1493, 1510, 1580, 1612, 1742, 1776, 1799, 1816, 1826, 1845, 1929, 1932, 1944].

Ultrasound [1851]. Ultrasound [1851]. Unbounded
[703, 805, 978, 1088, 1093, 1299, 1509, 1681, 1871]. Uncertainty
[761, 1530, 1650]. Unconditional [1535, 1739, 1887, 1925]. Unconditionally
[691, 851, 1239, 1431, 1560, 1714, 1740, 1769, 1770, 1791, 1879]. Unconstrained
Undersampled [1589]. Understanding [386]. unforced [120]. Uniaxial
[1456]. Unidirectional [1319]. Unified [602, 730, 858, 892, 915, 1353, 1581]. Uniform
[176, 403, 606, 889, 941, 1039, 1244, 1302, 1338, 1453, 1474, 1558, 1747, 1760, 1811, 1819, 1858]. Uniformly [766, 1853]. Unilateral [1454]. Unity
[1296, 1433, 1482, 1617]. Unrestricted [1147]. Unsplit [782]. Unsteady
[34, 224, 281, 328, 345, 558, 1236, 1608, 1949]. Unstructured
[208, 298, 404, 414, 540, 630, 730, 758, 906, 1027, 1062, 1129, 1131, 1197, 1208, 1336, 1525, 1578, 1675, 1676, 1745, 1843, 1858]. Unstructured-Mesh [1062].
Unsymmetric [18]. Update [332, 523, 1872]. Upper [1217]. Upwind
[118, 347, 433, 536, 848, 941, 956, 1025, 1105, 1662, 1693]. Upwind-Difference

REFERENCES

X [1053, 1120, 1569]. X-HDG [1569]. X-Ray [1120].

Yawed [337]. Yee [750].

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[88] Seymour V. Parter and Sze-Ping Wong. Preconditioning second-order elliptic operators: Condition numbers and the distribution

Vandeven:1991:FSF

Cook:1991:HSC

Cheremensky:1991:RFD

Barouch:1991:NSS

REFERENCES

REFERENCES

REFERENCES

Yang:1992:NCO

Black:1992:PCU

Jeng:1992:ALI

Iqbal:1992:OPA

REFERENCES

REFERENCES

REFERENCES

Pelle Olsson. The numerical behavior of high-order finite difference methods. *Journal of Scientific Computing*, 9(4):445–466, De-
Sei:1995:DAN

Solomonoff:1995:RDF

Croisille:1995:NSM

Mehrabi:1995:PIF

Trayner:1995:NTS

Miller:1995:SSS

Schumann:1995:PST

Konstantinov:1995:ELP

Joslin:1995:SPS

Hosokawa:1995:CFS

Pasquarelli:1995:SMA

Gomez-Valdes:1995:MPP

Geer:1995:RTA

Manoranjan:1996:SIP

Sukoriansky:1996:LES

Yavneh:1996:MSS

Yakhot:1996:ATM

REFERENCES

Stricker:1996:ITF

Gustafsson:1996:HOC

Anonymous:1996:IA

Ciccoli:1996:ADD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Qian:1998:NFO

Zhang:1998:TER

Leu:1998:CBL

Dubois-Pelerin:1999:OOT

REFERENCES

REFERENCES

Tang:2000:CMR

Augoula:2000:HON

Yang:2000:LEM

Huang:2000:FDS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hou:2001:EES

Maury:2001:FBM

Smyrli:2001:SAM

Hollerbach:2001:TTD

Perugia:2001:CLD

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

[323] Stefano Berrone and Laurent Emmel. Towards a realization of a wavelet Galerkin method on non-trivial domains. *Journal of Scien-
REFERENCES

116

Jardak:2002:SPC

Thomas:2002:SIS

Fibich:2002:CNB

Droll:2002:PMD
REFERENCES

Lozinski:2002:SUF

Feng:2002:ASE

Duster:2002:NIH

Abarbanel:2002:LTB

Goldberg:2002:SCF

REFERENCES

Gustafsson:2002:DCS

Bruger:2002:CHO

Perugia:2002:ALD

Azaiez:2002:SEP

Xu:2002:SLM

Schroll:2002:HRR

Titarev:2002:AAH

Wilhelm:2002:ASE

Stefanica:2002:FFD

Weill:2002:SGF

124

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chehab:2004:TES

Pennacchio:2004:MFE

Sjogreen:2004:MWB

Luong:2004:AMG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-004-4152-6;

http://link.springer.com/content/pdf/10.1007/s10915-004-4138-4;

http://link.springer.com/content/pdf/10.1007/s10915-004-4139-3;

http://link.springer.com/content/pdf/10.1007/s10915-004-4140-x;

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-004-4794-4;

Orszag:2005:PSD

http://link.springer.com/content/pdf/10.1007/s10915-005-4811-2;

Carpenter:2005:F

http://link.springer.com/content/pdf/10.1007/BF02728978;
http://link.springer.com/content/pdf/10.1007/s10915-005-4649-7;

Shampine:2005:EEC

http://link.springer.com/article/10.1007/s10915-004-4629-3;
http://link.springer.com/content/pdf/10.1007/BF02728979;
http://link.springer.com/content/pdf/10.1007/s10915-004-4629-3;

Gear:2005:CDM

REFERENCES

REFERENCES

REFERENCES

Wihler:2005:PEA

Li:2006:HOC

Leriche:2006:NEA

Sousa:2006:SAD

Abarbanel:2006:BES

Ferm:2006:STA

Nersessian:2006:RLA

Jin:2006:TSS

REFERENCES

REFERENCES

Feng:2006:PME

Gerritsma:2006:DMD

Gervasio:2006:AFS

Gottlieb:2006:FOF

Gottlieb:2006:OSS

Guo:2006:OSG

Kurganov:2006:ACU

Leriche:2006:DNS

Li:2006:MMD

Pasquetti:2006:SVV

Pasquetti:2006:SEM

Proot:2006:MMC

Puppo:2006:SFD

Sofronov:2006:SAG

REFERENCES

Staalberg:2006:HOA

Talbot:2006:PSM

Wan:2006:BWA

Xenophontos:2006:UCE

[548] Yulong Xing and Chi-Wang Shu. High-order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms.

Xing:2006:HOW

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Serna:2006:FOW

Evje:2006:CVN

Yee:2006:ELD

Morgan:2006:POG

REFERENCES

REFERENCES

Liu:2006:LSF

Nordstrom:2006:CFD

Bokanowski:2007:ADS

Branden:2007:DFS

REFERENCES

REFERENCES

REFERENCES

[005] Y. V. S. S. Sanyasiraju and V. Manjula. Fourth-order semi-compact scheme for flow past a rotating and translating cylinder. *Jour-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Alouges:2007:TDE

Pieraccini:2007:IES

Ditkowski:2007:ESU

Wang:2007:SDM

REFERENCES

REFERENCES

Huang:2007:PDA

Bialecki:2007:NDD

Kitzhofer:2007:ENSa

Kitzhofer:2007:ENSb

REFERENCES

[652] Ruo Li, Wenbin Liu, and Ningning Yan. A posteriori error estimates of recovery type for distributed convex optimal control prob-

Burman:2007:MSD

Kovalov:2007:PMA

Constantinescu:2007:MTM

Alessandrini:2007:CVB

Feng:2007:PPS

Arvanitis:2008:MRS

Bernard:2008:DAD

[665] Lars Ferm, Per Lötstedt, and Andreas Hellander. A hierarchy of approximations of the master equation scaled by a size pa-
Jameson:2008:CDC

Jameson:2008:FKE

Almansa:2008:TBR

Zhang:2008:SCS
REFERENCES

REFERENCES

195

REFERENCES

Selle:2008:USM

Yokoi:2008:NMF

Gelb:2008:DES

Liu:2008:NSF

Chen:2008:BPC

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-008-9212-x;
http://link.springer.com/content/pdf/10.1007/s10915-008-9212-
 x; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=37&issue=3&spage=316-335.

http://link.springer.com/content/pdf/10.1007/s10915-008-9215-
7; http://www.springerlink.com/openurl.asp?genre=article&

http://link.springer.com/content/pdf/10.1007/s10915-008-9214-
8; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=37&issue=3&spage=367-382.

http://link.springer.com/content/pdf/10.1007/s10915-008-9217-5;
spage=1-14.

008-9222-8; http://link.springer.com/content/pdf/10.1007/
REFERENCES

Juanes:2009:UFH

Feng:2009:VMM

Zunino:2009:DGM

Zhang:2009:NSP

REFERENCES

REFERENCES

[759] Wuming Zhu and David A. Kopriva. A spectral element approximation to price European options. II. The Black–Scholes model with two un-

REFERENCES

REFERENCES

Epshteyn:2009:FDA

Grote:2009:OEE

Guzman:2009:SOC

Houston:2009:MDM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[802] Fuzheng Gao, Jianxian Qiu, and Qiang Zhang. Local discontinuous Galerkin finite element method and error estimates for one class
REFERENCES

He:2009:EEC

Bouchut:2009:SDE

Zhuang:2010:CLL

deAbreu:2010:DDO

Brenner:2010:IPF

Dolejsi:2010:OIM

Cockburn:2010:BCD

Lou:2010:IRN

REFERENCES

REFERENCES

entific Computing, 42(2):291–317, February 2010. CODEN JS-
COEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9325-
x; http://www.springerlink.com/openurl.asp?genre=article&

[820] Xin Wen. A high order numerical method for computing physi-
cal observables in the semiclassical limit of the one-dimensional lin-
ear Schrödinger equation with discontinuous potentials. Journal
JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9326-
9; http://www.springerlink.com/openurl.asp?genre=article&

finite elements for hybrid meshes using new nodal pyramidal el-
2010. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
009-9334-9; http://link.springer.com/content/pdf/10.1007/
s10915-009-9334-9; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=42&issue=3&page=345-381

[822] Yanping Chen, Yunqing Huang, Wenbin Liu, and Ningning Yan. Er-
ror estimates and superconvergence of mixed finite element methods for
convex optimal control problems. Journal of Scientific Computing, 42
(3):382–403, March 2010. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-009-9327-8; http://link.springer.com/content/pdf/10.1007/

[823] H. Yousefi, A. Noorzad, and J. Farjooodi. Simulating 2D waves
propagation in elastic solid media using wavelet based adaptive

REFERENCES

REFERENCES

Ganesan:2010:SLP

Hughes:2010:SMC

Lee:2010:BFC

Nakao:2010:CAP

REFERENCES

Guzman:2010:UAS

Bourgeade:2010:MEI

Conte:2010:TSR

Sarmany:2010:OPP

REFERENCES

[883] Jae-Hun Jung, Sigal Gottlieb, and Saeja Oh Kim. Recovery of high order accuracy in radial basis function approximations of discontinu-

Nicholls:2010:BPM

Viswanathan:2010:RNU

Xiong:2010:FSF

Qiao:2011:SEA

[896] Paola F. Antonietti and Paul Houston. A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element

REFERENCES

[909] Martin Vohralík. Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with dis-

REFERENCES

Zhang:2011:PEM

Chen:2011:CRM

Yilmaz:2011:IPL

Motamed:2011:LSF

Chen:2011:ETS

Chaudhuri:2011:NSC

Shih:2011:CTF

Zhang:2011:ICS

Guo:2011:LSP

Yang:2011:PTG

Lu:2011:SSW

Feng:2011:AGM

Zeiser:2011:FMV

[952] María Luz Muñoz-Ruiz and Carlos Parés. On the convergence and well-balanced property of path-conservative numerical schemes for systems of
Perrier:2011:CMS

Ricchiuto:2011:CPG

Begnudelli:2011:HSF

Simeoni:2011:RCU

REFERENCES

Ye:2011:NMB

delSastre:2011:EAF

Abbas:2011:FOH

Simpson:2011:SWB

[978] Jiwei Zhang, Houde Han, and Hermann Brunner. Numerical blow-up of semilinear parabolic PDEs on unbounded domains in
REFERENCES

266

Awanou:2012:TRR

Cai:2012:ENX

Kesserwani:2012:LLF

Wu:2012:ALM

[999] S. P. van der Pijl and C. W. Oosterlee. An ENO-based method for second-order equations and application to the control of dike

Lui:2012:OSR

Lin:2012:GED

Turnes:2012:ECD

Wang:2012:IFD

REFERENCES

Stefan:2012:WBN

Ji:2012:OEE

Eftang:2012:TSC

Degond:2012:NAE

REFERENCES

Zhang:2012:ENS

Yuan:2012:ADM

Zhou:2012:GMS

Pulch:2012:GPC

REFERENCES

Mirzaee:2012:EIS

Adjerid:2012:SLD

Cliffe:2012:APE

Biezuner:2012:CFE

[1054] Ludovic Goudenège, Daniel Martin, and Grégory Vial. High order finite element calculations for the Cahn–Hilliard equation. *Jour-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

See [1094].

REFERENCES

[1092] Chenliang Li and Zhonghua Qiao. A fast preconditioned iterative algorithm for the electromagnetic scattering from a large cav
Zhang:2012:DDS

Chun:2012:EMM

Medvinsky:2012:EMD

Leykekhman:2012:ICP

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-012-9650-3;

[1123] Youngsoo Ha, Chang Ho Kim, and Myungjoo Kang. Simulations of supersonic astrophysical jets and their environments using level set

Ji:2013:NON

Langer:2013:BDD

Liang:2013:REI

Liu:2013:RRU

Takei:2013:OTC

REFERENCES

REFERENCES

REFERENCES

[1162] Chunjia Bi and Victor Ginting. A posteriori error estimates of discontinuous Galerkin method for nonmonotone quasi-linear ellip-

REFERENCES

REFERENCES

Hao:2013:CCC

Khanna:2013:HPN

Ren:2013:NAH

Wang:2013:MMS

Yan:2013:ELR

[1186] Ming Yan, Yi Yang, and Stanley Osher. Exact low-rank matrix completion from sparsely corrupted entries via adaptive outlier pur-
REFERENCES

Qi:2013:WCF

Martin:2013:PTR

Chen:2013:FFG

Kang:2013:ABM

REFERENCES

Banks:2013:REL

Xing:2013:PPW

Kudryavtsev:2013:NMS

Wu:2013:AAT

Bacuta:2013:MGU

REFERENCES

Rubio:2013:ETE

Marquez:2013:DPT

Croisille:2013:HCI

Ferretti:2013:SSG

REFERENCES

322

Hu:2014:AEL

Cordier:2014:PAD

Ovadia:2014:NMT

Winters:2014:HOL

Adjerid:2014:SDG

Guo:2014:SMN

Chen:2014:PDD

Barker:2014:MFE

Zhang:2014:FFV

Bruno:2014:SDU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hsiao:2014:SNO

Schaeffer:2014:VDF

Zhao:2014:NMS

Guo:2014:CSM

Mu:2014:WGF

REFERENCES

REFERENCES

[1292] Avram Sidi. Richardson extrapolation on some recent numerical quadrature formulas for singular and hypersingular integrals and its study

[1297] Tsz Ching Ng, Xianfeng Gu, and Lok Ming Lui. Computing extremal Teichmüller map of multiply-connected domains via Beltrami holomor-

[1302] Manuel J. Castro, José M. Gallardo, and Antonio Marquina. A class of incomplete Riemann solvers based on uniform rational approxima-

Wang:2014:NEA

Fernandez-Nieto:2014:MMH

Schutz:2014:APM

King:2014:EBP

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9817-1;

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-014-9837-x.pdf.

Yu:2014:SEM

Hong:2015:NAS

Gerhard:2015:HOD

Shirokoff:2015:SIA

Jung:2015:ENN

Buet:2015:APS

Baccouch:2015:PLD

Ju:2015:FEI

Hintermuller:2015:NOD

Yu:2015:DRP

Skelton:2015:PRR

Reyna:2015:OBT

Hu:2015:APE

Chen:2015:NFG

[1369] Feng Chen. A new framework of GPU-accelerated spectral solvers: Collocation and glerkin methods for systems of coupled elliptic equa-
Liu:2015:DES

Addam:2015:FDA

Yao:2015:CAM

Xu:2015:DLS

REFERENCES

Elsey:2015:RDV

Quan:2015:DDM

Theillard:2015:SCM

Jung:2015:SAT

Stals:2015:EST

REFERENCES

REFERENCES

014-9923-0; http://link.springer.com/content/pdf/10.1007/s10915-014-9923-0.pdf.

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9902-5;

[1447] Scott E. Field and Stephen R. Lau. Fast evaluation of far-field signals for
647–669, September 2015. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-015-9995-5; http://link.springer.com/content/pdf/10.1007/s10915-
015-9995-5.pdf.

[1448] Peng Li, Zhen Gao, Wai-Sun Don, and Shusen Xie. Hybrid Fourier-
continuation method and weighted essentially non-oscillatory finite dif-
ference scheme for hyperbolic conservation laws in a single-domain
2015. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
1007/s10915-014-9913-2; http://link.springer.com/content/pdf/10.1007/s10915-
014-9913-2.pdf.

[1449] Xuefeng Li and Katarzyna Saxton. Non-strictly hyperbolic systems,
696–720, September 2015. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-014-9876-3; http://link.springer.com/content/pdf/10.1007/s10915-
014-9876-3.pdf.

results on guderley Mach reflection and the triple point para-
2015. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
1007/s10915-015-0028-1; http://link.springer.com/content/pdf/10.1007/s10915-
015-0028-1.pdf.

[1451] Junxiong Jia and Ronghua Pan. On isentropic approximations for com-
760, September 2015. CODEN JSCOEB. ISSN 0885-7474 (print),

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9956-4;

[1465] Kwangil Kim and Yonghai Li. Construction of convergent high order schemes for time dependent Hamilton–Jacobi equations. *Jour-
REFERENCES

Chen:2015:RIB

Nissen:2015:SDM

Zheng:2015:LPF

Wasserman:2015:IRF

Wang:2015:FSB

Choi:2015:PPS

REFERENCES

Lin:2015:PEE

Porta:2015:NSS

Zhang:2015:TLC

Notsu:2015:EEP

Kumar:2015:EOD

Kadalbajoo:2015:SOA

REFERENCES

Yao:2016:LSM

Pang:2016:FNC

Chen:2016:RRB

Celledoni:2016:HOS

Kolomenskiy:2016:AGA

Cai:2016:NAA

REFERENCES

Fok:2016:LFO

Chen:2016:WFB

Ginting:2016:AWG

Boscheri:2016:EQF

Blayo:2016:TOS

Olson:2016:PMD

[1538] Sara Mancini, Francisco Bernal, and Juan A. Acebrón. An efficient algorithm for accelerating Monte Carlo approximations of the solution

Gong:2016:FEM

Fu:2016:SMF

Fu:2016:ESM

deFrutos:2016:GDS

Lee:2016:FST

Puppo:2016:WBH

[1564] Bingsheng He, Hong-Kun Xu, and Xiaoming Yuan. On the proximal Jacobian decomposition of ALM for multiple-block separable convex min-

Baarman:2016:DME

Bhatt:2016:SOC

Antonietti:2016:DGA

Gao:2016:TADa

Gurkan:2016:EHD

Zhang:2016:SGS

He:2016:ISA

Kim:2016:MNL

Kolev:2016:MPR

Romero:2016:SFF

Lamouroux:2016:HOC

REFERENCES

Sun:2016:PEE

Archibald:2016:IRU

Alvarado:2016:CPL

Oikawa:2016:ARO

Li:2016:WBD

Gang Li and Yulong Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. *Jour-

REFERENCES

REFERENCES

Janon:2016:GOE

Fjordholm:2016:SPW

Lanza:2016:CTM

Bouchut:2016:WRS

Sun:2016:AAE

REFERENCES

REFERENCES

[1640] Guanyu Zhou, Takahito Kashiwabara, and Issei Oikawa. Penalty method for the stationary Navier–Stokes problems under the slip bound-

Winokur:2016:SPS

Schmidtmann:2016:RBW

Pandit:2016:EIC

Ding:2016:SML

Chen:2016:CEE

REFERENCES

vanLith:2016:NSL

He:2016:SEM

Chen:2016:APU

Wang:2016:HDG

Brenner:2016:AFE

[1664] Andrew J. Christlieb, Sigal Gottlieb, Zachary Grant, and David C. Seal. Erratum to: Explicit Strong Stability Preserving Multi-

Zhao:2016:SDE

Barbier:2016:MBD

Brunner:2016:NBN

An:2016:OEE

Chen:2016:EET

REFERENCES

REFERENCES

Do:2016:AMD

Hesthaven:2016:UAE

Franck:2016:FVS

Chai:2016:MRT

Yoon:2016:SSS

Myoungho Yoon, Gangjoon Yoon, and Chohong Min. On solving the singular system arisen from Poisson equation with Neumann boundary condition. *Journal of Scientific Computing*, 69(1):391–405, October 2016. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
REFERENCES

Gupta:2016:PEA

Rotundo:2016:EAB

Chen:2016:DDT

Martel:2016:SRB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Baffet:2017:HOAa

Zhao:2017:GFE

Zhao:2017:TMF

Wang:2017:AFE

Zhang:2017:OSS

[1754] Jing Zhang, Li-Lian Wang, Huiyuan Li, and Zhimin Zhang. Optimal spectral schemes based on generalized prolate spheroidal wave functions

REFERENCES

[1768] Enrique Fernández-Cara, Arnaud Münch, and Diego A. Souza. On the numerical controllability of the two-dimensional heat, Stokes and Navier–

REFERENCES

REFERENCES

Anaya:2017:MMS

Nordstrom:2017:RWP

Badia:2017:CSW

Qiu:2017:HOM

Robinson:2017:FAA

Sun:2017:IBI

REFERENCES

REFERENCES

[1838] Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma, Xiaolin Chang, and Qiang Huang. The boundary element method with a fast multi-

REFERENCES

Pang:2017:EBC

Lakoba:2017:LTS

Gatto:2017:EPH

Stiller:2017:NWS

Hakula:2017:PEU

Chalmers:2017:SMS
REFERENCES

DellAcqua:2017:SPP

Kang:2017:TGV

Reisinger:2017:BTM

Chen:2017:UCC

Sen:2017:DNN

Liu:2017:EIT

REFERENCES

REFERENCES

Hahn:2017:IBG

Li:2017:MVE

Zhang:2017:IAS

Jia:2017:NTS

Gurkan:2017:EHD

REFERENCES

REFERENCES

REFERENCES

Daniel Baffet and Jan S. Hesthaven. High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equa-
REFERENCES

Gao:2017:MMF

Rui:2017:BCF

Gao:2017:TSO

Yano:2017:KML

Pitton:2017:ARB

[1904] Giuseppe Pitton and Gianluigi Rozza. On the application of reduced basis methods to bifurcation problems in incompressible fluid
REFERENCES

[1909] Xu hong Yu and Ben yu Guo. Spectral method for vorticity-stream function form of Navier–Stokes equations in an infinite channel with slip

REFERENCES

REFERENCES

Mirzargar:2017:HSI

Roe:2017:DRR

Romero:2017:DFR

Schutz:2017:IMC

Shi:2017:WNL

Song:2017:UES

[1925] Huailing Song and Chi-Wang Shu. Unconditional energy stability analysis of a second order implicit–explicit local discontinuous Galerkin

REFERENCES

[1945] Zhen Gao, Xiao Wen, and Wai Sun Don. Enhanced robustness of the hybrid compact–WENO finite difference scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s boxplot

[Hernandez-Duenas:2017:HMS]

[Hou:2017:AMI]

[Hu:2017:CIE]

[Jameson:2017:EFI]

[Jiang:2017:OER]

Jiahua Jiang, Yanlai Chen, and Akil Narayan. Offline-enhanced reduced basis method through adaptive construction of the surrogate
