A Complete Bibliography of Publications in *The Journal of Scientific Computing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
06 March 2018
Version 1.20

Title word cross-reference

\[M \] [1653, 1970]. \(O(N \log N) \) [1218]. \(N \) [199, 621, 1611]. \(n^n-n^n \) [1284]. \(o(1/k) \) [1818]. \(O(2) \) [1048].

\[p \]
[295, 547, 640, 673, 808, 1049, 1491, 1893, 1895, 1999]. \(p(x) \) [1490]. \(P_1 \)
[1064, 1165, 1371, 1659]. \(P_N \) [976]. \(P_N P_M \) [1107, 1329]. \(Q_4 \) [181]. \(R^2 \) [978]. \(R^n \)
[998]. \(\tau \) [1202]. \(\theta \) [576]. \(V \) [1997]. \(x^{(k)} = b^{(k)} \) [629]. \(Z_2 \) [933].

/3 [1400].

2 [1400].

3D [1557].

4th [1917].

5 [182].

90 [182].

Balancing [201]. Bandwidth [1822]. Barotropic [874].
Barriers [314]. Barzilai [1318, 1595]. Base [1559]. Based
[132, 218, 225, 231, 236, 238, 241, 257, 276, 295, 356, 376, 407, 414, 418, 564, 603,
618, 634, 668, 671, 721, 732, 823, 892, 906, 911, 912, 943, 951, 967, 970, 986, 999,
1007, 1008, 1036, 1071, 1120, 1121, 1130, 1138, 1160, 1178, 1185, 1208, 1224, 1237,
1248, 1252, 1289, 1294, 1302, 1305, 1307, 1310, 1348, 1364, 1426, 1482, 1523, 1533,
1543, 1552, 1570, 1571, 1575, 1587, 1641, 1670, 1679, 1685, 1691, 1699, 1700, 1713,
1742, 1746, 1754, 1758, 1810, 1834, 1836, 1851, 1861, 1872, 1883, 1902, 1913, 1941,
Basis [125, 153, 244, 333–335, 631, 863, 883, 988, 992, 1010, 1039, 1164, 1263, 1358,
Batch [1306]. Battle [241]. Bayesian [162, 1250, 1289, 1393]. BDF
[638, 971, 1535, 1762]. BDF2 [1769]. Be [315]. Beam [1548]. Beams
Beltrami [121, 1004, 1020, 1297, 1405, 1496]. BEM [1638]. Benchmarks
[973]. Bending [1548]. Benjamin [1868]. Bernoulli [1286, 1287]. Bessel
[135, 122]. Better [315]. Between
[183, 1115, 1256, 1263, 1337, 1408, 1624, 1651]. Beyond [546, 702]. BGK
[129, 130, 204, 299, 628, 900, 984, 1177]. BGK-Collision [1177]. Bi
[72, 511, 1023, 1641]. Bi-Harmonic [1641]. Bi-Hyperbolic [511]. Bi-level
[72]. Bi-Orthogonal [1023]. BiCGStab [1657]. Bidiagonal [1421].
Bidomain [406]. Bifurcating [844, 854]. Bifurcation
[933, 1048, 1090, 1182, 1449, 1904]. Big [1807]. Biharmonic
[448, 608, 717, 771, 908, 1076, 1273, 1442, 1734, 1775, 1977]. Bilinear [1424].
Bimaterial [1865]. Binary [252, 1396]. Biofilm
[1002, 1021]. Bioreactor [829]. Biorthogonal [908, 1571]. Biot
[586, 1041]. Bloch [1771]. Block
[432, 451, 632, 1481, 1564, 1580, 1637, 1684, 1731, 1818, 1872, 1878, 1900, 1901,
1943, 2000]. Block-Centered [1878, 2000]. Block-Oriented [1481]. Blocks
Body [289, 647, 1838]. Boiling [379]. Boltzmann
[129, 183, 255, 286, 593, 600, 604, 663, 900, 912, 931, 970, 984, 1011, 1043, 1050,
1071, 1100, 1106, 1172, 1177, 1259, 1315, 1326, 1330, 1337, 1368, 1696]. Bona
Borwein [1318, 1595]. Borwein-Like [1595]. Bose [734, 1420, 1910]. Both
[105, 674, 1635]. Boundary
[4, 7, 15, 25, 56, 81, 99, 112, 144, 185, 197, 224, 227, 262, 272, 280, 289, 291, 297,

Convection-Diffusion

Convection-Dominated

Convecive

Convergence

Convergent

Converter

Convex

Convexified

Convexity

Convexity-preserving

Convolutional

Cooling

Coordinate

Coordinates

Core

Core-Annular

Corner

Corners

Corrected

Correction

Correlated

Correlation

Correlations

Corrupted

Cost

Costly

Coupled

Coupling

Covariance

CPMG

CPR

Crank

Criteria

Criterion

Critical

Crouzeix

Crystal

Crystals

CT

Cubature

Cubed

Cubed-Sphere

Cubic

Cubical
cuboidal

CUDA

Curl

Current

Curse

Curvature

Curvatures

Curvilinear

Curved Interface

Curves

Curvilinear

Cut

CWENO

Cycle

Cylinder

Cylindrical

Czochralski

Darcy

Data

Darwin

Data-Driven

Data-Fidelity
Elliptical [413]. ELPIC [168]. Embedded [246, 762, 787, 1827]. Emission [1008].

Envelope [29, 79]. Environment [1680].

Finite
19

[287, 457, 661, 732, 733, 758, 766, 781, 786, 904, 930, 981, 1013, 1023, 1070, 1247, 1319, 1442, 1491, 1751, 1810, 1928, 1930].

Galerkin/Finite-Element [1324].

Galerkin/Finite-Element

Games [1940]. Gap [351].

Gas [120, 296, 298, 347, 667, 1133].

Gauge [1226].

Gauss [258, 369, 528, 1051, 1142, 1185, 1280, 1691, 1834].

Gauss-Type [1280].

Gaussian

Gegenbauer [415].

Gene [1005].

General [279, 299, 479, 588, 1166, 1192, 1214, 1322, 1471, 1659, 1696, 1778].

Generalised [1024]. Generalization [356, 677, 1276]. Generalized

Generate [1926].

Generated [1323]. Generating [543, 1820].

Generation [105, 225, 469].

Generic [932, 1256, 1257, 1619].

Genetic [359].

Genuinely [1138].

Genus [167x]

Geodesic [1761].

Geodetic

Geodetic

Geometric

Geometric

Geometrical

Geometries [202, 305, 588, 702, 1122, 1140, 1321, 1345].

Geometrical [375, 955, 1655].

Geostrophic [980]. GePUP [1619].

Ghost [688, 694, 796].

Gibb [429].

Gibbs [567, 570].

Ginzburg [1071, 1315, 1414].

Glerkin [1369].

Global [362, 910, 941, 1255, 1551].

Globally [356, 1284, 1872, 1934].

Globally-Hyperbolically-Closed [1284].

Goal [1050, 1626, 1835].

Goal-Oriented

[1050, 1626, 1835].

Godunov [348, 662, 1205].

Golub [1493].

Good [1921].

Gordon [1100].

Governed

[740, 754, 795, 1461, 1553, 1588, 1898].

Governing [382, 1718].

GPU [1183, 1369, 1384].

GPU-Accelerated [1369].

GPU-Implementation [1384].

GPUs [944, 1276].

Grad [517, 1556].

Grad-div [1556].

Graded

[613, 1136].

Gradient

Gradient-Augmented [1520].

Gradient-Preserving [1800].

Gradients [1946].

Grain [40, 674, 1394].

Graining [713].

Gramicidin [293].

Grand [574].

granular [120].

graphical [38].

Graphs [780, 1009].

Gratings [888].

Gravitational

[1133, 1592].

Gravity [457, 1832].

Greedy [1223].

Green [458, 942, 1841].

Grid [105, 201, 225, 298, 340, 408, 410, 414, 416, 469, 512, 583, 606, 615, 906, 927, 930, 975, 979, 1069, 1098, 1155, 1159, 1178, 1204, 1308, 1310, 1317, 1348, 1577, 1582, 1667, 1683, 1741, 1824, 1878, 1954, 1972].

Grid-Based

[414].

Grid-Insensitive [1824].

Gridding [1338].

Grids

[262, 404, 613, 630, 730, 750, 956, 1027, 1136, 1240, 1244, 1332, 1336, 1419, 1424, 1481, 1492, 1495, 1558, 1574, 1665, 1675, 1676, 1705, 1711, 1736, 1745, 1809, 1824, 1858, 1884, 1900, 1922].

Gross [1262].

Ground [1420, 1910].

Group

Increasing
Indefinite
Indentation
Indicators
Indirect
Inf
Inf-sup
inferior
Infiltration
Infinite
Infinite-Dimensional
Infinities
Inflow
Inflow-Based
Influence
Inherent
Inhibiting
Inhibition
Inhomogeneous
Initial-boundary
Initial-Value
Initial-valued
Initial/Final
Integration
Integrator
Integrators
Integro
Integro-Differential
Inte
Intensive
Interacting
Interaction
Interface
Interfaces
Interfacial
Interior
Intermediate
Interpolants
Interpolated
Interpolation
Interpolatory
Interval
Intervals
Intrinsically
Introduced
Introduction
Introductory
Intrusive
Invariant
Invariants
Inverse
IP
IPDG
Irregular
Irregularly
Isentropic
Isogeometric
Isotropic
Isotropy [663]. Isoviscous [1992].

IV [371].

Jacobi-Free [487, 1669]. Jacobi-Free [487, 1669].

Jacobian [487, 1564, 1669]. Jacobian-Free [487, 1669].

Kuznetzov [1939].

1549, 1614, 1721, 1727, 1755, 1786, 1797, 1846, 1869. **Low-Dimensional** [478]. **Low-Dissipation** [1170]. **Low-Mach** [1869]. **Low-Rank** [1186, 1755, 1846]. **Low-Regularity** [897]. **Low-Reynolds** [151]. **Low-Storage** [1249, 1325, 1357, 1620]. **Lower** [1249, 1325, 1357, 1846]. **Lower/Upper** [1249, 1357]. **LPS** [1613]. **LSQ** [111]. **Lucy** [1987].

Nonsmooth [1173, 1318, 1360, 1751, 1857, 1920]. nonsteady [3].
Optimality
[812, 1141, 1413, 1915]. Optimally [1944]. Optimisation [468].
Optimisation-Based [1746].
Optimized [218, 514, 632, 1170, 1526, 1552, 1877].
Option [1214, 1503]. Options [654, 755, 759, 824, 852, 1063, 1242].
Orbits [401, 413]. Order [202, 244, 268, 282, 318, 326, 330, 343, 373, 422, 440, 480, 485, 505, 516, 525, 528,
529, 552, 598, 624, 632, 662–664, 679, 731, 748, 762, 772, 782, 816, 865, 867–869, 923, 932, 939, 944, 967, 972, 1018, 1076, 1077, 1118, 1147, 1155, 1159, 1161,
1191, 1192, 1205, 1223, 1261, 1274, 1277, 1286, 1287, 1296, 1299, 1314, 1323, 1332,
1382, 1424, 1446, 1496, 1519, 1522, 1525, 1546, 1566, 1568, 1576, 1613, 1622, 1645,
1666, 1687, 1689, 1695, 1702, 1707, 1724, 1750, 1760, 1820, 1843, 1858, 1860, 1874,
1890, 1899, 1934, 1936, 1942, 1944, 1962].
Order [239, 251, 254, 275, 277, 278, 281, 283, 306, 311, 315, 320, 339, 357, 366, 368, 483,
486, 519, 533, 565, 583, 586, 589, 605, 648, 673, 728, 730, 739, 778, 799, 843, 862,
883, 921, 950, 977, 987, 1012, 1017, 1027, 1054, 1079, 1080, 1095, 1098, 1105, 1113, 1128,
1140, 1143, 1222, 1228, 1269, 1276, 1284, 1336, 1348, 1355, 1368, 1380, 1430, 1438,
1457, 1460, 1464, 1465, 1486, 1502, 1503, 1531, 1558, 1562, 1584, 1587, 1591, 1609,
1646, 1649, 1651, 1660, 1668, 1735, 1748, 1759, 1765, 1772, 1780, 1791, 1794, 1796,
547, 548, 550, 579, 580, 582, 607, 638, 656, 681, 732, 736, 764, 801, 815, 820, 821,
890, 897, 904, 917, 971, 981, 999, 1040, 1043, 1044, 1051, 1051, 1071, 1093, 1110, 1133,
1166, 1195, 1208, 1233, 1238, 1291, 1328, 1346, 1354, 1373, 1442, 1477, 1494, 1534,
1543, 1574, 1605, 1615, 1616, 1619, 1623, 1632, 1667, 1690, 1732, 1754, 1762, 1799,
Orthogonality [105, 1243, 1857]. Orthonormal [998].
Oscillating [222, 397]. oscillation [1077]. Oscillator [1837]. Oscillatory [675, 928, 1030, 1101, 1117, 1156, 1383, 1448, 1584, 1594, 1825, 1884, 1889, 1979].
Overapproximating [387]. Overcoming [1940]. Overlapping [448, 518, 750, 1364, 1409, 1703, 1877]. Overset [583].
726, 832, 894, 943, 978, 1067, 1122, 1173, 1261, 1356, 1363, 1408, 1461, 1553, 1567,
1615, 1635, 1681, 1690, 1698, 1719, 1739, 1762, 1763, 1809, 1878, 1879, 1951].

[143, 224, 313, 934, 1019, 1312, 1410, 1501].

Pressure-Stabilized [1501].

Prestige [1777].

Price [755, 759, 824].

Pricing [654, 1063, 1214, 1503].

Primal [770, 892, 1637, 1731, 1914].

Primal-Dual [1637, 1914].

Primitive [370, 874].

Principle [139, 356, 981, 1228, 1389, 1464, 1605, 1787, 1795, 1816].

Principle-Satisfying [1464].

Prior [1289, 1523, 1786].

Priori [333, 500, 608, 740, 1436, 1498, 1553, 1588, 1728].

Priors [682].

Prism [1161].

Probabilistic [832, 1217].

Probabilities [214].

Probability [73, 783].

Probe [1947].

Problems [24, 28, 29, 34, 35, 43, 59, 71, 77, 89, 102, 106, 107, 111, 124, 126, 140, 144, 155, 171, 185, 194, 828, 854, 855, 971, 1555].

Procedure [186, 1056, 1115, 1799, 1825].

Procedures [363].

Process [1342].

Processors [122, 234, 1214].

Processing [6, 92, 172, 397, 526, 559, 881, 1060, 1306].

Processes [108, 237].

Product [462, 695, 746, 1216].

Production [319, 840].

Professor [90].

Professor [1677].

Programs [210].

Project [1188].

Projection [176, 192, 345, 841, 989, 993, 1619, 1625, 1634, 1650, 1971, 1976, 1982].

Projections [387, 1587].

Projectors [1028].

Prolate-Element [918].

Proof [882, 1474].

Proofs [844, 854].

propagating [28].

Propagation/Circulation [1268].

Propagations [753].

Propagator [1082].

Properties [70, 361, 502, 516, 610, 684, 1072, 1096, 1352, 1413, 1659].

36

Recovery-Based [1533]. Rectangular
[81, 124, 598, 700, 702, 919, 983, 1177, 1238, 1240, 1474, 1511, 1844]. recurrence
[1181]. Recursive [1041]. Redistancing [1394]. Redistribution [659, 1151]. Reduced
[20, 415, 1308, 1366, 1493, 1580]. Reference [1072]. Reference-to-Physical
[1072]. Refinement [371, 792, 1213, 1384, 1543, 1895]. Refinements
[1755]. Reflectance [806]. Reflecting [757, 1379, 1686]. Reflection [1450]. Region
[852, 1242, 1833, 1869]. Region [123, 1960]. Regions
[133, 1148, 1672, 1673]. Registration [1005]. Registrations [1004, 1020]. Regression
[1250]. Regularisation [1998]. Regularity [290, 897, 1797]. Regularization
[396, 727, 901, 960, 1120, 1188, 1212, 1215, 1389, 1712, 1773, 1786, 1886, 1900]. Regularized
[435, 716, 826, 1680]. Relation [176, 1365, 1421]. Relations [1564]. Relationships
[1256]. Relative [806, 1817]. Relativistic [1927]. Relaxation
[274, 399, 484, 804, 1172, 1361, 1415, 1629, 1696, 1877]. Relaxations [137, 1185]. Relaxed
[61, 1677, 1985]. Removing [1575]. Renormalization [2, 37, 55, 64, 104, 231, 236, 247, 562]. Representation
[57, 1614]. Requiring [845]. Reseeding [1478]. Reservoir [627]. Residual
[97, 295, 596, 867, 954, 1216, 1377, 1403, 1466, 1893]. Residual-Type [1466]. Residuals
[1558]. Resistance [1402]. Resistive [470]. Resolution
[57, 94, 154, 176, 188, 347, 378, 427, 512, 727, 901, 995, 1083, 1122, 1289, 1458, 1670, 1926, 1945]. Resolving
[498, 2003]. Restoration
[376, 650, 668, 886, 1121, 1129, 1212, 1290, 1360, 1523, 1628]. restoring [146]. Restricted
[586]. Restrictions [991]. Resulting [1829]. Results
[721]. Richardson [133, 1029, 1196, 1292, 1987]. Riemann
[804, 884, 940, 943, 1106, 1147, 1302, 1713]. Riesz [1820]. Rigid
[355]. Rigorous [1257, 1854]. Ring [1610]. RKDG
[444, 1160, 1671, 1733, 1931]. RKDG2 [985]. RNG [240]. Roadmap [1804]. Robin
[1686]. Robust [91, 184, 312, 337, 736, 909, 1130, 1131, 1311, 1317, 1434, 1441, 1466, 1642, 1706, 1737]. Robustness [709, 1945]. Rods [1720]. Roe
Runs [752]. Ruptures [1140].

Saint-Venant [1409]. satisfaction [81]. Satisfying [617, 632, 906, 1745].
Scalars [166, 393]. Scale [46, 49, 101, 129, 166, 176, 353, 674, 710, 847, 960, 1188, 1319, 1333, 1395, 1563, 1580, 1654, 1746, 1805].
Scales [965, 1168]. Scans [1008]. scattered [14].
Scattering [244, 246, 260, 888, 1092, 1359, 1656, 1744, 1874, 1881, 1897].

Subsurface [770, 1524]. Subtraction [1409]. Subtractional [421].
Sufficient [1480]. Sufficienly [965]. Suitable [961, 1805]. Suliciu [804].
Tailored [703, 791, 836, 855, 924, 977, 1747, 1908]. Tails [1183]. Tau [815].
Transport

Transpose

Transverse

Trapezoidal

Treat

Treatment

Tree

Tri-linear

triangles

Triangular

Triangulated

Triangulation

Tridiagonal

Trigonometric

Triple

Trivial

Truncation

Trust

Tsunami

Tube

Tubular

Tukey

Tumor

Tunable

Tunneling

Turbulence

Turbulent

Turing

TV

TV-Regularization

TV-Stokes

TVD

Two

Two-Body

Two-Component

Two-Derivative

Two-Dimensional

Two-Equation

Two-Fluid

Two-Grid

Ultrashort

Ultrasound

Unbounded

Uncertainty

Unconditional

Unconditionally

Unconstrained

Volume-Augmented [1102]. Volume-Complete [893].
Vortex [59, 311, 388, 458]. Vorices [393]. Vorticity [934, 1390].
Vries [1633, 1944, 1974]. vs [182, 357].
Weakly-Intrusive [1530]. Weighted [580, 732, 928, 1028, 1030, 1077, 1320, 1448, 1575, 1584, 1587, 1594, 1689, 1726, 1811, 1847, 1884, 1886, 1924, 1979].
Weighting [1115]. Weights [258, 1248, 1314, 1584]. Well [87, 99, 548, 936, 948, 952, 957, 998, 1033, 1102, 1133, 1179, 1197, 1409, 1558, 1592, 1597, 1621, 1804, 1830, 1832, 1993]. Well-Balanced [548, 936, 948, 952, 957, 1033, 1102, 1133, 1179, 1197, 1409, 1558, 1592, 1597, 1621, 1830, 1832].
Wormhole [2000].
X [1053, 1120, 1569]. X-HDG [1569]. X-Ray [1120].

Yawed [337]. Yee [750].
Zabolotskaya [1939]. Zakharov [507, 1271]. Zenith [806]. Zeroes [218].
Zonal [36, 1822]. Zone [521, 1157]. zones [142].

References

REFERENCES

REFERENCES

Anonymous:1987:IA

Dubiner:1987:AAS

Goldhirsch:1987:EMC

Morison:1987:SDF

REFERENCES

Dattoli:1992:ANR

Berger:1992:HGM

Yakhot:1992:AQT

Whang:1992:NAC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mehrabi:1995:PIF

Trayner:1995:NTS

Miller:1995:SSS

Schumann:1995:PST
REFERENCES

REFERENCES

[176] Sang Kyu Yang and Charlie H. Cooke. Multi-resolution analysis on the interval with natural spline projection and uniform two-
REFERENCES

REFERENCES

REFERENCES

Ierley:1997:CSS

Nguyen:1997:LSE

Yang:1997:PGM

Eckhoff:1997:HON

Tomboulides:1997:NSL

Chen:1997:TPT

Oh:1997:SDD

Cunha:1997:SIA

vanderHouwen:1997:SMT

Marco:1997:AMO

REFERENCES

Kastner:1997:SET

Funaro:1997:IPI

Succi:1997:LKT

Wu:1997:PSC

Zheligovsky:1997:OIM

[218] V. A. Zheligovsky and O. M. Podvigina. An optimized iterative method for numerical solution of large systems of equations based on the ex-
REFERENCES

Janardhan:1998:NFM

Funaro:1998:SMU

Liou:1998:TIM

Puppo:1998:BSS

Shalman:1998:AAD

REFERENCES

REFERENCES

REFERENCES

Banerjee:1998:EAA

Qian:1998:NFO

Zhang:1998:TER

Leu:1998:CBL
REFERENCES

REFERENCES

REFERENCES

[256] George Kvernadze, Thomas Hagstrom, and Henry Shapiro. Locating discontinuities of a bounded function by the partial sums of its

REFERENCES

REFERENCES

[274] Chalabi:2000:RSH

REFERENCES

[280] Bengt Eliasson. Outflow boundary conditions for the Fourier transformed one-dimensional Vlasov–Poisson system. Journal of Sci-
REFERENCES

REFERENCES

REFERENCES

Liu:2001:SPE

Despres:2001:CDC

Budd:2001:MSN

Singh:2001:PUD

REFERENCES

REFERENCES

Ruuth:2002:TBS

Schonauer:2002:HOM

Schwartzkopff:2002:AHO

Kress:2002:DCM

Furst:2002:ASO

REFERENCES

[323] Stefano Berrone and Laurent Emmel. Towards a realization of a wavelet Galerkin method on non-trivial domains. *Journal of Scien-
REFERENCES

REFERENCES

REFERENCES

Chertock:2002:PMK

Gelb:2002:ABC

Dijkstra:2002:DDP

Naess:2002:MFG

REFERENCES

Jameson:2003:AVH

Chorfi:2003:HGS

Liu:2003:VGA

Lie:2003:IQR

REFERENCES

REFERENCES

REFERENCES

Bertalmio:2003:TBI

Cheng:2003:CSA

Duraisamy:2003:CAT

Esmaeili:2003:CEB

Gibou:2003:LSA

He:2003:NSP

Hudson:2003:FNA

Ito:2003:SNP

Jin:2003:ESS

Kruzik:2003:CMM

REFERENCES

Sebastian:2003:MWF

Smereka:2003:SIL

Steinhoff:2003:CCV

Sussman:2003:DSE

REFERENCES

REFERENCES

Chehab:2004:TES

Pennacchio:2004:MFE

Sjogreen:2004:MWB

Luong:2004:AMG

Kabakian:2004:UGB

Gelb:2004:POR

Anonymous:2004:EAM

Bouchut:2004:AES

REFERENCES

138

REFERENCES

REFERENCES

Zhang:2004:HOC

Broeckhoven:2004:FVF

Monnier:2004:ALH

Rousseau:2004:BLO

REFERENCES

Adjerid:2005:SDF

Arnold:2005:FDG

Bokhove:2005:FDD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gottlieb:2005:HOS

Pareschi:2005:IER

Carpenter:2005:FOR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[520] Z. Belhachmi, C. Bernardi, S. Deparis, and F. Hecht. An efficient discretization of the Navier–Stokes equations in an axisym-
REFERENCES

REFERENCES

Gottlieb:2006:OSS

Guo:2006:OSG

Kurganov:2006:ACU

Leriche:2006:DNS

Sofronov:2006:SAG

Staalberg:2006:HOA

Talbot:2006:PSM

Wan:2006:BWA

Xenophontos:2006:UCE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[565] Sigal Gottlieb, David Gottlieb, and Chi-Wang Shu. Recovering high-order accuracy in WENO computations of steady-state hyperbolic sys-

REFERENCES

Lax:2006:GP

Maday:2006:SAS

Orszag:2006:TEK

Ryabenkii:2006:MDP

REFERENCES

[579] Yong-Tao Zhang, Hong-Kai Zhao, and Jianliang Qian. High order
JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/article/10.1007/s10915-005-9014-3;
http://link.springer.com/content/pdf/10.1007/s10915-005-9014-
3; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=29&issue=1&spage=25-56.

[580] Susana Serna and Jianliang Qian. Fifth-order weighted power–ENO
005-9015-2; http://link.springer.com/content/pdf/10.1007/s10915-
005-9015-2; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=29&issue=1&spage=57-81.

[581] Steinar Evje and Tore Flåtten. CFL-violating numerical schemes for a
005-9000-9; http://link.springer.com/content/pdf/10.1007/s10915-
005-9000-9; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=29&issue=1&spage=83-114.

[582] H. C. Yee and Björn Sjögren. Efficient low dissipative high order
schemes for multiscale MHD flows, II: Minimization of $\Delta \cdot B$
005-9004-5; http://link.springer.com/content/pdf/10.1007/s10915-
005-9004-5; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=29&issue=1&spage=115-164.
REFERENCES

REFERENCES

[600] Matthias K. Gobbert, Samuel G. Webster, and Timothy S. Cale. A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/
REFERENCES

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-006-9097-5;
issn=0885-7474&volume=30&issue=3&spage=369-387.

http://link.springer.com/content/pdf/10.1007/s10915-006-9098-4;

http://link.springer.com/content/pdf/10.1007/s10915-006-9099-3;

[607] Arne Taube, Michael Dumbser, and Dinshaw S. Balsara. Arbitrary
http://link.springer.com/content/pdf/10.1007/s10915-006-9101-0;
issn=0885-7474&volume=30&issue=3&spage=441-464.

[608] Igor Mozolevski, Endre Süli, and Paulo R. Bösing. hp-version a
priori error analysis of interior penalty discontinuous Galerkin finite

Han Chen, Chohong Min, and Frédéric Gibou. A supra-convergent finite difference scheme for the Poisson and heat equations on ir-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kloucek:2007:ACB

Diener:2007:OHO

Ohmori:2007:FFF

Lorcher:2007:DGS

REFERENCES

REFERENCES

191

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Selle:2008:USM

Yokoi:2008:NMF

Gelb:2008:DES

Liu:2008:NSF

REFERENCES

[703] Houde Han, Zhongyi Huang, and R. Bruce Kellogg. A tailored finite point method for a singular perturbation problem on an un-

REFERENCES

[716] R. Glowinski, T. Kärkkäinen, T. Valkonen, and A. Ivanikov. Nonsmooth SOR for L^1-fitting: Convergence study and discussion of re-

REFERENCES

[733] Qiang Zhang and Zi-Long Wu. Numerical simulation for porous medium equation by local discontinuous Galerkin finite element

Wang:2009:NSS

Walfisch:2009:OSS

Zhu:2009:RHO

Chniti:2009:IIC

M. Sandu:2009:MEA

Gottlieb:2009:HOS

F. Fu:2009:PEE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[767] Susanne C. Brenner, Thirupathi Gudi, and Li yeng Sung. A posteriori error control for a weakly over-penalized symmetric interior

REFERENCES

[780] Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. *Journal of
Zhu:2009:ADG

Abarbanel:2009:LTP

Jung:2009:EPD

Sarra:2009:EDF

Hughes:2009:BLA

Zhang:2009:SDG

Kupiainen:2009:CEB

Rahunathan:2009:SIC

[793] Liang Ge, Wenbin Liu, and Danping Yang. Adaptive finite element approximation for a constrained optimal control problem via multi-

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-009-9300-6;

asymptotically stable semi-Lagrangian scheme in the quasi-neutral
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
009-9302-4; http://link.springer.com/content/pdf/10.1007/
s10915-009-9302-4; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=41&issue=3&spage=341-365.

[799] Ken Mattsson, Frank Ham, and Gianluca Iaccarino. Stable bound-
ary treatment for the wave equation on second-order form. Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9305-
1; http://www.springerlink.com/openurl.asp?genre=article&

[800] Chang-Yeol Jung and Roger Temam. Finite volume approxima-
tion of one-dimensional stiff convection–diffusion equations. Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9304-
2; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=41&issue=3&spage=384-410.

[801] Ming Xiang, Shaozhong Deng, and Wei Cai. A sixth-order im-
age approximation to the ionic solvent induced reaction field. Jour-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/content/pdf/10.1007/s10915-009-9307-
REFERENCES

Adrian Sescu, Abdollah A. Afjeh, Ray Hixon, and Carmen Sescu. Conditionally stable multidimensional schemes for advective equa-

[827] Pengtao Sun, Long Chen, and Jinchao Xu. Numerical studies of adaptive finite element methods for two dimensional convection-

vandenDoel:2010:MLS

Alvarez-Vazquez:2010:OMB

Lin:2010:NST

Bodony:2010:ASA

REFERENCES

REFERENCES

Yasuda:2010:TPS

Celiker:2010:HDG

Wise:2010:USF

Yang:2010:NAA

[861] D. Sármány, F. Izsák, and J. J. W. van der Vegt. Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-

REFERENCES

REFERENCES

REFERENCES

Chertock:2010:FEO

Cockburn:2010:CHM

Fishelov:2010:RDP

[887] Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby. Quantification of errors introduced in the numerical approximation and

REFERENCES

Zhang:2011:UPD

tenThijeBoonkkamp:2011:FVC

Pani:2011:LDG

Vergara:2011:NMD

REFERENCES

REFERENCES

Yang:2011:PTG

Lu:2011:SSW

Feng:2011:AGM

Zeiser:2011:FMV

REFERENCES

Chaudhry:2011:FEA

Dedner:2011:GSA

Cliffe:2011:APE

Abdellatif:2011:SDA
REFERENCES

REFERENCES

REFERENCES

[Simeoni:2011:RCU]

[Xing:2011:AWB]

[Salvetti:2011:P]

[Berselli:2011:HLE]

[Graham:2011:ESS]

REFERENCES

http://link.springer.com/article/10.1007/s10915-010-9428-4;
http://link.springer.com/content/pdf/10.1007/s10915-010-9428-4;
issn=0885-7474&volume=49&issue=1&spage=21-34.

Ye:2011:NMB

delSastre:2011:EAF

Abbas:2011:FOH

Simpson:2011:SWB

REFERENCES

Griesmaier:2011:EAH

Bi:2011:TGD

Frank:2011:AFE

Huang:2011:TFP

[986] Chunlin Wu, Juyong Zhang, Yuping Duan, and Xue-Cheng Tai. Augmented Lagrangian method for total variation based image restora-
REFERENCES

Kormann:2012:DSS

Deparis:2012:SRB

Laminie:2012:DPP

Hahn:2012:ALM

Hundsdorfer:2012:SRB

Dede:2012:RBM

Alexanderian:2012:MSP

Kozdon:2012:IWF
Christensen:2012:CCH

Celiker:2012:NSS

Jameson:2012:NLS

Xin:2012:WCO

REFERENCES

vanderPijl:2012:EBM

Gelb:2012:SIM

Wang:2012:MDE

Zhang:2012:NSR

Stefan:2012:SEE

Lui:2012:OSR

Lin:2012:GED

Turnes:2012:ECD

REFERENCES

REFERENCES

REFERENCES

Lui:2012:EOS

Zhang:2012:ENS

Yuan:2012:ADM

Zhou:2012:GMS

REFERENCES

285

REFERENCES

REFERENCES

BELGACEM:2012:LCL

KESTLER:2012:AWM

HUANG:2012:MNF

HAO:2012:CAB

XIE:2012:CAS

Ziqing Xie, Xianjuan Li, and Tao Tang. Convergence analysis of spectral Galerkin methods for Volterra type integral equa-

REFERENCES
REFERENCES

REFERENCES

Leykekhman:2012:ICP

Hongying:2012:CLD

Nissen:2012:SNG

Boonkkamp:2012:ECF

[1108] Sangita Yadav, Amiya K. Pani, and Neela Nataraj. Superconvergent discontinuous Galerkin methods for linear non-selfadjoint and indefinite

Zou:2013:NHE

Zhai:2013:FFO

Li:2013:NSP

Sidi:2013:CNQ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bi:2013:PEE

Abreu:2013:NMD

Chen:2013:RCM

Brenner:2013:AFE

Tang:2013:HOC

[1166] Tao Tang, Hehu Xie, and Xiaobo Yin. High-order convergence of spectral deferred correction methods on general quadrature nodes.

Guzman:2013:NLB

Hegele:2013:RLB

Liu:2013:SAI

Bollermann:2013:WBR

Huang:2013:CDG

REFERENCES

Yan:2013:ELR

Qi:2013:WCF

Martin:2013:PTR

Chen:2013:FFG

Kang:2013:ABM

Fuselier:2013:HOK

Cao:2013:SOF

Le:2013:FMS

Li:2013:AMM

REFERENCES

REFERENCES

Svard:2014:ESS

Hu:2014:AEL

Cordier:2014:PAD

Ovadia:2014:NMT

Winters:2014:HOL

REFERENCES

327

Zhao:2014:CFA

Zarghami:2014:HPM

Zhang:2014:EAC

Feng:2014:LDG

Wang:2014:OPW

REFERENCES

REFERENCES

REFERENCES

Lewis:2014:CAS

Chun:2014:MMF

Wang:2014:SJG

Tian:2014:LDG

Williams:2014:ESF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Abgrall:2014:RFV

Johnston:2014:LPB

DAmbrosio:2014:LTS

Arandiga:2014:WDM

Zhang:2014:TDL

[1320] Debojyoti Ghosh and James D. Baeder. Weighted non-linear compact schemes for the direct numerical simulation of compressible, tur-

REFERENCES

Hu:2014:LBE

Yang:2014:CLB

DAmore:2014:SAV

Yang:2014:PDD

Shi:2014:FHC

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9829-x;
http://link.springer.com/content/pdf/10.1007/s10915-014-9829-
x.pdf.

z.pdf.

4.pdf.

REFERENCES

Ji:2014:SCI

Huang:2014:NSS

Xia:2014:FSM

Massing:2014:SNF

REFERENCES

Xu:2015:DLS

Ashwin:2015:KEC

Deng:2015:NAF

Zhao:2015:CCN

Warzynski:2015:RKR

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9882-5;

REFERENCES

Suncica Canic, Benedetto Piccoli, Jing-Mei Qiu, and Tan Ren. Runge–Kutta discontinuous Galerkin method for traffic flow model
REFERENCES

REFERENCES

Lou:2015:CSR

Sun:2015:IMF

Salgado:2015:CAF

Wang:2015:EIS

Jiang:2015:HOE

Schutz:2015:FSS

Linke:2015:GEE

Zhang:2015:WGF

Hesthaven:2015:HPT

Chen:2015:LFM

REFERENCES

Montijano:2015:FFE

Ji:2015:HOC

Shen:2015:SPE

Lemoine:2015:DHH

Pinto:2015:TSP

REFERENCES

Guo:2015:MPS

Kim:2015:CCH

Du:2015:RRT

Boulakia:2015:SSE

Su:2015:SPN

REFERENCES

REFERENCES

[1474] Li:2015:SPP

[1477] Zeng:2015:SOS

REFERENCES

[1496] Sheng-Gwo Chen, Mei-Hsiu Chi, and Jyh-Yang Wu. High-order algorithms for Laplace–Beltrami operators and geometric invariants over

[1508] F. Guillén-González and J. Koko. A splitting in time scheme and augmented Lagrangian method for a nematic liquid crystal problem. *Journal...

REFERENCES

383

Zhao:2016:SAS

Baccouch:2016:RBE

Yu:2016:SMF

Gao:2016:UOE

deFrutos:2016:LEE

REFERENCES

REFERENCES

REFERENCES

Carr:2016:MFP

Gong:2016:FEM

Fu:2016:SMF

Fu:2016:ESM

deFrutos:2016:GDS

REFERENCES

REFERENCES

[1574] Oisin Tong, Aaron Katz, Yushi Yanagita, Alex Casey, and Robert Schaap. High-order methods for turbulent flows on three-dimensional

Barkouki:2016:ARB

Mirzargar:2016:SIA

Zhang:2016:SGS

He:2016:ISA

Kim:2016:MNL

Kolev:2016:MPR

REFERENCES

REFERENCES

REFERENCES

Wang:2016:PMF

Eigel:2016:EPE

Sheshadri:2016:SFR

Sheshadri:2016:ESF

Yang:2016:HOM

REFERENCES

Liu:2016:NMG

Wong:2016:FSM

Deng:2016:TLS

Qian:2016:BEH

Lee:2016:IBM

REFERENCES

Zhu:2016:FHO

Xiong:2016:PPP

Heryudono:2016:PRB

Zhao:2016:LSC

Zhang:2016:GGP

Das:2016:LSP

Oberman:2016:AFD

Yu:2016:NIF

Lee:2016:BDM

Heuer:2016:SCL

Chen:2016:CEE

vanLith:2016:NSL

He:2016:SEM

Chen:2016:APU

Wang:2016:HDG

Shuqin Wang, Jinyun Yuan, Weihua Deng, and Yujiang Wu. A hybridized discontinuous Galerkin method for 2D fractional convection-

[1658] Shuqin Wang, Jinyun Yuan, Weihua Deng, and Yujiang Wu. A hybridized discontinuous Galerkin method for 2D fractional convection-
REFERENCES

Brenner:2016:AFE

Jung:2016:VIC

Zhang:2016:ASS

Shum:2016:CRO

[1663] Andrew J. Christlieb, Sigal Gottlieb, Zachary Grant, and David C. Seal. Explicit strong stability preserving multistage two-derivative

[Sangawi:2016:EFC]

[Wang:2016:DDC]

[Chen:2016:ILR]

[Chen:2016:EIL]

[Li:2016:VMN]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hou:2016:TSL

Zaghi:2016:AWP

Djoko:2016:NSS

Cheng:2016:SOW

REFERENCES

Boyd:2016:TMS

Liao:2016:WAS

Tcheng:2016:LCA

Gatica:2016:PPE

Huang:2016:SDG

Zou:2017:USQ

Guo:2017:STG

Tang:2017:LPF

Wang:2017:HSA

REFERENCES

Ma:2017:NFE

Baffet:2017:HOAa

Zhao:2017:GFE

Zhao:2017:TMF

Wang:2017:AFE

Zhang:2017:OSS

Zhang:2017:SML

Li:2017:EEM

Michoski:2017:SNC

Guo:2017:RBF

[1758] Jingyang Guo and Jae-Hun Jung. Radial basis function ENO and WENO finite difference methods based on the optimization of shape

REFERENCES

Zwaan:2017:MSE

Chen:2017:SHM

Chen:2017:DSB

Beyn:2017:SCS

Ivorra:2017:NAD

REFERENCES

Li:2017:NAS

Jia:2017:MTG

Huang:2017:CSV

Deng:2017:PMB

Gelb:2017:DEN

Ding:2017:HON

Li:2017:HON

Alici:2017:HAP

Chen:2017:ETS

Chizari:2017:GIL

Lee:2017:ENO

Wang:2017:WGF

REFERENCES

[1838] Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma, Xiaolin Chang, and Qiang Huang. The boundary element method with a fast multi-

REFERENCES

Kopriva:2017:EBD

Zhu:2017:NNO

Farrell:2017:USO

Forti:2017:MAF

Bu:2017:FDF

Hahn:2017:IBG

Li:2017:MVE

Zhang:2017:IAS

Jia:2017:NTS

Gurkan:2017:EHD

Gong:2017:AMC

Wu:2017:OOS

Li:2017:TGB

Li:2017:UOE

Ren:2017:SFE

REFERENCES

[1890] Daniel Baffet and Jan S. Hesthaven. High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equa-

REFERENCES

[1904] Giuseppe Pitton and Gianluigi Rozza. On the application of reduced basis methods to bifurcation problems in incompressible fluid
REFERENCES

458

[1909] Xu hong Yu and Ben yu Guo. Spectral method for vorticity-stream function form of Navier–Stokes equations in an infinite channel with slip

Wu:2017:RNM

Guzman:2017:FEM

Brink:2017:HFE

Hao:2017:IAB

[1925] Huailing Song and Chi-Wang Shu. Unconditional energy stability analysis of a second order implicit–explicit local discontinuous Galerkin

REFERENCES

[1945] Zhen Gao, Xiao Wen, and Wai Sun Don. Enhanced robustness of the hybrid compact–WENO finite difference scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s boxplot

Hernandez-Duenas:2017:HMS

Hou:2017:AMI

Hu:2017:CIE

Jameson:2017:EFI

Jiang:2017:OER

[1950] Jiahua Jiang, Yanlai Chen, and Akil Narayan. Offline-enhanced reduced basis method through adaptive construction of the surrogate

REFERENCES

Fu:2018:PDR

Fekete:2018:PCS

Cavoretto:2018:OBP

Petersson:2018:HOA

Meng:2018:NRN

Cai:2018:NSM

Shidong Jiang, Dong Wang, and Xiao-Ping Wang. An efficient boundary integral scheme for the MBO threshold dynamics method via the

REFERENCES

REFERENCES

