A Complete Bibliography of Publications in *Linear Algebra and its Applications*: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 December 2018
Version 1.73

Title word cross-reference

\((-1,1)\) [ÁAFG12], (0,1)
[BBS12b, NP10, Ghe14a], (2,2,0)
[CI13, PH12], (A,B) [PP13b], \((\alpha,\beta)\)
[HW11, HZM10], (C,λ,µ) [dMR12], (ℓ,m)
[DFG10], (H,m) [BOZ10], (κ,τ)
[CSZ10, CR10c], (λ,2) [BBS12b], (m,s,0)
[GH13b], (n−3) [CGO10], (n−3,2,1)
[CCGR13], (ω) [CL12a], (P,R) [KNS14].
\((R,S,σ)\) [Tre12]. \(-1\) [LZG14]. \(0\) [AKZ13, Ano12-30, CGGS13, DLMZ14, Wu10a].
1 [Ano12-30, AHL+14, CGGS13, GM14, Kal13b, LM12, Wu10a]. \(1/n\) [CNPP12].
1 \(<t<2\) [Seo14]. \(2\) [AIS14, AM14, AKA13, BDF11, BdIC14, BDK11, CvDKP13, CL13b, CNPP12, DoMP09, Ere13, GMT13, GG13, KY14, Rim12, YH12, YHH12, vdH14]. \(24\) [KAAK11], \(2n−3\) [BCS10, Hil13]. \(2\times2\) [CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14].
\(2\times2\times2\) [Ber13b]. \(3\) [BZWL13, Bre14, CILL12, CKAC14, Fri12, GOvdD14, GX12a, Kal13b, KK14, YHH12].
\(3n^2−2\sqrt{2}n^{3/2}−3n\) [MR13].
\(3n^2−2\sqrt{2}n^{3/2}3n\) [MR14a]. \(3\times3\) [Dru14, GLZ14, Sev14]. \(3\times3\times2\) [Ber13b].
\(3\times3\times3\) [BH13b]. \(4\) [Ban13a, BDK11, BZ12b, CK13a, FP14, NSW13, Nor14]. \(4\times4\) [CJR11]. \(5\) [BH13b, CHY12, KKH14, Kol13, MW14a].
\(5\times5\) [BAD09, DA10, Hil12a, Spe11]. \(5\times n\) [CJR11]. \(6\) [DK13c, DK11, DK12a, DK13b, Kar11a]. \(7\) [PP13a, Zho12]. \(70\) [GRS+11]. \([1,n]\)
\[\log(XY) = \log(X) + \log(Y) \]
\[\sum_{j=1}^{m} A^{n-j} X A^{j-1} = B \] \[[Fur10b]. \quad T \]
[BM14a, Bli10, ZXX13, BKMS12]. \[T(x) = f \]
[HN10]. \[T^* \quad [LCM13]. \quad T_n \quad [GS12a]. \quad \tan \theta \]
[Nak12]. \[\theta \quad [GL12c]. \quad U_1 \quad [YX13]. \quad U_2(f^\epsilon_\zeta) \]
[Ter13, BCT14, Wor13]. \[U_n(s) \]
[BC14a, Ter14]. \[UT \]
[Nak12]. \[W \]
[CL12b, KK10, PP12b, CH11, CDDY10]. \[W(2, 2) \]
[CL12b, W(n, n - 1) [KMNS12]. \[w_{23}(v) \quad [AAKM14]. \quad X \quad [MP13b]. \quad X + A^2 X^{-1} A = Q \quad [GKL11]. \quad X = Af(X)B + C \quad [ZLD11]. \quad XA + AX^T = 0 \quad [CGGS13, DD11a, GS13a]. \quad XA - AX = f(X) \quad [Bou11]. \quad \xi \quad [QCH11]. \quad XM = Nx \quad [Lim11b]. \quad xy \quad [KLZ14a]. \quad XY + YX^* \quad [LLF13]. \quad XY - YX^T \quad [CFL13a, FL11c]. \quad yz \quad [KLZ14a]. \quad Z \quad [CPR10, CPZ13, GTR12, TG13, XC13]. \quad Z_2 \quad [Cen11]. \quad ||A^{-1}||_{\infty} \quad [HZ10]. \quad * \quad [GD11a, XDFL10, YZ12b]. \quad *-Lie \quad [YZ12b]. \quad *-modules \quad [GD11a]. \quad *-order \quad [XDFL10]. \quad *congruence \quad [DFS14].

-adic [ZYL10]. \quad -admissible [CS13b]. \quad -algebra [AKM13, CL12b]. \quad -algebras [BB14, BMGMC12, CH11]. \quad -alternating [BM14a]. \quad -analogue [CJL13]. \quad -analougues [Ern13]. \quad -arithmetical [MPSS10]. \quad -banded [Hua12b]. \quad -bialgebra [Kaw12]. \quad -bialgebras [Kaw13]. \quad -cell [KAAK11]. \quad -class [DJJK12b, MW14a]. \quad -claws [Ban13a]. \quad -colored [Kal13b]. \quad -commutative [Tre12]. \quad -Commuting [DW12a]. \quad -completable [HJN12]. \quad -complete [Sin10a]. \quad -conjecture [NT10b]. \quad -connected [CH14]. \quad -contractions [MS14a]. \quad -cospetual [BZW14]. \quad -critical [FdCR10, MPO10]. \quad -curves [KK10]. \quad -cycles [QSW14]. \quad -cyclic [GLS10, LL11c, TL13b]. \quad -decompositions [GMS12, KNS14]. \quad -derivations [BE12, HW11, HZM10, WW13c, Wan14b, WW1D3]. \quad -diagonally [LH10b]. \quad -digraphs [GL12c]. \quad -dimensional [BDF11, DK13c, CK13a, CILL12, DK11, DK12a, DK13b, FP14, KRH14]. \quad -divergence [CM12a]. \quad -domination [LL14b]. \quad -Drazin [CGMS10b]. \quad -eigenvalue [AHL11]. \quad -eigenvalues [CPZ13, QSW14, WBWH13, XC13]. \quad -entropy [CH11]. \quad -extensions [LCM13]. \quad -Fibonacci [DGMS14]. \quad -filiform [CGO10, CCGVO13, CCGO14]. \quad -form [BDK11]. \quad -forms [BDK11]. \quad -free [ZW12a]. \quad -function [S12a]. \quad -game [W13]. \quad -generalized [CMRR13]. \quad -graded [Cen11]. \quad -graphs [LH11]. \quad -Hermitian [BFDp10, BDPS10]. \quad -Householder [MPT12]. \quad -hyperreflexivity [BR14d]. \quad -hyponormal [CDY10]. \quad -index [Y15, CT11b, Y14]. \quad -integral [PHS13, ZWL13, DFDADV10]. \quad -interpolating [BPDC14]. \quad -invariant [PP13b]. \quad -inverses [W10a, SPK12]. \quad -involutory [FL11T, Tre10]. \quad -isometries [BMN13b, Gu14, Dug12]. \quad -Jacobi [HSS10, HSS14]. \quad -Krawtchouk [Tre13]. \quad -letter [AM14]. \quad -Lie [BZWL13, QCH11]. \quad -Local [AKA13]. \quad -Lucas [DGMS14]. \quad -matching [Beh13]. \quad -matrices [BK10, Dah10, Ghe14a, Zho12, Kaw13, AAFG12, AT11, AT14a, BEM10, CPR10, Da11, FH12a, FM13, FFK11, GE10, Guo13, HLS10, HZ10, HH11a, JS11, JPS13, Mat12, ND11, SHZ10, Siv13, wXL14, wXZ19, ZH11b, ZXX13]. \quad -matrix [BEM12, BR14c, BG12, Drl13a, NS11b]. \quad -minimizations [Fou14]. \quad -modules [AR12, AF12, Pop12, Sha11, Ter13, Ter14, WW10, WD10]. \quad -negative [W12]. \quad -Newton [MJP13]. \quad -norm [MTS11]. \quad -normal [BFDP10, BFDP11, BFDP12]. \quad -numerical [CN11c, CN13c]. \quad -observers [Bli10]. \quad -odd [LWY10]. \quad -operators [JLL10]. \quad -optimal [Mit11b, NP10]. \quad -optimality [FMR12]. \quad -orthogonal [VS14b, dCdRM14, AMP10]. \quad -palindromic [BM14a]. \quad -parameters [JLL10]. \quad -paranormal [DKK12b]. \quad -partial
-partite [Zha14a, ZWL13].
-Pascal [VS11]. -paths [QSW14].
-permanent [Cra13b, Cer10, MW14a]. -positive
[MR10c, FGvR13]. -positivity [GK14c].
-Potapov [FRK11a]. -potent
[DCIWi2a, CLST14, LRT12, LRT13].
-Primitivity [BM14b]. -properties
[CPV10]. -property [Bal10, GTR12].
-quasiseparable-Vandermonde [BOZ10].
-Racah [BC14a, HWG14, NT10b]. -radius
[OM14]. -reducible [Kar11a]. -Regular
[GX12a, CSZ10, CR10a, CR10c, MM10a].
-regularity [SBM11]. -replicated [PYZ14].
-robustness [MP13b]. -root
[Bal12a, Vla12, Bal12b]. -SDD [GEP13].
-seminorms [GD11a]. -separation
[AHL14, vdh14]. -skew [LL11a]. -spectra
[BZ12b]. -splittings [JM12b]. -spread
[ODdAK10]. -stability [Kal13a]. -stable
[BR14c, BBS12b]. -Stieltjes [FKM13].
-strong [Car11]. -submanifolds [Li11b].
-sum [AKZ13]. -summing [SR13b].
-tensors [Frii12, DQW13]. -term [BKMS12].
-tetrahedron [IKT14]. -th [TPN12].
-theory [CC14]. -Toeplitz [GG13, Rim12].
-transformations [TG13]. -trees
[SvdH11, vdH13]. -tridiagonal [AMJ14].
-unconditional [LM12]. -variable [KY14].
-vectors [Aga14]. -vertices
[AdFM11, DdF14]. -walk-regular
[CvDKP13, DFG10]. -way [ZHF13].
-weighing [NP10].

1 [Bar10b, Grü12, Rhe10, Zha12a]. 1-norm
16th [BBG13]. 17th [BFBD13].

[BFBD13]. 2012 [Joh12]. 2nd
[BBG11, Zha12a].
3-rose [LH13]. 3-transitive [MW12a].

4 [Rod12a]. 4-regular [CLL13a].
[MR14c]. 436 [Duk15, LT16, Vla12].
437 [Kis15, WZ14c]. 438
[Che14b, KKL13a, LMO16, MR14a].
439 [DWW14]. 454 [KB14a]. 455 [HS14a].
458 [wXZ19, Yua15]. 463 [EKSV18].

7 [Gle11, Tam12]. 70th [Bai11].

978 [Bar10b, Gle11, Grü12, Lim13b, Rod12a,
Tam12, Zha12a]. 978-0-387-40087-7
[Zha12a]. 978-0-387-68276-1 [Zha12a].
978-0-521-46193-1 [Gri12].
978-0-521-89881-2 [Lim13b].
978-0-691-12157-4 [Gar12].
978-0-691-12889-4 [Rod12a].
978-0-691-14039-1 [Bar10b].
978-0-691-14503-7 [Gle11].
978-1-4614-1098-0 [Tam12].
978-1-4614-1099-7 [Tam12].
additional [DS13].

Additive [BS11b, xCwXL11, JH10, MD10, PIM+10, CGMS10b, EN11, QCH11, Sun13].

additive-nilpotency [Sun13].

adiac [ZYL10].

Adin [Alo14].

adjacency [AFLN12, AAF12, Bap13b, BB10, CCF+12, DL14, DZ12a, HSZ12, OR12, RS14a, SS11d, SSR13, vBM13].

adjoint-commuting [CN10c, CN11d].

adjointable [FMWW12, WD10, XCS13].

adjustment [GOSV12].

admissible [CS13b].

admit [AT11, CGMJJ14].

Affine [BDV12, YA13, AN13, BB13a, BV11, BB11b, Bud11, DS11, Dau12, KLP13, Lee13b, dSP12a, Wal11a].

affine-linear [BB13a].

affinity [SWA12].

after [JMP10, LSR11, tHR13].

agent [Sha14a, Zhu11b, ZY14].

agents [AIP12].

aggregation [PQ12].

Agler [BKV14].

AIC [HYF14, yiKIS12].

Aigner [WZ14a].

AINV [Raf14].

Akiyama [Rah13].

Albert [Zha12a].

Algebra [BFBD13, BPRY11, Che14b, DWW14, Duk15, EKSV18, HS14a, KB14a, KKL13a, Kis15, LMO16, LT16, MR14a, MR14c, Via12, Wik12, xWZ19, Yua15, AKM13, ABK14, BM12a, BCS13a, BR11, BCT14, BC14a, BE10, BM13c, Bre14, BDV12, BM13d, aCCS14, Cas10, CGMS10b, Cen11, CL12b, Cir13, CM14, DKS10, DD10c, DLMZ14, Dub14, EvdD10, Fie11a, FKLTT13, GPT14, GST13, GM11a, GM11b, GMS13, IRT14, KSS12, Kla10, Kon13, KdM13, LRL14, Lee13b, MLC+10, Mar13b, MW10, MP13a, MP13b, MP14b, NT12b, Pep11, PTPL10, Ros12a, Ser13, SH13, SLS13, Tra12, TP13, Wil11, Wor13, WZ12, WZ13e, WZ14c, ZW12b, ZZ10, FdC12].

Algebraicity [Nat13, BGP11, Wód14].

Algebraic [BFF+11, BJ10a, Pin11, Yan10b, AJRT14, AHS10, BL12, BJ13, CKS10, Cra13, Das10a, Das13, DS12b, DGZ13, FZ13, FH14, Guo10b, GL10c, GSL11, Guo13, HM10, JLN13, KOJ11, LwCJL11, LGSC14, MZ12c, PLS14, Per14, RJH11, RR12, RMAJ10, Ser11, VS10, WKF10, WT12].

algebras [ACGVK14, AM13b, AGO14, AIS14, AAJ12, AKa13, BD12a, BZWL13, BDF11, BG13, BdlC13, BdlC14, Ben11, BS12b, BG14b, BB14, BM13b, BS11c, BS13a, BS12e, BF14d, BMGM12, CT14a, CGO10, CCGVO13, CCGR13, CGCO14, CK13a, CLR11, CILL12, CLOK13, CKLO13, CLOR13, CNT12, CM11a, CN10c, CL11b, CdGS12, CMZ10, CH11, DDF13a, DIP13, DKS10, DH12b, DW12a, DW12b, DW13, ES13, FP14, GZH14, Gha13, GS10c, GTR12, GS10d, GS12e, HW11, Han11a, HP12a, HM14b, HW14c, HZ12a, Ika11, JV10, JQ11, JZ11, JH10, Kaw12, KO13, KHR14, Kim12, KL10, KLZ14a, KZ10, LMO16, LL11a, LW12c, LW13a, LLF13, LL11b, LW12d, LNT13, LMRR13a, LMRR13b, MD12a, MD12b, Mar13a, MFGD14, Mar14a, Mar14b, Mol12, Mos13, PY10, PYZ14, PR13a, Per13, QH10, QCH11, QH13, RY12a, RRRK12].

algorithm [BM13a, BBE+10, CFPP13, CILL12, GSOV12, HN10, KY13, KM14, LL13b, LdLP11, LQ11, MSP13, MAM+13, RAAGAVS11, Roh11, SA10, Wal11b, WJ12, XY11, XSS13, ZCQ13].

algorithmic [MPS10].

algorithms [BS10, CLX13, Duml3b, Fis14, GNE+14, Gle11, HR11, HB12, Kam10, LMMN13, Qua10, Reg13, UV13, Wil13].

alignment [YZ12a].

All-derivable [ZZW10, ZZ11, ZXZ10].

Allan [Gar10]. allow [BDM+12, OS14]. Almost [MM10a, BD13, DvDF11, Fid10, HLZ12, Peñ14, PS14b, Wor14, dSW12].
Heil, LMMS12, OT10, ZHZF13, Ter14.
assignability [KBS13]. Assignment [LPK14, BCY12, MD13, WZ13b]. associated [AKN12, ARZ11, BBdH13, BC12a, BCF12, CH11, CN12b, CN13a, FDS13, FKR11b, FKR12, Guo13, HHMS10, He11, HKPR13, HNZ2, HHLS14, JKN14, KMG14, KIM13d, uHyH11, LLMZ12, MS14a, San10, dFBR14].
Association [GH13a, GH13b, GZX14, WLGM11, MGLW11, MW14a], associative [Ago14, BS12e, FP14, WC12]. assumptions [DLNN14].
back [HB12]. backward [AA11, CLCL12, GJTP13, HZ14]. Bade [AGPPF12]. Bakonyi [Rod12a]. Balance [KG12a]. balanced [Cha12, GO13, GÖV12, HLP12]. Balancedness [Belf14]. Ball [MM10b, ST12]. balls [FKR12]. Banach [AF12, BR11, BDFP11, BMGMC12, CGMS10b, DP10, DX13, ES13, For14, GD11a, HZ11a, Hua11a, HZGY12, HZ12, JZ11, Kec13, LL11a, LMM11, LM12, LT13, MM13, Mos13, PR13a, QH10, SH13, SM12, WC12, YW10, Zw12b, ZHQ14].
Bartholdi [MS14b, SS13a]. Bas [Lim13b]. base [CL10b, Din11, WLHL10, YW11]. based [BT10, BFS11, BB10, CH12, CFJKS13, CM12a, CPN12, CS10b, Dah12b, FS11, GH13a, GH13b, GZX14, GH11, Ika11, PFPD12, IKK+13, KOR14, KMS13, LL10d, LL14b, MLC1+10, MR14b, RH11, SHZ10, DDP14, WAH13, WMA14, wXL14, wXZ1].
Bases [BG11, ySpW11, Tan14a, BPDC14, KP13, KS11a, LM12, LLH10, Mel14, MSS14, PT14, ySpW14, YS13]. Basic [SW11, Tam12, FH10a, FH12b, FH13, FH14].
basics [BS10]. basis [AL13a, BM12a, CJR11, GN13, GK14a, MM10c, Ros12a, WU10b]. bath [DGu14]. Baxter [Kaw13]. be [FW14b, OS14].
behavior [Dum13a, HHT13, PE13, RR11]. behaviors [NT11a, Pol12, ZHQ14].

circuits [SS10b]. Circulant [CSAC10, CSAC11, CFLW13, PZVJ11, BP10, BYTY12, CFPP13, DGM13, lli10a, LS12a, MP13b, MS14c, RE11, SS11b, Sbu10, SA14, TW14, VW10b, Wil14, EGR12].

circulant-Hankel [MS14c]. Circulants [Mey12]. Circular [MSP11]. Class [AS12b, ANP13, BT13, BK12, CT11a, Cho13, CD12, DL14, DH12b, Dra12b, DK12b, DK12a, DK13b, MR12, MR13, MU14, NA14, NM14, NR14, NS12a, NP14, NR14, OS13, OT14, RA14, S14, SS11a, SS14a, TM14, TW14, VW10b, Wil14, EGR12].

class [AS12b, ANP13, BT13, BK12, CT11a, Cho13, CD12, DL14, DH12b, Dra12b, DK12b, DK12a, DK13b, MR12, MR13, MU14, NA14, NM14, NR14, NS12a, NP14, NR14, OS13, OT14, RA14, S14, SS11a, SS14a, TM14, TW14, VW10b, Wil14, EGR12].

commutant [MM12]. commutative [AKN12, AKA13, CRS14, DCIW12b, HTS14, Laki10b, Mar14b, MMA12, Seo13, ySpW14, Tan14a, Tan14b, Tre12, dO12]. commutativity [DLNN14, DK14, GN14, LHL12, LL10b, Liu14b, LSH12]. Commutator [GH12, KN10, BDF11, CFL13a, FLC11, Kha13, Lan10b, WA10]. Commutators [Bie14, CVW10, EV11, Aud10b, FCL10, GB13, HK10, KLS12, OR12]. Commute [BRZ11, HML13, Kis15, Ogu13, XX12].
commutes [FMM13]. Commuting [DO11a, DW12a, Fra12, Fra13, XW10a, BC12a, Bou13, CN10c, CN11d, Hwa12, KSS12, KY14, KB12, LD12, Mig13, NS14, Pet10, Sar14, Siv12b, Siv12a, TZ13b, dOHSK12].

Compact
[LT13, AK12b, BV13b, GP14, SM10b, TT12]. compactly [GHMPVP11]. Compactness [MN12b, DDK14]. Compact [LT13, AK12b, BV13b, GP14, SM10b, TT12].

companion [EKSV14, EKSV18, MR11, BBE∗10, DDM12, Gau10, GS10d, GS12c, GS12d, LD11, MZ13, Mac13, Pat12b, DDP13, DDP14].

comparing [WNM13]. Comparison [DXG12, HTS14, BSKL13, BBM14, EvdD10, GEP10].

compensators [BO12].

competition [Kim10, Kim11a, KP12, Kim13a].

complement [BBF∗12, DW11, DC13, LHZH11, LZL12, Mit11a, Noy11, SvdH11].

complementarity [AS10, Bal10, CPV10, Dai11, GEP10, GEPI, JVL, SVP11, wXL14, wXZ19].

complementary [ACM14, FH10a, FH12b, FH13, FH14].

complementation [DV10, GLS13a, Tra12].

complements [Ago14, BEV13, FZW11, GS10c, HL10b, LW12b, LH10b, NY13, RTR10, Row12b, Row14b, Row14d, SC12, ZHI11b, vdH13].

completable [HJN12].

completions [DS12b, KKL10, Shi13].

Complex [DGJ10, GLK11, HS12a, JS13a, Pry10, Szó13, ANF11, BB13d, BGP13, BG12b, BW13a, Buj13, Byd10, CILL12, CK13c, FP14, GPT12, GPR13, GP13b, Ikrl0, Kar11a, Kar11b, KK14, LRT13, LNT13, MZ11, MARC13, Mat13a, NV12, Ref12, SH13, dChlRMP14].

complexity [DS12b, KKL10, Shi13].

Component [TH11]. Components [JZZ13, ABBBO11, LSR11, RW10].

Componentwise [Hua13a, HZ14, Miy14, LWY14]. composite [ZXX13]. composition [LL11a].

compositions [AM14].

compressible [DS12b, KKL10, Shi13].

complementary [ACM14, FH10a, FH12b, FH13, FH14].

computation [BHAP12, KD12, SPKS12, TD11].

Computational [HS12c, NR10].

Computations [GEM10, HWSH13, MM10b, PIM∗10, PQZC11, PS14b, SE13].

Computing [BBH∗12, BI13, FHS14b, KG12b, ST12, BGV12, BMS10, Fis14, LJJ13, MV12, MP14a, RBP12, Roh11, Row12a, Sha14b, Uhl13, WJT13].

concave [Aud13a, FGQ11].

Concavity [Hia13, Niel1]. concept [PO10].

Concerning [Bap10, BG12b, He14, LGZ14].

Concise [Rho10].

Concise-Q [Tao13].

Conventions [DS12b, KKL10, Shi13].

Conference [DDP13, AAK11, AL13a, AHAPP10, Alt13, BB13c, DH10b, Gar13, LJ11, LWY14, LS12d, XD12].

conditions [jAS13, CHK∗13, EGR12, FN11, FS14b, HSZ12, Hu10, JKN14, LDD13, Nak12, Sha13a, ZH13, vBM13].

Cone [Kus12, Nie12, AV12, BB13c, DGH13, FW14b, GST13, Hl12a, ISY11, Jun12, Lim14, LTX14, NN10, Pro10, Sko11, WXH10b].

Cone-theoretic [Kus12]. Cones [Sko11, AGK11, AL13b, Bar12a, BZ12a, CPH11, CFL13b, JV11, JSS13, KL13b, LT10b, LXX12, RSS10, San10, Ser11, TG13, VS10].
conjecture [Bap10, BBdH12, BBdH13].

conjectures [Das10a, AH10, CHZ13, Das10b, Das13, HL10a, Hil14c, JNS13, Ste10].

connectedness [GL10b, KK14].

connecting [BS12e, HLW10a, MAGR13, Ros12a, Ziv12].

continuous [ZWZ10, BS14, CI14, GG13, LJW11, KKS12, LT13, LTX14].

contraction [AT14b, GW10, Li10].

contractions [Pop14, BV12b, DJK12b, DJK12a, MS14a].

contractive [KS14a, BDS13].

contribution [Nik10a].

Contributions [BPRY11].

control [NT11a].

Controllability [FS14a, KRvS12, ST13].

controllable [BBdH12, BBdH13].

controllers [KBS13, Per12].

conventional [Aud10a, JLW11].

converge [PPK13].

Convergence [GMV11, GL10c, Jar12, KKR11, SK14, XSS13, ZCQ13, BJ13, CQYY13, DYW14, DZ12a, FS14b, GOSV12, LKN13, Pry10, Sku13, TMSS14, Yan10b].

convergent [BGP11, CC12, LJY13, Reg13].

conversion [BSS10].

Convex [AL13b, MO14, San10, SMC11, Aud13a, Bar12a, BH11a, Dra12a, OT12, PCC12, Rez13, Wei11, Zha14c].

Convexity [Nor11, Alt13, CN13c, Hen10, MPP11, NS11c, WZ14a, WA10].

convolutional [ANP13, CNPP12, PC10, La 14].

coordinated [KRvS12, KRvS14].

copositive [DDGH13, Hi11a, Hi11b, JV10, Qi13, XY11].

coprime [TL13a].

Corach [CMS12b].

core [RDD14].

Cored [HQS13].

corepresentations [Dor10].

cores [BSST13].

Corinith [SS10c].

corollaries [Hi13].

corona [CRS14].

coronae [CT12, LL13c, MM11b].

corrected
deg
erations [CKL03]. degree
[AW13b, BMSW10, BZ12b, CH14, Ere13,
Hil13, HK13, LLS11, LL10e, LL11c, aLwW13,
MAS12, SWT13, TW10a, Tan10a, YHY14].
degrees [DD10b, GM12]. Delannoy
[102x646]
[FKR11b, FKR12, GK11, Mar13b].
 delay
[BCY12, Liu13, Mah11, RMT11, WZ13b],
delays [PKR12, Sha14a]. deleting
[LSR11]. delta
[CW11]. delta-monotone [CW11].
dendriform [BM13c]. Dennis
[Bar10b, Sla10]. Dense
[FHS14a, Duk12, Duk15]. densities
[DGH+11]. Density
[MZ11, CCL14, KKL14, MRW11].
denumerable [MA10b]. dependence
[Hi12b, Lu11, PS12, Wal11b]. dependent
[jAS13, BRA11, DT10, GKS+10, ZH12f].
depending [DP12a]. depth [LFS12].
Derivable [Pan12a, JH10, QH10, ZZ11,
ZZW10, ZZ12, Zho11]. derivation
[AS12d, BD12a]. derivational [Pan12a].
Derivations [KLZ10, AKA13, Ben11,
BS12b, BE12, BG14b, BS12e, DDF13a,
DW12b, DD14, EN11, HW11, HZM10, QJ11,
LL11a, LP10, LD12, LL11b, LJ10, Pet10,
QH10, QC11, QH13, SM12, WW13c,
Wan14b, WX11, WX10b, WX12, YZ10,
YZ12b, ZH14, WWD13]. derivative
[HMS13, Ogu13, vBM13]. Derivatives
[Ja11, San14]. derived
[Bar12a, KAAK11, Vij14]. deriving
[DMS13]. descent [ZJ13]. describe
[LdI011]. described [BFH+12, IMA10].
Description [MMP13a, RRKK12,
COvdD10, LM10b, Pol12]. descriptor
[BV13a, HRT10, Jun14, K¨oh14, SBM11].
Design [BO12, Jim10, LLMZ12, Mah11].
designs
[FM13, KL10, LLL14, Mit11b, NP10].
Detecting [Hen10, NV10]. Determinant
[FM13, MH13b, TT10, TW10b, AAF12,
CMS12a, CM12a, CH11, DHC12, DcC13,
FR12, KKL10, Vse12]. Determinantal
[CM12b, CN12c, Ens10, GMT13, Abe14,
BT11c, CEY14, CN11b, Dru13, GJ10c,
KLS12, Lin13, LSR11, NT12a, Qua10,
Qua12, VS11, Wan14a, LPK14].
Determinants
[GR10, SR13a, TT12, B¨un14, CY11, CH13,
DU14, EWY12, Kn14, Mat14b, RBP12,
Sbu10, Sch10, Ss13]. determination
[MR14b, PR13b]. determine [DV14, RR11].
determined
[ABE10, BT14b, BG14b, BZ12b, BZW14,
Gha13, HH13, JZ14, KKL13a, KKL13b,
LSD14, Sto11, WF11, WLLX11, WLG11,
WS12, WLG12, WML13, YY14a].
determining [DGH+10, XY11].
deterministic [NNW14]. Deveci
[Hil14]. development [LaG13]. deviation
[CH11, BI12]. Devoted [BBD+11].
Diagonal [PM10, BOZ11a, BOZ11b, BC12b,
BC14b, BV13b, CFJKS13, Dru13b, EM12,
Fri11, HZ12a, LLS13c, Mol12, Pry10, Reh10,
Reh11, Rub13]. Diagonalizability
[KKLY14]. diagonalizable
[BFK11, KB12, L¨u10a, RdSP11].
Diagonalization
[RE11, DFR13, Fut12, GB13]. diagonally
[CHLS12, Far11b, FLH12, HZ10, LH10b,
LHZH11, LZ12]. Diagonals
[Lee13a, WW13a, CD13, Dok12, Sem10,
PR11, YT13b]. diameter
[CLL12, CvDKL10, HL12, HWG13, KSH12,
LL12, LL14c, WKV10, WLVb].
Diameters [LL13a]. Dias
[FdC12, LPGdS10]. dibaricity [CLOR13].
dichromatic [LS11b]. Dickinson
[FIS11b, GN13]. dictionaries [Fou14].
Dieuonnou [dlCdlRMP14, RAAGAVS11].
difference [Baj14, BM12b, BAD09,
DLLDV11, FLS10, LS14, MN12b, Pit11,
SS11d, TX12, VS14b, Vul12, Zuo10].
differences [HKK+12, RW10, ZZCW13].
different
[BBM14, HRT13, Koz14b, LRT13, Tra13].
Differential [Lan10b, BM12b, BCF12,
Lom11, NT11a, PLS14, Rue13, Tre11].

diffusion [KRS13, digraph [ABS10, CK14, DK13d, GR10, HL10c, Kim10, KP12, KSH12, MS14b, MSvdD14].
digraphs [BB11a, BM14b, Bru10, BS13b, CGR14, DL13, GX12a, GL12c, HY14, Kal13b, Kim13b, LH10a, LS11b, LS12b, LY13, Moh10, Rad10, Sch11, TC13, YW11].
dilation [Dun13a, GWW14a]. dilations [ADW13].
dimension [BCS13a, BCF12, Cau11, dHLMS13, KK14, Lop11a, MMS12, Mar10].
dimensional [BDF11, Ben14a, BS11c, BS13a, DK13a, DK13c, CK13a, CILL12, CdGS12, DK11, DK12a, DK13b, Dub14, FP14, GJ11, HN10, KRH14, LwCJL11, Ma11, Moj14, Sha13a, Skol11, SQ14, Su13, Ter13, Ter14, Wój14a, WJ12], dimensionality [Cha10].
dimensions [AJ13, CKL+13, DKM+14, GPT12, HH12b, Yan10b, YZ13]. dioids [BL11, HTS14].
Direct [BT13, BL14, CHZ13, GK14a, JS13b, Kak10, Kaw12, KSH12, Lee13a, PPKR12]. directed [BFRR14, BK12, Bau12, BRZ11, KP14a, Kir10, Kir14, NS13, RGC13, dFBRS14].
Dirichlet [PRT13, Sow13]. disc [LH10b]. Discrete
[CEM14, FK13, HMR12, RY12b, AW10, BJRS11, BJ13, Cas13, Cha12, CMN10, Czo10, CN10d, CN11c, FVI13b, HDPT12, HRT10, Hil12b, Jun14, LTX14, NRS12, OM10, RS14a, Sad12, VS14b, Wei13a].
discrete-time [BJ13, FVI13b, HDPT12, HRT10, Jun14, Sad12]. discretization [PLS14, Vul12]. discs [CGWW13, FHM13, MH13a].
dissimilarity [WNN13]. dissipative
[ADW13, DP12b, GO13, Lim13]. Distance
[AH14, BNP11, Ili10a, NOL13, Psa12, AH13a, Ban13a, BS11a, BNP12, BNP13, BYZZ14, Cer10, CBB13, CLS13, DvDF11, DV14, DS14, Est12a, FGG10, Fio12, FS11, GH11, Gro14, HKP13, HRW99, HLW14, IH10a, Hua10, IH11b, JM12a, JZ14, KS12b, KY11, KPY11, KT10, KT12, KM13b, Lee13b, LwW14, LP12, Lim10, LC10, LHW13, LZW14, LZ14, MAS12, NP12, NP14, NMS10, ST12, WZ13c, XZ13b, XZD14, Yu13, Zha12b, Zha14a, vDF14].
distance-biregular [Fio12].
distance-regular
[Ban13a, Cer10, DvDF11, FGG10, Fio12, KY11, KPY11, Lee13b, LW14, vDF14]. distances [BT14b, HN14, JS12]. distinct
[BB13a, CGMJ14, CLS12, FLH12, HTW13, KS13b, NS13]. Distributed [RvS13].
Distribution
[PLS14, Ada14, ANF11, DGGJ11, HLP12, JPS13, MRS14, PS12, SCSS10]. distributions
[Cha14, DGGJ10, MW10, OM14, Sku13]. distributive [HW14a]. Dittert [CW12a].
divergence [CM12a]. divided [TX12]. Divisibility [TL13a, MM10a]. division
[Bot14, KZ14b, Lui14a, Mar10]. divisor [Bot14, TL13a, WM14]. divisors
[CS10a, Ens10, FH10b, SDNS13]. do
[Pro10, RR11, XG13]. Dodgson [Abe14].
does [BMSW11, LY11a, dSP12d, Sta12, WBHM13]. domain [Pol12]. domains
[BCS10, BC12b, BC12c, Ens10, Hua12a, IW13, SZ14]. dominance [Mol12].
Dominant
[Fie11a, BGV12, Far11b, HZ10, LH10a, LHZH11, LZ12]. dominated
[Sei14]. dominating [CT11b]. domination
[AHS10, Har14, LL14b, XF11, Zhu12a]. Double
[OT12, ADFT11, BC14a, FG13a, God12, JL12, KSAM12, Lec13b, Mol12, PY10, WJ12, Zhu11b]. double-integrator
[Zhu11b]. doubling [WCKL13]. Doubly
[GS10a, AT14a, BAD09, DHS12, Fan10b, GS10b, GKR13, HP04, JP11, JLW11, JPS13, LXL14, LZ12, Mou12, MAM13, NS12c, PLS11, Sar14, Sha13a, Sha14b, XGL13].
doubly-infinite [Sha14b].

15
Dom13, DZ12c, DGU14, FLH12, FHRT11, GKP11, HMTR10, H111, Har14, HS14a, HS14b, HPS13, KS13b, KY11, KT12, Kus13, LSC10, tLyLWqW10, LNTgW12, LS13b, LGS13, LHZG14, LZ14, Lip10, LHL14, LHGL14, MVP510, M12, NS13, NR10, Ogu13, dSP14, Fsa12, QSW14, Qui11, RR11, Roj11, Row10, SS10b, SYH14, Sr13, Ste11, TH10, Wall14, WB11, WBWH13, XC13, XZ13a, YT13b, YY14a, ZLW12, ZLL12, ZC14, ZCWZ13, ZSWB14, Zhu10b, Zhu11a, ZJ10, vDO11, JT11a, RJ11.

Eigenvector [GK14b, GLS13a, MM12, RW10].

Eigenvectors [BBGM12, B¨un14, BM13d, SLS13, Sri13, XZ13a, FK13].

eight [NP10].

element [Drn13b, Ney11].

element-by-element [Ney11]. Elementary [BJ10b, Buc10, DDK14, Gu14, PY10, Sin10a, BJ10c, CP12, CS10a, CDDY10, FH10b, Kec13, Kuz10, Per13, Rud12, Ruk14, SZ14, SDNS13, Yam13].

El´ements [Cas10, BR11, BPC14, CGMS10b, Che14a, CK13c, DDGH13, LL11b, LHL12, Lim10, MS11b, WL11, WL12, WZ13a, Zho11, Cas10].

eleven [BSU14]. elimination [VS14a, HZ14, Ji12b].

element [CEM14, DKL12, KK12, KK13, SS11a].

eelliptical [ATS12].

embedding [HH12a, Wag11]. Embeddings [Pani12b, RV13]. emphasis [KN10].

enclosure [Miy13, Miy14]. enclosures [FHS14b].

Encounters [RL13a].

Encyclopedia [Gr¨u12]. Endomorphism [PY14, ABK14]. Endomorphisms [DGZ13, HHLS14, Mol13, OZ10, Rom14, SR13a].

energies [LS12a, XF11, Zhu12b, Zhu12c]. **Energy** [GRM+10, KAMS11, LW12a, ACG+11, ABS10, AW11, CGR14, CFK10a, CLL13a, CLL13b, CL13a, CGR14, DXG12, DG14, DGÇ14, DLL11, FHRT14, GKP11, GX12a, GHW+13, CS11b, GMRS14, GFB14, HJJL10, HLS11, HJLS11, Ili10a, LLS10, LLS11, Rad10, RGC13, RJ10, RJ11, Roj11, RL13b, SS11b, SSGL10, SW13, SRdAG10, Tia11a, TC13, VDVJT13, WL12, WZY14, YM12, ZZ13, Zha14a, ZK14].

Enestr¨om [RL13a].

enforcement [BV13a].

Engel [Bie13].

ensembles [DGGJ13].

tangled [Fid10].

Entries [GG13, BCS10, B¨un14, CFJKS13, CDDY10, FFJM14, NT11b, RR14, Shp10].

energies [Ben14b, BP13, EdlPH14, IIK+13]. entropy [CFPP13, CH11, DGZ13, DLS10, EdlP14, Kim13d, MS10c, PP11b].

entropy-preserving [PP11b].

Enumerating [IJ12]. Enumeration [AM14, Car13, SS13c, GL10b].

Equal [BR11, TW11a].

EP [FR11, RL11a].

Equivalents [RL13a].

Equivalence [Sze14a, tHR13, GPT12, GTW13, LV12, dSP10a, DDM14, Tim14].

equivalences [GHS13].

Equivalent [Hu10, CHLS12, FLH12, LLMZ12, LMT10, OM12, Van10, ZLL12].

erasure [FM12].

erasure-robust [FM12].

erasures [HS12a, LH11a, LHH13, LH10c].

Erdos [OLW14].

ergodic [Fid10, Puh11].
ergodicity [Kir14]. Erratum [Cio10a, EFN10, KKL13a, Vla12]. Error [Dai11, GEP13, GO13, Cha12, Cha10, FH12c, GEP10, GJTP13, HZ14, KOR14, LHG10, PL514]. error-correcting [LHG10]. errors [AA11, CL12].

Estrada [DZ11, DL11, DZ12b, DZX12, FTA11, WX14, ZLL11]. Euclidean [Bai14, Bud11, GS10c, GTR12, JV10, KT10, KT12, KM13b, LC10, Mol12, TAO11, Tao13, TNLX14]. evaluated [BW13b]. evaluating [CHZ13, KMNS12]. Evaluation [IRT14, CMS12a, Vse12].

Every [ABS14, BCF12, Hil13, KS11c, OS14, PK13, QS14, RR11, Rei11b]. eventually [MPT14]. Every [CHLS12, BFPSS12, BH13b, FL12, GS12c, KLZ14b, TZ13b].

evil [Vse12]. Evolution [DT10, CLR11, CLOR13, LLR14, RM14]. evolutionary [CK13b].

Exact [Ber13b, Cha14, KM14]. exactly [TH10, WBWH13]. exceed [BSMW11, BZ12b, LY11a, St12, WBWH13, XG13].

expansion [Ma10a, WZ14b]. expansions [Moo11]. Expected [HHMS10, Kir10].

Explicit [Dod10, DS12c, Kyr13, Mir12, Rim12, Sra13, XWS12, GMV11, Koz10, RW10].

exploration [DFT10]. exponent [GKR13, GW14b, JLT11, KSH12, PJ13].

exponential [CMN10, Fis14, Ika11, Moo11, PKR12, PT13b, VS10]. exponentials [Sha14b].

exponentials [CMN10, Czo10, LT10b].Expressing [Slo13]. expression [HZGY12, Rim12, Tia11b]. Expressions [CGMS10b, CBB13, HZ11a, TZ12a].

extendability [BB11a]. Extended [CD14, MAGR13, SN14, JR11, KUM11, Mar13a, MTS11, Pat12a, TZ12a].

Extended-valued [SN14]. Extending [Hua12a, CJ11]. Evaluation [Lee11, BP14, CFP13, CH12, GH11, JMP10, Kim11b, LNT13, Ma10a, MN12a, dSP10a, tHR13].

Extensions [Fur12, YJ12, BDL13, BD14, DGGJ11, FHS14a, FGH13, FG13b, HAD12, JZ11, JL12, LC13, MMA11, RS14a, SS11d, SK10, WGL12].

extreme [BT14a, CH14, Hii12a, LL10d, YX13]. extremum [Dax10, Tia12].

Faber [CKS10]. Faces [CM10b, PSEW11]. factor [LNN14, LL13, Shin1c, YZ12b].

Factored [Cha13a]. Factoring [DT11].

Factorization [CW11, KM11, LAK10b, Bot10b, BH13a, CRU13, CRU14, Dur12, For14, GS12d, HLZP13, Hua13a, Hua13b, LYS13, MR11, SPS12, vdW14].

Factorizations [BBG14, KKL14, Lim12, HL11c, Hua12a, KG12b, Lw13b].

Factorizing [Sow13]. factors [Jar12, Koz14b, LwY11, Sbu10, SC13].

Facts [Ber09, Sla10]. faithful [LLW12d].

Fallat [Gar12]. Families [BB13d, FP13, HKPR13, KB12, Nat13, RST10, St13, Wód14, Ziv12, dFADVJ10].

family [Baj14, Cha14, GZ12, Kal13a, Lw13, TH11, WJT13]. Fan [BF6P10, GMRS14, tLy1Wq1W10, Lin11, SRdAG10, ZC12WZ].

Fast [BSS10, HR11, Miy13, OM10, XE11, BBE+10, Han13a, MS11a]. Fastest [Kir10].

fault [PP13a]. feasibility [LL14, Z12b].
Feedback
[Jun14, SSS13, BO12, CC14, Liu13]. Ferrers
[AdF11]. few [AJRT14, BG12b, FMNW14, Kla10, Mol11, dSP14]. Fibonacci
[CLX13, DGMS14, LaG13]. fidelity
[Kim13d]. Fiedler
[BOZ11b, Grü12, Ano13y, BHMO13, BOZ11a, BCF14, BF14c, DMD12, Mac13, Ndm13, Nik13, Ser13, Stu13, DDP13, DDP14]. field
[AKM13, AW13c, Biel13, Bot10b, Bot12, CK13e, CJK13c, EJLS11, HK13, dHLMS13, HCY10a, LH100, LdsP11, Ma11, MMP13a, dSP10a, dSP10c, dSP10d, dSP12c, Qui11, Rad13, SS10d, Wu10b, de 13]. fields
[AG12, BB13a, BBC14, BC13, FL12, GH13a, GH13b, HHLS14, KK14, Kra13, KS11b, LdsS13, LT13, MZ12c, MSP13, PP13a, Per13, RS14b, SV13]. filiform
[CT14a, CLOK13, LMO16, Wu13b, CCGVO13, CCGO14]. filling
[AW10]. filter
[BOZ10, Jim10, LLMZ12, Mah11, MZ12c]. Filters
[GLP13]. Filtrations
[Stu12]. find
[CS13b, Ern13]. Finding
[AS12b, BDD13, PZC11]. Finite
[Ter13, AiS13, AG12, Ada14, jASZ12, BB13a, Bar10a, Bar13a, BS11c, BS13a, BPDC14, CK13c, CJK13c, DHLX12, Dai13, DKK14, Dub14, DDK14, FL12, FG13c, GH13a, GH13b, GW14a, GW14a, GJ11, HW14a, HM14a, HS12b, HK13, HN10, HHLS14, KKS12, LgH10, LdsP11, LdsS13, LX13, MB13, MSP13, Moj14, NS11a, Pol12, PRW11, Rom14, Row14c, Row14d, SR13a, Sev10, Sev13, Sha14b, Shi12a, Sim10, Sko11, SQ14, SS11e, Ter14, VW10a, Vij14, Vul12, Wój14a, Wol12, Xu14]. finite-difference
[Vul12]. Finite-dimensional
[Ter13, BS11c, BS13a, Dub14, IN10, Moj14, Sko11, Ter14, Wój14a]. finite-step
[DHLX12]. finitely
[Bar12a, Ma11, TL13a, Yan10b]. finitely-generated
[Bar12a]. Finiteness
[CGSCZ10, Dai13, Mor10]. Finsler
[Vla12, Bal12a, Bal12b, TNP12]. First
[DD10a, LJY14, LZ11b, AM14, BM10, Bos11, JMS11, NS11b, Zhu12c]. first-order
[BM10]. Fischer
[Dru13, Lin13]. Fisher
[KS10, KS12b, KM14]. Fissioned
[MM10c, Moh13]. fitting
[BOZ11a, BOZ11b, NS12a, Ste11, XX14]. five-diagonal
[BOZ11a, BOZ11b]. five-point
[XI14]. Fixed
[Ros12b, SS11c, WLL14, CCL12, Cos14, HL11a, HL12, LT11a, LT10a, LL11c, NOL13, Per14, SBMT10, Slo14, YFW10]. fixed-point
[Per14]. Fixing
[Tip10]. flag
[Ber13a, DKM14]. Flanders
[DLNN14]. flat
[CSAC10, CSAC11]. flats
[WLGM11]. Fliess
[LZ11b]. flipping
[MSP13]. flow
[BOZ10, LL10d]. flows
[AKZ13, AJ13]. forbidden
[LS13d, Yua14, Yua15]. forcing
[BBF10, CL14a, EEEH12, EEH13, GB14, HCY10b, Mey12, Row12a]. form
[BBdH13, BFdP12, BIT12, BDK11, CRU14, CT11a, FDS13, FP11, FHS11, GS12b, GK11, Mar13b, NSC13, Nom14, Rad13, Reh10, TX12]. formal
[TZ13a]. format
[BGK13]. formats
[KRS13]. forms
[AW13a, AJS14, BDK11, CGMS10a, CN13a, DFS12, DS10, EN11, FV13a, FGH13, GMMFPSS12, HS12, Hu10, JR14, KKLY14, KLZ14a, KB12, MMMM13, MPS10, NT11a, Pop10, Reh11, Sim10, Sze14a, TW14, Wil14]. formula
[AS12d, Dai12, Gro14, KLS12, Kon13, Koz14a, KR10, Ma10a, MS11a, OM14, RW10, SR13c, TX12]. Formulae
[BT14a]. Formulas
[Ber09, Tia12, BZ13, DK13e, Ern13, GS10c, GMV11, GLW13, GL14, Kyr13, MGLW11, MAGR13, Rue13, Sia10]. four
[Ben14a, BW13b, Mar10, RRM11, Tia12]. four-term
[Tia12]. Fourier
[Ban13b, FKH13, Sav12, Xu14]. Fourth
[HSZ12, jASZ12, DHS10, Lop11b]. fraction
[Dur12, KY13]. fraction-free
[Dur12]. Fractional
[Beh13, LdS13, Mat13a, Mat14a, GMH14a].
Frame [Fut12, BHKL10, DFR13, VW10a]. framelet [MZ12c]. Frames [Wal11a, Bod13, BW13a, CKL+13, DHS10, FM12, FMT12, HM14a, HG11a, H10]. HS12a, KKL12c, KOPT13, LH11a, LHH13, LH10c, NRR+11, Sin10b, Szö13]. framework [GHT11]. frameworks [AY13, AN13, Bai14]. Fréchet [San14]. Fredholm [Sei14]. free [BGP13, BP10, BdlC14, BM13c, DDF13a, Dea11, DTL11, Dur12, GS12d, KY13, Ma11, MR10b, MR14c, VB10, YW11, ZW12a]. French [Cas10]. frequencies [Koz14b]. frequency [ST12]. Frobenius [Lim13b, BT14b, CVW10, DIP13, FGH13, LN12, MZ10, NV12, Pat12a, Pit11]. Fuchsian [Kim13c]. Fuci’k [RY12b]. Fuglede [DK14]. Full [CRU14, HMS14, JP11, LMW12, BC13, GLZ14, JKV13, Sav12]. full-rank [Sav12]. function [BK11a, Blu10, Ere13, BB13a, Fuh10a, Rhe10, TX12]. functionals [Ben10, GD11a, Lu11, SS12c]. Functions [Xu11, AL13b, Aud12, Aud13a, BKV14, BT11b, BGP13, BHDW12, BANP12, BB10, BEK13, BB14, BJ10a, CH11, CGMPS14, Dra12a, FP11, FG13b, FK11a, GHMPV11, GKS+10, GK14c, GG13, Hia13, HWH14, HH11b, IM11, JM14, JRMFSS12, JZT14, KOR14, Kia14, KKL10, MM10a, Naj13, Nak13, Nat13, OT12, PCC12, Ruk14, Sag13, San14, Sin10a, SN12, SN14, Sto11, Uch10, WLL14, Wsd14, Xu14, Zha14c]. fundamental [LNN14, Lom13]. Further [DMS10, KMSC14, MH13a, PAS11a]. Furuta [BLdP12, FNY13, Wad14]. Furuta-type [Wad14]. fusion [Bod13, HM14a]. Fuzhen [Tam12]. fuzzy [MMP13b, MP13b, MS14c]. G [Loc12, Rei11a, Rhe10]. Gaddum [NY14]. gain [KG12a, Ref12]. Gallai [KW13]. game [wH13]. games [AGK11, FDS13, Jun14, Sta14, Cec10]. Gangster [FJ10a, gap [GO13, KR10, Wol12], gates [CLX13]. Gau [CRSS14]. Gaussian [BFRR14, Ji12b]. Gaussian [ALVP14, BT14a, gcd [KAMS11, TL13a]. gcd-graphs [KAMS11]. GCDs [BDD13]. Geary [BGM12]. Gel’fand [Dai12]. Gel’fand-type [Dai12]. General [Jim10, AY13, BV12b, Bot10b, BGH12, CPH11, CFK10a, CMS12a, CM12b, DH10a, FFG+11, JKN14, KSAM12, LHL10, MR11, Sha13b, TT11, XW11, wXL14, wXZ19, vBM13, Beh13]. generalised [DGJ10]. Generalization [Dok12, Mel13, AKZ13, BL13b, FSS11b, Kus12, MGLW11, MW12b]. Generalizations [FSS11a, IKS+13, MS12, SN12, WX11]. Generalized [AKN12, BEM10, Ben11, BG14b, CL12a, Dra14, Dur12, GP12, HL10c, Hum14, Hür13, Ili10b, KB14a, KB14b, KSA11, Kau12, Kim10, Kim13a, KCID12, KS11c, LL11b, MP13a, OM13, SS14, So13, SM10a, TX12, Wu10b, AL13b, ÁV11, AM13d, AL13c, Ban13b, CM13b, CJ10, CLCL12, CL11b, DH10a, DH12a, DV10, Den10, DK12b, DY14, Dra12b, DW12b, DW13, DBZ14, FKW13, FZ12, FDS13, Fd10, FH12b, FH13, GP14, GL12c, He11, HOT13, HL10b, Hul10, HZ11a, Hua11a, HP11, Hwa11, IW13, JM14, Jen13, JDY13, Kim11a, KP12, KS14b, KKM13, LW12a, Lav10, LW12c, LW13a, LYS13, LMW12, LJ12, LJ13, MB13, Mar11, Mar13c, Mat12, Mel14, MS11b, Mos13, Nak10, NC13, Pep11, Pep12, RAAGAS11, RJ11, San10, SS13a, Siv13, SR12, SS10e, Ste13, SL14, TZ12b, TNP12, TN14, Uhl13]. generalized [WLLX11, WML13, WW13c, XW10a, XE11, Yan10a, YW10, YZ11, ZY12a, ZCC14, ZCC12]. Generalizing
graphs

Grassmann

Grassmannians

gravity

Greedy

Greedy-like

green

Group

Gröbner

Grassmannians

gravity

H

H-eigenvalues

Hadamard

Hadamard-type

Halmos

Hamilton

Hamiltonian

Hamiltonians

Hamiltonicity

Handelman

Hankel

Hardy

harmonic

having

Haynsworth

heat

Hecke

Heisenberg

Helmert

Hermite

Hermitean

Hermitean
HFS13, HSS10, HSS14, JS13a, KM13a, LT12a, LNTgW12, SCS11, SH10, Sha14b, SM10a, Tia10, Tia11b, TCL11, VW10b, WW10, WZ14b, ZL11. Hessenberg
[BBGM12, God10, God12, HG11b, Ste13, TT11]. hexagonal [RGC13]. Hiai [Fuj10]. hierarchical
implicitly-restarted \[\text{MSS12}\].

Implicitly-weighted \[\text{PO11}\]. \(\Rightarrow\) implies \[\text{EdIP14, JN13}\]. \(\Rightarrow\) imprecise \[\text{Sku13}\].

Impressions \[\text{WA10}\]. \(\Rightarrow\) Improved \[\text{BJ10, BW12,Rua12}\]. Improvement \[\text{DTS11}\]. \(\Rightarrow\) Impulse \[\text{VB10}\]. \(\Rightarrow\) impulsive \[\text{LM10b}\].

imputation \[\text{XWD13}\]. \(\Rightarrow\) In-betweenness \[\text{Aud13b}\]. \(\Rightarrow\) incidence \[\text{CL13a, Dah11, DG14, DV14, RL13b, SW13, ZZ13}\]. \(\Rightarrow\) Inclusion \[\text{Mel14, AA1KM14, For14, FHL10, WC11}\].

inclusions \[\text{MW14b}\]. \(\Rightarrow\) incomplete \[\text{KD12}\]. \(\Rightarrow\) increase \[\text{SC10}\]. \(\Rightarrow\) increasing \[\text{B¨un14}\].

incremental \[\text{BGV12}\]. \(\Rightarrow\) indefinite \[\text{LIW14, WC11}\]. \(\Rightarrow\) independence \[\text{ABK14, Dug11, FY110, Hu10, HC10a, LS10, TF10}\]. \(\Rightarrow\) independent \[\text{RS12b, Row14c}\].

Index \[\text{ADDST11, Bot10a, CLOR13, CF1K10a, CT11b, CL10a, Das10a, Das11, D1G12, DC13, DZ11, LDLV11, DZ12b, FTA11, GW14a, GWW14a, HL10a, HW14a, HL12, Hua11b, Kim10, Kim11a, KP12, Kim13a, Kim13b, LZ12b, LL14c, MY13, MW13, SBMT10, Ste10, TH10, WH1M13, XWS12, YFW13, Yua14, Yua15, ZZ11, DDM14}\].

Index-2 \[\text{LDLV11}\]. \(\Rightarrow\) Indexes \[\text{BCE10}\].

Indices \[\text{PD1FDV14, BC1PD11, Dod13, DL11, DZ12, GW10, HL10c, H1K1T13, L1M11, LM12, WX14}\]. \(\Rightarrow\) induced \[\text{CR10a, LMMS12}\]. \(\Rightarrow\) inductive \[\text{LP14}\]. \(\Rightarrow\) industrial \[\text{ZH12c}\].

Inequalities \[\text{BANP12, CHLW14, J1MP13, M0A11, Mat14b, Sh11, ZH13, AP14, AK12b, Aud12, AH13b, BP14, B1DP10, B1G12a, BS12d, BH14b, C10, CFF13a, Coh14, CMS12b, Dra12a, Dru13, DLV13, Fur11, Fur12, GD11a, Gon11, HKK12, H1L1a, KS14a, KP14b, L1Ac13, Lan14, Lee10, LLW14, LY13, Lin13, MA12, Maz10, M1TS11, Naj13, Pat10, Pat12a, Seo13, SW11, SR13c, TG13, TLK14, T1a10, TCL11, TPZ12, Wad14, pW1W14, Zha14b, ZH12, Zha12a]\].

inequality \[\text{Aud13a, B1DP12, BR14a, BR10, CMS12b, CL12c, Der13, FZ11, FT10, FL10, FNY13, FL10, GRDS12, HOT13, I1K12}\].

Ingram \[\text{ZH12a}\]. \(\Rightarrow\) inheritance \[\text{FH10a, PA11}\]. \(\Rightarrow\) inhomogeneous \[\text{VV13}\].

injections \[\text{BS14}\]. \(\Rightarrow\) injective \[\text{BO12, ZH14}\]. \(\Rightarrow\) injectivity \[\text{GA12}\]. \(\Rightarrow\) Inner \[\text{MARCI13, Tan14b, BK1V14, BS12e, HMT10, HZG1Y12, Pat12a, SP13}\].

Input \[\text{BC1Y12, BLM13}\]. \(\Rightarrow\) inseparable \[\text{DOR10}\].

Instability \[\text{HK1KT13, F1S11}\]. \(\Rightarrow\) Integer \[\text{DJ14, BM13d, DHS12, Gre12, MRW11, MY14, M014}\]. \(\Rightarrow\) integers \[\text{Hil14a}\].

integrable \[\text{SCH10}\]. \(\Rightarrow\) Integral \[\text{CR10c, CL13b, SS11b, Sim10, BP10, B1CY12, BCS10, BC12b, BC12c, BD12b, CK1ST13, FT10, GH1W13, He14, IM11, I1L10a, JK13, Kal13b, LS12a, MPS10, Mat13a, Mat14a, PHS13, SZ14, TH10, ZWL13, dFDADV10]\].

Integrality \[\text{KRA12}\]. \(\Rightarrow\) Integrally \[\text{GOSV1D14}\]. \(\Rightarrow\) Integrating \[\text{MLC10}\].

integrator \[\text{ZHU11b}\]. \(\Rightarrow\) intentions \[\text{NT14}\].

interactions \[\text{B¨OT13, CGG1S13}\].

interconnection \[\text{VB10}\]. \(\Rightarrow\) interior \[\text{GSV12, LL10d, XSS13}\]. \(\Rightarrow\) interlace \[\text{BH11b}\]. \(\Rightarrow\) interlaced \[\text{MS13c}\]. \(\Rightarrow\) Interlacing \[\text{AT14b, KUS13, AHP14, BFDP10, FCP13, G1LS13}\]. \(\Rightarrow\) internal \[\text{GUM13, WU13a}\].

interplay \[\text{SB11}\]. \(\Rightarrow\) interpolants \[\text{CH11}\].
Interpolating [BPDC14]. Interpolation [AL14, HWH14, AL13b, AL12, BO11, FKR11a, Fuh10b, KOR14, PT14, Sav14, SV13]. interpolatory [AL14, HWH14, AL13b, AIL12, BO11, FKR11a, MP13b, MS14c, MP14b, NS11c, PM10, PKR12, Roh11, SH10].

Interpretation [GG12]. interpretation [GG12]. intersection [MGLW11, SB12]. intertwining [Che13].

Interval [GPT14, Mys12, BHMR12, Dah11, Hla13, KS12a, LLD13, LLW14, LL13d, MMP13b, MP13b, MS14c, MP14b, NS11c, PM10, PKR12, Roh11, SH10]. Intervals [AG13, FZ13]. Introduction [Est12b].

Invariance [dSP10a, Bai14, BH11b]. Invariances [BHKL10]. Invariant [AFLN12, Baj14, dSC14, BK11b, BLM13, Bou13, CHJ13, Cir14, CLHQ14, DXG12, DG14, Dom10, DZ12a, FGS11, FCL10, FJ10b, Fur12, GK11, GV11, HG11a, HL11d, IJ12, Jun12, MZ14, MA12, Pro10, PP13b, RSS10, SKu13, WL12, Wój14b, ZH12].

MZ12a, MR11, MLC+10, MW14b, MO14, MSP13, MR10c, Mys12, NP13a, NRS12, OLW14, PQ12, dSP10b, dSP10c, dSP10e, dSP12b, dSP12d, Per11, PKR12, PPKR12, PTPL10, PE13, Pro10, RAY14, RdSP11, RS14a, RSi10, Roh11, RS12c, SSS13, SB12, SVP11, SW11, SS11d, SH13, SLS13, SS10e, TZ12b, TnYsH11, Tao13, Tra12, Tre11, TP13, Wal11b, WGL12, XX12, wXL14, wXZ19, YT13a, YW10, YJ12, ZW12b, dOFK+13, dlP11, dSC14, BPRY11].

Linear-quadratic [NT11a, Jun14].

Linearity [BEV13].

linearization [MP10].

Liouville [jAS13, KZ11].

Lipschitz [B¨un14, CK14, CGM+10, Gna12, RS12b, ZHZF13].

Lipschitzian [JV11]. List [Ano11a, Ano12c, Ano13e, Ano13f]. Lists [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, CL14b, ES14]. lists [JNS13, KS13a]. lit [wH13]. lit-only [wH13]. Littlewood [AW10, AP14, Lac13]. LLL [Q11]. LMI [PKR12]. loadings [ZHZF13]. Local [Cos14, BS11b, Ben13, Bou10b, CD11, JZZ13, KY11, Kra13, TZ12b, Tra12, AKA13, FP11].

Log-convexity [WZ14a, Alt13].

log-determinant [CM12a]. logarithms [BLdPS10, Chi13, LNN14]. logistic [YiKIS12].

lollipop [GSL11, GW13b, WS12, WY14a]. lonesums [KKL13a, KKL13b]. long [BLX11, CBB13, WZ13]. looking [Raf14].

Low-rank [BGV12, KRS13, MZ12b, Sad12]. Lower [AP14, MN10, MNZ12, Pat10, PJ13, Rad10, Cha10, CFL13b, Grc10, GR10, GCY14, LL10, LMYY11, RJH11, Slo12a, WXH10a, Zim13]. lowering [BC14a].

Lur'e [Rei11b]. Lyapunov [FH10b, GTR12, GKS+10, Jbi10, LKK12, LTX14, PJ13, Sad12]. Lyapunov-like [GTR12]. Lyapunov-type [LXK12].

M [Gar12, Gem10, AS12a, Rhe10].

Macaulay [BDD14]. magic [CMNW14, CCL14, dHLSM13, Hun10, LNN+12, LGZ14, Nor12, Nor14]. Mahalanobis [GH11]. Main [CSZ10, LS13c, TH10]. Majorization [BEM12b, BD12b, CPK11, Dah10, For14, KT12, MOA11, Nie11, Uch10, Zha12a, AK12a, AAM12, AMJ14, BEM12a, Dug11, FZ11, FW14a, Fur12, KP14b, LL14d, Nie13, SA10, SA14, TKL14, TPZ12, Zha14b].
majorizations [Nie12]. make [DTL11].
manifold [YZ12a]. Manin [FP13].
manpower [DT10]. many
[DLNN14, Mat14a, MO14, TL13a]. map
[GK11, Ha13, HNZ12, Lin14a, dSP12d]. Maple
[GS12b, Kla10]. mapping
[AA14, JSS13, Sko11]. mappings
[BP11, CW11, CN10c, CN11d, FFS11a, FR514, HW11, Han14a, KN13c, LLF13, RS12c, Wój14a, XW10a, Zho11, ZXZ10, dOFK+13].
Maps
[ABSV12, Cos11, GN14, HLW10b, HI11b, JG10, LP12, MS10c, WLG12, ZH11a, ABVE10, BS12d, Bou10b, BMS14a, CC12, Che14a, CFL13b, CLS10, DD10b, DHK13, DW12a, Fra12, Fra13, FH10b, Fur11, Gna12, GZ13, HKPR13, HQ13, Ika11, JH10, KS14a, KSAM12, LT12b, LT16, LP10, LW12c, LW13a, LHL12, LT10a, LL10b, LT13, Liu14a, Liu14b, MR10c, Nie13, Pan12a, RO10, Sun13, Wan11a, WFM11, YT13a, YJ12, dPP11].
Marcus [LL12]. Marcus-Minc [LL12].
Marix [BW11]. market [Vas14]. Markov
[CK13b, Cas13, DT10, DGU14, Góm10, HB12, Hun10, Hun14, Kir10, Kir14, MA10b, Nem13, PR10, Pu11, Rhe10, Sku13, VV13, Vas14].
Markovian [Hun14, Koz14a].
Marshall [Zha12a]. Martingale [Dah12a].
Massey [KY13]. Mastronardi [Gem10].
matechages [LMN13]. matching
[Beh13, GL12a, HL11a, KW13, LT11a, SS11c, Ste10, wTmS12].
matchings
[GX12b, LSC10, TS12].
mathematical [BELK12].
Mathematics
[Ber09, Gar12, Grü12, Lim13b, Rod12a, Sl10, FdC12, Bar10b].
Mathias [Lim11a].
matrice [BW12]. Matrices
[Bar12b, Bra10, FJ11, Fie11b, Gem10, HMS13, KKL13a, KKL13b, LSTW13, Rei11a, SM13, AMP10, AiS13, AG12, APLE12, AA14, AG13, AM13a, AAF+12, AKM13, AGM14, AB12, AHAPP10, Ali12, ANP13, Alo14, ANPQ12, ÁAFG12, AdF11, ART13, ALRV12, Ang13, AT11, AT14a, AK11, Aud10a, Aud13c, BBG14, BT14a, BB13b, BT11a, BB13c, Ban13b, BS11a, BG14a, BP12, BKM+13, BB13d, BH12, BMW10, BSK12, BSKL13, BFdp10, BLdPS10, BFp11, Bdfdp11, BFdp12, BT13, Bdp13, BDH+12, BOZ10, BOZ11a, BANP12, BCEM10, BCEM12, Ben10, BM13a, Ben14a, BB10, BB14, BS12c, BP11, BDG13, BD13, Bie13, Bie14, BBE+10, BI13, BH10, BBGM12, BTHZ12, BSU14, BCS13b, BC12c, BC13, BC14b, Bot10a, Bot12, Bou13, BLLL12, BLLL13, BLLL14, BRZ13, Bre14, BRLS12, BHZ10, BK10, BD12b].
matrices
[BFH+12, BKMS13, BC14c, BBS12b, BLS14, BZ13, BK12, Buj13, Bün14, BAD09, BS13b, BW13b, CR14, CRSS14, CH13, CD14, CR10u, CR13, CR14u, CSV14, CH13, Car10a, CU11a, CN12a, CFPP13, CR10b, CK13b, CAV13, CG11, CGMS10a, CGRVC13, COvdD10, Cau11, CFF+12, CS10a, Cha14, Cha13a, CPR10, CTW11, CM12a, CL10a, CGM14, CL10b, CG13, Che14b, CJ11, CK13d, CN13a, CN13b, Cho13, CN11d, CGSCZ10, CD13, Cir13, CM14, CNPP12, CD12a, Coh14, CDM12, CP10, Cos11, CFLW13, CL12c, Dah10, Dah11, Dai11, DHLX12, DoMP09, DL14, Dax10, DLNN14, DH10a, DMP11, DD11b, DK12b, DP12a, DHS12, DGMS14, DFS12, DFS14, DS14, Dok12, DKOT12, DHK13, DO11a, DO11b, Dom10, Dom13, DA10, DT11, Ddf13b, DfD14, DBZZ14, DdC13, DGMS10, DHS10, ER13, Elo11, EvdD10].
matrices
[Ens10, ES11, Est12b, EGR12, Fan10b, FM11a, FF14M14, FGS11, FFG+11, Far11b, FKW13, FJ10a, FdC10, Fie10, FH10a, FM11b, Fie11a, FH12a, FH12b, FM13, FH13, Fie13, FHS14a, FH14, FMR12, FKK11, Fou14, FGrR13, Fra12, Fra13, FW14b, Fü10, FJ10b, FJ14, Fut12, FHS11, GMS12, GEP10, GOSvdD14, Gar13, Gau10, GTW13, Ghe14a, God12, Go13, GS10b, GL12b, GGK+13, Gre12, GS10d, GS12d, GZ12, GR12, GKR13, Guo13, GY13, GS12f,
matrix [LV12, LS11a, LZ12a, LW12c, LW13a, LY13, Lin10, LS13c, LH10b, LSR10, LLMZ12, LW13b, LX13, LNT13, LS12d, Lop11b, LSH12, MZ13, MMM10, MMM13, MM12, MSP11, MZ12a, Mar10, MR13, MR14a, MM13, Mat13a, Mat14a, Mei13, Mel13, MS12, MR10b, MR14c, Moo11, MN12b, NR10, NM14, NS11b, NV10, O’D14, OT12, Pál13, PIM+10, PCC12, PPK13, Pat12a, Pat12b, dSP10b, Per13, PS12, Pin12, PRW11, Pop13a, Psa12, Rah13, Reil11b, Rim12, Rod11, Rod12b, Sah10, ST10b, SS11a, SBM11, SK14, SK13, Shi13, SA10, SC13, SR12, Sta14, Ste13, TD13, Tan11, TZ12b, TZ13a, TmYsH11, TTZ13, DDM14, Tia11b, Tia12, TGM11, TLT11, TDT13, Udil13, VS13, WWG10, WLG11, WW13b, WW13c, Wat13, Wei13b, WJT13, Wei10, WCKL13, Wik11, Wik12, WZL12, WY14b, Wik13, WX10a, XD12, Xu11].

matrix-based [Dah12b, IPFD13].

matrix-convex [PCC12].

matrix-monotone [PCC12].

matrix-valued [KKR11, Tia12].

matroids [LM10a, TN14].

Matsaev [Dru11].

Max [EvdD10, FH14, Ser11, AGNS11, BM13d, Cec10, Fie11a, GPT14, GM11a, GM11b, GMS13, KSS12, Mer10, MP13a, Mys12, MP14b, Nit10, NS11c, Pep11, SW11, Ser13, WLL14].

Max-algebra [EvdD10].

Max-algebraic [Ser11].

max-linear [SW11].

max-min [GPT14].

max-plus [AGNS11, BM13d, Mer10, Mys12, MP14b].

max-weighted [WLL14].

Maxima [Yua14, Yua15].

Maximal [BCFP12, Fan12, FMR12, LT10b, RRM11, Sev14, ÁAFG12, ADW13, BNP13, CT14a, CT10, CT11b, CVW10, CDM12, DP14, DdF13b, HLS11, HJLS11, LLS11, SS11b, SBMT10, TW10a, WX14, BKD11].

maximality [HZ12a].

Maximization [Tia11b].

Maximizing [YFW10, WKV10].

Maximum [CKL+13, EdlP14, HS10, NY13, Sin10c, VDVJ13, BZ12b, CCG014, Car11, CFPP13, CH11, CH14, CL14, CL10b, DZX12, EHH+12, GL12a, Ghe14b, LLS11, LQY13, LL11c, LHL13, Sav14, SWT13].

maximum-volume [Sav14].

maxitive [Pon11].

may [SC10].

MDP [ANP13].

MDS [CNPP12, La 14].

MDS-convolutional [La 14].

mean [AGK11, BP11, BG12a, BI13, Gón10, JLLY10, KLL11, Kim13d, LL13b, NS11b, WLL14, Yam13, BT11c].

Means [CMI2a, Aud13b, AH13b, BN13, BCS13b, BH14b, DLV13, Fuj11, Han14a, HP12b, HKK+12, KSAM12, KLL11, LLY11, LL12, Lim11a, Lim12, LY13, LP14, Nak13, Pál13, PP14, Soo13, Soo14, ŠK10].

measure [GN14, KKR11, Maz10, WNM13].

measured [KD12].

measurements [ALPV14, FMNW14, Jen13, KG14].

measures [DW10, KS12b, Pon11, DGH+11].

median [GM14].

mediant [HNZ12].

meeting [Ano12-30].

Meini [Lim11a].

members [BRA11].

Memorial [BMS14b].

Memoriam [Tsa12, BDK+10, Lin11].

memory [EM12].

Mena [Kra13].

Mertens [Car10a].

mesh [GS12b].

metabelian [DDF13a].

method [BCY12, BFS11, BVV12, Hey12, BN13].
Methods
[Gre13, HRW99, JM12a, BV12a, BGV12, Blö12, BFF+11, BJ13, CAV13, CQYY13, DS12b, DYW14, FS14b, GOSV12, GL10c, HSS10, Jar12, Jbi10, Ji12b, LB14, NRS12, Nik14, PT13b, RRZ13, SE13, SK14, SWA12, Wan11b, WJT13]. metric
[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11]. metrics
[HP12b, HKPR13, Kum11, LRST10, TNP12]. Metropolis
[Dim11]. Metzler
[VS10]. Metropolis
[Ano10u]. Michael
[BMS14a, Tsa12]. microscopic
[FQG11]. midpoint
[Lim13a]. might
[PPK13]. migration
[VV13, Vas14]. Mihály
[Rod12a]. Miki
[Tsa12]. Milman
[AGPPF12]. min
[Cec10, GPT14, Nit10, NS11c]. Minic
[LL12]. Minimal
[AHAPP10, HLW10a, Hill14b, KS11a, LW12d, Lop11a, Zhu12b, ALRV12, BL10b, BJ11, Dod13, GLZ14, HJJ10, Lip10, WLMG11, ZK14]. minimality
[KRvS14]. Minimax
[HLP12]. minimization
[IW13, LNN14, LLB13, TmYsH11, Tia11b, Zha12d]. minimizations
[Fou14]. Minimizing
[O’D14, YM12, LL12]. Minimum
[CH11, CJ12, G14a, Hog10, MD13, MNZ10, PSW11, SK12, TG13, AAF+12, AHI+14, BBF+10, BBF+12, BKM+13, BMN+13a, BL12, BMS14a, DGH+10, Dea11, EHH+12, FCL10, FL12, Gar13, GH+10, HHMS10, HK13, HCY10b, HCY10a, JMS11, Ji12a, Kir14, Kyr13, LS10, MS13a, MGSW14, Mit11a, MNZ12, NS11a, SM13, SHS12, SvDH11, YL10, WW11, Zim13]. minimum-norm
[Ji12a]. Minisymposium
[Ano13y]. Miniversal
[DFS12, DFS14]. Minkowski
[BdFdp11, BH14b, Lán10a]. minor
[CN12a, TN14]. minors
[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11]. metrics
[HP12b, HKPR13, Kum11, LRST10, TNP12]. Metropolis
[Dim11]. Metzler
[VS10]. Metropolis
[Ano10u]. Michael
[BMS14a, Tsa12]. microscopic
[FQG11]. midpoint
[Lim13a]. might
[PPK13]. migration
[VV13, Vas14]. Mihály
[Rod12a]. Miki
[Tsa12]. Milman
[AGPPF12]. min
[Cec10, GPT14, Nit10, NS11c]. Minic
[LL12]. Minimal
[AHAPP10, HLW10a, Hill14b, KS11a, LW12d, Lop11a, Zhu12b, ALRV12, BL10b, BJ11, Dod13, GLZ14, HJJ10, Lip10, WLMG11, ZK14]. minimality
[KRvS14]. Minimax
[HLP12]. minimization
[IW13, LNN14, LLB13, TmYsH11, Tia11b, Zha12d]. minimizations
[Fou14]. Minimizing
[O’D14, YM12, LL12]. Minimum
[CH11, CJ12, G14a, Hog10, MD13, MNZ10, PSW11, SK12, TG13, AAF+12, AHI+14, BBF+10, BBF+12, BKM+13, BMN+13a, BL12, BMS14a, DGH+10, Dea11, EHH+12, FCL10, FL12, Gar13, GH+10, HHMS10, HK13, HCY10b, HCY10a, JMS11, Ji12a, Kir14, Kyr13, LS10, MS13a, MGSW14, Mit11a, MNZ12, NS11a, SM13, SHS12, SvDH11, YL10, WW11, Zim13]. minimum-norm
[Ji12a]. Minisymposium
[Ano13y]. Miniversal
[DFS12, DFS14]. Minkowski
[BdFdp11, BH14b, Lán10a]. minor
[CN12a, TN14]. minors
[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11]. metrics
[HP12b, HKPR13, Kum11, LRST10, TNP12]. Metropolis
[Dim11]. Metzler
[VS10]. Metropolis
[Ano10u]. Michael
[BMS14a, Tsa12]. microscopic
[FQG11]. midpoint
[Lim13a]. might
[PPK13]. migration
[VV13, Vas14]. Mihály
[Rod12a]. Miki
[Tsa12]. Milman
[AGPPF12]. min
[Cec10, GPT14, Nit10, NS11c]. Minic
[LL12]. Minimal
[AHAPP10, HLW10a, Hill14b, KS11a, LW12d, Lop11a, Zhu12b, ALRV12, BL10b, BJ11, Dod13, GLZ14, HJJ10, Lip10, WLMG11, ZK14]. minimality
[KRvS14]. Minimax
[HLP12]. minimization
[IW13, LNN14, LLB13, TmYsH11, Tia11b, Zha12d]. minimizations
[Fou14]. Minimizing
[O’D14, YM12, LL12]. Minimum
[CH11, CJ12, G14a, Hog10, MD13, MNZ10, PSW11, SK12, TG13, AAF+12, AHI+14, BBF+10, BBF+12, BKM+13, BMN+13a, BL12, BMS14a, DGH+10, Dea11, EHH+12, FCL10, FL12, Gar13, GH+10, HHMS10, HK13, HCY10b, HCY10a, JMS11, Ji12a, Kir14, Kyr13, LS10, MS13a, MGSW14, Mit11a, MNZ12, NS11a, SM13, SHS12, SvDH11, YL10, WW11, Zim13]. minimum-norm
[Ji12a]. Minisymposium
[Ano13y]. Miniversal
[DFS12, DFS14]. Minkowski
[BdFdp11, BH14b, Lán10a]. minor
[CN12a, TN14]. minors

Naturally [ACGVK14, CGO10, CLOK13, LMO16]. near [MV12]. nearest [ABB011, NR10].

negative [Aud10a, BV13a, CR10b, FKM13, KS13b, MYL13, MWZ13, PT13a, Wol12, ZCKS12].

network [BCE+10, FFS11a, SB11, TN14].

networks [BFRR14, Car11, Est12b, GPR13, Gle11, HWSH13, Kam10]. Neumann [Tsa12, BD12a, BMS14b, DLLS10, LZ10, LFF13, PRT13, QH13, SS10a, SSS13, YZ12b].

Nevanlinna [AL13b]. Neville [HZ14].

news [ZCKS12]. Newton [BH13a, BJ13, CA10, FS11, Guo10a, Jar12, JMP10, JMP13, SK14, SV11].

Nil [BCDM13]. Nil-clean [BCDM13]. nilindex [ACGVK14, CCGR13]. nilpotency [Sun13, Tan10b].

Nilpotent [BDF11, Hua11b, BDH+12, BdlC13, BdlC14, Bvv12, CLOR13, CdgS12, FP14, GS13b, Kha13, KLZ14b, MMS12, NS14, OR12, Tan11, WGL12, de 13, BVV12].
nilpotent-centralizer [GS13b].

Nomura [CM11a]. Non [JRMFSS12, MMA12, ALPV14, Aud10a, BH14a, BP10, BT13, BCS13a, CR10b, CKST11, Cos14, DL14, FKM13, Gk11, KS13b, LLH10, LLY13, MMP13a, Net10, dSP10e, dSP12b, Per14, PT13a, Qui11, Seo13, WZ14b, YW11, dO12].
non-bipartite \cite{CKST11}, non-closed \cite{Net10}, non-commutative \cite{MMA12, Seo13, dO12}, non-degenerate \cite{GU11}, non-fixed \cite{Cos14}, non-Gaussian \cite{ALPV14}, non-Hermitian \cite{BH14a, WZ14b}, non-hyperinvariant \cite{MMP13a}, non-Lie \cite{BCS13a}, non-Lipschitz \cite{JRMFSS12}, non-negative \cite{Aud10a, CR10b, FKM13, KS13b, PT13a}, non-powerful \cite{LLH10, LYL13, YW11}, non-self-adjoint \cite{BT13, DL14}, non-singular \cite{dSP10e}, non-square-free \cite{BP10}, non-symmetric \cite{Per14}, non-zero \cite{Qui11}, nonabsolutely \cite{BGP11}, nonautonomous \cite{AS12c}, nonbinary \cite{Sri13}, noncentral \cite{Hu10}, Noncommutative \cite{ARZ11}, Noncommuting \cite{DO11b}, nondefective \cite{XD12}, nondegenerate \cite{FKR11b, FKR12}, nonderogatory \cite{Bot10b, FHS11, LS13a}, Nonexistence \cite{MW14a}, nonhomogeneous \cite{Pu11}, nonincreasing \cite{DHKQ13, PT13b}, Nonlinear \cite{BMS14a, FGR13, LN12, LLF13, LHL12, RS14c, SS12c, YZ10, YZ12b, BD12a, Bey12, FZ13, GHT11, Hill12b, Jar12, Ry12b, WCKL13, Xu14, Lim13b}, Nonnegative \cite{CN12a, FJ11, Gar12, MS11b, PR11}, Siv13, SDNS13, AG13, Aga14, Ben14a, BR14c, BK10, BAD09, BSST13, BS13b, CDP10, CS10a, CPZ13, CQY13, CD13, CKAC14, CL12c, Drn13b, DZ13, Fri11, FGH13, GGI12, GP13a, GL12b, Sem10, GGK13, GKR13, Hua11c, Hua13a, JLL11, KG12b, KSS12, La12, Lav10, LC10, NS12a, NT11b, PV12, Qi13, Sah10, Ser11, Spe11, VR12, Voy13, XZ14, ZCQ13], Nonnegativity \cite{HRT10, HRT13, PP11a}, nonpositive \cite{CRU13, CRU14}, nonpositivity \cite{HC10}, nonpowerful \cite{JMS11}, nonreal \cite{PR13b}, Nonsingular \cite{BC12c, DD14, HK13, HZL12, BHZ10, CR13, CP10, DQW13, FLH12, FJ14, HC10, LLN12, LS13d, LJY14, NPP13, SYH14}, Nonsingularity \cite{Zuo10, BB13b, LS12c}, nonsymmetric \cite{GL10c, KW12, LwCJL11, WXH10b, XD12}, nontrivial \cite{Dod13, ZZ11, Zho11}, nonzero \cite{CP10, GOSvdD14, HTW13, MB13, MZ14, PR13b, YHH12}, nonzeros \cite{MGSW14}, Nordhaus \cite{NY14}, Nordhaus-Gaddum \cite{NY14}, Norm \cite{BG12a, MM13, Pop12, Aud10b, BT14b, BJ11, CVW10, CFI13a, FCL10, FLC11, Gon11, Hia13, HMR12, Hua11c, Ji12a, KS14a, Kyr13, LMM11, LMYY11, MD13, MA12, MZ10, MTS11, NNW14, RR11, SP13, SR12, TGS14}, normable \cite{Bau12, AT14b, Boz13, CFI10a, CJ12, CL13a, LGSC14, vDO11}, normally \cite{CM13}, normed \cite{Woj14a}, norms \cite{Aud13c, BH14b, BLS14, CGSC10, Fur12, GK14e, HK10, Lac13, Lan14, LeC10, LT12b, LT16, MW14b, Mor10, NY13, Pat10, ZH12}, Note \cite{Aon11z, Aon12-28, BC14c, GL10b, HJL10, KP13, LLS10, LHL13, LHGL14, Rhe10, Bi12, Ben14b, BC14b, BZ13, BZZ14a, CG13, Che14b, DA10, DD11d, DLS10, EFN09, EFN10, FWW13, Fan10b, FH12b, FLC11, GOsdD14, GLS13b, Had13, Har14, HZM10, HZ12a, HCY10a, Ikr10, JMJ12a, Li10, LS12b, Lom13, MB13, Mat12, Mig13, NdM13, Sah10, Tao11, Wal14, WB11, XLC14, Yan11, dHM11], Notes \cite{Far11b, Fio10, Ha13}, notion \cite{Han11b, Han14b, TN14}, notions \cite{BBM14}, novel \cite{Ma10a}, November \cite{BB11}, nowhere \cite{BS14, FFS11a}, NSC \cite{BBB11}, null \cite{BDD14}, Nullity \cite{BH11b, Br13, CL11a, EHH12, FWW13, GFY10, GX12c, HS10, LFS12, Sin10c, TL13b}, nullspace \cite{JKN14}, nullspace-type \cite{JKN14}, Number
[AiS13, BPA²⁺, AG12, AKM13, AAJ12, AHAPP10, ADFM11, AHS10, BBI3a, Bea12, BLL13, CRSS14, CS13a, CL14a, CFH14, DTL11, Dom13, DH10b, DL13, DF13b, Dfd14, EHH⁺^2, FY10, FG13c, Gar13, GB11, GLS12, HL11a, HIJZ13, Hir10, HTW13, HJL10, LS10, LT11a, LZ12b, LS11b, LH13, LL13, LL14b, LJY14, MGSW14, MZ12c, NS13, NOL13, Row12a, Sin10c, SWT13, Ste10, TF10, Uhl13, Wik11, Wik12, XF11, YW11, YWS11b, ZHG13, Zha12a].

numbers [AAK11, AL13a, BHKM13, CY11, CMS12a, EWY12, GF13c, Gar13, GB11, GLS12, HL11a, HJZ13, Hir10, HTW13, HJL10, LS10, LT11a, LZ12b, LS11b, LH13, LL13, LL14a, LJY14, MGSW14, MZ12c, NS13, NOL13, Row12a, Sin10c, SWT13, Ste10, TF10, Uhl13, Wik11, Wik12, XF11, YW11, YWS11b, ZHG13, Zha12a].

Numerical [Ali12, BS12a, CGWW13, DGH⁺, Gau10, Gle11, HMP⁺, Kam10, KI10, TW11b, Tsa11, AM13a, CG13, Che14b, CN10b, CN11a, CN11c, CN12b, CN13c, CP11, CLS10, DFL10, DD11d, GW13a, GTW13, GW14b, GP14, GZ13, HH12a, HB12, LMM11, LM12, Lec13a, LP12, LPS13, PLS13, PT13a, PGM⁺, VIU4, WW13a, WC11, LCwCL11].

Numerically [FM12a]. Numerical [Ali10, BS12a, CGWW13, DGH⁺, Gau10, Gle11, HMP⁺, Kam10, KI10, TW11b, Tsa11, AM13a, CG13, Che14b, CN10b, CN11a, CN11c, CN12b, CN13c, CP11, CLS10, DFL10, DD11d, GW13a, GTW13, GW14b, GP14, GZ13, HH12a, HB12, LMM11, LM12, Lec13a, LP12, LPS13, PLS13, PT13a, PGM⁺, VIU4, WW13a, WC11, LCwCL11].

Objective [GMS13]. Objects [NP10]. Oblique [ACG14, CM10a, Hua11a, SS10d, WL10a].

Olkin [Zha12a]. One [ALPV14, CRS14, GS12b, ABEV10, BBH12, BBH13, Bat14, BR14c, CT11a, CT11b, DHLX12, FGvRR13, Fri11, KO13, KY11, Lee13b, LFS12, LT11b, LX13, MMRR11, MMRR12, dSP12d, Pet10, PSI1b, RW12, Sag11, Sav12, Slo12b, Suz13, WFM11, WMZ14]. One-bit [ALPV14].

One-Dimensional [Suz13]. One-Dominating-Vertex [CT11b].

One-Peak [GS12b, PS14b]. Ones [TZ13b].

Only [Aga14, CGMJ14, Dn13, wH13, DR11, WZ13d]. Ono [Cha10, NN10]. Open [HH12b, LGZ14, Zha12c].

Operator [CMS12b, Gu11, K14, Kim13d, Mos11, SP13, Se14, AR10, AG10, ACG13a, Aud13b, BC14a, Bo13, BH14b, Ch13, CDY10, CI14, DW11, DD11d, DX13, ET13, FMWW12, Fur10b, HC14, Han14a, HZ12a, HN10, I1K⁺, JG10, JR14, KS14a, KSAM12, KJK13, KW12, KLP12, MMP11, MTS11, MMK13, Nak13, OM10, PP14, San14, UC10, WW10, WD10, WLL14, Wój14b, XSZ13, XSH14, ZW10, ZHQ14, Zha14c, dSC14].

Operators [Bra10, AS12a, AR10, And13, ACG13b, AK12b, BV12a, Bar10a, Bar13a, BS12a, BCD10, BR11, BC12a, BJ10a, BJ10b, BJ10c, BV13b, BB11b, Bud11, CRS14, Cam13, CL12a, CEM14, Che13, Dun10, DWXS12, DCW12a, DD11c, Dra12a, DP10, DJK12b, DDK14, DK14, DK31c, ES13, FJ10a, For14, GS10a, GN14, GP14, Sen10, Gu14, GS10e, HG11a, HKP⁺, HN14, HW10b, HZ11a, Hua11a, HZ12, JLL10, KL12, KI10, KRS13, Kec13, K10, KB12, Lac13, Lán10a, LP12, LCM13, LMMR13a, LMMR13b, Lom11, Lu11, MM13, Mat13a, Mat14a, MPP11, Mol11, MPM13, MN12b, Nie10, PP14, FY10, Pe14, Pep12, PT13a, Pop13b, Pro10, Re13, RS12b, Ros12b, Rud12, ST10a, Sed11, Se14, SR13b, Sha13a, Sha11, SM10a, SM10b, TD13, Tim14, UV14, XDF10, XCS13, YW10, ZH11a].

Operators [ZH13, dOHKS12]. Oppenheim [Lin14b].

Optimal [JZT14, LH11a, LJ12, LH10c, TDT13, Will13, CGM⁺, EY13, GOSV12, GIP12, HCY10a, LHH13, LLD13, LL13d, MZ10, Mit11b, NP10, NA13, Pe14, Sta14].

Optimality [FMR12]. Optimisation [GMS13]. Optimisation [BH14a, MO14].
Optimizing [Gol13, LS11a]. optimum [CLL13a, GX12a]. options [PZVJ11]. Orbit [RMP14, Bar10a, Bar13a, Dau12, MZ12a, Rez13]. orbits [Baj14, CN12c, DD11a, LPS13, TT12].

Order [Bra10, FJ10b, Mol11, jASZ12, BP10, BM10, BL12, Bö12, Bos11, Bre14, BF14a, CR10a, CMNW14, CK13c, CL13b, CFL13b, CKAC14, CDM12, CIH11, DD10a, DTL11, DD11c, DM11, GOvdD14, Ghe14b, HSZ12, HIl10, Kar11a, Kar11b, KM11, LNL+12, LBLS12, LHZH11, LJY13, LGZ14, LS14, LZ11b, MD13, NS12a, NLe13, Nor14, QS14, Rim12, SS11b, SS11d, SBMT10, Slo14, ST13, Tra13, WZ13b, XDFL10, YZ14].

Orthogonal [CMS12a, Moo11, AHH13, BR14b, BSS10, BM12, BR12, CM11b, Dax10, DW10, FPC13, GW11, GWZ13, HIl13, KN10, LR12, LAL11, LWG12, LNT13, MPRW11, Mer12, MNZ12, NM14, O’D14, dSP12d, Pop13b, RBP12, RL13a, ySPW12, TT11, V11, VS13, VS14b, Wei10, dF10, dCdlRMP14, AMP10]. Orthogonality [Gro14, AR12, CP11, HH13].

Parametric [He13]. parametrization [BO12, Dau12]. parametrized [Fuj10, GHT11]. paranormal [DJK12b].

partite [Zha14a, ZWL13]. partition [FdC14a, HM10, NS11a]. partitioned [BLL13, CGMS10a, CTW11, XCS13].

Path
[Est12b, Fuji11, HM14b, Nak13, SS14, Sin10c].
paths [AS12c, Gum13, Nik10b, QSW14].

Pattern
[AT11, AHL+14, AM14, BDH+12, CFJKS13, CL10b, DT11, HL11d, JMS11, LSR11, MGWS14, PP11a, WLLH10, YS13, ZLH+14].
 Patterns [BKMS13, BVV12, BDM+12, BFH+12, CP10, EKSV14, EKSV18, GS11a, GLZ14, GS12a, GS13b, GOSvdD14, GOvdD14, GK14b, GB14, GOvdD12, GS12f, HJN12, HLS10, Hua11b, MZ14, Ma14, Mit11b, OThD12, YHH12, dS12a].

Paved
[NT14].

Payoff
[AGK11].

Peak
[GS12b, PS14b].

Peano
[ABGPSS14].

Peculiar
[RR14].

Pedagogical
[Kla10].

Pellet
[Mel13].

Pencil
[Dod13, GHMPVP11, XD12].

Pencils
[RS12a, RS14b, Bat14, BIT12, BCF14, BF14c, DKS13b, Dod10, DS14, FRS14, LLB13, MSP11, Rei11b, SBM11].

Pendant
[GFY10, LWZ11, LZ12b, LJY14, Suz13, XZ13c].

Pendent
[BNP11, BNP13, HJL10, NOL13].

Penrose
[Boz13, xCwXL11, HF12, HZ11a, Ji12b, KS12a, MZ10, Nor11, Pat12b, RDD14, WJT13, XCS13, Yan14, ZZCW13].

Pentadiagonal
[Elo11].

Perfect
[BP10, CG11, Beh13, LSC10, wTmS12].

Perfectness
[FPC13].

Periodic
[AS12c, BM10, Li12, ZLH+14, BdFDp11, BT13, Cal12, Fid10, SB12, Tsa11, Xu12, YM12].

Peripheral
[ZH11a].

Permanent
[Cra13, DdC13, Zha11, dF10].

Permanental
[AdF11, LZ13].

Permanents
[Brã12, CW12a, FH12b, PS11].

Permissible
[Buj13].

Permutahedra
[Dah10].

Permutation
[DF14, LS13c, RR14, SMC11].

Permutation-like
[DF14].

Perron
[Lim13b, Czo10, FGH13, FJMP14, JMP12, LN12, NV12, Pit11, ZH11b].

Personalized
[GPR13, Gle11, Kam10].

Perturbation
[BV12a, BK11b, CM13, HZGY12, LNTgW12, MMRR12, AL13c, BI12, BDdH12, BDdH13, xCwXL11, CS10a, DD10a, DX13, Guo10b, Jai11, LS11a, LYS13, Lip10, MMRR11, MZ10, MA10b, Vul12, WF12, WL10a, YW10].

Perturbations
[CGM11, CL14b, HZ11a, Bat14, BCDp11, BHKL10, BdS10, CL12a, DvDF11, FGR13, FGvRR13, Hua11a, HZJ12, MMRR11, MMRR12, RW12, Rod12b, SWA12].

Perturbed
[BDG13, BR14c, CGMS10b, GC12, GTV12, HH11a, Mat14b, PPZ14].

Petrie
[Bai11].

Petz
[Fuj10].

Pfaffian
[Buc10, TT10].

Pfaffians
[Pla11].

Phase
[FMNW14, Byd10, Gu11].

Phenomenon
[BL11, RR14].

Pick
[AL13b, CH11].

Piecewise
[FGQ11, CA10].

Piling
[OT12].

Pinkus
[Gar10].

Pisa
[BBG+13].

Pivot
[BH11b, Bri13, KB14a, KB14b, Mit11b].

Pivoted
[LQ11].

Pivoting
[VS14a, PZQ13, Raf14].

Placement
[BO12, RMT11].

Planar
[BHMO13].

Plane
[BO10, Buj13, CM12b, HK13, MZ11, dIP11].

Planes
[Dau12].

Planning
[DT10].

Player
[Jun14].

Plus
[AGNS11, BH12, BM13d, Mer10, Mys12, MP14b].

Poincaré
[BFdP10].

Point
[DGF14, CLCL12, CH14, DYW14, DD14, GOSV12, JH10, LWGM10, LWGM12, Per14, SS13b, Ter13, Wan11b, XX14, XSS13, ZW10].

Point-stabilizer
[LWGM10].

Points
[AK12a, AR10, BS11d, CN13b, GX12c, Li12, Pan12a, QH10, WLL14, Wu13a, ZZ11, ZZW10, ZZ10, ZZ12, ZZX10].

Poisson
[Mar13a, XX14].

Polar
[CM10a, AGK11, CD10, CM11b, DoMP09, DMP11, GMP13, LNN14, LWGM10, LWGM12, MGLW11, MPP10, WLGM11, Wor13].

Pole
[BO12, KBS13, RMT11].

Poloni
[Lim11a].

Pólya
[Seo13].

Polygon
[VW10b].

Polyhedral
[LT10b, MS11b].

Polynomial
[AM13a, LMM11, LM12, MM10c, Mar13b, AA11, AB12, ABSV12, BMS10, BN13, BC14b, BO11, BH11b, BHAP12, Cer10, CL13b, DTL11, FH10c, Gaa12, GX12b].
polynomial-Vandermonde [ZYL10].

Polynomials
[NT12a, AAK11, AK12a, AAT12a, AAT12b, AL14, BM14a, BR14b, BK11b, BG12b, BL10a, BSS10, BH13a, BMM12, BR12, BW13b, CMS12a, CKS10, CN10a, CN11b, CL11b, Cin11, CD12c, DD10a, DDM12, DTS11, DW10, DD10b, ES11, FPC13, GMMFPSS12, GW13a, GN13, GS12d, GM11b, Hei4, HLW14, Hen10, HT10a, Hwa11, IM11, Kal13a, KHKT13, KH13, LT12a, Lan14, Lav10, LL10a, LZ13, MMM10, MMM13, MZ12a, MZ11, Mei13, Mel13, NV10, NT12b, Psa12, QY12, Qua12, RB12, RL13a, Sha10a, Sim10, TTT13, DDP14, DDM14, TGM11, TTT13, VS13, WLLX11, WML13, WZ13d, dF10, dO12].

polytope
[CGSCZ10, CM10b, KAAK11, PSW11].

Polytopes
[Dah11, ACDM14, Bar12a, Beh13, BG12b, BW13a, Dah12a].

polyvectors
[De 11].

Poncelet
[Mir10, Mir12].

Pontryagin
[CD12c, Wor14, dSW12].

pooling
[LHG10].

population
[LLR14, MsvdD14, RM14].

porism
[Mir12].

Porta
[CMS12b].

portfolio
[DBZZ14].

Portuguese
[FdC12].

posed
[BJRS11, HMR12, NRS12].

poset
[Kha13].

posets
[Dor10, GS12b, PS14b, SY12, Sim10].

position
[AY13, FFG +11].

Positive
[AG10, BVK14, BL13, Dru14, EEE +13, Fri11, Fur10b, Gar10, LV14, MYL13, Pop10, SH10, WD10, AHA10, AL13b, ACMG13b, BH14a, BMW10, BS12c, BP11, BS12d, BR14c, BI13, BSU14, BCS13b, BLL12, BL14, BAD09, CRU10, Cin11, CM12a, DA10, DP10, FFJM14, FJ10a, FV13b, FGvRR13, FW14b, Fuj11, Fur11, GS12b, GD11a, Gna12, GST13, GR12, HP12b, HKPR13, HJN12, HN14, HS12c, ISYY11, Kak10, KSAM12, KS11c, Lac13, LLY11, LL13b, LT11a, LW13a, LL13, Lim11b, Lim12, Lim14, MWZ13, MPS10, MW14b, Mat14b, MPT14, MY14, Mol11, MR10c, OThDv12, PP14, dSP10d, Pep12, PV12, QS14, Ros12b, SMS14, Tan10a, Voy13, WXH10b, Ybm13, YFW13, YJ12, ZCKS12, Zha14b, Zim13, vdW14].

positive-definite
[CM12a].

Positive-kernel
[BKV14].

Positivity
[BM11, BP14, FF10, GK14c, HH11a, JN13, JS13b, KS12a, Kus12, Pe114].

Positivstellensätze
[Cim11, SS12b].

positive-definite
[CM12a].

Positive-kernel
[BKV14].

Positivity
[BM11, BP14, FF10, GK14c, HH11a, JN13, JS13b, KS12a, Kus12, Pe114].

powerful
[LLH10, LYL13, YW11, ZLH +14].

powers
[BLdPS10, Bie14, CL13b, DXL13, GW10, GKR13, Jai11, JLW11, Pat10, Rim12, SS10b, WWG10, WZ13d, HOT13].

_pp
[Bar10b, Gar12, Grü12, Lim13b, Rod12a, Tam12, Zha12a].

PPT
[Lin14a].

pre
[BM13c, Pop12].

pre-Hilbert
[Pop12].

pre-Jordan
[BM13a].

preconditioned
[Jbi10].

preconditioner
[CJ10, DKOT12, GOSV12, Raf14].

preconditioners
[JZT14, LZ11a, PZVJ11, TDT13].

Preconditioning
[BTYZ12, PIM +10, SS13b, Tre11, TD11, Wan11b].

predetermined
[MVP10].

predictable
[KSI11a].

Preface
[ACGN10, ACT14, Ano10u, Ano11-27, Ano12-29, Ano12-30, BBD +11, BBSMT13, BBG +13, BFB13, BBD +13, BGL +11, CFPT12, EGLR14, FKLT13, KPRT14, BFH +12].

Preliminary
[Ara12].

Preprocessing
Prescribed [Kra12, Bar12b, BCDp11, BMSW10, BCS10, BC12b, BC14b, Fri11, LL10e, MS13c, NR10, Psa12, RS2a, RS14b, SDNS13, WL10b, YT13b]. presence [LS13a]. preserve [Cos11, FdC10]. preserved [DV10]. preserver [BMGMC12, RˇS10]. Preservers [BSK12, Ben13, FHL11, HHL10, AMJ14, BEM12a, BEM12b, BSKL13, CD12a, Cos14, CFL12, CLHQ14, KSB12, LPS13, LT11b, dSP10e, dSP12b, Per11, RdSP11, SA14]. preserves [Hua12b]. preserving [AA11, ABSV12, BB13c, BCS13b, Bou10b, BMS14a, CFL13b, CLS10, CL14b, DD10b, GN14, HLW10b, HQ13, HH10a, HH11b, HH11b, JG10, LL12, LP10, LP12, LFL13, LHL12, Lim10, LL10b, Liu14b, MS10c, PP11b, Rod12b, Ros12b, TGM11, ZH11a]. Press [Bar10b, Gar12, Gle11, Grit12, Lim13b, Rei11a, Rod12a]. Pretty [FG13a]. pricing [PZVJ11]. prime [DF14, DW14, FK13, Hir10, LL11b, LHL12, LL10b, QCH11, SS11b, Sbu10]. Primitive [AB12, CL10b, YY11, CL10a, HL10c, Kim10, Kim11a, KP12, Kim13b, LLH10, LYL13, PPK13, WLHL10, YHY14]. primitivity [Sch11, BM14b]. Princeton [Bar10b, Gar12, Gle11, Rei11a, Rod12a]. Principal [JS13a, BBC14, BFdp11, BR14c, Bri13, BDOvdD12, FG13b, Guo10a, JN13, KB14a, KB14b, LS12d, OTDv12, Sev13, TH11]. Principally [SS13c]. principle [Car11, Kra13, Lon13, MW12b, Pul11]. probabilities [Ber13b, VV13]. Probability [CR10b, LHH13, DD1d, CY13, OMI14]. problem [AW13a, BBdh13, BV11, BM14a, BdFdP11, BCEM12, BBGM12, BCS10, Byd10, CPV10, CI10, CI13, DS11, Dod10, DS12c, DS14, Fun10b, FKRI11a, GS10a, GEP13, GP12, HH12a, HRW09, HMP12, HLS11, HP04, JJKS11, JM12a, JY13, LXL14, LCwCL11, LJ11, LWY14, LGZ14, Mou12, MAM13, MP10, NS12a, NM14, NS11b, Nik10a, OM10, PH12, yPjXL11, PRT13, SS11a, SS14, SS11c, SR12, ŠŠ11e, SMC11, TD11, VS10, Vu12, Wei13b, WJ12, XLG13, YWX13, Zha12c, ZY12b, vdH13, LPK14]. Problems [MNZ10, AA14, AS10, jASZ12, jAS13, ACG14, Bal10, BFF10, BFp12, BT13, BdP13, Bey12, BN13, BC12b, BJRS11, Brä12, BMGMC12, CR13, DAI11, DS13, DKOT12, DY14, GMS12, GE10, GJ13, HMR12, Hug10, HWH14, Jar12, JV11, JRMF12, JW13, KKR11, KZ11, LT12a, LRST10, fLy11, LZ11a, LL10d, LXX12, MS10b, MR10a, My14, Nak10, NRS12, NY14, Pin11, PPK12, PE13, RˇS10, SV11, SH10, SB11, Stu12, TmYs11, Wan11b, Wei13a, wXL14, wX219, XE11, XSS13, YZ11]. procedure [LBLS12, SV11]. procedures [Pál13]. Proceedings [ANO10a, BBG13, BFD13, ANO12-30]. process [BFS11, FFS11b, GMS13, PPZ14, VS13, Vas14]. processes [KSI10, MAGR13]. Procrustes [fLy11]. produce [Tra13]. Product [PGM11, AR10, All12, Aud10a, B13c, BZZ14b, Cal12, Cha13b, CG13, Che14b, CK13, CT14b, Dug12, EM11, FF10, Gha13, GK14a, GK12, HFS13, HTS14, HMT10, HLW10b, HP11, KSH12, KY14, tLyLw10, LPS13, LLF13, LD11, Lim14b, LH10b, Pat12a, dSP11b, RAAGAV11, SP13, Sha13b, Sha11, Tad12, WLG12, ZCW13]. product-set [Cal12]. Products [ACG13b, BM13b, Bot10a, CM11b, SZ14, AM13b, BG14b, CSV14, CLHQ14, DKS10, DD11c, DD14, ENS10, FHL11, FJ14, GKV11, HM14b, Hua11c, JG10, Kin12, KN13a, KN13c, KLZ14a, Koz14b, Kub13, LW12e, MARC13, PEP12, PV12, QC11H, SCSS10, Slo13, Slo14, Tan14b, Voy13, ZH11a, ZZCW13]. Professor [Lin11]. profiles [CEY14]. programming [AHAPP10, GS12b, GMH14a, LL13, LL13d]. programs [Sag11]. project [NN10].

radii [Sri13, CGR14, MZ11]. radius [CLS10, FKR11b, LSC11, LL11c, ST13, XZ13b, XG13, YWS11a, YWS11b].

radius [Alt13, Aud10a, BMSW10, BMSW11, BL10b, BNP11, BNP13, BC14c, BS13b, CT10, CLS13, CKST11, CyDKL10, CTG13, DHLX12, Dai12, DP10, DZ13, Dum13a, FY10, FN10, GLS10, GL12a, GP14, GR10, GMV11, GLS12, GL12c, GLS13b, HJZ13, HY14, Hua11c, KI10, Koz10, Koz14a, LLS12, LL13a, LS10, LT11a, LWZ11, LWV12, LP12, LS11b, LCZ10, LL10e, LX13, aLwW13, LLT12, MR14b, MP13a, NP12, Nik10b, NOL13, NLL13, OMI13, OM14, Pep11, Pep12, SWT13, WXH10a, WB12, WZ13c, XZD14, XZ14, YFW10, ZL12a, Zha12b, ZHG13, Zhu10a].

dimension [Dum13a].

dimension-rational [Dum13a].

Rado [CP12, OLW14]. Rado-Horn [CP12].

dimension [MM10a]. Randolph [CFK10a, GMRS14, GFB14].

Random [Bod13, LAL11, Bos11, CLL13b, DLS10, DLL11, PS12, Wik11, Wik12].

randomization [PQ12]. Randomized [PQ10, PQZ13, GO12, NT14].

dimension [Ali12, BT11a, CG13, Che14b, CN10b, CN11c, CN13c, DWX12, DDK14, DGH+11, For14, GH11, HHI12a, KI10, LPS13, NRS12, PT13a, PGM+11, Sha11, SL14, VU14, WC11].

ranges [AGC13a, BS12a, CGW13, CN11a, CN12b, CP11, CLS10, DDI1d, Gau10, GW13a, GTW13, GW14b, GZ13, HMP+11, Lee13a, TW11b, Tsa11, WZ13a].

Rank [BCS13b, DP12b, FGvRR13, IW13, LT11b, LX13, MNZ10, iO12, AAF+12, ABV10, AHL+14, BGV12, BT10, Bal14, BBF+10, BBF+12, BKM+13, BBC+14, Bar10a, Bar13a, Bat14, BMN+13a, Bea12, BDG13, BR14c, BSU14, BC13, BdS10, BH13b, BRLS12, BHZ10, BDOvdD12, BKMS12, BZZ+14b, CT14a, CR14, CR10b, CAV13, Cau11, CHY11, CHY12, CN11a, CN12b, CLS10, DHLX12, DoMP09, DGH+10, Dea11, DS14, DBZZ14, DGMS10, EHH+12, FM11a, FP13, FdC14a, Fra13, FL12, Fri13, GW13a, GG12, GS12f, HHMS10, Hog10, HY10b, HCY10a, HZ11b, HTW13, IMA10, JKV13, KG12b, KRS13, Kim11a, Lee13b, LT10a, LC10, LT1X4, MAGR13, MS13a, MR13, MR14a, MZ12b, MQ13, MQ14, MMRR11, MMRR12, Mit11a, MNZ12, dSP11a, dSP12a, Per11, Pin12, RW12, Sad12, Sad11, Sav12, SM13, SHS12, Shi11, Shi12c, SvdH11].

rank [SK12, SC10, Tia11b, Tra13, TDT13, WFM11, WZL13, WMZ14, Zha12d, Zim13].

rank- [BdS10, Fra13]. rank-1 [SC10].

Rank-one [LX13, Bat14, DHLX12, Sag11].

Rank-preserving [BCS13b]. Rank-width [iO12]. Ranking [BEK13, Dah12b, Tra13].

Ranks [BL13b, BSK12, BSKL13, Ber13b, BMM14, CHLW14, Fri12, JZ11, KSB12, MQ11, Shi12b, Shi13, SSM13, Tia12].

Raphael [Ano13-27]. rate [CNPP12, YE13].

rates [GL10c]. ratio [EJLS11]. Rational [BK14, Duk12, Duk15, Lom11, AL13b, AIL12, Baj14, BT11b, Boj13, Br14, Dum13a, MR10b, MR14c, Rad13].

rd [CKAC14]. Re- [NC13]. Re-nmd [NC13]. reachability [BLLM13].

reachable [SS10a]. real [Ag14, AKM13, AAT12a, Bal14, BGP13, BH13a, BDOvdD12, B¨un14, Cau11, CGSCZ10, Coh14, Dai13, FGvRR13, Gre12, He14, Ikr10, Kal13a, Lav10, MS10b, MSS12, PR13b, RdSP11, Sag13, SYH14, WZ13d, W´od14, XZ13a].

real-nonreal [PR13b]. realisable [ES14]. realizability [CL14b, DHLX12]. realization [OZ10].

reciprocals [GIP12]. reciprocity [SR13a].
second-neighbor [Bot13], second-order [LBS12, LS14, SS11d]. section [Sha14b].
Seidel [DHS10], selecting [HYF14, YiKS12]. selection [dHM11]. Self [OR12, RS14a, SS11d, ADW13, BT13, DL14, DZ12a, Gle11, HSZ12, Kam10, MSS14, SSR13, Tiff, vBM13, BDK11].
Self-adjoint [OR12, RS14a, SS11d, ADW13, DZ12a, HSZ12, SSR13, vBM13]. self-dual [MSS14, Tiff, BDK11].
self-organizing [Gle11, Kam10]. selfadjoint [Dra12a, MMRR12, RS12b].
Semi [LW12c, Vas14, AS12a, BCS13b, BLL12, BL14, CKAC14, CT14b, DYW14, FKR11b, GL10a, Gon11, Hun10, KN13b, LLB13, Lopol1a, VV13, ZH11a, vdW14].
semi-Cayley [GL10a]. Semi-centralizing [LW12c]. semi-convergence [DYW14].
semi-definite [BCS13b, BLL12, BL14, LLB13, vdW14].
semi-groups [KN13b]. semi-Hilbertian [AS12a, Gon11]. semi-invariants [Lopol1a].
semi-linear [CT14b]. semi-magic [Hun10].
semi-triple [ZH11a]. semicrossed [DD14]. semidefinite [AHAPP10, Bal10, BMW10, BM113a, CPV10, Dea11, EHH13, FJ10a, FS14b, Fur10b, Kak10, LV14, Mit11a, MNZ12, Net10, Pop10, Sag11, Sag13, SM13, SvDH11, WXH10b, Zha14b, Zim13].
semidefiniteness [Drul4]. semifields [Sin10a].
Semigroups [Sin10a].
Semigroups [Sem10, BPA11, BMR11, CD13, Jun12, KLP13, Mar10, OR12, PRW11, Pop13a, SLS13].
semilinear [KP13, ySpW11, ySpW12, ySpW14, dOHKS12, dOFK13]. semimodules [AGNS11, BH11a, LT10a, Sin10a, SN12, SN14, Tan14a, Tan14b]. seminorms [GD11a]. semipositive [JT11b].
Semiregular [BL10b]. semiring [FKW13, JP11, SB11, Tan14b]. semirings [AB12, BHRM12, DO11a, DO11b, KP13, KSB12, Per11, SS11c, Shi11, ySpW11, ySpW14, Tan14a]. Semiseparable [Gemi10].
sequence [AW13b, BBC14, BMSW10, BDS13, BDFP11, BCFP12, BDOvdD12, CGGR13, CGTR14, CH12, CK14, DP10, Lac13, aLwW13, MN12b, PPK13, Pep12, TD13, Tan10a]. sequences [BV12a, Ben10, BHI10, CC12, CL13b, CP11, Dumi13a, FKR11b, FKR12, FKM13, HNZ12, JJKS11, JMP13, LL10c, LM10c, SCS11, Sev14, SV13, VS14b, Wan14a, YI12, dF10]. sequential [Dug11].
Series [Gar12, Rod12a, Zha12a, dMR12, BGP11, Boj13, He11, KM14, Lac10b, Sio12a]. set [AHLvdH13, BS14, BB13c, BHvdH11, Cal12, FdC10, JZZ13, Kin13b, LT11a, Lopol1a, LdiP11, MS13b, Mar14a, Roh11, Tan10a, XWD13]. Sets [FdC14b, PV12, BBH12, BJ10a, BH11a, Cal12, CSZ10, CR10c, CP11, CLHQ14, Dau12, FH14, GLZ14, HT14, HHL10, HRT13, HCY10b, JSS13, Lim13a, MH13b, Mey12, MS11b, NN13, Net10, Pep12, PR13a, Row14c, Sin10b, VW10b, WLHL10, YHH12, ZY12b, ZSW14b, Ziv12, dS12a, dSC14, vdH14]. setting [GJ11, Gul11]. seven [BSU14]. Several [GL14, ZY12b, CHZ13, FJ10b, Pro10, SV11, Zha14c].
[KKLY14, RBP12]. Sobolev-type
[KKLY14]. SOC [PCC12]. SOC-convex
[PCC12]. SOC-monotone [PCC12].

Solution [Ano12a, Byd10, Dru12b, HJLS11, KPRT14, LwCJL11, CQYY13, CI10, DS11, DD11a, DDG+13, DKS13b, Dod10, DS12c, GKL11, HMR12, HLS11, Ji12a, Jim10, KMS13, KD12, LwCJL11, LHZ11, Ldp11, MS13a, PLS14, Per14, Roh11, SMC11, VS10, pWIW14, Zha12c, ZLD11]. Solutions [Br¨a12, Ano12a, AG10, BLLX11, BM10, BM12b, DfMM10, DfMM12, Fur10b, Kyr13, LV11, LV12, LL13d, LTX14, Mir12, Miy13, Miy14, Sag11, SW11, WW10, WD10, XSS13].

Solving [BN13, MZ12b, MSP13, PQ12, SB11, TmYsH11, WCL13, Bey12, DN10, KK13, SK14, SHZ10, XX14, ZY12b].

Some [AT14a, BDH+12, BCD10, CPZ13, CW12a, CGM+10, Cra13, CHQ14, CI13, Dal13, DD14, FH10a, FH13, Fie13, GL12c, HG11b, Hun10, JLN13, JLN12, KK12, KK13, tLwWqW10, LJ11, KLN13, LCZ10, LSD14, MA12, Maz10, MK12, MS14b, Naj13, NPP13, SYH14, Snp10, Sta12, Stol11, TKL14, TPZ12, Wad14, WXM10a, YW10, YY14c, Zha14c, ZBW12, AM13a, AdFM11, BP14, Bar13a, BM12b, BR11a, BZ12a, BW13, CRSS14, Cau11, CHZ13, CFL13a, DfMM12, Duk12, Duk15, Fan12, Fr14, Gha13, GL10c, HLW14, HG10, HG12, HLS11, JLN13, K10, KKR11, KJK13, KP14b, Kus13, Kyr13, LL13D, LY13, LW12e, LHL13, MZ11, MR12, MN12b, Nat13, RRK12, RMAJ10, RM10, Sco13, SHZ10, SSZ13, wTlW13, Uch10, VU14, WW10, WFM11, WW13d, Wd14, Wj14b, YT13a, Zha12b, Zho11, ZCW13, ZZX10, ZH2].

[Bra10, And13, BV12a, Bai14, BR11, BFK+13, BEV13, BPDC14, DK13a, DK13c, CD12c, Dai13, DK11, DK12a, DK13b, DV14, DWXS12, DK14, FP14, GH13b, GN14, HKK+12, HN14, dHLMS13, KLP12, LSV12, MARC13, Mat13b, Mer10, MMM13, PO10, dSP11b, dSP12b, PG1M11, QH10, Ros12b, Tim14, pWIW14, WCI11, vBM13].

Spaceability [BS14, BCFP12, CGMPSS14, RS14c]. spaceable [BFPSS12].

Spaces [¨Ozd13, dSP14, Qui11, AS12]. AM13c, ARZ11, ABGPSS14, BG13, BDD14, BdF11, BDPF11, BDPF11, BCFP12, BCF12, BRZ13, Bad11, CD10, Can11, CM13, Cir14, De 11, DW10, Dra12a, DP10, DX13, Dub14, Fan12, FM11a, FFS11b, For14, GXZ14, Gon11, GL13W, GL14, HMT10, HZ11a, Hua11a, HZGY12, HZJ12, KP13, Kec13, K¨oh14, Lac13, L ¨an10a, LMM11, LM12, LHG10, LT11b, LT13, MMS12, MZ12a, MZ11, MM13, MN12b, OL10W, dSPA12, Pep12, Per11, PT13a, RAAGAVS11, RS14c, SP13, SSt14, ySpW11, ySpW12, ySpW14, SM12, TD13, Wal11a, WLM11, WY13, Wój14a, Wol12, Wor14, YW10, ZHQ14, de 13, dSW12, tHR13]. spanned
[LT10a, RY12a]. Spanning [GS10b, Bap10, CW12b, Gom10, LS13b, LHL14, LHGL14].

Sparse [Ano12a, Dun13b, GP13a, KR12, KPRT14, PT14, CCL14, MSP13, NNW14, Rue13, Wan11b]. Sparsity
[KKL13c, DT11, JKN14, MZ13, Zho12]. Special
[BM13c, GRS+10, HP12a, LPPdS10, Stu13, AAIH13, BDH+12, DGM10, FV13b, FKLT13, HLS10, Nor12, Nor14, PdFDV14, RR14, TZ12a, TD13, Xu12, BBB+11, KPRT14]. specified
[Nik10b]. Spectra
[Bai12a, Bai12b, Bru10, CD12b, DL14, DK13d, JMP10, LL13c, MM11b, Nor14, Vla12, ABS14, AH14, BV12a, Ben13, Ben14a, Bou10b, BZ12b, BZW14, BW12, ...]
CTW11, CL12c, CS11, Ili10a, JZ14, LaG13, Lai12, LS14, LSD14, NP14, WS12, WY14a. Spectral [ANPQ12, AS10, AW13b, Aud10a, BV13a, CR10a, FN10, GM11b, HY14, JS12, Kal13b, LS11b, LHW11, aLwW13, Lop11b, LTI12, MW14c, RM10, SS13b, SSR13, DDM14, UZ14, WB12, WC11, Alt13, AH10, BT13, BaP13, BM810, BMSW11, BR14b, BL10b, BNP11, BNP12, BNP13, BH13a, BC14c, BZ12a, BS13b, CT10, CLS13, CLL12, CTG13, CS10b, DHLX12, Dai12, Dai13, DD10a, DP10, DZ13, Duml13a, FY10, FZ13, FG10, FG13b, Für10a, FJ10b, GL12a, GR10, GMV11, GLS12, GL12c, GLS13b, GW13b, Gün12, HJ13, Hi12b, HH11b, Hu11c, JZ13, KG12a, Koz10, Koz14a, KKL13c, LLS12, LL13a, LS10, LT11a, LSC11, LWZ11, LWV12, LS12b, LC10, LLI10e, LL13c, LW12e, LWHL12, LH13, LHL13, LHS13, M11b, MS13c, Mou12, MP13a, NP12, Nik10b, Nik13, NOL13, NLL13, OM10, OM13, OM14]. spectral [PLL12, Pep11, Pep12, PR13a, PS12, PRT13, PS14b, SWA12, SBMT10, SWT13, SR12, Ste11, WXH10a, WZ13c, WL10b, XZ13b, XZD14, XZ14, XG13, XE11, YFW10, YWS11a, YWS11b, ZW12a, Zha12b, ZHG13, Zho10, Zhu10a, vDF14, CHK13]. Spectrally [Bot10b, ES13, GS11a, GS12a, GS13b, MG814]. Spectrum [DHKQ13, KM12, Sux13, ACM+12, AR10, Ang13, jASZ12, AT14b, BS11b, CJ12, Cos11, Cos14, CT12, CI14, Drn13b, FTDA10, GL10a, HLW10b, HZ12b, Kra12, LV11, LHWS13, LL14b, MSP11, SDNS13, TW10a, Ter11, LWZ10, ZH11a, ZLI11, vBM13, RY12b]. Spedicato [MAGR13]. speed [Zhu11b]. Spheres [PP13a, KK10, KK13]. Spherical [DGJ13]. Splice [KM12b, MD13]. Splice-over [KD12, MD13]. Spin [PP13a]. Spitzer [AS14]. Splines [ACG14]. Split [JZ11, MD12a, MD12b, MD13, Ros12c, ZY12b]. splitting [DYW14, MZ12c, Rad13, wXL14, wXZ19]. splittings [JM12b, MS12]. spread [CL14a, Drn13b, EHH+12, LL10c, OdLdAK10, SK13, WZL12, XM11, YL10]. Springer [Tan12, Zha12a]. square [BP10, Bot12, BLS14, CHE14a, DD10a, DF14, FH14b, GS12d, Lai10, MARC13, Nor12]. square-free [GS12d]. square-zero [BP10, Bot12, Che14a]. squares [BW11, Byd10, CMNW14, CCL14, DS13, Dun13b, GJTP13, HMR12, dHLMS13, Ji12a, Kyr13, LLN+12, LJJ11, LWY14, LZZ11a, LGZ14, LKX12, MM10c, MR10a, Mi14, Nor14, PO11, PPK12, Wu10a, LB14, LKLN13, SS10c, Rod12a]. SSM [JV10]. SSM-property [JV10]. stabilisation [LS12d]. Stability [CN11e, Fou14, Kal11a, Lan13, Vul12, BV12a, BG12b, Dai12, Fis14, FV13b, GNV11, GM11a, HDPT12, HKP13, HRT10, KKB11, LS11a, Mor10, OM13, PM10, PKR12, PP13b, RJH11]. stabilizability [FV13b]. stabilization [Liu13]. stabilizer [LWM10, LWM12, Ye11]. Stabilizers [GS12e]. stabilizing [BO12, GKL11, Per12]. Stable [BLX11, JZ11, BR14c, BBS12b, DX13, GOvdD12, HZ12J, Küh14]. stably [DP12b]. Standard [AAT12b, ySpW12, BM12a, GH11, HH14, Hil13]. Star [DM11, RTR10, Row14d, JR14, PRT13, Row12b, Row14b, Row14c, ZSWB14]. Starlike [BZ12b, SH12]. stars [FG13a]. State [Liu13, ARZ11, BP10, BLWM13, CFG+14, CG11, FG13a, GKS+10, RV13]. state-dependent [GKS+10]. states [AS12b, CTH14, HQ13, MS10c, SS10a]. static [Per12]. stationarity [Bos11]. stationary [FS14b, Gu11]. statistical [KS12b]. statistically [CC12]. Statistics [Zha12a]. Stein [Ara12, Fuh10a]. Steiner [FMT12]. stencil [XX14]. step [BCY12, DHLX12]. Stewart [Bai11]. Stiefel [FV13a]. Stieljes [FKM13, PRT13].
Stirling [CD14]. Stochastic [Ben10, Pan11, DHS12, Fan10b, GS10a, GS10b, Gul11, HL11b, Hun10, HP04, JP11, LL12, LXL+14, LL14a, MZ12b, Mou12, MAM+13, PP11b, PSW11, SK14, Vas14, XLG+13]. stochasticity [Sha13a]. Stokes [OM10].

Structural
[CJ11, Zho12, DIP13, JDY13, LZ12a]. structurally [KBS13]. Structure [BR12, Bre14, Cer10, DGU14, ET13, Fuji10, LL12, AA11, ART13, BD12a, BBdH12, BRA11, BJRS11, CKS10, EFN09, EFN10, HG12, Hult12, JLN13, Ji11, KRS13, KW13, LS13d, MD12b, Mar14b, Mjo14, Nit10, OT12, PGM+11, RE11, Rod12b, TGM11, ZYL10].

Structured
[AAK11, AA14, BCF14, BF14c, CLCL12, AA11, AAT12b, Bat14, BdP13, BG13, DKOT12, DT11, HF12, HL11d, Kak10, MMRR11, MMRR12, ST13, LBSL12].

Structures [DV10, GW14b, AM13c, BOZ10, BE10, BDV12, CNT12, CL12b, JKN14, KM13b, MW14a, MRR11, RMT11].

student [DD10c]. Study [CNT12, KZ11].

Sturm [jAS13, KZ11, Qua10, SB12]. sub [JS13b, Nie13]. sub- [Nie13]. sub-direct [JS13b]. subadditivity [BP13].

subgroups [CJ14, HS12b, Slo12a, Slo12b]. subject [YFW10]. sublinear [NdM13]. submanifolds [Lim11b]. Submatrices [JS13a, BFdP11, FG13b, LS12d, LSH12]. Submatrix [FJM14, JMP12, BC14b].

subsemigroups [Tan11]. subsemilattices [ABK14]. subset [Dai13, dHM11]. Subsets [Wó14, AM13c, CMRR13, Fra12, Liu14b, RS14c]. Subspace [Gre13, BEM12b, BT10, BT14b, Bou13, Cha10, DZ12a, FP11, JR11, MSS12, NP13a, NS11a, PY10, dSP11a, RRZ13, Wój14b, XE11, YZ11].

Subspaces [DGMS10, AW13c, BG12, BFK+13, Cir14, Dom10, DKM+14, GH13b, GV11, Gro14, GS12e, GLW13, HW14a, HG11a, II12, Irv12, MMP13a, MD12c, PPP13b, SSR13, WZ14b, BDK11].

substitutions [BK11a].

substructuring [Blö12]. Subtracting [SC10]. successes [MS13b]. such [KY11, LSTW13, MP14a]. sufficiency [XW11].

Sufficient [EGR12, CHK+13, LLD13, LS12d, Sha13a]. Sun [PR10, DDM14, AFHP14, AKZ13, AM14, AOTR13, BZ13, CSV14, DKL13, DZ12c, FHHT11, HMTR10, HTS14, Kaw12, KLZ14b, MPRW11, Mer12, Nik11, TT10, TT12, TZ13b, Zuo10]. summable [dMR12]. Summary [DK13a].

Sums
Theorems [CTW11, LHZH11, Bar12a, BFdpP10, Hill12b, Nak10, Pin11, Sat11, Sat14, YW10, dCdldrM14].

Tensors [FH10c].

Tensors [Bra10, TS12, Bal12a, Bal12b, BGK13, BBCC13, Ber13a, Ber13b, BBM14, BZZ+14b, BL31b, CPZ13, CQYY13, CKA13, DQW13, FdCR10, Fri12, FKLT13, Fri13, HH14, KM11, Qi13, RV13, RE11, Sav14, Sha13b, SSZ13, SQ14, SSM13, UV13, Vla12, XC13, YHY14, YY14c, YY14b].

term [BSK12, BSKL13, BKMS12, FdC14a, KSB12, Tia12].

terms [CGMS10a, HJZ13, Hun14, MW14c, RL13b].

Terwilliger [GZH14, Kim12].

tessellations [CSAC10, CSAC11].

test [Ara12, Hua13b, Pe˜n14].

testing [Wal11b].

tetrahedron [IRT14].

Tetris [CHK13, Tia12].

tetrahedron [FH13, Kus12].

theoretic [BB13c, B¨ot13, FH13, Kus12].

theories [MLC+10].

Theory [Ber09, BFH+12, MOAJ11, Sla10, Tam12, Zha12a, Ano12-30, AH10, BV12a, BPA+11, Beh13, BS10, BBS12a, CC14, CS10b, DD10a, DD11a, DD11d, GL10c, Ika11, JZZ13, KZ11, LN12, MMRR11, MMRR12, Nik13, NV12, PO10, RR12, RL13a, SB12, Sei14, SRdAG10, TN14, Zha12d, HB12, Lim13b]. Thin [God10, God12, Shi12a, Cer10, Kim12].

Third [Bra10, KM11, SHS12].

Third-Order [Bra10, KM11].

Thirring [Aud13a].

Thompson [ISYY11, Lim13a].

Three [Cha14, Dor10, HLA14, Kar11b, BS11d, CKST11, Cir13, DP12a, DD11c, Dra14, KS13b, LZG14, MAS12, dSP10b, WBWH13, vDO11]. Three-by-three [Cha14].

Three-equipped [Dor10].

Three-parameter [Kar11b].

threshold [Bap13b, JTT13, VDVJ13].

thresholded [GR12].

tilted [Bod13, BW13a, DHS10, FMT12, HS12a, Sin10b, Sz¨o13].

Three [Cha14, Dor10, FMT12, HS12a, Sin10b, Sz¨o13].

Tikhonov [LRV12].

tilting [PY14].

Time [Pol12, BCY12, BLM13, BJ13, DT10, DZ12a, FV13b, HDPT12, HRT10, Jun14, Kir10, KM14, Liu13, Mah11, PKR12, RMT11, Sad12, Sha14a, WZ13b].

Time-delay [Mah11].

Time-domain [Pol12].

time-invariant [DZ12a].

time-varying [Liu13, PKR12, Sha14a].

times [BRZ11, G´om10, PR10].

Tits [GS12b].

TN [JW13].

Toeplitz [BH12, BS12a, BCD10, BBM12, BF14b, B¨un14, CRS14, CGM11, DK13e, Eo11, Gar13, GG13, HR11, KL12, KMS13, KW12, LMY11, LJJ14, MS11a, RR14, Rim12, SCSS10].

tomographic [PS14a].

TOP [Sha10b].

Topical [SN12, Sin10a, SN14].

topics [Ano12-30].

Topological [Bud11, RS12c, ABGPSS14, FRS14, JZZ13, TN14, AJ13].

topologies [Sha14a, ZY14].

tori [CSAC10, CSAC11].

torsion [Wag11].

Total [HC10, LB14, BP14, DUM13b, Kus12, LJ11, PO11, Pe˜n14, RMA110, YMY12, SS10c].
Totally
[BK10, FJ11, Gar10, HJN12, HWG14, AG13, CRU10, CRU13, CRU14, CDP10, FFJM14, GL12b, Hua13a, KS11c, Gar12].
tournament [BRLS12]. tournaments [BF14a, NS12c]. TP [HJN12, JW13, PS14b].
TP-critical [PS14b]. Trace [Aud12, BLdPS10, DK13e, LLB13, FL10, HH13, Hia13, KLS12, KK14, Lu11, MY14, MSvW12, Ros12b, Spe11, WLHL10].
trace-preserving [Ros12b]. traces [FF10, KHG14, WXH10a, WZ13a]. track [Han13a]. Tracts [Lim13b]. traditional [SLS13]. traffic [FGQ11].
training [DT10]. transfer [BK14, BP10, CFG+14, CG11, FG13a]. transfer-function [BK14]. transform [BH14a, Boj13, BJ10b, Bri13, DH10b, FK13, HFS13, KB14a, KB14b, O'D14].
transformation [DMMY10, Lak10a, Li12, LLMZ12, TZ13b, XZD14, XE11, ZLL12].
Transformations [FKM13, BB13a, Bal10, Buc10, DK13d, DD11b, DGAM14, DFS14, GTR12, HG10, HG12, JV10, RAY14, Sim10, wTIW13, Tao13, TG13, TGM11, VW10b].
Transformed [KS12b]. transforms [LdSP11, LdS13, Xu14].
transition [BANP12]. transitive [Kuz10, MW12a].
transpositions [KM12]. transversals [AGK11, Fun10a]. treatment [AMPT13].
tree [Bap10, CGTR14, DT11, FHT11, Góm10, GS10b, LLS11, MR14b, SHT12, XM11].
tree-based [MR14b]. tree-structured [DT11]. trees [AJRT14, AW13b, BL10b, BZ12b, CJ12, CW12b, DZ11, FZW11, FHT14, GFY10, GLS13a, HL11a, HT10a, wH13, JNS13, KS13a, LSC10, LT11a, LWZ11, LW12b, LSI13b, LGSC14, LY11b, LZ14, LHL14, LHGL14, MWZ13, NP13b, NOL13, PLL12, PfDFV14, RJ10, RJ11, Row10, SvdH11, SWT13, Tan10a, wTmS12, WT12, WF14, WL10b, XF11, ZZL11, Zhu12b, vdH13, JT11a]. tri [EN11].
tri-additive [EN11]. triangle [Dea11, MPSS10, PY10]. triangle-free [Dea11]. triangles [He13, LHL13].
Triangular [DGMS14, Kaw12, ÁvW11, ÁvW13, BBG14, BG14a, Ben11, BE12, Bie13, Cir13, CM14, CI14, DY14, DW12a, DWW14, DW14, ES13, Ere13, FFG+11, FdC10, Gho13, HC14, HW11, JQ11, LMY11, MW12a, VS11, Wan11a, WWD13, WW13b, WX11, WMZ14, WX10b, WX12, XSH14, YZ13, YZ10, ZZ10, ZZ12].
triangularizability [YT13a].
triangularizable [dSP12c, RY12a]. Triangularizing [T TZ13]. trichotomy [MSP11].
tricyclic [CL11a, GL12a, LWZ11, LY11a].
Tridiagonal [BC14a, NT10b, NT11b, ÁNPQ12, AMJ14, BT13, BDH+12, BDG13, BC12a, BK12, CM10b, GG13, HH11a, INT11, IT11, KHG14, LHL110, MS11a, NT10a, Qua10, Rim12, SC12, Van10, Wül13, dF10, dS12a].
tridiagonalization [PPZ14].
trigonometric [CN11b, LdSP11, LLMZ12, Sra13, ZLL12].
trilinear [DS10]. triple [Mol13, Reh10, Reh11, SM12, XW12, ZH11a].
triples [AAT12b, BM12a, GWH13, HWG14, wH12, Siv12b, Siv12a, Ili10b].
Tripotency [Kis15, XX12]. tripotent [Kis15, XX12]. tripotents [BY11].
trivectors [DK13a, DK13c, DK11, DK12a, DK13b].
Tropical [AGM14, AGK11, BS11d, DHS12, GS12f, dIP11, Cas10, CJ11, GMH14a, GMH14b, JK11, KNS14, LdLP11, Shi12b, Shi12c, SLS13, Wag11, Wil11].
tropicale [Cas10]. truncated [DK13e, Sto12].
Tucker
Two
Two-bycycle [LB14, BS11a, BS11b, BS12, BSL13, CMG14, CN10a, HO11, Hil14c, HMP12, Jun14, Kis15, KW12, KKM13, KR10, Lars11, LS11, LSR11, Lop11a, LMT10, MW14a, Mar10, MH13b, MP10, NR10, NS12a, PPZ14, dSP10c, dSP12c, Pet10, PWS11, SW11, SH13, TZ12a, TH10, TZ13b, WBWH13, XX12, ZW12b, Ziv12, Zuo10, FF10].
two-by-two [BB13b, KKM13].
two-cyclic [LMT10].
two-dimensional [Ma11, LwCJL11].
two-level [KW12].
two-parameter [HMP12, MP10].
two-player [Jun14].
two-sided [LYS13, Seg10, PPZ14].
two-variable [AIL2].
Tykhonov [SS10c].
type [AiS13, AAT12a, AK11, BR14a, BRA11, BdlC14, BFS11, BC14a, CL12a, CA10, Dai12, DD11c, Dra12a, FPC13, GH13b, GWH13, GD11a, He11, HM14b, HWG13, HWG14, wH12, IS14, JKN14, KKLY14, Lee10, Lin13, Lin14b, LKX12, MFGD14, NY14, NT10b, Pag12, Pat12a, Rho10, ST10a, SE13, SS10c, Sch10, Seo13, Sev10, Sev13, Tao11, TPZ12, Wad14, Wik11, Wik12, Wil13, Wol12, Wor13, CGGS13].
Typical [SSM13, Bal14, Ber13b, Fri12].

UK [Lim13b].
uniblur [Ern13].
Unbounded [And13, CGM12, For14, GMMFPS12, Pop14].
uncertain [Liu13, Sha14a].
Uncertainty [Yan10a, GJ11, MW12b].
unconditional [LM12].
underapproximation [GP13a].
underdetermined [Miy14].
Undirected [CGMJ14, CFHL14, FS14a].
Uni [ZHZF13].
Uni-mode [ZHZF13].
uniblur [FGS11].
Unicycle [AW11, AKM14, BMS10, CLL12, DC14, DZ12b, FWW13, FY10, GHW+13, HL12, HJJL10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, Zhu12a].
Unified [AM13b, KJN14].
Uniform [LMMY11, CD12b, JZZ13, Nik14, QSW14, XLC13].
uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12].
unions [Dau12].
Unipotent [CHJ13, Bot10a].

UK [Lim13b].
Uniblur [Ern13].
Unbounded [And13, CGM12, For14, GMMFPS12, Pop14].
uncertain [Liu13, Sha14a].
Uncertainty [Yan10a, GJ11, MW12b].
unconditional [LM12].
underapproximation [GP13a].
underdetermined [Miy14].
Undirected [CGMJ14, CFHL14, FS14a].
Uni [ZHZF13].
Uni-mode [ZHZF13].
uniblur [FGS11].
Unicycle [AW11, AKM14, BMS10, CLL12, DC14, DZ12b, FWW13, FY10, GHW+13, HL12, HJJL10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, Zhu12a].
Unified [AM13b, KJN14].
Uniform [LMMY11, CD12b, JZZ13, Nik14, QSW14, XLC13].
uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12].
unions [Dau12].
Unipotent [CHJ13, Bot10a].

UK [Lim13b].
Uniblur [Ern13].
Unbounded [And13, CGM12, For14, GMMFPS12, Pop14].
uncertain [Liu13, Sha14a].
Uncertainty [Yan10a, GJ11, MW12b].
unconditional [LM12].
underapproximation [GP13a].
underdetermined [Miy14].
Undirected [CGMJ14, CFHL14, FS14a].
Uni [ZHZF13].
Uni-mode [ZHZF13].
uniblur [FGS11].
Unicycle [AW11, AKM14, BMS10, CLL12, DC14, DZ12b, FWW13, FY10, GHW+13, HL12, HJJL10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, Zhu12a].
Unified [AM13b, KJN14].
Uniform [LMMY11, CD12b, JZZ13, Nik14, QSW14, XLC13].
uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12].
unions [Dau12].
Unipotent [CHJ13, Bot10a].

UK [Lim13b].
Uniblur [Ern13].
Unbounded [And13, CGM12, For14, GMMFPS12, Pop14].
uncertain [Liu13, Sha14a].
Uncertainty [Yan10a, GJ11, MW12b].
unconditional [LM12].
underapproximation [GP13a].
underdetermined [Miy14].
Undirected [CGMJ14, CFHL14, FS14a].
Uni [ZHZF13].
Uni-mode [ZHZF13].
uniblur [FGS11].
Unicycle [AW11, AKM14, BMS10, CLL12, DC14, DZ12b, FWW13, FY10, GHW+13, HL12, HJJL10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, Zhu12a].
Unified [AM13b, KJN14].
Uniform [LMMY11, CD12b, JZZ13, Nik14, QSW14, XLC13].
uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12].
unions [Dau12].
Unipotent [CHJ13, Bot10a].
validation [LJ12]. valuation [AW10].

value [ASZ12, AK12b, BFRR14, HM10, BMSW11, CQYY13, DLV13, FDS13, FdC10, MM11a, NdM13, ST10a, XWD13, ZCQ13, ZJ10, ZHQ13]. valued [Bj10a, CD12c, KKR11, Nie13, SN14, Tia12, vBM13].

values [AHL11, AM14, Bu13, CH13, CN12b, CJK+13, EJLS11, HM10, HK10, Kra12, MB13, MP14a, Nik11, SS10d, ZH12].

Vandebril [Gem10]. Vandermonde [BOZ10, DU14, God12, KS14b, MM10b, ZYL10]. vanishing [KLZ14a]. variable [AIL12, KY14, LLY11]. variables [BW13b, DU14, Gua12, HYF14, Mat14a, Pet10, SV11, YiKIS12, Zha14c, dO12].

VARMAX [KS10]. varying [Liu13, KY14, LLY11]. Vector [FM11a, ABGPSS14, BG13, BJ10a, BCF12, DK13c, CD12c, De 11, DK11, DK12a, DK13b, DV14, FW14b, KM14, Nie13, PO10, PP13a, Pol13, RR14, Wall11a].

Vertex [EHH+12, BNP13, BYZZ14, CMRR13, CT11b, CJ12, LL13c, Row12a, TF10].

vertical [MV12]. vertices [ACM+12, AdFM11, BNPN1, DD13b, DdF14, FdC14b, Gum13, HJL10, LLS11, LW11, LZ12b, LJY14, MAS12, NOL13, SWT13, WF10, XZ13c, Zhu10a].

very [FMNW14]. via [ABBO11, Alt13, BFRR14, BY11, BO12, BBS12a, Car13, Cas13, Che13, CK13d, CGSC10, DK12b, Furl12, GRdS12, JJKS11, KL12, KKB11, LR12, LS12a, LM10c, MW12a, MW10, NM14, Qua10, Rad13, RRM11].

view [ATS12, HM10, JKN14, Ter13]. viewpoint [PO10]. viii [Gri12]. Vitae [Ano13d].

Verma [WZ14c, WZ12].

Wedderburn [MAGR13]. Weibull [Fou14].

Weierstraß [BIT12]. weighing [KMNS12, NP10]. weight [AG12, Dub14, LT11a, LSV12, Tan10a, WZ13e]. Weighted [GTW13, JLLY10, LP14, Pá13, PP14, BKP12, CN13a, CN13b, EWY12, GX12b, GHW+13, GS11b, KP14a, KKS12, KKL10, LLY11, KY14, KW13, LLY11, LT11a, MR12, MS14b, NP13b, NSC13, PO11, RM10, Tan10a, TW11a, TW11b, Ts11, VU14, WW13a, WLL14, WY13, XCS13, Yam13, YZF14]. weighted-EP [TW11a]. weights [KP14a, St12, Ts11]. Weil [AIS13].

Weitzenböck [DDF13a]. Welsh [DHC12].

well [iO12]. well-quasi-ordering [iO12].

Wenzel [Lu12].

Weyl [DV14, FKR11b, FKR12, Nak10]. Wg [MD10]. Which [GKK+13, CFK+10b]. DHLX12, FdC14b, Gu14, Ogu13]. Whitney [FV13a, Wag11]. Whittaker [ACS14].

whose [BMSW11, BZ12b, CK14, DU14, HZ11b, HZ12b, HTW13, IG10, LY11a, LSR11, LHW11, MQL11, MQ13, SS14, Sta12, WBHM13, Wu10a, XG13, vdO11]. width [iO12]. Wielandt [HMS13, PR13a]. Wiener [BH13a]. Wigner [Yan10a]. Williams
References

Adhikari:2011:BES

Adhikari:2014:SMP

Ahmadi:2012:MRU

A. Armandnejad, F. Akbarzadeh, and Z. Mohamm-
Alaminos:2010:BMD

Anuradha:2014:SSG

Albuquerque:2014:PCT

Araujo:2014:LSE

Adiga:2010:SED

Cai:2014:QWM

Abreu:2014:SAB

Abreu:2011:BSL

Arias:2013:APO

Arias:2013:PPP

Arias:2014:SPP

Arias:2010:P

Adashev:2014:NGZ

R. Armario, F. J. García-Pacheco, and F. J. Pérez-Fernández. On the Krein–Milman Property and the

Aouchiche:2012:IPG

Aouchiche:2010:SAC

Aouchiche:2013:TLD

Aouchiche:2014:DSG

Aouchiche:2014:DSG

Al-Homidan:2010:MCN

Aouchiche:2011:EVS

Arav:2014:MRS

Aouchiche:2010:SUB

Antoulas:2012:TVR

Abaid:2012:CPC

Abara:2013:NSE

Ahmadi:2014:LAB

Ayala:2013:LFM

Abreu:2014:OTG

Atreas:2011:BIM

Adm:2012:BMR

Audeh:2012:SVI

Ayupov:2013:LDM

AIura:2013:NMG

Akbari:2014:MLE

Afkhami:2012:GCG

Akbari:2013:GSF

Ahues:2013:CNB

Alpay:2013:CCG

Daniel Alpay and Izchak Lewkowicz. Convex cones of generalized positive rational functions and the

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Avrachenkov:2013:APG

Alpay:2014:IPS

Alizadeh:2012:NRP

E. Andruchow, G. Larotondo, L. Recht, and A. Varela. A characterization of minimal Hermitian matrices. *Linear Algebra and its Applications*, 436(7):2366–2374, April 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
Altenberg:2013:SCS

Liu:2013:SRD

Afshin:2013:PNH

Agora:2013:UPL

Akbarbaglu:2013:LSC

Arias:2013:PIG

Asakly:2014:ECA

Walaa Asakly and Toufik Mansour. Enumeration of compositions according to the

Armandnejad:2014:LPG

Abara:2010:OM

Agapito:2013:STR

Alfakih:2013:AMU

Ando:2013:UBI

Arashi:2011:PCB

Anonymous:2010:LEj

Anonymous:2010:LEk

Anonymous:2010:LEl

Anonymous:2010:LEMm

Anonymous:2010:LEn

|-------------------|--|

Anonymous:2013:LEg

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Anonymous:2013:LEk

Anonymous:2013:LEh

Anonymous:2013:LEl

Anonymous:2013:LEi

Anonymous:2013:LEM

Anonymous:2013:LEj

Anonymous:2013:LEm

Anonymous: 2013: LEo

Anonymous: 2013: LEp

Anonymous: 2013: LEq

Anonymous: 2013: LEr

Anonymous: 2013: MHM

Anonymous: 2013: MG

Anonymous: 2013: RL

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Almeida:2013:NCS

Alvarez-Nodarse:2012:SPC

Abdollahi:2014:CG

Arambasic:2012:BJO

João Ferreira Alves and Luís Silva. Periodic paths on nonautonomous graphs. *Linear Algebra and its Applications*, 437(3):1003–1015,
Ames:2012:NDF

Alexandersson:2014:AMS

Araujo:2011:SPM

Araujo:2014:SRM

Atay:2014:SNL

Arashi:2012:SRV

Anh:2011:AGG

Anh:2013:IBS

Abo:2013:WPS

Andriantiana:2013:SMT

Astuti:2013:CHS

Alfakih:2013:AMB

Burer:2009:DBD

Bai:2011:DPS

Baj14

Balaji:2010:CPM

Balan:2012:SSTa

Balan:2012:SSTb

See erratum [Vla12].

Ballico:2014:TRR

Ben-Ari:2012:IFT

Bang:2013:GDR

Banica:2013:DGF

Bapat:2010:CCS

Bapat:2013:MCM

Harm Bartl. The Chemnitz connection. *Linear Algebra and its Applications*, 439

Bottcher:2013:P

Baragana:2012:CBS

Baragana:2013:CFA

Bini:2010:FIQ

Barioli:2010:ZFP

Barioli:2012:GCC

Bruen:2012:CSM

Barrett:2013:P

Borobia:2012:MCP

Borobia:2012:NAM

Borobia:2013:CFR

Bockting-Conrad:2012:TCO

Bockting-Conrad:2014:TPR

Borobia:2014:NMP

Brualdi:2014:NSR

Benhida:2010:SPK

Breaz:2013:NCM

Beitia:2011:RPO

Bendito:2010:KIN

Bendito:2010:GIS

Bendito:2012:MIP

Boza:2012:GAV

Bueno:2014:SSLb

Botelho:2012:MSS

Brachat:2010:STD

Richard A. Brualdi and Geir Dahl. Majorization classes...

Bevilacqua:2013:CRA

Batselier:2013:GAF

Batselier:2014:NSM

Bartolone:2011:NLA

Bebiano:2011:IEP

Botelho:2011:SBQ

Bevilacqua:2013:BTR

Roberto Bevilacqua, Gianna M. Del Corso, and Luca

Bodine:2012:SPR E. Bodine, L. Deaett, J. J. McDonald, D. D. Olesky, and P. van den Driessche. Sign patterns that require or allow particular refined inertias. *Linear Algebra and
Brualdi:2012:PRC

Bebiano:2013:ISP

Brualdi:2012:PRC

Bhattacharyya:2013:DSC

Bremner:2010:AQA

Benkovic:2012:MLD

Beasley:2012:INV

Behrend:2013:FPM

Benzi:2013:RHA

Belardo:2014:BLE

Benner:2012:MBD

Bahrami:2012:LPM

F. Bahrami, A. Bayati Eshkaf-taki, and S. M. Manjegani.

Berget:2013:EST

Bergqvist:2013:EPT

Braun:2013:LCP

Bueno:2014:SSLb

Burde:2014:JJA

Bollhofer:2013:PIC

Bebiano:2010:ACP

Bebiano:2011:EPS

Bebiano:2012:LQJ
Bolten:2011:AMM

Bruaaldi:2012:TAM

Barik:2011:HDG

Bondarenko:2013:SSU

Botelho:2012:SE

Baglama:2014:ADN

Benner:2011:HKS

Peter Benner, Heike Faßben-

Bruhn:2011:BCU

Bhatia:2012:NIR

Bialas:2012:FRC

Bartoszewicz:2013:ALV

Bapat:2014:ITM

Benkovic:2014:GDU

Bru:2012:GM

BGH12

Ballani:2013:BBA

BGK13

-butkovic:2011:P

BGL+11

Bartoszewicz:2011:ANC

Bartoszewicz:2011:ANC

BGP11

Bartoszewicz:2011:ANC

Baker:2012:LRI

Christopher Beattie, Serkan Gugercin, and Sarah Wyatt. Inexact solves in interpolatory model reduction. Linear Algebra and its Applications.

Zhong-Zhi Bai and Apostolos Hadjidimos. Optimization of extrapolated Cayley transform with non-Hermitian pos-

Bourin:2014:JMI

Bhatia:2013:BD

Bulo:2012:ECI

Behrndt:2012:LPM

Bishop:2010:IFS

Betsumiya:2013:UBC

Barriere:2013:FVL

Brunsch:2012:DIA

Barrett:2011:ISJ

Brualdi:2010:SNB

Bahri:2012:NHD

Bini:2013:CKM

Bier:2013:SEE

Agnieszka Bier. On solvability of Engel equations in the group of triangular matrices over a field. Linear

Abderrahman Bouhamidi and Khalide Jbilou. On the convergence of inexact Newton methods for discrete-time algebraic Riccati equations. *Linear Algebra and

Brualdi:2012:TRM

Brualdi:2012:TRM

Bistritz:2010:BRU

Biyikoglu:2010:STM

Türker Biyikoglu and Josef Leydold. Semiregular trees

Boutin:2011:MRP

Biyikoglu:2012:GGO

Benitez:2013:SPM

Buczynski:2013:RTG

Bourin:2014:DSP

Bebiano:2012:RHK

Blumthaler:2010:FO

Bayat:2010:PSF

Balmaceda:2012:LTL

Bobok:2012:MSS

Benner:2013:CAS

Bernik:2013:LAA

Bremner:2013:SIP

[BM13c] Murray R. Bremner and Sara Madariaga. Special identities for the pre-Jordan product in

Bermudez:2013:PI

[BMN13b]

Bernik:2011:PMS

[BMR11]

Belardo:2010:CAC

[BMSW10]

Bourhim:2014:NMP

[BMS14a]

Brualdi:2014:MIM

[BMS14b]

Belardo:2010:SRU

Belardo:2011:GWS

Bauschke:2010:RAP

Bini:2013:SPE

Bose:2011:DSR

Bose:2012:DSR

Bose:2013:MDS

Brambilla:2011:PPI

Maria Chiara Brambilla and Giorgio Ottaviani. On partial polynomial interpolation.
Blumthaler:2012:DPP

Bodmann:2013:RFF

Bojicic:2013:HTS

Boshnakov:2011:FSO

Botha:2010:PTU

Botha:2010:SAN

Botha:2012:STS
Bottcher:2013:OTA

Botha:2014:MDI

Bourgeois:2010:ME

Gerald Bourgeois. The matrix equation $\log(XY) = \log(X) + \log(Y)$. *Linear Algebra and its Applications*, 432(8):1878–1884, April 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Bourgeois:2011:HSM

Bourgeois:2013:CIS

Bella:2010:SFG

Bella:2011:QAF

Bella:2011:RQA

Bozzo:2013:MPI

BP11

Barreras:2012:CJS

BP12

BP13

Basic:2010:PST

Besenyei:2011:CPM

Barreras:2014:EST

Brualdi:2011:CBD

Bourin:2010:AKI

Boasso:2011:CEN

Branquinho:2012:SRO

Bekjan:2014:HTI

Bella:2014:SCM

Bierkens:2014:SMP

Petter Brändén. Solutions to two problems on permanents. *Linear Algebra and its Applications*, 436
Bremner:2014:SRM

Brijder:2013:NTP

Brown:2012:BRU

Brualdi:2010:SD

Brualdi:2011:EC

Brualdi:2013:EC

Brualdi:2014:EC

Boley:2011:CTD

Bracic:2013:HCS

Bottcher:2010:GGB

Bapat:2011:IML

Bendaoud:2011:ALS

Bottcher:2011:CFD

Brodsky:2011:TQT

Bebiano:2012:NRT

2012. CODEN LAAPAW.

Bresar:2012:LAA

Bottcher:2013:CFD

Butler:2013:SBS

Balcerzak:2014:SSC
Marek Balcerzak and Filip Strobin. Spaceability of the

Oskar Maria Baksalary and G"{o}tz Trenkler. On a subspace metric based on matrix rank. Linear Algebra and...

Baksalary:2011:DRM

Barkovsky:2011:HRF

Bayat:2011:AGM

Bebiano:2013:DIS

Bah:2014:BRI

Baksalary:2014:SDD

Bolten:2012:PSA

Buckley:2010:ETP

Budnitska:2011:TCA

Bujanovic:2013:PAR

Bunger:2014:IDE

Barnsley:2011:EPL

Badawy:2012:PTA

Barreira:2012:CBG

Benner:2013:SCE

Bottazzi:2013:BAD

Bergsma:2012:PNP

Bakonyi:2011:MCM

Bunimovich:2012:IGR

Broome:2013:CHS

[Helen Broome and Shayne Waldron. On the construction of highly symmetric tight frames and complex polytopes. *Linear Algebra and its...

[Bu:2014:RDS]

[Bu:2012:SLS]

[Bu:2012:STW]

[BW13b]

[BZ12b]

[BY11]

[BZ12a]

[Byd10]

[Byd10]

Causin:2011:DSR

Cason:2013:IML

Chebotarev:2013:SEL

Caiafa:2010:GCR

Chang:2012:MMS

Carriegos:2014:TFA

Camacho:2014:FLA

Camacho:2013:LAN

Cardinali:2010:RPD

Grega Cigler and Roman Drnovšek. From local to global similarity of matrix groups. Linear Algebra and

Cicalo:2012:SDN

Conflitti:2012:MLC

Carnicer:2010:RMT

Cechlarova:2010:MML

Carmona:2014:DEO

Centrone:2011:GIG

Cerzo:2010:STI

Cheung:2011:PST

Cheng:2013:NNR

Chan:2013:MEI

Couselo:2010:SCL

Castillo:2011:PST

Corach:2012:USI

Chen:2014:UGH

[CGMJ14] Zhao Chen, Matthew Grimm, Paul McMichael, and Charles R. Johnson. Undirected graphs of Hermitian matrices that

Ciesielski:2014:LSA

Castro-Gonzalez:2010:DIP

Castro-Gonzalez:2010:EDI

Camacho:2010:NGF

Cruz:2014:UBE

Castro-Gonzalez:2013:GIM

Cicone:2010:FPP

Carmona:2014:DSU

Chen:2014:ECC

Chang:2013:NRG

Chen:2011:MEI

Chang:2012:CBS

Chen:2013:IOR

Chen:2014:LMC

Cheng:2014:CSN

Chiumiento:2013:NOL

Can:2013:UIM

Casazza:2013:NSC

Choi:2012:EIM

Man-Duen Choi, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze. Every invertible

Cvetkovic-Ilic:2013:SRI

Cvetkovic-Ilic:2014:PRC

Cvetkovic-Ilic:2011:ROL

Casas:2012:ACD

Cimpric:2011:SPM

Cioab:2010:EEE

Cioaba:2010:EEC

Cirrito:2013:GAU

Cirici:2014:CIS

Chen:2010:GSP

Chen:2012:MVC

Cigler:2014:SEC

Corey:2013:PFV

Cheon:2013:ARG

Chan:2011:MMT

Canete:2013:CDL

Casanellas:2013:GME

Cheon:2013:EFO

Cheon:2013:NAH

Choi:2014:MSB

[JHoon Choi and Suh-Ryung Kim. On the matrix sequence $\{\Gamma(A^m)\}_{m=1}^{\infty}$ for a Boolean matrix A whose digraph is linearly connected.
Coloigner:2014:LST

Cheon:2010:ASF

Chung:2011:NBI

Chen:2010:SIS

Shexi Chen and Bolian Liu. The scrambling index of symmetric primitive matrices. *Linear Algebra and its Applications*, 433(6):1110–1126, November 1, 2010. CODEN LAAPAW. ISSN 0024-

Chen:2013:ROG

Chen:2013:SER

Casas:2013:NID

Casas:2011:CEA

Clark:2010:MMP

[CLS10] Sean Clark, Chi-Kwong Li, and Nung-Sing Sze. Multiplicative maps preserving the higher rank numerical ranges and radii. Linear Algebra and its Applications, 432(11):2729–2738, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Chen:2013:SUB

[CLS13] Yingying Chen, Huiqiu Lin, and Jinlong Shu. Sharp upper bounds on the distance spectral radius of a graph. Linear Algebra and its Applications,

See corrigendum [LMO16].

Chiantini:2012:DRS

Chafai:2013:PNS

Cirrito:2014:OGC

Czornik:2010:EED

Chan:2014:CRM

Cardoso:2013:EHG
Chammam:2012:OPC

Conde:2012:OIR

Covas:2010:LJA

Cheung:2010:RBZ

Chien:2010:BHR

Chooi:2010:CAC

Czornik:2010:RDL

Chien:2011:BHR

[CN11a] Mao-Ting Chien and Hiroshi Nakazato. The boundary of...

Chien:2011:CDR

Chien:2011:RNR

Chooi:2011:CAC

Czornik:2011:SLA

Cardon:2012:NMM

Chien:2012:CVH

Chien:2012:DRC

Chien:2013:HFA

Chien:2013:SPC

Chien:2013:SCJ

Climent:2012:CMC

Ceballos:2012:SLA

Cohen:2014:CGI

Costara:2011:MMP

Costara:2014:LSL

Catral:2010:GDG

Cortes:2010:RNP

Chorianopoulos:2011:BJA

Casazza:2012:EIP

Carlson:2011:ESC

Church:2011:MMS

[CPK11] Amber Church, Rajesh Pereira, and David Kribs. Majoriza-

Chandrashekaran:2010:SM

Chandrashekaran:2010:PSL

Chen:2013:SML

Cardoso:2010:SUB

Carlini:2010:PMN

Carvalho:2010:IGR

Paula Carvalho and Paula Rama. Integral graphs and

Crane:2013:SAI

Camara:2014:OSI

Canto:2010:FRF

Ccapa:2010:EDP

Cvetkovic:2010:TST

Cvetkovic:2011:GSC

Cartwright:2013:NET

Chen:2013:HFG

Costa:2010:CGT

Costa:2011:CGT

Campello:2013:PAL

Canuto:2014:DIM

Cardoso:2010:MER

Chang:2010:GMS

Cagliero:2014:CFL

Leandro Cagliero and Paulo Tirao. The cohomology of...

Cuitino:2014:DCP

Cui:2013:SUB

Cioaba:2010:ARS

Cortelles:2013:CIG

Cioaba:2010:ARS

Cioaba:2010:ARS

Cheng:2010:CMF

Chen:2010:SBL

Chen:2011:FDM

Cheon:2012:SRT

Cioaba:2012:EDS

Cameron:2011:HDS

Czornik:2010:PED

Dong:2010:NCP

[DA10] Hongbo Dong and Kurt Anstreicher. A note on $5 \times$

Dahl:2010:MPM

Dahl:2011:PRI

Dahl:2012:MMC

Dahl:2012:MBR

Dai:2011:EBL

Dai:2012:GTS

Dai:2013:SCS

Deng:2013:KIC

Deng:2014:EBU

Deng:2013:KIC

Deng:2014:EBU

Deng:2012:ICP

Deng:2012:PCC

DaCruz:2012:PMS

Dinh:2010:MPZ

DeTeran:2010:FOS

Dinh:2010:MPZ

Dogan-Dunlap:2010:LAS

DeTeran:2011:SEA

Derevyagin:2011:DTJ

Dincic:2011:MTR

Dou:2011:NOP

Duchsherer:2014:SPD

Duffner:2013:RBD

Louis Deaett. The minimum semidefinite rank of a triangle-free graph. *Linear

Dong:2012:SAC

Datta:2012:GWB

Dolinar:2013:SNM

Duncan:2010:ETF

[DHS10] David M. Duncan, Thomas R. Hoffman, and James P. Solazzo. Equiangular tight...

Dinitz:2012:TDI

Dinwoodie:2011:SMB

Dascalescu:2013:FSM

Ducey:2014:IIA

Duggal:2012:QCC

Duggal:2012:PCP

DeBruyn:2011:TDS

B. De Bruyn and M. Kwiatkowski. On the trivectors of a 6-dimensional symplectic vector

DeBruyn:2012:TDS [DK12a]

B. De Bruyn and M. Kwiatkowski

Devecic:2012:CGP [DK12b]

Ömür Deveci´ c and Erdal Karaduman.

Bruyn:2013:CTS [DK13a]

B. De Bruyn and M. Kwiatkowski

DeBruyn:2013:TDS [DK13b]

B. De Bruyn and M. Kwiatkowski

Bruyn:2013:TDS [DK13c]

B. De Bruyn and M. Kwiatkowski

Deng:2013:SDT [DK13d]

Aiping Deng and Alexander Kelmans.

Andrii Dmytryshyn, Bo Kågström, and Vladimir V. Sergeichuk.

Zhibin Du and Zhongzhu Liu.

S. W. Drury and Huiqué Lin.

E. B. Davies and Michael Levitin.

Ralph John de la Cruz, Kenneth L. de la Rosa, Dennis I. Merino, and Agnes T. Paras.

Nguyen Huu Du, Le Cong Loi, Trinh Khanh Duy, and Vu Tien Viet.

Wenxue Du, Xueliang Li, and Yiyang Li.
Du:2010:NNE

Dubsky:2014:CIS

deLima:2013:SLE

dePuente:2011:TLM

delaRosa:2012:HM

[DMS10] E. Dopazo and M. F. Martinez-Serrano. Further re-

Dopazo:2013:DDI

Dolzan:2011:CGM

Dolzan:2011:NGM

deOliveira:2012:SSP

Dodig:2010:ESR

Dodig:2013:CMP

deOliveira:2013:CLS

Debora Duarte de Oliveira, Vyacheslav Futorny, Tatiana Klimchuk, Dmitry Kovalenko,

Dieci:2012:HMD

Duarte:2012:RSD

Dossal:2010:NEC

Ding:2013:TNT

Dragomir:2012:HHT

Drazin:2012:COG

Drazin:2014:GIU

To what extent is a large space of matrices not closed under...

Pazzis:2012:LAS

Pazzis:2012:LPN

Pazzis:2012:STT

Pazzis:2014:SMF

deSnoo:2012:SCC

Steven Delvaux and Marc Van Barel. Structures preserved

[DV14]

[DvDF11]

[DW10]

[DW11]

[DW12a]

[DW12b]

[DW13]

Yiqiu Du and Yu Wang. Biderivations of generalized...
Du:2014:JHU

Du:2013:CSP

Deng:2012:DRO

Das:2012:CBK

Das:2013:SPL

Oliver G. Ernst, Chun-Hua Guo, Jörg Liesen, and Leiba.

Euler:2012:SCC

Edholm:2012:VES

Einstein:2011:RFV

Eastman:2014:CMP

Eastman:2018:CSC

Elouafi:2011:ELT
Mohamed Elouafi. An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices. *Linear Al-
Elsner:2011:BMP

Erway:2012:LMB

Ebanks:2011:HTA

Ebensbach:2010:DDP

Ehrhardt:2013:RMI

Eremita:2013:FID

Ernst:2013:UAF

Fernandes:2010:DCT

Feng:2013:MAA

Fleischhack:2010:APH

Fallat:2012:BLE

Farenick:2011:CUSb

Farber:2014:EET

Foniok:2011:CCM

68–80, January 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Farhi:2011:PLC

Forrester:2013:NPL

Farenick:2011:CUSa

Fourie:2013:ROP

Fiedler:2010:SIP

Fuhrmann:2010:EDS

Fuhrmann:2010:TPM

Fiedler:2012:M

Fiedler:2012:NPG

Fiedler:2013:SGT

Fiedler:2014:MAC

Forstall:2011:PEI

Fiedler:2013:GDR

Fritscher:2011:SLE

Fritscher:2014:CTL

Futorny:2011:CFN

Fiedler:2014:DAS

Frommer:2014:CEI

Fidaleo:2010:EET

Francesco Fidaleo. The entangled ergodic theorem in the

Ferguson:2010:GOI

Furtado:2010:OIS

Fallat:2011:TNM

Furtado:2014:SCA

Furtado:2014:SMP

Fendler:2013:DFT

Friedland:2013:PSI

[FKLT13] Shmuel Friedland, Tamara Kolda, Lek-Heng Lim, and Eugene Tyrtyshnikov. Preface to the special issue on tensors and multilinear al-

F. O. Farid, M. S. Moslehian, Qing-Wen Wang, and Zhong-Cheng Wu. On the Hermitian solutions to a system of adjointable operator

Fiedler:2010:SRH

Fan:2011:SBC

Fujii:2013:SGF

Farnell:2013:FAS

Shawn Farnell and Rachel Pries. Families of Artin–

Takayuki Furuta. Positive semidefinite solutions of the operator equation $\sum_{j=1}^m A^{n-j}X A^{j-1} = B$. *Linear Algebra and its Applications*.
Furuta:2011:ACI

Furuta:2012:EIU

Futamura:2012:FDM

First:2013:SWI

Fornasini:2013:ASS

Francis:2014:SM

Frenkel:2014:VCC

Péter E. Frenkel and Mihály Weiner. On vector configurations that can be realized in the cone of positive matrices. *Linear Algebra and its Applications*, 459(??):465–474, October 15,
Fan:2013:NNU

Feng:2013:ESI

Fan:2011:LEC

Feng:2010:LSR

Garloff:2010:RTP

Garloff:2012:RBN

See [FJ11].

217

Gutman:2014:RE

Gong:2010:NGP

Gillis:2012:GIN

Gouveau:2013:WNM

Gath:2011:BME

Gupta:2012:CSV

Guo:2011:CSS

Guillot:2013:CEC

Griggs:2010:QLF

Germina:2011:PLG

Gao:2010:SSC

Gessel:2010:NEP

Grigg:2010:CRS

Xianya Geng and Shuchao Li.

Xianya Geng, Shuchao Li, and Slobodan K. Simić. On the spectral radius of quasi-k-

Guo:2012:SLS

Griffing:2013:EIP

Guo:2013:AFS

Guo:2013:NUB

Gursoy:2011:PAS

Buket Benek Gursoy and Oliver Mason. P_{max}^1 and S_{max} properties and asymptotic stability in the max algebra. *Linear Algebra and its Applications*, 435(5):1008–
Gursoy:2011:SPM

Greenhill:2012:CLG

Guo:2014:LRB

Goncalves:2014:TFL

Goncalves:2014:WDR

Gamez-Merino:2012:BUP

226
Granario:2013:PD

Gutman:2014:KFT

Ganikhodzhaev:2012:DMR

Gursoy:2013:AHP

Grenet:2013:SDR

Guglielmi:2011:CAH

Ali Godjali. Thin Hessenberg pairs. *Linear Algebra...

Godjali:2012:THP

Goldberg:2013:OCV

Gonzalez:2011:ONI

Ghidini:2012:CHP

Garnett:2014:INM

García:2013:LPP

E. García, F. Pedroche, and M. Romance. On the localization of the personal-
640–652, August 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856

García:2012:UEC

Stephan Ramon Garcia, Daniel E. Poore, and James E. Tener. Unitary equivalence to a com-
plex symmetric matrix: Low dimensions. *Linear Algebra and its Applications*, 437
(1):271–284, July 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856

Gavalec:2014:IEM

Martin Gavalec, Ján Plavka, and Hana Tomášková. Interval eigenproblem in max-

Gudino:2010:LBS

Guillot:2012:RPD

Dominique Guillot and Bala Rajaratnam. Retaining positive definiteness in thresh-
holded matrices. *Linear Algebra and its Applications*, 436(11):4143–4160, June 1,

Grcar:2010:MLB

203–220, July 15, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (elec-
tronic).

Goberna:2012:VCL

M. A. Goberna, M. M. L. Rodríguez, and V. N. Vera de Serio. Voronoi cells via lin-
ear inequality systems. *Linear Algebra and its Applications*, 436(7):2169–2186, April
1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Greaves:2012:CMR

Greenbaum:2013:BRB

Gutman:2010:ELG

Grover:2014:OMS

Gutman:2010:SIH

Gutman:2011:DC

Grunbaum:2012:RBG

Ganikhodzhaev:2010:DSQ

Gomez:2010:STI

Gowda:2010:SCS

Gutman:2011:ECW

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

See also Part II [CGGS13].

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Gau:2013:WSM

Hwa-Long Gau, Ming-Cheng Tsai, and Han-Chun Wang.

Gulinsky:2011:SSS

Gumbrell:2013:STV

Guo:2010:NMH

Guo:2010:ACG

Guo:2013:ARE

Guven:2012:SDC

Gracia:2011:LSC

Gau:2010:DIP

Gu:2011:SOG

Gau:2013:HRN

Guo:2013:SLS

[GX12a] Shi-Cai Gong and Guang-Hui Xu. 3-regular digraphs with optimum skew energy. *Linear Algebra and its Applications*, 238.

Gao:2014:ASB

Ha:2013:NEC

Hadjidimos:2012:IEO

Hadjidimos:2013:NOT

Hanna:2011:MRD

Hanson:2011:CLP

Hansen:2013:FTL

Hanson:2013:CLP

[102x452][Han13b] Edward Hanson. A characterization of Leonard pairs us-
ing the parameters \(\{a_i\}_{i=0}^d \).

[Hansen:2014:ROM]

[Hansen:2014:CBL]

[Hai:2014:CIU]
Huang:2010:NUO

Huang:2010:MRZ

Halikias:2012:SSD

He:2013:PCN

He:2014:CC1

Henrion:2010:DRC

Heersink:2012:MPI

Daniel K. Heersink and Reinhard Furrer. On Moore–

ISSN 0024-3795 (print), 1873-1856 (electronic).

Hadwin:2012:CNR

Hajja:2012:OMT

Heunen:2013:MMD

Harmon:2014:GSS

Hartman:2010:PEI

Huang:2014:GAM

Hall:2010:EVP

H. Tracy Hall, Leslie Hogben, Ryan Martin, and Bryan Shader. Expected values

Hildebrand:2014:MZC

Hiller:2014:PTC

Hirn:2010:NHF

Horn:2012:MA

Huo:2010:NUG

Huo:2011:SCM

Hoff:2012:TPS

Hansen:2010:BCS

Huang:2010:SCS

Huang:2010:GSI

He:2011:OTF

Higham:2011:RSM

Huang:2011:BFS

Huang:2011:ZPI

Hwang:2011:CBW

Hochstenbach:2012:LQT

Henn:2010:HSH

Hochstenbach:2012:DIP

Haemers:2010:SLE

Holtz:2013:MCT

Huang:2010:IAS
Honma:2014:IGD

Hogenson:2012:MSA

Haemers:2011:UAM

Hogben:2010:MRP

Hoa:2013:GPS

Hwang:2010:IEP

Hwang:2011:CPG

Hayden:1999:MCD

Hogben:2010:MGN

Hoffman:2012:CET

Holubowski:2012:PSG

Huhtanen:2012:CGP

Harrell:2014:CSS

See [HS14b].

Harrell:2014:SGE

See corrigendum [HS14a].

Hari:2010:BOJ

Hari:2014:FBJ

Hao:2012:FOC

Heydari:2010:CLP

Huang:2010:AIS

Hadjidimos:2014:BOB

Hashemi:2014:CQI

Huang:2010:GCN

Huang:2011:POP

Huang:2011:NSP

Huang:2011:SRS

[Hua11c] Zejun Huang. On the spectral radius and the spectral...

[**Huang:2012:EHT**]

[Huang:2012:SSP]

[Hua13b]

[Hunter:2010:SSP]

[Hunter:2014:GIM]

Hurlimann:2013:GHL

Han:2011:JDT

Harrison:2014:RIF

Hobart:2014:ABC

Holguin:2014:SMA

Hwang:2011:GCH

Hwang:2012:RCH

Hou:2013:CLT

Hou:2014:TBL

Hou:2014:IPPH

Huckle:2013:CQT

Hong:2014:SRS

Hashiyama:2014:JBC

Irving:2012:BHR

Ito:2013:RMG

Jain:2011:DAT

Meiyan Jiao and Jinchuan Hou. Additive maps derivable or Jordan derivable at zero point on nest algebras.

See [HRW99].

[JS12]

[JR14]

[JRMFSS12]

[JS13a]

Johnston:2013:GMC

Jacobs:2011:LET

Johnson:2011:ESM

Jacobs:2013:ELT

Jungers:2012:APM

Jungers:2014:FSD

Jeyaraman:2010:JQS

Kakimura:2010:DPM

Kalinina:2013:SDS

Kalita:2013:SIV

Kamvar:2010:NAP

Kani:2011:EUC

Karlsson:2011:RCH

Karlsson:2011:TPC

Kautsky:2012:GPM

Jaroslav Kautsky. Generalized Pascal matrices generate classes closed under
Kawamura:2012:TBD

Kawamura:2013:MYB

Kumbasar:2012:CFF

Kannan:2014:CSP

Kannan:2014:GPP

Kalaimani:2013:GPA

M. T. Karaev and N. Sh. Iskenderov. Numerical range

Kim:2013:QHF

Kim:2013:OEF

Kirkland:2014:MCE

Kisi:2015:CTL

Ko:2013:SSC

Kim:2010:NCS

Kim:2012:SCS

Kim:2013:SCS

Kim:2014:CCH

Knap:2011:RHS

Kim:2010:WCD

Kim:2013:ESU
See [KKL13b].

[KKL13b]

See erratum [KKL13a].

[KKLY14]

[KRM13]

[KKR11]

Lutz Klotz, Peter Kunkel, and David Rudolph. Convergence in measure with respect to a matrix-valued measure and some matrix completion problems. *Linear Algebra and its Applications*, 434(4):990–999, February 15, 2011. CODEN LAAPAW. ISSN 0024-
Kari:2012:CWF

Kang:2012:CHT

Kaashoek:2013:CMP

Kum:2013:RAS

Klasa:2010:FPD

Kim:2011:MGM

Krnic:2012:MJO

Kribs:2013:UAS

Khurana:2012:QTD

Kosan:2014:BFM

Kosan:2014:WEM

Kilmer:2011:FST

Krokovski:2012:SCG

Roi Krakovski and Bojan Mohar. Spectrum of Cayley graphs on the symmet-

Kozyakin:2010:ELC

Kozyakin:2014:BWF

Kozyakin:2014:MPC

Kim:2012:BGC

Kanan:2013:NCB

Kalita:2014:REP

Krníć:2014:MAW

Mario Krnić and Josip Pecarić. More accurate weak majorization relations for the Jensen and some related inequalities. *Linear Algebra
Kutyniok:2014:PSI

Koolen:2011:IIS

Kulkarni:2010:FGB

Khare:2012:SMD

Krakovski:2012:PAV

Krakovski:2013:ABM
Khudoyberdiyev:2014:CDS

Kazeev:2013:LRT

Kempker:2012:COC

Kempker:2014:CMC

Klein:2010:TSM

Kuijper:2011:MGB

Kures:2011:RMO

Kushel:2011:GEO

Kannan:2012:MPI

Klein:2012:TSD

Kim:2013:UML

Koledin:2013:RBG

Kapil:2014:CMO

Klein:2014:BHG

Koledin:2014:RBR

Kaur:2011:GMV

Kaur:2012:GDI

Kang:2012:LPT

Kim:2012:EDD

Katz:2012:CMM

Kurata:2010:_MED

Kurata:2012:MEE

Kubrusly:2013:RLT

Kuzman:2010:ATE

Boštjan Kuzman. Arc-transitive elementary abelian covers of the complete graph K_5. *Linear Algebra and its Applications*, 433(11–12):

Jack H. Koolen and Hyonju Yu. The distance-regular graphs such that all of its second largest local eigenvalues are at most one. *Linear Algebra and its Applications*, 435(10):2507–2519, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Koshlukov:2010:IIG

Kong:2011:SJC

LaGuardia:2014:NMC

Lacruz:2013:HLI

Laffey:2012:CVB

LaGrange:2012:BRR

LaGrange:2013:CDF

Lakatos:2010:SND

Lakos:2010:FLS

Ledermann:2011:ROM

Langi:2010:DOM

Lanski:2010:DCI

Lancaster:2013:SLG

Langenau:2014:ASI

Lavallée:2010:CPN

Lee:2014:TPM

Li:2012:SQA

Lin:2010:NRE

Liu:2013:HNO

Li:2011:PGE

Liu:2010:SNB

Lim:2011:PCM

Li:2012:PCD

Lorenzo:2011:ADS

Lima:2013:FCS

Lima:2011:EFF

Lee:2010:RTI

Lee:2011:ERT

Lee:2013:DNR

Lee:2013:PDR

Lee:2013:MMU

Li:2013:SLL

Li:2014:SCT

Liu:2014:OPC

Lin:2013:FTD

Lin:2014:CPM

Lin:2014:OTI

Lippert:2010:FME

Liu:2013:SFS

Liu:2014:CMI

Liu:2014:SCP

Lu:2010:CLD

Li:2011:SRC

Liu:2012:OGR

Liu:2013:HOC

Lebl:2010:UCP

Jiří Lebl and Daniel Lichtblau. Uniqueness of cer-

Lin:2010:SCP

Liu:2010:SLS

Liu:2010:MBR

Liu:2010:SRB

Lee:2011:CSD

Liau:2011:GLD

Liu:2011:SRS

Lee:2012:SPM

Lan:2013:DGS

Lee:2013:CIM

Liu:2013:SSV

Luo:2013:SOS

Li:2014:MEL

Liu:2014:BSL

Huiqing Liu and Mei Lu. Bounds of signless Laplacian spectrum of graphs based

Liu:2014:CDS

Liu:2014:MTE

Liang:2013:TMP

Li:2012:NSC

Li:2013:NMP

Liang:2010:LBP

Liu:2012:EET

Lee:2012:NRM

Labra:2014:EAP

Li:2010:NER

Li:2011:MET

Jing Li, Xuexiang Li, and Yongtang Shi. On the maximal energy tree with two maximum degree vertices. *Linear Algebra and its Applications*, 435(9):2272–2284, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Lan:2012:GDM

Lu:2012:SRH

Mei Lu, Huiqing Liu, and Feng Tian. Spectral radius and Hamiltonian graphs.
Liu:2013:ECS

Li:2014:SFI

Lee:2011:MVW

Lemos:2010:CHB

Lomadze:2010:SIL

Luzon:2010:RRP

Lee:2012:PNI

Lee:2011:PNI

Livshits:2013:PALa

Livshits:2013:PALb

Luzon:2012:IIR

Landsberg:2013:HAM

Ladra:2016:CSC

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Li:2012:PME

Loewy:2012:UGR

Lomadze:2011:RDO

Lomadze:2013:NEF

Lopatin:2011:MGS

Loperfido:2011:SAF

Li:2010:APM

Li:2012:MPJ

Letchford:2010:CMR

Lebtahi:2012:CPM

Lebtahi:2013:RBI

Lampe:2012:LST

Li:2010:MSL

Li:2011:PMO

Lin:2011:SRD

Liu:2011:CRP

Lebtahi:2013:MSI

Limbupasiriporn:2012:LWC

Lim:2010:BLM

Loewy:2010:MEP

Li:2011:LSRa

Lim:2011:ROP

Levene:2016:CSC

Lin:2013:CSM

Levene:2012:CBN

Li:2013:SLC

Luo:2014:LRS

Lu:2011:LDO

Lu:2012:RBW

Lee:2011:SSS

Lee:2012:SSM

Laurent:2014:PSM

Lang:2012:EGL

Li:2012:LES

Li:2012:SCM

Liu:2012:MFR

Liu:2012:LSC

Li:2013:CGP

Liu:2013:NRM

Li:2011:SNA

Li:2013:MSG

Fenggao Li, Kaishun Wang, and Jun Guo. More on

Li:2010:SPS

Li:2012:SPS

Li:2014:MCC

Li:2011:SLS

Liu:2013:ROC

Luo:2012:LTL

Lei:2014:SDS

Liu:2011:TGW

Lin:2011:LCT

Lim:2013:SIM

Liu:2013:PCL

Yang:2013:SMI

Li:2013:TSG

Lee:2010:CNR

Lin:2011:BPB

Lomadze:2011:FOR

Vakhtang Lomadze and M. Khurram Zafar. First order rep-
resentations of Fliess models.

Li:2012:PPS

Li:2012:SLI

Liu:2013:CPP

Lin:2014:LDE

Lin:2014:GLT

Liu:2012:SCS

Ma:2010:NEL

Mouhoubi:2010:NPB

Ma:2011:TDR

Ma:2014:IZP

Mackey:2013:CIF

Mahdavi-Amiri:2013:ERR

Mahmoud:2011:NFD

Mourad:2013:ACD

Marovt:2010:HMS

Mary:2011:GIG

Martin:2013:EGP

Martino:2013:PIJ

Mary:2013:RG1

Martín:2014:LAS

Martín:2014:SGC

Martinez-Avendano:2013:IPS

Mathai:2013:FIO

Matvejchuk:2013:ISC

Matsuura:2012:NGM

Mathai:2013:FIO

Mom:2012:CEU

Mao:2013:MNP

Meini:2013:SDT

Melman:2013:GVP

Melman:2014:IDP

Merlet:2010:SMA

Merino:2012:SOM

Meyer:2012:ZFS

Martin:2014:GSH

Ma:2011:GFI

Mei:2014:MNN

Marsli:2013:FRG

Mattila:2013:DIJ

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Miguel:2013:NCA

Mirman:2010:SCP

Mirman:2012:ESP

Mitchell:2011:GCC

Mitrouli:2011:ODE

Miyajima:2013:FES

Miyajima:2014:CES

Mirzakhah:2012:SRS

Maryam Mirzakhah and Dariush Kiani. Some results on signless Laplacian coefficients of graphs. *Linear Algebra and its Applications*, 437

Mastylo:2013:NEM

Matharu:2011:EEB

Moslehian:2012:NCC

Moslehian:2013:OIC

Morassaei:2013:BIH

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Mackey:2010:JSA

Mackey:2013:SSM

D. Steven Mackey, Niloufer Mackey, Christian Mehl, and

[MMP12b] Mohammad Sal Moslehian and Hamed Najafi. An extension of the Löwner–Heinz...

Mursaleen:2012:CMO

Mitchell:2010:LBM

Mitchell:2012:LBM

Melamed:2014:CIO

Marshall:2011:ITM

enhancements/fy1114/2010931704-\text.html.

Mohar:2010:ECD

Mohlenkamp:2013:MMF

Mojskerc:2014:SFD

Molnar:2011:OAP

Moldovan:2012:SDD

Molnar:2013:JTE

Moore:2011:OPE

Morris:2010:CSF

Ian D. Morris. Criteria for the stability of the finiteness property and for the uniqueness

Moslehian:2011:OAI

Moscic:2013:MRG

Mourad:2012:SPD

Muhic:2010:QTP

Muller:2013:GSR

Myskova:2013:RIC

Muhic:2014:MCA

Andrej Muhic and Bor Plestenjak. A method for computing all values λ such that A + λB has a multi-

McDonald:2014:MRE

McTigue:2011:PMW

McTigue:2013:PMW

McTigue:2014:PMC

Mead:2010:LSP

Monsalve:2010:NIF

Moslehian:2010:GIP

Mohammad Sal Moslehian and Rajna Rajić. A Grüss in-

Marrero:2011:CFG

Medina:2012:ECW

Massarenti:2013:RIM

[MR13] Alex Massarenti and Emanuele Raviolo. The rank of $n \times n$ matrix multiplication is at least $3n^2 - 2\sqrt{2}n^{3/2} - 3n$. *Linear Algebra and its Applications*, 438(11):4500–4509, June 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Moller:2014:TBA

Monsalve:2014:CSN

See [MR13].
See [MR10b].

Massey:2012:DRS

Maze:2011:NDR

Macaj:2010:SPM

Matos:2010:CPR

Molnar:2010:MSP

Malyshov:2011:USM

Mishra:2011:NGI

Martin:2013:SLS [MSD13]

Mofrad:2013:SSL [MSP13]

Mehrmann:2012:IRK [MSS12]

Mishra:2014:SDN [MSS14]

Moon:2014:WCD [MSvdD14]
Meyer:2012:CHT

Moslehian:2011:SNI

Meerbergen:2012:RIR

Macias-Virgos:2010:SMP

Masaro:2010:CWL

Ma:2012:FTS

Murty:2012:UPG

[MW12b] M. Ram Murty and Junho Peter Whang. The uncertainty principle and a generalization...

Ma:2014:NEC

Mason:2014:ENP

Minchenko:2014:SMR

Marsha Minchenko and Ian M. Wanless. Spectral moments of regular graphs in terms of subgraph counts. *Linear Algebra and its Applications*, 446(??):166–176, April 1, 2014. CODEN LAAPAW.

Ma:2013:PNIb

McKee:2014:TBP

Ma:2013:PNIa

Myskova:2012:IMP

Meng:2010:OPB

Marcellan:2011:DPS

Marcaida:2012:HBO

Matthies:2012:SSS

Mo:2012:MSS

Ma:2013:ESC

Ma:2014:IIZ

[MZ14]

[Nakatsukasa:2010:ARW]

[Nakatsukasa:2012:TRC]

Nunez-Alarcon:2013:GOC

[NA13]

[Nakamura:2013:BPF]

[Najafi:2013:SRK]

[Naj13]

[Natkaniec:2013:ASF]

Nakaoka:2014:SCM

Nikolov:2013:RNG

Nesetril:2013:NFV

Nemirovsky:2013:TAM

Netzer:2010:SRN

Neytcheva:2011:EES

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

347

Ngo:2014:VCN

Nina:2013:JCF

Nakatsukasa:2013:MAG

Nomura:2010:STP

Nomura:2010:TPR

Napp:2011:LQC

[Oseledets:2012:RQM]

[Ogura:2013:GJS]

[Olshevsky:2010:GM]

[Oseledets:2010:TCA]

Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross ap-

Osaka:2012:DPS

Osaka:2012:DPS

[OT12]

Olesky:2012:SPN

[OTdDv12]

Otopal:2012:RKC

Ozdemir:2013:SSS

Ozdemir:2013:SSS

[OZ10]

Pagacz:2012:WTD

Miklós Pálfi. Weighted matrix means and symmetriza-

Patricio:2012:MPI

Porras:2010:CCC

Pan:2012:SMS

Patuzzi:2014:ISC

Potra:2013:CBA

Pellegrino:2014:SCA

Pena:2014:OTA

J. M. Peña. An optimal test for almost strict to-

Peperko:2011:CGS

Peperko:2012:BGJ

Peretz:2012:CAS

PereiradaSilvaeSilva:2013:GIE

Peretz:2014:ASF

Petravchuk:2010:PCD

Puchala:2011:PNR

Patricio:2012:DIP

Pokorny:2013:RQI

Pan:2010:APM

Pinter:2011:ADT

Pinkus:2012:BRM

Pituk:2011:LBP

Protasov:2013:LUB

Phat:2012:LAE

Pan:2012:SMQ

Papez:2014:DDA

Pastravanu:2010:DSI

Parraguez:2010:CVS

Marcela Parraguez and Asuman Oktaç. Construction of the vector space concept from the viewpoint of APOS theory. *Linear Algebra and its Applications*, 432(8):2112–2124,
April 1, 2010. CODEN LAA-PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Park:2011:IWT

Polderman:2012:TDD

Poloni:2013:QVE

Poncet:2011:DTM

Popovych:2010:PSQ

Popovici:2012:NEP

Popov:2013:MSB

Popovych:2013:LOO

[PTPL10]

Philipp:2013:NRN

[PT13a]

Potts:2013:PEN

[PT13b]

Protasov:2012:SNM

[pt14]

Wang:2014:GSS

Xue ping Wang and Hui li Wang. The generators of

Pang:2010:EOS

[PY10]

Qi:2011:CAL

[QH10]

Qi:2010:CDB

[QH13]

Qi:2013:CLD

368
Qi:2013:SNT

Qi:2014:EOS

Qi:2014:RUH

Quarez:2010:SSA

Quarez:2012:SDR

Quinlan:2011:SMN

Qiu:2012:CLC
Rakic:2014:GMP

Rande:2011:LPR

Rezghi:2011:DTC

Reff:2012:SPC

Regalia:2013:MCA

Rehkopf:2010:STD

Rehkopf:2011:CTD

Reichel:2011:RMM

[Rei11a] Lothar Reichel. Review of “Matrices, Moments and Quadrature with Applications” by G. H. Golub and

[Robbiano10] Marí a Robbiano and Raúl Jiménez. Improved bounds for the Laplacian energy of Bethe trees. *Linear Algebra and its Applications*, 432(9):2222–2229, April 15, 2010. CODEN LAAPAW. ISSN 0024-

See [BW11].

P. Rowlinson. On eigenvalue multiplicity and the girth of a graph. *Linear Algebra and its Applications*, 435

Thomas Ransford and Jérémie Rostand. Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues. *Linear

Rowlinson:2010:SCR

Ruan:2012:IGR

Rubei:2013:CSA

Rudolf:2012:RDK

Tina Rudolf. Reflexivity defect of kernels of the elementary operators of length

Rukan:2013:LSD

Rukhin:2014:BES

Ragnarsson:2013:BTS

M. Soleymani and A. Armandnejad. Linear preservers of circulant majorization.

Sato:2011:NPL

Sato:2014:NPB

Savostyanov:2012:QRO

Savostyanov:2014:QMV
Dmitry V. Savostyanov. Quasi-optimality of maximum-volume cross interpolation of tensors. Linear Algebra and its Applications, 435(5):923–942, September 1,

Somasundaram:2011:SMM

Schulz-Baldes:2012:SIT

Sari:2011:RRM
Bilal Sari, Olivier Bachelier, and Driss Mehdi. Robust S-regularity of matrix pencils applied to the analysis of descriptor models. Linear Algebra and its Applications, 435(5):923–942, September 1,

Markus Seidel. Fredholm theory for band-dominated

Gora:2010:SON

Seo:2013:GPS

Seo:2014:OPM

Sergeev:2011:MAA

Sergeev:2013:FPS

Seven:2010:QFM

Seven:2013:MCF

Shao:2013:GPT

Shang:2014:ACM

Shao:2014:FSM

Shitov:2011:IGM

Shinohara:2012:TLM

Shitov:2012:KRT

Shitov:2012:TMS

Shitov:2013:CBM

Shparlinski:2010:SCQ

Shen:2012:MRT

Shao:2010:LSB

Simson:2010:IBF

Singer:2010:ETF

Singh:2010:ETF

Sinkovic:2010:MNO

Skowronek:2011:CMC

Skulj:2013:CID

Sun:2014:RGQ

Slapnicar:2010:RMM

Slowik:2012:LCS

Slowik:2012:OPN

Slowik:2013:EIM

Roksana Slowik. Expressing infinite matrices as products of involutions. *Linear Algebra and its Applications*, 438(1):399–404, January 1,

Marko Stošić, Manuel Marques, and João Paulo Costeira.

Singer:2012:TFS

Singer:2014:EVT

Sowa:2013:FMD

Sain:2013:ONA

Spector:2011:CTZ

Stanimirovic:2012:SCI

Song:2014:IFD

Sou:2012:GMA

Serrano:2013:DFP

Serrano-Rodriguez:2013:ASM

Serrano-Rodriguez:2013:ICF

Sra:2013:EEC

So:2010:ATK

Wasin So, María Robbiano, Nair Maria Maia de Abreu, and Ivan Gutman. Applications of a theorem by Ky Fan in the theory of graph energy. *Linear Algebra and
Srinivasan:2013:REL

Simoncini:2010:FVO

Stanimirovic:2010:ILC

Saleh:2011:EMC

Sander:2011:ICG

Shang:2011:FZM

Shi:2011:SAE

Stampach:2011:EPP

Sato:2012:EFG

Savchuk:2012:PAM

Schwetlick:2012:NRF

Sato:2013:GBZ

[SS13a] Iwao Sato and Seiken Saito. A generalized Bartholdi zeta

Shan:2010:EGT

Sumi:2013:TRT

Shader:2014:NPM

Shao:2013:SPD

Jia-Yu Shao, Hai-Ying Shan, and Li Zhang. On some...

Saito:2010:DWT

Saldanha:2010:CPQ

Shieh:2012:CBS

Son:2013:SCR

Stanic:2012:SGW

Stanford:2014:UOS

Stevanovic:2010:RAC

Stevanovic:2011:TSC

Stewart:2013:GUH

Storm:2011:SPG

Stoll:2012:KSA

Stupariu:2012:FWQ

Stuart:2013:SFM

Sun:2013:ANJ

Xiaosong Sun. On additive-nilpotency of Jacobian ma-

Shmueli:2012:UKM [SWA12]

Schlote:2013:HMT [SWBS13]

Song:2013:NUB [SWT13]

Samoilenko:2012:KTU [SY12]

Shen:2014:SCN [SYH14]

Salce:2014:PEI [SZ14]
Luigi Salce and Paolo Zanardo. Products of elementary and idempotent matrices over integral domains. Linear Algebra and its Applications, 452(??):130–152, July 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:

Tudisco:2011:PAP

Talebi:2013:BBM

Tudisco:2013:ORM

Terwilliger:2013:FDI

Terwilliger:2014:BAF

Tan:2010:VEI

Yongge Tian. Equalities and inequalities for inertias of Hermitian matrices with applications. *Linear Algebra and its Applications*. 405
Tian:2010:SEO

Tian:2011:MMR

Tian:2012:FCE

Tifenbach:2011:SSD

Timotin:2014:SCR

Tao:2014:SMI

Tan:2013:DAP

Qianrong Tan and Mao Li. Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains.

Tan:2013:NIC

Li:2010:SNB

Tebbens:2014:IGC

Tao:2011:SCM

Theja:2014:NGM

Tayebi:2012:GRF

Trigueros:2013:UEM

Turkmen:2012:SIM

Traldi:2012:LAL

Tran:2013:PRC

Trench:2010:CPM

Trench:2011:APL

Trench:2012:CPC

Torres:2012:TMC

Tsai:2011:NRWb

Tsatsomeros:2012:MMM

Tam:2010:DPS

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Tomeo:2011:TAS

Tam:2012:DSO

Taslaman:2013:TMP

Urschel:2014:SBG

Vandebril:2010:TMU

Vassiliou:2014:SMM

Vinjamoor:2010:IFI

vonBelow:2013:SHS

vanDam:2014:LSE

vanderHolst:2013:IIP

David Wenzel and Koenraad M. R. Audenaert. Impressions of convexity: an illustration
Wada:2014:SWC

Wagneur:2011:WET

Wilson:2013:EEB

Waldron:2011:FVS

Walker:2011:RAA

Walker:2014:NGB

Wang:2011:AMM

[Wang:2013:GWL]

[Wang:2011:NSL]

[Wang:2012:SCG]

[Wang:2013:GWL]

Stephan Weis. Quantum convex support. *Linear Algebra and its Applications*, 435 (12):3168–3188, December 15,
Wei:2013:UID

Wei:2013:JMI

Wang:2010:LEG

Wang:2012:SEC

Wu:2012:NAI

Weiguo:2013:FIM

Wei:2010:PBI

Wu:2010:LOS

Wang:2012:LEL

Wang:2011:IED

Dein Wong, Xiaobin Ma, and Jinming Zhou. The

Chalermpong Worawannotai. Dual polar graphs, the quantum algebra $U_q(f_{1,e}^+)$, and Leonard systems of dual q-Krawtchouk type. Linear Algebra and its Applications, 438(1):443–497, January 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Woracek:2014:RKA

Wang:2012:LGL

See comments [WY14a].

Wang:2012:OTA

Wu:2010:MWS

Honglin Wu. On the 0–1 matrices whose squares are 0–1 matrices. *Linear Algebra and its Applications*, 432(11):2909–2924, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wu:2010:GPB

Huazhang Wu. Generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. *Linear Algebra and its Applications*, 432(12):3351–3360,
Wu:2013:CAI

Wu:2013:QFL

Wulling:2013:DIS

Wang:2010:CHS

Wang:2013:DNR

Wang:2013:JHU

Wang:2013:MLD

Xu:2014:MGM

Xu:2019:CSM

Wang:2014:CSL

Wu:2014:GAK

Wu:2012:CSA
Wang:2013:TEM

Wang:2013:PEA

Wang:2013:DSR

Wang:2013:HPP

Wu:2013:SWM

Wang:2014:LCA

Wu:2014:ESS

Gang Wu and Lu Zhang. On expansion of search subspaces

Wu:2014:CSS

See [WZ12].

Wu:2012:UBS

Wong:2013:CLG

Wang:2014:BOG

Xie:2013:EAT

Xu:2013:RWM

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Cai:2011:AMP

Xie:2012:CNN

Xue:2011:FIS

Xu:2011:EET

Xue:2011:FIS

Xue:2011:FIS

Baohua Xie and Yueping Jiang. PU. Linear Algebra and its Applications, 433

430
Xu:2013:CSN

Xue:2013:CAR

Xu:2013:SCQ

Xu:2011:LSQ

Xu:2011:FMK

Xu:2012:RSK

Xu:2012:ECD

[XW12] Qingxiang Xu, Yimin Wei, and Chuanning Song. Explicit characterization of the

Xiao:2012:LTD

Xiao:2010:CMG

Xiao:2010:JHD

Xiao:2013:ACG

Xiao:2011:LSG

[XU2012: TLC]

[XZ13a]

See corrigendum [KIS15].

[XZ13b]

[XZ13c]

[XZ13d]

Ye:2011:SI

Ye:2010:MSL

Yu:2013:BGS

Yu:2012:CSR

Yuan:2014:CPD

Yanagihara:2012:BCA

Yuan:2012:EKI

Yan:2013:LTS

Yan:2013:ADS

Yu:2013:LDE

Yuan:2014:MIF

See corrigendum [Yua15].

Yuan:2015:CSQ

See [Yua14].

Yang:2010:SNP

You:2011:PNP

[Lihua You and Yuhan Wu. Primitive non-powerful symmetric loop-free signed digraphs with given base and minimum number of arcs. *Linear Algebra and its Applications*, 434(5):1215–1227, March 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).]

Yu:2011:SBS

Yu:2011:SLS

Yuan:2013:LPI

Yang:2013:EM

Yang:2014:CSL

Yuan:2014:ST

Yuan:2014:SRT

Yu:2010:NLD

Ye:2011:IIS

Ye:2012:EBA

Yu:2012:NLD

Yin:2013:RDT

Yu:2014:IWU

Guihai Yu, Xiao-Dong Zhang, and Lihua Feng. The inertia of weighted unicyclic graphs. Linear Algebra and its Applications, 448(?):130–152, May 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Zhou:2012:SBM

Zhang:2014:RNG

Zhuang:2012:JLG

Zappavigna:2012:ENN

Zhou:2013:CAL

Zhou:2013:SNB

Yun-Bin Zhao. An approximation theory of matrix rank

Zou:2010:EES

Zhang:2014:MEG

Zhou:2011:BSL

Zhang:2011:TSM

Zhai:2012:SUB
Zhou:2014:LSS

Zuo:2010:NDS

Zhai:2012:PCS

Zhang:2010:CSP

Zhao:2013:ICP

Zuo:2013:CCM

Zhu:2010:MMS

Zhang:2012:SPG

Zhaoa:2012:SAS

Zhu:2014:CHO

Zhang:2010:DSA

Zhao:2010:JAD

Zeng:2011:JHA

Zhao:2012:JHA

Zhang:2013:SLC

Zhu:2014:CTA

Zhang:2013:MPI

Zhang:2011:EIT

Zhang:2010:ADP