A Complete Bibliography of Publications in *The Journal of Scientific Computing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
29 March 2019
Version 1.21

Title word cross-reference

...
Accuracy-Conserving
[735, 1079, 1254, 1453, 1581, 1940]. Accurate
[209, 238, 419, 487, 519, 544, 598, 662, 681, 744, 817, 890, 1027, 1044, 1082, 1316,
1457, 1581, 1940]. Across [1965]. Active [1349, 1897]. Actively [284, 644]. ADAM [738].
Adaptation [610, 1348, 1415, 1650, 2194]. Adapted [638]. Adaptive [105, 134, 190, 206,
221, 277, 282, 309, 329, 407, 411, 464, 470, 473, 505, 510, 530, 536, 564, 609, 613, 615,
675, 763, 792, 793, 823, 827, 837, 913, 976, 1014, 1031, 1088, 1136, 1141, 1146, 1151,
1159, 1165, 1186, 1194, 1216, 1230, 1258, 1267, 1293, 1317, 1357, 1384, 1413, 1424,
1481, 1520, 1543, 1580, 1599, 1635, 1659, 1705, 1730, 1733, 1736, 1766, 1876, 1881,
2071, 2082, 2117, 2147, 2174, 2200, 2236, 2239, 2276, 2296, 2300]. Adaptivity [307, 933,
1048, 1050, 1308, 2256]. ADCIRC [1062]. Additive [139, 208, 749, 916, 1057, 1187,
ADI [21, 212, 213, 1260, 1387, 1512, 1726, 1863]. Adini [1734]. Adjoint [635, 1924, 2104].
Adjoint-Based [1924, 2104]. ADMM [1564, 1684, 1807, 1818, 1885, 2107, 2117, 2258].
Advanced [146]. Advancement [426]. Advances [122, 540, 1076]. Advantage [957].
Advection [52, 140, 190, 196, 255, 296, 324, 495, 561, 591, 627, 705, 740, 830, 875,
893, 946, 1040, 1147, 1210, 1282, 1283, 1425, 1603, 1604, 1747, 1777, 1858, 1866,
1899, 1942, 2026, 2081, 2108, 2163, 2207, 2232, 2282]. advection-diffusion [52, 190].
Advection-Robust [2232]. Adective [810]. aeroautoelastics [91]. Aerodynamic [42].
Aerodynamics [318, 490]. Aeronautical [574]. Affine [210, 1649]. Ag [886]. Airfoil [181, 722].
ALE [1403]. Algebraic [112, 181, 532, 1246, 1419, 1488, 2306]. algebraic- [181]. algebraic-Q4 [112].
Algorithm [20, 52, 114, 119, 136, 148, 150, 201, 241, 283, 313, 337, 374, 553, 684,
722, 785, 807, 853, 884, 892, 1060, 1092, 1121, 1178, 1184, 1199, 1223, 1257, 1277,
1318, 1338, 1341, 1422, 1430, 1454, 1478, 1482, 1538, 1580, 1583, 1595, 1598, 1649,
1727, 1731, 1742, 1807, 1872, 1913, 1923, 1964, 1989, 2017, 2027, 2044, 2053, 2079,
2084, 2090, 2091, 2136, 2170, 2171, 2182, 2223, 2225]. Algorithmic [1707, 2187, 2302].
Algorithms [46, 97, 126, 190, 320, 359, 460, 512, 638, 640, 699, 826, 914, 1126, 1171,
1200, 1375, 1489, 1496, 1516, 1562, 1577, 1642, 1781, 1820, 1842, 1864, 1868, 1873, 1997,
ALM [1564]. Along [398, 1090, 1156]. Also [666]. Alternate [1421]. Alternating [1022, 1307, 1387,
1510, 1549, 1551, 1568, 1648, 1702, 1875, 2124]. Alternative [138, 1539, 2295, 2307].
Aluminum [840]. American [654, 852, 1242, 2096]. Among [898]. Ampère [929, 1114, 1716,
2175, 2181]. AMR [357]. Analogy [147]. Analyses [1649, 1728]. Analysis [234, 242, 247,
261, 266, 303, 306, 309, 322, 344, 423, 434, 455, 467, 500, 503, 520,
Analysis

[2, 12, 15, 27, 28, 38, 113, 138, 147, 154, 161, 176, 852, 971, 1067, 1070, 1091, 1260, 1372, 1489, 1511, 1532, 1596, 1598, 1681, 1717, 1810, 1971, 2079, 2188, 2218].

Analytical [10, 110, 278, 1397].

Anelastic [1139].

Angle [806].

Angular [1361].

Anisotropic [23, 496, 543, 599, 834, 881, 1057, 1145, 1195, 1434, 1507, 1696, 1747, 2044, 2106, 2273].

Anisotropy [1331].

Annealing [131].

Anti [591]. Anti-Dissipative [591]. Antidissive [417].

Approaches [335]. appropriate [96]. Approximants [1953].

| Coefficient | Coefficients |
| 162, 519, 560, 578, 590, 732, 791, 909, 1038, 1042, 1319, 1350, 1405, 1434, 1523, 1585, 1762, 1937, 1957, 2075, 2145 |
Conditions

Domains [81, 98, 124, 155, 323, 432, 440, 469, 504, 553, 613, 746, 757, 762, 796, 805, 856, 978, 988, 1068, 1088, 1093, 1275, 1295, 1297, 1511, 1513, 1518, 1546, 1590, 1689, 1738, 1871, 1888, 1895, 1918, 2047, 2066, 2134, 2213, 2279].

dPDEs [1257]. DPG [1866]. Driven [211, 524, 537, 1187, 1395, 1699, 1700, 1732, 1994, 2081].

Eigenvalue [517, 870, 871, 1029, 1126, 1153, 1224, 1225, 1298, 1422, 1639, 1730, 1741, 1755, 1775, 1867, 1908, 2015, 2036, 2079, 2087, 2191, 2204, 2220, 2270, 2304, 2305].

Eigenvalues [13, 612, 624, 724, 1060, 1157, 1249, 1325, 1357, 1479, 1598, 1620, 1654, 1720, 1811, 1908, 2080]. eigenvectors [13, 93]. Eikonal [395, 1057, 1354, 1607].

Electrochemistry [253]. Electrodynamics [1829]. Electrolytes [1084].
Electrolytes/Dielectrics [1084]. Electromagnetic

Globally [666, 1284, 1917, 2171, 2244].
Globally-Hyperbolically-Closed [1284]. GMRES [2285, 2286]. Goal [1050, 1626, 1835]. Goal-Oriented [1050, 1626, 1835].
Golub [1493]. Good [1941, 2058]. Gordon [1100].
Governed [740, 754, 795, 1461, 1553, 1588, 1898, 2199]. Governing [382, 1718].
Gross [1262]. Ground [1420, 1910].
Hamiltonian [687, 1341, 1566, 1655, 1912, 2148]. Hamiltonians [536].
Hammerstein [1634]. Hand [2285, 2286]. Handling [358, 546]. Hankel [1654]. Harmonic [185, 292, 551, 861, 891, 1015, 1255, 1590, 1641, 1659, 1837, 2051, 2253].
Heat [200, 205, 230, 236, 613, 844, 854, 1347, 1387, 1768, 1844, 1865, 2083, 2269].
Hemodynamics [1056]. Hermite [284, 644, 758, 982, 1206, 1404, 1488, 1539, 2105]. Hermitian [595, 972, 1204].
[1451, 1789]. Isogeometric [1810]. Isospectral [2047]. Isothermal
[597, 953]. Isotropic [179, 235, 658, 1276, 1279, 1341, 1427, 2252]. Isotropy
[1029, 1219, 1242]. Iteration
[411, 727, 892, 1049, 1118, 1135, 1242, 1277, 1668, 1684, 1724, 1742, 2117].
Iterative [106, 183, 218, 257, 554, 602, 620, 622, 753, 835, 885, 890, 926,
1025, 1132, 1149, 1159, 1256, 1280, 1465, 1561, 1709, 1852, 1923, 1935, 1959, 2049,
2079, 2098, 2295]. Jacobian [487, 1564, 1668]. Jacobian-Free
[487, 1668]. Jacobian
[487, 1564, 1668]. Jacobi
[268, 387, 467, 535, 536, 579, 580, 591, 620, 622, 753, 835, 885, 890, 926,
1025, 1132, 1149, 1159, 1256, 1280, 1465, 1561, 1709, 1852, 1923, 1935, 1959, 2049,
2079, 2098, 2295]. Jacobi
[268, 387, 467, 535, 536, 579, 580, 591, 620, 622, 753, 835, 885, 890, 926,
1025, 1132, 1149, 1159, 1256, 1280, 1465, 1561, 1709, 1852, 1923, 1935, 1959, 2049,
2079, 2098, 2295]. Jason
[316, 1503]. Jump
[755, 1037, 1063, 1503, 2083, 2102]. Jump-Diffusion
[1503]. Jumps
[1708]. Junctions [1270]. justification [47].

Kac [1375, 1686, 1997, 2136]. Kahan [1493]. Kahan-Type [1493]. Kansa
Kawahara-Type [661]. KdV [338, 482, 1374, 2198]. Keller [773, 1105, 1936].
Kelvin [660]. Kemeny [873]. Kernel [1007, 1191, 1359, 1383, 1709, 1890].
Kernels [695, 1837, 2069, 2201]. Kerr [1183]. Khokhlov [1922]. Kind
[409, 1219, 2069, 2283]. Kinematic [121, 936]. Kinetic
[163, 214, 216, 424, 572, 628, 667, 697, 714, 941, 1138, 1198, 1208, 1492, 1547, 1796,
1834, 1903, 1931, 2130, 2211, 2272, 2291]. kinetic-type [163]. Kinetics
[196, 487, 645, 752, 927, 1711, 1938, 2095]. Kullback [1289]. Kuramoto
[101, 970]. Kutta [222, 287, 288, 361, 462, 483–485, 648, 696, 749, 758, 789, 860,
904, 1181, 1220, 1300, 1377, 1392, 1403, 1407, 1522, 1614, 1615, 1778, 1828, 1925,
1931, 1932, 2011, 2072, 2123, 2127, 2139, 2155, 2220]. Kuznetzov [1922].

Ladyzenskaja [1176]. Lagging [2083]. Lagrange
[355, 633, 725, 867, 1763, 1988]. Lagrangian [168, 255, 346, 492, 743, 761, 789,
798, 920, 971, 986, 990, 1032, 1102, 1159, 1230, 1339, 1425, 1508, 1519, 1525, 1852,
[385]. Lanczos [1341, 1580]. Lanczos-Type [1580]. Landau
[1071, 1315, 1414, 1682]. Landmark [1005, 1611]. Landmark-Matching
[1611]. Landscape [963]. Laplace
[358, 912, 1496, 1686, 1808, 1955, 2097, 2222, 2248]. Laplacian
[199, 295, 640, 1049, 1470, 1490, 1944, 2056, 2183, 2304]. Large
[13, 55, 63, 93, 101, 179, 218, 232, 320, 402, 431, 524, 539, 583, 847, 945, 949, 959,
963, 1092, 1188, 1333, 1563, 1580, 1611, 1654, 1714, 1746, 2095]. Large-Eddy
[55, 232, 320, 524, 539, 847, 963]. Large-Scale [101, 1188, 1333, 1563, 1746].
Large-Time [402]. Laser [284, 644, 646, 859]. Last [574]. Lattice
Method

Method-of-Lines [654].

Methodology [963].

Methods

Methods

Methods

Methods

Multi-quadratic [2071]. Multi-resolution [154, 176, 1928]. Multi-scale
Multi-Value [1313]. Multi-Valued [589, 685]. Multiblock [408, 416].
Multicomponent [662]. Multiderivative [1291, 1438, 1943].
Multidimensional [226, 810, 1138, 1705, 1858, 2179].
Multidimensions [360]. Multidirectional [1773].
Multidomain [107, 125, 140, 153, 171, 309, 391].
Multi-fluid [1547]. Multigrid [50, 43, 47, 108, 114, 116, 337, 460, 650, 699, 760, 790, 851, 1136, 1185,
1269, 1298, 1444, 1445, 1780, 1847, 1852, 1969, 1997, 2129, 2183, 2281].
Multigrid/Schwarz [460]. Multilabel [1394]. Multilayer [498, 1304].
Multilevel [134, 208, 235, 488, 1050, 1200, 1585, 1690, 1867, 1986, 2306].
Multilinear [2171]. multimode [29]. Multiparameter [1773]. Multiphase
[272, 616, 1685]. multiphoton [122]. Multiphysics [2002]. Multiple
[46, 828, 1149, 1168, 1172, 1193, 1206, 1372, 1516, 1564, 1606, 1696, 1725, 2009,
2130, 2285, 2286]. Multiple-Block [1564]. Multiple-Relaxation-Time
[1172, 1696]. Multiple-Sets [1006]. Multiplicative [1057, 1307, 1676, 1994, 2050].
Multipliers [355, 1763, 1988]. Multiplier/Fictitious [355].
Multiply [1148, 1297, 1671, 1672, 2279]. Multiply-Connected [1297]. Multipoints
[225]. Multipole [1838]. Multiquadratic [198, 1039]. Multirate
[655, 738, 1014, 1168, 1522]. Multiresolution [407, 826, 833, 837, 1520, 1530].
Multiscale [582, 609, 847, 993, 1117, 1415, 1432, 1528, 2149]. multischeme
Multisymplectic [482]. Multivalued [395]. Multivariate [2148].
Multiwavelet [1348]. Multiwavelet-Based [1348]. Mumford [1600].
MUSCL [267, 2200].

[886]. Nanomagnets [191]. Narrow [1081, 2067]. Nash [1452, 2266].
Natural [176, 1097, 1172, 1454, 1679, 1982]. Nature [577, 1034].
Navier [3, 36, 87, 101, 127, 138, 192, 227, 327, 343, 420, 426, 430, 520, 532, 597, 614, 702,
728, 772, 877, 878, 790, 805, 816, 853, 877, 988, 1056, 1069, 1146, 1174, 1235, 1304,
1312, 1349, 1350, 1355, 1386, 1400, 1417, 1519, 1526, 1542, 1559, 1619, 1640, 1756,
1768, 1805, 1843, 1854, 1909, 1931, 1971, 1972, 2002, 2023, 2048, 2088, 2137, 2161,
Nearly [297, 458, 1180, 2240]. Necessary [1480]. Necrotic [1090]. NEFEM
[2256]. Negative [637, 1017, 1128, 1269, 1516, 1710, 1746]. Negative-Order
[1017, 1128]. Neither [705]. Nematic [1508, 1678, 1995]. Nernst
[293, 1326, 1894, 2209, 2210]. Nested [136, 223, 2281]. Network [2157].
Networks [1392, 1670]. Neumann [1184, 1454, 1544, 1697]. Neural [2157].
network [798]. Newton
[164, 487, 752, 853, 927, 1201, 1400, 1779, 1815, 1910, 1972, 2059, 2118].
Newton-Correction [1815]. Newton-Type [1972]. Newtonian
Nicolson
Nitsche
NMR
No
No-Slip
Nodal
Nodes
Noise
Noising
Noisy
Non
Non-Conforming
Non-conservative
Non-convex
Non-divergence
Non-equilibrium
Non-Graded
Non-Hermitian
Non-Homogeneous
Non-Ideal
Non-intrusive
Non-Lagrange
Non-linear
Non-local
Non-Matching
Non-monotone
Non-negative
Non-Oscillatory
Non-Overlapping
Non-Polynomial
Non-rectangular
Non-Reflecting
Non-selfadjoint
Non-slip
Non-Smooth
Non-Stabilized
Non-stationary
Non-symmetric
Non-Uniform
Non-convergence
Nonconvex
noniterative
nonlinear
Nonlinearities
Nonlinearly
Nonlocal
Non-matching
Non-monotone
Options
Optimization-Based
Optimal
Optima
Optimal
Optics
Optimisation
Optimally
Optimizations
Optimized
Options
Orbits
Order
Ordinary
Ordinates
Orthogonal
Orthogonalities
Orthogonalities
Oscillator
Oscillations
Oscillating
Orthonormal
Orthogonality
Orthomax
Orthostereoechemical
Oscillatory
oscillation
Osher
Osmotic

Peridynamic [2138]. Peridynamics [1984]. Periodic
41, 209, 238, 888, 1253, 1452, 1656, 2080. Periodically [560]. Periodizing
[626]. Perspective [2117]. Perturbation [107, 194, 423, 703, 791, 888, 2156].
Perturbations [2155]. Perturbed
757, 996, 1317, 1347, 1401, 1858, 1908, 2127, 2167. Peter [951]. Petrov
676, 683, 715, 720, 792, 809, 849, 1053, 1125, 1231, 1281, 1370, 1386, 1420, 1524,
Phenomena [201, 381, 570, 1777]. Phenomenological [73]. Phenomenon
429, 901, 1474. Phonon [1359]. Photonic
271, 385, 564, 606, 828, 1072, 1509, 1782, 2071, 2102, 2144, 2188.
Piecewise-Smooth [1782]. Piezoelectric [1784]. Pipe
[1918]. Planck [293, 743, 1326, 1339, 1378, 1677, 1894, 2020, 2209, 2210]. Plane
[856]. Plasma [575, 797, 1059, 1111, 1311, 1507]. Plasmas [2211]. Plasmon
2156]. Plate [8, 112, 337, 438, 967, 1398, 1571, 2062, 2126, 2129]. Plates
547, 1435, 1720, 1729, 2268]. platform [152]. PML [557, 2174]. PMLs [782].
606, 686, 703, 785, 791, 833, 836, 855, 924, 977, 1130, 1200, 1262, 1334, 1450, 1457,
1609, 1669, 1717, 1743, 1747, 1781, 1908, 1989, 2116, 2119, 2202]. Point-Source
Pointwise [899, 1293, 1577, 2161]. Poison [124, 155, 167, 183, 251, 280, 291,
293, 336, 341, 593, 601, 613, 796, 912, 931, 972, 1002, 1011, 1021, 1050, 1110, 1181,
1248, 1596, 1697, 1733, 1780, 1806, 1831, 1894, 2091, 2209, 2210]. Polar
527, 701]. Polycrystal [1394]. Polygonal [440, 1113, 1272, 1738, 1809].
Polygons [2254]. Polyharmonic [914]. Polyhedral [1372, 1462, 1590, 1673].
Polyhedron [1861]. Polynomial
51, 117, 144, 197, 219, 324, 494, 598, 775, 812, 901, 944, 1024, 1072, 1301, 1316,
1552, 1589, 1767, 1813, 2079, 2132, 2146, 2188, 2201]. Polynomials
1552]. Polynomials [184, 218, 535, 1023, 1256, 1442, 1775, 2049, 2098].
Polytopal [2289]. polytopes [184]. Polytopic [2233, 2281]. Pontryagin
[1795]. Population [656]. Porous
Position [1453]. Position-Dependent [1453]. Positive
670, 1026, 1510, 2046]. Positive-Type [1510]. Positivity
Positivity- [1981]. Positron [1008]. Post
526, 559, 1060]. Post-Processing [526, 559, 1060]. Posteriori

Q4 [112]. **qd** [2080]. **qd-Type** [2080]. **Quad** [1918]. **Quad-Curl** [1918]. **Quadratic** [119, 860, 1114, 1649, 1740, 1974]. **Quadratically** [2171]. **Quadrature** [16, 41, 74, 360, 845, 857, 1101, 1112, 1166, 1292, 1525, 2267, 2277]. **Quadrature-Free** [1525]. **Quadratures** [1223]. **quadric** [2071]. **Quadrlateral** [511, 596, 1064, 1195, 1258, 1603, 1604, 1738, 1966, 2026]. **Quadrlaterals** [1534]. **Quadtree** [1136]. **Quality** [962]. **Quantification** [887, 1530, 1650]. **Quantifying** [97]. **Quantitative** [220, 1737]. **Quantum**
Runs\[752\]. Ruptures\[1140\].

S\[1710\]. S-FDTD\[1710\]. Saddle\[1200\]. Saddles\[2264,2265\]. Saha\[165\].

Saint\[1409\]. Saint-Venant\[1409\]. satisfaction\[81\]. Satisfying\[617,632,804,981,1378,1464,1677\].

SBFEM\[1061\]. SBP\[2057\].

Scalability\[169,906,1745\]. Scalable\[475,1327,2094\]. Scalar\[247,417,566,922,939,1228,1464,1533,1621,1787,1805,2095\]. Scales\[965,1499\]. Scaled\[665,1499\]. Scales\[1166,393\]. Scale\[46,49,101,129,166,176,353,674,710,847,960,1188,1319,1333,1395,1563,1580,1654,1805,2095\]. Scale-dependent\[49\]. Scaled-\[665,1499\]. Scales\[965,1168\]. Scales\[1921\]. Scans\[1008\]. scattered\[14\].

Scattering\[244,246,260,888,1092,1359,1656,1744,1784,1881,1987\].

Scheme\[71,113,191,389,430,576,605,610,656,707,742,752,795,798,846,890,893,1044,1083,1133,1174,1208,1252,1260,1262,1429,1442,1544,1593,1616,1647,1655,1740,1767,1863,1942,2103,2109,2148,2150,2151,2162\].

Sedimentation [355]. Segel [773, 1105, 1936]. Segmentation [682, 879, 986, 1130, 1178, 1215, 1266, 1360, 1394, 1685, 1703, 1782, 1897].

Selecting [452]. Selection [297, 1022, 1065, 1277, 1499, 1570, 1953, 2177].

Shallow-Water [439, 937, 1384, 1670]. Sham [1151]. Shannon [2060].

Shannon-Wavelet [2060]. Shape [119, 384, 450, 682, 898, 1126, 1309, 1737, 1758, 1930, 2053, 2195, 2304].

Solvability [1416]. Solvable [2178]. Solve [217, 251, 257, 263, 336, 421, 583, 741, 790, 943, 972, 1012, 1027, 1053, 1218, 1484, 1629, 1713, 1770, 1829, 2042, 2228].

Solvability [2178]. Solvers [217, 251, 257, 263, 336, 421, 583, 741, 790, 943, 972, 1012, 1027, 1053, 1218, 1484, 1629, 1713, 1770, 1829, 2042, 2228].

Solvability [2178]. Solve [217, 251, 257, 263, 336, 421, 583, 741, 790, 943, 972, 1012, 1027, 1053, 1218, 1484, 1629, 1713, 1770, 1829, 2042, 2228]. Solvers [217, 251, 257, 263, 336, 421, 583, 741, 790, 943, 972, 1012, 1027, 1053, 1218, 1484, 1629, 1713, 1770, 1829, 2042, 2228].

Solvability [2178]. Solvers [217, 251, 257, 263, 336, 421, 583, 741, 790, 943, 972, 1012, 1027, 1053, 1218, 1484, 1629, 1713, 1770, 1829, 2042, 2228].

Some [139, 159, 182, 222, 292, 295, 627, 747, 840, 1205, 1292, 1498, 1561, 1858, 1907, 1960, 2048, 2113, 2204, 2235, 2266].

SOR [716]. Sound [311, 159, 182, 222, 292, 295, 627, 747, 840, 1205, 1292, 1498, 1561, 1858, 1907, 1960, 2048, 2113, 2204, 2235, 2266].

Source [246, 267, 274, 548, 747, 941, 948, 955, 956, 1041, 1265, 1608, 1609, 1669, 1688]. Sources [38]. Source [246, 267, 274, 548, 747, 941, 948, 955, 956, 1041, 1265, 1608, 1609, 1669, 1688].

SP1 [169]. SP2 [169]. Source [246, 267, 274, 548, 747, 941, 948, 955, 956, 1041, 1265, 1608, 1609, 1669, 1688]. Sources [38]. Source [246, 267, 274, 548, 747, 941, 948, 955, 956, 1041, 1265, 1608, 1609, 1669, 1688].

Space-Fractional [1996]. Space-Time [505, 1147, 2025].

SPDEs [1467, 1994]. Special [1000, 1649, 1916, 2231].

Supersonic \[1123\]. Supervised \[2006\]. SUPG \[1536, 1613, 2106\]. Support \[1432\]. Supported \[1416\]. suppressing \[99\]. Supra \[613\].

Vector [905]. Variants [2117]. Variation [397, 525, 639, 650, 986, 1252, 1290, 1364, 1570, 1637, 1786, 1851, 2114, 2292].

Yawed [337]. Yee [750]. Yield [2236].

References

REFERENCES

REFERENCES

Dannevik:1986:ESN

Boyd:1986:ANS

Anonymous:1987:IA

Dubiner:1987:AAS

REFERENCES

REFERENCES

REFERENCES 60

REFERENCES

REFERENCES

[45] Yi ling F. Chiang, Ji-Suing Ma, and Kuo-Lin Hu. Parallel multi-
1007/BF01061288; http://link.springer.com/content/pdf/10.
1007/BF01061288; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=3&issue=3&spage=289-306.

[46] Clement B. Somuah and Syed M. Islam. A class of multiple
time scale algorithms for simulating power system frequency dy-
ber 1988. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-
1007/BF01061289; http://link.springer.com/content/pdf/10.
1007/BF01061289; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=3&issue=3&spage=307-322.

[47] Yvon Maday and Rafael Munoz. Spectral element multigrid. II.
1007/BF01065177; http://link.springer.com/content/pdf/10.
1007/BF01065177; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=3&issue=4&spage=323-353.

of a viscous free surface flow: An asymmetric generalized eigen-
ber 1988. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-
1007/BF01065178; http://link.springer.com/content/pdf/10.
1007/BF01065178; http://www.springerlink.com/openurl.asp?

[49] Zhen-Su She, Eric Jackson, and Steven A. Orszag. Scale-dependent inter-
mittency and coherence in turbulence. *Journal of Scientific Computing*, 3
(4):407–434, December 1988. CODEN JSCOEB. ISSN 0885-7474 (print),
REFERENCES

Schultz:1989:CPM

Tal-Ezer:1989:PAF

Succi:1989:FCP

Gruberger:1989:SMC

REFERENCES

REFERENCES

REFERENCES

[81] Andreas Karageorghis. A note on the satisfaction of the boundary conditions for Chebyshev collocation methods in rectangular do-
REFERENCES

Jackson:1991:CSP

Zhang:1991:SRD

Halton:1991:RSF

Anonymous:1991:ES

REFERENCES

Henderson:1991:HSE

Johansson:1991:WPGa

Parter:1991:PSO

Vandevien:1991:FSF

Cook:1991:HSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[140] Ivar Lie. Multidomain solution of advection problems by Cheby-
64, March 1994. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-
1007/BF01573177; http://link.springer.com/content/pdf/10.
1007/BF01573177; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=9&issue=1&spage=39-64.

[141] Shun-Shii Lin. A chained-matrices approach for parallel computation of
continued fractions and its applications. *Journal of Scientific Comput-
ing*, 9(1):65–80, March 1994. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/BF01573178; http://link.springer.com/content/pdf/10.
1007/BF01573178; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=9&issue=1&spage=65-80.

[142] John P. Boyd. Hyperviscous shock layers and diffusion zones: Mono-
tonicity, spectral viscosity, and pseudospectral methods for very high
81–106, March 1994. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/BF01573179; http://link.springer.com/content/pdf/10.
1007/BF01573179; http://www.springerlink.com/openurl.asp?
genre=article&issn=0885-7474&volume=9&issue=1&spage=81-106.

[143] W. Couzy and M. O. Deville. Spectral-element preconditioners for the
Uzawa pressure operator applied to incompressible flows. *Journal of Sci-
com/article/10.1007/BF01578382; http://link.springer.com/
content/pdf/10.1007/BF01578382; http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7474&volume=9&issue=2&spage=
107-122.

[144] Yong Luo and Matthew J. Yedlin. Polynomial time-marching for non-
9(2):123–136, June 1994. CODEN JSCOEB. ISSN 0885-7474 (print),
Heinrichs:1994:SVC

Li:1994:ASI

Schaeben:1994:ADT

Iqbal:1994:ACP

REFERENCES

REFERENCES

Yang:1995:MRA

Kukharkin:1995:CSF

Manoranjan:1996:SIP

Sukoriansky:1996:LES

REFERENCES

Anonymous:1996:IA

Ciccoli:1996:ADD

Bowman:1996:WPS

Cao:1996:PML

REFERENCES

REFERENCES

REFERENCES

Marco:1997:AMO

Geer:1997:EAA

Arsham:1997:AGM

Borue:1997:TCD

Dai:1997:GPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gustafsson:1999:FDD

Keh:1999:SCB

Lether:1999:TRI

Heinrichs:1999:SA

Guo:1999:FLL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[298] Abhinav Singh and Yong Zhao. Parallel unstructured dynamic grid
direct Monte Carlo simulation of molecular gas dynamics and its ap-
2001. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-

with general propagation. *Journal of Scientific Computing*, 16(4):569–
585, December 2001. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-

1–2, December 2002. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-

[301] Paul Houston, Max Jensen, and Endre Süli. *hp*-discontinuous Galerkin
finite element methods with least-squares stabilization. *Journal of Sci-
springer.com/content/pdf/10.1023/A%3A1015180009979; http://

[302] Jue Yan and Chi-Wang Shu. Local discontinuous Galerkin methods
for partial differential equations with higher order derivatives. *Journal
Albukrek:2002:DFW

Funaro:2002:SD

Fischer:2002:SEM

Schatzman:2002:TNC

Demkowicz:2002:FAA

REFERENCES

Eskilsson:2002:DSE

Serre:2002:AAM

Archibald:2002:REN

Muller:2002:ESH

Escriva:2002:PUA

Ruuth:2002:TBS

Schonauer:2002:HOM

Schwartzkopff:2002:AHO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

130

Coppola:2002:GSI

Jameson:2003:AVH

Chorfi:2003:HGS

Liu:2003:VGA

Lie:2003:IQR

[360] Knut-Andreas Lie and Sebastian Noelle. An improved quadrature rule for the flux-computation in staggered central difference schemes in mul-

[365] Huiyuan Li and Heping Ma. Shifted Chebyshev collocation domain truncation for solving problems on an infinite interval. *Journal of
REFERENCES

Herrero:2003:CCC

Chen:2003:DTP

Shu:2003:F

Abgrall:2003:HOF

Aslam:2003:LSA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Symes:2003:SME

Tornberg:2003:RTN

Vese:2003:MTT

Xu:2003:EFS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mattsson:2004:SAA

Heinrichs:2004:LSS

Braverman:2004:FSS

REFERENCES

[Schroll:2004:RHR]

[Sagaut:2004:F]

[Sengupta:2004:HAC]

[Sengupta:2004:NSS]

Zhang:2004:HOC

Broeckhoven:2004:FVF

Monnier:2004:ALH

Rousseau:2004:BLO

REFERENCES

147

Anonymous:2005:F

Adjerid:2005:SDF

Arnold:2005:FDG

Bokhove:2005:FDD

REFERENCES

REFERENCES

Chevaugeon:2005:DGM

Dawson:2005:DGM

Eskilsson:2005:DGS

Feng:2005:TLN

Houston:2005:MDG

Paul:2005:ENS

Guido:2005:BPL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/content/pdf/10.1007/s10915-004-4794-4;

[475] Steven A. Orszag, Isaac Goldhirsch, and Sudhir Srinivasan. ‘per-
404, September 2005. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-005-4811-2; http://link.springer.com/content/
pdf/10.1007/s10915-005-4811-2; http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7474&volume=24&issue=3&
spage=373-404.

[476] Mark H. Carpenter, David I. Gottlieb, and Jan S. Hesthaven. Fore-
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/article/10.1007/BF02728978;
http://link.springer.com/content/pdf/10.1007/BF02728978;
http://link.springer.com/content/pdf/10.1007/s10915-005-4649-
7; http://www.springerlink.com/openurl.asp?genre=article&

CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/article/10.1007/BF02728979;
http://link.springer.com/article/10.1007/s10915-004-4629-3;
http://link.springer.com/content/pdf/10.1007/BF02728979;
http://link.springer.com/content/pdf/10.1007/s10915-004-4629-
3; http://www.springerlink.com/openurl.asp?genre=article&
issn=0885-7474&volume=25&issue=1&spage=3-16.

[478] C. William Gear and Ioannis G. Kevrekidis. Constraint-defined
manifolds: a legacy code approach to low-dimensional computa-
CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
URL http://link.springer.com/article/10.1007/BF02728980;
REFERENCES

http://link.springer.com/content/pdf/10.1007/BF02728980;
http://link.springer.com/content/pdf/10.1007/s10915-004-4630-x;

http://link.springer.com/content/pdf/10.1007/BF02728981;
http://link.springer.com/content/pdf/10.1007/s10915-004-4631-9;
issn=0885-7474&volume=25&issue=1&spage=29-49.

Butcher:2005:HOS

http://link.springer.com/content/pdf/10.1007/BF02728982;
http://link.springer.com/content/pdf/10.1007/s10915-004-4632-8;

Hairer:2005:IAG

http://link.springer.com/content/pdf/10.1007/BF02728983;
http://link.springer.com/content/pdf/10.1007/s10915-004-4633-7;

Ascher:2005:SMS

 REFERENCES

Gustafsson:2005:TCH

Knoll:2005:JFN

Faure:2005:FVD

Najm:2005:MLM
Shang:2005:SSC

Thomas:2005:NSE

Xiu:2005:SAF

Elman:2005:PSM

Jung:2005:IPR

REFERENCES

Sengupta:2006:HAS

Koko:2006:UCG

Feng:2006:AFE

Schroll:2006:BHF
REFERENCES

REFERENCES

[520] Z. Belhachmi, C. Bernardi, S. Deparis, and F. Hecht. An efficient discretization of the Navier–Stokes equations in an axisym-

REFERENCES

REFERENCES

REFERENCES

Xing:2006:HOW

Xu:2006:SMS

Yee:2006:NLF

Xiao-yong:2006:SHG

Brown:2006:ESH

REFERENCES

[565] Sigal Gottlieb, David Gottlieb, and Chi-Wang Shu. Recovering high-order accuracy in WENO computations of steady-state hyperbolic sys-
REFERENCES

Gustafsson:2006:SBS

Hesthaven:2006:PLI

Jung:2006:PBL

Kindermann:2006:DBD
Lax:2006:GP

Maday:2006:SAS

Orszag:2006:TEK

Ryaben’kii:2006:MDP

Salas:2006:DFL

Shang:2006:SPM

Turek:2006:NSM

Turkel:2006:NMN

Boyd:2006:AFC

REFERENCES

REFERENCES

REFERENCES

[600] Matthias K. Gobbert, Samuel G. Webster, and Timothy S. Cale. A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/
REFERENCES

Belhachmi:2007:SME

Hui:2007:PEU

Qiu:2007:NCL

Tosi:2007:OSE

Han Chen, Chohong Min, and Frédéric Gibou. A supra-convergent finite difference scheme for the Poisson and heat equations on ir-
REFERENCES

Hong:2007:BCC

Hou:2007:SMD

REFERENCES

Kloucek:2007:ACB

Diener:2007:OHO

Ohmori:2007:FFF

Lorcher:2007:DGS

REFERENCES

REFERENCES

REFERENCES

Yuan:2008:DPG

Chen:2008:SOA

Chen:2008:DRS

Elbarbary:2008:ECP

Ferm:2008:HAM

Jameson:2008:CDC

Jameson:2008:FKE

Almansa:2008:TBR

REFERENCES

REFERENCES

REFERENCES

Osher:2008:P

Burger:2008:FEA

Candela:2008:NAL

duChene:2008:SOA

REFERENCES

REFERENCES

Selle:2008:USM

Yokoi:2008:NMF

Gelb:2008:DES

Liu:2008:NSF

REFERENCES

[703] Houde Han, Zhongyi Huang, and R. Bruce Kellogg. A tailored finite point method for a singular perturbation problem on an un-

REFERENCES

REFERENCES

Donat:2008:CBS

Cai:2008:EAS

Ditkowski:2008:NMS

http://link.springer.com/content/pdf/10.1007/s10915-008-9210-z;

Brandman:2008:LSM

REFERENCES

[733] Qiang Zhang and Zi-Long Wu. Numerical simulation for porous medium equation by local discontinuous Galerkin finite element

Wang:2009:NSS

Walfisch:2009:OSS

Zhu:2009:RHO

Chniti:2009:IIC

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-008-9258-9;
http://link.springer.com/content/pdf/10.1007/s10915-008-9258-9;

Zhu:2009:SEM

to price European options. I. Single asset with and without jump
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
008-9267-8; http://link.springer.com/content/pdf/10.1007/
s10915-008-9267-8; http://www.springerlink.com/openurl.asp?

Platte:2009:HFC

[756] Rodrigo B. Platte and Anne Gelb. A hybrid Fourier–Chebyshev method
(2):244–264, May 2009. CODEN JSCOEB. ISSN 0885-7474 (print),
1007/s10915-008-9264-y; http://link.springer.com/content/
pdf/10.1007/s10915-008-9264-y; http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7474&volume=39&issue=2&
page=244-264.

Binford:2009:ENR

[757] Tommy L. Binford, Jr., David P. Nicholls, and Nilima Nigam. Ex-
act non-reflecting boundary conditions on perturbed domains and hp-
2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
008-9263-z; http://link.springer.com/content/pdf/10.1007/
s10915-008-9263-z; http://www.springerlink.com/openurl.asp?

Zhu:2009:HWS

[758] Jun Zhu and Jianxian Qiu. Hermite WENO schemes and their appli-
cation as limiters for Runge–Kutta discontinuous Galerkin method, III:
May 2009. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
009-9271-7; http://link.springer.com/content/pdf/10.1007/

REFERENCES

[767] Susanne C. Brenner, Thirupathi Gudi, and Li yeng Sung. A posteriori error control for a weakly over-penalized symmetric interior

REFERENCES

[780] Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. *Journal of
REFERENCES

Hughes:2009:BLA

Zhang:2009:SDG

Kupiainen:2009:CEB

Rahumanthan:2009:SIC

REFERENCES

[793] Liang Ge, Wenbin Liu, and Danping Yang. Adaptive finite element approximation for a constrained optimal control problem via multi-

Chen:2009:FCM

Yan:2009:RMF

Ng:2009:GPS

Huang:2009:IPD

REFERENCES

Gao:2009:LDG

He:2009:EEC

Bouchut:2009:SDE

Zhuang:2010:CLL
REFERENCES

[810] Adrian Sescu, Abdollah A. Afjeh, Ray Hixon, and Carmen Sescu. Conditionally stable multidimensional schemes for advective equa-
REFERENCES

Brenner:2010:IPF

Dolejsi:2010:OIM

Cockburn:2010:BCD

REFERENCES

[827] Pengtao Sun, Long Chen, and Jinchao Xu. Numerical studies of adaptive finite element methods for two dimensional convection-

REFERENCES

REFERENCES

Pironneau:2010:FEC

Rui:2010:MCC

Eguchi:2010:DVM

Knobloch:2010:NSC

REFERENCES

Yasuda:2010:TPS

Celiker:2010:HDG

Wise:2010:USF

Yang:2010:NAA

REFERENCES

[861] D. Sármány, F. Izsák, and J. J. W. van der Vegt. Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-
REFERENCES

REFERENCES

Jung:2010:RHO

Karni:2010:HAB

Li:2010:CDG

Lin:2010:PMN

Mirzaee:2010:QEI

[887] Hanieh Mirzaee, Jennifer K. Ryan, and Robert M. Kirby. Quantification of errors introduced in the numerical approximation and

REFERENCES

REFERENCES

Jung:2011:SRP

vanderLaan:2011:MCE

Ray:2011:TFH

Zhang:2011:TOE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

YANG:2011:PTG

LU:2011:SSW

FENG:2011:AGM

ZEISER:2011:FMV

Chaudhry:2011:FEA

Dedner:2011:GSA

Cliffe:2011:APE

Abdellatif:2011:SDA
Abgrall:2011:P

Bohorquez:2011:HIW

Castro-Diaz:2011:NTL

Delestre:2011:NSV

REFERENCES

REFERENCES

REFERENCES

REFERENCEs

Ye:2011:NMB

delSastre:2011:EAF

Abbas:2011:FOH

Simpson:2011:SWB

REFERENCES

Nguyen-Ba:2012:SSP

Awanou:2012:TRR

Cai:2012:ENX

Kesserwani:2012:LLF

Wu:2012:ALM

[986] Chunlin Wu, Juyong Zhang, Yuping Duan, and Xue-Cheng Tai. Augmented Lagrangian method for total variation based image restora-
REFERENCES

275

REFERENCES

Stefan:2012:SEE

Lui:2012:OSR

Lin:2012:GED

Turnes:2012:ECD

Wang:2012:IFD

Stefan:2012:WBN

Ji:2012:OEE

Eftang:2012:TSC

Degond:2012:NAE

REFERENCES

Pulch:2012:GPC

Alton:2012:OUM

Bernardi:2012:PAP

Katz:2012:ECM

Gopalakrishnan:2012:CSP

Panigrahi:2012:REI

Feng:2012:NMW

Llanas:2012:ED

REFERENCES

REFERENCES

Mattsson:2012:ESP

Zhang:2012:LBM

Sjogreen:2012:FOA

REFERENCES

REFERENCES

REFERENCES

Dietrich:2012:PUM

Chen:2012:NSE

Feng:2012:NQF

Chen:2012:LES

REFERENCEs

REFERENCES

[1079] James King, Hanieh Mirzaee, and Jennifer K. Ryan. Smoothness-

REFERENCES

[1091] Ziqing Xie, Xianjuan Li, and Tao Tang. Convergence analysis of spectral Galerkin methods for Volterra type integral equa-

[1108] Sangita Yadav, Amiya K. Pani, and Neela Nataraj. Superconvergent discontinuous Galerkin methods for linear non-selfadjoint and indefinite

Zou:2013:NHE

Zhai:2013:FF

Li:2013:NSP

Sidi:2013:CNQ

G. Ariel, B. Engquist, S. Kim, Y. Lee, and R. Tsai. A multiscale method for highly oscillatory dynamical systems using a Poincaré map type

REFERENCES

Huang:2013:CEE

Yang:2013:DDE

Bokanowski:2013:ASG

Zhu:2013:WST

Chen:2013:NTP

REFERENCES

[1166] Tao Tang, Hehu Xie, and Xiaobo Yin. High-order convergence of spectral deferred correction methods on general quadrature nodes.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hu:2014:LUB

Alexanderian:2014:PBR

Gao:2014:OEA

Yi:2014:IST

deluna:2014:NSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ng:2014:CET

Ji:2014:MMH

Boulmezaoud:2014:NAS

Kubatko:2014:OSS

Tal-Ezer:2014:NTP

REFERENCES

Abgrall:2014:RFV

Johnston:2014:LPB

DAmbrosio:2014:LTS

Arandiga:2014:WDM

Zhang:2014:TDL

REFERENCES

Suhov:2014:APA

Li:2014:RAG

Xiao:2014:NBB

Zhang:2014:MSD

Ghosh:2014:WNL

[1320] Debojyoti Ghosh and James D. Baeder. Weighted non-linear compact schemes for the direct numerical simulation of compressible, tur-

[Virta:2014:AWP]

[Zhang:2014:PIE]

[Bebendorf:2014:SVF]

[Mitsotakis:2014:GFE]

Kocher:2014:VST

Pincock:2014:HOF

DeRosis:2014:CBI

Martinez:2014:EDN

Roth:2014:SLM
A. Roth, A. Klar, B. Simeon, and E. Zharovsky. A semi-Lagrangian method for 3-D Fokker Planck equations for stochastic dynamical

REFERENCES

REFERENCES

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9882-5;

[1383] Can Huang and Zhimin Zhang. On the spectrum computation of
non-oscillatory and highly oscillatory kernel with weak singularity.
JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL
http://link.springer.com/article/10.1007/s10915-014-9884-3;

REFERENCES

http://link.springer.com/article/10.1007/s10915-014-9916-z;

http://link.springer.com/content/pdf/10.1007/s10915-014-9915-0.pdf.

REFERENCES

REFERENCES

REFERENCES

D. Cho, L. Gallimard, and T. Sassi. A posteriori estimates for a natural Neumann–Neumann domain decomposition algorithm on a uni-

REFERENCES

Li:2015:SPP

Mu:2015:WGF

Dolz:2015:MHM

Zeng:2015:SOS

Kim:2015:EPR

REFERENCES

Zhang:2015:HMN

Chen:2015:RIB

Nissen:2015:SDM

Zheng:2015:LPF

Wasserman:2015:IRF

Wang:2015:FSB

REFERENCES

Yi:2015:VCP

Bernard:2015:AAP

Hochstenbach:2015:GKT

Sun:2015:HOB

Reiss:2015:FES

Chen:2015:HOA

[1496] Sheng-Gwo Chen, Mei-Hsiu Chi, and Jyh-Yang Wu. High-order algorithms for Laplace–Beltrami operators and geometric invariants over

Kadalbajoo:2015:SOA

Shi:2015:NSM

Dauge:2015:TNI

Choi:2015:FDC

Crouseilles:2015:CNS

Guillen-Gonzalez:2015:STS

REFERENCES

REFERENCES

[Berthelin:2016:MFK]

[Lepe:2016:FEA]

[Jin:2016:ADM]

[Chung:2016:SDM]

[Deng:2016:GLC]
REFERENCES

REFERENCES

[1574] Oisin Tong, Aaron Katz, Yushi Yanagita, Alex Casey, and Robert Schaap. High-order methods for turbulent flows on three-dimensional

REFERENCES

REFERENCES

Wang:2016:PMF

Eigel:2016:EPE

Sheshadri:2016:SFR

Sheshadri:2016:ESF

Yang:2016:HOM

REFERENCES

REFERENCES

REFERENCES

Hu:2016:GLB

Jin:2016:WBS

Cravero:2016:AWC

Wang:2016:SMF

Mengaldo:2016:CBD

Du:2016:FGP

Janon:2016:GOE

Fjordholm:2016:SPW

Lanza:2016:CTM

Bouchut:2016:WRS

REFERENCES

Sun:2016:AAE

Antonietti:2016:SAD

Seal:2016:EHO

Samii:2016:HDG

Shuqin Wang, Jinyun Yuan, Weihua Deng, and Yujiang Wu. A hybridized discontinuous Galerkin method for 2D fractional convection-

REFERENCES

REFERENCES

Wang:2016:DDC

Chen:2016:ILR

Chen:2016:EIL

Li:2016:VMN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

COEB. ISSN 0885-7474 (print), 1573-7691 (electronic). URL

[1721] Likun Hou, Hao Gao, and Xiaoqun Zhang. A two-stage low rank
approach for calibrationless dynamic parallel magnetic resonance image re-
2016. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
016-0225-6; http://link.springer.com/content/pdf/10.1007/

[1722] Stefano Zaghi, Andrea Di Mascio, and Bernardo Favini. Applica-
tion of WENO–positivity-preserving schemes to highly under-expanded
2016. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
016-0226-5; http://link.springer.com/content/pdf/10.1007/
s10915-016-0226-5.pdf.

of the stationary power-law Stokes equations: A penalty finite element
2016. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
016-0227-4; http://link.springer.com/content/pdf/10.1007/

[1724] Kelong Cheng, Cheng Wang, Steven M. Wise, and Xingye Yue. A
second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–
Hilliard equation and its solution by the homogeneous linear iteration
2016. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10915-
016-0228-3; http://link.springer.com/content/pdf/10.1007/
REFERENCES

REFERENCES

Zou:2017:USQ

Guo:2017:STG

Tang:2017:LPF

Wang:2017:HSA

Wang:2017:GMS

Brus:2017:PSI

Chang:2017:LSO

Tang:2017:UCT

Li:2017:SOS

REFERENCES

Zhang:2017:OSS

Zhang:2017:SML

Li:2017:EEM

Michoski:2017:SNC

Guo:2017:RBF

[1758] Jingyang Guo and Jae-Hun Jung. Radial basis function ENO and WENO finite difference methods based on the optimization of shape

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2017:CSP

Zorio:2017:ALW

Li:2017:LGP

Khan:2017:EAS

Bernardi:2017:CAT

Anaya:2017:MMS

Nordstrom:2017:RWP

Badia:2017:CSW

Qiu:2017:HOM

Robinson:2017:FAA

Sun:2017:IBI

Wu:2017:VCL

Zhang:2017:DGB

Karoui:2017:WFF

Cano:2017:TMN

Guo:2017:PPR

Guo:2017:LDG

REFERENCES

[1838] Qiao Wang, Wei Zhou, Yonggang Cheng, Gang Ma, Xiaolin Chang, and Qiang Huang. The boundary element method with a fast multi-

REFERENCES

Kopriva:2017:EBD

Zhu:2017:NNO

Farrell:2017:USO

Forti:2017:MAF

Bu:2017:FDF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1890] Daniel Baffet and Jan S. Hesthaven. High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equa-

[1904] Giuseppe Pitton and Gianluigi Rozza. On the application of reduced basis methods to bifurcation problems in incompressible fluid

[1923] Yat Tin Chow, Jérôme Darbon, Stanley Osher, and Wotao Yin. Algorithm for overcoming the curse of dimensionality for time-dependent
REFERENCES

[Cockburn:2017:ABS]

[Conde:2017:IIE]

[Ditkowski:2017:EIB]

[Dong:2017:OCH]

REFERENCES

REFERENCES

Shi:2017:WNL

Song:2017:UES

Vogl:2017:HRF

Yang:2017:DGM

Yu:2017:CLD

Zhang:2017:FTS

REFERENCES

[1961] Immanuel Martini, Bernard Haasdonk, and Gianluigi Rozza. Certified reduced basis approximation for the coupling of viscous and invis-

[1979] Chang Ho Kim, Kwang-II You, and Youngsoo Ha. Hybrid finite difference weighted essentially non-oscillatory schemes for the compressible ideal
REFERENCES

Seo:2018:CAM

Li:2018:HOP

Rebollo:2018:HOL

Li:2018:DFV

Liu:2018:FFD

Dunst:2018:SOC

Huber:2018:SCS

Tang:2018:WCP

Mukam:2018:SCA

An:2018:OEE

Zhao:2018:FFD

REFERENCES

REFERENCES

Chen:2018:LFT

Hao:2018:HMP

Hong:2018:ESM

Deng:2018:SCT

Wang:2018:SSW

Huang:2018:HRF

Chang:2018:CSR

Abbasi:2018:CLS

Gao:2018:MNN

Cai:2018:FVH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

s10915-017-0595-4; https://link.springer.com/content/pdf/10.1007/s10915-017-0595-4.pdf.

Klinge:2018:SSP

Chung:2018:GPE

Lin:2018:SCA

Sen:2018:ESS

Long:2018:TBN

REFERENCES

REFERENCES

REFERENCES

Aletti:2018:HRA

You:2018:ELI

Gross:2018:SNE

Wang:2018:SCM

Nicponski:2018:NHP

Lozano:2018:EPE

Qiao:2018:CAD

Gracia:2018:FSC

Zhao:2018:MTV

Antonana:2018:NIM

REFERENCES

REFERENCES

Liu:2018:FDG

Califano:2018:SSP

Schoeder:2018:AHO

Wang:2018:HOC

Oikawa:2018:HMO

REFERENCES

REFERENCES

Ma:2018:HSB

Nordstrom:2018:LTE

Higueras:2018:OMP

Nicholls:2018:HOP

Yin:2018:LFT

the finite time Lyapunov exponent. *Journal of Scientific Computing*, 76
(3):1407–1435, September 2018. CODEN JSCOEB. ISSN 0885-7474
com/content/pdf/10.1007/s10915-018-0669-y.pdf.

[2159] Weiwei Hu, Jiguang Shen, John R. Singler, Yangwen Zhang, and Xi-
aobo Zheng. A superconvergent HDG method for distributed control
of convection diffusion PDEs. *Journal of Scientific Computing*, 76
(3):1436–1457, September 2018. CODEN JSCOEB. ISSN 0885-7474
com/content/pdf/10.1007/s10915-018-0668-z.pdf.

[2160] Yao Rong, William Layton, and Haiyun Zhao. Numerical analysis of
an artificial compression method for magnetohydrodynamic flows at
low magnetic Reynolds numbers. *Journal of Scientific Computing*, 76
(3):1458–1483, September 2018. CODEN JSCOEB. ISSN 0885-7474
com/content/pdf/10.1007/s10915-018-0670-5.pdf.

[2161] Sander Rhebergen and Garth N. Wells. A hybridizable discontinu-
ous Galerkin method for the Navier–Stokes equations with pointwise
(3):1484–1501, September 2018. CODEN JSCOEB. ISSN 0885-7474

[2162] Xuehua Yang, Haixiang Zhang, and Da Xu. WSGD-OSC scheme for
two-dimensional distributed order fractional reaction–diffusion equa-
2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0672-3; https://link.springer.com/content/pdf/10.

Miyashita:2018:HDG

Askham:2018:SSV

Yan:2018:NPD

He:2018:GQC

Kozdon:2018:ESA

[2187] Harbir Antil, Enrique Otárola, and Abner J. Salgado. Optimization with respect to order in a fractional diffusion model: Analysis, approximation

\[\text{Chen:2018:MPM} \]

\[\text{Garrappa:2018:CMM} \]

\[\text{Gassner:2018:BSS} \]

\[\text{Gassner:2018:CBS} \]

\[\text{Antil:2018:ORO} \]

[2203] Zouraris:2018:LIF

[2206] Dong:2018:NME
REFERENCES

REFERENCES

REFERENCES

Huang:2018:IEL

Alvarez:2018:CFF

Yin:2018:SBE

Li:2018:DDM

Li:2018:TSA

REFERENCES

REFERENCES

[2241] Xiaobing Feng and Thomas Lewis. Nonstandard local discontinuous
Galerkin methods for fully nonlinear second order elliptic and parabolic
equations in high dimensions. *Journal of Scientific Computing*, 77
(3):1534–1565, December 2018. CODEN JSCOEB. ISSN 0885-7474

[2242] P. Fernandez, A. Christophe, S. Terrana, N. C. Nguyen, and
J. Peraire. Hybridized discontinuous Galerkin methods for wave prop-
2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0811-x; https://link.springer.com/content/pdf/
10.1007/s10915-018-0811-x.pdf.

[2243] Guosheng Fu and Christoph Lehrenfeld. A strongly conservative
hybrid DG/ Mixed FEM for the coupling of Stokes and Darcy
2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0691-0; https://link.springer.com/content/pdf/
10.1007/s10915-018-0691-0.pdf.

[2244] Pei Fu, Fengyan Li, and Yan Xu. Globally divergence-free dis-
continuous Galerkin methods for ideal magnetohydrodynamic equa-
2018. CODEN JSCOEB. ISSN 0885-7474 (print), 1573-7691
s10915-018-0750-6; https://link.springer.com/content/pdf/

[2245] Huadong Gao and Weifeng Qiu. Error analysis of mixed fi-
nite element methods for nonlinear parabolic equations. *Journal
of Scientific Computing*, 77(3):1660–1678, December 2018. CO-
DEN JSCOEB. ISSN 0885-7474 (print), 1573-7691 (electronic).
REFERENCES

REFERENCES

Ling:2018:CHO

AlbellaMartinez:2018:SLI

Mascotto:2018:NCH

Muller:2018:DGM

Rhebergen:2018:PHD

Sevilla:2018:HND

Wang:2019:LDG

Wang:2019:GCA

Kumar:2019:EBD

Gelb:2019:REB

Herrero:2019:SMR

Dimarco:2019:CLD

Rueda-Ramirez:2019:TEE

Sun:2019:TSO

Baeza:2019:CWS

REFERENCES

REFERENCES

539

Sun:2019:CNS

Chen:2019:UWD

Fu:2019:DGM

Chen:2019:DFW

REFERENCES

[2299] Masato Kimura, Hirofumi Notsu, Yoshimi Tanaka, and Hiroki Yamamoto. The gradient flow structure of an extended Maxwell vis-

Wolf:2019:AMF

Mittal:2019:MSS

Zaspel:2019:APM

Wang:2019:SAP

Mohammadi:2019:OSD

