A Complete Bibliography of Publications in the *Journal of Symbolic Computation*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

16 October 2019
Version 2.74

Title word cross-reference

#CSP [MM16]. #P [Bac99]. #P-Hard [Bac99].

(1 + i) [Wei00]. (1, 1) [FES11]. (i, j) [MP04].
(k, 3) [HJ15]. (N, N) [Sha01]. (n^2 - 1)
[RW90]. (w, σ) [AP10]. (xy)z = y(zx)
[HJM93, HJM94]. * [Con93]. 0/0 [Chi08]. 1
[FFP98, Mos08]. 1000 [RDU03]. 112
[KLZA12]. 12 [BCE01]. 15 [KM00b]. 17
[Wil93]. 2 [AKS12, BdICRLS19, Cre01,
DS02, Eic10, GS12, HLM95, JPPSG09,
Kos07, Sha01, SW97b, Wil90]. 23 ≤ n ≤ 26
[Ng89]. 2^6 [Wur93]. 2A [Mat01b]. 3
[BNT18, JWC+16, LN13, LMM05, Wil90].
32 [Ano01f]. 5 [GSHPBS12, Har13]. 6
[Har13]. 64 [NV07]. 8 [HTZ04, dGPS09]. 81
[NV07]. 9 [Gaa00]. [P]: M^∞ [Mor99]. 2
[Alc16]. 0 [CF09b]. n [BP00]. A
[FC04, BP00, Chi01, CC07]. A_n(k) [GV03],
AC1 [Con93], arctan [Str12]. B
[He96, Nak09, NN10]. β [Wir12]. BSO_n(16)
[Ng89]. Z_p [Ree98]. C^1 [GH92]. C^n
[KKM15]. C^r [MP89]. C_3,5 [OT13]. C_n
[GLW99]. D [CJUE06]. E^L [LW10]. L^∞
[KSO6]. C_03 [SW97b]. D [CJUE01,
CvHK18, CKLZ19, JPP19, NOT18,
OT200, OT01, Pan89, TW01, Ngu09].
D_0(d') [LMP19]. DD [JPP19], ddet
[MKF93]. Δ [FHR99]. δ^+ [Wir12]. Δ_1
[PS95a]. d ≤ 15 [Mal87]. E
[DJ92, Bee01, Nwu16]. E_0(d') [LMP19].
E_{8}(C) [GR01]. ε [OPP93], exp [Str12]. F
[PW85, HT17]. F(x, y) = G(x, y)
[Gaa93a, Gaa93b]. F_2 [GR12]. F_3
[BFS15, GHMA13, HAI01, Kin14]. F_p

1
[Vir93]. FP_3 [CO94, CO96]. G
[PW85, BFG07, BF11, LH18]. G/H [Hel96]. G
[BCCK20]. G_5 [BCCK20]. G_6 [BCCK20]. G_7
[BCCK20]. G_8 [van93].

GU(3, q^2) [FF17]. GU(4, q^2) [FF17]. H
[AP08]. D [Nak90]. D(3, q) [SST18]. J_1
[CH96]. W [W190, W193]. K
[Gün90, BE13, BMQS06, Hel00]. K(x)
[KS93]. K((x, y)] [HP91]. K[x] [AGSM17]. K[x]
[AGSM17, GSV12]. λ [SP10, Tak89].
(T) [LMPX11]. ≤ 50 [BL96]. ≤ 7 [FMM07].
lim + [Wir12]. LLL [Val00]. log [Str12]. L
[Car15]. Ly [Gol01]. m [Koe95, RZAG99].
M_{11} [Kön17, MZM87]. C^0 [Val90]. C^P
[HS09]. E_4 [HK10]. F_p [Sal08]. P^3 [DJ07].
P^n [HMXD07, HMXDO9, MPSXD09, BG05].
P^n [Dim90]. Q [AHS18]. Q(ζ + ζ')
[HSW16]. R^3 [GV16]. R^3 [FG16].
R_Hom_D(M, N) [Val90]. Z[x]
[JY17, Abb13]. D [Mon05, Wal05]. μ
[CW03, CCL05, CR19, D1996. Doh09, Eit94,
HHK17, K111, MP89, ZS01]. N
[KP91, BM01, HR19, BF91, BPH01, CIL07,
EL12, FKM10, GLH16, FLD91, Nor95b,
Nor95c, XYL99]. n ≤ 10^6 [Kan91]. O
[CLM16]. O(n^3 + n log n log log n log q)
[Pol95]. O^+(4, q) [FF17]. P
[Guo20, MS10, AIRR12, BC13, BR87,
Con90a, LMP19, Led00, MP90, O'B90,
O'B93, O'B94, SW02, Sla86, Win88].
P^2 [BvGZ13]. P^4 [DS00, GEL05]. p ≤ 31991
[Rec98]. PSL(2, 41) [GR01]. PSL(2, 49)
[GR01]. Q [MZM87, Mau87, BR87, D200,
AR13, AGRZ99, BK99a, CH105, CX09,
FKS12, G92, K89, MZ05, M09, PP11,
Rie03, SK12, Zha03]. Q(√2) [Deu93]. Q(√3)
[Deu93]. Q*D [Cuy97]. QPC_2 [Tak93]. R
[Sht88, dG01, HZ19]. R[t][x] [MR17]. R[x]
[Sht88]. R^n [Rie99]. R^* [Rie99]. R^* [Sch17b].
r ≤ 3 × 3 [BR06a]. S [BP00]. S(F_2) [GG92].
S(F_4) [GG92]. S_k(Γ(N)) [Wan94]. S
[Ber04, Mau87]. sat(T) [LMPX11]. SL(2, C)
[Chu99]. SL(n, K) [PS89]. SL_2(11) [Klii00].

Sp(4, q) [FF17]. T [PS95, B19D]. τ
[KPT15]. θ [dG11]. U [MKF93]. U(q(sl(2))
[JJ01]. V [DMY16]. V[X]^m [DMY16]. ||
[JKP98, PS95c]. x [GSV12, MR17].
x_m mod p(x) [Pan96].
Y' = AY + B, Y' = AY [Ber02].
y^2 = x^p - x + d [LL08]. Z [BM00, W93].
Z[i] [Wei00]. Z^n [BL12].

- action [MP89, van93]. -adic
AIRR12, BR87, MF90, Win88. - adics
Lim93. -algebras [BMQS06, LH18].
-Algorithm [Cuy97]. -analogue
[CHM05, PP11]. -ary [Wei00]. -bases
[DD09, HHK17]. -basis [CW03, CCL05,
CR19, GSV12, ZS01, Pan89]. -beam
[KP91]. -binomial [Kra95]. -Calculus
[Tak89, Kal11]. -canonical [AP10]. -cases
[GG92]. -conjecture [KPT15]. -constant
[MP89]. -cube [FKM10]. -D [XYL99].
-descent [Cre01]. -difference [AR13].
- Dimensional [No95c, JW16, Nor95b].
-discriminants [CC07]. -Expressions
[OP93]. -extensions [Sch17b]. -finite
[CvHKK18, CKLZ19, JPP19]. -Fold
[Koe95]. -function [BP19]. -functions
Eit94, [N010]. -gonal [BTC13]. -Gosper
[M09]. -graphs [BFG07, BF11]. -Group
[O'B90]. -Groups
[O'B93, O'B94, Con90a, JPPS09, Led00a,
SW02, Sla86, G11, BM01]. -Hahn
[AGRZ99]. -holonomic [SK12].
-homogeneous [MR17]. -Hypergeometric
[BB99a, Rie03, Zha03, Mat01]. -Hypergeometric
[BK99a, Rie03, Zha03, Mat01b]. -Laguerre-Hahn
[FFHR99]. -lattices
[YY17]. -log-convexity [HZ19]. -Matrices
[dG01]. -Modular [HL95, SW97b, W190].
-module [PS89]. -modules
[CJUE01, CJUE06, Mon05, NOT18,
OTW00, OT01, TW01, Wal05]. -norm
[KS06]. -orbits [He96]. -orthogonal
FKS12. -Partitioning [Gun90]. -power
[SK12]. -problems [Con93]. -puzzle
RW90. -recursive [MS10]. -resultant
BDPR13, BCP97, BR12, CS05a, CLS91, CM09, DHH+04, DPS16, DT06, EPY98, FGP04, FS98, FK98, GH05a, GSZ85, Ger19, GTLN17, GSSV12, JMRP04, KL19, KASW05, LL13, Mas16, NSW16, NPP17, OdR03, Oll88, Par08, Pi07, SM18, SMB03, algebra [SS88, Sti03, TM89, BD15, KK09, Tra07b, Yok17]. Algebraic [AF88, ACM88, Arn88b, AM88a, BGLGM17, BF91, BGK86, BDS17, Boy93c, Bro01a, BK90, BW87, BEM00, CDF92, Cha00, Chi96, CH91b, CJK02, Com98c, CR88, CS06, Cza89, Duv94, Enc95, For87b, GSS05, GPWZ02, GSST98, GKO09, GVG09, Gre00b, HPRS11, Hel02, HSW97, HKSS17, Hub99, IS10, JKPK12, Kal93, Kal01b, KR94, KFF88, KLZ96, LM89, Laz92b, Lec08, MM00, McC88, MC02, Mi18, Min97, NT17, Nau98, Poh97, Ren92a, Ric92a, Rie93, Ris88, R990, SF90, SJA01, S9G97, Sed02, S9E87, SW97a, Sen02, SS95, SU93b, Sm02, Str97, Str06, Str91, TM89, Tra98, YNT92, Zha90, van97c, vdP99, AV11, AMT09, AS05, AS07, AS07, Alc08a, Alc08b, Alc12, BGLHR12, Bas06, BR10, Bay03, BJS04, BP11, BDE+16, BK15, BS09]. algebraic [BCGY12, CR98, CFMMP10, CDM+13b, CDM+13a, CM16, C1J13, DJO+11, DM09, DGPP10, DM05, DJK05, DRM12, DDM15, El08, ES13, FGV06, Fit85, FGPT03, FGL04, FGPT05, FGT09, FKO9, GPS09, Gnu88, Har13, HS11a, Hi87, Hub19, IT10, KZ08, KS12b, KKM15, MM16, MCMMP14, MSW15, Mer10, Mor91, Pra13, Qi06, Rei06, Rio03, Sag88, Sag89, SS11, Sh13, S1E14, STO3, ST17, Str16, Sw19, TN09, VGW18, VL10, Wal05, Wan18, XY02, Zen06, dG09]. algebraically [Ste10]. Algebras [BS90b, BR87, BH02, DR92, Drä01, Dün94, E900, GK96a, HT95, Let01, Rön90, Ros93, VL93, Vel00, dG01, vdP99, AL88, BdlCRLS19, BMQS06, BDM17, CGGO09, CGS97, CS98, DFdG13, Dra03, EG04, Eic10, GIL88, HL18, IK13, IL09, KP13, KRW90, Kut19, Lab90, Lea06, LZS11, LH18, LW03a, LW03b, Li10, Mad14, MS09, MM04b, NOT18, OdR09, PRR18, QR07, RR05, Roo13, RR08, Sch19, Shi04, Wur93, dG09, dGPS09, Algorithm [AS01, ACM88, Amn88a, AM88a, Bao01, BO10, Baj86, BP99a, BL98a, BEM97, BL85, BC93, CM96, CGG89, CS90, CD00, Col02, CF94, CKS99, Cuy97, Cza89, DR00, Die92, For02, Gaa93a, GM88, HNV90, Hem02, Hen98, HHK17, Jeb93, Jeb95, Kal93, KTO2, Kem99, KM99, KM01, Kov86, Kri85, LS00a, Lim93, LP93, Lo98b, LO99, MS95, MM97, Man00, MW91, Mic88, Mon02b, Mul90, MF96, MO95, Nak09, Nie94a, Nor90, O’B90, OTW00, OPP93, PS95b, Pic98, Ple87, Poh97, PW94, Ro86, Ros93, Sch90b, Sch85, Sed02, SL92, SS94, SS98b, Shao95, Sim90b, Sit92, Sny93, Ste97, Sto99, Tak92, Tak95, Tho02, Tra00, Tra96, UW96, Van00, VL93, Web96, Wei00, XY02, ZSY93, Zha95, van94, AV11, AGR95, AL88, BV03, BFS15]. algorithm [Bay03, BSSY18, Blb04, BGMS07, BvdE03, BLV16, BLV18, BMQS06, Buc06a, BK12b, But88, CL17, CHM05, CHM12, C1V14, CK12c, DA05, DMM11, DH17, Dum09, DLLP08a, Ebe19, EP10, FDS13, FP90, FG06, FSW10a, FW15, GL1R9, GHMA13, GS03, GKM008, G0T05, HBN95, Har12a, HJS16, HJA17, H1X15, IM17, JY17, JV09, KSW13a, KS12a, Kin14, KS86, Lab90, Lec19, LS12, LH18, LR15, MM06, MR17, MS11b, Min98, Moe05, Mu08, MH06, OdR03, OdR09, PDS08, PS99, Pop15, Rec98, Ren04, RT17, Rue11, RSS13, ST89a, Sch04, ST20, TM85, TV18, Tso09, Ung19, V111, Wan06, WS09, Wu93, Zha03, de 98, van93, CCD+09, Rou09]. Algorithmic [BGLHR12, BENW06, CDO01, Kal98, Levy01, Levy04, LH17, Mar02, MMY00, Pas86, PRR18, RS00, SK12, Wal00, Wal05, CS06, GSO7b, JLW13, Rad15, Sch17b]. Algorithmical [FG04]. algorithmically [BM04]. Algorithmics [JKP12, ES13].
Algorithms [AGS16, AT96, BZ85, BP99b, BKRW17, BTW93, BM01, BK99a, BDS17, Bou93, CM10, CM12, CD097, DG14, DF08, ER95, ES98, EC95, FES11, FGPT03, GvP00, GKsL03, GSHP012, Gr95, HJS18, HH13, HM05, Hel16, HLS01a, HS98, H914, Hub00, IPS11, KN11, KL98b, Koe95, Koh08, Kop08, KL89, Leo91, LRW97, Mv90, MO88, MR98, MES19, MC93, MC02, MN94, MR15, Mro96, MQS99, Naw16, Nie94b, Nip91, Oak13, Ost99, Pan02, Pic00, SS92, Sch01, Sha90b, SH17a, Tun09, WBM99, Wor94, ACFP12, AAB +18, AGS18a, Arn03, BP09a, BS17a, BdlCRLS19, BCG10, BDL +13, BCGY12, CC06, CCD +09, CL07, DF05, DMW17, DJ15, DJS18, EF17, EH16, EMM56, FM17, Gal87, GH12, Gen07, GSPB17, GSV12, GOP18, HLF0, HdC13, HdC16, JB04].

Aligning [KsL03, Kau07, Ker17, KMR18, KL90, KL17b, Lee07, LY05, MO85, MR10, MZ05, OS04a, Rob04, Rdc13, RS13, Sht88, Vac17, Vac18, Ye18, ZL12, vHs06, vH07d, vP06].

Almost [KSD16, Ker17, KMR18, KL90, KL17b, Lee07, LY05, MO85, MR10, MZ05, OS04a, Rob04, Rdc13, RS13, Sht88, Vac17, Vac18, Ye18, ZL12, vHs06, vH07d, vP06].

Alternative [BH02, Gar95, Mar96a, JML +13, SS03b].

always [BLV18].

Amenability [DMW17].

Amenity [HR19, Mor13, Ye17].

amortization [Bur16].

Analogous [YX95].

Analogue [Wei00, AGS18b, CHM05, PP11].

analyse [JSC13].

Applying [DS96, PS97a].

Applications [AB96, CL00, CM96, Cra91, Eis90, Gv99, GKL19, K01, KG03, Mv90, Mag89, Mro96, Nor90, RT55, SS94, WKB86, APS12, BL06a, BSC12, BR12, CCG06, CCD +09, Cip08, CTY10, DE06, Edel3, FK90, HS06, HJS16, HTX15, JT03, LS16a, MdC17, MV13, Oll88, PT14, RH18, Roq13, SJ12, Str19, Wan86, XL13].

Analytic [Eck87, Ful90, HH09, McC97, OT87, Wh91b, CMV13, GGG06, HH13, Lem03, vdH05].

Analytical [Mer01, VV97, PN13].

analytical-experimental [PN13].

Analytically [DH00].

Ancilla [STDD16].

Ancilla-free [STDD16].

Angle [AI90, WW94].

Annihilating [TN09, GHHUE05].

Annihilators [KZ14].

Annotated [Fri96].

Annotations [ACGR01].

to [KSD16].

Anti [CKKM10].

Anti-patterns [CKKM10].

any [DW18].

Apparent [CKLZ19].

Application [Ape98, Baj86, BF01, CD87, CD85, Cow92, DR00, DT95, DTGV01, Eis90, ES18, EC87, Gv99, HS89, JKP99, K01, Mer10, Mer01, Mio91, MR10, Pal91, Pan96, PZ96, She92, She97b, Tri86, UYSA89, VGT90, Vor89, WKA94, YP91, ZBH96, AYY09, AM12, BGL14, BC15, CCD +09, Eit94, FK98, GSZ85, HI15, Kin14, KS86, LMR94, MBC +10, MSW15, MS03b, MFF93, NOF10, Naw16, PS95c, Sch17a, STW18, Wur93].

Applications [Ape02a, BB00, BF91, B01b, CH97a, Cha00, CRAB91, CS90, DR86, Gat03, HSW97, HL97, JKP12, Key01, KM01, li04, MC97, MR87, NSW85, Sch94, Tra00, Wan94a, AAB +18, BCE11, BBC13, BBM18, BF11, BW03, Bur16, B05, CFMMP10, CM90, DHH +04, EK19, ES13, FF09, FRR06, GGA13, GMVFT13, HDX17, HGKV11, KASA05, LH18, LH98, LLL19, LR15, MV10, PB07, PR12, PW18, SA89, ST19, Win14, GTL16, GTL19, Tra07b].

Applied [Dav88, MQS00, Rol86, AP90, Bar13, Par08].

Applying [GV96, SJ12].

Approach [AK92, Ape95, BT98, CK99, Du99, For87b, FKM95, Ful90, HY96, Ley01, MM97, MI97, Z094, RS00, S01, Sch93, Sod96, Tak92, VV97, Wer98, WG94, Wor94, YNT94, ZS01,
Approaches [MPS02].
Approximate approximating [For02, Hon04].
Approximation approximate [EGB12, HKPP09, KMYZ08, KL98a, Nag11, Tun02, vzGMS10, AV11, CG06, Der13, Lia13a, Lia13b, MRSW07, MSW15, Nak09, Sag14].
approximately [RSS13].
Approximating approximately [For97, FF92, Mil87, BC05, CJL13, LOOR + 03].
Approximations [BX97, GR10, KLR93].
Aquarius [BH95].
arbitrarily [DO06].
Arbitrary [FGT02, Kem96, SS89a, Tra98, B^l11, Bur04, FS10, FS13, Har17, HJ18, arc].
Architecture architectures [CM96].
areas [Tsa16].
Arising [GH02, Deu93, Ye17].
Aristotelian [Moz89].
Arithmetic [CJ902, CW90, von87, Abb12, BP06, BGLGM17, CV11, CH17, EPY98, GJT13, Har14, LMS09, LMR11, Na18, OT13, S14, ZW15].
arithmetically [DH16].
arithmeticity [DFdG15].
arithmetics [DS12].
arithmetization [BN18].
arangements [BDPR13].
Array Arrays [CM93, MG88, Tor93, Joh15, LH98].
Artificial [FL11].
Artin [AK00, Bok08, DS12, Sut13, Sut16].
Artinian [KZ14].
Asymmetry [Wei00].
Askey [FKT13].
aspect [HKSS17].
Aspects [CM93, Ris88, MCCMP14, Mor91, Poz15, Sch17b].
assertions [JML + 13].
assess [PNM13].
assessment [GGdR + 13].
assignment [AP10].
assistant [GK18].
Assistants [BC01].
Assisted [FM02].
Associated [Bah91, BHR7, DiP16, FHR99, AH13, BGLGM17, Jan11, Joh15, MS03a, NN10, PV05].
Association [Miy01, KLZA12].
Associative Associative [BP85, EG00, Fag87, JM93, LC89, Pau92b, CM17a, Cdg09, GIL88, Ger06, LL13, Raj06, Sch19, Wid01].
Associative-Commutative [Fag87, LC89].
Associativity [Far87b].
Associator [BH02].
assume [AB05].
astro [DJ89].
astro-geophysics [DJ89].
astroid [DP19].
Astronautics [WKA94].
Asymmetric [Lab92].
asymptotes [LPR17].
Asymptotic [BEM97, Die92, HZ19, KP91, Nor90, PY05, Sal94, San96, SS95, DET09, vdh09].
asymptotics [SS98a, SS99].
asynchronous [KZ10].
atom [SS98b].
atom-variables [SSK18].
Atomic [Pic00].
attributed [Ore11].
augmentation [Mu08].
Author [A001b, A001f, A002c].
auto [Sto17].
Automata [CH91a, DCC95, KFK97, RW94, BCR15, DJK05, GR10, LM94b, RV05].
AUTOMATE [CH91a].
Automated [BBK14, Bib85, BS00, Bou97, BK99b, CCM95, Col05, FOT00, LW03a, LW03b, LS02, MR87, Zha90, BKR19, CS05a, DP19, GSSST10, IKT11, KKK+16, KS86, Liu19, Win06].
Automatic [BBB92, Bee01, BB93a, Bie85, BD04, EHR91, HTZ04, HH99, JB04, LJ09, SS98b, Sod96, WyW93, GGL06, HV16, Wan86].
Automating [Ebe19, KNZ91].
automation [CGO88, ZWM15].
Automorphism [CH03, Dic92, FFP98, Wil90].
Automorphisms [Hul99, AP10, ABMN10, BCI13].
Autonomous [Sch85, FG06, NW10, NW11].
atutopisms [FMM07].
Avalanches [Sav90].
Average [CR90].
avoid [NPD09].
aware [Ran12].
AXE [LMR94].
axes [BFMS87].
AXIOM [BT94].
Axiomatic [Sch93].
Baby [BS18].
Baby-step [BS18].
background [SA89].
Bäcklund [FK89, WS09].
Backtrack [BL85, LT89].
Backtracking [PW94, Bec03].
Bad [Kal01b, Nat08].
Balley [PP11].
balancing [GMS09].
Ballot [Ges92].
balls [BR10].
Bar [Cer18].
Barcelona [DGPP10].
Barnett [DTGV02].
Base [AS01, CF94, CGZ00].
LMP89, MO95, AHW05, ACMB19, AR06].

Based [AGM97, ABP96, Arn88b, BG01, BB93b, CGG89, DS96, Din94, HS95, Le91, LHD96, Pau92b, Soc91, WG94, YI94, Yon89, Zha94, dB89, ASS07, BF95, BSSV18, Bro12, Bur16, CM16, CvHKK18, C1J15, CKKM10, CLS91, Ede13, EF17, EP04, FMR04, HJA17, HC12, KZ10, MMW11, YRS17, Moz89, OBO3, PDS08, Ruc11, Sch07, SWF11, SS03a, Vis05, Ye18].

Bases [AF00, ABL93, AHLM99, Ape95, Arn95, AGSM17, BCE +94, Bec90, Bec93, BGK86, BTBQM00, BF01, CRAB91, CKM97, Cow92, Czi95, FGLM93, GV03, Gar95, GG99, Gob95, Gre00a, GSZ13, Hal13, HH07, HM09, HP91, HHK17, IvH17, IL09, JNSV17, KRW90, Kap86, KSW13b, Kha13, LLL13, LS04, LSO4, LSW91, LS12, Lev07b, Lia13a, Lia13b, LH98, LLL19, Mad14, Mar08, MRW17, MM84b, MRG17, Mau87, MR13, MM88, MW10, MS03b, NT17, Pau07, Pol95, QR07, Raa12, Rap06, RS16, Rei06, RR05, Rou08, SIS +11, Sch17a, Sch05, SS88, Sta18, Ste13, SS03b, Sax17, Vac18, WO06, Wal03, Wei03, Wei06, Wi07, Win88, ZW08, WR09].

Basic [Buc87, MQ99, NRS89, Kraf95, Naw16].

Basis [FT95, FF92, FD14, GHC92, Hon98b, HS00, Hre94, JL91, KM99, KM01, MR98, MM00, OS94, Pan89, Pau92a, TAY02, Tra00, van94, AFdCS15, ACFP12, AH05, BFS15, Bok08, BD09, BM16b, Buc06a, CW03, CCL05, CR19, DS09, Ede13, FM11T13, Gon17, GSW11, GSSV12, KRRK88, Kho08, LO08, Li10, LOOR+03, MAN+10, SS16, TU005, Tsa16, Val11, ZS01, ZL12].

Baumslag [Sim90b].

Baumslag-Cannonito-Miller [Sim90b].

Baxter [GM10].

Bayesian [GSS05].

behavior [KMN95, MS09, vHG02].

behavioral [NOF10].

Benchmarks [AK92, FOT00].

bending [Loj13, Roq13].

Bendix [EHR91, KMN88, Sim91].

Bergmann [TM85].

Berlekamp [CK12c, Gen07].

Berlekamp/Massey [CK12c].

Bertoni [NRF10].

Bertini [Ang18].

Better [KSD16].

Betti [AC19, Bas06, dCW09, TV18, dAM17].

Between [JS97, MR02, Soc91, TW01, AH13, ACFP12, Coo09, Hir89, KLZA12, KL10, SP10, WW94, aZGS05].

Beyond [Dav02, LY18, ZWM15].

Bezout [CGZ02, DTGV02, AL10, BU99].

Bezout-like [DTGV02].

Bezoutian [Mou05].

BG [LA96].

Bi-rewrite [LA96].

Bibliography [Ano87, Arn88a, BA85, CH85, CH86].

bicubic [GS07a].

bidegree [ES11].

Bidirectional [KJ96].

bifiltered [Fer06a, Fer06b].

Bifurcation [GKLM91, LP90, Mag89, GHG05].

Bifurcations [EW00, GE05].

Big [Lim93].

bigraded [BBC+17].

bihomogeneous [GES11, SJG13].

bikie [CN19].

bilinear [Hul13].

bimodules [RR05].

Binary [Dir89, FKM10, Lip93, SS94, Wei00, ZSY93, ABF09, Bed07, Bed09, BP10a, BP10b, CF09a, CTY10, DL88, DJS18, Sal08, STDD16].

Binding [BGH93].

Binomial [AP93, CT16, GHY17, KMN99, KM01, MS00b, PS95b, Tak95, BL12, BL17, CM17b, Kraf95, dAM17].

binomials [CT16].

biological [HTX15].

biquandles [Sim90b].
[FM02, GZ90, Sch98b, Zha93, BdlCRLS19, DP09, DLLP08b, FS12, GSZ85, HH09, HH13, Lj09, MS15, MS16, MV15, aZGS05].

classified [WK91].

Clausal [Fuc00a, BL06a, Bec03].

Clausal-Diusion [BH95, Bon96].

Clauses [NR95, Gal87].

Clifford [HT95, LN13, TM89, Vel00].

Codatatypes [Hag89a].

Code [PH87, Cer18, MCMMPR14].

Codimension [DS02, Mat01b, BS96, BHS92, DTGV02, GPGO16, KT90a, LM89, AV01, BFHS92, LGS90, VL90].

cowords [MPS16].

codimensions [BFK18].

Cohomology [Bac99, Car01, EMS00, Hol85, Mus00, Wad00, Wad03, AL06, DS18b, ES11, HM05, Hub09b, NT17, N98, TN09].

Collapse [Yel87].

Collaps-free [Yel87].

Collection [GB02, LSG90, VL90].

collisions [BvzGZ13, Zie16].

Column [BELP13].

Combinations [FH86, SS89a, TRRK10].

Combinator [Sta89].

Combinatorial [BB99, BL85, Dz03, FS95, Gia88, Lab95, SG89, Bed07, Bed09, Bmg07, BM04, FS12, GS89, HDPS11, Lj09, RS10, RS11b, Sop13, Sta16, Vac17, Win14].

Completely [Ber02, CS99, BM17, GN04].

Completeness [NT93, Mid94, PP91a, Pan92b, TRRK10].

Completion [BD88, Buc87, Bg96, Car01, Com98a, Com98b, Fri89, Gant91, KMN88, KT08, ML92, Soc91, Ste99, Che18, GR10].

Complex [Ga95, Sme87, Str97, Wad00, Zha96, BSSY18, DGW19, GMM17, Lou08].
Complexes [Aur87, RS00, AKL17, BC05, CVY17, DiP16, DE03, RdC13].
Complexity [SW95, GVHHUE05].
Complexities [SW95, GVHHUE05].
Complexity [BS88, BKN87, Bir98, BK90, CR90, Gao01, Gri88, Gri90, GK16, HK95, HS90, Kal99, Meg90, Nie94b, Ren92a, Ren92b, Ren92c, Ris88, RdC13, RS90, Sch03b, Tak95, Van00, Vor92, Vor99, Wei88, Wei90, vdHS06, Ahn08, AKS12, BFS15, BP09a, Ber04, BDS17, BS09, CH17, DET09, EIS18, FES11, FES13, FEV16, GSSST10, HvH18, Lec19, MOP15, Mor91, NPP17, Pol95, PS13, Sag14, Sph19, vdHL13].
Compliance [BGK96].
Composability [Ohl95].
Composed [HM02b, Min02, CKM09, Min03, Min06].
Components [Hub99, BS09, KN11, KL17b].
Compositions [BvzGZ13].
Computable [JPP19].
Computability [Bac94a].
Computational complexity [JPP19].
Computable [DO06].
Computation [BS15, CFS07, CH03, CVY17, CLL17, CM17b, CN07, DM09, DK18, DDM15, DPS17, Eil04, Els12, ES13, EFG16, ERSG05, EH16, Fox18, GS03, Gue18, HJS16, HKP09, HMD08, HKP+06, JFMRS12, KS06, KS12b, Kin14, KS04, Kuti10, LLM+13, LR90, LLL08, LLL16, LS12, LFD19, LJ09, Lia13a, LHK+13, LLL13, MM04a, MKJ17, MS03a, NSW16, Par04, PT14, PS95c, PN13, PI11, Sh12, Sut12, Sut13, TM58, UCJ04, Vac18, Vil11, WyW93, WC12, Win88, Yok17, YW87, ZL12, vdH07a, Ano01b, Ano02c].
Computations [BdlCRLS19, BS01, BS01, Bos1, BK90, Cha00, CL12, Gh05b, Jac97, KP13, Kal97b, MCMMPR14, Mic90, Ren92a, Ren92b, Ren92c, Sh13, Stu91, YXL99, Bar13, Ber04, BEG09, CR98, DPM16, GKM05, Kem16, Ker17, Mer10, Poz15].
Computations [Ape98, Bec90, BDPR13, But85, CDO97, Cuy97, Dab01, DSG10, DS01, Hkk98, Kal02, LMM93, Mro96, Pau92a, Wh191b, von87, AFS15, BD09, CHU19, DK16, Ebe19, Ede13, Els15, EK19, EPY98, EIM07, HPS11, LR15, The06].
Computing [BH00, Die92, Mau00, NY99, BV03, EMS16, FSW10a, FSGT03, He16, JY17, OdR03, OdR09, Pop15, van93].
Computation [AP90, AGM97, AP93, Ano99c, BC01, Bel03, BG93, Ber93, BK99a, CP97, Cap90, CO01, Cav86, CF91a, DSG96, Dav88, Dav92, Die92, Div19, DJ89, Ebe01, FS95, FM02, FK89, GV99, GSZ95, GZ90, Gre00b, HS95, JTT03, KS98, KKL92, Koe92, KG03, KR97, KD90, Lab95, LSS02, NMM90, OT87, OZ94, Par08, PW90, Pro00, Rob97, Rd91, Ryb90, San95, PC98, PZ92, PS95a, PD07, QR07, RT85, RS90, Sai94, Sav90, STA94, Sh97b, Shi04, Ste97, Szi17, Tes99, Tho02, UYSA89, VV97, Vas00, VGT90, Vor98, Wa00, Wei00, WBM09, Zha96, d839, ACMB19, AH05, Arr16, ACS13, BHLGO15, BGH+04, Bar13, BE13, Bau15, BCL13, BFH17, BFS06, BBKK15, BSC12, BR88].
Computing [BS15, CFS07, CH03, CVY17, CLL17, CM17b, CN07, DM09, DK18, DDM15, DPS17, Eil04, Els12, ES13, EFG16, ERSG05, EH16, Fox18, GS03, Gue18, HJS16, HKP09, HMD08, HKP+06, JFMRS12, KS06, KS12b, Kin14, KS04, Kuti10, LLM+13, LR90, LLL08, LLL16, LS12, LFD19, LJ09, Lia13a, LHK+13, LLL13, MM04a, MKJ17, MS03a, NSW16, Par04, PT14, PS95c, PN13, PI11, Sh12, Sut12, Sut13, TM58, UCJ04, Vac18, Vil11, WyW93, WC12, Win88, Yok17, YW87, ZL12, vdH07a, Ano01b, Ano02c].
Sch96, Tra07b, Ve197, Web95, Wil95, WBM99, YP91, Zha93, AG91, BW05, CS05a, CLS91, DT06, FGPGP14, FKO18, Ger19, JMR04, KASW05, MSZ09, NSW16, Oli88, PS89, SMB03, Yok17, KK99.

Computer-Aided [Wil95, DJ89, KD90].
Computer-Algebra [KKL92].
Computer-assisted [FM02].
Computer-Generated [AP93].
Computers [Bos97, She97a].
Computing [ABKR00, AKR05, AK00, AH13, Alu03, AL06, ABMN10, AE05, AV00, Bah01, BO04, BR09a, BP99a, Bas06, BEP13, BS88, BG11, BMQ06, BLMR99, BCR11, BJS04, BR87, BL12, BJS+07, BTBQM00, BLM10, BEM97, BLW03, BC89, BC91, CH97, CCH01, CH04, CHSS05, CGS97, CDF92, CMP87, CH91a, CD00, CWM08, CDM+13b, CS99, Con90b, CJK97, Dab97a, Dab97b, DH07, DLM11, DFG13, DS18, Dtr06, DMY16, Dm17, Dür99, EEMMP19, EWS6, EW02, Erc02, ES98, EL04, ES11, EK19, Enc95, EG07, FS98, FS16, FG1N06, Ga95, GS05, GS02, GHL+00, GS90, Gö95, GTL17, GTLN19, Hal13, Ha01, Har17, He196, He00, HM09, HMN+07, Hel02, Hö01, HH99, Hul99, Hul13, IvH17, Jam11, JNS17, JS07, Ka93, KT90a, KRK88, KZ08].

Computing [KP97a, K18, KPRT18, KS97, KW88, LS98, LGPS91, LS11, LZ12, Lin18, LPR02, LV14, LM94a, Man93b, Man93a, Mat01a, MHX09, MPSX09, Miy01, Mii97, Mon02a, Mon98, NS90, NF95, Nor01, Pan96, PDS03, PP97, Pis04, PS97b, Poh97, Poz19, Qur17, Ric92a, Ric03, Rin13, RRS06, RR12, Rön90, Roo13, dc10, SM16, Sch90a, SS16, Sek11, Sha90b, SW02, Sim90a, Sl98, Sl01, Smi00, Ste10, St103, Str97, Sut15, Tab13, TV18, TW01, Ung06, VL93, VJ07, Víl95, Vor99, Wan00, Wen06, YNT89, ZS01, ZW08, dG01, dG11, van94, ASS07, AAFR09, Arn03, BR13a, BCE11, Bay03, BBB17, CKR04, CM12, CvH04, CK12b, Col17, DF08, EF17, FEV16, FW15, GVHHUE05, GMF13, GKL03, GR11, GMM17, HDPS11, HHK17, JLW13, JGF09, KSW13a].

Computing [KSW13b, KS12a, KN11, KP97b, KMR18, Lia13b, MWZ16, MR10, MAN+10, Nak09, Nau16, PS13, Ren04, RT17, ST20, SvH19, Toh19, Ung19, YY03, de98].

Concavity [CCG06].
Concept [BN01, BS90b, Be03].
Concepts [GK18].
Concerning [AP93].
Conchoid [GP13].
Concurrent [Fis96, LC96, SJG96, LMA11].

Condensation [LW01, Ryb01, LMR94, Ryb90].
Condensed Computing [GKLM91].
Condensed-Phase [GKLM91].

Condensation [KSW13b, KS12a, KN11, KP97b, KMR18, Lia13b, MWZ16, MR10, MAN+10, Nak09, Nau16, PS13, Ren04, RT17, ST20, SvH19, Toh19, Ung19, YY03, de98].

Concerning [GKLM91].
Condensation [LW01, Ryb01, LMR94, Ryb90].
Condensed Computing [GKLM91].
Condensed-Phase [GKLM91].

Condition [CdG09, CO94, CO96, GGG06, HP07, HP08].

Conditional Computing [GKLM91].
Condensation [LW01, Ryb01, LMR94, Ryb90].

Conditional [DJ96, Gan91, Mid94, WG94, ABFS15, Kap87, Mor13, Wir09].

Conditionals Computing [GKLM91].

Concrete Computing [GKLM91].

Convention Computing [GKLM91].

Conformal Computing [GKLM91].

Conservation Computing [GKLM91].

Conservation Computing [GKLM91].

Considered Computing [GKLM91].

Consistency Computing [GKLM91].

Consistency Computing [GKLM91].

Considered Computing [GKLM91].

Consistent Computing [GKLM91].

Consistency Computing [GKLM91].
Constant [Wol00b, GG92, MP89].
Constant-coefficient [Wol00b].
constituents [Pre06]. Constrained [KFK97, NR95, DdW18, Na18].
Constraint [ABP96, AR03, CZ92, Frü96, HLS01b, HLS01a, HJA97, KR94, LC96, PeI97, RSS10, SJG96, AB05, SA89, Com98b].
Constraint-Based [ABP96]. Constraints [Com98a, Com98b, DH00, HJA97, NR97, Rat02, LM92, Ore11, TM85, XZ10, ZWH11].
constructed [LC16, SMJ19]. Constructibility [Ley01, SM18]. Constructible [CP00]. Constructing [AK86, Arn95, Aur87, BK15, CK04b, CFTY97, Dra03, EP02, Gla88a, GHS01, Har92, HPS97, Hu05, KM99, KM01, Let01, Lin91a, Pau86, PS97a, Pos18, Ros93, RP89, Smi93, dGN02, dG09, vG90, DA05].
Construction [Ber98b, BE99a, BU99, Bro01b, For87a, GK96a, GSPB17, HR19, PW90, Sho94, Yap91, Els17, Fuk04, GSHPB12, IKGT11, Lab09, MH16, MPP19, Möl88, Pol95, Ren17, WY11, HK07].
Constructions [DS00, Ebe01, BGS11, FGP05].
Constructive [AK86, BK15, CK04b, CFTY97, Dra03, EP02, Gla88a, GHS01, Har92, HPS97, Hu05, KM99, KM01, Let01, Lin91a, Pau86, PS97a, Pos18, Ros93, RP89, Smi93, dGN02, dG09, vG90, DA05].
Contour [Hem02]. Contour [AY90]. Contraction [BH95]. contracts [MM10]. contributed [Kap06]. Control [ACGR01, Jr97, LHD96, UYS89, AHK09, Pal13, PS18a].
Controlled [Fuc00a, WKB86]. Convection [Mag89]. Conventional [Sit97]. convergence [PT14]. Convergent [MSKO93, OKK98]. Conversion [Kal99, Tra00]. Converting [CMK97, Kha14]. Convex [ABY90, AC01, JZ04, DHTY04, Fuk04, GSA+12, TRK10].
convexity [CCG06, HZ19]. Convolution [CH12, JB04]. convolutions [VL10].
Convex [ABY90]. convexity [CCG06, HZ19]. Convolution [CH12, JB04]. convolutions [VL10].
HP07, HP08, LLL19, MMS18. criterion [AP11b, AP17, GHMA13]. Critical [BD88, Bec93, Buc87, NMM90, Sto99, dCR17, ASS07, BNT18, Bod04, CRK04, Kad13]. Critical-Pair [Buc87, Sto99]. Critical-Pair/Completion [Buc87]. Cross [OKK98]. Cross-Sections [OKK98]. crossed [BW03, OU16]. crossing [Mon05]. Cross-Sections [OKK98]. Crossed [BW03, OUI16]. Crossing [Mon05]. Crossings [BJM10, OUI16]. Cryptographic [BD04, KKK +16]. Cryptography [BCE +94, FP09]. cryptography [FGPGP14]. Cryptosystems [CCT11]. Cube [FKM10, KC09]. Cubic [Ba90, Lip93, PSV13, CK12d, DF05, FFP98, GSPB17, KT04, SJS06, ZWH11, VM14]. Cubical [BCT94]. Cubics [BR13b, Eng10, HMXD07, MHXD09, MPSXD09]. Cumulant [PW06]. CUP [JPS13]. Curried [Kah95, KKSd96]. Curved [AM88a, BE02, HI94, MM00, Ric92a, Ahn08, ASS13, BO04, BGMSG07, BE17, CGL07, CK12d, FS16, GFT09, GS05, Gau09, GMMM17, HC12, Hub09b, JWC +16, MP89, RSV09, Sto17, Zen06]. Curved [GK94]. Curves [AH01, ACOR00, AF88, CLQ10, Cre01, GR02, GSTT98, GV97, HSW97, Hon97a, HI98, Kal01b, Kid02, Mi13, Mnn97, RS07, SF90, Sch92, Sgd97, SW91a, SW97a, Sen02, Sha01, ZS01, van97c, AK04, AK06, AS05, AS07, Alc08a, Alc12, AHM18, AG16, BGLGM17, BG18, Bir98b, BCGY12, CV11, CWL08, CJL13, CS16, CS05c, DP19, DS18b, DGW19, El 08, Els15, FGS09a, FGS09b, FS10, FS12, FS13, FDS13, FG08, FGP05, GMF13, Har12a, Har13, HJ18, HJ15, Hie16, HSW16, HS98, IMP17, JWC10, KS12b, LSY07, LN13, LLL08, Lub14, MR15, OT13, PD07, Pisa04, PSL11, PV13, Ren17, RSS13, Sad16, SS09, SS11, SJG13, Tab11, VL10, Wan04]. Curvilinear [GV99]. Cut [BL00, EW86, BL06a, CK03]. Cut-elimination [BL00, BL06a]. Cutting [Chi01, FC04]. Cycles [LP90, CFS07, SH17b]. Cyclic [AF00, BF91, Ga95, Hil05a, Hil05b, RZAG99, ABF09, BCI13, BM10, GGM10]. Cyclically [BC06]. Cyclicity [LS16b, Sha12]. Cyclotomic [BCE +01, CM10]. Cylinders [BFHS92]. Cylindrical [ACM88, Arn88b, Bro01a, CH91b, CJK02, McCS8, MC02, PS00, Str11, Str16, BDE +16, BK15, CM16, MSW15, Str06]. D [BPH07, LMM05, YXL99]. D’Alembertian [AB09]. Dancing [Hem18]. Data [MMO94, Yan98, DE06, Far19, Hir89, HR17, RT17, SLK11]. data-discriminants [RT17]. Database [GP96b, FGR03, JR06, Moz89]. Databases [AB00b]. Dataflows [YI94]. Davenport [SS90]. Dealing [DM05, LO96]. death [KKK17]. Debugging [DL93]. Decidability [GSST10, SS96b, SS05, BHSS99]. Decidable [ARS10, Ott91, SS02, Sta93]. Deciding [EW00, GRW16, GRI88, LW10, MW12, VGW18, Vor92, dNdR03, DH16, DF09]. Decimic [BP10a]. Decision [ARS02, BS96, CCG06, Ren92a, Ren92b, BE10, Bus09, GX04, STDD16, SS03a, Ye17]. Declarations [MGL00]. declarative [AHH +05]. Decoding [BF01, CP10, ABF09, BB10, BP09b, DS09, LO08, LO09, MRG13, MRG17]. Decomposable [SO89, Sha01, GGMFVT13, HJA17, vzG13]. Decomposing [Pis02, Wan98, FP09]. Decomposition [AF88, Arn88b, BZ85, BR87, BM01, BCRS89, Bro01a, CH91b, CJK02, DTGY01, EG00, GR02, GR02, HLM95, HLS01b, HLS01a, HS00, Hub00, KL89, KLZ96, LSW01, Laz85, MS00b, McC88, Mon02a, PS00, PS93, RZAG99, Rus87, Rut92, Rut93, Sau01, SY96, ZG09, von90a, von90b, AGR95, AF08, BGLHR12, BBCM13, BE10, BDE +16, BK15, BIS16, CM12, CDM +13a, CM16, DPS17, Dur09, EG04, FGT05, GTZ88, Gol08, GIJ14.
Decompositions [Ac02, ACM88, Bea92, CFM96, Kali94, MC02, vW95, AP04, Ang18, Bur04, DFdG13, GKO09, GSSV12, LPR17, MRSW07, Rob09, Zie16].

Decoupling [BN17, Wol02].

Decreasing [BFHT85].

Dedekind [For87a, HR19, del95].

Deduction [Ano01d, AJ01, BH95, CH85, DS96, She97b, Tak91, GSSST10, TRRK10, Com98a].

Deductive [AB01, CP00, DR93, GP96b, Tra89, Moz89].

Default [SJG96, Sto11].

Defect [HLM95, CC07].

Defectivity [Abo10].

Defects [Mor11].

Deficiency [GRV17].

Defined [Ma94, MG88, Tor93, AB99, EFG16, GMF13, Kol08, MMO94, Oak13, Ryb03].

Defining [Ahn08, LR98].

Definite [Kol85].

Definition [CG02].

Deletion [AB00b].

Delineability [ASS07].

Delineability-based [ASS07].

Delivery [Nor95a].

Demjanenko [FZ87].

dendriform [Mad14].

Denesting [Lan92].

d'enfants [HJ15].

Denominators [KT90a].

Dense [AV96, Min03, Lec07, MS04].

Densities [GH97].

Dependencies [Sch91, vdH13].

Dependency [GAO02].

dependent [MR13].

Depending [DTGV01, AR13].

Depth [Bec03, BFHT85, von90c, Pop15].

Depth-first [Bec03].

derandomization [GSSV12].

Derivation [Be01, CP93, GHC92, Mau00, Sof94, CO94, CO96, DJ89, FPT04, GMP13, JB04, WS09].

Derivations [FGT02, GL92, You89].

derivatives [Gal13b].

Derived [AB00a, OPP93].

Deriving [BB93b, CSS96].

Descent [Kem16].

Descartes [KM06, Sag14].

Describing [CE19].

Description [BN01, CLM16, Göt98, LW10].

Descriptions [NNN98].

Descriptive [Ave86].

Design [CM93, DYA97, GKW98, HNS95, Jir97, Pad96, UYSA89, AHKY09, LS04].

Designs [Key01].

Desingularization [CKS16, Bec09, BE11, U.05, PP17].

dessins [HJ15].

Detection [AH05, BL98a, GR11, Kal01b, RSV09, Sch91, KL17b].

Detection [HS97, AHM18, JW16].

Determinant [Vil11].

Determinantal [PV13].

Determinants [HNE16, HHLQ13, MM04a].

Determination [LM90, LW01, Zen06, FGL04, PS89, SK12].

determine [HBN95, SM18, SS88].

determined [Sza08, Tsa16, Wer12].

Determining [Hen89, LS16b, Mic88, Sch85, WZ12, Yan99, YXL99, ZK89, LH17].

Deterministic [Gao01, GL92, Guo20, HSS18, Kal87, MO98, MS11b, Pol95, ST89a].

Development [AB00a].

dedicated [HKP06].

DeWitt [GK94].

DeWitt-Seeley-Gilkey [GK94].

diagonal [Bri06, LS11, LS12].

Diagonalization [HM97].

diagonals [BDS17].

Diagrams [KPRT18, STDD16].

Diatomic [OT87].

dictionary [STW18].

Difference [Bro00, FHR99, GV99, Hen98, HS99, Lev00, Wan18, Wof00, ABvHP11, AR13, Cha14, Dun99, FGH08, FSW10a, FSW10b, GLY09,
documentations [SWF11]. Documents [CC01]. does [LMPX11]. Domain [For87a, MPS02, CK90, DMY16, KRK88, QHL+13, Sek11]. Domains [AHLM99, KR94, Pan89, del95, DF08, FD18, LS12, MS11a, Oak13, VK16]. dominant [Hon04]. Don’t [vdH02]. Dotted [MW91]. Double [AP93, Jeb95, LP03, Lin91b, Mag89, Sla01, BGHW06, DHKS07, DHKS09, FGS09a, FGS09b, KS12c, RS11a, RS20]. Double-Diffusive [Mag89]. Double-Digit [Jeb95]. Double-Sum [AP93]. Doubly [CC91, DH88, LH98]. down [Fre13]. DPPEs [RS11b, RS10, Rue11]. Dragging [SMJ19]. drift [KLR93]. Driven [WKB86]. drops [ERSG05]. Dual [BE02, BDM+16, BU14, CC07, HK10, KL17a]. Duality [JJ01, Jou09]. DVR [Car15]. Dynamic [DTL10, Duv94, GMS09, Pas86, BGRW06, DHKS07, DHKS09, FGS09a, FGS09b, KS12c, RS11a, RS20]. Dynamical [CD00, DH95, EFG16]. edge [HDPS11]. edge-adjacency [EFG16]. edge-skeleton [EFG16]. Editing [CH95, vdH15]. editor [DGPP10, Bos01, Buc92, Hon96, Kut10, Lev07a, Smo98]. Editor-in-Chief [Buc92]. Editorial [Ano18g, BK90, Cap00, CGT04, GSP96, HGL97, Lam97, LS02, Ano03b, Ano03c, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano04d, Ano04e, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano04k, Ano04l, Ano04m, Ano04n, Ano05a, Ano05b, Ano05c, Ano05d, Ano05e, Ano05f, Ano05g, Ano05h, Ano05i, Ano05j, Ano05k, Ano05l, Ano05m, Ano05n, Ano05o, Ano05p, Ano05q, Ano05r, Ano05s, Ano05t, Ano05u, Ano05v, Ano05w, Ano05x, Ano05y, Ano05z, Ano05A, Ano05B, Ano05C, Ano05D, Ano05E, Ano05F, Ano05G, Ano05H, Ano05I, Ano05J, Ano05K, Ano05L, Ano05M, Ano05N, Ano05O, Ano05P, Ano05Q, Ano05R, Ano05S, Ano05T, Ano05U, Ano05V, Ano05W, Ano05X, Ano05Y, Ano05Z]. Efficient [DDR11]. Effective [ACMB19, Ano01e, BBC+17, But85, DGPP10, DHTY04, Dub93, GPS09, GS18, HSO1, MMS18, MS10, VB03, vdH05, AMDW16, BCLR13, CM17a, CDM+13b, DDM15, DJ07, GX04, HV16, Kad13, RRS19]. Efficiency [BPH07, Gre95]. Efficient [BTW93, CO01, CF89, CM93, CE95, DF05, DSV01, EG00, EG04, ES98, EC95, EFG16, Geb02, GKW98, HI94, Lim93, Mag17, PH87, SS96a, Sun12, Sun13, Sun16, ZSY93, ZL12, vdH07b, FP09, HDPS11, JGF09, KSW13a, KSW13b, PS18b, Sal08, FGLM93]. Efficiently [CRK04]. Ehrhart [BS15]. eigenfrequency [KP91]. Eigenspaces [MT01]. Eigenvalue [For02, CGK09, HHLQ13]. Eigenvalues [Q05, Q06]. Eigenvalues [OP03]. eight [DS18a]. Einstein [ACS13]. Eisenstein [DF05]. Elastic [Eis90]. Electronic [BC01]. Element [TL96, Wan86]. Elementary [AM88b, Bro90a, Bur04, DS86, Lii90, Bad06, DHKS07, EL03, PV13, SR07, ZWM15, Zha03]. Elements [BBB92, CH96, Gaa95, KT04, YNT89, Buc06a, CF09b, GTLN17, SS16]. Élie [NPD09]. Eliminating [KL17a]. Elimination [Arn88a, AM88b, CH97a,
CH91b, DH88, DS02, DYA97, EW00, EM99, Fer96, GV96, GVGC99, HL97, HLS97, Jir97, KFF88, Laz88, LS95, Mul01, PS00, Ren92b, Ren92c, SK91, Vir99, Wan93, Wei97, BL00, BL06a, BGG13, CM16, CS98, EH16, Fer98, GGL06, GOP18, HSV08, HE12, JPS13, Sch07, SD05, Tra07a, XLY15, Zan94.

ELISE [Die92]. Elliptic [Car99, Cre01, Gar95, HH98, Kid02, MV10, Ye18, BGH04, CV11, FG08, Gau09, Hub99a, Sad16].

embed [DW18]. Embedded [BE11, BCS97, KL17b]. Embedding [AAB18, BS87, Rd91, Vel00, LL13]. Embeddings [GR01]. Empirical [AGMT98]. empty [Fer98]. encoding [Cox19]. encodings [Vat12].

Endomorphism [GHS01, Sch90a]. endomorphisms [DL06, HLSW16]. enforcement [LMA11]. Engel [CdG09]. Engine [WKB86]. Engineering [KC01, Mer01]. Enriched [Lab92]. entries [MM04a]. Enumerating [You89]. Enumeration [CP00, CG02, Lin91b, LMM05, Sim91, HV16, Pel03a, FGS09b]. enumerative [DaZZ04]. Enveloping [dG01, AL88, FS98, IL09]. Environment [DGS96, HL98, BPT11]. environments [SMB03]. epidemic [BNW06].

Equation [BTG02, FT95, FHR99, Hv95, Hub99, Wol00b, Arr16, BL06b, Bro90b, DZ09, FGG+16, GH12, GIM07, KP91, LL16, Maw88, Mil93]. Equational [AB99, BS96, BS86, BHSS99, CZ92, CL89, DR93, GR10, HK95, HKK98, JM95, Lyn97, McN92, Pan85, QW96, SS99a, SS99b, WG94, AHL03, LM94b, Pic03]. Equations [AP89, AK00, AHV05, BP99a, Bar99, BGH93, BF91, BK86, Bro92, Bro00, CDF92, CV00, Chun99, CF89, CM93, Com98c, CS99, CSTU02, CKS99, Cza89, Die92, FM02, GPP93, GP96a, Gaá00, Gaá02, Gan91, GC92, GH97, HH98, Hen98, HS99, HPT02, KST93, KFF88, Kov86, LS01, MC97, Mar96a, Mi87, Mi92b, Nau98, PV00, PV02, RT89, SV92, SSS02, Sch99, Sch85, SS95, Sin90, Sin91, SU93a, SU93b, Sit97, Sma96, Sny93, SBB+89, Tra98, Tun02, Uln94, VRUW99, Vid99, Wan99, Wol02, YNT92, Zha96, dv96, vdp99, ABvHP11, AR13, Ad16, AAB+18, AP11a, AC04, AHL03, BV03, BP09a, BB10, BPZ06, Bi11, BD12, BR06b, Cha14, Cou18, DJO+11, DS86, DP09, Drt06, DJ89, EG15, FGH08, FSW10a, FSW10b, Fre04, FK89, Gal87, GH05a].

equations [Gao03, GGG06, GSZ85, GS18, GR98, HL17, Heu98, HTZ04, Heu06, IwH17, Izu16, Kut07, KKM15, MP09, Nak16, NNvdPT15, Ngu09, Ph11, RT17, RR08, SVE14, Tun09, Uln03, ZWH11, vdH07c, vdp05, vdpT15].

equilibría [BENW06]. Equisingular [CGL07]. Equivalence [BL93, HS90, NNvdPT15, Bi11, BLP19, CF09a, MS16, MV15, SS88]. equivalences [HJ18].

equivalent [CO96, Nak16]. Equivariant [GG99, Wor94, BK16, Pos18].

Errata [Kal90, KL90]. Erratum [AP04, DHM11, Fer06a, HJM94, Hii05b, Sag89].

Error [Che85, Kno92, Kno93, Mro96, VGT90, BP09b, KS19]. error-correcting [BP09b]. Error-Functions [Kno92, Kno93].

especially [Sut15]. Essential [Hub99, FKO18]. essentially [Ber98a].

Estimates [Bea92, Sha90a]. Estimating [KO17, Tsa16].

Estimations [Ded97]. Εta [LLL08, HR19].

Euclidian [Bus09, BL98a, BBN18, Col02, Hav91, Kal93, KRR88, Lee17, My90, Nor90, Rol86, RS13].

Euclidean-like [BL98a]. Euler [FW15, Hel16, KP91, Rdc13]. Evaluating [OPP93, Fra13]. Evaluation [Ant05, AB89, DSW09, Dur09, Duv94, Köl85, Mer01, vdH01, BES13, CCQ18, Pie91].

Evaluations [KT90a, KY16]. Even
Buc87. Feedback [DYA97]. Fermat
AML19, HS09, HJ15, Lee17. Fermions
Hug90. Few [KM00a, Bas06]. Fewer
BS90a. Feynman [BKSS12]. FFT
Van02, vdH10. FFT-like [Van02]. FGLM
BTBQM00, DH17, FM17. fiber
DS18b, HQS19, RS16. fibers [CTV16]. fibrations
[RSS19]. Field [Bro92, Bro00, Gre95, HJ15, LM98, McN92, MQS00, Rut93, SW97a, Str97, van94, BHF17, CK12c, DM05, EPy98, PZ12, Sch08, ST19, SvH19, Wen06]. Fields
AF00, AH01, Arn88a, BC97, Bru01, BW87, CcK02, Dav94, DS97, EG00, Enc95, FGT02, Gas93a, GPP93, Gav95, GP96a, Gaa00, GvPS00, Gie98, HM02a, HJ15, LM98, McN92, MQS99, Rut93, SW97a, Str97, van94, BHF17, CK12c, DM05, EPy98, PZ12, Sch08, ST19, SvH19, Wen06]. Fifteen
But93. filiform [CGGO09]. filtrations
DS18b. Filtrations [MSO2]. Finance
[BTG02]. find [BvdE03, SJJ13]. Finding
AF00, BP98, FT95, Gas93a, GLW99, Ges95, Jeb95, Kan91, KKM15, Lo98a, LO99, MM00, Sak88, Tak95, Tra98, Vat12, AV11, BN04, Bil11, Buc06a, FG06, HNE16, Pan02, Rau12]. fine [DH07]. FINGER [Wan86]. Finite
[ACH01, BB92, BE99a, BM01, BS97, BL96, BL93, CH91a, Che85, CO94, Dav94, DHS98, EG00, Ebe01, EW02, GvPS00, Gie98, Glu88a, Glu88b, Gre95, HS09, Håf01, HJ98, Kar87, Kar95, K emulate90, LV90, NG93, Nie4a, Nor95d, Ous91, PW90, Rón90, Sak88, Sho94, Tha93, TL96, Wei94, Zha92, vG90, von90c, vGP01, Bad06, BES13, Bel03, Ber98a, Bur04, CH03, CH04, CELG04, CHS05, CHU19, CGS97, CL17, CvKK18, CKLZ19, CN19, CLM16, CK12c, CN07, CO96, DA05, DS12, DFO13, DW18, Drå01, DFS11, EENMP19, GKL04, G12, Gen07, GMP13, Guo20, HL04, HN06, HL18, JPP19, KZ08, KS19, KO17, Kin13, Lea06, LS16b, LST03, Mag17, MM04b, Nie03, NY04, Pe03a, Poz19, Shp14, Sli04, SH17a, Top14, Ung06, Vac17]. finite [Wan86, Win14]. finite-dimensional
[LST03, MM04b]. finite-precision [Vac17]. Finity [BRM01, CDO01, GK96a, Let01, Lin91a, Lo98a, MO88, MQS00, NØ9, OS92, OKK98, PS97a, Vat06, dGN02, BMQ06, CE19, CdG09, DMY16, GGMAM19, Lab90, MO85, Sch17a]. Finity-generated
d[GN02, DMY16]. finitely-presented
[CDG09]. Finity-valued [OS92]. Finiteness
[HDc13, Hdc16, CO94, CO96, DF09, Ric91]. finistic [Shi04]. First
[Ano00b, BZ03, Hol85, Hsi87, Lab95, Man93a, OS92, Pau85, PSS12, Ren92a, Ren92b, Ren92c, ST89a, Sch85, Tre92, BE13, Bas06, Bec03, Dra03, FG06, KPR10, NW10, Str11, VGW18]. First-Order
[Ren92a, Ren92b, Ano00b, OS92, PSS12, Ren92c, BE13, VGW18]. Fitzpatrick [LOOR03]. Five
[SW95, Oll88]. five-body [Oll88]. Fixed
[Ley01, Pan96]. Fixing [WBM09]. fixpoint
[BSC12]. fkEnzo [HRPS11]. flag
[ACS13, Qur17]. Flajolet [SSS1]. Flat
[CR11, Kun18, Kur17]. Flatness
[Ass94]. Flattening [Mar02]. flex [CK12d]. float [Abb12]. Floating
[CR11, Kun18, Kur17]. Flatness
[Ass94]. Flattening [Mar02]. flex [CK12d]. float [Abb12]. Floating-Point
[Cuy97]. float [Lia13a]. Flow
[Fit89, Sav90, YP91]. Fluid
[CJMP97, NMM90, YP91]. Flynn
[LOOR03]. Focus [Nie94b, MHP17]. Fold
[BB93b, Koe95, IT10]. Fold/Unfold
[BB93b]. foliations [Alc16, CS06]. FOR-loops
[KW10]. Forcing [PP91a]. Foreword
[Buc92, PZ92]. Foreword
[Ano99c, Ano00b, AJ01, AFT09, BK11, BB93a, BK12a, Bos01, CH97a, CJS01,
CJGV09, CL00, DGR07, DDHS13, DOR17, FR09, FLB00, HSW97, Hon96, HL97, KM98, KASW05, KR97, Kut10, Lev07a, LPPR12, MMO18, MMY00, PSS12, PEGS11, SB99, SS18, Smo98, WS98, DGPP10, KW13, Par08].

Form [Boy92, CD00, Dur89, Egl96, GPP93, GP96a, Gaa00, Man93a, MF90, PG86, Sma96, Van00, Vil95, Von98, AMW12, Bed07, Bed09, BPZ06, BGG13, Cha14, DL88, FK018, Hul13, JY17, LM92, LS11, Rau11, RZ09, SST18, Sch04, Stu17, Wy11, DSV01].

Formal [AC01, BP99a, BJM17, BM19, Bec09, Bie85, Co01, Kal02, LM94b, Sin90, van97b, Abr17b, HI08, IvH17, VB03].

Formalization [BBN18, FLOR00].

Formalizing [IGT15].

Formally [HK10].

format [BR06a].

Forms [Ae02, CK99, CD87, Drä91, FH94, GS02, Lip93, LIs95, Man93b, Mar69b, Das96, Sac98, SS95, Snc98, Ste97, We94, tW91, AP04, AP10, BAC11, BE13, BLV06, BC06, BR13b, BS17b, BLL†16, BLPR15, BD13, BST16, CG088, CV11, CL07, Deu93, DF913, GLLdr19, HR12, Kop08, KC18, LS12, PRR18, WZ12, YP03].

Formulas [Mul97, Wol00b].

Formulae [CH95, DS97, GV97, DE03, EK11, EM12, GHS03, LM94b, SS09].

Formulas [tW91, Bro12, XLY15, ZWH11].

formulation [CK03, CK04b, CK04a, HS17b].

FORTRAN [SR86].

Forward [Dur94, SS96a, JMRP04].

Forward-Branching [Dur94, SS96a].

Foukles [CM17].

Foundations [Eis90].

Foundations [ES13, Fre13, JKP12].

Four [AM99, BDPR13, BR13c, GR12, Tsa16, aZGS05].

Fourier [CR98, CM04, DE06, JSC13, KS16, PT14, RH18].

Fourteen [But93].

Fourth [FHR99].

Fourth-order [FHR99].

FP [Y194].

Fractals [HT17].

Fraction [BCL06, LS95, LS12, Mul01, Col16].

Fraction-free [BCL06, LS12, Mul01].

Fractional [Gal13b, GKS12, VM14].

Fraenkel [Win06].

frameworks [KS18].

Framework [AB99, BFK02, BF93, CH95, DJ96, DH00, OS92, Str01, BD09, CMR19, SLK11].

Formalization [BBN18, FLOR00].

Formalizing [IGT15].

Formally [HK10].

format [BR06a].

Forms [Ae02, CK99, CD87, Drä91, FH94, GS02, Lip93, LIs95, Man93b, Mar69b, San96, Sch98b, SS95, Snc98, Ste97, We94, tW91, AP04, AP10, AH13, BCE11, BE13, BLV06, BC06, BR13b, BS17b, BLL†16, BLPR15, BD13, BST16, CG088, CV11, CL07, Deu93, DF913, GLLdr19, HR12, Kop08, KC18, LS12, PRR18, WZ12, YP03].

Formulae [CH95, DS97, GV97, DE03, EK11, EM12, GHS03, LM94b, SS09].

Formulas [tW91, Bro12, XLY15, ZWH11].

formulation [CK03, CK04b, CK04a, HS17b].

FORTRAN [SR86].

Forward [Dur94, SS96a, JMRP04].

Forward-Branching [Dur94, SS96a].

Foukles [CM17].

Foundations [Eis90].

Foundations [ES13, Fre13, JKP12].

Four [AM99, BDPR13, BR13c, GR12, Tsa16, aZGS05].

Fourier [CR98, CM04, DE06, JSC13, KS16, PT14, RH18].

Fourteen [But93].

Fourth [FHR99].

Fourth-order [FHR99].

FP [Y194].

Fractals [HT17].

Fraction [BCL06, LS95, LS12, Mul01, Col16].

Fraction-free [BCL06, LS12, Mul01].

Fractional [Gal13b, GKS12, VM14].

Fraenkel [Win06].

formalization [HS17b].

formalize [HS17b].

forms [BBB92, BS92, Bro90, Che85, Czi95, DTGV01, Gar95, GHC92, Jef97, Kno92, Kno93, Koh92, KLZ96, LS94, MS95, Mer01, Pro00, SS98a, SS99, Ste95, Tra96, Von98, van97a, vdH01, AJGV99, AF08, Bad06, BGH†04, Bil11, BM10, DMD†16, CMV13, CCG06, CS05b, CvHKK18, DHH†04, Eit94, GS03, GPGO16, Gu18, HR19, HT17, JML†13, JPP19, KLYZ12, KS19, Kn17, Kut07, LP03, LR90, MAN†10, NN10, Oak13, Pia91, Ra92, Ry93, Sek11, Sha90a, SLX†13, STD16, SK12, Str12, VW08, Ye17, ZH20, vdH05, vdH07b].

Functors [BCF19].

Fundamental [RS00, DL88, MPSXD09].

Future [Cav86].
Galerkin [AG91]. Galois
[Arr16, AV00, Ber02, BF01, CS99, DR00, DT06, DTL10, DVO0, Els12, EK19, G000, H095, Hen98, Kli90, KM00b, Kli০০, Mal00, MZM87, MMY00, SU93a, Sut15, Ve00, vdH07a, vdP99, vdP05]. Galoisgruppe [MZM87]. galoisian [Val11]. game
[AGS18a, FRR06]. games [GKS12].
Gamma [GK96b]. Gamma-Operation [GK96b]. gap
[El 05, HT17, BM16a, OdR09]. Garcia
[DS09]. Garside [Bok08, DG14, GGM10].
Gathen [GP12]. Gauge [WBMM99]. Gauss
[MV10, Sch01]. Gauss-Manin [Sch01].
Gaussian [Co102, FL04, JS13, LS95, MBC+10, Mul01, Ro16]. gcd
[BLV16, BLV18, DF05, CDD*09, CGG89, EG12, Gri90, Je95, Nag11, S92, SL92, SS94, Tsn09, Web96, Wei00, vzGMS10]. GCDHEU [CGG89]. GCDs
[Enc95, KL08a]. Geddes [GW11].
General
[CL16].
Generalize
[ASJ97, BBCM13, BL85, JL91, KFF88, NS90, Orey1, Pau12, PP17, Ren92b, SO89, Sr01, Wol00h, BO04, BLV06, CM19, DHKS09, D800, DJ92, FG06, KS12c, LLL08, MRG17, NW10, NW11, VG18]. generalisation [LR15]. Generalised
[Can90, BR88]. Generalization
[MR98, MRG13, St87, Ang15, CR11, Sch10]. Generalizations
[BZ93, Win14, DS18a].
Generate
[AP93, BRM01, CDO01, FH94, Lo98a, Mo88, MQS00, BMQ06, CE19, DMY16, FES13, Hal13, HJ15, JY17, LM92, Ru09].
Generating
[ACOR00, CM04, DHS98, HL18, MSKO93, MP11a, Ous91, RCK07, Sak88, Sny93, Th02, dM99, vHK13, CELG04, CF91b, FW14, HI08, HL04, HM09, HP91, HJA17, Hu609a, KT90b, KT94, Kin13, Vat06, VW08].
Generation
[BBB92, KL08b, O’B90, S107, LW03a, LW03b, Wn06]. Generator
[Ch99]. Generators
[FGT09, HRT01, LM94a, RT98, BO04, BJS04, Bok08, Hu13, IK13, JWG10, PS18b, VV18, Wen06].
Generic
[Ass94, BT98, CH95, CS05c, FH94, KM00a, Led00b, Led00a, Ma94, MSY00, AGS18a, C1J13, CJ15, DJ05, DMW17, DLL08a, FJLT07, Ka11]. genericity
[HSS18]. genetic
[HS06]. genotypes
[Sad17]. Genus
[Bau15, GS12, HLSW16, PV00, PV02, Sha01, AP11a, Har13, HLSS15]. GeoBench
[Sch94]. Geobucket
[Yan98].
Geometric
[Ba86, CM97, DH00, HLS01a, HLS01b, HJA97, Meg90, Sch93, Yap90, BM88, DJ0+11, DIdW18, LW03a, LW03b, Mor91, Q3GB19, RZ09, RR12, WZ12].
geometrical
[NPD09, TM89]. Geometries
[Del94].
Geometry
[AM88b, CL00, Cha00, Ebe01, FG16, GO91, GO00, GVG09, G1e00b, Hav91, LR98, Ren92a, Ren92b, Ren92c, Ris88, Stu91, Whi91b, AV11, BKR19, BBN18, CK12d, DGGPP10, GSS07a, GPS09, GSS05, GMS09, HS17a, IS10, K19, KS86, Lan10, LW03a, LW03b, MCMPP14, SM18, SMJ19, Sha13, Sti03, Str19, Th06].
geophysics
[DJ89].
German
[MZM87]. GFUN
[HR11]. GI
[YY87]. GI/S
[YY87]. giant
[BS18]. giant-step
[BS18]. Gilkey
[GK94]. gimbal
[KLR93]. GiNaC
[BFK02].
Given
[Gaa95, KT90a, Mal00, Sak88, AC19, Bay03, BP07, PS09, Sek11, VL16].
Global
[GG112, Sm00, Al08a, Bn15, HJX16, MLA12, PO05, Poh05, Wen06].
Goals
[CSS96, FOT00]. Goldbach
[BP00]. gonal
[BCL13, Har13]. Good
[Al08a, Al08b, Kid02, Pr12, Sch05, Sto11].
Gosper
[BP99b, CS05b, LPS93, MS95, Mu08, PS95d].
Gosper-Type
[BP99b]. Graded
[HNVL90, Rob86, She92, VL93, AC19, BC06, CGGO09, HM05, Loj13, MM88].
Grail [RW94].
Granular [Sav90].
Granularity [LO96, LHD96, MRS96].
Granularity-Based [LHD96]. Graph
[Der13, DBG89, KS97, DK16, FKM10, GES05, HDPS11, IT10, Mar19a, MP14,
Ore11]. Graphical
[Che92, KM98, YW87].
Graphs
[Che92, Der13, DBG89, KS97, DK16, FKM10, GES05, HDPS11, IT10, Mar19a,
MP14, Ore11]. Grassmann
[HT95]. Grassmannians
[Coo09]. Greatest
[DTGV02, LM90, Pau95, KT90a]. Green
[LM90, Mer10]. grid
[KS18]. grid-like
[KS18]. Grids
[GV99, Her94]. Grids
[GV99, Her94]. Groebner
[Tsa16]. Groebner
[BTBQM00, FGLM93, Gre00a, Lev00,
MQS00, Tra00, AB92, ABL93, AHL99,
ACFP12, Ape95, AK86, Arn03,
AKR11, Aue05, BFR94, BCF05,
BBF17, BCR11, BGK86, BR06a, BL12,
BV06, Bok08, BD09, BD13, BP09b, BF01,
CJUE06, CRAB01, CgD90, CR11, Cip08,
CKM97, Cz95, DMB11, D09, Dn13, DL06,
EP10, Ede13, EF17, FMM07, FMTT13,
FL11, FEV16, Fer88, FFB92, FFP08,
F14, FD18, FJL07, G99, Ger06, GTZ88,
Go06, GKM07, Go17, GSW11, GZ13,
GS98, Hla13, HT95, HP91, HKL99, Hon98b,
Hre94, IL09, JFG09, Ka19a, Kal99, Kal01a,
KRK88, KRW90, Kap86, KSW13a, KSW13b,
Kho08, KM99, KM01, LL09, LL13, Lea06,
LS04, LO08, LO09, LS11, LS12, Lev07b,
Li05, Lla13a, Lla13b, LOOR+03]. Groebner
[GH98, LLL13, MN02, Mad14, MR98, MM09,
MR17, MM04b, MRG17, MR13, Mi196,
Mo18, Mon02b, MW10, MR88, MS03b,
NOT18, O95, Pau92a, PZ96, Pau08, Raa12,
Raj06, Rei06, RR05, Ros93, Ron93, Rut92,
SIS+11, STA94, Sch07, Sch17a, Sei02, SS88,
Sm02, Sme98, Ste13, SS03b, Szi17, Tay02,
Vac18, Val11, W006, Wal03, Wei92, Wei03,
Wei06, Wib07, Win88, ZW08]. Groebner-based [Sch07]. Groebner-basis
[BD09]. Groebner-free [BD13]. Groebner
[Tsa16]. Ground [Snu93, AHLO3, GA78]. Group
[AH86, Ber02, Bos97, BP00, But85,
CCH92, Cap90, Car01, CDO97, CH96,
DHS98, G00, Go10, Hen98, HLM95,
HPS97, KKL92, Kli00, L6, LGPS91,
Leo91, LM94a, MR98, MA10, O98, P90,
OT13, RAG99, Ros93, She97a, Sim90a,
Tes99, WK91, dM99, AC04, A16,
B18, Bok08, BK16, CH03, CSS05, CF09b,
DW18, Ell04, ES11, EKI9, FS98, FMR04,
HK07, Hub09a, JPW19, JV09, K17,
Kos07, Mar19a, MZM87, N001, ODR03,
ODR09, SW97b, Ung06, Wil90, Wur93].
group-based [FM04]. Group-classified
[WK91]. Groupoids [JM93, PV05]. Groups
[BB92, BE99a, BE99b, BDPR13,
BT94, BL96, BC91, But93, CC91, CH97,
CCH97, Cla91, CDO01, CS99, Con90b,
CF94, CTY97, DV00, Du99, EW02, Eic02,
EHR91, Geb02, Gl98a, Gl98b, GS90, H590,
Hol85, Hol91, HRT01, Ken96, KMM06,
Lin9a, Lo98a, LO99, LR97, MO88, Mal87,
MO95, N98, O93, O94, Oat99, PW90,
PY94, P97a, Pus02, R50, Roy87, RT98,
SU93a, Sla01, Tri86, Wra88, dG02, vdP99,
AE05, BGL005, BCI13, B103, BM01,
BV06, BJSS89, BCCK20, BFG07, Bri06,
Bro03, BC99, CH03, CH04, CELC04,
CHU19, CE19, CGS97, CM04, CS99,
Con09a, CF91b, CO96, DA05, DJK05, DF07,
DF09, DFO13, DFG15, Els12, Els17, FF17,
FNU16, GGM10, Go198, GN04, GP13,
HL18, Hul05, Hul13, JPPG09, K91].
groups [KS16, Kin16, Koh08, LMP19,
Led00a, M85, Mag17, Mar19a, Min98,
MRD11, NU18, Poz19, RR12, RDU03, SW02,
SH17a, Sla08, Sla07, Sm05, Sut15, W006,
Wur93, dG09, dG11, vdH07a]. Growth
[Sha09a]. guarded [GH03, dND03].
Guessing [vdH13]: guest
[JM04, Ano99c, Ano00b, AJ01, BB93a,
Hyperresolution [GHS03]. hypersurface [Qi06]. Hypersurfaces [ASS97, BS00, ABR17a, BD16, BC05, Lee17]. Hypothesis [von87]. HYPQ [Kra95].

I/O [MMW11]. IB [Sid93]. Ideal [AHLM99, BGG13, BRM01, BW87, C FM96, HKP99, Laz85, Laz92a, Mat01a, Mor99, Pan89, Pri96, del95, Ahn08, BO04, BGMSG07, BCLR13, BJS04, Buc06a, FGT09, FK11, GTLN17, GSW11, HQS19, Hre06, KRK88, KN11, Kun18, LV14, MM06, MR88, Per04, TV18, Val11]. Ideal-specific [BGG13]. Ideals [ABKR00, ACOR00, AV00, Bah01, BMNB+11, BLR99, CM97, Fer06a, Fer06b, FGT02, FH94, HS00, Kem02, KM99, KM01, LS00a, LS00b, MS00b, MY00, Mon02a, Mus00, NY99, Pan89, Pau9a2a, SST18, SY96, AFT08, ACMB19, AC19, ATY08, AT08, BO10, BMS8, BT90, BMSQ06, BL12, BL17, BR15, Cer18, CR11, CS05c, DS16, DL06, FES11, FGT05, GVHHUE05, GY17, GES05, Gol06, Gol08, HSS18, HPO06, HKP99, HM90, HP91, HsC13, Hdc16, HH04, JFMR12, Joh15, Jou09, Kem16, KMHS89, KW88, LL09, La 17, MWZ16, MR17, MR13, NT17, NOT18, NNPZ19, NY04, Pis04, Rout90, ST20, Ste13, TN09, UCI04, W006, dAM17, GTZ88].

Idempotent [Dav94, HKSS17]. Idempotents [Kon95, Odr03]. identifiability [Ang18, CR98, MMS18]. Identifiable [MS14]. Identifying [KT02].

Identities [BH02, Deu93, Ges95, PS95b, ABF09, CS98, GHS08, Kau07, Rad15, Rie03, Sil04, Zha03].

Identifability [Ang18, CR98, MMS18].

Imaginary [Gaa93a, GP96a, HPT02, JTDW18, Rol90, Bus09, Hre06, KT04, Kli90].

Implicitization [ABR17a, AS01, BD16, CGZ00, Doh09, FHL96, GC92, Gao03, GV97, Hon97a, Ore01, WC12, CCL05, Chi08, CTY10, HS98, PDS08, RS10, RS11b, Rue11, SS05]. Implicitizing [BC05, LC16, SGO79, Wan04]. implicitly [VL16]. implies [CO94]. Improved [Bro01a, CE96, Els17, GZ89, Jar13, Lec07, McC88, DJ92, Hre06, KSS16, Tsa09]. Improvement [LPS93, Theo2, BPH07]. Improvements [BMS17]. Improving [Gen07, HHT18, MM06]. incidence [ST18, LW03a]. incidences [SPZ10]. including [AJGV09, Sut12]. Incomplete [FD93]. Incorporating [ARS02, GHMA13]. Increase [CP00]. Increasing [Pel97]. Incremental [EC95, HAGW12, KT90b, KT94, MU04]. Indefinite [Man93b, Wan94a, Pia91, PS95c]. independent [KW88]. Index [An099b, An000a, An01a, An01b, An01f, An02b, An02c, An04a, An05f, An06, GPP93, Ga95, GP96a, Ga900, Gau09, LR01, CHSS05, DJO+11, LN13]. Indexed [Wan94a]. indices [Abr17b, DMN17, Ung19, Wan18]. Indispensable [ATY08, CTV16].
individual [SS16]. Induced [BH00, AFdCS15, BW03]. Induction [ARS02, Bou97, KNZ91, Str01].
Inductionless [KNZ91]. Inductive [DR93, Fri98, Pad96, KS12c]. Inequalities [GV88, Str00, Vor92, Bro12, HJX16, IdW15, Oak13, Pet87]. Inequality [MG94b].
Infeasibility [DLMM11]. Inference [BA85, CH95, Pau92b, KW10, MM10]. Inferencing [Bib85]. Infinite [BBB92, Bir98, CP00, Geb02, IZ96, OKK98, PV02, CX09, DF08, DFO13, DW18, Koh08].
Injective [HM05]. Injectivity [LS94]. Injectors [Hof01]. Inseparability [LW10, Ste05]. Insetion [Vat12]. Instability [CJ87]. Installation [GM88].
Instantiation [dB89]. instanton [GS05]. Insurance [AST96]. Integer [CGGS09, DSV01, GS02, HM97, KJ96, Liub02, Pe197, Web96, BP11, Bus09, Har12b, HvdH18, Rup04, Wan06].
Integers [Col02, Gem94, Heb95, Rol86, BV03, BFH17, DF05, FL04, Jan11, JMV18, KY15, Nag11]. Integrability [Adl16, AMW12, AMDW16]. Integrable [FM02, GZ90, Zha93, BJM17, GSZ85, LW12].
Integral [AF00, AML19, AZ90, Hal01, Mil87, Vas00, VNT94, van94, Ahm08, AGT13, BKSS12, CK90, FD18, IvH17, Mar19a, Mau87, Raa12, Sta18, de 98].
Integrality [DFdG15, Sto03]. Integrals [ABS9, Car99, Köl85, Sch85, Bar07, KS19, KKM15, Oak13, Pio91]. Integrating [Ano01d, AJ01, CTR99]. Integration [Bad06, Bro90a, CS05a, Car99, Che85, Czi95, DTGv01, Jef97, KS19, Kno92, Kno93, KF01, LR90, LS02, Mul97, Te102, Wan94a, Wol00a, BB11, BLL14, Bro07, GGA13, Wol03].
Interpretation [AB01, BB93b, GSA+12, Zan94]. interpretations [ZWM15]. Interpreter [Hag89b]. intersect [BFMS87]. Intersecting [Gla88]. intersection [AH13, BEP13, BGMG07, BE17, BM04, DEPS11, DLP08a, DLP08b, DFL08c, FGVN06, JWC+16, Rod15, Sop13]. Intersections [GS90, Lo98a, M10, BM15, DLLP08c, FS16, Sta16]. Interval [CJIK02, Mer01, PC98, Sek09]. intractable [HYH04]. intransitive [Els12]. Introduce [Bos97]. introducing [Rei06]. Introduction [BFK02, CFG+86, GI01, MNJ94, Pol87b, Ren92a, GKI2a]. Intuitionistic [CH85, CH86, Pau86]. invariance [AT08]. Invariant [Cra91, DHS98, DBG89, GG09, Gö95, Hub19, Hub99, JLM+13]. invariant-based [KZ10]. Invariants [BCE+11, CP93, Cre01, Els12, MS00a, SW02, AR06, APS12, Bay03, Bed07, BGLGM17, BP10a, BP10b, DL88, Els15, Els17, FGT15, Gö98, HK07, Hub90a, KW10, Kem09, MS03a, RCK07]. Inverse [DR00, Dic92, JKP08, SS99, Tay02, FFP98, HOP06, Lee08, Pom11, WyW93]. Inverses [Sal94]. Inversion
[AGRZ99, Kri85, von90c, LSSW12]. Investigating [AG91, BENW06]. investigation [Bur03]. involution [BR13a]. Involutive [Ape95, Ape98, GHMA13, HSS02, AH05, CMR15, EW07, RZ09, WZ12]. Involving [BFHT85, Köl85, Zip85, Bil11]. IPIA [KT94]. Irrationality [Bee01]. Irreducibility [Kal85, Kal87, Mon92, Kal90]. Irreducible [FGT05, GR02, Let01, Pre06, Sho94, Ulm94, GR12, LMP19, MP89, PS89, Rout09]. Irregular [BCE01]. Isochronicity [HR12]. Isoclinism [OUI16]. isogeny [FG08]. Isogroups [CDF92]. Isolated [GLW99, Mou98, FGT15, LZ12, Qur17]. Isolating [XY02, MS11b, Moe05]. isolation [BS17a, BSSY18, BK12b, BL85, CGY09, CGG12, CJ15, Col16, Col17, HLXL18, MSW15, Str12, ST19]. isomers [LMM05]. Isometries [PS97b]. isometry [ACS13]. Isomorph [LT89]. Isomorphic [BP00, LS07, MS09]. Isomorphism [BL85, Der13, O'B93, O'B94, CH03, GTLN16, MP14]. Isomorphisms [Myi01, Wu93]. isoptic [DP19]. Isotopic [AMT09, BCGY12, DMR12]. ISSAC [JKP12, ES13, NSW16, Yok17]. Issue [Ano99c, Ano00b, Ano01c, Ano01e, Anj01, BSSY18, Bos01, BK90, Buc92, CH97a, CL00, FLB00, HSV97, Hon96, HL97, JKP12, KM98, KR97, MM97, MNJ94, PZ92, PS95a, Sma09, WS98, BKR19, BBK55, CFMMP10, DM09, DDM15, ES13, GSSST10, JMPR04, Ker17, KAW05, MMOV18, NSW16, SS18, Tra07b, Yok17]. issues [Kad13]. Iterated [For02, LM09, McC99, dC10]. iteration [BSY18]. Iterations [Cap90, Hen90]. Iterative [Kri85, Izu16, YYZ12]. Itself [Dav88]. Iwahori [NPP17]. IZIC [FKM95].

labeled [Vat06]. Labelled [GL92]. Lacunary [Mig00, Abe09, GR11, Gre16]. Lagrange [BMS17, Col15, R604]. Laguerre [FHR99]. Landau [MG94b]. landscapes [BD17]. Language [BFK02, Hag89b, BGL14, BCP97]. Languages [Boy93c, DT95, FH86, AHH+05, CKKM10]. Large [CH97b, CJMP97, DHK+95, Kal87, KC01, BBK14, CHU19, FG08, STDD16].
Large-Expression [CJMP97]. Large-scale [KC01]. Larger [BMNB+11]. Largest [Boy93a, Mig92, AT08]. Lark [Sta89]. last [HKYY18]. latin [DW18, FMM07]. Lattice [FJN93, HS00, Adl16, BBC+11, BL17, DHTY04, FW14, HM09, HcC13, HcC16, LFD19, LV14, MS03c, Pfs04, Sch03a, Sch04, CCT11]. lattice-theoretical [BBC+11].

Lattices [BCS97, PS97b, HM09, JY17, LMR94, SS03a].

Laurent [HcC13]. Lark [Sta89]. last [HKYY18]. latin [DW18, FMM07]. Lattice [FJN93, HS00, Adl16, BBC+11, BL17, DHTY04, FW14, HM09, HcC13, HcC16, LFD19, LV14, MS03c, Pfs04, Sch03a, Sch04, CCT11]. lattice-theoretical [BBC+11].

Lattices [BCS97, PS97b, HM09, JY17, LMR94, SS03a].

Laurent [HcC13]. Lark [Sta89]. last [HKYY18]. latin [DW18, FMM07]. Lattice [FJN93, HS00, Adl16, BBC+11, BL17, DHTY04, FW14, HM09, HcC13, HcC16, LFD19, LV14, MS03c, Pfs04, Sch03a, Sch04, CCT11]. lattice-theoretical [BBC+11].

Lattices [BCS97, PS97b, HM09, JY17, LMR94, SS03a].

Laurent [HcC13]. Lark [Sta89]. last [HKYY18]. latin [DW18, FMM07]. Lattice [FJN93, HS00, Adl16, BBC+11, BL17, DHTY04, FW14, HM09, HcC13, HcC16, LFD19, LV14, MS03c, Pfs04, Sch03a, Sch04, CCT11]. lattice-theoretical [BBC+11].

manifold [GV16]. Manifolds [GK94, ACS13, aZGS05]. Manin [Sch01]. manipulating [Kau06]. Manipulation [BB92, Boy93c, CD87, Hen90, Mi87, SJA01, SME87, Tri86, Wan91, Kra95]. Manipulator [DBG89]. Many [BF95, Sme98, ARS10]. many-sorted [ARS10]. Many-valued [BF95]. Map [FOT00, FGS09a, KZ14, MP89]. MAPinsure [AST96]. MAPLE [JKP98, PS95c, GHL+00, AST96, Die92, GKM91, Telf02, Ve97, ACGL04, AV11, AB05, BR09a, CFG+86, Col05, CJ90, DM05, Fit89, GHC92, LMR91, Pro00, SBN93, Si04, Ste95, Wy93]. Mapping [Bahl01, BBB92, Sod96, MS03a, dC10]. mappings [Win14]. Maps [AK00, YNT92, BBC+17, Bur04, GDR05, Har13, aZGS05]. Marc [Sza08]. March [HdC16, RS11b]. marked [BCLR13]. Markoff [GJT13]. Markov [ATY08, AT08, DO06, DE06, HM09, Nor15, Rap06, RS16]. mass [GES05, JSC13]. Massey [CK12c]. Matching [BKN87, Bör89, HK95, IZ96, Lav91, Nip91, Pm93, RR90a, WKA94, HY90, Kutt04, YY03]. mate [BvdE03]. materials [PN13]. Mathematica [BG01, Fat92, HBN95, Kra95, Nie03, Sti97, ZD02, NP95, PS95b]. Mathematical [BTG02, CC01, DR86, FGT95, FG95P14, FKM95, GKW98, KF01, Mon97, vdH15]. Mathematics [AGM97, BC01, Ber93, CH85, CH86, HL98, GAVRC13, GKM05, Par08, SR07]. Mathscape [Bar07]. Matlab [Roq13]. Matrices [CZG02, DE02, DTGV02, EM99, EP02, GST98, GOS2, HLM95, Kon95, Kri85, LS95, Li8b2, SL92, St97, Vi95, dG01, AAF09, ÅAF+18, BR09a, BCL06, BLV06, BBCM13, Car15, CK04b, CK12c, EM98, HNE16, Hre06, JFMRS12, KK09, LL+13, LS12, MM04a, MS03c, PS18b]. Matrix [CFTY97, CW90, DSV01, FZ87, HM97].
HRT01, Lin91a, LO99, Ma94, MF90, Mou98, MO95, Ost99, PW90, RT98, Vac17, Vac18, Zha93, AE05, BHLGO15, BC89, CHU19, CH17, CL07, DF08, DF09, DFO13, DaZZ04, DPS17, Ebe19, EP04, HvD18, JPS13, KD90, Lab90, LS11, Mil93, Vil11, YY11].

Matrix-F5 [Vac17].

Matthews [Van00].

Maximal [For87a, HLM95, MV15, CH04, FFP98, HLSS15, Roo13, Sut12, Sut13, Sut16].

Maximally [Bih15].

maximize [Loj13].

Maximum [UC98, ABB+19, BR06b, Col17, HR17].

May [SK91].

MBase [KF01].

McLaughlin [HLM95].

mean [GKS12].

meaning [BW05].

Means [Vel00, BMQS06, DE03].

Measure [CMP87].

Measures [HLS01b].

MEAT [LMR94].

MEAT-AXE [LMR94].

Mechanical [AM88b, CP93, DJS18, Hol85, KW10, PH87, Wan91, DJ15].

Mechanics [CJM97, Cra91, Bar13].

mechanisms [GMS09].

Mechanized [ACGR01].

medial [CN19].

meeting [BR10].

meets [GSA+12].

MEGA [MMO18].

Membership [Com98a, Com98b, Pri96, SS88].

Memory [AF96, CM96, CG02, GK96b, STA94].

meshing [BCGY12, DMR12].

Meta [Hag89b, vdH11].

Meta-circular [Hag89b].

Meta-expansion [vdH11].

MetateM [Fis96].

Method [AZ90, Bon96, CZ92, Eck87, FT95, Ges95, Hsi87, KFF88, LW01, NY99, OS94, San96, Sch98b, SGD97, Tef02, Tes99, Tra98, Tre92, Ver00, Wan93, YXL99, Zei91, Zha94, ASS07, AAFR09, Bec09, BGL14, Bil11, CX09, CJL13, CJ5, CK12b, Col17, CGK09, DJO+11, DJ92, GLY09, GVYZ09, GG92, GX04, Hon04, Izu16, KSW13b, KT90b, KT94, KM06, MPP19, PT14, Piq91, Ric91, Ros05, Sag14, Sal08, Sau18, Sid93, Sza08, Toh10, Wan04, WS09, vdH11].

Methodologies [Bie85].

Methodology [LHD96, Sch91].

Methods [Ano01e, AM99, Boy93c, Bur01, CDO01, Cra91, EP02, EHR91, KT02, KR97, MGL00, MM00, MMO94, Mou98, PC98, Pau85, SO89, SME87, Sof94, Zha90, BCLR13, BP11, BENW06, DGP010, DDM15, Els17, FK09, GVHUE05, GPS09, GGr+13, KP13, MM88, MP09, Wan06, eCR17].

Metric [UY15, KP13, Lin18].

metrics [ACS13].

MICC [GMMM17].

Microcomputer [Diu94].

microprocessors [VB03].

microstrip [AP90].
middle [Har12b].

Miller [LR15, Sim90b].

Million [BCE+01].

Milne [BR09b].

Mihor [Bod04, DS18b, MS09].

Minimal [Ae02, Hel00, Kin13, LS98, Lab14, LM94a, MM09, Nor95d, OT01, Ous91, Sak88, AP04, BO04, Bed09, CRK04, CR19, GGMAMF19, HJS16, Jan11, JNSV17, Mor11, dCW09].

Minimally [ACOR00, HJA17].

minimization [ES18, MH06].

Minimizing [Fic04, CS16, FS10, FS12, FS13, FDS13].

Minimum [Col01, DL88, Gün90, JP10, Toh10].

Minkowski [Fuk04].

Minors [Ma94].

MinRank [FES13].

minus [WS09].

mirror [Hie16].

Mixed [BP99b, CLL17, EC95, GLW99, HM02b, Mil92a, Min02, Min03, CCF+15, CK19, FGG+16, FW15, MRW17].

Mixtures [NMM90].

Mizar [RST01].

ML [Hag89a, PM93].

MLE [EFRS06].

mobile [KS04].

Modal [CRAB91, Kal11].

Model [ABP96, BPT12, Kal11, Pel97, Pel03b, BHLGO15, Bon95, Nor15].

Modeling [TL96, VGT90, BENW06, LzS11].

Modelling [Div91, FH86, P296].

Models [CZ92, CP00, Pic00, SLK11, BPT11, CR08, EFRS06, Har13, MM16, MS14, PeL03a, PeL03b].

Modification [Poh87a].

Modified [Bon96, FK11].

modpn [LMR11].

Modular [Arn03, BCG10, CD87, Con90b, DV04, EYP98, GAO02, HLM95, IPS11, M004, Mar02, Mic88, MM10, MF96, NY99, Ohl95, QW96, Sch90a, SW02, VH08, YNT94, Abb17,
AH13, CL07, CvH04, Deu93, DFS11, JY17, Kin13, LSSW12, MP11a, MS09, PS89, Rau11, Ren04, Ryb90, SW97b, Wil90, Wur93.

Number
[AF00, BdS01, Bos01, Bru01, BW87, CE95,
Ded97, Enc95, GPP93, HM02a, LM89, Lim93,
Lis95, Mee94, Poh97, Rol86, Rol90, Smi02,
Yan99, ZSY93, dM99, AP11a, Ave09, Bel04,
BFH17, BE17, Col05, DL88, EK19, FMM07,
Fie04, Har14, Heu06, JPPSG09, KY16,
Kau07, KO17, KL90, Kt99, KSSW12,
PF12, Rob04, SH17b, SvH19, Tsa16, VV18].

number-theoretic [Har14].

Numbers
[Arn95, CR88, Duv94, Eck87, Ges92, RS90,
Str97, Abb17, AH13, AC19, Bas06, BEP13,
Bod04, DPS16, DEPS11, DW19, GS05,
HMXD07, MHPX09, MSX09, PF07,
Rio03, Ryb03, dCW09, dAM17].

Numerators [KT90a].

Numerical
[EP02, KL98a, He99b, WS98, GLsL09,
RZ09, WZ12, vDH07a].

Numerical
[BL98a, BL98b, He99b, HS98, KR97,
KL17b, Mro96, NS90, Pan02, SS05, Tran98,
BB11, BSC12, CCG09, EH16, GS03, GH98,
HS17a, IMP17, KS06, MHP17, Roq13,
Rup04, Wan06, Wan86]. Numerically
[BL98a, DH16]. numerics [Str06].

Nyström [PC98].

O [MMW11]. Obituary [SSS+11]. Object
[KKL92, DW07, SLK11]. object-oriented
[SLK11]. Object [DY97, FL04].

Objects [BL85, Kau06]. Observability
[Sec02]. obstructions [EG07], obtained
[ERSG05]. obtaining [KLR93]. occasion
[MMO18]. Occurring [AB89]. Odd [Dür89].

ODEs [CTR99, FG06, HR12, Man93a,
MV15, NW10, NW11, GVG18]. offset
[Pet10, SS09]. Offsets [AS97, Far97,
AGV99, AS07, Alc08a, Alc08b, Alc12].

OLDT [BB93b]. OLDT-Based [BB93b].

Omega [Ges97]. Omega-Termination
[Ges97]. One [Bru01, Cj07, CKS99, SS96b,
TA87, Vi99, AGS16, GGSST10, GKO09,
LZ12, LV14, LM94b, MRG13, MRG17,
NNvdPT15, PP17, vDE15]. one-point
[MRG13, MRG17]. One-sided

[SS96b, TA87]. online [LS16a]. Only
[Bru01, KMN88]. onto [Poz19]. Open
[ACGR01, BCE94, HDHX17, Kal00,
BLR13, Dra05, FU17]. OpenMath [CC01].

operands [Mad14]. Operation
[GH96b, GO90, McCS8, NOF10].

Operational [AHH+05, AB09, Har92].

Operations [DJ96, Mon05, Wan96, PWZ18].

operative [LB98]. Operator
[CE85, Kem99, KM99, KM01, Laz98, Pan02,
SW97a, Tab11, B17a, BSSY18, BK12b,
DLLP8a, DLLP8b, DLLP8c, EH16, PT16].

Optimality [Boy92]. Optimally [WKB86].

Optimization
[We97, BPH07, BM16b, IDW18, GSA+12,
GGEZ12, HJX16, KLYZ12, Loj13].

Optimized [SP10, KT94].

optimized-PIA [KT94]. Oracles
[CO01, EFG16, JZ04]. orbifolds
[Qur17, Tra06]. Orbit [AB89, Eic02].

Orbit-stabilizer [Eic02]. Orbits
[Hel00, Hel96, JT03, dG11]. Order
[BZ03, BE99b, CH5, CH56, Dom92, Fit97,
HS95, Hen98, HMK98, Hre94, Hsi87,
Kov86, Lug95, Man93a, MGS98, NNN98,
Pan85, QW96, Ren92a, Ren92b, RZA999,
RP99, SV92, Sim90a, S93a, S93b, Sm90a,
Sof96, Tre92, U94, V89, V89, We98,
Ad16, AC04, Ano00b, ARR16, AB01, BCE11,
BE13, BELP13, CP00, CTR99, CK12a,
DS18b, Dra03, FMM07, FPT04, FG06,
FSW10a, FRR99, GS98, GOP18, HYH04,
IVH17, LL16, M93, MV15, NV07, NAK16,
NSW85, NW10, NVPT15, OS92, PSS12,
Ren92c, ST89a, SS05, Sl07, SG89, St03,
SD05, ULM03, VGW18, WK91, WUR93,
ZL12, vDE15]. Order-Sorted
[Dom92, HS95, HKK98, Smo98, Wer98].

Ordered [Cow92, DS97, CMR19, Pel03b].

Ordering [BP85, MS00a, NR95, Rus87, BLM10, CMR15, CS09, Hre06, Smi05, FGLM93].

Orderings [Cow92, DS97, CMR19, Pel03b].

Orderly [Cow92, DS97, CMR19, Pel03b].

Orders [For87a, PZ96, Smi02, BGG13, MZ05, Sut12, Sut16, Tra07a].

Ordinary [Bro92, Bro00, Gri90, Sch85, AB09, Abr17b, BD12, DP09, FGLM93, Ore99, Hre06, Smi05, FGLM93].

Ore [BCL06, CKS16, CS98, GTLN16, GTLN19, Jar13, LZS11, LS12].

Orientable [FGPT03].

Orientational [PSZ91].

Oriented [KKL92, Lyn97, PS89, SLK11].

Ori [IT10, IKGT11, IGT15].

Oscillations [LLL13].

Oscillatory [San96].

O'Sullivan [MRG13].

Other [LGS90].

Otter [Col05].

Outer [You89].

Output [CL07, MZ05].

Output-sensitive [CL07].

Oval [Key01].

Over-determined [Sza08].

Overview [Wan96, BD16].

P [HZ19, Lan10].

P-recursive [HZ19].

Package [AST96, BG01, CH91a, MC97, NP95, Pro00, Sot96, Ste95, Teo92, Veil97, Kau06, OdR09, Ric92b, Ric03, Sil04, GHL+00].

Packages [Kra95].

Pack [ACL96].

Padé [CK90, FF92, LOOR+03].

Pair [BD88, St099].

Pair/Completion [Buc87].

Pairings [LLL08, LR15].

Pairs [Bec93, GA02, BM16a, CKR04].

Pairwise [MM00].

Papers [Kap06].

Para [Sch96].

Para-Functional [Sch96].

Parabolic [Hel00, KT08].

Paradigm [AHH+05].

Parallel [AT96, BA85, BDL+13, CM96, CM17b, CG02, DD90, Hon96, Kal85, Lim93, MM04a, MF96, MG88, PS95c, Pon91, RR90a, STA94, Sch96, Tak89, Tor93, Wan96, Web96, ZSY93, Bro07, Kal90, Koc90, Ree98, Ren04, SMB03].

Parallelism [LHD96].

Parallelization [IPS11, KC01, GGL06].

Parallelizing [HCB05].

Parallelogram [DDD95].

Parameter [DTGV01, Mu08, AR13, GG92, Mal00, Pet10].

Parameterization [DLL08a, DLL08b, DLL08c, HS98, WC12].

Parameterizations [CK12d].

Parameterized [BPZ06, Hem02, Arr16, KZ10, Tak93].

Parameterizing [AJGVS09, DLL08c].

Parameters [Kem99, KM00a, Mon02b, Arr16, CHM12, DHM11, MW10, NT17].

Parametric [ACOR00, AHKY09, AS97, DH17, DTGV01, FHL86, GC92, GC93, GV97, HSW97, MC92, MMO94, Ore01, Sit92, Yan99, AW05, CL50, CJL13, FL11, Gao03, GKS12, KSW13a, LR07, LJ09, NT17, PDS03, PD07, PT98, Wal03].

Parametrizable [NW10].

Parametrization [LSW01, Sch92, Sch89, SW91a, SW97a, ARST09, BD15, CR19, GSHPBS12, RSV09, Sch98a, SPZ10, SJS06].

Parametrizations [PP97, Sen97, Sch93a, SS11].

Parametrize [RSS13].

Parametrized [BPZ06, Hem02, Arr16, KZ10, Tak93].

Parameterizing [AJGVS09, DLL08c].

Paramodulation [BCR15, GS07a, Lou08].

Parametrizing [dGPS09, LS07].

Partial [NR97, PP91a].

Parser [Mer01].

Part [CJ97, LR90, Raa12, VM14, Com98a, Com98b, HLS01b, HLS01a, Kno92, Kno93, MS15, MS16, Ren92a, Ren92b, Ren92c, Wal02a, Wal02b].

Partial [CJ97, FK04, LS01, SS09, Sch99, Wal02, dv96, CQ12, DW18, GHL16, Liu19, PH11, vdH07c].

Partially [JM93, Wra88, Min06].

Particle [Lau93].

Particular [SP98].

Partition [Mul90, Hem18, LFD19, MOP15].

Partitioning [Gin90].

Partitions [GZ89, Leo91].

Past [Cav86].

Path [Con00].

Path [Bac94b, Rus87, KS04, Leo06].

Pattern [Lav91, PS93, RR90a, WKA94].

Patterns [MS00a, CKKM10].

Payoff [GKS12].

PBW...
Polynomial-Time

[Chi96, YNT94, AM88a, MM16].

polynomial-transcendental [MW12].

polynomials

[GR12, Gal13a, Gal13b, GKL04, Gen07, Ger19, Ger06, GKL03, GLSL09, GS03, GTLN16, GRW16, Grel16, GSW11, GGEZ12, GK16, G04, GNP12, HL04, HHK17, HD15, Jar13, JTdW18, KL19, KMYZ08, KP15, Lec08, Lev07b, LSS19, Lou08, MES19, MMS18, Min03, Min06, Nie12, OP05, Phe05, PWZ18, Rup04, SM16, Sch19, Sch05, Sek09, Sut15, Tsu09, Wei13, WK91, YYZ12, ZWM15, ZG09, ZW08, vzG13].

Polyominoes [DDD95].

polytopes

[BM88, DHTY04, EFG16, FDS13, Fas10, FP09, FES11, FW15, Fer06a, Fer06b, FKT13, GVHUE05].

Polynomials

[Gr09c, CGK09, DIdW18, ES18, FGS09a, FGS09b, FS10, FS13, FG06, FGT05, FD18, GL09, GY209, GLDr19, GTZ88, Gob98, GPG016, GTLN19, Guo20, HR12, HJS16, Har09, HSS18, HOP06, HKPP09, HR19, HJS13, HV16, Hub19, Jam11, Jar13, JLR03, JP10, KLYZ12, KRK88, KSW13a, KW88, LL13, LR07, Lee07, Li04, LMRS11, LJ09, MM04a, MRW17, MR13, MW12, MS11b, Mt03, MP11b, MW10, MP09, MS03c, Nge11, NY04, Oak13, PT16, PZ12, Qi06, RZ09, Rocc11, RCK07, Sek11, SLX13, SvE14, SH17b, The06, TBS17, Tu05, Tu09, WY11, WZ12, XLY15, YYZ12, vH11, vH11, GLSL09, GS03, GKL04, Gen07, Ger19, Ger06, GKS03, GLSL09, GS03, GTLN16, GRW16, Grel16, GSW11, GGEZ12, GK16, G04, GNP12, HL04, HHK17, HD15, Jar13, JTdW18, KL19, KMYZ08, KP15, Lec08, Lev07b, LSS19, Lou08, MES19, MMS18, Min03, Min06, Nie12, OP05, Phe05, PWZ18, Rup04, SM16, Sch19, Sch05, Sek09, Sut15, Tsu09, Wei13, WK91, YYZ12, ZWM15, ZG09, ZW08, vzG13].

Randomized [KT02]. Range [SO89].
Random [FZ87, JPS13, Mat01b, Qi06, ABK15, BGI11, BR13b, BDP13, BR13c, CP10, DPS17, LN13, Mos08, Na18, Top14].
rack-2 [CP10], rank-constrained [Na18].
Rank-profile [JPS13], ranked [DE06].
ranking [BS17b].
Rate [HR11].
Rational [AP04, ACGR01, CCM95, KRV19, LS02, BKR19, CS05a].
Recitations [Zei95].
Recognising [Aur87].
Recognition [BP00, CC91, Tak92, Bro03].
Recognize [Ric97].
Recognizing [DFO13, LSY07, VL16].
Recognizable [AJGVS09].
Real-root [BK12b].
Realization [KM00b, Led00a, Ous91].
Realizations [Nor95d].
Realised [Die92, Ve197].
Real [Ren92a, Ren92b, Ren92c, DET09].
Reason [Kap86].
Reasoning [ACGR01, CCM95, ET96, FGT95, FOT00, KRV19, LS02, BKR19, CS05a].
Reduction-based [CvHHK18].
Reductions [AH05, CMR19, ST20].
Reducive [DH07].
Redundancy [BL00, Pic00, Tak91].
Redundancy-elimination [BL00].
Redundant [BN92, BT91].
Redundancy-free [Tak91].
Refined [EMSS16, Sch08].
Refrinement [Her94, PT16].
reductions
[Ave86, BP85, Boo87, BH00, Der87b, Dur94, Ges97, GA002, HKL99, HH94, Kahl95, KKSd96, KM91, Lav91, Mar96a, Mar96b, Ohl95, OKK98, PY94, PP91b, Smo98, Sny93, Wer98, Wid01, You89, Zan95, Zha92, ABFS15, AR03, AB05, BGHW06, Bur03, Che18, Der87a, DS15, EW97, GL95, HK07, IT10, Kap97, NOF10, Wir99, You94].

Rham [Wal00].

RIA [LLPT+11].

Riccati [BTG02, LS01].

Riccati-like [LS01].

Riemann [BCI13, Chu99, GSST98, Hes02, HI94].

Right [Gre00a, La 17].

rigid [BR13c, HJA17, Hub99b, SPZ10].

rigidity [STW18].

Rigorous [Mro96].

Ring [DHS98, Mil96, Pro00, Sne98, Zha90, Zha94, AP10, AC19, Ber98a, BFH17, Bu06a, DF05, DGS10, GRV17, Mou05, Sch16, Sht88, TU05, van93].

ringed [FG16].

Rings [Ano01e, Bec90, Bec93, BL93, BF01, Gie98, Gob95, GHS01, HNVL90, HS90, JL91, Kal94, Kal98, Kem96, LS00a, Mil96, O094, Pri96, Sch90a, Sti87, Von98, Wid01, YNT92, AB92, ACMB9, BL06b, BM01, BU09, BJS89, Bu09, CM17a, CG10, CLQ10, ES11, FF17, FD14, FD18, GLS10, HH07, HM05, Hul13, Jan11, Kin13, LL13, Mar19a, MRW17, Pau07, Per04, PP17, PR18, RE06, ST20, Wei06].

Rioboo [Mu97].

Riquer [WR09].

Risch [Bro90b].

Robot [AI90, HS89, VGT90].

Robust [BR15, DY97, Sch93].

Roch [Hes92, HI94].

Rogers [MS90, SI04].

Role [CC01].

roles [GGDR+13].

Root [CGG12, CL01, K091, Pau02, BS17a, BSSY18, BK12b, Bur16, CJ15, Col15, Col16, Col17, EH16, HGG2, HNE16, HH16, HHT18, HXL18, J09, MSL15, PS09, Sch06, Str12, ST19].

Root-finding [Pan02].

Roots [BF91, BFHT85, For02, M1g2, Mia00, Mou98, MR02, Yan99, dM99, AHK99, Ave09, BMS17, CGY99, Drt06, FDS13, Gal13b, GR11, Hou04, KO17, MS11b, Mtn03, PT16, SM16, YYZ12].

Rosenberger [GJT13].

Rosenfeld [GKMO08].

Rossi [ASS13].

rotation [CS16, FS10, FS12, FS13, FDS13].

rotation-minimizing [CS16, FS10, FS12, FS13, FDS13].

rotational [OT87].

Routines [WBM99].

row [BEL13, BCL06].

rows [LLY05].

Roy [Lec19].

RRtools [Sil04].

Rubik [KC09].

rule [CKKM10, LS05].

rule-based [CKKM10, LS05].

ruled [EG09, CW03, Doh90, FG06, SP14].

Rules [AB00a, Com98a, Lav91, Wan94a, DB89, Ber04, GGD13].

Runge [FPT04, PC98, Sor94].

S [YW87].

SACLIB [HNS95].

SACLIB/PACLIB [HNS95].

safety [LCQ+10, MM10].

SAGBI [AHLM99, Gat03, Go98, Nor02, TU05, Kha14].

SAGBI-bases [Gat03].

SAGBI-Gröbner [AHLM99].

samba [Hem18].

sampling [DPS16].

Samuel [ST20].

Sandwich [EW86].

Satellite [VV97, Pal13].

Satisfaction [LC96].

Satisfiability [Fer96, VB03].

Satisfied [FH99].

Satisfies [JJ01].

Sato [BA91].

saturated [Fe03b].

saturation [DMY16].

Scalable [CG02].

Scalar [FS13].

Scalar-vector [FS13].

scale [KC01].

scaled [EM12].

Scales [San96].

Scene [Cra95].

Scheduling [DHK95, MG88, Tor93].

Schemas [BM00, FLOR00, FLB00, Fuc00b].

Schemata [AB00a].

scheme [BLR13, DH16, JLW13].

Schemes [GV99, Miy01, AKR05, AH03, BCLR13, BCF19, Fer88, Guo90, KLA012, MP04, Wib07].

Schinzel [SS90].

Schmidt [Re199].

Schmidt-Kolchin [Re199].

Schreier [Sut16, DS12, DMW17, MO95, Ros93, Sut13].

Schreier-Sims [MO95].

Schubert [HS17b, HSS98, Koh92, Ve97, ZD02].

Schur [GK16, Koh92, LP03, Pic98, Sut93, Ung19].
Schützenberger [GMP13]. Schwartz [Hel16]. science [BBKK15, DK18, Kut10]. Scientific [CJ97, DR86]. Scientist [BCE*94]. scope [Wer12]. scope-determined [Wer12]. SCSCP [LHK+13]. Search [CZ92, LT89, Rob88, UC98, BT90, Bec03, Bon05, JPW19, MH06]. searches [MSZ09]. Searching [SO89]. Second [CTR99, Hen98, Hol85, Kov86, SV92, SU93a, SU93b, Arr16, HYH04, IvH17, LL16, Mi93, MV15, Nak16, Bos01]. Second-Order [SV92, CTR99, Arr16, HYH04, LL16, MV15, Nak16]. secrecy [BD04]. Sections [GO00, OKK98]. security [BGP09, KKK+16, LMA11, Ran12]. security-aware [Ran12]. Seeley [GK94]. seemingly [Drt06]. Segre [Abo10, Har17, Hel16]. Selected [CH85, CH86]. Selecting [Lia13a, MO95]. selection [Ebe19, PZ12]. Self [BU14, HK10]. Self-dual [BU14, HK10]. Semantic [Wer98, vdH15]. Semantics [ABP96, Fis96, Har92, SAK89, AHH*05]. Semi [BG05, CR88, KKK+16, Liu19, Ren92a, Rup04, Sod96, XY02, Bas06, BR10, CDM+13b, CDM+13a, OS04a, WRI09]. Semi-Algebraic [CR88, Ren92a, XY02, Bas06, BR10, CDM+13b, CDM+13a]. Semi-automated [KKK+16, Liu19]. Semi-Automatic [Sod96]. semi-discretizations [WRI09]. Semi-implicit [BG05]. Semi-numerical [Rup04]. semi-unification [OS04a]. Semialgebraic [Vor99]. semidefinite [AGS18a, GX04, MWZ16, Na18]. Semigroup [Kon95, HM05]. Semigroups [CH91a, KM01, LM90, LPRR02, NO89, ABMN10, EENMP19, GGMFVT13, PCVT08]. semilinear [DW07]. semirings [HKSS17, KL19, OS04b]. Semisimple [BR87, MM04b, OdR09]. semisymmetric [KLZ12]. Semunification [DR92]. sensitive [CL07]. sentence [GTLN17]. sentence-ambient [GTLN17]. separability [GTLN17]. separable [EG04, MM04b]. separated [AGR95]. Separating [BLPR15, IdW15, Kem09]. Separation [Co01, Ded97, KT90a, HHT18, Koi19, Sch06]. Septic [Bru01]. Sequence [Nor95d, She92, ES11, Kut07, KL10]. Sequences [LR01, NP95, NG93, Nor95c, ABvHP11, BGLGM17, BBF17, CK90, CELG04, CLM16, HZ19, JZ08, Kuo06, MS10, Mtn03, Nor95b, RRS06, VM14]. Sequent [CCM95]. Sequential [Dur94]. Sequentiality [KM91]. Series [ASJ97, Bec90, Bec93, CH97b, DD90, FH94, Kal02, Koe92, LW01, Ous91, SJA01, Sna98, Zet95, van97b, AB09, ABK15, Ap610, BBV15, Ber98a, BM04, BS15, CK90, CI07, CX09, JSC13, Kra5, La 17, LS16a, Liu19, MRW17, MJK17, MdCW17, PR12, SK12, vdh07c, vdHL13]. Serre [CQ12, ES11]. Server [FKM95]. service [BCR15]. services [BPT11, Ran12]. Set [BCGR92, Bou97, GIM07, Hal99, JWGI0, Ley01, LM94a, Mar96a, PH87, Pue89, Sak88, Sny93, Str01, Vor99, BV03, GLY09, GVYZ09, GH12, Hub09a, LFD19, Win06]. Set-theoretic [GIM07, JWGI0]. Sets [AM99, ALM99, BCGR92, CR88, EPW90, HH94, KNZ09, OPP93, Ren92a, SG89, ASS07, Bas06, BR10, Bel03, BCvdHS11, BLM10, Bur04, CRK04, CDM+13b, Fas10, GS89, Gol06, HM09, HJS13, HL18, Hub19, JLV13, Kin13, KW88, Leb15, LMS09, Nie03, Pel03b, PS13, Sch03b]. Setting [BTBQM00, LPS93]. Several [Arn95, DTGV02, GVGC99, EGB12, Lev07b, Sau18]. Sextic [Gaa95, GP96a]. SFA [Pro00]. Shallow [Wir09]. Shanks [KT04]. shape [AS07, Alc12]. shaped [BGG13]. Shapes [ERSG05]. Shared [GK96b, Sch91]. Sharp [Bea92, BTW93, MZ05, BE17]. Sheaf [Bac99]. Shift [SS94]. shifted [Shp14]. Shifting [Nie94b]. shifts [GKS03]. Shirshov [BV06, Bok08, GSZ13, Mad14].
Shoda [BM16a]. Short [DHH’04, CF91b, FU17, GMM17, HZ04, HZ15, LW03a, LW03b]. Shortest [Nor99, Rol90, VK16]. shuffle [BDM17].

Sibirsky [JLR03]. sided [SS96b, TA87].

Similarity [AHM18, GTLN16]. Simo [AMDW16].

Simple [BCE11, Bro01b, Gol01, HLM95, Pan94, SW95, Wan98, WW94, APS12, BE13, Eic10, LS16a, MS15, Mar19a, Pl07, RCK07, Wan04]. simplest [YY03]. simplex [JP10].

Simplicial [BT94, CFS07, BGM15, GDR05, RdC13]. Simplicity [Mic88]. Simplification [DS07, GDR05, Sch03a, Zip85, ARST09, BBK14, GR98, HS08, Sto11].

simplifications [Bro12]. simplified [HJX16]. Simplifies [Chi08]. simplify [Ebe19]. Simplifying [Kap87]. simply [aZGS05]. Sims [MO95]. Simulation [MR99, SS96a, Wei97, BCR15].

Single-factor [Col04, GNP12]. Single-lifting [EK11]. single-parametric [FL11]. Singular [LW98, SF90, Vid99, AHS18, BP07, BCGY12, CWL08, CK12c, DLLP08c, HR17, KMYZ08, LZ12, WZ12, vdH13, MS15, MS16].

Singularities [BG18, BS00, vdH01, CGL07, CKLZ19, DS16, FGT15, FK04, GS05, MS15, MS16, PD07, RSV09, Sha12, SJG13].

Singularity [BS01, MP89, WC12].

Skew [Gie98, Koh92, LL13, BU09, BU14, CL17, Li10]. Skew-Polynomial [Gie98]. Slice [Rou09]. sliding [GGM10].

Slope [Mil92b]. Smale [CVY17]. Small [BK13, Bru01, DW18, Din94, Gaa93a, Led00a, MSDK09, Mil87, DFS11, EGB12, Gau09, KY16, KT04, MS11a, MPS16, NY04, Roo13, vzGMS10, vzGMS10]. small-weight [MPS16]. Smallest [Boy93b, MG94a].

Smith [DS01, Vi95, WY11]. smooth [Ahn08, AKS12, BJS04, DEPS11, GGEZ12, Lun16]. smoothness [BFK18]. SMPs [Wan96]. Smullyan [Sta89]. Socle [LW01].

Socles [CH97b]. Software [EW00, KF01, Sch04, Ang18, BBKK15, DK18, Ker17, Kut10, LHK+13].

Software-component [EW00]. Solid [Vor89]. Solomon [BB10, BDP13, LO08].

Soluble [Con90b, Glaa88a, Glaa88b, GS09, Höff01, Nie94a, Ple87, Sla01, CELG04].

Solution [BF91, CF91, CJ90, FGG+16, VS09, OT87, PV00, Sin91, Tra98, Wol00b, Zha96, ZWH11, AP08, EG15, Har13, HJS13, HTZ04, Len03, LST03, LZ12, Pru13].

Solutions [AC01, BP99a, Bar99, Bro92, Bro00, BEM97, CE85, Die92, FT95, Gaa93a, HH98, Hv95, KST93, Laz88, LS01, Man93a, Pet92, San96, Sin90, SU93b, Tun02, VRUW99, Vel00, XY02, YNT92, Zha95, dv96, van97b, AB09, AvbHP11, Abr17b, AHS18, BGH+04, BCE11, BDM17, BM19, BD12, BR06b, Chau14, CyH04, CS06, Cou18, DS86, FG06, FGH08, FSW10a, FSW10b, Fox18, GIM07, HL17, Heu06, IvH17, Kal11, Mil93, NW10, NW11, PDS03, Sju18, Sev14, Tun09, Ulm03, VGH16, WZ12, vdH07c].

Solvability [AK00, Baj86, SSS02, Ngu09]. Solvable [EW02, LM94a, Piis02, Sim90a, CM04, DFdG15, KRW90, MM16, Poz15, XL13].

Solve [EHR91, Mil87, BB10, Izu16, Kho08, KC09, LM94b, Wan06]. Solver [AF96].

Solvers [KR94]. Solving [AP89, AK92, AGS18a, AP11a, AC04, AM99, ARE02, BGK86, C92, Com98b,
Con93, Cza89, DCC95, DH00, Fit85, Fit97, Gaa00, GGM10, Gem94, GV88, HS99, HJA97, KFK97, KFF88, Kov86, Kut07, Laz92b, LR07, Mas16, Maw88, Mil92b, MR02, Na18, Pe97, PV02, RZ09, Roj99, RR08, Roun88, SME87, She92, Sit92, SMA96, SBB+98, Sza08, Wdi01, BP11, CM10, DET09, ES18, GH12, HJX16, Min98, MP09, MS04, Mu10, ROS05, RSS10, Laza97, KFK97, KFF88, Kov86, Kut07, Laz92b, LR07, Mas16, Maw88, Mil92b, MT01, MR02, Na18, Pe97, PV02, RZ09, Roj99, RR08, Roun88, SME87, She92, Sit92, SMA96, SBB+98, Sza08, Wdi01, BP11, CM10, DET09, ES18, GH12, HJX16, Min98, MP09, MS04, Mu10, ROS05, RSS10, Laza97.

Some [AB92, AP93, Bec90, BP11, BGK86, BF11, Cha00, CR90, DS00, Eic10, FGP05, Hav91, Hen90, Key01, Lab95, LOOR+03, LLL19, LRW97, ML92, Meg90, Mic90, OT87, PP91b, Poz15, Ris88, RT89, Sal94, Wan94a, Wei94, Yam94, Zha92, BV06, DS18a, FRR06, MPS16, MJK17, MPSX09, MS03b, SS03a, Win14]. Sorted [Dom92, HS95, HKK98, MGS89, Smo98, Wer98, ARS10]. Sorting [Tra89, DJS18]. SP [Vei97]. Space [ACM88, GO91, McC88, Alc16, AS05, AHM18, CJL13, CS16, El08, FS10, FS12, FS13, FGT09, FK90, JWG10, JWC+16, PS18b, PH11, RSV09, RSS13, SJG13, SS06, UY15, WK91].

spaced [Roc11]. Spaces [Cou00, GHS01, Hes02, AP08, BBV15, DH07, DPs16, HJS18, KLL17a, LST03, MV13, NNPZN19, Rin13, Shi14]. Spacetime [Rd91]. spans [HJS18]. Sparse [DE02, DHK+95, DSV01, EC95, FM17, GH02, HM02b, JS18, KY16, LSY95, LG15, Min02, MP11b, MF96, RZ09, AGT13, AGR16, AIRR12, BE17, EK11, GLsL09, HJS13, KS03, Ma16, Mu04, PPR13, SM08, vdHL13]. sparsest [GKS03].

Sparsification [EM98]. spatial [FG16, Far19, GLDLR19]. Special [An09c, An00b, An01c, An01d, An01e, AJ01, BB93a, Bos01, BK19, BBK15, BK90, Buc92, Bir97, CFMMP10, CH97a, CELG04, CL00, Che85, DM09, DMD15, ES13, FLB00, GSST10, HSW97, Hon96, HL97, HTX15, JMR04, KJP12, KM98, Ker17, KR97, MMY00, MNJ94, NSW16, PZ92, PS95a, Smo98, Tra07b, WS98, Yok17, Zha92, AJGVS09, BFSS06, GS03, KASW05, MOM18, Pqi91, SS18, Sta16].

Sporadic [Go01, HLM95]. SqFree [BK12b]. Square [BFHT85, EH16, HL17, HS17b, Sla07]. square-free [Sla07]. Squarefree [DTGV01, HOP06]. Squares [LSW01, DW18, FM07, GGEZ12, GIJ14, IdW15, KLYZ12, MES19]. Stability [GV99, HLS97, Kaza97a, PC98, So96, WKB86, HX15, SS05]. Stabilizability [YXL99]. Stabilization [SS98b]. stabilizer [Eic02]. Stable [AF08, BL98a, GL99, BCLR13, CR11, MP11a, Poz19]. Stafford [HS01, Ley04]. Standard [BM88, Bec90, Bec93, Cla91, Cow92, HH07, JL91, Mar08, MRW17, Pass86, BR88, FK04, GP96b, JP10, NT17, Str19, SD05]. Stanley [JV09]. star [BGG13]. star-shaped [BGG13]. Stars [So96]. State [FK09, Vor89, BM88, Nor15, dCW09].

Story [MN89]. straight [AGR16, JS07, JS18]. straight-line
Straightening [MW91], Strands [Bur01], Strassen [CH17], Strassen-like [CH17], Strategies [LS98, Ant05, Bon05, GL05, LGS90, RV05, Vis05], Strategy [AT96, BGK90, Sod96, RV03], Strategy-Accurate [MW91], Strands [Bur01], Strassen [CH17], Strassen-like [CH17], Strategies [LS98, Ant05, Bon05, GL05, LGS90, RV05, Vis05], Subgoal [BC91, CCH97, CCH01, Chu99, EW02, Gla88b, Hu99, BC89, CH04, CHSS05, FG08, Hel00, LMP19], submodule [LMR94], submodules [BL12, DMY16], submonoids [GGMAMF19], subprogram [MM10], Subquadratic [Tho02], Subresultant [She92, El 05, Lec19, Sza08], Subresultants [Apé10, DJ05, DKS15, HY96, Hon97b, LRD00, Mut97, ViI95, DHK07, El 03, LP03, PB07, RS11a, RS20], Subring [She98], Subroutine [SR86], Subset [NU18, CLS91], subsets [Mic13], subspaces [AH13], Substitute [Sim91], substitution [DFS11, Har09], Substitutions [Ede85, KFK97], Substring [Rob88], Subsumption [DR92], Subterms [Rus87], subtractive [BLV18], Subtyping [DT95], subvariance [Bel03], subvarieties [KS12a], Sum [AP93, LSW01, AHKY09, GIJ14, MES19, NU18], SumCracker [Kau06], Summation [PK99a, Kar85, Kau07, Koe95, MS95, Pau95, Sch17b, ACG04, BKSS12, PS95c, PS95d, Rie03, Sch08, Sch16, vdH07b], Summations [Man93b, Wan94a], Subalgebra [Kha14], subalgebras [AGSM17, DFdG13, Roo13], Subalgebraic [AVbHP11], Subdivision [MP09, BS17a, BSSY18, BCGY12], Subalgebraic [Kha14], Subalgebras [AGSM17, DFDG13, Roo13], Subanalytic [AVbHP11], Subdivision [MP09, BS17a, BSSY18, BCGY12], Subfield [GP96a], Subfields [CFM96, Dab97a, Ga900, KP97a, Dab97b, EK19, KP97b, SvH19, vHKN13], subgoal [Bon05], subgoal-reduction [Bon05], Subgroup [HH99], Subgroups [BC91, CCH97, CCH01, Chu99, EW02, Gla88b, Hu99, BC89, CH04, CHSS05, FG08, Hel00, LMP19], Supersubring [She98], Supersubring [Rob88].
BCI13, Bec09, Bri06, BG05, BEG09, Doh09, FG16, FGVN06, FGPT03, FGT15, GS07a, GSHPB12, GSPB17, GEI05, GP13, HS09, HC12, LC16, Lub14, PDS03, PDS08, Pet10, RSTV16, Sch08a, SPD14, SJS06, VL16, Wan04, WC12, WG18, dGPS09. surjective [SS88]. Surprising [Ber93]. Surprisingly [SW95]. Suspension [KS98, vzGP01, EF17, Top14, Vis05]. Suslin [LS00a, LY05]. suspension [KLR93]. Suzuki [Kos07]. swarm [Loj13]. Sweeping [NS90]. Sweeping-plane [NS90]. swell [NPD09]. swung [RSTV16]. syllogistic [CGO88]. Sylow [BC89, BC91, CCH97, FF13, LMP19].

Sybylee

BIST16, CK04b, DHK07, DHK09, DKS15, KS12c, LP03, LR01, Mul01, RS11a, RS20. Sybylee-Habicht [LR01]. Sybylee-type [CK04b]. Symb [AP17, HZ15, HD16, KMR18]. Symbol [ES98, S99a, TRi86]. Symbolic [ASJ97, AP04, AK06, Ano01b, Ano02c, AB89, BGH04, Bar13, BFK02, BB92, BCG192, Bur92, Car99, CV00, CL00, CCM95, CS09, CD87, CN07, Cuy97, DHM11, DK18, DT95, DR86, Edi85, Esi90, EC87, EP02, FPT04, FS13, Fer06a, Fit89, Gar95, GlLs09, GH97, GL92, G9K, H9M06. Hen90, HJJ94, Her94, Hl05b, HJA97, Hon96, HP08, Hug90, Kal90, K100, KT94, KR94, KL08b, KS04, KL09, Kri85, Kut10, L1F10, L11, LDF19, L1L13, MJ17, MHXD09, Mro96, NS16, NS90, NR97, Nor95b, Ore11, Par04, PSZ91, Pau95, P95a, PH11, RT85, Ros13, RS11b, Sag89, SS98a, SS99, SJA01, San18, Sav90, S9E87, SW91a, Sha12, She97b, Sod96, Sod94, SBB+89, Tra98, TL96, UYSA89, VGT90, Vor89, WS98, Wol00a, XL13, Yap90, Yok17, Zha96].

Symbolic

dv96, ACG04, ACS13, BBK14, BD87, BGL14, BKSS12, BBKK15, DM09, ES13, ERS05, Fox18, GS03, Gue18, HKP+06, JMV18, Kau06, LHK+13, MPH17, MP04, MKF93, Naw16, PT14, Pqi91, PMN13, RZ09, Ros05, Sch08, Sch16, Wan86, WZ12, Ye17, YW87, vdH07a, Buc92, JKP12, PZ92]. Symbolic-Numeric [KL98b, RZ09, WZ12]. Symbolically [Mi93, DES07, Maw88]. symbols [Nak06, NOF10]. Symmetric [CHA1, CH06, CF09b, Hel00, KL19, KKL2, PB07, Pro00, Ste95, BS18, BG11, BR09b, BD1+16, BK16, Cha14, DH07, GMF13, KS16, Mad14, MS03b, NPP17, RS20, Ste13]. SYMMETRICA [KKL92]. symmetrically [BFMS87]. Symmetries [CV00, H9n02, MC97, SV92, BN04, CGK09, FK89, HJ18]. symmetrizing [BCC20]. Symmetrization [Hub19]. Symmetrized [Rybo1]. Symmetrizing [CIM17]. Symmetry [EP04, LP02, Hie16]. Symmetry-based [EP04]. symplectically [BR13c]. Syntactical [Bur01]. syntax [SR07, SP10]. Synthesis [CM93, DR93, DJ15, FB93, FD93, FLR00, PMW93, Tra89, DJS18, EH16, QHL+13, ST89a, STDD16]. Synthetic [SW91b].

System [AK92, AGM97, BP99a, Ber93, BCG192, CP97, Ded97, Die92, Dm94, EC87, GP06b, HS95, Hen90, Jir97, KKL2, L09, MM00, Mith87, MT01, MR02, PMW93, Pro00, RST01, Sun95, Sch94, Tra98, Tri86, Vei97, BV03, BD87, Bed07, Bed09, BCP07, BUR03, BK16, DJ07, ES18, G92, KSW13a, Khe03, Len03, Mas16, MT88, MS04, Mul04, PS09, dCW09, Sid93, SH17b, Wan86].

Systematic [DH00, Cox19]. Systems [An96, ACGR01, AM99, ARE02, Ave86, BP85, BC01, Bar99, Bir98, BF91, BGG86, Boo87, BEM97, BH00, Che92, CD00, CK99, CCM95, Com98a, Com98b, DT95, D1H+95, Dur94, E1b01, EG15, Fit89, FJN93, GV99, GC93, GLW99, GH02, Gen94, GZ90, Ges97, GH97, GV88, Har92, H1K09, HH94, HLS01b, HH99, Kah95, KS98, Kem99, KDM1, KFF88, KF01, L92b, LA96, LS02, LP02, MSK093,
Mat01b, MT93, Mid94, Nau98, Nie94b, Ohl95, OOK98, Ous91, Roj99, SS96a, Sch85, Sit92, Sny93, Str90, TL96, UYSA89, Vor92, Wan91, Wan93, Wan98, Wan99, Wan00, Wol02, XY91, YXL99, YNT92, You89, Zan95, Zha92, Zha93, AP08, ABK15, Abr17b, AHS18, Ang15, AMW12, BGLHR12, BP09a, BCE11, BE13, BELP13, BJM17, BM19, BNN17, systems [BW05, Ber98b, Bih15, BPH07, BR13c, BLPR15, BGHW06, BR06b, CS05a, CM10, CM12, CDM+13a, CM17b, CKLZ19, Che18, CGY09, CGG12, CJ15, CK03, CK04a, CQ12, CGk09, CDSS09, DJO+11, DET09, Dum09, EM12, EW07, FEV16, GLY09, GYYZ09, GLlDr19, GES05, GV16, GPGO16, HB95, HR12, HT91, HL17, HOP06, HJS13, HTX15, HKYY18, Hub19, JLR03, KS06, Kap87, KKM15, LMA11, LR07, LST03, Li04, LW12, Lin18, LR98, LH17, MM09, MW10, MS03b, NOT18, NOF10, NW11, Pom11, RH18, RZ09, SLK11, SLX+13, SPZ10, STW18, Str11, Sza08, TM85, Vis05, Wan06, Wan18, Wir09, Wol03, WZ12, YW87]. Syzygies [BS88, DS16, WG18, AHW05, BD16, EMM16, Môl88, RR05, Wol03, Hub09a]. Syzygy [HT17]. Sz [Kos07].

Table [Sch90b, Ber04, BDE+16, TV18, Ung06].

Tableau [AGRZ99, AB01, Fuc00a, ML00].

Tableaux [Cla91, Wi95, Bec03, CIM17].

tables [DO06, Gal13a].

Tame [Zie16, von09a, Sch05, Wen06].

Tamely [HM02a].

Tameness [NNPZN19].

Tangent [GOT05, Nak16].

tangents [CK12d, Zen06].

Tarski [Bro12, Gri88].

Taxonomies [QSGB19].

Taylor [Sei02, Ye17].

Teach [Bos97, Mon97].

Teaching [Kal97b].

technical [SWF11].

Technique [FF92, AG91, LOOR+03, PN13, YY03].

Techniques [AB00b, BGH93, BS01, BTBQM00, CP00, CE96, Mil87, Mil92b, BCvdHS11, CDM+13b, DJS18, DP09, Dur09, FGPGP14, GDR05, MV13].

Technology [AGAVRC13].

telescopers [CCF+15, KY15].

Telescoping [ACGL04, Zei91, CK12a, CvhKK18].

Temporal [AM89, Ano96, CSS96, ET96, FT97, Fis96, Frü96, GP96b, LO96, MRS96].

Ten [Sto11].

tensor [Bac94a, Bo901, Ryb01, BBCM13, PRR18, Qio5, Qio6].

tensors [BGI11, HHLQ13, MMS14, OO13].

Term [Ave86, BGK96, CM15, Dur93, Fit97, FJN93, Ges97, HH94, Kahl95, KM91, Pav91, MGL00, Ohl95, PZ96, PY94, PP91b, PS93, You89, Zan95, Gg92, Hre06, Kap87, LLLW03, NOT10, Tra07a, Wir09, Zan94].

Term-ordering [CMR15].

Term-Rewriting [Kah95].

Terminating [Ges97].

Termination [BP85, Der87a, Der87b, Ges97, GAO02, TZ10, Zan94, Zan95, KS03, Kap87, MU04, XZ13].

Terms [Ae02, BN01, Boy93a, Boy93b, Che85, HS99, Kar85, MS00a, Pel97, AP04, Bad06, Cha14, CCF+15, CK19, DS13, KY15, KS19].

ternary [BS17b].

Terrains [BS89].

tessellation [HS09].

Test [Bou97, HH94, KNZ91, Mon92, Sed02, Adl16, BSSY18, BFK18, CF01b, GTLN16, KK17, MP04, vdsH06].

Testing [BW87, HLS97, Käll85, Käll87, McC97, O’B93, O’B94, RR90b, CH03, Gal87, GRV17, Kahl90, Mic13, Shp14].

Tests [BB00, Car01].

tetrahedra [Tsa16].

Tetrahedral [Her94].

Tetrahedrizing [EPW90].

Their [Br092, Fuc00b, GSS798, KT90a, Zip90, BP99a, CEE11, BE13, BM01, Br090, Br003, CV11, FS16, GR11, HH07, LLL19, MBC+10, MS03b, Naw16, PZ96, Pk91, PSV11, PWZ18, Sch17a, WR09, dG09].

Them [Mon97, BB10].

Theorem [AGM798, AL10, An000b, AB00b, BF95, B023, BT98, Bon96, Bou97, CR90, FT97, FD14, GC93, HS01, Hsi87, JL91, LS00a, LR00, LBM98, ML92, MR87, NSW85, NR95, Pad96, Pet00, Pue89,
Theorem-Prover [ST89b].
Theorem-proving [Rus91, Bon05].
Theorema [Win06].
Theorems [CJUE01, DTGV02, Bro07, HdC13, HdC16, Ley04, EM09, FJN93, GAGMM07, Har14, JWG10].
Theoretic [Cra91, Laz92a, PH87, GIM07].
Theoretical [Gre95, BBC+11, GVHHUE05, SA89].
Theories [ALM99, Baa89, BS96, BS86, BHSS89, Gar95, JM95, KR91, NR97, Pet00, SS99a, SS99b, Tha93, Tre92, Ye87, Fer98, LM94b, TRRK10].

Third [Nak16, SU93a, SU93b, SW97b, Ulm03].

Third-order [Nak16]. Thirty [Laz92a].

Thom [CR88].

Three [ACM88, Bur01, EPW90, McC88, SS92, Sha90b, VRUW99, Ze95, BDPR13, DO06, Eng10, FS16, Nor15].

Three-Dimensional [ACM88, McC88].

three-state [Nor15]. three-way [DO06].

threefolds [Hie16]. threshold [HT17].

Thue [Boo87, Hen98, HPT02, HTZ04, Heo06, Pet87, Yap91].

Tietze [Rob88].

tight [HJS18].

Time [AV96, ACOR00, Ch96, CKS99, Dic92, FB93, GV88, LO96, PS18b, Sed02, YNT94, AM88a, Bas06, Ber98a, CK12b, Col17, FG06, MM16, RH18].

Timed [SJG96].

Todd [CLW95].

tolerant [Abb17].

Tool [vdH02].

toolbox [BD17, BKRW17].

Tools [CH95, GVGC99].

Topics [Hos02].

Topological [AM88a, BD17, FGT15, Hel16].

Topology [CR88, CR88, El08, HPR11, Ric92a, AS05, FGPT03, FGL04, IMP17, KS12b, Ker17].

topos [Hir98, Nie03].

toral [Roo13].

tori [Gal16, PY05].

Toric [CV11, CM97, CDSS09, EMS00, GE05, Sop13, Ver00, ABB+19, AT08, AT08, BGMSG07, BGM15, BE11, BR15, BK13, CC07, DHH+04, EGW09, GMS09, Lm16, Nor15, OK08, RS16, Rua09, SS06, VJo7, BLR99].

Torsion [dGN02, CE19, FG08].

Torsion-free [dGN02, CE19].

Total

[Zan95].

Totally [Gaa95, Ges97].

tower [CCQ18, DS09].

Towers [HM02a, DS12].

Trace

[MMW11, BCCK20, FMTT13].

Trace-based [MMW11].

traces [JFMRS12].

Tracking [vKT93, HL16].

tractability [GSSST10].

Tractable [HYH04].

Trading [CK12a, vdH10].

Trager [Mul97].

trajectory [Pal13].

transcendence [BDM17].

Transcendental

[Kn02, Kno93, Bro90b, Gue18, MW12, Raa12, Str11].

Transducer [Du99].

transform [AK04, AK06, FK11, KS16, RH18].

Transformation [LM90, LPRR02, YI94, dBS9, BGL14, GKO09, SLK11, Vis05].

Transformations

[BB93b, CD87, Jef97, Rob88, She97b, SG89, Bi11, Deu93, GS89, Nak16, Pra13, Sta16, WyW93, WS09].

Transforming [BR12, LW12].

Transforms [Sau93, CM04, Har14].

Transitive

[But93, CC91, KM00b, Roy87, RP89, Els12, Hul05, MAN+10, PSV13].

Transitivity [ABL93].

Translation
translational [WG18]. Translations [Egl96]. transportation [BR06a].

transseries [vdH11]. transversal [Eit94].

Treatment [Yap90, Izu16, Sag88, Sag89, Sch07]. Tree [BH87, Ger06, KFK97, LM94b, RR90a, RV05, Sed96, GR10, HJA17, Wil93].

tree-decomposable [HJA17]. Tree-Structured [Sod96]. Trees [GL92, Lab92, Pue89, CFS07, Coo09, DJS18, Vat06].

triangulation [AMT09]. Trigonometric [GHC92, Jef97, PS00, HS98, MJK17].

trinomials [KO17, Koi19]. Triple [HLM95].

triplines [GJT13]. Trivializing [Pl07]. Tropical [Ang15, AM99, ALM99, CDM+13a, GSSV12, Kal93, Sta18, Wan00, BCvdHS11, CM12, CGY09, GPGO16, LPR17, Leb15, LMS09, MRSW07, MV13, PS13, Sch03b].

triangular [AMT09]. Trigonometric [GHC92, Jef97, PS00, HS98, MJK17].

trinomials [KO17, Koi19]. Triple [HLM95].

triangles [Pue89]. Unavoidable [Pue89].

truth [BDE+16]. Trying [She97a]. Try [GB12a]. Tubular [Sch00, RSTV16].

Tutorial [Bie85, CFG+86, Ant10]. Twelve [Roy87]. Twin [Abb12]. Twin-Float [Abb12].

Twin [Abb12]. Twists [KT02]. Two [BL98b, BFHS92, BS01, BGS11, Chu99, CDS7, CJMP97, EW86, Fix88, FM04, LSW01, LAz83, LAz88, Lev99, PV02, Rut93, Sak88, SS98a, SSS02, Tay02, Vid99, Wid01, ABMB19, Apol10, BGM06, BFS87, BM10, FGVN06, GVHHUE05, GG92, GI14, HT17, HQS19, HSV08, JW+16, KLZA12, KL95, Ley04, Nor15, PV05, Pet10, PV08, Ros05, SS90]. Two-body [PY05]. Two-bridge [KP15].

Two-Dimensional [Sak88, FM04, ACMB19, HSV08, SS90]. Two-parameter [Pet10]. Two-parametric [PT08]. Two-Phase [Fit89]. Two-point [Ros05]. Two-variable [HT17]. Type [AM88a, BP99b, CH85, CH86, DS00, Ga02, Har92, HRT01, Pau86, San95, YX95, BL06b, CK04b, CLS91, CO94, CO96, EK11, GMP13, GSZ13, HIJ15, Hir89, KRW90, KK09, Si04, Zan94, dG01]. Typed [Hag89b, HK88]. Types [MM094, McCW17, CS16, EL12].
NMM90, CHU19, FK11, Loj13, VB03. User [AGMT98, BT98, KM98, KS98, BCP97, HPRS11, LLTP+11, YW87]. Uses [CF91a].

Using [AV00, BS90a, BB92, Ber93, BB93b, BH00, BC91, CP97, CDF92, CJMP97, CGK90, Ebe01, Fit99, GLKM91, GA02, GV97, GL92, GHC92, HH94, JSC13, KFK97, KT02, Kap86, Kem16, Lab95, Man93a, Mil87, MT01, PP91a, Pue89, Raal2, RT85, SM18, SS88, SGI13, SR86, TU05, dos98, van97c, von90c, AK04, AK06, AGS18a, AHKY09, AG91, AK86, AHI03, BP00, BC91, CK04b, CK04a, Col16, Col05, DS09, DM05, ERSG05, FGVN06, Fox18, GVGC99, Gon17, GMS09, GGEZ12, Hal13, HI08, Ho09b, IvH17, JS07, KMYZ08, KNZ91, LC16, LO09, LS11, LZS11, LS12, LKH+13, LW01, MM06, MS15, MS16, Mas16, MH16, Möll88, MP11b, Ng89, PT14, PNM13, RH18, Roq13, RoU08, Sag88, Sag97, Sag14, Sek11, SL92, Sid93, STDD16, Sma96, AHW05, APS12, Ang18, AB05, BGI18, BL12, BD16, BDM+16, Bur03, BST16, CW90, DEPS11, DV00, DdW18, FS98, FG08, FFP98, Ga13b, GLW99, GG92, Gru20, HJX16, Har09, JPP98, KLYZ12, KLZA12, Lam91, MM16, MG94b, Mr096, Nak16, Nie03, OK08, Pic00, PRR18, Pos18, RZ09, Sei02, WW94, WZ12, dCR17].

Walk [CKM97, Aue05, FJLT07, Kha14].

XYZ [Sch94].

Yang [GIM07]. Yau [BR13c, Hie16]. years [Laz09]. Young [Wil95].

Zassenhaus [Ano87]. Zeilberger [CHM05, CHM12, CK19, GG92, MZ05, PS95b]. Zermelo [Win06]. Zero [Chi96, FGLM93, GC93, Kal02, Laz92b, Mon02a, NY99, PV00, PV02, Ric97, Tak92, AKR05, AP11a, Buc06a, CGY09, CGG12, CJ15, Dur09, HOP06, HKPP09, HKYY18, KMH89, Li04, MRSW07, MP04, Mos08, NT17, PS13, Sek11, ST20, TBS17, Wal03, vdHS06]. Zeromelo [Win06]. Zeta [CGY09, GC93, Kal02, Laz92b, Mon02a, NY99, PV00, PV02, Ric97, Tak92, AKR05, AP11a, Buc06a, CGY09, CGG12, CJ15, Dur09, HOP06, HKPP09, HKYY18, KMH89, Li04, MRSW07, MP04, Mos08, NT17, PS13, Sek11, ST20, TBS17, Wal03, vdHS06]. Zeta [CGY09, GC93, Kal02, NY99, PV00, PV02, Ric97, Tak92, AKR05, AP11a, Buc06a, CGY09, CGG12, CJ15, Dur09, HOP06, HKPP09, HKYY18, KMH89, Li04, MRSW07, MP04, Mos08, NT17, PS13, Sek11, ST20, TBS17, Wal03, vdHS06]. Zeros [GLW99, HS97, Wor94, Yam94, BM10, CPR09, CPR11, GS03, Lou08, Rap06]. Zeta [BM10, JMV18, Sto17]. Zippel [Lan92]. zonotope [Fuk04]. zur [GP12].

References

Ali:2018:EAA

Alvarez:2018:GBC

REFERENCES

Carlos Améndola, Nathan Bliss, Isaac Burke, Courtney R. Gibbons, Martin Helmer, Serkan Hoşten, Evan D. Nash, Jose Israel Rodriguez, and Daniel Smolkin. The maximum likelihood degree
REFERENCES

Aroca:2001:FSL

Andrei:2004:SCH

Andrei:2004:SCH

Amata:2019:CGI

Albrecht:2012:RBM

Abramov:2004:TCS

Armando:2001:CLO

REFERENCES

Alberich-Carraminana:2019:ECB

Albano:2000:MGI

Arvanitoyeorgos:2013:PIH

Adler:2016:ITE

Abramov:2002:RNF

Assmann:2005:CPP

Arnborg:1988:ADR

Attardi:1996:MMP

Acciaro:2000:FNI

Ayad:2008:DRF

Albert:2015:FRI

Augot:2009:F

Abbott:2008:SBB

Andersen:1991:IHP

Amrhein:1997:VMC

Aitken:1998:ITP

Alonso:1995:RFD

Arnold:2016:FSM

Area:1999:IPH

REFERENCES

Allem:2013:ESF

Atkinson:1986:CGC

Adleman:2001:CPC

Agashe:2013:CIN

Alpert:2005:OSD

Anai:2009:PPS

Hirokazu Anai, Shinji Hara, Masaaki Kanno, and Kazuhiro Yokoyama. Parametric polynomial spectral factorization

REFERENCES

REFERENCES

Ahn:2004:CPC

Ahn:2006:RNC

Allili:2017:RCM

Abbott:2005:CZD

Arnold:2011:BBW

Ahn:2012:DCS

REFERENCES

Apel:1988:EBA

AlvarezMontaner:2006:CSL

Alonso:2010:LBT

Alcazar:2008:GGB

Alcazar:2008:GLB

Alcazar:2012:LSG

Alcantarara:2016:SSF

Aubry:1999:TTS

Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. On the theories of

Alu:2003:CCC

Arnon:1988:PTA

Arnon:1988:MQE

Abadi:1989:TLP

Aubry:1999:TSS

Aparicio-Monforte:2016:LIE

REFERENCES

Aljovin:2019:IHC

Andrews:1995:CPB

Angermuller:2015:TSG

Angelini:2018:WDI

REFERENCES

Anonymous. Special issue on advances in first-order theorem proving foreword of
REFERENCES

Anonymous:2001:CIV

Anonymous:2001:JSC

Anonymous:2001:SI

Anonymous:2001:SIC

Anonymous:2001:SIE

Anonymous:2001:VCA

Anonymous:2002:A

Anonymous:2002:CIV

Anonymous:2002:JSC

Anonymous:2003:A

Anonymous:2003:EBa

Anonymous:2003:EBb

Anonymous:2003:EBc

Anonymous:2003:EBd

Anonymous:2003:EBe

Anonymous:2003:EBf

Anonymous:2003:EBg

Anonymous:2004:C

Anonymous:2004:CV

Anonymous:2004:EBa

Anonymous:2004:EBb

Anonymous:2004:EBc
Anonymous:2004:EBd

Anonymous:2004:EBe

Anonymous:2004:EBf

Anonymous:2004:EBg

Anonymous:2004:EBh

Anonymous:2004:EBi

Anonymous:2004:EBj

Anonymous:2004:EBk

Anonymous:2004:EBl

Anonymous:2004:IO

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2012:EBh

Anonymous:2012:EBi

Anonymous:2012:EBj

Anonymous:2012:EBk

Anonymous:2012:EBm

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

REFERENCES

Anon:2019:EBb

Anon:2019:EBc

Anon:2019:EBd

Anon:2019:EBe

Anto:2005:ESF

Anto:2010:PNT

Abdulrab:1989:SWE

Abouzahra:1990:CAA
M. D. Abouzahra and R. Pavelle. Computer algebra applied to

Andrews:1993:SQC

Abramov:2004:ERN

Abramov:2008:DSS

Abramov:2010:PRA

Alvanos:2011:SGZ

Arri:2011:FCR

Arri:2017:CFC

References

Apel:1995:GAI

Apel:1998:TID

Apery:2010:STH

Amato:2012:DIS

Armando:2003:CCR

Allman:2006:PIS

Abramov:2013:LID

Aubry:2002:RSP

Arnon:1988:BQE

Arnon:1988:CBC

Arnault:1995:CCN

Arnold:2003:MAC

Arreche:2016:CPD

Armando:2002:IDP

REFERENCES

REFERENCES

July 2008. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Auerbach:2005:GFG

Aurenhammer:1987:RPC

Ahmed:1996:DTL

Aubry:2000:UGI

Adrovic:2011:TAG

Avenhaus:1986:DPT

Avendaño:2009:NRL

Martín Avendaño. The number of roots of a lacunary bivariate polynomial on a line. *Journal of Sym-
Apt:1994:SPN

Almkvist:1990:MDU

Zhao:2005:HCM

Bibel:1985:BP1

Baader:1989:UCT

Backofen:1994:RPE

Bach:1999:SCP

REFERENCES

[Bas06] Saugata Basu. Computing the first few Betti numbers of semi-algebraic sets in sin-

Bauch:2015:GCG

Bayer:2003:ACI

Bergeron:1992:SMS

Bibel:1993:SIA

Boulander:1993:DFU

Berrizbeitia:2000:GSP

REFERENCES

REFERENCES

Bailey:2014:ASL

Bouhoula:2015:SIS

Butler:1989:CPM

Butler:1991:CSS

REFERENCES

Butler:1993:HA

Barendregt:2001:ECM

Buse:2005:IRH

Bours:2006:NFC

Boura:2020:BST

Bark:ee:1994:WYC

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Buhler:2001:IPC

Barkatou:2011:SFH

Bertone:2019:FLP

Bertone:2010:MVA

Berque:1992:SPS

Burr:2012:CSA

REFERENCES

REFERENCES

REFERENCES

Bluman:2012:NSO

Botból:2016:IRH

Bubeník:2017:PLT

Benitez:2015:RAM

Bradford:2016:TTI

Bohm:2013:PA

Benito:2019:QSL

Bui:2017:SPE

Bishop:2013:CCA

Bosma:2001:CNR

REFERENCES

Bostan:2017:ADW

Bauer:2018:PLF

Besche:1999:CFG

Besche:1999:GOM

Bouziane:2002:CDP

Bonacina:2010:TDD

Blanco:2011:EDT

REFERENCES

REFERENCES

0747-7171 (print), 1095-855X (electronic).

[Bed07]

[Bed09]

[Bee01]

[Bel03]

[Bel04]

[BELP13]
REFERENCES

[Brown:1997:NAC]

[Buse:2000:GRU]

[Bergeron:1993:SMU]

REFERENCES

Bohm:2018:STH

Beyer:1987:VCT

Bardet:2015:CIG

Bostan:2006:FCS

Bebbington:2001:KMP

Buse:2005:SIR

Laurent Busé and André Galligo. Semi-implicit representations of surfaces in \mathbb{P}^{3}, resultants and applica-

Boege:1986:SES

Bundgen:1996:SCM

Belkhir:2014:STL

Bachler:2012:ATD

Bermejo:2006:CMR

Bermejo:2015:CIS

Isabel Bermejo and Ignacio García-Marco. Complete intersections in simplicial toric varieties. *Journal of Sym-
REFERENCES

Bermejo:2007:ACW

Berbain:2009:QMS

Brown:2000:URS

Bonacina:1995:DDC

Beyer:1987:STA
REFERENCES

REFERENCES

Bila:2011:NMF

Birget:1998:ISR

Bruns:2016:PPD

Barkatou:2017:FSC

Blanco:2004:CGI

Bogart:2007:CTV

Boudet:1989:UBR
REFERENCES

477??, November 1989. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

Baaz:2006:TCA

Belitskii:2006:UTP

Boffi:2012:CGB

Boffi:2017:BBL

Baarnhielm:2012:PRP

Boulier:2016:ANF

Boulier:2010:CDC
REFERENCES

7171 (print), 1095-855X (electronic).

Boulier:2019:ETR

Bouzidi:2015:SLF

Bertone:2013:BOC

Bostan:2017:MBS

Beckermann:2006:NFG

Berthe:2016:PAP

REFERENCES

Berthe:2018:BGA

Bush:2003:CLK

Bayer:1988:SBG

Brien:2000:CS

Binder:2001:AFN

Bogvad:2004:ACW

REFERENCES

REFERENCES

Bahloul:2010:LBS

Boedin:2004:CMN

Bokut:2008:GSB

Bonacina:1996:RPD

Bonacina:2005:TUM

Book:1987:TSR

Boston:1997:UCT

Bosma:2001:SIC

Boudet:1993:CUA

Bouhoula:1997:ATP

BoydelaTour:1992:ORC

Bachmair:1985:TOA

[BP85] Leo Bachmair and David A. Plaisted. Termination ordering for associative com-

Boyd:1993:BHFa

Boyd:1993:BHFb

Boyd:1993:CLS

Breuer:1998:FPP

Barkatou:1999:ACR

Bauer:1999:MMH

Bratus:2000:FCR

Beltran:2007:PDS

Carlos Beltrán and Luis Miguel Pardo. On the probability distribution of singular varieties of given corank. *Journal of Symbolic Computation*, 42

Banti:2011:AVE

Baumgartner:2012:MEE

Berczes:2006:PNF

Boffgen:1987:CDP

Brundu:1988:CGS

Boffi:2006:LGB

Buot:2006:CLS

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Barakat:2009:CCC

Briand:2009:MVF

Basu:2010:BRB

Buchberger:2012:TPA

Ballantyne:2013:NCI

Bernardi:2013:CRC

Bogner:2013:SRL

REFERENCES

Boocher:2015:RTI

Bremner:1986:FCW

Bright:2006:BGD

Bouziane:2001:UDD

Bronstein:1990:IEF

Bronstein:1990:TRD

Bronstein:1992:SLO

Bronstein:2000:SLO

[Bro00] Manuel Bronstein. On solutions of linear ordinary dif-

Franz Baader and Klaus U. Schulz. Unification in the
REFERENCES

[BSo0] Bodnár:2001:TCT

[Bs17a] Batra:2017:NOS
Prashant Batra and Vikram Sharma. Near optimal subdivision algorithms for real root

Blekherman:2017:ERH

Bach:2018:BSG

Bouissou:2012:AAF

Becker:2018:NOS

Bunty:2016:CVS

Brown:1994:CSC

Ronald Brown and Andrew Tonks. Calculations with simplicial and cubical groups in AXIOM. *Journal of Sym-
REFERENCES

Bertot:1998:GAB

Bayer:2009:RSM

Borges-Trenard:2000:CGB

Boyle:2002:REM

Beauzamy:1993:PFS

Bikker:1999:BCR

REFERENCES

Burckert:1989:MSC [Bür89] Hans-Jürgen J. Bürckert. Matching — a special case of

REFERENCES

REFERENCES

Buchmann:1987:PIT

Brown:2003:CHA

Beeson:2005:MIC

Baja:1997:SAR

Barton:1985:PDA

Berarducci:1993:GU

Baumgartner:2003:PFO

Canny:1990:GCP

REFERENCES

REFERENCES

Caprotti:2001:ROI

Curran:2007:RDD

Cesaratto:2009:REA

Chen:2015:ETM

Cantone:2006:DAF

Cannon:1997:CSS
REFERENCES

Cannon:2001:CSP

Chu:2002:QFR

Chen:2005:BIR

Cioni:1995:SCA

Carvalho:2018:ECC

Caboara:2011:LPC

REFERENCES

Chen:2013:CSA

Cohen:1997:SAC

Cohens:2001:AMF

Craciun:2009:TDS

Chazelle:1985:OSC

Collins:1995:ERN

Collins:1996:ITF
George E. Collins and Mark J. Encarnación. Improved tech-

REFERENCES

Cremona:2009:EBQ

Curtis:2009:SRE

Char:1986:TIM

Casperson:1996:IDS

Campillo:2010:SIA

Caboara:2007:SCC

Cooperman:1997:CPR

Cooperman:2002:SPC

Cheze:2006:AEA

Char:1989:GHP

Cheng:2012:RIZ

Camacho:2009:NGQ

Corless:2009:USE

Campillo:2007:ECP

REFERENCES

[CH85] Thierry Coquand and Gérard A. Huet. A selected bibliography on constructive mathematics, intuitionistic type theory and higher order deduction. Journal of Symbolic Compu-
REFERENCES

145

REFERENCES

REFERENCES

REFERENCES

Corless:1990:SHL

Corless:1997:SCO

Cheng:2015:GPB

Corless:1997:TPC

Castro-Jimenez:2001:FGE

Castro-Jimenez:2001:ECT

Castro-Jimenez:2006:GBL

Cabay:1990:PSR

Churchill:1999:UAL

Chtcherba:2003:ERC

Chtcherba:2004:RUB

[CK04a] A. D. Chtcherba and D. Kapur. Resultants for unmixed
REFERENCES

Chtcherba:2004:CST

Chen:2012:TOD

Comer:2012:BMA

Couveignes:2012:GFT

Chen:2019:PWZ

REFERENCES

[CM97] Stéphane Collart and Daniel Mall. Toric degenerations of

Tianran Chen and Dhagash Mehta. Parallel degree com-
CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Cerlienco:1987:CMP
CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Ceria:2015:TOF
CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Ceria:2019:GFN
CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Creel:2007:SCF

Chien:2019:VLF
CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Creemans:1994:FDT
Robert Creemans and Friedrich Otto. Finite derivation type

Collins:2015:KPL

Collins:2016:CFR

Collins:2017:MCT

Comon:1998:CRSa

Comon:1998:CRSb

Compoin:1998:DEA

Conlon:1990:CCG

Chadha:1993:MDL

Cannon:1997:UMC

Caferra:2000:CED

Coles:2010:DRB

Castle:2009:QPT

Castle:2011:PTZ

Cluzeau:2012:SRL

REFERENCES

Coste:1988:TLC

Cucker:1990:TRP

Caboara:1998:ACA

Cioffì:2011:FFS

Cid-Ruiz:2019:BDM

Crapo:1991:ITM

Chazarain:1991:MVL

J. Chazarain, A. Riscos, J. A. Alonso, and E. Briales. Multivalued logic and Gröbner bases with applications to modal logic. *Journal of
REFERENCES

[CS98]

Cremona:2001:CID

[Cre01]

Cole:1989:VPP

[CS89]

Chazelle:1990:AGP

[CS90]

Chyzak:1998:NCE

[CS98]

Compoint:1999:CGG

[CS99]

Caprotti:2005:IAR

REFERENCES

0747-7171 (print), 1095-855X (electronic).

\begin{thebibliography}{10}

\bibitem[CTR99]{Cheb-Terrab:1999:IFS}

\bibitem[CTV16]{Charalambous:2016:BFI}

\bibitem[CTY10]{Cueto:2010:ICB}

\bibitem[Cuy97]{Cuyp:1997:FPV}

\bibitem[CV00]{Carminati:2000:SCD}

\bibitem[CVH04]{Castryck:2011:TFE}

\bibitem[CvH04]{Cluzeau:2004:MAC}

\end{thebibliography}
REFERENCES

REFERENCES

[166]

ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

167

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

Dickenstein:2013:FE

Dickenstein:2015:SIE

Dumas:2011:CEC

Dickenstein:2003:MRF

Dickenstein:2002:HSR

Dickenstein:2006:MBN

DeJong:1998:ACI

DAndrea:2002:HSR

Diaconis:2006:MBN

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

[Diochnos:2009:APC]

[Deutsch:1993:IAH]

[Damgaard:2005:EAG]

[Detinko:2008:ACN]

[Detinko:2009:DFM]

[Dietrich:2013:CRL]

[Detinko:2015:IAS]
REFERENCES

Daberkow:1997:KVC

Daberkow:1997:KV

Detinko:2013:RFM

Dumas:2011:SMR

deGraaf:2001:CQE

deGraaf:2009:CAG

REFERENCES

REFERENCES

[DH00] Damiano:2010:CRQ

[DH16] Daleo:2016:NDA

[DHKS98] Wolfram Decker, Agnes Eileen Heydtmann, and Frank-Olaf

DeLoera:2004:ELP

Dickerson:1992:IAP

Dressler:2018:ACP

Dietrich:1992:EAC

DiPasquale:2016:APS

Diver:1991:MWC

Dudley:1989:CAD

REFERENCES

[DS06] Vesselin Drensky and Roberto La Scala. Gröbner bases
REFERENCES

179

of ideals invariant under en-
domorphisms. *Journal of Sym-

dolic Computation*, 41(7): 835–846, July 2006. CO-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronics).

Dupont:2008:NOPa

Laurent Dupont, Daniel Laz-
ad, Sylvain Lazard, and Syl-
vain Petitjean. Near-optimal parameterization of the in-
tersection of quadrics: I. The generic algorithm. "Journal of Sym-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronics).

Dupont:2008:NOPb

Laurent Dupont, Daniel La-
ad, Sylvain Lazard, and Syl-
vain Petitjean. Near-optimal parameterization of the in-
tersection of quadrics: II. A class-
sification of pencils. *Journal of Sym-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronics).

Dupont:2008:NOPc

Laurent Dupont, Daniel La-
ad, Sylvain Lazard, and Syl-
vain Petitjean. Near-optimal parameterization of the in-
tersection of quadrics: III. Parameterizing singular inter-
sections. *Journal of Sym-
dolic Computation*, 43(3):216–
232, March 2008. CO-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronics).

DeLoera:2011:CIC

Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Su-
san Margulies. Computing infeasibility certificates for com-
binatorial problems through Hilbert’s Nullstel-
lensatz. *Journal of Sym-
dolic Computation*, 46(11):
1260–1283, November 2011. CO-
DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (elec-
tronics). URL http:
//www.sciencedirect.com/
science/article/pii/S0747717111001192.

deMan:1999:GFN

Ronald de Man. The gener-
at ing function for the num-
ber of roots of a Coxeter group. *Journal of Sym-
dolic Computation*, 27(6):535–541, June 1999. CO-
DEN JSYCEH. ISSN 0747-7171 (print), 1095-
855X (electronic). URL http:
//www.idealibrary.
com/links/doi/10.1006/jsco.
1999.0280/production;
http://www.idealibrary.
com/links/doi/10.1006/jsco.
1999.0280/pdf;
http://www.idealibrary.
com/links/doi/10.1006/jsco.
1999.0280/production/ref.

Delahaye:2005:DAE

David Delahaye and Micaela
Mayero. Dealing with alge-
REFERENCES

D'Andrea:2009:SIS

Duchamp:2017:HSP

Diatta:2012:IMA

Diekert:2017:ASG

Ducos:2016:CSF

deNivelle:2003:DGF
Degtyarev:2003:SR

DeLoera:2006:MBT

Dohm:2009:IRR

Domjoujoud:1992:AUT

Donch:2013:CRG

Draisma:2017:F

dosSantos:1989:URS

Dridi:2009:NCT

REFERENCES

Dolzmann:1997:SQF

Decker:2000:NGT

Dick:2002:ETC

Dolzmann:2006:E

Das:2009:LDC

DeFeo:2012:FAA

Durand:2015:BRW

REFERENCES

REFERENCES

Marcin Dumnicki. An algorithm to bound the regularity and nonemptiness of linear systems in \(\mathbb{P}^n \). *Jour-
REFERENCES

REFERENCES

James East, Attila Egri-Nagy, James D. Mitchell, and Yann Péresse. Computing

REFERENCES

Bettina Eick. Orbit-stabilizer problems and computing normalizers for polycyclic groups.
REFERENCES

Eick:2010:SNS

Eisenberger:1990:ASA

Eiter:1994:ETH

Emiris:2011:SLM

ElKahoui:2003:EAS

ElKahoui:2005:BPG

ElKahoui:2008:TRA

Ellis:2012:CHT

Ellis:2004:CRR

Ellis:2004:CGR

Elsenhans:2012:ICI

Elsenhans:2017:IMC

Egner:1998:SRM

DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Emiris:1999:MET

Emiris:2012:MRF

Erocal:2016:RA

Encarnacion:1995:CGP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

REFERENCES

Eick:2002:CSE

Evans:2007:CIR

Fages:1987:ACU

Farouki:1997:CA

Farouki:2019:EPH

Fassino:2010:AVP

REFERENCES

2010. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

Rida T. Farouki and Robert Gutiérrez. Geometry of the ringed surfaces in \mathbb{R}^4 that
REFERENCES

Faugere:1993:ECZ

Faugere:2014:MCA

Farouki:2016:SQQ

Feng:2008:RSO

Fortuna:2005:SCR

Faugere:2014:MCA
REFERENCES

Fortuna:2003:ACT

Fleming:2003:DC

Farouki:2009:HPCa

Farouki:2009:HPCb

Farmer:1995:CMR

Fortuna:2002:DRP

Fortuna:2005:IDP

REFERENCES

Fortuna:2009:GIA

Fortuna:2015:CTI

Fioravanti:2006:CIT

Furbach:1986:MCF

Froberg:1994:HSI

Fix:1996:IRP

[FHL96] George Fix, Chih-Ping Hsu, and Tie Luo. Implicitization of rational parametric surfaces.

Foupouagnigni:1999:FOD

[FHR99] Mama Foupouagnigni, M. Norbert Hounkonnou, and André Ronveaux. The fourth-order difference equation satisfied by the associated orthogonal polynomials of the Δ-Laguerre-Hahn class.
REFERENCES

[204]

1998. 0340/production;
http://www.idealibrary.
com/links/doi/10.1006/jsco.1998.0340/production;
http://www.idealibrary.
http://www.idealibrary.

[FK89] W. I. Fushchich and V. V. Kornyak. Computer algebra application for determining Lie and Lie–Bäcklund symmetries
REFERENCES

[FK04]

[FK09]

[FK11]

[FKM10]

[FKO18]

[FKM95]

[Fournier:1995:VMS]

[FKM10]

[FKO18]

Foupouagnigni:2012:ROP

Fiore:2004:ORG

Faugere:2011:ADS

Foursov:2002:CAC

[Mikhail V. Foursov and Marc Moreno Maza. On computer-assisted classifica-

Faugere:2017:SFA

Falcon:2007:GBN

Foote:2004:TDW

Frenkel:2013:GBN

Frenkel:2016:KPP

Ford:1987:CMO

Fortenbacher:1987:AAU

Albrecht Fortenbacher. An algebraic approach to unification under associativity and

Fortune:2002:IEA

Formisano:2000:GBA

Fox:2018:DLR

Faugere:2009:EAD

Famelis:2004:SDR

Faugere:2009:F

REFERENCES

Fredet:2004:LDE

Fredenburg:2013:FIT

Fribourg:1989:SRI

Felszeghy:2006:LGS

Fruhwirth:1996:TAC

Flajolet:1995:CAL

Feinsilver:1998:CRL

Farouki:2010:RRM

[FS10] Rida T. Farouki and Takis Sakkalis. Rational rotation-minimizing frames on polynomial space curves of arbitrary degree. *Journal of
REFERENCES

Farouki:2012:CCQ

Feng:2016:CIT

Filgueiras:1995:FMF

Feng:2010:ACL

Feng:2010:LSL

See [FS10].

See [FS10].
REFERENCES

[FW14] Felix Fontein and Pawel Wojcjan. On the probability of

Feng:2015:ACM

Folz:1987:WRD

Folz:1987:WRD

Folz:1993:RR

Folz:1993:RR

Gaál:2002:RRT

István Gaál. On the resolution of resultant type equations.
REFERENCES

Gallier:1987:FAT

Galligo:2013:BTR

Galligo:2013:DRP

Galetto:2016:PWT

Ganzinger:1991:CPC

Gao:2001:DCF

Giesl:2002:MTP

[GAO02] Jürgen Giesl, Thomas Arts, and Enno Ohlebusch. Modular termination proofs for rewriting using dependency

Gao:2003:IDR

Gatermann:2003:ASB

Gatermann:2003:ASB

Garvan:1995:RTE

Gaudry:2009:ICA

Gao:1992:IRP

Gao:1993:ZST

Gao:1993:ZST
Gonzalez-Diaz:2005:STM

Gebhardt:2002:ECI

GrafvBothmer:2005:NFR

Gemignani:1994:SHS

Genovese:2007:IAB

Gerritzen:2006:TPN

Gerling:2019:BCP

Gessel:1992:SBN

REFERENCES

[Gessel:1995:FIW]

[Geser:1997:OTU]

[Gatermann:2005:TIG]

[Garvan:1992:PTP]

[Gatermann:1999:GBI]

[Galan-Garcia:2013:TIM]

[Garcia:2013:CAM]
Alfonso García, Francisco

Grezet:2012:GOP

Garcia:2006:NCM

Garcia-Garcia:2019:DCS

Garcia-Garcia:2013:DSA

REFERENCES

Gascon:2010:CUO

Goktas:1997:SCC

Gatermann:2002:FSP

Gann:2005:PBD

Gatermann:2005:CAB

Gao:2012:CSA

Guimaraes:1992:DR

[J. E. F. Guimaraes, G. R. Heppler, and S. R. Czapor. On the derivation and reduction of C^1 trigonometric basis...

Giusti:2000:PNM

Giesbrecht:2016:FLP

Gerdt:2013:IBA

Green:2001:CHS

Georgieva:2003:HGF

REFERENCES

Guo:2008:PHI

Gao:2017:BDI

Gibert:1987:FPC

Giesbrecht:1998:FSP

Gateva-Ivanova:1988:RPA

Gateva-Ivanova:2007:STS

Tatiana Gateva-Ivanova and Shahn Majid. Set-theoretic solutions of the Yang–Baxter

Giusti:1988:CDT

Gonzalez-Jimenez:2013:MRT

Gusynin:1994:SCD

Gerdt:1996:CFP

Gladitz:1996:SMI

Geissler:2000:GGC

[Gao:2012:BIW]

[Gao:2012:P]

[Grigoriev:2016:CTS]

[Garbey:1991:UMA]

[Gauthier:2018:A]

[Gao:2004:DDD]

[Gottliebsen:2005:HVC]
Golubitsky:2008:BRG

[GKMO08] Oleg Golubitsky, Marina Kon-
dragieva, Marc Moreno Maza,
and Alexey Ovchinnikov. A bound for
the Rosenfeld–Gröbner algorithm. Journal of
Symbolic Computation, 43(8):
582–610, August 2008. CO-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronic).

Golubitsky:2009:ATD

[GKO09] Oleg Golubitsky, Marina Kon-
dragieva, and Alexey Ovchin-
nikov. Algebraic transformation of
differential characteristic decompositions from one
ranking to another. Journal of
Symbolic Computation, 44
(4):333–357, April 2009. CO-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronic).

Gaubert:2012:TLF

[GKS12] Stéphane Gaubert, Ricardo D.
Katz, and Sergei Sergeev. Tropical linear-fractional
programming and parametric
mean payoff games. Journal of
Symbolic Computation, 47(12):1447–1478,
December 2012. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-855X (elec-
science/article/pii/S0747717111002525.

Giesbrecht:2003:ACS

[GKsL03] Mark Giesbrecht, Erich Kaltofen,
and Wen shin Lee. Algorithms for computing sparsest
shifts of polynomials in power,
Chebyshev, and Pochhammer bases. Journal of
Symbolic Computation, 36(3–4):
401–424, September/October
2003. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-
855X (electronic).

Gray:1998:DIM

[S. Gray, N. Kajler, and P. S.
Wang. Design and implementa-
tion of MP, a protocol for ef-
cient exchange of mathematical
expressions. Journal of
Symbolic Computation, 25(2):
213–238, February 1998. CO-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronic).

Grossman:1992:SCD

Robert Grossman and Richard G.
Larson. Symbolic computa-
tion of derivations using la-
belled trees. Journal of
Symbolic Computation, 13(5):511–
CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X (elec-
tronic).

Gramlich:2005:RSR

Bernhard Gramlich and Sal-
vador Lucas. Reduction
strategies in rewriting and
programming. Journal of
Symbolic Computation, 40(1):
745–747, July 2005. CO-
DEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (elec-
tronic).
REFERENCES

Glasby:1988:CNF

Glasby:1988:ISF

Garcia:2019:APN

Greuel:2010:NR

Giesbrecht:2009:SNS

Gao:1999:FAI

Gao:2009:CSMa

Gebauer:1988:IBA

Gaspar:2013:PCS

Glenn:2017:MTC

Gray:2013:HBF

Gosselin:2009:DBP

REFERENCES

REFERENCES

Gobel:1998:CDS

Gollan:2001:NEP

Golubitsky:2006:GFU

Golubitsky:2008:UCD

Gonzalez:2017:RRM

Gustavson:2018:NOB

Granger:2005:TCA

Michel Granger, Toshinori Oaku, and Nobuki Takayama.

Gaal:1996:RIF

Gagne:1996:NST

Giusti:2003:P

Giesbrecht:2012:HRI

Gruber:2013:CSQ

Gomez-Perez:2016:CCT

Gaal:1993:RIF

[GPP93] István Gaál, Attila Pethő, and Michael Pohst. On the res-

Gallardo:2012:AUP

Grabbe:1993:LP

Greuel:2000:CAA

Greenhill:1995:TEC

Gutierrez:1998:RGB

Giesbrecht:2002:CRF

Gil:2003:CSN

Gasparim:2005:CIN

Galligo:2007:GPB

Green:2007:AAR

REFERENCES

References

Gianni:1998:RSP

Gupta:2012:TBD

Greuel:2011:GBI

Guo:2013:DTO

Gomez-Torrecillas:2016:ITM
Gomez-Torrecillas:2017:CSE

[171x646]//www.sciencedirect.com/
science/article/pii/S074771711500111X

José Gómez-Torrecillas, F. J. Lobillo, and Gabriel Navarro.
Computing separability elements for the sentence-ambient algebra of split ideal
codes. *Journal of Symbolic Computation*, 83(??):211–227,
November/December 2017. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S074771711500111X

Gomez-Torrecillas:2019:CBO

[171x646]//www.sciencedirect.com/
science/article/pii/S0747717116301316

José Gómez-Torrecillas, F. J. Lobillo, and Gabriel Navarro.
Computing the bound of an Ore polynomial. Applications
to factorization. *Journal of Symbolic Computation*, 92
(??):269–297, May/June 2019. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0747717116301316

Gianni:1988:GBP

[171x634]//www.sciencedirect.com/
science/article/pii/S0747717117300573

Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner
bases and primary decomposition of polynomial ideals.
Journal of Symbolic Computation, 6(2–3):149–168 (or 149–
167??), October–December 1988. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-855X (electronic). Computa-
tional aspects of commutative algebra.

Gunther:1990:MPR

[171x623]//www.sciencedirect.com/
science/article/pii/S0747717117300573

Oliver Günther. Minimum K-partitioning of rectilinear
484 (or 457–483??), April 1990. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X (electronic).

Guo:2020:DPF

[171x623]//www.sciencedirect.com/
science/article/pii/S0747717117300573

Zeyu Guo. Deterministic polynomial factoring over fi-
te fields: a uniform approach via P-schemes. *Journal of Sym-

dolic Computation*, 96(??):22–61, January/February 2020. CO-
DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X
(electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0747717117300573

Grigorev:1988:SSP

[171x623]//www.sciencedirect.com/
science/article/pii/S0747717117300573

D. Yu. Grigor’ev and N. N. Vorobjov, Jr. Solving systems

Gonzalez-Vega:1996:AQE

Gonzalez-Vega:1997:IPC

Ganzha:1999:ACA

Gago-Vargas:2003:BPM

Gine:2016:CPC

Gonzalez-Vega:1999:SEU

Laureano Gonzalez-Vega and Neila Gonzalez-Campos. Simultaneous elimination by using several tools from real algebraic geometry. *Journal of Symbolic Computation*,
REFERENCES

Gago-Vargas:2005:CTC

Gao:2000:AEF

Gao:2009:CSMb

Giesbrecht:2011:HKG

Guangxing:2004:EDM

Gonzalez:1989:IBR

Teofilo Gonzalez and Si-Qing Zheng. Improved bounds for rectangular and guillo-
REFERENCES

Gerdt:1990:CCI

Hashemi:2010:EC

Hagino:1989:CM

Hagiya:1989:MCI

Hansen:2012:IVS

Hallouin:2001:CLI

Hall:2013:CHU

REFERENCES

REFERENCES

Havel:1991:SEU

Haager:1995:ADP

Hubert:2012:CSB

Hill:1996:PIF

Hiller:2013:FTA

Hiller:2016:CFT

Hemmecke:2002:CPS

Hemmecke:2018:DSR

Heng:1990:SRN

Hendriks:1998:ADD

Herbert:1994:SLR

Hess:2002:CRR

Heuberger:1998:FQT

Heuberger:2006:AST

[Heu06] Clemens Heuberger. All solutions to Thomas’ family of Thue equations over imaginary quadratic number fields.
REFERENCES

Hemel:2011:SCC

Hofbauer:1994:LTR

Hajdu:1998:EBS

Holt:1999:CAC

Hoa:2004:CMR

Hefez:2007:SBL

Hefez:2009:ACP

REFERENCES

DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Hashiguchi:2008:CFM

Hiep:2016:RCC

Hilali:1987:ADN

Hillar:2005:CR

Hillar:2005:ECR

Hiro:1989:CBC

Hidalgo:2015:FMG

[HJS16] Gavin Harrison, Jeremy Johnson, and B. David Saum-

Hampe:2018:ATS

Han:2016:PIS

Hermann:1995:CCP

Hubert:2007:RIG

Han:2010:FSD

Hintermeier:1998:DTC

Heath:2004:NAG

Hauenstein:2016:CPC

Hauenstein:2017:CSS

Huang:2018:GSM

Hiss:1995:MDM

Hong:1997:TSQ

Hernández:2007:CCN

Henrion:2016:RRF

Hong:1995:DSP

Havas:1990:NQA

Hofling:2001:CPI

Holt:1985:MCF

REFERENCES

Holt:1991:CNP

Hong:1996:SIP

Hong:1996:INC

Hong:1997:SUC

Hong:1997:INC

Hong:1998:GBU

Hong:2000:E

Hong:2004:NJM

REFERENCES

7171 (print), 1095-855X (electronic).

Heiss:2006:ISS

Herfort:1991:NNR

Hong:2007:BCN

Holt:1997:CR

Hou:2002:TFT
DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

[Herzog:2019:FCM]

REFERENCES

Howlett:2001:MGE

Hirschberg:1989:ANR

Hunt:1990:CEC

Hearn:1995:CAS

Hribernig:1997:DVC

Hong:1998:ATC

Hendriks:1999:SDE

REFERENCES

Hsiang:1987:RMT

Huber:1998:NSC

Hausdorf:2002:IBW

Hashemi:2018:DGP

Hong:2008:HTD

Hoffmann:1997:SIP

Hartley:1991:CIC

REFERENCES

Hartley:1995:GBC

Hernandez:2017:TFS

Hong:2015:SAS

Heuberger:2004:ASF

Hubert:1999:ECA

Hubert:2000:FFD

REFERENCES

Hubert:2009:DIL

Hubrechts:2009:QQE

Hubert:2019:IAS

Hughes:1990:SCF

Hulpke:1999:CSI

Hulpke:2005:CTP

Hulpke:2013:CGG

Hendriks:1995:GAS

June 1995. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

[Hou:2019:ALC] Qing-Hu Hou and Zuo-Ru Zhang. Asymptotic r-log-convexity and p-recursive se-

REFERENCES

Idrees:2011:PMA

Ilten:2010:AGC

Ida:2010:OFA

Imamoglu:2017:CHS

Intrigila:1996:RIM

Izumi:2016:PMT

Jacobs:1997:CCN

Jambor:2011:CMA

Sebastian Jambor. Computing minimal associated

Jaroschek:2013:IPR

Johnson:2004:ADI

Jebesle:1995:DDL

Jerey:1997:RTRI

Janovitz-Freireich:2012:CMT

REFERENCES

[JLR03] Abdul Salam Jarrah, Reinhard Laubenbacher, and
REFERENCES

Jeannerod:2017:CMI

![JNSV17](http://www.sciencedirect.com/science/article/pii/S0747717117300093)

Johnson:2015:WIA

![Joh15](http://www.sciencedirect.com/science/article/pii/S0747717114001365)

Jouanolou:2009:EDQ

![Jou9](http://www.sciencedirect.com/science/article/pii/S0747717114000546)

Jeronimo:2010:MPP

![JPS13](http://www.sciencedirect.com/science/article/pii/S0747717114000546)

Jimenez-Pastor:2019:CED

![JPP19](http://www.sciencedirect.com/science/article/pii/S0747717118300890)

Jaulent:2009:CGN

![JPPSG09](http://www.sciencedirect.com/science/article/pii/S0747717114000546)

Jeannerod:2013:RPR

REFERENCES

Jia:2016:CDV

Jia:2010:STG

Joswig:2004:CHO

Kadijevic:2013:NCI

Kahrs:1995:CCT

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Kaltofen:1985:FPA

Kaltofen:1987:DIT

Kaltofen:1990:EFP

Kalkbrener:1993:GEA

Kalkbrener:1994:PDR

Kalkbrener:1997:SGB

Kalkbrener:1997:TCA

Kalkbrener:1998:APP

REFERENCES

Kalkbrener:1999:CGB

Kaltofen:2000:CSC

Kalorkoti:2001:DAC

Kalorkoti:2002:PZC

REFERENCES

Kalorkoti:2011:MCM

Kantor:1991:FCF

Kapur:1986:UGB

Kapur:1987:SCT

Kapur:2006:PCP

Karr:1985:TSF

Kotsireas:2005:FSI

Kauers:2006:SPM
Kauers:2007:SAS

Khanin:2001:PPA

Kunkle:2009:HPD

Koprokowski:2018:CQF

Kwong:1990:CAS

Kemper:1996:CIR

Kemper:1999:ACO
REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Kemper:2002:CRI

Kemper:2009:SI

Kemper:2016:UED

Key:2001:SAM

Kohlhase:2001:MRK

Kerber:2017:SIA
REFERENCES

Kobayashi:1988:SSA

Kaji:1997:SUP

Koepf:2003:PCA

Khan:2014:CSB

Khetan:2003:RUB

Khoury:2008:GBA

Kida:2002:PGR

King:2013:MGS

Kerb:1992:SOO

[KKL92] Adalbert Kerber, Axel Kohnert, and Alain Lascoux. SYMME-
METRICA, an object or-
riented computer-algebra sys-

tem for the symmetric group.
Journal of Symbolic Compu-

tation, 14(2-3):195–204 (or 195–
CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-

855X (electronic).

Kytmanov:2015:FRI

[KKM15] A. A. Kytmanov, A. M. Kyt-
manov, and E. K. Myshkina.
Finding residue integrals for
systems of non-algebraic equa-
tions in \mathbb{C}^n. Journal of Sym-

bolic Computation, 66(??):98–
110, January/February 2015.
CODEN JSYCEH. ISSN 0747-

7171 (print), 1095-855X (elec-
 science/article/pii/S0747717114000170.

Kennaway:1996:CCU

[KKSd96] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-
Jan de Vries. Comparing cur-
ried and uncurried rewriting.
Journal of Symbolic Compu-
tation, 21(1):15–40 (or 15–39??),
January 1996. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-855X (elec-
 tronic).

Kozen:1989:PDA

[KL89] Dexter Kozen and Susan Lan-
dau. Polynomial decomposi-
tion algorithms. Journal of
Symbolic Computation, 7(5):
445–456, May 1989. CO-
DEN JSYCEH. ISSN 0747-

7171 (print), 1095-855X (elec-
 tronic). See errata [KL90].

Kozen:1990:EPD

[KL90] D. Kozen and S. Landau. Errata: “Polynomial decomposi-
tion algorithms” [J. Sym-
bolic Comput. 7 (1989), no.
5, 445–456, MR 91c:13022].
Journal of Symbolic Compu-
tation, 10(5):529, 1990. CO-
DEN JSYCEH. ISSN 0747-

7171 (print), 1095-855X (elec-
 tronic). See [KL89].

Karmarkar:1998:AGU

[KL98a] N. K. Karmarkar and Y. N.
Lakshman. On approximate
GCDs of univariate poly-
 nomials. Journal of Sym-
bolic Computation, 26(6):653–
666, December 1998. CO-
DEN JSYCEH. ISSN 0747-

7171 (print), 1095-855X (elec-
 tronic).

Kocbach:1998:GVA

[KL98b] Ladislav Kocbach and Richard
Liska. Generation and ver-
ification of algorithms for
symbolic-numeric processing.
Journal of Symbolic Compu-
tation, 25(3):367–382, March
1998. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-

855X (electronic).

Krone:2017:EDS

[KL17a] Robert Krone and Anton
Leykin. Eliminating dual

Krone:2017:NAD

Kalisnik:2019:SPT

Klingen:1990:LCI

Klimov:1993:SMG

Kluners:1999:PD

Kluners:2000:PGG

REFERENCES

Kemper:2000:GPF

Kluners:2000:EGR

Kobayashi:1989:RZD

Krandick:2006:NBD

Koppenhagen:2001:OAC
REFERENCES

[KNZ91] Deepak Kapur, Paliath Narendran, and Hantao Zhang. Automating inductionless induc-

Kelley:2017:ENR

Koe92

Koe95

Kohnert:1992:SPS

Koh:2008:ACI

Kolbig:1985:EEC

Kolesnikov:2008:UDR

Pavel Kolesnikov. Universally defined representations

Kluners:1997:CSC

Krysta:1999:SPN

Kadioglu:2013:CMN

Koseleff:2010:FRC

Koseleff:2018:CCK

Koiran:2015:WAR

REFERENCES

Kanellakis:1989:RCC

Kounalis:1991:WPH

Kircichner:1994:CSC

Krandick:1997:SIV

Krattenthaler:1995:HMM

Krishnamurthy:1985:SIA

Kandri-Rody:1988:CGB

REFERENCES

REFERENCES

Kerber:2012:WCB

Krick:2012:SDS

Kawano:2016:QFT

Kitson:2018:MGL

Kaur:2019:IFT

Kosta:2016:BAR

Kaltofen:2003:ETS

Kalkbrener:1993:LDS

Kapur:2013:EAC

Kapur:2013:EMC

Kaltofen:1990:CPG

Kean:1990:IMG

Kean:1994:COI

REFERENCES

[Kaplan:2002:IHT]

[Kirsc:2004:ESN]

[Kutsia:2007:SES]

[Kut08]

[Kut10]
Temur Kutsia. Symbolic computation in software sci-
 REFERENCES

Kutas:2019:SQA

Kredel:1988:CDI

Kauer:2010:MII

Koepf:2013:GEF

Kauers:2015:LIT

Kaltofen:2016:SMF

Kauers:2008:CAR

Manuel Kauers and Burkhard Zimmermann. Computing the algebraic relations of C-finite...

Konnova:2010:IBA

Katzman:2014:AAM

LaScala:2017:MRI

Levy:1996:BRS

Labonte:1990:ACM

Labelle:1992:CAE

Labelle:1995:SCR

REFERENCES

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeChenadec</td>
<td>1986</td>
<td>A catalogue of complete group presentations</td>
<td>Journal of Symbolic Computation</td>
<td>2(4)</td>
<td>363–381</td>
<td>0747-7171</td>
</tr>
<tr>
<td>LeChenadec</td>
<td>1989</td>
<td>On the logic of unification</td>
<td>Journal of Symbolic Computation</td>
<td>8(1–2)</td>
<td>141–199</td>
<td>0747-7171</td>
</tr>
<tr>
<td>Leamer</td>
<td>2006</td>
<td>Gröbner finite path algebras</td>
<td>Journal of Symbolic Computation</td>
<td>41(1)</td>
<td>98–111</td>
<td>0747-7171</td>
</tr>
<tr>
<td>Lecerf</td>
<td>2007</td>
<td>Improved dense multivariate polynomial factorization algorithms</td>
<td>Journal of Symbolic Computation</td>
<td>42(4)</td>
<td>477–494</td>
<td>0747-7171</td>
</tr>
<tr>
<td>Ledet</td>
<td>2000</td>
<td>Generic and explicit realization of small p-groups</td>
<td>Journal of Symbolic Computation</td>
<td>30(6)</td>
<td>859–865</td>
<td>0747-7171</td>
</tr>
<tr>
<td>Lecerf</td>
<td>2007</td>
<td>Improved dense multivariate polynomial factorization algorithms</td>
<td>Journal of Symbolic Computation</td>
<td>30(6)</td>
<td>867–872</td>
<td>0747-7171</td>
</tr>
</tbody>
</table>
REFERENCES

Lee:2008:ADI

Lee:2017:EDD

Lemaire:2003:OLP

Leon:1991:PGA

Lescanne:1992:WRO

Letzter:2001:CIR

REFERENCES

REFERENCES

Li:2019:SCP

Liu:1998:PGB

Leedham-Green:1991:CGH

Leedham-Green:1990:CLO

Lisle:2017:ACL

Levandovskyy:2018:FAA

Lopez:1996:MGB

REFERENCES

Lin:2013:ECS

Li:2010:LGB

Limongelli:1993:EAB

Linton:1991:CMR

S. A. Linton. Constructing matrix representations of finitely presented groups.
References

Linton:1991:DCE

Lin:2018:CLS

Lisoněk:1995:CFN

Liu:2019:SAP

Liang:2009:ACC

LaScala:2009:LIN

Roberto La Scala and Viktor Levandovskyy. Letterplace ideals and non-commutative
REFERENCES

LaScala:2013:SPR

Lee:2016:SCS

Lee:2008:EPB

Liu:2013:SCS

Liu:2019:SCG

Lasserre:2013:MMB

REFERENCES

Linaje:2011:PRU

Liu:2003:TOW

Langemyr:1989:CPG

Lallement:1990:DGR

Lassez:1992:CFG

Luchini:1994:CSG

Lugiez:1994:TAH
REFERENCES

REFERENCES

Lee:2008:LDR

Lee:2009:LDH

Loja:2013:UPS

Little:2003:SRF

Louboutin:2008:LCZ

Lloyd:1990:RBL

0747-7171 (print), 1095-855X (electronic).

Lloyd:2002:SPD

Lascoux:2003:DSS

Levandovskyy:2012:FE

Lazard:2017:BTD

Linton:2002:CTS

Lisoněk:1993:IDS

Laubenbacher:2000:PI

Li:2001:RSR

Linton:2002:EIA

Lebrun:2004:GBW

Levandovskyy:2011:CDF

Levandovskyy:2012:FFA

Lihong:1998:NSP

Lux:2001:DSS

Li:2003:ASP

Lutz:2010:DIC

Li:2012:TLF

Lombardi:2005:SAR

Leykin:2018:BPH

Li:2012:CMS

Levandovskyy:2011:ELM

Ma:1994:MDG

Madariaga:2014:GSB

REFERENCES

Magnan:1989:MPM

Maglione:2017:ECR

Malle:2000:MPP

Man:1993:CCF

Man:1993:CCFa

Mili:2010:RTI

Ali Mili, Shir Aharon, Chaitanya Nadkarni, Lamia Labeled

Marche:1996:NRA

Marchiori:1996:MNF

Martin:2002:ACF

Markwig:2008:SB

Margolis:2019:PGQ

Marin:2019:PBC

Massri:2016:SSS

Matsumoto:2001:CRI

Matusevich:2001:RJC

Laura Felicia Matusevich.

Maus:1987:CIB

Maubach:2000:ACK

Mawata:1988:SHE

Martinez:2010:QGG

REFERENCES

Medina-Bulo:2010:VCL

Manocha:1992:IRR

Manocha:1993:MRA

Mansfield:1997:ADA

McCallum:1997:TBP

McCallum:1997:AD

McCallum:2002:LBA

REFERENCES

McCallum:1999:FIR

Marquez-Corbella:2014:CAR

McNulty:1992:FGE

Mohammadi:2017:TSA

Meer:1994:RNC

Megiddo:1990:CSG

Merlet:2001:PIE

References

Merker:2010:ACI

Magron:2019:AWS

Mathieu:1990:ACR

Murao:1996:MAS

Myers:1988:PSR

Mignotte:1994:SDP

Mignotte:1994:LIH
Maurice Mignotte and Philippe H. Glesser. Landau’s inequality via Hadamard’s. Journal of
REFERENCES

REFERENCES

[Mil92a] Dale Miller. Unification un-

Miyamoto:2001:CIA

Masjed-Jamei:2017:SCS

Murao:1993:FSR

Martin:1992:SEC

Miola:1988:CLG

Man:1997:RAP

Matsumoto:2000:FBL

Ryutaroh Matsumoto and Shinji Miura. Finding a basis of a linear system with pairwise distinct discrete valuations on an al-

Marco:2004:PCD

Martinez-Moro:2004:RRF

Manubens:2006:IDA

Manubens:2009:MCC

Moy:2010:MIS

Margulies:2016:PTS

Miglioli:1994:APC

Pierangelo Miglioli, Ugo Moscato, and Mario Or-

Markwig:2018:FSI

Massarenti:2018:EIC

Malecha:2011:TBV

Matzat:2000:SIA

Martin:1989:BUS

Maansson:2002:RGB

Jonas Månsson and Patrik Nordbeck. Regular

Mehlhorn:1994:SIA

Mnuk:1997:AAC

Middeldorp:1998:DLN

Moeckel:2005:SAI

Richard Moeckel. Sturm’s algorithm and isolating blocks.
REFERENCES

Moller:1988:CGB

Monagan:1992:HIT

Monagan:1997:WNC

Monico:2002:CPD

Mones:2002:NAD

Montaner:2005:ORH

Margulies:2015:CHR

REFERENCES

Mourrain:1998:CIR

Mourrain:2005:BQR

Mozes:1989:DDB

Martin:1989:KKS

Migliore:2004:STU

Mourrain:2009:SMS

Maggiolo:2011:GSM

Monagan:2011:SPD

McKay:2014:PGI

Mahdi:2017:HSN

Marcolla:2016:SWC

Miret:2009:CSF

Muller-Quade:1999:BAR

J. Müller-Quade and R. Steinwandt. Basic algorithms for

Müller-Quade:2000:GBA

Murray:1987:TLA

Mora:1988:GFI

Madlener:1998:GGB

Mourrain:2002:RBR

Mehlhorn:2010:FAC

Kurt Mehlhorn and Saurabh Ray. Faster algorithms for computing Hong’s bound on absolute positiveness. *Journal of Symbolic Computation*, 45(6):677–683, June 2010. CODEN JSYCEH. ISSN 0747-
REFERENCES

7171 (print), 1095-855X (electronic). See corrigendum [KMR18].

Murray:2011:CHC

Matsumoto:2013:GLO

Matsumoto:2017:LDA
REFERENCES

REFERENCES

Mosteig:2002:VF

Matera:2003:FCD

Mora:2003:GBS

Mulders:2003:LRP

Mulders:2004:CDL

Martin:2009:MAC

Mezzarobba:2010:EBR
REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Mehlhorn:2015:AFR

Miller:2000:GCM

Middeldorp:1993:CCC

Moller:2001:MPS

Mignotte:2003:LRS

Marche:2004:MIP

Mu:2008:PAQ

Mulmuley:1990:FPP

Mulders:1997:NSL

Mulders:2001:GSI

Mulders:2004:CSL

Mustata:2000:LCM

[Mus00] Mircea Mustaţa. Local cohomology at monomial ideals.
REFERENCES

Ma:1990:AEA

MV90

Mihailescu:2010:EGS

MV10

Mourrain:2013:HTA

MV13

Milson:2015:PES

MV15

McMillan:1991:DSA

MW91

Monetes:2010:GBP

McCallum:2012:DPT

Ma:2016:CSR

Mohammed:2005:SUB

Nakayama:2009:ACL

Matzat:1987:PGG

Nagasaka:2011:APG

Nakagawa:2006:LS

Nakpim:2016:TOO

Naldi:2018:SRC

Nauheim:1998:SAE

Nawalaniec:2016:ACS

Ng:1989:CCU

Tze Beng Ng. Computation of the cohomology of $BSO_n(16)$ for $23 \leq n \leq 26$ using REDUCE. *Journal of Symbolic Computation*, 71(1):93–100 (or 93–99??), January 1989. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Niederreiter:1993:FPF

Nguyen:2009:SLD

DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

Nejad:2019:BAS

Ngo:2015:EDE

Narendran:1989:CFP

Nakamura:2010:ROS

Norton:1990:AAE

Norman:1995:CDS

Norton:1995:CDS
REFERENCES

REFERENCES

[Nef:1990:CSP]

[Navarro-Saad:1985:AFT]

[Nagasaka:2016:SIC]

[Nabeshima:2017:ALC]

[Nikolaev:2018:SSP]

[Nagy:2007:MLO]

[Ngo:2010:RGS]
REFERENCES

DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

Otto:1998:ICS

Ollongren:1988:PRF

REFERENCES

REFERENCES

DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Palanč:2013:ADR

Pan:2002:UPN

Park:2004:SCS

Pan:1996:CAS

Park:2008:CAP

Pan:1994:SMP

Pan:1989:BPI

Pan:1986:NSA

Paul:1985:EMF

Paulson:1986:CRO

Pauer:1992:LIG

Paul:1992:GRC

Paule:1995:GFF

Pauli:2001:FPL

Pauer:2007:GBC

Picart:2007:SSA

Philippe Saux Picart and

REFERENCES

Peltier:2003:CCR

Peltier:2003:MBO

Perdry:2004:SNR

Petho:1987:RTI

Petkovsek:1992:HSL

Petermann:2000:CCT

Peternell:2010:RTP

Plaisted:1986:SPC

[PG86] David A. Plaisted and Steven Greenbaum. A structure

[Piq91] Jean C. Piquette. A method for symbolic evaluation of...

Pisabarro:2004:CLI

Plesken:1987:TSQ

Paulin-Mohring:1993:SMP

Policarpo:2013:HAE

Pohst:1987:MLR

Pohst:1987:I

Pohst:1997:VCA

Pohst:2005:FPG

REFERENCES

Poli:1995:DCN

Alain Poli. A deterministic construction of normal bases with complexity $O(n^3 + n \log n \log(n) \log q)$. Journal of Symbolic Computation, 19(4):305–320 (or 305–319??), April 1995. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Pomaret:2011:MIS

Ponder:1991:PMP

Popescu:2015:ACH

Posur:2018:CEV

Pozar:2015:SCA

Pozar:2019:CSE

REFERENCES

REMARKS

Prank:2013:TES

Previtali:2006:ICM

Pritchard:1996:IMP

Prosper:2000:SPS

Poor:2018:AOA

Pittaluga:1989:CO

REFERENCES

Puel:1993:CPM

Paule:1995:SIS

Paule:1995:MVZ

Pirastu:1995:PCI

Pirastu:1995:RSG

Plesken:1997:AFP

REFERENCES

Peltier:2012:FOT

Plaumann:2011:QCT

Potočnik:2013:CVT

Pasini:1991:SCO

Pethő:1998:TPQ

Pillwein:2014:LFC

Pan:2016:NOR

Puel:1989:UUS

Puschel:2002:DMR

Poulakis:2000:PSG

Poulakis:2002:SGZ

Phillips:2005:LGA

Plaumann:2013:DRH

Pavelle:1985:M

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Parker:1990:CCM

Priestley:1994:MBA

Pistone:2006:CV

Pauchinger:2018:FOL

Pedersen:1994:TRC

Palacian:2005:AIT

Paule:1992:SIJ

REFERENCES

REFERENCES

Qureshi:2017:CIO

Qian:1996:MHO

Raab:2012:UGB

Rajaee:2006:NAG

Ranise:2012:VSA

Ratschan:2002:QCU

Ratschan:2002:QCU

Rapoallo:2006:MBS

Ratschan:2002:QCU

Raum:2011:HIM

Rodriguez-Carbonell:2007:GAP

Roque:1991:CAS

Roune:2013:CAE

Roney-Dougal:2003:APP

Reeves:1998:PIB

Reinhart:1999:SKC

Daniel Robertz. Noether normalization guided by mono-
REFERENCES

Dan Roozemond. Computing split maximal toral subalgebras of Lie algebras over fields of small characteristic.
REFERENCES

Roque:2013:SNA

Rosenmann:1993:ACG

Rosenkranz:2005:NSM

Roune:2008:STD

Roune:2009:SAI

Royle:1987:TGD

Royle:1989:CVT
REFERENCES

REFERENCES

39–52 (or 39–51??), July 1990. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Reeves:1993:NPR

Recio:1997:RRR

Rees:2000:AAF

Rueda:2010:LCD

Roy:2011:SDS

Rueda:2011:CLC

See [RS10].

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Year</th>
<th>Number of pages</th>
<th>DOI/URL</th>
</tr>
</thead>
</table>
REFERENCES

Ruano:2009:SGT

Rueda:2011:PDR

Rupprech:2004:SNA

Rutman:1992:GBP

Rutman:1993:PDM

Riazanov:2003:LRS

Rety:2005:TAR

Ratner:1990:PRR

Ryba:1990:CCM

Ryba:2001:CST

Rybowicz:2003:NNF

Reid:2009:SPS

[RZ09] Greg Reid and Lihong Zhi. Solving polynomial systems

Ronveaux:1999:DPR

Sakai:1989:CTB

Sadek:2016:PCF

Sadykov:2017:PDH

Sage:1988:ATQ

Sage:1989:EAT

REFERENCES

REFERENCES

Sau93

SauxPicart:1993:SCS

Sau93

SauxPicart:1993:SCS

Sau01

Sausse:2001:NAP

Sau18

Sauer:2018:PMS
REFERENCES

Schwarz:1985:ADP

Schneider:1990:CER

Schneider:1990:DCT

Schend:1991:MDS

B. Schend. A methodology for detecting shared variable dependencies in logic programs.

Schicho:1992:CPP

Schorn:1993:AAR

Schorn:1994:ESS

Schreiner:1996:PFP

REFERENCES

[Sch03a] Josef Schicho. Simplification of surface parametrizations — a lattice polygon ap-
REFERENCES

Schost:2003:CR

[Sch04]

Schulze:2004:NFA

[Sch05]

Schulze:2005:GBT

[Sch06]

Schonhage:2006:PRS

Schauenburg:2007:GBT

Schneider:2008:RDF

Scheiblechner:2010:GST

Schneider:2016:DRT
Scheicher:2017:GBT

Schneider:2017:STI

Schrempf:2019:FNC

Subramani:2005:OQE

Sedoglavic:2002:PAT

Seiler:2002:TLR

Sekigawa:2009:RFR
REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Sekigawa:2011:CNP

Sendra:2002:NPA

Sakkalis:1990:SPA

Snyder:1989:HOU

Sederberg:1997:IRC

Sinanan:2017:APF

Sun:2017:BNL

Xianbo Sun and Wentao Huang. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. *Journal of Symbolic Computation*, 79 (part 2)(??):197–210, March/April 2017. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic). URL http:
Shackell:1990:GEE

Shallit:1990:WCT

Shaska:2001:CGD

Shaf:2012:SCC

Shaska:2013:CAG

Shen:1992:SCG

Sherman:1997:TDG

Shevchenko:1997:NDS

Shi:2004:CFD

Shoup:1994:FCI

Shoup:1995:NPF

Shparlinski:2014:PVL

Shtokhamer:1988:LCA

Sidebottom:1993:ICI

Siekmann:1989:UT

REFERENCES

CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Sit:1992:ASP

Sit:1997:MNC

Schrammel:2012:AAA

San-Juan:2001:ASM

Saraswat:1996:TDC

Shi:2013:UBR

Szilagyi:2006:LPC

Sattler-Klein:1991:ECS

Sprenger:2012:ADP

Sendra:1992:EPG

Sattler-Klein:1986:ECS

Sprenger:2001:CDC

Slattery:1986:CCD

Slattery:2001:CDC

Slattery:2007:GGS

Schulz:2011:CFT

She:2013:DPL

Sagraloff:2016:CRR

Schreck:2018:UJG

Smart:1996:SDF

Schreiner:2003:DMP

Semjonov:1987:SPK

A. L. Semjonov, L. S. Mel’nikov, and V. A. Evstigneev. Solving the problems of kinetics of complex reactions by symbolic algebraic manipulation methods. *Journal of
REFERENCES

Smith:1993:CSM

Smith:2000:CGE

Smith:2002:GBO

Smith:2005:OFG

Selakovic:2019:NDD

Sailer:1991:PR

REFERENCES

[Smolka:1998:SIO]

[Sne98]

[Snyder:1993:FAG]

[SO89]

[Soc91]

[Sodan:1996:SAM]

[Sofroniou:1994:SDR]

[Sofroniou:1996:OSL]
Soprunov:2013:TCI

Sato:2010:EIS

Shen:2014:CRR

Sitharam:2010:OPS

Steinberg:1986:UMW

Sangwin:2007:LSC

Shannon:1988:UGB

Schmidt-Schauss:1989:UCA

Manfred Schmidt-Schauss. Unification in a combination of arbitrary disjoint equational theories. *Jour-
REFERENCES

Shallit:1994:ALS

Shackell:1995:AFA

Salinier:1996:ESF

Schmidt-Schauss:1996:DUT

Schmidt-Schauss:1989:UPE

Schwartz:1990:TDD

Sasaki:1992:TNA
REFERENCES

Salvy:1998:SAF

Shirayanagi:1998:RAA

Salvy:1999:SAM

Sofronie-Stokkermans:2003:RBD

Suzuki:2003:AAC

Schicho:2005:NSS

Slavkovic:2006:SCF

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

SanSegundo:2009:PDF

Sendra:2011:RPA

Scott:2016:CIK

Sitharam:2018:FSI

Meera Sitharam and Audrey St.John. Foreword to special issue. *Journal of Sym-

Schmidt-Schauss:2002:SCE

Schmidt-Schauss:2005:DBH

Salvy:2011:OPF

Bruno Salvy, Bob Sedgewick, Michele Soria, Wojciech Szpanski, and Brigitte Vallee. Obituary. Philippe

Schmidt-Schauß:2018:NUA

Saha:2018:IF

Sato:1989:FOC

Suppes:1989:ICT

Strzebonski:2019:URR

Shibuta:2020:A

tational algebra and number theory (London, 1993).

Steel:2005:CIP

Steel:2010:CA

Steidel:2013:GBS

Stifter:1987:GRR

Stillman:2003:CAG

Stokkermans:1999:CCP

Storjohann:2003:HOL

Stoutemyer:2011:TCG

[Sto17] Andrew R. Stout. On the auto
Igusa-zeta function of an alge-
braic curve. Journal of Sym-
bolic Computation, 79 (part
1)(??):156–185, March/April
2017. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-
855X (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0747717110001471.

[Str97] Adam Wojciech Strzeboński.
Computing in the field of
complex algebraic numbers.
Journal of Symbolic Compu-
tation, 24(6):647–656, Decem-
ber 1997. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-
855X (electronic).

[Str00] Adam Strzeboński. Solv-
ing systems of strict poly-
nomial inequalities. Journal of Sym-
bolic Computation, 29(3):471–480, March
2000. CODEN JSYCEH. [Str11]
ISSN 0747-7171 (print), 1095-
855X (electronic). URL http://
pdf; http://www.idealibrary.com/

[Str01] Sorin Stratulat. A gen-
eral framework to build
contextual cover set induc-
tion provers. Journal of Sym-
bolic Computation, 32
(4):403–445, September 1,
2001. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-
855X (electronic). URL http://

[Str06] Adam W. Strzeboński. Cylin-
drical Algebraic Decompo-
sition using validated nu-
merics. Journal of Sym-
bolic Computation, 41(9):
CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X
(electronic).

[Str11] Adam Strzeboński. Cylin-
drical decomposition for sys-
tems transcendental in the
first variable. Journal of Sym-
bolic Computation, 46(11):
1284–1290, November 2011.
CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0747717111001210.

Singer:1993:GGS

Singer:1993:LAS

Sutherland:2013:ECM

Sutherland:2014:CGG

Sutherland:2016:ECM

Sarlet:1992:RPS

W. Sarlet and J. Vanden Bonne. REDUCE-procedures

REFERENCES

Tabera:2011:OAR

Tabera:2013:CHM

Takahashi:1989:PRC

Takahama:1991:ERF

Takayama:1992:AZR

Takayama:1993:CCP

Takayama:1995:AFR

Taylor:2002:IGB
REFERENCES

Torrente:2017:PRZ

Tefera:2002:MMP

Teske:1999:PHM

Thatte:1993:FAT

Theobald:2006:FPC

Thome:2002:SCV

REFERENCES

0747-7171 (print), 1095-855X (electronic).

Tummarakota:1996:SFE

Tombal:1985:MCD

Tombal:1989:APG

Tajima:2009:AIA

Topuzoglu:2014:CRP

Torgersen:1993:PSR

Traugott:1989:DSS

0747-7171 (print), 1095-855X (electronic).

Traverso:1996:HFB

Tran:1998:SNM

Tran:2000:FAG

Traves:2006:DOO

Tran:2007:NCT

Tran:2007:SIA

Treinen:1992:NMU

Trindle:1986:AMR

C. Trindle. Application of the MuMath(R) symbol ma-
nipulation system to chemi-
cally significant permutation
groups. *Journal of Symbolic
Computation*, 2(2):207–212,
June 1986. CODEN JSYCEH.
ISSN 0747-7171 (print), 1095-
855X (electronic).

Duc-Khanh Tran, Christophe
Ringeissen, Silvio Ranise, and
Hélène Kirchner. Combination of
convex theories: Modularity,
deduction completeness, and explanation. *Journal of Symbolic
0747-7171 (print), 1095-855X
(electronic).

Harrison Tsai. Weyl closure of
a linear differential operator. *Journal of Symbolic Compu-
tation*, 29(4–5):747–775, May
2000. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X
(electronic).

Kuniaki Tsuji. An improved
EZ-GCD algorithm for multi-
variate polynomials. *Journal of Symbolic Compu-
tation*, 44(1):99–110, January 2009. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X
(electronic).

Sz. Tengely and M. Ulas. On
a problem of Pethő. *Journal of Symbolic Compu-
tation*, 89(??):216–226, Novem-
ber/December 2018. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X
(electronic).

Shih Ping Tung. Approx-
imate solutions of polyno-
mial equations. *Journal of Symbolic Compu-
tation*, 33(2):239–254, February 1,
2002. CODEN JSYCEH. ISSN
0747-7171 (print), 1095-855X
idealibrary.com/links/doi/10.1006/jsco.

REFERENCES

[Uteshev] Alexei Yu. Uteshev and Timofei M. Cherkasov. The search...
REFERENCES

[Ucha:2004:CBS] [Ung19]

[Ulmer:1994:ILD] [UW96]

[Ulmer:2003:LST] [UY15]

[Ulmer:2003:LST] [UY15]

[Unger:2006:CCT] [Ung06]

[Unger:2019:ACS] [Ung06]

Takaji Umeno, Syuichi Yamashita, Osami Saito, and

Mark van Hoeij. Formal solutions and factorization of differential operators with power series coefficients. *Journal

vanHoeij:1997:RPA

vanDerKallen:2000:CHM

Vasconcelos:2000:DEC

Vatter:2006:FLG

REFERENCES

[vdH07b] Joris van der Hoeven. Efficient accelero-summation of

vanderHoeven:2007:GPS

vanderHoeven:2007:NAR

vanderHoeven:2009:AE

vanderHoeven:2010:NMF

vanderHoeven:2011:MET

vanderHoeven:2013:GSD

vanderHoeven:2015:TSM

vanderHoeven:2013:BCS

Joris van der Hoeven and Grégoire Lecerf. On the bit-complexity of sparse polynomial and series multiplication.
REFERENCES

REFERENCES

Vidunas:1999:DEO

Villard:1995:GSC

Villard:2002:P

Villard:2011:KDF

Viry:1993:FMP

Viry:1999:EC

Visser:2005:SSR

REFERENCES

2005. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

REFERENCES

von zur Gathen: 1987: FAC

von zur Gathen: 1990: FDPa

von zur Gathen: 1990: FDPb

von zur Gathen: 1990: IFF

von zur Gathen: 1990: FDPb

Von Mohrenschildt: 1998: NFF

Vorontsov: 1989: EAS

Vorobjov: 1992: CDC

Vorobjov: 1999: CCL

Vorobjov, Nicolai Vorobjov. Complexity of computing the local dimen-
References

[102x681] REFERENCES

422

VanHoeij:1999:LSL

Vakhidov:1997:NAA

Vavra:2018:PUG

vonzuGathen:1995:HBD

Verdoolaege:2008:CRG

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
Wang:1998:DPS

Wang:1999:PSC

Wang:2000:CTS

Wang:2004:SMI

Wan:2006:ASI

Wang:2018:DIQ

Wolf:1999:CAA

[T. Wolf, A. Brand, and M. Mohammadzadeh. Com-

REFERENCES

Weispfenning:1997:SOQ

Weispfenning:2003:CCG

Weimann:2013:FBP

Weng:2006:CGT

Werner:1998:SAO

REFERENCES

Wernhard:2012:PSD

Wirth:1994:CBA

Wang:2018:STS

White:1991:MCF

Whiteley:1991:ICA

Wibmer:2007:GBF

Widiger:2001:SWP

REFERENCES

DEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic).

Wolf:1991:GCP

Webber:1994:APP

Wolf:2000:SIE

Wada:2006:GBH

Wolf:2000:FGS

REFERENCES

REFERENCES

Xu:2015:QEC

Xia:2002:AIR

Xia:2010:TLP

Yamamoto:1994:SBZ

Yam:1998:GDS

Yap:1990:STG

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

Yap:1991:NLB

Ye:2017:SDP

Ye:2018:EFB

Yelick:1987:UCC

Yamasaki:1994:TLP

Yokoyama:1989:CPE

Yokoyama:1992:SSA

Kazuhiro Yokoyama, Masayuki Noro, and Taku Takeshima. Solutions of systems of algebraic equations and linear maps on residue class rings. *Journal of Symbolic Compu-
REFERENCES

REFERENCES

Yu:2003:MPT

Yu:2012:DPH

Zantema:1994:TTR

Zantema:1995:TTT

Zhang:1996:PDP

Zhao:2002:MPD

Zeilberger:1991:MCT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Zhang:1996:SCC

Zhang:2003:NEA

Ziegler:2016:TDC

Zippel:1985:SEI

Zippel:1990:IPT

Zhou:2012:EA

Zheng:2001:DAC

Zhang:1993:EAP

Zhou:2008:CDD

Zhao:2011:SFC

Zankl:2015:BPP

Zeng:2020:DLB