Title word cross-reference

2020 [Ano20k, Ano20j]. 2021 [Ano21k, Ano21j, Ano21l, Ano21n, Ano21g].
2022 [Ano22j, Ano22h, Ano22k, Ano22i, Ano22g, Ano22l]. 2023 [Ano23e, Ano23f, Ano23d].

Contractions [WG20, ZYG22, Jec22]. contrasts [Ros20]. control [Cla21, HB21, XLZ20, YYYW21]. controlling [NSC21]. controls [GS20].

covariance [BM21, CSP21, LY22, SBP22, Su22, WL20, YZZ22, YCL21, YK23, ZHB20].

covariates [BS21c, ZYL22]. covariates [AG20, AHY21, GMFY20, LPL21, Ros20, XDL20, YW20].

cross [GM21]. cross-balanced [GM21]. crossing [LG21].

cross-over [AHB21]. cumulative [AKE22]. curable [WZC+21].

cure [WZC+21]. curve [WM20].

Darling [Zha21]. data [AM23, CSL20, CG22, CWY20, CF20, DCDS21, DSK21, GC20, GD20, HC23, HH21, Kak20, KU22, KR2X1, LY20, LG21, LPK+21, LYG21, LYL21, EFR20, QW23, Sa22, SS20, SSC20, SA20, SLX20, Tan22, TS22, WZL20, WWZZ20, XMO21, ZZGZ21].

December [Ano20i, Ano21k, Ano22j]. decomposition [DLZ23]. deconvolution [Dus21].

Designs [TLT22].

BFVT22, ABH21, BFR21, CT22b, DMM22, DS20b, DSH21, DLZ23, FHS20, GZ20, GHR20, Hai22, HLY20, HY20, H21, HHL20, KKS22, KLY+23, KLCZ23, KH20, Lan23, LZ20a, LTT22, LC20, LMMJ21, NZ22, PW21, Ros20, Sab21, SBP22, SS20, SKS21, SZ23, Tan22, TH22, WYL21, WY22, WCL22, WM22, XS21, YYYW21, YZZ22, ZL20, ZZ20, ZYL20, ZXS23].

Detecting [LTZF22]. detection [CF20, LG21, ZH23]. deteriorating [SMB20].

deviations [Fro22, Pro20]. diagnostic [KZ21]. difference [SS21, XC20].

Differential [BP21, Cla21, MB20]. diffusion [AG21, KU22, MU21].

dimension [Don21, SD21]. dimensional [CSP21, CG22, DJPZ22, GC21, HCX23, JHH21, Kim20, LZZ22, WM20].
WL20, XLZ20, XZ21, YH23, ZHB20, ZZGZ21. dimensions [BM21, Su22].
direct [YCL21]. directed [BFVT22]. Directional [WZL20, BG22b].
Dirichlet [LB22]. discovery [NSC21]. Discrete
[DS20a, BM20, Cla21, KU21]. discrete-valued [BM20].
[TPZ22], disease [YYYW21]. disorder [Buo20]. dispersion [HH21, TLT22].
dispersive [Sal21]. distance [GK22, YZL20]. distribution [DGCL21,
DGCL22, EMM21, GC20, JX22, KZA23, Oui21, Sa21, TML21, YH23].
distributional [AHZ20, Yan20]. distributions
[BS21b, GAC23, Khm21, LMW21, LAO22, LB22, MB20, MSFT23].
discreteness [TPZ22]. disease [YYYW21].
disorder [Buo20].
dispersion [HH21, TLT22]. dispersive [Sal21]. distance [GK22, YZL20].
distribution [DGCL21, DGCL22, EMM21, GC20, JX22, KZA23, Oui21, Sa21, TML21, YH23].
distributional [AHZ20, Yan20]. distributions
[BS21b, GAC23, Khm21, LMW21, LAO22, LB22, MB20, MSFT23].
discreteness [TPZ22]. disease [YYYW21].
disorder [Buo20].
dispersion [HH21, TLT22]. dispersive [Sal21]. distance [GK22, YZL20].
distribution [DGCL21, DGCL22, EMM21, GC20, JX22, KZA23, Oui21, Sa21, TML21, YH23].
distributional [AHZ20, Yan20]. distributions
[BS21b, GAC23, Khm21, LMW21, LAO22, LB22, MB20, MSFT23].
discreteness [TPZ22]. disease [YYYW21].
disorder [Buo20].
extensions \[yCjL23\]. extremal \[KOV22\].

factor \[LZ22\]. factorial \[DHS21, HLYZ20, KH20, Sab21\]. factors \[BFR21, GZ20, JX22, SZ23, ZZ20\]. failed \[KKSA22\]. failure \[BKM21, EMM21, QW23\]. families \[MP23\]. family \[BP21, MRS21\]. fast \[OYF20\]. faster \[ZLHZ22\]. Fay \[AS22, IK21\]. Fay-Herriot \[AS22\]. FDR \[GS20, HB21\]. Feature \[WMZ20, GC21\]. Fields \[LZ20b\]. filling \[CT22b, WYL21\]. filtering \[Rez22\]. financial \[WZL+22\]. finite \[KWW20, GAC23, Pi20, ZWYX20\]. finite-range \[ZWYX20\]. first \[YWYL20\]. first-order \[YWYL20\]. Fisher \[JHH21, Ove22, ZZGZ21\]. fit \[Cav22, Kim20, PSS20, XC20\]. Fitting \[LY21, YW20\]. Fixed \[BL20, MSFT23\]. Flexible \[ZWL22, Tsa22\]. fMRI \[LMMJ21, SKS21\]. forms \[YK23\]. formula \[TS22\]. fractal \[BKP20\]. fractional \[HLYZ20, KH20, NMP21, Nar21, Sab21, SST20\]. framework \[BL22, Sab21\]. free \[WM20, Yin20\]. freedom \[MP21\]. frequencies \[FHM22\]. frequency \[KU22, MR21\]. Frequentist \[ZZWZ22, PdOA22\].

fully \[KLR23\]. function \[EMM21, GC20, KCH21, KLR23, LLBR22, WST21, XLZ20\]. functional \[AG20, BNF+23, CF20, FTHL21, GZ23, HDDL20, HXZ22, KRX21, LG21, LLZL21, LH22, PSS20, RX20, SDSZ21, SW22, TS22, WZL20, XDZL20, XLZL2, ZLHZ22\]. functional/longitudinal \[LYH22\]. functions \[AKE22, BKM21, Sae21, Su22, WWZZ20\]. FWER \[GS20\].

having \[MB20\]. hazard \[Tan22\]. hazards \[SLX20, WZC+21\]. heavy \[SML22, ZM22\]. heavy-tailed \[SML22, ZM22\]. Herriot \[AS22, IK21\]. heterogeneous \[yCjL23, LZ20\]. heteroscedastic \[ASN22, Ros20\]. heteroskedasticity \[ST21\]. hidden \[Sab21\]. hierarchical \[WAL23\]. High \[HCX23, Kim20, YH23, BM21, CSP21, CG22, DJPZ22, GC21, JHH21, KU22, LZ22, WY22, WL20, XLZ20, X21, ZHB20, ZZG21\]. High-dimensional

objects [ASN22]. observation [HK22]. observations
10

quadratic [LZ20a, WWZZ20, ZLY22]. *Quantile* [WWZZ20, ZFZZ20, LPC22, LLZL21, MMD20, SDSZ21, TW20, XC20]. *quantiles* [BM22]. *quantum* [CKSW21]. *Quasi* [GL20, ZH23, NZ22, ZYG22]. *Quasi-Bayesian* [ZH23, ZYG22]. *Quasi-likelihood* [GL20]. *quasi-random* [NZ22].

Ridge [BS21c, OYF20], risk [WZC++21], risks [AKE22], Robust [LYZ20, LFW22, RSV20, WST21, XS21, LP21, ZHLT20], root [ZM22], row [KVH++23], row-column [KVH++23], rule [CMMD21], run [Tsa22].

sample [BM21, BKM21, GZZ20, GAC23, JHH21, KWW20, LYZ21, LFW21, MS23, SM23, Tan22, XLZL22, ZHB20, ZZGZ21], sampled [FHM22], samples [KOV22, Sae21], sampling [DS20b, MM20, ZDW++21], Sanov [MP23], Saturated [WM22, CT22a, DHS21], Saunders [DGCL21, Kak20, scale [BFMS21, KV21, LPK++21, MS23], scan [ACCY21], scatter [BFMS21], score [yCjL23, WXT++21, ZY22], score-based [WXT++21], scores [XZ21], scoring [CMMD21], screening [HCX23, PL20, WMZ20], seasonal [BNF++23, MR21], second [Pil20, Zha21], second-order [Zha21], selection [CSL20, CQY22, CWY20, CM20, GAC23, GC21, LAYI22, LFR20, LTW21, OYF20, SW22, Wy20, ZY22, ZFZ20], self [MU21], self-normalized [MU21], Semi [LFLL21, BS21a, UB22], semi-Latin [BS21a, UB22], Semi-parametric [LFLL21], semimartingales [Mi21], Semiparametric [LNH++23, MS23, SMP20, SLX20, WZC++21, WXT++21, HANB20, SA20], sensitive [LTW21], separable [LY21], September [Ano20g, Ano21g, Ano22l], sequence [Khm21, MS21a, WST21, WF20], Sequential [GZZ20, PW21, GC21, HB21, KS22, LFR20, LC20, Lio22, NRP20, ZC20], sets [ZZ20], setting [CG22], settings [CSP21], sharp [Lop20], shrinkage [BS22, WG20, ZGY22], sieve [SLX20], sign [MLM21], signal [BS22], signals [HB21], SiMaFlex [BB21], simple [CWS20], simplex [HH21], simulations [MM20], Simultaneous [KCH21, TS22, CSP21], single [FTHL21, PPTO20, ZFZ20], single-index [FTHL21, PPTO20, ZFZ20], size [GZZ20, LFLL21, LW22, UB22], sizes [BM21, Tsa22], Skew [HXZZ20, JX22], Skew-normal [HXZZ20, JX22], skewed [SZ21], skewness [JX22], slab [LAYI22], Sliced [WCL22], SLOPE [DT22], Small [PL20, BM21, TJ20], Smooth [LY20], smoothing [BT22, GKO22, WVJ++20], smoothness [Ste22], sn [KLC23], sn-m [KLCZ23], solution [AHY21], some [DMK22, Oui21], sorted [DT22], sources [Sae22], space [CT22b, Rez22, WYL21], space-filling [CT22b, WYL21], spaced [EFR20], spaces [LLZL21, Sal21], spacings [SM23], Sparse [BFR21, CKSW21, DCS20, GK21, Jea20, LPK++21, XLZ20], spatial [LAYI22, EFR20, Su22, TJ20, WH20], SPDE [KU21], specific [BB21], spectral [Cav22, LLBR22, LYZ21, MMD20, WH20], spherical [Su22], spike [LAYI22], spike-and-slab [LAYI22], spiked [JHH21], spline [CM23, LZ20a, WXT++21, Yan20], splines [KV21, RX20, WVJ++20], split [HLYZZ20, SZ23, ZZ20], split-plot [HLYZZ20, SZ23, ZZ20], spurious [NKST21], squared [HK22, TJ20], squares [BS21a, BdFL20, CWS20], stable [FHM22, Pro20], Stacy [AM23], standardization [DC20], state

REFERENCES

zero [GC20, LPL21, SZ21]. zero-inflated [LPL21, SZ21].

References

Abraham:2020:PCM

Amorino:2021:IDA

Alawieh:2020:ICG

Aboukhamseen:2021:OCD

Ai:2021:NPS

Anonymous:2020:EBd

Anonymous:2020:EBe

Anonymous:2020:EBf

Anonymous:2020:PS

Anonymous:2020:PJa

Anonymous:2020:PD

Anonymous:2020:PMb

Anonymous:2020:PMa

REFERENCES

REFERENCES

Anonymous:2021:PS

Anonymous:2021:PJa

Anonymous:2021:PMb

Anonymous:2021:PJb

Anonymous:2021:PD

Anonymous:2021:PMa

Anonymous:2022:EBa

Anonymous:2022:EBb

REFERENCES

Anonymous:2023:PMa

Alshammri:2021:GPC

Angkunsit:2022:AML

Al-Sharadqah:2022:SAC

Bartenschlager:2021:NUS

Bhattacharjee:2021:WNT

REFERENCES

Bhattacharyyaa:2021:TSN

Baek:2020:ABL

Bachoc:2020:FD

Bohringer:2022:EMC

Brairi:2020:TDV

Banerjee:2021:OEE

[BM21] Samprit Banerjee and Stefano Monni. An orthogonally equivariant estimator of the covariance matrix in high dimensions and
REFERENCES

Bhattacharya:2022:GPI

Beran:2023:SFM

Britos:2020:APB

Benke:2021:NUF

Bailey:2021:USL

REFERENCES

REFERENCES

REFERENCES

[CMMMD21] Silvia Columbu, Valentina Mameli, Monica Musio, and Philip Dawid. The Hyvärinen scoring rule in Gaussian linear time se-
Chen:2020:KDR

Chen:2022:VSB

Chen:2020:BHP

Cai:2020:GVS

Cao:2021:STM

REFERENCES

[DCS20] Felicitas J. Detmer, Juan Cebral, and Martin Slawski. A note on coding and standardization of categorical variables in (sparse)

REFERENCES

REFERENCES

[ElBarmi:2021:EDF] Hammou El Barmi, Ganesh Malla, and Hari Mukerjee. Estimation of a distribution function with increasing failure rate av-
REFERENCES

Fontana:2020:OBC

Florent:2023:SNO

Fuchs:2020:ABV

Fasen-Hartmann:2022:NES

Freise:2020:ODT

REFERENCES

Pei Geng and Hira L. Koul. Weighted empirical minimum distance estimators in linear errors-in-variables regression mod-

REFERENCES

[Grant:2020:TTB]

[Grossmann:2020:MBE]

[Guo:2020:ACF]

[Gao:2020:MOD]

[Garbuzov:2023:CRP]

REFERENCES

He:2023:HDV

Hu:2020:SIL

Hsu:2021:ODE

Huang:2020:ODB

Hoberman:2022:PEM
REFERENCES

[JS22] Per Johansson and Mårten Schultzberg. Rerandomization: a complement or substitute for stratification in randomized experiments? *Journal of Statistical Planning and Inference*, 218(??):
Jiang:2022:TSS

Kakizawa:2020:MNC

Kim:2021:SIP

Kuwada:2020:LBN

Khmaladze:2021:THT

Kim:2020:MGF

Kim:2020:MGF

Kapelner:2022:ORD

KKSA22

Kong:2023:RCS

KLCZ23

Kohler:2023:ERF

KLR23

Kevei:2022:LLN

KOV22

REFERENCES

Kolkiewicz:2021:PPB

Kirch:2022:ADT

Kaino:2021:PEP

Kawai:2022:ATM

Kalogridis:2021:TPS

Karmakar:2023:NCI

[KVH+23] Sayantani Karmakar, Cini Varghese, Md. Ashraful Haque, Seema Jaggi, Mohd Harun, and Eldho Varghese. A note on the con-
REFERENCES

REFERENCES

Leach:2022:ISS

Liao:2022:MPD

Liu:2020:GSR

Lee:2022:PKQ

Li:2021:GOG

REFERENCES

[LMMJ21] Xiao-Nan Lu, Miwako Mishima, Nobuko Miyamoto, and Masakazu Jimbo. Optimal and efficient designs for fMRI experiments via

REFERENCES

Lu:2020:SBA

Liu:2021:FTS

Li:2020:REM

Liu:2022:USI

Li:2021:CLT

Li:2020:ODQ

Chang Li and Chongqi Zhang. A-optimal designs for quadratic mixture canonical polynomials with spline. *Journal of Sta-
REFERENCES

[MP21] Nadine McCloud and Christopher F. Parmeter. Calculating degrees of freedom in multivariate local polynomial regression. *Jour-
REFERENCES

Macci:2023:IST

Milhaud:2022:STS

McElroy:2021:TAS

Marchand:2021:MER

Maruyama:2021:GSA
REFERENCES

Neumann:2021:EPT

Ninomiya:2021:MMP

Ng:2020:LTC

Nadarajah:2021:OBC

Novikov:2020:OMS

Nandi:2021:AOT

Noonan:2022:RQR

Ouimet:2021:PLL

Overstall:2022:PFI

Ohishi:2020:FAO

Patriota:2022:MFM

Pinheiro:2021:HOA

Pilz:2020:CEN

Peng:2020:SSD

Park:2020:SIM

REFERENCES

Rigon:2021:TBD

Rezende:2022:NFI

Rosa:2020:OED

Ruli:2020:RAB

Rempala:2023:PLT
REFERENCES

REFERENCES

[SS20] Marius Schmidt and Rainer Schwabe. Optimal designs for Poisson count data with Gamma block effects. *Journal of Statis-
REFERENCES

REFERENCES

[Tan22] Zhiqiang Tan. Analysis of odds, probability, and hazard ratios: From 2 by 2 tables to two-sample survival data. *Jour-
REFERENCES

Fabian J. E. Telschow and Armin Schwartzman. Simultaneous confidence bands for functional data using the Gaussian kinematic formula. *Journal of Statistical Planning and Inference*, 216(??):70–94, January 2022. CODEN JSPIDN. ISSN 0378-3758 (print),

REFERENCES

Walter:2023:ACN

Wang:2022:SSL

Weng:2020:ECB

Wei:2020:CPS

Weller:2020:NSD

Wu:2020:PTH
Tung-Lung Wu and Ping Li. Projected tests for high-dimensional covariance matrices. *Journal of Statistical Planning and Inference*, 207(??):73–85, July 2020. CODEN JSPIDN. ISSN 0378-3758

[Ye:2022:NPP] Keying Ye, Zifei Han, Yuyan Duan, and Tianyu Bai. Normalized power prior Bayesian analysis. *Journal of Statisti-
REFERENCES

Jie Zhang, Dehui Wang, Kai Yang, and Yanju Xu. A multinomial autoregressive model for finite-range time series of counts. *Journal of Statistical Planning and Inference*, 207(??):320–343,
REFERENCES

Zhao:2020:CMA

Zhou:2021:IBE

Zhang:2021:TSB

Zhu:2022:FMA