
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

01 September 2023
Version 3.20

Title word cross-reference

-substructure [2007], -SVM [1153], -Transitive [421], -version [960].

\(M\) [664].

0/1 [1558].

1-bit [1725], 10 [2260], 19 [799, 972, 1135, 1313, 1324, 1422, 1492, 1871, 2038, 2112, 2174, 2202, 2392], 1901 [122], 1D [1578, 1830].

1D [1578, 1830], 1DCNN [1830].

2 [1585, 1948]. 2-D [1578, 1830].

2-phase [1912], 2.0 [411], 256 [1417, 2433].

2D [1417, 2433], 2DSPP [1501].

2PBDC [284].

3 [1690], 3-ary [1018], 3-D [1690].

3D-based [1972, 2035]. 3D-memories [1738].

4-digit [1543]. 4-Valued [1768].

4D [1528]. 4D-ACSM [1528].

512 [90]. 5G [157, 739, 934, 1120, 1658, 1677, 1685, 1839, 1911, 2030, 2330, 2408].

5GMAKA [1911].

6 [1014, 1855], 6G [2397], 6LoWPAN [2251]. 6LoWPAN-based [2251].

802.11ah [2022].

ABGS [2074]. ability [546], ablation [1464]. Abnormal [213, 645, 1550].

Absolute [838, 1254, 2256]. absolute-value [2256]. absorbing [388], abstraction [301, 842, 1280]. abstractive [1163].

academic [374]. accelerate [169, 1500, 1773]. accelerated [430, 484, 792, 900, 1444, 1657, 1690, 1949, 2248, 2351].

Accelerating [238, 426, 573, 754, 1470, 2055, 2061, 2064].

Acceleration [412, 450, 497, 1062, 1576, 2160, 2320], accelerator [1083, 1085, 1179, 1575], acceleratory-rich [1083]. accelerators [359, 508, 906, 1317, 1880, 1934, 2046, 2336]. accelerometers [839]. acceptance [1623].

acceptances [1794], accident [2410], accommodate [989], according [790, 2238], account [285]. accuracy [606, 779, 873, 1785, 1890, 2085, 2407]. accuracy-aware [2085]. Accurate [291, 717, 799, 1772, 1835, 2038]. ACEP [706]. achievement [1262].

ACNN [1418]. ACO [1175, 1553, 1731]. ACO-based [1175], ACO-list [1731].

acoustic [716]. Across [184, 1059, 1278].

Across-camera [1059], across-wind [184].

actuators [1264], acute [1145, 1461, 1463], acyclic [1840]. ad [247, 345, 348, 362, 795, 928, 1660, 1665, 1997, 2289].

ADA [2297]. AdaBoost [492, 1671, 1715].

AdaInNet [1827]. AdaInNet [594].

adaptation [1377, 1534, 1951, 2057, 2297].

Adapted [345, 742], Adapting [407], adaption [75, 690, 1585].

Based on Barzilai and [2066, 2103, 2115, 2138, 2174, 2242, 2267, 2322, 2365, 2369, 2392, 2393, 2413, 2434].

Balancing-based [1194].

Balancing-based bandwidth-aware [2311].

Bandwidth-aware balancing-based [1494].

Barzilai [94].

Base

[67, 1397, 2274, 2367, 2375].

decomposition-based [560, 2246]. decouple [234]. decreasing [32, 1510].

enhancement [22, 102, 318, 487, 642, 1825]. Enhancing [87, 287, 358, 422, 779, 783, 801, 1095, 1418, 1603, 1785, 2242, 2417]. Enriched [1016].

Entropies [59, 67, 323, 875, 941, 1667, 2295].

Entropies-graph [1831]. enumerations [1230]. Enumeration [106].

Environmental [1266, 2246].

Evapotranspiration [1831].

Everything [2070]. evidence [522, 1937, 2254, 2292, 2438].

Exa-scale [2086]. example [2286]. exascale-era [2122]. excavator [1933].
InfiniBand [893]. infinite [2190].
Influence
[177, 238, 248, 404, 1498, 1860, 2374].
Influences [960, 1476]. influencing [28].
influential [604, 943, 1147, 1645, 2365].
Influenza [476]. influenza-like [476].
information [24, 104, 113, 148, 243, 251, 276,
312, 352, 621, 650, 887, 896, 1091, 1183, 1184,
1198, 1232, 1242, 1275, 1277, 1371, 1390, 1462,
1592, 1614, 1748, 1850, 2053, 2066, 2318].
information-sharing [2318]. infrared [925, 1297, 1547].
infrastructure-as-a-service [1337].
influencing [28]. influential [604, 943, 1147, 1645, 2365].
influenza-like [476]. influenza [476]. influenza-like [476].
infection-sharing [2318]. infrared [925, 1297, 1547].

inverted [1357]. inverter [1383]. Investigating [568, 836, 1608].

IoP [1421]. IoRT [1966, 2036]. iOS [522].

IoT [327, 637, 646, 1664, 1849, 1953, 2067, 2257, 2305].

IoT-based [321, 340, 350, 871, 891, 1396].

IoT-Cloud [514]. IoT-fog-based [1914].

IP-over-WDM [1956]. IPFS [821, 1800].

ISSWOA [2107]. item [816, 1771].

item-set [1771]. items [786, 2223]. itemset [395, 515, 2071]. itemsets [1356, 1790].

Iteration [357, 1161, 1265].

Kawasaki [1462]. KAZE [484]. KB [1670].

KC [1372]. KCSS [688]. KD [1553].

KD-tree [1553]. KDB [857].

key-based [2006]. key-dependent [1573].

key-scheduling [2241]. keyphrase [2116].

KF [365]. KG2Lib [1766]. Kidney [2420].

kill [1372]. kill-chain [1372]. killer [1309, 1754].

Kinematic [1373]. kinematics [2266]. KITTI [2371]. KMLOD [401].

knapsack [1558]. knee [865, 1424].

1949, 1976, 2023, 2045, 2093, 2099, 2106, 2130, 2135, 2139, 2173, 2175, 2229, 2235, 2257, 2297, 2356, 2379, 2399, 2407, 2417, 2428.

Multi-criteria [326, 551, 1031, 1775, 2106, 2342]. multi-device [147, 391].

multi-fine-grained [2370]. multi-follower [2437]. multi-FPGA [543].

Multi-label [37, 93, 1250, 1587]. Multi-layer [1062, 1724, 2186, 2270].

multi-parametric [2232]. multi-party [2322]. Multi-period [735].

multi-task [375, 694, 2114]. multi-tier [1729].

multi-verse [1105, 1124, 1483]. Multi-view [31, 465]. multi-wave [1724].

multi-workflow [1834]. multibusiness [404]. multicast [1434, 2336]. multichannel [544, 1638].

multiclass [965]. Multicore [450, 613, 973, 1157, 1160, 1177, 1221, 1321, 1638, 1689, 2010, 2046, 2150, 2163].

multidevice [2287]. multidimensional [601, 1905]. multifactor [40].

Multimedia [150, 252, 352, 1377, 1696]. Multimodal [429, 478, 937, 1172, 1230, 2101, 2254, 2438].

multiobjective [1731, 2246]. MultiOff [1617]. multiphase [632, 2421].

multiple-domain [1877].

multiplicative [2048, 2394]. multiplier [1088, 1890]. multipliers [810]. multiply [2202].

multipole [575]. multiprocessing [233]. multiprocessor [470, 916, 970, 1287, 1379, 1907].

multiprocessors [809, 860, 2277]. multiprojection [467]. multipublisher [1965].

multiresolution [1924]. Multiresource [2378]. multiscale [945, 1517, 1763]. Multisensor [112].

Multisource [196]. multistage [1594].

Multistep [860, 945, 1893]. multistep-ahead [945]. multitask
music [423, 458, 544, 1368, 1774, 1779, 2016, 2321].
mutation [63, 744, 1000, 1192, 1391].
NADE [291].
NAEEMD [1692].
named [59, 1274, 1667, 2295, 2355, 2400].
NAF [389, 960, 1826].
negotiation [141].
negative [471, net 474, 1127, 1401, 1520, 1974, 2045].
NetGuru [16].
networks-on-chip

Neural

neuro

neuro-fuzzy

neurodegenerative

neurological

neuromarketing

Neuron

neuropeptide

neutron

neutrons

neutrosophic

newborns

news

next

next-item

next-item

NextG

NFV

NFVLearn

NIASHPT

NIDS

NIR

NIST

NLA

NMF

nn

NNAPI

NNBlocks

NNEF

NOC

NoC-based

NoCs

Node

node

Node-importance

NodeRank

nodes

[166, 291, 348, 604, 667, 753, 795, 892, 1147, 1257, 1491, 1645, 2169, 2269, 2365]. node

[70, 1127]. nodule

[45, 819]. Noise

[27, 139, 1885]. Noise-insensitive

noisy

[529, 826, 1903]. NOMA

Non

[166, 192, 278, 339, 389, 495, 667, 690, 695, 813, 888, 905, 1030, 1109, 1583, 1586, 1666, 1791, 1826, 2087, 2114, 2261, 2310, 2325, 2361].

Non-blocking

[695, 1586].

non-compaction

[905]. non-cooperative

[339, 1583]. Non-destructive

[192].

non-English

[495]. non-ICT

[690].

non-inertial

[813]. non-intrusive

[2114, 2310]. non-manager

[278].

non-maximum

[1030]. non-MI-based

[1666]. non-migrating

[2087].

non-negative

[389, 1826]. non-slicing

[2361].

non-tree

[819]. non-uniform

[166, 667, 1791, 2261, 2325].

non-viscous

[1109].

nonferrous

Nonlinear

[51, 1161, 1383].

nonlocal

[1297].

Nonparametric

[305]. nonstationary

[1761]. nonuniform

[951].

nonvolatile

[1188]. norm

[1411].

normalization

[634]. north

[1160, 2292].

North-Last

[1160].

northeast

[2292].

northwest

[2292].

NoSQL

[187, 355, 410, 2284]. Note

[2260]. notifications

[2069].

Novel

[1602].

NP
NP-completeness [640]. NPR [842]. Nscale [1855]. NSGA [1797].
nuclear [1532]. NUMA [2319]. number [389, 431, 573, 648, 864, 885, 951, 1088, 1265, 1832, 2138, 2241]. number-based [1265].
numbers [547, 1275, 2309]. numerical

O} [722, 948, 994, 1112, 1627, 1628, 2064]. O]-shaped [1112]. object
[203, 479, 534, 671, 779, 1056, 1059, 1231, 1445, 1575, 1593, 1873, 2005, 2074, 2158, 2384].
object-oriented [1445]. Objective
[32, 33, 226, 624, 676, 834, 1017, 1019, 1087, 1155, 1175, 1222, 1247, 1268, 1477, 1711, 1714, 1797, 1816, 1822, 1899, 1955, 2084, 2127, 2194, 2203, 2253, 2264, 2280, 2440]. objectives
[231, 1729]. objects [105, 425, 465, 1056].
objects-Based [1056]. OBL [1211].
OBL-based [1211]. oblivious [1078].
obstacle [1030, 1948]. obstacle-based
[1948]. occurrence [171, 1119]. ocean
[2139]. OCR [1504]. OCR-Vx [1504].
Octree [1468]. octree-based [1468].
OFDM [217, 1187, 1792]. off
[572, 1682, 1801, 2239]. off-peak [1682].
offloading [157, 713, 715, 733, 768, 846, 993, 1046, 1121, 1125, 1143, 1336, 1420, 1445, 1511, 1615, 1617, 1678, 1711, 1752, 1827, 1877, 1926, 2075, 2085, 2159, 2288, 2349, 2418]. offs
[1890, 2146]. OFNE [274]. OFF [1344].
OFF-TM [1344]. OQ-RADL [815].
OHUQI [1356]. OKCM [751]. old [152].
older [2435]. olive [1835]. OM2M [679].
omni [1503]. omni-path [1503].
omnidirectional [1432]. OmpSs [357].
OMRES [1807]. on-chip [1449, 1856].
on-demand [30, 107]. On-Fly-TOD [527].
on-shelf [1356]. on-the-fly [2210]. One
[786, 1472, 1481, 1746, 1785, 1981, 2293, 2384].
one-class [786]. one-click [2384].
one-dimensional [1472]. One-shot [2293].

Online [192, 221, 249, 270, 387, 751, 1064, 1065, 1260, 1332, 1344, 1366, 1651, 1709, 1855, 1893, 2066, 2118, 2276, 2403]. ontology
[526, 887, 1850]. ontology-based [887, 1850].
OP [1160]. open
[128, 129, 401, 476, 743, 1019, 2111].
OpenACC [2094]. OpenCL
[300, 734, 811, 1455, 1657, 2148]. Openflow
[2374]. OpenGL [411]. OpenMP
[125, 360, 715, 716, 1157, 1329, 2057, 2094].
OpenMP-based [360]. OpenWhisk [1257].
Operation [197, 419, 652, 728, 2191].
operations [2, 134, 275, 572, 1933]. operator
[63, 1000, 1475, 1541, 2182, 2246]. operators
[1449]. Opinion [274, 344, 1824, 1955].
Opportunistic [502, 561]. opportunities
[5, 743, 1113]. oppose [1535]. opposition
[813, 930, 1124, 1758, 2424].
opposition-based [813, 1124, 1758, 2424].
oppositional [1419]. OPSO [1237].
Optical [315, 331, 574, 695, 735, 810, 838, 867, 1058, 1073, 1160, 1610, 1945, 1956, 2186].
optimisation [24, 558]. Optimization
optimization [42, 46, 62, 70, 280, 336, 383, 453, 567, 624, 716, 731, 753, 781, 856, 914, 958, 1017, 1068, 1076, 1124, 1193, 1200, 1226, 1272,
prototype [1001]. Provable [1793].
Provenance [322]. providers [943, 1320].
Providing [1162, 1329, 1503].
proximal [483, 2020].
proxy [2313, 2439]. pruning [670, 1955, 2176, 2208, 2385, 2402].
Pseudo-random [131, 1356, 1753].
Pseudo-supervised [2005].
PSO-RDAL [1226]. PSCS [1953].
PSO-K [2172, 2350].
Pub [1035]. Pub/sub [664, 2265].
Publisher [1566, 1986, 2083, 2440, 2441]. publishing [265, 346]. Pulmonary [70]. pulpitis [1461].
Pulse [1565, 2011]. Pulse-Coupled [1565].
Puncalc [293]. purchase [2286].
Q [1039]. Q&A [1122]. QBCSSA [916].
QCA [325, 510, 578, 820, 836, 1346, 1361, 1473, 1759, 1876, 1909, 2034, 2088].
QCA-based [1876]. QCA-multiplexer [578]. QFD [602]. QGA [2285].
QGA-QGCNN [2285]. QGCNN [2285].
QoE [1070]. QoS [18, 279, 480, 893, 1070, 1497, 1548, 1653, 2182].
QoS-aware [18, 480, 1653, 2182]. QoS/QoE [1070].
quadric [2398]. Quadro [2008]. Quadro-W [2008].
qualitative [2249]. Quality [19, 53, 327, 468, 586, 740, 783, 928, 1315, 1503, 1619, 1801, 1840, 1862, 2229, 2242, 2399, 2434].
quality-based [783]. quality-of-service [1619]. quantification [45, 310, 519, 2209].
Quantifying [617, 1646, 1831, 1900]. Quantitative [131, 1356, 1753].
quantization [1555]. Quantum [95, 96, 126, 257, 258, 551, 578, 584, 627, 746, 826, 841, 916, 949, 955, 1032, 1064, 1065, 1075, 1110, 1111, 1130, 1156, 1302, 1334, 1525, 1543, 1626, 1684, 1717, 1725, 1838, 1878, 1918, 2029, 2177, 2216, 2241, 2252, 2256, 2285, 2398, 2411].
quantum-dot [126, 746, 1130, 1302, 1334, 1725, 1838, 2216].
Quantum-inspired [551, 916].
Quasi [1419]. quaternary [1072]. Queries [421, 537, 557, 1210, 2334].
Query [38, 52, 245, 246, 326, 403, 731, 1015, 1159, 1259, 1371, 1384, 1471, 1905, 1968].
query-driven [1471]. question [187, 687, 2145, 2296]. questions [1613].

VOC [1039].

R [101, 1343, 1646, 1883]. R-CNN [1343, 1646]. R2T [991]. R2T-DSDN [991].
RadHPO [2183]. radiation [521, 1367, 2301]. radiative [705, 1704].
Radical [200]. radio [15, 43, 313, 329].
radio-based [15]. RADL [815, 1580].
RAFALE [1641]. RAID [1014, 1855].
RAID-6 [1014, 1855]. railway [832].
rainbow [859]. rainfall [1817].
RainFormer [2001]. rainwater [1465].
RAM [1130, 1685]. Ramnanjan [566].
randomized [1902, 2178]. randomness [1511]. Range [250, 403, 638, 1244].
range-free [638]. Rank [41, 541, 698, 1532, 2025]. ranked [1771].
ranking [72, 1275, 1320, 1707, 2166, 2267].
RAPCHI [1654]. rapid [465]. rare [818].
ScrimpCo [102x276].

SDN-based [393,1632,2024,2374,2434].

scorecard [457,490,704,1741,2039].

SDC [229x335].

scoping [232].

schema [373,1330].

sectional [1635].

Secure

Securing [65,1380,1966,2036].

Security [120,373,435,451,2025].

section [35].

self-awareness [60].

self-driving [668].
synchronization [529, 675, 1507, 1508, 1567]. synchronized [2088]. synchronous [1795]. Synergistic [2187]. syntactic [2295].
Syntax [1669]. Syntax-Aware [1669].
synthesis [691, 1569, 1576, 1730, 1798, 1909, 2235].
transmitted [2115]. transonic [1742].
trajan [464, 1521, 1880]. trolls [2403].
truncated [1532]. truncation [2063].
Trust- [1267]. Trust-based [373, 1872].
Trust-embedded [456]. Trusted [1686, 2206]. trustworthy [374].
truthfulness [1338]. TSMSA [1501].
TSUBASA [850]. TTLA [2386].
tuning [581, 656, 1279, 2209, 2419]. tunnel [1475, 2372]. tunneling [2372]. turbo [217].
Twin [1565]. Twitter [285, 1230, 1616].
two-dimensional [939, 1362, 1733, 2123].
two-side [2161]. two-sided [74].
two-stage [316, 448, 467, 1185, 1414].
two-stream [1208]. two-tier [2159].
two-way [2386]. Type [135, 598, 703, 831, 911, 1033, 1126, 1380, 1547].
type-2 [1126]. typhoon [637].
U [1127, 1401, 1520]. U-Net [1127, 1401, 1520]. UAV [42, 247, 524, 689, 1070, 1132, 1267, 1445, 1797, 2158, 2329, 2367].
UAV-assisted [1797, 2329]. UAV-based [1267, 1445]. UAV-borne [1070].
UAV-mounted [2367]. UAVs [419, 719, 1414]. ubiquitous [1787, 2329].
UDP [722]. ulceration [1547]. uLog [1832].
ultra [1120, 1448, 1725, 1890, 2088, 2216].
ultra-area-efficient [2088]. ultra-dense [1120, 1725]. ultra-efficient [1890].
ultra-energy-efficient [2216].
ultra-lightweight [1448]. ultrafast [1073]. ultralightweight [1368, 1369]. Ultrascale [600].
Ultrasound [102, 683, 911, 929, 1193, 1460]. UML [1330].
UMOTS [1087]. unannotated [495].
underutilized [513]. underwater [716, 797, 798, 1825]. unequal [69, 94].
unified [131, 1341, 2363]. Uniform [166, 667, 1402, 1791, 2261, 2325, 2380].
uniformity [826]. uniformization [2261].
unifying [19]. uninteresting [786]. Union [2045]. Union-net [2045]. unit
REFERENCES

Dolbeau:2018:TPF

Li:2019:CFF

References

Kim:2019:SCM

Hui:2019:MVT

Masdari:2020:ETW

Rybintsev:2020:OPL

Huang:2020:SEM

Yun:2020:EDP

NezhadShokouhi:2020:SDP

Wu:2020:LBD

[10] Jiagao Wu, Lu Shen, and Linfeng Liu. LSH-based distributed similarity in-

Khan:2020:OHS

Fadishei:2020:CIA

Ahmad:2020:UCB

Mohtavipour:2020:LEP

Kumar:2020:ICC

Chen:2020:CLP

Yang:2020:BBO

Nassiri:2020:JEQ

Kargar:2020:IMQ

Naghshnejad:2020:HSP

Amini:2020:EED

Maghsoudloo:2020:EHI

deMiras:2020:FDB

Bhih:2020:OTR

Iserte:2020:SEP

Kumar:2020:IEA

Yu:2020:ENI

Bermejo:2020:VMC

Rahmani:2020:BAV

Farhat:2020:RRL

Li:2020:MVA

Qin:2020:EAS

Ramirez-Gonzalez:2020:PSS
REFERENCES

REFERENCES

Zeng:2020:FCB

Weizheng:2020:QAM

Zaiyi:2020:NSS

Anonymous:2020:APD

Venkatraman:2020:SMC

Ye:2020:LUC

Lu:2020:EVA

Liu:2020:PCB

Wang:2020:DTA

[60] Zaijun Wang, Jinlin Zhu, XiaoPing Guo, YunTing Ma, and Zifan Li.

Leng:2020:DRH

Patro:2020:EDO

Feng:2020:SAC

Dai:2020:ABN

Chinnasamy:2020:SDR

Guo:2020:DMA

Xia:2020:CEL

Abdel-Basset:2020:RLP

Vijayalakshmi:2020:UUS

Qi:2020:PNI

Chen:2020:VLC

Gao:2020:CVB

Lee:2020:PIA

Zhao:2020:STS

Chen:2020:ASB

Shafqat:2020:BDA

REFERENCES

[93] Jianxin Li, Minjie Liu, Dongliang Ma, Jinyu Huang, Min Ke, and Tao Zhang. Learning shared subspace regularization with linear discriminant analysis for multi-label action recognition.
REFERENCES

Amini:2020:TLD

Sadeghi:2020:NEF

Noorallahzadeh:2020:PPR

Hung:2020:EP

Park:2020:EDG

Wang:2020:EEI

Wu:2020:DMP

Yang:2020:ICB

Hsia:2020:CRM

[102] Chih-Hsien Hsia, Jia-Hao Yang, and Jen-Shiu Chiang. Complexity reduction method for ultrasound imaging en-

[119] Steven Walker-Roberts, Mohammad Hammoodeh, Omar AlDabbas, Mehmet Aydin, and Ali Dehghan-tanha. Threats on the horizon: understanding security threats in the era of

Abadi:2020:CSC

Yu:2020:QEU

Zhao:2020:OTS

Varri:2020:SRS

Do:2020:NWS

Haghighi:2020:IRC

[135] Mohammad Sayad Haghighi, Faezeh Farivar, Alireza Jolfaei, and Moham-

Nikooghadam:2020:PFS

Abbasi:2020:MOB

Fang:2020:MSS

Yu:2020:CEN

Anonymous:2020:ENc

Tian:2020:RDA

Govindasamy:2020:DSR

Skylakha:2020:ESA

Mahammad:2020:PAD

Karthikeyan:2020:CSI

Amarnath:2020:ITA

Wang:2020:RPS

Gafar:2020:MNV

Li:2020:RFE

Yang:2020:NAS

Jing:2020:REL

Guo:2020:REP

Bin Guo and Jiamin Li. Research on the evolution of participants collaboration mechanism in PPP model based
Ma:2020:EWI

Fernandez-Cerero:2020:MDC

Kaur:2020:BCS

Lin:2020:CTA

Wan:2020:ECO

Dar:2020:CAE

Kumar:2020:ABC

REFERENCES

Qadir:2020:NAM

Duan:2020:ROA

Alzahrani:2020:ITP

Yu:2020:ESP

Wei:2020:SEK

Zheng:2020:HFS

Wang:2020:RSE

Liu:2020:GON

Ahmad:2020:DBD
REFERENCES

Wang:2020:FER

Qi:2020:MMW

Shao:2020:MHC

He:2020:FDN

Liu:2020:VAK

Li:2020:RER

Yue:2020:RDA

Shao:2020:CSD

Fang:2020:CFP

Jin:2020:DEI

Yang:2020:ECS

Yu:2020:RWS

Karthikeyan:2020:ECA

Wang:2020:RIA

Feng:2020:NEM

Suresh:2020:FDA

Reshmi:2020:PRA

REFERENCES

Abdulaziz Alariﬁ, Amr Tolba, Zafer Al-Makhadmeh, and Wael Said. A

Anonymous:2020:ENf

Cecilia:2020:REA

Griebler:2020:SIS

Rico-Gallego:2020:TAC

Rodriguez:2020:PMS

Ejjaaouani:2020:IPM

Rey:2020:SRC

Ghavidel:2020:HSE

2020. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Pacha:2020:CSA

Sun:2020:DAS

Bathla:2020:GBM

Hua:2020:OMP

Di:2020:CRS

Dong:2020:PCB

Sun:2020:GRO

Zhang:2020:RAF

Khansari:2020:MWC

Yue:2020:GOA

Tinetti:2020:LCP

Chheang:2020:NEL

Anonymous:2020:ENh

Srinivas:2020:PPB

Adewole:2020:TSA

He:2020:NPR

Fan:2020:ECS

Anonymous:2020:ENk

Jeong:2020:ABQ

Chen:2020:LDT

Shen:2020:SAI

REFERENCES

Chang:2020:MGB

Akhtar:2020:ELG

Wang:2020:RTT

Chen:2020:ETS

Yen:2020:DRA

Kashikolaei:2020:ETS

Yong:2020:RMC

Yang:2020:CNL

REFERENCES

[345] Raenu Kolandaisamy, Rafidah Md. Noor, Muhammad Reza Z’aba, Ismail Ahmedy, and Indraah Kolandaisamy. Adapted stream region for packet

Saranya:2020:PPD

Amuthadevi:2020:DFA

Prakash:2020:RKD

Malathy:2020:NEE

Devi:2020:MLI

Ranjan:2020:NEC

Zhang:2020:FMS

REFERENCES

Seyedi:2020:NNI

Li:2020:ESO

Javadpour:2020:DSM

Li:2020:ERS

Dokeroglu:2020:RPH

Gomez-Rodriguez:2020:CIE

Mabodi:2020:MLT

REFERENCES

Liang:2020:LPT

Nomura:2020:DTE

Priyadarshi:2020:DTW

Mandal:2020:ATD

Bir:2020:DIE

Dadfarnia:2020:ICF

Rajabzadeh:2020:NCM

Chennupati:2020:DNN

Chen:2020:TIT

Wang:2020:CRP

Bae:2020:FCF

Shirmarz:2020:PIS

Chunlin:2020:DCC

Jung:2020:RPC

Kim:2020:TGE

Baek:2020:ESO

Heinrich:2020:HAU

Jo:2020:EPR

Kang:2020:TAR

Zhao:2020:PSC

Lee:2020:TBP

[416] Sang Il Lee and Seong Joon Yoo. Threshold-based portfolio: the role of

Chun:2020:DIK

Khan:2020:IFD

Jeong:2020:PML

Kang:2020:DGC

Chen:2020:TCT

Lee:2020:EAE

Kim:2020:SMP

Han-Gyu Kim, Gil-Jin Jang, and Ho-Jin Choi. Speech and music pitch trajectory classification using re-

Jung:2020:IPA

Kim:2020:MSB

Battulga:2020:HTP

Kuang:2020:LCS

Kuang:2020:CLC

Lee:2020:MDL

Baek:2020:ARS

REFERENCES

REFERENCES

Hou:2020:LCD

Lin:2020:CBF

Orts:2020:SUP

Shahbazian:2020:ODL

Duan:2020:DSS

Acharya:2020:DCN

Alzubi:2020:CDB

REFERENCES

Khamparia:2020:IHT

Safara:2020:PPB

Li:2020:BDD

Chang:2020:TSC

Vidhya:2020:MAN

Pantoja:2020:AMA

Dwivedi:2020:IEC

REFERENCES

REFERENCES

[494] Anqing Zhu. Spatiotemporal feature mining algorithm based on multiple minimum supports of pattern

[501] Jesús Cámara, Javier Cuenca, and Domingo Giménez. Integrating software and hardware hierarchies in an

Menouer:2020:OSR

Raca:2020:CCS

Ullah:2020:EDA

Chang:2020:ERC

Gill:2020:TCS

Chan:2020:IBS

Tanase:2020:DSI

[508] Cristian Andy Tanase. Dynamic scheduler implementation used for load dis-
REFERENCES

[517] Fadaeddini:2020:SDP

[519] Bermejo:2021:CQS

[520] Constantinescu:2021:EPD

REFERENCES

Chen:2021:CFR

Stachowski:2021:ABF

Wang:2021:GBE

Huang:2021:LBI

Hung:2021:EWO

Gerami:2021:BMD

Dehraj:2021:RAM

REFERENCES

Burcak:2021:NDC

Pai:2021:CDC

Kaliyar:2021:DIF

Abedi:2021:LBE

Muhammad:2021:AST

Adeli:2021:MSP

Sadhukhan:2021:LRU

REFERENCES

Ginny:2021:SPA

He:2021:EPM

Goey:2021:ANT

Sharma:2021:TBR

Alves:2021:IAF

Silva:2021:SMP

REFERENCES

BenHalima:2021:OBP

Oliveira:2021:TNP

Lin:2021:EES

Atahary:2021:PPB

Hammami:2021:LAA

Khan:2021:ODU

Bharti:2021:OCB

Ngueilbaye:2021:AHM

Sole-Beteta:2021:ATS

Li:2021:NSB

Cores:2021:HTB

Talib:2021:SLR

Saadatmand:2021:TAT

Chen:2021:RNB

Magee:2021:ASR

Deepa:2021:ABI

Huang:2021:DPS

Saeidi:2021:HPD

Min-Allah:2021:DRT

Miyata:2021:RTA

Liu:2021:AFR

Wu:2021:OHB

Fernandez:2021:ISC

Ghazvini:2021:NML

Balalavi:2021:ATI

Dehkordi:2021:DAD

Aaker:2021:EFW

Lee:2021:SDA

Bui:2021:EEC

Wang:2021:IMT

Kanwar:2021:DHB

Park:2021:EOD

Hoorfar:2021:NCC

Fredj:2021:EBA

[Soria-Pardos:2021:UMC]

[Jeong:2021:EMS]

[Chen:2021:STF]

[Ujjwal:2021:SSM]

[Cheng:2021:GSF]

[Neeraj:2021:CAP]

[Zhu:2021:LRH]

[660] Kuo-Kun Tseng, Ran Zhang, and Mohammad Mehedi Hassan. DNe

Sharma:2021:BNN

Steno:2021:NER

Tang:2021:CVR

Yang:2021:SFT

Guerrero-Higueras:2021:FLP

Zhang:2021:LSE

Toumi:2021:SID
REFERENCES

[691] Sumit Sharma and Sudip Roy. A survey on design and synthesis tech-
REFERENCES

Asadinia:2021:SNB

Qin:2021:ITL

Patel:2021:IGM

Han:2021:TET

Hashimoto:2021:ATP

Louati:2021:DLC

Wang:2021:AAM
REFERENCES

REFERENCES

Talebi:2021:AAS

Hayouni:2021:NEE

Sharma:2021:SER

Wong:2021:TFF

Lee:2021:ESS

Park:2021:EIM

Ni:2021:GSC

Hjouji:2021:NSA

Ali:2021:TSS

Tan:2021:NMS

Odajima:2021:PPC

Kamrani:2021:DIM

Asgarnezhad:2021:AMO

Mapetu:2021:DVC

Mansouri:2021:CBA

Yang:2021:IDS

Li:2021:OIP

Rao:2021:MUU

Sharma:2021:POD

Mohammadi:2021:ALC

Lu:2021:CTB

Jang:2021:ECT

Esmaeilyfard:2021:DCC

Proficz:2021:ICR

Kocak:2021:NDI

Kholod:2021:PSO

Gholizadeh:2021:KDI

Khan:2021:EMH

[762] Mohammad Ayoub Khan and Khaled Ali Abuhasel. An evolutionary multi-

[Bakshi:2021:EEC]

[Tsuji:2021:NSS]

[Pasupathi:2021:TAU]

[Xu:2021:GOD]

[Omar:2021:SAS]

[Maghsoud:2021:PPE]

[Bhatia:2021:DCV]
REFERENCES

[783] Maryam Nooraei Abadeh and Shohreh Ajoudanian. Reconfigurable edge as a service: enhancing edges using...
Pandey:2021:CPV

Shin:2021:ASF

Lee:2021:EUI

Pan:2021:RHB

Park:2021:SCU

Kireeva:2021:PSD

Jiang:2021:DFA

Belloch:2021:PGB

Kumar:2021:MCG

Ramakrishnan:2021:EAI

Wu:2021:PSA

Khan:2021:BLR

Periola:2021:FCS

REFERENCES

[804] Hassan Asghar and Babar Nazir. Correction to: Analysis and implementation of reactive fault tolerance techniques in Hadoop: a comparative

Sudarsan:2021:HPA

Polat:2021:CBT

Belhadi:2021:SSS

Jeon:2021:DDU

Oh:2021:MDA

Sharma:2021:DAO

Kim:2021:GRP

Umrao:2021:AFV

Cao:2021:DDO

Kang:2021:BAM

Nabi:2021:ORO

Zhan:2021:SAS

Zheng:2021:EEI

Li:2021:DSC

Zhu:2021:ACT

Patidar:2021:EDI

Kumar:2021:TDI

Akremi:2021:CHK

Sukhoroslov:2021:TEE

Basha:2021:SBV

Punitha:2021:TCE

REFERENCES

REFERENCES

Kiani:2021:DVM

Orts:2021:OFT

Kumar:2021:SPN

Rundo:2021:CPM

Shariq:2021:NVS

Simsek:2021:DLB

Kim:2021:GBE

[853] Sridhar Savarapu and Yadaiah Narri. High performance of brain emotional

[861] Bezerra:2021:ONP

[862] Fang:2021:UBN

[863] Chen:2021:SBB

REFERENCES

[881] Yanping Liao and Xinyu Chen. Multi-attribute overlapping radar work-

REFERENCES

[910] Sulaiman:2021:HLB

[912] Prabha:2021:PCR

[915] Song:2021:IOS

[918] Mishra:2021:QIB

[919] Kaushik Mishra, Rosy Pradhan, and Santosh Kumar Majhi. Quantum-inspired binary chaotic salp swarm algorithm (QBCSSA)-based dynamic task scheduling for multiprocessor...

[923] Gaurav Baranwal and Deo Prakash Vidyarthi. FONS: a fog orchestrator node selection model to improve application placement in
Wang:2021:AGS

Oh:2021:AAL

Yoo:2021:SEI

Banerjee:2021:ERU

Khanmohammadi:2021:EAT

Duan:2021:ECD

Acharya:2021:OCC

[930] Debasis Acharya and Dushmanta Kumar Das. Optimal coordination

Kehrer:2021:CEE

Ulabeledin:2021:RDM

Do:2021:DNN

Yi:2021:SMD

Kim:2021:UCI

Ren:2021:NDB

Sharma:2021:DIT

Wang:2021:RGP

Gul:2021:MTE

Ngueilbaye:2021:SSD

Liu:2021:CDM

Barbin:2021:NSI

Li:2021:DSP

[944] Pei Heng Li and Hee Yong Youn. Distributed stochastic principal component analysis using stabilized Barzilai–Borwein step-size for data com-

[958] Siwoon Son, Hyeonseung Im, and Yang-Sae Moon. Stochastic distributed data stream partitioning using task locality: design, implemen-
REFERENCES

189

Ghaffari:2021:STT

Gulistan:2021:MN

Jain:2021:EED

Li:2021:CGB

Taranto-Vera:2021:ASD

REFERENCES

Pradeepa:2021:EZC

Diaz:2021:NOR

Jalali:2021:SCF

Dang:2021:EHR

Zhang:2021:NST

Yang:2021:PFE

Gorodnichev:2021:STD

Jeong:2021:IRE

[979] SoonHyeong Jeong and Byeongtae Ahn. Implementation of real estate

Vimal:2021:MPD

Zakirov:2021:STR

Asgari:2021:PAP

Poongodi:2021:SHS

Semwal:2021:OHD

Migallon:2021:MLP

[986] Giovanni Di Gennaro, Amedeo Buo-
nanno, and Francesco A. N. Palmieri. Con-
siderations about learning Word2Vec. The
CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL

Effective partitioning mechanisms for
time-evolving graphs in the Flink
system. The Journal of Supercom-
puting, 77(11):12336–12354, November 2021. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https:

[988] R. Pradeepa and M. Pushpalatha. IPR:
Intelligent proactive routing model toward DDoS attack handling in
JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https:

[989] Dmitry Suplatov, Maxim Shegay, and
Vytas Svedas. Co-designing HPC-
systems by computing capabilities and
management flexibility to accommodate bioinformatic workflows at dif-
ferent complexity levels. The Jour-

nal of Supercomputing, 77(11):12382–
12398, November 2021. CODEN
JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https:
//link.springer.com/article/10.1007/s11227-021-03691-x.

[990] K. Balakrishnan, R. Dhanalakshmi,
and Utkarsh Mahadeo Khaire. Im-
proved Salp Swarm Algorithm based
on the Levy flight for feature
selection. The Journal of Supercom-
puting, 77(11):12399–12419, November 2021. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https:

[991] Shahrzad Sedaghat and Amir Hossein
Jahangir. R2T-DSDN: reliable real-time
distributed controller-based SDN. The Journal of Supercomputing, 77(11):
12420–12457, November 2021. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https:
//link.springer.com/article/10.1007/s11227-021-03780-x.

[992] Ashwin Kumar Kulkarni and B. An-
nappa. GPU-aware resource man-
gement in heterogeneous cloud
data centers. The Journal of Superco-
puting, 77(11):12458–12485, November 2021. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https:

REFERENCES

REFERENCES

[1049] Gabriel Rodríguez-Canal, Yuri Torres, and Arturo Gonzalez-Escribano.

[1056] Pratibha Mahajan and Pankaj Deep Kaur. Smart object recommendation (SORec) architecture using rep-

Rezaeiye:2021:APS

Xia:2021:HAR

Cheng:2021:ACO

Dang:2021:DKA

Parihar:2021:TBA

Westby:2021:FAM

Tu:2021:TEI

Nguyen Anh Tu, Thien Huynh-The, and Young-Koo Lee. Toward efficient and intelligent video analytics with visual privacy protection for

REFERENCES

Khosravi:2021:FRC

Lee:2021:TGM

Doshanlou:2021:EBQ

Kotb:2021:RUA

Saravananan:2021:IAV

Liu:2022:DSE

Sefati:2022:LBC

REFERENCES

References

Zhu:2022:OIW

Reshadie:2022:MVN

Jani:2022:HST

Raji:2022:UUA

Shahidi:2022:RMC

Jeong:2022:SAP

Prasanalakshmi:2022:IAC

Hou:2022:ATD

Nasrazadani:2022:SPS

Li:2022:IDP

Ean:2022:DPB

Wadhwa:2022:TTR

Ou:2022:SSR

Chen:2022:FMI

Abualigah:2022:AHM

[1105] Laith Abualigah and Muhammad Alkhrabsheh. Amended hybrid multi-

Doghri:2022:CPS

Chan:2022:TWP

Kang:2022:SIM

Karthik:2022:FEI

Safaiezadeh:2022:NDS

Safaiezadeh:2022:CND

REFERENCES

[1126] Noureddine Ait Ali, Ahmed El abbassi, and Bouchaib Cherradi. The performances of iterative type-2 fuzzy C-

[1133] Ruimin Wang, Zhiwei Yang, and Lu Lu. A high-performance batched matrix multiplication framework for

Yeon:2022:VAP

Ahanger:2022:NIF

Jiang:2022:DLT

Wu:2022:TLC

Zhang:2022:DRP

Sheng:2022:TCM

Ahuja:2022:RTC

Kirubanantham:2022:IWS

Kim:2022:EED

Gasmi:2022:SCO

Safaei:2022:ESC

Wu:2022:PMD

Idrees:2022:ESD

Bahutair:2022:NFI

REFERENCES

REFERENCES

Jalalian:2022:HMO

Khan:2022:HPN

Barai:2022:PMP

Yadav:2022:CCP

Liao:2022:ODQ

Renani:2022:NOH

Vijayalakshmi:2022:AHP

REFERENCES

REFERENCES

ElBaz:2022:PBF

Forsell:2022:PPC

Rahim:2022:ERS

Zhang:2022:HEM

Shehab:2022:TFS

Abdulhammed:2022:LBI

Chang:2022:EPS
REFERENCES

REFERENCES

Bugingo:2022:CET

Lu:2022:SBA

Abdennadher:2022:DDA

Chen:2022:RKS

Zhao:2022:NTS

Chang:2022:ACD

Wu:2022:TEK

Zhang:2022:NHA

Li:2022:IMD

Cai:2022:IOC

Gonzalez-Dominguez:2022:MDP

Yadav:2022:BOT

Grami:2022:EAS

Huang:2022:FMD

[1231] S. Senthil Kumaran, S. P. Balakannan, and Jun Li. A deep analysis of object capabilities for intelligence considering wireless IoT de-

Hadeel Alazzam, Orieb AbnAlghanam, and Ahmad Sharieh. Best path in

Wang:2022:CBT

Gonzalez-Sanchez:2022:PMO

Cao:2022:HCJ

Mao:2022:MBE

Jain:2022:MLE

Teimourian:2022:PWE

Ishwarya:2022:PER

REFERENCES

Long:2022:DYP

Pu:2022:AFR

Zeutouo:2022:HPC

Karthik:2022:SUB

Banaei:2022:EFS

Yan:2022:DWS

Chen:2022:PXQ

REFERENCES

REFERENCES

REFERENCES

Madera-Ramirez:2022:CGB

Fakhouri:2022:SHI

Wan:2022:FCS

Freire:2022:TSC

Wen:2022:CSO

Kumar:2022:CSM

Yadav:2022:PEN

REFERENCES

Liu:2022:LNN

Li:2022:AHB

Sun:2022:IIS

Nath:2022:CDM

Xu:2022:LEA

[1302] Leila Dehbozorgi, Reza Sabbaghi-Nadooshan, and Alireza Kashaninia. Realization of processing-in-memory...
REFERENCES

Peng:2022:ALF

Peng:2022:CAL

Khallouli:2022:CRS

Gupta:2022:UHE

Kady:2022:ASL

Wang:2022:EGE

Wang:2022:NPD

[1309] Dongmei Wang, Yiwen Liang, and Xinmin Yang. NKA: a pathogen dose-

Xie:2022:PDA

Xie:2022:CPE

Garcia-Molla:2022:PSD

Yang:2022:SCM

Xu:2022:HQG

Morinigo:2022:ERT

Zhao:2022:OCB

Balakrishnan:2022:DLA

Chen:2022:ODA

Trueman:2022:GBM

Han:2022:SPL

Zhu:2022:RRF

Kadry:2022:ADA

REFERENCES

Durai:2022:CPP

Bernal:2022:ECI

Fuentes-Alventosa:2022:CEG

Beri:2022:NFC

Toshpulatov:2022:HPH

Hoffmann:2022:ORP

Durai:2022:NAE

Baranwal:2022:TTR

Jin:2022:ODM

Keshvari:2022:CBS

Zhang:2022:UAR

Nayak:2022:TST

Li:2022:TSD

Saxena:2022:OTO

Rajasekar:2022:FDD

Bravo-Montes:2022:DIE

Goncalves:2022:ELL

Najafimehr:2022:HML

Abdelghani:2022:DSM

Safari:2022:LTA

[1351] Sun-Yuan Hsieh, Chih-Wei Hsu, and Geng-Hua Zhang. Novel scheme for reducing communication data traffic in

Hsieh:2022:NSR

Razzaghi:2022:NST

Ma:2022:ABF

Khan:2022:DED

Tang:2022:OHD

Shan:2022:MPN

Salunkhe:2022:EOC

Yuan:2022:IBP

REFERENCES

Wu:2022:MMD

Reddy:2022:NEH

Shariq:2022:AAS

Shariq:2022:CAA

Ghuli:2022:ESE

Alqahtani:2022:AQE

Panahnejad:2022:ADK

Nagendranth:2022:TIF

Chhabra:2022:OBT

Morillo:2022:HPM

Poornima:2022:HPI

Kim:2022:PPE

Refaee:2022:CSI

Xiang:2022:CTM
Hua Xiang. The collection of theater music data and genre recognition under the Internet of Things.

REFERENCES

Jin:2022:PTT

Ying:2022:EHO

Sharifian:2022:LNP

Tian:2022:CEI

Liu:2022:UNN

Narasimhulu:2022:NSB

Huang:2022:PHP

[1400] Zhi-Bin Huang, Guang-Tao Fu, and Wu-Bing Yang. A parallel high-precision critical point detection and location for large-scale 3D flow field on the GPU. *The Journal of Supercomputing*, 78(7):9642–

REFERENCES

253

Wan:2022:DRM

Wang:2022:IST

Zhou:2022:RAB

Yuan:2022:EMR

Andola:2022:SEC

Clemente:2022:AES

Yang:2022:RCD

Wang:2022:RDD

Liang:2022:TCT

Perrot:2022:HSM

Sadr:2022:ATA

Kandan:2022:QOA

Ashraf:2022:SOU

Mehdi:2022:FEM

Hassan:2022:FGA

Sattar:2022:SDL

Tan:2022:SAM

Patel:2022:HCL

Shenbagalakshmi:2022:AML

Yang:2022:IAB

Mohanta:2022:ALA

REFERENCES

Martinez:2022:HOS

Mahdavimoghadam:2022:IRL

Senagi:2022:PCR

Wang:2022:EII

Zhang:2022:ABC

Karaata:2022:RCM

Vinoth:2022:IML

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1485] K. Venkatesh and D. Narasimhan. Revealing the novel precise sub-

REFERENCES

REFERENCES

Ye:2022:FFL

Ye:2022:CFF

Chang:2022:AIA

Ye:2022:IBA

Zheng:2022:DAC

Melo:2022:PAE

Chen:2022:BGP

Praharenka:2022:VDC

Packiaraj:2022:HFD

Li:2022:WSR

Wang:2022:TTA

Lakzaei:2022:JCR

Hu:2022:ABC

Chaudhary:2022:SIA

Balakrishna:2022:DAT

Vinicius:2022:DPA

Dolbeau:2022:CTP

Hamid:2022:CAT

Liang:2022:RLR

Liu:2022:IPP

Mechouche:2022:CCA

Niu:2022:DOL

[1535] Yanbiao Niu, Xuefeng Yan, and Yanzhao Niu. Dynamic opposite learn-
REFERENCES

[1549] Sergio Moreno-Álvarez, Mercedes E. Paoletti, and Juan M. Haut. Hetero-

Rui Miao, Hongxu Jiang, and Xiaobin Li. High anti-interference and FPGA-oriented method for real-time ship detection based on structured LBP features. *The Jour-
REFERENCES

REFERENCES

[1577] Ping Guo and Yicheng Jiang. An improved ant-based heuristic approach for solving the longest cycle problem.
REFERENCES

[1584] Yun Wang, Lu Huang, and Austin Lin Yee. Full-convolution Siamese network algorithm under deep learning used in tracking of facial video
REFERENCES

She:2022:ELO

Mittal:2022:PEO

Zioviris:2022:CCF

Yang:2022:ISC

Yu:2022:SPC

Sabique:2022:SBF

Nayak:2022:ELM

Mageshkumar:2022:ISF

Ikram:2022:IEV

Anglada:2022:DSR

Song:2022:PDI

Yadav:2022:EEP

[1612] Rakhi Sharma and Shail Kumar Dinkar. A novel social deep autoencoder NMF incentive scheme to detect a selfish node in delay tolerant network. *The Jour-
REFERENCES

[1619] Reyhaneh Ameri, Mohammad Reza Meybodi, and Mohammad Mehdi Daliri Khomami. Cellular Goore Game

[1626] Changqing Gong, Ting Wang, and Han Qi. A quantum approximate optimization algorithm for solving

REFERENCES

Kalaiarasi:2022:PEC

Pashaei:2022:HBA

Shayegan:2022:EVS

Ji:2022:EAS

Zhang:2022:EAH

Belloch:2022:MIM

Bahig:2022:SWF

REFERENCES

287

Ruan:2022:ACD

Marchang:2022:TRU

Zhang:2022:SHI

Alshawish:2022:EMA

Song:2022:HPB

Devassy:2022:NNB

Kaviani:2022:CCQ

REFERENCES

Kumar:2022:RRA

Ponnesamy:2022:DAT

Cheng:2022:DSA

Xiao:2022:ISE

Lei:2022:GGE

Chung:2022:EEE

Ardakani:2022:DSA

[1660] Mahdi Maleknasab Ardakani, Mohammad Ali Tabarzad, and Mohammad Amin Shayegan. Detecting sybil attacks in vehicular ad hoc networks using fuzzy logic and arithmetic optimization algorithm. The Jour-
REFERENCES

Hu:2022:MRU

Sun:2022:SAG

Sultana:2022:ERM

Li:2022:HDI

Zhao:2022:ECS

Yang:2022:CIS

Liu:2022:EAA

[1674] Xi Liu, Jun Liu, and Hong Wu. Energy-aware allocation for delay-sensitive multitask in mobile edge computing. *The Journal of Supercom-

Battula:2022:BBF

Hajian:2022:LAK

Wu:2022:ONR

Priya:2022:DDB

Patil:2022:DLM

Liu:2022:DDS

Barriga:2022:ADM

References

Huang:2022:PPP

Gupta:2022:LDA

Gong:2022:NAD

Ghosh:2022:RRA

Bala:2022:TCP

Hariri:2022:HAS

Faraji-Mehmandar:2022:SLA

REFERENCES

REFERENCES

Masoumi:2022:SAA

Li:2022:CRF

Binbusayyis:2022:ICM

Yu:2022:NIR

Gao:2022:FSP

Liu:2022:OMT

[1709] Xi Liu and Jun Liu. An online mechanism for task allocation and pricing in crowd sensing systems. The
REFERENCES

[1716] Yong Zhong, Liang Chen, Changlin Dan, and Amin Rezaeipanah. A systematic survey of data mining and big data analysis in Internet of Things. The
REFERENCES

Ghadamgahi:2022:NTA

Paliwal:2022:MAB

Huan:2022:RSI

Wang:2022:PJF

Bukhari:2022:EVC

Fang:2022:APM

Zheng Fang, Bichao Ye, Bingan Yuan, Tingjun Wang, Shuo Zhong, Shunren Li, and Jianyi Zheng. Angle prediction model when the imaging plane is tilted about z-axis. The Journal of Supercomputing, 78(17):18598–18615, November 2022. CODEN JOSUED. ISSN 0920-8542 (print),

Sindhu:2022:WCS

Wang:2022:VNS

Gao:2022:UCT

Lin:2022:ADT

He:2022:RDI

Tian:2022:EAS

Chen:2022:NNN

[1743] Sepide Masoudi and Faramarz Safi-Esfahani. SM@RMFFOG: sensor mining at resource management framework of fog computing. *The Jour-
REFERENCES

301

Bai:2022:IBT

Gan:2022:CNN

Chuang:2022:PAE

Kang:2022:PAO

Zhou:2022:IOI

Jiang:2022:AIE

Teijeiro:2022:LCT
Qu:2022:TSL

Yang:2022:EDO

Patidar:2022:EAB

Tavakoli-Zaniani:2022:IHM

Kuranga:2022:PSO

You:2022:TRI

Han:2022:SMM
Abasabadi:2022:HFS

Dhinakaran:2022:CPD

Zhao:2023:KKG

Alam:2023:EFE

Markovic:2023:VST

Malekijou:2023:LBA

Li:2023:BBS

Dun Li, Dezhi Han, Noel Crespi, Roberto Minerva, and Kuan-Ching

Gupta:2023:FIS

Bao:2023:APC

Bitalebi:2023:CAP

Su:2023:CIN

Kamanga:2023:MCD

Kaur:2023:EEP

Kaur:2023:NAB

Yang:2023:LBD

Wang:2023:ERM

Ibrahim:2023:NFT

Zheng:2023:IFL

Xiang:2023:DFF

Imani:2023:FBW

REFERENCES

Zhao:2023:ISR

Yang:2023:IAM

Truong:2023:PUA

Imine:2023:DFD

Singh:2023:MON

[1797] Manish Kumar Singh, Amit Choudhary, Sandeep Gulia, and Anurag Verma. Multi-objective NSGA–II optimization framework for UAV path

Lu:2023:RIG

Shan:2023:DDR

Zhang:2023:DSS

Sririsha:2023:CVQ

Yu:2023:NWO

Kim:2023:DFA

Mazzonetto:2023:TDH

[1811] Qinglin Yang, Taiyu Wang, Kaim-
Ouyang:2023:TRB

Ren:2023:MBM

Almanza-Ruiz:2023:PPM

Chang:2023:NAM

Wang:2023:MOP

Jeong:2023:CRF

Jahanshahi:2023:USB

Nematpour:2023:EGA

Xia:2023:CMA

Khan:2023:DLB

Pasini:2023:SPT

Rahmanian:2023:TCG

Sarah Bolton, Richard Dill, Michael R. Grimaila, and Douglas Hodson. ADS-B classification using multivariate long short-term memory-fully convolutional networks and data re-
REFERENCES

[1872] G. K. Ragesh and Ajay Kumar. Trust-based secure routing and mes-

Wu:2023:LTA

Xiao:2023:EES

Dizaji:2023:WGA

Bevara:2023:DEQ

Liu:2023:PPE

Rajasekar:2023:LRG

Dinachali:2023:PAO

[1879] Bijan Pourghorbani Dinachali, Sam Jabbehdari, and Hamid Haj Seyyed

Li:2023:IMM

Baysal:2023:BTA

Xie:2023:NIM

Kumar:2023:HRH

Chen:2023:PLL

Zhang:2023:NII

Ba:2023:SSC

Lina Ba, Hailun Wu, and Heping Zhang. Star-structure con-

REFERENCES

Jeong:2023:ELC

Zhang:2023:DAU

Gong:2023:SOG

Aghamohammadpour:2023:ATH

Zhao:2023:ICD

REFERENCES

Sait:2023:OFB

Kalsoom:2023:SMF

Siegel:2023:RGR

Zhao:2023:EPM

Liu:2023:AAI

Dezhkam:2023:BBC

Lima:2023:PMA

Shirmohammadi:2023:CRN

Justus:2023:RAS

Shanker:2023:RRE

Gaudiani:2023:CMA

Wang:2023:FGF

Benachour:2023:FPA

REFERENCES

REFERENCES

Kanisha:2023:RNS

Hui:2023:RNM

Kim:2023:RNS

Cho:2023:GCF

Yan:2023:IHM

Xu:2023:FSF

Huang:2023:CAR

Osamy:2023:TTA

Ali:2023:DUE

Lee:2023:DAM

Qiao:2023:EFT

Elleuch:2023:CCI

Yang:2023:RPT

Shabir:2023:FMA

[2002] Balawal Shabir, Anis U. Rahman, Asad Waqar Malik, Rajkumar Buyya,

REFERENCES

Singh:2023:IMC

Chen:2023:NMP

Khalili:2023:SSS

Funika:2023:ACR

Kumar:2023:OLL

Haimour:2023:ACA

Tran:2023:NML

[2023] Duy Thanh Tran and Jun-Ho Huh. New machine learning model based on the time factor for e-commerce

Åldabbas:2023:EBA

Nandhini:2023:ERA

Qiu:2023:VNF

Sadeghi:2023:ICC

Yoon:2023:WDH

Khanal:2023:SLQ

REFERENCES

[2043] Iago Richard Rodrigues, Marrone Dan tas, Assis T. de Oliveira Filho, Gibson Barbosa, Daniel Bezerra, Ricardo Souza, Maria Valéria Marquezini, Patricia Takako Endo, Judith Kerner, and Djamel Sadok. A framework for robotic arm pose estima-

Gao:2023:OPT

Zhou:2023:UNL

Xu:2023:ETS

Sardroud:2023:GND

Egrioglu:2023:NGA

Xue:2023:DBO

Aghazadeh:2023:AMB

 REFERENCES

Hammami:2023:NEL

Ahmad:2023:HCA

Cheng:2023:PFP

Zheng:2023:AIA

Savio:2023:ALA

Li:2023:CEA

Garea:2023:HCO
[2057] Alberto S. Garea, Dora B. Heras, Francisco Argüello, and Begüm Demir. A hybrid CUDA, OpenMP, and MPI parallel TCA-based domain adaptation for classification of very high-resolution remote sensing images.
REFERENCES

Shilpi:2023:OSN

Jing:2023:RID

Varma:2023:ISP

Rocher-Gonzalez:2023:CMH

Tirandazi:2023:RSI

Kumar:2023:SSD

Tian:2023:CCC

Uelinton da Silva:2023:POO

Fuentes-Alventosa:2023:GHO

García-Nava:2023:FTT

Yu:2023:RSC

Paramasivam:2023:CEC
Suguna Paramasivam and R. Leela Velusamy. Cor-ENTC: correlation with ensemble approach for network

Zhang:2023:SEM

Abdollahizad:2023:SEA

Yi:2023:DME

Liang:2023:PEM

Guo:2023:NOA

Perez-Wohlfeil:2023:IAA

Liang:2023:PEM

[2112] Thi-Ngot Pham, Viet-Hoan Nguyen, and Jun-Ho Huh. Integration of im-

Yu:2023:WSR

Luo:2023:MTL

Idrees:2023:ECT

Liao:2023:TKE

Sadiq:2023:SEC

Barve:2023:DCO

REFERENCES

REFERENCES

Seo:2023:DFI

Belgacem:2023:MLM

Shaji:2023:HPF

Garcia:2023:IDD

Wei:2023:LSC

He:2023:DDM

Wei:2023:LCG
Junlin Wei, Jinrong Jiang, Hailong Liu, Feng Zhang, Pengfei Lin, Pengfei Wang, Yongqiang Yu, Xuebin Chi, Lian Zhao, Mengrong Ding, Yiwen Li, Zipeng Yu, Weipeng Zheng, and
REFERENCES

Dolz:2023:PET

Itoo:2023:RRK

deCastro:2023:IME

Cai:2023:CSN

Garcia-Molla:2023:PBT

Zhou:2023:EGD

Liang:2023:EFD

Ye:2023:SCL

Uzer:2023:NFS

Wang:2023:SGS

Zhao:2023:PRT

Radaideh:2023:PCB

Chen:2023:LLO

REFERENCES

[2173] D. Vinoth and P. Prabhavathy. Correction to: An intelligent machine learning-based sarcasm detection and classification model on social net-

Hassan:2023:CFG

Pu:2023:RNA

Moayed:2023:EPM

Fang:2023:PCS

Sabelfeld:2023:PIR

Fang:2023:PCS

Dolz:2023:EPW

Abdelkhalek:2023:ACI

Seghir:2023:IDF

Li:2023:RAD

Karozis:2023:MNH

Dang:2023:IYR

Dai:2023:CPM
REFERENCES

REFERENCES

[2200] Indu Singh and Rajni Jindal. Trust factor-based analysis of user behav-

Kim:2023:NSA

Li:2023:GGS

Alharbi:2023:NUE

Guo:2023:TLC

Sethi:2023:SCT

Khanna:2023:DPA

Galiano:2023:UDL

REFERENCES

Mirhosseini:2023:FMS

Merdassi:2023:NLA

Meng:2023:GRB

Elbaghazaoui:2023:PNW

Ebrahimpour:2023:HBP

Selvi:2023:ERS

Saini:2023:CNF
REFERENCES

REFERENCES

Zagan:2023:FIH

Kayali:2023:MLB

Trivedi:2023:SAK

Thungon:2023:LCB

Lopez:2023:FTQ

Liu:2023:TAV

Nekouie:2023:MFS
REFERENCES

Yousef:2023:MBM

Jesus:2023:GPA

Ukken:2023:SAB

Wang:2023:PAQ

Gao:2023:CCM

Gong:2023:SNS

REFERENCES

REFERENCES

Li:2023:CCO

Reddy:2023:EER

Eskandari:2023:BTW

BenAmor:2023:SLM

Xu:2023:RSP

Kasturi:2023:OOS

Sun:2023:RAE
REFERENCES

Zhen:2023:FWS

Cai:2023:PTM

Zhang:2023:MAA

Rafiee:2023:FMC

Guaman:2023:EEC

Zhu:2023:CEL

Bustos:2023:RHH

Fu:2023:PEM

Machovec:2023:SMS

Zhou:2023:SUH

Wang:2023:RNA

Yue:2023:RNR

Ye:2023:AFA

[2308] Pranava K. Jha. Vertex transi-
tivity and distance metric of the
quad-cube. The Journal of Su-
percomputing, 79(13):13952–13970,
September 2023. CODEN JOSUED.
ISSN 0920-8542 (print),
1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05181-8.

[2309] Yigit Çagatay Kuyu and Fahri Vatan-
sever. A conceptual investiga-
tion of the effect of random num-
bers over the performance of meta-
heuristic algorithms. The Jour-
nal of Supercomputing, 79(13):
13971–14038, September 2023.
CODEN JOSUED. ISSN 0920-8542
(print), 1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05111-8.

[2310] Daniel Precioso and David Gómez-
Ullate. Thresholding methods in non-
intrusive load monitoring. The Jour-
nal of Supercomputing, 79(13):
14039–14062, September 2023.
CODEN JOSUED. ISSN 0920-8542
(print), 1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05149-8.

[2311] Nikita Singh. CPU power and net-
work bandwidth-aware optimal block
size computation for blockchain-based
applications using meta-heuristic al-
gorithms. The Journal of Su-
percomputing, 79(13):14063–14078,
September 2023. CODEN JOSUED.
ISSN 0920-8542 (print),
1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05170-x.

[2312] Changyong Yu, Huimin Liu, Fazal Wa-
hab, Zihan Ling, Tianmei Ren, Haitao
Ma, and Yuhai Zhao. Global trian-
gle estimation based on first edge sam-
ping in large graph streams. The Jour-
nal of Supercomputing, 79(13):
14079–14116, September 2023.
CODEN JOSUED. ISSN 0920-8542
(print), 1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05205-3.

[2313] Raghav, Nitish Andola, Katyayani
Verma, S. Venkatesan, and Shekhar
Verma. Proactive threshold-proxy
re-encryption scheme for secure data
sharing on cloud. The Journal of Su-
percomputing, 79(13):14117–14145,
September 2023. CODEN JOSUED.
ISSN 0920-8542 (print),
1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05221-3. See cor-
rection [2439].

[2314] Jing Zhang and Chuanwen Li. A
practical privacy-preserving nearest
neighbor searching method over en-
crypted spatial data. The Journal of Su-
percomputing, 79(13):14146–14171,
September 2023. CODEN JOSUED.
ISSN 0920-8542 (print),
1573-0484 (electronic). URL https:
//link.springer.com/article/10.
1007/s11227-023-05149-8.
REFERENCES

Zhang:2023:CLC

Golrasan:2023:PCM

Liang:2023:MMB

Abdi:2023:IIS

Maronas:2023:MNE

Zhang:2023:LLO

Cabanas-Molero:2023:MDM

[2321] Pablo Cabañas-Molero, Antonio J. Muñoz-Montoro, Pedro Vera-Candeas, and José Ranilla. The music demixing machine: toward real-time remixing of classical music. The Jour-
REFERENCES

[Jaberi:2023:PPM]

[Zadehbagheri:2023:ECO]

[Javidi:2023:NNM]

[Braik:2023:EWO]

[Xu:2023:EIP]

REFERENCES

Dewangan:2023:TBS

Ouyang:2023:UUR

Cheng:2023:PCB

Bai:2023:YAO

Tyagi:2023:GWH

Sachan:2023:EHA

Asghari:2023:EAE

[2341] Ali Asghari, Marjan Sayadi, and Hossein Azgomi. Energy-aware edge server placement using the improved butterfly optimization algorithm. The Jour-
REFERENCES

Soltani:2023:FNF

Zhao:2023:NCP

Feng:2023:BBB

He:2023:TPD

Sharma:2023:RFL

Ajmera:2023:SPS

Jiang:2023:DND

[2368] Aditya Gupta, Monu Bhagat, and

Cheng:2023:NIC

Talaat:2023:EAV

Wang:2023:DSG

Zhang:2023:RAM

Liu:2023:FEC

Zhou:2023:HMA

Xinrong Zhou, Fang Wang, Chao Zhou, and Rui Shan. The HSGWO-MPIO algorithm based on improved

Al-hajjar:2023:OML

Mars:2023:SAA

Xiong:2023:IOA

Louati:2023:ECP

Bakhtiari:2023:TTW

Ashraf:2023:LAS

St-Onge:2023:MOF

[Bhan:2023:BES]

[Chen:2023:POM]

[Wang:2023:EDP]

[Karotia:2023:CUT]

[Jayanthan:2023:ACT]

[Chauhan:2023:NCM]

[2408] Subha Ghosh and Debashis De. DewGame: D2D communication enabled dew computing for 5G IoT using coalition formation game. *The
Huang:2023:TVC

Singh:2023:FTP

Meshram:2023:ECG

Khedr:2023:HDJ

Hussein:2023:DPC

Emil:2023:DEA

Mohammadzadeh:2023:STP

Mukherjee:2023:MSM

Mora:2023:AAI

Yan:2023:TCI

Naim:2023:NCS

Jazaeri:2023:CCC

Alonso-Mencia:2023:ACV

