A Complete Bibliography of Publications in Linear Algebra and its Applications: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

08 November 2023
Version 1.75

Title word cross-reference

(−1, 1) [AAFG12]. (0, 1)
BBS12b, NP10, Ghe14a. (2, 2, 0)
[CI13, PH12]. (A, B) [PP13b]. (α, β)
[HW11, HZM10]. (C, λ, µ) [dMR12]. (ℓ, m)
[DFG10]. (H, m) [BOZ10]. (κ, τ)
[CSZ10, CR10c]. (λ, 2) [BBS12b]. (m, s, 0)
[GH13b]. (n − 3) [CGO10]. (n − 3, 2, 1)
[CCGR13]. (ω) [CL12a]. (P, R) [KNS14].
(R, Sα) [Tre12]. −1 [LZG14]. 0 [AKZ13,
Ano12-30, CGGS13, DLMZ14, Wu10a].
1 [Ano12-30, AHL+14, CGGS13, GM14,
Kal13b, LM12, Wu10a]. 1/n [CNPP12].
1 < t < 2 [Seo14]. 2 [AIS14, AM14, AKA13,
BDF11, BdiC14, BDK11, CvDKP13, CL13b,
CNPP12, DoMP09, Ere13, GMT13, GG13,
KY14, Rim12, Rud12, YHH12, vdH14]. 24
[KAAK11]. 2n − 3 [BCS10, Hil13]. 2 × 2
[CGRVC13, CGSCZ10, CM14, DW11,
DMS10, JK11, JKK13, MSvW12, Yan14].
2 × 2 × 2 [Ber13b]. 3
[BZWL13, Bre14, CILL12, CKAC14, Fri12,
GolvD14, GX12a, Kal13b, KK14, YHH12].
3n2 − 2√2n3/2 − 3n [MR13].
3n2 − 2√2n3/2n [MR14a]. 3
[DG13, GLZ14, Sev14]. 3 × 3 × 2 [Ber13b].
3 × 3 × 3 [BH13b]. 4 [Ban13a, BDK11,
BZ12b, CK13a, FP14, NW13, Nor14]. 4 × 4
[CJR11]. 5
[BH13b, CHY12, KRH14, K13, MW14a].
5 × 5 [BAD09, DA10, Hil12a, Spe11]. 5 × n
[CJR11]. 6
[DK13c, DK11, DK12a, DK13b, Kar11a]. 7
[PP13a, Zho12]. 70 [GRS+11]. [1, n]
\[
\log(XY) = \log(X) + \log(Y) \quad \text{[Bou10a].} \quad LR
\]
\[
[BM13a]. \quad LU \quad \text{[Dur12, GL12b].} \quad M
\]
\[
[BCM10, BCEM12, BR14c, Guo13, HLS10, HK10, HH11a, JS11, NS11b, SHZ10, Ball12a, Bal12b, BMN13b, FJ14, Gu14, GK14c, Hua12b, MPSS10, PY14, TNP12, Vla12].
\]
\[
M_{(n)} \quad \text{[AM13d, CGMS10b, WL10a].} \quad M_{n,m} \quad \text{[AAM12].} \quad C_{m,n} \quad \text{[Fri13].} \quad F, \gamma \quad \text{[GY13].} \quad \mathbf{R} \quad \text{[KK14].} \quad \mathbf{R}^{\mathbb{N}}
\]
\[
\text{San10, FGR13, IJ12, SA14, AMJ14}. \quad R_n \quad \text{[Wu13b]}. \quad \mathbb{Z}^+ \quad \text{[JPS13].} \quad \mathcal{A} \quad \text{[DKJ12a].} \quad \mathcal{B}(\mathcal{H}) \quad \text{[DM11].} \quad \mathcal{M} \quad \text{[DQW13].} \quad \mathcal{F} \quad \text{[MB12b].} \quad \mathcal{F}_{\mathbb{R}^\mathbb{N}} \quad \text{[NT12b].} \quad \mathcal{F}_{\mathbb{C}^n} \quad \text{[BE10].} \quad GL(n; \mathbb{C}) \quad \text{[MR11].}
\]
\[
\text{SO(n + 1)} \quad \text{[DMMY10].} \quad \text{SO}(n, 1) \quad \text{[DMMY10].} \quad m \leq n \quad \text{[SSM13].} \quad m \times n \times (m - 1)n \quad \text{[SSM13].} \quad \mu \quad \text{[NT10b, dF10].} \quad n
\]
\[
\text{BE12, Dug12, Hili13, JLLY10, MR10c, Pin12, WD13, WW13c, Wan14b, ZHZF13}. \quad n - 3 \quad \text{[ACGKV14, CCR13].} \quad n - e \quad \text{[LDS12].} \quad N_0 \quad \text{[ND11, ZH11b].} \quad n \times n \quad \text{[Hili13, MR13, MR14a].} \quad \mathcal{O}_n(T) \quad \text{[ACM14].} \quad P
\]
\[
\text{AdFM11, BPD14, DaF14, GTR2, MPS10, PP12b, TGS14, YY14c, CCGVO13, CCGO13, Guo10a, HL11b, JPS13, Lim10, MTS11, OM14, Wol12}. \quad p > 0 \quad \text{[BFPS12].} \quad P_{\text{max}} \quad \text{[GM11a].} \quad P \quad \text{[Gu13, LWG13].} \quad P_0 \quad \text{[AT11, YY14c].} \quad P_2 \quad \text{[CPV10].} \quad P_2 \quad \text{[CPV10].}
\]
\[
\phi_J \quad \text{[DoMP09, MP10].} \quad \phi_S \quad \text{[AMP10, DMP11, GMP13].} \quad \pm 1, \pm i \quad \text{[KK14a].} \quad \psi \quad \text{[BC14a].}
\]
\[
\text{Q}\quad \text{[Lee13b, AHL11, Ball10, BZ12b, Cer10, CT11b, MW14a, ND11, OdLdAK10, PHS13, Siv13, WBWH13, Yua14, Yua15, ZWL13, dFdADVJ10, BC14a, CJL13, Ern13, HWG14, IRT14, LL11a, LT11a, NT10b, VS11, VS14b, Wor13, ZYL10].} \quad q + 1 \quad \text{[MM10a].} \quad QDR \quad \text{[SPKS12].} \quad Q \quad \text{[BV12a].} \quad R
\]
\[
\text{[Kaw13, BP11, ZWL13].} \quad \{r, s + 1\} \quad \text{[CLST14].} \quad R^k \quad [\text{I}, \text{LSTW13}, R_{\gamma_0}] \quad \text{[CFK10a].} \quad R^\alpha = A^{s+1} \quad \text{[LSTW13].} \quad RH_2 \quad \text{[Köh14].} \quad RH_{\infty} \quad \text{[Köh14].}
\]
\[
S \quad \text{[Drn13a, SBM11, dCdRMP14, QSW14].} \quad S_{\text{max}} \quad \text{[GM11a].} \quad \sigma \quad \text{[WH13, GEP13].} \quad s_{\mathbb{L}} \quad \text{[BM12a].} \quad \sqrt{2} \quad \text{[Sta12].} \quad \ast \quad \text{[AKM13, DJK12b].}
\]
\[\sum_{j=1}^{m} A^{n-j} X A^{j-1} = B \quad [Fur10b]. \quad T \quad [BM14a, Blu10, ZXS13, BKMS12]. \quad T(x) = f \quad [HN10]. \quad T^* \quad [LCM13]. \quad T_n \quad [GS12a]. \quad \tan \theta \quad [Nak12]. \quad \theta \quad [GL12c]. \quad U_1 \quad [YX13]. \quad U_q(f_{\xi}) \quad [Ter13, BCT14, Wor13]. \quad U_q(s_{l2}) \quad [BC14a, Ter14]. \quad U_T \quad [Nak12]. \quad \theta \quad [BC14a, Ter14]. \quad \theta \quad [BCT14, Wor13]. \quad \theta \quad [CL14a]. \quad \theta \quad [CL12b, KK10, PP12b, CH11, CDDY10]. \quad W(2, 2) \quad [CL12b]. \quad W(n, n - 1) \quad [KMNS12]. \quad w_{23}(v) \quad [AAKM14]. \quad X \quad [MP13b]. \quad X + A^T X^{-1} A = Q \quad [GK11]. \quad X = Af(X) + C \quad [ZLD11]. \quad X A + A X^T = 0 \quad [CGGS13, DD11a, GS13a]. \quad X A - AX = f(X) \quad [Bou11]. \quad \xi \quad [QCH11]. \quad X M = N X \quad [Lim11b]. \quad xy \quad [KLZ14a]. \quad XY + YX^* \quad [LLF13]. \quad XY - YX^T \quad [CL13a, FL11]. \quad x y \quad [KLZ14a]. \quad Z \quad [CPR10, CPZ13, GTR12, TG13, XC13]. \quad Z_2 \quad [Cen11]. \quad || A^{-1} ||_\infty \quad [HZ10]. \quad * \quad [GD11a, XDFL10, YZ12b]. \quad *-Lie \quad [YZ12b]. \quad *-modules \quad [GD11a]. \quad *-order \quad [XDFL10]. \quad *-congruence \quad [DFS14]. \quad -adic \quad [ZYL10]. \quad -admissible \quad [CS13b]. \quad -algebra \quad [AKM13, CL12b]. \quad -algebras \quad [BB14, BMGMC12, CII11]. \quad -alternating \quad [BM14a]. \quad -analogue \quad [CL13]. \quad -analogues \quad [Ern13]. \quad -arithmetic \quad [MPSS10]. \quad -banded \quad [Hua12b]. \quad -bialgebra \quad [Kaw12]. \quad -bialgebras \quad [Kaw13]. \quad -cell \quad [KA11]. \quad -class \quad [DJK12b, MW14a]. \quad -claws \quad [Ban13a]. \quad -colored \quad [Kal13b]. \quad -commutative \quad [Tre12]. \quad -Commuting \quad [DW12a]. \quad -completatable \quad [HJN12]. \quad -complete \quad [Sin10a]. \quad -conjecture \quad [NT10]. \quad -connected \quad [CH14]. \quad -contractions \quad [MS14a]. \quad -cospectral \quad [BZW14]. \quad -critical \quad [FdCR10, MPS10]. \quad -curves \quad [KK10]. \quad -cycles \quad [QSW14]. \quad -cyclic \quad [GLS10, LL11c, TL13b]. \quad -decompositions \quad [GMS12, KNS14]. \quad -derivations \quad [BE12, HW11, HZM10, WW13c, Wan14b, WWD13]. \quad -diagonally \quad [LH10b]. \quad -digraphs \quad [GL12c]. \quad -dimensional \quad [BDF11, DK13c, CK13a, CIL12, DK11, DK12a, DK13b, FP14, KRH14]. -divergence \quad [CM12a]. \quad -domination \quad [LL14b]. \quad -Drazin \quad [CGMS10b]. \quad -eigenvalue \quad [AHL11]. \quad -eigenvalues \quad [CPZ13, QSW14, WBWH13, XC13]. \quad -entropy \quad [CH11]. \quad -extensions \quad [LCM13]. \quad -Fibonacci \quad [DGMS14]. \quad -filiform \quad [CGO10, CCGV13, CCGO14]. \quad -form \quad [BDK11]. \quad -forms \quad [BDK11]. \quad -free \quad [ZW12a]. \quad -function \quad [SS12a]. \quad -game \quad [W13]. \quad -generalized \quad [CMRR13]. \quad -graded \quad [Cen11]. \quad -graphs \quad [LHW12]. \quad -Hermitian \quad [BFdP10, BLdPS10]. \quad -Householder \quad [MPT12]. \quad -hyperreflexivity \quad [BR14d]. \quad -hyponormal \quad [CDY10]. \quad -index \quad [Yua15, CT11b, Yua14]. \quad -integral \quad [PHS13, WZL13, dFDADV10]. \quad -interpolating \quad [BPDC14]. \quad -invariant \quad [PP13b]. \quad -inverses \quad [W10a, SPKS12]. \quad -involutory \quad [FLY11, Tre10]. \quad -isometries \quad [BMN13b, Gu14, Dug12]. \quad -Jacobi \quad [HSS10, HSS14]. \quad -Krawtchouk \quad [Wor13]. \quad -letter \quad [AM14]. \quad -Lie \quad [BZW13, QCH11]. \quad -Local \quad [AKA13]. \quad -Lucas \quad [DGMS14]. \quad -matching \quad [Beh13]. \quad -matrices \quad [BK10, Dah10, Ghe14a, Zho12, Kaw13, AAFG12, AT11, AT14a, BCD10, CFR10, Dai11, FH12a, FM13, FFK11, GEP10, Guo13, HLS10, HZ10, HH11a, JS11, JPS13, Mat12, ND11, SHZ10, Siv13, wXL14, wXZ19, ZH11b, ZXX13]. \quad -matrix \quad [BCEM12, BR14c, BGH12, Drn13a, NS11b]. \quad -minimizations \quad [Fou14]. \quad -modules \quad [AR12, AF12, Pop12, Sha11, Ter13, Ter14, WW10, WD10]. \quad -negative \quad [Wol12]. \quad -Newton \quad [JMP13]. \quad -norm \quad [MT11]. \quad -normal \quad [BFdP10, BFdP11, BFdP12]. \quad -numerical \quad [CN11c, CN13c]. \quad -observers \quad [Blu10]. \quad -odd \quad [LWY10]. \quad -operators \quad [JLLY10]. \quad -optimal \quad [Mit11b, NP10]. \quad -optimality \quad [FM12]. \quad -orthogonal \quad [VS14b, dCD1RM14, AMP10]. \quad -palindromic \quad [BM14a]. \quad -parameters \quad [JLLY10]. \quad -paranormal \quad [DJK12b]. \quad -partial
Additive [BS11b, xCwXL11, JH10, MD10, PIM+10, CGMS10b, EN11, QCH11, Sun13].
additive-nilpotency [Sun13]. Additivity [ACG13a, BG13, Wan11a, CGMPSS14].
ADI [Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wi14, XC13, YFW10].
adjoint [ADW13, BT13, CN10c, CN11d, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint-commuting [CN10c, CN11d]. adjointable [FMWW12, WD10, XCS13].
adjustment [GOSV12]. admissible [CS13b]. admit [AT11, CGMJ14].
Affine [BDV12, AY13, AN13, BB13a, BV11, BB11b, Bud11, DS11, Dau12, KLP13, Lee13b, dSP12a, Wal11a]. affine-linear [BB13a].
affinity [SWA12]. after [JMP10, LSR11, tHR13]. agent [Sha14a, Zhu11b, ZY14]. agents [AIP12].
aggregation [PQ12]. Agler [BKV14]. AIC [HYF14, YiKIS12]. Aigner [WZ14a]. AINV [Raf14].
Alkiyama [Rah13]. Albert [Zha12a].
Algebra [BFBBD13, BPRY11, Che14b, CdGS20, DW11b, Du15, EKSV18, HS14a, KB14a, KKL13a, Kis15, LMO16, LT16, MR14a, MVR14a, Valk12, Wil12, WxZ19, Yua15, AKM13, ABK14, BM12a, BCS13a, BR11, BCT14, BC14a, BE10, BM13c, Bre14, BDV12, BM13d, aCCS14, Cas10, CGMS10b, Cen11, CL12b, Cir13, CM14, DKS10, DD10c, DLMZ14, Dub14, EvdD10, Fie11a, FKL13, GPT14, GST13, GM11a, GM11b, GMS13, IRT14, KSS12, Kla10, Kon13, KdM13, LRL14, Lee13b, MLC+10, Mar13b, MW10, MP13a, MP13b, MP14b, ND12b, Pep11, PTPL10, Ros12a, Ser13, SH13, SLS13, Tra12, TP13, Wil11, Wor13, WZ12, WZ13c, WZ14c, ZW12b, ZZ10, FdC12]. Algebrability [Nat13, BGP11, Wöd14]. Algebraic [BFF+11, BJ10a, Pin11, Yan10b, AJRT14, AHS10, BL12, BJ13, CKS10, Cra13, Das10a, Das13, DS12b, DGZ13, FZ13, FH14, Guo10b, GL10c, GSL11, Guo13, HM10, JLN13, KOJ11, LwCJL11, LGSC14, MZ12c, PLS14, Per14, RJH11, RR12, RMAJ10, Ser11, VS10, WKV10, WT12].

ergbras [ACGVK14, AM13b, Ago14, AIS14, AAJ12, AKA13, BD12a, BZWL13, BDF11, BGP13, BdIC13, BdiC14, Ben11, BS12b, BG14b, BB14, BM13b, BS11c, BS13a, BS12e, BF14d, BMGMC12, CT14a, CGO10, CCGV13, CCGC13, CCGO14, CK13a, CLR11, CILL12, CLOK13, CLOL13, CLOR13, CNT12, CM11a, CN10c, CL11b, CdGS12, CdGS20, CMZ10, CIH11, DDF13a, DIP13, DK10, DH12b, DW12a, DW12b, DW13, ES13, FP14, GZH14, Gha13, GS10c, GTR12, GS10d, GS12e, HW11, Han11a, HP12a, HM14b, HW14c, HZ12a, Ika11, JV10, JQ11, JZ11, JH10, Kaw12, KO13, KZH14, Kim12, KLZ10, KLZ14a, KZH10, LMO16, LL11a, LW12c, LW13a, LLF13, LL11b, LW12d, LNT13, LMMR13a, LMMR13b, MD12a, MD12b, Mar13a, MFG14, Mar14a, Mar14b, Mo12, Mos13, PY10, PY14, PR13a, Per13, QH10, QCH11, QH13, RY12a]. algorithms [RRKK12, RM14, SS12b, Sev13, SK10, SM10b, SM12, Sze14b, Tao11, Tao13, TKLX14, TDT13, UW11, WLG11, WC12, WGL12, WWD13, WW13c, Wan14b, WX11, Wei10, Wu13b, Wy14b, XW10a, WX10b, XW12, YZ13, YZ10, YZ12b, ZZ11, ZZW10, ZHQ14, ZZ12, ZZ10]. algorithm [BM13a, BBE+10, CFPP13, CILL12, GOSV12, HN10, KY13, KM14, LL13b, LdP11, LQ11, MSP13, MAM+13, RAAGAVS11, Roh11, SA10, Wal11b, WJ12, XY11, XSS13, ZQ13]. algorithmic [MPS10]. algorithms [BSS10, CLX13, Dumin13b, Fis14, GNE+14, Gle11, HR11, HB12, Kam10, LMN13, Qua10, Reg13, UV13, Wil13]. alignment [YZ12a].
All-derivable [ZZW10, ZZ11, ZZ10, ZZ12, QH10]. Allan [Gar10]. allow [BDM+12, OS14]. Almost
chordal-structured [Kak10]. Chromatic [AAJ12, YWS11b]. circle [BR12, DW10, RL13a]. circuits [SS10b]. Circulant [CSAC10, CSAC11, CFLW13, PZVJ11, BP10, BTTY12, CFPP13, DGMS14, Lli10a, LS12a, MP13b, MS14c, RE11, SS11b, Sbu10, SA14, TW14, VW10b, Wil14, EGR12].
circulant-Hankel [MS14c]. circulants [Mey12]. Circular [MSP11]. class [AS12b, ANP13, BT13, BK12, CT11a, Cho13, CDM12, DL14, DH12b, Dra12a, DJK12b, DJK12a, DK13c, FMR12, KL13a, Kho12, KS13a, KJK13, LRST10, LW13a, MW14a, ND11, NSC13, RR14, Sag11, ŚŚ11c, TZ13a, TmYsH11, WGL12]. Classes [MS13a, BD12b, CRSS14, Car13, CDM12, DL14, DH12b, Dra12b, DJK12b, DJK12a, DK13e, FMR12, KL13a, Kho12, KS13a, KJK13, LRST10, LW13a, MW14a, ND11, NSC13, RR14, Sag11, ŚŚ11c, TZ13a, TmYsH11, WGL12]. Classification [BS13a, BB11b, CLOK13, Dub14, LMO16, PC10, Rom14, SK10, DK13a, Bud11, CK13a, CILL12, FRS14, GWH13, HWG13, wH12, INT11, KO13, KRH14, PS14b, RO10, RS12c, SSS13, Sku13, dOHKS12, AAT12a, WSG11].
commutant [MM12]. commutative [AKN12, AKAI13, CRS14, DCI12b, HTS14, Lak10b, Mar14b, MMA12, Seoi13, ySpW14, Tan14a, Tan14b, Tre12, dO12].
commutativity [DGN14, DK14, GN14, LHL12, LL10b, Liu14b, LSH12]. Commutator [GH12, KN10, BDF11, CFL13b, FLC11, Kha13, Lan10b, WA10].
Commutators [Bie14, CVW10, EV11, Aud10b, FCL10,
GB13, HK10, KLS12, OR12]. Commute [BRZ11, HMS13, Kis15, Ogu13, XX12]. commutes [FMM13]. Commuting [DO11a, DW12a, Fra12, Fra13, XW10a, BC12a, Bou13, CN10c, CN11d, Hwa12, KSS12, KY14, KB12, LD12, Mig13, NS14, Pet10, Sar14, Siv12b, Siv12a, TZ13b, dOHKS12].

Compact [LT13, AK12b, BV13b, GP14, SM10b, TT12]. compactly [GHMPVP11]. Compactness [MN12b, DDK14].

Companion [EKSV14, EKSV18, MR11, BBE+10, DDM12, Gau10, GS10d, GS12c, GS12d, LD11, MZ13, Mac13, Pat12b, DDP13, DDP14].

Comparing [WNM13]. Comparison [DXG12, HTS14, BSKL13, BM14, EvdD10, GEP10]. compensators [BO12].

Competition [Kim10, Kim11a, KP12, Kim13a]. complement [BBF+12, DW11, DC13, LHZH11, LZZL12, Mit11a, Ney11, SvdH11].

Complementarity [AS10, Bal10, CPV10, Dai11, GEP10, GE13, JV11, SVP11, wXL14, wXZ19].

Complementary [ACM14, FH10a, FH12b, FH13, FH14]. complementation [DV10, GLS13a, Tra12].

Complex [DGJ10, GKL11, HS12a, JS13a, Pry10, Sző13, ANF11, BB13d, BGP13, BG12b, BW13a, Buj13, Byd10, CILL12, CK13c, FP14, GPT12, GPR13, GP13b, Ikr10, Kar11a, Kar11b, KK14, LRT13, LNT13, MZ11, MARC13, Mat13a, NV12, Ref12, SH13, dCd Hills14]. complexity [DS12b, KKL10, Sh11].

Compressions [AM14]. compound [Bap13a]. compressed [ALPV14, DPF10, KG14]. compression [MZ12b]. Compressions [ADW13, RS12b].

Computer [CS11]. Computing [BBH+12, BI13, FDS14b, KG12b, ST12, BGV12, BMS10, Fis14, LIY13, MV12, MP14a, RBP12, Roh11, Row12b, Sha14b, Uhl13, WJT13]. concave [Aud13a, FGQ11].

Concavity [Hia13, Nie11]. concept [PO10].

Concerning [Bap10, BG12b, He14, LGZ14]. concise [Rho10]. condensed [BD13, Ji12a].

Condition [DDP13, AAK11, AL13a, AHAPP10, Alt13, BB13c, DH10b, Gar13, Lj11, LWY14, LS12d, XD12]. conditions [JAS13, CHK+13, EGR12, FN11, FS14b, HSZ12, Hu10, JKN14, LLD13, Nak12, Sh13a, ZHZF13, vBM13]. Cone [Kus12, Nie12, AV12, BB13c, DDGH13, FW14b, GST13, Hil12a, ISY11, Jun12, Lim14, LTX14, NN10, Pro10, Sko11, WXH10b]. Cone-theoretic [Kus12]. Cones [Sko11, AGK11, AL13b, Bar12a, BZ12a, CPH11, CFL13b, JV11, JSS13, KL13b, LT10b].

Concise [Rho10]. condensed [BD13, Ji12a].

Condition [DDP13, AAK11, AL13a, AHAPP10, Alt13, BB13c, DH10b, Gar13, Lj11, LWY14, LS12d, XD12]. conditions [JAS13, CHK+13, EGR12, FN11, FS14b, HSZ12, Hu10, JKN14, LLD13, Nak12, Sh13a, ZHZF13, vBM13]. Cone [Kus12, Nie12, AV12, BB13c, DDGH13, FW14b, GST13, Hil12a, ISY11, Jun12, Lim14, LTX14, NN10, Pro10, Sko11, WXH10b]. Cone-theoretic [Kus12]. Cones [Sko11, AGK11, AL13b, Bar12a, BZ12a, CPH11, CFL13b, JV11, JSS13, KL13b, LT10b].
deformations [DFS12, DFS14]. deformed [Han11a]. degenerate [FKR11b, FKR12, GK11, Mar13b].
degenerations [CKLO13].
degenerate [Han11a].
degenerations [FKR11b, FKR12, GK11, Mar13b].
degree [CKLO13].
degrees [AW13b, BMSW10, BZ12b, CH14, Ere13, Hil13, HK13, LLS11, LL10a, LL11c, aLwW13, MAS12, SWT13, TW10a, Tan10a, YHY14].
delays [PKR12, Sha14a]. deleting [LSR11].
delta [CW11].
delta-monotone [CW11].
dendriform [BM13c].
Dennis [Bar10b, Sla10].
Dense [FHS14a, Duk12, Duk15].
densities [DGH+11]. Density [MZ11, CCL14, KKL14, MRW11].
denumerable [MA10b]. dependence [Hil13, Lu11, PS12, Wal11b]. dependent [jAS13, BRA11, DT10, GKS+10, ZHZF13].
depending [DP12a]. depth [LFS12].
Derivable [Pan12a, JH10, QH10, ZZ11, ZZW10, ZZ10, ZZ12, Zho11]. derivation [AS12d, BD12a]. derivational [Pan12a].
Derivations [KLZ10, AKAI3, Ben11, BS12b, BE12, BG14b, BS12c, DDF13a, DW12b, DD14, EN11, HW11, HZM10, JQ11, LL11a, LP10, LD12, LL11b, LJ10, Pet10, QH10, QCH11, QH13, SM12, WW13c, Wan14b, WX11, WX10b, WX12, YZ10, ZH12b, ZHQ14, WWD13].
descent [JZZ13]. describe [LdlP11]. described [BFH+12, IAM10].
Description [MMP13a, RRKK12, COvdD10, LM10b, Pol12].
descriptor [BV13a, KRT10, Jun14, Köh14, SBM11].
Design [BO12, Jim10, LLMZ12, Mah11]. designs [FMR12, Kla10, LHG10, Mit11b, NP10].
Detecting [Hen10, NV10]. Determinant [FMM13, MH13b, TT10, TW10b, AAFG12, CMS12a, CM12a, CH11, DHS12, DdC13, FMR12, KKL10, Vse12]. Determinantal [CM12b, CN12c, Ens10, GMT13, Abe14, BT11c, CEY14, CN11b, Dru13, GS10c, KLS12, Lin13, LSR11, NT12a, Qua10, Qua12, VS11, Wan14a, LPK14].
Determinants [GK10, SR13a, TT12, Büm14, CY11, CHZ13, DU14, EWY12, Kni14, Mat14b, RBP12, Sbn10, Sch10, SSZ13]. determine [DV14, RR11].
determined [ABEV10, BT14b, BG14b, BZ12b, BZW14, Gha13, HH13, JZ14, KKL13a, KKL13b, LSD14, Sto11, WFM11, WLLX11, WLG11, WS12, WLG12, WML13, WY14a].
determining [DGH+10, XY11].
deterministic [NNW14]. Deveci [Hil14c].
Diagonal [PM10, BOZ11a, BOZ11b, BC12b, BC14b, BV13b, CFJKS13, Dru13b, EM12, Fri11, HZ12a, LS13c, Mol12, Pry10, Reh10, Reh11, Rub13].
Diagonalizability [KKLY14]. diagonalizable [BFK11, KB12, Láň10a, RdSP11].
Diagonalization [RE11, DFR13, Fut12, GB13]. diagonally [CHLS12, Far11b, FLH12, HZ10, LH10b, LHZH11, LZL12].
Diagonals [Lee13a, WW13a, CD13, Dok12, Sem10, PRW11, YT13b].
diameter [CLL12, CVDKL10, HL12, HWG13, KSH12, LL12, LL14c, WKV10, WL10b].
Diameters [LL13a].
Dias [FdC12, LPQs10].
dibaricity [CLOR13].
dichromatic [LS11b].
Dickson [FSS11b, GN13].
dictionaries [Fou14].
Dieudonné [dlCdRMP14, RAAGAVS11].
difference [Baj14, BM12b, BAD09, DLDV11, FLS10, LS14, MN12b, Pit11, SS11d, TX12, VS14b, Vul12, Zuo10].
differences [HKK+12, RW10, ZZCW13]. different
PSW11, Sar14, Sha13a, Sha14b, XLG +13]. **doubly-infinite** [Sha14b].

doubly-stochastic [DHS12]. Dragos [GRS +10, GRS +11]. **Drazin** [BZ13, CGMS10a, CGMS10b, CI13, DW11, DMS10, DMS13, HRT13, KCID12, MD10, Mos13, PH12, SH13, WC12, Wül13, XWS12, XZ13, ZW12b, ZBW12, ZCC12]. **Duality** [CT14b, Wor13, CD10, DMMY10, GMH14b, HM14a, KAAK11, KKL13c, LH11a, LWGM10, LWGM12, LH10c, MGLW11, MSS14, RDD14, Tif11, BDK11].

Editor-in-Chief [Bru13, Bru14, Bru11]. Editorial [Ano13a, Ano13b, Ano13c, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h]. Editors [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano12-27, Ano12-28, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x].

Edmonds [KW13]. Effect [Mit11b, XZD14]. Effective [ESV +11]. Effects [Dug11]. Efficient [BHAP12, CFPP13]. Ehrenpreis’ [Lom13]. **Ehrlich** [BN13, GN13]. Eigendata [GP12]. Eigenfunctions [WAH13]. Eigenparameter [jAS13]. Eigenparameter-dependent [jAS13]. Eigenproblem [GPT14]. Eigenproblems [AA11, GHT11, MSS12, WZ14b]. Eigenspaces [Ada14, GTV12]. Eigenstructure [LdSp11]. Eigenvalue [FZ13, HKK +12, JTT13, MMA11, MMRR11, Row14a, YZ12a, Zha14b, AAK11, AKM14, AHL11, BCY12, BV11, BM14a, BdFdP11, BFdP12, Bel14, Bey12, BBE +10, BN13, BdS10, CW10, CQYY13, Das10b, Das11, DS11, Duk12, Duk15, Eto11, FF12, FZW11, Fan10b, FHL +11, Gar13, GP12, GCY14, GM14, HHL10, HRW99, HMP12, HP04, JM12a, Jar12, JDY13, Kal13b, KP14a, KMNS12, Kol13, KZ11, KPY11, LaG12, LXL +14, LcWCl11, LY11a, LW12b, LQY13, LL14a, LL04, LHW11, LLT13, LJY14, MD13, Mou12, MAM +13, MP10, MP14a, Nak10, NSW13, NS12a, NM14, NP13b, NY14, OS14, yPjXL11, PAS11a, PAS11b, Row11, SVP11, SS14, SCSS10, SS11e, Sta12, TF10, TG13, WF10, WF12, WZ13b, Wei13b, Wei13a, WJ12, XD12, XZ13c, XLG +13, XE11, YZ11, Yu13, YWX13, Zhu12a, dLOdAN11, dLN13]. Eigenvalues [Alo14, CMRR13, Cio10a, Cio10b, JS13a, LLMZ12, LWY10, MR12, Moh10, MAS12, RW12, AFHP14, AGM14, AAT12a, AOTR13, BFdP11, BZZ14a, BK12, Bün14, CSZ10, CS13a, CPZ13, CFJKS13, CFK +10b,
eigenvector [GK14b, GLS13a, MM12, RW10].
Eigenvectors [BBGM12, B\"un14, BM13d, SLS13, Sri13, XZ13a, FK13].
eight [NP10].
element [Drn13b, Ney11].
element-by-element [Ney11].
Elementary [BJ10b, Bu\'c10, DDK14, Gu14, PY10, Sin10a, BJ10c, CP12, CS10a, CDDY10, FH10b, Kec13, Kuz10, Per13, Rud12, Ruk14, SZ14, SDNS13, Yam13].
\textit{El\'ements} [Cas10, BR11, BPDC14, CGMS10b, Che14a, CK13c, DDGH13, LL11b, LHL12, Lim10, MS11b, WLG11, WLG12, WZ13a, Zhou11, Cas10].
eleven [BSU14].
elimin\textit{ation} [VS14a, HZ14, Ji12b].
elliptic [CEM14, DKO\'T12, KK12, KK13, SS11a].
elliptical [ATS12].
embedded [Mit11b].
embedding [HH12a, Wag1].
Embeddings [Pan12b, RV13].
em\textit{phasis} [KN10].
\textit{enclosure} [Miy13, Miy14].
en\textit{losures} [FHS14b].
\textit{encounters} [RL13a].
\textit{Encyclopedia} [Gr\"u12].
\textit{Endomorphism} [PY14, ABK14].
\textit{Endomorphisms} [DGZ13, HHLS14, Mol13, OZ10, Rom14, SR13a].
en\textit{ergies} [LS12a, XF11, Zhu12b, Zhu12c].
\textit{Energy} [GRM+10, KAMS11, LW12a, ACG+11, ABS10, AW11, CGTR14, CFK10a, CLL13a, CLL13b, CL13a, CGR14, DXG12, DG14, DG\'C14, DLL11, FHRT14, GKZ11, GX12a, GHW+13, GS11b, GRAMS14, GFB14, HJJ10, HLS11, HJLS11, ll1a, LLS10, LLS11, Rad10, RGC13, RJ10, RJ11, Roj11, RL13b, SS11b, SSGL10, SW13, SRdAG10, Tia11a, TC13, VDVJT13, WL12, WZY14, YM12, ZZ13, Zha14a, ZK14].
\textit{Enestr\"om} [RL13a].
enforcement [BV13a].
\textit{Engel} [Bie13].
en\textit{sembles} [DGGJ13].
en\textit{tangled} [Fid10].
\textit{Entries} [GG13, BCS10, Bu\'n14, CFJKS13, CDDY10, FFJM14, NT11b, RR14, Shp10].
entropies [Ben14b, BP13, EdlPH14, I\textit{K}+13].
\textit{entropy} [CFPP13, CH11, DGZ13, DLLS10, EdlP14, Kim13d, MS10c, PP11b].
\textit{entropy-preserving} [PP11b].
\textit{Enumerating} [IJ12].
\textit{ Enumeration} [AM14, Car13, SS13c, GL10b].
\textit{EP} [BR11, TW11a].
\textit{Equal} [FFJM14, HL11c, HTW13].
\textit{Equalities} [Tia10, Pop12].
\textit{Equality} [Ber13a, CPH11, JM14].
\textit{equation} [Bon10a, Bou11, CGGS13, DD11a, DDG+13, Fuh10a, Fur10b, GS13a, GKL11, HH10, Hwa12, Kaw13, LwCJL11, Lim11b, MR10b, MR14c, Per14, SK14, ZLD11].
\textit{Equations} [Ano12a, PQ10, AiS13, Ara12, AG10, Baj14, BK11a, Bie13, BM12b, BJ13, Car13, CN11e, DH10a, DH12a, DKS13b, DLDV11, Dumi13a, FMWW12, FGR13, FH12c, GMH14b, GL10c, Guo13, Hla13, IW13, Jbi10, Ji12a, Jim10, JK13, KL13a, Kyri13, LW11, LW12, LLW14, LS14, LTXX14, Mii13, MSP13, Mys12, PQ12, PLS14, Pit11, Pol13, Rei11b, Ry12b, Roh11, Sad12, SS11d, Tre11, VSL4b, WW10, WD10, WCLK13, XX14, XSZ13, Zha12d].
\textit{Equiangular} [DHS10, Sin10b, Bod13, FMT12, HS12a, Sz\"o13].
\textit{Equilibrants} [JT11b].
\textit{equipped} [Dor10].
\textit{equitable} [Ter13].
\textit{Equivalence} [Sze14a, tHR13, GPT12, GTW13, LW12, dSP10a, DDM14, Tim14].
\textit{equivalences} [GHS13].
\textit{Equivalent} [Hu10, CHLS12, FLH12, LLMZ12, LMT10, OM12, Van10, ZLL12].
\textit{erasure} [FM12].
\textit{erasure-robust} [FM12].
\textit{erasures}
BBE$^+10$, Han13a, MS11a. Fastest [Kir10]. fault [PP13a]. feasibility [LLW14, ZY12b]. Feedback
[Jun14, SSS13, BO12, CC14, Liu13]. Ferrers
[AdF11]. few [AJRT14, BG12b, FNMW14, Kla10, Mol11, dSP14]. Fibonacci
[CLX13, DGMS14, LaG13]. fidelity
[Kim13d]. Ferrers
[AdF11]. few
[AJRT14, BG12b, FMNW14, Kla10, Mol11, dSP14]. Fibonacci
[CLX13, DGMS14, LaG13]. fidelity
[Kim13d]. Fiedler
[BOZ11b, Gr¨u12, Ano13y, BHMO13, BOZ11a, BCF14, BM11, DDM12, Mac13, NDM13, Nik13, Ser13, Stu13, DDP13, DDP14]. field
[AKM13, AW13c, Bie13, Bot10b, Bot12, CK13c, CJK13, EJLS11, HK13, dHLMS13, HCY10a, LHC10, LdSP11, Ma11, MMP13a, dSP10a, dSP10c, dSP10d, dSP12c, Qui11, Rad13, SS10d, Wu10b, de 13]. fields
[AG12, BB13a, BBC+14, BC13, FL12, GH13a, GH13b, HHLS14, KK14, Kra13, KS11b, LdS13, LT13, MZ12c, MSP13, PP13a, Per13, RS14b, SV13]. filiform
[CT14a, CGO10, CLOK13, LMO16, Wu13b, CCGVO13, CCGO14]. filling
[HK13]. filter
[BOZ10, Jim10, LLMZ12, Mah11, MZ12c]. Filters
[GLP+13]. Filtrations
[Stu12]. find
[CS13b, Ern13]. Finding
[AS12b, BDD13, PQZC11]. Finite
[Ter13, AIS13, AG12, Ada14, jASZ12, BB13a, Bar10a, Bar13a, BS11c, BS13a, BPC14, CK13c, CJK+13, DHLX12, Dai13, DKM+14, Dub14, DDK14, FL12, FG13c, GH13a, GH13b, GW14a, GWW14a, GJ11, HW14a, HM14a, HS12b, HK13, HN10, HHL14, KKS12, LHC10, LdSP11, LdS13, LX13, MB13, MSP13, Mob14, NS11a, Pol12, PRW11, Rom14, Row14c, Row14d, SR13a, Sev10, Sev13, Sh14b, Shi12a, Sim10, Sk011, SQ14, SS11e, Ter14, VW10a, Vij14, Vul12, Wij14a, Wul12, Xu14]. finite-difference
[Vul12]. Finite-dimensional
[Ter13, BS11c, BS13a, Dub14, IN10, Moj14, Sk011, Ter14, Wij14a]. finite-step
[DHLX12]. finitely-generated [Bar12a]. Finiteness
[CGSCZ10, Dai13, Mor10]. Finsler
[Vla12, BAI2a, Ball2b, TNP12]. First
[DD10a, LJY14, LZ11a, AM14, BI10, Bos11, JMS11, NS11b, Zhu12c]. first-order
[BM10]. Fischer
[KS10, KS12b, KM14]. Fissioned [MW12a]. fitting
[MM10c, Moh13]. five
[BOZ11a, BOZ11b, NS12a, Ste11, XX14]. five-diagonal
[BOZ11a, BOZ11b]. five-point [XX14]. Fixed
[Ros12b, SS11c, WLL14, CLL12, Cos14, HL11a, HL12, LT11a, LT10a, LL11c, NOL13, Per14, SBMT10, Sol14, YFW10]. fixed-point [Per14]. Fixing
[Lip10]. flag
[Ber13a, DKK+14]. Flanders
[DLNN14]. flat
[CSAC10, CSAC11]. flats
[WLGM11]. Fliess
[LZ11b]. flipping
[MSP13]. flow
[BOZ10, LL10d]. flows
[AKZ13, AJ13]. forbidden
[LISd3, Yu14a, Yu15]. forcing
[BBF+10, CL14a, EHH+12, EHH+13, GB14, HCY10b, Mey12, Row12a]. form
[BBdH13, BFD12, BIT12, BDK11, CRU14, CT11a, FDS13, FP11, FHS11, GSI2b, GKI1, Mar13b, NS13, Nol14, Rad13, Reh10, TX12]. formal
[TZ13a]. format
[BGK13]. formats
[KRS13]. forms
[AW13a, AIS14, BDK11, CGMS10a, CN13a, DFS12, DS10, EN11, FV13a, FHG13, GMMFPPS12, HS12, Hu10, JR14, KKY14, KLZ14a, KB12, MDM13, MPS10, NT11a, Pop10, Reh11, Sim10, Sze14a, TW14, Wu14]. formula
[AS12d, Dai12, Gro14, KLS12, Kon13, Koz14a, KR10, Ma10a, MS11a, OM14, RW10, SR13c, TX12]. Formae
[BT14a]. Formulas
[Ber09, Tia12, BZ13, DK13e, Ern13, GS10c, GMV11, GLW13, GL14, Kyr13, MGLW11, MAGR13, Rue13, Sli10]. four
[Ben14a, BW13b, Mar10, RRM11, Tia12]. four-term
[Tia12]. Fourier
[Ban13b, FK13, Sav12, Xu14]. Fourth
[HS12, jASZ12, DHS10, Lop11b]. fraction
[Dur12, KY13]. fraction-free
[Dur12].
Fractional
[Beh13, LdS13, Mat13a, Mat14a, GMH14a].
Frame [Fut12, BHKL10, DFR13, VW10a].
framelet [MZ12c]. Frames
[Fut12, BHKL10, DFR13, VW10a].
framewk [Fut12, BHKL10, DFR13, VW10a].
framing [Wal11a, Bod13, BW13a, CKL +13, DHS10, FM12, FMT12, HM14a, HG11a, Hir10, HS12a, KKL13c, KOPT13, LH11a, LH13, LH10c, NRR+11, Sin10b, Szö13].
framework [GHT11].
frameworks [AY13, AN13, Bai14].
Fréchet [San14].
Fredholm [Sei14].
free [BGP13, BP10, BdlC14, BM13c, DDF13a, Dea11, DTL11, Dur12, GS12d, KY13, Ma11, MR10b, MR14c, VB10, YW11, ZW12a].
French [Cas10].
frequencies [Koz14b].
frequency [ST12].
Frobenius [Lim13b, BT14b, CVW10, DIP13, FGH13, LN12, MZ10, NV12, Pat12a, Pit11].
Fuchsian [Kim13c].
Fuci’k [RY12b].
Fuglede [DK14].
Fuglede [DK14].
Furuta [BLdP12, FNY13, Wad14].
Furuta-type [Wad14].
Fuzhen [Tam12].
G [Loe12, Rei11a, Rhe10].
Gaddum [NY14].
gain [KG12a, Ref12].
Gallai [KW13].
game [wH13].
games [AGK11, FDR13, Jun14, Sta14, Cec10].
Gangster [FJ10a].
gap [GO13, KR10, Wol12].
gates [CLX13].
Gau [CRSS14].
Gauss [BFRR14, Ji12b].
Gaussian [ALPV14, BT14a].
GCDs [BDD13].
Geary [BBGM12].
Gefand [Dai12].
Gelfand-type [Dai12].
General [Jim10,AY13, BV12b, Bot10b, BHKL10, CPH11, CK10a, CMS12a, CM12b, DH10a, FGG+11, JKN14, KSAM12, LQLL10, MR11, Shal3b, TT11, XW11, wXL14, wXZ19, vBM13, Beh13].
generalised [DGJ10].
Generalization [Dok12, Mel13, AKZ13, BL13b, FFS11b, Kus12, MGLW11, MW12b].
Generalizations [FFS11a, IIK+13, MS12, SN12, WX11].
Generalized [AKN12, BCEM10, Ben11, BG14b, CL12a, dra14, Dur12, GP12, HL10c, Hun14, Hür13, ili10b, KB14a, KB14b, KASA11, Kau12, Kim10, Kim13a, KCID12, KS11c, LL11b, MP13a, OM13, SS14, Seo13, SM10a, TX12, Wu10b, AL13b, AV11, AM13d, AL13c, Ban13b, CMRR13, CJ10, CLCL12, CL11b, DH10a, DH12a, DV10, Den10, DK12b, DY14, Dra12b, DW12b, DW13, DBZZ14, FKW13, FTZ12, FS13, FdC10, FH12b, FH13, GP14, GL12c, He11, HOT13, HLW10b, Hui10, HZ11a, Hua11a, HP11, Hwa11, IW13, JM14, Jem13, JDY13, Kim11a, KP12, KS14b, KKM13, LW12a, Lav10, LCwCL11, LW12c, LW13a, LYS13, LM2W12, LJ12, LJY13, MB13, Mar11, Mar13c, Mat12, Mel14, MS11b, Mos13, Nak10, NCI13, Pep11, Pep12, RAAGAV11, RJ11, San10, SS13a, Siv13, SR12, SS10e, Ste13, SL14, TZ12b, TNP12, TN14, Uhl13].
generalized [WLLX11, WML13, WW13c,

[MP13b, MP13b, MS14c].
Generalizing [CC10]. generate [AKM13, Cha13a, Kau12]. generated [Bar12a, BS11c, BS13a, GS10d, KM12, Ma11, Rez13, Yan10b]. Generating [CK13b, CM13, CZC12].

gentle [BS10].

Geodesic [Fuj11, HN14]. Geometric [Bat14, KBS13, Fri12, HS10, MMRR11, MMRR12]. geometrical [ART13, Aud13b, BDD13, Ben14a, NS12b]. geometrically [Aud13a].

Geometry [DHC12, Fie11b, HH14, Lim13a, BH10, BCF12, Fuji10, GH13a, HI10a, Hua10, HI10b, Hua12a, HS12c, UV13, Gr11b]. Germany [BFBD13].

Geronimus [DGAM14, DW10]. Gersgorin [CGWW13, MH13a, FHM13].

[AG12, AW13b, BL12, CK13b, DL13, DZX12, FY110, GL10b, GM12, GLS12, Hua11b, HJJ10, Kir14, LS10, LZ12b, LY11b, LS11b, LJ14Y, MS13c, dSP11a, SK10, SWT13, Tan10a, VKW10, XF11, YW11, YWS11b, ZHG13, Zh12a, Zh12b].

global [CD11, Kra13]. GMRES [TMSS14]. GNS [Kaw13].

Gohberg [BDK10]. Goldberg [Ano13z].

Golub [Rei11a]. Gondran [GS12f, Shi11].

Good [Hua10, FG13a, NT14]. Graded [DK10, ACGVK14, CG10, CLOK13, Cen11, CM14, KZ10, LMO16, Mar13a, Mar14b, Per13].

gradient [JRMS12, LL10d, OM10].

grading [Mar14a]. Gradients [Cir13, MFGD14, Per13].

graft [XZD14].

grafting [SSGL10]. Gram [SST14, Wil13].

Gramian [HH11a, grand [FNY13].

Graph [CS11, ACM12, AAJ12, AV12, At13, AH10, AH13a, AILvH13, AOTR13, BB13c, Bap13b, BBF12, Bau12, BOZ10, BRZ11, Boz13, BZZ14a, BW12, CMRR13, CAV13, Cer10, CTW11, CW10, CS13b, CLS13, CL13a, DGH10, Dea11, DC13, EHH12, EFN09, EFN10, ESN11, FTDA10, FH13, FL12, GX12b, GX12c, GCY14, HIMS10, HS14a, HS14b, HS10, HCY10b, HCY10a, IMA10, KR12, Kir10, Kir14, KPY11, Kuz10, LaG13, LRST10, LW12, LCS12, LW12e, aLW13, MY13, MS10a, Mit11a, MS13c, SW13, Nik13, OdLdAK10, PRT13, RJH11, RR12, RJ11, Roj11, Row12a, Row11, SS12a, SS13a, SS14, SM13, SRdAG10, Suz13, TW10a, TF10, Ter11, WF10, WL12, WAH13, WMZ14, Yu13, ZC14, Zhu10b, Zhu21a, Zhu13].

graph-theoretic [BB13c].

Graphical [COvdD10].

Graphs [BMSW11, BLC12, BCF12, CT10, DV14, Fie11b, Gor12, HTW13, HHL14, LS12, OS14, VKW10, WXL11, WX14, vDO11, AO14, AFH14, AFN12, AJRT14, AK12, AKZ13, AKM14, AS12c, AdFST11, AdFM11, AW11, ABS14, AH14, AT14b, AH13, BB13a, Ban13a, BK12P, BG14a, BFK11, BHvdH11, BHMO13, RP10, Bau12, BB11a, BMSW10, Bel14, Ben14b, BFF11, BNP11, BNP13, BZ12a, BYZ14, CVK13, CFG1, CR10c, CFE10a, CCF12, CM11a, CT11b, CHY11, CY12, CFH14, CK10b, CLL13a, CLL13b, CG14, CH14, CGM14, CL11a, CLL12, CG11, CKST11, Cio10a, CvD11, Cio10b, CW12b, CV13, CSAC10, CSAC11, CTG13, CS10b, DFG10, DvDF11, Das10a, Das10b, Das11, Das13, DL13, DG14, DLS14, DC14, DO11a, DOL1b, DLS10, DL11, DLL1, DZ12b, DZ12c, DP12b, DJ14, Est12a, EdPi14, FF12, FW13, FSS14, FT11, FY110, FN10].

graphs [FG10, Fio12, GL10a, GZH14, GLS10, GL12a, GZ11, GB11, GFY10, GH10b, GM12, GLS13a, GW11, GWZ13, Gu13, Guo10b, GLSL11, GLS12, GLS13b,
GLS13a. internal [Gum13, Wu13a].
interplay [SB11]. interpolants [CH11].
interpolating [BPDC14]. Interpolation
[AL14, HWH14, AL13b, AIL12, BO11,
FKR11a, Fuh11b, KOR14, PT14, Sav14,
SV13]. interpolatory [BGW12, GMV11].
interpretation [GG12]. intersection
[MGLW11, SB12]. intertwining [Che13].
Interval [GPT14, Mys12, BHMR12, Dah11,
Hla13, KS12a, LDL13, LLW14, LL13d,
MMP13b, MP13b, MS14c, MP14b, NS11c,
PM10, PKR12, Roh11, SH10]. Intervals
[AG13, FZ13]. Introduction [Est12b].
Invariance [dSP10a, Bai14, BH11b].
Invariances [BHKL10]. Invariant
[AFLN12, Baj14, dSC14, BK11b, BLLM13,
Bou13, CH13, Cir14, CLHQ14, DXG12,
DG14, Dom10, DZ12a, FGS11, FCL10,
FJ10b, Furi12, GK11, GV11, HG11a, HL11d,
JII12, Jun12, MZ14, MA12, Pro10, PP13b,
RSS10, Sku13, WL12, Woj14b, ZH12]. Invariants
[AW10, Bap10, Dod13, DJ14, FV13a, Furi10a, Gom10, GS10b, Lop11a].
Inverse [BDp13, JS11, MZ14, NM14, SV11,
BM14a, BdFdP11, BFdP12, BT13, Bcem12,
Bo13, BZ13, BZZ+14b, xCwXL11, CSV14,
CGMS10a, CGMS10b, CGRVC13, CI13,
DS11, Den11, DW11, DMS10, DMS13,
Fan10b, FHS14b, GP12, HRW99, HLS10,
HH11a, HP04, JM12a, Ji12b, JDY13, JS13b,
KS12a, KW12, LT12a, LXL+14, LMY11,
LJY13, LSH12, MH13b, MZ10, MD10,
Mos13, Mou12, MAM+13, NS12a, NS11b,
Nor11, PH12, P12b, yPXL11, H11a, PX14,
RDD14, SS14, SH13, Wei13b, Wei13a,
WJT13, WJ12, Wi13, XX14, XG1+13,
XSH14, Yan14, IYuZpYH13, YZ11, YWX13,
ZW12b, Zha12c, ZH11b, ZCC12, vdH13].
inverse-positivity [JS13b]. Inverses
[BG14a, Bin14, AM13d, ACG14, AL13c,
BS14, Bcem10, COvdD10, Dra12b, Dra14,
FKW13, HTS14, HF12, HZ11a, Hua11a,
HZGY12, HZJ12, Hun14, KKM13, LHLL10,
Mar11, Mar13c, MS11b, NCI13, Siv13,
SPKS12, WC12, WL10a, XCS13, XSZ13,
YW10, ZBW12, ZZC14]. Inversion
[FP11, BOZ10, DV10, ER13, MS11a,
MR10b, MR14c, DDP13]. inversion-free
[MR10b, MR14c]. inversions [Ghe14a].
invertibility [CRS14, DCIW12a, HC14,
KCID12, ZZC13]. Invertible
[AK11, CHLS12, HN14, KKL14, Liu14a,
TZ13b, Wik11, Wik12]. Inverting
[SS10e]. investigating [TMSS14]. inviscibility
[FJ10a]. involution [AF12, LL11b, LHL12,
LL10b, RDD14, ZZC13]. involutions
[Slo13]. involutionary
[Kis15, flyH11, Tre10, XX12]. involving
[BLLX11, CFL13a, Das10b, Das11, Das13,
Den11, DD11d, HRT13, KPY11, Lan14,
Mat14a]. irrationality [GWW14b].
Irreducibility [Had12, BB13c]. Irreducible
[DDGH13, BE10, Cer10, JMS11, Kim13a,
RY12a, Ser11, Ter13, Ter14, YHH12].
irregular [CH14, NLL13]. ISBN
[Bar10b, Gar12, Gle11, Grui12, Lim13b,
Rod12a, Tam12, Zha12a]. ISBN-13
[Bar10b, Gle11]. Ising [Bott13]. Isolation
[Bea12]. Isometric [BJ10c, SAs12a].
Isometries
[AAH13, GP14, HN14, AM13d, BMN13b,
BJ11, BJZ12, Cir14, Dug12, GW14b, GP13b,
Gu14, Kho12, MS14a, Mol13, PP12a, Sar14].
isometry [BT14a, GW14a]. Isomorphisms
[ÁvW13, KZ10]. Isospectral
[BW12, GLP+13]. isotope [NN10, NN13].
Israel [BDK+10]. Issue [KPR14, BBD+11,
BMS14b, FKLT13, GRS+10, LPQdS10].
iterated [BV11]. iterates [CFL13b].
iteration [DY14, HT10b, PPKR12,
Rhe10, XE11, YZ11]. iterations
[GIP12, HHT13]. Iterative
[CAV13, FS14b, GL10c, HN10, LL13b,
LJY13, NRS12, WJT13]. Ito
[HWW13]. IV
[BRA11, DK13c]. Iwasawa
[HHT13].
J [Rod12a]. Jackknife [HYF14]. Jacobi
[BP12, BFDp11, BFdP12, Bcem12,
BF14d, DD11b, HSS10, HSS14, KZ11, SB12, SS11e, SS13f, Wei13b, WJ12, Xu12]

Jacobian [BVV12, Gna12, Sun13, Yan11].

Jacobians [GS12a].

Jakobson [Wu10b, ZCC12].

James [AR12, CP11].

JB* [Ili10b].

JB*-triples [Ili10b].

Jensen [BH14b, Kia14, KLP12, KP14b, MPP11].

Johnson [Gar12, GZH14].

join [BHvdH11, BYZZ14, CMRR13, MH13b].

joined [MR12].

Joint [CN10b, Dumi13a, GZ13, CN13c, DHLX12, GB13, GMV11, Koz10, Koz14a, LV11, LP12, LX13, MR14b, OM13, OM14, Pep12, Sed11].

Jorg [Gre13].

Jose [LPQdS10, FdC12].

jumping [DKOT12].

Kaczmarz [NT14, PPKR12].

Kadanoff [BBGM12].

Kadison [BR10, DH12b, WY14b, YJ12].

Kakeya [RL13a].

Kamvar [Gle11].

Kapranov [Shi12b].

Karcher [BI13, LY13].

Kato [BL10b, BRZ11, BM13c, BF14d, CT11a, CM14, CMZ10, DW14, FMM13, GS10c, GTR12, GC12, HW11, HLW10b, Jv10, Jil2b, JL12c, MJ10, LW12d, MMM10, Mar13b, MW10, Mol12, Mol13, NSC13, SM10b, Tao11, Tao13, TKLX14, WW13b, WX10b, ZH11a, ZH11b, ZH12].

Jorg [Gre13].

Jose [LPQdS10, FdC12].

kernel [Joh12].

Kernels [BG11a, Che13, Hun14, Lom11, Rud12].

Kerov [GH12, Slo12a].

Kinchin [FT10].

kind [Xu12].

Kippenhahn [GW13a].

Kirchhoff [BCE+10, DXG12, DC13].

Kittaneh [Dru12a].

KKR [BTYZ12].

Klein [GS12e].

Kleiner [SY12].

Kleinian [KK14, Yan12e].

Ko [OLW14].

Kohn [YM12].

Krawtchouk [NT12b, Wor13].

Krein [AGPPF12, PT13a].

Kronecker [BJRS11, CSV14, Dod13, HFS13, HTS14, HF12, OZ10, Tad12].

Krushkal [BH13b, Der13, Rho10].

Krylov [BFS11, CK13d, DZ12a, JKL11, JB10, MS12, RRZ13, Sad12, SE13, Sto12, Xu11, Gre13].

Krylov-type [SE13].

Ky [Lin11, GRMS14, SRdAG10].

labeled [WNM13].

Lagrange [Ma10a, TX12].

Laguz [Lan14].

Lanczos [BFS11, PPZ14].

Laplace [MW10, TW10b].

Laplacian [LT11a, AFHP14, AGC+11, ACM+12, AM14, AOTR13, AT14b, BS11a, Bap13a, BMS11, Bel14, BL10b, BZ11, Boz13, BZ12a, CBTR14, CFF10a, CT10, CW10, CJ12, CT12, CTG13, CS10b, Das10b, Das11, DXG12, DXL13, DG14, DLS14, DL11, DZ12c, Est12b, FF12, FD10, FY110, FHRT11, FHRT14, G14b, GLS13a, GLS12, GLS13b, GW13b, GCY14, HM10, HL10a, Har14, HL11a, HL12, H210, HT10a, HY14, H1SQ13, L10, L10, L11, L13, L14b, LL14c, LS14, MK12, NS13, NP14, NLL13, QSW14, QY12, RJ10, RW10, SW13, SRi13, Su13, TW10a, wTn12, wTII13, Ter11, VDV13, WB11, WL12, W12, WBH13, WA13, XZ13b, X11, YY14a, Y1WO10, YL10, Y1WS11a, Y1WS11b, Z13, Z13, Z14, ZH13, Zho10, ZSB14, Zhu10a, Zhu10b, dLOC11, dLN13, v1DO11, v1DF14].

Laplacian-eigenvector [RW10].

Laplacian-energy-like [DXG12, DG14, WL12].

Laplacianness [Hu10].

Laplacians [AH13a, Bau12, BFF+11].

Large [AM13c, BG13, BF12, GM14, LR12, LSV12, dSP12a, AW11, BHMO13, FHRT14, GG13, Jb10, KKM13, LHZ11, MAS12, dSP11a, dSP11b, dSP12b, SAD12, W11b, WCKL13, WZ14b, ZL11].

Large-scale [LR12, KKM13, Sad12, WCKL13].

largest [AH11, ABK14, CKF+10b, CW10, CQYY13, Das10b, Das11, Kol13, KY11,
Linear-quadratic [NT11a, Jun14].
Linearity [BEV13].
linearization [MP10].
linearizations [AA11, AAK11, BCF14, BF14c, DDM12, HMP12].
linearly [AA14, B¨un14, CK14, CGM10, Gna12, RS12b, ZHZF13].
lines [BH10, DS10, Lee13c].
link [BCF12, Pit11].
Liouville [jAS13, KZ11].
Lipschitz [BJ10a, GV11, JRMFSS12, Koz10, Lán10a, PP13b, Rod11, Rod12b].
Lipschitzian [JV11].
List [Ano11a, Ano12c, Ano13e, Ano13f].
Lists [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12c, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano12-27, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, CL14b, ES14].
lists [JNS13, KS13a].
lit [wH13].
lit-only [wH13].
Littlewood [AW10, AP14, Lac13].
LLL [LQ11].
LMI [PKR12].
loadings [HZF13].
Local [Cos14, BS11b, Ben13, Bont10b, CD11, JZ13, KY11, Kra13, TZ12b, Tra12, AKA13, FP11].
local-global [Kra13].
localization [Elo11, GPR13, LL14a, RS10].
localizations [DLT11].
localize [SYY14].
Log [WZ14a, Alt13, CM12a, Fur12].
Log-convexity [WZ14a, Alt13].
log-determinant [CM12a].
logarithms [BLdPS10, Chi13, LNN14].
logistic [YiKIS12].
lollipop [GSL11, GW13b, WS12, WY14a].
lonesums [KKL13a, KKL13b].
long [BLXX11, CBB13, WZL13].
looking [Raf14].
loop [Bap10, GS10b, WY11].
loop-free [WY11].
loopy [GM12].
Lorentz [KN10, TD13].
loss [HLP12].
Low [BGV12, KRS13, AJ13, CAV13, DBZZ14, MZ12b, Sad12, GPT12].
Low-rank [BGV12, KRS13, MZ12b, Sad12].
Lower [AP14, MNZ10, MNZ12, Pat10, PJ13, Rad10, Cha10, CFL13b, Grc10, GR10, GCY14, LLH10, LMYY11, RJH11, Slo12a, WXH10a, Zim13].
lowering [BC14a].
Lowest [LTX14].
Lowest-rank [LTX14].
L¨owner [Han13a, MNZ12a].
LP [Pin11].
LTI [Per12].
LU [Hua13a].
Lucas [DGMS14].
Lur’e [Rei11b].
Lyapunov [FH10b, GTR12, GKS10, Jbi10, LKK12, LTX14, PJ13, Sad12].
Lyapunov-like [GTR12].
Lyapunov-type [LKK12].
M [Gar12, Gem10, AS12a, Rhe10].
Macaulay [BDD14].
magic [CMNW14, CCL14, dHLMS13, Hun10, LLN12, LGZ14, Nor12, Nor14].
Mahalanobis [GH11].
Main [CSZ10, LS13c, TH10].
Majorization [BEM12b, BD12b, CPK11, Dah10, For14].
GMS12, GEP10, GOSvdD14, Gar13, Gau10, GTW13, Ghe14a, God12, Gol13, GS10b, GL12b, GGK+13, Grc12, GS10d, GS12d, GZ12, GR12, GKR13, Guo13, GS12f, GZ13, HC14, HFS13, HSS10, HSS14, HTS14, HRW99, HR11, HMT10, HP12b, HL11b, HHH10a, HM10, HS12b, HB12, HN14, H10a, HLS10, HZ10, Huo10, HCY10a, HL10b, HC10, HZ11b, Hh11b, HH11a, Hua11c, HL11d, Hua12a, HLZ12, HZ12b, Hua12b, HLZP13, Hua13a, HTW13, Hua13b, HHS14, Hürn13, HP04]. matrices

[HP11, Hwa12, IMA10, Ikr10, ISTY11, JM12a, JP11, JM12b, JZT14, JKV13, JLW11, JT11b, JS11, JK11, JPS13, JSS13, Kak10, KS12b, KS12a, KM13a, KS12, Kau10, KKL14, Ks15, KS10, KN13a, KJK13, KW12, KT10, KT12, KM13b, KS11b, KS11c, Lati12, LSI13a, Lav10, LRT12, LRT13, LLY11, LL12, LV12, LL13b, LLI13, LLI14a, LTY10a, LTY11, LNTgW12, LL14a, LT10a, LD11, LT11b, Lim11b, Lim12, Lim14, LC10, Lim13, LCZ10, LHZH11, LMYY11, LS12c, LSL12, LS13d, LJY13, Lin14a, Lin14b, LMT10, LM10c, MMS12, MVS10, Mac13, MM12, MM10b, MARC13, Mat14b, MS10b, Mat12, MB13, MB13b, MRW11, MPT14, MY14, MQ11, MQ13, MQ14, MMRR11, MMRR12, MMP10, MPRW11, MPT12, Mer12, Mer10, MSW12, Mit11b, MPS10, MMP13b, MS13c, Mos13, Mou12, MAM+13]. matrices [MP13b, MS14c, MP14b, NS13, NS12a, ND11, NPP13, NS14, Niki11, NY13, NT11b, Nor12, NV12, NS12c, OD14, Ogu13, OSZ10, OM12, Oi12, Ožd13, Pan11, PP11a, PM10, dSP10a, dSP10b, dSP10c, dSP10d, dSP10e, dSP11a, dSP11b, dSP12a, dSP12b, dSP12c, dSP14, yPjXL11, Per11, Pop10, Pop14, PV12, PJ13, Pry10, PWW11, Qu11, R14, Ry12a, RMT11, RPM14, RW12, RdSP11, RR1, RSS10, Ros12a, Rub13, Sag13, SZ14, SS12b, Sbu10, SB12, SS14, Ser11, SCSS10, SS13b, SSS14, Sev10, Sev14, SSMS14, SHZ10, SHA14b, SYH14, SS13d, SS13e, Shi12a, Shi12b, Shi12c, Slp10, SLS13, Siv13, Slo13, Slo14, SC12, SDN13, Sow13, Spe11, Sra13, ŠS11c, SS13f, SS10e, Stu13, Sun13, Szö13, Tad12, TT10, Tan10b, TL13a, TX12, TMSS14, TW14, DDP13, DDP14]. matrices

TW10b, Tia10, TW11a, TCL11, Tre10, Trel12, TW11b, Tsa11, VS10, VU14, Van10, VR12, VS11, Voy13, WLHL10, WXH10b, WXH10a, WFM11, WW13a, WW13d, WW13, Wil14, WMZ14, Wu10a, WJ12, XX14, XZ13a, XZ14, XY11, Xu11, Xu12, XX12, XLG+13, wXL14, XSH14, wXZ19, Yam13, YT13b, Yun14, XY13, YS13, YW13, ZWL10, ZYL10, ZL12, Zha14b, Zha14a, ZLH+14, ZZ10, Zha12c, Zho12, ZL11, ZH11b, ZB12, ZCW13, ZJ10, Zuol0, ZXX13, dCF12, dFBR14, dHM11, de 13, dCdlRMP14, dRMP12, Gar10, JMW11, Kawi13, Gar12, BOZ11b, Gröi12]. Matricial

JSS13a, CH11, FKR11b, FKMD13, tHR13]. Matrix

JASZ12, jAS13, Bar10b, Ber09, BC12b, Bot14, CC12, DW10, Gem10, GB13, HH13, HNZ12, HJ12, JS13a, Koz14b, MPT14, MZ12c, PQZC11, Ros12c, Sla10, UW11, AAK11, AAKM14, AKM13, AQ12, AAT12b, ABBO11, ÁvW11, ÁvW13, Ano12-30, AHB13a, AW10, AHL+14, AHB13b, AKA13, BPA+11, BLX11, BH14a, BT10, Bap13b, Bap13a, BDD14, Bat14, BM14a, BS12a, BHDW12, BMS10, BR14b, Ben13, BCE12, BCD10, BL13a, BEK13, BIT12, BMR11, BK11b, BG12a, BR14c, BCȘ10, Bou10a, Bou11, BMM12, BCD13, BGH12, BDOvdD12, BKMS12, BSST13, CC10, CMS14, Cas13, CLST14, CJR11, CGGS13, Cha13b, CFJK13S13, CH11, CL13b, CK13d, CHLS12, CK14, CN10c, CL11b, CD11, CJ14, Cin11, CI14, Dahl12b, Dahl12a, Dai13, DIP13, Dan12, DD10a, DMD12, DTS11, DH10a, DH12a, DW11, DF14, DK10]. matrix [DKS13b, Dod10, Dod13, DS14,
DGKO13, DMS10, DMS13, Drn13a, Drn13b, Dru14, DW12b, DW13, DWW14, DW14, DZ13, DLV13, EKSV14, EKSV18, EM11, Ern13, FP13, FLH12, FDS10, FdC10, FMM13, Fis14, FHL+11, FP11, FG13b, FKR12, FH12c, FSH14, Fuh10b, FLS10, FL10, FRS14, GEP13, GHMPVP11, GPT12, GS13a, GW14a, GW14b, GN13, Ger12, Gho13, GP13a, Grc10, GPT14, GS12c, Guo10a, GKL11, GM11b, Göv12, HH12a, Han11a, Hia13, HW14c, Hu10, Hwa11, IM11, IPFD13, JM14, Jbi10, Ji12b, Jim10, JN13, Jun12, KL13a, Kak10, KOR14, KHKT13, KSA11, Kw12, Kr12, Kha13, KLS12, Kim11a, Kim11b, KLL11, Kin13a, Kis15, KS10, KS12b, KM14, KS14b, KKR11, KZ11, KZ14a, KZ14b, Kus13, Kyr13, LS13a, LT12a, LNN14, LV14, LAL11, LAL12. matrix [LV12, LS11a, LZ12a, LW12c, LW13a, LY13, Lin10, LS13c, LH10b, LSR11, LLMZ12, LW13b, LX13, LXS13, LS12d, Lop11b, LSH12, MZ13, MMM10, MMM113, MM12, MSP11, MZ12a, Mar10, MR13, MR14a, MM13, Mat13a, Mat14a, Mei13, Mel13, MS12, MR10b, MR14c, Moo11, MN12b, NR10, NM14, NS11b, NV10, O’d14, OT12, Pá13, PM+10, PCC12, PPK13, Pat12a, Pat12b, dSP10b, Per13, PS12, Pin12, PRW11, Pop13a, Psa12, Rah13, Re11b, Rim12, Rod11b, Sah10, ST10b, SS11a, SMM11, SK14, SK13, Shi13, SA10, SC13, SR12, Sta14, Ste13, TD13, Tan11, Tz12b, Tz13a, TmYsH11, TTZ13, DDM14, Tia11b, Tia12, TGM11, TT11, TDT13, Uhl13, VS13, WWG10, WL11, WW13b, WW13c, Wat13, We113b, WJT13, We10, WCKL13, Wiki1, Wik12, WZL12, WY14b, Wüll13, WX10a, XD12, Xu11]. matrix [XX12, wXL14, wXZ19, lYNZP13, YZ12a, YZ13, Zha12d, ZLD11, ZXZ10, dF10, vdW14, KY13, Tan12, Rod12a]. matrix-based [Dah12b, IPFD13]. matrix-convex [PCC12]. matrix-monotone [PCC12].
Monotony \cite{BM12b}. Monov \cite{CL14b}.

Moore \cite{Boz13, xCwXL11, HF12, HZ11a, Ji12b, KS12a, MS10a, MZ10, Nor11, Pat12b, RDD14, WJT13, XCS13, Yan14, ZZCW13}.

Morrison \cite{MS11a}.

Morse \cite{AJ13}.

Moshe \cite{Ano13z}.

most \cite{BH13b, KY11, LL13a}.

motions \cite{AY13, AN13}.

Motzkin \cite{CY11}.

mouth \cite{HH12b}.

Multi \cite{Blö12, LLY11, BCY12, CC10, GMS13, Sha14a, SB11, Zhu11b, ZY14}.

multi-agent \cite{Sha14a, Zhu11b, ZY14}.

multi-input \cite{BCY12}.

Multi-level \cite{Blö12}.

multi-metric \cite{SB11}.

multi-objective \cite{GMS13}.

multi-step \cite{BCY12}.

Multi-variable \cite{LLY11}. multi-way \cite{CC10}.

Multidimensional \cite{KLP12, Lee13c, Xu14, NT12g, OT10}.

multifilar \cite{EFN09, EFN10}.

multigrid \cite{BFF11}.

multilinear \cite{BW13b, FGH13, FKLT13, GMMFPSS12, Kon13, Moh13, NA13, Pe14, SR13b, SR13c, FdC12}.

multinomial \cite{YiKIS12}.

multipartite \cite{CHLW14, ZJ14, PHS13}.

Multiple \cite{DGAM14, DKS13a, FPC13, KSH12, LNTgW12, Lip10, MP14a, Psa12, Row10, Sha14a, XD12, ZY12b}.

multiple-sets \cite{ZY12b}.

multiplication \cite{HH13, Kau12, MR13, MR14a, Sow13}.

multiplications \cite{BLLX11, RO10}.

Multiplicative \cite{BE12, CLS10, JK11, WW13c, ZZZ10, Bal10, xCwXL11, GO12, Wan11a, UW11}.

multiplicativity \cite{LS12a}. multiplicities \cite{BZZ14a, OS14}.

multiplicity \cite{AKM14, AGV12, GS12d, JNS13, KS13a, Row11, Row14a}.

multiplier \cite{Aud13c, CPK11}.

multipliers \cite{LP10}.

multiplying \cite{O'D14}.

Multipospherial \cite{KT10, KM13b}.

multivariable \cite{PP14}.

multivariate \cite{AS14, BDD13, DU14, GH11, Han14a, LW13b, Wal11b}.

Musings \cite{Moh13}.

Mutation \cite{Sev13, Sev10}.

mutually \cite{Kis15, XX12}.

Mysteries \cite{NSW13}.
KS13b, LLH10, LYL13, MMP13a, Net10, dSP10c, dSP12b, Per14, PT13a, Qui11, Sec13, WZ14b, YW11, dO12.

nullspace [JKN14]. nullspace-type [JKN14].

Number

AlKS13, BPA +11, AG12, AKM13, AAJ12, AHAPP10, ADFM11, AHS10, BB13a, Bea12, BLL13, CRSS14, CS13a, CL14a, CFHL14, DTL11, Dom13, DH10b, DL13, DDF13, DDF14, EHH +12, FY10, FG13c, Gar13, GB11, GLS12, HLI11a, HJZ13, Hir10, HTW13, HJL10, LS10, LT11a, LZ12b, LS11b, LHL13, LYL13, LL14b, LJJ14, MGSW14, MZ12c, NS13, NOL13, Row12a, Sin10c, SWT13, Ste10, TF10, Uhl13, Wik11, Wik12, XF11, YW11, YWS11b, ZHG13, Zhu12a.

numbers [AAK11, AL13a, BHKM13, CY11, CMS12a, EWY12, GWW14b, He13, KL12, LaG13, Lak10a, LJ11, LWY14, MGLW11, DDP13, WWG10, WZ14a, XD12, ZC14].

numeric [PS14b]. Numerical [Ali12, BS12a, CGWW13, DGH +11, Gau10, Gle11, HMP +11, Kan10, KI10, TW11b, Tsa11, AM13a, CG13, Che14b, CN10b, CN11a, CN11c, CN12b, CN13c, CP11, CLS10, DPF10, DD11d, GW13a, GTW13, GW14b, GP14, GZ13, HH12a, HB12, LMM11, LMM12, Lec13a, LP12, LPS13, LSL14, PT13a, PGM +11, VU14, WW13a, WC11, LCWC11].

Numerically [FM12]. Nussbaum [Lim13b].

objective [GMS13]. objects [NP10].

oblique [ACG14, CM10a, Hua11a, SS10d, WL10a].

observers [Blu10]. occasion [Bai11].

occurrences [AM14]. October [BDK +10].

octonion [RO10]. odd [CMNW14, GW11, GWZ13, HGW13, KSI1c, LLN +12, LGZ14, LWY10, Rim12, Yua14, Yua15]. off [BC14b, CFJKS13]. off-diagonal [BC14b, CFJKS13]. old [ES14, RTR10].

Olkin [Zha12a]. One [ALPV14, CRS14, GS12b, ABEV10, BBdH12, BBdH13, Bat14, BR14c, CT11a, CT11b, DHLX12, FGvRR13, Fri11, KO13, KY11, Lec13b, LFS12, LT11b, LX13, MMRR11, MMRR12, dSP12d, Pet10, PS14b, RW12, Sag11, Sav12, Slo12b, Suz13, WFM11, WMZ14]. One-bit [ALPV14].

one-dimensional [Suz13]. one-dominating-vertex [CT11b].

One-peak [GS12b, PS14b]. ones [TZ13b]. only [Aga14, CGMJ14, Dod13, wH13, RR11, WZ13d]. onto [Cha10, NN10]. open [HH12b, LGZ14, Zha12c]. operation [CMRR13]. operations [NN13, SL14].

Operator [CMS12b, Gon11, Kia14, Kim13d, Mos11, SP13, Soc14, AR10, AG10, ACG13a, Aud13b, BC14a, Böt13, BH14b, Chi13, CDDY10, CI14, DW11, DD11d, DX13, ET13, FMWW12, Fur10b, HC14, Han14a, HZ12a, HN10, I1K +13, JG10, JR14, KS14a, KSAM12, KJK13, KW12, KLP12, MPP11, MTS11, MMK13, Nak13, OM10, PP14, San14, Uch10, WW10, WD10, WLL14, Wój14b, XSZ13, XSH14, ZW10, ZHQ14, Zha14c, dSC14].

Operators [Bra10, AS12a, AR10, And13, ACG13b, AK12b, BV12a, Bar10a, Bar13a, BS12b, BCD10, BR11, BC12a, BJ10a, BJ10b, BJ10c, BV13b, BB11b, Bud11, CRS14, Cam13, CL12a, CEM14, Che13, Den10, DWXS12, DCHW12a, DD11c, Dra12a, DP10, DJK12b, DDK14, DK13e, ES13, FF10a, For14, GS10a, GN14, GP14, Sem10, Gu14, GS10e, HG11a, HKK +12, HN14, HLW10b, HZ11a, Hua11a, HZJ12, JLLY10, KL12, KI10, KRS13, Kec13, KR10, KB12, Lac13, Lán10a, LP12, LCM13, LMMR13a, LMMR13b, Lom11, Lu11, MM13, Mat13a, Mat14a, MPP11, Moll1, MMM13, MN12b, Niel10, PP14, PY10, Pe14, Pep12, PT13a, Pop13b, Pro10, Rez13, RS12b, Ros12b, Rud12, ST10a, Sed11, Sie14, SR13b, Sha13a, Sha11, SM10a, SM10b, TD13, Tim14, VU14, XDFL10, XCS13, YW10, ZH11a]. operators [ZH13, dOHKS12]. Oppenheim [Lin14b].

Optimal [JZT14, LH11a, LJ12, LH10c, TDT13, Will13, CGM +10, EY13, GOSV12, GIP12, HCY10a, LHH13, LLD13, LL13d,
MZ10, Mit11b, NP10, NA13, Peñ14, Sta14].

optimality [FMR12]. optimisation
[GMS13]. Optimization [BH14a, MO14].

Optimizing [Gol13, LS11a]. optimum
[CLL13a, GX12a]. options [PZVJ11]. Orbit
[RMP14, Bar10a, Bar13a, Dau12, MZ12a, Rez13]. orbits
[Baj14, CN12c, DD11a, LPS13, TT12].

Order [Bra10, FJ10b, Mol11, jASZ12, BP10, BM10, BL12, Bt512, Bos11, Bre14, BF14a, CR10a, CMNW14, CK13c, CL13b, CFL13b, CKAC14, CDM12, CIH11, DD10a, DTL11, DD11c, DM11, GOvdD14, Ghe14b, HSZ12, Hır10, HL10b, Kar11a, Kar11b, KM11, LLN+12, LBS12, LHZH11, LJY13, LGZ14, LS14, LZ11b, MD13, NS12a, Nem13, Nor13, Q514, Rim12, SS11b, SS11d, SBMT10, Slo14, ST13, Tra13, WZI3b, XDFL10, ZY14].

order- [Nor14]. order-preserving
[CFL13b]. ordered [Car13]. Ordering
[AJRT14, HL11a, WT12, JP11, jO12, RMAJ10, WL10b]. orderings [Nie12].

orders [BJZ12, FJ14, KS11b, YHH12].

Ordinary [CM14]. organization [Zha12c].
organizing [Gle11, Kam10]. orientations
[CEY14, Tia11a]. Oriented
[Zhu12c, CLL13a, CLL13b, GX12b, GHV+13, HSS10, RR12, WZY14, XG13].

origin [LSR11]. Orlicz [AM13c, ARZ11].

Orthogonal [CMS12a, Mool11, AAH13, BR14b, BSS10, BMM12, BR12, CM11b, Dax10, DW10, FPC13, GW11, GWZ13, Hır13, KN10, LRV12, LAL11, LWGM12, LNT13, MPW11, Mer12, MNZ12, NM14, O’DI4, dSP12d, Pop13b, RBP12, RL13a, ySpW12, TTT1, VS13, VS14b, We10, dF10, dCdlRMP14, AMP10]. Orthogonality
[Gro14, AR12, CP11, HH13].

orthogonalization [OM10]. Oscillation
[Hil12b]. oscillators [VR12]. Ostrowski
[Had12, Had13, HT14, Tao11]. outer
[Dra12b, HZJ12]. outerplanar
[Sin10c, SK12]. output [BO12]. Oxford
[Bar10b, Gar12]. P [DdF13b]. P-vertices [DdF13b]. p.p
[LZ12a]. Pád6 [DD11b, GIP12]. PageRank
[GPR13, TD11]. pages [Rei11a]. pair
[BBdH12, BBdH13, Bar10a, BCdP11, BC12a, DHLX12, DKS13b, Hwa12, NT10a, dOHKS12]. Pairs [Cal12, FdC10, AW10, BM12a, Bar13a, BK11b, BC14a, CGSCZ10, DS14, FRS14, God10, God12, GTV12, Han11b, Han13b, Han14b, HG11b, HWG14, INT11, IS14, JG10, Lim10, NT10b, NT12b, Nom14, Pet10, dCF12]. Pairwise
[LD12, Tra13, ACM+12, EvdD10]. Pálafia
[Seo14]. Palindromic
[IM11, BM14a, GN13, LCwCL11]. Pall
[BFdP10]. Paperback [Bar10b, Tam12].
paperfolding [GWW14b]. Parabolic
[HS12b]. paraboloids [KK12, KK13].
paracompact [CM13]. paracocontractions
[Moj14]. PARAFAc [ZHF13]. parallelogram [MTS11]. parallelotopes
[GH10]. Parameter
[GD11b, PT13b, BR14b, Hıl12b, HMP12, Kar11b, MP10, VW10b]. parameterization
[CR10b]. parameterized
[Gna12, KLL11, YWX13]. parameters
[BBF+10, DP12a, DZX12, HHMS10, Han13b, HB12, HL11c, JLLY10, ZH12b].

Parametric [He13]. parametrization
[BO12, Dau12]. parametrized
[Fuj10, GHT11]. paranormal [DJK12b]. Paratransitive
[LMMR13a, LMRR13b]. Parity
[MS13b]. Parseval [Kon13]. part
[Li10, AAT12a]. Parter [Fdc14b]. Partial
[BP13, HZ12b, MQ11, MQ13, MQ14, RMT11, WZI3b, AM13d, BFRR14, BCY12, BO11, CFLW13, DM11, Fan10a, GW14a, GW14b, Kho12, MD13, PLS14, PP12a, Ruh13, Sdv111, Zha12c, vdH13]. particular
[BBdH12, BDM+12, GOvdD14, ŚS11c].

partite [Zha14a, ZWL13]. partition
[FdC14a, HM10, NS11a]. partitioned
[BLL13, CGMS10a, CTW11, XCS13]. partitioning
[Dru14]. partitions
[CD10, Car13, GL10b, MS13b]. Pascal
passage [NS11b]. paste [ST10b]. Pate [Pat12a].
Path [Est12b, Fuj11, HM14b, Nak13, SS14, Sin10c].
paths [AS12c, Gun13, Nik10b, QSW14].
pattern [AT11, AHL+14, AM14, BDH+12, CFJKS13, CL10b, DT11, HL11d, JMS11, LSR11, MGSW14, PP11a, WLHL10, YS13, ZLH+14].
Patterns [BKMS13, BVV12, BDM+12, BFH+12, CP10, EKSV14, EKSV18, GS11a, GL14, GS12a, GS13b, GOswD14, GOvdD14, GK14b, GB14, GOvdD12, GS12f, HJ12, HLS10, Hua11b, MZ14, Ma14, Mit11b, OT12Dv12, YHH12, dS12a].
Paved [NT14].
payoff [AGK11].
peak [GS12b, PS14b].
Peano [ABGPSS14].
peculiar [RR14].
pedagogical [Kla10].
Pellet [Mel13].
pencil [Dod13, GHMPVP11, XD12].
Pencils [RS12a, RS14b, Bat14, BT12, BCF14, BF14c, DKS13b, Dod10, DS14, FRS14, LLB13, MSP11, Rei11b, SMB11].
pendant [GFY10, LWZ11, LZ12b, LJY14, Sui13, XZ13c].
pendent [BNP11, BNP13, HJL10, NOL13].
Penrose [Boz13, xCWXL11, HF12, HZ11a, Ji12b, KS12a, MZ10, Nor11, Pat12b, RDD14, WJT13, XCS13, Yan14, ZZCW13].

pentadiagonal [Elo11].
Perfect [BP10, CG11, Beh13, LSC10, wTmS12].
Perfectness [FP13].
perform [CHK+13].

Periodic [AS12c, BM10, Li12, ZLH+14, BdFdp11, BT13, Cal12, Fid10, SB12, Tsa11, Xu12, YM12].
peripheral [ZH11a].
permanent [Cra13, DdC13, Zha13, dF10].
permanental [AdF11, LZ13].
permanent [Brä13, CW12a, FH12b, PS11].
permissible [Buj13].
permutahedra [Dah10].
Permutation [DF14, LS13c, RR14, SMC11].
Permutation-like [DF14].
permutations [AK11, BF14b, ST12].
Perron [Lim13b, Czo10, FGH13, FJMP14, JMP12, LN12, NV12, Pit11, ZH11b].
personalized [GPR13, Gle11, Kam10].
Perturbation [BV12a, BK11b, CM13, HZGY12, LNTgW12, MMRR12, AL13c, BI12, BBdHi12, BBdHi13, xCwXL11, CS10a, DD10a, DX13, Guo10b, Jai11, LS11a, LYS13, Lip10, MMRR11, MZ10, MA10b, Vui12, WF12, WL10a, YW10].
Perturbations [CG11, CL14b, HZ11a, Bat14, BCDp11, BHK10, BdS10, CL12a, DvDF11, FGR13, FGvR13, Hua11a, HZJ12, MMRR11, MMRR12, RW12, Rod12b, SWA12].
perturbed [BDG13, BR14c, CGMS10b, GC12, GTV12, HH11a, Mat14b, PPZ14].
Pete [Bai11].
Petz [Fuj10].
Pfaffian [Buc10, TT10].
Pfaffians [lka11].
Phase [FMNW14, Byd10, Gu11].
phenomenon [BL11, RR14].
Pick [AL13b, CH11].
Piecewise [FGQ11, CA10].
piling [OT12].
Pinkus [Gar10].
Pisa [DBG+13].
pivot [BH11b, Bri13, KB14a, KB14b, Mit11b].
pivoted [LQ11].
pivoting [VS14a, PQZ13, Rafa14].
placement [BO12, RMT11].
planar [BHHMO13].
plane [Buc10, Buj13, CM12b, HK13, MZ11, dIP11].
planes [Dau12].
planning [DT10].
player [Jun14].
plus [AGNS11, BH12, BM13d, Mer10, Mys12, MP14b].
Poincaré [BfdP10].
point [ACG14, CLCL12, CI14, DYW14, DD14, GOsv12, JH10, LWGM10, LWGM12, Per14, SS13b, Ter13, Wan11b, XX14, XSS13, ZWZ10].
point-stabilizer [LWGM10].
points [AK12a, AR10, BS11d, CN13b, GX12c, Li12, Pan12a, QH10, WLL14, Wu13a, ZZ11, ZZW10, ZZ10, ZZ12, ZZX10].
Poisson [Mar13a, XX14].
Polar [CM10a, AGK11, CD10, CM11b, DoMP09, DMP11, GMP13, LNN14, LWGM10, LWGM12, MGLW11, MPP10, WLGM11, Wor13].
pole [BO12, KBS13, RMT11].
Poloni [Lim11a].
Pólya [Seo13].
polygon [VW10b].
polyhedral [LT10b, MS11b].
Polynomial [AM13a, LMM11, LM12, MM10c, Mar13b, AA11, AB12, ABSV12, BMS10, BN13].
BC14b, BO11, BH11b, BHAP12, Cer10, CL13b, DTL11, FHI0c, Gna12, GX12b, GS12c, HB12, HP11, KJV13, KLL13a, KL12, KH13, KdM13, KW13, Lee13b, LD12, LW13b, LM10c, MZ13, MW14a, Mel14, Moo11, PQZC11, Pet10, PT14, RO10, SK14, Sun13, TW14, VS14b, Wu10b, ZYL10, dCF12, vdW14.

polynomial-Vandermonde [ZYL10].

Polynomials [NT12a, AAK11, AK12a, Aga14, AAT12a, AAT12b, AL14, Bal14, BM14a, BR14b, BK11b, BG12b, BL10a, BSS10, BH13a, BMM12, BR12, BW13b, CMS12a, CKS10, CN10a, CN11b, CL11b, Cim11, CD12c, DD10a, DDM12, DTS11, DW10, DD10b, ES11, FPC13, GMMPFSS12, GW13a, GN13, GS12d, GM11b, He14, HLW14, Hen10, HT10, Hwa11, IM11, Kal13a, KHKT13, KH13, LT12a, Lan14, Lav10, LL10a, LZ13, MMM10, MMM13, MZ12a, MZ11, Mei13, Mei13, NV10, NT10, Psa12, QY12, Qua12, RB12, RL13a, Sha10a, Sim10, TTZ13, DDP14, DMM14, TGM11, TT11, VS13, WLLX11, WML13, WZ13d, dF10, dO12].

polytope [CGSCZ10, CM10b, KAAK11, PSW11].

Polytopes [Dah11, ACDM14, Bar12a, Beh13, BG12b, BW13a, Dah12a].

polyvectors [De 11].

Ponclet [Mir10, Mir12].

Pontryagin [CD12c, War14, dSW12].

pooling [LHG10].

population [LLR14, MMvdD14, RM14].

porism [Mir12].

Porta [CMS12b].

portfolio [DBZZ14].

Portuguese [FdC12].

posed [BjRS11, HMR12, NRS12].

poset [Kha13].

posets [AY13, FFG+11].

Positive [AG10, BKV14, BLL13, Dru14, EHH+13, Fli11, Fur10b, Gar10, LV14, MYL13, Pop10, SH10, WD10, AHAPP10, AL13b, ACG13b, BH14a, BMW10, BS12c, BP11, BS12d, BR14c, BI13, BSU14, BCS13b, BLL12, BL14, BAD09, CRU10, Cen11, CM12a, DA10, DP10, FFM14, FJ10a, FV13b, FGrR13, FW14b, Fuj10, Fur11, GS12b, GD11a, Gna12, GST13, GR12, HP12b, HKPR13, HJN12, HN14, HS12c, ISYY11, Kak10, KSAM12, KS11c, Lac13, LLY11, LL13b, LT11a, LW13a, LL13, Lim11b, Lim12, Lim14, MWZ13, MPS10, MW14b, Mat14b, MPT14, MY14, Mol11, MR10c, OTdDv12, PP14, dSP10d, Pep12, PV12, QS14, Ros12b, SSMS14, Tan10a, Voy13, WXH10b, Yam13, YFW13, YJ12, ZCKS12, Zha14b, Zim13, vdW14].

positive-definite [CM12a].

Positive-kernel [BKV14].

Positivstellensätze [Cim11, SS12b].

Post [BDV12].

post-Lie [BDV12].

posteriori [Cha12].

Potapov [FKR11a, FKR12].

potent [CLST14, DCR12a, LRT12, LRT13, Rom14, SR13a].

Potentially [BV12, GOvdD12].

Power [GW14a, AH13b, Für10a, GW14b, HSQ13, JMS11, LY13, PP12a, SS11b, Seo14, SHS12, TL13a, WF14].

powerful [LLH10, LYL13, YW11, ZLH+14].

powers [BLdPS10, Bie14, CL13b, DKL13, GW10, GKR13, Jai11, JLW11, Pat10, Rim12, SS10b, WWG10, WZ13d, HOT13].

pre [Bar10b, Gar12, Grü12, Lim13b, Rod12a, Tam12, Zha12a].

PPT [Lin14a].

pre-Hilbert [Pop12].

pre-Jordan [BM13c].

preconditioned [Jbi10].

preconditioner [CJ10, DOKT12, GOSV12, Raf14].

preconditioners [JX10, LZ11a, PZV11, TDT13].

Preconditioning [BTYZ12, PIM+10, SS13b, Tre11, TD11, Wan11b].

predetermined [MVPS10].

predictable [KS11a].
programs [Sag11]. project [NN10]. projection [Cha10, Hua11a, LRV12, LB14, NN10, NN13, PPKR12]. Projections [BJ11, ACG13b, ACG14, BS10, CSC13, CM10a, CM11b, Ili10b, JG10, SS10d, WL10a, ZZW13]. Projective [BH10, BEV13, De 11, DTL11, JH11b, LSV12, Mer10]. projectors [HRT13]. Prony [PT13b]. Prony-like [PT13b]. Proof [Das11, Das13, Dom10, FGG10, GS12a, Hill14c, Kak10, KN13c, Kon13, LYL13, Rho10, Van13, ZY12a, vdW14]. proofs [CHZ13, Dra14, FF10, Sat11, Sat14]. proper [MS12, TG13]. Properties [ANF11, CFLY12, DCW12b, HM14a, ANPQ12, ACG13a, BHDF12, BCD10, BB14, BJ10c, BLS14, CP10, C11, Dax10, Den10, DJK12b, DGM10, Far11b, FPC13, FH10a, FH13, FJ10b, GB13, GM11a, GM11b, HG11b, HL11d, Hum10, Hun14, ISYY11, Jun12, KKL13c, Kus13, LaG12, LZ13, MS10a, Nor12, Ref12, Rod11, Rod12b, ST10b, SSZ13, SSR13, Sto11, Tre10, Tre12, WC11, Zho12].

property [Aud13b, Bai14, Bal10, Ben10, CL12a, CGCZ10, DK14, GTR12, GLS13a, J10, JV11, KP14a, KS11a, L11a, LNN14, Mor10, Mou12, NP13b, PP12b, Pu11, Sto12b, Tao13, TSG14, AGPP12, LI14, UW11].

Q [Tao13]. QR [BBE10, LYS13]. QRacah [wH12]. QTT [KRS13, Sav12].

QTT-rank-one [Sav12]. Quadratic [GKS10, KD12, Pol13, BCY12, DS11, Den10, EY13, GS10a, GLP13, GS12b, Gre12, HMP12, Hu10, J10, Jun14, KS11b, LT12a, MPS10, MR10a, Mei13, MP10, NT11a, dSP12c, Pop10, Sha13a, Tia12, TGM11, XZ13, Zha12d].

Quadrature [BB10, Rei11a, BFRR14]. quadric [GS12e].

quadrics [B14, BS11]. quadratical [ST10b]. quantized [Han11a]. Quantum [Dug11, Wei11, GC14, CH14, GZ13, HW13, J13, KL12, SL14, W13].

quantum-trace [KLS12]. Quasi [aCCS14, CRU13, MS14a, Wu13b, BM10, BFdP12, BIT12, BDFP11, CRU14, DS14, DJK12a, ES13, ET13, Fuj11, GLS10, HTS14, HF12, Kim12, oI12, PLL12, WH10, WLL14, XM11, LLS12]. Quasi-

[CRU13, GLS10, CRU14]. quasi-arithmetic [WLL14]. Quasi-Arnoldi [LMB12].

quasi-Banach [BDFP11]. quasi-class [DJK12a]. quasi-inverses [HTS14].

Quasi-isometries [MS14a]. quasi-Jacobi [BFdP12]. quasi-Kronecker [HF12].

quasi-triangular [ES13]. quasi-Weierstraß [BIT12].

Quasi-Whittaker [aCCS14].

quasiseparable [BOZ10, BOZ11a, BOZ11b, OM12].

quaternionic [Kim13c, KAAK11].

question [Cha13b, CLI4a, Drui2a, Qui11].

questions [CL14b, Shp10]. quiver [Stu12].

Quivers [Sev11, GS12b, Lop11a]. quotient [BO12, Bot14, LL10d]. quotients [Dax10].

R [Gar12, Gem10]. R. [Vse12]. Racah
racetrack [SS10c].

Radial radii [CLS10, FKR11b, LSC11, LL11c, ST13, XZ13b, XG13, YWS11a, YWS11b].

radius [Alt13, Aud10a, BMSW10, BMSW11, BL10b, BNP11, BNP12, BNP13, BC14c, BS13b, CT10, CLS13, CKST11, CvDKL10, CTG13, DHLX12, Dai12, DP10, DZ13, Dum13a, FY10, FN10, GLS10, GL12a, GP14, GR10, GMV11, GLS12, GL12c, GLS13b, HJZ13, HY14, Hua11c, KI10, Koz10, Koz14a, LLS12, LS10, LT11a, LWZ11, LWV12, LP12, LS11b, LCZ10, LL10e, LX13, aLwW13, LLT12, MR14b, MP13a, NP12, Nik10b, NOL13, NLL13, OM13, OM14, Pep11, Pep12, SWT13, WXH10a, WB12, WMZ13c, XZD14, XZ14, YFW10, ZH12a, ZHG13, Zho10a, radial [Dum13a].

radix [Dum13a].

radix-rational [Dum13a].

Rado Rado-Horn [CP12, OLW14].

ramified [MM10a].

Randi´c [CFK10a, GMRS14, GFB14].

Random [Bod13, LAL11, Bos11, CLL13b, DLS10, DLL11, PS12, Wik11, Wik12].

randomization [PQ12].

randomized [PQ10, PQZ13, GO12, NT14].

range [Ali12, BT11a, CG13, Che14b, CN10b, CN11c, CN13c, DWSX12, DDK14, DGH+11, For14, GH11, HH12a, KI10, LPS13, NRS12, PT13a, PGM+11, Sha11, SL14, VL14, WC11].

ranges [ACG13a, BS12a, CGWW13, CN11a, CN12b, CP11, CLS10, DD11d, Gau10, GW13a, GTW13, GW14b, WB12, HMP+11, Lee13a, TW11b, Tsa11, WW13a].

Rank [BCS13b, DP12b, FGvRR13, IW13, LT11b, LX13, MNZ10, iO12, AAF+12, ABEV10, AHL+14, BGV12, BT10, Bal14, BBF+10, BBF+12, KBM+13, BBC+14, Bar10a, Bar13a, Bat14, BMN+13a, Bea12, BG13, BR14c, BSU14, BC13, BdS10, BH13b, BRLS12, BHZ10, BDOvdD12, BKMS12, BZZ+14b, CT14a, CRU14, CR10b, CAV13, Cau11, CHY11, CHY12, CN11a, CN12b, CLS10, DHLX12, DoMP09, DGH+10, Dea11, DS14, DBZZ14, DGMS10, EHH+12, FM11a, FP13, FdC14a, Fra13, FL12, Fri13, GW13a, GG12, GS12f, HHMS10, Hog10, HC10b, HC10a, HZ11b, HTW13, IMA10, JK13, KG12b, KRS13, Kim11a, Lee13b, LT10a, LC10, LTX14, MAGR13, MS13a, MR13, MR14a, MZ12b, MQ13, MQ14, MMRR11, MMRR12, Mit11a, MNZ12, dSP11a, dSP12a, Per11, Pin12, RW12, Sad12, Sag11, Sav12, SM13, SHT12, Shi11, Shi12c, SydH11].

rank [SK12, SC10, Tra11b, Tra13, TDT13, WFM11, WZL13, WMZ14, Zh12d, Zim13].

rank- [BdS10, Fra13].

rank-1 [SC10].

Rank-one [LC10, Lat14, DHLX12, Sag11].

Rank-preserving [BCS13b].

Rank-width [IO12].

Ranking [BEK13, Dah12b, Tra13].

Ranks [BL13b, BSK12, BSKL13, Ber13b, BBM14, CHLW14, Fri12, JZ11, KSB12, MQ11, Shi12b, Shi13, SSM13, Tia12].

Raphael [Ano13-27].

rate [CNPP12, EY13].

rates [GL10c].

ratio [EJLS11].

Rational [BKV14, Duk12, Duk15, Lon11, AL13b, AIL12, Baj14, BT11b, Boj13, Bre14, Dumi13a, MR10b, MR14c, Rad13].

rationals [HNZ12].

ratios [BRA11].

Rayleigh [LL10d, SS12c].

rays [BF14b, H112a, M111].

rd [CKAC14].

Re [N13].

Re-nnd [N13].

Reac [N13].

reachability [BLLM13].

reachable [SS10a].

real [Aga14, AKM13, AAT12a, Bal14, BGP13, BH13a, DDOvdD12, B¨un14, Cau11, CGSCZ10, Coh14, Dai13, FGvRR13, Gre12, He14, Ikr10, Kal13a, Lav10, MS10b, MSS12, PR13b, RdSP11, Sag13, SYH14, W13d, Wód14, XZ13a].

real-nonreal [PR13b].

realisable [ES14].

realizability [CL14b, HX12].

realization [O10].

Realizations [BCdP11, BKV14].

realized [FW14b].

reals [KN10].

Rearrangement [TCL11].

reasoning [DD10c].

recpection [RMT11].

Recht [CMS12b].

reciprocal
reciprocals [GIP12]. reciprocity [SR13a].
recovery [DPF10, NNW14, PS14a]. recruitment [DT10]. rectangular [CRU10, CRU14, Coh14, DDM12, GY13, MRW11, ZCQ13].
Recurrence [LM10c, VS14b, IY12, Góm10, Lin10].
Recursion [JR11, BHAP12]. reduced [Hwa12, TW10a]. reducibility [GTW13]. reducible [Gau10, Kar11a, ZLH+14]. reducing [DFS14, LHZH11, ZLH+14].
Reduction [CN11c, KS11b, BGW12, BDG13, Bli12, Cha10, KMS13, LS13a, LRV12, LBLS12, MAGR13].
regression [ATS12, HLP12, LJJ12, YiKIS12].
Regular [CD10, CLL13a, CCL14, GX12a, Han14a, KS13b, Kol13, Kub13, LS14, QSW14, Row12b, AAI12, AKA13, Ban13a, BP12, Bat14, BIT12, BZ12a, CvDKP13, CSZ10, CR10a, CR10c, Cer10, CMNW14, CS13b, Cio10a, Cio10b, CW12b, CP10, DFG10, DVDF11, DS14, ES13, FGG10, Fio12, FP11, FG13c, GW14b, GM14, HM10, HL10b, HLZ12, Hua12b, HLZP13, Hua13b, KS14c, KY11, KPY11, LZ10, LLN+12, Lee13b, LW14, LLS10, LGZ14, MM10a, MSP11, MW14c, NS12c, NS12b, RTR10, SS10a, SSS13, SS13a, Ste11, WML13, vDF14].
regularity [CN10d, EdP14, GZ12, SBM11]. regularization [HRT10, LRV12, SS10c]. regularized [Fio12, XSS13, LB14, LKN13]. Regularizing [FRS14]. regulators [EY13]. related [Ano12-30, BG12a, CD14, Car10a, CMS12b, Dah11, Dru14, Duk12, Duk15, GMS12, HW11, HP12b, JRMFSS12, KSAM12, KPI14b, LRST10, Maz10, MPSS10, MTS11, Naj13, Nak13, Rah13, RO10, Sei14, SHZ10, Tim14, TT11, ZYL10]. relating [Ste10]. relation [CFJKS13, DdC13, GB13, JV10, LSH12, Yan10a]. Relations [LRT13, AK12a, ADW13, BR12, CM13, DW10, JR11, KPI14b, LM10c, Mar11, Mar13c, Tim14, Wój14a, IY12].
Relationship [CN10a]. Relationships [HRT13, MS12]. Related [BMM12, Sha10a, Iik+13, Koz14b, MS10c, Nak10, Nie11].
Relaxed [FFS11b, Nak12, SK14]. Remark [SK13]. Remarks [Lu12, PHS13, Rod11, dOHKS12, YY14c]. removal [MNZ12]. removed [LWV12].
Rényi [Iik+13]. repetition [BCF14, BF14c]. replicated [PYZ14]. replication [AT14b]. report [BFH+12]. Representation [BY11, OM12, YZ13, Ben14a, BD13, BBS12a, CM12b, CN11b, DMS10, DMK+14, Irv12, KAAK11, Kyr13, Qua12, Sag13].
Representations [DW11, XCS13, XSH14, jASZ12, jAS13, BY11, BE10, Buc10, CN12c, Den11, DD10c, Dor10, Han11a, IM11, Kaw13, LW12d, LZ11b, Ma11, Net10, NT12a, Qua10, RPM14, Ros12c, SY12, Sze14b, VS11, XZ13, Yun14, GMT13].
represented [GN13]. Reprint [BOZ11b, Mar13c]. Reproducing [Wor14, Che13, CD12c, SST14]. require [BDM+12, GOvdD14]. Required [CP10].
restrictions [Woj14b]. result [Cam13].
Resultant [ER13, Rue13]. resultants [BL10a]. resulted [XX14]. resulting [Cha10].
Results [Tam12, AT14a, BG12b, CW12a, CvD10, CI13, DMS10, GL12c, LJ11, LKN13, LW13b, MH13a, MK12, MD10, Mos13, Naj13, PAS11a, RTR10]. Retaining [GR12]. retrieval [FMNW14].
Reverse [CH11, BLD12, DD11c, KSA11]. Reversible [GP13b]. reversion [Boj13].
Review [Bar10b, Gar10, Gar12, Gle11, Gre13, Gru12, Lim13b, Ret11a, Rod12a, Sla10, Tam12, Zha12a, Lan13]. reviewers [Ano12c, Ano11a]. revisited [CTW11, EM11, FHM13, Qua10].
Rheinboldt [Rue12]. Riccati [BJ13, GL10c, Guo13, LwCJ11, Per14].
Richardson [AW10, CDP10]. ridge [LJ12]. Riemannian [HP12b, Yam13]. right [KLZ10, LT12b, LT16]. rigid [BCS13a, Hen10]. rigidity [AN13, LV14].
ring [CGRVC13, DW14, KLZ14b, Pet10, TZ12b]. rings [Ada14, AKN12, AwW11, AwW13, AW10, BE12, BCDM13, CRS14, DW14, DW14, Ere13, Gho13, Gre12, LaG12, Lak10b, LZ10, LD12, LZ12a, LHL12, LL10b, Liu14a, Mar10, MSW12, R12D, SS10a, SSS13, TZ12b, TZ13a, Wan11a, WC12, WW13b, ZCW13].
Riordan [AMPT13, BH12, CJ11, CJL13, CK13c, He11, JLN13, LM10c, LMS12, WZ14a]. RIPless [KG14]. risk [VV13, Vas14].
Ritz [Buj13, CH13]. Robust [KKB11, SMB11, FM12]. Robustness [MS14c, NRR+11, KL13, Fon14, MMP13b, MP13b, MP14b]. Roger [Lim13b].
Row [AM12, Bar12b, CC10, DDP14]. rows [AG12, HTW13, PS12]. Roy [Pat12a]. rule [BB10, Ji12a]. rule-based [BB10].
rules [PR10, SB11]. Ryser [EGR12].
scaled [LJ11, Sra13]. scaling [Fri11, JT11b, Ser13]. scattered [DS13].
Schatten [MTS11]. Schauder [Per14].
schemes [GH13a, GH13b, GZX14, GMV11, Kim12, MGLW11, MW12a, MW14a, WLG11, ZY12b].
Schreier [FP13]. Schröder [EWY12, TznYz11]. Schrödinger [WZ14c, aCCS14, DLMZ14, Dub14, WZ12, WZ13c].
Schur [Aud13c, BFS11, CGMS10a, DV10, DW11, FKR11b, GS10c, GLS13a, GK12, HIMS13, HL10b, K12L, KY14, LH10b, LHZ11, LGL12, Ney11, Seg14, SC12, St102, Th13].
Schrödinger-type [BFS11].
Schwarz [GD11a, GO12]. Science [CS11].
Scrambling [Kim13b, CL10a, HL10c].
SDD [GEP13]. Search [MS10a, CKAC14, Gle11, Kam10, WZ14b].
Secant [BL13b]. secants [BBC13].
Second [Bar10b, AGL11, Bos11, Böt13, CCL14, Das10b, Das11, Kal13, Koi13, NY11, KPY11, LY11a, LBS12, LGS13.
second-neighbor [Böt13], second-order [LBLS12, LS14, SS11d]. section [Sha14b].

Sel
delf [DHS10], selecting [HYF14, YiKIS12]. Self [OR12, RS14a, SS11d, ADW13, BT13, DL14, DZ12a, Gle11, HSZ12, Kam10, MSS14, SSR13, Tif11, vBM13, BDK11].

Self-adjoint [OR12, RS14a, SS11d, ADW13, DZ12a, HSZ12, SSR13, vBM13]. Self-organizing [Gle11, Kam10].

Self-dual [MSS14, Tif11, BDK11]. Selfadjoint [Dra12a, MMRR12, RS12b].

Semi-Cayley [GL10a]. Seli

centralizing [GL10a]. Semi-conv

cing [DYW14].

semi-definite [BCS13b, BLL12, LLB13, vdW14].

semi-nonnegative [CAK14]. semi-radii [FKR11b]. semi-symmetric [CAK14].

semi-triple [ZHK11a]. semicrossed [DD14].

semidefinite [AHAPP10, Bal10, BMW10, BMN+13a, CPV10, Dca11, EHE+13, FJ10a, FS14b, Fur10b, Kak10, LV14, Mit11a, MNZ12, Net10, Pop10, Sag11, Sag13, SM13, SvH11, WXH10b, Zha11b, Zib13].

semidefiniteness [Dr14]. semifields [Sin10a]. Semigroup [Mer10, Tan11].

Semigroups [Sem10, BPA+11, BMR11, CD13, Jun12, KLP13, Mar10, OR12, PRW11, Pop13a, SLS13]. semi-linear [KP13, ySpW11, ySpW12, ySpW14, dOHKS12, dOFK+13]. semimodules [AGNS11, BH11a, LT10a, Sin10a, SN12, SN14, Tan14a, Tan14b]. seminorms [GD11a]. semipositive [J11b].

sequence [AW13b, BB+14, BMSW10, BOS13, BDFP11, BCFP12, BDovD12, CGR13, CGTR14, CH12, CK14, DP10, Lac13, aLwW13, MN12b, PPK13, Pel12, TD13, Tan10a]. sequences [BV12a, Ben10, BHK10, CC12, CL13b, CP11, Duk13a, FKR11b, FKR12, FKM13, HNZ12, JJKS11, JHP13, LL10e, LM10c, SCS11, Sev14, SV13, VS14b, Wan14a, Y12, df10]. sequential [Dug11].

Series [Bar12a, OR12, RS14a, SS11d, ADW13, DL14, DZ12a, Gle11, HSZ12, Kam10, MSS14, SSR13, Tif11, vBM13, BDK11].

Sets [FdC14b, PV12, BBH+12, BJ10a, BH11a, Cal12, CSZ10, CR10c, CP11, CLHQ14, Dau12, FHL+11, GLZ14, HT14, HHL10, HRT13, HCY10b, JSS13, Lim13a, MH13b, Mey12, MS11b, NN13, Net10, Pel12, PR12a, Row14c, Sin10b, VW10b, WHL10, YHH12, ZY12b, ZSWB14, Ziv12, dS12a, dSC14, vdH14]. setting [GJ11, Gul11]. seven [BSU14]. Several [GL14, ZY12b, CHZ13, FJ10b, Pro10, SV11, Zha14c]. Seyesen [Maz10]. shadows [DGH+11, GZ13]. Sham [YM12]. Shannon [HK+13]. shape [Cha14, GL10b, HG10, IS14, NT10a].
shapes [HJN12], Shapley [FDS13], sharable [Cec10], share [Pro10], Sharp [BS13b, CW10, CLS13, DZ13, HJZ13, NCDs14, Pd14, XX14, XZ14, YWS11a, ZLW12, AHS10, Ctg13, DFR13, Der13, HG11b, INT11, KHG14, Lan14, RMAJ10, RL13b], sharpened [Alt13], Sharpening [Reh10], sharply [MW12a], Shaun [Gar12], Sheffer [He11, Wan14a, LY12], Sheffer-type [He11], Sherman [MS11a], shift [CN13a, CN13b, GTW13, HG11a, Mei13, TW11b, Tsa11, VU14, WW13a], shift-and-deflate [Mei13], shift-invariant [HG11a], shifts [KY14], Shorrocks [JP11], Short [Mir10, BL13a, KN13c], Shortest [Voy13], shrinking [MD12e], sided [CRS14, LYS13, PPZ14, Seg10], Sign [AT11, BDM+a, Hua12b, OTdDv12, AHL+a, BP12, BDH+a, BMKS13, BC14c, CFJKS13, CL10b, CGSCZ10, CP10, FHS14a, FHS14b, GLZ14, GS12a, GovD14, GK14b, GB14, GIP12, GOvdD12, HL10b, Hua11b, HLZ12, HLZP13, Hua13b, JMS11, KKB11, MMR12, PP11a, PR13b, WHL10, YS13, dS12a], sign-definite [KKB11], sign-matrices [CGSCZ10], sign-patterns [dS12a], Signal [BOZ10, BO12], Signature [HW14c, HLZP13, O’D14, Sin10b, WF14], signed [AHLvdH13, AT14b, Bel14, FW113, GKL11, LHL10, LYL13, Vij14, YW11, ZBW12], Signless [BZ12a, YWS11b, Zho10, ACG+a, ACM+a, AOTR13, BMSW11, CT10, CW10, CT12, CTG13, CS10b, Das10b, Das11, DLS14, FF12, GK14b, GW13b, GGY14, HL10a, HL12, HJZ13, HY14, LS10, LWZ11, LW12b, LZ12b, LTS13, LL10c, LL11c, LTL13, LL14b, LL14c, LSD14, MK12, NLL13, TW10a, WB11, WF12, XZ13b, YY14a, YFW10, YWS11a, ZZ13, ZHG13, Zhu10a, dLOdAn11, dLN13], Siler [CPH11], Silva [FdC12, LPQdS10], similar [GS12c, HLZP13], similarity [Bar10a, Bar13a, CAV13, CD11, CLHQ14, Far11a, FGS11, FFG+a, FJ14, FHS11, Ger12, LNT13, dSP10a, YY14b], similarly [Nie12], similitudes [GS12c], Simple [ATS12, CBB13, GJTP13, WZ13e, Dub14, FGG10, KZ10, MB13, RR11, ZY12a], Simplification [dO12], simulation [Hür13, LAL11], Simultaneous [BLLM13, GHS13, LS13a, LV11, LV12, MM11a, Ara12, Bar10a, Bar13a, Gna12, dSP10a], sine [LdS13], Singer [DH12b, WY14b], single [BR14b, MM12], Singular [AK12b, BHZ10, CN13b, DS10, HK10, BFR14, BGV12, Bcem12, BR14c, CQYY13, DD10a, DW11, DY14, DdF13b, DdC13, DLV13, Dur12, GH13a, GH13b, GZX14, HSZ12, JK13, KN13b, Liu14a, LS14, MB13, MM11a, ND11, Nik11, OLM14, dSP10e, RR14, Slv13, Vui12, Wui13, XSS13, ZCQ13, ZJ10, ZH12], singularity [dS12b], Sivasubramanian [Sat14], Six [CdGS12, CdGS20, LGSC14, DK13a], Six-dimensional [CdGS12, CdGS20, DK13a], size [BL12, Cir13, NS11a, ST12, SBMT10], skeleton [ACDM14], sketching [NNW14], Skew [ABS14, CCF+a, DKS13b, MMM13, AW13a, ABS10, CLL13a, CLL13b, CD12a, CLHQ14, DY14, FMI11a, GX12a, GHW+a, IMA10, LL11a, LL11b, LHL12, MSA13, NS12c, io12, Öz13, Sel10, Sev14, Sha14b, TT10, Tia11a, WY14, XG13, YT13b, Yan10a, Zhu12c, de13], Skew-adjacency [CCF+a], skew-energy [WYZ14], skew-Hermitian [DY14, Sha14b], Skew-symmetric [DKS13b, MMM13, AW13a, CD12a, FM11a, IMA10, MSS12, IO12, Öz13, Sev10], skew-symmetrizable [Sev14], skews [HI13], slack [GGK+a], Slant [GS10e, Sed11], Sleipan [FZ11], slice [Fri11], sliding [Koz14b], small [BLL13, Cal12, DG^a, DGZ13, Dd10b, FK13, JSS13, Kol13, NS13, Shi12c, WB12, YFW13], smallest [GK14b, GLS12, Kal13b, KPY11,
ZHG13, ZJ10, dLOdAN11. Smith [FP11, MMMM13, RM11, Sad12, TW14, Wil14].

Sobolev [KKLY14, RBP12]. SOC [PCC12]. SOC-convex [PCC12]. SOC-monotone [PCC12].

Solution [Ano12a, Byd10, Dru12b, HJLS11, KPRT14, LwCJL11, CQYY13, CI10, DS11, DD11a, DDG +13, DK13b, DS12c, GKL11, HMR12, HLS11, Ji12a, Jim10, KMS13, KD12, LCwCL11, LH12, LlP11, MS11a, PL14, Per14, Roh11, SMC11, VS10, pWIW14, Zha12c, ZLD11].

Solutions [Br¨a12, AiS13, AG10, BLLX11, BM10, BM12b, DH12a, FMWW12, FH12c, Fur10b, Kyr13, LV11, LV12, LL13d, LTX14, Mir12, Miy13, Miy14, Sag11, SW10, WD10, XSI13].

solver [PPKR12]. solves [BGW12]. Solving [BN13, MZ12b, MSP13, PQ12, SB11, Tnu11, WCKL13, Bey12, NH10, KKM13, SK14, SHZ10, XX14, ZY12b].

Some [AT14a, BDH +12, BCD10, S12d, CP13, CW12a, CME10, Cra13, CL14, CI13, Dai13, DD14, FH10a, FI13, Fe13, GL12c, HG11b, Hun10, JLN13, JL12, KK12, KK13, tLY1W10, L1J1, LKN13, LCZ10, LSD14, MA12, Maz10, MK12, MS14b, Na13, NPP13, SYH14, Sph10, Sta12, Sto11, TKLX14, TPZ12, Wad14, WXH10a, YW10, YY14c, Zha14c, ZBW12, AM13a, AdFM11, BP14, Bar13a, BM12b, BRZ13, BH11a, BZ12a, BZW14, CR13, Cau11, CHZ13, CFL13a, DHH2b, Duk12, Duk15, Fan12, Fis14, Fra12, Gha13, GL10c, HLW14, HG10, HG12, HL11c, JNS13, KI10, KKR11, KJ13, KP14b, Kus13, Kyr13, LL13d, L1Y13, LW12e, LHL13, MZ11, MR12, MN12b, Nat13, RRK12, RMA10, RM10, S10, SSZ13, wTW13, Uch10, VU14, WW10, WFM11, WW13d, Wód14, Wój14b, YT13a, Zha12b, Zho11, ZCW13, ZXZ10, ZH12].

Some [DGG11, SBMT10]. Somos [CH12]. Somos-4 [CH12]. SOR [LMT10]. Sorensen [BELK12]. Space [Bra10, And13, BV12a, Bai14, BR11, BFK+13, BE13, BPD14, DK13a, DK13c, CD12e, Dai13, DK11, DK12a, DK13b, DV14, DWX12, DK14, FP14, GH13b, GN14, HKK+12, HD14, dHL13, KLP12, LSV12, MAR13, Mat13b, Mer10, MMM13, PO10, dSP11b, dSP12b, PGM+11, QH10, Ros12b, Tim14, pWIW14, WC11, vBM13].

Spaceability [BS14, BDF11, BC13, CGM14, RS14c]. spaceable [BFPPS12].

Spaces [Ozd13, dSPI4, Qui11, AS12a, AM13c, ARZ11, ABG14, BG13, BDT14, BDF11, BDF12, BC12, BR13, Bud11, CD10, Cau11, CM13, Cir14, De 11, DW10, Dra12a, DP10, DX13, Dub14, Fan12, FM11a, FFS11b, For14, GZX14, Gon11, GL13, GL14, HMT10, HZ11a, Hua11a, HZGY12, HZ12, KP13, Kec13, Köh14, Lac13, Lán10a, LMM11, LM12, LHG10, LT11b, LT13, MMS12, MZ12a, MZ11, MM13, MN12b, OWL14, dSPI2a, Pep12, Per11, PT13a, RAAG11, RS14c, SP1, SST14, ySW11, ySW12, ySW14, SM12, TD13, Wal11a, WLG11, WY13, Wój14a, Wol12, Wor14, YW10, ZHQ14, de 13, dSW12, tHR13]. spanned [LT10a, SY12a]. Spanning [GS10b, Bap10, CW12b, Gón10, LS13b, LHL14, LHL14].

Sparse [Ano12a, Dun13b, GP13a, KR12, KP14, PT14, CCL14, MSP13, NN14, Rue13, Wan11b]. Sparsity [KKL13c, DT11, JKN14, MZ13, Zho12].

Special [BM13c, GRS+10, HP12a, LPQ10, St13, AAH13, BDH+12, DGM10, FM11b, FV13b, FKL13, HLS10, Nor12, Nor14, PdFD14, RR14, TZ12a, TD13, Xu12, BBD+11, KP14]. specified [Nik10b]. Spectra
Techniques
[DGH+10, IPFD13, KY14, Tam12]. tennis
[Dah12b]. tensegrity [AN13]. Tensor
[Dug12, KS10, Nemi13, SC13, BCM10, CS13a, DKS10, Fri11, HM14b, HWSH13, Jai11, KRS13, Kub13, LPS13, LKN13, LQY13, MZ12b, Pat10, PGM+11, QS14, Reg13, Rho10, SE13, SC10, ZCQ13].

Tensored [FH10c].

Tensors [Bra10, TS12, Bal12a, Bal12b, BGK13, BBCC13, Ber13a, Ber13b, BBM14, BZZ+14b, BL13b, CPZ13, CQYY13, CKAC14, DQW13, FdCR10, Fri12, FKL13, Fri13, HH14, KM11, Qi13, RV13, RE11, Sav14, Sha13b, SSZ13, SQ14, SS13, UV13, Vla12, XCI13, YHY14, YY14c, YY14h]. term
[BSK12, BS13, BM12, KS12, FdC14a, KSB12, Tia12].

terms [CGMS10a, HJZ13, Hun14, MW14c, RL13b].

Terwilliger [GZH14, Kim12].

tesselations [CSAC10, CSAC11]. test
[Ara12, Hua13b, Peń14].

testing [Wal11b].

tetrahedron [IRT14].

tetris [CHK+13]. th
[Guo10a, HL11b, LSC10, LLH10, Lin10, TNP12].

their
[AK11, BEM12b, BS13, BZ12b, BZW14, CEM14, CTW11, Dor10, FKW13, GS12b, GK121, GB13, GIP12, GLW13, GL14, HMS13, HK13, HQS13, HHL14, JZ14, KKL13a, KKL13b, Lee13c, LH10, LHZ11, LSI14, Lon11, MGIW11, Mmmm13, MR12, MS12, MSS14, Mit11b, Mou12, NY13, Ogu13, QSW14, qui13, ySpW12, Tia12, V10, WLLX11, WS12, WLM13, WY14a, Wód14, Wu13a, ZHQ14, Zha14b, ZCC14, Ziv12].

theorem
[AS14, BHI13b, Bri13, CH13, Car10b, CP12, DLN14, Dok12, Don10, Eo11, FTZ12, Fid10, FGG10, FGH13, Gum13, GKI2, GMSR14, HH12b, Han13a, Hua12a, Hwa11, KN13c, Kra13, KW13, Lai12, LL14d, Mel13, MW12b, Nak12, OLW14h, PR13a, Per14, Pit11, Pon11, Rho10, RL13a, RAAGVS11, SY12, SSGL10, SRadAG10, Tao11, Wag11, Wat13, ZY12a, de 13, vDF14, Had12, Had13, Lee11, DDM11].

Theorems [CTW11, LHZH11, Bar12a, BFdp10, Hill2b, Nak10, Pin11, Sat11, Sat14, YW10, dCdlRMP14].

theoretic
[BB13c, Böt13, FH13, Kus12].

theories [MLC+10].

Theory
[Bar09, BFH+12, MOA11, Sla10, Tam12, Zha12a, Ano12-30, AH10, BV12a, BPA+11, Beh13, BS10, BBS12a, CC14, CS10b, DD10a, DD11a, DD11d, GL10c, Ika11, JZZ11, KZ11, LN12, MMRR11, MMRR12, Nik13, NV12, PO10, RR12, RL13a, SB12, Sei14, SRdAG10, TN14, Zha12d, HB12, Lim13b].

Thin
[God10, God12, Shi12a, Cer10, Kim12].

Third
[Bra10, KM11, SHS12].

Third-Order
[Bra10, KM11].

Thirring
[And13a].

Thompson [ISYY11, Lim13a].

Three
[Cha14, Dor10, HLW14, Kar11b, BS11d, CKST11, C13, DP12a, D11c, Dra14, KS13b, LZG14, MAS12, dSP10b, WBWH13, vDO11].

Three-by-three
[Cha14].

Three-equipped
[Dor10].

Three-parameter
[Kar11b].

threshold
[Bap13b, JTT13, VDVJT13].

thresholded
[GR12].

tight
[Bod13, BW13a, DHS10, FMT12, HS12a, Sin10b, Szö13].

tightly
[BS13a].

Tikhonov
[LKV12].

tilting
[PY1412].

Time
[Pol12, BCY12, BLM13, BJ13, DT10, DZ12a, FY13b, HDP12, HRT10, Jun14, Kir10, KM14, Liu13, Mah11, PKR12, RMT11, Sad12, Sha14a, WZ13b].

time-delay
[Mah11].

Time-domain
[Pol12].

time-invariant
[DS12a].

time-varying
[Liu13, PKR12, Sha14a].

times
[BRZ11, Góm10, PR10].

Tits
[GS12b].

TN
[JSW13].

Toeplitz
[BH12, BS12a, BCD10, BBGM12, BF14b, Bün14, CRS14, CG11, DK13e, Eo11, Gor13, GG13, HR11, KL12, KMS13, KW12, LMYY11, LJY13, MS11a, RR14, Rim12, SCSS10].

tomographic
[PS141a].

TOP
[Sha10b].

Topical
[SN12, Sin10a, SN14].

topics
[Ano12-30].

Topological
[Bud11, RS12c, ABG13, FR14, JZZ13].
TN14, AJ13. topologies [Sha14a, ZY14].
Total [HC10, LB14, BP14, Dun13b, Kus12, LJ11, PO11, Peñ14, RMAJ10, YM12, SS10c].
Totally [HC10, LB14, BP14, Dum13b, Kus12, LJ11, PO11, Peñ14, RMAJ10, YM12, SS10c].

Tournaments [BF14a, NS12c]. TP [HJN12, JW13, PS14b].
TP-critical [PS14b].

Trace [Aud12, BLdPS10, DK13e, LLB13, FL10, HH13, Hia13, KLS12, KK14, Lu11, MY14, MSwW12, Ros12b, Spe11, WLHL10].
trace-preserving [Ros12b]. traces [FF10, KHG14, WXH10a, WZ13a]. track [Han13a].

Transformation [DMMY10, Lak10a, Li12, LLMZ12, TZ13b, XZD14, XE11, ZLL12].
Transformations [FKM13, BB13a, Bal10, Buc10, DK13d, DD11b, DAG14, DFS14, GTR12, HG10, HG12, JV10, RAY14, Sin10, wT11W, Taol13, TGI13, TGM11, VW10b].

Transformed [KS12b]. transforms [LdSP11, LdS13, Xu14]. transition [BAN12].
transitive [Kuz10, MW12a].

Translation [CS12b, JCP10]. transmission [Wei13a].
transpositions [KM12]. transversals [AGK11, Fan10a]. treatment [AMPT13].

Tree [Bap10, CGTR14, DT11, FHRT11, Góm10, GS10b, LLS11, MR14b, SH12, XM11].

trees [AJRT14, AW13b, BL10b, BZ12b, C1J2, CW12b, DZ11, FZW11, FHRT14, GFY10, GLS13a, HL11a, HT10a, wH13, JNS13, KS13a, LSC10, LT11a, LW11, LW12b, LS13b, LGSC14, LY11b, LZ14, LHL14, LHGL14, MW13, NP13b, NOL13, PLL12, PdFDV14, RJ10, RJ11, Row10, SvdH11, SWT13, Tan10a, wTmS12, WT12, WF14, WL10b, XF11, ZZZ11, Zhu12b, vdH13, JT11a].

tri [EN11].

tri-additive [EN11].

triangle [Dea11, MPSS10, PY10].

triangles [H13, LHL13].

Triangular [DGMS14, Kaw12, AvW11, AvW13, BBG14, BG14a, Ben11, BE12, Bie13, Cir13, CM14, CI14, DYW14, DW12a, DW12b, DW14, DW14, ES13, Erel13, FFG+11, FdC10, Go13, HC14, HW11, JQ11, LMfY11, MW12a, VS11, Wan11a, WWD13, WW13b, WX11, WMZ14, XW10b, XW12, XSH14, YZ13, YZ10, ZZ10, ZZ12].

triangularizability [YT13a].

triangularizable [dB12c, RY12a].

Triangularizing [TTZ13].

trichotomy [MSP1].

triplcic [CL11a, GL12a, LW11, LY1a].

Tridiagonal [BC14a, NT10b, NT11b, ÁNQP12, AMJ14, BT13, BD1+12, BDG13, BC12a, BK12, CM10b, GG13, HH11a, INT11, IT11, KHG14, LHL110, MS11a, NT10a, Qua10, Rim12, SC12, Van10, Wühl13, dF10, dS12a].

tridiagonalization [PPZ14].

trigonometric [CN11b, LdSP11, LLMZ12, Sra13, ZLL12].

trilinear [DS10].

triple [Mol13, Rel10, Rel11, SM12, XW12, ZH11a].

triples [AA12b, BM12a, GWH13, HWG13, HWG14, wH12, Siv12b, Siv12a, lli10b].

Tripotency [Kis15, XX12].

tripotent [Kis15, XX12].

Tripotents [BY11].

trivectors [DK13a, DK13c, DK11, DK12a, DK13b].

Tropical [AGM14, AGK11, BS11d, DHS12, GS12f, dIP11, Cas10, C1JR11, GMH14a, GMH14b, JK11, KNS14, LdlP11, Shi12b, Shi12c, SLS13, Wd11, Will11].

Tropical
truncated [DK13e, Sto12].

Trust [Cha12, DGMS14].

Trust [Cha12, DGMS14].

Tsallis [IIK +13].

Two [AKM14, AR10, AIL2, AK11, BB13b, Bot10a, Bot12, BS10, BS11c, BS13a, Brä12, BZ13, CGMJ14, CN10a, Ho11, Hll14c, HMP12, Jun14, Kis15, KW12, KKM13, KR10, LLS11, LwCJ11, LSR11, Lop11a, LMT10, MW14a, Mar10, MH13b, MP10, NR10, NS12a, PPZ14, dSP10c, dSP12c, Pet10, Psw11, SW11, SH13, Tz12a, TH10, TZ13b, WBWH13, XZ12, ZW12b, Ziv12, Zuo10, FF10].

two-by-two [BB13b, KKM13].

two-cyclic [LMT10].

two-dimensional [Ma11, LwCJ11].

two-level [KW12].

two-parameter [HMP12, MP10].

two-player [Jun14].

two-sided [LYS13, Seg10, PPZ14].

two-variable [AIL12].

Tykhonov [SS10c].

Type [AI13, AAT12a, AK11, BR14a, BRA11, Bdl14, BFS11, BCI4a, CL12a, CA10, Da12, DD11c, Dra12a, FPC13, GH13b, GWH13, GD11a, He11, HM14b, HWG13, HWG14, wH12, IS14, JKN14, KKL14, Lec10, Lin13, Lin14b, LxK12, MfG14, NY14, NT10b, Pag12, Pat12a, Rmc10, ST10a, SE13, SS10c, Sch10, Seo13, Sev10, Sev13, Tao11, TPZ12, Wad14, Wik11, Wik12, Wil13, Wol12, Wor13, CGGS13].

Typical [SSM13, Bal14, Ber13b, Fri12].

UK [Lim13b].

Umbral [Ern13].

Unbounded [And13, CG12, For14, GMMFPSS12, Pop14].

Uncertain [Lim13b, Sh14a].

Uncertainty [Yan10a, GJ11, MW12b].

Unconditional [LM12].

Underapproximation [GP13a].

Undetermined [Miy14].

Undirected [CGMJ14, CFHL14, FS14a].

Uni [ZHF13].

Uni-mode [ZHF13].

Unicellular [FGS11].

Unicyclic [AW11, AKM14, BMSW10, CLL12, DC14, DZ12b, FW13, FY10, GH13, HL12, HLL10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, ZH12c].

Unified [AM13b, KKN14].

Uniform [LMY11, CD12b, JZZ13, Nik14, QSW14, XC13].

Uniformly [MD12c].

Unimodular [GY13, KBS13, MRW11].

Union [Ziv12].

Unions [Dau12].

Unipotent [CHJ13, Bot10a].

Uniquely [KKL13a, KKL13b, Lr13c].

Uniqueness [LL10a, Der13, Mor10, Sta14, We13a, ZHF13, Dra14].

Unit [AG12, BR12, DW10, MPS10, Ref12, RL13a].

Unitall [KLP13, BS12b, BG14b, Wan14b].

Unitarily [FCL10, FUR10, Ikr10, MA12, Van10, ZH12].

Unitary [GPT12, Ger12, LNT13, AR10, BF13, Bud11, CLHQ14, Far11a, FGS11, FFG11, FHS11, GHS13, KAMS11, LNN14, Li10, LWGM10, LPS13, LMW12, Mol13, Pop10, SY12, Ste13, Tad12, TMS14, GTW13].

Unitriangular [Bie14].

Univ [Gle11].

Univariate [BL10a].

Universal [CFG14, HO11, AAF12, AN13, LV14].

Universally [HCY10a].

Universitext [Tam12].

University [Bar10b, Gar12, Gri12, Lim13b, Re11a, Rod12a].

Unordered [KS13a].

Unreduced [Wü13].

Unstructured [RW12].

Updates [EM12].

Updating [SWA12, JDY13, KD12].

Upon [CFJKS13].

Upper [BHKM13, CFL13b, DLS14, DZ12c, WZL12, AHS10, BBG14, CR10a, CGTR14, CLS13, Cir13, CM14, CG14, CTG13, CI14, DW14, FFG11, FTA11, Fdc10, Gho13, Glsl3b, Hc14, JMS11, PJ13, RMA11, RL13b, SK13, SWT13, TC13, WW13b, WMZ14, ZLW12, ZZ10, Zho10b].

Upset [BRLS12].

Uriel [BMS14b, Loe12].

Use [PTPL10, VS10].

Using [MS11a, TP13, AHAPP10, AHS10, BBH12,
BEK13, BRZ11, BTYZ12, BHAP12, CNT12, GS12d, Han11b, Han13b, Han14b, Kim11a, KZ11, MSP13, OM12, PS14b, RMT11, RW10, SPKS12, TMSS14, UV13, VS13, WXH10a.

validation [LJ12]. valuation [AW10].

value [jASZ12, AK12b, BFRR14, BHMO13, BMSW11, CQYY13, DLV13, FDS13, FdC10, MM11a, NdM13, ST10a, XWD13, ZCQ13, ZJ10, ZHQ13]. valued [BJ10a, CD12c, KKR11, Nie13, SN14, Tia12, vBM13]. values [AHL11, AM14, Buj13, KKR11, Nie13, SN14, Tia12, vBM13].

Vandebril [Gem10]. Vandermonde [BOZ10, DU14, God12, KS14b, MM10b, ZYL10]. vanishing [KLZ14a]. variable [AIL12, KY14, LLY11]. variables [WL13b, DU14, Gna12, HYF14, Mat14a, Pet10, SV11, YiKIS12, Zha14c, dO12].

Wedderburn [MAGR13]. Weibull [Fou14]. Weierstraß [BIT12]. weighing [KMNS12, NP10]. weight [AG12, Dub14, LT11a, LSV12, Tan10a, WZ13c]. Weighted [GTW13, JLLY10, LP14, Pål13, PP14, BKP12, CN13a, CN13b, EWY12, GX12b, GHW+13, GS11b, KP14a, KKS12, KKL10, KLL11, KY14, KW13, LLY11, LT11a, MR12, MS14b, NP13b, NSC13, PO11, RM10, Tan10a, TW11a, TW11b, Tsai11, VU14, WW13a, WLL14, Wy13, XCS13, Yam13, YZF14]. weighted-EP [TW11a]. weights [KP14a, Stu12, Tsai11]. Weil [AI13].

Weitzenböck [DDF13a]. Welsh [DHC12]. well [IO12]. well-quasi-ordering [IO12].

Wenzel [Lu12]. Weyl [DV14, FKR11b, FKR12, Nak10]. Wg [MD10]. Which [GGK+13, CFK+10b, DHLX12, FdC14b, Gu14, Ogu13]. Whitney [FV13a, Wag11]. Whittaker [aCCS14]. whose [BMSW11, BZ12b, CK14, DU14, 53]

References

Adhikari:2011:BES

Adhikari:2014:SMP

Ahmadi:2012:MRU

[AAM12] A. Armandnejad, F. Akbarzadeh, and Z. Moham-

Alaminos:2010:BMD

Albuquerque:2014:PCT

Araujo:2014:LSE

Adiga:2010:SED

Alaminos:2012:MPZ

Anuradha:2014:SSG

Cai:2014:QWM

Abreu:2014:SAB

Abreu:2011:BSL

Arias:2013:PPP

Arias:2013:APO

Arias:2014:SPP

Abreu:2010:P

Adashev:2014:NGZ

Abreu:2012:LSL

Abreu:2014:CCI

Abreu:2014:P

Adam:2014:DEC

Alzer:2011:NPB

Andelic:2011:NVS

Andelic:2011:BID

Azizov:2013:CMD

Asadi:2012:CHM

Abiad:2014:IAB

Abreu:2012:IAM

Arias:2010:PSO

Abdel-Ghaffar:2012:CMF

Adm:2013:ITN

Agapito:2014:SPO

Allamigeon:2011:TPC

Akian:2014:TBE

Akian:2011:BAM

Agore:2014:CCA

Armario:2012:KMP

R. Armario, F. J. García-Pacheco, and F. J. Pérez-Fernández. On the Krein–Milman Property and the

Aouchiche:2011:EVS

Arav:2014:MRS

Arav:2013:ISS

Aouchiche:2010:SUB

Antoulas:2012:TVR

Abaid:2012:CPC

Abara:2013:NSE

Ahmadi:2014:LAB

Ayala:2013:LFM

Abreu:2014:OTG

Atreas:2011:BIM

Adm:2012:BMR

Audeh:2012:SVI

Ayupov:2013:LDM

Afkhami:2012:GCG

Aiura:2013:NMG

Alpay:2013:CCG

Daniel Alpay and Izchak Lewkowicz. Convex cones of generalized positive rational functions and the...

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Avrachenkov:2013:APG

Alpay:2014:IPS

Alizadeh:2012:NRP

Alon:2014:EAR

Ai:2014:OBC

Andruchow:2012:CMH

E. Andruchow, G. Larotonda, L. Recht, and A. Varela. A characterization of minimal Hermitian matrices. *Linear Algebra and its Applications*, 436(7):2366–2374, April 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Walaa Asakly and Toufik Mansour. Enumeration of compositions according to the

Anonymous:2010:LEt

Anonymous:2010:PIC

Anonymous:2011:LR

Anonymous:2011:LEa

Anonymous:2011:LEb

Anonymous:2011:LEc

Anonymous:2011:LEd

Anonymous:2011:LEe

Anonymous:2011:LEf

Anonymous:2011:LEG
Anonymous:2011:LEh

Anonymous:2011:LEi

Anonymous:2011:LEj

Anonymous:2011:LEk

Anonymous:2011:LEo

Anonymous:2011:LEp

Anonymous:2011:LEq

Anonymous:2011:LEr

Anonymous:2011:LEr

Anonymous:2011:LEs

Anonymous:2011:LET

Anonymous:2011:LEu

Anonymous:2011:LEv

Anonymous:2011:LEw

Anonymous:2011:LEX

Anonymous:2011:NEC

Anonymous:2011:P

Anonymous:2012:ASA

Anonymous:2012:LEp

Anonymous:2012:LEt

Anonymous:2012:LEq

Anonymous:2012:LEu

Anonymous:2012:LER

Anonymous:2012:LEv

Anonymous:2012:LEw

Anonymous:2013:HBL

Anonymous:2013:LPA

Anonymous:2013:LEa

Anonymous:2013:LEb

Anonymous:2013:LEc

Anonymous:2013:LEd

Anonymous:2013:LEe

Anonymous:2013:LEf

Almeida:2013:NCS

Alvarez-Nodarse:2012:SPC

Abdollahi:2014:CG

Ashraf:2013:SSL

Araujo:2014:LBC

Albeverio:2010:DSO

Arambasic:2012:BJO

Amri:2010:SAC

Ahmed:2012:MIO

Alfsen:2012:FDC

Alves:2012:PPN

João Ferreira Alves and Luís Silva. Periodic paths on nonautonomous graphs. *Linear Algebra and its Applications*, 437(3):1003–1015,

Pudji Astuti and Harald K. Wimmer. Characteristic and hyperinvariant subspaces over the field GF (2). *Linear Algebra and its Applications*, 438 (4):1551–1563, February 15, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Balan:2012:SSTb

See erratum [Vla12].

Ballico:2014:TRR

Ben-Ari:2012:IFT

Bapat:2010:CCS

Bapat:2013:MCM

Batzke:2014:GRO

Bauer:2012:NGL

Benzi:2010:QRB

Beasley:2011:CEG

Budnitska:2011:CAO

Bach:2013:NDF

Bai:2013:NBT

Bottcher:2013:P

Baragana:2012:CBS

Baragana:2013:CFA

Bini:2010:FIQ

Barioli:2010:ZFP

Barioli:2012:GCC

Bini:2013:PIC

Bachman:2014:FUT

Bogoya:2012:EHT

Barrett:2012:CIS

Bernardi:2014:CDN

Bremner:2012:CHC

Murray R. Bremner, Mikelis G. Bickis, and Mohsen Soltanifar. Cayley’s hyperdeterminant: a combinatorial approach via representation theory. Linear Algebra and its Applications,

Bendito:2010:GIS

Bendito:2012:MIP

Boza:2012:GAV

Bueno:2014:SSLa

Botelho:2012:MSS

Brachat:2010:STD

Richard A. Brualdi and Geir Dahl. Majorization classes

Bevilacqua:2013:CRA

Batselier:2013:GAF

Batselier:2014:NSM

Bartolone:2011:NLA

Bebiano:2011:IEP

Botelho:2011:SBQ

Bevilacqua:2013:BTR

Roberto Bevilacqua, Gianna M. Del Corso, and Luca

Brualdi:2012:PRC

Bebiano:2013:ISP

Bhattacharyya:2013:DSC

Burde:2012:AAL

Bremner:2010:AQA

Benkovic:2012:MLD

Beasley:2012:INV

Behrend:2013:FPM

Benz:2013:RHA

Belardo:2014:BLE

Benner:2012:MBD

Bahrami:2012:LPM

F. Bahrami, A. Bayati Eshkaf-taki, and S. M. Manjegani.

Dennis S. Bernstein. *Matrix Mathematics: Theory,*

Berget:2013:EST

Bergqvist:2013:EPT

Braun:2013:LCP

Beyn:2012:IMS

Brualdi:2014:BOT

Brualdi:2014:HTX

Bueno:2014:SSLb

Burde:2014:JJA

Bollhofer:2013:PIC

Bebiano:2010:ACP

Bebiano:2011:EPS

Bebiano:2012:LQJ
Bolten:2011:AMM

Brualdi:2012:TAM

Barik:2011:HDG

Bondarenko:2013:SSU

Botelho:2012:SE

Baglama:2014:ADN

Benner:2011:HKS

Peter Benner, Heike Faßbene-

Bruhn:2011:BCU

Bhatia:2012:NIR

Bialas:2012:FRC

Bartoszewicz:2013:ALV

Bapat:2014:ITM

Benkovic:2014:GDU

Bru:2012:GM

Ballani:2013:BBA

Butkovic:2011:P

Bartoszewicz:2011:ANC

Ballani:2013:BBA

Bartoszewicz:2011:LFL

Baker:2012:LRI

Beattie:2012:ISI

Zhong-Zhi Bai and Apostolos Hadjidimos. Optimization of extrapolated Cayley transform with non-Hermitian pos-

Abderrahman Bouhamidi and Khalide Jbilou. On the convergence of inexact Newton methods for discrete-time algebraic Riccati equations. *Linear Algebra and

Bouhamidi:2011:ETM

Botelho:2012:SIA

Bessenyei:2011:FEG

Betcke:2011:PER

Buchholzer:2012:BEE

Bruzdi:2010:TNM

Barrett:2013:DMR

Wayne Barrett, Mark Kemp ton, Nicole Malloy, Curtis Nelson, William Sexton, and John Sinkovic. Decompositions of minimum rank

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Brualdi:2012:TRM

Brualdi:2013:PAS

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Bapat:2012:WDG

Ball:2014:RCI

Bistritz:2010:BRU

Biyikoglu:2010:STM

Türker Biyikoglu and Josef Leydold. Semiregular trees

Boutin:2011:MRP

Biyikoglu:2012:GGO

Benitez:2013:SPM

Buczynski:2013:RTG

Bourin:2014:DSP

Bebiano:2012:RHK

Blumthaler:2010:FO

Bayat:2010:PSF

Balmaceda:2012:LTL

Benner:2013:CAS

Bernik:2013:LAA

Bremner:2013:SIP

[BM13c] Murray R. Bremner and Sara Madariaga. Special identities for the pre-Jordan product in

Bermúdez:2013:PI

Bernik:2011:PMS

Belardo:2010:SRU

Francesco Belardo, Enzo M. Li Marzi, Slobodan K. Simić, and Jianfeng Wang. On the spectral radius of unicyclic graphs with prescribed degree sequence. *Linear Algebra and its Applications*, 432(9):2323–2334, April 15, 2010. CODEN LAAPAW. ISSN 0024-

Maria Chiara Brambilla and Giorgio Ottaviani. On partial polynomial interpolation.

Blumthaler:2012:DPP

Bodmann:2013:RFF

Bojicic:2013:HTS

Boshnakov:2011:FSO

Botha:2010:PTU

Botha:2010:SAN

Botha:2012:STS

Bottcher:2013:OTA

Botha:2014:MDI

Bourgeois:2011:HSM

Bourgeois:2013:CIS

Bella:2010:SFG

Petter Brändén. Solutions to two problems on permanents. *Linear Algebra and its Applications*, 436

Marek Balcerzak and Filip Strobin. Spaceability of the...

Beasley:2012:PTR

Beasley:2013:CTR

Bostan:2010:FCA

Butkovic:2013:TCN

Bomze:2014:SEC

Baksalary:2010:SMB

Oskar Maria Baksalary and G"otz Trenkler. On a subspace metric based on matrix rank. *Linear Algebra and...
Baksalary:2011:DRM

Barkovsky:2011:HRF

Bayat:2011:AGM

Bebiano:2013:DIS

Bolten:2012:PSA

Buckley:2010:ETP

Budnitska:2011:TCA

Bujanovic:2013:PAR

Bunger:2014:IDE

Barnsley:2011:EPL

Badawy:2012:PTA

Buzinski:2013:MPF

Bikchentaev:2011:RTR

Bydder:2010:SCL

Bu:2014:RDS

Bu:2012:SLS

Bu:2012:STW

Campos:2013:ARC

Cardinal:2010:SMR

Carriè:2010:CCS

M. Cavers, S. M. Cioaba, S. Fallat, D. A. Gregory,

Camacho:2013:FLA

Camacho:2013:LAN

[CCGO13]

Camacho:2013:FZA

[CCGVO13]

Chen:2014:RSA

Cardinali:2010:RPD

Cigler:2011:LGS

Grega Cigler and Roman Drnovšek. From local to global similarity of matrix groups. *Linear Algebra and

Coelho:2012:LPI

Cooper:2012:SUH

Curgus:2012:RKP

Cigler:2013:SMN

Can:2014:EBS

Cho:2010:EOH

Cicalò:2012:SDN

See [CdGS20].

Cicalò:2020:CSD

See [CdGS20].

Conflitti:2012:MLC

Cechlarová:2010:MML

Carmona:2014:DEO

Chen:2010:LEB

Cheng:2013:SNI

Chodrow:2013:ULB

Craigen:2013:CPH

Cui:2012:PPP

Carli:2013:EAM

Cvetkovic:2012:P

Cheung:2011:PST

Cheng:2013:NNR

Chan:2013:MEI

See corrigendum [Che14b].

Couselo:2010:SCL

See also Part I [GS13a].

Castillo:2011:PST

Corach:2012:USI

Gustavo Corach, M. Celeste Gonzalez, and Alejandra Maestripieri. Unbounded symmetrizable idempotents.
Chen:2014:UGH

Ciesielski:2014:LSA

Castro-Gonzalez:2010:DIP

Castro-Gonzalez:2010:EDI

Camacho:2010:NGF

Cruz:2014:UBE
Castro-González:2013:GIM

Cicone:2010:FPP

Carmona:2014:DSU

Chen:2014:ECC

Chang:2013:NRG

Chen:2011:MEI

Chai:2014:TTC

Chen:2013:IOR

Chen:2014:LMC

Cheng:2014:CSN

Chiumiento:2013:NOL

Can:2013:UIM

Casazza:2013:NSC

Peter G. Casazza, Andreas Heinecke, Keri Kornelson,

Choi:2012:EIM

[CHLS12]

Cadney:2014:IRM

[CHLW14]

Choi:2013:PCC

[Cho13]

Chang:2011:CGR

[CHY11]

Chang:2012:CGR

[CHY12]

Chang:2013:DME

Chugunov:2010:CSN

Cvetkovic-Ilic:2013:SRI

Cvetkovic-Ilic:2014:PRC

Cvetkovic-Ilic:2011:ROL

Casas:2012:ACD

Cimpric:2011:SPM

Cioab:2010:EEE

Sebastian M. Cioab. Erratum to “Eigenvalues and edge-connectivity of regular graphs”. *Linear Algebra and its Applications*, 432(9):2455, April 15, 2010. CODEN LAAPAW. ISSN 0024-3795 (print),

Corey:2013:PFV

Cheon:2013:ARG

Chan:2011:MMT

Melody Chan, Anders Jensen, and Elena Rubei. The 4×4 minors of a $5 \times n$ matrix are a tropical basis. *Linear Algebra and its Applications*, 435(7):1598–1611, October 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Canete:2013:CDL

Cheon:2013:EFO

Cheon:2013:NAH

Choi:2014:MSB

Coloigner:2014:LST

Cheon:2010:ASF

Chung:2011:NBI

Chen:2010:SIS

Cheng:2010:PZS

Cheng:2011:NTG

Chuang:2011:LCL

Cao:2012:GKT

Chen:2012:LSA

Cronin:2012:ISN

Bo Cheng, Bolian Liu, and Jianxi Liu. On the spectral moments of unicyclic graphs.

Chen:2013:SUB

Catral:2014:MGC

Minerva Catral, Leila Lebtahi, Jeffrey Stuart, and Néstor Thome. On a matrix group constructed from an \(f_{R,s+1,k} \)-potent matrix. *Linear Algebra and its Applications*, 461(10):200–210, November 15, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Cai:2013:HAF

Corach:2010:PPO

Costa:2010:FFT

Chan:2011:HGN

Corach:2011:POP

Domingos M. Cardoso, Enide A. Martins, Maria Robbiano,

Chammam:2012:OPC

Conde:2012:OIR

Covas:2010:LJA

Cheung:2010:RBZ

Chien:2010:JNR

Chooi:2010:CAC

Mao-Ting Chien and Hiroshi Nakazato. Critical values for higher rank numerical ranges associated with

Cohen:2014:CGI

Cortes:2010:RNP

Chorianopoulos:2011:BJA

Casazza:2012:EIP

Domingos M. Cardoso and Peter Rowlinson. Spectral upper bounds for the order of a k-regular induced subgraph. *Linear Algebra and its Applications*, 433(5):1031–1037, October 15, 2010. CODEN LAAPAW. ISSN 0024-

Paula Carvalho and Paula Rama. Integral graphs and (κ, τ)-regular sets. *Linear Algebra and its Applications*, 432(9):2409–2417, April 15, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Costa:2011:CGT

Campello:2013:PAL

Canuto:2014:DIM

Cardoso:2010:MER

Chang:2010:GMS

Cardon:2011:JCF

Chang:2011:CGM

Ting-Chung Chang and Bit-Shun Tam. Connected graphs with maximal \(Q\)-index: The one-dominating-vertex case. *Linear Algebra and its Applications*, 435(10):2451–2461, November 15, 2011. CODEN LAAPAW. ISSN 0024-

Naiomi T. Cameron and Andrew C. M. Yip. Hankel de-

Czornik:2010:PED

Dong:2010:NCP

Dahl:2010:MPM

Dahl:2011:PRI

Dahl:2012: MMC

Dahl:2012:MBR

Dai:2011:EBL

Dai:2012:GTS

Xiongping Dai. A Gel’fand-type spectral radius for-

[Dax10] Achiya Dax. On extremum properties of orthogonal quo-

[Duan:2014:GLR]

[Deng:2013:KIC]

[Deng:2012:PCC]

[Deng:2014:EBU]

[DBZZ14]

[dCF12]

[DCF12]

[DCIW12a]

[DCIW12b]
DeTeran:2010:FOS

Dinh:2010:MPZ

Dogan-Dunlap:2010:LAS

DeTeran:2011:SEA

Derevyagin:2011:DTJ

Dincic:2011:MTR

Dou:2011:NOP

Dickinson:2013:IEC

Teran:2014:SEM

Duggal:2014:EOF

Teran:2013:CNI

DeTeran:2012:FCL

Teran:2014:NBR
DeBruyn:2011:PVS

deSeguinsPazzis:2013:GTS

Deaett:2011:MSR

Deng:2010:PGQ

Deng:2011:CRG

Derksen:2013:KUI

daFonseca:2010:PTM

Deng:2014:PLM

Guodong Deng and Yun Fan. Permutation-like matrix groups with a maximal cycle of prime square length. *Linear Algebra and its Applications*, 450(??):44–55, June

Das:2014:IEG

Derevyagin:2014:MGT

Das:2014:LEL

Diaz-García:2011:WDS

Diaz-García:2013:SE

DeLoss:2010:TDM

Dunkl:2011:NSM

Mehdi Dehghan and Masoud Hajarian. The general coupled matrix equations over generalized bisymmetric matrices.

Xiongping Dai, Yu Huang, Jun Liu, and Mingqing Xiao.

B. P. Duggal, I. H. Jeon, and I. H. Kim. On quasiclass A contractions. *Lin-

Ralph John de la Cruz, Kenneth L. de la Rosa, Dennis I. Merino, and Agnes T. Paras. The Cartan–Dieudonné–Scherk

Du:2011:ILI

Du:2011:ERG

Du:2010:NNE

Dubsky:2014:CIS

deLima:2013:SLE

DeTeran:2014:FTM

DelaCruz:2011:PDM

deMalafosse:2012:SSA

Dopazo:2010:FRR

Dolzan:2011:CGM

Dolzan:2011:NGM

Dolzan:2013:DDI

deOliveira:2012:SSP

Dorado:2010:TEP

Drnovsek:2010:SRP

Dieci:2012:HMD

Duarte:2012:RSD

Dossal:2010:NEC

Ding:2013:TNT

Dragomir:2012:HHT

S. S. Dragomir. Hermite–Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces. Linear Algebra and its Applications,

Drury:2013:FDI

Drury:2014:PSI

Draisma:2010:SLT

Datta:2011:SAQ

deSa:2012:ISS

Deaett:2012:LAM

Dodig:2012:ESC

Dubsky:2014:CSW

Duggal:2011:QES

Duggal:2012:TP1

Dukes:2012:RDD

Dukes:2015:CSD

Dumas:2013:JSR

Dumitrescu:2013:STL

Bogdan Dumitrescu. Sparse total least squares: Analysis

Dureisseix:2012:GFF

Delvaux:2010:SPG

DeSchepper:2014:GDW

Dalfo:2011:PAD

Dette:2010:MMU

Deng:2011:RDI

Du:2012:CMT

Yiqiu Du and Yu Wang. k-commuting maps on trian-

[Du:2014:CSH]

See [WW13b].

[Deng:2012:DRO]

Chunyuan Deng, Yimin Wei, Qingxiang Xu, and Chuanning Song. On disjoint range operators in a Hilbert space. *Linear Algebra and its Applications*, 437(9):2366–2385, November 1, 2012. CODEN LAAPAW.

See [WW13b].

(DXG12)

[Das:2012:CBK]

[Das:2013:SPL]

(Dou:2014:SCG)

(Druskin:2012:CKS)

(Zhibin Du and Bo Zhou. The Estrada index of trees. Linear Algebra and its Applications, 435(10):2462–2467, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).)

[Du:2011:EIT]

(Zhibin Du and Bo Zhou. The Estrada index of trees. Linear Algebra and its Applications, 435(10):2462–2467, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).)

[Du:2012:EIU]

(Zhibin Du and Bo Zhou. The Estrada index of trees. Linear Algebra and its Applications, 435(10):2462–2467, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).)

[Du:2012:UBS]

(Zhibin Du and Bo Zhou. The Estrada index of trees. Linear Algebra and its Applications, 435(10):2462–2467, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).)

(Du:2012:UBS)

(Zhibin Du and Bo Zhou. Upper bounds for the sum

(Zhibin Du and Bo Zhou. Upper bounds for the sum

Ejov:2010:ENG

Ernst:2014:P

Euler:2012:SCC

Edholm:2012:VES

Einstein:2011:RFV

Eastman:2014:CMP

196
See corrigendum [EKSV18].

Eremita:2013:FID

Ernst:2013:UAF

Erdmann:2011:CPS

Ehrhardt:2013:BAQ

Ellard:2014:CNR

Estrada:2012:CDG

Estrada:2012:PLM

Ellens:2011:EGR

Esslamzadeh:2013:SQO

Ellers:2011:CSC

Elsner:2010:MAP

Eu:2012:HDS

Estevez:2013:DRE

Fanai:2010:EPT

Fernandes:2014:SPV

Fernandes:2010:DCT

Fernandes:2013:MAA

Fleischhack:2010:APH

Fallat:2012:BLE

Farber:2014:EET

Foniok:2011:CCM

Fang:2011:GAN

Friedland:2013:SSF

Fulman:2013:NRS

Fiol:2010:SPS

Friedland:2013:PFT

Farhi:2011:PLC

Fiedler:2010:SIP
Miroslav Fiedler and Frank J. Hall. Some inheritance prop-

Fuhrmann:2010:EDS

Fuhrmann:2010:TPM

Fiedler:2012:M

Fiedler:2012:NPG

Frommer:2012:VEB

Fiedler:2013:SGT

Fiedler:2014:MAC

Forstall:2011:PEI

Fiedler:2013:GDR

Fritscher:2011:SLE

Fritscher:2014:CTL

Futorny:2011:CFN

Fiedler:2014:DAS

Fischer:2014:SSA

Ferguson:2010:GOI

Furtado:2014:SCA

Furtado:2014:SMP

Fallat:2011:TNM

Fendler:2013:DFT

Gero Fendler and Norbert Kaiblinger. Discrete Fourier transform of prime order: Eigenvectors with small sup-

207

Friedland:2013:PSI

Fritzsche:2013:TMS

Fritzsche:2011:SWS

Fritzsche:2012:WMB

Farid:2013:MAS

208
Furuichi:2010:MTI

Friedland:2012:MRG

Fong:2011:NNC

Feng:2012:ENM

Fujii:2010:DCM

Li:2011:PPA

Fania:2011:VSS
Maria Lucia Fania and Emilia Mezzetti. Vector spaces of skew-symmetric matrices of constant rank. *Linear Algebra
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Fiedler:2011:CMS

Fickus:2012:NER

Filipiak:2012:MDC

Ferrer:2013:DMC

Fickus:2014:PRV

Filipiak:2012:MDC

Fickus:2012:SET

Farid:2012:HSS

Fiedler:2010:SRH

Fan:2011:SBC

Fujii:2013:SGF

Forough:2014:MRI

Foucart:2014:SRI

Franchi:2011:IRA

Farnell:2013:FAS

Fialowski:2014:MSD

Fidalgo:2013:MTM

Franca:2012:CMS

Franca:2013:CMR

Furer:2010:PCS

Furuta:2010:PSS

Takayuki Furuta. Positive semidefinite solutions of the operator equation \(\sum_{j=1}^{m} A_j^{m-1} X A_j = B \). *Linear Algebra and its Applications*, 432(4):949–955, February 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Furuta:2011:ACI

Furuta:2012:EIU

Futamura:2012:FDM

First:2013:SWI

Fornasini:2013:ASS

Francis:2014:SM

Frenkel:2014:VCC

Fan:2013:NNU

Feng:2010:LSR

Fang:2011:SIR

Feng:2013:ESI

Fan:2011:LEC

\[\text{Garloff:2010:RTP}\]

\[\text{Garloff:2012:RBN}\]

\[\text{Garoni:2013:EME}\]

\[\text{Gau:2010:NRR}\]

\[\text{Goldberg:2011:CVN}\]

\[\text{Glashoff:2013:MCT}\]

\[\text{Goldberg:2014:ZFS}\]

Gerasimova:2012:USN

Gutman:2014:RE

Gouveia:2013:WNM

García:2011:MPA

Ghosseiri:2013:BUT

Gerasimova:2013:SUE

Special issue in honor of Abram Berman, Moshe Goldberg, and Raphael Loewy.

Grammont:2011:FAN

Gong:2013:IWO

Greco:2012:PIM

Gunther:2014:LFP

Guo:2011:CSS

Guillot:2013:CEC

Griggs:2010:QLF

Germina:2011:PLG

Gao:2010:SSC

Gessel:2010:NEP

Guo:2010:CRS

Geng:2012:SRT

Guo:2012:SRS

Guo:2014:SAF

Gleich:2011:RNA

Guiver:2013:EBG

Godjali:2010:THP

Godjali:2012:THP

Goldberg:2013:OCV

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Gomez:2010:MRT

Gonzalez:2011:ONI

Ghidini:2012:CHP

Goberna:2012:VCL

Greaves:2012:CMR

Greenbaum:2013:BRB

Gutman:2010:ELG

Gutman:2010:SIH

Gutman:2011:DC

Ivan Gutman, Peter Rowlinson, Slobodan K. Simić, Dragan Stevanović, and Edwin R. van Dam. Dragos Cvetkovic, 70. Linear Algebra and its Applications, 435(10):2321–2333,
Grunbaum:2012:RBG

Ganikhodzhaev:2010:DSQ

Gomez:2010:STI

Gowda:2010:SCS

Guersenzvaig:2010:SMA

Gustafson:2010:SAS

Gao:2011:NCS

Yubin Gao and Yanling Shao. New classes of spectrally arbitrary ray patterns. Linear Algebra and its Applications,
Gutman:2011:ECW

Garnett:2012:PCC

Gasiorek:2012:OPP

Guersenzvaig:2012:EMS

Guersenzvaig:2012:RMS

Gulde:2012:SSU

Guterman:2012:TPM

Garcia:2013:MEI

Garnett:2013:NCM

Guo:2011:ACL

Gowda:2013:AGC

Gowda:2012:PLL

235
Grubisic:2012:REP

Gau:2013:WSM

Gu:2013:SSG

Gu:2014:EOW

Gulinsky:2011:SSS

Gumbrell:2013:STV

Guo:2010:NMH

Guo:2010:ACG

Guo:2013:ARE

Guven:2012:SDC

Gracia:2011:LSC

Gau:2010:DIP

Gu:2011:SOG

Gau:2013:HRN

Guo:2013:SLS

Guangquan Guo and Guoping Wang. On the (signless)

Gau:2014:PPI

Gau:2014:SNR

Guo:2014:IER

Gu:2013:SOG

Guglielmi:2012:ARF

Gutkin:2013:JNR

Gao:2014:TAJ

Suogang Gao, Liwei Zhang, and Bo Hou. The Ter-

Hanson:2013:CLP

Hansen:2014:ROM

Hanson:2014:CBL

Har:2014:NLE

Holzel:2012:PMM

Huang:2010:TNN

Hai:2014:CIU
Guojun Hai and Alatancang Chen. Consistent invertibility of upper triangular operator matrices. Linear Algebra and its Applications, 455
Huang:2010:NUO

Huang:2010:MRZ

Halikias:2012:SSD

Henrion:2010:DRC

[Hil14a] Titus Hilberdink. The group of squarefree integers. *Linear
Hildebrand:2014:MZC

Hiller:2014:PTC

Hirn:2010:NHF

Horn:2012:MA

Huo:2010:NUG

Huo:2011:SCM

Hoff:2012:TPS

Hansen:2010:BCS

Huang:2010:SCS

Huang:2010:GSI

He:2011:OTF

Higham:2011:RSM

Huang:2011:BFS

Huang:2011:ZPI

Hwang:2011:CBW

Seok Yoon Hwang and Jeong Yeon Lee. Construc-

Jinchuan Hou, Chi-Kwong Li, and Ngai-Ching Wong. Maps

He:2014:TDC

Huang:2012:NAS

Huang:2013:BKF

Hogben:2010:LAV

Heineken:2014:PFD

Hille:2014:TPP

Harris:2011:NRC

Hochstenbach:2012:LQT

Hochstenbach:2012:DIP

Holtz:2013:MCT

Henn:2010:HSH

Haemers:2010:SLE

Huang:2010:IAS

Jianguo Huang and Liwei Nong. An iterative algorithm for solving a finite-dimensional linear operator

Honma:2014:IGD

Hogenson:2012:MSA

Haemers:2011:UAM

Hogben:2010:MRP

Hoa:2013:GPS

Hwang:2004:IEP

Hwang:2011:CPG

Suk-Gem Hwang and Jin-Woo Park. Characteristic polynomial of a generalized

[Herrero:2013:RBD] Alicia Herrero, Francisco J. Ramírez, and Néstor Thome. Relationships between different sets involving group and Drazin projectors and nonnegativity. *Linear Algebra
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:

Hayden:1999:MCD
[HRW99] Thomas L. Hayden, Robert Reams, and James Wells. Methods for constructing dis-
tance matrices and the inverse eigenvalue problem. Linear Algebra and its Applica-
tions, 295(1–3):97–112, July 01, 1999. CODEN LAAPA,
Waldemar Holubowski and Roksana Slowik. Parabolic subgroups of groups of
column-finite infinite matrices. Linear Algebra and its Applica-
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:

Holubowski:2012:PSG

Hogben:2010:MGN
[HS10] Leslie Hogben and Bryan Shader. Maximum generic nullity of a graph. Linear Algebra and its Applica-
tions, 432(4):857–866, February 1, 2010. CODEN LAAPA,
Marko Huhtanen and Otto Seiskari. Computational geometry of positive defi-
Hogben:2010:MGN

Hoffman:2012:CET
[HS12a] Thomas R. Hoffman and James P. Solazzo. Complex equiangular tight frames

254

Harrell:2014:SGE

Hari:2010:BOJ

Hao:2012:FOC

Heydari:2010:CLP

Huang:2010:AIS

Hadjidimos:2014:BOB

Huang:2011:SRS

Huang:2012:EHT

Huang:2012:SSP

Huang:2013:CEA

Huang:2013:TBF

Hunter:2010:SSP

Hunter:2014:GIM

Hurlimann:2013:GHL

Han:2011:JDT

Harrison:2014:RIF

Holguin:2014:SMA

Hwang:2011:GCH

Hwang:2012:RCH

Hobart:2014:ABC

Hou:2013:CLT

Hou:2014:TBL

Hou:2014:IPH

Huckle:2013:CQT

Hong:2014:SRS

Hashiyama:2014:JBC

Huang:2010:EWC

Huang:2011:PEG

Huang:2011:AMA

Hou:2012:NDM

Huang:2012:PMA

Huang:2014:CBE

Huang:2012:PEI

Huang:2012:SPO

Hou:2010:ND

Isa:2013:GOS

Ide:2012:EIS

Ikai:2011:TPB

Ikramov:2010:NCM

Ilić:2010:DSD

October 15, 2010. CODEN LAA-PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Meiyan Jiao and Jinchuan Hou. Additive maps derivable or Jordan derivable at zero point on nest algebras.
Ji:2012:CCR

Ji:2012:GJE

Jimenez:2010:GSC

Jablonski:2011:HCP

Johnson:2011:MST

Junghanns:2013:CCS

Juditsky:2014:UVN

Anatoli Juditsky, Fatma Kilinc Karzan, and Arkadi Nemirovski. On a unified view of nullspace-type con-

Johansson:2013:SFR

Johnson:2012:SEB

Jung:2010:WGM

Jean-Louis:2013:SAS

Johnson:2011:CEC

Jaklic:2012:NMC

Jena:2012:SM

Jafari:2014:EGM

Johnson:2010:SNA

Johnson:2012:SMP

Johnson:2013:ILC

Jeon:2011:MUB

Johnson:2011:RMM

Carl Jagels and Lothar Reichel. Recursion relations for

Jeyaraman:2011:LPL

Johnson:2013:ATT

Ji:2011:SRS

Jin:2014:CMG

Jin:2014:OPF

Jin:2014:OPF

Jin:2014:OPF

Kakimura:2010:DPM

Kalinina:2013:SDS

Kalita:2013:SIV

Kamvar:2010:NAP

Kiani:2011:EUC

Karlsson:2011:RCH

Karlsson:2011:TPC

Kautsky:2012:GPM

Jaroslav Kautsky. Generalized Pascal matrices generate classes closed under

Kawamura:2012:TBD

Kawamura:2013:MYB

Kumbasar:2012:CFF

Kannan:2014:CSP

Kannan:2014:GPP

Kalaimani:2013:GPA

Koliha:2012:GDI

Kuo:2012:QMU

Koshlukov:2013:PIA

Kecic:2013:CKE

K:2012:BGG

Kalofolias:2012:CSN
Kueng:2014:RCS

Karcanias:2013:AZP

Khatami:2013:PNC

Kang:2014:TAS

Kapitula:2013:IIM

Khosravi:2012:CCP

Karaev:2010:NRRN

M. T. Karaev and N. Sh. Iskenderov. Numerical range

Kian:2014:OJI

Kim:2010:GCI

Kim:2011:BGC

Kim:2011:LDE

Kim:2012:TAW

Kim:2013:GCI

Kim:2013:SIS

Kim:2013:QHF

Kim:2013:OEF

Kirkland:2014:MCE

Kisi:2015:CTL

Ko:2013:SSC

Kari:2012:CWF

Kang:2012:CHT

Kaashoek:2013:FPD

Klasa:2010:FPD

Kim:2011:MGM

Krnic:2012:MJO

[KLZ12a] Roi Krakovski and Bojan Mohar. Spectrum of Cayley graphs on the symmet-

Knuppel:2010:CGO

Knuppel:2013:CIP

Knuppel:2013:CSL

Knill:2014:CBP

Katz:2014:CTH

Khudoyberdiyev:2013:CAL

A. Kh. Khudoyberdiyev and B. A. Omirov. The classi-

Mario Krnić and Josip Pečarić. More accurate weak majorization relations for the Jensen and some related inequalities. *Linear Algebra...
Kutyniok:2014:PSI

Koolen:2011:IIS

Kulkarni:2010:FGB

Khare:2012:SMD

Krakovski:2012:PAV

Krakovski:2013:ABM

Kushel:2011:GEO

Kannan:2012:MPI

Klein:2012:TSD

Kim:2013:UML

Koledin:2013:RBG

Kapil:2014:CMO

Klein:2014:BHG

Koledin:2014:RBR

Kaur:2011:GMV

Kaur:2012:GDI

Kang:2012:LPT

Kim:2012:EDD

Katz:2012:CMM

Kumagai:2011:CEM

Kushel:2012:CTG

Kushel:2013:IPe

Kuzman:2010:ATE

Boštjan Kuzman. Arc-transitive elementary abelian covers of the complete graph K_5. *Linear Algebra and its Applications*, 433(11–12):

Jack H. Koolen and Hyonju Yu. The distance-regular graphs such that all of its second largest local eigenvalues are at most one. *Linear Algebra and its Applications*, 435(10):2507–2519, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Koshlukov:2010:IIG

[198x644]Kong:2011:SJC

Kong:2011:SJC

LaGuardia:2014:NMC

LaGuardia:2012:BRR

Lacruz:2013:HLI

Lagrange:2013:CDF

292

293

Lee:2014:TPM

Li:2012:SQA

Lin:2010:NRE

Liu:2013:HNO

Li:2011:PGE

Liu:2010:SNB
Lee:2013:PDR

[Lee13b]

Lee:2013:MMU

[Lee13c]

Li:2013:SLL

[LFS12]

Li:2013:SCT

[LGS13]

Liu:2014:OPC

[LGZ14]
Huang:2010:BDP

Liu:2010:SCD

Lopez:2010:ODF

Leng:2011:ODF

Huang:2011:BDP

Liu:2013:LSC

Li:2010:TEC

Liu:2014:NED

Leng:2013:PMO

Liu:2014:EDS

Liu:2013:NSC

Liu:2011:SCG

Liu:2013:NSC

Liu:2011:SCG

Liu:2012:SCG

Li:2010:NUP

Li:2012:PPL

Lim:2010:SGP

Lim:2011:SCA

Jiří Lebl and Daniel Lichtblau. Uniqueness of cer-

Lin:2010:SCP

Liu:2010:SLS

Liu:2010:MBR

Liu:2011:SRS

Lee:2011:CSD

Liau:2011:GLD

Liu:2011:SRS

Muhuo Liu and Bolian Liu. On the spectral radii and the signless Laplacian spectral radii of c-cyclic graphs with fixed maximum degree. *Linear Algebra and its Applications*, 435(12):3045–3055,
December 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Lee:2012:SPM

Lan:2013:DGS

Lee:2013:CIM

Luo:2013:SOS

Li:2014:MEL

Liu:2013:SSV

Luo:2013:SOS

Li:2014:MEL

Liu:2014:BSL
Huiqing Liu and Mei Lu. Bounds of signless Laplacian spectrum of graphs based

Liu:2014:CDS

Liu:2014:MTE

Liang:2013:TMP

Li:2013:NSC

Li:2013:NMP

Liang:2010:LBP

Chaohua Liang, Bolian Liu, and Yufei Huang. The \(k \) th lower bases of primitive non-powerful signed digraphs. *Linear Algebra and its Applications*, 432(7):1680–1690, March 15, 2010. COD-
DEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Liu:2012:EET

Lee:2012:NRM

Labra:2014:EAP

Li:2010:NER

Li:2011:MET

Jing Li, Xueliang Li, and Yongtang Shi. On the maximal energy tree with two maximum degree vertices. *Linear Algebra and its Applications*, 435(9):2272–2284, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Lan:2012:GDM

Lu:2012:SRH

Mei Lu, Huiqing Liu, and Feng Tian. Spectral radius and Hamiltonian graphs.
Liu:2013:ECS

Li:2014:SFI

Lee:2011:MVW

Lemos:2010:CHB

Lomadze:2010:SIL

Luzon:2010:RRP

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Li:2012:PME

Loewy:2012:UGR

Lomadze:2011:RDO

Lomadze:2013:NEF

Lopatin:2011:MGS

Loperfido:2011:SAF

Li:2010:APM

Li:2012:MPJ
Lim:2014:WIM

Leventides:2014:ADA

Luk:2011:PLA

Li:2013:LPT

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Laffey:2010:SIH

Letchford:2010:CMR

Lebtahi:2012:CPM

Lebtahi:2013:RBI

Lampe:2012:LST

Li:2010:MSL

Li:2011:PMO

Lin:2011:SRD

Liu:2011:CRP

Lebtahi:2013:MSI

Limbupasiriporn:2012:LWC

Lim:2010:BLM

Loewy:2010:MEP

Li:2011:LSRa

Lim:2011:ROP

3795 (print), 1873-1856 (electronic).

Lancaster:2012:HQM

Levene:2012:CBN

Lin:2013:CSM

Luo:2014:LRS

Lu:2011:LDO

Lu:2012:RBW

Lee:2011:SSS

Lee:2011:SSM

Laurent:2014:PSM

Lang:2012:EGL

Li:2012:LES

Li:2010:SPS

Li:2012:SPS

LWY12

Li:2014:BSR

Lee:2014:CBD

Lu:2010:EOF

Lim:2013:SIM

Liu:2013:PCL

Yang:2013:SMI

Li:2013:TSG

Lee:2010:CNR

Lin:2011:BPB

Lomadze:2011:FOR

[LZ11b] Vakhtang Lomadze and M. Khurram Zafar. First order rep-
representations of Fliess models.

Li:2012:PPS

Li:2012:SLI

Liu:2013:CPP

Ma:2010:TEL

Mouhoubi:2010:NPB

Ma:2011:TDR

Matharu:2012:SIU

Ma:2014:IZP

Mackey:2013:CIF

Mahdavi-Amiri:2013:ERR

Mahmoud:2011:NFD

Mourad:2013:ACD

Marovt:2010:HMS

Mary:2011:GIG

Martino:2013:PIJ

Mary:2013:RG1

Mathai:2014:FIO

Matic:2014:IDP

Maze:2010:SIR

Ma:2013:NSN

Mosić:2010:ARW

Martin:2012:SLA

Martin:2012:SSL
Mom:2012:CEU

Mao:2013:MNP

Meini:2013:SDT

Melman:2013:GVP

Melman:2014:IDP

Merlet:2010:SMA

Merino:2012:SOM

Meyer:2012:ZFS

Martin:2014:GSH

Ma:2011:GFI

Marsli:2013:FRG

Mattila:2013:DIJ

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

328

Mastylo:2013:NEM

Matharu:2011:EEB

Moslehian:2012:NCC

Moslehian:2013:OIC

Morassaei:2013:BIH

Mackey:2010:JSA

Mackey:2013:SSM

D. Steven Mackey, Niloufer Mackey, Christian Mehl, and

Mohammad Sal Moslehian and Hamed Najafi. An extension of the Löwner–Heinz...

Mursaleen:2012:CMO

Mitchell:2010:LBM

Mitchell:2012:LBM

Melamed:2014:CIO

Marshall:2011:ITM

enhancements/fy1114/2010931704-t.html.

[Mor10] Ian D. Morris. Criteria for the stability of the finiteness property and for the uniqueness...

Moslehian:2011:OAI

Mosic:2013:MRG

Mourad:2012:SPD

Muhic:2010:QTP

Muller:2013:GSR

Myskova:2013:RIC

Muhic:2014:MCA

Andrej Muhic and Bor Plestenjak. A method for computing all values λ such that A + λB has a multi-

[MYSKOVÁ AND PIHLKA]

[MICIC, PAVIĆ, AND PEČARIĆ]

[MERINO, PARAS, AND WALLS]

[MERINO, PARAS, AND TEO]

Dennis I. Merino, Agnes T. Paras, and Terrence Erard D. Teh. The As-Householder

336

[McDonald:2014:MRE]

[MQ11]

[MQ13]

[MQ14]

[Mead:2010:LSP]

[Monsalve:2010:NIF]

[Moslehian:2010:GIP]
Mohammad Sal Moslehian and Rajna Raji. A Grüss in-

Marrero:2011:CFG

Medina:2012:ECW

Massarenti:2013:RIM

Alex Massarenti and Emanuele Raviolo. The rank of $n \times n$ matrix multiplication is at least $3n^2 - 2\sqrt{2n^{3/2}} - 3n$. *Linear Algebra and its Applications*, 438(11):4500–4509, June 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Monsalve:2014:CSN

Maze:2011:NDR

Molnar:2010:MSP

Malyšev:2011:USM

Mishra:2011:NGI
Mishra:2012:GMM

Mallik:2013:CGM

Mansour:2013:PSS

Monfared:2013:CMG

Mbekhta:2014:QIA

Mizuno:2014:SWB

Myskova:2014:RFI

Martin:2013:SLS

Malyshev:2011:CTS

Mofrad:2013:SSL

Mehrmann:2012:IRK

Mishra:2014:SDN

Moon:2014:WCD

M. Ram Murty and Junho Peter Whang. The uncertainty principle and a generalization

Ma:2014:NEC

Mason:2014:ENP

Minchenko:2014:SMR

Ma:2013:PNIib

McKee:2014:TBP

Ma:2013:PNIa

345

Niezgoda:2010:AOC

Niezgoda:2011:MRC

Niezgoda:2012:COG

Niezgoda:2013:SSV

Nikiforov:2010:CZP

Nikiforov:2010:SRG

Nikiforov:2011:SLS

Nikiforov:2013:IMF
Nikiforov:2014:AMU

Nitica:2010:SMM

Ning:2013:SLS

Nazari:2014:IEP

Nemeth:2010:HP1

Nemeth:2013:LLO

Nelson:2014:DSS

A. Neuman, L. Reichel, and H. Sadok. Implementations of range restricted iterative

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Ngo:2014:VCN

Nina:2013:JCF

Nakatsukasa:2013:MAG

Nomura:2010:STP

Nomura:2010:TPR

Napp:2011:LQC

Ivan Oseledets and Ekaterina Muravleva. Fast orthogonalization to the kernel of the discrete gradient operator with

Oseledets:2012:RQM

Ogura:2013:GJS

Ogura:2014:LFJ

Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross ap-

Osaka:2012:DPS

Olesky:2012:SPN

Otopal:2012:RKC

Palfia:2013:WMM

Miklós Pálfia. Weighted matrix means and symmetriza-

Patricio:2012:MPI

Porras:2010:CCC

Pan:2012:SMS

Patuzzi:2014:ISC

Potra:2013:CBA

Pellegrino:2014:SCA

Pena:2014:OTA

J. M. Peña. An optimal test for almost strict to-
Peperko:2011:CGS

Peperko:2012:BGJ

Peretz:2012:CAS

PereiradaSilvaeSilva:2013:GIE

Peretz:2014:ASF

Marcela Parraguez and Asunmar Oktac. Construction of the vector space concept from the viewpoint of APOS theory. *Linear Algebra and its Applications*, 432(8):2112–2124,
April 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Pan:2013:RPV

Pan:2011:MCP

Palacios:2010:SRH

Pereira:2013:WTS

Perrucci:2013:ZNR

Protasov:2010:WDS

Pivovarchik:2013:DNI

Kyle Pula, Seok-Zun Song, and Ian M. Wanless. Minimum permanents on two faces of the polytope of doubly

366

Xue ping Wang and Hui li Wang. The generators of

Pang:2010:EOS

[PY10]

Pei:2014:EAT

[QH10]

Pang:2011:CPP

[QH11]

[QH10]

Qi:2010:CDB

[QH13]

Qi:2013:CLD

Rakic:2014:GMP

Rande:2011:LPR

Rezghi:2011:DTC

Reff:2012:SPC

Regalia:2013:MCA

Rehkopf:2010:STD

Rehkopf:2011:CTD

Reichel:2011:RMM

Lothar Reichel. Review of “Matrices, Moments and Quadrature with Applications” by G. H. Golub and

Robbiano:2010:IBL María Robbiano and Raúl Jiménez. Improved bounds for the Laplacian energy of Bethe trees. *Linear Algebra and its Applications*, 432(9):2222–2229, April 15, 2010. CODEN LAAPAW. ISSN 0024-

Rojo:2010:ACS

Oscar Rojo, Luis Medina, Nair Abreu, and Claudia Justel. On the algebraic connectivity of some caterpillars: a

Rojo:2013:SUB

Thomas Ransford and Jérémie Rostand. Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues. *Linear...*

PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Tina Rudolf. Reflexivity defect of kernels of the elementary operators of length.

Ran:2013:DSE

[RvS13]

Roy:2010:EFD

[RW10]

Ran:2012:ERO

[RW12]

Radjavi:2012:IAS

[RY12a]

Robinson:2012:DNE

[RY12b]

Simon:2010:MAC

[SA10]

Soleymani:2014:LPC

M. Soleymani and A. Armandnejad. Linear preservers of circulant majoriza-

Sadkane:2012:LRK

Sagnol:2011:CSP

Sagnol:2013:SRR

Sahi:2010:NRN

Sanchez:2010:CCA

Sano:2014:FDO

Sarkar:2014:WDD

Simić:2010:CGF

Sburlati:2010:PFD

Stegeman:2010:SBR

Somasunderam:2012:ILS

Sorensen:2013:TDB

Schiebold:2010:CTD

Schomburg:2011:PCD

Serra-Capizzano:2011:ACS

Serra-Capizzano:2010:EDP

Soto:2013:NMP

Savas:2013:KTM

Seddighin:2011:SJA

Sego:2010:TSH

Sego:2014:HSD

Seidel:2014:FTB

Gora:2010:SON

Seo:2010:GPS

Seven:2010:QFM

Shao:2013:GPT

Shang:2014:ACM

Shao:2014:FSM

Shitov:2011:IGM

Shinohara:2012:TLM

Shitov:2012:KRT

Shitov:2012:TMS

Shitov:2013:CBM

Shparlinski:2010:SCQ

Shen:2012:MRT

Shao:2010:LSB

Simson:2010:IBF

Singer:2010:ETF

Singh:2010:ETF

Sinkovic:2010:MNO

Skowronek:2011:CMC

Skulj:2013:CID

Sun:2014:RGQ

Roksana Slowik. Expressing infinite matrices as products of involutions. *Linear Algebra and its Applications*, 438(1):399–404, January 1,

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Singer:2012:TFS

Singer:2014:EVT

Sowa:2013:FMD

Spector:2011:CTZ

Stanimirovic:2012:SCI

Song:2014:IFD

Sou:2012:GMA

Serrano:2013:DFP

Serrano-Rodriguez:2013:ASM

Serrano-Rodriguez:2013:ICF

Sra:2013:EEC

So:2010:ATK

[SRA10] Wasin So, María Robbiano, Nair Maria Maia de Abreu, and Ivan Gutman. Applications of a theorem by Ky Fan in the theory of graph energy. *Linear Algebra and...

Sander:2011:ICG

Shang:2011:FZM

Shi:2011:SAE

Stampach:2011:EPP

Sato:2012:EFG

Savchuk:2012:PAM

Schwetlick:2012:NRF

Sato:2013:GBZ

[SS13a] Iwao Sato and Seiken Saito. A generalized Bartholdi zeta

Sesana:2013:SAI

Setyadi:2013:EGS

Sherman:2013:CNM

Sherman:2013:PNM

Stampach:2013:CFJ

Sen:2014:GIE

Shan:2010:EGT

Sumi:2013:TRT

Shader:2014:NPM

Seto:2014:GMR

Shao:2013:SPD

Jia-Yu Shao, Hai-Ying Shan, and Li Zhang. On some...

Saito:2010:DWT

Saldanha:2010:CPQ

Shieh:2012:CBS

Son:2013:SCR

Stanic:2012:SGW

Stanford:2014:UOS

Stevanovic:2010:RAC

Stevanovic:2011:TSC

Stewart:2013:GUH

Storm:2011:SPG

Stoll:2012:KSA

Stupariu:2012:FWQ

Stuart:2013:SFM

Sun:2013:ANJ

Xiaosong Sun. On additive-nilpotency of Jacobian ma-
Suzuki:2013:SLC

Soto:2011:NPS

Stacho:2013:HIS

Sinkovic:2011:MSR

Seeger:2011:IEP

Sergeev:2011:BSS

Shi:2013:LIE

PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Tao:2013:MEI

Tisseur:2011:DQM

Tao:2014:BNP

Tang:2010:IGI

Takane:2011:NFC

terHorst:2013:EAE

Tian:2010:EII

Tian:2011:SEO

Tian:2011:MMR

Tian:2012:FCE

Tifenbach:2011:SSD

Timotin:2014:SCR

Tao:2014:SMI

Tan:2013:DAP

Qianrong Tan and Mao Li. Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains.

Voynov:2013:SPP

Varga:2012:ANM

Valcher:2010:AEC

Verde-Star:2011:ITM

Verde-Star:2013:CCC

Dooren:2014:SEP

Verde-Star:2014:RCD
Vsemirnov:2012:ERC

Vandanjav:2014:NRS

Vulanovic:2012:SFD

Vassiliou:2013:ABS

Vale:2010:SGF

Vartziotis:2010:CPS

Wenzel:2010:ICI

David Wenzel and Koenraad M. R. Audenaert. Impressions of convexity: an illustration

Wang:2011:HPM

Wang:2014:DAS

Wang:2014:LDU

Wang:2013:GWL

Waterhouse:2013:BMT

Wang:2013:GET

Wang:2012:PDI

Weng:2013:SLS

Wu:2011:SIP

Wang:2010:PSS

Weiner:2010:OSM

Weis:2011:QCS

Stephan Weis. Quantum convex support. *Linear Algebra and its Applications*, 435(12):3168–3188, December 15,
2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Huang:2012:CLT

Huang:2013:TLT

Wikramaratna:2011:CIM

Wildstrom:2011:DRL

Wilson:2013:OAG

Williams:2014:SFA
Gerald Williams. Smith forms for adjacency matrices of circulant graphs. *Linear Algebra and its Applications*, 443(??):21–33, February 15, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Wang:2012:MDA

Wang:2011:ASC

Wang:2010:BSQ

Wen:2014:FPF

Wang:2011:GDT

Wang:2013:BRG

Wong:2014:GAZ

Dein Wong, Xiaobin Ma, and Jinming Zhou. The

Wu:2013:CAI

Wu:2013:QFL

Wulling:2013:DIS

Wang:2013:CHS

Wang:2013:DNR

Wang:2013:JHU

Wang:2013:MLD

See corrigendum [wXZ19].

See [wXZ19].

See [WS12].

Wang:2013:TEM

See corrigendum [WZ14c].

Wang:2013:PEA

Wang:2013:DSR

Wang:2013:HPP

Wu:2013:SWM

Wang:2014:LCA

Wu:2014:ESS

Gang Wu and Lu Zhang. On expansion of search subspaces.

Wu:2014:CSS

See [WZ12].

Wu:2012:UBS

Wong:2013:CLG

Wang:2014:BOG

Xie:2013:EAT

Xu:2013:RWM

Cai:2011:AMP

Xue:2011:FIS

Xu:2011:EET

Xue:2011:FIS

Xu:2013:OGW

Xie:2010:P

See [HP04, Fan10b].

[Xu:2012:TLC]

[Xiao:2014:SBI]

[Xu:2011:ADC]

[Xing:2013:LEL]

[Xing:2013:DDS]

[Xing:2013:LEC]

Ye:2011:SI

Ye:2010:MSL

Yu:2013:BGS

Yu:2012:CSR

Yuan:2014:CPD

Yanagihara:2012:BCA

Yuan:2012:EKI

Zhang:2011:MPP

Zhou:2011:PCI

Zou:2012:SIU

Zhang:2012:BRB

Zhang:2012:DSR

Zhao:2012:OPI

Zhao:2012:ATM

[YBZha12d] Yun-Bin Zhao. An approximation theory of matrix rank

Zhang:2013:AAP

Zhang:2014:IED

Zhang:2014:EMI

Zhang:2013:SSL

Zhou:2010:SLS

Zhou:2011:LMD

Zhong:2012:SSP

Zou:2013:IAV

Zhang:2014:CDN

Zhu:2010:SLS

Zhu:2010:UBL

Zhu:2011:BEG

Zhu:2011:CSM

Jiandong Zhu. On consensus speed of multi-agent systems with double-integrator dynamics. *Linear Algebra and

Zou:2010:EES

Zhang:2014:MEG

Zhou:2011:BSL

Zhou:2011:TSM

Zhang:2014:PRP

Zhang:2012:EET

Zhai:2012:SUB

Zhou:2014:LSS

Zuo:2010:NDS

Zhai:2012:PCS

Zhang:2012:DIL

Zhao:2013:ICP

Zuo:2013:CCM

