A Complete Bibliography of Publications in the
Journal of Statistical Planning and Inference:
2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

08 November 2023
Version 1.01

Title word cross-reference

(3t, 3, 1) [BG10]. (83, 55, 12) [FK19]. (83, 56, 12) [FK19]. (k₁, k₂) [SM13]. (p, q)
[VT18]. (q, k, λ, t) [WWC10]. 128 [XM10]. 2 [BT19a, BLP11, RH13]. 2ₘ
[ITA+09]. 32 [WMB10]. 3ⁿ [SC10]. 7 ≤ m ≤ 10 [CKG19]. 2 [TN14, YU13]. 1
[BL10b, GF11]. 2 [CKM11, GJ12, HS11b, Moj12]. 4 [BGR11]. A
[CKM11, Gra12a, SD16]. α [Miy18, WYY+10, WZ10, ZL12]. AR(p) [SZ19]. β
[CWcIC11, mFS12]. C [BGR11]. Cₚ [CH11a, LJ12, Oga17]. D
[BSH13, BSKS18, BS16, CL13a, CT14, DPA10, DL11, DH11a, DDS13, FK19,
Gaf19, GVV10, HKN18, Har14, HHJ13, RS19, Sek12, SX11, TL18b, WZ11b].
δ [AF12]. E [FR13, FHK11]. E(f_NOD) [CKMS12]. E(ς²) [CDST18, GM12].
E_max [WY14]. ℓ₁ [BC13, LL19, vdG13b]. F [KF12]. G
[Imh14, WM18b, XGK16]. h [Nag15]. j [MSTT11]. K
[Bar17, Qiu10, Aya12, Beu10, CPH19, DL12, Ery11, GHM11, GM12, GZH11,
K² × J [HY10a].
[Bra10, CLL11, Cla19, FYX14, RLLT17, SZ19, GK12]. m = 4λ ± [ETMJ11]. N [HM13, Beu10, DL12, DLZ14, Ery11, Miy18, SAE11, TV12]. N/4 + 1 ≤ n ≤ 9N/2 [CZ10]. ν = 2n [HYH10]. P [Par10b, TS10, AE16, BS16, Di13, DLZ14, EO12, FC10, Hab15, MSBM16, RP11a, ZCP13, ZZ14a]. P(Y < X) [Won12]. P[Y < X] [RTM10]. πₚ [LO11a]. q [Cha10b, Cha10a, Cha12, KV10, QWC12]. R
[HY19, LYC14, LYC15, LYXC16, YU13]. s [GCDK12]. S = −S [STS10]. T
[Ruk14, ĀG12a, AM11, AAV13, COP10, CPM14, CSC14, HLCW12, JD16, LN15, LVK10, LW11b, MS12b, WSL17]. t₀ [FPLR11]. ×
[AM12a, KBPW12, Nik12]. × ⋯ × [KBPW12]. U
[BK16, CR16a, Dör10, EQ15, JA17, TJ12, YQC11]. U(3, 3) [CCS14]. Uₑ(s²)

-ADF [WWC10]. -Bernstein [Cha10b]. -binomial [Cha10b]. -Boosting
[CCAGV14]. -Brownian [ZL12]. -Charlier [KV10]. -circulant
dimensional [RS19]. -discrepancy [EQ15]. -Discrete [KV10].
distributions [Cha10a, MS12b]. -divergences [JMW13]. -efficient [SD16].
-error [BL10b]. -estimates [SZ19, WMH12]. -estimation [Nis11, Qin10].
estimator [CLL11, RLLT17]. -estimators [Bra10, Cla19, FYX14]. -factor
kurtosis [WN11a]. -level [GCDK12, QWC12]. -max [RP11a]. -means
[RH13, Qiu10]. -Meixner [KV10]. -mixing [mFS12, WYY+10, WZ10].
[SvdVvZ15]. -optimal y [SD10, BSH13, Bar17, BSKS18, BS16, CL13a, CT14, CKMS12, CDST18, DPA10, DL11, DH11a, DDS13, FK19, FHK11, GVV10, Gra12a, GM12, HKN18, Har14, HHJ13, Imh14, LYC14, LYC15, LYXC16, RS19, Sek12, SX11, SD16, TL18b, WZ11b]. -optimality
[CKM11, FR13, Gaf19, HY19]. -out-of- [Beu10, DL12, Ery11, SAE11, TV12].
-penalty [Kol13, Lec13, vdG13b]. -Pólya [Cha12]. -prior [WM18b]. -priors
-regularized [LL19]. -run [WMB10, XM10]. -sample
[LSWY16]. -skewness [WN11a]. -statistic [Ani10, MA08]. -Statistics
[TJ12, BK16, CR16a, Dör10, JWY16]. -Step [TSO10]. -systems
[BGR11, Ruk14]. -type [EQ15, YQC11]. -value
[MSBM16, ZCP13, ZZ14a, Par10b]. -values [AE16, Dic13, Hab15].

0 [Nik12].
3

1 [Nik12]. 1-100 [Ano16-37, Ano16-38, Ano17-37]. 1-102 [Ano15-34]. 1-104
[Ano15-40, Ano18m]. 1-140 [Ano14-37, Ano16-40]. 1-142 [Ano17-41]. 1-144
1-170 [Ano19]. 1-180 [Ano18n]. 1-184 [Ano18e]. 1-188 [Ano18p]. 1-190
[Ano14-41]. 1-224 [Ano19k]. 1-228 [Ano15-41]. 1-238 [Ano19l]. 1-248
[Ano17-42]. 1-60 [Ano16-46, Ano17-43, Ano17-44]. 1-610 [Ano11-37]. 1-62
[Ano17-45]. 1-64 [Ano18q]. 1-74 [Ano16-47]. 1-80 [Ano17-46]. 1-94
BP13a, BP19, BK11c, dLJ12. 141 [AA11c, GS12a, YS11b]. 1417-1620
[Ano13-41]. 142 [BRB18]. 150 [KZ15]. 16- [WMB10]. 1619-2154
[Ano11-42]. 221-456 [Ano13-45]. 2241-2484 [Ano12-41]. 2355-2798
[Ano12-43]. 2871-3060 [Ano12-44]. 2937-3576 [Ano10-40]. 2987-3292
[Ano11-44]. 2f [BT19b].
[Ano12-46].
457-636 [Ano13-46].
585-850 [Ano10-42].
[Ano10a].
781-1030 [Ano12-48].
851-1100 [Ano10-43]. 867-1000 [Ano13-48].
91 [TLBJ11].

LLZ11a, LST12, LYZ12, LYL3, Llo10, LMW12, LW15, LA14, LGG12, MR11a, MSB16, MBB11, McN10, Mři10, Műh10, NB12b, NB10, Oz12, PL10, PR11, RM11, SHW16, SDNH13, SD10, Shu11, Shu12, SN10, SM11, SF10, SR14, S13, SSDM14, SR13b, TSO10, TNW12, TJ12, VCA10]

based [VV10, Ver17, VGV11, VSK +11, VGH13, VDW13, VB10b, WTZ12, WY14, WSSG19, WW11b, YSW10, YL10b, YKH13, YLL17, ZZOY13, ZX12, Zha13, ZOST12, ZJ10].

baseline [GLT16, KT17, LMT14, LM17b].

class [WK13]. basic [Ste11a].

Bases [Cha10b, MLa11].

Baseline [Nog13].

Bayes [BP13b, Bir15, CY11, CR15, DRT10, JGJR16, KLW10, KK19, KKP10, LM11b, MS13a, Ogi19, PG10, Ruk14, Ruk17, SG12b, Tor12, Tsu10, VDW13, WS14, XGK16].

Bayesian [Ogi19].

Basic [Cha10b, MLa11].

Bases [WK13].

Baseline [Nog13].

Bayes [BP13b, Bir15, CY11, CR15, DRT10, JGJR16, KLW10, KK19, KKP10, LM11b, MS13a, Ogi19, PG10, Ruk14, Ruk17, SG12b, Tor12, Tsu10, VDW13, WS14, XGK16].

Bayesian [Ogi19].

Basic [Cha10b, MLa11].

Bayes [BP13b, Bir15, CY11, CR15, DRT10, JGJR16, KLW10, KK19, KKP10, LM11b, MS13a, Ogi19, PG10, Ruk14, Ruk17, SG12b, Tor12, Tsu10, VDW13, WS14, XGK16].

Bayesian [Ogi19].

Baselines [WK13].

Bayes [BP13b, Bir15, CY11, CR15, DRT10, JGJR16, KLW10, KK19, KKP10, LM11b, MS13a, Ogi19, PG10, Ruk14, Ruk17, SG12b, Tor12, Tsu10, VDW13, WS14, XGK16].

Bayesian [Ogi19].
SM13, SSC11, WW12a, YCB16. **Bingham** [LD14]. Binomial
[KL10a, Alb10b, CT10a, Cha10b, Che11a, Gai13, Gua12, KP11, Men12, PS14, RAB14c, Sei14, Wan10b, Wan11, XZ19, ZSL14, ZJ10, Zhu12, OJMRC514a]. binomials [TRWP10]. **binormal** [DN12]. biodiversity [BR14].

bioequivalence [HOK19]. biology [BS10c]. biomarker [HCZ19]. **bipartite** [GR18]. Birnbaum [CLB12, BGK +11, COP10, LF11, Pat12, PK13].

Birnbaum-Saunders [BGK +11, LF11, Pat12, PK13]. Bivariate [LSP12b, Qiu10, AE16, DF12a, FKV11, GMSK10, HvdM12, HN12, HZ18, KG10b, LM16, LH11, NS10a, NS10b, OJMRC514a, RR12, sS11, sS13b, SK12, Sum17, Unk17]. Block [GS11a, GS12a, Par10a, AP14a, AM12a, ABW13, BSH13, CY10, CYW10, DIAT11, DD13, FF12, FR13, FMZ10, GW11, GG15, HC16, ITA+09, IT10, ITA+12, Jac19, KME10, LC15, Pav12, SDNH13, SR10, TL18b, Wag11, ZC11, ZW11]. Block-circulant [GS11a, GS12a]. block-decreasing [Pav12]. block-factor [AP14a]. Blocked [YL14, Jac11, Lin14, ZLZK13, ZL16a, vdVV14]. blocking [OQL11, XM10]. blocks [AA11b, AA11c, GW11, GG15, SYA11a, TL13, ZSA10]. **BLUEs** [HP10b, Tia13]. Board [Ano10n, Ano10o, Ano10p, Ano10q, Ano11o, Ano11r, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano11p, Ano11m, Ano11n, Ano17i, Ano17m, Ano17n, Ano17o, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g]. Bon [Sri10].

[BE14, FK11b, GD15, HC16, Lia15, PBRT16, Qiu10, SGL13, ZZOY13, vDMc10]. **case-control** [GD15]. **case-family** [ZZOY13]. cases

[CWcIC11, KL10a]. **Catalan** [Kra10]. catalogues [LST12]. categorical

[DMp10, GD10, Pr16, WFG15, Wei11]. **categorizing** [PMW16]. Cauchy

[McV11a]. **causal** [BVG10, CFW14, Kw12, Sc10a, SG12a]. causality

[GLZ14, Pr12]. cause

[HLS12, sS11]. cause-specific

[GDHS12]. cautioned

[HCMP12]. Centered

[GrM14]. Centered

[ChF11, Sy18, Bo11, Cl13b, Dem12, Di16, Eg16, RL17, Mz13]. certain

[MP12a]. Cesàro [YW10]. chain [AT10a, AHO13, Cs11b, YL10b]. chaining

[Bc13, Kol13, Lec13, vdG13c, vdG13b]. Change

[FJK11, LM17a, Bt15, Chh13, Cht17, Ciu13, Chh18, Dac10, Dör10, Dör11, Fgh14, Hbh13, Jar10, Jar13, Ks18, Kk15, MLa11, Mg10, PC14, SG11, SL19a, Sr14, Tn14, Wg13, Wk13, Wu16]. Change-point

[FJK11, LM17a, Bt15, Chh13, Ciu13, Dac10, Dör10, Sr14]. change-points

[Chh18, Sg11]. changes

[BD12, Buc14, Hud13, Lz13a, St11]. characteristic

[MSA14, Sr14, WMH12]. Characteristics

[DPM13, GS10]. Characterization

[HP19, Bar12, FrR14]. Characterizations

[Aok19]. Characterizing

[Jon13b]. Charlier [GJ10, Kv10]. chart [CM11]. charts

[Alb10b, Alb11, Alb12, Bs11b, Jm11b, Lsz13, Ver13, Yc11a]. Chebyshev

[Bw10a, Bejs10]. check [Lyl11, Ls19]. Checking

[Ngx16, Beu10, Dy19, Gk17, Vs10a, Vs16]. checks

[MLP17]. Cheng

[CK12]. Chi [Cs12a, My11, Yy10]. chi-square [My11]. chi-squared

[Cs12a, Yy10]. chirp [Rgw10]. Choice

[Cc12b, Alb10b, Bbs10, Dyv11, Dds13, Gv10, Gghs13, Sd16, Vg11, Wei11]. choice-based

[VG11]. Cholesky

[CT10c]. Chopra [CKG19]. circle [Cl13a, Es16, Sl19b].

circulant [Gsi1a, Gsi2a, Ghm11, Gm12]. circulants [Hm11a]. Circular

[Az13, Ery11, Aal1b, Aal1c, Dpt16, Dt12, Hyh10, Lm11a, Lm16, Sy11a, Zsa10]. claim [CM15]. class

[As15, Amr11a, Aul12, Bcg10, Brb12, Brb18, Bst10, Dfm10, DlDC12, Fhp11, Fra14, Gd10, Gf13, Gn16, Gc17, Hz11a, Hgh12, Hir19, Jyw16, Qok10, Sb11, Sz10, Sl19b, Sr13b, Wiel19b]. classes

[Ajgg10, Ahl12, Abw13, Cz12, Dpc11, Dpm13, Seb19]. classical

[At10b, Dm11]. Classification

[Bovss10, L011b, Mc11, Rh13, Sgs12, Am11, Bp10d, Bm12b, Cxck13,
DPC11, Hoc19, McN10, Rüs19, TH14, TP10, Zha13. classifiers [FBHZ14].
compute [JBB10]. computer [AZ10, CO10, Geo11, LMW10, LMW12, Mor14, PS15]. Computing [FRM11, Sag11, Har14]. concave [DKW17, PZ14]. concentration [HHMO15]. concentrations [Ver17]. concept [NQ10]. conceptual [CND10]. concerning [Nku10]. conclusions [Jon13b]. Concomitants [JB12, WN10]. condition [BK12, CDd11, Ton13, YO11]. Conditional [CP15, KD12, KS10a, LMZ18, LdUA11, MZ10, TL18a, Cav18, CHH19, DE16, DF12b, GS12, HK19, HCT16, KLS11, Lec18, LVK10, NDD16, OVG13, PDI1, Pla13, SKFM14, Sor19, Tan10, Unk17, VV10, VX13b, ZK17, Zha10, ZCLZ17, ZLL16b]. conditionally [KG10c, MM12]. conditioned [AP14b, JR10]. conditioning [Lo10]. conditions [BK16, CK12, CHF11, GW11, Li11, RP11a]. cone [Sag11]. cones [DB19]. Conference [Ano10-27, Ano10-44, Ano14v]. Confidence [BFCGR12, Bur11a, CHH18, DS18, HX16, HS18, Kon12, KL10b, LQL12, Ruk12, Sch18, Woo19, ADPW10, BI12, Beh10, CWWT12, CLO17, CWH10, Coa14, Cl11b, Gu12, HK10, HvM12, KF12, KNH16, Lew18, Lin12, LAk10, LYL13, LLP14, LZL16, MH10, SY12, SLgX18, SS13d, SZ13, SvdVvZ15, TXLV11, TCC12, VM18, VB10b, WQ10, Wan10b, WW11b, YS11b, YS11c]. confidentiality [HG12]. confirmatory [LW19]. conflict [BDG14]. confounding [CZ10, HZ11b, Jac11, SB19, ZC10, ZLZK13, ZLL16a, ZZ14b]. conjecture [FGN10]. conjoint [DYV11, GVV10, KGV10, VGV11]. conjugate [HG13], conjunction [Alo11]. connected [FGN10]. connection [MV11a]. connections [Sar14, SP12a]. Consecutive [GKM10, Ery11, GJM18, SAE11]. Considerations [CHP11, QL15]. consistencies [LL11a]. Consistency [DM12, LM11b, Nag15, RBW15, SC11, XGK16, ZCLZ17, ACP16, CL16a, CR15, FLTV10, FN17, KLS11, KK11, Le13, LLLP19, Mei11, WT10, WS14, WM18b, WX13a]. Consistent [GLW11, KK16, LL19, FJKW13, LLZ11a, Miy18, NB12a, sS12c, SL19a, Sig12]. constant [AX19, FHK11, HH15, KGV10, LL11c, LT10, TLBJ13]. constant-stress [LT10]. Constrained [WX15, BHM16, MKW18, MHK10, SP12b]. constraint [LLL18]. constraints [Abr12, CL15a, KS19b, LMKS17, OK11, SC13, ZGST12]. constructed [CCS14]. Constructing [DDS13, GM12, GS11a, GS12a]. Construction [AJGG10, JA17, LC15, LQ17, LL11d, SLL10, SYL13, Tsa17, ZLZK13, CKMS12, CLFZ13, CZ10, Geo14, Jac11, Jac19, LYXC16, Mar18, PZ14, Seb19, ySDM13, TQ12, TX13, YHS19, ZC10, fZYD16, ZLL16a]. constructions [PMK19, TY10]. Cont [Ano17-35, Ano10t, Ano10u, Ano10v, Ano10w, Ano10x, Ano10y, Ano10z, Ano11q, Ano1r, Ano1s, Ano1t, Ano1u, Ano1v, Ano1w, Ano1x, Ano1y, Ano1z, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano15v, Ano15w, Ano15x, Ano15y,

cont [Ano18k, Ano18l]. contamination [SHYH16]. Contents [Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano18a, Ano18b, Ano18c].

controlling [BS14, SGF12, SCHG19, ZZ14a]. controls [CWC11, DST10]. conventional [MS10]. converge [Cla19]. Convergence [BP10b, BP13a, BP19, Dor11, EEL10, Lai15, MKW18, VB10a, Xin11, Aya12, JYY16, LL11c, RW18, RP11a, SP12a, Wu19, Zha13]. convex [DB19, Kat19, WM18a, Zho10]. Convolution [CGC12, CMLBSM13].

Correlated [BW13, BRdGZ13a, AVML11, ABK+11, BRB12, BRB18, CS12a, DDL14, EE17, Gra12b, KME10, Sai10, TRW10, Tsa19, ZLZ+16, RS13b, SS13a].

count [AKK12, Lin10, PA12, SP12b, TRWP10]. counterparts [JBB10].

Counting [MP12a, MSTT11, Böh10]. counts [DHH10, DDD18, Sor19, Ste11a, XZ19].

coupled [HLSL17]. Coupon [JM11a]. course [MS12b]. covariables [DW17].

covariance [CG14, BMW16, BMPT19, BF13, CT10c, CNL17, DMP11, DPM13, DP13, DM13, Fis12, FO13, HCPM12, HBP12, IYA16, IYA19, Jar13, JYY12, LR11, LCQ13, LB15, LL15, LLZ17, MJS12, MYW11, NHSP13, QZZ11, RV16, Sch10b, She14, VBI10a, ZW12b]. covariances [BMW15, FCC10, Ros10].

covariate [CZHC14, HLH13]. covariate-adaptive [LBH17].

covariate-adjusted [CZHC14, HLH13]. covariate-dependent [OPP19].

covariates [Bha11, CYCZ12, CYZL12, DMP10, DMMdUA16, FRF12, FC12, GLT16, GX12, H12, HLS10, Hua11, MQ10, NDD16, SRBS11, SHYH16, SSZ11, TL10, X12]. Coverage [GP10, KF12, Wan10b]. covering [CSWY11, GKM10, WWY10]. Cox [CMT17, CC11, FN17, GLT16, HH14a, LH16, LM17b, LLL18, RH11, WZ18, WWZ19, YLC16]. Cramér [Gas11b].

correlation [Bha14, CH11a, DMM18, HY19, HLL12, HYS12, KHS12, WZ11b, XT15, ZZ14b, CS16a]. crop [CP19]. Cross [Jan15, AM19, AJGG10, BMW15, BDvdA15, CR10, DMM18, DT14, IR19, LLJK13]. cross-over [AJGG10, DT14]. cross-sectionally [BDvdA15]. cross-validation [AM19, CR10, DMM18, IR19]. crossings [AG19].

crossmatch [ACP16]. Crossover [YL10a, BS10b, PBND11].

curable [CF12b]. cure [CLB12]. current [OZC16, Pla13, Unk17].

curse [RRKM11]. Curve [CD15, CWcIC11, Chr14, DN12, HX16, HC11b, LZ12b, Son11a, SC16, WSSG19]. curves [FRF12, TDW10, TV515, ZPS15].

cylindrical [Maj14].

D [BLP11, NL16, vdG13a].

Dantzig [AH12, FN17]. Darbellay [Le13].

Darling [CHH13]. Data [CM10, Fre13, GRPY11, HG12, MA10, APQ10, AS15, ABK+11, Alo11, AMRP18, BFZ10, BM11, BQJ15, BS10b, BLT16, BFCGR12, BR10, BM12b, BCG13, BH15, CW19, CPH19, CHH13, CLL12, Cha19b, Che10a, CC11, CYC11, CYCZ12, CW17, CGLW18, CPSY10, Che12, CR16b, Cop11, CXCK13, CN12, CS11b, Cuc14, CDMS14, DF12a, DMTZ15, DP11, DGCS16, DW17, Dia17, DELS16, DK17, FZS16, FJK11, GMR10, GD10, GK17, GSZ11, GRM14, GRL10, Gui19, Han14, HK19, HW17, Hon10, HLS10, HFD11, HCMP12, HYS12, HLS12, JB14, JP12, Kak18, KWPW12, KK11, KSL11, Kon12, Kon13, Kre18, KSKE10, KKP10, LÅPF19, LL11a, LRRB11, LR11, Li11, LZ12a,}
\begin{itemize}
 \item LZ13b, LM16, Lia12, LdUÁ11, Lin10, LW11b, Lin11, LLV15, LW10, LLZ11b, Liu11a, LZ12b, LL15, LLZS17, dUJC12, LQ16, Lwi11, Mad10, Maj14. data [MCSC10, MS12b, Miy11, MRY11, NS10a, Nis11, NHSP13, OG10, OZC16, Oua13, PD11, PA12, Pla13, Qin10, RM11, RH11, RAB14c, Sah11, Say12, SXX11, sS10a, sS10b, sS11, She11, sS12b, sS12c, sS13b, SDNH13, Shu12, SN10, SM11, STS10, SP12b, SLC15, SZ10, SSZ11, SdL10, TH14, TRWP10, TB11, TWLQ15, Tor15, TW11, Unk17, VBLN17, VGH13, VB10b, Wahl10, WK10, WZ11a, WTL11, WH11, WS15, WDRB18, WQ11, WW12a, YSH11, ZS15, ZLZ16, ZZW12, ZZW19, ZGST12, ZGK13, ZWM12]. Data-dependent [CM10, SN10].
 \item Data-driven [Fre13, Lin11].
 \item Data-transformation [MA10].
 \item Datastreams [DZ18].
 \item De-aliasing [Cha19a].
 \item Deciding [HP10a]. Decision [Thu14, BS10a, BP10d, HP10a, Jon13b, YC11b]. Decision-theoretic [Thu14]. Decomposable [BTV12]. Decomposing [ABFG12].
 \item Decomposition [WW12, HS14, KD13]. decompositions [DKY15, Lom11].
 \item Deconvolution [BKPS14, BPR19, Mab16, Me11, Var15, Wis13].
 \item deformation [Fra14]. deformed [Sei14]. degeneracy [GRD16].
 \item densities [Kom11, LVK10, Pav12, Wen15]. Density [KKP10, AC11, Ban12, BJQ15, BK17, BFKK17, BR10, CM10, CSW11, CCG12, CDNS14, DW17, DPT11, DTM18, Dut11, Efr13, GZ10, HM10, Kak18, LMK17, Leb12, LQ12, Lu13, Müll12, QLL11, RV10, RBRM11, SP12a, SL14b, Tan10, THG12, Ton13, VGH13, WMH12, XL12, ZCL17].
 \item density-based [VGH13]. density-quantile [HM10].
 \item Dependence [DKL13, AS11b, BGT16, BKPS14, FCC10, FRM11, GR15, KCF12, KIr12, MPN17, PR16, PC14, SLC15, TSZ13, Unk17]. dependency [Le13].
 \item Dependent [BK16, AP14a, BP10b, BP13a, BP19, BDvdA15, BMP11, BLT16, BK17, Bha14, Bin14, BFKK17, Bro10, CM10, CLL12, CL15b, CH10, Ery11, FYX14, Gup12, HW17, Hon10, HC11b, JR12, Kro19, LdUÁ11, MZ13, OPP19, SN10, SSI9, Sun17, SSZ11, Wis13, YC11a, Yan15, YLC16]. depth [AR11, DS10, DMI12, KMW16, Nag15, PS15]. depth-based [DS10].
 \item depth-design [PS15]. derivation [BP14c, BE14].
 \item DerSimonian [JBB10]. Desarguesian [BBPW14]. description [Cla19]. Design [Ano14v, BR14, GT10, HCD14, LW19, LH14, LM14, OL19, ZLM12, AAKR12, AFH14, AZr15, BBB11, BCMAW14, BTT15, BM15, CSR15, CCGL10, CS13, DYV11, DD13, EZ12, GS19, GZ14a, GN16, GÖ12, GRA12, GDHS12, GGHS13, GSKP10, GCDK12, GZH11, HJ14, JGJR16, KON11, KL11, LLY14,}
\end{itemize}
Dimension
[DDW16, DW17, HFQ11, Mei13, Dhi18, HY10b, IYA16, KWS19, Lia15, Moj12, NYA17, NHSP13, PA13, XWY18, YY10, Yua13, Zha13, vdG13a].

-dimensional
[ABK+11, AP14a, AC11, Bar12, BP10d, CPH19, CYZL12, CS16b, GLV11, GP12, GR18, GLT16, HY10b, IYA19, JJJY12, LL12, LCQ+13, LB15, LJA15, LMZ18, LLZ11a, LLZ17, LQ16, LA14, MEI13, MPT13a, MPT13b, NPK10, Nan12, NI2, NKw10, Obo13, PDI1, PS15, RS19, SL14a, TS13, WTZ12, WX19, YW16, YYX19, ZGK13, ZK15, ZGZ17].

dimensionality
[Fis12].

Dimensionally
[MV11b].

dimensions
[BSG16, BMPT19, FK11a, MC11].

Dimitris
[GP16].

Direct
[WMH12, BMW15, LL11, PBND11].

directional
[GR15, Jon13b, KG10c, LM11a].

Dirichlet
[GS11b, Gri11, MS12c].

discontinuity
[BRBM19].

discovery
[DZ18, LS10b].

Discrepancy
[NZF11, CND10, CQ11, EQ15, SIG12, Zho10].

Discrete
[Cha10a, KV10, AP14a, ACC18, CQ11, DP11, DDS13, EG10a, GGH13, Hab15, HFW10, JM13, KU14, KK12, KL10a, Nik13, PL11, SD16, WH11, Wie19b].

discrete-time
[JM13].

discretely
[CH11b, DI10].

Discriminant
[CHT17, AM11, BM12b, HY10b, SH12, SH12, TH14].

discrimination
[ALN10, EMS11, LR11, Luk14, Shu11].

Discussion
[Ber14, BP14a, BC13, BW13, De13, GP16, HL13, HJ14, Jon13a, Kol13, Krl16, KL13, MY13, Mam13, Mei13, Obo13, SS13a, SV14, vdG13a, vdGM13, Goo19, HW13, NL16, Wh13b].

disease
[NdCJ10].

disjoint
[BG10].

disparities
[MBB11].

disparity
[MBB11].

dispersion
[ALT10, CT10a, EA10, JR12, PA12, SC10, SR10].

dissimilarities
[TvS15].

dissimilarity
[CMO13, Wah10].

distance
[Dal11, Hab10, HS11b, KL12, Kou11, KS16, MKT15, Mor14, NJ16, TvS15, XW13a].

distances
[S13b].

distortion
[ZYS14].

distributed
[BP15, JR12, NR12].

Distribution
[DE16, DG13a, LL11b, Son11b, WN10, Alo11, AG12a, BP10a, BAHS11, BGK+11, dZB10a, dZB10b, BS16, BMNY13, Cha10b, Che10a, CS12b, DR13, DHI1b, DG13b, DY19, Dör11, DKW17, FP12a, FKV11, Fre14, FJ12, GMSK12, GT12b, GR12, GP15b, HY10b, HGH12, HK11, HO10, HLCW12, HFQ11, IB11, IKU11, KG10a, KG10b, KR12, Leb12, LD14, Lew18, LCQ+13, Lia11a, LW11b, LZ11, LSP12b, MRY11, MSW12, NB12a, NB12b, NB10, NCC11, OJMRC11, Pla13, PK13, RM11, Reg11, RT10, RüS19, She14, sS10a, sS11, SK12, SC13, Vag10, VBL17, WQ10, Wan11, Won12, YO11, ZX12, Zou14].

Distribution-free
[DE16, Son11b, BS16, HGH12].

distributional
[KNM10].

Distributions
[DAP10, IA11, SM13, AVML11, AJM19, Ani12, ALP10, AV13, BT16, BCR11, Bas11, BK11b, Bou11, Bur11a, COS12, Cha10a, Cha12, CPM14, CSC14, CS12a, CL11b, CH11c, CH11b, D11, DS18, DD110, DKL13, DLP14, DF12b, EG11, FHH1, FG12, FV11, Fre11a, GGG11, Hab13, Hab15, HvdM12, HS18, HG13, IF10, JB12, JJJ12, JD16, JMJ1a, Jon15, KLM10, Kem10, KL10a, KP11, KV10, LGLO12, LM11a, LV13, LP11a, LN15, LVK10, LHY12, Lia14a, LCY12, LH11, LT18, LS12, LLL19,}
divergence [GBP15, SN10]. Divergences [BK12, DI10, Che12, JMW13].

diverging [FLL17a, LC13, WW15a].
diverse [YY11a, CY10, CYW10, RSS19, Vag10, ZC11].

dose [JBB10]. domain [FRM11, KLKO15]. dominance [Kub14].
dose [AMR11b, HC13, LLP14, MDT+12, Pro10, WZ14, YCB16].
dose-finding [HC13, Pro10, WZ14].
dose-response [LLP14, YCB16].
doses [XII12].
double [GLZ14, HTZ14, Kub14, VS12].
dually [sS11, sS13b].
down [DB12].
drawn [BC11b].
drift [HS11a, ST11, XZZ18].
driven [BC19, CL13b, Fre13, GPRY11, Lin11].
drug [TP10]. Dual [Che12, Kak18, RBS10].
duality [BK12].
due [TLBJ13]. duration [JM13, ZLL16b].
durations [DHH10]. Dutter [Hu13].
dyck [DMR10b, DMR10a, MSTT11].
Ano17-30, Ano17-31, Ano17-32, Ano17-33, Ano17-34, Ano17-35, Ano17-36, Ano17p, Ano17q, Ano17r, Ano17s, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano17y, Ano17z, Ano18k, Ano18l, Ano18i, Ano18j, Ano18k, Ano18l, Ano18i, Ano18j].

Effect [DYV11, HP10b, LM16, BVG10, FZS16, HHMO15, Hay16, LL13, LT14b, Ros14, Ruk12, d LJ10, d LJ12]. Effective [LZZ15, TX13, XI12].

effectiveness [AM19].

Effects [TH14, AA11b, AA11c, AMRP18, BR14, BT19a, BGS10, Bur11a, CLM12, CC12b, CSC14, DGCS16, DKY15, DT14, EA10, ETMJ11, HC16, JBB10, KK11, KPZ13, LT14a, LZ13b, IW10, LZL16, MP11, MR10, OG10, PBD11, RSH12, Ruk11, Ruk19a, SB19, SG12a, Tsa19, Wae10, WT10, YL10a, YS11a, YSW10, ZS15, ZC12, vdMC10].

efficacy [RF13].

efficiencies [BM18].

Efficiency [Che10b, CS11a, MS18, VGV11, APQ10, AM12a, Azr15, CC19, DYV11, HC13, Ing10, Lac14, PMK19, TWLQ15, TY10, Ver17, WLS13, XL11, ZLM12, ZG12].

efficiency-balanced [PMK19]. Efficient [Bra10, Cho17, Dia17, DT12, GH10, JP12, LN15, LCY12, LLL18, MY10, PBN11, Ban12, BT19b, BLP11, CS13, CKP17, DB11, JBB10, KS19b, KBN11, NPK10, PS15, PBRT16, RS16, Soi13, SD16, XW13b].

eighth [PMX12]. Eisenental [DJ19].

electromagnetic [Zha15].

element [Kat11].

Elemental [AFHZ14].

Elfving [Bar12, Qi11].

Elicitation [MO10b]. Elliptical.

embedding [ACC18].

Empirical [Alb11, AMRP18, CY11, CS16b, HZ18, LQ11, LP11b, Lia12, LW15, QLL11, SS12a, VCA10, WQ10, WZ11a, WW11b, XL12, XXC11, ZY11, BFZ10, BP13b, CM10, Chr14, CG14, DRT10, FSS18, FLL17a, FP12a, Gho13, GMP15, GF18, KLW10, PS15, PBRT16, RS16, Soi13, SD16, XW13b].

[AT10b, JD16, WM18a].

Embedding [ACC18].

Emmanuel [Ano10s].

Empirical [Alb11, AMRP18, CY11, CS16b, HZ18, LQ11, LP11b, Lia12, LW15, QLL11, SS12a, VCA10, WQ10, WZ11a, WW11b, XL12, XXC11, ZY11, BFZ10, BP13b, CM10, Chr14, CG14, DRT10, FSS18, FLL17a, FP12a, Gho13, GMP15, GF18, KLW10, PS15, PBRT16, RS16, Soi13, SD16, XW13b].

empty [BF12].

emulation [CO10, JGK11].

Encoding [Wah10].

encryption [HG12].

endogenous [Kim16].

endpoints [JM13, WCZ17].

Energy [SR13b].

entropic [KMMP11].

entropies [GMP15].

entropy [AA11a, DF17, DGS19, GLR11, Gui19, KNM10, NdAA10, NMS12, Reg11, SP12a].

enumeration [Hum10].

environment [MX15].

environmental [TG16].

enzyme [AB14].

epidemic [Buc14].

epidemics [PP13, PBRT16].

epistemic [Sch18].

EPMC [HY10b, Shu12].

equal [CM10, GO11].

equal-tailed [CM10].

Equalities [SC16].

Equality [IYA19, MHK10, AB14, HP10b, IYA16, KS19b, OP12, SDZ19].

equals [Fis12].

equation [BP15, KZ14, KZ15, Lin10, Lin12, WF11].

Equations [CB19, DGCS16, Gro13a, Jon13a, LP11b, LJ12, Mam13, WLCK11, WL11, vdGM13].

equicorrelated [LR11].

equidistant [HS11a].

equilibrium [NS10b].

Equivalence [Kat12, CY11, Gr618, KDJ13].

equivariant [Mad10, ZN12].

Erdos [CHH13].

ergodic
Erratum

[AA11c, BK11c, IT10, KS11b, TLBJ11, YS11b, dLJ12]. erroneously [LG12].

Error [PKL12, BS14, BL10b, CPM14, CC15, CSC14, DRT10, DR13, Hei11, Hir19, Hua11, HZ13, HCZ19, LM16, LZL16, LLW16, Lu13, LHZ11, LGG12, Mai11, MS13a, MSW12, SGF12, SXX11, SGL13, TH14, Tar10, TRL13, Var15, WZW13, WG12, YH19, ZYZL14]. **error-in-variable** [LZH11]. **error-prone** [Hua11]. **errors** [AVML11, AD11, BLT16, BM15, CLL11, CNdGAL11, DRT10, DM11, FLW13, FYX14, FK11b, GZ14a, GK17, GR15, HHMO15, HK19, HY19, Hon10, HG11, Kau14, KS16, KL11, KME10, LCT10, LLS19, Nan12, Pan10, PG12, Sai10, SS16, SR10, Wei12, WZ10, Wis13, WQ11, WW12b, XJJ14, YAW18].

errors-in-variable [HG11]. **errors-in-variables** [DM11, FLW13, Hon10, LLS19, Wei12]. **Esseen** [Bou11, Fab14, HWZ11, ZL11a, YHL11]. **Esseen-type** [Bou11]. **Estimable** [Tsa19]. **estimate** [CWcIC11, Dut11, RS16, XR11, ZCL17]. **estimated** [CM11, CM16]. **estimates** [AG12a, BM12a, Dal11, FJKW13, FLTV10, FK11b, HZW11, KK12, Kre18, SDNH13, SZ19, WMH12, WN11a, WN11b, XL11]. **Estimating** [CT10a, CL11a, GGS12, Mühl12, MSW12, PD11, Ruk11, Ruk19a, SSDM14, AG12b, BTT15, BLPI1, CC12b, CC15, CHF11, DF12a, GT12a, HFW10, HBP12, KK15, LT14a, Lew18, LP11b, Lin10, Lin12, LS10b, LSW13, NPK10, TRL13, VS12, WMM+10, WLCK11, WL11, WTZ12]. **Estimation** [APQ10, AG19, BP10a, BSV10, BW19, BMPT19, BFKK17, BF13, CT10c, CGCL10, CP19, DR13, Dut11, EGGG12, EZS11, FT10, FZ13, FL17b, FKLL13, GS10, GSCGL12, HK19, HCT16, HLY12, JRM10, Kas17, KMW15, LGLO12, Li11, LM13, LCQ+13, Liu11a, LX18, Nan12, NMS12, PG12, Reg11, RH11, RMT10, SXX11, sS11, sS13b, SSS12, WSW10, WW15b, YSW10, ZS15, AHD12, AC11, AS10b, AAV13, BM16, Bao18, BLBL10, BDL14, BQ15, BET17, BP13b, dZBK10a, dZBK10b, BK17, BW13, BWZY11, BK11b, BR10, BC11b, BK12, BT12, BCG13, BH15, BRvdGZ13a, Bur11b, CUW10, COP10, CR10, CCR17, CPS15, Che10b, Che11a, Che11b, Che12, CH10, Chol17, CB19, CHH11, CGC12, CH11c, CA10, CHR13, CPL18, CDS14, DMZ15, DM14a, DRT10, DM11, DW17, DKN12, DGS19, DPT11, Día17].

estimation [DZZ18, Dio14, DELS16, DHM18, Dör10, DMP18, DD13, DK17, Efr13, EMS11, FCC10, Fra14, GLR11, Gam13, GZ10, GD18, Gas11a, GT12a, GLR10, Gho14, GC11, GB19, GH10, GS12b, GT10, GLT16, GSS10, Hab10, Hir19, Ho10, HM10, HFQ11, HC13, HH14b, IF10, JZ13, JP12, Kak18, KMT10, KV11, KWS19, KS19b, KM12a, KWL14, KBN11, KKP10, KG10c, LMK17, LÁPMF19, LBL12, Lia11b, LdUÁ11, Lia11c, LM17a, LHH16, LSWY16, LLV15, LLZ11b, LLX12, LLL18, LW15, LHZ11, Lwi11, MY10, MK18, MAd10, MR11b, MSBM16, MBB11, MPN+17, MN16, Mei11, Men12, Men13, vMMA14, Mon17, NB12a, NB12b, NDD16, Ni12, NS13, Nik13, Nis11, Oga17, Ou13, Ozt11, PT13, PKL12, PH13, PR12, Pla13, Qin10, RV16, RV10, RRS11, RBRT11, RS13b, Ruk17]. **estimation**
SMM19, SBCK11, Sch10b, SS13a, sS10a, sScY10, SLZ10, SN10, SP12a, SK10, SM11, SL14b, SLW13, SSC11, SC13, SGL13, SSL+17, SY18, SBAC19, SIG12, Tan10, THG12, TWLQ15, TXLV11, Tor12, VAM10, Wae10, Wan10a, WM12H, WX15, WW15a, WZ18, WSSG19, WZ10, Won12, WQ11, WG12, WW12h, XI2, XZZ18, XZ19, WX13b, YSGN10, YKH13, ZH12, ZS10, Zho10, ZSL14, vdGM15.

estimator

[BP10c, Bin14, BMNY13, CLL12, CLL11, CSW11, DJ19, DN12, DF17, Dhi18, FO13, GGS12, Han14, HS11b, HCT16, JSV12, JKL17, KLS11, Kra12, LL11a, LJK13, Liu11b, LSP12b, Lu13, MYJ11, MJS12, MS10, NB10, NCC11, Oga13, PC13, RV16, RLLT17, RAB14c, RWB15, SSZ16, Sche11, SHW16, SA10, Son11a, Tar10, WYY+10, WW12a, YH12, ZX19, ZGW+17].

Estimators

[WN13, ÁY12, AT10b, Aya12, BVG10, Ban12, BBKP19, BK11a, BP14c, Bir15, Bra10, BDG14, CK13, COS12, CH11b, CW17, CPSY10, Cla19, CR16b, Cop11, CM16, DM12, Dör11, EEL10, FYX14, Fou11, FRM11, GGG11, GP19, GBdW10, HZ11a, Han11, HY10a, HP10c, Hu13, IK15, KF10, KS12, KS11a, Kub14, KS93, KS11b, LRBI11, Le13, Leb12, LM11b, LW12a, LM17b, LGG12, Mac10, MS13a, MKT15, Miy11, Miy18, Now12, Ogi19, PG10, PS14, QZZ11, RS10, Ruk14, Ruk19b, Seg15, sS12c, SCR10, SRBS11, SC16, TS10, Ton13, Tsui10, VY14, VBLN17, WV12, YL10b, ZL12, ZN12, ZWM12].

Euclidean

[KS19b].

Euro

[BT16].

European

[BS11a].

Eval[uation]

[PPB16, KPZ13, VZH17].

evaluation

[BTKN10, Ing10].

event

[APQ10, AS15, PG12, ZZ12].

events

[DAP10, FC10, GC19, SM13].

every

[ES16].

Exact

[AZ10, BCG10, Che11a, GMSK12, HHJ13, IB11, KM12b, TXLV11, VB10b, BS16, BK10, BK11c, CR16a, Gaft9, Gam13, HLB+16, Imh14, Sai10, VGH13].

exceedance

[SB11].

exceedance-type

[SB11].

exceedences

[Fis12].

exceeds

[Fis12].

excellent

[Kat11].

excess

[ZZW12].

exchange

[AK10].

exchangeable

[AZ13, CM15, Ery11, IAH11, Sadi11, TRWP10, Zha10].

exemplified

[LS12].

existence

[FK11a, WWC10, Zhi10].

exists

[BS10].

expansion

[CLL11, HOK19].

expansion-based

[HOK19].

Expansions

[Wen15, MS11, Shu11].

Expectation

[BU10, LSWY16, ZJ10].

expectations

[GR11].

expected

[FR11, J13, MKT15, VB10a].

experiment

[CMS11, HHJ13, SC10].

experimental

[AKK12, AFHZ14, CSR15, CQ11, HDC14, JGJR16, Lac14, MGD14, PP13, PBRT16].

experimentation

[AMR11b].

Experiments

[Ano14v, AD11, AZ10, AT10a, BSH13, BR14, BL15, BT19b, BM18, BBS10, CC12b, CKP17, Coa14, DYGV11, DL11, DB12, DDS13, EA10, ETMJ11, FRR14, Geo11, GC17, GGHS13, GSG12, Har14, HH14b, HJ14, LW19, LH14, LM10, LW12, Mor14, NZF11, OL19, PS15, RRN14, RLZ12, Sag11, SDV14, Ste11b, SD16, TL11, VGV11, Wie19b, WT14b, YCB16].

expert

[BSV10].

explanatory

[AKK12].

Exploring

[PR16].

explosion

[GP15b].

Explosive

[Akk15, Le18].

exponent

[HM10].

Exponential

[WTL11, BZ12, BLP11, BK11b, CGCL10, DLDC12, FJK11, GMSK12, GT12b, HdgT12, HN12, IF10, IKU11, JFY16, LEM11, LCY12, MAd10,
Oga13, PC13, SBCK11, Sei14, SK12, Wan10a. exponentiality
expression [LCC^{+17}, MS12b]. Extended
[LC13, PT13, QC15, WSL17, DGG19]. Extension
[CK12, CS16a, FKV11, Nik13, VZH17]. extensions [OQ10]. extinction
[GP15b]. Extremal [Hil11, AS11b, Per10]. Extreme
[LB15, BWW19, Cdi11, EGGM12, FJC12, GBdW10, GS12b, Ho10, LS12, Luk14, MV11a, NDD16, YSGN10]. extreme-value
[GS12b, MV11a, NDD16]. extremes [BT16, BGT16, LT13].

Factor [GLZ14, AP14a, AM11, BT19a, BDLP14, CT10c, CR15, Cho17, LT10, Lyc14, ST19, SLC18, WS14, ZK15]. factorial [AHO13, Aok19, BL15, BT19b, BM18, Cha19a, CKG19, EA10, ETMJ11, FRR14, GF13, GC17, Grö18, Jac11, Kat12, KDJ13, LST12, LYL11, OQC13, OZQ19, PL10, SC10, SD10, ySDM13, TL11, WMB10, WZZ19, WZZ19b, ZC12, vB19]. factorials [LQ17, QWC12]. factors [Aok19, BL15, BvdA15, CSWY11, GSG12, HLL17, HLL12, Kat12, VDWS13, WZZ19, Wie19b, XGK16]. failure [AZ13, DGG19, HLS21, TLBJ13, TNWW12, ZY11, Zho10]. false [DZ18, LS10b].

food, forces, forecasting, foreign, form, formula, four, four-level, Fourier

hedging [PL16]. height
[BP10a, BMNY13, Nan12, WW11b].
Hellinginger [KL12].
Herriot [Hir19, SM11].
Heston [BBKP19].
heterogeneity [CLM12, Ruk14, Ruk19a].
heterogeneous [CH11c, Ruk11, ZB11].
heteroscedastic [CZ11b, Gu16, GZH11, LGL012, MS18, WL14, ZK17, ZL11a, Zha12, ZSM10].
heteroscedasticity [GDHS12, LSP12a, ZGZ17].
heteroskedastic [CGL11].
heteroskedasticity [Cav18, CNdGAL11, Lee18].
hidden [ABMP15, TLBJ13].
Hierarchical [Tor12, BF13, PHW15, SLC18, ZGW+17].
High [Mei13, ZGZ17, ABK+11, Alb10b, Alb11, Alb12, Bar12, BP10d, CPH19, CYZL12, CS16b, EZS11, GLW11, GP12, GR18, GLT16, HCT16, HYS12, IYA16, IYA19, JJJ12, Kon12, Kon13, LLL+12, LLY10, LLL11a, LLZ17, LQ16, LC13, MY13, MPT13a, MPT13b, NYA17, Ni12, NHSP13, Ob13, PD11, PMX12, PS15, SMPF10, SL14a, WMM+10, WTZ12, WX19, YW16, Yua13, ZGK13, ZK15, vdG13a].
high-dimension [IYA16, NYA17, NHSP13].
High-dimensional [ZGZ17, ABK+11, BP10d, CYZL12, CS16b, GLW11, GLT16, HYS12, IYA19, JJJ12, LLL+12, LLZ11a, LLZ17, LQ16, Ni12, SL14a, WMT12].
high-quality [Alb10b, Alb11, Alb12].
Higher [IKU11, MV15, Nkw10].
higher-dimensional [Nkw10].
Higher-order [MV15].
highest [CM10].
highly [CC18].
Hilbert [HCT16].
history [Hum10, KSL11].
holes [DvB15, SK10].
Homogeneity [TQ12, Nku10, PA12, Ver17, YSH11].
homogeneous [ABMP15].
homoscedastic [Qiu10].
Honest [SvdVvZ15].
horizon [Tor15].
Hsieh [DN12].
Huber [Hu13].
Hui [SS13a].
human [OG10].
Hunting [FBHZ14].
hurdle [CZ11a].
Hybrid [Seg15, DZZ18, GMSK12, MRY11, TNWW12].
hyper [XGK16].
hypercube [AHL12, DD12, GS11a, GS12a, SLL10, YL13, YLL14].
hypercubes [TB12].
hyperoctahedral [YHS19].
hypervolume [CSR15].
hypotheses [BS14, Cab10, CR10, DB12, Die13, GBP15, KL12, LS16, NHSP13, ZZ14a].
Hypothesis [ALS12, BPR16, PH17, BS10a, BHS12, GIP17, GRGCL12, Kim10, Kli11, LHL+10, LNDDLdCH11, MCC12, NN10, RA10, Thu14, ZCP13, ZGZ17].
i.i.d [RL17].
IBC [Ano10t, Ano10u, Ano10v, Ano10w, Ano10x, Ano10y, Ano10z, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano15-32].
ICODOE [Ano14v].
ICODOE-2011 [Ano14v].
ideals [AHO13].
Idempotent [TS12].
identical [SAE11].
identically [NR12].
identifiability [AMR11a, LSWY16].
Identification [SR13a, KKK17, SC10, WL16].
identified [LM19a].
identifiers [DS10, WS15].
identify [GF13].
identifying [RS15, SG12a].
identities [Eri10].
identity [Fis12].
IDMRL [Ani12].
IFR
[Ani10, Ani13, MA08]. **IFRA** [IK12]. **ignorance** [BZ12]. II

Improving [WC17]. implicitly [Sum17]. important [SM17, WZZ19]. imprecise [Hab10]. improper [LT18]. **Improved** [BK11b, BC11b, BK10, BK11c, CW10, COS12, CRW13, GW11, JM10b, KP11, Liu11b, MS13a, SK10, YS11a, CH11a, CndGAL11, MY10, SM16]. **Improvement** [MYW11, DL11, FRC11, VB10a]. Improving
[BMNY13, CFW14, Hun12, LS12, MV11a, SZ19, Tar10, XXW12]. infinite-armed [Hun12]. **Infinitely** [Sei14, Vag10]. inflated [Zhu12]. inflation [DWD18]. **Influence** [BCMRMP11, HH14c, BDvdA15, COP10, HRR10, Wei19b, WQ11, ZSH12].

J [AA11c, BP13a, BP19, BRB18, BK11c, Det14, GS12a, IT10, KZ15, TLBJ11].
J. [MGD14]. Jackknife [FP12a, SDZ19, sS10b, LBR12, SA10, YH12].

Leibler [BHS12, SIG12, WV12]. lemma [LVY13]. length [FSS18, HK10, LZZ15, WW15b, WZ18]. length-biased [FSS18, WW15b, WZ18].

Levene [HLSL17, HZ11b, HM13, Jac11, KG10, LR11, LT14a, LQ17, LT14b, LST12, OQL11, OQC13, QC12, QCG15, RLZ12, SGS12, SLC18, SD10, TX13, TLM12, TL18b, WZ11b, YL14, ZC12, ZLZK13, ZLL16a]. levels [EQ15, LJA15, OL19, SLC18].

Lévy [BC19, CL13b, GS10]. Li [GP16].

light [EGGG12]. like [BP10a]. Likelihood [BM11, JJJ12, LRB11, ZGST12, ÁG12a, AMRP18, AAV13, BFZ10, BMW16, BP10c, BBKP19, BWY11, CW10, CRW13, CH11b, CW17, CT11, sCK11, Chr14, CS16b, Cop11, CH11c, Dac10, DKY15, FSS18, FLL17a, FP12a, GMSK10, Gro13a, GH10, He11, Hir19, HZ18, IB11, JL11, Jon13a, Kon12, KBK15, KWL14, KG10c, LBL12, LQ11, LP11, LP11b, Lia12, LHH16, LYLZ12, LZ12b, LX18, LW15, LNddLDCH11, Mam13, Miy11, NS13, NCC11, Nik13, NL14, PC13, PHW15, QL10, QL11, RS16, RBW15, Ruk12, SDZ19, She11, SHW16, SCR10, Sor19, SC13, TRWP10, Tar10, VBLN17, VCA10, VSK11, VG13, VDW13, VZH17, WQ10, WLCK11, WZ11a, WL11, WZ18, WWZ19, WW11b, XL12, XZ19, XR11, XCL11, YZ12, YYY14, Yao10, YCY15, ZY11, vdGM13]. Likelihood-based [ZGST12, CW10, CRW13, DKY15, GMSK10].

likelihoods [BCG10, CM10, DS18, VCR10]. Limit [BO11, Lee18, MZ13, CH13, CT14, CL13b, KZ16, Lon17, MO10a, RL17, Sai10, SY18].

limitations [KCF12, PR16]. limited [PG10]. Limiting [YW10, Dac10, DLW14, GD18, LZZ10, MP12b]. limits [KL10b]. line [CC19, DZ18, KK16, Mab16, RR12, TCE12, ZL17]. Linear [LCT10, LR11, Mei13, WDRB18, AS10b, BFZ10, BM12a, BFCC12, BLW16, CLM12, CW19, CWH10, CYZ12, CZHC14, CT11, CR15, CP12, CB19, CM16, CH19, DDW16, DRT10, DS12, Dio14, DB11, EA10, EZZ11, EZ12, FT10, FYX14, FKL13, FC12, Gaf19, GS19, GLW11, Gho14, GC17, Gia16, GP16, GMCC11, GDHS12, Grö18, GX12, Han11, HP10b, HTZ14, HP10c, Hu13, Hua11, HCM12, HH13, HZ13, HY10b, IF10, JGKR16, KH16, KSL11, KKL15, KMI12, KS16, Kre16, KS11a, KHS12, LW11a, Lem12, Li11, LZ12a, LZ13b, LH14, LM19a, LL11c, LLZ11a, LS16, LAk10, Liu11a, Liu11b, LYL13, LYC15, Lon12, Lui13, LLL18, LC13, MY11, Mab16, MY13, MS13a, MYW11, vMMA14, MPT13a, MPT13b, MB11, MHK10, Nl12, NHSP13, NGXZ16, NL16, Obo13, PP16a, PP16b, PR16, PR12, QL10, RS19].

linear [RS10, RGW10, SB19, SC11, SLC18, Shu12, SX11, Son11a, Ste11b, SGL13, SSL17, TRL13, Tia13, Tsai9, Tso11, VY14, WZW13, WS14, WL16, WYY10, Wei12, W11b, WW12b, Wu19, XL11, XCC11, YS11a, YZ12, YY14, YS11b, YS11c, YTL13, YAW18, Yua13, ZW12a, ZH19, ZW12b, ZGST12, ZGZ17, vdG13a, vdWV14]. linearly [BPP10, MO10a]. lines
LJ12, LD12, LLL18, Lwi11, MY11, MK18, Mar18, MFABG13, MV11a, Mon17, MKH10, NGXZ16, PA12, Qiu10, Qiu10, QRGDLM+12, RSS11, RH11, RSH12, RS16, Ruk19a, Sai10, Sch11, sS12b, SM11, SvdV15, SL14b, Son11a, Son11b, SLW13, SC16, SSC11, SSL+17, TCE+12, Wae10, Wah10, WSH10, WT10, WTYZ12, WZ18, WWZ19, WZ10, Wu16, XGK16, XZ19, X11L, XW13b, XSJ14, YS11a, YSW10, ZK17, ZL11a, ZLZL16, ZCLZ17, ZX19, ZZW12, ZN13, Zho10, ZSL14, ZK15, ZLW10, vdGM15, vdMC10].

modelling [FS14, GRD16, HH15, LW11b, PR16, TRWP10, UP14]. Models [Mei13, AVML11, AS15, AH12, ABMP15, AMR11a, AP14a, AT10b, AMRP18, AFHZ14, AB14, AP14b, BFZ10, BGK+11, Bao18, BPR16, BCMAW14, BCN13, BGS10, BK12, BD14, CLM12, CW19, COP10, CK13, CF12a, CT10b, CZ11b, CLO17, CWH10, CG10, CYC11, CYZL12, CPM14, CS16a, Che11b, CZHC14, CT11, CR13, sCK11, CR15, Cho17, CP12, CO10, CA10, Dac10, DM14a, DR13, De 13, DMP11, DP13, DLDC12, DM10, DMS11, Dia17, Dio14, DB11, DF12b, EEL10, EA10, EZS11, EZ12, FT10, FLW13, FYX14, FLL17a, FGH14, FMZ10, FO13, Fra14, FC12, GIS19, GZ14a, GF13, Gh14, GN16, GC17, GS11b, Giu16, GP19, GC19, GDHS12, Grö18, GT10, GX12, GLZ14, GZ14b, GSS10, Hab10, HS14, HX16, HS11b, Has19, HP10b, HTZ14, HY19, HZY14, HW13, HH14a, Hua11, HCMP12].

models [HZ13, Hud13, H CZ19, JR10, JMW13, JL11, JAI11, KCF12, KW14, KD12, KK11, KSL11, KBK15, Kra12, KL10b, KHS12, KG10c, LMK17, LGLO12, LL13, Lem11, Lem12, Li11, LB11, LCL11, LM13, LZ13b, LZ13a, LH14, LMZ18, Lin11, LC11, Lin12, LW10, LY13, LMC14, LYG14, LXX16, LX18, dUJC12, LC13, LH11, LA14, MY10, Mai11, MY13, MZWF17, MS13a, MF10, McN10, MP11, vMM14, MZ10, MM12, Miy11, MV11b, MR10, MPT13a, MPT13b, MK10, MP1G10, MQ10, MSW12, MS12c, ND11, NJ16, NR11, Ni12, Nik13, O'HI13, Ob13, OZC16, PC13, PT13, PR12, PH11, PWH15, PVB+19, QL10, RF13, RS19, RQ15, RL17, Ruk11, Ruk17, SR13a, Say12, SB19, SLC18, SZ12, SCR10, SRBS11, SX11, SP12b, SHY16, SDG15, SZ10, SN12, SBAC19, Tan10, TSZ13, TL18a]. models [Tia13, Tsa11, Tsa19, Tso11, Un17, VY14, VdUÁM11, VT18, VV10, Wal13a, Wal13b, WLKC11, WF11, WZ11a, WTL11, WTZ12, WZW13, WY14, WS14, WX15, WW15b, WW15a, WL16, WSL17, WDRB18, Wei12, Wei11, WK13, WX13a, XXW12, XCC11, YZ12, YY14, YY16, YYY19, YL10b, YL13, YS11b, YS11c, YTHL13, YAW18, Yau13, ZH12, ZK17, ZSH12, ZW12a, ZY15, ZS15, ZW12b, ZY11, ZGST12, ZG12, ZLZL16, ZN12, ZL18, ZJ10, Zhu12, vB19, vdVW14, CSN19, vdG13a]. moderate [JZ11, PR11]. modes [Miy10]. Modification [SS13c]. modifications [Oga17]. Modified [KG10b, sS12c, SL19a, AM11, FKV11, He11, HY10b, LJ12, Xu17].
modifying [Hab12]. Moment
[Has19, BMNY13, BK12, DE16, Gho13, GP10, Now12, SLD14, YY10].
moments [BAHS11, BS11a, BM12a, CG11, Ciz16, Dhi18, DG13b, Kra12,
MV11a, NV10, VZH17, WN11b, Yan17]. Monitoring
[WG13, YC11a, APQ10, Alb10b, BS11b, CM11, GO11, HW17, KK15, Lsz13,
Lwi11, TCE+12]. monotone
[HCZ19, LLP14, LM17b, Shu11, Shu12, Wan10b, WX15]. Monotonicity
[AMNS11, CCR11, GJ12, LL18]. Monte
[AT10a, AHO13, BCG10, JGK11, Kim10]. Moran [Gri10]. most
[NN10, Ros14]. motion [ES16, FLL17b, HS11a, SvdV15, SY18, ZL11b].
Motzkin [BK13]. Mougeot [vdG13a]. movement
[ADKS12, BC19, CL13b, DF10, PVB+19, TSZ13, Vas13]. moving-average
[DF10]. MRL [FSS18, ZB11]. Multi [LT14a, Aok19, BE14, CSR15, CMK11,
CMKS12, CL10a, CYC11, CLP13, Coa14, CO10, FS14, FJC12, GM12, LR11,
LYC14, LD12, MF10, MZP12, TX13, VS12, VB10b]. multi-auxiliary [VS12].
multi-criteria [CSR15]. multi-factor [LYC14]. multi-group [BE14].
multi-kernel [CL10a, CLP13]. Multi-level
[LT14a, Aok19, CMK11, CMKS12, LR11, TX13]. multi-modal [FS14].
multi-sample [VB10b]. multi-stage [LD12]. multi-state
Multichannel [BKPS14]. multiclass [XW13b]. multidimensional
[BD18, DD12, FKLL13, VM18]. Multilevel [CSK17, FRR16]. Multilinear
[GJ10]. multinomial [DM14a, DDD18, JMW13, STS10, WT10, ZHI12, ZZ10].
multiparameter [Buc14]. Multiple [Dor10, Hab15, Hoc19, MH16, BFT15,
BS14, Cab10, CL15a, CY19, CMS13, DST10, DB12, Dic13, Dor11, DZ18,
Eri10, GD10, Hab12, HJ16, LM19a, Lia15, LSZ16, LNdLDcH11, NdCJ10,
TW11, TCC12, WH12, WA16, WCZ17, WFG+15, ZCP13].
multiple-objective [CY19]. Multiplicative
[Har14, BLP11, CCR17, LX18]. QRGDMA+12]. multiplicity [Akn15].
multiplier [BK16]. multiply [Han14, SBCK11]. multipower [LWZ13].
Multiregression [CSN19]. multiresponse [LY13, Sag11, YQC11].
Multistage [SS19, Bur11b]. Multivariate
[DG19, FKV11, Mai11, MPN+17, PG10, ABK+11, BS11b, BOvSS10, BR10,
BLW16, CMP14, DS10, DH11b, DG14, DG13a, GT12b, GS12b, Han11,
HGH12, HLCW12, HOK19, JB14, JB12, JD16, JP12, Kli11, KKL15, KMI12a,
KPQ11, KHS13, LIVY13, LR11, LM19a, MFABG13, MS12b, MO10b,
MK10, MPRG10, OS10, Par10b, PD11, SG12b, She14, TSZ13, TW11, TS12,
Ver13, Wen15, ZY11, ZGST12, Zho19]. mutations [ZYOY13]. mutual
[BE14]. Mutually [DVB15]. MV [Jac19]. MV-optimal [Jac19].

N [Gho11, MGD14, NL16]. Nadaraya [SLW13]. Nagaev [SSZ16]. Near
[BM18, BL15, TS10, Vas13]. Near-factorial [BM18, BL15]. nearest [Aya12].
Nearly [BTT15, YLL17, SDGK15]. necessity [CK12]. need [YO11].
[AVML11, AAV13, BU10, BD18, Bur11a, CLM12, COS12, GMSK10, GF18, GP12, Gri10, GR5+12, HK10, JYJ12, KZ16, KM12a, KHS12, LGO12, LC11, LSW13, MH10, Nik13, Par10b, Per10, Qiu10, RA10, Ruk19b, She14, Tak10, TH14, Tsa10, WN13, Yao10, YKH13, ZSM10].

[AG12a, AT10b, BSH13, Ban12, Cab10, CF12b, CR15, CHH19, DM10, DG13b, FGV12, Fre11b, GF11, HCM12, LYY13, LS10b, LYC14, Lon12, Mad10, MS11, RV16, Sad11, SIG12, Tsa11, TCC12, WMB10, ZSH12, ZLZ+16, ZLL16a].

Notes [Gra12a].

notice [BP13a, BP19].

novel [TvS15].

nugget [RSH12].

nuisance [DKY15, LZW+10].

null [Cab10, CR10, Dic13, KL12, KMT10].

number [AG19, DPC11, DKN12, FLL17a, FJC12, LL11d, LC13, MZ13, SC11, SLC18, ySD10, WS14, WW15a, WM18b].

numbers [Dem12, Kra10].

NYSE [DHH10].

Objective [MHK10, RSH12, Ruk17, CY19, GM12, VM18, ZSL14]. objects [DM14b].

odd [ySD10]. odds [FO13, LGG12]. off [FM19]. offspring [GP15b, SSZ16].

omitted [LG12]. omnibus [DF12b]. On-line [DZ18, TCE+12]. One [CNL17, CL11b, Giu16, PMX12, Wan11, Akn15, BL15, BZ12, Bur11a,
ETMJ11, HLB$^{+16}$, Kat11, LKL16, NCC11, NN10, Par10b, Ros14, SBCK11, YLL17. \textbf{One-} [SBCK11]. \textbf{One-eighth-} [PMX12]. \textbf{One-parameter} \cite{BZ12}. \textbf{One-sided} \cite{CL11b, HLB$^{+16}$, Kli11, NN10, Par10b}. \textbf{One-sixteenth-fraction} \cite{PMX12}. \textbf{One-way} \cite{Bur11a, LZL16}. \textbf{Online} \cite{DMP18, GB19, HXZ12}. \textbf{Only} \cite{LZL10}. \textbf{Onto} \cite{DB19}. \textbf{Open} \cite{SHY16}. \textbf{Operator} \cite{GR14, Jar13, NS10c, Var15, ZWZ10}. \textbf{Operator-valued} \cite{GR14}. \textbf{Operators} \cite{ZJ10}. \textbf{Opial} \cite{GK12}. \textbf{Opial-type} \cite{GK12}. \textbf{Optimal} \cite{AGPS12, BCMAW14, BM15, BD14, BBS10, CBD11, CKP17, CXCK13, DMS11, DC10, DT14, EZ12, GDHS12, GHS13, GT12b, GMN11, HRR10, HS14, HZY14, HC16, Hum12, HYP11, JMI3, KSN18, KG1V10, KBK15, KK19, KME10, KM11, LB11, LM19a, Lin14, LAK10, LYL13, MZWF17, MKT15, MZP12, NCC11, NN10, Par10b]. \textbf{Optimal} \cite{LYF14, LC15, LL11d, LYC16, LYC15, LYXC16, Mor14, PP10, PK13, PBR16, Pro10, PZ14, RS19, RRN14, RLZ12, Sag11, Sek12, SX11, SDV14, ySDM13, TY10, TL11, WA16, WZ19, XLI11, YAW18, YQC11, vB19, vdV14, Alh10b, AZ10, AFHZ14, BSH13, Bar17, BS15, BPMR11, BS16, Bou11, CK13, CSR15, CL13a, CT14, CPS15, CKMS12, CWcIC11, CC18, CDST18, CY19, CKG19, CE11, DPA10, DL11, DH11a, DM11, DDS13, DL12, Dut11, FK19, FHK11, GIS19, GS19, GZ14a, GS11a, GS12a, GN16, GVV10, Gra12a, GM12, GZH11, HKN18, Har14, HHJ13, HJ14, Imh14, JGR16]. \textbf{Optimality} \cite{LYF14, LC15, LL11d, LYC16, LYC15, LYXC16, Mor14, PP10, PK13, PBR16, Pro10, PZ14, RS19, RRN14, RLZ12, Sag11, Sek12, SX11, SDV14, ySDM13, TY10, TL11, WA16, WZ19, XLI11, YAW18, YQC11, vB19, vdV14, Alh10b, AZ10, AFHZ14, BSH13, Bar17, BS15, BPMR11, BS16, Bou11, CK13, CSR15, CL13a, CT14, CPS15, CKMS12, CWcIC11, CC18, CDST18, CY19, CKG19, CE11, DPA10, DL11, DH11a, DM11, DDS13, DL12, Dut11, FK19, FHK11, GIS19, GS19, GZ14a, GS11a, GS12a, GN16, GVV10, Gra12a, GM12, GZH11, HKN18, Har14, HHJ13, HJ14, Imh14, JGR16]. \textbf{Optimization} \cite{GS19}. \textbf{Optimum} \cite{AB14, DD13, GM19, CHF11, Men12, EMS11}. \textbf{Optional} \cite{GSS10}. \textbf{Options} \cite{AK10, GVV10, LS19b, XT15}. \textbf{Optimally} \cite{BS10}. \textbf{Optimization} \cite{GS19}. \textbf{Order} \cite{LLL12, Now12, AG12b, BP10a, BDKM10, BAH11, BPW14, BBL10, BO11, Bed10, BTT15, CMLBS13, CZ10, CHF11, CL10b, DPA10, Dem12, EZS11, FK11a, FRK14, GBdW10, G12, GSG12, HZ11b, IU11, JB12, JR12, JGK11, Kas17, KA11, KFK11, Kim16, KHS12, KR12, LYXC16, Lwi11, Mac10, MV15, NR11, QL15, Sag11, SBCK11, SLW13, SF10, SDG15, VG11, WN10, WH11, WW11b, YHS19, ZC10, ZLZK13, ZL16a, ZZ14b]. \textbf{Order-restricted} \cite{HS11a, KS11a, PK13}. \textbf{Order} \cite{Cos12, Ost12, STS10}. \textbf{Ordering} \cite{FPL11, Zha10, DDL10, D12, IK12, NHI11, WM18a, ZB11}. \textbf{Orders} \cite{Bha11, DN13}. \textbf{Ordinal} \cite{CHR13, GB12, PMW$^{+16}$, TXL11}. \textbf{Ordinary} \cite{CB19}. \textbf{Ornstein} \cite{Bar17, BSH13, BWYZ11, Gri11, Lac14, LBL12, Men13}. \textbf{Orthogonal} \cite{Geo11, Kre18, WTW12, YL13, AHL12, AM12a, BS16, CLP13, CGLW18, DVB15, FMZ10, KV10, LT14a, LT14b, Lin14, MFW11, SDG15, SLL10, Tsa17, YLL14, YL17, vZD16, G16]. \textbf{Orthogonal-array} \cite{CGLW18}. \textbf{Orthogonality} \cite{JAI11}. \textbf{Other} \cite{Gri11}. \textbf{Outcome} \cite{YLC$^{+16}$, CL15b, PMW$^{+16}$}. \textbf{Outcome-dependent} \cite{YLC$^{+16}$}. \textbf{Outer} \cite{HL12}. \textbf{Outlier} \cite{YCY15, DS10, WS15, XJ13}. \textbf{Outliers} \cite{KV11, LCC$^{+17}$, SHY16, WQ11}. \textbf{Outlying} \cite{RS15}. \textbf{Outlyingness} \cite{MS13b}. \textbf{Output} \cite{CO10, FM19}. \textbf{Outputs} \cite{Mor14}. \textbf{Over-dispersion} \cite{PA12}.
over-replacement [AT11]. over [Ros14]. overdispersed [TRWP10]. overlap [SKFMR14]. overlapping [GC11, MH10]. overview [Cue14, GZ14b, MA10, ZC10].

Pan [GP16, NL16]. Panel [Tor15, AMRP18, CHH13, GMR10, SXX11, ZS15]. panels [BDvdA15, Wes16]. paper [YH12, vdG13a, vdGM13]. paradigm [Mon17]. parallel [BMPR11, DDL10, Gup12, TL11, Tsa17, TL18b, ZB11]. parallel-flats [TL11, Tsa17, TL18b]. Parameter [AMR11a, BDLP14, dZBK10a, dZBK10b, CUW10, CA10, Gas11a, Lwi11, MK18, NB12b, SM19, BP10a, BZ12, BK11b, BE14, CT10a, CS16a, CB19, Coa14, DXY15, EMS11, FVB11, FO13, Gam13, GMSK12, GBW10, HKR11, HMW12, JAI11, LPL+10, LL19, Lia11b, LLLP19, MN16, MS12a, NDB12a, NMS12, Oag13, RSS11, RLLT17, RLZ12, SBCK11, SC13, SY18, VM18, WV12, XL11, ZL12]. parameter-free [WV12]. parameterization [KT17, SB19, ZZ10].

parameterizations [KCF12]. parameters [AB14, BT16, BP10a, Bar17, BK11b, CM11, CWH10, Che11a, CM16, DGS19, DD13, FLL17a, FRM11, Hoc19, HW13, HLY12, HBP12, IF10, KS12, KS19b, KL10a, Kuh14, LW11b, MY10, MH10, NPK10, Nan12, Ozt11, RS16, Ruk11, Ruk19b, SC11, WS14, WW15a, WM18b, WW11b, Wu16, XZZ18, ZSL14]. Parametric [CP12, Men13, Ozt11, CG11, CH10, CG14, DKY17, EMS11, FZ13, Kro19, LMKS17, PZ12, RBS10, SR13a, Tso11, WTZ12, YSW10, YL10b, ZL11a, ZS15, dLJ10, dLJ12]. parametrized [Di 16]. Pareto [AF12, dZBK10a, dZBK10b, CSR15, Ho10, JM11a, PT13, RP11a, RTM10, Won12]. part [Bou11, dZBK10a, dZBK10b]. Partial [Bha11, CL13a, CWcIC11, CR15, Cue14, GD18, Gho14, HTZ14, HC11b, JB14, Jac11, KBK15, KS16, LHH16, NGX16, NdCJ10, SSL+17, TL18b, WL16, WY10, YW10]. Partially

TCE+12, VS12, YSGN10, YTHL13, Giu16]. procedures [CMS13, GM19, Hab12, JRM10, Jon13b, KK19, PC14, SGF12, ZZ14a].

process [AS11a, BK17, BS11b, BC19, Buc14, CL13b, DM14b, FC10, Gas11b, GS10, GS11b, GRD16, GF18, Gri11, GP15b, HS14, HFW10, HBP12, JGK11, Kas17, Kon13, KKL15, LS10a, Loh11, Men13, MS12c, PP10, RM12, RGW10, SSZ16, SS13d, ST11, SSDM14, TG16, WSL17, YC11a, vdMC10].

processes [Alb10b, Alb11, Alb12, ACC18, AF12, AG19, Bar17, BSKS18, BP10c, BSvZ15, BWYZ11, BRB12, BRB18, BH10, CMT17, CUW10, CF12a, CF12b, Cha13, CH11b, CM15, CG14, Dac10, DFM10, DI10, DKL14, DKN12, FP12b, GIP17, GC11, God10, Gri11, HZ11a, Hu13, KSN18, KU14, KMW16, Lac14, LBL12, LWZ13, Lon17, Mac10, Maj14, MRW11, MSP10, Pal10, PV10, Rab14a, RW18, Reg11, Ros10, SZ19, TG16, TRL13, TTB11, Wu17, XZZ18, Yn15, ZS10, ZWZ10, dOCG12].

profile [BMW16, He11, KGV10, VCR10, Yao10]. Profiled [CYZL12].

proper [Tsu10, ZSA10, LT18, SYA11b]. Proper [FGN10].

properties [CCGL10, AA11a, Ani12, BK11a, Bro10, CCR11, DJ19, DS10, Dem12, DKL13, FYX14, FPLR11, FVB11, HZ11a, HY10b, IYa16, IR19, JM10a, KH16, KPB13, KUB14, Leb12, Lel12, Lia14b, LWZ13, MYJ11, MM12, Ogi19, PKMK12, QRGLD14a, SM16, SD10, Tia13, VB10a, WC10, YL10b, ZGW17, ZWM12]. property [AS10b, Now12, Wan10b]. proportion [CR10, Gua12, KL12, Wan10b].

Proportional [HLS12, Bha11, DY19, FN17, LHL16, ND11, Wool19, YLC16]. proportions [BTT15, PS14, Sah11, TQ12]. protection [CWcIC11]. provide [Kha10]. providers [RS15].

Quantifying [DKY15, GRCGL12]. Quantile [Aly19, CZ11b, DZZ18, KWS19, OZC16, Ozt12, BCZ19, CPS15, CHT17, DPT16, FZ13, GMR10, GGS12, HL13, Ho10, HM10, HXZ12, Koc13, KL13, LMZ18, LdUA11, MLP17,

Regularized
[CPM14, CNL17, mFS12, BMW16, CC12a, CL10a, Kat19, LL19]. regulating [BM18].
Rejoinder
[BP14a, BRvdGZ13b, Gro13b, PP16b, SWH13b, WT14a, MPT13b, vdG13c].
GBP15, GW11, GG15, KS19a, SSZ16, WS15, XR11, LM11a. ROC
[CWcIC11, Chr14, DN12, FRF12, HC11b, LZ12b, TDW10, TB11, WSSG19]. root [BDvdA15, CK13, Coa14, CS12b]. roots [BD12].
[DPa10, YHS19]. rotation [SF10]. rounded [Nis11]. rounds [Kat11]. Row
[Qu11, BL15, BM18, QOK10, SE19]. Row-column
[Qu11, BL15, BM18, QOK10, SE19]. rows [Kri10]. Rubin [ZX12]. Ruin
[CM15]. rules [HP10a, Hoc19, JL11, Mac13, MV15]. Run
[QL15, BS16, BH15, SLL10, WMB10, XM10]. runs [AZ13, BC11a, ETMJ11, GMP15, GSKP10, GCDK12, HM13, LQ17, MZ13, ySD10]. Rütimann
[RS13b, SS13a].

s [JMW13]. s2 [ySD10]. Saddlepoint [AE16, YO11]. Safe [Grü18]. SAGE
[KBPW12]. same [God10]. same-realisation [God10]. sample
[AE16, ALT10, BI12, BWW19, BLT16, BD18, BC19, CPH19, Che11a, CC11, CNL17, CR16a, CS16b, CL13b, Fis12, Fre12, Gam13, GIP17, Hab13, HJ16, HG11, HY10b, IYA16, IR19, JSV12, KZ16, LLL+12, LCQ+13, LB15, LSWY16, LQ16, MYJ11, MR11a, MS13b, NQA17, OS10, Pa11, Par10b, PKL12, PR11, RV10, RL17, SB11, TQ12, VB10b, WHY11, YK15, YHWL12]. sampled
[BC19, KU14]. samples
[BC19, KU14]. Sampling
[LA14, AT11, BSV10, CB11, CL11a, DD12, FSS18, Fre11b, Fre11c, GLR11, Göb12, Gra10, Gra12b, GT10, HS11a, HP19, JMW13, JM10b, JJ12, KKL11, KBPW12, KS93, KS11b, LO11a, LCY12, LM19b, LHZ11, Men12, MS10, NBSB13, Oz11, PV10, RS10, RQ15, SG12b, sScY10, SK10, SS19, SS13d, Tan10, Tan13, TN10, VS12, VB11, WW15b, WAL17, YKH13, YLC+16, YC12]. sandwich
[HW13]. Sara [Kol13, Lec13, SS13a, BC13]. Sarhan
[FKV11, KG10b]. Sarmanov [HL11]. satisfying [Ton13]. saturated
[CLFZ13, FRR14, QOK10]. Saunders
[BGK+11, COP10, CLB12, LF11, Pat12, PK13]. SB [LM11a].

SB-robustness [LM11a]. SCAD [Par10a, PKMK12]. SCAD-penalized
[PKMK12]. scalable [ZZW19]. scalar [ÃG12a]. scale
[AVML11, BI12, BK11b, CNL17, KFK11, KX11b, LG012, LW11b, LLLP19, Mad10, Ozt11, PH13, Pat12, PMW+16, VdUAM11, ZN12]. scale-mixture
[Pat12]. scale-space [PH13]. scales [FLL17b]. scalp [CP12]. scan
[AP14a, Wu17]. scenarios [HG11]. scheme [LO11a]. schemes
[GH10, HHMO15, PK13, XM10]. Schwar [CS16a]. science [Sch18].

sciences [dLJ10, dLJ12]. score [Gua12, HZ13, Wae10, YSW10]. scoring
[CC18, JL11, Mac13, MV15]. Screening
[ALN10, FWS18, FRK14, HHMO15, LMZ18, SL14a, Xu17, YYY19]. search
[BT19a, GM12, LMT14, Pan10, YC12]. Second
[BLBL10, BP10a, BT15, BMY13, CHF11, DPA10, FRK14, GBdW10, JK11, Kas17, LYXC16, Sag11, SLW13, SF10, SDGK15]. second-order
[CHF11, FRK14, JK11, LYXC16, Sag11, SLW13, SDGK15]. section
Ani12, BGK +11, BSG16, CCS14, Dac10, DPM13, DS12, GGG11, GR15, HZY14, IK15, IAH11, LRBl11, Lemu11, Lem12, Nku10, Sar14, SE19, Ver17].

\textbf{space} \[\text{[BHM16, CA10, CM16, DPM13, DP13, GS19, LÅPFMF19, LJA15, Müh10, PH13, SYL13, TB12, TN14]. space-filling}\ [\text{[BHM16, LJA15, SYL13, TB12]. space-time}\ [\text{[DPM13, DP13, LÅPFMF19]. spaces}\ [\text{[AP14b, CC18, LC13]. spacings}\ [\text{[PR11, TJ12]. Sparse}\ [\text{[CCAGV14, KLKO15, SS16, SLZ10, TSZ13, BW13, BRvdGZ13a, CT10c, GP12, HY10a, Kat19, KSL11, LLZ11a, RS13b, SS13a, WWZ19]. Spatial}\ [\text{[FCC10, HM11a, TG16, BGT16, BET17, BH15, CW17, CG14, DT12, EZE11, EZ12, GLR10, HBP12, Kre18, Kri10, Lin10, Lin12, MS12a, MS13b, Mon17, MR10, PWH15, RSH12, TSO10, Tor12, VBLN17, ZS15]. Spatially}\ [\text{[Gra12b, CP12]. spatio}\ [\text{[Maj14]. spatio-temporal}\ [\text{[Maj14]. spatiotemporal}\ [\text{[FRM11]. Special}\ [\text{[Det14, GkvdVz15]. species}\ [\text{[BFT15, RQ15, YC12]. specific}\ [\text{[SS11]. Specification}\ [\text{[MP11, Hay16, TTB11, Wae10, ZK17, ZZW19]. specified}\ [\text{[KW14, LT14a, WLL+17. Spectral}\ [\text{[Ros10, SB19, FRM11, GR14, HS14, LCQ+13. spectral-wavelet}\ [\text{[FRM11]. spectrum}\ [\text{[SS13d, VN10]. spheres}\ [\text{[AJM19]. spheroidal}\ [\text{[PL11]. spiked}\ [\text{[YA19]. Spline}\ [\text{[AS11a, CWWT12, MY11, WW15a, CH11a, DM10, EEL10, Fre11a, JK17, ZMF17, SY12, SHCG10, WX15]. Spline-backfitted}\ [\text{[MY11]. splines}\ [\text{[LM17a, MKW18]. Split}\ [\text{[TKB11, AM12a, CS11a, TLM12, WZZ19, ZC12]. split-block}\ [\text{[AM12a]. Split-plot}\ [\text{[TKB11, AM12a, TLM12, WZZ19, ZC12]. Spokoiny}\ [\text{[HL13, KL13, Xia13, YDZA13]. spring}\ [\text{[FH11, Gra12a]. square}\ [\text{[ALLL13, Dhi18, LW12a, MYW11, OQ10]. squared}\ [\text{[CS12a, Hir19, Lu13, LGG12, MKT15, YY10]. squares}\ [\text{[DvB15, DB19, EW11, mFS12, FJKW13, FMZ10, FK11b, Han11, HLY12, KK12, Ni12, PKL12, PH11, Soi13, ZZZ18, ZG12, ZYW11, vdGM15]. Srivastava}\ [\text{[Gho11, CKG19, MGD14]. stable}\ [\text{[RP11a, TRL13, ZS10]. Stacy}\ [\text{[RM12]. stage}\ [\text{[BTT15, DLZ14, GM19, IKU11, LYF14, LD12, LSW13, WLL+17, YW16]. stages}\ [\text{[MH16]. standard}\ [\text{[AF12, CNdGAL11, Jac19, KS11b, PG12, Tak10, VBLN17]. standby}\ [\text{[MZP12]. STAR}\ [\text{[BGS10]. state}\ [\text{[CYC11, CB19, CA10, CM16, FJC12, MZP12]. stated}\ [\text{[BBS10, DDS13]. static}\ [\text{[FJKW13, KW14]. stationary}\ [\text{[ACC18, AG19, BOvSS10, BD12, CK13, CW10, FJKW13, HBP12, KZ10, LL11a, LLV15, Pa10, PV10, RW18, Reg11]. stationaryprocesses}\ [\text{[HWZ11]. Statist}\ [\text{[AA11c, BP13a, BP19, BRB18, BL11c, GS12a, IT10, KZ15, TLBJ11]. statistic}\ [\text{[Ani10, BC11a, CND10, sCK11, Jar10, LIJ12, MA08, TB11, WH11]. Statistical}\ [\text{[Ani10, Ano10-27, CC18, DP11, Dhi18, FLW13, GIP17, Goo19, HLB+16, HTZ14, Hua11, KPZ13, KS11b, LCC+17, LT11, LS10a, LCL11, SLC18, Wei12, YL10b, YS11b, ZSM10, ZGW+17, dLJ12, BTV12, Dac10, GBP15, HFW10, Kat19, LBR12, LC16, Lwu11, NQ10, Rabi14b, Wah10, ZG12].
TS12, vdVW14]. **supported** [DM13, Sch10a, SSDM14]. **supremum** [XW13a]. **Sure** [YYX19, Vas13]. **surface** [AG10, AG12b, HH14c, LYXC16]. **surfaces** [Maj14, WY10]. **surprising** [AS10b]. **Surrogate** [JR10, DDW16, NBSB13]. **survey** [AS10a, BSV10, GLR11, GT10, HP19, Hum10, SZ16, SSS12, SM11]. **surveys** [CT10a, Cha19b, CP19, CS11a, SKFMR14]. **survival** [BCG13, Bur11b, Che12, DF12a, GZ14b, HZ18, JM13, KBK15, KW14, NS10a, RM12, sS12c, SZ13, SZ10, VdUÅMM11, WZ18, dLJ10, dLJ12]. **SVM** [BP0d]. **SVM-like** [BP10d]. **swamping** [WS15]. **switching** [ABMP15, Gas11b, MK18]. **Symbolic** [DS12, LR11]. **symmetric** [DDS13, Fre11a, JAI11, KX11b, Lem12, ZCN11]. **symmetrical** [BS11a, Kak18]. **symmetrical-based** [Kak18]. **symmetrically** [JR12]. **Symmetries** [Jon15]. **symmetrized** [CND10]. **symmetry** [BL10b, BC12, DIAT11, EG16, GRCGL12, KD12, RR12]. **system** [Bro10, Gup12, LZZL12, LJ12, MZP12, Sad11, SS00, TLBJ11, TLBJ13]. **system-of-equations** [LJ12]. **systematic** [KLK11]. **systems** [AMNS11, BSV10, BMPR11, BGR11, Beu10, DDL10, DDNN10, DL12, Ery11, Fan10, JR10, JM10a, KM10, Kut11, LL11b, NR12, Ruk14, SA011, TV12, Zha10, ZB11, dOOG12].

table [NBSB13]. **tables** [BSV10, CKG19, HY10a, KD12, KPBW12, VV10, Zho19]. **tabu** [GM12].

Taguchi [TCE11]. **Tail** [HM10, MN16, BP10a, CG11, FJC12, GGG11, GGS12, HCT16, Hl11, HW17, KX11a, Kra12, LN15, PT13, TSZ13].

tail-distributions [GGG11]. **tailed** [ALP10, BT16, BP10a, BMNY13, CM10, EGGG12, FF12, Nan12, WW11b].

tails [HdGT12]. **Tangency** [BMPT19]. **targeting** [LBH17]. **Techniques** [Ano10-27, ABK+11, AS11b, AS10a, Chr10]. **temporal** [Maj14]. **temporally** [ABK+11].

tennis [FGN10]. **term** [DH11a, ZL11b]. **termination** [CMCSC11].

terms [AG12b, GM18, Mai11, PR16, SDGK15]. **Terpstra** [VB11]. **Terpstra-type** [VB11]. **terraces** [AJGG10]. **Test** [BC12, AM19, Anii10, ACP16, BT16, BC11a, BPP10, BL10b, BMPT19, BK12, CDh11, CPH19, CS16b, CS12b, DI10, DC10, DY19, DF12b, Gas11b, GPRY11, GBP15, GKM10, GP12, GJ12, GT12b, Hab15, HMO15, Hay16, HK19, Jac19, Jar10, KF12, KC13, KU14, LL11c, LP11b, LZ13b, LC11, LS12, LNDDLdCH11, Mai11, MYW11, MFW11, Mir10, MA08, NU19, NBSB13, NB10, PA13, Pas10, QZZ11, RR12, SS13c, Son11b, TQ12, VT18, Ver17, VSK+11, VGH13, VB11, WX19, Wes16, WK13, Wu16, YL10a, YU13, Zha12, ZCP13]. **Testing** [BF12, Buc14, EG16, Jar13, LLM11, LZ13a, MS12a, MR10, NHSP13, Nku10, OP12, PA12, YSH11, ZK15, ALS12, BR14, BHS12, BPR16, Cab10, CY11, CMS13, CD15, DB12, Dic13, DLZ14, Fis12, Gho13, GG10, GRCGL12, GLZ14, Hab12, IK12, JZ11, Kii11, KS10b, LP12, LZ11c, Li12, LS16, LL1S17, MR11a, MCC12, MSA14, Par10b, PD11, PH17, PR12, RD12, RA10, SDZ19, ST11, SN12, Thu14, TW11, Wan10a, Wie19a, XT15,
ZK17, ZCP13, ZZW19, Zhi10, ZGZ17. testing-based [DLZ14]. Tests
[ZN13, AE16, Ani13, AT10a, BTKN10, BS14, BDvdA15, Bed10, Bha11,
BSG16, CMT17, CK13, CW17, CR16a, Ciu13, CFW14, DE16, DM12, FP12a,
GIP17, GX12, HJ16, HGH12, IYA16, IYA19, JJY12, KS19a, KLM10, Kim10,
Kou11, Kut11, Lem11, LF11, Lem12, LM16, LT10, LNvdDCh11, MS11,
MP11, MB11, NdCJ10, NN10, PR11, Que10, QM11, Ros14, SS12a, SLC15,
SL19b, TDW10, TCC12, WLCK11, YK15, YY10, ZK17]. their
[DG14, Geo14, GF13, GC11, Lon17, OQ10, SDZ19, ySDM13, TG16, TY10].
themes [HS18].
theorem [CT14, CL13b, Qi11, RL17, Yan17, MZ13].
theorems [BO11, HH15, Lon17, Nog13, SY18, Wie19b, Zhi10]. theoretic
[BS10a, Thn14]. theoretical [BP10d, LC16]. theory
[BP14b, BMPT19, B¨oh10, Cla19, Cue14, DG13a, DB11, Huc14, LEE18, PA14,
Pav12, PPB16, SZ12, SZ19, TV12, Wag11, YC11b, ZC10]. think [PS14].
thinning [CF12a, ZWZ10, ZJ10].
Third [NR11, AG12b, GP10].
Third-order [NR11]. Three [HJ14, Lom11, RDN14, SDV14, WT14b,
BT15, CDZ11, CSWY11, EQ15, HHR11, HHJ13, Jon13b, KD12, MH16,
NB12a, NB12b, SGS12, Seb19, TXL11]. three-decision [Jon13b].
three-level [SGS12]. three-parameter [HKR11, NB12a, NB12b].
Three-phase [HJ14, RDN14, SDV14, WT14b]. three-stage [BT15].
Three-way [Lon11, KD12]. threshold [LL11b, MSBM16, MP12b, ZX19].
threshold-determining [MP12b]. thresholded [DIAT11]. Thresholding
[Mei13, LIA11a, MY13, MPT13a, MPT13b, Obo13, Par10a, SDNH13, Yua13,
tilt [WT11].
tilted [DHM18]. Time
[CL15b, ABMP15, ACC18, AHKS12, BL10a, BP10c, BPR16, BP15, BPP10,
BFKK17, BD12, CZ12, CG11, CH11b, Che11b, CH10, CR13, CL13b,
CSN19, CFW14, DPM13, DP13, DLD14, DLDC12, ES16, FLW13, FJKW13,
FGH14, FPLR11, Fre14, Gas11b, Gri11, HFW10, Hud13, HC11b, JZ13, JZ11,
JM13, KMT10, KLS11, KWZ10, KLKO15, KK15, KK12, LÁPMF19, LSZ13,
LCL1, LZ13a, LT13, MS12b, MRW11, Mor14, NL14, PR12, Reg11, SMM19,
SY12, Ser19, SS13d, SSZ11, Tsz13, TNWW12, Tor15, Unk17, UP14, VN10,
WF11, Wei11, Yan15, ZSH12, ZY11, Zho10, ZJ10]. Time-dependent
[CL15b, BFKK17, CH10, HC11b, SSZ11, Yan15]. time-frequency [KLKO15].
time-varying [CG11, FLW13, Gri11, KZW10, LCL11, Mor14, PR12]. times
[FZS16, KU14, KM12b, KW14, LD12, Ste11a, SSZ11, VdUÁMM11,
dlJ10, dLJ12]. Tobi [GK17, Son11b]. Toeplitz [Wag11]. Tolerance
[KX11b, HL16, LYC12, VB10]. tomography [MA17]. tool [Grö18]. tori
[BD18]. torus [DPT11]. Total [FRK14, Dal11, DT14, JKL17, Mon17].
toxicity [CL15a, RF13, TNWW12]. toxicity-efficacy [RF13].
toxicodynamic [AAKR12]. toxicokinetic [AAKR12]. toxicokinetic-toxicodynamic [AAKR12]. Tracking [CB19, Say12]. trade
[AM19]. trait [Rab14a]. transaction [XZ19]. Transductive [AH12].
transformation [Coa14, DF12a, FS14, Kak18, LZ12a, MA10, TDW10,

treatments [AM12a, DST10, GZH11, J19, K10, KME10, OL19, WA16, YL10a]. tree [RWB15]. treed [KKL15]. trees [GP15a, Pan10]. trend [CR13, MB11, SY12]. trending [CS12b]. trial [HC11a, LW19, TNWW12, ZL11b]. trials [AZ13, BBB11, BS10b, Cha10a, CS13, FJC12, JM13, K10, LJK12, SM13, WCZ17, WLL+17, YBB10].

Truncated [K12a, BCMRMP11, Cop11, D12a, HLCW12, LiUÁ11, dUJC12, s10b, sScY10, s12b, SKS10]. truncation [BM11, WDRB18]. Tukey [SS13c]. tumor [LB11]. Tuning [LL19, Lia11b, MN16]. Turnbull [DN12]. twice [sS12c]. Two [AC11, AM12b, Cin13, FK19, GIP17, HM13, WLL+17, AE16, Alo11, AP14a, AHO13, ABW13, BS13, BL15, BDLP14, BMPR11, BLT16, BL10b, BS16, BD18, BK13, CM10, COS12, Cha19a, CC11, CR16a, CS16b, DDL10, DLZ14, DELS16, EQ15, FLL17b, GMSK12, GSG12, GSKP10, GM19, HKN18, HP10b, HSL17, HAC14, HI1b, HC16, IF10, IKU11, J11, JM10a, KS19a, Kat11, KGV10, K19, LO11a, LIF14, L12, LLL+12, LJA15, LQ17, LT14b, LST12, LW13, LA14, MY10, MI10, MP19, NPK10, Nan12, NBSB13, Nog10, OP12, OQL11, OQC13, Par10b, RA12, RZ12, SBCK11, Sch10b, Seb19, ST19, SL18, SD10, Shu11, SK10, SB11, Tan10, TQ12, TLM12, TS13, TL13, TL18b, WTL11, WZ11b, YL14, YYZ14, YW16, Zha12, ZB11, ZLM12, ZC12, ZLJK13, ZLL16a].

two-group [WTL11]. Two-level [HM13, AHO13, Cha19a, GSG12, GSKP10, HSL17, HI1b, J11, KGV10, LQ17, LT14b, LST12, OQL11, OQC13, RLZ12, SL18, SD10, TLM12, TL18b, WZ11b, YL14, ZLJK13, ZLL16a].

YAW18, YQC11, ZL11a, Bur11b, CL10b, GMSK12, GT12b, IB11, KR12, MRY11, Say12, SBCK11, VB10b, Wan10a, GP19, Tsai11. **type-I** [Che10a, Bur11b, GT12b]. **Type-II** [CL10b, GMSK12, IB11, KR12, MRY11, SBCK11, VB10b, Wan10a]. **types** [BK13, RH11].

Uhlenbeck [Bar17, BSKS18, BWYZ11, Gri11, Lac14, LBL12, Men13]. **Ultimate** [Lac14]. **ultra** [LC13, YW16]. **ultra-high** [LC13, YW16]. **ultrahigh** [LMZ18, YXYX19]. **ultrahigh-dimensional** [LMZ18]. **UMPU** [Bed10]. **Unbalanced** [WAL17, Bur11a, HCMPI2, SX11]. **Unbiased** [BM12a, WN11b, Oga17, RV16, RS10, Son11a]. **unbiasedness** [KKKP19, NQ10, WV12]. **uncensored** [KX11b]. **uncertainties** [SL14b]. **uncertainty** [AS11b, HFW10, LSP12a]. **uncorrelated** [Mai11].

undersmoothing [Luk14]. **unequal** [LZL16, LBH17, MC11, NHSP13, Sah11, SYA11a, Tak10, WA16, Yao10]. **unified** [Cha19b, HH15, XWY18]. **Uniform** [AJM19, KLS11, Oua13, CH11c, FLTV10, JA17, KA11, NMS12, NZF11, TB12, TX13, Yan15, YZZ17]. **Uniform-in-bandwidth** [Oua13]. **Uniformity** [QWC12, DD12, LJA15, SL10b]. **Uniformly** [Ros14, AS10b, BP15]. **uniqueness** [Yan17]. **Unit** [BDvdA15, BD12, CK13, CS12b, Fan10, TB12]. **Units** [BBPW14]. **unitary** [CCS14]. **units** [HDC14, Qu11]. **Univariate** [Jon15, CA10, HZ18, WS15]. **universal** [LC15]. **universally** [FJKW13]. **unknown** [BT16, CndGAL11, NB12b, Tsu10]. **unlabeled** [TH14]. **unpaired** [LNdDLdCH11]. **unrelated** [MY10]. **unreplicated** [EA10, MFW11]. **unstable** [SZ19]. **upcrossings** [SMPF10]. **upper** [BGR11, GR11, LSWY16, Sah10]. **urn** [Cha12]. **use** [DH11b, Jac11, KK15, Kri10, TG16]. **used** [Alb10a]. **using** [AX19, AC11, AS11b, ALP10, BSV10, BJQ15, BS11a, Beh12, Bur11a, CSR15, CT11, CHP11, CSM19, CS11b, EKS11, FCC10, FM19, Fre11a, Fre11b, GKI7, Gho13, GS11b, Gui19, GP15a, HCT16, JKL17, JD16, JM13, Kak18, KL12, KK12, Kon12, KKKP10, LKV10, LM17a, LC11, MK18, Mad10, MPN+17, Mar18, McN10, MS12b, Miy18, M1HK10, NBSB13, Nik13, PR16, Par10a, PBRT16, PL11, Reg11, RM12, SG12a, SC13, SYL13, TDW10, Thu14, VS12, YC11a, YY10, YCY15]. **utility** [HC11a, WK10].

V [Ber14, WL14]. **V-optimal** [WL14]. **vacation** [DEF11]. **Vajda** [Le13]. **valid** [CR16a]. **Validation** [LYC12, AM19, CR10, DHM18, GKI7, IR19, LZH11, Jan15]. **value** [BWW19, CDD11, EE17, GBDW10, GS12b, KDJ13, LS12, MSBM16, MV11a, NDD16, Par10b, ZCP13, ZZ14a]. **valued** [GR14, HDGT12, MSP10, XZ19, ZLW10, Zhu12]. **values** [AE16, CH19, Dic13, GR11, Hab15, KV11, Llo10, RA12, SFC10]. **Vandermonde** [Qui10]. **VaR** [WYY+10]. **Variable** [HH14a, HZ13, DDW16, GRCGL12, HKN18, HG11, Jan15, KKK17, LM14,
LLW16, LLS19, LZH11, Mühl2, NCC11, OL19, PR16, PT12, VCA10, WW15a, WL16, WM18b, XXWL12, ZLZL16]. **variables** [AKK12, BP10b, BP13a, BP19, BU10, BW13, BRvdGZ13a, CC15, CS12a, DM11, EGS10a, FLW13, FLTV10, FK11b, GD18, Hon10, JR12, KA11, KMW15, LLS19, PR16, RS13b, SS13a, SL14, Sun17, Ts19, Wei12, WG13, YU13, WW10, ZCN11]. **Variance** [CPSY10, Che11b, Göb12, Han11, LW12b, AP11, BET17, BC11b, BH15, Bur11a, CM11, CFW14, DMTZ15, FRK14, GD18, GF13, GB19, HC13, KZ16, KS10a, LSZ13, LC16, LZL16, MS13a, PKL12, PH13, PR12, Ruk14, Sai10, SS12a, SA10, SZ19, Ts11, XXWL12, Yao10, YH12]. **Variance-based** [FRK14]. **Variance-penalized** [LW12b]. **variances** [Alb10a, COS12, CL11a, CP19, CL11b, HvdM12, LZL16, Miy10, NCC11, Ruk19a, Tak10, Tsu10, WA16]. **variate** [AJM19]. **variation** [ALT10, Dal11, GB12, JKL17, LWZ13]. **variations** [FLL17b]. **variogram** [LA14]. **various** [LC15, RH11, SC16]. **VARMA** [Mai11, VT18]. **Varying** [LL15, ZL18, AMRP18, AP14b, Cha10a, CGL11, DZZ18, DELS16, EEL10, FLW13, FKMR19, Gri11, HH14a, KZW10, LCL11, LZ12a, LM13, LMZ18, LLS19, LHZ11, Mor14, PR12, SBAC19, WZW13, WL16, Wei12, ZS15]. **Varying-coefficient** [LL15, LZ12a, LLS19, WZW13, ZS15]. **Vasicek** [XZZ18]. **Vector** [DM13, BMW15, Dut11, GP12, HXZ12, LLZ17, Moj12, NYY17, PKMK12, PA13, PR12, SN12, UP14, WX19]. **vectorial** [Que10]. **vectors** [BSG16, BP10d, FF12, Jar10, MC11, NHSP13, Rüis19, YL10b, ZK15]. **verification** [FRF12, NdCJ10]. **version** [CZ11a, CND10]. **versions** [AH12, SCHG19]. **versus** [AMR11b, BCZ19, CK13]. **via** [AZ10, BP13b, BW12, BC11b, CT10c, CR13, CP12, CHH19, DKY15, FJKW13, FWS18, FLL17b, GT12a, GK12, GM12, HP10a, HgdT12, HS14, HH15, HM10, HZ13, LP11b, LQ17, LYL11, OP12, OQC13, PKL12, SL14a, TMK10, TRL13, WK10, WMH12, Xu17, YLL14, YSGN10, ZLM17, ZK15]. **vicious** [CDZ11]. **view** [She14]. **vision** [OG10]. **visit** [ES16]. **visualisation** [HG12]. **Visualizing** [Qui10]. **Viterbi** [CXXK13]. **Volatility** [LT13, AVML11, AK10, CGCL10, DHH10, GT12a, HP10a, Hill11, LLJK13]. **volume** [Ano19a, CPL18]. **voyage** [Sri10]. **vs** [NN10]. **VSI** [YC11a].

waiting [KM12b, LD12, Ste11a]. **Walker** [De 13, HW13]. **walkers** [CDZ11]. **walks** [Nik12, Nkw10]. **Wang** [HL13, KL13, Xia13, YDZA13]. **Watson** [GP15b, SSZ16, SLW13]. **Wavelet** [CDNS14, OG10, RV10, Wis13, BP13b, FRM11, Lia11a, Lia14a, Lu13, MZWF17, Par10a, WW13]. **wavelets** [DIAT11]. **way** [AM12b, Bur11a, GRCGL12, KD12, LYL16, Lom11, NBSB13, Ts11, Zha12]. **Weak** [RW18, CMLBSM13, LC15, PC14]. **Weakly** [FJKW13, BK17, Kro19]. **Weibull** [AHD12, ALP10, FVB11, GGG11, GG10, GM19, KL10b, KR12, MRY11, MV11a, WK13]. **Weibull-Gamma** [MV11a]. **Weibull-type** [GG10]. **weighing** [FHK11, Gra12a]. **weight** [LN15]. **Weighted** [BFZ10, Chr14, SGL13, ZX19, ZZ14a, BP10b, BP13a, BP19, BC11a, BRB12, BRB18, CG11, CT14, CS12a, CR16b, CDNS14, Dhi18, Gui19, LYH12,
REFERENCES

References

Abbasnejad:2011:REP

Ahmed:2011:DBN

Ahmed:2011:EDB

REFERENCES

REFERENCES

Arias-Castro:2016:CCT

Althubaiti:2011:MEM

Amaral:2010:BCR

Abd-Elfattah:2016:SVT

Aulbach:2012:LAN

REFERENCES

Azais:2012:OQA

Alquier:2012:TVL

Ahmed:2012:LSE

Aue:2012:RTM

Ai:2012:SNC

Aoki:2013:MCM

Aggarwal:2010:CSC

Ahmadi-Javid:2019:UDR

Ahlip:2010:CAP

Abdous:2012:SRC

REFERENCES

REFERENCES

Afendras:2019:OTT

Al-Mutairi:2011:MCB

Allman:2011:PIC

Azriel:2011:TVE

Arteaga-Molina:2018:ELB

REFERENCES

Anonymous:2010:EBe

Anonymous:2010:EBCa

Anonymous:2010:EBCb

Anonymous:2010:EBCc

Anonymous:2010:EBCd

REFERENCES

Anonymous:2010:IECc

Anonymous:2010:IECd

Anonymous:2010:IECe

Anonymous:2010:IECf

Anonymous:2010:IECg

Anonymous:2010:ICI

Anonymous:2010:OEa

Anonymous:2010:OEb

Anonymous:2010:OEc

Anonymous:2010:OEd

Anonymous:2010:OEe

Anonymous:2010:OEf

Anonymous. Pages 2355-2798 (September 2010). *Journal of Statistical Planning and Inference*, 140(9):??, September 2010. CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (electronic).

References

Anonymous:2011: Cd

Anonymous:2011: Ce

Anonymous:2011: Cf

Anonymous:2011: Cg

Anonymous:2011: Ch

Anonymous:2011: Ci

Anonymous:2011:Cj

Anonymous:2011:Ck

Anonymous:2011:Cl

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBCa

Anonymous:2011:IECf

Anonymous:2011:IECg

Anonymous:2011:IECh

Anonymous:2011:IECi

Anonymous:2011:IECj

Anonymous:2011:OEa

Anonymous:2011:OEb

Anonymous:2011:OEc

Anonymous:2011:OEd

Anonymous:2011:OEe

Anonymous:2011:OEf

Anonymous:2011:OEG

Anonymous:2011:OEh

Anonymous:2011:OEi

Anonymous:2011:OEj

Anonymous:2011:PJa

Anonymous:2011:PMa

Anonymous:2011:PAa

Anonymous:2011:PMb

REFERENCES

REFERENCES

Anonymous:2012:Cf

Anonymous:2012:Cg

Anonymous:2012:Ch

Anonymous:2012:Ci

Anonymous:2012:Cj

Anonymous:2012:Ck

Anonymous:2012:IECf

Anonymous:2012:IECg

Anonymous:2012:IECh

Anonymous:2012:IECi

Anonymous:2012:IECj

Anonymous:2012:IECk

Anonymous:2012:OEf

Anonymous:2012:OEg

Anonymous:2012:OEh

Anonymous:2012:OEl

Anonymous:2012:OEj

Anonymous:2012:OEk

Anonymous:2012:OEI

Anonymous:2012:PJa

Anonymous:2012:PMb

Anonymous:2012:PJb

Anonymous:2012:PJc

Anonymous:2012:PAb

Anonymous:2012:PS

Anonymous:2012:PO
Anonymous:2012:PN

Anonymous:2012:PD

Anonymous:2012:PF

Anonymous:2012:PMa

Anonymous:2012:PAa

Anonymous:2013:Ca

Anonymous:2013:Cb

Anonymous:2013:Cc

Anonymous:2013:Cd

Anonymous:2013:Ce

Anonymous:2013:Cf

Anonymous:2013:Cg

Anonymous:2013:Ch
Anonymous:2013:Ci

Anonymous:2013:Cj

Anonymous:2013:Ck

Anonymous:2013:Cl

Anonymous:2013:IECa

Anonymous:2013:IECb

Anonymous:2013:IECc

Anonymous:2013:IECd

Anonymous:2013:IECe

Anonymous:2013:IE Cf

Anonymous:2013:IECg

Anonymous:2013:IECh

REFERENCES

Anonymous:2013:IECi

Anonymous:2013:IECj

Anonymous:2013:IECk

Anonymous:2013:IECl

Anonymous:2013:OEa

Anonymous:2013:OEb

REFERENCES

 Anonymous:2013:OEi

 Anonymous:2013:OEj

 Anonymous:2013:OEk

 Anonymous:2013:OEl

 Anonymous:2013:PJa

 Anonymous:2013:PBj

 Anonymous:2013:PJc

REFERENCES

Anonymous:2013:PAa

Anonymous:2013:PMb

Anonymous:2014:Ca

Anonymous:2014:Cb

Anonymous:2014:Cc

Anonymous:2014:Cd

Anonymous:2014:Ce

Anonymous:2014:Cf

Anonymous:2014:Cg

Anonymous:2014:Ch

Anonymous:2014:Ci

Anonymous:2014:Cj

Anonymous:2014:IECa
REFERENCES

Anonymous:2014:IECh

Anonymous:2014:IECi

Anonymous:2014:IECk

Anonymous:2014:ICD

Anonymous:2014:OEa

Anonymous:2014:OEb

Anonymous:2014:OEc

Anonymous:2014:OEd

Anonymous:2014:OEf

Anonymous:2014:OEG
Anonymous:2014:OEh

Anonymous:2014:OEi

Anonymous:2014:OEk

Anonymous:2014:PO

Anonymous:2014:PAS

REFERENCES

Anonymous:2015:Cb

Anonymous:2015:Cc

Anonymous:2015:Cd

Anonymous:2015:Ce

Anonymous:2015:Cf

Anonymous:2015:Cg

Anonymous:2015:Ch

Anonymous:2015:Ci

Anonymous:2015:Cj

Anonymous:2015:Ck

Anonymous:2015:Ea

Anonymous:2015:Eb

Anonymous:2015:Ed

Anonymous:2015:Ee

Anonymous:2015:Ef

Anonymous:2015:Eg

Anonymous:2015:Eh

Anonymous:2015:Ei

Anonymous:2015:ECe

Anonymous:2015:ECf

Anonymous:2015:ECg

Anonymous:2015:ECh

Anonymous:2015:ECj

Anonymous:2015:ECj

REFERENCES

Anonymous:2015:PO

Anonymous:2015:PFM

Anonymous:2015:PD

Anonymous:2015:PAb

Anonymous:2015:PS

Anonymous:2016:Ca

Anonymous:2016:Cb

Anonymous:2016:Cc

Anonymous:2016:Cd

Anonymous:2016:Ce

Anonymous:2016:Cf

Anonymous:2016:Cg

Anonymous:2016:Ch

REFERENCES

Anonymous:2016:Ej

Anonymous:2016:Ek

Anonymous:2016:El

Anonymous:2016:Em

Anonymous:2016:ECa

Anonymous:2016:EcB
REFERENCES

Anonymous:2016:ECi

Anonymous:2016:ECj

Anonymous:2016:ECk

Anonymous:2016:ECl

Anonymous:2016:PAb

Anonymous:2016:PF

Anonymous:2016:PJa

REFERENCES

CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (electronic).

Anonymous:2016:PN

Anonymous:2016:PJb

Anonymous:2016:PJc

Anonymous:2016:PAa

Anonymous:2016:PMa

Anonymous:2016:PMb

Anonymous:2016:PD

Anonymous:2016:PO

CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (electronic).

Anonymous:2016:PS

Anonymous:2017:Ca

Anonymous:2017:Cb

Anonymous:2017:Cc

Anonymous:2017:Cd

Anonymous:2017:Ce

REFERENCES

REFERENCES

Anonymous:2017:Ed

Anonymous:2017:Ec

Anonymous:2017:Ef

Anonymous:2017:Eg

Anonymous:2017:Eh

Anonymous:2017:Ei

Anonymous:2017:Ej

Anonymous:2017:Ek

Anonymous:2017:El

Anonymous:2017:ECa

Anonymous:2017:ECb

Anonymous:2017:ECc

REFERENCES

Anonymous:2017:ECj

Anonymous:2017:PMa

Anonymous:2017:PD

Anonymous:2017:PMb

Anonymous:2017:PJJa

Anonymous:2017:PAb

Anonymous:2017:PJe

Anonymous:2017:PN

Anonymous:2017:PO

Anonymous:2017:PAa

Anonymous:2017:PF

Anonymous:2017:PJb

Anonymous:2017:PS

Anonymous:2018:Ca

REFERENCES

CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (electronic).

Anonymous:2019:EBc

Anonymous:2019:EBd

Anonymous:2019:EBe

Anonymous:2019:EBf

Anonymous:2019:PS

Anonymous:2019:PJb

Anonymous:2019:PJa

Anonymous:2019:PD

Anonymous:2019:PMb

Anonymous:2019:PMa

Anonymous:2019:P

Aoki:2019:CIF

Afendras:2011:MVI

REFERENCES

REFERENCES

Arnold:2010:SPU

Abramowicz:2011:SAR

Apputhurai:2011:AUE

Adekpedjou:2015:GCS

Aoki:2010:MCM

REFERENCES

Ayano:2012:RCN

Antognini:2010:EOD

Atalay:2013:CSF

Azriel:2015:PEE

Balakrishnan:2011:RRM

REFERENCES

REFERENCES

Bieracki:2010:EMC

Brunel:2013:NES

Bates:2014:ODS

Barranco-Chamorro:2011:IAT

Bayer:2013:BCB

Balakrishnan:2010:SCA

Barczy:2014:PES

Becheri:2015:URT

Bodnar:2014:ADR

Bedbur:2010:UTB

REFERENCES

REFERENCES

Bacallado:2015:BNI

Bai:2010:WEL

Buratti:2010:DCD

Balakrishnan:2011:SMM

Berardi:2011:POQ
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BMPR11] Félix Belzunce, Helena Martínez-Puertas, and José M. Ruiz. On optimal allocation of redundant components for series

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Benhaddou:2019:AFL

REFERENCES

[Bro10] Alexandre Brouste. Asymptotic properties of MLE for partially observed fractional diffusion system with dependent noises. Journal of Statistical Planning and Inference,
REFERENCES

David R. Brillinger and Brent S. Stewart. Stochastic modeling of particle movement with application to marine biology and oceanography. *Journal of Statistical Planning

[BSG16] Munnun Biswas, Soham Sarkar, and Anil K. Ghosh. On some exact distribution-free tests of independence between

Babu:2016:GFT

Barati:2019:FSD

Barati:2019:NEM

Balakrishnan:2010:SNP

Benkamra:2015:NSO

REFERENCES

REFERENCES

[160]

Babanezhad:2010:CCE

Benjamin:2010:CCC

Bissiri:2010:BLB

Bissiri:2012:BLL

Bien:2013:DCV

Beirlant:2019:EEV

Bo:2011:MLE

Benavoli:2012:MPI

Costa:2010:PES

Cabras:2010:NMT
REFERENCES

REFERENCES

Chen:2012:CEE

Chen:2015:REC

Chen:2018:SPO

Cheng:2019:ERG

Champion:2014:SRS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:2010:SBG

Chen:2010:EEM

Chen:2011:ECM

Cheng:2011:VEN

Cherfi:2012:DDE

REFERENCES

[CHP11] Frank P. A. Coolen, Brett Houlding, and Steven G. Parkinson. Considerations on jury size and composition us-
REFERENCES

Christofides:2010:CMC

Croux:2013:REO

Chrzanowski:2014:WEL

Chen:2017:DAQ

Ciuperca:2013:TTS
REFERENCES

REFERENCES

REFERENCES

[CL15b] Yu Cheng and Jialiang Li. Time-dependent diagnostic accuracy analysis with censored outcome and censored predictor. Journal of Statistical Planning and Inference, 156(??):90–102, January 2015. CODEN JSPIDN. ISSN 0378-3758 (print),
Clarke:2019:ATD

Cancho:2012:GBS

Chen:2013:CCS

Chen:2011:AEN

Chaubey:2012:GKR

REFERENCES

ISSN 0378-3758 (print), 1873-1171 (electronic). URL

[CLM12] Celso Rômulo Barbosa Cabral, Víctor Hugo Lachos, and
Maria Regina Madruga. Bayesian analysis of skew-normal
independent linear mixed models with heterogeneity in the
random-effects population. *Journal of Statistical Plan-
ning and Inference*, 142(1):181–200, January 2012. CODEN
JSPIDN. ISSN 0378-3758 (print), 1873-1171 (elec-
article/pii/S0378375811002771.

[CLO17] Chung Chang, Xuejing Lin, and R. Todd Ogden. Simul-
taneous confidence bands for functional regression models.
Journal of Statistical Planning and Inference, 188(??):67–81,
September 2017. CODEN JSPIDN. ISSN 0378-3758 (print),
com/science/article/pii/S037837581730037X.

[CLP13] Hong Chen, Luoqing Li, and Zhibin Pan. Learning rates of
multi-kernel regression by orthogonal greedy algorithm. *Jour-
nal of Statistical Planning and Inference*, 143(2):276–282,
February 2013. CODEN JSPIDN. ISSN 0378-3758 (print),
com/science/article/pii/S0378375812002704.

[CM10] In Hong Chang and Rahul Mukerjee. Data-dependent
probability matching priors for highest posterior density
and equal-tailed two-sided regions based on empirical-
type likelihoods. *Journal of Statistical Planning and Inference*, 140(9):2589–2595, September 2010. CODEN
JSPIDN. ISSN 0378-3758 (print), 1873-1171 (electronic). URL

control chart for monitoring the variance when parame-

REFERENCES

REFERENCES

REFERENCES

Kashinath Chatterjee and Hong Qin. Generalized discrete discrepancy and its applications in experimental designs. *Journal of Statistical Planning and Inference*, 141(2):

REFERENCES

Chang:2013:ILB

Chipperfield:2011:ESQ

Crowder:2011:IMC

Chuang:2012:ADW

Costantini:2012:ADS

Cheng:2013:ESD

Chen:2016:ESI

Ciuperca:2016:ELT

Choudhary:2014:GSM

Cheng:2017:MGG

Costa:2019:GAU

Cao:2015:UHI

Cheng:2011:ALN

Colbourn:2011:MCA

Cadigan:2010:ENB

REFERENCES

REFERENCES

Dachian:2010:LLR

Daly:2011:SMS

Dafnis:2010:DRK

Dornheim:2011:REF

De:2012:SSM

Dykstra:2019:ALS

Dong:2010:OST

deCarvalho:2012:GSW

Deutsch:2012:LHS

Dutta:2013:ODE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

DeGregorio:2010:DTS

Diaz:2017:EEQ

Doosti:2011:MBT

Dickhaus:2013:RVM

Dion:2014:NAS

REFERENCES

Dalgard:2019:APC

Duval:2017:NAE

Dou:2013:DSA

Dikta:2016:ARP

Dewanji:2012:NEN

REFERENCES

Dumbgen:2017:BLC

DiCiccio:2015:QNP

DiCiccio:2017:FRB

Das:2011:ORD

Ding:2012:OAA

REFERENCES

REFERENCES

[D LZ14] Xiaobo Ding, Lexin Li, and Lixing Zhu. Goodness-of-fit testing-based selection for large-
and Inference*, 145(??):148–164, February 2014. CODEN JSPIDN. ISSN 0378-3758 (print),

REFERENCES

REFERENCES

Das:2013:SSO

deOliveira:2012:BIP

Döring:2010:MCP

Döring:2011:CDM

Davarzani:2011:SID
DeIaco:2013:PNN

Das:2010:ORS

Davis:2011:BFS

DeIaco:2013:CSC

DiMarzio:2011:KDE

REFERENCES

DiMarzio:2016:NCQ

Dattner:2013:EDF

Datta:2010:PEB

Dang:2010:NDB

DiNardo:2012:SSS
DeBlasi:2018:CDL

Dasgupta:2010:CMT

Druilhet:2012:ECN

Druilhet:2014:OCD

Lopez-de-Ullibarri:2012:CCF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[ES16] Philip Ernst and Larry Shepp. On the time for Brownian motion to visit every point on a circle. *Journal of Statisti-
REFERENCES

REFERENCES

Fuki:2014:HSB

Ferreira:2010:MRE

Fu:2012:MSG

Fernandez-Casal:2010:SDE

Ferreira:2012:FIB

REFERENCES

REFERENCES

REFERENCES

[F Fischer:2019:AUI]

[Fonseca:2010:LSG]

[Fujimori:2017:CDS]

[Franke:2013:ACM]

[Fontana:2011:FPA]
REFERENCES

REFERENCES

REFERENCES

Frey:2012:PBE

Frey:2013:DDN

Fremdt:2014:ADD

Fluss:2012:ARC

Fruth:2014:TII

Frias:2011:CFE

REFERENCES

Fan:2013:EGS

Fang:2016:JAL

Zhang:2016:CAO

Gupta:2010:P

Gaffke:2019:OEL

Gamrot:2013:ECM

Gasmi:2011:PEA

Gassem:2011:CMT

Gadrich:2012:OAO

Godichon-Baggioni:2019:OEA

Goegebeur:2010:KES

Yuri Goegebeur, Jan Beirlant, and Tertius de Wet. Kernel estimators for the second order parameter in ex-
REFERENCES

REFERENCES

Goegebeur:2010:GFT

Godolphin:2015:RRB

Gardes:2011:WTD

Grasshoff:2013:ODD

Gardes:2012:ECT

[GIP17] Andrea Ghiglietti, Francesca Ieva, and Anna Maria Paganoni. Statistical inference for stochastic processes: Two-sample

REFERENCES

Gorony:2012:RGO

Geng:2017:MCT

Godbole:2010:CCA

Ghoshal:2015:SIB

Gheriballah:2010:RNE

Gamboa:2011:MEE

Guilloux:2016:AEB

Gai:2011:CIB

Guo:2014:FDA

Gupta:2012:COM

REFERENCES

REFERENCES

REFERENCES

[Goncalves16] Silvia Gonçalves and Benoît Perron. Discussion of “Bootstrap prediction intervals for linear, nonlinear, and nonparametric

Giurcanu:2019:BLT

Ghattas:2011:DDS

Goroncy:2011:LBE

Gamboa:2014:OVS

Guo:2015:SCD

Wenge Guo and Joseph P. Romano. On stepwise control of directional errors under independence and some dependence. *Journal of Statistical Planning and Inference*, 163(??):21–33, August 2015. CODEN JSPIDN. ISSN 0378-3758 (print),
REFERENCES

REFERENCES

[GSG12] Heiko Großmann, Rainer Schwabe, and Steven G. Gilmour. Designs for first-order interactions in paired comparison ex-

REFERENCES

Godolphin:2011:ICR

Guo:2012:GFT

Gao:2010:RWE

Gao:2014:NOD

Guo:2014:OSM

[HBP12] Jung Won Hyun, Prabir Burman, and Debashis Paul. A regression approach for estimating the parameters of the covari-

[Houlding:2011:AUT]

[Hung:2011:NMT]

[Hu:2013:ENV]

[Huang:2016:ODQ]

[Huang:2012:CNG]

Jianhua Z. Huang, Min Chen, Mehdi Maadooliat, and Mohsen Pourahmadi. A cautionary note on generalized linear models for covariance of unbalanced longitudinal data.
He:2016:EHC

Hyun:2019:GRM

Hore:2014:DIR

Hall:2012:MPI

REFERENCES

[HKN18] Linda M. Haines, Gaëtan M. Kabera, and Principal Ndlovu. D-optimal designs for the two-variable binary logistic regression model with interaction. *Journal of Statistical Plan-
REFERENCES

REFERENCES

[135x681] REFERENCES

REFERENCES

Holan:2010:TEE

Hillier:2011:SCA

Hosseinian:2011:RBR

Huda:2013:TLM

Huang:2012:IAR
REFERENCES

He:2012:FIC

Ho:2010:MPE

Hochberg:2019:MCR

Hyodo:2019:AMA

Honda:2010:NRD

Hafner:2010:DBG

Haslett:2010:EAR

Hu:2010:ALE

Hedayat:2019:CTB

Hable:2010:ORI

REFERENCES

REFERENCES

Hung:2012:OBS

Harvey:2012:BCI

Hoff:2013:BSP

Hoga:2017:SMT

Huang:2011:BEB

REFERENCES

Hyun:2011:ODR

Hamad:2010:NBN

Hyodo:2012:MSC

Hamadeh:2011:APL

Hu:2011:SRT

REFERENCES

REFERENCES

Ishii:2016:APF

Ishii:2019:ETH

Jiang:2017:CUD

Jacroux:2011:UPC

Jacroux:2019:DCM
Mike Jacroux. On the determination and construction of MV-optimal block designs for comparing test treatments with a standard treatment. *Journal of Statistical Planning and Inference*, 15(??):205–225, ???. 2019. CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (elec-
REFERENCES

REFERENCES

REFERENCES

Johnson:2011:GPE

Jozani:2012:RNS

Jiang:2012:LRT

Jhong:2017:PBS

Johnstone:2011:FPF

Jozwiak:2013:OTA

Jin:2013:NLM

Jongbloed:2013:DNS

Jonsson:2013:COA

Jones:2015:UCD

Jorgensen:2012:EEI

Jensen:2010:SMI

Jasinski:2012:BDO

Jokiel-Rokita:2010:EPD

Janssen:2012:LSB

Johannes:2013:IRN

Jiang:2016:ENC

Jiang:2011:LMD

Jayasinghe:2013:NSE

Khaledi:2011:MRL

Kaul:2014:LLM

Konstantinou:2015:ODF

Kundu:2011:SEF

Kieffer:2012:PSC

Kaiser:2012:CPD

REFERENCES

Kabaila:2012:MCP

Khaledi:2011:SCO

Kedem:2010:SDF

Kundu:2010:MSB

Kyung:2010:MLE
REFERENCES

References

Krishnamoorthy:2010:IFP

Krishnamoorthy:2010:CLS

Kulik:2011:SRR

Kang:2012:BIP

Kwon:2013:DLQ

REFERENCES

Kline:2011:BFA

Kao:2011:RMS

Kim:2015:SBR

Khardani:2011:URS

Karunamuni:2010:REB

REFERENCES

Koukouvinos:2011:ASD

Karlsen:2010:NRE

Kohler:2015:ERF

Kustosz:2016:SSD

Kundu:2010:SDR

Koenker:2013:CLQ

Koltchinskii:2013:DGC

Komaki:2011:BPD

Kong:2012:CIJ

Kong:2013:PJP

Koul:2011:MDL

REFERENCES

REFERENCES

Kristian Kristensen. The use of spatial and randomisation-based methods for analysis of trials with treatments randomised into rows and columns. Journal of Statistical Planning and Inference, 140(6):1542–1549, June 2010. CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (elec-
REFERENCES

Kroll:2019:NPP

Kvam:1993:IEA

Koul:2010:CVM

Koul:2010:GFT

Kubokawa:2011:NML

Kvam:2011:EIS

Kibia:2012:IEP

Koul:2016:MDP

Kariya:2019:ORT

Klaassen:2019:SEE

Kubokawa:2014:GDP

Kutoyants:2011:GFT

Kyriakoussis:2010:DDB

Kharin:2011:REA

Karabatsos:2012:BNC

REFERENCES

Kutoyants:2014:ABS

Kutoyants:2015:CAB

Korolev:2016:NVM

Kim:2010:NSS

Lwin:2014:SCF

REFERENCES

Lin:2011:GFT

Luo:2013:EBL

Li:2015:CWU

Li:2016:ASS

Lai:2017:SIB

Leu:2014:BSA

Liang:2011:CQE

Le:2013:IDS

Leblanc:2012:BPB

Lecue:2013:CGC
Guillaume Lecué. Comment to “Generic chaining and the l_1-penalty” by Sara van de Geer. *Journal of Statistical Planning and Inference*, 143(6):1022–1025, June 2013. CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (elec-
Lee:2018:LTE

Lehner:2011:CII

Lemonte:2011:LPS

Lemonte:2012:LPP

Lewis:2018:CIB

Li:2014:DEL

Lin:2016:GPL

Li:2011:ELM

Li:2012:LFT

Lian:2011:PDB

REFERENCES

REFERENCES

[Lin10]

[Lin11]

[Lin12]

[Lin14]

Liu:2011:ILE

Lorchirachoonkul:2012:MSS

Li:2015:SSF

Li:2012:SAM

Laib:2011:RSC

Li:2011:TRC

Liao:2011:BCN

Liu:2011:COS

Lee:2013:REM

Liu:2015:VCM

Li:2019:TPC

[LL19] Wei Li and Johannes Lederer. Tuning parameter calibration for ℓ_1-regularized logistic regression. *Journal of Statisti-
REFERENCES

Laurent:2011:TIP

Lloyd:2010:PVB

Liu:2014:SCB

Liu:2019:CMC

Ling:2015:NRE

REFERENCES

Laha:2011:SRD

Lee:2011:CBE

Li:2013:EIV

Lin:2014:DVR

Li:2016:EBD

REFERENCES

Le-Rademacher:2011:LFS

Leonenko:2010:SIR

Liu:2010:NEF

Litvinova:2012:TWF

Lim:2012:AUH

Lopez:2012:BCR

Lin:2012:CCT

Lu:2013:EMS

Lin:2016:SUE

Lazariv:2013:CCM
Taras Lazariv, Wolfgang Schmid, and Svitlana Zabolotska. On control charts for monitoring the variance of...
REFERENCES

REFERENCES

 REFERENCES

Li:2012:VPR

Luo:2015:ELB

Lee:2019:DEC

Lwin:2011:PEF

Liu:2013:APM

REFERENCES

REFERENCES

Jianbo Li and Riquan Zhang. General partially linear varying-coefficient transformation model with right cen-
REFERENCES

Lv:2011:NEV

Li:2010:LBE

Qizhai Li, Gang Zheng, Aiyi Liu, Shifeng Xiong, Zhaohai Li, and Kai Yu. The limiting bound of Efron’s W-formula for hypothesis testing when a nuisance parameter

Mai:2017:PBQ

Mabon:2016:ADL

Macci:2010:LDB

Machete:2013:CPS

Madi:2010:NEE

Mainassara:2011:MPT

Majumdar:2014:GPS

Mammen:2013:DNS

Martin:2018:IMC

Mukherjee:2011:SPS
Amitava Mukherjee and Uttam Bandyopadhyay. Some partially sequential nonparametric tests for detecting linear trend. *Journal of Statistical Planning and Inference*,
REFERENCES

Mandal:2011:MDE

Mojirsheibani:2011:CWC

Martinez-Camblor:2012:GBA

McNicholas:2010:MBC

Maturi:2010:NPC

REFERENCES

[MGB10] Patricia Menéndez, Sucharita Ghosh, and Jan Beran. On rapid change points under long memory. Journal of Statistical Planning and Inference, 140(11):3343–3354, Novem-

REFERENCES

Matsuura:2015:OEP

Meyer:2018:CRC

Meemark:2011:CBM

Maistre:2017:PNC

Misra:2012:SPC

REFERENCES

Montanari:2017:MMR

Morris:2014:MDO

Meintanis:2011:STM

Makri:2012:CCB

Matthews:2012:ODT

Marella:2019:MIT

[MP19] Daniela Marella and Danny Pfeffermann. Matching information from two independent informative samples. *Journal
REFERENCES

Muller:2010:RPM

Montes-Rojas:2010:TRE

Ma:2011:LAC

Malinovsky:2011:BIM

Mena:2011:GSB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Muller:2012:EDP

Molenberghs:2011:WGF

Montanari:2011:DRM

Mameli:2015:HOA

Ma:2015:SNR

REFERENCES

Ma:2010:EIE

Ma:2011:SBK

Mairal:2013:DAG

Ma:2011:FSP

Matsumoto:2011:IQC
Miranda:2010:CMC

Mytalas:2013:CLT

Moghaddass:2012:ODM

Maronge:2017:ODS

Nagy:2015:CMD

Nie:2011:AVM

Nanda:2011:DPH

Navarro:2010:SNR

Nofuentes:2010:CAM

Ndao:2016:NEC

REFERENCES

Nikoloulopoulos:2013:ENC

Nilson:2011:PYD

Nishiyama:2011:ERD

Ng:2016:CNN

Nkurunziza:2010:TCH

Navarro:2012:CCS

Nair:2010:NMA

Navarro:2010:ADB

Niederhausen:2010:PAB

Niaparast:2013:ODQ

Ogden:2010:WMF

Ogasawara:2013:ACE

Ogasawara:2017:ADM

Ogihara:2019:APB

OHagan:2013:BIM

REFERENCES

REFERENCES

Price:2016:EDO

Pan:2013:SWQ

Praskova:2014:MPD

Pourahmadi:2010:P

Park:2011:ETC

REFERENCES

[PH17] Seyoung Park and Xuming He. Hypothesis testing for regional quantiles. *Journal of Statistical Planning and Inference*.
REFERENCES

Porter:2015:BSH

Pradhan:2013:IOC

Park:2012:EVE

Park:2012:OPS

Pang:2010:IFB
Fang Pang and Min-Qian Liu. Indicator function based on complex contrasts and its application in general fac-

Li Pan and Dimitris N. Politis. Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions. *Journal of Statistical Planning and Inference*, 177(??):1–27,
REFERENCES

Pan:2016:RBP

Puetz:2016:EAM

Penev:2011:BTB

Patilea:2012:AEV

Papathomas:2016:EDB

Michail Papathomas and Sylvia Richardson. Exploring dependence between categorical variables: Benefits and limitations of using variable selection within Bayesian cluster-

REFERENCES

[PZ14] Luc Pronzato and Anatoly A. Zhigljavsky. Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria. *Journal of Statistical Planning and Inference*, 154(??):141–155, November 2014. CODEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (elec-
REFERENCES

Quinlan:2015:ROC

Qin:2011:ELP

Quessy:2011:APT

Qu:2010:CSR

Quesada-Rubio:2012:SAP

REFERENCES

REFERENCES

REFERENCES

Raqab:2011:IGR

Rigat:2012:NSR

Rosenblatt:2010:SAP

Rosenblum:2014:UMP

Ravi:2011:MTC

REFERENCES

Rukhin:2011:CPA

Rodriguez:2015:SSS

Rodger:2010:GCG

Rao:2012:SNT

Ray:2014:CTP

[Ruk19b] Andrew L. Rukhin. Quadratic estimators of quadratic functions of normal parameters. *Journal of Statistical Plan-
REFERENCES

Ruschendorf:2019:ADC

Ramirez:2010:WDE

Rajaratnam:2016:NCE

Renaud:2010:RCD

Radulovic:2018:WCS

REFERENCES

REFERENCES

Sekido:2012:ACO

Staicu:2010:SOA

Shen:2011:DNB

Shan:2012:CSI

Shaw:2012:FPC

REFERENCES

REFERENCES

REFERENCES

Soleymani:2014:BPL

Son:2019:MPA

Sun:2019:BOB

Staicu:2015:STF

Shin:2018:SPT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Guang-Jing Song. On the best linear unbiased estimator and the linear sufficiency of a general growth curve model. *Journal of Statistical Planning and Inference*, 141(8):2700–2710,
Song:2011:DFT

Silva:2012:CSD

Sonksen:2012:RPC

Shu:2010:BPB

REFERENCES

SanMartín:2013:IPR

Szekely:2013:ESC

Steland:2014:DCP

Simas:2011:BCE

Srivastava:2010:BV

Shen:2012:MRM

Shen:2012:MSC

Shah:2013:DCV

Shen:2013:EAB

Simecek:2013:MTA

Srivastava:2013:ACI

Shi:2016:SPC

Sommer:2019:MAS

Stingo:2011:EBR

Shen:2010:SEC
Svenson:2014:ESI

Sun:2017:FMA

Shlomo:2012:EIR

Sun:2011:RAL

Schuhmacher:2016:QRL

REFERENCES

REFERENCES

Sohrabi:2019:ATE

Shao:2016:SMN

Takada:2010:SBN

Tan:2010:ECD

Tan:2013:CPS

REFERENCES

REFERENCES

Tateishi:2010:NRM

Toto:2010:BPI

Tsukuda:2014:SAC

Thall:2012:HGP

Tone:2013:KDE
REFERENCES

REFERENCES

Tan:2010:FLP

Tyssedal:2010:SDP

Trutschnig:2012:IMC

Trutschnig:2013:SRS

Tsai:2011:NLT

REFERENCES

Tang:2015:IEE

Tang:2013:ECM

Tian:2011:ECI

Tianyao:2010:OEB

Unkel:2017:CPA

Ursu:2014:RMP

Vaggelatou:2010:PAM

Vellaisamy:2010:SEP

Vareschi:2015:NLD

Vasudeva:2013:ASB

Vazquez:2010:CPE

Emmanuel Vazquez and Julien Bect. Convergence properties of the expected improvement algorithm with fixed mean

Volterman:2010:ENC

Vock:2011:JTT

vanBerkum:2019:OPC

VanHala:2017:NSD

Variyath:2010:ELB

Verdier:2013:ACM

Verdebout:2017:ESR

Vexler:2013:EDB

Vermeulen:2011:ROC

Veronese:2018:FCO

Miakonkana:2014:IRE

Viljoen:2010:CSS

Vishwakarma:2012:GPE

Vexler:2011:ELR

Velilla:2018:GFT
REFERENCES

REFERENCES

[Wag11] Jens Wagener. The maximization of determinants of
to block Toeplitz matrices with applications in optimal de-
sign theory. *Journal of Statistical Planning and In-
ference*, 141(9):3105–3116, September 2011. CODEN JSPIDN.
ISSN 0378-3758 (print), 1873-1171 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0378375811001297.

[Wah10] Grace Wahba. Encoding dissimilarity data for statisti-
cal model building. *Journal of Statistical Planning and In-
ference*, 140(12):3580–3596, December 2010. CODEN JSPIDN.
ISSN 0378-3758 (print), 1873-1171 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0378375810002053.

[Wal13a] Stephen G. Walker. Bayesian inference with misspecified models. *Journal of Statistical Planning and In-
ference*, 143(10):1621–1633, October 2013. CODEN JSPIDN.
ISSN 0378-3758 (print), 1873-1171 (electronic).
S037837581300116X. See discussion [De 13, HW13, O’H13]
and reply [Wal13b].

[Wal13b] Stephen G. Walker. Reply to the discussion: Bayesian infer-
ence with misspecified models. *Journal of Statistical Plan-
ning and Inference*, 143(10):1649–1652, October 2013. CO-
DEN JSPIDN. ISSN 0378-3758 (print), 1873-1171 (elec-
article/pii/S0378375813001201. See [Wal13a].

[WAL17] Xinlei Wang, Soohyun Ahn, and Johan Lim. Unbalanced
ranked set sampling in cluster randomized studies. *Journal of Statistical Planning and Inference*, 187(?):1–16, Au-
gust 2017. CODEN JSPIDN. ISSN 0378-3758 (print), 1873-
science/article/pii/S0378375817300186.

REFERENCES

Waters:2015:BNA

Wu:2012:BCE

Wied:2013:MCC

Wang:2011:FOS

Wandler:2012:FAM

Wang:2012:FPI

Wang:2011:BRS

Wiens:2019:MPD

Wierich:2019:ODC

REFERENCES

REFERENCES

Wang:2015:MSR

Wang:2010:ESI

Wang:2017:EPR

Wang:2019:NER

Wang:2010:SCA

REFERENCES

Wang:2010:EA

Wang:2019:PEL

Wang:2015:CPS

Wang:2019:FHD

Wang:2010:NCI

Wang:2014:AOD

[WY14] Tianhua Wang and Min Yang. Adaptive optimal designs for dose-finding studies based on sigmoid \(E_{\text{max}}\) models. *Jou-
Wu:2010:MCC

Wei:2010:BRL

Wieczorek:2010:OEN

Wang:2011:ELQ

Wilmut:2011:OMD

Michael Wilmut and Julie Zhou. D-optimal minimax design criterion for two-level fractional factorial designs. *Journal...
REFERENCES

[XI12] Changfu Xiao and Anastasia Ivanova. Adaptive isotonic estimation of the minimum effective and peak doses in
REFERENCES

[XXWL12] Ganggang Xu, Yanbiao Xiang, Suojin Wang, and Zhengyan Lin. Regularization and variable selection for infinite vari-

REFERENCES

Yu:2018:ODL

Yuan:2010:CAG

Yang:2011:MDD

Yu:2011:MLD

Yue:2012:SSS

Yu:2016:SDB

Yu:2015:ODR

Yu:2013:CAS

Yung:2012:CPB

Yu:2019:ASE

Yamamoto:2019:CFO

Yang:2012:BET

Yamazaki:2015:IFS

Yousef:2013:SNB

Yan:2010:CDC

REFERENCES

Yuan:2017:NCO

Yanagimoto:2011:SCP

Yue:2011:OTD

Yan:2011:IIL

Yothers:2011:ESC

Yothers:2011:SCB

Suen:2010:SOS

Suen:2013:OFF

You:2010:IEQ

Yang:2011:TMH

REFERENCES

[YYZ14] Hanfang Yang, Crystal Yau, and Yichuan Zhao. Smoothed empirical likelihood inference for the difference of two quan-

Zhao:2012:MTF

Zhang:2017:SIM

Zhao:2011:PWS

Zhang:2013:CVT

Zou:2011:LPT

REFERENCES

Zhang:2019:MAS

Zheng:2012:NAS

Zheng:2013:APQ

Zheng:2012:LBA

Zhu:2017:SPS
Dekang Zhu, Dan P. Guralnik, Xuezhi Wang, Xiang Li, and Bill Moran. Statistical properties of the single linkage hierarchical clustering estimator. *Journal of Statistical Planning and Inference*, 185(??):15–28, June 2017. CO-
Zhou:2017:HDG

Zahid:2012:RSE

Zhang:2010:OCG

Zhang:2012:ADF

Zhao:2013:ACD
REFERENCES

[ZJ10] Rong Zhu and Harry Joe. Negative binomial time series models based on expectation thinning operators. *Journal of Sta-

Zhou:2015:THD

Zambom:2017:LSM

Zhang:2011:BET

Zhang:2011:FBM

Zhao:2012:LDP

REFERENCES

Zhao:2012:DRE

Zhao:2017:RRR

Zhu:2010:MIV

Zhang:2016:NMJ

Zhao:2013:CBT

REFERENCES

Zhang:2016:CQR

Zhou:2012:PCE

Zhao:2013:TCC

Zou:2014:GKD

Zhang:2015:BCS

Zhang:2010:EAM

Zhang:2015:ESP

ZafarYab:2010:PGN

Zevallos:2012:NID

Zhou:2014:OBE

Zheng:2010:SID

Shurong Zheng, Ning-Zhong Shi, and Wenqing Ma. Statistical inference on difference or ratio of means from heteroscedastic normal populations. *Journal of Statistical Plan-
REFERENCES

Zhang:2014:NME

Zhang:2010:RPM

Zhao:2014:WVP

Zhou:2014:GGM

ZZOY13

Zhao:2012:SMR

Zhao:2019:SNS