Title word cross-reference

$(\Delta \Psi)$ [LL17b]. (M, R) [PWG16]. -1 [Xie13a]. -2 [ZL18b]. 1

[GMNN18, STA15]. 2 [CLPZ14, CK17, DHK13, HBSF11, JO13, MS14d, Nos14, Shu13, TA16, WML17]. 3

[BPF19, CZJQ14, CK17, DS15b, DTP19, EBP15, ESGA15, GBC16, HGGCR13, KKM16, KMM18, LHPF18, MPCTGJ15, Nos14, PH17, RMSTG13, SK15, SKK18, TA16, ZKP15, ZSH16]. 4 [EBSW17, LZZ19]. 5

[HKR19, NMZ19, SIK18]. $+ [AHW13, CFF12, MYC12, OCN10]$. 6

[LDB14]. $^{2+}$ [CFF12, CN12a, DD13, EG10, G11, K19, PRV14]. 7

[AH18, ZZ19]. 2 [LDB14]. $^{3+}$ [CZ16, LL17b]. a [ASRM15]. a

[BZJP18, EKvKFK13, HSH19, KSK17, RAR19, SSZ17, WPH12, YCB16, dSMP11]. b [ASRM15]. b

[BZJP18, CWP18, Goe15, Gün12, Gün13, KKK15, KMG15b, MVG18, MB18b, MHMM11, SNS17, SW11, SHL11, SK18, SAGC12, WGC13, ZZR11]. c [PBS19]. C [Mic15b]. $^{\Delta}$

[LL17b]. $^{\gamma}$ [OBK11, TR14]. $^{H_{\infty}}$ [QF10]. K [NMZ19, DLYW13, GAB14, HA15a, Hua16, LCL14, Tun13, WZY14, YZZ13, YW13a, YW13b]. $^{\kappa}$
ÁTC+14, GM13, HSII+19, KB19, TC11, WPH+12, ZBA14. N
[SPSP12, FS15b, HY16, LZT12, LZT13, TP10a, vV11a]. Nc [ZGW16]. P2
[PIPB10]. R0 [CD16, DDSDW13]. σ [TLCZ12]. × [Sum13].

-2 [BMGC11a, BMGC11b]. -activated [CFF12]. -amyloid-neuron
[FS15b]. -clavaminic [RMRC+16]. -clavulanic [RMRC+16].
-dihydromethyltrisporate [EBSW17]. -dimensional [EBP15]. -grams
[HY16]. -helical [dSMP+11]. -Ig [LZL+19]. -infected [STA15]. -interacting
[HBSF11]. -lactamase [KKSK15, SKK18]. -LTR [CLPZ14, WML+17]. -mer
[HA15a, Hua16, WZY14]. -methyladenosine [AH18, ZZN+19].
-methylcytosine [SIK+18]. -nearest [NMZ19]. -Partite [LCL14]. -person
[TP10a, SPSP12]. -phenylpyrimidine [TA16]. -player [DHK13, Shu13].
-protein [SAGC12]. -PseAAC [NMZ19]. -rays [TRM+14]. -regular
[NMZ19]. -strands [SNS17, ZZRZ11]. -susceptible
-variable [DTP19]. -word [DLYW13,YW13a, YW13b]. -words [GAB14].

/chondrotin [SABB15]. /Cl [CZT+16]. /K [OCN10].

09 [SY11].

1 [CH16, FH10a, FHG15, GKB13, IGL+12, ITR+18, LLW15, LGK+09,
MR19, NTC+11, SW11, SPG+18, SH15, TXCW15, VBHM+13]. 1-108
[Ano19-50]. 1-72 [Ano19-51]. 10 [MMFK10]. 118 [LHPF18]. 16S
[WSTL16, WZ17]. 185 [BBM+13a, BBM+13b]. 1c [BAGG14].

2 [TTC19, BMGC11b, FH10b, GML10, Lab16]. 2'-O-methylation [TTC19].
2009 [KLJ17, LJ15, LCJ18, TDE12]. 2013 [DHK13]. 2019
[CLG+11]. 264 [dOGL13, SCABM11, ZG10a]. 266 [LBS+11, PSS+13]. 271
[FIS16a]. 277 [BMGC11a]. 278 [PCT19, Pan19]. 280 [Mul12]. 283
[VBZ+15]. 2D [NBW+10, WXC10]. 2D-MH [WXC10]. 2L [JCG15].
2LSAAC [AHJ18b]. 2methyl [TTC19].

3 [Sel12a, BZJP18]. 3'-to-5 [Sel12a]. 3'-to-5'-direction [Sel12a]. 307
[BPGS12a, Gu13, LZT13]. 310 [Mei13b, WL12a]. 311 [MLBA13]. 317
[GS14]. 340 [KDK14a]. 342 [PL14a]. 343 [KMLT14]. 344

5 [Sel12a, SGD+16]. 5'-UTRs [SGD+16]. 5R [RMRC+16]. 5S [RMRC+16].

6-bisphosphate [Bar19]. 6DoF [GAL11b].

İto [OOY16].

FL12, FL13, FLW16, GT11a, GZ14a, GZ14b, HPB+14, HYA14, HK11a, HYW11, HY13, JD16a, JD16b, JD17, JSF+11, JCG15, JCG16, KHK15, KB11, KZL14, KH+17, KSKK15, KGM15b, LLG16, LL13a, LD11, LBS+14, MJ11, MGGM10b, MFZ18, MZ18, MBE11, MP14b, NBL14, OFB10, PWZ+19, PDC+17, PWC+15, QLC+18, RBMS17, RMRC+16, SRS+15, SFV16, TP17, TM13, WMK13, XNJ+13, Xie15, XWW+14, XSLZ16, YSH+14, YG18, YGL+10, ZPdFJ19, ZDG+10, ZSZM14, ZKK14, ZNA+16, ZLW+19, dBJ11, dMP+11, vLFM+19. acid-mediated [MGGM10b].

Agent-based
[CSR+05, Gal10, SRAL12, BCS+16, CS14a, CA17, Cro18, DJD10, FM15a, HM13, JSSZ12, METC12, TCB13]. agent-environment [BRP+18].
agent-model [SLML19]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. agent-environment [BRP+18].
aggregate [MPLK14]. aggregates [GWW+10, PAV10, YMW12].
Aggregation [BHP17, AGB+14, BERR19, DFMR19, GABM12, IOY15, KKS+14, MCPF12, NPB13, RDD14, SM14, SS15a]. aggregations [PWE15, Tos11, WBB+18].
Aging [HH10, Hor13, Kit10, KS15, LC16, PS13, PVGV19, SC11b, Wu14]. ago [Kur14].
Agrin [DvDBD15, HBSF11, PHC12]. agonist [HBSF11, PHC12].
ZLZ$^{+16}$, ZLB13, ASK17, ABP$^{+11}$, AHD$^{+18}$, ABKS11, AAGO$^{+17}$, AP17, ALM$^{+19}$, ADR$^{+11b}$, BC19, BP18, BDID$^{+12}$, BUC14, BD10b, BLP10, BHO$^{+18}$, CRH$^{+15}$, CWL11b, CMPS17, Che12, CWL15b, Che18, CCY$^{+19}$, CSS$^{+18}$, CM$^{+10}$, CLW12, CGRRGM16, CMN$^{+11}$, DS10b, DQV$^{+15}$, DJD10, DB11, DG10a, DDS11, DLY13, DCS14, DOC17, DLH11, DDSDW13, ESS19, FLA$^{+19}$, Fra19a, GAL11b, GZFX14, GP11a, GBH16, GY19, GdGL17, Gou16, GMK18, GFS15, GZT15, GRRG16, GCG12, GRR$^{+14}$, HS15, HME12, HN10, HS14a, HY15, HD$^{+19}$, HYW11, Hua16, JTS14, JB18a, JS12, JB19a, JTW17, JPDP10, JG14, KMHdl10, KFW12]. analysis [KMM18, KJSS10, KSKS13, KF12, KZ14, KLHS17, KTT$^{+19}$, KSPA17, KS10, Lab16, LKSM14, LAS14, LCJ16, LY14, LMYL15, LLC15, LZG$^{+19}$, LZY$^{+15}$, LCL14, LLJ18, LCQ$^{+18}$, LC10, LD18, Mac10, MK11, MMY$^{+12}$, ML12a, Mal18, MDB12a, MPP$^{+16a}$, MH12, MC16b, MN11, MDE13, MBV14, MB18b, MA18, MNS16, MH14, NA$^{+11}$, NMI18, pNM$^{+10}$, Nos14, NSS11, OA15, OGE10, Oht12, OYY$^{+16}$, OBA11, OAB12, PDB$^{+15}$, PNP$^{+16}$, PWC$^{+12}$, Pav14, PPF17, QLZQ11, QJR$^{+16}$, RKL10, RRG$^{+10}$, RAA$^{+16}$, RWW$^{+15}$, RSI11, RP18, RLBC13, RSV10, RLM$^{+14}$, RM19, RS14b, SAA10, ST17a, SKAG18, SS19, SBW11, SPMGR10, Sha14, She11a, SCF$^{+12}$, SG15a, SLW$^{+18a}$, SGD$^{+16}$, SGW$^{+18}$, SSS18, SCS10, SCLC13, SA14, SQZ$^{+16}$, TDHC, TM16, TAR16, TZY18, TDE12, TAORS10, TF15, VLPH17, VZ$^{B}^{+15}$, VM16]. analysis [VH11b, WTQL10, WZJ$^{+13}$, WB15, Woo10, WCHC11, WLL14, WAC14, WGDZ18, XSLZ16, YISG14, YM14, YTGW16, YZFY16, YY15, ZCT18, ZYJL18, ZL19, ZDY11, ZNC$^{+15}$, ZMC$^{+18}$, dBBJ11, dLMV$^{+10}$, diCGSA16, ISB$^{+11}$]. analysis-regression [HME12]. Analytic [JBSFB12, SPRF13, CM14, KFS$^{+13}$, Pie10]. Analytical [BHSB11, FVC15, MSC10, PM10a, SSFG15, VPFV13, AdPLMZ13, Gal10, LCTG15, LPF11, LCGMH12, LB11, OYA14, WHWZ18]. analytically [SB13]. analyze [HZWH10, Kri18]. analyzed [CTPB10, vVLS14]. Analyzing [MS10b, Su16, AHJ$^{+18a}$, GLZ$^{+13}$, RSR11]. anastomosis [FRTP13]. Anatomical [RLSM17, DOC17]. anatomically [SMZ$^{+17}$]. ancestor [Cam15, Di19c, Sch14]. ancestors [FS12]. Ancestral [ZSSM14, BJOS13, El15, GG16, Gri19, HC17, OGO19, RCD16, dF13]. ancestries [Mul11, Mul12]. ancestry [SS15e]. anchorage [CEP14]. Andean [FBU11]. androdioecy [VSLVB15]. androgen [HHSA15, HA15b, SSN$^{+14}$, ZY$^{+16}$]. androgens [Jam15]. Anelosimus [QJR$^{+16}$]. anemia [AGC18]. Anergy [ABD$^{+15}$, SI11a]. anesthetized [SKK$^{+11}$]. aneurysm [MAR$^{+17c}$, NF14a, ZKP15]. aneurysms [MTdS]. angiogenesis [BJJR10, BJZP18, BBI14, CXWL11, FBFM12, FJC$^{+10}$, GBJ18, HGM$^{+16}$, SGGM11, SLD$^{+17}$]. angiogenesis-modulating [BZJP18]. angiogenic [HGM$^{+16}$, Kar16, SOF16, VDRL14]. angioplasty [ZLZ$^{+11}$]. angle [ARB13, HB16a, LL17a, Oka12]. angles [GP11a, MIH16, Rei12, TSDL14]. anguilliform [HFT15]. Animal [Che14, Fis19, WL12c, AZOLVH18, AHMA$^{+19}$, BERR19, CB16, Eft13].
EHBC10, Gau11, HFD17, IK15, JMZ13, KKWA18, KJ15, LWLM18, LX15, MJS11, NKL10, PWZ+19, PCB14, PM17, PBD13, RD12, SS18, Sue12, TWP16, VLFF12, WP17. **Animals** [SS15b, DS10a, Fue14, Fue15, Fue16, Jen10, LYK12, MROS15, NO18, Pon12, RT19, RW14b, SBCR10, SS15c]. **anion** [Kun16]. **anions** [RCL+10]. **anisogamy** [ER12, Yan10b]. **anisotropic** [CFGRB17, Kro11, PH13]. ** Ankles** [MS14b, RS14a, SNCM12, ZHAK14]. **AnmK** [DQY+15]. **AnmK-like** [DQY+15]. **Annotating** [LL12]. **Annotation** [GTS15, YCR+15]. **Annuals** [CMJD11, DP13b, HYN19, HN19, STLJ18]. **Antarctic** [SM17b]. **Antenna** [IK15]. **Anterior** [BKL14]. **anthracis** [KJM17]. **anthrax** [DFS11, GMS+13, KJM17]. **Anthropocene** [Fue18]. **Anthropogenic** [HMM17]. **Anticancer** [CLA+16, FM10, FM14a, IHNS16]. **anti-angiogenic** [HGM+16, SOF16]. **anti-anti-dsDNA** [AN13]. **Antidepressive** [BP16, FHS+14, MK14d]. **Antidepressive-resistant** [BP16, FHS+14, MK14d]. **Antifreeze** [KCM+11, MP14b]. **Antigen** [MCL19, RRG+12, RSI11]. **Antigenic** [CST16, GAV15]. **Antimicrobial** [PDC+17, PPF17, BC19, MB18a, ZSH+16]. **Antimullerian** [MS13]. **Antioxidant** [BRK19, DH18, FBAPMD13, LL13a]. **Antiparallel** [ZDG+10]. **Antipredator** [BR16]. **Antivasculature** [WML+17]. **Antisense** [Sel12b, Sel11]. **Antisocial** [GT12]. **Antisymmetry** [Kam11]. **Antitermination** [Sel12b]. **Antiviral** [TGZF11, GN10, LCCC10, MSL+16]. **Ape** [NH12]. **Aperture** [ARB13]. **Apis** [EM11, MKJS13]. **Apnea** [SEK+10]. **Apoptosis** [LTL+15, LMM18, ML09, ML12a, PHTP+12, YLWZ10, ZL18a]. **Apoptotic** [CSKZ19, KKO+18]. **APP** [HRHAAA15]. **Apparatus** [TW12].
Apparent [CL10, PHC12]. Appar [MAA18]. Appearance [AIY16].

Appendix [JEAI18]. Appetite [GCO11]. Apple [vdSS12]. Apples [GP11a].

Application [BTG15, Cox10, DEK15, DS16, FGH14, HCS19, JS18, KP16, MJ11, MGB17, MAA18, PDC17, SDRA15, TSF19, VACGF17, WMPF15, ZLZ11, dLMV10, BGW15, CSM14, DLYZ11, DYS13, Dim10, GMR15, MMG16, Mor11, OT13, OVKL14, OL19, PCD14, PRV14, RKMG12, SMD16, TTC10, TBA14, Tre19, VAT18, WWY12, WZJ13, YHY14, CMMR13, JS17]. Applications [BLP10, GOL16, Lan16, CZJQ14, EEHMH18, FR13b, FR14, GK16, LAS14, LLZ13, MH11, Pai19, PYG19, WZY14, XM11, XWW19, YZZ13, YCY14, ER18]. Applied [ZLW16, GSRR17, MB16, PRSC11]. Applying [DGW18, Mor19, SOIO10, CDM14, GK13].

Apposition [PVGA12]. Appraisal [LP17]. Approach [JSC16, KS10, ASK17, ACM16, ADS19, AMSSG16, ADCG14, AOR17, Amo15, ACvKA10, ARM18, ATC14, BBT15, BCDG10, BMD17, BORA10, CFS19, CPF13, CL14, CVPCV15, CM14, CTL15, DB10, DGM15, DKP18, Dim17, DXW16, Do19, DRPM17, EBE17, FKM15, FKV19, GAGP14, GSYS10, Ghu18, GBC16, GGR11, GM16b, Gre15, GT15, Hall6, HXL16, HXLI8a, HME12, HB10, HHF11, IHNS16, JAM18, JLK16, JSF11, JSB15, JDP10, KCM11, KSP18, KTH16, Kla10, Kri16, KSP15, LyBJ16, LN13, LCJC10, LKAJ18, LGPS17, LPvSP11, LPvSP12, MFD18, MFD18, MB17, MF16, MT14, MM19, MKBE17a, MKBE17b, MTE15, MSR16, MPS11, MP12, MF15, MMCZM12, MHH13, MDD13, MJV16, NKM12, NGJ14, NHM10, NBW10, NBW11, OWB14, OBB11, PDM17, PM14, Pav19, PMKM10].

Approach [PGF11, QW11, RLK10, RA10, RMRC16, Rev15, RCC11, RBKW19, RDP16, RSR11, RBMP15, SMHB10, SL10, SLML19, SBR16, SK11a, SCK15, SLT18, SZ10, SDPC11, SKSRW16, SIST19, TMLG16, TKB18, TKKE19, TTB18, TWC19, TTA0, TK0c, WHHS15, XJN13, XSCS12, YS14, YBH19, YA14, YLH12, YS11, ZMAM19, ZGY11, ZZJ16, ZD18, dMP11].

Approached [ZLY14]. Approaches [JD16a, JD16b, AH16, BCPM16, CB15, EB15, Fer12, Gal10, GCS11, HMMRS15, JAHKH12, Mic13, MMLK11, NRS16, OAJK10, QZ14, SPRF13, SD16, SY17a, SYY17b, SSRA16]. Appropriate [DZW10, Nak12].

11

[CRLH+19, DKP+18, KOF+14, KSM+15, MBKB13, PDNP16, RW14a, ST16].
area
[BH13a, GABM12, IMH15, NdORC11, TAI+18, TLM14, WCF12, ZGG+19].
area-concentrated [BH13a]. areas [KG13, KMCJ17, KJ15, TM14, Tak16].
areata [DPC15]. Argentine [RRBM12]. arginine [AKR+18]. Argulus [MNH+12]. arguments [Di 17b, RW14b, ASH15].
arise [Ell15, LRA+13]. arising [APW10, BPP+16, DD13, ZW16]. Arkansas
[GAY+15]. armed [Mor19]. Arms [IST11, CL10].
Armstrong [XF13]. army [GK17, GKWG17, TD17]. Arousal [PRK13].
art [MDB12b]. articular [HRG11, SABB15, WGS15]. Artificial
[GM16b, IL12, AJC12, CLG+10, CLG+11, GMK18, HL18, Mou12b, MKF+14, MSIR10, YRMWT19].
artifical [BJ17]. ascendency [BJ17]. ascetic [BRK16, Edg19].
asexual [FOT+15, JJ17, Jam16a, MO12]. Asia
[TDM14]. Asia-pacific [TDM14]. aspects
[AV19, DLMK12, LZWK11, MH14, Van15, VSW10]. arteriovenous [FWR19].
artery [DPCM16, MAR+17c]. arthritis [MF19]. arthropod [FMS+10, YLY15]. article [JN14, gSxFH+12].
articular [BJ17]. articular [HRG11, SABB15, WGS15]. Artificial
[GM16b, IL12, AJC12, CLG+10, CLG+11, GMK18, HL19, LCMI14, MFMI6, Sal15, XSKA17].
artifical [Bry13]. artiodactyl [OB15]. aryl [TAR16].
Aspergillus [GT11a, GS13b, KHS13]. aspiration [MN11, TM12]. assay
[DA17, HYN19, IGL+12, TL+15, TSM14]. assays
[HPM+17, JSP+16, JRB+16]. assemblies [Kur10, KI15, ML14]. assembly
[CC11a, CCB11a, CP+14, Dun11, EJ16, FWSG17, MH18, Mou12b, MKF+14, MSIR10, YRMWT19].
assemble [FKB+12, GW19a, KCJ+11, PHG11, RFME+12]. assessed [SWPC+16].
Assessing [BLV18, CDM+14, GML10, HLH+18, KCJ+19, LDA+13, MHKA16, PZLF19, PRM12, TGZF11, ZJY19].
Assessment
[Kro10, LG18, WHS+13, CC11b, GT11a, HDF17, LFW+18, NNK+15, OSN18, Pan11, SN16, Sig12, US10]. Assessor [CCNT19]. assignment
[dEG11]. assignments [DS19b]. assistance [KSBvL+12]. assisted
[BB13, KSK+16, LSSL13, RMRC+16]. associated [AD15, ADS+19, AFM10, BRA15, Ber14, BB19, CRH+15, CST+12, HBSF11, KEHK17, Kri18, KKS+14, LZG+19, LMHF13, NBW10, NBW11, OABI12, PS13, RRG+10, RRC+11, RFdL15, SRP16, Voe18, WDL+17, YFZ+19, ZK18, ZDF+12, ZXS+19].
Association [RMM+16b, AKR+18, GZ19, HMWB13, LCG12, PS13, Sar10, Sha14, TDZ+18, ZK10b]. associations [PSAA13, Van16a]. associative
[GJ10]. Assortativity [NR16, PPM12, PMP13]. Assortment
[CAV16, AS12, BBD18, VMZK+19]. assumption [LJW+16, RR16, XGZ17].
assumption-free [XGZ17]. Assumptions [TWP16, MM14, SWP+16].
asthma [Don16, SGDL12]. asthmatic [Don17, PDT+10]. astragalus [PRSC11]. astrocyte [LL13b]. astrocytes [ABJ12, PRV+14, ZMAM19]. astrocytic [KPD18]. Asymmetric [HSM19, HFT+18, PGKZ17, ROF17, CLA17, DGJ14, LS15b, Lee16b, MG10a, yTRSC13, Mig16, MAA+17, NdPZA10, NTFK11, RPD14, ST16, Sel13, Sht17, TWW19, UI10]. Asymmetrical [FCC+10, MDS16]. asymmetrically [RKMG12]. asymmetry [DB18, DZE11, HTT19, Hor13, KMSR18, KJ11a, MS14b]. astrocyte [LL13b]. astrocytes [ABJ12, PRV+14, ZMAM19]. astrocytic [KPD18]. Asymmetric [HSM19, HFT+18, PGKZ17, ROF17, CLA17, DGJ14, LS15b, Lee16b, MG10a, yTRSC13, Mig16, MAA+17, NdPZA10, NTFK11, RPD14, ST16, Sel13, Sht17, TWW19, UI10]. Asymmetrical [FCC+10, MDS16]. asymmetrically [RKMG12]. asymmetry [DB18, DZE11, HTT19, Hor13, KMSR18, KJ11a, MS14b]. astrocyte [LL13b]. astrocytes [ABJ12, PRV+14, ZMAM19]. astrocytic [KPD18]. Asymmetric [HSM19, HFT+18, PGKZ17, ROF17, CLA17, DGJ14, LS15b, Lee16b, MG10a, yTRSC13, Mig16, MAA+17, NdPZA10, NTFK11, RPD14, ST16, Sel13, Sht17, TWW19, UI10]. Asymmetrical [FCC+10, MDS16]. asymmetrically [RKMG12]. asymmetry [DB18, DZE11, HTT19, Hor13, KMSR18, KJ11a, MS14b]. astrocyte [LL13b]. astrocytes [ABJ12, PRV+14, ZMAM19]. astrocytic [KPD18]. Asymmetric [HSM19, HFT+18, PGKZ17, ROF17, CLA17, DGJ14, LS15b, Lee16b, MG10a, yTRSC13, Mig16, MAA+17, NdPZA10, NTFK11, RPD14, ST16, Sel13, Sht17, TWW19, UI10]. Asymmetrical [FCC+10, MDS16]. asymmetrically [RKMG12]. asymmetry [DB18, DZE11, HTT19, Hor13, KMSR18, KJ11a, MS14b].
[ADB^+13, NDZMA14, NMAZP16]. bed-net [ADB^+13, NDZMA14].

bed-nets [NMAZP16]. Beddington [GG12, GG14].

bed [BSMK11, SM16]. bee [BMC17, MKJS13, NPS10, SWK^+19]. beehives [STKE12].

been [BM14, Di 14b]. bees [SOIO10].

bed-nets [NMAZP16]. Beddington [GG12, GG14].

bednet [PRM14].

beds [BSMK11, SM16].

bee [BIMC17, MKJS13, NPS10, SWK^+19]. beehives [STKE12].

been [BM14, Di 14b]. bees [SOIO10].

beetle [APS^+13, APBS15, KLB^+16, Whi11]. beetle-fungus [APS^+13, APBS15].

beetles [BBR12, FKMG15].

bees [SOIO10].

beetle [APS^+13, APBS15, KLB^+16, Whi11].

beetle-fungus [APS^+13, APBS15].

beetles [BBR12, FKMG15].

before [ARB13, CBC17].

behalf [LPH19].

behaving [CCG^+18].

behaviors [LLLV11, LLL13, QJR^+16, RN12, SHW16, TM15a, WHWZ18, ZG10a, ZG10b].

behaviour [ACH15, ADR^+11b, ASL^+18, BB10, BAR14, CJKR10, EME^+16, FD11b, GA16, Hor11a, JAB18, LDM16, PB18, PCN17, TB11, TCB13, Voh17, WPPD16, ZLB^+18].

behavioral [DBD12, FGJ10, NvD17, WL12c].

behaviours [Eft13, WWIG19].

behind [TF17].

belief [DWL^+14, Kur17, TII12a]. belief-based [DWL^+14]. believer [HLI15].

believers [SGA^+12].

bells [HM15].

benchmarking [PPF17].

bendability [TF17].

Bending [CTPB10].

bends [HRG11].

beneficial [LD11b, HKM12].

benefit [VGZS18].

benefits [ARB13, HM15, JA13, Moo14, NT10, PBA12, RB15].

benthic [JB18a].

benthic-pelagic [JB18a].

benthos [QA15].

Bernal [Pia19].

Bernoulli [Pia19].

Bertalanffy [OYA14, RRRTR10].

Bet [MII^+13, U11, Y18, MG17].

Bet-hedging [MII^+13, Y18, MG17].

beta [BJ12a, HDZ^+19, JDSPK15, Man15, She11b, ZDG^+10].

beta-cell [JDSPK15].

beta-helix [She11b].

beta-sheet [Man15].

beta-strands [JK12a, ZDG^+10].

better [Hou15, HXL18b, RAAS15].

between [ASC16, AGB^+14, ABKS11, ARG14, AH12a, AH13, ARB13, BYJ17, Bal13, BTO14, BAGG14, BST14, BJJP18, BM16, BLZ^+19, BMB^+18a, BL14, BYM^+18, CPFG^+16, CFZ14, CCS^+16, CK17, Das18, DDBW09, DDBW11, DI13, DD13, DAA17, Di 19a, DBG18, DOL16, DDS13, DPCM16, DHT16, ESW13, FD18, FB18a, FEL10, FI15, FVTS16, FZL18, GMZM15, GZT12, GCB17, GML10, GLZ^+11, GBM18, GZ12, GN10, Gнт12, Gнт13, Han10, HK17b, Has14, HHS15, IK15, IST11, IOY15, JC10, KTI18, KLI3, KCMF11, KLM14, KMCJ17, KN11, KG12, Kro10, KSP17, LL17a, LV17, LDH^+12, LKP^+12, LM14, LMCW18, LPF11, Lug15, MZWC10, MVGGB18, MGML10, MGO^+15, MK16a, MW14, MK19, MS18, MBL17, Miy17, MD16, MSS10, MLL^+16, NG13, NG11, NMAZP16, NTO16, Ots11, PSJ15, PBB10].

between [POP12, Pel18, PB18, PL14a, PL14b, PB16, PBA12, Ram10, RPD14, RS19, RCD19, SW15, SGG11, Sek12, SN11, Sel10, Sel15b, SS15a,
between-host [CFZ14, LMCW18]. Beyond [AE17, CP14, KDST15, KGC18, HMW16, WF18, Pag19]. BFDT [GJ15b].

bioinformatics [ADCG14]. Biokinet [CMM19]. Biol
bistable [AKS+19, DD13, Go110b, JZL13]. bite [SCF+12]. bivalve [Alv18].
black [SJSK18]. bladder [BMGC11a, BMGC11b, MSA+16]. BlaPred
[SKK18]. BLAST [DYQ+14]. bleaching [CMGN17]. bleb [WGO+15].
[GM12]. blips [OMO13, STA15, WR14]. block [LK15]. block
[ZMN+10, ZCAB17, HHD+16]. blockers [Ken19]. blocking [NTC+11].
blood [AV19, AOM19, CXWL11, CPS19, CKZ+17, DK13b, DLL+18, EBP15,
GDF17, GDF18, GMMN18, HPP10, HH+19, HRHAAA15, HSLW16,
KCD11a, KCD11b, LDB+14, MAM16, OPS+19, PTT12, PFJS15, POP12,
QF10, SPMGR10, WFM+13, WFC+14, ZCT18]. blood-stage [CKZ+17].
bloodstream [Voe18]. bloom [JSWY19]. bloom-forming [JSWY19].
blooms [Ric17, STI13]. blow [CP14, GGG12]. blow-up [CP14, GGG12].
BMP [vHHKB14, ČHS19]. boar [CR14]. Board
[Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i,
Ano10j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r,
Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12a,
Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i,
Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q,
Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano13a,
Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i,
Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p].
Board [Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x,
Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i,
Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q,
Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y,
Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h,
Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p,
Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano15w, Ano15x,
Ano15y, Ano15z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f,
Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n,
Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v,
Ano16w, Ano16x, Ano16y, Ano16z, Ano17a, Ano17b, Ano17c, Ano17d,
Ano17e, Ano17f, Ano17g, Ano17h].
Board [Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p,
Ano17q, Ano17r, Ano17s, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x,
Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h,
Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p,
Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x,
Ano18y, Ano19-28, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i,
Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q,
Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y,
Ano19z, Ano19-27]. bodied
[RW14b]. bodies [SSS17]. body [Bur10, CAG13, Che16, CLP11, Hor11a,
LCHMP16, Mas18, MAFB18, Nij11, RGCML10, WSRG18, ZEJA11].
brood/fungi-warming [KTO+14]. brown [KSKS13]. Brownian [EPP19].

browse [OSV+16, YXH+14]. Bruijn [WZ17]. bubble [Kue16].
bubble-driven [Kue16]. bubbles [GY18]. Buckling
[She10, Van15, GF11, LH13]. bud [BCS+16, LF16]. budding [WKS14].

Budget [TTB+18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAAA15]. Building
[HSMCCCR19, LFZN11, EJ17, EJ19, Pia19]. built [Lüt16]. built-in [Lüt16].
built-in [Lüt16].

bulk [CEKM+19]. bulk-surface [CEKM+19]. bumble [SOIO10].
bubble [Kue16]. bubble-driven [Kue16]. bubbles [GY18].

Buckling [She10, Van15, GF11, LH13]. bud [BCS+16, LF16]. budding [WKS14].

Budget [TTB+18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAAA15]. Building
[HSMCCCR19, LFZN11, EJ17, EJ19, Pia19]. built [Lüt16]. built-in [Lüt16].
built-in [Lüt16].

bulk [CEKM+19]. bulk-surface [CEKM+19]. bumble [SOIO10].
bubble [Kue16]. bubble-driven [Kue16]. bubbles [GY18].

Buckling [She10, Van15, GF11, LH13]. bud [BCS+16, LF16]. budding [WKS14].

Budget [TTB+18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAAA15]. Building
[HSMCCCR19, LFZN11, EJ17, EJ19, Pia19]. built [Lüt16]. built-in [Lüt16].
built-in [Lüt16].
Canada [MPHJ13, WDL13].

Canalicular [KTT19]. Canalization [LFM14, LP12a]. Canalization-based [LFM14]. Cancer [BST14, Har15, KB15, ZZL11, AMBH13, AMFR16, Ala15, Arc14, Arc16, ARM18, BS15a, BBS15b, BMGC11a, BMGC11b, CWF16, CCS16, CLA16, CBGS18, CVBF18, DDHM12, DL12a, Dim10, DLL18, DBM18, DTGC14, DFM19, DDTL19, DLM19, EJ17, EJ19, FM10, FM14a, GXFF13, GLF15, HP16, HHSA15, HBA10, HA15b, HWPL12, HZL13, HM13, IHNS16, JMC10, Kar15, KRDJ15, KPEK14, KP16, LF17, LF19, LDA13, LMW10, LLC15, LX16, LTZ17, LTZ19, LMHF13, LSS14, LC16, LXL14, LDH14, LD18, MB12a, MM19, MKMG14, MPZK16, NH19, NGJ14, NWZ15, NJP18, OYO16, PAS10, PH13, PYG19, PRN10, PGF11, RMM16, SBM16, SMS17, SFMS16, SXL19, SCKL15, SOF16, SSN14, SKSRW16, SER12, TDZ18, TK10c, VKKA12, VDRL14, WCC14, YCL19, YBH19, dBE16, dSDS13].

cancer-specific [SFMS16].

cancerization [FLR14].

Cancerous [DS15b, RTRRS17]. cancers [BH13c, DQS15, LZG19, OPS19].

Cancitis [OPS19].

Candida [HHS10].

Canid [JSC16, CLC11, SPSM15]. canine [HHA17].

cannibalistic [LTSTD15, PCC17].

Candidates [JSC16, CLC11, SPSM15].

canine [HHA17].

canid [JSC16, CLC11, SPSM15].

cap [WBMM18].

capabilities [ABGM11].

capacity [ASGE14, CCNT19, DN18, KA17, RS14b, VZ19].

capelin [EBS11].

Capillary [AMM16, ASGE14, BSMK11, LRA13, LDB14, MAM16, SSD11a].

Capitalizing [WMN18].

capriovirus [Cha18].

captive [HK17a].

capture [DFMR19, GAY11, JZ17, KA15, Lab16, MNH12, RB13, VP18].

captures [OSF11].

capturing [ABKS11].

carbohydrate [KF12, MTLW10].

carbon [AK15, HWGT15a, HWGT15b, HWGT17, LRL16, LCM14, MF15, TP14].

carbonate [HWGT15b, RTFP17].

carboxy [SSZR17].

carboxy-terminal [SSZR17].

carboxylase [WLD11].

carboxypeptidase [NRS16].

Carcinogenesis [LTZ19, RBKW19, WCC14].

carcinoma [CM12, GCSP17, METC12, MGM13b, NBW10, SGY10].

carcinomas [SS17a].

cardiac [CPGF16, CN12a, CF11, ESG16, GKM10, GAPK10, HVL11, KCS15, LFW18, LD11, LW18, MKMT14, NAK11, OCN10, PW18b, ST17b, VLCT19, VM16, WMF15, WMT16].

cardiomyocytes [HTK18, KSSM11].

cardiomyopathy [MCL11].

care [Ram10, Sal15, SRV11, SPRF13].

Cargo [LKZB15, ML12b, LM15, MK17, SL19].

Cargo-mooring [LKZB15].

Caribbean [BH11].

Carlo [KSK11].

Carnivora [TF15].

carnivorous [BJB18].

carotid [OB15].

carp [KCS15].
LSMP14, LL17a, LFB+16, LSY+10, LL14, LXS15, LPTR14, LC16, LGPS17, LNRK11, MMJB17, MRF19, MH11, Mal10, Mal18, MOSS15, MMFK10, MEKK11, MBLV10, MSM+14, MYC12, MPBS17, MBS19, MFG14, MGM13b, MPZK16, MKJS13, MDD13, MT15, MB+11, MLL+16, MG15, NCLB16, Nic19, NTO16, OKVN18, OS11, OOY16, OTGT10, PFJS15, PW19, Pie10, Pie12, PWE15, PGPD19, PGHC12, PAV10, RCH14, RJSC18, RAF+14, RD12, RC13, SI11a, SDD15, SMM15, SA17, ST16, SKGM19, SDT17, SHB+17. cell [Sch19c, SP13a, SFMS16, SVB+10, SAGAGB17, SLM17, SZ18, SMZ+17, SK12b, SOF16, SSKS18, SZ10, SLC12, SLvdBMP10, SB19, SRAL12, SQZ+16, SRA16, SN17, TIK14, TIMI+15, TGB+18, TXWW12, TDI+18, TC11, TST+13, TDSM12, TALC16, TT17, TSMB14, TCY+12, TK10c, VKKA12, VG13, VB19a, VBD10, WGS10, WMFP+15, WRH+16, Wall2, WML16, WGO+15, WBB+18, XJ19, YM14, YM16, YAK17, YCB16, YBF+12, YLLL12, YFZ+19, ZCT18, ZS12, ZMS17, ZWW14, ZZL+11, Zhu11, ZBA18, ZZS19].
cell-adhesion [CCB11b]. cell-based [KBF18, LC16, PFJS15, VG13].
cell-controlled [Kro10]. cell-cycle [HWPL12, PGHC12].
cell-division [HTM16, LAG+14]. cell-fate [LLTP19, MBK+11, YFZ+19].
cell-free [ITR+18]. cell-matrix [ESGA15]. cell-mediated [ABV19]. Cell-to-cell [UI13, CH16, WMFP+15].

Cellular [CAGM+17, LL14, RSV10, ARG17, BK19, BCPL10, BFH+15, BTO15, BBS18a, BJZ18, BHH11, BZL17, BCPM+16, BPF+19, BKPV15, CF12, Di 19c, DLL+18, DBM+18, DLM+19, EG10, EH17, EME+16, EUM+16, Fer12, For10, FM15b, GML10, GMOP12, GHI14, GMBK14, GLF+15, HPM+17, HVL11, HMJB15, JMC+10, Kar15, KKO+18, KHNM16, KPEK14, KAKK19, KP16, KC13, Lab16, LP17, LAF+16, LCA+15, LLDW14, LCGMH12, LSS+14, MVGB18, Mar17a, MB18b, MS10a, MSA+16, MH14, NTO16, NWZ15, RD14, RSH14a, RFdL15, Ron14, RW12, SI10a, SDD15, STNT17, SNY+17, Sat17, STIH18, SPMGR10, SS+18, SZ15b, SSKSRW16, TVMG16, WT+18, TRM+14, WGS10, Wod18, ZM10, ZFWK17, Zhe16, ZMC+18, d’O12, dSdS13].

cerotegument \cite{FWSG17}. certain \cite{KDS18}. certification \cite{Ala15}. CFD \cite{JG14}. CFSBoost \cite{RAF19}. CFTR \cite{Mor10a}. cGAS \cite{GSS19}. CGH \cite{SS17a}. CGR \cite{JLQ19}. Chad \cite{LLN19}. Chagas \cite{AZOLVH18, MMG16, RS14c}. chain \cite{CJKR10, CHH10, CSB15, GK13, HB13a, KPG19, LYF15, SV14, XDC11}. chains \cite{HM11b, Jia16, LFZN11, MGML10, PBKR13, SI10b, UBP12, ZLW16}. chalcone \cite{TAR16}. challenge \cite{KMM16, Ser16, SLM17}. challenged \cite{SBCR10}. challenges \cite{GE18, KCE11, VFS15}. chance \cite{Sch19b}. change \cite{Abr14, AT10, CW11a, DFM14, DLSD15, DPvBvA12, JSZ10, KS13, KL11, MMC19b, PSV17, STJG12, SY17, Spe15, YSST13, Yam16a, Yi11b}. Changes \cite{PHTP12, AJC12, BVK10, CCB11b, EBSW17, FGGT15, HKH18, LXJ15, LCDH15, OVKL14, PDNP16, Rog19, STNT17, SLD17, STLJ18, TK10a, Wil11, vV15}. changing \cite{CMCS18, GW15, GJ12, GA16, GWCA14, MBRRI19, SBMH10, SRS18, WSVT14}. channel \cite{BGCB12, GJ11, HZC10, KH19, LdLK11, MFZ18, Mor10a, PDG17, XMWC13, ZCA14, ZZG16}. channel-drug \cite{XMWC13}. channel-targeted \cite{ZZG16}. channelopathy \cite{PBS12}. channels \cite{Bec14, CPGF16, CFF12, CW11c, CSM14, DM15, FD17, KB10b, LSP13, LD11}. Chaos \cite{Kea16, BA19, GW13, GP11b, JLQ19, SY17, SC10, SY12, TF16, WH11, XSLZ16, ZKHL16, ZG10c}. Chaotic \cite{STG17, DGJ15, MGM13a, MGM13b, STJG12, TLPH11}. chaperone \cite{XKCG15}. character \cite{CJ12a, Cut15, MC15b}. characterisation \cite{DKP18}. Characteristic \cite{ESS19, MTNM12, LG10}. characteristics \cite{DS15b, DLYZ11, DDF14, HCK11, JYY18, Kon11a, LBS10, LBS11, LHD17, LYZ18, Rey13, ZLL17}. Characterization \cite{ABN15, LL13a, OCN10, YWZ16, ASRM15, CA17, GRB13, HZLX11, LDH12, LQ18, MdFDM10, MAMEA15, PDG17, PPC17, PPT16, QW12, RMM16, WdLS17, WHL13, YLL14, pZWZ16}. characterize \cite{JK12, RKJ11}. Characterizing \cite{BPF15a, BPF15b, SNY13}. characters \cite{Cut15, DJ12, PRSC11, RCD16}. Charcot \cite{AKR18}. Charge \cite{DK13c, YS14}. charged \cite{Smi11}. Chaube \cite{Pan19}. Cheater \cite{MV18, RD14}. Cheater-altruist \cite{MV18}. cheaters \cite{SKS19, SBS17}. cheating \cite{UI13}. check \cite{BBT15}. checkpoint \cite{KBE13}. chelation \cite{FE10}. Chemical \cite{Will11, Bau18, Bro13, Di16, Di17b, FL12, FL13, KS19, KF15, MF15, NGN13, PAK11, SSS15, SYV15, UI13, WLY17, ZS10}. chemicals \cite{FSA15}. chemistry \cite{RTFP17, Sza15b, dlEBRM15}. chemo \cite{MDD13}. chemoactive \cite{TV18a}. chemoimmunotherapy \cite{RTEKG15, RTEKG19b}. chemoinformatic \cite{HAnR18}. chemokinetic \cite{SN17}. chemopreventive \cite{TV18a}. chemoprophylaxis \cite{EN15}. chemorepulsion \cite{dO12}. chemorepulsive \cite{ANK10}. chemostat \cite{FE11, LFM11, TW19}. chemostat-like \cite{LFM11}. chemotactic \cite{CFT11, MOSS15, NGD14, RG10, SN17, WST15}. chemotaxis \cite{Amo15, BPF19, FX14, NvD17, NS18, PHH18, Pai19}. chemotaxis-based \cite{BPF19}. chemotherapeutic \cite{GSSBF18, HNP18, NSH10}.
Chemotherapy [dG10b, BBJ+10, BPLM12, Car17, CL18, CHN+15, CvBF18, EJ17, EJ19, HL18, IBB+15, LF19, LBW+13, LIB+17, PGHC12, RTEKG15, RTEKG19b, SGL10, SKD+10, WHH17, ZLM12]. chemotherapy-induced [CL18]. chemoton [Gri15a]. chemotrophs [SI19].

[Alv18]. clarified [Hor17]. clarity [GKNT10]. class [BT17, BvLH14, Gra15, JSZ12, KH+ 19, KSKK15, Lio18, LJ10, Mi11c, NRKE18, NK18, RSD+ 16, ZM10, ZLY14, ZKK14, ZKHL16].
class-structured [Gra15, Lio18]. classes [CT18b, DYQ+ 14, FDS13, HTK14, KZL14, MPCTG1+ 15, NBL14, OYY16, PT10, VK10, WCC13].
classic [ZLL17].
classical [Cle16, HS14a, Hua12].
Classification [AH15, BWS10, FLCS+ 15, GM16b, AH19, AC15, BBP13, FBAPMD13, FLGGD+ 14, GXFF13, GMM15, IGLLL14, GGCJ16, HRD14, JSZ12, JWS+ 10, JS17, JS18, KH+ 19, MdFDM10, MP12, NBL10, NSBL10, RMSTG13, RKN12, Tal12, VZB+ 15, YGMT12].
classification-based [JWS+ 10].
classifications [HYA14, XM11].
classifier [DSPM14, JLX+ 15, WYX+ 17, XWC11].
classifiers [BMSEE14, HRHAAA15, SM17a, XWD+ 10].
Classify [Kri16, TP17].
classifying [SKK18].
clawaminic [RMRC+ 16].
clavulanic [RMRC+ 16].
cleansing [JG14].
clearance [KBV+ 15, MG15, SBMH10].
cleavage [ATK10, Sat19].
climatic [GS13a, GS14].
climb [GF11].
climbing [GW12].
cline [IST11].
clinical [BC19, DH18, Dim10, FBFM12, METC12, PT10, PZLF19, PMCS16, SKD+ 10, YD15].
cliques [LCL14].
clock [ACD19, DFT+ 17, EBE14, EBE17, LG13, MM11, RGG12, TAL19, XCW+ 18].
clock-cell [EBE14].
clocks [TCH14].
clonal [CMB+ 12, FR17, HM10a, Ros15, RW12, ST17a].
Cloning [KGP+ 15].
clonotypes [LCHMP16].
close [BWP10, Di 12].
close-facing [BWP10].
closed [CSB15, LLDW14, MH13].
closely [MMH+ 12].
Clostridium [JEA18].
Closure [CLG+ 10, CLG+ 11, ABH+ 11, FS16c, LCCB11, MM15b, PCBM12, SYR11].
closures [PHK15].
clot [SHK14].
clouds [SW18].
clubs [TLW18].
clumped [BHKK14].
cluster [HLHY17, HYZ+ 15].
Clustered [Don16, HK11b, MS12c, RBHK14, SBK16, TWTA+ 18].
Clustering [HRC+ 12, HY16, YFB+ 12, GMK18, HASM17, KUZ+ 10, PWHW16, RD14, SAG19, SKH17, TP17, VZ19, WCSSA12, WZ17, YCY14, ZYJL18, ZDY11].
clusters [DMSW10, GMNY14, KR14, LL14].
CML [RCH14].
Co [Ant13, AMFL10, BB11b, Cam11, PBA12, SPS11, ADV+ 10, CWP+ 18, Dim17, DL16, EJK16, HNV+ 16, HPM+ 17, HAH19, HgLL+ 10, LZG+ 19, LDH+ 14, MG14b, MBLC17, MALAN17, MH18, NZZ19, PDB+ 15, PNP+ 16, PNP16, PGLZ14, PDW10, RANO10, SSS18, SKKL15, SST19, SOBC12].
co-activators [NZZ19].
co-colonization [PDW10].
co-culture [HPM+ 17].
co-cultures [CWP+ 18].
co-dependence [DL16].
Co-dominance [Cam11].
Co-evolution [Ant13, AMFL10, PBA12, SPS11, MALAN17, MH18, RANO10].
co-existence [ADV+ 10, MG14b]. Co-existent [BB11b].
co-existing [EJK16].
co-expression [LDH+ 14].
co-flowering [MBLC17].
co-infection [HAH19].
co-localization [LZG+ 19].
co-morbid [SST19].
co-occurrence
Colonization [FR13a, PR13, BLNR15, PDW10, RL17, SPRF13, SDK11].
colonizing [NGS+16].
colony
[AC12, GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].

colostral [LF17, SS17a, SBM+16].

Colored [GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].

colonial [AC12, GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].

colour [FR13a].
columns [MYLK11].

combines [JSDEK14, XXD+17].

Second
[AC12, GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].

combining [SSJK18, YLF+17, HZL+11, LTL+15, NA+11, TP17, WYL+19, ZLW+19].

Combining [SSJK18, YLF+17, HZL+11, LTL+15, NA+11, TP17, WYL+19, ZLW+19].

Combination [PDF18, YBC17, AH15, CvBF18, LF19, QW11, SY17a, SY17b].

Combined [GK10, KJM17, AMM16, Ala15, BMGC11a, BMGC11b, DGM15, KSM+15, LBW+13, SLML19, STI13, TDKJ15].

Combination chemotherapy [CvBF18].

combination chemotherapy [CvBF18].

comparing [DGMY18, Dra19, LLS16b, WCP15, ZADB15].

Comparison [AD16, CGP16, HHS15, TAM16, ALH10, BPM+12, DGD+11, ESE15, GTS15, JSZ12, KKD18, KTT+19, MH12, RSI11, SG15a, TF15].

comparing [DGMY18, Dra19, LLS15, MFMS10, MHX+14, MSM+14, WF17, DS10b, FHW+10].

Comparative [AMM16, GP11a, GRR16, SPSM15, TAR16, ALH10, BPM+12, DGD+11, ESE15, GTS15, JSZ12, KKD18, KTT+19, MH12, RSI11, SG15a, TF15].

Community [BZ10, CTA15, DBD15, DS19a, FGPR10, GL12a, Gri19, HL11, HLTW14, Jab10, KCS16, LJW+16, MK14d, MI11c, MSIR10, PDW10, PDW11, Soz13, Spe15, TBM+13, TLCZ12, WSTL16, XLSF19, YISG14, ZMT11].

Community-acquired [PDW10].

Community-structured
kcs16, TLCZ12].

Communities [DWM15, Cor16, CG10, DSA+16, FXML18, FB18a, JHE15a, JHE15b, KDMK16, MRPH17, MP13a, MH18, NTK11, PSJ15, PAV19, PC13, PFB10, RK18, RR12, SL10, SM17b, SKS15, SRS18, SSB17, VA10, VGL16, WCP15, ZADB15].

Commensal [BL15b].

Comment [Ghu18, HS16, JMS12, Mac11, Mar11, Pan19, RRC+11, Bal13, DHK13, NBW11, vV11b].

Commentary [CDD12, DRW14, EG10, Eft13, EBSW17, LS16b, OOO18, WK12].

Communicative [SA13].

Compact [GLOC10, SBK16, WMM14, Wax11a].

Comparative [AMM16, GP11a, GRR16, SPSM15, TAR16, ALH10, BPM+12, DGD+11, ESE15, GTS15, JSZ12, KKD18, KTT+19, MH12, RSI11, SG15a, TF15].

Compare [KCJ+11].

Comparisons [Di 13a, WS10].

Compartment [LO15, MEKK11, MHMM11, PBvdG10].

Compartmental [BvLH14, LC16, LSG10, MMFK10, MPC12, cSGFB17, TF18, TW12].

Compartmentalisation [BS17].

Compartments [KS15].

Compatibility [LP14].

Compensation [Das18].

Compensatory
[HWMT17, IIKT13, KIT+16, KIH19]. Competence [BPFR16]. competency [BF15]. competing [BWy+17, Gol10b, IC11, LKP+12, PP17b].

Competition
[DDS13, GW14, JA13, Kri14, MZ17, NdIPZA10, NBA+18, Pei18, PB16, RK18, SAB17, SK16a, ACMK12, BI12, BCF+16a, CTB18, CKNB19, CP11, DHV19, DP13b, DFK17, FE10, GSRR17, GVSLG16, GBM18, HGM15, HP12, Han12, IGL+12, ID19, KB15, Kar12, KSP12, KM19, LTHEK12, LSDD13, MBLC17, MSS10, MK14d, Nak16b, NT14, NNG19, NTOI16, Oku15, PIPB10, PBB+15b, PB18, PC10a, PDD18, RCH14, SK12b, Soz13, Str15, TCR13, US10, VY12, WZ18, WW19, WMN18, WD+19, WHYMG17, YK11, ZADB15, dCGSA16].

[MGS16, Mic15b, Se12a]. complementary-synthesis [FK13]. complementation [SE10]. complete
[JOAN14, MKBE17b, NI18a, OAP14, QW11]. completion [ESS19]. Complex
[ABKS11, ASL+18, KMD+12, RP14, TRJD19, VLCT19, ASK17, APBS15, AP19, AD13, Alv19, AN10, BPFR16, BEK10, BJ17, CRLH+19, CL14, CW15a, Est10, EJ16, FWLW11, GZT12, GSCS11, HGM15, HKS15, HB10, IMA16, KOE+14, KHR+18, Kon11c, LJM15, LMC+13, LY+18, MK11, MTE15, MD16, MBP16, NW10, OA15, OYY16, Pal10, PW14, RCH14, RFM+12, RDP16, SK19, SSH+19, SAB17, TBM+13, TK19, VL11, VNS18, WMCL18, Xie18, XSMF12, YLWZ10, YZ19, ZZC10, ZC14]. Complex-linear
[KMD+12]. complex-mediated [AN10]. complexation [BE14]. complexes
[AcvKA10, DFM+19, ER18, HNV+16, HMMSRSD15, NGN13, ZZC19, PWHW16]. complexification [RAD14]. Complexity
[AdGM12, PCC16, PDG12, AMFL10, BL15a, BORA10, CS15b, SL10b, FB18a, LX15, MGO+15, MSS10, NBS+13, PP12, TCH14, TAL19, THM10, VBHM+13, YHY14, ZLY14, ZGW16, ZLL+12]. Complexity-stability
[PDG12]. Compliance [Sar10, ASC16, CPS19, FKK14]. Compliant
[MS14b]. component [HME12, OUMA10, SG15a]. components
[AH19, BGM19, GLR+18, NMZ19, PWZ+19, TTC19, TWC+19, ZK18]. composite
[FK16, HK11a, REY13, SK+18, SHLL11]. Composition
[AH15, AHJ18b, Bau18, BMN16, CL13a, Cho11, EUM+16, EMM10, FL12, FL13, FLW16, GZ14a, GZ14b, Gri11, HPB+14, HK11a, HWGT15b, HYW11, JSF+11, KHK15, KKH17, KZL14, KSKK15, LD11, MJ11, MFZ18, MZ18, MBE11, MP14b, NBL14, PDC+17, QLC+18, RBMS17, RW12, RRB10, SRS+15, TP17, Tun13, WMK13, XNJ+13, XSLZ16, YGL+10, ZSZM14, ZZK14, ZNA+16]. compositional [ML14]. compositions
[HY13, JD16a, JD16b, JD17, PWZ+19, ZLW+19, ZLDZ13]. compounds
[GDPPSS+11]. Comprehensive
[JSZ12, ASK17, KTJ19, OCN10, SLW+18a].

WL12a, WL12b, WSH+10, Yat14, vDRT14, vE11]. Continuous-time
[Sim14, vDRT14]. continuous-valued [HMWB13]. Continuously [DI10a].
Continuous [JDPK15, MBPS17, MBS19, HGGR13, KCZ+19, Kro10,
LHPF18, MFG14, SS14, SKH11]. Contract [Arc11]. contractile
[LFW+18, SH16]. contraction
[HGGCR13, LHPF18, MAH12, SS14, SKH11, WGO+15, YWP13].
contractions [DGNT17, Kro11]. contrast [LS16c, LPF11]. Contrasting
[CB15, AK13]. contrasts [Ell15]. contribute [KEHK17, SAB10, VBHM+13].
contrives [Laz13]. Contribution [DK13b, LLW15, MYK17, dS15a,
BCBD19, CPW16, GGO+12, HFD17, JDSPK15, RT15]. contributions
[ABJ12, Ano19-52, Bur19, KG12, PBP15]. Control
[BS15a, DBM+18, GK10, GGC14, HZG+17, RJSC18, SSD13, S15b,
TWTA+18, ASK17, ABA11, ABM10, BFJ+18, BAGG14, BZL17, BCBD19,
BAR14, CFMC13, CSLE11, CKN+12, CH18, CDGV10, CMS16, CG11,
CBGS18, DMS+16, DROC11, DKL16, Don17, EHBC10, EB15, FE11, FD17,
FH13b, Fra19a, Fra19b, GMCM10, GM19, GA16, GTC19, GM17, GP11b,
GP12, GT15, GAY+15, HS15, HCH18, HTM16, HB16b, HJR12, HK11b,
HCW18, JB19b, JTW17, KKD18, Ke10, KAZ11, KAZ13, KEKB18,
KSwd18, KL17, KP16, KKYV18, KP11, KH19, LCCC10, LGW13,
LKK13, LC16, LC17, LSY+10, LLZ13, LNH13, MIJ16, MA13, MAM16,
MG10a, MZAI19, ML10, MS12b, MKFS13, NSS+11, NMAZP16, NSH+10,
OA12, OAI1, OCHHZ12, PVCEC18, PZLF19, PRM12, PRM14, QF10,
ROF17, RB14, RS14a, SW18, SKK+12, SGG+19, SGW17, SSST19]. control
[SBM+19, SNMC12, TXT16, Van17b, VCF+19, Wal16, WPA15, YT12,
YAK17, YDL14, YLLL12, ZCT18, ZTT18, ZN18, ZLT+19, Zhu11, ZZR10,
ZSR13, dSKBS10]. controllability [IH17]. controlled
[BFR14, GLOC10, Gri11, GRB+13, Kro10, Lee16a, SK15, vLFM+19].
Controlling [BVJE17, AHJ+18a, LII15, HRCA19, MB14, TI12a]. controls
[ACD19, MSB16, Sar10]. controversial [ACM16]. convalescent [HSW16].
convection [DS16], conventional [Gia13, HL18]. Convergence
[Dal17, TF15, Gou16, NWZ15, WL12a, WL12b]. conversion
[FBC12, KHI19, MSC10, MFMB12, RRÚJ19, SÁGC12]. Convex
[CTY18, HMT19]. convolution [TTC19]. convolutional [WYL+19].
Cooperation
[Arc16, ACCR11, Axtc12, B16, CSZT12, DBD12, Ghal16, KCS16, Pla10,
SS17, SSBG19, TR12, Van16a, WK18b, XY14, Yan10b, ZCC10, AH17,
ATB14, Arc11, BYJ17, BBD18, CS14a, COWA11, CWW18, CBP12, CAV16,
DGV12, Das12, De 19, DPR13, GWNW15, GT12, GvVT14, HNR14, HKM12,
Hou13, HWC18, ITO16, ID19, IVR10, KNT10, Kon11c, KC11a, KI17, Lai18,
LPH18, ML13, MN14, Mas12, MJI14, MBBD13, MKMG+14, MB19, NSK018,
NT10, NBA+18, Now12, Oht12, PBR17a, PCN17, RANO10, RMB15, ROF17,
RC11, Ros10a, Ros13, RRR15, SPS11, SLP12, SN18, SP16, SLW18b, SK11b,
SP13b, TM12, TGL15, TA15, Ut11, WSP14, WO12, WFZW13, WFW19,
YvBS18, YHZ14, YZX15, ZCW13, ZLY+17, ZSS10, vDRT14, vVGA10].
Cooperation-based [WK18b]. Cooperative
[CCAdS13, Kin18, KUV+10, HVSZ10, HKB10, Kon11b, LDF+11a, MW14,
PBA12, QJR+16, RN12, SHN12, SHH15, SJK18, TBQG14, WK17, ZZCZ17].
cooperativity [BSP18, CL10, CB13b, Mar17b, Mic11, ZBA18]. cooperators
[FNH10, GCS12, LG10b, OO17b]. cooperators
[KLHB+18, KFS+13]. coordinate
[BSP18, CL10, CB13b, Mar17b, Mic11, ZBA18]. coordination
[Ben14, VC10]. coordinating
[FW15, NS18]. coordinates
[DGL12]. coordination
[Cle18b, PEW18, RPGG+19]. Cope
[SSD12]. copepods
[RL17]. copied
[YCR+15]. copper
[BSC19]. copy
[JOM16]. corrected
[OGO19]. correcting
[Fra19b]. correction
[HK16, ZTWL12]. Correlated
[PPBD10, BPG+18, BM16, Che10, Ell15, MKRE18, NDO11, PNK16, Rey13, RAD14, WMCL18, ZZC14].
correlated/persistent
[Che10]. Correlation
[ESW13, WZYY11, YTGW16, AGB+14, BE14, DCS14, DBG18, FSW+16,
HGLL+10, JAB18, KDMD13, KNI11, Kro10, LXS15, MC15b, RCD19, SB12,
SCLC13, SS11, TMF17, ZYL18, ZL18a]. Correlations
[MK19, GCZ+12, dOLG10, dOLG13, HH16, HHD+16, HNA15, Sel10, TP10c,
VDD12, WMH10]. corresponding
[DHT16, FS11a, FS15b, ZLZ+16, ZBL13]. Corrigendum
[AE14, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11, CNG+12,
DBBW11, EJ19, EPJ+11, FIS16a, FS16a, Fue15, GS14, JS18, JRG14a,
KMLT14, LPB18, LBS+11, LGK+12, Lei10, LHPF18, LPvSP12, ML12a,
Mei13a, Mei13b, MLA13, Mul12, NBC16a, PSS+13, PCT19, PP19,
RTKG19b, RTKG19a, SCAB11, SRAL12, SY17a, TSM13a, Van16b,
WL12a, YCH+17a, ZGI10a, ZSL16a, ZZR13]. corroborating
[Di 17b]. corrugation
[DS12]. corruption
[HCW18, LSD15, LJJ17]. cortex
[FHR13, NGL+10, Pat19, PW19, TWTA+18]. Cortical
[DI13, AANF16, BTO14, KLN+12, KPD18, KPD19, RNN15, SSD11a, WZ12]. Corticothalamic
[HRD14, FJR19, SLR17, ZKR15]. Corvus
[GSV11]. Cost
[ZKMB19, Bac15, BR13, Fue14, Fue15, HB12b, Lar10, LP14, SRV11,
SS15b, SS18, Tra16, VDH+15, WL19, ZZC17]. COSTar
[LDWW14]. Costly
[Kis10, Ac12, BWO12, JR17b, MM18, Nak16c, SRY11]. costs
[Fil15, GBL13, LLG16, PPBT11, vVE15]. Could
[IK15, Dol16, FAMA12, OQ11, PDL+17, RRO14]. count
[LM15, LS13b, Mog15, TXW12]. count-guided
[TXW12]. counter
[Ber14]. counter-strategy
[Ber14]. counterpart
[RSL14]. counterposed
[Di 16]. countries
[DB10, RB14]. Country
[MDMG14]. Country-
[MDMG14]. counts
[HS11, YW13b]. couple
[AJJ15]. Coupled
[CXW111, CKS15, HI19, MROS15, BTO15, BMF+18, CEKM19, DGG15,
For10, GM19, GL14, HPML18, KJ11b, MGC13, PBBB10, SW13a, SOCF14, SX12, TGLK19, WOB15. **Coupling**

[OSF11, WFM+13, WFC+14, ZS12, BRG+12, BTO14, CFZ14, DvDBD15, DDBD16, FD11a, FH14, GMMN18, Hor11b, JAK19, KHH10, KTH16, Kuz19, MDB12a, MT14, NHS+16, SKAG18, SB19, SY12, TIS10, WMT16]. **coupons**

[KFG15]. course [BBDB13, NS11]. CoV [SKPK17].

couplings [KFG15].

course [BBDB13, NS11].

coV [SKPK17].

covaLent [BBDB13, NS11].

covarying [SKPK17].

Coxiella [CMN+11].

CpG [HA15a].

Cracking [Nah14].

Cranial [BFGAGA16, YKO+16].

Craniocerebellar [BDID+12].

Crassa [XCW+18].

Craton [Kur14].

Crawling [WL13].

Create [CZPC+18, HA15b].

created [SI11b].

Creating [KG13, PJ13].

credible [Di 16].

creeping [SAGAGB17].

Crescentus [SK12a, Sht17].

Crest [LFZN11, Sch19c].

criminology [SOIO10].

Criteria [CJ12a, CZW+11, Gri15a, Kro10, Opr10].

criterion [Di 19b].

Critical [HSII+19, LG13, APBS15, BCPM+16, CGvG+15, GXF13, HBT13, iHM17, MJV16, SCA13, SPH12, Van16b, Voh17, WMT10].

Criticality [JRG14a, JRG14b, JRG14c].

Criticality [JRG14a, JRG14b, JRG14c].

CRM107 [YCL+17].

Crone [LDB+14].

crop [ABR19, BSB14, SS11].

cropland [BCBD19].

cropping [RDMP11].

crops [AM14].

Cross [GCB17, HF17, MCL+11, BJJR10, CMD+10, FKK14, FZL18, HW+14, HTH+13, KKOM18, LHFM16, MW13, MBK+11, OF10, OAS10, SDD15, SCH+19a, SCLC13, SKJ18, SKS+19, VGL16, WCF12, WA14, XJ19, YCH+17a, YCH+17b, YST14, ZL18a]. Cross-bridge [MCL+11].

cross-contamination [MW13].

cross-correlation [SCLC13].

cross-enhancement [WA14].

cross-feeding [SCH+19a, SJK18, SKS+19, VGL16].

cross-immunity [CMD+10, LHFM16].

Cross-jurisdictional [HF17]. cross-link [FKK14].

cross-linked [FKK14].

cross-reaction [OAS10].

cross-reactivity [HWW+14, SDD15, XJ19, YCH+17a, YCH+17b].

cross-regulation [MBK+11].

cross-specific [OF10].

cross-talk [BJJR10, FZL18].

Cross-talking [YST14].

crossbridge [ST17b].

crossflow [KA15].

crosslink [DBJ12].

crossroads [dIEBRM15].

crosstalk [RA13, XW+18].

crouched [BBJDS11].

crowd [DS0a, ISB+11].

Crowded [EO17a].

crowding [Cza14, DHB1, Vaz10].

crown [Cam11].

crows [LZTD18].

crucially [IH17].

Cruizi [KZ14, PKZ12].

crypt [BZL17, FBC12, MFMB12].

Cryptic [BC15, CLPZ14, PDC+17].

cryptically [Sel13].

cryptosystem [Mor11].

crypts [YAK17].

crystalline [RCL+10].

crystallization [JM12].

CSF [BSL12, CHN+15, SER+12, ZLM12].

CSS [Cre10].

CTD [NTC+11].

CTL [Lev14, SBR10].

CTLA [LZL+19].

CTLA- [LZL+19].

CTLs [ARM18].

CTPB [DK13c].

cuboctahedron [Den19].

Cuckoldry [YY18].

cuckoos [LZTD18].

cue [Jen10].

cues [BJJR10, PDL+17].

Culex [VSD+17, YMZ18].

Culicidae [YMZ18].

culling [LSSG10].

Cultivated [AM14].

Cultural

describes [GB13, IGL+12, PRC15]. describing [JH12]. description [ABK+12, CJKR10, Dim17, HNO18, KPD18, KPD19, Ros13, YK11].
detector [JSZ10, KL11, LJM+17]. detects [LZG+19]. deter [YLY15].
determinant [AOR17, CGvG+15, CZ14, Cle18b, HWTN15, HH13, IM18, QZY17, Van16b]. Determinants [US12, Ada16, Bur10, HBI3a, K115, MDMM16, Pau14, RS14b].
Determination [KCSB14, SSS15, ADCG14, CSG10, Kam11, KGF+14, LF13, MC15a, MB+11, TEY16, TC12, YH14, YI18a]. determine [Bal13, CCS18, CS15a, Do16, Don17, GSL13, LN13, MFKS13, RC13, TDHC+18, VM16]. Determined [PP18, PP19, SSI+16]. determines [KKM12, SCABM10, SCABM11, TRJ19, VY12, ZAL+19]. Determining [ADR11a, NRKE18, SABB15, SN17, YAK17, ZFWK17, AGGR+15, GLR+18, GVC12, KK+17b, MHA+11]. Deterministic [LDF+11a, PJ18, IGL+12, Pag19, PMW12, RBKW19, SABB10, ZZ10].
detrended [SCLC13]. detrending [DSTD19]. develop [CBGS18, MFG+13, SWTO15]. developed [HKR+19, MZA119].

Developing [SCF+12, WDL+13, BCS+16, GBN14, MK16b]. Development [FSA15, HBA10, ISZ18, KMA10, MBC+12b, MBCM12, ÑKSRW16, ALD+11, ASF+15, BTO14, BSR+11, BFGAGA16, CCNT19, CM12, CCB11b, CEP14, DTC19, DM10a, DDB10, FWB+12, GLZ+11, GC18, Hal17, HTM15, iHIM12, KKOM18, LMC+13, LTZ17, LH13, MM12, MFMS+18, MBK+11, NHE+16, OCN10, PAS10, PIIH18, PPC+17, SBSR13, SGGY10, SWSLMJ19, SSRA16, TSB+17, ZL+11].

Developmental [STNT17, BLNR15, BBDB13, HJWC11, LHD+17, VEI17, WKH16, ZZS19].

developmental-dynamics [LHD+17]. deviations [DPCM16].

devices [FPG11].

DEVS [ANMH11].

dForml [NMZ19].

DFT [DK13c].

Dharmendra [Pan19].

diabetes [BSR14, BMM+14, JDPK15, JDSPK15, KSU+18, KCSB14, RAA+16, WHS+13].

daacylglycerol [CHD+10].

diagnosed [Jam16b].

diagnosis [EAN14].

diagnostic [RRG+12, SHSR15].

diagram [MMY+12, Zho11].

diagrams [AK11, BMN16, BHR10, BKL14, CZN12, IdsWM+15, DDF+14, DHT16, EFT13, FTI18, HSG+18, HY13, ITR+18, JYI18, KDG13, KMCJ17, LZ18, LddA+13, MKHA16, MNSZ16, MAR+17c, NF14b, NGO12, NBL14, Pan11, PGGV+19, PBD11, RBMS17, SMM15, SS15e, SGW+18, SAZ+14, TIS10, TG10, U10, VLFF12, WP17, jWIGQ19, WRC+19, WLL+14].

Differential [OAK10, FIJJ11, MGT17, PWE15, SN12, SSS17, Trel19].

Dictyostelium/Pseudomonas [FIJJ11]. did [Di 14a]. didactic [CD16].

Diet [All11, Kri10, Rem15, TBA14].

dietary [POK+12].

Difference [MNN+13, MYN+15, LL17b, Ots11, TBA14, ZZZ14].

Differences [OGA16, ABKS11, Cam11, FS12, FB11, KLM14, MS18, MM15a, Oko15, PVB+10].

different [AK11, BMN16, BHR10, BKL14, CZN12, IdsWM+15, DDF+14, DHT16, EFT13, FTI18, HSG+18, HY13, ITR+18, JYI18, KDG13, KMCJ17, LZ18, LddA+13, MKHA16, MNSZ16, MAR+17c, NF14b, NGO12, NBL14, Pan11, PGGV+19, PBD11, RBMS17, SMM15, SS15e, SGW+18, SAZ+14, TIS10, TG10, U10, VLFF12, WP17, jWIGQ19, WRC+19, WLL+14].

Differential [OAK10, BM+14, ESG+16, EAN14, FWL11, GGM15, HJLNZ11, HLH+18, JCLS+11, MBCM12, NBC16, NBC16b, OBY16, PCHM10, VHI11a, WP17, Zad11].

differential-equation [GG15].

differentially [ZZC14].

differentiate [ML12b].

differentiated [FM14b, HMJB15].

differentiation [BF13, CW15c, GMOP12, Gol10a, Gol10b, GZT15, ifTIM15, KP12, KUV+10, NKOS11, PWE15, RSS10, SCA+10, SCABM10, SCABM11, ST16, SLL18, SB19, Tz11, TW16, Wod18, YM14].

differs [Mal15].

difficult [JEA18].

diffuse [CL14].

diffusible [ON14, ZGS+10].

diffusion [LDHD14, PB16, RS14b].

Diffusion [Flo11, MC16a, PH13, AGRR+15, ATB14, BTG+15, BF16, BMB+18a, BI19, CWW18, CFGR17, DK13b, DM10a, GHBC14, IGL+12, KBS+19, KM19, KGM+15a, MB19, PWL+11, PD16, RLK10, RV16, RRTR10, RRTR12, RRRRSPTR16, RSR11, RHT18, SCH18, SAB+19, SSvdM10, SKPK17, SSS15, SOBC12, TGB+18, TWW19, TC11, Wax11b, ZM10].
[KGM$^{+15a}$]. diffusion-reaction [ZM10]. diffusive [ZZ14b]. diffusively [Lab16]. diffusivity [TSMB14]. digesta [TF18]. digraph [cLCJ$^{+10}$].

dihydromethyltrisporate [EBSW17]. Dilemma [CZ14, GCS12, Lai18, MRCN12, ZLY$^{+17}$, BLS$^{+17b}$, CW14, FWW18, FNH10, JC16, Lai11, MN11, PCN17, TP10a, WLW19, YA14, ZZC10, ZGWL14, ZZCZ17, MI19, PM10a].
dilemmas [AS12, CGD13, MR12, NO14a, NO14b, NR16, SSR13, ZLY$^{+17}$, BLS$^{+17b}$, CW14, FWW18, FNH10, JC16, Lai11, MN11, PCN17, TP10a, WLW19, YA14, ZZC10, ZGWL14, ZZCZ17, MI19, PM10a].

Dilution [HvLPdB15, PPW16, CFR$^{+14}$, CMR$^{+18}$, NKL10, SKAG18].

Dimension [ZS10, BVK10, PHTP$^{+12}$, RBB16b, SKK$^{+11}$]. dimensional [AGPK13, ATB14, BTH$^{+13}$, BG12, DHHP14, EBP15, FZ14, FJC$^{+10}$, IMD16, IS16, MPY14, Mon18, RMM$^{+16a}$, RBB16b, SMZ$^{+17}$, VBVD17, ZR16].
dimensionality [QW11, YYC19].
dimensions [Edu16, HB13b, RVA$^{+11}$].
dimer [FS11b, WLD$^{+11}$]. dimeric [GWX17].
dimers [SRS$^{+15}$]. dimethylarsinic [BTF19]. dimethylarsinous [BTF19].
dimidiata [MMG$^{+16}$]. diminishing [FOT$^{+15}$]. dimorphic
[YHI14, ZAL$^{+19}$]. dimorphism [Mor13]. dimorphisms [AM10].
dinoflagellates [JSWY19]. dinosaur [PC17]. dinosaurs [BJB18].

Diminishing [FNH10, FNH12, GC18, TH13].

Disassembly [BZ10].

disassembly [BZ10].

disaster [GA16].

discoideum [MG17].

discerns [SS19].

discovered [PGGvdB12].

Discovering [Ayd18, SFV16, SG15b].

discover [AY18, SFV16, SG15b].

discovery [CTS11, GBC$^{+16}$, GDPSS$^{+11}$, wLW10, SDRA$^{+15}$].

discrepancies [CK17].

Discern [BPG$^{+18}$, BP17, FH10b, ID14, RCD19, SY17, SG18, WD11].

disassembly [BZ10]. disaster [GA16].

discoideum [MG17].

discerns [SS19].

discovered [PGGvdB12].

Discerning [MN11].

Discrepancies [CK17].

Discriminatory [MIH16].

Discriminating [FLL13]. Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminating [FL13].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].

Discriminatory [PDB$^{+15}$].

Discrimination

[MIH16].
[HHD+16]. disturbances [BZA\textsubscript{16}, GDF\textsubscript{17}, KSSM\textsubscript{11}, VAT\textsubscript{18}]. disulfide [KJH+19, MdFDM\textsubscript{10}]. diurnal [HCS\textsubscript{+19}]. divergence [AP\textsubscript{13b}, LZ\textsubscript{18}, Oka\textsubscript{12}, Rei\textsubscript{12}, SS\textsubscript{15d}]. Diverse [STN+19b, AAGO+17]. diversification [DI\textsubscript{10b}, GHBC\textsubscript{14}, HD\textsubscript{11}, IMD\textsubscript{16}, LS\textsubscript{13a}, NI\textsubscript{19}, PMR\textsubscript{11}, TGLK\textsubscript{19}, ZYD\textsubscript{15}]. diversified [IS\textsubscript{17}]. diversion [LRL\textsubscript{+16}]. Diversity [Mal\textsubscript{15}, RT\textsubscript{19}, Sat\textsubscript{10}, CB\textsubscript{17a}, CdP\textsubscript{11}, DLSD\textsubscript{15}, Edu\textsubscript{16}, Ezo\textsubscript{19}, FR\textsubscript{13a}, GWE\textsubscript{11}, Gre\textsubscript{16}, HDNB\textsubscript{10}, KDFM\textsubscript{14}, LS\textsubscript{13a}, MFMP\textsubscript{10}, MP\textsubscript{13a}, MFKS\textsubscript{13}, Moo\textsubscript{14}, NdORC\textsubscript{11}, SC\textsubscript{10a}, SPLP\textsubscript{12}, SS\textsubscript{16}, SAM\textsubscript{17}, SS\textsubscript{12a}, SPCM\textsubscript{18}, Su\textsubscript{16}, SLW\textsubscript{18b}, TD\textsubscript{18}, Tjo\textsubscript{10}, WL\textsubscript{12c}, WFZW\textsubscript{13}]. diversity-area [NdORC\textsubscript{11}]. diversity-stability [FR\textsubscript{13a}]. dives [IPMH\textsubscript{12}]. Divide [JH\textsubscript{11}]. divided [BCK\textsubscript{19}]. dividing [Tra\textsubscript{16}]. division [AUE\textsubscript{15}, AK\textsubscript{14}, CL\textsubscript{13b}, Gon\textsubscript{13}, HHG\textsubscript{14}, HTM\textsubscript{16}, HMJB\textsubscript{15}, LCTG\textsubscript{15}, LS\textsubscript{15b}, Lee\textsubscript{16b}, LPT\textsubscript{14}, MMJB\textsubscript{17}, NF\textsubscript{14b}, NSK\textsubscript{18}, OKV\textsubscript{18}, PW\textsubscript{19}, RC\textsubscript{13}, RSBB\textsubscript{10}, ST\textsubscript{16}, SLM\textsubscript{17}, Wal\textsubscript{12}, Zhu\textsubscript{11}]. divisions [STH\textsubscript{18}]. divorce [MB\textsubscript{10}]. Dkk3 [MPZK\textsubscript{16}]. DL\textsubscript{1} [BF\textsubscript{13}]. DNA [FS\textsubscript{16a}, dOGL\textsubscript{13}, JS\textsubscript{18}, ZSL\textsubscript{16a}, ASK\textsubscript{17}, AF\textsubscript{19}, ACH\textsubscript{15}, BBT\textsubscript{+15}, BKL\textsubscript{+15}, BWS\textsubscript{10}, BSB\textsubscript{+13}, CK\textsubscript{16}, CL\textsubscript{17b}, CLL\textsubscript{18}, Den\textsubscript{19}, DDL\textsubscript{10}, DLY\textsubscript{13}, DBH\textsubscript{15}, Eli\textsubscript{17}, FHW\textsubscript{+10}, FLM\textsubscript{18}, FS\textsubscript{15a}, GSS\textsubscript{19}, GY\textsubscript{18}, dOGL\textsubscript{10}, HRC\textsubscript{+12}, HMM\textsubscript{15a}, HA\textsubscript{15a}, HY\textsubscript{15}, HYW\textsubscript{11}, HY\textsubscript{16}, JS\textsubscript{15}, JS\textsubscript{17}, KKD\textsubscript{18}, KBE\textsubscript{+13}, KR\textsubscript{16}, KK\textsubscript{12b}, Kue\textsubscript{16}, KDL\textsubscript{16}, LZA\textsubscript{+19}, LF\textsubscript{10}, LLD\textsubscript{14}, LTM\textsubscript{19}, MPC\textsubscript{12}, Mor\textsubscript{11}, NHS\textsubscript{14}, PR\textsubscript{10}, QQL\textsubscript{10}, R\textsubscript{+18}, RFS\textsubscript{+12}, RVP\textsubscript{19}, Sel\textsubscript{14b}, Sos\textsubscript{18}, SCS\textsubscript{10}, SCL\textsubscript{13}, TBB\textsubscript{14}, Tri\textsubscript{10}, TS\textsubscript{17b}, WZW\textsubscript{11}, Xie\textsubscript{11}, XM\textsubscript{11}, Xie\textsubscript{15}, Xie\textsubscript{18}, YZZ\textsubscript{12}, YLC\textsubscript{16}, YCY\textsubscript{14}, Yin\textsubscript{17}, ZARK\textsubscript{19}, pZW\textsubscript{+16}, ZSL\textsubscript{16b}, Zol\textsubscript{14}]. DnaA [ZS\textsubscript{12}]. DNase [ZZC\textsubscript{+17}]. Do [CS\textsubscript{15a}, GSL\textsubscript{13}, KLN\textsubscript{+12}, STJ\textsubscript{12}, STH\textsubscript{18}, AM\textsubscript{10}, AD\textsubscript{13}, HMT\textsubscript{19}, Hou\textsubscript{15}, LL\textsubscript{15}, LR\textsubscript{15}]. docking [BGCB\textsubscript{12}, FGH\textsubscript{15}, FCS\textsubscript{18}, GBC\textsubscript{+16}, HAN\textsubscript{+18}, KJM\textsubscript{17}, KHH\textsubscript{+17}, KGM\textsubscript{15b}, PY\textsubscript{+19}, RPM\textsubscript{+16b}, RM\textsubscript{19}, SW\textsubscript{13b}, TWR\textsubscript{+18}, TLT\textsubscript{+15}, TAR\textsubscript{16}, TMS\textsubscript{13}, TA\textsubscript{16}, YNY\textsubscript{+10}]. Does [BBJ\textsubscript{11}, GF\textsubscript{11}, Ott\textsubscript{12}, RD\textsubscript{11}, RSC\textsubscript{14}, TMH\textsubscript{12}, ZCW\textsubscript{13}, AR\textsubscript{11}, BEK\textsubscript{10}, HNP\textsubscript{18}, HNR\textsubscript{14}, KMH\textsubscript{19}, LCH\textsubscript{16}, POP\textsubscript{12}, RWH\textsubscript{16}, Sat\textsubscript{18}, SM\textsubscript{16}, SLL\textsubscript{18}, SS\textsubscript{11}]. DOF [HMM\textsubscript{15a}]. dog [LL\textsubscript{19}]. dolphin [SZ\textsubscript{15a}, SZ\textsubscript{16}]. domain [ADS\textsubscript{+19}, CL\textsubscript{14}, DS\textsubscript{15b}, DAV\textsubscript{11}, HWW\textsubscript{+14}, HBS\textsubscript{11}, LHL\textsubscript{+14}, NZZ\textsubscript{19}, NHS\textsubscript{14}, PSA\textsubscript{13}, SCS\textsubscript{Mz\textsubscript{18}}, SRS\textsubscript{18}, WHZ\textsubscript{+17}, ZJ\textsubscript{16}, ZL\textsubscript{19}]. domain-based [ZJ\textsubscript{16}]. domain-domain [PSAA\textsubscript{13}]. domains [AS\textsubscript{+14}, CL\textsubscript{13a}, DI\textsubscript{13}, Di\textsubscript{18}, Di\textsubscript{19c}, DV\textsubscript{12}, EKF\textsubscript{18}, IK\textsubscript{15}, JS\textsubscript{12}, Kri\textsubscript{18}, MK\textsubscript{18b}, SGKCP\textsubscript{19}, SV\textsubscript{17}, Woh\textsubscript{15}]. domestic [HT\textsubscript{13}, NKL\textsubscript{10}]. dominance [BI\textsubscript{10}, Cam\textsubscript{11}, CL\textsubscript{17}, FVC\textsubscript{15}, GDJ\textsubscript{11}, LBJ\textsubscript{13}, NBS\textsubscript{+13}, PS\textsubscript{12}, SGD\textsubscript{12}, SCD\textsubscript{14}, SLL\textsubscript{18}, TR\textsubscript{12}, WTZ\textsubscript{+11}, YRD\textsubscript{17}]. dominance-subordinate [NBS\textsubscript{+13}]. dominant [WR\textsubscript{+16}]. dominated [KH\textsubscript{19}, SC\textsubscript{+18}]. dominates [GJ\textsubscript{12}]. donation [HSL\textsubscript{16}]. done [OO\textsubscript{11}]. donghaiense [JS\textsubscript{19}]. donor [MSR\textsubscript{16}]. don't [Pan\textsubscript{11}]. Dopamine [PJ\textsubscript{14}]. Döring [DFMR\textsubscript{19}]. Döring-type [DFMR\textsubscript{19}]. dormancy [Aya\textsubscript{12}, DBM\textsubscript{+18}, Kar\textsubscript{16}]. dormant
dorsal [ABH+11]. dorso [SSKK17]. dorso-ventral [SSKK17].
dosage [Das18, HAB+17, YD14]. Dose [RLW+14, RKK+19, BH13c,
CHN+15, GMS+13, HPvdB17, LH14, LHD+17, LIB+17, SW19]. dose-dense
dosing [FM10, LN13, NSH+10]. Double [PWHW16, BKL+15, CL17b, KFL12, Kue16, KDL16, SNCM12].
Double-layer [PWHW16]. double-strand [BKL+15, KDL16].
double-stranded [Kue16]. Dove [Ayd18, DN18]. down [ARB13, LG13, MPS+11, SC10b, XNW17, YRD17]. downstream [ZZL19].
Downy [PS12]. doxorubicin [EPJ+09, EPJ+11]. DPC [KHKI17].
DPD [TAB+13]. DPD-PDE [TAB+13]. DPP [RSS+18]. DPP-PseAAC [RSS+18]. Dr [BD10b]. Drafting [SZ15a, SZ16].
drag [LWY+16, JLH+15b]. draw [cSGFB17].
dragfly [Ayd18, DN18]. dramatic [VK10].
drains [Bro13, FCS18, Gal11a, JJ15, NMI18, PMR11, RG10, SMdA16, Wax11b, ZW16].
DRIN [PJJ14]. drive [EA17, HMM17, Kun16, MH12, OGA16, TR12, XKCG15].
driven [Ana11, ACCR11, AP13b, CFFFB17, Chu18, DHHP14, GPT17, Han12,
HH16, HLH+18, KB15, KFA12, Kin18, KGM+15a, Kue16, LZA+19, MC16a,
MH13, MA11b, PJS15, SK10, TS17a, TWH+13, Urs14, US12, WF18,
WDL+13, YMZ18, ZLB+18, dM10b]. driver [BST14, DBB14a, HRCA19, MGB17, Pol12].
drivers [AHP+19, FR13a, LPP+19]. drives [EA19, KEKB18, KMCH14, RM13].
driving [BM15, WDL+17]. drones [LWY+16]. Dronpa [HYZS14]. dry [BKR14].
droplet [ZWvG10]. Drosophila [Che19, DM10a, DM19, GAL11b, iHIM12, MBM11, RGG12, Sel12b].
drought [JKM+17]. drowsy [BVK10]. drug [BS15a, BJ18, CWM15, CDO17, CTS11, CL18, CGW18, DK13a, GY19, HNP18, HAB+17, HZC+10,
JSDEK14, KHP+12, Kie14, KS10, LP19, LLZ13, MPM10, MVH11, NLB14,
OA15, PYG+19, PRV+14, RAF+19, RDS+12, SMB+16, SLML19, SMJS14,
TAR16, WCM15, XMWC13, XMCF12, XXD+17, YD14]. drug-resistant [CL18, LP19]. drug-target [RAF+19]. drugs [GSSBF18, GSV16, LF19,
LBW+13, LT14, MAFB18, PPC+17, PBSM19, RCL16, WHH17]. dry [DDS13].
dsDNA [AN13]. DSSB [AD15]. DTI [PH13]. Dual [MAME15, EI13, For10, HZL+13, MNSZ16, OGA16, TSP+19, WMT16,
ZGY11, ZCA+14]. dual-cell [For10]. dual-lattice [EI13]. Dual-porosity [MAME15].
Duality [BYJ17, FVTS16]. ductal [GCSP17, METC12, NWB+10, SGGY10]. ducts [FKMG15].
ducts [AHC12, ABR11, BPS18, CK17, Cza14, CN10, KKS+14, MK14a, NNG19,
SM15, SMB+16, SLML19, SRCF11, STKE12, SL19, VB19b, WZ18, YTS18].
during [ASC15, AHFA14, ALD+11, BTO14, BAGG14, BRN15, BTK14, BBRT12,
BKPV15, BFGAGA16, CLPZ14, Chei12, CL18, Chu17, Cle18a, Cle18b, Cox10, CHN15, DPRSS11, DL15b, DAA17, DB18, DDF+14, EJK16, FWB+12, FM10, FPR10, GWBL12, HWMT17, HM10a, Hal17, HPM+17, HMH14, HHE19, HRG11, IS12, ITR+18, JV14, JMK+17, KHB+18, KCS+15, KG12, Kuz19, KK18, LM14, LMC+13, LSN17, LO15, LRA+13, MYK+11, MMLK11, NPS17, Orr19, PDRC16, PC10b, PVGA12, RRL+13, RLW+14, RJSC18, RS+10, SK15, SKGM19, SHB+17, SK10, SG15, SAGC12, SSK17, SP14, SNCM12, Tak17a, TEW12, TDE12, dRVKK+16, VF12, WDL+17, Wil11, Xie13b, YM14, ZTWS12, ZYW15].
Dynamical [GCB17, LMYL15, LLL13, PaCZ10, VLMG12, CST+12, DFM+14, FLA+19, GB13, GML10, KLB+16, Lai18, NBA+18, OA15, RWSB11, Sim14, Xie13a, XYY19].
Dynamics [BBM97, CFF11, FTS15, FHS+14, GL14, GM16a, HJR12, ITR+18, KGJ12, LCT11, LLJ18, LPTR14, MHH+12, MF13, M13, Por13, RB14, SPPI12, SH14, SC16, TF14, WSVT14, Xie13b, ZY18, ASC15, ARN11, AGPK13, AOM19, AD15, ADS+19, ABK11, AHN10, AH12a, AY15, Ak12, AKS+19, AMBH+13, AMSS16, AMFR+16, ARG+15, AABS16, AN12, AdiPL12, AP13a, APW10, AM12, Arc14, Arg12, AWK15, ALD+11, BYJ17, BC19, BPS19, BA10, BRG+12, BCPL10, BM12, BDS12, BLV18, BPFR18, BZC10, BBL14, BWY+17, BHK14, BN12, BN15, BBM+18a, BJWL15, BM+13a, BM+13c, Bon10, BK19, BBRT12, BMF+18, BPLM12, Bue15, BHO+18, BJ18, CHD+10, Cam11, CML10, CC11a, CMS+19, CFZ14, CN12a, CS18, CZN12, CNL14, CFL+15, CWF+16, CVPCV+15, CS+14, CS14b, CG14, CA18, CH18, CPP18].
dynamics [CHN15, CSZT12, CGW18, DB10, DS19a, DMM+14, DMO+17, DM11, DLSR18, Del12, DLI2a, DEN+11, DG16, DGJ14, DGJ15, DHBS19, DRC11, DCN13, DCR18, DNB15, DMFR19, DP13b, DHRA10, EKF18, EUM+16, EN15, ECP+16, FHI+10a, FHI10b, HLM10, F18, FMS+10, Ft18, FGGT15, FKV19, GLR+18, GAL11b, GVG15, GAGP+14, GCSMMG+12, GDS11, GMNY14, GX13, GC18, GMMN18, GP12, GY18, GN10, GAV15, GPT17, GAY+11, HKB12, HT19, HSD11, Han12, HI19, HII+19, HBVP15, HNO18, Hau10, HNR14, HT15, HE16, HKS15, HFT+18, HB16a, HAH19,
HBT13, HVL11, HR14, HSM17, HH16, HWPL12, HHE19, HB13a, HBW+11, HTB+13, HHT+19, HPW+13, HLW15, HNH14, HSLW16, Hur12, HR12, IMM16, Iij12, IGL+12, IS12, IK16, Jab10, JB18b, JYY+18, JSSZ12, JLI6, JSB15, JMK+17, KJ17, KHH10, KSP+14. **dynamics** [KHP+12, Kea16, KMHdlP10, KG+15, KFA12, KB19, KGGK10, KR15, KLI7, KKI+10, Kla10, KDMK16, KL10, KW10, KKYV18, KGC18, KG15b, KSK+17, LJ15, LG10a, LS10a, LCC15, LvBJ16, LP19, LH16, LW15, LM18, LGR+12, LLYW11, LHD+17, LPH18, LPH19, LP12b, LS14, LH18, LW16, LCDH15, LC16, LuK14, LW18, MK+11, MPJH13, MZ17, MRPN12, MKKS14, MDT10, MPP+16a, MCC+17, MLV10, ML14, MM13, MFG+13, MKMT14, MSL10, Mob10, MSE+14, MS10b, MGM13a, MZMM+14, MPNP12, MMRCC10, MS14c, MA11b, MBP16, MI11a, Mou12a, MYOS14, MSL10, MvAK17, MS1R10, MG15, MS1+16, NIi19, Nak16a, NCLB16, NS15, NTE1+19, NZZ19, NG17, NC15, NP13, OB15, Oht10, Oka15, OUMA10, OB10, Ooy16, OAJK10, OBHS19, PAA11, PBBD10, PM11a, PBR17a, PR18, PT10, PN15, PVB+10, PSV17, PW18b]. **dynamics** [PCL+15, PGKZ17, PZLF19, PM17, PMYHR12, PP17b, PKH11, PRM12, RW16, Rad16, RM+18, RN12, RFS+15, RW10, Rem15, RB13, RBHK14, RBB16b, RSD12, RG17, Ros10b, RM19, RRJU19, SM14, SPPP15, SK9, SU11, SW15, SFT14, SR10, SVB+10, SI19, SW1, SBR16, SV17, SCF+12, SKPK17, SMJS14, SW1, SK15, SC11b, SAB17, SOFC14, SG15a, SP11, SY17, SSME10, SG15, SLC12, SLO10, SLS17, SS11, SK11b, SS1+14, SY17a, SYY17b, ST19, SPL14, TED10, TB+13, TLCZ12, TCR13, TGC+17, TDKJ15, TRM+14, TK19, TMS13, TMD14, TRJD19, VSD+17, Vel17, VABS18, WWY12, WCF15, WC15, WJ16, WM16, WYK17, WML+17, jWIGQ19, WW19, WMHH10, WDH+19, WGC13, Wod18, Xie11, Xie18, XYZ15, Yam16a, Y18a, YNY+10, YBT+17, YFB+12, YST14, ZARK19, ZBA14, Zha10a, ZZ14a, ZZ18]. **dynamics** [ZN18, ZK+10a, ZWG10, ZSW+14, ZLM12, ZSL16a, ZSL16b, ZZR10, ZZR13, ZFR15, dTKDV15, vV11a, vdBD10]. **dysfunction** [LFW+18, WHS+13]. **dysplasia** [MGM13b]. **dysregulated** [HZL+13]. **Dytiscus** [Whi11].

E-cadherin [WGS10]. **E.** [RG10]. **each** [RG17]. **Ear** [CZQJ14]. **early** [Bau18, CCB11b, CPV16, CTSL11, CEP14, DI13, DTGD19, DM10a, DCR18, Dun11, FD17, Fra16, JAB18, KG12, KC11a, Lab16, LJ15, Lev14, LJS14, MSB13, PHTP+12, PGGvdB12, PR17, SBB18, SCS14, Tre19, VDD12, WBMM18, YM14]. **early-detection** [CPV16]. **early-stage** [Lab16]. **Earth** [Di18]. **East** [DB18, EAN14, LC16]. **East-west** [DB18]. **eating** [DDF+14, JPB17]. **Eavesdropping** [KL10]. **Ebola** [Ada16, BGW15, DE17, HSLW16, JB19a, LN19, LLD+17, PWLF19, RPP16, TED16]. **EBV** [CRLH+19]. **EC** [RMSTG13]. **EC-numbers** [RMSTG13]. **eccentric** [GAPK10]. **echinococcosis** [KKUM10, WZJ+13]. **echinoid** [CS11b]. **echolocating** [VP18]. **echolocation** [LA15]. **eclectic** [TT17]. **EcmPred**
ecological properties [KPK+13]. Eco [HBT13, KK13, Urs14, AIB+19, FtL18, HCS+19, KGB13, KDMK16, LH18, SKAG18, YBT+17]. eco-evo [FtL18]. Eco-evolutionary [HBT13, KK13, AIB+19, KGB13, KDMK16, LH18, SKAG18, YBT+17]. eco-genetic [HCS+19]. Eco-hydrology [Urs14]. Eco-evo [FtL18]. Eco-evolutionary [HBT13, KK13, AIB+19, KGB13, KDMK16, LH18, SKAG18, YBT+17]. Eco-hydrology [Urs14]. Eco-evo
Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano19-28, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z, Ano19-27. Editors [Kir11]. Editors-in-Chief [Kir11]. Edward [BCF16b]. EEG [BVK10, Ing16, SKK + 11]. EET [FD11a]. Effect [AP19, ABD + 11, BSC19, BBH14, EPP19, FMS + 10, GTC19, JJ15, LFD11, MLCH11, MGC13, MAR + 17c, SGAM12, SGCD14, TMM10, TI12b, TLR14, WHHS15, Wod18, YTK10, ZLL + 12, ARG19, AGRRR11, AGR + 15, Arc14, ACCR11, ABK + 12, Ayd18, BB15, BBB18, BCF + 16a, BG12, BHKR14, BH11, BD10b, BE14, Cam15, CMCS18, CWW18, CLA + 16, CMN + 11, DSA + 16, DZ11, E1i7, ECP + 16, GHBI16, GH11, GM13, Gon13, GJS + 10, HWMT17, HFT15, Has14, HB16a, HM17, HTB + 13, JRB + 16, Kar15, KMR18, KMC17, KMM18, Lai11, LS10a, LCCK12, LN13, LMJ + 16, LBJ13, LS11b, MPM10, MG17, MB15, MFMB12, MBP16, MI11b, NKL10, Nak14, NSKO18, NdORC11, NI19, NC15, Oko15, Oko16, POW17, PSD + 18, PDW10, QA15, RGG12, RC16, RRTR12, RRSSL16, RAR19, ST17a, SSB15, SBCR10, SXZY12, SNY + 13, SK16b, SM10b. Effect [TB16, Tal12, TIY + 11, UD10, VAT18, VSW10, WTC10, WM16, WHH17, WH17, WFM + 13, WFC + 14, XTZ + 13, YBH + 19, YLH12, ZMW10, dG10b, dSRM15]. Effective [AFS19, Gre16, SS18, AKS + 19, Bar16, CPH + 14, CG11, Glu18, HI17, LCTG15, LGPS17, MA13, NF14a, Nak12, SSJK18, Sch14, Tak16, VCF + 19, XDX + 17]. Effectiveness [EN15, GAY + 15, SP13b]. Effector [ME15]. Effectors [d’O12]. Effects [AdSG14, ASGG17, BKS16, CHL + 19, CF11, DGJ14, EBX17, GCZ + 12, GC11, HE16, HSR12, HY10, IKT13, IEN15, Js12, KO18, KMD1P10, KJ15, KII19, LD1L11, LG18, LFM11, NI17, NOS15, NKN10, NJP18, PMYHR12, RVA + 11, RHT18, STA15, SKPK17, TM14, TA13, VSD + 17, WK18a, YLW + 14, ZR16, ASC16, AHD + 18, AMBH + 13, AMFR + 16, AH17, AAJ15, ARMI18, BGM19, BLV18, BGL10, BSV + 10, Boc12, BSS11, BIMC17, BMM + 14, BCPS18, BZ10, CLK18, Cle16, CSD15, Cor16, CCAdS13, Cox10, DH16, DBH15, DS12, EBE14, FB12, FSW + 16, FGLS10, GMZM15, GVSL16, GCvWE + 14, GSB17, GBR19, HD17, HPP10, HT18, HHH14, HAH19, HHI10, HWPL12, HWGT15b, JYY + 18, KSN + 18, KDS13, KAI11, KPD19, KEK18, KF11, LTHEK12, LL14, LLDW14, LWY + 16, LS41b, LLY15, LS11a, LDF11b, MG14b, MB17a, MB17b]. Effects [MKRE18, MEJ18, MMMCCC10, NR14, OO17a, PDSP13, PDE + 12, PHB1A + 16, PBB10, P18, PM1K5, PRV + 14, PQFL19, PGH12, PMCS16, PL19, PML18, RRL + 13, RFW + 14, RHI11, ROTEK15, ROTEK19b, RLS14, Sac13, ST113, ShvHB16, SAB10, SJS18, TD14, TDHC + 18, TCW14, UI10, VZ19, Vaz10, WWX12, WM16, WTC16, WPA17, WVO + 15, YNY + 10, dM10b, dMP11, dO12]. Efficacy [RMSTG13, GSSBF18, KMA10, KRR14, LBW + 13, LZL + 19, MBD12b, NDZM14].
efficiency [BH13a, CLP11, DK13a, GMM+13, GSF13, HLH+18, JG14, LFB+16, LJM+17, LMJ+16, Orr19, PBRW11, PVCEC18, SHW16, TP10b].
Efficient [NW10, SNS17, CLG+10, CLG+11, FD17, GRCdL16, HXL16, IMH15, IL13, Kha10, SW13a, TLY+19, XGZ17, ZMN+10]. efflux [FKB13].

Efficient [NW10, SNS17, CLG+10, CLG+11, FD17, GRCdL16, HXL16, IMH15, IL13, Kha10, SW13a, TLY+19, XGZ17, ZMN+10]. efflux [FKB13].

Environmental

[FR13a, HAK+19, MP14a, RM13, Abr14, BJJR10, BDR10, DSA+16, DHT19, EzMMH18, FGLS10, FGGT15, GGBW14, HBVP15, HSM19, HSM17, HHT+19, HWL15, JJWTW17, LRH15, Mal17, MLCH11, MJV16, NnvB17, NWL17, PMD11, PW14, RR12, GSxFH+12, VBVD17, WXWL12, WD12].

[BGF+14, KCD11a, MAFB18, VLFF12, XSKA17, ASH15, CRH+15, GBRS19, IU10, LN13, LZF+19, PNP+16, RAAS15]. evasion

[BBP18a, GL18a, Kar15, LBF13]. even [BC15]. evenness [DBD15]. event [ANMH11, BTR18, BJSOS13, Lan17, MMH+12, SKD+10, ZLY+13]. events [BBA16, GMMGV12, Gal10b, Höh15, LCJ16, SP16, SPCM18]. Evidence [Di 17a, MPL16, RPPG+19, Di 10, GDB+19, Mor10b, PC17, RMRC+16, She11b]. Evil [GvVT14]. evinces [BHLH12]. evo [FtL18]. evoked [LSB10, LB11, LB12]. Evolution [AK15, Arc13, AS16, AK16, ACvKA10, Axl12, BBB18, COWA11, CHK16, CKNB19, FZW17, FM10, FM14a, FPD15, GT12, GTSP16, Hou13, HCU18, Jam13, KK17a, KGB13, Kit10, KWO19, KNT10, Ki17, Len14, LG12, Mas14, MAI1b, MAL+11, NH12, NF14b, NO18, Naki16c, Nei14, NOS17, NP13, ON14, OAV+16, PBYB18, RC11, Rog19, Rou14, SSM15, SC12, SLW18b, TP10a, TM12, UI13, WK15, WK17, YHI14, YTK10, dWV11, Abb10, AdVG15, AFM10, AH12a, AIY16, Ake12, AOR17, AB11, Ant13, AMFL10, Arc11, Arg12, AK11, AT10, BGKL17, Bau18, BM11, BJ17, BD12, CT14a, Cha17, CSBK15, CW15c, Cle16, CBP12, CAV16, CS15b, CzST+18, Crol17, CL13b, CKS15, Das13, DBD17, Dèb17, DLR18, DMCP14, Dun11, Edg19, ER12, Ell15, FB18b, FM15a, FH13a, FRG+13, FM18].

evolution [FOT+15, Gar10, GFH+18, GJ12, GN14, GK10, GJ15a, GKPB13, GCvWE+14, GK16, HNV+16, HJWC11, HM10a, HAP+16, HL15, HT18, HWT19, HKM12, HMM11, HTK12, IKTK13, Ish16, ID14, ID19, IIVR10, Jan15, KG15, KMCH14, Kin18, Kor18, KW15, Kur14, KIT+16, Lai11, LBB+13, LGK+09, LGK+12, LvBJ16, LG19b, LSM17, LvdBP12, LGEM17, LSL13, MTN12, MB18a, MK16a, MYK17, Men12, MALAN17, MH18, MAA18, MH13, Mor16, MC15b, MM18, NF14a, NS11, Nak14, Nak19, NSKO18, NBS+13, NMS10, NPl11, NPS17, NPS18, Oht12, Ots11, Pan11, PIPB10, POW18, PBR17a, PDM11, PKZ12, PPT11a, PN16, PN18, Pic12, PGH11, Pol12, PBD11, PM10b, PBA12, Rad16, RANO10, RBR18, RBRB15, RBRB16, Ros13, RRR15, RCD19, RD17, SW16, SC10a, Sal15, SPS1].

evolution [SPL12, SSF15, Sch19b, SBHT14, SN16, Sel10, SGW17, SSS17, SN18, SP16, SB17, SA13, SP13b, TGLK19, TI12a, TF17, TALC16, TB15, UI10, VSLVB15, Vel17, VB19b, WCS19, WKB13, WZLW15, With11, WK18a, Wodi18, Woli12, WFW19, XY14, XW17, YK11, YTT12, YY19b, YSH+14, Yan10b, YXZ15, YG12, YX15, ZPdFJ19, ZCW13, ZADB15, ZLW16, ZMW10, ZM11, tbdR18, vVE15, AM10]. evolution-based [HMM11].

Evolutionarily [HBR12, MI12, Bil12, DWL+14]. Evolutionary

[AY15, AN12, Arc14, BL14, BM16, Bur10, CZN12, DMI11, Ezo12, Fis16b, Fra19a, Fra19b, GCM17a, HI12, HWTN15, HIT18, HH14, IMA16, ID14, IS16, IK16, Kir10, LLZ13, LW15, LCQ+18, MPNP12, NBP13, OGO19, PBR17a, PNL15, Rad16, RN12, RBB16b, Ros10a, SSP15, Sek12, SGW17, SPCM18, SLO10, SG18, ŠKSRW16, TTN13, TEY16, WL12a, WL12b, WL14, WCW15, jWIGQ19, ZGW14, ZW10, Abr14, AH12a, AH12b, AT112, ATTN12, AD13, AWRD15, AOR17, ATG12, AIB+19, BSI5b, BID15, BS11, BD10b, Bon10, BBDB13, BR13, Bul12b, CVO+15, CSZT12, CK19, CB10c,}
DGYM18, DMO+17, DHS+15, DRCL12, DKR16, DI10a, DI10b, EHSR17, FL13, FLW16, Gal11a, GHBC14, GT11b, GC11, HBK12, HSM19, HFT+18, HBT13, HK10, HY10, Höh15, IM16, IMA14, lii12, KGB13, KDMK16.

evolutionary [KK13, KZ14, Kri16, Kri18, KC17, KGC18, Lai18, Lar16, LG19a, LL12, LGBT15, Lio16, LPKH15a, LPH18, LH18, LIPD12, Lm13, MP14a, MFMP10, MRPN12, MDM16, Mon18, MB12b, MKPVH16, MSIR10, NM18, Oht10, OBHS19, PBB+15a, POW17, PLN14, PGG+15, Pial10, RC11, RBB16a, RVP19, RSBB10, RM17d, SKAG18, SMS17, Sch17, SMG18, SSDD17, STG19, Sh19, SKS15, SY17, SS15e, SM11a, SJK18, SC16, SS12b, TBN+13, TA10, TCGZ12, Tay13, TZY18, Tre19, USF+18, VGZ18, WSP14, WYX+17, WLY+17, WMN18, WCF12, Woot10, WK18b, WSVT14, XKCG15, YHZ14, YBT+17, ZZK14, ZYD15].
evolutionary-based [DHS+15].
evolutionary-dynamical [Lai18].

Evolvability [MH17, GJS+10, Gri15b, IMA14, PMP13, VFS+15, WB10].

evolvable [AIY16].
evolved [Bry13].

Evolving [MBRRI19, Now12, SAZ+14, AH12b, CL14, CL19, De 17, EB15, FWW18, NR16, PSJ15, PW19, SB12, WLW19].

EvoStruct [USF+18].

evoStruct-Sub [USF+18].

Exact [KFW12, NSK13, PHK15, Pie10, SW17, ZLW14, Gri15a, Ros10b, ZM10].

examination [TF16].

Examiner [BLS+17b, VAT18, AHW13, ER12, Gl1a3, GS17b].

example [CR14, PKZ12, SGA+12].

Examples [TvMG16, MF15].

excess [AHKN10].

excessiveness [VM16].

exchange [Bal13, BTG+15, BP16, CC10, CZT+16, GT15, LMJ+16, PWC+15, POP12, REC10, XYZ15].

exchanging [Sel17].

exchanging/deleting [Sel17].

excision [BKPV15].

Excitability [OMO13, Eli17, OTTF11].

excitable [BHBH11].

excitation [BZN17, CN12a, MTE15, SS14].

excitation-contraction [SS14].

currents [MTE15].

excitatory [CP14, KTH16].

excludability [De 19].

exclusion [CCA17, GW19a, GP12, GA15, NVHM13, OW16, PDW10, SLvdMP10, XF13].

currents [VHM13].

exclusive [WKS14].

executive [RM17a].

exercise [BSR14, BS13, EJ17, EJ19, HLVR16, QF10, VM16].

exert [Cle18a].

exhale [IMW15, KUU+10].

exhibit [Sat18].

exhibiting [Bro13, JB19a].

exist [AM10].

Existence [Opr10, ADV+10, FT12, Hay16, HXL18b, MG14b, WKS14].

exist [BB11b].

existing [EJK16, PVGA12].

exit [LCT11].

exit-entry [LCT11].

exocytosis [GU13, SWSLMJ19].

exogenous [CWP+18].

exon [MSSM18, PBKR13, QYO10, ZLZ+15b].

exon-coded [PBKR13].

exon-junctions [MSSM18].

exons [dOGL10, dOGL13, ZLZ+15b].

exoskeleton [KSOS12].

Exosomal [LF17, Sha14].

expand [Dim17, RT19].

expanded [Sel17].

Expanding [CB10b, HL10, DBJ12].

expansion [DZJR10, FNH10, GTB10, HM10a, Mi11, On19, RSR11, Sel15a, WMD16].

expansions [CKNB19].

expectations [ALH10].

Expected [BCK19].

experiment [AHD+18, LGR+12, MBS19, PWL+11, SYY17a, SYY17b].
VBV10, WW12b, Zhe16. **Experimental** [BPP+16, CW11c, LFW+18, WHWZ18, ASH15, AGC18, BMB+18b, CDM+14, DRW14, DDF+14, FKMP10, GDPPSS+11, GDB+19, JRB+16, LCSH14, LAG+14, MAMEA15, MBF+15, PMKS+15, RMRC+16, RGA+10, YA14, ZBA14]. Experiments [JSP+16, MAH12, QMJW15, EUM+16, FS11a, HWPL12, JSDK16, KP15, LSMP14, MSS10, PBB+15b, PMCS16, Ran12, SGGM11, SBR10, SFBM10].

explain [BRB18, NMS10, PDL+17, RN12, SGGS19, TWH+13, WR14, YY18]. explained [Fil15, Jen10, PVB+10, Sch19b, SW15]. explaining [CMB+12, GDJC11]. explains [Das18, DM10a, Eli17, EJK16, RG18, SSI+16, SWD16, SP14, WKS14].

Exponential [BHH+14, DD10, KKG16, RC16]. expressed [Sat19]. expression [BG+12, CB10b, Das18, DEl14, Eli17, Gol16, GMBK14, HVSS10, HNA15, iHM12, HgLL+10, HZL+13, IOK19, JP15, JOM16, LJM15, Lei09, Lei10, LXS15, LDH+14, MPP+15, PS13, PGLZ14, RLM+14, RT15, SRS+15, SLS17, Van17b, WOB15, WH14, WMT16, WC10, XGZ17, YXH+14, ZS10].

expressions [BF13, DHT16]. Extended [JMS18, JG14, Kee10, Kur17, LDH14, LLP+19, MOSS15, Mic15a, OFT15, TT13, Zha10b]. Extending [HP12, KDMK16, AH18, AHJ18b, GNB+13]. extension [BRB18, CHH10, CSB15, HHHF11, SKF16]. Extensions [GW13, RGP13].

extensive [Meh17]. external [Cle18a, VB19a, ZGWL14]. externally [SGW17]. extinct [HMM17]. Extinction

faces [CS14a, Mit14]. facilitate [UT17, WFW19, YI16]. facilitated [KPEK14, LWY+16, PWC+15, Rad16, TM12]. facilitates [Kin18, Mun12, PCN17]. Facilitation [MBLC17, CH11, DP13b, HvLPdB15, LTHEK12, MR15, MGCL13, RK18, TCR13]. facilities [GA16]. facing [BWP10, Coh15b]. factor [AOR17, BFR14, EKvdKvFK13, FLM18, GJ10, GBC+16, HG18a, KHS13, KSvdH18, KPS17, MSND12, MHMM11, PSG+17, TBB14, TSP15, dEG11].

Rou14. first-order [CW14]. First-spike [WCC13]. Fish [LYK12, BPG+18, CT16, DHP11, FSA15, GS13a, GSL13, GS14, HPW+13, Ios16, ICG16, NR14, NTY16, NBA+18, OGA16, PLF19, gSxFH+12, SFP12, Str13, TIY+11, VDH+15, WBM+15]. Fisher [CS18, LPH19, PBYB18, SW17, TT10b, jWIGQ19, Wax11b, ZLIW14, ZGW16, vV18]. Fisheries [LHD15, MA13, MNH+12]. Fisheries-induced [LHD15]. fishery [TB16]. Fisheries F shock [LYK12, BPG+18, CT16, DHP11, FSA15, GS13a, GSL13, GS14, HPW+13, Ios16, ICG16, NR14, NTY16, NBA+18, OGA16, PLF19, gSxFH+12, SFP12, Str13, TIY+11, VDH+15, WBM+15]. Fisher [CS18, LPH19, PBYB18, SW17, TT10b, jWIGQ19, Wax11b, ZLIW14, ZGW16, vV18]. Fisheries [LHD15, MA13, MNH+12]. Fisheries-induced [LHD15]. fishery [TB16].
frequency-dependent [ZW16]. frequent [CDC18]. fresh
[Kri11, MFM16, Ros15]. freshwater [PLF19]. Friction
[WL13, HB16a, KC13, MLMG+15]. Friction-based [WL13]. friend
[Fra16, HSD11, Han12, dRF115, ZUF1M17]. fronts [MSM+14, MLCH11].
FRS [Ano19-52]. fructose [Bar19]. fruit [AKdV+14, GAL11b]. Fruiting
[SSS17]. frustration [HKH18]. FtsZ [Shi17, YRMWT19]. Fu [WZM19].
Fu-SulfPred [WZM19]. fuel [KK15].

Fundamental

G [BMF+18, BPLM12, CHN+15, HPML18, PB1B10, ZLM12, DHB15, Dol19, Ken19, KB10a]. G-CSF [BPLM12, CHN+15, ZLM12]. G-Protein [Ken19].
G-protein-coupled [HPML18, PB1B10]. G-Protein/Receptor [Ken19].
GABA [MBE11]. Gaia [AN17, Doo17, NWW18]. gain [ASH15, BCK19, LvdBP12, SW18]. Gains [PLN14]. gait
[STJG12, WHHS15]. gaits [Ush16]. GAL [AM12]. galactolipid [MB14].
galactose [MMK16]. galectin [GBN14]. galls [Yam16b]. galvanotaxis
[SKGM19]. Game [AS12, DB19, HHH+10, TWB16, Abb10, AOR17, Ayd18,
BRR12, BMD17, BBL10, CZN12, Che12, CWW18, CSZT12, CK19, CB10c,
DH16, DMO+17, DN18, HFT+18, HS14b, IMM16, IRS11, IK16, JLQ+19,
JC16, KNT10, Kon11c, LLZ13, LPH18, LPvSP11, LPvSP12, MI19, MGS16,
NiT18b, NiT18, NiT19, OO17b, PEW18, QMJW15, Ram10, RN12, ROF17,
RSH19, RC11, Ros10a, RM17d, SMS17, SSM15, Shi19, SGA+12, SN18,
SSBG19, SCS10, TT19, TGL15, TR17, jWlGQ19, WL19, WHYMG17,
XSLZ16, ZMAM19, ZGWL14, ZLY+17, ZWG10, dMP11, PS12].
game-theoretic [DH16, MGS16, WHYMG17, ZMAM19]. game-theoretical
[SMS17].
Games [AN15, Fis16b, KVN16, LSDI15, LJI17, SKSRW16,
ATTN12, ATG12, Arc16, AS16, BR12b, CLA17, CZ14, CK19, DDRP13,
DHK13, FTS15, FNY10, Gall1a, GCM17a, GT11b, GC11, Has14, Hau10,
HI12, HSM19, HWT15, IM18, IOY15, Jan15, JOAN14, JSF+11, JR17b,
KC17, KG18, Kur19, Lai18, LGBT15, LPKH15a, LPKH15b, LRGA13,
Mobi10, MV18, MB19, NOS17, NCM13, Oht10, PIB10, PLN14, PGG+15,
Pla10, SHN12, SPSP12, SU11, Shn13, SS12b, Tay13, TR12, UI10, VNS18,
XWZ10, YHZ14, ZZC10, ZW13, ZW+13, ZZZ17, vVN12].
gametocyte [TEY10, TEW12, TEY16]. gamma [Gol16, HYN19].
gangliogenesis [HJLNZ11]. Gánti [HS16, CB15, Gri15a, Sza15b].
Gántian [GJ15a]. gap [For10, JCG15, KPD18, MA+17, PAA11, SGGM11].
garden [KCMF11].
gas [GT15, REC10].
gastric [OSV+16, PRN10, SXL+19].
gastrocnemius [CSB15, ZPM+15].
gastrointestinal [PPC+17, PBS+12].
gastropod [Nos14, NSS16].
gastropods [IUK14].
gastrulation [YM14].
gate [Zha10b].
gated [Bec14, PDG17].
gating [FIS11, FIS16a, LdLK11, ZCA+14].
Gauze [Kri11, KP15, LJ18].
Gaussian [BMI19, CKF17, Goll10a, LCG+15, MKBE17a, MKRE18, PPT+16, ZMS17].
Gaussian-distributed [LCG+15]. GC [KB11].
GC-rich [KB11].
GPCII [NRS+16].
gDNA [pZWZ+16].
gDNA-Prot [pZWZ+16].
GED [LJM15].
geese [MPHI13].
gel [FKMP10, HHA17, RVZ14].
gels [Kro10, SNY+17, SABB15].
genre [DBBM11, FS12].
genre-specific [DBBM11].
Gene
[Hua12, OHWS18, YLF+17, ZT16, ACM16, AD15, AKR+18, ABM10,
AGS18, BRA15, BRG+12, BPP+12, Bar18, BS+13, bCR19, DTGD19, Dil14,
DTY12, EA17, EA19, FXML18, GG16, Gin10, GHBC14, Go16, GMBK14,
Gri15b, GGJC16, HNV+16, HTM16, HL14, HXL16, HXL18a, HG18a, HNA15,
HgL+10, HZL+11, HK16, HT13, IOK19, I117, JP15, JOM16, JYY+18,
JSF+11, JK12, KSP18, KF11, KII19, LJM15, LWH+11, Lei09, Lei10, LXS15,
LLL+17, LDH+14, MTKY11, MC16a, MMCC19a, MH11, MBE10, MPP+16a,
MH12, MYK17, MHD18, NMS10, Orr19, Ots11, PAOM17, PPBD10,
PWH+13, PS13, PPP12, PMP13, PGLZ14, Pol12, PKH11, PS10,
RMM+16b, RLM+14, RT15, RRK19, SAI10, SCABM10, SCABM11, SSS13,
SMC17, SLHS13, SLS17, Van17b, WOB15, WM13, WH14, WM17, XSKA17,

GGC14, GSGV11, GBC16, GMM15, GM16b, HHJR11, HLI15, HII19, HWW14, HKB10, HXL18b, HKH18, Jam12, KSA16, KKUM10, KLM14, KDFM14, KCJ11, LPGTM19, Li11, LZQ14, LZL17, LZG19, LTP19, LTZ19, LT14, LGIR12, LDF11b, MIJ16, MV10, MS16, MA11a, Meh17, MPS11, MTLW10, NH12, NTED19, NNH16, NI19, PRSC11, PVGV19, PRM12, RLW14, RKM12, RS14a, RSD13, Ros10a, SGL10, Sel13, Sel15b, SSFG15, SSF18, SDK11, Sue12, SCT12, TKK14, TH12a, WMK15, Zha11, Zha15, ZJSC16].
VAG16, WDH+11, WCM15, YCH+17a, YCH+17b, d’O12).
immune-mediated [RH19]. Immunetworks [DEN+11]. immunity
[CST16, CMD+10, DMM+14, EBE10, FGH+14, HTB+13, LKO+17,
LHF+16, LM14, LG12, MMLK11, Moo14, PVB+10, PCL+15, PRM14,
RTEK15, RTEK19b, SDT17, STN19a, WKB13]. Immunization
[SMC+13, CW15a, LDJW16, NW10, dMP11]. Immuno
[BH+15]. Immuno-modulatory [BH+15]. immunodeficiency [HI19+19, SBCR10].
immunodominance [CP11]. immunodynamic [RKK+19].
immunoeediting [KB15]. immunogenic [BBT+15, KB11, SSRA16].
immunogenicity [CRH+15]. Immunoinformatics [TWR+18].
immunological [MYC12]. immunopathology [VC15].
immunoprecipitation [FKM10]. immunoprophylaxis [WW12b].
immunostimulation [RKK+19]. immunostimulation/immunodynamic
[RKK+19]. immunosuppression [SSM+18]. immunosuppressive
[LHL+14]. immunotherapies [EH17]. immunotherapy
[BMGC11a, BMGC11b, GM11, HI17, JO13, LX16]. immunotoxicants
[BYM+18]. Impact
[AD15, BAR14, FZL18, GL12a, HLTW14, HvLPdB15, JWTW17, PIT12, PT10,
PvdG10, PTC13, RYZ14, SSG+19, TD18, TC12, TRG16, VR17, ARK+18,
ADB+13, BM12, BTG+15, Bon10, BKPV15, CH18, DBD15, DBBM11,
DKF17, GFH19, GW19a, HWGW18, HB16a, HAH19, HJR12, HPW+13,
HWL15, JP19, Kie14, KJ11a, KM15, Kur10, LTLZ17, LZY+15, LNH13, LYZ+18,
MHMM18, MPP+16a, MB18a, MS12a, MBC+12a, MS16, MB19, NDZMA14,
NGS+16, PAS10, PSJ15, PNVT18, Rao12, SEK+10, SCC11, SSL+19, SW11,
SH17, SB17, STLJ18, WHYMG17, YSH+14, YTWG16, YCR+15, dMP11].
Impacts [TB18, WSCA12, AB16, GK13, MSZW19, NiiT18b, ZADB15].
impaired [HBA17]. impairment [RTR+13]. impairments [ML12b].
Impasses [VFS+15]. imperfect [AM10, Gha16, MLMG+15]. Imperialist
[KKGN16]. implant [PVG12]. implantation [PPM15].
implementation [CA17]. Implications
[BZJP18, BGC12, BYM+18, CWM11, DTG14, GTC19, HMJB15, LG13,
LMCW18, LH18, MKKS14, OO18, QA15, SSM+18, TF15, ZARK19, ABKS11,
BJWL15, BDE+14, BAM+11, Cro17, FBFM12, GL14, Gin10, Go16, GK10,
KSBvL+12, LCGMH12, MGO+15, MKMG+14, NMAZP16, PG18b, PM16,
RCH14, RGBR17, TEY10, TEY16, VH11b, WK17, dMI1b, MFP+14]. imply
[RWH16]. import [ABKS11]. Importance
[BRG+12, EUM+16, BUL12a, CB10b, FB12, JMS12, KBF18, LHW14,
cL15+10, LD18, MvdDW13, PW19, SSP15, SPL14, TZ11, WD12, vVE15].
important [Cle18a, EKvdKvFK13, IK15, SN12, Sos18, TAR16].
importation [CBC+18, NEl11]. imported [EAN14, N118]. improve
[CR14, CLP11, IA17, MAW12, NS19, SS15c, WHL13]. Improved
[HM13, IMH15, Mou12b, SVCS10, CW15a, MB12a, MSR16, YY15].
Improves [Mar19, MP14b]. Improving
[FW15, MHC16, RSD+16, WSTL16, ZLY14]. impulse [RAR19]. Impulsive
[BRK16, Yan10a, LY11, LZZT12, LLL13, LZZT13, ML10]. imputation
[MHKA16]. in-frame [SSCJ16]. in-group [KM12, MJ14]. in-host [CL17a].
in-mouth [DFD+14]. In-silico
[JSC+16, MÇ15a, RAA+16, GHJ14, LKAJ18, LZL+19, MÇ16b]. In-situ
[KFG+14]. inactivation [KAKK19, Pie12]. inbreeding [Cam15, YK11].
Incentives [Akç12, Arc11, CSZT12, TLW18]. incidence
[KMCJ17, PGGvdB12]. incidences [KHB+18]. inclination [TSdL14].
inclined [PC17]. include [CK19, FHSG15, HP12]. including
[AAJ15, CN10, FIS11, FIS16a, GCSMMG+12, MP13a, MP13c]. inclusion
[KDMD13, TWH+13]. Inclusive
[OWB14, Tay13, Arc13, Mar11, TGL15, vVGSE12, vVLS14]. incoherent
[YS14]. incompatibility [Cut15, VSLVB15, YI16]. Incomplete
[BLNR15, bCRS17, TEY10, TEW12]. incompletely [KSP12].
incompressible [LZWK11]. inconsistency [SN11, SN14]. incorporates
[ZGW16]. Incorporating
[CG14, OABH12, BRK19, CTJ10, CMS+19, CL13a, CCY+19, CT18b,
DHS+15, EG10, FL12, FL13, FLW16, HYA14, JLX+15, JLQ+19, JD17,
JCG15, JCG16, KHK17, KZL14, Kri16, LZ18, NBL14, QLC+18, SM18,
WMK13, WTC16, XDL+15, YSL16, ZCA17, ZK18, ZNA+16].
Incorporation [BUC14, PFPR11, APW10]. incorrect [RMB15]. increase
[OO11, RT19, TSB10, VMK+19, WMT10]. Increased
[HBEW12, PVCE18, ZZL19, Gri15b, LNH13, ZGW16]. increases
[Bar11, CNDK15, Fra19b, GSSBF18, HPvdB17, yTRSC13, ML11a].
increasing [AK15]. increasingly [RW14b]. incubation
[GMS+13, KN11, NI11]. Independence [Gal10, TSB10]. Independent
[FD17, Ell15, LZY+15, Mun12]. indeterminate [PLD+17]. Index
[WF17, CXT19, PCB14, SNA+13]. indexes [Su16]. India [MFP+14]. Indian
[MCCC+10]. indica [TV18]. indicate [ARB13]. indicates [SN17, YM14].
indicator [GT14]. indicators [DSTD19, Do16]. indicaxanthin [TV18].
indices [ACdlRMR+11, FBAPMD13, WF17]. Indirect
[BBD18, GN15, MJ14, NO14a, NO14b, TSM13a, TSM13b, CB16, DLM+19,
FB12, KDG13, MHC16, Mas12, OSN18, Pan11, Sig12, US10]. INDISIM
[GGGM16]. INDISIM-Paracoccus [GGGM16]. indispenasble [LPS+14].
Individual [BBWS+13, DBG18, GW13, HS14b, IMD16, STI13, SH17,
AMSSG16, BGD+13, BC13, BLS+17b, DB19, Dim10, DFD+14, EPP19, Fil10,
FGSL10, FM15b, GCM17b, GGGM16, HFT+18, HMM16, JB11, KKO+18,
KAKK19, LP14, MCL19, MFG14, MPNP12, NNH+16, QMJW15, SMG18,
Skl12, TKKE19, YS11, Zuc14, vLSBB11]. Individual-based
[GW13, IMD16, SH17, GGGM16, MCL19, SMG18, YS11]. individual-cell
[MFG14]. individuality [KC13]. individualized [RD14]. individuals
[CWM11, FS16c, HSMMCR19, HR12, Mas14, MP13a, PGH11, TA15,
VHM+17, WCM15]. individiuated [Vel17]. indivisible [KNT10]. induce
[ESG+16, MGT17, TS10, ZYD15]. induced
[ASH15, AGC18, AP13a, BCKS13, BKL+15, BGD+13, BKPV15, CKZ+17,
CFF12, CXT19, CL18, FBK11, FPG11, GKMC10, GMNY14, GL12b, HKH18, IC11, Kar16, KKWA18, KTT+19, KK18, LHD15, LWRE14, Lee16a, LXZQ14, LMM18, LMDl11, LL17b, MB17, MNH+12, MPP+18, MZMM+14, MSA+16, PRM11, PHTP+12, PDNP16, PJ18, PRN10, PBD11, RBSD10, SS+18, SXZY12, Ste12, SDL+17, TST+13, YFZ+19, ZLL17, ZMS17]. *Induces* [Has14, MMC19b, NS18, SSS17, SY12]. *Inducing* [CWP+18, NS19]. *Induction* [CKB19, DWG+19, GJ16, STA15, SPMGR10, VG13, ZLT+19]. *Inductive* [YFZ+19]. *Industry* [RFME+12]. *Inertial* [RS12, VDH+15]. *Inevitable* [TLPH11]. *Infancy* [BFGAGA16, PR17]. *Infanticide* [LPvSP11, LPvSP12]. *Infants* [SEK+10]. *Infected* [CLK18, Gru18, HII+19, LFB+16, LLD+17, MB12b, STA15, SPMGR10, VG13, ZLT+19]. *Infection* [RW12, AWK15, CWM11, CKZ+17, CL17a, CM12, CXT19, CH16, CDK11, CS14b, DJD10, DL16, FCC+10, FGH+14, FHS+14, GPKB13, GM16a, GC18, GN10, HT19, HY19, HN19, HHA+13, HAH19, HVM13, HTK12, ITR+18, JMH+19, JEA18, JCM13, KMN+15, KOS13, KNA+18, LAH+16, LGK+09, LGK+12, Lev14, LLW14, LMYL15, LM14, LMCW18, LCT11, LBZ18, MRPH17, MK19, MMLK11, MSE+14, MMP13, MG15, NBCC18, OMO13, PDRC16, PRN10, PCC15, PSL+10, RV14, RMF+18, RM10, RW14a, RS14c, STN19a, SBR10, SW11, SPRF13, SMA11, SAM17, SLJ+10, TB18, VDD12, WW12b, WRY12, WDL+17, WCM15, XSTW14, Yan10a, YCH+17a, YCH+17b, ZZL19]. *Infection-induced* [PRN10]. *Infections* [TGC+17, ABKS11, BN15, BMB+18a, CMD+10, CH18, Gru18, GKG+18, HE16, Hur12, LH14, MBC+12a, Ns12, Ric17, SDT17, SCC11, TB18, VAG16, Voe18, WXWL12, WBMH12, XD+19]. *Infectious* [AL17, BB10, CT18a, GGL+16, GMR16, HH14, IMW15, JHI11, RSH19, RD12, Ros11, SBK16, TXY+12, TDW16, WW12a, ZZL19]. *Infectivity* [HR14, KN11]. *Infer* [BFT19]. *Inference* [AUY16, BSKV18, GRI+19, Bac15, BP18, BS+13, DN18, GK16, GMR16, IS12, JB11, LKO+17, MS14c, NdMLBL13, OGE10, SMD+16, SP15, SS15d, Ste13, WS10, XSA17, ZT16, ZSSM14]. *Inferences* [ELL15, TF15]. *Inferior* [NPM1M15]. *Inferring* [AGRRTR11, AMRI10, BMB+18a, eCR17, DRPM17, KDS18, LBB+13, PHP18, RRTR12, RNN15, TLS+13, SLT+18]. *Infiltration* [KF10]. *Infiltrative* [DTGC14]. *Infinitely* [Hay16]. *Inflammasome* [VLPH17]. *Inflammation* [AN10, AES+13, BFJ+18, MBBV14, OPS+19, SCA13, WBRHE10, ZFWK17]. *Inflammatory* [CSR15, LW14, OSV+16, PYG+19, PMKS+15, RZRSC19, RE10, SCLA10, WBRHE10, WLL+14]. *Inflected* [Mog15]. *Inflorescence* [SSI+16]. *Influence* [BGM19, CCB11b, CZ1+16, FKK14, Gau11, JOM16, Kro11, PCBMM12, SLJ+10, WW12a, WSLC14, WML+17, ZCSRG12, BKR14, BBH11, CBBO16, CTB18, DI13, DCR18, DvDBD15, Edu16, GDF17, GPR+16, GY18, IPS14, MBPS17, MKB+11, NHE+16, NDG14, NZZ19, PPM12, PMP13, PB18, RM10, RS14a, RRB10, SCLA10, SP13a, SS15d, SLS17, WGS10, ZW16, dLMD+11]. *Influences* [SHvHB16, HR14, Ing16, MM18, PG11]. *Influencing*
Insilico inspired [AANF16, LA15, LDJW16]. Instabilities [GGG12, NvHM13]. instability [AK16, AcvKA10, CST12, EJK16, GF11, KGM15a, SA17, SAG19, SYR11, TIMI15, Van15, WHH17].

Insulating [UJLG14]. institutional [CSZT12]. Insufficiency [KI17]. Insulin [Goe15, BSR14, CTW10, GdGL17, GA14, GS17b, HWD14, HBA17, LLB18, SW13b, SW19, SA14, WCHC11].

Insufficient [LLB18]. insulin-dependent [LLB18]. insulin-mediated [GS17b]. insurance [SDJ15, TLW18, ZCW13]. intake [LLK14, WSRG18]. integral [ABIM10, BGL19].

Integrate [HTK18, CP14, LLW15]. Integrated [FTPN10, MB18b, SW19, ACH18, DKP18, FP18, HWPL12, IHNS16, MVGGB18, PG10, RPQG19, SAKG13, TCT10, WBB18].

Integrating [APBS15, CLA16, YYST13, CRGS18, LLW18, PCL15, STG19, SZ10, YLWZ10, ZL18a]. Integration [BS13, KSA16, Ben14, Che14, CV15, GC18, Jen10, KJH19, LNL11, PW12, PPM12, RB15, VC10, VM12].

Inter-airway [Don17]. inter-annual [STLJ18]. inter-base-pair [LF10]. Inter-base-pair [LF10]. Inter-filament [RG18]. inter-host [CL17a]. inter-individual [LP14].

inter-nucleotide [LLL17]. Inter-residue [HH13]. inter-species [TCR13]. interact [HPM17]. interacting [BGKL17, FS16c, HBSF11, JSB15, Lab16, MPY14, MK19, PDM17, Thu15, WCSA12]. Interaction [JC10, KC17, LS14b, PJL14, XLSF19, ARG14, AEZR16, ALM19, BJZ18, Boc12, BLS12, CZW11, CK19, DS15b, DK13b, DSPM14, EBE14, ER18, GI10, GCG14, HNL11, HVSZ10, HYZ14, HH13, JB19a, JR17a, KSK17, KS10, LS15a, LWB15, LX10, LL12, LCJ10, LY18, LMJ18, LSL13, MMY12, MIl18, MG14a, MR12, MG13a, MMCZM12, MA11b, ML11b, NAk14, NLL14, NC15, PCR15, PL14a, PL14b, PM17, PSAA13, QW12, QZY17, QJR16, RAF19, RAR19, SW15, SAB19, SN14, Sm11, SF15, SAD14, TIMI15, TG10, TRJD19, UI13, UPWK15, VL11, WD11, XMWC13, YWW14, ZMAM19, ZJSC16, ZT16, ZLB13, Zho11].

interaction-based [UPWK15]. Interactions [ADV10, BBM97, BYM18, KCMF11, Mal17, XSMF12, APBS15, AP17, AES13, ATC14, BPC15, BST14, BS19a, BH11, BSR11, BBM13a, BBM13b, BBM13c, Bon10, BR12b, CVH10, CW13, CCS18, CMCS18,
intra-tumoral [PDF18]. intracellular [AHW13, BTO14, CCF+14, CKN+12, DCN13, GN10, GDB+19, LXZQ14, MDEKH13, MLT10, MK18b, NS11, Nak16a, Pel18, SBJ+18, STX+11, SPL14, TC11, WTC10].
intracellular-to-extracellular [SBJ+18]. intragenomic [Sak10].
intraguind [AF10, SvK12, VA10]. intrahost [MSE+14]. intraluminal [VF12]. intramammary [GKG+18]. intramembranous [CGRGRM+16].
Intrinsic [DCS14, LYW11, GLF+15, HFT15, IU10, KFW12, Lei09, Lei10, MPM10, PR18, PMD+18, RCL+10, RSC14, THC+11]. introduce [SPA18].
introduced [BGM19]. introducing [SGCD14]. Introduction [GKK13].
invariance [BP15]. invariant [DM15, GGL+16]. invariants [KMD+12]. invasibility [PC10a]. Invasion [AP19, BV12, BWY+17, BSL+17, BDR10, FNH10, MMG+16, NP15, Ros11, ACMK12, BCF+16a, BPR15, CC11a, CNL14, DE17, DTGC14, ESG10, FJC+10, GCSPI7, GFM+19, GRBL13, GP12, HPM+17, KPEK14, MKKS14, MGGM10b, MLCH11, PAS10, PH13, PM11a, SMS17, SSZB15, SP13a, THC+11, WB19].
Invasions [Bal10, VIBC12, BWBS+13, LK19, PR13]. invasive [AP19, BJPP12, CPV16, Dra19, MSP19, MJV16]. invented [KK12b].
Inverse [RBB+12, Dol16]. Inversion [RMRC+16, WeW14]. invertase [Sel12a]. inverted [BRB18, SNC12]. investigate [APBS15, ACM16, LPP+19, SH15]. investigated [KGM15b]. Investigating [AHD+18, AGC18, KGM+15a, MH14, PMK15, TK10c, HPB+14, HWGT15a].
Investigation [AHJ+18a, HL14, SCLC13, YIS+17, EH17, FKMP10, HBA17, KMM18, KAN11, LBS+10, LBS+11, LBW+13, MFMB12, PZS+10, PDW11, SEK+10, SVA18, SSR16, TDT16]. investigations [GAY+15]. investment [AOR17, BHR10, ER12, FPD15, LyBJ16, MG17, TD17, WRC+19].
involving [AN13, KSTU+18, KTT+16, A18]. iodine [KSM+15]. iodine-enhanced [KSM+15]. ion [Bec14, CPGF+16, CN12a, HZC+10, LSP13, LD11, LD18, MFZ18, MSCO10, PDG17, ZZG+16]. ionizing [LHD+17].

J [AEM14, BPF15b, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11, CNC+12, DBBW11, EPJ+11, FIS16a, FS16a, GZ14b, GS14, dOGL13, Gün13, JN14, JRG14a, JRG14b, KDK14a, KMLT14, LBS+11, LGK+12, Lei10, LZF13, LHPF18, LPvSP12, ML12a, Mei13a, Mei13b, MLBA13, Mul12, NO14a, PSS+13, PL14a, RRC+11, SCABM11, SZ16, SC13a, SRAL12, TSM13a, Van16b, WL12a, ZG10a, ZSCL16a, ZZR13]. J-Theor [YCH+17a].

lectins [OSV^{+16}]. \textbf{left} [DPCM16, Gra18, LE19, She11b, SWSLMJ19]. \textbf{left-hand} [LE19].

\textbf{left-handed} [She11b]. \textbf{left-right} [SWSLMJ19]. \textbf{leg} [BAM^{+15}, BBJDS11, SS15b, SS15c, SS18]. \textbf{legacy} [O’M17]. \textbf{Legal} [RFME^{+12}]. \textbf{legged} [MS14b]. \textbf{legs} [ARB13]. \textbf{Leishmania} [DJD10, SMJS14, WWIG19]. \textbf{leishmaniasis} [SYSF17]. \textbf{Lempel} [YHY14, ZLY14].

\textbf{length} [SH16, AJC12, ABĐ^{+11}, Don13, EBX17, GSV11, IST11, Kee10, LSC^{+18}, MZWC10, MR10, Pon12, Por13, RG18, SCLC13, TSB10, THBM10, WC10]. \textbf{length-biomass} [MR10]. \textbf{length-dependent} [GSV11, THBM10]. \textbf{lengths} [CS15a, JB18a, POLT12, SS12a, TSB10, YW13a].

\textbf{lens} [SSLB15]. \textbf{lentiviruses} [VCF^{+19}]. \textbf{leptin} [CVPCV^{+15}, KSU^{+18}]. \textbf{lesion} [KDMD13].

\textbf{less} [HII^{+19}, MG17]. \textbf{Lessons} [TXY^{+12}, Tjs10, AK15, CEdLSG^{+16}, PGGvL^{+19}]. \textbf{lethal} [Bon10]. \textbf{lethality} [TMM10]. \textbf{Letter} [ARD12, JN14, JAHKH12, Kir11, gSxFH^{+12}]. \textbf{leukaemia} [CMS16, SBM^{+19}]. \textbf{leukemia} [KEG17, NSH^{+10}, ZCT18]. \textbf{leukocyte} [GMNN18]. \textbf{level} [AHJ18b, ANY14, BB13, GBRS19, HBW^{+11}, JCG15, KB10a, Kon12, MN11, NBBCC18, NZW15, NBW11, PDB^{+15}, PNP^{+16}, PDNP16, RRC^{+11}, SC10a, SL10, SCC11, SFD12, SP16, SBS14, WST16, XGZ17, YG18, vLSBD11].

\textbf{levels} [FGLS10, Jam14, Jam15, TM12, YST14]. \textbf{Levy} [EPP19, BC15, CHL^{+19}, Han12, HS14c, Rey13, RSC14, RPCW18, TA15].

\textbf{LGT} [SMC17]. \textbf{L’Homme} [LCCB11]. \textbf{Lie} [SFSJ12, Sum13]. \textbf{Liebig} [GVCG12]. \textbf{Life} [BBW11, BDE^{+14}, CBC17, DBB14a, SSD12, Tox19, Bau18, BZA16, BI10, BBBD13, BHLH12, CLG^{+10}, CLG^{+11}, Chu10, Coo16, Dai12, Di 19b, Di 19c, Do16, DMSW10, Fil10, GS13a, GS14, Grit15a, Han10, HIT18, JMJ13, KMH19, LCCB11, LG12, MCN10, MP13a, Mau15, MLT10, NNH^{+16}, Nik15, NK10, OT13, Pia19, PBD11, RRRB15, RRV19, RRR15, Sat10, SMG18, Tox17, TRJD19, WV10, WSK^{+19}, XSMF12, YYST13, tBdR18].

\textbf{life-course} [BBBD13]. \textbf{life-cycle} [LG12, MLT10, XSMF12]. \textbf{Life-history} [BDE^{+14}, PBD11, SMG18, TRJD19]. \textbf{life-Symmetry} [RVP19]. \textbf{Lifelong} [BCPL10, MS13]. \textbf{lifespan} [KTI18, KS15, Nei14, RRR15, SKK^{+12}].

\textbf{lifespan-shortening} [SKK^{+12}]. \textbf{lifespans} [HZW^{+14}, KBV12]. \textbf{lifetimes} [PA11]. \textbf{lifetimes} [PC13]. \textbf{Lift} [JLH^{+15b}]. \textbf{ligament} [SGAM12]. \textbf{ligand} [ACHS19, CML11, FCS18, HWW^{+14}, KG12, KC11b, QQJW13].

\textbf{ligand-binding} [ACHS19]. \textbf{ligands} [AH12b, GDPPSS^{+11}, WB15, YNY^{+10}]. \textbf{ligase} [PRH^{+11}]. \textbf{Light} [Jen10, ACHS19, CFL^{+15}, HWGT15b, KSP12, LRL^{+16}, LLI17b, MZ17, MSC10, MCL^{+11}, OFT15, PKL12, SM17b, tBdJ11]. \textbf{Light-dependent} [Jen10]. \textbf{light-induced} [LL17b]. \textbf{light/dark} [LRL^{+16}].

\textbf{lignin} [BMN16]. \textbf{like} [AES^{+13}, AOT^{+11}, ABK^{+12}, CHH10, DQY^{+15}, DZE11, FPG11, KFG15, KS14, LC17, LFM11, Mas14, RGP13, SSKK17, VPDP^{+14}, vNÁBG12].

\textbf{like-minded} [Mas14]. \textbf{likelihood} [BFLS17, GFH19, HC17, LSC^{+18}, MKF^{+14}, SENS^{+17}, SC10c, UAL10, WZ15].
likelihoods [HS11]. likely [Ber14, CHL+19]. limb [CSB15, GBN14, Pon12]. limbs [GP11a]. limit [GF11, MGCL13, Uit11]. Limitations [GSCS11, BH12, FE11, GMMGVD12, LHD+17, MP16]. Limited [Chu17, CNDK15, HKM12, IH17, BBD18, HWGW18, Jab10, KFA12, KST17, Lar16, LCCC10, MS14c, SSvdM10, SI19, SYSM11, TGB+18, YSYI13].

many-player [GT11b], map
[Car11, HGM15, IMa14, MCM13a, NvD17, OABB18, TWP16, WDL+13].
map-based [MCM13a]. MAP1B [KK17b]. MAPK [KFL12, ZG10c].
Mapping [BJJR10, DRC11, FK18, FWW+11, KSM+15, Mgs15, SQZ17].
maps [Bec14, FHI13b, GMK18, RNVP10]. MAPT [HRHAA15]. March
[IS17]. marginal [Di 17a]. marginally [Bro13].
margins [HBT13]. Margulis [CB17b, LP17, Sat17]. Marie [AKR+18]. Marie-tooth [AKR+18]. marine
[KG13, MP13a, MROS15, NNK10, TM14, Tak16, VAT18, YSY13]. marital
[MMC19b, ZSW+14]. marker [MKBE17a, MKBE17b, MKRE18, TF18].
markers [DQS+15, FMS+10, Mor11, PHTP+12, Tal12, WCC14]. market
[Ant13]. markets [Bar11, MLMG+15, Ran12]. Markov
[BCFR10, CJKR10, CPGF+16, CSM+14, FLGGD+14, HM11b, Jia16, LYF+15, MC15b, RLF+12, RLFS18, SG15b, SFSJ12, Sum13, TSS16, UBP12, ZLW16]. Markovian [LZT13, ACT12, BBR16, LZZT12, PHK15, Veg10]. marriage
Maspin [AMFR+16, AMBH+13]. Mass
[FT12, Mac11, CDD12, CRO18, DDB17, EN15, HPP10, Höhl15, Hor11a, LLG16, LS18, MKBE17a, MK14c, PIPP10, POP12, SSME10, WSRG18, Woh15]. mass-extinction [Höhl15]. mass-recruiting [Cro18]. mast [TI13]. master
masu [BIT18]. matching [AdVG15, ESS19, MBBD13, ZLZ+15b, ZLZ+16]. Mate
[MM18, WSW10, BB18, CC11b, HL15, NT14, SL18, T12a, YK11].
mate-finding [BBB18]. material [CW11a, Fil15, GSF13]. Maternal
[FPD15, FGH+14, Fil15, Jam14, Jam15]. mates [SBJ13]. Mathematical
[ASC15, AOM19, AP17, AM12, ADR+11b, BCPM+16, BB19, BHO+18, BJ18, CWM11, CDO17, CSDK15, CWB+17, CKB18, CSS+18, CSK19, CSKF10, CHN+15, CDGV10, DGTN17, DBM+18, DPC15, DTCG14, FBC12, Fok12, FM13, FLJ11, GT11a, GE18, GBJ+11, GSS19, GMB11, GCCY18, HK17b, HMT15, HIR16, HHE19, HBA17, IBB+15, IvLP12, iTIM15, KCMF11, KMKZ18, KSS11, KL17, KdJR18, KPEK14, KSK+16, LF19, LBGM16, LSM+14, LMHF13, MOEd16, MRF19, MVH11, MFL+18, MK16, MSA+16, MTL+10, NKB16a, NPM15, NTO16, PH13, PA19, PRC15, PMS19, PVGV19, PL+17, RMM+16a, RZRSC19, RKMGI12, RGL+17, RBB+12.
SRK$^{+12}$, SBM$^{+16}$, SNY$^{+17}$, SDT17, SBW11, SSM$^{+18}$, Sht17, SD16, SMA11, SSR$^{+19}$, SRH19, SW13b, SPL14, TLL$^{+12}$, TRM$^{+14}$, VHM$^{+17}$, WVO$^{+15}$, WCM15, YCL$^{+17}$, ZARK19, ZLZ15a, ATK10, ANGPB12, ABR19.

mathematical [ANK10, ABH$^{+11}$, AHMA$^{+19}$, ABV19, Ano$^{10-29}$, AHFA14, ALH16, ARM18, BRK16, BTR18, BCPL10, BPP$^{+16}$, BB$^{+10}$, BTH$^{+13}$, BSM$^{+14}$, BPS15, BTF19, BGD13, BSR11, BCF16b, Bue15, BMGC11a, BMGC11b, Bur19, CFS$^{+19}$, CVH$^{+10}$, CPW16, CFP$^{+13}$, CCG$^{+18}$, Che12, CWP$^{+18}$, CKN$^{+12}$, CCAdS13, DG11, DL12a, DMP15, DLHS11, DHT16, DFG$^{+18b}$, EPJ$^{+09}$, EPJ$^{+11}$, FB$^{+12}$, FKW15, FBU11, FWLW11, GKM10, GLR$^{+18}$, GA13, Ger16, GTC19, HL11, HI19, HHS15, HLVR16, HBA10, HGO$^{+18}$, HGM$^{+16}$, JMH$^{+19}$, JSDEK14, KSU18, KBE$^{+13}$, KJ19, KHN16, KF12, KC$^{+15}$, KS16, KK18, Tac10, TW$^{+18}$, TDHC$^{+18}$, TEY10, TAL19, TT17, TDM14, TK10c, VK12, WXWL12, Wod18, WBB$^{+18}$, XY15, YK$^{+16}$, ZCS$^{+15}$, dSKB10]. **MATHT** [SLW$^{+18a}$].

Mating [LPvSP11, LPvSP12, Ant13, BWB11, BM14, BAR14, CC11b, FH13a, GGM12, HT16, LG18, LF13, MO12, NH12, ZK$^{+10a}$]. matrices [RLSF18, Sum13]. **Matrix** [AH16, Bue15, DLL$^{+17}$, ESGA15, GCM17a, HSMCCR19, HH11, KPK$^{+13}$, KKH10, KHK$^{+17}$, KC17, PDB$^{+15}$, PNP$^{+16}$, PDNP16, PLN14, POP$^{+19}$, PSA13, QLC$^{+18}$, SLDP13, WY$^{+17}$, WZY14, ZSZM14]. matters [Das12, Gau11, PCBMM12]. Maturation [BT17, BI12, LZT18, PBD11, WSRG18]. mature [BLZ$^{+19}$, DKR16]. maturity [ZZS19]. max [BB$^{+12}$, MKF$^{+14}$]. max-plus [BBRT12]. Max-SAT [MKF$^{+14}$]. maxima [RG18]. Maximal [FS16b, HK16, MPP16b, CHL$^{+19}$, JD16b, LYF$^{+15}$, Mic15b, SSB$^{+15}$]. Maximization [BCBD19, Arc13, LPF11, OWB14]. maximize [SWR11]. Maximizing [AR12, KOS13]. Maximum [BH13c, LSC$^{+18}$, MKF$^{+14}$]. Maximum-likelihood [LSC$^{+18}$]. May [Ano$^{10-27}$, Ano$^{10-34}$, Ano$^{11-47}$, Ano$^{11-30}$, Ano$^{12-46}$, Ano$^{12-35}$, Ano$^{13-30}$, Ano$^{13-27}$, Ano$^{14-30}$, Ano$^{14-33}$, Ano$^{15-39}$, Ano$^{15-29}$, Ano$^{16-39}$, Ano$^{16-38}$, Ano$^{17-41}$, Ano$^{17-34}$, Ano$^{18-28}$, Ano$^{18-37}$, Ano$^{19-48}$, Ano$^{19-43}$, CR14, CW11a, DI13, Di12, EVRE14, GL18b, GBM18, HNP18, MJI14, POP$^{+19}$, SS15b, SS15c, TGC$^{+17}$, VGZ18, WR14, YY18]. **MCF** [OOY16]. MCF-7
metastatic [BH13c, CBGS18, HP16, WMN18]. methane
[BGF+14, vLFM+19]. methanogen [WJL+16]. methanogens [LWvB+19],
methicillin [PDW10]. methicillin-resistant [PDW10]. methionine
[VHM+17]. method [BPM+12, BTK15, CJ12b, CTPB10, DLYW13,
DYQ+14, lDsWM+15, FHW+10, FYZ15, GJ15b, IGLLL14, GGCJ16, HAYA14,
HLHY17, HYZ+15, HZWH10, JZZK11, Kha10, KGB13, Kon12, KK17b,
LZL+17, LMJ+18, MMG+16, MAR+17c, Opr10, Ou19, PAK11, PNP+16,
PRSC11, PWHW16, QQL10, QQJW13, QLWC19, RBMS17, RP18,
SDRA+15, SMS19, SQS+12, SQZ+16, TLY+19, TAB+13, TP17, VACGF17,
WTQL10, WYL+19, WZ17, Wu14, WGH+14, XGZ17, YG18, YC13, YC15,
YDC+13, ZTWL12, ZKHL16, ZZC+17, ZDY11, ZK10b]. methodological
[JPDP10]. Methods
[GLR+18, OBHS19, Boc12, DGW+18, DEK15, Jab15, KOF+14, KCD11a,
LYZ+18, MSM+14, MHKA16, MSS10, PDB+15, PWC+12, Ros10b,
RCD16, SCF+12, SBB14, TMD14, WH14, WP17, XWW+14, dlCGSA16].
methyladenosine [AH18, ZZN+19]. methylation [BSB+13, JCG15,
KKD18, LZA+19, MPC12, PRN10, SQS+12, TTC19, ZARK19].
methylycytosine [SIK+18]. metric [GKNT10]. metrics [CA17].
metronomic [BH13c, HL18]. mevalonate [DGW+18, PCS+18]. mexicana
[WWIG19]. Mexico [OL19]. MFSC [AH19]. MGMT [BSB+13]. mGneg
[CXC18]. MH [WXC10]. MIA-QSAR [MR18]. mica [Han10]. mice
[AGC18, BTF19, LBW+13, SNY+13, TTB+18]. Michaelis
[JJ18, OM10, Van17a]. Micro [PMSY17, GWE11, MAM16, SK15].
micro-habitat [GWE11]. Micro-scale [PMSY17, MAM16].
micro/nanoparticles [SK15]. microalgae [AK15, BBS10, FGLS10,
GCSMMG+12, MMB18, NHS+16, PBR17b, PP18, PP19]. microarray
[GGCJ16, KHX+19, OGE10, PS13, XSKA17]. microbe [GW19b]. microbes
[BID15]. Microbial [Aya12, SKS+19, Ber14, BSL+17, BWL12, CG10, DG12,
DDP12, ESE15, FXML18, FE11, ISM+11, Jus11, KFA12, MB18a, SCH+19a,
SII1b, SY17a, SY17b, SBS17, VBV10, WPPD16, WSTL16, XDC+11].
microbicides [DBBM11]. microbiome [HI19]. microbiota
[LPP+19, MTLW+10]. microchannels [SP13a]. microcircuits [RNN15].
microcirculation [LHW14]. microcrack [POLT12]. microCT [KSM+15].
microdamage [SAB10]. microenvironment [CMHM19, CLA+16, KL18].
microenvironmental [TL14, CL19]. microevolutionary [SBJ+18].
microfibril [HB12a]. microhabitats [HSR12]. Micromechanical
[FAFA17, WYL+18, dB14b]. microorganisms
[GI10, KK15, NNvdB17, ZG19]. microridges [LWY+16]. MicroRNA
[LW12, AT12, HW11, LF17, LFW+15]. MicroRNA-mediated
[LW12, AT12]. microscale [PMK15, Str13]. microscopic
[CSM+14, DTP19, GAV15, GHS18, METC12]. microscopy
[KKO+18, TPK14]. Microstructural [NF14a, PMD+18].
Microstructurally [PMD+18]. Microstructurally-based [PMD+18].
microtopographies [Alv19]. Microtubule
[WdVMD15, BB15, HCK+11, MAFK12, SSZR17, WHH17].

microtubule-based [MAFK12]. **microtubules**

[AAJ15, CN10, DEK15, DL15b, SA17, She10, SPL14, THBM10].

Microvascular [CR19, EBP15, PA15]. **microvasculature** [MP19].

microvessels [KCJ+11]. **mid** [KMH19]. **mid-life** [KMH19]. **Middle** [EAN14, LCJ16], **Mig6** [ZZ18]. **might** [DMCP14, Har15, SGHS19].

migrant [WW12a]. **migrating** [AA12, MSBB13]. **migration**

[ASL+18, Bon12, BMB+18b, CML10, CCS18, CNDK15, Cox10, DMO+17, GOMP12, GFM+19, HBEW12, HPM+17, HYQ+16, KCS16, LFZN11, LZT12, LZT13, Lun13, MPBS17, MPS16, MFG14, MA10, MK16b, MDD13, NIiT19, NCLB16, NP15, NdiPZA10, PGG+15, RPD14, Sch19c, SLJ+10, SN17, TD18, WHR+16, WW12a, WCW15, YiTS19, vLSBBD11]. **Mildvan** [TMF17].

milieu [LHW14]. **milk** [Sil16]. **mimetic** [GWE11, SFT14]. **mimic** [BTR18].

Mimicking [SKD+10, SABB15]. **mimicry** [LBJ13, PS12, Ros15, PS12, Yam16b]. **mimotope** [SQZ+16].

mind [EM11, Nik15, PW19, GDPPSS+11]. **MIND-BEST** [GDPPSS+11]. **minded** [Mas14].

mineral [CKS15, DDS13]. **mineralising** [WPPD16].

Mineralization [MH13, VH11b]. **Mineralization-driven** [MH13].

minimalistic [ABKS11, IDI11]. **minimaxity** [MKE15].

minimisation [Bac15]. **minimise** [CPV16, CHN+15]. **minimization** [BRP+18]. **minimize** [FR17]. **minimized** [Mas16]. **minimizing** [KOS13].

Minimum [Sat14, SWTO15, FYZ15, HB12b, KPK+13, QZY17]. **Mining** [HZL+11, CDC18]. **minnows** [HCH18]. **minor** [MKF+14, NYSM12].

minority [JZ17]. **miRNA**

[DHBS19, FD17, HW13, HZL+13, SFMS16, SCKL15]. **miRNA-miRNA** [SCKL15]. **miRNA-miRNA** [HZL+13, SFMS16]. **miRNAs** [HZL+13, WHS+10]. **Mirror** [LYK12]. **miscarriage** [Jam15]. **misleading** [HC17]. **mismatch** [BCKS13, SEK+10]. **missense** [MPP+16a, RMM+16b].

missing [RBRB15, RBRB16, SPH12]. **misuse** [HS14b]. **mitigated** [BTW11, Kari16]. **mitigating** [KdlRJ18, TXY+12]. **mitigation** [MPLK14].

Mitochondria [HK17a, Har15, HBSF11, Sel12a, Sel15b, VHS17].

Mitochondrial [KDK14a, KDK14b, Rad16, BBR10, GA14, OTTF11, Sel11, Sel12a, Sel13, Sel14a, Sel15a, Sel16, Sel17, SB15]. **mitochondron** [YLWZ10].

mitomiRs [VHS17]. **mitosing** [LP17, Mar17a, Sat17]. **mitosis** [SK10, SP14, WKS14]. **mitral** [LCA+15]. **mixability** [LPF11]. **Mixed** [ŠKRWR16, ZWC+13, ASGE14, BSV+10, CMD+10, KSP12, MO12, NWWL17, Pag19, PCC15, RRB10, SCC11, SNCM12, TBB14, UI10, WL19, ZDF+12, ZLW18, ZKI10b]. **mixes** [MPP+14]. **Mixing** [YSU17, FHSG15, MPLK14, Rad16, TLPH11]. **mixotrophs** [CG10]. **mixture** [PPT+16, VZB+15]. **mixtures** [QLWC19]. **mLASSO** [WMK15].

mLASSO-Hum [WMK15]. **MM** [ZZ18]. **MM-PBSA** [ZZ18]. **MMP** [SMS17]. **MMP-TIMP** [SMS17]. **MMPBSA** [KJM17]. **MMTV** [Mic11].
mobile [RW16, TA15]. mobility [BV12, IH17, MAW12, MP13c, PTC13, SK11b, XTZ+13]. mobilization [SW13b]. modal [RSC14]. mode
[BI12, GL18b, KHH+17, LD11, MZA119, RW15b, WSJC14]. mode-locking [WSJC14]. Model [ACH18, All11, BS15a, Das13, DP13b, FHS+14, GCB17, KBV+15, LKO+17, LL14, LSLL13, MB18b, Mor10a, Mun12, NAK+11, NF17, OA15, PAVG12, RS11, RG12, SBR10, SGS15, SS15f, TT17, WBRHE10, ZKMB19, ACR+17, ABB+19, AAAV14, AV19, ACT12, AHD+18, ABKS11, ANH11, ATK10, AHW13, AJD11, AMBH+13, AMFR+16, ANGPB12, ABR19, ABR11, AA12, AWRD15, ABH+11, ABV19, ABJ12, AdiPLMZ13, AP13a, AM12, ABN15, AR17, AHAF14, AHJ18b, AP13b, AN17, AOT+11, ABK+12, ASF+15, Bac15, BTR18, BSB14, BPS19, Bal13, BBR16, BKR14, BP18, BB15, BFJ+18, BBJ+10, BTH+13, BTG+15, BBR12, BF13, BFR14, BF15, BGKL17, BS+10, BJJR10, BBS18a, BB10, BCF19, BKL+15, BGF+14, BHBH11, BDID+12, BSM+14, BB10, BPS15, BHH+14, BT19, BM10, BSR+11, BSS11, BCF16b, BS+13, BLS+12]. model [BR14, BM+14, BCPG18, BBRT12, BDR10, BJ17, BZ10, BC13, BMB+18b, BPGS12a, BPGS12b, Bue15, BHS11, BMGC11a, BMGC11b, BFGAGA16, BCS+16, CHL+19, CJKR10, CS11a, CCS15, CRGSL18, CFMC13, CVH+10, CPW16, CN10, CT15, CDO17, CKZ+17, CC11a, CCB11a, CTJ10, CGV+15, CMS+19, CCG+18, CC11b, CAGM+17, CL17a, CFZ14, CN12a, CS11b, CK16, CHH10, CKD11, CJRR11, CW15b, CWP+18, CKB18, CH16, Che14, CK+12, CK15, CBJ15, CTB18, CFF11, CMMH19, Cm10, Ch17, Cle16, CA17, CB16, CG14, CV19, CZFC+18, CGRRGM+16, CAA11, CMJD11, CFR+14, CMR+18, CRO18, CMS16, CMMG17, CEKM+19, CKS15, DF+14, DS15b, Dal17, DJ10, DDM12, DS19a, DG1, DBBW09, DDBW11, DLSD15, DH16, DAVS11, DGNT17, DB19, DL2a, DAA17, Di i3b, DROC11, DHPP14, DCN13, Dim10, DGRB13]. model [DPC15, DI10b, DDL19, DDB10, DHRA10, DTP19, DLHS11, DWG+19, DDSWD13, DFG+18b, DJJ12, ESS+16, E1G10, EBS11, EHD10, ESW13, ESE15, EPI+19, EP11+11, E1J13, FD18, FIS11, FIS16a, FZ14, FS11a, FE10, FM15a, FKB+12, FBFD15, FB11, Fok12, FLR14, FBM19, FRG+13, FM18, Fra16, Fre10, GSRR17, GLR+18, GCSP17, GLR+17, GFH19, GCSMMG+12, GJ11, GMOP12, GM19, GA13, GG19, Ger16, GTC19, GI10, GW13, GTB10, GW19a, GLOC10, GdGL17, GAP10, Gol16, GCC14, GBJ+11, GS17b, GGGM16, GC16, GMN18, Gri15a, GT15, Gri11, GAV15, GDJC11, GS+S+11, GW12, GHS18, GWX17, GKG+18, GM16, HGM15, HBBK12, HMTA17, HT19, HB12a, HFT15, HD17, HP12, Han12, HNO18, HTK+18, HKS16, HS14a, HLVR16, HGCCR13, HGB+13, HM11b, HAM17, HBA10, HGO+18, HWGT15a]. model [HWGT17, HS12, Hor11a, HDNB10, HBI8, HT16, HPW+13, HRG11, HKR+19, HGM+16, IBB+15, ISZ18, IGL+12, IS17, JAK19, JDPK15, Jab10, JMI13, JB18a, JM+19, Jen10, JSK16, JWS+10, JSSZ12, JL16, JSP+16, JMS18, JB11, JSDEK14, JMK+17, JCLS+11, JK15, KSU+18, KS13, KA11,
KSK +11, KGJ12, KPG19, KCZ +19, KB15, Kar12, KP12, KHH10, KSP +14, KFB18, KBV11, KBE +13, KMA10, KHK15, KHK +17, KG15, KB19, KGK10, KRR14, KMCH14, KLJ17, KdlRJ18, KJ19, KCSB14, KNA +18, KIt10, KPEK14, KTN +10, KSK +16, KEG17, KCS +15, KS16, KKG +14, Kon17, Kon11b, KFS +13, KSRN19, KL18, KCD11a, KCD11b, KA16, KF12, Kri11, KLB +16, KLHS17, KIT +16, KK17b, KF10, KC14, LLN +19, LPP +19, LF17, LPB17, LPB18, LSP +17, LWH +11, LFW +18, LF16, LP12a, LKK13, LJ15, LCJ16, LCJ18, LM11, LPGBTBMA19, LGMV14]. model [LDA13, LHW14, LHFM16, LFB +16, LF10, LMW +10, LSY +10, LWW14, LMYL15, LYT +15, LX16, LL +18, LLP +19, LKL13, LS14a, LZY +15, LLH +13, LPK14, LST +16, LMJ +16, LGR +12, LW10a, LW10b, LCT11, LZWK11, LWL +11, LYT +12, LO15, LHD +17, LJ18, LBZ18, LP12b, LMHF13, LLB +18, LSS +14, LHF18, LDB +14, LC16, LXL14, LSSG10, LZTD18, LNRK11, LB11, LHL +14, MCL19, MZ17, MOEdP16, Mal17, MQ +16, MBE10, Mal10, MS13, MIVG18, MMK10, MEKK11, MFMS +18, MGGM10b, MYC12, MCL17, MMAS13, MBPS17, MN11, MDEKH13, MBBV14, MTE15, MP13a, MB10, MAM16, MKMG +14, MPC12, MZAI19, MA11a, MSC10, Mic11, MFG14, MED12, MS12b, MKMK16, MSE +14, Mog15, MGM13a, MGM13b, MB17, MF19, MBCM12, Mkl12, MROS15, MAS15a, MAS15b, MS14d, MP13c, MKF +14, MKPVH16, MML +16, MMHM11, MMB11, MR18, NIT18a, NIT18b, NIT18]. model [NS11, Nak12, NH19, NBS +13, NT14, NSO15, NKB16a, NKB16b, New11, NdIPZA10, NBA +18, NTED +19, NWWL17, NGL +10, NHS +16, NTO16, NSH +10, NWB +10, NBW10, NBW11, OFT15, OCN10, OO11, OSF11, OOV16, OL19, OTTF11, OPS +19, Ou19, PAA11, PPH18, PBYB18, PSS +10, PSS +13, PCT11, PCT19, PaCZ10, Fan19, Pat16, PR17, Pat19, PFJS15, PPW16, PRC15, PDC16, PG18a, PG18b, PBvdG10, PWL +11, PSS17, PMK15, PCBM12, PL14a, PL14b, PMW12, PBB10, Pie12, PC10a, PDT +10, PBR17b, PCS +18, PVG19, PC10b, PW11, PW14, PG10, PLHL19, PGHC12, PKH11, PP18, PP19, PP14, PA10, POK +12, PD16, PS12, PFP11, RCH14, RM17a, RVZ14, RSS +18, RTR +13, RRL +13, RLW +14, RGA +10, RRBM12, RPPG +19, RWW +15, REC10, RB13, RH19, RRC +11, RLSM17, RA17, RB14, RPP16]. model [RTEKG12, RTEKG15, RTEKG19b, RTEKG19a, RC16, RSD +13, RG18, RBB +12, RRRTR10, RRR15, RW15b, RPCW18, RKJ +11, RQB17, RAR19, RCL16, RD17, RBC +17, Sac15, SMM15, SSD11a, SHG16, SDR +15, ST17a, SC10a, SW13a, SSS13, SGAM12, SEK +10, SGB19, SL10, SKF16, SI12, SSZR17, SY17, SCA13, SB13, SAB +19, SLD16, SBSR13, SGL10, Sch17, SSvdM10, SN16, SFT14, SLML19, SI11b, SW17, SS14, SCS15, SHK14, She10, SR10, She11a, SRV11, g5sxFH +12, SMS19, SCF +12, SWK +19, Shi19, SGA +12, SFS13, SPO +10, SK10, SK12a, SGB12, SYSF17, SAB17, SSSL15, SGGY10, SY11, SOCF14, SZ18, SYR11, SMA11, SSM10, SOBC12, SSD11b, SSD12, SGD12, SDK11, SRH19, SWPC +16, SAD17, SKH11, SGW +18, SKD +10, SAKG13, SVMN11, SLC12, SH17, SLD +17, SB19, Str13, SHSR15, SL12].
model [SAZ+14, SNCM12, SA13, SCT12, ST17b, SM10b, Tac10, TTG19, TWTA+18, TM15b, TDHC+18, TXWW12, TZ13, TXCW15, Tay16a, TEY10, TDKJ15, TSS16, TR17, TW12, TT10a, TALC16, TGZF11, TDM14, Tre19, TSF+19, TF15, TCB13, TT10b, UPWK15, dRVFK+16, Van16b, VK10, VH11a, VPAGDP+14, Vaz10, VLF12, Veg10, VG13, VM12, VB19a, VRDL14, Wal12, WW12b, WXWL12, WSY12, WPH+12, WJL+12, WML16, WTC16, WBMM18, WL10, Wax11b, WMD16, Wei12, WZY14, WVO+15, WMN18, WCF12, WCJ11, WDH+19, WK12, Wol14, WD+11, WCHC11, WHZ+17, WBB+18, WGDZ18, WYL+18, WHYMG17, XYN15, Xie11, Xie13a, Xie15, Xie18, Xs13, XGZ17, XNW17, XCS12, Yan10a, YZMY18, YGMT12, YZZ13, YWP13, YW13a, YZY+16, YG12, YD15, YCB16, YY15, YtS19, YHL12, YKO+16, YBT+17, YLLL12, YMZ18, ZBA14, ZpdFJ19, ZCA+14, ZYJL18, ZK18, ZTT18, ZJJ19, ZLZ+11]. model [ZKR15, ZGW16, ZMS17, ZZX+16, ZSW+14, ZWW14, ZMC+18, ZSS10, ZPM+15, ZVMB10, ZAL+19, ZZS19, dLM+11, dTKDV15, vHHKB14, vVLS14, vdSS12, MOSS15].

Model-Based [ZKMB19, RG12, KBV11]. model-experiment [LGR+12]. model-independent [Mun12]. modeled [KHRS10, MWSM13]. Modeling [ASC16, ARG19, ATI12, AAGO+17, AMSSG16, ABA11, Alv18, Amo15, AN10, AES+13, AGM18, AC12, AFD+17, Br16, BZCS10, BZL17, BVS10, BGM15, BKPV15, CHD+10, CFT11, CB13a, Cha18, CT10, CBC+18, CL18, CB10a, CSDR15, CT16, DE17, DNS12, DFS17, DFB11, DFB12, DBBM11, EA19, EBE10, EJ17, EJ19, EEHM18, EBE14, ESGA15, FGH+14, FKB+12, GWBL12, GML10, GSG11, GKP13, GBN14, GMBK14, GPD18, GON13, GLF+15, GSV16, GMS+13, GAY+11, HT18, HWGW18, HVM13, HH10, HBW+11, HR12, ITN+11, JO13, KBS+19, Kon12, KB10b, KST17, LRL+16, LC10, LGK+09, LGK+12, LW17, LC11, LL14, LH14, LXZ14, LGBT15, LA15, LS10c, LSB10, LL17b, MB14, MKRE18, NCLB16, NIP18, OAP14, ONO15, OB10, OVLK14, PN18, PKL12, PRV+14, Rem15, RHJ11, RS14a, RRRSPTR16, SCLA10]. Modeling [SP13a, SPRF13, SMZ+17, SER+12, TGLK19, TAI+18, TTB+18, TWH+13, TSB+17, TLK19, VP18, WZJ+13, WGC13, XCW+18, YS14, YMW12, ZBA18, ZZR10, ZZR13, vTMW15, AMM16, ASC15, AOM19, AD15, ARG14, Ana11, BRK16, BCPL10, BPP+16, BSV+10, BZJP18, BTW11, BBP13, BJ18, CWM11, CLPZ14, CSR+05, CLCH10, CLA+16, CSKF10, CCsd13, CTL+15, CvBF18, DLEMP19, DFC+18a, DHT19, DBM+18, DBG+11, DFM+19, EKvdKF13, FAVA17, FFA15, FBK11, FH18, FBC12, FPR10, FJJ11, FKV19, GMK10, GTS15, GL18a, Giv10, GCO+11, GBJ+11, GSV11, GSS19, GMB11, GCY18, H216, HBB10, HCS+19, HWD+14, HM13, KCMF11, KDM13, KMZ18, KSS11, KAPR12, KBV12, KKO+18, KIH16, KKR+19, KTH16, Kla10, KHH+17, KTJ19, KMLT14, KPT14, KK18, LF19, LBGM16, LL17a, LDB+14, MPJH13, MRF19]. modeling [MYK+11, MH11, MFM16, MFL+18, MBC+12b, MZMM+14, Mol18,
MAFB18, MMP13, MAH12, NPMM15, PAOMV17, PDF18, PBSM19, PZLF19, QJR+16, RMM+16a, RZRSRC19, RMM+16b, RM19, SRK+12, SBM+16, SK15, SNY+17, SRT17, SSJK18, SMG18, SRP16, SSM+18, SKPK17, SMJS14, Sht17, SR14, SKK+11, SW13b, SW19, SDPC11, SRAL12, SH15, ŠKSRW16, SPL14, TLL+12, TI12a, TCH14, TRM+14, TKTR18, TC12, TA16, VKK12, VGPS18, VHM+17, VZB+15, WHWZ18, Whi11, WCM15, XWW+19, YLWZ10, YCL+17, Zad11, ZGY11, ZLZ15a, ZXC+10, vLFM+19, ALD+11.

Modelling [RG17].

Modelling [AKS+19, ASGE14, AKdV+14, AK11, ASL+18, BDT15, BTO14, BTO15, BBWS+13, BJO+16, Bos12, BCPG18, BPC15, BMF+18, BPGS12a, BPGS12b, CM12, CST16, CLK18, CDD12, CMN+11, CKBCG12, Cut15, DGW+18, Don13, DS10a, DF+12, EH17, EME+16, ECP+16, FKK14, FGLS10, FKB13, GDF18, GS13b, G¨un12, G¨un13, HKS15a, HKS16, HT13, IS10, IMW15, JYY+18, JSB15, KHS13, KMHdlP10, KBKK14, KM15, LWH+11, LWRE14, LBGW13, LMC+13, LS11a, LWvB+19, MR11b, MSP19, MCWF14, MNH+12, MPP+15, MS12c, Mor16, NNG19, NN+16, NBC16a, NBC16b, NM11, PSP+12, PCH10, PWE15, PGHC12, PSL+10, RGG12, RLS+12, RM+14, SW11, SR12, SSG13, TT19, TTT10, TXT16, TBMM19, TDS12, TAB+13, VAG16, VBVD17, WPA17, WBMH12, WM+15, YCH+17a, YCH+17b, ZLCH18, ZN18, ANK10, AP17, BVJE17, BB19, BCFR10].

Models [AK13, BERR19, FD11a, IK13, LK15, MGGGA11, OB10, PWC+12, PSD+18, SCC11, SLM17, YRMW19, dSR15, APBS15, ACD1RMR+11, AHJ+18a, Ala15, AKPN18, AD13, AHR10, AHM+19, BSR14, BT17, BGL10, BSH19, BM11, BB14, BC1P+16, BSOW16, BPR15, BPJP12, BKL14, BvLH14, BCS+18, CS14a, CAG13, COG19, Coh15b, CMMR13, CNG+12, Cor16, D1 19a, DM15, Dil14, DMP15, Dra19, DHT16, FJS+19, FLCS+15, FDM+11, FS16c, Gal10, GLZ+13, GFM+19, GKI3, GI15, GE18, GXF13, GA14, GWW+10, GBI13, GMG15, Gru18, HSD11, HHS15, HSMC19, HVL11, HHE19, HPML18, IMD16, JBSFB12, Jus11, Kae17, KFW12, KM19, KW10, KKYV18, KA15, Kris10, KG18, KJ11b, KSPA17, KF18, LS13a, LCH14, LZA+19, LY11, LL13a, LJS14, LD+A+13, LW18, MR11a, MHC16, MBLV10, MKBE17b, MKRE18].

Models [MPBS17, MFG+13, ML10, MG16, MA10, MC15b, MT15, Non10, NKOS11, NPS18, OB15, OGE10, OHWS18, OT13, OOL17a, OTGT10, Pai19, PR11, PM11a, POW17, PCC16, PBRW11, PDG12, PTT+16, RW15a, Re12, RC11,
RFME$^{+12}$, RGL$^{+17}$, RB15, Ros13, SAA10, SE10, SMD$^{+16}$, SBP13, SBK16, SFD12, Sim14, SG15b, SS12a, cGFB17, SFSJ12, SBS17, Tal12, TA13, TZ13, TBA14, TF18, Tjo10, TAL19, TAORS10, TW16, VC11, WL12a, WL12b, Wal18, Wod18, WA14, Yat14, ZARK19, ZLL17, Zha10b, ZLW14, ZLT$^{+19}$, dACGSA16, vDRT14, vE11, vVGSE12. Moderate [VMZK$^{+19}$]. Modern [Flo11, BCPM$^{+16}$, Dun11]. Modes
Multispecies [ML14, YLLL12, FJC10, KG13, KL18, NF17].
Multistability [LM11, OCHHZ12, SLR17, MPP+18, SX12, SY12].
multistage [LTZ19]. multistationarity [BFS18, KS19].
multitarget [ZMS17].
multistability [LM11, OCHHZ12, SLR17, MPP+18, SX12, SY12].
multistage [LTZ19]. multistationarity [BFS18, KS19].
multitarget [ZMS17].
multistage [LTZ19]. multistationarity [BFS18, KS19].
multitarget [ZMS17].
multistage [LTZ19]. multistationarity [BFS18, KS19].
multitarget [ZMS17].
myofibrils [MCL+11]. myofibroblasts [HHMT19]. myogenesis [FD17].

nanopores [ACH15]. natalensis [GRBL13]. national [LCJ18]. native [Mas18, MIH16].
Naturally [PRM14]. Nature [CEDLSG+16, CTA15, Mac11, KK12b, LG10b, XLG+15, YDC+13, ZGG+19].
near [IG14, ICG16, SL17]. near-polytomy [SL17]. nearest [ABP+11, NMZ19].
Neccessary [Sin15, Bal13, DDRP13, JEA18, PTNKT11, Tox18]. necessity [vV18]. neck [HHF11, MB12a, MM19]. necrosis [EKvdKvFK13].
Necrotic [BFGS10]. necrotizing [AES+13, BTH+13]. nectar [EM11]. need [CW11a, TT10a, WS10]. needs [KOS13]. Negative [CMB+12, CPS10, DZE11, Zab11, AAGCD15, BBD18, CXC18, CB13b, Cza14, DHS+15, GI15, KHS13, LS16a, LKP+12, LZ18, MK18a, Mog15, NJP18, Ríc19, SRD+15, SSI5a, SC10b, Tos11, ZS10, ZW16].
Neoadjuvant [MB12a]. neocortical [Ing16]. neoplasms [ZFKW17].
Nest [AR17, Cro18, Gal10, LTSTD15, NPS10, SOIO10]. nest-site [Cro18, Gal10, NPS10]. Nested [TA10, AKNP18, JCW13]. nesting [NSO15].
nestmate [New11]. net [ADB+13, HS14b, KA16, NZMA14]. nets [HS14b, NMAZP16, YGMT12]. Network [BTG+15, DQS+15, DBB+17, LMI+18, MLA+13, PJL14, WLL+14, YLF+17, ZC14, AENK12, AJC12, ABJ12, AANF16, ABIM10, BMSEE14, BDS12, BJJR10, BBS18b, BC13, BKL14, bCR19, CW15a, CM14, CV19, DGM15, DG10a, DHBS19, DWM15, DL12b, DL16, FW15, For10, GSYS10, GB12, GBN14, GLZ+11, GXF13, GSN+11, HCK+11, HRCA19, HYZS14, HZW+14, HZL+11, HWD+14, ITN+11, JAM18, JAB18, JR17a, KSK+11, KHK15, KEG17, KSKS13, KS10,
LPB17, LPB18, Lar16, LMM$^{+13}$, LNL$^{+11}$, LLW$^{+18}$, LKL13, LS14b, LL13b, LDJW16, LYZ$^{+18}$, LSSL13, MvdDW13, ML09, ML12a, MBE10, Mal18, MZM$^{+16}$, MG14a, MPT19, MBF$^{+15}$, MGC13, MF15, MGMT13b, MK14d, MP13c, MYOS14, Nvd17, NRKE18, NKM$^{+12}$, OHWS18, OABI12, OAJK10, PBB10, PS13, PM14, PR18, PHK15, PHA$^{+17}$, PRV$^{+14}$, PMKM10, QYO10, RPP16, RDS$^{+12}$, SN12, SCÄBM10, SCÄBM11, SSW10, SWTO15.

Network [SLT$^{+18}$, SW19, Str15, TTC19, TK10b, VC11, WH14, WYL$^{+19}$, WLY$^{+17}$, WCC14, WAC14, XSKA17, XNW17, XCS12, YZMY18, YWW$^{+14}$, YWZ$^{+19}$, YC13, YZ19, ZMAM19, ZOG14, ZSO16].

Network-based [DQS$^{+15}$, ZC14, BRA15, GSYS10, ML09, ML12a, NKM$^{+12}$, XSC12].

Networked [MAF$^{+19}$].

Networks [LS13, AAGO$^{+17}$, All11, AD13, AdGM12, Arc16, AGGME18, BTO15, BFS18, BZCS10, BLS17a, BB11b, Bro13, BR12b, BFLS17, CP14, COWA11, CST$^{+12}$, CR19, DBD12, DTGD19, DG10a, EG10, EBP15, EB15, Est10, ER18, FKK14, FK16, FJS$^{+19}$, Fer11, FMS$^{+12}$, FVT16, FRT13, FM18, FWR19, GS17a, GSC11, GE18, GXF13, GCZ$^{+12}$, GMM15, GM16b, GMK18, GJS$^{+10}$, HBK12, HS15, Hal17, Hal16, HK17b, Hay16, HL14, HXL16, HXL18a, HB16b, HB10, HMI10b, HBL10, HMI16, IAM16, IM16, IS10, ISB$^{+11}$, IU10, IvdSW16, IM10, JC16, JCW13, JKS15, KMD$^{+12}$, KS19, KSP18, KR15, KTH16, Kon11c, KKM12, KSJ11, KHY18, KdsUS10, KJ11b, LLS13, LCMC14, LWH$^{+11}$, LR16, LS14b, LCL14, LLJ18, LMI$^{+18}$, LC10, LT11, MC16a, MMC19a, MK11, MT14, MBLV10, MC19, MTE15, MG16].

Networks [MGC13, MJC$^{+11}$, MdSPBL16, MS10b, MFKS13, MF15, MS12c, MLBA12, MLBA13, MRS14, MBRR19, ML11b, NSS$^{+11}$, NGN13, NW10, NMS10, OYY16, Opr10, PAOMV17, PSJ15, PPM12, PMP13, PGKZ17, PMYHR12, PP12, PP14, QZ14, RA10, Ric9, RFME$^{+12}$, RBHK14, RLS14, SAA10, SSD11a, SW16, SHN12, SSZB15, SP13a, SBP13, SMC17, SVB$^{+10}$, SWT10, SSH$^{+19}$, SNC12, SBK16, SHM$^{+18}$, SCKL15, SMC$^{+13}$, STH13, SAZ$^{+14}$, TL15, TP10c, TM16, TLK19, VPSP$^{+14}$, VNS18, WOBI5, WcW14, WHT17, WMC18, WM17, WB19, WDN$^{+19}$, WL15, WL12c, WMT10, XLSF19, YIS$^{+17}$, YSH$^{+14}$, YAK17, YA14, YS11, ZZC10, ZG10a, ZG10b, ZGWL14, ZYJL18, ZHC10, ZCIF13].

Neural [BMSEE14, FHR13, FR13b, FR14, GMM15, KAZ11, RFME$^{+12}$, Rob11, Sch19c, STH19, AJC12, AANF16, BF13, FIS11, FIS16a, GXF13, GM16b, GMK18, KAZ13, KHK15, KA16, LFZN11, LCMC14, MPL16, MGMT13b, MvAKR17, Opr10, PM14, PMKM10, RS14a, SX12, TTC19, Tay16a, Wal16, WYL$^{+19}$, YM14, YC13].

Neuraminidase [DGD$^{+11}$, TL15, YNY$^{+10}$].

Neurite [vE11].

Neurocranium [GA13, VDH$^{+15}$].

Neurogenesis [BFR14, SB19, TSB$^{+17}$].

Neuroid [TTG19].

Neurological [Sat18].

Neuromorphological [GMK18].

Neuromyelitis [LSP$^{+17}$].

Neuron [GMM15, GL12b, IBM$^{+16}$, RMM$^{+16a}$, RNN15, Tha15, WSLC14, WGC13].

Neuronal [ABJ12, BB11b, CP14, CT10J, DHT16, FW15, Fer11, KAZ11,
KTN+10, LL13b, Pat16, SHG16, ZMAM19. **Neurons**
[GMM15, ZMAM19, BPF15a, BPF15b, CW11c, DLHS11, GM16b, HMM16, Hor11b, KB10b, MZM+16, PJ18, RKMG12, WCC13, ZKMB19].

neuroprotection [NRS+16]. **neuroprotective** [ATC+14]. **neurosphere** [SZ18, ZZS19]. **Neurospora** [XCW+18]. **neurotoxic** [WB15]. **neurotoxins** [MZ18]. **Neurotrophin** [MHD18]. **Neurovascular**
[DVBD15, CS11a, DBD16, FD11a, WK12]. **Neutral** [AHP+19, KB10b, MZM+16, PJ18, RKMG12, WCC13, ZKMB19].

Neutral-like [KS14, DZE11]. **neutrality** [SC16]. **neutralization** [MR11a].

Neutralizing [CDK11]. **neutrally** [Ios16, KHRS10, SB12]. **neutropenia** [CHN+15, LM11]. **Neutrophil** [BPLM12, CHN+15, ZLM12].

newborn [LZY+15]. **Newman** [MZM+16]. **newt** [JMK+17]. **Newtonian** [AABS16, ZG19].

next [MMFK10, PGGvL+19]. **next-generation** [MMFK10]. **NF** [ATC+14, KB19, GM13, HJJR11, HSII+19, TC11, WPH+12, ZBA14]. **NF-** [GM13, HSII+19, TC11, WPH+12, ZBA14]. **NF-Y** [HJJR11].

nGlu [BD13]. **Niche** [GFH+18, AHP+19, BGL+19, BRP+18, DB11, DZE11, HL11, KWO19, KDMK16, Mal15, PC13, RT19, TZ11, TZ13, ZZZ+11, dSdS13, tBdR18].

niche-based [DZE11]. **niche-neutral** [TZ13]. **niche-stabilized** [PC13]. **niches** [DEG+14, LH18].

NLRP3 [VLPH17]. **NLRP3-inflammasome** [VLPH17]. **NMDA** [ML11a]. **NMDAR** [HKS15]. **NMR** [ZZ14a]. **No** [JEA18, WWB14, EHSR17]. **nocturnally** [MYN+15, MSBB13]. **node** [CZPC+18, GMM+13, MMFK10]. **nodes** [Di 19c, HRC19, MMLK11, MGB17, SSZB15].

Noise [GMNY14, HNA15, OO17a, Van17a, BPP+16, BFW10, CHL+19, CCF+14, CKF17, DHT16, FR17, HSM17, HM10b, IU10, JZL13, JRG14a, JRG14b, JRG14c, KHR10, Kon11a, Kon11b, Kon12, Lei09, Lei10, LXS15, LYY11, Lug15, LRH15, MB17, OM10, OS11, Pat16, PJ18, PR18, Pol12, RAD14, RLSN14, SVB+10, TST+13, Van17b, WRZ+12, YRD17, YFZ+19, ZCSR12, ZLL+12, dSdS13].

noise-based [Pat16]. **Noise-induced** [GMNY14, MB17, PJ18, TST+13]. **Noise-plasticity** [HNA15]. **noises** [JC10]. **Noisy** [SWD16, BPF15a, BPF15b, JRMS12, LLSO13, PBEI12]. **Non** [ACdi RMR+11, BBM+97, BBM+13a, BBM+13b, BBM+13c, GJ12, GWW+10, GF13, Meh17, SC11b, SY12, Tsu19, ZJS11, Ack12, AABS16, BBR16, BZ18, BCF16b, Bon10, CKF17, DKS15, Das18, DL15a, DHBS19, EI13, FT12, GY19, Giv10, HSMCCR19, HA15b, Hua12, Jam16a, JLQ+12, JAHKH12, Kae17, KS13, Kar15, LS13a, LC11, LDdA+13, LC16, MWSM13, MSP19, MV10, MG14a, MAF+19, NP13, Oht12, PHK15, Pie12, PB16, RK19, Sel12a, Sel16, SLC13, SS17b, TGB+18, TDZ+18, Van17b, VLFF12, Veg10, WKH16, YBT+17]. **Non-acquired** [GJ12]. **non-binomial** [WKH16].
non-canonical [Sel16], non-classical [Hua12], non-coding [DHBS19, MWSM13, SCLC13], non-complementary [Sel12a], non-costly [Akc12], non-covalent [ZJS11], non-destructive [MSP19], non-endemic [RK19], non-enzymatically [Pie12], non-equilibrium [Tsu19, FT12, JLQ12, KS13, NP13], non-extensive [Meh17], non-Gaussian [CKF17], non-homogeneous [PB16], non-homologous [LC11], non-identifiable [HSMCCR19], non-isothermal [LDdA13], non-lethal [Bon10], non-linear [ACdlRMR11, BCF16b, Das18, JAHKH12, TGB17, Van17b, VLFF12], non-local [BBM97, BBM13a, BBM13b, BBM13c, GWW10], non-Markovian [PHK15, Veg10], non-monotonic [BBR16], non-mutational [LC16], non-mutator [Jam16a], non-mutualists [EI13], non-natural [BZ18], non-Newtonian [AABS16], non-normality [MAF19], non-overlapping [Oht12], non-random [GSF13, SY12], non-senescence [DKS15], non-small [GY19, TDZ18], non-spatial [YBT17], non-specific [DL15a], non-stationary [SC11b, Kae17, LS13a], non-stem [Kar15], non-synonymous [MV10], non-trivial [HA15b], non-uniformities [Giv10], nonequilibrium [PDG17, FMS12, Kla10], non-ergodic [Wal18], nonhuman [KLM14], nonlinear [Cle16, CA18, FJR19, HBVP15, SKF16, She11a, ARR14, AHJ18a, ABV19, AS16, BBP13, DFM19, FJC10, GZFX14, MDEKH13, MBB14, PBEI12, SF15, XF13, XLL17, YZY16, YST14, ZLW18, Zol14, YiTS19], nonlinearities [HFT15, NN18], nonlinearity [TM15a, SM10b, TST13], nonlocal [Sie18, Ayd18, CCS18, SA17, She10, She11a], nonmutator [JJ17], nonnative [Mas18], nonparametric [Jab15], nonself [Coh15b], nonsmooth [CXT19], notypeable [DMM14], nor [GCM14, Non10], norm [Tak17b], normal [BPS15, LFD11], normality [MAF19], normalized [PM11b, ZLY14], norms [MJJ14, SAB17], north [DB18, Kur14, DB11], north-south [DB18], northeast [BL18], northwest [XDT19, VPGD14], nose [MSB16], nosed [BCF19], nosocomial [HLT14], notch-mediated [TSB17], note [CFGRB17, CR16, CD16, JVS14, SK18, Ano19-53], nothing [DS10a], notice [BBM13c, GZ14b], notifications [YTGW16], notion [AHJ18b], notional [AK11], notions [MRPLAS15], notum [HiHIM12], Nouvellet [RRC11], Novel [Dai12, FJS19, MPTC15, RVP19, ACMK12, BW13, CA17, DCS14, GBC16, HLHY17, KRD15, Kla10, LS13a, LXL17, LLP19, LCL14, MB12a, NGJ14, QLWC19, RA10, RP18, SM18, SKH17, SDRA15, SBB18, SQZ16, TAR16, TP17, VM16, WTQL10, Wu14, WGD18, XST14, YW13b, YYH14, YC13, YC15, ZMN10, ZGY11, ZTW12, ZCA14, pZW16, ZKHL16, ZLZ11, ZDY11, ZMS17], Novelty [Mar19, Fue18], November [Ano10y, Ano10-32, Ano11-28, Ano11-46, Ano12-34, Ano12-41, Ano13-38, Ano13-34, Ano14-43, Ano14-47, Ano15-32, Ano16-35, Ano16-44, Ano16-33, Ano17-30, Ano17y, Ano18-43, Ano18-42, Ano19-45], NREM
Offspring \cite{AOR17, Cam15, CL13b, Döb17, Fil15, For14, Jam11, MHKA16, OGA16, Sak10}. oil \cite{AK15, BKR14}. ok \cite{Mar11}. old \cite{Di 13a}. Older \cite{YHZ14}. oligodendrocytes \cite{WRH16}. oligomeric \cite{IKHL16}. oligomers \cite{TCYY12}. oligonucleotides \cite{DCS14}. omnigenic \cite{PG18a, PG18b}. omnivore \cite{GVCG12}. oncogenesis \cite{DKR16}. Oncolytic \cite{JKF19, BB19, KW10, ME15, OAP14, SZ15b}. One \cite{GHS18, AGPK13, AS12, BG12, DHHP14, Ezo12, Jam14, JZ17, JZZK11, KK12b, Lai18, LFMI13, MMH12, NTE19, TW13, Toz15, WL13, WW19}. one-dimensional \cite{BG12, DHHP14}. one-shot \cite{AS12}. one-sided \cite{JZ17}. one-to-many \cite{Ezo12}. ones \cite{BC15}. online \cite{Ran12}. only \cite{Di 17a, Hor11a, KK12b, TT10a, TF17}. onset \cite{EAN14, EBX17, HDZ19, MFMS18, SPA18}. onto \cite{DRC11}. ontogenetic \cite{WSRG18, tBdR18}. Ontology \cite{Hua12, YLF17, DTY12, WMK13}. oocyte \cite{HB16a, SOBC12}. oocytes \cite{KG12}. oogenesis \cite{RBMS17}. OOgenesis \cite{RBMS17}. open \cite{MB17}. open-loop \cite{MB17}. operates \cite{WKH16}. Operating \cite{Str17, LKZB15}. operation \cite{BAM15}. Operational \cite{ABK12, HPML18, SKPK17}. operator \cite{HVSZ10}. operators \cite{LG10a}. operculum \cite{XWW19}. operon \cite{HVSZ10, Mic13, ZCSR12}. OPG \cite{PZS10}. opinion \cite{SAB17}. Opisthorchis \cite{BHO18}. opponents \cite{YA14}. opportunities \cite{AB11, SH15}. opportunity \cite{PVCEC18, YSYI13}. opposing \cite{DEG14, MJL14, SP14}. opt \cite{Kur19}. opt-out \cite{Kur19}. optica \cite{LSP17}. optical \cite{KCJ11}. Optimal \cite{BI10, BHR10, CFCM13, CJL15, CBGS18, DHP11, EZMMH18, GVCG12, GA16, GKW17, HS14c, Ish16, KNU10, LCC10, LKK13, LDM16, MJ16, MK14c, Mih17, MI12, MRS14, NNvdB17, NS13, NC15, OT13, PP17a, PRM14, SI10a, SDD15, ST16, SSB15, SST19, SBM19, TBOQ14, Vaz10, YD14, ZSW11, AS16, Cha18, CL11, CMM19, DB19, FD18, Fil10, KGJI2, KTO14, KL17, Kri10, KST17, KA17, LCC15, LC17, MDMG14, MW14, Mig16, OF11, RW15b, STN19b, SL17, TEY10, TEW12, TBA14, TBMM19, VB10, WCJ11, WSW10, YTCW16, ZCT18, ZZZ19}. Optimality \cite{CKB19, LLP19, RFM12}. optimally \cite{TDT16}. optimisation \cite{CHN15, FCS18, SCF12, SK11a, Tra16}. optimise \cite{EM11}. Optimization \cite{Car17, JH12, MG10a, BNI09, JAHKH12, LDWW14, MD16, MMAS13, MGM13b, NF16, PP18, PP19, RA10, SJSK18, SK16a, SS18, WOB15, YFC19, ZXC10}. optimization-based \cite{YYC19}. optimize \cite{DXW16, QQJW13}. optimized \cite{HB18, TAI17, ZZN19}. optimizer \cite{ZZN19}. Optimizing \cite{HL19, IDMI5, PD13}. Optimum \cite{NC16, SK11a, TTC10}. option \cite{HN16, IVR10, Kur19}. Optional \cite{JOAN14, PCN17, GN15}. options \cite{CBB016}. Opuntia \cite{TVA18}. OPV \cite{Hou16}. ORAI \cite{SAB19}. oral \cite{KR15}. oranges \cite{GP11a}. orb \cite{Mac10}. orb-web \cite{Mac10}. orbit \cite{HA15b}. orchid \cite{SWK19}. order \cite{CW14, DS19b, Gou16, HSD11, JRG14a, JRG14b, JRG14c, KDST15, LYF15, MBLV10, PP14, PD16, RA17, RBHK14, THB10, XG12, YIS17, ZRGW19}. order-disorder \cite{RA17}. ordered \cite{SKH17}. Ordering
pathways

[AP17, BKL+15, Coh15a, EG10, ERT13, G¨un12, G¨un13, HAP+16, HHG14, HgLL+10, KFL12, PH13, PS13, RW10, STX+11, ZXC+10, ZXS+19].

Patient

[METC12, HM13, TDHC+18]. Patient-calibrated [METC12].

patient-specific [HM13, TDHC+18].

pats

[BBR12].

patterned [Sie18].

patterning [Dun11, GBN14, HWMT17, WdVMD15, Wol11]. Patterns [MAF+19, AL17, ASL+18, Ayd18, BV12, BS19b, BB11b, BKC+16, CFT11, CDM+14, DBB14a, DTGC14, Don17, DZE11, GZY12, HTM15, HDBN10, HgLL+10, JB18a, KDST15, Kri18, LSLMC18, LBB+13, LG18, LH14, LTS+16, LRA+13, MSZW19, MPM10, MGCL13, MPS16, MCF12, MALAN17, MK14c, MROS15, MPLK14, MBRRI19, ML11b, NTY16, Nos14, PS13, PM10a, QW11, Ram10, RV16, RRTR10, SGKCP19, SWD16, SS15a, SBMHI10, Slh17, SAM17,SRCF11, Sy14, TTK14, TKKE19, TA13, TC12, VLCT19, WZWY11, YvBS18, ZKP15, ZML19].

pause [RA17].

pause-and-go [RA17]. Pavlovian [PM10a]. payoff [Ayd18, MI19, MB16].

PBMDR [YYC19]. PBPK [MAFB18, BTF19]. PBSA [ZZ18]. pCa [RG17].

PCD [LJM15]. PCD-GED [LJM15]. PCOS [HS14a]. PCR [IDM15].

PCR-Shrinking [IDM15]. PDC [XXD+17]. PDC-SGB [XXD+17].

penetrating [BC19]. penetration [EPJ+10, EPJ+11]. penguins [WHH15]. penile [FKMG15]. penetration [RW15a]. pentacoded [Sel15a]. people [IL13, PBM19, RCL16]. peptide [HWW+14, NTC+11, NF16, NGJ+14, SV14, SAGC12, TWR+18, WHL13]. peptides [BC19, BZJ18, BYY+11, CL13a, HPB+14, HME12, JB19a, LL13a, LYM+19, MCI15a, MC16b, PDC+17, PF17, Sel15a, Sel17, Tox17].

Phenomenological
[BSV+10, LPGTBMA19, BCGD10, BSS11, MAS15a, SKAG18, WMPF+15].
Phenomenological-Based [LPGTBMA19].
phenomenon [DKS15].
Phenotype [LP12a, VGPS18, WFW19, BJJR10, BBS18a, Bec14, Das13, Fill15, GCM17b, Gri11, HGM+16, IMA14, IMA16, IMD16, Kit10, LCDH15, SSP15, TK10c, WDN+19].
Phenotype-centric [VGPS18].
Phenotype-genotype [LP12a].
phenotype-structured [LCDH15].
phenotypes [FBK11, FWLW11, HK14, NvD17, BSS18a, Bec14, Das13, Fil15, GCM17b, Gri11, HGM+16, IMA14, IMA16, IMD16, Kit10, LCDH15, SSP15, TK10c, WDN+19].
Phenotypic [PVB+10, SSF15, UJLG14, ACM16, ABV19, BCGD10, BLP10, CRLH+19, CWF+16, Fra19b, HLTR19, KDFM14, IVLC18, Mou12a, NZW15, NI19, RD17, SA13, SA14, ZWW14, ZMC+18, ZMW10].
Phenotypic- [CRLH+19].
phenotypical [DXW+16].
phenotyping [DKP+18, KOF+14].
phenylalanine [AEE19, CFR+14, CMR+18].
phenylhydrazine [AGC18].
phenylhydrazine-induced [AGC18].
phenylhydrazine [AGC18].
phenylpyrimidine [TA16].
pheromone [EBSW17].
pheromones [Amo15].
Phi [MIH16].
Phi [Ano19-52].
Philippines [KdlRJ18].
phloem [JBSFB12].
Phoca [SH17].
phogly [XDD+15].
phogly-PseAAC [XDD+15].
Phosphatase [DS15b].
phosphate [JSWY19, TP14].
phosphoglycerylation [JCG16, XDD+15].
Phospholipid [ZWvG10].
Phospholipidosis [NS19].
phosphoprotein [KMLT14, KPLT14].
phosphorelays [KFW12].
phosphoribosylamine [Koe15].
phosphoribosyl民心ionate [Koe15].
Phosphoribosylphosphate [Koe15].
phosphorus [BBS10].
phosphorylated [ZZ18].
Phosphorylation [HKH18, FKB13, HSII+19, KFL12, RGG12, STNT17].
Phosphorylation-induced [HKH18].
photoacclimation [GCSMMG+12, NHS+16].
photodynamic [LMM18].
photoinhibition [NHS+16].
photomorphogenesis [PRH+11].
photoperiodic [DFT+17].
photoprotection [IK15].
photoreceptor [CVH+10, CW13, CPW16].
photoreceptors [Meh17].
photosynthesis [GCSMMG+12, LJM+17, YS14].
photosynthetic [DMS+16, PKL12].
photosystem [Laz13, MTE15].
phreatophytic [TLR14].
phyllostaxis [GRB+13, Oka11, Rei12].
Phylogenetic
[Bar16, CTA15, HYW11, LAS14, SC10c, BPM+12, BLS17a, BFLS17, Cut15, DDLW10, DLYW13, FM18, G16, GD16, HS11, Hua16, HMW16, LS13a, MS12a, SMD+16, SS12a, Ste13, SPXM18, TZY18, WS10, YY15].
phylogenetics [AHR10].
phylogenies [Kae17, Par15].
phylogeny [JPD10, SL17, YHY14, dF13].
Physarum [BMV12, Tac10].
Physical [OB15, Oka11, SNN+13, WST15, Zab11, dSRM15].
Physically [HB12a].
physico [Di 16, Di 17b, SBV+15].
physico-chemical [Di 16, Di 17b, SSV+15].
Physicochemical [SBT+18, CL13a, CT18b, FD18, HYA14, JLX+15, JD16a, JD17, RSD+16, STG19, WXC10, XSLZ16].
physics [LCBO+12].
Physiological [DPvBvA12, KKU+10, MFN+18, Ush16, WCHC11, CTW10, CB13b, DSLR18, DLMK12, DCN13, EzMMH18, Gri11, LCA+15, LHD+17, PRK13, RG17, SS17b].
Physiologically
physiologically-based [NSO15]. Physiology
[Mar17a, ARD14, BLW11, PRC15]. phytobenthic [SM17b].
physodesalination [RAAS15]. Phytoplankton
[BH19, CFSL16, CFL+15, DD10, Gro17, KSP12, MHC16, MYL11, RRB10].
piece [SPH12]. Piecewise [TXW12, TXCW15, COG19]. Piecing [SSP15].
Piezoelectricity [FGAM12]. piezophilic [NS16]. pig [LT14, SMM+13].
pine [APS+13, APBS15, CRL+19, LK15]. Pink [ZLL+12, KHRS10, Toz15].
pinnatifida [MJV16]. pinning [KM19]. pipiens [YMZ18]. piscine [HH14].
plains [NHTS14]. planform [NC16]. plaktic [DLSD15].
plankton [CMBP19, PSV17, PHPM18, PMSY17, RM10, Ric17].
Plant [KR19, LRH15, AEE19, AMRRI10, BDLR12, CMB+12,
CPV16, Che16, CEP14, CG11, DFT+17, IDW+15, DBJ12, FCC+10,
FM13, FM15b, GGBW14, GWG14, GZT15, GRRG16, HAP+16, HTM15,
HB13a, IK15, IC11, KA11, KOF+14, KHN16, KFG+14, KFS+13, LKSM14,
LWRE14, LvBP12, LH18, Mei12b, Mei13b, ML10, MK14c, NKB16a,
NNG19, OBE+17, OHWS18, PCB14, Pie10, PRH+11, PPTC19, RK18,
ST17a, Sat10, SLC12, SIHO15, TIS10, TAL19, Yami16b, ZZC+17, vVE15].
plant-virus [NKB16a]. plantarum [LDDA+13]. planting [CK18]. plants
[AGGME18, BHSB11, BvLH14, CMB+12, DHT19, DP13b, Kha10, KBKK14,
LRH15, NKB16b, SI12, SNOW11, WZ18, YLY15]. plaque [GCYL18, IvLP12].
plaques [BD12, FBM19]. Plasma
[RFdL15, BAGG14, CKD11, CRV16, SHB+17]. plasmid
[FS11b, GY18, ZK+10a, ZDF+12]. plasmids [BBT+15, Mic15b].
plasminogen [Sil16]. Plasmodium
[CB13a, CDO17, CKZ+17, CMD+10, GDPPSS+11, KMLT14, KPLT14,
RM19, SPMGR10, TEY10, TEW12, TAR16, Tac10]. plastic [HD11, PA10].
plasticity [CWF+16, DAA17, FHR13, FR13b, HKS16, HNA15, KAZ13,
Mou12a, Rob11, SSF15, SA13, SA14, UJL14, ZWW14, ZMC+18]. plastids
[SAT17]. plate [ABD+11, CAGM+17, FLM10]. platelets [SPA18].
plausible [FPdRH10, SBM10]. play [SPS11]. played [dOGL10, dOGL13].
player [De 19, DHK13, GT11b, HS14b, KC17, Kur19, Lai18, PLN14, Shu13,
TT19, VN12]. players [vV11a]. playground [SD16]. plays
pLoc_bal-mGneg [XC18]. ploidy [YG12]. plot [Mun12]. plus
populations [SBSE14, GBRS19, SCC11]. populations

[HB10, PCT11, PCT19, Pan19, PWHW16, ZL18b]. powerful
[DLMK12, Mau15, Mol18, PVGA12, RT15, SPS11, SHSR15, VDTF15, WSH†+10]. pre-breeding [VDTF15]. pre-diagnostic [SHSR15].
pre-existing [PVGA12]. pre-miRNAs [WSH†+10]. pre-mRNA [RT15].
pre-play [SPS11]. pre-RNA [Mau15]. pre-stressed [DLMK12].
preadipocyte [CSKF10]. prebiotic [CKS15, ML14, RBRB16, SHH15]. precipitation [WTC16]. Precise [JRR‡+12, RRG‡+12, Zhu11].
Precision [NNK‡+15, TMS13]. preconditioning [SXZY12]. precultivation [ABK‡+12].
preconditioning [SXZY12]. precultivation [ABK‡+12].
Pred [KCM‡+11]. Predation
[MBl2b, PDSP13, AF10, HMIH14, IEN15, KGB13, LZTD18, PBB10, PFB10, SP11, VA10, Woo10]. Predator
[GSL13, SV17, Abb10, BT17, BH13b, BHR10, CLA17, CGHF14, CK18, CNM‡+13, DS13, DJR10, DKF17, EKVF18, FL18, Fre10, GLR‡+17, GVGC15, GWE11, GPR‡+16, HAK‡+19, HGHL10, HSR12, HB13a, HWL15, KGJ12, KB15, Kr11, Kri13, KP15, LHV16, LJ18, MSZW19, MNAS13, MFG‡+13, MA11b, MII1a, Mou12a, NT016, PW16, PHP18, SWD16, SBSE14, SVA18, SY12, VWF19, WRC‡+19, YTS19, ZZ14b, ZMW10, ZMT11, ZYD15].
predator-2 [PHPM18]. predator-prey [HAK‡+19]. predators
[Alv18, AH17, BT17, BR12a, FKV19, LG19a, LG19b, SvK12, TI13, TB15, ZYD15, vLB‡+13]. predatory [IPMH12]. Predict
[CXC18, FL12, HZC‡+10, JLX‡+16, ZKK14, pZW‡+16, BMSEE14, BJ18, FGAM12, GMZM15, HAY14, JS‡+11, LXC15, MJI11, PH13, PWHW16, RW14b, WYL‡+18, XNJ‡+13, ZRGW19]. predictably [HD11]. predicted
[HH14, Hal17, HCHI18, KZL14, LJ10, MALAN17, PDC‡+17, RT19, ZKHL16]. Predicting
[AEM19, All11, AD‡+11b, CL13a, CT18b, CTL‡+15, GCS11, GMM‡+13, GG‡+10, HPB‡+14, HK11a, HK12, HN10, HS12, HLS‡+12, HY13, JYZ18, JD16a, JD17, JG16, LS13a, LD11, LJW‡+16, MPTCG‡+15, Me12b, Me13b, MSB16, NXS14, OYY16, QLC‡+18, SM17a, SM18, SCA‡+12, SKK18, TWC‡+19, WGS10, WS16, XT‡+13, ZL18a, ZRGW19, ZL‡+19, ZLDZ13, AAJGCD15, BW13, DLL‡+17, DTP19, Hua12, KCM‡+11, LPP‡+19, LKL13, LH12, LHL‡+14, MV10, QLWC19, RBMS17, RW15a, SW13a, SC10b, SOI10, WXM10, WHZ‡+17, YD14, YC13]. Prediction
[ARR14, BRK19, CZW‡+11, CCY‡+19, GXFF13, HTK14, HWHL15, JD16b, JR17a, JW18, KP‡+13, KJH‡+19, KSK15, LY‡+15, LTH‡+15, MPP14, MBE11, NBL14, Pav14, QW12, SS17a, SMS19, SHLL11, Tnm13, VZB‡+15, WYL‡+19, WLY‡+17, XWW‡+14, XDD‡+15, XXD‡+17, ZMS11, ZDG‡+10, ZSZM14, ZJSC16, ZD18, ZNC‡+15, vDSS12, AF19, CJ12b, CTS11, Choi11, DSCM14, DQ‡+14, Do19, DTY12, EMM10, FHG15, FY19, GMGV12, GJ15b, HA15a, HK11b, HW13, IMH15, JM12, JWS‡+10, KKG16, KGP‡+15, KZ14, LW14, LJ10, LLCC12, LD‡+13, LZ‡+15, MAR12, MKE17a, MKBE17b, MKRE18, MSRW16, MFZ18, MZ18, M612, MP14b, MNC12, MP19, MR18, MR19, NK18, NS19, PWZ‡+19, PM14, PKM10, PSA13,
Predictions [FKDW15, KHRS10, KSP18, METC12, QZY17, SPA18, TWP16]. Predictive [YRMWT19, ABB19, KBE13, MPC12, NSH10, Non10].

predominant [YRMWT19, ABB19, KBE13, MPC12, NSH10, Non10].

predictor [IIKH16, JZ17, JCG15, MS14a, USF18, WMK13, WMK14, WMK15, WMK16].

predicts [PPF17].

predominant [MR10]. prefer [SS15b]. preference [PC10a, PHPM18, SS12b, ZLZ16]. preferences [IIKH16, JZ17, JCG15, MS14a, USF18, WMK13, WMK14, WMK15, WMK16].

prefer [SS15b]. preference

[ASC16, Bac15, HBA10, Lai11, MD16, Tsu19].

preference

pregnancy [For14, SPO10]. preliminary [BVK10, LZL19]. premature [TH17].

prenatal [BFGAGA16].

preylation [HKR14].

PreEP [RVZ14].

prepared [PGGvL19].

preparedness [PGGvL19].

preprocessing [GZ14a, GZ14b].

Prerequisite [Tox19].

prescription [RD14].

presence

[ASK17, Alv18, AWK15, BYJ17, BZA16, BAM11, CW15c, CDK11, GT12, KM18, KS14, KGM15a, MOSS15, MB18a, vTRSC13, NM11, RRRRS10, SIV17, Si16, TB15, TH17, VIBC12, WXWL12, WdVMD15, ZN18].

present [Kir11, MPP16a]. Presenting [TTG19].

Preservation

[Tox19].

preserve [MFMPS10].

preserving [AdGM12, FK18, WXmH10].

presomitic [JAK19].

pressure [AM11, BGM19, CMS19, CCG18, DL11, HWMT17, IKHL16, JSK16, KEHK17, KFG14, LFD11, LS15c, LS16c, NHE16, PR13, TSL12, WWB14, WFM13, WFC14].

pressure-based [CCG18].

pressure-clamp [KFG14].

pressure-clamp/relaxation [CCG18].

pressures [Rey13].

presynaptic [MZ18].

preterm [SEK10].

PREvaIL [SLT13].

prevalence [ADB13, KST17, LZY15, MMM18, MS16, MM15a, PDW11, SSG19, SGD16, YHZ14].

prevent [RANO10].

preventing [FHSG15, LLIJ17].

prevention [CJL15, PBSM19].

Prey

[AF10, BH13a, Abb10, AK11, BT17, BH13b, BC15, BBB18, BR12a, CLA17, CGHF14, CK18, DS13, DZJR10, EKFV18, Ft18, Fr10, GLR17, GG14, GSL13, GPR16, HAK19, HGH10, HWL15, IEN15, KB15, KR11, KR13, KP15, LS10a, LG19a, LG19b, LHV16, LJ18, MSZW19, MM13, MFG13, MA11b, MI11a, Mou12a, NTO16, PPW16, PHPM18, RPCW18, SD16, SV17, SBE14, SVA18, SY12, Tos11, VP18, VWF19, WRC19, YiTS19, ZZ14b, ZMW10, ZMT11, vLB13].

prey-predator

[BT17, GLR17, YiTS19].

prey-resource [SY12].

prey-shared [KB15].

prey-subsidy

[EKFV18, LHV16, SV17].

prey/pollinator [Abb10].

prey/pollinator-flower [Abb10].

Price

[Gra15, Lio18, vVGSE12].

prices [HMM17].

Primary [KB15, ABKS11, ABD11, DBB09, DMB11, Di 18, Di 19c, FHLT10, FHW10, GGC14, GA13, HWM16, LRL16, PRV14, SD17, XM11, YZZ12, ZPHS11].

Primate [BHLH12, RGP13, SCF12].

primates [LPvSP11, LPvSP12, Nak16b, SDPC11].

priming [MEKK11, SW13b].

primarily [LF13].

primordia [PH18].

Primordial
Principles

Principle

[DRW14, KAN11, KSPA17, MJS11, TM16, VGPS18, dSRM15]. prion

Prion

[CZ14, MI19, PM10a, BLS+17b, JC16, TP10a, YA14, ZCC10, ZGW14, FNH10, GCS12, Lai11, Lai18, MN11, ZLY+17]. prisoners [PCN17]. private

Private

[OSN18]. pro [DPvBa12]. pro-ovigenic [DPvBa12]. Probabilistic

Probabilistic

[BDID+12, EAN14, PPTC19, SRS+15, Ala15, CMPS17, FM18, KHK15, KMCH14, OGE10, PDM17, ZGG+19]. probabilities

Probabilities

[ADR11a, CS15a, HS11, HT10, JHL15a, JR17b, LPKH15a, SLDP13]. Probability

Probability

Problem

[AGN18, Arc14, ASP13, BM16, CFS+19, CB15, DSTD19, DZJR10, Fok12, GA15, HB12b, Mil11, MAR+17c, Van16a, VCLM10]. problems [Coh15b, Mor19, MRS14, YBC17]. proboscid [SWK+19]. proboscis [LLK14]. procedure [MW13]. process

Process

[AGRR+15, BGL17, BCFR10, CJKR10, CCB11a, CAV16, DDHM12, DRLC12, DDB10, FCC+10, GFH+18, Gou16, Gri19, Hal12, Höh15, JSW19, KB15, LPH19, Mal10, MFG+13, NPS10, NMPM15, PP17a, RRRTR10, RRRRSPTR16, SW16, SCÁBM10, SCÁBM11, SGAM12, SSJK18, SW11, SBJ+18, TGLK19, TA10, TF17, jWIGQ19, WdLS17, WZ15, ZCT18, ZTWL12]. process-based [DBD10]. processed [CRV16]. processes [AGM11, BA10, BM19, BSKV18, BMB+18a, CK15, Edu16, GGM12, Ing16, JG14, Kuz19, LPKH15a, LPKH15b, LPH19, MRPLAS15, MI18, NYSM12, PAS10, PBB+15a, Par19, RRTR12, RSR11, SS15e, SMC+13, SK18]. processing [BZ18, CC11b, ESW13, HYS19, RH16]. productive

Productive

Profile

[AMP12, CW11b, DYQ+14, HTK14, SC11a, SG15b, WDH+16]. profile-profile [WDH+16]. profiles [CC18, IvLP12, JK12, Pla10, RU16, SBT+18, TK10a, TBB14, VLFF12].
profiling [HZL+13, SOIO10]. progeny [DBBW09, DBBW11].
programmes [SXL+19, dMP11]. programming [CZW+11, JPBM17, LD18, NS13, SNS17, ZMNd+10]. programs [NKOS11].
progression [CW13, CLHB11, DD13, GL18a, GA14, HTK12, KEG17, KC11a, LTZ19, LCGMH12, METC12, NWR+10, SB19].
Progressive [SVSP15, Len14, SCKL15].
progression [CW13, CLHB11, DD13, GL18a, GA14, HTK12, KEG17, KC11a, LTZ19, LCGMH12, METC12, NWR+10, SB19].
Progressive [SVSP15, Len14, SCKL15].
projected [DTY12].
Projecting [MHMM18].
projection [PRSC11, WMK14].
projections [WXmH10].
prokaryote [CCY+19].
prokaryotes [GYWJ10, Hua12, XKCG15].
prokaryotic [AAAV14, LXS15, YCR+15].
proliferation [ALD+11, BJO+16, BMB+18b, GMOP12, Gol10a, Gol10b, Gol16, HPM+17, LD18, MFL+18, MFMB12, MPZK16, TSMB14, WRH+16].
proliferative [SZ18].
prologue [TK19].
promelas [HCHI18].
promise [Ran12].
Promote [GWNW15, BBD18, GW19b, HNR14, JA13, Lai18, PTB12, RRR15, SSS17, SJSK18, Tos11, WDH+11].
promoter [BSB+13, CBL14, FLM18, HA15a, HBSF11, RW16, SDRA+15, dEG11].
promoters [HHJR11, MMH+12, RW16, ZLDZ13].
promotes [BLW11, CS14a, CH11, ML13, MB12b, NCLB16, SN18, SKS+19, WSP14, XY14, YHZ14, ZZCZ17]. promoting [BM14, BLS+17b, LHW14, Ma10].
Promotion [LPH18].
proof [HRC+12]. propagated [HS15].
propagating [Hor11b].
Propagation [NS18, Van17b, BZN17, BS+13, HM10b, HMM16, KKWA18, OTTF11, PRV+14, ST17a, SNOV11, WML16, WHT17, WLY+17, YM16, ZUFM17, dRFI15].
propagule [BGM19, PR13].
propel [RL15].
propensity [JM12, NPS18, PGH11, XDD+15]. propeptide [NF16].
proper [KP16, SW19].
Properties [SBT+18, ĀCHS19, CS18, CW11a, CL13a, CT18b, DLEMP19, FD18, FLM18, FLGGD+14, GML10, HT19, HYA14, HANR+18, HZL+11, JBSFB12, JLY+15, JD16a, JD17, KCM+11, LL13a, LCG+15, Luo14, MBE10, MT14, MGC13, PM11a, PW19, PDW11, RSD+16, RSH14a, SFV16, SG15a, SDFK12, WM17, WN19, WX10, XSLZ16, YYW+14, YZW+16, ZR16].
property [GRB+13, Js12, Su16].
prophage [CKB19].
prophylaxis [RWSB11].
Proportion [WF17, Dol16, IU18, JMC+10, PWE15].
proportional [Gla13, RW16].
propinquity [KMM16].
portions [HXL18b].
proposal [FRP14, SNCM12].
pulsion [FKMG15, HM11a].
pulsion [KG12].
Prorocentrum [JSWY19].
Prosperity [CST+12].
prostate [CBGS18, Dim10, DDTL19, HHS15, HBA10, HA15h, NH19, PGF11, SSN+14, WM18, YZY+16].
prosthesis [JH12].
Prot [pZWZ+16].
Protandry [Mor13].
protean [Fre10].
protease [FHG15, IHN16, TAR16].
proteosome [SBB18].
protected [KG13, KJ15, TM14, Tak16].
protecting [BH12].
protective [HE16].
Protein [DS15b, KKS+14, KS10, LJ15, LCF17, LBS+14, LD18, MALAN17, Nah14, NSBL10, QZY17, SV14, STB+18, SSV+15, TKK14, Wai10, WZM19, XSLZ16, YDC+13, YZ19, ZT16, AF19, ACdIRM+11, AEZR+16, AH15,
AC15, AP13b, BBT+15, BKR14, BB15, BSM+14, BB13, BGD+13, Boz15, BMF+18, Bry13, CJ12a, CZW+11, CL13a, CSKZ19, Cho11, DLEMP19, DI13, DHS+15, DSPM14, DM10a, DM19, DYQ+14, DZW10, EHBC10, EG12, ER18, FJ10, FLGGD+14, FCS18, GTS15, Gin10, GJ15b, GNB+13, HNV+16, HMTA17, HYA14, HK11a, HK12, HTK14, aHLZ+12, HLHY17, HMH14, HPML18, HLS+12, HH13, HY13, HWHL15, IA17, JSZ12, JM12, JQ+19, JD16a, JD16b, JD17, JCG15, KSA16, KHP+12, Kee10, KKG16, KRD15, KHK17, Kin18, KZL14, Kri18, KSK+17, Kur10, KK17b, LL12, LWW14, LZ18, LJ10, LILYB13, LCL14, LYZ+18, LMJ+18, LSLL13. protein [MPY14, MJ11, MMY+12, Mal18, MdFDM10, MPCTGJ+15, MGO+15, MC15a, MC16b, Mei12a, Mei12b, Mei13a, Mei13b, MG14a, MIH16, Miy16, Miy17, MPZK16, MP14b, NBL10, NBL14, NLB14, NSS+11, NMZ19, NHTS14, OYY16, PDM17, PAOMV17, PW+13, PM14, Pav14, PBvdG10, PWH16, PM11b, PBBB10, SSA13, QM12, QQJW13, QLC18, RRG+10, RSS+18, RSD+16, RCL+10, RM19, RT15, RBMPP+13, RBMPP+15, SNS17, SRS+15, SM17a, SM18, SFV16, SRP16, Sel13, SC11a, SDLP13, SSSD17, STG19, SHLL11, SQS+12, Slt17, SBB18, SG15b, SAGC12, SAZ+14, SPL14, TWR+18, TP10b, TAI+18, TWC+19, THBM10, TP17, USF+18, VBMH+13, WMK14, WMK15, WXH10, WRZ+12, WXY+17, WYL+19, WLY+17, XC10, WGDZ18, XLY+10, XNJ+13, XGZ17, YSH+14, YYW+14, YG18, YYH+14, YC13, YCR+15, YLF+17, ZMS11, ZCAB17, ZPHS11, Zha11, ZZRZ11, ZS12, ZTWL12, ZLY14, ZK14, ZLZ+16]. protein [BMF+18]. protein-drug [NLB14]. protein-ligand [FCS18]. protein-ligand-binding [QQJW13]. Protein-protein [MALAN17, QZY17, ZT16, ZRGW19]. protein-RNA [LL12, PDM17]. Protein/Receptor [Ken19]. proteins [ACHS19, ARG14, AH19, AH16, ALM+19, AAGCD15, AHJ18b, BMSE14, BRK19, CRH+15, CXC18, CRV16, CT18b, DTY12, EWS13, FL12, FL13, FLW16, FBAPMD13, FLCS+15, GZ14a, GZ14b, GDPPS+11, HZC+10, Hua12, HKR+19, IKHL16, III17, IK15, JXL+15, JLX+16, KCM+11, KPK+13, KHK+17, KB11, KBK16, Kri16, Kri18, LL12, LLW+18, LLP+19, LTL+15, LAJC19, Mei14, MP12, MBE11, NHSX14, RBM17, RBRR16, RKL+11, Rou14, SRF+15, SGGH19, Sha14, SC10b, SSV+15, Ste12, SH15, SSRA16, Tox18, WMK16, WdVM15, WII17, Wil13, XWC11, XDD+15, XKG15, YLL+14, YGL+10, ZJS11, ZGS+10, Zha11, ZZ14a, ZZM14, pZWZ+16, ZRGW19, ZNA+16, ZXC+10, dSMP+11]. proteolysis [Sel17]. proteome [LKAJ18, RNVP10]. proteomes [LLG16]. proteomics [WAC14]. proto [Di 14a]. proto-mRNAs [Di 14a]. protocell [ZSS10]. protocells [VMZK+19]. protocol [AGC18, SSN+14, Zhe15]. protogynous [YSST13]. proton [LL17b, Mar12]. prototype [GBP+11]. prototypic [ANGPB12]. protozoal [HFD17]. provide [IK15, TLW18, VGZS18]. provided [WZ12]. provides [PJ13, PVCEC18, TCYY+12, Zho11]. Province
120

provinces [STG17]. proving [WSM12]. proxy
[MIHC17]. prune [BL17a]. pruning [LMD17, dG10b]. PseAAC
[Mei13a, Mei13b, AFS19, AH19, AH18, BRK19, CCY+19, CXC18, CT18b,
DHS+15, HYA14, HK+19, JLX+15, JLQ+19, JCG15, JCG16,
KHL17, KJH+19, Kri16, Kri18, LZ18, Mei12a, Mei12b, NBL10, NMZ19,
RSS+18, SM17a, SM18, STG19, SKK18, WZM19, XMWC13, XDD+15,
ZCAB17, ZL18a, ZD18]. PseFpt [XMWC13]. PseKNC
[JYZ18, SIK+18, TTC19]. Pseudo [AH15, AHJ18b, BMN16, CL13a, Cho11,
EMM10, FL12, FL13, FLW16, GZ14a, GZ14b, HPB+14, HK11a, HYW11,
HY13, HGM+16, JD16a, JD16b, JD17, JSF+11, KHK15, KZL14, KSKK15,
LD11, MJ11, MFZ18, MZ18, MBE11, MP14b, NBL14, NMZ19, PWZ+19,
QCL+18, RBMS17, SRS+15, TTC19, TWC+19, TP17, WMK13, XNJ+13,
XSL26, YGL+10, ZSZM14, ZK18, ZNA+16, ZLW+19, ZLDZ13].
pseudo-amino [GZ14a, GZ14b, HYW11, JD16b, JD17, KSKK15, MJ11,
MBE11, QCL+18, WMK13, YGL+10, ZNA+16, ZLW+19]. pseudo-average
[FL12]. pseudo-multiscale [HGM+16]. pseudo-position [QCL+18].
pseudo-trimucleotide [ZLDZ13]. pseudomallei [SSR16]. Pseudomonas
[ALM+19, FE10, FIJJ11, MBC+12b, SBJ+18]. pseudopodium [GF11]. psi
[MIH16, DYQ+14, PRM11]. PSI-BLAST [DYQ+14]. PSO [FJS+19].
PSO-based [FJS+19]. psoriasis [RAR19]. pSSbond [KJH+19].
psSbond-PseAAC [KJH+19]. PSSM
[DLL+17, HK12, KHK+17, LZ18, LTL+15, ZCAB17, ZL18a]. PSSM-Suc
[DLL+17]. pSuc [JLX+16]. pSuc-Lys [JLX+16]. psychiatric
[PG18a, PG18b]. psychological [FWW18]. psychophysical [vTMW15].
PTH [CLA+16, TSF+19]. PTTQ18 [GY18]. Public
[CJRR11, AS12, AS13, Arc16, AS16, Che12, CWW18, CSZT12, CB10c,
DDRP13, Hau10, LCCK12, LvBJ16, MK14b, MV18, ON14, OOI17b, ROF17,
SU11, SHBT14, SP13b, WH11, WL19, XWZ10, ZCW13, ZWC+13].
publishations [SS19]. Publisher [Ano19-53]. pulmonary
[GBJ+11, NAK+11, REC10]. pulsatile [GDF18]. pulse
[ABLH18, BB11a, GZT15, LL18, ZTT18]. pulse-amplitude-modulated
[GZT15]. pulses [HB18, LSMP14]. pump [Dim17, OCN10]. pumping
[Alv18, YSI17]. Punctuated [WdLS17]. pungent [Di17b]. punishers
[OOI17b]. punishing [Sch10]. Punishment
[HNR14, PTB12, ZZC17, CW14, GWNW15, GT12, IL13, JR17b, KCS16,
RANO10, SHBT14, SP13b, WL19, Woi12, ZCW13, dWV11]. pulation
[Tun13]. purely [TBQG14]. purifying [OGO19]. puroidolone [ASR15].
puroidolone- [ASRM15]. Pursuit [ACT12, GRI15a, VP18]. putamen
[RKMG12]. putational [GMK18]. Putative
[Sel14a, AIY16, SPSM15, SBR16]. Pütter [OYA14]. Putting [JPDP10].
PUVCs [JSC+16]. puzzle [DMO+17, SSP15]. puzzles [TK19]. pv

QEPS [NNH+16]. Qrr [HK14]. QSAR
124

SV14, SAGAGB17, SW13b, SW19, SM11b, Tox17, Unc11, WKB13, WMT15, Wol12, WSM12, ZHAK14, ZGS+10, ZFWK17, dSKBS10, dBE16, vNÁBG12.

Roles [SZ18, ZZS19, BN15, CDGV10, GH11, GK10, HSiI+19, HKS15, MNSZ16, MHMM11, PM11a, RAMS11, TC11, TWB16, WLL+14]. root [BBS18b, Che16, DKP+18, Di19b, DV12, FM14b, MBK+11, MBKB13, MLL+16, NNG19, PMKM10, TP14, TLR14]. rooted [BBS18b, Che16, DKP+18, Di19b, DV12, FM14b, MBK+11, MBKB13, MLL+16, NNG19, PMKM10, TP14, TLR14].

root [BBS18b, Che16, DKP+18, Di19b, DV12, FM14b, MBK+11, MBKB13, MLL+16, NNG19, PMKM10, TP14, TLR14].

roots [FM13, SSF15, VW10].

rorqual [PGS10].

ROS [SAB+19, XCW+18].

Rosen [HS16, CB15, PWG16].

R¨ossler [BA19].

rostrum [IST11].

rotating [CC10, KNT10, VDH+15]. rotation [CJ12b, Cle18a]. Rotational [MED12].

rough [CW+11, CKN19]. roughness [PTT12, QA15]. route [Lio18, SiL16].

routes [HB12b, MSB16, SPRF13].

routine [Hou16].

rpiCOOL [AEZR+16].

rRNA [WSTL16, WZ17]. rRNAs [RBRB16]. RRSM [HW11, HW13]. RSV [GP1D18].

rule [AW12, Fer11, HCS+19, HKR+19, IDI11, Mar11, MS14d, NMZ19, Ros10a, SFD12, SSD12, TMHM12, Voe18, ZZC10, ZLY+17, vV11b, vVAH+17, Tay16b].

rumen [WJL+16, vLFM+19]. ruminant [HFD17]. Run [AA12, Ran12].

Run-and-tumble [AA12].

profile [AMB13, BBJDS11, Fue14, Fue15, Fue16, LGR+12, SS18]. rural [LG18].

Russia [AL17].

S-FLN [JAM18].

S-glutathionylation [ZNA+16]. S-loop [KG15b].

S-prenylation [HKR+19]. S-sulfenylation [JZ17, JW18, WZM19].

S-SulfPred [JZ17]. s.s [ACHS19]. S2 [KG15b]. SAAC [AH18, AHJ18b, HK12].

Saccharomyces [AM12, BLPL10, HZW+14, LLCC12, LXC15, OB10, SSV18, TK10b].

saddle [SSN+14]. saddle-point [SSN+14]. safety [FGS10]. Saharan [MS16].

SAIR [Gru18].

Sakishima [SFT14]. saliva [HR12, PSS+10, PSP+12, PSS+13, dLMD+11]. salmon [GDJC11, HIT18, SGCD14, SWD16].

Salmonella [LPS+14, SPMS15, SBSR13, ZVMB10]. salt [FM13, FM15b]. SAM [XYZ15].

SAM-II [XYZ15]. same [BHBR12, CRV16, CB15, KBK16]. sample [Bar16, WSW10]. samples [GZT15, WCC14].

Sampling [BLGR+19, CC11b, STA10, JHE15a, JHE15b, LAS14, MSP19, MM18, NTMK11, SSP15, SS15d, WHL13].

Sampling-through-time [STA10].

sanctioning [SHBT14]. Sanctions [SHBT14, NSKO18]. sapiens [KHH+17].

SAT [MKF+14]. satellite [GMOP12]. satellites [RGP13]. satiety [DZJR10]. saturation [CMS+19]. Savanna
[DAVS11, ADV+10, Urs14, VCLM10]. savannas [DDS13, MGCL13, STLJ18]. saving [TTW13]. savings [MPJH13]. scaffold [BBDB13, HHA17]. scaffolding [KFL12, Smi14]. scalable [MC19]. Scalar [OABB18, RWH16, QA15]. Scale [BAM+11, BP15, BVJE17, BC15, CAGM+17, CL17b, CDC18, CMLD11, Cox10, EBP15, FMS+12, FGTT15, Giv10, GJS+10, HXL16, HY10, ITO16, Ing16, KCR+19, KPD18, KSLS13, LKL13, LDB+14, Mac11, MAM16, Me14, Mic14, Mic15a, MP13c, MLL+16, Ots11, PAK11, PBD13, PMSY17, RA10, Rev15, SH15, TVMG16, TB16, WZ17, WGC13, XLSF19, dICGSA16]. scale-free [BC15, GJS+10, KSKS13, LKL13, XLSF19]. scales [BBWS+13, DLSD15, GABM12, GHS18, MSIR10, NGND12, NP15, TZ11]. Scaling [CNM+13, LLTP19, PGS10, RV16, RSH14a, ZG10a, ZG10b, BZN17, BS13, BDE+14, DSF11, DCR18, GMMGVD12, Gla13, LLLV11, Mac14, Mac11, MAM16, Mei14, Mic14, Mic15a, MP13c, MLL+16, Ots11, PAK11, PBD13, PMSY17, RA10, Rev15, SH15, TVMG16, TB16, WZ17, WGC13, XLSF19, dICGSA16]. scale-free [BC15, GJS+10, KSKS13, LKL13, XLSF19]. scales [BBWS+13, DLSD15, GABM12, GHS18, MSIR10, NGND12, NP15, TZ11]. Scaling [CNM+13, LLTP19, PGS10, RV16, RSH14a, ZG10a, ZG10b, BZN17, BS13, BDE+14, DSF11, DCR18, GMMGVD12, Gla13, LLLV11, Mac14, Mac11, MAM16, Mei14, Mic14, Mic15a, MP13c, MLL+16, Ots11, PAK11, PBD13, PMSY17, RA10, Rev15, SH15, TVMG16, TB16, WZ17, WGC13, XLSF19, dICGSA16]. scale-free [BC15, GJS+10, KSKS13, LKL13, XLSF19]. scales [BBWS+13, DLSD15, GABM12, GHS18, MSIR10, NGND12, NP15, TZ11]. Scaling [CNM+13, LLTP19, PGS10, RV16, RSH14a, ZG10a, ZG10b, BZN17, BS13, BDE+14, DSF11, DCR18, GMMGVD12, Gla13, LLLV11, Mac14, Mac11, MAM16, Mei14, Mic14, Mic15a, MP13c, MLL+16, Ots11, PAK11, PBD13, PMSY17, RA10, Rev15, SH15, TVMG16, TB16, WZ17, WGC13, XLSF19, dICGSA16]. scale-free [BC15, GJS+10, KSKS13, LKL13, XLSF19]. scales [BBWS+13, DLSD15, GABM12, GHS18, MSIR10, NGND12, NP15, TZ11]. Scaling [CNM+13, LLTP19, PGS10, RV16, RSH14a, ZG10a, ZG10b, BZN17, BS13, BDE+14, DSF11, DCR18, GMMGVD12, Gla13, LLLV11, Mac14, Mac11, MAM16, Mei14, Mic14, Mic15a, MP13c, MLL+16, Ots11, PAK11, PBD13, PMSY17, RA10, Rev15, SH15, TVMG16, TB16, WZ17, WGC13, XLSF19, dICGSA16].

seed-bank [GCvWE+14]. seeding [TI13]. seeds [Alv19, SIHO15]. seed [BTG+15, BS19b, GCvWE+14, KKWA18, LHD+17, MK14c, ST17a, TI13].

seed [BTG+15, BS19b, GCvWE+14, KKWA18, LHD+17, MK14c, ST17a, TI13].

Semantic [ZHC10, ZT16]. semi [BS19b, SAKG13, VG13, ZNCM15].
semi-deserts [BS19b]. semi-supervised [ZNCM15]. Seminal [KGM15b, WZ18].
semencesence [DKS15, DBB14a, EBX17, WWB14]. sense [LLSO13, STH18].
sensing [BSL+17, FBK11, GSS19, KAN11, LDHD14, MKPVH16, NBW10, NBW11, ONO15, PLHL19, RAF+14, RRC+11]. sensitisation [HLTR19].
sensitive [CW11c, JZ17, LSP13, TSMB14, YI18a]. sensitivities [BV13, YIS+17]. Sensitivity [GZFX14, MF15, AKNP18, CCS+16, CNG+12, CMN+11, DJD10, DDSDW13, FDM+11, FR17, KMM18, KLHS17, LGu15, MK11, MBBV14].
Several [DZW10, JRR+12, MKBE17a, MKBE17b, RPD14, TD18]. severe [DD18, Sat18, SGDL12]. severity [ZZL19].

Sex [BS11, Del12, EHSR17, Gar10, AM10, Arg12, Chu10, GGM12, Jam11, Jam12, Jam13, JV14, Jam16b, KMHDIP10, LL18, MK16a, MYK17, MB10, MM15a, MFPI+14, MLBA12, MLBA13, NT14, PKH11, Rad16, Ram10, SY17, Sek12, gSxFH+12, TEY10, TEW12, TEY16, VMZK+19, WKH16, YST13, YST13, YHI14, Yam16a, Yi18a, Yi18b, YTK10, YK11, YT12, ZP11].

Sex-biased [Gar10]. sex-determining [PKH11]. sex-specific [Sek12]. sex-structured [LL18]. sexes [XY14]. Sexual [LN19, YYST13, BBHR12, CHK16, Cro17, EHSR17, EBSW17, Fis19, Fre10, Gra14, KK12a, Mor13, MM18, NI19, SLL18, SSD11b, TCB13, WSRG18, ZR15].

shaped [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [FF14, GVSL16, HMM14, IS17, MOSS15, TDKJ15]. shaping [BPLM12].

Sher [FPG11, BB15, DPCM16, She10, THBM10, WLY+18]. shedding [CMN+14, HR12]. sheet [Mau15, ZZR11]. sheets [Han10]. shell [BB15, KBS+19, SCsMzX18, She10, SK11a, VH11a]. shells [LCG12, Nos14, NSS16]. shielding [Kar15]. shift

Signaling
[Acq12, ACD19, BBI11a, BJJR10, Chu10, FLCS+15, FTS15, GM13, Gr11, HS11+19, HWD+14, Ken19, KB19, LSMC18, Lee16b, LXZQ14, NS18, NSS+11, PR11, PC11b, RSV10, SPS11, UI13, YFB+12, Zhu11, ZXC+10, ZG10c].

Signalling [DTGD19, AP17, FD11a, MBM11, MBKB13, MLL+16, OTGT10, Par19, PS1+18, SNC12, STX+11, TC11, WPH+12]. Signalling-modulated [DTGD19].

Signatures [SHM+18, TST+13, Bar18, NS16, NKBCC18, PPBD10, SSCJ16, WSK+19, WDN+19].

Significance [MAH12, CB13b, GK17, iHM17, SWPC+16].

Silencers [CWW18].

Silico [AEZR+16, ACM16, ASRM15, ALM+19, ACvKA10, BGCB12, CRH+15, CAGRM+16, DBD15, EME+16, GHJ14, HHI14, Hal17, HCHI18, HNP18, HMMSRD15, JSC+16, KJM17, KRDJ15, LZL+17, LKAJ18, LMM18, LZL+19, MÇ15a, M Cá16b, MPZK16, MG15, NCT+11, NRS+16, NGJ+14, PGM16, PMBS16, PEZ+13, RRG+10, RRG+12, RAA+16, RM19, SBR16, SDRA16, SSDG+16, SSRA16, SB15, TKTB18, WB15, ZNCM15, CMHM19].

Silk [RGCLM10, FMS+10, YLY15].

Silver [MHD18].

Simian [SBCR10, HI1+19].

simian/human [HII+19]. similar [DG16]. similarities [CLL18, MJ11, Pav19]. Similarity
[SCS10, YZZ12, CBP12, lDsvWM+15, GZT12, Hou13, HZWH10, IK15, LSDD13, Ots11, QLZQ11, QLWC19, Rei12, WTQL10, WSK+19, WGDZ18, YZW10, YW13a, YCY14, ZZK14, ZT16, dASdC+15]. similarity-essential [dASdC+15].

Simple [BJP12, Mar12, PDL+17, SSM10, Tak16, ACD11RMR+11, BRB18, BSR+11, BLS+12, DDW10, DLYW13, DDSW13, FBFM12, GI15, HS12, HZWH10, KF15, MGML10, NSO15, OKVN18, OSF11, PAA11, PCBM12, PML18, QQ1W13, RG18, RHT18, RAMS11, SA13, ST17b, TA10, Tal12, VK10, VLCO18, ZBA14, ZLY+17, vVLS14]. simplest [JMZ13].

Simplex [KB10a, BY+11]. Simplex- [KB10a]. simplicial [ER18].

Simplification [Jia16, UBP12]. Simplified
[Pat16, HM11a, HHW15, LSI10b, RLSM17]. simulate [ASL+18, CMJD11]. simulated [BWL12, Don17]. Simulating [HNV+16, HWGT15b, LLD+17, LC16, NR14, POK+12, HGGC13, LKL13, LHPF18]. Simulation
[DLL+18, JL11, MB12a, SNOV11, WGH+14, dCGSA16, ADS+19, BUC14, Boc12, BTK15, BMF+18, Cox10, CT16, DHB15, DV12, FKMG15, FWSG17, GJ11, GBBI16, GKG+18, HÁU+18, ICG16, KMLT14, KPLT14, LSP13, LCA+15, LHD+17, NI19, OA15, PAOM17, PRMH14, STNT17, SK15, SKD+10, ST17b, TD17, TMS13, VF12, VG13, WWIG19, WMD16, WC10, XY15, ZLW14, ZZL+11]. Simulations [ARB13, La13, SBB14, APW10, CK17, For10, KGP+15, KA15, KTJ19, Lai18, LSSG10, MPP+16a, MSN14, MAA+17, NZZ19, SMS19, SMJS14, SRH19, Zha10a, ZZ18]. simulator [MZ17]. Simultaneous
[Eft13, VBV10, AB16, BHBR12, KMHdP10, YvBS18]. since [SS19].
Spatial

[ACMK12, Ayd18, CLPZ14, CNL14, CVO+15, CPPLAB18, GB12, GABM12, JAB18, LLLV11, MMC19a, MKKS14, MGCL13, NvHM13, POW18, RSD12, SS15a, ŠKSRW16, VDD+17, YvBS18, YBT+17, BBT+15, BZ18, BH13a, BCPG18, BTK15, CN10, CLA17, CBK15, CF11, DE17, DCN13, ER13, EPP19, FKV19, GBS12, GABM12, JAB18, JCD16, KDST15, Kar12, LJ15, LFB+16, LLH+13, Lio16, LJJ15, LVLC18, MCL19, MMAS13, MKMG+14, MCWF14, MS16, MI19, MAL+11, POW17, PTC13, PRM12, RDP16, RAMS11, RM17d, SDJ+15, SCS15, SSBG19, SJSK18, SLJ+10, SS11, SY12, SS12b, SSC13, TB16, TGL15, VY12, WH11, WKB13, YISG14, YSI18]. **Spatial-Stochastic** [MMC19a]. **spatial-temporal** [LJ15]. **Spatially** [SS11, TB16, TGL15, VY12, WH11, WKB13, YISG14, YSI18]. **Spatially-averaged** [ZCS+15]. **spatially-explicit** [TM15b]. **spatially-extended** [LDHD14]. **spatially-structured** [VZ19]. **Spatio** [HLTR19, MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTDS+16, PM10a, TP10c, ZVMB10]. **Spatio-Genetic** [HLTR19]. **Spatio-temporal** [MS10a, QJR+16, STX+11, TC11, WDH+19, ABB+19, AGPK13, CH16, MTDS+16, PM10a, TP10c, ZVMB10]. **Spatiotemporal** [ARD14, DHRA10, PLHL19, Ros10b, d’O12, BLS+17, HH16, HHD+16, Sht17]. **Spatiotemporally** [HRDL14, HRD14, Zhu11, IH17]. **spatula** [FPG11]. **spatula-like** [FPG11]. **spawning** [HCHI18, MDB12b]. **speakers** [SN16]. **special** [Cle16, GKK13, TK19]. **specialist** [RT19]. **specialization** [NP11, NP13, RD17, WF18]. **Specialized** [KMMS17, LIPD12, IEN15, SKH17]. **speciation** [AWRD15, ACvKA10, BdABY13, KG15, Mar12, MYN+15, SIVH17, SS12a, SGW+18, WCPF15, WK18b, Y116, Y117]. **species** [AT10, LW10a, LW10b]. **Species** [CC11a, CCB11a, DMSW10, HSM17, LLH+13, LZT12, LTZ13, PC13, RM17c, Sel14b, SCE+18, TLM14, YLW+14, dBJ11, AP19, ADR11a, AHP+19, ACvKA10, AMRRI10, Bac15, BJOS13, BWY+17, BCF16b, BJPP12, BP16, CBL14, CHD+10, CCA17, CMCS18, CW11a, bCR19, CH11, CK15, Cre10, DBD15, DSA+16, DZE11, FB12, FVC15, GDF18, GK16, GZT12, GABM12, GDJC11, Han12, HF17, HMM17, IC11, JY128, KDS18, LSQLD13, eCLC+10, LRAG13, MG14b, Mal17, MPBS17, MYN+15, MB15, MBLC17, MII1b, MII1c, NBS+13, NvHM13, NdIPZ10, PC10a, PB16, PPTC19, RB13, RR12, Shi19, SLL18, SLHS13, Su16, SSK+19, SMB+12, SA14, TIS10, TGLK19, TCR13, TD18, TSS16, Toj10, VDTF15, YSY13, ZGG+19, ZNA+16, ZSH+16, ZEJA11, ZYD15, dS15a, vLBJ+13]. **species-abundance** [FVC15]. **species-area** [GABM12, ZGG+19]. **species-diversity** [Tjo10]. **species-specific** [CBL14, CHD+10, JY128, ZNA+16]. **specific** [CBL14, CHD+10, CK15, CDK11, CTL+15, DL15a, DLL+17, DBBM11, ...
Edu16, Fer12, FMLM12, GMB11, GKG+ 18, HZG+ 17, HM13, IK15, JRR+ 12, JYZ18, JD16a, JD17, JAHKHI12, JP13, JK12, KHK+ 17, LCA+ 15, MDE11, MDMG14, NiT18, NK18, OF10, PBYB18, QLC+ 18, RMSTG13, RW12, SFMS16, Sek12, SLDP13, SSKK17, TDHC+ 18, WYX+ 17, WCC14, XDD+ 15, XJ19, ZNA+ 16, dEG11, dBJ11]. **specification** [ANMH11, BKL14, SC ´ABM10, SC ´ABM11, ZZX+ 16]. **specificity** [ZZ10]. **specifying** [MBKB13, MLL16]. **spectra** [NSK13, SM17b]. **Spectral** [HRD14, BWS10, BTK15, CJ12b, SPMGR10, TP17, WGDZ18]. **spectroscopy** [SKF16]. **Spectrum** [CMM19, GSL13, HYZ15, LAPK14, MP13a, PZLF19, VHM+ 17, WY13, ZDY11]. **speculating** [Mal10]. **Speed** [FOT15, GFM19, WHHS15]. **speeding** [SSF15]. **speeds** [BSL17, Fue16, GGBW14, GWBG14, MMG16, NP15, dRFI15]. **spent** [PTC13]. **Sperm** [PIPB10, CKBCG12, Ish16, ICG16, IGG18, OSF11, SOCF14]. **spermathecal** [FKMG15]. **spermatozoa** [HB16a, KG12, LXXQ14]. **spermatozoa-oocyte** [HB16a]. **spermatozoan** [IG14]. **sphere** [KKGN16, SGKCP19]. **spheres** [ICG16]. **spherical** [KMM18, SCsMzX18]. **spheroid** [AP13a, BPF19]. **spheroids** [BFGS10, DFG+ 18a, HHA17, MFL+ 18, TDSM12]. **sphingomyelin** [TWH13]. **spider** [DEG14, Mac10, QJR+ 16, RGCML10]. **spike** [MKBE17b, Opr10, WCC13]. **spiking** [BPF15a, BPF15b, Fer11, Hor11b]. **spillover** [ML11a]. **spillovers** [VABS18]. **spinal** [ISZ18]. **spindle** [ARR14, BZL17]. **spine** [LSP13]. **spiny** [RKMG12]. **spiraled** [FKMG15]. **spiriferide** [SK11a]. **spite** [KM12]. **spiteful** [GCM14]. **splice** [MSRW16]. **spliced** [BLZ+ 19, ZLB13]. **splicing** [QYO10]. **split** [CS15a, Di 12, Di 14b]. **Spodoptera** [KSK17]. **sponges** [DHBS19]. **Spontaneous** [CBP12, Kon11b, CP14, CKB19, KB10b, MTDs+ 16, OS11, SN12, TK10a]. **spore** [UI13]. **spots** [HTM15]. **spp** [ADC14]. **spread** [AZOLVH18, AL17, AP19, BJJPP12, CDO17, CL17a, Cha18, CSLE11, CMN+ 11, DK13a, HLTW14, HHT+ 19, KMCJ17, KLe14, KF11, LS10a, LCCK12, LCJ18, LK15, LL18, LCBO+ 12, MPS16, MGC13, MS12b, MS12c, MPLK14, MLA12, MLA13, PSL+ 10, SHH15, SZ15b, VMZK+ 19, WHT17, WDH+ 11, XLSF19, ZYJ19, ZVMB10]. **spreading** [GBBW14, GWBG14, BBK14, CGW18, FS16c, HPM+ 17, KPD18, KPD19, LLJ18, MSM+ 14, MBS19, PTC13, RPP16, ShvHB16, WMCL18, ZCXF13]. **SPrenylC** [HKR19]. **SPrenylC-PseAAC** [HKR19]. **spring** [WHG14]. **squamous** [MGM13b]. **Src** [HWW+ 14]. **SSBP** [KGP15]. **SSR** [NNK15]. **SST** [CH16]. **Stability** [CL11, Gou16, LR16, MK14d, NPS10, SX12, TF17, VL11, WM17, ALH16, BS11, BBJDS11, BR13, Cha17, CLP11, Cre10, DKR16, DBM+ 18, DHB15, Ezo12, FB18a, FS11b, FR13a, GAL11b, GMC17a, GCZ+ 12, HGHL10, HK10, HYQ+ 16, IG14, IvdSW16, Jam12, Krf10, LS14a, LS19, Lun13, MSZW19, Mill1, Miy16, Miy17, MD16, MKPVH16, NWZ15, Opr10, PJ18, Pav14, PM11, PLN14, PDG12, PJL14, PSG+ 17, PKH11,
PML18, RW16, RCH14, RS10, RBMPP+13, RM13, SW18, SS15c, SS18, SBS17, THM10, TRG16, TRJD19, WL12a, WL12b, Wal16, WR14, XDC+11, XS13, ZCT18, Zha10a, Zha11, ZW16, ZWG10. Stability-based [TF17].

Stable [HWGT17, Kar12, MN14, OO17b, RRÜJ19, BT17, BH12, Bro13, BHBR12, Cor16, CMGN17, DWL+14, DI10a, Kis16, KM12, LFZN11, ML09, ML12a, Mit17, Rem15, SMG18, SKS+19, TM14, VA10, XKCG15, ZLY+17].

stably [ATRR10]. stack [FIS11, FIS16a]. stacking [Tri10, Zol14].

STAT [RG12]. state [AOM19, BTF19, BKS16, BCPG18, CN12a, CMGN17, Cut15, DEK15, Dim17, Ell15, FTPN10, FT12, GGX+10, JRG14a, JRG14b, JRG14c, KTI18, KL11, Kia10, LRA+13, Lüt16, MBL16, MBCM12, MS14d, MCCC+10, PRK13, RFS+15, RR16, RCL+10, RCD16, SBCR10, SKD+10, ZTT18, ZLT18b].

state-dependent [ZTT18]. state-discrete [SKD+10]. states [ACD19, BVK10, BDR10, Bro13, IvdSW16, Jia16, LSM14, MS18, MS10b, NWWL17, OAB12, RNN15, Sch19c, SKS+19, TM14, UB12, VA10, XGZ17, XNW17].

Static [MMRC10, FD17, PEI12]. Stationary [Sch18, ALH10, Kae17, Kär11, LS13a, SC11b, SVCS10, ZWG10]. Statistical [AM14, Cro17, GLZ+13, Ing16, LCG+15, MSS10, NdMLLBC13, SS19, ABD+15, AD16, AAJGCD15, BK19, BORA10, BRK19, CLW12, GGR11, KJH+19, KCD11a, KCD11b, KLSM14, Mas18, NGK12, OGE10, PDW11, RSR11, SSS18, Wal18, WH14, YW13b, ZMC+18].

Steady [CN12a, IvdSW16, KTI18, BKS16, DEK15, Dim17, FTPN10, FT12, JRG14a, JRG14b, JRG14c, Lüt16, MS10b, RR16, SBCR10]. Steady-state [CN12a, KTI18, Dim17, Lüt16, RR16]. stearoyl [PWH+13]. Stegomyia
[BKL15, Kae17, KDL16, SNS17, ZZRZ11, Zha15]. **strand-symmetric** [Kae17]. **stranded** [Kue16]. **strands** [CJ12a, ZDG10]. **strangling** [Oka15]. **strategic** [BBR12, BC13, HMH14]. **Strategies** [MI19, VKKA12, AK13, AKS19, AMFL10, BFH15, BC15, BB10, Bos12, BI19, CLA17, Chl18, CZ14, CSS18, CFF11, CG11, CBGS18, DG16, DI10a, EL12, GW19a, GT11b, GCG14, GBRS19, GW19b, HS15, HWTN15, HHE19, HHS10, HS14c, IM18, KLI17, KdlRJ18, KKYV18, LCC15, LC17, LY11, LA15, LPvSP11, LPvSP12, MvdDW13, MFMP10, MGT17, MG10a, ML10, MPLK14, NW10, OGA16, PW19, PBSM19, RK19, SM18, SNCM12, UI10, Ush16, WCJ11, WSW10, WHYMG17, ZL18]. **Strategy** [GT11b, LXS15, Woo10, Ber14, CW15a, CJL15, DWL14, GVCG12, Has14, HRHAAA15, ITO16, KOS13, KJ19, LS15a, LL18, LFW15, LDJW16, LHD17, MW14, MR19, NPS17, QMJW15, SI11a, ST17a, SC10b, SB16, SR12, SSM18, SMC13, SNCM12, UI10, Ush16, WCJ11, WSW10, WHYMG17, ZL18]. **stratification** [SM17b, cSGFB17]. **stratified** [MYLK11]. **stratigraphic** [SGW18]. **stratum** [SSvdM10]. **streamline** [KSM15]. **streams** [MN12]. **Strehler** [TMF17]. **strength** [JZZK11, KL13, RR12, VL11]. **Strengthening** [DC11]. **Stress** [BIMC17, AS17, AAG15, BSP18, BYM18, CPF13, CFRG17, CB10b, CDGV10, DPCM16, DB12, FM15b, GRCdL16, GTSP16, GA14, KHH10, KMN16, LLTP19, Ml16, MR15, MBPS17, NF14a, RE10, SGAM12, SWSLMJ19, SAI14, XYN15]. **stress-driven** [CFRG17]. **Stress-mediated** [BIMC17]. **stress-strain** [XYN15]. **stressed** [BHBR12, DLM12, OBA11]. **stresses** [Ren13, ZR16]. **stressors** [DL15a]. **stretch** [MSA16]. **stretch-induced** [MSA16]. **stretches** [TSB10]. **stretching** [KSK11, KHH10]. **striatus** [SKSO12]. **stroma** [GCSP17, Kar16]. **stromal** [MGGM10a, MGGM10b, NJP18]. **Strong** [FS12, GCvWE14, Kur17, DGC11, JB19a]. **stronger** [HNP18]. **strongly** [Ala15, Konib1, PP17b]. **Structural** [*ATC14, CNG12, DFM11, KJSS10, KF12, MPP16, PBKR13, SPG18, UD10, ZKHL16, AKNP18, ASRM15, AA16, CT18b, CzST18, CM17, DPRSS11, DQY14, Don17, EBSW17, FS11a, HH14, IK15, KZL14, LJ10, LCQ18, LKAJ18, MPCTG15, MF15, OYY16, PDB15, PPC17, RSD16, SBR16, SSSD17, SG15a, Smi14, SLT18, USF18, WM17, YX15, Zha10a, Zha11, ZLY14, ZK14, ZLT19, dBJ11]. **structuring** [Nak19]. **Structure** [KKM12, K15, dBB14b, AAGO17, ACM12, AP13b, BBT15, BKR14, BZ18, BSP18, BJO16, BWY17, BHK14, BORA10, CTA15, CLC11, CVCPV15, CV19, DHB15, ESW13, EVRE14, FW15, FML18, FGP10, FYZ15, GGG12, GDS11, GB12, GGM12, GCZ12, GHS18, HTH14, HWHL15, IJK16, KDST15, KKN16, KGP15, KBB16, KZL14, LS15a, LLS15, LL12, LL13a, LG15, LM16, cLC17, LZMM15, LZTD18, MS10b, MG13b, MHH13, MK14d, NBL14, NGS16, OAJK10, PM14, PEB12, QQL10, RW15a, RK18, RB14, RKJ11, SAGC12, SJSK18, SDPC11, TA10, WSH10, WSLC14, WCPF15, WDH16, WKB13, WZLW15, WGO15, XLSF19, YISG14, YSH14, ZGZ10, ZZRZ11,
structures [CA11, CM17, EG12, FWSG17, FYZ15, GZY12, HY10, HBW +11, Kee10, KCJ +11, KF15, MDVT10, Mas18, NHTS14, SSI +16, Str13, ZSW11, ZZ14a].

structuring [LG10a]. struggle [LM14]. STTNC [AH18]. stuck [Cza14]. studied [BHBH11]. Studies [Zha10a, ZZRZ11, BWS10, CW11c, GW19a, KJM17, KSK +11, LSMP14, MTE15, MBF +15, PS13, PEZ +13, RMM +16b, TWR +18, TAR16, TMS13, YNY +10, Zha11, ZZ14a, ZK10b].

studiosus [QJR +16]. Study [DYS +13, RNVP10, SM10a, ASK17, AHD +18, AKR +18, AABS16, ALH10, ACVK10, BRA15, BC19, BB15, BZ18, BLV18, BD10a, BOC12, BVK10, BR12b, CFF12, CPS10, Che19, CH16, CLE16, CDGV10, Cro19, DRW14, DCL18, DK13c, DGDI +11, EJ17, EJ19, GKM10, GKTN10, GH14, GDPS +11, GXP13, HIHR11, HI19, HTM15, HWW +14, HME12, HM11a, Hir16, HWGT17, HM15, iTIM15, IG14, ICG16, JL11, JRG14a, JRG14b, JRG14c, KKD18, KBL15, KRR14, KJC +11, KTJ19, LBMG16, LWLM18, LHW14, LS10b, LCO +18, LS10c, LCGMH12, MFM16, MRPH17, MS18, MPS +11, MBC +12b, NTC +11, NZ19, NH19, OBK +11, PCL +15, PRV +14, PVGV19, PMKS +15, RCH14, RCL +10, RP18, RSV10, SPMS15, STNT17, Sch17, SSQ +19, SXL +19, SG15a, GDG12, SRS18, SK +10, SCS10, SAI14, SIHO15, TDZ +18, TA16, VG13, WWIG19].

study [WDH +19, WC10, Wu14, XGL +15, YSST13, ZSH +16, ZZL +11].

Studying [ARG14, BPM +12, DHK13, KFG +14, Kon17, Shu13]. Stylophora [KRS11d].

Sub [USF +18, WN19, LLW +18, MS16, ZLW +19]. Sub- [WN19]. sub-Golgi [ZLW +19]. sub-network [LLW +18]. sub-Saharan [MS16]. Subcellular [Dty12, SRD +15, AAGC15, CXC18, DHS +15, FL12, HLS +12, LLW +18, LLT +15, Mei12b, Mei13b, SC10b, STG19, TKK14, USF +18, VLT +19, WMK13, WMK14, WMK15, XWC11, YLL +14, ZL18a, ZD18].

subchloroplast [HY13, LW14]. subcutaneous [MYK +11, SAI14].

sublocalization [PWHV16].

submerged [STI13]. submitochondria [Mei12a, Mei13a, ZMS11].

submitochondrial [JD17, QLC +18]. submitted [LSMP14]. suboptimal [FY15]. suboptimality [Jam15]. subordinate [NBS +13, SYI17].

subpopulation [DS19a, NITI18, SSZB15]. subpopulation-specific [NiTI18]. subpopulations [DGJ15, MK19]. subsample [MSK10].

subsequent [WK17]. subsidizing [KTJ19]. subsidy
[Gru18, ITR⁺¹⁸, TDKJ15, Zac14]. suspicious [PCN17]. sustain [MKJS13].
Sustainability [KG13, RDMP11, TLW18]. sustainable [BR14, GL12a, GK13, TM15b]. Sustained [BF13, NCLB16, SH16].
swallowing [dLMD⁺¹¹]. swarm [FCS18, MMAS13, PP18, PP19, YYC19, ZZN⁺¹⁹]. Swarming [LX10, RA17].
swimmers [LCBO⁺¹², RL15]. Swimming [SKSO12, BPG⁺¹⁸, CT16, HN10, IG14, Ish16, IGG⁺¹⁸, Luk14, TTW13, WGH⁺¹⁴]. Swinger [Sel16, Sel15b].
Swim [Gro17]. swimmer [HFT15]. swimmer [HFT15].
Swimming [LGEM17, APBS15, DMS⁺¹⁶, PMK15]. Syllable [GZT12]. sylvatic [KZ14, PKZ12]. sylvestre [RAA⁺¹⁶].
Symbiodinium [CMGN17]. symbiogenesis [AE17]. symbioses [CMGN17]. Symbiosis [LMG17, APBS15, DMS⁺¹⁶, PMK15].
Swimmer [Sel16, Sel15b]. Switch [SSKK17, CSK19, DD13, GC16, HL14, Kar16, OM10, PRH⁺¹¹, Sos18, SBJ⁺¹⁸, VDRL14, Voh17, WR14, WKS14, vLBJ⁺¹³, vSLS12].
Switch-like [SSKK17]. Switches [CKF17, ANY14, Gol10b, SX12, UJLG14].
Switching [LK1⁺¹², KAN11, LW10a, LW10b, LYT12, LZT13, MHP⁺¹³, NS18, Pat16, PLN14, PHPM18, RFS⁺¹⁵, WFZW13, ZJY19]. syllable [GZT12].
sympathetic [BPPC15]. sympatric [SA14]. symptoms [PZLF19, Sat18].
synapse [JSZ10, MYC12, TTY19]. synapses [HK15, KLHS17].
Synaptic [ML11a, VGS18, BB11b, FIS11, FIS16a, FR14, GL12b, HKS16, Hor11b, Rob11]. Synaptotagmins [GU13]. synchronisation [BTO15].
synchronization [ABJ12, BTR18, CTJ10, CFF12, DS10a, HTK⁺¹⁸, SN12, ZLL⁺¹²].
Synchronized [CH11, AAN16, OKV18, PJ13, TIS10]. synchronizes [KDL16]. synchronizing [ŻH11]. Synchronous [XNW17, AM10].
[JHE15a, JHE15b]. synergism [Wal16]. Synergistic [CS15b, YN⁺¹⁰, BZJP18, LW17, LW15, PBA12, Tay13, Tay16b].
synergists [Bon10]. Synergy [DL15a, MV18, Oht12, SOF16]. synonymous [LY14, MV10]. syntax [WSH⁺¹⁰]. synthase
[EJ16, KHH⁺¹⁷, LCO⁺¹⁸, TWH⁺¹³]. Synthesis [Sad10, BFJ⁺¹⁸, EHBC10, HL11, HMTA17, JS17, JS18, NCS⁺¹³, SC11a, SBB18]. synthetases
[Di 17a, Rog19]. synthetic [ASRM15, ABIM10, BPP⁺¹⁶, DGW⁺¹⁸, FWR19, HMTA17, HAU⁺¹⁸, JZ17, MMC19a, PFJ15, PFJP17]. syntrophic [SK16b].
System [GB17, LY14, ASK17, ANMH11, AT112, AA16, ARZ15, BCKS13, BBS18b, BAM⁺¹¹, CadMB10, CST19, CSBK15, CTW10, CKF17, CXT19,
CKN+12, DKP+18, DFMR19, EBSW17, FRP14, FJR19, FMLM12, FK13, FJJ11, GB13, GPR+16, GBM18, GGG12, HJLNZ11, HGM15, HI19, HAB+17, HWGT15b, Kär11, KNA+18, LW17, LGR+12, LYW11, LLL13, MI11a, OO18, OHWS18, PWG16, PR17, PHPM18, PZS+10, PBEI12, RB13, SHG16, SLR17, Sat19, SHH15, SKPK17, SR12, SX12, SKK18, SY12, TWW19, TWS15, Thu15, TAORS10, VWF19, VAG16, VC10, Voh17, WD11, Wan19, YiTS19, ZCSR12, ZZ14b, ZZN+19, ZMW10, d’O12]. Systematic [GBRS19, HWD+14, Oka12, Sel13, Sel15b, Sel15a, VM12, WPH12]. systematically [Sel14b, Sel16, Sel17]. systemic [CSDR15, DL15a, NAK+11, SCA13, TvMG16]. Systems [CKS15, MTE15, MMLK11, Abb10, AF10, ASK17, AENK12, BWB11, BA19, Ben14, BSL+17, BJ17, BRP+18, BE14, CR14, CFZ14, CLK18, CGHF14, DS13, DGJ14, DG10a, DV12, EA17, ESG10, Ezo19, FLA+19, FKV19, GZFX14, GVSLG16, GMM+13, GP11b, GP12, GA15, GT15, GW19b, HJWC11, HAK+19, IMA14, JZL13, JCW13, KSP12, LBMG16, LCSH14, LS16a, LDH+12, LL13a, LLZ13, LMdL11, MH12, Mit14, MH13, MAF+19, NH12, NBC16a, NBC16b, OA15, ONO15, OU10a, Pag19, PJL14, PSL+10, RV16, RR16, RDMP11, RGBR17, RAD14, RA18, SYSM11, SBSE14, SVA18, Sue12, Sza15b, TLW18, VR17, Wal18, WZ18, WW19, WSM12, WFM+13, WFC+14, YYST13, dEBRM15]. systole [ASC15].

[BGF+14, CL17b, JZ17, LLC15, SLDP13, ZZG+16, ZNCM15]. techniques
[AENK12, LBGW13, SSJK18, TTW13, WP17]. teeth [LBB+13].
telencephalon [BF13]. teleological [GJ15a]. Teleonomy [TP14]. teleost
[Yan16a]. tell [LWLM18]. telomere [PVG19].
telomere [EBX17, GSV11, HWPL12, OB10, RBKW19, SRH19]. temozolomide
[HL18].

Temperature [CMM19, KH19, RL17, YI18a, YMZ18, APS+13, AC12, CFL+15, DLSD15,
ECP+16, GMZM15, NS01, RBB+12, VBV10, WTC16, WDL+13].

Temperature-dependent [KH19, YI18a]. Temperature-driven [YMZ18, WDL+13].
temperature-mediated [AC12].
temperatures [SSV+15]. template [BRB18, HS12, IDM15].
template-based [HS12].

Term-frequency [WMK13]. terminal [BCS+16, GSV11, RSBB10, SSZR17].
terminals [GU13]. termination [TH17, dSKBS10]. ternary [HL11].
termary [Hua12, ZT16]. terrain [ASL+18]. terrestrial [LYK12, Poi12].
territorial [BR12b, GSRR17, MG516]. territoriality [HK10, TTY+11].
territories [GSR17]. territory [JL11, MN14].
tertiary [Mas18, NHTS14]. test [Alli11, ARZ15, GZ19, HPB+14, LSSG10, NBW10, NBW11, RRC+12,
RRC+11, ZPdFJ19]. test-based [LSSG10]. testicular [SFMS16].
testing [NBW10, NBW11, RRC+11, RCD19, SAG19, CS14a, CS11b, JZKK11, NM11].
testosterone [GS17b, HS14a, Jam14, ZP11]. tests [GK16, SD16, TW13].
tethered [CKBCG12]. tetra [Sel15a]. tetra- [Sel15a]. tetrahedron [Den19].

Tetrahymena [ZGZ+10]. Texas [BLS+12]. texture
[CLL18, KSM+15, NSBL10]. textures [DDF+14]. TGF [CWP+18]. TGF-
[CWP+18]. Th1 [EBE10, GM811]. Th1-Th2-Treg [GBM11].

Th17 [SGDL12]. Th2 [GM11, EBE10]. thalamus [HZG+17]. thaliana [BHH+14,
HNA15, MKB+11, MBKB13, MLL+16, OFT15, SCÁBM10, SCÁBM11].

their [AP17, AHJ18b, BFS18, CFF12, CT18b, DLYZ11, EME+16, FD18,
FS15b, GL14, GFX13, HPB+14, HM15, HZL+13, JLX+15, JCK15, KCMF11,
KAN11, Kur10, LLL11, LL13a, LD11, LCBO+12, MYK+11, MAW12, MP12,
Pai19, PDC+17, PMCS16, QW11, RMSTG13, RT19, RBB16, SMD+16,
SS17b, Wal18, WSRG18, WXC10, XM11, ZADB15]. them
[DBBW09, DBBW11, Di 12].

Theor [AEM14, BP15b, BBM+13a, BBM+13b, BGPS12a, BMGC11a, CLG+11, CNG+12, DBBW11, EPJ+11,
Theorem [Gra18, LE19, WSM12, vV18]. Theoret [PL14a]. Theoretic [GDPPSS +11, Bar18, BBR12, DH16, DMSW10, MWSM13, MGS16, TWB16, WHYMG17, ZAM19]. Theoretic-experimental [GDPPSS +11, Bar18, BBR12, DH16, DMSW10, MWSM13, MGS16, TWB16, WHYMG17, ZAM19].

theoretically [Rao12].

theories [Di 16, Di 17b, HL11, Mor16, RB15, RBF15, Sak10, TGL15, YYB19].

there [Di 18, Ros10a]. Thermal [MK18b, BUL12a, JMS12, MK17, Pav14, RTRRS+17, RCL+10, ZG19].

CLCH10, CGRRGM+16, DBBBW09, DBBBW11, HPP10, Hr16, LMC+13, LW18, MYK+11, MBBV14, MA11a, MAMEA15, MH13, MMHM11, NHE+16, NTOI16, POP12, PDL+17, RTRRS+17, Rem15, RJSC18, RC13, SBSR13, SG15, VHI11b, WMFP+15, Wod18, Yat14, vDVHF+18. tissue-diet

trajectories
[CHL +19, LWLM18, LAJC19, PRSC11]. tramadol [ACR +17]. transactions [MLMG +15]. transboundary [NBA +18]. Transcellular [Sil16].
transcranial [FR13b]. transcript [SC11a]. Transcription [ACD19, HG18a, KEHK17, MSND12, Bar19, Das18, FLM18, GY18, KHS13, LLY15, MMH +12, Mic11, MHD18, NZZ19, PHÁBAI +16, Sel15b, Sel16, Sel17, YST14].
Transcription-associated [KEHK17]. Transcription-based [ACD19].
Transcriptional [Pol12, ARG17, BPP +16, DM19, Hal17, HCHI18, NZZ19, Sel15a, TK10b].
transcriptome [SLW +18a]. transcriptomic [CTSL11]. transduction [ANK10, ANY14, DFM +19, JC10, RW10, RJJ11, SAA10, Tsu19, VLP1H17].
transfer [Di 12, FXML18, LWW14, LWL +11, MTE15, Mau15, Mei12a, Mei12b, Mei13a, Mei13b, Mei14, NKK10, PMSY17, RS19, SSS13, SLHS13, ZDF +12].
transferrin [GHBI16, YCL +17]. transferrin-CRM107 [YCL +17].
Transforming [HMW16, MHMM11]. transforms [JLX +15, SVCS10].
transfusion [HSLW16]. transgenic [BAR14, LBGW13]. Transient [BB11a, KK18, BF16, FGH +14, Hor11b, LLLP19, Liit16, PW19, RW10].
transients [MBP16, SHF16]. transit [KS15, SSZB15, Wei12].
Transition [SLML19, BBR10, CCds15, DB10, KL11, Kin18, MS14d, OTTF11, TWB16, TK10c, ZLW16]. transitional [HSil +19]. Transitions [MVGGB18, WD11, YFZ +19, DS10a, GJ15a, MB17, RA17, SCA13, TMB +13, WK18a, XNW17].
transitive [DN18]. translation [BBRT12, DCL18, GYWA10, GRGG16, KSvdH8, SGD +16, Van17b, Xie13b, ZTW12, dSKBS10]. Translational [Tak17a, BPP +16, EBSW17, KSvdH18, XG12]. translocation [ACH15].
transmembrane [CTZ +16, EG12, IHIS16]. transmigration [Kun16].
transmissibilities [WN19]. Transmission [EN15, FRP14, KR15, MCCC +10, XSTW14, ABB +19. BBR16, BDR10, BHO +18, CDO17, CT18a, CLK18, CBC +18, CG14, DFM +14, DB11, Déb17, DBBM11, ERT13, GSYS10, GWCA14, GC18, GL12b, GAY +11, HAP +16, HHE19, HBL10, HLTW14, JSSZ12, KG10, KL17, Kle14, KZ14, LLN +19, Lan16, LKK13, LCC15, LJ15, LKO +17, LP19, LN19, LMCW18, MMHM18, MHX +14, MRC +17, MG10a, MSB16, yTRSC13, MGC13, MMRCC10, NKL10, NT14, NDZMA14, NTED +19, NYSM12, OVKL14, OL19, PSJ15, PNVN18, PaCZ10, Pt10, PKZ12, PSL +10, PEZ +13, RC16, RDSD +12, Ros10b, RCL16, SW16, ST17a, SN11, SSST19, SY11, TC12, TDM14, TCB13, VGZS18, WW12a, WZJ +13, WL15, WCJ11, YTK10, ZRL19, ZNN18, ZXR19, ZRZ13, ZRS15]. transmissions [KK12a]. transmissivity [Can11]. transmitted [BPFR16, BCF19, CCW16, HE16, HHA +13, MPM10, MBC +12a, TB18, YZMY18]. transmural [DLMK12]. transplant
KB10a, KMCJ17, KCSB14, KN11, Lai11, LCC15, LBZ18, Mal15, MMFK10, MB10, MBL17, MSS10, MPLK14, MHMM11, NBS13, New11, NTOI16, OUMA10, PBB10, PBvdG10, PC10a, Pla10, RMM16a, Rei12, RBB16b, SC10a, SL10, SBR10, She11b, TWW19, TTB14, TT10a, VCF19, WL12a, WL12b, WMK16, WcW14, Wan19, WBMM18, WF17, XDC11, XGZ17, ZLL17, ZN18, ZXH19, ZK10b, vIK11]. two-allele [WL12a, WL12b].

two-compartment [MMFK10], two-component [OUMA10], two-delay [KCSB14].

two-dimensional [ATB14, FZ14], two-fold [KB10a, She11b].

Two-intermediate [RKJ11]. two-layer [AC15, FK13, WNK16].

two-compartmental [MHMM11]. two-compartment [PBvdG10].

two-delay [KCSB14]. two-component [OUMA10].

two-delay [KCSB14]. two-component [OUMA10].

two-dimensional [ATB14, FZ14]. two-fold [KB10a, She11b].

Two-level [AHJ18b, JCG15]. Two-part [Mog15].

two-patch [DGG14, BLV18, KA11, LCC15, LBZ18, TWW19, Wan19]. two-person [Pla10].

two-phase [WBMM18]. two-phenotype [BBS18a].

Two-player [KC17]. Two-scale [BC15]. two-sensor [GT15].

two-sex [Chu10, GGM12, MB10]. two-species [Cre10, Han12, PC10a].

two-stage [HYA14, JSWY19, ZK10b]. two-states [XGZ17].

two-strain [ZN18]. two-state [XGZ17].

Two-intermediate [RKJ11]. two-layer [AC15, FK13, WMK16].

two-compartmental [MHMM11]. two-compartment [PBvdG10].

Two-level [AHJ18b, JCG15]. Two-part [Mog15].

two-patch [DGG14, BLV18, KA11, LCC15, LBZ18, TWW19, Wan19]. two-person [Pla10].

two-phase [WBMM18]. two-phenotype [BBS18a].

Two-player [KC17]. Two-scale [BC15]. two-sensor [GT15].

Type-dependent [PRN10].

type-2 [AF10].

type-dependent [PRN10].

types [AH15, AHJ18b, BK19, CL13a, CCY19, Di19c, HYA14, HK11a, HK12, JD16a, JD16b, KDG13, Kar12, KHK17, LZ18, LD11, MJ11, NO14a, NO14b, SM17a, SM18, SN16, SBR10, SVB10, SHL11, TIP17, WMM16, WXM10, WK18a, ZADB15, ZZG16].

Typhimurium [SPSM15]. typical [TIP17].

UAR [Sel12b]. Ubiquitin [PRH11]. ubiquitous [MIH16, YY18].

ultrametric [GD16]. ultrasensitive [MBM11].

ultrasensitivity [JRG14a, JRG14b, JRG14c, Str15, XG12]. umbrella [AMA16].

un-assisted [Mar12]. Unb [KHI17]. Unb-DPC [KHI17].

unbalanced [MR15]. unbiased [NPH12]. uncertain [Ala15, KM18, KDS18, MA19]. uncertainties [KLHS17]. Uncertainty [YRMWT19, YD15, CT14b, Che14, MWSM13, SJSK18].

uncompetitive [VACGF17]. uncoupling [Mar12]. Uncovering [CML10, CZ18].

Undaria [MJV16]. underdominance [ATRR10, EA17, EA19, KEK18].

underdominant [LR16]. undergoing [BRR10, CKBCG12, DB10, RM10].

underlying [AP13a, HK14, KAN11, MvAKR17, RDD14, SN12]. undermine [ZCW13]. underreporting [MCC10]. undersampling [JZ17].
GYWJ10, GXFF13, GKNT10, GW19a, GMM^13, IGLLL14, HBK12, HMMRSRD15, HAB^17, HTK14, HMI11b, HYZ^15, HZL^13, HY16, IMW15, JD16a, JD16b, JW18, KKD18, KH^19, KHX^19, KHZ^13, KSP^14, KKN16, KMA10, KHK15, KB19, KJ19, KCSB14, Kit10, KFW12, KDS18, Kon12, KAKK19, LCMC14, LWH^11, LCJ18, LL12, LL13a, LL14. using [LYF^15, LTP19, LT14, LJ10, LLB^18, wLW10, LBS^14, LPD^16, MS14a, MPJH13, MSND12, MFZ18, MALAN17, MH16, MBE11, MAR^17c, Mou12b, NH19, NSBL10, NKK^15, NK18, NZM19, NI11, NHSX14, OSN18, PAK11, PDM17, PS13, PBEI12, PPF17, PKH11, PP18, PP19, PSAA13, PPT^16, QW12, RSS^18, RSD^16, RM11C, RA10, RNVP10, RP18, RRTR12, RBF15, RM17c, SIK^18, SS17a, SRD^15, SM14, ST17a, SM17a, SMG18, SGM17, SDP13, SBT^18, SSD17, SM19, SHL11, SCF^12, SSS15, SGDL12, SL^18, SWP^16, SKK18, SCLC13, SSRA16, SVCS10, TBQG14, TAI^18, Tay16a, TLT^15, TBMM19, TF18, TW^19, THBM10, TGZF11, Tun13, USF^18, UPWK15, VF12, VZB^15, Wal12, WMIK14, WH14, WDN^19, WHS^13, WGH^14, WZ15, XWD^10, XGD^17, YMW12, Yin17, YLH12, ZDG^10, ZLY^13, ZSM14, ZMHT16, ZRGW19, ZNCM15, ZZN^19, vddSS12, vTMW15]. usually [KB10a]. utility [Bry13, RWH16]. Utilization [KK17b, MHC16]. utilizing [QJR^16, WYX^17]. UTRs [SGD^16]. UV [BPVP15, DM15, PHTP^12]. UV-induced [BPVP15, PHTP^12]. Uygur [WZJ^13].

References

Allena:2012:RTL

Aranda-Anzaldo:2016:IMC

Abner:2014:SCM

Ali:2016:BGF

REFERENCES

REFERENCES

Ascenzi:2011:ELL

Agliari:2015:ASD

Afreixo:2013:BWS

Agliari:2011:TPI

Almeida:2011:MMD

REFERENCES

Arnoldi:2018:HER

Aquino:2015:CEE

Afreixo:2011:GAD

Allen:2011:MLR

Abrams:2014:EBM

AlBasir:2019:RFA

Alvarez:2019:NMM

Asano:2012:MTM

Aram:2015:TLC

Arenas:2011:JEC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Andersen:2013:DLE

Andersen:2014:CDL

Ackermann:2012:RTN

Arciero:2013:MIB

Akbaripour-Elahabad:2016:RTS
References

REFERENCES

Angulo:2018:IRE

Arias:2018:EPM

Alsmeyer:2011:LGF

Abramson:2013:QOD

REFERENCES

Albano:2015:EDE

Albano:2011:IET

Antoneli:2018:HFF

Aita:2012:BCB

Aita:2012:TEC

REFERENCES

Ali:2015:CMP

Ali:2016:MLA

Alves:2017:HCA

Akbar:2018:ISI

Ahmad:2019:MMV
REFERENCES

Arias:2014:MMC

Aggarwal:2018:FMA

Ahn:2018:INE

Arif:2018:ITL

REFERENCES

Al-Husari:2013:RTI

Ashby:2019:URE

Aita:2016:IFV

Al-Jumaily:2012:EAS

Al-Jumaily:2011:FMM

Abou-Jaoude:2019:LBD

Armstrong:2011:MPD

Adler:2013:MCS

Akita:2015:TLI

Asatryan:2016:EGI

REFERENCES

[AKS+19] Andrei R. Akhmetzhanov, Jong Wook Kim, Ryan Sullivan, Robert A. Beckman, Pablo Tamayo, and Chen-Hsiang...

Allesina:2011:PTR

Allen:2017:CHG

Alupama:2019:IJK

Alvarez:2018:MOL

Alvarez:2019:SDS

REFERENCES

REFERENCES

REFERENCES

[AN13] A. Arazi and A. U. Neumann. The role of positive feedback loops involving anti-dsDNA and anti-anti-dsDNA antibodies in autoimmune glomerulonephritis. Journal of The-
REFERENCES

Allen:2015:GAR

Arthur:2017:EMG

Anastasio:2011:DDM

Al-Nuaimi:2012:PMM

Alam-Nazki:2010:MMF

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Anonymous:2010:EBr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2010:EBs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2010:EBt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2010:EBu</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2010:EBv</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2010:EBw</th>
</tr>
</thead>
</table>
REFERENCES

Anonymous:2010:PNb

Anonymous:2010:PMb

Anonymous:2010:PMd

Anonymous:2010:PJb

Anonymous:2010:PSb

Anonymous:2010:PAc

Anonymous:2010:PDa

Anonymous:2010:PAa
REFERENCES

REFERENCES

References

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2011:EBl

REFERENCES

Anonymous:2011:EBm

Anonymous:2011:EBn

Anonymous:2011:EBo

Anonymous:2011:EBp

Anonymous:2011:EBq

Anonymous:2011:EBr

REFERENCES

Anonymous:2011:EBs

Anonymous:2011:EBt

Anonymous:2011:EBu

Anonymous:2011:EBv

Anonymous:2011:EBw

Anonymous:2011:EBx

REFERENCES

Anonymous:2011:PAc

Anonymous:2011:PAb

Anonymous:2011:PDa

Anonymous:2011:PNa

Anonymous:2011:POa

Anonymous:2011:PMd

Anonymous:2011:PDb

Anonymous:2011:PJc

Anonymous:2011:PJf

Anonymous:2011:PSa

Anonymous:2011:PJa

Anonymous:2011:POb

Anonymous:2011:PJd

Anonymous:2011:PSb

Anonymous:2011:PFa

Anonymous:2011:PJe
REFERENCES

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EBf

Anonymous:2012:EBg

Anonymous:2012:EBh

Anonymous:2012:EBi

Anonymous:2012:EBj

Anonymous:2012:EBk

Anonymous:2012:EBl

Anonymous:2012:EBs

Anonymous:2012:EBt

Anonymous:2012:EBu

Anonymous:2012:EBv

Anonymous:2012:EBw

Anonymous:2012:EBx

REFERENCES

Anonymous:2012:PMa

Anonymous:2012:PJa

Anonymous:2012:PJf

Anonymous:2012:PAb

Anonymous:2012:PSa

Anonymous:2012:PDb

Anonymous:2012:POb

Anonymous:2012:PJd

Anonymous:2012:PAa

Anonymous:2012:PNa

Anonymous:2012:PMd

Anonymous:2012:PFa

Anonymous:2012:PMb

Anonymous:2012:PFb

Anonymous:2012:PSb

Anonymous:2012:PAc

REFERENCES

Anonymous:2012:PNb

Anonymous:2012:PDa

Anonymous:2012:PJb

Anonymous:2012:POa

Anonymous:2012:PJe

Anonymous:2012:PMc

Anonymous:2012:PJe

Anonymous:2013:EBa

REFERENCES

Anonymous:2013:EBb

Anonymous:2013:EBc

Anonymous:2013:EBd

Anonymous:2013:EBe

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:PMb

Anonymous:2013:PMd

Anonymous:2013:PJe

Anonymous:2013:PJa

Anonymous:2013:PMc

Anonymous:2013:PD

Anonymous:2013:PFb

Anonymous:2013:PMa

REFERENCES

Anonymous:2013:PJc

Anonymous:2013:PAc

Anonymous:2013:PAb

Anonymous:2013:PAd

Anonymous:2013:PJd

Anonymous:2013:PAa

Anonymous:2014:EBa

Anonymous:2014:EBb
 Anonymous: 2014: EBc

 Anonymous: 2014: EBd

 Anonymous: 2014: EBe

 Anonymous: 2014: EBf

 Anonymous: 2014: EBg

 Anonymous: 2014: EBh

Anonymous:2014:EBi

Anonymous:2014:EBj

Anonymous:2014:EBk

Anonymous:2014:EBl

Anonymous:2014:EBm

Anonymous:2014:EBn

Anonymous:2014:EBo

Anonymous:2014:EBq

Anonymous:2014:EBr

Anonymous:2014:EBs

Anonymous:2014:EBt

Anonymous:2014:EBu

Anonymous:2014:EBv

Anonymous:2014:EBw

Anonymous:2014:EBx

Anonymous:2014:PFa

Anonymous:2014:PAa

REFERENCES

Anonymous:2014:PAb

Anonymous:2014:PFb

Anonymous:2014:PSa

Anonymous:2014:POb

Anonymous:2014:PAd

Anonymous:2014:POa

Anonymous:2014:PSb

Anonymous:2014:PJa

Anonymous:2014:PN

Anonymous:2014:PD

Anonymous:2014:PMa

Anonymous:2014:PJd

Anonymous:2014:PRR

Anonymous:2015:EBa

Anonymous:2015:EBb

REFERENCES

Anonymous:2015:EBo

Anonymous:2015:EBp

Anonymous:2015:EBq

Anonymous:2015:EBr

Anonymous:2015:EBs

Anonymous:2015:EBt

REFERENCES

REFERENCES

Anonymous:2015:PJb

Anonymous:2015:PS

Anonymous:2015:PAd

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd

Anonymous:2016:EBe

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

REFERENCES

Anonymous:2016:EBw

Anonymous:2016:EBx

Anonymous:2016:PDb

Anonymous:2016:PFb

Anonymous:2016:PJf

Anonymous:2016:PMa

Anonymous:2016:PJa

Anonymous:2016:PJe

Anonymous:2016:PFa

Anonymous:2016:PAc

Anonymous:2016:PNb

Anonymous:2016:PJd

Anonymous:2016:PDa

Anonymous:2016:PJc

Anonymous:2016:POa

Anonymous:2016:PMd

Anonymous:2016:PMc

Anonymous:2016:PAd

Anonymous:2016:PMb

Anonymous:2016:PAa

Anonymous:2016:PAa

Anonymous:2016:PNa

Anonymous:2016:PJa

Anonymous:2016:PS

Anonymous:2016:POb

Anonymous:2017:EBa

Anonymous:2017:EBb

Anonymous:2017:EBc

Anonymous:2017:EBd

Anonymous:2017:EBe

REFERENCES

REFERENCES

Anonymous:2017:PSa

Anonymous:2017:PFb

Anonymous:2017:PAc

Anonymous:2017:PMd

Anonymous:2017:PJa

Anonymous:2017:PMa

Anonymous:2017:PD

Anonymous:2017:PSb

Anonymous:2017:PFa

Anonymous:2017:POa

Anonymous:2017:PMc

Anonymous:2017:PAb

Anonymous:2017:PJd

Anonymous:2017:PJb

Anonymous:2017:PAd

Anonymous:2017:PJc

Anonymous:2017:POb

Anonymous:2018:EBa

Anonymous:2018:EBr

Anonymous:2018:EBr

Anonymous:2018:EBr

Anonymous:2018:EBr

Anonymous:2018:EBr

REFERENCES

Anonymous:2018:EBg

Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2018:EBj

Anonymous:2018:EBk

Anonymous:2018:EBl
REFERENCES

Anonymous:2018:EBm

Anonymous:2018:EBn

Anonymous:2018:EBo

Anonymous:2018:EBp

Anonymous:2018:EBq

Anonymous:2018:EBr

REFERENCES

REFERENCES

Anonymous:2018:PAa

Anonymous:2018:PDb

Anonymous:2018:PFa

Anonymous:2018:PAb

Anonymous:2018:PMd

Anonymous:2018:PJd

Anonymous:2018:PDa

Anonymous:2018:PFb

Anonymous:2018:PJe

Anonymous:2018:PNb

Anonymous:2018:PNa

Anonymous:2018:PJb

Anonymous:2018:POb

Anonymous:2018:POa

Anonymous:2018:PSa

Anonymous:2018:PMb

Anonymous:2019:EBe

Anonymous:2019:EBf

Anonymous:2019:EBg

Anonymous:2019:EBh

Anonymous:2019:EBi

Anonymous:2019:EBj

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference ID</th>
<th>Title Details</th>
</tr>
</thead>
</table>
Anonymous:2019:PMc

Anonymous:2019:PJf

Anonymous:2019:PSa

Anonymous:2019:PA

Anonymous:2019:PPK

Anonymous:2019:PN

Antrup:2013:CEI
Armbruster:2014:TLS

Afenya:2019:MMB

Alonso:2017:OMW

Asano:2011:QLM

Angus:2013:NME

Simon D. Angus and Monika Joanna Piotrowska. A numerical model of EMT6/Ro spheroid dynamics under irradiation: Calibration and estimation of the underlying irradiation-induced cell survival probability. *Journal of
REFERENCES

Arodz:2013:SSS

Allen:2017:MMA

Alharbi:2019:ECL

Addison:2015:IMI

Addison:2013:RTV
A. L. Addison, J. A. Powell, D. L. Six, M. Moore, and B. J. Bentz. The role of temperature variability in sta-

Archetti:2011:CTE

Archetti:2013:EPM

Archetti:2014:EDW

Archetti:2016:CAC

Andersen:2012:LE

Aquino:2014:SHR

Abeysuriya:2014:PVN

Aviram:2015:MYV

Archetti:2012:RGT

Archetti:2013:TPG

Archetti:2016:EOH

REFERENCES

Aboelkassem:2015:MMA

Aboelkassem:2016:MPC

Aznar:2015:MDA

Al-Shammari:2014:MCO

Ashcroft:2017:EPG

REFERENCES

REFERENCES

Altrock:2012:MSS

Akita:2012:MEG

Akiyama:2010:MMC

Altrock:2010:UUB

Allen:2012:HMA
REFERENCES

Ahmed:2015:RPR

Aboelkassem:2019:HWW

Alger:2012:GHR

Asatryan:2015:NVD

Allhoff:2015:ISD

Axelrod:2012:LEC

Aita:2015:EDP

Ayati:2012:MDB

Aydogmus:2018:DEN

Acuña-Zegarra:2018:RAG
REFERENCES

[Balakrishnan:2010:RHB]

[Basios:2019:HLC]

[Bach:2015:CMB]

[Barua:2014:RBF]

[Balasuriya:2010:IDD]
Ballantyne:2013:EMF

Buzea:2011:SIS

Blickhan:2015:PHR

Barclay:2011:CHI

Boete:2014:IMB

REFERENCES

[Bartoszek:2016:PES]

[Barbosa:2018:ITS]

[Barik:2019:HUT]

[Baum:2018:OEE]

[Bhattacharyya:2010:GDM]

REFERENCES

REFERENCES

Lara Barazzuol, Neil G. Burnet, Raj Jena, Bleddyn Jones, Sarah J. Jefferies, and Norman F. Kirkby. A mathematical model of brain tumour response to radiotherapy and
REFERENCES

Blum:2011:DCL

Boldrini:1997:RNL

Boldrini:2013:CNLa

Boldrini:2013:CNLb

REFERENCES

Ballard:2016:PEF

Brackley:2012:MPM

Bougaran:2010:MCC

Bayer:2018:TPM

Bouda:2018:WRS

REFERENCES

[BC19] Xiaolu Bai and Xiaolin Chen. Rational design, conformational analysis and membrane-penetrating dynamics study of bac2a-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia. Journal of
REFERENCES

Bisson:2019:MFT

Billiard:2016:ECH

Bologna:2016:NLM

Beeton:2019:MTE

Baltcheva:2010:LDH

Bodgi:2016:MMR

Chan:2019:RGN

Chan:2017:IIL
REFERENCES

REFERENCES

REFERENCES

Bertrand:2014:LPA

Broom:2019:MMA

Barton:2013:SVO

Barton:2015:RSC

Bernstein:2016:ASP

REFERENCES

Borthagaray:2010:VPF

Barton:2014:SMN

Baudier:2018:GRM

Bode:2010:MNE

Biton:2012:SEO

Bello:2012:SDR

Bodgi:2013:SFD

Berends:2014:EST

Bartoszek:2017:UOU
REFERENCES

References

[Blackwood:2011:ETD]

[Bate:2012:RPB]

[Barton:2013:PDV]

[Bate:2013:PPO]

[Benzekry:2013:MTD]
REFERENCES

Burli:2018:MAT

Bica:2017:ABP

Broom:2010:OIA

Buhler:2011:AML

Bessho:2010:OSS

REFERENCES

Bessho:2012:VES

Braverman:2019:IHV

Bessho:2015:EAH

Booton:2017:SMA

Brinck:2017:EEA
Katharina Brinck and Henrik Jeldtoft Jensen. The evolution of ecosystem ascendency in a complex systems based

Byun:2018:MMA

Blanco:2018:SWM

Bauer:2010:RCT

Besenhard:2016:MTC

Bartoszek:2013:TSH

Brown:2012:HFS

Bokka:2015:MIP

Bornholdt:2019:EDC

Burns:2016:RPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Blyuss:2015:URA

Ben-Naoum:2016:AHC

Bocianowski:2012:CTM

Bonsall:2010:INL

Bonneuil:2012:MPM

Leah R. Band and Simon P. Preston. Parameter inference to motivate asymptotic model reduction: An analy-

[BPLM12] Brooks, Grace; Provencher, Gabriel; Lei, Jinzhi; Mackey, Michael C. Neutrophil dynamics after chemotherapy and g-CSF: The role of pharmacokinetics in shaping the response.
REFERENCES

Bartoszek:2012:PCM

Bandiera:2016:EMM

Briant:2015:MVR

Bolzoni:2015:RHI

Bordet:2014:SPT

Black:2015:CEF

Beauchamp:2016:MSI

Bag:2015:FCE

Biswas:2018:SEI

REFERENCES

Bruineberg:2018:FEM

Brylinski:2013:UAE

Binmore:2011:SES

Bishop:2013:IER

Babaei:2015:PDA

Bartoszek:2015:CEE

Krzysztof Bartoszek and Serik Sagitov. A consistent estimator of the evolutionary rate. *Journal of Theoretical...

REFERENCES

REFERENCES

REFERENCES

[BTF19] Lydia M. Bilinsky, David J. Thomas, and Jeffrey W. Fisher. Using mathematical modeling to infer the valence state of ar-

[Barbillon:2015:NIP]

[Barber:2013:TDM]

[Borzan:2014:HPR]

Barrack:2014:MCB

Barrack:2015:MCC

Baghdadi:2018:MMM

Bourouiba:2011:HPA

Birch:2014:IFO
REFERENCES

Balcan:2012:ITS

Bellingeri:2013:REF

Beaunee:2017:CBP

Bojic:2010:MEF

Buhler:2014:CCM

REFERENCES

REFERENCES

[BYY+11] Jianjun Bi, Huilan Yang, Huacheng Yan, Rengang Song, and Jianyong Fan. Knowledge-based virtual screening of HLA-a*0201-restricted CD8 + T-cell epitope peptides

Brooks:2010:NMC

Barranca:2018:CSR

Bertacchi:2016:TLH

Ben-Zion:2010:MED

Bazzazi:2018:CMS

Hojjat Bazzazi, Yu Zhang, Mohammad Jafarnejad, and Aleksander S. Popel. Computational modeling of synergistic interaction between αvβ3 integrin and VEGFR2 in en-

[Cam15] R. B. Campbell. The effect of inbreeding constraints and offspring distribution on time to the most recent common an-

Chamchod:2013:MPV

Cornish-Bowden:2013:PSN

Cornish-Bowden:2015:TGR

Codling:2016:BDI

Cimentepe:2017:POT
REFERENCES

Cornish-Bowden:2017:LMO

Caiado:2016:FLA

Cornish-Bowden:2017:LBL

Chen:2018:MIL

Cunningham:2018:OCD

REFERENCES

REFERENCES

Xianli Chen, Jia Chen, Bin Shao, Linjie Zhao, Haicen Yue, and Qi Ouyang. Relationship between cancer mutations

Cantini:2014:LNA

Casha:2018:MMP

Castro:2019:ATD

Calvetti:2015:SDC

Chen:2016:RBC

REFERENCES

Caravagna:2010:TSI

Canon:2017:MMS

Couturier:2011:FLG

Chen:2017:RBC

Calle-Espinosa:2016:NLW

Jorge Calle-Espinosa, Miguel Ponce de Leon, Diego Santos-Garcia, Francisco J. Silva, Francisco Montero, and Juli Peretó. Nature lessons: The whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics. *Journal
Cusseddu:2019:CBS

Crouzy:2014:BPA

Cherry:2011:EBG

Calzada:2013:OCO

Chow:2011:DME

Catacuzzeno:2012:TSR

Cherubini:2017:NSD

Chen:2015:DTL

Cook:2013:EVE

Crompton:2014:IDM

Caldwell:2019:VAP

Cencini:2016:CFG

Centler:2011:MPP

Cen:2014:EDD

Crane:2010:CMA

Cunniffe:2011:TFB

Collins:2014:IHT

Crona:2013:PGF

Chen:2013:SRO

Chivers:2014:PPS

Corredor-Gómez:2016:IOM

Carlier:2015:OCD

Cui:2018:ESD

Chen:2011:SRP

Craig:2015:NDD

Chou:2011:SRP

Chu:2010:TSL

Chu:2017:LSM

Chu:2018:PLT

[CL10] Christian Cibert and Andrei Ludu. Is the curvature of the flagellum involved in the apparent cooperativity of the

REFERENCES

REFERENCES

Chaput:2019:HBC

Cenci:2018:EER

Chiyaka:2010:TAM

Cunning:2017:DBM

Chowkwale:2019:MSM

M. Chowkwale, G. J. Mahler, P. Huang, and B. T. Murray. A multiscale in silico model of endothelial to mesenchy-

Coutand:2011:TMS

Campos:2010:PRM

Comisar:2011:IOL

Corkrey:2019:BST

Corbacho:2013:BDB

Courcoul:2011:MEH

Chaumont:2017:RPU

Crompton:2018:IDM

Crowell:2016:FMC

Helena L. Crowell, Adam L. MacLean, and Michael P. H. Stumpf. Feedback mechanisms control coexistence in a

Cordoleani:2012:CSS

Cheeseman:2014:STD

Cordoleani:2013:SPF

Chaves:2019:AGM
REFERENCES

REFERENCES

[CPGF+16] Beatriz Carbonell-Pascual, Eduardo Godoy, Ana Ferrer, Lucía Romero, and Jose M. Ferrero. Comparison between Hodgkin–
REFERENCES

Chen:2014:EHA

Cortes-Poza:2018:SDF

Chara:2010:NFE

Calvetti:2019:EHS

Caiazzo:2015:MMP

Cressman:2010:CND

Calvetti:2018:CMI

Carlos:2015:SEA

Calleja-Rodriguez:2019:APE

Crouch:2017:SAE

Cronin:2018:ABM

Cronin:2019:FGT

Comper:2016:FPP

Calvetti:2011:DAM

Daniela Calvetti and Erkki Somersalo. Dynamic activation model for a glutamatergic neurovascular unit. *Journal
REFERENCES

Chakra:2011:HCM

Campenni:2014:PCP

Ciupe:2014:UVH

Chor:2015:DTS

Corning:2015:SSD

REFERENCES

Chalub:2018:FPQ

Cleather:2015:RBH

Chan:2015:MMS

Cooper:2015:MES

Suen:2017:RSC

[CSR+05] Arancha Casal, Cenk Sumen, Timothy E. Reddy, Mark S. Alber, and Peter P. Lee. Agent-based modeling of the con-

[CSZT12] Ross Cressman, Jie-Wen Song, Bo-Yu Zhang, and Yi Tao. Cooperation and evolutionary dynamics in the public goods

Castro:2014:CCE

Chakra:2014:UHS

Chen:2014:EV

Curatolo:2016:MSF

Caraco:2018:PTS

REFERENCES

Contreras-Torres:2018:PSC

Canko:2015:PTC

Choudhury:2018:MMN

Caplan:2010:EMG

Crauste:2015:PPS

REFERENCES

Cibert:2010:BAA

Cheng:2011:VTP

Chen:2010:MPG

Cuthill:2015:SCS

Cheung:2015:SUE

Allen Cheung and Robert Vickerstaff. Sensory and update errors which can affect path integration. Journal of
REFERENCES

REFERENCES

Cui:2014:SPA

Chen:2015:IAI

Chen:2015:GDA

Chou:2015:FTD

Chapman:2017:MMC

REFERENCES

BIAP. ISSN 0022-5193 (print), 1095-8541 (electronic).

REFERENCES

[Das13] Srinandan Dasmahapatra. Model of haplotype and phenotype in the evolution of a duplicated autoregulatory acti-

REFERENCES

Dini:2018:UID

dBrevern:2011:SSA

Dyson:2012:MCK

Djema:2018:CDE

Devi:2018:MMS

REFERENCES

[DD13] Joëlle De Caluwé and Geneviève Dupont. The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca$^{2+}$. Journal of Theoretical Biology, 331(??):12–18, August 21,
REFERENCES

REFERENCES

Draghi:2019:PIM

DeJaegher:2017:PME

DeJaegher:2019:HEM

DSilva:2017:MSI

Debarre:2017:FPO

deAvilaeSilva:2011:BBP

[dEG11] Schela de Avila e Silva, Sergio Echeverrígary, and Günther J. L. Gerhardt. BacPP: Bacterial promoter prediction — a

Judy Day, Avner Friedman, and Larry S. Schlesinger. Modeling the host response to inhalation anthrax. *Journal of
REFERENCES

REFERENCES

REFERENCES

Dobay:2013:RME

Dalwadi:2018:AAM

DeJaegher:2016:PMA

Davies:2018:WAT

Doghaei:2015:MCE

REFERENCES

P. M. Drysdale, J. P. Huber, P. A. Robinson, and K. M. Aquino. Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. *Journal of Theoretical Bi-
Dehzangi:2015:GPG

Dumont:2016:TCB

Demongeot:2019:MPB

Dean:2019:TMC
REFERENCES

Massimo Di Giulio. On Earth, there would be a number of fundamental kinds of primary cells — cellular domains — greater than or equal to four. *Journal of*

DiGiulio:2019:CBT

DiGiulio:2019:QCI

DiGiulio:2019:UAD

Doebeli:2010:CSS

Doebeli:2010:MED

REFERENCES

Dawes:2013:CGM

Dilao:2014:RGE

Dimonte:2010:CKM

Dimitrov:2017:AED

Dancik:2010:PES

REFERENCES

DeVos:2013:ETI

Deonikar:2013:CMP

Devipriya:2013:CDD

Dutta:2017:IPO

DeLaFuenteCanto:2018:MGC

Diebner:2016:ESP

Danko:2015:UNS

Delitala:2012:MMD

Donovan:2012:CMR

Day:2015:SLR

[DL15a] J. D. Day and E. K. LeGrand. Synergy of local, regional, and systemic non-specific stressors for host defense against

Deutsch:2015:MFI

Donovan:2016:CRN

delaCruz:2016:SMS

delaEscosura:2015:SPC

Dallon:2019:SMR

[Duan:2011:MMA]

[Dehzangi:2017:PSA]

[Ding:2018:SBO]

[Dyson:2019:DIP]

Fabio Vittorio De Blasio, Lee Hsiang Liow, Tore Schweder, and Birgitte Freiesleben De Blasio. A model for global diversity in response to temperature change over geological

Ding:2013:SWI

Dai:2011:NCW

Dilao:2010:MDE

dOnofrio:2010:VDD

DeVargasRoditi:2011:EDB

[DM11] Laura De Vargas Roditi and Franziska Michor. Evolutionary dynamics of BRCA1 alterations in breast tumorigene-

João Carlos de Oliveira Guerra and Pedro Licinio. Erratum to “The role played by exons in genomic DNA sequence

[Don17] G. M. Donovan. Inter-airway structural heterogeneity interacts with dynamic heterogeneity to determine lung function and flow patterns in both asthmatic and control simulated

Damos:2011:ELI

Denis:2012:PAC

Deng:2015:NBI

Dai:2015:CAA

Dragicevic:2019:CFG

REFERENCES

REFERENCES

Danino:2016:EES

dosSantos:2013:NKC

Deeds:2011:CMS

deSilva:2010:MMF

Deeba:2018:DAS

Pia Domschke, Dumitru Trucu, Alf Gerisch, and Mark A. J. Chaplain. Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tu-
 REFERENCES

Dunn:2011:RTM

Dupuy:2012:ASG

Dormanns:2015:NCI

Dudziuk:2019:BSF

Deng:2014:BBE

REFERENCES

REFERENCES

Ejima:2014:PDD

Enns:2015:LRC

Eftimie:2010:MAT

ElCheikh:2014:MCC

ElCheikh:2017:MMA

REFERENCES

REFERENCES

Eftimie:2013:SUD

Edwards:2010:MCW

Emerson:2012:RCA

Eftimie:2017:MIC

El-Haroun:2010:MMN

REFERENCES

Eskandari:2016:EDA

Eide:2018:PPS

El-Kebir:2013:CMT

Ehn:2012:ASC

Elias:2017:PEM

[EMM10] Maryam Esmaeili, Hassan Mohabatkar, and Sasan Mohsenzadeh. Using the concept of Chou’s pseudo amino acid com-

Ellingsen:2012:EPI

Estrada:2018:CSC

Eisenberg:2013:IEM

Escobar:2011:QFN

Enyeart:2015:MME

Enikeeva:2010:RMS

Farida N. Enikeeva, Konstantin V. Severinov, and Mikhail S. Gelfand. Restriction-modification systems and bacterio-
REFERENCES

[ESW13] Sabrina Ellenberger, Stefan Schuster, and Johannes Wöstemeyer. Correlation between sequence, structure and function for
trisporoid processing proteins in the model zygomycete
Mu-
cor mucedo. *Journal of Theoretical Biology, 320*(??):66–75,
March 7, 2013. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519312006339.

Ema:2016:RDS

[Hideo Ema, Kouki Uchinomiya, Yohei Morita, Toshio Suda,
and Yoh Iwasa. Repopulation dynamics of single haematopo-
etic stem cells in mouse transplantation experiments: Impor-
tance of stem cell composition in competitor cells. *Journal
of Theoretical Biology, 394*(??):57–67, April 7, 2016. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519316000382.

Encinas-Viso:2014:SPP

[Francisco Encinas-Viso, Tomás A. Revilla, and Rampal S. Et-
enne. Shifts in pollinator population structure may jeopardize
pollination service. *Journal of Theoretical Biology, 352*(??):24–
30, July 7, 2014. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519314001052.

Ez-zizi:2018:OGS

[Adnane Ez-zizi, John M. McNamara, Gaurav Malhotra, and
Alasdair I. Houston. Optimal gut size of small birds and
its dependence on environmental and physiological para-
eters. *Journal of Theoretical Biology, 454*(??):357–366, Oc-
tober 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519318302352.

Ezoe:2012:ESO

[Hideo Ezoe. Evolutionary stability of one-to-many mutualisms.
Journal of Theoretical Biology, 314(??):138–144, De-
cember 7, 2012. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519312004596.

Ezoe:2019:APR

[Hideo Ezoe. Adaptive partner recruitment can help main-
tain an intra-guild diversity in mutualistic systems. *Jour-

REFERENCES

Fallah:2017:MMR

Fang:2011:EED

Fann:2012:ECR

Feng:2018:URB

Ferris:2018:EHD

Charlotte Ferris and Alex Best. The evolution of host defence to parasitism in fluctuating environments. *Journal
REFERENCES

REFERENCES

Fgaier:2010:CMB

Fgaier:2011:ACM

Fernando:2011:SMR

Fernandez:2012:TAD

Fernandez:2012:PCP

REFERENCES

[FGLS10] Kevin J. Flynn, H. Christopher Greenwell, Robert W. Lovitt, and Robin J. Shields. Selection for fitness at the individual or population levels: Modelling effects of genetic modifications in microalgae on productivity and environmental

Faruque:2014:WMT

Fatemi:2015:QPH

Fasano:2010:DGP

Flaig:2018:CMA

Fung:2013:NFTa

Filin:2010:TSO

Filin:2015:RBM

Filin:2010:TSO

Fishman:2016:PEG

EFERENCES

REFERENCES

Fan:2012:PMP

Fan:2013:DBP

Fornés:2019:VRM

Fernandez-Lozano:2015:CSP

Fernandez-Lozano:2014:MMP

Feng:2018:RLR

Flores:2011:DCM

Foo:2014:MRR

Fan:2016:ITP
Foo:2010:ERA

Foster:2013:MMU

Foo:2014:EAR

Foster:2014:CUT

Filatova:2015:ABM

Foster:2015:TBU

Kylie J. Foster and Stanley J. Miklavcic. Toward a biophysical understanding of the salt stress response of individual plant

REFERENCES

Farina:2018:FBI

Fronhofer:2015:EDD

Flores:2010:PEH

Filippov:2011:SIA

Fulcher:2010:QPβ

Fowler:2013:CCC

Fung:2013:NFTb

Fung:2014:NFT

Forment:2017:MNC

Frank:2016:FWE

REFERENCES

REFERENCES

Fatemi:2015:DQI

Ferretti:2016:MEF

Fleming:2012:MCE

Fleischer:2018:PYT

Fleming:2010:IST

REFERENCES

REFERENCES

REFERENCES

Gustavo Guerberoff and Fernando Alvarez-Valin. A stochastic microscopic model for the dynamics of antigenic variation.

Guzzetta:2011:MSD

Guzzetta:2015:ECI

Guzzetta:2015:ECI

Gilarranz:2012:SNS

Garbey:2013:DSD

Philip B. Greenspoon, Sydney Banton, and Nicole Mideo. Immune system handling time may alter the outcome of competition between pathogens and the immune system. *Journal

József Garay, Villő Csiszár, and Tamás F. Móri. Survival pheno- type, selfish individual versus Darwinian phenotype. *Journal of Theoretical Biology*, 430(??):86–91, October 7, 2017. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

[468]

Gobel:2011:RMA

Grujic:2012:CCD

Garcia-Camacho:2012:MMP

Gallinato:2017:TGM

Gonzalez-Casanova:2014:SSB

Guo:2018:MMA

Gove:2012:ECN

Gavryushkin:2016:SUP

Gupta:2019:RCC

REFERENCES

Gabriel:2017:QIO

[Sargon A. Gabriel, Yan Ding, and Yuqing Feng.](http://www.sciencedirect.com/science/article/pii/S0022519317303338)

Gabriel:2018:MPA

[Sargon A. Gabriel, Yan Ding, and Yuqing Feng.](http://www.sciencedirect.com/science/article/pii/S0022519318303308)

Goede:2017:PGI

Guill:2011:TSM

Gonzalez-Diaz:2011:NMB

NL MIND-BEST: a web server for ligands and proteins discovery — theoretic-experimental study of proteins of *Giardia lamblia* and new

\begin{itemize}
\end{itemize}
REFERENCES

Ganyani:2019:IGG

Gavagnin:2019:ISC

Guillamon:2015:BAO

Geritz:2012:MDD

Geritz:2014:DBF
Gaunt:2016:PRA

Gilbert:2014:SSP

Gao:2014:ITH

Guo:2016:CBG

Guria:2012:IFR

[GGM15] Scott Greenhalgh, Alison P. Galvani, and Jan Medlock. Disease elimination and re-emergence in differential-equation

REFERENCES

[Ghu18] M. S. Ghuchani. Comment on: An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. *Journal of Theoretical Biology*, 440(??):70,

Ginsburg:2010:EAL

Gardner:2011:EMS

Gaucherel:2012:OEN

Ginsburg:2015:TTE

Golzari:2015:VBV

REFERENCES

Gyllenberg:2016:EPT

Graham:2017:OCA

Geczy:2012:IMS

Guo:2012:SRH

Georgelin:2014:DCM

REFERENCES

George:2018:SMT

George:2018:TGM

Glazier:2013:LTU

Greene:2015:MIH

Gobel:2010:CEM

REFERENCES

REFERENCES

REFERENCES

Grbatinić:2015:NAH

García-Manso:2012:LSL

Grec:2018:MLA

Gong:2014:NID

Garijo:2012:SCA

Gwiazda:2016:BIA

Gutting:2013:MLD

Ganjtabesh:2015:UTE

Guedj:2010:UHC

A. Golubev. Random discrete competing events vs. dynamic bistable switches in cell proliferation in differentia-
REFERENCES

489

Golubev:2016:AIE

Gonze:2013:MEC

Gouin:2015:WTT

Goufo:2016:SCA

Gatesy:2011:AOA

REFERENCES

REFERENCES

Grafen:2014:TRV

Grafen:2015:BFP

Grafen:2018:LHS

Guedon:2013:PIC

Goyens:2013:DTM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Giacomini:2013:PBP

Gunji:2011:ARB

Galanter:2017:RCA

Gregg:2019:MMC

Ganz:2018:TTA

Grasman:2011:SML

Grobler:2016:MND

Shen:2012:LEA

Gehring:2010:NBA

Garcia:2011:MMA

REFERENCES

Ghosh:2019:EAC

Ganguly:2015:HMF

Gorban:2016:EAM

Gundersen:2013:SMR

Gumel:2012:MIB

REFERENCES

Julián García, Matthijs van Veelen, and Arne Traulsen. Evil green beards: Tag recognition can also be used to withhold cooperation in structured populations. Journal of The-
REFERENCES

[GW19a] Andrew Glover and Andrew White. A vector–host model to assess the impact of superinfection exclusion on vaccination strategies using dengue and yellow fever as case studies. Journal of Theoretical Biology, 484(?):Article 110014,
REFERENCES

[GWE11] Zachariah Gompert, Keith Willmott, and Marianne Elias. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimicry. *Journal of The-
REFERENCES

Gao:2015:PHR

Green:2010:NLM

Gong:2018:GRM

Guo:2017:MPM

Govan:2013:CSN

REFERENCES

Gao:2013:PCC

Grinevich:2018:IDT

Ghosh:2019:HBA

Gao:2010:ITI

Ge:2014:RII

[GZ14a] Huihua Ge and Guangya Zhang. RETRACTED: Identifying halophilic proteins based on random forests with preprocessing of the pseudo-amino acid composition. *Journal of
REFERENCES

Ge:2014:RNI

Guo:2019:MAT

Gao:2014:SAP

Garamszegi:2012:RBS

Guo:2015:WAP

Guan:2012:RBG

Hashim:2015:RMD

Hirata:2015:AIA

Hartvig:2011:FWF

REFERENCES

REFERENCES

REFERENCES

Hayamizu:2016:EIM

Hernandez-Bermejo:2010:RGA

Hambli:2012:PBF

Hordijk:2012:DRR

Holt:2013:DPP

Hubbard:2013:MMV

[HB13b] M. E. Hubbard and H. M. Byrne. Multiphase modelling of vascular tumour growth in two spatial dimensions. *Journ-

B. Huard, A. Bridgewater, and M. Angelova. Mathematical investigation of diabetically impaired ultradian oscillations in the glucose-insulin regulation. *Journal of
REFERENCES

REFERENCES

Havelka:2011:HFE
D. Havelka, M. Cifra, O. Kucera, J. Pokorný, and J. Vrba.

Hrycik:2019:MRS

Huang:2018:ECH

Herron:2011:ADP

Hamm:2017:HHH
REFERENCES

REFERENCES

Hamlet:2015:EIM

He:2018:AEG

Hettich:2018:TFT

Hickey:2018:ARW

Herschlag:2013:MMA

REFERENCES

Hoffman:2018:MMA

Hindle:2010:EBH

Huang:2013:IRI

Hala:2014:SPS

Hiebeler:2016:LDPa

David E. Hiebeler and Jack L. Hill. Locally dispersing populations in heterogeneous dynamic landscapes with spatiotemporal correlations. II. habitat driven by voter dynam-

Heijne:2013:CPR

Hirashima:2017:VTM

Hiebeler:2016:LDPb

Ho:2019:MMT

REFERENCES

Hughes:2011:MCA

Harvey:2014:QED

Hakkinen:2011:GWS

Haber:2019:WDM

Humplik:2014:EDI

Hummert:2010:GTM

Hatano:2015:CBM

Hu:2019:WSD

Hauert:2012:EGD

Hara:2017:WAI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Houy:2019:OIC

Huang:2018:AEW

He:2017:NAF

Hara:2015:CEH

Hu:2012:PGP
Yinxia Hu, Tonghua Li, Jiangming Sun, Shengnan Tang, Wenwei Xiong, Dapeng Li, Guanyan Chen, and Peisheng
REFERENCES

Hodgkinson:2019:SGP

Hsieh:2014:IVH

Hermand:2016:VOE

Haeno:2010:ETM

Holden:2017:HPR

Hamzeh-Mivehroud:2015:IKI

Halter:2017:RDP

Huber:2016:TPN

Hiebeler:2013:HAP

David E. Hiebeler, Isaac J. Michaud, Ben A. Wasserman, and Timothy D. Buchak. Habitat association in populations on landscapes with continuous-valued heterogeneous habitat
REFERENCES

Atsushi Hashimoto, Atsuki Nagao, and Satoru Okuda. Topological graph description of multicellular dynamics based on

[Horgan:2011:BNM] G. W. Horgan. The behaviour of a neutral model of weight regulated only by body mass. *Journal of The-
REFERENCEs

Horikawa:2011:ETP

Hormoz:2013:SCP

Hordijk:2017:ACC

Houy:2013:ECS

Houy:2015:PUW

REFERENCES

REFERENCES

Hugon:2011:NBD

Herrera-Rivero:2015:SFM

Holder:2011:EPT

Hordijk:2012:PTB

Hendrix:2014:BAM

REFERENCES

Honjo:2014:PMN

Humphries:2014:OFS

Hadjichrysanthou:2015:ECA

Hordijk:2016:CTG

Hanert:2011:FDF

REFERENCES

REFERENCES

Haridas:2018:MEE

Hamada:2019:EPS

Hu:2013:EAD

Huang:2012:HEP

Hayat:2014:PPS
Hayashi:2018:IFM

Hayakawa:2015:MSM

Hayakawa:2016:FLF

Hauser:2014:HBF

He:2019:FAI

Huang:2012:RGO

Huang:2016:EDM

Hurtado:2012:WHD

Herrera-Valdez:2011:RMP

Huang:2015:DVF

REFERENCES

REFERENCES

REFERENCES

Huang:2015:ETD

Haber:2016:IFF

Haber:2017:ASP

Hirt:2012:ETD

Hilbe:2015:EPZ

REFERENCES

He:2014:WLC

He:2016:EAA

He:2018:PAA

Hu:2018:EEB

Hironaga:2010:EEF

[HY10] Ryo Hironaga and Norio Yamamura. Effects of extinction on food web structures on an evolutionary time scale. *Jour-
REFERENCES

Huang:2013:PPS

Huang:2016:CDS

Han:2014:TSS

Hamaguchi:2019:EARa

Huang:2016:ESH

Hassani:2019:RMS

Huang:2011:PAD

Hoang:2015:NMC

Hu:2014:RIN

Guohua Huang, Houqing Zhou, Yongfan Li, and Lixin Xu. Alignment-free comparison of genome sequences by

Hu:2014:TPR

HZW:2010:SMA

Ibrahim:2017:EFP

Iarosz:2015:MMB

REFERENCES

REFERENCES

Iijima:2012:DDE

Islam:2016:BSS

Ichinose:2013:MCM

Ishihara:2015:MSP

Izquierdo:2010:OLC

Ioannidis:2015:CSS

Iyer:2016:EDS

Ingr:2016:EOP

Inarra:2012:ADR

Iwasa:2013:GPE
REFERENCES

Iwagami:2010:URH

Ichinose:2018:ZDS

Ibanez-Marcelo:2014:TRE

Ibanez-Marcelo:2016:EEC

Ispolatov:2016:IBM

Iqbal:2015:IPA

Iacobelli:2016:LEG

Issarow:2015:MRA

Ingber:2016:SMN

Iida:2019:QHS

REFERENCES

Iosilevskii:2016:LNB

Ito:2015:RBA

Iosilevskii:2012:EYY

Ingber:2014:EFI

Iranzo:2011:SUG

Ingram:2010:MUF
[IS10] Travis Ingram and Mike Steel. Modelling the unpredictability of future biodiversity in ecological networks. *Journal of
Ishihara:2012:BIF

Ito:2016:EBU

Ishimoto:2017:MMD

Isella:2011:WCA

Ishimoto:2016:HES

REFERENCES

Misato Inaba, Nobuyuki Takahashi, and Hisashi Ohtsuki. Robustness of linkage strategy that leads to large-scale cooperation. *Journal of Theoretical Biology*, 409(??):97–107, November 21, 2016. CODEN JTBIAP. ISSN 0022-5193 (print),

Jinha:2012:RLE

J:2019:CCR

James:2011:FSH

James:2012:HSV

James:2013:EVM

Jaworski:2019:SBP

Jensen:2012:ASU

Jian-Cheng:2010:STA

Jin:2016:TCS

Ju:2015:ITL

Janzen:2015:SFEb

Jia:2016:SIM

John:2015:EDS

Jain:2017:FPN

Jung:2012:HMP

Jenner:2019:OVT

Juher:2015:AEM

Jeon:2011:SST

Jin:2016:HMM

Jamieson-Lane:2015:FPS

Jones:2015:LVD

Jia:2012:KBG

Jia:2019:IPC

Jia:2015:IEE

Jia:2016:PLP

REFERENCES

REFERENCES

Jombart:2010:PPA

Jiao:2017:PIR

Jordan:2017:TPP

Johnston:2016:QEE

Jithinraj:2014:CZO

REFERENCES

Jain:2016:SHA

Jones:2014:ADM

Jingbo:2011:UCP

Jesionek:2016:LDL

Jin:2016:RSA

Ji:2010:CBP

Jing:2017:DIA

Jenner:2018:MHV

Jia:2018:NPS

Jia:2017:SSP

REFERENCES

REFERENCES

REFERENCES

Kedziora:2012:PBQ

Karenlampi:2011:ADT

Karonen:2012:STC

Kareva:2015:IET

Kareva:2016:ETD

REFERENCES

Vladislav Victorovich Khrustalev, Eugene Victorovich Barkovsky, and Tatyana Aleksandrovna Khrustaleva. Magnesium and
manganese binding sites on proteins have the same pre-
dominant motif of secondary structure. *Journal of Theo-
retical Biology*, 395(??):174–185, April 21, 2016. CODEN
JTBIAP. ISSN 0022-5193 (print), 1095-8541 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0022519316000965.

Kilian:2014:MGP

H. G. Kilian, D. Bartkowiak, M. Kazda, and D. Kaufmann.
Modelling the growth of plants with a uniform growth lo-
21, 2014. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
science/article/pii/S0022519314000368.

Khayyeri:2015:PCM

Hanifeh Khayyeri, Sara Barreto, and Damien Lacroix. Pri-
mary cilia mechanics affects cell mechanosensation: a compu-
tational study. *Journal of Theoretical Biology*, 379(??):38–46,
August 21, 2015. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519315002167.

King:2019:MRD

Clarence C. King, Amelia Ann Brown, Irmak Sargin, K. M.
Bratlie, and S. P. Beckman. Modeling of reaction-diffusion
transport into a core-shell geometry. *Journal of Theo-
retical Biology*, 460(??):204–208, January 7, 2019. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519318304624.

Keinj:2011:MMB

R. Keinj, T. Bastogne, and P. Vallois. Multinomial model-
based formulations of TCP and NTCP for radiotherapy treat-
ment planning. *Journal of Theoretical Biology*, 279(1):55–62,
June 21, 2011. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519311001718.

Keinj:2012:TGM

R. Keinj, T. Bastogne, and P. Vallois. Tumor growth mod-
eling based on cell and tumor lifespans. *Journal of The-
REFERENCES

Kurbatova:2015:MMC

Krepkin:2011:DRC

Kurochkina:2011:HHI

Kucken:2013:MCI

Kwon:2014:GHM

REFERENCES

[KCJ+11] Petra Kochová, Robert Cimrman, Jirí Janáček, Kirsti Witter, and Zbyněk Tonar. How to assess, visualize and compare the anisotropy of linear structures reconstructed

REFERENCES

REFERENCES

[KDMD13] Safoora Karimi, Mitra Dadvar, Hamid Modarress, and Bahram Dabir. A new correlation for inclusion of leaky junc-
tions in macroscopic modeling of atherosclerotic lesion initia-
tion. *Journal of Theoretical Biology*, 329(??):94–100, July
21, 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
science/article/pii/S0022519313000921.

[KDMK16] Thomas Koffel, Tanguy Daufresne, François Massol, and
Christopher A. Klausmeier. Geometrical envelopes: Extending
graphical contemporary niche theory to commu-
nities and eco-evolutionary dynamics. *Journal of Theo-
retical Biology*, 407(??):271–289, October 21, 2016. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519316302119.

[KDS18] Saritha Kodikara, Haydar Demirhan, and Lewi Stone. Infer-
ring about the extinction of a species using certain and uncer-
tain sightings. *Journal of Theoretical Biology*, 442(??):98–109,
April 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519318300237.

Takasu. Beyond pairs: Definition and interpretation of
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519315000636.

[KdSUS10] Maurício Vieira Kritz, Marcelo Trindade dos Santos, Se-
bastían Urrutia, and Jean-Marc Schwartz. Organising
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519310002171.

Doran Khamis, Claire El Mouden, Klodeta Kura, and Michael B. Bonsall. Ecological effects on underdominance threshold drives for vector control. *Journal of Theoretical Biology*, 456(??):1–15, November 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

REFERENCES

[KFL12] PaweL Kocieniewski, James R. Faeder, and Tomasz Lipniacki. The interplay of double phosphorylation and sca-

REFERENCES

Khatri:2015:CGB

Kisdi:2013:EPV

Krivan:2018:BRD

Kar:2012:DPP

Kim:2010:MTD

REFERENCES

[Kha10] Ardashir Kharabian. An efficient computational method for screening functional SNPs in plants. *Journal of The-
Hartmut Klein, Linnea Hesse, Matthias Boljen, Tim Kampa-
powski, Irina Butschek, Thomas Speck, and Olga Speck. Finite element modelling of complex movements during self-
7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
science/article/pii/S0022519318303990.

Roland Kaunas, Zuyi Huang, and Juergen Hahn. A kinematic model coupling stress fiber dynamics with JNK ac-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519310000950.

Ezhilarasi Krishnamoorthy, Sameer Hassan, Luke Elizabeth
Hanna, Indira Padmalayam, Rama Rajaram, and Vijay Viswanathan. Homology modeling of Homo sapiens lipoic
acid synthase: Substrate docking and insights on its bind-
ing mode. Journal of Theoretical Biology, 420(??):259–266,
May 7, 2017. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519316302879.

Zaheer Ullah Khan, Maqsood Hayat, and Muazzam Ali
Khan. Discrimination of acidic and alkaline enzyme us-
ing Chou’s pseudo amino acid composition in conjunction
with probabilistic neural network model. Journal of The-
oretical Biology, 365(??):197–203, January 21, 2015. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519314006031.
Khan:2017:BPP

Khan:2017:UDI

Kimori:2016:QMF

Kazmi:2012:ATG

Keil:2010:PTP

Petr Keil, Tomás Herben, James Rosindell, and David Storch. Predictions of Taylor’s power law, density dependence and pink noise from a neutrally modeled time series. *Journal
REFERENCES

Kheirabadi:2016:CKM Ramesh Kheirabadi, Mohammad Izadyar, and Mohammad Reza Housiandokht. Computational kinetic modeling

REFERENCES

Kittas:2010:ERB

Kusumi:2016:MCM

Kleinhans:2011:IDA

Kumar:2011:RMN

Krivan:2015:EAD

[KK12a] Jong-Hoon Kim and James S. Koopman. HIV transmissions by stage in dynamic sexual partnerships. *Journal of

Kuznetsov:2018:TAT

Kakade:2018:FSU

Koke:2014:CMN

Khaji:2016:PSP

Kori:2012:SCN

Khalo:2018:NAV

Kawasumi-Kita:2018:MSO

Kumar:2014:PAD

King:2010:PMI

Julian King, Helin Koc, Karl Unterkofler, Pawel Mochalski, Alexander Kupferthaler, Gerald Teschl, Susanne Teschl, Hartmann Hinterhuber, and Anton Amann. Physiological

REFERENCES

Klein:2014:IHT

Kulasiri:2017:GSA

Kim:2017:MMT

Kempe:2014:CTC

Kaiser:2012:DCF

Kharratzadeh:2017:SHL

Kakizoe:2015:CLV

Klanjscek:2016:FTP

Karimi:2018:MMD

Klinkenberg:2011:CBI

REFERENCES

Korobeinikov:2018:IRW

Kashima:2013:FFB

Karsai:2012:RTD

Krivan:2015:SPI

Kozlowska:2016:ABT

Kenny:2018:MSM

Kenny:2019:ECC

Knutsdottir:2014:MMM

Kar:2019:MYR

Kandaswamy:2013:EPE

Kumari:2014:MMS

Kovalenko:2017:SDM

Kim:2015:TDO

Krivan:2019:PCM

Khalili:2015:SAW

REFERENCES

REFERENCES

REFERENCES

Kushwaha:2010:PIN

Kandler:2013:NEN

Kessler:2014:NLA

Koch:2015:DTC

Koenders:2016:MMC

Kaufman:2019:MCR

Karagoz:2016:IMB

Kemp:2012:QFA

Kang:2011:RAF

REFERENCES

Kobayashi:2016:MMC

Kumar:2017:MDP

Kumar:2015:PLC

Koyano:2013:FPA

Kupczik:2015:RMF

Kerimoglu:2012:RPC

Kawka:2014:RRS

Khan:2018:ARF

Kuritz:2017:RBC

REFERENCES

Kingsbury:2016:IEN

Kameyama:2018:SSR

Kuga:2019:VVC

Kobayashi:2010:SMN

Kasimova:2014:AMO

Kumar:2019:CFF

Kuetche:2016:IBD

Kundu:2016:SMS

Kurochkina:2010:HHI

Kurbel:2014:HHE

Kurokawa:2017:ERS

Kurokawa:2019:TPR

Koseska:2010:CDT

Kuzma:2019:EIC

Kaul:2015:DRR

Himanshu Kaul and Yiannis Ventikos. Dynamic reciprocity revisited. *Journal of Theoretical Biology*, 370(??):205–208,
REFERENCES

REFERENCES

REFERENCES

Lange:2016:RDT

Lane:2017:SES

Lika:2014:BDP

Larjavaara:2010:MCT

Larson:2016:EAL

Jennifer M. Larson. The evolutionary advantage of limited network knowledge. *Journal of Theoretical Biology*, 398(??):43–51, June 7, 2016. CODEN JTBIAP. ISSN 0022-
Lambert:2014:PAA

Lazar:2013:SSS

Lutkenhoner:2011:AMV

Lutkenhoner:2012:DVE

Lawn:2013:IBE

REFERENCES

REFERENCES

Lorenzi:2015:DDE

Laurie:2017:PL

Lim:2012:HSM

Li:2015:SPE

Lopez-Caamal:2012:PFA

REFERENCES

Lythe:2016:HMT

Lee:2016:DCM

Lee:2018:MMU

Liu:2014:PCP

REFERENCES

Larsen:2014:MFE

Liu:2018:EAS

Lamberton:2014:LMP

Liu:2011:DSE

Lade:2015:FLE

[LCTG15] Steven J. Lade, Miguel Coelho, Iva M. Tolić, and Thilo Gross. Fusion leads to effective segregation of damage during cell division: An analytical treatment. Journal of
REFERENCES

Lin:2011:PIC

Lucia:2018:IIF

Letellier:2013:WCL

Lorthois:2014:KMC

Longhi:2013:APA

Daniel Angelo Longhi, Francieli Dalcanton, Gláucia Maria Falcão de Aragão, Bruno Augusto Mattar Carciofi, and João Borges

REFERENCES

[Langebrake:2014:TWR]

[Liu:2016:BII]

[Lemay:2011:ESC]

[Lu:2016:OSB]

[Ding:2015:CMP]
REFERENCES

Liu:2014:CDS

Lessard:2019:LHS

Lee:2016:LII

Lee:2016:PPF

Lehtinen:2018:UVF

Lei:2009:SSG
[Jinzhi Lei. Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters. *Journal-

REFERENCES

Kerry A. Landman, Anthony E. Fernando, Dongcheng Zhang, and Donald F. Newgreen. Building stable chains with motile agents: Insights into the morphology of enteric neural crest

REFERENCES

Lee:2009:MSE

Lee:2012:CMS

Gu:2014:MCS

Lemmer:2014:MIT

REFERENCES

Lucia:2017:ETA

Lipfert:2012:MEC

Liu:2013:MBA

Li:2014:MID

Loeuille:2018:MPD

Hongqiang Lv, Jiuqiang Han, Jun Liu, Jiguang Zheng, Dexing Zhong, and Ruiling Liu. ISDTool 2.0: a computational model for predicting immunosuppressive domain of retroviruses. *Journal of Theoretical Biology*, 360(??):78–82, November 7, 2014. CODEN JTBIAP. ISSN 0022-5193 (print),
REFERENCES

Lion:2016:MES

Lion:2018:PES

Louca:2012:SNP

Liu:2010:HAP

Lee:2015:STT

Liu:2018:BDG

Lee:2017:GCP

Lakizadeh:2015:PGP

Liao:2017:SDP

Llensa:2014:EED

REFERENCES

Emma Lejeune and Christian Linder. Quantifying the relationship between cell division angle and morphogen-

Liu:2012:SDP

Li:2017:SPR

Li:2014:MEC

Lehmann:2016:FAA

Liao:2013:SPL

REFERENCES

Liu:2013:UPG

Laager:2019:MMD

Li:2019:NEP

Lamberton:2015:CDS

Laidre:2013:MSI

Mark E. Laidre, Alex Lamb, Susanne Shultz, and Megan Olsen. Making sense of information in noisy networks: Human communication, gossip, and distortion. *Journal of Theoretical Biology*, 317(?):152–160, January 21, 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (ele-
REFERENCES

Labavic:2019:SLC

Lau:2015:CHG

Li:2018:IEP

Liu:2015:IPC

Li:2013:EGB
REFERENCES

Lo:2013:MMC

Lin:2016:MMP

Liu:2018:NHB

Lee:2013:AHD

Eric F. Lee, Mark A. Matthews, Andrew J. McElrone, Ronald J. Phillips, Kenneth A. Shackel, and Craig R.

REFERENCES

Landmann:2017:STA

Landmann:2018:CST

Lyons:2016:PFR

Livnat:2011:ACB

Lema-Perez:2019:PBM

REFERENCES

Lahiri:2014:IAS

Lloyd-Price:2014:DSG

Lyon:2011:MSP

Lyon:2012:CMS

Laruson:2016:SUG

REFERENCES

[Lee:2010:EMD] Thomas J. Lee and Michael P. Speed. The effect of metapopulation dynamics on the survival and spread of a novel, con-

Levy:2010:PSS

Lloyd-Smith:2010:MDD

Lou:2011:MEA

Lutscher:2011:ETV

Lambert:2013:PLP

REFERENCES

Liu:2015:IHC

Lapytsko:2016:RTD

Lessard:2016:DFA

Liu:2016:MCA

Liu:2018:AMF

Liu:2019:DFS

REFERENCES

Jiawei Luo, Dan Song, Cheng Liang, and Guanghui Li. Model the evolution of protein interaction network assisted with protein age. *Journal of Theoretical Biology*, 333(??):10–17, September 21, 2013. CODEN JTBIAP.
REFERENCES

REFERENCES

Laomettachit:2015:DMH

Li:2017:IRD

Li:2019:SMM

Lugli:2015:TBS

Lukeman:2014:ODC

Lundberg:2013:ESP

Luo:2014:UFR

Lutkenhoner:2016:ETR

Lepage:2017:RBC

Lee:2016:SPE

LoIacono:2012:EPP

Lorenzi:2018:RSV

Liu:2010:PESa

Liu:2010:PESb

Liu:2012:MMR

REFERENCES

REFERENCES

[689] Liu:2011:NPS

[LWL+11]

[Lempidakis:2018:WCK]

[LWLM18]

[Latif:2014:MIR]

[LWRE14]

[Lynch:2019:MTF]

[LWvB+19]

[Li:2014:RFG]

Xiaomei Li, Xindong Wu, and Gongqing Wu. Robust feature generation for protein subchloroplast location prediction with a weighted GO transfer model. *Journal of
REFERENCES

REFERENCES

Xiaoxia Liu, Zhihao Yang, Ziwei Zhou, Yuanyuan Sun, Hongfei Lin, Jian Wang, and Bo Xu. The impact of...

Rong Li, Dexing Zhong, Ruiling Liu, Hongqiang Lv, Xianman Zhang, Jun Liu, and Jiuqiang Han. A novel method for in silico identification of regulatory SNPs in human genome. *Journal of Theoretical Biology, 415(??):84–89*, February 21,

Yantao Luo, Long Zhang, Zhidong Teng, and Donald L. DeAngelis. A parasitism-mutualism-predation model co-

Liu:2011:LIC

Liang:2015:IIN

Morozov:2010:TCD

Mehrabian:2011:GSP

Morozov:2011:EVD

Matsuda:2013:FCE

Mondal:2017:CSA

Moore:2018:HDR

Maciejewski:2010:AOO

MacKay:2011:MSC

Maciejewski:2014:RVG

Muolo:2019:PNN

Munir:2018:EWB

McKinley:2012:AAM

Mallik:2018:AUG

Mier:2017:PPI

Mazzuca:2016:CMS

Mehrabian:2015:DPP

Marshall:2011:QRO

REFERENCES

Masuda:2012:IFI

Masuda:2014:EIA

Morse:2015:PMM

Morse:2015:SDR

Massey:2016:NEE

Maso:2018:AAF
Majid Masso. All-atom four-body knowledge-based statistical potential to distinguish native tertiary RNA struc-

Maury:2015:OLP

McMeeking:2012:CDA

Maxin:2010:TSD

Marcu:2012:NCH

Morozov:2012:PIH

Andrew Morozov and Alex Best. Predation on infected host promotes evolutionary branching of virulence and pathogens’
references

Marechal:2014:MRL

McQuaid:2015:PSR

Morsky:2016:TSP

Maleki:2017:OLA

Marrec:2018:QIP

McKenna:2018:FSA

Murase:2018:SRA

Morsky:2019:ITS

McAvity:2013:PSM

Mathew:2014:GSA

REFERENCES

Maxin:2012:ISA

Miller:2012:DPA

Moller:2012:DRS

Malkoc:2010:ICB

Mohabatkar:2011:PGR

Menshikov:2015:INR

Muraro:2011:ICA

Muraro:2013:RAC

Mesgaran:2017:HGN

Mohsen B. Mesgaran, Juliette Bouhours, Mark A. Lewis, and Roger D. Cousens. How to be a good neighbour: Facilitation and competition between two co-flowering species.
Ma:2002:DMN

functions and their applications. In J. Q. Li, editor, Proceed-
ings of the 4th International Conference on Advances in

[AM01] D. Arapostathis and B. M. Moore. Dynamic Programming and

Error of two-locus association in sample with admixture.
CODEN AJHIAC. ISSN 0002-9293 (print), 1096-1001 (electronic).

[AMP11] P. A. Morozov, M. Banerjee, and S. V. Petrovskii. Long-
term transients and complex dynamics of a stage-structured
population with time delay and the Allee effect. Journal of
Theoretical Biology, 396(??):116–124, May 7, 2016. CODEN
JTBIAP. ISSN 0022-5193 (print), 1095-8541 (electronic).

[MBP17] Pietro Mascheroni, Daniela Boso, Luigi Preziosi, and Bern-
hard A. Schrefler. Evaluating the influence of mechanical
stress on anticancer treatments through a multiphase porous
media model. Journal of Theoretical Biology, 421(??):179–188,
May 21, 2017. CODEN JTBIAP. ISSN 0022-5193 (print),

[MRR19] Rachata Mumeeparakul, Enrico Bertuzzo, Andrea Rinaldo,
and Ignacio Rodriguez-Iturbe. Evolving biodiversity pat-

Massahi:2016:ESP

Mason:2019:ERK

Mari:2017:HST

Mubayi:2010:TDU

Mettikolla:2011:CBK

Macfarlane:2019:SIB

Manapat:2010:BRR

Mendez:2012:DDD

Mari:2018:ETW

REFERENCES

[Mbah:2014:CAS]

[Mangalam:2016:SOL]

[Miranda:2016:TKO]

[Marchettini:2010:WMW]

[Macnamara:2015:MVE]

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Macklin:2012:PCA

Mochizuki:2015:SCR

Moise:2019:RAM

McCaig:2013:UPA

Middleton:2014:CAL
Alistair M. Middleton, Christian Fleck, and Ramon Grima. A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion. *Journal of Theoretical Biology*, 359(??):220–232, October 21, 2014. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
Mochizuki:2013:DCF

Michel:2018:MMP

Mansouri:2016:AIA

Mirams:2012:TIE

Juan Mei, Yi Fu, and Ji Zhao. Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s
REFERENCES

Mbah:2010:OCS

Mizera:2010:SME

Melak:2014:PNH

MGonigle:2014:AES
REFERENCES

REFERENCES

Moulton:2015:MMB

[D. E. Moulton, A. Goriely, and R. Chirat. The morpho-
 mechanical basis of ammonite form. Journal of Theo-
 retical Biology, 364(??):220–230, January 7, 2015. CO-
 DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
 article/pii/S0022519314005608.]

Martinez-Garcia:2013:SPM

[Ricardo Martínez-García, Justin M. Calabrese, and Cristóbal
 López. Spatial patterns in mesic savannas: The local facilita-
 tion limit and the role of demographic stochasticity. Jour-
 nal of Theoretical Biology, 333(??):156–165, September 21,
 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
 science/article/pii/S0022519313002531.]

Mesterton-Gibbons:2011:MCA

[Mike Mesterton-Gibbons, Sergey Gavrilets, Janko Gravner,
 and Erol Akçay. Models of coalition or alliance forma-
 7, 2011. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
 science/article/pii/S0022519310006867.]

Martin:2010:LVP

[Natasha K. Martin, Eamonn A. Gaffney, Robert A. Gatenby,
 and Philip K. Maini. Leaky vessels as a potential source
 of stromal acidification in tumours. Journal of Theo-
 retical Biology, 267(3):454–460, December 7, 2010. CO-
 DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
 article/pii/S002251931000398X.]

Martin:2010:TSI

[Natasha K. Martin, Eamonn A. Gaffney, Robert A. Gatenby,
 and Philip K. Maini. Tumour-stromal interactions in acid-
 mediated invasion: a mathematical model. Journal of The-
 oretical Biology, 267(3):461–470, December 7, 2010. CO-
 DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
 article/pii/S0022519310004510.]

REFERENCES

Martinez-Garcia:2017:SCI

Malherbe:2011:SMG

Marshall:2012:CGD

Morin:2013:MDB

Murtada:2014:IRS

REFERENCES

Miguel:2016:TOD

Mishra:2016:DPD

Malik:2016:OCM

Milgram:2011:SBP

Milne:2016:CBA
Nick Milne. Curved bones: An adaptation to habitual loading. *Journal of Theoretical Biology*, 407(??):18–24, October 21, 2016. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
Metal:2014:MST

Mitchison:2016:CGA

Mityushev:2017:OSR

Miyazawa:2016:SMP

Miyazawa:2017:SOP
Mahdavi:2011:ADS

Min:2011:PKR

Matsuo:2014:CSN

Ma:2011:FPD

Murphy:2016:MAE

Maeda:2011:QMS

Ma:2014:HMS

Mann:2014:SFP

Mironchenko:2014:OAP

Mougi:2014:SCA

[MK18b] Corey Melnick and Massoud Kaviany. Thermal actuation in TRPV1: Role of embedded lipids and intracellular domains. *Journal of Theoretical Biology*, 444(?):38–49, May 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
REFERENCES

Meakin:2019:CBS

Martinez:2017:JGWa

Martinez:2017:JGWb

Martinez:2015:BMA

REFERENCES

Mousavi:2014:MLM

Montovan:2013:LBR

Manem:2014:SID

McGillen:2014:GLM

McIntyre:2014:HRV

Mund:2016:ADM

Martinez:2018:MCM

Mai:2009:BNB

Meng:2010:DPD

Mitchell:2011:SGS

Murrugarra:2011:RPM

Mai:2012:CBN

Mitchell:2012:CDD

Marcoux:2013:NMP

REFERENCES

Moslonka-Lefebvre:2015:EMT

McLean:2010:TOR

Magombedze:2012:MRD

Merrill:2015:TAW

Montevil:2015:BOC

Maël Montévil and Matteo Mossio. Biological organisation as closure of constraints. *Journal of Theoreti-
REFERENCES

REFERENCES

Murall:2014:REA

Martinez:2018:TTM

Macnamara:2019:SSM

Moravec:2019:WIP

Montaseri:2012:HAR

Marthe Måløy, Frode Måløy, Per Jakobsen, and Bjørn Olav Brandsdal. Dynamic self-organisation of haematopoiesis

[Mitre:2016:MMG]

[Mirsky:2011:SBA]

[Murillo:2013:TMM]

[Morin:2010:SBE]

[Mahdavi:2012:CAR]
analysis of RNA-protein interaction interfaces via the Voronoi
diagram. *Journal of Theoretical Biology*, 293(??):55–64, January
com/science/article/pii/S0022519311005042.

[MN11] Naoki Masuda and Mitsuhiro Nakamura. Numerical analy-
sis of a reinforcement learning model with the dynamic aspiration level in the iterated Prisoner's dilemma. *Journal
of Theoretical Biology*, 278(1):55–62, June 7, 2011. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519311001342.

[MN12] James N. McNair and J. Denis Newbold. Turbulent par-
ticle transport in streams: Can exponential settling be reconciled with fluid mechanics? *Journal of Theoretical
pii/S0022519312000240.

[MN14] Mototaka Minakuchi and Seido Nagano. Stable territory for-
tation in ecology and its potential generality in pattern for-
7, 2014. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
science/article/pii/S0022519313005912.

and N. G. H. Taylor. Stocking methods and parasite-induced re-
ductions in capture: Modelling argulus foliaceus in trout fish-
eries. *Journal of Theoretical Biology*, 312(??):22–33, Novem-
com/science/article/pii/S002251931200361X.
REFERENCES

REFERENCES

Morford:2011:TAS

Morford:2011:TAS

Morbey:2013:PSS

Morozov:2016:MBE

Morimoto:2019:FDM

Manhart:2015:EFB

MOSS15

REFERENCES

McGovern:2012:DMC

Marrero-Ponce:2015:NBM

Maeng:2013:MAE

Mercker:2012:MAC

Malkemper:2016:SMA

Morin:2014:DRM

Marks:2010:EIS

Moreira:2012:EDC

Mellor:2015:MAL

REFERENCES

Muthukumaran:2019:AQB

Mahlbacher:2019:MMT

Morales:2015:NMM

Marini:2017:EVB

Mercado-Reyes:2015:OPT

Misra:2012:DMM

Molina:2012:MSD

Margolskee:2013:LMF

Ma:2014:SBP

Maykranz:2014:CAF

Morishita:2014:BIW

Mossel:2014:MRT

Means:2016:IHV

Mehrafrooz:2018:MDB

Moulton:2016:MMS

REFERENCES

Martinkova:2019:MIP

Meher:2016:CAP

Montgomery-Smith:2010:SME

Michiko:2018:ERS

REFERENCES

REFERENCES

Mackey:2011:MDG

Munoz-Tamayo:2010:MMC

Marin:2012:CTQ

Mulder:2011:PDA

Mulder:2012:CPD

Amirhossein Manzourolajdad, Yingfeng Wang, Timothy I. Shaw, and Russell L. Malmberg. Information-theoretic uncertainty of SCFG-modeled folding space of the non-coding

Matsumoto:2013:DFT

Matsumoto:2015:DFT

Mpolya:2014:EDV

Magal:2017:CLF

Mei:2018:APP

Nahalka:2012:GTF

Nahalka:2014:PRR

Nakamura:2011:MCH

Nakahashi:2012:CMH

Nakahashi:2014:ECI

Nakabayashi:2016:IDH

Nakahashi:2016:CFO

Nakamaru:2016:ECE

Nakahashi:2019:CSL

Naasell:2012:RCC

Nguyen:2018:CCT

[NBA+18] Nguyen, Trong Hieu, Timothée Brochier, Pierre Auger, Viet Duoc Trinh, and Patrice Brehmer. Competition or cooperation in transboundary fish stocks management:

Nikitin-Beers:2018:UWH

Niu:2016:CMB

Niu:2016:MBR

Nanni:2010:HPS

Sebastian Novak and Sylvia Cremer. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. *Journal*

Nabawy:2016:OHW

Nardini:2016:MKW

Novak:2013:DG

Nguyen:2013:REC

Nguyen:2014:IRP

Ng:2017:MVD

Nelson:2011:SRD

North:2017:DDM

Nezafat:2014:NME

Nie:2010:CMC

REFERENCES

REFERENCES

REFERENCES

Norton:2018:MTN

Nath:2018:EPR

Neofytou:2016:MMP

Neofytou:2016:TDM

Nah:2010:DED

REFERENCES

Nierop:2016:MIL

Noonburg:2010:ELH

Nasiri:2015:PAS

Nev:2017:OMN

Nakamura:2014:EIR

REFERENCES

Nakahashi:2015:WEC

Nakahashi:2018:EEC

Nonacs:2010:BTW

Noshita:2014:QGA
Nishimura:2017:EFC

Nowak:2012:EC

Nurmi:2011:JES

Nurmi:2013:ESU

Neupane:2015:ISA

Nonaka:2013:ESC

Niccum:2012:UCE

Nicolas:2015:MMF

Nevai:2010:SCH

Nurmi:2017:ESS
Nurmi:2018:JED

Neilan:2014:SEF

Nax:2016:AES

Nath:2018:DWC

Naushad:2016:SAI

Shaik Mohammad Naushad, M. Janaki Ramaiah, Balraj Alex Stanley, S. Prasanna Lakshmi, J. Vishnu Priya, Tajamul Hussain, Salman A. Alrokayan, and Vijay Kumar Kutala. In silico approaches to identify the potential inhibitors of glutamate carboxypeptidase II (GCPII) for neuroprotection. *Journal of Theoretical Biology*, 406(??):137–142, October 7,
Nakabayashi:2011:MMI

Nov:2013:OCR

Nath:2016:IMB

Namba:2018:PRF

Nath:2019:EEL

Abhigyan Nath and Gopal Krishna Sahu. Exploiting ensemble learning to improve prediction of phospholipidosis inducing

[Nanni:2010:PCU]

[Noble:2010:UAM]

[Neidhart:2013:ERA]

[Nakamaru:2018:ESE]
REFERENCES

Linh Thi Hoai Nguyen, Việt Tôn Tạ, and Atsushi Yagi. Obstacle avoiding patterns and cohesiveness of fish school.

Arwen E. Nicholson, David M. Wilkinson, Hywel T. P. Williams, and Timothy M. Lenton. Multiple states of envi-

REFERENCES

REFERENCES

797

[Oyarzun:2012:MOG]

[Oka:2010:CCK]

[Obermayer:2010:ETS]

[O’Fallon:2011:TOM]

[O’Brien:2010:MGA]
Ricky O’Brien, Nev Fowkes, and Andrew P. Bassom. Models for gibberellic acid transport and enzyme production and transport in the aleurone layer of barley. *Journal of
REFERENCES

REFERENCES

Ohtsuki:2010:SED

Ohtsuki:2012:DSR

Ohara:2018:GRN

Okabe:2011:PPP

Okabe:2012:SVD

Okamoto:2015:DSA

REFERENCES

Ochab-Marcinek:2010:ENP

OMalley:2017:EHE

Onana:2013:EHP

Olejarz:2014:EST

Olah:2015:MSP

REFERENCES

Olson:2011:CBH

Okada:2018:SPA

Oommen:2016:GWD

Oizumi:2013:OLS

Owens:2010:ECS

REFERENCES

Otsuka:2011:LSE

Oster:2011:LCM

Ou:2019:ANF

Olivera:2010:RDS

Oraby:2014:MSB

Oien:2016:EEH

Okasha:2014:IFM

Ohnishi:2014:ASP

Ohkubo:2010:LTB

Olyaee:2016:PPS
REFERENCES

Penta:2015:RMT

Pagnutti:2011:EGL

Pang:2010:DBH

Page:2019:OWM

Painter:2019:MMC

Pahlajani:2011:SRM

Panchanathan:2011:TWD

Pantokratoras:2019:CPP

Pajaro:2017:SMN

Paradis:2015:RPD

Pavesi:2014:PDT

Pavoine:2019:OAE

Pigolotti:2016:CBF

Pharaon:2018:ISB

Purcell:2012:CEB

J. J. Poos, Å. Brännström, and U. Dieckmann. Harvest-induced maturation evolution under different life-history

Postlethwaite:2013:NMS

Porter:2012:ISN

Piwowar:2013:SRE

Pendergraft:2015:ACC

REFERENCES

REFERENCES

[Peletier:2010:IPB]

[Pal:2018:EMS]

[Pigolotti:2010:CIT]

[Posta:2010:MMI]

Simone Pigolotti and Massimo Cencini. Species abundances and lifetimes: From neutral to niche-stabilized communities. *Journal of Theoretical Biology*, 338(??):1–8, December 7, 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
REFERENCES

REFERENCES

Philipsen:2010:MCS

Pienaar:2015:CTI

Priklopil:2017:OIS

Pool:2018:MMM

REFERENCES

Pai:2017:SBD

Pantic:2016:GLC

Pedruzzi:2016:UPL

Palamara:2013:PEM

REFERENCES

REFERENCES

Panovska-Griffiths:2019:WPN

Poethke:2011:AIA

Powathil:2012:MEC

Pilosof:2017:ADD

REFERENCES

Perfahl:2017:HMV

Pantoja-Hernandez:2016:RED

Pruett:2012:AHH

Painter:2018:CMF

Pellis:2015:EAM

Piltz:2018:IPP

Pantic:2012:CFD

Piast:2019:SIB

Pietruszka:2010:EAS

Pietruszka:2012:BIM

REFERENCES

Powell:2011:GTS

Papadakis:2012:MDM

Pelosse:2012:RRV

Pienaar:2014:EMM

Pienaar:2014:MMI

Platkowski:2010:CTP

Powell:2017:MDI

Polo:2018:BRN

Powell:2019:EFM

Pourziaei:2019:SMD

Pena:2014:GSE

Pereira:2010:PPD

Preece:2010:EGL

Parham:2011:OPE

REFERENCES

Payne:2011:ECD

Pond:2018:MBC

Phipps:2015:MMM

Prakash:2010:NNA

Price:2015:IRI

Prosnier:2018:PEC

Pechenick:2013:IAR

Pawlowitsch:2011:NSD

Priyadarshi:2017:MSV

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal of Theoretical Biology</th>
<th>Volume (Issue)</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pena:2018:GSE</td>
<td>Jorge Peña and Georg Nöldeke</td>
<td>Group size effects in social evolution</td>
<td>457</td>
<td>211–220</td>
<td>November 14, 2018</td>
<td></td>
</tr>
<tr>
<td>Pena:2015:EDC</td>
<td>Jorge Peña, Georg Nöldeke, and Laurent Lehmann</td>
<td>Evolutionary dynamics of collective action in spatially structured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stéphanie Portet. Dynamics of in vitro intermediate filament length distributions. *Journal of Theoretical Bi-

Kris V. Parag and Oliver G. Pybus. Optimal point process filtering and estimation of the coalescent process. *Jour-
References

Potts:2017:FFB

Pozzobon:2018:HMP

Pozzobon:2019:CHM

Pakka:2010:CFC

[PPT+16] Frédéric Proia, Alix Pernet, Tatiana Thouroude, Gilles Michel, and Jérémy Clotault. On the characterization of flowering curves using Gaussian mixture models. *Journal of
REFERENCES

Proia:2019:PRG

Peace:2016:SGD

Potapov:2013:ATS

Patel:2017:RLC

REFERENCES

REFERENCES

Pires:2014:MFN

Prum:2012:HDG

Panigrahi:2013:CSA

Priya:2013:MBA

Peng:2018:MBE

[PSD+18] Valery Peng, Natalka Suchowerska, Ana Dos Santos Esteves, Linda Rogers, Elizabeth Claridge Mackonis, Joanne Toohey,

REFERENCES

Powers:2012:PCP

Poletto:2013:HMT

Poelwijk:2011:RSE

Pepin:2010:PDV

Pliego:2018:IES

Emilene Pliego Pliego, Jorge Velázquez-Castro, Markus P. Eichhorn, and Andrés Frauguela Collar. Increased efficiency in the second-hand tire trade provides opportunity for dengue

Prokharau:2012:MDB

Portillo:2019:MMS

Postlethwaite:2011:GMI

Postlethwaite:2014:MNE

Peck:2018:WAH

Joel R. Peck and David Waxman. What is adaptation and how should it be measured? *Journal of Theoretical Biology*, 447(??):190–198, June 14, 2018. COD-

Pineda:2015:MCM

Palmer:2016:RSX

Pan:2013:ACU

Peng:2016:DLC

Petroff:2011:RDM

REFERENCES

Pan:2019:APA

Pandey:2019:MDA

Ponce:2019:AEM

Pivonka:2010:TIR

REFERENCES

[QLC+18] Wenying Qiu, Shan Li, Xiaowen Cui, Zhaomin Yu, Minghui Wang, Junwei Du, Yanjun Peng, and Bin Yu. Predicting protein submitochondrial locations by incorporating

Qu:2019:NMB

Qi:2011:SSA

Qi:2015:EIS

Qiu:2013:SIM

Qi:2010:NMG

Qi:2011:CDR

Qiu:2012:PPP

Qu:2010:ASR

Qin:2014:SCA

Rathore:2016:SAG

Rabhi:2015:NPB

Rooman:2014:SNR

Radzvilavicius:2016:EDC

Reynolds:2014:MPC

REFERENCES

Rayhan:2019:CCF

Ramsey:2010:LPP

Ruokolainen:2011:RSH

Rand:2012:PMT

Rand:2010:ASP

Rao:2012:UTI

Roy:2019:VCI

Reynolds:2013:WCS

Ringa:2014:DCF

Manuela Royer-Carenzi and Gilles Didier. Testing for correlation between traits under directional evolution. *Journal of Theoretical Biology, 482*(??):Article 109982, December 7, 2019. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-

REFERENCES

Rubin:2017:RES

Robert:2014:ATA

Renton:2011:DCH

Roman:2016:TAU

Rolls:2012:MHC

Ruiz-Diaz:2013:IRP

Reynolds:2010:MMP

Reick:2012:SSS

Remien:2015:MDS

Ren:2013:GRS

REFERENCES

Rangarajan:2015:DOD

Reneaux:2010:TRC

Rybinski:2012:MBS

Rockenfeller:2017:HEH

REFERENCES

REFERENCES

Rockwell:2014:LHI

Ruiz-Herrera:2018:EDT

Richards:2017:VIO

Richard:2019:PNC

Renardy:2018:CCF
Revilla:2018:CTM

Renardy:2019:EVS

Roterman:2011:TIM

Rhodes:2019:DFN

Ristanovic:2012:MMT

[Note: The addresses are not to be included in the references.]
Riley:2015:SAS

Rajakaruna:2017:TCA

Riotte-Lambert:2013:PAM

Roca-Lacostena:2018:EKM

Raghib:2010:MAC

Roselius:2014:MAG

Richter:2017:ASW

Rubin:2014:MEB

Ramakrishnan:2014:DDM

Rhodes:2010:IVI

Ruokolainen:2013:EWT

Radulescu:2017:MMR

Ramirez:2017:CNS

Rusinko:2017:STE

Ryser:2017:BRS

Aouatef Riahi, Abdelmonem Messaoudi, Ridha Mrad, Asma Fourati, Habiba Chabouni-Bouhamed, and Maher Kharrat. Molecular characterization, homology modeling and docking studies of the r2787h missense variation in BRCA2

Ramirez-Malule:2016:ISC

Rahimi:2013:EFS

Rand:2012:EDF

Rydzewski:2015:IPS

REFERENCES

[Ros10b] J. V. Ross. Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and tem-

REFERENCES

REFERENCES

[Richardson:2011:CPN]

[Rahbar:2010:SAA]

[Rahbar:2012:PSA]

[Ramakrishnan:2013:BMR]
Ross:2015:SPM

Roman-Roman:2016:MTG

Roman-Roman:2010:DPM

Roman-Roman:2012:IET

Russell:2019:SCQ

REFERENCES

Rocha:2019:ETB

Rossetti:2010:EPT

Reynolds:2014:DAD

Robinson:2012:SDA

Roblitz:2013:MMH

Raicar:2016:IPF

Reluga:2019:DGT

Rempala:2011:MCA

Roques:2011:SRD

Rahman:2018:DPD

[RTRRS+17] Ariel Ramírez-Torres, Reinaldo Rodríguez-Ramos, Federico J. Sabina, Catherine García-Reimbert, Raimondo Penta, José

Rateitschak:2010:TTD

Roy:2012:IHS

Roy:2014:TAF

Ruxton:2014:EAP

Randhawa:2015:MMP

REFERENCES

REFERENCES

Rich:2016:HTR

Rossi:2016:TIH

Ramirez-Zuniga:2019:MME

Suzuki:2013:SCM

Suzuki:2014:EDR

Reiji Suzuki and Takaya Arita. Emergence of a dynamic resource partitioning based on the coevolution of phenotypic plasticity in sympatric species. Journal of

Saunders:2019:TRT

Serrano-Alcalde:2017:RNM

Steckmann:2012:KPS

Strilka:2014:QAS

Sakai:2010:WGC
Satoki Sakai. With whom is the gene in conflict in offspring production?: Synthesis of the theories of intragenomic and parent-offspring conflict. *Journal of The-
REFERENCES

REFERENCES

[Smolen:2014:SSP]

[Smolen:2018:PLM]

[Sergeev:2010:IEV]

[SBCR10]

[Schindler:2013:PFM]

[SBJ13]

[Stritzler:2018:UIE]

[SBMH10] Shahab Sheikh-Bahaei, Jacquelyn J. Maher, and C. Anthony Hunt. Computational experiments reveal plausible mechanisms for changing patterns of hepatic zonation of

Scianna:2013:RMM

Sergeev:2010:MTT

Shafique:2016:SIP

Szilagyi:2017:ASC

Sjodin:2014:PLC

REFERENCES

Schokker:2013:MMR

Sharma:2018:MPC

Schiffner:2011:MAN

Salazar-Ciudad:2010:TLM

Shen:2010:GMT

Hong-Bin Shen and Kuo-Chen Chou. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcel-

Sumner:2010:PEP

Sharma:2011:STP

Sibani:2011: NSA

Sibly:2012:EDP

Straube:2013:ERE

[SC13a] Ronny Straube and Carsten Conradi. Erratum to “Reciprocal enzyme regulation as a source of bistability in cova-

Strube:2013:RER

Suzuki:2016:DER

Scheff:2013:PCT

Sanchez-Corrales:2010:ATF

REFERENCES

Sanchez-Corrales:2011:CAT

Sergeev:2011:MUP

Shi:2012:DMM

Shanafelt:2018:SDB

Scheuring:2010:EMP

Schrago:2014:LDE

Schulman:2017:BRA

Schlomann:2018:SMD

Schepens:2019:RRA

Schinazi:2019:CEP

Schumacher:2019:NCM

Song:2015:ILC

Scheff:2010:MIC

Stan:2013:ISL

Stan:2010:SAD

REFERENCES

Sun:2014:RLP

Sharp:2015:SMF

Shan:2018:MPT

Swan:2012:CMT

Sindi:2016:CDP

[SD16] Suzanne S. Sindi and Rick Dale. Culturomics as a data playground for tests of selection: Mathematical approaches
REFERENCES

907

[Sueur:2011:GSG] Cédric Sueur, Jean-Louis Deneubourg, Odile Petit, and Iain D. Couzin. Group size, grooming and fission in pri-

REFERENCES

Seki:2012:IIC

Seligmann:2010:PCB

Seligmann:2011:PMA

Seligmann:2012:OGCb

Seligmann:2012:OGCa

Seligmann:2013:SAN

Seligmann:2014:PAM

Seligmann:2014:SRD

Seligmann:2015:CES

Seligmann:2015:SEB

Sekimura:2014:MPD

Santoni:2016:NVR

Singh:2015:CSS

Song:2015:DSL

Subramanian:2018:EAD

Shim:2012:GDM

Sandoval:2012:MMP

Siebert:2012:GMD

Santana:2019:QBD

Schmitt:2014:EIC

Schmitt:2012:RCD

Srivastava:2016:SAU

Song:2012:TFS

Sanchez-Gomez:2019:PSR

Schofield:2011:TAG

Silva:2010:QTM

Sanchez-Garduno:2019:THP

Scholz:2010:BMH

Soula:2015:MAT

Shafiey:2017:ECT

REFERENCES

Sharma:2014:BAR

Schmutz:2017:CAB

Schoenmakers:2014:SHS

Shen:2010:BPR

Shen:2011:NAL

REFERENCES

[SHK14] Evgeny A. Shavlyugin, Leonid G. Hanin, and Mikhail A. Khanin. Dynamics of pathologic clot formation: a mathemat-

REFERENCES

REFERENCES

Siero:2018:NGP

Sigmund:2012:MAI

Sunada:2015:SAP

Sabooh:2018:IMS

Silanikove:2016:TRM

Simon Maccracken Stump, Evan Curtis Johnson, Zepeng Sun, and Christopher A. Klausmeier. How spatial structure and

Shtylla:2010:MMM

Shiino:2011:TAF

Suzuki:2011:ODC

Shtylla:2012:MMP

Sorace:2012:ANM

[SK12b] Ron Sorace and Natalia L. Komarova. Accumulation of neutral mutations in growing cell colonies with competition.
REFERENCES

Kandasamy Saravanan and Poomani Kumaradhas. Acylguanidine-BACE1 complex: Insights of intermolecular interactions and
REFERENCES

Staalhand:2011:MCM

Schmidt:2017:NSS

Spasic:2011:SDM

Schraiber:2012:CUL

Srivastava:2018:BPC

[SKK18] Abhishikha Srivastava, Ravindra Kumar, and Manish Kumar. BlaPred: Predicting and classifying β-lactamase using a 3-tier prediction system via Chou’s general PseAAC.
Shin:2017:EOD

Shtilerman:2015:ESC

Sun:2019:MCF

Shiino:2012:SCR

REFERENCES

[SLJ+10] Gui-Quan Sun, Quan-Xing Liu, Zhen Jin, Amit Chakrabory, and Bai-Lian Li. Influence of infection rate and migration on extinction of disease in spatial epidemics. *Journal
REFERENCES

Smadi:2018:LRM

Shelton:2017:MCD

Sequeira:2019:TEB

Strelioff:2010:EDE

Sanz-Leon:2017:MCS

REFERENCES

Su:2018:ECI

Santos:2010:SGC

Szilagyi:2010:CFE

Stich:2011:MFE

Subirana:2011:DAS

REFERENCES

Sekiguchi:2011:HIB

Sakurai:2012:MNU

Sekiguchi:2014:HII

Seki:2016:MGM

Szatmary:2017:DWO

Shimura:2018:LGS

Shayeghi:2012:DRA

Suzuki:2012:ICA

Sukhov:2011:SAP

Sabzekar:2017:EDP

[SOF16] Luis Soto-Ortiz and Stacey D. Finley. A cancer treatment based on synergy between anti-angiogenic and immune cell therapies. *Journal of Theoretical Biology*, 394(??):197–211, April 7, 2016. CODEN JTBIAP. ISSN 0022-5193 (print),
Suzuki-Ohno:2010:AGP

Soslau:2018:CRC

Sozou:2013:KSL

Sirot:2011:DPR

Scianna:2013:MIN

Szolnoki:2013:ECP

Sutradhar:2014:TWB

Simon:2016:GLE

Susree:2018:CPI

Steel:2018:EIP

REFERENCES

REFERENCES

Simpson:2012:MHH

Simkin:2014:SMS

Sumen:2012:CAB

Soubeyrand:2011:PPD

Saini:2015:SLG

Sharifimajd:2014:CME

Seri:2015:SPT

Shen:2015:APL

Shen:2015:LSA

Soares:2015:ITS

Sober:2015:HPC

Sumathy:2015:MBM

Saghapour:2017:PMA

Stroberg:2017:ONM

Shen:2018:ELS

Sato:2019:SAW

[SS19] Naoki Sato and Kaoru Sato. Statistical analysis of word usage in biological publications since 1965: Historical de-

REFERENCES

REFERENCES

Serov:2015:ATO

Senapati:2019:IAM

Sharma:2019:OCB

Satake:2016:FDD

Scheiblauer:2018:FSC

[SSJK18] Johannes Scheiblauer, Stefan Scheiner, Martin Joksch, and Barbara Kavsek. Fermentation of *Saccharomyces cerevisiae*

Fernando P. Santos, Francisco C. Santos, Ana Paiva, and Jorge M. Pacheco. Evolutionary dynamics of group fair-

Sorrell:2019:MML

Swetha:2016:ICC

Sand:2013:SLG

Shokry:2015:DSD

Shibasaki:2017:CIO

Shatabda:2017:IIB

Shah:2019:OCH

Szalisznyo:2019:NDC

Shokrollahzade:2015:PCA

Soheila Shokrollahzade, Fatemeh Sharifi, Akbar Vaseghi, Maryam Faridounnia, and Samad Jahandideh. Protein cold adaptation: Role of physico-chemical parameters in adaptation of proteins to low temperatures. *Journal of The-
REFERENCES

Schumm:2010:NMS

Schumm:2015:GEI

Sataric:2017:BMH

Sanchez-Taltavull:2016:OAD

Sakai:2017:AES

Yuma Sakai and Takenori Takada. The analysis of an effect of seed propagation on defense strategy against pathogen trans-

Syomin:2017:SMC

Stadler:2010:STT

Sanchez-Taltavull:2015:SMV

Stepanskiy:2012:SIU

Steel:2013:CBI

REFERENCES

962

Sudarsan:2012:FCV

Synodinos:2018:IIA

Sasmal:2019:CMA

Shiraishi:2019:DSL

Sano:2017:DCB

REFERENCES

REFERENCES

Stefanoni:2011:NMD

Skutkova:2015:PAG

Shiri:2011:MIA

Salehipour:2013:CKE

Stamper:2013:MMI

Schmeiser:2015:FLE

Sainudiin:2016:TPC

Shafiey:2017:ERP

Sachs:2018:FFI

Stamper:2019:IMM

REFERENCES

[SXZYZ12] Jichen Shi, Jian Xu, Xiaorong Zhang, and Ling Yang. Positive feedback induced memory effect in ischemic precondi-
REFERENCES

Simon:2011:MMD

Suzuki:2012:NRS

Suzuki:2015:ERP

Smerlak:2017:LFD

Syi:2014:HPR

REFERENCES

REFERENCES

REFERENCES

Takashina:2016:SRE

Takai:2017:TRC

Takesue:2017:PSE

Tal:2012:CEG

Tokuda:2019:RCM

REFERENCES

REFERENCES

REFERENCES

[TF14] Hiroshi Toyoizumi and Jeremy Field. Dynamics of social queues. *Journal of Theoretical Biology*, 346(??):16–22, April 7, 2014. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-

Tam:2018:NLG

Telschow:2017:IWM

Tekwa:2015:LDC

Tahir:2019:MTD

Towers:2011:ATP

Tupper:2017:ETR

Tounsi:2010:VLD

Tektonidis:2011:IIV

Townsend:2010:GSC

REFERENCES

REFERENCES

Tachiki:2010:PCC

Tanaka:2011:HET

Tjorve:2010:HRS

Tania:2010:CMC

Tugrul:2010:ATR

Nao Takashina, Buntarou Kusumoto, Yasuhiro Kubota, and Evan P. Economou. A geometric approach to scaling individual distributions to macroecological patterns. *Journal of

Masoomeh Taghipoor, Philippe Lescoat, Jean-René Licois, Christine Georgelin, and Guy Barles. Mathematical modeling of transport and degradation of feedstuffs in the small

Thompson:2014:SDA

Tsuda:2011:WCM

Tron:2014:EWT

Thompson:2013:IER

Thai:2015:CAZ

REFERENCES

[TP10c] Natsuki Tanaka and Garegin A. Papoian. Reverse-engineering of biochemical reaction networks from spatio-temporal cor-

Thornley:2014:ANG

Tripathi:2017:NAF

Traulsen:2012:GGC

Thouzeau:2017:EMM

Trassinelli:2016:ECO

Trenchard:2019:CPM

Tromeur:2016:IDS

Trifonov:2010:BPS

Tung:2019:CIR

REFERENCES

REFERENCES

REFERENCES

Tal:2017:TST

Takagi:2013:HES

Tung:2013:PPS

Tutone:2018:RSI

Taghipoor:2016:SAE

REFERENCES

REFERENCES

REFERENCES

Uehara:2010:GML

Uchinomiya:2013:ESS

Uitdehaag:2011:BHB

Utz:2014:PPI

Unckless:2011:PRX

Udiani:2015:IRR

Ursino:2014:EHD

Uchida:2010:CAR

Uziel:2012:DPS

Uddin:2018:ESA

Usherwood:2016:PAG

Uriu:2017:FLI

Verdy:2010:ASS

Voinson:2018:SDE

Valencia:2017:AMM

REFERENCES

REFERENCES

Voss-Bohme:2010:CBC

Velasco:2013:LCR

VanDerlinden:2010:SVS

Vidal-DiezdeUlzurrun:2017:MTD

Vickerstaff:2010:WCS

REFERENCES

Veliz-Cuba:2011:RBN

Vaz:2015:OI

Venturino:2019:EMS

vandenBerg:2010:ERD

Vaughan:2012:WHD

Viger:2017:SAG

[VDD+17] Louise Viger, Fabrice Denis, Clément Draghi, Thibault Ménard, and Christophe Letellier. Spatial avascular growth
REFERENCES

[Vagne:2015:RSE] Constance Vagne, Jacques David, Muriel Tavaud, and Bénédicte Fontez. Reciprocal sign epistasis and trunc-

Bahman Vahidi and Nasser Fatouraee. A biomechanical simulation of ureteral flow during peristalsis using

REFERENCES

REFERENCES

[Vazquez:2012:ENL]

Philip J. G. M. Voets and Roderick P. P. W. M. Maas. Serum cardiac troponin I analysis to determine the exces-
REFERENCES

Vig-Milkovics:2019:MSB

vanNoort:2012:RWR

Verma:2018:BGI

Voets:2018:CLA

REFERENCES

REFERENCES

REFERENCES

Matthijs van Veelen, Julián García, and Leticia Avilés. It takes grouping and cooperation to get sociality. *Journal of

vanVeelen:2012:GSI

vanVeelen:2014:SMG

vanVeelen:2012:MPG

Villarreal:2010:VEA

Vanselow:2019:WVS

Anna Vanselow, Sebastian Wieczorek, and Ulrike Feudel. When very slow is too fast — collapse of a predator–prey system. Journal of Theoretical Biology, 479(??):64–72, October 21, 2019. CODEN JTBIAP. ISSN 0022-5193 (print),

REFERENCES

Wang:2019:PMT

Waxman:2011:CRT

Waxman:2011:CCW

Whitacre:2010:DDP

Waqar:2015:SAB

References

REFERENCES

REFERENCES

[Wang:2012:ICI]

[Wang:2015:EDF]

[Weaver:2012:ITE]

Wosniack:2017:PEE

Wery:2019:FEP

White:2015:MPP

Weiss:2012:MTT

Weigang:2017:CPT

REFERENCES

REFERENCES

Woolley:2015:GCL

Walker:2010:ASC

Woodhouse:2015:STC

Wakano:2011:PFC

Wang:2014:RSM

REFERENCES

REFERENCES

Wang:2017:IBE

Wang:2018:MBT

Wyse:2017:ICE

Wu:2017:CMP

Williams:2011:CAE

REFERENCES

REFERENCES

REFERENCES

Wakano:2014:EBD

Whalen:2015:CBT

Wang:2019:PGG

Wu:2011:HDM

Wu:2014:NAR

Duojiao Wu, Xiaoping Liu, Chen Liu, Zhiping Liu, Ming Xu, Ruiming Rong, Mengjia Qian, Luonan Chen, and Tongyu Zhu. Network analysis reveals roles of inflammatory factors...

REFERENCES

REFERENCES

[WMT16] Ning Wei, Yoichiro Mori, and Elena G. Tolkacheva. The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43. *Journal of Theoretical Biology*, 397(??):103–114, May 21, 2016. COD-
REFERENCES

REFERENCES

REFERENCES

1053

Werner:2018:EIF

Watteaux:2015:SRN

Wang:2016:IMC

Wu:2014:DER

Wiegmann:2010:MCO
Daniel D. Wiegmann, Steven M. Seubert, and Gordon A. Wade. Mate choice and optimal search behavior: Fitness

Warren:2010:EIC

Wang:2016:SSM

Wang:2010:BSF

Watts:2011:SVD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[XMWC13] Xuan Xiao, Jian-Liang Min, Pu Wang, and Kuo-Chen Chou. iCDI-PseFpt: Identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. *Journal of Theoretical Biology*, 337(??):71–79, November 21,

P. Xenitidis, I. Seimenis, S. Kakolyris, and A. Adamopoulos. Evaluation of artificial time series microarray data

REFERENCES

Yonenoh:2014:SOP

Yang:2017:DCN

Yamaguchi:2016:TRS

Yamazaki:2016:CMP

Yan:2010:ISE
Yang:2010:CEA

Yates:2014:DCM

Yi:2017:CAT

Yao:2019:NAQ

You:2017:SVN

REFERENCES

Yousef:2013:NMB

Yousef:2015:SNS

Yeoh:2016:MMP

Yan:2017:CMC

Yan:2017:MCR

[YCH+17b] Ada W. C. Yan, Pengxing Cao, Jane M. Heffernan, Jodie McVernon, Kylie M. Quinn, Nicole L. La Gruta, Karen L. Laurie, and James M. McCaw. Modelling cross-reactivity

Yoon:2017:MMM

Yu:2015:AMC

Yin:2014:MDS

Yenkie:2014:OCP

REFERENCES

Yenkie:2015:UCD

Yu:2013:PSN

Young:2012:CCC

Yu:2019:TCF

Yeh:2012:GPM

REFERENCES

Yang:2018:NPM

Yu:2010:SIB

Yang:2012:CPN

Yamaguchi:2014:ESD

Yu:2014:VGP

[YHY14] Chenglong Yu, Rong Lucy He, and Stephen S.-T. Yau. Viral genome phylogeny based on Lempel–Ziv complexity and Haus-

Yang:2014:OPS

Yamaguchi:2016:SNI

Yamaguchi:2017:TPP

Yamaguchi:2018:TDS

Yamaguchi:2018:WBS

Yin:2017:IRD

Yamada:2017:IKO

Yakimov:2014:MAN

Yokoi:2019:MMP

Yamauchi:2011:JES

REFERENCES

Youssefpour:2012:MMC

Ying:2014:SCL

Yang:2010:MMB

Yamazaki:2015:DWT

Yamashita:2014:QAC

Yamashita:2016:BPP

Yang:2012:MFC

Yu:2018:TDP

Yang:2010:SED

Yang:2017:DNS

[Qian Yang, Tim Rogers, and Jonathan H. P. Dawes. Demographic noise slows down cycles of dominance. *Journal
REFERENCES

Ye:2019:QPU

Youssef:2011:IBA

Yakovlev:2014:MRC

Yan:2014:AAC

Yang:2017:MPF

Jinyou Yang, Yuji Shimogonya, and Takuji Ishikawa. Mixing and pumping functions of the intestine of zebrafish lar-

Yang:2018:WCS

Yamaguchi:2013:SPF

Yu:2014:NDF

Yamaguchi:2013:DMH

REFERENCES

Yang:2013:LRM

Yang:2013:NSM

Yang:2013:BMW

Yang:2014:AIT

Yang:2016:CBN

REFERENCES

Yan:2018:EBS
Yan:2018:EBS

Yang:2010:BWS
Yang:2010:BWS

Yang:2015:NRE
Yang:2015:NRE

Yang:2016:NCM
Yang:2016:NCM

Yang:2012:AFC
Yang:2012:AFC

REFERENCES

REFERENCES

REFERENCES

Zhu:2013:ESC

Zhang:2018:PPS

Zhong:2012:MEP

Zhang:2010:PPA

REFERENCES

Zhao:2011:NCM

Zook:2011:FWO

Zhang:2017:DRI

Zhang:2010:CSB

Zhang:2010:SBW

REFERENCES

Zumsande:2010:BCM

Zaman:2019:MBF

Zaoli:2019:PNS

Zhang:2010:RDB

Zhao:2016:MWF

[ZGW16] Lei Zhao, Toni I. Gossmann, and David Waxman. A modified Wright–Fisher model that incorporates N_c: a variant of the standard model with increased biological realism and reduced computational complexity. *Journal of Theoretical Biology*, 393(?):218–228, March 21, 2016. CO-

Zhang:2011:CSS

Zhang:2015:PBS

Zelik:2014:RSA

Zhu:2010:SLP

Zheng:2015:LDP

REFERENCES

Zheng:2016:SLF

Zhou:2011:DLP

Zhu:2011:SMV

Zaric:2011:NCI

Zhang:2016:PHP

Zhang:2019:ASF

Zhong:2010:AMP

Zuo:2010:MTS

Zhang:2018:IAI

Zhang:2016:SCP

REFERENCES

Zhao:2013:AIB

Zienkiewicz:2018:DDM

Zhao:2018:MSR

Zhou:2013:PPP

Zhou:2012:PNE

Zhang:2017:ECT

Zhuge:2012:NDR

Zheng:2019:UAS

Zhao:2014:ESC

Zhao:2016:ITC

REFERENCES

[ZLY17] Xiu-Deng Zheng, Cong Li, Jie-Ru Yu, Shi-Chang Wang, Song-Jia Fan, Bo-Yu Zhang, and Yi Tao. A simple rule of direct reciprocity leads to the stable coexistence of coopera-
Zhao:2011:NAC

Xuefeng Zhao, Yi Liu, Wei Zhang, Chong Wang, and Ghas-san S. Kassab. A novel arterial constitutive model in a com-
mercial finite element package: Application to balloon an-
gioplasty. *Journal of Theoretical Biology*, 286(??):92–99, Oc-
tober 7, 2011. CODEN JTBIAP. ISSN 0022-5193 (print),
article/pii/S002251931100289X.

Zhang:2015:MMT

Jinhui Zhang, Yong Li, and Xinan Zhang. Mathematical
modeling of tuberculosis data of China. *Journal of The-
oretical Biology*, 365(??):159–163, January 21, 2015. CO-
DEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519314006080.

Zhang:2015:DBS

Qiang Zhang, Hong Li, Xiaoqing Zhao, Yan Zheng, and Deliang Zhou. Distribution bias of the sequence matching be-
tween exons and introns in exon joint and EJC binding region in *C. elegans*. *Journal of Theoretical Biology*, 364(??):295–304,
January 7, 2015. CODEN JTBIAP. ISSN 0022-5193 (print),
article/pii/S0022519314005487.

Zhang:2016:APS

Qiang Zhang, Hong Li, Xiaoqing Zhao, Yan Zheng, Hu Meng,
Yun Jia, Hui Xue, and Sulin Bo. Analysis on the prefer-
ce for sequence matching between mRNA sequences and
CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
article/pii/S0022519315005780.
Zadeh:2010:CES

Zareh:2019:NAI

Zhou:2018:BSA

Zhuge:2019:OOP

Zahiri:2010:NED

Zhao:2016:IGS

Zhao:2015:PPP

Zhao:2015:ASI

Zhang:2014:RNR

Zoli:2014:TVN

REFERENCES

REFERENCES

REFERENCES

Zhuge:2016:PFR

Zhao:2016:NSA

Zheng:2016:INT

Zintzaras:2010:SVF

Zhao:2014:AIT

Zhang:2018:VTS

Zhang:2012:NCM

Zucca:2014:PSB

Zelnik:2017:DFP

Zongo:2010:STM

REFERENCES

Zhao:2016:IGD

Zhang:2013:MSU

Zhou:2010:ESQ

Zanghellini:2010:PDB

Zhou:2014:MPC

REFERENCES

Zhao:2015:EMG

Zou:2010:UIV

Zhou:2019:TTP

Zou:2019:IMA

Zu:2015:TPI

REFERENCES

REFERENCES

REFERENCES

[Zou:2010:MTD] Lan Zou, Weimian Zhang, and Shigui Ruan. Modeling the transmission dynamics and control of hepatitis B virus in
REFERENCES

