A Complete Bibliography of Publications in *The Journal of Scientific Computing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

25 June 2022
Version 1.24

Title word cross-reference

\((\nu, \mu, s, 1 - \sigma)\) [3029]. \(-1\) [1754]. 0 [1255]. 1
[812, 955, 1192, 1359, 1558, 1641, 1795, 1858, 2652, 2707]. 2
[177, 316, 384, 486, 593, 600, 658, 742, 769, 823, 865, 1174, 1260, 1310, 1658, 1748, 1779, 2002, 2252, 2581, 2583, 2597, 2644]. 3
[1612, 1776]. C\(^0\) [440, 1161, 1273, 1639, 1729, 1974, 2013, 3073]. C\(\infty\) [578]. D
[737, 1400, 2024, 2630]. \(\Delta \cdot B\) [582]. Div\((Y) = f\) [571]. \(\ell^2\) [2316]. \(\ell^3\) [2316]. \(\ell_0\)
[2353]. \(\ell_1\) [1190, 1318, 1583, 2039, 2713]. \(\ell_2\) [1190, 1628]. \(\ell_p\) [2963]. \(\epsilon\) [104, 247].
EQ\(^{\text{eq}}\) [1195, 1739]. \(f\) [948]. \(F_j(x)\) [278, 283]. \(f \in L^2\) [571]. \(fp\) [790]. G\(^1\) [1373].
H [473, 1194, 1213, 1491, 1733, 1951, 1999, 2064, 2253, 2535]. \(h/p\) [2205]. \(H^{-1}\)
[2928]. \(H^1\) [456, 1573, 2267]. \(H^{1/2}\) [631]. \(H^2\) [742, 1355, 2882]. \(H^\infty\) [116]. \(H_\infty\)
$j = -1/2$ [278], $j = -3/2$ [283], $j = 1/2$ [278]. K
$\{2077, 2304, 2420, 2979, 3102\}$. L_0
$\{1212\}$. $L_1 \{1426, 1669, 1685, 1986, 2077, 2094, 2494, 2902\}$. $L_{1/2}$ [1595], L_2
$\{1426, 1669, 1866, 2072\}$. L_∞ [736]. $M \{110, 2633\}$. $M_1 \{625\}$. $M_2 \{1793\}$. R^2
$\{2640\}$. $H^1 \{2890\}$. $L^2(\Omega) \{3129\}$. $H \{1476, 2302\}$. $L_\infty \{998\}$. $M \{1653, 1970, 2171\}$. $O(N \log N)$ [1218]. $N \{199, 621, 1611, 2557\}$. $n^+ - n^- - n^0$
$\{1284\}$. $O \{2348\}$. $o(1/k)$ [1818]. $O(2)$ [1048]. $p \{295, 547, 640, 673, 808, 1049, 1491, 1893, 1895, 1999, 2029, 2147, 2253, 2273, 2304, 2420, 2979, 3102\}$. $p(x)$
$\{1490\}$. $P_m \{1064, 1165, 1371, 1659, 2385\}$. $P_N \{976\}$. $P_N P_M \{1107, 1329, 2751\}$. $Q_1 \{2835\}$. $Q_4 \{181\}$. $q_d \{2080\}$. $R^2 \{978\}$. $R^n \{998\}$. $SO(3)$ [2024]. θ
$\{576\}$. $V \{1997\}$. $\bar{H} \{2749\}$. $x^{(k)} = b^{(k)}$ [629]. $Z \{2497\}$. $Z_2 \{933\}$. \bar{H} [2749]. $x^{(k)} = b^{(k)}$ [629]. $Z \{2497\}$. $Z_2 \{933\}$.
5 [182].

6000 [152]. 60th [2231].

90 [182].

A-Posteriori [778]. AAA [3090]. Abarbanel [2488, 2489]. Absolute [1302].

Adaptivity [307, 933, 1048, 1050, 1308, 2256, 2340, 3034]. ADCIRC [1062].

Additive [139, 208, 749, 916, 1057, 1187, 1542, 1614, 1760, 1977, 1994, 2426, 2754, 2972].

ADER [316, 348, 471, 946, 1525, 2432, 2796, 2823, 2994]. ADER-DG [2994].

Advanced [146]. Advancement [426]. Advances [122, 540, 1076]. Advantage [957]. Advection [52, 140, 190, 196, 255, 296, 324, 495, 561, 591, 627, 705, 740, 830, 875, 893, 946].
Consistency [956, 1612, 1776]. Consistent [1340, 1406, 1458, 1787, 2067, 2360, 2730, 2856]. Consolidation [1706, 2249].
Constant [211, 361, 828, 873, 1409, 2144, 2525]. Constants [510, 2219, 2765, 2957].
Consistently [956, 1612, 1776]. Constraint [478, 1258, 1307, 1391, 1573, 2331, 2644, 2802, 3162].
Constraint-Defined [478]. Constraint-Free [1258].
Contrast [1911, 2250, 1781, 1791, 1927, 2131, 2171, 2408, 2510, 2578, 2707, 3011, 3060, 3104, 3119].
convexity-preserving [148]. Convolution [2277, 2734, 2774, 2922].
Convolutional [1338, 3007, 3134]. Cooling [459]. Coordinate
[400, 602, 1872]. Coordinates [868, 1174, 1334, 1494, 1717, 2537, 2637, 2899].
Copolymer [2856]. Core [491, 995, 1090, 1557, 2302]. Core-Annular [1557].
Corner [50, 270, 1839, 2372]. Corners [737]. Core-Annular [1557].
Corrected [97]. Correction [317, 342, 1027, 1115, 1166, 1336, 1500, 1646, 1705, 1815, 1867, 1876, 1978, 2058, 2104, 2186, 2210, 2218, 2286, 2321, 2329, 2370, 2399, 2447, 2611, 2774, 2888, 2968, 3009, 3074, 3080, 3093, 3096, 3153]. Corrector [2722].
Correlated [1041]. Correlation [1476]. correlations [177]. Corrigenda [2859].
Coupling [294, 1097, 1317, 1638, 1687, 1961, 1968, 2150, 2243, 2269, 2496, 2555, 2655, 3182].
CPMG [114]. CPR [1329].
Crank [1303, 1356, 1376, 1512, 1537, 1682, 1825, 1879, 1887, 1892, 2044, 2344, 2602, 2774, 2890].
Cray [182]. Criteria [332, 881, 2460]. Criterion [715, 1106, 3155].
Critical [728]. Critical-adaptive [3155].
Cross [245, 2924]. Cross-Diffusion [367].
Curvature [1173, 1266, 1327, 1338, 1395, 1483, 1589, 1700, 1751, 1782, 1807, 1815, 1825, 1888, 2002, 2252, 2529, 2581, 2583, 2597, 2644, 2652, 2707, 2746, 2755, 2808].
Czochralski [27].
D [177, 248, 263, 316, 336, 384, 403, 486, 530, 593, 600, 646, 658, 742, 789, 812, 823, 865, 869, 955, 1002, 1006, 1021, 1061, 1078, 1174, 1192, 1236, 1260, 1276, 1306, 1310, 1339, 1359, 1558, 1579, 1641, 1658, 1737, 1748, 1779, 1780, 1795, 1838, 1858, 1888, 2002, 2252, 2529, 2581, 2583, 2597, 2644, 2652, 2707, 2746, 2755, 2808].
[600, 1310, 1779, 2581]. Dai [3010]. Dam [1497]. Damped [965].
Data [19, 78, 131, 475, 512, 562, 564, 606, 693, 817, 889, 1002, 1003, 1005, 1015, 1021, 1041, 1056, 1173, 1266, 1327, 1338, 1395, 1483, 1589, 1700, 1751, 1782, 1807,
2629, 2642, 2687, 2690, 2777, 2795, 2836, 2890, 2895, 3067, 3090, 3092, 3095, 3115
[559, 693, 784, 913, 1003, 1031, 1036, 1037, 1338, 1642, 2071, 2236, 2687].
Detector [2622]. Detectors [564, 3134]. Determinantal [2787].
Determination [1389]. Deterministic [2102]. Detonation [381, 1077, 1150].
Developing [1644, 2753, 2885]. Development [555, 847, 1854, 2914].
Developmental [781]. Developments [877, 2235]. Deviation [2325].
Devices [2403, 2684]. DG [772, 774, 776, 795, 887, 1221, 1233, 1367, 1550, 1638, 1834, 1921, 2243, 2331, 2368, 2380, 2381, 2468, 2474, 2676, 2812, 2908, 2920, 2994, 3041, 3071, 3086].
Diagnostics [187, 575]. Diagonal [1707, 2366, 2743]. Diagonally [696].
Diffusion

Diffusion-Dispersion

Diffusion-Reaction

Diffusion-Wave

Diffusions

Diffusive

Diffusivity

Digital
dilation
Dimension
Dimensional
Dimensional/Two
Dimensionality
Dimensions
Diode
Dirac
Dirac-Delta
Direct
Direction
Directional
Directly
Dirichlet
DIRK
Disappearance
Discontinous
Discontinuities
Discontinuous
Discontinuous
1839, 1841, 1846, 1871, 1906, 1914, 1973, 2036, 2042, 2109, 2128, 2179, 2182, 2204, 2226, 2314, 2339, 2371, 2377, 2389, 2396, 2409, 2429, 2460, 2469, 2472, 2486, 2514, 2525, 2586, 2683, 2690, 2762, 2808, 2825, 2847, 2867, 2900, 2941, 2944, 2948, 2983, 2991, 2993, 3051, 3052, 3060, 3076, 3133, 3143, 3158, 3191. Eigen [794].

Eigensolution [1423]. Eigensolvers [768]. Eigenspace [1563]. Eigenvalue [517, 870, 871, 1029, 1126, 1153, 1224, 1225, 1298, 1422, 1639, 1730, 1741, 1755, 1775, 1867, 1908, 2015, 2036, 2079, 2087, 2191, 2204, 2220, 2270, 2304, 2305, 2357, 2385, 2459, 2511, 2562, 2604, 2717, 2726, 2855, 2905, 2973, 3028, 3073, 3086, 3160].

Eigenvalues [13, 612, 624, 724, 1060, 1157, 1249, 1325, 1357, 1479, 1598, 1620, 1654, 1720, 1811, 1908, 2080, 2549, 2551].

Element [200, 266, 279, 294, 315, 321, 325, 334, 349, 351, 354, 394, 406, 455, 465, 469, 491, 518, 540, 541, 547, 549, 608, 633, 687, 700, 725, 728, 827, 845, 846, 891, 1012, 1066, 1114, 1146, 1154, 1187, 1195, 1207, 1211, 1222, 1226, 1233, 1273, 1310, 1324, 1357, 1398, 1417, 1475, 1501, 1511, 1537, 1601, 1630, 1673, 1699, 1739, 1742, 1749, 1753,
2952, 2957, 2990, 2999, 3019, 3031, 3045, 3062, 3086, 3089, 3092, 3095, 3129, 3152.

Estimate [442, 443, 1109, 1262, 1588, 2413, 2441, 2573, 2598, 2645, 2727, 2889, 3031].

Evolution [9, 237, 584, 708, 783, 949, 1001, 1007, 1417, 1510, 1777, 2711, 2846, 2942, 3031]. Evolutionary [1536, 1556, 2399, 2801]. Evolutions [632, 2965]. Evolving [1379, 1727, 2217, 2224]. Exact [757, 819, 1186, 1388, 1844, 2102, 2176, 2373, 2725, 3145]. Example [867, 2487].

Exponentially [16, 209, 238, 1801, 2408, 3119]. Expression [1005].
Hierarchical [1109]. Hierarchical
[111, 336, 497, 656, 825, 911, 998, 1308, 1846, 2016, 2506, 2691, 2912, 3091, 3124].
Hierarchically [1218]. Hierarchy [665]. High
[188, 193, 202, 244, 251, 268, 282, 326, 330, 373, 378, 422, 444, 459, 480, 483, 486,
525, 529, 552, 632, 670, 739, 748, 762, 816, 865, 867, 869, 923, 995, 1018, 1054,
1077, 1122, 1170, 1191, 1205, 1236, 1323, 1332, 1348, 1382, 1446, 1464, 1496, 1519,
1525, 1546, 1576, 1645, 1665, 1667, 1687, 1689, 1695, 1707, 1719, 1750, 1760, 1813,
1820, 1843, 1890, 1899, 1911, 1917, 1919, 1925, 2023, 2132, 2136, 2173, 2192, 2232,
2241, 2248, 2288, 2335, 2375, 2391, 2443, 2475, 2530, 2584, 2593, 2640, 2652,
2728, 2771, 2796, 2809, 2839, 2863, 2978, 2991, 2994, 3070, 3075]. High [275, 306,
311, 316, 320, 347, 357, 366, 388, 427, 429, 501, 502, 508, 512, 519, 537, 583, 648,
656, 685, 730, 883, 987, 1012, 1060, 1080, 1095, 1098, 1140, 1143, 1183, 1184, 1222,
1228, 1276, 1284, 1291, 1336, 1368, 1458, 1460, 1453, 1551, 1558, 1562, 1587, 1609,
2064, 2080, 2112, 2121, 2134, 2140, 2156, 2230, 2250, 2251, 2284, 2330, 2356, 2368,
2412, 2437, 2446, 2447, 2513, 2528, 2542, 2567, 2606, 2608, 2693, 2719, 2777, 2831,
2833, 2843, 2850, 2862, 2873, 2893, 2929, 2933, 2980, 2992, 2995, 3027, 3080, 3085].
582, 607, 681, 736, 764, 820, 917, 981, 1040, 1093, 1133, 1166, 1208, 1233, 1494, 1574,
1605, 1615, 1616, 1666, 1732, 1799, 1884, 1946, 1976, 2065, 2141, 2189, 2208, 2352,
2374, 2440, 2492, 2573, 2588, 2604, 2799, 2800, 2812, 2814, 2819, 3048, 3112, 3163].
High-Order [2391]. High-Accuracy [3027]. High-Contrast [1911, 3163].
High-Dimensional [2375, 2683]. High-fidelity [2230]. High-Frequency [2824]. High-Index [3112]. High-Order
[244, 282, 316, 320, 326, 330, 432, 444, 471, 519, 525, 548, 552, 565, 583, 607, 632,
648, 681, 730, 736, 762, 764, 869, 917, 923, 1012, 1018, 1140, 1166, 1191, 1205, 1208,
1222, 1233, 1284, 1291, 1323, 1336, 1348, 1368, 1382, 1446, 1460, 1464, 1496, 1574,
1587, 1609, 1615, 1632, 1687, 1707, 1732, 1750, 1760, 1820, 1821, 1843, 1890,
1976, 1982, 2023, 2051, 2141, 2189, 2208, 2352, 2374, 2440, 2447, 2475, 2528, 2530,
2584, 2588, 2606, 2608, 2640, 2693, 2771, 2799, 2809, 2812, 2831, 2843, 2850, 2862,
High-Resolution [995, 1946, 2593]. High-Speed [232, 1170]. Higher
[302, 315, 343, 528, 638, 663, 679, 821, 932, 1043, 1071, 1079, 1118, 1142, 1430,
1613, 1660, 1791, 1874, 1908, 2068, 2082, 2092, 2122, 3126, 3172]. Higher-Order
[528, 638, 821, 1043, 1071, 1079, 1118, 1660, 2082, 2122]. Highest [1515, 1743].
Highly [496, 744, 828, 1068, 1082, 1117, 1221, 1383, 1426, 1667, 1722, 1822, 1998,
2314, 2532, 2851, 2983, 3061]. Hilbert [2672, 2910, 2941]. Hilliard
[803, 851, 1054, 1241, 1418, 1560, 1601, 1724, 1748, 1945, 2018, 2178, 2224, 2226–
2228, 2362, 2569, 2614, 2656, 2696, 2755, 2766, 2931, 2984, 3190].
[2638]. Hohenberg [2474, 2886]. Hole [1183]. Holes [291]. Hollow [553].
Involving [260, 1266, 1509, 1516, 2748, 2893, 3069], Ion [109, 1084, 2746], Ion-Channel [1084], Ionic [801], Ionization [859, 1446], IP [1639], IPDG [1762], IPG [3179], Irreducible [3145], Irregular [613, 762, 796, 1333, 1518, 2180, 2440, 2458, 2499, 2893], Irregularly [920], Isentropic [1451, 1789, 2543], Isogeometric [1810, 2574], Isospectral [2047], Isothermal [597, 953, 2621, 2755], Isotropic [179, 235, 613, 762, 796, 863, 1333, 1518, 2180, 2440, 2458, 2499, 2893], Isotropy [3145], Isoviscous [1992], Issue [1000, 1916, 2231, 2448, 2488], Issued [2685], Issues [716, 962, 1000, 1916, 2231, 2448, 2488], Iterated [1029, 1219, 1242], Iteration [411, 727, 892, 1049, 1118, 1341, 1427, 2252, 2651, 2871, 3166, 3145, 3173], Iteration-Free [2490], Iterations [2661, 3100], Iterative [106, 183, 218, 257, 755, 1037, 1063, 1503, 2083, 2102, 2323, 2634, 2639, 1759, 1882, 2017, 2071, 2097, 2115, 2353, 2363, 2443, 2460, 2534, 2659, 2660, 2668, 2706, 2762, 2860, 2941, 3029, 3052, 3060, 3145, 3173], IV [371], Jacobi [268, 358, 467, 535, 536, 579, 580, 591, 620, 622, 753, 835, 885, 890, 926, 1025, 1132, 1149, 1159, 1256, 1280, 1465, 1561, 1709, 1852, 1923, 1935, 1959, 2049, 2079, 2098, 2295, 2337, 2384, 2427, 2585, 2617, 2666, 2715, 2834, 2838, 2841, 2844, 3072], Jacobi-Bellman [2666, 2715], Jacobian [487, 1564, 1668, 3058], Jacobian-Free [487, 1668, 3058], Jump [755, 1037, 1063, 1503, 2083, 2102, 2323, 2634, 2639], Jump-Diffusion [1503], Jumps [1708, 2610, 2848], Junctions [1270], justification [47], Kac [1375, 1686, 1997, 2136, 2642, 2902], Kahan [1493], Kahan-Type [1493], Kansa [1513, 1831], Kansa-Radial [1513], Kantorovich [2094, 2561], Kármán [2454], Kawahara [661], Kawahara-Type [661], Kawasaki [2439], KdV [338, 482, 1374, 2198, 2731], KdV-Type [2731], Keller [773, 1105, 1936, 2311, 2445, 2586], Kelvin [660], Kemeny [873], Kernel [1007, 1191, 1359, 1383, 1709, 1890, 2320, 2321, 2337, 2440, 2464, 3133], Kernel-Based [2464, 3133], Kernel-Free [2320, 2321, 2440], Kernels [695, 1837, 1870, 2069, 2201, 2340, 2434], Kerr [1183], Khokhlov [1922], Kind [409, 1219, 2069, 2283, 2332, 2384, 2390, 2434, 2565], Kinematic [121, 936], Kinetic [163, 214, 216, 424, 572, 628, 667, 697, 714, 941, 1138, 1198, 1208, 1492, 1547, 1796, 1834, 1903, 1931, 2130, 2272, 2291, 2558, 2725, 2789, 2804, 2843, 2956, 3000], kinetic-type [163], Kinetics [39, 1250], Kirchhoff [1890, 2129, 2299, 2268, 3065], Klein [2811, 2944], Koebbe [1671, 1672], Kohn [1151, 2346], Kolmogorov [2841, 2887], Koornwinder [3084], Korn [2882], Korteweg [1633, 1927, 1974, 3189], Kou [1503], KPP [1154], Krylov [196, 487, 645, 752, 927, 1711, 1938, 2095, 2326, 2925, 2986], Kullback [1289, 2807], Kuramoto [101, 970], Kutta [222, 287, 288, 361, 462, 483–485, 648, 696, 749, 758, 789, 860, 904, 1181, 1220].
Kuznetzov [1922].

40

1236, 1279, 1296, 1307, 1337, 1400, 1401, 1456, 1480, 1505, 1512, 1518, 1528, 1550, 1551, 1625, 1641, 1683, 1724, 1766, 1774, 1824, 1836, 1866, 1875, 1927, 2014, 2023, 2060, 2071, 2074, 2106, 2129, 2146, 2164, 2180, 2239, 2276, 2287, 2289, 2312, 2359, 2378, 2383, 2403, 2443, 2445, 2473, 2510, 2514, 2523, 2525, 2526, 2540, 2603, 2619, 2660, 2662, 2672, 2678, 2706, 2724, 2841, 2844, 2889, 2909, 2924, 2955, 2996, 3003, 3028, 3154, 3183.

Method-of-Lines [654]. Methodology [963]. Methods

Networks [1392, 1670, 2638, 2652, 2829, 2919, 3007, 3111, 3134, 3186].
Neumann [1184, 1454, 1544, 1697, 2664, 2685].
Neural [2157, 2622, 2638, 2652, 2829, 2919, 3007, 3134].
Neuron [2571].
Neutral [798, 3063].
Newton-Based [2997].
Newton-Correction [1815].
Newton-Type [1972].
Newtonian [1514, 1610, 1728, 3117].
Next [2701].
Next-Generation [2701].
Nicolson [1303, 1356, 1376, 1512, 1537, 1682, 1825, 1879, 1892, 2044, 2344, 2602, 2774, 2890].
Nitsche [895, 1343, 2463, 2503, 2827, 3130].
NMR [1041].
No [224, 845, 1619, 2456, 2533, 2958, 2968].
No-Collision [2533].
No-Slip [1619].
No-Slope-Selection [2456].
Node [1025, 1027].
Nodes [1166].
Noise [310, 1187, 1248, 1542, 1575, 1855, 1994, 2050, 2059, 2091, 2309, 2426, 2493, 2569, 2577, 2627, 2754, 2868, 3020, 3105, 3121].
noising [1008].
Noisy [706, 1003, 3144, 3161].
Non [323, 403, 412, 448, 449, 528, 557, 595, 598, 606, 613, 675, 701, 716, 757, 775, 807, 870, 928, 940, 941, 993, 997, 1015, 1030, 1077, 1156, 1266, 1320, 1338, 1364, 1383, 1395, 1448, 1449, 1453, 1474, 1530, 1537, 1548, 1558, 1559, 1584, 1643, 1669, 1700, 1703, 1712, 1746, 1819, 1825, 1889, 1900, 1923, 1934, 1957, 1979, 1983, 2022, 2028, 2057, 2063, 2098, 2205, 2253, 2281, 2339, 2361, 2369, 2385, 2402, 2408, 2410, 2430, 2450, 2454, 2479, 2483, 2550, 2609, 2685, 2720, 2737, 2791, 2792, 2804, 2817, 2849, 2862, 2921, 2927, 2935, 2940, 2954, 3000, 3005, 3018, 3062, 3064, 3068, 3094, 3130, 3139].
Non-backtracking [2430].
Non-Conforming [1666, 2057, 2205, 2208, 2253, 2369, 2935, 2940].
Non-Conservative [940, 2849, 2862, 3018].
Non-Convex [1669, 1923, 2817, 3160].
Non-differentiable [2479].
Non-divergence [2022, 2063].
Non-equilibrium [1712, 2361].
Non-Flat [2812].
Non-Graded [1015].
Non-Hermitian [595].
Non-Homogeneous [701, 1548].
Non-hydrostatic [2339, 2609, 2737].
Non-Ideal [550].
Non-Intrusive [993, 2792].
Non-isothermal [2621].
non-Lagrange [867].
Non-Linear [528, 550, 557, 997, 1320, 1530, 1584, 2422, 2450, 2454, 2685, 3062, 3139].
Non-Local [543, 1395, 1643, 1700].
Non-Markovian [9, 2869].
Non-Matching [647, 1900, 3130].
Non-monotone [807, 1561].
Non-Monotonically [1727].
Non-negative [1746].
Non-nested [2281].
Non-obtuse [2791].
Non-oscillation [1077].
Non-Oscillatory [675, 928, 1030, 1156, 1383, 1448, 1584, 1594, 1825, 1884, 1889, 1979, 2098, 2478, 2720, 2804, 3000].
Non-Overlapping [448, 1364, 1703, 2954].
Non-perturbative [3107].
Non-Polynomial [598, 1767].
Non-quadratic [2405].
Non-rectangular [1511].
Non-Reflecting [757].
Non-self-adjoint [2921].
Non-selfadjoint [1108, 2385].
Non-separable [3094].
Non-slip [1559].
Non-Smooth [716, 732, 870, 1266, 1345, 1934, 1957, 2402, 2405, 2462, 2642, 3005].
Non-Stabilized

Order

Ordered
[1025, 1661, 2085].

Orders
[882].

Ordinary
[479, 744, 1051, 1313, 1322, 1366, 1725, 1898, 1926, 2611].

Ordinates
[806].

Oriented
[242, 1050, 1481, 1626, 1835, 2371, 2453, 2587].

Origins
[2460].

Orthogonal
[706, 1023, 1356, 1512, 2112, 2142, 2662, 2834, 2907, 3100, 3124, 3183].

Orthogonality
[105, 1243, 1857, 2425].

Orthomin
[178].

Orthonormal
[998].

Osc[162].

Oscillating
[222, 397].

oscillation
[1077].

Oscillations
[2684].

Oscillator
[1837].

Oscillatory
[675, 928, 1030, 1101, 1117, 1156, 1383, 1448, 1584, 1594, 1825, 1884, 1889, 1979, 2098, 2478, 2720, 2804, 2851, 3000, 3061].

Oseen
[1152, 1501, 1556, 1742, 2322, 2413, 2436, 2581, 3167].

Oseen-Type
[1742].

Osher
[386, 940].

osmotic
[1326].

Other
[98, 2092].

Out-of-Core
[995].

Outflow
[280].

Outlier
[1186].

Output
[1828, 3090].

Outputs
[2705].

Over-Penalized
[767, 916, 1237, 1267, 1435].

Overapproximating
[387].

Overcoming
[1923].

Overintegration
[2992, 3026, 3153].

Overlap
[2624].

Overlapping
[448, 518, 750, 1364, 1409, 1703, 1877, 2368, 2470, 2954].

Oversampling
[2547].

Overset
[583].

p
[2520].

Padé
[567, 594, 2532, 2579].

Padé-type
[2579].

PageRank
[1199, 2430].

Pairs
[1493].

Pantograph
[1104].

Parabolic
[117, 126, 212, 213, 332, 503, 568, 584, 726, 832, 894, 943, 978, 1067, 1122, 1173, 1261, 1356, 1363, 1408, 1461, 1553, 1567, 1597, 1615, 1635, 1680, 1690, 1698, 1719, 1739, 1762, 1763, 1809, 1878, 1879, 1934, 2025, 2043, 2124, 2134, 2241, 2245, 2344, 2375, 2383, 2402, 2470, 2639, 2681, 2691, 2702, 2719, 2775, 2777, 2814, 2850, 2874, 2880, 2952, 3024, 3089, 3174].

Paradox
[1450].

Parallel

Parallel-in-Time
[2992, 3026, 3153].

Parallelism
[408, 416].

Paralleлизed
[186].

Parallelizing
[126].

Parameter

Parameter-Dependent
[3052].

Parameter-Independent
[2852].

Parameterisation
[496].

Parameterization
[1506, 3032].

Parameterizations
[1341, 1906, 2310].
51

[71,177,371,423,615,618,676,715,720,792,809,849,1053,1125,1231,
1281,1370,1386,1420,1524,1557,1712,1718,1772,1788,1888,1895,2007,2018,
2083,2152,2226,2333,2393,2395,2514,2727,2756,2771,2786,2926,2931,
2950,2983,3018,3164]. Phase-Change [2393]. Phase-Field
phase/Multi [2506]. Phases [2950]. Phenomena [201,381,570,1777].
Phenomenological [73]. Phenomenon [429,901,1474]. Phonon [1359],
photolithographic [92]. Photonic [563,1157,1771,2592,2773]. Physical
Piecewise [209,271,385,564,606,828,1072,1509,1782,2071,2102,2144,2188,
2744,2791,2885,3063]. Piecewise-Smooth [1782]. Piezoelectric
Pitaevskii [1262,2997]. Planar [1918]. Planck [293,743,1326,1339,1378,
1677,1894,2020,2209,2210,2466,2594,2740,2808,2820,2841,3019,3140].
Planck [7]?NavierHe:2021:MFE. Plane [856,2414,2641]. Plane-Wave
[2414]. Planets [3107]. Planning [3033]. Plasma [575,797,1059,1111,1311,
1507,3078]. Plasmas [2211]. Plasmon [2156]. Plate [8,112,337,438,967,1398,
1571,2062,2126,2129,2836,2883,3065,3083]. Plates [547,1435,1720,1729,2268].
platform [152]. Plus [2473]. PML [557,2174,3012]. PMLs [782,2954].
[660,1117]. Point [606,686,703,785,791,833,836,855,924,977,1130,1290,
1262,1334,1450,1457,1609,1669,1717,1743,1747,1781,1908,1989,2116,2119,
2202,2327,2473,2479,2616,2632,2660,2722,2723,2762,2787,2871,2945,2981,
3007,3013,3032,3059,3114,3166]. Point-Source [1609]. Point-Value [833].
Point-Wise [1262]. Points [258,275,1005,1834,2672,2877,2928]. Pointwise
Poisson [124,155,167,183,251,280,291,293,336,341,593,601,613,796,912,
931,972,1002,1021,1050,1105,1181,1248,1596,1697,1733,1780,1806,
1831,1894,2091,2209,2210,2466,2728,2729,2748,2788,2808,2820,2822,2894,
Polycrystal [1394]. Polydisperse [2692]. Polygonal
[440,1113,1272,1738,1809]. Polygons [2254]. Polyharmonic [914].
Polyhedra [2971]. Polyhedral [1372,1462,1590,1673]. Polyhedron [1861].
Polynomial [51,117,144,197,219,324,494,598,775,812,901,944,1024,1072,
1301,1316,1552,1589,1767,1813,2079,2132,2146,2188,2201,2380,2871].
Polynomial-Based [1552]. Polynomial-Iteration [2871]. Polynomials
[184,218,535,1023,1256,1442,1775,2049,2098,2597,2689,2907,2929,3084].
Polytopal [2289]. polytopes [184]. Polytopic [2233,2811,3023].
[2343,3030]. Porous [108,733,1163,1259,1814,1901,1948,2027,2152,2257,
Primal
[770, 892, 1637, 1731, 1914, 2045, 2114, 2170, 2290, 2632, 2741, 2797, 3174].

Primal-Dual [1637].

Primary [2062].

Principal [139, 356, 813, 1228, 1389, 1464, 1605, 1787, 1795, 1816, 2368, 2650, 2743, 2799, 2802, 2956].

Probabilistic [832, 1217, 2564, 3162].

Problem [73, 783].

Problems [24, 28, 29, 34, 35, 43, 59, 71, 77, 89, 102, 106, 107, 111, 124, 126, 140,
144, 155, 171, 185, 194, 206, 704, 786, 828, 854, 855, 971, 1023, 1093, 1109, 1319, 1328, 1346, 1365, 1432, 1434, 1534, 1555, 1582, 1605, 1640, 1681, 1690, 1764, 1871, 1955, 2079, 2126, 2167, 2283, 2459, 2643, 2659, 2824, 2896, 2936, 3163.

Processes [3104]. Processes [122, 234, 1214, 2102, 2787].

Product [462, 695, 746, 1216, 2306, 2537, 2987]. Products [2035, 2080].

Professor [1916, 2231, 2488]. Profiles [642, 643].

Processes [3104]. Processes [122, 234, 1214, 2102, 2787].

Process [363, 2515, 2741]. Processes [122, 234, 1214, 2102, 2787].

Processed [3104]. Processes [122, 234, 1214, 2102, 2787].

Product [462, 695, 746, 1216, 2306, 2537, 2987].

Production [319, 840, 2123, 2361, 2386]. productivity [90]. Products [2035, 2080].

Producers [1028]. Prolate [918, 1213, 1754, 1822]. Prolate-Element [918].

Promotes [2853].

Property [218, 952, 954, 1249, 1357, 2205, 2394].

Pure-Streamfunction [816]. Pursuit [1186, 2758].

Pyramidal [821].

Q4 [112]. Quad [1918, 3017]. Quad-Curl [1918, 3017].

Quadratic [119, 860, 1114, 1649, 1740, 1974, 2405, 2616, 2857, 3028, 3090]. Quadratically [2171].

Quadrilaterals [1534]. Quadtree [1136]. Quality [962, 2552].

Quantification [887, 1530, 1650, 2319, 2764, 2912]. Quantifying [97].

Quantitative [220, 1737]. Quantum [1368]. Quasi [798, 908, 969, 975, 980, 1162, 1169, 1267, 1436, 1514, 1581, 1611, 1728, 1915, 2085].

[81, 124, 598, 700, 702, 919, 983, 1177, 1238, 1240, 1474, 1511, 1844, 2051, 2630]. Recurrence [1181, 2907]. Recursive

[1041, 2035]. Redistancing

[1394]. Redistribution [659, 1151]. Reduced

[333, 334, 2452]. Reduced-Basis

[333, 344, 2452]. Reduced-Order

[277, 843, 1591, 1962, 2792]. Reducing

[310, 2260]. Reduction

[20, 415, 1308, 1366, 1493, 1580, 2060, 2080, 2095, 2108, 2448, 2449, 2616, 2881, 2971, 3014, 3077]. Reference

[1072, 2747]. Reference-to-Physical

[1072]. Refined

[2138]. Refinement

[371, 693, 792, 1213, 1384, 1543, 1895, 2296, 2483]. Reflection

[1450, 2307]. Reflectance

[806]. Reflecting

[757, 1379, 1686, 2483]. Reflection

[1450, 2307]. Reformulations

[2796]. Regime

[852, 1242, 1833, 1869, 2096, 2097, 2099, 2573, 2610, 2715, 3061]. Regime-Switching

[2610]. Region

[123, 1960, 2496, 2904]. Regions

[133, 1148, 1671, 1672, 2217, 2248]. Registration

[1005, 2607, 2758, 2881]. Registration-Based

[2881]. Registrations

[1004, 1020]. Regression

[1250, 2825, 3162]. Regular

[2100, 2524, 2551]. Regularisation

[1998]. Regularity

[290, 897, 1797, 2168, 2351, 2643, 3092, 3097]. Regularity-Aware

[2351]. Regularization

[396, 727, 901, 960, 1120, 1188, 1212, 1215, 1389, 1712, 1773, 1786, 1886, 1900, 2006, 2039, 2050, 2093, 2201, 2280, 2316, 2360, 2590, 2769, 2857, 2963, 3055, 3088, 3188]. Regularized

[390, 1318, 1583, 1595, 1837, 1910, 1958, 2017, 2318, 2717, 2753, 3114, 3115, 3176]. Regularizers

[1660]. regulating

[39]. Regulation

[2885]. Refinement

[3185]. Related

[435, 716, 826, 1679]. Relation

[176, 1365, 1421]. Relations

[1651]. Relationship

[1564]. Relationships

[1256]. Relative

[806, 1817, 2080]. Relatively

[2551]. Relativistic

[1947, 2751, 2937]. Relaxation

[274, 399, 484, 804, 1172, 1361, 1415, 1629, 1696, 1877, 2130, 2181, 2568, 2624, 2631]. Relaxations

[137, 1185]. Relaxed

[267, 347, 427, 1797, 2875, 2945, 3036]. Relaxing

[267, 1891]. Release

[236]. Reliability

[2371]. ReLU

[3049]. Remarks

[956, 983]. Removal

[61, 1676, 1985, 2050, 2091, 2577, 3020]. Removing

[1575]. Renormalization

[2, 37, 55, 64, 104, 231, 236, 247, 562]. Representation

[96, 1345, 1426, 2450]. Representations

[865, 2551]. Represented

[1178]. Reproduction

[2701]. Reprojection

[1015]. Requirements

[57, 1614]. Requiring

[845]. Reseeding

[1478]. Reservoir

[627]. Residual

[97, 295, 596, 867, 954, 1216, 1377, 1403, 1466, 1893, 2163, 2356, 2358, 2865, 3016, 3019]. Residual-Type

[1466]. Residuals

[1558]. Resilience

[2278]. Resistance

[1402]. Resistive

[470]. Resolution

1933, 2030, 2147, 2262, 2517, 2601, 2713, 2724, 2799, 2967, 2973, 3103.

Set-Moment [1125]. Sets [100, 387, 512, 828, 995, 1606]. Settings [1531].
Setups [2307]. Sevick [253]. Seven [1712]. Seven-Equation [1712].
Seventh [2970]. Seventh-Order [2970]. Several [858]. Shah [1660].

Shallow [439, 446, 447, 527, 552, 701, 777, 849, 928, 936–938, 943, 947, 950, 954, 955, 957, 985, 1033, 1156, 1179, 1197, 1384, 1409, 1593, 1629, 1670, 1823, 1830, 1929, 2407, 2605, 2609, 2692, 2710, 2737, 2812, 2823, 2849, 2876, 2903, 2994, 3037, 3191].
Shallow-Water [439, 937, 1670, 2849, 2994]. Sham [1151, 2346].
Shifted [365, 566, 2285, 2286, 2633, 2922, 3180]. Shishkin [1681, 2167, 2707].
Simulating [46, 130, 575, 823, 1326, 1431, 2000, 2011, 2535, 2596, 2669].
Singularities [50, 270, 358, 396, 1509, 1886, 2372, 2414]. Singularity [1383, 1449, 1515, 2901]. Singularly

2437, 2521, 2589, 2620, 2671, 2699, 2702, 3002, 3005, 3118, 3120, 3131, 2521, 2589, 2620, 2671, 2699, 2702, 3002, 3005, 3118, 3120, 3131].

Time-Harmonic [861, 891, 2051, 2433]. Time-Limiters [378].
Time-Marching [144, 197, 219]. Time-Space [2518, 2942, 3106].
Time-Spectral [2225, 3092]. Time-Splitting [61, 507]. Time-Stepping [534, 576, 1442, 1662, 1663, 1890, 2190, 2398, 2419, 2484, 2527, 2942, 2960].
Time-Tempered [2136]. Time-Transient [2628]. Time/Space [2133].

Times [1719, 2102, 2130]. Timestepping [655].

Tissue [1182, 1232]. Toepfliiz [217, 2930]. Tolerance [1194].

tomographic [26, 187]. Tomography [1002, 1008, 1021, 1826, 2663, 2988].
Toolbox [242, 689]. Toolkit [966].

Trans [655].

Transfer [200, 205, 625, 1371, 2145, 2251, 2269, 2603, 2615, 2794, 2842, 3044, 3060, 3101, 3157]. Transfinite [225].

Transport [97, 207, 236, 240, 382, 456, 489, 527, 566, 951, 1238, 1361, 1919, 1921, 2044, 2093, 2182, 2262, 2291, 2435, 2445, 2657, 2685, 3007, 3064, 3135, 3136].

Transportation [2533, 2896]. Transpose [1770]. Transverse [1659, 2342].

Transversely [2651]. Trapezoidal [1545, 3119]. Travel [2917]. Traveling [2919].

Translating [605, 903]. Transmission [1211, 1225, 1298, 1422, 1639, 1730, 1867, 2036, 2270, 2534, 2549, 2604].

Transmittance [806]. Transparent [1656, 1881]. Transplantation [863].

Transport [97, 207, 236, 240, 382, 456, 489, 527, 566, 951, 1238, 1361, 1919, 1921, 2044, 2093, 2182, 2262, 2291, 2435, 2445, 2657, 2685, 3007, 3064, 3135, 3136].

Transport [2533, 2896]. Transpose [1770]. Transverse [1659, 2342].

Transversely [2651]. Trapezoidal [1545, 3119]. Travel [2917]. Traveling [2919].

Treat [1337]. Treatment [109, 799, 829, 890, 937, 1209, 1380, 1600, 1759, 1852, 2949]. Tree [252, 675].

Trecode [2557]. Trefftz [2555]. Tri [1515]. Tri-linear [1515]. Trial [2639].

triangles [98]. Triangular [268, 373, 598, 662, 981, 1018, 1161, 1197, 1334, 1411, 1681, 1740, 1824, 1900, 1942, 2167, 3050]. Triangulated [986, 1761, 1895].

Triangulation [673]. Triangulations [1735]. Tridiagonal [167, 217].

Truncation [35, 365, 1202, 1436, 2273]. Truncations [2174, 2544]. Trust [1479, 2904].

Trust-Region [2904]. Tsunami [1946]. Tube [667]. Tubular [512]. Tucker [2867].

Wave
Waveform
Waveguides
Wavelength
Wavelet
Wavelet-Based
Wavelets
Wavenumber
Waves
Wavy
Wavy-Wall
Weak
Weakly
Weakly-Intrusive
Weight
Weighted
Weighting
Well
Well-Balanced
Well-Balancing
Well-conditioned
Well-Posedness
WKB
Work
Wormhole
WSGD
REFERENCES

[2162, 3166]. WSGD-OSC [2162].

Yawed [337]. Yee [750]. Yield [2236]. Yuan [3010].

References

REFERENCES

REFERENCES

REFERENCES

Reuven:1987:SAO

Hariharan:1987:WET

Ronquist:1987:SEM

Reyna:1988:ECC

Yakhot:1988:CTR

Buning:1988:SEG

Greenberg:1988:SRF

Saetre:1988:DSG

Somuah:1988:CMT

Maday:1988:SEM

Christodoulou:1988:FLM

She:1988:SDI

REFERENCES

REFERENCES

REFERENCES

[Goldenfeld:1989:IAR]

[Kida:1990:EBD]

[Chiang:1990:PMC]

[Ehrenstein:1990:SCF]

Yakhot:1990:PTP

Gottlieb:1990:QIC

Orszag:1990:IMS

O'Neal:1990:OFE

Maday:1990:OIF

Y. Maday, Anthony T. Patera, and Einar M. Ronquist. An operator-integration-factor splitting method for time-dependent problems: Appli-

REFERENCES

REFERENCES

REFERENCES

[105] Yih Nen Jeng and Yuan Chang Liou. A new adaptive grid
generation by elliptic equations with orthogonality at all of the
1992. CODEN JSCOE. ISSN 0885-7474 (print), 1573-7691
BF01060211; http://link.springer.com/content/pdf/10.1007/
BF01060211; http://www.springerlink.com/openurl.asp?genre=
article&issn=0885-7474&volume=7&issue=1&page=63-80.

[106] Bahrom B. Sanugi. An iterative multistep formula for solving ini-
March 1992. CODEN JSCOE. ISSN 0885-7474 (print), 1573-
1007/BF01060212; http://link.springer.com/content/pdf/10.
1007/BF01060212; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=7&issue=1&page=81-94.

[107] Wilhelm Heinrichs. A stabilized multidomain approach for singu-
95–125, June 1992. CODEN JSCOE. ISSN 0885-7474 (print), 1573-
1007/BF01059944; http://link.springer.com/content/pdf/10.
1007/BF01059944; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=7&issue=2&page=95-125.

grid solvers for flow simulation in porous media on distributed mem-
162, June 1992. CODEN JSCOE. ISSN 0885-7474 (print), 1573-
1007/BF01059945; http://link.springer.com/content/pdf/10.
1007/BF01059945; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=7&issue=2&page=127-162.

174, June 1992. CODEN JSCOE. ISSN 0885-7474 (print), 1573-
REFERENCES

Dattoli:1992:ANR

Berger:1992:HGM

Yakhot:1992:AQT

Whang:1992:NAC

REFERENCES

REFERENCES

Ioffe:1993:AAP

Succi:1993:SSD

Qian:1993:STL

Parker:1993:SAD
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mehrabi:1995:PIF

Trayner:1995:NTS

Miller:1995:SSS

Schumann:1995:PST

Konstantinov:1995:ELP

Joslin:1995:SPS

Hosokawa:1995:CFS

Pasquarelli:1995:SMA

REFERENCES

Gomez-Valdes:1995:MPP

Geer:1995:RTA

Shu:1995:NAS

Dettori:1995:NGM

Yang:1995:MRA

[176] Sang Kyu Yang and Charlie H. Cooke. Multi-resolution analysis on the interval with natural spline projection and uniform two-

Kukharkin:1995:CSF

Manoranjan:1996:SIP

Sukoriansky:1996:LES

Yavneh:1996:MSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[218] V. A. Zheligovsky and O. M. Podvigina. An optimized iterative method for numerical solution of large systems of equations based on the ex-
REFERENCES

REFERENCES

REFERENCES

Gottlieb:1998:MCG

Bickham:1998:TMP

Jaberi:1998:EHR

Konstantinov:1998:RGBa

Speziale:1998:CLE

REFERENCES

REFERENCES

REFERENCES

Lether:1999:TRI

Heinrichs:1999:SAT

Guo:1999:FLL

Kvernadze:1999:LDB

[256] George Kvernadze, Thomas Hagstrom, and Henry Shapiro. Locating discontinuities of a bounded function by the partial sums of its

REFERENCES

REFERENCES

[280] Bengt Eliasson. Outflow boundary conditions for the Fourier transformed one-dimensional Vlasov–Poisson system. *Journal of Sci-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Ruuth:2002:TBS]

[Schonauer:2002:HOM]

[Schwartzkopf:2002:AHO]

[Kress:2002:DCM]

[Furst:2002:ASO]
REFERENCES

[323] Stefano Berrone and Laurent Emmel. Towards a realization of a wavelet Galerkin method on non-trivial domains. Journal of Scien-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schroll:2002:HRR

Titarev:2002:AAH

Wilhelm:2002:ASE

Stefanica:2002:FFD

Weill:2002:SGF

REFERENCES

REFERENCES

REFERENCES

Bertalmio:2003:TBI

Cheng:2003:CSA

Duraisamy:2003:CAT

Esmaeeli:2003:CEB

Gibou:2003:LSA

REFERENCES

REFERENCES

Sebastian:2003:MWF

Smereka:2003:SIL

Steinhoff:2003:CCV

Sussman:2003:DSE

REFERENCES

REFERENCES

Chehab:2004:TES

Pennacchio:2004:MFE

Sjogreen:2004:MWB

Luong:2004:AMG

REFERENCES

Kabakian:2004:UGB

Gelb:2004:POR

Anonymous:2004:EAM

Bouchut:2004:AES

REFERENCE

REFERENCES

REFERENCES

REFERENCES

Anonymous:2005:F

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Higueras:2005:MRK

Tang:2005:P

Feng:2005:PEE

Walkley:2005:FES

Miller:2005:SMF

Wang:2005:EAM

Tourigny:2005:OMF

Madzvamuse:2005:MGF

Gottlieb:2005:HOS

Pareschi:2005:IER

Carpenter:2005:FOR

REFERENCES

REFERENCES

Adams:2005:MFE

Wihler:2005:PEA

Li:2006:HOC

Leriche:2006:NEA

REFERENCES

Sengupta:2006:HAS

Koko:2006:UCG

Feng:2006:AFE

Schroll:2006:BHF

[520] Z. Belhachmi, C. Bernardi, S. Deparis, and F. Hecht. An efficient discretization of the Navier–Stokes equations in an axisym-

Gottlieb:2006:OSS

Guo:2006:OSG

Kurganov:2006:ACU

Leriche:2006:DNS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[565] Sigal Gottlieb, David Gottlieb, and Chi-Wang Shu. Recovering high-order accuracy in WENO computations of steady-state hyperbolic sys-

REFERENCES

Lax:2006:GP

Maday:2006:SAS

Orszag:2006:TEK

Ryabenkii:2006:MDP

REFERENCES

REFERENCES

Morgan:2006:POG

Suhov:2006:SMT

Bertoluzza:2006:IMM

Goujot:2006:BWC

Chen:2006:PSF

REFERENCES

Liu:2006:LSF

Nordstrom:2006:CFD

Bokanowski:2007:ADS

REFERENCES

REFERENCES

[600] Matthias K. Gobbert, Samuel G. Webster, and Timothy S. Cale. A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/
REFERENCES

REFERENCES

Han Chen, Chohong Min, and Frédéric Gibou. A supra-convergent finite difference scheme for the Poisson and heat equations on ir-

REFERENCES

REFERENCES

Kloucek:2007:ACB

Diener:2007:OHO

Ohmori:2007:FFF

Lorcher:2007:DGS

REFERENCES

REFERENCES

REFERENCES

221

REFERENCES

REFERENCES

REFERENCES

[703] Houde Han, Zhongyi Huang, and R. Bruce Kellogg. A tailored finite point method for a singular perturbation problem on an un-
gust 2008. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
008-9187-7; http://link.springer.com/content/pdf/10.1007/

[704] Rong Zhang, Zhong qing Wang, and Ben yu Guo. Mixed Fourier–
Laguerre spectral and pseudospectral methods for exterior problems us-
(2):263–283, August 2008. CODEN JSCOEB. ISSN 0885-7474 (print),

[705] Hongxia Li, Zhigang Wang, and De kang Mao. Numerically neither dis-
sipative nor compressive scheme for linear advection equation and its
application to the Euler system. *Journal of Scientific Computing*, 36
(3):285–331, September 2008. CODEN JSCOEB. ISSN 0885-7474 (print),

[706] Adi Ditkowski, Abhinav Bhandari, and Brian W. Sheldon. Com-
puting derivatives of noisy signals using orthogonal functions expan-
2008. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
008-9193-9; http://link.springer.com/content/pdf/10.1007/

[707] Chun-Hao Teng, Bang-Yan Lin, and Hung-Chun Chang. A Legen-
dre pseudospectral penalty scheme for solving time-domain Maxwell’s

REFERENCES

REFERENCES

REFERENCES

[733] Qiang Zhang and Zi-Long Wu. Numerical simulation for porous medium equation by local discontinuous Galerkin finite element

Tone:2009:LTS

Klar:2009:SLM

Glaser:2009:NCH

Cole:2009:SRB

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-008-9258-9;
http://link.springer.com/content/pdf/10.1007/s10915-008-9258-9;
issn=0885-7474&volume=39&issue=2&spage=206-221.

to price European options. I. Single asset with and without jump
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
008-9267-8; http://link.springer.com/content/pdf/10.1007/
s10915-008-9267-8; http://www.springerlink.com/openurl.asp?

[756] Rodrigo B. Platte and Anne Gelb. A hybrid Fourier–Chebyshev method
(2):244–264, May 2009. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-008-9264-y; http://link.springer.com/content/
pdf/10.1007/s10915-008-9264-y; http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7474&volume=39&issue=2&
spage=244-264.

[757] Tommy L. Binford, Jr., David P. Nicholls, and Nilima Nigam. Exact
non-reflecting boundary conditions on perturbed domains and hp-
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
008-9263-z; http://link.springer.com/content/pdf/10.1007/
s10915-008-9263-z; http://www.springerlink.com/openurl.asp?

[758] Jun Zhu and Jianxian Qiu. Hermite WENO schemes and their appli-
cation as limiters for Runge–Kutta discontinuous Galerkin method, III:
May 2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
009-9271-7; http://link.springer.com/content/pdf/10.1007/
Zhu:2009:SEA

Tang:2009:CTL

El-Amrani:2009:SSS

Ditkowski:2009:HOE

REFERENCES

[767] Susanne C. Brenner, Thirupathi Gudi, and Li yeng Sung. A posteriori error control for a weakly over-penalized symmetric interior

REFERENCES

REFERENCES

[780] Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. *Journal of
Zhu:2009:ADG

Abarbanel:2009:LTP

Jung:2009:EPD

Sarra:2009:EDF

Hughes:2009:BLA

Zhang:2009:SDG

Kupiainen:2009:CEB

Rahunanthan:2009:SIC

[793] Liang Ge, Wenbin Liu, and Danping Yang. Adaptive finite element approximation for a constrained optimal control problem via multi-

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-009-9300-6;

asymptotically stable semi-Lagrangian scheme in the quasi-neutral
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
009-9302-4; http://link.springer.com/content/pdf/10.1007/
s10915-009-9302-4; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=41&issue=3&page=341-365.

Mattsson:2009:SBT

[799] Ken Mattsson, Frank Ham, and Gianluca Iaccarino. Stable bound-
ary treatment for the wave equation on second-order form. *Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9305-
1; http://www.springerlink.com/openurl.asp?genre=article&

Jung:2009:FVA

[800] Chang-Yeol Jung and Roger Temam. Finite volume approxima-
tion of one-dimensional stiff convection–diffusion equations. *Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9304-
2; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=41&issue=3&page=384-410.

Xiang:2009:SOI

[801] Ming Xiang, Shaozhong Deng, and Wei Cai. A sixth-order im-
age approximation to the ionic solvent induced reaction field. *Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9307-
REFERENCES

[810] Adrian Sescu, Abdollah A. Afjeh, Ray Hixon, and Carmen Sescu. Conditionally stable multidimensional schemes for advective equa-

REFERENCES

[827] Pengtao Sun, Long Chen, and Jinchao Xu. Numerical studies of adaptive finite element methods for two dimensional convection-
REFERENCES

REFERENCES

REFERENCES

Yasuda:2010:TPS

Celiker:2010:HDG

Wise:2010:USF

Yang:2010:NAA

[861] D. Sármány, F. Izsák, and J. J. W. van der Vegt. Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-

REFERENCES

Goldstein:2010:GAS

Gunzburger:2010:ANS

Ilyevsky:2010:SCA

Jameson:2010:PSS

[Jung:2010:RHO]

[Karni:2010:HAB]

[Li:2010:CDG]

[Lin:2010:PMN]

[887] Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby. Quantification of errors introduced in the numerical approximation and

Nicholls:2010:BPM

Viswanathan:2010:RNU

Xiong:2010:FSF

Qiao:2011:SEA

REFERENCES

Antonietti:2011:CDD

Wihler:2011:DGM

Yokoi:2011:NMI

Gong:2011:MFE

Filbet:2011:APS

REFERENCES

Vohralík:2011:GFR

Karunatillake:2011:RSS

Marinov:2011:CLB

Wang:2011:LBM

Llanas:2011:EDA

REFERENCES

Zhang:2011:PEM

Chen:2011:CRM

Yilmaz:2011:IPL

Motamed:2011:LSF

REFERENCES

REFERENCES

[943] E. D. Fernández-Nieto, M. J. Castro Díaz, and C. Parés. On an intermediate field capturing Riemann solver based on a parabolic...
REFERENCES

REFERENCES

REFERENCES

Ye:2011:NMB

delSastre:2011:EAF

Abbas:2011:FOH

Simpson:2011:SWB

REFERENCES

Nguyen-Ba:2012:SSP

Awanou:2012:TRR

Cai:2012:ENX

Kesserwani:2012:LLF

Wu:2012:ALM

[986] Chunlin Wu, Juyong Zhang, Yuping Duan, and Xue-Cheng Tai. Augmented Lagrangian method for total variation based image restora-
REFERENCES

Kormann:2012:DSS

Deparis:2012:SRB

Laminie:2012:DPP

Hahn:2012:ALM
REFERENCES

Hundsdorfer:2012:SRB

Dede:2012:RBM

Alexanderian:2012:MSP

Kozdon:2012:IWF

REFERENCES

Ratnani:2012:AHO

Zhang:2012:FDL

Chabaud:2012:HIE

Gelb:2012:REA

REFERENCES

Lui:2012:EOS

Zhang:2012:ENS

Yuan:2012:ADM

Zhou:2012:GMS

REFERENCES

REFERENCES

[1045] Fatih Celiker, Li Fan, Sheng Zhang, and Zhimin Zhang. Locking-

REFERENCES

REFERENCES

D. Boffi:2012:LMC

Harish Kumar:2012:ESN

Jun Hu:2012:HAP

Dietrich:2012:PUM

Chen:2012:NSE

Feng:2012:NQF

REFERENCES

REFERENCES

See erratum [1095].

REFERENCES

REFERENCES

[1091] Ziqing Xie, Xianjuan Li, and Tao Tang. Convergence analysis of spectral Galerkin methods for Volterra type integral equa-
Li:2012:FPI

Zhang:2012:DDS

Chun:2012:EMM

Medvinsky:2012:EMD

REFERENCES

[1108] Sangita Yadav, Amiya K. Pani, and Neela Nataraj. Superconvergent discontinuous Galerkin methods for linear non-selfadjoint and indefinite

[1117] G. Ariel, B. Engquist, S. Kim, Y. Lee, and R. Tsai. A multiscale method for highly oscillatory dynamical systems using a Poincaré map type...

References

Kostić:2013:SDE

Ji:2013:NON

Langer:2013:BDD

Liang:2013:REI

Liu:2013:RRU

REFERENCES

REFERENCES

REFERENCES

Bi:2013:PEE

Abreu:2013:NMD

Chen:2013:RCM

Brenner:2013:AFE

Tang:2013:HOC

Tao Tang, Hehu Xie, and Xiaobo Yin. High-order convergence of spectral deferred correction methods on general quadrature nodes.

[1166] Tao Tang, Hehu Xie, and Xiaobo Yin. High-order convergence of spectral deferred correction methods on general quadrature nodes.
Antonietti:2013:MDE

Constantinescu:2013:EMM

Zhou:2013:QCF

Fang:2013:OLD

REFERENCES

REFERENCES

Yan:2013:ELR

Qi:2013:WCF

Martin:2013:PTR

Chen:2013:FFG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Williams:2014:EES

Hu:2014:SNN

Ervin:2014:ASD

Baccouch:2014:LDGa

REFERENCES

REFERENCES

REFERENCES

Suhov:2014:APA

Liu:2014:RAG

Xiao:2014:NBB

Zhang:2014:MSD

Ghosh:2014:WNL

[1320] Debojyoti Ghosh and James D. Baeder. Weighted non-linear compact schemes for the direct numerical simulation of compressible, turb-

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9829-x;
http://link.springer.com/content/pdf/10.1007/s10915-014-9829-x.pdf.

http://link.springer.com/content/pdf/10.1007/s10915-014-9826-0.pdf.

REFERENCES

Kocher:2014:VST

Pincock:2014:HOF

DeRosis:2014:CBI

Martinez:2014:EDN

Roth:2014:SLM

A. Roth, A. Klar, B. Simeon, and E. Zharovsky. A semi-Lagrangian method for 3-D Fokker Planck equations for stochastic dynamical

Ji:2014:SCI

Huang:2014:NSS

Xia:2014:FSM

Massing:2014:SNF

REFERENCES

Liao:2014:SCM

Starinshak:2014:NLS

Yu:2014:SEM

Hong:2015:NAS

Gerhard:2015:HOD

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9852-y;

REFERENCES

Ju:2015:FEI

Hintermuller:2015:NOD

Yu:2015:DRP

Skelton:2015:PRR

Reyna:2015:OBT

Liu:2015:ESD

Ohtsuka:2015:LSA

Parisi:2015:NTI

Ala:2015:NII

Asthana:2015:HOF

REFERENCES

Huang:2015:SCN

Saetra:2015:EGI

Jia:2015:SSD

Barrett:2015:SPF

Zhao:2015:MAD

Hundsdorfer:2015:EAE

Natalini:2015:NCB

Yang:2015:WBC

Yang:2015:PRW

Chen:2015:CAT

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9916-z;
http://link.springer.com/content/pdf/10.1007/s10915-014-9916-

Shankar:2015:RBF

http://link.springer.com/content/pdf/10.1007/s10915-014-9914-

Canuto:2015:COP

014-9912-3; http://link.springer.com/content/pdf/10.1007/
s10915-014-9912-3.pdf.

Rossides:2015:CIM

014-9917-y; http://link.springer.com/content/pdf/10.1007/
s10915-014-9917-y.pdf.

Mathis:2015:DMA

014-9915-0; http://link.springer.com/content/pdf/10.1007/
s10915-014-9915-0.pdf.

REFERENCES

1007/s10915-014-9928-8; http://link.springer.com/content/
pdf/10.1007/s10915-014-9928-8.

[1426] Yifei Lou, Penghang Yin, Qi He, and Jack Xin. Computing sparse
representation in a highly coherent dictionary based on difference of
2015. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
014-9930-1; http://link.springer.com/content/pdf/10.1007/
s10915-014-9930-1.

[1427] Yao Sun, Fuming Ma, and Xu Zhou. An invariant method of funda-
mental solutions for the Cauchy problem in two-dimensional isotropic
2015. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
014-9929-7; http://link.springer.com/content/pdf/10.1007/
s10915-014-9929-7.

[1428] Abner J. Salgado. Convergence analysis of fractional time-stepping
methods for incompressible fluids with microstructure. Journal of
http://link.springer.com/content/pdf/10.1007/s10915-014-9926-
x.

[1429] Xiaojie Wang. An exponential integrator scheme for time discretization
of nonlinear stochastic wave equation. Journal of Scientific Computing,
64(1):234–263, July 2015. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-014-9931-0; http://link.springer.com/content/
pdf/10.1007/s10915-014-9931-0.

[1430] Nan Jiang. A higher order ensemble simulation algorithm for
REFERENCES

Hsieh:2015:UES

Zhong:2015:MSV

Safdari-Vaighani:2015:RBF

Zhao:2015:RPE

REFERENCES

References

REFERENCES

Guo:2015:MPS

Kim:2015:CCH

Du:2015:RRT

Boulakia:2015:SSE

Su:2015:SPN

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9958-2;

REFERENCES

Li:2015:SPP

Mu:2015:WGF

Dolz:2015:MHM

Zeng:2015:SOS

Kim:2015:EPR

Zhang:2015:HMN

Chen:2015:RIB

Nissen:2015:SDM

Zheng:2015:LPF

Wasserman:2015:IRF

Wang:2015:FSB

REFERENCES

[1496] Sheng-Gwo Chen, Mei-Hsiu Chi, and Jyh-Yang Wu. High-order algorithms for Laplace–Beltrami operators and geometric invariants over
REFERENCES

404

REFERENCES

Kadalbajoo:2015:SOA

Shi:2015:NSM

Dauge:2015:TNI

Choi:2015:FDC

Crouseilles:2015:CNS

Guillen-Gonzalez:2015:STS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gurkan:2016:EHD

Ma:2016:IDT

Lamichhane:2016:MFE

Li:2016:NSW

Chen:2016:GSA

Tong:2016:HOM

[1574] Oisin Tong, Aaron Katz, Yushi Yanagita, Alex Casey, and Robert Schaap. High-order methods for turbulent flows on three-dimensional

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Liu:2016:NMG

Wong:2016:FSM

Deng:2016:TLS

Qian:2016:BEH

Lee:2016:IBM

REFERENCES

References

Hayashi:2016:CAC

Winokur:2016:SPS

Schmidtmann:2016:RBW

Pandit:2016:EIC

Ding:2016:SML

REFERENCES

[1658] Shuqin Wang, Jinyun Yuan, Weihua Deng, and Yujiang Wu. A hybridized discontinuous Galerkin method for 2D fractional convection-

Brenner:2016:AFE

Jung:2016:VIC

Shum:2016:CRO

Christlieb:2016:ESS

REFERENCES

REFERENCE

REFERENCES

Yoon:2016:SSS

Gupta:2016:PEA

Rotundo:2016:EAB

Chen:2016:DDT

REFERENCES

REFERENCES

447

Awanou:2016:SFD

Witherden:2016:ASP

Gong:2016:FDE

Brachet:2016:STS

Chen:2016:MEI

REFERENCES

Boyd:2016:TMS

Liao:2016:WAS

Tcheng:2016:LCA

Gatica:2016:PPE

Huang:2016:SDG

REFERENCES

REFERENCES

Zou:2017:USQ

Guo:2017:STG

Tang:2017:LPF

Wang:2017:HSA

Wang:2017:GMS

Brus:2017:PSI

Chang:2017:LSO

Tang:2017:UCT

Li:2017:SOS

REFERENCES

Zhang:2017:OSS

Zhang:2017:SML

Li:2017:EEM

Michoski:2017:SNC

[1758] Jingyang Guo and Jae-Hun Jung. Radial basis function ENO and WENO finite difference methods based on the optimization of shape

Benjamin Ivorra, Susana Gomez, Roland Glowinski, and Angel Manuel Ramos. Nonlinear advection–diffusion–reaction phenomena involved in

REFERENCES

Guermond:2017:ECM

Zhao:2017:DES

Kaiser:2017:NSS

Ma:2017:CBV

Heister:2017:DUS

REFERENCES

Moe:2017:PPD

Pichard:2017:ACA

Li:2017:FOS

Kang:2017:SCL

Perrotta:2017:SOF

Song:2017:WGM

REFERENCES

REFERENCES

[1838] Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma, Xiaolin Chang, and Qiang Huang. The boundary element method with a fast multi-

Amat:2017:NWS

Lee:2017:SOO

Cho:2017:EAC

Moghaddam:2017:EAA

Costa:2017:VHO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Jiang:2017:AFE

Gu:2017:FIM

Bigoni:2017:AWM

Zhu:2017:NSF

Garcia:2017:NMF

[1890] Daniel Baffet and Jan S. Hesthaven. High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equa-
REFERENCES

[1904] Giuseppe Pitton and Gianluigi Rozza. On the application of reduced basis methods to bifurcation problems in incompressible fluid

[1909] Xu hong Yu and Ben yu Guo. Spectral method for vorticity-stream function form of Navier–Stokes equations in an infinite channel with slip

Chen:2017:DIS

Chow:2017:AOC

Yat Tin Chow, Jérôme Darbon, Stanley Osher, and Wotao Yin. Algorithm for overcoming the curse of dimensionality for time-dependent
REFERENCES

Cockburn:2017:ABS

Conde:2017:IIE

Ditkowski:2017:EIB

Dong:2017:OCH

Gao:2017:ERH

Hernandez-Duenas:2017:HMS

Hou:2017:AMI

Hu:2017:CIE

Jameson:2017:EFI

Zhou:2017:SLD

Zhu:2017:ARM

Zhu:2017:NTF

Cavoretto:2018:OSL

Bi:2018:PEE

Zhou:2018:FLT

[1961] Immanuel Martini, Bernard Haasdonk, and Gianluigi Rozza. Certified reduced basis approximation for the coupling of viscous and invis-

Cai:2018:NSM

Chaabane:2018:SDG

Huang:2018:MMM

Xie:2018:TMS

deFrutos:2018:EAP

Durango:2018:TGM

[1979] Chang Ho Kim, Kwang-Il You, and Youngsoo Ha. Hybrid finite difference weighted essentially non-oscillatory schemes for the compressible ideal

REFERENCES

Dunst:2018:SOC

Huber:2018:SCS

Tang:2018:WCP

Mukam:2018:SCA

An:2018:OEE

Zhao:2018:FFD

REFERENCES

DEN JSCOE. ISSN 0885-7474 (print), 1573-7691 (electronic).

[2003] Magnus Svärd and Jan Nordström. Response to “Convergence of
Summation-by-Parts Finite Difference Methods for the Wave Equation”.
DEN JSCOE. ISSN 0885-7474 (print), 1573-7691 (electronic). See
[1798].

Addam:2018:SAW

On solving an acoustic wave problem via frequency–domain approach
and tensorial spline Galerkin method. Journal of Scientific Comput-
ing, 74(3):1193–1220, March 2018. CODEN JSCOE. ISSN 0885-7474
article/10.1007/s10915-017-0490-z; https://link.springer.com/content/pdf/10.1007/s10915-017-0490-z.pdf.

Zhang:2018:GSC

[2005] Chengjian Zhang and Cui Li. Generalized Störmer-Cowell methods
for nonlinear BVPs of second-order delay–integro-differential equa-
s10915-017-0491-y; https://link.springer.com/content/pdf/10.1007/s10915-017-0491-y.pdf.

Lai:2018:MBL

[2006] Rongjie Lai and Jia Li. Manifold based low-rank regularization for image
restoration and semi-supervised learning. Journal of Scientific Comput-
ing, 74(3):1241–1263, March 2018. CODEN JSCOE. ISSN 0885-7474
s10915-017-0492-x; https://link.springer.com/content/pdf/10.1007/s10915-017-0492-x.pdf.

Deng:2018:LCC

[2007] Quanling Deng and Victor Ginting. Locally conservative continuous
March 2018. CODEN JSCOE. ISSN 0885-7474 (print), 1573-7691

REFERENCES

REFERENCES

REFERENCES

DelReyFernandez:2018:SAT

Kyza:2018:HAG

Xue:2018:RCL

An:2018:ESG

Li:2018:PME

REFERENCES

REFERENCES

Jeong:2018:PMC

Dubuis:2018:AAT

Cockburn:2018:SPD

Higueras:2018:OBL

Fatone:2018:IDD

[Wang:2018:JPB]

[Na:2018:EMS]

[Sun:2018:SAH]

[Buli:2018:LDG]

Lai:2018:BSM

Schroeder:2018:DFD

Nossek:2018:FGN

Jeon:2018:HSD

Eriksson:2018:DCF

REFERENCES

Klinge:2018:SSP

Chung:2018:GPE

Lin:2018:SCA

Sen:2018:ESS

Long:2018:TBN

REFERENCES

San:2018:GDP

Zhao:2018:CAI

Huang:2018:PTR

Manzanero:2018:IAD

Hamfeldt:2018:HOA

REFERENCES

Li:2018:COT

Ryu:2018:UPM

Bentbib:2018:CGT

Lei:2018:FPP

Ma:2018:CAI

REFERENCES

REFERENCES

Xiao:2018:RSS

Liang:2018:CMG

Kopriva:2018:SOM

Reyes:2018:NCH

Wang:2018:HOD

REFERENCES

Liu:2018:FDG

Califano:2018:SSP

Schoeder:2018:AHO

Wang:2018:HOC

Oikawa:2018:HMO

REFERENCES

Cao:2018:MFV

Wang:2018:GSA

Zhong:2018:GMS

Chen:2018:FFF

Guo:2018:ALD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Feng:2018:HAF

Zhou:2018:AFE

Chen:2018:MMF

Baccouch:2018:AEP

Li:2018:SOE

Chen:2018:MPM

Garrappa:2018:CMM

Gassner:2018:BSS

Gassner:2018:CBS

[2187] Harbir Antil, Enrique Otárola, and Abner J. Salgado. Optimization with respect to order in a fractional diffusion model: Analysis, approximation...

Antil:2018:ORO

REFERENCES

Liu:2018:MDG

Yang:2018:HSD

Ge:2018:SGS

Wu:2018:HOL

Wissink:2018:SRS

REFERENCES

REFERENCES

REFERENCES

Castillo:2018:CFN

Chen:2018:ESM

Du:2018:ASD

Farhat:2018:ANT

[2241] Xiaobing Feng and Thomas Lewis. Nonstandard local discontinuous
Galerkin methods for fully nonlinear second order elliptic and parabolic
equations in high dimensions. *Journal of Scientific Computing*, 77
(3):1534–1565, December 2018. CODEN JSCOEB. ISSN 0885-7474
com/content/pdf/10.1007/s10915-018-0765-z.pdf.

[2242] P. Fernandez, A. Christophe, S. Terrana, N. C. Nguyen, and
J. Peraire. Hybridized discontinuous Galerkin methods for wave prop-
ber 2018. CODEN JSCOÉB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0811-x; https://link.springer.com/content/pdf/
10.1007/s10915-018-0811-x.pdf.

[2243] Guosheng Fu and Christoph Lehrenfeld. A strongly conserva-
tive hybrid DG/mixed FEM for the coupling of Stokes and Darcy
ber 2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0691-0; https://link.springer.com/content/pdf/
10.1007/s10915-018-0691-0.pdf.

[2244] Pei Fu, Fengyan Li, and Yan Xu. Globally divergence–free dis-
continuous Galerkin methods for ideal magnetohydrodynamic equa-
2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0750-6; https://link.springer.com/content/pdf/

[2245] Huadong Gao and Weifeng Qiu. Error analysis of mixed fi-
nite element methods for nonlinear parabolic equations. *Journal
of Scientific Computing*, 77(3):1660–1678, December 2018. CO-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).

Guanglian Li and Ke Shi. Upscaled HDG methods for Brinkman equations with high–contrast heterogeneous coefficient. *Journal

REFERENCES

555

REFERENCES

Herrero:2019:SMR

Dimarco:2019:CLD

Rueda-Ramírez:2019:TEE

Sun:2019:TSO

Baeza:2019:CWS

REFERENCES

Antonietti:2019:VCM

Pei:2019:NMI

Yang:2019:LSM

Huybrechs:2019:HFA

Sun:2019:NSB

REFERENCES

REFERENCES

Ke:2019:AFD

Moxey:2019:IEB

You:2019:NMM

Zhang:2019:EES

Kimura:2019:GFS

[2299] Masato Kimura, Hirofumi Notsu, Yoshimi Tanaka, and Hiromi Yamamoto. The gradient flow structure of an extended Maxwell vis-

Wolf:2019:AMF

Mittal:2019:MSS

Zaspel:2019:APM

Wang:2019:SAP

Mohammadi:2019:OSD

REFERENCES

Xie:2019:FOK

Xie:2019:CFO

Zhao:2019:LDG

Berkhout:2019:JSP

Fu:2019:PFP

[2324] Hongfei Fu and Hong Wang. A preconditioned fast parareal finite difference method for space–time fractional partial differen-
Ma:2019:CII

Sheikholeslami:2019:CAK

Yang:2019:AII

Glowinski:2019:FEO

Oltean:2019:PPP

Bernal:2019:IMM

Lin:2019:HOR

Zhai:2019:AWG

REFERENCES

Hecht:2019:RPE

Di:2019:FHM

Trias:2019:SCR

Huang:2019:TOU

Yang:2019:ISU

REFERENCES

REFERENCES

[2377] Xiang Wang, Xing Li, Lei-Hong Zhang, and Ren-Cang Li. An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem. *Journal of Scientific...*
Dong:2019:MCM

Chan-Wai-Nam:2019:MLS

Du:2019:SLD

Fu:2019:EDF

Xie:2019:EDP

[2382] Jianqiang Xie and Zhiyue Zhang. An effective dissipation-preserving fourth-order difference solver for fractional-in-space nonlinear wave equa-

REFERENCES

REFERENCES

Alvarez:2019:NMF

Friedrich:2019:ESS

Zhu:2019:NAP

Fang:2019:ESG

Li:2019:AOD

[2397] Ruo Li, Pingbing Ming, Ziyuan Sun, and Zhijian Yang. An arbitrary-order discontinuous Galerkin method with one unknown per element.
REFERENCES

[2402] Dongfang Li, Chengda Wu, and Zhimin Zhang. Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth

Christophe Berthon, Arnaud Duran, Françoise Foucher, Khaled Saleh, and Jean De Dieu Zabsonré. Improvement of the hydrostatic recon-

Shepherd:2019:ASI

[2422] David Shepherd, James Miles, Matthias Heil, and Milan Miha
jlović. An adaptive step implicit midpoint rule for the time in-
tegration of Newton’s linearisations of non-linear problems with
applications in micromagnetics. Journal of Scientific Comput-
ing, 80(2):1058–1082, August 2019. CODEN JSCOEB. ISSN
link.springer.com/content/pdf/10.1007/s10915-019-00965-8.pdf

Gao:2019:SSI

gauge-invariant method for the time-dependent Ginzburg–Landau equa-
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
https://link.springer.com/article/10.1007/s10915-019-00968-
5; https://link.springer.com/content/pdf/10.1007/s10915-019-
00968-5.pdf.

Xiang:2019:NPV

[2424] Yan-Fei Xiang, Yan-Fei Jing, and Ting-Zhu Huang. A new projected
variant of the deflated block conjugate gradient method. Journal of Sci-
centific Computing, 80(2):1116–1138, August 2019. CODEN JSCOEB.
link.springer.com/content/pdf/10.1007/s10915-019-00969-4.pdf

Yuan:2019:GOO

[2425] Honglin Yuan, Xiaoyi Gu, Rongjie Lai, and Zaiwen Wen. Global opti-
mization with orthogonality constraints via stochastic diffusion on man-
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
https://link.springer.com/article/10.1007/s10915-019-00971-
w; https://link.springer.com/content/pdf/10.1007/s10915-019-
00971-w.pdf.

Qi:2019:OEE

[2426] Ruisheng Qi and Xiaojie Wang. Optimal error estimates of Galerkin fi-
nite element methods for stochastic Allen–Cahn equation with additive
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL

REFERENCES

Helzel:2019:NAM

Feng:2019:MMM

Cai:2019:FSC

Puthawala:2019:DFO

Anaya:2019:AAV

REFERENCES

REFERENCES

REFERENCES

593

Freya:2019:PBM

Gunzburger:2019:IDL

Kergrene:2019:GOV

Pichi:2019:RBA

Venturi:2019:WPM

Cheng:2019:TOE

[2456]

Ren:2019:GCD

[2457]

Cho:2019:SOB

[2458]

Yin:2019:CIB

[2459]

Pranjal:2019:BIS

Pranjal and David Silvester. Balanced iterative solvers for linear nonsymmetric systems and nonlinear systems with PDE origins:

Lu:2019:RMP

Ayadi:2019:SPS

Wang:2019:NNE

Chen:2019:KBM

Moradi:2019:SSP

[2470] Nattaporn Chuenjarern and Yang Yang. Fourier analysis of local discontinuous Galerkin methods for linear parabolic equations on overlapping

Ma:2019:SOA

Vevek:2019:EHM

Ding:2019:PRS

Liu:2019:UES

Bohm:2019:MES

REFERENCES

Ding:2020:CFE

Xu:2020:LPM

Hao:2020:HMA

Li:2020:HOC

Chen:2020:EAN

[Meena:2020:PPF]

[Oberman:2020:PDE]

[Zaky:2020:SIG]

[Zhao:2020:NHS]

Gao:2020:RSP

Huang:2020:SFE

Liu:2020:NNM

Du:2020:MMM

Olatunji:2020:SRG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kent:2020:PDL

Ong:2020:TAT

Zhao:2020:BSD

Shadpey:2020:ESM

Schnucke:2020:ESD

REFERENCES

REFERENCES

[2575] Xiaole Li, Yulong Xing, and Ching-Shan Chou. Optimal energy conserving and energy dissipative local discontinuous Galerkin meth-
Fengnan:2020:LFD

Kim:2020:CNR

Wang:2020:GCA

Aceto:2020:PTA

Hassanzadeh:2020:CDS

REFERENCES

Zhang:2020:SOA

Cai:2020:CAC

Du:2020:PST

Xi:2020:HAN

Wen:2020:ESW

REFERENCES

REFERENCES

Ong:2020:DCM

Zhang:2020:ERK

Gedicke:2020:EPE

Xu:2020:EAD

DiIlio:2020:NHT

REFERENCES

[2625] Yuan Xu, Xiong Meng, Chi-Wang Shu, and Qiang Zhang. Superconvergence analysis of the Runge–Kutta discontinuous Galerkin methods...
REFERENCES

628

REFERENCES

Bourriaud:2020:PNN

Minakowski:2020:FEE

Lambert:2020:MNB

Dabaghi:2020:AIS

REFERENCES

REFERENCES

Liu:2020:PFV

Chen:2020:NMS

Jin:2020:CSM

Guo:2020:NPB

Guo:2020:SIH

REFERENCES

Amine:2020:LIM

Song:2020:ACF

Zhang:2020:OOU

Farnham:2020:PCP

Archibald:2020:ENA

REFERENCES

[2705] Hayley Guy, Alen Alexanderian, and Meilin Yu. A distributed active subspace method for scalable surrogate modeling of function valued out-

Du:2020:PIF

Zhu:2020:UCW

Bot:2020:VSC

Jones:2020:STH

Liu:2020:WBP

[2710] Xin Liu. A well-balanced and positivity-preserving numerical model for shallow water flows in channels with wet–dry fronts. *Journal of
REFERENCES

Scientific Computing, 85(3):??, December 2020. CODEN JSCOEB.
springer.com/article/10.1007/s10915-020-01362-2; https://
link.springer.com/content/pdf/10.1007/s10915-020-01362-2.pdf

[2711] Binjie Li, Tao Wang, and Xiaoping Xie. Numerical analysis of two
Galerkin discretizations with graded temporal grids for fractional evo-
lution equations. Journal of Scientific Computing, 85(3):??, December
2020. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL https://link.springer.com/article/10.1007/s10915-020-
01365-z; https://link.springer.com/content/pdf/10.1007/s10915-
020-01365-z.pdf.

[2712] Hailong Qiu. Well-posedness and finite element approximation for
the stationary magneto-hydrodynamics problem with temperature-
dependent parameters. Journal of Scientific Computing, 85(3):??, De-
cember 2020. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-020-01361-3; https://link.springer.com/content/pdf/10.

An active-set proximal-Newton algorithm for \(\ell_1\) regularized opti-
mization problems with box constraints. Journal of Scientific
Computing, 85(3):??, December 2020. CODEN JSCOEB. ISSN
springer.com/article/10.1007/s10915-020-01364-0; https://
link.springer.com/content/pdf/10.1007/s10915-020-01364-0.pdf

[2714] Min Ling, Fei Wang, and Weimin Han. The nonconforming
virtual element method for a stationary Stokes hemivariational
inequality with slip boundary condition. Journal of Scientific
Computing, 85(3):??, December 2020. CODEN JSCOEB. ISSN
springer.com/article/10.1007/s10915-020-01333-7; https://
link.springer.com/content/pdf/10.1007/s10915-020-01333-7.pdf

REFERENCES

Carrillo:2021:LWA

Abreu:2021:CLE

Kheirfam:2021:SOC

Taiwo:2021:ITA

Chu:2021:LSM

REFERENCES

REFERENCES

Lundquist:2021:SDA

Allen:2021:SAM

Choi:2021:VDE

Kao:2021:ERP

Fu:2021:LFG

REFERENCES

[2754] Meng Cai, Siqing Gan, and Xiaojie Wang. Weak convergence rates for an explicit full-discretization of stochastic Allen–Cahn equation with

[2759] Xiangcheng Zheng, V. J. Ervin, and Hong Wang. Optimal Petrov–Galerkin spectral approximation method for the fractional diffu-
REFERENCES
REFERENCES

Hao:2021:CIE

Zhang:2021:AES

Ranocha:2021:NCS

Li:2021:SFR

Guo:2021:NRB

REFERENCES

Chen:2021:DSE

Costa-Sole:2021:HOH

Li:2021:SFD

Xiao:2021:FEC

Wang:2021:SSC

REFERENCES

REFERENCES

Zhang:2021:CSM

Dutta:2021:OPE

Ying:2021:HIP

Moore:2021:EIB

LeFloch:2021:KFN

REFERENCES

REFERENCES

Zhu:2021:FSG

Palitta:2021:MET

Li:2021:UMB

Lepe:2021:EEF

Luo:2021:QCD
Chow:2021:LSS

Chen:2021:BDF

Hien:2021:ANM

Liu:2021:EPE

Burman:2021:CAH

Le:2021:QRM

Yang:2021:UOE

Zhang:2021:HOW

Hao:2021:SHT

Shi:2021:HOC

REFERENCES

REFERENCES

Jaramillo:2021:NMD

Funaro:2021:SCP

Busto:2021:TCF

Zhang:2021:CSB

Lin:2021:EHB

REFERENCES

REFERENCES

Chiapolino:2021:MSH

Berg:2021:LTS

Zhou:2021:TSA

Sheng:2021:ESM

Kopriva:2021:SDG

Figueiredo:2021:MMH

REFERENCES

REFERENCES

REFERENCES

[2901] Taibai Fu, Beiping Duan, and Zhoushun Zheng. An effective finite element method with singularity reconstruction for fractional convection-

Cho:2021:TWS

Benedusi:2021:FPS

Bonazzoli:2021:ASD

Liu:2021:UTS

Park:2021:PAG

REFERENCES

[2935] Yaguang Gu and Felix Kwok. On the choice of Robin parameters for the optimized Schwarz method for domains with non-conforming

Fabiani:2021:NSB

Jiang:2021:ESM

Tang:2021:ABT

Olshanskii:2021:UFE

Zhao:2021:NIC

Manohar:2021:PEE

[2952] Ram Manohar and Rajen Kumar Sinha. A posteriori error estimates for parabolic optimal control problems with controls acting on lower di-
REFERENCES

Franz:2021:SPR

Kim:2021:CAC

Du:2021:AFE

Li:2021:HMM

Mizuguchi:2021:ECS

Li:2021:BES

Sun:2021:OFD

Michel:2021:SAC

Eriksson:2021:ISS

Yeager:2021:TSR

Li:2021:NTR

[2963] Minghui Li, Wen Li, and Mingqing Xiao. The nonconvex tensor robust principal component analysis approximation model via the weighted ℓ_p-norm regularization. *Journal of Scientific Computing*, 89(3):??, December 2021. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
REFERENCES

REFERENCES

REFERENCES

Colibazzi:2022:LNE

Fan:2022:TSI

Zhou:2022:PEE

Fu:2022:ELD

Schutz:2022:PTH

Buchheit:2022:ECL

[2993] Andreas A. Buchheit and Torsten Keffler. On the efficient computation of large scale singular sums with applications to long-range forces in crystal lattices. *Journal of Scientific Computing*, 90(1):??, January 2022. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691

[2999] Yuan Li and Rong An. Unconditionally optimal error analysis of a linear Euler FEM scheme for the Navier–Stokes equations with mass diffu-
REFERENCES

REFERENCES

REFERENCES

6. Yanyan Wang, Zhaopeng Hao, and Rui Du. A linear finite difference scheme for the two-dimensional nonlinear Schrödinger equation with

Antonietti:2022:SAP

Diaz-Adame:2022:FOW

Zhou:2022:ALE

Sun:2022:PTI

Liu:2022:HAT

Dong:2022:HMC

Lu:2022:LED

Vismara:2022:SED

An:2022:SDP

Qin:2022:TDC

McClarren:2022:SIH

Zhang:2022:USO

REFERENCES

707

Feng:2022:EIM

Yao:2022:SEM

Zhang:2022:FDF

Zhang:2022:IMD

Yang:2022:MMM

Boscheri:2022:CCS

Chouchoulis:2022:JFE

Hou:2022:IPP

Dolz:2022:RCE

Wang:2022:OCL

Sanchez:2022:EAU

Ryzhakov:2022:UAL

Lagrangian–Eulerian model for fluid-structure interaction problems in-

Fu:2022:HOD

[3070] Pei Fu, Thomas Frachon, and Sara Zahedi. High order discontinuous cut
finite element methods for linear hyperbolic conservation laws with an in-

Zhao:2022:SDM

[3071] Lina Zhao, Dohyun Kim, and Eric Chung. Staggered DG method with
small edges for Darcy flows in fractured porous media. Journal of Scien-

Loya:2022:HMD

[3072] Allen Alvarez Loya and Daniel Appelö. A Hermite method with a discon-
tinuity sensor for Hamilton–Jacobi equations. Journal of Scientific Com-

Xi:2022:NMU

[3073] Yingxia Xi and Xia Ji. A new method using C^0 IPG for the bihar-

vanGestel:2022:CEC

[3074] R. A. M. van Gestel, M. J. H. Anthonissen, and W. L. IJzerman. Cor-
rection to: An Energy Conservative hp-method for Liouville’s Equa-

[3080] Yann-Meing Law and Jean-Christophe Nave. High-order FDTD schemes for Maxwell’s interface problems with discontinuous coefficients and complex interfaces based on the correction function method. *Journal of Scientific Computing*, 91(1):??, April 2022. CODEN JSCOEB. ISSN 0885-

[Liu:2022:NSM]

[Jiang:2022:LCR]

[Manohar:2022:LPE]

[Gosea:2022:DDM]

[Liu:2022:IHS]

[Luo:2022:OEE]
REFERENCES

[3098] A. Bermúdez, B. López-Rodríguez, and P. Venegas. Numerical solution of an axisymmetric eddy current model with current and voltage exci-

Veilleux:2022:SSD

Bevilacqua:2022:OIC

Peng:2022:RBM

Mossier:2022:ADG

Wang:2022:LCB

Li:2022:CPP

Cao:2022:OSC

Safari:2022:CAL

Shi:2022:NPA

Ji:2022:IRT

Lindblad:2022:MAM

Ri:2022:NCU

REFERENCES

[3116] Xiaojun Ma, Hongwei Liu, and Xiaoyin Li. Two optimization approaches for solving split variational inclusion problems with applications. *Journal of Scientific Computing*, 91(2):??, May 2022. CODEN JSCOEB.
REFERENCES

Arbogast:2022:RWR

Gnanasekaran:2022:HOF

Wang:2022:CAF

Aretaki:2022:EHO

Kang:2022:ESB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zheng:2022:TCF

Ding:2022:MFG

Grant:2022:PRK

Balcells-Quintana:2022:CIG

Fu:2022:EFE

Fatone:2022:DMM

REFERENCES

Zhong:2022:SAF

Wang:2022:NMD

Chen:2022:PPE

Schneider:2022:EGI