A Complete Bibliography of Publications in the

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

30 November 2019
Version 1.03

Title word cross-reference

(ΔΨ) [LL17b]. (M, R) [PWG16]. −1 [Xie13a]. −2 [ZL18b]. 1
[GMMN18, STA15]. 2 [CLPZ14, CK17, DHK13, HBSF11, JO13, MS14d, Nos14, Shu13, TA16, WML+17]. 3
[BPF+19, CZJQ14, CK17, DS15b, DTP19, EBP15, ESGA15, GBC+16, HGGCR13, KKK16, KMM18, LHPF18, MPTGJ+15, Nos14, PHA+17, RMSTG13, SK15, SKK18, TA16, ZKP15, ZSH+16]. 4 [EBSW17, LZZ+19]. 5
[HKR+19, NMZ19, SIK+18]. + [AHW13, CFF12, MYC12, OCN10]. 15
[LDB+14]. 2 [CF12, CN12a, DD13, EG10, Gri11, KCI19, PRV14]. 6
[ALW18, ZNZ+19]. 2 [LDB+14]. 3 [CZT+16, LL17b]. a [ASRM15]. α
[BZJP18, EKvdKvFK13, HS1+19, KSK1+17, RAR19, SSZR17, WPH12, YCB16, dSMP+11]. b [ASRM15]. β
[BZJP18, CWP+18, Goe15, Gün12, Gün13, KSKK15, KGM15b, MVGG18, MB18b, MHMM11, SNS17, SWR11, SHLL11, SKK18, SAGC12, WGC13, ZZRR11]. c [PBSM19]. C3 [Mic15b]. Δ
[LL17b]. γ [OBK+11, TRM+14]. H∞ [QF10]. K [NMZ19, DLYW13, GAB14, HA15a, Hua16, LCL14, Tun13, WZY14, YZZ13, YW13a, YW13b]. κ
[ATC+14, GM13, HSII+19, KB19, TC11, WPH+12, ZBA14]. N
[SPSP12, FS15b, HY16, L21T12, L2T13, TP10a, vV11a]. \(N_e \) [ZGW16]. \(P_2 \)
[PIPB10]. \(R_0 \) [CD16, DDSDW13]. \(\sigma \) [TLCZ12]. \(\times \) [Sum13].

-2 [BMGC11a, BMGC11b]. -activated [CFF12]. -amyloid-neuron
[FS15b]. -clavaminic [RMRC+16]. -clavulanic [RMRC+16].
-dihydromethyltrisporate [EBSW17]. -dimensional [EBP15]. -grams
[HY16]. -helical [dSMP+11]. -Ig [LZL+19]. -infected [STA15]. -interacting
[HBSF11]. -lactamase [KK15, SKK18]. -LTR [CLPZ14, WML+17]. -mer
[HA15a, Hua16, WZY14]. -methyladenosine [AH18, ZZN+19]. -methylcytosine
[SIK+18]. -nearest [NMZ19]. -Partite [LCL14]. -person
[TP10a, SPSP12]. -phenylpyrimidine [TA16]. -player [DHK13, SHu13].
-protein [SAGC12]. -PseAAC [NMZ19]. -rays [TRM+14]. -regular
[NMZ19]. -strands [SNS17, ZRRZ11]. -susceptible
-variable [DTP19]. -word [DLYW13, YW13a, YW13b]. -words [GAB14].

/chondrotin [SABB15]. /Cl [CTZ+16]. /K [OCN10].

09 [SY11].

1 [CH16, FH10a, FHG15, GKPB13, IGL+12, ITR+18, LLW15, LGK+09,
MR19, NTC+11, SW11, SPG+18, SH15, TXCW15, VBHM+13]. 1-108
[ANO19-50]. 1-72 [ANO19-51]. 10 [MMFK10]. 118 [LHPF18]. 16S
[WSTL16, WZ17]. 185 [BBM+13a, BBM+13b]. 1c [BAGG14].

2 [TTC19, BMGC11b, FH10b, GML10, Lab16]. 2'-O-methylation [TTC19].
2009 [KLJ17, L15, LCJ18, TDE12]. 2013 [DHK13]. 2019
[CLG+11]. 264 [dOGIL13, SCABM11, ZG10a]. 266 [LBS+11, PSS+13]. 271
[FIS16a]. 277 [BMGC11a]. 278 [PCT19, Pan19]. 280 [Mul12]. 283
[CNG+12]. 293 [MeI13a]. 294 [LPvSP12, RTEKG19a]. 2A [DS15b]. 2b
[VZB+15]. 2D [NBW+10, WXC10]. 2D-MH [WXC10]. 2L [JCG15].
2LSAAC [AHJ18b]. 2methyl [TTC19].

3 [Sel12a, BZJP18]. 3'-to-5 [Sel12a]. 3'-to-5'-direction [Sel12a]. 307
[BPGS12a, Gun13, L21T12]. 310 [MeI3b, WL12a]. 311 [MLBA13]. 317
[GS14]. 340 [DKD14a]. 342 [PL14a]. 343 [KMLT14]. 344
\[\text{JRG14a, JRG14b}. \ 355 \ [\text{JN14, NO14a}.] \ 361 \ [\text{GZ14b}.] \ 365 \\
\text{BPJ15b, Van16b}. \ 372 \ [\text{FS16a}.] \ 380 \ [\text{RTEKG19b}.] \ 382 \ [\text{SZ16}.] \ 388 \\
[\text{ZSCL16a}.] \ 3D \\
[\text{HB12a, aHLZ}^{+12}, \text{MDD13, PWC}^{+12}, \text{SGB12, SKH11, XM11}.] \ 3D-\text{geometric} \ [\text{SGB12}.] \ 3R \ [\text{RMRC}^{+16}.] \ 3S \ [\text{RMRC}^{+16}.] \ 3ST \ [\text{RLFS18}.] \\
413 \ [\text{YCH}^{+17a}.] \ 419 \ [\text{JS18, SYY17a}.] \ 426 \ [\text{LPB18}.] \ 431 \ [\text{EJ19}.] \ 437 \ [\text{PP19}.] \ 464 \ [\text{Mac11}.] \\
5 \ [\text{Sel12a, SGD}^{+16}.] \ 5'-\text{UTRs} \ [\text{SGD}^{+16}.] \ 5R \ [\text{RMRC}^{+16}.] \ 5S \ [\text{RMRC}^{+16}.] \\
6\text{-bisphosphate} \ [\text{Bar19}.] \ 6\text{DoF} \ [\text{GAL11b}.] \\
7 \ [\text{Ano19b, Ano19c, Ano19-45, Ano19-40, OYO16}.] \ 756 \ [\text{Mac11}.] \\
\hat{\text{Ito}} \ [\text{OOY16}.] \\
\text{A}^{*0201} \ [\text{BYY}^{+11}.] \ \text{A}\text{-peptide} \ [\text{WHL13}.] \ \text{A}. \ [\text{MHX}^{+14}.] \ \text{A/H1N1} \\
[\text{KLJ17, KJ19, LJ15, TXY}^{+12}.] \ \text{aberrant} \ [\text{PRN10}.] \ \text{Ability} \\
[\text{HA15b, HN10, LDdA}^{+13}, \text{PDB}^{+15}, \text{PGH11, RT19}, \text{SMHB10}.] \ \text{Abiogenesis} \\
[\text{Ser16, Tox18}.] \ \text{abiotic} \ [\text{LVLC18}.] \ \text{abnormal} \ [\text{CPF}^{+13}.] \ \text{Aboelkassem} \\
[\text{SWPC}^{+16}.] \ \text{Abrupt} \ [\text{TBM}^{+13}.] \ \text{Absence} \\
[\text{BWP10, BGLR}^{+19}, \text{DSLRI8}, \text{HZG}^{+17}.] \ \text{absence-deriving} \ [\text{BGLR}^{+19}.] \\
\text{absent} \ [\text{YZZ12, YZYF16}.] \ \text{absorption} \ [\text{DS18, Gal11a}.] \ \text{abstaining} \\
[\text{MBC}^{+12a}.] \ \text{abundance} \ [\text{AF10, FVC15}, \text{GT11b}, \text{GBIR13}, \text{KFG15}, \text{KS14}, \text{KMM16}, \text{MG14b}, \text{SS15a}, \text{Su16}, \text{TKB}^{+18}, \text{TWI19}, \text{YSST13}, \text{YMZI8}.] \\
\text{abundances} \ [\text{PC13}.] \ \text{abuse} \ [\text{CFS}^{+19}.] \ \text{abysses} \ [\text{Di}^{13a}.] \ \text{accelerate} \\
[\text{Kor18}.] \ \text{Accelerated} \ [\text{CzST}^{+18}, \text{DZJR10}.] \ \text{accelerated-predator-satiety} \\
[\text{DZJR10}.] \ \text{Accelerating} \ [\text{LK19}.] \ \text{accelerometric} \ [\text{WHHS15}.] \ \text{accessible} \\
[\text{IMH15, TAI}^{+18}.] \ \text{accessory} \ [\text{SHI15}.] \ \text{accompanied} \ [\text{iITIM15}.] \ \text{according} \\
[\text{CC10}, \text{PVGV19}, \text{RMSTG13}, \text{SS15e}, \text{ZEJA11}.] \ \text{account} \\
[\text{FD18}, \text{MP12}, \text{MAI0}, \text{Ush16}.] \ \text{Accounting} \\
[\text{OkO15}, \text{ZK}^{+10a}, \text{LAS14}, \text{MKBE17a}, \text{MKBE17b}, \text{TSB10}.] \ \text{accounts} \ [\text{Wei12}.] \\
\text{accumulate} \ [\text{HHMT19}, \text{KDK14a}, \text{KDK14b}.] \ \text{Accumulation} \\
[\text{SK12b}, \text{AK15}, \text{Ber14}, \text{HL14}, \text{JCLS}^{+11}, \text{MYK}^{+11}, \text{MYC12}, \text{SW11}, \text{SAB10}.] \ \text{accuracies} \ [\text{RSD}^{+16}.] \ \text{accuracy} \\
[\text{CC11b}, \text{KOS13}, \text{Kon12}, \text{LJ10}, \text{MSRW16}, \text{WYX}^{+17}, \text{ZLY14}.] \ \text{Accurate} \\
[\text{KZL14}, \text{ZNCM15}, \text{SMZ}^{+17}, \text{USF}^{+18}, \text{ZCAB17}, \text{dEG11}.] \ \text{Accurately} \\
[\text{DLL}^{+17}, \text{BMSEE14}, \text{IGL}^{+12}, \text{SHB}^{+17}.] \ \text{acetaminophen} \\
[\text{BRN15}, \text{RWW}^{+15}.] \ \text{Acetolactate} \ [\text{EJ16}.] \ \text{acetylation} \\
[\text{CCY}^{+19}, \text{SQS}^{+12}, \text{WXD}^{+10}.] \ \text{acetylcholinesterase} \ [\text{MR18}, \text{WB15}.] \ \text{achieve} \ [\text{CW11a}, \text{iHIM12}.] \ \text{achieves} \ [\text{XJ19}.] \ \text{achieving} \ [\text{WB10}.] \ \text{Acid} \\
[\text{AH15}, \text{AHJ18b}, \text{BRK16}, \text{BMN16}, \text{BTF19}, \text{BB13}, \text{BWM}^{+19}, \text{CEdLSG}^{+16}, \text{CC10}, \text{CL13a}, \text{Cho11}, \text{DS19b}, \text{Di}^{14a}, \text{DWM15}, \text{Edg19}, \text{EBSW17}, \text{EMM10}, \text{Mac11}.]
FL12, FL13, FLW16, GT11a, GZ14a, GZ14b, HPB+14, HYA14, HK11a, HYW11, HY13, JD16a, JD16b, JD17, JSF+11, JCG15, JCG16, KHK15, KB11, KZL14, KHH+17, KSKK15, KGM15b, LLG16, LL13a, LD11, LBS+14, MJ11, MGGM10b, MFZ18, MZ18, MBE11, MP14b, NBL14, OFB10, PWZ+19, PDC+17, PWC+15, QLC+18, RBMS17, RMRC+16, SRS+15, SFV16, TP17, Tm13, WMK13, XNJ+13, Xie15, XWW+14, XSLZ16, YSH+14, YG18, YGL+10, ZPdFJ19, ZDG+10, ZSZM14, ZK14, ZNA+16, ZLW+19, dBJ11, dMP+11, vLFM+19. **acid-mediated** [MGGM10b].

acidic [KHK15]. **acidification** [MGGM10a, RTFP+17]. **acidosis** [TDSM12]. **acids** [CL11, Cle10, FD18, FS15b, MP13b, RSD+16, Rog19, Woh15, WXC10, YGMT12]. **acinar** [SMZ+17]. **Acinetobacter** [RRG+10, RRG+12, SRP16]. **acquaintance** [CW15a]. **acquired** [FM14a, GJ12, PDW10, PRM14, TA10, WKB13]. **acquisition** [SI19]. **across** [AMM16, AHD+18, ASL+18, Bac15, BHR10, DFG+18b, GABM12, LZG+19, LL17b, WRC+19, ZJS11]. **actin** [FFK14, HBW+11, KSK+11, KHNM16, MDEKH13, MS18, MED12, SW15]. **acting** [GN10, HG18b]. **action** [ACT12, Arc14, BZJP18, BHHB11, BCPM+16, CF11, DBJ12, Gri15b, KMA10, LdLK11, MPNP12, PNL15, PN16, SNOV11, TWTA+18, TSF+19, WLD+11]. **actions** [DL12a]. **activated** [CCF12, YST14, ZCA+14]. **activates** [CSKZ19]. **Activation** [KL18, ABR11, BN12, BN15, BSC+18, CS11a, EJ16, HK17b, KHH10, KHS13, KP17, LO15, MH11, MYC12, Mor10a, NZZ19, RG17, RG18, RG12, SH16, TSP15]. **activators** [NZZ19]. **Active** [AMP12, RGA+10, ASS19, CN10, CFRG17, CT16, DK13c, EM11, FGH+14, GTC19, GDPPS+11, MM12, NP15, Pat16, Pel18, PGF11, RW15b, SMJS14, SPL14, TC11, TSB10]. **active-search** [RW15b]. **activities** [FHG15, MKS13, NF14b]. **activity** [BB11b, BPPC15, CP14, CW11c, DS10a, GVG15, HB18, KSSM11, KHI16, KB10b, Kro10, LL13a, Mar12, NBW10, NBW11, OA15, PGS+17, PVG19, PP17, RRC+11, RG17, ZL+12]. **activity-pCa** [RG17]. **actomyosin** [ITN+11]. **acts** [HTN14, MLBA12, MLBA13]. **actually** [RWH16]. **actuation** [MK18b]. **acute** [BFJ+18, CMS16, LGK+09, LGK+12, LH14, MBBV14, NSh+10, RZRSC19, SCLA10, SMB+19, SW11, ZCT18]. **acyl** [PWH+13]. **Acylguanidine** [SK19]. **Acylguanidine-BACE1** [SK19]. **adaptability** [CMCS18, SM10a]. **adaptable** [SHW16]. **Adaptation** [GB17, AT10, BPM+12, BSH19, Don13, FWR19, GB13, GTSP16, Mi16, NS16, PW18a, SMG18, SSV+15, SH16, TD17, TKTBI8]. **adaptations** [DPvBvA12]. **adapted** [Jam16a]. **adapting** [ABIM10]. **Adaptive** [ADC19, BS15a, BEK10, DMO+17, EL12, Ezo19, FFGT15, FH13b, Gs13a, GS14, HD11, iHM17, OBE+17, RPCW18, SSD13, SM17b, SH16, WFWZ13, ZPHS11, ZMT11, AR11, AK11, CJ12b, DGMY18, GK17, GSN+11, HE16, IEN15, IMD16, KDG13, KMM17, KR19, LS16a, LvBJ16, MZAI19, MOR13, N015, NSh+10, PKN16, RTEK15, RTEKG19b, RAMS11, SDT17, STN19a, TM12, YCH+17a, YCH+17b, YC13, ZCXL13]. **adaptively**
Agent-based
[CSR+05, Gal10, SRAL12, BCS+16, CS14a, CA17, Cro18, DJD10, FM15a, HM13, JSSZ12, METC12, TCB13]. agent-environment [BRP+18].

agent-model [SLML19]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13].

aggregate [MPLK14]. aggregates [GWW+10, PAV10, YMW12].

Aggregation [BHP17, AGB+14, BERR19, DFMR19, GABM12, IOY15, KKS+14, MCPF12, NPB13, RDD14, SM14, SS15a]. aggregations [PWE15, Tos11, WDH+16].

Aging [HH10, Hor13, Kit10, KS15, LC16, PS13, PVGV19, SC11b, Wu14]. ago [Kur14].

agonism [BMF+18, HPML18]. agonist [HBSF11, PHC12].

[DCR18, HTK12, JO13, NM11, PT10, XTZ+13, Yan10a]. Air
[CXT19, IMW15, JG14, MAM16]. airborne [IMW15, RSD12, UD10]. airfoil [LS10b].

Alkaline [KHS13, KHK15].

All-atom [Mas18]. all-or-nothing [DS10a]. Allee
[AH17, BGM19, BBB18, BIMC17, HMM17, MG14b, MBP16, PBB10, PR13, SHvHB16, ZMW10, DSRM15]. allele
[AM11, CJKR10, MKF+14, SGW17, SL12, WL12a, WL12b]. alleles
[ASRM15, GGM12, PKH11]. Allelic [KM18, MKE15]. allochemicals

Alleviate [CW14]. alleviation [KK18]. alliance [MGGGA11]. Allocation
[TP14, BHR12, DBB14a, DB19, GCZ+12, KMHdIP10, MDMG14, MLT10, MK14c, MKJS13, MRS14, SCH+19a, WKH16, YYST13]. Allocometric
[All11, BZN17, PRSC11, BS13, BDE+14, Gla13, TW13]. allometries
[GLZ+13, Nij11]. Allometry
[CW11a, SI10b, Ball13, MR10]. allostasis
[RGR17]. allosteric [PBB10]. allostery [NGND12]. allow
[Moo14, tBdR18]. allows [JP13]. almond [YLH12]. alone [GT12, Sch19b].
ZLZ$^+16$, ZLB13, ASK17, ABP$^{+11}$, AHD$^{+18}$, ABKS11, AAGO$^{+17}$, AP17, ALM$^{+19}$, ADR$^{+11b}$, BC19, BP18, BDID$^{+12}$, BUC14, BD10b, BLP10, BHO$^{+18}$, CRH$^{+15}$, CW11b, CMPS17, Che12, CW15b, CLL18, Che18, CXY$^{+19}$, CSS$^{+18}$, CMD$^{+10}$, CLW12, CGRRGM$^{+16}$, CMN$^{+11}$, DS10b, DQV$^{+15}$, DJD10, DB11, DGI10a, DDLW10, DLYW13, DCS14, DOC17, DLHS11, DDSDW13, ESS19, FLA$^{+19}$, Fra19a, GAL11b, GZX14, GP11a, GHH16, GY19, GdGL17, Gou16, GMK18, GFS15, GZT15, GRRG16, GSG12, GRR$^{+14}$, HS15, HME12, HN10, HS14a, HYZ14, HDZ$^{+19}$, HYW11, Hua16, JTSG14, JB18a, JSZ12, JB19a, JHTW17, JPD10, JG14, KMHdlP10, KFW12, KMM18, KJSS10, KSKS13, KF12, KZ14, KLI17, KTT$^{+19}$, KSPA17, KS10, Lab16, LKSM14, LAS14, LCI16, LY14, LMYL15, LGC15, LZG$^{+19}$, LZY$^{+15}$, LCL14, LLJ18, LCQ$^{+18}$, LC10, LD18, Mac10, MKI11, MMY$^{+12}$, ML12a, Mal18, MBD12a, MPP$^{+16a}$, MH12, MC16b, MN11, MDEKH13, MBBV14, MB18b, MAFT12, MPS$^{+11}$, MPT19, MNSZ16, MH14, NAK$^{+11}$, NMI18, pNMK$^{+10}$, Nos14, NSS11, OA15, OGE10, Oht12, OYY16, OBA11, OAB12, PDB$^{+15}$, PNP$^{+16}$, PW$^{+12}$, Pav14, PPF17, QLZQ11, QJR$^{+16}$, RLK10, RAA$^{+16}$, RRW$^{+15}$, RSI11, RP18, RLBCJ13, RSV10, RLM$^{+14}$, RM19, RS14b, SAA10, ST17a, SKAG18, SS19, SBW11, SPMGR10, Sha14, She11a, SCF$^{+12}$, SG15a, SLW$^{+18}$, SGD$^{+16}$, SGW$^{+18}$, SSKS18, SCS10, SCLC13, SAI14, SQZ$^{+16}$, TDHC$^{+18}$, TM16, TAR16, TZY18, TDE12, TAORS10, TF15, VLP17, VZB$^{+15}$, VM16, [analysis] [VH11b, WZI$^{+13}$, WB15, Woo10, WCHC11, WLL14, WAC14, WGDZ18, XSL16, YISG14, YM14, YTG16, YZF16, YY15, ZCT18, ZYJ18, ZLZ19, ZDY11, ZNC$^{+15}$, ZMC$^{+18}$, dBJ11, dLMV$^{+10}$, dCCSA16, ISB$^{+11}$], [analysis-regression] [HME12]. Analytic [JBSFB12, SPR13, CM14, KFS$^{+13}$, Pie10], Analytical [BHSB11, FVC15, MSC10, PM10a, SSFG15, VP13, AdI13, Gal10, LCT15, LPF11, LCGMH12, LB11, OYA14, WWHZ18], analytically [SB13], analyze [HZWH10, Kri18], analyzed [CTPB10, vVLS14], Analyzing [MS10b, Su16, AHJ$^{+18a}$, GLZ$^{+13}$, RSR11]. anastomosis [FRTP13], Anatomical [RLSM17, DOC17], anatomically [SMZ$^{+17}$]. ancestor [Cam15, Di 19c, Sch14], ancestors [FS12], Ancestral [ZSSM14, BJOS13, El15, GG16, Gri19, HC17, OGO19, RCD16, dF13], ancestries [Mul11, Mul12], ancestry [SS15e], anchorage [CEP14]. Andean [FBU11], androdioecy [VSLVB15], androgen [HHS15, HA15b, SSN$^{+14}$, ZY$^{+16}$], androgens [Jam15], Anelosimus [QJR$^{+16}$], anemia [AGC18], Anergy [ABD$^{+15}$, SI11a], anesthetized [SKK$^{+11}$], aneurysm [MAR$^{+17c}$, NF14a, ZKP15], aneurysms [MTdS$^{+16}$], angiogenesis [BJJR10, BZJP18, BBI14, CXWL11, FBFM12, FJC$^{+10}$, GB18, HGM16, SGGM11, SL$^{+17}$], angiogenesis-modulating [BZJP18], angiogenic [HGM$^{+16}$, Kar16, SOF16, VDRL14], angioplasty [ZLZ$^{+11}$], angle [ARB13, HB16a, LL17a, Oka12], angles [GP11a, MIH16, Rei12, Tsd14], anguilliform [HFT15], Animal [Che14, Fis19, WL12c, AZOLVH18, AHMA$^{+19}$, BERR19, CB16, Ef13]
EHBC10, Gau11, HFD17, IK15, JMZ13, KKWA18, KJ15, LWLM18, LXJ15, MJS11, NKL10, PWZ19, PCB14, PM17, PBD13, RD12, SS18, Sue12, TWP16, VLFF12, WP17. Animals [SS15b, DS10a, Fue14, Fue15, Fue16, Jen10, LYK12, MROS15, NO18, Pon12, RT19, RW14b, SBCR10, SS15c].

Animals [SS15b, DS10a, Fue14, Fue15, Fue16, Jen10, LYK12, MROS15, NO18, Pon12, RT19, RW14b, SBCR10, SS15c].

Animals [SS15b, DS10a, Fue14, Fue15, Fue16, Jen10, LYK12, MROS15, NO18, Pon12, RT19, RW14b, SBCR10, SS15c].
apparent [CL10, PHC12]. appear [MAA18]. appearance [AIY16].
appendix [JEA18]. appetite [GCO+11]. apple [vdSS12]. Apples [GP11a].
Application [BTG+15, Cox10, DEK15, DS16, FGH+14, HCS+19, JS18,
KP16, MJ11, MGB17, MAA18, PDC+17, SDRA+15, TSF+19, VACGF17,
WMPF+15, ZLZ+11, dLMV+10, BGW15, CSM+14, DLYZ11, DYS+13,
Dim10, GMR15, MMG+16, Mor11, OTR13, OVKL14, OL19, PCD14,
PRV+14, RKG12, SMD+16, TTC10, TBA14, Tre19, VAT18, WWY12,
WZJ+13, YHY+14, CMMR13, JS17]. Applications [BLP10, Gol16, Lan16,
CZJQ14, EEHMH18, FR13b, FR14, GK16, LAS14, LLZ13, LH11, Pai19,
PYG+19, WZY14, XM11, XWW+19, YZZ13, YCY14, ER18]. Applied
[ZLW16, GSRR17, MB16, PRSC11]. Applying [DGW+18, Mor19, SOIO10,
CDM+14, GK13]. apportion [PVGA12]. appraisal [LP17]. Approach
[JSC+16, KS10, ASK17, ACM16, ADS+19, AMSSG16, ADCG14, AOR17,
Amo15, ACvKA10, ARM18, ATC+14, BBT+15, BCGD10, BMDA17,
BORA10, CFS+19, CPF+13, CL14, CVPCV+15, CM14, CTL+15, DB10,
DGM15, DKP+18, Dim17, DXW+16, Do19, DRPM17, EBE17, FKKMG15,
FKV19, GAGP+14, GSY10, Gh18, GBC+16, GGR11, GM16b, Gre15,
GT15, Hail6, HXL16, HXL18a, HME12, HB10, HFF11, IHNS16, JAM18,
JLX+16, JSF+11, JSB15, JPDP10, KCM+11, KSP18, KTH16, Kla10,
Kri16, KSM+15, LvBJ16, LN13, cLCJ+10, LKAJ18, LGPS17,
LPvSP11, LPvSP12, MNF+18, MPJH13, MSDK12, MB17, MF16, MT14,
MM19, MKBE17a, MKBE17b, MTE15, MSR16, MPS+11, MPK+12, MF15,
MMCZM12, MHH13, MDD13, MJV16, NKM+12, NGJ+14, NHM10, NBW10,
NBW11, OWB14, OBK+11, PDM17, PM14, Pav19, PMKM10]. approach
[PGF11, QW11, RLK10, RA10, RMR+16, Rev15, RRC+11, RBKW19,
RDP16, RSR11, RBMP+15, SMHB10, SL10, SLML19, SBR16, SK11a,
SCKL15, SLT+18, SZ10, SDPC11, SKSRW16, SIT19, TVMG16, TK18,
TKE19, TTB+18, TWC+19, TT10a, TK10c, WHHS15, XNJ+13, XSCS12,
YS14, YBH+19, YA14, YLH12, YS11, ZMAM19, ZGY11, ZJSC16, ZD18,
dMP11]. Approached [ZLY14]. Approaches
[JD16a, JD16b, AH16, BCPM+16, CB15, EB15, Fer12, Gal10, GCS11,
HMSRS15, JAHK12, Mic13, MMLK11, NRS+16, OAJK10, QZ14,
SPRF13, SD16, SYY17a, SYY17b, SSRA16]. appropriate [DZW10, Nak12].
Approximate [KBF18, Ou19, MKBE17b, PHK15, RSC14, Wall2, XGZ17].
Approximating [HBK12, OBHS19]. approximation
[CCF+14, FMLM12, GHBC14, HM11b, JRG14a, JRG14b, JRG14c, LLH+13,
MFG14, RB14, Wax11b]. approximations [MPBS17]. April
[Ano10-39, Ano11-42, Ano11-42, Ano12-33, Ano13-47, Ano13-44,
Ano14z, Ano14z-35, Ano15-38, Ano15-34, Ano16-43, Ano16-42, Ano17-28,
Ano17-42, Ano18-33, Ano19-38, Ano19-41]. AQP1 [KH19].
aquatic [NTED+19, QA15, WH11]. Aquilaria [LCQ+18]. Arabidopsis
[BHH+14, HNA15, MPP+15, Mit16, MBK+11, MBKB13, MLL+16, OFT15,
SCAB10, SCABM11, SS1+16, SDRA+15]. arachnid [FWSG17]. arbitrary
DXW+16, DBG18, DZW10, DDB10, DZE11, Est10, FJS+19, FP18, FHW+10,
FBAPMD13, FLCS+15, FM15a, For10, FYZ15, FPR10, GK16, Gal10,
GVGC15, GZ14a, GZ14b, GYS10, GW13, GdGL17, GBC+16, GJ15b,
GGGM16, IGLLI14, GGX+10, GSN+11, GCCJ16, GZ19, HGM15, HB12a,
HNO18, Hay16, aHLZ+12, HFT+18, HS12, HLS+12, HXL18b, HZC+10,
HZWH10, HMM11, HYW11, HKR+19, HM13, IMD16, Jab10, JM12, JAM18,
JWS+10, JZ17, JSSZ12, JR17a, JB11, JO13, JHL+15b, KPK+13, KKM18,
KAPR12, KBV11, KBV12, KH+17]. based
[KHNM16, Kit10, KCI+11, Kon17, KSRN19, KMM18, KCD11a, KJSS10,
KF15, KDK14a, KDK14b, KP16, KLHS17, KBF18, LJM15, LTSTD15,
LFW+18, LFM14, LX10, LLZ13, LLW+18, LDWW14, LTL+15, LPH19,
LZM15, LC16, LSSG10, LDH+14, MS14a, MCL19, METC12, MJ11,
MSND12, ML12a, MBE10, MMAS13, MV10, Mas18, Mas12, MA13,
Man15, MBBD13, MAFK12, MZA19, Mei12a, Mei12b, Mei13a, Mei13b,
Mei14, MFG14, MP12, MIH16, MGM13a, MGM13b, Mö12, MP14b,
MKF+14, MAFB18, MR18, MR19, NdMLLB13, NGND12, NBL10, NSO15,
NK+12, NYS12, Nos14, Oyo16, Opr10, PDM17, Pat16, PFJS15,
PGL18b, PWH16, PRMH14, PMD+18, PKH11, PSAA13, QW11, QLZQ11,
QZ14, QW12, QLWC19, RRG+12, RBMS17, RA10, RMRC+16, RC11, Rev15,
Rog19, Rou14, RBMP+15, RG12, SA17, SM17a, SL10, SK15, SK16a]. based
[SHB+17, SM18, SMS19, SNY+13, SSD12, SGDL12, SG15b, SOF16,
SCS10, SH17, SDPC11, SRAL12, SAZ+14, SQZ+16, SNC12, SA14, TTG19,
TWR+18, Tak17b, TF17, TCB13, UPWK15, Uit11, dRBFK+16, VG13,
WL13, WMC15, WW12b, WY13, WMCL18, WZ17, Wh11, WK18b, WXC10,
WGZ18, XLL+10, XM11, XNW17, XSS12, YZMY18, YW10, YZZ12,
YFYM16, YC13, YC15, YS11, YHY14, YZ19, ZMS11, ZOG14,
ZJSC16, ZT16, ZZC+17, ZDY11, ZC14, ZMS17, ZLDZ13, dF13, dSRM15,
ANM11, Mi11]. Basic
[CCAdS13, JD13, PLF18, BPP+16, GBR19, GHS18, LLW15, MCN10, SS11,
Wal10, WDL+13]. Basis [IU18, Gri11, Kam11, KAZ13, MG15, NS16,
NM10, PG18a, Sat17, Uit11, VBD10, YW13b]. bat
[BLS+12, KOS13, MSB16, VP18]. batch [Aya12]. bats
[LLD+17, LA15, MHH12, VP18]. baumannii [RRG+10, RRG+12, SRP16].
Bayes [HTK14, MKBE17a, MKBE17b, SSP15]. Bayesian
[Bac15, BSB+13, CR14, CLW12, DGM15, DRPM17, GBIR13, GMR16, IS12, KEG17, KBF18,
LTS+16, MS14c, RM17b, SS15d, Ste13, VM12, Wal12, ZMC+18, vLFM19].
Bayesness [MKE15]. BCG [BMGC11a, BMGC11b]. Bel [HBSF11]. Bel-
[HBSF11]. BCR [TCYY+12]. BDNF [LRA+13]. Be
[SY17, Di 12, Di 18, GCM14, GvVT14, Gri15b, HCH17, Har15, HKM12,
Jen10, KNA+18, LDA13, LPH19, Mar11, MN12, MBL17, MALAN17, OO11,
PDC+17, PW18a, RDD14, RW14b, Sch19b, SWPC+16, vVLS14]. beak
[WMPF+15]. beat-to-beat [WMPF+15]. beautiful [BD10b]. because
[Di 14a]. Becker [DFMR19]. become [BH13b, YSYI13]. bed
[ADB+13, NDZMA14, NMAZP16]. **bed-net** [ADB+13, NDZMA14].

bed-nets [NMAZP16]. **Beddington** [GG12, GG14]. **bednet** [PRM14].

beds [BSMK11, SM16]. **bee** [BMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].

beetle [APS+13, APBS15, KLB+16, Whi11]. **beetle-fungus** [APS+13, APBS15].

beetles [BBR12, FKMG15]. **beds** [BSMK11, SM16]. **bee** [BIMC17, MKJS13, NPS10, SWK+19]. **beehives** [STKE12]. **been** [BM14, Di 14b]. **bees** [SOIO10].
SQS, SZ15a, SZ16, SC12, SAB17, SOF16, SKK, Str13, SK16b, SP14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK, Wal16, WSP14, WHT17, WZ18, WZ18a, WZ18b, XCTW18, XLSF19, YZW10, YZZ12, ZLZ, ZLZ, ZLB13, dIEBM15, vLBJ, vNABG12].

between-host [CFZ14, LMCW18]. Beyond [AE17, CP14, KDST15, KGC18, HM16, W18, Pag19]. BFDT [GJ15b].

bFGF [TBMM19]. bi [ATRR10, DFMR19, HTK14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK, Wal16, WSP14, WHT17, WZ18, WZ18a, WZ18b, XCTW18, XLSF19, YZW10, YZZ12, ZLZ, ZLZ, ZLB13, dIEBM15, vLBJ, vNABG12].

bFGF [TBMM19]. bi [ATRR10, DFMR19, HTK14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK, Wal16, WSP14, WHT17, WZ18, WZ18a, WZ18b, XCTW18, XLSF19, YZW10, YZZ12, ZLZ, ZLZ, ZLB13, dIEBM15, vLBJ, vNABG12].

bFGF [TBMM19]. bi [ATRR10, DFMR19, HTK14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK, Wal16, WSP14, WHT17, WZ18, WZ18a, WZ18b, XCTW18, XLSF19, YZW10, YZZ12, ZLZ, ZLZ, ZLB13, dIEBM15, vLBJ, vNABG12].

bFGF [TBMM19]. bi [ATRR10, DFMR19, HTK14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK, Wal16, WSP14, WHT17, WZ18, WZ18a, WZ18b, XCTW18, XLSF19, YZW10, YZZ12, ZLZ, ZLZ, ZLB13, dIEBM15, vLBJ, vNABG12].

bFGF [TBMM19]. bi [ATRR10, DFMR19, HTK14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK, Wal16, WSP14, WHT17, WZ18, WZ18a, WZ18b, XCTW18, XLSF19, YZW10, YZZ12, ZLZ, ZLZ, ZLB13, dIEBM15, vLBJ, vNABG12].
bioinformatics [ADCG14]. Biokinetic [CMM19]. Biol
[AEM14, BPF15b, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11,
CNG+12, DBBW11, EPJ+11, FIS16a, FS16a, GZ14b, GS14, dOGL13, Gün13,
JN14, JRGI4a, JRGI4b, KDK14a, KMLT14, LBS+11, LGK+12, Leitz,
LZT13, LPvSP12, ML12a, Mei13a, Mei13b, MLBA13, Mul12,
NO14a, PSS+13, PL14a, SCABM11, SZ16, SC13a, SRAL12, TSM13a,
Van16b, WL12a, YCH+17a, ZG10a, ZSCL16a, ZZR13]. biolarvicides
[PNVN18]. bioliquid [AAJ15]. bioliquid-filled [AAJ15]. biologic
[RAR19]. Biological [Di10, Fue18, Gra15, MM15b, PGHC12, AAGO+
17, AKNP18, BPP+16, BMI19, Bar11, BBWS+13, BHP17, BHLH12, BE14,
CCG+18, CMBP19, CNG+12, CG11, DB10, DS16, DG10a, Dra19, Est10,
FPG11, FDM+11, GI15, GE18, Gre16, GSN+11, HRC+12, HM10b, HZWH10,
JPDPI0, KSA16, Kit10, Kon17, KMM18, Krog10, LCSH14, LLS+15, LBB+
13, LDH+12, LLZ13, MK18a, MPRLAS15, MPK+12, MdSPBL16, MIt14,
MROS15, Mzor16, Oo18, OA12, PAK11, PBEI12, PR13, RGBR17, RHJ11,
RMG12, SSD13, SK15, SS19, SWTO15, SY11, SVA18, SLO10, TM16,
TK19, TZY18, TF17, Tou14, Tsu19, VGPS18, Wal10, WTQL10, WST15,
YZW10, YY13a, ZZ14b, ZGW16, vDSS12]. Biologically [DWG+
19, WMT10, APW10, Cle10, LDJW16]. biologist [Sza15b]. Biology
[DHK13, EJ19, JS18, LPB18, PCT19, Pan19, PP19, RTEKG19b, RTEKG19a,
BH13, EJ19, JS18, LPB18, PCT19, Pan19, PP19, RTEKG19b, RTEKG19a,
Dek12, Ano19-29, DGW+18, GMM+13, Gri15a, KCE+11, LA12,
Mal18, MMLK11, PBRW11, PLO14, SS19, TT17, WSM12, dEBRM15].
bilominouscent [FL13]. biomacromolecule [ZM10]. biomarkers
[QZ14, ZSC14, ZC14]. biomass [MR10, PMKM10, RHT18]. biomaterials
[Zad11]. biomathematical [RRL+13, SGL10]. biomechanical
[TF15, VF12, YWP13, dLMD+11]. Biomechanics
[CEP14, PWC+12, ZTK12]. BioModels [BFS18]. Biomolecular
[ZLY+13, LCG12]. biomolecules [Cha17]. Biophysical [AH12a, BKSW16,
FM15b, HRG11, KG15, PDG17, SSZ17, TALC16, ZCA+14]. BioPlex
[YWZ+16]. bioiopoesis [Pia19]. biopolymer [FK16]. bioreactor
[CWB+17, SSR+19]. bioremediation [RAAS15]. biosensor [PDNP16].
biospheres [NWW17]. biosynthesis
[BP18, BSM+14, BLPI0, FD17, MB14, Piel12, PCS+18].
biosynthesis/inactivation [Pie12]. biosynthetic [FD18]. biosystems
[Dun11]. bipedal [SHW16, ZHAK14]. bipedalism [PC17]. bidedally
[PC17]. bipolar [HGM15]. bird
[ASL+18, BORA10, GZT12, Ush16, vLSBBD11]. birds [AFD+17, BH12,
EzMMH18, GWC14, Hur12, MSBB13, MSHSH12, YY18, ZKH19]. Birth
[CMMR13, LG10a, SGB19, CHK16, Hal12, Jam12, Jam13, JV14, KMM19,
LL18, Par19, PMP13, RAD14, Sta10, SGW+18, WZ15, ZWvG10].
Birth-and-Death [SGB19]. birth-death
[Hal12, RAD14, Sta10, SGW+18, WZ15]. birth-processes [Par19]. bisexual
[AGM11]. bisigmoid [VLFF12]. bisposphate [Bar19]. Bistability
[Di14, JCLS+11, LAH+16, YT12, BKL14, GGG19, HIT18, SC13a, SC13b].
bistable [AKS+19, DD13, GoI10b, JZL13]. bite [SCF+12]. bivalve [Avl18].
black [SJSK18]. bladder [BMGC11a, BMGC11b, MSA+16]. BlaPred
[SKK18]. BLAST [DYO+14]. bleaching [CMGN17]. bleb [WGO+15].
[GGM12]. blips [OMO13, STA15, WR14]. blister [LK15]. block
[ZMNd+10, ZCAB17, HHD+16]. blockers [Ken19]. blocking [NTC+11].
blood [AV19, AOM19, CXWL11, CPS19, CKZ+17, DK13b, DLL+18, EBP15,
GDF17, GDF18, GMMN18, HPP10, HI+19, HRHAAA15, HSLW16,
KCD11a, KCD11b, LDB+14, MAM16, OPS+19, PIT12, PFJS15, POP12,
QF10, SPMGR10, WFM+13, WFC+14, ZCT18]. blood-stage [CKZ+17].
bloodstream [Voe18]. bloom [JSWY19]. bloom-forming [JSWY19].
blows [Ric17, STI13]. blow [CP14, GGG12]. blow-up [CP14, GGG12].
BMP [vHHKB14, ÁCHS19]. boar [CR14]. Board
[Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i,
Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r,
Ano10s, Ano10t, Ano10u, Ano10v, Ano10w, Ano10x, Ano11a, Ano11b,
Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k,
Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t,
Ano11u, Ano11v, Ano11w, Ano11x, Ano12a, Ano12b, Ano12c, Ano12d,
Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m,
Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v,
Ano12w, Ano12x, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g,
Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p].
Board [Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x,
Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i,
Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r,
Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano15a, Ano15b, Ano15c,
Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l,
Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u,
Ano15v, Ano15w, Ano15x, Ano15y, Ano15z, Ano15-27]. Board
[Ano15-28, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k,
Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s,
Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z, Ano19-27]. bodied
[RW14b]. bodied [SSS17]. body [Burl0, CAG13, Che16, CLP11, Hor11a,
LCHMP16, Mas18, MAFB18, Nij11, RGCM10, WSRG18, ZEJA11].
Canada [MPJH13, WDL13].

Canalicular [KTT19]. Canalization [LFM14, LP12a]. Canalization-based [LFM14]. Cancer [BST14, Har15, KB15, ZZL11, AMBH13, AMFR16, Ala15, Arc14, Arc16, ARM18, BS15a, BBS18a, BMGC11b, BPF19, BMGC11a, CWF16, CCS16, CLA16, CBGS18, CvBF18, DDHM12, DL12a, Dim10, DLM19, DLL18, DBM18, DTGC14, DFM19, DDTL19, DLM19, EJ17, EJ19, FM10, FM14a, GXFF13, GLF15, DP16, HWPL12, HZL13, HM13, IHNS16, JMC10, Kar15, KRDJ15, KPEK14, KP16, LF17, LF19, LDA13, LMW10, LLC15, LX16, LTZ17, LTZ19, LMHF13, LSS14, LC16, LXLF14, LDH14, LD18, MB12a, MM19, MKMG14, MPZK16, NH19, NGJ14, NWZ15, NJP18, OOY16, PAS10, PH13, PYG19, PRN10, PGP11, RMM16b, SBM16, SMS17, SFMS16, SXL19, SCKL15, SOF16, SSN14, SKSRW16, SER12, TDZ18, TK10c, VKKA12, VDRL14, WMN18, WCC14, YCH19, ZWW14, ZXS19, dBE16, dSdS13].

cancer-specific [SFMS16].
cancerization [FLR14].
cancerous [DS15b, RTRRS17].
cancers [BH13c, DQS15, LZG19, OPS19].
Cancitis [OPS19].
Candida [HHS10].
candidiate [LTSTD15, PCC17].
Candidates [JSC16, CLC11, SPSM15].
Canine [HHA17].
cannibalistic [JSC16, CLC11, SPSM15].
cannot [vVLS14].
Canonical [FHM18, Nem17, Sel16, ZGY11].
canopy [PAA11].
cap [WBMM18].
capabilities [ABGM11].
capability [SKS012].
capacities [YTS19].
capacity [ASGE14, CCNT19, DN18, KA17, RS14b, VZ19].
capelin [EBS11].
capillary [AMM16, ASGE14, BSMK11, LRA13, LDB14, MAM16, SSD11a].
Capitalizing [WMN18].
capripoxvirus [Cha18].
captive [HK17a].
capture [DFMR19, GAY11, JZ17, KA15, Lab16, MNH12, RB13, VP18].
captures [OSF11].
capturing [ABKS11].
carbohydrate [KF12, MLTW10].
carbon [AK15, HWGT15a, HWGT15b, HWGT17, LRL16, LCMC14, MF15, TP14].
carbonate [HWGT15b, RTFP17].
carboxy [SSZ17].
carboxy-terminal [SSZ17].
carboxylase [WL11].
carboxypeptidase [NRS16].
carcinogenesis [LTZ19, RBKW19, WCC14].
carcinoma [CM12, GSCP17, METC12, MG13b, NWB10, SGY10].
carcinomas [SS17a].
cardiac [CPGF16, CN12a, CF11, ESG16, GKMC10, GAPK10, HVL11, KCS15, LFW18, LdLK11, LW18, MKMT14, NAK11, OC10, PW18b, ST17b, VLCT19, VM16, WMPF15, WMT16].
cardiomyocytes [HTK18, KSSM11].
cardiomyopathy [MCL11].
care [Ram10, Sal15, SRV11, SPRF13].
Cargo [LKZB15, ML12b, LM15, MK17, SL19].
Cargo-mooring [LKZB15].
Caribbean [BH11].
Carlo [KSK11].
Carnivora [TF15].
carnivorous [BJ18].
carotid [OB15].
carp [KCS15].
carrier...

Cascading [SL10]. Case [HHA+13, AHD+18, Ant13, ARZ15, BLV18, BR12b, CBC+18, Cle16, EJ17, EJ19, FMS+10, GTC19, GW19a, HW+14, HB18, Hou16, KKD18, LBMG16, LWLM18, LS16b, LS10c, MFM16, MRPH17, MPS+11, O011, OA11, Pav14, PSK10, RCL+10, RP18, RSV10, SS+19, vV11b, vV11b, vV11b, vV11b, vV11b, vV11b].

Caterpillar [Yam16b]. catheter [Voe18]. cation [KB10b]. cationic [PDC+17]. cats [LZTD18]. cattle [CSLE11, GKG+18, SSZB15]. caudal [Ios16]. caudate [GMK18]. caudate-putaminal [GMK18]. Caught [PBB10]. Caulobacter [SK12a]. causal [GCZ+12, KE17]. causation [CLG+10, CLG+11].

cause [BIMC17, HBEW12, Jam14, Jam15, MJ14, PSL+10]. caused [BFGS10, CE17, YY18]. causes [CB17a, YSI18]. cava [NPMM15]. cavity [MBC+12b]. CCAAT [HHJR11]. CD16b [OBK+11]. CD200 [LBF13]. CD200-CD200R [LBF13]. CD200R [LBF13]. CD25 [BCPL10]. CD4 [BCPL10, EH17, GML10, LAH+16, RAF+14, RW12, SSRA16, TXWW12]. CD8 [BYY+11, CTL+15]. Cdk [GGG19]. CDK2 [TMS13]. CDPK5 [RM19].

Cell [JAK19, LRA+13, PRN10, STN19a, SH12, Tre19, UI13, AAAV14, ASK17, AGB+14, AUE15, AMBH+13, AMFR+16, AA12, ABV19, AP13a, AKdV+14, AHAF14, BTO14, BTO15, BJRR10, BGL+19, BJ0+16, BYY+11, BLNR15, BK19, BCPG18, BMB+18b, BPGS12a, BPGS12b, CML10, CCS18, CMS+19, CSR+05, CN12a, CWB+17, CCB11b, CLHB11, CNL14, CH16, CLCH10, CK17, CML11, Ccds15, Cox10, CTL+15, CMS16, CBKCG12, CEKM+19, DQY+15, DBBW09, DBBW11, DK13b, DKR16, Dim10, DTGC14, DL12b, DL16, DBJ12, Edk11, EBE17, EUM+16, ESGA15, FBW+12, FP18, FZ14, FLW18, FLGDD+14, FMLM12, FR17, For10, FZL18, GQG+12, GMOP12, GFM+19, GGG19, GY19, Ghn18, Goli10a, Goli10b, Goli16, GMNY14, GM13, Gon13, GC18, GWW+10, GBR13, HII+19, HPI+17, HTM16, HHA17, HWPL12, HWGT15a, Hor13, HL19, HMJB15, HBW+11].

Cell [ITR+18, JDPK15, JDSPK15, JDI3, JBI19a, JS15, JS17, JS18, JSB15, KBI12, KSP12, KBL15, KB11, KL11, KRR14, KTH16, KFG+14, KS16, KCD11a, KCD11b, KKM12, KAKK19, Kro10, KSPA17, KBF18, LLTP19, LCTG15, LDF+11a, LFZN11, LWH+11, LAG+14, LS15b, Lee16a, Lee16b, LMC+13,
LSMP14, LL17a, LFB+16, LSY+10, LL14, LXS15, LPTR14, LC16, LGPS17, LNRK11, MMJB17, MRF19, MH11, Mal10, Mal18, MOSS15, MMFK10, MEKK11, MBLV10, MSM+14, MYC12, MPBS17, MBS19, MFG14, MGM13b, MPZK16, MKJS13, MDD13, MT15, MBK+11, MLL+16, MG15, NCLB16, Nic19, NTOI16, OKVN18, OS11, OOY16, OTGT10, PFJS15, PW19, Pie10, Pie12, PWE15, PGHD19, PGHC12, PAV10, RCH14, RJS18, RAF+14, RD12, RC13, SI11a, SDD15, SMM15, SA17, ST16, SKGM19, SDT17, SHB+17].

cell [Sch19c, SP13a, SVB+10, SAGAGB17, SLM17, SZ18, SMZ+17, SK12b, SOF16, SSKS18, SZ10, SLC12, SLvdBMP10, SB19, SRAL12, SQZ+16, SSRA16, SN17, TTK14, TIMI+15, TGB+18, TXWW12, TDZ+18, TC11, TST+13, TDSM12, TALC16, TT17, TSMB14, TCYY18, TXWW12, TDZ+18, TC11, TST+13, TDSM12, TALC16, TT17, TSMB14, TCYY18, TXWW12, TDZ+18, TC11].

cell-adhesion [Sch19c, SP13a, SVB+10, SAGAGB17, SLM17, SZ18, SMZ+17, SK12b, SOF16, SSKS18, SZ10, SLC12, SLvdBMP10, SB19, SRAL12, SQZ+16, SSRA16, SN17, TTK14, TIMI+15, TGB+18, TXWW12, TDZ+18, TC11, TST+13, TDSM12, TALC16, TT17, TSMB14, TCYY18, TXWW12, TDZ+18, TC11].

cell-based [KBF18, LC16, PFJS15, VG13].

cell-controlled [Kro10].

cell-cycle [HWPL12, PGHC12].

cell-division [HTM16, LAG+14].

cell-fate [LLTP19, MBK+11, YFZ+19].

cell-free [ITR+18].

cell-matrix [ESGA15].

cell-mediated [ABV19].

Cell-to-cell [UI13, CH16, WMPF+15].

Cells

[LRA+13, ABR11, Arc14, Arc16, BCPL10, BFH+15, BTO15, BBS18a, BJZP18, BHHL11, BZL17, BCPM+16, BPF+19, BKPV15, CFF12, Di 18, Di 19c, DLL+18, DM+18, DLM+19, EG10, EH17, EME+16, EUM+16, Fer12, For10, FM15b, GML10, GMOP12, GHJ14, GMBK14, GLF+15, HPM+17, HV1L11, HMJB15, JMC+10, Kal15, KKO+18, KHN16, KPEK14, KAKK19, KP16, KC13, Lab16, LPI7, LAAH+16, LCA+15, LDLW14, LCGMH12, LSS+14, MVGB18, Mar17a, MB18b, MS10a, MSA+16, MH14, NTOI16, NWZ15, RD14, RHS14a, RFdL15, Rou14, RW12, S10a, SDD15, STNT17, SNY+17, Sat17, STH18, SPMGR10, SM+18, SZ15b, SKN16, TM15a, TVMG16, TWTA+18, TRM+14, WGS10, Wod18, ZM10, ZFWK17, Zhe16, ZMC+18, dO12, dSdS13].

Cellular

[CAGM+17, LL14, RSV10, ARG17, BK19, BCPL18, CCS15, CN10, CHEL+11, CLCH10, Di 18, Di 19c, FRP14, GMOP12, GGG19, GN10, HCK+11, HGO+18, HWGT15a, HZW+14, JSDEK14, LS16a, LSP+17, MS14, MMAS13, MMLK11, NLBL14, PAS10, POP+19, PGHC12, RFME+12, SS19, SHB+17, SBSR13, SNC12, SZ18, TM15a, TVMG16, THC+11, VLP17, VBD10, Wod18, XMWC13, YCH+17a, YCH+17b, YMW12, ZBS19, dLCSA16].

cellularity [SGS15].

censoring [NI11].

center [RS19].

centers

[GA13, YS14].

centipede [RN12].

Central [Voe18, BBA15, FKB+12].

Centralities [ER18].

centrality

[EG12, Est10, FB12, KJS10, Mal18, YB19].

centric [VGPS18].

Centripetal [CFS16].

centroid [GGCJ16].

centroid-based [GGCJ16].

Cerebellar [ML11a].

cerebral [CPS19, EBP15, KPD19, LDB+14, MTdS+16, MP19, NF14a, NGL+10, ZKP15].

Cerevisiae

[AM12, BLP10, HZW+14, LLCC12, LXC15, OB10, SSJK18, TK10b].
clarified [Hor17]. clarity [GKNT10]. class [BT17, BvLH14, Gra15, JSZ12, KHX+19, KSSK15, Lio18, LJ10, MI11c, NRKE18, NK18, RSD+16, ZM10, ZLY14, ZZR14, ZKHL16].
class-structured [Gra15, Lio18]. classes [CT18b, DYQ+14, FDS13, HTK14, KZL14, MPCTGJ+15, NBL14, OYY16, PT10, VK10, WCC13].
classic [ZLL17].
classical [Cle16, HS14a, Hua12].
classifying [SKK18]. classifications [HYA14, XM11].
classifiers [BMSEE14, HRHAAA15, SM17a, XWD+10].
Classify [Kri16, TP17].
Classifying [SKK18].
clavaminic [RMRC+16], clavulanic [RMRC+16].
cleansing [JG14].
clearance [KBV+15, MG15, SBMH10].
cleavage [AT10, Sat19].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17].
climatic [GS13a, GS14].
climb [GF11].
Climbing [GW12].
cline [IST11].
clinical [BC19, DH18, Dim10, FFBM12, METC12, PT10, PZLF19, PMCS16, SKD+10, YD15].
cliques [LCL14].
clock [ACD19, DFT+17, EBE14, EBE17, LG13, MM11, RGG12, TAL19, XWC+18].
clock-cell [EBE14].
clocks [TCH14].
clonal [CMB+12, FR17, HM10a, Ros15, RW12, ST17a].
Cloning [KGP+15].
clonotypes [LCHMP16]. close [BWP10, Di12]. close-facing [BWP10].
closed [CSB15, LLDW14, MH13], closely [MH+12].
Clostridium [JEA18].
Closure [CLG+10, CLG+11, ABH+11, FS16c, LCCB11, MM15b, PCBMM12, SYR11].
closures [PHK15]. clot [SKH14].
clouds [SW18]. clubs [TLW18]. clumped [BHKR14].
cluster [HLHY17, HYZ+15]. Clustered [Don16, HK11b, MS12c, RBHK14, SBK16, TWTA+18].
Clustering [HRC+12, HY16, YFB+12, GMK18, HASM17, KUV+10, PWWH16, RD14, SAG19, SKH17, TP17, VZ19, WCSS12, WZ17, YCY14, ZYJL18, ZDY11].
clusters [DMSW10, GMNY14, KRR14, LL14].
CML [RCH14].
Co [Ant13, AMFL10, BB11b, Cam11, PBA12, SPS11, ADV+10, CWP+18, Dim17, DL16, EJK16, HNV+16, HPM+17, HAH19, HgLL+10, LZG+19, LDH+14, MG14b, MBL17, MALAN17, MH18, NZZ19, PDB+15, PNP+16, PDNP16, PGLZ14, PDW10, RANO10, SS18, SCKL15, SST19, SOBC12].
co-activators [NZZ19]. co-colonization [PDW10]. co-culture [HPM+17].
co-cultures [CWP+18].
co-dependence [DL16].
Co-dominance [Cam11].
Co-evolution [Ant13, AMFL10, PBA12, SPS11, MALAN17, MH18, RANO10].
co-existence [ADV+10, MG14b]. Co-existent [BB11b].
co-existing [EJK16].
co-expression [LDH+14].
co-flowering [MBL17].
co-infection [AH19].
co-localization [LZG+19].
co-morbid [SST19].
co-occurrence
Colonization [FR13a, PR13, BLNR15, PDW10, RL17, SPRF13, SDK11].
colonizing [NGS+16]. colony [AC12, GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].
colostral [LF17, SS17a, SMB+16]. Colored [YGMT12, JC10, YFZ+19].
colour [FR13a]. columns [MYLK11]. COM [BAM+15]. combat [Bos12, JMH+19]. Combination [PDF18, YBC17, CvBF18, LF19, QW11, SYY17a, SYY17b].
Combining [SSJK18, YLF+17, HZL+11, LTL+15, NAK+11, TP17, WYL+19, ZLW+19].
commercial [ZLZ+11]. common [Cam15, De17, FS12, GZ19, KP12, LJI17, LLY15, RBRB16, SK16a, SS15e, TLW18]. community [BZ10, CTA15, DBD15, FSH+13, GL12a, Gri19, HL11, HLTW14, Jab10, KCS16, LYT+16, MI11c, MSIR10, PDW10, PDW11, Soz13, Spec15, TBM+13, XLSF19, YISG14, ZMT11].
community-acquired [PDW10]. community-structured [KCS16, TLCZ12]. commutes [MYOS14]. commuting [BLV18, LCJ18].
Compact [GLOC10, SBK16, WMK14, Wax11a]. Comparative [AMM16, GP11a, GRRG16, SPSM15, TAR16, ALH10, BPM+12, DGD+11, ESE15, GTS15, JSZ12, KK18, KTT+19, MH12, RSI11, SG15a, TF15].
compare [KCJ+11]. compared [SWK+19]. Comparing [DGMY18, Dra19, LSS+15, MF.MP10, MHX+14, MSM+14, WY17, DS10b, FHW+10].
Comparison [AD16, CGP16, HHSA15, HL18, LS16b, Wax11b, Zha11, ALH16, BMN16, Boc12, BL14, BWP10, DLYZ11, DGL12, DYS+13, Di19a, EB15, GAB14, HK17b, HHRD14, HLSX11, LAC+14, LLL+17, LGR+12, LWL+11, MHKA16, Pe12, RCD16, SMG18, SDR+15, TMD14, WP17, WZY14, YZZ12, YZZ13, YW13b, KA16]. comparisons [Di13a, WS10].
Compartment [LO15, MEKK11, MHMM11, PBvdG10]. compartmental [BvLH14, LCJ16, LSSG10, MMFK10, MPC12, cSGFB17, TF18, TW12].
compensation [Das18]. compensatory
[HWMT17, IIKT13, KIT+16, KII19]. **Competence** [BPFR16]. **competency** [BF15]. **competing** [BYY+17, Gol10b, IC11, LKP+12, PP17b].

Competition

[DDS13, GW14, JA13, Kri14, MZ17, NdIPZA10, NBA+18, Pei18, PB16, RK18, SAB17, SK16a, ACMK12, BI12, BCF+16a, CTB18, CKNB19, CP11, DHV19, DPL13b, DKF17, FE10, GSSR17, GVSLG16, GBM18, HGM15, HP12, Han12, IGL+12, ID19, KB15, Kar12, KSP12, KM19, LTHEK12, LSDD13, MBLC17, MSS10, MK14d, Nak16b, NT14, NNG19, NTOI16, Oku15, PIBB10, PBB+15b, PB18, PCD10a, PDF18, RCH14, SK12b, Soz13, Str15, TCR13, US10, VY12, WZ18, WW19, WMN18, WDHI+19, WHYMG17, YK11, ZADB15, dCGSA16].

competition-antagonism-mutualism [MK14d]. **competition-diffusion** [KM19]. **competition-facilitation** [TCR13].

Competitive [Bar11, KKGN16, LS15a, SM14, XF13, CCA17, DZE11, FM14b, GL12a, Kar15, LJW+16, MPP+18, PBBB10, PDW10, RR12, SLvdBMP10, UT17, WMN18, YZY+16].

competitor [EUM+16, SGCD14]. **competitors** [PFB10].

complement [RG17]. **complementarity** [PPB15, SL10].

Complementary [MGS16, Mic15b, Sel12a]. **complementary synthesis** [FK13]. **complementation** [SE10]. **complete** [JOAN14, MKBE17b, NIT18a, OAP14, QW11].

Complex [ABKS11, ASL+18, KMD+12, RPD14, TRJD19, VLCT19, ASK17, APBS15, AP19, AD13, Alv19, AN10, BPFR16, BEK10, BJ17, CRLH+19, CL14, CW15a, Est10, EJ16, FWLW11, GZT12, GSCS11, HGM15, HKS15, HB10, IMA16, KOF+14, KHR+18, Kon11c, LJM15, LMC+13, LYH+18, MK11, MTE15, MD16, MBP16, NW10, OA15, OYY16, Pla10, FW14, RCH14, RFME+12, RDP16, SK19, SSH+19, SAB17, TBM+13, TK19, VL11, VNS18, WMLC18, Xie18, XSMF12, YLWZ10, YZ19, ZZC10, ZC14].

Complex-linear [KMD+12]. **complex-mediated** [AN10]. **complexation** [BE14]. **complexes** [ACvKA10, DFM+19, ER18, HVN+16, HMMRSD15, NGN13, NZZ19, PWH16].

complexification [RAD14]. **Complexity** [AdGM12, PCC16, PDG12, AMFL10, BL15a, BORA10, CS15b, DS10b, FB18a, LX15, MGO+15, MSS10, NBS+13, PP12, TCH14, TAL19, THM10, VBHM+13, YHY14, ZLY14, ZGW16, ZLL+12].

Complexity-stability [PDG12].

Compliance [Sar10, ASC16, CPS19, FKK14].

Compliant [MS14b]. **component** [HME12, OUMA10, SG15a]. **components** [AH19, BGM19, GLR+18, NMZ19, PWZ+19, TTC19, TWC+19, ZK18].

composite [FK16, HK11a, Rey13, SIK+18, SHLL11].

Composition [AH15, AHJ18b, Bau18, BMN16, CL13a, Cho11, EUM+16, EMM10, FLR12, FL13, FLW16, GZ14a, GZ14b, Gru11, HPB+14, HK11a, HWGT15b, HYW11, JSF+11, KHK15, KHH17, KZL14, KSKK15, LD11, MJ11, MFZ18, MZ18, MBE11, MP14b, NBL14, PDC+17, QLC+18, RBMS17, RW12, RRB10, SRS+15, TP17, Tun13, WMK13, XNJ+13, XSLZ16, YGL+10, ZSZM14, ZZK14, ZNA+16].

compositional [ML14]. **compositions** [HY13, JD16a, JD16b, JD17, PWZ+19, ZLW+19, ZLDZ13].

compounds [GDPPS+11]. **Comprehensive** [JSZ12, ASK17, KTJ19, OCN10, SLW+18a].
connected [CM14]. Connecting [RC11]. connection [ASC16, AH12a].
connectionist [FIS11, FIS16a]. connections [DHT16, SS15a]. Connective
[FAFA17]. connectivity
[BPG+18, DBB+17, Hal16, HvLPdB15, KK17a, NMS10, RFME+12, WMT10].
connexin [WMT16]. conotoxins [ZZG+16]. conquer [JH11].
consanguinity [ANMH11]. consciousness [RBG+17, Sat14]. consensus
[MP16, SLM17, LLP+19]. consequence [AGPK13, MDS16, NP13].
Consequences [BAM+15, CVO+15, CP11, WF18, BD10b, CdPD11, DFMB+14, KG12, MA11b, RWSB11, SBSE14, VK10]. Consequential [VK10].
conservation [DZW10, KMN+15, SABA17, SVA18, Tsu19].
Conservation [ABIM10, Fue16, Will13]. Considers
[BBJ+10, CDO17, Doli19, LJM15, MA19]. Consistency [Ste13].
consistent [BS15b, Gia13, JSK16, NRKE18, NPH+12, SSS13].
consisting [LZTD18, TD18]. consolidation [WGS15, ZLL+12]. consortia
[SCH+19]. consortium [CB16]. conspicuous [LS10a]. constant
[BSMK11, CK18, KMM16, LLB+18]. constants [VACGFI7]. constitutive
[HI17, WXC10]. Constitutive [FK16, LZW11, MDP+18, ZLZ+11].
constraining [RT19]. constraint
[RT19]. constraints
[ABIM10, Fue16, Will13]. consumer
[AR11, Abr14, BV13, RB13, SSD11b, SSD12, WD11].
consumer-resource [AR11, RB13, SSD11b, WD11]. consumers
[XF13]. consumption [MMK16, RZRSC19]. Contact
[FPG11, AL17, AAGCD15, BGW15, GAY+15, HS15, HB16a, KG12, LL14,
MvdDW13, MPLK14, NRKE18, PSL+10, SZ18, SMC+13, TC12, YSH+14,
YZY18, YS11, ZCWF13]. contacts [CGW18, IU18]. contagion
[NO15, NO18]. containing [LT14, MCL+11, ZG19]. containment [AH12b].
contaminants [HPW+13]. contamination [BSC19, MW13, WXWL12].
contemporary [KDMK16, SS19]. content
[JS15, JS17, JS18, MBE10, MS12a, NHM10, Wax11b]. contest [MGS16].
context
[CSR+05, FRG+13, KG13, LDB+14, ON14, Sat17, SY11, SR12, WGS15]. contextual
[GRRG16]. contingency [FRG+13]. contingent
[WFZW13]. continuation [JR17b]. Continuous
[MT15, Sim14, TP10a, AB14, BSKV18, BBS10, Cre10, DHK13, GZFX14,
HMWB13, IOY15, KS14, LY11, ML10, RA10, RA18, Sch19c, SFS13, Sh13,
Continuous-time [Sim14, vDRT14]. continuous-valued [HMWB13]. Continuously [DI10a].

contractions [DGNT17, Kro11]. contrast [LS16c, LPF11]. Contrasting [CB15, AK13]. contrasts [Ell15]. contributes [Laz13]. Contribution [DK13b, LLW15, MYK17, dS15a, BCBD19, CPW16, GGQ+12, HFD17, JDSPK15, RT15]. contributions [ABJ12, Ano19-52, Bur19, KG12, PBP15]. Control [BS15a, DBM+18, GK10, GCG14, HZG+17, RJSC18, SSD13, SZ15b, TWTA+18, ASK17, ABA11, ABM10, BFJ+18, BAG14, BZL17, BCBD19, BAR14, CFCM13, CSLE11, CKN+12, CH18, CDGV10, CMS16, CG11, CBGS18, DMS+16, DROC11, DKR16, Don17, EHBC10, EB15, FE11, FD17, FH13b, Fra19a, Fra19b, GKMCl0, GM19, GA16, GTC19, GM17, GP11b, GP12, GT15, GAY+15, HS15, HCH18, HTM16, HB16b, HJR12, HK11b, HCW18, JB19b, JWTW17, KKD18, KEC10, KAZ11, KAZ13, KEKB18, KsvdH18, KLJ17, KP16, KKYV18, KF11, KH19, LCCC10, LBGW13, LKK13, LC17, LSY+10, LLZ13, LNH13, MIIJ16, MA13, MAM16, MG10a, MZAI19, ML10, MS12b, MFK13, NSS+11, NMAZP16, NSH+10, OA12, OA11, OCHHZ12, PVCEC18, PZLF19, PRM12, PRM14, QF10, ROF17, RB14, RS14a, SW18, SKK+12, SSG+19, SGW17, SSST19]. control [SBM+19, SNCM12, TXTW16, Van17b, VCF+19, Wall16, WPA17, YT12, YAK17, YD14, YLLL12, ZCT18, ZT18, ZN18, ZLT+19, ZHU11, ZZR10, ZZR13, dSKBS10]. controllability [IH17]. controlled [BFR14, GLOC10, GRI11, GRB+13, KRO10, Lee16a, SK15, vLFM+19].

Cooperation [Arc16, ACCR11, Axcet12, BP16, CSZT12, DD12, DHB12, Gha16, KCS16, Pla10, SSS17, SSBG19, TR12, Van16a, WK18b, XY14, Yan10b, ZZC10, AH17, ATB14, Arc11, BYJ17, BBD18, CS14a, COWA11, CWW18, CBP12, CAV16, DG12, Das12, De 19, DDRP13, GWNW15, GT12, GvV14, HNR14, HKM12, Hou13, HCV18, ITO16, ID19, IVR10, KNT10, Kon11c, KC11a, Kii17, Lai18, LPH18, ML13, MSN14, Mas12, MIIJ14, MBBD13, MINS+14, MB19, NSKO18, NT10, NBA+18, Now12, Oht12, PBR17a, PCN17, RANO10, RMB15, ROF17, RC11, Rot10a, Ros13, RRR15, SPS11, SPLP12, SN18, SP16, SLW18b, SK11b, SP13b, TM12, TGL15, TA15, Uit11, WSP14, WöI12, WZFW13, WFW19, YvBS18, YHZ14, YZX15, ZCW13, ZLY+17, ZSS10, vDRT14, vVGA10].
Cooperation-based [WK18b]. Cooperative
[CCAdS13, Kin18, KUV+10, HVSZ10, HKB10, Kon11b, LDF+11a, MW14,
PBA12, QJR+16, RN12, SHN12, SHH15, SJK18, TBQG14, WK17, ZZCZ17].
cooperativity [BSP18, CL10, CB13b, Mar17b, Mic11, ZBA18]. cooperators
[FNH10, GCS12, LG10b, OO17b]. cooperators
[KLHB+18, KFS+13]. coordinate
[Ben14, VC10]. coordinated
[FW15, NS18]. coordinates
[DGL12]. coordination
[Cle18b, PEW18, RPPG+19]. cope
[SSD12]. copepods
[BSC19]. copy
[JOM16]. coral
[RL17]. corals
[RDTHSM13]. cord
[ISZ18]. cornerstones
[BPFR16]. corneum
[SSvdM10]. Cornish
[HS16]. Cornish-Bowden
[HS16]. coronary
[DPCM16]. CoRR
[All17]. correct
[MA10]. corrected
[OGO19]. correcting
[Fra19b]. correction
[HK16, ZTDL12]. Correlated
[PPBD10, BPG+18, BM16, Che10, Ell15,
MKRE18, NdORC11, PNK16, Rey13, RAD14, WMCL18, ZZC14]. correlated/persistent
[Che10]. Correlation
[ESW13, WZYY11, YTGW16, AGB+14, BE14, DCS14, DBG18, FSW+16,
HgLL+10, JAB18, KDMD13, KN11, Kro10, LXS15, MC15b, RCD19, SB12,
SLC13, SS11, TMF17, ZYJL18, ZL18a]. Correlations
[MK19, GCZ+12, dOGL10, dOGL13, HH16, HHD+16, HNA15, Sei10, TP10c,
VDD12, WMHH10]. corresponding
[DHT16, FS11a, FS15b, ZLZ+16, ZLB13]. Corrigendum
[AEM14, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11, CNG+12,
DBBW11, EJ19, EPJ+11, FIS16a, FS16a, Fue15, GS14, JRS14a,
KMLT14, LBPS+11, LGK+12, Lei10, LHPF18, LPvSP12, ML12a,
Mei13a, Mei13b, MLA13, Mul12, NBC16a, PSS+13, PCT19, PP19,
RTEKG19b, RTEKG19a, SCABM11, SRAL12, SY17a, TSM13a, Van16b,
WL12a, YCH+17a, ZG10a, ZSCL16a, ZZR13]. corroborating
[Di17b]. corruption
[DS12]. corruption
[HCW18, LSD15, LJI17]. cortex
[FHR13, NGL+10, Pat19, PW19, TWTA+18]. Cortical
[DI13, AANF16, BTO14, KLN+12, KPD18, KPD19, RNN15, SSD11a, WZ12]. Corticothalamic
[HRDL14, FJR19, SLR17, ZKR15]. Corvus
[GSV11]. COST
[DKLMB19, Br13, Fue14, Fue15, HB12b, Lar10, LP14, SR11,
SS15b, SS18, Tra16, VDH+15, WL19, ZZCZ17]. COSStar
[LDWW14]. Costly
[Kis10, Akc12, BWWL12, JR17b, MM18, Nak16c, SRV11]. costs
[Fil15, GSL13, LLG16, PPBT11, vVE15]. Could
[IK15, Hol16, FGAM12, OQ11, PDL+17, RDD14]. count
[LM15, LS13b, Mog15, TXWW12]. count-guided
[TXWW12]. counter
[Ber14]. counter-strategy
[RLLN14]. counterpart
[RLSN14]. counterposed
[Di16]. countries
[DB10, RB14]. Country
[MDMG14]. Country-
counts
[H11, YW13b]. couple
[AJJ15]. Coupled
[CXWL11, CKS15, HI19, MROS15, BTO15, BMF+18, CEKM+19, DGJ15,
For10, GM19, GL14, HPML18, KJ11b, MGC13, PBBB10, SW13a, SOCF14, SX12, TGLK19, WOB15. **Coupling**
[OSF11, WFM+13, WFC+14, ZS12, BRG+12, BTO14, CFZ14, DvDBD15, DBD16, FD11a, FH14, GMNN18, Hor11b, JAK19, KHH10, KTH16, Kuz19, MDB12a, MT14, NHS+16, SKAG18, SB19, SY12, TIS10, WMT16]. **coupons**
[KFG15]. **course**
[BBDB13, NS11]. **CoV**
[SKPK17]. **covalent**
[Dun11, SC13a, SC13b, Str17, ZJS11, ZZ10]. **covalently**
[LLDW14]. **covariance**
[FR13a, QZY17]. **coverage**
[LLD+17, YTGW16]. **Coveting**
[WMD+11]. **cow**
[KFG15]. **cows**
[BGF+14, CFR+14, CMR+18]. **Coxiella**
[CMN+11]. **CpG**
[HA15a]. **Cracking**
[Nah14]. **cranial**
[BFGAGA16, YKO+16]. **craniofacial**
[BDID+12]. **crassa**
[XCW+18]. **Craton**
[Kur14]. **Crawling**
[WL13]. **create**
[CZPC+18, HA15b]. **created**
[SI11b]. **creating**
[KG13, PJ13]. **credible**
[Di 16]. **creeping**
[SAGAGB17]. **crescentus**
[SK12a, Sht17]. **crest**
[LFZN11, Sch19c]. **criminology**
[SOIO10]. **criteria**
[CJ12a, CZW+11, Grl15a, Kro10, Opr10]. **criterion**
[Di 19b]. **Critical**
[HSI19, LG13, APBS15, BCMP+16, CGvG+15, GXF13, HBT13, iHM17, MJV16, SCA13, SPH12, Van16b, Voh17, WMT16]. **criticality**
[JRG14a, JRG14b, JRG14c]. **critically**
[KKM12]. **CRM107**
[YCL+17]. **Crone**
[LDB+14]. **crop**
[ABR19, BSB14, SS11]. **cropland**
[BCBD19]. **cropping**
[RDMP11]. **crops**
[AM14]. **Cross**
[GCB17, HF17, MCL+11, BJJR10, CMD+10, FKK14, FZL18, HWW+14, HTB+13, KKom18, LHFM16, MW13, MBK+11, OF10, OAS10, SDD15, SCH+19a, SCLC13, SJK18, SKS+19, VGL16, WCF12, WA14, XJ19, YCH+17a, YCH+17b, YST14, ZL18a]. **Cross-bridge**
[MCL+11]. **cross-contamination**
[MW13]. **cross-correlation**
[SCLC13]. **cross-enhancement**
[WA14]. **cross-feeding**
[SCH+19a, SJK18, SKS+19, VGL16]. **cross-immunity**
[CMD+10, LHFM16]. **Cross-jurisdictional**
[HF17]. **cross-link**
[FFK14]. **cross-linked**
[FFK14]. **cross-reaction**
[OAS10]. **cross-reactivity**
[HWW+14, SDD15, XJ19, YCH+17a, YCH+17b]. **cross-regulation**
[MBK+11]. **cross-specific**
[OF10]. **cross-talk**
[BJJR10, FZL18]. **cross-talking**
[YST14]. **crossbridge**
[ST17b]. **crossflow**
[KA15]. **crossovers**
[DBJ12]. **crossroads**
[dIEBRM15]. **crosstalk**
[RA13, XCW+18]. **crouched**
[BBJDS11]. **crowd**
[DS10a, ISB+11]. **Crowded**
[OO17a]. **crowding**
[Cza14, DHB15, Vaz10]. **crown**
[Cam11]. **crows**
[LZTD18]. **crucially**
[HI17]. **crului**
[KZ14, PKZ12]. **crypt**
[BZL17, FBC12, MFMB12]. **cryptic**
[BC15, CLPZ14, PDC+17]. **criptically**
[Sel13]. **cryptosystem**
[Mor11]. **crypts**
[YAK17]. **crystalline**
[RCL+10]. **crystallization**
[JM12]. **CSF**
[BPLM12, CHN+15, SER+12, ZLM12]. **CSS**
[Cre10]. **CTD**
[NTC+11]. **CTL**
[Lev14, SBR10]. **CTLA**
[LZL+19]. **CTLA-**
[LZL+19]. **CTLs**
[ARM18]. **CTPB**
[DK13c]. **cuboctahedron**
[Den19]. **cuckoldry**
[YY18]. **cuckoos**
[ZL18a]. **cue**
[Ren10]. **cues**
[BBJR10, PDL+17]. **Culex**
[VSD+17, YMZ18]. **Culicidae**
[YMZ18]. **culling**
[LSSG10]. **cultivated**
[AM14]. **Cultural**
[HLI15, Nak19, TI12a, CT14a, EL12, KS13, KLM14, ML10, Nak14, SC10a, SN11, WL12c]. culturally [WF18]. culturally-driven [WF18]. culture

degree-correlated [WMCL18]. degrees [JCG15]. dehydrogenase
[EBSW17, Pav14]. Dejerine [AD15]. delay
[BT17, CV19, ESG+16, FWLW11, HLH+18, JP15, KCSB14, LS16a, LLL13,
LBZ18, MSZW19, MS13, MS12b, MBP16, RCH14, SX12, SPA18, WYKT17].
delay-coupled [SX12]. delayed
[BB14, GT14, Lij12, JP13, KKWA18, LJ18, NKB16b, PJ13, UJLG14, WK17].
delay [BT17, CV19, ESG+16, FWLW11, HLH+18, JP15, KCSB14, LS16a, LLL13,
LBZ18, MSZW19, MS13, MS12b, MBP16, RCH14, SX12, SPA18, WYKT17].
delayer [BB10]. delays
[BH11, EKFV18, LZTD18, TAL19, WCHC11, ZZ14b]. Delbrück [Zhe15].
deleterious [AM11, CNDK15, JJ15, O’F11]. deleting [Sel17]. deletion
[KDK14a, KDK14b, KGM15b, Ros15]. deletions [HTT19, Sel15a].
delineation [SS19]. delivered [BB19]. delivery
[GSV16, KPS17, LLZ13, TBMM19]. Delosperma [KHB+18, KFS+13].
Delta [TSB+17, KA16]. Delta/Notch [TSB+17]. Delta/Notch-mediated
[TSB+17]. demand [LAPK14, SGGHS19, Wal16, dM10b]. deme
[HI12, WL14]. deme-structured [WL14]. demineralisation [IvLP12].
demixing [ZWvG10]. Democratic [OL19]. Demographic
[Oku15, YRD17, Ada16, DFM+14, DB10, DCR18, LP14, LGBT15, MGCL13,
MB10, PDS13, PP17b, VDD12, ZL18b]. demographics [NTED+19].
demography [BBR16, GAY+11, NMAZP16, PSJ15, TRJD19, WKB13].
demography-driven [PSJ15]. demonstrable [MPC12]. demonstrate
[AMFR+16, TCH14]. denaturation [Kue16]. dendritic [LSP13, LLDW14].
Dengue [TXTW16, ZN18, ABKS11, BLV18, GTC19, GW19a, Gru18, HB16b,
HTB+13, JWTW17, Lan16, LCC15, MHX+14, DMDG14, yTRSC13,
NBBCC18, PVCEC18, SDT17, STN19a, SKK+12, SSG+19, WA14].
denitrifying [GGGM16]. denoising [TWC+19]. Dense
[Thu15, YLY15, LSC18, LIB+17]. densities [LAG+14, PKZ12, TGL15].
Density [GRLB13, HGH10, MCPF12, NCN13, WCPF15, Bal10, BKR14,
BH13a, CMS+19, CK17, Das18, DK13c, DZE11, EPP19, GBC+16, JSDK16,
KMZR18, KMH11P10, KHR10, KC18, LS10c, MZWC10, MJ11, OGA16,
PH11, RWSB11, RB13, STA15, SB1+15, SBSE14, TRJD19, Tos11, Vaz10,
VSW10, dG10b]. density-dependence [OGA16]. Density-dependent
[HGH10, MCPF12, WCPF15, Bal10, EPP19, RWSB11, RB13, SBSE14].
dental [LvP12], dentate [GMM15, GM16b]. DENV [TW+18].
DENV-NS3 [TW+18]. departures [BBR12]. depend [CGHF14, SS11].
dependant [WKS14]. Dependence [DSL18, Nij11, DL16, DZE11,
EzMMH18, KHR10, KG15, LS14b, LS10c, MBVB14, OGA16]. dependency
[BB15, CSR+05, PHABAI+16, SRAL12]. dependent
[AYa12, Bal10, BSB+13, BDLR12, BF10, EPP19, FAFA17, FR13b,
GRcL16, GSV11, GKW16, HMT17, HGH10, HGO+18, Hüb15, HW13,
HTB+13, HT10, ITN+11, Jen10, JSK16, KMHdP10, KJ19, KC18, KH19,
LS14, LKK13, LH14, LLCC12, LLB+18, MB10, MCPF12, MAS15b,
MKPVH16, NG11, OW16, PRN10, RLW+14, RWSB11, RB13, RU16, RC16,
SA17, STN19a, SSS15, SBSE14, SGD+16, SW13b, TGLK19, TSP15, Tos11,

detrended [SCLC13]. detrending [DSTD19]. develop [CBGS18, MFG+13, SWTO15]. developed [HKR+19, MZA119].

Developing [SCF+12, WDL+13, BCS+16, GBN14, MK16b]. Development [FSA15, HBA10, ISZ18, KMA10, MBC+12b, MBCM12, ŠKSRW16, ALD+11, ASF+15, BTO14, BSR+11, BFGAGA16, CCNT19, CM12, CCB11b, CEP14, DTC19, DM10a, DDB10, FWB+12, GLZ+11, GC18, Hal17, HTM15, iHIM12, KKOM18, LMC+13, LTZ17, LH13, MM12, MFMS+18, MBK+11, NHE+16, OCN10, PAS10, PIIH18, PPC+17, SBSR13, SGGY10, SWSLMJ19, SSRA16, TSBB+17, ZZL+11]. Developmental [STNT17, BLNR15, BBDB13, HJWC11, LHD+17, Vel17, WKH16, ZZS19].

diabetes [BSR14, BMM+14, JDPK15, JDSPK15, KSU+18, MFS+18, MBK+11, NHE+16, OCN10, PAS10, PIIH18, PPC+17, SBSR13, SGGY10, SWSLMJ19, SSRA16, TSBB+17, ZZL+11]. Diabetic [BPS15, LLB+18]. diabetically [HBA17]. diabetics [CTW10].

diacylglycerol [CHD+10]. diagnosed [Jami16b]. diagnosis [EAN14].

different [AK11, BMIN16, BHR10, BKL14, CZN12, lDsmW+15, DDF+14, DHT16, Eft13, FtL18, HSG+18, HY13, ITR+18, JYZ18, KDG13, KMICJ17, LZ18, LDA+13, MKHA16, MNSZ16, MAR+17c, NF14b, NGND12, NBL14, Pan11, PGGV+19, PDB11, RBMS17, SMM15, SS15e, SGW+18, SAZ+14, TIS10, TG10, UI10, VLF12, WP17, jWIGQ19, WRC+19, WLL+14].

Differential [OAJK10, BMM+14, ESG+16, EAN14, FWLW11, GGM15, HJLNZ11, HLH+18, JCLS+11, MBCM12, NBC16a, NBC16b, OYY16, PCHM10, VH11a, WP17, Zad11]. differential-equation [GGM15].

differentially [ZZC14]. differentiate [ML12b]. differentiated [FM14b, HMBJ15]. differentiation [BF13, CW15c, GMOP12, Goll10a, Goll10b, GZ15, iTIM15, KP12, KUV+10, NKOS11, PWE15, RBBB10, SCABM10, SCáB11, ST16, SLL18, SB19, T111, TWB16, Wod18, YMM14].

differs [Mal15]. difficile [JEA18]. diffuse [CL14]. diffusible [ON14, ZGS+10]. diffusing [LDHD14, PB16, RS14b]. Diffusion [FLO11, MC16a, PH13, AGRR+15, ATB14, BTG+15, BF16, BM+18a, BI19, CWW18, CGBR17, DK13b, DM10a, GBC14, IGL+12, KBS+19, KM19, KGM+15a, MB19, PVL+11, PD16, RKL10, RV16, RRRTR10, RRTR12, RRRSPTR16, RRSR11, RHT18, Sch18, SAB+19, SSvdM10, SKPK17, SSS15, SOBC12, TGB+18, TWW19, TC11, Wax11b, ZM10]. diffusion-driven

dihydromethyltrisporate [EBSW17]. Dilemma [CZ14, GCS12, Lai18, MRPN12, ZLY+17, BLS+17b, CW14, FWW18, FNH10, JC16, Lai11, MN11, PCN17, TP10a, WLW19, YA14, ZZC10, ZGW14, ZZZC17, MI19, PM10a]. dilemmas [AS12, CGD13, MR12, NO14a, NO14b, NR16, SS13, WMD].

Dilemma [CZ14, GCS12, Lai18, MRPN12, ZLY+17, BLS+17b, CW14, FWW18, FNH10, JC16, Lai11, MN11, PCN17, TP10a, WLW19, YA14, ZZC10, ZGW14, ZZZC17, MI19, PM10a]. dilemmas [AS12, CGD13, MR12, NO14a, NO14b, NR16, SS13, WMD].

diminished [FOT]. dimorphic [YMZ18].

dinoflagellates [JSWy19]. dinosaurus [BJB18].

Dipetera [YMZ18]. Dipeteran [FH10a, FH10b, TB11]. Direct [DLM+19, HB13a, SNC12, CB16, GVS16, GS13, GN10, KK17, PVGA12, ZLY+17].

direct-acting [GN10]. directed [ABD+15, SSZB15, SQW17, SMJS14, VSP11]. direction [Sel12a].

discourses [SS19]. discovered [PGGvdB12]. Discovering [AY18, SFV16, SG15b]. discovery [CTSL11, GBC+16, GDPPSS+11, wLW10, SDRA15]. discrepancies [CW17].

Discrete [FS16c, GI15, Yat14, ANMH11, AEM13, AEM14, BS1V18, CL17b, Ch10, Cor16, Cox10, GLR+17, GW13, GOL10b, GPT17, Iij12, JMK+17, KA11, PL12b, LC16, RA18, SKD+10, TSS16, ZLDZ13].

discernible-cell [Co10]. Discerning-time [FS16c, Cor16, GLR+17, LP12b].

Disease [GA16, GLZ+11, GGM15, MPLK14, AZOLVH18, AOM19, ACR+18, AOS+19, AB16, BM15, BN15, BGLR+19, BDR10, BZ10, CF12, Coh15a, CG14, DFM+14, DGM15, DD13, DST19, EME+16, ERT13, FGI10, GGL+16, GRR+14, GMS+13, GMR16, HAnR+18, HYS19, HRRH15, HSG+18, HZL+11, HvLPdB15, IMW15, JAB18, KKD18, KJ12, KEG17, KST17, Lai16, LN19, NLM13, LSSG10, MV10, MPS16,

Distributed
[KS15, CCS15, HT19, ISZ18, LCG15, PTD10, RKMGI2, RPCW18, TAL19]. Distribution
[OBK11, POLT12, SS12a, ZLZ15b, AD16, BKR14, BH13a, Cam15, CPF13, CW11a, CW11b, CF11, DYS13, DK13c, EPP19, EBX17, GVGC15, Goll, Kär11, LdLK11, MSK10, Meh17, MYLK11, MC15b, Nak12, NYS12, Par15, PWH16, Pia19, RTRRS17, RRB10, SSI16, Sch14, SJSG13, Su16, SM11b, SCT12, SSRA16, TLR14, Woh15, XGZ17, YZW10, YZZ12, Yin17, ZMS17, ZL18b]. Distributions
[ZS10, ALH10, BR15, DLL18, Don13, DZW10, FVC15, GFM19, Gol10a, JL11, KS14, KS15, KdSUS10, LLV11, LLG16, LSC18, MJS11, MTKY11, MPY14, MS16, MDM10, ML12b, MB16, Mul11, Mul12, Por13, SSH19, SY17, SBM12, TKKE19, TLM14, Wei12]. districts [LG18]. disturbance
dorsal [ABH+11]. dorso [SSKK17]. dorso-ventral [SSKK17].
dosage [Das18, HAB+17, YD14]. Dose [RLW+14, RKK+19, BH13c, CHN+15, GMS+13, HPvdB17, LH14, LHD+17, LIB+17, SW19]. dose-dense
[LIB+17]. Dose-dependent [RLW+14]. doses [RHJ11]. dosimetry
[BHH+14]. dosing [FM10, LN13, NSH+10]. Double
[PHWH16, BKL+15, CL17b, KFL12, Kue16, KDL16, SNCM12].
Double-layer [PHWH16]. double-strand [BKL+15, KDL16].
double-stranded [Kue16]. Dove [Ayd18, DN18]. down
[ARB13, LG13, MPS+11, SC10b, XNW17, YRD17]. downstream [ZZL19].
Downy [PS12]. doxorubicin [EPJ+09, EPJ+11]. DPC [KHKI17].
DPD [TAB+13]. DPD-PDE [TAB+13]. DPP [RSS+18]. DPP-PseAAC
[RSS+18]. Dr [BD10b]. Drafting [SZ15a, SZ16]. Drag [LWY+16, JHL+15b].
dragonfly [LS10b, LS14a]. dramatic [VK10]. draw [cSGFB17]. drift
[Bro13, FCS18, Gal11a, JJ15, NMI18, PMR11, RG10, SmA16, Wax11b, ZW16].
DRIN [PFL14]. drive
[EA17, HMM17, Kun16, MH12, OGA16, TR12, XKCG15]. driven
[Aau11, ACCR11, AP13b, CFGRB17, Chau18, DHHP14, GPT17, Han12, HH16, HLH+18, KB15, KFA12, Kin18, KGM+15a, Kue16, LZA+19, MC16a, MH13, MA11b, PSJ15, SK10, TS17a, TW1H+13, Urs14, US12, WF18, WDL+13, YMZ18, ZLB+18, dM10b]. driver
[BST14, DDKB1a, HRCA19, MGB17, Pol12]. drivers
[AHP+19, FR13a, LPP+19]. drives [EA19, KEKB18, KMCH14, RM13].
driving [HM15, WDL+17]. drones [LWY+16]. Dronpa [HYZS14]. drop
[BKR14]. droplet [ZWvG10]. Drosophila
[Che19, DM10a, DM19, GAL11b, iHIM12, MBM11, RGG12, SeI12b].
drought [JMK+17]. drowsy [BVK10]. drug [BS15a, BJ18, CWM11, CDO17, CTS11, CL18, CGW18, DK13a, GY19, HNP18, HAB+17, HZC+10, JSDEK14, KHP+12, Kle14, KS10, LP19, LLZ13, MPM10, MVH11, NLB14, OA15, PYG+19, PRV+14, RAf+19, RDS+12, SMB+16, SLML19, SMJS14, TAR16, WCM15, XMWC13, XSMF12, XXD+17, YD14]. drug-resistant
[CL18, LP19]. drug-target [RAf+19]. drugs [GSSBF18, GSV16, LF19, LBW+13, LT14, MAFB18, PPC+17, PBSM19, RCL16, WHH17]. dry
[DSS15]. dsDNA [AN13]. DSSB [AD15]. DTI [PH13]. Dual
[MAME15]. Duality [BYJ17, FVTS16]. ductal
[GCSP17, METC12, NBW+10, SGGY10]. ducts [FKMG15]. due
[AJC12, ABR11, BPS18, CK17, Cza14, GN10, KKS+14, MK14a, NNG19, SMM15, SMB+16, SLML19, SRCF11, STKE12, SL19, VB19b, WZ18, YTS19].
dung [BBR12]. duplex [LF10]. duplicated [Das13]. duplication
[HNV+16, KII19, Ots11, SAZ+14]. duplications [bCRS17]. duration
[ACD19, CF11, LMCW18, MGS16, PSG10, YTGW16]. durations [BR16]. during
[ASC15, AHAF14, ALD+11, BTO14, BAGG14, BRN15, BTK14, BBRT12,
BKPV15, BFGAGA16, CLPZ14, Che12, CL18, Chu17, Cle18a, Cle18b, Cox10, CHN+15, DPRSS11, DL15b, DA17, DB18, DDF+14, EJK16, FWB+12, FM10, FPR10, GWBL12, HWMT17, HM10a, Hal17, HPM+17, HMH14, HKE19, HRG11, IS12, ITR+18, JV14, JMK+17, KHB+18, KCS+15, KG12, Kuz19, KK18, LCTG15, LAM+16, Lec16b, LMC+13, LSM17, LO15, LRA+13, MYK+11, MMLK11, NPS17, Orr19, PHH18, PDRC16, PC10b, PVGA12, RRL+13, RLW14, RS14a, SEK+10, SK15, SKGM19, SHB+17, SK10, SGS15, SAGC12, SSKK17, SP14, SNCM12, Tak17a, TEW12, TDE12, dRVFK+16, VF12, WDL17, Wil11, Xie13b, YM14, ZTWL12, ZWY15].

durotaxis [SVMN11]. dusty [BTK14]. Dwarf [YSYI13, YYST13]. dwell [Voe18]. dwell-time [Voe18]. Dynamical [GCB17, LMYL15, LLL13, PaCZ10, VLMC10, AdGM12, CST+12, DFM+14, FLA+19, GB13, GML10, KLB+16, Lai18, NBA+18, OA15, RWSB11, Sim14, Xie13a, ZYJ19]. Dynamics [BBM+97, CFF11, FTS15, FHS+14, GL14, GM16a, HJ12, ITR+18, KGJ12, LCT11, LLJ18, LPTR14, MMH+12, MFKS13, MW13, Por13, RB14, SPSP12, SHK14, SC16, TF14, WSVT14, Xie13b, ZYJ18, ASC15, AR11, AGPK13, AOM19, AD15, ADS+19, ABKS11, AHKN10, AH12a, AY15, Akc12, AKS+19, AMBH+13, AMSSG16, AMFR+16, AGGR+15, AABS16, AN12, AdIPLM13, AP13a, APW10, AM12, Arc14, Arg12, AWK15, ALD+11, BY17, BC19, BPS19, BA10, BRG+12, BCPL10, BM12, BDIS12, BLV18, BPFR16, BZCS10, BB14, BWY+17, BHRK14, BN12, BN15, BBM+18a, BJWL15, BBM+13a, BBM+13b, Bon10, BK19, BBERT12, BMF+18, BPLM12, Bue15, BHO+18, BJ18, CHD+10, Cam11, CML10, CC11a, CMS+19, CFZ14, CN12a, CS18, CN12, CNL14, CFL+15, CWF+16, CVPCV+15, CSN+14, CS14b, CG14, CA18, CH18, CPPLAB18].

dynamics [CHN+15, CSZT12, CGW18, DB10, DS19a, DMM+14, DMO+17, DM11, DSLR18, Del12, DL12a, DEN+11, DG16, DGJ14, DGJ15, DHBS19, DRC11, DCN13, DCR18, DHB15, DFMR19, DP13b, DHRA10, EK18, EUM+16, EN15, ECP+16, FHI10a, FH10b, FHL10, FK18, FMS+10, FtL18, FGGT15, FKV19, GLR+18, GAL11b, GVGC15, GAGP+14, GCSMG+12, GDS11, GMNY14, GXF13, GC18, GMMN18, GP12, GY18, GN10, GAV15, GPT17, GAY+11, HBK12, HT19, HSD11, Han12, HI19, HII+19, HBVP15, HNO18, Hau10, HNR14, HT15, HE16, HKS15, HFT+18, HB16a, HAH19,
HBT13, HVL11, HR14, HSM17, HH16, HWPL12, HHE19, HB13a, HBW+11, HTB+13, HHT+19, HPW+13, HWL15, HNN14, HSLW16, Hur12, HR12, IMM16, Iij12, IGL+12, IS12, IK16, Jab10, JB18b, JYY+18, JSSZ12, JIL16, JS15, JMK+17, KJ17, KHH10, KSP+14.\textbf{dynamics} [KHP+12, Kea16, KMHDlp10, KGp+15, KFA12, KB19, KGK10, KR15, KLI17, KKY+10, Kla10, KDMK16, KL10, KW10, KKYV18, KG18, KGM15b, KSK+17, LJM15, LG10a, LS10a, LCC15, LBJ16, LP19, LHV16, LW15, LMCW18, LGR+12, LY12, LHD+17, LP19, LP12b, LS14, LH18, LJW+16, LC16, Luk14, LW18, MKH13, MZ17, MRPN12, MKKS14, MDVT10, MMP+16a, MCC+17, MBLV10, ML14, MMAS13, MFG+13, MKMT14, MS10a, MS18, ML10, Mob10, MSE+14, MS10b, MGM13a, MZMM+14, MPNP12, MMRCC10, MS14c, MA11b, MBP16, MI11a, Mou12a, MYOS14, MCCC+10, MYOS14, MCCC+10, MVAKR17, MSIR10, MG15, MSL+16, Nit19, Nak16a, NCLB16, NOS15, NTED+19, NZZ19, NG17, NC15, NP13, OB15, Oht10, Oka15, OUMA10, OB10, OMY16, OAJK10, OBH15, PAA11, PPBD10, PM11a, PBR17a, PR18, PT10, PNL15, PV+10, PS17, PW18b].\textbf{dynamics} [PCL+15, PGKZ17, PLZ+19, PM17, PMYHR12, PP17b, PKH11, PRM12, RW16, Rad16, RMF+18, RN12, RFS+15, RW10, Rem15, RB13, RBHK14, RBB16b, RSB12, RG17, Ros10b, RM19, RRRJ19, SM14, SSPP15, SK19, SU11, SW15, SFT14, SBR10, SVB+10, SI19, SW17, SBR16, SV17, SCF+12, SKPK17, SMJS14, SW11, SKS15, SC11b, SAB17, SOC14, SG15a, SP11, SY17, SSM10, SGS15, SLC12, SOL10, SLS17, SS11, SK11b, SS1+14, SY11a, SY17b, ST19, SPL14, TED10, TBM+13, TLCZ12, TCR13, TGC+17, TDKJ15, TRM+14, TK19, TMS13, TMD14, TRJD19, VSD+17, Vel17, VABS18, WYW12, WCPF15, WCV15, WJL+16, WML16, WYKT17, WML+17, jWIGQ19, WW19, WMHH10, WDH+19, WGC13, Wod18, Xie11, Xie18, XYZ15, Yam16a, Y118a, YNY+10, YBT+17, YFB+12, YST14, ZARK19, ZBA14, Zha10a, ZZ14a, ZZ18].\textbf{dynamics} \{ZN18, ZK+10a, ZWG10, ZSW+14, ZLM12, ZSCL16a, ZSCL16b, ZZR10, ZZR13, ZRZ15, dTKDV15, vV11a, vdBD10\].\textbf{dysfunction} [LFW+18, WSH+13].\textbf{dysplasia} [MGM13b].\textbf{dysregulated} [HZL+13].\textbf{Dytiscus} [Whi11].

[KPK+13]. **Eco** [HBT13, KK13, Urs14, AIB+19, FtL18, HCS+19, KGB13, KDMK16, LH18, SKAG18, YBT+17]. **eco-evo** [FtL18]. **Eco-evolutionary** [HBT13, KK13, AIB+19, KGB13, KDMK16, LH18, SKAG18, YBT+17]. **eco-genetic** [HCS+19]. **Eco-hydrology** [Urs14]. **Ecological** [BUL12a, GLR+17, JMS12, KEKB18, APBS15, Ali11, ALH16, BWB11, Bal10, FB18a, FR13a, GP12, Gri19, HT18, IS10, JHE15a, JHE15b, LS14b, MM14, PM15, PSV17, RW15b, SRS18, SC16, VK10, VR17, WH11, WF18, vVE15]. **ecologies** [CN12b, DDP12, RDF16]. **ecology** [BCK19, HL11, KA15, Liu16, MRPH17, MW14, MN14, Pon12, TGL15, ZADB15]. **econometrics** [HYSG19]. **Economic** [DRW14, TDE12, CJRR11, ESE15, GKG+18, KG13, MDM16, PT10, SK16a, TLW18]. **economics** [CT14c]. **economy** [Pon12]. **ecosystem** [AMRR10, BSH19, BCFL16b, BF10, BJ17, Edu16, GL14, GK13, LCMC14, MK14a, MA13, MP13a, RM10]. **ecosystem-based** [MA13]. **ecosystems** [ABLH18, BDLR12, CC11a, CCB11a, FB12, GFH+18, JB18a, MGML10, MPP+18, PMGY17, QA15, SI11b, SIE18, THM10]. **ectotherms** [WSRG18]. **Edge** [WMCL18, HD17, YZYMY18, ZZC14]. **Edge-based** [WMCL18, YZYMY18]. **edge-biomarkers** [ZZC14]. **EdgeMarker** [ZZC14]. **editing** [DMCP14]. **editor** [JNT14, gSxFH+12, ARD12, JAHKH12]. **Editorial** [Sza15a, Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano10u, Ano10v, Ano10w, Ano10x, Ano10y, Ano10z, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o]. **Editorial** [Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano15w, Ano15x, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g]. **Editorial** [Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h,
Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z, Ano19-27. Editors [Kir11]. Editors-in-Chief [Kir11]. Edward [BCF16b]. EEG [BVK10, Ing16, SKK11]. EET [FD11a]. Effect [AP19, ABD11, BSC19, BB14, EPP19, FMS10, GTC19, JJ15, LFD11, MLCH11, MGC13, MAR17c, SGAM12, SGCD14, TMM10, TIL2b, TLR14, WHH15, Wod18, YTK10, ZLL12]. Editors [Kir11]. Edward [BCF16b]. Effect [AP19, ABD11, BSC19, BB14, EPP19, FMS10, GTC19, JJ15, LFD11, MLCH11, MGC13, MAR17c, SGAM12, SGCD14, TMM10, TIL2b, TLR14, WHH15, Wod18, YTK10, ZLL12].

Effective [AFS19, Gre16, SS18, AKS19, Bar16, CPH14, CG11, Glu18, HI17, LCTG15, LGPS17, MA13, NF14a, Nak12, SSJK18, Sch14, Tak16, VCF19, XDX17].

Effective [EN15, GAY15, SP13b]. effectors [d'O12]. Effective [AFS19, Gre16, SS18, AKS19, Bar16, CPH14, CG11, Glu18, HI17, LCTG15, LGPS17, MA13, NF14a, Nak12, SSJK18, Sch14, Tak16, VCF19, XDX17].

Effectiveness [EN15, GAY15, SP13b]. effectors [d'O12]. Effects [AdSG14, ASGG17, BKW16, CHL19, CF11, DGJ14, EBX17, GCZ12, GC11, HE16, HSR12, HY10, IKT13, IEN15, Js12, KO18, KMHdpi10, KJ15, K119, LdLL11, LG18, LFM11, NIIT19, NOS15, NKK10, NJP18, PMYHR12, RWA11, RHT18, STA15, SPKP17, TM14, TA13, VSD17, WK18a, YLW14, Z16, ASC16, AHD18, AMBH13, AMFR16, AH17, AAJ15, ARM18, BGM19, BLV18, BGL10, BSV10, Boc12, BSS11, BIMC17, BMM14, BCPG18, BZ10, CLK18, Cle16, CSDR15, Cor16, CCAdS13, Cox10, DH16, DB18, DHB15, DS12, EBE14, FB12, FSW16, FGLS10, GMZM15, GVSLG16, GCvWE14, GS17b, GBSR19, HD17, HPP10, HT18, HHG14, HAH19, HHO10, HWPL12, HWGT15b, JYY18, KYY18, KSD13, K119, KPD19, KEKB18, KFI11, LTHEK12, LL14, LLIDW14, LW16, LS14a, LNY15, LSS11a, LDF11b, MG14b, MKBE17a, MKBE17b].

Effects [MKRE18, MEJ18, MMRCCC10, NR14, OO17a, PDS13, PSP12, PHABA11, PPB10, PN18, PK15, PRV14, PZLF19, PHGC12, PMCS16, PLF19, PML18, RRE13, RLW14, RHH11, RTEK15, RTEKG19b, RLSN14, Sac13, ST113, ShvHB16, SAB10, SJSK18, TSD14, TDHC18, TCW14, UI10, VZ19, Vaz10, WXWL12, WML16, WTC16, WPA17, WVO15, YNY10, dMI10b, dMP11, d'O12]. Efficacy [RMSTG13, GSSBF18, KMA10, KRR14, LBW13, LZZ19, MDB12b, NDZMA14].
efficiency [BH13a, CLP11, DK13a, GMM+13, GSF13, HLH+18, JG14, LFB+16, LJM+17, LMJ+16, Orr19, PBRW11, PVCEC18, SHW16, TP10b].

Efficient [NW10, SNS17, CLG+10, CLG+11, FD17, GRCdL16, HXL16, IMH15, IL13, Kha10, SW13a, TLY+19, XGZ17, ZMNd+10]. efflux [FKB13].

effort [KJM17]. efforts [HJR12, STKE12].

Efficient [NW10, SNS17, CLG+10, CLG+11, FD17, GRCdL16, HXL16, IMH15, IL13, Kha10, SW13a, TLY+19, XGZ17, ZMNd+10].

efflux [FKB13].

effort [KJM17]. efforts [HJR12, STKE12].

Eg5 [HNL+11].

Elaborated [CN12a].

Elementary [DG10a, PLF19, FT12, MRS14].

Emiliania [HWGT15a, HWGT15b, HWGT17].

embodiment [RBG+17]. Embolization [Gou15]. embryonic [ALD+11, BF13, BJWL15, TRM+14]. embryos [DI13, KKG+14, vHHKB14]. emerge [CNM+13]. Emergence [Mor10b, NF14b, RBB16a, SKS15, SA14, TR17, FCC+10, FGP10, GWNW15, GFH+18, GGM15, HKS16, IDI11, MHX+14, Mas16, OS13, OMO13, PR17, SS19, SCH+19a, Tak17b, TT19, Unc11, WD12, WK17, Woo10, WSVT14].

Emergent

embodies [RS12].

elaborated [CN12a]. elaboration [FHSG15]. Elastic [HTB+13, KF10, RS12, SY11, SDFK12, BB15, JH12, KFG+14, MH14, OW16, RA10, TI12b].

electro-mechanical [HGGCR13, LHPF18].

Elastosis [EJK16].

Elastic [HBT13, KF10, RS12, SY11, SDFK12, BB15, JH12, KFG+14, MH14, OW16, RA10, TI12b].

Elasticity [CMJD11, MHH13, RS14a, RGCM10, SA17, SP13a, VH11b, ZHAK14].

elephant [CMMR13, WHYMG17].

embossed [RBG+17]. Embolization [Gou15]. embryonic [ALD+11, BF13, BJWL15, TRM+14]. embryos [DI13, KKG+14, vHHKB14]. emerge [CNM+13]. Emergence [Mor10b, NF14b, RBB16a, SKS15, SA14, TR17, FCC+10, FGP10, GWNW15, GFH+18, GGM15, HKS16, IDI11, MHX+14, Mas16, OS13, OMO13, PR17, SS19, SCH+19a, Tak17b, TT19, Unc11, WD12, WK17, Woo10, WSVT14].

Emergent

embodies [RS12].

elaborated [CN12a]. elaboration [FHSG15]. Elastic [HTB+13, KF10, RS12, SY11, SDFK12, BB15, JH12, KFG+14, MH14, OW16, RA10, TI12b].

electro-mechanical [HGGCR13, LHPF18].

Elastosis [EJK16].

Elastic [HBT13, KF10, RS12, SY11, SDFK12, BB15, JH12, KFG+14, MH14, OW16, RA10, TI12b].

Elasticity [CMJD11, MHH13, RS14a, RGCM10, SA17, SP13a, VH11b, ZHAK14].

elephant [CMMR13, WHYMG17].

embossed [RBG+17]. Embolization [Gou15]. embryonic [ALD+11, BF13, BJWL15, TRM+14]. embryos [DI13, KKG+14, vHHKB14]. emerge [CNM+13]. Emergence [Mor10b, NF14b, RBB16a, SKS15, SA14, TR17, FCC+10, FGP10, GWNW15, GFH+18, GGM15, HKS16, IDI11, MHX+14, Mas16, OS13, OMO13, PR17, SS19, SCH+19a, Tak17b, TT19, Unc11, WD12, WK17, Woo10, WSVT14].

Emergent

embodies [RS12].

elaborated [CN12a]. elaboration [FHSG15]. Elastic [HTB+13, KF10, RS12, SY11, SDFK12, BB15, JH12, KFG+14, MH14, OW16, RA10, TI12b].

electro-mechanical [HGGCR13, LHPF18].

Elastosis [EJK16].

Environmental [FR13a, HAK+19, MP14a, RM13, Abr14, BJJ10, BDR10, DSA+16, DHT19, EZMM18, FGL10, GGBW14, HBV15, HSM19, HSM17, HHT+19, HW15, JTW17, LRH15, M17, MLCD11, MV16, NN17, NWW17, PDI11, PW14, RR12, gSxF12, VBVD17, WXW12, WD12].

Environments [BID15, CMCS18, DH16, De19, FB18b, JRMS12, KL13, KM19, LX10, LN13, LCDH15, Mar19, MHH+13, NdOR11, OBE+17, PE18, PB16, RW14b, SI11b, SB17, WSVT14].

Environmental [CC16, BCF19].

Enzymatic [MSS18, CTJ10, KJ11b, OF10, Pie12, Yi18a]. enzymatically [Pie12]. Enzyme [MRS14, Bur19, DK13c, DBJ12, ESS19, EBSW17, HAU+18, KKH15, NCS+13, OFB10, RMSTG13, SC13a, SC13b, Str17]. enzymes [ONO15, PBKR13]. Enzymological [ID15]. enzymology [XG12].

Epidemic [CGW18, HS15, HK11b, MYOS14, ZLL17, ZCF13, ABB+19, Ada16, A16, BBR16, BM10, BRI5, BGLR+19, DS19a, DGR13, FJS+19, FHM18, FS16c, GA16, GC11, HSD11, HR14, JKS15, KKYV18, LN19, LY11, LCT11, LL18, LJS14, MZ119, MFP+14, MPLK14, PSJ15, PM11a, PGGvdB12, PTC13, RBHK14, SSZ15, SKPK17, SM+13, cSGFB17, SS11, TA13, VABS18, WHT17, WMC18, XTZ+13, XLSF19, Yan10a, ZYJ18].

Epidemicity [MCRG18]. Epidemics [AGGME18, MDM+10, MLMG+15, NIT18a, BSC19, BM12, BZCS10, BT15, CJR11, Che12, CE17, DCR18, EB15, GM17, HS15, HJR12, LAS14, LC17, LKL13, MG10a, PHK15, SBK16, SLJ+10, US12, WCA12, XCS12, YS11, ZLCH18].

Evidence [Di 17a, MPL16, RPP+19, Di 10, GDB+19, Mor10b, PC17, RMRC+16, She11b]. Evil [GvVT14]. evinces [BHLH12]. evo [FtL18]. evoked [LSB10, LB11, LB12]. Evolution [AK15, Arc13, AS16, AK16, ACvKA10, Axe12, BBB18, COWA11, CHK16, CKNB19, FZW17, FM10, FM14a, FPD15, GT12, GTSP16, Hou13, HCW18, Jam13, KK17a, KGB13, Kit10, KWO19, KNT10, KI17, Len14, LG12, Mas14, MA11b, MAL+11, NH12, NF14b, NO18, Nak16c, Nei14, NOS17, NP13, ON14, OAV+16, PBYB18, RC11, Rog19, Rou14, SSM15, SC12, SLW18b, TP10a, TM12, UI13, WK15, WK17, YHI14, YTK10, dWV11, Abb10, AdVG15, AFM10, AH12a, AY16, Akc12, AOR17, AB11, Ant13, AMFL10, Arc11, Arg12, AK11, AT10, BGKL17, Bau18, BM11, BJ17, BD12, CT14a, Cha17, CSBK15, CW15c, Cle16, CBP12, CAV16, CS15b, CzST+18, Cro17, CL13b, CKS15, Das13, DBD17, Dèb17, DSR18, DMCP14, Dun11, Edg19, ER12, Ell15, FB18b, FM15a, FH13a, FRG+13, FM18].

evolution [FOT+15, Gar10, GJ12, GG14, GN14, GJ10, GJ15a, GKB13, GCvWE+14, GK16, HNV+16, HJWC11, HM10a, HAP+16, HLI15, HT18, HTT19, IKM12, HMM11, HTK12, IKIT13, Ish16, ID14, ID19, IVR10, Jan15, KG15, KMCH14, Kin18, Kor18, KW15, Kur14, KIT+16, Lai11, LBB+13, LGK+09, LGK+12, LvBJ16, LG19b, LSM17, LvdBP12, LGEM17, LSSL13, MTNM12, MB18a, MK16a, MYK17, Men12, MALAN17, MI18, MAA18, MH13, Mor16, MC15b, MM18, NF14a, NS11, Nak14, Nak19, NSKO18, NBS+13, NMS10, NP11, NPS17, NPS18, NPS18, NPS24, Oht12, Ots11, Pan11, PIPB10, POW18, PBR17a, PMD11, PKZ12, PPBT11, PN16, PN18, Pic12, PHHI1, Poi12, PBD11, PM10b, PBA12, Rad16, RANO10, RBR18, RBRB15, RBRB16, Ros13, RRR15, RCD19, RD17, SW16, SC10a, Sal15, SPS11].

evolutionary [BHBR12, KM12, BI12, DWL+14]. Evolutionarily [AY15, AN12, Arc14, BL14, BM16, Bur10, CZN12, DM11, Ezo12, Fis16b, Fra19a, Fra19b, GCM17a, HI12, HWTN15, HIT18, HHN14, IMA16, ID14, IS16, IK16, Kri10, LLZ13, LW15, LCQ+18, MPNP12, NPB13, OGO19, PBR17a, PNL15, Rad16, RN12, RBB16b, Ros10a, SSP15, Sek12, SGW17, SPCM18, SLO10, SG18, ŠKSR16, TTN13, TEY16, WL12a, WL12b, WL14, WC15, jWlGSQ19, ZGW14, ZWG10, Abr14, AH12a, AH12b, AT12, ATTN12, AD13, AWRD15, AOR17, ATG12, AIB+19, BS15b, BID15, BS11, BD10b, Bon10, BBDB13, BR13, Bul12b, CVO+15, CSZT12, CK19, CB10c,
evolutionary [KK13, KZ14, Kri16, Kri18, KC17, KGC18, Lai18, Lar16, LG19a, LL12, LGBT15, Lio16, LPKH15a, LPKH15b, LPH18, LH18, LIPD12, Lm13, MP14a, MFMP10, MRPN12, MDM16, Mon18, MB12b, MKPVH16, MSIR10, NM18, Oht10, OBHS19, PBB+15a, POW17, PLN14, PGG+15, P10, RC11, RBB16a, RVP19, RSBB10, RM17d, SKAG18, SMS17, Sch17, SMG18, SSD17, STG19, Shi19, SKS15, SY17, SS15e, SM11a, SJK18, SC16, SS12b, TBN+13, TA10, TLCZ12, Tny13, TZY18, Tre19, USF+18, VGZ18, WSP14, WXY+17, WLY+17, WMN18, WCF12, Woo10, WK18b, WSVT14, XKG15, YHZ14, YBT+17, ZK14, ZYD15]. evolutionary-based [DHS+15]. evolutionary-dynamical [Lai18].

Evolvability [MH17, GJS+10, Gri15b, IMA14, PMP13, VFS+15, WB10]. evolvable [AIY16]. evolved [Bry13]. Evolving [MBRRI19, Now12, SAZ+14, AH12b, CL14, CL19, De17, EB15, FW18, NR16, PJS15, PW19, SB12, WLW19].

exocytosis [GU13, SWSLMJ19]. exogenous [CWP+18]. exon [MSSM18, PBKR13, QYo10, ZLT+15b]. exon-coded [PBKR13].

exon-junctions [MSSM18]. exons [DOGL10, DOGL13, ZLT+15b]. exosome [SKSO12]. Exosomal [LF17, Shao14]. expand [Dim17, RT19]. expanded [Sel17]. Expanding [CB10b, HL10, DBJ12]. expansion [DZJR10, FNH10, GTB10, HM10a, Mi11, On19, RSR11, Sel15a, WMD16]. expansions [CKNB19]. expectations [ALH10]. Expected [BCK19].

experiment [AHD+18, LGR+12, MBS19, PWL+11, SYY17a, SYY17b].
Experimental [BPP $^+$ 16, CW11c, LFW $^+$ 18, WHKW18, ASH15, AGC18, BMB $^+$ 18b, CDM $^+$ 14, DRW14, DDF $^+$ 14, FKMP10, GDPPSS $^+$ 11, GDB $^+$ 19, JRB $^+$ 16, LCSH14, LAG $^+$ 14, MAMEA15, MBF $^+$ 15, PMKS $^+$ 15, RMRC $^+$ 16, RGA $^+$ 10, YA14, ZBA14]. Experiments [JSP $^+$ 16, MAH12, QMJW15, EUM $^+$ 16, FS11a, HWPL12, JSK16, KP15, LSMP14, MSS10, PBB $^+$ 15b, PMCS16, Ran12, SGGM11, SBR10, SMH10].

explain [BRB18, NMS10, PDL $^+$ 17, RN12, SGGS19, TWH $^+$ 13, WR14, YY18]. explained [Fil15, Jen10, PVB $^+$ 10, Sch19b, SW15]. explaining [CMB $^+$ 12, GDJC11]. explains [Das18, DM10a, Eli17, EJK16, RG18, SSI $^+$ 16, SWD16, SP14, WKS14].

Rou14]. **first-order** [CW14]. **First-spike** [WCC13]. **Fish** [LYK12, BPG+18, CT16, DHP11, FSA15, GS13a, GSL13, GS14, HPW+13, Ios16, ICG16, NR14, NTY16, NBA+18, OGA16, PLF19, g5xSFH+12, SPH12, Str13, TIY+11, VDH+15, WBM+15]. **Fisher** [CS18, LPH19, PBYB18, SW17, TT110b, jWIGQ19, Wax11b, ZLW14, ZGW16, vV18]. **Fisheries** [LHD15, MA13, MNH+12]. **Fisheries-induced** [LHD15]. **fishery** [TB16]. **fishes** [SYI17, Yam16a]. **fishing** [TM14]. **Fission** [KOS13, LSY+10, SDPC11, Wu14]. **Fission-fusion** [KOS13]. **Fit** [PBRW11, Bal13, TMF17]. **Fitness** [CBBO16, CS18, WSW10, AH12b, AIY16, Arc13, CAV16, CGB13, FSW+16, FLG10, FLA+19, Gra15, Han17, HTN14, Ks14, LSM17, LgH+15, LPH19, LpF11, Mr11, Mv17, MPN12, NvD17, NsK+13, OWB14, PK16, PBB+15b, PTNKT11, SY17, Tay13, TGL15, TDKJ15, WMD+11, WSP14, vV18]. **fitness-based** [LPH19]. **fittest** [SBJ13, ZZC10]. **Fitting** [RRRTR10, BPC15, TZ13]. **Fitzhugh** [CHL+19]. **five** [KF15, ZNA+16]. fix [DDR13]. **Fixation** [AM11, CW15c, CS18, HT10, JLH15a, LW14, FLGe+16a, Gre15, Jam16a, Kii19, Mon18, SW17, Wax11a]. fixed [AR13, MB18a, WSW10]. **flagella** [Ish16]. **flagellar** [NS18, OSF11]. **flagellum** [CL10]. **flap** [MHSH12, Sac15, Ush16]. **flap-gliding** [MHSH12, Sac15, Ush16]. **flare** [vdBD10]. **flare-ups** [vdBD10]. **Flat** [BFGAG16, HTM16, RW14b]. flatness [SW15]. **flavin** [LT14]. flavin-containing [LT14]. flavonoid [MR18, MR19]. **flavor** [dLMD+11]. **flavour** [dLF+14, dLVM+10]. Fleeing [Coo16]. flexibility [Cza14, GRCdL16, TED10, TvMG16, WZ1Y11, YX15]. flexible [BUC14, FCS18, Ios16, WGH+14]. flexural [THBM10]. flies [GWCA14]. **Flight** [SW18, FH10a, FH10b, FH14, GAL11b, LS14a, LS19, MHS12, Sac13, Sac15, SW13a, TB11, Ush16, XS13]. **flights** [EPP19, Han12, RPCW18, TA15]. **FLN** [JAM18]. floating [RDD14, STI13]. floating-leaved [STI13]. flock [ZVM10]. **flora** [ISM+11, YSL18]. **floral** [CPP18, FLAB18, FH13a, TGB+18]. **Florida** [CBC+18]. Florigen [SSI+16]. Flow [FRTP13, LMD11, STKE12, AV19, ABR11, Cab18, CPS19, CR19, CKD11, Don17, EBP15, GDF17, GDF18, GSL13, HWM+16, HT13, JBSF12, KSb1+12, KTT+19, LMM+13, LLL14, LC18, LDB+14, MYK17, Mig16, OBK+11, P110, SM16, Str13, TKT18, TAB+13, VV12, Zad11, ZG19]. **flow-assistance** [KSb1+12]. **flowed** [LMD11]. flow [Abb10, SCsABM10, SCABM11]. flowering [MYN+13, MYN+15, MBL17, PPT+16, TIS10]. **flows** [MGML10, PCT11, PCT19, Pan19, SAG18]. flu [LC17]. flu-like [LC17]. **Fluctuating** [RRUJ19, DS18, Del12, FB18b, HD11, LCD15, Mar19, NR14, PEW18, SMG18, SM10b]. **Fluctuation** [BGL10, AC12, Lei09, Lei10, Zhe16]. fluctuations [DDP12, HMM16, JRG14a, JRG14b, JRG14c, KMM16, MLCH11, MK17, NS18, PB10a, STA15, SGD12, TLR14, VDD12, WTC16, YST14]. **Fluid** [WO11, ASH15, AABS16, ABR11, BJW15, DS16, DFG+18b, GTB10,
frequency-dependent [ZW16], frequent [CDC18], fresh [Kri11, MFM16, Ros15], freshwater [PLF19], friction [WL13, HB16a, KC13, MLMG15], friction-based [WL13], friend [TCW14], frigatebirds [SW18], frog [LO15, RP18], frogs [JB11], Front [Fra16, HSD11, Han12, dRF115, ZUFM17], fronts [MSM14, MLCH11], FRS [Ano19-52], fructose [Bar19], fruit [AKdV14, GAL11b], fruiting [SSS17], frustration [HKH18], FtsZ [Sht17, YRMWT19], Fu [WZM19], Fu-SulfPred [WZM19], fuel [KK15], function [Kae17, TAORS10, BMM14, RN12], functionally [SHN12], functioning [AOT11], functions [AGB14, AFM10, ARD14, DGMY18, DHT19, DBG18, HK17b, MR15, MP16, PLF19, SKSO12, WSRG18, YSI17, ZSL16a, ZSL16b], Fundamental [Gra18, HTT19, LLG16, LE19, OGE10, Di 18, Di 19c, Esc11, vV18], fundamentals [TF16], funds [SU11], Fungal [NC15, Bos12, CWM11, CBT18, DEK15, DTP19, EBSW17, VBVD17, WCM15, YLY15], fungi [BMN16, DQY15, LTS16], fungi-warming [KTO14], fungus [APS13, APBS15, GS13b, KCMF11], Further [BD10b, HFD17, Jam11, FLM18, JV14], Fusarium [WMD16], Fusing [WZM19, HK11a, TWC19, YGL10], Fusion [LCTG15, DFG15, EBSW17, GPDS18, KOS13, LS11a, Pel18, Rad16, SW13b, YMW12, YC15, ZMS11], fusions [MK16a], Fussy [Cro19], futile cycle-associated [OABI12], future [BM12, IS10, Kir11], fuzzy [BKR14, GKNT10, GJ15b, HZWH10, JCG16, JW18, MGM13b].

G [BMF18, BPLM12, CHN15, HPML18, PBBB10, ZLM12, DHB15, Do119, Ken19, KB10a], G-CSF [BPLM12, CHN15, ZLM12], G-Protein [Ken19], G-protein-coupled [HPML18, PBBB10], G-Protein/Receptor [Ken19], G-quadruplex [DHB15, Do119], G1661A [ACM16], G2 [KBE13], G2019S [ADS19], G4Catchall [Do119], G6PD [CB13a], GA [DCL18], GABA [MBE11], Gaia [AN17, Doo17, NWWL18], gain [ASH15, BCK19, LvdBP12, SW18], Gains [PLN14], gait.
gaits [Ush16]. GAL [AM12]. galactolipid [MB14].

galactose [MMK16]. galectin [GBN14]. galls [Yam16b].

galvanotaxis [SKGM19]. galls [Yam16b]. GAL [AM12].

[STJG12, WHHS15]. Game [AS12, DB19, HHS+10, TWB16, Abb10, AOR17, Ayd18, BBR12, BMdA17, BB10, CNZ12, Che12, CWW18, CSZT12, CK19, CB10c, DH16, DMO+17, DN18, HFT+18, HS14b, IMM16, IRS11, IK16, JLQ+19, JC16, KNT10, Kon11c, LLZ13, LPH18, LPvSP11, LPvSP12, MI19, MGS16, NIiT18b, NIiT18, NIiT19, OMi17b, PEW18, QMJW15, Ram10, RN12, ROF17, RSH19, RC11, Ros10a, RM17d, HMS17, SSM15, Shi19, SGA+12, SN18, SSBG19, SCS10, TT19, XSL16, ZAM19, ZGL14, ZKL16, ZLY+17, ZWG10, dMP11, PS12].

game-theoretic [DH16, MGS16, WHYMG17, ZMAM19]. game-theoretical [SMS17].

Game [AN15, Fis16b, KVN16, LSDI15, LJI17, SKSRW16, ATT15, FN16, KVN16, LDI15, LJI17, ŠKSRW16, ATTN12, ATG12, Arc16, AS16, BR12b, CLA17, CZE14, CK19, DRRP13, DHK13, FTS15, FNH10, Gami11a, GCM17a, GT11b, GC11, Has14, Has14, Hau10, HI12, HSM19, HWTN15, IM18, IOY15, Jan15, JOAN14, JSF+11, JR17b, KC17, KG18, Kuc18, Kus18, LGT15, LKP15a, LKP15b, LRGA13, LMo10, MV18, MB19, NOS17, NCN13, Oht10, PIPB10, PLN14, PG+15, PLa10, SHN12, SS12b, Tay13, TR12, U110, VNS18, XWZ10, YHZ14, ZCC10, ZCW13, ZLC16, ZZC17, vVN12].

gamma [Gol16, HYN19].

gangliogenesis [HJLNZ11].

Ganti [HS16, CB15, Gri15a, Sza15b]. Gantian [GJ15a].

gap [For10, JCG15, KPD18, MA+17, PAA11, SGGM11].

garden [KCMF11].

gas [GT15, REC10].

gastric [OSV+16, PRN10, SXL+19].

gastrocnemius [CSB15, ZPM+15].

gastrointestinal [PPC+17, PBS+12].

gastropod [Nos14, NSS16].

gastropods [IU14].

gastrulation [YM14].

gate [Zha10b].

gated [Bec14, PDG17].

gating [FIS11, FIS16a, LD1K11, ZCA+14].

gause [Kri11, KP15, LJ18].

gaussian [BMI19, CK17, Goli10a, LG+15, MKBE17a, MKRE18, PPT+16, ZMS17].

gaussian-distributed [LCG+15].

gC [KB11].
gC-rich [KB11].

gCP II [NRS+16].

gDNA [pZW+16].
gDNA-Prot [pZW+16].

gED [LJM15].

gerese [MPHJ13].

gel [FKMP10, HHA17, RVZ14].

gels [Kro10, SNC+17, SAB15].

gender [DBBM11, FS12].

gender-specific [DBBM11].

gene [Hua12, OHWS18, YLF+17, ZT16, ACM16, AD15, AKR+18, AB10].

AGS18, BRA15, BRG+12, BPP+12, Bar18, BS+13, bCR19, DGD19, D114, DTY12, E17, EA17, FXML18, G16, Gin10, GHBC14, Goli16, GMBK14, Gni15b, GCJ16, HNV+16, HTM16, HXL14, HXL18a, HGA15, HgL+10, HZL+11, HK16, HIP19, II17, JP15, JOM16, JYY+18, JSF+11, JK12, KSP18, KF11, KII19, LJM15, LWH+11, Lei09, Lei10, LXS15, LL+17, LDH+14, MT1K11, MC16a, MMC19a, MH11, MBE10, MPP+16a, MH12, MYK17, MHD18, NMS10, Orr19, Ots11, PAOM17, PPBD10, PWH+13, PS13, PP12, PMP13, PLZ14, Pol12, PKH11, P2K10, RMM+16b, RLM+14, RT15, RRU19, Sak10, SCAB10, SCAB11, SSS13, SMC17, SLHS13, SLS17, Van17b, WOB15, WMK13, WH14, WM17, XSKA17,

General [MA11a, WZM19, AFS19, AH19, BMN16, BDR10, BR12b, CL13a, CCY+19, CXC18, CT18b, CjPD11, DHS+15, FL12, FL13, FLW16, FM10, GML10, HN19, HYA14, HKR+19, JLY+12, JYZ18, JD16b, JD17, JCG15, JCG16, KFB18, KHK17, KZL14, Kri6, Kri18, LZ18, MFZ18, MZ18, MDM+10, MK16b, NBL14, Non10, QLC+18, RSCW18, SRS+15, SM17a, SM18, SR10, SRV11, STG19, SKK18, WMK13, XSLZ16, YGI12, YFB+12, ZCAB17, ZLZ+16]. generalised [BSB14].

geners [CNL14, Oht12]. generative [BBP13, Hal16]. generator [PRK13]. generic [JMZ13]. generosity [FZW17]. genes [ADCG14, All17, AGM11, BRA15, BKC+16, Di 12, Di 14b, FP18, GXFF13, GLZ+11, GRL+14, KB10a, KB11, LG17, LZG+19, Mic15b, Ots11, Sek12, Sel12b, Sel12a, Sel13, SL12, TDZ+18, TR12, YLC16, YC15, YCR+15, Zab11, ZLZ+16, ZLB13, ZSW+14, ZXS+19].

genesis [BYB18]. Genetic [DXW+16, GWW+18, HLTR19, LS13b, ZZ+X+16, ABA11, AK6, BmdA17, BM11, BWM+19, Boz15, CRLH+19, CC10, COG19, CL11, CKF17, CVO+15, DKF+18, DS19b, Deu18, Di 13a, Di 14a, DMCP14, Di 16, Di 17a, Di 17b, FD18, FRP14, FDLS10, Fra19b, GKT10, GE18, Gon13, GJS+10, Grl15b, HL14, HG18b, HCS+19, Ish16, IU10, Kaml11, KA17, LR16,Len14, LMW+10, LT14, LPTR14, wLL10, Mas16, Mic14, Mic15a, Nem17, NMI18, NdORC11, pNMK+10, OM10, OCHHZ12, PMYHR12, Rog19, Rou14, SM10a, Sel12b, SLL18, Tal12, UT17, Voh17, WPA17, Wax11b, WZY14, Woh15, ZW16].
genetic-metabolic [COG19]. genetically [DROC11, GRB+13]. genetics [AM14, BSKV18, CM14, Mau15, NGS+16, SL12, ZLW16]. Genome [ABP+11, CW11b, HHJR11, MZWC10, TDZ+18, ABG+13, BYY+11, BLZ+19, BKC+16, EMS+12, HZLX11, HMM11, KEHK17, Lii11, LZL+17, MBKBE17a, MKBE17b, MKRE18, MSIR10, QLZQ11, TLY+19, WRWX19, YT12, YZFY16, YY15, YHY14, Zha15]. genome-scale [FMS+12].

Genome-wide [TDZ+18, MBKBE17a, MBKBE17b, MKRE18]. genomes [EM16, FS15a, FS16a, GRRG16, HTH19, KEHK17, LLW15, LY14, QW11, SM11b, YCR+15]. genomewide [ZK10b]. Genomic [Sel15b, SSCJ16, AD16, CL17b, DCS14, dOGL10, dOGL13, JYZ18, MPS+11, SVSP15, TLY+19]. genomics [GTS15, SPSM15]. genotype [AGM11, Bec14, IMA14, IMA16].
genotype-phenotype [Bec14, IMA14, IMA16]. genotype-to-fitness [NvD17]. genotypes [MKBE17a, MKBE17b, Mou12b, SS11, TTP17]. genus [NNK+15, WSTL16].

geodesic [VPFV13]. Geometric [NSS16, Tou14, GZY12, Nos14, PW+12, PW11, RG18, SGB12, TKKE19, Ush16, WY13].
glomerulus [ML11a]. glossal [ZWY15]. glucocorticoid [BSC+18, MZMM+14]. glucocorticoid-induced [MZMM+14]. Glucose [BD10a, MKMG+14, RBSD10, BAGG14, CTW10, GdGL17, HBA17, KSU+18, KTI18, LPGTBMA19, LLB+18, QF10, SW13b, SW19, WCHC11].
glycolytic [STNT17]. glycoprotein [DLM+19, JB19a].

GGC14, GSGV11, GBC^{+16}, GMM15, GM16b, HHJR11, HLI15, HII^{+19}, HWW^{+14}, HKB10, HXL18b, HKH18, Jam12, KSA16, KKUM10, KLM14, KDFM14, KCJ^{+11}, LPGTBA19, Li11, LXZQ14, LZL^{+17}, LZG^{+19}, LTP19, LTZ19, LT14, LGGR^{+12}, LDF11b, MIJ16, MV10, MS16, MA11a, Meh17, MPS^{+11}, MTLW^{+10}, NH12, NTE^{+19}, NNH^{+16}, NI19, PRSC11, PVGV19, PRM12, RLW^{+14}, RKM12, RS14a, RSD^{+13}, Ros10a, SGL10, Sel13, Sel15b, SSFG15, SSB^{+15}, SCF^{+18}, SDK11, Sue12, SCT12, TKK14, TH12a, WMK15, Zha11, Zha15, ZJSC16]. human-dominated [SCF^{+18}]. human-protein [WMK15].

Humans [Flo11, AOR17, BD10b, BK10, LWLM18, Sch14, TR17, WVO^{+15}].

humidity [AK11, KMM18, UD10].

humile [vTMW15].

hummingbirds [SYR11].

Humans [Flo11, AOR17, BD10b, BVK10, LWLM18, Sch14, TR17, WVO^{+15}]. Humming [AH17, CR14, Cro19, HH10, RW15b].

Hunting [AH17, CR14, Cro19, HH10, RW15b].

Huxley [CPGF^{+16}, GL12b, MZM^{+16}, MAS15b, WSCL14].

Huxleyi [HWGT15a, HWGT15b, HWGT17].

Hybrid [CLCH10, FKV19, GE18, TZ13, AV19, AMBH^{+13}, AH16, BCPG18, BCS^{+16}, FKB^{+12}, GZFX14, HTK14, IGL^{+12}, JL16, KMMS17, KRR14, Kri16, LHH12, MEKK11, MK14d, NHSX14, PHA^{+17}, PGHC12, RBKW19, ZZG^{+16}].

hybridization [BJOS13, Sel16].

hybridizing [HK12].

Hydra [Cor16, DK15].

hydrating [MHH13].

Hydration [LCG12, ØW16].

hydration-dependent [ØW16].

Hydraulic [Che16, KFG^{+14}, KC14, LS15].

hydraulics [RHS14b, RHS14a].

hydrocarbons [KK15].

hydrocephalic [MA11a].

hydrocephalus [MAMEA15].

hydrochloride [PRM11].

hydrochloride-induced [PRM11].

Hydrodynamic [CMBP19, GI10, Ish16, SKSO12, WWIG19].

Hydrodynamics [DS16, TTTW13, ICG16, NAK^{+11}, OSF11, RVA^{+11}].

Hydrogen [GY19, GZY12, Kun16, LF10, WJL^{+16}, vLFM^{+19}].

hydrogen-methanogen [WJL^{+16}].

hydrogenotrophic [LWvB^{+19}].

hydrolyase [KJM17].

hydrology [Urs14].

hydromechanical [KC14, MAMEA15].

hydrophobic [FWSG17].

hydrophobility [BKR14].

hydrostatic [NHE^{+16}].

hydrothermal [Dai12].

hyemale [KSRN19].

hyper [AY15, AANF16, PDT^{+10}, QF10].

hyper-responsiveness [PDT^{+10}].

hyper-synchronized [AANF16].

hyperactivated [OSF11, SOCF14].

hyperactivation [CKBCG12].

hyparerac [MT14].

Hyperchaos [BA19].

hypercycles [GFS15].

hyperemia [WHS^{+13}].

hyperglycemia [SAI14].

hyperglycinemia [Sat18].

hypergraph [CPH^{+14}].

hypernetwork [PCC16].

hyperpredation [BH12].

hypersecretion [Goe15].

hypersensitive [ZZC^{+17}].

hypertension [JSK16].

hypertrophic [MCL^{+11}].

hypertrophy [CAGM^{+17}].

hypervariability [VBHM^{+13}].

hypophae [DEK15, YLY15].

Hydropicranotus [SKSO12].

hydropuffation [MM19].

hypoglycemic [QF10].

Hyopredation [BH12].

hypostome [SKSO12].

Hypotheses [Jam12, CS11b, JZZK11].

Hypothesis [BC15, BTK14, Fre10, GK16, Jam15, Kur14, All17, GA13, GU13, HD17, Jam11, Jam14, Mal15, Mal10, PRH^{+11}, RGL^{+17}, Rou14, SAG19, SDJ^{+15}, SPH12, TIMI^{+15}, WZ12, ZP11].

hyopxia [BB19, HLVR16, KK18, SH17].

hypoxia-regulated [BB19].

hysteresis
VAG16, WDH+11, WCM15, YCH+17a, YCH+17b, d'O12].

influenza [BTW11, CW15b, DD18, DGD+11, HHE19, KLI17, KJ19, Lan16, LCC10, LCC12, LKK13, L15, LC18, LFB+16, MDE11, MZA18, MMP13, N11, OAS10, OS13, PGGvL+19, PBB+15b, PMKS+15, SY11, TLT+15, TGZF11, TC12, UD10, WDH+19, YCH+17a, YCH+17b, vNÁBG12, FHS+14, XSTW14].

influenza-infected [LFB+16]. influenza-like [vN´ABG12]. influenzae [DMM+14, KM15]. influx [SOBC12]. Information [Bar18, MBE10, MWSM13, Mau15, PEW18, Wal16, ACT12, BORA10, BBD18, BP16, CC1b, CWW18, CDM+14, CB16, FL13, FLW16, FRP14, GSF13, GGX+10, KOS13, KZL14, Kri16, KRSD11, KST17, KA17, Kuz19, LSO13, LTSTD15, LL12, LL18, LJ10, LLJ18, LPH18, MK14b, MS12a, MRPLAS15, MP12, Mit14, Nem17, NG14, NHM10, Pia19, RMB15, SN16, SSCJ16, STG19, SLO10, TP10b, WSH10, WYX+17, WHT17, WZ12, WLY+17, Wul11, XLL+10, YZ19, ZP11, ZCAB17, ZZK14].

CB10a, DBG18, FLM18, FGPR10, FIJJ11, GWBL12, GSRR17, GMZM15, GAGP$^{+14}$, GL14, GN15, GMBI11, Gün12, Gün13, HMMSRSD15, HB13a, HYQ$^{+16}$, IBB$^{+15}$, Ing16, JB18a, JLX$^{+15}$, JLQ$^{+19}$, JA13, KA11, Kur10, Lai18, LDH$^{+12}$, LW15, LCL14, MCL19, MRF19, MGGM10b, MALAN17, MBB14, NKB16a, NTOI16, OW16, OMO13, PCN17, RZ16, RTEKG12, RTEKG19a, RR12, RM13, SK19, SMS17, SFMS16, SLO10, TBQG14, Tay16b, TWC$^{+19}$, WRZ$^{+12}$, WYL$^{+19}$, WLY$^{+17}$, WGC13, WHL13, WFW19, YYC19, YC13, ZJS11, ZCAB17, ZPHS11, ZZ18, ZRGW19, ZLW18, ZK10b, vLSBBD11.

lectins [OSV+16]. left
left-handed [She11b]. left-hand [LE19].
left-hand [DPCM16, Gra18, LE19, She11b, SWSLMJ19]. leg
leg [BAM+15, BBJDS11, SS15b, SS15c, SS18]. legacy [O’M17]. Legal
[RFME+12]. legged [MS14b]. legs [ARB13]. Leishmania
leishmaniasis [SYSF17]. Leishmania
[DJD10, SMJS14, WWIG19]. leishmaniasis [SYSF17]. Lempel
[HYY14, ZLY14]. lend [CT14b]. Length
[SH16, AJC12, ABD+11, Don13, EBX17, GSV11, IST11, Kee10, LSC+18, MZWC10, MR10, Don12, Por13, RG18, SCLC13, TSB10, THBM10, WC10]. length-biomass [MR10]. length-dependent [GSV11, THBM10]. lengths
[CS15a, JB18a, POLT12, SS12a, TSB10, YW13a]. lens [SSLB15]. lentiviruses [VCF+19]. leptin [CVPCV+15, KSU+18]. lesion [KDM13]. less
[HII+19, MG17]. Lessons
[TXY+12, Tjo10, AK15, CEJLSG+16, PGGvL+19]. lethal [Bon10]. lethality [TMM10]. Letter
[ARD12, JN14, JAHK12, Kir11, gSxFH+12]. leukaemia [CMS16, SBM+19]. leukaemia [KEG17, NSF+10, ZCT18]. leukocyte [GMN18]. level [AHJ18b, ANY14, BB13, GBRS19, HBW+11, JCG15, KB10a, Kon12, MN11, NBBCC18, NWZ15, NBW11, PDB+16, PNP+16, RRC+11, SC10a, SL10, SSC11, SFD12, SP16, SBSE14, WSTL16, XGZ17, YG18, vLSBBD11]. levels
[FGLS10, Jam14, Jam15, TM12, YST14]. Levy
[EPP19, BC15, CHL+19, Han12, HS14c, Rey13, RSC14, RPCW18, TA15]. LGT
[SMC17]. L’Homme [LCCB11]. Lie [SFSJ12, Sum13]. Liebig
[GVC12]. Life
[BWB11, BDE+14, CBC17, DBB14a, SSD12, Tox19, Baut18, BZA16, BI10, BBBD13, BHLH12, CLG+10, CLG+11, Chu10, Coo16, Dai12, Di 19b, Di 19c, Do16, DMSW10, Fil10, GS13a, GS14, Grit15a, Han10, HIT18, JMN13, KMH19, LCCB11, LG12, MCN10, MP13a, Mau15, MTL10, NNH+16, Nik15, NNK10, OT13, Pia19, PDB11, RBBR15, RVP19, RR15, Sat10, SMG18, Tox17, TRJD19, VW10, WSK+19, XSMF12, YYST13, tBdR18]. life-course
[BBDB13]. cycle [LG12, MTL10, XSMF12]. Life-history
[BDE+14, PBD11, SMG18, TRJD19]. life-Symmetry [RVP19]. Lifelong
[AES+13, AOT+11, ABK+12, CHH10, DQY+15, DZE11, FPG11, KFG15, KS14, LC17, LFM11, Mas14, RGP13, SSKK17, VPAGD+14, vNABG12]. like-minded [Mas14]. likelihood
[BFLS17, GFH19, HC17, LSC+18, MKF+14, SENS+17, SC10c, UAL10, WZ15].
[GS11, BH12, FE11, GMMGVD12, LHD+17, MP16]. Limited
[Chu17, CNDK15, HKM12, IH17, BBD18, HWGW18, Jab10, KFA12, KST17, Lar16, LCCC10, MS14c, SSVdM10, SI19, SYSM11, TGB+18, YSYI13]. Limiter [SSD13, FH13b]. Limiting
[AGM11, LSD13, MPS16, SY17, DK13a, RC11, Sch14]. limits
[BL15a, Chu18, HM11a, Par19, Sch18, TDW16, Zab11]. line
[OO16, cSGFB17, Voe18, ZBA18]. line-associated [Voe18]. lineage
[bCRS17, CNL14, Di 14b, LWH+11, SSKS18, WML16]. lineages
[RJSC18, SS15d, YAK17, YSYI13]. Linear
[CCF+14, YW13a, ACdlRMR+11, BCF16b, COG19, CZW+11, Das18, JAHKH12, JRG14a, JRG14b, JRG14c, KMD+12, KCJ+11, LCHS14, LT14, MI19, MPT19, NSKO18, Pav14, PHPM18, SRD+15, SKF16, SG15b, TGB+18, Van17b, VLFF12, WRH+16]. linearized [LZWK11]. Linepithema
[vTMW15]. lines
[DBBW09, DBBW11, DKP+18, FLM18, TKK14, TW13]. linguistic
[MPS+11]. Link
[DPCM16, EB15, BC13, CNL14, FKK14, RBRB15, RBRB16, TK10c]. linkage
[Gar14, Has14, ITO16, JAM18, RR ´UJ19, SKH17]. linked
[AKR+18, AGM11, BUC14, BT14, FKK14, GGM12, Sek12]. linker
[HHF11]. Linking
[CML11, Mor16, PMID+18, GHS18, HS14a, LHD+17, PVB+10]. links
[CZJQ14, WSP14]. lion [LLL11]. lipid
[BMSEE14, FBM19, SH11a, ZWvG10]. lipid-structured [FBM19]. lipids
[LLK14, AdSG14, WBB+18]. Liquid-intake [LLK14]. liquor [WSST19]. linkage
[Gar14, Has14, ITO16, JAM18, RRUJ19, SKH17]. linked
[AKR+18, AGM11, BUC14, BT14, FKK14, GGM12, Sek12]. linker
[HHF11]. Linking
[CML11, Mor16, PMID+18, GHS18, HS14a, LHD+17, PVB+10]. links
[CZJQ14, WSP14]. liver
[BDTR15, BRN15, BHO+18, CLHB11, CMR+18, LHW14, LLB+18, OBA11, SSR+19, ZXS+19]. livers [OABI12]. livestock
[Cha18]. living
[BL15a, BCPM+16, GKW17, NO18, SA17]. load
[MS19, OM13, VMZK+19, WML+17]. loaded [She10, SGB12]. loading
[JBSFB12, KTT+19, LCA+15, MYK+11, Mil16, RS12, TKTB18, WYL+18]. loads
[DPRSS11]. lobule [DLL+18]. Loc [WMK14]. Local
[AT10, CJKR10, MKJS13, NT14, OO17a, TGL15, ATRR10, BGM+97, BBM+13a, BBM+13b, BBM+13c, BCPJ12, CBT18, CT18b, DL15a, FJG10, GWBL12, Gal11a, GWV+10, HB16a, IU18, LTP19, LPH18, LPH19, MH12, MGCL13, MMAS13, MDEKH13, PGLZ14, Soz13, Str11, TKK14, UI10, WSY+10, WGO+15, XLL+10, YK11, YZFY16, dBJ11]. localised [ABR11]. localization
[ABD+11, CXC18, DHS+15, DTY12, FKB13, iHIM12, HLS+12, LLW+18, LZG+19, Me12a, Me12b, Me13a, Me13b, SRD+15, SC10b, STG19, Sht17, SBJ+18, TGG14, USF+18, WMK14, WMK15, XWC11, ZL18a, ZD18].

[BCS+16, CFR+14]. manage [YTGW16]. management
[ACH18, ABR19, GL14, HYSG19, HF17, IL13, KKUM10, MM19, MA13, NNvdB17, NVA18, PFG11, RDM11, TB16, TTC10, TSL12, VCF+19].
Managing [KPG19, MGB17]. manganese [KBK16]. mange [BCF19].
manifold [Bro13, BBP13, TMF17]. manipulation
[AK13, Fer11, HXL18b, SK15]. manipulations [KMM18]. Many
[BWM+19, Bur19, CBB16, CD16, Ezo12, GT11b, Hay16, HG18b, LCHMP16].
many-player [GT11b]. map
[Gau11, HGM15, IM14, MGM13a, NvD17, OABB18, TWP16, WDL+13].
map-based [MGM13a]. MAP1B [KK17b]. MAPK [KFL12, ZG10c].
Mapping [BJJR10, DRC11, FK18, FWL11, KSM15, Mog15, SQQZ17].
maps [Bec14, FHI18, GMIK18, RNVP10]. MAPT [HRHAA15]. March
[IS17]. marginal [Di 17a]. marginally [Bro13].
margins [HBT13]. Margulis [CB17b, LP17, Sat17]. Marie
[AKR+18]. Marie-tooth [AKR+18]. marine
[KG13, MP13a, NMOs15, NNV10, TM14, Tak16, VAT18, YS13]. marital
[MMC19b, ZSW14]. marker [MKBE17a, MKBE17b, MKRE18, TF18].
markers [DQS+15, FMS10, Mor11, PHTP12, TAL12, WCC14]. market
[Ant13]. markets [Bar11, MLMG15, Ran12]. Markov
[BCFR10, CJKR10, CPGL+16, CSN14, FLKGD+14, HML11b, Jia16, LYF15, MC15b, RLFME12, RG15b, SFSJ12, Sum13, TSS16, UBP12, ZLW16].
Markovian [LJN13, ACT12, BBR16, LZR12, PHK15, Veg10]. marriage
[MON18]. Maspin [AMFR+16, AMB+13]. Mass
[FT12, Mac11, CCD12, Cro18, DBD17, EN15, HPP10, Hőh15, Hor11a, LLG16, LS18, MKBE17a, MK14c, PIBP10, POP12, SS10, WSRG18, Wohl15].
mass-extinction [Hőh15]. mass-recruiting [Cro18]. mast [TI13]. master
masu [HIT18]. matching [DAVG15, ESS19, MBB13, ZLS15b, ZLS16].
Mate [MM18, WSW10, BB18, CC11b, HL15, NT14, SL18, T12a, YK11].
mate-finding [BBB18]. material [CW11a, Fil15, GSF13]. Maternal
[FPD15, FGH+14, Fil15, Jam14, Jam15]. mates [SB13]. Mathematical
[ASC15, AOM19, AP17, AM12, ADR+11b, BCPM16, BB19, BHO+18, BJ18, CWN11, CDO17, CSBK15, CWB+17, CKB18, CSS+18, CSKZ19, CSKF10, CHN+15, CVDG10, DGN17, DBM+18, DPC15, DTGC14, FBC12, Fok12, FM13, FLJJ11, GT11a, GEL18, GBJ+11, GSS19, GMB11, GCY18, HK17b, HTM15, H18, HHE19, HBA17, IBB+15, It12, ItTIM15, KCMF11, KZMR18, KSS11, KL17, KddR18, KPE14, KSK+16, LF19, LBM16, LSN14, LM1F13, MOEdP16, MRF19, MVH11, MFL+18, MMK16, MSA+16, MTLW+10, NKB16a, NPM15, NTO16, PH13, PAl19, PRC15, PBSM19, PVGV19, PLD+17, RMM+16a, RZSRC19, RKM12, RGL+17, RBB+12,
SRK+12, SBM+16, SNY+17, SDT17, SBW11, SSM+18, Sht17, SD16, SMA11, SSR+19, SRH19, SW13b, SPL14, TLL+12, TRM+14, VHM+17, WVO+15, WCM15, YCL+17, ZARK19, ZLZ15a, ATK10, AHW13, ANGPB12, ABR19. mathematical [ANK10, ABH+11, AHMA+19, ABV19, Ano19-29, AHFA14, ALH16, ARM18, BRK16, BTR18, BCPL10, BPP+16, BBJ+10, BTH+13, BSM+14, BPS15, BTF19, BGD+13, BSR+11, BCF16b, Bue15, BMGC11a, BMGC11b, Bur19, CFS+19, CVH+10, CPW16, CPF+13, CCG+18, Che12, CWP+18, CKN+12, CTA18, CCAdS13, DG11, DL12a, DMP15, DLHS11, DHT16, DFG+18b, EPJ+09, EPJ+11, FBFM12, FKDW15, FBU11, FOWL11, GKM10, GLR+18, GA13, Ger16, GTC19, HL11, HH19, HHS15, HLVR16, HBA10, HGO+18, HGM+16, JMH+19, JSDEK14, KSS+18, KSP+14, KBE+13, KJ19, KHNM16, KFW12, KCS+15, KS16, KK18, LG18, LSH14, LSY+10, LX16, LZY+15, LLB+18, LDdA+13, LXLF14, LNRK11, MZ17, MM12, MT14, MGG10b, MYC12, MBBV14, MKMG+14, MBC+12b, MS12b, MSE+14, MF19, Mor10b. mathematical [Mor16, NS11, NH19, NS13, OPT15, OO11, PCT11, PCT19, Pan19, PDD16, PMK15, PL14a, PL14b, PDF18, PCS+18, PC10b, PMKS+15, POK+12, QJR+16, RM17a, RVZ14, RTR+13, RRBM12, RWW+15, REC10, RAF+14, RH19, RTEK12, RTEK19a, RSD+13, RB15, RBG+17, SGAM12, SBRS13, SBP13, SHK14, SXL+19, SPO+10, SK12a, SYSF17, SY11, SZ10, SW19, SHSR15, SH15, Tac10, TWTA+18, TDHC+18, TEY10, TAL19, TT17, TDM14, TK10c, VKKA12, WXWL12, Wod18, WBB+18, XYN15, YKO+16, ZCS+15, dSKBS10]. MATHT [SLW+18a].

[OOY16], MCF7 [DLM+19], McGehee [XF13], MDCK [HHA17], Mdm2 [El17, OAJK10, STX+11], meal [BSR14], mean [FLGGD+14, GSCS11, KTJ19, PDSP13, STLJ18, dCGSA16], mean-field [GSCS11, KTJ19, dCGSA16], meaningful [LDB+14, ZDF+12], meaning [WMT10], means [AGRR+15, JM12, QF10, RRRRSPTR16, SM10a, WMD+11], Measles [SGA+12, KN11, Lan16], measure [DLYZ11, FHW+10, HY16, Hua16, LXJ15, MK11, Mar17b, YW13b, YCY14], measured [PW18a], measurement [Han17, LLB+18], measurements [ADMR16, BPP+16, KBF18, METC12, SPMGR10], Measures [Orr19, ALH16, BERR19, DZW10, Est10, Gia13, HMM11, WSK+19], Measuring [DPRSS11, FSW+16, XTZ+13], Mechanical [LH13, MS18, MGC12, Ran12, WHWZ18, AA12, BSP18, BZL17, CPF+13, Cle18b, Fuc14, Fue15, GHS18, HGGCR13, IS17, Js12, KSSM11, Kue16, LHPF18, MBPS17, MGC15, PDL+17, RHJ11, SGAM12, SAB10, Tsd14, TIM+15, WBB+18, XWW+19, ZR16], Mechanicals [vDVFH+18, ABD+15, ATG12, BK19, DCL18, FPG11, Ing16, KBL15, Kro10, MN12, RS1+4a, SHB+17, SAGGB17, ST17b, WO11], mechanism [ADC19, ACD19, BZJ18, BL15b, CSKZ19, CW14, DGJ15, Di 16, DZEL11, FDL1b, GWW+18, HTM15, HMM16, HDZ+19, IK15, JLLQ+12, Kec10, KFS+13, KPS17, LCG12, MSN14, Mor10a, PJ13, Pat16, RG12, Slt17, SWSLMJ19, TGB+18, TB11, TWH+13, TSR10, TCYY+12, WK18b, XF13, XKCG15, YG18, ZWH+15, Zhou11], Mechanisms [HK14, JCW13, SYSM11, AGB+14, CCB11b, CMS16, Des18, DTF19, Eft13, GZX14, GT11a, GTS16, HS14a, JLI+15b, KMA10, KEG17, Kon17, LKO+17, MLK11, MZMM+14, NWWL18, PHBA11+16, Pat19, RDD14, SMBH10, SWK+19, SZ15a, SZ16, SGD+16, SH17, THC+11, TSP15, WDL+17, WBRH10], Mechanist [DDF+14, AR17, BSR14, BGF+14, CKZ+17, EHB10, GCSMMG+12, GGI12, JG14, KB19, NWB+10, OCN10, RG18, SL10, SAKG13, TW12, WJJ+16, YCB16, vLFM+19], mechano [MDD13], mechano-chemical [MDD13], mechanobiological [CAA11], mechanobiology [ZTK12], mechanochemical [HGB+13, MROS15, MHMM11, MAH12, SKH11], mechanomolecular [SK10], mechanosensation [KBL15], mechanosensitivity [KLN+12], Media [YTGW16, CFT11, CFGRB17, LLD+17, MBPS17, MBCM12], median [VACGF17], mediates [DHBS19], mediated [ATI12, ABV19, AN10, AES+13, AC12, BBW11, BIMC17, CB10a, DHO19, EBSW17, FMLM12, GS17b, GrII11, HDW+14, KRI9, LIL2, LG12, Mal10, MGGM10b, Mic11, MK17, MH18, MA10, NF14a, NKB16a, Pie12, RC11, RH19, SDT17, STN19a, SN16, SK12a, TSB+17, UAL10, VM12, WFW19, ZAL+19], mediates [Gar10, RG18, TK10a], mediating [LVLC18], mediators [CSDR15, GU13], medical [HWGW18, RCH14], Mediterranean [LG18], medium [FKMP10, Gou16, MDVT10, RTFP+17], medulla [PMP+16], medulloblastoma [KSP+14], meets [Ros10a], MEG [KA16], meiosis
metastatic [BH13c, CBGS18, HP16, WMN18]. methane [BGF14, vLFM19]. methanogen [WJL16]. methanogens [LWvB19].
methane [BGF14 + 14, vLFM19 + 19]. methanogen [WJL16 + 16]. methanogens [LWvB19 + 19].
method [BPM12, BTK15, CJ12b, CTPB10, DLYW13, DYQ14, lDsWM15, FHW10, FYZ15, GJ15b, IGLLL14, GGCI16, HAYA14, HLHY17, HYZ15, HZWH10, JZGNI1, Kha10, KGB13, Kon12, KK17b, LZZ17, LMY18, MMB18, NHS16, PBR17b, PP18, PPRC11, PWHW16, QQL10, QQJW13, QLWC19, RBMS17, RP18, SARA15, SMS19, SQS12, SQZ16, TLY19, TAB13, VACGF17, WTQL10, WYL19, WZ17, Wu14, WGH14, XGZ17, YG18, YC13, YC15, YDC13, ZTWL12, ZKHL16, ZZC17, ZDY11, ZK10b].
methodological [JPDP10].
Methods [GLR18, OBHS19, Boc12, DGW18, DEK15, Jab15, KOF14, KCD11a, LYZ18, MHS14, MHKA16, MSS10, PDB15, PWC12, Ros10b, RCD16, SCF12, SBB14, TMD14, WH14, WP17, XWW14, dLCSGA16].
methyladenosine [AH18, ZZN19]. methylation [BSB13, JCG15, KKD18, LZA19, MPMC12, PRN10, SQS12, TTC19, ZARK19].
methylcytosine [SIK18]. metric [GKNT10]. metrics [CA17].
methicillin [PDW10]. methicillin-resistant [PDW10]. methionine [VHM17].
methicillin [PDW10]. methicillin-resistant [PDW10]. methionine [VHM17].
method [BPM12, BTK15, CJ12b, CTPB10, DLYW13, DYQ14, lDsWM15, FHW10, FYZ15, GJ15b, IGLLL14, GGCI16, HAYA14, HLHY17, HYZ15, HZWH10, JZGNI1, Kha10, KGB13, Kon12, KK17b, LZZ17, LMY18, MMB18, NHS16, PBR17b, PP18, PPRC11, PWHW16, QQL10, QQJW13, QLWC19, RBMS17, RP18, SARA15, SMS19, SQS12, SQZ16, TLY19, TAB13, VACGF17, WTQL10, WYL19, WZ17, Wu14, WGH14, XGZ17, YG18, YC13, YC15, YDC13, ZTWL12, ZKHL16, ZZC17, ZDY11, ZK10b].
methodological [JPDP10].
Methods [GLR18, OBHS19, Boc12, DGW18, DEK15, Jab15, KOF14, KCD11a, LYZ18, MHS14, MHKA16, MSS10, PDB15, PWC12, Ros10b, RCD16, SCF12, SBB14, TMD14, WH14, WP17, XWW14, dLCSGA16].
methyladenosine [AH18, ZZN19]. methylation [BSB13, JCG15, KKD18, LZA19, MPMC12, PRN10, SQS12, TTC19, ZARK19].
methylcytosine [SIK18]. metric [GKNT10]. metrics [CA17].
methicillin [PDW10]. methicillin-resistant [PDW10]. methionine [VHM17].
metabolome [HI19]. microbiome [HI19]. microbiota [HI19].
microbicid [DBBM11]. microbiome [HI19]. microbiota [LPP19, MTLW10].
microchannels [SP13a]. microcircuits [RNN15].
microcirculation [LW14]. microcrack [POL12]. microCT [KSM15].
microdamage [SAB10]. microenvironment [CMHM19, CLA16, KL18].
microenvironment [CL14, CL19]. microevolutionary [SBJ18].
Microstructural [NF14a, PMD18]. Microstructurally [PMD18].
microtopographies [Alv19]. Microtubule
microtubule-based, microtubules

Microvascular, microvasculature, microvessels

Middle, mid-life

Milieu, milk

Mimicking, mimicry

Mineralization, Mineralization-driven

Minority

Mitochondria, mitochondrial, mitochondrion

Mitotrophic, mixotrophic

MlASSO, mLASSO-Hum
mobile [RW16, TA15]. mobility
[BV12, IH17, MAW12, MP13c, PTC13, SK11b, XTZ13]. mobilization
[SW13b]. modal [RSC14]. mode
[BI12, GL18b, KHH17, LD11, MZA119, RW15b, WSCLC14]. mode-locking
[WSLC14]. Model [ACH18, All11, BS15a, Das13, DP13b, FHS14, GCB17, KBV15, LKO17, LL14, LSLL13, MB18b, Mor10a, Mun12, NAK11, NF17, OA15, PVT12, RS11, RG12, SBR10, SG15, SS15f, TT17, WBRH10, ZKMB19, ACR17, ABB19, AAAV14, AV19, ACT12, AHD18, ABK11, ANH11, ATK10, AHW13, AJD11, AMBH13, AMFR16, ANGBP12, AB19, ABR11, AA12, AWRD15, ABH11, ABV19, ABJ12, AdiPLMZ13, AP13a, AM12, ABN15, AR17, AHAFA14, AHJ18b, AP13b, AN17, AOT11, ABK12, ASF15, Bac15, BTR18, BSB14, BPS19, Bal13, BBR16, BKR14, BP18, BB15, BFL18, BBJ10, BTH13, BTG15, BB13, BFR14, BF15, BGK17, BSV10, BJJR10, BBS18a, BBR10, BCF19, BKL15, BGF14, BHH911, BDID12, BSM14, BB10, BPS15, BHH14, BTF19, BM10, BSR11, BSS11, BCF16b, BSB13, BLS12]. model
[BR14, BMM14, BCPG18, BBRT12, BDR10, BJ17, BZ10, BC13, BMB18b, BPGS12a, BPGS12b, Bue15, BHSB11, BMGC11a, BMGC11b, BFGAGA16, BCS16, CHL19, CJKR10, CS11a, CCS15, CRGS18, CFM13, CVH10, CPW16, CN10, CTA15, CDO17, CKZ17, CC11a, CCB11a, CTJ10, CGV15, CMS19, CCG18, CC11b, CAGM17, CL17a, CFZ14, CN12a, CS11b, CK16, CHH10, CKD11, CBR15, CW15b, CWP18, CKB18, CH16, Che14, CKN12, CK15, CJL15, CTB18, CFF11, CMHM19, CN10, CN17, Cle16, CA17, CB16, CG14, CV19, CZPC18, CGRRGM16, CAA11, CMM11, CFR14, CMR18, Cro18, CMS16, CMGN17, CEKM19, CKS15, DFM14, DS15b, Dal17, DJD10, DDHM12, DS19a, DG11, DBW09, DBW11, DLD15, DH16, DAVS11, DGN17, DB19, DL12a, DAA17, Di13b, DROC11, DHP14, DCN13, Dim10, DGRB13]. model
[DPC15, DI10b, DDTL19, DDB10, DHRA10, DTP19, DLS11, DWG19, DDS13, DFG18, DBJ12, ESQ16, EG10, EBS11, EBHC10, ESW13, ESE15, EDP19, EPJ11, EJJ13, FD18, FIS11, FJS16a, FZ14, FS11a, FE10, FM15a, FKB12, FBFM12, FKW15, FBU11, Fok12, FLR14, FBM19, FRG13, FM18, Fra16, Fre10, GSRR17, GLR18, GCSP17, GLR17, GFH19, GCSSMG12, GJ11, GMOP12, GM19, GA13, GG19, Ger16, GTC19, GI10, GW13, GTB10, GW19a, GLO10, GdGL17, GAK10, Gol16, GCC14, GBJ11, GSI7b, GGG16, GC16, GMMN18, Grl15a, GT15, Grl11, GAV15, GJDC11, GSN11, GW12, GHS18, GWX17, GKG18, GM16, HGM15, HBK12, HMTA17, HT19, HB12a, HFT15, HD17, HP12, Han12, HNO18, HTK18, HKS16, HS14a, HLVR16, HGCCR13, HGB13, HM11b, HAS17, HBA10, HGO18, HWGT15a]. model
[HWT17, HS12, Hor11a, HDNB10, HB18, HT16, HPW13, HRR11, HHR19, HGM16, IBB15, ISZ18, IGL12, IS17, JAK19, JDPK15, Jab10, JMZ13, JB18a, JH19, Jen10, JSK16, JWS10, JSSZ12, JL16, JSP16, JMS18, JB11, JSDE14, JMK17, JCLS11, JK15, KS18, KS13, KA11,
KSK+11, KGJ12, KPG19, KCZ+19, KB15, Kar12, KP12, KHH10, KSP+14, KFB18, KBB11, KBE+13, KMA10, KHK15, KHK+17, KG15, KB19, KGK10, KRR14, KMC14, KLI17, KdlRJ18, KJ19, KCSB14, KNA+18, Kiu10, KPEK14, KTN+10, KSK+16, KEG17, KCS+15, KS16, KKG+14, Kon17, Kon11b, KFS+13, KSRN19, KL8, KCD11a, KCD11b, KA16, KF12, Kri11, KLB+16, KLHS17, KIT+16, KK17b, KF10, KC14, LLN+19, LPP+19, LF17, LPB17, LPB18, LSP+17, LWH+11, LFW+18, LF16, LP12a, LKK13, LJ15, LCI16, LCJ18, LM11, LPGTBMA19, LGMV14].

model [LDA13, LHW14, LHFM16, LFB+16, LF10, LMW+10, LSY+10, LWW14, LMYL15, LYG+15, LX16, LL18, LLP+19, KL13, LS14a, LZY+15, LLH+13, LAPK14, LTS+16, LMJ+16, LGR+12, LW10a, LW10b, LCT11, LW11, LWL+11, LZT12, LZT13, LO15, LHD+17, LJ18, LBZ18, LP12b, LMHF13, LLB+18, LSS+14, LHPF18, LDB+14, LC16, LXL14, LSG10, LSTD18, LNRK11, LB11, LHL+14, MCL19, MZ17, MOedP16, Mal17, MTr+16, MBE10, Mal10, MS13, MVGG18, MMMK10, MEKK11, MFMS+18, MGGM10b, MYC12, Mar12, MMAS13, MBPS17, MN11, MDEKH13, MBBV14, MTE15, MP13a, MB10, MAM16, MKMG+14, MPC12, MZAI19, MA11a, MSC10, Mic11, MFG14, MED12, MS12b, MKK16, MZE+14, Mog15, MGM13a, MGM13b, MGB17, MF19, BMC12, Mo12, MROS15, MAS15a, MAS15b, MS14d, MP13c, MKF+14, MKPV16, MML+16, MMEN11, MBB11, MR18, NItT18a, NItT18b, NItT18].

model [NS11, Nak12, NH19, NBS+13, NT14, NSO15, NKB16a, NKB16b, New11, NdIPZ10, NCA+18, NTED+19, NW11, NGL+10, NHS+16, NTO16, NHS+10, NBW+10, NBW10, NBW11, OFT15, OCN10, OO11, OSF11, OYO16, OL19, OTH11, OPS+19, Ou19, PAA11, PHH18, PBY18, PSS+10, PSS+13, PCT11, PCT19, PaCZ10, Pan19, Pat16, PR17, Pat19, PFJS15, PPW16, PRC15, PDR16, PG18a, PG18b, PBvdG10, PVL+11, PSS10, PMK15, PCBM12, PL14a, PL14b, PM12, PBB10, Pie12, PC10a, PDT+10, PBR17b, PCS+18, PTV19, PC10b, PW11, PW14, PG10, PL11, PHC12, PKH11, PP18, PP19, PP14, PAV10, POK+12, PD16, PS12, PP11, RCH14, RM17a, RV14, RSS+18, RTR+13, RRL+13, RLL+14, RGA+10, RRBM12, RPPG+19, RWW+15, REC10, RB13, RH19, RRC+11, RLS17, RA17, RB14, RPP16].

model [RTEKG12, RTEKG15, RTEKG19b, RTEKG19a, RC16, RSD+13, RG18, RBB+12, RRTR10, RRR15, RW15b, RPCW18, RKJ+11, RBQ17, RAR19, RCL16, RD17, RGB+17, Sac15, SMM15, SSD11a, SHG16, SRD+15, ST17a, SC10a, SW13a, SSS13, SGAM12, SEK+10, SGB19, SL10, SKF16, SI12, SSZ17, SY17, SCA13, SB13, SAB+19, SWD16, SBB13, SGL10, SCh17, SSvdM10, SN16, SFT14, SLML19, SI11b, SW17, SS14, SCS15, SHK14, She10, SR10, She1a, SRV11, gSzFX+12, SM219, SCF+12, SWK+19, Shi19, SGA+12, SFS13, SPO+10, SK10, SK12a, SGB12, SYSF17, SAB17, SSLB15, SGGay10, SY11, SOCF14, SZ18, SYR11, SMA11, SSM10, SOBC12, SSD11b, SSD12, SGL12, SDK11, SRH19, SWPC+16, SAD17, SKH11, SGW+18, SKD+10, SAKG13, SMMN11, SLC12, SH17, SDL+17, SB19, Str13, SHSR15, SL12].
model [SAZ+14, SNCM12, SA13, SCT12, ST17b, SM10b, Tac10, TTG19, TWTA+18, TM15b, TDHC+18, TXWW12, TZ13, TXCW15, Tay16a, TEY10, TDKJ15, TSS16, TR17, TW12, TT10a, TALC16, TGZF11, TDM14, Tre19, TSF+19, TF15, TCB13, TT10b, UPWK15, dRVFK+16, Van16b, VK10, VHI1a, VPGDP+14, Vaz10, VLFF12, Veg10, VG13, VM12, VB19a, VDR+14, Wd12, WW12b, WXWL12, WWY12, WPH+12, WJO+12, WML16, WTC16, WBM18, WL10, Wxl11b, WMD16, Wei12, WZY14, WVO+15, WMN18, WCF12, WCJ11, WD+19, WK12, Wol14, WLD+11, WCHC11, WHZ+17, WBB+18, WGDZ18, WYL+18, WHYMG17, XYN15, Xie11, Xie13a, Xie15, Xie18, XS13, XGZ17, XNW17, XSCS12, Yan10a, YZMY18, YGMT12, YZZ13, YWP13, YW13a, YZ+16, YG12, YD15, YCB16, YV15, YiTS19, YLH12, YKO+16, YBT+17, YLLL12, YMZ18, ZBA14, ZPdFJ19, ZCA+14, ZYJL18, ZK18, ZTT18, ZJY19, ZLZ+11].

Model-Based [ZKMB19, RG12, KBV11]. model-experiment [LGR+12]. model-free [BFJ+18]. Model-independent [Mun12]. modeled [KHRS10, MWSM13].

Modeling [ASC16, ARG19, AT12, AAGO+17, AMSSG16, ABA11, Alv18, Amo15, AN10, AES+13, AGGME18, AC12, AFD+17, BR16, BZCS10, BZL17, BVK10, BBS10, BGW15, BKPV15, CHD+10, CFT11, CB13a, Cha18, CTW10, CBC+18, CL18, CB10a, CSDR15, CT16, DE17, DNB12, DFS11, DFT+17, DBBM11, EA19, EBE10, EJ17, EJ19, EEHM18, EBE14, ESGA15, FGH+14, FKB+12, GWBL12, GML10, GSGV11, GKP13, GBN14, GMBK14, GPD18, Gon13, GLF+15, GSV16, GMS+13, GAY+11, HT18, HWGW18, HVM13, HH10, HBW+11, HR12, ITN+11, JO13, KBS+19, Kon12, KB10b, KST17, LRL+16, LCMC14, LGK+09, LGK+12, LW17, LC11, LLDW14, LH14, LXQ14, LGBT15, LA15, LS10c, LSB10, LL17b, MB14, MKRE18, NCLB16, NJ18, OAP14, ONO15, OB10, OVKL14, PNV18, PKL12, PRV+14, Rem15, RHJ11, RS14a, RRRRSPT16, SCL10].

Modeling [SP13a, SPRF13, SMZ+17, SER+12, TGLK19, TAI+18, TTB+18, TWH+13, TSB+17, TLK19, VP18, WZJ+13, WGC13, XCW+18, YS14, YM12, ZBA18, ZZR10, ZZR13, vTMW15, AMM16, ASC15, AOM19, AD15, ARG14, Ana11, BRK16, BCPL10, BPP+16, BSV+10, BZJP18, BTW11, BBP13, BJ18, CWM11, CLPZ14, CSR+05, CLCH10, CLA+16, CSKF10, CCAdS13, CTL+15, CvBF18, DLEMP19, DFG+18a, DHT19, DBM+18, DGB+11, DFM+19, EHvdK+13, FAF17, FSA15, FBK11, FHM18, FBC12, FPR10, FIJJ11, FKV19, GKM10, GTS15, GL18a, Giv10, GCO+11, GBJ+11, GS11, GSS19, GMB11, GCL18, Hal16, HB10, HCS+19, HWD+14, HM13, KCMF11, KDM13, KMZ18, KSSM11, KAPR12, KBV12, KKO+18, KIH16, KKK+10, KTH16, Kla10, KHH+17, KJT19, KMLT14, KPLT14, KK18, LF19, LBMG16, LL17a, LDB+14, MPJH13, MRF19].

modeling [MYK+11, MH11, MFM16, MFL+18, MBC+12b, MZMM+14, Moly8,
MAFB18, MMP13, MAH12, NPMM15, PAOMV17, PDF18, PBSM19, PZLF19, QJR+16, RMM+16a, RZRSRC19, RMM+16b, RM19, SRK+12, SBM+16, SK15, SNY+17, SHT17, SSJK18, SMG18, SRP16, SSM+18, SKPK17, SMJS14, Shl17, SR14, SKK+11, SW13b, SW19, SDPC11, SRAL12, SH15, ŠKSRW16, SPL14, TLL+12, TI12a, TCH14, TRM+14, TKTRB18, TC12, TA16, VIKKA12, VGPS18, VHM+17, VZB+15, WHERW18, Wh11, WCM15, XWW+19, YLWZ10, YCL+17, Zad11, ZGY11, ZLZ15a, ZXC+10, vLFM+19, ALD+11].

modelled [RG17].

Modelling [AKS+19, ASGE14, AKdV+14, AK11, ASL+18, BDTR15, BTO14, BTO15, BBWS+13, BJO+16, Bos12, BCPG18, BPCM10, PWE15, PGHC12, PSL+10, RGG12, RDS+12, RLM+14, SW11, SR12, SJSG13, TT19, TTT10, TBMM19, TDS12, TAB+13, VAG16, VBVD17, WPA17, WBMH12, WBM+15, YCH+17a, YCH+17b, ZLCH18, ZN18, ANK10, AP17, BVJE17, BB19, BCFR10].

Models [AK13, BERR19, FD11a, IKT13, K15, MGGGA11, OFB10, PWC+12, PSD+18, SCC11, SLM17, YRMWT19, dSRM15, APBS15, ACdIRM+11, AHJ+18a, Ala15, AKMP18, AD13, AHR10, AHMA+19, BSR14, BT17, BGL10, BSH19, BM11, BBI14, BCPM+16, BSKW16, BPR15, BPJP12, BKL14, BvLH14, BSC+18, CS14a, CAG13, COG19, Coh15b, CMRM13, CNG+12, Cor16, D1 19a, DM15, Dil14, DMP15, Dra19, DHT16, FJS+19, FLCS+15, FDM+11, FS16c, Gal10, GLZ+13, GFM+19, GKI3, GI15, GE18, GXFS13, GA14, GWW+10, GBI13, GGM15, Gr18, HSDL11, HHSA15, HSMCR19, HVL11, HHE19, HPML18, IMD16, JBSSB12, Jus11, Kae17, KFW12, KM19, KW10, KKYV18, KA15, Kri10, KGC18, KJ11b, KSPA17, KBF18, LS13a, LCSH14, LZA+19, LY11, LL13a, LJS14, LDdA+13, LW18, MR11a, MHC16, MBLV10, MKBE17b, MKRE18].
RFME+12, RGL+17, RB15, Ros13, SAA10, SE10, SMD+16, SBP13, SBK16, SFD12, Sim14, SG15b, SS12a, cSGFB17, SFSJ12, SBS17, Tal12, TA13, TZ13, TBA14, TF18, Tjo10, TAL19, TAORS10, TWP16, VC11, WL12a, WL12b, Wal18, Wod18, WA14, Yat14, ZARK19, ZLL17, Zha10b, ZLW14, ZLT+19, dACGA16, vDRT14, vE11, vVGSE12. Moderate [VMZK+19]. Modern [Flo11, BCPM+16, Dun11]. Modes [PGG+15, BMN16, EJ16, FLA+19, HY13, JYZ18, KZ14, LZ18, MVGGB18, MRS14, Opr10, PKZ12, RBMS17, SM17a, SK15, SGW+18, TCW14].

GVSLG16, HTK14, HHT +19, IS16, JCW13, KHX +19, KCZ +19, KRDJ15, KTJ19, LSSG10, MRPH17, MEKK11, MPBS17, MPC12, Mei12b, Mei13b, Mor19, MLL +16, NGJ +14, PLN14, PTKNT11, PBD13, SSG +19, Shi19, SFD12, SR12, SRS18, SH15, SL19, VBV10, WMK14, WMK16, XWC11, XW17, YCR +15, YZ19, ZSH +16, ZWW14, dLCGSA16. multi-agent [KTJ19].
multi-armed [Mor19]. Multi-class [JSZ12, KHX +19].
multi-compartment [MEKK11]. multi-compartmental [MPC12].
multi-copied [YCR +15]. multi-dimensional [IS16].
Multi-player [De 19, vVN12, PLN14]. multi-profile [HTK14].
multicellular [DFG +18a, Edl19, EPJ +09, EPJ +11, HNO18, HNA15, iTIM15, KUV +10, LC16, MFL +18, OKVN18, TDSM12, VH11a, Vel17].
multicellularity [KVN16, LSM17, TWB16]. Multiclass [GLLL14].
Multicopy [FS11b]. Multidimensional [RW15a, GM16b, HB18].
multifunctional [HAuR +18]. Multigame [Has14]. multigroup [CFF11].
multihost [PGKZ17]. multilayered [PCT11, PCT19, Pan19]. multilevel [FK18, GMC14, Luo14, PGG +15, SSM15, TGL15].
Multiparticle [Kon11a]. Multiphase [HB13b, PM13, MBPS17]. multiplayer [BR12b, GCS12, HTWN15, PBR17a, PGG +15].

network [SLT +18, SW19, Str15, TTC19, TK10b, VC11, WH14, WYL +19, WL19, WLY +17, WCC14, WAC14, XSKA17, XNW17, XSCS12, YZMY18, YWW +14, YWZ +16, YBH +19, YC13, YZ19, ZMAM19, ZOG14, ZSO16].

Network-based
[DQS +15, ZC14, BRA15, GSY10, ML09, ML12a, NKM +12, XSCS12].

networked [MAF +19]. networking [KAZ11, KAZ13, NLB14, XMC13].

Networks
[LS13b, AAGO +17, All11, AD13, AdGM12, Arc16, AGGME18, BTO15, BFS18, BZCS10, BLS17a, BB11b, Brot13, BR12b, BFLS17, CP14, COWA11, CST +12, CR19, DBD12, DTGD19, DG10a, EG10, EBP15, EB15, Est10, ER18, FKK14, FK16, FJS +19, Fer11, FMS +12, FVT16, FRTP13, FM18, FWR19, GS17a, GSCS11, GE18, GXF13, GCZ +12, GMM15, GM16b, GKM18, GJS +10, HBK2, HS15, Hal17, Hal16, HK17b, Hay16, HL14, HXL16, HXL18a, HB16b, HB10, HM10b, HBL10, HMW16, IMM16, IMA16, IS10, ISB +11, IU10, IvdSW16, IM10, JC16, JCW13, JKS15, KMD +12, KS19, KSP18, KR15, KTH16, Kon11c, KKK12, KS10, KYY18, KsUS10, KJ11b, LLS10, LMC14, LH +11, LR16, LS14b, LCL14, LLJ18, LMJ +18, LC10, LT11, MC16a, MCMA19a, MK11, MT14, MBLV10, MC19, MTE15, Mig16].

networks [MGC13, MJC +11, MdSPBL16, MS10b, MFKS13, MF15, MS12c, MLBA12, MLA13, MR15, MBRR19, ML11b, NSS +11, NGN13, NW10, NMS10, OYY16, Opr10, PAOMV17, PSJ15, PPM12, PPM13, PGKZ17, PMYHR12, PP12, PP14, QZ14, RA10, Ric19, RFME +12, RBHK14, RLSN14, SAA10, SSD11a, SW16, SHN12, SSZB15, SP13a, SBP13, SMC17, SVB +10, SW10T16, SSH +19, SNC12, SBK16, SHM +18, SCKL15, SMC +13, SHS13, SAZ +14, TLT15, TP10c, TM16, TLK19, VPDP +14, VNS18, WOB15, WcW14, WHT17, WMCL18, WM17, WB19, WDN +19, WL15, WL12c, WMT10, XLSF19, YIS +17, YSH +14, YAK17, YA14, YS11, ZZZ10, ZG10a, ZG10b, ZGW14, ZYL18, ZHC10, ZCFX13]. Neural [BMSEE14, FHR13, FR13b, FR14, GMM15, KAZ11, RFME +12, Rob11, Sch19c, SST19, AJC12, AANF16, BF13, FIS11, FIS16a, GXF13, GM16b, GKM18, KAZ13, KHK15, KA16, LFZN11, LCMC14, MPL16, MG13b, MvAKR17, Opr10, PM14, PMKM10, RS14a, SX12, TTC19, Tay16a, Wai16, WYL +19, YM14, YC13].

Neuraminidase [DGD +11, TLT +15, YNY +10]. neurite [vE11].

neurocranium [GA13, VDH +15]. neurogenesis [BFR14, SB19, TSB +17].

Neuroid [TTG19]. neurological [Sat18]. neuromorphological [GMK18].

Neuromyelitis [LSP +17]. neuron [GMM15, GL12b, IB +15, RMM +16a, RNN15, Thu15, WSLC14, WGC13]. neuronal [ABJ12, BB11b, CP14, CTJ10, DHT16, FW15, Fer11, KAZ11,
KTN\(^{+10}\), LL13b, Pat16, SHG16, ZMAM19. Neurons [GMM15, ZMAM19, BPF15a, BPF15b, CW11c, DLHS11, GM16b, HMM16, Hor11b, KB10b, MZM\(^{+16}\), PJ18, RKMG12, WCC13, ZKMB19].

Neuroprotection [FRS\(^{+16}\), neuroprotective [ATC\(^{+14}\), neurosphere [SZ18, ZZS19]. Neurospora [XCW\(^{+18}\)]. neurotoxic [WB15]. neurotoxins [MZ18]. Neurotrophin [MHD18]. Neurovascular [DvDBD15, CS11a, DBD16, FD11a, WK12]. Neutral [AHP\(^{+19}\), KS14, KMO11, BdABY13, DSA\(^{+16}\), DZE11, Grc15, HL11, HSM17, Hor11a, HT13, KSI13, Mas16, PC13, SK12b, TZ13, WCPF15, Wax11a, YISG14, ZPdF19]. Neutral-like [KS14, DZE11]. Neutrality [SC16]. neutralization [MR11a]. neutralizing [CDK11]. neutrally [Ios16, KHRS10, SB12]. Neutrophil [BPLM12, CHN\(^{+15}\), ZLM12]. newt [JKM17]. Newtonian [AABS16, ZG19]. next-generation [MMFK10]. NF [ATC\(^{+14}\), KB19, GM13, HHJR11, HSII\(^{+19}\), TC11, WPH\(^{+12}\), ZBA14]. NFR [GM13, HSII\(^{+19}\), TC11, WPH\(^{+12}\), ZBA14]. NF-Y [HHJR11]. Ngn2 [BF13]. Niche [GFH\(^{+18}\), AHP\(^{+19}\), BGL\(^{+19}\), BRP\(^{+18}\), DB11, DZE11, HL11, KWO19, KDMK16, Mal15, PC13, RT19, TZ11, TZ13, ZZL\(^{+11}\), dSDS13, tBDR18]. niche-based [DZE11]. niche-neutral [TZ13]. niche-stabilized [PC13]. niches [DEG\(^{+14}\), LH18]. nidulans [GS13b, KHS13]. niger [GT11a]. Nile [MRPH17, RC16, ZXH19]. NIS [Cre10]. nitrate [LRL\(^{+16}\)]. nitric [DK13b, DBD16]. nitrogen [BBS10, DDS13, MHC16, TP14]. NL [GDPPSS\(^{+11}\)]. NLRP3 [VLPH17]. NLRP3-inflammasome [VLPH17]. NMDA [MLI1a]. NMDAR [HKS15]. NMR [ZZ14a]. No [JEA18, WWB14, EHSR17]. nocturnally [MYN\(^{+15}\), MSBB13]. node [CZPC\(^{+18}\), GMM\(^{+13}\), MMFK10]. nodes [Di 19c, HRC19, MMLK11, MGB17, SSZB15]. Noise [GMNY14, HNA15, OO17a, Van17a, BPF\(^{+16}\), BFV10, CHL\(^{+19}\), CCF\(^{+14}\), CKF17, DHT16, FR17, HSM17, HM10b, IU10, JZL13, JRG14a, JRG14b, JRG14c, KHR10, Kon11a, Kon11b, Kon12, Lei09, Lei10, LXS15, LYW11, Lug15, LRH15, MB17, OM10, OS11, Pat16, PJ18, PR18, Pol12, RAD14, RLSN14, SVB\(^{+10}\), TST\(^{+13}\), Van17b, WRZ\(^{+12}\), YRD17, YFZ\(^{+19}\), ZCSR12, ZLL\(^{+12}\), dSDS13]. noise-based [Pat16]. Noise-induced [GMNY14, MB17, PJ18, TST\(^{+13}\)]. Noise-plasticity [HNA15]. noises [JC10]. Noisy [SWD16, BPF15a, BPF15b, JRMS12, LLSO13, PBEI12]. Non [ACdlRMR\(^{+11}\), BBM\(^{+97}\), BBM\(^{+13a}\), BBM\(^{+13b}\), BBM\(^{+13c}\), GJ12, GWW\(^{+10}\), GSF13, Meh17, SC11b, SY12, Tsu19, ZJS11, Akc12, AABS16, BBR16, BZ18, BCF16b, Bon10, CKF17, DKS15, Das18, DL15a, DHBS19, Ei13, FT12, GY19, Giv10, HSNC19, HA15b, Hua12, Jam16a, JLO\(^{+12}\), JAHK12, Kae17, KS13, Krt15, LS13a, LC11, LDdA\(^{+13}\), LC16, MWSM13, MSP19, MV10, MG14a, MAF\(^{+19}\), NPT13, Oht12, PHK15, Phe12, PB16, RK19, Sel12a, Sel16, SCLC13, SS17b, TGB\(^{+18}\), TDZ\(^{+18}\), Van17b, VLFF12, Veg10, WKH16, YBT\(^{+17}\). Non-acquired [JG12]. non-binomial [WKH16].
[PRK13]. NRTIs [KMA10]. NS3 [TWR+18]. nsSNP [KKS+14]. NTCP [KBV11]. Nuclear
[KKO+18, DAA17, KKG+14, MP13b, SAGAGB17, SLS17, YYB+19]. nucleic
[HZG+17]. Nucleo [SWR11]. Nucleo-cytoplasmic
[SWR11]. nucleoside [KJM17]. nucleosomal [WZWY11]. nucleosome
[GZY12, JYZ18, Tri10]. nucleotide [ABP+11, Bec14, BKPV15, FS15a,
FS16a, HNL+11, LLL+17, LHH12, MV10, Sel13, Sin15, Yin17, ZDY11]. nucleotide-based [ZDY11]. nucleotide-gated [Bec14]. nucleotides
[AdSG14, BM11, Sel14b, Sel15, Sel16, Sel17]. nucleus
[GMM15, GM16b, KTH16, KB10b, SP13a, VH11a]. NucPosPred [JYZ18].
null [BZ10, JZZK11, NBW10, NBW11, RRC+11]. null-model
[NBW10, NBW11, RRC+11]. number [DDP12, Di14a, Di18, GBRS19,
HM11a, HHA17, HRC19, HK16, JOM16, KL13, KAKK19, LS10b, PIPB10,
PCB14, PLF18, SI10a, STH18, SV14, WDL+13, XDT+19, YI16, Zhe16]. numbers
[SLY11, FWSG17, HWGT15a, KA15, LBS+14, MN11, PFJS15, Rev15, AABS16,
AP13a, DAA17, FKM15, GVC12, HM11a, HWGT17, HM15, HZLX11, LSMP14,
OA15, PAOM17, SPRF13, SVM11, SAI14, ZS10, pZ1W+16, ZSH+16]. Numericalization [CJ12b]. nurseries
[CW15c]. nursery [LIPD12]. Nutrient [MGML10, TGB+18, BID15, BWL12,
CTB18, CLCH10, DMS+16, GVC12, Grol17, HAK+19, KFA12, KK18,
NNvdB17, On19, PML+11, RM10, WKS14, WST15]. Nutrient-limited
[TGB+18]. nutrient-poor [BID15]. nutrients [CCB11b, KSP12]. nutrition
[HFD17]. Nutritional [KRSD11, EHBC10]. Nye [Ou19].

O [TTC19, ZNC+15, LDB+14]. O-GlcNAcylation [ZNC+15]. oases
[CW15c]. obesity [BRA15]. objectives [BUC14]. Objects
[MRPLAS15, RDD14]. obligate [KCMF11, O’F11]. observability [Gha16].
observable [Mar19]. Observation [KSRSW16, GDB+19, MI19, OSN18].
observations [Di13a, KSRN19, RB15, ZBA14]. observed
[ARB13, ASL+18, BM14, NKE18, RN12, SGGS19, SN17]. Observer
[MZAI19]. Observer-based [MZAI19]. obsessive [RM17a]. Obstacle
[NTY16]. obstructed [DLL+18]. obtained [WF17]. occult [GC18]. occupancy
[MFr11a, PBvdG10, UB12, Xie13b]. occurrence
[AY16, Cut15, DPCM16, MD16, PDB+15, PNP+16, PDNP16]. occurrences
[AMRR10]. occurs [Cle16, DLMK12, HHA17]. OCD [SST19]. ocean
[Di13a, RTFP+17]. oceanic [Ric17]. octahedron [Den19]. October
[CLK18, HMM14, JB18b, KZ14, MS14b, MFG14, PBB10, WK15]. off-lattice
[MFG14]. offending [BBBD13]. offs [Chu18, FbL18, MLT10, PBD11]. offset
Offspring [AOR17, Cam15, CL13b, Dëb17, Fil15, For14, Jam11, MHKA16, OGA16, Sak10]. oil [AK15, BKR14]. ok [Mar11]. old [Di 13a].

Older [YHZ14]. oligodendrocytes [WRH+16]. oligomeric [IKHL16].

one-dimensional [BG12, DHHP14]. one-shot [AS12]. one-sided [JZ17].

one-to-many [Ezo12]. ones [BC15]. online [Ran12]. only [Di 17a, Hor11a, KK12b, TT10a, TF17]. onset [EAN14, EBX17, HDZ+19, MFMS+18, SPA18]. onto [DRC11]. ontogenetic [WRHG18, tBdR18]. Ontology [Hua12, YLF+17, ZT16, DTY12, WMK13].

oocyte [HB16a, SOBC12]. oocytes [KG12]. oogenesis [RBMS17].

Operational [ABK+12, HPML18, Ram10, SKPK17]. operator [HVSZ10]. operators [LG10a]. operculum [XWW+19]. operon [HVSZ10, Mic13, ZCSR12]. OPG [PZS+10]. opinion [SAB17].

Optimal [BI10, BHR10, CFCM13, CJL15, CBGS18, DHP11, ExMMH18, GVC12, GA16, GKW17, HS14c, Ish16, KKKM10, LCCC10, LKK13, LDM16, MJ16, MK14c, Mit17, MI12, MRS14, NvdB17, NS13, NC15, OT13, PP17a, PRM14, SI10a, SDD15, ST16, SSB+15, SSS19, SMB+19, TBQG14, Tav10, YD14, ZSW11, AS16, Cha18, CL11, CMM19, DB19, F110, Fil10, KGJ2, KTO+14, KL17, Kri10, KST17, KA17, LCC15, LC17, MDMG14, MW14, Mig16, OF11, RW15b, STN+19b, SL17, TEY10, TEW12, TBA14, TM19, VB10, WC11, WSW10, YCG16, ZCT18, ZZ14b, ZLT+19]. Optimality [CKB19, LLP+19, RFP+12]. optimally [TDT16]. optimisation [CHN+15, FCS18, SCF+12, SK11a, Tra16]. optimise [EM11].

Optimization [Car17, JH12, MG10a, BM19, JAHKH12, LDWW14, MDS16, MMAS13, MGM13b, NF16, PP18, PP19, RA10, SSK18, SK16a, S18, WOB15, YIC19, ZXC+10]. optimization-based [YIC19]. optimize [DXW+16, QQJW13].

orchid [SWK+19]. order [CW14, DS19b, Gou16, HSD11, JRG14a, JRG14b, JRG14c, KDST15, LKF+15, MBLV10, PP14, PD16, RA17, RBHK14, THBM10, XG12, YIS+17, ZRGW19]. order-disorder [RA17]. ordered [SKH17]. Ordering
108

[BPFR16, BM14, CCW16, WW19, WKB13]. parasitic [EBSW17, YHI14]. parasitica [EBSW17]. Parasitism

parenchymal [HWMT17]. Parent

[CB17a, BD10b, Déb17, For14, MHKA16, Sak10]. parent-offspring [Déb17, For14, MHKA16, Sak10]. parental [PML18, BWB11, FB18b, LZTD18, WW19]. parentage [KKS13]. Parental

[SRV11, ER12, MG17, Ram10]. Pareto [LLP+19]. Parkinson

[ADS+19, HSG+18, HDZ+19, KKD18, STJG12]. Parkinsonian

[FW15]. parotid [SMZ+17]. parsimony [BFLS17]. Parsing

[FIS11, FIS16a]. Part

[HWMT17, AOM19, Laz13, Mog15, FH10a, FH10b]. parthenogenesis [SSD11b]. Partial

[Kri10, MT14, WP17, WA14, CMD+10, DMO+17, H12, Lun13, MK14b, RNVP10, SC10c, Zad11]. partially [Mar19]. Participation

[PPBT11]. Particle

[WMD16, BF16, DGM15, FCS18, GSN+11, KA15, MMAS13, MN12, PP18, PP19, SF15, YYC19, ZZN+19]. particles

[BHP17, KMM18, MAR+17c, TLPH11]. particulate [HWGT15b, HWGT17]. Partite

[LCL14]. partition [LLW+18]. Partitioning

[SM17b, CPF+14, CFR+14, CMR+18, DB11, Grec16, GS13, LPT14, SSvdM10, WA14, SC10c, Zad11]. partitioning-limited [SSvdM10]. Partner

[CS14a, Tak17b, Ezo10, GK10, YHZ14]. partners

[ST17b, CLP11, Don13, GAL11b]. Past

[Kir11, BM12, MPNP12]. Parvovirus

[KEHK17]. passenger [BST14]. passerine

[GZT12, Hru12]. Passive

[ST17b, CLP11, Don13, GAL11b]. Patella

[CS14a, Tak17b, Ezo10, GK10, YHZ14]. partners

[ST17b, CLP11, Don13, GAL11b]. Pasteurella

[GTS15]. pastoris [MC15a, MC16b]. Patch

[PMW12, BLV18, DGJ14, GPT17, GKW16, HS14c, KA11, Kri10, LCC15, LBZ18, QW12, SSQ+19, SQZ+16, TWW19, Wan19, Wei17]. patch-based

[QW12]. patch-type [GKW16, Wei17]. patches

[AR11, CT18a, FRH15, ITHK12, NG11, RPD14, TD18, YTS19]. patchily

[RPCW18]. Patchy

[SRFC11, LNH13, TD17]. patella [Clei8b]. paternal

[AOR17, Sal15, YTK10]. Path

[Ben14, VMI2, Che14, CV15, CR16, NWZ15, RSB10, VC10, vTM15]. path-wise [NWZ15]. Pathogen

[CT18a, MGC13, AH12b, Bon10, CTL+15, FJJ11, GVS16, HBE12, JB18b, KGB13, LMCW18, MSP19, MB12b, OMO13, PM11a, PB18, RDT13, ST17a, WMD16, WK18a]. pathogen-receptors [AH12b]. pathogen-specific [CTL+15].

pathogenesis [Ana11, JO13]. Pathogenic

[Sel11, BTW11, HII+19, LLC15]. pathogenicity [LPS+14]. pathogens

[BL15b, CPV16, CG11, DB11, DL15a, DDSDW13, FE10, FE11, GMB18, JB18b, LvdBP12, O’F11, PSL+10]. pathologic

[SHK14]. pathological [BB14, ML12b, RNN15, Wil13]. pathologies

[Wal18]. Pathway

[BMV12, Che14, NifT19, Sch19b, VPFV13]. Pathway
pathways
[AP17, BKL+15, Coh15a, EG10, ERT13, G¨un12, G¨un13, HAP+16, HHG14, HgLL+10, KFL12, PH13, RW10, STX+11, ZXC+10, ZXS+19]. Patient
[METC12, HM13, TDHC+18]. Patient-calibrated [METC12]. Patient-specific [HM13, TDHC+18]. patients [Dim10, HA15b, LX16, PGF11, STA15, WR14, WML+17, WHS+13, WLL+14, ZXS+19].
Pattrn [BBR12]. Pattern [FK13, GCB17, GRB+13, WH11, ASP13, BFM10, CDC18, FKMP10, GKM10, Gal10, HT19, iTIM15, JB19b, Kon17, Lee16a, LWL+11, MN14, MKJS13, PHH18, PDNP16, RBSD10, SCsMzX18, SM16, SCS14, TGB+18, Tri10, VY12, WZ18, YM16, YKO+16, ZSO16].

[OABI12]. **perfusion** [CXWL11, DAA17, MAM16, SEK+10]. **pergandei** [PRMH14]. **peri** [PVGA12]. **peri-implant** [PVGA12]. **pericarp** [AKdV+14, IST11]. **period** [BL14, BHLH12, CP14, GDF18, GMS+13, HTK+18, JMK+17, KN11, MK18a, NI11, SPH12, Tac10, TC12]. **period-average** [GDF18]. **period-memorizing** [Tac10]. **Periodic** [LHFM16, MGM13a, DGJ15, GZY12, HA15b, Hou16, LBZ18, MB18a, Ros10b, WZY11]. **periodically** [GP12]. **Periodicity** [RLBCJ13, CK16, GP11b, US12, XDT+19]. **periods** [BAG14]. **peripheral** [AOM19, HII+19, NAK+11]. **peristalsis** [ISM+11, VF12, dLMV+10]. **peristaltic** [PCT11, PCT19, Pan19, BJWL15]. **perivascular** [WO11]. **permeability** [ASH15, BBR10, DK13b, LDB+14, OTTF11]. **permeable** [LSMP14]. **permutations** [GRB+13]. **permuted** [MP13b]. **peroxidase** [KIH16]. **peroxidases** [BMN16]. **peroxide** [Kun16]. **Persistence** [LW10a, LW10b, Zha15, AF10, BTG+15, BJPP12, GB12, GRBL13, JA13, KJ11a, Kur17, LLH+13, LM14, LS11b, MBC+12a, MB15, yTRSC13, PRC15, SBM+12, TSS16, UD10, VAT18, ZSH+16, JH11]. **persistence-time** [SBM+12]. **Persistent** [CML10, LG10b, Zuc14, BBDB13, Che10]. **persists** [SN11]. **person** [NOS17, Pla10, SPSP12, TP10a]. **personal** [Tay13]. **personality** [Del12, Pla10]. **Personalized** [BS15a, BSR14, GdGL17, KCSB14]. **perspective** [ABGM11, ABD+15, BK19, BRP+18, CHL+19, DKR16, DMSW10, KGM15b, LX15, NN18, P1L14, RAF+14, SPG+18, SY15, WRZ+12, W1W14, dEBRM15]. **perspectives** [DMO+17, KK13, LA15, Sek12, Wall16]. **Perturbation** [AABS16, GAL11a, MDHE13, MZMM+14, Ou19]. **perturbations** [ABLH18, KC14, MEJ18]. **pertussis** [FGH+14]. **pest** [ACH18, ABR19, KG12, ROF17, TTC10]. **pesticide** [HT18, KG12, TTC10]. **pests** [IH17]. **PET** [Mun12]. **petiole** [GRCL16]. **Pharmacodynamic** [ADR+11b, CvBF18, VZB+15]. **Pharmacokinetic** [CvBF18, ADR+11b, BSC+18, MAFB18, VZB+15]. **pharmacokinetic-pharmacodynamic** [ADR+11b]. **Pharmacokinetic/pharmacodynamics** [CvBF18]. **pharmacokinetics** [ACR+17, BPLM12]. **pharmacological** [OA15, POK+12, RG17, SBB14]. **pharmacology** [LBMG16]. **Pharmacophore** [TA16, GMC+16]. **pharmacophore-based** [GBC+16]. **pharyngeal** [dLMV+10]. **Phase** [DMM+14, GP11b, JP13, P1J13, Zha10b, AUE15, Ber14, Chu17, CSDR15, DFG+18a, DGJ15, GCSP17, KMM18, LG13, LV17, MH13, OFT15, Opr10, PM10a, SM14, SSH+19, Tou14, VLCM10, WBMM18, WTZ+11, YMW12]. **phase-associated** [Ber14]. **Phase-delayed** [JP13, P1J13]. **phase-locked** [Opr10]. **phase-locking** [LV17]. **phasic** [GK17, TD17]. **phenological** [APBS15]. **phenomena** [GGG12, ISM+11, Pai19, PA15].
Phenomenological
[BSV+10, LPGTBMA19, BCGD10, BSS11, MAS15a, SKAG18, WMPF+15].
Phenomenological-Based [LPGTBMA19]. phenomenology [Oka11].

Phylogenetic
physico [Di 16, Di 17b, SSV+15]. physico-chemical [Di 16, Di 17b, SSV+15]. Physicochemical [SBT+18, CL13a, CT18b, FD18, HYA14, JTX+15, JD16a, JD17, RSD+16, STG19, WXC10, XSLZ16]. physics [LCBO+12]. Physiological [DPvBvA12, KKV+10, MFI+18, Ush16, WCHC11, CTW10, CB13b, DSLR18, DLMK12, DCN13, EzMMH18, Gri11, LCA+15, LHD+17, PRK13, RG17, SS17b]. Physiologically
physiologically-based [NSO15]. **Physiology**
[Mar17a, ARD14, BLW11, PRC15]. **phytobenthic** [SM17b].
phytodesalination [RAAS15]. **Phytoplankton**
[BSH19, CFSB16, CFL+15, DD10, Gro17, KSP12, MHC16, MYLK11, RRB10]. **PI** [MZAI19]. **Pichia** [MÇ15a, MÇ16b]. **Pick** [FtL18]. **picture** [Goe15].
piece [SPH12]. **Piecewise** [TXWW12, TXCW15, COG19]. **Piecing** [SSP15]. **Piezoelectricity** [FGAM12]. **piezophilic** [NS16].
pig [LT14, SMM+13]. **pigeon** [PW11]. **pigeons** [SBW11]. **pigment** [DFG+18b]. **pigmentosa** [CW13, CPW16, RGL+17].
pillars [Pia19]. **pilot** [SAI14]. **Pimephales** [HCHI18]. **pin** [HTM15]. **Pina** [ASRM15]. **Pina-D1** [ASRM15].
pine [APS+13, APBS15, CRLH+19, LK15]. **Pink** [ZLL+12, KHRS10, Toz15].
pinnatifida [MJV16]. **pinning** [KM19]. **pipiens** [YMZ18].
piscine [HH14]. **pistillata** [KRSD11]. **Pisum** [NNK+15]. **PKPD** [ADR+11b].
place [HY16]. **placement** [DI13]. **placenta** [SSFG15, SSB+15]. **placental** [GSGV11, LMJ+16, PWC+15].
plain [GW12]. **planar** [YM16]. **plane** [MSSM18]. **Planes** [NHTS14]. **planform** [NC16]. **planktic** [DLSD15].
plankton [CMBP19, PSV17, PHPM18, PMSY17, RM10, Ric17].
plankton-oxygen [PSV17]. **planktonic** [CG10]. **planning** [KBV11]. **plans** [KCSB14]. **Plant** [KR19, LRH15, AEE19, AMRR10, BDLR12, CMB+12, CPV16, Che16, CEP14, CG11, DFT+17, ID6W+15, DBJ12, FCC+10, FM13, FM15b, GGBW14, GWBG14, GZT15, GRRG16, HAP+16, HTM15, HB13a, IK15, IC11, KA11, KOF+14, KHNM16, KFG+14, KFS+13, LKSM14, LWRE14, LvBP12, LH18, Mei12b, Mei13b, ML10, MK14c, NKB16a, NNG19, OBE+17, OHWS18, PCB14, Pie10, PRH+11, PPTC19, RK18, ST17a, Sat10, SLC12, SIHO15, TIS10, TAL19, Yam16b, ZZC+17, vVE15].
plant-insect [KA11]. **plant-pollinator** [RK18]. **plant-predator** [HB13a].
plant-virus [NKB16a]. **plantarum** [LDdA+13]. **planting** [CK18]. **plants** [AGGE18, BHSB11, BvLH14, CMB+12, DHT19, DP13b, Kh1a0, KBKK14, LRH15, NKB16b, SI12, SN0V11, WZ18, YLY15]. **plaque** [GCYL18, IvLP12].
plaques [BD12, FB19]. **Plasma** [RFdL15, BAGG14, CKDI11, CRV16, SHB+17]. **plasmid** [FS11b, GY18, ZK+10a, ZDF+12]. **plasmids** [BBT+15, Mic15b].
plasminogen [Sil16]. **Plasmodium** [CB13a, CDOI7, CKZ+17, CMD+10, GDPPS+11, KMLT14, KPLT14, RM19, SPMGR10, TEY10, TEW12, TAR16, Tac10]. **plastic** [HD11, PAV10].
plasticity [CW+16, DAA17, FHR13, FR13b, HK16, HNA15, KA15, Mon12a, Rob11, SSF15, SA13, SA14, UJLG14, ZWW14, ZMC+18]. **plastids** [Sat17]. **plate** [ABD+11, CAGM+17, FHLM10]. **platelets** [SPA18].
plausible [FPdRD10, SBMH10]. **play** [SPS11]. **played** [dOGL10, dOGL13]. **player** [De 19, DHK13, GT11b, HS14b, KC17, Kur19, Lai18, PLN14, Shu13, TT19, vVN12]. **players** [vV11a]. **playground** [SD16]. **plays** [Lai18, RPPG+19]. **pleiotropy** [Gia13]. **Plk1** [SBR16]. **pLoc_bal** [CXC18]. **pLoc_bal-mGneg** [CXC18]. **ploidy** [YG12]. **plot** [Mun12]. **plus**
[HB10, PCT11, PCT19, Pan19, PWHW16, ZL18b]. **powerful** [JZZK11, LW1+11]. **pp** [JN14]. **PPI** [LJM15, LCL14, YZ19, ZHC10]. **Practical** [Ger16, Zhe15]. **Practically** [NH19]. **Practopoiesis** [Nik15]. **pre** [DLMK12, Man15, Mol18, PVGA12, RT15, SPS11, SHSR15, VDTF15, WSH+10]. **pre-breeding** [VDTF15]. **pre-diagnostic** [SHSR15]. **pre-existing** [PVGA12]. **pre-RNA** [RT15]. **pre-embryonic** [SPS11]. **pre-miRNAs** [WSH+10]. **pre-mRNA** [RT15]. **pre-adipocyte** [CSKF10]. **prediagnostic** [SHSR15]. **pre-existing** [PVGA12]. **pre-miRNAs** [WSH+10]. **pre-DNA** [RT15]. **pre-mRNA** [RT15]. **pre-existent** [PVGA12]. **pre-RNA** [RT15]. **pre-adipocyte** [CSKF10]. **prebiotic** [CKS15, ML14, RBRB16, SHH15]. **precipitation** [WTC16]. **Precise** [JRR+12, RRG+12, Zhu11]. **Precision** [NNK+15, TMS13]. **preconditioning** [SXZY12]. **precultivation** [ABK+12]. **precursor** [LFW+15]. **Pred** [KCM+11]. **Predation** [MB12b, PDSP13, AF10, HMH14, IEN15, KGB13, LZTD18, PBB10, PFB10, SP11, VA10, WZ10]. **Predator** [GSL13, SV17, Abb10, BT17, BH13b, BHR10, CLA17, CGHF14, CK18, CNM+13, DS13, DZJR10, DKF17, EKVF18, FL18, Fre10, GLR+17, GVG15, GWE11, GPR+16, HAK+19, HGH10, HSR12, HB13a, HWL15, KGJ12, KB15, Kri11, Kri13, KPS15, LH16, LJ18, MSZW19, MMAS13, MFG+13, MA11b, MI11a, Moul2a, NTO16, PPW16, PHPM18, SW16, SBSE14, SVA18, SY12, VWF19, WRC+19, YIT19, ZL14b, ZMW10, ZMT11, ZYD15]. **predator-2** [PHPM18]. **predator-prey** [HAK+19]. **predators** [Alv18, AH17, BT17, BR12a, FKV19, LG19a, LG19b, SVK12, TI13, TB15, ZH15, vLB+13]. **predatory** [IPMH12]. **Predict** [CX18, FL12, HZC+10, JLX+16, ZK14, pZW+16, BMSEE14, BJ18, FGAM12, GMZM15, HYA14, JSF+11, LXC15, MJ11, PH13, PWHW16, RW14b, WYL+18, XNJ+13, ZZG+16]. **predictably** [HD11]. **predicted** [HH14, Hal17, HCH18, KZL14, LJ10, MALAN17, PDC+17, RT19, ZKHL16]. **Predicting** [AHS19, Ali11, ADR+11c, CL13a, CT18b, CTL+15, GCS11, GMM+13, GGX+10, HPB+14, HK11a, HK12, HN10, HS12, HLS+12, HY13, JYZ18, JD16a, JD17, JCG16, LS13a, LD11, LW16+14, MPCTG15+14, Mei12b, Mei13b, MSB16, NH1X14, OYY16, QLC+18, SM17a, SM18, SCA13, SCF+12, SKK18, TWC+19, WSG10, WS16, XTZ+13, ZL18a, ZRGW19, ZLW+19, ZLDZ13, AAJGCD15, BW13, DLL+17, DTP19, Hua12, KCM+11, LLP+19, LKL13, LHH12, LHL+14, MV10, QLWC19, RBMS17, RW15a, SW13a, SC10b, SO10, WXmH0, WHZ+17, YD14, YC13]. **Prediction** [ARR14, BRK19, CZW+11, CCY+19, GXFF13, HTK14, HWH15, JD16b, JQ17a, JW18, KPK+13, KJH+19, KSKK15, LYF+15, LTL+15, MPY14, MBE11, NBL14, Pav14, QW12, SS17a, SMI9, SHL11, Tum13, VZB+15, WYL+19, WLY+17, XWW+14, XWD+15, XWD+17, ZMS11, ZDG+10, ZSZM14, ZJSC16, ZJ18, ZNC+15, vSS12, AF19, CJ12b, CTS11, Cho11, DNP14, DYQ+14, DLb19, DTY12, EMM10, FHG15, FY15, GMMGV12, GJ15b, HA15a, HK11b, HW13, IMH15, JMI2, JWS+10, KKK16, KGP+15, KZL14, LWW14, LJ10, LLCC12, LDBC+13, LZMM15, Mar12, MKB17a, MKBE17b, MKRE18, MRRW16, MFZ18, MA18, MEL12, MP14b, MMCZM12, MP19, MR18, MR19, NK18, NS19, PZW+19, PM14, PMKM10, PSAA13,
[VFS+15, Mau15]. **primordium** [ZBA18]. **principal** [HME12, SG15a].

Principle [Pec12, CHH10, FMS+12, HRC+12, LKZB15, LIB+17, Mig16, NvHM13, WB10]. **principles** [DRW14, KAN11, KSPA17, MJS11, TM16, VGPS18, dSRM15]. **prion** [DFMR19, PRM11, Wil13, Zha10a, Zha11, ZGY11, ZSW11, ZZ14a]. **prior** [SNS17]. **priorities** [SAB17]. **prioritize** [CSS+18]. **Prioritization** [KJ19, FP18, LLW+18, YC15]. **principles** [DRW14, KAN11, KSPA17, MJS11, TM16, VGPS18, dSRM15]. **prion** [DFMR19, PRM11, Wil13, Zha10a, Zha11, ZGY11, ZSW11, ZZ14a]. **prior** [SNS17]. **priorities** [SAB17]. **prioritize** [CSS+18]. **Prioritization** [KJ19, FP18, LLW+18, YC15]. **principles** [DRW14, KAN11, KSPA17, MJS11, TM16, VGPS18, dSRM15]. **prion** [DFMR19, PRM11, Wil13, Zha10a, Zha11, ZGY11, ZSW11, ZZ14a]. **prior** [SNS17]. **priorities** [SAB17]. **prioritize** [CSS+18]. **Prioritization** [KJ19, FP18, LLW+18, YC15].
profiling [HZL+13, SOIO10]. progeny [DDBW09, DDBW11].
programmes [SXL+19, dMP11]. programming [CZW+11, JPBM17, LD18, NS13, SNS17, ZMNd+10]. programs [NKOS11]. progression [CW13, CLHB11, DD13, GL18a, GA14, HTK12, KEG17, KC11a, LTZ19, LCGMH12, METC12, NWR+10, SB19].
prokaryote [CCY+19]. prokaryotes [GYWJ10, Hua12, XKCG15].
prokaryotic [AAAV14, LXS15, YCR+15]. proliferation [ALD+11, BJO+16, BMB+18, GMOP12, Gol10a, Gol10b, Gol16, HPM+17, LD18, MFL+18, MFMB12, MPZK16, TSMB14, WRH+16]. proliferative [SZ18].
propagated [HS15]. propagating [Hor11b]. Propagation [NS18, Van17b, BZN17, BS+13, HMM16, KKWA18, OTTF11, PRV+14, ST17a, SNOV11, WML16, WHT17, WLY+17, YM16, ZUFM17, dRF11].
propagule [BGM19, PR13]. propel [RL15]. propensity [JM12, NPS18, PGH11, XDD+15]. propeptide [NF16]. proper [KP16, SW19]. Properties [SBT+18, ÅCHS19, CS18, CW11a, CL13a, CT18b, DLEMP19, FD18, FL18, FLGGD+14, GML10, H19, HA14, HanR+18, HZL+11, JBSFB12, JLV+15, JD16a, JD17, KCM+11, LL13a, LCG+15, Luo14, MBE10, MT14, MGC13, PM11a, PW19, PDW11, RSD+16, RHS14a, SFV16, SG15a, SDFK12, WM17, WN19, WXC10, XSLZ16, YWW+14, YWZ+16, ZR16]. property [GRB+13, JS12, Su16]. prophage [CKB19]. prophylaxis [RWSB11].
Proportion [WF17, Dol16, IU18, JMC+10, PWE15]. proportional [Gla13, RWH16]. proportionality [KMM16]. proportions [HXL18].
Protandry [Mor13]. protean [Fre10]. protease [FHF15, IHNS16, TAR16]. proteosome [SBB18]. protected [KG13, KJ15, TM14, Tak16]. protecting [BH12]. protective [HE16]. Protein [DS15b, KKS+14, KS10, LJM15, LCF17, LBS+14, LPD+16, MALAN17, Nah14, NSBL10, QZY17, SV14, SB+18, SSV+15, TKK14, Wal10, WZM19, XSLZ16, YDC+13, YZ19, ZT16, AFS19, AcIRMR+11, AEZR+16, AH15, AML14, BMA10, BMB10, BMM16, BZH17, BZH18, BS+13, BZ11, CBB17, CB18, CCM18, CMM16, CPH18, CP15, CRR15].
AC15, AP13b, BBT+15, BKR14, BB15, BSM+14, BB13, BGD+13, Boz15, BMF+18, Bry13, CJ12a, CZW+11, CL13a, CSKZ19, Cho11, DLEMP19, DI13, DHS+15, DSPM14, DM10a, DM19, DYQ+14, DZW10, EHBC10, EG12, ER18, FJ10, FLGCD+14, FCS18, GTS15, Gin10, GJ15b, GNB+13, HNV+16, HMTA17, HYA14, HK11a, HK12, HTK14, aHLZ+12, HLHY17, HMY14, HPML18, HLS+12, HH13, HY13, HHHL15, IA17, JSZ12, JM12, JLQ+19, JD16a, JD16b, JD17, JCG15, KSA16, KHP+12, KEE10, KKG16, KRD15, KHK17, Kin18, KZL14, Kri18, KSK+17, Kur10, KK17b, LL12, LW14, LZ18, LJ10, LILY13, LCL14, LYZ+18, LMJ+18, LSLL13]. protein [MPY14, MJ11, MMY+12, Mal18, MdFDM10, MPCTGJ+15, MGO+15, MCI15a, MC16b, Mei12a, Mei12b, Mei13a, Mei13b, MG14a, MIH16, Miy16, Miy17, MPZ16, MP14b, NBL10, NL14, NLB14, NSS+11, NMZ19, NHTS14, OYY16, PDM17, PAOMV17, PWH+13, PM14, Pav14, PBvdG10, PWH16, PM11b, PBBB10, PAA13, QW12, QQW13, QLC+18, RRG+10, RSS+18, RSD+16, RCL+10, RM19, RT15, RBMPP+13, RBMPP+15, SNS17, SRS+15, SM17a, SM18, SFV16, SRP16, Sel13, SC11a, SLDP13, SSSD17, STG19, SHLL11, SQS+12, Slt17, SBB18, SG15b, SAGC12, SAZ+14, SPL14, TWR+18, TP10b, TAI+18, TWC+19, TBBM10, TP17, USF+18, VBHM+13, WM14, WKM15, WXH10, WRZ+12, WYX+17, WYL+19, WLY+17, WX10, WGDZ18, XLL+10, XNJ+13, XGZ17, YSH+14, YWW+14, YG18, YYY+14, YC13, YCR+15, YLF+17, ZMS11, ZCAB17, ZPHS11, Zha11, ZZRZ11, ZS12, ZTWL12, ZLY14, ZK14, ZLZ+16]. protein [pZW+16, JZSC16, ZKHL16, ZL18a, ZD18, ZRGW19, ZLB13, ZNCM15, ZNC+15, ZLW+19, Zho11, ZHC10, dBJ11, dS15a]. protein-coupled [BMF+18]. protein-drug [NLB14]. protein-ligand [FCS18]. protein-ligand-binding [QQW13]. Protein-protein [MALAN17, QZY17, ZT16, ZRGW19]. protein-RNA [LL12, PDM17]. Protein/Receptor [Ken19]. proteins [ACHS19, ARG14, AH19, AH16, ALM+19, AAJGCD15, AHJ18b, BMSEE14, BRK19, CRH+15, CXC18, CRV16, CT18b, DTY12, ESW13, FL12, FL13, FLW16, FBAPMD13, FLCS+15, GZ14a, GZ14b, GDPPP+11, HZC+10, Hua12, HKR+19, IKHL16, IHI17, IK15, JLX+15, JLX+16, KCM+11, KPK+13, KHK+17, KB11, KBK16, Kri16, Kri18, LL12, LLW+18, LLP+19, LTL+15, LAJC19, Mei14, MP12, MBE11, NHSX14, RBMS17, RBR16, RKJ+11, Rou14, SRD+15, SGGHS19, Sha14, SC10b, SSV+15, Ste12, SH15, SSR16, Tox18, WMK16, WdVD15, WHH17, Wil13, XWC11, XDD+15, XKCG15, YLL+14, YGL+10, JSZ11, ZGS+10, Zha11, ZZ14a, ZZM14, pZWZ+16, ZRGW19, ZNA+16, ZXC+10, dSMP+11]. proteolysis [Sel17]. proteome [LKA18, RNVP10]. proteomes [LLG16]. proteomics [WAC14]. protein [Di14a]. proto-mRNAs [Di14a]. protocell [ZSS10]. protocells [VMZK+19]. protocol [AGC18, SSN+14, Zhe15]. protogynous [YSST13]. proton [LL17b, Mar12]. prototype [GBJ+11]. prototypic [ANGPB12]. protozoal [HFD17]. provide [IK15, TLW18, VGS18]. provided [WZ12]. provides [P13, PVECE18, TCYY+12, Zho11]. Province
[FHG15, HME12, LL13a, LT14, MR18, MR19, TT17, TA16]. QSPR

GZ14a, GZ14b, GSF13, HMM16, HT16, HT10, JM12, JLX+16, JKS15, Kam11, KCM+11, KPK+13, KO18, LMCW18, MS14a, MKKS14, Mit17, MA18, NIT18a, NRKE18, QMJW15, Rey13, SFV16, Sch18, SGD12, SVB+10, SLHS13, SPCM18, SK18, SY12, SN17, TGLK19, WMK14, Wax11b].

random-walk [CC11b].
randomization [NS13].
randomly [Fan11].
randomness [LTP19, MKBE17a, MKBE17b].

Range [PSD+18, AGGME18, BBS18b, CKNB19, CVO+15, FLM18, HBT13, HS14c, JP19, NG17, RN12, SGW+18]. rangeland [BCBD19]. ranges [AT10].
ranging [Pon12].
RANK [PZS+10]. RANK-RANKL-OPG [PZS+10].
Ranking [Hua12, TLY+19]. rankings [WF17].
Rapid [BTK15, GU13, HMM16, SYR11, XJ19]. Rappaport [Wol14].
Rare [HA15a, GZ19, HMM17, YI18b]. rarely [BM14].
ratchet [WL10].
RATIONAL [BC19, LN13].
reactor [AIY16].
reading [Mic14, Mic15a].
real [IL12, RRRTR10, TAI+18]. Realistic [ZGW16].
realistic [DNB12]. realities [Mor16]. realized [HTM16, YI18a]. realizing [YDC+13].
Richards [TT10a, WWY12]. Richards-model [TT10a].

rigorous [DHK13, Shu13]. RIIIb [OBK+11]. Riluzole [BCG12]. ring [ACvKA10, CMB+12, Hor11b, KHB+18, Opr10, Pag19, SYM11, Shl17, YRMWT19]. rings [DS19b].

River [MBRR19]. riverine [JB18a]. rivers [LS11b]. RNA [AH18, AEZR+16, BS19a, BB13, CDC11, CzST+18, CKS15, Das18, DS19b, Deu18, DHBS19, Di12, DMCP14, Dun11, Fan11, Fra16, FYZ15, JSZ12, JWS+10, Koe15, KIT+16, LL12, LTP19, LZMM15, MMY+12, MWSM13, Mas18, Mau15, MMCZM12, Nah14, Nak12, NKB16a, PDM17, RBR18, Rou14, SIK+18, SE10, Sel12a, Sel16, Sos18, SM11a, Sos18, SM11a, TTC19, TXCW15, TI12b, TH17, WYL+19, WSK+19, s15a]. RNA-assisted [BB13].

RNN [MP12]. Ro [AP13a, BFGS10]. Roadmap [GM17].

Robust [Fra19b, GCO+11, LW14, TW13, BWM+19, Fra19a, GSN+11, Hir16, iHIM12, pNKM+10, PJ13, RG12, SCABB10, SCABM11, TF15, YM16].

Robustly [TM16]. Robustness [BV13, ITO16, AUE15, BBJDS11, CZ14, GJS+10, GSS19, HH14, IMA14, KSvdH18, LKO+17, MK11, MH17, PCC16, PPM12, PMP13, Sgd12, SI11b, SJK18, UPWK15, WB10]. rock [BMD17, Mob10, NIT11b, NIT11b, NIT11b].

rodent [AGPK13, SWG+15]. Rodgers [KMMS17]. rogue [SAG19].

Role [ABR19, ARG17, Ber14, GCYL18, Jam16a, KSSM11, KSP12, KB10b, LHV16, MK18b, PR17, RD12, SCH+19a, SSV+15, XY15, dG10b, AZOLVH18, AEE19, APS+13, ABKS11, AdiPLM13, AGC18, AN13, AK11, AIB+19, BA10, Bar19, BZ18, BCKS13, BRN15, BLNR15, BN12, BPR15, BPM12, BLS+17b, CRGS18, Cam11, CT14a, CFF12, CST16, CW11c, CFGBR17, CSH15, Cle18a, CV19, Cor18, Di 17a, DBD16, DFC+12, EdKM11, EKvdKvFK13, GWNW15, GML10, Gru18, dOGL10, dOGL10, HLJNZ11, HL15, Höh15, KCC+19, KSP+14, KAZ11, KPD18, KPS17, KC11a, KGM15b, KST17, LS16a, LCC11, LCC15, LPGBMA19, LLD+17, LBF13, LVL18, MCL19, M110, MM19, MGCL13, MKMT14, MPZK16, MGB17, MK14d, MBKB13, MH14, NCS+13, NG17, PR18, PKZ12, PA15, PZS+10, PBKR13, PRM12, PBA12, RTRRS+17, RFSS+15, RPGG+19]. role [KKK+19, RBKW19, SDD15, SPLP12, SAB+19,
SV14, SAGAGB17, SW13b, SW19, SM11b, Tox17, Unc11, WKB13, WMT15, Woll12, WSM12, ZHAK14, ZGS+10, ZFWK17, dSKBS10, dBE16, vNÁBG12.

Roles [SZ18, ZZS19, BN15, CDGV10, GH11, GK10, HSII+19, HKS15, MNSZ16, MHMM11, PM11a, RAMS11, TC11, TWB16, WLL+14]. root [BBS18b, Che16, DKP+18, Di19b, DV12, FM14b, MBK+11, MBKB13, MLL+16, NNG19, PMKM10, TP14, TLR14]. rooted [BBS18b, Che16, DKP+18, Di19b, DV12, FM14b, MBK+11, MBKB13, MLL+16, NNG19, PMKM10, TP14, TLR14].

root [BBS18b, Che16, DKP+18, Di19b, DV12, FM14b, MBK+11, MBKB13, MLL+16, NNG19, PMKM10, TP14, TLR14].

roots [FM13, SSF15, VW10]. rorqual [PGS10].

Russia [AL17]. rust [LK15]. ryanodine [Gri11].

S

[BD10b, JAM18, JZ17, JW18, Pan19, HKR+19, KGM15b, WZM19, ZNA+16].

S-FLN [JAM18]. S-glutathionylation [ZNA+16]. S-loop [KGM15b].

S-prenylation [HKR+19]. S-sulfenylation [JZ17, JW18, WZM19].

S-SulfPred [JZ17]. s.s [ACHS19]. S2 [KGM15b]. SAAC [AH18, AHJ18b, HK12]. Saccharomyces [AM12, BLPI0, HZW+14, LLCC12, LXC15, OB10, SSJK18, TK10b]. saddle [SSN+14]. saddle-point [SSN+14]. safety [FGLS10]. Saharan [MS16].

SAT [MKF+14]. satellite [GMOP12]. satellites [RGP13]. satiety [DZJR10]. saturation [CMS+19]. Savanna
[GTB10, NF16, PSP\(^{+10}\), PSP\(^{+12}\), PSS\(^{+13}\), SW13b, SW19, WTC10].

secretory [Hua12], SecretP [YGL\(^{+10}\)], section [WCF12]. sectional [KKOM18]. sections [KCJ\(^{+11}\)]. sedentary [YSYI13]. sediment [JCLS\(^{+11}\)].

seed

[BTG\(^{+15}\), BS19b, GCvWE\(^{+14}\), KKWA18, LHD\(^{+17}\), MK14c, ST17a, TI13].

seed-bank [GCvWE\(^{+14}\)]. seeding [TI13]. seeds [Alv19, SIHO15].

seek [ZLT\(^{+19}\)]. segment [vE11]. segmentally [Sat19]. segmentation [CHL\(^{+11}\)]. segmented [HME12, Hua16]. segments [dSMP\(^{+11}\)]. segregation [LCTG15, RA13, Rad16]. SEIAR [MZAI19]. seismic [BJB18]. seizure [DSLR18]. seizures [HZG\(^{+17}\), MGB17]. select [BWB11, Ghu18, LGPS17]. selectable [Mor11]. selected [DKP\(^{+18}\), LT14, PCB14, PBKR13]. Selection [FGLS10, Gra18, LE19, Miy16, Miy17, OKVN18, Rey13, YA14, AH19, ACH18, AHP\(^{+19}\), Ano19-52, AM11, BWB11, Bon12, BWL12, CL18, CB17a, CNDK15, CS15b, Cro18, Cro17, CB10c, Del12, DEG\(^{+14}\), GCM14, Gar11, GL18b, Gri19, GLLLL14, GCCJ16, HTN14, HPvdB17, HG18b, HCS\(^{+19}\), HT10, HT13, JSZ12, JJ17, JD16b, JSP\(^{+16}\), JJ15, JW18, KKD18, KPK\(^{+13}\), KH\(^{+19}\), KS14, KS15b, LDA\(^{+19}\), LvBJ16, LTS\(^{+16}\), Lio18, LPF11, LDH\(^{+14}\), Luo14, MS\(^{+14}\), MMH10, MSN14, MO12, MK16a, MFZ18, MB16, MB19, MM18, Mun12, NKM\(^{+12}\), NPS10, NI19, NPB13, NPS17, NPS18, Orr19, OGO19, PI3, PGG\(^{+15}\), RM17b, Rei12, RR\(^{+19}\), RG12, SC10a, Sal10, SL10, SSM15, SFD12, Sim14, SD16, Soz13, Tak17b, TGL15, Toli11, VDTF15, jWGGQ19, WYL\(^{+19}\), WWB14, Woo10, Yam16a, YHZ14, ZFWK17].

Self [EdKM11, Kue16, LPB17, LS15b, LYM\(^{+19}\), MDS16, PD13, QLZQ11, Rei12, RA18, VV12, AB\(^{+15}\), AI15, AIY16, CJ12b, CDD12, DPRSS11, Fan11, FWSG17, GMK18, IU18, JOM16, KH\(^{+18}\), KG\(^{+14}\), KS\(^{+13}\), Lar10, MMJB17, Mau15, MBB13, Mic15b, OF10, Pai19, PCBMM12, RL15, Sel16, SHM\(^{+18}\), SLS17, SG18, TDT16, VSLVB15, Vel17, WD12, ZCAB17, Coh15b, LPB18]. self- [OF10]. self-assembly [FWSG17]. Self-binding [LYM\(^{+19}\)]. self-complementary [Mic15b]. self-directed [ABD\(^{+15}\)].

Semantic [ZHC10, ZT16]. semi [BS19b, SAKG13, VG13, ZNCM15].
semi-deserts [BS19b]. semi-supervised [ZNCM15]. Seminal [KGM15b, WZ18].
semi-mechanistic [SAKG13]. semi-stochastic [VG13]. semi-supervised [ZNCM15].
sensing [BSL +17, Chu17, FBK11, GSS19, KAN11, LDHD14, MKPVH16, NBW10, NBW11, ONO15, PLHL19, RAF+14, RRC+11]. sensitisation [HLTR19].
sensing [LLSO13, STH18]. sensitive [CW11c, JZ17, LSP13, TSMB14, YI18a]. sensitivities [BV13, YIS+17].
Sensitivity [GZFX14, MF15, WST15, AKNP18, CCS+16, CNG+12, CMN+11, DJD10, DDDSW13, FDM+11, FR17, KMM18, KLHS17, Lug15, MK11, MBBV14].
Serial [Lai18, CHL+11, VBV10, WCS19, WSW10]. sequestration [Ber14, HSR12, PR18].
Serial [Lai18, CHL+11, VBV10, WCS19, WSW10]. sequestration [Ber14, HSR12, PR18].
Sequential [AP13b, CJ12a, DGL12, DSPM14, JM12, LLL+17, LLCC12, MS14a, PDM17, AH12b, BMSEE14, CLL18, DLYZ11, DYS+13, DZW10, ESW13, EJ16, Fer12, GKPB13, GXX+10, dOGL10, dOGL13, GAB14, HA15a, HK11a, HKR+19, JAM18, KCM+11, KG15, Kin18, LGK+09, LGK+12, LLI13a, LWL+11, LILYB13, MGO+15, Miy17, MP14b, NGND12, NBL10, PMYHR12, RBMS17, SIK+18, She11b, SSP15, SLT+18, Tri10, WSH+10, WSK+19, WZ14, WS10, WGDZ18, XLL+10, XSZ16, YW13b, YCY14, YC15, YLF+17, ZPHS11, ZLZ+15b, ZLZ+16, pZWZ+16, ZNA+16, dBJ11]. Sequence-based [DSPM14, JM12, MS14a, PDM17, HKR+19, JAM18, MP14b, RBMS17, YC15].
Sequence-dependent [LLCC12]. sequence-derived [KCM+11, ZNA+16].
sequence-protein [dBJ11]. sequence-specific [EJ16]. Sequences [SBT+18, AH18, Boz15, Bry13, CBL14, CK16, CL17b, DDLW10, DLYW13, FHW+10, FS15a, FS16a, GKN10, aHLZ+12, HLHY17, HYZ+15, HZWH10, HZLX11, HYW11, HY16, IA17, LLL+17, LTP19, LH12, MRS+11, MP12, NMZ19, PM11b, QQ10, SFV16, SCCJ16, SQS+12, SCS10, SCLC13, SM11b, Tak17a, TTP17, WTQL10, WRZ+12, WZ17, WX10, WZMY11, WRWX19, XM11, XWW+14, YZW10, YZZ12, YW13a, YLC16, YYH+14, Yin17, YC13, YCR+15, ZMS11, ZK11, ZLZ+16, ZLB13, dF13]. Sequential [Lai18, CHL+11, VBV10, WCS19, WSW10]. settlement [BPG+18, FMS+10]. settling [MN12]. setup [FE11]. Seven [MB18c].
Several [DZW10, JRR12, MKBE17a, MKBE17b, RPD14, TD18]. severe
[DD18, Sat18, SGD12]. severity [ZZL19]. Sex
[BS11, Del12, EHSR17, AM10, Arg12, Chiu10, GGM12, Jam11,
Jam12, Jam13, JV14, Jam16b, KMHdp10, LL18, MK16a, MYK17, MB10,
MM15a, MFP14, MLBA12, MLBA13, NT14, PKH11, Rad16, Ram10, SY17,
Sek12, gSxFH12, TEY10, TEW12, TEY16, VMZK19, WKH16, YST13,
sex-structured [LL18]. sexes [XY14]. Sexual [LN19, YST13, BHBR12,
CHK16, Cro17, EHSR17, EBSW17, Fis19, Fre10, Gra14, KK12a, Mor13,
MM18, NI19, SLL18, SSD11b, TCB13, WSRG18, ZR15]. sexually
[HE16, HHA13, MK16a, MBC12a, TB18, YHI14, YZMY18, ZAL19].
SFM [YC15]. SGB [XXD17]. SGK1 [KSP14]. SH3 [HWW14]. Shade
[DHK13, Veg10]. shadow [LJM17]. shall [GCM14]. Shannon
[CDM14, Nem17, Pia19, RFME12, SSP15]. shape
[BTR18, CadP11, DMM14, KTO14, LKSM14, LSDD13, MBM11,
PRSC11, PP17b, Spe15, WGO15, LZMM15]. shaped
[BORA10, DNB12, KP15, UI13, Yam16a]. shapes
[FZ14, GVSLG16, HMM14, IS17, MOSS15, TCB13, WSRG18, ZR15].
shaped
[BORA10, PEW18, TLW18]. sharks
[IPMH12]. sharp
[ZKMB19]. Sharp
[WF17]. Shared
[CGD13, IEN15, KB15, WL19, ZZZ17]. sharing
[BORA10, TLW18]. sharks
[IPMH12]. sharp
[ZKMB19]. shared
[AM10, Arg12, Chu10, GGM12, Jam11, Jam12, Jam13, JV14, Jam16b, KMHdp10, LL18, MK16a, MYK17, MB10, MM15a, MFP14, MLBA12, MLBA13, NT14, PKH11, Rad16, Ram10, SY17, Sek12, gSxFH12, TEY10, TEW12, TEY16, VMZK19, WKH16, YST13, YST13, YHI14, Yam16a, Yi18a, Yi18b, YTK10, YK11, YT12, ZP11]. signal-integration
[PPM12].
signaling
[Akç12, ACD19, BBI10, BJMJ10, Chu10, FLCS+15, FTS15, GM13, GRI11, HS15+19, HWD+14, Ken19, KB19, LSMC18, Lee16b, LXZQ14, NS18, NSS+11, PRI18, PC10b, RSV10, SPS11, UI13, YFB+12, Zhu11, ZXC+10, ZG10c].

Signalling [DTGD19, AP17, FD11a, MBM11, MBKB13, MLL+16, OTGT10, Par19, PS+18, SNC12, STX+11, TC11, WPH+12]. Signalling-modulated [DTGD19].

Signals [BR13, HWGT17, MOSS15, Nak16b, SM14, SHBT14, SVSP15, SKK+11, VH11a].

Signatures [SHM+18, TST+13, Bar18, NS16, NKB+12, NBBCC18, PPBD10, SSCJ16, WSK+19, WGDZ18, YZW10, YW13a, YCY14, ZKK14, ZT16, dASdC+15]. similarity-essential [dASdC+15]. Simple [BJP12, Mar12, PDL+17, SME10, TAK16, ACdlRM+11, BRB18, BSR+11, BLS+12, DDLW10, DLYW13, DDSW13, FBM12, GII15, HSI12, HZWH10, KF15, MGML10, NSO15, OKVN18, OSF11, PAA11, PCBMM12, PML18, QQQW13, RG18, RHT18, RAMS11, SA13, ST17b, TA10, Tal12, VK10, VLCM10, ZBA14, ZLY+17, vVLS14]. simplest [JMZ13]. Simp1ex [KB10a, BY+11]. Simp1ex- [KB10a]. simplicial [ER18].

Simplification [Jia16, UBP12]. Simplified [Pat16, HM11a, HWHL15, LS10b, RLSM17]. simulate [ASL+18, CMJD11]. simulated [BWL12, Don17]. Simulating [HNV+16, HWGT15b, LLD+17, LC16, NR14, POK+12, HGCCR13, LK13, LHPF18].

Simulation [DLL+18, JL11, MB21a, SN0V11, WGH+14, dCGSA16, ADS+19, BUC14, Boc12, BTK15, BMM+18, Cox10, CT16, DHB15, DV12, FKMG15, FWSG17, GJ11, GHB16, GKG+18, HAU+18, ICG16, KMLT14, KPLT14, LSP13, LCA+15, LHD+17, NI19, OAI15, PAOMV17, PRMHI14, STNT17, SK15, SKD+10, ST17b, TD17, TMS13, VF12, VG13, WWIG19, WMD16, WC10, XYZ15, ZLW14, ZZL+11]. Simulations [ARB13, Lai13, SBB14, APW10, CK17, For10, KGP+15, KA15, KTJ19, Lai18, LSSG10, MPP+16a, MSN14, MAA+17, NZZ19, SMS19, SMJS14, SRH19, Zha10a, ZZ18]. simulator [MZ17]. Simultaneous [Eft13, VB10, AB16, BHBR12, KMHdlP10, YvBS18]. since [SS19].
[WZY14, PBE12]. **Spatial**
[ACMK12, Ayd18, CLPZ14, CNL14, CVO+15, CPPLAB18, GB12, GABM12, JAB18, LLLV11, MMC19a, MKKS14, MGCL13, NvHM13, POW18, RSD12, SS15a, ŠKSRW16, VDD+17, YbBS18, YBT+17, BBT+15, BZ18, BH13a, BCPG18, BTK15, CN10, CLA17, CSBK15, DE17, DCN13, E813, EPP19, FKV19, GDS11, HT19, HM11b, HASM17, HB13b, IGL+12, IRS11, JH11, JI16, KDST15, Kar12, LJ15, LFB+16, LLH+13, Lio16, LXJ15, LVLC18, MCL19, MMAS13, MBS19, MKMG+14, MCWF14, MS16, MB19, MAL+11, POW17, PTC13, PRM12, RDP16, RAMS11, RM17d, SDJ+15, SCS15, SLL18, SSBG19, SJK18, SLJ+10, SS11, SY12, SS12b, SSC13, TB16, TGL15, VY12, WH11, WKB13, YISG14, YSI18]. **Spatial-Stochastic** [MMC19a]. Spatially [LJ15]. Spatially-averaged [ZCS+15]. Spatially-extended [LDHD14]. Spatially-structured [VZ19]. **Spatio** [HLTR19, MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. **Spatio-Genetic** [HLTR19]. **Spatio-temporal** [MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. **Spatiotemporal** [ARD14, DHRA10, PLHL19, Ros10b, d’O12, BLS+12, HH16, HHD+16, Sht17]. Spatially-extended [HLTR19, MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. Spatially-tempered [HLTR19, MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. Spatially-explicit [TM15b]. Spatially-structured [LDHD14]. Spatially-averaged [ZCS+15]. Spatially-extended [LDHD14]. Spatially-explicit [TM15b]. Spatially-temporal [MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. Spatially-structured [VZ19]. spatula [FPG11]. spatula-like [FPG11]. spawning [HCHI18, MDB12b]. speakers [SN16]. special [Cle16, GKK13, TK19]. specialist [RT19]. specialization [NP11, NP13, RD17, WF18]. Specialized [KMMS17, LIPD12, IEN15, SKH17]. speciation [AWRD15, ACvKA10, BdABY13, KG15, Mar12, MYN+15, SIVH17, SS12a, SGG+18, WCPF15, WK18b, Yi16, Yi17]. specie [AT10, LW10a, LW10b]. Species [CC11a, CCB11a, DMSW10, HSM17, LLH+13, L2T12, LZT13, PC13, RM17c, Sel14b, SCF+18, TLM14, YLW+14, dBJ11, AP19, ADR11a, AHP+19, AcvKA10, AMRRI10, Bac15, BJD13, BWY+17, BCF16b, BJPP12, BP16, CBL14, CHD+10, CCA17, CMCS18, CW11a, bCR19, CH11, CK15, Cre10, DBD15, DSA+16, DZE11, FB12, FVC15, GDF18, GK16, GTZ12, GABM12, GDJC11, Han12, HF17, HMM17, IC11, JYZ18, KDS18, LSD13, cLCJ+10, LRGA13, M14b, Mal17, MPBS17, MYN+15, MB15, MLC17, MI11b, MI11c, NBS+13, NvHM13, NdIPZA10, PC10a, PB16, PPTC19, RB13, RR12, Shi19, SLL18, SLHS13, Su16, SKS+19, SMB+12, SA14, TIS10, TGLK19, TCR13, TD18, TSS16, Tjo10, VDTF15, YSYI13, ZGG+19, ZNA+16, ZSH+16, ZYD15, dS15a, vLBJ+13]. species-abundance [FVC15]. species-area [GABM12, ZGG+19]. species-diversity [Tjo10]. species-specific [CBL14, CHD+10, JYZ18, ZNA+16]. specific [CBL14, CHD+10, CK15, CDK11, CTL+15, DL15a, DLL+17, DBBM11,

Stable [HWGT17, Kar12, MN14, OOI17b, RRU19, BT17, BH12, Bro13, BHBR12, Cor16, CMGN17, DWL+14, DI10a, K16, KM12, LFZ11, ML09, ML12a, Mit17, Ren15, SMG18, SKS+19, TM14, VA10, XKCG15, ZLY+17].

Stably [ATRR10]. stack [FIS11, FIS16a]. stacking [Tri10, Zol14].

Stack [HLTW14].

Stacking [KKOM18].

Stages [BAM+11, FD17, HVM13, MM12, SBK16, WRC+19]. Staging [KK12a, Tox18].

Stage-dependent [RC16]. stage-structure [BWY+17, LTB18].

Stage-structured [CT18a, JMK+17, LP12b, MBP16, RC16, SvK12, TRJD19]. stages [BAM+11, FD17, HVM13, MM12, SBK16, WRC+19]. staging [KKOM18].

STAT [RG12].

State [AOM19, BTF19, BKS16, BCPG18, CN12a, CMGN17, Cut15, DEK15, Dim17, Ell15, FTPN10, FT12, GGX+10, JRG14a, JRG14b, JRG14c, KTI18, KL11, K18a, LRA+13, Lü16, MBLV10, MBCM12, MS14d, MCCC+10, PRK13, RFS+15, RR16, RCL+10, RCD16, SBCR10, SKD+10, ZZ18, ZLB18].

State-dependent [ZTT18]. state-discrete [SKD+10]. states [ACD19, BVC10, BDR10, Bro13, IvdSW16, J16, LSS14, MS18, MS10b, NWL17, OAB12, RNN15, Sch19c, SKS+19, TM14, UBP12, VA10, XGZ17, XNW17].

Static [MMRCC10, FD17, PBEI12]. Stationary [Sch18, ALH10, Kae17, Kär11, LS13a, SCI12b, SVCS10, ZGW10]. Statistical [AM14, Cro17, GLZ+13, Ing16, LCG+15, MSS10, NdMLBlog13, SS19, ABD+15, AD16, AAJGCD15, BK19, BORA10, BRK19, CLW12, GGR11, KIJH+19, KCD11a, KCD11b, LKSM14, Mas18, NGND12, OGE10, PDD11, RSR11, SSS18, Wal18, WH14, YW13b, ZMC+18].

Statistical-reaction-diffusion [RSR11]. statistically [SUS13, SDRA+15].

Statistics [LWL+11, ZRGW19, vVGSE12]. status [DBD12, JS15]. staying [GN14, ON14, TTN13]. Steady [CN12a, IvdSW16, KTI18, BKS16, DEK15, Dim17, FTPN10, FT12, JRG14a, JRG14b, JRG14c, Lüt16, MS10b, RR16, SBCR10]. Steady-state [CN12a, KTI18, Dim17, Lüt16, RR16].

Stearoyl [PWH+13]. Stegomyia
strand-symmetric [Kae17]. stranded [Kue16]. strands [CJ12a, ZDG+10]. strangling [Oka15].

CKN⁺12, DKP⁺18, DFMR19, EBSW17, FRP14, FJR19, FMLM12, FK13, FIIJ11, GB13, GPR⁺16, GBM18, GGG12, HJLNZ11, HGM15, HI19, HAB⁺17, HWG15b, Kär11, KNA⁺18, LW17, LGR⁺12, LWY11, LLL13, MI11a, OO18, OHWS18, PWG16, PR17, PHPM18, PZS⁺10, PBEI12, RB13, SHG16, SLR17, Sat19, SHH15, SKPK17, SR12, SX12, SKK18, SY12, TWW19, TWS15, Thu15, TAORS10, VWF19, VAG16, VC10, Voh17, WD11, Wan19, YiTS19, ZCSR12, ZZ14b, ZZ¹⁺19, ZMW10, d’O12].

Systematic [GBRS19, HWD⁺14, Oka12, Sel13, Sel15b, Sel18, Sel14b, Sel16, Sel17].

Systemically [Sel14b, Sel16, Sel17].

Systemic [CSDR15, DL15a, NAK⁺11, SCA13, TvMG12].

Systems [CKS15, MTE15, MMLK11, Abb10, AF10, ASK17, AENK12, BWB11, BA19, Ben14, BSL⁺17, BJ17, BRP⁺18, BE14, CR14, CFZ14, CLK18, CGHF14, DS13, DJG14, DG10a, DV12, EA17, ESG10, Ezo19, FLA⁺19, FKV19, GZFX14, GVSGL16, GMM⁺13, GP11b, GP12, GA15, GT15, GW19b, HJWC11, HAK⁺19, IMA14, JZL13, JCW13, KSP12, LBMG16, LCSH14, LS16a, LDH⁺12, LL13a, LLZ13, LMDL11, MH12, Mit14, MH13, MAF⁺19, NH12, NBC16a, NBC16b, OA15, ONO15, OUMA10, Pag19, PLS⁺10, RV16, RR16, RDM11, RGB17, RAD14, RA18, SYSM11, SBSE14, SVA18, Sue12, Sza15b, TLW18, VR17, Wal18, WZ18, WW19, WSM12, WFM⁺13, WFC⁺14, YYST13, dEEMR15].

Systole [ASC15].

Talk [BJJR10, FZL18]. Talking [CD⁺14, YST14]. Tall [Gou15].

task-specific [JAHKH12]. Tat [ARG19, BYJ17, YBC17]. Taxa [SAG19].

Taxon [SSS13, SS15d]. Taxonomically [SKH17]. Taxonomy [BBBD13].

FIS16a, FS16a, GZ14b, GS14, doGL13, Gün13, JN14, JRG14a, JRG14b, KDK14a, KMLT14, LBS+11, LGK+12, Lei10, LHT13, LHPF18, LPvSP12, ML12a, Mei13a, Mei13b, MLBA13, Mu112, NO14a, PSS+13, SCABM11, SZ16, SC13a, SRAL12, TSM13a, Van16b, WL12a, ZG10a, ZSCL16a, ZZR13.

Theoretical [AK15, BB15, CMD+10, DS19b, DHK13, DHT16, EJ19, FKMP10, Fer12, Fue16, GDB+19, JS18, LBQ18, LBW+13, MF+15, MdSPBL16, Mol18, PCT19, Pan19, PPC+17, PZS+10, PP19, QF10, RG10, RTRFG19b, RTRK19a, RZIR16, RS14b, SK11a, SPA18, SYY17a, XWW+19, XLG+15, Ano19-29, BD10a, BCKS13, BWM+19, BBBD13, CFF12, CPS10, CW11c, Ch18, Che19, Cro19, CG11, DOC17, GGL+16, Gri15a, HDZ+19, HHS+10, IKHL16, KFG15, KCE+11, LPvSP11, LPvSP12, MR10, MYK+11, Mal10, MFMB12, Mor11, RDP16, SMM15, SMHB10, SMS17, Sat17, SYI17, Ser16, SPMGR10, SGY10, SC13a, SL15b, Voe18, SYST13, YLH12, ZG19].

theoretical [Rao12].

corpora [Di 16, Di 17b, HL11, Mor16, RB15, RBF15, Sak10, TGL15, YST13, YMW12]. theorems [Ran12].

Theory [MMB18, MBS19, OT13, PWL+11, YYB+19, AE17, ASH15, AAIJ15, Arc11, AS12, ABLH18, BCPM+16, BWP10, BORA10, BM16, BAM+11, Che12, Che16, CDM+14, Cle16, DMO+17, Di 10, Di 16, Di 17a, Di 17b, FHSG15, Fra19a, FRH13, FR13b, FR14, GBC+16, Gre15, HRDL14, MR14, HKB10, HZWH10, IST11, KFG+14, KDMK16, KP16, Kue16, LP17, MP14a, MVAK17, Nah12, NAK+11, NTK11, RSH19, RC11, RHI19, Rob11, Ros10a, RWH16, SA17, SSFG15, SC11a, SR10, SSD12, TR17, THBM10, Wal16, WRC+19, XNJ+13, XLLF17, vTMW15]. theory-the [Nah12].

therapeutic [CBGS18, DL12a, HAU+18, HB18, LN13, MB12a, SPM15, SS+18, SH15, WB15, WFC+14]. therapeutics [GGQ+12, PYG+19].

therapies [Ala15, DH18, HL19, PDF18, RRTR12, SLML19, SOF16].

therapy [AGRTR11, AGR+15, BAGG14, GBCB12, CFMC13, CLA+16, DDTH19, FKDW15, FM10, FM14a, GBJ+11, HBA10, HB18, HSLW16, KF18, LMM18, LNRK11, Main10, MKMG+14, MSL+16, NH19, NSH+10, PMCS16, RRPRRSP16, RAR19, SGAM12, SSN+14, TXWW12, TXCW15, VZB+15, WR14, WML+17, YCL+17, ZCT18]. therapy-induced [K18]. there [Di 18, Ros10a].

Thermal [MK18b, BUL12a, JMS12, MK17, Pav14, RRTRS+17, RCL+10, ZG19].

thermoregulation [STK12]. Thermostable [KGP+15]. theta [FR14, KA16]. thick [Don13]. thickening [Fok12]. thickness
RCD19, SB12, SMG18, SQZZ17, ZMW10, ZMT11. trajectories
[CHL+19, LWLM18, LAJC19, PRSC11]. tramadol [ACR+17]. transactions
[MLMG+15]. transboundary [NBA+18]. Transcellular [Sil16].
transcranial [FRI3b]. transcript [SC11a]. Transcription [ACD19, HG18a,
KEHK17, MSND12, Bar19, Das18, FLM18, GY18, KHS13, LLY15, MMH+12,
Mic11, MHD18, NZZ19, PHÁBAI+16, Sel15b, Sel16, Sel17, YST14].
Transcription-associated [KEHK17]. Transcription-based [ACD19].
Transcriptional [Pol12, ARG17, BPP+16, DM19, Hal17, HCHI18, NZZ19, Sel15a,
Sel10b, MeI13a, Mei13b, Mei14, NKN10, PMSV17, RS19, SSS13, SLHS13, ZDF+12].
transferrin [GHBI16, YCL+17]. transferrin-CRM107 [YCL+17].
transfers [BCBD19, hCRS17, CL13b, DLM+19, GSF13]. Transform
[NCY14, ATRR10, AAGCD15, CL17b, GT14, YZW10, YY15, ZLDZ13].
transformation [CMHM19, FH14, Gla13]. transformations
[Ba13, FGS15, MIH13, RKMG12]. transformed [KNA+18, SCsMzX18].
Transforming [HMW16, MHMM11]. transforms [JLX+15, SVCS10].
transfusion [HSLW16]. transgenic [BAR14, LBGW13]. Transient
[BB11a, KK18, BF16, FGH+14, Hor11b, LLTP19, Ltt16, PW19, RW10].
transients [MBP16, SHF16]. transit [KS15, SSZB15, Wei12].
Translocation [SLML19, BBR10, CDS15, DB10, KL11, Kin18, MS14d, OTTF11, TWB16,
TK10c, ZLW16]. transitional [HSl+19]. Transitions [MGGB18, WD11, YFZ+19, DS10a, GJ15a, MI17, RA17, SCA13, TBM+13, WK18a, XNW17].
transitive [DN18]. translation [BBRT12, DCL18, GYWJ10, GRRG16,
Ksvd18, SGD+16, Van17b, Xie13b, ZTML12, dskBS10]. Translational
[Tak17a, BPP+16, EBSW17, Ksvd18, XG12]. translocation [ACH15].
transmembrane [CTZ+16, EG12, IHN16]. transmigration [Kun16].
transmissibilities [WN19]. Transmission
[EN15, FRP14, KR15, MCCC+10, XSTW14, ABB+19. BBR16, BDR10,
BHO+18, CDO17, CT18a, CLK18, CBC+18, CG14, DFM+14, DB11, Déb17,
DBBM11, ERT13, GSY10, GWCA14, GC18, GL12b, GAY+11, HAP+16,
HHE19, HBL10, HLWT14, JSSZ12, KGK10, KL17, Ke14, KZ14, LLN+19,
Lan16, LK13, LCC15, LJ15, LKO+17, LP19, LN19, LMCW18, MHMM18,
MHX+14, MCC+17, MG10a, MSB16, yTRSC13, MG13, MMRCC10,
NKL10, NT14, NDZMA14, NTED+19, NYSM12, OVLK14, OL19, PSJ15,
PNV18, PaCZ10, PT10, PKZ12, PSL+10, PEZ+13, RC16, RDSD+12,
Ros10b, RCL16, SW16, ST17a, SN11, SSST19, SY11, TC12, TDM14, TCB13,
VGZ18, WW12a, WZJ+13, WL15, WCI11, YTK10, ZL19, ZN18, ZXH19,
ZZR10, ZZR13, ZRZ15]. transmissions [KK12a]. transmissivity
[Can11]. transmitted [BPFR16, BCF19, CCW16, HE16, HHA+13, MPM10,
MBC+12a, TB18, YZMY18]. transmural [DLMK12]. transplant
GYWJ10, GXFF13, GKN10, GW19a, GMM+13, IGLL14, HBJ12, HMMRSD15, HAB+17, HTK14, HM11b, HYZ+15, HZL+13, HY16, IMW15, JD16a, JD16b, JW18, KK18, KH19, KKH15, KB19, KJ19, KCSB14, Kit10, KFW12, KDS18, Kow12, KAKK19, LCMC14, LWH+11, LCJ18, LL12, LL13a, LL14. using LYP+15, LTP19, LT14, Lj10, LLB+18, wLW10, LBS+16, LPD+16, MS14a, MPJH13, MSND12, MFZ18, MALAN17, MH16, MBE11, MAR+17c, Mou12b, NH19, NSBL10, NNK+15, NK18, NMZ19, NI11, NHSX14, OSN18, PAK11, PDM17, PS13, PBE12, PPF17, PKH11, PPI18, PP19, PSA13, PPT+16, QW12, RSS+18, RSD+16, RMM+16a, RA10, RNVP10, RP18, RRTR12, RBF15, RM17c, SIK+18, SS17a, SRD+15, SM14, ST17a, SM17a, SMG18, SGW17, SDL13, SBT18, SS17, SSH11, SCF+12, SSS15, SDL12, SLT18, SWPC+16, SKK18, SLC13, SSRA16, SVCS10, TBQG14, TAI+18, Tay16a, TL+15, TBMM19, TF18, TWC+19, THBM10, TGZF11, Tun13, USF+18, UPWK15, VF12, VZB+15, Wal12, WM14, WH14, WDN+19, WHS+13, WGH+14, WZ15, XWD+10, Xyd+17, Y112, Yin17, YLH12, ZDG+10, ZLY+13, ZSZM14, ZKHL16, ZRGW19, ZNCM15, ZZN+19, vdSS12, vTMW15. usually [KB10a]. utility [Bry13, RWH16]. Utilization [KK17b, MHC16]. utilizing [QJR+16, WYX+17]. UTRs [SGD+16]. UV [BPV15, DM15, PHPT+12]. UV-induced [BPV15, PHPT+12]. Uygur [WZJ+13].

[CBL14, BBS18b, CC10, CK15, DMM+14, GGBW14, Gri15b, GAV15, Jam12, Jam13, LLH+13, NNK10, PCB14, RMM+16b, RR12, TA13, TEY16, WS10].

Variational [CHH10, FMS+12]. Variations [FBU11, LVLC18, Mal15, Oka12].

Vasomotion [POP12, HPP10]. Vault [BFGAGA16]. Vector [Hua16, BZ10, CBC+18, DDLW10, GYWJ10, GWCA14, GW19a, HLHY17, HB16b, HTB+13, HZL+11, JWTW17, JW18, KHX+19, KEKB18, KMCJ17, KSKK15, LYF+15, MRPH17, MS16, MMG+16, MBE11, MYOS14, NTED+19, NHSX14, OL19, PKZ12, SHLL11, TXTW16, TEY10, WDL+13, XWD+10, ZDG+10, pZWZ+16, ZZC+17, ZN18]. Vector-bias [KMCJ17, OL19].

References

[Andersen:2013:DLE]

[Andersen:2014:CDL]

[Ackermann:2012:RTN]

[Arciero:2013:MIB]

[Akbaripour-Elahabad:2016:RTS]
Abrams:2010:PPA

Aydogdu:2017:MBW

Ahmed:2010:EMF

Adilina:2019:EDB

Agnew:2014:DBM

REFERENCES

Angulo:2018:IRE

Arias:2018:EPM

Alsmeyer:2011:LGF

Abramson:2013:QOD

Albano:2015:EDE

Albano:2011:IET

Antoneli:2018:HFF

Aita:2012:BCB

Aita:2012:TEC

REFERENCES

[Ali:2016:MLA]

[Alves:2017:HCA]

[Akbar:2018:ISI]

REFERENCES

Ait-Haddou:2010:CBD

He:2012:GRP

Alonso-Hearn:2019:DVM

Anceschi:2019:NNF

Allman:2010:ETF

REFERENCES

Al-Husari:2013:RTI

Ashby:2019:URE

Aita:2016:IFV

Al-Jumaily:2012:EAS

Al-Jumaily:2011:FMM
REFERENCES

Abou-Jaoude:2019:LBD

Armstrong:2011:MPD

Adler:2013:MCS

Akita:2015:TLI

Asatryan:2016:EGI
REFERENCES

[182]

1. Akçay:2012:IFI

3. Aldebert:2018:SSP

5. Akhmetzhanov:2019:MBT

Andrei R. Akhmetzhanov, Jong Wook Kim, Ryan Sullivan, Robert A. Beckman, Pablo Tamayo, and Chen-Hsiang...

J-F. Arnoldi, M. Loreau, and B. Haegeman. Resilience, reactivity and variability: a mathematical comparison of
REFERENCES

Allesina:2011:PTR

Allen:2017:CHG

Anupama:2019:IICK

Alvarez:2018:MOL

Alvarez:2019:SDS

REFERENCES

REFERENCES

REFERENCES

Azaele:2010:IPE

Al-Mamun:2016:MMA

Arazi:2010:MIC

Allen:2012:ESD

Arazi:2013:RPF

[AN13] A. Arazi and A. U. Neumann. The role of positive feedback loops involving anti-dsDNA and anti-anti-dsDNA antibodies in autoimmune glomerulonephritis. *Journal of The-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2010:EBx

Anonymous:2010:PNa

Anonymous:2010:PMa

Anonymous:2010:PMc

Anonymous:2010:PJe

Anonymous:2010:PSa

Anonymous:2010:PJa

Anonymous:2010:PJe

REFERENCES

Anonymous:2010:PNb

Anonymous:2010:PMb

Anonymous:2010:PMd

Anonymous:2010:PJe

Anonymous:2010:PSb

Anonymous:2010:PAc

Anonymous:2010:PDa

Anonymous:2010:PAa
REFERENCES

Anonymous:2010:POa

Anonymous:2010:PFa

Anonymous:2010:PAb

Anonymous:2010:PDb

Anonymous:2010:POb

Anonymous:2010:PAd

Anonymous:2010:PFb

Anonymous:2010:PJc
REFERENCES

Anonymous:2010:PJf

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

REFERENCES

Anonymous:2011:EBs

Anonymous:2011:EBt

Anonymous:2011:EBu

Anonymous:2011:EBv

Anonymous:2011:EBw

Anonymous:2011:EBx

REFERENCES

Anonymous:2011:PAc

Anonymous:2011:PAb

Anonymous:2011:PDa

Anonymous:2011:PNa

Anonymous:2011:POa

Anonymous:2011:PMd

Anonymous:2011:PDb

Anonymous:2011:PJc
Anonymous:2011:PJf

Anonymous:2011:PSa

Anonymous:2011:PJa

Anonymous:2011:POb

Anonymous:2011:PJd

Anonymous:2011:PSb

Anonymous:2011:PFa

Anonymous:2011:PJe

REFERENCES

Anonymous:2011:PMa

Anonymous:2011:PAa

Anonymous:2011:PFb

Anonymous:2011:PAd

Anonymous:2011:PMb

Anonymous:2011:PNb

Anonymous:2011:PMc

Anonymous:2011:PJb

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EBf

Anonymous:2012:EBg

Anonymous:2012:EBh

Anonymous:2012:EBi

Anonymous:2012:EBj

Anonymous:2012:EBk

Anonymous:2012:EBl

REFERENCES

Anonymous:2012:EBs

Anonymous:2012:EBt

Anonymous:2012:EBu

Anonymous:2012:EBv

Anonymous:2012:EBw

Anonymous:2012:EBx

REFERENCES

Anonymous:2012:PMa

Anonymous:2012:PJa

Anonymous:2012:PJf

Anonymous:2012:PAb

Anonymous:2012:PSa

Anonymous:2012:PDO

Anonymous:2012:POb

Anonymous:2012:PJd
REFERENCES

Anonymous:2012:PAa

Anonymous:2012:PNa

Anonymous:2012:PMd

Anonymous:2012:PFa

Anonymous:2012:PMb

Anonymous:2012:PFb

Anonymous:2012:PSb

Anonymous:2012:PAc

REFERENCES

REFERENCES

Anonymous:2013:PNb

Anonymous:2013:POa

Anonymous:2013:PSb

Anonymous:2013:PFa

Anonymous:2013:PNa

Anonymous:2013:PSa

Anonymous:2013:POb

Anonymous:2013:PJb
Anonymous:2013:PJe

Anonymous:2013:PAc

Anonymous:2013:PAb

Anonymous:2013:PAd

Anonymous:2013:PJd

Anonymous:2013:PAa

Anonymous:2014:EBa

Anonymous:2014:EBb

REFERENCES

Anonymous:2014:EBc

Anonymous:2014:EBd

Anonymous:2014:EBe

Anonymous:2014:EBf

Anonymous:2014:EBg

Anonymous:2014:EBh

Anonymous:2014:EBi

Anonymous:2014:EBj

Anonymous:2014:EBk

Anonymous:2014:EBl

Anonymous:2014:EBm

Anonymous:2014:EBn

REFERENCES

Anonymous:2014:EBu

Anonymous:2014:EBv

Anonymous:2014:EBw

Anonymous:2014:EBx

Anonymous:2014:PFa

Anonymous:2014:PAa

REFERENCES

REFERENCES

Anonymous:2014:PAb

Anonymous:2014:PFb

Anonymous:2014:PSa

Anonymous:2014:POb

Anonymous:2014:PAd

Anonymous:2014:POa

Anonymous:2014:PSb

Anonymous:2014:PJa
REFERENCES

Anonymous:2014:PN

Anonymous:2014:PD

Anonymous:2014:PMa

Anonymous:2014:PJa

Anonymous:2014:PRR

Anonymous:2015:EBa

Anonymous:2015:EBb

REFERENCES

Anonymous:2015:EBi

Anonymous:2015:EBj

Anonymous:2015:EBk

Anonymous:2015:EBl

Anonymous:2015:EBm

Anonymous:2015:EBn

Anonymous:2015:PFa

Anonymous:2015:PMd

Anonymous:2015:PJd

Anonymous:2015:PMa

Anonymous:2015:PNa

Anonymous:2015:POb

Anonymous:2015:PAb

Anonymous:2015:PNb

Anonymous: 2015: PJc

Anonymous: 2015: PDa

Anonymous: 2015: PAa

Anonymous: 2015: PMc

Anonymous: 2015: PDb

Anonymous: 2015: PFb

Anonymous: 2015: POa

Anonymous: 2015: PJa
REFERENCES

Anonymous:2016:EBe

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

REFERENCES

Anonymous:2016:EBw

Anonymous:2016:EBx

Anonymous:2016:PDb

Anonymous:2016:PFb

Anonymous:2016:PFj

Anonymous:2016:PMa

Anonymous:2016:PJa

REFERENCES

Anonymous:2016:PJe

Anonymous:2016:PFa

Anonymous:2016:PAc

Anonymous:2016:PNb

Anonymous:2016:PJd

Anonymous:2016:PDa

Anonymous:2016:PJc

Anonymous:2016:POa

Anonymous:2016:PMd

Anonymous:2016:PMc

Anonymous:2016:PAAd

Anonymous:2016:PMb

Anonymous:2016:PAAb

Anonymous:2016:PAa

Anonymous:2016:PNa

Anonymous:2016:PJb
Anonymous:2016:PS

Anonymous:2016:POb

Anonymous:2017:EBa

Anonymous:2017:EBb

Anonymous:2017:EBc

Anonymous:2017:EBd

Anonymous:2017:EBe
REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:EBx

Anonymous:2017:PNb

Anonymous:2017:PJe

Anonymous:2017:PJf

Anonymous:2017:PAa

Anonymous:2017:PMb

Anonymous:2017:PNa

REFERENCES

REFERENCES

Anonymous:2017:PFa

Anonymous:2017:POa

Anonymous:2017:PMc

Anonymous:2017:PAb

Anonymous:2017:PJd

Anonymous:2017:PJb

Anonymous:2017:PAd

Anonymous:2017:PJc

REFERENCES

Anonymous:2018:EBs

Anonymous:2018:EBt

Anonymous:2018:EBu

Anonymous:2018:EBv

Anonymous:2018:EBw

Anonymous:2018:EBx

Anonymous:2018:PAc

Anonymous:2018:PAd

Anonymous:2018:PJe

Anonymous:2018:PMc

Anonymous:2018:PMa

Anonymous:2018:PJa

Anonymous:2018:PSb

Anonymous:2018:PJb
REFERENCES

Anonymous:2018:PAa

Anonymous:2018:PDb

Anonymous:2018:PFa

Anonymous:2018:PAb

Anonymous:2018:PMd

Anonymous:2018:PJd

Anonymous:2018:PDa

Anonymous:2018:PFb
REFERENCES

Anonymous:2018:PJc

Anonymous:2018:PNb

Anonymous:2018:PNa

Anonymous:2018:PJb

Anonymous:2018:POb

Anonymous:2018:POa

Anonymous:2018:PSa

Anonymous:2018:PMb

Anonymous:2019:EBw

Anonymous:2019:EBx

Anonymous:2019:EB

Anonymous:2019:WCE

Anonymous:2019:O

Anonymous:2019:PAc

Anonymous:2019:POb

Anonymous:2019:PJc

Anonymous:2019:PJd

Anonymous:2019:PJe

Anonymous:2019:PSb

Anonymous:2019:PMb

Anonymous:2019:PAa

Anonymous:2019:PFb

REFERENCES

Anonymous:2019:POa

Anonymous:2019:PAb

Anonymous:2019:PMa

Anonymous:2019:PMd

Anonymous:2019:PJa

Anonymous:2019:PNa

Anonymous:2019:PJb

Anonymous:2019:PFa

REFERENCES

Anonymous:2019:PMc

Anonymous:2019:PJf

Anonymous:2019:PSa

Anonymous:2019:PA

Anonymous:2019:PPK

Anonymous:2019:PN

Antrup:2013:CEI
REFERENCES

REFERENCES

Arodz:2013:SSS

[AP13b]

Allen:2017:MMA

[AP17]

Alharbi:2019:ECL

[AP19]

Addison:2015:IMI

[APBS15]

Addison:2013:RTV

[A. L. Addison, J. A. Powell, D. L. Six, M. Moore, and B. J. Bentz. The role of temperature variability in sta-

Anjukandi:2010:LDS

Abrams:2011:HDA

Argasinski:2017:NSL

Andrada:2013:GRQ

REFERENCES

REFERENCES

Argasinski:2012:DSR

Aguilera:2014:SHL

Almeira:2017:RTB

Aguilera:2019:MET

Ashyani:2018:MAE

Abeysuriya:2014:PVN

Aviram:2015:MYV

Archetti:2012:RGT

Archetti:2013:TPG

Archetti:2016:EOH
REFERENCES

Aboelkassem:2015:MMA

Aboelkassem:2016:MPC

Aznar:2015:MDA

Al-Shammari:2014:MCO

Ashcroft:2017:EPG

REFERENCES

266

REFERENCES

Ahmed:2015:RPR

Aboelkassem:2019:HWW

Alger:2012:GHR

Asatryan:2015:NVD

Allhoff:2015:ISD

Axelrod:2012:LEC

Aita:2015:EDP

Ayati:2012:MDB

Aydogmus:2018:DEN

Acuna-Zegarra:2018:RAG

References

REFERENCES

REFERENCES

[Bose:2011:CEA]

[Biro:2013:CRA]

[Baninajjaryan:2015:TSE]

[Boemo:2019:MMH]

REFERENCES

Berec:2018:EMF

Brush:2018:IRN

Boutwell:2013:EOL

Berezansky:2014:ETG

Barazzuol:2010:MMB
Lara Barazzuol, Neil G. Burnet, Raj Jena, Bleddyn Jones, Sarah J. Jefferies, and Norman F. Kirkby. A mathematical model of brain tumour response to radiotherapy and
REFERENCES

Blum:2011:DCL

Boldrini:1997:RNL

Boldrini:2013:CNLa

Boldrini:2013:CNLb

REFERENCES

Ballard:2016:PEF

Brackley:2012:MPM

Bougaran:2010:MCC

Bayer:2018:TPM

Bouda:2018:WRS

Bafghi:2015:BAC

Belmonte-Beitia:2013:MBI

Broom:2013:DNP

Benhamou:2015:UFL

Bai:2019:RDC

Xiaolu Bai and Xiaolin Chen. Rational design, conformational analysis and membrane-penetrating dynamics study of bac2a-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia. *Journal of
REFERENCES

Broom:2010:SMK

Barberis:2010:CGP

Broom:2019:RFA

Belov:2013:RBM

Bowness:2018:MEB

REFERENCES

REFERENCES

Butner:2016:HAB

Barta:2010:GTM

Blanchard:2010:ECT

Bulelzai:2012:LTE

Baptestini:2013:CNS

Boukal:2014:LHI

Berthaume:2012:PFE

Borgogno:2012:SRC

Breban:2010:GMS

Barbosa:2012:QDN

REFERENCES

REFERENCES

REFERENCES

Blackwood:2011:ETD

Bate:2012:RPB

Barton:2013:PDV

Bate:2013:PPO

Benzekry:2013:MTD

Berndt:2011:ICC

Broom:2012:ESS

Biermans:2014:DDM

Black:2014:ECP

Bromage:2012:PEE

Timothy G. Bromage, Russell T. Hogg, Rodrigo S. Lacruz, and Chen Hou. Primate enamel evinces long period biological timing and regulation of life history. *Journal of

Katharina Brinck and Henrik Jeldtoft Jensen. The evolution of ecosystem ascendency in a complex systems based
REFERENCES

REFERENCE

REFERENCES

References

Boghigian:2010:CAP

Borchering:2012:SSR

Bordewich:2017:LSG

Burgess:2017:ERI

Barrios:2018:AED

REFERENCES

Boyle:2011:SPP

Bo:2019:PRB

Black:2010:SAE

Benard:2011:GSE

Bansal:2012:IPE
REFERENCES

Berec:2014:WPP

Burger:2016:ETA

Bocharov:2018:IBR

Browning:2018:IPL

Barreto:2017:GAR
REFERENCES

REFERENCES

Blyuss:2015:URA

Ben-Naoum:2016:AHC

Bocianowski:2012:CTM

Bonsall:2010:INL

Bonneuil:2012:MPM

[BP18] Leah R. Band and Simon P. Preston. Parameter inference to motivate asymptotic model reduction: An analy-

[Barberis:2015:JFR]

[Bodova:2015:CSN]

[Bodova:2015:ECS]

[Bubba:2019:CBE]

Grace Brooks, Gabriel Provencher, Jinzhi Lei, and Michael C. Mackey. Neutrophil dynamics after chemotherapy and g-CSF: The role of pharmacokinetics in shaping the response.
REFERENCES

Bartoszek:2012:PCM

Bandiera:2016:EMM

Briant:2015:MVR

Bolzoni:2015:RHI

REFERENCES

Bruineberg:2018:FEM

Brylinski:2013:UAE

Binmore:2011:SES

Bishop:2013:IER

Babaei:2015:PDA

Bartoszek:2015:CEE

[BS15b] Krzysztof Bartoszek and Serik Sagitov. A consistent estimator of the evolutionary rate. *Journal of Theoreti-
Belitsky:2019:RPI

Bennett:2019:LDS

Bonello:2013:BIS

Baker:2014:GMC

REFERENCES

REFERENCES

Bhattacharya:2014:MMS

Bass:2011:ATL

Basu:2018:SSM

Boer:2011:SMM

Balakrishnan:2014:PMM

REFERENCES

[BTF19] Lydia M. Bilinsky, David J. Thomas, and Jeffrey W. Fisher. Using mathematical modeling to infer the valence state of ar-

[Barbilon:2015:NIP]

[Barber:2013:TDM]

[Borz:2014:HPR]

[Brand:2015:RSS]

[Barber:2013:TDM]

[Borz:2014:HPR]

[Brand:2015:RSS]
Barrack:2014:MCB

Barrack:2015:MCC

Baghdadi:2018:MMM

Bourouiba:2011:HPA

Birch:2014:IFO
REFERENCES

REFERENCES

Boyles:2013:NFP

Bacelar:2011:LHM

Boyle:2012:NSC

Blazej:2019:MAT

Bousios:2010:ACF

[BYY+11] Jianjun Bi, Huilan Yang, Huacheng Yan, Rengang Song, and Jianyong Fan. Knowledge-based virtual screening of HLA-a*0201-restricted CD8 + T-cell epitope peptides
REFERENCES

[BZJP18] Hojjat Bazzazi, Yu Zhang, Mohammad Jafarnejad, and Aleksander S. Popel. Computational modeling of synergistic interaction between αvβ3 integrin and VEGFR2 in en-

REFERENCES

[Campbell:2015:EIC] R. B. Campbell. The effect of inbreeding constraints and offspring distribution on time to the most recent common an-

Chamchod:2013:MPV

Cornish-Bowden:2013:PSN

Cornish-Bowden:2015:TGR

Codling:2016:BDI

Cimentepe:2017:POT
REFERENCES

Cornish-Bowden:2017:LMO

Caiado:2016:FLA

Cornish-Bowden:2017:LBL

Chen:2018:MIL

Cunningham:2018:OCD

REFERENCES

Capitan:2017:SCE

Costa:2013:BIM

Capitan:2011:SAMb

Chatelain:2011:MCE

Costa:2015:UGR

Xianli Chen, Jia Chen, Bin Shao, Linjie Zhao, Haicen Yue, and Qi Ouyang. Relationship between cancer mutations

Chiu:2018:LSF

Collignon:2012:LBS

Crauste:2010:MSF

Ciup:2011:PSP

Ciulla:2014:ACT

REFERENCES

[Chow:2011:DME] Lamwah Chow, Meng Fan, and Zhilan Feng. Dynamics of a multigroup epidemiological model with group-targeted vaccination strategies. Journal of Theoretical Bi-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Caudron:2012:SCA

Chen:2012:NSA

Caliebe:2010:MCD

Choi:2015:OIS

Chen:2011:PAE

[CK15] Julia Chifman and Laura Kubatko. Identifiability of
the unrooted species tree topology under the coalescent
model with time-reversible substitution processes, site-specific
rate variation, and invariable sites. Journal of Theoretical
Biology, 374(??):35–47, June 7, 2015. CODEN JTBIAP.

[CK16] Maria Chaley and Vladimir Kutyrkin. Stochastic model of ho-
mogeneous coding and latent periodicity in DNA sequences.
Journal of Theoretical Biology, 390(??):106–116, February 7,
2016. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
science/article/pii/S0022519315005640.

[CK17] Robert J. Clegg and Jan-Ulrich Kreft. Reducing discrep-
ancies between 3D and 2D simulations due to cell packing
density. Journal of Theoretical Biology, 423(??):26–30, June
21, 2017. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
science/article/pii/S0022519317301807.

[CK18] Jieun Choi and Yong-Jung Kim. predator–prey equations
with constant harvesting and planting. Journal of Theoreti-
cal Biology, 458(??):47–57, December 7, 2018. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519318304235.

[CK19] Ross Cressman and Vlastimil Krivan. Bimatrix games
that include interaction times alter the evolutionary out-
come: The Owner–Intruder game. Journal of Theoretical
Biology, 460(??):262–273, January 7, 2019. CODEN JTBIAP.
REFERENCES

Chifman:2012:CCS

Chu:2019:ERE

Czaran:2015:MCR

Cao:2017:MMQ

Cibert:2010:CFI

[CL10] Christian Cibert and Andrei Ludu. Is the curvature of the flagellum involved in the apparent cooperativity of the

REFERENCES

REFERENCES

REFERENCES

[Cohen:2012:BSA]

[Chakrabarty:2012:MHC]

[Constable:2014:PGI]

[Cuesta:2017:ESS]

[Carteni:2012:NPS]

REFERENCES

Jacob D. Cooper, Claudia Neuhauser, Antony M. Dean, and Benjamin Kerr. Tipping the mutation-selection balance: Limited migration increases the frequency of deleterious mutants.
Cordoleani:2012:CSS

Cheeseman:2014:STD

Cordoleani:2013:SPF

Chaves:2019:AGM

Beatriz Carbonell-Pascual, Eduardo Godoy, Ana Ferrer, Lucía Romero, and Jose M. Ferrero. Comparison between Hodgkin–
REFERENCES

Chavez:2016:MIP

Camacho:2016:QMC

Calenge:2014:BMH

Coons:2016:NPI

Chang:2019:MNU

Caiazzo:2015:MMP

Cressman:2010:CND

Calvetti:2018:CMI

Carlos:2015:SEA

Calleja-Rodriguez:2019:APE

[CRLH+19] Ainhoa Calleja-Rodriguez, Zitong Li, Henrik R. Hallingbäck, Mikko J. Sillanpää, Harry X. Wu, Sara Abrahamsson, and

[CS11a] Daniela Calvetti and Erkki Somersalo. Dynamic activation model for a glutamatergic neurovascular unit. *Journal
Chakra:2011:HCM

Campenni:2014:PCP

Ciupe:2014:UVH

Chor:2015:DTS

Corning:2015:SSD

REFERENCES

[CSR+05] Arancha Casal, Cenk Sumen, Timothy E. Reddy, Mark S. Alber, and Peter P. Lee. Agent-based modeling of the con-

[Ross Cressman, Jie-Wen Song, Bo-Yu Zhang, and Yi Tao. Cooperation and evolutionary dynamics in the public goods]

REFERENCES

Contreras-Torres:2018:PSC

Canko:2015:PTC

Choudhury:2018:MMN

Caplan:2010:EMG

Crauste:2015:PPS

REFERENCES

Allen Cheung and Robert Vickerstaff. Sensory and update errors which can affect path integration. *Journal of
REFERENCES

Chimal-Vega:2015:ESC

Chamoli:2011:ADM

Chang:2011:GAC

Chen:2011:FRA

Camacho:2013:TPR

REFERENCES

Chen:2016:OPE

Camacho:2011:MMF

Chen:2018:ICM

Chen:2018:DSE

Cheng:2018:PMP
Xiang Cheng, Xuan Xiao, and Kuo-Chen Chou. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative

Chen:2019:AQI

Cai:2011:CMT

Chen:2014:RZD

Czagczkes:2014:HGS

Cheng:2014:EDR

REFERENCES

[Dasmahapatra:2013:MHP] Srinandan Dasmahapatra. Model of haplotype and phenotype in the evolution of a duplicated autoregulatory acti-
REFERENCES

REFERENCES

REFERENCES

Dimitrio:2013:SPM

Dinh:2018:GSE

Ding:2014:ICO

Delhez:2010:RTE

DeCaluwe:2013:PTA

[DD13] Joëlle De Caluwé and Geneviève Dupont. The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca$^{2+}$. *Journal of Theoretical Biology*, 331(??):12–18, August 21,

REFERENCES

Das:2012:GNF

Dercole:2013:ONF

Donzelli:2013:CBT

Dunn:2013:SME

Scheila de Avila e Silva, Sergio Echeverrigaray, and Günther J. L. Gerhardt. BacPP: Bacterial promoter prediction — a

Deng:2019:CDP

Deutsch:2018:CMG

deFarias:2013:SPT

Dunn:2012:MRB

Dechriste:2018:VMF

Judy Day, Avner Friedman, and Larry S. Schlesinger. Modeling the host response to inhalation anthrax. *Journal of
REFERENCES

REFERENCES

REFERENCES

P. M. Drysdale, J. P. Huber, P. A. Robinson, and K. M. Aquino. Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. *Journal of Theoretical Bi-
REFERENCES

BIAP. ISSN 0022-5193 (print), 1095-8541 (electronic).

Dehzangi:2015:GPG

Dumont:2016:TCB

[DHT16] Grégory Dumont, Jacques Henry, and Carmen Oana Tar
niceriu. Theoretical connections between mathematical neuronal models corresponding to different expressions of noise. Journal of Theoretical Biology, 406(??):31–41, October 7, 2016. CODEN JTB

Demongeot:2019:MPB

Dean:2019:TMC

REFERENCES

[Di 18] Massimo Di Giulio. On Earth, there would be a number of fundamental kinds of primary cells — cellular domains — greater than or equal to four. *Journal of*

REFERENCES

400

[D13]

[Dil14]

[Dim10]

[Dim17]

[DJD10]
REFERENCES

DeVos:2013:ETI

Deonikar:2013:CMP

Devipriya:2013:CDD

Dutta:2017:IPO

DeLaFuenteCanto:2018:MGC

Diebner:2016:ESP

Danko:2015:UNS

Delitala:2012:MMD

Donovan:2012:CMR

Day:2015:SLR

[DL15a] J. D. Day and E. K. LeGrand. Synergy of local, regional, and systemic non-specific stressors for host defense against

Deutsch:2015:MFI

Donovan:2016:CRN

delaCruz:2016:SMS

delaEscosura:2015:SPC

Dallon:2019:SMR

Fabio Vittorio De Blasio, Lee Hsiang Liow, Tore Schweder, and Birgitte Freiesleben De Blasio. A model for global diversity in response to temperature change over geological

DeVargasRoditi:2011:EDB Laura De Vargas Roditi and Franziska Michor. Evolutionary dynamics of BRCA1 alterations in breast tumorigene-
REFERENCES

Differt:2015:IMI

Dilao:2019:TRP

DiGiulio:2014:REM

Davis:2014:PVH

[Don17] G. M. Donovan. Inter-airway structural heterogeneity interacts with dynamic heterogeneity to determine lung function and flow patterns in both asthmatic and control simulated

Doolittle:2017:DG

DeBoer:2013:QLT

Droz:2013:MAP

Dobreva:2015:MMA

Doutel:2016:LBD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Danino:2016:EES

dosSantos:2013:NKC

Deeds:2011:CMS

deSilva:2010:MMF

Deeba:2018:DAS

REFERENCES

DeCaluwe:2019:SMG

deTrixhe:2015:VSP

Du:2019:VPM

Du:2012:SLP

Dunn:2011:RTM

Dupuy:2012:ASG

Dormanns:2015:NCI

Dudziuk:2019:BSF

Deng:2014:BBE

REFERENCES

REFERENCES

REFERENCES

Eftimie:2013:SUD

Edwards:2010:MCW

Emerson:2012:RCA

Eftimie:2017:MIC

El-Haroun:2010:MMN

Edhan:2017:SNR

Ezoe:2013:CMN

Evans:2016:EMA

Eisenberg:2017:CBE

Eisenberg:2019:CCB

Eskandari:2016:EDA

Eide:2018:PPS

El-Kebir:2013:CMT

Ehn:2012:ASC

Elias:2017:PEM

Elliot:2015:IIA

Edwards:2011:IDH

ElSoufi:2016:CCM

Ehling:2016:HCS

Esmaeili:2010:UCC

Maryam Esmaeili, Hassan Mohabatkar, and Sasan Mohsenzadeh. Using the concept of Chou’s pseudo amino acid com-

REFERENCES

[ESG10] Farida N. Enikeeva, Konstantin V. Severinov, and Mikhail S. Gelfand. Restriction-modification systems and bacterio-
REFERENCES

REFERENCES

REFERENCES

Fallah:2017:MMR

Fang:2011:EED

Fann:2012:ECR

Feng:2018:URB

Ferris:2018:EHD
Charlotte Ferris and Alex Best. The evolution of host defense to parasitism in fluctuating environments. *Journal
REFERENCES

Fernandez-Blanco:2013:RFC

Fletcher:2012:MMM

Flegg:2012:WHA

Fenley:2011:CMD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[FGLS10] Kevin J. Flynn, H. Christopher Greenwell, Robert W. Lovitt, and Robin J. Shields. Selection for fitness at the individual or population levels: Modelling effects of genetic modifications in microalgae on productivity and environmental

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[FM15b] Kylie J. Foster and Stanley J. Miklavcic. Toward a biophysical understanding of the salt stress response of individual plant

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Filatov:2015:SNS

Fimmel:2015:HTC

Filatov:2016:CSN

Fimmel:2016:MDC

Frasca:2016:DTM

Fatemi:2015:DQI

Ferretti:2016:MEF

Fleming:2012:MCE

Fleischer:2018:PYT

Fleming:2010:IST

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Garcia-Algarra:2014:RLA

Galla:2010:IIN

Galla:2011:IIA

Gao:2011:PAF

REFERENCES

REFERENCES

Guzzetta:2011:MSD

Guzzetta:2015:ECI

Gilarranz:2012:SNS

Garbey:2013:DSD

REFERENCES

[GBM18] Philip B. Greenspoon, Sydney Banton, and Nicole Mideo. Immune system handling time may alter the outcome of competition between pathogens and the immune system. *Journal
REFERENCES

REFERENCES

REFERENCES

Guo:2018:MMA

Gove:2012:ECN

Gavryushkin:2016:SUP

Gupta:2019:RCC

REFERENCES

Garcia-Domingo:2011:ETS

Glass:2018:HMG

Gerberry:2016:PAB

Ghosal:2011:DBI

Gatti:2018:NEA

REFERENCES

Ganyani:2019:IGG

Gavagnin:2019:ISC

Guillamon:2015:BAO

Geritz:2012:MDD

Geritz:2014:DBF

Gaunt:2016:PRA

Gilbert:2014:SSP

Gao:2014:ITH

Guo:2016:CBG

Guria:2012:IFR

Gerard:2019:RSM

Granda:2016:IPI

Gomes:2016:TFI

Gonzalez:2012:ECL

Greenhalgh:2015:DER
Scott Greenhalgh, Alison P. Galvani, and Jan Medlock. Disease elimination and re-emergence in differential-equation

Gabriel:2012:CAS

Gonzalez:2011:CCR

Guang:2010:PSC

Goldwyn:2011:RME

Ghachem:2016:IBI

REFERENCES

[Ghu18] M. S. Ghuchani. Comment on: An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. *Journal of Theoretical Biology*, 440(??):70,
REFERENCES

REFERENCES

Gylleberg:2016:EPT

Graham:2017:OCA

Gecek:2012:IMS

Guo:2012:SRH

Georgelin:2014:DCM
George:2018:SMT

George:2018:TGM

Glazier:2013:LTU

Greene:2015:MIH

Gobel:2010:CEM
REFERENCES

REFERENCES

Goyal:2016:DVH

Grbatinic:2016:CAH

Goyal:2017:RCH

Garira:2019:CMM

Gross:2011:MMA

REFERENCES

García-Martínez:2010:MRI

Gong:2013:PLN

García-Martínez:2010:MRI

Gong:2013:PLN

REFERENCES

Grbatinic:2015:NAH

Garcia-Manso:2012:LSL

Grec:2018:MLA

Gong:2014:NID

Garjo:2012:SCA

REFERENCES

Ghang:2014:SES

Ghang:2015:IRO

Gullotto:2013:PPS

Goel:2015:IRH

Golubev:2010:EMG

Golubev:2010:RDC

[Gol10b] A. Golubev. Random discrete competing events vs. dynamic bistable switches in cell proliferation in differentia-
REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue/Start Page</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume (Issue)</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

REFERENCES

Giacomini:2013:PBP

Gunji:2011:ARB

Galanter:2017:RCA

Gregg:2019:MMC

Ganz:2018:TTA

Grasman:2011:SML

Grobler:2016:MND

Shen:2012:LEA

Gehring:2010:NBA

Garcia:2011:MMA

REFERENCES

Gokhale:2011:SAE

Garcia:2012:LLA

Guo:2014:FTD

Grieshaber:2015:CMI

Gin:2010:MCL
REFERENCES

Ghosh:2019:EAC

Ganguly:2015:HMF

Gorban:2016:EAM

Gundersen:2013:SMR

Gunel:2012:MIB

REFERENCES

Garel:2012:ONF

Garay:2015:FRP

Gjini:2016:HDC

Garcia:2014:EGB

Günel:2013:EMI

See erratum [Günel13].

Julián García, Matthijs van Veelen, and Arne Traulsen. Evil green beards: Tag recognition can also be used to withhold cooperation in structured populations. Journal of The-
REFERENCES

Gunther:2012:CHP

Gibson:2013:IBC

Grover:2014:CAR

Gan:2015:HHS

Glover:2019:VHM

Andrew Glover and Andrew White. A vector–host model to assess the impact of superinfection exclusion on vaccination strategies using dengue and yellow fever as case studies. Journal of Theoretical Biology, 484(??):Article 110014,
REFERENCES

[GWE11] Zachariah Gompert, Keith Willmott, and Marianne Elias. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimicry. *Journal of The-
Gao:2015:PHR

Green:2010:NLM

Gong:2018:GRM

Guo:2017:MPM

Govan:2013:CSN

REFERENCES

[GZ14a] Huihua Ge and Guangya Zhang. RETRACTED: Identifying halophilic proteins based on random forests with preprocessing of the pseudo-amino acid composition. *Journal of

Ge:2014:RNI

Guo:2019:MAT

Gao:2014:SAP

Garamszegi:2012:RBS

REFERENCES

Hashimoto:2014:MEF

Hiebeler:2017:EMI

Hauert:2010:RDR

Hassan:2018:ESM

Hayamizu:2016:EIM

Hernandez-Bermejo:2010:RGA

Hambli:2012:PBF

Hordijk:2012:DRR

Holt:2013:DPP

Hubbard:2013:MMV

M. E. Hubbard and H. M. Byrne. Multiphase modelling of vascular tumour growth in two spatial dimensions. *Jour-
REFERENCES

Hedrih:2016:EFI

Hendron:2016:IVV

Horvath:2018:NCF

Hirata:2010:DMM

Huard:2017:MID
B. Huard, A. Bridgewater, and M. Angelova. Mathematical investigation of diabetically impaired ultradian oscillations in the glucose-insulin regulation. *Journal of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

David E. Hiebeler and Jack L. Hill. Locally dispersing populations in heterogeneous dynamic landscapes with spatiotemporal correlations. II. habitat driven by voter dynam-

Hummert:2010:GTM

Hatano:2015:CBM

Hu:2019:WSD

Hauert:2012:EGD

Hara:2017:WAI

REFERENCES

Hou:2012:DRE

Hackett-Jones:2011:EDT

Hinsch:2010:DIE

Hayat:2011:PMP

House:2011:EPC

REFERENCES

Hooper:2010:TLH

Husain:2018:PIC

Horvath:2012:LMC

Hussain:2019:SPS

He:2015:MDC

Y. He, D. Kulasiri, and S. Samarasinghe. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: The possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation. *Journal of Theoretical Biology*, 365(??):403–419, January 21,
REFERENCES

He:2016:MBM

Hallen:2010:ESQ

Haegeman:2011:MSN

He:2014:IOA

Houy:2018:ATC

[HL18] Nicolas Houy and François Le Grand. Administration of temozolomide: Comparison of conventional and metronomic chemotherapy regimens. Journal of Theoretical Biological...
REFERENCES

[Hu:2012:PGP] Yinxia Hu, Tonghua Li, Jiangming Sun, Shengnan Tang, Wenwei Xiong, Dapeng Li, Guanyan Chen, and Peisheng
REFERENCES

REFERENCES

Holden:2017:HPR

Hamzeh-Mivehroud:2015:IKI

Halter:2017:RDP

Huber:2016:TPN

Hiebeler:2013:HAP

David E. Hiebeler, Isaac J. Michaud, Ben A. Wasserman, and Timothy D. Buchak. Habitat association in populations on landscapes with continuous-valued heterogeneous habitat

REFERENCES

REFERENCES

Atsushi Hashimoto, Atsuki Nagao, and Satoru Okuda. Topological graph description of multicellular dynamics based on

REFERENCES

G. W. Horgan. The behaviour of a neutral model of weight regulated only by body mass. *Journal of The-
Horikawa:2011:ETP

Hormoz:2013:SCP

Hordijk:2017:ACC

Houy:2013:ECS

Houy:2015:PUW

Houy:2016:CPO

Handy:2012:EIR

Hanin:2016:QIM

Hajisharifi:2014:PAP

Haridas:2017:QRC

REFERENCES

Hickson:2014:HPH

Hackenberg:2012:CDW

Hou:2019:NDN

Henke:2014:SVVb

Henke:2014:SVVa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hayashi:2018:IFM

Hayakawa:2015:MSM

Hayakawa:2016:FLF

Hauser:2014:HBF

He:2019:FAI

Hernandez-Vargas:2013:MTS

Hernandez-Valdez:2010:CEC

Hsieh:2011:HMT

Hsieh:2013:RDD

Huang:2014:SMI

REFERENCES

Huang:2015:IET

Haber:2016:IFF

Haber:2017:ASP

Hirt:2012:ETD

Hilbe:2015:EPZ

He:2014:WLC

He:2016:EAA

He:2018:PAA

Hu:2018:EEB

Hironaga:2010:EEF

Ryo Hironaga and Norio Yamamura. Effects of extinction on food web structures on an evolutionary time scale. *Journal of*
REFERENCES

[Huang:2013:PPS]

[Huang:2016:CDS]

[Han:2014:TSS]

[Hamaguchi:2019:EARa]

Huang:2016:ESH

Hassani:2019:RMS

Huang:2011:PAD

Hoang:2015:NMC

Hu:2014:RIN

Guohua Huang, Houqing Zhou, Yongfan Li, and Lixin Xu. Alignment-free comparison of genome sequences by

REFERENCES

[IDM15] Marek Ingr, Jiří Dostál, and Tatána Majerová. Enzymological description of multitemplate PCR-shrinking ampli-

REFERENCES

REFERENCES

REFERENCES

Iqbal:2015:IPA

Iacobelli:2016:LEG

Issarow:2015:MRA

Ingber:2016:SMN

Iida:2019:QHS

Iosilevskii:2016:LNB

Ito:2015:RBA

Iosilevskii:2012:EYY

Ingber:2014:EFI

Iranzo:2011:SUG

Ingram:2010:MUF

Travis Ingram and Mike Steel. Modelling the unpredictability of future biodiversity in ecological networks. *Journal of

REFERENCES

[Ishikawa:2011:TPM]

[Iseki:2011:ARB]

[Ilie:2018:GAS]

[Inoue:2011:MMD]

[Inaba:2016:RLS]
Misato Inaba, Nobuyuki Takahashi, and Hisashi Ohtsuki. Robustness of linkage strategy that leads to large-scale cooperation. *Journal of Theoretical Biology*, 409(?):97–107, November 21, 2016. CODEN JTBIAP. ISSN 0022-5193 (print),

Ilie:2012:MMT

Johnson:2013:CBC

Jabot:2010:SDL

Jabot:2015:WPP

Jentsch:2018:SCE

References

Jaworski:2019:SBP

Jensen:2012:ASU

Jian-Cheng:2010:STA

Jin:2016:TCS

Ju:2015:ITL

REFERENCES

Jenner:2019:OVT

Juher:2015:AEM

Jeon:2011:SST

Jin:2016:HMM

Jamieson-Lane:2015:FPS

Jones:2015:LVD

[Jia:2012:KBG]

[Jia:2019:IPC]

[Jia:2015:IEE]

[Jia:2016:PLP]

REFERENCES

Jahandideh:2012:RSB

Johnston:2010:PCS

Jayathilake:2019:MMU

Jones:2017:DSS

Jimenez-Munoz:2012:CEI

REFERENCES

REFERENCES

Jedrak:2016:IGC

Joshi:2013:ESP

Jansen:2015:SGE

Johnston:2019:ISL

Jones:2017:FPE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Jain:2016:SHA

Jones:2014:ADM

Jingbo:2011:UCP

Jesionek:2016:LDL

Jin:2016:RSA

Jiang:2012:ABM

Jiang:2019:RPU

Jedrzejewska-Szmek:2010:DSD

Jahandideh:2012:CCA

REFERENCES

REFERENCES

Jaruszewicz:2013:TND

Jiang:2011:PTT

Kang:2011:DED

Krick:2015:AEP

Kotini:2016:ADT

REFERENCES

Kuruoglu:2017:ICG

Kaehler:2017:FRN

Koyama:2019:CSI

Kamimura:2011:PSR

Krishnan:2011:IDP

Kember:2011:NCH

Kember:2013:DNN

Khrustalev:2010:LCU

Kononenko:2010:MSA

Khrustalev:2011:PHI

[KB11] Vladislav V. Khrustalev and Eugene V. Barkovsky. Percent of highly immunogenic amino acid residues forming b-cell epitopes is higher in homologous proteins encoded by GC-rich genes. *Journal of Theoretical Biology, 282*(1):71–79, August
REFERENCES

[KB15] Irina Kareva and Faina Berezovskaya. Cancer immunoediting: a process driven by metabolic competition as a predator–

Kilian:2014:MGP

Khayyeri:2015:PCM

King:2019:MRD

Keinj:2011:MMB

Keinj:2012:TGM

R. Keinj, T. Bastogne, and P. Vallois. Tumor growth modeling based on cell and tumor lifespans. *Journal of The-
REFERENCES

Kurbatova:2015:MMC

Krepkin:2011:DRC

Kurochkina:2011:HHI

Kucken:2013:MCI

Kwon:2014:GHM
REFERENCES

[KCJ+11] Petra Kochová, Robert Cimrman, Jiří Janáček, Kirsti Witter, and Zbyněk Tonar. How to assess, visualize and compare the anisotropy of linear structures reconstructed
REFERENCES

Kissler:2014:DPD

Karami:2019:ARC

Keegan:2016:EFP

Kettle:2014:PFP

Kamran-Disfani:2013:LCI

REFERENCES

[KDMD13] Safoora Karimi, Mitra Dadvar, Hamid Modarress, and Bahram Dabir. A new correlation for inclusion of leaky junc-

REFERENCES

Keane:2016:CCH

Keener:2010:MRM

Koch:2017:CBN

Khrustalev:2017:TAM

Khamis:2018:EEU

Doran Khamis, Claire El Mouden, Klodeta Kura, and Michael B. Bonsall. Ecological effects on underdominance threshold drives for vector control. *Journal of Theoretical Biology*, 456(??):1–15, November 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

Paweł Kocieniewski, James R. Faeder, and Tomasz Lipniacki. The interplay of double phosphorylation and sca-

Konrad:2013:AMS

Knudsen:2012:EAI

Kozlovsky:2012:RCP

Kar:2013:SEC

Khatri:2015:CGB

Kisdi:2013:EPV

Krivan:2018:BRD

Kar:2012:DPP

Kim:2010:MTD

REFERENCES

Korvasova:2015:ITC

Kumar:2015:SRD

Khan:2015:TCI

Kuang-Hua:2019:TDV

Kharabian:2010:ECM
Ardashir Kharabian. An efficient computational method for screening functional SNPs in plants. *Journal of The-
Klein:2018:FEM

Kaunas:2010:KMC

Krishnamoorthy:2017:HMH

Khan:2015:DAA

REFERENCES

Ke:2013:MAA

Kang:2019:FST

Kurochkina:2015:HAS

Kurokawa:2017:EGW

Kheirabadi:2016:CKM

Ramesh Kheirabadi, Mohammad Izadyar, and Mohammad Reza Housiandokht. Computational kinetic modeling

Kusumi:2019:EGD

Kinjo:2018:CFT

Kirschner:2011:FYJ

Kisdi:2010:CDC

Kisdi:2016:DPS

[KK12a] Jong-Hoon Kim and James S. Koopman. HIV transmissions by stage in dynamic sexual partnerships. *Journal of

REFERENCES

Klein:2014:IHT

Kulasiri:2017:GSA

Kim:2017:MMT

Kempe:2014:CTC

Kaiser:2012:DCF
REFERENCES

REFERENCES

[616]

Khalili:2010:DSM

Kim:2014:GDE

Kim:2017:AVB

Karp:2012:CLI

Kim:2019:WDW

REFERENCES

Kebir:2010:EDD

Kumari:2014:CMM

Kiflawi:2016:HPC

Korayem:2018:IDB

Kharratzadeh:2017:SHL

Kakizoe:2015:CLV

Klanjscek:2016:FTP

Karimi:2018:MMD

Klinkenberg:2011:CBI

Don Klinkenberg and Hiroshi Nishiura. The correlation between infectivity and incubation period of measles, estimated from households with two cases. *Journal of Theoretical Biology*, 284(1):52–60, September 7, 2011. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
Kitagawa:2018:PMM

Koike:2010:ECR

Kay:2018:ERM

Koenig:2015:PPP

Kawamura:2014:KMP

REFERENCES

Korobeinikov:2018:IRW

Kashima:2013:FFB

Karsai:2012:RTD

Krivan:2015:SPI

Kozlowska:2016:ABT

REFERENCES

REFERENCES

Kushwaha:2010:PIN

Kandler:2013:NEN

Kessler:2014:NLA

Koch:2015:DTC

Koenders:2016:MMC

Kaufman:2019:MCR

Karagoz:2016:IMB

Kemp:2012:QFA

Kang:2011:RAF

Kornelius Kupczik, Heiko Stark, Roger Mundry, Fabian T. Neininger, Thomas Heidlauf, and Oliver Röhrl. Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: a combined texture mapping and streamline

REFERENCES

Konrad:2019:MEF

Katsnelson:2011:RMV

Kumar:2017:MRI

Kadota:2018:MMT

Khan:2018:ORT

Kingsbury:2016:IEN

Kameyama:2018:SSR

Kuga:2019:VVC

Kobayashi:2010:SMN

Kasimova:2014:AMO

Kurbel:2014:HHE

Kurokawa:2017:ERS

Kurokawa:2019:TPR

Koseska:2010:CDT

Kuzma:2019:EIC

Kaul:2015:DRR

Himanshu Kaul and Yiannis Ventikos. Dynamic reciprocity revisited. *Journal of Theoretical Biology*, 370(??):205–208,

REFERENCES

Jennifer M. Larson. The evolutionary advantage of limited network knowledge. *Journal of Theoretical Biology*, 398 (??):43–51, June 7, 2016. CODEN JTBIAP. ISSN 0022-

REFERENCES

Lorthois:2010:FAV

Li:2011:MNH

Lou:2016:SMH

Lee:2017:EOC

Lee:2015:QSL

Lorenzi:2015:DDE

Laurie:2017:PL

Lim:2012:HSM

Li:2015:SPE

Lopez-Caamal:2012:PFA
Lythe:2016:HMT

Lee:2016:DCM

Lee:2018:MMU

Liu:2014:PCP

Larsen:2014:MFE

Liu:2018:EAS

Lamberton:2014:LMP

Liu:2011:DSE

Lade:2015:FLE

[LCTG15] Steven J. Lade, Miguel Coelho, Iva M. Tolić, and Thilo Gross. Fusion leads to effective segregation of damage during cell division: An analytical treatment. *Journal of
REFERENCES

Lin:2011:PIC

Lucia:2018:IIF

Letellier:2013:WCL

Lorthois:2014:KMC

Longhi:2013:APA

Daniel Angelo Longhi, Francieli Dalcanton, Gláucia Maria Falcão de Aragão, Bruno Augusto Mattar Carciofi, and João Borges

REFERENCES

Liu:2014:CDS

Lessard:2019:LHS

Lee:2016:LII

Lee:2016:PPF

Lehtinen:2018:UVF

Lei:2009:SSG

[Jinzhi Lei. Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters. *Jour-

REFERENCES

[Lavric:2010:BGD]

[Liu:2010:PCN]

[Louzoun:2012:EVL]

[Leloup:2013:CPS]

[Lebre:2017:COG]

Lee:2009:MSE

Lee:2012:CMS

Gu:2014:MCS

Lemmer:2014:MIT

 REFERENCES

Lucia:2017:ETA

Lipfert:2012:MEC

Liu:2013:MBA

Li:2014:MID

Loeuille:2018:MPD

REFERENCES

Lopez:2018:CEM

Levy:2016:RSP

Lettmann:2014:ILM

Li:2011:PHG

Lopez:2017:DDP

REFERENCES

REFERENCES

Liu:2018:BDG

Lee:2017:GCP

Lakizadeh:2015:PGP

Liao:2017:SDP

Llensa:2014:EED

REFERENCES

REFERENCES

[Li:2012:APR]

[Li:2013:CSA]

[Liu:2013:SRF]

[Lejeune:2017:QRB]

Lejeune:2017:QRB Emma Lejeune and Christian Linder. Quantifying the relationship between cell division angle and morphogen-

REFERENCES

Labavic:2019:SLC

Lau:2015:CHG

Li:2018:IEP

Liu:2015:IPC

Li:2013:EGB

Eric F. Lee, Mark A. Matthews, Andrew J. McElrone, Ronald J. Phillips, Kenneth A. Shackel, and Craig R.

REFERENCES

REFERENCES

REFERENCES

Landmann:2017:STA

Landmann:2018:CST

Lyons:2016:PFR

Livnat:2011:ACB

Lema-Perez:2019:PBM

REFERENCES

Áki J. Láruson and Floyd A. Reed. Stability of underdominant genetic polymorphisms in population networks. *Jour-
Long:2013:CSM

Lutz:2013:ICF

Lyles:2015:PRE

Larbat:2016:MDP

Lee:2010:EMD

Thomas J. Lee and Michael P. Speed. The effect of metapopulation dynamics on the survival and spread of a novel, con-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Laomettachit:2015:DMH

Li:2017:IRD

Li:2019:SMM

Lugli:2015:TBS

Lukeman:2014:ODC
REFERENCES 686

Lundberg:2013:ESP

Luo:2014:UFR

Lutkenhoner:2016:ETR

Lepage:2017:RBC

Lee:2016:SPE

LoIacono:2012:EPP

Lorenzi:2018:RSV

Liu:2010:PESA

Liu:2010:PESB

Liu:2012:MMR

REFERENCES

Li:2015:EDS

Leung:2017:MSE

Ly:2018:AHC

Lenk:2015:IAF

Larsson:2011:MCL

Xiaomei Li, Xindong Wu, and Gongqing Wu. Robust feature generation for protein subchloroplast location prediction with a weighted GO transfer model. *Journal of
REFERENCES

Li:2016:DRE

Li:2010:SHE

Li:2016:MPM

Liu:2015:UWF

Liu:2015:TEM

XIAOXIA LIU, ZHIHAO YANG, ZIWEI ZHOU, YUANYUAN SUN, HONGFEI LIN, JIAN WANG, AND BO XU. The impact of

Liang:2018:IGN

Larson:2019:DDS

Li:2019:EAC

Li:2017:NMS

LZL+17 Rong Li, Dexing Zhong, Ruiling Liu, Hongqiang Lv, Xinxian Zhang, Jun Liu, and Jiuqiang Han. A novel method for in silico identification of regulatory SNPs in human genome. *Journal of Theoretical Biology*, 415(??):84–89, February 21,
REFERENCES

Lu:2019:PEE

Lotfi:2015:RSS

Liu:2012:SIM

Liu:2013:ESI

Luo:2018:PMP

[LZTD18] Yantao Luo, Long Zhang, Zhidong Teng, and Donald L. DeAngelis. A parasitism-mutualism-predation model con-

Morozov:2011:EVD

Matsuda:2013:FCE

Mondal:2017:CSA

Moore:2018:HDR

Maciejewski:2010:AOO

MacKay:2011:MSC

Maciejewski:2014:RVG

Muolo:2019:PNN

Munir:2018:EWB

McKinley:2012:AAM

REFERENCES

Murtada:2012:EMM

Mallik:2010:HTM

Muneepeerakul:2011:EDE

Malanson:2015:DDA

Malanson:2017:ICM

Mallik:2018:AUG

Mier:2017:PPI

Mazzuca:2016:CMS

Mehrabian:2015:DPP

Marshall:2011:QRO

Martineau:2012:STM

Martin:2017:PAO

Martini:2017:MQD

Mokhtar:2017:EDS

Marzen:2019:NDI

[Mas18] Majid Masso. All-atom four-body knowledge-based statistical potential to distinguish native tertiary RNA struc-

Maury:2015:OLP

McMeeking:2012:CDA

Maxin:2010:TSD

Marcu:2012:NCH

Morozov:2012:PIH

[MB12b] Andrew Morozov and Alex Best. Predation on infected host promotes evolutionary branching of virulence and pathogens'
REFERENCES

McKenna:2018:FSA

Murase:2018:SRA

Morsky:2019:ITS

McAvity:2013:PSM

Mathew:2014:GSA

REFERENCES

Maxin:2012:ISA

Miller:2012:DPA

Moller:2012:DRS

Malkoc:2010:ICB
Mohabatkar:2011:PGR

Menshikov:2015:INR

Muraro:2011:ICA

Muraro:2013:RAC

Mesgaran:2017:HGN

Mohsen B. Mesgaran, Juliette Bouhours, Mark A. Lewis, and Roger D. Cousens. How to be a good neighbour: Facilitation and competition between two co-flowering species.
REFERENCES

[Muneepeerakul:2019:EBP] Rachata Muneepeerakul, Enrico Bertuzzo, Andrea Rinaldo, and Ignacio Rodriguez-Iturbe. Evolving biodiversity pat-

Macfarlane:2019:SIB

Manapat:2010:BRR

Mendez:2012:DDD

Mari:2018:ETW

McGuinness:2014:MSO

Monteiro:2016:IBP

Marashi:2012:FCA

Molacek:2012:FAS

Mousavi:2013:CMC

Ma:2011:ASM

Mata:2013:MIA

Marques:2010:CCD

Miller:2010:EGG

Mazzucco:2016:EEE

Mbah:2014:CAS

Mangalam:2016:SOL

Miranda:2016:TKO

Marchettini:2010:WMW

Macnamara:2015:MVE
REFERENCES

[Miller:2012:RMA]

[Mehri:2017:NED]

[Mei:2012:MKT]

[Mei:2012:PPP]

[Mei:2013:CMK]

REFERENCES

Magnuson-Ford:2010:CSP

Marquez-Florez:2018:CMJ

Maderazo:2018:PFL

Mitchell:2014:WMW

Mei:2018:API

Juan Mei, Yi Fu, and Ji Zhao. Analysis and prediction of ion channel inhibitors by using feature selection and Chou's

Mbah:2010:OCS

Mizera:2010:SME

Melak:2014:PNH

MGonigle:2014:AES

Moghtadaei:2013:PCD

Moghtadaei:2013:VSF

Marleau:2010:NFB

Martins:2015:URB

Mesterton-Gibbons:2016:HRD

Mike Mesterton-Gibbons and Tom N. Sherratt. How residency duration affects the outcome of a territorial contest: Complementary game-theoretic models. *Journal of
Martinez-Garcia:2017:SCI

Malherbe:2011:SMG

Marshall:2012:CGD

Morin:2013:MDB

Murtada:2014:IRS

[MHH13] Claire Morin, Christian Hellmich, and Peter Henits. Fil-
trillar structure and elasticity of hydrating collagen: a
quantitative multiscale approach. *Journal of Theoreti-
cal Biology*, 317(??):384–393, January 21, 2013. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519313003408.

[MHK16] Abbas Mikhchi, Mahmood Honarvar, Nasser Emam Jomeh
Kashan, and Mehdi Aminafshar. Assessing and com-
parison of different machine learning methods in parent-
offspring trios for genotype imputation. *Journal of The-
oretical Biology*, 399(??):148–158, June 21, 2016. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S002251931630011X.

[MHMM11] Kelly E. Murphy, Cameron L. Hall, Scott W. McCue, and
D. L. Sean McElwain. A two-compartment mechanochem-
ical model of the roles of transforming growth factor β
and tissue tension in dermal wound healing. *Journal of The-
oretical Biology*, 272(1):145–159, March 7, 2011. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519310006661.

[MHMM18] Noble. J. Malunguza, Senelani D. Hove-Musekwa, and Zin-
doga Mukandavire. Projecting the impact of anal inter-
course on HIV transmission among heterosexuals in high
HIV prevalence settings. *Journal of Theoretical Biol-
ogy*, 437(??):163–178, January 21, 2018. CODEN JT-
BIAP. ISSN 0022-5193 (print), 1095-8541 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0022519317304836.

REFERENCES

REFERENCES

Mitrokhin:2014:TFE

Mitchison:2016:CGA

Mityushev:2017:OSR

Miyazawa:2016:SMP

Miyazawa:2017:SOP

Mahdavi:2011:ADS

Min:2011:PKR

Matsuo:2014:CSN

Ma:2011:FPD

Murphy:2016:MAE

REFERENCES

Maeda:2011:QMS

Ma:2014:HMS

Mann:2014:SFP

Mironchenko:2014:OAP

Mougi:2014:SCA

REFERENCES

Corey Melnick and Massoud Kaviany. Thermal actuation in TRPV1: Role of embedded lipids and intracellular domains. *Journal of Theoretical Biology*, 444(??):38–49, May 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-

REFERENCES

McIntyre:2014:HRV

Mund:2016:ADM

Martinez:2018:MCM

Mai:2009:BNB

Meng:2010:DPD

REFERENCES

REFERENCES

Moslonka-Lefebvre:2015:EMT

McLean:2010:TOR

Magombedze:2012:MRD

Merrill:2015:TAW

Montevil:2015:BOC

Maël Montévil and Matteo Mossio. Biological organisation as closure of constraints. Journal of Theoreti-

REFERENCES

[Mitre:2016:MMG]

[Mirsky:2011:SBA]

[Murillo:2013:TMM]

[Morin:2010:SBE]

[Mahdavi:2012:CAR]

Mohammadi:2016:IAT

Marriage:2012:MSB

Mobilia:2010:ODR

Mahasa:2016:MMT

Moghimbeigi:2015:TPZ

Moller:2012:MAN

Ralf Möller. A model of ant navigation based on visual prediction. *Journal of Theoretical Biology, 305*:118–130, July
REFERENCES

Morford:2011:TAS

Morbey:2013:PSS

Morozov:2016:MBE

Morimoto:2019:FDM

Manhart:2015:EFB

REFERENCES

REFERENCES

[McGovern:2012:DMC]

[Marrero-Ponce:2015:NBM]

[Maeng:2013:MAE]

[Mercker:2012:MAC]

REFERENCES

REFERENCES

Marcolino:2016:SIA

Michel:2016:MDT

Melchionda:2018:SBI

Menconi:2011:TLA

Muthukumaran:2019:AQB

Mahlbacher:2019:MMT

Morales:2015:NMM

Marini:2017:EVB

Mercado-Reyes:2015:OPT

Manapat:2012:SED

Muller:2014:EAP

Means:2010:STC

Mochizuki:2010:ASS

Martyn:2012:IIL

REFERENCES

Morishita:2014:BIW

Mossel:2014:MRT

Means:2016:IHV

Mehrafrooz:2018:MDB

Moulton:2016:MMS

REFERENCES

REFERENCES

Murray:2016:VLT

Markham:2014:CMM

Markvoort:2014:CSC

Mahdevar:2012:TFB

[MSND12] Ghasem Mahdevar, Mehdi Sadeghi, and Abbas Nowzari-Dalini. Transcription factor binding sites detection by
REFERENCES

Martinkova:2019:MIP

Meher:2016:CAP

Montgomery-Smith:2010:SME

Michiko:2018:ERS

REFERENCES

[Mai:2019:JID]

[Marashi:2014:MAE]

[Murakawa:2015:CMC]

[Malaspinas:2016:STM]

[Matsuoka:2015:SAE]
REFERENCES

Munk:2012:MIP

Masso:2010:KBC

Morsky:2018:CAS

Muller:2017:UNF

Ma:2013:ICN

Junling Ma, P. van den Driessche, and Frederick H. Willeboordse. The importance of contact network topology for the success of vaccination strategies. Journal of Theoretical Biology, 325(??):12–21, May 21, 2013. CODEN

Martin:2012:MCA

Mak:2011:DRD

Matsumoto:2017:CGF

Mellard:2011:VDP

Matsumoto:2013:DFT

Matsumoto:2015:DFT

Mpolya:2014:EDV

Magal:2017:CLF

Mei:2018:APP
REFERENCES

Mehra:2019:OBA

Man:2016:QDH

Moleriu:2014:IMT

Mackiewicz:2010:GAM

Nahalka:2012:GTF

Nahalka:2014:PRR

Nakamura:2011:MCH

Nakahashi:2014:ECI

REFERENCES

[NBA+18] Trong Hieu Nguyen, Timothée Brochier, Pierre Auger, Viet Duoc Trinh, and Patrice Brehmer. Competition or cooperation in transboundary fish stocks management:

Nanni:2014:PPS

Nandi:2013:ECS

Nouvellet:2010:TLA

Nouvellet:2011:TLA

Novak:2015:FDD

Sebastian Novak and Sylvia Cremer. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. *Journal
REFERENCES

REFERENCES

Neill:2014:EL

Nemzer:2017:SIE

Newey:2011:OOT

Nabaei:2014:MMC

Nakahashi:2014:EDL

Neto:2016:SMS
Manoel Figueiredo Neto and Marxa L. Figueiredo. Skeletal muscle signal peptide optimization for enhancing propep-
REFERENCES

Ng:2017:MVD

Nelson:2011:SRD

North:2017:DDM

Nezafat:2014:NME

Nie:2010:CMC

REFERENCES

REFERENCES

Nosaka:2014:PFF

Nishiura:2011:EIP

Nojo:2019:ESS

Nicholson:2019:CRM

Nagatani:2018:ERW

REFERENCES

Nierop:2016:MIL

Noonburg:2010:ELH

Nasiri:2015:PAS

Nev:2017:OMN

Nakamura:2014:EIR

Nakamura:2014:IRT

Nakahashi:2015:WEC

Nakahashi:2018:EEC

Nonacs:2010:BTW

Noshita:2014:QGA

Nishimura:2017:EFC

Nowak:2012:EC

Nurmi:2011:JES

Nurmi:2013:ESU

Neupane:2015:ISA

REFERENCES

[Naushad:2016:SAI] Shaik Mohammad Naushad, M. Janaki Ramaiah, Balraj Alex Stanley, S. Prasanna Lakshmi, J. Vishnu Priya, Tajamul Hussain, Salman A. Alrokayan, and Vijay Kumar Kutala. In silico approaches to identify the potential inhibitors of glutamate carboxypeptidase II (GCPII) for neuroprotection. *Journal of Theoretical Biology*, 406(??):137–142, October 7,
REFERENCES

Nakabayashi:2011:MMI

Nov:2013:OCR

Nath:2016:IMB

Namba:2018:PRF

Nath:2019:EEL
Abhigyan Nath and Gopal Krishna Sahu. Exploiting ensemble learning to improve prediction of phospholipidosis inducing

Nanni:2010:PCU

Noble:2010:UAM

Neidhart:2013:ERA

Nakamaru:2018:ESE

REFERENCES

Arwen E. Nicholson, David M. Wilkinson, Hywel T. P. Williams, and Timothy M. Lenton. Multiple states of envi-

Omori:2011:DSC

Okamoto:2012:BCD

Ogino:2015:MCC

Oprisan:2018:STM

Orman:2012:MNA

Ouattara:2010:SDF

Okamoto:2014:MOV

Omori:2010:CCS

Olejarz:2016:EWP

Olofsson:2010:MGT

OBrien:2015:PCF

Orman:2011:PAL

Oborny:2017:PLA

Overton:2019:MAS

Orlova:2011:DFA

Darya Yu. Orlova, Vyacheslav I. Borisov, Vladimir S. Kozhevnikov, Valeri P. Maltsev, and Andrei V. Chernyshev. Distribution function approach to the study of the kinetics of IgM antibody binding to FcγRIIb (CD16b) receptors on neutrophils by flow cytometry. *Journal of Theoretical Biology*, 290(??):1–6, December 7, 2011. CODEN

Ohtsuki:2010:SED

Ohtsuki:2012:DSR

Ohara:2018:GRN

Okabe:2011:PPP

Okabe:2012:SVD

Okamoto:2015:DSA

REFERENCES

Okuonghae:2011:AMM

Ose:2017:SHN

Oya:2017:SPC

O’Connor:2018:IIC

Oroji:2016:ISD

REFERENCES

Olson:2011:CBH

Okada:2018:SPA

Oommen:2016:GWD

Oizumi:2013:OLS

Owens:2010:ECS

Otsuka:2011:LSE

Oster:2011:LCM

Ou:2019:ANF

Olivera:2010:RDS

Oraby:2014:MSB

REFERENCES

Penta:2015:RMT

Pagnutti:2011:EGL

Pang:2010:DBH

Page:2019:OWM

Painter:2019:MMC

Pahlajani:2011:SRM

Panchanathan:2011:TWD

Pantokratoras:2019:CPP

Pajaro:2017:SMN

Paradis:2015:RPD

Parag:2019:SEL

Painter:2010:IAC

Patel:2016:SMM

Patel:2019:AFM

Preziosi:2010:EVP
REFERENCES

REFERENCES

Postlethwaite:2013:NMS

Porter:2012:ISN

Piwowar:2013:SRE

Pendergraft:2015:ACC

REFERENCES

Simone Pigolotti and Massimo Cencini. Species abundances and lifetimes: From neutral to niche-stabilized communities. *Journal of Theoretical Biology*, 338(?):1–8, December 7, 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
Persons:2017:FOD

Peruzzi:2014:NIQ

Piedrafita:2012:SMI

Plazzotta:2015:MSB

Pearcy:2016:CRH

REFERENCES

Philipsen:2010:MCS

Pienaar:2015:CTI

Priklopil:2017:OIS

Pool:2018:MMM

REFERENCES

Pane:2017:APC

Piretto:2018:CTI

Plitzko:2012:CSR

Pal:2017:NRV

Peurichard:2017:SMC

Politi:2010:MSD

Pressley:2010:ECC

Pretorius:2011:ISP

Peedicayil:2012:CEE

Pelce:2018:CEB

Panovska-Griffiths:2019:WPN

Poethke:2011:AIA

Powathil:2012:MEC

Pilosof:2017:ADD

REFERENCES

REFERENCES

Parker:2010:SCG

Park:2012:IER

Patel:2013:DSO

Patel:2018:DSR

Podder:2014:HDR

Avijit Podder, Nidhi Jatana, and N. Latha. Human dopamine receptors interaction network (DRIN): a systems biology perspective on topology, stability and functionality of the network. *Journal of Theoretical Biol-

Gibin G. Powathil, Alastair J. Munro, Mark A. J. Chaplain, and Maciej Swat. Bystander effects and their implications...

Price:2015:IRI

Prosnier:2018:PEC

Pechenick:2013:IAR

Pawlowitsch:2011:NSD

Priyadarshi:2017:MSV

REFERENCES

Nguyen:2010:DAR

Pantic:2016:FAG

Pandey:2018:MIB

Pring:2012:MMB

REFERENCES

Kris V. Parag and Oliver G. Pybus. Optimal point process filtering and estimation of the coalescent process. *Jour-
REFERENCES

Frédéric Proïa, Alix Pernet, Tatiana Thouroude, Gilles Michel, and Jérémy Clotault. On the characterization of flowering curves using Gaussian mixture models. *Journal of
REFERENCES

Proia:2019:PRG

Peace:2016:SGD

Potapov:2013:ATS

Patel:2017:RLC

REFERENCES

REFERENCES

843

Pires:2014:MFN

Prum:2012:HDG

Panigrahi:2013:CSA

Priya:2013:MBA

Peng:2018:MBE

[PSD+18] Valery Peng, Natalka Suchowerska, Ana Dos Santos Esteves, Linda Rogers, Elizabeth Claridge Mackonis, Joanne Toohey,

Poorebrahim:2017:SES

Pan:2015:HDD

Prohaska:2010:IGR

Preedy:2010:MCS

Powers:2012:PCP

Poletto:2013:HMT

Poelwijk:2011:RSE

Pepin:2010:PDV

Pliego:2018:IES

Emilene Pliego Pliego, Jorge Velázquez-Castro, Markus P. Eichhorn, and Andrés Fraguela Collar. Increased efficiency in the second-hand tire trade provides opportunity for dengue

Prokharau:2012:MDB

Portillo:2019:MMS

Postlethwaite:2011:GMI

Postlethwaite:2014:MNE

Peck:2018:WAH

Joel R. Peck and David Waxman. What is adaptation and how should it be measured? *Journal of Theoretical Biology*, 447(??):190–198, June 14, 2018. CO-

REFERENCES

Pan:2019:APA

Pandey:2019:MDA

Ponce:2019:AEM

Pivonka:2010:TIR

Zhang:2016:GPP

Quinn:2015:EBR

Quiroz:2010:TBG

Quijano:2016:STA

Qiu:2018:PPS

[QLC+18] Wenying Qiu, Shan Li, Xiaowen Cui, Zhaomin Yu, Minghui Wang, Junwei Du, Yanjun Peng, and Bin Yu. Predicting protein submitochondrial locations by incorporating

Qi:2010:NMG

Qi:2011:CDR

Qiu:2012:PPP

Qu:2010:ASR

Qin:2014:SCA

REFERENCES

REFERENCES

Rayhan:2019:CCF

Ramsey:2010:LPP

Ruokolainen:2011:RSH

Rand:2012:PMT

Rand:2010:ASP

Rao:2012:UTI

Roy:2019:VCI

Reynolds:2013:WCS

Ringa:2014:DCF

REFERENCES

REFERENCES

[RCD19] Manuela Royer-Carenzi and Gilles Didier. Testing for correlation between traits under directional evolution. *Journal of Theoretical Biology*, 482(??):Article 109982, December 7, 2019. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
REFERENCES

REFERENCES

Rubin:2017:RES

Robert:2014:ATA

Renton:2011:DCH

Roman:2016:TAU

Rolls:2012:MHC

Ruiz-Diaz:2013:IRP

Reynolds:2010:MMP

Reick:2012:SSS

Remien:2015:MDS

Rei12

Remien:2015:MDS

Ren:2013:GRS

REFERENCES

Roberts:2017:MMR

Rosandic:2013:SSC

Rhodes:2019:MMI

Rieger:2011:MBD

Rockwell:2014:LHS

REFERENCES

Roselius:2014:MAG

Richter:2017:ASW

Rubin:2014:MEB

Ramakrishnan:2014:DDM

Rhodes:2010:IVI

Rout:2019:SAP

Rauwolf:2015:VHB

Rahman:2018:HDM

Rajkovic:2016:MMN

Riahi:2016:MCH

Aouatef Riahi, Abdelmonem Messaoudi, Ridha Mrad, Asma Fourati, Habiba Chabouni-Bouhamed, and Maher Kharrat. Molecular characterization, homology modeling and docking studies of the r2787h missense variation in BRCA2

Randic:2010:SPM

Robinson:2011:NFT

Reeves:2017:APG

Rogers:2019:EGC

Rosas:2010:EGT

Ross:2010:CEM

J. V. Ross. Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and tem-

Ross:2011:IID

Rosenstrom:2013:BMD

Rose:2015:MMC

Rouch:2014:EFG

Richards:2018:NKA

REFERENCES

Cody Ross, Luís Pacheco-Cobos, and Bruce Winterhalder.

Konstantin Ristl, Sebastian J. Plitzko, and Barbara Drossel.

Alessandro Rizzo, Biagio Pedalino, and Maurizio Porfiri.
REFERENCES

Richardson:2011:CPN

Rahbar:2010:SAA

Rahbar:2012:PSA

Ramakrishnan:2013:BMR

Rocha:2019:ETB

Rossetti:2010:EPT

Reynolds:2014:DAD

Robinson:2012:SDA

Roblitz:2013:MMH

REFERENCES

REFERENCES

Robertson-Tessi:2019:CMM

Robertson-Tessi:2019:CME

Raybaud:2017:CCC

Rajdev:2013:UMM

Ramirez-Torres:2017:RMT

Ramírez-Torres, Ariel Ramírez-Torres, Reinaldo Rodríguez-Ramos, Federico J. Sabina, Catherine García-Reimbert, Raimondo Penta, José...
REFERENCES

Dennis Reddyhoff, John Ward, Dominic Williams, Sophie Regan, and Steven Webb. Timescale analysis of a mathematical model of acetaminophen metabolism and toxicity.
REFERENCES

Rich:2016:HTR

Rossi:2016:TIH

Ramirez-Zuniga:2019:MME

Suzuki:2013:SCM

Suzuki:2014:EDR

Reiji Suzuki and Takaya Arita. Emergence of a dynamic resource partitioning based on the coevolution of phenotypic plasticity in sympatric species. Journal of
REFERENCES

Sahmani:2017:SDA

Saadatpour:2010:AAA

Siegmund:2010:CDM

Sigdel:2017:CBI
REFERENCES

Saunders:2019:TRT

Serrano-Alcalde:2017:RNM

Steckmann:2012:KPS

Strilka:2014:QAS

Sakai:2010:WGC
Satoki Sakai. With whom is the gene in conflict in offspring production?: Synthesis of the theories of intragenomic and parent-offspring conflict. *Journal of Theo-
REFERENCES

Stamatelos:2013:SMI

Salomonsson:2010:GSQ

Salgado:2015:EPC

Sofonea:2017:EDM

Sarvestani:2010:CBA

Satake:2010:DPL

Sato:2014:MDC

Sato:2017:RTB

Sato:2018:WDH

Sato:2019:WGC

Sherborne:2016:CPM

Suweis:2012:SPT

Sameen:2016:MMD

Sharp:2019:OCA

Sheikh-Bahaei:2010:CER

Shahab Sheikh-Bahaei, Jacquelyn J. Maher, and C. Anthony Hunt. Computational experiments reveal plausible mechanisms for changing patterns of hepatic zonation of

REFERENCES

Schokker:2013:MMR

Sharma:2018:MPC

Schiffner:2011:MAN

Salazar-Ciudad:2010:TLM

Shen:2010:GMT

Hong-Bin Shen and Kuo-Chen Chou. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcel-

Sumner:2010:PEP

Sharma:2011:STP

Sibani:2011:NSA

Sibly:2012:EDP

Straube:2013:ERE

[SC13a] Ronny Straube and Carsten Conradi. Erratum to “Reciprocal enzyme regulation as a source of bistability in cova-

Suzuki:2016:DER

Scheff:2013:PCT

Sanchez-Corrales:2010:ATF

Sanchez-Corrales:2011:CAT

Sergeev:2011:MUP

Shi:2012:DMM

Shanafelt:2018:SDB

Scheuring:2010:EMP

Schrago:2014:LDE

Schulman:2017:BRA

Schlomann:2018:SMD

Schepens:2019:RRA

Schinazi:2019:CEP

Rinaldo B. Schinazi. Can evolution paths be explained by chance alone? *Journal of Theoretical Biology*, 467(??):63–65,
Schumacher:2019:NCM

Song:2015:ILC

Scheff:2010:MIC

Stan:2013:ISL

Stan:2010:SAD

REFERENCES

Suzanne S. Sindi and Rick Dale. Culturomics as a data playground for tests of selection: Mathematical approaches

[Sueur:2011:GSG] Cédric Sueur, Jean-Louis Deneubourg, Odile Petit, and Iain D. Couzin. Group size, grooming and fission in pri-

REFERENCES

REFERENCES

Seligmann:2016:SRS

Seligmann:2017:NMP

Serdoz:2017:MLE

Szomolay:2012:MIB

Serafino:2016:ATC

Sekimura:2014:MPD

Santoni:2016:NVR

Singh:2015:CSS

Song:2015:DSL

Subramanian:2018:EAD

REFERENCES

REFERENCES

Sanchez-Garduño:2019:THP

Scholz:2010:BMH

Soula:2015:MAT

Shafiey:2017:ECT

REFERENCES

Stadler:2018:FBD

Suryawanshi:2015:MSM

Staalhand:2016:LAS

Steingass:2017:IBE

REFERENCES

[SHK14] Evgeny A. Shavlyugin, Leonid G. Hanin, and Mikhail A. Khanin. Dynamics of pathologic clot formation: a mathemat-
Shi:2011:PTT

Singh:2018:FRB

Sajitz-Hermstein:2012:RCG

Steel:2013:MAN

Sturrock:2015:MMP

Shtylla:2017:MMS

Shutters:2013:TRF

Sewalt:2016:IAE

Sun:2016:AAT

Saeki:2010:ONR

REFERENCES

Siero:2018:NGP

Sigmund:2012:MAI

Sunada:2015:SAP

Sabooh:2018:IMS

Silanikove:2016:TRM

REFERENCES

[SJSK18] Simon Maccracken Stump, Evan Curtis Johnson, Zepeng Sun, and Christopher A. Klausmeier. How spatial structure and

Shtylla:2010:MMM

Shiino:2011:TAF

Suzuki:2011:ODC

Shtylla:2012:MMP

Sorace:2012:ANM

[SK12b] Ron Sorace and Natalia L. Komarova. Accumulation of neutral mutations in growing cell colonies with competition.
REFERENCES

Saraee:2015:DSM

Schmickl:2016:HRB

Stump:2016:CCB

Steel:2018:NRC

Saravanan:2019:ABC

Kandasamy Saravanan and Poomani Kumaradhas. Acylguanidine-BACE1 complex: Insights of intermolecular interactions and
Sanches:2018:PAE

Stamatakos:2010:ADS

Sassaroli:2016:NEH

Sarkar:2019:ECS

REFERENCES

Staalhand:2011:MCM

Schmidt:2017:NSS

Spasic:2011:SDM

Schraiber:2012:CUL

Srivastava:2018:BPC

[SKK18] Abhishikha Srivastava, Ravindra Kumar, and Manish Kumar. BlaPred: Predicting and classifying β-lactamase using a 3-tier prediction system via Chou’s general PseAAC.
References

Shin:2017:EOD

Shtilerman:2015:ESC

Sun:2019:MCF

Shiino:2012:SCR

REFERENCES

[SLJ+10] Gui-Quan Sun, Quan-Xing Liu, Zhen Jin, Amit Chakraborty, and Bai-Lian Li. Influence of infection rate and migration on extinction of disease in spatial epidemics. *Journal

Smadi:2018:LRM

Shelton:2017:MCD

Sequeira:2019:TEB

Strelioff:2010:EDE

Sanz-Leon:2017:MCS
Paula Sanz-Leon and P. A. Robinson. Multistability in the corticothalamic system. Journal of Theoretical Biology,

REFERENCES

Su:2018:ECI

Santos:2010:SGC

Szilágyi:2010:CFE

Stich:2011:MFE

Subirana:2011:DAS

Sakaguchi:2014:CAD

Sherratt:2016:HDT

Sankari:2017:PMP

Sasaki:2017:PLS

Sankari:2018:PMP

REFERENCES

Szolnoki:2013:ECP

Sutradhar:2014:TWB

Simon:2016:GLE

Susree:2018:CPI

Steel:2018:EIP

REFERENCES

Serebrennikova:2010:QAM

Shorten:2010:MMP

Simon:2013:MBC

Santos:2011:CEP

Samal:2015:CGS

Spoljaric:2019:MMC

Saitou:2012:MMI

Sefid:2016:HMC

Saini:2015:PES

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>951</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SS19]</td>
<td>Naoki Sato and Kaoru Sato. Statistical analysis of word usage in biological publications since 1965: Historical de-</td>
</tr>
</tbody>
</table>

Serov:2015:OVD

Souza:2019:CGA

Szabo:2013:CFE

Serrano-Solís:2016:GSV

REFERENCES

[SSJK18] Johannes Scheiblauer, Stefan Scheiner, Martin Joksch, and Barbara Kavsek. Fermentation of *Saccharomyces cerevisiae*.

Strang:2017:SLB

Stadler:2018:SAS

Sikic:2015:SME

Schank:2015:EFD

REFERENCES

[SSPP15] Fernando P. Santos, Francisco C. Santos, Ana Paiva, and Jorge M. Pacheco. Evolutionary dynamics of group fair-

Soheila Shokrollahzade, Fatemeh Sharifi, Akbar Vaseghi, Maryam Faridounnia, and Samad Jahandideh. Protein cold adaptation: Role of physico-chemical parameters in adaptation of proteins to low temperatures. *Journal of The-
REFERENCES

Schumm:2010:NMS

Schumm:2015:GEI

Sataric:2017:BMH

Sanchez-Taltavull:2016:OAD

Sakai:2017:AES

Yuma Sakai and Takenori Takada. The analysis of an effect of seed propagation on defense strategy against pathogen trans-

Syomin:2017:SMC

Stadler:2010:STT

Sanchez-Taltavull:2015:SMV

Stepanskiy:2012:SIU

Steel:2013:CBI

REFERENCES

REFERENCES

Sudarsan:2012:FCV

Synodinos:2018:IIA

Sasmal:2019:CMA

Shiraishi:2019:DSL

Sano:2017:DCB
Hitomi I. Sano, Tamami Toki, Yasuhiro Naito, and Masaru Tomita. Developmental changes in the balance of glycolytic ATP production and oxidative phosphorylation in

REFERENCES

[Sasaki:2011:RDP]

[Su:2016:AFP]

[Sueur:2012:VDM]

[Sumner:2013:LGM]

[Sen:2014:PFU]

Schmitt:2016:NPP

Schwen:2015:AGR

Shi:2019:TMF

Spronck:2016:CSA

Schmitz:2011:NCS

Solowiej-Wedderburn:2019:WSE

Shao:2015:MNC

Song:2012:SSM

Shen:2019:LTP

References

REFERENCES

Shoele:2016:ADM

Sipahi:2018:SCA

Szathmary:2015:E

Szathmary:2015:FSC

Takemoto:2010:NSA

REFERENCES

Tanaka:2013:ESV

Tomassini:2015:LFC

Tripuraneni:2016:PMQ

Tosenberger:2013:MTG

Tachikawa:2010:MMP
Tarafder:2018:RMP

Takashina:2016:SRE

Takai:2017:TRC

Takesue:2017:PSE

Tal:2012:CEG

REFERENCES

Tokuda:2019:RCM

Tomezak:2016:BMC

Tsaneva-Atanasova:2010:FSB

Thillainayagam:2016:CMF

Tauber:2015:RAO
Taylor:2013:IPF

Taylor:2016:VMD

Taylor:2016:HRF

Tang:2011:DBC

Toor:2015:EHR

Takashina:2016:EES

Theuer:2018:IIA

Teichmann:2014:ATD

Taylor:2014:FTI

tenBrink:2018:LAC

REFERENCES

 REFERENCES

981

[TDKJ15] Lucy Ternent, Rosemary J. Dyson, Anne-Marie Krachler, and Sara Jabbari. Bacterial fitness shapes the population dy-
REFERENCES

Miranda I. Teboh-Ewungkem and Thomas Yuster. Evolutionary implications for the determination of gametocyte sex ratios under fecundity variation for the malaria parasite. *Journal of Theoretical Biology*, 408(??):260–273, November
Toyoizumi:2014:DSQ

Tseng:2015:CAF

Thornley:2016:BTM

Toman:2017:SBS

Thornley:2018:EBK
REFERENCES

Taylor:2010:RDI

Tam:2018:NLG

Telschow:2017:IWM

Tekwa:2015:LDC

REFERENCES

[TGLK19] Danial Tahir, Sylvain Glémin, Martin Lascoux, and Inge-
mar Kaj. Modeling a trait-dependent diversification pro-
cess coupled with molecular evolution on a random species

Takigawa-Imamura:2015:TGI

Tachiki:2010:PCC

Tanaka:2011:HET

Tjørve:2010:HRS

Tania:2010:CMC

REFERENCES

Muhammad Tahir, Asifullah Khan, and Hüseyin Kaya. Protein subcellular localization in human and hamster cell lines:

Takashina:2019:GAS

Tiwari:2018:SMB

Takaguchi:2015:SCE

Tang:2012:LED

REFERENCES

Tourigny:2014:GPS

Toxvaerd:2017:RPO

Toxvaerd:2018:SAP

Toxvaerd:2019:PL

Tozzi:2015:HTO

Takezawa:2010:RER

REFERENCES

Tamir:2010:REC

Tanaka:2010:REB

Thornley:2014:ANG

Tripathi:2017:NAF

Traulsen:2012:GGC

Arne Traulsen and Floyd A. Reed. From genes to games: Cooperation and cyclic dominance in meiotic drive. *Jour-
REFERENCES

REFERENCES

Tanabe:2013:IRT

Terentyeva:2015:KMS

Thompson:2016:DMM

Thomas:2013:SNS

[TST+13] Philipp Thomas, Arthur V. Straube, Jens Timmer, Christian Fleck, and Ramon Grima. Signatures of nonlinear-

[TT19] Kohei Tamura and Hiroki Takikawa. Modelling the emergence of an egalitarian society in the n-player game frame-

REFERENCES

REFERENCES

Taghipoor:2016:SAE

Thurber:2012:MCM

Taskinen:2013:RTO

Tudge:2016:GTT

Tian:2019:PPP

Luke Tait, Kyle Wedgwood, Krasimira Tsaneva-Atanasova, Jon T. Brown, and Marc Goodfellow. Control of clustered action potential firing in a mathematical model of entorhinal cor-

[TXY+12] Sanyi Tang, Yanni Xiao, Lin Yuan, Robert A. Cheke, and Jianhong Wu. Campus quarantine (Fengxiao) for curbing emergent infectious diseases: Lessons from mitigating A/H1N1 in Xi’an, China. *Journal of Theoretical Biology*.

Tang:2011:IND

Tang:2013:HNN

Tian:2018:CHA

Uz:2010:MLE

Ullah:2012:SRM

Ghanim Ullah, William J. Bruno, and John E. Pearson. Simplification of reversible Markov chains by removal of

[Margarete Utz, Jonathan M. Jeschke, Volker Loeschcke, and Wilfried Gabriel.](UJLG14) Phenotypic plasticity with instan-
 REFERENCES

REFERENCES

[VABS18] Marina Voinson, Alexandra Alvergne, Sylvain Billiard, and Charline Smadi. Stochastic dynamics of an epidemic with recurrent spillovers from an endemic reservoir. *Journal of...
Valencia:2017:AMM

Vermolen:2016:MIS

Vandiver:2015:BIA

VanCleve:2016:CCC

VanOosterwyck:2016:COC
REFERENCES

VanDyken:2017:NSR

VanDyken:2017:PCG

Veprauskas:2018:EER

Vazquez:2010:OCD

Viertel:2019:CMM

Vitale:2019:PTP

Voss-Bohme:2010:CBC

Velasco:2013:LCR

VanDerlinden:2010:SVS

Vidal-DiezdeUlzurrun:2017:MTD

REFERENCES

T. G. Vaughan, P. D. Drummond, and A. J. Drummond. Within-host demographic fluctuations and corre-

REFERENCES

REFERENCES

Valderrama-Gomez:2018:PCM

Vargas-Garcia:2018:STM

Vasalou:2011:MMD

Vuong:2011:BFM

vanHeijster:2014:CMB

REFERENCES

REFERENCES

Voets:2016:SCT

Vig-Milkovics:2019:MSB

vanNoort:2012:RWR

Verma:2018:BGI

Voets:2018:CLA
Philip J. G. M. Voets. Central line-associated bloodstream infections and catheter dwell-time: a theoretical foundation for a

[VR17] Riccardo Vesipa and Luca Ridolfi. Impact of seasonal forcing on reactive ecological systems. *Journal of Theo-
Valdez:2017:ERC

VandePaer:2015:JEM

Vukov:2011:ETC

Vincent:2010:EEG

vonThienen:2015:MSP

Wolfhard von Thienen, Dirk Metzler, and Volker Witte. Modeling shortest path selection of the ant linepithema hu- mile using psychophysical theory and realistic parameter val-
 REFERENCES

1025

Ellen van Velzen and Rampal S. Etienne. The importance of ecological costs for the evolution of plant defense against herbivory. Journal of Theoretical Biology, 372(??):89–99, May 7, 2015. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-

REFERENCES

Wendelsdorf:2010:MCI

Winter:2010:ESM

Wang:2013:FSL

Wong:2014:CSN

Westoby:2012:EAM

REFERENCES

REFERENCES

REFERENCES

Wosniack:2017:PEE

Wery:2019:FEP

White:2015:MPP

Weiss:2012:MTT

Weigang:2017:CPT
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Waxman:2010:SMS

Wakano:2012:CEC

Wakano:2012:ECS

Whitehead:2012:ASN

Wagner:2013:CSF

Gregory L. Wagner and Eric Lauga. Crawling scallop: Friction-based locomotion with one degree of freedom. *Jour-
REFERENCES

Wakano:2014:EBD

Whalen:2015:CBT

Wang:2019:PGG

Wu:2011:HDM

Wu:2014:NAR

Duojiao Wu, Xiaoping Liu, Chen Liu, Zhiping Liu, Ming Xu, Ruiming Rong, Mengxia Qian, Luonan Chen, and Tongyu Zhu. Network analysis reveals roles of inflammatory factors

Luo:2010:MDU

Wei:2019:VDE

Wen:2017:PPP

Warrell:2017:SSP

Wang:2018:EBE

Yi Wang, Junling Ma, Jinde Cao, and Li Li. Edge-based epidemic spreading in degree-correlated complex networks. *Journal of Theoretical Biology*, 454(??):164–181, October 7,
Wang:2011:CTN

Wcislo:2016:PPA

Wellard:2010:ECP

Wan:2013:GSL

Wan:2014:RLC

[Wan:2015:MHL]

[Wan:2016:MAT]

[Wang:2016:REP]

[WML16]
Wan:2017:IRI

[WMT16] Ning Wei, Yoichiro Mori, and Elena G. Tolkacheva. The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43. *Journal of Theoretical Biology*, 397(??):103–114, May 21, 2016. COD-

REFERENCES

1050

Wolpert:2011:PIP

Wolff:2012:RRP

Wolpert:2014:RMR

Wood:2010:SSU

Wang:2017:PDE

Watkinson-Powell:2017:RGI

Wang:2012:SSR

Wade:2016:EBC

Wang:2014:SPS

WRC+19

Walsh:2016:CMP

Wu:2019:MRG

Wang:2012:INP

Wu:2010:RVN

Weissmann:2016:PCS

REFERENCES

Daniel D. Wiegmann, Steven M. Suibert, and Gordon A. Wade. Mate choice and optimal search behavior: Fitness

Wang:2010:BSF

Watts:2011:SVD

REFERENCES

REFERENCES

Wensink:2014:NSD

Walker:2019:BBL

Wang:2012:RMR

Wu:2010:MWS

Wang:2010:GPP

Xie:2015:UMN

Xie:2018:MDU

Xu:2019:BCR

Xue:2015:FDM

Xue:2015:TSB

Xi:2010:GLP

Xue:2017:NPT

Xu:2019:IBE

Xie:2011:TGR

Xiao:2013:IPI

Xuan Xiao, Jian-Liang Min, Pu Wang, and Kuo-Chen Chou. iCDI-PseFpt: Identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. *Journal of Theoretical Biology*, 337(??):71–79, November 21,

[XSKA17] P. Xenitidis, I. Seimenis, S. Kakolyris, and A. Adamopoulos. Evaluation of artificial time series microarray data

REFERENCES

Xu:2010:BRV

Xu:2017:PSP

Xu:2014:CPE

Xi:2015:MMS

Xue:2015:FSI
Yonenoh:2014:SOP

Yang:2017:DCN

Yamaguchi:2016:TRS

Yamazaki:2016:CMP

Yan:2010:ISE

REFERENCES

Yang:2010:CEA

Yates:2014:DCM

Yi:2017:CAT

Yao:2019:NAQ

You:2017:SVN

[YCH+17b] Ada W. C. Yan, Pengxing Cao, Jane M. Heffernan, Jodie McVernon, Kylie M. Quinn, Nicole L. La Gruta, Karen L. Laurie, and James M. McCaw. Modelling cross-reactivity

Yoon:2017:MMM

Yu:2015:AMC

Yin:2014:MDS

Yenkie:2014:OCP

REFERENCES

Yenkie:2015:UCD

Yu:2013:PSN

Young:2012:CCC

Yu:2019:TCF

Yeh:2012:GPM
REFERENCES

Yang:2018:NPM

Yu:2010:SIB

Yang:2012:CPN

Yamaguchi:2014:ESD

Yu:2014:VGP

[YHY14] Chenglong Yu, Rong Lucy He, and Stephen S.-T. Yau. Viral genome phylogeny based on Lempel–Ziv complexity and Haus-

Yang:2014:OPS

Yamaguchi:2016:SNI

Yamaguchi:2017:TPP

Yamaguchi:2018:TDS

Yamaguchi:2018:WBS

REFERENCES

REFERENCES

Youssefpour:2012:MMC

Ying:2014:SCL

Yang:2010:MMB

Yamazaki:2015:DWT

Yamashita:2014:QAC

REFERENCES

[YRD17] Qian Yang, Tim Rogers, and Jonathan H. P. Dawes. Demographic noise slows down cycles of dominance. Journal
REFERENCES

[YSI17] Jinyou Yang, Yuji Shimogonya, and Takuji Ishikawa. Mixing and pumping functions of the intestine of zebrafish lar-

Yang:2018:WCS

Yang:2013:SPF

Yu:2014:NDF

Yamaguchi:2013:DMH

REFERENCES

REFERENCES

REFERENCES

Yan:2018:EBS

Yang:2010:BWS

Yang:2015:NRE

Yang:2016:NCM

Yang:2012:AFC

Yang:2013:AFC

Zabet:2011:NFP

Zadeh:2011:IPD

Zhang:2015:FTI

Zupanc:2019:GMM

REFERENCES

Zagkos:2019:MMD

Zambrano:2014:SMN

Zinn-Bjorkman:2018:MFR

Zhao:2014:NBB

Zhang:2014:NBM

REFERENCES

Zhu:2013:ESC

Zhang:2018:PPS

Zhong:2012:MEP

Zhang:2010:PPA

REFERENCES

Zumsande:2010:BCM

Zaman:2019:MBF

Zaoli:2019:PNS

Zhang:2010:RDB

Zhao:2016:MWF

Lei Zhao, Toni I. Gossmann, and David Waxman. A modified Wright–Fisher model that incorporates N_e: a variant of the standard model with increased biological realism and reduced computational complexity. *Journal of Theoretical Biology*, 393(??):218–228, March 21, 2016. CO-
Zhang:2014:EPD

Zhang:2011:NCD

Zhang:2010:FFS

Zhang:2010:SSS

Zhao:2010:POC

REFERENCES

Zhang:2011:CSS

Zhang:2015:PBS

Zelik:2014:RSA

Zhu:2010:SLP

Zheng:2015:LDP

REFERENCES

Zheng:2016:SLF

Zhou:2011:DLP

Zhu:2011:SMV

Zaric:2011:NCI

Zhang:2016:PHP

Zhukov:2019:CAS

Zavodszky:2015:EFP

Zhao:2015:SWO

Zhang:2018:PAP

Zhou:2018:WFS

Zhao:2013:AIB

Zienkiewicz:2018:DDM

Zhao:2018:MSR

Zhou:2013:PPP

Zhou:2012:PNE

ZLL+12 Junhong Zhou, Dongdong Liu, Xin Li, Jing Ma, Jue Zhang, and Jing Fang. Pink noise: Effect on complexity synchronization of brain activity and sleep consolidation. *Journal of Theoretical Biology*, 306(??):68–72, August 7, 2012. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

[Zhang:2017:ECT]

[Zhuge:2012:NDR]

[Zheng:2019:UAS]

[Zhao:2014:ESC]

[Zhao:2016:ITC]
REFERENCES

Zhou:2018:CNG

Zhao:2019:PPS

Zhang:2013:BET

Zhang:2014:IPA

Zheng:2017:SRD

Xiu-Deng Zheng, Cong Li, Jie-Ru Yu, Shi-Chang Wang, Song-Jia Fan, Bo-Yu Zhang, and Yi Tao. A simple rule of direct reciprocity leads to the stable coexistence of coopera-
REFERENCES

REFERENCES

Zhao:2016:IGS

Zhao:2015:PPP

Zhao:2015:ASI

Zhang:2014:RNR

Zoli:2014:TVN

REFERENCES

Zhang:2019:PEP

Zou:2015:STD

Zeron:2010:DNF

Zhang:2012:CCR

Zhuge:2016:CPI

Zhuge:2016:PFR

Zhao:2016:NSA

Zheng:2016:INT

Zintzaras:2010:SVF

Zhao:2014:AIT

Zhang:2011:OAR

Zhou:2014:MCG

Zhang:2014:PPE

Zhang:2016:PPI

Zollner:2012:BMG

REFERENCES

REFERENCES

Zhao:2015:EMG

Zou:2010:UIV

Zhou:2019:TTP

Zou:2019:IMA

Zu:2015:TPI

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume/Issue:</th>
<th>Date</th>
<th>Pages</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ZZG+16]</td>
<td>Using the SMOTE technique and hybrid features to predict the types of ion channel-targeted conotoxins.</td>
<td>Lina Zhang, Chengjin Zhang, Rui Gao, Runtao Yang, and Qing Song.</td>
<td>Journal of Theoretical Biology</td>
<td>403(??):75–84</td>
<td>August 21, 2016</td>
<td>75–84</td>
<td>http://www.sciencedirect.com/science/article/pii/S0022519316300686</td>
</tr>
</tbody>
</table>
REFERENCES

[ZZR10] Lan Zou, Weimian Zhang, and Shigui Ruan. Modeling the transmission dynamics and control of hepatitis B virus in
Zou:2013:CMT

Zhang:2011:SRS

Zupanc:2019:SCA

Zheng:2016:GRG