
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

01 July 2023
Version 3.18

Title word cross-reference

[282]. 1 [664]. 2 [664]. \(A^*\) [592, 1245]. \(\alpha\) [601]. \(C\) [732, 1126, 2328]. \(D\) [325]. \(\delta\) [421]. \(g\) [1308, 2047]. \(h\) [1298, 1631, 2097]. \(H_\infty\) [763, 1570]. \(K\) [312, 727, 788, 980, 1167, 1210, 1249, 1310, 1311, 1384, 1453, 1659, 2171, 2294].
\(k\alpha\) [1750]. \(l\) [1167]. \(L_2\) [1153]. \(N\) [960]. \(N\) [1018, 1310, 1311, 1317, 1631, 2281, 2294].
\(O(\log_2 N)\) [1298]. \(P_k\) [1643]. \(Q\) [626, 1769, 1959]. \(QR\) [454]. \(R\) [30]. \(s^+\) [2077].
\(\sigma\) [1015]. \(t/s\) [1310, 1311]. \(\tau\) [1493]. \(Z\) [1275, 1722].

-SVM [1153]. -Transitive [421]. -version [960].
Adjusting [257, 258, 1528, 1748, 1973].
adjustment [1858]. Admission [1630].
ADMM [828]. ADOL [526]. Adoption
[586, 819, 849, 956, 1209, 1498]. ADS [1851].
ADS-B [1851]. Advanced [55, 106, 183, 827,
922, 1351, 1372, 1428, 1681, 1729, 2160].
adversarial [358, 462, 1028, 1817, 1836, 1875,
1969, 2041, 2209, 2293, 2297]. advertisement
[2344]. advertisements [1958]. AEGA
[2276]. Aerial [156, 719, 1254, 1593, 2303].
aeroacoustics [1395]. AES [1878, 2006].
affine [1960]. affinity [1595, 1673]. AFI
[347]. after [918]. against
[287, 364, 373, 451, 464, 1036, 1956, 2112, 2206].
age [314, 859, 1323, 1324, 2300]. age-based
[2300]. age-related [1323]. age-structured
[1324]. Agent [160, 193, 253, 342, 367, 1016,
1266, 1430, 1718, 1809, 2002, 2175].
Agent-based [193, 367, 2175]. agents
[582, 628, 719]. agglomeration [1266].
agglomerative [722]. aggrandized [1747].
aggregate [601, 1659, 2334]. aggregates
[12]. aggregation [201, 504, 718, 1070, 1108,
1118, 1265, 1557, 1683, 1870, 1905, 2166, 2306].
Aggressive [1972, 2035]. agile [840]. aging
[591, 1529]. agreement
[651, 739, 827, 863, 1034, 1095, 1199, 1239,
1374, 1495, 1524, 1676, 1911, 2206].
agricultural
[616, 1091, 1242, 1447, 1589, 1938, 2322].
agriculture [552]. AGV [1171]. ahead
[927, 945]. AHP [542, 928, 1237, 1396, 1777].
AHP-based [1777]. AHP-TOPSIS
[1237, 1396]. AHP-TOPSIS-based
[542, 928]. AI
[217, 594, 660, 724, 847, 1403, 1554, 1998].
AI-based [594, 724]. AI-enabled
[217, 1554]. aided
[99, 146, 412, 793, 1401, 2264]. AIEMLA
[1038]. AIOps [2211]. AIoT [1182]. Air
[101, 182, 312, 327, 686, 709, 740]. Airbnb
[1023]. aircraft [2076]. ALADMM [828].
algae [2205]. Algorithm
[4, 21, 43, 94, 107, 161, 194, 198, 226, 234, 277,
auscultatory [343]. authentic [2080]. Authenticated [1044, 1199, 1495, 1525, 1895, 2079].

authors [406]. autism [618, 1477]. autism [618, 1477].

averted [1860]. avoidance [780, 1002, 1274, 1488, 1607, 2000]. AVR [711].
1159, 1267, 1279, 1305, 1459, 1468, 1523, 1528, 1557, 2006, 2169, 2171, 2242, 2284, 2339.
cluster-based [69, 922, 1459, 1557, 2006].
cluster-tree-based [755]. clusterCL [503].
classes
25, 82, 94, 388, 455, 501, 503, 562, 581, 608, 643, 901, 1221, 1376, 1429, 1488, 1624, 1784].
cn
[1464]. CMO-COOT [1371]. CMODLB [855]. CMOS [1039].
CNTFET-based [898]. Co
[171, 989, 1119, 1173, 2315]. Co-designing [989]. co-occurrence [171, 1119].
co-scheduling [2315]. co-training [1173].
CoAP-based [242]. coarse [125, 1108].
coarse-grained [125]. Code
[225, 281, 291, 290, 306, 647, 809, 949, 1014, 1054, 1330, 1416, 1680, 1883, 2218].
coefficient [1075]. coefficients [1647].
CoFB [2315]. Cognitive
[15, 16, 35, 43, 48, 313, 329, 582, 1526, 1685].
coherence [1609]. cohesion [438]. cohorts [777].
cold [1782, 2239]. cold-start [1782].
collaboration [152, 1444]. Collaborative
collaborative-based [3, 1991]. Collatz
[623]. collected [1006]. collection
[234, 378, 626, 1386, 1402, 1927].
collusive [387]. Colony
[42, 230, 244, 361, 371, 477, 592, 781, 1047, 1293, 1380, 2054].
Color
[202, 453, 672, 802, 1440, 1825, 1841].
colorectal [876]. coloring [697, 1795, 2010].
column [1088]. column-wise [1088].
combat [1596]. combating [1745].
combination [305, 1163, 1190, 2328].
Combinatorial [338, 954, 1517]. Combined
campaign [1620, 1982].
command-and-control [1982].
commander [1998]. commensal [937].
Comment [278]. commerce [2023].
commercial [2189]. committee [1915].
commodity [472]. communicating [381].
communication-aware [474].
Communication-efficient [2300].
communication-intensive [363].
communications [731]. communities
[752]. Community [24, 152, 402, 447, 604, 754, 937, 974, 1122, 1403, 1423, 1889].
community-based [604]. CoMoDa [1389].
CoMP [415]. compaction [905].
companion [1500]. Comparative
[145, 433, 654, 803, 804, 964, 1164, 1204, 1318, 1531, 1542, 1843, 1871, 2226].
comparator
[703, 1725]. comparators [841].
Comparing [2186]. comparison
[619, 644, 764, 1144, 1177, 1547, 1705].
compatibility [159, 1009]. compatible [71].
compensation [658, 948, 1825, 2266].
competing [1583]. competitive
[318, 1710, 2257]. Compilation
[360, 1093, 2177]. Compiler [1068].
high-power [1191]. high-precision [1400].

high-Q [1039]. high-quality [928, 1315].

high-recall [400]. high-resolution [2057].

High-speed [191, 898, 1142, 1759].

high-throughput [2323]. high-utility [1356].

Highly [605, 722, 739, 1429, 1469, 2095, 2212].

highway [571]. Hilbert [1622]. hill [336, 2179]. hill-climbing [2179].

HIN-based [2231]. HiperView [975].

histogram [271]. histological [876].

histopathological [558]. History [1012, 1290].

HMAC [1883]. HMAC-R [1883].

HOG [195]. hole [396]. holistic [822]. home [155, 1036, 1052, 1403, 1426, 1483].

homotopy [1161]. Hop [122, 329, 638, 1033, 2145].

Hopfield [364]. horizon [119, 2096].

horizontal [398, 1416]. horizontally [2322].

Horn [1670]. host [513]. hosted [1413]. hot [1350, 2138].

Householder [454]. HP [1436].

HPC [6, 20, 234, 553, 649, 690, 764, 785, 859, 957, 989, 1131, 1572, 1739, 1984, 2064, 2184, 2301].

HPC-systems [989]. Hpecfolder [1086].

HPDMS [123]. HPM [912, 913]. HPMC [1699].

HPT [367]. HRV [1559]. HS6 [1014].

HSAC [828]. HSAC-ALADMM [828].

human-computer [2125].

human-robot [1623, 1762, 1867, 2224].

Hybrid-based [1313]. HybridDroid [833]. hydraulic [1940].

hydropower [1928]. hygienic [218]. HyPar [1515, 2225].

HyPar-FCA [1515, 2225]. hyper [342, 1598]. hyper-parameters [1598].

hyper-spectral [342]. Hyperbolic [1621].

hypercube [376, 1308, 1999, 2097].

hypercubes [673, 682, 1886, 1985].

hyperelliptic [1090]. Hypergraph [304, 972, 1651].

Hypergraph-partitioning-based [1651].

hyperledger [1512, 1864]. hypernetwork [1982].

hyperparameter [558, 2183].

hyperspectral [459, 484, 738, 869, 900, 1024].

hyperthreading [386]. hypervisor [49].

hypervolume [396]. hypotheses [1341].

hypothesis [1936]. hysteroscopic [1460].

I/O [722, 948, 994, 1627, 1628, 2064]. IaaS [107, 1687, 1689]. IAP [2139].

ICD [2260]. ICD-10 [2260]. ICP [565]. ICT [690]. ID [1854].

ID-based [1854]. IDCOS [914].

Identification [457, 663, 779, 851, 1185, 1485, 1535, 1614, 1762, 1835, 1907, 1964, 2041, 2190, 2273, 2326].

identifying [106, 1527].

Identity [1162, 1183, 1184, 1365].

Identity-based [1162, 1365].

IDPC [390]. IDS [1392]. IEEE [122].

IHP [523]. II [911, 1380, 1547, 1797]. II [521].

IOT [509, 1441]. IIoTs [1830]. IIR [1535].

ILB [1808]. ill [870]. ill-conditioned

illness [476]. illumination [145].
illuminaton-invariant [145]. ILP [622].

multi-scale [70, 203, 1340, 1550, 1719, 1846].
Multi-sensor [53, 109, 1277].
Multi-sensor-based [425]. multi-server
[1239, 1793]. multi-source [1779].
multi-sourced [887]. Multi-spectral [629].
[50, 2302]. multi-task [375, 694, 2114].
[1124]. multi-UAV [524, 1132]. multi-UAVs
[1414]. multi-user [272, 480, 1711].
multi-verse [1105, 1124, 1483]. Multi-view
[31, 465]. multi-wave [1724].
multibusiness [404]. multicast [1434, 2336].
multichannel [544, 1638]. multiclass
[965]. Multicore [450, 613, 973, 1157, 1160, 1177, 1221, 1321, 1638, 1689, 2010, 2046, 2150, 2163].
multidevice [2287]. multidimensional
[601, 1905]. multifactor [40].
Multifactorial [2003]. multifunctional
[1140]. multigrid [1108]. multilayer
[661, 820, 1213]. Multilevel [575, 782, 915, 924, 1303, 1304, 1474, 1859, 1883, 2296].
Multimedia [150, 252, 352, 1377, 1696].
Multimodal
[429, 478, 937, 1172, 1230, 2101, 2254].
multiobjective [1731, 2246]. MultiOff
[1617]. multiphase [632]. Multiple
multiple-response [1960]. multiplexer
[325, 535, 578, 1130, 1361]. multiplication
[89, 711, 746, 953, 1133, 1470, 1957, 2081].
multiplicative [2048]. multiplier
[1088, 1890]. multipliers [810]. multiply
[2202]. multipole [575]. multiprocessing
[233]. multiprocessor
[470, 916, 970, 1287, 1379, 1907].
multiprocesors [809, 860, 2277].
multiprojection [467]. multipublisher
[1965]. multiresolution [1924]. multiscale
[945, 1517, 1763]. Multisensor [112].
Multisource [196]. multistage [1594].
Multistep [860, 945, 1893].
multistep-ahead [495]. multitask
[478, 1674, 1965]. multithreaded [1068].
multithreading [1054, 1114]. multitype
[307]. multiuser [196]. Multivariate
[1408, 1656, 1851, 1894]. MultiView [1366].
multivocal [1881]. munion [529]. music
[423, 458, 544, 1386, 1774, 1779, 2016, 2321].
mutation [63, 744, 1000, 1192, 1391]. mutual
[699, 1034, 1061, 1232, 1273, 1650, 1700, 1911, 2291].
MV32 [1725]. MVDLSTM [1366].
MWPSO [1453]. myocardial [1145].
NADE [291]. Nadu [255]. NAEEMD
[1692]. Naive [724, 2030]. name [323].
named [59, 1274, 1667, 2295]. NAND
[511, 578, 1073]. nanites [781].
nanocomparator [1156]. nanocomputing
[1361]. nanoscale [96, 703, 2282, 2283].
nanotechnology [578]. NAS [2109].
nasopharyngeal [36]. national [832, 2184].
Natural
[282, 779, 981, 1309, 1595, 1673, 1754, 2103].
nature [635]. Navigar [1468]. Navigation
[592, 943, 1410]. NBA [1652]. ND [2103].
ND-S [2103]. Near
[909, 925, 973, 1470, 1635]. near-duplicate
[1635]. Near-infrared [925]. Near-optimal
[973]. near-sparse [1470]. nearest
[312, 601, 1659, 2314]. NEC [850]. neck
[1264]. needed [690]. needs [400].
needy [2156]. needy-students [2156].
NEEF [349]. negation [687].
negative [389, 960, 1826]. negotiation [141].
nighbor [2, 275, 312, 601, 738, 1595, 1659, 1673, 2047, 2103, 2314]. Neighborhood
[588, 681, 1185, 1731, 2246]. Nek5000 [1195].
nephropathy [1193]. NER [103].
NestMSA [471]. net
[474, 1127, 1401, 1520, 1974, 2045]. netflow
NodeRank [1147]. nodes [166, 291, 348, 604, 667, 753, 795, 892, 1147, 1257, 1491, 1645, 2169, 2269].
node [70, 1127]. nodules [45, 819]. Noise [27, 139, 1885]. Noise-insensitive [1885].
oisy [529, 826, 1903]. Non [166, 192, 278, 339, 389, 495, 667, 690, 695, 813, 858, 905, 1030, 1109, 1593, 1873, 2005, 2074, 2194, 2205, 2253, 2264, 2280].
on-English [495]. non-ICT [690]. non-inertial [813]. non-nuclear [1532].
norm [1532]. normal [1411]. normalization [634]. north [1160, 2292].
North-Last [1160]. northeast [2292].
northwest [2292].
non-MI-based [1666]. non-negotiating [2087].
umera...
queuing [315, 1457]. quotient [1857].
QVCO [1039].
R [101, 1343, 1646, 1883]. R-CNN
[1343, 1646]. R2T [991]. R2T-DSN [991].
races [27, 139]. RAD [2025]. radar
[250, 881, 2011]. RadHPO [2183]. radiation
[521, 1367, 2301]. radiative [705, 1704].
radical [200]. radio [15, 43, 313, 329].
radio-based [15]. RADL [815, 1580].
RAFALE [1641]. RAID [1014, 1855].
RAID-6 [1014, 1855]. railway [832].
rainbow [859]. rainfall [1817].
RainFormer [2001]. rainwater [1465].
RAM [1130, 1685]. Ramanujan [566].
randomized [1902, 2178]. randomness
[1511]. Range [250, 403, 638, 1244].
range-free [638]. Rank
[41, 541, 698, 1532, 2025]. ranked [1771].
ranking [72, 1275, 1320, 1707, 2166, 2267].
RAPCHI [1654]. rapid [465]. rare [818].
rat [507, 1996]. ratchets [657]. rate
[549, 862, 1070, 1544, 1579, 1609, 1744, 1858, 1931, 2202]. ratings [609, 1318]. ratio
[2053, 2074, 2210]. raw [418]. ray
[912, 913, 1745]. ray-tracing [912, 913].
RBF [1494]. RDAL [1226]. RDBMS [410].
RDF [322, 1670, 1980, 2334]. RDMP [1925].
Re [230, 663, 1185, 1964, 2079, 2273, 2313].
re-encryption [2313]. Re-engineering
[230]. re-identification
[663, 1185, 1964, 2273]. re-registration
[2079]. reactive [803, 804, 1396]. read [291].
readability [1163]. reading [767]. Ready

shares [2170]. sharing [176, 313, 680, 1345, 1640, 1694, 1788, 2099, 2313, 2318, 2335].
sharing-based [1640, 1694]. shedding [255].
shelf [1356]. shell [114]. shepherd [1502].
side-channel [1151]. sided [74]. sides [2331]. sieving [626]. sifter [185].
signs [2185]. silo [1870]. SIMD [86, 89, 237, 1832, 2331]. Similar [712, 2153].
Similarity [10, 56, 816, 1115, 1223, 1647, 1874, 2118].
SIMOF [2194]. Simple [488, 951, 1078, 1086, 1361, 1866]. simplex [496, 856]. Simplified [1565, 2079].
simulations [535, 554, 879, 1195, 1382, 1742, 1806].
SIP [136]. SIR [113, 1324]. SIR-F [1324].
smartwatch [556]. SMC [2077].
Smooth [2222]. SMR [2287]. SMS [1994].
SMVQ [225]. SN [2137]. snubber [1383].
social-aware [2317]. societal [1122]. SoCs [520, 1280]. Soft [620, 1215, 1379, 2031].
soft-core-based [1379]. Software

temperature-aware [1436]. temperatures [552]. template [1071, 2224].
template-based [1071]. temporal [98, 645, 692, 899, 1243, 1375, 1873, 2090, 2120].
temporal-aware [1873].

Terminal [576, 1003]. terms [1283, 1992].
ternary [315, 723, 1302, 1610, 1717, 1945].

Test [263, 799, 1440, 1715, 1837, 2038, 2044, 2167].
testicular [1213]. testing [305, 959, 1032, 1715]. tetrolet [102]. Text [747, 801, 952, 1163, 1291, 1314, 1447, 1655, 1771, 1850, 2032, 2073, 2137, 2197, 2243].
texture [2124]. textures [658]. TFMD [1342].

TFMD-SDVN [1342]. theater [1386].

their [100, 557, 767, 885]. theme [891].

theorem [957]. theoretic [573, 648].

Theoretical [1, 122, 1530, 2316]. theory [141, 148, 172, 279, 546, 616, 884, 968, 1411, 1454, 1457, 1579, 1732, 1762, 1830, 1937, 2330].

theory-based [2330]. therapies [328].

therapy [817]. Thermal [580, 860, 1350, 1588, 2194, 2253].

Thermal-aware [1350, 2194, 2253].

thermal-efficient [1588]. THIC [1442].

thick [1177]. thickness [911]. thing [1359].

Things-aided [99]. Things-based [878].

Things-driven [445]. Thinking [1048].
third [1766, 2206]. third-party [1766].

Thou [1416]. Threat [580, 671, 762, 1372, 1661, 1923, 2255].

Threats [119, 373, 485, 2230]. Three [390, 465, 510, 651, 716, 780, 836, 897, 917, 1192, 1316, 1341, 1455, 1543, 1733, 1919, 2028, 2143].

Three-dimensional [405, 716, 897, 1455, 2143].

Threshold [416, 889, 1475, 1973, 2252, 2289, 2313].

Threshold-based [416]. threshold-proxy [2313].

Thresholding [782, 924, 1303, 1474, 2124, 2310].

throughput [589, 2323]. thruster [1378].

THS [390]. THS-IDPC [390]. ThunderX2
REFERENCES

References

Dolbeau:2018:TPF

Li:2019:CFF

Kim:2019:SCM

REFERENCES

Hui:2019:MVT

Masdari:2020:ETW

Rybitsev:2020:OPL

Huang:2020:SEM

Yun:2020:EDP

NezhadShokouhi:2020:SDP

Wu:2020:LBD

Khan:2020:OHS

Fadishei:2020:CIA

[12] Hamid Fadishei and Azadeh Soltani. The curse of indecomposable aggregates for big data exploratory analysis
Ahmad:2020:UCB

Mohtavipour:2020:LEP

Kumar:2020:ICC

Chen:2020:CLP

Yang:2020:BBO

Nassiri:2020:JEQ

Kargar:2020:IMQ

Naghshnejad:2020:HSP

Mina Naghshnejad and Mukesh Singhal. A hybrid scheduling platform: a runtime prediction reliability aware

REFERENCES

REFERENCES

Sharma:2020:HTC

Hemanth:2020:ARS

Wang:2020:DTD

Sugumar:2020:MSR

Tiancheng:2020:UVM

Marques:2020:NCC

Zeng:2020:FCB

Weizheng:2020:QAM

Feng:2020:SAC

Dai:2020:ABN

Chinnasamy:2020:SDR

Guo:2020:DMA

Xia:2020:CEL

Abdel-Basset:2020:RLP

Vijayalakshmi:2020:UUS

Qi:2020:PNI

[70] Yongjun Qi, Junhua Gu, Weixun Li, Zepei Tian, Yajuan Zhang, and Juan-

Zhao:2020:PLD

Abrol:2020:SSF

Naeen:2020:SPB

Zhou:2020:FGS

Anonymous:2020:ENa

Barredo:2020:EAM

Saadi:2020:EGB

Jakobs:2020:PEC

Contreras:2020:ECA

[87] Antonio V. Contreras, Antonio Llanes, Francisco J. Herrera, Sergio Navarro,

Sadeghi:2020:NEF

Noorallahzadeh:2020:PPR

Hung:2020:EP

Park:2020:EDG

Wang:2020:EEI

Wu:2020:DMP

Yang:2020:ICB

Hsia:2020:CRM

Li:2020:WRN

Wei:2020:PPC

Shen:2020:GBI

Chen:2020:EDA

Kansal:2020:GAB

Liu:2020:GII

Yang:2020:EED

Kao:2020:SDD

Chang:2020:EEI

Wang:2020:MDF

Fan:2020:TLS

Cheng:2020:TSA

Shahid:2020:IRK

Anonymous:2020:ENb

Chang:2020:MIF

Wang:2020:VAM

Walker-Roberts:2020:THU

Ahmad:2020:SSV

Lee:2020:GPV

Hao:2020:TMP

Najjar-Ghabel:2020:HHP

Baranwal:2020:FIS

He:2020:SMO

Deng:2020:MRM

Rodriguez-Sanchez:2020:IEI

Abadi:2020:CSC

[128] Reza Mohamadi Bahram Abadi, Amir Masoud Rahmani, and Sasan Hossein Alizadeh. Challenges of server con-

Abadi:2020:CCS

Jiang:2020:EBD

Yu:2020:QEU

Zhao:2020:OTS

Varri:2020:SRS

Do:2020:NWS

Haghighi:2020:IRC

[144] Farooq Sunar Mahammad and V. Madh Viswanatham. Performance analysis of

Ma:2020:EWI

Fernandez-Cerero:2020:MDC

Kaur:2020:BCS

Lin:2020:CTA
[156] Chuen Horng Lin, Chia Ching Yu, Ting You Wang, and Tsung Yi Chen. Classification of the tree for aerial image using a deep convolution neural network and visual feature clustering.

Wan:2020:ECO

Dar:2020:CAE

Kumar:2020:ABC

Qadir:2020:NAM

Anonymous:2020:ENd

Chen:2020:EHP

Lv:2020:FFS

Gu:2020:AIL

Shi:2020:RCP

Xu:2020:ARS

Pan:2020:DGD

Weijun:2020:SSS

Shijun:2020:RMC

Wu:2020:HPS

Liang:2020:NGO

Li:2020:UMR

Ye:2020:AVI

Arun sundar:2020:AEC

Nikose:2020:CDA

Panwala:2020:ASS

Peng:2020:EAI

REFERENCES

Lee:2020:CUI

Lee:2020:DSL

Cuzzocrea:2020:RMA

Anonymous:2020:ENe

Liu:2020:HSP

Sun:2020:NDD

Pu:2020:ABS

Hu:2020:URF

Wang:2020:FER

Hao Wang, Senbing Wei, and Baofu Fang. Facial expression recognition us-
REFERENCES

Shao:2020:MHC

He:2020:FDN

Liu:2020:VAK

Li:2020:RER

Yue:2020:RDA

Shao:2020:CSD

Fang:2020:CFP

Jin:2020:DEI

Yang:2020:ECS

Yu:2020:RWS

Karthikeyan:2020:ECA

Wang:2020:RIA

Feng:2020:NEM

Suresh:2020:FDA

Reshmi:2020:PRA

Suresh:2020:HCD

REFERENCES

Sharmila:2020:AIS

Vignesh:2020:VCA

Nisha:2020:TFB

AlZubi:2020:BDA

Subramanium:2020:AET

Priya:2020:AFH

Aljawarneh:2020:GGD

Alarifi:2020:BDA

Cecilia:2020:REA

Griebler:2020:SIS

Rico-Gallego:2020:TAC

Rodriguez:2020:PMS

Ejjaaouani:2020:IPM

Rey:2020:SRC

Ghavidel:2020:HSE

Sun:2020:VP1

[237] Huihui Sun, Sergei Gorlatch, and Rongcai Zhao. Vectorizing programs with IF-statements for processors with
REFERENCES

Sun:2020:DAS

Bathla:2020:GBM

Hua:2020:OMP

Di:2020:CRS

Dong:2020:PCB

Sun:2020:GRO

Zhang:2020:RAF

Kishorekumar:2020:FSI

[263] Daeyong Jung, Daewon Lee, Myungil Kim, Hoyoon Kim, and Seung-Keun

REFERENCES

SUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Yue:2020:GOA

Tinetti:2020:LCP

Chheang:2020:NEL

Anonymous:2020:ENh

Srinivas:2020:PPB

Adewole:2020:TSA

He:2020:NPR

Fan:2020:ECS

Guo:2020:ABE

[288] Rui Guo, Xiong Li, Dong Zheng, and Yinghui Zhang. An attribute-based en-

[Ohberg:2020:HCG] Tomas Öhberg, August Ernstsson, and Christoph Kessler. Hybrid CPU–GPU execution support in the skele-

Preetha:2020:NDW

Mohan:2020:MBC

Kumaresan:2020:TVA

Cai:2020:CSL

Anonymous:2020:ENk

Jeong:2020:ABQ

Chen:2020:LDT

Shen:2020:SAI

Chang:2020:MGB

[313] Min-Kuan Chang, Yung-Jen Mei, Yu-Wei Chan, Mei-Yu Wu, and Wun-Ren

Akhatar:2020:ELG

Wang:2020:RTT

Chen:2020:ETS

Yen:2020:DRA

Kashikolaei:2020:ETS

Yong:2020:RMC

Yang:2020:CNL

Kang:2020:IIB

[321] Tsan-Ching Kang, Chia-Hsien Wen, Shih-Wei Guo, Wei-Yueh Chang, and

Bok:2020:PCS

Zhao:2020:ECL

Park:2020:WIM

Jeon:2020:LCQ

Ke:2020:OTS

Yen:2020:AIA

Lee:2020:ESP

Wang:2020:OAM

Dhas:2020:NCA
[330] P. Edwin Dhas and B. Sankara Go-
mathi. A novel clustering algorithm by
clubbing GHFCM and GWO for mi-
croarray gene data. The Journal of
Supercomputing, 76(8):5679–5693, Au-
gust 2020. CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484 (elec-
tronic).

Krishnamurthy:2020:PLI
[331] R. Krishnamurthy, T. Srinivas, and
I. S. Amiri. Physical layer impairment-
aware shared path protection in
wavelength-routed optical networks.
The Journal of Supercomputing, 76(8):
5694–5714, August 2020. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-
0484 (electronic).

Madhavi:2020:ELH
[332] Nachimuthu Madhavi and Muthusamy
Madheswaran. Enhanced lifetime of
heterogeneous wireless sensor net-
work using stable election protocol with
region-based energy-conscious sink move-
ment. The Journal of Supercom-
CODEN JOSUED. ISSN 0920-8542 (print),
1573-0484 (electronic).

Ponraj:2020:DEP
[333] Abraham Sudharson Ponraj and T. Vi-
gneswaran. Daily evapotranspiration
prediction using gradient boost regres-
sion model for irrigation planning.
The Journal of Supercomputing, 76(8):
5732–5744, August 2020. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-
0484 (electronic).

Munirathinam:2020:NIF
[334] Deepak Raj Munirathinam and Moh-
andasundaram Ranganadhan. A new
improved filter-based feature selection
model for high-dimensional data.
The Journal of Supercomputing, 76(8):
5745–5762, August 2020. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-
0484 (electronic).

Karthikeyan:2020:DIC
[335] S. Karthikeyan, K. Vimala Devi, and
K. Valarmathi. Design and imple-
mentation of CfoTS networks for indus-
trial fault detection and correction
mechanism. The Journal of Supercom-
CODEN JOSUED. ISSN 0920-8542
(print), 1573-0484 (electronic).

Sivakumar:2020:EHC
[336] R. Sivakumar and H. Mangalam. En-
ssemble hill climbing optimization in
adaptive cruise control for safe au-
tomated vehicle transportation. The
Journal of Supercomputing, 76(8):
5780–5800, August 2020. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-
0484 (electronic).

Deepa:2020:FSR
shape representation of a segmented
vessel tree and kernel-induced random
forest classifier for the efficient pre-
diction of lung cancer. The Jour-
nal of Supercomputing, 76(8):5801–
5824, August 2020. CODEN JO-
SUED. ISSN 0920-8542 (print), 1573-
0484 (electronic).
REFERENCES

Anulu:2020:CMH

Kumar:2020:ENC

Satpathy:2020:NHD

Thirumoorthy:2020:TCE

Kalidindi:2020:DBB

Mustafa:2020:DHS

Mandhula:2020:PCO

Kolandaisamy:2020:ASR

REFERENCES

5948–5970, August 2020. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Jung:2020:RPC

Kim:2020:TGE

Baek:2020:ESO

Heinrich:2020:HAU

Jo:2020:EPR

Kang:2020:TAR

Zhao:2020:PSC

Lee:2020:TBP
[416] Sang Il Lee and Seong Joon Yoo. Threshold-based portfolio: the role of

Chun:2020:DIK

Khan:2020:IFD

Jeong:2020:PML

Chen:2020:TCT

Lee:2020:EAE

Kim:2020:SMP

Han-Gyu Kim, Gil-Jin Jang, and Ho-Jin Choi. Speech and music pitch trajectory classification using re-

Jung:2020:IPA

Kim:2020:MSB

Battulga:2020:HTP

Kuang:2020:LCS

Kuang:2020:CLC

Lee:2020:MDL

Baek:2020:ARS

REFERENCES

Hou:2020:LCD

Lin:2020:CBF

Orts:2020:SUP

Shahbazian:2020:ODL

Duan:2020:DSS

Acharya:2020:DCN

Alzubi:2020:CDB
REFERENCES

Khamparia:2020:IHT

Safara:2020:PPB

Li:2020:BDD

Chang:2020:TSC

Vidhya:2020:MAN

Pantoja:2020:AMA

Dwivedi:2020:IEC

REFERENCES

Kehrer:2020:EEC

Raeisi-Varzaneh:2020:PNB

Roui:2020:ESS

Yang:2020:ILI

Jarrah:2020:NEH

Li:2020:MTP

Ding:2020:PCL

[494] Anqing Zhu. Spatiotemporal feature mining algorithm based on multiple minimum supports of pattern

Menouer:2020:OSR

Raca:2020:CCS

Ullah:2020:EDA

Chang:2020:ERC

Gill:2020:TCS

Chan:2020:IBS

Tanase:2020:DSI

[508] Cristian Andy Tanase. Dynamic scheduler implementation used for load dis-

Kim:2020:SSS

Ahmadpour:2020:DIR

Khanbadr:2020:NMV

Wu:2020:TLU

Haghshenas:2020:PBU

Majumder:2020:EEA

[517] Fadaeddini:2020:SDP

[519] Bermejo:2021:CQS

[520] Constantinescu:2021:EPD

REFERENCES

tive guidance based on clock synchroni-

[530] Yi-Cheng Chen, Lin Hui, and Tipa-
jin Thaipisutikul. A collaborative filter-
ing recommendation system with
262, January 2021. CODEN JOSUED. ISSN 0920-8542 (print),
1007/s11227-020-03266-2.

[531] Matthias Stachowski, Alexander Fiebig,
and Thomas Rauber. Autotuning based on frequency scaling toward
energy efficiency of blockchain algo-
rithms on graphics processing units.
JOSUED. ISSN 0920-8542 (print),
1007/s11227-020-03263-5.

[532] Hongzhi Wang, Ning Li, and Jian-
ing Li. GPU-based efficient join
321, January 2021. CODEN JOSUED. ISSN 0920-8542 (print),
1007/s11227-020-03262-6.

[533] Liang-Tsung Huang, Kai-Cheng Wei,
and Jian-An Wang. A lightweight
BLASTP and its implementation
342, January 2021. CODEN JOSUED. ISSN 0920-8542 (print),
1007/s11227-020-03267-1.

of responsive web design: results of
343–365, January 2021. CODEN JOSUED. ISSN 0920-8542 (print),
1007/s11227-020-03283-1.

[535] Marzieh Gerami, Mohammad Eshghi,
and Mehdi Hosseinzadeh. A bio-
llogical multiplexer, designs, and simula-
JOSUED. ISSN 0920-8542 (print),
1007/s11227-019-03138-4.

[536] Pooja Dehraj and Arun Sharma. A review on architecture and mod-
els for autonomic software systems. *The Journal of Supercomputing*, 77
(1):388–417, January 2021. CODEN JOSUED. ISSN 0920-8542 (print),
Gavagsaz:2021:PCP

[537]

Wang:2021:SHA

[538]

Choi:2021:HEB

[539]

Boroumand:2021:ECA

[540]

Tiwari:2021:GTC

[541]

Ider:2021:EAT

[542]

Ramezani:2021:DST

[543]

Referências

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Belloc:2021:ECP

Chung:2021:PFA

Huang:2021:CPS

Khomami:2021:CCB

Hassan:2021:EED

Sinha:2021:BFL

Bam Bahadur Sinha and R. Dhanalakshmi. Building a fuzzy logic-based

REFERENCES

Carrascal:2021:FET

Asghari:2021:TSR

He:2021:MSR

Too:2021:NFR

Du:2021:NAD

Yang:2021:SPA

Wang:2021:TPM

Chen:2021:CAB
[634] Huan Chen, Yue-Hsien Wang, and Chun-Hung Fan. A convolutional autoencoder-based approach with
REFERENCES

REFERENCES

[Soria-Pardos:2021:UMC]

[Jeong:2021:EMS]

[Chen:2021:STF]

[Ujjwal:2021:SSM]

[Cheng:2021:GSF]

[Neeraj:2021:CAP]

[Zhu:2021:LRH]
Kalinnik:2021:PEO

Karbasi:2021:SLS

Zhang:2021:CTD

Atefinia:2021:NID

Tseng:2021:DSS

Hosseinzadeh:2021:MMP

Nezarat:2021:IMP

<table>
<thead>
<tr>
<th>Reference Key</th>
<th>Authors and Title</th>
<th>Journal Details</th>
</tr>
</thead>
</table>
REFERENCES

[691] Sumit Sharma and Sudip Roy. A survey on design and synthesis tech-
REFERENCES

Asadinia:2021:SNB

Hashimoto:2021:ATP

Louati:2021:DLC

Wang:2021:AAM

Qin:2021:ITL

Patel:2021:IGM

Han:2021:TET

REFERENCES

REFERENCES

153

//link.springer.com/article/10.1007/s11227-020-03462-0.

REFERENCES

Hjouji:2021:NSA

Ali:2021:TSS

Tan:2021:NMS

Oda
jima:2021:PPC

Kamrani:2021:DIM

Asgarnezhad:2021:AMO
Mapetu:2021:DVC

Mansouri:2021:CBA

Yang:2021:IDS

Li:2021:OIP

Rao:2021:MUU

Sharma:2021:POD

Mohammadi:2021:ALC

[762] Mohammad Ayoub Khan and Khaled Ali Abuhasel. An evolutionary multi-

[769] Sheng-Tzong Cheng, Chih-Wei Hsu, and Ci-Ruei Jiang. Video reasoning for

[783] Maryam Nooraei Abadeh and Shohreh Ajoudanian. Reconfigurable edge as a service: enhancing edges using

Pandey:2021:CPV

Shin:2021:ASF

Lee:2021:EUI

Pan:2021:RHB

Park:2021:SCU

Kireeva:2021:PSD

Jiang:2021:DFA

REFERENCES

REFERENCES

Periola:2021:CFC

Ramanathan:2021:ACC

Safaei:2021:DMD

Xu:2021:EHF

Liu:2021:CVC

Asghar:2021:AIR

Asghar:2021:CAI

Hassan Asghar and Babar Nazir. Correction to: Analysis and implementation of reactive fault tolerance techniques in Hadoop: a comparative
REFERENCES

REFERENCES

REFERENCES

Zhu:2021:ACT

Patidar:2021:EDI

Kumar:2021:TDI

Akremi:2021:CHK

Sukhoroslov:2021:TEE

Basha:2021:SBV

Punitha:2021:TCE

Combarro:2021:PIU

Abbasinezhad-Mood:2021:NCC

Wang:2021:HAA

Munoz-Montoro:2021:PSS

Jang:2021:MAB

Kumar:2021:RFT

REFERENCES

Mahindru:2021:HEA

Devi:2021:MOH

Gaikwad:2021:PSL

Foroutan:2021:IMD

Malkovsky:2021:EPF

Lin:2021:ARE

Kim:2021:GAP

REFERENCES

REFERENCES

[853] Sridhar Savarapu and Yadaiah Narri. High performance of brain emotional...

Bezerra:2021:ONP

Fang:2021:UBN

Chen:2021:SBB

Hoffmann:2021:CAR

Dang:2021:MDP

Mohammadzadeh:2021:EBC

Pereira:2021:OWC

REFERENCES

\textbf{Jang:2021:OTB}

\textbf{Paoletti:2021:DMP}

\textbf{Bessonov:2021:PMW}

\textbf{Sood:2021:ETA}

\textbf{Pakdel:2021:FAP}

\textbf{Hussain:2021:IHA}

REFERENCES

[881] Yanping Liao and Xinyu Chen. Multi-attribute overlapping radar work-

Lee:2021:GTA

Takahashi:2021:TTM

Einavipour:2021:IIB

Pereira:2021:AMA

Cano-Cano:2021:MEQ

Lipare:2021:FRB

Barrachina:2021:PUF

REFERENCES

Tang:2021:AMD

Kousika:2021:IPP

Gangadhar:2021:DLP

Chien:2021:LMS

Quesada-Barriuso:2021:GAW

Stafford:2021:PET

Chang:2021:SNE
Huang:2021:RTE

Hameed:2021:EHA

Rodriguez-de-Vera:2021:DDL

Benner:2021:FSG

Singh:2021:HCR

Chuang:2021:CBR

Herruzo:2021:EFE

REFERENCES

[910] Sulaiman:2021:HLB

[912] Prabha:2021:PCR

[914] Song:2021:IOS

REFERENCES

Solongontuya:2021:NSP

Xing:2021:ACA

Son:2021:BCB

Gavel:2021:DID

Sahni:2021:HAE

Bakhsh:2021:HPC

Baranwal:2021:FFO

[923] Gaurav Baranwal and Deo Prakash Vidyarthi. FONS: a fog orchestrator node selection model to improve application placement in

[930] Debasis Acharya and Dushmanta Kumar Das. Optimal coordination
REFERENCES

Kehrer:2021:CEE

Ulabedin:2021:RDM

Do:2021:DNN

Joo:2021:SVP

Kim:2021:UCI

Yi:2021:SMD

Ren:2021:NDB

Sharma:2021:DIT

Wang:2021:RGP

Gul:2021:MTE

Ngueilbaye:2021:SSD

Liu:2021:CDM

Barbin:2021:NSI

Li:2021:DSP

[944] Pei Heng Li and Hee Yong Youn. Distributed stochastic principal component analysis using stabilized Barzilai–Borwein step-size for data com-

REFERENCES

Singh:2021:BRT

SanJuan:2021:LPM

Zhang:2021:JPF

Liu:2021:SGD

Zhou:2021:ABI

Nino:2021:HHP

Son:2021:SDD

[958] Siwoon Son, Hyeonseung Im, and Yang-Sae Moon. Stochastic distributed data stream partitioning using task locality: design, implemen-
REFERENCES

187

REFERENCES

References

[981] Andrey Zakirov, Anastasia Perepel-

[982] Samane Asgari, Shahram Jamali, and Mahdi Nooshyar. Performance-aware
placement and chaining scheme for virtualized network functions: a particle
12209–12229, November 2021. CODEN JOSUED. ISSN 0920-8542 (print),
1007/s11227-021-03762-z.

[983] M. Poongodi, Ashutosh Sharma, and Naveen Chilamkurti. Smart health-
care in smart cities: wireless patient monitoring system using IoT. The
JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https://
link.springer.com/article/10.1007/s11227-021-03765-w.

[984] Vijay Bhaskar Semwal, Anjali Gupta,
and Praveen Lalwani. An optimized
hybrid deep learning model using en-
semble learning approach for human
walking activities recognition. The
Journal of Supercomputing, 77(11):
12256–12279, November 2021. CODEN
JOSUED. ISSN 0920-8542 (print),
link.springer.com/article/10.1007/s11227-
021-03768-7.

[985] H. Migallón, A. Jimeno-Morenilla,
and A. Belazi. Multi-level parallel
chaotic Jaya optimization algo-
rithms for solving constrained engi-
neering design problems. The Journal
of Supercomputing, 77(11):12280–
12319, November 2021. CODEN
JOSUED. ISSN 0920-8542 (print),
link.springer.com/article/10.1007/s11227-
021-03737-0.

contract system using zero knowledge
proof algorithm based blockchain. The
Journal of Supercomputing, 77(10):
11881–11893, October 2021. CODEN
JOSUED. ISSN 0920-8542 (print),
link.springer.com/article/10.1007/s11227-
021-03758-9.

Vimal:2021:MPD
Zakirov:2021:STR
Asgari:2021:PAP
Poongodi:2021:SHS
Semwal:2021:OHD
Migallon:2021:MLP
REFERENCES

REFERENCES

Li:2021:PEO

Seiz:2021:LPI

Latif:2021:NCM

Lee:2021:EMF

Lee:2021:CEM

Arulprakash:2021:PCC

Kaur:2021:EAR

REFERENCES

Alqahani:2021:PCI

Kumar:2021:ISB

Crespo:2021:UDF

Park:2021:SWB

Kanemitsu:2021:CTC

Kim:2021:HTB

Mokhayeri:2021:ZSS
REFERENCES

Yuan:2021:HEH

Kumar:2021:EQO

Aguayo-Canela:2021:EMA

Wei:2021:ACS

Zhang:2021:FTR

Behnamian:2021:SSA

Li:2021:PHC

Yoon:2021:BCS

Bang:2021:NDS

Hu:2021:DSM

Sharma:2021:AAI

Lee:2021:DCQ

Kalantary:2021:RDI

Kheirandish:2021:EDR
REFERENCES

Liang:2021:MDD

Alqahtani:2021:IPI

Touqeer:2021:SHS

Liu:2021:IHH

Arslan:2021:ESR

Stojanovic:2021:OPA

Mahajan:2021:SOR

[1056] Pratibha Mahajan and Pankaj Deep Kaur. Smart object recommendation (SORRec) architecture using rep-

Rezaeiye:2021:APS

Xia:2021:HAR

Cheng:2021:ACO

Dang:2021:DKA

Parihar:2021:TBA

Westby:2021:FAM

Tu:2021:TEI

[1063] Nguyen Anh Tu, Thien Huynh-The, and Young-Koo Lee. Toward efficient and intelligent video analytics with visual privacy protection for

Lopez-Albelda:2022:FES

Esmaeilzade:2022:GCB

Memari:2022:LAT

Liu:2022:GRB

Zhi-Bin:2022:NPH

Ozonbolagh:2022:EXD

Yesil:2022:SHS

REFERENCES

Zhu:2022:OIW

Reshadi:2022:MVN

Jani:2022:HST

Raji:2022:UUA

Shahidi:2022:RMC

Jeong:2022:SAP

Laith Abualigah and Muhammad Alkhrabsheh. Amended hybrid multi-

Doghri:2022:CPS

Chan:2022:TWP

Kang:2022:SIM

Karthik:2022:FEI

Safaiezadeh:2022:NDS

Safaiezadeh:2022:CND

REFERENCES

Noureddine Ait Ali, Ahmed El abbassi, and Bouchaib Cherradi. The performances of iterative type-2 fuzzy C-

Ruimin Wang, Zhiwei Yang, and Lu Lu. A high-performance batched matrix multiplication framework for

Yeon:2022:VAP

Ahanger:2022:NIF

Jiang:2022:DLT

Wu:2022:TLC

Zhang:2022:DRP

Sheng:2022:TCM

Ahuja:2022:RTC

REFERENCES

References

Emami:2022:SET

Rocco:2022:LFR

Hao:2022:DVP

Bokharaie:2022:PSC

Falcao:2022:AFU

Li:2022:ALS

chandrika:2022:DAS

Jalalian:2022:HMO

Khan:2022:HPN

Barai:2022:PMP

Yadav:2022:CCP

Liao:2022:ODQ

Renani:2022:NOH

Vijayalakshmi:2022:AHP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mahmood:2022:IFD

Su:2022:SCI

Rana:2022:EDA

Alajlan:2022:ALM

Toor:2022:ATC

Zhang:2022:IPU

Le:2022:FDP

Goldanloo:2022:HOB

Wang:2022:OES

Kavitha:2022:EMD

Bai:2022:PRU

Oz:2022:RSE

Aghdashi:2022:NDL

[127] Arman Aghdashi and Seyedeh Leili Mirtaheri. Correction to: Novel dynamic load balancing algorithm

Aghdashi:2022:CND

Zhang:2022:NHA

Li:2022:IMD

Cai:2022:IOC

Gonzalez-Dominguez:2022:MDP

Yadav:2022:BOT

Grami:2022:EAS

Huang:2022:FMD

REFERENCES

[1231] S. Senthil Kumaran, S. P. Balakannan, and Jun Li. A deep analysis of object capabilities for intelligence considering wireless IoT de-
REFERENCES

226

REFERENCES

[1245] Hadeel Alazzam, Orieb AbuAlghanam, and Ahmad Sharieh. Best path in

Wang:2022:CBT

Gonzalez-Sanchez:2022:PMO

Cao:2022:HCJ

Mao:2022:MBE

Jain:2022:MLE

Teimourian:2022:PWE

Ishwarya:2022:PER

REFERENCES

REFERENCES

REFERENCES

[1302] Leila Dehbozorgi, Reza Sabbaghi-Nadooshan, and Alireza Kashaninia. Realization of processing-in-memory

Gupta:2022:UHE

Kadry:2022:ASL

Wang:2022:EGE

Wang:2022:NPD

[1309] Dongmei Wang, Yiwen Liang, and Ximin Yang. NKA: a pathogen dose-

Zhao:2022:OCB

Balakrishnan:2022:DLA

Chen:2022:ODA

Trueman:2022:GBM

Han:2022:SPL

Zhu:2022:RRF

Kadry:2022:ADA

REFERENCES

Durai:2022:CPP

Bernal:2022:ECI

Fuentes-Alventosa:2022:CEG

Beri:2022:NFC

Toshpulatov:2022:HPH

Hoffmann:2022:ORP

Durai:2022:NAE

Sharma:2022:BBC

Salami:2022:OEE

Chiang:2022:MCA

Mahdiani:2022:ZVN

Cai:2022:AIR

Liu:2022:RPO

Belusso:2022:SSC

Baranwal:2022:TTR

Jin:2022:ODM

Keshvari:2022:CBS

Zhang:2022:UAR

Nayak:2022:TST

Li:2022:TSD

Saxena:2022:OTO
Deepika Saxena and Ashutosh Kumar Singh. OFP-TM: an online VM failure prediction and tolerance model towards high availability of cloud computing environments. The Journal of Supercomputing, 78(6):8003–8024, April 2022. CODEN JOSUED. ISSN 0920-8542 (print),.
REFERENCES

Rajasekar:2022:FDD

Bravo-Montes:2022:DIE

Goncalves:2022:ELL

Najafimehr:2022:HML

Abdelghani:2022:DSM

Safari:2022:LTA

Hsieh:2022:NSR

[1351] Sun-Yuan Hsieh, Chih-Wei Hsu, and Geng-Hua Zhang. Novel scheme for reducing communication data traffic in

REFERENCES

Wu:2022:MMD

Reddy:2022:NEH

Shariq:2022:AAS

Ghuli:2022:ESE

Alqahtani:2022:AQE

Panahnejad:2022:ADK

[1386] Hua Xiang. The collection of theater music data and genre recognition under the Internet of Things

Tian:2022:SEA

Zhang:2022:CRS

Manimurugan:2022:UBV

Wei:2022:UML

Anand:2022:PPF

Alqahhtani:2022:FLI

Chen:2022:AAP

REFERENCES

Tian:2022:CEI

Narasimhulu:2022:NSB

Huang:2022:PHP

[1400] Zhi-Bin Huang, Guang-Tao Fu, and Wu-Bing Yang. A parallel high-precision critical point detection and location for large-scale 3D flow field on the GPU. *The Journal of Supercomputing*, 78(7):9642–
REFERENCES

REFERENCES

Wan:2022:DRM

Wang:2022:IST

Zhou:2022:RAB

Yuan:2022:EMR

Andola:2022:SEC

Clemente:2022:AES

Yang:2022:RCD

Wang:2022:RDD

Liang:2022:TCT

Perrot:2022:HSM

Sadr:2022:ATA

Kandan:2022:QOA

Ashraf:2022:SOU

Mehdi:2022:FEM

Sattar:2022:SDL

Tan:2022:SAM

Patel:2022:HCL

Shenbagalakshmi:2022:AML

Yang:2022:IAB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mompéan:2022:EED

Wang:2022:IIM

Ghose:2022:FFG

Fanfakh:2022:OGO

Tian:2022:SPP

Makhadmeh:2022:HMV

Mokhtari:2022:HCC

Venkatesh:2022:RNP

[1485] K. Venkatesh and D. Narasimhan. Revealing the novel precise sub-

Jiang:2022:NFD

Zheng:2022:CSA

Padhy:2022:CCA

Xia:2022:PAE

Long:2022:CUR

Mohar:2022:LSN

REFERENCES

[1499] Ju-Won Park, Min-Woo Kwon, and Taeyoung Hong. Queue congestion prediction for large-scale high

Praharenka:2022:VDC

Packiaraj:2022:HFD

Li:2022:WSR

Wang:2022:TTA

Lakzaei:2022:JCR

Hu:2022:ABC

Chaudhary:2022:SIA

[1535] Yanbiao Niu, Xuefeng Yan, and Yanzhao Niu. Dynamic opposite learn-
Srinivasavarma:2022:HBM

Li:2022:SSM

Kansal:2022:CRM

Mojez:2022:SCA

Kapralos:2022:TPE

Li:2022:TOO

REFERENCES

[1549] Sergio Moreno-Álvarez, Mercedes E. Paoletti, and Juan M. Haut. Hetero-

REFERENCES

Rui Miao, Hongxu Jiang, and Xiaobin Li. High anti-interference and FPGA-oriented method for real-time ship detection based on structured LBP features. *The Jour-
REFERENCES

Martínez:2022:HCP

Shanker:2022:CBM

Javed:2022:PCPb

Zheng:2022:DOS

Wu:2022:PSL

Melent'ev:2022:FMS

Pradhan:2022:DDB

[1570] Subrat Kumar Pradhan and Dushmanta Kumar Das. Delay-discretization-

[1577] Ping Guo and Yicheng Jiang. An improved ant-based heuristic approach for solving the longest cycle problem
REFERENCES

Yun Wang, Lu Huang, and Austin Lin Yee. Full-convolution Siamese network algorithm under deep learning used in tracking of facial video
Zhao:2022:MCU

Zhao:2022:MCU

Ansari:2022:DPD

Ansari:2022:DPD

Eskandari:2022:MLF

Eskandari:2022:MLF

Akbar:2022:SVB

Shi:2022:ECI

Montazerolghaem:2022:SVV

Xu:2022:SPS

She:2022:ELO

Mittal:2022:PEO

Zioviris:2022:CCF

Yang:2022:ISC

Yu:2022:SPC

Sabique:2022:SBF

Spurlock:2022:GMI

REFERENCES

[1612] Rakhi Sharma and Shail Kumar Dinkar. A novel social deep autoencoder NMF incentive scheme to detect a selfish node in delay tolerant network. *The Jour-

Reyhaneh Ameri, Mohammad Reza Meybodi, and Mohammad Mehdi Daliri Khomami. Cellular Goore Game

Gao:2022:HEB

Heszberger:2022:HTE

Guo:2022:EPG

Lo:2022:VRH

Ponte-Fernandez:2022:FPO

Kashi:2022:MAA

Gong:2022:QAO

[1626] Changqing Gong, Ting Wang, and Han Qi. A quantum approximate optimization algorithm for solving

Leon:2022:MCB

Leon:2022:CMC

Prakash:2022:HEM

Sham:2022:ACR

Liang:2022:RAP

Guo:2022:RMS
REFERENCES

Kalaiarasi:2022:PEC

Pashaei:2022:HBA

Shayegan:2022:EVS

Ji:2022:EAS

Zhang:2022:EAH

Belloch:2022:MIM

Bahig:2022:SWF

REFERENCES

REFERENCES

Manimaran:2022:SSB

Salvakkam:2022:MLM

Pal:2022:ESU

Wang:2022:ADL

Theerthagiri:2022:MPR

Li:2022:AIB

Ramachandran:2022:ANN

REFERENCES

Battula:2022:BBF

Hajian:2022:LAK

Wu:2022:ONR

Priya:2022:DDB

Patil:2022:DLM

Liu:2022:DDS

Barriga:2022:ADM

Mohammad Faraji-Mehmandar, Sam Jabbehdari, and Hamid Haj Seyyed Javadi. A self-learning approach for
Deldari:2022:CNM

Cheng:2022:CSF

Shivhare:2022:SSB

Masoumi:2022:SAA

Li:2022:CRF

Binbusayyis:2022:ICM

Pirozmand:2022:GHA

Yu:2022:NIR

Gao:2022:FSP

Liu:2022:OMT

Xi Liu and Jun Liu. An online mechanism for task allocation and pricing in crowd sensing systems. *The
REFERENCES

[1716] Yong Zhong, Liang Chen, Changlin Dan, and Amin Rezaeipanah. A systematic survey of data mining and big data analysis in Internet of Things. The
REFERENCES

Ghadamgahi:2022:NTA

Paliwal:2022:MAB

Huan:2022:RSI

Wang:2022:PJF

Bukhari:2022:EV

Fang:2022:APM

[1722] Zheng Fang, Bichao Ye, Bingan Yuan, Tingjun Wang, Shuo Zhong, Shuren Li, and Jianyi Zheng. Angle prediction model when the imaging plane is tilted about z-axis. The Journal of Supercomputing, 78(17):18598–18615, November 2022. CODEN JOSUED. ISSN 0920-8542 (print),

[1743] Sepide Masoudi and Faramarz Safi-Esfahani. SM@RMFFOG: sensor mining at resource management framework of fog computing. *The Journ-
REFERENCES

Bai:2022:IBT

Gan:2022:CNN

Chuang:2022:PAE

Kang:2022:PAO

Zhou:2022:IOI

Jiang:2022:AIE

Teijeiro:2022:LCT

Abasabadi:2022:HFS

Dhinakaran:2022:CPD

Zhao:2023:KKG

Alam:2023:EFE

Markovic:2023:VST

Malekjou:2023:LBA

[1770] Dun Li, Dezhi Han, Noel Crespi, Roberto Minerva, and Kuan-Ching Li:2023:BBS

Gupta:2023:FIS

Bao:2023:APC

Bitalebi:2023:CAP

Su:2023:CIN

Kamanga:2023:MCD

Kaur:2023:EEP

Kaur:2023:NAB

Yang:2023:LBD

Wang:2023:ERM

Ibrahim:2023:NFT

Zheng:2023:IFL

Xiang:2023:DFF

Imani:2023:FBW

Zhao:2023:ISR

Yang:2023:IAM

Truong:2023:PUA

Segura:2023:IAR

Imine:2023:DFD

Andujar:2023:EVT

Singh:2023:MON

[1797] Manish Kumar Singh, Amit Choudhary, Sandeep Gulia, and Anurag Verma. Multi-objective NSGA-II optimization framework for UAV path

Seo:2023:EEU

Nozal:2023:MLB

El-Feshawy:2023:IFB

Saif:2023:CICa

Paliwal:2023:CMA

Qu:2023:CTS

Yang:2023:CLB
[1811] Qinglin Yang, Taiyu Wang, Kaimar Abdull

REFERENCES

REFERENCES

Jahanshahi:2023:USB

Nematpour:2023:EGA

Xia:2023:CMA

Khan:2023:DLB

Pasini:2023:SPT

Rahmanian:2023:TCG

REFERENCES

Venna:2023:DNA

Malekzadeh:2023:EER

Rajak:2023:NTO

Lin:2023:EDF

Xinquan:2023:SHS

Nuhu:2023:MLB

Ramya:2023:TAD

[1851] Sarah Bolton, Richard Dill, Michael R. Grimaila, and Douglas Hodson. ADS-B classification using multivariate long short-term memory-fully convolutional networks and data re-
REFERENCES

Salih:2023:EBL

Wang:2023:PSS

Gharib:2023:SCS

Xie:2023:NER

Asad:2023:GGC

Thilakavathy:2023:IQE

Cui:2023:DEC
Gowthami:2023:NAT

NasehiMoghaddam:2023:RAI

Bian:2023:CNC

Wen:2023:PEM

Yu:2023:GWO

REFERENCES

Sepahvand:2023:SSP

Tran:2023:AAC

Park:2023:CIG

Shirmohammadi:2023:RNS

Liu:2023:DED

Ahrabi:2023:HMB

Ragesh:2023:TBS
G. K. Ragesh and Ajay Kumar. Trust-based secure routing and mes-

Wu:2023:LTA

Xiao:2023:EES

Dizaji:2023:WGA

Bevvara:2023:DEQ

Liu:2023:PPE

Rajasekar:2023:LRG

Dinachali:2023:PAO

[1879] Bijan Pourghorbani Dinachali, Sam Jabbehdari, and Hamid Haj Seyyed

Li:2023:IMM

Baysal:2023:BTA

Xie:2023:NIM

Kumar:2023:HRH

Chen:2023:PLL

Zhang:2023:NII

Ba:2023:SSC

[1886] Lina Ba, Hailun Wu, and Heping Zhang. Star-structure con-

REFERENCES

Chang:2023:MFM

Dogani:2023:MWR

Park:2023:DDC

Park:2023:ISB

Safiri:2023:LBO

Zhai:2023:MCA

Park:2023:QDC

Adarsh:2023:LLH

Rani:2023:RAW

Dhal:2023:AOB

Verma:2023:HLD

Singh:2023:PPM

Richa:2023:HLP

Jeong:2023:ELC

Zhang:2023:DAU

Gong:2023:SOG

Aghamohammadpour:2023:ATH

Zhao:2023:ICD

Amnyieh:2023:CRN

Wang:2023:TOE

REFERENCES

Shirmohammadi:2023:CRN

Justus:2023:RAS

Justus:2023:RAS

Wang:2023:FGF

Benachour:2023:FPA

[Tsmots:2023:DGM]

[Priyadarshi:2023:DCO]

[Wang:2023:MGA]

[Elshahed:2023:PST]

[BenHalima:2023:MKP]

[Cao:2023:CCD]

Huang:2023:SMM

Yu:2023:AGA

Gupta:2023:RON

Chehreghani:2023:UAS

REFERENCES

REFERENCES

Najjar-Ghabel:2023:DHW

Mewada:2023:SAH

Kristiani:2023:FSR

Chen:2023:HHO

Achroufene:2023:RBG

Brisaboa:2023:STE

Byun:2023:TSF
REFERENCES

Chen:2023:CCH

Horng:2023:ISO

Tesser:2023:CHS

Ba:2023:CSS

Khanna:2023:PCDa

AlZubi:2023:RNB

Karthikeyan:2023:RNE

Kanisha:2023:RNS

Hui:2023:RNM

Kim:2023:RNS

Cho:2023:GCF

Yan:2023:IHM

Xu:2023:FSF

Huang:2023:CAR

REFERENCES

Osamy:2023:TTA

Osamy:2023:TTA

Qiao:2023:EFT

Elleuch:2023:CCI

Ali:2023:DUE

Yang:2023:RPT

Lee:2023:DAM

[2002] Balawal Shabir, Anis U. Rahman, Asad Waqar Malik, Rajkumar Buyya,

REFERENCES

Singh:2023:IMC

Chen:2023:NMP

Khalli:2023:SSS

Kumar:2023:OLL

Haimour:2023:ACA

Tran:2023:NML

[2023] Duy Thanh Tran and Jun-Ho Huh. New machine learning model based on the time factor for e-commerce

Aldabbas:2023:EBA

Nandhini:2023:ERA

Qiu:2023:VNF

Sadeghi:2023:ICC

Yoon:2023:WDH

Khanal:2023:SLQ

REFERENCES

REFERENCES

[2043] Iago Richard Rodrigues, Marrone Dantas, Assis T. de Oliveira Filho, Gibson Barbosa, Daniel Bezerra, Ricardo Souza, Maria Valéria Marquezini, Patricia Takako Endo, Judith Kliner, and Djamel Sadok. A framework for robotic arm pose estima-

Gao:2023:OPT

Zhou:2023:UNL

Xu:2023:ETS

Sardroud:2023:GND

Egrioglu:2023:NGA

Xue:2023:DBO

Aghazadeh:2023:AMB

[2057] Alberto S. Garea, Dora B. Heras, Francisco Argüello, and Begüm Demir. A hybrid CUDA, OpenMP, and MPI parallel TCA-based domain adaptation for classification of very high-resolution remote sensing images.
REFERENCES

Singh:2023:RTT

Wan:2023:ECS

Chen:2023:DFM

Lupion:2023:ANN

Nezamdoust:2023:OPC

Badia:2023:SPF

Bang:2023:APZ

Shilpi:2023:OSN

Jing:2023:RID

Varma:2023:ISP

Tirandazi:2023:RSI

Rocher-Gonzalez:2023:CMH

Oza:2023:DET

Kumar:2023:AAV

Alagheband:2023:FUA

Alaejos:2023:MKP

Galiano:2023:CUD

Khanna:2023:PCD

Fakhfakh:2023:MOA

REFERENCES

Amini:2023:EEA

Asorey:2023:CHE

Wang:2023:ANM

Patidar:2023:UAE

Fu:2023:MAB

Liao:2023:ABB

Zou:2023:MRP

Kumar:2023:SSD

Tian:2023:CCC

UelintondaSilva:2023:POO

Fuentes-Alventosa:2023:GHO

Garcia-Nava:2023:FTT

Yu:2023:RSC

Paramasivam:2023:CEC

[2098] Suguna Paramasivam and R. Leela Velusamy. Cor-ENTC: correlation with ensembled approach for network

[2112] Thi-Ngot Pham, Viet-Hoan Nguyen, and Jun-Ho Huh. Integration of im-

REFERENCES

REFERENCES

[2139] Junlin Wei, Jinrong Jiang, Hailong Liu, Feng Zhang, Pengfei Lin, Pengfei Wang, Yongqiang Yu, Xuebin Chi, Lian Zhao, Mengrong Ding, Yiwen Li, Zipeng Yu, Weipeng Zheng, and...

Carratala-Saez:2023:ULF

Jiang:2023:ALS

Rashid:2023:ARP

Kaveh:2023:TNT

Modi:2023:HDL

Yang:2023:RBH

Dolz:2023:PET

Cai:2023:CSN

Itoo:2023:RRK

Garcia-Molla:2023:PBT

Zhou:2023:EGD

Liang:2023:EFD

REFERENCES

Ye:2023:SCL

Uzer:2023:NFS

Wang:2023:SGS

Radaideh:2023:PCB

Paul:2023:RSS

Chen:2023:LLO

Zhao:2023:PRT
Quislant:2023:TSA

Song:2023:DTS

Roshani:2023:DMI

Navarro-Torres:2023:BBA

Morales-García:2023:ELP

Li:2023:CES

Rico:2023:KRA

Noelia Rico, Pedro Alonso, and Irene Díaz. Kemeny ranking aggregation meets the GPU. The Journal of Supercomputing, 79(9):10335–10352, June 2023. CODEN JOSUED. ISSN 0920-8542 (print),

Shalini:2023:EDM

Chauhan:2023:ECD

Quiroz-Fabian:2023:PEP

Rahmani:2023:SDO

Saravanan:2023:MMB

Sadeghi:2023:CICa

Vinoth:2023:CIM

[2173] D. Vinoth and P. Prabhavathy. Correction to: An intelligent machine learning-based sarcasm detection and classification model on social net-

Hassan:2023:CFG

Pu:2023:RNA

Moayed:2023:EPM

Alarcon:2023:CGB

Sabelfeld:2023:PIR

Fang:2023:PCS

REFERENCES

REFERENCES

[2200] Indu Singh and Rajni Jindal. Trust factor-based analysis of user behav-

Tewari:2023:EER

Kwak:2023:EPM

Zhao:2023:ISO

Dong:2023:AAL

Shukla:2023:MMO

Yadav:2023:SKB

[208] Usharani:2023:ISD

[210] Yoon:2023:STF

[211] Chen:2023:AMM

[212] Pan:2023:SHE

Kim:2023:NSA

Li:2023:GGS

Alharbi:2023:NUE

Guo:2023:TLC

Sethi:2023:SCT

Khanna:2023:DPA

Galiano:2023:UDL

REFERENCES

Folino:2023:EBF

Makmuang:2023:SSV

Choi:2023:DEI

Chen:2023:IPP

Packiaraj:2023:HFI

Ay:2023:CAM

Ibanez:2023:PDM

Mirhosseini:2023:FMS

Merdassi:2023:NLA

Meng:2023:GRB

Elbaghazaoui:2023:PNW

Ebrahimpour:2023:HBP

Selvi:2023:ERS

Saini:2023:CNF

A. Saini, A. Tsokanos, and R. Kirner.
REFERENCES

Hemavathi:2023:FFR

Xu:2023:CVI

Fang:2023:WWS

Li:2023:EDB

Dal:2023:IID

Kaur:2023:SSR

REFERENCES

Zagan:2023:FIH

Kayali:2023:MLB

Trivedi:2023:SAK

Thungon:2023:LCB

Lopez:2023:FTQ

Liu:2023:TAV

Nekouie:2023:MFS

Yousef:2023:MBM

Jesus:2023:GPA

Ukken:2023:SAB

Wang:2023:PAQ

Gao:2023:CCM

Gong:2023:SNS

REFERENCES

Tiwari:2023:NSI

Tripathy:2023:AEF

He:2023:ATS

Elnakib:2023:EDL

Chuang:2023:BVN

Sawan:2023:ABP

Sun:2023:ASC

[2281] Keshuo Sun and Haiying Gao. Adaptively secure CP-ABE for circuits with fan-in n and fan-out 1. The
REFERENCES

Kia:2023:HHA

Vecil:2023:EGI

daSilva:2023:ERN

Gong:2023:QQM

Timucin:2023:CSC

Zhang:2023:MMC

REFERENCES

REFERENCES

Zhang:2023:CLC

Golrasan:2023:PCM

Liang:2023:MMB

Abdi:2023:IIS

Maronas:2023:MNE

Zhang:2023:LLO

Cabanas-Molero:2023:MDM

[2328] Guan Wang, Jie-Sheng Wang, Hong-Yu Wang, and Jia-Xu Liu. Component-
Raza:2023:UAU

Bayraktar:2023:RTA

Ghosh:2023:TWM

Zhang:2023:TRM

Ma:2023:QAF

Kuhn:2023:SVS

REFERENCES

