A Complete Bibliography of Publications in The Journal of Supercomputing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

02 March 2018
Version 2.34

Title word cross-reference

?-CoarseKonstantopoulos:2009:EPT.

1.0 [203]. 128 [1809]. 14/300 [142]. 1985
automatically [988].

banking [1002].

backs [1626].

backs [1002].

Detecting [2042]. detect [2187]. Detection

detector [1500, 2501].

detectors

determination [2367].

deterministic

developments [1652].

development [328, 402, 658, 943, 1143, 1322, 1999, 2109, 2610].

developments [1652].

Device [87, 751, 1254, 1428, 1524, 1657, 1999, 2121, 2295, 2357]. device-level

devices [968, 1000, 1097, 1529, 2059, 2217, 2274, 2322, 2368, 2373, 2451, 2557].

DFAs [1484]. DGMonitor [623]. DHTs

diagnosability [816, 1244, 1518].

diagnosis [1224, 1244, 1519].

Diagnostic [77].

diagonal [1909, 2315, 2492].

diagonalization [2485]. Diagonals [541].

Diagrammatic [654]. Diagrams [720].

Dialects [75].

diamond [1053].

diarization [2194].

dictation [2194].

dictionary [2006].

difference [1223, 1273, 1571].

differencing [1565, 2371].

different [197, 622, 1120, 1348, 1739, 1839, 1967, 2283, 2451, 2512].

differential

[47, 1037, 1252, 1361, 1638, 1840, 1858, 2348].

Diffie [1639].

Diffusion

[322, 433, 526, 927, 1561, 1716, 2200, 2347].

Digit [6, 314, 414, 2013, 2252].

digit-multiplier [2013].

Digit-Reversal [414].

Digital

[562, 1247, 1403, 1790, 1812, 1892]. digraph [1094].

digraph-based [1094].

digraphs [1653].

dimension [2438].

Dimensional

Dimensioning [760]. dimensions [1168].

Direction [1052, 1536]. Direction-aware

directional [1462, 1475]. Directions [7, 2181]. directive [899]. directive-based

directivity [1932]. directories [758, 2141].

Discover [2248]. disclosure [2483].

Discovering [635, 1858, 2251]. Discovery

DisCoP2P [1672].

Discover [480, 2402]. Disjoint [619, 976, 1005, 1107, 1633, 1751, 2023, 2292, 2378].

Disk

[403, 660, 661, 832, 1314, 1329, 1558, 1770].

Disk-Resident [403, 1770]. Disks [675, 957].

Dispatching [1114, 1225, 1351]. dispersion [2348, 2392]. dispersion-aware [2392].

displacement [2326].

display [905, 1610].

dissociation

[982, 1146, 1472, 1526, 2047, 2593].

Distance

[461, 474, 537, 708, 951, 1017, 1222, 1308, 1619, 1742, 1785].

Distance- [537].

distance-hereditary [708].

distant [1718].

distinguishing [1120].

distortion [2365].

Distributed

null
Face [174], F-MPJ [174], fabrication [178], Face [1054, 1989, 2391], facet [1585], facial [2452], facial-gaze [2452], facilitates [1410], facilitating [926], Facility [384, 425, 1031, 1090, 1838], Faceting [2179], Factor [269, 2048, 2215, 2250, 2389], factorial [693], Factoring [10, 11, 795], Factorisation [369], Factorization [63, 130, 133, 293, 421, 441, 459, 688, 2307], Factorized [469], Factors [443, 562, 2191, 2604], fading [1395, 2236], failure [906, 1102, 1344, 1632, 1872], failure-prone [1344, 1872], failures [897, 1685], fair [779, 979], fake [2434], Fall [1651], False [1168], Family [4, 580, 958, 977, 1101, 2095, 2158, 2202, 2287], fan [1307], fan-out [1307], Farewell [217], farm [2394], Fast [5, 200, 212, 302, 460, 470, 482, 545, 614, 661, 669, 693, 887, 896, 980, 1012, 1089, 1123, 1141, 1224, 1262, 1290, 1319, 1369, 1455, 1482, 1490, 1515, 1594, 1650, 1856, 1901, 1971, 2010, 2054, 2055, 2094, 2107, 2317, 2361, 2367, 2537, 2548, 2549, 2583], Fast-path [896], fat [739, 1948, 2004, 2281], fat-tree [2004], fat-tree-based [739], fat-trees [1948, 2281], Fault [177, 287, 304, 305, 307, 308, 310, 366, 378, 478, 498, 619, 680, 753, 784, 827, 856, 883, 890, 900, 911, 950, 955, 977, 1005, 1006, 1011, 1136, 1236, 1239, 1248, 1292, 1465, 1520, 1535, 1601, 1638, 1702, 1736, 1784, 1947, 2033, 2039, 2065, 2088, 2127, 2133, 2288, 2320, 2393, 2435, 2526, 2546], Fault-aware [827], fault-free [883], fault-resilient [2393], fault-resistant [1638], fault-tolerance [784, 2065, 2127], Fault-Tolerant [177, 304, 305, 308, 366, 378, 478, 498, 619, 680, 753, 784, 827, 856, 883, 890, 900, 911, 950, 955, 977, 1005, 1006, 1011, 1136, 1239, 1248, 1292, 1465, 1520, 1535, 1601, 1638, 1702, 1736, 1784, 1947, 2033, 2039, 2065, 2088, 2127, 2133, 2288, 2320, 2393, 2435, 2526, 2546], Faults [680, 705, 883, 890, 892, 2288], faulty [745, 1293, 1626], favor [2392], FDDI [239], FDDI-M [239], FDMA [1557], FDTD [1375, 1831], FEAD [1885], Feasibility [2233], feature [1651, 1834, 2535], features [1161, 2272, 2391], federated [671, 1208, 2462], Feedback [561, 750, 1998, 2257, 2434], FEM [1375], femtocells [2045], Fermat [179], Fernbach [94], FFT [91, 107, 178, 248, 299, 651, 1384, 2132, 2344].
fusion-based [2597, 2605]. Future
[110, 356, 389, 965, 1303, 1398, 1468, 1969,
2100, 2101, 2117, 2181]. Fuzzy [461, 750, 1049,
1157, 1243, 1447, 1587, 1589, 1621, 1628, 1678,
1943, 2040, 2371, 2463, 2464, 2484, 2531, 2553].
garbage-output [2464]. fuzzy-DVS [750].
FuzzyCLIPS [1157].

G [1639, 2475]. G-IK-SVD [2475]. Gabor
[2391]. GAER [1789]. gain [2045]. Gait
[1448, 1449]. Game
[979, 1003, 1367, 1389, 1992, 2044, 2047–2049,
2051, 2052, 2122, 2129, 2434, 2435, 2519, 2539].
Game-theoretic [979, 2048, 2049]. gamma
[1751, 2095]. gang [1137, 1609]. gap [1456].

Garbage
[61, 416, 1144, 1894, 2160, 2161, 2180].
garbage-output [2180]. gas [2341, 2342].
Gate [188]. gathering [783, 1871]. gating
[2013]. Gauss [325, 1666]. Gaussian
[97, 288, 1049, 2097, 2292]. gaze [2452]. Gbps

GEN_BLOCK [419]. gene
[1034, 1037, 1603, 1904]. Gene/Q [1904].

General [47, 278, 626, 698, 797, 819, 820, 895,
1234, 1260, 2220, 2574]. general-purpose
[895]. Generalized
[354, 433, 470, 674, 695, 898, 1224]. generated
[817, 1115]. generating [1703]. Generation
[56, 327, 475, 903, 965, 1082, 1469, 1608, 2074,
2111]. generations [2100]. generator [899].

Generators [16, 634]. generic
[729, 1629, 1825, 1938]. Genes [480].

Genetic [161, 231, 655, 685, 1070, 1214, 1264,
1365, 1486, 1505, 1789, 1860, 1943, 1953, 1980,
2278, 2323, 2340, 2384, 2500, 2510, 2535].
genome [1907]. genomic [1446]. geo [2099].
geo-distributed [2099]. Geocasting
[2369, 2370]. Geocasting-based
[2369, 2370]. geographic [1987].
geographically [2503]. Geometry
[62, 1511]. gesture [1460, 2441]. Gigabit
[483]. Gillespie [2346]. GIS [2514]. given
[1484]. Global [144, 202, 224, 1328, 1594,
1696, 1706, 1764, 2054, 2139, 2439, 2564].

Globally [52]. Glossary [31]. GMDH
[1710, 2257]. GMRES [1163, 1737]. goal
[1218, 1516]. goal-oriented [1516]. Google
[1735, 2357]. Gossiping [678]. GPGPU
[1075, 1355, 1374, 1478, 1479, 1840, 2135, 2214].

GPGPUs [2066]. GPU
[665, 1035, 1088, 1093, 1125, 1156, 1227, 1267,
1273, 1320, 1343, 1345, 1362, 1369, 1375, 1497,
1521, 1532, 1610, 1620, 1659, 1683, 1721, 1722,
1724, 1725, 1731, 1737, 1744, 1746, 1797, 1821,
1831, 1833, 1836, 1845, 1849–1851, 1854, 1909,
1914, 1922, 1923, 1932, 1951, 1961, 2009, 2040,
2055, 2057, 2058, 2074, 2087, 2108, 2149, 2171,
2211, 2213, 2252, 2257, 2278, 2284, 2297, 2305,
2314, 2324, 2326, 2328, 2329, 2342, 2343, 2345,
2357, 2401, 2402, 2470, 2476, 2485, 2492, 2510,
2524, 2527, 2529, 2533, 2537, 2578, 2588].

GPU-accelerated
[1343, 1724, 2087, 2342, 2357]. GPU-assisted
[1610]. GPU-based [1088, 1722, 1951, 2040,
2057, 2108, 2278, 2329, 2510, 2529, 2588].

GPU-enabled [1721, 2252, 2527].
GPU-likely [1744]. GPU-optimized
[2476]. GPU-sorting [2297]. GPuEGO
[1845]. GPUs
[895, 1078, 1082, 1163, 1213, 1223, 1289, 1373,
1377, 1508, 1598, 1666, 1740, 1763, 1837, 1853,
2030, 2073, 2089, 2265, 2406, 2475, 2571].

Gradient [289, 1223, 1377, 1855]. Grain
[41, 1216]. Grained
[249, 495, 682, 870, 878, 1801, 1829].

Granularity [21, 52, 1471, 2396, 2565].

Granularity-based [2565]. Graph
[247, 322, 434, 549, 616, 694, 1249, 1389, 1703,
1801, 1961, 2001, 2488, 2601]. graph-based
[1249]. Graph-Theoretic [434]. graphic
[2474]. Graphical [340]. Graphics
[1035, 1063, 1091, 1428, 1530, 1534, 1615, 1635,
1665, 2010, 2223, 2225, 2383].

Graphs
[102, 131, 291, 582, 708, 710, 890, 922, 948, 977,
1014, 1016, 1057, 1140, 1221, 1237, 1473, 2355,
2381, 2386, 2494, 2532]. Gravitational

mean-curvature [1047]. Means [447, 487, 707, 953, 1673, 1770, 1876, 2040, 2333].

Mesh-Adaptive [2554]. mesh-based [1936, 2027, 2039, 2209, 2276].

networks
[739, 816, 909, 976, 1057, 1129, 1133, 1134, 1420, 2364, 2432]. networks-on-chip
[981, 1129, 2016, 2054, 2060, 2139, 2209].
Neural [113, 433, 720, 1130, 1227, 1286, 1345, 2007, 2032, 2148, 2252, 2257, 2465].
neuro [1587]. neuro-fuzzy [1587]. neutral [1415].
Neutron [129, 552]. Neville [1067].
Newton [1640]. Newtonian [871]. next
[1469, 2440, 2457, 2458]. NFC [1806].
nilpotent [1101]. NLI [1111]. NML
[2160, 2161]. NN [1315]. NNMF [1835].
NNMFPACK [1978]. no [85, 2051].
n-no-reference [2051]. NOC
[1313, 1432, 1487, 1601, 1626, 1822, 2025, 2092, 2396, 2416, 2435, 2471, 2486, 2546].
NoC-assisted [1313]. NOC-based
[1432, 2416, 2471, 2486]. NoCs
[1094, 2029, 2288]. Node
[387, 428, 661, 775, 909, 1107, 1234, 1416, 1547, 1576, 1685, 1943, 2042, 2292, 2294, 2448].
node-disjoint [1107]. node-independent
[2292]. Nodes [155, 2557]. module [2476].
noise [1051, 1475, 1839].
noise-compensated [1051]. noises [2463].
nosy [1051]. Non [921, 987, 1042, 1238, 1270, 1794, 1921, 2131, 2218, 2253, 2289, 2563, 2599].
non-blocking [1921]. non-conforming
[1794]. non-continuous [921].
non-exclusive [1238]. non-increasing
[2131]. Non-intrusive [2599]. non-invasive
[1042]. non-makespan [1270].
non-preemptive [2289, 2563]. non-state
[987]. non-stationary [2253]. non-uniform
[2218]. nondedicated [1086]. Nonflat
[1614]. noninterruptible [851]. Nonlinear
[433, 529, 584, 874, 1061, 1092, 1145, 1242, 1640, 1908, 2169]. nonparametric [867].
nonsupervised [717]. Nonsymmetric [289].

Parallelism

Parallelism-aware [1046]. parallelisms [1025]. Parallelization
[357, 399, 865, 1076, 1291]. parameters [1365, 1636]. PARAMICS [196]. parenthesizing [1216]. Pareto [1858].

Parity [1896, 2538]. parity-preserving [2538]. Part [151, 1563, 1803]. Partial
[47, 298, 742, 1121, 1235, 1346, 2348]. Particle
[150, 213, 521, 626, 1049, 1534, 1677, 1678, 1719, 1973, 2410, 2535, 2561, 2577].

Particle-based [1973]. Particle-in-Cell

Passivation [1483]. Passive
[765, 1402, 2483]. password
[1568, 1817, 1864]. password-based
[1817, 1864]. past [1303, 1969]. Path

[295, 856, 1119, 1132, 1384, 1723, 2147, 2251, 2283, 2420]. payload [2374]. payment
[2198]. PC
[250, 363, 665, 793, 899, 1171, 1916].

PC-Based [250]. PCI [1659]. PDE
[107, 154]. Peacock [1889]. peak [2609].

pedagogy [1128]. Peer
[668, 732, 803, 858, 914, 944, 945, 1208, 1306, 1420, 1436, 1451, 1488, 1502, 1559, 2163].

Peer-exchange [858]. Peer-to-Peer
[668, 732, 803, 858, 914, 944, 945, 1208, 1306, 1420, 1436, 1451, 1502, 2163].

peer-to-peer-based [1488]. peerGroup
[943]. pen [834]. pen-based [834]. Penalty
[282]. 24 [22]. 300 [142]. 416 [80]. 860
[125]. AVC [1380, 1873, 2311, 2317]. C

CPU [752]. decryption [712]. digital
[1786]. Dissaggregation [648]. EPC [2445].

Fairness [440]. GPU [1544, 1919].

GPU-based [1543]. jobs [1735]. Machine
[496]. MARTE [2064]. mood [1456]. MPI
post-fabrication
[537, plan [2606], planar [1449], planning [1148, 1160, 1625, 2442], plants [2343, 2610]. plate [1461]. Platform
[725, 727, 919, 1118, 1156, 1180, 1197, 1211, 1322, 1357, 1489, 1502, 1521, 1670, 1815, 1852, 1889, 1901, 1905, 2071, 2110, 2116, 2117, 2123, 2125, 2211, 2229, 2295, 2325, 2453, 2604]. Platforms
[219, 234, 261, 590, 623, 764, 1083, 1103, 1125, 1289, 1490, 1729, 1743, 1748, 1824, 1917, 1923, 2039, 2079, 2093, 2136, 2153, 2261, 2319, 2330]. PLC [2201]. PMC [1244]. Point
[682, 882, 887, 1167, 1207, 1643, 1793, 2493]. policy-based [1207], pollutant [1506]. Pollution [531], polyadic [717], Polygon
[392], polyhedral [1237], Polynomial
[52, 59, 575, 973, 2134]. Polynomial-Time
[575]. polynomials [2314]. Polypeptides
[126]. Pool [881, 999]. Pool-based [999]. Pooling [2133], popularity [669, 925]. popularity-driven [925], porous [1032]. Port
[379, 902, 1271]. Portable [308, 1000]. Porting
[144], positioning [1215, 1986]. possession [2541], post [1178, 2272]. post-fabrication [1178]. Postal [357]. Potential
[1652, 2499]. Power
[1195, 1762, 1779, 2013, 2026, 2380]. power-performance [1828]. power-saving
[1245, 1976]. PowerPC [1349, 1350]. PPM
[779, 802, 829]. PPMQSsort [2159]. Practical
[713, 1283, 1457, 1867, 2162, 2365, 2499]. practice [992]. PRAMs [296], Pre
[700, 1389, 1679, 2253, 2327, 2461]. pre-analysis [2327], pre-compiler [700]. Pre-execution [1679], pre-processing
[2253, 2461], pre-scheduling [1389]. Preallocation [158], Precise [391]. Precision
[188, 1321, 1409]. Preconditioned
[1223, 1343]. Preconditioner
[1273], Preconditioners
[444, 1061]. Preconditioning
[252, 276, 1920, 2458]. Prediction
[161, 274, 332, 393, 523, 622, 707, 740, 827, 874, 1034, 1071, 1108, 1232, 1288, 1374, 1634, 1870, 1898, 1903, 2036, 2050, 2065, 2084, 2091, 2162, 2215, 2230, 2231, 2301, 2329, 2402, 2530]. predictions [817]. predictive
[1893, 2140, 2501]. Predictor
[553, 2190], predictors [987, 2063]. preemption [1624], preemptive
[2289, 2563]. Preface
[918, 1023, 1182, 1205, 1372, 1753, 2242]. Prefetch [677, 1329]. Prefetching
[503, 818, 846, 1079, 1679, 1706, 2026, 2179]. Prefix
[78, 280, 291, 460, 551, 572, 778, 1945]. preliminary
[1504], preprocessing [2463]. Presence
[414, 647], present
[1303, 1809]. PRESENT-128
[1809]. PRESENT-80
[1809], preserve [1674], preserving
[987, 1567, 1571, 2250, 2389, 2538]. pressure
[1938], prevent [1869], preventing
[705, 2193, 2443]. prevention
[1583, 2454]. Preventive
[608], Price
[276], Price/Performance
[276]. Pricing
[482, 848, 1320, 1534, 2490, 2539]. Primal
[1396]. prime
[2354]. Principal
[2266, 2450]. principle
[792], priorities
[1653]. prioritization
[1705]. Prioritizing
[2531]. priority
[120, 723, 1162, 1558, 1940, 2064]. PRISM
[608], Privacy
[970, 1002, 1207, 1269, 1347, 1412, 1413, 1567, 1571, 1579, 1964, 2118, 2126, 2250, 2389, 2437].
Privacy-aware [1347, 1964].
Procesors [6, 53, 474, 593, 736, 767, 811, 1030, 1039, 1091, 1150, 1178, 1180, 1240, 1245, 1258, 1293, 1349, 1350, 1540, 1635, 1695, 1699, 1704, 1706, 1867, 1910, 1926, 2077, 2084, 2190, 2312, 2429, 2574].
Programs [33–35, 153, 169, 231, 262, 324, 327, 332, 400, 464, 516, 535, 627, 792, 961, 1204, 1331, 1346, 1829, 1843, 1877, 2033, 2182, 2501].
progress [1288, 1635]. progressive [1064].
project [762, 805, 2271, 2357, 2598].
projecting [1625]. projection [2212].
provisioning [585, 1236, 1298, 1344, 1451, 1538, 1890, 1946, 1956, 2000, 2103, 2154, 2356, 2444, 2489, 2505].
proximity-aware [1488]. proxy [1470, 1675, 1715, 1869]. PS [1899, 2028].
Recommendation

Reconfigurable

Reconfiguration

Reconstruct

Reconstruction

record

recording

recordings

records

Recovering

Recurrence

Recurrences

Recursive

RED

redesign

Redistribution

reduce

Reducing

Reduction

Redundancy

Reference

References

Refrainment

Region

Region-based

Regions

Registers

registration

regression

Regular

Reinforcement

reinforcement-learning

related

Reliability

Reliable

Relocation

Remap

Rerouting

Rerouting

Replicating

Replicating

Replicating

Reputation

Reputation-based

Reputation-oriented

Request

required

Requirements

requirements-aware

rerouting

Research
Shared-Memory [115, 144, 146, 173, 230, 283, 476, 1076].
sharing [817, 1000, 1117, 1146, 1203, 1211, 1269, 1306, 1642, 1745, 1861, 1964, 1997, 2082, 2113, 2141, 2163, 2166, 2171, 2176, 2512].
sharpness [2476].
Shear-Warp [421].
Shibboleth [974].
Shielding [438].
Shift [457].
Shift-Variant [457].
shifters [2160, 2161].
shifted [1581].
shifts [1299].
ship [2459].
shop [1616].
short [995, 2583].
Shortest [247, 725, 884, 2089, 2442].
shortly [1766].
shot [1381].
SI [897, 1316].
Sibling [2155].
Side [35].
sided [1879].
Sidney [94].
Sierpinski [1772].
Sieve [13].
sieving [1991].
sigma [1475].
SigMR [2066].
signal [1892, 2135, 2312].
signals [1051, 1481].
signature [1470, 1814, 2066, 2430].
signatures [995].
signcryption [1869].
Signed [461, 2228].
Signed-Distance [461].
SIIS [2446].
silent [2520].
silicon [2060, 2077, 2100].
silicon-photonic [2100].
silver [972].
SIMD [149, 318, 1431, 1711, 1744, 2361].
SMD-parallel [1431].
Similar [647, 952, 2476].
similarity [1447, 1497, 1774, 1832, 1881, 2164, 2325].
Simple [629, 1548, 1894, 2142, 2495, 2518].
Simplex [107, 891].
simplification [2302].
Simplified [1206].
Simulated [404, 477, 2197, 2409, 2569].
Simulating [98, 544, 907, 1482, 1958, 2385].
Simulation-based [309].
Simulations [107, 213, 296, 345, 406, 532, 648, 806, 1072, 1387, 1724, 1933, 2345, 2417, 2429].
Simulator [602, 1310, 1722].
simulators [2287].
simultaneous [796, 1542, 2311].
Sina [2049].
Single [395, 404, 524, 560, 579, 582, 710, 1242, 1480, 1667, 1711, 1909, 2018].
Single-Chip [560].
single-core [1667].
single-GPU [1909].
Single-Hop [579].
Single-Row [404, 582, 710].
Single-tape [1480].
single/multi [1711, 2018].
single/multi-core [1711, 2018].
Singularity [506].
sink [2374, 2375].
sinks [847, 2460].
sites [1106, 2336].
situation [2467].
Size [280, 460, 492, 509, 609, 738, 2137, 2318].
sized [693, 2494].
Sizes [443, 1473].
SkeiCL [1725].
Skeletal [1509].
skeleton [2927].
Skeletons [248].
Skewed [400].
Skewing [570].
skyline [2271, 2548, 2549].
SLA [1323, 1410, 1793, 1976, 2185, 2436, 2480].
SLA-aware [2480].
SLA-awareness [1793].
SLA-based [1410, 2436].
slave [814, 1510].
sleep [1939].
Slice [1981].
Slice-based [1981].
slicing [1757].
Slot [1728].
Slotnick [1].
slots [1943].
slotted [1791].
small [869, 1125, 1384, 1649, 1712, 2134, 2244, 2383].
small-footprint [1125].
small-scale [1384].
small-world [1712].
Smart [747, 966, 1333, 1401, 1529, 1553, 1562, 1567, 1577, 1790, 1874, 1895, 1898, 1987, 1994, 2034, 2113, 2124, 2197, 2201, 2356, 2359, 2361, 2366, 2367, 2369, 2370].
SmartMic [1880].
smartphone [1880].
smartphone-based [1880].
SmartRank [2034].
smoking [1197].
Smooth [808, 871].
smoother [1514].
SMP [510, 577, 637, 1065, 1029].
SMP-NUMA [1065].
SMPs [614].
snapshot [757, 1872].
SNMP [606].
SNSP [1792].
SnW [1759].
SoC [496].
SoC-Architecture [496].
social-balanced [2228].
social-networks [1550].
socially [1992].
sockets [716].
SoCs [643].
Soft [2184, 2435, 2493, 2534].
soft-hard [2435].
tolerate [892, 2288]. tolerating [705, 1885].

Tool [294, 340, 387, 388, 428, 429, 623, 1729, 1820, 1830, 943, 946, 1058, 1074, 1498, 2287].

town [972]. TRACE [138, 142, 2193].

trace-based [2193]. traceroute [1318].

transactional [1040, 1338, 1407, 1687, 1693, 2085, 2094, 2277, 2430]. Transcoding [642, 939]. Transcoding-Enabled [642].

Transforming [507]. Transforms [81, 83, 249, 341, 699]. Transient [440, 2227].

transportation [2275, 2606]. Trasgo [1068]. traveling [2278].

Trends [170, 172, 930, 1260]. tri [1909].

tri-diagonal [1909]. triangle [1772].

Triangular [282]. triangulation [2078].

Tribology [532]. Tridiagonal [444, 558, 2401]. Tridimensional [1078].

Trust-based [1759].

trusted [985, 986, 988, 1815]. Trustworthy [748, 833].

TSM [1879]. TSP [2256]. tubular [2377].

Twenty-Second [179]. Two [197, 218, 506, 769, 1121, 1291, 1386, 1575, 1703, 1723, 1869, 1879, 1918, 2041, 2080, 2165, 2218, 2378, 2425, 2586].

Two- [218].
Two-dimensional [769, 1121, 1291, 1723].
two-hop [2165]. Two-level [1386, 2218].
Two-Point [506]. two-sided [1879].
Two-stage [1918, 2425]. two-tier [2586].
Twofish [1095]. Tycho [761]. Type
[584, 603, 1223, 1783]. types [934, 2226].
U [812, 969, 1994]. u-BabSang [969].
U-multimedia [812]. UAV [1871].
UAV-assisted [1871]. UAVs [1574].
uBench [1511]. Ubiquitous
[585, 809, 972, 996, 998, 1254, 1392, 1394, 1397, 1401, 1440, 1456, 2598]. ubiquity [1524].
UHD [2588]. ULFM [2304]. ULSI [87].
ultra [2361, 2368, 2572, 2590]. ultra-HD
[2361]. ultra-lightweight [2368, 2572, 2590].
Ultrafast [2395]. Ultrahigh [122].
Ultrahigh-performance [122].
Ultralightweight [175, 2483]. ultrascale
[2259]. UML [2064]. UML/MARTE
[2064]. unbalanced [1321, 1383]. uncertain
[868, 2273, 2540]. underlying [2175].
Understanding [1212, 1925]. unfairness
[2282]. Unibus [763]. unicast [1265, 1660].
Unidirectional [507]. Unified
[1232, 1375, 1428, 1503, 1645, 1884, 2562].
uniform [16, 1603, 1930, 2218].
unification [2218]. Unimodular [192].
Unit [571, 1428, 1534, 2019, 2223, 2225, 2367].
unit-accelerated [2223]. Units [73, 690, 1035, 1530, 1615, 1665, 1717, 2010, 2383, 2474].
Universal [496, 1814]. university [1718].
unknown [1962]. Unmixing [1837].
Unmixing-based [1837]. unreliable [1632].
Unroll [443]. unsafety [1947]. unstable
Unsupervised [953, 2535]. unsymmetrical
[2404]. up-conversion [2456, 2588]. UPC
[1382, 1855]. update
[838, 1387, 1406, 1640, 2373]. updates
[847, 1288]. UpdateSearch [320].
Updating [330, 1815]. uplink [1557].
UPnP [1000]. UPnP-based [1000]. upon
[606, 1565]. UPS [2128]. upward [2004].
urban [1478, 1481, 2120]. usage [2512]. Use
[73, 77, 261, 712, 1194, 1718, 1723, 1988, 2233, 2413]. used [2095, 2218]. User
[1942, 2295]. User-defined [383, 424].
user-friendly [1657]. User-Level [175, 716].
use-selectable [1360]. users
[1123, 1491, 1992, 2441]. Using
using
[740, 1049, 1499, 2036, 2065, 2277, 2544, 2571].
UTFLA [2218]. Utility
[271, 1439, 1700, 1942, 2093].
utility-oriented [2093]. Utilization
[511, 606, 629, 769, 814, 826, 1151, 1181, 1189, 1543, 1669, 1744, 1851, 2038, 2603]. utilizing
[718, 1609]. UWB [779, 802, 829].
V [85]. V-Pascal [85]. v1.3 [2067].
Validation [467, 602, 771, 1034, 1323].
valuation [2539]. valuation-based [2539].
Valued [575]. VANET [1986, 2120, 2455]. VANETs [1631].
variability [2412]. Variable
[188, 575, 996, 1409]. Variable-Precision
[188, 1409]. variable-rate [996]. Variables
[97, 371]. variance [1320]. Variant [457].
variations [1473]. Various
[536, 605, 2330]. varying [809, 2185].
vectorization [2315]. Vector
[75, 76, 79, 113, 118, 119, 151, 230, 284, 326, 886, 984, 951, 1065, 1279, 1357, 1420, 1873, 2018, 2091, 2189, 2499, 2569].
VectorTrust [1420]. vehicle
[884, 1461, 1875, 1993, 2124, 2461, 2593].
vehicular
[1309, 1631, 1713, 1955, 2047, 2120, 2157, 2580, 2591, 2593, 2605].
Verifiable
[1755, 2541]. Verification
[351, 889, 1295, 1351, 1414, 1487, 1588, 1628, 1792, 1944, 2031].
verifier [1814]. verify
[1158]. verifying
[1124]. versatile [958]. version [11, 1482].
versus [1164, 1289, 1903, 2320, 2347]. vertex
[976, 1533, 1653]. vertex-disjoint [976].
Vertical [293, 1779, 2096]. very
[48, 2310, 2496]. VF [145]. Via
[52, 481, 550, 1001, 1057, 1090, 1178, 1207, 1801, 1802, 1838, 2006, 2174, 2391, 2402, 2424, 2432, 2460, 2578, 2604, 2608].
vibration
[1831]. Video
view
[757, 1338, 1356]. view-oriented
[1338]. ViMediaNet
[2482]. vindictive
[1788]. Virtex
[2607]. Virtex-6
[2607]. Virtualization
[1659, 1784, 1801, 2284, 2376, 2380].
virtualized
[900, 1113, 1446, 1890, 1958, 2112, 2581].
Visibility [590]. Visible
[1578, 1819]. Vision
[245, 1198, 1460]. Vision-based
[1460]. visual
[737, 1050, 2267].
Visualisation
[273]. visualization
[1098, 1929, 2298, 2326]. visualizations
[1243]. visualize
[1441, 1458]. visually
[2357]. VLIW
[141, 142, 1240]. VLSI
[1764]. VM
[2102, 2353, 2392, 2515, 2516, 2519].
VM-to-hypervisor
[2519]. VMM
[1583].
VMM-based
[1583]. VMs
[2131]. VoD
[513]. VoIP
[1417]. volatility
[1345, 2162].
Voltage
[752, 767, 1915, 2077, 2227, 2299].
voltage-frequency
[2299]. Voltages
[638]. Volume
[292, 318, 344, 421, 534, 721, 905, 1627].
volumes
[2057]. Volunteer
[337, 949, 1488, 2170].
voicing
[1814]. VPN
[681]. VR
[472]. VR-Based
[472]. vs
[275]. vulnerabilities
[2595]. vulnerability
[1694].

W2T [1424]. Wait
[1759]. waiting
[1114]. Walker
[1668]. walks
[948]. WAN
[274].
WAN-Based
[274]. warehouse
[2528].
warehouses
[1677]. Warp
[421, 1744].
warping
[2306]. WASMII
[185]. waste
[1904]. Water
[1066, 1506, 2260, 2300, 2341, 2439].
Water-level
[2260]. Watermarking
[610, 1425, 1578, 1819]. Wave
[374, 885].
Wavefront
[269]. Wavelength
[651, 1281, 1786]. wavelength-time
[1786].
Wavelet
[249, 341, 610, 1300, 1373, 1490, 1856, 2005, 2055].
wavelet-based
[2005]. way
[2066]. WDM
[670]. weakly
[950, 1668]. weather
[1850]. Web
WebCL
[1990]. WebCom
[337]. webinos
REFERENCES

[1524]. WebRTC [2254]. Webs [223].
WECPAR [1897]. Weibo [2049]. weight [983, 1426, 1605, 1902, 2191].

X [16, 22, 47, 79, 80, 104, 118, 151, 1151].

Y-MP [112, 122, 128]. YAARC [794].
YARN [2480]. yield [87].

References

Anonymous:1987:DDS

Anonymous:1987:E

REFERENCES

Anonymous:1987:CA

Siegel:1987:IMC

Bailey:1987:HPF

Irwin:1987:DPP

Martin:1987:SPE

Bell:1987:DOL

Osburn:1987:CAS
REFERENCES

Banerjee:1988:IFT

Callahan:1988:CPD

Chen:1988:CPP

Kale:1988:PEP

Li:1988:PPI

Anonymous:1988:CAa

Anonymous:1988:Ec

Anonymous:1988:PAa
REFERENCES

Mou:1988:AMD

Solworth:1988:PLC

Wu:1988:PAH

Nicolau:1988:FGC

Anonymous:1988:CAe

Polychronopoulos:1988:TAS

Anonymous:1988:PAAb
Bieterman:1988:MGP

Armstrong:1988:MAA

Won:1988:BSH

Anonymous:1988:CAf

Anonymous:1989:E

Allison:1989:GIS

Oruc:1989:CNC

Won:1989:HHS
[54] Youngju Won and Sartaj Sahni. Hypercube-to-host sorting. The
REFERENCES

Anon:1989:CAa

Burke:1989:AGN

Buell:1989:MIA

Fatoohi:1989:MNS

Wong:1989:APP

Anonymous:1989:CAb

Appel:1989:VGC

[69] Daniel V. Pryor and Patrick J. Burns. Vectorized Monte Carlo
REFERENCES

[76] Yoshikazu Tanaka, Kyouko Iwasawa, Yukio Umetani, and Shizuo Gotou. Compiling techniques for first-order linear recurrences on a vector com-
REFERENCES

[83] Weicheng Shen and A. Yavuz Oruç. Systolic arrays for multidimensional

REFERENCES

REFERENCES

[112] Qasim Sheikh, Phuong Vu, Chao Yang, and Michael Merchant. Implementation of the level 2 and 3 BLAS on
REFERENCES

Ahalt:1992:IVQ

Chakravarty:1992:PSH

Allison:1992:HDH

Anonymous:1992:CAa

Dorozheevets:1992:EMM

Hainline:1992:VPE

REFERENCES

Anonymous:1992:CAC

Frank:1992:LQH

Azmy:1992:PPM

Kratzer:1992:SQF

Chung:1992:MFE

Gokhale:1992:ICI

Luecke:1992:PPC

REFERENCES

Anonymous. 1992: CAd

Draper: 1993: SII

Fisher: 1993: GEI

Rau: 1993: ILPa

Lowney: 1993: MTS

Beck: 1993: CMA

Dehnert: 1993: CC

Bec: 1993: CMA

Dehnert: 1993: CC

Anonymous: 1992: CAd

Lowney: 1993: MTS

Beck: 1993: CMA

Dehnert: 1993: CC

Anonymous:1993:CAb

Anonymous:1993:E

Knobe:1993:ADA

Anonymous:1993:CAc

Thompson:1993:VPE

Anonymous:1993:CAc

Lyon:1994:SPT

Blom:1994:VMO

[161] Bruce A. Shapiro and Joseph Navetta. A massively parallel genetic algorithm

Robbins:1994:RBA

Lee:1994:EEP

Boals:1994:IHA

Anonymous:1994:CAb

Thakur:1995:CEC

Mavriplis:1995:IPU

Farkas:1995:SCC

[168] K. Farkas, Z. Vranesic, and M. Stumm. Scalable cache consistency for hier-

[175] Wei Shu. Run-time support for user-level ultralightweight threads on

REFERENCES

Anonymous:1995:CAa

Anonymous:1995:Eb

Prestin:1995:PNS

Ramanujam:1995:BUT

Gao:1995:WCU

Anonymous:1995:CAb

Cypher:1996:QSP

Cameron:1996:PPM

[196] Gordon D. B. Cameron and Gordon I. D. Duncan. PARAMICS — paral-
REFERENCES

Bae:1996:CDM

Burger:1996:PTD

Anonymous:1996:CAA

Ou:1996:FPM

Bader:1996:PAI

Nieplocha:1996:GAN

Seamons:1996:MAP

Anonymous:1996:CAb

Abdelrahman:1996:LHC

Arabnia:1996:PSR

Houlahan:1996:HSA

Shoemaker:1996:NAO

Anonymous:1996:CAc

Arabnia:1996:SIP

Draper:1996:DSM

Fallah-Adl:1997:FAE

Wang:1997:TDE

Ahmad:1997:MOC

Dixon:1997:HPS

REFERENCES

Draper:1997:FE

Averbuch:1997:HST

Jayasimha:1997:EAP

Bhandarkar:1997:CRP

Anonymous:1997:CAb

Hariri:1997:ESI

Chandy:1997:WAD

REFERENCES

REFERENCES

REFERENCES

Anonymous:1997:CAe

Arabnia:1998:E

Armstrong:1998:PIC

Wallace:1998:DSP

Heirich:1998:CAL

Shi:1998:PMA

Gorlatch:1998:PDC

Yang:1998:CGP

Houzet:1998:PBS

Mabin:1998:PAR

Johasz:1998:AMP

Ayed:1998:AHC

Fahringer:1998:ESA

REFERENCES

[Hsu:1998:EMA]

[Darbha:1998:RCT]

[Latifi:1998:SFD]

[Aluru:1998:DIH]

REFERENCES

[267] Pablo Galdamez, Declan Murphy, José M. Bernabéu-Aubán, and Francesc D.

Chung:1999:PDJ

Claver:1999:PWA

Yang:1999:PPA

Coelho:1999:MUB

Clement:1999:E

Brorsson:1999:PTS

REFERENCES

Mark J. Clement: 1999: PSP

John L. Gustafson: 1999: CBS

Yong Luo: 1999: SMV

S. Q. Zheng: 1999: EGP

D. R. Avresky: 1999: PMS

[280] Yen-Chun Lin and Chao-Cheng Shih. A new class of depth-size opti-

[286] Dolors Royo, Antonio González, and Miguel Valero-García. Low communication overhead Jacobi algorithms
REFERENCES

Ouyang:1999:SCE

Yip:1999:EPA

Maheswaran:1999:MMC

Olariu:2000:DIP

Chung:2000:PCM

Kutluca:2000:ISD

Imamura:2000:ECC

Bourgeois:2000:CPC

Schnekenburger:2000:LBC

Li:2000:EDP

Latifi:2000:WBH

References

Benner:2000:PPS

Takahashi:2000:HPR

Shih:2000:SLC

Rauber:2000:DAD

Park:2000:LOL

Wu:2000:ITP

Avresky:2000:EFT

Caldwell:2000:MFT

Somani:2000:ARM

Haines:2000:ALF

Lyubashevskiy:2000:FTF

Alvarez:2000:SBT

Makki:2000:ULR

[310] Kia Makki, John Dell, Niki Pissinou, W. Melody Moh, and Xiaohua Jia. Using logical rings to solve the distributed mutual exclusion problem with fault tolerance is-
Hinton:2000:IFA

Liu:2000:DP

Love:2000:OMO

Fey:2000:DPA

Kim:2000:IIB

Koita:2000:MCS

REFERENCES

REFERENCES

Averbuch:2000:EPT

Ben-Asher:2000:BRA

Melab:2000:PAG

Chang:2000:IMT

Shih:2000:EAG

DiMartino:2000:ITT

Kessler:2000:NNP

Christoph W. Kessler. NestStep: Nested parallelism and virtual shared
REFERENCES

Bandera:2000:CRT

Wismuller:2000:IRT

Girona:2000:SPP

Aversa:2000:RPP

Chapman:2000:PDT

Alme:2001:DDM

REFERENCES

Tsaur:2001:ACR

Morrison:2001:WWB

Hsiao:2001:ENL

Gonzalez:2001:PCW
REFERENCES

REFERENCES

REFERENCES

Antonopoulos:2001:AOS

Al-Ayyoub:2001:PPM

Quintana-Orti:2001:EAB

Chang:2001:CFA

Tsaoussidis:2001:EC

Batsiolas:2001:SIE

Tsaoussidis:2001:WPC

Mitzenmacher:2001:TMC

Langendorfer:2001:EWK

Markovski:2001:SAP

Wang:2001:LCF

REFERENCES

[384] Julian Cummings, Michael Aivazis, Ravi Samtaney, Raul Radovitzky,
REFERENCES

Feng:2001:PSE

Feng:2001:MTD

Mellor-Crummey:2001:HNT

Anonymous:2001:EDP

Becker:2001:PDRb

Chung:2002:APD

Loechner:2002:PDL

Myoup:2002:OBS

Xu:2002:SPE

Plaks:2002:GEF

Bohm:2002:MSA

REFERENCES

REFERENCES

Stone:2002:PSS

Meng:2002:NSO

Wong:2002:MCP

Pascoe:2002:CGM

Rodionov:2002:PSU

REFERENCES

REFERENCES

Feng:2002:PSE

Feng:2002:MTD

Mellor-Crummey:2002:HTT

Mohr:2002:DPP

Anonymous:2002:E
REFERENCES

Gray:2002:CMI

Maldonado:2002:OHO

Datta:2002:EGT

Anonymous:2002:CA

REFERENCES

REFERENCES

Texier:2003:AMS

Dommel:2003:EGC

Rafiq:2003:CAD

Lin:2003:F

REFERENCES

Onbascioglu:2003:ODD

Jiang:2003:FTB

Anonymous:2003:GEI

Braun:2003:ICD

Thoennes:2003:EPD

[487] Maya Gokhale, Jan Frigo, Kevin McCabe, James Theiler, Christophe Wolin-

Bednara:2003:ASF

Baumgarte:2003:PXS

Kretzschmar:2003:LPE

Plaks:2003:ECSb

Janson:2003:ECA

[492] Stefan Janson, Daniel Merkle, Martin Middendorf, Hosssam Elgindy, and

Anon:2003:E

Izadi:2004:AAT

Er-El:2004:CMF

Peigin:2004:PLS

Bhalla:2004:ABI

Katsinis:2004:SIN

[502] Constantine Katsinis and Bahram Nabat. A scalable interconnection network architecture for petaflops computing. The Journal of Super-
Zhang:2004:EHG

Cheung:2004:LBA

Sinnen:2004:TSA

Vigo-aguiar:2004:PBV

Yi:2004:TCL

REFERENCES

135

Lee:2004:ESA

Dekel:2004:IIT

Li:2004:ECC

Chan:2004:RTS

Anonymous:2004:CAa

Anonymous:2004:IA

REFERENCES

138

Ralphs:2004:LHI

Dixon:2004:UDC

Yang:2004:SIH

Li:2004:HPT

Bourgeade:2004:DLB

Zhuang:2004:GBL

Yi chang Zhuang, Tyng Yue Liang,

REFERENCES

REFERENCES

Peigin:2004:EPA

Wang:2004:MBM

Nasiri:2004:NAT

Datta:2004:MAP

Zeyao:2004:PFS

REFERENCES

Xu:2004:PHW

Maglogiannis:2004:CSF

tabirca:2004:FGD

Anonymous:2004:CAc

Plaks:2004:FEC

Ghiasi:2004:CRO

Smith:2004:TRB

Rauwerda:2004:MWC

Kaouane:2004:MIR

Anonymous:2004:CAd

Zhao:2005:SUL

Kamangar:2005:MAC

Haga:2005:DFU

Anonymous:2005:CAa

Wu:2005:DFM

Chang:2005:PTD

Weng-Long Chang, Chih-Ping Chu, and Jia-Hwa Wu. A polynomial-time dependence test for determining integer-valued solutions in multi-dimensional arrays under variable bounds. The Journal of Su-
REFERENCES

Liao:2005:PEP

Basharahil:2005:DSA

Zarandi:2005:HBS

Karimou:2005:AIP

Sklavos:2005:ISH

Sinop:2005:PPH

REFERENCES

Al-Ayyoub:2005:DUB

Alonso:2005:EPA

Anonymous:2005:CAe

Mun:2005:GE

Bang:2005:BAM

Yang:2005:EPV

Mun:2005:PAB

REFERENCES

REFERENCES

Garz:2005:ABP

Chen:2005:DDP

Anonymous:2005:CAh

Ould-Khaoua:2005:PEG

Bacigalupo:2005:IAD

Cicotti:2005:DPM

Jie:2005:ISG

Lin:2005:EDD

Yang:2005:EPL

Avalone:2006:HP1

Bradley:2006:DRC

Pourazin:2006:CM

REFERENCES

REFERENCES

[656] Rod Oldehoeft. Computer science in support of high-performance applications: Papers from the 2004
REFERENCES

Chang:2006:CA

Reza:2006:MAD

Parsa:2006:NGA

Gajin:2006:EPD

Huang:2006:ECS

Karra:2006:FBS

Abderazek:2006:HLM

[689] Ben A. Abderazek, Tsutomu Yoshi-naga, and Masahiro Sowa. High-level modeling and FPGA prototyping of

REFERENCES

Huh:2006:ARM

Hritonenko:2006:CDC

Wang:2006:GML

Blais:2006:SHT

Xiao:2006:ACN

Jigang:2006:AAA

Ro:2006:DEH

REFERENCES

Mohamed:2006:HPM

Volckaert:2006:FGS

Chen:2006:DSD

Hababeh:2007:HPC

Li:2007:PBM

Hsieh:2007:EPS

REFERENCES

Yang:2007:IDA

Chen:2007:SSS

Li:2007:DIV

Wang:2007:CSR

Zhou:2007:HSM

Zhong:2007:PPS

Jin:2007:IPO

Hyun-Wook Jin and Chuck Yoo. Impact of protocol overheads on net-
Hsieh:2007:PTS

Ajwa:2007:CSG

Lin:2007:DDS

Park:2007:EPA

Chiu:2007:HPA

Nomura:2007:PHM

Imani:2007:PLB

Gravvanis:2007:SIG

Stockinger:2007:DGS

Scherson:2007:SDG

Mehta:2007:DRA

Thysebaert:2007:DLS

[761] Mark A. Baker and Matthew Grove. Tycho: a wide-area messaging framework with an integrated virtual reg-
References

REFERENCES

Hsieh:2007:PEP

ElFarag:2007:IUR

Li:2007:FGE

Luna:2007:UOC

Wang:2007:OSP

Liu:2007:OSA

Hong:2007:GBN

Park:2008:RHS

Liu:2008:HPP

Jin:2008:PSM

REFERENCES

Carino:2008:DLB

Athanasaki:2008:EPL

Nadarajah:2008:CGM

Akanda:2008:DEM

Lai:2008:DPD

Cathey:2008:URD

Sweeney:2008:HSR

REFERENCES

REFERENCES

[814] Ching-Hsien Hsu, Tai-Lung Chen, and Jong-Hyuk Park. On improving resource utilization and system

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[854] Jimmy Secretan, Malachi Lawson, and Ladislau Bölöni. Efficient allocation...

Singh:2009:ECI

Calderon:2009:FTF

Deng:2009:PIC

Qiu:2009:PES

Li:2009:PBP

Chang:2009:SSC

Aliaga:2009:TPG

Dimitroulakos:2009:CAA

Chen:2009:MC

Caire:2009:DIL

dAuriol:2009:SEP

Cheng:2009:PBD

Xiang:2009:MEO

REFERENCES

REFERENCES

REFERENCES

Zhang:2009:ICH

Isazadeh:2009:NFM

Hsieh:2009:OFT

Yarmish:2009:DSS

Nazir:2009:ACS

Khanli:2009:AGI

Goumas:2009:PES

Lin:2009:CSG

Lee:2009:FPA

deMendivil:2009:FAD

Huang:2009:PPC

Yang:2009:DBM

Walters:2009:FTS

Hsu:2009:SAB

Lotfi:2009:PLG

Carretero:2010:SSS

Agrawal:2010:EID

Lee:2010:PFR

Nunez:2010:NTS

Drews:2010:SPW

[908] Frank Drews, Jens Lichtenberg, and Lonnie Welch. Scalable parallel word

REFERENCES

Isazadeh:2010:TDE

Jie:2010:AAI

Sadik:2010:MHA

Numrich:2010:CES

Myoupo:2010:RCA

Sharifi:2010:DFI

[941] Ismail Ababneh, Saad Bani-Mohammad, and Mohamed Ould-Khaoua. An adaptive job scheduling scheme for

Liu:2010:EAL

Xhafa:2010:EPM

Mashayekhi:2010:CST

Flauzac:2010:CMP

Batista:2010:PAA

Du:2010:RPM

REFERENCES

Randles:2010:BRW

Lee:2010:RTS

Xu:2010:DFT

Yassein:2010:NPB

Abu-Tair:2010:AMA

Yasami:2010:NUC

Abellan:2010:CBS

[954] José L. Abellán, Juan Fernández, and Manuel E. Acacio. Characterizing the basic synchronization and communication operations in dual Cell-based blades through CellStats.

Charr:2010:DFT

Rashid:2010:AEP

Cho:2010:BMR

Li:2010:MVF

Zhang:2010:UCD

Cao:2010:SQB

[993] Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and Ramón Doallo. Design of efficient Java message-passing

Moon:2011:ABM

Tso:2011:ESC

Lee:2011:NDV

Toegl:2011:AIL

Chang:2011:SEE

Tran:2011:PBA

Lai:2011:PUB

Smith:2011:SMC

Jeong:2011:ERS

Khan:2011:MNG

Li:2011:TBE

Nitin:2011:DFT

Park:2011:DSR

Yang:2011:ESM

Lu:2011:PCP

Lee:2011:MNO

Zhang:2011:IJS

Yang:2011:CWB

[1026] Abdulla M. Al-Qawasmeh, Anthony A. Maciejewski, Haoran Wang, Jay

REFERENCES

Banicescu:2011:PSH

He:2011:F

Zhang:2011:MBO

Huang:2011:RIE

Qu:2011:NNC

Lv:2011:IIB

Martinez:2011:ATI

Galiano:2011:PNP

Santos:2011:WSB

Sanjurjo:2011:OMC

Orobitg:2011:EPP

Picidel:2011:AES

daAsunciion:2011:SOL

[1066] Marc de la Asunción, José M. Mantas, and Manuel J. Castro. Simula-

Redondo:2011:PEA

Quintana-Orti:2011:HPC

Lopez-Portugues:2011:GSF

Almeida:2011:PSM

Cascon:2011:ANA

Martinez-Zaldivar:2011:TBM

[1079] Laura Prada, Javier García, J. Daniel García, and Jesus Carretero. Power

Martinez:2011:UAA

Barri:2011:MMH

Reyes:2011:ACG

Padron:2011:PHR

Bosque:2011:ESH

Sanjuan-Estrada:2011:API

[1092] Héctor Migallón, Violeta Migallón, and José Penadés. A Parallel Python li-

Belloch:2011:RTM

Sabbaghi-Nadooshan:2012:DBN

Majzoub:2012:MRH

Wu:2012:DPL

Mavromoustakis:2012:TBA

Zhu:2012:PSA

REFERENCES

REFERENCES

Hababeh:2012:INS

Jiang:2012:DPN

Chan:2012:MPB

Lindberg:2012:CAE

Filgueira:2012:DCD

Muszala:2012:NLI

Yang:2012:PBD

Jang:2012:LON

Parsa:2012:TDA

Aldea:2012:USC

Li:2012:RSS

Al-Dayaa:2012:RLT

Sharifi:2012:PID

[1118] Mohsen Sharifi, Ehsan Mousavi Khaneghah, Morteza Kashyian, and Seyedeh Leili Mirtaheri. A platform independent distributed IPC mecha-

Liu:2012:NLM

Wang:2012:AOS

Fazlali:2012:EDM

Ryu:2012:OFH

Kim:2012:ESV

Thibault:2012:AIF

Dashtbozorgi:2012:HPS

Chizari:2012:EMN

Beg:2012:PNC

Nitin:2012:SCA

Gavrilova:2012:DCN

Alachiotis:2012:DLM

[1131] Nicolaos Alachiotis, Vasileios I. Kefalouras, George S. Athanasiou, Harris E. Michail, Angeliki S. Kritikakou,

REFERENCES

Liu:2012:QNS

Kim:2012:TCI

Torkestani:2012:LAB

Lee:2012:ECL

Kanal:2012:PAI

Arora:2012:RLA

Tang:2012:AME

Nitin:2012:DPA

Choi:2012:DHR

Jiang:2012:LEW

Kim:2012:TPF

Nimmagadda:2012:CSM

Wu:2012:EFP
REFERENCES

[1159] Min-Allah:2012:CSR

[1161] Shahbahrari:2012:PIG

[1162] Mahfoudhi:2012:CSR

[1163] Couturier:2012:SSS

Fabienne Jezequel, Raphaël Couturier, and Christophe Denis. Solving large

REFERENCES

REFERENCES

[1190] Junzhou Luo, Zhiang Wu, Jiuxin Cao, and Tian Tian. Dynamic multi-resource advance reservation...

Yuan:2012:IAM

Hsu:2012:EET

Kim:2012:DFA

Shi:2012:TSW

Sharifi:2012:PED

Wang:2012:SAC
241

Yuan:2012:PCS

[1197]

Fanyang:2012:DSJ

[1200]

Li:2012:CSS

[1198]

Hong:2012:SSP

[1199]

Fanyang:2012:SAK

[1201]

Li:2012:OCM

Cazalas:2012:LCS

Malyshkin:2012:OMP

Mowbray:2012:EPC

Rong:2012:PSI

Begnum:2012:SCO

Ranjan:2012:CLM

Liu:2012:ICD

Zhao:2012:RDM

Wu:2012:CIN

Jung:2012:TUO

Zhou:2012:PCC

Lai:2012:FAA

Dang:2012:DDM

Tchendji:2012:ECG

Vianney Kengne Tchendji and Jean Frédéric Myoupo. An efficient coarse-grain multicomputer algorithm for the minimum cost parenthesizing problem.
REFERENCES

Seba:2012:ABC

Khan:2012:GPB

Niemi:2012:MBS

Chen:2012:ABP

Su:2012:MIH

Mimaroglu:2012:ADC
Gravvanis:2012:SFD

Duh:2012:FPD

Safaei:2012:DSO

Chang:2012:MSR

Pallipuram:2012:CSG

Shieh:2012:PAR

Healy:2012:AME

[1229] Philip D. Healy and John P. Morrison. ARC: a metacomputing environment for clusters augmented with reconfigurable hardware. The Jour-

Barshan:2012:IAP

Motallebi:2012:DLO

Cha:2012:RCC

Sanchez:2012:FTA

Wu:2012:ISM

Lin:2012:PLE

Suresh:2012:SND
REFERENCES

D'Auriol:2012:SV

Kuo:2012:HDS

Terzopoulos:2012:PER

Zhang:2012:SML

Kim:2012:GEA

Misra:2012:LAB

[1255] Sekwang Seo, Sang-Soo Yeo, and Young-Sik Jeong. FSH scheme for high-speed handover and anti-MITM

Al-Sadi:2012:TPE

Simms:2012:PSD

Chen:2012:TCD

Kanal:2012:MMC

Kas:2012:TCD

Wang:2012:NDN

Sharma:2012:FEE

Tosun:2012:ERA

Falzon:2012:EGA

Heydarian:2012:HPO

Ding:2012:PCC

Green:2012:CFO

Wu:2012:PEE

REFERENCES

Al-Dayaa:2012:TML

Wang:2012:END

Fey:2012:OMT

Tamir:2012:PDC

Dolev:2012:OSI

Haist:2012:WLI

REFERENCES

REFERENCES

Chtepen:2012:OET

Cecilia:2012:SCH

Syed:2012:FAD

Guo:2012:SSR

Nazir:2012:RBF

Cheng:2012:IAE

[1293] Chien-Fu Cheng and Kuo-Tang Tsai. From immediate agreement to eventual agreement: early stopping agreement protocol for dynamic networks with malicious faulty processors. The
REFERENCES

[1299] Neal E. Davis, Robert W. Robey, Charles R. Ferenbaugh, David Nicholas-eff, and Dennis P. Trujillo. Paradigmatic shifts for exascale supercom-
REFERENCES

REFERENCES

Fatone:2012:POP

Tanase:2012:DUD

Dou:2013:EMO

UlHaq:2013:RBV

Czarnul:2013:MRT

Cao:2013:SPO

Yu:2013:HA

[1340] Tobias Berka, Giorgos Kollias, Helge Hagenauer, Marian Vajtersík, and Ananth Grama. Concurrent programming constructs for parallel MPI ap-
REFERENCES

[1347] Zeeshan Pervez, Ammar Ahmad Awan, Asad Masood Khattak, Sungyoung Lee, and Eui-Nam Huh. Privacy-aware searching with oblivious term match-
REFERENCES

[1354] Zhikui Chen, Feng Xia, Tao Huang, Fanyu Bu, and Haozhe Wang. A localization method for the Inter-

Chen:2013:MPM

Vishnu:2013:DEE

Xu:2013:PMO

Guabtni:2013:WDA

Danoy:2013:ESI

deAraujoMacedo:2013:MBS

REFERENCES

Frances:2013:DUF

Herrera:2013:TAQ

Ortega:2013:BGM

Rodriguez-Sanchez:2013:HAI

Toharia:2013:SSB

[1381] Pablo Toharia, Oscar D. Robles, Jose L. Bosque, and Angel Rodríguez.

Gonzalez-Dominguez:2013:PES

Bosque:2013:ASP

Lobeiras:2013:IMA

Alvarez-Bermejo:2013:SSK

Diaz:2013:TLH

Vigueras:2013:RCU

Acosta:2013:LSP

Naderan:2013:PDB

Choi:2013:MCC

Papapostolou:2013:HEA

Liu:2013:TCN

Ramrekha:2013:SAA

Vaidya:2013:SCM

Bueno-Delgado:2013:MLB

REFERENCES

[1410] Seokho Son, Gihun Jung, and Sung Chan Jun. An SLA-based cloud computing that facilitates resource allocation in the distributed data cen-

Tinetti:2013:RFL

Wang:2013:TSP

Good:2013:HAE

Zeng:2013:SLL

Li:2013:RDN

Pongaliur:2013:DCE

Wang:2013:ARB

Ning Zhong, Jian Hua Ma, Run He Huang, Ji Ming Liu, Yi Yu Yao, Yao Xue Zhang, and Jian Hui Chen. Research challenges and perspectives on Wisdom Web of Things (W2T). *The Journal of Supercomputing*, 64(3):862–882, June 2013. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL http:

[1446] Jung ho Um, Hoon Choi, Sa kwang Song, Sung pil Choi, Hwa mook Yoon, Hammin Jung, and Tai hoon Kim. Development of a virtualized supercom-

REFERENCES

REFERENCES

Chang:2013:RTV

Kim:2013:LMC

Cui:2013:LBA

Li:2013:SDS

Yang:2013:PEC

Jing:2013:SAR

Seitkulov:2013:NMS

Shon:2013:ESS

[1468] Taeshik Shon, Shihh-Jeng Wang, Lei Shu, and Liudong Xing. Editorial of special section on advanced in high

Choi:2013:RRB

Chen:2013:SPS

Lee:2013:MGP

Woungang:2013:ASI

Papadakis:2013:LCG

Kim:2013:AIN

Lim:2013:ENR

REFERENCES

Staţej:2013:CPP

Babaali:2013:NDG

Keshavarz-Kohjerdi:2013:EPA

Prakash:2013:NSM

Kapoor:2013:DFV

Ghafarian:2013:PAL

Lin:2013:EPP

[1489] Xuan-Yi Lin, Kuan-Chou Lai, Kuan-Ching Li, and Yeh-Ching Chung. Efficient programming paradigm for video streaming processing on TILE64 platform. The Journal of Supercomputing,

Cesnovar:2013:GIS

Almeida:2013:HPC

Alonso:2013:MSB

Ramiro:2013:MIF

Ortiz:2013:LBI

Naranjo:2013:FDA

Teijeiro:2013:PSB

REFERENCES

Torres:2013:UEI

Alvarez-Bermejo:2013:HAM

Fernandez:2013:HMP

Lee:2013:NNA

Fortin:2013:ADD

Vasupongayya:2013:EGO

Bushehrian:2013:DOS

REFERENCES

REFERENCES

Wu:2013:MSM

Sharma:2013:NPS

Sun:2013:AME

Chung:2013:DAR

Yuan:2013:DCF

Aron:2013:QBR

Villar:2013:ISQ

[1539] Juan A. Villar, Pedro J. García, Francisco J. Alfaro, José L. Sánchez, and Francisco J. Quiles. An integrated solution for QoS provision and congestion...

Huang:2013:EAL

Wu:2013:OMD

Mahafzah:2013:PAM

Chai:2013:REU

Li:2013:COM

Kunaseth:2013:ASD

Munir:2013:HPO

REFERENCES

Fatima:2013:MMO

Fatima:2013:AES

Yeo:2013:ESS

Hsu:2013:RIB

Jeong:2013:CBC

Fan:2013:DIP

Wang:2013:ASP

REFERENCES

296
REFERENCES

Chou:2013:TIB

Lin:2013:EAE

Chen:2013:TSE

Weng:2013:VWI

Nourian:2013:PAI

Vaidya:2013:SRM

Chang:2013:IIB

REFERENCES

Allenotor:2013:FGQ

Tan:2013:IPA

Ding:2013:SDC

Yang:2013:HBT

[1592] Ming Yang, Junzhou Luo, Lu Zhang, Xiaogang Wang, and Xinwen Fu. How to block Tor’s hidden bridges: detecting methods and countermeasures.

Liu:2013:SMB

Wanalertlak:2013:SFH

Adabi:2013:NSC

REFERENCES

REFERENCES

Chen:2013:SSR

Gonzalez-Alvarez:2013:PCT

Lee:2013:LWK

Jeong:2013:AVM

Gao:2013:MSP

Khan:2013:EDC

Amir:2013:ICP

[1609] Hossein Amir and Hadi Shahriar Shahhoseini. Improving CompactMatrix

Song:2013:OHR

Barthwal:2013:FOC

Tian:2013:OPS

Khaneghah:2014:AAM

Shahhoseini:2014:NSL

Chandar:2014:COO

Abderezak Touzene. A new parallel algorithm for solving large-scale...

Ahmadi:2014:ERA

Khan:2014:IPR

Xiong:2014:NSM

Toumi:2014:PSO

Garg:2014:MOW

Zhao:2014:PED

Khan:2014:PFA

Huang:2014:AIM

Yazdanbakhsh:2014:CPI

Shiraz:2014:LAS

Li:2014:EDF

Rahmani:2014:SSA

Ansari:2014:WAC

Maghsoudloo:2014:CVM

Salami:2014:PTM

Bagher Salami, Mohammadreza Bahrami, and Hamid Noori. Proactive task migration with a self-adjusting

Piga:2014:AGP

Utrera:2014:SPJ

Holmbacka:2014:TMM

Marowka:2014:MES

Moore:2014:BUA

Farahnakian:2014:ALB

Guo:2014:FTH

Yang:2014:NMB

Kelefouras:2014:MMM

Boton-Fernandez:2014:SAR

Tang:2014:CTC

Khan:2014:EGS

Park:2014:BPM

Gong:2014:EPS

Kopysov:2014:SHI

Malyshkin:2014:PIL

Afzal:2014:LAL

Kim:2014:SPA

Di:2014:CMC

Bistouni:2014:IEG

Khodja:2014:PSL

Chang:2014:PIC

Cecilia:2014:ESP

Cano:2014:SCD

Bossard:2014:DPH

Klavzar:2014:ADS

Guerrero:2014:CEP

Choi:2014:CWE

Liu:2014:PAC
[1745] Xiaodong Liu, Weiqin Tong, Xiaoli Zhi, Fu ZhiRen, and Liao WenZhao. Per-

Jo:2014:ODE

Farash:2014:SEI

Vankeirsbilck:2014:USB

Vilaplana:2014:QTM

[1752] Jordi Vilaplana, Francesc Solsona, Ivan Teixidó, Jordi Mateo, Francesc Abella, and Josep Rius. A queuing theory

Shen:2014:P

Tian:2014:MNL

Xu:2014:VCA

Zhang:2014:LDP

Fujita:2014:ASB

HoseinyFarahabady:2014:RAS

Al-Hinai:2014:TST

Wu:2014:PRA

Gava:2014:BAF

Shen:2014:SPE

Yan:2014:OMB

Lee:2014:JPT

Taewhi Lee, Hye-Chan Baek, and Hyoung-Joo Kim. Join processing with

Mahalakshmi Lakshminarayanan, William F. Acosta, Robert C. Green II, and Vijay Devabhaktuni. Strategic and suave

Javanmardi:2014:PNA

Zhou:2014:MSM

Yen:2014:CAT

Lee:2014:PAB

Lee:2014:PEV

Ihm:2014:EDB

Park:2014:CCB

[1781] Jong Hyuk Park and Hwa Young Jeong. Cloud computing-based jam

Yu:2014:ECR

Enokido:2014:EES

Yang:2014:ICV

Wong:2014:PHD

Yen:2014:HAD

Li:2014:RLB

Tsung:2014:CVB

[1788] Chen-Kun Tsung, Hann-Jang Ho, and Sing-Ling Lee. Correcting vindictive bidding behaviors in sponsored

Dhurandher:2014:GGA

Park:2014:ACS

Wang:2014:GIE

Zhou:2014:DFV

Ouyang:2014:OCP

Choi:2014:AHP

REFERENCES

Jabbar:2014:MCD

Hsieh:2014:AMU

Majore:2014:SRE

Ahn:2014:SEH

Zuo:2014:DAS

Yoon:2014:UTC

Lee:2014:SSS

Chang-Moo Lee and Hangbae Chang. A study on security strategy in ICT convergence environment. The Journal of Supercomputing, 70(1):211–223, Oc-
REFERENCES

Karanikolaou:2014:PSE

Gravvanis:2014:DGA

Hu:2014:POE

Yang:2014:CCS

Saravanan:2014:CSS

Su:2014:ECG

REFERENCES

Ranilla:2014:HPC

Frances:2014:PAS

Uribe-Paredes:2014:TES

Ramiro:2014:GII

Fernandez:2014:CPE

Alonso:2014:PAN

Tabik:2014:PEK

Sevilla:2014:UBC

Arrondo:2014:SLF

Lopez-Portugues:2014:ANS

Peinado:2014:STI

Arnal:2014:PRE

Acosta:2014:ATM

Cores:2014:MAL

Pinol:2014:PSA

Garcia-Martinez:2014:GIH

Lorenzo:2014:DRM

Bermejo:2014:DPM

Brun:2014:EMM

Boratto:2014:ART

Silva:2014:ASF

REFERENCES

Gonzalez-Alvarez:2014:POH

Gholizadeh:2014:OPD

Lai:2014:NHC

Khan:2014:BBB

Rahnama:2014:TIP

Farash:2014:CIE

Farash:2014:ECC
[1864] Mohammad Sabzinejad Farash and Mahmoud Ahmadian Attari. An efficient client–client password-based authentication scheme with provable se-
 Zinc:2014:PRP

ElBouabidi:2014:DAS

Yan:2014:PPR

Perez:2014:TTR

Yeh:2014:ITP

Nieminen:2014:RAD

Dong:2014:UAD
[1871] Mianxiong Dong, Kaoru Ota, Man Lin, Zunyi Tang, and Suguo Du. UAV-assisted data gathering in wireless sen-

Luo:2014:PES

Liu:2014:HAV

Saleemi:2014:ESS

Santos:2014:DSR

Cui:2014:OBD

Zhu:2014:PEA

Tang:2014:DFS

Wang:2014:SBM

Xu:2014:SSB

Chen:2014:EAL

Dai:2014:CAA

Zhang:2014:DCN

Xia:2014:MUD

Zhang:2014:LFL

[1893] Xia Xie, Wenzhi Cao, Hai Jin, Xi-jiang Ke, and Shuwen Luo. Design

Basanta-Val:2014:SDG

Saleemi:2014:EES

Liu:2015:ECB

El-Boghdadi:2015:CPW

Hosseinimotlagh:2015:SSE

Valls:2015:PCE

Hasanzadeh:2015:DOG

[1915] Sangchul Han, Minkyu Park, Xuefeng Piao, and Moonju Park. A dual speed scheme for dynamic voltage scaling

Vilaplana:2015:HPC

Cebrian-Marquez:2015:AHU

Jiang:2015:TSD

Iturriaga:2015:PLS

Nourikhah:2015:MPM

Bistouni:2015:SCN

REFERENCES

Beigy:2015:LAB

Kim:2015:NPT

Bampis:2015:RTI

Duran:2015:SOB

Yang:2015:FPS

Pascual:2015:LAP

Tosun:2015:AMA

[1936] Suleyman Tosun, Ozcan Ozturk, Ercan Ozkan, and Meltem Ozen. Application mapping algorithms for mesh-

Naserian:2015:CAJ

Amiri-Zarandi:2015:PEG

Zhang:2015:NSS

Chen:2015:PST

Garcia:2015:FAR

Kianfar:2015:NMA

Cocana-Fernandez:2015:EEA

[1943] Alberto Cocaña-Fernández, Jose Ranilla, and Luciano Sánchez. Energy-efficient allocation of computing node slots in HPC clusters through parameter learning and hybrid genetic fuzzy sys-

Avila-George:2015:ESG

El-Boghdadi:2015:DWR

Chunlin:2015:CEA

Azizi:2015:FTR

Farouk:2015:CEC

Zarrabi:2015:GSA

Chen:2015:AMW

REFERENCES

REFERENCES

Portales:2015:PMD

Artes:2015:ECE

Píñol:2015:SBP

Leon:2015:EPP

Aci:2015:HCC

Jun:2015:SMA

Kim:2015:TAE

[1985] Dong Kyoo Kim and Yang Sun Lee. Time-of-arrival estimation through WLAN physical layer systems. The
REFERENCES

Tsai:2015:IPA

Lee:2015:AGD

Lee:2015:IUL

Jiang:2015:FHR

Cho:2015:OAO

Chen:2015:PMD

Seo:2015:DAA

[1999] Moisés Viñas, Zeki Bozkus, Basilio B. Fraguela, Diego Andrade, and Ramón Doallo. Developing adaptive multi-device applications with the Hetero-

Beltran:2015:APM

Jiang:2015:AAG

Seo:2015:OMC

Khan:2015:AST

Gomez:2015:HBA

Yildirim:2015:CSP

Li:2015:AMR

[2006] Jiansen Li, Jianqi Sun, Ying Song, and Jun Zhao. Accelerating MRI reconstruction via three-dimensional dual-dictionary learning using CUDA.

Tolo:2015:EEL

Shahrivari:2015:HPP

Su:2015:AGP

Kim:2015:FEE

Ahmad:2015:VMM

Meneses:2015:CCA

[2013] Essam Elsayed and Hatem M. El-Boghdadi. A novel power-efficient multi-operand digit-multiplier using re-

Fan:2015:ECP

Touzene:2015:AAB

Stojanovic:2015:DMI

Villar:2015:OCC

Kelefouras:2015:MSM

Kotiy:2015:RLB

Karim:2015:SSO
[2020] Naila Karim, Khalid Latif, Zahid Anwar, Sharifullah Khan, and Amir Hayat. Storage schema and ontology-

REFERENCES

Valls:2015:PDS

Daneshtalab:2015:ODA

Karami:2015:SPA

Wu:2015:DHD

Fe:2015:EON

Chen:2015:FEC

Silva:2015:SSS
REFERENCES

[2041] Hamed Arshad and Morteza Nikooghadam. Security analysis and improvement of two authentication and key agreement

Lin:2015:MDN

Li:2015:ESS

Chen:2015:GTA

Chen:2015:DBR

Xiao:2015:PCR

Kumar:2015:OCD

Wang:2015:CGT

[2048] Zeng Wang, Bo Hu, Xin Wang, and Shanzhi Chen. Cooperative game-

Wang:2015:SGT

Wang:2015:PPB

Jiang:2015:GTB

Liu:2015:GTB

Wu:2015:WSC

Lotfi-Kamran:2015:PPG

Zhao:2015:FFB

Stankovic:2015:SAP

Mahfoudhi:2015:TPR

Zhu:2015:OFT

Ahn:2015:SMB

Jimenez:2015:EEM

Li:2015:OPM

Noghondar:2015:LCL

References

Bai:2015:SPA

Ghosh:2015:NCC

Tos:2015:DRS

Jin:2015:GAP

Jimenez:2015:FTB

Dummler:2015:IBP

Souravlas:2015:SAR

Barati:2015:HHB

Johari:2015:MBR

Abawajy:2015:SLA

Gaona:2015:FEC

Borkar:2015:RFU

Kirsal:2015:MAV

Hussain:2015:BTD

Mohaqeqi:2015:TAS

Kim:2015:PMS

Dastgeer:2015:PAC

Salmito:2015:SAD

Lee:2016:ESS

Jiang:2016:OFB

Kim:2016:NSA

Kim:2016:SKS

Kim:2016:NAD

Jabbar:2016:TMS

Yu:2016:AIT

Kang:2016:SEC

Hsu:2016:DCH

Kao:2016:CIC

REFERENCES

Akleylek:2016:SPM

Lopez-Novoa:2016:KDE

Denham:2016:SAR

Yan:2016:EGC

Cheikh:2016:TFS

Sheikhi:2016:PFL

Marino:2016:LLC

Fernandez-Pascual:2016:DSC

Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio. Are distributed sharing codes a solution to

Yu:2016:CFS

Aviles-Gonzalez:2016:BOI

Arianyan:2016:NHC

Hijaz:2016:LAD

dAuriol:2016:AOL

Yu:2016:DDS

Pan:2016:SPE

Wen-Tsao Pan, Chiung-En Huang, and Chiung-Lin Chiu. Study on the per-

Kelefouras:2016:HPM

Kononenko:2016:AEC

Azizi:2016:HEN

Luo:2016:SA

Imre:2016:DMR

Singh:2016:RPS

OLoughlin:2016:SVM

378 REFERENCES

Balouchzahi:2016:EIB

Penaranda:2016:ADI

Ranokphanuwat:2016:PPM

Thapliyal:2016:DPN

Thapliyal:2016:EDP

Wang:2016:LVP

[2162] Fei Wang, Xiaofeng Gao, and Guihai Chen. Lowering the volatility: a practical cache allocation prediction and stability-oriented co-runner

Liu:2016:EMA

Phoummavong:2016:LAR

Kobayashi:2016:ASC

Kobayashi:2016:PLD

Imaizumi:2016:SEF

Abdollahi:2016:ICO

Saad:2016:SO

Kang:2016:SBR

Pouyan:2016:RAT

Manaka:2016:CSU

Utsu:2016:BBI

Keisuke Utsu, Chee Onn Chow, Hiroaki Nishikawa, and Hiroshi Ishii. Broadcast-based information sharing system (BBISS) on wireless ad hoc communication environment. The
REFERENCES

REFERENCES

[218] Shabnam Mahjoub and Hakimeh Vojoudi. The UTFLA: uniformization of
REFERENCES

Masarat:2016:MPR

Makaratzis:2016:PMR

Pang:2016:CAB

Rajkumar:2016:MIN

Dai:2016:GPU

Tian:2016:HOA

Zhou:2016:OPI

REFERENCES

REFERENCES

Song:2016:CBS

Kim:2016:STA

Mohammed:2016:BDA

Ahmad:2016:HFN

He:2016:OSH

Li:2016:ICP

Albuquerque:2016:LIS

Fong:2016:RAM

Simon Fong, Xi Wang, Qiwen Xu, Raymond Wong, Jinan Fiaidhi, and Sabah Mohammed. Recent advances in meta-heuristic algorithms: Does the Makara

Portela:2016:DUR

Gong:2016:NSE

Jiang:2016:PPT

Gong:2016:DSP

Brito:2016:GEB

Fong:2016:TSP

Ma:2016:ESL

Fong:2016:IMT

Deb:2016:FAS

Brito:2016:TIR

Chhieng:2016:APB

Carretero:2016:ISU

Dietze:2016:WLS

Duro:2016:EMS

Llopis:2016:AEC

REFERENCES

REFERENCES

CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Escudero-Sahuquillo:2016:HPI

Vigneras:2016:BRA

Zahid:2016:CNR

Fuentes:2016:NUD

Yebenes:2016:SSR

Reano:2016:TRG

Colombo:2016:ODC

Shankar:2016:CBS

Andujar:2016:OSF

Akbar:2016:EFT

Alrashed:2016:ESC

Hukerikar:2016:RRO

Guerra:2016:PCS

AlBdaiwi:2016:EDN

Nezarat:2016:GTM

Dauwe:2016:HNP

REFERENCES

Park:2016:UCP

Aliaga:2017:ACT

Alonso:2017:HPC

Alvarruiz:2017:IPW

Lopez-Portugues:2017:UHC

Benito-Picazo:2017:RSS

Dieguez:2017:BBG

Olanda:2017:IHD

Losada:2017:ARV

Perez:2017:EEL

Alonso:2017:EMA

Gabaldon:2017:BMO

Ortega:2017:APM

Uribe-Paredes:2017:ESP

Gonzalez:2017:CDM

Cebrian-Marquez:2017:IIP

REFERENCES

Palacios:2017:ERD

Cruz:2017:PTL

Malyshkin:2017:PCT

Campos:2017:MPS

Akhmed-Zaki:2017:ITD

Menshov:2017:HSI

Borisenko:2017:GPB

Chen:2017:ODD

[2344] Ren Chen, Shreyas G. Singapura, and Viktor K. Prasanna. Optimal dynamic data layouts for 2D FFT on 3D memory

Rojek:2017:PMM

Tangherloni:2017:GSS

Bandman:2017:PEV

Ozelim:2017:IDF

Hasanov:2017:HRC

Malyshevkin:2017:SDD

Naranjo:2017:PSP

Deldari:2017:CDC

CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

REFERENCES

REFERENCES

Lee:2017:GBS

Lee:2017:EGB

Paul:2017:MOD

Kim:2017:NCS

Lee:2017:BBS

Sharma:2017:RBR

Sharma:2017:ERB

Modi:2017:VLS

Chirag N. Modi and Kamatchi Acha. Virtualization layer security challenges

Rizk-Allah:2017:NFF

Karaata:2017:OAS

Raei:2017:APM

Lee:2017:PEH

Sardroud:2017:ECP

Cha:2017:AMR

Abbas-Turki:2017:RSR

Karimi:2017:QAS

Whalen:2017:SDC

Sagharichian:2017:IIP

Cattaneo:2017:EEA

Azizi:2017:FHP

Irshad:2017:CPP

Li:2017:CDS

Li:2017:CBM

Nadjar:2017:LDA

Meyer:2017:MFR

REFERENCES

2017. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

[2402] Jinjing Li, Qingkui Chen, and Bocheng Liu. Classification and disease prob-

Feher:2017:DSI

Celebi:2017:ISS

Khan:2017:TSH

Shehab:2017:ACI

Darabkh:2017:ICA

Kommeri:2017:EED

Rajabzadeh:2017:EAF

Ambursa:2017:PSO

REFERENCES

Li:2017:HDT

Son:2017:RVU

Vardi:2017:HCA

Ever:2017:PAC

Jin:2017:DED

Kiani:2017:MMA

Komosinski:2017:MCE

Mendez:2017:CDD

Shen:2017:PMB

[2419] Chao Shen, Weiqin Tong, Jenq-Neng Hwang, and Qiang Gao. Performance modeling of big data applications in
REFERENCES

[243] Hiroshi Yamamoto, Yusuke Hiraide, and Hiroshi Ishii. A quantitative measure of the information leaked from

Choi:2017:MCR

Khorsand:2017:AAT

Granado-Criado:2017:HCH

Yamamoto:2017:EPT

Yamamoto:2017:QMI

[2436] Sanjaya K. Panda and Prasanta K. Jana. SLA-based task scheduling algorithms for heterogeneous multi-cloud
REFERENCES

JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Kim:2017:SBD

Jo:2017:SII

Chen:2017:ECS

Chang:2017:NCA

Wu:2017:DCO

Pei:2017:PCS

Won:2017:NRE

Kim:2017:GTC

Li:2017:NAF

[2453] Zhen Li, Haiqing Pan, Wenhao Liu, Fei Xu, Zigang Cao, and Gang Xiong. A network attack forensic platform against HTTP evasive behavior.
REFERENCES

Lee:2017:CCA

Wu:2017:SPM

Moon:2017:LCM

Zhuang:2017:PNT

Chang:2017:NSD

Feng:2017:ADS

Cho:2017:BDP

Lee:2017:DRA

Chang:2017:ACF

Sharma:2017:ECR

Yong:2017:IMS

Wang:2017:EEC

Lee:2017:MLB

Park:2017:NAM

Hung:2017:EMC

Lin:2017:CSM

REFERENCES

3333–3343, August 2017. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

REFERENCES
CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Cheng:2017:RCA

Chunlin:2017:ERP

Zhang:2017:MOP

Moreno:2017:HLB

Al-Mouhamed:2017:SBS

Rashidi:2017:CDS

Keshavarz-Kohjerdi:2017:LTA

Neamatollahi:2017:STB

Vega:2017:LTL

Ahmad:2017:ODI

Casas:2017:PDS

Egawa:2017:PMV

Vasudevan:2017:PBD

Luo:2017:DPR

Youn:2017:CCB

Ziafat:2017:MOS

Hiroaki Anada, Junpei Kawamoto, Chenzutao Ke, Kirill Morozov, and Kouichi Sakurai. Cross-group secret sharing scheme for secure usage of cloud storage over different providers.

Mihăescu:2017:DAS

Pan:2017:EAC

Fard:2017:DVC

Fard:2017:EDV

Rojek:2017:MPC

Hofer:2017:MPO

Nezarat:2017:GTB

Barrientos:2017:GBE

Park:2017:RPP

Kumar:2017:PSC

Alemi:2017:CUS

Wei:2017:RPT

LeCompte:2017:SER

Abualigah:2017:UTF

Hanani:2017:MPS

Yam-Uicab:2017:FHT

Valinataj:2017:NPP

Salehan:2017:OVB

Chen:2017:RTW

Xu:2017:SAP

Mandikas:2017:PMS

Mostafaei:2017:BCW

Yang:2017:IWB

Al-Yatama:2017:MAA

REFERENCES

JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

[2570] Arya Al-Adwan, Basel A. Mahafzah, and Ahmad Sharieh. Solving trav-

Zigon:2018:ISF

Wang:2018:SNU

Rostampour:2018:SLG

Salami:2018:GQM

Piao:2018:RSA

Gupta:2018:RAV

Wang:2018:NBM

Ahmadzadeh:2018:HPE

[2578] Armin Ahmadzadeh, Omid Hajihas-sani, and Saeid Gorgin. A high-performance and energy-efficient ex-

Lim:2018:EDM

Ji:2018:CSD

Chen:2018:APM

Ramadoss:2018:NIT

Lee:2018:RDI

Hao:2018:CNF

Kim:2018:LBS

Min:2018:CLD

Lee:2018:MEE

Tan:2018:EDF

Park:2018:ABT

Yazdinejad:2018:EDH

Khaleghzadeh:2018:HMT

Dolbeau:2018:TPF

Chung:2018:AMD

Kwon:2018:EIP

Rau:1993:ILPb