A Complete Bibliography of Publications in *Linear Algebra and its Applications*: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 July 2017
Version 1.69

Title word cross-reference

\((-1, 1)\) [ÅAFG12], \((0, 1)\)
[BB12b, NP10, Ghe14a], \((2, 2, 0)\)
[CI13, PH12]. \((A, B)\) [PP13b]. \((\alpha, \beta)\)
[HW11, HZM10]. \((C, \lambda, \mu)\) [dMR12]. \((\ell, m)\)
[DFG10]. \((H, m)\) [BOZ10]. \((n, \tau)\)
[CSZ10, CR10c]. \((\lambda, 2)\) [BBS12b]. \((m, s, 0)\)
[GH13b]. \((n - 3)\) [CGO10]. \((n - 3, 2, 1)\)
[CGSR13]. \((\omega)\) [CL12a]. \((P, R)\) [KNS14].
\((R, S)\) [Tre12]. \((-1)\) [LZG14]. \(0\) [AKZ13, Ano12-30, CGGS13, DLMZ14, Wu10a]. 1
[Ano12-30, AHL+14, CGGS13, GM14, Kal13b, LM12, Wu10a]. 1/n [CNPP12].
\(1 < t < 2\) [Seo14]. 2 [AIS14, AM14, AKA13, BDF11, BdiC14, BDK11, CvDKP13, CL13b, CNPP12, DoMP09, Ere13, GMT13, GG13, KY14, Rim12, Rud12, YHH12, vdH14]. 24
[KK11]. 2n – 3 [BCS10, Hil13]. \(2 \times 2\)
[CGV13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14].
\(2 \times 2 \times 2\) [Ber13b]. 3
[BZWL13, Bre14, CILL12, CKAC14, Fri12, GOvdD14, GX12a, Kal13b, KK14, YHH12].
\(3n^2 - 2\sqrt{2}n^{3/2} - 3n\) [MR13].
\(3n^2 - 2\sqrt{2}n^{3/2}3n\) [MR14a]. 3
[DR14, GLZ14, Sev14]. \(3 \times 3 \times 2\) [Ber13b].
\(3 \times 3 \times 3\) [BH13b]. 4 [Ban13a, BDK11, BZ12b, CK13a, FP14, NSW13, Nor14]. 4 \times 4
[CJR11]. 5
[BH13b, CHY12, KRH14, Kol13, MW14a].
\(5 \times 5\) [BAD09, DA10, Hil12a, Spe11]. 5 \times n
[CJR11]. 6
[BK13c, DK11, DK12a, DK13b, Kar11a]. 7
[PP13a, Zho12]. 70 [GRS+11]. [1, n]
\[\log(XY) = \log(X) + \log(Y)\]
\[\sum_{j=1}^{m} A^{n-j} X A^{j-1} = B \] [Fur10b]. \(T \) [BMI14a, Blu10, ZZX13, BKMS12]. \(T(x) = f \) [HN10]. \(T^* \) [LICM13]. \(T_n \) [SG12a, tan \(\theta \) [Nak12]. \(\theta \) [GL12c], \(U_1 \) [YX13], \(U_j(f)_{\infty} \) [Ter13, BTC14, Wor13]. \(U_j(s)_{1} \) [BC14a, Ter14]. \(UT \) [BC14a, Ter14]. \(U \) [GMS12, KNS14]. -derivations [GLS10, LL11c, TL13b]. -decompositions [BZW14]. -critical [HW11, HZM10, WW13c, Wan14b, WWD13]. -connectivity [HN10]. -modules [GD11a, XDFL10, YZ12b]. -Lie [YZ12b]. *-modules [GD11a]. *-order [XDFL10]. *-congruence [DFS14].

3-rose [LH13]. 3-transitive [MW12a].

Cholesky [BM13a, HHT13].

chordal [Kak10, MNZ12, SM13].

chordal-structured [Kak10].

Chromatic [AAJ12, YWS11b].

circle [BR12, DW10, RL13a].

circuits [SS10b].

Circulant [CSAC10, CSAC11, CFLW13, PZVJ11, BP10, BTYZ12, CFPP13, DGMS14, Ill10a, LS12a, MP13b, MS14c, RE11, SS11b, Sbu10, SA14, TW14, VW10b, Wil14, EGR12].

circulant-Hankel [MS14c].

circulants [Mey12].

Circular [MSP11].

classes [AS12b, ANP13, BT13, BK12, CT11a, Cho13, CDM12, DL14, DH12b, Dra12b, DJK12b, DJK12a, DK13c, FMR12, KL13a, Kho12, KS13a, KJK13, LRST10, LW13a, MW14a, ND11, NSC13, RR14, Sag11, SŠ11e, TZ13a, TmYsH11, WGL12].

classes [AS13a, BD12b, CRSS14, Car13, Dah12a, Dra14, FM11b, FV13b, FG13c, FJ14, GS11a, GN14, JNS13, Kau12, Kus13, LRT13, LGSC14, MMRR11, NdM13, NPP13, PdFDV14, RRKK12, SCS11, Sev13, SYH14, WW13d].

Classical [CN11d, Ada14, BR14b, CN11c, CN10e, FG13c, GL14, KSS12, VS13, VS14b, WLGM11].

Classification [BS13a, BB11b, CLOK13, Cir14, Dub14, LMO16, PC10, Rom14, ŠK10, DK13a, Buď11, CK13a, CILL12, FRS14, GH13, HWG13, wH12, INT11, KO13, KRHR14, PS14b, RO10, RS12c, SSS13, Sku13, dOHS12, AA12a, Wag11].

Classifying [Ago14].

claws [Ban13a].

clean [BCDM13].

cleanness [TZ12b].

clique [AAJ12, DL13, GLS12, HJZ13, Lav10, ZHG13].

cliques [MR12, RM10].

Close [Car10b].

closed [BEM12b, CN12c, DX13, Fra12, HZ11a, Hua11a, Kau12, KR10, Liu14b, Net10, dSP11b, SR13c, Sha11].

closest [Köh14].

closure [Bar10a, Bar13a, DDK14].

closures [BG11].

clutch [Gar12].

cluster [Sev13].

Clustering [SSS10].

CMV [BOZ11b, BOZ11a].

c [ACM+12].

co-neighbor [ACM+12].

coalesced [RW10].

coalessence [ABBO11].

Coalescing [DP12a].

Coalitional [Cec10].

cocharacter [CM14].

cyclic [AAFG12].

code [LSV12].

codes [AAK+14, ANP13, CNPP12, CGM+10, CT14b, La 14, LSV12, PC10, TS12, Wu13a, dSC14].

Codimension [DKS13b].

coding [FFS11a].

coefficient [Bo11, HLP12, Kir14].

coefficients [BHP12, DKOT12, HL11a, Hwa11, LTS13, LY11b, MK12, QY12, Sev13, wTmS12, wTIW13, VS14b, ZI13].

cogenerator [BO12].

Cohen [Cam13].

coherent [HW14b].

cohomology [CT14a].

Coimbra [Ane12-30].

coincide [tHR13].

coincidences [Pel14].

cokernel [BCD10].

Colin [GB11, Gol13].

collections [DKM+14].

Collocation [JK13].

color [MD12b].

colored [Kal13b].

colorings [Moh10].

column [AAM12, BBdH12, BBdH13, Bar12b, CC10, Dodi13, HS12b, PP12b].

column- [PP12b].

column-finite [HS12b].

column-majorization [AAM12].

columns [PS12].

comaximal [DTL11].

combination [Kis15, dSP10b, XX12].

combinations [DCIW12a, DCIW12b, JMI13, KCID12, dSP10c, RJ11, SH13, SS10e, ZW12b].

Combinatorial

BMS10, FFK11, BBS12a, CD14, CNT12, Cha13a, Für10a, KKLY14, LaG13, Rah13].

Combined [FM11b, Bl512].

Combining [GOSV12, Reh11].

coming [WLGM11].

Comment [XLG+13].

Comments [WY14a].

Common

[Bou13, WW10, MM12, RSS10, SLS13].

communicability [Est12a].

communication [DS12b, RV13].

commutant [MM12].

commutative [AKN12, AKA13, CRS14, DCIW12b, HTS14, Lak10b, Mar14b, MAMA12, Seo13, ySpW14, Tan14a, Tan14b, Tre12, dO12].

commutativity [DLNM14, DK14, GN14, LHL12, LL10b, Liu14b, LSH12].

Commutator [GH12, KN10, BDF11, CFL13a, FLC11, Kha13, Lan10b, WA10].
Commutators
[Bie14, CVW10, EV11, Aud10b, FCL10, GB13, HK10, KLS12, OR12].

Commutes [FMM13].

Commute [BRZ11, HMS13, Kis15, Ogu13, XX12].

Commute [DO11a, DW12a, Fra12, Fra13, XV10a, BC12a, Bou13, CN10c, CN11d, Hwa12, KSS12, KY14, KB12, LD12, Mig13, NS14, Pet10, Sar14, Siv12b, Siv12a, TZ13b, dOHKS12].

Compact
[LT13, AK12b, BV13b, GP14, SM10b, TT12].

Compactly [GHMPVP11].

Compactness [MN12b, DDK14].

Companion [EKSV14, MR11, BBE +10, DDM12, Gau10, GS10d, GS12c, GS12d, LD11, MZ13, Mac13, Pat12b, DDP13, DDP14].

Comparing [WNM13].

Comparison [DXG12, HTS14, BSKL13, BBM14, EvdD10, GEP10].

Compensators [BO12].

Comparison [WNM13].

Comparisons [AM14].

Componentwise [Ch13, ABBO11, LSR11, RJ14].

Component [TH11].

Components [JZZ13, AM14].

Componentwise [Hua13a, HZ14, Miy14, LWY14].

Computable [HJ12].

Complete [HLS11, ZJ14, BCS13a, CFD+10, CI10, FGS11, HT14, HP11, Ku10, PHS13, Raf14, Row14b, Sin10a, Zha14a, ZH13].

Completable [HJ12].

Conditions [LS12d, XD12].

Completeness [Tao13].

Completely-Q [Tao13].

Condition [DDP13, AAK11, AL13a, AHAPP10, Alt13, BB13c, DH10b, Gar13, LJ11, LW14, LS12d, XD12].

Cone [Kus12, Kus12, BV12, BB13c, DGHH13, FW14b, GST13, HII12a, ISYY11, Jun12, Lim14, LTX14, NN10, Pro10, Sko11, WXH10b].

Cone-theoretic [Kus12].

Cone [Kus12, Kus12, BV12, BB13c, DGHH13, FW14b, GST13, HII12a, ISYY11, Jun12, Lim14, LTX14, NN10, Pro10, Sko11, WXH10b].
CFL13b, JV11, JSS13, KL13b, LT10b, LK12, RSS10, San10, Ser11, TG13, VS10.
Conference
[Ano10u, BBD +11, BBG +13, BFBD13].
configuration [AFLN12]. configurations [FW14b, HW14b]. confluent [KS14b].
congruent [Ikr10]. Conics [Wu13a, Mir10].

conjecture [Bap10, BBF +12, CH12, CW12a, Cho13, Das11, Dru13a, Dru11, Dru12b, EGR12, GS12a, GC12, GKR13, He14, HJLS11, IYL13, LL14c, Mig13, Mit11a, NT10b, YY14a, YHY14, ZW12a, Zha13, ZC14, Dru13, Yan11].
Conjectures [Das10a, AH10, CHZ13, Das10b, Das13, HL10a, Hill14c, JNS13, Ste10]. Conjugacies [BV12b]. conjucy [BB11b, Dau12, FG13c]. conjugation [Mat13b].
Connected [CT11b, LM10a, SBMT10, CH14, CK14, HY14, LS12b, MY14, PAS11a, ZLW12]. connectedness [UZ14]. connecting [GLP +13]. connection [Bar13b, BR14b, RJH11].

connection-graph-stability [RJH11]. connections [DK13a]. connectivity [AJRT14, AHS10, BL12, Cio10a, Cio10b, Das10a, Das13, Guo10b, GSL11, KOJ11, LGSC14, LLT13, RJH11, RAMAJ10, RL13b, Row14d, WKV10, WT12, YFW10]. Connes' [HH12a]. consecutive [CY11, EWY12].
Consensus [ZY14, AIP12, Est12b, Sha14a, Zhu11b]. consequences [AJ13, DK13a, MMK13].
consistency [FD13]. Consistent [HC14]. conspecific [AIP12]. constant
[Cir14, FM11a, FP13, Koz10, LL10a, M Qi14, RS12a, RS14b]. constantly [MO14].

constants [AP14, BT14a, BRZ13, BR14d, NA13, SR13c]. constrained [Byd10, CMRR13, Dai12, KBS13, yPjXL11, SA10, TH11]. constraint [HMR12, SS13b]. constraints [Cim11, DS13, Koz14b, MR10a].

constructed [BM12a, CLST14]. constructible [CL14b]. Constructing [ES14, HRW99, JM12a, MAM +13, Wad14].
Construction [CN11b, HL11e, KRvS14, MS13c, PP11a, PO10, ABBO11, BW13a, CMNW14, CNPP12, HNZ12, IPFD13, JNS13, VS13].
Constructions [GOvdD12, ZXX13, CGM +10].

constructive [Laf12]. contained [GL10b, KK14]. containing
[BS12e, HLW10a, MAGR13, Ros12a, Ziv12]. continued [GWZ13]. continuing [Mac13].
continuity [GMMFPSS12, Pep11].

Continuous [ZW10, BS14, CI14, GG13, JLW11, KKS12, LT13, LTX14]. contraction [AT14b, GW10, Li10]. Contractions [Pop14, BV12b, DJK12b, DJK12a, MS14a].
Contractive [KS14a, BDS13].
contribution [Nik10a]. Contributions [BPRY11]. control [NT11a].

Controllability [FS14a, KRvS12, ST13]. controllable [BBdH12, BBdH13]. controlled [GV11]. controllers [KBS13, Per12]. conventional
[Aud10a, JLW11]. converge [PPK13].

Convergence [GMV11, GL10e, Jar12, KKR11, SK14, XSS13, ZCQ13, BJ13, CQYY13, DY14, DZ12a, FS14b, GOSV12, LKN13, Pry10, Sku13, TMSS14, Yan10b].

convergent [BGPP11, CC12, LJY13, Reg13].

conversion [BSS10]. Convex
[AL13b, MO14, San10, SMC11, Aud13a, Bar12a, BH11a, Dra12a, OT12, PCC12, Rez13, Wei11, Zha14c].
Convexity [Nor11, Alt13, CN13c, Hen10, MPP11, NS11c, WZ14a, WA10].

convolutional [ANPP13, CNPP12, PC10, La 14].

coordinated [KRvS12, KRvS14].
copositive [DDG13, Hill12a, Hill14b, JV10, Qi13, XY11].
coprime [TL13a]. Corach [CMS12b]. core
[RDD14]. Cored [HQS13].

corepresentations [Dor10]. cores
Differential [Lan10b, BM12b, BCF12, Lom11, NT11a, PLS14, Rue13, Tre11].

Differential diffusion [KRS13].

digraph [BBM14, HRT13, Koz14b, LRT13, Tra13].

digraphs [BB11a, BM14b, Bru10, BS13b, CGR14, DL13, GX12a, GL12c, HY14, Kal13b, Kim13b, LH10, LS11b, LS12b, LYL13, Moh10, Rad10, Sch11, TC13, YW11].

dimension [BCS13a, BCF12, Cau11, dHLMS13, KK14, Lop11a, MMS12, Mar10].

dimensional [BDF11, Ben14a, BS11c, BS13a, DK13a, DK13c, CK13a, CILL12, CdGS12, DK11, DK12a, DK13b, Dub14, FP14, GJ11, HN10, KRH14, LwCJL11, Ma11, Moj14, Sha13a, Sko11, S14, S1a13, Ter13, Wój14a, WJ12].

dimensionality [Cha10].

dimensions [AJ13, CKL +13, DKM +14, GPT12, HH12b, Yan10b, YZ13].

dioids [BL11, HTS14].

direct [BT13, BL14, CHZ13, GK14a, JS13b, Kak10, Kaw12, KSH12, Lee13a, PPKR12].

directed [BFRR14, BKP12, Bau12, BRZ11, KP14a, Kir10, Kir14, NSC13, RGC13, dFBRS14].

Discrete

[CME14, FK13, HMR12, RY12b, AW10, BJRS11, BJ13, Cas13, Cha12, CM10, Czo10, CN10d, CN11e, FV13b, HDPT12, HRT10, H12b, Jun14, LT14, NRS12, OM10, RS14a, Sad12, VS14b, Wei13a].

discrete-time [BJ13, FV13b, HDPT12, HRT10, Jun14, Sad12].

discretization [PLS14, V12].

discs [CGW13, FHM13, MH13a].

disguise [BCT14].

disjoint [BT11a, CW12b, DWXS12, LS13b, LHL14, LHGL14].

disks [Mel14, ST10b].

Displacement [ZYL10].

dissimilarity [WMN13].

dissipative [ADW13, DP12b, GO13, Lin13].

Distance [AH14, BNP11, lli10a, NOL13, Psa12, AH13a, Ban13a, BS11a, BNP12, BNP13, BYZZ14, Cer10, CBB13, CLS13, DvDF11, DV14, DS14, Est12a, FGG10, Fio12, FS11, GH11, Gro14, HKP13, HRW99, HLW14, IH10a, Hua10, IH11b, JM12a, JZ14, KS12b, KY11, KPY11, KT10, KT12, KM13b, Lee13b, LwW14, LP12, Lim10, LC10, LHWS13, LZh14, L14, MAS12, NP12, NP14, NM14, SS10b, ST12, WZ13c, XZ13b, XZD14, Y13, Zha12b, Zha14a, vDF14].

distance-biregular [Fl12].

distance-regular [Ban13a, Cer10, DvDF11, FGG10, Fio12, KY11, KPY11, Lee13b, LwW14, vDF14].

distances [BT14b, HN14, JS12].

distinct [BB13a, CGMJ14, CHLS12, FLH12, HTW13, KS13b, NS13].

Distributed [RvS13].

Distribution [PLS14, Ada14, ANF11, DGGJ11, HLP12, JPS13, MLL14, PLS12, SCSS10].

distributions [Cha14, DJG10, MW10, OM14, Sku13].

distributive [HW14a].

Dittert [CW12a].

divergence [CM12a].

divided [TX12].

Divisibility [TL13a, MM10a].

division [Bot14, KLZ14b, Liu14a, Mar10].

divisor [Bot14, TL13a, WMZ14].

divisors [CS10a, Ens10, F10b, SDNS13].

do [Pro10, RR11, XG13].

Dodgson [Abe14].

does [BMSW11, LLY11, dSP12d, Sta12, WBHM13].

domain [Pol12].

domains [BCS10, BC12b, BC12c, Ens10, Hua12a, IW13, SZ14].

dominance [Mol12].

Dominant [Fie11a, BGV12, Far11b, HZ10, LH10b, LHZH11, LZL12].

dominated [Sei14].

dominating [CT11b].

domination [AHS10, Har14, LL14b, XF11, Zha12a].

Double [OT12, AdFST11, BC14a, FG13a, God12, JL12, KSA12, Lee13b, Mol12, PY10, WJ12, Zhu11b].

double-integrator [Zhu11b].

doubling [WCKL13].

Doubly [GS10a, AT14a, BAD09, DHS12, Fan10b, GS10b, GKR13, HP04, JP11, JWL11, JPS13, LXL+14, LZL12, Mou12, MAM+13, NS12c, 15]
PSW11, Sar14, Sha13a, Sha14b, XLG+13]. **doubly-infinite** [Sha14b].

doubly-stochastic [DHS12]. Dragos [GRS+10, GRS+11]. Drazin [BZ13, CGMS10a, CGMS10b, CI13, DW11, DMS10, DMS13, HRT13, KCID12, MD10, Mos13, PH12, SH13, WC12, Wiil13, XWS12, XS13, ZW12b, ZBW12, ZCC12].

Duality [CT14b, Wor13, CD10, DMMY10, GMH14b, HM14a, KAAK11, KKL13c, LH11a, LWGM10, LWGM12, LH10c, MGLW11, MSS14, RDD14, TF11, BDK11].

Duality [BHMR12, MRS12, FP11, Pin11]. Ducci [HNZ12].

due [Seo14]. Duffin [ACG14].

Dunkl [ST10a].**dyadic** [MZ12c]. Dynamic [Wil11].

dynamical [DZ12a, FGQ11, NP13a, VB10]. dynamics [JDY13, MSvdD14, Zhu11b]. Dyson [Yan10a].

e-ISBN [Tam12, Zha12a]. economics [TP13]. ed [Tam12]. Edge [CW12b, LS13b, LLT13, LHL14, BYZZ14, CL14a, Cio10a, Cio10b, EHH+12, LL13c, LHGL14, SS12a, SSGL10, Sto11, TF10, WAH13]. edge-based [WAH13].

Editor [Ano11z, Bru11, Bru13, Br14u].

Editor-in-Chief [Bru13, Bru14, Br11u].

Editorial [Ano13a, Ano13b, Ano13c, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h].

Editors [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano11, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano12-27, Ano12-28, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x].

Eigenfunctions [WAH13].

eigenparameter [jAS13].

eigenparameter-dependent [jAS13].

eigenproblem [GPT14]. eigenproblems [AA11, GHT11, MSS12, WZ14b].

eigenspaces [Ada14, GTV12].

eigenstructure [LdSp11]. Eigenvalue [FZ13, HKK+12, JTT13, MMA11, MMRR11, Row14a, YZ12a, Zha14b, AAK11, AKM14, AHL11, BCY12, BV11, BM14a, BdFdp11, BfPd12, Bel14, Bey12, Bbe+10, BN13, BdS10, CW10, CQYY13, Das10b, Das11, DS11, Duk12, Duk15, EIo11, FF12, FZW11, Fan10b, Fhl+11, Gar13, GP12, GCY14, GM14, HHL10, HRW99, HMP12, HP04, JM12a, Jar12, JDY13, Kal13b, KP14a, KMNS12, Kol13, KZ11, KPY11, LaG12, LXL+14, LcwCl11, LY11a, LW12b, Lqy13, LL14a, LL10d, LHw11, Llt13, Ljy14, MD13, Mou12, MAM+13, MP10, MP14a, Nak10, NSW13, NS12a, NM14, NP13b, NY14, OS14, yPjXL11, Pas11a, Pas11b, Row11, SVP11, SS14, SSCS10, SSh11e, Stal12, TF10, TG13, WF10, WF12, WZ13b, Wei13b, Wei13a, WJ12, XD12, XZ13c, XLG+13, XE11, YZ11, Yu13, Ywx13, Zhu12a, dLOdAn11, dLm13].

Eigenvalues [Alo14, CMRR13, Cio10a, Cio10b, JS13a, LLMZ12, LWY10, MR12, Moh10, MAS12, RW12, AFHP14, AGM14, AAT12a, AOTR13, BfPd11, BZ14a, BK12, Bün14, CSZ10, CS13a, CPZ13, CFJKS13, CFK+10b,
CGW14, CH14, CGMJ14, CHLS12, CJ14, CW12b, DXL13, DLS14, DP12a, Dok12,
Dom13, DZ12c, DGU14, FLH12, FHRT11, GKD11, HMTR10, HO11, Har14, HS14a,
HS14b, HQS13, JES13, KS13b, KY11, KT12,
Kus13, LSC10, tLyLWqW10, LNTgW12,
LS13b, LGS13, LZG14, LZ14, Lip10, LHL14,
LHGL14, MVPS10, MV12, NS13, NR10,
Ogu13, dSP14, Psa12, QSW14, Qui11, RR11,
Roj11, Row10, SS10b, SYH14, Sra13, Ste11,
TH10, Wal14, WB11, WBWH13, XC13,
XZ13a, YT13b, YY14a, ZLW12, ZLL12,
ZC14, ZCWZ13, ZSWB14, Zhu10b, Zhu11a,
ZJ10, vDO11, JT11a, RJ11].

eigenvector [GK14b, GLS13a, MM12, RW10].

Eigenvectors [BBGM12, B¨un14, BM13d, SLS13, Sri13, XZ13a, FK13].

eight [NP10].

element [Drn13b, Ney11].

element-by-element [Ney11].

Elementary [BJ10b, Buc10, DDK14, Gu14, PY10, Sin10a, BJ10c, CP12, CS10a, CDDY10, FH10b, Kec13, Kuz10, Per13, Rud12, Ruk14, SZ14, SDNS13, Yam13].

El´ements [Cas10, BR11, BPDC14, CGMS10b, Che14a, CK13c, DDGH13, LL11b, LHL12, Lim10, MS11b, WLG11, WLG12, WZ13a, Zhou11, Cas10].

eleven [BSU14].

elimination [VS14a, HZ14, Ji12b].

elliptic [CEM14, DOKT12, KK12, KK13, SS11a].

elliptical [ATS12].

embedding [HH12a, Wag1].

Embeddings [Pan12b, RV13].

emphasis [KN10].

enclosure [Miy13, Miy14].

enclosures [FHS14b].

encounters [RL13a].

Encyclopaedia [Gr¨u12].

Endomorphism [PY14, ABK14].

Endomorphisms [DGZ13, HHLS14, Mol13, OZ10, Rom14, SR13a].

energies [LS12a, XF11, Zhu12b, Zhu12c].

Energy [GRM10, KAMS11, LW12a, ACG11, ABS10, AW11, CGTR14, CFK10a, CLL13a, CLL13b, CL13a, CG14, DXG12, DG14, DGC14, DLL11, FHRT14, GKD11, GX12a, GH1W13, GS11b, GMRS14, GFB14, HJL10, HLS11, HJLS11, lli10a, LLS10, LLS11, Rad10, RGC13, RJ10, RJ11, Roj11, RL13b, SS11b, SSG10, SW13, SRdAG10, Tia11a, TC13, VDV1T13, WL12, WZ14, YM12, ZZ13, Zha14a, ZK14].

Enestr¨om [RL13a].

enforcement [BV13a].

Engel [Bie13].

ensembles [DGGJ13].

entangled [Fid10].

Entries [GG13, BCS10, B¨un14, CF.JK13, CDDY10, FFJ14, NT11b, RR14, Shp10].

entropies [Ben14b, BP13, EdlPH14, IK14].

entropy [CFPP13, CH11, DZ13, DLL10, EdlP14, Kim13d, MS10c, PP11b].

entropy-preserving [PP11b].

Enumerating [IJ12].

Enumeration [AM14, Car13, SS13c, G14b].

EP [BR11, TW11a].

Equal [FFJ14, HL11c, HTW13].

Equalities [Tia10, Pop12].

Equation [Ber13a, CPH11, JM14].

equation [Bon10a, Bou11, CGGS13, DD11a, DDG13, Fuh10a, Fur10b, GS13a, GKL11, HN10, Hwa12, Kaz13, LwCJL11, Lim11b, MR10b, MR14c, SK14, ZLD11].

Equations [Ano12a, PQ10, Ai13, Ara12, AG10, Baj14, BK11a, Bie13, BM12b, BJ13, Car13, CN11c, DH10a, DH12a, DKS13b, DLDV11, Dum13a, FMWW12, FGR13, FH12c, GM14b, GL1c, Guo13, Hla13, IW13, Jhi10, J12a, Jim10, JK13, KL13a, Ky13, LV11, LV12, LLW14, LS14, LT14, Miy13, MSP13, Mys12, PQ12, PLS14, Pit11, Pol13, Rei11b, Ry12b, Roh11, Sad12, SS11d, Tre11, VSt14, WW10, WD10, WCKL13, XX14, XSZ13, Zha12d].

Equiangular [DHS10, Sin10b, Bod13, FMT12, HS12a, Szol13].

Equilibrants [JT11b].

equipped [Dor10].

equitable [Ter13].

Equivalence [Sze14a, tHR13, GPT12, GTW13, LV12, dSP10a, DDM14, Tim14].

equivalences [GHS13].

Equivalent [Hu10, CHLS12, FLH12, LMM12, LMT10, OM12, Van10, ZLL12].

erasure [FM12].

erasure-robust [FM12].
Erdos [OLW14]. ergodic [Fid10, Pul11].
Erdos [OLW14]. Ergodicity [Kir14].
Erdos [OLW14]. Ergodic [Fid10, Pul11].
Erdos [OLW14]. Erratum [Cio10a, EFN10, KKL13a, Vla12]. Error [DAi11, GEP13, GO13, Cha12, Cha10, FH12c, GEP10, GJTP13, Hua13a, HZ14, KOR14, LH10, PLS14]. error-correcting [LHG10]. errors [AA11, CLCL12].
Essentially [ZCKS12]. estimate [KOR14]. Estimates [BR14d, Gar13, BW12, Duk12, Duk15, MM13]. Estimation [Hzi0, ZJ10, BL11, GD11b, NNW14, PT13b, RV13].
estimations [Ara12, EY13]. estimator [HLP12, LJ12]. estimators [MD12c].
Estroda [DZ11, DL11, DZ12b, DZX12, FTA11, WX14, ZL11]. Euclidean [BAi14, Bud11, GS10c, GTR12, JV10, KT10, KT12, KM13b, LC10, Mol12, Ta011, Tao13, TK1X14]. evaluated [BW13b].
evaluating [CHZ13, KMNS12]. Evaluation [IRT14, CMS12a, VSE12]. even [ABS14, BCF12, Hi11, KS11c, OS14, PPK13, QS14, RR11, Rei11b]. eventually [MPT14].
extendability [BB11a].
Extended [CD14, MAGR13, SN14, JR11, Kuu11, Maa13a, MTS11, PA12a, TZ12a].
Extended-valued [SN14]. Extending [Hua12a, Cj11].
Extensions [Fur12, YJ12, BDIC13, BDC14, DGGJ11, FHS14a, FGH13, FG13b, H12, JZ11, JL12, LCM13, MMA11, RS14a, S11d, SK10, WGL12]. extent [dSP11b].
exterior [Ika11]. extraction [BK11b, Dur12].
extrapolated [BH14a, BJRS11]. Extremal [DGK013, DL13, Jen13, LS12a, MZ13, MW14b, XF11, Z12b, ABL11, BK12, CGSCZ10, DC14, DdF14, LL14d]. extremality [Ha13]. extreme [BT14a, CH14, H12a, LL10d, YX13].
extremum [Dax10, Tia12].
Faber [CKS10]. Faces [CM10b, PSW11]. factor [LNN14, LFL13, Sh12c, YZ12b].
Factored [Cha13a]. Factoring [DT11].
Factorization [C11, KM11, L10b, Bot10b, BH13a, CRU13, CRU14, Dur12, For14, GS12d, HLZP13, Hua13a, Hua13b, LYS13, MR11, SP12, W14].
Factorizations [BBG14, KKL14, Lim12, HL11c, Hua12b, KG12b, LW13b].
Factorizing [Sow13]. factors [Jar12, Koz14b, I1Y10, Sh10, SC13].
Facts [Ber09, Sla10]. faithful [LW12d].
Fallat [Gar12]. Families [BB13d, FP13, HKPR13, KB12, Nat13, RSS10, Stu13, Wd14, Z12, dFADV10].
family [Baj14, Cha14, GZ12, Kal13a, LX13, TH11, WJ13].
Fan [BFdP10, GMRS14, tLyLWw10, Lin11, SRdAG10, ZCW13].
Fast [BSS10, HR11, MI13, OM10, XE11].
BBE⁺¹⁰, Han¹³a, MS¹¹a. Fastest [Kir¹⁰]. fault [PP¹³a]. feasibility [LLW¹⁴, ZY¹²b]. Feedback [Jun¹⁴, SSS¹³, BO¹², CC¹⁴, Liu¹³]. Ferrers [AdF¹¹]. few [AJRT¹⁴, BG¹²b, FMNW¹⁴, Kla¹⁰, Mol¹¹, dSP¹⁴]. Fibonacci [CLX¹³, DGM¹⁴, LaG¹³]. fidelity [Kim¹³d]. Ferrers [AdF¹¹]. few [AJRT¹⁴, BG¹²b, FMNW¹⁴, Kla¹⁰, Mol¹¹, dSP¹⁴]. Fibonacci [CLX¹³, DGM¹⁴, LaG¹³]. fidelity [Kim¹³d]. Fiedler [BOZ¹¹b, Gr¨u¹², Ano¹³y, BHMO¹³, BOZ¹¹a, BCF¹⁴c, DDM¹², Mac¹³, NDM¹³, Nik¹³, Ser¹³, Stu¹³, DDP¹³, DDP¹⁴]. field [AKM¹³, AW¹³c, Bie¹³, Bot¹⁰b, Bot¹², CK¹³c, CJK +¹³, EJLS¹¹, HK¹³, dHLMS¹³, HCY¹⁰a, LHG¹⁰, LdSP¹¹, Ma¹¹, MMP¹³a, dSP¹⁰a, dSP¹⁰c, dSP¹⁰d, dSP¹²c, Qui¹¹, Rad¹³, SS¹⁰d, Wu¹⁰b, de ¹³]. fields [AG¹², BB¹³a, BBC +¹⁴, BC¹³, FL¹², GH¹³a, GH¹³b, HHS¹⁴, KK¹⁴, Kra¹³, KS¹¹b, LdS¹³, LT¹³, MZ¹²c, MSP¹³, PP¹³a, Per¹³, RS¹⁴b, SV¹³]. filiform [CT¹⁴a, CGO¹⁰, CLOK¹³, LMO¹⁶, Wu¹³b, CCGVO¹³, CCGO¹⁴]. filling [HK¹³]. fillings [AW¹⁰]. filter [BOZ¹⁰, Jim¹⁰, LLMZ¹², Mah¹¹, MZ¹²c]. Filters [GLP +¹³]. Filtrations [Stu¹²]. find [CS¹³b, Ern¹³]. Finding [AS¹²b, BDD¹³, PQZ¹¹]. Finite [Ter¹³, AiS¹³, AG¹², Ada¹⁴, jASZ¹², BB¹³a, Bar¹⁰a, Bar¹³a, BS¹¹c, BS¹³a, BPC¹⁴c, CK¹³c, CKL +¹³, DHLX¹², Dai¹³, DKM +¹⁴, Dub¹⁴, DDK¹⁴, FL¹², FG¹³c, GH¹³a, GH¹³b, GW¹⁴a, GWW¹⁴a, GJ¹¹, HW¹⁴a, HM¹⁴a, HS¹²b, HK¹³, HN¹⁰, HHS¹⁴, KKS¹², LHG¹⁰, LdSP¹¹, LdS¹³, LX¹³, MB¹³, MSP¹³, Moj¹⁴, NS¹¹a, Pol¹², PRW¹¹, Rom¹⁴, Row¹⁴c, Row¹⁴d, SR¹³a, Sev¹⁰, Sev¹³, Sha¹⁴b, Shi¹²a, Sim¹⁰, Sko¹¹, SQ¹⁴, SS¹¹c, Ter¹⁴, VW¹⁰a, Vij¹⁴, Vul¹², Wôj¹⁴a, Wol¹², Xu¹¹]. finite-difference [Vul¹²]. Finite-dimensional [Ter¹³, BS¹¹c, BS¹³a, Dub¹⁴, HN¹⁰, Moj¹⁴, Sko¹¹, Ter¹⁴, Wôj¹⁴a]. finite-step [DHLX¹²]. finitely [Bar¹²a, Ma¹¹, TL¹³a, Yan¹⁰b]. finitely-generated [Bar¹²a]. Finiteness [CGSCZ¹⁰, Dai¹³, Mor¹⁰]. Finsler [Vla¹², Bal¹²a, Bal¹²b, TNP¹²]. First [DD¹⁰a, LJ¹⁴, LZ¹¹b, AM¹⁴, BM¹⁰, Bos¹¹, JMS¹¹, NS¹¹b, Zhu¹²c]. first-order [BM¹⁰]. Fischer [Ks¹⁰, Ks²b, KM¹⁴]. Fissioned [MW¹²a]. fitting [MM¹⁰c, Moh¹³]. five [BOZ¹¹a, BOZ¹¹b, NS¹²a, Ste¹¹, XX¹⁴]. five-diagonal [BOZ¹¹a, BOZ¹¹b]. five-point [XX¹⁴]. Fixed [Ros¹²b, SS¹¹c, WLL¹⁴, CLL¹², Cos¹⁴, HL¹¹a, HL¹², LT¹¹a, LT¹⁰a, LL¹¹c, NOL¹³, Per¹⁴, SBMT¹⁰, Slo¹⁴, YFW¹⁰]. fixed-point [Per¹⁴]. Fixing [Lip¹⁰]. flag [Ber¹³a, DKM +¹⁴]. Flanders [DLN¹¹]. flat [CS¹¹c, CS¹¹d]. flats [WLGM¹¹]. Fliess [LZ¹¹]. flipping [MSP¹³]. flow [BOZ¹⁰, LL¹⁰]. flows [AKZ¹³, AJ¹³]. forbidden [LS¹³d, Yu¹⁴, Yu¹⁵]. forcing [BBF +¹⁰, CL¹⁴a, EHH +¹², EHH +¹³, GB¹⁴, HCY¹⁰b, Mey¹², Row¹²a]. for [BBDH¹³, BFdP¹², BIT¹², BDK¹¹, CRU¹⁴, CT¹¹a, FDS¹³, FP¹¹, FHS¹¹, GS¹²b, GK¹¹, Mar¹³b, NISC¹³, Nol¹⁴, Rad¹³, Reh¹⁰, TX¹²]. formal [TZ¹³a]. format [BGK¹³]. formats [KRS¹³]. forms [AW¹³a, AIS¹⁴, BDK¹¹, CGMS¹⁰a, CN¹³a, DFS¹², DS¹⁰, EN¹¹, FV¹³a, FGH¹³, GMMFPSS¹², HSZ¹², Hu¹⁰, JR¹⁴, KKKY¹⁴, KLZ¹⁴a, KB¹², MMMM¹³, MPS¹⁰, NT¹¹a, Pop¹⁰, Reh¹¹, Sim¹⁰, Sze¹⁴a, TW¹⁴, Wil¹⁴]. for [AS¹²d, Dai¹², Gro¹⁴, KLS¹², Kon¹³, Koz¹⁴a, KR¹⁰, Ma¹⁰a, MS¹¹a, OM¹⁴, RW¹⁰, SR¹³c, TX¹²]. Formulae [BT¹⁴a]. Formulas [Ber⁰⁹, Tia¹², BZ¹³, DK¹³e, Ern¹³, G1⁰c, GMV¹¹, GLW¹³, GL¹⁴, Kyr¹³, MGLW¹¹, MAGR¹³, Rue¹³, Sl¹⁰]. four [Ben¹⁴a, BW¹³b, Mar¹⁰, RRM¹¹, Tia¹²]. four-term [Tia¹²]. Fourier [Ban¹³b, FK¹³, Sav¹², Xu¹⁴]. Fourth [HSZ¹², jASZ¹², DHS¹⁰, Lop¹¹b]. fraction [Dur¹², KY¹³]. fraction-free [Dur¹²].
Fractional
[Beh13, LdS13, Mat13a, Mat14a, GMH14a].
Frame [Fut12, BHKL10, DFR13, VW10a]. framelet [MZ12c].
Frames [Fut12, BHKL10, DFR13, VW10a].
framelet [MZ12c]. Frames [Wal11a, Bod13, BW13a, CKL13c, KOPT13, LH1j1a, LH13, LH10c, NRR+11, Sin10b, Sz13]. framework [GHT11]. frameworks [AY13, AN13, Bai14].
Fréchet [San14].
Fredholm [Sei14].
free [BGP13, BP10, BdlC14, BM13c, DDF13a, Dea11, DTL11, Dur12, GS12d, KY13, Ma11, MR10b, MR14c, VB10, YW11, ZW12a].
French [Cas10].
frequencies [Koz14b].
frequency [ST12].
Frobenius [Lim13b, BT14b, CVW10, DIP13, FGH13, LN12, MZ10, NV12, Pat12a, Pit11].
Fuchsian [Kim13c].
Furi'k [RY12b].
Fuglede [DK14]. Full [CRU14, HSS14, JP11, LMW12, BC13, GL14, JK13, Sav12]. full-rank [Sav12].
function [BKV14, BV11, Boj13, BTYZ12, Car10a, CM12a, FDS13, FdC10, FHS14b, GIP12, GS12f, HLP12, LQY13, MS14b, RS14c, SS12a, SS13a, SS13c, SS13f, Tia12].
Functional [BK11a, Bhu10, Ere13, BB13a, Fuh10a, Rhei10, TX12].
functions [Ben10, GD11a, Lu11, SS12c].
Functions [Xu11, AL13b, Aud12, Aud13a, BKV14, BT11b, BGP13, BHDW12, BANP12, BB10, BEK13, BB14, BJ10a, CH11, CGMPSS14, Drai12a, FP11, FG13b, FKR11a, GHMPVP11, GKS+10, GKI14c, GG13, Hia13, HWH14, HH11b, IM11, JM14, JRMFSS12, JZT14, KOR14, Kia14, KKL10, MM10a, Naj13, Nak13, Nat13, OT12, PCC12, Ruk14, Sag13, San14, Sin10a, SN12, SN14, Sto11, Uch10, WLL14, Wod14, Xu14, Zha14c].
fundamental [LNN14, Lom13].
Further [DMS10, KMSC14, MH13a, PAS11a].
Furuta [BLdp12, FNY13, Wad14].
Furuta-type [Wad14].
fusion [Bod13, HM14a].
Fuzhen [Tam12].

[MMP13b, MP13b, MS14c].

G [Lae12, Rei11a, Rhe10].
Gaddum [NY14].
gain [KG12a, Ref12].
Gallai [KW13].
game [wH13]. games
[AGK11, FDS13, Jun14, Sta14, Cec10].
Gangster [FJ10a].
gap [GO13, KR10, Wol12]. gates [CLX13].
Gau [CRSS14].
Gau-Wu [CRSS14].
Gauss [FBR14, Ji12b].
Gaussian [ALPV14, BT14a].
gcd [KAMS11, TL13a].
gcd-graphs [KAMS11].
GCDs [BD13].
Geary [BBGM12].
Gelf’and [Dai12].
Gelf’and-type [Dai12].
General [Jim10, Ay13, BV12b, Bot10b, BGH12, CPH11, CKF10a, CMS12a, CMI2b, DH10a, FFG+11, JKN14, KSAM12, LH110, MR11, Sh13b, TT11, XW11, wXL14, VM13, Beh13].
generalised [DG11].
Generalization [Dok12, Mel13, AKZ13, BL13b, FFS11b, Kus12, MGLW11, MW12b].
Generalizations [FFS11a, IK+13, MS12, SN12, WX11].
Generalized [AKN12, BCEM10, Ben11, BG14b, CL12a, Dra14, Dur12, GP12, HL10c, Hun14, Hui13, ili10b, KB14a, KB14b, KSA11, Kau12, Kim10, Kim13a, KCID12, KS11c, LL11b, MP13a, OM13, SS14, Seo13, SM10a, TX12, Wu10b, AL13b, Az11, AM13d, AL13c, Ban13b, CMRR13, CJ10, CLCL12, CL11b, DH10a, DH12a, DV10, Den10, DK12b, DY14, Dra12b, DW12b, DW13, DB2Z14, FKW13, FTZ12, FDS13, FdC10, FH12b, FH13, GP14, GL12c, He11, HOT13, HLW10b, Hu10, HZ11a, Hua11a, HP11, Hwa11, IW13, JM14, Jen13, JIY13, Kim11a, KP12, KS14b, KMK13, LW12a, Lav10, LCwCL11, LW12c, LW13a, LYS13, LMW12, LJ12, LJY13, MB13, Mar11, Mar13c, Mat12, Mel14, MS11b, Mos13, Nak10, NCI13, Pep11, Pep12, RAAGAVS11, RJ11, San10, SS13a, Siv13, SR12, SS10e, Ste13, SL14, TZ12b, TNP12, TN14, Uhl13].
generalized [WLL11, WML13, W13c, W14].
Generalizing [CC10]. generate [AKM13, Cha13a, Kau12]. generated [Bar12a, BS11c, BS13a, GS10d, KM12, Ma11, Rez13, Yan10b]. Generating [CK13b, CN10b, Lop11a]. Generation [BFBD13, CN10b, Lop11a]. generators [pWlW14, WY14b]. Generic [Bat14, KBS13, Fri12, HS10, MMRR11, MMRR12]. genetic [Pan11]. genetics [LLR14]. gentle [BS10]. gentle [Bat14, KBS13, Fri12, HS10, MMRR11, MMRR12]. Genetic [Bat14, KBS13, Fri12, HS10, MMRR11, MMRR12]. geometrical [ART13, Aud13b, BDD13, Ben14a, NS12b]. geometrically [Aud13a]. geometry [DHC12, Fie11b, HH14, Lim13a, BH10, BCF12, Fuj10, GH13a, HI10a, Hua10, HI11b, Hua12a, HS12c, UV13, Gr12]. Geometric [Ban13a, CvDKP13, ISY11, AGV12, BG12a, BCS13b, DMMY10, G12, Han14a, JLL10, KLL11, Kim13d, LLY11, Lim11a, Lim12, Seo13, Wal14, Yan13, BT11c, DD10c]. geometrical [ART13, Aud13b, BDD13, Ben14a, NS12b]. geometrically [Aud13a]. Geometry [DHC12, Fie11b, HH14, Lim13a, BH10, BCF12, Fuj10, GH13a, HI10a, Hua10, HI11b, Hua12a, HS12c, UV13, Gr12]. Germany [BFBD13]. Geronimus [DGAM14, DW10]. Gersgorin [CGWW13, MH13a, FHM13]. Gerstenhaber [de 13]. GF [AW13c]. girth [Kol13, Row11]. given [AG12, AW13b, BL12, CK13b, DB13, DZ12, FY110, GL10b, GM12, GLS12, Hua11b, HJJ10, Kir14, LS10, LZ4b, LY11b, LS11b, LJY14, MS13c, dSP11a, SK10, SWT13, Tan10a, WKV10, XF111, YW11, YWS11b, ZHGL13, Zhu12a, Zhu12b]. global [CD11, Kra13]. GMRES [TMSS14]. GNS [Kaw13]. Goldberg [BDK10]. Goldberg [Ano13z]. Golub [Rei11a]. Gondran [GS12f, Shi11]. Good [Hua10, FG13a, NT14]. Graded [DS10, ACGVK14, CGO10, CLOK13, Cen11, CM14, KZ10, LMO16, Mar13a, Mar14b, Per13]. gradient [JRMFSS12, LL10d, OM10]. grading [Mar14a]. Gradings [Cir13, MFGD14, Per13]. graft [XZD14]. grafting [SSGL10]. Gram [SST14, Wil13]. Gramian [HG11a]. grand [FNY13]. Graph [CS11, ACM12, AJJ12, AV12, AHI13, AH10, AH13a, AHLT13, AOT13, BB13c, Bap13b, BBF12, Bau12, BOZ10, BRZ11, Boz13, BZZ14a, BW12, CMRR13, CAV13, Cer10, CTW11, CW10, CS13b, CLS13, CL13a, DGH10, Dea11, DC13, EHH12, EFN09, EFN10, ES711, FTDA10, FH13, FL12, GX12b, GX12c, GMY14, HSH10, HS14a, HS14b, HS10, HCY10b, HCY10a, IMA10, KIR12, KIR14, KPY11, Kuz10, LaG13, LRST10, LW12, LFS12, LW12e, aLW13, ML13, MS10a, Mit11a, MS13c, NSW13, Nik13, OdLdAK10, PRT13, RJH11, RR12, RJ11, Roj11, Row12a, Row11, SS12a, SS13a, SS14, SM13, SRdAG10, Sux13, TW10a, TF10, Ter11, WF10, WL12, WAH13, WMZ14, Yu13, ZC14, Zhu10b, Zhu12a, Zhu13]. graph-theoretic [BB13c]. Graphical [COvdD10]. Graphs [BMSW11, BL12, BCF12, CT10, DV14, Fie11b, Gru12, HTW13, HHL14, LLS12, OS14, WKV10, WLLX11, WX14, vDO11, AO14, AFHP14, AFLN12, AJRT14, AKN12, AKZ13, AKM14, AS12c, AdFST11, AdFM11, AW11, ABS14, AH14, AT14b, AJ13, BB13a, Ban13a, BK12, BG14a, BFK11, BHvH11, BHMO13, BP10, Bau12, BB11a, BMSW10, Bel14, Ben14b, BFF11, BNP11, BNP13, BZ12a, BYZZ14, CVDP13, CFG14, CR10c, CFK10a, CCF12, CM11a, CTT11b, CH11Y, CHY12, CFHL14, CFK10b, CLL13a, CLL13b, CGW14, CH14, GM14J14, CL11a, CCL12, CG11, CKST11, Cio10a, CvDKL10, Cio10b, CW12b, CV13, CSAC10, CSAC11, CTG13, CS10b, DFG10, DvDF11, Das10a, Das10b, Das11, Das13, DXL13, DG14, DLS14, DC14, DO11a, DO11b, DLS10, DL11, DLS11, DZ12b, DZX12, DZY12c, DP12b, DJ14, Est12a, EdPH14, FF12, FW12, FS14a, FTA11, FY10, FN10]. graphs [FGG10, Fio12, GL10a, GZH14, GLS10, GL12a, GKZ11, GB11, GY10, GHW13, GM12, GL13a, GW11, GW13, Gu13, Guo10b, GSNL11, GLS12, GLS13b,
GW13b, GM14, GRM 10, GS11b, HMR10, HL10a, HL12, HLLW14, HW14c, Hua10, HJ10, HLS11, HJLS11, Ill10a, JTT13, JZ14, JS12, KG12a, KP14a, KAMS11, KKKL10, KS13a, Koll13, KS14c, KY11, KM12, LL13a, LW12a, LS12a, Lee13b, LwW14, Ls10, LLS10, LWGM10, LSC11, LWZ11, LY1a, LWGM12, LS13b, IWG13, LTS13, LGG13, LHWS13, LZZG14, LZ14, LL10e, LHW11, LL1nc, LW12, LHHL12, Lz13, LLT13, Lh13, LHL13, LLL4b, LL14c, LJY14, LSD14, LLT12, MWZ13, MS13a, MM10a, MR12, Mig13, MW14c, MK12, MAS12, NP12, NP14, Niki10b, Niki11, NY13, NSE13, NLL13, NS12b, Pan12b, PAS11a, PHS13, QY12, RRMI, Ref12, RM10, RL13b, RTR10, Row12b, Row14b, Row14a, Row14c, Row14d].

graphs [RW10, SS11b, SST14, SSGL10, SW13, SBMT10, Sin10c, SK12, Sta12, Ste10, Sto11, wTlW13, TLL13b, TH10, Tif11, UZ14, VJ14, VDVT13, WB11, WF12, WS12, WB12, WML13, WZ13c, WBWH13, WBHM13, WZY14, WY14a, WF14, WNM13, Wll14, WZL13, Wor13, XZ13a, XZ13a, XM11, XG13, YFW10, YL10, YWS11a, YWS11b, YFW13, YZ14, ZW12a, ZW12, Zha12b, ZZZ13, ZHG13, Zha14a, ZK14, ZWL13, Zha10a, Zha11a, Zha12c, dFADVJ10, dFBS14, vDF14, vDH14].

Grassmann
[BBCC13, Cen11, DKS10, Pan12b].

Grassmannians [De 11, Lim10]. gravity [XWD13].

Greedy [GNE+14, GO12, Dum13b].

Greedy-like [GNE+14].

green [Sev14, BTV12, CEM14, Mar11, Mar13c, OSZ10].

Greub [Rua12].

Gröbner [KSN1a].

ground [dSP10a].

Group [RDD14, AAH13, AV12, BK11a, Bie13, CGRVC13, COvdD10, CLST14, CJL13, CK13c, CGM+10, Den11, GST13, GH12, HRT13, Ill14a, HT10b, JLN13, KM12, LWGM10, LWGM12, LW12, Ma11, MR11, Nie12, Nie13, dSP12d, Slo12a, TT12, VW10a, WZ13a, WMZ13, XSH14].

groups [Ada14, ÁvV11, BDV12, CD11, DF14, DK12b, DGT13, FG13c, GL10a, He11, HS12b, HK13, K13c, KK14, KN10, KN13b, MW12a, Mol13, Rod11, Shi12a, Sin10b, Xu14, Yan10b].

growth [NA13, TZ12a, XW11].

Grüss [Coh14, GD11a, MR10c]. guessing [CFHL14].

guide [BS10].

gyroscopic [Lan13].

H [Rei11a, HQS13]. H-eigenvalues [HQS13]. Haar [AK11].

Haar-type [AK11].

Hadamard [Aud10a, BFK11, BB13d, BR14a, CFLW13, Dra12a, EGR12, GKI2, Hua11c, Kar11a, Kar11b, tLWvW10, L14b, Mit11b, NS12c, PEP12, Sz13, WZ13d, ZCW13].

Hadamard-type [BR14a].

Halley [Guo10a, Lin10]. Halms [Dom10].

Hamilton [FTZ12, Hwa11, Hwa12, MSvW12].

Hamiltonian [BFS11, Lim14, LLL12, RS14a, SB12].

Hamiltonians [Haa11a].

Hamiltonicity [FN10, Zho10].

Hamming [CM11a].

Handelman [Laf12].

Hankel [AHAPP10, Ang13, BH12, Boj13, BF14b, CY11, CMS12a, CHZ13, CK13d, CI10, EWY12, HR11, K14b, MS14c, RBP12].

Hardback [Lim13b, Rod12a, Zha12a].

Hardy [AP14, Lac13].

Harm [Ano13d, Ano13e]. harmonic

[Hi10, KL11].

having [AG12, MR12, Nom14].

Haynsworth [GS10c]. heat [DGU14]. heat-bath [DGU14].

Hecke [Lee13b].

Heinz [BLeP12, KMSC14, MN12a].

Heisenberg [GS12c, MFGD14, Sze14b].

Helmert [Hü13].

hemispaces [KNS14].

Herglotz [BK1V14].

Hermite [LS11, Dr12a, GMV11, SV13].

Hermitean [LWGM10].

Hermitian [Rod12a, AAT12a, ALRV12, BH14a, BW11, BF1P10, BLdPS10, BH10, BLL13, CM12a,
CGMJ14, CN11d, DP12a, Dom13, DYW14, FMWW12, FG13b, FS14b, Gar13, GG13, HFS13, HSS10, HSS14, JS13a, KM13a, LT12a, LNTgW12, SCS11, SH10, Sha14b, SM10a, Tia10, Tia11b, TCI10, VW10b, WW10, WZ14b, ZL11. **Hessenberg** [BBGM12, God10, God12, HG11b, Ste13, TT11].

hexagonal [RGC13].

Hiai [Fuj10].

hierarchical [BGK13, BM13a, BPDC14, UV13].

hierarchy [GMS13].

high [BSU14, MD13, Nem13, WZ13b, ZY14].

high-order [Nem13, ZY14].

Higham [Dru13].

Higher [GW13a, LJY13, WX11, CN11a, CN12b, CLS10, HH12b, SWBS13, ST13, XW10b, ZZ11, ZZ12]. **Higher-order** [LJY13]. **Higher-rank** [GW13a]. **Hilbert** [And13, AR12, AF12, BV12a, DWXS12, Dra12a, DK14, Fan12, Fie10, GN14, HKK+12, HZ11a, KLP12, MMM13, Pop12, SSI4, Sha11, SQ14, Tim14, XW10b, WI10, tHR13, vBM13]. **Hilbertian** [AS12a, Gon11].

Hille [NA13, SR13c]. **hitting** [PR10]. **Hodge** [JR14]. **Hoffman** [BMSW11]. **Hölder** [FLS10, KSA11, Pat12a]. **Holographic** [CLX13, LMN13]. **holomorphic** [HWH14]. **Hom** [LCM13]. **homeomorphism** [MZ12a].

Homogeneous [EN11, PQ10, CFL13b, Tre11].

Homomorphisms [Mar10, DWW14, DW14, MW10, XW10b]. **Homotopic** [BI12]. **Homotopy** [RO10].

honor [Ano13y, GRS+10, LPQs10, Stu13]. **Hopf** [BH13a]. **Horn** [CP12]. **house** [BS12c]. **Householder** [Irvi12, MPT12, dRMP12]. **Hua** [Hua12a].

hubs [BEK13]. **Hugo** [Rod12a]. **hull** [Re13, Roh11]. **hulls** [AM13a]. **Hurwitz** [BT11b, BG12b, FF10, KKB11]. **hybrid** [BCY12, GOSV12, Wan11b]. **Hyperbolic** [CN13a, GP13b, Kim13c, KK14, LYS13, NV10, Seg10, Seg14]. **hypercube** [Sri13]. ** hypercubes** [Tia11a]. **hypermultiplicity** [OZ10].

Hyperramification [JJKS11]. **hypergraph** [AGK11]. **hypergraphic** [RR12].

hypergraphs [BZW14, CD12b, Duk12, Duk15, HQS13, Nik14, QS14, XC13]. **hyperinvariant** [AW13c, MP13a]. **hyperplanes** [De 11, LMIa10, Nit10].

Hyperreflexivity [BR13, BR14d, PP12a]. **hyperspectral** [GP13a]. **hypersurface** [CN10b]. **Hyponormal** [HMT10, CDDY10].

hyponormality [KL12].

ideals [BZW13, BDF11, BJ11, CV13, KS14a, KLZ10]. **Idempotent** [Ma14, WLG11, And13, Bot14, BH11a, BHM12, KN13c, KLZ14b, LV11, PP11a, dSP10c, dSP10d, SZ14, Sh11, Sin10a, SB11, Zuo10].

Idempotents [Mat13b, ABEV10, BS12b, BS11c, BS13a, CM12, Den11, DC1W12, KC1D12, dSP10b, SH13, Wan14b, ZW12b].

Identical [AGV12]. **identifiability** [BBCC13]. **identified** [AK11].

identities [BS11a, KZ10, LMM12, Abe14, BM13c, CD14, Cen11, Cha13a, Cria13, DKS10, Ere13, HP12a, Hii13, Kd1M13, Lan10b, Mar13b, Per13, Rah13, TW10b, dCF12]. **identity** [BT11c, HMP+11, Hii13, Kon13, MSw12, SS10c, WLG12]. **identity-product** [WLG12]. **IDR** [RRZ13]. if [PPK13]. **Ihara** [BHAP12, MM10a, SS13c].

II [DK13b, Siv12b]. **ILAS** [An10u, BBG13, BFBD13].

ill [BJRS11, HMR12, NRS12]. **ill-posed** [BJRS11, NRS12]. **illumination** [WA10]. **illustrative** [CP12]. **image** [FN11, GP13a]. **images** [Sav12].

imaginaries [BV13a].

imaginariness [BV13a].

imaginary [KS11b]. **imbeddability** [KM13a].

immanants [CD12a, Ye11].

Implementations [NRS12]. **implicit**
Implicitly [PO11, MV12, MSS12].
Implicitly-restarted [MSS12].
Implicitly-weighted [PO11]. implies [EdIP14, JN13]. imprecise [Sku13].
BF14d, DD11b, HSS10, HSS14, KZ11, SB12, SS11e, SS13f, Wei13b, WJ12, Xu12.

Jacobian [BVV12, Gna12, Sun13, Yan11].

Jacobians [GS12a].

Jacobson [Wu10b, ZCC12].

James [AR12, CP11].

JB* [Ili10b].

JB*-triples [Ili10b].

Jensen [BH14b, Kia14, KLP12, KP14b, MPP11].

Johnson [Gar12, GZH14].

join [BHvdH11, BYZZ14, CMRR13, MH13b].

joined [MR12].

Joint [CN10b, Dumi13a, GZ13, CN13c, DHLX12, GB13, GMV11, Koz10, Koz14a, LV11, LP12, LX13, MR14b, OM13, OM14, Pep12, Sed11].

Jordan [DWW14, BS12b, BH10, BM13c, BF14d, CT11a, CM14, CMZ10, DW14, FMM13, GS10c, GTR12, GC12, HW11, HLW10b, JV10, Ji12b, JH10, LW12d, MMM10, Mar13b, MW10, Mol12, Mol13, NSC13, SM10b, Tao11, Tao13, TKLX14, WW13b, XW10b, ZZ11, ZH11a, ZZ10, ZZ12].

Jörg [Gre13].

Jose [LPQdS10, FdC12].

jumping [DKOT12].

Kaczmarz [NT14, PPKR12].

Kadanoff [BBGM12].

Kadison [BR10, DH12b, WY14b, YJ12].

Kakeya [RL13a].

Kamvar [Gle11].

Kapranov [Shi12b].

Karaduman [Hil14c].

Karcher [BI13, LY13].

Kato [BL10b, BRZ11, Boz13, BZ12a, CGTR14, CFK10a, CT10, CW10, CJ12, CT12, CTG13, CS10b, Das10b, Das11, DXG12, DXL13, DG14, DLS14, DL11, DZ12c, Est12b, FF12, FTDA10, FY110, FHT11, FHRT14, GKS13a, GLS12, GLS13b, GW13b, GY14, HMTR10, HL10a, Har14, HL11a, HL2, HZJ13, HT10a, HY14, HOS13, LCO1, LS10, LSC11, LWZ11, LW12b, LZ12b, LTS13, LYS13, LY11b, LL10c, LL11e, LW12e, LTL13, LH13, LL14b, LL14c, LSC14, MK12, NS13, NP14, NLL13, QSW14, QY12, RJ10, RW10, SW13, Sri13, Sz13, TW10a, wTmS12, wTlW13, Ter11, VDVJT13,WB11, WL12, WF12, WBHM13, WAH13, XZ13b, XM11, YY14a, YFW10, YL10, YWS11a, YWS11b, ZZ13, ZHG13, Zho10, ZSB14, Zhu10a, Zhu10b, dLOdAN11, dLN13, vDO11, vDF14].

Klén [OLW14].

Klein [SY12].

Kleiner [Y11b].

Kleinhans [K14, Yan10b].

Ko [OLW14].

Kohn [YM12].

Krawtchouk [NT12b, Wor13].

Krein [AGPPF12, PT13a].

Kronecker [BJRS11, CSV14, Dod13, HFS13, HTS14, HF12, OZ10, Tad12].

Kruskal [BH13b, Der13, Rho10].

Krylov [BFS11, CK13d, DZ12a, JCR11, Jbi10, MSS12, RRZ13, Sad12, SE13, Sto12, Xu11, Gre13].

Krylov-type [SE13].

Kwong [Naj13].

Ky [Lin11, GMRS14, SRdAG10].

labeled [WNM13].

Lagrange [Ma10a, TX12].

Laguzhe [Lan14].

Lanczos [BFS11, PPZ14].

Laplace [MW10, TW10b].

Laplacian [LT11a, AFHP14, AG11].

Laplacian-type [BM12, AKM14, AOR13, AT14b, BS11a, Bap13a, BMSW11, Bel14, BL10b, BRZ11, Boz13, BZ12a, CGTR14, CFK10a, CT10, CW10, CJ12, CT12, CTG13, CS10b, Das10b, Das11, DXG12, DXL13, DG14, DLS14, DL11, DZ12c, Est12b, FF12, FTDA10, FY110, FHT11, FHRT14, GKS13a, GLS12, GLS13b, GW13b, GY14, HMTR10, HL10a, Har14, HL11a, HL2, HZJ13, HT10a, HY14, HOS13, LCO1, LS10, LSC11, LWZ11, LW12b, LZ12b, LTS13, LYS13, LY11b, LL10c, LL11e, LW12e, LTL13, LH13, LL14b, LL14c, LSC14, MK12, NS13, NP14, NLL13, QSW14, QY12, RJ10, RW10, SW13, SRI13, Sz13, TW10a, wTmS12, wTlW13, Ter11, VDVJT13, WB11, WL12, WF12, WBHM13, WAH13, XZ13b, XM11, YY14a, YFW10, YL10, YWS11a, YWS11b, ZZ13, ZHG13, Zho10, ZSB14, Zhu10a, Zhu10b, dLOdAN11, dLN13, vDO11, vDF14].

Laplacian-eigenvector [RW10].

Laplacian-energy-like [DXG12, DG14, WL12].

Laplacianness [Hu10].

Laplacians [AH13a, Bau12, BF11].

Large [AM13c, BGP13, BFdP12, GM14, LRV12, LSV12, dSP12a, AW11, BHO13, FHRT14, GG13, Jbi10, KKM13, LHJ11, MAS12, dSP11a, dSP11b, dSP12b, Sad12, Wan11b, WCKL13, WZ14b, ZL11].

Laplacian-type [BM12, AKM14, AOR13, AT14b, BS11a, Bap13a, BMSW11, Bel14, BL10b, BRZ11, Boz13, BZ12a, CGTR14, CFK10a, CT10, CW10, CJ12, CT12, CTG13, CS10b, Das10b, Das11, DXG12, DXL13, DG14, DLS14, DL11, DZ12c, Est12b, FF12, FTDA10, FY110, FHT11, FHRT14, GKS13a, GLS12, GLS13b, GW13b, GY14, HMTR10, HL10a, Har14, HL11a, HL2, HZJ13, HT10a, HY14, HOS13, LCO1, LS10, LSC11, LWZ11, LW12b, LZ12b, LTS13, LYS13, LY11b, LL10c, LL11e, LW12e, LTL13, LH13, LL14b, LL14c, LSC14, MK12, NS13, NP14, NLL13, QSW14, QY12, RJ10, RW10, SW13, SRI13, Sz13, TW10a, wTmS12, wTlW13, Ter11, VDVJT13, WB11, WL12, WF12, WBHM13, WAH13, XZ13b, XM11, YY14a, YFW10, YL10, YWS11a, YWS11b, ZZ13, ZHG13, Zho10, ZSB14, Zhu10a, Zhu10b, dLOdAN11, dLN13, vDO11, vDF14].
MMR13a, LMMR13b, LM10b, LdlP11, LLI3d, MMS12, Mah11, MD13, MZ12a, MR11, MLC+10, MW14b, MO14, MSP13, MR10c, Mys12, NRS12, OLW14, PQ12, dSP10b, dSP10c, dSP10e, dSP12b, dSP12d, Per11, PKR12, PPKR12, PTPL10, PE13, Pro10, RAY14, RdSP11, RS14a, RS10, Roh11, RS12c, SSS13, SB12, SVP11, SW11, SS11d, SH13, SLS13, SS10e, TZ13b, TMysH11, Tao13, Tra12, Tre11, TP13, Wal11b, WGL12, XDFL10, XX12, wXL14, YT13a, YJ12, ZW12b, dOFK13, dlP11, dSC14, BPRY11.

Linear-quadratic [NT11a, Jun14].
Linearity [BEV13].
Linearization [MP10].
Linearizations [AA11, AAK11, BCF14, BF14c, DDM12, HMP12].
Linearly [AA14, Bła14, CK14, CMM+10, Gna12, RS12b, ZHZF13].
Lines [BH10, DS10, Lee13c].
Link [BCF12, Pit11].
Liouville [jAS13, KZ11].
Lipschitz [BJ10a, GV11, JRMFSS12, Koz10, Lán10a, PP13b, Rod11, Rod12b].
Lipschitzian [JV11].
List [Ano11a, Ano12c, Ano13e, Ano13f].
Lists [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano1227, Ano13d, Ano13b, Ano13j, Ano13l, Ano13m, Ano13n, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, CL14b, ES14].
Lists [JNS13, KS13a].
Lit [wH13].
Lit-only [wH13].
Littlewood [AW10, AP14, Lac13].
LLL [LQ11].
LMI [PKR12].
Loadings [ZHZF13].
Local [Cos14, BS11b, Ben13, Bun10b, CD11, JZZ13, KY11, Kra13, TZ12b, Tra12, AKA13, FP11].
Local-global [Kra13].
Localization [Elo11, GPR13, LL14a, RS10].
Localizations [DTL11].
Locate [SYH14].
Locating [JT11a].
Location [JTT13, Wil11].
Loewner [Ano13c].
Loewy [Ano13-27].
Log [WZ14a, Alt13, CM12a, Fur12].
Log-convexity [WZ14a, Alt13].
Log-determinant [CM12a].
Logarithms [BLdPS10, Chi13, LNN14].
Logistic [YiKIS12].
Lollipop [GSL11, GW13b, WS12, WY14a].
Lonesums [KKL13a, KKL13b].
Long [BLLX11, CBB13, WZL13].
Looking [Raf14].
Loop [Bap10, GS10b, WY11].
Loop-free [WY11].
Loopy [GM12].
Lorentz [KN10, TD13].
Low [BGV12, KRS13, AJ13, CAV13, DBZZ14, MZ12b, Sad12, GPT12].
Low-rank [BGV12, KRS13, MZ12b, Sad12].
Lower [AP14, MNZ10, MNZ12, Pat10, PJ13, Rad10, Cha10, CFL13b, Grc10, GR10, GGY14, LLH10, LMY11, RJH11, Slo12a, WXH10a, Zim13].
Lowering [BC14a].
Lowest [LTX14].
Lowest-rank [LTX14].
Lowener [Han13a, MN12a].
LP [Pin11].
LTI [Per12].
LU [Hua13a].
Lucas [DGMS14].
Lur’e [Rei11b].
Lyapunov [FHI10b, GTR12, GKS+10, Jbi10, LXX12, LTX14, PJ13, Sad12].
Lyapunov-like [GTR12].
Lyapunov-type [LXX12].
M [Gar12, Gem10, AS12a, Rhe10].
Macaulay [BDD14].
Magic [CMNW14, CCL14, dHMS13, Hun10, LLN+12, LGZ14, Nor12, Nor14].
Mahalanobis [GH11].
Main [CSZ10, LS13c, TH10].
Majorization [BEM12b, BD12b, CPK11, Dah10, For14, KT12, MOA11, Nie11, Uch10, Zha12a, AK12a, AAM12, AMJ14, BEM12a, Dug11, FZ11, FW14a, Fur12, KP14b, LL14d, Nie13,
SA10, SA14, TKLX14, TPZ12, Zha14b].
majorizations [Nie12]. make [DTL11].
manifold [YZ12a]. Manin [FP13].
manpower [DT10]. many
[DLNN14, Mat14a, MO14, TL13a]. map
[GK11, Ha13, HNZ12, Lin14a, dSP12d].
Maple [GS12b, Kla10]. mapping
[AA14, JSS13, Sko11]. mappings
[BP11, CW11, CN10c, CN11d, FFS11a, FRS14,
HW11, Han14a, KN13c, LLF13, RS12c,
Wój14a, XW10a, Zho11, ZXZ10, dOFK+13].
Maps
[ABSV12, Cos11, GN14, HLW10b, HH11b,
JG10, LP12, MS10c, WLG12, ZH11a,
ABEV10, BS12d, Bou10b, BMS14a, CC12,
Che14a, CFL13b, CLS10, DD10b, DHKQ13,
DW12a, Fra12, Fra13, FH10b, Fur11, Gna12,
GZ13, HKPR13, HQ13, Ika11, JH10, KS14a,
KSM12, LT12b, LT16, LP10, LW12c,
LW13a, LHL12, LT10a, LL10b, LT13, Liu14a,
Liu14b, MR10c, Nie13, Pan12a, RO10, Sun13,
Wan11a, WF11, YTH13a, YJ12, dP11].
Marcus [LL12]. Marcus-Minc [LL12].
Marix [BW11]. market [Vas14].
Markov [CK13b, Cas13, DT10, DGU14, Góm10,
HB12, Hun10, Hun14, Kir10, Kir14, MA10b,
Nemi13, PR10, Pu11, Rhe10, Sku13, VV13,
Vas14]. Markovian [Hun14, Koz14a].
Marshall [Zha12a]. Martingale [Dah12a].
Mastronardi [Gem10]. matchgates
[LMN13]. matching [Beh13, GL12a, HL11a,
KW13, LT11a, SS11c, Ste10, wTmS12].
matchings [GX12b, LSC10, TS12].
mathematical [BELK12]. Mathematics
[Ber09, Gar12, Grü12, Lim13b, Rod12a,
Sla10, FdC12, Bar10b]. Mathias [Lim11a].
matrice [BW12]. Matrices [Bar12b, Bra10,
FJ11, Fie11b, Gem0, HSM13, KKL13a,
KKL13b, LSTW13, Rei11a, SM13, AMP10,
AiS13, AG12, AFIN12, AA14, AG13,
AM13a, AAF+12, AKM13, AGM14, AB12,
AHAP10, Ali12, ANP13, Alo14, ANPQ12,
ÅAFG12, AdF11, ART13, ALRV12, Ang13,
AT11, AT14a, AK11, Aud10a, Aud13c,
BBG14, BT14a, BB13b, BT11a, BB13c,
Ban13b, BS11a, BG14a, BP12, BKM+13,
BB13d, BH12, BMW10, BSK12, BSKL13,
BFDp10, BlDS10, BFp11, BdFp11,
BFDp12, BT13, BDp13, BDH+12, BOZ10,
BOZ11a, BANP12, BCEM10, BCE12,
Ben10, BM13a, Ben14a, BB10, BB14, BS12c,
BP11, BDLG13, BD13, Bie13, Bie14, BBE+10,
B113, BH10, BBGM12, BTTY12, BSU14,
BCS13b, BC12c, BC13, BC14b, Bot10a,
Bot12, Bou13, BLLL12, BLLL13, BL14, BRZ13,
Bre14, BRLS12, BHZ10, BK10, BD12b].
matrices
[BFH+12, BKMS13, BC14c, BBS12b, BLS14,
BZ13, BK12, Buj13, Bün14, BAD09, BS13b,
BW13b, CRS14, CRSS14, CHJ13, CD14,
CRU10, CRU13, CRV14, CH13,
Car10a, CT11a, CN12a, CFPP13, CR10b,
CK13b, CAV13, CM11, CGMS10a,
CGRVC13, COvdD10, Cau11, CCF+12,
CS10a, Cha14, Cha13a, CPR10, CTW11,
CM12a, CL10a, CM14, CL10b, CG13,
Che14b, CJ11, CK13d, CN13a, CN13b,
Cho13, CN1ld, CGSCZ10, CD13, Cir13,
CM14, CNPP12, CD12a, Coh14, CDM12,
CP10, Cos11, CFLW13, CL12c, Dah10,
Dah11, Dai11, DHLX12, DoMP09, DL14,
Dax10, DNN14H, DH10a, DMP11, DD11b,
DK12b, DP12a, DHS12, DGMS14, DFS12,
DFS14, DS14, Dok12, DKOT12, DHKQ13,
DO11a, DO11b, Dom10, Dom13, DA10,
DT11, DdF13b, DdF14, DBZZ14, DdC13,
DGMS10, DHS10, ER13, Elov1, EvdD10].
matrices
[Ens10, ES11, Est12b, EGR12,
Fan10b, FM11a, FFM14, FGS11, FFG+11,
Far11b, FKW13, FJ10a, FdC10, Fie10,
FH10a, FMI11b, Fie11a, FH12a, FH12b,
FM13, FH13, Fie13, FHS14a, FH14, FMR12,
FFK11, Fon14, FvR13, Fra12, Fra13,
FW14b, Fu10, FJ10b, FJ14, Fut12, FHS11,
GMS12, GEP10, GOSvdD14, Gar13, Gau10,
GTW13, Ghe14b, God12, Gol13, GSB10b,
GL12b, GGK+13, Gre12, GS10d, GS12d,
GZ12, GR12, GKR13, Guo13, GY13, GS12f,
GG13, HO11, HC14, HFS13, HSS10, HSS14, HTS14, HRW99, HF12, HR11, HMT10, HP12b, HL11b, Hi14b, HM10, HS12b, HB12, HN14, HI10a, HLS10, HZ10, Hua10, HCY10a, HL10b, HC10, HZ11b, H111b, HH11a, Hu11c, HL11d, Hu12a, HLZ12, HZ12b, Hua12b, HLZP13, Hua13a, HTW13, Hua13b, HHL14, H1r13, HP04].

matrices

[HP11, Hwa12, IMA10, Ikr10, ISYY11, JM12a, JP11, JM12b, JZT14, JKV13, JLW11, JT11b, JS11, JK11, JPS13, JH11b, Kak10, KS12b, KS12a, KMNS12, KH13, Kar11a, Kar11b, KM13a, KS12, Kau12, KKL14, K15, KS10, K13a, KJK13, KW12, KT10, KT12, KM13b, KS11b, KS11c, Laff12, LS13a, Lav10, LRT12, LRT13, L11, LV11, LL12, LV12, LL13b, Lee13a, Lee13c, LHL1L0, tlyLWqW10, fL12h11, LNTG12, LL14a, L1T10a, LD11, Lin11b, Lin12, Lin14, LC10, Lin13, LCZ10, LHZ11, LM1Y11, LS12c, LZL12, LS13d, LJY13, Li1u14b, L1u14c, LMT10, LM10c, MMS12, MVS10, Mac13, MM12, MM10b, MARC13, Mat14b, MS10b, Mat12, MH13b, MRS11, M1PT14, MY14, M1Q11, MQ13, MQ14, MMRR11, MMRR12, MPP10, MPR11, M1PT12, MR12, Mer10, MSW12, Mit11b, MPSS10, MMP13b, MS13c, MS13d, Mou12, Mam13].

matrices [MP13b, MS14c, MP14b, NS13, NS12a, ND11, NPP13, NS14, NIK11, NY13, NT11b, Nor12, NV12, NS12c, O'D14, Ogu13, OSZ10, OM12, iO12, Öz13d, Pan11, PP11a, PM10, dSP10a, dSP10c, dSP10d, dSP10e, dSP11a, dSP11b, dSP12a, dSP12b, dSP12e, dSP14, y1pJX11, Per11, Pop10, Pop14, PV12, PJ13, Pry10, PSS11, Qui11, RR14, RY12a, RMT11, RPM14, RW12, RSP11, RR11, RSS10, Ros12a, Rub13, Sag13, SZ14, SS12b, Sbu10, SB12, SS14, Ser11, SSCS10, SS13b, SST14, Sev10, Sev14, SSMS14, SHZ10, SH10, Sha14b, SY1H14, SS13d, SS13e, Shi12a, Shi12b, Shi12c, Shp10, SS13s, Siv13, Slo13, S1o14, SC12, SDN13s, Sow13, Spe11, Sra13, SS11e, SS13f, SS10e, Stu13, Sun13, Szö13, Tad12, TT10, Tan10b, TL13a, TX12, TMS14, TW14, DDP13, DDP14].

matrices [TW10b, Tia10, TW11a, TCI11, Tre10, Tre12, TW11b, Tsa11, VS10, VU14, Van10, VR12, VS11, Voy13, WLH110, WXX10b, WX10a, WFM11, WW13a, WW13d, WW13, Wil14, WMZ14, W10a, WJ12, XV14, XZ13a, XZ14, XY11, Xu11, Xu12, XX12, XLG13, wXL14, XSH14, Yam13, YT13b, Yan14, X13, YS13, YWX13, ZW10, ZYL10, ZLL12, Zha14b, Zha14a, ZLH14, ZZ10, Zha12c, Zho12, ZL11, ZHI1b, ZBW12, ZCW13, ZJ10, Zuo10, ZXX13, dCF12, dFBR14, dHM11, de 13, dCD1R14, dRMP12, Gar10, JMW11, Jaw13, Gar12, BOZ11b, Gr12].

Matricial [JS13a, CH11, FKR11b, FKM13, tHR13].

Matrix [jASZ12, jAS13, Bar10b, Ber09, BC12b, Bot14, CC12, DW10, Gem10, GB13, HH13, HNZ12, HJ12, JS13a, Koz14b, MPT14, MZ12c, PQZ11, Ros12c, Sla10, UW11, AAK11, AAKM14, AKM13, AJ12, AAT12a, AAT12b, ABBO11, AvW11, AvW13, Ano12-30, AH13a, AW10, A11H14, A13H13b, AKA13, BPA11, BXL11, BH14a, BT10, Bap13b, Bap13a, BDD14, Bat14, BM14a, BS12a, BHD12, BMS10, BR14b, Ben13, BCEM12, BCD10, BL13a, BEK13, BIT12, BMR11, BK11b, BG12a, BR14c, BCS10, Bou10a, Bou11, BMM12, BCD1M13, BGH12, BDOvdD12, BKMS12, BS13, CC10, CRS14, Cas13, CLST14, CJR11, CGGS13, Cha13b, CFJKS13, CH11, CL13b, CK13d, CHLS12, CK14, CN10e, CL11b, CD11, CJ14, Cim11, CI14, Dah12b, Dah12a, Dai13, DIP13, Dau12, DD10a, DMM12, DTS11, DH10a, DH12a, DW11, DF14, DKS10].

matrix [DKS13b, Dod10, Dod13, DS14, DGK013, DMS10, DMS13, Dru13a, Dru1b, Dru14, DW12b, DW13, DW14W, DW14, DJ13, DVL13, EKSV14, EM11, Ern13, FP13, FLH12, FDS13, FdC10, FMM13, Fis14, FHL11, FP11, FG13b, FKR12, FH12c,
matrix
[LS11a, LZ12a, LW12c, LW13a, LY13, Lin10, LS13c, LH10b, LSR11, LLMZ12, LW13b, LX13, LNT13, LS12d, LSH12, MZ13, MMMM10, MMMM13, MM12, MSP11, MZ12a, Mar10, MR13, MR14a, MM13, Mat13a, Mat14a, Mei13, Mei13, MS12, MR10b, MR14c, Moo11, MN12b, NR10, NM14, NS11h, NV10, O'D14, OT12, Pál13, PIM+10, PCC12, PPK13, Pat12a, Pat12b, dSP10b, Per13, PS12, Pin12, PRW11, Pop13a, Psal12, Rah13, Rei11b, Rim12, Rod11, Rod12b, Sah10, ST10b, SS11a, SMB11, SK14, SK13, Shi13, SA10, SC13, SR12, Sta14, Ste13, TD13, Tan11, TZ12b, TZ13a, TmysH11, TTT13, DDM14, Tia11b, Tia12, TGM11, TTT11, TDT13, Uhl13, VS13, WWG10, WLGl11, WW13b, WW13c, Wat13, Wei13b, WJT13, Wei10, WCKL13, Wik11, Wik12, WZL12, WW14b, Wüll13, WX10a, XD12, Xuu11, XX12].

matrix
[xWL14, IYznYpYH13, YZ12a, YZ13, Zha12d, ZLD11, ZXZ10, dF10, wdV14, KY13, Tam12, Rod12a].

matrix-based
[Dahl12b, IPFD13]. matrix-convex
[PCC12]. matrix-monotone
[PCC12].

matrix-valued
[KKR11, Tia12]. matroids
[LM10a, TN14]. Matsaev
[Dru11]. Max
[EvdD10, FH14, Ser11, AGNS11, BM13d, Cec10, Fie11a, GPT14, GM11a, GM11b, GMS13, KSS12, Mer10, MP13a, Mys12, MP14b, Nit10, NS11c, Pep11, SW11, Ser13, WLL14]. Max-algebra
[EvdD10].

Max-algebraic
[Ser11]. max-linear
[SW11]. max-min
[GPT14]. max-plus
[AGNS11, BM13d, Mer10, Mys12, MP14b]. max-weighted
[WLL14]. Maxima
[Yua14, Yua15].

Maximal
[BCFP12, Fan12, FMR12, LT10b, RRM11, Sev14, AAFG12, ADW13, BNP13, CT14a, CT10, CT11b, CVW10, CDM12, DF14, DdF13b, HLS11, HJLS11, LLS11, NS11b, SBMT10, TW10a, WX14, BDK11].

maximum
[HZ12a]. Maximization
[Tia11b]. Maximizing
[YFW10, WKV10].

Maximum
[CKL+13, EdIP14, HS10, NY13, Sin10c, VDVJT13, BZ12b, CCGr14, Car11, CFPFP13, CH11, CH14, CCL14, CL10b, DZX12, EHH*12, GL12a, Ghe14b, LLS11, LQY13, LL11c, LHL13, Sav14, SWT13].

maximum-volume
[Sav14]. maxitive
[Pon11]. may
[SC10]. max
[MPS12, ANP13].

MDS
[CPNP12, La 14].

MDS-convolutional
[La 14]. mean
[AGK11, BP11, BG12a, BH13, Góm10, JLLY10, KL11, Kim13d, LL13b, NS11b, WLL14, Yam13, BT11c]. Means
[CM12a, Aud13b, AH13b, BN13, BCS13b, BH14b, DLv13, Fuj11, Han14a, HP12b, HKK+12, KSAM12, KL11, LLY11, LL12, Lim11a, Lim12, LY13, LP14, Nak13, Pál13, PP14, Seo13, Seo14, SK10]. measure
[GN14, KKR11, Maz10, WNM13]. measured
[KD12]. measurements
[ALP14, FMNW14, Jen13, KG14].

measures
[DW10, KS12b, Pon11, DGH*11]. median
[GM14]. median
[HNZ12].

meeting
[Ano12-30]. Meini
[Lim11a]. members
[BRA11]. Memorial
[BSM14b]. Memoriam
[Tsa12, BDK+10, Lin11]. memory
[EM12]. Mena
[Kra13]. Mertens
[Car10a]. mesh
[GS12b]. metabelian
[DDF13a]. method
[BCY12, BFS11, BvV12, Bey12, BN13, BTYZ12, BH13a, BJRS11, CD10, CHZ13,
Methods

[Gre13, HRW99, JM12a, BV12a, BGV12, Blö12, BFF +11, BJ13, CAV13, CQYY13, DS12b, DYW14, FS14b, GOSV12, GL10c, HSS10, Jar12, Jbi10, Ji12b, LB14, NRS12, Nik14, PT13b, RRZ13, SE13, SK14, SWA12, Wan11b, WJT13].

metric

[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11].

metrics

[HP12b, HKPR13, Kum11, LNST10, TNP12].

Metropolis

[Din11].

Metzler

[VS10].

Meurant

[Rei11a].

M´exico

[Ano10u].

Michael

[BMS14b, Tsa12].

microscopic

[FGQ11].

midpoint

[Lim13a].
might

[PPK13].

migration

[VP13].
meters

[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11].

metric

[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11].

metrics

[HP12b, HKPR13, Kum11, LNST10, TNP12].

Metropolis

[Din11].

Metzler

[VS10].

Meurant

[Rei11a].

M´exico

[Ano10u].

Michael

[BMS14b, Tsa12].

microscopic

[FGQ11].

midpoint

[Lim13a].
might

[PPK13].

migration

[VP13].
meters

[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11].

metric

[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11].
Non-commutative \cite{MMA12, Seo13, dO12}. non-degenerate \cite{GK11}. non-fixed \cite{Cos14}. non-Gaussian \cite{ALPV14}. non-Hermitian \cite{BH14a, WZ14b}. non-hyperinvariant \cite{MMP13a}. non-Lie \cite{BCS13a}. Non-Lipschitz \cite{JRMFS12}. non-negative \cite{Aud10a, CR10b, FKM13, KS13b, PT13a}. non-powerful \cite{LLH10, LYL13, YW11}. non-self-adjoint \cite{dSP10e}. non-singular \cite{dSP12b}. non-square-free \cite{BP10}. non-symmetric \cite{Per14}. non-zero \cite{Qui11}. nonabsolutely \cite{BGP11}. nonautonomous \cite{AS12c}. nonbinary \cite{Sri13}. noncentral \cite{Hu10}. Noncommutative \cite{ARZ11}. Noncommuting \cite{DO11b}. nondefective \cite{XD12}. nondegenerate \cite{FKR11b, FKR12}. nonderogatory \cite{Bot10b, FHS11, LS13a}. Nonexistence \cite{MW14a}. nonhomogeneous \cite{Pu11}. nonincreasing \cite{DHKQ13, PT13b}. Nonlinear \cite{BMS14a, FGR13, LN12, LFL12, RS14c, SS12c, YZ10, YZ12b, BD12a, Bey12, FZ13, GHT11, Hill12b, Jar12, Ry12b, WCKL13, Xu14, Lim13b}. Nonnegative \cite{CN12a, FJ11, PRW11, Siv13, SDNS13, AG13, Agha14, Ben14a, BR14c, BK10, BAD09, BSST13, BS13b, CDP10, CS10a, CPZ13, CYQY13, CD13, CKAC14, CL12c, Dru13b, DZ13, Fri11, FGH13, GG12, GP13a, GL12b, Sem10, GGG+13, GKR13, Hua11c, Hua13a, JWW11, KG12b, KSS12, Lafl2, Lav10, LC10, NS12a, NT11b, PV12, Qi13, Sah10, Ser11, Spe11, VR12, Voy13, XZ14, ZCQ13}. Nonnegativity \cite{HRT10, HRT13, PP11a}. nonpositive \cite{CRU13, CRU14}. nonpositivity \cite{HC10}. nonpowerful \cite{JMS11}. nonreal \cite{PR13b}. Nonsingular \cite{BC12c, DdF14, HK13, HLZ12, BHZ10, CRU13, CP10, DQW13, FLH12, FJ14, HC10, LLN12, LS13d, LJY14, NPP13, SY14}. Nonsingularity \cite{Zuo10, BB13b, LS12c}. nonsymmetric \cite{GL10c, KW12, LwCJL11, WXH10b, XD12}. nontrivial \cite{Dod13, ZZ11, Zho11}. nonzero \cite{CP10, GOSvdD14, HTW13, MB13, MZ14, PR13b, YHH12}. nonzeros \cite{MGSW14}. Nordhaus \cite{NY14}. Nordhaus-Gaddum \cite{NY14}. Norm \cite{BG12a, MM13, Pop12, Aud10b, BT14b, BJ11, CVW10, CIF13, FCL10, FLC11, Gon11, Hia13, HMR12, Hua11c, Ji12a, KS14a, Kyr13, LMM11, LMY11, MD13, MA12, MZ10, MTS11, NNW14, PR11, SP13, SR12, TGS14}. normal \cite{AM13a, BFdp10, BFdp11, BFdp12, BG13, BD13, BR11, Buj13, CH13, Chi13, CI10, Ger12, HLP12, KM13a, MSS14, yPXL11, Sed11, SS13a, SS13e, Slo12b, Sze14a, Van10, WW13d]. normalizable \cite{GOSvdD14}. Normalized \cite{Bau12, AT14b, Boz13, CFP10a, CI12, CL13a, LGSC14, vDO11}. normally \cite{CM13}. normed \cite{Woj14a}. norms \cite{Aud13c, BH14b, BLS14, CGSCZ10, Fur12, GKI4c, HK10, Lac13, Lan14, Lee10, LT12b, LT16, MW14b, Mor10, NY13, Pat10, ZHI2]. Note \cite{A0112, Ano12-28, BC14c, GL10b, HJJ10, KPI13, LSS10, LHL13, LHGL14, Rhe10, B112, Ben14b, BC14b, BZ13, BZZ14a, CG13, Che14b, DA10, DD11d, DLS10S, EFN09, EFN10, FFW13, Fan10b, FHI2b, FLC11, GOfvD14, GLS13b, Had13, Har14, HZM10, HZ12a, HCY10a, Ikr10, JM12a, Li10, LS12b, Lom13, MB13, Mat12, Mig13, ND13, Sah10, Tao11, WAI14, WB11, XLG13, Yan11, dhM11]. Notes \cite{Far11b, Fie10, Hai13}. notion \cite{Han11b, Han14b, TN14}. notions \cite{BBM14}. novel \cite{Ma10a}. November \cite{BBD+11}. nowhere \cite{BS14, FFS11a}. NSC \cite{BBD+11}. null \cite{BDD14}. Nullity \cite{BHZ11, BRI13, CL11a, EHH+12, FFW13, GFY10, GY12c, HS10, LFS12, Sin10c, TL13b}. nullspace \cite{JKN14}. nullspace-type \cite{JKN14}. Number \cite{AS13, BPA111, AG12, AMK13, AAI12, .}
AHAPP10, AdFM11, AHS10, BB13a, Beal12, BLL13, CRSS14, CS13a, CL14a, CFHL14, DTL11, Dom13, DH10b, DL13, DdF13b, DdF14, EHH+12, FY10, FG13c, Gar13, GB11, GLS12, HL11a, HJ13, Hir10, HTW13, HJL10, LS10, LT11a, LZ12b, LS11b, LHL13, LY13, LL14b, LJJY14, MGSW14, MZ12c, NS13, NOL13, Row12a, Sin10c, SWT13, Ste10, TF10, Uhl13, Wik11, Wik12, XF11, YY11, YWS11b, ZHG13, Zhu12a.

numbers [AAK11, AL13a, BHKM13, CY11, CMS12a, EWY12, GWW14b, He13, KL12, LaG13, Lak10a, LJ11, LWY14, MGLW11, DDP13, WWG10, WZ14a, XD12, ZC14].

numeric [PS14b]. Numerical [Ali12, BS12a, CGWW13, DGH+11, Gau10, Gle11, HMP+11, Kam10, KI10, TW11b, Tsa11, AM13a, CG13, Che14b, CN10b, CN11a, CN11c, CN12b, CN13c, CP11, CLS10, DPF10, DD11d, GW13a, GTW13, GW14b, GP14, GZ13, HH12a, HB12, LMM11, LM12, Lee13a, LP12, LPS13, PL14, PT13a, PGM+11, VU14, WW13a, WC11, LcwCL11]. Numerically [FM12]. Nussbaum [Lim13b].

objective [GMS13]. objects [NP10].

oblique [ACG14, CM10a, Hua11a, SS10d, WL10a].

octonion [RO10]. odd [CMNW14, GW11, GWZ13, HWG13, KS11c, LLN+12, LGZ14, LWY10, Rim12, Yua14, Yua15]. off [BC14b, CFJKS13]. off-diagonal [BC14b, CFJKS13]. odd [ES14, RTR10].

Olkin [Zha12a]. One [ALPV14, CRS14, GS12b, ABEV10, BBDH12, BBDH13, Bat14, BR14c, CT11a, CT11b, DHLX12, FgvRR13, Fri11, KO13, KY11, Lee13b, LFS12, LT11b, LX13, MMR11, MMR12, dSP12d, Pet10, PSI4b, RW12, Sag11, Sav12, Slo12b, Suz13, WFM11, WMZ14]. One-bit [ALPV14].

one-dimensional [Suz13]. one-dominating-vertex [CT11b].

One-peak [GS12b, PS14b]. ones [TZ13b].

Only [Aga14, CGMJ14, DOD13, wH13, RR11, WZ13d]. onto [Cha10, NN10]. open [HH12b, LGZ14, Zha12c]. operation [CMRR13]. operations [NN13, SL14].

Operator [CMS12b, Gon11, KIA14, Kim13d, Mos11, SP13, Seo14, AR10, AG10, ACG13a, Aud13b, BC14a, Bót13, BH14b, Chi13, CDDY10, CI14, DW11, DD1d, DX13, ET13, FMWW12, Fur10b, HC14, Han14a, HZ12a, HN10, I1K+13, JG10, JR14, KS14a, KSAM12, KJK13, KW12, KLP12, MPP11, MTS11, MMK13, Nak13, OM10, PP14, San14, Uch10, WW10, WD10, WLL14, Wöij14b, XSZ13, XSH14, ZW10, ZHQ14, Zha14c, dSC14].

Operators [Bra10, AS12a, AR10, Aud13, ACG13b, AK12b, BV12a, Bar10a, Bar13a, BS12a, BCD10, BR11, BC12a, BJ10a, BJ10b, BJ10c, BV13b, BB11b, Bud11, CRS14, Cam13, CL12a, CEM14, Che13, Dbn10, DW XS12, DCIW12a, DD11c, Dra12a, DP10, DJK12b, DDK14, DK13e, ES13, FJ10a, For14, GS10a, GN14, GP14, Sen10, Gu14, GS10e, HGL11a, HJK+12, HN14, HLW10b, HZ11a, Hua11a, HZJ12, JLLY10, KL12, KI10, KRS13, Kec13, KR10, KB12, Lac13, Lán10a, LP12, LCM13, LMMR13a, LMR13b, Lon11, Lu11, MM13, Mat13a, Mat14a, MPP11, Mol11, MPM13, MN12b, Nie10, PP14, PY10, Pel14, Pep12, PT13a, Pop13b, Pro10, Rez13, RS12b, Ros12b, Rud12, ST10a, Sed11, Sei14, SR13b, Sha13a, Sha11, SM10a, SM10b, TD13, Tim14, VU14, XDFL10, XCS13, YW10, ZH11a]. operators [ZHQ13, dOHKS12]. Oppenheim [Lin14b].

Optimal [JZT14, LH11a, LJ12, LH10c, TDT13, Will13, CGM+10, EY13, GOSV12, GIP12, HCY10a, LHH13, LDL13, LL13d, MZ10, Mit11b, NP10, NA13, Pei14, Sta14]. optimality [FMR12]. optimisation [GMS13]. Optimization [BH14a, MO14].

Optimizing [Gol13, LS11a]. optimum
options [PZVJ11]. Orbit [RMP14, Bar10a, Bar13a, Dau12, MZ12a, Rez13]. orbits [Baj14, CN12c, DD11a, LPS13, TT12]. Order [Bar10, FJ10b, Mol11, jASZ12, BP10, BM10, BL12, Bló12, Bre14, BF14a, CR10a, CMNW14, CK13c, CL13b, CFL13b, CKAC14, CDM12, CIH11, D10a, DTL11, DD11c, DM11, FK13, GOvdD14, Ghe14b, HSZ12, H10, HL10b, Kar0a, Kar11b, KM11, LNL+12, LBLS12, LHZH11, LYYJ13, LG14, LS14, LZ11b, MD13, NS12a, Nem13, Nor14, Q14, R12, SS11b, SS11d, SBMT10, Slo14, ST13, Tra13, WZ13b, XDFL10, ZY14].

origin [LSR11]. Orlicz [AM13c, ARZ11]. Orthogonal [CMS12a, Moo11, AHH13, BR14b, BSS10, BM12, BR12, CM11b, Dax10, DW10, FPC13, GW11, GWZ13, Hür13, KN10, LR12, LAL11, LW12, LM13, MP11, M12, MN12, NM14, O′D14, dSP12d, Pop13b, RB12, RL13a, ySpW12, TT11, VS13, VS14b, Wei10, dF10, dCD1410, AMP10]. Orthogonality [Gru14, AR12, CP11, HH13].

36
paths [AS12c, Gum13, Nik10b, QSW14].

pattern [AT11, AHL14, AM14, BDH12, CFJKS13, CL10b, DT11, HL11d, JMS11, LSR11, MGSW14, PP11a, WLHL10, YS13, ZLH14].

Patterns [BKMS13, BVV12, BDM12, BFH12, CP10, EKSV14, GS11a, GLZ14, GS12a, GS13b, G0vD14, GOvD14, GK14b, GB14, GOvD12, GS12f, HJN12, HLS10, Hua11b, MZ14, Ma14, Mit11b, OTdDv12, YHH12, dS12a]. Paved [NT14].

Permutation-like [DF14]. permutations [AK11, BF14b, ST12]. Perron [Lim13b, Czo10, FGH13, FJMP14, JMP12, LN12, NV12, Pit11, ZHL11b]. personalized [GPR13, Gle11, Kam10]. Perturbation [BV12a, BK11b, CM13, HZGY12, LNTgW12, MMRR12, AL13c, BI12, BBdH12, BBdH13, xCWXL11, CS10a, DD10a, DX13, Guo10b, Jai11, LS11a, LYS13, Lp10, MMRR11, MZ10, MA10b, Vul12, WF12, WL10a, YW10].

Perturbations [CGM11, CL14b, HZ11a, Bat14, BCdP11, BHKL10, BdtS10, CL12a, DvDF11, FGR13, FGvRR13, Hua11a, HZ12, MMRR11, MMRR12, RW12, Rod12b, SWA12].

Poincaré [BFdP10]. point [ACG14, CLCL12, CI14, DYW14, DD14, GOSV12, JH10, LWGM10, LWGM12, Per14, SS13, Ter13, Wan11b, XX14, XSS13, ZWZ10]. point-stabilizer [LWGM10].

points [AK12a, AR10, BS11d, CN13b, GX12c, Li12, Pan12a, QH10, WLL14, Wu13a, ZZ11, ZZW10, ZZ10, ZZ12, ZZX10].

Poisson [Mar13a, XX14]. Polar [CM10a, AGK11, CD10, CM11b, DoMP09, DMP11, GMP13, LNN14, LWGM10, LWGM12, MGLW11, MPP10, WLGM11, Wor13]. pole [BO12, KBS13, RMT11]. Poloni [Lim11a]. Pólya [Seo13]. polygon [VW10b]. polyhedral [LT10b, MS11b]. Polynomial [AM13a, LMM11, LM12, MM10c, Mar13b, AA11, AB12, ABSV12, BMS10, BN13, BC14b, BO11, BH11b, BHAP12, Cer10, CL13b, DTL11, FH10c, Gna12, GX12b, GS12c, HB12, HP11, JKV13, KL13a, KL12,
KH13, KdM13, KW13, Lec13b, LD12,
LW13b, LM10c, MZ13, MW14a, Mel14,
Moo11, PQZC11, Pet10, PT14, RO10, SK14,
Sun13, TW14, VS14b, Wu10b, ZYL10,
dCF12, vdW14).

\textbf{polynomial-Vandermonde} [ZYL10].

\textbf{Polynomials}

[NT12a, AAK11, AK12a, Aga14, AAT12a,
AAT12b, AL14, BM14a, BR14b,
BK11b, BG12b, BL10a, BSS10, BH13a,
BMM12, BR12, BW13b, CMS12a, CKS10,
CN10a, CN11b, CL11b, Cim11, CD12c,
DD10a, DDM12, DTS11, DW10, DD10b,
ES11, FPC13, GMMFPSS12, GW13a, GN13,
GS12d, GM11b, He14, HLW14, Hen10,
HT10a, Hwa11, IM11, Kal13a, KHKT13,
KH13, LT12a, Lan14, Lav10, LL10a, LZ13,
MMMM10, MMMM13, MZ12a, MZ11, Mei13,
Mel13, NV10, NT12b, Ps12a, QY12, Qa12a,
RPB12, RL13a, Sha10a, Sim10, TTZ13,
DDP14, DDM14, TGM11, TTT1, VS13,
WLLX11, WML13, WZ13d, dF10, dO12].

\textbf{polytope}

[CGSCZ10, CM10b, KAAK11, PSW11].

\textbf{Polytopes}

[Dah11, ACDM14, Bar12a, Beh13, BG12b, BW13a, Dah12a].

\textbf{polyvectors}

[De 11].

\textbf{Poncelet}

[Mir10, Mir12].

\textbf{Pontryagin}

[CD12c, Wor14, dSW12].

\textbf{pooling}

[LHG10].

\textbf{population}

[LLR14, MSvdD14, RM14].

\textbf{porism}

[Kha13].

\textbf{poset}

[Dor10, GS12b, PS14b, SY12, Sim10].

\textbf{position}

[AY13, FFG 11].

\textbf{Positive}

[AG10, BKV14, BLL13, Dru14, EEE+13,
Fri11, Fur10b, Gar10, LV14, MY13, Pop10,
SH10, WD10, AHAPP10, AL13b, ACG13b,
BH1a, BMW10, BS12c, BP11, BS12d,
BR14c, BI13, BU14, BCS13b, BLL12, BL14,
BAD09, CRU10, Cen11, CM12a, DA10,
DP10, FFJM14, FJ10a, FV13b, FGyRR13,
FW14b, Fuji10, Fur11, GS12b, GD11a, Gma12,
GST13, GR12, HP12b, HKPR13, HJN12,
HN14, HS12c, ISYY11, Kak10, KSAM12,
KS11c, Lac13, LLY11, LL13b, LT11a, LW13a,
LLB13, Lim11b, Lim12, Lim14, MWZ13,
MPS10, MW14b, Mat14b, MPT14, MY14,
Mol11, MR10c, OTD12, PP14, dSP10d,
Pep12, PV12, QS14, Ros12b, SSMS14,
Tan10a, Voy13, WXH10b, Yam13, YFW13,
YJ12, ZCKS12, Zha14b, Zim13, vdW14].

\textbf{positive-definite} [CM12a].

\textbf{Positive-kernel} [BKV14].

\textbf{Positivstellensätze} [Cim11, SS12b].

\textbf{post}

[BDV12, post-Lie [BDV12].

\textbf{potentially}

[Cha12].

\textbf{Potapov} [FKR11a, FKR12].

\textbf{potent}

[CLST14, DCD12a, LRT12, LRT13,
Rom14, SR13a].

\textbf{Potentially}

[BBV12, GOvdD12].

\textbf{Power}

[GW14a, AH13b, Für10a, GW14b, HQS13,
JMS11, LY13, PP12a, SS11b, Seo14, SWS12,
TL13a, WF14].

\textbf{powerful}

[LLH10, LLY13, YY11, ZLH+14].

\textbf{powers}

[BLdPS10, Bie14, CL13b, Dxl13, GW10,
GKR13, Jai11, JLW11, Pat10, Rim12, SS10b,
WWG10, WZ13d, HHT13].

\textbf{pre}

[Bar10b, Gar12, Grü12, Lim13b, Rod12a,
Tam12, Zha12a].

\textbf{PPT} [Lim14a].

\textbf{pre-Jordan} [BM13c].

\textbf{preconditioned}

[Jbi10].

\textbf{preconditioner}

[CJ10, DKOT12, GOSV12, Raf14].

\textbf{preconditioners}

[JZT14, LZZ11a, PZV11, TDT13].

\textbf{Preconditioning}

[BTYZ12, PIM+10, SS13b, Tre11, TD11, Wan11b].

\textbf{predetermined} [MVP10].

\textbf{predictable}

[KS11a].

\textbf{Preface}

[ACGN10, ACT14, Ano10u, Ano11-27, Ano12-29, Ano12-30,
BBd11, BBSMT13, BBG+13, BFBD13,
BBd13, BGL+11, CFPT12, EGLR14,
FKLT13, KPR14, BFH+12].

\textbf{Preliminary}

[Ara12].

\textbf{Preprocessing}

[PQ10, PQZC11, PQZ13].

\textbf{Prescribed}
[Kra12, Bar12b, BCDP11, BMSW10, BCŠ10, BC12b, BC14b, Fri11, LL10e, MS13c, NR10, Psa12, RS12a, RS14b, SDNS13, WL10b, YT13b]. **Presence** [LS13a]. **Preserve** [Cos11, FdC10]. **Preserved** [DV10]. **Preserver** [BMGMC12, RˇS10]. **Preservers** [BSK12, Ben13, FHL +11, HHL10, AMJ14, BEM12a, BEM12b, BSKL13, CD12a, Cos14, CFLY12, CLHQ14, KS12, LPS13, LT11b, dSP10e, dSP12b, Per11, RdSP11, SA14]. **Preserves** [Hua12b]. **Preserving** [AA11, ABSV12, BB13c, BCS13b, Bou10b, BMS14a, CFL13b, CLS10, CL14b, DD10b, GN14, HLW10b, HQ13, IH10a, IH11b, HH11b, JG10, LL12, LP10, LP12, LLF13, LHL12, Lim10, LL10b, Liu14b, MS10c, PP11b, Rod12b, Ros12b, TGM11, ZH11a]. **Press** [Bar10b, Gar12, Gle11, Grš12, Lima13b, Rei11a, Rod12a]. **Pretty** [FG13a]. **Pricing** [PZVJ11]. **Prime** [DF14, DW14, FK13, Hir10, LL11b, LHL12, LL10b, QCH11, SS11b, Sbu10]. **Primitive** [AB12, CL10b, YW11, CL10a, HL10c, Kim10, Kim11a, KP12, Kim13b, LHL10, LY13, PPK13, WLHL10, YHY14]. **Primitivity** [Sch11, BM14b]. **Princeton** [Bar10b, Gar12, Gle11, Rei11a, Rod12a]. **Principal** [JS13a, BBC +14, BFdP11, BR14c, Bri13, BDOvdD12, FG13b, Guo10a, JN13, KB14a, KB14b, LS12d, OTdDv12, Sev13, TH11]. **Principally** [SS13c]. **Principle** [Car11, Kra13, Lom13, MW12b, Pu11]. **Principles** [Gre13, CPZ13, GJ11, LL13b]. **Probabilities** [Ber13b, VV13]. **Probability** [CR10b, LHH13, DD11d, GY13, OM14]. **Problem** [AW13a, BBdH13, BV11, BM14a, BFdP11, BEM12b, BBGM12, BCŠ10, Byd10, CPV10, CI10, CI13, DS11, Dod10, DS12c, DS14, Fan10b, FKR11a, GS10a, GEP13, GP12, HH12a, HRW99, HMP12, HLS11, HP04, JKŠ11, JMI12a, JDY13, LXL +14, LCwCL11, LJ11, LWY14, LGZ14, Mou12, MAM +13, MP10, NS12a, NM14, NS11b, Nik10a, OM10, PH12, yPjXL11, PRT13, SS11a, SS14, SS11c, SR12, SS11e, SMC11, TD11, VS10, Vu12, Wei13b, WJ12, XLG +13, YWX13, Zha12c, ZY12b, vdH13, LPK14]. **Problems** [MNZ10, AA14, AS10, jASZ12, jAS13, ACG14, Bal10, BBF +10, BFdP12, BT13, BdP13, Bey12, BN13, BC12b, BJRS11, Brš12, BMGM12, CRS14, Dai11, DS13, DKOT12, DYW14, GMS12, GEP10, GJTP13, HMR12, Hog10, HW14, Jar12, JV11, JRMFSS12, JW13, KKR11, KZ11, LT12a, LRST10, fLyH11, LZ11a, LL10d, LK12, MS10b, MR10a, Miy14, Nak10, NRS12, NY14, Pin11, PPKR12, PE13, RS10, SVP11, SHZ10, SB11, Stu12, TmYsH11, Wan11b, Wei13a, wXL14, XE11, XSS13, YZ11]. **Procedure** [LBS12, SV11]. **Procedures** [Pál13]. **Proceedings** [Ano10u, BBG +13, BBFD13, Ano12-30]. **Process** [BFS11, FFS11b, GMS13, PPZ14, PV13, Vasi4]. **Processes** [KS10, MAGR13]. **Procrustes** [fLyH11]. **Produce** [Tra13]. **Product** [PGM +11, AR10, Ali12, Aud10a, BM13c, BZZ +14b, Cal12, Cha13b, CG13, Che14b, CJK +13, CT14b, Dug12, EM11, FF10, Gha13, GK14a, GK12, HFS13, HTS14, HMT10, HLW10b, HP11, KSH12, KY14, tLyLWqW10, LPS13, LLF13, LD11, Lim14b, LH10b, Pat12a, dSP11b, RAAGAVS11, SP13, Sh13a, Sh14, Tad12, WLG12, ZCWZ13]. **Product-set** [Cal12]. **Products** [ACG13b, BM13n, Bot10a, CM11b, SZ14, AM13b, BG14b, CS14, CLHQ14, DKS10, DD11c, DD14, Ens10, FHL +11, FJ14, GKZ11, HM14b, Hua11c, JG10, Kim12, KN13a, KN13c, KLZ14a, Koz14b, Kub13, LW12e, MARC13, Pep12, PV12, QCH11, SCSS10, Slo13, Slo14, Tan14b, Voy13, Zh11a, ZZCW13]. **Professor** [Lin11]. **Profiles** [CEY14]. **Programming** [AHAPP10, GS12b, GMH14a, LL13d]. **Programs** [Sag11]. **Project** [NN10]. **Projection** [Cha10, Hua11a, LRV12, LB14].
NN10, NN13, PPKR12. \textbf{Projections} [BJ11, ACG13b, ACG14, BS10, CSC13, CM10a, CM11b, Ill10b, JG10, SS10d, WL10a, ZZCW13]. \textbf{Projective} [BH10, BEV13, De 11, DTL11, IHI11b, LSV12, Mer10]. \textbf{Projectors} [HRT13].

\textbf{Prony} [PT13b]. \textbf{Prony-like} [PT13b]. \textbf{Proofs} [Das11, Das13, JS13a, ZW12a, BL13a, CP12, Cho13, Dom10, FGG10, GS12a, Hill4c, Kak10, KN13c, Kon13, LYL13, Ro10, Yam13, ZY12a, vdW14].

\textbf{Proper} [CHZ13, Dra14, FF10, Sat11, Sat14]. \textbf{Properties} [ANF11, CFLY12, DCIW12b, HM14a, ´ANPQ12, ACG13a, BHDW12, BCD10, BB14, BJ10c, CPV10, CJ11, Dax10, Den10, DJK12b, DGM10, Far11b, FPC13, FH10a, FH13, FJ10b, GB13, GM11a, GM11b, HG11b, HL11d, Hun10, Hun14, ISYY11, Jun12, KKL13c, Kus13, LaG12, LZ13, MS10a, Nor12, Ref12, Rod11, Rod12b, ST10b, SSZ13, SRR13, Sto11, Tre10, Tre12, WC11, Zho12].

\textbf{Pure} [BFBD13, HQ13, SK14]. \textbf{Putnam} [DK14]. \textbf{Pyramid} [BPDC14]. \textbf{Python} [GS12b].

\textbf{Q} [Tao13]. \textbf{QR} [BBE+10, LYS13]. \textbf{QRacah} [wH12]. \textbf{QT} [KRS13, Sav12]. \textbf{QTT} [KRS13, Sav12]. \textbf{Quadratic} [GKS+10, KD12, Pol13, BCY12, DS11, Den10, EY13, GS10a, GLP+13, GS12b, Gre12, HMP12, Hu10, JV10, Jun14, KS11b, LT12a, MPS10, MR10a, Mei13, MP10, NT11a, dSP12c, Pop10, Sha13a, Tia12, TGM11, XSZ13, Zha12d]. \textbf{Quadrature} [BB10, Rei11a, BFR14]. \textbf{quadratic} [GS12e]. \textbf{quadratics} [Ba14, BS11d]. \textbf{quadrilatic} [ST10b]. \textbf{quantized} [Han11a]. \textbf{Quantum} [Dug11, Wei11, BC14a, CHLW14, GZ13, HS13, Jen13, KLS12, SL14, Wor13].

\textbf{R} [Gar12, Gem10]. \textbf{R.} [Vse12]. \textbf{Racah} [BC14a, GWH13, HGW13, NT10b]. \textbf{racetrack} [SS10c]. \textbf{Radial} [Sri13, CGR14, MZ11]. \textbf{radii}

Regular [CD10, PLL13a, CCL14, GX12a, Han14a, KS13b, Kol13, Kuh13, LS14, QSW14, Row12b, AAJ12, AKA13, Ban13a, BP12, Bat14, BIT12, BZ12a, CvdKPI13, CSZ10, CR10a, CR10c, Cer10, CNMW14, CS13b, Cio10a, Cio10b, CW12b, CP10, DFG10, DvDF11, DS14, ES13, FGG10, Fio12, FP11, FG13c, GWW14b, GM14, HM10, HL10b, HLZ12, Hua12b, HLZP13, Hua13b, KS14c, KY11, KPY11, L10, LLN+12, Lee13b, LwW14, LLS10, LGZ14, MM10a, MSP11, MW14c, NS12c, NS12b, RTR10, SS10a, SSS13, SS13a, Ste11, WML13, vDF14]. regularity [CN10d, EdIP14, GZ12, SBM11]. regularization [HRT10, LRV12, SS10c]. regularized [Fio12, XSS13, LB14, LKN13].

Regularizing [FRS14]. regulators [YE13]. related [Ano12-30, BG12a, CD14, Car10a, CMS12b, Dah11, Dru14, Duk12, Duk15, GMS12, HW11, HP12b, JRMFSS12, KSAM12, KP14b, LRST10, Maz10, MPSS10, MT11, Naj13, Nak13, Rah13, RO10, Sei14, SHZ10, Tim14, TT11, ZYL10]. relating [Ste10]. relation [CFJKS13, DdC13, GB13, JV10, LSH12, Yan10a]. Relations [LRT13, AK12a, ADW13, BR12, CM13, DW10, JR11, KP14b, LM10c, Mar11, Mar13c, Tim14, Wój14a, IY12].

Representations [DW11, XCS13, XSH14, jASZ12, jAS13, BY11, BE10, Buc10, CN12c, Den11, DD10c, Dor10, Han11a, IM11, Kaw13, LW12d, LZ11b, Ma11, Net10, NT12a, Qua10, RPM14, Ros12c, SY12, Sze14b, VS11, XZ13, Yan14, GMT13]. represented [GN13]. Reprint [BOZ11b, Mar13c]. Reproducing [Wor14, Che13, CD12c, SST14]. require [BDM+12, GOvdD14]. Required [CP10]. residual [CI14, KOR14, Lin10, ZWZ10].

Results [Tam12, AT14a, BG12b, CW12a, CvDKL10, CI13, DMS10, GL12c, LJ11, LKN13, LW13b, MH13a, MK12, MD10, Mos13, Naj13, PAS11a, RTR10].

Retaining [GR12, retrieval [FMNW14].

Reverse [CIH11, BLdP12, DD11c, KSA11].

Reversible [GP13b].

Reversion [Boj13].

Review [Bar10b, Gar10, Gar12, Gle11, Gre13, Gru12, Lim13b, Rei11a, Rod12a, Sla10, Tam12, Zha12a, Lan13].

Rheinboldt [Rua12].

Riccati [BJ13, GL10c, Guo13, LwCJL11, Per14].

Richardson [AW10, CDP10].

Rigden [LJ12].

Riemannian [HP12b, Yam13].

Rigidity [AN13, LV14].

Rigorous [KLZ10, LT12b, LT16].

Rigidity [BCS13a, Hen10].

Rings [Ada14, AKN12, Čv-W11, Čv-W13, AW10, BE12, BCDM13, CRS14, DWW14, DW14, Ere13, Gho13, Gre12, LaG12, Laki10b, LZ10, LD12, LZ12a, LHL12, LL10b, Liu14a, Mar10, MSvW12, RDD14, SS10a, SSS13, TZ12b, TZ13a, Wan11a, WC12, WW13b, ZZZ13].

Riordan [AMP13, BHI12, CJ11, CJL13, CK13c, He11, JLN13, LM10c, LMS13, LW14a].

RIPless [KG14].

Risk [VV13, Vas14].

Ritz [Buj13, CH13].

Robust [KKB11, SMB11, FM12].

Robustness [MS14c, NRR’11, CKL’13, Fou14, MMP13b, MP13b, MP14b].

Roger [Lim13b].

Roichman [Al04].

Root [Ball12a, Ball12b, DH510, FHS14b, FJMP14, Guo10a, JMP12, KAAK11, Lin10, PQZC11, TNP12, Vla12].

Root-finding [PZC11].

Rooted [MN10].

Roots [GS12a, Abe11, BLS14, DKS13a, GS12b, HMP’11, He14, HL11b, MPT14, MR12, DDP14].

Roulette [CN12b].

Routing [BL11].

Row [AAM12, Bar12b, CC10, Dod10].

Rows [AG12, HTW13, PS12].

Roy [Pat12a].

Rule [BB10, Jii12a].

Rule-based [BB10].

Rules [PR10, SB11].

Ryser [EGR12].

S [Bar10b, Sla10].

Saddle [ACG14, CLCL12, DYW14, SS13b, Wan11b].

Saddle-point [DYW14, Wan11b].

Said [MM10b].

Sakamoto [Car10b, ZY12a].

Salem [Lak10a].

Same [HZ11b, HZ12b, MQ13, SS13c].

Sampling [DPF10, GHMPVP11].

Sandpile [FNY13].

Satisfying [Özd13].

Scalable [KOPT13].

Scalar [AR10, Cim11, RAAGAVS11].

Scale [KKM13, LR12, LHZH11, Sad12, WCKL13].

Scaled [JJ11, Sra13].

Scaling [Fri11, JT11b, Ser13].

Scattered [DS13].

Schatten [MTS11].

Schaufer [Per14].

Schemes [GH13a, GH13b, GZX14, GMV11, Kim12, MGLW11, MW12a, MW14a, WLGM11, ZY12b].

Scherk [dCdlRMP14].

Schmidt [AS14, Will13].

Schmidt-Spitzer [AS14].

Schneider [Tao11].

School [FdC12].

Schreier [FP13].

Schröder [EWY12, IYuZp-YH13].

Schrödinger [WZ14c, aCCS14, DLMZ14, Dub14, WZ12, WZ13e].

Schur [Aud13c, BFS11, CGMS10a, DV10, DW11, FKR11b, GS10c, GLS13a, GK12, HMS13, HL10b, KL12, KY14, LH10b, LHZH11, LHL12, Nery11, Seg14, SC12, Sto12, Tim14, th1R13].

Schur-type [BF51].

Schwarz [GD11a, GO12].

Science [CS11].

Scrambling [Kim13b, CL10a, HL10c].

SDD [GEP13].

Search [MS10a, CKA14c, Gle11, Kam10, WZ14b].

Secant [BL13b].

Secants [BBBC13].

Second [Bar10b, AHL11, Bö11, Böt13, CCL14, Das10b, Das11, Kal13b, Koh13, KY11, KPY11, LY11a, LBLS12, LGS13, LH1W1, LS14, SS11d, Sta12, Tam12, WZY14, ZLW12, dLN13, vBM13].

Second-neighbor [Böt13].

Second-order
[LBLS12, LS14, SS11d]. section [Sha14b].
Self-adjoint [OR12, RS14a, SS11d, ADW13, DZ12a, HSZ12, SSR13, vBM13]. self-dual [MSS14, Tif11, BDK11]. self-organizing [Gle11, Kam10]. selfdual [Dra12a, MMRR12, RS12b].
Sel-semi [LW12c, Vas14, AS12a, BCS13b, BLL12, BL14, CKAC14, CT14b, DYW14, FKR11b, GL10a, Gon11, Hun10, KN13b, LLB13, Lop11a, VV13, ZH11a, vdW14].
semi-Cayley [GL10a]. Semi-centralizing [LW12c]. semi-convergence [DYW14].
semi-definite [BCS13b, BLL12, BL14, LLB13, vdW14].
semi-definite [BCS13b, BLL12, BL14, LLB13, vdW14].
semi-groups [KN13b]. semi-Hilbertian [AS12a, Gon11].
semi-invariants [Lop11a].
semi-linear [CT14b]. semi-magic [Hun10].
Semi-Markov [Vas14, VV13].
semi-nonnegative [CKAC14]. semi-radii [FKR11b]. semi-symmetric [CKAC14].
semi-triple [ZH11a]. semicrossed [DD14].
semidefinite [AAP10, Bal10, BMW10, BMN+13a, CPV10, Dea11, EEH+13, FJ10a, FSI14b, Fur10b, Kak10, LV14, MIt11a, MNZ12, Net10, Pop10, Sag11, Sag13, SM13, SvdH11, WXH10b, Zha14b, Zim13].
semidetermineness [Dru14]. semifields [Sin10a].
Semigroup [Mer10, Tan11].
Semigroups [Sem10, BPA+11, BM11, CD13, Jun12, KLP13, Mar10, OR12, PRW11, Pop13a, SSL13].
semilinear [KP13, ySpW11, ySpW12, ySpW14, dOKS12, dOFK+13].
semimodules [AGNS11, BH11a, LT10a, Sin10a, SN12, SN14, Tan14a, Tan14b].
semimodules [AGNS11, BH11a, LT10a, Sin10a, SN12, SN14, Tan14a, Tan14b].
semimorphisms [GD11a]. semifinite [JT11b].
Semiregular [BL10b]. semiring [FKW13, JP11, SB11, Tan14b].
semirings [AB12, BHM1R12, DO11a, DO11b, KP13, KSB12, Per11, SS11c, Shi11, ySpW11, ySpW14, Tan14a].
Semiseparable [Gem10].
semisimple [FG13c, HT10b].
Semismoothness [LQY13]. semispaces [NS11c].
semitransitive [BM13b]. sense [JP11]. sensing [ALPV14, KG14, PS14a].
separating [LV11, LT13]. Separation [Bar12a, AHL+14, BH11a, CJ14, LH10b, NS11c, vdH14]. separators [NdM13].
sequence [AW13b, BBC+14, BMSW10, BDS13, BDFP11, BCFP12, BDOvdD12, CCG13, CGTR14, CH12, CK14, DP10, Lac13, aLwW13, MN12b, PPK13, Pep12, TD13, Tan10a]. sequences [BV12a, Ben10, BFKL10, CC12, CL13b, CP11, Dem13a, FKR11b, FKR12, FKM13, HNZ12, JJKS11, JMP13, LL10e, LM10c, SCS11, Sev14, SV13, VS14b, Wan14a, IY12, dF10]. sequential [Dug11].
Series [Gar12, Rod12a, Zha12a, dMR12, BGP11, Boj13, He11, KM14, Lak10b, Sl10a]. set [AHLvdH13, BS14, BB13c, BHvdH11, CJ14, Cal12, FdC10, JZZ13, Kim13b, LT11a, Lop11a, LdlP11, MS13b, Mar14a, Roh11, Tan10a, XWD13].
Sets [FdC14b, PV12, BB13b, BJ10a, BB13c, BHS11, C10c, CP11, CLH14, Dau12, FHL+11, GLZ14, H14, HHL10, HRT13, HCY10b, JJS13, Lim13a, MH13b, Mey12, MS11b, NN13, Net10, Pep12, PR13a, Row14c, Sin10b, VV10b, WLF10, YHH12, ZY12b, ZSWB14, Ziv12, dS12a, dSC14, vdH14].
shapes [HJN12]. Sharp [FDS13]. sharable [Cec10]. share [Pro10]. Sharp [BS13b, CW10, CLS13, DZ13, HJZ13, 44]
[KKLY14]. SOC [PCC12]. SOC-convex [PCC12]. SOC-monotone [PCC12].

Solution [Ano12a, Byd10, Dru12b, HJLS11, KPRT14, LwCJL11, CQYY13, CI10, DS11, DD11a, DDG+13, DKS13b, Dod10, DS12c, GKL11, HMR12, HLS11, Ji12a, Jim10, KMS13, KD12, LCwCL11, LHZH11, LdP11, MS1a, PL14, Per14, Roh11, SMC11, VS10, pWI14, Zha12c, ZLD11]. Solutions [Br¨a12, AiS13, AG10, BLLX11, BM10, BM12b, DH12a, FMWW12, FH12c, Fuz10b, Kyr13, LV11, LV12, LLD13, LL13d, LTX14, Mir12, Miy13, Miy14, Sag11, SW11, WW10, WD10, XGS13]. Solvability [LLW14, XSZ13, Bie13, Hla13]. Solvable [SM10b, WGL12, CLO13, CKLO13, CM13, KRH14, LMO16, MSvW12, SK10]. solve [Bou11]. solved [AA11]. Solvents [LT12a]. solver [PPKR12]. solves [BGW12]. Solving [BN13, MZ12b, MSP13, PQ12, SB11, TmYaH11, WCKL13, Bey12, HN10, KKM13, SK14, SHZ10, XX14, YZ12b]. Some [AT14a, BDH+12, BCD10, BS12d, CPZ13, CW12a, CGM+10, Cra13, CHQ14, CI13, Dal13, DD14, FH10, FH13, Fie13, GL12c, HG11b, Hm10, JLN13, JL12, KK12, KK13, tLwWq10, LJ11, LKN13, LCZ10, LSD4, MA12, Max10, MK12, MS14b, Naj13, NPP13, SYH14, Sph10, Sta12, Sto11, TKL14, TP12, Wad14, WX10, YW10, YY14c, Zha14c, ZBW12, AM13a, AdFM11, BP14, Bar13a, BM12b, BRZ13, BH11a, BZ12a, BW14, CRSS14, Cau11, CHZ13, CFL13a, DH12b, Duk12, Duk15, Fan14, Fra12, Gha13, GL10c, HLW14, HG10, HG12, HL11c, JNS13, KI10, KKR11, KJ13, KP14b, Kus13, Kyr13, LLD13, LY13, LW12c, LH13, MZ11, MR12, MN12, Nat13, RRK12, RMA10, RM10, Seo13, SHZ10, SSZ13, wTW13, Uch10, VU14, WW10, WFM11, WW13d, Wód14, Wójt14b, YT13a, Zha12b, Zho11, ZCW13, ZZ10, ZHL12].

Some [DGGJ11, SBMT10]. Somos [CH12]. Somos-4 [CH12]. SOR [LMT10]. Sorensen [BELK12]. Space [Bra10, And13, BV12a, Bai14, BR11, BFK+13, BEV13, BPDC14, DK13a, DK13c, CD12c, Dai13, DK11, DK12a, DK13b, DV14, DWXS12, DK14, FP14, GH13b, GI14, HKK+12, HN14, dHLMS13, KLP12, LSV12, MARC13, Mat13b, Mer10, MMM13, PO10, dSP11b, dSP12b, PGM+11, QH10, Ros12b, Tim14, pWI14, WC11, vBM13]. Spaceability [BS14, BDFP11, BCFP12, CGMPP14, RS14c]. spaceable [BPFP12]. Spaces [¨Ozd13, dSP14, Qui11, AS12a, AM13c, ARZ11, ABGP14, BG13, BDD14, BdFdP11, BDFP11, BCFP12, BCF12, BRZ13, Bud11, CD10, Cau11, CM13, Cir14, De 11, DW10, Dra12a, DP10, DX13, Dub14, Fan12, FM11a, FFS11b, For14, GZX14, Gou11, GL13, GL14, HMT10, HZ11a, Hua11a, HZGY12, HZJ12, KP13, Kec13, Köh14, Lac13, Lán10a, LMM1, LM12, LH10, LT11b, LT13, MMS12, MZ12a, MZ11, MM13, MN12b, OLM14, dSP12a, Pep12, Per11, PT13a, RAAGAV11, RS14c, SP13, SST14, ySpW11, ySpW12, ySpW14, SM12, TD13, Wall11a, WL11, YW10, ZHQ14, de 13, dSW12, tHR13]. spanned [LT10a, RY12a]. Spanning [GS10b, Bap10, CW12b, Góm10, LS13b, LHL14, LHGL14]. Sparse [Ano12a, Dum13b, GP13a, KR12, KPRT14, PT14, CCL14, MSP13, NN14, Rue13, Wan11b]. Sparsity [KKL13c, DT11, JKN14, MZ13, Zho12]. Special [BM13c, GR5+10, HP12a, LQnSi10, Pn13, AAH13, BDH+12, DGMS10, FM11b, FV13b, FKLT13, HLS10, Nor12, Nor14, PdFD14, RR14, TZ12a, TD13, XU12, BBD+11, KPRT14]. specified [Nik10b]. Spectra [Bal12a, Bal12b, Bru10, CD12b, DL14, DK13d, JPM10, LL13c, MM11b, Nor14, Vla12, ABS14, AH14, BV12a, Ben13, Ben14a, Bou10b, BZ12b, BZW14, BW12, CTW11, CL12c, CS11, Il10a, JZ14, LG13, ..]
Spectral [ANPQ12, AS10, AW13b, Aud10a, BV13a, CR10a, FN10, GM13b, HY14, JS12, Kal13b, LS11b, LHW11, aLwW13, Lop11b, LLT12, MW14c, Ref12, RM10, SS13b, SSR13, DDM14, UZ14, WB12, WC11, Alt13, AH10, BT13, BDp13, BMSW10, BMSW11, BR14b, BL10b, BN11, BN12, BN13, BH13a, BC14c, BS12a, CB10, CLO13, CLL12, CKST11, CvDKL10, CTG13, BS10b, DHLX12, Dai12, Dai13, DD10a, DP10, DZ13, Dum13a, FYI10, FZ13, FGG10, FG13b, Fü10a, FJ10b, GLS10, GL12a, GR10, GMV11, GLS12, GL12c, GLS13b, GW13b, GÜ12, HJZ13, HIL12b, HH11b, Hua11c, JZZ13, KGC12a, Koz10, Koz14a, KKL13c, LLS12, LSL13, LSL10, LL11a, LSC11, LWZ11, LW12, LCS10, LCS11, LL10c, LL11c, LW12e, LWHL12, LH13, LHL13, LX13, MR14b, MS13c, Mot12, MP13a, NP12, Nik10b, Nik13, NOL13, NLL13, OM13, OM14].

Spectrally [Bot10b, ES13, GS11a, GS12a, GS13b, MGSW14].

Spectrum [DHKQ13, KM12, SN13, ACM12, AR10, Ang13, jAZS12, AT14b, BS11b, CJ12, Cos11, Cos14, CT12, CI14, DR13b, FTDA10, GL10a, HLV10b, HZ12, KRA12, LW11, LWHS13, LL14b, MSP11, SDNS13, TW10a, TER11, ZW10, ZH11a, ZL11, vBM13, YF12b].

Spedicato [MAGR13]. speed [Zhu11b].

Spheres [PP13a, KK10, KK12, KK13].

Spherical [DGJ13]. spill [KD12, MD13]. spill-over [KD12, MD13]. Spin [PP13a].

Spitzer [AS14]. splines [ACG14]. split [JZ11, MD12a, MD12b, MSD13, Rosi12c, ZY12b]. splitting [DYW14, MZ12c, Rad13, wXL14].

splittings [JM12b, MS12]. spread [CL14a, DPN13b, EHH12, LL10c, OD14b, SK13, WZL12, XM11, YL10].

Springer [Tam12, Zha12a]. square [BP10, Bot12, BLS14, Che14a, DD10a, DF14, FHS14b, GS12d, LW11, MAR13, Nor12]. square-free [GS12d]. square-free [Hil14a]. squares [BP10, Bot12, BLS14, Che14a, DD10a, DF14, FHS14b, GS12d, LW11, MAR13, Nor12].

Stabilization [Liu13]. stabilizer [LWGM10, LWGM12, Ye11].

Stabilizers [GS12]. stabilizing [BO12, GKL11, Per12].

Stable [BLX11, JZ11, BR14c, BBS12b, DX13, GOWd12, HZJ12, Köh14]. stably [DP12b]. Standard [ATT12b, ySpW12, BM12a, GH11, HH14, Hil13]. Star [DM11, RTR10, Row14d, JR14, PRT13, Row12b, Row14b, Row14c, ZSWB14].

Starlike [BZ12b, SHS12]. stars [FG13a].

State [Liu13, ARZ11, BP10, BLS14, CFG14, CG11, FG13a, GKS13]. state-dependent [GKS13]. states [AS12b, CHL14, HQ13, MS10c, SS10a].

static [Per12]. stationarity [Bos11].

Stencils [XK14]. step [BCY12, DHLX12].

Stochastic [CD14]. State-of-the-Art [FN10].
DHS12, Fan10b, GS10a, GS10b, Gul11,
HL11b, Hun10, HP04, JP11, LL12, LXL+14,
LL14a, MZ12b, Mou12, MAM+13, PP11b,
PSW11, SK14, Vas14, XLG+13.

stochasticity [Sha13a]. Stokes [OM10].
Stopping [Lim11a]. Stormer [HOT13].

straightforward [vdW14]. Strakos [Gre13].

strategies [CKAC14, Jun14, KM11, Sta14].
strategy [Raf14]. Stratification [JKV13].

streaming [NNW14]. Strict [BJZ12, CN13c, Cim11, Mol12, Alt13, Peñ14].
strictly [CRU10, HLZ12, LZL12].

strings [PRT13]. Strong [HDPT12, LL10b, Liu14b, LL13d, TZ12b, Bar10a, Bar13a, BCF14, BF14c, Car11, CPR10, HKP13, Hla13, LLD13, LHL12, BDK11, LV14]. Strongly
[BMGM12, Tif11, AvW13, Cam13, HMT10, HY14, LS12b, NS12b, PY10, Row12b].

Structural [CJ11, Zho12, DIP13, JDY13, LZ12a].
structurally [KBS13]. Structure [BR12, Bre14, Cer10, DGU14, ET13, Fuj10, LL12, AA11, ART13, BD12a, BBdH12, BRA11, BJRS11, CKS10, EFI09, EFI10, HG12, Hua12b, JLN13, JK11, KRS13, KW13, LS13d, MD12b, Mar14b, Moj14, Nit10, OT12, PGM+11, RE11, Rod12b, TGM11, ZYL10].

Structures [DV10, GW14b, AM13c, BOZ10, BE10, BDV12, CNT12, CL12b, JKN14, KM13b, MW14a, MMM10, RMT11].

student [DD10c]. Study [CNT12, KZ11].
Sturm [jAS13, KZ11, Qua10, SB12]. sub [JS13b, Nie13]. sub- [Nie13]. sub-direct [JS13b]. subadditivity [BP13].

subgroups [CJ14, HS12b, Slo12a, Slo12b]. subject [YFW10]. sublinear [NdM13]. submanifolds [Lim11b]. Submatrices [JS13a, BFDp11, FG13b, LS12d, LSH12]. Submatrix [FJMP14, JMP12, BC14b].

Submodular [FG13b]. submodules [NC14].

Subnormality [JJK13]. suborbits [LWGM10, LWGM12]. subpencils [RS12a, RS14b]. subpolynomial [SR13c].

Subresultants [DKS13a]. subscarcity [KJK13]. subschemes [CM12b].

subsemigroups [Tan11]. subsemilattices [ABK14]. subset [Dai13, dHM11]. Subsets [Wód14, AM13c, CMRR13, Fra12, Liu14b, RS14c].

Subspace [Gre13, BEM12b, BT10, BT14b, Bou13, Cha10, DZ12a, FP11, JR11, MSS12, NP13a, NS11a, PY10, dSP11a, RRZ13, Wój14b, XE11, YZ11]. Subspaces [DGMS10, AW13c, BGV12, BFK*13, Cir14, Dom10, DKM11, GH13b, GV11, Gro14, GS12e, GLW13, HW14a, HG11a, IJ12, Irv12, MMP13a, MD12c, PP13b, SSR13, WZ14b, BDK11].

substitutions [BK11].

substructuring [Blö12]. Subtracting [SC10]. successions [MS13b]. such [KY11, LSTW13, MP14a]. sufficiency [XW11].

Sufficient [EGR12, CHK+13, LL13d, LS12d, Sha13a].

Sum [PR10, DDM14, AFHP14, AKZ13, AM14, AOT13, BZ13, CSV14, DLX13, DZ12c, FHT11, HMTR10, HTS14, Kaw12, KLZ14b, MPRW11, Mer12, Nik11, TT10, TT12, TZ13b, Zuo10]. summable [dMR12].

Summary [DK13a]. summing [Cam13, Peñ14, SR13b]. Sums [Bot12, dSP12c, Rod12a, dSW12, BW11, 48
Bar12b, Ben13, BL14, BG11, CY11, EWY12,
Fri11, HS14a, HS14b, JS13b, Kra12, Lee13a,
OM12, dSP10d, PT13b. sunset [Cal12].
super [DKS10, Ros12b]. super-operators
[Ros12b]. superadditive [Nie13].
superalgebras [LW12d, LCM13, MSD13].
Superfast [KMS13]. supergraphs
[MNZ12]. superoptimal [CJ10].
superpositions [BMN14, Ros12b].
superquadratic [Kia14]. superoptimal
[CJ10]. superadditive [Nie13]. superadditive
[DKS10, Ros12b]. super-operators
[Ros12b]. superadditive
[Nie13]. superadditive
[DKS10, Ros12b]. superadditive
[Nie13]. superadditive
[DKS10, Ros12b]. superadditive
[Nie13]. superadditive
[DKS10, Ros12b].
Jai11, KRS13, Kub13, LPS13, LKN13, LQY13, MZ12b, Pat10, PGM+11, QSI4, Reg13, Rho10, SE13, SC10, ZCQ13].

Tensored [FH10c].

Tensors [Bra10, TS12, Bal12a, Bal12b, BGK13, BBCC13, Ber13a, Ber13b, BBM14, BZZ+14b, BL13b, CPZ13, CQYY13, CKAC14, DQW13, FiCr10, Fri12, FKLT13, Fri13, HH14, KM11, Qi13, RV13, RE11, Sav14, Sha13b, SSZ13, SQ14, SSM13, UV13, Vla12, XCl13, YHY14, YY14c, YY14b].

term [BSK12, BSKL13, BKMS12, FdC14a, KSB12, Tia12].

terms [CGMS10a, HJZ13, Hun14, MW14c, RL13b].

Terwilliger [GZH14, Kim12].

tessellations [CSAC10, CSAC11].

test [Ara12, Hua13b, Pe˜n14].

testing [Wal11b].

tetrahedron [IRT14].

Tetris [CHK+13].

th [Guo10a, HL11b, LSC10, LLH10, Lin10, TNP12].

their [AK11, BEM12b, BSKL13, BZ12b, BZW14, CEM14, CTW11, Dor10, FKW13, GS12b, GKV11, GB13, GIP12, GL14, HMS13, HK13, HQS13, HHL14, JZ14, KKL13a, KKL13b, Lee13c, LH10b, LH14, LS14, Lom11, MGL11, MMM13, MR12, MS12, MSS14, Mt11b, Mou12, NY13, Ogu13, QSW14, Qui11, ySpW12, Tia12, VS10, WLLX11, WS12, WML13, WY14a, Ws14, Wu13a, ZH14, Zha14b, ZCZ14, Ziv12].

theorem [AS14, BH13b, Bri13, CH13, Car10b, CP12, DLN14, Dok12, Dom10, Eo11, FT12, Fd10, FGG10, FGH13, Gum13, GKV12, GMR14, HH12b, Han13a, Hua12a, Hwa11, KN13c, Kru13, KW13, Lf12, LL14d, Me13, MW12b, Nak12, OLW14, PR13a, Per14, Pit11, Pon11, Rho10, RL13a, RAAGVS11, SY12, SSGL10, SRdAG10, Tao11, Wao11, Wat13, ZY12a, de 13, vDF14, Had12, Had13, Lee11, DDM14].

Theorems [CTW11, LH14, LHZH11, Bar12a, BFdP10, Hill12b, Nak10, Pin11, Sat11, Sat14, YW10, dCdlRMP14].

theoretic [BB13c, Bôt13, FH13, Kus12].

theories [MLC+10].

Theory [Ber09, BFH+12, MOA11, Sla10, Tam12, Zha12a, Ano12-30, AH10, BV12a, BPA+11, Beh13, BS10, BBS12a, CC14, CS10b, DD10a, DD11a, DD11d, GL10c, Ika11, JZZ13, KZ11, LN12, MMRR11, MMRR12, Nik13, NV12, PO10, RR12, RL13a, SB12, Se14, SRdAG10, TN14, Zha12d, HB12, Lim13b].

Thin [God10, God12, Shi12a, Cer10, Kim12].

Third [Bra10, KM11, SHS12].

Third-Order [Bra10, KM11].

Thirring [Aud13a].

Thompson [ISYY11, Lim13a].

Three [Cha14, Dor10, HLIW14, Kara11b, BS11d, CKST11, Cir13, DP12a, DD11c, Dra14, KS13b, LZG14, MAS12, dSP10b, WBWH13, vDO11].

Three-by-three [Cha14].

Three-equipped [Dor10].

Three-parameter [Kar11b].

threshold [Bap13b, JTT13, VDVT13].

thresholded [GR12].

tight [Bod13, BW13a, DSH10, FMT12, HS12a, Sin10b, Szö13].

tightly [BS13a].

Tikhonov [LRV12].

tilting [PYZ14].

Time [Pol12, BCY12, BLLM13, BJ13, DT10, DZ12a, FV13b, HDPT12, HRT10, Jun14, Kir10, KM14, Liu13, Mah11, PKR12, RMT11, Sad12, Sh14a, WZ13b].

time-delay [Mah11].

Time-domain [Pol12].

time-invariant [DZ12a].

time-varying [Liu13, PKR12, Sh14a].

times [BRZ11, Gón10, PR10].

Tits [GS12b].

TN [JW13].

Toeplitz [BH12, BS12a, BCD10, BBGM12, BF14b, Bón14, CRS14, CG11, DK13e, Eol11, Gar13, GG13, HR11, KL12, KMS13, KW12, LMY11, L113, MS11a, RR14, Rim12, SCSS10].

tomographic [PS14a].

TOP [Sha10b].

Topical [SN12, Sin10a, SN14].

topics [Año12-30].

Topological [Bud11, RS12c, ABGPSS14, FRS14, JJZ13, TN14, AJ13].

topologies [Sha14a, ZY14].

tori [CSAC10, CSAC11].

torsion [Wag11].

Total [HC10, LB14, BP14, Dum13b, Kus12, LJ11, PO11, Peñ14, RMAJ10, YM12, SS10c].

Totally
[AH13a, BC12a, BSST13, wH13, IPFD13, LB14, LRG10, LYS13, Mal11, Seg10, Ste11, TT11, AKM14, AR10, AIL12, AK11, BB13b, Bot10a, Bot12, BS10, BS11c, BS13a, Bra12, BZ13, CGMJ14, CN10a, HO11, Hi14c, HMP12, Jun14, Kis15, KW12, KKM13, KR10, LLS11, LwCJL11, LSR11, Lop11a, LMT10, MW14a, Mar10, MH13b, MP10, NR10, NS12a, PPZ14, dSP10c, dSP12c, Pet10, PSW11, SW11, SH13, TZ12a, TH10, TZ13b, WBWH13, XX12, ZW12b, Ziv12, Zuo10, FF10].

two-by-two [BB13b, KKM13].
two-cyclic [LMT10].
Two-dimensional [Ma11, LwCJL11].
two-level [KW12].
two-lit [wH13].
two-parameter [HMP12, MP10].
two-player [Jun14].
two-sided [LYS13, Seg10, PPZ14].
two-variable [AIL2].
Tykhonov [SS10c].
type [AiS13, AAT12a, AK11, BR14a, BRA11, BdlC14, BFS11, BC14a, CL12a, CA10, Dai12, DD11c, Dra12a, FPC13, GH13b, GWH13, GD11a, He11, HM14b, HWG13, HWG14, wH12, IS14, JKN14, KKLY14, Lec10, Lin13, Lin14b, LKX12, MFGD14, NY14, NT10b, Pag12, Pat12a, Rho10, ST10a, SE13, SS10c, Sch10, Seo13, Sev10, Sev13, Tao11, TPZ12, Wad14, Wik11, Wik12, Wil13, Wol12, Wor13, CGGS13].
Typical [SSM13, Bal14, Ber13b, Fri12].

UK [Lim13b].
unbralm [Ern13].
Unbounded [And13, CGM12, For14, GMMPSS12, Pop14].
uncertain [Liu13, Sha14a].
Uncertainty [Yan10a, GJ11, MW12b].
unconditional [LM12].
underapproximation [GP13a].
underdetermined [Miy14].
Undirected [CGMJ14, CFHL14, FS14a].
Uni [ZHZF13].
Uni-mode [ZHZF13].
 unicellular [FGS11].
Unicyclic [AW11, AKM14, BMSW10, CLL12, DC14, DZ12b, FFW13, FY110, GHW+13, HL12, HJJ10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, Zhn12c].
Unified [AM13b, JKN14].
Uniform [LMYY11, CD12b, JZZ13, Nik14, QSW14, XC13].
uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12].
unions [Dau12].
Unipotent [CHJ13, Bot10a].
uniquely [KKL13a, KKL13b, Lee13c].
Uniqueness [LL10a, Der13, Mor10, Sta14, Wei13a, ZHZF13, Dra14].
unit [AG12, BR12, DW10, MPS10, Ref12, RL13a].
Unital [KLP13, BS12b, BG14b, Wan14b].
unitarily [FCL10, Fur12, Ikr10, MA12, Van10, ZH12].

Unitary [GPT12, Ger12, LNT13, AR10, BFK+13, Bud11, CLH14, Far11a, FGS11, FFG+11, FHS11, GHS13, KAMS11, LNN14, Li10, LWGM10, LPS13, LMW12, Mol13, Pop10, SY12, Ste13, Tad12, TMSS14, GTW13].
unitriangular [Bie14].
Univ [Gle11].
univariate [BL10a].
Universal [CFG+14, HO11, AAF+12, AN13, LV14].
universally [HCY10a].
Universitext [Tam12].
University [Bar10b, Gar12, Grü12, Lim13b, Rei11a, Rod12a].
Unordered [KS13a].
 unreduced [Wüll].
unstructured [RW12].
updated [EM12].
Upgrading [SWA12, JDY13, KD12].
upon [CFJKS13].
Upper [BHKM13, CFL13b, DLS14, DZ12c, WZL12, AHS10, BBG14, CR10a, CGTR14, CLS13, Cir13, CM14, CGR14, CTG13, CI14, DW14, DW14, FFG+11, FTA11, FdC10, Gho13, GLS13b, HC14, JMS11, PJ13, RMAJ10, RL13b, SK13, SWT13, TC13, WW13b, WMZ14, ZLW12, ZZ10, Zlh10b].
upset [BRLS12].
Uriel [BMS14b, Loe12].
Use [PTPL10, VS10].
Using [MS11a, TP13, AHAPP10, AHS10, BBH+12, BEK13, BRZ11, BTY12, BHAP12, CNT12, GS12d, Han11b, Han13b, Han14b, Kim11a, KZ11, MSP13, OM12, PS14b, RMT11, RW10, SPKS12, TMSS14, UV13, VS13, WXH10a].
validation [LJ12]. valuation [AW10].

values [AHL11, AM14, Buj13, CH13, CN12b, CJK+13, EJLS11, HHMS10, HK10, Kra12, MB13, MP14a, Nik11, SS10d, ZH12].

Vandebril [Gem10]. Vandermonde [BOZ10, DU14, God12, KS14b, MM10b, ZYL10].

vanishing [KLZ14a].

variable [AIL12, KY14, LLY11].

variables [BW13b, DU14, Gna12, HYF14, Mat14a, Pet10, SV11, YiKIS12, Zha14c, dO12].

Variance [Aud10b, Fie13, G¨uv12].

Variances [CEY14].

variate [ANF11, DGJ10, Mat13a].

variation [Kal13b].

variations [Mel13].

varieties [BL13b, NS14, Siv12b, Siv12a].

variety [Ber13a].

various [BBC14+14, FJ14].

VARMAX [KS10].

varying [Liu13, PKR12, Sha14a].

Vector [FM11a, BGPS114, BG13, BJ10a, BCF12, DK13c, CD12c, De 11, DK11, DK12a, DK13b, DV14, FW14b, KM14, Nic13, PO10, PP13a, Pol13, RR14, Wall11a].

vector-valued [Nic13].

terrier [Ag14, Cos14, Dah11, Fan12, HL11e, Nic12, Sav12, ySpW12].

Verdi`ere [GB11, Gol13].

verification [JNS13].

Verified [FH12c].

Verma [WZ14c, WZ12].

Vershik [GH12, Slo12a].

version [KSA11, Kon13, Laf12, MP13a, NS1c, Raf14].

versions [GO12].

versus [Aud10a, BI12, Bea12, PQZ13].

Vertex [EHH+12, BNP13, BYZZ14, CMRR13, CT11b, CJ12, LL13c, Row12a, TF10].

vertical [MV12].

vertices [ACM+12, AdFM11, BNP11, DdF13b, DdF14, FdC14b, Gum13, HJL10, LLS11, LWZ11, LZ12b, LJY14, MAS12, NOL13, SWT13, WF10, XZ13c, Zhu10a, Zhu11a].

very [FMNW14].

via [ABBO11, Alt13, BFRR14, BY11, BO12, BBS12a, Car13, Cas13, Che13, CK13d, CGSCZ10, DK12b, Fur12, GrDr12, JJKS11, KL12, KKB11, LRV12, LS12a, LM10c, MW12a, MW10, NM14, Qua10, Rad13, RRM11].

view [ATS12, HM10, JKN14, Ter13].

viewpoint [PO10].

Vitae [Ano13d].

Vol [Lin13b, Grui12].

volumes [Gem10, Sav14].

W [Zha12a].

Walk [EdlPH14, Ben14b, CvDKP13, CBB13, DFG10, EdlP14].

Walks [MSvdD14].

Wang [Koz14a].

Waring [AW13a].

wavelet [HL11e].

way [CC10, ZHZF13].

ways [Wad14].

Weak [GMH14b, Hla13, KP14b].

weakly [HZ10].

Wedderburn [MAGR13].

Weibull [Fou14].

Weierstraß [BIT12].

weighing [KMNS12, NP10].

weight [AG12, Dub14, LT11a, LSV12, Tan10a, WZ13e].

Weighted [GTW13, JLLY10, LP14, Pá13, PP14, BKP12, CN13a, CN13b, EWY12, GX12b, GHW13, GS11b, KP14a, KKS12, KKL10, KLL11, KY14, KW13, LLY11, LT11a, MR12, MS14b, NP13b, NSC13, PO11, RM10, Tan10a, TW11a, TW11b, Tsa11, VU14, WW13a, WLL14, YY13, XCS13, Yam13, YZF14].

weighted-EP [TW11a].

weights [KP14a, Stu12, Tsa11].

Weil [AiS13].

Weitzenböck [DDF13a].

Welch [DHC12].

well [IO12].

well-quasi-ordering [IO12].

Wenzel [Lu12].

Weyl [DV14, FKR11b, FKR12, Nak10].

Wg [MD10].

Which [GGK+13, CFK+10b, DLHX12, FdC14b, Gu14, Ogu13].

Whitney [FV13a, Wag11].

Whittaker [aCCS14].

whose [BMSW11, BZ12b, CK14, DU14, HZ11b, HZ12b, HTW13, JG10, LY11a, LSR11, LHWF11, MQ11, MQ13, SS14, Sta12, WBHM13, Wu10a, XG13, vDO11].

width [IO12].

Wielandt [HMS13, PR13a].

Wiener [BH13a].

Wigner [Yan10a].

Williams
References

Adhikari:2011:BES

Adhikari:2014:SMP

Ahmadi:2012:MRU

Alaminos:2010:BMD

Albuquerque:2014:PCT

Araujo:2014:LSE

Adiga:2010:SED

Anuradha:2014:SSG

Alaminos:2012:MPZ

Cai:2014:QWM

Andelic:2011:BID

Azizov:2013:CMD

Abreu:2012:IAM

Arias:2010:PSO

Abdel-Ghaffar:2012:CMF

R. Armario, F. J. García-Pacheco, and F. J. Pérez-Fernández. On the Krein–Milman Property and the

Ahmadi:2014:LAB

Ayala:2013:LFM

Abreu:2014:OTG

Adm:2012:BMR

Audeh:2012:SVI

Atreas:2011:BIM

Ayupov:2013:LDM

Aiura:2013:NMG

Akbari:2014:MLE

Afkhami:2012:GCG

Akbari:2013:GSF

Alpay:2013:CCG

Daniel Alpay and Izchak Lewkowicz. Convex cones of generalized positive rational functions and the...

Avrachenkov:2013:APG

Alpay:2014:IPS

Alizadeh:2012:NRP

Alon:2014:EAR

Ai:2014:OBC

Andruchow:2012:CMH

E. Andruchow, G. Larotonda, L. Recht, and A. Varela. A characterization of minimal Hermitian matrices. *Linear Algebra and its Applications*, 436(7):2366–2374, April 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
Altenberg:2013:SCS

Liu:2013:SRD

Afshin:2013:PNH

Agoré:2013:UPL

Akbarbaglu:2013:LSC

Arias:2013:PIG

Asakly:2014:ECA

Walaa Asakly and Toufik Mansour. Enumeration of compositions according to the

Anonymous:2010:LEt

Anonymous:2010:PIC

Anonymous:2011:LR

Anonymous:2011:LEa

Anonymous:2011:LEb

Anonymous:2011:LEr

Anonymous:2011:LEs

Anonymous:2011:LEt

Anonymous:2011:LEu

Anonymous:2011:LEv

Anonymous:2011:LEw

Anonymous:2011:LEx

Anonymous:2011:NEC

Anonymous:2011:P

Anonymous:2012:ASA

Anonymous:2013:HBL

Anonymous:2013:LPA

Anonymous:2013:LEa

Anonymous:2013:LEb

Anonymous:2013:LEc

Anonymous:2013:LEd

Anonymous:2013:LEe

Anonymous:2013:LEf

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Almeida:2013:NCS

Alvarez-Nodarse:2012:SPC

Abdollahi:2014:CG

Ashraf:2013:SSL

Araujo:2014:LBC

Albeverio:2010:DSO

Arambasic:2012:BJO

August 1, 2012. CO-
DEN LAAPAW. ISSN
science/article/pii/S0024379512002625.

[AS12d] Brendan P. W. Ames and
Hristo S. Sendov. A new
derivation of a formula by
Kato. Linear Algebra and
its Applications, 436(3):722–
730, February 1, 2012. CO-
DEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379512002625.

[AS14] Per Alexandersson and Boris
Shapiro. Around a multi-
variate Schmidt-Spitzer theo-
rem. Linear Algebra and
its Applications, 446(??):356–
368, April 1, 2014. CO-
DEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379514000226.

[ATS12] M. Arashi, S. M. M. Tabatabaey,
and H. Soleimani. Simple
regression in view of ellipti-
cal models. Linear Algebra
and its Applications, 437(7):
1675–1691, October 15, 2011.
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379512003588.

C. Mendes Araújo and
Juan R. Torregrosa. Some
results on B-matrices and dou-
by B-matrices. Linear Al-
gebra and its Applications,
459(??):101–120, October 15,
2014. CODEN LAAPAW.
ISSN 0024-3795 (print), 1873-
1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379514000417.

Fatihcan M. Atay and Hande
Tunçel. On the spectrum
of the normalized Lapla-
cian for signed graphs: In-
terlacing, contraction, and
replication. Linear Algebra
and its Applications, 442(??):
165–177, February 1, 2014.
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379513005211.

M. Arashi, S. M. M. Tabatabaey,
and H. Soleimani. Simple
regression in view of ellipti-
cal models. Linear Algebra
and its Applications, 437(7):
1675–1691, October 15, 2011.
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379512003588.

Alfakih:2013:AMB

Burer:2009:DBD

Bai:2011:DPS

Baird:2014:IPF

Bajo:2014:IQO

Balaji:2010:CPM

Balan:2012:SSTa

See erratum \cite{Vla12}.

José Barria. The Chemnitz connection. *Linear Algebra and its Applications*, 439
Batzke:2014:GRO

Bauer:2012:NGL

Benzi:2010:QRB

Beasley:2011:CEG

Budnitska:2011:CAO

Bach:2013:NDF

Bai:2013:NBT

Bottcher:2013:P

Baragana:2012:CBS

Baragana:2013:CFA

Bini:2010:FIQ

Barioli:2010:ZFP

Barioli:2012:GCC

BARRETT:2013:P

BOCKTING-CONRAD:2012:TCO

BOROBIA:2012:MCP

BOROBIA:2012:NAM

BOROBIA:2013:CFR

94
Bockting-Conrad:2014:TPR

Borobia:2014:NMP

Brualdi:2014:NSR

Benhida:2010:SPK

Breaz:2013:NCM

Beitia:2011:RPO

Bendito:2010:KIN

Borobia:2010:MCP

Bermudez:2013:CRL

Bonnabel:2013:RPG

Bockting-Conrad:2014:AID

Bai:2012:MSH

Bai:2012:SNL

Brualdi:2012:MCI

[BD12b] Richard A. Brualdi and Geir Dahl. Majorization classes

Bart:2010:MIG

Benito:2013:LEN

Bodine:2012:SPR

Benito:2014:EFN

Bilge:2011:MLS

Bodine:2012:SPR

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy. [BE10]

Benkovic:2012:MLD

Beasley:2012:INV

Behrend:2013:FPM

Benzi:2013:RHA

Belardo:2014:BLE

Benner:2012:MBD

Bahrami:2012:LPM

F. Bahrami, A. Bayati Eshkaf-taki, and S. M. Manjegani.

Dennis S. Bernstein. *Matrix Mathematics: Theory,

Bolten:2011:AMM

Bruzialdi:2012:TAM

Barik:2011:HDG

Bondarenko:2013:SSU

Botelho:2012:SE

G. Botelho, V. V. Fávaro, D. Pellegrino, and J. B. Seoane-Sepúlveda. $L_q[0, 1] \setminus \cup_{q > r} L_q[0, 1]$ is spaceable for every $p > 0$. *Linear Algebra and its Applications*, 436(9):2963–2965, May 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://www.sciencedirect.com/science/article/pii/S0024379514003097.

Baglama:2014:ADN

Benner:2011:HKS

Peter Benner, Heike Faßben-

Bruhn:2011:BCU

Bruhn:2011:BCU

BG11

Bhatia:2012:NIR

BG12a

Bapat:2014:ITM

Zhong-Zhi Bai and Apostolos Hadjidimos. Optimization of extrapolated Cayley transform with non-Hermitian pos-

Bier:2014:CPI

Berger:2012:QWF

Botelho:2010:ARS

Botelho:2010:EOA

Botelho:2010:IPE

Botelho:2011:PAI

Bouhamidi:2013:CIN

Abderrahman Bouhamidi and Khalide Jbilou. On the convergence of inexact Newton methods for discrete-time algebraic Riccati equations. *Linear Algebra and
Bouhamidi:2011:ETM

Botelho:2012:SIA

Bruhat:2010:TNM

Bessenyei:2011:FEG

Betcke:2011:PER

Buchholzer:2012:BEE

Barrett:2013:DMR
Wayne Barrett, Mark Kempston, Nicole Malloy, Curtis Nelson, William Sexton, and John Sinkovic. Decompositions of minimum rank

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

[BKV14b] Türker Biyikoglu and Josef Leydold. Semiregular trees

Boutin:2011:MRP

Biyikoglu:2012:GGO

Benitez:2013:SPM

Buczynski:2013:RTG

Bourin:2014:DSP

Bebiano:2012:RHK

Bebiano:2010:TIL

Bourin:2012:DLP

Bourin:2013:PMP

Bai:2011:SSL

Blomeling:2012:MLS

Brunnock:2014:SRN

Blumthaler:2010:FO

Bayat:2010:PSF

Balmaceda:2012:LTL

Bobok:2012:MSS

Benner:2013:CAS

Bernik:2013:LAA

Bremner:2013:SIP

Murray R. Bremner and Sara Madariaga. Special identities for the pre-Jordan product in

Butkovic:2013:IES

Batzke:2014:IEP

Beasley:2014:PD

Burgos:2012:SPP

Branquinho:2012:RAO

Beagley:2013:BMS

Assignment 2

1. BERMUDEZ:2013:PI

2. BERNOULI:2011:PMS

3. BELARDO:2010:SRU

Francesco Belardo, Enzo M. Li Marzi, Slobodan K. Simić, and Jianfeng Wang. On the spectral radius of unicyclic graphs with prescribed degree sequence. *Linear Algebra and its Applications*, 432(9):2323–2334, April 15, 2010. CODEN LAAPAW. ISSN 0024-
Belardo:2011:GWS

Bauschke:2010:RAP

Bini:2013:SPE

Bose:2011:DSR

Bose:2012:DSR

Bose:2013:MDS

Brambilla:2011:PPI

Maria Chiara Brambilla and Giorgio Ottaviani. On partial polynomial interpolation.

Bottcher:2013:OTA

Botha:2014:MDI

Bourgeois:2010:ME

Gerald Bourgeois. The matrix equation \(\log(XY) = \log(X) + \log(Y) \). *Linear Algebra and its Applications*, 432(8):1878–1884, April 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Bourgeois:2013:CIS

Bella:2010:SFG

Bella:2011:QAF

BOZ11a

Bella:2011:RQA

BOZ11b

Bozzo:2013:MPI

[Boz13]

Besenyei:2013:PSE

[BP13]

Basic:2010:PST

BP10

Besenyei:2011:CPM

BP11

Barreras:2012:CJS

BP12

Basic:2010:PST

BP10

Besenyei:2011:CPM

BP11

Barreras:2012:CJS

BP12

Basic:2010:PST

BP10

Besenyei:2011:CPM

BP11

Barreras:2012:CJS

BP12

Bekjan:2014:HTI

Bella:2014:SCM

Bierkens:2014:SMP

Bonomi:2012:STP

Braman:2010:TOT

Bekker:2011:WRD

Branden:2012:STP

Petter Brändén. Solutions to two problems on permanents. Linear Algebra and its Applications, 436
Bremner:2014:SRM

Brijder:2013:NTP

Brown:2012:BRU

Brualdi:2010:SD

Brualdi:2011:EC

Brualdi:2013:EC

Brualdi:2014:EC

Boley:2011:CTD

Bracic:2013:HCS

Bottcher:2010:GGB

Bapat:2011:IML

Bendaoud:2011:ALS

Bottcher:2011:CFD

Brodsky:2011:TQT

Bebiano:2012:NRT
Benkovic:2012:JDU

Berman:2012:CPH

Bhatia:2012:SIP

Bresar:2012:LAA

Bottcher:2013:CFD

Butler:2013:SBS

Balcerzak:2014:SSC
Marek Balcerzak and Filip Strobin. Spaceability of the

Beasley:2012:PTR

Beasley:2012:PTR

Bostan:2010:FCA

Butkovic:2013:TCN

Bomze:2014:SEC

Baksalary:2010:SMB
Oskar Maria Baksalary and G"otz Trenkler. On a subspace metric based on matrix rank. Linear Algebra and
Baksalary:2011:DRM

Barkovsky:2011:HRF

Bayat:2011:AGM

Bebiano:2013:DIS

Bah:2014:BRI

Baksalary:2014:SDD

Bolten:2012:PSA

Buckley:2010:ETP

Budnitska:2011:TCA

Bujanovic:2013:PAR

Bunger:2014:IDE

Barnsley:2011:EPL

Badawy:2012:PTA

Helen Broome and Shayne Waldron. On the construction of highly symmetric tight frames and complex polytopes. *Linear Algebra and its
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://www.sciencedirect.com/
science/article/pii/S0024379513006228

Buzinski:2013:MPF

science/article/pii/S0024379513005028

Bikchentaev:2011:RTR

Bydder:2010:SCL

Bu:2014:RDS

science/article/pii/S0024379514003838

Bu:2012:SLS

science/article/pii/S0024379512000055

Bu:2012:STW

science/article/pii/S0024379511004770

Cristina Caldeira. Pairs of sets with small sumset and small periodic product-set. *Linear Algebra and

Campos:2013:ARC

Cardinal:2010:SMR

Carrieu:2010:CCS

Cardanobile:2011:SMP

Carriegos:2013:ECL

Castella:2010:EAL

Caswell:2013:SAD

Causin:2011:DSR

Cason:2013:IML

Chebotarev:2013:SEL

Caiafa:2010:GCR

Chang:2012:MMS

Carriegos:2014:TFA

Cavers:2012:SAM
M. Cavers, S. M. Cioaba, S. Fallat, D. A. Gregory,

Camacho:2014:FLA

Camacho:2013:LAN

Camacho:2013:FZA

Chen:2014:RSA

Cardinali:2010:RPD

Cigler:2011:LGS

Grega Cigler and Roman Drnovšek. From local to global similarity of matrix groups. *Linear Algebra and
Coelho:2012:LPI

Cooper:2012:SUH

Curgus:2012:RKP

Cigler:2013:SMN

Can:2014:EBS

Cho:2010:EOH

Cicalo:2012:SDN

Conflitti:2012:MLC

Carnicer:2010:RMT

Cechlarova:2010:MML

Carmona:2014:DEO

Centrone:2011:GIG

Cerzo:2010:STI

|-------------------|---------------------|

Zhao Chen, Matthew Grimm, Paul McMichael, and Charles R. Johnson. Undirected graphs of Hermitian matrices that

Ciesielski:2014:LSA

Castro-Gonzalez:2010:DIP

Cruz:2014:UBE

Castro-Gonzalez:2013:GIM

Cicone:2010:FPP

Carmona:2014:DSU

Chen:2011:MEI

Chang:2013:NRG

Chen:2014:ECC

Chang:2012:CBS

Chen:2013:IOR

Chen:2014:LMC

Chen:2014:CSN

Chiumiento:2013:NOL

Can:2013:UIM

Casazza:2013:NSC

Choi:2012:EIM
Man-Duen Choi, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze. Every invertible

Dragana S. Cvetković-Ilić.

Dragana S. Cvetković-Ilić.

Dragana S. Cvetković-Ilić and Robin Harte.

J. Cimprič.

Sebastian M. Cioabă.

Sebastian M. Cioaba.
Cirrito:2013:GAU

Cirici:2014:CIS

Chen:2010:GSP

Chen:2012:MVC

Cigler:2014:SEC

Corey:2013:PFV

Cheon:2013:ARG

[172x646]//www.sciencedirect.com/
science/article/pii/S0024379512007422

Cheon:2013:EFO

[172x646]//www.sciencedirect.com/
science/article/pii/S0024379513005855

Chan:2011:MMT

[172x646]//www.sciencedirect.com/
science/article/pii/S0024379511006459

Melody Chan, Anders Jensen, and Elena Rubei. The 4×4 minors of a $5 \times n$ matrix are a tropical basis. Linear Algebra and its Applications, 435(7):1598–1611, October 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Canete:2013:CDL

[172x646]//www.sciencedirect.com/
science/article/pii/S002437951300181X

Casanellas:2013:GME

[172x646]//www.sciencedirect.com/
science/article/pii/S0024379512007884

Cheon:2013:NAH

[172x646]//www.sciencedirect.com/
science/article/pii/S0024379513006459

Choi:2014:MSB

[172x646]//www.sciencedirect.com/
science/article/pii/S002437951200599X

Jihoon Choi and Suh-Ryung Kim. On the matrix sequence $\{G(A^m)\}_{m=1}^\infty$ for a Boolean matrix A whose digraph is linearly connected.

Cheng:2010:PZS

Cheng:2011:NTG

Chuang:2011:LCL

Cao:2012:GKT

Chen:2012:LSA

Cronin:2012:ISN

Cheng:2013:NIE

Sean Clark, Chi-Kwong Li, and Nung-Sing Sze. Multiplicative maps preserving the higher rank numerical ranges and radii. *Linear Algebra and its Applications*, 432(11):2729–2738, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Chiantini:2012:DRS [CM12b]

Chafai:2013:PNS [CM13]

Cirrito:2014:OGC [CM14]

Czornik:2010:EED [CMN10]

Chan:2014:CRM [CMNW14]

Cardoso:2013:EHG [CMRR13]
Chammam:2012:OPC

Conde:2012:OIR

Covas:2010:LJA

Cheung:2010:RBZ

Chien:2010:BHR

Chooi:2010:CAC

Czornik:2010:RDL

Chien:2011:BHR

Mao-Ting Chien and Hiroshi Nakazato. The boundary of...

Chien:2011:CDR

Chien:2011:RNR

Chien:2012:CAC

Czornik:2011:SLA

Cardon:2012:NMM

Chien:2012:CVH

Chien:2012:DRC

Chien:2013:HFA

Chien:2013:SCJ

Ceballos:2012:SLA

Cohen:2014:CGI

Chandrashekaran:2010:SM

Chandrashekaran:2010:PSL

Chang:2013:SVP

Chen:2013:SML

Cardoso:2010:SUB

Carlini:2010:PMN

Carvalho:2010:IGR

[Paula Carvalho and Paula Rama. Integral graphs and...
(κ, τ)-regular sets. *Linear Algebra and its Applications*, 432(9):2409–2417, April 15, 2010. CODEN LAAPAW.
ISSN 0024-3795 (print), 1873-1856 (electronic).

Crane:2013:SAI

Camara:2014:OSI

Camenga:2014:GWN

Canto:2010:CRT

ISSN 0024-3795 (print), 1873-1856 (electronic).

Canto:2013:QFN

Canto:2014:FRF

ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Ccapa:2010:EDP

Cvetkovic:2010:TST

Cvetkovic:2011:GSC

Cartwright:2013:NET

Chen:2013:HFG

Costa:2010:CGT

Costa:2011:CGT

Campello:2013:PAL

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Leandro Cagliero and Paulo Tirao. The cohomology of

Cuitino:2014:DCP

Cui:2013:SUB

Cioaba:2010:ARS

Camara:2013:GAW

Cheng:2010:CMF

Chen:2010:SBL

Chen:2011:FDM

Cheon:2012:SRT

Cioaba:2012:EDS

Cameron:2011:HDS

Czornik:2010:PED

Dong:2010:NCP

[DA10] Hongbo Dong and Kurt Anstreicher. A note on 5×5...

Dahl:2010:MPM

Dahl:2011:PRI

Dahl:2012:MMC

Dahl:2012:MBR

Dai:2011:EBL

Dai:2012:GTS

Dai:2013:SCS

Das:2010:CIA

Das:2010:CIS

Das:2011:PCI

Das:2013:PCI

Daugulis:2012:PMC

Dax:2010:EPO

Duan:2014:GLR

Deng:2013:KIC

Deng:2014:EBU

DaCruz:2012:PMS

Deng:2012:ICP

Deng:2012:PCC

DeTeran:2010:FOS

Dinh:2010:MPZ

Dinh:2010:MPZ
Dogan-Dunlap:2010:LAS

DeTeran:2011:SEA

Derevyagin:2011:DTJ

Dincic:2011:MTR

Dou:2011:NOP

Duchsherer:2014:SPD

Duffner:2013:RBD

Dangovski:2013:WDF

Du:2013:SAM

Du:2014:NAM

DeTeran:2013:SE

Dickinson:2013:IEC

Duggal:2014:EOF

Louis Deaett. The minimum semidefinite rank of a triangle-free graph. *Linear

Dalfo:2010:CWR

Denman:2013:SFD

Dmytryshyn:2010:MDM

Dmytryshyn:2014:MDM

Dmytryshyn:2012:MDM

Das:2010:IIE

Das:2014:IEG

Derevyagin:2014:MGT

Das:2014:LEL

Kinkar Ch. Das, Ivan Gutman, and A. Sinan Çevik.

Diaz-Garcia:2011:WDS

Diaz-Garcia:2010:CBV

Dolinar:2013:EMC

Dong:2012:SAC

Datta:2012:GWB

Dolinar:2013:SNM

Hou:2013:DSM

Dai:2012:FSR

deHoog:2011:NSS

Duncan:2010:ETF

Dinitz:2012:TDI

Dinwoodie:2011:SMB

Dascalescu:2013:FSM

Ducey:2014:IIA

Duggal:2012:QCC

Duggal:2012:PCP

DeBruyn:2011:TDS

B. De Bruyn and M. Kwiatkowski. On the trivectors of a 6-dimensional symplectic vector

DeBruyn:2012:TDS

B. De Bruyn and M. Kwiatkowski.

Devecic:2012:CGP

Ömür Deveci´c and Erdal Karaduman.

Bruyn:2013:CTS

B. De Bruyn and M. Kwiatkowski.

DeBruyn:2013:TDS

B. De Bruyn and M. Kwiatkowski.

Devecic:2012:CGP

Ömür Deveci´c and Erdal Karaduman.

B. De Bruyn and M. Kwiatkowski.

Bruyn:2013:TDS

B. De Bruyn and M. Kwiatkowski.

Deng:2013:SDT

Aiping Deng and Alexander Kelmans.
Dym:2013:TFC

Duggal:2014:PFC

Draper:2014:FRF

Dolgov:2012:RPS

DiVincenzo:2010:GIT

DAndrea:2013:SMR

Das:2014:UBS

Dumitru:2013:SVI

Dolinar:2011:SPO

Dohi:2010:DTB

DelaCruz:2011:PDM

deMalafosse:2012:SSA

Dopazo:2010:FRR
E. Dopazo and M. F. Martinez-Serrano. Further re-

Dopazo:2013:DDI

Dolzan:2011:CGM

Dolzan:2011:NGM

deOliveira:2012:SSP

Dodig:2010:ESR

Dodig:2013:CMP

deOliveira:2013:CLS

Debora Duarte de Oliveira, Vyacheslav Futorny, Tatiana Klimchuk, Dmitry Kovalenko,

Drnovsek:2013:MC

Drnovsek:2013:SSN

Drury:2011:CCM

Drury:2012:QBK

Drury:2012:SCB

Drury:2013:FDI

Drury:2014:PSI

To what extent is a large space of matrices not closed under

Pazzis:2012:LAS

Pazzis:2012:LPN

Pazzis:2012:STT

Pazzis:2012:WDL

Pazzis:2014:SMF

deSnoo:2012:SCC

Dimitriou:2010:ETD

Druinsky:2011:FMT

Diaz–Toca:2011:PBN

Defez:2011:IBH

DeMarchi:2014:CMV

Dubsky:2014:CSW

Duggal:2011:QES

Duggal:2012:TPI

Dukes:2012:RDD

Dukes:2015:CSD

Dumas:2013:JSR

Dumitrescu:2013:STL

Dureisseix:2012:GFF

Delvaux:2010:SPG

[DV10] Steven Delvaux and Marc Van Barel. Structures preserved

DeSchepper:2014:GDW

Dalfo:2011:PAD

Dette:2010:MMU

Deng:2011:RDI

Du:2012:CMT

Du:2012:LDG

Du:2013:BGM

Yiqiu Du and Yu Wang. Biderivations of generalized

Du:2014:JHU

Du:2014:CSP

Das:2012:CBK

Das:2013:SPL

Oliver G. Ernst, Chun-Hua Guo, Jörg Liesen, and Leiba

195

Erway:2012:LMB

Ebanks:2011:HTA

Ensenbach:2010:DDP

Ehrhardt:2013:RMI

Eremita:2013:FID

Ernst:2013:UAF

Erdmann:2011:CPS

Ehrhardt:2013:BAQ

Torsten Ehrhardt and Bernd Silbermann. Banach algebras of quasi-triangular operators

Ellard:2014:CNR

Estrada:2012:CDG

Estrada:2012:PLM

[ES14]

Ellens:2011:EGR

Esslamzadeh:2013:SQO

Ellers:2011:CSC

Fleischhack:2010:APH

Fallat:2012:BLE

Foniok:2011:CCM

Fang:2011:GAN

N. Farhi, M. Goursat, and J.-P. Quadrat. Piecewise lin-
ear concave dynamical systems appearing in the microscopic traffic modeling. Linear Algebra and its Applications, 435(7):1711–1735, October 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Forrester:2013:NPL

Farenick:2011:CUSa

Fourie:2013:ROP

Fiedler:2010:SIP

Fuhrmann:2010:EDS

Fuhrmann:2010:TPM

Fiedler:2012:M

Miroslav Fiedler and Frank J. Hall. G-matrices. Linear Algebra and its Applications, 436(3):731–741, February 1,

Fiedler:2012:NPG

Frommer:2012:VEB

Fiedler:2013:SGT

Fromstall:2011:PEI

Fritscher:2011:SLE

Fritscher:2014:CTL

Futorny:2011:CFN

Fiedler:2014:DAS

Frommer:2014:CEI

Fidaleo:2010:EET

Fiedler:2010:NHC

Fiedler:2011:DMM

Fiedler:2011:MGG

Fiedler:2013:SOV

Fial:2012:PDR

Fischer:2014:SSA

Ferguson:2010:GOI

Furtado:2010:OIS

Susana Furtado and Charles R. Johnson. Order invariant spectral properties for several

Fallat:2011:TNM

Furtado:2014:SCA

Furtado:2014:SMP

Fritzsche:2013:TMS

the norm of the commutator and the norm of $XY - YX^T$.
Feng:2012:ENM
Fujii:2010:DCM
Li:2011:PPA
Ferrer:2013:DMC

Fickus:2014:PRV

Filipiak:2012:MDC

Fiedler:2010:SRH
Fan:2011:SBC

Fujii:2013:SGF

Forough:2014:MRI

Foucart:2014:SRI

Fialowski:2014:MSD

Vyacheslav Futorny, Tetiana Rybalkina, and Vladimir V.

Freitag:2011:NBM

Farrugia:2014:CUG

Frommer:2014:NCC

Feng:2010:CKI

Fath-Tabar:2011:NUB

Fath-Tabar:2010:SLS

Takayuki Furuta. Positive semidefinite solutions of the operator equation $\sum_{j=1}^{m} A^{-1} X A^{-1} = B$. *Linear Algebra and its Applications*, 432(4):949–955, February 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Takayuki Furuta. Extensions of inequalities for uni-

Feng:2010:LSR

Fang:2011:SIR

Feng:2013:ESI

Fan:2011:LEC

Garloff:2010:RTP

Garloff:2012:RBN

Garoni:2013:EME

Gumedze:2011:PEI

Gemignani:2010:MCS

García-Esnaola:2010:CEB

García-Esnaola:2013:EBL

Gerasimova:2012:USN

Gutman:2014:RE

Gong:2010:NGP

Shi-Cai Gong, Yi-Zheng Fan, and Zhi-Xiang Yin. On the nullity of graphs with pendant trees. *Linear Algebra and
Gillis:2012:GIN

Gutierrez-Gutiérrez:2013:ECF

Gouveia:2013:WNM

Gath:2011:BME

Gupta:2012:CSV

Gao:2013:ASBa
Gao:2013:ASBb

Ghahramani:2013:ZPD

Ghebleh:2014:AIm

Ghebleh:2014:MCB

Garcia:2011:MPA

Ghosseiri:2013:BUT

Gerasimova:2013:SUE
Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Grammont:2011:FAN

Gong:2013:IWO

Greco:2012:PIM

Gober:2010:DVP
Gongopadhyay:2011:EIN

Gunther:2012:STB

Ghareghani:2014:MCB

Goldberg:2014:SPS

Guntner:2014:LFP

Guo:2011:CSS

Guillot:2013:CEC

Guo:2012:SRS

Guo:2014:SAF

Gleich:2011:RNA

Garvey:2013:FCI

Geng:2010:SRQ

Guo:2012:SLS

Griffing:2013:EIP

Alexander R. Griffing, Benjamin R. Lynch, and Eric A.

Guo:2013:NUB

Guo:2013:AFS

Gao:2014:MCS

Gursoy:2011:PAS

Gursoy:2011:SPM

Greenhill:2012:CLG

Guo:2014:LRB

Goncalves:2014:TFL

Gamez-Merino:2012:BUP

Granario:2013:PD

Gutman:2014:KFT

Ganikhodzhaev:2012:DMR

Gursoy:2013:AHP

Grenet:2013:SDR

Guglielmi:2011:CAH

Gemignani:2013:EAM

Geher:2014:MCH

Gomez:2010:MRT

Gonzalez:2011:ONI

Ghidini:2012:CHP

Garnett:2014:NSP

Gavalec:2014:IEM

Gudino:2010:LBS

Guillot:2012:RPD

Grcar:2010:MLB

Goberna:2012:VCL

Greaves:2012:CMR

Greenbaum:2013:BRB

PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Gowda:2010:SCS

Guersenzvaig:2010:SMA

Gustafson:2010:SAS

Gao:2011:NCS

Gustman:2011:ECW

Garnett:2012:PCC

Gasiorek:2012:OPP

Guersenzvaig:2012:EMS

Guersenzvaig:2012:RMS

Guersenzvaig:2012:EMS

Garnett:2013:NCM

Guo:2011:ACL

Gowda:2013:AGC

Gowda:2012:PLL

Grubisic:2012:REP

Gau:2013:WSM

Gu:2013:SSG

Gu:2014:EOW

Caixing Gu. Elementary operators which are m-isometries.
Guo:2010:ACG

Guo:2013:ARE

Guven:2012:SDC

Guo:2010:NMH

Guo:2013:ARE

Gracia:2011:LSC

Guo:2013:PRU

Guglielmi:2012:ARF

Gutkin:2013:JNR

Gao:2014:TAJ

Gao:2014:ASB

Ha:2013:NEC

Hadjidimos:2012:IEO

Hadjidimos:2013:NOT

Hanna:2011:MRD

Hanson:2011:CLP

Hansen:2013:FTL

Hanson:2013:CLP

Hansen:2014:ROM

Hanson:2014:CBL

Chris Heunen and Clare Horsman. Matrix multiplication is determined by orthogonality and trace. *Linear Algebra and its Applications*, 439
Harmon:2014:GSS

Hartman:2010:PEI

Huang:2014:GAM

Hall:2010:EVP

Holmes:2013:ABI

Hiai:2013:CCM

Hildebrand:2012:ERC

Hilscher:2012:OTD

Hill:2013:IDS

Hilberdink:2014:GSI

Hildebrand:2014:MZC

Hiller:2014:PTC

Hirn:2010:NHF

Horn:2012:MA

Huo:2010:NUG

Huo:2011:SCM

He:2013:SBS

Hirzallah:2010:SVN

Homma:2013:NPF
Masaaki Homma and Seon Jeong Kim. Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: Supplements to a work of

He:2011:OTF Shushan He and Shuchao Li. Ordering of trees with

Higham:2011:RSM

Huang:2011:BFS

Huang:2011:ZPI

Hwang:2011:CBW

He:2012:SLI

Hladik:2013:WSS

Hu:2012:MER

Hogben:2010:LAV

Heineken:2014:PFD

Hille:2014:TPP

Hochstenbach:2012:LQT

Hochstenbach:2012:DIP

Holtz:2013:MCT

Henn:2010:HSH

Haemers:2010:SLE

Huang:2010:IAS

Honma:2014:IGD

Hogenson:2012:MSA

Haemers:2011:UAM

November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Hu:2013:CHP

Heinig:2011:FAT

Herrero:2010:NSR

Herrero:2013:RBD

Hayden:1999:MCD

Hogben:2010:MGN

Hoffman:2012:CET

Thomas R. Hoffman and James P. Solazzo. Complex equiangular tight frames

Holubowski:2012:PSG

Huhtanen:2012:CGP

Harrell:2014:SGE

Hari:2010:BOJ

Hari:2014:FBJ

Huang:2013:TBF

Hurlimann:2013:GHL

Han:2011:JDT

Hunter:2010:SSP

Hunter:2014:GIM

Harrison:2014:RIF

Hobart:2014:ABC

Sylvia A. Hobart and Jason Williford. The absolute bound for coherent configurations. *Linear Algebra and its Applications*, 440

Huckle:2013:CQT

T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen. Compu-
tations in quantum ten-
sor networks. Linear Al-
gebra and its Applications, 438(2):750–781, January 15, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
science/article/pii/S0024379511008366.

Hong:2014:SRS

Wenxi Hong and Lihua You. Spectral radius and sign-
less Laplacian spectral ra-
dius of strongly connected di-
graphs. Linear Algebra and its Applications, 457(??):93–
science/article/pii/S0024379514002870.

Hashiyama:2014:JBC

Yusuke Hashiyama, Hirokazu Yanagihara, and Yasunori Fujikoshi. Jackknife bias cor-
rection of the AIC for se-
lecting variables in canoni-
cal correlation analysis under model misspecification. Linear Al-
gebra and its Applications, 455(??):82–106, August 15, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
science/article/pii/S0024379514002547.

Huang:2010:EWC

W. ISSN 0024-3795 (print), 1873-1856 (electronic).

Huang:2011:PEG

Qianglian Huang and Wenxiao Zhai. Perturbations and expressions for generalized in-
W. ISSN 0024-3795 (print), 1873-1856 (electronic).

Huang:2011:AMA

Zejun Huang and Xingzhi Zhan. ACI-matrices all of whose completions have the same rank. Linear Algebra and its Applications, 434(8):1956–1967, April 15, 2011. CODEN LAAPA-
W. ISSN 0024-3795 (print), 1873-1856 (electronic).

Hou:2012:NDM

Chengjun Hou and Haiyan Zhang. A note on the di-
agonal maximality of oper-
ator algebras. Linear Al-
gebra and its Applications, 436

Ide:2012:EIS

Ikai:2011:TPB

Ikramov:2010:NCM

Ilic:2010:DSD

Ilisevic:2010:GBP

Ilanazz:2011:PMP

IIRGMR:2010:MRS

Ito:2011:CST

Tatsuro Ito and Paul Terwilliger. Mock tridiagonal sys-

Ito:2013:RMG

Jain:2011:DAT

Jarlebring:2012:CFN

Jbilou:2010:APK

Jiang:2013:SGI

Jencova:2013:EGQ

Ji:2013:CCR

Ji:2012:GJE

Jimenez:2010:GSC

Changdo Jung, Hosoo Lee, Yongdo Lim, and Takeaki Yamazaki. Weighted geometric mean of n-operators with n-parameters. *Linear Alge-
Jean-Louis:2013:SAS

Jena:2012:SM

Jafari:2014:EGM

Johnson:2010:SNA

Johnson:2012:SMP
C. R. Johnson, C. Marijuán, and M. Pisonero. Submatrix

Johnson:2013:ILC

JMP13

Johnson:2013:ICM

JNS13

Jungers:2012:APM

Jeyaraman:2010:JQS

Jeyaraman:2011:LPL

Johnson:2013:ATT

Ji:2011:SRS

Jin:2014:CMG

Jin:2014:OPF

Jiang:2013:CTU

Koca:2011:QRS

Kakimura:2010:DPM

Kalinina:2013:SDS

Kalita:2013:SIV

Kamvar:2010:NAP

Sep Kamvar. *Numerical algorithms for personalized search in self-organizing information*...
Kiani:2011:EUC

Karlsson:2011:RCH

Kawamura:2012:TBD

Kumbasar:2012:CFF
Kannan:2014:CSP
See [KB14a].

Kannan:2014:GPP
See corrigendum [KB14a].

Kalaimani:2013:GPA

Koliha:2012:GDI

Kuo:2012:QMU

Koshlukov:2013:PIA
Plamen Koshlukov and Thiago Castilho de Mello. On the polynomial identities of the algebra $M_{11}(E)$. Linear Algebra and its Applications,

Kang:2014:TAS

Kapitula:2013:IIM

Khosravi:2012:CCP

Karaev:2010:NRR

Kian:2014:OJI

Kim:2010:GCI

Kim:2011:BGC

Kirkland:2014:MCE

Kisi:2015:CTL

Ko:2013:SSC

Kim:2010:NCS

Kim:2012:SCS

Kim:2013:SCS

Kim:2014:CCH

Joonhyung Kim and Sungwoon Kim. A characterization of complex hyperbolic Kleinian groups in dimen-

Knap:2011:RHS

Kim:2010:WCD

Kim:2013:ESU

Kim:2013:MUD

See erratum [KKL13a].

Krahmer:2013:SSP

Kim:2014:FID

Kim:2014:DSS

Kucera:2013:LSG

Klotz:2011:CMR

Kari:2012:CWF

Kang:2012:CHT

Kaashoek:2013:CMP

Kum:2013:RAS

Klasa:2010:FPD

Kim:2011:MGM

[Sejong Kim, Jimmie Lawson, and Yongdo Lim. The matrix geometric mean of parameterized, weighted arithmetic and harmonic means. *Linear Algebra and its Applications*, 435(9):2114–2131, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).]

Krnic:2012:MJO

Kribs:2013:UAS

Khurana:2012:QTD

Kosan:2010:DRI

Karapiperi:2012:EAE

Khalil:2013:SST

Kaur:2014:FRH

Knuppel:2010:CGO

Knuppel:2013:CIP

Knuppel:2013:CSL
Knuppel:2013:SPB

Knill:2014:CBP

Katz:2014:CTH

Khudoyberdiyev:2013:CAL

Köhler:2014:CSD

Kirkland:2011:ACA

Koledin:2013:RGG

[Tamara Koledin. Regular graphs with girth at least 5 and small second largest eigenvalue. *Linear Algebra and its Applications*, 439 (5):1229–1244, September 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
Konstantopoulos:2013:MAP

Kutyniok:2013:SF

Kandolf:2014:RBE

Kozyakin:2014:BWF

Kozyakin:2014:MPC

Kim:2012:BGC

Hwa Kyung Kim and Sung Gi Park. A bound of generalized competition index of

Kempker:2014:CMC

Klein:2010:TSM

Kuijper:2011:MGB

Kures:2011:RMO

Kushel:2011:GEO

Kannan:2012:MPI

Klein:2012:TSD

Kang:2012:LPT

Kyung-Tae Kang, Seok-Zun Song, and LeRoy B. Beasley.

Kim:2012:EDD

Byeong Moon Kim, Byung Chul Song, and Woonjae Hwang.

Katz:2012:CMM

Ricardo D. Katz, Hans Schneider, and Sergei Sergeev.

Kurata:2010:MED

Kurata:2012:MEE

Kubrusly:2013:RLT

Kumagai:2011:CEM

Kushel:2012:CTG

Kushel:2013:IPE

Kuzman:2010:ATE

Koyuncu:2012:INT

Ku:2013:GES

Koolen:2011:DRG

Jack H. Koolen and Hyonju Yu. The distance-regular graphs such that all of its second largest local eigenvalues are at most one. *Linear Algebra and its Applications*, 435(10):2507–2519, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Miguel Lacruz. Hardy–Littlewood inequalities for norms of positive operators on sequence spaces. *Linear Algebra and its Applications*, 438(1):153–156, January 1,
Laffey:2012:CVB

LaGrange:2013:CDF

Lakatos:2010:SND

Lakos:2010:FLS

Ledermann:2011:ROM

Langi:2010:DOM

Liu:2013:HNO

Li:2011:PGE

Liu:2010:SNB

Lim:2011:PCM

Li:2012:PCD

Lorenzo:2011:ADS

Lima:2013:FCS

Li:2013:SLL

Li:2014:SCT

Li:2014:OPC

Huang:2010:BDP

Liu:2010:SCD

Lopez:2010:ODF

Leng:2011:ODF

Huang:2011:BDP

Liu:2013:LSC

Li:2010:TEC

Liu:2014:NED

Leng:2013:PMO

Liau:2012:NSC

Liu:2013:NSC

297

Lim:2013:FTD

Lin:2014:HAC

Lin:2013:FTD

Liu:2013:SFS

Liu:2014:CMI

Liu:2014:SCP

Liu:2013:HOC
Xiaoji Liu, Hongwei Jin, and Yaoming Yu. Higher-order convergent iterative method

Lu:2010:CLD

Li:2011:SRC

Liu:2012:OGR

Liu:2010:SRB

Lee:2012:SPM

Lee:2011:CSD

Liau:2011:GLD

Liu:2011:SRS

Lee:2013:CIM

Lan:2013:DGS

Xin Liang, Ren-Cang Li, and Zhaojun Bai. Trace minimization principles for positive semi-definite pencils. *Linear Algebra and its Applications*, 438(7):3085–3106, April 1, 2013. CODEN LAAPAW.

Li:2010:NER

Li:2011:MET

Jing Li, Xueliang Li, and Yongtang Shi. On the maximal energy tree with two maximum degree vertices. *Linear Algebra and its Applications*, 435(9):2272–2284, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Lan:2012:GDM

Lee:2011:MWV

Lemos:2010:CHB

Lomadze:2010:SIL

Luzon:2010:RRP

Lee:2011:PNI

Livshits:2013:PALa

Livshits:2013:PALb

Lee:2012:PNI

Lopatin:2011:MGS

Loperfido:2011:SAF

Li:2010:APM

Li:2012:MPJ

Lim:2014:WIM

Leventides:2014:ADA

Jianxi Li, Wai Chee Shiu, and An Chang. On the kth Laplacian eigenvalues

Li:2011:LSRb

Liu:2014:SGD

Luo:2012:CRS

Luo:2012:CRP

Lebtahi:2013:MSI

Limbupasiriporn:2012:LWC

See [LT12b].

Sang-Gu Lee and Quoc-Phong Vu. Simultaneous solutions of matrix equations and simultaneous equivalence of matrices. Linear Algebra and its Applications, 437
Laurent:2014:PSM

Lang:2012:EGL

Li:2012:LES

Li:2012:SCM

Liu:2012:LSC

Cong Li, Huijuan Wang, and Piet Van Mieghem. Bounds for the spectral radius of a graph when nodes are

Lei:2014:SDS

Li:2011:TGW

Lin:2011:LCT

Lim:2013:SIM

Liu:2013:PCL

Yang:2012:RRS

X. Mary. On generalized inverses and Green’s relations.

Martin:2013:EGP

Martino:2013:PIJ

Martinez-Avendano:2013:IPS

Mohar:2012:EGV

Bojan Mohar, Azhvan Sheikh Ahmady, and Rayman Preet Singh. Eigenvalues of graphs

Matsuura:2012:NGM

Mathai:2013:FIO

Matic:2014:IDP

Maze:2010:SIR

Ma:2013:NSN

Mitrouli:2011:ODE

Miyajima:2013:FES

Miyajima:2014:CES

Mirzakhah:2012:SRS

Martin:2010:ILT

Malmskog:2010:ADI

Marco:2010:ACS

Marco:2010:PLS

Maehara:2011:SSV

McLeman:2011:SC

Magret:2012:ECE

Mastylo:2013:NEM

Matharu:2011:EEB

Moslehian:2012:NCC

Mehl:2012:PTS

MacDonald:2012:DLS

Moslehian:2012:ELH

Mursaleen:2012:CMO

Mitchell:2010:LBM

Mitchell:2012:LBM

Melamed:2014:CIO

Marshall:2011:ITM

Mohar:2010:ECD

Mohlenkamp:2013:MMF

Mojskerc:2014:SFD

Molnar:2011:OAP

Muhic:2010:QTP

Muller:2013:GSR

Myskova:2013:RIC

Merino:2010:PDM

Micic:2011:JIO

James McTigue and Rachel Quinlan. Partial matrices whose completions all have the same rank. Linear Algebra and its Applications, 438(1):348–360, January 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Alex Massarenti and Emanuele Raviolo. The rank of $n \times n$ matrix multiplication is at least $3n^2 - 2\sqrt{2n^{3/2}} - 3n$. *Linear Algebra and its Applications*, 438(11):4500–4509, June 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Moller:2014:TBA

Maze:2011:NDR

Monsalve:2014:CSN

[MS13b] Keivan Hassani Monfared and Bryan L. Shader. Construction of matrices with a given

Martin:2013:SLS

Mbekhta:2014:QIA

Mizuno:2014:SWB

Mysková:2014:RFI

Malyshev:2011:CTS

Mofrad:2013:SSL

Macias-Virgos:2010:SMP

Masaro:2010:CWL

Ma:2012:FTS

Ma:2014:NEC

Mason:2014:ENP

Minchenko:2014:SMR

Marsha Minchenko and Ian M. Wanless. Spectral moments of regular graphs in terms of subgraph counts. *Linear Algebra and its Applications*, 446(??):166–176, April 1, 2014. CODEN LAAPAW.

Matthies:2012:SSS

Mo:2012:MSS

Ma:2012:ESC

Nunez-Alarcon:2013:GOC

Najafi:2013:SRK
Nakatsukasa:2010:ARW

Nakatsukasa:2012:TRC

Nakamura:2013:BPF

Natkaniec:2013:ASF

Nakaoka:2014:SCM

Nikolov:2013:RNG

Neogy:2011:SMC

Nesetril:2013:NFV

Nemirovsky:2013:TAM

Netzer:2010:SRN

Neytcheva:2011:EES

Niezgoda:2010:AOC

Niezgoda:2011:MRC

Niezgoda:2012:COG

Niezgoda:2013:SSV

Nikiforov:2010:CZP

Nikiforov:2010:SRG

Nikiforov:2011:SLS

Nikiforov:2013:IMF

Nikiforov:2014:AMU

Nitica:2010:SMM

Ning:2013:SLS

Nazari:2014:IEP

A. M. Nazari and F. Mahdinasab. Inverse eigenvalue

Nemeth:2010:HPI

Nemeth:2013:LLO

Ning:2013:DSR

Nomura:2014:LPH

Nordstrom:2011:CIM

Nordgren:2012:PSM

Ronald P. Nordgren. On properties of special magic

Neumann:2013:SCN

Nazari:2010:CAN

Narayan:2011:RSF

Neuman:2012:IRR

Nastase:2011:MSF

Neumann:2011:IMF

Nitica:2011:IVS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

[Needell:2014:PGI] Deanna Needell and Joel A. Tropp. Paved with good intentions: Analysis of a randomized block Kaczmarz...

Niendorf:2010:DHD

Noutsos:2012:PFT

Nikiforov:2013:MNG

OdLdAK10

M. Ogura and C. F. Martin. A limit formula for joint spectral radius with p-radius of probability distributions. *Linear Algebra and its Applications*, 458(??):605–625, October 1, 2014. CODEN LAAPAW.

Polona Oblak and Helena Smigoc. Graphs that allow all the eigenvalue multiplicities to be even. *Linear Algebra and its Applications*, 454(??):72–90, August 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Pan:2010:APM

Pinter:2011:ADT

Pinkus:2012:BRM

Phat:2012:LAE

Pan:2012:SMQ
Xiang-Feng Pan, Xiuguo Liu, and Huiqing Liu. On the

Kamila Piwowarczyk and Marek Ptak. On the hyperreflexivity of power par-

Priyadarshan:2012:PCP

Parton:2013:SMT

Puerta:2013:LSI

Palfia:2014:WMO

Park:2013:MSI

Popa:2012:KPI

Stefania Petra and Christoph Schnörr. Average case recov-

Polak:2014:CSC

Psarrakos:2012:DBP

Pula:2011:MPT

Philipp:2013:NRN

Potts:2013:PEN

Potts:2014:SPI

Possani:2010:UMT

Pulka:2011:MPE

Protasov:2012:SNM

Wang:2014:GSS

Pang:2010:EOS

Pei:2014:EAT

Pang:2011:CPP

Qi:2011:CAL

Qi:2010:CDB

Qi:2013:CLD

Qi:2013:SNT

Qi:2014:EOS

Qi:2014:RUH

Quarez:2010:SSA

Ronan Quarez. Sturm and Sylvester algorithms revisited

Quarez:2012:SDR

Quinlan:2011:SMN

Qiu:2012:CLC

Rodriguez-Andrade:2011:ACD

Rada:2010:LBE

Radjabalipour:2013:RCF

Rafiei:2014:LLV

A. Rafiei. Left-looking version of AINV preconditioner with complete pivoting strategy. *Linear Algebra and its Applications*, 445
Rahmani:2013:ATM

Rahimi-Alangi:2014:MLT

Rajkovic:2012:SOP

Rakic:2014:GMP

Rande:2011:LPR

Rezghi:2011:DTC

Reff:2012:SPC
Nathan Reff. Spectral properties of complex unit gain graphs. *Linear Algebra and its Applications*, 436(9):

Hugo Rodríguez-Ordóñez. Homotopy classification of bilinear maps related to octonion polynomial multiplications. *Linear Algebra and its Applications*, 432(12):3117–3131, July 1, 2010. CODEN LAAPAW. ISSN 0024-
Rodman:2011:RLP

Rodman:2012:BRB

Rodman:2012:LPS

Rohn:2011:ACH

Rojo:2011:LGE

Romo:2014:CFP

Rosenthal:2012:WCB

Rosmanis:2012:FSP

Rost:2012:MRS

Rowlinson:2010:MET

Rowlinson:2011:EMG

Row:2012:TCZ

Rowlinson:2012:RSC

Rowlinson:2014:EMC

Rasajski:2011:MRC

Rendel:2013:ING

Rodman:2010:LTL

Roca:2012:PPC

Rybalkina:2012:TCC

Ren:2014:SAE

Roca:2014:PPC

Ruiz:2014:NSF

Rodman:2010:CIC

Rowlinson:2010:SCR

Ruan:2012:IGR

Rubei:2013:CSA

Rudolf:2012:RDK

Tina Rudolf. Reflexivity defect of kernels of the elementary operators of length

Somasundaram:2011:SMM

Schulz-Baldes:2012:SIT

Sari:2011:RRM

Simic:2010:CGF

Sburlati:2010:PFD

Stegeman:2010:SBR

Somasunderam:2012:ILS

Naveen Somasunderam and Shivkumar Chandrasekaran. On the infinitesimal limits of the Schur complements of

Sorensen:2013:TDB

Schiebold:2010:CTD

Schomburg:2011:PCD

Serra-Capizzano:2011:ACS

Serra-Capizzano:2010:EDP

Soto:2013:NMP

Savas:2013:KTM

Berkant Savas and Lars Eldén. Krylov-type methods for tensor computations I. *Linear Algebra

Sego:2010:TSH

Sego:2014:HSD

Seidel:2014:FTB

Markus Seidel. Fredholm theory for band-dominated

Seo:2013:GPS

Seo:2014:OPM

Sergeev:2011:MAA

Sergeev:2013:FPS

Seven:2010:QFM

Seven:2013:MCF

Shao:2010:PDH

Shi:2013:DIL

Shinohara:2012:TLM

Shitov:2012:KRT

Shitov:2012:TMS

Shitov:2013:CBM

Shparlinski:2010:SCQ

Shen:2012:MRT

Shao:2010:LSB

Jin-Liang Shao, Ting-Zhu Huang, and Guo-Feng Zhang. Linear system based approach for solving some related problems of M-matrices. Linear Algebra and its Applica-
Simson:2010:IBF

Singer:2010:ETF

Singh:2010:ETF

Sinkovic:2010:MNO

Sivic:2012:VCTb

Sivic:2012:VCTa

Sivakumar:2013:NGI

Snobl:2010:CSL
[ˇSK10] L. ˇSnobl and D. Karásek. Classification of solvable Lie
Slapnicar:2010:RMM

Slowik:2012:LCS

Slowik:2012:OPN

Slowik:2013:EIM

Shpiz:2013:CES

Sun:2010:GHO

Diana Marcela Serrano-Rodriguez. Absolutely γ-summing multi-

Serrano-Rodriguez:2013:ICF

Sra:2013:EEC

So:2010:ATK

Srinivasan:2013:REL

Saez-Schwedt:2010:CAR

Sander:2010:EDP

Schaffrin:2010:TLS

Burkhard Schaffrin and Kyle Snow. Total Least-Squares

Simoncini:2010:FVO

Stanimirovic:2010:ILC

Saleh:2011:EMC

Sander:2011:ICG

Shang:2011:FZM

Shi:2011:SAE

Stampach:2011:EPP

Min-Zheng Shieh and Shih-Chun Tsai. Computing the ball size of frequency permutations under Chebyshev distance. *Linear Algebra and its Applications*, 437 (1):324–332, July 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856...

[Song:2013:NUB] Haizhou Song, Qiufen Wang, and Lulu Tian. New upper bounds on the spectral radius of trees with the given number of vertices and maximum degree. *Linear Algebra and its Applications*, 439 (9):2527–2541, November 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
[SY12] Yurii Samoilenko and Kostyan-tyn Yusenko. Kleiner’s the-
orem for unitary representa-
tions of posets. Linear Alge-
bra and its Applications, 437
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379513004771

[Sze14a] Fernando Szechtman. Equiv-
alence and normal forms of bilinear forms. Linear Al-
gebra and its Applications, 443(?):245–259, February 15,
2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
1856 (electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379513004771

[SZH14] Shu-Qian Shen, Juan Yu,
and Ting-Zhu Huang. Some
classes of nonsingular matrix-
es with applications to lo-
calize the real eigenvalues of
real matrices. Linear Alge-
bra and its Applications, 447
(?):74–87, April 15, 2014.
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379514001864

[Szollosi:2013:CHM] Ferenc Szöllős-
i. Complex Hadamard matrices and equiangular tight frames. Linear Alge-
2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379511004460

[Tad12] Wojciech Tadej. Defect of a
Kronecker product of uni-

Jiyuan Tao. A note on the Ostrowski-Schneider type inertia theorem in Euclidean...
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Tao:2013:CQP

Tian:2013:UBE

Tie:2011:RIH

Tudisco:2011:PAP

Talebi:2013:BBM

Tudisco:2013:ORM

Teranishi:2011:SLS

Yasuo Teranishi. Subgraphs and the Laplacian spectrum of

Terwilliger:2013:FDI

Terwilliger:2014:BAF

Tan:2010:VEI

Tao:2013:MEI

Tisseur:2011:DQM

Tao:2014:BNP

Tifenbach:2011:SSD

Timotin:2014:SCR

Tao:2014:SMI

[TL13a] Qianrong Tan and Mao Li. Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains.

Tan:2013:DAP

Li:2010:SNB

Tebbens:2014:IGC

Ngoc Mai Tran. Pairwise ranking: Choice of method can produce arbitrarily different rank order. *Linear

Tomeo:2011:TAS

Tam:2012:DSO

Taslaman:2013:TMP

Tam:2010:RSL

Teufl:2010:DIL

Tian:2011:CEM

Tsai:2011:NRWa

Telloni:2014:SFC

Tang:2012:GLF

Takane:2012:TEM

Tang:2012:SCG

Tang:2013:CFM

Tang:2013:WEL

Uchiyama:2010:MSO

Uhlig:2013:CGC

Uschmajew:2013:GAU

Urenda:2011:MAM

Urschel:2014:SBG

Vandebril:2010:TMU

Vassiliou:2014:SMM

Vinjamoor:2010:IFI
vonBelow:2013:SHS

vanderHolst:2013:IIP

vanDam:2011:GWN

Vinagre:2013:MLE

Luis Verde-Star. Infinite triangular matrices, q-Pascal

Verde-Star:2013:CCC

Dooren:2014:SEP

Vulanovic:2012:SFD

Vassiliou:2013:ABS

Vale:2010:SGF

Vartziotis:2010:CPS

Wenzel:2010:ICI

Wada:2014:SWC

Wagneur:2011:WET

Wilson:2013:EEB

Waldron:2011:FVS

Walker:2011:RAA

Walker:2014:NGB

Wang:2011:AMM

Wang:2011:HPM

Wang:2014:DAS

Wang:2014:LDU

Waterhouse:2013:BMT

William C. Waterhouse. Bhattacharyya’s matrix theorem. *Linear Algebra and

Yi Wang and Yi-Zheng Fan. The least eigenvalue of signless Laplacian of graphs un-

Wang:2014:SLG

Huang:2012:CLT

Huang:2013:TLT

Wikramaratna:2011:CIM

Wikramaratna:2012:CCI

Huang:2012:CLT

Huang:2013:TLT

 Wikramaratna:2011:CIM

 Wikramaratna:2012:CCI

Huang:2012:CLT

Huang:2013:TLT

 Wikramaratna:2011:CIM

 Wikramaratna:2012:CCI

See [Wik11].

Wildstrom:2011:DRL

Wilson:2013:OAG

Williams:2014:SFA

Wu:2012:NAI

Weiguo:2013:FIM

Wang:2010:GGD

Wei:2010:PBI

Wu:2010:LOS

Wang:2012:LEL

Wang:2011:IED

421

Pawel Wójcik. On mappings approximately transferring relations in finite-dimensional normed spaces. *Linear Al-
Wojcik:2014:SRO

Wolf:2012:GFM

Worawannotai:2013:DPG

See comments [WY14a].
Tan:2013:LCG

Tan:2012:LCT

Wu:2010:MWS

Honglin Wu. On the 0–1 matrices whose squares are 0–1 matrices. *Linear Algebra and its Applications*, 432(11):2909–2924, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wu:2010:GPB

Wu:2013:CAI

Wu:2013:QFL

Wulling:2013:DIS

Wang:2010:CHS

Qing-Wen Wang and Zhong-Cheng Wu. Common Her-

[Wang:2013:DNR]

[Wang:2013:JHU]

[Wang:2013:MLD]

[Wasson:2013:NDS]

[Wang:2013:DTA]

[Wang:2010:CNPb]

Wu:2014:GAK

Wu:2012:CSA

Wang:2013:PEA

Wang:2013:DSR

Wang:2013:HPP

Wu:2013:SWM

Yuezhu Wu and Linsheng Zhu. Simple weight modules for Schrödinger algebra. *Linear Algebra and
Wang:2014:LCA

Wu:2014:ESS

Wu:2014:CSS

See [WZ12].
On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs. \cite{Xie:2013:EAT}

Representations for weighted Moore–Penrose inverses of partitioned adjointable operators. \cite{Xu:2013:RWM}

Additive and multiplicative perturbation bounds for the Moore–Penrose inverse. \cite{Cai:2011:AMP}

On condition numbers of a nondefective multiple eigenvalue of a nonsymmetric matrix pencil. \cite{Xie:2012:CNN}

The supremum of linear operators for the *-order. \cite{Xu:2010:SLO}

Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation. \cite{Xue:2011:FIS}

Extremal energies of trees with a given domination number. \cite{Xu:2011:EET}

Rundan Xing and Bo Zhou. On the distance and distance

Yan:2011:NJC

Yan:2014:NRM

Ye:2011:SI

Ye:2010:MSL

Yu:2012:CSR

Yuan:2014:CPD

Yanagihara:2012:BCA

[Hironaka Yanagihara, Ken ichi Kamo, Shinpei Imori,

Shu:2012:SOV

Shu:2014:CBS

Yan:2013:LTS

Yuan:2014:MIF

Yu:2013:LDE

Yuan:2014:CSQ

See [Yua14].

Yang:2010:SNP

You:2011:PNP

Yu:2011:SBS

Yu:2011:SLS

Yuan:2013:LPI

Yang:2013:EM

Yang:2014:CSL

Ye:2011:IIS

Yuan:2014:ST

Ye:2012:EBA

Yu:2010:NLD

Yu:2014:IWU

Zhuang:2012:JLG

Zappavigna:2012:ENN

Zhou:2013:CAL

Zhou:2013:SNB

Zhang:2011:MPP

Zhou:2011:PCI

Zou:2012:SIU

Zhang:2012:BRB

Zhang:2012:DSR

Xiaoling Zhang. On the distance spectral radius of some graphs. *Linear Algebra and its Applications*, 437(7):1930–1941, October 1,

Zhou:2010:SLS

Zhou:2011:LMD

Zhu:2010:SLS

Zhu:2010:UBL

Zhu:2010:SSP

Andrew M. Zimmer. A new lower bound for the positive semidefinite minimum rank of a graph. *Linear Alge-

Zivkovic:2012:EFC

Zou:2010:EES

Zhang:2014:MEG

Zhou:2011:BSL

Zhou:2011:TSM

Zhang:2014:PRP

Zhang:2012:EET

Dongye Zhang, Zhiping Lin, and Yongzhi Liu. On eigenvalues and equivalent transformation of trigonometric matrices. Linear Algebra and its Applications, 436

Shifang Zhang, Zhenying Wu, and Huaijie Zhong. Continuous spectrum, point spectrum

Zuo:2013:CCM

Zhu:2010:MMS

Zhang:2010:DSA

Zhao:2010:JAD

Zeng:2011:JHA

Zhao:2012:JHA

Zhang:2013:SLC

Zhu:2014:CTA

Zhang:2013:MPI

Zhang:2011:EIT