A Complete Bibliography of the LAPACK Working Notes

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 2.23

Title word cross-reference

(A, B) [333]. 1 [152]. 2.5 [237, 247]. AX - XB = C [42, 312]. dqds [358, 155].

-590 [71]. -Norm [152].

/ [380, 374].

2.5 [174]. 2005 [164]. 2nd [377].

3 [185, 114].

590 [71].


754 [172].


Accelerate [197]. Accelerated [259, 210]. Accelerating [245, 219].


Auto-tuning [212]. Automated [147, 361]. Automatic [151].

Automatically [131, 349]. Autotuned [241]. Autotuning [244, 266].

Avoid [284]. Avoiding [239, 275, 240, 262]. Aware [253, 254].

Basic [100, 330, 37, 311, 77, 73, 156, 290]. been [116]. Benchmark
Bidiagonalization [174, 209]. Bisection [70, 322, 197]. Bisection-Like
[322], bit [180, 175]. BLACS [34, 94]. BLAS
[21, 316, 22, 300, 109, 291, 174, 107, 108, 347, 283, 149, 364, 12, 114].
BLAS-3 [114]. Block [19, 257, 8, 286, 68, 152, 316, 22, 40, 300, 120, 344, 345,
2, 287, 24, 171, 208, 128, 133, 355, 113, 196]. Block-Asynchronous [257].
Block-Cyclic [120, 344, 345, 355]. Block-Partitioned [113]. Blocked

[176, 358, 155]. CCI [82]. CELL [189, 177, 184, 201]. Center [384, 371].
Checkpointing [277, 280, 268, 90, 324, 267, 273]. chemistry [382]. choice
[159]. Cholesky
[146, 360, 215, 80, 329, 357, 14, 118, 211, 199, 248, 184, 223, 161, 12, 202].
Class [191]. CILMAGMA [274]. Cluster [185, 240, 256]. Clusters
collectives [254]. Column [275, 114]. Combination [277]. Combine
[29, 319]. Combining [267]. Communication
[239, 215, 218, 236, 238, 56, 204, 275, 37, 311, 99, 237, 247, 240, 73, 226, 262, 254].
Communication-Avoiding [239, 240]. Communication-optimal
Complex [153]. Complexity [67]. Components [193]. componentwise
[207]. Computation [88, 72, 335, 374, 272, 383]. Computational [78].
Computations [180, 164, 2, 167, 249, 287, 382]. Computer [58, 375].
Computers
[20, 288, 26, 91, 336, 328, 55, 65, 57, 95, 129, 1, 86, 164, 127, 296, 314, 315, 343].
Computing
[384, 224, 193, 38, 46, 305, 7, 289, 148, 112, 337, 205, 185, 3, 48, 307, 119, 352, 25,
Condensed [2, 30, 253, 287, 303]. Condition
[381, 384, 370, 372, 373, 379, 376, 377]. Conjugate [56, 51, 159]. CONPAR
[82]. Core [217, 110, 178, 357, 118, 338, 256, 249]. Correction [259].
Cray [126]. Criterion [122]. CUDA [228]. Cuppen [69]. Cyclic
[120, 344, 345, 128, 133, 355, 196].
Fault [205, 252, 380, 90, 324]. Fault-Tolerant [380, 324].
Fine-Grained [253]. Finite [159]. Finite-choice [159]. FlexiBLAS [283].
flexible [283]. Floating [14, 49, 70, 322, 175]. Florida [384]. Form
[2, 253, 171, 287, 192]. formulation [146, 360]. FORTRAN
[374]. Fully [199]. Fundamentals [385].

Gaps [154, 366]. Gaussian [124, 351, 279, 127, 64, 325]. GeForce [266].
GEMMs [244]. General [142, 143, 350]. Generalized
[31, 294, 46, 32, 75, 171, 305, 334]. Generalizing [295]. Generation
[9, 157, 365]. Generator [206]. generic [231]. geodesy [179]. Germany
[233, 259, 228, 271, 278, 229, 265, 223, 249, 210, 219, 225]. GPU-Accelerated
Graphs [48, 307]. Grid [224, 156]. group [264]. GTX [266]. Guaranteed
[3]. Guide [18, 41, 81, 137, 93, 102, 98, 94, 35]. Guidelines [4].

held [385]. Hermitian [123]. Hessenberg
[8, 286, 68, 313, 92, 321, 278, 198, 208, 219]. Hessenberg-Triangular [198].
Heterogeneous [112, 337, 263, 249, 328, 327]. Hierarchical [256]. High
[384, 20, 288, 26, 111, 1, 3, 39, 298, 119, 164, 203, 58, 61, 74, 318,
98, 346, 258, 255, 211, 373, 107, 127, 223, 246, 250, 134, 31, 152, 347].
High-Performance [20, 288, 26, 111, 1, 107, 347]. Highly [68]. Hilton
[371]. Homogeneous [246]. Householder [203]. HPC [216]. HPF [137].
Hybrid [251, 278, 210, 281, 216, 211, 219]. Hybridization [230].

[102]. Implementation [18, 35, 8, 286, 187, 140, 152, 80, 125, 316, 162, 290,
118, 282, 121, 363, 177, 229, 149, 115, 69, 73, 329, 357, 364, 358, 155].
Inaccuracy [45]. Incomplete [144, 145]. Incremental [32, 33, 179, 295].
Infrastructure [182]. Initial [45]. Initial [10, 16]. Installation
[41, 81, 137, 93, 108]. Installing [10]. Intel [24]. Interface
[200, 328, 95]. Iteration [8, 286]. Iterative

Kepler [266]. kernel [211]. Kernels [189, 253, 266]. Key [110, 338].


Myths [79, 332].


QR [17]. QR/QL [17]. Qualitative [51]. Quick [81].


Some solving [75, 184, 89, 139, 356, 359, 113, 179, 334].

Specifying [49]. Specified [38, 87, 333].

Special [200]. Spaces [179]. Sparse [284, 180, 103, 124, 351, 353, 74, 318, 50, 77, 62, 127, 64, 325].


Stage [243]. Standard [171]. Storage [135, 146, 360, 211].


Special [200]. Spaces [179]. Sparse [284, 180, 103, 124, 351, 353, 74, 318, 50, 77, 62, 127, 64, 325].


Stage [243]. Standard [171]. Storage [135, 146, 360, 211].


Special [200]. Spaces [179]. Sparse [284, 180, 103, 124, 351, 353, 74, 318, 50, 77, 62, 127, 64, 325].


Stage [243]. Standard [171]. Storage [135, 146, 360, 211].

REFERENCES [135x681] 10


xHSEQR [187].

York [371].

Zurich [370].

References


REFERENCES


REFERENCES


REFERENCES


[19] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. LAPACK Working Note 19, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,
REFERENCES


[24] J. Dongarra and S. Ostrouchov. LAPACK block factorization algorithms on the Intel iPSC/860. LAPACK Working Note 24, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996,


[29] R. van de Geijn. On global combine operations. LAPACK Working Note 29, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, April 1991. URL


REFERENCES


REFERENCES


REFERENCES


[50] Victor Eijkhout. Distributed sparse data structures for linear algebra operations. LAPACK Working Note 50, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,


REFERENCES


[64] Padma Raghavan. Distributed sparse Gaussian elimination and orthogonal factorization. LAPACK Working Note 64, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, August 1993. URL http://www.netlib.org/lapack/lawnspdf/lawn64.pdf. UT-CS-93-203, August 1993. Published in [325].

REFERENCES


REFERENCES


[75] Bo Kågström and Peter Poromaa. LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separating between regular matrix pairs. LAPACK Working Note 75, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, July 1994. URL http://www.netlib.org/lapack/lawns/lawn75.ps; http://www.netlib.org/lapack/lawnspdf/lawn75.pdf. UT-CS-94-228, March 1994. Published in [322].
REFERENCES


[80] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley. The design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. LAPACK Working Note 80, Department of Computer Science, University of Tennessee,
REFERENCES


Blackford:1994:QIG


Dongarra:1994:CCI


Li:1994:RPB


Li:1994:RPTa


Li:1994:RPTb

[85] Ren-Cang Li. Relative perturbation theory: (II) eigenspace variations. LAPACK Working Note 85, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, September 1994. URL http://www.netlib.org/lapack/lawns/lawn85.ps;
REFERENCES


[90] J. S. Plank, Y. Kim, and J. J. Dongarra. Algorithm-based diskless checkpointing for fault tolerant matrix operations. LAPACK Working Note 90, Department of Computer Science, University of Tennessee,
REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[135] E. D’Azevedo and J. Dongarra. Packed storage extensions for ScaLAPACK. LAPACK Working Note 135, Department of Computer Science,
REFERENCES


[140] H. Casanova and J. Dongarra. NetSolve version 1.2: Design and implementation. LAPACK Working Note 140, Department of Computer Science,
REFERENCES


[145] V. Eijkhout. The ‘weighted modification’ incomplete factorisation method. LAPACK Working Note 145, Department of Computer Science,
References


REFERENCES


[155] Beresford N. Parlett and Osni A. Marques. An implementation of the dqds algorithm positive case. LAPACK Working Note 155, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996,
REFERENCES


REFERENCES


Lucas:2003:LSC


Dhillon:2004:DIM


Parlett:2004:HMA


Demmel:2005:LPR


Demmel:2005:EBE

Willems:2005:CBS


Marques:2005:SCM


Antonelli:2005:PSP


Drmac:2005:NFA


Drmac:2005:NFAb

REFERENCES


REFERENCES


[186] James W. Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. LAPACK Working Note 186, Department of Electrical Engineering


REFERENCES


[203] James W. Demmel, Yozo Hida, Mark F. Hoemmen, and E. Jason Riedy. Non-negative diagonals and high performance on low-profile matrices from householder QR. LAPACK Working Note 203, Department of Electrical Engineering and Computer Science, University of California, Berke-


REFERENCES


REFERENCES


[220] Jakub Kurzak and Jack Dongarra. Fully dynamic scheduler for numerical computing on multicore processors. LAPACK Working Note 220, Department of Computer Science, University of Tennessee, Knoxville, Knoxville,
REFERENCES


Song:2009:DTS


Hadri:2009:EPT


Ltaief:2009:SHP


Agullo:2010:QFT


Tomov:2010:DLA

[225] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra solvers for multicore with GPU accelerators. LAPACK Working Note 225, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, April 18, 2010. URL


[230] Emmanuel Agullo, Cedric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Samuel Thibault, and Stanimire Tomov. Faster, cheaper, better — a hybridization methodology to develop linear algebra software for GPUs. LAPACK Working Note 230, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,

Bosilca:2010:DGD


Bosilca:2010:DMT


Agullo:2010:FMN


Dongarra:2010:RTT


Baboulin:2010:CCT

REFERENCES


[241] Emmanuel Agullo, Jack Dongarra, Rajib Nath, and Stanimire Tomov. A fully empirical autotuned dense QR factorization for multi-
REFERENCES


Haidar:2011:ADS


Luszczek:2011:TST


Kurzak:2011:AGF


Baboulin:2011:ALS


Ltaief:2011:HPB

[246] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. High performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures. LAPACK Working Note 247, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, May 18,
REFERENCES


Gustavson:2011:LCF


Song:2011:ESM


Ltaief:2011:PHP


Du:2011:SER


REFERENCES


[268] George Bosilca, Aurelien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack Dongarra, Amina Guermouche, Thomas Herault, Yves Robert, Frederic Vivien, and Dounia Zaidouni. Unified model for assessing checkpoint-
REFERENCES


REFERENCES


[279] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak, Piotr Luszczek, and Ichitaro Yamazaki. On algorithmic variants of parallel Gaussian elimination: Comparison of implementations in


REFERENCES


REFERENCES


REFERENCES


REFERENCES


Dongarra:1992:RCFb


Anderson:1993:PLP


Bai:1993:CGS


Bai:1993:SDB


Demmel:1993:CAS


Demmel:1993:IEB

[308] James W. Demmel and Nicholas J. Higham. Improved error bounds for underdetermined system solvers. SIAM Journal on Matrix Analysis and

Demmel:1993:PNLb


Demmel:1993:TPN


Dongarra:1993:TDB


Higham:1993:PTB


Choi:1994:DPD


Choi:1994:PMT


REFERENCES

Bai:1995:TLAb


Choi:1995:DPDb


Demmel:1995:CSB


Heath:1995:CPN


Plank:1995:ADC


Raghavan:1995:DSG

REFERENCES

1477, November 1995. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic). See original LAPACK Working note in [64].


REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See original LAPACK Working note in [72].

[Bai:1997:SDN]

[Blackford:1997:PEN]

[Dongarra:1997:KCPb]

[Higham:1997:IRL]

[Higham:1997:SDP]


REFERENCES


REFERENCES


Demmel:1999:CSV


Demmel:1999:SAS


Li:1999:RPT


Petitet:1999:ARM


Petitet:1999:NLA


DAzevedo:2000:DIP


Parlett:2000:IAP


Petitet:2000:PDS


Andersen:2001:RFC


Whaley:2001:AEO

REFERENCES


[362] David Bindel, James Demmel, William Kahan, and Osni Marques. On computing Givens rotations reliably and efficiently. ACM Transactions on Mathematical Software, 28(2):206–238, June 2002. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL all previous codes occasionally suffer from large inaccuracies due to over/underflow. For real Givens rotations there are also improvements in speed and accuracy, though not as striking. Third, the design process that led to this reliable implementation is quite systematic, and could be applied to the design of similarly reliable subroutines. See original LAPACK Working note in [148].


REFERENCES


REFERENCES


REFERENCES

