Title word cross-reference

\[(A, B) [333]. 1 [152]. 2.5 [237, 247]. AX - XB = C [42, 312]. dqds [358, 155]. \]
\[-590 [71]. -Norm [152]. \]

/ [380, 374].

2.5 [174]. 2005 [164]. 2nd [377].

3 [185, 114].

590 [71].

754 [172].

Accelerate [197]. **Accelerated** [250, 210]. **Accelerating** [245, 219]. **acceleration** [156]. **Accelerators** [233, 223, 225]. **Access** [6, 285].

Accuracy [180, 3, 119, 183, 258, 175, 352]. **Accurate** [7, 289, 15, 48, 299, 307, 130, 169, 170]. **Achieving** [180, 258]. **ACM** [384].

ACM/IEEE [384]. **Across** [73]. **Acyclic** [48, 307]. **Adapting** [160, 365, 157]. **Aggregated** [253]. **Aggressive** [187, 173]. **Ahead** [178]. **Aid** [6, 285].

Algorithm [122, 19, 168, 38, 68, 187, 152, 129, 56, 124, 351, 162, 169, 170, 195, 276, 343, 159, 273, 216, 226, 211, 358, 155, 342, 290, 96].

Algorithms-By-Tiles [208, 214]. **Analysis** [6, 242, 115, 73, 285, 372, 312].

Annual [377]. **ANSI** [111]. **Application** [179]. **Applications** [31, 157, 365, 88, 294, 385]. **Applied** [205, 383, 382]. **Approach** [76, 263, 103, 353, 326]. **April** [377, 373]. **Architecture** [266].

Architectures [241, 200, 191, 190, 368, 30, 61, 74, 318, 222, 242, 121, 363, 278, 214, 208, 209, 246, 250, 243, 249, 132, 73, 260, 238, 303]. **Arithmetic** [322, 175, 375]. **Array** [120, 344, 345]. **Assessing** [268]. **Asynchronous** [257, 259, 124, 351]. **ATLAS** [349, 147, 361]. **August** [382, 383]. **Auto** [212].

Auto-tuning [212]. **Automated** [147, 361]. **Automatic** [151].

** Automatically** [131, 349]. **Autotuned** [241]. **Autotuning** [244, 266].

Avoid [284]. **Avoiding** [239, 275, 240, 262]. **Aware** [253, 254].

B [87]. backends [283]. **Backward** [42, 312]. **Band** [21, 209]. **Banded** [142, 143, 350, 125, 12]. **Based** [205, 107, 108, 90, 324, 252, 278, 219, 347].
Basic [100, 330, 37, 311, 77, 73, 156, 290]. been [116]. Benchmark
Bidiagonalization [174, 209]. Bisection [70, 322, 197]. Bisection-Like
[322]. bit [180, 175]. BLACS [34, 94]. BLAS
[21, 316, 22, 300, 109, 291, 174, 107, 108, 347, 283, 149, 364, 12, 114].
BLAS-3 [114]. Block [19, 257, 8, 286, 68, 152, 316, 22, 40, 300, 120, 344, 345,
2, 287, 24, 171, 208, 128, 133, 355, 113, 196]. Block-Asynchronous [257].
Block-Cyclic [120, 344, 345, 355]. Block-Partitioned [113]. Blocked

[176, 358, 155]. CCI [82]. CELL [189, 177, 184, 201]. Center [384, 371].
Checkpointing [277, 280, 268, 90, 324, 267, 273]. chemistry [382]. choice
[159]. Cholesky
[146, 360, 215, 80, 329, 357, 14, 118, 211, 199, 248, 184, 223, 161, 12, 202].
Class [191]. cIMAGMA [274]. Cluster [185, 240, 256]. Clusters
collectives [254]. Column [275, 114]. Combination [277]. Combine
[29, 319]. Combining [267]. Communication
[239, 215, 218, 236, 238, 56, 204, 275, 37, 311, 99, 237, 247, 240, 73, 226, 262, 254].
Communication-Avoiding [239, 240]. Communication-optimal
Complex [153]. Complexity [67]. Components [193]. componentwise
[207]. Computation [88, 72, 335, 374, 272, 383]. Computational [78].
Computations [180, 164, 2, 167, 249, 287, 382]. Computer [58, 375].
Computers
[20, 288, 26, 91, 336, 328, 55, 65, 57, 95, 129, 1, 86, 164, 127, 296, 314, 315, 343].
Computing
[384, 224, 193, 38, 46, 305, 7, 289, 148, 112, 337, 205, 185, 3, 48, 307, 119, 352, 25,
Condensed [2, 30, 253, 287, 303]. Condition
[381, 384, 370, 372, 373, 379, 376, 377]. Conjugate [56, 51, 159]. CONPAR
[82]. Core [217, 110, 178, 357, 118, 338, 256, 249]. Correction [259].
Correctness [70, 322]. Costs [56]. County [384]. CPU [265]. CPUs [229].
Cray [126]. Criterion [122]. CUDA [228]. Cuppen [69]. Cyclic
[120, 344, 345, 128, 133, 355, 196].

Guide [18, 41, 81, 137, 93, 102, 98, 84, 35].

Guidelines [4].

Hybrid [251, 278, 210, 281, 216, 211, 219]. Hybridization [230].

Lanczos [51]. LAPACK
LAPACK-style [334, 75, 161]. LAPACK/ESSL [82]. LAPACK3E [158].
LAPACK90 [346, 138, 134]. LAPACKE [269].

Like [322]. Limitations [185]. Line [63]. Linear

[224, 91, 336, 7, 289, 21, 3, 48, 307, 86, 130, 203, 2, 72, 335, 243, 197, 287].
Matrix
[284, 297, 102, 99, 27, 51, 66, 144, 17, 128, 133, 355, 196, 78]. Microsoft [269].
MIMD [316]. minimal [211]. Minimizing [218, 236]. Mississippi [379].
Mixed [259, 180, 97, 177, 149, 207, 364]. Mixed-Precision [177]. Model
modification [145]. MRRR [168, 162, 167, 163, 194, 195]. MSRCs [136].
[156]. Multi-platform [228]. Multi-shift [187]. Multicore
Multiplication [189, 57, 315, 129, 291, 96, 343, 237, 247, 342]. Multiply
[111]. Multiprocessor [67]. Multiprocessors [56]. Multishift

problems [106, 320, 123, 47, 188, 369, 88, 253, 179, 272].

process [267].

processing [257, 370, 376].

processors [316, 178, 220, 213].

profile [225].

profiling [290].

programming [228].

programs [6, 290, 285].

project [361, 232, 147].

proof [196].

properties [279, 51].

proposal [100, 101, 330, 331].

prospectus [26, 1, 164, 181].

protocols [268].

providing [271].

provisional [5].

pumma [57, 315].

purpose [200].

qr [17].

t_predicate [17].

qualitative [51].

quick [81].

random [284].

randomization [245].

rank [275, 176, 262].

real [54, 306, 192].

reality [79, 332].

rectangular [199].

distributing [258, 146, 360].

reduction [120, 344, 345, 128, 133, 355].

reducing [56, 234].

reference [102].

refined [194].

refinement [259, 4, 165, 188, 369, 104, 175, 339].

regular [87, 75, 333, 334].

relatively [166].

relaxation [257].

release [10, 16].

reliable [164].

reliably [148, 362].

reordering [171, 192].

replication [267, 261, 264].

representation [194].

representations [166].

resilience [255, 267, 261, 264].

resilient [251, 278].

results [16, 266].

revealing [275, 176, 262].

reverse [99].

revisited [198, 208].

revisiting [273, 175].

right [116].

risc [28, 293].

robust [36, 33, 166].

rockefeller [371].

rotations [150, 148, 362, 196].

routines [44, 80, 71, 118, 153, 248, 178, 304, 329, 357, 234].

rs [71].

rs/6000 [71].

rs/6000-550 [71].

runtime [283].

sc98 [384, 384].

scalable [55, 164, 43, 373, 379, 223, 240, 296, 301, 342, 96].

scalapack
[168, 328, 137, 136, 55, 296, 80, 95, 329, 93, 125, 135, 357, 181, 118, 271, 195].

scale [268].

scaled [7, 289].

scheduled [242].

scheduler [220].

scheduling [120, 344, 345, 213, 214, 221].

schur [54, 306, 192, 171].

scientific [126, 378, 359, 376].

second [378, 382].

secular [89].

selected [71].

self [160, 157, 365].

self-adapting [365, 157].

separating [75].

separation [334].

separators [63].

sept [385].

september [370].

sequential [215, 204].

serial [69].

set [100, 290, 330].

shared [265].

shift [187].

short [189].

shpcc [373].

shpcc-92 [373].

siam [376].

sided
[217, 209, 214].

silent [277].

simd [189].

singular

skinny [224].

slhpf [137].

small [189, 187, 3].

smoothers [156].

soft [255, 251].

solution [193, 76, 228, 199, 62, 207, 326].
solutions
Sparse

Solving [75, 184, 89, 139, 356, 359, 113, 179, 334]. Some [200, 322, 115].

xHSEQR [187].

York [371].

Zurich [370].

References

REFERENCES

REFERENCES

REFERENCES

[19] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. LAPACK Working Note 19, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,
REFERENCES

[24] J. Dongarra and S. Ostrouchov. LAPACK block factorization algorithms on the Intel iPSC/860. LAPACK Working Note 24, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996,
REFERENCES

[29] R. van de Geijn. On global combine operations. LAPACK Working Note 29, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, April 1991. URL http:/
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[50] Victor Eijkhout. Distributed sparse data structures for linear algebra operations. LAPACK Working Note 50, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,

REFERENCES

References

Dongarra:1993:OOD

Heath:1993:DSS

Heath:1993:LPS

Raghavan:1993:DSG

[64] Padma Raghavan. Distributed sparse Gaussian elimination and orthogonal factorization. LAPACK Working Note 64, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, August 1993. URL http://www.netlib.org/lapack/lawns/lawn64.ps; http://www.netlib.org/lapack/lawnspdf/lawn64.pdf. UT-CS-93-203, August 1993. Published in [325].

Choi:1993:PMT

[65] Jaeyoung Choi, Jack J. Dongarra, and David W. Walker. Parallel matrix transpose algorithms on distributed memory concurrent computers. LAPACK Working Note 65, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, November 1993. URL http://www.netlib.org/lapack/lawns/lawn65.ps;

REFERENCES

REFERENCES

[80] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley. The design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. LAPACK Working Note 80, Department of Computer Science, University of Tennessee,
REFERENCES

[85] Ren-Cang Li. Relative perturbation theory: (II) eigenspace variations. LAPACK Working Note 85, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, September 1994. URL http://www.netlib.org/lapack/lawns/lawn85.ps;

[90] J. S. Plank, Y. Kim, and J. J. Dongarra. Algorithm-based diskless checkpointing for fault tolerant matrix operations. LAPACK Working Note 90, Department of Computer Science, University of Tennessee,
REFERENCES

29

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Desprez:1997:SBC

Henry:1997:PIN

Ahues:1997:NDC

Bai:1997:TMC

Demmel:1997:APS

REFERENCES

Cleary:1997:ISD

Anderson:1997:PIL

Li:1997:SGE

Petitet:1997:ARM

Choi:1997:NPM

REFERENCES

[135] E. D’Azevedo and J. Dongarra. Packed storage extensions for ScaLAPACK. LAPACK Working Note 135, Department of Computer Science,
REFERENCES

Blackford:1998:SEP

Blackford:1998:IGD

Dongarra:1998:TSL

Petitet:1998:NLA

Casanova:1998:NVD

[140] H. Casanova and J. Dongarra. NetSolve version 1.2: Design and implementation. LAPACK Working Note 140, Department of Computer Science,
REFERENCES

[145] V. Eijkhout. The ‘weighted modification’ incomplete factorisation method. LAPACK Working Note 145, Department of Computer Science,

[155] Beresford N. Parlett and Osni A. Marques. An implementation of the dqds algorithm positive case. LAPACK Working Note 155, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[186] James W. Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. LAPACK Working Note 186, Department of Electrical Engineering
REFERENCES

Byers:2007:LXT

Demmel:2007:EPI

Alvaro:2008:FSS

Buttari:2007:PTQ

Buttari:2007:CPT

REFERENCES

REFERENCES

49

[203] James W. Demmel, Yozo Hida, Mark F. Hoemmen, and E. Jason Riedy. Non-negative diagonals and high performance on low-profile matrices from householder QR. LAPACK Working Note 203, Department of Electrical Engineering and Computer Science, University of California, Berke-

Ltaief:2008:PBT

Tomov:2008:TDL

Gustavson:2008:LCK

Li:2009:NAT

Kurzak:2009:SLA

Kurzak:2009:STS

[220] Jakub Kurzak and Jack Dongarra. Fully dynamic scheduler for numerical computing on multicore processors. LAPACK Working Note 220, Department of Computer Science, University of Tennessee, Knoxville, Knoxville,
Song:2009:DTS

Hadri:2009:EPT

Ltaief:2009:SHP

Agullo:2010:QFT

Tomov:2010:DLA

[225] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra solvers for multicore with GPU accelerators. LAPACK Working Note 225, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, April 18, 2010. URL
REFERENCES

[230] Emmanuel Agullo, Cedric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Samuel Thibault, and Stanimire Tomov. Faster, cheaper, better — a hybridization methodology to develop linear algebra software for GPUs. LAPACK Working Note 230, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,
REFERENCES

Ballard:2010:MCE

Solomonik:2011:COPa

Ballard:2011:CBH

Anderson:2011:CAD

Song:2011:STC

Agullo:2011:FEA

[241] Emmanuel Agullo, Jack Dongarra, Rajib Nath, and Stanimire Tomov. A fully empirical autotuned dense QR factorization for multi-

[246] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. High performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures. LAPACK Working Note 247, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, May 18,

Anzt:2011:GAA

Baboulin:2011:PTS

Bougeret:2011:URR

Khabou:2012:FPR

[268] George Bosilca, Aurelien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack Dongarra, Amina Guermouche, Thomas Herault, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. Unified model for assessing checkpoint-
ing protocols at extreme-scale. LAPACK Working Note 269, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, June 2012. URL http://www.netlib.org/lapack/lawnspdf/lawn269.pdf. UT-CS-12-697.

Cao:2013:CHP

Demmel:2013:CAR

Aupy:2013:ISA

Aupy:2013:CSE

Jia:2013:TER

Donfack:2013:AVP

[279] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak, Piotr Luszczek, and Ichitaro Yamazaki. On algorithmic variants of parallel Gaussian elimination: Comparison of implementations in

Brewer:1988:TAAb

Bai:1989:BIHb

Dongarra:1989:BRM

Anderson:1990:LPLb

Barlow:1990:CAE

Dongarra:1990:ASL

REFERENCES

REFERENCES

REFERENCES

[308] James W. Demmel and Nicholas J. Higham. Improved error bounds for underdetermined system solvers. SIAM Journal on Matrix Analysis and
REFERENCES

Demmel:1993:PNLb

Demmel:1993:TPN

Dongarra:1993:TDB

Higham:1993:PTB

Choi:1994:DPD

Choi:1994:PMT

REFERENCES

REFERENCES

1477, November 1995. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic). See original LAPACK Working note in [64].

REFERENCES

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See original LAPACK Working note in [72].

Bai:1997:SDN

Blackford:1997:PEN

Dongarra:1997:KCPb

Higham:1997:IRL

Higham:1997:SDP

REFERENCES

65, January 1997. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic). See original LAPACK Working note in [105].

REFERENCES

REFERENCES

1999. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).
URL http://epubs.siam.org/sam-bin/dbq/article/31768. See original
LAPACK Working note in [124].

Demmel:1999:CSV

[352] James Demmel et al. Computing the singular value decomposition with
high relative accuracy. Linear Algebra and its Applications, 299(1–3):
21–80, September 15, 1999. CODEN LAAPAW. ISSN 0024-3795 (print),
1873-1856 (electronic). URL http://www.elsevier.nl/gej-ng/10/30/
19/112/21/22/abstract.html; http://www.elsevier.nl/gej-ng/
10/30/19/112/21/22/article.pdf. See original LAPACK Working note
in [119].

Demmel:1999:SAS

[353] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li,
1999. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).
URL http://epubs.siam.org/sam-bin/dbq/article/29176. See original
LAPACK Working note in [103].

Li:1999:RPT

[354] Ren-Cang Li. Relative perturbation theory: II. eigenspace and singular
subspace variations. SIAM Journal on Matrix Analysis and Applica-
tions, 20(2):471–492, April 1999. CODEN SJMAEL. ISSN 0895-4798
(print), 1095-7162 (electronic). URL http://epubs.siam.org/sam-bin/
dbq/article/29850. See original LAPACK Working note in [85].

Petitet:1999:ARM

[355] A. P. Petitet and J. J. Dongarra. Algorithmic redistribution meth-
ods for block-cyclic decompositions. IEEE Transactions on Paral-
lel and Distributed Systems, 10(12):201–??, December 1999. CO-
DEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).
www.netlib.org/utk/people/JackDongarra/PAPERS/alg-dist.ps;
See original LAPACK Working note in [128].

Petitet:1999:NLA

merical linear algebra problem solving environment designer’s perspec-

[DAzevedo:2000:DIP]

[Parlett:2000:IAP]

[Petitet:2000:PDS]

[Andersen:2001:RFC]

[Whaley:2001:AEO]

REFERENCES

[362] David Bindel, James Demmel, William Kahan, and Osni Marques. On computing Givens rotations reliably and efficiently. ACM Transactions on Mathematical Software, 28(2):206–238, June 2002. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL all previous codes occasionally suffer from large inaccuracies due to over/underflow. For real Givens rotations there are also improvements in speed and accuracy, though not as striking. Third, the design process that led to this reliable implementation is quite systematic, and could be applied to the design of similarly reliable subroutines. See original LAPACK Working note in [148].

REFERENCES

REFERENCES

REFERENCES 82

IEEE:1994:PSP

IEEE:1995:DPT

ACM:1996:SCP

Dongarra:1996:APC

