A Complete Bibliography of Publications in the

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

10 April 2023
Version 1.09

Title word cross-reference

$\Delta \Psi$ [LL17b]. (M, R) [PWG16]. -1 [Xie13a]. -2 [ZL18b]. 1

[BPF+19, CZJQ14, CK17, DS15b, DTP19, EBP15, ESGA15, GBC+16, HGGR13, KKGN16, KMM18, LHPF18, MPCTGJ+15, Nos14, PHA+17, RMSTG13, SK15, SKK18, TA16, ZKP15, ZSH+16]. 2 [BPF+19, CZJQ14, CK17, DS15b, DTP19, EBP15, ESGA15, GBC+16, HGGR13, KKGN16, KMM18, LHPF18, MPCTGJ+15, Nos14, PHA+17, RMSTG13, SK15, SKK18, TA16, ZKP15, ZSH+16]. 3

[BM+19, CK17, DTP19, EBP15, ESGA15, GBC+16, HGGR13, KKGN16, KMM18, LHPF18, MPCTGJ+15, Nos14, PHA+17, RMSTG13, SK15, SKK18, TA16, ZKP15, ZSH+16]. 4 [EBSW17, LZL+19]. 5

[AHW13, CFF12, MYC12, OCN10]. 45

[LL17b]. Δ [LL17b]. γ [OBK+11, TRM+14]. H_∞ [QF10]. K

[BSRM15, BZJP18, CFPK13, HSiI+19, KSK+17, RAR19, SSZR17, WPH+12, YCB16, dSMP+11]. b [ASRM15]. β [BZJP18, CWP+18, Goe15, Gün12, Gün13, KSKK15, KGM15b, MGVGB18, MB18b, MHMM11, SNS17, SWR11, SHLL11, SKK18, SAGC12, WGC13, ZZRZ11]. c [PBSM19]. C^3 [Mic15b]. R_0

[TDW16]. Δ [LL17b]. γ [OBK+11, TRM+14]. H_∞ [QF10]. K

[BSRM15, BZJP18, CFPK13, HSiI+19, KSK+17, RAR19, SSZR17, WPH+12, YCB16, dSMP+11]. b [ASRM15]. β [BZJP18, CWP+18, Goe15, Gün12, Gün13, KSKK15, KGM15b, MGVGB18, MB18b, MHMM11, SNS17, SWR11, SHLL11, SKK18, SAGC12, WGC13, ZZRZ11]. c [PBSM19]. C^3 [Mic15b]. R_0

[TDW16]. Δ [LL17b]. γ [OBK+11, TRM+14]. H_∞ [QF10]. K

[BSRM15, BZJP18, CFPK13, HSiI+19, KSK+17, RAR19, SSZR17, WPH+12, YCB16, dSMP+11]. b [ASRM15]. β [BZJP18, CWP+18, Goe15, Gün12, Gün13, KSKK15, KGM15b, MGVGB18, MB18b, MHMM11, SNS17, SWR11, SHLL11, SKK18, SAGC12, WGC13, ZZRZ11]. c [PBSM19]. C^3 [Mic15b]. R_0

[TDW16]. Δ [LL17b]. γ [OBK+11, TRM+14]. H_∞ [QF10]. K
YW13a, YW13b. \(\kappa \)

[ATC+14, GM13, HSJ+19, KB19, TC11, WPH+12, ZBA14]. \(N \)

[SPSP12, FS15b, HY16, LST12, LST13, TP10a, vV11a]. \(N_c \) [ZGW16]. \(P_2 \)

[PIPB10]. \(R_0 \) [CD16, DDSDW13]. \(\sigma \) [TLCZ12] \times [Sum13].

-2 [BMGC11a, BMGC11b]. -activated [CFF12]. -amyloid-neuron

[FS15b]. -clavamic [RMRC16]. -clavulanic [RMRC16].

-dihydromethyltrisporate [EBSW17]. -dimensional [EBP15]. -grams

[HY16]. -helical [dSMP+11]. -Ig [LZL+19]. -infected [STA15]. -interacting

[HBSF11]. -lactamase [KKK15, SKK18]. -LTR [CLPZ14, WML+17]. -mer

[HA15a, Hua16, WZY14]. -methylenosine [AH18, ZZN+19].

-methylcytosine [SIK+18]. -nearest [NZI19]. -Partite [LCL14]. -person

[TP10a, SPSP12]. -phenylpyrimidine [TA16]. -player [DHK13, Shu13].

-protein [SAGC12]. -PseAAC [NMZ19]. -rays [TRM+14]. -regular

-variable [DTP19]. -word [DLYW13, YW13a, YW13b]. -words [GAB14].

/chondrotin [SABB15]. /Cl [CTZ+16]. /K [OCN10].

09 [SY11].

1 [CH16, FH10a, FH15, GKP13, IGL+12, ITF+18, LLW15, LGK+09, MR19, NTC+11, SW11, SPG+18, SH15, TXCW15, VBM+13]. 1-108

[WSTL16, WZ17]. 185 [BBM+13a, BBM+13b]. 1c [BAG14].

2 [TTC19, BMGC11b, FH10b, GML10, Lab16]. 2'-O-methylation [TTC19].

2009 [KLI17, L15, LCJ18, TED12]. 2013 [DHK13]. 2019

[Ano19b, Ano19a, Ano19-43, Ano19-38, Ano19-30, Ano19-34]. 21

264 [dOGL13, SCABM11, ZG10a]. 266 [LS+11, PSS+13]. 271 [FIS16a].

277 [BMGC11a]. 278 [PCT19, Pan19]. 280 [Mul12]. 283 [CN+12]. 289

[VZB+15]. 2D [NWB+10, WX10]. 2D-MH [WX10]. 2L [JCG15].

2LSAAC [AHJ18b]. 2methyl [TTC19].

3 [Sel12a, BZP18]. 3'-to-5' [Sel12a]. 3'-to-5'-direction [Sel12a]. 307

[BPG12a, Giin13, LST13]. 310 [Mei13b, WL12a]. 311 [MLBA13]. 317

5 [Sel12a, SGD+16]. 5'-UTRs [SGD+16]. 5R [RMRC+16]. 5S [RMRC+16].

6-bisphosphate [Bar19]. 6DoF [GAL11b].

~Ito [OYOY16].

acid-mediated [MGGM10b].

acidic [KHK15].

acidification [MGGM10a, RTFP17].

acidosis [TDSM12].

acids [CL11, Cle10, FD18, FS15b, MP13b, RSD16, Rog19, Woh15, WXC10, YGMT12].

acinar [SMZ17].

Acinetobacter [RRG10, RRG12, SRP16].

acquaintance [CW15a].

acquired [FM14a, GJ12, PDW10, PRM14, TA10, WKB13].

acquisition [SI19].

across [AMM16, AHD18, ASL18, Bac15, BHR10, DFG18b, GABM12, LZG19, LL17b, WRC19, ZJS11].

actin [FKK14, HBH11].

acting [GN10, HG18b].

action [ACT12, Arc14, BZJP18, BCBP16, CF11, DBJ12, Gri15b, KMA10, LdLk11, MPNP12, PNL15, SN011, TWTA18, TSF19, WLD11].

actions [DL12a].

activated [CFF12, YST14, ZCA14].

activates [CSK19].

Activation [KL18, ABR11, BN12, BN15, BSC18, CS11a, EJ16, HK17b, KHH10, KHS13, KPS17, LO15, MH11, MYC12, Mor10a, NZZ19, RG17, RG18, RG12, SH16, TS15].

activations [SCF12].

activator [Das13].

activators [NZZ19].

Active [AMP12, RGA10, ASS19, CN10, CFGRB17, CT16, DK13e, EM11, FGH14, GTC19, GDPPSS11, MM12, NP15, Pat16, Peh18, PGF11, RW15b, SMJS14, SPL14, TC11, TSB10].

active-search [BW15b].

activities [FHG15, MFKS13, NF14b].

activity [BB11b, BPPC15, CP14, CW11c, DS10a, GVGC15, HB18, KSS11a, KHH10, KB10b, Kro10, LL13a, Mar12, NBW10, NBW11, OA15, PSG17, PVG19, PPF17, RRC11, RG17, ZL12].

activity-pCa [RG17].

actomyosin [ITN11].

acts [HTN14, MLBA12, MLBA13].

actually [RWH16].

acutec [BFJ18, CMS16, LGK10, LGK12, LH14, MBBV14, NSH10, RZRSC19, SCLA10, SBM19, SW11, ZCT18].

acyl [PHW13].

Acy1guanidine [SK19].

Acy1guanidine-BACE1 [SK19].

adaptability [CMCS18, SM10a].

adaptable [SHW16].

Adaptation [GCB17, AT10, BPM12, BSH19, Don13, FWR19, GB13, GTPS16, Mi16, NS16, PW18a, SMG18, SSV15, SH16, TD17, TKTB18].

adaptations [DPVBA12].

adapted [Jami16a].

adapting [ABIM10].

Adaptive [ADC19, BS15a, BEK10, DMO17, EL12, Ezo19, FG17, FH13b, GS13a, GS14, HD11, I1H17, OBE17, RPCW18, SSD13, SM17b, SH16, WFZ13, ZPHS11, ZTM11, AR11, AK11, CJ12b, DGY18, GK17, GS11, HE16, IEN15, IMD16, KDG13, KMM17, KR19, LS16a, LvBJ16, MZ119, Mor13,
NO15, NSH^{+10}, PNK16, RTEKG15, RTEKG19b, RAMS11, SDT17, STN19a, TM12, YCH^{+17a}, YCH^{+17b}, YC13, ZCXF13]. adaptively
[COWA11, Zhu11]. ADCC [HGO^{+18}]. added [LS18]. Addendum [SZ16].
Adding [KA15, SHW16, FLM18]. addition [RD12]. Additional [SVA18].
Additive [Gri15b, Boc12, HK14, JSDEK14]. additive-by-additive [Boc12].
[HL18, BS15a, CHN^{+15}, RSD^{+13}, TTB^{+18}]. admisibility [MKE15].
adolescents [BR12a, FHI13a]. Aedes
[LBGW13, ASF^{+15}, MLH^{+18}]. aegypti [LBGW13, ASF^{+15}, MHX^{+14}]. Aerodynamic
[DS12, MHSH12, FH14, LBS^{+10}, LBS^{+11}, Ush16]. aeruginosa [ALM^{+19}, MBC^{+12}]. affect [AR11, BH13a, CV15, DLEMP19,
GS13, HGH10, KLN^{+12}, RL17, SM16, SLL18, SJK18]. affected
[GZ19, JSP^{+16}, LS14b, TB18]. affecting [LvdBP12, POW18]. affects
[ATTN12, BS19b, Cwt15, GSSBF18, HT13, KBL15, KRR14, MGS16,
Niti18b, Nak19, SN14, SHW16, XDC^{+11}]. affinity
[TLT^{+15}, TCYY^{+12}, WFW19]. AFM [KMM18, SK15]. AFM-based
[KMM18]. AFP [KCM^{+11}]. AFP-Pred [KCM^{+11}]. Africa [DE17, MS16].
African [CMM13, GPD18, PDW11, STLJ18]. after
[BPLM12, FS11a, HWM^{+16}, HHMT19, HRG11, JV14, LNRK11, SSME10,
TTB^{+18}, TALC16, VLP17]. AGAAAAAGA [ZGY11, ZSW11]. against
[BC19, DMM^{+14}, DL15a, Di 10, Di 17b, Dra19, GWCA14, GDPPS^{+11}, HS15,
JSF^{+11}, KJM17, KRDJ15, LZZ^{+19}, MCL19, NGJ^{+14}, PGGvL^{+19}, ST17a,
SRP16, TWR^{+18}, TXTW16, TAR16, YMI16, Yan16b, YY18, ZCW13, vVE15]. agarwood [LCQ^{+18}]. Age
[Kar11, MDE11, CHK16, DBB14a, Dol16, GGQ^{+12}, GM16, JS15, JS17,
JS18, KJ19, KMH19, KSPA17, LAS14, LKK13, LM11, LS16b, LSSL13,
MDMG14, MKPV16, OT13, Tak16, Yan10a, ZLT^{+19}]. age-dependent
[KJ19, LAS14, LKK13, MKPV16]. age-size [OT13]. Age-specific
[MDE11, MDM14]. age-stage [ZLT^{+19}]. age-structured
[GM16, KSPA17, LM11, LS16b, Tak16]. ageing
[BM16, EdK11, Gia13, KDK14a, KDK14b, PMD^{+18}, ZARK19]. Agent
[CSR+05, Gal10, GCB17, SRAL12, BRP+18, BCS+16, CS14a, CA17, Cro18, DJD10, FM15a, HWP12, HM13, JSSZ12, KTJ19, LS16c, METC12, SGD12, TCB13, TVA18, WFC+14]. Agent-based
[CSR+05, Gal10, SRAL12, BCS+16, CS14a, CA17, Cro18, DJD10, FM15a, HM13, JSSZ12, METC12, TCB13]. agent-environment [BRP+18]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. Agent
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. agent-environment [BRP+18]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. Agent
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. agent-environment [BRP+18]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. Agent
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. agent-environment [BRP+18]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. Agent
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. agent-environment [BRP+18]. agents
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13]. Agent
[ACCR11, GN10, HAuR+18, IHNS16, JH11, LFZN11, TTB+18, VW10, Wil13].
Animals

anion

anions

anisogamy

anisotropic

angiogenic

angiogenesis

angina

angiotensin

angiotensin-II

angiotensin-converting enzyme (ACE)

angiotensin-converting enzyme (ACE) inhibitor

angiotensinogen

angiotensinogen-converting enzyme (ACE-1)

angiotensinogen-converting enzyme (ACE-2)

angiotensinogen-converting enzyme 2 (ACE-2)

angiotensinogen-converting enzyme 1 (ACE-1)

angiotensin-releasing factor (ARF)

angiopoietin

angiotensin

angiotensin-II

angiotensinogen

angiotensinogen-converting enzyme (ACE)

angiotensinogen-converting enzyme (ACE-1)

angiotensinogen-converting enzyme 2 (ACE-2)

angiotensinogen-converting enzyme 1 (ACE-1)

angiotensin-releasing factor (ARF)

angiopoietin

angiotensin

angiotensin-II

angiotensinogen

angiotensinogen-converting enzyme (ACE)

angiotensinogen-converting enzyme (ACE-1)

angiotensinogen-converting enzyme 2 (ACE-2)

angiotensinogen-converting enzyme 1 (ACE-1)

angiotensin-releasing factor (ARF)

angiopoietin

angiotensin

angiotensin-II

angiotensinogen

angiotensinogen-converting enzyme (ACE)

angiotensinogen-converting enzyme (ACE-1)
appendix [JEA18]. appetite [GCO+11]. apple [vdSS12]. Apples [GP11a]. Application [BTG+15, Cox10, DEK15, DS16, FGH+14, HCS+19, JS18, KP16, MJ11, MGB17, MAA18, PDC+17, SDRA+15, TSF+19, VACGF17, WMPF+15, ZLZ+11, dLMV+10, BGW15, CSM+14, DLYZ11, DYS+13, Dim10, GMR16, IMH15, MMG+16, Mor11, OT13, OVKL14, OL19, PCH14, PIR+14, RKMG15, SMD+16, TTC10, TBA14, Tre9, VAT18, WWY12, WZJ+13, YHY+14, CMMR13, JS17]. Applications [BLP10, Gol16, Lan16, CZJQ14, EEHMH18, FR13b, FR14, GK16, LAS14, LLZ13, MH11, Pai19, PG1+19, WZY14, XM11, XWW+19, YZZ13, YCY14, ER18]. Applied [ZLW16, GSRR17, MB16, PRSC11]. Applying [DGW+18, Mor19, SOIO10, CDM+14, GK13]. apposition [PVGA12]. appraisal [LP17]. Approach [JSC+16, KS10, ASK17, ACM16, ADS+19, AMSSG16, ADCG14, AOR17, Ano15, ACvKA10, ARM18, ATC+14, BBT+15, BCDG10, BMDa17, BORA10, CFS+19, CPF+13, CL14, CVPCV+15, CM14, CTL+15, DB10, DGM15, DKP+18, Dim17, DXW+16, Dol19, DRPM17, EBE17, FKM15, FKV19, GAGP+14, GSY10, Ghu18, GBC+16, GGR11, GM16b, Gre15, GT15, Hall6, HXL16, HXLI8a, HME12, HB10, HHF11, IHNS16, JAM18, JLX+16, JSF+11, JSB15, JPDP10, KCM+11, KSK+11, KSP18, KTH16, Kla10, Kon12, Kri16, KSM+15, LvBJ16, LN13, cLCJ+10, LKAJ18, LGPS17, LP+SP11, LP+SP12, MFN+18, MPJH13, MNSD12, MB17, MF16, MTE14, MM19, MKBE17a, MKBE17b, MTE15, MSR16, MPS+11, MPK+12, MF15, MMC2M12, MH13, MDD13, MJV16, NKM+12, NG1+14, NH10, NB10, NBW11, OWH14, OBK+11, PDM17, PM14, Pav19, PMKM10]. approach [PGF11, QW11, RLK10, RA10, RMRC+16, Rev15, RRC+11, RBK19, RDP16, RSR1, RBMP+15, SHX110, SL10, SBR16, SK1a, SCLK15, SLT+18, SZ10, SDPC11, SKSR16, SST19, TVMG16, TK+18, TKKE19, TTB+18, TWC+19, TT10a, TK10c, WHHS15, XNJ+13, XCS12, YS14, YBH+19, YA14, YLH12, YS11, ZMAM19, ZGY11, JZSC16, ZD18, dMP11].
Approached [ZLY14]. Approaches [JD16a, JD16b, AH16, BCPM+16, CB15, EB15, Fer12, Gal10, GCS11, HMMSRSD15, JAHK12, Mic13, MMLK11, NR5+16, OAJK10, QZ14, SPRF13, SD16, SY17a, SYY17b, SSRA16]. appropriate [DZW10, Nak12]. Approximate [KBF18, Ou19, MKBE17b, PHK15, RSC14, Wali12, XGZ17].
bee [BM14, Di 14b]. bees [SOIO10]. beetle [APS+13, APBS15, KOS13, KMM18, LDF+11a, LRA+13, MMAS13, MPP+18, NBS+13, OYIM10, OVKL14, PaCZ10, PJ18, SGGS19, SN11, SN14, SPG+18, SPH12, SH17, SSKK17, Tac10, TLL19, WSW10, WCHC11, WYL+18, XLSF19].
bee [BIMC17, MKJS13, NPS10]. beehives [STKE12].
been [BM14, Di 14b]. bees [SOIO10]. beetle [APS+13, APBS15, KOS13, KMM18, LDF+11a, LRA+13, MMAS13, MPP+18, NBS+13, OYIM10, OVKL14, PaCZ10, PJ18, SGGS19, SN11, SN14, SPG+18, SPH12, SH17, SSKK17, Tac10, TLL19, WSW10, WCHC11, WYL+18, XLSF19].
RPD14, RS19, RCD19, SW15, SGGM11, Sek12, SN11, Sel10, Sel15b, SS15a, SQS12, SZ15a, SZ16, SC12, SABI7, SOF16, SKK11, Str13, SK16b, SP14, SY17a, SY17b, TP14, TZY18, TK10c, VMZK19, Wal16, WSP14, WHT17, WZ18, WK18a, WZ1111, XCF18, XLSF19, YZW10, YZZ12, ZLZ15b, ZLZ16, ZLB13, dIEBRM15, vLBJ13, vNÁBG12.

between-host [CFZ14, LMCW18]. Beyond
[AE17, CP14, KDST15, KGC18, HMW16, WF18, Pag19]. BFDT [GJ15b]. bFGF [TBMM19].

bi [ATRR10, DFMR19, HTK14, RSC14, SYI17, SLDP13, KHK17]. bi-directional [SYI17], bi-gram [HTK14, SLDP13], bi-modal [RSC14]. bi-monomeric [DFMR19]. Bi-PSSM [KHK17]. bi-stably [ATRR10].

biarticular [CSB15, Cle18a]. bias [GRRG16, IDM15, Jan15, KMCJ17, OL19, PCC15, ZLZ15b]. biased [BWB11, BMF18, Gar10, IH17, KHKI17, WL15].

Bidirectionality [MK17]. bifunctional [SBR16]. Bifurcation [HS14a, LJ18, TDHC18, ZZ14b, AJM19, BA10, DLHS11, Ger16, KP16, MAR17, TAORS10, UPWK15, VK10, ZTT18]. Bifurcations [GFS15, ZG10c].

bilinear [MR10]. Bilateral [WTQL10]. bi-layer [KMZR18]. bilayer [KMZR18]. bi-linear [Don16, MPCTGJ15].

bimatrix [CG19, Oh10]. bimodal [FPD15, TF18]. bimodality [Mic13]. binary [GJ15b, Mull11, Mull12, QIWC19, TAF18, UI10]. bind [RRBR16]. binding [ACHS19, AFSS19, ATC14, BMSEE14, BZJP18, BGCB12, BF16, BSM14, FLM18, HGI18, HKH18, JSZ12, JRR12, JB19a, JLF12, KHP12, KBK16, KGM15a, KG12, KHH17, KC11b, LYM19, MS14a, MPY14, MSND12, NTC11, NHSX14, NHTS14, OBK11, PH16, PB16, QQJW13, RSS18, RG18, SGHS19, TLT15, UT17, WB15, WH17, ZGS10, ZLZ15b, pZWZ16, dS15a]. Binding-upon-folding [LYM19].

bio-markers [DQS15]. bio-molecules [MS10b]. bioactivity [MR18, MR19].

biochemical [AdGM12, Chu18, FMS12, FVT16, GM13, HKS16, KMD12, MK11, MC19, NBC16a, NBC16b, PP12, PP14, RLS14, SOC14, TP10c, TLK19].

biochemistry [OSF11]. biocidal [MW13]. bioconvective [ZG19].

Biodiversity [SDJ15, Bar18, BD15, Edu16, IS10, MB12b, MBRR19, PMSY17, SCF18, VY12, WF17]. bioenergetic [BRR10, CMGN17].

[AEM14, BPF15b, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11, CNG+12, DBBW11, EPJ+11, FIS16a, FS16a, GZ14b, GS14, dOGL13, Gün13, JN14, JRG14a, JRG14b, JCLS+21, KDK14a, KMLT14, LBS+11, LGK+12, Lei10, LZF13, LHPF18, LPvSP12, ML12a, Mei13a, Mei13b, MLBA13, Mul12, NO14a, PSS+13, PL14a, SCABM11, Sch21, Sch23, SZ16, SSKS20, SC13a, SLAL12, TSM13a, Van16b, WL12a, YCH+17a, ZG10a, ZSCL16a, ZZR13]. biolarvicides [PNVN18]. bioliquid [AAJ15]. bioliquid-filled [AAJ15]. biologic [RAR19]. Biological
[Di 10, Fue18, Gra15, MM15b, PGHC12, AAGO+17, AKNP18, BPP+16, BM19, Bar11, BBWS+13, BHP17, BHLI12, BE14, CCG+18, CBMP19, CNG+12, CG11, DB10, DS16, DGI10a, Dr19, Est10, FPG11, FDM+11, GI15, Ge18, Gs+11, HRC+12, HM10b, HZW10, JPDP10, KSA16, Kit10, KMM18, Kra10, LCSH14, LL+15, LBB+13, LL13, MK18a, MRPLAS15, MPK+12, MsiGP16, Mit14, MROS15, Mor16, OI18, OA12, PAK11, PBEI12, PR13, RGBR17, RH11, RKMG12, SSD13, SK15, SS19, SWT015, SY11, SVA18, SLO10, TM16, TK19, TZY18, TF17, Ton14, Tsa19, VGPS18, Wal10, WETQ10, WST15, YW10, YW13a, ZG16, vdSS12]. Biologically
[DWG+19, WMT10, APW10, Cle10, LDJW16]. biologist [Sza15b]. Biology
[CEP14, PWC+12, ZTK12]. BioModels [BFS18]. Biomolecular
[ZLY+13, LG12]. biomolecules [Cha17]. Biophysical
[AH12a, BSW16, FM15b, HRG11, KG15, PDG17, SSZ17, TALC16, ZCA+14]. BioPlex
[YWZ+16]. biopoesis [Pia19]. biopolymer [FK16]. bioreactor
[CWB+17, SSR+19]. bioremediation [RAAS15]. biosensor [PDPN16]. biospheres [NWML17]. biosynthesis
[BP18, BSM+14, BLP10, FD17, MB14, Pic12, PCS+18]. biosynthesis/inactivation [Pie12]. biosynthetic [FD18]. biosystems
[ASL+18, BORA10, GZ12, Ush16, vLSBBD11]. birds [AFD+17, BH12, EzMMM18, GWCA14, Hur12, MSBB13, MSH12, YY18, ZHS19]. Birth
[CMRR13, LG10a, SGB19, CHK16, Hall12, Jam12, Jam13, JV14, KMH19, LL18, Par19, PMP13, RAD14, Sta10, SGW+18, WZ15, ZWvG10]. Birth-and-Death [SGB19]. birth-death
[Hal12, RAD14, Sta10, SGW+18, WZ15]. birth-processes [Par19]. bisexual
[Di14, JCLS+11, JCLS+21, LAH+16, YT12, BKL14, GGG19, HIT18, SC13a, SC13b]. bistable [AKS+19, DD13, Gol10b, JZL13]. bite [SCF+12]. bivalve [Alv18].

black [SJ斯基18]. bladder [BMGคลิ11a, BMGคลิ11b, MSA+16].

BlaPred [SKK18]. BLAST [DYQ+14]. bleeding [CMGN17]. blee [WGO+15].

blind [CLK18]. blind [AGM11, GGM12].

blind-mating [GGM12]. blip [OMO13, STA15, WR14]. blister [LK15].

block [ZMN19, ZCA17, HHD+16]. blockers [Ken19]. blocking [NTC+11].

blood [AV19, AOM19, CXWL11, CPS19, CKZ+17, DK13b, DLL+18, EBP15, GDF17, GDF18, GMN18, HPP10, HHAA15, HSL16, KCD11a, KCD11b, LDB+14, MAM16, OPS+19, PIT12, PFJS15, POP12, Q10, SPMGR10, WFM+13, WFC+14, ZCT18].

blood-stage [CKZ+17]. bloodstream [Voe18].

bloom [JSWY19].

bloom-forming [JSWY19].

blooms [Ric17, STI13]. blow [CP14, GGG12]. blow-up [CP14, GGG12]. Blue [TF16]. bluefin [TTW13].

Bluetongue [CSLE11].

blunt [Gha16]. BMP [vHHK14, ACHS19].

boar [CR14]. Board [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano10u, Ano10v, Ano10w, Ano10x, Ano10y, Ano10z, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p].

Board [Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano15w, Ano15x, Ano15y, Ano15z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h].

Board [Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z]. bodied [RW14b].

bodies [SS17]. body [Bur10, CAG13, Che16, CLP11, Hor11a, LCHMP16,
broadly [CDK11]. brood [KTO14, STKE12]. brood/fungi [KTO14].
brood/fungi-warming [KTO14]. brown [KSKS13]. Brownian [EPP19].
browse [OSV16, YXH14]. Brujin [WZ17]. bubble [Kue16].
bubble-driven [Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
brood [BCS16, LF16]. budding [WKS14]. Budget [TTB18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAA15]. Building [HSMCCR19, LFZN11, EJ17, EJ19, Pia19]. built
[Lüt16]. built-in [Lüt16]. bulk [CEKM19]. bulk-surface [CEKM19]. bubble [Kue16]. bubble-driven
[Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
Buckling [She10, Van15, GF11, LH13]. bud [BCS16, LF16]. budding [WKS14]. Budget [TTB18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAA15]. Building [HSMCCR19, LFZN11, EJ17, EJ19, Pia19]. built
[Lüt16]. built-in [Lüt16]. bulk [CEKM19]. bulk-surface [CEKM19]. bubble [Kue16]. bubble-driven
[Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
Buckling [She10, Van15, GF11, LH13]. bud [BCS16, LF16]. budding [WKS14]. Budget [TTB18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAA15]. Building [HSMCCR19, LFZN11, EJ17, EJ19, Pia19]. built
[Lüt16]. built-in [Lüt16]. bulk [CEKM19]. bulk-surface [CEKM19]. bubble [Kue16]. bubble-driven
[Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
Buckling [She10, Van15, GF11, LH13]. bud [BCS16, LF16]. budding [WKS14]. Budget [TTB18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAA15]. Building [HSMCCR19, LFZN11, EJ17, EJ19, Pia19]. built
[Lüt16]. built-in [Lüt16]. bulk [CEKM19]. bulk-surface [CEKM19]. bubble [Kue16]. bubble-driven
[Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
Buckling [She10, Van15, GF11, LH13]. bud [BCS16, LF16]. budding [WKS14]. Budget [TTB18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAA15]. Building [HSMCCR19, LFZN11, EJ17, EJ19, Pia19]. built
[Lüt16]. built-in [Lüt16]. bulk [CEKM19]. bulk-surface [CEKM19]. bubble [Kue16]. bubble-driven
[Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
Buckling [She10, Van15, GF11, LH13]. bud [BCS16, LF16]. budding [WKS14]. Budget [TTB18, DB19, EBS11, Fil10, MP13a, AKNP18]. budgets
[WSRG18]. buffer [AHKN10]. build [HRHAA15]. Building [HSMCCR19, LFZN11, EJ17, EJ19, Pia19]. built
[Lüt16]. built-in [Lüt16]. bulk [CEKM19]. bulk-surface [CEKM19]. bubble [Kue16]. bubble-driven
[Kue16]. bubbles [GY18]. bubble-driven [Kue16]. bubbles [GY18].
MGML10, Mar11, MGT17, MYN+15, MG17, MALAN17, MAA18, PDC+17, PPBT11, PGP19, PTB12, PSL+10, RANO10, RN12, Ran12, RB13, RS12, RL15, Sal15, SWR11, TM15a, TIS10, TWH+13, Uit11, VMZK+19, WFW19, YSY13, Y16, ZSSM14, ZSO16. Canada [MPJH13, WDL+13].

Canalicul [KTT+19]. Canalization [LFM14, LP12a].

Canalization-based [LFM14]. Cancer

[BST14, Har15, KB15, ZZL+11, AMBH+13, AMFR+16, Ala15, Arc14, Arc16, ARM18, BS15a, BBS18a, BPF+19, BMGC11a, BMGC11b, CWF+19, CCS+16, CLA+16, CBGS18, CvBF18, DDHM12, DL12a, Dim10, DLL+18, DBM+18, DTGC14, DFM+19, DDTL19, DLM+19, EJ17, EJ19, FM10, FM14a, GXFF13, GLF+15, HP16, HSA15, HBA10, HA15b, HWPL12, HZL+13, HM13, IHNS16, JMC+10, Kar15, KRDJ15, KPEK14, KP16, LF17, LF19, LDA13, LMW10, LLC15, LX16, LTZ17, LTZ19, LMHF13, LSS+14, LC16, LXL14, LDH+14, LD18, MI12a, MM19, MKMG+14, MPZK16, NH19, NGJ+14, NWZ15, NJP18, OYO16, PAS10, PH13, PYG+19, PRN10, PGF11, RMM+16b, SBM+16, SMS17, SFMS16, SCKL15, SOF16, SSN+14, SKSR16, SER+12, TDZ+18, TK10c, VKKA12, VD14, WMN18, WCC14, YBH+19, YCL+17, ZWW14, ZMC+18, ZXS+19, dBE16, dSdS13].

cancer-specific [SFMS16].

cancerization [FLR14].

Cancerous

[BH13c, DQS+15, LZG+19, OPS+19].

Cancitis [OPS+19].

Candida [HHS+10].

Candidates [LSTD15, PPC+17].

Candidatus [JSC+16, CLC11, SPSM15].

canine [HHA17].

canibalistic [HHA17].

cap [WBMM18].

capabilities [ABGM11].

capacity [ASGE14, CCNT19, DN18, KA17, RS14b, VZ19].

capelin [EBS11].

capillary

[AMM16, ASGE14, BSMK11, LRA+13, LDB+14, MAM16, SSD11a].

Capitalizing [WMN18].

capripoxvirus [Cha18].

captive [HK17a].

capture [DFMR19, GAY+11, JZ17, KA15, Lab16, MNH+12, RB13, VP18].

captures [OSF11].

capturing [ABKS11].

Carbohydrate

[LF17, MCL+11].

carbon [AK15, HWGT15a, HWGT15b, HWGT17, LRL+16, LCMC14, MF15, TP14].

Carbonate [HWGT15b, RTFP+17].

Carboxy [SSZR17].

Carboxy-terminal [SSZR17].

Carboxylase [WL11+11].

Carboxypeptidase [NRS+16].

Carcinogenesis [LTJZ19, RBKW19, WCC14].

Carcinoma

[C12, GCSP17, METC12, MGM13b, NWB+10, SGY+10].

Cardiac

[CPGF+16, CN12a, CF11, ESG+16, GKMC10, GAPK10, HVL11, KCS+15, LFW+18, LdLK11, LW18, MKMT14, NAK+11, OCN10, PW18b, ST17b, VD14, VM16, WMPF+15, WMT16].

Cardiomyocytes

[HTK+18, KSSM11].

Cardiomyopathy [MCL+11].

care

[RB10, Sal15, SRV11, SPRF13].

Cargo

[LKZB15, ML12b, LM15, MK17, SL19].

Cargo-mooring [LKZB15].

Caribbean [BH11].

Carlo [KSK+11].

Carnivora [TF15].

Carnivorous [BJB18].

Carotid [OB15].

carp [KCS+15].

carrier
LSMP14, LL17a, LFB+16, LSY+10, LL14, LXS15, LPTR14, LC16, LGPS17, LNRK11, MMJB17, MRF19, MH11, Mal10, Mal18, MOSS15, MMFK10, MEKK11, MBLV10, MSM+14, MYC12, MPBS17, MBS19, MFG14, MGM13b, MPZK16, MKJS13, MDD13, MT15, MBK+11, MLL+16, MG15, NCLB16, Nic19, NTOI16, OKVN18, OS11, OOY16, OTGT10, PFJS15, PW19, Pie10, Pie12, PWE15, PGHD19, PHGC12, PAV10, RCH14, RJSC18, RAF+14, RD12, RC13, SH11a, SDD15, SMM15, SA17, ST16, SKGM19, SDT17, SHB+17].
cell [Sch19c, SP13a, SFS16, SVB+10, SAGGB17, SLM17, SZ18, SMZ+17, SK12b, SOF16, SSS18, SSKS20, SZ10, SLC12, SLvBMP10, SB19, SRAL12, SQZ+16, SSA16, SN17, TDK14, TMI+15, TGB+18, TXW12, TZXW12, NZ1+18, TC11, TST+13, TDSM12, TALC16, TT17, TSMB14, TNCY12, TK10c, VDKA12, VG13, VB19a, VBD10, WGS10, WMFP+15, WRH+16, Wai12, WML16, WGO+15, WBB+18, WX19, YM14, YM16, YAK17, YCB16, YFB+12, YLL112, ZCT18, ZS12, ZMS17, ZWW14, ZZL+11, Zhu11, ZBA18, ZZZ19].
cell-adhesion [CCB11b]. cell-based [KBF18, LC16, PFJS15, VG13].
cell-controlled [Kro10].
cell-cycle [HWPL12, PGHC12].
cell-division [HTM16, LAG+14].
cell-fate [LLTP19, MBK+11].
cell-free [ITR18].
cell-matrix [ESGA15].
cell-mediated [ABV19].
cell-to-cell [UI13, CH16, WMFP+15].

Cells [LRA+13, ABR11, Arc14, Arc16, BCPL10, BFH+15, BTO15, BBS18a, BZ1918, BHBH1, BLZ17, BCPM+16, BPF+19, BKPV15, CFF12, Di 19c, DLL+18, DBM+18, DLM+19, EG10, EH17, EME+16, EUM+16, Fer12, For10, FM15b, GML10, GMOP12, GHI4, GMBK14, GLF+15, HPM+17, HVL11, HJMB15, JMC+10, Kar15, KKO+18, KHNM16, KPEK14, KAKK19, KP16, KC13, Lab16, LP17, LAH+16, LCA+15, LLDW14, LCGMH12, SS+14, MVGB18, Mari17a, MB18b, MS10a, MSA+16, MH14, NTOI16, NWZ15, RD14, RHS14a, RFdL15, RON14, RW12, SI10a, SDD15, STNT17, SNY+17, Sat17, STH18, SPMPR10, SS+18, SZ15b, SKSRW16, TVMG16, TWTA+18, TRM+14, WGS10, Wold18, ZM10, ZFWK17, Zhe16, ZMC+18, dO12, dSdS13].

Cellular

[CAGM17, LL14, RSV10, ARG17, BK19, BCPL18, CCS15, CN10, CHL+11, CLCH10, Di 18, Di 19c, FRP14, GMOP12, GGG19, GN10, HCK+11, HGO+18, HWGT15a, HZW+14, JSDE14, LS16a, LSP+17, MS14, MMS13, MMLK11, NLB14, PAS10, POP+19, PGHC12, RFME+12, SS19, SHB+17, SBS13, SNC12, SZ18, TM15a, TVMG16, THC+11, VLP17, VBD10, Wold18, XMWC13, YCH+17a, YCH+17b, YMW12, ZZS19, dCGSA16].
cellularity [SGS15].
censoring [NI11].
center [RS19].
centers [GA13, YS14].
centipede [RN12].

Central [Voe18, BRA15, FKB+12].

Centralities [ER18].

centrality [EG12, Est10, FB12, KJSS10, Mal18, YBH+19].
centric [VGPS18].

Centripetal [CFS16].
centroid [GGCJ16].
centroid-based [GGCJ16].
cerebellar [ML11a].
cerebral [CPS19, EBP15, FHR13, KPD19, LDB+14, MTdS+16, MP19, NF14a, NGL+10, ZKP15].
cerevisiae [AMI12, BLP10, HZW+14, LLCC12, LXC15, OB10, SSJK18, TK10b].
cerotegument [FWSG17].
certain [KDS18].
certification [Ala15].
CFD [JG14].
CFSBoost [RAF+19].
CFTR [Mor+10a].
cGAS [GSS19].
CGH [SS17a].
CGR [JLQ+19].
Chad [LLN+19].
Chagas [AZOLVH18, MMG+16, RS14c].
chain [CJKR10, CHH10, CSB15, GK13, HB13a, KPG19, LYF+15, MCL+11, SV14, XDC+11].
chains [HM11b, Jia16, LFZN11, MGML10, PBKR13, SI10b, UBPI2, ZLW16].
chalcone [TAR16].
challenge [KMM16, Ser16, SLM17].
challenged [SBCR10].
changes [GE18, KCE+11, VFS+15].
chance [Sch19b].
change [Abr14, AT10, CW11a, DFM+14, DLSD15, DPvBvA12, JSZ10, KS13, KL11, KC17, MMC19b, PSV17, STJG12, SY117, SGW17, Spe15, YSST13, Yam16a, Yi118b].
Changes [PHTP+12, AJC12, BVK10, CCB11b, EBSW17, FGGT15, HKH18, LEXJ15, LCDH15, OVKL14, PDNP16, Rog19, STNT17, SLD+17, STLJ18, TK10a, Wil11, vV11b].
changing [CMCS18, GW15, GJ12, GA16, GWCA14, MBRR19, SMBH10, SRS18, WSVT14].
channel [BGCB12, GJ11, HZC+10, KH19, LdLK11, MFZ18, MAA+17, Mor10a, PDG17, XMWC13, ZCA+14, ZZG+16].
channel-drug [XMWC13].
channel-targeted [ZZG+16].
channelopathy [PBS+12].
channels [Bec14, CPGF+16, CFF12, CI11c, CSM+14, DM15, FDD17, KB10b, LSP13, LD11].

Chaos [Kea16, BA19, GW13, GP11b, LJQ+19, JC16, JSF+11, PSL+11, SCS10, SY12, TF16, WH11, XSLZ16, ZKHL16, ZG10c].
Chaotic [STG17, DGGJ15, LDA13, MGM13a, MGM13b, STJG12, TLP11].

character [XKCG15].
characterisation [DKP+18].
Character [ESS19, MTNM12, HGLL+10].
characteristics [DS15b, DLYZ11, DDF+14, HCK+11, JYY+18, Kon11a, LBS+10, LBS+11, LHD+17, LYZ+18, Rey13, ZLL17].
Characterization [ABN15, LL13a, OCN10, YWZ+16, ASRM15, CA17, GRB+13, NZX11, LDH+12, LQZ+18, MdFD10, MAMEA15, PDG17, PPC+17, PPT+16, QW12, RMM+16b, WDLS17, WHL13, YLL+14, pZWZ+16].
characterize [JK12, RKJ+11].
Characterizing [BPF15a, BPF15b, CWF+16, SNY+13].
characters [Cut15, GJ12, PRSC11, RCD16].
Charcot [AKR+18].
Charge [DK13c, YS14].
charged [Smi11].
Chaube [Pan19].
Cheater [MV18, RD14].
Cheater-altruist [MV18].
cheaters [SKS+19, SBS17].
cheating [UI13].
check [BBT+15].
checkpoint [KBE+13].
celation [FE10].
Chemical [Wil11, BNP18, Bro13, DI 16, DI 17b, FL12, FL13, KS19, KF15, MF15, NGN13, PAK11, SHH15, SVS+15, UI13, WLY+17, ZS10].
chemicals [FSA15].
chemistry [RTFP+17, Sza15b, dEZR15].
chemo [MDD13].
chemoactive [TV18a].
chemoimmunotherapy [RTEKG15, RTEKG19b].
chemoinformatic [HANR+18].
chemokinetic [SN17].
chemopreventive [TV18a].
chemophylaxis [EN15].
chemorepulsion [dO12].
chemorepulsive [ANK10].
chemostat [FE11, LFMI11, TW11].
chemostat-like [LFMI11].
chemotactic [CFT11, MOSS15, NGD14, RG10, SN17, WST15].
chemotaxis [Amo15, BPF+19, FZ14, NvD17, NS18, PPH18, Pai19].
chemotaxis-based [BPF+19].
chemotherapeutic [GSSBF18, HNP18, NSH+10].
Chemotherapy [dG10b, BBJ+10, BPLM12, Car17, CL18, CHN+15, CvBF18, EJ17, EJ19, HL18, IBB+15, LF19, LBW+13, LIB+17, PGHC12, RTEKG15, RTEKG19b, SGL10, SKD+10, WHH17, ZLM12].
chemotherapy-induced [CL18].

Chi [Xie18].

Chemotrophs [Gri15a].

Chi [Xie18].

China [Kur14, ZZR13, GM17, HJR12, LZY+15, TXY+12, TXTW16, WXWL12, WZJ+13, XTZ+13, XSTW14, ZLZ15a, ZYJ19, ZRR10, ZRZ15].

Chief [Kir11].

Chikungunya [MHX+14, MP13c].

Chief [Kir11].

CHO [GHJ14].

Child [FM18].

Childhood [N˚as12, NSH+10].

Children [BSR14].

China [Kur14, ZZR13, GM17, HJR12, LZY+15, TXY+12, TXTW16, WXWL12, WZJ+13, XTZ+13, XSTW14, ZLZ15a, ZYJ19, ZRR10, ZRZ15].

Chimpanzees [Sch14].

China [Kur14, ZZR13, GM17, HJR12, LZY+15, TXY+12, TXTW16, WXWL12, WZJ+13, XTZ+13, XSTW14, ZLZ15a, ZYJ19, ZRR10, ZRZ15].
[Alv18]. clarified [Hor17]. clarity [GKNT10]. class
[BT17, BvLH14, Gra15, JSZ12, KHX+19, KSKK15, Lio18, LJ10, MI11c,
NRKE18, NK18, RSD+16, ZM10, ZLY14, ZZZ14, ZKHL16].
class-structured [Gra15, Lio18]. classes [CT18b, DYQ+14, FDS13, HTK14,
KZL14, MPCTGJ+15, NBL14, OYY16, PT10, VK10, WCC13]. classic
[ZLL17].
classification [BT17, BvLH14, Gra15, HTK14, JWS+10, KHX+19, Lio18,
NRKE18, NK18, RSD+16, ZM10, ZLY14, ZZZ14, ZKHL16].
class-structured [Gra15, Lio18].

Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
Climate [FBU11, AT10, BTK14, DPvBvA12, PSV17]. climatic
[GS13a, GS14]. climb [GF11].
[PDB+15, PNP+16, PDPNP16]. co-optimization [SS18]. co-option [HNV+16]. co-regulated [HgLL+10]. co-regulation [PGLZ14, SCKL15].

c-o-transporter [Dim17]. Coaction [vDRT14]. coagulation [PFJS15, TSP15]. coalescent [ADR11a, CK15, GKI6, Gre15, PPI7a].

coalessent-based [GKI6]. coalition [MGGGA11, NOS17]. coarse [KSK+11, KG15, Men12].

coefficient [Flo11, LDB+14, ZYJL18]. coefficients [AS16, ZYJL18]. coeruleus [PR17]. Coevolution [LG19a, Nak16b, TI13, TCB13, Wei17, ZLW18, AIB+19, Di 16, Di 17a, DN18, RON14, Saf13, SK11b, SA14, WFZW13, YBY+19].

cognitive [Gau11, Kuz19, RRL+13, Wal18], coherence [BDLR12, LV17, LCL14], coherent [MDVT10, SKF16], cohesion [CMBP19], cohesive [Woo10], cohesiveness [NTY16], coil [MARC17], coiled [MALAN17].

Colonization [FR13a, PR13, BLNR15, PDW10, RL17, SPRF13, SDK11].
colonizing [NGS+16].
colony [AC12, GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].
colorectal [LF17, SS17a, SMB+16]. Colored [YGMT12, JC10].
colony [AC12, GK17, GS13b, GSF13, LDF+11a, MSB16, RBSD10, STN+19b].
Colored [YGMT12, JC10].
colour [FR13a].
columns [MYLK11]. COM [BAM+15]. combat [Bos12, JMH+19].
Combination [PDF18, YBC17, AH15, CvBF18, LF19, QW11, SYY17a, SYY17b].
combination-chemotherapy [CvBF18].
combinations [JSDEK14, XXD+17]. combinatorial [SW16]. combinatorics [LG17, SFV16].
Combined [GK10, KJM17, AMM16, Ala15, BMGC11a, BMGC11b, DGM15, KSM+15, LBW+13, STI13, TDKJ15].
Combining [SSJK18, YLF+17, HZL+11, LTL+15, NAK+11, TP17, WYL+19, ZLW+19].
comma-free [FS16b]. Commensal [BL15b]. Comment [Ghu18, HS16, JMS12, Mac11, Pan19, RRC+11, Bal13, DHK13, NBW11, vV11b].
commercial [ZLZ+11]. common [FR13a, PR13, BLNR15, PDW10, RL17, SPRF13, SDK11].
common-pool [LJI17, TLW18]. commons [MB18c, VSP11].
communication [CDD12, DRW14, EG10, Eft13, EBSW17, LLDO13, OO18, WK12].
communicative [SA13]. Communities [DWM15, Cor16, CG10,DSA+16, FML18, FB18a, JHE15a, JHE15b, KDMK16, MRPH17, MP13a, MH18, NTFK11, PSJ15, PV19, PC13, PF18, RK18, RR12, SL10, SM17b, SKS15, SRS18, SBS17, VA10, VGL16, WCPF15, ZADB15].
community [BZ10, CTA15, DBD15, DS19a, FGFR10, GL12a, GRI19, HL11, HLTW14, Jab10, KCS16, LW16, MK14d, MI11c, MSIR10, PDW10, PDW11, Soz13, Spec15, TBM+13, TLCZ12, WSTL16, XLSF19, YISG14, ZMT11].
community-acquired [PDW10]. community-structured communities [MB18c, VSP11].
commuters [MYOS14]. commuting [BLV18, LCJ18].
Compact [GLOC10, SBK16, WMK14, Wax11a]. Comparative [AMM16, GCI15, RRG16, SPSC15, TAR16, ALH10, BPM+12, DG+11, ESE15, GTS15, JSZ12, KDK18, KTT+19, MH12, RSI11, SG15a, TF15].
compare [KCJ+11]. Comparing [DGMY18, Dra19, LLS+15, MFPM10, MHX+14, MSM+14, WF17, DS10b, FH+10]. Comparison [AD16, CGF1+16, HHSA15, HL18, IS16b, Wax11b, Zha11, ALH16, BMN16, Boc12, BL14, BW10, DLYZ11, DGL12, Dys13, Di 19a, EB15, GAB14, HK17b, HRD14, HZL11, LAG+14, LLL+17, LGR+12, LWL+11, MPA16, Pec12, RCD16, SMG18, SRA+15, TMD14, WP17, WZY14, YZZ12, YZZ13, YW13b, KA16]. comparisons [Di 13a, WS10].
compensation [Das18]. compensatory [HWMT17, IKT13, KIT+16, KII19]. Competence [BPFR16]. competency
[BF15]. competing [BWY+17, Gol10b, IC11, LKP+12, PP17b].

Competition

[DDS13, GW14, JA13, Kri14, MZ17, NdlPZA10, NBA+18, Pel18, PB16, RK18, SAB17, SK16b, ACMK12, BI12, BCF+16a, CTB18, CKNB19, CP11, DHV19, DP13b, DKF+17, FE10, GSRR17, GVSLG16, GBM18, HGM15, HP12, Han12, IGL+12, ID19, KB15, K12, KSP12, KM19, LTHEK12, LSDD13, MBL17, MS10, MK14d, Nak16b, NT14, NTOR16, Oku15, PIPB10, PBB+15b, PB18, PC10a, PDF18, RCH14, SK12b, Soz13, Str15, TCR13, US10, VY12, WZ18, WW19, WMN18, WHYM17, YK11, ZADB15, dlCGSA16].

[Bar11, KKGN16, LS15a, SM14, XF13, CCA17, DZE11, FM14b, GL12a, Kar15, LJW+16, MPP+18, PBBB10, PDW10, RR12, SLvd MB10, UT17, WMN18, YZY+16]. competitor

[ER18, HNV+16, HMMSRSD15, NGN13, NZZ19, PWHW16].

Complexity

[AdGM12, PCC16, PDG12, AMF10, BL15a, BORA10, CS15b, DS10b, FB18a, LJX15, MGO+15, M10, NBS+13, PP12, TCH14, TLM10, VBM+13, YHY14, ZLY14, ZGW16, ZLL+12]. Complexity-stability [PDG12].

Compliance

[Bar10, ASC16, CPS19, FKK14]. Compliant

[MS14b]. component [HME12, OUMA10, SG15a]. components

[AH19, BG19, GLR+18, NMZ19, PWZ+19, TCC19, TWC+19, ZK18]. composite [FK16, HK11a, Rey13, SIK+18, SHLL11]. Composition

[AH15, AHJ18b, Bau08, BMN16, CL13a, Cho11, EUM+16, EMM10, FL12, FL13, FL18, GZ+14, GZ14b, GR11, HPB+14, HK11a, HWG15b, HWY11, JSF+11, KHK15, KK17, KZL14, KSK15, LD11, MJ11, MFZ18, MZ18, MBE11, MP14b, NBL14, PDC+17, QLC+18, RBMS17, RW12, RR10, SRS+15, TP17, Tun13, WM13, XNJ+13, XSLZ16, YGL+10, ZSZM14, ZZK14, ZNA+16]. compositional [ML14].

compositional [HY13, JD16a, JD16b, JD17, PWZ+19, ZLN+19, ZLZ13]. compounds [GDPPSS+11]. Comprehensive [JSZ12, ASK17, KTJ19, OCN10, SLW+18a]. compressibility [LL14]. compression [BNG16, FKDW15]. compressive
comprising [CWM11, WCM15].

compulsive [RM17a]. computability [CLG+10, CLG+11]. Computation [BR15, ASP13, KBF18, PSK10, Wal12]. Computational [BZJP18, BLT10, DQY+15, Deu18, EKvdKvFK13, FBK11, JB19a, KIH16, MMY+12, MAM16, MAA+17, PSI3, PWC+15, SBT+18, SBMH10, TLT+15, TSi+19, VB19a, AKR+18, AMBH+13, ÁTC+14, BTH+13, BZ18, BFGAGA16, CCM15, CRGS18, CS11b, Fre10, GA13, GT15, HFT15, HN10, HHF11, IHNS16, IGL+12, JAK19, KHK+17, Kha10, KBL15, Kit10, KKG+14, LL17a, LCQ+18, LZY+18, LHL+14, MNF+18, MPJH13, MFS+18, MV10, MRRW16, MDD13, NGL+10, OB15, OTTF11, PWC+12, PCL+15, QZ14, RFG+19, SSD11a, SSF15, SPG+18, SZ10, SLC12, SDL+17, Str13, SA13, SYY+17b, SCT12, SST19, VPFV13, WHZ+17, ZGY11, ZGW16, ZZZ+11, vHHKB14].

[Sim14, vDRT14]. continuous-valued [HMWB13]. Continuously [DI10a].
contractions [DGNT17, Kro11]. contrast [LS16c, LPF11]. Contrasting [CB15, AK13]. contributes [Laz13]. Contribution [DK13b, LLW15, MYK17, dS15a, BCBD19, CPW16, GGQ+12, HFD17, JDSPK15, RT15]. contributions [ABJ12, Ano19-50, Bur19, KG12, PBP15]. Control [BS15a, DBM+18, GK10, GCG14, HZG+17, RJSC18, SSD13, SZ15b, TWTA+18, ASK17, ABA11, ABIM10, BJF+18, BAGG14, BZL17, BCBD19, BAR14, CFCM13, CSLE11, CKN+12, CH18, CDGV10, CMS16, CG11, CBGS18, DMS+16, DROC11, DKR16, Don17, EHHC10, EB15, FE11, FD17, FH13b, Fra19a, Fra19b, GKM10c, GM19, GA16, GTC19, GM17, GP11b, GP12, GT15, GAY+15, HS15, HCH18, HTM16, HB16b, HIJR12, HK11b, HCW18, JB19b, JTW17, KKD18, Kee10, KAZ11, KAZ13, KEKB18, KSvdH18, KLJ17, KP16, KKYV18, KP11, KH19, LCCC10, LBGW13, LKK13, LCJ16, LC17, LSY+10, LLZ13, LN13, MIJ16, MA13, MAM16, MG10a, MZAI19, ML10, MS12b, MFKS13, NSS+11, NMAZP16, NSH+10, OA12, OA11, OCHHZ12, PVCEC18, PZLF19, PRM12, PRM14, QF10, ROF17, RB14, RS14a, SW18, SK+12, SSG+19, SGW17, SST19]. control [SBM+19, SNCM12, TXTW16, Van17b, VCF+19, Wal16, WPA17, YT12, YAK17, YD14, YLLL12, ZCT18, ZTT18, ZN18, ZLT+19, Zhui11, ZZR10, ZZR13, dSKBS10]. controllability [IH17]. controlled [BFR14, GLOC10, Gri11, GRB+13, Kro10, Lee16a, SK15, vLFM+19]. Controlling [BVJE17, AHJ+18a, HLI15, HRCA19, MB14, TI12a]. controls [MSB16, Sar10]. controversial [ACM16]. convalescent [HSLW16].
convex [TZY18, HHMT19]. convolutional [WYL+19]. Cooperation [Arc16, ACCR11, Axe12, BP16, CSZT12, DBD12, Gha16, KCS16, Pla10, SSS17, TR12, Van16a, WK18b, XY14, Yan10b, ZZZ10, AH17, ATB14, Arc11, BY17, BB18, CS14a, COWA11, CWW18, CBP12, CAV16, DG12, Das12, De 19, DDRP13, GWNW15, GT12, GvVT14, HNR14, HKM12, Hou13, HWC18, ITO16, ID19, IIVR10, KNT10, Kon11c, KC11a, Kl17, Lai18, LPH18, ML13, MSN14, Mas12, MJ14, MBBD13, MKMG+14, MB19, NOKO18, NT10, NBA+18, Now12, Oht12, PBR17a, PCN17, RANO10, RMB15, ROF17, RC11, Ros10a, Ros13, RRR15, SPS11, SPLP12, SN18, SP16, SLW18b, SK11b, SP13b, TM12, TGL15, TA15, Uit11, WSP14, Wol12, WFZW13, WFW19, YvBS18, YHZ14, YZX15, ZCW13, ZLY+17, ZSS10, vDRT14, vVGA10]. Cooperation-based [WK18b]. Cooperative
cooperativity [BSP18, CL10, CB13b, Mar17b, Mic11, ZBA18]. cooperators [FNH10, GCS12, LG10b, OO17b]. cooper [KHB+18, KFS+13]. coordinate [Ben14, VC10]. coordinated [FW15, NS18]. coordinates [DGL12]. coordination [Ben14, VC10]. coregulation [WM17]. cornerstones [BPFR16]. corneum [SSvdM10]. Cornish [HS16]. Cornish-Bowden [HS16]. coronary [DPCM16]. CoRR [All17]. correct [MA10]. corrected [OGO19]. correcting [Fra19b]. correction [HK16, ZTWL12]. Correlated [PPBD10, BPG+18, BM16, Che10, Ell15, MKRE18, NdORC11, PNK16, Rey13, RAD14, WMCL18, ZSC14]. Correlation [ESW13, WZY11, YTG16, AGB+14, BE14, DCS14, DBG18, FSW+16, HgLL+10, JAB18, KDMD13, KN11, Kro10, LXS15, MC15b, RCD19, SB12, SCL13, SS11, TMF17, ZLYJ18, ZL18a]. Correlations [MK19, GCZ+12, dOGL10, dOGL13, HH16, HHD+16, HNA15, Scl10, TP10c, VDD12, WMHH10]. corresponding [DHT16, FS11a, FS15b, ZLZ+16, ZLB13]. Corrigendum [AEM14, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11, CNG+12, DDBW11, EJ19, EPJ+11, FIS16a, FIS16a, Fue15, GS14, GHS20, JS18, JRG14a, JCL+21, KBS+20, KML+14, LPB18, LBS+11, LGK+12, Lei10, LHPF18, LPvSP12, ML12a, Mei13a, Mei13b, MLBA13, Mul12, NBC16a, PSS+13, PCT19, PP19, RTEKG19b, RTEKG19a, SCABM11, Sch21, Sch23, SRAL12, SY17a, TSM13a, Van16b, WL12a, WLW20, YCH+17a, ZG10a, ZSL16a, ZZR13]. Corroborating [Di 17b]. Correlation [ESW13, WZY11, YTG16, AGB+14, BE14, DCS14, DBG18, FSW+16, HgLL+10, JAB18, KDMD13, KN11, Kro10, LXS15, MC15b, RCD19, SB12, SCL13, SS11, TMF17, ZLYJ18, ZL18a].
For10, GM19, GL14, HPML18, KJ11b, MGC13, PBBB10, SW13a, SOCF14, SX12, TGLK19, WOB15. **Coupling** [OSF11, WFM+13, WFC+14, ZS12, BRG+12, BTO14, CFZ14, DvDBD15, DDBD16, FD11a, FH14, GMMN18, Hor11b, JAK19, KHH10, KTH16, Kuz19, MDB12a, MT14, NHS+16, SKAG18, SB19, SY12, TIS10, WMT16]. **coupons** [KFG15]. **course** [BBDB13, NS11]. **CoV** [SKPK17]. **coupons** [KFG15]. **course** [BBDB13, NS11]. **CoV** [SKPK17]. **cow** [GKG+18]. **cow** [GKG+18]. **Cowan** [CV19]. **cows** [BGF+14, CFR+14, CMR+18]. **Coxiella** [CMN+11]. **CpG** [HA15a]. **Cracking** [Nah14]. **cranial** [BFGAGA16, YKO+16]. **craniofacial** [BDID+12]. **crassa** [XCW+18]. **Craton** [Kur14]. **Crawling** [WL13]. **create** [CZPC+18, HA15b]. **created** [SI11b]. **creating** [KG13, PJ13]. **credible** [Di 16]. **creeping** [SAGAGB17]. **crescentus** [SK12a, Sht17]. **crest** [LFZN11, Sch19c]. **criminology** [SOIO10]. **criteria** [CJ12a, CZW+11, Gri15a, Kro10, Opr10]. **criticism** [Di 19b]. **Critical** [HSI+19, LG13, APBS15, BCPM+16, CGvG+15, GXF13, HBT13, iHM17, MJV16, SDD15, SCH+19a, SJK18, SKS+19, VGL16, WCF12, WA14, XJ19, YCH+17a, YCH+17b, YST14, ZL18a]. **Cross-bridge** [MCL+11]. **cross-contamination** [MW13]. **cross-correlation** [SCLC13]. **cross-enhancement** [WA14]. **cross-feeding** [SCH+19a, SJK18, SKS+19, VGL16]. **Cross-jurisdictional** [HF17]. **cross-link** [FKK14]. **cross-reactivity** [OAS10]. **cross-regulation** [OA10]. **cross-activity** [HA14]. **cross-regulation** [HA14]. **cross-reaction** [OB10]. **cross-specific** [FO10]. **cross-talk** [BJJR10, FZL18]. **cross-talking** [YST14]. **crossbridge** [ST17b]. **crossflow** [KA15]. **crosslink** [DBJ12]. **crossroads** [dIEBRM15]. **crosstalk** [RA13, XCW+18]. **crowded** [DS10a, ISB+11]. **Crowded** [OO17a]. **crowing** [Cza14, DHB15, Vaz10]. **crown** [Cam11]. **crows** [LZTD18]. **cruicialy** [IH17]. **cruzi** [KZ14, PKZ12]. **crypt** [BZL17, FCBC12, MMF12]. **cryptic** [BC15, CLFZ14, PDC+17]. **cryptically** [Sel13]. **cryptosystem** [Mor11]. **crypts** [YAK17]. **crystalline** [RCL+10]. **crystallization** [JM12]. **CSF** [BPLM12, CHN+15, SER+12, ZLM12]. **CSS** [Cre10]. **CTD** [NTC+11]. **CTL** [Lev14, SBR10]. **CTLA** [LZL+19]. **CTLA** [LZL+19]. **CTLs** [ARM18]. **CTPB** [DK13c]. **cuboctahedron** [Den19]. **cuckoldry** [YY18]. **cuckoo** [LZTD18]. **cue** [Jen10]. **cues** [BJJR10, PDL+17]. **Culex** [VSD+17, YMZ18]. **Culicidae** [YMZ18]. **culling** [LSSG10]. **cultivated** [AM14]. **Cultural** [HLI15, Nak19, TH12a, CT14a, EL12, KS13, KLM14, ML10, Nak14, SC10a,
SN11, WL12c. **culturally** [WF18]. **culturally-driven** [WF18]. **culture** [GS17a, GZX14, HPM+17, KLM14, KWO15, KWO19, Nak16c, PMKM10, Saf13]. **cultures** [Ayu12, BBS10, BPF+19, CWP+18, DBBW09, DBBW11, GMOP12, MMB18, PMKM10]. **Culturomics** [SD16]. **cumin** [MF16]. **Cumuline** [MF16]. **Cumulative** [CT14a, PC17, RAF+19, EL12, KLM14, KWO15, KWO19, MBBV14, Nak14, Nak16c, Tal12]. **curable** [HHA+13]. **curbing** [TXY+12]. **curing** [PRM11]. **current** [AOM19, Dim17]. **currents** [BHBH11, STKE12]. **curtailing** [KM15]. **Curvature** [DSF11, CL10, JTSG14, KPD19, KPS17, Mac11, MPK+12]. **curve** [DG12, Dru10]. **Curved** [Mil16]. **curves** [Mar17b, PPT+16, RG17, Str15, TCH14]. **customize** [NSH+10]. **customized** [YD14]. **cutter** [KCMF11]. **cutting** [CLK18, RDMP11]. **cyanobacteria** [GWBL12, RSBB10]. **cyanobacterium** [iITIM15]. **cycad** [RBB+12]. **cycle** [AAV14, ASK17, ANGPB12, AN12, BTO14, BTO15, BSR+11, CLHB11, DBBW09, DBBW11, EBE14, EBE17, FP18, GFM+19, GGG19, GMNY14, HS14a, HWPL12, JAK19, JS15, JS17, JS18, KRR14, KCS+15, KSPA17, LG12, MS13, MLT10, NIT18a, OABI12, PRK13, PGHC12, POK+12, RSD+13, SB19, TDSM12, VHM+17, WLD+11, XSMF12, YFB+12, vVN12]. **cycle-regulated** [FP18]. **Cycles** [KdSUS10, BI10, CE17, GO14, KGB13, RL17, RS10, Ric19, RBB16a, Sat10, SC13a, SC13b, Str17, SY15, YRD17, tBdR18]. **Cyclic** [LG19b, Bec14, CLA17, GDJC11, KSK+11, LAJC19, LG12, SGCD14, TB+13, TR12]. **Cyclical** [LM11, ZML19]. **Cycling** [HVSZ10, LG19a, MK14a, Nak16a, RRJ19]. **cylinder** [KA15]. **cuminum** [MF16]. **cyst** [GTB10]. **cysteine** [TAR16]. **cysteines** [GGX+10]. **cystic** [BT14, KBV+15]. **cytochrome** [RS19]. **cytokine** [CDM+14, LHW14, NF16]. **cytokines** [RAR19]. **cytokinesis** [RD12, Wol14]. **cytokinin** [MBK+11]. **cytokinin-auxin** [MBK+11]. **cytometry** [OKB+11]. **cytoplasm** [AA15, SA17, TM15a]. **cytoplasmic** [Vaz10]. **cytotoxic** [LG12, TALC16]. **cytotoxicity** [HGO+18].

D [LDWW14, LHPF18, RRC+11, BPF+19, CK17, DS15b, EASA15, GBC+16, GM16a, GMN18, HGGCR13, KKG16, KMM18, MPCTG15, Nos14, PHA+17, RMSTG13, SK15, TA16, ZKP15, ZSH+16]. **D-motifs** [RMSTG13]. **D-QSAR** [TA16]. **D-star** [LDWW14]. **D1** [ASRM15]. **daily** [BLV18, DDB10, WTC16]. **dairy** [AMSG16, BGF+14, CFR+14, CMR+18, GKG+18, LSSG10]. **Daisyworld** [BG12, BLW11]. **Dalgarno** [SGD+16]. **Damage** [TALC16, ASK17, ADC19, CDM+14, Eli17, GA14, JSDEK14, KBE+13, KP16, LCTG15, MBBV14, VLP17, ZSCL16a, ZSCL16b]. **damages** [MYK+11]. **Danio** [Hal17]. **Darby** [HHA17]. **Dark** [Das12, LRL+16]. **Darwinian** [CMM19, CS15b, GMC17b]. **Darwinizing** [Doo17]. **Data**
[ZZ14b]. **diffusely** [Lab16]. **diffusivity** [TSMB14]. **digesta** [TF18].

digraph [cLCJ+10]. **dihydromethyltrisporate** [EBSW17]. **Dilemma**

[14b]. **diffusively** [Lab16]. **diffusivity** [TSMB14]. **digesta** [TF18].

digraph [cLCJ+10]. **dihydromethyltrisporate** [EBSW17]. **Dilemma**

[14b]. **diffusively** [Lab16]. **diffusivity** [TSMB14]. **digesta** [TF18].

digraph [cLCJ+10]. **dihydromethyltrisporate** [EBSW17]. **Dilemma**

[14b]. **diffusively** [Lab16]. **diffusivity** [TSMB14]. **digesta** [TF18].

digraph [cLCJ+10]. **dihydromethyltrisporate** [EBSW17]. **Dilemma**

Distributed [KS15, CCS15, HT19, ISZ18, LCG +15, PDT +10, RKMG12, RPCW18, TAL19]. Distribution [OBK +11, POLT12, SS12a, ZLZ +15b, AD16, BKR14, BH13a, Cam15, CPF +13, CW11a, CW11b, CF11, DYS +13, DK13c, EPP19, EBX17, GVC15, Gol16, Kär11, LdLK11, MSK10, Meh17, MYLK11, MC15b, Nak12, NYSM12, Par15, PWH16, Pia19, RTRRS +17, RRB10, SSI +16, Sch14, SJS13, Su16, SM11b, SCT12, SSRA16, TLR14, Woh15, XGZ17, YZW10, YZZ12, Yin17, ZM17, ZL18b]. Distributions [ZS10, ALH10, BR15, DLL +18, Don13, DZW10, FVC15, GF +19, Gol10a, JL11, KS14, KS15, KdSUS10, LLLV11, LLG16, LSC +18, MJS11, MTY11, MPY14, MS16, MDM +10, ML12b, MB16, Mul11, Mul12, Por13, SSH +19, SY17, SBB +12, YCE19, TLM14, Wei12]. districts [LG18]. disturbance

dosing [FM10, LN13, NSH+10]. Double [PWHW16, BKL+15, CL17b, KFL12, Kue16, KDL16, SNCM12].

double-layer [PWHW16]. double-strand [BKL+15, KDL16].

double-stranded [Kue16]. Dove [Ayd18, DN18].

down [ARB13, LG13, MPS+11, SC10b, XNW17, YRD17]. downstream [ZZL19].

downstream [BHH+14].

downy [PS12].

Doxorubicin [EPJ+09, EPJ+11]. DPC [KHKI17].

DPD [TAB+13]. DPD-PDE [TAB+13]. DPP [RSS+18]. DPP-PseAAC [RSS+18].

Dr [BD10b]. Drafting [SZ15a, SZ16].

Drosha [DP17]. Drosera [GJ17].

Drosophila [Che19, DM10a, DM19, GAL11b, iHM12, MBM11, RGG12, Sel12b].

drought [MK+17]. drowsy [BVK10].

drug [BR16]. Drug [ASC15, AHAFA14, ALD+11, BTO14, BAGG14, BRN15, BTK14, BBRT12, BKPV15, BFGAGA16, CLPZ14, Che12, CL18, Chui17, Cle18a, Cle18b, Cox10,

Drosha [DP17]. Drosera [GJ17].

Drosophila [Che19, DM10a, DM19, GAL11b, iHM12, MBM11, RGG12, Sel12b].

drought [MK+17]. drowsy [BVK10].

drug [BR16]. Drug [ASC15, AHAFA14, ALD+11, BTO14, BAGG14, BRN15, BTK14, BBRT12, BKPV15, BFGAGA16, CLPZ14, Che12, CL18, Chui17, Cle18a, Cle18b, Cox10,

Drosha [DP17]. Drosera [GJ17].

Drosophila [Che19, DM10a, DM19, GAL11b, iHM12, MBM11, RGG12, Sel12b].

drought [MK+17]. drowsy [BVK10].
durotaxis [SVMN11]. dusty [BTK14]. Dwarf [YSYI13, YYST13]. dwell [Voe18]. dwell-time [Voe18]. dyad [GU13]. Dynamic [CS11a, CLA+16, DFM+19, FWB+12, FRG+13, FWR19, KV15, KAZ13, LS14a, LS19, MMJB17, NHS+16, RSH19, SK15, TI2a, WOB15, DM10b, AJD11, BTG+15, BB10, BHH+14, BTW11, BC13, CTW10, CW15b, CLP11, Cre10, CMGN17, DAV11, DB19, Don17, EBS11, FD17, GAL11b, GB116, Go110b, HAuR+18, HH16, HHD+16, JSWY19, JRMS12, KMMR18, KK12a, KMM18, LCJ16, LM14, LDWW14, LBS+14, LPD+16, MHC16, MN11, MP13a, MPC12, MZA19, MAS15a, Mnu12, PDG17, PSS+10, PSS+13, PKL12, RRBM12, RS12, SNS17, Sat10, Sat14, SGA+12, SVSP15, SHW16, SA14, SY15, TTG19, TDC+18, TB11, TXWW12, TXCW15, Tay16a, TLK19, WCN11, WYN+18, XSKA17, XS13, YA14, ZMNd+10, ZC SRG12, vV18, AKP18, TBB+18]. Dynamical [GCB17, LMYL15, LLL13, PaCZ10, VLCM10, AdGM12, CST+12, DFM+14, FLA+19, GB13, GML10, KLB+16, Lai18, NBA+18, OA15, RWSB11, Sim14, Xie13a, ZJY19]. Dynamics [BBM+97, CFF11, FTS15, FHS+14, GL14, GM16a, HJR12, ITR+18, KGJ12, LCT11, LL18, LPTR14, MHH+12, MF1313, MW13, Por13, RBU4, SPSP12, SHK14, SC16, TF14, WSVT14, Xie13b, ZJY18, ASC15, AR11, AGPK13, AOM19, AD15, ADS+19, ABKS11, AHKN10, AH12a, AY15, Akc12, AKS+19, AMBH+13, AMSSG16, AFMR+16, AGRR+15, AABS16, AN12, AdiPML13, AP13a, APW10, AM12, Arg14, Arg12, AW15, ALD+11, BY17, BC19, BPS19, BA10, BRG+12, BCPL10, BM12, BDS12, BLV18, BPFR16, BZCS10, BBI14, BWY+17, BHKR14, BN12, BN15, BMB+18a, BJWL15, BBM+13a, BBM+13b, BBM+13c, Bon10, BK19, BRR12, BMF+18, BPLM12, Bue15, BHO+18, BJ18, CHD+10, Cam11, CML10, CCI18, CMS+19, CFZ14, CNI14, CS18, CNZ12, CNL14, CFL+15, CWF+16, CVPC+15, CSF+14, CS14b, CG14, CA18, CH18, CPPLAB18]. dynamics [CHN+15, CSZT12, CGW18, DB10, DS19a, DMM+14, DMO+17, DM11, DSLR18, Del12, DLI12a, DEN+11, DG16, DGJ14, DGJ15, DHBS19, DRC11, DCN13, DCR18, DHB15, DMFR19, DP13b, DHRA10, EK2F18, EUM+16, EWI15, ECP+16, FH10a, FH10b, FHL10, FK18, FMS+10, FL18, FGG15, FKV19, GLR+18, GAL11b, GVG15, GAGP+14, GC3MG+12, GDS11, GMNY14, GXF13, GC18, GMMN18, GP12, GY18, GN10, GAV15, GPT17, GAY+11, HBK12, HT19, HSD11, Han12, HII+19, HBVP15, HNO18, HAu10, HNR14, HTM15, HE16, HKS15, HFT+18, HB16a, HAH19, HBT13, HVL11, HR14, HSM17, HH16, HWPL12, HHE19, HB13a, HBB+11,
HTB$^+_{13}$, HHT$^+_{19}$, HPW$^+_{13}$, HWL15, HHN14, HSLW16, Hur12, HR12, IMM16, Iij12, IGL$^+_{12}$, IS12, IK16, Jab10, JB18b, JYY$^+_{18}$, JSSZ12, JL16, JSB15, JMK$^+_{17}$, KJM17, KHH10, KSP$^+_{14}$]. **dynamics** [KHP$^+_{12}$, Kea16, KMHdlP10, KGP$^+_{15}$, KFA12, KB19, KGK10, KR15, KLJ17, KKY$^+_{10}$, Kla10, KDMK16, KL10, KW10, KKYV18, KGC18, KGM15b, KSK$^+_{17}$, LJM15, LG10a, LS10a, LCC15, LvBJ16, LP19, LHV16, LW15, LMCW18, LGR$^+_{12}$, LYW11, LHD$^+_{17}$, LPH18, LP12b, LJS14, LH18, LW16, LCNH15, LC16, Luk14, LW18, MPJH13, MZ17, MRPN12, MKKS14, MDVT10, MPP$^+_{16a}$, MCC$^+_{17}$, MBLV10, ML14, MMAS13, MFG$^+_{13}$, MKMT14, MS10a, MS18, ML10, Mob10, MSE$^+_{14}$, MS10b, MGM13a, MZMM$^+_{14}$, MPNP12, MMRCC10, MS14c, MA11b, MBP16, MI11a, Mou12a, MYOS14, MCCC$^+_{10}$, MvAKR17, MSIR10, MG15, MSL$^+_{16}$, NIT19, Nak16a, NCLB16, NSO15, NITED$^+_{19}$, NZZ19, NG17, NC15, NP13, OB15, Oht10, Oka15, OUMA10, OB10, OYO16, OAJK10, OBHS19, PAA11, PPBD10, PM11a, PBR17a, PR18, PT10, PNL15, PVB$^+_{10}$, PSV17, PW18b]. **dynamics** [PCL$^+_{15}$, PGKZ17, PZLF19, PM17, PMYHR12, PP17b, PKH11, PRM12, RW16, Rad16, RMF$^+_{18}$, RN12, RFS$^+_{15}$, RW10, Rem15, RB13, RBHK14, RBB16b, RSD12, RG17, Ros10b, RM19, RRJ19, SM14, SSPP15, SK19, SU11, SW15, SFT14, SBR10, SVB$^+_{10}$, SI19, SW17, SBR16, SV17, SCF$^+_{12}$, SKPK17, SMJS14, SW11, SKS15, SC11b, SAB17, SOCF14, SG15a, SP11, SY17, SSME10, SG15, SLC12, SLO10, SLS17, SS11, SK11b, SSN$^+_{14}$, SYY17a, SYY17b, SST19, SPL14, TED10, TBM$^+_{13}$, TLCZ12, TCR13, TGC$^+_{17}$, TDJ15, TRM$^+_{14}$, TK19, TMS13, TMD14, TRJD19, VSD$^+_{17}$, Vel17, VABS18, WWY12, WCPF15, WCW15, WJL$^+_{16}$, WML16, WYKT17, WML$^+_{17}$, jWIGQ19, WW19, WMB10, WGC13, Wod18, Xie11, Xie18, XY12, Yang16a, Y1l18a, YNY$^+_{10}$, YBT$^+_{17}$, YFB$^+_{12}$, YST14, ZARK19, ZBA14, Zha10a, ZZ14a, ZZ18, ZN18]. **dynamics** [ZKTK10, ZWG10, ZSCL16a, ZSCL16b, ZZR10, ZZR13, ZRZ15, dTKDV15, vV11a, vdBD10]. **dynein** [CL10, SS15f]. **dysfunction** [CL10, SS15f]. **E-cadherin** [WGS10]. **each** [RG17]. **Ears** [CZJQ14]. **ear** [RG17]. **ear** [CZJQ14]. **early** [Bau18, CCB11b, CPV16, CTS11, CEP14, DI13, DTGD19, DM10a, DCR18, Dun11, FD17, Fra16, JAB18, KG12, KC11a, Lab16, LJ15, Lev14, LJS14, MSBB13, PHTP$^+_{12}$, PGvdB12, PR17, SBB18, SCS14, Tre19, VDD12, WBMM18, YM14]. **early-detection** [CPV16]. **early-stage** [Lab16]. **Earth** [Di18]. **East** [DB18, EAN14, LC16]. **East-west** [DB18]. **eating** [DDF$^+_{14}$, JPBM17]. **Eavesdropping** [KL10]. **Ebola** [Ada16, BGW15, DE17, HSLW16, JB19a, LN19, LLD$^+_{17}$, PZLF19, RPP16, TDW16]. **EBV** [CRLH$^+_{19}$]. **EC** [RMSTG13]. **EC-numbers** [RMSTG13]. **eccentric** [GAPK10]. **echinococcosis** [KKUM10, WZJ$^+_{13}$]. **echinoid** [CS11b]. **echolocating** [VP18]. **echolocation** [LA15]. **eclectic** [TT17]. **EcmPred** [KPK$^+_{13}$]. **Eco** [HBT13, KK13, Urs14, AIB$^+_{19}$, FtL18, HCS$^+_{19}$, KGB13,
Ano18x, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z.

Effect [AP19, ABD +11, BSC19, BBB14, EPP19, FMS +10, GTC19, JJ15, LFD11, MLCH11, MGC13, MAR +17c, SGAM12, SGCD14, TMM10, TII2b, TLR14, WHHS15, Wod18, YTK10, ZLL +12, ARG19, AGRRR +15, Arc14, ACCR11, ABK +12, Ayd18, BB15, BBB18, BCF +16a, BG12, BHK14, BH11, BD10b, BE14, Cam15, CMCS18, CWW18, CLA +16, CMN +11, DSA +16, DZE11, Elit7, ECP +16, GHBI16, GH11, GM13, Gon13, GJS +10, HWMT17, HFT15, Has14, HB16a, HMM17, HTB +13, JRB +16, Kar15, KMZ18, KMCJ17, KMM18, Lai11, LS10a, LCCK12, LN13, LM1 +16, LBJ13, LS11b, MPM10, MGT17, MB15, MFMB12, MBP16, MI11b, NKL10, Nak14, NSKO18, NdORC11, NI19, NC15, Oko15, Oko16, POW17, PSD +18, PDW10, QA15, RGG12, RC16, RRTR12, RRRSPT16, RAR19, ST17a, SSF15, SBCR10, SXZ12, SYN +13, SK16b, SM10b].

effect [TB16, Tal12, TIY +11, UD10, VAT18, VSW10, WTC10, WMT16, WMHH10, WHH17, WCM15, WFM +13, WFC +14, XTZ +13, YBH +19, YH12, ZMW10, dG10b, dSRM15].

Effective [AFS19, Gre16, SS18, AKS +19, Bar16, CPH +14, CG11, Ghu18, HI17, LCTG15, LGPS17, MA13, NF14a, Nak12, SSJ18, Sch14, Tak16, VCF +19, XXD +17].

Effectiveness [EN15, GAY +15, SP13b]. effector [ME15]. effectors [d'O12].

Effects [AdSG14, ASGG17, BKS16, CHL +19, CF11, DGI14, EB17, GCZ +12, GC11, HY10, IKTI13, IEN15, Js12, KO18, KMHD1P10, KJ15, KI19, LdL11, LG18, LFM11, NIT19, NSO15, NKK10, NJP18, PMYHR12, RVA +11, RHT18, STA15, SKPK17, TM14, TA13, VSD +17, WK18a, YLW +14, ZR16, ASC16, AH17, AAJ15, ARM18, BGM19, BLV18, BGL10, BSV +10, Boc12, BSS11, BIC17, BM +14, BCPG18, BZ10, CLK18, Cle16, CSDR15, Cor16, CCAdS13, Cox10, DH16, DB18, DHB15, DS12, EBE14, FB12, FSW +16, FGLS10, GMZM15, GVSGL16, GCvWE +14, GS17b, GBRS19, HD17, HPP10, HT18, HGH14, HAH19, HH10, HWPL12, HWGT15b, JYY +18, KSI +18, KDG13, KA11, KPD19, KEKB18, KF11, LTHEK12, LL14, LL16, MFB12, MLW1 +16, LS14b, LLY15, LS11a, LDF11b, MGI14b, MKBE17a, MKBE17b].

effects [MKRE18, MEJ18, MMRRC10, NR14, OO17a, PDS13, PSP +12, PHABAI +16, PBB10, PN18, PMK15, PRV +14, PZLF19, PGHC12, PMCS16, PLF19, PML18, RRL +13, RLW +14, RHJ11, RTEK15, RTEKG19b, RLSN14, Sac13, STI13, SHvHB16, SAB10, SJSK18, TD14, TDC18, TWC14, U110, VZ19, Vaz10, WXWL12, WML16, WTC16, WPA17, WVO +15, YNY +10, dM10b, dMP11, d'O12]. Efficacy [RMSTG13, GSSBF18, KMA10, KRR14, LBW +13, LZL +19, MDR12b, NDZ14].

efficiency [BH13a, CLP11, DK13a, GMM +13, GSF13, HLH +18, JG14, LFB +16, LMJ +17, LMJ +16, Orr19, PBRW11, PVCE18, SHW16, TP10b].
Enumerating [CM17]. envelope [MB14]. envelopes [KDMK16]. envious [GCM14]. Environ [FB12]. environment [AdVG15, BKR14, BRP+18, CCW16, CNM+13, DS18, GJ12, GCC14, HK17b, HD11, KK13, Lab16, LFM11, LW10a, LW10b, LLL13, MG14b, MMFK10, NdpZPA10, RRB12, Saf13, SV14, SM10b, VDD+17, WST15].

Environmental [FR13a, HAK+19, MP14a, RM13, Abr14, BJJR10, BDR10, DSA+16, DHT19, EzMMH18, FGTL15, GGBW14, HBVP15, HSM19, HSM17, HHT+19, HWL15, JTW17, LRH15, Mal17, MLCH11, Mjv16, NVdvB17, NWL17, PMD11, PW14, RR12, gSxFH+12, VBVD17, WXWL12, WD12]. Environmentally [CCW16, BCF19]. environments [BID15, CMCS18, DH16, De 19, FB18b, JRMS12, KL13, KM19, LX10, LNH13, LCH15, Mar19, MHF+13, NfORC11, OBE+17, PEW18, PB16, RW14b, SI11b, SB17, WSVT14].

Enzymatic [MSS18, CTJ10, KJ11b, OF10, Pie12, Y118a]. enzymatically [Pie12]. Enzyme [MRS14, Bur19, DK13c, DBJ12, ESS19, EBSW17, HANR+18, HK15, NCS+13, OFB10, RMSTG13, SC13a, SC13b, Str17]. enzymes [ONO15, PBKR13]. Enzymological [IDM15]. enzymology [XG12].

Evil [GvVT14]. evinces [BHLH12]. evo [FiL18]. evoked [LSB10, LB11, LB12]. Evolution [AK15, Arc13, AS16, AK16, ACvKA10, Axe12, BBB18, COWA11, CHK16, CKNB19, FZW17, FM10, FM14a, FPD15, GT12, GTSP16, Hou13, HCN18, Jam13, K17a, KGB13, Kit10, KWO19, KNT10, K17, Len14, LG12, Mas14, MA11b, MAL+11, NH12, NF14b, NO18, Nak16c, Nei14, Nos17, NP13, ON14, OAV+16, PBYB18, RC11, Rog19, Rou14, SM15, SC12, SLW18b, TP10a, TM12, UI13, WK15, WK17, YHI14, YTK10, dWV11, Abb10, AdvG15, AFM10, AH12a, AK12, AOR17, AB11, Ant13, AMFL10, Arg12, AK11, AT10, BGKL17, Bau18, BM11, BJ17, BD12, CT14a, Cha17, CSBK15, CV15c, Cle16, CB12, CA16, CS15b, CzST+18, Cral7, CL13b, CKS15, Das13, DBD17, Deh17, DSR18, DMCP14, Dun11, Edg19, ERI12, Ell15, FB18b, FM15a, FH13a, FRG+13, FM18].

evolution [FOT+15, Gar10, GFH+18, GJ12, GG14, GN14, GJ10, GJ15a, GKP13, GCvW+14, GKW16, HNV+16, HJWC11, HM10a, HAP+16, HLI15, HT18, HT19, HMK12, HMM11, HTK12, IKT3, Ish16, ID14, ID19, IIVR10, Jan15, KG15, KMC14, Kin18, Kor18, KW15, Kur14, KIT+16, Lai11, LBB+13, LGK+09, LGK+12, LvBJ16, LG19b, LSM17, LvdB12, LGEM17, LSL13, MTN12, MB18a, MK16a, MYK17, Men12, MALAN17, MH18, MAA18, MH13, Mor16, MC15b, MM18, NF14a, NS11, Nak14, Nak19, NSKO18, NBS+13, NMS10, NP11, NPS17, NPS18, Oht12, Ots11, Pan11, PIB10, Pow18, PBR17a, PMA11, PKZ12, PPBT11, PN16, PN18, Pie12, Pgh11, Pol12, PBD11, PM10b, PBA12, Rad16, RAN10, RRB18, RBB15, RBB16, Ros13, RRR15, RCD19, RD17, SW16, SC10a, Salt15, SP11].

evolution [SPLP12, SSF15, Sch19b, SHBT14, SN16, Sel10, SGW17, SSS17, SN18, SP16, SB17, SA13, SP3b, TGLK19, TI12a, TF17, TALC16, TB15, UI10, VSLV15, Vel17, VB19b, WSC19, WKB13, WZLW15, Wil11, WK18a, Wod18, Wol12, WFW19, XXY14, XW17, YK11, Y12, YvBS18, YSH+14, Yan10b, YZX15, YGI2, YY15, ZPdF19, ZCW13, ZADB15, ZLW16, ZMW10, ZMT11, tBR18, vVE15, AM10].

Evolutionarily [BBHR12, KM12, BI12, DWL+14]. Evolutionary [AY15, AN12, Arc14, BL14, BM16, Bur10, CZN12, DM11, Ezo12, Fis16b, Fra19a, Fra19b, GCvM17a, HI12, HWTN15, HIT18, HHN14, IM16, ID14, IS16, IK16, Kri10, LLZ13, LW15, LCQ+18, MPNP12, NP13, OGO19, PBR17a, PNL15, Rad16, RN12, RBB16b, Ros10a, SSP15, Sek12, SGW17, SPM18, SLO10, SG18, SKSRW16, TTN13, TEY16, WLDa, WLDb, WLDc, WCW15, jW1GQ19, ZGW14, ZGW10, Abr14, AH12a, AH12b, ATI12, ATTN12, AD13, AWRD15, AOR17, ATG12, AIB+19, BS15b, BD15, BS11, Bd10b, Bon10, BBDB13, BR13, Bul12b, CVO+15, CSZT12, CK19, CB10c, DGM18, DMO+17, DHS+15, DRCL12, DKR16, DI10a, DI10b, EH1R17, FL13, FLW16, G111a, GHBC14, GT11b, GC11, HBK12, HSM19, HFT+18, HBT13, HK10, HY10, Hö15, IM16, IM16a, iij12, KGB13, KDM16].
Lun13, MP14a, MFMP10, MRPN12, MDM16, Mon18, MB12b, MKPVH16, M5R10, NM18, Ob10, OBHS19, PBB+15a, POW17, PLN14, PGG+15, Pla10, RC11, RBB16a, RVP19, RSBB10, RM17d, SKAG18, SMS17, Sch17, Sch23, SMG18, SSSD17, STG19, Shi19, SKS15, SY17, SS15e, SM11a, SJK18, SC16, SS12b, TBM+13, TA10, TLCZ12, Tay13, TZY18, Tre19, USF+18, VGZS18, WSP14, WYX+17, WLY+17, WMN18, WCF12, Woo10, WK18b, WSVT14, XKCG15, YHZ14, YBT+17, ZZK14, ZYD15.

evolutionary-based [DHS+15]. evolutionary-dynamical [Lai18].

Evolvability [MH17, GJS+10, Gri15b, IMA14, PMP13, VFS+15, WB10].

evolvable [AIY16].

evolved [Bry13].

Evolving [MBRRI19, Now12, SAZ+14, AH12b, CL14, CL19, De 17, EB15, FWW18, NR16, PSJ15, PW19, SB12, WLW19, WLW20].

EvoStruct [USF+18].

EvoStruct-Sub [USF+18].

Exact [KFW12, NSK13, PHK15, Pie10, SW17, ZLW14, Gri15a, Ros10b, ZM10].

examination [TF16]. Examining [BLS+17b, VAT18, AHW13, ER12, Gla13, GS17b]. example [CR14, PKZ12, SGA+12]. Examples [TvMG16, MF15]. excess [AHKN10].

excessiveness [VM16]. exchange [Bal13, BTG+15, BP16, CC10, CZT+16, GT15, LMJ+16, PWC+15, POP12, REC10, XYZ15]. Exchanges [Fer12, Sel13, Sel14b, Sel15b]. exchanging [Sel16, Sel17]. exchanging/deleting [Sel17].

exist [AM10]. Existence [Opr10, ADV+10, FT12, Hay16, HXL18b, MG14b, WKS14].

exocytosis [GU13, SWSLMJ19]. exogenous [CWP+18]. exon [MSSM18, PBKR13, QYO10, ZLZ+15b]. exon-coded [PBKR13].

exon-junctions [MSSM18]. exons [dOGL10, dOGL13, ZLZ+15b].

exoskeleton [SKSO12]. Exosomal [LF17, Sha14]. expanded [Dim17, RT19]. expanded [Sel17]. Expanding [CB10b, HL10, DBJ12]. expansion [DZJR10, FNH10, GTB10, HM10a, Mi11, Ou19, RSR11, Sel15a, WMD16]. expansions [CKNB19]. expectations [ALH10]. Expected [BCK19].

experiment [AHV+18, LGR+12, MBS19, PWL+11, SYY17a, SYY17b, VBV10, WW12b, Zhe16]. Experimental [BPP+16, CW11c, LFW+18, WHWZ18, ASH15, AGC18, BMB+18b, CDM+14, DRW14, DDF+14, FKMP10, GDPPSS+11, GDB+19, JRB+16, LCSh14, LAG+14, MAMEA15, MBF+15, PMKS+15, RMRC+16, RGA+10, YA14, ZBA14].

Experiments
explain
[BRB18, NMS10, PDL+17, RN12, SGGHS19, TWH+13, WR14, YY18].
explained [Fil15, Jen10, PVB+10, Sch19b, SW15]. explaining [CMB+12, GDJC11].
explains [Das18, DM10a, Eli17, EJK16, RG18, SSI+16, SWD16, SP14, WKS14].

expressions [BF13, DHT16]. Extended [JMS18, JG14, Kee10, Kur17, LDHD14, LLP+19, MOSS15, Mic15a, OFT15, T13, Zha10b]. Extending [HP12, KDMK16, AH18, AHJ18b, GNB+13]. extension [BRB18, CHH10, CS15, HHH11, SKF16]. Extensions [GW13, RGP13].

extensive [Meh17]. external [Cle18a, VB19a, ZGW14]. externally [SGW17].

Extinction [GDS11, GGM12, HBEW12, HY10, Hoh15, KDS18, LW10a, LW10b, LSS+14, NdMLLBC13, PDSP13, PD13, RT19, Sch18, Sch21, SIVH17, SSME10, SPCM18, SL17+10, TMM10, TLS+13, TSS16, VB19b, WN19]. extinctions [CCA17, SL10]. Extra [POP+19, TMS13]. Extra-cellular [POP+19]. Extracellular [AH16, AdSG14, CRGS18, CPS10, EG10, KPK+13, KSRN19, Lee16b, MCI5a, SWLMMJ19, SBJ+18, ZSZM14, ZAL+19]. extract [LIL5B13]. extracted [HZL+13, NSBL10, NK18]. Extracting [IA17].

Extraction [GAB14, NS16, AAJGCD15, CRRGM+16, DLL+17, DM15, SLDP13, ZKHL16]. extracocular [CCG14]. extravagant [Bul12].
extravascular [Kun16, MAM16]. extreme [IA17, ZZN+19]. Extrinsic [OM10, KPS17, RLSN14]. eye [GCC14, Meh17, SSLB15].

fabc4 [BRA15]. face [ISB+11]. face-to-face [ISB+11]. facemasks [TDE12].
faces [CS14a, Mit14]. facilitate [UT17, WFW19, YI16]. facilitated

Full [Kae17, TAORS10, BMM+14, RN12]. function [Aya12, ASF+15, BKR14, CST19, CLC11, DL15b, Don17, ESW13, FKB+12, For14, GJ15b, GS17b, HRC+12, IMH15, JK12, Kin18, LRA+13, MKBE17a, MI14b, MIH16, OBK+11, RMSTG13, RBMPP+13, SS19, SS17b, TT17, TF15, VBV10, WTLS10, ZHC10, dBB14b].

function-driven [Kin18]. function-oriented [SS19]. function-specific [JK12]. Functional [ABJ12, CW11c, GVGC15, AF10, ASRM15, BRA15, CCY+19, CNM+13, DS13, DOC17, FB12, FFWL11, GTS15, GG12, GG14, GBC+16, HH14, III17, JAM18, KDFM14, Kha10, LDH+12, LCL14, LMJ+18, Mor10b, PC17, PRV+14, SL10, SFLMS16, SK11a, SGDL12, SVA18, TB16, WML6, ZG14, ZLW+19, ZSS10, vLB+13]. Functionality [LT11, PJL14].

funding [SHN12]. functioning [AO11]. functions [AGB+14, AFM10, ARD14, DGYM18, DHT19, DBG18, HK17b, MR15, MP16, PLF19, SKSO12, WSRG18, YS17, ZCSV16a, ZCSV16b].

NIiT18b, NiTI19, O017b, PEW18, QMJW15, Ram10, RN12, ROF17, RSH19, RC11, Ros10a, RM17d, SMS17, SSM15, Shi19, SGA+12, SN18, SCS10, TT19, TGL15, TR17, jWIGQ19, WL19, WHYMG17, XSLZ16, ZMAM19, ZGWL14, ZKHL16, ZLY+17, ZWG10, dMP11, PS12].
game-theoretic [DH16, MGS16, WHYMG17, ZMAM19]. game-theoretical [SMS17].

Games [AN15, Fis16b, KVN16, LSDI15, LJI17, ´SKSRW16, ATTN12, ATG12, Arc16, AS16, BR12b, CLA17, CZ14, CK19, DDRP13, DHK13, FTS15, FNH10, Gal11a, GCM17a, GT11b, GC11, Has14, Hau10, HI12, HSM19, HWTN15, IM18, IOY15, Jan15, JOAN14, JSF+11, JR17b, KC17, KGC18, Kur19, Lai18, LGBT15, LPKH15a, LPKH15b, LRGA13, Mob10, MV18, MB19, NOS17, NCI13, Oht10, PIBP10, PLN14, PGG+15, Pfa10, SHN12, SPSP12, SU11, Shn13, SS12b, Tay13, TR12, UI10, VNS18, XWZ10, YHZ14, ZZC10, ZCW+13, ZZCZ17, vVN12].
gametocyte [TEY10, TEW12, TEY16].
gamma [Gol16, HYN19].
gangliogenesis [HJLNZ11].
G’anti [HS16, CB15, Gri15a, Sza15b].
G’antian [GJ15a].
gap [For10, JCG15, KPD18, MAA+17, PAA11, SGGM11].
garden [KCMF11].
gas [GT15, REC10].
gaster [MAW12].
gastric [OSV+16, PRN10].
gastrocnemius [CSB15, ZPM+15].
gastrointestinal [PPC+17, PBS+12].
gastropod [Nos14, NSS16].
gastropods [IUK14].
gastrulation [YM14].
gate [Zha10b].
gated [Bec14, PDG17].
gating [FIS11, FIS16a, LdLK11, ZCA+14].
Gause [Kri11, KP15, LJ18].
Gaussian [BMI19, CFK17, Go11a, LCG+15, MKBE17a, MKRE18, PPT+16, ZMS17].
Gaussian-distributed [LCG+15].
GCD [KB11].
GC [KB11].

gene-attenuation [JYY+18].
gene-based [PKH11].
gene-regulatory [RLM+14].
genealogical [LG18, Mul11, Mul12].
genealogies [PPTC19].
General [MA11a, WZM19, AFS19, AH19, BMN16, BDR10, BR12b, CL13a, CCY+19, CXC18, CT18b, CdPD11, DHS+15, FL12, FL13, FLW16, FM10, GML10, HN19, HYA14, HKR+19, JLQ+12, JYZ18, JD16b, JD17, JCG15,
generalised [BSB14]. Generalising [BLS17a]. generalist [FKV19, SK16b].

generalist [BLS17a]. generalist [FKV19, SK16b].
geneli

generalisation [AW12, BM11].
generalizes [BKR14].
genenerate [AD13, TM15a, VDH15, ZSO16]. generated [Mul11, Mul12, Sat10, SWG15, YvBS18]. generates [OS11].
genereating [LLC15, Ots11, WXC10]. Generation [LSM17, PKH11, Bue15, CRLH19, DHBS19, FJR19, ITN11, LWV14, MMFK10, MDM10, Pat19].
genereations [CNL14, Oht12]. generative [BBP13, Hal16].
genetic-metabolic [COG19]. genetically [DROC11, GRB13]. genetics [AM14, BSKV18, CM14, Mau15, NGS16, SL12, ZLW16]. Genome [ABP11, CW11b, HHJR11, MZWC10, TDZ18, ABG13, BYY11, BLZ19, BKC16, FMS12, HZLX11, HMM11, KEHK17, Li11, LGL17, LZL17, MKBE17a, MKBE17b, MKRE18, MSIR10, QLZQ11, TLY19, WRRX19, YT12, YZFY16, YY15, YHY14, Zha15].
genome-scale [FMS12].

Genome-wide [TDZ18, MKBE17b, MKBE17b, MKRE18]. genomes [EM16, FS15a, FS16a, GRRG16, HTT19, KEHK17, LI1W, LY14, QW11, SM11b, YCR15]. genomewide [ZK10]. Genomic [Sel15b, SSCJ16, AD16, CL17b, DCS14, doGL10, doGL13, JYZ18, MPS11, SVSP15, TLY19].
genomics [GTS15, SPMS15]. genotype [AGM11, Bec14, IMA14, IMA16, LP12a, MHKA16, NvD17, NNK15, VPGDP14]. genotype-phenotype [Bec14, IMA14, IMA16].
genotype-to-fitness [NvD17].
genotypes [MKBE17a, MKBE17b, Mou12b, SS11, TTP17].
genus [NNK15, WSTL16].
geological [DLSD15, FGGT15]. Geometric [NSS16, Tou14, GZY12, Nos14, PWC12, PW11, RG18, SGB12, TKKE19, Ush16, WY13].
geometric-mechanistic [RG18]. Geometrical
growth

[Sal15, Sch18, Sch21, SZ15b, SAB17, SSLB15, SZ18, Spe15, SHSR15, SER+12, Taki17a, TGB+18, TS17a, TRM+14, TTB+18, TP14, TT10a, TAB+13, VB10, VZ19, Veg10, VBVD17, VDD+17, WGS10, WSRG18, WBMH12, WGO+15, WFM+13, XY14, YZY+16, Yat14, YBT+17, ZS12, ZSS19].

guided [TXWW12, TXCW15]. guideline [SRS18]. guides [BSP18, CHN+15, LSMC18]. guild [Ezo19, IEN15]. guises [CD16]. gut [EzMMH18, KDFM14].

gymnemagenin [RAA+16]. gymnemia [RAA+16].

gynaecology [ZSS19].

gyratory [CFSB16, ZG19].

H [AHW13, GTS15, LDB+14]. H1 [KGM15b]. H1-S2 [KGM15b]. H1N1 [Ni11, TDE12, KLJ17, KJ19, LJ15, LCJ18, PMKS+15, SY11, TXY+12].

Habitat [BJPP12, HD17, HMWB13, HH16, YLI12, BORA10, CA18, GWE11, LHL+13, PC10a, VZ19, YLW+14].

half-believer [HL15]. half-sarcomere [TSB10]. halide [RCL+10].
hallmarks [PBP15]. hallucinations [HRDL14, HRD14]. halophilic [GZ14a, GZ14b]. halves [Di 12]. Hamilton [AW12, SFD12, Tay16b, WWB14, vVAH+17]. hamster [TKK14].

hamstrung [CSB15, Cle18a]. Han [PP19, PP18]. hand [CT14b, Gra18, HXL18b, LE19, PVCEC18]. handed [She11b]. handedness [Kam11]. handicap [Chu10]. handling [GBM18, LLB+18]. hands [HLX18b]. haplodiploidy [Gar14]. haploid [BID15, LS16b, TT10b]. haplotype [AEM13, AEM14, CPH+14, Das13, Mou12b, MKF+14, TDZ+18, ZMNd+10].

PSG+17, PLD+17, PLF19, PM13, RRTR10, RR12, RRTRSPT16].

growth

[Sal15, Sch18, Sch21, SZ15b, SAB17, SSLB15, SZ18, Spe15, SHSR15, SER+12, Taki17a, TGB+18, TS17a, TRM+14, TTB+18, TP14, TT10a, TAB+13, VB10, VZ19, Veg10, VBVD17, VDD+17, WGS10, WSRG18, WBMH12, WGO+15, WFM+13, XY14, YZY+16, Yat14, YBT+17, ZS12, ZSS19].

guided [TXWW12, TXCW15]. guideline [SRS18]. guides [BSP18, CHN+15, LSMC18]. guild [Ezo19, IEN15]. guises [CD16]. gut [EzMMH18, KDFM14].

gymnemagenin [RAA+16]. gymnemia [RAA+16].

gynaecology [ZSS19].

gyratory [CFSB16, ZG19].

H [AHW13, GTS15, LDB+14]. H1 [KGM15b]. H1-S2 [KGM15b]. H1N1 [Ni11, TDE12, KLJ17, KJ19, LJ15, LCJ18, PMKS+15, SY11, TXY+12].

Habitat [BJPP12, HD17, HMWB13, HH16, YLI12, BORA10, CA18, GWE11, LHL+13, PC10a, VZ19, YLW+14].

half-believer [HL15]. half-sarcomere [TSB10]. halide [RCL+10].
hallmarks [PBP15]. hallucinations [HRDL14, HRD14]. halophilic [GZ14a, GZ14b]. halves [Di 12]. Hamilton [AW12, SFD12, Tay16b, WWB14, vVAH+17]. hamster [TKK14].

hamstrung [CSB15, Cle18a]. Han [PP19, PP18]. hand [CT14b, Gra18, HXL18b, LE19, PVCEC18]. handed [She11b]. handedness [Kam11]. handicap [Chu10]. handling [GBM18, LLB+18]. hands [HLX18b]. haplodiploidy [Gar14]. haploid [BID15, LS16b, TT10b]. haplotype [AEM13, AEM14, CPH+14, Das13, Mou12b, MKF+14, TDZ+18, ZMNd+10].

MHMM11, NCLB16, PC10b, Van16b, VG13]. health
[BYM+18, EME+16, Kea16, LCCK12, SPRF13, ZARK19]. healthier
[ADC19]. healthy [BRK16, LSS+14, SCT12]. Heart
[MKMT14, PW18b, BZN17, CST19, FPdRdH10, KAZ11, KAZ13, KCS+15].
heat [DWG+19, MG10b, RZIR16]. heating [RBB+12]. heavy [GW12].
Hebbian [RA13]. hedging [MGT17, MHF+13, Uit11, YY18]. heel [JH12].
heel-region [JH12]. heels [ZPM+15]. height [AdSG14, BNG16, GDS11, JCLS+11, JCLS+21]. Helical
[KI15, EG12, dSMP+11]. helicases [Xie15]. Helicobacter [LAH+16]. Helix
[Kur10, KC11b, LZMM15, She11b]. Helix-helix [Kur10, KC11b]. help
[Ezo19, FXML18, PFB10, Ran12]. helper [GML10, LAH+16, RW12].
helipating [Bar11, CT14b, MW14, WK17, YG12]. hematological [MPC12].
hematopoiesis [LM11, ZCT18]. hemodialysis [dlRVFK+16].
hemodynamic [ARD14, CPS19, DHRA10, SSD11a, SKF16].
hemodynamics [OB15, RPGG+19, SKF16]. hemoglobin [Kri16].
hemoglobins [Oko15, Oko16]. hemorrhage [GCY18]. hepatic
[DLL+18, SWG+15, SBMH10]. hepatica [VPGDP+14]. Hepatitis
[DK13a, ZZR13, dTKDV15, CM12, CKB18, GM16a, GN10, Jam11, KNA+18, LHW14, LMYL15, LZY+15, MR11b, MVH11, MLT10, MG15, MSL+16, NS11, Nak12, Nak16a, PaCZ10, PBSM19, RDS+12, RCL16, ZZR10, ZRZ15, GC18].
hepatocellular [CM12]. hepatocyte [GWW+10]. hepatoocyte-stellate
[GW+10]. hepatocytes [CPS10, DL12a, SAKG13]. hepatotoxicity
[CTSL11, SBMH10]. HER2 [GBC+16]. herbicide [EJ16, GT14, RDMP11].
Hersviro [IC11, LH18]. Herbivore-induced [IC11]. herbivores
[DAVS11, HSR12, Yan16b]. herbivores-fire [DAVS11]. herbivory
[LY15, vVE15]. herd [AMSSG16, ASS19, CMN+11, GKG+18, OO17a].
herd-specific [GKG+18]. herds [GKG+18, KO18, LSGG10].
hermaphrodite [KFB18]. hermaphrodites [BBBR12, XY14, YSYI13].
hermaphroditic [KMHdP10]. herpes [BYY+11, OA11]. Herpestes
[TF15]. herpesviral [FS15a, FS16a]. Hes1 [BF13, STX+11]. hetero
[WLD+11]. hetero-dimer [WLD+11]. heterocyst [iITIM15]. heterodimer
[GY19]. Heterogeneity [GWE11, HTN14, MCC+17, ABV19, BPR15, CP11, CG14, CMN+11, Don17, EBX17, FHSG15, GGG19, GLF+15, HD17, HR14, IOK19, JYY+18, KFG15, LVL18, NiTII18, NJP18, POW18, PGHC12, PRM12, RD17, RAMSI1, SS15d, SZ10, VZ19, Wei12, YSI18].
Heterogeneous [CPF+13, GW19, KMM16, Moo14, AGPK13, AK16, BZCS10, BI19, CCW16, CNM+13, CGW18, DGJ14, FR17, GA16, HMWB13, HH16, HHD+16, HLTR19, IM10, IL13, JMS18, KD16, Kke14, LS10c, LW18, MKK14, MBS19, MG10a, OBE+17, SBK16, SR12, Soz13, SB17, VIBC12, WMT16, WLY+17, ZSH+16, dWV11, dCGSA16].
heteromorphic [BI10]. heteroscedasticity [Ma17]. heterosexuals
[MHMM18]. heterospecific [SBSE14]. heterothermy [BW13].
heterotrophs [CG10]. heterozygosity [Gin10]. heterozygote [BTK14].
Heuristic [Gri15a, MMCZM12, WZ17]. heuristics [RPCW18]. hexameric
human-dominated [SCF+18], human-protein [WMK15], Humans [Flo11, AOR17, BD10b, BVK10, LWLM18, Sch14, TR17, WVO+15], humidity [AK11, KMM18, UD10], human [vTMW15], human-protein [WMK15], Humans [Flo11, AOR17, CR14, Cro19, HH10, RW15b]. Huxley [CPGF+16, GL12b, MZM+16, MAS15b, WSCL14], huxleyi [HWGT15a, HWGT15b, HWGT17]. Hybrid [CLCH10, FKV19, FKB+12, GZFX14, HTK14, IGL+12, JL16, KMMS17, KRR14, Kri16, LHH12, MEKK11, MK14d, NHSX14, PHG12, RBKW19, ZZG+16], hybridization [BJOS13, Sel16], hybridizing [HK12], Hybrid [Cor16, DKS15], hydrating [MHH13], Hydration [LCG12, ØW16], hydration-dependent [OW16], Hydraulic [Che16, KFG+14, KC14, LS15c], hydracaus [RHS14b, RHS14a], hydrocarbons [KK15], hydrocephalic [MA11a], hydrocephalus [MAMEA15], hydrochloride [PRM11], hydrochloride-induced [PRM11], Hydrodynamic [CMBP19, GI10, Ish16, SKSO12, WWIG19], Hydrodynamics [DS16, TTTW13, ICG16, NAK+11, OSF11, RVA+11], Hydrogen [GY19, GZY12, Kmi16, LF10, WJL+16, vLFM+19], hydrogen-methanogen [WJL+16], hydrogenotrophic [LWvB+19], hydrolase [KJM17], hydrology [Urs14], hydromechanical [KC14, MAMEA15], hydrophobic [FWSG17], hydrophobicity [BKR14], hydrostatic [NHE+16], hydrothermal [Dai12], hyemale [KSRN19], hyper [AY15, AANF16, PDT+10, QF10], hyper-QF10, hyper-responsiveness [PDT+10], hyper-synchronized [AAN16], hyperactivated [OSF11, SOC14], hyperactivation [CKBCG12], hyperarcs [MT14], Hyperchaos [BA19], hypercycles [FSG15], hyperemia [WHS+13], hyperglycemia [SAI14], hyperglycinemia [Sat18], hypergraph [CPH+14], hypernetwork [PCC16], hyperpredation [BH12], hypersecretion [Goe15], hypersensitive [ZZC+17], hypertension [JSK16], hypertrophic [MCL+11], hypertrophy [CAGM+17], hypervariability [VBHM+13], hyphe [DEK15, YLY15], Hypodichranotus [SKSO12], hypofractionated [MM19], hypoglycemic [QF10], Hydropredation [BH12], hypostome [SKSO12], Hypotheses [Jam12, CS11b, JZK11]. Hypothesis [BC15, BTK14, Fre10, GK16, Jam15, Kur14, All17, GAI13, GU13, HD17, Jam11, Jam14, Mal15, Mal10, PHR*11, RGL+17, Ron14, SAG19, SDJ+15, SPH12, TMI+15, WZ12, ZP11], hypoxia [BB19, HLR16, KK18, SH17], hypoxia-regulated [BB19], hysteresis [PD17, PHC12],
Information-theoretic [Bar18, MWSM13].

Informational

ingredient

ingest

Ingestible

inflammatory

Inflammation

inhibition

Inhibitory

Inhibitor

Inhibitors

Initial

Initiation

Initiator

Injecting

Injection

Injections

Injunctive

Ingest

Ingestion

Ingestions

Initials

Initiating

Initiator

Initiation

Initiate

Innoculated

Inoculated

Inoculation

Inorganic

Input

Insects

Insecticide

Insecticide-treated

insilico

inspired

inspired

Insylv

insult

Inubation

Insert

Insertions

Insight

Insights

insignificant

insignificant

instantaneous

Institution

institutional
institutions [Ant13, SHBT14]. instrument [Gha16]. insufficient [Sim14].
intrinsic [DCS14, LYW11, GLF+15, HFT15, IU10, KFW12, Lei09, Lei10, MPM10, PR18, PMID+18, RCL+10, RSC14, THC+11]. introduce [SPA18], introduced [BG19], introducing [SG14]. Introduction [GK13].

isometric [DGNT17]. investigated [KGM15b]. Investigating [AHD+18, AGC18, KGM+15a, MH14, PMK15, TK10c, HPB+14, HWGT15a].

Investigation [AHJ+18a, HL14, SCLC13, YIS+17, EH17, FKMP10, HBA17, KMM18, KAN11, LBS+10, LBS+11, LBW+13, MFMB12, PZS+10, PDW11, SEK+10, SVA18, SSRA16, TDT16]. investigations [GAY+15].

Investments [Bar19, BHP12, CPV16, Dra19, MSP19, MJV16]. invented [KK12b].

Inversion [RBBC+12, We14]. invertebrate [Bel12a]. invective [BRB18, SNC12]. investigate [APBS15, ACM16, LPP+19, SH15]. investigated [KGM15b]. Investigating [AHD+18, AGC18, KGM+15a, MH14, PMK15, TK10c, HPB+14, HWGT15a].

ISSR [CMS17].
issue [GKK13, TBB14, TK19]. issues [DBM+18, KLHS17, RBF15].
Iterated [CZ14, GCS12, MN11, QMJW15]. iterative [OO18, QQJW13, ZNCM15].
Iturin [KSK+17]. Ixodes [DB11, WDL+13, DDSDW13].

J [AEM14, BPFI15b, BBM+13a, BBM+13b, BPGS12a, BMGC11a, CLG+11, CNG+12, DBBW11, EPJ+11, FIS16a, FS16a, GZ14b, GS14, dOGL13, Gün13, JN14, JRG14a, JRG14b, JCLS+21, KDK14a, KMLT14, LBS+11, LGK+12, Lei10, LYT13, LPvSP12, ML12a, Mei13a, Mei13b, MLBA13, Mul12, NO14a, PSS+13, PL14a, RRC+11, SCABM11, ScH21, ScH23, SZ16, SSKS20, SC13a, SRAL12, TSM13a, Van16b, WL12a, ZG10a, ZSCL16a, ZZR13].

J. Theor [YCH+17a]. JAK [RG12]. JAK-STAT [RG12]. JAK2 [ZFWK17].

K.
[SH16, AJC12, ABD+11, Don13, EBX17, GSV11, IST11, Kee10, LSC+18, MZWC10, MR10, Pon12, Por13, RG18, SLC13, TSB10, THBM10, WC10].

length-biomass [MR10]. **length-dependent** [GSV11, THBM10]. **lengths** [CS15a, JB18a, POL12, SS12a, TSB10, YW13a]. **lens** [SSLB15].

leptiviruses [VCF+19]. **leptin** [CVPCV+15, KSU+18]. **lesion** [KDD13]. **less** [HII+19, MG17]. **Lessons** [TXY+12, Tjs10, AK15, CEdLSG+16, PGGvL+19].

lethal [ARD12, JN14, JAHKH12, Kir11, gSxFH+12]. **lethality** [TMM10]. **Letter** [ARD12, JN14, JAHKH12, Kir11, gSxFH+12].

leukaemia [CMS16, SBM+19]. **leukemia** [KEG17, NSH+10, ZCT18]. **leukocyte** [GMMN18].

level [AHJ18b, ANY14, BB13, GBRS19, HBW+11, JCG15, KB10a, Kon12, MN11, NBBCC18, NWZ15, NBW10, NBW11, PDB+15, PNP+16, PDNP16, RRC+11, SC10a, SL10, SCD11, SFD16, SP16, SBESE14, WSTL16, XGZ17, YG18, vLSBBD11].

levels [FGLS10, Jam14, Jam15, TM12, YST14]. **Levy** [EPP19, BC15, CHL+19, Han12, HS14c, Rey13, RSC14, RPCW18, TA15].

LGT [SMC17]. **L’Homme** [LCCB11]. **Liebig** [GVCG12].

Life [BBDB13]. **life-cycle** [LG12, MLT10, XSMF12]. **Life-history** [BBDB13].

light [Jen10, †ACHS19, CFL+15, HWGT15b, KSP+11, LRL+16, LL17b, MZ17, MSC10, MCL+11, OFT15, PKL12, SM17b, dBJ11].

Light [Jen10, †ACHS19, CFL+15, HWGT15b, KSP12, LRL+16, LL17b, MZ17, MSC10, MCL+11, OFT15, PKL12, SM17b, dBJ11].

Light-dependent [Jen10]. **light-induced** [LL17b]. **light/dark** [LR+16].

lignin [BMN16]. **like** [AES+13, AOT+11, ABK+12, CHH10, DQY+15, DZE11, FPG11, KFG15, KS14, LC17, LFM11, Mas14, RGP13, SSKK17, VPGDP+14, vNABG12].

like-minded [Mas14]. **likelihood** [BFLS17, CHC17, LSC+18, MKF+14, SNS+17, SC10c, UAL10, WZ15].

likelihoods [HS11]. **likely** [Ber14, CHL+19]. **limb** [CS15b, GBN14, Pon12].

limbs [GP11a]. **limit** [GF11, MGCL13, Uit11]. **Limitations** [GSCS11, BH12, FE11, GMMGVD12, LHD+17, MP16].

Limited [Chu17, CNDK15, HKM12, IH17, BBD18, HWGW18, Jab10, KFA12, KST17, Lar16, LCCC10, MS14c, SSSvD10, SI19, SYSM11, TGB+18, YSI13].

Limiter [SSD13, FH13b]. **Limiting** [AGM11, LSD13, MPS16, SY17, DK13a, RC11, Sch14]. **limits**
[BL15a, Chu18, HM11a, Par19, Sch18, Sch21, TDW16, Zab11]. line
[OOY16, cSGFB17, Voel18, ZBA18]. line-associated [Voe18]. lineage
[bCRS17, CNL14, Di 14b, LW+11, SSKS18, SSKS20, WML16]. lineages
[RJSC18, SS15d, YAK17, YLLL12]. Linear
[CCF14, YW13a, ACdRMR+11, BCF16b, COG19, CZW+11, Das18,
JAHKH12, JRG14a, JRG14b, KMD+12, KCJ+11, LCW14, LT14,
MI19, MP19, NSKO18, Pav14, PHP18, SRD+15, SKF16, SG15b,
TGB+18, Van17b, VLFF12, WRH+16]. linearized [LZWK11]. Linepithema
[vTMW15]. lines [DBBW09, DBBW11, DKG18, FLM18, TKK14, TW13].
linguistic [MPS+11]. Link
[DPCM16, EB15, BC13, CNL14, FKK14, RBRB15, RBRB16, TK10c].
linkage [Gar14, Has14, ITO16, JAM18, RR ´UJ19, SKH17]. linked
[AKR+18, AGM11, BUC14, BTK14, FKK14, GGM12, Sek12]. linker
[HHF11]. Linking
[CML11, Mor16, PMD+18, GHS18, GHS20, HS14a, LHD+17, PVB+10]. links
[CZQ14, WSP14]. lion [LLV11]. lipid
[BMSEE14, FBW19, She11a, ZWVG10]. lipid-structured [FBW19]. lipids
[MK18b]. lipograms [LCF17]. lipoic [KHH+17]. lipopeptide [KSK+17].
lipophilicity [Mar12]. Lipoprotein [JSK16, VSW10]. Liquid
[LLK14, AdSG14, WBB+18]. Liquid-intake [LLK14]. Liquoring [SSST19].
Lispro [SA14]. listeners [SN16]. Lite [LDWW14]. Lite-based [LDWW14].
Literal [TW16]. literature [PBSM19]. litura [KSK+17]. live [ZM10].
liver [BDTR15, BRN15, BHO+18, CLHB11, CMR+18, LW1H14, LLB+18,
OBA11, SSR+19, ZXS+19]. livers [OABI12]. livestock [Cha18]. living
[BL15a, BCPM+16, GKWG17, NO18, SA17]. load
[MSP19, OMO13, VMZK+19, WML+17]. loaded [She10, SGB12]. loading
[BSFB12, KTT+19, LCA+15, MYK+11, Mil16, RS12, TKT18, WYL+18].
loads [DPRSS11]. lobule [LLL18]. Loc [WMK14]. Local
[AT10, CJKR10, MKJS13, NT14, OO17a, TGL15, ATRR10, BBM+97,
BBM+13a, BBM+13b, BBM+13c, BJPP12, CBC+18, CT18b, DL15a, FG10,
GWBL12, Gal11a, GWV+10, HB16a, IU18, LTP19, LPH18, LPH19, MH12,
MGCL13, MMAS13, MDEKH13, PLZG14, Soz13, Str11, TTK14, UI10,
localization
[ABD+11, CXC18, DHH+15, DTY12, FKB13, iHIM12, HLS+12, LLW+18,
LZG+19, Mei12a, Mei12b, Mei13a, Mei13b, SRR+15, SC10b, STG19, Sh17,
SBJ+18, TTK14, USF+18, WMK14, WMK15, XWC11, ZL18a, ZD18].
localizations [AAJGCMD15, YLL+14]. localized [MYC12]. Locally
[HH16, HHD+16]. location
[BSB+13, BCPG18, GC16, LW1W14, LTL+15, WML13]. locations
[FL12, HY13, JD17, QLC+18, SSSD17, SOIO10, ZMS11, ZLW+19]. Loci
[GG18b, LGZ+19, MOG15, YI16]. locked [Opr10]. Locking
[XWW+19, LV17, WSLC14]. Locomotion
[los16, HFT15, IUI14, MS14b, OYIM10, SS15b, SS15c, WL13]. locomotor
machine-learning [SLT+18], machinery [GHS18, GHS20], machines [LRA+13, ZDG+10], MacKay [DSF11], Macro [KPD18], macroalgae [BI10], macrocysts [SSS17], macroecological [TKKE19], macromolecular [DS16, MPCTGJ+15, ØW16, Rou14, Vaz10], macromolecules [SKGM19], macroparasite [TWS15], macrophage [CHS+10, FKB+12, FBMI9, KPEK14], macrophage-facilitated [KPEK14].

Macrophages [EH17, AHMA+19, BB19, HHS+10, NJP18, PL14a, PL14b, dBE16].
machinery [GHS18, GHS20].
machines [LRA+13, ZDG+10].
MacKay [DSF11].
Macro [KPD18].

magnesium [KBK16, CZT+16].
Magnetic [FR13b, MPL16, Tay16a].
Magnetohydrodynamic [ZG19].

malaria [ADB+13, BAR14, CSS+18, DROC11, EN15, GM19, GWCA14, KMCJ17, LP19, MS16, NKL10, NT14, NDZMA14, NMAZP16, NTED+19, OL19, PNVN18, PEZ+13, PRM12, PRM14, TEY16].
malariae [CMD+10].
malarial [EN15].
Male [FKMG15, TEW12, BWB11, DEG+14, HIT18, MG17, Nak16b, RQB17, Unc11, YSYI13, YYB+19, YY18, ZLT+19, ZXS+19].
male-caused [YY18].
male-killing [Unc11].
male-male [Nak16b].
networks [YYST13].
malignancies [MPC12].
malignancy [SGGY10].
malignant [RTRRS+17, ShvHB16].
Mallotus [EBS11].
mammal [Sil16].
Mammalia [TF15].
mammalian [ASK17, AA16, BZN17, Bec14, CLHB11, CKBCG12, DTGD19, GGG19, Jam13, LF16, LW12, VB19a, Xie11].
mammals [FPdRdH10, NNK10, PC17, PEZ+13, SPO+10, VAT18].
mammary [BCS+16, CFR+14].
manage [YTGW16].
management [ACH18, ABR19, GL14, HYS19, HF17, IL13, KKUM10, MM19, MA13, NvD17, NBA+18, PGF11, RDMP11, TB16, TTC10, TSL12, VCF+19].
Managing [KPG19, MGB17].
manganese [KBK16], mange [BCF19],
manifold [Bro13, BBP13, TMF17].
manipulation [AK13, Fer11, HXL18b, SK15].
manipulations [KMM18].
Many [BWM+19, Bur19, CBBO16, CD16, Ezo12, GT11b, Hay16, HG18b, LCHMP16].
many-player [GT11b].
map [Gau11, HGM15, IMA14, MGM13a, NvD17, OABB18, TWP16, WDL+13].
map-based [MGM13a], MAP1B [KK17b], MAPK [KFL12, ZG10c].
Mapping [BJJR10, DRC11, FK18, FWLW11, KSM+15, Mog15, SQZZ17].
maps [Bec14, FHI13b, GMK18, RNVP10]. MAPT [HRHAAA15].
March [Ano10z, Ano10-33, Ano11-41, Ano11-45, Ano12y, Ano12-37, Ano13-33,
Ano13z, Ano14-45, Ano14-28, Ano15-31, Ano15y, Ano16-28, Ano16-41,
Ano17-36, Ano17-29, Ano18-29, Ano18-48, Ano19-40, Ano19-35].
margins [HBT13]. Margulis [CB17b, LP17, Sat17]. Marie [AKR+ 18].
Marie-tooth [AKR+ 18]. marine
[KG13, MP13a, MROS15, NNK10, TM14, Tak16, VAT18, YSYI13]. marital
[MMC19b, ZSW+14]. marker [MKBE17a, MKBE17b, MKRE18, TF18].
markers [DQS+15, FMS+10, Mor11, PHTP+12, Tal12, WCC14].
Markov [BCFR10, CJKR10, CPGF+16, CSM+14, FLGGD+14, HM11b, Jia16, LYF+15,
MC15b, RFME+12, RLFS18, SG15b, SFSJ12, Sum13, TSS16, UBP12, ZLW16].
Markovian [LZT13, ACT12, BBR12, LZT12, PHK15, Veg10]. marriage
[Arc13]. marrow [AOM19]. Martingales [Mon18].
Maspin [AMFR+16, AMBH+13]. Mass
[FT12, Mac11, CDD12, Cro18, EN17, HEN1, HPP10, Höh15, Hor11a, LLG16,
LS18, MKBE17a, MK14c, PIPB10, POP12, SSEM10, WSRG18, Woh15].
mass-extinction [Höh15]. mass-recruiting [Cro18]. mast [TI13]. master
masu [HIT18]. matching [AdVG15, ESS19, MBBD13, ZLZ+15b, ZLZ+16].
Mate [MM18, WSW10, BB18, CC11b, HL15, NT14, SL18, TI12a, YK11].
mate-finding [BBB18]. material [CW11a, Fil15, GSF13]. Maternal
[FDP15, FGH+14, Fil15, Jam14, Jam15]. mates [SBJ13]. Mathematical
[ASC15, AOM19, AP17, AM12, ADR+11b, BCPM+16, BB19, BHO+18, BJ18,
CWM11, CDO17, CSBK15, CBW+17, CKB18, CSS+18, CSKZ19, CSDK10,
CHN+15, CDGV10, DGNT17, DBM+18, DPC15, DTGC14, FBC12, Fok12,
FM13, FIJJ11, GT11a, GE18, GB+11, GSS19, GMB11, GCYL18, HK17b,
HTM15, Hr16, HHE19, HBA17, IBB+15, IvLP12, iTIM15, KCMF11,
KMZR18, KSSM11, KL17, KdlR18, KPEK14, KSK+16, LF19, LBMG16,
LMP14, LMHF13, MOEdP16, MR19, MVH11, MFL+18, MKK16, MSA+16,
MTLW+10, NKB16a, NPM15, NTO16, PH13, Pal19, PRC15, PBMS19,
PVG19, PLD+17, RMM+16a, RZRSC19, RKMG12, RLG+17, RBB+12,
SRK+12, SMB+16, SNY+17, SGT17, SBW11, SSM+18, Sht17, SD16, SMA11,
SSR+19, SRH19, SW13b, SPL14, TLL+12, TRM+14, VHM+17, VWO+15,
WCM15, YCL+17, ZARK19, ZLZ15a, ATK10, AHW13, ANGPB12, ABR19].
mathematical [ANK10, ABH+11, AHMA+19, AVB19, Ano19-27, AHAF14,
ALH16, ARM18, BRK16, BTR18, BCPL10, BPP+16, BBJ+10, BTH+13,
BSM+14, BPS15, BTF19, BGD+13, BSR+11, BC16b, Bue15, BMGC11a,
BMGC11b, Bur19, CFV+19, CVH+10, CPW16, CPF+13, CCG+18, Che12,
CWP+18, CKN+12, CTB18, CCAdS13, DG11, DL12a, DMP15, DLHS11,
DHT16, DFG+18b, EPJ+09, EPJ+11, FBFM12, FKDW15, FBU11, FWLW11,
mathematical [Mor16, NS11, NH19, NS13, OFT15, OO11, PCT11, PCT19, Pan19, PDRC16, PMK15, PL14a, PL14b, PDF18, PCS+18, PC10b, PMKS+15, POK+12, QJR+16, RM17a, RVZ14, RTR+13, RRBM12, RWW+15, REC10, RAF+14, RH19, RTEK12, RTEKG19a, RSD+13, RB15, RBG+17, SGAM12, SBXR13, SBP13, SHK14, SPO+10, SK12a, SYSF17, SY11, SZ10, SW19, SHSR15, SH15, Tac10, TDHC+18, TEY10, TA19, TD14, TK10c, VKA12, XW1L12, Wod18, WBB+18, XY15, YKO+16, ZCS+15, dSKBS+10]. MATHT [SLW+18a].

Mating [LPvSP11, LPvSP12, Ant13, BWB11, BM14, BAR14, CC11b, FHI13a, GGM12, HT16, LG18, LF13, MO12, NH12, ZKT10]. matrices [RLF18, Sum13].

Matrix [AH16, Bue15, DLL+17, ESGA15, GCM17a, HSMCCR19, HHF11, KPK+13, KHH10, KKH+17, KC17, PDB+15, PNP+16, PDNP16, PLN14, POP+19, PSA13, QLC+18, SLDP13, WYX+17, WZY14, ZSZM14]. matters [Das12, Gau11, PCBM12].

Maturation [BT17, BI12, LZTD18, PB11, WRG18]. mature [BLZ+19, DK16].

maturity [ZZS19]. max [BRR17]. Maximal [MG14].

Max-SAT [MKF+14].

Maxima [RG18].

Maximal

Maximization [BCBD19, Arc13, LFS11, OWB14]. maximize [SWR11].

Maximizing [ARZ15, KOS13].

Maximum [MG14].

Maximum-likelihood [LSC+18].

MC7 [OYY16].

MC7 [OYY16].

Mean-field [HAA17].

Measles [SGA+12, KN11, LAn16]. measure [DLY11, FH+10, HY16, HN16, LX15, MK11, M17b, PBD13, YC13b, YC14]. measured [PW18].

measurement [HN17, LLB+18].
Measures [Orr19, ALH16, DZW10, Est10, Gia13, HMM11, WSK + 19]. Measuring [DPRSS11, FSW + 16, XTZ + 13]. Mechanical [LBH13, MS18, MGC12, WHWZ18, AA12, BSL17, CPF + 13, Cle18b, Fue14, Fue15, GHS18, GHS20, HGGCR13, IS17, Js12, KSSM11, Kue16, LHFP18, MBPS17, MGC15, PDL + 17, RHJ11, SGAM12, SAB10, Tsdl14, TIMI + 15, WBB + 18, XWW + 19, ZR16, Ran12].

Mechanics [vDVFH + 18, ABD + 15, ATG12, BK19, DCL18, FPG11, Ing16, KBL15, Kro10, M11, RS14a, SHB + 17, SAGAGB17, ST17b, WO11]. mechanism [ADC19, BZJP18, BL15b, CSKZ19, CW14, DGJ15, Di 16, DZE11, FD11b, GWW + 18, HFM15, HMM16, HDZ + 19, IK15, JLO + 12, Kec10, KFS + 13, KPS17, LCG12, MN10a, P13, Pat16, RG12, Sht17, SWSLMJ19, TGB + 18, TB11, THW + 13, TSB10, TCCY + 12, WKB18b, XFS13, XKCG15, YG18, ZYJ15, Zho11].

Mechanisms [CCB11b, CMS16, Deu18, DTP19, Eft13, GZFX14, GT11a, GTP16, HS14a, JLB + 15b, KMA10, KEG17, Kon17, KOQ + 17, MMLK11, MZMM + 14, NWWL18, PHABAI + 16, Pat19, RDD14, SBB10, SZ15a, SZ16, SGD + 16, SH17, THC + 11, TSP + 15, WDL + 17, WBRHE10]. Mechanistic [DDF + 14, AR17, BSR14, BGF + 14, CKZ + 17, EHBC10, GCSMMG + 12, GG12, JG14, KB19, NBW + 10, OCN10, RG18, SL10, SAGK13, TW12, WJL + 16, YCB16, vLFM + 19]. mecano [MDD13].

median [VACGF17]. mediate [DHBS19]. mediated [ATI12, ABV19, AN10, AES + 13, AC12, BWB11, BIMC17, CB10a, DHV19, EBSW17, FMLM12, GS17b, GRI11, HW + 14, KR19, RDD14, SBMH10, SZ15a, SZ16, SGD + 16, SH17, THC + 11, TSP + 15, WDL + 17, WBRHE10].

mechano-chemo-thermo-electrotaxis [MDD13].
WTQL10, WYL +19, WZ17, Wu14, WHG +14, XGZ17, YG18, YC13, YC15, YDC +13, ZTWL12, ZKHL16, ZZC +17, ZDY11, ZK10]. methodological
[JPDP10]. Methods
[GLR +18, OBHS19, Boc12, DGW +18, DEK15, Jab15, KOF +14, KCD11a, LYZ +18, MSM +14, MNH +12, MKHA16, MSS10, PDB +15, PWC +12, Ros10b, RCD16, SCF +12, SBB14, TMD14, WH14, WP17, XWW +14, dlCGSA16].
methyladenosine [AH18, ZZN +19], methylation [BSB +13, JCG15, KKD18, LZA +18, MSM +14, MNH +12, MHKA16, OSS10, PDB +15, PWC +12, Ros10b, RCD16, SCF +12, SBB14, TMD14, WH14, WP17, XWW +14, dlCGSA16].
methylcytosine [SIK +18]. metric [GKNT10]. metrics [CA17].
methylcytosine [SIK +18]. metric [GKNT10]. metrics [CA17].
metronomic [BH13c, HL18]. mevalonate [DGW +18, PCS +18]. mexicana [WWIG19].
microarray [GGCJ16, KHX +19, OGE10, PS13, XSKA17]. microbe [GW19]. microbes [BI15]. Microbial [Aya12, SKS +19, Ber14, BSL +17, BWL12, CG10, DG12, DDP12, ESE15, FXML18, FE11, ISM +11, Jus11, KFA12, MB18a, SCH +19a, SI11b, SY17a, SY17b, SBS17, VB10, WPP16, WSTL16, XDC +11].
ABR19, ABR11, AA12, AWRD15, ABH+11, ABV19, ABJ12, AdlPLMZ13, AP13a, AM12, ABN15, AR17, AHAFA14, AHJ18b, AP13b, AN17, AOT+11, ABK+12, ASF+15, Bac15, BTR18, BSB14, BPS19, Bal13, BBR16, BKR14, BP18, BB15, BFJ+18, BBJ+10, BTH+13, BTG+15, BBR12, BF13, BFR14, BF15, BGKL17, BSV+10, BJJR10, BSR18a, BBR10, BCF19, BKL+15, BGI+14, BHH11, BDID+12, BSM+14, BB10, BPS15, BHH+14, BTF19, BM10, BSR+11, BSS11, BCF16b, BS+13, BLS+12. model [BR14, BMM+14, BCPG18, BBRT12, BDR10, BJ17, BZ10, BC13, BMB+18b, BPGS12b, Brc15, BHSB11, BMGC11a, BMGC11b, BFGAGA16, BCS+16, CHL+19, CJKR10, CS11a, CCS15, CRGS18, CFMC13, CVH+10, CPW16, CN10, CTA15, CDQ+17, CC11a, CCB11a, CTJ10, CGV+15, CMS+19, CCG+18, CC11b, CAGM+17, CL17a, CFZ14, CN12a, CS11b, CK16, CHH10, CKRD11, CW15b, CWP+18, CB18, CH16, Che14, CKN+12, CK15, CJL15, CTB18, CFF11, CMHM19, Chn10, Chn17, Cle16, CA17, CB16, CG14, CV19, CZPC+18, CGRRGM+16, CAA11, CMJD11, CFR+14, CMR+18, Cro18, CMS16, CMGN17, CEK+19, CKS15, DFM+14, DS15b, Dal17, DJD10, DDHM12, DS19a, DG11, DBBW09, DDBW11, DLSD15, DH16, DAVS11, DGT17, DB19, DL12a, DAA17, Di 13b, DROC11, DH1P14, DCM+13, Dim10, DGRB13]. model [DPC15, DI10b, DDTL19, DDB10, DHRA10, DTP19, DLHS11, DWG+19, DDSW13, DFG+18b, DBJ12, ESG+16, EG10, EBS11, EHBC10, ESW13, ESE15, EPJ+09, EPJ+11, EI13, FD18, FIS11, FIS16a, FZ14, FS11a, FE10, FM15a, FKB+12, FBFM12, FKDW15, FBU11, Fok12, FLR14, FMBM19, FRG+13, FM18, Fra16, Fre10, GSR17, GLR+18, GCSP17, GLR+17, GCSMMG+12, GJ11, GMOP12, GM19, GA13, GGG19, Ger16, GTC19, GI10, GW13, GTB10, GLOC10, GdGL17, GAPK10, Gol16, GCG14, GBJ+11, GS17b, GGGM16, GC16, GMNM18, Gri15a, GT15, Gri11, GAV15, GDJC11, GS+11, GW12, GHS18, GHS20, GWX17, GKG+18, GMR16, HGM15, HKB12, HMTA17, HT19, HB12a, HFT15, HD17, HP12, Han12, HNO18, HTK+18, HSK16, HS14a, HLVR16, HGCC13, HGB+13, HM11b, HSM17, HBA10, HGO+18, HWW15a, HWGT17]. model [HS12, Hor11a, HDNB10, HB18, HT16, HPW+13, HRG11, HKR+19, HGM+16, IBB+15, ISZ18, IGL+12, IS17, JAK19, JDPK15, Jab10, JMO13, JB18a, JMH+19, Jen10, JSK16, JWS+10, JSSZ12, JL16, JSP+16, JMS18, JB11, JSDEK14, JMK+17, JCLS+11, JCLS+21, JKS15, KSU+18, KIS13, KA11, KSK+11, KJG12, KPG19, KCC+19, KB15, Kar12, KP12, KH10, KSP+14, KFB18, KVB11, KBE+13, KMA10, KHK15, KHK+17, KG15, KB19, KGK10, KRR14, KMC14, KL17, KdlR14, KJ19, KCSB14, KNA+18, Kit10, KPEK14, KTN+10, KSK+16, KEG17, KCS+15, KS16, KKG+14, Kon17, Kon11b, KFS+13, KSRN19, KL18, KCD11a, KCD11b, KA16, KF12, Kši11, KLB+16, KLS17, KIT+16, KK17b, KF10, KC14, LLN+19, LPP+19, LF17, LPB17, LPB18, LSP+17, LWH+11, LW+18, LF16, LP12a, LKK13, LJ15, LC16, LCJ18, LM11, LPGB19, LGMV14]. model [LDA13, LHJ14, LHF16, LFB+16, LF10, LMW+10, LSY+10,
XGZ17, XNW17, XSCS12, Yan10a, YZMY18, YGMT12, YZZ13, YWP13, YW13a, ZYS+16, YG12, YD15, YCB16, YY15, YIT19, YLH12, YKO+16, YBT+17, YLLL12, YMZ18, ZBA14, ZPdFJ19, ZCA+14, ZYL18, ZK18, ZTT18, ZJY19, ZLZ+11, ZKR15, ZGW16. model [ZMS17, ZZX+16, ZSW+14, ZWW14, ZMC+18, ZS10, ZPM+15, ZVM10, ZCS+15, ZAL+19, ZSS19, dLMD+11, dTKD15, vHHK14, vVLS14, vdSS12, MOSS15].

Model-Based [ZKMB19, RG12, KBV11]. model-experiment [LGR+12]. model-free [BFJ+18]. Model-independent [Mun12]. modeled [KHRS10, MWSM13]. Modeling [ASC16, ARG19, AT12, AAGO+17, AMSSG16, ABA11, Alv18, Amo15, AN10, AEs+13, AGGME18, AC12, AFD+17, BR16, BZCS10, BZL17, BVK10, BBS10, BGW15, BPV15, CHD+10, CFT11, CB13a, Cha18, CTW10, CBC+18, CL18, CB10a, CSR15, CT16, DE17, DNB12, DFS11, DFT+17, DBBM11, EA19, EBE10, EJ17, EJ19, EEHM18, EBE14, ESGA15, FGH+14, FKB+12, GWBL12, GML10, GSV11, GKB13, GBN14, GMBK14, GP18, Gon13, GLF+15, GSV16, GMS+13, GAY+11, HT18, HGW18, HVM13, HH10, HBW+11, HT12, ITN+11, JO13, KBS+19, Kon12, KB10b, KST17, LRL+16, LCMC14, LGK+09, LGK+12, LIW17, LCI11, LLDW14, LH14, LXQ14, LGBT15, LA15, LS10c, LSB10, LL17b, MB14, MKRE18, NCLB16, NJP18, OAP14, ONO15, OB10, OVK14, PN18, PKL12, PRV+14, Rem15, RHJ11, RS14a, RRHSP16, SCLA10].

Modeling [SP13a, SPRF13, SMZ+17, SER+12, TGLK19, TAI+18, TTB+18, TWH+13, TSB+17, TLK19, VP18, WZJ+13, WGC13, XCW+18, Y14, Y12, Z18a, ZZR10, ZZR13, vTMW15, AMM16, ASC15, AOM19, AD15, ARG14, ANa11, BRK16, BCPL10, BPP+16, BSV+10, BZP18, BTF19, BTW11, BB13, BJ18, CWW11, CLPZ14, CSR+05, CLCH10, CLA+16, CFSK10, CCA13, CTL+15, CvBF18, DLEMP19, DFG+18a, DHT19, DBM+18, DGD+11, DFM+19, EKvdKvFK13, FAFA17, FSA15, FBK11, FHM18, FBC12, FPR10, FIJJ11, FK19, GKM10, GTS15, GL18a, Giv10, GCO+11, GBJ+11, GS11, GSS19, GMB11, GCY1L8, H16, HB10, HCS+19, HWD+14, HM13, KCMF11, KDM13, KMR18, KSS11, KAPR12, KBV12, KKO+10, KHI16, KKW+10, KTH16, Kla10, KKH+17, KTT19, KML14, KPL14, KKL18, LF19, LBMG16, LL17a, LDB+14, MPJ13, MRF19].

modeling [MYK+11, MH11, MFM16, MFL+18, MBC+12b, MZMM+14, Mol18, MABF18, MMP13, MAH12, NPM15, PAOM17, PDF18, PBSM19, PZLF19, QJR+16, RMM+16a, RZRSC19, RMM+16b, RM19, SRK+12, SBM+16, SK15, SNY+17, SDT17, SSJ18, SMG18, SRP16, SM+18, SKP17, SMS14, Slt17, SR14, SKK+11, SW13b, SW19, SDPC11, SRAL12, SH15, SKSRW16, SPL14, TLL+12, TI12a, TCH14, TRM+14, TKTB18, TC12, TAI16, VPK12, VGPS18, VHM+17, VZB+15, WHW18, Whi11, WCM15, XWW+19, YLW10, YCL+17, Zad11, ZGY11, ZLZ15a, ZXC+10, vLFM+19, ALD+11, KBS+20].

to modelled [RG17]. Modelling [AKS+19, ASGE14, AKdV+14, AK11, ASL+18, BDTR15, BTO14, BTO15, BBWS+13, BJO+16, Bos12, BCPG18,
BPPC15, BMF+18, BPGS12a, BPGS12b, CM12, CST16, CLK18, CDD12, CMN+11, CKBCG12, Cut15, DGW+18, Don13, DS10a, DFC+12, EH17, EME+16, ECP+16, FKK14, FGLS10, FKB13, GDF18, GS13b, GBJ18, Gün12, Gün13, HKS15, HKS16, HT13, IS10, IMW15, JYY+18, JSB15, KHS13, KMHdlP10, KBKK14, KM15, LWH11, LWRE14, LBGW13, LMC+13, LS11a, LWvB19, MPP+15, MS12c, Mor16, NNH+16, NBC16a, NBC16b, NM11, PSP+12, PCHM10, PWE15, PGHC12, PSL+10, RGG12, RDSD12, RLM14, SW11, SR12, SJS13, TTC10, TXT16, TBMM19, TDSM12, TAB+13, VAG16, WBM17, WPA17, WBM12, WBM+15, YCH+17a, YCH+17b, ZLCH18, ZN18, ANK10, AP17, BVJE17, BB19, BCFR10, CXWL11.

Models [CRC15, CR14, CSBK15, CWB17, CSKZ19, CHN15, DBG18, DTGC14, DDF+14, EBE17, EJ16, FWB+12, FK16, FGAM12, FTPN10, FM13, GT11a, HWPL12, HLTR19, HB13b, HHS+10, IvLP12, JSP+16, KPH18, KKH+18, Kun16, LCH18, LTM19, LMM18, MZSC10, METC12, MCM19a, MM19, MSM+14, MVH11, MSBB13, MFP+14, MG10b, Mor10b, MK16b, MSA+16, MDD13, MTLM+10, MP19, MJ16, NF14a, PH13, PGT+19, PW+15, PGGvL+19, PHA+17, PMD+18, PM13, RKK+19, RKK+12, STA15, SSR+19, STX+11, TC11, TF16, VC10, WMPF+15, ZLB+18, dBB14b, dSKSB10, PW19].

Modern [AK13, FD11a, IIKT13, LH15, MGGA11, OFB10, PW+12, PSD+18, SCC11, SL17, dSRM15, APBS15, ACDRMR+11, AHJ+18a, Ala15, AKNP18, AD13, AHR10, AHMA+19, BSR14, BT17, BGG10, BSH19, BM11, BBI14, BCPM+16, BKSW16, BPR15, BPJ12, BK14, BvLH14, BSC+18, CS14a, CAG13, COG19, Coh15b, CMRR13, CNG+12, Cor16, Cre10, Di19a, DM15, DIL14, DMP15, DRA19, DHT16, FJS+19, FLCS+15, FDM+11, FS16c, Gal10, GLZ+13, GFM+19, GK13, GI15, GE18, GXF13, GA14, GWWW+10, GBIR13, GGM15, Gru18, HSD11, HHS15, HSMCC19, HV11, HHE19, HPML18, IM16, JBSFB12, Jus11, Kae17, KFW12, KM19, KW10, KKYV18, KA15, Kri10, KGC18, KJ11b, KSPA17, KBF18, LSI3a, LSH14, LZ+19, LY11, LLI3a, LSI14, LDDA+13, LW18, MR11a, MHC16, MBLV10, MKBE17b, MKRE18, MPBS17, MFG+13].
[DMCP14, FGLS10, LLY15]. modified [AGRR+15, AAJ15, DROC11, Gol10a, Gol16, GZ19, PLF19, RRRSPTTR16, WdLS17, XSLZ16, ZGW16].
modifier [JLQ+12]. modifies [RR12]. modular [AAGO+17, WB19].
modularity [ML13]. modulated
[CLCH10, DTGD19, GZT15, MPK+12, Zhu11]. modulating
[BZJP18, ZGS+10].
Modulation
[MYC12, Bac15, MMFK10, PKL12, PBBB10, VGZS18, ZAL+19].
modulations [HKS16]. modulatory [BFH+15, WBRHE10]. module
[HSI+19, LMJ+18, PEZ+13, RPD14, YLF+17]. modules
[HZL+11, Kri14, LDH+12, LDH+14, PML18]. modulus [KFG+14]. Moffitt
[BBDB13]. moieties [CM17]. mold [Tre19]. Molecular
[AD15, AFM10, BWP10, BE14, CN10, CVPCV+15, Dai12, DEK15, DMM+14, DCL18, Dun11, EJ16, FHG15, FZ14, FLCS+15, GHBI16, HAUr+18, HBW+11, HZW+14, IKT13, Ing16, JZL13, JL16, KJM17, Kee10, KGP+15, KIT+16, KF10, LCG12, LT14, LKZB15, MPP+16a, Mar12, MAFK12, MS18, MFKS13, ML11b, NKK+15, NS16, Par19, QZ14, RFME+12, RM19, SN12, SS19, Sel10, SG15a, SP14, TWR+18, TGLK19, TLT+15, TAR16, TMS13, XMWC13, XYZ15, YNY+10, YCL+17, Zha10a, ZGY11, ZZ18]. molecular-cellular [HZW+14]. molecule [Di 19a, LAJC19, TS17b, ZZC14].
molecules [AMM16, AIY16, JB19a, KIT+16, LCG12, MS10b, MAA+17, Zol14].
Moment [Lio16, Che10, FS16c, JSB15, FHK15]. moments
[ADMR16, BRK19, Cle18a, DK13c, KJH+19, Sch18, Sch21, vV18]. momentum [IPS14]. monedula [GSV11]. monitor [MFKS13]. Monitoring
[CPV16, BGLR+19, GLR+17, PGGvdB12]. monkeys [GPD18]. mono
[VLF12]. monoclonal [ADR+11b, FBC12, MFMB12]. monocots [TDT16].
monocytogenes [JRR+12, RMF+18]. Monococious [AM10, HT16].
monolayer [DFC+12, NTO16]. monomorphic [DFMR19, Xie15].
monotonic [BBR16]. Monte [KSK+11]. moonlighting [Bar19]. mooring
[CAV16, Dal17, GH11, HT16, LKPH15a, LKPH15b, LPH19]. morbidity
[SST19]. MoRFPred [SBT+18]. MoRFPred-plus [SBT+18]. MoRFs
[SBT+18]. morpho [MGC15]. morpho-mechanical [MGC15].
morphodynamic [GBN14]. morphogen [DNB12, MBM11].
morphogenesis [IS12, KRS11, LL17a, LC10, MGC12, ZCS+15].
Morphogenetic [BJWL15, RV16]. Morphological
[CCB11b, DKP+18, AHR10, KHN16, Sel10, SPMGR10]. morphologically
[Wu14]. morphologies [LSMC18]. morphology [KHN16, LFZN11, MBC+12b, NWB+10, PDL+17, RMM+16a, SMM15, SK11a]. Morphometric
[KKOM18, Nij11, VF12]. morphometrics [PWC+12]. mortality
[AOR17, Aya12, DBB14a, Dol16, GMS+13, MDE11, RU16, RC13, WKH16].
multi-label [Mei12b, Mei13b, WMK14, WMK16, XWC11].
multi-level [SFD12].
multi-localization [Mei12b, Mei13b].
multi-locus [XW17].
multi-motor [SL19].
multi-parameter [VBV10].
multi-patch [SSG+19].
multi-peaked [PTNK11].
multi-phenotypic [ZWW14].

Multi-player [De19, vVN12, PLN14].
multi-profile [HTK14].
multi-regimes [HHT+19].
multi-scale [EBP15, Cox10, Giv10, KCZ+19, MLL+16, SH15, dICGSA16].
multi-source [YZ19].
multi-species [MPBS17, Shi19, ZSH+16].
multi-step [Das18].
multi-strain [ABKS11, ABN15, BDR10, GVSLG16, JCW13, SR12].
multi-task [GXFF13].
multi-type [NKOS11].
multi-voting [AH19].
multiactivity [KG13].
multiallelic [Bon12].
multibody [SCF+12].
multicellular [DFG+18a, Edg19, EPJ+09, EPJ+11, HNO18, HNA15, iITIM15, KUV+10, LC16, MFL+18, OKVN18, TDSM12, VH11a, Vel17].
multicellularity [KVN16, LSM17, TWB16].
multicopy [FS11b].
multidimensional [RW15a, GM16b, HB18].
multidimensionality [LYH18].
multifactor [YYC19].
multifocality [FLR14].
multiforme [CRC15].
multifractal [YISG14, SCLC13].
multifunctional [HauR+18].
multigame [Has14].
multigroup [CFF11].
multihost [PGKZ17].
multilevel [FK18, GCM14, Luo14, PGG+15, SSM15, TGL15].
multilocus [VPGDP+14, Yyc19].
multinomial [KBV11, CW11b].
multiparameter [MK11].
multiparticle [Kon11a].
multiphase [HB13b, PM13, MBPS17].
multiplayer [BR12b, GCS12, HWTN15, PBR17a, PGG+15].
multiple-allele [SL12].
multiple-segmented [Hua16].
multiplex [JAB18].
multiplicative [CKF17].
multiplicity [BR18].
multiscalar [CRC15, RLK10, BCPG18, CGvG+15, CMHM19, EBE17, GM19, GAPK10, HML11b, HGM+16, KNA+18, LFW+18, LMJ+16, MPK+12, MH13, MPP13, PDT+10, PGHC12, PMCS16, SKD+10, SW19, ST17b, Van16b, ZPM+15].
multismallness [ML14, YLLL12, FJC+10, KG13, KL18, NF17].
multistability [LM11, OCHHZ12, SLR17, MPP+18, SX12, SY12].
multistage [LTZ19].
multistationary [BFS18, KS19].
multistatistic [ZMS17].
multitemplate [IDM15].
multivalued [DRC11].
multivariate [MKBE17b, BPM+12, GKM18, GBIR13, Gri11, Gri15b, MKBE17a].
multiwhisker [Pat19].
multocida [GTS15].
münchen [JBSFB12].
murine [ABD+11, MEE+14].
murray [DPCM16].
muscle [AJD11, AJC12, BRN15, DGNT17, Don13, GMOP12, Giv10, GHS18, GHS20, HGGCR13, KCZ+19, Kro11, KSM+15, LO15, LCGMH12, LHPF18, MAH12, MH14, NF16, MPS17].
multiwhisker [Pat19].
multocida [GTS15].
münchen [JBSFB12].
murine [ABD+11, MEE+14].
murray [DPCM16].
muscle [AJD11, AJC12, BRN15, DGNT17, Don13, GMOP12, Giv10, GHS18, GHS20, HGGCR13, KCZ+19, Kro11, KSM+15, LO15, LCGMH12, LHPF18, MAH12, MH14, NF16, MPS17].
RGA+10, RW15a, RS12, RS14a, RG17, RG18, SS14, SCF+12, SGB12, Sni14, SAD17, SKH11, SH16, ST17b, TvMG16, TSB10, WC10, ZPM+15].
muscle-tendon [RS12]. muscle-tendons [RS14a]. muscles [ASGE14, BSS11, CSB15, CT16, GGC14, XYN15, ZPM+15]. muscular [HFT15]. musculoskeletal [SCF+12]. mushroom [MBC+12b]. mussel [SM16]. must [LCBO+12]. musth [WHYMG17]. mutagen [BE14]. mutagen-interceptor [BE14]. mutagenesis [BCKS13, BKPV15, MV10]. mutagenicity [HPB+14]. mutant [AH12b, ABN15, GGM12, Gre15, TLT+15, YCL+17, ZFWK17].
muscle-tendon [RS12]. muscle-tendons [RS14a]. muscles [ASGE14, BSS11, CSB15, CT16, GGC14, XYN15, ZPM+15]. muscular [HFT15]. musculoskeletal [SCF+12]. mushroom [MBC+12b]. mussel [SM16]. must [LCBO+12]. musth [WHYMG17]. mutagen [BE14]. mutagen-interceptor [BE14]. mutagenesis [BCKS13, BKPV15, MV10]. mutagenicity [HPB+14]. mutant [AH12b, ABN15, GGM12, Gre15, TLT+15, YCL+17, ZFWK17].
muscle-tendon [RS12]. muscle-tendons [RS14a]. muscles [ASGE14, BSS11, CSB15, CT16, GGC14, XYN15, ZPM+15]. muscular [HFT15]. musculoskeletal [SCF+12]. mushroom [MBC+12b]. mussel [SM16]. must [LCBO+12]. musth [WHYMG17]. mutagen [BE14]. mutagen-interceptor [BE14]. mutagenesis [BCKS13, BKPV15, MV10]. mutagenicity [HPB+14]. mutant [AH12b, ABN15, GGM12, Gre15, TLT+15, YCL+17, ZFWK17].
Network-based
[DQS+15, ZC14, BRA15, GSYS10, ML09, ML12a, NKM+12, XSCS12].

networked [MAF+19]. networking [KAZ11, KAZ13, NLB14, XMWC13].

Networks
[LS13b, AAGO+17, All11, AD13, AdGM12, Arc16, AGGME18, BTO15,
BFS18, BZCS10, BLS17a, BB11b, Bro13, BR12b, BFLS17, CP14, COWA11,
CST+12, CR19, DBD12, DTGD19, DG10a, EG10, EBP15, EB15, Est10,
ER18, FKK14, FK16, FJS+19, Fer11, FMS+12, FVT16, FRTP13, FM18,
FWR19, GS17a, GSCS11, GE18, GXF13, GCZ+12, GMM15, GM16b, GMK18,
GJS+10, HK12, HS15, Hal17, Hal16, HK17b, Hay16, HL14, HXL16, HXL18a,
HB16b, HB10, HM10b, HBL10, HMW16, IMM16, IMA16, IS10, ISB+11,
IU10, IvdSW16, IM10, JC16, JCW13, JKS15, KMD+12, KS19, KSP18, KR15,
KTH16, Kon11c, KKM12, KJSS10, KKYV18, KdSUS10, KJ11b, LLSO13,
LCMC14, LWH+11, LR16, LS14b, LCL14, LLJ18, LMJ+18, LC10, LT11,
MC16a, MLC19a, MK11, MT14, MBLV10, MC19, MTE15, M16].

networks [MGC13, MJC+11, MdSPBL16, MS10b, MFHS13, MF15, MS12c,
MLBA12, MLBA13, MRS14, MBRR19, ML11b, NSS+11, NGN13, NW10,
NMS10, OY16, Opr10, PAOMV17, PSJ15, PPM12, PMP13, PGKZ17,
PYMR12, PP12, PP14, QZ14, RA10, Ric19, RMFE+12, RBHK14, RLSN14,
SAA10, SSD11a, SW16, SHN12, SSZB15, SP13a, SBP13, SMC17, SVB+10,
SWTO15, SSH+19, SNC12, SBK16, SHM+18, SCKL15, SMC+13, SHS13,
SAZ+14, TL15, TP10c, TM16, TLK19, VGPDP+14, VNS18, WBO15,
WcW14, WHT17, WMCL18, WM17, WB19, WDN+19, WL15, WL12c,
WMT10, XLSF19, YIS+17, YSH+14, YAK17, YA14, YS11, ZC10, ZG10a,
ZG10b, ZGW14, ZYJ18, ZHC10, ZCRF13].

Neural [BMSE14, FHR13,
FR13b, FR14, GMI15, KAZ11, RMFE+12, Rob11, Sch19c, SST19, AJC12,
AAEF16, BF13, FIS11, FIS16a, GXF13, GM16b, GMK18, KAZ13, KHK15,
KA16, LFZ111, LCMC14, MPL16, MCM13b, MvAKR17, Opr10, PM14,
PMKM10, RS14a, SX12, TCC19, Tay16a, WAI16, WYL+19, YMI14, YC13].

Neuraminidase [DDG+11, TL+15, YNY+10]. neurite [vE11].

neurocranium [GA13, VDH+15]. neurogenesis [BFR14, SB19, TSB+17].
Neuroid [TTG19]. neurological [Sat18]. neuromorphological [GMK18].

Neuromyelitis [LSP+17]. neuron [GMM15, GL12b, IBB+15, RMM+16a, RNN15, Th15, WSLC14, WGC13].

neuronal [ABJ12, BB11b, CP14, CTJ10, DHT16, FW15, Fer11, KAZ11,
KTN+10, LL13b, Pat16, SHG16, ZMAM19].

Neurons [GMM15, ZMAM19, BP15a, BP15b, CW11c, DLHS11, GM16b, HMM16,
Hor11b, KB10b, MZM+16, PJ18, RKM12, WCC13, ZKB19].

neuroprotection [NRS+16]. neuroprotective [ATC+14]. neurosphere
[SZ18, ZSZ19]. Neurospora [XCW+18]. neurotrophic [WB15]. neurotoxins
[MZ18].

Neurotrophin [MDH18]. Neurovascular
[DvDBD15, CS11a, DBD16, FD11a, WK12]. Neutral [AHP+19, KS14,
PMR11, BnABY13, DSA+16, DZE11, Gre15, HL11, HSM17, Hor11a, HT13,
KS13, Mas16, PC13, SK12b, TZ13, WCP15, Wax11a, YIS14, ZPdF19].
Non-local [BBM⁺97, BBM⁺13a, BBM⁺13b, BBM⁺13c, GWW⁺10].
non-Markovian [PHK15, Veg10]. non-membrane-bound [SS17b].
non-monotonic [BBR16]. non-mutational [LC16]. non-mutator
[Jan16a]. non-mutualists [EI13]. non-natural [BZ18]. non-Newtonian
[AABS16]. non-normality [MAF⁺19]. non-overlapping [Oht12].
Non-random [GSF13, SY12]. non-senescence [DKS15].
non-small [GY19, TDZ⁺18]. non-spatial [YBT⁺17]. non-specific [DL15a].
Non-stationary [SC11b, Kae17, LS13a]. non-stem [Kar15].
non-synonymous [MV10]. non-trivial [HA15b].
non-trivial [HS15]. nobody [GCG14, Non10].
nonuniformities [Giv10]. novel [Dai12, FJS⁺19, MPCTGJ⁺15, RVP19, ACMK12, BW13, CA17,
DCS14, GBC⁺16, HLHY17, KRDJ15, Kla10, LS10a, LZL⁺17, LLP⁺19,
LCL14, MB12a, NGJ⁺14, QLWC19, RA10, RP18, SM18, SKH17, SDRA⁺15,
SB18, SQZ⁺16, TAR16, TP17, VM16, WTQL10, Wu14, WGDZ18, XSTW14,
YW13b, YYY⁺14, YC13, ZMN⁺10, ZGY11, ZTWL12, ZCA⁺14,
pZWZ⁺16, ZKHL16, ZLZ⁺11, ZDY11, ZMS17]. Novelty [Mar19, Fue18].
November [Ano10y, Ano10-32, Ano11-28, Ano11-46, Ano12-34, Ano12-41,
Ano16-33, Ano17-30, Ano17y, Ano18-43, Ano18-42, Ano19-43]. NREM
[PRK13]. NRTIs [KMA10]. NS3 [TWR⁺18]. nsSNP [KKS⁺14]. NTCP
[KBV11]. Nuclear
[KKO⁺18, DAA17, KKG⁺14, MP13b, SAGAGB17, SLS17, YYY⁺19]. nuclei
[HZG⁺17]. nucleic [Xic15]. Nucleo [SWR11]. Nucleo-cytoplasmic
[SWR11]. nucleoside [KJM17]. nucleosomal [WZKY11]. nucleosome
[GZY12, JYZ18, Tri10]. nucleotide [ABP⁺11, Bec14, BKP15, FS15a,
FS16a, HNL⁺11, LLL⁺17, LHH12, MV10, Sel13, Sin15, Yin17, ZDY11].
nucleotide-based [ZDY11]. nucleotide-gated [Bec14]. nucleotides
[AdSG14, BM11, Sel14b, Sel15b, Sel16, Sel17]. nucleus

104

[AS12].** one-sided** [JZ17]. **one-to-many** [Ezo12]. **ones** [BC15]. **online** [Ran12]. **only** [Di 17a, Hor11a, KK12b, TT10a, TF17]. **onset** [EAN14, EBX17, HDZ+19, MFMS+18, SPA18]. **onto** [DRC11]. **ontogenetic** [WSRG18, tBdR18]. **Ontology** [Hua12, YLF+17, ZT16, DTY12, WMK13]. **ooocyte** [HB16a, SOBC12]. **oocytes** [KG12]. **oogenesis** [RBMS17]. **OOgenesis** [RBMS17]. **open** [MB17]. **open-loop** [MB17]. **operates** [WKH16]. **Operating** [Str17, LKZB15]. **operation** [BAM+15]. **Operational** [ABK+12, HPML18, Ram10, SKPK17]. **operator** [HVSZ10]. **operators** [LG10a]. **operculum** [XWW+19]. **operon** [HVSZ10, Mic13, ZCSRG12]. **OPG** [PZS+10]. **opinion** [SAB17]. **Opisthorchis** [BHO+18]. **opponents** [YA14]. **opportunities** [AB11, SH15]. **opportunity** [PVCEC18, YSYI13]. **opposing** [DEG+14, MJI14, SP14]. **opt** [Kur19]. **opt-out** [Kur19]. **optica** [LSP+17]. **optical** [KCJ+11]. **Optimal** [BI10, BHR10, CFCM13, CJL15, CBGS18, DHP11, EzMMH18, GVC12, GA16, GKW17, HS14c, Ish16, KKUM10, LCCCI0, LKK13, LDM16, MIJ16, MK14c, Mit17, MI11c, MRS14, NNvdB17, NS13, NC15, OT13, PF17a, PRM14, SI10a, SDD15, ST16, SSB+15, SSST19, SMB+19, TBQG14, Vaz10, YD14, ZSW11, AS16, Cha18, CL11, CMM19, DB19, FD18, Fil10, KG12J, KTO+14, KL17, Kri10, KST17, KA17, LCC15, LC17, MDMG14, MW14, Mig16, OF11, RW15b, STN+19b, SL17, TEY10, TEW12, TBA14, TM19M, VB10, WCIJ11, WSW10, YTGW16, ZCT18, ZZ14b, ZLT+19]. **Optimality** [CKB19, LLP+19]. **optimally** [TDT16]. **optimisation** [CHN+15, FCS18, SCF+12, SK11a, Tra16]. **optimise** [EM11]. **Optimization** [Car17, JH12, MG10a, BLM19, JAHKH12, LDWW14, MDS16, MMAS13, MGM13b, NF16, PP18, PP19, RA10, SSJK18, SK16a, SS18, WOB15, YYC19, ZXC+10]. **optimization-based** [YYC19]. **optimize** [DXW+16, QQJW13]. **optimized** [HB18, TAI+18, ZZN+19]. **optimizer** [ZZN+19]. **Optimizing** [HL19, ID15, PD13]. **Optimum** [NC16, SK11a, TTC10]. **option** [HN+16, HVR10, Kur19]. **Optional** [JOAN14, PCN17, GN15]. **options** [CBBO16]. **Opuntia** [TVK18, OPV [Hou16]]. **ORA1** [SAB+19]. **oral** [KR15]. **oranges** [GP11a]. **orb** [Mac10]. **orb-web** [Mac10]. **orbit** [HA15b].

order [CW14, DS19b, Gou16, HSD11, JRG14a, JRG14b, JRG14c, KDST15, LYF+15, MBLV10, PP14, PD16, RA17, RBHK14, THBM10, XG12, YIS+17, ZRGW19]. **order-disorder** [RA17]. **ordered** [SKH17]. **Ordering** [Luk14, ZEJA11, AS15, CZST+18, RNVP10]. **ordering-induced** [ASH15]. **ordinal** [SQZZ17]. **ordinary** [BMM+14]. **ordination** [Pav19]. **organ** [CPPLAB18, KKM18, MS14c, SCAB10, SCABM11]. **organelle** [DTY12, RFDL15]. **organelles** [All17, SS17b]. **organic** [HWGT15b, HWGT17]. **organisation** [CCS18, KKG+14, MMJB17, MM15b, Pia19]. **Organising** [KdSU10]. **organism** [HNA15, SI11b]. **organism-created** [SI11b]. **organismal** [KMN16]. **organisms** [DLSD15, OKVN18, Ots11, Vel17]. **Organization** [SSH+19, ABD+11, AMRR110, CML11, DPRSS11, Di 17a, LS15b, MDS16,

[ADS+19, HSG+18, HDZ+19, KKDK+18, MvAKR17, STJG12]. Parkinsonian
[FW15]. parotid [SMZ+17]. parsimony [BFLS17]. Parsing [FIS11, FIS16a].
Part [HWM17, AOM19, Laz13, Mog15, FH10a, FH10b]. parthenogenesis
[SSD11b]. Partial [Kri10, MT14, WP17, WA14, CMD+10, DMO+17, HP12,
Lun13, MK14b, RNVP10, SC10c, Zad11]. partially [Mar19]. Participation
[PPBT11]. Particle [WMD16, BF16, DGM15, FCS18, GSN+11, KA15,
MMA13, MN12, PP18, PP19, SF15, YYC19, ZZN+19]. particles
[BHP17, KMM18, MAR+17c, TLPH11]. particulate [HWGT15b, HWGT17].
Partite [LCL14]. partition [LLW+18]. Partitioning
[SM17b, CPH+14, CFR+14, CMR+18, DB11, Gre16, GSF13, LPR14,
SSvdM10, SA14, ZMN+d+10]. partitioning-limited [SSvdM10]. Partner
[CS14a, Tak17b, Ezo19, GK10, YHZ14]. partners [Arc11, ZGS+10].
partnership [PPBT11]. partnership [HH+13]. partnerships [KK12a]. parts
[JR17b]. Parvovirus [KEHK17]. passenger [BST14]. passerine
[GZT12, Hur12]. Passive
[ST17b, CLP11, Don13, GAL11b]. Past [Kir11, BM12, MPNP12].
Pasturella [GTS15]. pastoris [MCÄ15a, MCÄ16b]. Patch
[PMW12, BLV18, DGJ14, GPT17, GKW16, HS14c, KA11, Kri10, LCC15,
LB12, QS12, SG+19, SQZ+16, TW19, Wani19, Wei17]. Patch-type
[QW12]. Patch-type [GKW16, Wei17]. patches
[AR11, C18a, FrH15, LTHEK12, NG11, RP14, TD18, YiTS19]. patchily
[RPCW18]. Patchy [SBCF11, LNH13, TD17]. Patella
[GZT12, Hur12]. Path
[Ben14, VM12, Che14, CV15, CR16, NWZ15, RSBB10, VC10, vTMW15].
Path-wise [NWZ15]. Pathogen [CT18a, MGC13, AH12b, Bon10, CTL+15,
FIJ11, GVS1G16, HBE12, JB18b, KGB13, LMCW18, MSP19, MB12b,
OMO13, PM11a, PB18, RDT1M13, ST17a, WMD16, WK18a].
Pathogen-receptors [AH12b]. Pathogen-specific [CTL+15].
Pathogenesis [Ana11, JO13]. Pathogenic [Sel11, BTW11, HII+19, LLC15].
Pathogenicity [LPS+14]. pathogens [BL15b, CPV16, CG11, DB11, DL15a,
DD1W13, FE10, FE11, GBM18, JB18b, LvdBP12, OF11, PSL+10].
Pathologic [SHK14]. Pathological [BBI14, ML12b, RNN15, Wil13].
Pathologies [Wal18]. Pathology [GRR+14]. Paths
[BMV12, Che14, NIT19, Sch19b, VPFV13].
Pathway
[MJC+11, OBA11, WAC14, ATC+14, BP18, BB11a, BSM+14, CCS+16,
DGW+18, GSS19, IGL114, HKS16, LCG1H12, MDH18, NS18, PCS+18,
RFME+12, TC11, VHM+17, VLP17, WPH+12, YST14]. Pathways
[AP17, BKL+15, Coh15a, EG10, ERT13, Gün12, Gün13, HAP+16, HHG14,
HgLL+10, KFL12, PH13, PS13, RW10, STX+11, ZXC+10, ZXS+19]. Patient
[METC12, HM13, TDHC+18]. Patient-calibrated [METC12].
Patient-specific [HM13, TDHC+18]. Patients [Dim10, HA15b, LX16,
PGF11, STA15, WR14, WML+17, WSS+13, WLL+14, ZXS+19].
Pats [BFR12]. Pattern [FK13, GCB17, GRB+13, WH11, ASP13, BFM10, CDC18,
FKM10, GKM10, Gal10, HT19, Hir16, iTIM15, JB19b, Kon17, Lee16a,
patterned [Sie18]. patterning
[Dun11, GBN14, HWMT17, WdVMD15, Wol11]. Patterns
[MAF+19, AL17, ASL+18, Ayd18, BV12, BS19b, BB11b, BKC+16, CFT11, CDM+14, DBB14a, DTGC14, Don17, DZE11, GZY12, HTM15, HDNB10, HgLL+10, JB18a, KDST15, Kri18, LSMC18, LLLV11, LBB+13, LG18, LH14, LTS+16, LRA+13, MSZW19, MPM10, MGCL13, MPS16, MCPF12, MALAN17, MK14c, MROS15, MPLK14, MBRRI19, ML11b, NTY16, Nos14, PS13, PM10a, QW11, Ram10, RV16, RRRTR10, SGKCP19, SWD16, SS15a, SBMH10, Sht17, SAM17, SRCF11, Sy14, TKK14, TKKE19, TA13, TC12, VLCT19, WZWY11, YvBS18, ZKP15, ZML19].

pause [RA17].

pause-and-go [RA17].
Pavlovian [PM10a].

payoff [Ayd18, MI19, MB16].
precursor \([LFW^{+15}]\).

Pred \([KCM^{+11}]\).

Predation \([MB12b, PDSP13, AF10, HMHI4, IEN15, KGB13, LZTD18, PBB10, PFB10, SP11, VA10, Woo10]\).

Predator \([GSL13, SV17, Abb10, BT17, BH13b, BHR10, CLA17, CGHF14, CK18, CNM^{+13}, DS13, DJR10, DKF17, EKFV18, FlL18, Fre10, GLR^{+17}, GVGC15, GWE11, GPR^{+16}, HAK^{+19}, HGHL10, HSR12, HB13a, HWL15, KGB13, KB15, Krii11, Krii13, KP15, LHV16, LJ18, MSZW19, MMAS13, MFG^{+13}, MA11b, MI11a, Mou12a, NTOI16, PPW16, PHPM18, SWD16, SBSE14, SY12, VWF19, WRC^{+19}, YiTS19, ZMW10, ZMT11, ZYD15].\)

predator \([PHPM18]\).

predator-prey \([HAK^{+19}]\).

predators \([Alv18, AH17, BT17, BR12a, FKV19, LG19a, LG19b, SvK12, TI13, TB15, ZYD15, vLBJ^{+13}]\).

predatory \([IPMH12]\).

Predict \([CXC18, FL12, HZC^{+10}, JLX^{+16}, ZZK14, pZWZ^{+16}, BMSEE14, BJ18, FGAM12, GMZM15, HYA14, JSF^{+11}, LXC15, MJ11, PH13, PWHW16, RW14b, WYL^{+18}, XNJ^{+13}, ZZG^{+16}]\).

predictably \([HD11]\).

predicted \([HH14, Hal17, HCHI18, KZL14, LJ10, MALAN17, PDC^{+17}, RT19, ZKHL16]\).

Predicting \([˚ACHS19, All11, ADR^{+11b}, CL13a, CT18b, CTL^{+15}, GSCS11, GMM^{+13}, GGX^{+10}, HPB^{+14}, HK11a, HK12, HN10, HS12, HLY^{+12}, HY13, JYZ18, JD16a, JD17, JG16b, LSL13a, LD11, LWJ^{+16}, MPCTGJ^{+15}, Mei12b, Mei13b, MSB16, NHXS14, OYY16, QLM^{+18}, SM17a, SM18, SCA13, SCF^{+12}, SK18, TWC^{+19}, WGS10, WS16, XTW^{+13}, ZL18a, ZRGW19, ZLZ^{+19}, ZLZD13, AAJGCD15, BW13, DLL^{+17}, DTP19, Hua12, KCM^{+11}, LLP^{+19}, LKL13, LHH12, LHL^{+14}, MV10, QLWC19, RBMS17, RW15a, SW13a, SC10b, SOIO10, WXmH10, WHZ^{+17}, YD14, YC13]\).

Prediction \([ACHS19, All11, ADR^{+11b}, CL13a, CT18b, CTL^{+15}, GSCS11, GMM^{+13}, GGX^{+10}, HPB^{+14}, HK11a, HK12, HN10, HS12, HLY^{+12}, HY13, JYZ18, JD16a, JD17, JG16b, LSL13a, LD11, LWJ^{+16}, MPCTGJ^{+15}, Mei12b, Mei13b, MSB16, NHXS14, OYY16, QLM^{+18}, SM17a, SM18, SCA13, SCF^{+12}, SK18, TWC^{+19}, WGS10, WS16, XTW^{+13}, ZL18a, ZRGW19, ZLZ^{+19}, ZLZD13, AAJGCD15, BW13, DLL^{+17}, DTP19, Hua12, KCM^{+11}, LLP^{+19}, LKL13, LHH12, LHL^{+14}, MV10, QLWC19, RBMS17, RW15a, SW13a, SC10b, SOIO10, WXmH10, WHZ^{+17}, YD14, YC13]\).

Predictions \([FKDW15, KHRS10, KSP18, METC12, QZY17, SPA18, TWP16]\).

predictive \([ABB^{+19}, KBE^{+13}, MPC12, NSH^{+10}, Non10]\).

predictor \([IIKH16, JZ17, JCG15, MS14a, USF^{+18}, WMK13, WKK14, WMK15, WKK16]\).

predicts \([ASC16, Bac15, HBA10, Lai11, MD16, Tsu19]\).

predominant \([KBB16]\).

predominantly \([MR10]\).

prefer \([SS15b]\).

preference \([PC10a, PHPM18, SS12b, ZLZ^{+16}]\).

preferences \([Ant13, BC13, Kri10, KR19, Sal10, ZDG^{+10}]\).

preferential \([FHSG15]\).
117

[BDID+12, EAN14, PPTC19, SRS+15, Ala15, CMPS17, FM18, KHK15, KMC14, OGE10, PDM17, ZGG+19]. probabilities
[ADR11a, CS15a, HS11, HT10, JLH15a, JR17b, LPKH15a, SLDP13].

Probability+[Mul11, Mul12, AP13a, BBR16, BPR15, CPV16, Cut15, HTH14, Hou15, JJ17, Jam16a, LAC+14, LN19, MPY14, MKBE17a, Mon18, OGE10, SW17, VGL16, Wax11a, YG18]. probable [Sil16, SS15e]. probands [Jam16b]. probed [Zha10a]. probes [KFG+14]. Probing [GNB+13].

Probiotics [RD14].

problem [AKNP18, Arc14, ASP13, BM16, CFS+19, CB15, DSTD19, DZJR10, Fok12, GA15, HB12b, Mil11, MAR+17c, Van16a, VLCM10]. problems [Coh15b, Mor19, MRS14, YBC17].

process [AGRR+15, BGKL17, BCFR10, CJKR10, CCB11a, CAV16, DDHM12, DRC12, DDB10, FCC+10, GFH+18, Gou16, Gru19, Hal12, Höh15, JSWY19, KB15, LPH19, Mal10, MFG+13, NPS10, NPM15, PP17a, RRTR10, RRRRSPT16, SW16, SCÄBM10, SCÄBM11, SGAM12, SSJK18, SBW11, SBJ+18, TGLK19, TA10, TF17, WiGiQ19, WdLS17, WZ15, ZCT18, ZTWL12]. process-based [DDB10]. processed [CRV16]. processes [AGM11, BA10, BM19, BSV18, BMB+18a, CK15, Edu16, GGM12, Ing16, JG14, Kuz19, LPH15a, LPH15b, LPH19, MRPLAS15, MH18, NYSM12, PAS10, PBB+15a, Par19, RRTR12, RSR11, SS15e, SMC+13, SK18].

processing [BZ18, CC11b, ESW13, HYSG19, RWH16].

process [AGW17]. processivity [SSZ17]. produce [DBB14a, KK15, Sel13, Sel15a]. produced [LFM11, MDVT10, SK15]. produces [KL11, MOSS15].

producing [FE11, GT11a]. product [DH16, De17, DDF+14, ZK18]. production [BSL+17, GSL13, GS17b, HWGT15b, JLH+15b, LDF+11a, LvBJ16, MC15a, MC16b, OFB10, PBR17b, Sak10, STNT17, SPA18, Tsn19, WBM+15, YLY15, ZCT18, vLFM+19]. productivity [FGLS10, SDJ+15, SK16b, YHL12]. products [DDF+14]. Professor [Ano19-50]. profile [AMP12, CW11b, DYQ+14, HTK14, SC11a, SG15b, WDH+16].

profile-profile [WDH+16]. profiles [CC18, LWL12, JK12, Pla10, RU16, SBT+18, TK10a, TBB14, VLF12]. profiling [HZL+13, SOIO10]. progeny [DBBW09, DWWB11]. progesterone [LXZQ14]. progesterone-induced [LXZQ14]. prognosis [LX16]. program [VDTF15]. programmed [HZW+14, Xi13a]. programmes [dMP11].

programming [CZW+11, JPB17, LPD+16, NS13, SNS17, ZMN+10]. programs [NKOS11]. progress [CW13, CLHB11, DD13, GL18a, GA14, HTK12, KEG17, KC11a, LTZ19, LCGM12, METC12, NB+10, SB19].

prokaryote [CCY+19]. prokaryotes [GYWJ10, Hua12, XKCG15].

prokaryotic [AAV14, LXS15, YCR+15]. proliferation [ALD+11, BJO+16, BMB+18b, GMOP12, GOL10a, GOL10b, GOL16, HPM+17,}
XSLZ16, YGL$^{+10}$, ZSZM14, ZZK14, ZK18, ZNA$^{+16}$, ZLW$^{+19}$, ZLDZ13.
pseudo-amino [GZ14a, GZ14b, HYW11, JD16b, JD17, KSKK15, MJ11, MBE11, QLC$^{+18}$, WMK13, YGL$^{+10}$, ZNA$^{+16}$, ZLW$^{+19}$].
pseudo-average [FL12]. pseudo-multiscale [HGM$^{+16}$]. pseudo-position [QLC$^{+18}$].
pseudo-trinucleotide [ZLDZ13]. pseudomallei [SSRA16]. Pseudomonas [ALM$^{+19}$, FE10, FJJ11, MBC$^{+12b}$, SBJ$^{+18}$].
pseudopodium [GF11]. Psi [MIH16, DYQ$^{+14}$, PRM11]. PSI-BLAST [DYQ$^{+14}$]. PSO [FJS$^{+19}$].
PSSM [DLL$^{+17}$, HK12, KHK$^{+17}$, L818, ZCA17, ZL18a].
publications [SS19]. Publisher [Ano19-51]. pulmonary [GBJ$^{+11}$, NAK$^{+11}$, REC10].
pulsatile [GDF18]. pulse [ABLH18, BB11a, GZT15, LL18, ZTT18]. pulse-amplitude-modulated [GZT15]. pulses [HB18, LSP14]. pump [Dim17, OCN10]. pumping [Avl18, YSI17].
pupation [Tun13]. purely [TBGQ14]. purifying [OGO19]. puroindoline [ASRM15].
PUVCs [JS16]. puzzle [DMO$^{+17}$, SSP15]. puzzles [TK19]. pv [JSF$^{+11}$]. pyemia [BC19]. pylori [LAH$^{+16}$].

QEPS [NNH$^{+16}$]. Qrr [HK14]. QSAR
[FH15, HME12, LL13a, LT14, MR18, MR19, TT17, TA16]. QSPR
[VPGDP$^{+14}$]. QSPR-like [VPGDP$^{+14}$]. QTL [Boc12, SQ2Z17].
quantitative [FL18]. quality [CT19, GAB14, HMW13, LTST15, LLH$^{+13}$, RFM$^{+12}$, SC10b, SB17].
Quantal [NMM10]. Quantification [HPP10, LCA$^{+15}$, LDH$^{+12}$, MZM$^{+16}$, Nos14, PBS$^{+12}$, DGB18, KCJ$^{+11}$, LDB$^{+14}$, PCB14, SMS19]. quantifies
[CKZ$^{+17}$, LAPK14]. quantify [Mar17b, RTR$^{+13}$]. Quantifying
[Boz15, CPW16, DP13a, GDF17, HPM$^{+17}$, HHG14, IOK19, JRB$^{+16}$, KSBvL12, KHNM16, LL17a, LTP19, cLCJ$^{+10}$, MB18a, NDZMA14, PBB$^{+15b}$, XO17, YBH$^{+19}$]. Quantitative
Quasi-multiparameter [MK11]. Quasi-one-dimensional [AGPK13].
quasi-balancing [CXC18]. quasi-equilibrium [Lio18]. quasi-linkage [RR´UJ19].
quasi-regular [PM10a]. Quasi-stationary [ALH10, ZWG10]. quasi-steady [DEK15, JRG14a, JRG14c, Lio18, PM10a, RR ´UJ19, ZWG10].
quasi-steady-state [BKSW16]. quasi-steady [DEK15, JRG14a, JRG14b, JRG14c].
quasi-regular [PM10a]. Quasi-stationary [ALH10, ZWG10]. quasi-steady [DEK15, JRG14a, JRG14c, Lio18, PM10a, RR ´UJ19, ZWG10].
quasi-steady-state [BKSW16]. quasi-steady [DEK15, JRG14a, JRG14b, JRG14c].
quasi-regular [PM10a]. Quasi-stationary [ALH10, ZWG10]. quasi-steady [DEK15, JRG14a, JRG14c, Lio18, PM10a, RR ´UJ19, ZWG10].
quasi-steady-state [BKSW16]. quasi-steady [DEK15, JRG14a, JRG14b, JRG14c].
quasi-regular [PM10a]. Quasi-stationary [ALH10, ZWG10]. quasi-steady [DEK15, JRG14a, JRG14c, Lio18, PM10a, RR ´UJ19, ZWG10].
quasi-steady-state [BKSW16]. quasi-steady [DEK15, JRG14a, JRG14b, JRG14c].
quasi-regular [PM10a]. Quasi-stationary [ALH10, ZWG10]. quasi-steady [DEK15, JRG14a, JRG14c, Lio18, PM10a, RR ´UJ19, ZWG10].
quasi-steady-state [BKSW16]. quasi-steady [DEK15, JRG14a, JRG14b, JRG14c].
ratchet [WL10]. Rate [WS10, AY15, BBR16, BS15b, BS19a, BL14, CZT+16, CK15, CKB19, CCdS15, DJJ15, DHP11, FABA17, Gia13, Hor13, KAZ11, KAZ13, KG15, Kit10, LG18, LLB+18, MZWC10, MC19, MB10, MKMT14, NS16, PBYB18, PW18b, RU16, RRRSPrTR16, RBMP+15, SS15d, SL17, SLJ+10, TP14, TSM14, Tsu19, Van17a, Wall16, WST15, WZLW15].

125

[BDG +13]. REM [PRK13]. REM/NREM [PRK13]. remaining [OA15].

remarks [Cho11]. rematching [QMJW15]. remedies [YBC17].

remigration [NSO15]. remodeling
[CPF +13, EJK16, HHMT19, Mic11, PZS +10, RM17d]. remodelling
[FGAM12, NF14a]. remopleurid [SKSO12]. removal
[EB15, Jia16, UBP12]. Renaissance [DGRB13]. rendezvous [FH13a].

René [TK19]. renegade [Har15]. renewable [TSL12]. Renormalization
[HB10]. reoccurring [VAT18]. reorganization [CMCS18]. reorientation
[Kro10]. repair [BCKS13, BKL +15, BKPV15, RFM +12, SGAM12, TALC16].

repeated [IM18, JR17b, Kur19, KBF18, RZ16, TP10a, MI19]. repeats
[Sel15b, WDH +16, Yin17]. repercussions [TGZF11]. reperfusion
[MYK +11, PNP +16]. repertoire [GZT12, KFG15, SLvdBMP10, XJ19].

repertoires [RSI11]. replacement [MMB14]. replacements [BWM +19].

replanting [CLK18]. replica [XYZ15]. replica-exchange [XYZ15].

replicase [SHH15]. replicating [AIY16, Mau15, SG18]. replication
[FLA +19, GN10, JS15, KDK14a, KDK14b, NS11, Nak12, Nak16a, OF10, PBB +15b, Sel14b, TH17, ZS12]. replicative [Hor13, HZW +14]. Replicator

repolization [PW18b]. Repopulation [EUM +16]. reported [Jam11].

reporting [Rao12]. Representation [BB13, BWS10, DGL12, DDLW10, aHLZ +12, JLQ +19, JSF +11, MM12, SCS10, WXC10, WRWX19, ZKHL16].

representations [Mal15, XM11]. representing [SBSR13]. repressilator
[Dil14]. repressing [SLS17]. repression [HK17b]. reproduce [Wu14].

reproduced [Nak16a]. reproduces [ZBA14]. Reproducibility [JSP +16].

reproducing [OFT15]. Reproduction [LP14, AM10, CH11, Cro17, EHSR17, EBS11, EEHMH18, Fil15, Fis19, Fre10, GBRS19, HHA +13, LRH15, MO12, NR14, PBB10, PLF18, QA15, SRV11, SSD11b]. Reproductive
[Mac14, SR10, CH11, FS12, Gar14, Gra14, Hal17, Jan15, KD16, KSKS13, LSW15, MCM10, MS13, Non10, PMID11, RRR15, SRV11, SS11, WDL +13, YK11, YY18]. reptiles [PC17]. Republic
[EN15, KLJ17, KJ19, LCJ16, LCJ18, OLI19]. repulsive [KAN11, TBQG14].

reputation [Hau10, Mas12]. Reputations [TSM13a, TSM13b]. required
[Yam16a]. requirement [SBB18]. requirements [BFS18]. reario [Hal17].

resampling [JZ17]. Rescorla [TMHM12]. rescue [Oht12, WSVT14].

rescuing [SBB14]. research [Ano19-50, KSBvL +12]. reserve [MHC16].

reserve-utilization [MHC16]. reserves [NNvdB17]. reservoir
[BFH +15, VABS18, WR14]. reservoirs [KGK10]. reset [FW15]. resetting
[AUE15, Opr10, WTZ +11]. resided [YLWZ10]. Residence
[DD10, LCC15, MMC19b]. residency [MGS16]. resident
[DG16, JD16a, JD16b]. resident-invader [DG16]. residual [Ren13, ZR16].

Residue [EG12, HYZS14, AKR +18, HH13, JR17a, QW12, QQJW13].

residues
[KB11, KGM15b, LBS +14, MS14a, MPY14, PDM17, SLT +18, Zho11].

S

[BD10b, JAM18, JZ17, JW18, Pan19, HKR+19, KGM15b, WZM19, ZNA+16]. S-FLN [JAM18]. S-glutathionylation [ZNA+16]. S-loop [KGM15b]. S-prenylation [HKR+19]. S-sulfenylation [ZJA+17, JW18, WZM19].

S-SulfPred [ZJA17]. ss [ACHS19]. S2 [KGM15b]. SAAC [AH18, AHJ18b, HK12]. Saccharomyces
[AM12, BLP10, HZW+14, LLCC12, LXC15, OB10, SSJK18, TK10b]. saddle [SSN+14]. safety [FGLS10]. Saharan [MS16].

SAIR [Gru18]. Sakishima [SFT14]. saliva [HR12, PSS+10, PSS+12, PSS+13, dLMD+11]. salmon [GDJC11, HIT18, SGCH19]. Salmonella
[LP5+14, SPMM15, SBRS13, ZVB10]. salt [FM13, FM15b]. SAM [XYZ15].

SAM-2 [XYZ15]. same [BHBR12, CRV16, CB16, KBK16]. sample [Bar16, WSW10]. Sampling
[BGLR+19, CC11b, Sta10, JHE15a, JHE15b, LAS14, MSP19, MM18, NTFK11, SSP15, SS15d, WHL13]. Sampling-through-time [Sta10]. sanctioning [SHBT14]. Sanctions [SHBT14, NSKO18]. sapiens [KHH+17].

SAT [MKF+14]. satellite [GMOP12]. satellites [RGP13]. satiety [DZJR10]. saturation [CMS+19]. Savanna
[DAVS11, ADV+10, Urs14, VLCM10]. savannas [DDS13, MGCL13, STL18]. saving [TTW13]. savings [MPJH13]. scaffold [BBDB13, HHA17].

scaffolding [KFL12, SM14]. scalable [MC19]. Scalar
[OABB18, RWH16, QA15]. Scale
[BAM+11, BP15, BVJE17, BC15, CAGM+17, CL17b, CDC18, CMJD11, Cox10, EBP15, FMS+12, FGGT15, Giv10, GJS+10, HXL16, HY10, ITO16, Ing16, KCU+19, KPD18, KSKS13, LKL13, LDB+14, Mac11, MAM16, Mei14, Mic14, Mic16a, MP13c, MLL+16, OT11, PAK11, PBD13, PMS17, RA10, Rev15, SH15, VTMG16, TBM16, WZ17, WGC13, XLS19, dICGSA16]. scale-free [BC15, GJS+10, KSKS13, LKL13, XLS19]. scales [BBWS+13, DLS15, GABM12, GHS18, GHS20, MSIR10, NGND12, NP15, TZ11].

Scaling [CNM+13, LLTP19, PG10, RV16, RHI+14a, ZG10a, ZG10b, BZN17, BS13, BDE+14, DS11, DCR18, GMMGV12, GL13, LLLV11, Mac11,
CS15b, Cro18, Cro17, CB10c, Del12, DEG+14, GCM14, Gar11, GL18b, Gri19, IGLL14, GGCJ16, HT14, HPvdB17, HG18b, HCS+19, HT10, HT13, JSZ12, JZ17, JD16b, JSP+16, JJ15, JW18, KKD18, KPK+13, KHX+19, KS14, KF11, LHD15, LZA+19, LvBJ16, LTS+16, Lio18, LPF11, LDH+14, Luo14, MS14a, MMH10, GSM14, MO12, MK16a, MFZ18, MB16, MB19, MM18, Mun12, NKM+12, NPS10, NII9, NPB13, NPS17, NPS18, Orr19, OGO19, PD13, PGG+15, RM17b, Rei12, RRUJ19, RG12, SC10a, SAI10, SL10, SSM15, SFD12, Sim14, SD16, Soz13, Tak17b, TGL15, Tos11, TMHM12, Uit11, VDTF15, jWlGQ19, WYL+19, WRB14, WOO10, Yam16a, YHZ14, ZFKW17].

selection [ZW16, vVGSE12, vVLS14, vV18, vTMW15].
selective [KGB13, MPLK14, SG15b, TA16].
selectively [HA15b].
selenol [KIH16].

Self [EdKM11, Kue16, LPB17, LS15b, LYM+19, MDS16, PD13, QLZQ11, Rei12, RA18, VY12, ABD+15, AY15, AY16, CJ2b, CDD12, DPRSS11, Fan11, FWSG17, GMK18, IU18, JOM16, KHB+18, KKG+14, KFS+13, Lar10, MMJB17, Mau15, MBBD13, Mic15b, OF10, Pai19, PCBMM12, RL15, Sel16, SHM+18, SLS17, SG18, TDT16, VSLV15, VEL17, WD12, ZCAB17, Coh15b, LPB18].
self-[OF10].
self-assembly [FWSG17].
Self-binding [LYM+19].
self-complementary [Mic15b].
self-directed [ABD+15].
Self-extinction [PD13].
self-hybridization [Sel16].
self-incompatibility [VSLV15].
self-interactions [ZCAB17].
self-maintenance [PCBMM12].
self-matching [MBBD13].
self-mechanical [Kue16].
self-organisation [KKG+14, MMJB17, Pai19].
Self-organization [LS15b, MDS16, DPRSS11, SHM+18].
self-organized [VY12, CDD12, IU18].
self-organizing [GMK18].
self-paired [Fan11].
self-propel [RL15].
self-regulated [JOM16].
Self-regulation [EdKM11, WD12].
self-regulatory [Vel17].
self-replicating [AIZ16, Mau15, SGI18].
self-replicator [AY15].
self-repressing [SLS17].
self-sealing [KHB+18, KFS+13].
Self-similarity [QLZQ11, Rei12].
self-support [TDT16].
Self-sustaining [RA18].
self-thinning [Lar10].
Self-tolerance [LPB17, LPB18], self-[VDTF15, YYY+19].
Selfish [CW14, ASS19, GCM17b, QQ17a].
Selfishness [SS12b, ZSS10, SC12].
Semantic [ZHC10, ZF16].
semi-[BS19b, SAK13, VG13, ZNCM15].
semi-deserts [BS19b].
semi-mechanistic [SAKG13].
semi-stochastic [VG13].
semi-supervised [ZNCM15].
Seminal [KGM15b, WZ18].

senescence [DKS15, DBD14a, EBDX17, WWB14].
sense [LSO13, STH18].
sensing [BSL+17, CHU17, FKB11, GSS19, KAN11, LDHD14, MKPV16, NBW10, NBW11, NOO15, PHLH19, RAFF+14, RRC+11].
sensitisation [HLTR19].
sensitive [CW11c, JZ17, LSP13, TSM14, YH18a].
sensitivities [BV13, YIS+17].

Sensitivity [GFX14, MF15, WST15, AKNP18, CCS+16, CMN+12, DJ10, DSSDW13, FDM+11, FR17, KMM18, KLHS17, LUG15, MK11, MBBV14].
sensor [GT15].
sensors [KTN+10].

Sensory [CV15, BA10].

sentences [FIS11, FIS16a].

sentential [ZSW+14].

separate [XY14].

separated [Di 12, PP14].

separation [PAK11, SNY+13, YS14].

Sepsis [CA17].

septa
[HWM+16]. septal [HWMT17]. September

[AP13b, CJ12a, DGL12, DSPM14, JM12, LLL+17, LLCC12, MS14a, PDM17, AH12b, BMSEE14, CLL18, DLYZ11, DYS+13, DZW10, ESW13, EJ16, Fer12, GKPB13, GGX+10, dOGL10, dOGL13, GAB14, HA15a, HK11a, HKR+19, JAM18, KCM+11, KGi15, Kim18, LGK+09, LGK+12, LL13a, LWL+11, LLBY13, MGO+15, Miy17, MP14b, NGND12, NBL10, PMYHR12, RBMS17, SIK+18, She11b, SSP15, SLT+18, Tri10, WSH+10, WSK+19, WZY14, WS10, WGD18, XLL+10, XSLZ16, YCY14, YCY15, YLF+17, ZPH11, ZLZ+15b, ZLZ+16, pZWD+16, ZNA+16, dBJ11]. Sequence-based

[DSPM14, JM12, MS14a, PDM17, HKR+19, JAM18, MP14b, RBMS17, YC15]. Sequence-dependent [LLCC12]. sequence-derived [KCM+11, ZNA+16]. sequence-specific [dBJ11]. Sequence

[SBT+18, AH18, Boz15, Bry13, CBL14, CK16, DDLW10, DLYW13, FHW+10, FS15a, FS16a, GKN10, aHLZ+12, HLHY17, HYZ+15, HZHW10, HZLX11, HY16, IA17, LLL+17, LTP19, LHH12, MFS+11, MP12, NM19, PM11b, QQL10, SF16, SSCJ16, SPS+12, SCS10, SCL13, SM11b, Tak17a, TTP17, WTQ10, WRZ+12, WZ17, WXC10, WZ11, WRWX19, XM11, XWW+14, YZW10, ZHH12, YW13a, YLC16, YY14+14, Yin17, YC13, YCR+15, ZMS11, ZK14, ZLZ+16, ZLB13, dBF13]. Sequential

[BPG+18, FMS+10]. settling [MN12]. setup [FE11]. Seven [MB18c]. Several [DZW10, JRR+12, MKBE17a, MKBE17b, RPD14, TD18]. severe [DD18, Sat18, SGLD12]. severity [ZZL19]. Sex

[BS11, Del12, EHS17, Gar10, NG11, AM10, Arg12, Chu10, GGM12, Jam11, Jam12, Jam13, JV14, Jam16b, KMH10, LL18, MK16a, MYK17, MB10, MM15a, MFP+14, MLBA12, MLBA13, NT14, PKH11, Rad16, Ram10, SY117, Sek12, gSxFH+12, TEY10, TEW12, TEY16, VNMK+19, WKH16, YST13, YST13, YHI14, Yam16a, Yi18a, Yi18b, YTK10, YK11, YT12, ZP11]. Sex-biased [Gar10]. sex-determining [PKH11]. sex-specific [Sek12]. sex-structured [LL18]. sexes [XY14]. Sexual [LN19, YST13, BHH12, CHK16, Cro17, EHS17, EBSW17, Fis19, Fre10, Gra14, KK12a, Mor13, MM18, NI19, SLL18, SSD11b, TCB13, WSRG18, ZR15]. sexually

[HE16, HHA+13, MK16a, MB12a, TB18, YH14, YZMY18, ZAL+19]. SFM [YC15]. SGB [XXD+17]. SGK1 [KSP+14]. SH3 [HW+14]. Shade
shadow [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].

shapes [BORA10, DNB12, KP15, UI13, Yam16a]. shapes [LJM+17]. shall [GCM14]. Shannon [CDM+14, Nem17, Pia19, RFME+12, SSP15]. shape [BTR18, CdPD11, DMM+14, KTO+14, LKSM14, LSDD13, MBM11, PRSC11, PP17b, Spe15, WGO+15, LZMM15].
AR17, CCY+19, CK15, Cro18, DK13c, Gal10, HNL+11, HG18a, JMH+19, Kar12, NTC+11, NPS10, NPS17, NPS18, QZY17, SMJS14]. site-selection [NPS17]. site-specific [CK15]. Sites [WZM19, AH18, AR17, BGCBl2, CST16, CK15, CGRGM+16, DSPM14, FGAM12, GWJ10, GRRG16, HG18a, HY13, HKR+19, JRR+12, JWS+10, JLX+16, JZT, JCG15, JW18, KJH+19, KB10a, KBK16, KIT+16, LTSTD15, LL12, MSND12, MSR16, MESSM18, NMZ19, QW12, SIK+18, TTC19, Tun13, UT17, XWC11, XWD+10, XWW+14, ZC+17, ZNCM15, ZNC+15, ZNA+16, ZZN+19].

situ [GCSP17, KFG+14, METC12, NWB+10, SGGY10]. SIV [Lev14]. six [CCY+19, RBMS17, TMD14]. Size [PCBMM12, RU16, SA17, Spe15, AMM16, AC15, AC12, BB15, Bar11, Bar16, BGCB12, CST16, CK15, CGRGM+16, DSPM14, FGAM12, GYWJ10, GRRG16, HG18a, HY13, HKR+19, JRR+12, JWS+10, JLX+16, JZT, JCG15, JW18, KJH+19, KB10a, KBK16, KIT+16, LTSTD15, LL12, MSND12, MSRW16, MESSM18, NMZ19, QW12, SIK+18, TTC19, Tun13, UT17, XWC11, XWD+10, XWW+14, ZC+17, ZNCM15, ZNC+15, ZNA+16, ZZN+19].

spatially-extended [LDHD14]. spatially-structured [VZ19].
Spatio [HLTR19, MS10a, QJR+16, STX+11, TC11, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. Spatio-Genetic [HLTR19].
Spatio-temporal [MS10a, QJR+16, STX+11, TC11, ABB+19, AGPK13, CH16, MTdS+16, PM10a, TP10c, ZVMB10]. Spatiotemporal [ARD14, DHRA10, PLHL19, Ros10b, d’O12, BLS+12, HH16, HHD+16, Shl17].
Spatiotemporally [HRDL14, HRD14, Zhu11, IH17]. spatula [FPG11].
spatula-like [FPG11]. spawning [HCHI18, MDB12b]. speakers [SN16].
special [Cle16, GKK13, TK19]. specialist [RT19]. specialization [NP11, NP13, RD17, WF18]. Specialized [KMMS17, LIPD12, IEN15, SKH17].
speciation [AWRD15, ACvKA10, BdABY13, KG15, Mar12, MYN+15, SIVH17, SS12a, GW+18, WCPF15, WK18b, Yi16, Yi17].
specie [AT10, LW10a, LW10b].
Species [CC11a, CCB11a, DMSW10, HSM17, LLH+13, LXT12, LXT13, PC13, RM17c, Sel14b, SCF+18, TLM14, YLW+14, dBJ11, AP19, ADR11a, AHP+19, ACvKA10, AMRR10, Bac15, BJOSS13, BWY+17, BCF16b, BJJ12, B16, CBL14, CHD+10, CCA17, CMCS18, CW11a, bCR19, CH11, CK15, Cre10, DBD15, DSA+16, DZE11, FB12, FVC15, GDF18, GKI6, GZT12, GABM12, GDJC11, Han12, HF17, HMM17, IC11, JYZ18, KSD18, LSDD13, cLCJ+10, LRGA13, MG14b, Mal17, MPBS17, MYN+15, MB15, MBLC17, MI11b, MI11c, NBS+13, NvHM13, NdiPZA10, PC10a, PB16, PPTC19, RB13, RR12, Shi19, SLL18, SLHS13, Su16, SKS+19, SMB+12, SA14, TJS10, TGLK19, TCR13, TD18, TSS16, Tjo10, VDT15, YSY13, ZGG+19, ZNA+16, ZSH+16, ZEJA11, ZYD15, dS15a, vLBJ+13].
species-abundance [FVC15]. species-area [GABM12, ZGG+19].
species-diversity [Tjo10]. species-specific [CBL14, CHD+10, JYZ18, ZNA+16]. specific [CBL14, CHD+10, CK15, CTK11, CTL+15, DLL+17, DBBM11, Edu16, Fer12, FLM12, GMB11, GKG+18, HZG+17, HM13, IK15, JRR+12, JYZ18, JD16a, JD17, JAHKH12, JP13, JK12, KHK+17, LCA+15, MDE11, MDMG14, NIT18, NK18, OF10, PBYB18, QLC+18, RMST13, RW12, SFMS16, Sek12, SLD13, SSKK17, TDHC+18, WYX+17, WCC14, XDD+15, XJ19, ZNA+16, dEG11, dBJ11]. specification [ANMH11, BKL14, SCAB10, SCABM11, ZZX+16]. specificity [ZZ10].
specifying [MBKB13, PLL+16]. spectra [NSK13, SM17b]. Spectral [HRD14, BWS10, BTK15, CJI12b, SPMGR10, TP17, WGDZ18].
speeds [BSL+17, Fue16, GGBW14, GWBG14, MMM+16, NP15, dRF15]. spent [PTC13]. Sperm [PIPB10, CKBC12, Ish16, ICG16, IGG+18, OSF11, SOCF14]. spermathecal [FKG15]. spermatozoa [HB16a, KG12, LXXQ14]. spermatozoa-oocyte [HB16a]. spermatozoan [LG14]. sphere
[KKGN16, SGKCP19]. spheres [ICG16]. \textit{spherical} [KMM18, SCsMzX18]. spheroid [AP13a, BPF+19]. spheroids [BFGS10, DFG+18a, HHA17, MFL+18, TDSM12]. sphingomyelin [TWH+13]. \textit{spider} [DEG+14, Mac10, QJR+16, RGCM10]. spike [MKBE17b, Opr10, WCC13]. \textit{spiking} [BPF15a, BPF15b, Fer11, Hor11b]. spillover [ML11a]. \textit{spillovers} [VABS18]. spinal [ISZ18]. \textit{spinal} [SZ18]. spindle [ARR14, BZL17]. \textit{spine} [LSP13]. \textit{spiny} [RKMG12]. \textit{spiral} [RLSM17]. spiraled [FKMG15]. spiriferide [SK11a]. spite [KM12]. spiteful [GCM14]. splice [MSRW16]. spliced [BLZ+19, Fer11, Hor11b]. \textit{splicing} [QYO10]. split [CS15a, Di 12, Di 14b]. \textit{Spodoptera} [KSK+17]. sponges [DHBS19]. Spontaneous [CBP12, Kon11b, CP14, CKB19, KB10b, MTS+16, OS11, SN12, TK10a]. spore [UI13]. \textit{spot} [HTM15]. Spotted [PLF18]. spp [ADCG14]. spread [AZOLVH18, AL17, AP19, BPP12, CD017, CL17a, Cha18, CSLE11, CMN+11, DK13a, HLTW14, HHT+19, KMCJ17, Kle14, KF11, LS10a, LCCK12, LCJ18, LK15, LL18, LCB0+12, MPS16, MGC13, MS12b, MS12c, MPLK14, MLBA12, MLBA13, PSL+10, SHH15, SZ15b, VMZK+19, WHT17, WDH+11, XLSF19, ZJY19, ZVMB10]. \textit{Spreading} [GGBW14, GWBG14, BHKR14, CGW18, FS16c, HPM+17, KPD18, KPD19, LLJ18, MSM+14, MBS19, PTC13, RPP16, ShvHB16, WMCL18, ZCFX13]. \textit{SPrenylC} [HKR+19]. \textit{SPrenylC-PseAAC} [HKR+19]. spring [WGH+14]. squamous [MGM13b]. Src [HWW+14]. \textit{SSBP} [KGP+15]. SSR [NNK+15]. \textit{SST} [CH16]. \textit{Stability} [CL11, Gou16, LR16, MK14d, NPS10, SX12, TF17, VL11, WM17, ALH16, BS11, BBJD811, BR13, Cha17, CLP11,Cre10, DKR16, DBM+18, DHB15, Ezo12, FB18a, FS11b, FR13a, GAL11b, GCM17a, GCZ+12, HGHL10, HK10, HYQ+16, IG14, lvdSW16, Jam12, Kri10, LS14a, LS19, Lun13, MSZW19, Mil11, Miy16, Miy17, MD16, MKPVH16, NWZ15, Opr10, PJ18, Pav14, PMR11, PLN14, PDG12, PJL14, PSC+17, PHK11, PML18, RW16, RCH14, RS10, RBMPP+13, RM13, SW18, SS15c, SS18, SBS17, THM10, TRG16, TRJD19, WL12a, WL12b, Wal16, WR14, XDC+11, XS13, ZCT18, Zha10a, Zha11, ZW16, ZWG10]. \textit{Stability-based} [TF17]. \textit{stability-complexity} [THM10]. \textit{stability/foldability} [Miy17]. \textit{stabilized} [LIPD12, NiTI18, PC13]. \textit{stabilizes} [AS13, Smi14]. \textit{Stabilizing} [SSD13, APS+13, HMMSRSD15, RAMS11, TMD14]. \textit{stability} [Ayd18]. \textit{Stable} [HWGT17, Kar12, MN14, OO17b, RRUJ19, BT17, BI12, Bro13, BHHBR12, Cor16, CMGN17, DLWL+14, DII0a, KIS16, KM12, LFZN11, ML09, ML12a, Mit17, Rem15, SMG18, SKS+19, TM14, VA10, XKCG15, ZLY+17]. \textit{stably} [ATRR10]. \textit{stack} [FIS11, FIS16a]. \textit{stacking} [Tri10, Zol14]. \textit{staff} [HLTW14]. \textit{stage} [BWF+17, CKZ+17, CT18a, CEP14, GWBG14, HYA14, JSYW19, JMK+17, KK12a, Lab16, LP12b, LZTD18, MBP16, NTED+19, RC16, SvK12, SMA11, TRJD19, WcW14, WTC16, YD14, ZLT+19, ZK10]. \textit{stage-dependent} [RC16]. \textit{stage-structure} [BWF+17, LZTD18]. \textit{stage-structured} [CT18a, JMK+17, LP12b, MBP16, RC16, SvK12, TRJD19]. \textit{stages}
staging [KKOM18]. stakes [CT14b]. stalk [UI13]. stalk/spore [UI13]. stalking [BR12a]. Stand [AdlPLMZ13, Lar10]. standard
[BWM+19, LAPK14, LPH19, Mas16, OUMA10, SSS13, ZGW16]. standing [SNCM12]. Staphylococcus [PDW10]. star
[FBAPMD13, FLCS+15, LDWW14, MYOS14, NlT18a]. Start
[AOM19, BTF19, BKSW16, BCPG18, CN12a, CMGN17, Cut15, DEK15, Dim17, Ell15, FTPN10, FT12, GGX+10, JRG14a, JRG14b, JRG14c, KTI18, KL11, Kla10, LRA+13, Lütt16, MBLV10, MBCM12, MS14d, MCCC+10, PRK13, RFS+15, RR16, RCL+10, RCD16, SBCR10, SKD+10, ZTT18, ZL18b]. state-dependent [ZTT18]. state-discrete [SKD+10]. states
[BVK10, BDR10, Bro13, IvdSW16, Jia16, LSMP14, MS18, MS10b, NWWL17, OABI12, RNN15, Sch19c, SKS+19, TM14, UBP12, VA10, XGZ17, XNW17]. Static [MMRCCC10, FD17, PBEI12]. Stationary
[Sch18, Sch21, ALH10, Kae17, Kär11, LS13a, SC11b, SVC10, ZWG10]. Statistical
[AM14, Cro17, GLZ+13, Ing16, LCG+15, MSS10, NdMLLLBC13, SS19, ABD+15, AD16, AAGCD15, BK19, BORA10, BRK19, CLW12, GGR11, KJH+19, KCD11a, KCD11b, LKSM14, Mas18, NGE10, PDW11, RSR11, SSFS18, SSKS20, Wa18, WH14, YW13b, ZMC+18]. statistical-reaction-diffusion [RSR11]. statistically [SSS13, SDRA+15]. statistics
[ILW+11, ZRGW19, vVGSE12]. status [DBD12, JS15]. staying [GN14, ON14, TTN13]. Steady
[CN12a, IvdSW16, KTI18, BKSW16, DEK15, Dim17, FTPN10, FT12, JRG14a, JRG14b, JRG14c, Lütt16, MS10b, RR16, SBCR10]. Steady-state
[CN12a, KTI18, Dim17, Lütt16, RR16]. stearyl [PWH+13]. Stegomyia
[ASF+15]. stellate [GGW+10, TWTA+18]. Steller
[BGL+19, Hor13, HMJB15, BZL17, CDC18, CMS16, DBBW09, DBBW11, DBM+18, EUM+16, JMC+10, Kar15, Ma18, RJS18, ST16, TRM+14, TK10c, VKKA12, VW10, Wal12, YAK17, ZZZ+11, dSDS13]. stenosis
[Fok12, MP19]. stent [MAR+17c]. step [Das18, NMZ19]. stepping
[AP19, EKVF18, SV17]. stepping-stone [EKVF18, SV17]. Steps
[AJC12, BPS18, DAA17, FS11a, SS15b, SS18, SHW16], stiffnesses [SS15c]. stigmas [RS19]. still [Zhe15]. STIM [SAB+19]. STIM-ORAI [SAB+19]. stimulation
[FW15, FR13b, FR14, Kar16, WPH+12]. stimulations
[XNW17]. stimulator [AANF16]. stimuli [DHT19, VBVD17]. Stimulus
[MAS15b, Str15, CPS19, Cox10, JP13, KT18, WSLC14]. Stimulus-dependent [MAS15b]. Stimulus-response [Str15]. stinginess
Strengthening [DGC11]. Stress
[BIM17, ASK17, AAIJ15, B5P18, BYM18, CPF13, CGFRB17, CB10b, CDGV10, DPCM16, DBJ12, FM15b, GRCdL16, GTSP16, GA14, KHH10, KM16, LLTP19, Mdl15, MR15, MBPS17, NF14a, REC10, SGAM12, SWSLMJ19, SAI14, XYN15]. stress-driven [CGFRB17]. Stress-mediated [BIM17]. stress-strain [XYN15]. stressed [BHBR12, DLMK12, OBAI11].

Stronger [HNP18]. strongly [Ala15, Kon11b, PP17b]. Structural [´ATC14, CNG12, FDM11, KISS10, KDF12, MPP16a, PBKR13, SPG18, UD10, ZKHL16, AKNP18, ASRM15, AA16, CT18b, CzST18, CM17, DPRSS11, DYQ14, Don17, EBSW17, FS11a, HH14, IK15, KZL14, LJ10, LCQ18, LKA18, MPCTGJ15, MF15, OYY16, PDB15, PPC17, RSD16, SBR16, SSSD17, SG15a, Smi14, SLT18, USF18, WM17, YX15, Zha10a, Zha11, ZLY14, ZK14, ZLT19, dBJ11].

structure-aided [WDH16]. structure-antioxidant [LL13a]. Structure-function [dBB14b].

structure-sequence [WSH10]. structured [AdlPLMZ13, BV12, CT18a, Dèb17, FM19, GvVT14, GWBG14, Gra15, GMR16, HAB11, HI12, JMK17, KCS16, KFB18, KSPA17, LM11, LS16b, LW15, LL18, Lio18, LP12b, LCDH15, Mac14, MBP16, NTE19, NP11, NPS18, OT13, PNL15, PTB12, PP12, RBB16a, RC16, RRR15, SPSP12, SvK12, SmdA16, SK515, Tak16, TLCZ12, TRJD19, VZ19, WL14, WTC16, WL19, YLW14, ZADB15, ZLW18, dTKDV15].

structures [CAA11, CM17, EG12, FWSG17, FYZ15, GZY12, HY10, HBW11, Kec10, KJ11, KF15, MDVT10, Mas18, NHTS14, SS16, Str13, ZSW11, ZZRZ11].

structural [LG10a]. struggle [LM14]. S TTNC [AH18]. stuck [Cza14].

studied [BHBH11]. Studies [Zha10a, ZZRZ11, BWS10, CW11c, KJ17, KS17, LSMP14, MTE15, MBF15, PS13, PEZ13, RMM16b, TWR18, TAR16, TMS13, YNY10, Zha11, ZZ14a, ZK10]. studious [QJR16].

Study [DYS13, RNVP10, SM10a, ASK17, AHD18, AKR18, AABS16,
tension [GGC14, MHMM11, TSB10, WHWZ18]. Tensor [PH13]. tensors [SC10c]. Teramoto [YLH12]. term [PH13].

tensors [SC10c]. Teramoto [YLH12]. term [ABLH18, BB11b, FHM18, GA14, HKS15, HKS16, MPP+16a, MBP16, MI11b, MSL+16, SBB14, VZB+15, WMK13, WMT15, WGS15].

testosterone [GS17b, HS14a, Jam14, ZP11]. tests [GK16, SD16, TW13].

Theoretical [AK15, BB15, CMD+10, DS19b, HK13, DHT16, EJ19, FKM10, Fer12, Fue16, GHS20, GDB+19, JS18, LPB18, LBW+13, MBF+15, MdSBPL16, Mo18, PCT19, Pan19, PPC+17, PZS+10, PP19, QF10, RG10, RTEK19b, RTEK19a, RZIR16, RS14b, SK11a, SPA18, SYY17a, WLW20, XWW+19, XLG+15, Ano19-27, BD10a, BCKS13, BWM+19, BBDB13, CFF12, CPS10, CW11c, Che18, Che19, Cro19, CG11, DOC17, GGL+16, Grl15a, HDZ+19, HHS+10, IKHL16, KFG15, KCE+11, LPvSP11, LPvSP12, MR10, MYK+11, Mal10, MFMB12, Mor11, RDP16, SMM15, SMHB10, SMS17, Sat17, SYI17, Ser16, SPMGR10, SGGY10, SNCM12, Sza15b, Voc18,
YSST13, YLH12, ZPdFJ19, GGG12]. theoretically [Rao12]. theories [Di 16, Di 17b, HL11, Mor16, RB15, RBF15, Sak10, TGL15, YYST13, YMW12]. theorists [Ran12]. Theory [MMB18, MBS19, OT13, PWL+11, YYB+19, AE17, ASH15, A AJ15, Arc11, AS12, ABLH18, BCBD19, BCPM+16, BWP10, BORA10, BM16, BAM+11, Che12, Che16, CDM+14, Cle16, DMO+17, Di 10, Di 16, Di 17a, Di 17b, FHSG15, Fra19a, FHR13, FR13b, FR14, GBC+16, Gre15, HRDL14, HRD14, HKS10, HZWH10, IST11, KFG+14, KDMK16, KP16, Kue16, LP17, MP14a, MvAKR17, Nah12, NAK+11, NTFK11, RSH19, RC11, RH19, Rob11, Ros10a, RWH16, SA17, SGGM11, SSSF15, SC11a, SR10, SSD12, TR17, THBM10, Wal16, WRC+19, XNJ+13, XLLF17, vTMW15]. theory-the [Nah12].

therapeutic [CBGS18, DL12a, HAuR+18, HB18, LN13, MB12a, SPSM15, SSM+18, SH15, WB15, WFC+14]. therapeutics [GGQ+12, PYG+19].

therapies [Ala15, DH18, HL19, PDF18, RRTR12, SOF16]. therapy [AGRRTR11, AGRR+15, BAGG14, BGCB12, CFCM13, CLA+16, DDTL19, FDW15, FM10, FM14a, GBJ+11, HBA10, HB18, HSLW16, KK18, LMM18, LNKR11, Mal10, MKMG+14, MSL+16, NH19, NSH+10, PMCS16, RRRSPT16, RAR19, SGAM12, SS+14, TXWW12, TXCW15, VZB+15, WR14, WML+17, YCL+17, ZCT18]. therapy-induced [KK18]. there [Di 18, Ros10a].

Thermal [MK18b, BUL12a, JMS12, Pav14, RTRRS+17, RCL+10, ZG19].

three-trrophic [DFK17]. threonine [HKS15]. Threshold [GP12, BV12, BGL10, BN15, GDS11, HBSF11, HW13, HK16, KEKB18, LCG+15, MAS15a, PR13, SE10, SHF16, SS11, TL15, TMM10, ZTT18]. Thresholds [RW10, WB19, BN12, GSCS11, GGL+16, GRBL13, HBT13, MCRG18, MGC13, OF10, RMF+18, SSZB15, Str15, TH17, ZKH19].

Time

[BJOS13, NKB16b, PW19, Yam16a, AIY16, BGM19, BP15, BSKV18, BUC14, BH11, BCK19, BD12, Cam15, CK15, CV19, Cor16, CMJD11, DLD15, DD10, DHP11, EAN14, FGGT15, FS16c, GLR+17, GCM17a, GFM+19, Gol16, Gre15, GBM18, Hal12, HY10, Höh15, JMK16, Kar16, KHR10, KAK19, KII19, LJ15, LSI6a, LSM17, LBZ18, LP12b, LBS+14, MDS16, MTN12, MMH+12, MYN+13, MYS1+15, MBP16, MSIR10, NIT19, NS11, NMI18, NNvdB17, Opr10, PAK11, PDS13, PTC13, PBR17b, PR13, PKH11, Rev15, STH18, Sim14, SVSP15, SS15d, Sta10, SMC+13, SBM+12, Voe18, WYKT17, X11a, Wei12, Wil11, WGC13, XSKA17, XKCG15, vDRT14, vE11].

Tissue [GSSBF18, GL18b, RW14a, BSP18, BJO+16, BJWL15, CF11, CLCH10, CGRRGM+16, DBBW09, DBBW11, HPP10, Hir16, LM+13, LW18, MYK+11, MBBV14, MA11a, MAMEA15, MH13, MMH11, NHE+16, NTO16, POP12, PDL+17, RTRRS+17, Rem15, RJSC18, RC13, SBSR13, SG15, VHI1b, WMPF+15, Wod18, Yat14, vDVFH+18]. tissue-diet [Rem15].

tissues [BTF19, DS16, EHBC10, FABA17, FM14b, Krol10, KBF18, LLB+18, MYK+11, RSH14b, RSH14a, Wal16, ZGS+10].
tire [BYJ17, YBC17].

tit-for-tat [BYJ17, YBC17]. titration [Mar17b]. Tiwanaku [FBU11].

TNF- [MFK10, RAR19, WPH+12]. TNF- [RAR19]. toe [SHW16]. toes [LCB+12]. together [GN14, Mor10b, ON14, SSP15, TTN13]. tolerance [LPB17, Moo14, VOB19b, LB18]. tolerated [BH13c].

Toll [AES+13].

toll-like [AES+13]. tomato [AKdV+14]. Tomlinson [BR14].

tomography [CZPC+18, LDB+14]. tongue [TF16, WHWZ18].
too [OAP14, VVF19].

tool [AEZR+16, BVEJ17, HYS19, MDFM10, PCL+15, SVA18, dEG11].

Tooth [Fre10, TIM+15, AKR+18, CGRRGM+16, IVP12].

Top [ZYD15, MPS+11, SC10b]. top-down [MPS+11, SC10b].

topographic
[SCT12]. **Topological** [HNO18, JC16, MEJ18, ACdlRMR+11, FBAPMD13, HZL+11, cLCJ+10, MBE10, YWW+14, YWZ+16]. **topologies** [ADR11a, BKL14, ZSO16]. **topology** [BBS18b, CL13a, CK15, GJS+10, IMA14, LS14b, LCL14, MvdDW13, MD16, PJL14]. **toppling** [Lar10]. **torque** [GY18]. **torsional** [APW10]. **Tortuosity** [LXJ15, PA15]. **tortuous** [Che14]. **torus** [SGKCP19]. **Total** [Gar14, Gra14, JRG14a, JRG14b, JRG14c, RTR+13, RLW+14, RHT18, TKB+18, TW12]. **touch** [ARB13]. **touch-down** [ARB13]. **tourists** [ZZL19]. **toxicant** [HAK+19, LLL13, PPW16]. **toxicants** [NNK10]. **toxicities** [QLWC19]. **toxicity** [FSA15, RWW+15, RGL+17, TTB+18]. **toxicodynamic** [SAKG13]. **toxicokinetic** [SAKG13]. **toxicokinetic-toxicodynamic** [SAKG13]. **Toxin** [DHV19, BSL+17, HSR12, YWW+14]. **Toxins** [HWL15, PWZ+19]. **Toxoplasma** [JSSZ12]. **tractable** [SBJ13]. **Traffic** [MSA+16]. **trafficking** [CN10]. **trajectories** [CHL+19, LWLM18, LAJC19, PRSC11]. **tramadol** [ACR+17]. **transactions** [MLMG+15]. **transboundary** [NBA+18]. **Transcellular** [Sil16]. **transcerebrospinal** [FR13b]. **transcript** [SC11a]. **Transcription** [HG18a, KEHK17, MSND12, Bar19, Das18, FLM18, GY18, KHS13, LLY15, MMH+12, Mic11, MHD18, NZZ19, PHÁBAI+16, Sel15b, Sel16, Sel17, YST14]. **Transcription-associated** [KEHK17]. **Transcriptional** [Pol12, ARG17, BPP+16, DM19, Hal17, HCHI18, NZZ19, Sel15a, TK10b]. **transcriptome** [SLW+18a]. **transcriptomic** [CTSL11]. **transduction** [ANK10, ANY14, DFM+19, JC10, RW10, RHJ11, SAA10, Tsu19, VLP17]. **transfer** [Di 12, FXML18, LWI14, LWL+11, MTE15, Mau15, Mei12a, Mei12b, Mei13a, Mei13b, Mei14, NKN10, PMSY17, RS19, SSS13, SLHS13, ZDF+12]. **transferrin** [GHBI16, YCL+17]. **transferrin-CRM107** [YCL+17]. **transfers** [BCBD19, bCRS17, CL13b, DLM+19, GS13]. **Transform** [YC14, ATRR10, AAJGCD15, CL17b, GT14, YZW10, YY15, ZLDZ13].
transformation [CMHM19, FH14, Gla13]. transformations [Bal13, FGGS15, MH13, RKMG12]. transformed [KNA+18, SCsMZx18]. Transforming [HMW16, MHMM11]. transforms [JLX+15, SVCS10]. transfection [HSLW16]. transgenic [BAR14, LBGW13]. Transient [BB11a, KK18, BF16, FGH+14, Hor11b, LL19, Lit16, PW19, RW10]. transients [MBP16, SHF16]. transient [KNA+18, SCsMzX18]. transitive [HMW16, MHMM11]. transforms [JLX+15, SVCS10]. transference [KNA+18, SCsMzX18]. tranced [KNA+18, SCsMzX18]. transion [BR17, BB17, FG17, H18, M18]. transition [HMW16, MHMM11]. transmits [KNA+18, SCsMzX18]. transmitted [KNA+18, SCsMzX18]. transmissions [KNA+18, SCsMzX18]. transmitting [KNA+18, SCsMzX18]. transmisible [KNA+18, SCsMzX18]. transmissible [KNA+18, SCsMzX18]. transmissibility [KNA+18, SCsMzX18]. transmisible [KNA+18, SCsMzX18]. transmissible [KNA+18, SCsMzX18]. transmisible [KNA+18, SCsMzX18]. transmisible [KNA+18, SCsMzX18]. transmisible [KNA+18, SCsMzX18]. transmissible [KNA+18, SCsMzX18]. transmisible [KNA+18, SCsMzX18]. transmissible [KNA+18, SCsMzX18]. transmible [KNA+18, SCsMzX18]. transmibale [KNA+18, SCsMzX18]. transmible [KNA+18, SCsMzX18]. transmi
LZL$^{+19}$, MS13, MVH11, NTED$^{+19}$, PCL$^{+15}$, RCH14, SOF16, TDKJ15, TGZF11, VZB$^{+15}$, WB15, WMN18, WCJ11, WCM15, ZZL$^{+11}$.

Treatment-donation-stockpile [HSLW16].

treatments

[ADV$^{+10}$, DMSW10, ADR11a, AdiPLMZ13, CTA15, bCR19, CK15, CS15a, CMJD11, DGL12, DAVS11, Di 19b, Di 19c, FM18, GK16, GJ15b, GRCdL16, Hay16, HDBN10, HMW16, LWH$^{+11}$, LMJ$^{+16}$, Mig16, QQL10, RM17c, SM17a, SMDD16, SLHS13, TGLK19, VW10, vE11]. **tree-based** [Hay16].

tree-child [FM18].

tree-grass [ADV$^{+10}$].

tree-grass-soil [DAVS11].

trees [AM10, AHR10, BNG16, DDS13, GD16, Gou15, GRR$^{+14}$, HS11, K¨ar11, Lar10, LG18, MS14d, Mul11, Mul12, MC15b, NP15, Oka15, SW16, SSS13, SWG$^{+15}$, SMC17, Sta10, SSKS18, SSKS20, Ste13, TI13, YLH12, vIK11].

Treg [GMB11].

TREX1 [GSS19].

tri [KPG19, Kˇri14, LTL$^{+15}$].

tri-gram [KPG19, Kˇri14].

tri-trophic [KPG19, Kˇri14].

trials [DH18].

triangulation [QLWC19].

Triatoma [MMG$^{+16}$].

trichome [YLY15].

trifallax [BKC$^{+16}$].

trigger [ZLY$^{+13}$].

triggered [HL14, WRC$^{+19}$].

triggerfish [YSST13].

triggering [RRG$^{+10}$].

triggers [HBSF11].

trilobite [SKSO12].

trimorphic [Kar12].

trimorphisms [RQB17].

Trinary [TSM13a, TSM13b].

trinucleotide [FS15b, MP13b, Mic15b, MPP16b, ZLDZ13].

trinucleotides [RGP13].

trios [MHKA16].

Tripathi [Pan19].

triple [NJP18].

triple-negative [NJP18].

triplet [DMCP14, FW15, HM11b, dSMP$^{+11}$].

triplet-structure [FW15].

triplet-wise [dSMP$^{+11}$].

trisporic [EBSW17].

trisporoid [ESW13].

Trivers [BD10b, Jam13].

trivial [HA15b].

tRNA [BB13, Di 12, Di 17a, Di 19a, Rog19, Sel14a, VHS17, Xie13b, YLC16].

tRNAfeature [YLC16].

tRNAs [Di 13b, Sel11, Sel12b, Sel14a, dF13].

trophic [All11, DKF17, KPG19, Kii14, PMSY17, PML18, RM13, SL10, SRS18].

trophically [BPFR16].

trophic [HF17].

trophic-hunted [HF17].

tropical [HDNB10, SS15a].

tropism [OAP14].

troponin [RG18, VM16].

trout [KSKS13, MKN$^{+12}$].

trp [HVSZ10, ZCSRG12].

TRPV1 [MK18b].

truncated [Den19, JZZK11].

Truncation [MB16, MB19, VDTF15].

trustful [PCN17].

Trypanosoma [KZ14, PKZ12].

tsutsugamushi [KGK10].

Tuberculosis [MEKK11, BCPG18, Cjl15, Ger16, GBJ$^{+11}$, GDB$^{+19}$, GAY$^{+11}$, GAY$^{+15}$, HYN19, HN19, KdiRJ18, LBGM16, LGMV14, LKAJ18, MM12, MMFK10, MG14a, O011, PDRC16, PL14a, PL14b, PCL$^{+15}$, RK19, TDM14, WDL$^{+17}$, WCJ11, ZLZ15a, KS10, PCC15, SCC11].

tuberculous [EkdKvFK13].

tubes [Ckd11].

tubule [Hir16].

tubules [She11a].

tubulin [Bj18, DHHP14, KGM15b, SSZ17].

tubulin-driven [DHHP14].

tubulogenesis [HHA17].

tufted [VB19a].

Tug [SP14, Non10, SR10].

Tug-of-war [SP14, Non10, SR10].

tumble [AA12].

Tumor [CL14, CL19, GCSP17, Klv12, AGR$^{+15}$, ABV19, BPC15, BSV$^{+10}$, CFCM13, CL18, CMHM19, CCAAdS13, DFG$^{+18a}$, DS16, EBE10, EKvdKvFK13, FJc$^{+10}$, GLR$^{+18}$, GL18a, HM10a, KH$^{+19}$, Kar16, KRDJ15, KRR14, KL18, KC11a, KK18, LL14, LBF13, LS16c, MOEdP16,
MRF19, MKKS14, MFL+18, MGM13a, NF17, NJP18, OAP14, PA15, RTEK12, RTEKG15, RTEKG19b, RTEKG19a, RRTR12, RRRRSPT16, SGB19, SFMS16, SSM+18, SZ15b, SKD+10, TTB+18, VDD+17, Wod18, WFM+13, WFC+14, YY+16, YBT+17, ZYL+11, d'O12].
tumor-immune [GLR+18, MOEdP16, MRF19, MGM13a, RTEK12, RTEKG19a].
tumor-induced [Kar16, SSM+18].
tumor-tropism [OAP14].
tumoral [LDF+11a, PDF18].
tumorigenesis [DM11].
tumorous [ZZS19].
tumors [AGRRTR11, AK16, BAM+11, LS15c, PMK15, TW12, XLLF17, YLLL12, ZSSM14].
Tumour [CdMB10, MGGM10b, SGGM11, AKS+19, AHW13, BBJ+10, BFGS10, BJO+16, BB19, CXWL11, DBBW09, DBBW11, DTGC14, HNP18, HB13b, IB+15, JYY+18, JMC+10, KHP+12, PGHC12, PM13, SLD+17, TDSM12].
tumour-associated [BB19].
tumour-induced [SLD+17].

Tumour-stromal [MGGM10b].
tumours [BSB+13, Car17, JKF19, MCL19, MGGM10a, ShvHB16, dG10b].
tuna [RDD14, TTT13].
tunability [MK18a].
tunable [BN12].
tune [SSZR17].

Tuning [JRMS12, LXS15, OAJK10].
tuple [LFW+15].
turbid [MMB18].
Turbulent [MN12, WST15].
Turgidity [GRCdL16].
Turgidity-dependent [GRCdL16].
Turing [FK13, Kon17, KGM+15a, SGKCP19, ZSO16].
Turk [Ran12].
turn [SHLL11, Toz15].
turnover [DP13a, Gin10, LMC+13, PMK15, SLD+17].
turtle [NSO15].
twice [Gar14].

TWIG [CMJD11].
Twist [Zol14].
Two [BC15, BKL14, Coh15b, DGJ14, GW14, HZW+14, KC17, MRPLAS15, Mit14, Mog15, O'F11, Pan11, RK+11, ATB14, AC15, AHJ18b, BLV18, BPF16, BBS18a, Boc12, BP16, CS14a, Chu10, Cre10, DEG+14, DGJ15, Di 12, Di 19a, FZ14, FK13, GMZM15, GI10, MGM12, GPR+16, GT15, HYA14, Han12, Has14, HTK+18, HB13b, JV14, JC10, JSWY19, JCG15, KA11, Kar12, KB10a, KMCJ17, KCSB14, KN11, Lai11, LCC15, LBZ18, Mal15, MMFK10, MB10, MLB17, MS10, MPL14, MMHM11, NBS+13, New11, NOTI16, OUMA10, PBB10, PBvdG10, PC10a, Pla10, RMM+16a, Rei12, RBB16b, SC10a, SL10, SvK12, SBR10, She11b, TW19, TBB14, TT10a, VCF+19, WL12a, WL12b, WMC16, WcW14, Wan19, WBMM18, WF17, XDC+11, XGZ17, ZLL17, ZN18, ZXX19, ZK10, vIK11].
two-allele [WL12a, WL12b].
two-compartment [MMHM11, PBvdG10].
two-compartmental [MMFK10].
two-component [OUMA10].
two-delay [KCSB14].
two-dimensional [ATB14, FZ14].
two-fold [KB10a, She11b].

Two-intermediate [RK+11].
two-layer [AC15, FK13, WMK16].
two-level [AHJ18b, JCG15].
Two-part [Mog15].

Two-level [AHJ18b, JCG15].
Two-part [Mog15].

Two-scale [BC15].
two-sensor [GT15].
two-sex [Chu10, GGM12, MB10].
two-species [Cre10, Han12, PC10a].
two-stage [HYA14, JSWY19, ZK10].
two-states [XGZ17].
two-strain [ZN18].
two-tag [Lai11].
two-thresholds [XHH19].
two-tiered [XDC+11].
two-trophic-level [SL10]. Type [JZL13, AF10, AD15, BSR14, BPF15a, BPF15b, CNM+13, DS13, EMM10, GK16, HHJR11, HA15b, JDPK15, JDSPK15, KSU+18, KB15, KDL16, KF10, LJ18, Mor10b, MMB14, NS11, NKO11, PSD+18, PRN10, RFdL15, RAD14, SDFK12, SAD17, SVA18, Wei17, WHS+13, Zha10a, ZXC+10, DFMR19]. type-2 [AF10]. type-dependent [PRN10]. types [AH15, AHJ18b, BK19, CL13a, CCY+19, Di 19c, HYA14, HK11a, HK12, JD16a, JD16b, KDG13, Kar12, KHK17, LZ18, LD11, MJ11, NO14a, NO14b, SM17a, SM18, SN16, SBR10, SVB+10, SHL11, TP17, WMK16, WXmH10, WK18a, ZADB15, ZZG+16]. Typhimurium [SPSM15]. typical [TTP17]. Tyr422Ala [NZZ19]. tyrosine [CFR+14, CMR+18].

REFERENCES

Allena:2012:RTL

Aranda-Anzaldo:2016:IMC

Abner:2014:SCM

Ali:2016:BGF

Al-Anzi:2017:MAM

Arani:2015:VBF

[AAJ15] A. Ghorbanpour Arani, M. Abdollahian, and M. H. Jalaei. Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress...
REFERENCES

Abbott:2010:BEC

Abdelheq:2019:PST

Ascenzi:2011:ELL

Agliari:2015:ASD

REFERENCES

Afreixo:2013:BWS

Agliari:2011:TPI

Almeida:2011:MMD

Ang:2010:CUI

Amiri:2012:FCA

Asano:2012:QLM

Aguiar:2011:RSI

Arnoldi:2018:HER

Aquino:2015:CEE

Afreixo:2011:GAD

Aram:2015:TLC

Arenas:2011:JEC

Aguero-Chapin:2011:NLM

Alshehri:2015:EBD

Akman:2018:MSI

Adams:2016:HDD

Agusto:2013:IBN

Ali:2019:ADR

Ali:2014:BAD

Apri:2012:CRP

Akbaripour-Elahabad:2016:RTS

Abrams:2010:PPA

Aydogdu:2017:MBW

Ahmed:2010:EMF

Adilina:2019:EDB

Sheikh Adilina, Dewan Md Farid, and Swakkhar Shatabda. Effective DNA binding protein prediction by using key

REFERENCES

REFERENCES

[Akbar:2018:ISI] Shahid Akbar and Maqsood Hayat. iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences. *Journal of Theoretical Biology*, 455(??):205–211, October 14,

REFERENCES

[Allman:2010:ETF]

[Al-Husari:2013:RTI]

[Ashby:2019:URE]

[Aita:2016:IFV]

[Al-Jumaily:2012:EAS]

Al-Jumaily:2011:FMM

Abou-Jaoude:2019:LBD

Armstrong:2011:MPD

Adler:2013:MCS

Akita:2015:TLI

Tetsuya Akita and Masashi Kamo. Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to

REFERENCES

REFERENCES

REFERENCES

Artoisenet:2014:SGT

Al-Mamun:2013:HCM

Arbilly:2010:CEL

Al-Mamun:2016:SMD

Abdel-Mageed:2016:CMC

Amorim:2015:MAF

Adams:2012:ARE

Azaele:2010:IPE

Al-Mamun:2016:MMA

Arazi:2010:MIC

REFERENCES

Allen:2012:ESD

Arazi:2013:RPF

Allen:2015:GAR

Arthur:2017:EMG

Anastasio:2011:DDM

Al-Nuaimi:2012:PMM

Yusur Al-Nuaimi, Marc Goodfellow, Ralf Paus, and Gerold Baier. A prototypic mathematical model of the human hair

Anonymous:2010:EBd

Anonymous:2010:EBe

Anonymous:2010:EBf

Anonymous:2010:EBg

Anonymous:2010:EBh

Anonymous:2010:EBi

REFERENCES

Anonymous:2010:EBj

Anonymous:2010:EBk

Anonymous:2010:EBl

Anonymous:2010:EBm

Anonymous:2010:EBo

Anonymous:2010:EBo

Anonymous:2010:EBv

Anonymous:2010:EBw

Anonymous:2010:EBx

Anonymous:2010:PNa

Anonymous:2010:PMa

Anonymous:2010:PMc

Anonymous:2010:PJa

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous:2010:PSa</td>
</tr>
</tbody>
</table>

| **Anonymous:2010:PJe** |

| **Anonymous:2010:PJd** |

| **Anonymous:2010:PNb** |

| **Anonymous:2010:PMb** |

| **Anonymous:2010:PMd** |

| **Anonymous:2010:PJb** |

| **Anonymous:2010:PSb** |
REFERENCES

Anonymous:2010:PAc

Anonymous:2010:PDa

Anonymous:2010:PAa

Anonymous:2010:POa

Anonymous:2010:PFa

Anonymous:2010:PAb

Anonymous:2010:PDb

Anonymous:2010:POb
Anonymous:2010:PA
d

Anonymous:2010:PFb

Anonymous:2010:PJe

Anonymous:2010:PJf

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

REFERENCES

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

REFERENCES

Anonymous:2011:EBv

Anonymous:2011:EBw

Anonymous:2011:EBx

Anonymous:2011:PAc

Anonymous:2011:PAb

Anonymous:2011:PDa

Anonymous:2011:PNa

REFERENCES

Anonymous:2011:POa

Anonymous:2011:PMd

Anonymous:2011:PDb

Anonymous:2011:PJe

Anonymous:2011:PJf

Anonymous:2011:PSa

Anonymous:2011:PJa

Anonymous:2011:POb

REFERENCES

Anonymous:2011:PJd

Anonymous:2011:PSb

Anonymous:2011:PFa

Anonymous:2011:PJe

Anonymous:2011:PMa

Anonymous:2011:PAa

Anonymous:2011:PFb

Anonymous:2011:PAd

Anonymous:2011:PMb

Anonymous:2011:PNb

Anonymous:2011:PMc

Anonymous:2011:PJb

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc
REFERENCES

Anonymous:2012:EBj

Anonymous:2012:EBk

Anonymous:2012:EBl

Anonymous:2012:EBm

Anonymous:2012:EBn

Anonymous:2012:EBo

REFERENCES

Anonymous:2012:EBp

Anonymous:2012:EBq

Anonymous:2012:EBr

Anonymous:2012:EBs

Anonymous:2012:EBt

Anonymous:2012:EBu

206

REFERENCES

Anonymous:2012:EBv

Anonymous:2012:EBw

Anonymous:2012:EBx

Anonymous:2012:PMa

Anonymous:2012:PJa

Anonymous:2012:PJf

Anonymous:2012:PAb

REFERENCES

Anonymous:2012:PMb

Anonymous:2012:PFb

Anonymous:2012:PSb

Anonymous:2012:PAc

Anonymous:2012:PNb

Anonymous:2012:PDa

Anonymous:2012:PJb

Anonymous:2012:POa
Anonymous:2012:PJe

Anonymous:2012:PMc

Anonymous:2012:PJc

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

Anonymous:2013:EBd

REFERENCES

Anonymous:2013:PMc

Anonymous:2013:PD

Anonymous:2013:PFb

Anonymous:2013:PMa

Anonymous:2013:PNb

Anonymous:2013:POa

Anonymous:2013:PSb

Anonymous:2013:PFa

Anonymous:2013:PNa

Anonymous:2013:PSa

Anonymous:2013:POb

Anonymous:2013:PJb

Anonymous:2013:PJc

Anonymous:2013:PAc

Anonymous:2013:PAb

Anonymous:2013:PAd

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Anonymous:2014:EBf

Anonymous:2014:EBg

Anonymous:2014:EBh

Anonymous:2014:EBi

Anonymous:2014:EBj

Anonymous:2014:EBk

REFERENCES

Anonymous:2014:EBl

Anonymous:2014:EBm

Anonymous:2014:EBn

Anonymous:2014:EBo

Anonymous:2014:EBq

REFERENCES

Anonymous:2014:EBx

Anonymous:2014:PFa

Anonymous:2014:PAa

Anonymous:2014:PJc

Anonymous:2014:PMc

Anonymous:2014:PJb

Anonymous:2014:PAc

Anonymous:2014:PMd

Anonymous:2014:PJf

Anonymous:2014:PAb

Anonymous:2014:PFb

Anonymous:2014:PSa

Anonymous:2014:POb

Anonymous:2014:PA

Anonymous:2014:PO

Anonymous:2014:PS

Anonymous:2014:PJ

Anonymous:2014:PN

Anonymous:2014:PD

Anonymous:2014:PM

Anonymous:2014:PJ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2015:PNa

Anonymous:2015:POb

Anonymous:2015:PAb

Anonymous:2015:PNb

Anonymous:2015:PJe

Anonymous:2015:PDa

Anonymous:2015:PAa

Anonymous:2015:PMc

Anonymous:2015:PDb

Anonymous:2015:PFb

Anonymous:2015:POa

Anonymous:2015:PJa

Anonymous:2015:PJb

Anonymous:2015:PS

Anonymous:2015:PAd

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd

Anonymous:2016:EBe

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2016:EBk

Anonymous:2016:EBl

Anonymous:2016:EBm

Anonymous:2016:EBt

Anonymous:2016:EBu

Anonymous:2016:EBv

Anonymous:2016:EBw

Anonymous:2016:EBx

Anonymous:2016:PDb

REFERENCES

REFERENCES

Anonymous:2016:PJd

Anonymous:2016:PDa

Anonymous:2016:PJe

Anonymous:2016:POa

Anonymous:2016:PMd

Anonymous:2016:PMc

Anonymous:2016:PAd

Anonymous:2016:PMb
Anonymous:2016:PAa

Anonymous:2016:PNa

Anonymous:2016:PJb

Anonymous:2016:PS

Anonymous:2016:POb

Anonymous:2017:EBa

Anonymous:2017:EBb
REFERENCES

Anonymous:2017:EBc

Anonymous:2017:EBd

Anonymous:2017:EBe

Anonymous:2017:EBf

Anonymous:2017:EBg

Anonymous:2017:EBh

Anonymous:2017:EBi

Anonymous:2017:EBj

Anonymous:2017:EBk

Anonymous:2017:EBl

Anonymous:2017:EBl

Anonymous:2017:EBo

REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:PJa

Anonymous:2017:PMa

Anonymous:2017:PD

Anonymous:2017:PSb

Anonymous:2017:PFa

Anonymous:2017:POa

Anonymous:2017:PMc

Anonymous:2017:PAb

REFERENCES

REFERENCES

Anonymous:2018:EBp

Anonymous:2018:EBq

Anonymous:2018:EBr

Anonymous:2018:EBs

Anonymous:2018:EBt

Anonymous:2018:EBu

REFERENCES

Anonymous:2018:EBv

Anonymous:2018:EBw

Anonymous:2018:EBx

Anonymous:2018:PAc

Anonymous:2018:PAd

Anonymous:2018:PJf

Anonymous:2018:PMc
Anonymous:2018:PMa

Anonymous:2018:PJa

Anonymous:2018:PSb

Anonymous:2018:PJe

Anonymous:2018:PAa

Anonymous:2018:PDb

Anonymous:2018:PFa

Anonymous:2018:PAb
REFERENCES

Anonymous:2018:PMd

Anonymous:2018:PJd

Anonymous:2018:PDa

Anonymous:2018:PFb

Anonymous:2018:PJc

Anonymous:2018:PNb

Anonymous:2018:PNa

Anonymous:2018:PJb
Anonymous:2018:POb

Anonymous:2018:POa

Anonymous:2018:PSa

Anonymous:2018:PMb

Anonymous:2019:Db

Anonymous:2019:Da

Anonymous:2019:EBa

Anonymous:2019:EBb

Anonymous:2019:EBo

Anonymous:2019:EBp

Anonymous:2019:EBq

Anonymous:2019:EBr

Anonymous:2019:EBs

Anonymous:2019:EBt

REFERENCES

Anonymous:2019:PFb

Anonymous:2019:POa

Anonymous:2019:PAb

Anonymous:2019:PMa

Anonymous:2019:PMd

Anonymous:2019:PJa

Anonymous:2019:PNa

Anonymous:2019:PJb

Anonymous:2019:PFa

Anonymous:2019:PMc

Anonymous:2019:PJf

Anonymous:2019:PSa

Anonymous:2019:PA

Anonymous:2019:PPK

Anonymous:2019:PN

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Start Page</th>
<th>URL</th>
</tr>
</thead>
</table>

REFERENCES

260

Archetti:2011:CTE

Archetti:2013:EPM

Archetti:2014:EDW

Archetti:2016:CAC

Andersen:2012:LE

REFERENCES

Aquino:2014:SHR

Argasinski:2012:DSR

Aguilera:2014:SHL

Almeira:2017:RTB

Aguilera:2019:MET

REFERENCES

Ali:2015:MCP

Algar:2019:ASH

Atkins:2010:LAE

Antonioni:2014:RDC

Avila:2014:SIG

Marco Fidel Ávila, Daniel Torrente, Ricardo Cabezas, Ludis Morales, Luis Miguel García-Segura, Janneth Gonzalez, and

Allen:2012:HMA

Ahmed:2015:RPR

Aboelkassem:2019:HWW

Alger:2012:GHR

Asatryan:2015:NVD

Allhoff:2015:ISD

[AWRD15] Korinna T. Allhoff, Eva Marie Weiel, Tobias Rogge, and Barbara Drossel. On the interplay of speciation and dis-
REFERENCES

Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, and Jorge X. Velasco-Hernández. The role of animal grazing in the spread of Chagas disease. *Journal of The-
REFERENCES

Balakrishnan:2010:RHB

Basios:2019:HLC

Bach:2015:CMB

Barua:2014:RBF

Balasuriya:2010:IDD

Ballantyne:2013:EMF

Buzea:2011:SIS

Blickhan:2015:PHR

Barclay:2011:CHI

REFERENCES

[BB19] Michael A. Boemo and Helen M. Byrne. Mathematical modelling of a hypoxia-regulated oncolytic virus deliv-

Barazzuol:2010:MMB

Blum:2011:DCL

Boldrini:1997:RNL

Boldrini:2013:CNLa

Boldrini:2013:CNLb

Boldrini:2013:RRN

Butail:2013:ACC

Bazil:2010:BMM

Barker:2012:GTM

Heather A. Barker, Mark Broom, and Jan Rychtář. A game theoretic model of kleptoparasitism with strategic arrivals and departures of beetles at dung pats. Journal of

Ballard:2016:PEF

Brackley:2012:MPM

Bougaran:2010:MCC

Bayer:2018:TPM

Bouda:2018:WRS

Martin Bouda, Craig Brodersen, and James Saiers. Whole root system water conductance responds to both axial and

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

Baltcheva:2010:LDH

Bodgi:2016:MMR

Chan:2019:RGN

Chan:2017:IIL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bertrand:2014:LPA

Barton:2013:SVO

Barton:2015:RSC

Bernstein:2016:ASP

Burgos-Florez:2016:FBS

REFERENCES

Nils B. Becker, Matthias Günther, Congxin Li, Adrien Jolly, and Thomas Höfer. Stem cell homeostasis by in-

Barton:2013:PDV

Bate:2013:PPO

Benzekry:2013:MTD

Berndt:2011:ICC

REFERENCES

REFERENCES

Bica:2017:ABP

Broom:2010:OIA

Buhler:2011:AML

Bessho:2010:OSS

Bessho:2012:VES
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bonachela:2014:ECB

Barroso:2015:LCL

Behar:2015:CPS

Binder:2015:IPR

Boghigian:2010:CAP
Borchering:2012:SSR

Bordewich:2017:LSG

Burgess:2017:ERI

Barrios:2018:AED

Boyle:2011:SPP

REFERENCES

Bunimovich-Mendrazitsky:2011:CMM

Bunimovich-Mendrazitsky:2011:MMC

Barac:2019:GOU

Bowden:2014:ODE

REFERENCES

REFERENCES

Bodova:2015:CSN

Bodova:2015:ECS

Bubba:2019:CBE

Baudrot:2016:CHC

Bandiera:2016:EMM

Briant:2015:MVR

Bolzoni:2015:RHI

Bianchi:2015:MML

REFERENCES

Bennett:2019:LDS

Bonello:2013:BIS

Baker:2014:GMC

Bunte:2018:LPM

REFERENCES

Bauer:2014:CIE

Bastogne:2010:PMT

Banerjee:2017:MDP

Bilinsky:2019:UMM

REFERENCES

[BV12] Duygu Balcan and Alessandro Vespignani. Invasion threshold in structured populations with recurrent mobility pat-

REFERENCES

Bielsinska-Waz:2010:CSB

Bewick:2017:IDC

Baek:2017:DBC

Booton:2018:IBI

Bi:2011:KBV

Bertalan:2017:MMC

Bassil:2017:ASE

Cockrell:2017:SRI

Colombo:2018:NPD

Cortes:2011:MME

[Cam15] R. B. Campbell. The effect of inbreeding constraints and offspring distribution on time to the most recent common ancestor. *Journal of Theoretical Biology*, 382(??):74–80, October 7, 2015. CODEN JTBIAP. ISSN 0022-5193 (print),

REFERENCES

Carrillo:2018:AVC

Caraco:2016:ETP

Chen:2019:PFA

Cushing:2016:MGD

Chiu:2018:LSF

Jimmy Ka Ho Chiu, Tharam S. Dillon, and Yi-Ping Phoebe Chen. Large-scale frequent stem pattern mining in RNA families. *Journal of Theoretical Biology*, 455(??):131–139, Octo-
REFERENCES

Collignon:2012:LBS

Crauste:2010:MSF

Ciulla:2014:ACT

Caravagna:2010:TSI

Canon:2017:MMS

Couturier:2011:FLG

Chen:2017:RBC

Calle-Espinosa:2016:NLW

Cusseddu:2019:CBS

Crouzy:2014:BPA

Cherry:2011:EBG

Calzada:2013:OCO

Chow:2011:DME

Lamwah Chow, Meng Fan, and Zhilan Feng. Dynamics of a multigroup epidemiological model with group-targeted vaccination strategies. *Journal of Theoretical Biology*, 291(??):56–64, December 21, 2011. CODEN JT-

Caldwell:2019:VAP

Cencini:2016:CFG

Centler:2011:MPP

Cen:2014:EDD

Crane:2010:CMA

[CG10] Kenneth W. Crane and James P. Grover. Coexistence of mixotrophs, autotrophs, and heterotrophs in plank-

[Cunniffe:2011:TFB]

[Collins:2014:IHT]

[Crona:2013:PGF]

[Chen:2013:SRO]

Corredor-Gomez:2016:IOM

Carlier:2015:OCD

Cui:2018:ESD

Chen:2011:SRP

REFERENCES

Zhan Chen. The formation of the thickveins (Tkv) gradient in *Drosophila* wing discs: a theoretical study. *Jour-
REFERENCES

Craig:2015:NDD

Chou:2011:SRP

Chu:2010:TSL

Chu:2017:LSM

Chu:2018:PLT

Chou:2011:SRP

REFERENCES

Chifman:2012:CCS

Chu:2019:ERE

Czaran:2015:MCR

Cao:2017:MMQ

Cibert:2010:CFI

[CL10] Christian Cibert and Andrei Ludu. Is the curvature of the flagellum involved in the apparent cooperativity of the

REFERENCES

Chauhan:2011:RMC

Chen:2018:MEC

Chen:2018:UIT

Chyou:2011:UBC

Cardozo:2014:SMH
REFERENCES

Cohen:2012:BSA

Chakrabarty:2012:MHC

Constable:2014:PGI

Cuesta:2017:ESS

Carteni:2012:NPS
REFERENCES

[Cenci:2018:EER]

[Chiyaka:2010:TAM]

[Cunning:2017:DBM]

[Chowkwale:2019:MSM]

[M. Chowkwale, G. J. Mahler, P. Huang, and B. T. Murray. A multiscale *in silico* model of endothelial to mesenchy-

REFERENCES

References

Cordoleani:2012:CSS

Cheeseman:2014:STD

Cordoleani:2013:SPF

Chaves:2019:AGM
Cohn:2015:ARP

Cohn:2015:TUP

Cooper:2016:FRE

Cortez:2016:HED

Cortes:2018:HRV

Cao:2011:ECA

Caiazzo:2015:MMP

Cressman:2010:CND

Cressman:2010:CND

Cresman:2010:CND

Cressman:2010:CND

Calvetti:2018:CMI

Calvetti:2018:CMI

Carlos:2015:SEA

Carlos:2015:SEA

Calleja-Rodriguez:2019:APE

[Ainhoa Calleja-Rodriguez, Zitong Li, Henrik R. Hallingbäck, Mikko J. Sillanpää, Harry X. Wu, Sara Abrahamsson, and]

[CS11a] Daniela Calvetti and Erkki Somersalo. Dynamic activation model for a glutamatergic neurovascular unit. *Journal
Chakra:2011:HCM

Campenni:2014:PCP

Ciupe:2014:UVH

Chor:2015:DTS

Corning:2015:SSD

REFERENCES

REFERENCES

Coskun:2010:MMP

Chong:2019:MMC

Charron:2011:SSC

Christian:2014:MBM

Casal:2005:ABM
Arancha Casal, Cenk Sumen, Timothy E. Reddy, Mark S. Alber, and Peter P. Lee. Agent-based modeling of the con-

[Cavaliere:2012:PAI]

[Chan:2016:MRI]

[Cervantes:2019:HFM]

[Cressman:2012:CED]

[Ross Cressman, Jie-Wen Song, Bo-Yu Zhang, and Yi Tao. Cooperation and evolutionary dynamics in the public goods...

REFERENCES

REFERENCES

Cibert:2010:BAA

Cheng:2011:VTP

Chen:2010:MPG

Cuthill:2015:SCS

Cheung:2015:SUE

[CV15] Allen Cheung and Robert Vickerstaff. Sensory and update errors which can affect path integration. Journal of

Chimal-Vega:2015:ESC

Chamoli:2011:ADM

Chang:2011:GAC

Chen:2011:FRA

Camacho:2013:TPR

REFERENCES

Chen:2016:OPE

Camacho:2011:MMF

Chen:2018:ICM

Chen:2018:DSE

Cheng:2018:PMP
Xiang Cheng, Xuan Xiao, and Kuo-Chen Chou. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative

Chen:2019:AQI

Cai:2011:CMT

Chen:2014:RZD

Czaczkes:2014:HGS

Cheng:2014:EDR

REFERENCES

Chen:2011:PPI

Deveraux:2017:NMS

Dai:2012:NMF

Dalmau:2017:CMM

Dasgupta:2012:DME

Dasmahapatra:2013:MHP

[Das13] Srinandan Dasmahapatra. Model of haplotype and phenotype in the evolution of a duplicated autoregulatory acti-

Dasme:2018:MSR

deAguiar:2015:ECP

DeMichele:2011:SDH

Dang:2010:PBA

REFERENCES

REFERENCES

REFERENCES

Joëlle De Caluwé and Geneviève Dupont. The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca$^{2+}$. *Journal of Theoretical Biology*, 331(??):12–18, August 21,
Deecke:2018:ITS

Drew:2010:CPB

Doyennette:2014:MIP

Danesh:2012:BPM

Ding:2010:SFR
Shuyan Ding, Qi Dai, Hongmei Liu, and Tianming Wang. A simple feature representation vector for phylogenetic

Das:2012:GNF

Dercole:2013:ONF

Donzelli:2013:CBT

Dunn:2013:SME

REFERENCES

[dEG11] Scheila de Avila e Silva, Sergio Echeverriagaray, and Günther J. L. Gerhardt. BacPP: Bacterial promoter prediction — a

[DEG+14]

[Dauvergne:2015:AQS]

[DelGiudice:2012:SRD]

[Demongeot:2011:IIC]

Judy Day, Avner Friedman, and Larry S. Schlesinger. Modeling the host response to inhalation anthrax. *Journal of

REFERENCES

REFERENCES

P. M. Drysdale, J. P. Huber, P. A. Robinson, and K. M. Aquino. Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. *Journal of Theoretical Bi-

DiGiulio:2010:BEA

DiGiulio:2012:RST

DiGiulio:2013:OGC

DiGiulio:2013:PMO

DiGiulio:2014:GCD

REFERENCES

[Di 18] Massimo Di Giulio. On Earth, there would be a number of fundamental kinds of primary cells — cellular domains — greater than or equal to four. *Journal of
REFERENCES

REFERENCES

REFERENCES

[DeVos:2013:ETI]

[Deonikar:2013:CMP]

[Devipriya:2013:CDD]

[Dutta:2017:IPO]

[DeLaFuenteCanto:2018:MGC]

Diebner:2016:ESP

Delitala:2012:MMD

[DL15a] J. D. Day and E. K. LeGrand. Synergy of local, regional, and systemic non-specific stressors for host defense against

Deutsch:2015:MFI

Donovan:2016:CRN

delaCruz:2016:SMS

delaEscosura:2015:SPC

Dallon:2019:SMR

Duan:2011:MMA

Dehzangi:2017:PSA

Ding:2018:SBO

Dyson:2019:DIP

REFERENCES

deLoubens:2011:BMS

Destrade:2012:UTS

deLoubens:2010:LAP

V:2016:PBM

DeBlasio:2015:MGD
REFERENCES

Ding:2013:SWI

Dai:2011:NCW

Dilao:2010:MDE

dOnofrio:2010:VDD

DeVargasRoditi:2011:EDB
Laura De Vargas Roditi and Franziska Michor. Evolutionary dynamics of BRCA1 alterations in breast tumorigene-

REFERENCES

REFERENCES

[Don17] G. M. Donovan. Inter-airway structural heterogeneity interacts with dynamic heterogeneity to determine lung function and flow patterns in both asthmatic and control simulated

REFERENCES

REFERENCES

Dunn:2011:RTM

Dupuy:2012:ASG

Dormanns:2015:NCI

Dudziuk:2019:BSF

Deng:2014:BBE

Du:2011:NDD

Dubey:2010:SAP

Dou:2010:SAB

Edgington:2017:CSE

Edgington:2019:MMR

[El-Bouri:2015:MSH]

[Einarsson:2011:DEB]

[Ellenberger:2017:PTR]

[Eugene:2017:EIT]
Ewing:2016:MET

Edgar:2019:AAE

Eggen:2011:SRT

Eduardo:2016:MDB

Ekanayake:2018:MRW

REFERENCES

Eskandari:2016:EDA

Eide:2018:PPS

El-Kebir:2013:CMT

Ehn:2012:ASC

Elias:2017:PEM

Elliot:2015:IIA

Edwards:2011:IDH

ElSoufi:2016:CCM

Ehling:2016:HCS

Esmaeili:2010:UCC

Maryam Esmaeili, Hassan Mohabatkar, and Sasan Mohsenzadeh. Using the concept of Chou’s pseudo amino acid com-

Ellingsen:2012:EPI

Estrada:2018:CSC

Eisenberg:2013:IEM

Escobar:2011:QFN

Enyeart:2015:MME

Enikeeva:2010:RMS

[ESG10] Farida N. Enikeeva, Konstantin V. Severinov, and Mikhail S. Gelfand. Restriction-modification systems and bacterio-
REFERENCES

trisporoid processing proteins in the model zygomycete
_Mu-
cor mucedo_. *Journal of Theoretical Biology, 320(??):66–75,
March 7, 2013*. CODEN JTBIAP. ISSN 0022-5193 (print),
com/science/article/pii/S0022519312006339.

[Hideo Ema, Kouki Uchinomiya, Yohei Morita, Toshio Suda,
and Yoh Iwasa. Repopulation dynamics of single haematopoietic

Hideo Ezoe. Adaptive partner recruitment can help maintain an intra-guild diversity in mutualistic systems. *Jour-
REFERENCES

Fallah:2017:MMR

Fang:2011:EED

Fann:2012:ECR

Feng:2018:URB

Ferris:2018:EHD
Charlotte Ferris and Alex Best. The evolution of host defense to parasitism in fluctuating environments. *Journal
REFERENCES

Fernandez-Blanco:2013:RFC

Fletcher:2012:MMM

Flegg:2012:WHA

Fenley:2011:CMD

REFERENCES

[FGLS10] Kevin J. Flynn, H. Christopher Greenwell, Robert W. Lovitt, and Robin J. Shields. Selection for fitness at the individual or population levels: Modelling effects of genetic modifications in microalgae on productivity and environmental
REFERENCES

REFERENCES

REFERENCES

Fujita:2013:PFT

Fallqvist:2016:CMC

Faure:2018:CPM

Fischer:2012:MEI

Fozard:2013:MAE

REFERENCES

Fan:2012:PMP

Fan:2013:DBP

Fornes:2019:VRM

Fernandez-Lozano:2015:CSP

REFERENCES

[FM15b] Kylie J. Foster and Stanley J. Miklavcic. Toward a biophysical understanding of the salt stress response of individual plant

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Faria:2014:TIC

Flores:2013:FAV

Fessel:2011:ESA

Field:2011:MPS

Favre:2012:SGD
REFERENCES

Filatov:2015:SNS

Fimmel:2015:HTC

Filatov:2016:CSN

Fimmel:2016:MDC

Frasca:2016:DTM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Graham:2014:LTM

Greenman:2015:EPS

Gaythorpe:2016:DDO

Gunasinghe:2014:EHQ

Grilli:2012:SAS

[GABM12] Jacopo Grilli, Sandro Azaele, Jayanth R. Banavar, and Amos Maritan. Spatial aggregation and the species-area...

Guzzetta:2011:MSD

Guzzetta:2015:ECI

Gilarranz:2012:SNS

Garbey:2013:DSD

Philip B. Greenspoon, Sydney Banton, and Nicole Mideo. Immune system handling time may alter the outcome of competition between pathogens and the immune system. *Journal

Glimm:2014:MMG

Gromov:2019:SEP

Grilo:2011:EAE

Gray:2016:ASM

Goyal:2018:DIV

[Ashish Goyal and Ranjit Chauhan. The dynamics of integration, viral suppression and cell–cell transmission in the development of occult Hepatitis B virus infection. Journal of Theoretical Biology, 455(??):269–280, October 14, 2018.]

Garbey:2017:VAP

Gomez-Corral:2014:CSS

Garay:2014:UMS

Garay:2017:ESM

Garay:2017:SPS
Gobel:2011:RMA

Grujic:2012:CCD

Garcia-Camacho:2012:MMP

Gallinato:2017:TGM

Gonzalez-Casanova:2014:SSB

Gabriel:2017:QIO

Gabriel:2018:MPA

Goede:2017:PGI

Guill:2011:TSM

Gonzalez-Diaz:2011:NMB

Gavagnin:2019:ISC

Guillamon:2015:BAO

Geritz:2012:MDD

Geritz:2014:DBF

Gaunt:2016:PRA

REFERENCES

Granda:2016:IP1

Gomes:2016:TFI

Gonzalez:2012:ECL

Greenhalgh:2015:DER

Gabriel:2012:CAS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal of Theoretical Biology, Volume(Issue):Pages, Date</th>
<th>CODEN</th>
<th>ISSN (Print)</th>
<th>ISSN (Electronic)</th>
<th>URL</th>
</tr>
</thead>
</table>

Ghuchani:2018:CET

Giacche:2010:HIT

Gibo:2015:DUM

Giaimo:2013:SCM

Ginn:2010:IGH

Givli:2010:TMS

Sefi Givli. Towards multi-scale modeling of muscle fibers with sarcomere non-uniformities. *Journal of Theoreti-
REFERENCES

Fahimeh Golzari and Saeed Jalili. VR-BFDT: a variance reduction based binary fuzzy decision tree induction method for protein function prediction. *Journal of

Greenbury:2010:ESF

Golubski:2010:CMC

Ghosh:2013:PEI

Gaither:2016:HTP

Garnier:2017:ASP

Simon Garnier and Daniel J. C. Kronauer. The adaptive significance of phasic colony cycles in army ants. *Journal of
REFERENCES

Gyllenberg:2016:EPT

Graham:2017:OCA

Gecek:2012:IMS

Guo:2012:SRH

Georgelin:2014:DCM

REFERENCES

REFERENCES

Gonzalez-Miranda:2013:ECO

Goyal:2016:DVH

Grbatinic:2016:CAH

Goyal:2017:RCH

Garira:2019:CMM

REFERENCES

Gross:2011:MMA

Gomez:2014:MSG

Grbatinic:2018:NCP

Garcia-Martinez:2010:MRI

Gong:2013:PLN

Grbatinic:2015:NAH

Garcia-Manso:2012:LSL

Grec:2018:MLA

Gong:2014:NID

Garijo:2012:SCA

N. Garijo, R. Manzano, R. Osta, and M. A. Perez. Stochastic cellular automata model of cell migration, proliferation and

REFERENCES

[Gol10b] A. Golubev. Random discrete competing events vs. dynamic bistable switches in cell proliferation in differentia-
REFERENCES

Golubev:2016:AIE

Gonze:2013:MEC

Gouin:2015:WTT

Goufo:2016:SCA

Gatesy:2011:AOA

REFERENCES

Grafen:2014:TRV

Grafen:2015:BFP

Grafen:2018:LHS

Guedon:2013:PIC

Goyens:2013:DTM

Griswold:2015:AGV

Griswold:2019:APS

Grover:2017:SSV

Gutierrez:2014:DTA

Gupta:2016:CAC

REFERENCES

REFERENCES 496

REFERENCES

Julían García, Matthijs van Veelen, and Arne Traulsen. Evil green beards: Tag recognition can also be used to withhold cooperation in structured populations. Journal of The-
REFERENCES

Gunther:2012:CHP

Gibson:2013:IBC

Grover:2014:CAR

Gan:2015:HHS

Gulbudak:2019:HVS

Hayriye Gulbudak and Joshua S. Weitz. Heterogeneous viral strategies promote coexistence in virus-microbe systems. *Journal of Theoretical Biology*, 462(??):65–84, February 7, 2019. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
REFERENCES

Green:2010:NLM

Gong:2018:GRM

Guo:2017:MPM

Govan:2013:CSN

Gao:2013:PCC

Grinevich:2018:IDT

Ghosh:2019:HBA

Gao:2010:ITI

Ge:2014:RIH

Ge:2014:RN1

Huihua Ge and Guangya Zhang. Retraction notice to “Identifying halophilic proteins based on random forests with preprocessing of the pseudo-amino acid composition”

Guo:2019:MAT

Gao:2014:SAP

Garamszegi:2012:RBS

Guo:2015:WAP

Hendrickx:2019:IBI

Hassan:2019:ESP

Hallinan:2012:GTV

Hald:2016:GMA

Hala:2017:SPR

REFERENCES

REFERENCES

REFERENCES

Hernandez-Bermejo:2010:RGA

Hambli:2012:PBF

Hordijk:2012:DRR

Holt:2013:DPP

Hubbard:2013:MMV

Hedrih:2016:EFI

[HB16a] Andjelka Hedrih and Milan Banić. The effect of friction and impact angle on the spermatozoa-oocyte local contact dy-
REFERENCES

REFERENCES

RELATED PAPERS

REFERENCES

Hu:2019:OMP

Hayashi:2016:EAP

Hochard:2017:CJM

Hook:2017:FAP

Hamlet:2015:EIM

He:2018:AEG

Hettich:2018:TFT

Hickey:2018:ARW

Herschlag:2013:MMA

Hernandez-Gascon:2013:EMC

REFERENCES

REFERENCES

Hindle:2010:EBH

Huang:2013:IRI

Hala:2014:SPS

Hiebeler:2016:LDPa

Heijne:2013:CPR
Janneke C. M. Heijne, Sereina A. Herzog, Christian L. Althaus, Nicola Low, and Mirjam Kretzschmar. Case and partnership reproduction numbers for a curable sexually transmitted infection. *Journal of Theoretical Biology*, 331(??):38–47,

REFERENCES

Hatano:2015:CBM

Hu:2019:WSD

Hauert:2012:EGD

Hara:2017:WAI

Hara:2019:CDI

Hackett-Jones:2011:EDT

Hinsch:2010:DIE

Hayat:2011:PMP

House:2011:EPC

Hayat:2012:MPM

Hunter:2014:MUA

Hubai:2016:MGN

Harish:2017:MCB

Hasan:2017:MCM

Hooper:2010:TLH

REFERENCES

[HKS16] Yao He, Don Kulasiri, and Sandhya Samarasinghe. Modelling bidirectional modulations in synaptic plasticity: a biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).
Hallen:2010:ESQ

Haegeman:2011:MSN

He:2014:IOA

Houy:2018:ATC

Houy:2019:OIC

Nicolas Houy and François Le Grand. Optimizing immune cell therapies with artificial intelligence. *Journal of Theoretical Biology*, 461(?):34–40, January 14, 2019. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

Huang:2018:AEW

He:2017:NAF

Hara:2015:CEH

Hu:2012:PGP

Hodgkinson:2019:SGP

[HLTR19] Arran Hodgkinson, Laurent Le Cam, Dumitru Trucu, and Ovidiu Rădulescu. Spatio-genetic and phenotypic modelling elucidates resistance and re-sensitisation to treat-

Gregory Herschlag and Laura Miller. Reynolds number limits for jet propulsion: a numerical study of simplified jelly-

Hoyem:2015:SCR

Huang:2011:GEB

Hong:2016:SMS

Holden:2017:HPR

REFERENCES

Hamaguchi:2019:EARb

Hirao:2015:NPC

Harrington:2011:AIE

Hashimoto:2018:TGD

Hamis:2018:WDK

Handy:2012:EIR

Hanin:2016:QIM

Hajisharifi:2014:PAP

Haridas:2017:QRC

Hoare:2018:KOM

REFERENCES

REFERENCES

REFERENCES

Hayashi:2018:IFM

Hayakawa:2015:MSM

Hayakawa:2016:FLF

Hauser:2014:HBF

He:2019:FAI

REFERENCES

Huang:2012:RGO

Huang:2016:EDM

Hurtado:2012:WHD

Herrera-Valdez:2011:RMP

Huang:2015:DVF

REFERENCES

Holtz:2015:NCM

Holtz:2015:SEL

Holtz:2017:SCI

He:2018:MYC

Huang:2015:PPF

REFERENCES

REFERENCES

He:2014:WLC

He:2016:EAA

He:2018:PAA

Hu:2018:EEB

Hironaga:2010:EEF

Ryo Hironaga and Norio Yamamura. Effects of extinction on food web structures on an evolutionary time scale.
REFERENCES

[Huang:2013:PPS]

[Huang:2016:CDS]

[Han:2014:TSS]

[Hamaguchi:2019:EARa]
REFERENCES

Huang:2016:ESH

Hassani:2019:RMS

Huang:2011:PAD

Hoang:2015:NMC

Hu:2014:RIN

References

Huang:2010:PPD

Hu:2017:CAE

Hua:2011:MSG

Hua:2013:PBC

Huang:2011:AFC

Guohua Huang, Houqing Zhou, Yongfan Li, and Lixin Xu. Alignment-free comparison of genome sequences by

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>[IDM15]</td>
<td>Ingr, Marek, Dostál, Jiří, and Majerová, Tatána</td>
<td>Enzymological description of multitemplate PCR-shrinking ampli-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
fication bias by optimizing the polymerase-template ratio.

Ikegawa:2015:EGS

Ishimoto:2014:SSS

Ishimoto:2018:HSS

Immonen:2012:HSD

Ikegawa:2017:LMT

Hironaka:2012:MFL

Hironaka:2017:ASC

Ilamathi:2016:IPT

Inouye:2017:DSG

REFERENCES

References

Iwagami:2010:URH

Ichinose:2018:ZDS

Ibanez-Marcelo:2014:TRE

Ibanez-Marcelo:2016:EEC

Ispolatov:2016:IBM

Iqbal:2015:IPA

Iacobelli:2016:LEG

Issarow:2015:MRA

Ingber:2016:SMN

Iida:2019:QHS

REFERENCES

Iosilevskii:2016:LNB

Ito:2015:RBA

Iosilevskii:2012:EYY

Ingber:2014:EFI

Iranzo:2011:SUG

Ingram:2010:MUF

Travis Ingram and Mike Steel. Modelling the unpredictability of future biodiversity in ecological networks. *Journal of
REFERENCES

Ishihara:2012:BIF

Ito:2016:EBU

Ishimoto:2017:MMD

Isella:2011:WCA

Ishimoto:2016:HES
REFERENCES

[ITO16] Misato Inaba, Nobuyuki Takahashi, and Hisashi Ohtsuki. Robustness of linkage strategy that leads to large-scale cooperation. *Journal of Theoretical Biology*, 409(??):97–107, November 21, 2016. CODEN JTBIAP. ISSN 0022-5193 (print),
REFERENCES

REFERENCES

Ilie:2012:MMT

Johnson:2013:CBC

Jabot:2010:SDL

Jabot:2015:WPP

Jentsch:2018:SCE

REFERENCES

[Jinha:2012:RLE]

[J:2019:CCR]

[James:2011:FSH]

[Jam12]

[Jam13]
REFERENCES

References:
Jaworski:2019:SBP

Jensen:2012:ASU

Jian-Cheng:2010:STA

Jin:2016:TCS

Ju:2015:ITL

Ju:2016:PLP

Jordan-Cooley:2011:BDE

Jordan-Cooley:2021:CBD

Jover:2013:MMS

Jaffar:2013:BRP

[Jaber-Douraki:2015:UCP] Majid Jaberi-Douraki, Santiago Schnell, Massimo Pietropaolo, and Anmar Khadra. Unraveling the contribution of pancre-

REFERENCES

Janzen:2015:SFEa

Janzen:2015:SFEb

Jia:2016:SIM

John:2015:EDS

Jain:2017:FPN

Kavita Jain and Ananthu James. Fixation probability of a nonmutator in a large population of asexual mutators. *Journal of Theoretical Biology*, 433(??):85–93, November 21,

References

Jamieson-Lane:2015:FPS

Jones:2015:LVD

Jia:2012:KBG

Jia:2019:IPC

Jia:2015:IEE

REFERENCES

Jia:2016:PLP

Jahandideh:2012:RSB

Johnston:2010:PCS

Jayathilake:2019:MMU

Jones:2017:DSS

Jimenez-Munoz:2012:CEI

Jin:2018:ELG

Jager:2013:DQS

Jain:2014:LER

Joly:2013:MIB

Jeong:2014:OGC

Jedrak:2016:IGC

Joshi:2013:ESP

Jansen:2015:SGE

Johnston:2019:ISL
REFERENCES

Jones:2017:FPE

Jombart:2010:PPA

Jiao:2017:PIR

Jordan:2017:TPP

Johnston:2016:QEE

Jithinraj:2014:CZO

Jithinraj:2014:EZO

Jithinraj:2014:ZOU

Johansson:2012:TPF

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jesionek:2016:LDL</td>
<td>Katarzyna Jesionek, Aleksandra Slapik, and Marcin Kostur. Low-density lipoprotein transport through an arterial wall</td>
</tr>
</tbody>
</table>

Jahandideh:2012:CCA

Jade:2014:FEA

Juska:2011:MMG

James:2014:FNR

Ju:2018:PSS

REFERENCES

REFERENCES

Kareva:2016:ETD

Kember:2011:NCH

Kember:2013:DNN

Khrustalev:2010:LCU

Kononenko:2010:MSA

Khrustalev:2016:MMB

Kilian:2014:MGP

Khayyeri:2015:PCM

King:2019:MRD

King:2020:CMR

REFERENCES

Kucken:2013:MCI

Kwon:2014:GHM

Krivan:2017:ITC

Korell:2011:ERB

Korell:2011:SMR

REFERENCES

Kettle:2014:PFP

Kamran-Disfani:2013:LCI

Kowald:2014:EMM

Kowald:2014:MMA

Kurian:2016:HQE

[P. Kurian, G. Dunston, and J. Lindesay. How quantum entanglement in DNA synchronizes double-strand breakage]

Kim:2018:MMI

Karimi:2013:NCI

Koffel:2016:GEE

Kodikara:2018:IAE

Kaito:2015:BPD

Kritz:2010:OMN

Keane:2016:CCH

Keener:2010:MRM

Koch:2017:CBN

Khrustalev:2017:TAM

Khamis:2018:EEU

Kenakin:2019:GPR

Kwansa:2010:EES

Kulich:2011:PEM

REFERENCES

Kremling:2012:SAC

Kou:2015:IFK

Khatri:2012:OMD

Kebir:2018:GSM

Knipfer:2014:RUP
T. Knipfer, J. Fei, G. A. Gambetta, K. A. Shackel, and M. A. Matthews. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with...

REFERENCES

Kar:2012:DPP

Kim:2010:MTD

Korvasova:2015:ITC

Kumar:2015:SRD

Khan:2015:TCI

[KGP+15] Faez Iqbal Khan, Algasan Govender, Kugen Permaul, Suren Singh, and Krishna Bisetty. Thermostable chitinase II from

Kwang-Hua:2019:TDV

Kharabian:2010:ECM

Klein:2018:FEM

Kaunas:2010:KMC

Yoshitaka Kimori, Kazumi Hikino, Mikio Nishimura, and Shoji Mano. Quantifying morphological features of actin cy-

Kazmi:2012:ATG

Keil:2010:PTP

Ke:2013:MAA

Kang:2019:FST

REFERENCES

Kohn:2015:USL

Karisto:2017:EDU

Kuznetsov:2017:UBM

Kuznetsov:2018:TAT

Kakade:2018:FSU

Koke:2014:CMN

Khaji:2016:PSP

Kori:2012:SCN

Khalo:2018:NAV

Kawasumi-Kita:2018:MSO

Kumar:2014:PAD

King:2010:PMI

Kato:2010:ORM

Kazimierski:2018:WSP

[KKWA18] Laila D. Kazimierski, Marcelo N. Kuperman, Horacio S. Wio, and Guillermo Abramson. Waves of seed propagation induced by delayed animal dispersion. *Journal of
REFERENCES

REFERENCES 613

[KLJ17] Soyoung Kim, Jonggul Lee, and Eunok Jung. Mathematical model of transmission dynamics and optimal control

Kempe:2014:CTC

Kaiser:2012:DCF

Konrad:2012:ESG

Konini:2015:MIV

Keeling:2017:EFM

Patrick J. Keeling and John P. McCutcheon. Endosymbiosis: The feeling is not mutual. *Journal of Theoreti-
REFERENCES

Sungchan Kim, M. A. Masud, Giphil Cho, and Il Hyo Jung. Analysis of a vector-bias effect in the spread of malaria between two different incidence areas. *Journal of
REFERENCES

Karp:2012:CLI

Kim:2019:WDW

Kebir:2010:EDD

Kumari:2014:CMM

Kopcoli:2012:MRN

Kondo:2017:UKB

Korobeinikov:2018:IRW

Kashima:2013:FFB

Karsai:2012:RTD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kemp:2012:QFA

Kang:2011:RAF

Kobayashi:2016:MMC

Kumar:2017:MDP

Kumar:2015:PLC

[SKKK15] Ravindra Kumar, Abhishikha Srivastava, Bandana Kumari, and Manish Kumar. Prediction of β-lactamase and its class

Koyano:2013:FPA

Kupczik:2015:RMF

Kerimoglu:2012:RPC

Kawka:2014:RRS

Khan:2018:ARF

Kuritz:2017:RBC

Konrad:2019:MEF

Katsnelson:2011:RMV

Kumar:2017:MRI

Kadota:2018:MMT

Khan:2018:ORT

Kingsbury:2016:IEN

Kameyama:2018:SSR

Kuga:2019:VVC

REFERENCES

Kobayashi:2010:SMN

Kasimova:2014:AMO

Kumar:2019:CFF

Kuetche:2016:IBD

Kundu:2016:SMS

[Kun16] Siddhartha Kundu. Stochastic modelling suggests that an elevated superoxide anion–hydrogen peroxide ratio can drive ex-
References

Kurochkina:2010:HHI

Kurbel:2014:HHE

Kurokawa:2017:ERS

Kurokawa:2019:TPR

Koseska:2010:CDT

REFERENCES

Kuzma:2019:EIC

Kaul:2015:DRR

Kaveh:2016:GM

Komarova:2010:OMO

Koykka:2015:EGD
Kobayashi:2015:PCC

Kobayashi:2019:ECC

Kribs-Zaleta:2014:GAE

Kong:2014:APP

Lashari:2012:FMR

Laird:2018:SIW

Lopez-Alamilla:2019:ASM

Lange:2016:RDT

Lane:2017:SES

Lika:2014:BDP

REFERENCES

REFERENCES

[LC17] Sunmi Lee and Gerardo Chowell. Exploring optimal control strategies in seasonally varying flu-like epidemics. *Jour-

REFERENCES

Lee:2010:OCP

Lee:2012:EPH

Lorenzi:2015:DDE

Laurie:2017:PL

Lim:2012:HSM

REFERENCES

Liu:2011:DSE

Lade:2015:FLE

Lin:2011:PIC

Lucia:2018:IIF

Letellier:2013:WCL

[C. Letellier, F. Denis, and L. A. Aguirre. What can be learned from a chaotic cancer model? Journal of Theoretical Biology, 322(?):7–16, April 7, 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

[135x681] REFERENCES

Lu:2016:OSB

Ding:2015:CMP

Liu:2014:CDS

Lessard:2019:LHS

Lee:2016:LII

Lee:2016:PPF

Lehtinen:2018:UVF

Lei:2009:SSG

Lei:2010:CSS

Lenstra:2014:EGC

Leviyang:2014:CLB

Lascano:2018:EAM

Landman:2011:BSC

Lavric:2010:BGD

Liu:2010:PCN

Louzoun:2012:EVL

REFERENCES

REFERENCES

Li:2015:MEG

Lopez-Garcia:2017:SEE

Lee:2009:MSE

Lee:2012:CMS

REFERENCES

Li:2014:MID

Loeuille:2018:MPD

Landi:2015:FID

Liu:2017:LDI

Leung:2016:PSS

REFERENCES

REFERENCES

REFERENCES

[LPK+12] Weihan Li, Sandeep Krishna, Simone Pigolotti, Namiko Mitarai, and Mogens H. Jensen. Switching between oscillations and homeostasis in competing negative and positive feedback...

Liu:2013:SRF

Li:2014:ECC

Lejeune:2017:QRB

Lyu:2017:MLI

Li:2018:SSM

REFERENCES

Lehmann:2016:FAA

Liao:2013:SPL

Liu:2018:DAE

Lee:2014:LIF

Liu:2013:DBS

REFERENCES

[Li:2019:NEP] Gaoshi Li, Min Li, Wei Peng, Yaohang Li, Yi Pan, and Jianxin Wang. A novel extended Pareto Optimality Consen-

[Lamberton:2015:CDS]

[Laidre:2013:MSI]

[Labavic:2019:SLC]

[Lau:2015:CHG]

REFERENCES

Lin:2016:MMP

Liu:2018:NHB

Lee:2013:AHD

Lopez-Marin:2018:SMA

Li:2010:DMD

REFERENCES

REFERENCES

REFERENCES

[Lazcano:2017:OMC]

[Lee:2019:IKF]

[Landmann:2017:STA]

[Landmann:2018:CST]

[Lyons:2016:PFR]
REFERENCES

Livnat:2011:ACB

Lema-Perez:2019:PBM

Liu:2018:PCE

Liu:2019:SDF

Liu:2015:FPE

[LPKH15a] Xuesong Liu, Qiuhui Pan, Yibin Kang, and Mingfeng He. Fixation probabilities in evolutionary games with the Moran and Fermi processes. *Journal of Theoretical Biology*, 364(??):242–248, January 7, 2015. CODEN JT-

Liu:2015:FTE

Labarthe:2019:MMI

Lahiri:2014:IAS

Lloyd-Price:2014:DSG

Lyon:2011:MSP

Lyon:2012:CMS

Laruson:2016:SUG

Long:2013:CSM

Lutz:2013:ICF

REFERENCES

[Lyles:2015:PRE]

[Larbat:2016:MDP]

[Lee:2010:EMD]

[Levy:2010:PSS]

[Lloyd-Smith:2010:MDD]
REFERENCES

REFERENCES

Lessard:2016:DFA

Liu:2016:MCA

Liu:2018:AMF

Liu:2019:DFS

Lutkenhoner:2010:MVE

Link:2018:MLE

[LSC+18] Roman M. Link, Bernhard Schuldt, Brendan Choat, Steven Jansen, and Alexander R. Cobb. Maximum-likelihood estimation of xylem vessel length distributions. *Journal of The-

[LSCM18] Dóra Lakatos, Ellák Somfai, Előd Méhes, and András Czirók. Soluble VEGFR1 signaling guides vascular pat-

REFERENCES

REFERENCES

Lütkenhöner:2016:ETR

Lepage:2017:RBC

Lee:2016:SPE

LoIacono:2012:EPP

Lorenzi:2018:RSV

Liu:2010:PESa

Liu:2010:PESb

Liu:2012:MMR

Li:2015:EDS

Leung:2017:MSE

REFERENCES

[Lempidakis:2018:WCK] Emmanouil Lempidakis, Rory P. Wilson, Adrian Luckman, and Richard S. Metcalfe. What can knowledge of the energy landscape tell us about animal movement trajectories

REFERENCES

[Li:2010:SHE]

[Li:2016:MPM]

[Liu:2015:UWF]

[LXJ15]

[Louzoun:2014:MMP]

REFERENCES

[LZ18] Yunyun Liang and Shengli Zhang. Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via

Larson:2019:DDS

Li:2019:EAC

Li:2017:NMS

Lu:2019:PEE

REFERENCES

Matsuda:2013:FCE

Mondal:2017:CSA

Moore:2018:HDR

Maciejewski:2010:AOO

MacKay:2011:MSC
Maciejewski:2014:RVG

Muolo:2019:PNN

Munir:2018:EWB

McKinley:2012:AAM

Murtada:2012:EMM

Mallik:2010:HTM

Muneepeerakul:2011:EDE

Malanson:2015:DDA

Malanson:2017:ICM

Malik:2018:AUG

REFERENCES

REFERENCES

[Mas12] Naoki Masuda. Ingroup favoritism and intergroup cooperation under indirect reciprocity based on group reputation. *Journal of Theoretical Biology*, 311(??):8–18, October
REFERENCES

REFERENCES

Maxin:2012:ISA

Miller:2012:DPA

Moller:2012:DRS

Malkoc:2010:ICB

Mohabatkar:2011:PGR

[MBE11] Hassan Mohabatkar, Majid Mohammad Beigi, and Abolghasem Esmaeili. Prediction of GABA a receptor proteins using the concept of Chou’s pseudo-amino acid com-

REFERENCES

Mason:2019:ERK

Mari:2017:HST

Mubayi:2010:TDU

Mettikolla:2011:CBK

Macfarlane:2019:SIB
FR Macfarlane, MAJ Chaplain, and T. Lorenzi. A stochastic individual-based model to explore the role of spatial interactions and antigen recognition in the immune response against

Manapat:2010:BRR

Mendez:2012:DDD

Mari:2018:ETW

McGuinness:2014:MSO

Monteiro:2016:IBP

Angelo B. Monteiro and Lucas Del Bianco Faria. The interplay between population stability and food-web topology

REFERENCES

REFERENCES

REFERENCES

[MFKS13] Atsushi Mochizuki, Bernold Fiedler, Gen Kurosawa, and Daisuke Saito. Dynamics and control at feedback vertex sets. II: a faithful monitor to determine the diversity of molecular activities in regulatory networks. *Journal of Theoretical Biology*, 335(??):130–146, October 21, 2013. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

Michel:2018:MMP

Mansouri:2016:AIA

Mirams:2012:TIE

Magnuson-Ford:2010:CSP

Marquez-Florez:2018:CMJ

Kalenia M. Márquez-Flórez, James R. Monaghan, Sandra J. Shefelbine, Angélica Ramirez-Martínez, and Diego A. Garzón-
REFERENCES

Maderazo:2018:PFL

Mitchell:2014:WMW

Mei:2018:API

Mbah:2010:OCS

Mizera:2010:SME

Melak:2014:PNH

Migonile:2014:AES

Murray:2015:SSC

Meacham:2017:DLD

Frazer Meacham and Thomas Getty. Deadbeats or losers: Discretionary male parental investment can make females less choosy. *Journal of Theoretical Biology*, 422(??):50–58, June 7, 2017. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
REFERENCES

Mohseni:2017:RDN

Moulton:2012:MGM

Mills:2013:PSC

Moulton:2015:MMB

Martinez-Garcia:2013:SPM
Ricardo Martínez-García, Justin M. Calabrese, and Cristóbal López. Spatial patterns in mesic savannas: The local facilitation limit and the role of demographic stochasticity. *Journal of Theoretical Biology*, 333(??):156–165, September 21,

Motahareh Moghtadaei, Mohammad Reza Hashemi Golpayegani, and Reza Malekzadeh. A variable structure fuzzy neural network model of squamous dysplasia and

Marleau:2010:NFB

Martins:2015:URB

Mesterton-Gibbons:2016:HRD

Martinez-Garcia:2017:SCI

Malherbe:2011:SMG

Marshall:2012:CGD

Morin:2013:MDB

Murtada:2014:IRS

Mayer:2017:ERP

[MHX+14] Carrie A. Manore, Kyle S. Hickmann, Sen Xu, Helen J. Wearing, and James M. Hyman. Comparing dengue and

Mougi:2011:UCD

Muko:2011:LTE

Muko:2011:OCS

Mamiya:2019:SEL

Michel:2011:HCM

[Mic11] Denis Michel. Hierarchical cooperativity mediated by chromatin remodeling; the model of the MMTV transcription reg-
Michel:2013:KAL

Michel:2014:GSR

Michel:2015:EGS

Michel:2015:MCS

Miguel:2016:TOD

REFERENCES

Mann:2014:SFP

Mironchenko:2014:OAP

Mougi:2014:SCA

Matsumoto:2016:IRB

Morozov:2016:TDG

REFERENCES

REFERENCES

Manem:2014:SID

McGillen:2014:GLM

McIntyre:2014:HRV

Mund:2016:ADM

Mai:2012:CBN

Mitchell:2012:CDD

Marcoux:2013:NMP

Markovitch:2014:MPD

Moslonka-Lefebvre:2012:WSA

REFERENCES

[MM19] Loredana G. Marcu and David Marcu. The role of hypofractionated radiotherapy in the management of head and neck cancer — a modelling approach. *Journal of Theoretical Biology*, 482(??):Article 109998, December 7, 2019. COD-
REFERENCES

REFERENCES

Moravec:2019:WIP

Montaseri:2012:HAR

Marino:2010:TMF

Mesk:2016:IST

REFERENCES

REFERENCES

Minakuchi:2014:STF

McPherson:2012:SMP

Mohammadi:2016:IAT

Marriage:2012:MSB

Mobilia:2010:ODR

REFERENCES

REFERENCES

Moran:2010:MCA

Morozov:2010:EHT

Morford:2011:TAS

Morbey:2013:PSS

Morozov:2016:MBE
Morimoto:2019:FDM

Manhart:2015:EFB

Mougi:2012:UPP

Mousavi:2012:IHA

Mishra:2012:ERB

Maury:2013:IPC

Michel:2013:PST

Moulay:2013:MMC

Maciejewski:2014:EEG

Mondal:2014:CPA

Maeng:2013:MAE

Mercker:2012:MAC

Malkemper:2016:SMA

Morin:2014:DRM

REFERENCES

REFERENCES

Melchionda:2018:SBI

Menconi:2011:TLA

McVinish:2016:LSD

Menini:2019:BNA

Mahalingam:2014:PFB

[Rajasekaran Mahalingam, Hung-Pin Peng, and An-Suei Yang. Prediction of FMN-binding residues with three-dimensional]

Mohammadpour:2016:KRD

Majumdar:2010:TIL

Magnus:2011:ROM

Mann:2011:MEH

Milinski:2012:ISC

Manfred Milinski and Bettina Rockenbach. On the interaction of the stick and the carrot in social dilemmas. *Jour-
Malanson:2015:NFA

Muthukumaran:2018:QBM

Muthukumaran:2019:AQB

Mahlbacher:2019:MMT

Morales:2015:NMM

Margolskee:2013:LMF

Ma:2014:SBP

Maykranz:2014:CAF

Morishita:2014:BIW

Mossel:2014:MRT

Means:2016:IHV

Mehrafrooz:2018:MDB

Moulton:2016:MMS

Meyer:2016:PBC

McLaren:2013:SET

REFERENCES

Markham:2014:CMM

Markvoort:2014:CSC

Mahdevar:2012:TFB

Martinkova:2019:MIP

Meher:2016:CAP

Prabina Kumar Meher, Tanmaya Kumar Sahu, A. R. Rao, and S. D. Wahi. A computational approach for prediction of

Montgomery-Smith:2010:SME

Michiko:2018:ERS

Mai:2019:JID

Marashi:2014:MAE

REFERENCES

REFERENCES

REFERENCES

Matsumoto:2017:CGF

Mellard:2011:VDP

Matsumoto:2013:DFT

Matsumoto:2015:DFT

REFERENCES

Nakabayashi:2012:CMH

Nakahashi:2014:ECI

Nakabayashi:2016:IDH

Nakahashi:2016:CFO

Nakamaru:2016:ECE

Nakahashi:2019:CSL

Naasell:2012:RCC

Nguyen:2018:CCT

Nikin-Beers:2018:UWH

Niu:2016:CMB

Yuanling Niu, Kevin Burrage, and Luonan Chen. Corrigendum for “modelling biochemical reaction systems by stochastic differential equations with reflection”. *Journal

776

REFERENCES

Numminen:2016:IHM

Nakahashi:2012:EAH

Nakanishi:2019:PSH

Nessler:2016:IHP

Nitzany:2010:QBV

[NHM10] Eyal Nitzany, Ilan Hammel, and Isaac Meilijson. Quantal basis of vesicle growth and information content, a unified
Nikolaou:2016:DCP

Niu:2014:PDB

Nosaka:2014:PFF

Nishiura:2011:EIP

Nijhout:2011:DMA

Nikolic:2015:PHL

Nagatani:2018:MMRb

Norton:2018:MTN

Nath:2018:EPR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NMZ19]</td>
<td>Qiao Ning, Zhiqiang Ma, and Xiaowei Zhao</td>
<td>dForml(KNN)-PseAAC: Detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components.</td>
<td>Journal of Theoretical Biology</td>
<td>470(??)</td>
<td>43–49</td>
<td>June 7, 2019</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nemeth:2010:PCB

Neal:2014:LMC

Nakorn:2011:VSB

Ngwa:2019:TSS

Noble:2011:STA
Andrew E. Noble, Nico M. Temme, William F. Fagan, and Timothy H. Keitt. A sampling theory for asymmetric com-

REFERENCES

Olejarz:2016:EWP

Olofsson:2010:MGT

OBrien:2015:PCF

Orman:2011:PAL

Oborny:2017:PLA

Overton:2019:MAS

Orlova:2011:DFA

Oyarzun:2012:MOG

Oka:2010:CCK

Obermayer:2010:ETS

REFERENCES

O’Fallon:2011:TOM

OBrien:2010:MGA

Ohara:2015:EMM

Olsson:2016:DDD

Ogunnaike:2010:PFM

Babatunde A. Ogunnaike, Claudio A. Gelmi, and Jeremy S. Edwards. A probabilistic framework for microarray data analysis: Fundamental probability models and statistical infer-
Oteo-García:2019:EDC

Ohtsuki:2010:SED

Ohtsuki:2012:DSR

Ohara:2018:GRN

Okabe:2011:PPP

REFERENCES

Okabe:2012:SVD

Okamoto:2015:DSA

Okonjo:2015:BEH

Okonjo:2016:BEA

Okuyama:2015:DSA

REFERENCES

Olejarz:2018:SSC

Osman:2019:AVB

Ochab-Marcinek:2010:ENP

OMalley:2017:EHE

Onana:2013:EHP

REFERENCES

Olejarz:2014:EST

Olah:2015:MSP

Okuonghae:2011:AMM

Ose:2017:SHN

Oya:2017:SPC

O'Connor:2018:IIC

Ooyama:2011:HON

Omori:2013:TEN

Olson:2011:CBH

Okada:2018:SPA

Oommen:2016:GWD

REFERENCES

Oizumi:2013:OLS

Owens:2010:ECS

Otsuka:2011:LSE

Oster:2011:LCM

Ou:2019:ANF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pharaon:2018:ISB

Purcell:2012:CEB

Pavlova:2010:CBT

Paixao:2015:TUF

Petrie:2015:QRW

REFERENCES

Pigolotti:2013:SAL

Persons:2017:FOD

Peruzzi:2014:NIQ

Piedrafita:2012:SMI

Plazzotta:2015:MSB

REFERENCES

REFERENCES

Pandey:2011:PTM

Pandey:2019:CPT

Parvinen:2013:SET

Prodanov:2016:MSF

Pantic:2015:DAF
REFERENCES

Politi:2010:MSD

Pressley:2010:ECC

Pretorius:2011:ISP

Pee12

Pelce:2018:CEB

Paarporn:2018:ISC

Price:2013:VVS

Pontier:2010:CCP

Pavlova:2015:NVS

Puckeridge:2011:ICQ

Peedicayil:2018:EBO

Peedicayil:2018:SIE

Prisman:2011:SAR

Pichugin:2015:MMM

Parnell:2012:EIE

Panovska-Griffiths:2019:WPN

Poethke:2011:AIA

Powathil:2012:MEC

Pilosof:2017:ADD

Shai Pilosof, Gili Greenbaum, Boris R. Krasnov, and Yuval R. Zelnik. Asymmetric disease dynamics in multihost interconnected networks. *Journal of Theoretical Bi-

REFERENCES

Pellis:2015:EAM

Piltz:2018:IPP

Pantic:2012:CFD

Piast:2019:SIB

Pietruszka:2010:EAS

Pietruszka:2012:BIM

Parker:2010:SCG

Park:2012:IER

Patel:2013:DSO

Patel:2018:DSR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue</th>
<th>Page Numbers</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
</table>
Pienaar:2014:MMI

Platkowski:2010:CTP

Powell:2017:MDI

Polo:2018:BRN

Powell:2019:EFM

Christopher D. Powell, Secundino López, and James France. Elementary functions modified for seasonal effects to describe growth in freshwater fish. *Journal of Theoretical Biology*, 461(??):133–144, January 14, 2019. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

Pourzieai:2019:SMD

Pena:2014:GSE

Pereira:2010:PPD

Preece:2010:EGL

Parham:2011:OPE

REFERENCES

REFERENCES

REFERENCES

[Prosnier:2018:PEC]

[Prosnier:2018:PEC]

[Prosnier:2018:PEC]

[Prosnier:2018:PEC]

[Pеченick:2013:IAR]

[Pеченick:2013:IAR]

[Pawlowitsch:2011:NSD]

[Pawlowitsch:2011:NSD]

[Priyadarshi:2017:MSV]

Anupam Priyadarshi, Sandip Mandal, S. Lan Smith, and Hidekatsu Yamazaki. Micro-scale variability enhances trophic transfer and potentially sustains biodiversity in plankton

REFERENCES

Polev:2012:TND

Presbitero:2012:DML

Pontzer:2012:RRE

Payne:2012:VDI

Peurichard:2019:ECM

REFERENCES

Portet:2013:DVI

Parvinen:2017:EFD

Parvinen:2018:SHE

Prescott:2012:GEB

Prescott:2014:LDM

REFERENCES

Parag:2017:OPP

Potts:2017:FFB

Pozzobon:2018:HMP

Pozzobon:2019:CHM

Pakka:2010:CFC
Vijayanarasimha H. Pakka, Adam Prügel-Bennett, and Srinandan Dasmahapatra. Correlated fluctuations carry signatures of gene regulatory network dynamics. *Journal of

REFERENCES

PROSPER:2012:ARS

[PRM12]

PROSPER:2014:OVB

[PRM14]

PLOWES:2014:EBS

[PRMH14]

PERRIN:2010:CTD

[PRN10]

PARR:2011:ASV

Pires:2014:MFN

Prum:2012:HDG

Panigrahi:2013:CSA

Priya:2013:MBA

Peng:2018:MBE

Poorebrahim:2017:SES

Pan:2015:HDD

Prohaska:2010:IGR

Preedy:2010:MCS

Pedro:2010:HAD

Powers:2012:PCP

Poletto:2013:HMT

Poelwijk:2011:RSE

Pepin:2010:PDV

Peck:2018:WAH

Phadumdeo:2018:HRV

Picco:2019:TCY

Parr:2012:TIG

Panitchob:2015:CMA

Pineda:2015:MCM

Palmer:2016:RSX

Pan:2013:ACU

Peng:2016:DLC

Petroff:2011:RDM

Alexander P. Petroff, Ting-Di Wu, Biqing Liang, Jeannie Mui, Jean-Luc Guerquin-Kern, Hojatollah Vali, Daniel H. Roth-
REFERENCES

Pan:2019:APA

Pandey:2019:MDA

Ponce:2019:AEM

Pivonka:2010:TIR

REFERENCES

Qi:2010:NMG

Qi:2011:CDR

Qiu:2012:PPP

Qu:2010:ASR

Qin:2014:SCA
Qiu:2017:PPI

Rakshit:2010:NAL

Radulescu:2013:HCl

Rimer:2017:KOD

Rozum:2018:SSP

Joseph Reynolds, Inês F. Amado, Antonio A. Freitas, Grant Lythe, and Carmen Molina-París. A mathematical perspective on CD4 + T cell quorum-sensing. *Journal of
REFERENCES

Rayhan:2019:CCF

Ramsey:2010:LPP

Ruokolainen:2011:RSH

Rand:2012:PMT

REFERENCES

REFERENCES

REFERENCES

[RCD19] Manuela Royer-Carenzi and Gilles Didier. Testing for correlation between traits under directional evolution. *Journal of Theoretical Biology*, 482(??):Article 109982, December 7, 2019. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-
REFERENCES

861

Rubin:2017:RES

Robert:2014:ATA

Renton:2011:DCH

Roman:2016:TAU

Rolls:2012:MHC

Ruiz-Diaz:2013:IRP

Reynolds:2010:MMP

Reick:2012:SSS

Remien:2015:MDS

Ren:2013:GRS

Rangarajan:2015:DOD

Reneaux:2010:TRC

Rybinski:2012:MBS

Rockenfeller:2017:HEH

REFERENCES

Rockenfeller:2018:IFS

Ramirez:2010:ARS

Rezaei-Ghaleh:2017:RAB

Rodriguez-Girones:2010:SEP

Risau-Gusman:2012:MEP

Riley:2015:SAS

Rajakaruna:2017:TCA

Riotte-Lambert:2013:PAM

Roca-Lacostena:2018:EKM

Raghib:2010:MAC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

Ruokolainen:2013:EWT

Radulescu:2017:MMR

Ramirez:2017:CNS

Rusinko:2017:STE

Ryser:2017:BRS

Aouatef Riahi, Abdelmonem Messaoudi, Ridha Mrad, Asma Fourati, Habiba Chabouni-Bouhamed, and Maher Kharrat. Molecular characterization, homology modeling and docking studies of the r2787h missense variation in BRCA2

Randic:2010:SPM

Robinson:2011:NFT

Reeves:2017:APG

Rogers:2019:EGC

Rosas:2010:EGT

Ross:2010:CEM

J. V. Ross. Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and tem-

Ross:2011:IID

Rosenstrom:2013:BMD

Rose:2015:MMC

Rouch:2014:EFG

Richards:2018:NKA

REFERENCES

ROSS:2015:SPM

ROMAN-ROMAN:2016:MTG

ROMAN-ROMAN:2010:DPM

ROMAN-ROMAN:2012:IET

RUSSELL:2019:SCQ

REFERENCES

Rocha:2019:ETB

Rossetti:2010:EPT

Reynolds:2014:DAD

Robinson:2012:SDA

Roblitz:2013:MMH

REFERENCES

REFERENCES

Robertson-Tessi:2019:CMM

Robertson-Tessi:2019:CME

Raybaud:2017:CCC

Rajdev:2013:UMM

Ramirez-Torres:2017:RMT

[RTRRS+17] Ariel Ramírez-Torres, Reinaldo Rodríguez-Ramos, Federico J. Sabina, Catherine García-Rembert, Raimondo Penta, José

Rateitschak:2010:TTD

Roy:2012:IHS

Roy:2014:TAF

Ruxton:2014:EAP

Randhawa:2015:MMP

Dennis Reddyhoff, John Ward, Dominic Williams, Sophie Regan, and Steven Webb. Timescale analysis of a mathematical model of acetaminophen metabolism and toxicity.
REFERENCES

Rich:2016:HTR

Rossi:2016:TIH

Ramirez-Zuniga:2019:MME

Suzuki:2013:SCM

Suzuki:2014:EDR

Reiji Suzuki and Takaya Arita. Emergence of a dynamic resource partitioning based on the coevolution of phenotypic plasticity in sympatric species. Journal of
Sahmani:2017:SDA

Saadatpour:2010:AAA

Siegmund:2010:CDM

Sigdel:2017:CBI

Schmidt:2019:RDM

Sircar:2015:DEO

Sachs:2013:WEB

Sachs:2015:NMF

Spyrou:2017:HMV

Safarzynska:2013:CCE

[Sak10] Satoki Sakai. With whom is the gene in conflict in offspring production?: Synthesis of the theories of intragenomic and parent-offspring conflict. *Journal of Theor-
REFERENCES

Stamatos:2013:SMI

Salomonsson:2010:GSQ

Salgado:2015:EPC

Sofonea:2017:EDM

Sarvestani:2010:CBA

REFERENCES

Smolen:2014:SSP

Smolen:2018:PLM

Sergeev:2010:IEV

Schindler:2013:PFM

Stritzler:2018:UIE

Sherborne:2016:CPM

Suweis:2012:SPT

Sameen:2016:MMD

Sharp:2019:OCA

Sheikh-Bahaei:2010:CER

[Shahab Sheikh-Bahaei, Jacquelyn J. Maher, and C. Anthony Hunt. Computational experiments reveal plausible mechanisms for changing patterns of hepatic zonation of...]

Scianna:2013:RMM

Sergeev:2010:MTT

Shafique:2016:SIP

Szilagyi:2017:ASC

Sjodin:2014:PLC

REFERENCES

Schokker:2013:MMR

Sharma:2018:MPC

Schiffner:2011:MAN

Salazar-Ciudad:2010:TLM

Shen:2010:GMT

[SC10b] Hong-Bin Shen and Kuo-Chen Chou. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcel-

Sumner:2010:PEP

Sharma:2011:STP

Sibani:2011:NSA

Sibly:2012:EDP

Straube:2013:ERE

[SC13a] Ronny Straube and Carsten Conradi. Erratum to “Reciprocal enzyme regulation as a source of bistability in cova-

Sanchez-Corrales:2011:CAT

Sergeev:2011:MUP

Shi:2012:DMM

Shanafelt:2018:SDB

Scheuring:2010:EMP

Schrago:2014:LDE

Schulman:2017:BRA

Schlomann:2018:SMD

Schepens:2019:RRA

Schinazi:2019:CEP

Schumacher:2019:NCM

Schlomann:2021:CSM

Schulman:2023:CBR

Song:2015:ILC

REFERENCES

REFERENCES

Sardanyes:2010:ETR

Sands:2010:MII

Seki:2012:IIC

Seligmann:2010:PCB

Seligmann:2011:PMA

REFERENCES

Seligmann:2015:CES

Seligmann:2015:SEB

Seligmann:2016:SRS

Seligmann:2017:NMP

Serdoz:2017:MLE

Szomolay:2012:MIB

Serafino:2016:ATC

Straka:2015:TES

Simon:2012:HRM

Sedaghat:2016:IFC
REFERENCES

Song:2015:DSL

Subramanian:2018:EAD

Shim:2012:GDM

Sandoval:2012:MMP

Siebert:2012:GMD

Santana:2019:QBD

Schmitt:2014:EIC

Schmitt:2012:RCD

Srivastava:2016:SAU

Song:2012:TFS

REFERENCES

REFERENCES

Shibasaki:2019:EGI

Shavlyugin:2014:DPC

Shi:2011:PTT

Singh:2018:FRB

Sajitz-Hermstein:2012:RCG

REFERENCES

REFERENCES

[Satake:2012:SMC] Akiko Satake and Yoh Iwasa. A stochastic model of chromatin modification: Cell population coding of winter mem-

Seto:2019:PDC

Siero:2018:NGP

Sigmund:2012:MAI

Sunada:2015:SAP

Sabooh:2018:IMS

M. Fazli Sabooh, Nadeem Iqbal, Mukhtaj Khan, Muslim Khan, and H. F. Maqbool. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. *Journal of Theoretical Biology*, 452(?):1–9, September 7, 2018. CODEN JTBIAP. ISSN 0022-5193 (print),
REFERENCES

Silanikove:2016:TRM

Simon:2014:CTM

Sinclair:2015:NRN

Sgardeli:2017:FED

Stump:2018:HLO

Shtylla:2012:MMP

Sorace:2012:ANM

Saraee:2015:DSM

Schmickl:2016:HRB

Stump:2016:CCB

REFERENCES

REFERENCES

Shiino:2012:SCR

Swierniak:2016:DPC

Sapijanskas:2010:CEF

Su:2012:AAG

Steel:2017:ORR

[SL17] Mike Steel and Christoph Leuenberger. The optimal rate for resolving a near-polytomy in a phylogeny. *Journal of Theoretical Biology*, 420(??):174–179, May 7, 2017. CODEN JTBIAP. ISSN 0022-5193 (print), 1095-8541 (elec-
REFERENCES

(SLHS13) Mike Steel, Simone Linz, Daniel H. Huson, and Michael J. Sanderson. Identifying a species tree subject to random lateral gene transfer. *Journal of Theoretical Biology*, 322(??):81–93,

Smith:2011:MMT

Starnini:2013:ISE

Scornavacca:2017:FAR

Schrempf:2016:RPA

Schneider:2016:MDB

Scott:2018:CSF

Samozino:2010:JAT

Smith:2011:IEC

Smith:2014:EFS

Shinde:2014:MMM

REFERENCES

[SOF16] Luis Soto-Ortiz and Stacey D. Finley. A cancer treatment based on synergy between anti-angiogenic and immune cell therapies. *Journal of Theoretical Biology*, 394(??):197–211, April 7, 2016. CODEN JTBIAP. ISSN 0022-5193 (print),

Szolnoki:2013:ECP

Sutradhar:2014:TWB

Simon:2016:GLE

Susree:2018:CPI

Steel:2018:EIP

REFERENCES

Santos:2012:DPS

Shi:2012:MDB

Sun:2016:NCB

Sheng:2017:JPE

Shen:2010:RST
Simpson:2012:MHH

Simkin:2014:SMS

Sumen:2012:CAB

Soubeyrand:2011:PPD

Saini:2015:SLG

REFERENCES

Sober:2015:HPC

Sumathy:2015:MBM

Saghapour:2017:PMA

Stroberg:2017:ONM

Shen:2018:ELS

Sato:2019:SAW

[SS19] Naoki Sato and Kaoru Sato. Statistical analysis of word usage in biological publications since 1965: Historical de-

Serov:2015:OVD

Szabo:2013:CFE

Serrano-Solis:2016:GSV

Safaeian:2011:CMH

Song:2011:GPC

Song:2012:LHC

Sah:2013:SBP

Santos:2015:PPB

Serov:2015:ATO

Senapati:2019:IAM

Sharma:2019:OCB

Satake:2016:FDD

Scheiblauer:2018:FSC
REFERENCES

REFERENCES

Shokrollahzade:2015:PCA

Schumm:2010:NMS

Schumm:2015:GEI

Sataric:2017:BMH

Sanchez-Taltavull:2016:OAD

REFERENCES

[Sakai:2017:AES]

[Syomin:2017:SMC]

[Stadler:2010:STT]

[Sanchez-Taltavull:2015:SMV]

[Stepanskiy:2012:SIU]

Sarbaz:2012:DCF

Sudarsan:2012:FCV

Synodinos:2018:IIA

Sasmal:2019:CMA

Shiraishi:2019:DSL

REFERENCES

Stamper:2013:MMI

Schmeiser:2015:FLE

Sainudiin:2016:TPC

Shafiey:2017:ERP

Sachs:2018:FFI

REFERENCES

Stamper:2019:IMM

Schmitt:2016:NPP

Schwen:2015:AGR

Spronck:2016:CSA

Schmitz:2011:NCS

REFERENCES

[SYY17b] Kenta Suzuki, Yuji Yamauchi, and Takehito Yoshida. Interplay between microbial trait dynamics and population

Stamatakis:2010:MCA

Shoele:2015:DMB

Si:2015:CEG

Shoele:2016:ADM

REFERENCES

[TA15] Marco Tomassini and Alberto Antonioni. Lévy flights and cooperation among mobile individuals. *Journal of The-

REFERENCES

[TB18] Michal Theuer and Ludek Berec. Impacts of infection avoidance for populations affected by sexually transmitted infec-

REFERENCES

Thiel:2018:ISM

Tracht:2012:EAU

Tanaka:2018:BAM

Ternent:2015:BFS

Trauer:2014:CMM

Zhijie Jack Tseng and John J. Flynn. Convergence analysis of a finite element skull model of *Herpestes javanicus*

Thornley:2016:BTM

Toman:2017:SBS

Thornley:2018:EBK

Taylor:2010:RDI

Tam:2018:NLG

Alexander Tam, J. Edward F. Green, Sanjeeva Balasuriya, Ee Lin Tek, Jennifer M. Gardner, Joanna F. Sundstrom,

[Thu15] R. A. Thuraisingham. Dense neuron system interacting with the gravitational potential. *Journal of The-
Tanaka:2012:CEB

Thomas:2012:EEE

Tachiki:2013:CMS

Tachiki:2010:PCC
Yuuya Tachiki, Yoh Iwasa, and Akiko Satake. Pollinator coupling can induce synchronized flowering in different
Tanaka:2011:HET

Tjørve:2010:HRS

Tania:2010:CMC

Tugrul:2010:ATR

Turner:2010:ILB

REFERENCES

Thieffry:2019:PSI

Takashina:2018:SEA

Tahir:2014:PSL

Takashina:2019:GAS
REFERENCES

Tilman:2018:RSC

Tao:2019:EGS

Tanabe:2012:ECF

Takashina:2014:EMP

Tachikawa:2015:NCV

Takashina:2015:MSY

Tang:2016:DPA

Tung:2014:CSM

Tarkhov:2017:SMC

Trimmer:2012:DNS

[Tox18] Søren Toxvaerd. The start of the abiogenesis: Preservation of homochirality in proteins as a necessary and sufficient condition for the establishment of the metabolism.
REFERENCES

REFERENCES

Thornley:2014:ANG

Tripathi:2017:NAF

Traulsen:2012:GGC

Thouzeau:2017:EMM

Trassinelli:2016:ECO

Loïc Tadrist, Marc Saudreau, and Emmanuel de Langre. Wind and gravity mechanical effects on leaf inclination an-

Terentyeva:2015:KMS

Thompson:2016:DMM

Thomas:2013:SNS

Tsuruyama:2019:NET

Tjörve:2010:UAR

[TT10a] Even Tjörve and Kathleen M. C. Tjörve. A unified approach to the Richards-model family for use in growth analy-
REFERENCES

Tang:2010:OTI

Tahir:2019:IPI

Taheriyan:2019:PNM

Tarnita:2013:ECS

Tal:2017:TST

REFERENCES

REFERENCES

REFERENCES

Tahir:2018:IMD

Taylor:2015:SFH

Tait:2018:CCA

Tan:2019:PAT

Tang:2015:PVI
REFERENCES

[Uehara:2010:GML] Takashi Uehara and Yoh Iwasa. Global mutations and local mutations have very different effects on evolution, il-
illustrated by mixed strategies of asymmetric binary games.

Uchinomiya:2013:ESS

Uitdehaag:2011:BHB

Utz:2014:PPI

Unckless:2011:PRX

Udiani:2015:IRR

Oyita Udiani, Noa Pinter-Wollman, and Yun Kang. Identifying robustness in the regulation of collective foraging of

[Ush16] James Richard Usherwood. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and

[VAG16] F. J. Vermolen, E. C. M. M. Arkesteyn, and A. Gefen. Modelling the immune system response to epithelial wound infec-
REFERENCES

Vandiver:2015:BIA

VanCleve:2016:CCC

VanOosterwyck:2016:COC

VanDyken:2017:NSR

VanDyken:2017:PCG
Veprauskas:2018:EER

Vazquez:2010:OCD

Viertel:2019:CMM

Vitale:2019:PTP

Voss-Bohme:2010:CBC

Velasco:2013:LCR

[VBHM+13] Ana María Velasco, Arturo Becerra, Ricardo Hernández-Morales, Luis Delaye, María Eugenia Jiménez-Corona,

VanDerlinden:2010:SVS

Vidal-DiezdeUlzurrun:2017:MTD

Vickerstaff:2010:WCS

Veliz-Cuba:2011:RBN

REFERENCES

VanWassenbergh:2015:SPO

Viger:2014:CMA

vanDoorn:2014:CVR

vanderSman:2012:PPF

Vagne:2015:RSE

vanDrongelen:2018:MET

vanElburg:2011:SCT

Veglio:2010:SAS

Veloso:2017:DSR

Vahidi:2012:BSU

REFERENCES

REFERENCES

REFERENCES

Henk J. van Lingen, James G. Fadel, Luis E. Moraes, André Bannink, and Jan Dijkstra. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen. *Journal
REFERENCES

Zsuzsanna Vig-Milkovics, István Zachar, Ádám Kun, András Szilágyi, and Eörs Szathmáry. Moderate sex between pro-

vanNoort:2012:RWR

Verma:2018:BGI

Voets:2018:CLA

Vohradsky:2017:LPG

Vanderelst:2018:MBP

[VP18] Dieter Vanderelst and Herbert Peremans. Modeling bat prey capture in echolocating bats: The feasibility of reactive pur-
REFERENCES

[VSLVB15] Céline Van de Paer, Pierre Saumitou-Laprade, Philippe Vernet, and Sylvain Billiard. The joint evolution and main-
REFERENCES

Vukov:2011:ETC

Vincent:2010:EEG

vonThienen:2015:MSP

vanVeelen:2011:RDP

vanVeelen:2011:RRI
Matthijs van Veelen. A rule is not a rule if it changes from case to case (a reply to Marshall’s comment). *Jou-
References

vanVeelen:2018:FFT

vanVeelen:2017:HR

vanVelzen:2015:IEC

vanVeelen:2010:ITG

vanVeelen:2012:GSI
Matthijs van Veelen, Julián García, Maurice W. Sabelis, and Martijn Egas. Group selection and inclusive fitness are not equivalent; the price equation vs. models and statistics. *Journal of Theoretical Biology*, 299(??):64–80, April

VanDyken:2019:CCS

Vinogradova:2015:PLT

Woodall:2014:PCE

Wu:2014:PNA

Wallace:2010:PFD

REFERENCES

Walters:2012:PEI

Wallace:2016:HMD

Wallace:2018:NSM

Wang:2019:PMT

Waxman:2011:CRT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Weiss:2012:MTT

Weigang:2017:CPT

Wicke:2017:CRO

Whitehead:2018:CCD

Wu:2014:EIP

[Wu:2013:EIP]

[Wu:2019:PAM]

[Wu:2013:ATS]

[Wilson:2013:MST]

[Wu:2018:NMP]

[WGDZ18] Chuanyan Wu, Rui Gao, Yang De Marinis, and Yusen Zhang. A novel model for protein sequence similarity analysis based

[WK12] Alexandra Witthoft and George Em Karniadakis. A bidirectional model for communication in the neurovascular unit. *Journal of Theoretical Biology*, 311(??):80–93, October 21,
Weigang:2015:EDU

Wild:2017:EDD

Williams:2018:EPV

Wood:2018:CBB

Webb:2013:RSP

REFERENCES

[WL12b] Joe Yuichiro Wakano and Laurent Lehmann. Evolutionary and convergence stability for continuous phenotypes in

Whitehead:2012:ASN

Wagner:2013:CSF

Wakano:2014:EBD

Whalen:2015:CBT

Wang:2019:PGG

dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle. Journal of

[WLL+14] Duojiao Wu, Xiaoping Liu, Chen Liu, Zhiping Liu, Ming Xu, Ruiming Rong, Mengjia Qian, Luonan Chen, and Tongyu

REFERENCES

Wcislo:2016:PPA

Wellard:2010:ECP

Wan:2013:GSL

Wan:2014:RLC

Wan:2015:MHL

Wan:2016:MAT

Wang:2016:REP

Wang:2017:IRI

West:2018:CCE

Walmsley:2015:ASP

Wang:2011:FMP

Waldherr:2015:DOM

Wodarz:2018:ECD

Wohlin:2015:NSH

Wolpert:2011:PIP

 references

[1050]

REFERENCES

Wang:2012:SSR

Wade:2016:EBC

Wang:2014:SPS

Wang:2019:TIA

Walsh:2016:CMP

Darragh M. Walsh, Philipp T. Röth, William R. Holmes, Kerry A. Landman, Tobias D. Merson, and Barry D. Hughes. Is cell migration or proliferation dominant in the formation of linear arrays of oligodendrocytes? *Journal of

REFERENCES

[WSRG18] Jan Werner, Nikolaos Sfakianakis, Alan D. Rendall, and Eva Maria Griebeler. Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual matu-

Wentz:2015:MMR

Wang:2012:ITM

Wang:2012:HIM

Wang:2019:GDP

Wensink:2014:NSD

Walker:2019:BBL

Wang:2012:RMR

Wu:2010:MWS

Wang:2010:GPP

Wang:2012:MME

Wang:2013:GSB

Wang:2017:IDT

Wu:2018:VSL

Wang:2019:PRP

Wang:2017:APA

REFERENCES

Lei Wang, Zhu-Hong You, Shi-Xiong Xia, Feng Liu, Xing Chen, Xin Yan, and Yong Zhou. Advancing the prediction accuracy of protein–protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. Journal of Theoretical Biology, 418(??):105–110, April 7, 2017. CODEN JTBIAP. ISSN 0022-5193 (print),
REFERENCES

[1058] References

Weiss:2012:IPA

Wu:2015:FML

Wei:2017:DBG

Wang:2018:VPF

Wang:2013:MAT

REFERENCES

Wei:2015:PSR

Wang:2019:FSI

Wu:2011:CBF

Wen:2014:MSM

Xia:2018:MCB

[XGZ17] Bingxiang Xu, Hao Ge, and Zhihua Zhang. An efficient and assumption-free method to approximate protein level distribution in the two-states gene expression model. *Journal of
REFERENCES

REFERENCES

Xu:2010:LAS

Xu:2014:PPM

Xu:2019:LOW

Xu:2010:BRV

Xu:2017:PSP

REFERENCES
REFERENCES

REFERENCES

Yeoh:2016:MMP

Yan:2017:CMC

Yan:2017:MCR

Yoon:2017:MMM

REFERENCES

[YGMT12] Jinliang Yang, Rui Gao, Max Q.-H. Meng, and Tzyh-Jong Tarn. Colored Petri nets to model gene muta-
REFERENCES

1073

Yamaguchi:2014:ESD

Yu:2014:VGP

Yang:2014:OPS

Yamaguchi:2016:SNI

Yamaguchi:2017:TPP

Ryo Yamaguchi and Yoh Iwasa. A tipping point in parapatric speciation. *Journal of Theoretical Biology*, 421(??):81–92, May 21, 2017. CODEN JTBIAP. ISSN 0022-5193 (print),
Yamaguchi:2018:TDS

Yamaguchi:2018:WBS

Yin:2017:IRD

Yamada:2017:IKO

Yakimov:2014:MAN

REFERENCES

REFERENCES

Yong:2012:HCM

Yang:2014:HPC

Youssefpour:2012:MMC

Ying:2014:SCL

Yang:2010:MMB

[YLWZ10] Jie Yang, Jia-Huang Li, Jin Wang, and Chen-Yu Zhang. Molecular modeling of BAD complex resided in a mitochon-
REFERENCES

[YMZ18] Don Yu, Neal Madras, and Huaping Zhu. Temperature-driven population abundance model for *Culex pipiens* and
REFERENCES

Yan:2014:AAC

Yang:2017:MPF

Yang:2018:WCS

Yamaguchi:2013:SPF

Yu:2014:NDF

REFERENCES

Yamaguchi:2013:DMH

Yamauchi:2012:BEE

Yan:2016:MCH

Yamauchi:2010:ECS

Mier-y-Teran-Romero:2013:BSI

Yamauchi:2018:SPG

Yang:2013:LRM

Yang:2013:NSM

Yang:2013:BMW

Yang:2014:AIT

Yang:2016:CBN

Yuan:2015:RSF

Yan:2014:TWD

Yin:2015:IMW

Yasui:2018:BHA

REFERENCES

Yamauchi:2019:TCC

Yang:2019:PPS

Yao:2014:NDP

Yamaguchi:2013:SSD

Yu:2019:PCI

REFERENCES

Yang:2016:ELA

Yang:2018:EBS

Yang:2010:BWS

Yang:2015:NRE

Yang:2016:NCM

Jing Yang, Tong-Jun Zhao, Chang-Qing Yuan, Jing-Hui Xie, and Fang-Fang Hao. A nonlinear competitive model of the

Yang:2012:AFC

Yang:2013:AFC

Zabet:2011:NFP

Zadeh:2011:IPD

Zhang:2015:FTI

Lai Zhang, Ken H. Andersen, Ulf Dieckmann, and Åke Brännström. Four types of interference competition and their impacts on the ecology and evolution of size-structured

Zhao:2014:NBB

Zhang:2014:NBM

Zhai:2017:HAP

Zubkov:2015:SAM

Zamora-Chimal:2012:IFL

Zenati:2018:GSA

Zhang:2013:DIA

Zhu:2013:ESC

Zhang:2018:PPS

Zhong:2012:MEP

Zhang:2010:PPA

Zhao:2011:NCM

Zook:2011:FWO

Zhang:2017:DRI

Zhang:2010:CSB

REFERENCES

Zhang:2010:SBW

Zumsande:2010:BCM

Zaman:2019:MBF

Zaoli:2019:PNS

Zhang:2010:RDB

[ZGS+10] Lihai Zhang, Bruce S. Gardiner, David W. Smith, Peter Pivonka, and Alan J. Grodzinsky. On the role of dif-

Zhang:2010:SSS

Zhao:2010:POC

Zhang:2011:CSS

Zhang:2015:PBS

Zelik:2014:RSA

Zhu:2010:SLP

Zheng:2015:LDP

Zheng:2016:SLF

Zhou:2011:DLP

Zhu:2011:SMV

Zaric:2011:NCI

REFERENCES

Lichao Zhang, Liang Kong, Xiaodong Han, and Jinfeng Lv. Structural class prediction of protein using novel feature extraction method from chaos game representation of predicted secondary structure. *Journal of Theoretical Biology*, 400(??):1–10, July 7, 2016. CODEN JTBIAP. ISSN 0022-5193 (print),
Zhukov:2019:CAS

Zavodszky:2015:EFP

Zhao:2015:SWO

Zhong:2010:AMP

Zhang:2018:PAP

REFERENCES

1096

Zhou:2018:WFS

Zhao:2013:AIB

Zienkiewicz:2018:DDM

Zhao:2013:PPP

Zhou:2013:PPP

REFERENCES

REFERENCES

Zhao:2016:ITC

Zhou:2018:CNG

Zhao:2019:PPS

Zhang:2013:BET

Zhang:2014:IPA
Shengli Zhang, Yunyun Liang, and Xiguo Yuan. Improving the prediction accuracy of protein structural class: Approached with alternating word frequency and normalized Lempel-Ziv

Zheng:2017:SRD

Zhao:2011:NAC

Zhang:2015:MMT

Zhang:2015:DBS

REFERENCES

Zahiri:2010:NED

Zakeri:2011:PPS

Zhao:2017:NMM

Zu:2011:AEF

Zu:2010:EPT

REFERENCES

REFERENCES

Zoli:2014:TVN

Zahavi:2011:IES

Zamudio:2019:NET

Zhang:2011:ACL

Zollner:2015:HHS

Zheng:2016:ETD

Zhang:2019:PEP

Zou:2015:STD

Zeron:2010:DNF

Zhang:2012:CCR

REFERENCES

REFERENCES

Zongo:2010:STM

Zhao:2016:IGD

Zhang:2013:MSU

Zhou:2010:ESQ

Zanghellini:2010:PDB

REFERENCES

Zu:2015:TPI

Zhang:2018:DAS

Zhang:2010:SSC

Zhang:2014:MDS

Zhang:2014:BOH

Zhang:2016:UST

Zhang:2014:PPS

Zhu:2011:CSC

Zhang:2019:IIS

Zhao:2019:IMS

Xiaowei Zhao, Ye Zhang, Qiao Ning, Hongrui Zhang, Jinchao Ji, and Minghao Yin. Identifying N^6-methyladenosine sites using extreme gradient boosting system optimized by particle

Zou:2010:MTD

Zou:2013:CMT

Zhang:2011:SRS

Zupanc:2019:SCA

Zheng:2016:GRG

[ZZX+16] Gang Zheng, Wei Zhang, Jinfeng Xu, Ao Yuan, Qizhai Li, and Joseph L. Gastwirth. Genetic risks and genetic model spec-