Title word cross-reference

$(-1, 1)$ [AAFG12], (0, 1)

[BBS12b, NP10, Ghe14a], (2, 2, 0)

[CI13, PH12]. (A, B) [PP13b]. (α, β)

[HW11, HZM10]. (ℓ, m) [dMR12]. (ℓ, m)

[DFG10]. (H, m) [BOZ10]. (κ, τ)

[CSZ10, CR10c]. ($\lambda, 2$) [BBS12b]. ($m, s, 0$)

[GH13b]. ($n - 3$) [CGO10]. ($n - 3, 2, 1$)

[CCGR13]. (ω) [CL12a]. (P, R) [KNS14].

(R, S, σ) [Tre12]. -1 [LZG14]. 0 [AKZ13, Ano12-30, CGGS13, DLMZ14, Wu10a]. 1

[Ano12-30, AHL+14, CGGS13, GM14, Kal13b, LM12, Wu10a]. 1/n [CNPP12].

$1 < t < 2$ [Seo14]. 2 [AIS14, AM14, AKA13, BDF11, BdlC14, BDK11, CvDKP13, CL13b, CNPP12, DoMP09, Ere13, GMT13, GG13, KY14, Rim12, Rud12, YHH12, vdH14]. 24

[KAAK11], 2n - 3 [BCS10, Hill13]. 2 × 2

[CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MvW12, Yan14].

$2 \times 2 \times 2$ [Ber13b]. 3

[BZWL13, Bre14, CILL12, CKAC14, Fri12, GOvdD14, GX12a, Kal13b, KK14, YHH12].

$3n^2 - 2\sqrt{2n^{3/2}} - 3n$ [MR13].

$3n^2 - 2\sqrt{2n^{3/2}}3n$ [MR14a]. 3

[BER13b, GAO14, Sev14]. 3 × 3 × 2 [Ber13b].

$3 \times 3 \times 3$ [BH13b]. 4 [Ban13a, BDK11, BZ12b, CK13a, FP14, NSW13, Nor14]. 4 × 4

[CJR11]. 5

[BER13b, CHY12, KRC14, KOL13, MW14a].

5×5 [BAD09, DA10, Hill12a, Spe11]. 5 × n

[CJR11]. 6

[DK13c, DK11, DK12a, DK13b, KAR11a]. 7

[PP13a, Zho12]. 70 [GRS+11]. [1, n]
$$\sum_{j=1}^{m} A^{n-j} X A^{j-1} = B$$ [Fur10b].

T [BMI14a, Blu10, ZXX13, BKMS12]. $T(x) = f$

[Nak12]. θ [GL12c]. $U_1 [YX13]$. $U_q (f_\zeta)$

[Ter13, BCT14, Wor13]. $U_p (s_2)$

[BC14a, Ter14]. $UT_{\infty} (R) [Slo12b]$. W

[CPR10, CPZ13, GTR12, TG13, XC13]. Z_2

[Cen11]. $||A^{-1}||_\infty [HZ10]$. $X = X(T V X X^T)$

[$\zeta^{\infty} = \zeta^{\infty} (R)$ [Slo12b]$. W$

[CPR10, CPZ13, GTR12, TG13, XC13]. Z_2

[Cen11]. $||A^{-1}||_\infty [HZ10]$. $* [GD11a, XDFL10, YZ12b]$. *-Lie [YZ12b].

*-modules [GD11a]. *-order [XDFL10].

*-congruence [DFS14].

-adic [ZYL10]. -admissible [CS13b].

colored [Kal13b]. -commutative [Tre12].

-contractions [MS14a]. -cospctral [BZW14]. -critical [FdcCR10, MPS10].

diagonally [LH10b]. -digraphs [GL12c].

-hyponormal [CDY10]. -index [Yau15, CT11b, Yau14]. -integral [PHS13, ZWL13, dFADVJ10].

-involutory [ILH11, Tre10]. -isometries [BMN13b, Gu14, Dug12]. -Jacobi [HSS10, HSS14]. -Krawtchouk [Wor13].

-Local [AKA13]. -Lucas [DGMS14].

-matching [Beh]. -matrices [BK10, Dah10, Hge14a, Zho12, Kaw13, AAFG12, AT11, AT14a, BCEM10, CPR10, Dai11, FH12a, FM13, FKK11, GEP, Guo13, HLS10, HZ10, HH11a, JS11, JPS13, Mat12, ND11, SHZ10, Siv13, wXL14, wXZ19, ZH11b, ZXX13]. -matrix [BCEM12, BR14c, BGH12, Drn13a, NS11b].

-minimizations [Fou14]. -modules [AR12, AF12, Pop12, Sha11, Ter13, Ter14, WW10, WD10]. -negative [Wol12].

-numerical [CN12c, CN13c]. -observers [Bh10]. -odd [LW10]. -operators [JLJ10]. -optimal [Mit11b, NP10].

-optimality [FMR12]. -orthogonal [VS14b, dCDRM14, AMP10].

-palindromic [BM14a]. -parameters [JLJ10]. -paranormal [DJK12b]. -partial...
[AM13d], -partite [Zha14a, ZWL13].
-Pascal [VS11]. -paths [QSW14].
-permanent [Cra13, dF10]. -polynomial [Lee13b, Cer10, MW14a]. -positive
[MR10c, FGvRR13]. -positivity [GK14c]. -Potapov [FKR11a]. -potent
[DCIW12a, CLST14, LRT12, LRT13]. -Primitivity [BM14b]. -properties
[CPV10]. -property [Bal10, GTR12]. -quasiseparable-Vandermonde [BOZ10].
-Racah [BC14a, HWG14, NT10b]. -radius
[OM14]. -reducible [Kar11a]. -Regular
[GX12a, CSZ10, CR10a, CR10c, MM10a]. -regularity [SBM11]. -replicated
[PYZ14]. -robustness [MP13b]. -root
[Bal12a, Vla12, Bal12b]. -SDD [GEP13].
-seminorms [GD11a]. -separation
[AHL+14, vdhH14]. -skew [LL11a]. -spectra
[BZ12b]. -splitting [JM12b]. -spread
[OdLdAK10]. -stability [Kal13a]. -stable
[BR14c, BBS12b]. -Stieljes [FKM13].
-strong [Car11]. -submanifolds [Lim11b].
-sum [AKZ13]. -summing [SR13b].
-tensors [Fri12, DQW13]. -term [BKMS12].
tetrahedron [IRT14]. -th [TNP12].
-theory [CC14]. -Toepplitz [GG13, Rim12].
-transformations [TG13]. -trees
[SvdH11, vdhH13]. -tridiagonal [AMJ14].
-unconditional [LM12]. -variable [KY14].
-vectors [Aga14]. -vertices
[AdFM11, DdF14]. -walk-regular
[CvDKP13, DFG10]. -way [ZHZF13].
-weighing [NP10].

1 [Bar10b, Grü12, Rhe10, Zha12a]. 1-norm
16th [BBG+13]. 17th [BFBD13].

2 [Lim13b]. 2008 [Ano10u, BBD+11]. 2009
[BFBD13]. 2012 [Joh12]. 2nd
[BBD+11, Zha12a].

3-rose [LH13]. 3-transitive [MW12a].
adaptive [Wal11b]. addition [Fra12, Liu14b]. additional [DS13].
Additive [BS11b, xCwXL11, JH10, MD10, PM+10, CGMS10b, EN11, QCH11, Sun13].
additive-nilpotency [Sun13]. Additivity [ACG13a, BG13, Wan11a, CGMPSS14].

adi [Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, Jbi10]. adic [ZYL10]. Adin [Alo14].
adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
GB13, HK10, KLS12, OR12]. Commute
[BRZ11, HMS13, Kis15, Ogu13, XX12].
commutes [FMM13]. Commuting
[DO11a, DW12a, Fra12, Fra13, XW10a, BC12a,
Bou13, CN10c, CN11d, Hwa12, KSS12,
KY14, KB12, LD12, Mig13, NS14, Pet10,
Sar14, Siv12b, Siv12a, TZ13b, dOHKS12].
Compact
[LT13, AK12b, BV13b, GP14, SM10b, TT12].
compactly [GHMPVP11]. Compactness
[MN12b, DDK14]. Companion
[EKSV14, EKSV18, MR11, BBE10, DDM12,
Gau10, GS10d, GS12c, GS12d, LD11, MZ13,
Mac13, Pat12b, DDP13, DDP14].
Comparing
[WNM13]. Comparison
[DXG12, HTS14, BSKL13, BBM14, EvdD10,
GEP10]. compensators [BO12].
Competition
[Kim10, Kim11a, KP12, Kim13a].
Complement
[BBF12, DW11, DC13, LHZH11, LHZL12, Mit11a, Ney11, SvdH11].
Complementary
[ACM14, FH10a, FH12b, FH13, FH14].
complements
[Ago14, BEV13, FZW11, GS10c, HL10b,
LW12b, LH10b, NY13, RTR10, Row12b,
Row14b, Row14d, SC12, ZH11b, vdH13].
Completability
[AS10, Bal10, CPV10, Dai11, GEPI0,
GEPI3, JV11, SVP11, wXL14, wXZ19].
Compactness
[MX12b]. Companion
[ACM14, FH10a, FH12b, FH13, FH14].
complementation
[DV10, GLS13a, Tra12].
Complements
[AM14]. Computation
[KD12, MS10b, BC12b, Dod10,
DS14, JJKS11, JW13, KBS13, KKR11,
LV14, SS11a].
Complex
[DGJ10, GKL11, HS12a, JS13a, Pry10, Sz13,
ANF11, BB13d, BGP13, BG12b, BW13a,
Buij13, Byd10, CILL12, CK13c, FP14, GPT12,
PGR13, GP13b, Ikr10, Kar11a, Kar11b,
KK14, LRT13, LNT13, MZ11, MARC13,
Mat13a, NV12, Ref12, SH13, dCdIrMP14].
Complexity
[DS12b, KKL10, Shi13].
Component
[JZZ13, ABBO11, LSR11, RW10].
Componentwise
[Hua13a, HZ14, Myi14, LWY14]. composite
[ZZX13]. composition
[LL11a].
Compositions
[Bap13a]. compressed
[ALPV14, DPF10, KG14]. compression
[MZ12b]. Compressions
[ADW13, RS12b]. compressive
[PS14a]. compressors
[BS11b]. Computable
[BdS10].
Computable
[BHAP12, KD12, SPKS12, TD11].
Computational
[HLS12c, NR10].
Computations
[GA10, HWSH13, MM10b, PIM10, PQZC11, PS14b, SE13].
Computer
[CS11]. Computing
[BBH12, BI13, FHS14b, KG12b, ST12,
BGV12, BMS10, Fis14, LJY13, MV12,
MP14a, RBP12, Roh11, Row12b, Sha14b,
Uhl13, WJT13]. concave
[Aud13a, FGQ11].
Concavity
[Hia13, Nie11]. concept
[PO10].
Concerning
[Bap10, BG12b, He14, LGZ14].
concise
[Rho10]. condensed
[BD13, Ji12a].
Condition
[DPP13, AAK11, AL13a, AHAPP10, Alt13, BB13c, DH10b, Gar13,
LJ11, LWY14, LS12d, XD12]. conditions
[jAS13, CHK13, EGR12, FN11, FS14b,
HSZ12, Hu10, JK14, LLD13, Nak12,
Sha13a, ZHZF13, vBM13]. Cone
[Kus12, Nie12, AV12, BB13c, DDGH13, FI4b,
GST13, Hill12a, ISYY11, Jun12, Lim14,
LTX14, NN10, Pro10, Sko11, WXH10b].
Cone-theoretic
[Kus12]. Cones
[Sk10, AGK11, AL13b, Bar12a, BZ12a, CPH11,
CFL13b, JV11, JSS13, KL13b, LT10b].
LXK12, RSS10, San10, Ser11, TG13, VS10].

Conference
[Ano10u, BBD11, BBG13, BFD13].

configuration [AFLN12]. configurations [FW14b, HW14b]. confluent [KS14b]. congruent [Ikr10].

Conference
[Ano10u, BBD11, BBG13, BFD13].

configuration [AFLN12]. configurations [FW14b, HW14b]. confluent [KS14b]. congruent [Ikr10].

Conjecture
[Bap10, BF12a, CW12a, Cho13, Das11, Dru13a, Dru12b, EGR12, GS12a, GC12, GKR13, He14, HJLS11, LLY13, LL14c, Mig13, Mit11a, NT10b, YY14a, YHY14, ZW12a, Zha13, ZC14, Dru13, Yan11].

Conjectures
[Das10a, AH10, CHZ13, Das10b, Das13, HL10a, H114c, JNS13, Ste10]. Conjugacies [BV12b].

Conjugacy
[BB11b, Dau12, FG13c].

Conjugation
[Mat13b].

Connected
[CT11b, LM10a, SBMT10, CH14, CK14, HY14, LS12b, MY14, PAS11a, ZLW12].

Connectedness
[GLP13b, GLP14].

Connecting
[GL10b, KK14].

Constant
[Cir14, FM11a, FP13, Koz10, LL10a, MQ14, RS12a, RS14b].

Constructible
[CL14b]. Constructing
[ES14, HRW99, JM12a, MAM13, Wad14].

Construction
[CN11b, HL11e, KRV14, MS13c, PP11a, PO10, ABBO11, BW13a, CMNW14, CNPP12, HNZ12, IPFD13, JNS13, VS13].

Constructions
[GOvdD12, ZXX13, CGM10].

Constructive
[Laf12]. contained
[GL10b, KK14]. containing
[BS12e, HLW10a, MAGR13, Ros12a, Ziv12]. continued
[GWZ13]. continuing
[Mac13].

Continuity
[MMF12].

Constraining
[BBdH12, BBdH13].

Controllers
[KBS13, Per12].

Convergence
[BPP13].

Converge
[PPK13].

Convergence
[GMV11, GL10c, Jar12, KKR11, SK14, XSS13, ZCQ13, BJ13, CQYY13, DZY14, DZ12a, FS14b, GOSV12, LKN13, Pry10, Sku13, TMSS14, Yan10b].

Convergent
[BGP11, CC12, LJY13, Reg13].

Conversion
[BSS10].

Convex
[AL13b, MO14, San10, SMC11, Aud13a, Bar12a, BH11a, Dra12a, OT12, PCC12, Rez13, Wei11, Zha14c].

Convexity
[Nor11, Alt13, CN13c, Hen10, MPP11, NS11c, WZ14a, WA10].

Convolutional
[ANP13, CNPP12, PC10, La14].

Coordinated
[KRV12, KRV14].

Copositive
[DDGH13, H112a, H114b, JV10, Qi13, XY11].

Coprime
[TL13a].

Cophere [CMS12b].

Core
[RDD14].

Corepresentation
[Dor10].

Cores
[BSST13].

Corinths
[SS10].

Corollaries
Differential [Lan10b, BM12b, BCF12, Lom11, NT11a, PLS14, Rue13, Tre11].

diffusion [KRS13].
digraphs [ABS10, CK14, DK13d, GR10, HL10c, Kim10, KP12, KSH12, MS14b, MSvdD14].
digraph [BB11a, BM14b, Bru10, BS13b, CGR14, DL13, GX12a, GL12c, HY14, Kal13b, Kim13b, LHL10, LS11b, LS12b, LYL13, Moh10, Rad10, Sch11, TC13, YW11].
dilation [Dum13a, GWW14a].
dilations [ADW13].
dimensional [BCS13a, BCF12, Cau11, dHLMS13, KK14, Lop11a, MMS12, Mar10].
dimensional [BDF11, Ben14a, BS11c, BS13a, DK13a, DK13c, CK13a, CILL12, CdGS12, CdGS20, DK11, DK12a, DK12b, Dub14, FP14, GJ11, HN10, KRH14, LwCJL11, Ma11, Moj14, Sha13a, Sko11, SQ14, Suz13, Ter13, Ter14, Wój14a, WJ12].
dimensionality [Cha10].
dimensions [AJ13, CKL+13, DKM+14, GPT13, HH12b, Yan10b, YZ13].
dioids [BL11, HTS14].
Direct [BT13, BL14, CHZ13, GK14a, JS13b, Kak10, Kaw12, KSH12, Lee13a, PPKR12].
directed [BFRR14, BKP12, Bau12, BRZ11, GP14a, Kir10, Kir14, NSC13, RGC13, dFBRS14].

Discrete [CEM14, FK13, HMR12, RY12b, AW10, BJRS11, BJ13, Cas13, Cha12, CM10, Czo10, CN10d, CN11e, FV13b, HDPT12, HRT10, Hl12b, Jun14, LTX14, NRS12, OM10, RS14a, Sad12, VS14b, Wei13a].
discrete-time [BJ13, FV13b, HDPT12, HRT10, Jun14, Sad12].
discretization [PLS14, Vui12].
discs [CGWW13, FH13, MH13a].
disguise [BCT14].
disjoint [BT11a, CW12b, DWXS12, LS13b, LHL14, LHGL14].
disks [Mel14, ST10b].
Displacement [ZYL10].
dissimilarity [WNM13].
dissipative [ADW13, DP12b, GO13, Lin13].
Distance [AH14, BNP11, Ili10a, NOL13, Psa12, AH13a, Ban13a, BS11a, BNP12, BNP13, BYZZ14, Cer10, CBB13, CLS13, DvDF11, DV14, DS14, Est12a, FGG10, Fio12, FS11, GH11, Gro14, HKP13, HRW99, HLW14, Ihl10a, Hua10, IHL11b, JM12a, JZ14, KS12b, KY11, KPY11, KT10, KT12, KM13b, Lee13b, LwW14, LP12, Lim10, LC10, LHWS13, LZG14, LZ14, MAS12, NP12, NP14, NM14, SS10b, ST12, WZ13c, XZ13b, XZD14, Yu14, Zha12b, Zha14a, vDF14].
distance-biregular [Fio12].
distance-regular [Ban13a, Cer10, DvDF11, FGG10, Fio12, KY11, KPY11, Lee13b, LwW14, vDF14].
distances [BT14b, HK14, JS12].
distinct [BB13a, CGMJ14, CHLS12, FLH12, HTW13, KS13b, NS13].
Distributed [RvS13].

Distribution [PLS14, Ada14, ANF11, DGGJ11, HLP12, JPS13, MSS14, PS12, SCSS10].
distributions [Cha14, DG10, MW10, OM14, Sku13].
distributive [HW14a].
Dittert [CW12a].
divergence [CM12a].
divided [TX12].

Divisibility [TL13a, MM10a].
division [Bot14, KLZ14b, Liu14a, Mar10].
divisor [Bot14, TL13a, WMZ14].
divisors [CS10a, Ens10, FH10b, SDNS13].
do [Pro10, RR11, XG13].
Dodgson [Abe14].

does [BMSW11, LY11a, dSP12d, Sta12, WBHM13].
domain [Pol12].
domains [BC10, BC12b, BC12c, Ens10, Hua12a, IW13, SZ14].
dominance [Mol12].

Dominant [Fie11a, BGV12, Far11b, HZ10, LH10b, LHZH11, LXL12].
dominated [Sei14].
dominating [CT11b].
domination [AHS10, Har14, LL14b, XF11, Zha12a].
Double [OT12, AdFST11, BC14a, FG13a, God12, JL12, KSAM12, Lee13b, Mol12, PY10, WJ12, Zhu11b].
double-integrator [Zhu11b].
doubling [WCKL13].
Doubly [GS10a, AT14a, BAD09, DHS12, Fan10b, GS10b, GKR13, HP04, JP11, JLW11, JPS13, LXL+14, LZ12, Mou12, MAM+13, NS12].
doubly-infinite [Sha14b].
doubly-stochastic [DHS12].
Dragos [GRS +10, GRS +11].
Drazin [BZ13, CGMS10a, CGMS10b, CI13, CW11, DMS10, DHS12, HRT13, KCD12, MD10, Mos13, PH12, SH13, WC12, Wij13, XWS12, XZ13, ZW12b, ZBW12, ZCC12].

D2 [CT14b, Wor13, CD10, DMMY10, GMH14b, HM14a, KAK11, KKL13c, LH11a, LWG10, LWG12, LH10c, MGW11, MSS14, RDD14, Tif11, BDK11].

duality [BHMR12, MRS12, FP11, Pin11].
Ducci [HNZ12].
due [Seo14].
Duffin [ACG14].
Dunkl [ST10a].
dyadic [MZ12c].

dynamic [Wil11].
dynamical [DZ12a, FGQ11, NP13a, VB10].
dynamics [JDY13, MSvdD14, Zhu11b].
Dyson [Yan10a].

e-ISBN [Tam12, Zha12a].
economics [TP13].
ed [Tam12].
Edge [CW12b, LS13b, LLT13, LHL14, BYZZ14, CL14a, Cio10a, Cio10b, EHH +12, LL13c, LHGL14, SS12a, SSSL10, Sto11, TF10, WAH13].
edge-based [WAH13].

Edge-connectivity [LLT13, Cio10a, Cio10b].
Edge-disjoint [CW12b, LS13b, LHL14, LHGL14].
edges [Suz13, Zhu11a].
Edition [Bar10b, Zha12a].
Editor [Ano11z, Bru11, Bru13, Bru14].
Editor-in-Chief [Bru13, Bru14, Bru11].
Editorial [Ano13a, Ano13b, Ano13c, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h].
Editors [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano12-27, Ano12-28, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x].

Edmonds [KW13].
effect [Mit11b, XZD14].
Effective [ESV +11].
effects [Dug11].
Efficient [BHAP12, CFPP13].
Ehrenpreis' [Lom13].

Ehrlich [BN13, GN13].
eigendata [GP12].
Eigenfunctions [WAH13].
eigenparameter [jAS13].
eigenparameter-dependent [jAS13].
eigenproblem [GPT14].
eigenproblems [AA11, GHT11, MSS12, WZ14b].
eigenspaces [Ada14, GTV12].

eigenstructure [LdSp11].

Eigenvalue [FZ13, HHK +12, JTT13, MMA11, MMRR11, Row14a, YZ12a, Zha14b, AAK11, AKM14, AHL11, BCO12, BV11, BM14a, BdFdp11, BFdp12, Bel14, Bey12, BBE +10, BN13, BdS10, CW10, CQYY13, Das10b, Das11, DS11, Duk12, Duk15, Eio11, FF12, FZW11, Fan10b, FHL +11, Gar13, GP12, GCY14, GM14, HHL10, HRW99, HMP12, HP04, JM12a, Jar12, JYD13, Kali13b, KP14a, KMNS12, Kol13, KZ11, KPY11, LaG12, LXL +14, LwCL11, LY11a, LW12b, LQY13, LL14a, LL10d, LHW11, LL13, LJY14, MD13, Mon12, MAM +13, MP10, MP14a, Nak10, NS13, NS12a, NM14, NP13b, NY14, OS14, yPjXL11, PAS11a, PAS11b, Row11, SVP11, SS14, SCSS10, SS11e, Sta12, TF10, TG13, WF10, WF12, WZ13b, We13b, We13a, WJ12, XD12, ZZZ13, XZL +13, XE11, YZ11, Yu13, YWX13, Zhu12a, dLOdAN11, dLN13].

Eigenvalues [Alo14, CMRR13, Cio10a, Cio10b, JS13a, LLMZ12, LWY10, MR12, Moh10, MAS12, RW12, AFHP14, AGM14, AAT12a, AOTR13, BFdp11, BZZ14a, BK12, Bün14, CSZ10, CS13a, CPZ13, CFJKS13, CFK +10b,
Eigenvector [GK14b, GLS13a, MM12, RW10].

Eigenvectors [BBGM12, B¨un14, BM13d, SLS13, Sri13, XZ13a, FK13].

eight [NP10].
element [Drn13b, Ney11].
element-by-element [Ney11].

Elementary [BJ10b, Buc10, DDK14, Gu14, PY10, Sin10a, BJ10c, CP12, CS10a, CDDY10, FH10b, Kec13, Kuz10, Per13, Rud12, Ruk14, SZ14, SDNS13, Yam13].

El´ements [Cas10, BR11, BPDC14, CGMS10b, Che14a, CK13c, DDDH13, LL11b, LHL12, Lim10, MS11b, WL11, WL12, WZ13a, Zhou11, Cas10].

eleven [BSU14].

elimination [VS14a, HZ14, Ji12b].
elliptic [CEM14, DOKT12, KK12, KK13, SS11a].
elliptical [ATS12].
embedded [Mit11b].
embedding [HH12a, Wag1].

Embeddings [Pan12b, RV13].

emphase [KN10].

enclosure [Miy13, Miy14].

closures [FHS14b].

encounters [RL13a].

Encyclopedia [Gr¨u12].

Endomorphism [PY14, ABK14].

Endomorphisms [DGZ13, HHL15, Mol13, OZ10, Rom14, SR13a].
energies [LS12a, XF11, Zhu12b, Zhu12c].

Energy [GRM10, KAMS11, LW12a, ACG11, ABS10, AW11, CGTR14, CFI10a, CLL13a, CLL13b, CL13a, CGR14, DX12, DG14, DGÇ14, DLL11, FHRT14, GKV11, GX12a, GHV13, GS11b, GMRS14, GFB14, HJL10, HLS11, HJLS11, fli10a, LLS10, LLS11, Rad10, RGC13, RJ10, RJ11, Roj11, RL13b, SS11b, SS11c, SW13, Srd10, Tia11a, TC13, VDV13, WL12, WZ14, YML12, ZZ13, Zha14a, ZK14].

Enestr¨om [RL13a].

enforcement [BV13a].

Engel [Bie13].

ensembles [DGJ13].
tangled [Fid10].

Entries [GG13, BCS10, Bij14, CFJK13, CDD10, FJFM14, NT11b, RR14, Shp10].

entropies [Ben14b, BP13, EdlPH14, IK13].

entropy [CFPP13, CH11, DGZ13, DLLS10, EdlP14, Kim13d, MS10c, PP11b].

entropy-preserving [PP11b].

Enumerating [IJ12].

Enumeration [AM14, Car13, SS13c, GL10b].

EP [BR11, TW11a].

equal [FFJFM14, HL11c, HTW13].

Equalities [Tia10, Pop12].

Equality [Ber13a, CPH11, JM14].

equation [Bon10a, Bon11, CGGS13, DD11a, DGD13, Fuh10a, Fur10b, GS13a, GKL11, NN10, Hua12, Kaw13, LwCJL11, Lim11b, MR10b, MR14c, Per14, SK14, ZLD11].

Equations [Ano12a, PQ10, AiS13, Ara12, AG10, Baj14, BK11a, Bi14, BM12b, BJ13, Car13, CN11e, DH10a, DH12a, DKS13b, LDL11, Dum13a, FMM12, FGR13, FH12c, GMH14b, GL10c, Guo13, Hla13, IW13, Jbi10, Ji12a, Jim10, JK13, KL13a, Kyr13, LV11, LV12, LLW14, LS14, LTX14, Miy13, MSP13, Mys12, PQ12, PLS14, Pit11, Pol13, Rei11b, RY12b, Roh11, Sad12, SS11d, Tre11, VS14b, WW10, WW10, WCKL13, XX14, XSZ13, Zha12d].

Equiangular [DHS10, Sin10b, Bod13, FMT12, HS12a, Sz ô13].

Equilibrants [JT11b].
equipped [Dor10].
equitable [Ter13].

Equivalence [Sze14a, tHR13, GPT12, GTW13, LV12, dSP10a, DDM14, Tim14].
equivalences [GHS13].

Equivalent [Hu10, CHLS12, FLH12, LMMZ12, LMT10, OM12, Van10, ZLL12].
erasure [FM12].
erasure-robust [FM12].
erasures
Erdos [OLW14]. ergodic [Fid10, Pul11].

ergodicity [Kir14]. Erratum [Cio10a, EFN10, KKL13a, Vla12].

Error [Dai11, GE12, GEP13, GO13, Cha12, Cha10, FH12c, GEP10, GJTP13, Hua13a, HZ14, KOR14, LHG10, PLS14]. error-correcting [LHG10].

Essentially [ZCKS12]. estimate [KOR14].

Estimates [BR14d, Gar13, BW12, Duk12, Duk15, MM13]. Estimation [HZ10, ZJ10, BL11, GD11b, NNW14, PT13b, RV13]. estimates [ARA12, EY13]. estimator [HLP12, LJ12], estimators [MD12c].

Estrada [DZ11, DL11, DZ12b, DZX12, FTA11, WX14, ZL11]. Euclidean [Bai14, Bud11, GS10c, GTR12, JV10, KT10, KT12, KM13b, LC10, Mol12, Tao11, Tao13, TKLX14]. evaluated [BW13b]. evaluating [CHZ13, KMNS12].

Evaluation [IRT14, CMS12a, Vse12]. even [ABS14, BCF12, HIL13, KS11c, OS14, PPK13, QS14, RR11, Rei11b]. eventually [MPT14].

Every [CHLS12, BFPSS12, BH13b, FLH12, GS12c, KLZ14b, TZ13b]. evil [Vse12]. Evolution [DT10, CLR11, CLOR13, LLR14, RM14].

evolutionary [CK13b]. Exact [Ber13b, Cha14, KM14]. exactly [TH10, WBWH13]. exceed [BMSW11, BZ12b, LY11a, Sta12, WBHM13, XG13].

expansion [MA10a, WZ14b]. expansions [Moo11]. Expected [HHMS10, Kir10].

Explicit [Dod10, DS12c, Ky13r, Mir12, Rin12, Sra13, XWS12, GMV11, Koz10, RW10].

exploration [DPF10]. exponent [GKR13, GWW14b, JLW11, KSH12, PJ13].

exponential [CMN10, Fis14, Ika11, Moo11, PKR12, PT13b, VS10]. exponentials [Sha14b]. exponents [CMN10, Czo10, LT10b]. Expressing [Slo13]. expression [HZGY12, Rin12, Tia11b]. Expressions [CGMS10b, CBB13, HZ11a, TZ12a].

extendability [BB11a]. Extended [CD14, MAGR13, SN14, JR11, KUM11, Mar13a, MTS11, Pat12a, TZ12a].

Extended-valued [SN14]. Extending [Hua12a, CJ11].

Extensions [Fur12, YJ12, BdIC13, BdIC14, DGGJ11, FHS14a, FGH13, FG13b, Had12, JZ11, JL12, LCM13, MMA11, RS14a, SS11d, ŠK10, WGL12]. extent [dSP11b]. exterior [Ika11]. extraction [BK11b, Dur12].

extrapolated [BH14a, BJRS11].

Extremal [DGK13, DL13, Jen13, LS12a, MZ13, MW14b, XF11, Ziv12, AHL11, BK12, CGSCZ10, DC14, DD14b, LL14d].

extremality [Ha13]. extreme [BT14a, CH14, Hili12a, LL10d, YX13].

extremum [Dax10, Tia12].

Faber [CKS10]. Faces [CM10b, PSw11].

factor [LNN14, LLF13, Shi12c, YZ12b].

Factored [Cha13a]. Factoring [DT11].

Factorization [CW11, KML11, Kak10b, Bot10b, BH13a, CRU13, CRU14, Dur12, For14, GS12d, HLZP13, Hua13a, Hua13b, LYS13, MR11, SPKS12, vdW14].

Factorizations [BBC14, KKL14, Lim12, HL11c, Hua12b, KG12b, LW13b].

Factorizing [Sow13]. factors [Jar12, Koz14b, Iwy10, Sbu10, SC13].

Facts [Ber09, Sla10]. faithful [LW12d].

Fallat [Gar12]. Families [BB13d, FP13, HKPR13, KIB12, Nat13, RSS10, Stu13, Wód14, Ziv12, dFADVJ10].

family [Baj14, Cha14, GZ12, Kal13a, LX13, TH11, WJT13]. Fun [BFdP10, GMRS14, tLyLWqW10, Lin11, SRdAG10, ZCWZ13].

Fast [BSS10, HR11, MII13, OM10, XE11.
BBE$^{+10}$, Han13a, MS11a]. Fastest [Kir10].

fault [PP13a]. feasibility [LLW14, ZY12b].

Feedback
[Jun14, SSS13, BO12, CC14, Liu13]. Ferrers
[AdF11]. few [AJRT14, BG12b, FMNW14, Kla10, Mol11, dSP14]. Fibonacci
[CLX13, DGMS14, LaG13]. fidelity [Kim13d].

Ferrers [AdF11]. few [AJRT14, BG12b, FMNW14, Kla10, Mol11, dSP14]. Fibonacci
[CLX13, DGMS14, LaG13]. fidelity [Kim13d].

Fiedler [BOZ11b, Grü12, Ano13y, BHMO13, BOZ11a, BCF14, BF14c, DDM12, Mac13, ND13, Nik13, Ser13, Stu13, DDP13, DDP14]. field
[AKM13, AW13c, Bie13, Bot12, CK13c, CJK13, EJLS11, HK13, dHLMS13, HCY10a, LHC10, LdSP11, Ma11, MMP13a, dSP10a, dSP10c, dSP10d, dSP12c, Qui11, Rad13, SS10d, Wu10b, de 13]. fields
[AG12, BB13a, BBC14, BC13, FL12, GH13a, GH13b, HHLS14, KK14, Kra13, KS11b, LS13, LT13, MZ12c, MSP13, PP13a, Per13, RS14b, SV13]. filliform
[CT14a, CGO10, CLOK13, LO16, Wu13b, CCGVO13, CCGO14]. filling
[HK13]. fillings
[AW10]. filter
[BO10, Jim10, LLMZ12, Mah11, MZ12c]. Filters
(GLP$^{+13}$). Filtrations
[Stu12]. find
[CS13b, Ern13]. Finding
[AS12b, BDD13, PZC11]. Finite
[Ter13, Ais13, AG12, Ada14, jAS12, BB13a, Bar10a, Bar13a, BS11c, BS13a, BPC14, CK13c, CK13+13, DHLX12, Dai13, DKS14, Dub14, DDK14, FL12, FG13e, GH13a, GH13b, GW14a, GW14a, GJ11, HW14a, HM14a, HS12b, HK13, HN10, HHLS14, KKS12, LHC10, LdSP11, LdS13, LX13, MB13, MSP13, Moj14, NS11a, Pol12, PRW11, Rom14, Row14c, Row14d, SR13a, Sev10, Sev13, Shal14b, Shii12a, Sim10, Sko11, SQ14, SS11e, Ter14, VW10a, Vij14, Vul12, Wój14a, Wol12, Xu14]. finite-difference
[Vul12]. Finite-dimensional
[Ter13, BS11c, BS13a, Dub14, IN10, Mol14, Sko11, Ter14, Wój14a]. finite-step
[DHLX12]. finally
[Bar12a, Ma11, TL13a, Yan10b]. finitely-generated [Bar12a]. Finiteness
[CGSC10, DAI13, Mor10]. Finsler
[VL12, Balla12a, Balla12b, TNP12]. First
[DD10a, LJY14, LZ11b, AM14, BM10, Bos11, JMS11, NS11b, Zhu12c]. first-order
[BM10]. Fischer
[KS10, KS12b, KM14]. Fissioned
[MW12a]. fitting
[MM10c, Moh13]. five
[BO11a, BO11b, NS12a, Ste11, XX14]. five-diagonal
[BO11a, BO11b]. five-point
[XX14]. Fixed
[Ros12b, SS11c, WLL14, CCL12, Cos14, HL11a, HL12, LT11a, LT10a, LL11c, NOL13, Per14, SMT10, Slo14, YFW10]. fixed-point
[Per14]. Fixing
[LP10]. flag
[Ber13a, DKS14]. Flanders
[DLNN14]. flat
[CS10, CS11]. flats
[WLG11]. Fliess
[LZ11b]. flipping
[MSP13]. flow
[BO10, LL10d]. flows
[A13, AJ13]. forbidden
[LS13d, Yu14a, Yu15]. forcing
[BBF$^{+}$10, CL14a, EHH$^{+}$12, EHH$^{+}$13, GB14, HCY10b, Mey12, Row12a]. form
[BBdH13, BFdp12, BIT12, BDI11, CRU14, CT11a, FDS13, FP11, FSH11, GS12b, GK11, Mar13b, NS13, Nom14, Rad13, Reh10, TX12]. formal
[TZ13a]. format
[BG13]. formats
[KRS13]. forms
[AW13a, AIS14, BDK11, CGMS10a, CN13a, DFS12, ST10, EN11, FV13a, FGH13, GMMFPSS12, HSZ12, Hu10, JY14, KKLY14, KLZ14a, KB12, MMeanwhile, MM13, MPS10, NT11a, P10, Reh11, Sim10, Sze14a, TW14, Wil14]. four
[BS13a, BB13a, BB13b, Mar10, RRM11, Tia12]. four-term
[Tia12]. Fourier
[Bar13b, FKS13, Sa12, Xu14]. Fourth
[HS12, jASZ12, DHS10, Lop11b]. fraction
[Dur12, KY13]. fraction-free
[Dur12].
Fractional [Beh13, LdS13, Mat13a, Mat14a, GMH14a].
Frame [Fut12, BHKL10, DFR13, VW10a].
framelet [MZ12c]. Frames [Fut12, BHKL10, DFR13, VW10a].
Frames [Wal11a, Bod13, BW13a, CKL13, DHS10, FM12, FMT12, HM14a, HG11a, Hir10, HS12a, KKL13c, KOPT13, LH11a, LHH13, LH10c, NRR11, Sin10b, Szö13].
framework [GHT11]. frameworks [AY13, AN13, Bai14].
Fréchet [San14].
Fredholm [Sei14].
free [BGP13, BP10, BdlC14, BM13c, DDF13a, Dea11, DTL11, Dur12, GS12d, KY13, Ma11, MR10b, MR14c, VB10, YW11, ZW12a].
French [Cas10]. frequencies [Koz14b].
frequency [ST12].
Frobenius [Lim13b, BT14b, CVW10, DIP13, FGH13, LN12, MZ10, NV12, Pat12a, Pit11].
Fuchsian [Kim13c]. Fuci’k [RY12b].
Fuglede [DK14]. Full [CRU14, HSS14, JP11, LMW12, BC13, GLZ14, JKVI3, Sav12].
full-rank [Sav12].
function [BKVI4, BV11, Boj13, BTYZ12, Car10a, CM12a, FDS13, FdC10, FHS14b, GIP12, GS12f, HLF12, LQY13, MS14b, RS14c, SS12a, SS13a, SS13c, SS13f, Tia12].
Functional [BK11a, Bhu10, Ere13, BB13a, Fuh10a, Rhei10, TX12].
 functionalities [Ben10, GD11a, Lu11, SS12].
Functions [Xu11, AL13b, Aud12, Aud13a, BKVI4, BT11b, BGP13, BHDW12, BANP12, BB10, BEK13, BB14, BJ10a, CH11, CGMPS14, Dra12a, FP11, FG13b, FKR11a, GHMVP11, GKS10, GK14c, GG13, Hia13, HWH14, HH11b, IM11, IM14, JRMSFS12, JZT14, KOR14, Kia14, KKL10, MM10a, Naj13, Nak13, Nat13, OT12, PCC12, Ruk14, Sag13, San14, Sin10a, SN12, SN14, Sto11, Uch10, WLL14, Wd14, Xu14, Zha14c].
fundamental [LNN14, Lom13].
Further [DMS10, KMSC14, MH13a, PAS11a].
Furuta [BLdP12, FNY13, Wad14].
Furuta-type [Wad14].
fusion [Bod13, HM14a].
Fuzhen [Tami12].
fuzzy [MMP13b, MP13b, MS13c].
G [Loe12, Rei11a, Rhe10].
Gaddum [NY14].
gain [KG12a, Ref12].
Gallai [KW13].
game [wH13].
games [AGK11, FDS13, Jun14, Sta14, CEC10].
Gangster [FJ10a].
gap [GO13, KR10, Wol12].
gates [CLX13].
Gau [CRSS14].
Gauss [BFRR14, Jil12b].
Gaussian [ALPV14, BT14a].
Gcd [KAMS11, TL13a].
Gcds [BDD13].
Gelfand [Dai12].
Gelf’and-type [Dai12].
General [Jim10, AY13, BV12b, Bot10b, BHG12, CPH11, CKF10a, CMS12a, CM12b, DH10a, FFG11, JKN14, KSA12, LHL10, MR11, Sha13b, TT11, XW11, wXL14, wXZ19, vBM13, Beh13].
generalised [DGJ10].
Generalization [Dok12, Mel13, AKZ13, BL13b, FFS11b, Kus12, MGLW11, MW12b].
Generalizations [FFS11a, Iik13, MS12, SN12, WX11].
Generalized [AKN12, BCAV10, Ben11, BG14b, CL12a, Dra14, Dur12, GP12, HL10c, Hun14, Huir13, Ill10b, KB14a, KB14b, KSA11, Kau12, Kim10, Kim13a, KCD12, KS11c, LL11b, MP13a, OM13, SS14, Seo13, SM10a, TX12, Wu10b, AL13b, AW11, AM13d, AL13c, Ban13b, CMR13, CJ10, CLCL12, CL11b, DH10a, DH12a, DV10, Den10, DK12b, DY14, Dra12b, DW12b, DW13, DBZZ14, FKW13, FTZ12, FDS13, FdC10, FH12b, FHI3, GP14, GL12c, He11, HOT13, HLW10b, Hu10, HZ11a, Hua11a, HP11, Hwa11, IW13, JM14, Jen13, JDM3, Kim11a, KP12, KS14b, KKM13, LW12a, Lav10, LcwCL11, LW12c, LW13a, LYS13, LMW12, LJ12, LJ13, MB13, Mar11, Mar13c, Mat12, Mel14, MS11b, Mos13, Nak10, NC13, Pei11, Pei12, RAAGAVS11, RJ11, San10, SS13a, Siv13, SR12, SS10e, Ste13, SL14, TZ12b, TNP12, TN14, Uhl13].
generalized [WLLX11, WML13, WW13, 20].
Generalizing [CC10]. generate [AKM13, Cha13a, Kau12]. generated [Bar12a, BS11c, BS13a, GS10d, KM12, Ma11, Rez13, Yan10b]. Generating [CK13b, CN10b, Lop11a]. Generation [BFBD13, JSS13, Lop11a, Wik11, Wik12].

genetic [BS10]. gentle [Gen13]. geodesic [Fuj11, HN14]. Geometric [Ban13a, CvDKP13, Isyu11, AGV12, BG12a, BCS13b, DMMY10, Gango12, Han14a, JLLY11, Kim13d, LLY11, Lim11a, Lim12, Seo11, Wil14, Yan13, BT11c, DD10c]. geometrical [ART13, Aud13b, BDD13, Ben14a, NS12b]. geometrically [Aud13a]. Geometry [DHC12, Fie11b, HH14, Lim13a, BH10, BCF12, Fuji10, GH13a, HI10a, Hua10, HI11b, Hua12a, HS12c, UV13, Gr112].

gradient [JRMFSS12, LL10d, OM10]. grading [Mar14a]. Gradings [Cir13, MFGD14, Per13]. graft [XZD14]. grafting [SSGL10]. Gram [SST14, Wil13]. Gramian [HG11a]. grand [FNY13]. Graph [CS11, ACM12, AA12, AV12, AL13, AH10, AH13a, AHLvdH13, AOTR13, BB13c, Bap13b, BBF12, Bau12, BOZ10, BRZ11, Boz13, BZ14a, BUW12, CMMR13, CAV13, CER10, CTW11, CW10, CS13b, CLS13, CL13a, DGH10, Dea11, DC13, EHH12, EFN09, EFN10, ESV11, FTDA10, FH13, FL12, GX12b, GX12c, GMY14, HHI10, HS14a, HS14b, HS10, HCY10b, HCY10a, IMA10, KR12, Kir14, Kir14, KPY11, Kuz10, LaG13, LRT10, LVW12, LFS12, LW12, aLW13, MYL13, MS10a, Mii11a, MS13c, NSW13, Nik13, ODdAK10, PRT13, RJH11, RR12, RSL10, Row12, Row11, SS12a, SS13a, SS14, SM13, SrdAG10, Suz13, TW10a, TF10, Ter11, WF10, WL12, WAH13, WMZ14, Yu13, ZC14, Zhu10b, Zhu12a, Zhu13a]. graph-theoretic [BB13c].

Graphical [COvdD10]. Graphs [BMSW11, BL12, BCF12, CT10, DV14, Fie11b, Grü12, HTW13, HHLS14, LLS12, OS14, VK10, WLLX11, WX14, vDo11, AO14, AFH14, AFLN12, AJRT14, AK12, AKZ13, AK14, AS12c, AdFST11, AdFM11, AW11, ABS14, AH14, AT14b, AJ13, BB13a, Ban13a, BK12, BP114, B14a, BFK11, BHvdH11, BHF10, BHO13, BP10, Bau12, BB11a, BMSW10, Bel14, Ben14b, BFF11, BNP11, BN13, BZ12a, BYZZ14, CvDKP13, CFG14, CR10c, C10ka, CCF12, CM11a, CBT11b, CHY11, CHY12, CFHL14, C14k10b, CLL13a, CLL13b, CGW14, CH14, CGMJ14, CL11a, CLL12, CG11, CKST11, C10a10a, CV11k10, C10b10, CW12b, CV13, CSAC10, CSAC11, CT13b, CS10b, DFG10, DvDF11, Das10a, Das10b, Das11, Das13, DX13, DG14, DLS14, DC14, DO11a, DO11b, DLS10, DL11, DLL11, DZ12b, DZX12, DZY12, DP12b, DJ14, EST12a, ED10114, FF12, FWW13, FS14a, FTP11, FY10, FN10].

graphs [FGG10, Fio12, GL10a, GZH14, GL12a, GZH14, GL12a, GK11, GB11, GFY10, GHW13, GM12, GLS13a, GW11, GWZ13, Gu13, Guo10b, GLS11, GLS12, GLS13b,
GW13b, GM14, GRM+10, GS11b, HMTR10, HL10a, HL12, HLW14, HW14c, Hua10, HJL10, HLS11, HLS11, Ill10a, JTT13, JZ14, JS12, KG12a, KP141, KAMS11, KKL10, KS13b, Koll13, KS14c, KY11, KM12, LL13a, LW12a, LS12a, Lee13b, LwW14, LS10, LLS10, LWGM10, LSC11, LWZ11, Ly11a, LWGM12, LS13b, IWG13, LTS13, LG13, LWHS13, LZG14, LZ14, LL10e, LHW11, LL11c, LMW12, LWHL12, LZ13, LTL13, LH13, LHL13, LL14b, LL14c, LJY14, LSL14, LLT12, MWZ13, MS13a, MM10a, MR12, Mig13, MW14c, MK12, MAS12, NP12, NP14, Nik10b, nik11, NY13, NSC13, NLL13, NS12b, Pan12b, PAS11a, PHS13, QY12, RRM11, Ref12, RM10, RLR13b, RTR10, Row12b, Row14a, Row14c, Row14d.

graphs [RW10, SS11b, SST14, SSGL10, SW13, SBMT10, Sin10c, SK12, Sta12, Ste10, Sto11, wTIW13, TLL13b, TH10, Tlf11, UZ14, Vj14, VDVJ13, WB11, WF12, WS12, WB12, WML13, WZ13c, WBWH13, WBHM13, WZY14, WY14a, WF14, WNM13, Wil14, WVL13, Wol13, XZ13b, XZ13a, XM11, XG13, YFW10, YL10, YWS11a, YWS11b, YFW13, YF14, ZW12a, ZLW12, Zha12b, ZZZ13, ZH13, Zha14a, ZK14, ZWL13, Zhu10a, Zhu11a, Zhu12c, dfADVJ10, dfBR13, vdF14, vdH14].

Grassmann [BBCC13, Cen11, DKS10, Pan12b].
Grassmannians [De 11, Lim10]. gravity [XWD13].
Greedy [GNE*14, GO12, Dun13b].
Greedy-like [GNE*14].
green [Sev14, BTY12, CEM14, Mar11, Mar13c, OSZ10].
Greub [Rau12].
Gröbner [KS11a].
ground [dSP10a].
Group [RDD14, AAIH13, AV12, BK11a, Bi13, CGRV13, COVD10, CLST14, CGL13, CK13c, CGM+10, Den11, GST13, GH12, HRT13, Hll14a, HT10b, JLN13, KM12, LWGM10, LWGM12, LW12, Ma11, MR11, Nie12, Nie13, dSP12d, Slo12a, TT12, VW10a, WZ13a, WMZ14, XSH14].
groups [Ada14, ÁvW11, BDV12, CD11, DF14, DK12b, DGZ13, FG13c, GL10a, He11, HS12b, HK13, Kim13c, KK14, KN10, KN13b, MW12a, Moll13, Rod11, Shi12a, Sin10b, Xu14, Yan10b].

Hammer [NA13, TZ12a, XW11].
Grüss [Coh14, GD11a, MR10c].

guessing [CFHL14].
guide [BS10].
gyroscopic [Lan13].

H [Rei11a, HGS13].

H-eigenvalues [HQS13].

Haar [AK11].

Haar-type [AK11].

Hadamard [Aud10a, BFK11, BB13d, BR14a, CFLW13, Dra12a, EGR12, GKe12, Hua11c, Kar11a, Kar11b, tLyWq10, Lin14b, Mit11b, NS12c, Pep12, Zsö13, WZ13d, ZCW13].

Hadamard-type [BR14a].

Halley [Guo10a, Lin10].

Halmos [Dom10].

Hamilton [FTZ12, Hwa11, Hwa12, MSvV12].

Hamiltonian [BFS11, Lim14, LLT12, RS14a, SB12].

Hamiltonians [Han11a].

Hamiltonicity [FN10, Zho10].

Hamming [CM11a].

Handelman [Laf12].

Hankel [AHAPP10, Ang13, BH12, Boj13, BF14b, CY11, CMS12a, CHZ13, CK13d, CI10, EWE12, HR11, KS14b, MS14c, RB12].

Hardback [Lim13b, Rod11a, Zha12a].

Hardy [AP14, Lac13].

Harm [Ano13d, Ano13c]. harmonic [Hir10, KLL11]. Having [AG12, MR12, Nom14].

Haynsworth [GS10c].

heat [DGu14].

heat-bath [DGu14].

Hecke [Lee13b].

Heinz [BLdP12, KMSC14, MN12a].

Heisenberg [GS12c, MFG14, Sze14b].

Helmer [Hir13].

hemispaces [KNS14].

Herglotz [BK14].

Hermite [DV14].

Rermitean [LV140].

Hermitean [LV140].

Rod12a, AAT12a, ALR12, BH14a, BW11, BF14b, BDPS10, BHL10, BLL13, CMI12a,
hyperelliptic [OZ10].

hypergraphs [BZW14, CD12b, Duk12, Duk15, HQS13, Nik14, QSW14, XC13].

hyperinvariant [AW13c, MMP13a].

hyperplanes [De 11, LM10a, Niti10].

Hyperreflexivity [BRZ13, BR14d, PP12a].

hyperspectral [GP13a]. hypersurface [CN10b]. Hyponormal [HMT10, CDDY10].

hyponormality [KL12].

deals [BZW11, BDF11, BJ11, CV13, KS14a, KZ10]. Idempotent [Ma14, WLG11, And13, Bot14, BH11a, BHMR12, KN13c, KLZ14b, LV11, PP11a, dSP10c, dSP10d, SZ14, Shin11, Shin10a, SB11, Zuo10].

Idempotents [Mat13b, ABEV10, BS12b, BS11c, BS13a, CM12, Den11, DCW12b, KCID12, dSP10b, SH13, Wan14b, ZW12b].

Identical [AGV12]. identifiability [BBCC13]. identified [AK11]. Identities [BS11a, KZ10, LMMS12, Abe14, BM13c, CD14, Cen11, Cha13a, Cra13, DK12, Ere13, HP12a, Hii13, KdM13, Lai10b, Mar13b, Per13, Rah13, TW10b, dCF12]. identity [BT11c, HMP+11, Hii13, Kt13, MSvW12, SS10c, WLG12]. identity-product [WLG12]. IDR [RRZ13]. if [PPK13]. Ihara [BHP12, MM10a, SS13c]. II

[LT10b, ARZ11, BF14c, CGGS13, CS10b, DK12a, EvdD10, FJMP14, HP12b, IS14, JS11, KK13, LH11a, LMMR13b, MS10b, MS10c, OT12, Siv12a, Tre10]. III

imaginarianess [BV13a]. imaginary [KS11b]. imbeddability [KM13a].

Implementations [NRS12]. implicit
GLS13a]. internal [Gum13, Wu13a].
interplay [SB11]. interpolants [CH11].
interpolating [BPDC14]. Interpolation [AL14, HWH14, AL13b, AIL12, BO11, FKR11a, Fuh10b, KOR14, PT14, Sav14, SV13]. interpolatory [SB11].
interpretation [GG12]. intersection [MGLW11, SB12]. intertwining [Che13].
Interval [GPT14, Mys12, Dah11, Hla13, KS12a, LLD13, LLW14, LL13d, MMP13b, MP13b, MS14c, MP14b, NS11c, PM10, PKR12, Roh11, SH10].
Intervals [AG13, FZ13]. Introduction [Est12b].
Invariance [BHKL10]. Invariance [BG14a, B¨un14, AM13d, ACG14, AL13c, BS14, BCD12, BCEM12, BM14a, BdFdP11, BfdP12, BT13, BCEM12, Bo13, BZ13, BZZ13, CGLQ14, DXG12, GC14, Dom10, DZ12a, FGS11, FCL10, FF10b, Fur12, GK11, GV11, HG11a, HL11d, IJ12, Jun12, MZ14, MA12, Pro10, PP13b, Rss10, Sku13, WL12, W´oj14b, ZH12].
Invariants [AW10, Bap10, Dood13, DJ14, V13a, F¨ur10a, G¨om10, GS10b, Lop11a].
Inverse [BD13, JS11, MZ14, NM14, SVP11, BM14a, BdFdP11, BfdP12, BT13, BCEM12, Bo13, BZ13, BZZ13, xCwXL11, CSV14, CGS10a, CGS10b, CRVC13, CI13, DS11, Den11, DW11, DMS10, DMS13, Fan10b, FHS14b, GP12, HRW99, HLS10, HHI2, HP04, JM12a, Ji12b, JD13, JS13b, KS12a, KW12, LT12a, LXY14, LMY11, LJY13, LSH12, MH13b, MZ10, MD10, Mos13, Mot12, MAM13, NS12a, NS11b, Nor11, PH12, Pat12, yP11XL11, DXG12, RDD14, SS14, SH13, Wei13b, Wei13a, WJT13, WJ12, W’jl13, XX14, XGL13, XSH14, Yan14, IYuZn14, YZ11, YWX13, Z12b, Zha12c, ZH11b, ZCC12, vdH13].
inverse-positivity [JS13b]. Inverses [BG14a, B¨un14, AM13d, ACG14, AL13c, BS14, BCEM10, COvdD10, Drai12b, Drai14, FK13, HTS14, HF12, HZ11a, Hua11a, HZGY12, HZJ12, Hun14, KKM13, LHL110, Mar11, Mar13c, MS11b, NCI13, Siv13, SPKS12, WC12, WL10a, XCS13, XS13, YW10, ZBW12, ZZC14]. Inversion [FP11, BOZ10, DV10, ER13, MS1a, MR10b, MR14c, DDP13].
irrationality [GWW14b]. Irreducibility [Had12, BB13c]. Irreducible [DDG13, BE10, Cer10, JMS11, Kin13a, KY12a, Ser11, Ter13, Ter14, YHI12].
isometry [BT14a, GW14a]. Isomorphisms [ArV13, KZ10]. Isospectral [BW12, GLP13]. isometric [BJ10c, AS12a].
Isometries [AAH13, GP14, HN14, AM13d, BMN13b, BJ11, BJZ12, Cir14, Dug12, GW14b, GP14b, Gu14, Kho12, MS14a, Mol13, PP12a, Sar14].
Isometry [BT14a, GW14a]. Isotone [NN10, NN13].
Jacobi [BP12, BdFdP11, BfdP12, BCEM12,
BF14d, DD11b, HSS10, HSS14, KZ11, SB12, SS11e, SS13f, Wei13b, WJ12, Xu12].

Jacobian [BVV12, Gna12, Sun13, Yan11].

Jacobians [GS12a].

Jacobson [Wu10b, ZCC12].

James [AR12, CP11].

JB* [ili10b].

JB*-triples [ili10b].

Jensen [BH14b, Kia14, KLP12, KP14b, MPP11].

Johnson [Gar12, GZH14].

join [BHvdH11, BYZZ14, CMRR13, MH13b].

joined [MR12].

Joint [CN10b, Dumi13a, GZ13, CN13c, DHLX12, GB13, GMV11, Koz10, Koz14a, LV11, LP12, LX13, MR14b, OM13, OM14, Pep12, Sed11].

Jordan [DWW14, BS12b, BH10, BM13c, BF14d, CT11a, CM14, CMZ10, DW14, FMM13, GS10c, GTR12, GC12, HW11, HLW10b, JV10, Ji12b, JH10, LW2d, MMMM10, Mar13b, MW10, Mol12, Mol13, NS13, SM10b, Tao11, Tao13, TKLX14, WW13b, WX10b, ZZ11, ZH11a, ZZ10, ZZ12].

Jörg [Gre13].

Jose [LPQdS10, FdC12].

jumping [DKOT12].

Kaczmarz [NT14, PPKR12].

Kadanoff [BBGM12].

Kadison [BR10, DH12b, WY14b, YJ12].

Kakeya [RL13a].

Kamvar [Gle11].

Kapranov [Shi12b].

Karaduman [Hil14c].

Karcher [BI13, LY13].

Kato [BCL+10, DXG12, DC13].

Kittaneh [GW13a].

Klir [Gre13].

Klopp [LZ12b].

Koch [Gre13].

Koe [OLW14].

Kohn [YM12].

Krawtchouk [NT12b, Wor13].

Krein [AGPF12, PT13a].

Kronecker [BJRS11, CSV14, Dod13, HFS13, HTS14, HF12, OZ10, Tad12].

Kruskal [BH13b, Der13, Rho10].

Krylov [BFS11, CK13d, DZ12a, JR11, Jbi10, MSS12, RRZ13, Sad12, SE13, Sto12, Xu11, Gre13].

Krylov-type [SE13].

Kwong [Naj13].

Ky [Lin11, GMRS14, SRdG10].

labeled [WNM13].

Lagrange [Ma10a, TX12].

Laguz [Lan14].

Lanczos [BFS11, PPZ14].

Laplace [MW10, TW10b].

Laplacian [LT11a, AHP14, AC+11].

Laplacian + [AKM14, AOTR13, AT14b, BS11a, Bap13a, BMSW11, Bel14, BL10b, BRZ11, Boz13, BZ12a, CGTR14, CFD10a, CT10, CW10, CJ12, CT12, CTG13, CS10b, Das10b, Das11, DXG12, DXL13, DGÇ14, DLS14, DL11, DZ12c, Est12b, FF12, FTDA10, FY110, FHR11, FHT14, GK14b, GLS13a, GLS12, GLS13b, GW13b, GCY14, HMTR10, HL10a, Har14, HL11a, HL12, HZJ13, HT10a, HY14, HQS13, LSC10, LS10, LSC11, LWZ11, LW12b, LZ12b, LTS13, LGS13, LY11b, LL10c, LL11c, LW12e, LTT13, LH13, LL14b, LL14c, LSD14, MK12, NS13, NP14, NLL13, QSW14, QY12, RJ10, RW10, SW13, Siri3, Suz13, TW10a, wTm1S12, wTIW13, Ter11, VDVJT13, WB11, WL12, WF12, WBHM13, WAH13, XZ13b, XMI11, YY14a, YFW10, YL10, YWS11a, YWS11b, Z113, ZHG13, Zho10, ZSWB14, Zhu10a, Zhu10b, dLOdAN11, dLN13, vDO11, vDF14].

Laplacian-eigenvector [RW10].

Laplacian-energy-like [DXG12, DGÇ14, WL12].

Laplacianness [Hu10].

Laplacians [AH13a, Bau12, BFF+11].

Large [AM13c, BGP13, BFdP12, GM14, LRV12, LSV12, dSP12a, AW11, BHM13, FHT14, GG13, Jbi10, KKM13, LHZH11, MAS12, dSP11a, dSP11b, dSP12b, Sad12, Wan11b, WCKL13, WZ14b, ZL11].

Large-scale [LRV12, KKM13, Sad12, WCKL13].

largest [AHL11, ABK14, CFK+10b, CW10, CQYY13, Das10b, Das11, Kol13, KY11].
KPY11, LY11a, LGS13, LGSC14, LHW11, Nik11, PJ13, QSW14, Sta12, WZY14, ZLW12, ZCQ13, Zhu12c, dLN13.

last

[LGSC14, LHW11, Nik11, PJ13, QSW14, Sta12, WZY14, ZLW12, ZCQ13, Zhu12c, dLN13].

Lattice-like [NN13]. Lattices

[CMZ10, CSC13, Kub13]. Laurent

[He11, Lak10b]. law [DD11c, MTS11]. laws

[CIH11, SR13a]. Lawrence

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Lawson

[DD11c, MTS11]. Lawson

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law

[DD11c, MTS11]. Law

[Seo14]. Law

[DD11c, MTS11]. Laws

[CIH11, SR13a]. Law
Linear-quadratic \cite{NT11a, Jun14}.

Linearity \cite{BEV13}.

linearization \cite{MP10}.

linearizations \cite{AA11, AAK11, BCF14, BF14c, DDM12, HMP12}.

linearly \cite{AA14, B¨un14, CK14, CGM+10, Gna12, RS12b, ZHZF13}.

lines \cite{BH10, DS10, Lee13c}.

link \cite{BCF12, Pit11}.

Liouville \cite{jAS13, KZ11}.

Lipschitz \cite{BJ10a, GV11, JRFMS12, Koz10, Lan10a, PP13b, Rod11, Rod12b}.

Lipschitzian \cite{JV11}.

List \cite{Ano11a, Ano12c, Ano13e, Ano13f}.

Lists \cite{Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10l, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano12-27, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, CL14b, ES14]. lists \cite{JNS13, KS13a}.

lit \cite{wH13}.

lit-only \cite{wH13}.

Littlewood \cite{AW10, AP14, Lac13}.

LLL \cite{LQ11}.

LMI \cite{PKR12}.

loadings \cite{ZHZF13}.

Local \cite{Cos14, BS11b, Ben13, Bon10b, CD11, JZZ13, KY11, Kra13, TZ12b, Tra12, AKA13, FP11}.

local-global \cite{Kra13}.

localization \cite{Elo11, SPR13, LL14a, RS10}.

localizations \cite{DTL11}.

localize \cite{SYH14}.

Locating \cite{JT11a}.

location \cite{JTT13, Wil11}.

Loewner \cite{Aud13c}.

Log \cite{W14a, Alt13, DBZ14, WZL13}.

log-convexity \cite{W14a, Alt13}.

log-determinant \cite{CM12a}.

logarithms \cite{BLdPS10, Chi13, LNN14}.

logistic \cite{YiKIS12}.

lollipop \cite{GSL11, GW13b, WS12, WY14a}.

lonesums \cite{KKL13a, KKL13b}.

long \cite{BLX11, CBB13, W LZ13}.

looking \cite{Raf14}.

loop \cite{Bap10, GS10b, YW11}.

loop-free \cite{YW11}.

loopy \cite{GM12}.

Log-convexity \cite{W14a, Alt13}.

Log-determinant \cite{CM12a}.

Logarithms \cite{BLdPS10, Chi13, LNN14}.

Logistic \cite{YiKIS12}.

lollipops \cite{GSL11, GW13b, WS12, WY14a}.

lonesums \cite{KKL13a, KKL13b}.

long \cite{BLX11, CBB13, W LZ13}.

looking \cite{Raf14}.

loop \cite{Bap10, GS10b, YW11}.

loop-free \cite{YW11}.

loopy \cite{GM12}.

Log-convexity \cite{W14a, Alt13}.

Log-determinant \cite{CM12a}.

Logarithms \cite{BLdPS10, Chi13, LNN14}.

logistic \cite{YiKIS12}.

lollipops \cite{GSL11, GW13b, WS12, WY14a}.

lonesums \cite{KKL13a, KKL13b}.

long \cite{BLX11, CBB13, W LZ13}.

looking \cite{Raf14}.

loop \cite{Bap10, GS10b, YW11}.

loop-free \cite{YW11}.

loopy \cite{GM12}.

Log-convexity \cite{W14a, Alt13}.

Log-determinant \cite{CM12a}.

Logarithms \cite{BLdPS10, Chi13, LNN14}.

logistic \cite{YiKIS12}.
majorizations [Nie12]. make [DTL11]. manifold [YZ12a]. Manin [FP13]. manpower [DT10]. many [DLNN14, Mat14a, MO14, TL13a]. map [GK11, Ha13, HNZ12, Lin14a, dSP12d]. Maple [GS12b, Kla10]. mapping [AA14, JSS13, Sko11]. mappings [BP11, CW11, CN10c, CN11d, FFS11a, FRS14, HW11, Han14a, KN13c, LLF13, Rs12c, Wój14a, XW10a, Zho11, ZZX10, dOFK+13]. Maps [ABSV12, Cos11, GN14, HLW10b, HH11b, JG10, LP12, MS10c, WLG12, ZH11a, ABEV10, BS12d, Bou10b, BMS14a, CC12, Che14a, CFL13b, CLS10, DD10b, DHKQ13, DW12a, Fra12, Fra13, FH10b, Fur11, Gna12, GZ13, HKPR13, HQ13, Ika11, JH10, KS14a, KSAM12, LT12b, LT16, LP10, LW12c, LW13a, LHL12, LT10a, LL10b, LT13, Liu14a, Liu14b, M10c, Nie13, Pan12a, RO10, Sun13, Wan11a, WFM11, YT13a, YJ12, dlP11]. Marcus [LL12]. Marcus-Minc [LL12]. Marix [BW11]. market [Vas14]. Markov [CK13b, Cas13, DT10, DGU14, Góm10, HB12, Hum10, Hum14, Kir10, Kir14, MA10b, Nemi13, PR10, Pul11, Rhei1, Sku13, V13, Vas14]. Markovian [Hum14, Koz14a]. Marshall [Zha12a]. Martingale [Dah12a]. Massey [KY13]. Mastronardi [Gen10]. matchgates [LMN13]. matching [Beh13, GL12a, HL11a, KW13, LT11a, SS11c, Ste10, wTm12]. matchings [GX12b, LSC10, TS12]. mathematical [BEL12]. Mathematics [Ber09, Gar12, Grit12, Lim13b, Rod12a, Sla10, FdC12, Bar10b]. Mathias [Lim11a]. matrix [BW12]. Matrices [Bar12b, Bra10, FJ11, Fie11b, Gem10, HMSC13, KKL13a, KKL13b, LSTW13, Rei11a, SM13, AMP10, AIS13, AG12, AFLN12, AA14, AG13, AM13a, AAF12, AKM13, AGM14, AB12, AHAPP10, Ali12, ANP13, Alq14, ÆSF12, ÅAF12, AdF11, ART13, ALRV12, Ang13, AT11, AT14a, AK11, Aud10a, Aud13c, BBG14, BT14a, BB13b, BT11a, BB13c, Ban13b, BS11a, BG14a, BP12, BKM+13, BB13d, BH12, BMW10, BSK12, BSKL13, BFdp10, BldpS10, BfdP11, BfdPd11, BfdPf12, BT13, Bdp13, BDH+12, BO710, BOZ11a, BANP12, BCFM10, BECM12, Ben10, BM13a, Ben14a, BB10, BB14, BS12c, BP11, BDG13, BD13, Bie13, Bie14, BBE+10, BI13, BH10, BBGM12, BHYZ12, BSU14, BCS13b, BC12c, BC13, BC14b, Bot10a, Bot12, Bou13, BLL12, BLL13, BL14, BRZ13, Bre14, BRLS12, BHZ10, BK10, BD12b]. matrices [BFH12, BKMS13, BC14c, BBS12b, BLS14, BZ13, BK12, Buj13, Bun14, BAD09, BS13b, BW13b, CRS14, CRS14, CH13, CD14, CR10, CRU13, CRU14, CSV14, CH13, Car10a, CT11a, CN12a, CPF13, CR10b, CK13b, CAV13, CGM11, CGMS10a, CGRVC13, CQvD10, Cau11, CCF+12, CS10a, Cha14, Cha13a, CPR10, CTW11, CM12a, CL10a, CGMJ14, CL10b, CG13, Che14b, Cj11, CK13d, CN13a, CN13b, Cho13, CN11d, CGSCZ10, CD13, Cir13, CM14, CNP12, CD12a, Cohl14, CDM12, CP10, Cos11, CFLW13, CL12c, Dak10, Dahi11, Dai11, DLH12, DoMP90, DL14, Dax10, DLNN14, DH10a, DMP11, DD11b, DK12b, DP12a, DHS12, DGS14, DFS12, DFS14, DS14, Dok12, DKOT12, DHKQ13, DO11a, DO11b, Dom10, Dom13, DA10, DT11, DdF13b, Df14, DZ13, Dc13, DGS10, DHS10, ER13, Eol11, Eov10].
matrices

matrices

Matricial
Monotony [BM12b]. Monov [CL14b].
Moore [Boz13, xCwXL11, HF12, HZ11a, Ji12b, KS12a, MS10a, MZ10, Nor11, Pat12b, RDD14, WJT13, XCS13, Yan14, ZZCW13].
Morrison [MS11a]. Morse [AJ13]. Moshe [Boz13].
most [BH13b, KY11, LL13a].
motions [AY13, AN13]. Motzkin [CY11].
mouth [HH12b].
Multi [Boz13, LLY11, BCY12, CC10, GMS13, Sha14a, SB11, Zhu11b, ZY14].
multi-level [Boz13].
multi-metric [SB11]. multi-objective [GMS13].
multi-step [Boz13].
Multidimensional [KLP12, Lee13c, Xu14, NT11a, OT10].
multilinear [BW13b, FGH13, FKLT13, GMMFPSS12, Kon13, Moh13, NA13, Pd14, SR13b, SR13c, Fd11].
multinomial [YiKIS12]. multipartite [CHLW14, JZ14, PHS13].
multiple-sets [ZY12b].
multiplications [BLLX11, RO10].
Multiplicative [BE12, CLS10, JK11, WW13c, ZZ10, Bal10, xCwXL11, GO12, Wan11a, UW11].
multiplicatively [LS12a]. multiplicities [BZZ14a, OS14].
[AKM14, AGV12, GS12d, JNS13, KS13a, Row11, Row14a].
multiplier [Aud13c, CPK11].
multiplying [O’D14]. Multiperspherical [KT10, KM13b].
multivariable [PP14].
multivariate [AS14, BDD13, DU14, GH11, Han14a, LW13b, Wal11b]. Musings [Moh13].
mutually [Kis15, XX12]. Mysteries [NSW13].
N [BPRY11, Gen10]. Nanjing [BBD+11].
NASC [BBD+11]. Natural [MRW11].
Naturally [ACGVK14, CGO10, CLOK13, LM016].
near [MV12]. nearest [ABB011, NR10].
Nearly [SSMS14, Bod13, CFK+10b].
necessarily [Pop14]. Necessary [CHK+13, LLD13, Sha13a, FS14b, LS12d].
needed [DTL11]. negacyclic [La 14].
negative [AUD10a, BV13a, CR10b, FKM13, KS13b, MYL13, MWZ13, PT13a, Wul12, ZCKS12].
network [ACM+12, Bdt13].
neighbourhood [LL13c].
nest [Gha13, HJ10, DTd12, QH10, SM12, ZZ11, ZZW10, ZHQ14].
nested [AdFST11].
news [ZCKS12]. Newton [BH13a, BJ13, CA10, FS11, Guo10a, Jar12, JMP10, JMP13, SK14, SV11].
Nil [Nijenhuis] [LCM13]. Nil [BCDM13].
nil-clean [BCDM13]. nilindex [ACGVK14, CCRG13].
nilpotency [Sun13, Tan10b].
Nilpotent [BDF11, Hua11b, BDH+12, BdlC13, BdlC14, BV12, CLOR13, CdG12, CdG20, FP14, GS13b, Kha13, KLZ14b, MMS12, NS14, OR12, Tan11, WGL12, de 13, BVV12].
nilpotent-centralizer [GS13b].
Nilpotent-Jacobian [BVV12]. nilradical [LCM13].
Nineteenth [Abe11]. Nod [NC13].
nodes [LD12, MD13, Ziv12]. Nomura [CM11a].
Non [JRMFSS12, MAM12, ALPV14, AUD10a, BH14a, BP10, BT13, BCS13a, CR10b, CKST11, Cos14, DL14, FKM13, GK11].
non-bipartite \cite{CKST11}, non-closed \cite{Net10}. Non-commutative \cite{MMA12,Seo13,dO12}. Non-commuting \cite{DO11b}. Non-commutative \cite{ARZ11}. Non-monotonic \cite{JKLQ13,PT13b}. Nonnegative \cite{CN12a,FJ11, Gar12,MS11b,PRW11,Siv13,SDNS13,AG13,Aga14,Ben14a,BR14c,BK10,BAD09,BSST13,BS13b,CBP10,CS10a,CPZ13,CQYY13,CD13,CKAC14,CL12c,Drn13b,DZ13,Fri11,FGH13,GG12,GP13a,GL12b,Sen10,GGK+13,GKR13,Hua11c,Hua13a, JWL11,KG12b,KSS12,Laf12,Lav10,LC10,NS12a,NT11b,PV12,Qi13,Sah10, Ser11,Spe11,VR12,Voy13,XZ14,ZCQ13]. Nonnegative \cite{HRT10,HRT13,PP11a}. nonpositive \cite{CRU13,CRU14}. nonpositivity \cite{HC10}. nonpowerful \cite{JMS11}. Nonsingular \cite{BC12c,DDf14, HK13,HLZ12,BHZ10, CRU13,CP10,DQW13,FHL12,FJ14,HC10, LNN+12,LS13d,LJY14,NPP13,SYH14]. Nonsingularity \cite{Zuo10, BB13b,LS12c}. nonsymmetric \cite{GL10c,KW12,Lw-CL11,WXH10b,XD12}. nontrivial \cite{Dod13,ZZ11,Zho11}. nonzero \cite{CP10,GOsvdD14,HTW13,MB13,MZ14,PR13b,YHH12]. nonzeros \cite{MGSW14}. Nordhaus \cite{NY14}. Nordhaus-Gaddum \cite{NY14}. Norm \cite{BG12a,MM13,Pop12,Aud10b, BT14b,BJ11,CVW10,CLF13a,FCL10,FLC11,Gon11,Hia13,HMR12,Hua11c,Ji12a,KS14a, Kyr13,LM11,LMYY11,MD13,MA12,MZ10,MTS11,NNW14,RRI1,SP13,SR12,TGS14]. norm- \cite{TGS14}. normal \cite{AM13a, BFdp10,BFdp11,BFd12,BDG13,BD13,BR11,Buj13,CH13,Chi13,CI10,Gen12, HLP12, KM13a,MS14,yPj1XL11, Sed11,SS13d,SS13c,Slo12b,Sze14a,Van10, WW13d]. normalizable \cite{GOsvdD14}. Normalized \cite{Bau12,AT14b,Boz13,CFK10a,CJ12, CL13a,LLSC14,vDO11]. normally \cite{CM13}. normed \cite{Wjo14a}. norms \cite{Aud13c,BH14b,BLS14,CGCZ10,Fur12, GKI14c,HK10,Lac13,Lan14,Lec10,LT12b,LT16, MW14b,Mor10, NY13, Pat10,ZH12}. Note \cite{Ano11z,Ano12-28,BC14c, CL13a, LGSC14,vDO11]. Notes \cite{Far11b,Fie10, Ha13}. notion \cite{Han11b,Han14b,TN14}. notions \cite{BBM14}. novel \cite{Ma10a}. November \cite{BBD+11}. nowhere \cite{BS14,FFS11a}. NSC \cite{BBD+11}. null \cite{BBD14}. Nullity \cite{BH11b,Bri13, CL11a, EHH+12, FFW13,GFY10,GX12c,
nullspace [JKN14]. nullspace-type [JKN14]. Number
[AlS13, BPA+11, AG12, AKM13, AAJ12, AHAPP10, AdFM11, AHS10, BB13a, Bea12, BLL13, CRSS14, CS13a, CL14a, CFHL14, DTL11, Dom13, DH10b, DL13, DdFD13b, DdFD14, EHH+12, FY10, FG13c, Gar13, GB11, GLS12, HJ13, Hir10, HTW13, HJL10, LS10, LT11a, LZ12b, LS11b, LHL13, IYL13, LL14b, LJY14, MGWS14, MZ12c, NS13, NOL13, Row12a, Sin10c, SWT13, Ste10, TF10, Uhl13, Wik11, Wik12, XF11, YW11, YWS11b, ZHG13, Zha12a].

numbers [AAK11, AL13a, BHKM13, CY11, CMS12a, EWY12, GWW14b, He13, KL12, LaG13, Lakh10a, LJ11, LHY14, MGLW11, DDP13, WW13a, WC11, LCwCL11].

numeric [PS14b]. Numerical [Ali12, BS12a, CGWW13, DGH+11, Gau10, Gle11, HMP+11, Kam10, KI10, TW11b, Tsai11, AM13a, CG13, Che14b, CN10b, CN11a, CN11c, CN12b, CN13c, CP11, CLS10, DPFI10, DD11d, GW13a, GTW13, GW14b, GP14, GZ13, HH12a, HB12, LMM11, LM12, Lec13a, LP12, LPS13, PLS14, PT13a, PGM+11, VU14, WW13a, WC11, LCwCL11]. Numerically [FM12]. Nussbaum [Lim13b].

Olkin [Zha12a]. One [ALPV14, CRS14, GS12b, ABEV10, BBdH12, BBdH13, Bat14, BR14c, CT11a, CT11b, DHLX12, FGvRR13, Fri11, KO13, KY11, Lec13b, LFS12, LT11b, LX13, MMRR11, MMRR12, dSP12d, Pet10, PS14b, RW12, Sag11, Sav12, Slo12b, Suz13, WFM11, WMZ14]. One-bit [ALPV14]. one-dimensional [Suz13]. one-dominating-vertex [CT11b].

Operator [CMS12b, Gon11, Kia14, Kim13d, Mos11, SP13, Sec14, AR10, AG10, ACG13a, Aud13b, BC14a, Bö13, BH14b, CH13, CDDY10, CI14, DW11, DD11d, DX13, ET13, FMWW12, Fur10b, HC14, Han14a, HK12a, HN10, HIK+13, JG10, JR14, KS14a, KSAM12, KJK13, KW12, KLP12, MPP11, MTS11, MMK13, Nak13, OM10, PP14, San14, Uch10, WW10, WD10, WLL14, Wój14b, XZ13, XSH14, ZW10, ZHQ14, Zha14c, dSC14].

Operators [Bra10, AS12a, AR10, And13, ACG13b, AK12b, BV12a, Bar10a, Bar13a, BS12a, BCD10, BR11, BC12a, BJ10a, BJ10b, BJ10c, BV13b, BB11b, Bud11, CRS14, Cam13, CL12a, CEM14, Che13, Den10, DWXS12, DCIW12a, DD11c, Dra12a, DP10, DJK12b, DDK14, DK13e, ES13, FJ10a, For14, GS10a, GN14, GP14, Sem10, Gu14, GS10e, HGI11a, HKK+12, HH14, HLW10b, HZ11a, Hua11a, HZ12, JLLY10, KL12, KI10, KRS13, Kec13, KR10, KB12, Lac13, Lán10a, LP12, LCM13, LMMR13a, LMMR13b, Lomi11, Lu11, MM13, Mat13a, Mat14a, MPP11, Mol11, MIM13, MN12b, Nie10, PP14, PY10, Pe14, Pep12, PT13a, Pop13b, Pro10, Rez13, RS12b, Ros12b, Rud12, ST10a, Sed11, Se14, SR13b, Sha13a, Sha11, SM10a, SM10b, TD13, Tim14, VU14, XDFL10, XCS13, YW10, ZH11a]. operators [ZH13, dOHKS12]. Oppenheim [Lin14b].

Optimal [JZT14, LH11a, LJ12, LH10c, TDT13, Wil13, CGM+10, EY13, GOSV12, GIP12, HCY10a, LHH13, LLD13, LL13d.
MZ10, Mit11b, NP10, NA13, Peñ14, Sta14].

passage

path

patterns

peculiar

pedagogical

Pellet

Pencils

pendant

pentadiagonal

Perfect

Perfectness

Periodic

peripheral

permanent

permanental

permissible

Permutation

Permutation-like

Perron

personalized

Perturbation

Perturbations

perturbed

Pete

Pfaffian

Pfaffians

Phase

phenomenon

Pinkus

pivot

Pivoted

placement

Planes

plane

Planning

Player

Point

point-stabilizer

points

Poisson

Polar

Poloni

Pólya

polygon

polyhedral

Polynomial

polyhedral
BC14b, BO11, BH11b, BHAP12, Cer10, CL13b, DTL11, FHI0c, Gna12, GX12b, GS12c, HB12, HP11, JK1V3, KL13a, KL12, KH13, KdM13, KW13, Lee13b, LD12, LW13b, LM10c, MZ13, MW14a, Moe11, FQZC11, Pet10, PT14, RO10, SK14, Sun13, TW14, VS14b, Wu10b, ZYL10, dCF12, vdW14).

polynomial-Vandermonde [ZYL10].

Polynomials [NT12a, AAK11, AK12a, Aga14, AAT12a, AAT12b, AL14, Bal14, BM14a, BR14b, BK11b, BG12b, BL10a, BSS10, BH13a, BMM12, BR12, BW13b, CMS12a, CKS10, CN10a, CN11b, CL11b, Cim11, CD12c, DD10a, DMD12, DTS11, DW10, DD10b, ES11, FPC13, GMMPSS12, GW13a, GN13, GS12d, GM11b, He14, HLW14, Hen10, HT10a, Hwa11, IM11, Kall13a, KHTK13, KH13, LT12a, Lan14, Lav10, LL10a, LZ13, MMMM10, MMMM13, MZ12a, MZ11, Me13, Mel13, NV10, NT12b, Psa12, QY12, Qua12, RBP12, RL13a, Sha10a, Sim10, T713, DDP14, DMM14, TG111, TT11, VS13, WLLX11, WML13, WZ13d, dF10, dO12].

polytope [CGSCZ10, CM10b, KAAK11, PSW11].

Polytopes [Dah11, ACDM14, Bar12a, Beh13, BG12b, BW13a, Dah12a].

polyvectors [De 11].

Poncelet [Mir10, Mir12].

Pontryagin [CD12c, Wor14, dSW12].

pooling [LHG10].

population [LLR14, MsvdD14, RM14].

porism [Mir12].

Porta [CMS12b].

portfolio [DBZZ14].

Portuguese [FdC12].

posed [BJRS11, HMR12, NRS12].

poset [Kha13].

posets [AY13, FFG+11].

Positive [AG10, BKV14, BL13, Dru14, EEH+13, Fri11, Fur10b, Gar10, LV14, MYL13, Pop10, SH10, WD10, AHHAPP10, AL13b, AGC13b, BH14a, BMW10, BS12c, BP11, BS12d, BR14c, BI13, BSU14, BCS13b, BLL12, BL14, BAD09, CRU10, Cen11, CM12a, DA10, DP10, FFJM14, FJ10a, FV13b, FGvRR13, FW14b, Fuj10, Fur11, GS12b, GD11a, Gna12, GST13, GR12, HP12b, HKPR13, HJ1N12, HN14, HS12c, ISYY11, Kak10, KSAM12, KS11c, Lac13, LLY11, LL13b, LT11a, LW13a, LLB13, Lim11b, Lim12, Lim14, MWZ13, MPS10, MW14b, Mat14b, MPT14, MY14, Mol11, MR10c, OTdDv12, PP14, dSP10d, Pep12, PV12, QS14, Ros12b, SSM14, Tan10a, Voy13, WXH10b, Yam13, YFW13, YJ12, ZCKS12, Zha14b, Zim13, vdW14].

positive-definite [CM12a].

Positive-kernel [BKV14].

Positivstellensätze [Cim11, SS12b].

Positivity [BMR11, BP14, FF10, GK14c, HH11a, JN13, JS13b, KS12a, Kus12, Pe114].

post [BDV12], post-Lie [BDV12], posteriori [Cha12].

Potapov [FKR11a, FKR12].

potent [CLST14, DCIW12a, LRT12, LRT13, Rom14, SR13a].

Potentially [BV12, GOvdD12].

Power [GW14a, AH13b, Fur10a, GW14b, HQS13, JMS11, LY13, PP12a, SS11b, Seo14, SHS12, TL13a, WF14].

powerful [LLH10, LYL13, YW11, ZLH+14].

powers [BLdPS10, Bie14, CL13b, DXL13, GW10, GKR13, Jai11, JLW11, Pat10, Rim12, SS10b, WWG10, WZ13d, HOT13].

pre [Bar10b, Gar12, Grü12, Lim13b, Rod12a, Tan12, Zha12a].

pre-Hilbert [Pop12].

pre-Jordan [BM13c].

preconditioned [Jbi10].

preconditioner [CJ10, DKOT12, GOSV12, Raf14].

preconditioners [JZT14, LZ11a, PZVJ11, TDT13].

Preconditioning [BTYZ12, PIM+10, SS13b, Tre11, TD11, Wan11b].

predetermined [MVP10].

predictable [KS11a].

Preface [ACGN10, ACT14, Ano10u, Ano11-27, Ano12-29, Ano12-30, BBD+11, BBS1M13, BBG+13, BFBD13, BBD+13, BGL+11, CFPT12, EGLR14,
programs [Sag11]. project [NN10].

projection [Cha10, Hua11a, LRV12, LB14, NN10, NN13, PPKR12]. Projections [BJ11, ACG13b, ACG14, BS10, CSC13, CM10a, CM11b, Ili10b, JG10, SS10d, WL10a, ZZW13].

Projective [BH10, BEV13, De 11, DTL11, lH11b, LSV12, Mer10]. projectors [HRT13].

Prony [PT13b]. Prony-like [PT13b].

Proof [Das11, Das13, JS13a, ZW12a, BL14, NN10, NN13, PPKR12].

proofs [CHZ13, Dra14, FF10, Sat11, Sat14]. proper [MS12, TG13]. properties [ANF11, CFLY12, DCIW12b, HM14a, ĀNPQ12, ACG13a, BHWD12, BCD10, BB14, BJ10c, BLS14, CPV10, CJ11, Dax10, Den10, DJK12b, DGM10, Far11b, FPC13, FH10a, FH13, FJ10b, GB13, GM11a, GM11b, HG11b, HL11d, Hum10, Hum14, ISYY11, Jun12, KKL13c, Kus13, LaG12, LZ13, MŚ10a, Nor12, Ref12, Rod11, Rod12b, ST10b, SSZ13, SSR13, Sto11, Tre10, Tre12, WC11, Zho12].

property [Aud13b, Bai4, Bal10, Ben10, CL12a, CGSCZ10, DK14, GTR12, GLS13a, Jv10, JV11, KP14a, KS11a, Lán10a, LNN14, Mor10, Mou12, NP13b, PP12b, Pu11, Slo12b, Tao13, TG14, AGPP14, LV14, UW11].

Pseudo-distance-regularized [Fio12].

pseudo-random [Wiki11, Wiki12]. pseudo-symmetric [BDP13].

Python [GS12b]. Q [Tao13]. QR [BBE10, LYS13]. QRacah [CHZ13, Dra14, FF10, Sat11, Sat14].

Quadratic [GKS10, KD12, Pol13, BCY12, DS11, Den10, EY13, GS10a, GLP13, GS12b, Gre12, HMP12, Hu10, JV10, Jun14, KS11b, LT12a, MPS10, MR10a, Mei13, MP10, NT11a, dSP12c, Pop10, Sha13a, Tia12, TGM11, XSZ13, Zha12d]. Quadrature [BB10, Rei11a, BFR14]. quadric [GS12e].

quadrants [Baj14, BS11d]. quadrilaterated [ST10b]. quantized [Han11a]. Quantum [Dug11, Wei11, BC14, CHLW14, GZ13, HWSH13, Jen13, KLS12, SL14, Wor13].

quantum-trace [KLS12]. Quasi [aCCS14, CRU13, MS14a, Wu13b, BM10, BFdP12, BIT12, BDFP11, CRU14, DS14, DJK12a, ES13, ET13, Fuji11, GS10a, HTS14, HF12, Kim12, iO12, PLL12, WLHL10, WLL14, XM11, LBS12]. Quasi- [CRU13, GLS10, CRU14]. quasi-arithmetic [WLL14]. Quasi-Arnoldi [LBS12].

quasi-Banach [BDFP11]. quasi-class [DJK12a]. quasi-inverses [HTS14].

Quasi-isometries [MS14a]. quasi-Jacobi [BFdP12]. quasi-Kronecker [HF12].

quasi-triangular [ES13]. quasi-Weierstraß [BIT12].

Quasi-Whittaker [aCCS14].

quasideterminants [Abe11]. Quasioptimality [SA14]. quasiseparable [BOZ10, BOZ11a, BOZ11b, OM12].

quaternion [BE10]. quaternionic [Kyr13].

Quaternionic [Kim13c]. KAAK11].

question [Cha13b, CL14a, Dru12a, Qui11]. questions [CL14b, Shp10]. Quivers [Sev10, GS12b, Lop11a].

quotient [BO12, Bot14, LL10d].

R. [Gar12, Gem10]. R. [Vse12].
[BC14a, GWH13, HWG14, NT10b].

racetrack [SS10c].

Radial

[Sri13, CGR14, MZ11]. radii

[CLS10, FKR11b, LSC11, LL11c, ST13, XZ13b, XG13, YWS11a, YWS11b]. radius

[Alt13, Aud10a, BMSW10, BMSW11, BL10b, BNP11, BNP12, BNP13, BC14c, BS13b, CT10, CLS13, CKST11, CvDKL10, CTG13, DHLX12, Dai12, DP10, DZ13, Dum13a, FY10, FN10, GLS10, GL12a, GP14, GR10, GMV11, GLS12, GL12c, GLS13b, HJZ13, HY14, Hua11c, Ki10, Koz10, Koz14a, LLS12, LL13a, LS10, LT11a, LWZ11, LWV12, LP12, LS11b, LCZ10, LL10e, LX13, aLwW13, LLT12, MR14b, MP13a, NP12, Nik10b, NOL13, NLL13, OM13, OM14, Pep11, Pep12, SWT13, WXH10a, WB12, WZ13c, XZD14, XZ14, YFW10, Z12a, Zha12b, ZHG13, Zho10]. radix [Dum13a].

radix [Dum13a].

radix-rational [Dum13a].

Rado [CP12, OLW14].

Rado-Horn [CP12].

ramified [MM10a].

Randi´c [CFK10a, GMRS14, GFB14].

Random [Bod13, LAL11, Bos11, CLL13b, DLLS10, DLL11, PS12, Wik11, Wik12].

randomization [PQ12].

Randomized

[PQ10, PQZ13, GO12, NT14]. range [Ali12, BT11a, CG13, Che14b, CN10b, CN11c, CN13c, DWXS12, DDK14, DGH+11, For14, GA11, HH12a, Ki10, LPS13, NRS12, PT13a, PGM+11, Sh11, SL14, VU14, WC11].

ranges [ACG13a, BS12a, CGWW13, CN11a, CN12b, CP11, CLS10, DDI1d, Gau10, GW13a, GTW13, GW14b, WB12, WZ13c, XZD14, XZ14, YFW10, Z12a, Zha12b, ZHG13, Zho10].

Rational [BKV14, Duk12, Duk15, Lom11, AL13b, AIL12, Baj14, BT11b, Boj13, Bre14, Dumm13a, MR10b, MR14c, Rad13].

reasoning

[BLLM13].

reachability [LL10d, SS12c].

reachable [SS10a].

real [Aga14, AKM13, AAT12a, Bal14, BGP13, BH13a, BDOvdD12, B„14, Cau11, CGSCZ10, Coh14, Dai13, FGvRR13, Gre12, He14, Ikr10, Kal13a, Lav10, MS10b, MSS12, PR13b, RdSP11, Sag13, SYH14, WZ13d, Wód14, XZ13a]. real-nonreal [PR13b].

realisable [ES14].

realizability [CL14b, DHLX12].

realization [OZ10].

Recht [CMS12b]. reciprocal
[DKOT12, KP14a, LaG12, NP13b].
reciprocals [GIP12]. reciprocity [SR13a].
Reconstructing [JMW11]. reconstruction [GHMPVP11, MRS12, Xu12].
recovered [Lee13c]. recoveries [JKN14].
recruitment [DT10]. rectangular [CRU10, CRU14, Coh14, DDM12, GY13, MRW11, ZCQ13].
Recurrence
[LM10c, VS14b, IY12, Góm10, Lin10].
Recursion [JR11, BHAP12]. reduced [Hwa12, TW10a]. reducibility [GTW13].
Reducible [Gau10, Kar11a, Zhu14]. reducing [DFS14, LHZH11, ZLH+14].
Refined
[BRMP11, Xu12]. refinement [BK11b]. refinements [KMSC14]. reflection [MV12].
Reduction [CN11c, KS11b, BGW12, BDG13, Blü12, Cha10, KMS13, LS13a, LRV12, LBLS12, MAGR13].
reductions [BW12]. redundant [Fou11]. refined [BDM+12, GLZ14, GOvdD14, YHH12].
Reflexivity [Kar11a, ZLH+14]. relating [Ste10]. related [DKOT12, KP14a, LaG12, NP13b].
related [Ano12-30, BG12a, CD14, Car10a, CMS12b, Dah11, Dru14, Duk12, Duk15, GMS12, HW11, HP12b, JRMFSS12, KSAM12, KP14b, LRTST10, Maz10, MPSS10, MTS11, Naj13, Nak13, Rah13, RO10, Sei14, SHZ10, Tim14, TT11, ZYL10]. relating [Ste10]. relation [CFJKS13, DdC13, GB13, JV10, LSH12, Yan10a]. Relations [LRT13, AK12a, ADW13, BR12, CM13, DW10, JR11, KP14b, LM10c, Mar11, Mar13c, Tim14, Wój14a, YI12].
Relationship [CN10a]. Relationships
[HRT13, MS12]. Relative [BMM12, Sha10a, IIK+13, Koz14b, MS10c, Nak10, Nie11].
Relaxed [FFS11b, Nak12, SK14]. Remark [SK13]. Remarks [Lu12, PHS13, Rod11, dOHKS12, YY14c].
removal [MNZ12]. removed [LWV12].
Rényi [IKK+13]. repetition [BCF14, BF14c]. replicated [PYZ14].
replication [AT14b]. report [BFH+12].
Representation [BY11, OM12, YZ13, Ben14a, BD13, BBS12a, CM12b, CN11b, DMS10, DKM+14, Irv12, KAAK11, Kyr13, Qua12, Sag13].
Representations [DW11, XCS13, XSH14, jASZ12, jAS13, BY11, BE10, Buc10, CN12c, Den11, DD10c, Dor10, Han11a, IM11, Kaw13, LW12d, LZ11b, Ma11, Net10, NT12a, Qua10, RPM14, Ros12c, SY12, Sze14b, VS11, XSZ13, Yan14, GTS13].
represented [GN13]. Reprint [BOZ11b, Mar13c]. Reproducing
[蛹14, Che13, CD12c, SST14]. require [BDM+12, GOvdD14]. Required [CP10].
residual [CN14, KOR14, Lin10, ZW10]. residuations [GMH14b]. Resistance
[BYZZ14, BS11a, ESV+11]. Resolution [Ste10]. resolvent [BMW10, EFN09, EFN10, JZZ13, KL13b, Sah10]. Resource [Cec10, Wil11]. resources [Cec10]. respect [FZ11, ISYY11, KKR11, Wu10b].
respectful [Köhl14]. restrictions
[MV12, MRS12]. Restricted
[OTO12, BT14a, Cha10, NRS12, Shp10].
Semiregular [BL10b]. semiring [FKW13, JP11, SB11, Tan14b]. semirings [AB12, BHMR12, DO11a, DO11b, KP13, KSB12, Per11, SS11c, Shi11, ySpW11, ySpW14, Tan14a]. Semiseparable [Gem10]. semisimple [FG13c, HT10b].

sequence [AW13b, BC+14, BMSW10, BDS13, BDFP11, BCFP12, BDovD12, CCR13, CR14, CH12, CK14, DP10, Lac13, aLwW13, MN12b, PPK13, Pep12, TD13, Tan10a]. sequences [BV12a, Ben10, BHKL10, CC12, CL13b, CP11, Dug11]. Series [Gar12, Rod12a, Zha12a, dMR12, BGP11, Boj13, He11, KM14, Lak10b, Slo12a]. set [AHLVdH13, BS14, BB13c, BHvdH11, Cal12, FdC10, JZZ13, Kim13b, LT11a, Lop11a, LdlP11, MS13b, Mar14a, Roh11, Tan10a, XWD13]. Sets [FdC14b, PV12, BBH+12, BJ10a, BH11a, Cal12, CSZ10, CR10c, CP11, CLHQ14, Dau12, FHL+11, GLZ14, HT14, HHL10, HRT13, HCY10b, JSS13, Lim13a, MH13b, Mey12, MS11b, NN13, Net10, Pep12, PR13a, Row14c, Sin10b, VV10b, WLHL10, YHH12, ZY12b, ZSB14, Ziv12, dS12a, dSC14, vdH14]. setting [GJ11, Gul11]. seven [BSU14]. Several [GL14, ZY12b, CHZ13, FJ10b, Pr10, SV11, Zha14c]. Seyesen [Maz10]. shadows [DGH+11, GI13]. Sham [YM12]. Shannon [IK+13]. shape [Cha14, GL10b, HG10, IS14, NT10a].
shapes [HJN12]. Shapley [FDS13].
Signless [BZ12a, YWS11b, Zho10, ACG+11, ACM+12, AOTR13, BMSW11, CT10, CW10, CT12, CTG13, CD10b, Das10b, Das11, DLS14, FF12, G1k4b, GW13b, GGY14, HL10a, HL12, HJZ13, HY14, LS10, LWZ11, LW12b, LZ12b, LTS13, LLI0c, LLI1c, LLI13, LL14b, LL14c, L14d, MK12, NLL13, TW10a, WB11, WF12, XZ13b, YY14a, YFW10, YWS11a, ZZ13, ZHG13, Zhu10a, dLOdAN11, dLN13]. Siler [CPH11]. Silva [FdC12, LPQaS10]. similar [GS12c, HLZP13]. similarity [Bar10a, Bar13a, CAV13, CD11, CLH14, Far11a, FGS11, FFG+11, FJ14, FHS11, Ger12, LNT13, dSP10a, YY14b]. similarly [Nie12]. similitudes [GS12c]. Simple [ATS12, CBB13, GJTP13, WZ13c, Dub14, FGG10, KZ10, MB13, RR11, ZY12a]. Simplification [dO12]. simulation [Hür13, LAL11]. Simultaneous [BLLM13, GS13s, LS13a, LV11, LV12, MM11a, Ara12, Bar10a, Bar13a, Gna12, dSP10a]. sine [LdS13]. Singer [DH12b, WY14b]. single [BR14b, MM12]. Singular [AK12b, BHZ10, CN13b, DS10, HK10, BFR14, BGV12, Bcem12, BR14c, CQYY13, DD10a, DW11, DYW14, DdF13b, DdC13, DLV13, Dur12, GH13a, GH13b, GZX14, HSZ12, JK13, KN13b, Liu14a, LS14, MB13, MM11a, ND11, Nik11, OLM14, dSP10e, RR14, Slv13, VU12, Wi13, XSS13, ZCQ13, Z10, ZH12]. singularity [dSP12b]. Sivasubramanian [Sat14]. Six [CdGS12, CdGS20, LGSC14, DK13a]. Six-dimensional [CdGS12, CdGS20, DK13a]. size [BL12, Cir13, NS11a, ST12, SBMT10]. skeleton [ACD14]. sketching [NNW14]. Skew [ABS14, CCF+12, DKS13b, MMM13, AW13a, ABS10, CL13a, CL13b, CD12a, CLH14, DYW14, FM11a, GX12a, GHW+13, IMA10, LL11a, LL11b, LH12, MS13a, NS12c, iO12, Öz13, Sev10, Sev14, Sha14b, TT10, Tia11a, WYZ14, XG13, YT13b, Yan10a, Zha12c, de 13]. Skew-adjacency [CCF+12]. skew-energy [WZ14Y]. skew-Hermitian [DYW14, Sha14b]. Skew-symmetric [DKS13b, MMM13, AW13a, CD12a, FM11a, IMA10, MSS12, IO12, Öz13, Sev10]. skew-symmetrizable [Sev14]. skews [Hil13]. slack [GGK+13]. Slant [GS10e, Sed11]. Slepian [FZ11]. slice [Fri11]. sliding [Koz14b]. small [BL13, Cal12, DG+10, DGZ13, DD10b, FK13, JS13, Kol13, NS13, Shi12c, WB12, YFW13]. smallest [GK14b, GLS12, Kal13b, KPY11].

Some [AT14a, BDH13, BCD10, BS12d, CPZ13, CW12a, CGM10, Cra13, CLHQ14, CI13, Dai13, DD14, FH10a, FI13, Fie13, GL12c, HG11b, Hun10, JLN13, JL12, KK12, KK13, tLyLWqW10, L11j, LKN13, LCZ10, LD14, MA12, Maz10, MK12, MS14b, Na13, NPP13, SYH14, Shp10, St12, Sto11, TKLX14, TPZ12, Wad14, WXH10a, YY14c, Zha14c, ZBW12, AM13a, AdFM11, BP14, Bar13a, BM12b, BRZ13, BH11a, BZ12a, BZW14, CRSS14, Cau11, CHZ13, CFL13a, DHIH12b, Duk12, Duk15, Fan12, Fis14, Fra12, Gha13, GL10c, HLW14, HG10, Hg12, HL11c, JNS13, K110, KKR11, KJK13, KP14b, Kus13, Kyr13, LLD13, LY13, LW12c, LHL13, MZ11, MR12, MN12b, Nat13, RRKK12, RMAJ10, RM10, Seo13, SHZ10, SSZ13, wTIW13, Uch10, VU14, WW10, WFM11, WW13d, Wód14, Wój14b, YT13a, Zha12b, Zho11, ZCWZ13, ZXZ10, ZH12]. Some [DGGJ11, SBMT10]. Somos [CH12]. Somos-4 [CH12]. SOR [LMT10]. Sorensen [BELK12]. Space [Bra10, And13, BV12a, Bai14, BR11, BFK13, BEV13, BPDC14, DK13a, DK13c, CD12c, Dai13, DK11, DK12a, DK13b, DV14, DWXS12, DK14, FP14, GH13b, GN14, HKK13, HN14, dHLS13, KLP12, LSV12, MARC13, Mat13b, Mer10, MMM13, PO10, dSP11b, dSP12b, PGM11, QH10, Ros12b, Tim14, pWIW14, WC11, vBM13]. Spaceability [BS14, BDFP11, BCFP12, CGMP11, RS14c]. spaceable [BPFP12]. Spaces [Özd13, dSP14, Qul11, AS12a, AM13c, ARZ11, AGBP14, BG13, BDD14, BDFD11, BDFP11, BCFP12, BCF12, BRZ13, Bud11, CD10, Cau11, CM13, Cir14, De 11, DW10, Dra12a, DP10, DX13, Dub14, Fan12, FM11a, FFS11b, For14, GZX14, Gon11, GLW13, GL14, HMT10, HZ11a, Hua11a, HZGY12, HZJ12, KP13, Kec13, Köh14, Lac13, Lán10a, LMM11, LM12, LHG10, LT11b, LT13, MMS12, MZ12a, MZ11, MM13, MN12b, OLW14, dSP12a, Pep12, Per11, PT13a, RAAGAVS11, RS14c, SP13, SST14, ySpW11, ySpW12, ySpW14, SM12, TD13, Wal11a, WLG11, WY13, Wój14a, Woll12, Wor14, YY10, ZHQ14, de 13, dSW12, thR13].
spanned [LT10a, RY12a]. Spanning [GS10b, Bap10, CW12b, Göml10, LS13b, LHL14, LHLG14]. Sparse [Ano12a, Dum13b, GP13a, KR12, KPR14, PT14, CCL14, SPS13, NNW14, Rue13, Wan11b]. Sparsity [KKL13c, DT11, JKN14, MZ13, Zho12]. Special [BM13c, GRS10, HP12a, LPQdS10, Stu13, AAH13, BDF12, DGMS10, FM11b, FV13b, FKLT13, HLS10, Nor12, Nor14, PDVD14, RR14, TZ12a, TD13, Xu14, BBD11, KPR14]. specified [Nik10b]. Spectra
Spectral [ANPQ12, AS10, AW13b, Aud10a, BV13a, CR10a, FN10, GM11b, HY14, JS12, Kal13b, LS11b, LHW11, aLwW13, Lop11b, LLT12, MW14c, Ref12, RM10, SS13b, SSR13, DDM14, UZ14, WB12, WC11, Alt13, AH10, BT13, BdP13, BMSW10, BMSW11, BR14b, BL10b, BNP11, BNP12, BNP13, BH13a, BC14c, BZ12a, BS13b, CT10, CLS13, CLL12, CKST11, CvDKL10, CTG13, CS10b, DHLX12, Dai12, Dai13, DD10a, DP10, DZ13, Dum13a, FY10, FZ13, FG110, FG13b, Für10a, FJ10b, GL12a, GR10, GMV11, GLS12, GL12c, GS13b, GW13b, Gub12, HJZ13, Hi12b, HH11b, Hua11c, JZZ13, KG12a, Koz10, Koz14a, KKL13c, LLS12, LL13a, LS10, LT11a, LSC11, LWZ11, LWV12, LS12b, LCZ10, LL10e, LL11c, LW12e, LHWL12, LH13, LHL13, LX13, MR14b, MS13c, Mon12, MP13a, NP12, Nik10b, Nik13, NOL13, NLL13, OM13, OM14].

Spectrally [Bot10b, ES13, GS11a, GS12a, GS13b, MGSW14].

Spectrum [DHKQ13, KM12, Su13, ACM+12, AR10, Ang13, jASZ12, AT14b, BS11b, CJ12, Cos11, Cos14, CT12, CI14, Drn13b, FTDA10, GL10a, HLW10b, HZ12b, Kra12, LV11, LHWS13, LL14b, MSP11, SDNS13, TW10a, Ter11, ZW10, ZH11a, ZL11, vB13b, RY12b].

Spedidato [MAGR13].

Speed [Zhu11b].

Spheres [PP13a, KK10, KK12, KK13].

Spherical [DGGJ13].

Spill-over [KD12, MD13].

Spin [PP13a].

Spitzer [AS14].

Splines [ACG14].

Split [JZ11, MD12a, MD12b, MSD13, Ros12c, ZY12b].

Splitting [DYW14, MZ12c, Rad13, wXL14, wXZ19].

Splittings [JM12b, MS12].

Spread [CL14a, Dru13b, EHH+12, LL10c, OdLdAK10, SK13, WZ12, XM11, YL10].

Springer [Tam12, Zha12a].

Square [BB10, Bot12, BLS14, Che14a, DD10a, DF14, FS14b, GS12d, Lav10, MARC13, Nor12].

Square-free [GS12d].

Square-zero [Bot12, Che14a].

Squares [Sad12].

Squares [Zhu11b].

Squares [Zhu11b].

Squares [Zhu11b].

Square-free [GS12d].

Square-free [GS12d].

Square-zero [Bot12, Che14a].

Star [DM11, RTR10, Row14d, JR14, PRT13, Row12b, Row14b, Row14c, ZSWB14].

Starlike [BZ12b, SHS12].

Stars [FG13a].

Stats [AS12b, CHLW14, HQ13, MS10c, SS10a].
KLZ14b, MPRW11, Mer12, Nik11, TT10, TT12, TZ13b, Zuo10. summable [dMR12].

Summary [DK13a]. summing [Cam13, Pel14, SR13b]. Sums [Bot12, dSP12c, Rod12a, dSW12, BW11, Bar12b, Ben13, BL14, BG11, CY11, EWY12, Fri11, HS14a, HS14b, JS13b, Kra12, Lee13a, OM12, dSP10d, PT13b]. subset [Cal12].
surjectivity [BMS14a]. survey [AH10, AH14, Sei14, YS13]. survival [VV13]. Suslin [JR14].
Symplectic [MVP10, BFS11, DK13a, DK13c, DK11, DK12a, DK13b, GH13a, GH13b, Gu13, GLW13, Hii12b, LHG10, LWG13, dSP12d].
synchronization [VR12]. Synthetic [FN11]. system [DH12a, FMWW12, FZ13, KHG14, KAAK11, Köh14, LdlF11, MD13, RMT11, SHZ10, WD10, pWIW14]. Systems [BFK+13, PQ10, AW13a, BLLX11, Baj14, BBCC13, Bap10, BV11, BM10, BV13a, BH10, BTZY12, BLLM13, CDP10, Car13, CC14, CA10, CLCL12, CMN10, Czo10, CN10d, Dai12, DZ12a, Dur12, EM12, ET13, FGQ11, FV13b, FS14b, GLP+13, GRdS12, GS10b, GHT11, GKS+10, HDPT12, HRT10, Hil12b, Hla13, IT11, KH13, KRvS12, KRvS14, KMS13, KKM13, Lan13, LBSL12, LHZH11, Li13, LM10b, Mah11, MS11a, MZ12a, MRS12, MZ12b, Mi14, MSP13, Mys12, NP13a, OM13, PQ12, Per12, PKR12, RGC13, RS14a, SSS13, Sch10, SB12, SVP11, SW11, SS11a, Sha14a, ST13, Tre11, VB10, WZ13b, Wei10, Wor13, YM12, ZCKS12, Zhu11b, ZY14, Gen10, KPT14]. Syzygies [Dim11]. syzygy [KMS13]. Szechman [Qui11]. Szeged [FTDA10]. Szego [Seo13].
tail [Han11b, Han14b]. talk [Stu13]. Tallini [HK13]. tangential [Fuh10b]. Tanigawa [Rah13]. Tao [MW12b]. TCP [SWBS13].
TD [IS14, Nom14]. TD-pairs [IS14]. teaching [MLC+10, PTPL10, TP13].
technique [Mei13, Rhe10, RS10, Row12a].
Techniques

[DGH+10, IPFD13, KY14, Tam12]. tennis

[Dah12b]. tensegrity [AN13].

[Dug12, KSN10, Nem13, SC13, BCM10, CS13a, DKS10, Fri11, HM14b, HWSH13, Jai11, KRS13, Kuh13, LPS13, LKN13, LQY13, MZ12b, Pat10, PGM+11, QS14, Reg13, Rho10, SE13, SC10, ZCQ13].

Tensored [FH10c].

Term [BSK12, BSKL13, BS13a, BZ12b, BZW14, CKST11, CS13a, CS13b, DB14, DKS10, DQW13, Dug12, KS10, Nem13, SC13a, DKS10, Fri11, HM14b, HWSH13, Jai11, KRS13, Kuh13, LPS13, LKN13, LQY13, MZ12b, Pat10, PGM+11, QS14, Reg13, Rho10, SE13, SC10, ZCQ13].

Tensors [Bra10, TS12, Bal12a, Bal12b, BGK13, BBCC13, Ber13a, Ber13b, BBM14, BZZ+14b, BL13b, CPZ13, CQYY13, CKAC14, DQW13, Dug12, KS10, Nem13, SC13a, DKS10, Fri11, HM14b, HWSH13, Jai11, KRS13, Kub13, LPS13, LKN13, LQY13, MZ12b, Pat10, PGM+11, QS14, Reg13, Rho10, SE13, SC10, ZCQ13].

Tensegrity [AN13].

Tensors [Bra10, TS12, Bal12a, Bal12b, BGK13, BBCC13, Ber13a, Ber13b, BBM14, BZZ+14b, BL13b, CPZ13, CQYY13, CKAC14, DQW13, Dug12, KS10, Nem13, SC13a, DKS10, Fri11, HM14b, HWSH13, Jai11, KRS13, Kub13, LPS13, LKN13, LQY13, MZ12b, Pat10, PGM+11, QS14, Reg13, Rho10, SE13, SC10, ZCQ13].

Tensed [FH10c].

Theorems [CTW11, LHZH11, Bar12a, BFdP10, Hili1b, Nak10, Pin11, Sat11, Sat14, YW10, dCdRMP14].

Theorem [BB13c, BaOt13, FH13, Kus12].

Theories [MLC+10]. Theory

Ber09, BFH+12, MOA11, Sl10, Tam12, Zha12a, Ano12-30, AH10, BV12a, BPA+11, Beh13, BS10, BBS12a, CC14, CS10b, DD10a, DD11a, DD11d, GL10e, Ika11, JZZ13, KZ11, LN12, MMRR11, MMRR12, Nik13, NV12, PO10, RR12, RL13a, SB12, Sei14, SRdAG10, TN14, Zha12d, HB12, Lim13b]. Thin

[God10, God12, Shi12a, Cer10, Kim12].

Third [Bra10, KM11, SHS12].

Third-Order [Bra10, KM11]. Thirring

[And13a]. Thompson [ISYY11, Lim13a].

Three [Cha14, Dor10, HLI14, Kar11b, BS11d, CKST11, Cit13, DP12a, DD11c, Dra14, KS13b, LZG14, MAS12, dSp10b, WBWH13, vDO11]. Three-by-three

[Cha14]. Three-equipped [Dor10].

Three-parameter [Kar11b]. threshold

[Bap13b, JTT13, VDVJ13]. thresholded [GR12]. tight [Bod13, BW13a, DHS10, FMT12, HS12a, Sin10b, Szö13]. tightly [BS13a].

Tikhonov [LRV12]. tilting

[PY14].

Time [Pol12, BCY12, BLM13, BJ13, DT10, DZ12a, FY13b, HDPT12, HRT10, Jun14, Kir10, KM14, Liu13, Mah11, PKR12, RMT11, Sad12, Sha14a, WZ13b].

Time-delay [Mah11]. Time-domain

[Pol12]. time-invariant [DZ12a].

time-varying [Mah11].

Times [BRZ11, Göm10, PR10].

Tits [GS12b].

TN [JW13].

Toeplitz

[BH12, BS12a, BCD10, BBGM12, BF14b, Bün14, CRS14, CSG11, DK13c, Eil10, Gar13, GG13, HR11, KL12, KMS13, KW12, LMYY11, LJJ13, MS11a, RR14, Rim12, SCSS10].

Tonomorphic [PS14a].

Top [Sha10b].

Topical [SN12, Sin10a, SN14].

Topics [Ano12-30]. Topological

[Bud11, RS12a, ABGPSS14, FRS14, JZZ13, Wat13, ZY12a, de13, vDF14, Had12, Had13, Lee11, DDM14].

Total [HC10, LB14, BP14, Dum13b, Kus12, LJ11, PO11, Peñ14, RMAJ10, YM12, SS10c].

Tottally [BK10, FJ11, Gar10, HJN12, HWG14, AG13, CRU10, CRU13, CRU14, CDP10, FFJM14, GL12b, Hua13a, KS11c, Gar12].

tournament [BRLS12], **tournaments** [BF14a, NS12c]. TP [HJN12, JW13, PS14b].

TP-critical [PS14b]. Trace [Aud12, BluíPS10, DK13c, LLB13, FL10, HH13, Hia13, KLS12, KK14, Lu11, MY14, MSW12, Ros12b, Spe11, WHHL10].

trace-preserving [Ros12b]. traces [FF10, KHG14, WXH10a, WZ13a]. track [Han13a].

Tracts [Lim13b]. traditional **traffic** [FGQ11]. training [DT10].

transfer [BK14, BP10, CFG+14, CG11, FG13a]. transfer-function [BK14]. transferring [Wój14a]. transform [BH14a, Boj13, BJ10b, Bri13, DH10b, FK13, HFS13, KB14a, KB14b, O’D14].

transformation [DDMY10, Lak10a, Li12, LLMZ12, TZ13b, XDZ14, XE11, ZLL12].

Transformations [FKM13, BB13a, Bal10, Buc10, DK13d, DD11b, DAG14, DFS14, GTR12, HG10, HG12, JV10, RAY14, Sim10, tW113, Tao13, TG11, TGM11, VV10b].

Transformed [KS12b]. **transforms** [LdSP11, LS13, Xu14]. transition [BAN12]. **transitive** [Kuz10, MW12a].

translation [DDMY10, Lak10a, Li12, LLMZ12, ZZ12].

Transformations [FKM13, BB13a, Bal10, Buc10, DK13d, DD11b, DAG14, DFS14, GTR12, HG10, HG12, JV10, RAY14, Sim10, tW113, Tao13, TG11, TGM11, VV10b].

Triangulability [YT13a]. **triangulable** [dSP12c, RY12a].

Triangulizing [TTZ13]. **trichotomy** [MSP11]. tricyclic [CL11a, GL12a, LWL11, LY11a].

Tridiagonal [BC14a, NT10b, NT11b, ÁNPQ12, AM14, BT13, BDH+12, BDG13, BC12a, BK12, CM10b, GG13, HH11a, INT11, IT11, KHL14, LHL10, MS11a, NT10a, Qua10, Rimi12, SC12, Van10, Wül13, dF10, dS12a].

tridiagonalization [PPZ14].

trigonometric [CN11b, LdSP11, LLMZ12, Sra13, ZL12].

trilinear [DS10]. triple [Mol13, Reh10, Reh11, SM12, XW12, ZH11a].

triples [AAT12b, BM12a, GWH13, HWG13, HWG14, wH12, Siv12b, Siv12a, Ili10b].

Tripotency [Kis15, XX12]. **tripotent** [Kis15, XX12]. **tripotents** [BY11].

trivectors [DK13a, DK13c, DK11, DK12a, DK13b].

Tropical [AGM14, AGK11, BS11d, DSH12, GS12f, dIP11, Cas10, CJR11, GMH14a, GMH14b, JK11, KNS14, LdIP11, Shi12b, Shi12c, SLS13, Wag11, Wil11]. tropical
truncated [DK13e, Sto12]. truncation [Cha12, DGMS14].
trust [CKAC14]. Tsallis [IIK13]. TSD
[BJRS11]. TT-cross [OT10]. Tucker
[BGK13]. tuples [BDS13]. Two
[AH13a, BC12a, BSS13, wH13, IPFD13,
LB14, LHG10, LYS13, Ma11, Seg10, Ste11,
TT11, AKM14, AR10, AIL12, AK11, BB13b,
Bot10a, Bot12, BS10, BS11c, BS13a, Brä12,
BZ13, CGMJ14, CN10a, HO11, Hill4c,
HMP12, Jun14, Kis15, KW12, KKM13,
KR10, LLS11, LwCJL11, LSR11, Lop11a,
LMT10, MW14a, Mar10, MH13b, MP10,
NR10, NS12a, PPZ14, dSP10c, dSP12c,
Pet10, PSM11, SW11, SH13, TZ12a, TH10,
TZ13b, WBWH13, XX12, ZW12b, Ziv12,
Zuo10, FF10]. Two-by-two
[BB13b, KKM13]. two-cyclic [LMT10].
Two-dimensional [Ma11, LwCJL11].
two-level [KW12]. Two-lit [wH13].
two-parameter [HMP12, MP10].
two-player [Jun14]. Two-sided
[LYS13, Seg10, PPZ14]. two-variable
[AI12]. Tykhonov [SS10c]. type
[AI13, AAT12a, AK11, BR14a, BRA11,
BdlCl4, BFS11, BC14a, CL12a, CA10,
Dai12, DD11c, Dra12a, FPC13, GH13b,
GWH13, GD11a, He11, HM14b, HWG13,
HWG14, wH12, IS14, JKN14, KKLY14,
Lec11, Lin13, Lin14b, LK12, MFG14,
NY14, NT10b, Pag12, Pat12a, Rho10, ST10a,
SE13, SS10c, Sch10, Sec13, Sev10, Sev13,
Tao11, TPZ12, Wad14, Wik11, Wik12,
Wii13, Wol12, Wor13, CGGS13]. Typical
[SSM13, Bal14, Ber13b, Fri12].

UK [Lim13b]. umbral [En13].
Unbounded [And13, CGM12, For14,
GMMPFSS12, Pop14]. uncertain
[Liu13, Sha14a]. Uncertainty
[Yan10a, GJ11, MW12b]. unconditional
[LM12]. underapproximation [GP13a].
underdetermined [Miy14]. Undirected
[CGMJ14, CFHL14, FS14a]. Uni [ZHZF13].

Uni-mode [ZHZF13]. unicellular [FGS11].
Unicyclic [AW11, AKM14, BMSW10,
CLL12, DC14, DZ12b, FW13, FY10,
GHW+13, HL12, HJL10, HLS11, Kal13b,
KP14a, LFS12, LTS13, LZ14, SSGL10, YL10,
YZF14, Zhu12c]. Unified [AM13b, JKN14].
Uniform [LMY11, CD12b, JZ13, Niki4,
QSW14, XC13]. uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12]. unions [Dau12]. Unipotent
[CHJ13, Bot10a]. uniquely
[KKL13a, KKL13b, Lee13c]. Uniqueness
[LL10a, Der13, Mor10, Sta14, Wei13a,
ZHZF13, Dru14]. unit
[AG12, BR12, DW10, MPS10, Ref12, RL13a].
Unital [KLP13, BS12b, BG14b, Wan14b].
unitarily
[FCL10, Fur10, lkr10, MA12, Van10, ZH12].
Unitary
[GPT12, Ger12, LNT13, AR10, BFK+13,
Bud11, CLHQ14, Far11a, FGS11, FFG+11,
FHS11, GHS13, KAMS11, LNN14, Li10,
LWGM10, LPS13, LWM12, Mol13, Pop10,
SY12, Ste13, Tad12, TMS14, GTW13].
unital [Bie14]. Univ [Gle11].
univariate [BL10a]. Universal
[CFG+14, HO11, AAF+12, AN13, LV14].
universally [HCY10a]. Universitext
[Tam12]. University [Bar10b, Gar12,
Gri12, Lim13b, Rei11a, Rod12a].
Unordered [KS13a]. unreduced [Wü13].
unstructured [RW12]. updates [EM12].
Updating [SWA12, Jdy13, KD12]. upon
[CFJPS13]. Upper
[BHKM13, CFL13b, DLS14, DZ12c, WZL12,
AHS10, BBG14, CR10a, CGTR14, CLS13,
Cir13, CM14, CGR14, CTTG13, CI14,
DW14, FW14, FFG+11, FTA11, FdC10,
Gho13, GL13b, HC14, JMS11, PJ13,
RMA10, RL13b, SK13, SWT13, TC13,
WW13b, WM14, ZL12, ZZ10, Zhu10b].
upset [BRLS12]. Uriel [BMS14b, Loe12].
Use [PTPL10, VS10]. Using
[MS11a, TP13, AHAPP10, AHS10, BBH+12,

Yanase [Yan10a]. Yang [Kaw13]. Yuan [ZC14].

Zarankiewicz [Nik10a]. Zdenek [Gre13]. Zero [BBF+10, GWW14a, Gha13, GB14, Mey12, PR13b, BG14b, Bot12, CT11a, CL14a, Che14a, CL10b, Dnr13b, EH11+12, EEE13+15, FFS11a, GOsdv11, HLS10, HCY10b, HLI11c, HLI1d, JH10, KH13, KLZ14a, MZ14, Ma14, QCH11, Qui11, Row12a, Spe11, WLHL10, WMZ14, YHH12]. Zero-dilation [GWW14a]. zero-divisor [WMZ14]. Zero-nonzero [PR13b, GOsdv14, MZ14, YHH12]. zero-one [CT11a]. zero-pattern [HL11d]. zero-symmetric [CL10b, WLHL10]. zeros [Aga14, ABSV12, CN10a, DD10b, FPC13, Hill14b, Mel14, S11c, WZ13d]. zerosum-free [KP13, ySpW11]. Zeta [MM10a, MS14b, SS13a, SS13c, Sto11]. Zhang [Tam12]. Zinbiel [ACGVK14, CCGVO13]. zonotopes [GK10, HLW10a].

References

Adhikari:2011:BES

Adhikari:2014:SMP

Ahmadi:2012:MRU

Alaminos:2010:BMD

Albuquerque:2014:PCT

Araújo:2014:LSE

Adiga:2010:SED

Anuradha:2014:SSG

Alaminos:2012:MPZ

Cai:2014:QWM

Abreu:2014:SAB

Abreu:2011:BSL

Arias:2013:PPP

Arias:2014:SPP

Abreu:2010:P

Arias:2013:APO

Adashev:2014:NGZ

Adam:2014:DEC

Alzer:2011:NPB

Andelic:2011:NVS

Abreu:2014:CCI

Abreu:2014:P

Abreu:2014:LSL

Abreu:2014:LSL

R. Armario, F. J. García-Pacheco, and F. J. Pérez-Fernández. On the Krein–Milman Property and the

Ahmadi:2014:LAB

Ayala:2013:LFM

Abreu:2014:OTG

Atreas:2011:BIM

Adm:2012:BMR

Audeh:2012:SVI

Daniel Alpay and Izchak Lewkowicz. Convex cones of generalized positive rational functions and the...

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Avrachenkov:2013:APG

Alpay:2014:IPS

Ai:2014:OBC

Andruchow:2012:CMH

E. Andruchow, G. Larotonda, L. Recht, and A. Varela. A characterization of minimal Hermitian matrices. *Linear Algebra and its Applications*, 436(7):2366–2374, April 1, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Walaa Asakly and Toufik Mansour. Enumeration of compositions according to the

Anonymous:2011:LEh

Anonymous:2011:LEi

Anonymous:2011:LEj

Anonymous:2011:LEk

Anonymous:2011:LEl

Anonymous:2011:LEm

Anonymous:2011:LEm

Anonymous:2011:LEo

Anonymous:2011:LEp

Anonymous:2011:LEq

Anonymous:2011:LEr

Anonymous:2011:LEs

Anonymous:2011:LEt

Anonymous:2011:LEu

Anonymous:2011:LEv

Anonymous:2011:LEw

Anonymous:2011:NEd

Anonymous:2011:P

Anonymous:2012:ASA

Anonymous: 2012: D

Anonymous: 2012: LR

Anonymous: 2012: LEa

Anonymous: 2012: LEb

Anonymous: 2012: LEc

Anonymous: 2012: LEd

Anonymous: 2012: LEe

Anonymous: 2012: LEf

Anonymous: 2012: LEg

Anonymous:2013:HBL

Anonymous:2013:LPA

Anonymous:2013:LEa

Anonymous:2013:LEb

Anonymous:2013:LEc

Anonymous:2013:LEd

Anonymous:2013:LEe

Anonymous:2013:LEf

Anonymous:2013:LEg

Anonymous:2013:LEh

Anonymous:2013:LEi

Anonymous:2013:LEj

Anonymous:2013:LEk

Anonymous:2013:LEl

Anonymous:2013:LEg

Anonymous:2013:LEh

Anonymous:2013:LEi

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Anonymous:2013:LEj

Anonymous:2013:LEk

Anonymous:2013:LEl

Anonymous:2013:LEM

Anonymous:2013:LEN

Almeida:2013:NCS

Alvarez-Nodarse:2012:SPC

Abdollahi:2014:CG

Arambasic:2012:BJO

Arashi:2012:PTS

Andréani:2013:GSS

Al-Rashed:2011:NOS

Amri:2010:SAC

Ahmed:2012:MIO

Alfsen:2012:FDC

Alves:2012:PPN

João Ferreira Alves and Luís Silva. Periodic paths on nonautonomous graphs. Linear Algebra and its Applications, 437(3):1003–1015,

Audenaert:2010:SRH

Audenaert:2010:VBA

Audenaert:2012:TIC

Audenaert:2013:ALT

Audenaert:2013:BGM

Audenaert:2013:SMN

Alfaro:2012:SGC

Anh:2011:AGG

Anh:2013:IBS

Appleby:2010:IMP

Andriantiana:2011:UGL

Abo:2013:WPS

Andriantiana:2013:SMT

Astuti:2013:CHS

Pudji Astuti and Harald K. Wimmer. Characteristic and hyperinvariant subspaces over the field GF (2). *Linear Algebra and its Applications*, 438(4):1551–1563, February 15, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Samuel Burer, Kurt M. Anstreicher, and Mirjam Dür. The difference between 5×5 doubly nonnegative and completely positive matrices. *Linear Algebra and its Applications*, 431(9):1539–1552, October 1, 2009.

[Bal12b]

[Bal14]

[Ban13a]

[Ban13b]
Bapat:2013:AMT

Barria:2010:SCS

Barria:2013:SCS

Bart:2010:RMM

Bart:2013:CC

Harm Bart. The Chemnitz connection. *Linear Algebra and its Applications*, 439

[Bai:2013:NBT] Bai:2013:NBT

Barrett:2014:PRC

Bottcher:2013:P

Baragana:2012:CBS

Baragana:2013:CFA

Bini:2010:FIQ

Barioli:2010:ZFP

Barioli:2012:GCC

Bini:2013:PIC

Barrett:2012:CIS

Bachman:2014:FUT

Bernardi:2014:CDN

Bogoya:2012:EHT

Bremner:2012:CHC

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Richard A. Brualdi and Geir Dahl. Majorization classes

Bevilacqua:2013:CRA

Batselier:2013:GAF

Batselier:2014:NSM

Bartolone:2011:NLA

Bebiano:2011:IEP

Botelho:2011:SBQ

Bevilacqua:2013:BTR

Roberto Bevilacqua, Gianna M. Del Corso, and Luca

Behn:2012:SNT

Bart:2010:MIG

Bilge:2011:MLS

Benito:2013:LEN

Benito:2014:EFN

Bodine:2012:SPR

E. Bodine, L. Deaett, J. J. McDonald, D. D. Olesky, and P. van den Driessche. Sign patterns that require or allow particular refined inertias. *Linear Algebra and

Brualdi:2012:PRC

Bebiano:2013:ISP

Bhattacharyya:2013:DSC

Burde:2012:AAL

Bremner:2010:AQA

Benkovic:2012:MLD

Beasley:2012:INV

Behrend:2013:FPM

Benzi:2013:RHA

Belardo:2014:BLE

Benner:2012:MBD

Bahrami:2012:LPM

F. Bahrami, A. Bayati Eshkaftaki, and S. M. Manjegani.

Bahrami:2012:MCL

Beneduci:2010:SMP

Benkovic:2011:GLD

Bendaoud:2013:PLS

Benvenuti:2014:GRS

Benzi:2014:NWE

Bernstein:2009:MMT

Dennis S. Bernstein. *Matrix Mathematics: Theory,

[BEV13] Michael Braun, Tuvi Etzion, and Alexander Vardy. Linear-

Peter Benner, Heike Faßben-

Bruhn:2011:BCU

Bhatia:2012:NIR

Bialas:2012:FRC

Bartoszewicz:2013:ALV

Bapat:2014:ITM

Benkovic:2014:GDU

Zhong-Zhi Bai and Apostolos Hadjidimos. Optimization of extrapolated Cayley transform with non-Hermitian pos-

Bourin:2014:JMI

Bhatia:2013:BD

Bulo:2012:ECI

Bishop:2010:IFS

Betsumiya:2013:UBC

Bouhamidi:2011:ETM

Bessenyei:2011:FEG

Botelho:2012:SIA

Betcke:2011:PER

Buchholzer:2012:BEE

Barrett:2013:DMR

Wayne Barrett, Mark Kemp ton, Nicole Malloy, Curtis Nelson, William Sexton, and John Sinkovic. Decompositions of minimum rank

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Brualdi:2012:TRM

Brualdi:2013:PAS

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Bapat:2012:WDG

Ball:2014:RCI

Bistritz:2010:BRU

Biyikoglu:2010:STM

Türker Biyikoglu and Josef Leydold. Semiregular trees
with minimal Laplacian spectral radius. Linear Algebra and its Applications, 432(9): 2335–2341, April 15, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). [BL13b]

Boutin:2011:MRP

Biyikoglu:2012:GGO

Benitez:2013:SPM

Buczynski:2013:RTG

Bourin:2014:DSP

Bebiano:2012:RHK

Murray R. Bremner and Sara Madariaga. Special identities for the pre-Jordan product in

Butkovic:2013:IES

Batzke:2014:IEP

Beasley:2014:PD

Burgos:2012:SPP

Branquinho:2012:RAO

Beagley:2013:BMS

Bermudez:2013:PI

Bernik:2011:PMS

Belardo:2010:CAC

Bourhim:2014:NMP

Brualdi:2014:MIM

Belardo:2010:SRU

Maria Chiara Brambilla and Giorgio Ottaviani. On partial polynomial interpolation.

[BOZ11a]

[BOZ11b]

[Boz13]

[BP12]

[BP10]

[BP13]

Bekjan:2014:HTI

Bella:2014:SCM

Bierkens:2014:SMP

Braman:2010:TOT

Bracic:2014:EHC

Branden:2012:STP

Petter Brändén. Solutions to two problems on permanents. *Linear Algebra and its Applications*, 436
Bremner:2014:SRM

Brijder:2013:NTP

Brown:2012:BRU

Brualdi:2010:SD
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Brualdi:2011:EC
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Brualdi:2012:EC

Beasley:2012:PTR

Beasley:2013:CTR

Bostan:2010:FCA

Butkovic:2013:TCN

Bomze:2014:SEC

Baksalary:2010:SMB

Oskar Maria Baksalary and Götz Trenkler. On a subspace metric based on matrix rank. *Linear Algebra and

[Cal12] Cristina Caldeira. Pairs of sets with small sunset and small periodic product-set. *Linear Algebra and

Campos:2013:ARC

Cardinal:2010:SMR

Carriegos:2013:ECL

Castella:2010:EAL

Castella:2010:EAL

Causin:2011:DSR

Cason:2013:IML

Chebotarev:2013:SEL

Caiafa:2010:GCR

Chang:2012:MMS

Carriegos:2014:TFA

Cavers:2012:SAM

M. Cavers, S. M. Cioaba, S. Fallat, D. A. Gregory,

Coelho:2012:LPI

Cooper:2012:SUH

Curgus:2012:RKP

Cigler:2013:SMN

Can:2014:EBS

Cho:2010:EOH

Cicalo:2012:SDN

Cicalo:2020:CSD

Conflitti:2012:MLC

Carnicer:2010:RMT

Cechlarova:2010:MML

Carmona:2014:DEO

Centrone:2011:GIG
Lucio Centrone. Z_2-graded identities of the Grassmann

[Cer10]

[CFHK10a]

[CFG+14]

[CFJ14]

[Chen:2010:LEB]

[Cheng:2013:SNI]

[Chodrow:2013:ULB]

Cvetkovic:2012:P

See corrigendum [Che14b].

Cheung:2011:PST

Cheung:2013:NNR

Chan:2013:MEI

See also Part I [GS13a].

Counselo:2010:SCL

Castillo:2011:PST

Corach:2012:USI

Gustavo Corach, M. Celeste Gonzalez, and Alejandra Maestripieri. Unbounded symmetrizable idempotents.

Chang:2012:CBS

Carden:2013:RVN

Chen:2014:EEM

Chandola:2010:LBE

Chahlaoui:2012:PEB

Chamberland:2013:FMC

Chang:2013:MPQ
Chai:2014:TTC

Chen:2013:IOR

Chen:2014:LMC

Cheng:2014:CSN

Chiumiento:2013:NOL

Can:2013:UIM

Casazza:2013:NSC

Peter G. Casazza, Andreas Heinecke, Keri Kornelson,

Chugunov:2010:CSN

Cvetkovic-Ilic:2013:SRI

Cvetkovic-Ilic:2014:PRC

Cvetkovic-Ilic:2011:ROL

Casas:2012:ACD

Cimpric:2011:SPM

Cioab:2010:EEE
Sebastian M. Cioab. Erratum to “Eigenvalues and edge-connectivity of regular graphs”. *Linear Algebra and its Applications*, 432(9):2455, April 15, 2010. CODEN LAAPAW. ISSN 0024-3795 (print),

Melody Chan, Anders Jensen, and Elena Rubei. The 4 × 4 minors of a 5 × n matrix are a tropical basis. Linear Algebra and its Applications, 435(7):1598–1611, October 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Choi:2014:MSB

Jihoon Choi and Suh-Ryung Kim. On the matrix sequence \(\{ \Gamma(A^m) \}_{m=1}^{\infty} \) for a Boolean matrix \(A \) whose digraph is linearly connected. \[\text{Linear Algebra and its Applications, 450(??):56–75, June 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://www.sciencedirect.com/science/article/pii/S0024379514001256.} \]

Coloigner:2014:LST

Cheon:2010:ASF

Chung:2011:NBI

Taeyoung Chung, Jack Koolen, Yoshio Sano, and Tetsuji Taniguchi. The non-bipartite integral graphs with spectral radius three. \[\text{Linear Algebra and its Applications, 435(10):2544–2559, November 15, 2011.} \]
Chen:2010:SIS

Cheng:2010:PZS

Cheng:2011:NTG

Chuang:2011:LCL

Cao:2012:GKT

Chen:2012:LSA

Cronin:2012:ISN

Bo Cheng, Bolian Liu, and Jianxi Liu. On the spectral moments of unicyclic graphs...

Chen:2013:ROG

Chen:2013:SER

Casas:2013:NID

Casas:2013:CSL

Clark:2010:MMP

Chen:2013:SUB

Catral:2014:MGC

Cai:2013:HAF

Corach:2010:PDO

Costa:2010:FFT

Chan:2011:HGN

Corach:2011:POP

Chebbi:2012:MHP

Chiantini:2012:DRS

Chafai:2013:PNS

Cirrito:2014:OGC

Charn:2014:CRM

Cardoso:2013:EHG
Domingos M. Cardoso, Enide A. Martins, Maria Robbiano,

[CMZ10]

[CN10a]

[CN10b]

[CN10c]

Mao-Ting Chien and Hiroshi Nakazato. Critical values for higher rank numerical ranges associated with

Chien:2012:DRC

Chien:2013:HFA

Chien:2013:SPC

Chien:2013:SCJ

Climent:2012:CMC

Ceballos:2012:SLA

Cohen:2014:CGI

Costara:2011:MMP

Costara:2014:LSL

Chorianopoulos:2011:BJA

Casazza:2012:EIP

Domingos M. Cardoso and Peter Rowlinson. Spectral upper bounds for the order of a k-regular induced subgraph. *Linear Algebra and its Applications*, 433(5):1031–1037, October 15, 2010. CODEN LAAPAW. ISSN 0024-

Canto:2014:FRF

Ccapa:2010:EDP

Cvetkovic:2010:TST

Chen:2013:HFG

Costa:2010:CGT

Ting-Chung Chang and Bit-Shun Tam. Connected graphs with maximal Q-index: The one-dominating-vertex case. Linear Algebra and its Applications, 435(10):2451–2461, November 15, 2011. CODEN LAAPA W. ISSN 0024-

Sebastian M. Cioabă, Edvin R. van Dam, Jack H. Koolen, and Jae-Ho Lee.

Camara:2013:GAW

Cheng:2010:CMF

Chen:2010:SBL

Chen:2011:FDM

Cheon:2012:SRT

Cioaba:2012:EDS

Cameron:2011:HDS

Naomi T. Cameron and Andrew C. M. Yip. Hankel de-

[Dai:2012:GTS] Xiongping Dai. A Gel’fand-type spectral radius for-

DeTeran:2010:FOS

Dinh:2010:MPZ

Dogan-Dunlap:2010:LAS

DeTeran:2011:SEA

Derevyagin:2011:DTJ

Dincic:2011:MTR

Dou:2011:NOP

Duchsherer:2014:SPD

Duffner:2013:RBD

Dangovski:2013:WDF

Du:2013:SAM

Du:2014:NAM

DeTeran:2013:SE

DeBruyn:2011:PVS

deSeguinsPazzis:2013:GTS

Deaett:2011:MSR

Deng:2011:CRG

Derksen:2013:KUI

daFonseca:2010:PTM

Deng:2014:PLM

Das:2014:IEG

Derevyagin:2014:MGT

Das:2014:LEL

Diaz-Garcia:2011:WDS

Diaz-Garcia:2013:SE

DeLoss:2010:TDM

Dunkl:2011:NSM

Mehdi Dehghan and Masoud Hajarian. The general coupled matrix equations over generalized bisymmetric matrices.
Donatelli:2010:CNA

Dehghan:2012:GRA

Dong:2012:SAC

Datta:2012:GWB

Dolinar:2013:SNM

Hou:2013:DSM

Dai:2012:FSR

Xiongping Dai, Yu Huang, Jun Liu, and Mingqing Xiao.

ear Algebra and its Applications, 436(9):3562–3567, May
1, 2012. CODEN LAAPAW.
ISSN 0024-3795 (print), 1873-
1856 (electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379511008627

[DJK12b] Bhagwati P. Duggal, In Ho
Jeon, and In Hyoun Kim.
On *-paranormal contractions
and properties for *-class
A operators. Linear Alge-
bra and its Applications, 436
CODEN LAAPA.W. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379511004381

On the trivectors of a 6-
dimensional symplectic vector
space. Linear Algebra and its
Applications, 435(2):289–306,
July 15, 2011. CODEN LAAPA.
ISSN 0024-3795 (print), 1873-1856
(electronic).

On the trivectors of a 6-
dimensional symplectic vector
space. II. Linear Algebra and its
Applications, 437
(5):1215–1233, September 1,
2012. CODEN LAAPA.
ISSN 0024-3795 (print), 1873-
1856 (electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379512004727

[DK12b] Ömür Deveci and Erdal
Karaduman. The cyclic
groups via the Pascal ma-
trices and the generalized Pas-
cal matrices. Linear Alge-
bra and its Applications, 437
(10):2538–2545, November 15,
2012. CODEN LAAPA.W. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S002437951200290X

The classification of the trivectors of a six-dimensional symplectic space: Summary, consequences and connections. Linear Algebra and its Applications, 438(8):3516–
3529, April 15, 2013. CO-
DEN LAAPA.W. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0024379513000487

On the trivectors of a 6-
dimensional symplectic vector
space. III. Linear Algebra and its
Applications, 438(1):374–398, January 1,
2013. CODEN LAAPA.
ISSN 0024-3795 (print), 1873-1856
(electronic). URL http:

Ralph John de la Cruz, Kennett L. de la Rosa, Dennis I. Merino, and Agnes T. Paras. The Cartan–Dieudonné–Scherk...

Du:2011:ILI

Du:2011:ERG

Du:2010:NNE

Dubsky:2014:CIS

deLima:2013:SLE

DeTeran:2014:FTM

DelaCruz:2011:PDM

deMalafosse:2012:SSA

Dolzan:2011:CGM

Dolzan:2011:NGM

Dolazo:2010:FRR

Dolazo:2013:DDI

Dolazo:2010:FRR

Dorado:2010:TEP

Drnovsek:2010:SRP

Dieci:2012:HMD

Duarte:2012:RSD

Dossal:2010:NEC

Ding:2013:TNT

Dragomir:2012:HHT

S. S. Dragomir. Hermite–Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces. Linear Algebra and its Applications,
Drazin:2012:COG

Drazin:2014:GIU

Drnovsek:2013:SSN

Drnovsek:2013:SSN

Drury:2013:FDI

Drury:2014:PSI

Draisma:2010:SLT

Datta:2011:SAQ

DeSa:2012:ISS

Deaett:2012:LAM

Dodig:2012:ESC

Pazzis:2010:SLP

Pazzis:2011:MGR

Pazzis:2011:WEL

Pazzis:2012:LAS

Pazzis:2012:LPN

Pazzis:2012:STT

Pazzis:2012:WDL

Dubsky:2014:CSW

Duggal:2011:QES

Duggal:2012:TP1

Dukes:2012:RDD

Duk15

Dumas:2013:JSR

Dumitrescu:2013:STL

[Dum13b] Bogdan Dumitrescu. Sparse total least squares: Analysis

Dureisseix:2012:GFF

Delvaux:2010:SPG

DeSchepper:2014:GDW

Dalfo:2011:PAD

Dette:2010:MMU

Deng:2011:RDI

Du:2012:CMT

Yiqiu Du and Yu Wang. k-commuting maps on trian-

Zhibin Du and Bo Zhou. Upper bounds for the sum

Vladimir Ejov, Shmuel Friedland, and Giang T. Nguyen. A note on the graph’s resol-

Ejov:2010:ENG

Ernst:2014:P

Euler:2012:SCC

Edholm:2012:VES

Einstein:2011:RFV

Eastman:2014:CMP

See corrigendum [EKSV18].

See [EKSV14].

Eremita:2013:FID

Ernst:2013:UAF

Erdmann:2011:CPS

Ellard:2014:CNR

Estrada:2012:CDG

Estrada:2012:PLM

Ehrhardt:2013:BAQ

Ellens:2011:EGR

Esslamzadeh:2013:SQO

Ellers:2011:CSC

Elsner:2010:MAP

Eu:2012:HDS

Estevez:2013:DRE

Fanai:2010:EPT

Rosário Fernandes and Henrique F. da Cruz. On the

Fuhrmann:2010:EDS

Fuhrmann:2010:TPM

Fiedler:2012:M

Fiedler:2012:NPG

Fiedler:2012:SGT

Fiedler:2014:MAC

[FH14] Miroslav Fiedler and Frank J. Hall. Max algebraic complementary basic matrices. *Linear Algebra and its Ap-
Forstall:2011:PEI

[FHRT11]

Fiedler:2013:GDR

[FHM13]

Fritscher:2011:SLE

[FHRT11]

Futorny:2011:CFN

[FHS11]

Fiedler:2014:DAS

[FHS14a]

Fischer:2014:SSA

Ferguson:2010:GOI

Furtado:2010:OIS

Fallat:2011:TNM

Fallat:2011:TNM

Furtado:2014:SMP

Fendler:2013:DFT

Gero Fendler and Norbert Kaiblinger. Discrete Fourier transform of prime order: Eigenvectors with small sup-

207

Friedland:2013:PSI

Fritzsche:2012:WMB

Fritzsche:2011:IPP

Fritzsche:2011:SWS

Fritzsche:2013:TMS

Fritzsche:2013:SWS

Fritzsche:2013:TMS

Fritzsche:2012:WMB

Farid:2013:MAS

Fickus:2012:SET

Farid:2012:HSS

Fiedler:2010:SRH

Fan:2011:SBC

Fujii:2013:SGF

Forough:2014:MRI

Foucart:2014:SRI

Simon Foucart. Stability and robustness of ℓ_1-minimizations with Weibull matrices and redundant dictionaries. *Linear Algebra and its Applications*, 441(??):4–21, January 15, 2014. CODEN LAAPAW. ISSN
Franchi:2011:IRA

Farnell:2013:FAS

Fialowski:2014:MSD

Fidalgo:2013:MTM

Franca:2012:CMS

Franca:2013:CMR

Friedland:2011:PDS

Friedland:2012:GTR

Friedland:2013:TBR

Futorny:2014:RDM

Freitag:2011:NBM

Farrugia:2014:CUG

Frommer:2014:NCC

Jun Ichi Fujii. Path of quasi-means as a geodesic. *Linear Algebra and its Applications*,
Furer:2010:PCS

Furuta:2010:PSS

Furuta:2011:ACI

Furuta:2012:EIU

Futamura:2012:FDM

First:2013:SWI

Fornasini:2013:ASS

Francis:2014:SM

Frenkel:2014:VCC

Fan:2013:NNU

Feng:2010:LSR

Fang:2011:SIR

Feng:2013:ESI

Fan:2011:LEC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
</table>

[Gerasimova:2012:USN]

[Ger12]

Gillis:2012:GIN

[GG12]

[GG13]

Gutierrez-Gutierrez:2013:ECF

[GG13]

Gutierrez-Gutierrez:2013:ECF

[GGK+13]

Ghobber:2011:UPF

[222]

Gover:2010:DVP

Gongopadhyay:2011:EIN

Gunther:2012:STB

Ghareghani:2014:MCB

Goldberg:2014:SPS

Guo:2011:CSS

Guillot:2013:CEC

Germina:2011:PLG

Gao:2010:SSC

Gessel:2010:NEP

Gunther:2014:LFP

Guo:2011:CSS

Germina:2011:PLG

Gao:2010:SSC

Gessel:2010:NEP

[Gursoy:2011:PAS]

[Gursoy:2011:SPM]

[Greenhill:2012:CLG]

[Goncalves:2014:TFL]

[Goncalves:2014:WDR]

Guiver:2013:EBG

Godjali:2010:THP

Godjali:2012:THP

Goldberg:2013:OCV

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Gomez:2010:MRT

Gonzalez:2011:ONI

Ghidini:2012:CHP

Ghanbari:2012:GIE

Grundy:2012:CPS

Garnett:2014:NSP

Gongopadhyay:2013:RCH

Goberna:2012:VCL

Greaves:2012:CMR

Greenbaum:2013:BRB

Gutman:2010:ELG

Grover:2014:OMS

Gutman:2010:SIH

Gutman:2011:DC

Grunbaum:2012:RBG

Ganikhodzhaev:2010:DSQ

Gomez:2010:STI

Gowda:2010:SCS

Guersenzvaig:2010:SMA

Gustafson:2010:SAS

Gao:2011:NCS

[GS11a] Yubin Gao and Yanling Shao. New classes of spectrally arbitrary ray patterns. Linear Algebra and its Applications,

See also Part II [CGGS13].

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Grubisic:2012:REP

Gau:2013:WSM

Gu:2013:SSG

Gu:2014:EOW

Gulinsky:2011:SSS

Gumbrell:2013:STV

Guo:2010:NMH

Guangquan Guo and Guoping Wang. On the (signless)

Gong:2012:RDO

Gong:2012:CPM

Gong:2012:NGC

[Hans13a] Frank Hansen. The fast track to Löwner’s theorem. *Linear Algebra and its Applications*, 438(11):4557–4571, June 1,
Hanson:2013:CLP

Hansen:2014:ROM

Hanson:2014:CBL

Har:2014:NLE

Holzel:2012:PMM

Huang:2010:TNN

Hai:2014:CIU

Guojun Hai and Alatancang Chen. Consistent invertibility of upper triangular operator matrices. Linear Algebra and its Applications, 455
Huang:2010:NUO

Huang:2010:MRZ

Halikias:2012:SSD

Henrion:2010:DRC

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Heersink:2012:MPI

Hardy:2013:CTK

Hou:2010:SSL

Huang:2011:IPP

Li-Ping Huang, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze. Graphs associated with matrices over finite fields and their endomorphisms. *Linear Algebra and its Applications*, 447(??):2–25, April 15, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Hall:2010:EVP

Holmes:2013:ABI

Hiai:2013:CCM

Hildebrand:2012:ERC

Hilscher:2012:OTD

Hill:2013:IDS

Hilberdink:2014:GSI

Titus Hilberdink. The group of squarefree integers. *Linear
Hildebrand:2014:HZC

Hiller:2014:PTC

Hirn:2010:NHF

Horn:2012:MA

Huo:2010:NUG

Huo:2011:SCM

Hoff:2012:TPS

D. Hoff, C. R. Johnson, and S. Nasserasr. Totally positive shapes and TP_k-completable

He:2013:SBS

Hirzallah:2010:SVN

Hirzallah:2012:EID

Halikias:2013:DSS

Hiai:2013:FCP

[Fumio Hiai, Hideki Kosaki, Dénes Petz, and Mary Beth Ruskai. Families of completely positive maps associated with monotone metrics. *Linear
Hansen:2010:BCS

Huang:2010:SCS

Huang:2010:GSI

He:2011:OTF

Higham:2011:RSM

Huang:2011:BFS

Huang:2011:ZPI

Hwang:2011:CBW

Seok Yoon Hwang and Jeong Yeon Lee. Construc-

He:2012:SLI

Hladik:2013:WSS

Hu:2012:MER

Huang:2010:CIM

Huo:2011:CSP

Henk:2010:MZC

Hou:2010:MPS

Jinchuan Hou, Chi-Kwong Li, and Ngai-Ching Wong. Maps

Honma:2014:IGD

Hogenson:2012:MSA

Haemers:2011:UAM

Hogben:2010:MRP

Hoa:2013:GPS

Hwang:2011:CPG

Hwang:2011:IEP

Suk-Geun Hwang and Jin-Woo Park. Characteristic polynomial of a generalized

[Herrero:2013:RBD] Alicia Herrero, Francisco J. Ramírez, and Néstor Thome. Relationships between different sets involving group and Drazin projectors and nonnegativity. *Linear Algebra
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:

[HRW99] Thomas L. Hayden, Robert Reams, and James Wells. Methods for constructing
distance matrices and the inverse eigenvalue problem. Linear Algebra and its Applications,
295(1-3):97–112, July 01, 1999. CODEN LAA-PAW. ISSN 0024-3795 (print),
1999/295/1-3/6412.pdf; http://www.elsevier.com/cgi-bin/cas/tree/store/laa/cas_sub/browse/browse.cgi?
year=1999&volume=295&issue=1-3&aid=6412. See note [JM12a].

[HG10] Leslie Hogben and Bryan Shader. Maximum generic nullity of a graph. Linear Algebra and its Applications,
432(4):857–866, February 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
1856 (electronic).

[HS12a] Thomas R. Hoffman and James P. Solazzo. Complex equiangular tight frames
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:

[HG12b] Waldemar Holubowski and Roksana Slowik. Parabolic subgroups of groups of
column-finite infinite matrices. Linear Algebra and its Applications, 437(2):519–
524, July 15, 2012. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856

[HG12c] Marko Huhtanen and Otto Seiskari. Computational geometry of positive defini-
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:

[HG14] Evans M. Harrell II and Joachim Stubbe. Corrigendum to “On sums of
graph eigenvalues” [Linear Algebra Appl. 455 (2014) 168–186]. Linear Algebra
See [HS14b].

Harrell:2014:SGE
See corrigendum [HS14a].

Hari:2010:BOJ

Huang:2010:AIS

Hadjidimos:2014:BOB
Hashemi:2014:CQI

Huang:2010:GDG

Huang:2011:POP

Huang:2011:NSP

Huang:2011:SRS

Huang:2012:EHT

Huang:2012:SSP

Huang:2013:CEA

Huang:2013:TBF

Hunter:2010:SSP

Hunter:2014:GIM

Hurlimann:2013:GHL

Han:2011:JDT

Harrison:2014:RIF

Holguín:2014:SMA

Hwang:2011:GCH

Hwang:2012:RCH

Hou:2013:CLT

Hou:2014:TBL

Hsu:2014:IPH

Huckle:2013:CQT

Hong:2014:SRS

Hashiyama:2014:JBC

Huang:2010:EWC

Huang:2011:PEG

Huang:2011:AMA

Huang:2012:NAM

Huang:2012:NDM

Huang:2012:PMA

Huang:2014:CBE

Huang:2012:PEI

Irving:2012:BHR

Ito:2014:TPT

Ito:2013:RMG

Jain:2011:DAT

Jarlebring:2012:CFN

Meiyan Jiao and Jinchuan Hou. Additive maps derivable or Jordan derivable at zero point on nest algebras.

Anatoli Juditsky, Fatma Kilinc Karzan, and Arkadi Nemirovski. On a unified view of nullspace-type con-

Johansson:2013:SFR

Johnson:2012:SEB

Jung:2010:WGM

Jean-Louis:2013:SAS

Johnson:2011:CEC

Jaklic:2012:NMC

See [HRW99].

Carl Jagels and Lothar Reichel. Recursion relations for

Kakimura:2010:DPM

Kalinina:2013:SDS

Kalita:2013:SIV

Kamvar:2010:NAP

Kiani:2011:EUC

Karlsson:2011:RCH

Karlsson:2011:TPC

Kautsky:2012:GPM
Jaroslav Kautsky. Generalized Pascal matrices generate classes closed under

Kawamura:2012:TBD

Kumbrasar:2012:CFF

Kannan:2014:CSP

Kumbrasar:2012:CFF

Kannan:2014:GPP

Kalaimani:2013:GPA

Koliha:2012:GDI

Kuo:2012:QMU

Koshlukov:2013:PIA

Koliha:2012:GDI

K:2012:BGG

Kalofolias:2012:CSN

M. T. Karaev and N. Sh. Iskenderov. Numerical range

Kian:2014:OJI

Kim:2010:GCI

Kim:2011:BGC

Kim:2011:LDE

Kim:2012:TAW

Kim:2013:GCI

Kim:2013:SIS

Kim:2013:QHF

Kim:2013:OEF

Kirkland:2014:MCE

Kisi:2015:CTL

See [XX12].

Ko:2013:SSC

See [KKL13b].

See erratum [KKL13a].

See erratum [KKL13a].

Lutz Klotz, Peter Kunkel, and David Rudolph. Convergence in measure with respect to a matrix-valued measure and some matrix completion problems. *Linear Algebra and its Applications*, 434(4):990–999, February 15, 2011. CODEN LAAPAW. ISSN 0024-
Kari:2012:CWF

Kang:2012:CHT

Kaashoek:2013:CMP

Kum:2013:RAS

Klasa:2010:FPD

Kim:2011:MGM

Kim, Sejong; Lawson, Jimmie; Lim, Yongdo. The matrix geometric mean of parameterized, weighted arithmetic and harmonic means. *Linear Algebra and its Applications*, vol. 435, no. 9, pp. 2114–2131, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Krnic:2012:MJO

Kribs:2013:UAS

Khurana:2012:QTD

Kosan:2010:DRI

Kosan:2014:BFM

Kosan:2014:WEM

Kilmer:2011:FST

Kracovski:2012:SCG

[Roi Krakovski and Bojan Mohar. Spectrum of Cayley graphs on the symmet-

Kurata:2013:CMB

Klein:2014:AEF

Karapiperi:2012:EAE

Khalil:2013:SST

Kaur:2014:FRH

Knuppel:2010:CGO

Knuppel:2013:CIP

Knuppel:2013:CSL

Knill:2014:CBP

Katz:2014:CTH

Kohler:2014:CSD

Konstantopoulos:2013:MAP

Kutyniok:2013:SF

Kandolf:2014:RBE

Kozyakin:2010:ELC

Kozyakin:2014:BWF

Kozyakin:2014:MPC

Kim:2012:BGC

Kanan:2013:NCB

Kalita:2014:REP

Krnić:2014:MAW

Mario Krnić and Josip Pecarić. More accurate weak majorization relations for the Jensen and some related inequalities. *Linear Algebra

Kutyniok:2014:PSI

Koolen:2011:IIS

Krakovski:2012:PAV

Krakovski:2013:ABM

Khudoyberdiyev:2014:CDS

Kazeev:2013:LRT

Kempker:2012:COC

Klein:2010:TSM

Kuijper:2011:MGB

Kures:2011:RMO

Ricardo D. Katz, Hans Schneider, and Sergi Sergeev. On commuting matrices in max algebra and in classical

Kurata:2010:EDM

Kurata:2012:MEE

Kubrusly:2013:RLT

Kuzman:2010:ATE

Boštjan Kuzman. Arc-transitive elementary abelian covers of the complete graph K_5. *Linear Algebra and its Applications*, 433(11–12):

Koyuncu:2012:INT

Ku:2013:GES

Koolen:2011:DRG

Jack H. Koolen and Hyonju Yu. The distance-regular graphs such that all of its second largest local eigenvalues are at most one. *Linear Algebra and its Applications*, 435(10):2507–2519, November 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Kaltofen:2013:FFM

Kim:2014:SPT

Kyrchei:2013:ERF

Koshlukov:2010:IIG

Kong:2011:SJC

LaGuardia:2014:NMC

Lacruz:2013:HLI

Laffey:2012:CVB

LaGrange:2012:BRR

LaGrange:2013:CDF

Lakatos:2010:SND

Lakos:2010:FLS

Ledermann:2011:ROM

Langi:2010:DOM

Lanski:2010:DCI

Lan10a

Lancaster:2013:SLG

Langenau:2014:ASI

Lavallee:2010:CPN

Sylvain Lavallée. Characteristic polynomials of nonnegative real square matrices and generalized clique polynomials. *Linear Algebra and its
Lee:2014:TPM

Li:2012:SQA

Lin:2010:NRE

Liu:2013:HNO

Li:2011:PGE

Liu:2010:SNB

Lim:2011:PCM

Li:2012:PCD

Lorenzo:2011:ADS

Lima:2011:EFF

Lee:2010:RTI

Lee:2011:ERT

Lee:2013:DNR

Huang:2010:BDP

Liu:2010:SCD

Lopez:2010:ODF

Leng:2011:ODF

Huang:2011:BDP

Liu:2013:LSC

Li:2010:TEC

Liu:2014:NED

[Q] Qinghai Liu, Yanmei Hong, Xiaofeng Gu, and Hong-Jian Lai. Note on edge-disjoint spanning trees and eigenvalues. *Linear Algebra

Leng:2013:PMO

Liu:2014:EDS

Liu:2013:NSC

Liu:2014:TSC
Liu:2012:SCG

Liu:2011:TSC

Li:2010:NUP

Li:2012:PPL

Li:2013:DSG

Lim:2010:SGP

Lim:2011:SCA

Lin:2013:FTD

Lin:2014:CPM

Lin:2014:OTI

Liu:2014:CMI

Liu:2014:SCP

Cheng-Kai Liu. Strong commutativity preserving maps on subsets of matrices that are not closed under addition. *Linear Algebra and its Applications*, 458(??):280–290, October 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Lu:2010:CLD

Li:2011:SRC

Liu:2012:OGR

Liu:2013:HOC

Li:2013:SCR

Lebl:2010:UCP

[Jiří Lebl and Daniel Lichtblau. Uniqueness of cer-

Lin:2010:SCP

Liu:2010:SLS

Liu:2010:MBR

Liu:2010:SRB

Lee:2011:CSD

Liau:2011:GLD

Liu:2011:SRS

Muhuo Liu and Bolian Liu. On the spectral radii and the signless Laplacian spectral radii of c-cyclic graphs with fixed maximum degree. *Linear Algebra and its Applications*, 435(12):3045–3055,
December 15, 2011. CO-
DEN LAAPAW. ISSN 0024-
3795 (print), 1873-1856 (elec-
tronic).

science/article/pii/S0024379512004715.

Jiajia Luo and Wei Li. Strong optimal solutions of interval linear programming. *Linear Algebra and its Applications*, 439(8):3547–3559, April 15, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
science/article/pii/S0024379513000207.

Chaoqian Li and Yaotang Li. A modification of eigenvalue localization for stochastic matrices. *Linear Algebra and its Applications*, 460 (??):231–241, November 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-
science/article/pii/S0024379514004820.

Huiqing Liu and Mei Lu. Bounds of signless Laplacian spectrum of graphs based

Li:2014:CDS

Li:2013:NSC

Li:2013:NMP

Liang:2010:LBP

Mei Lu, Huiqing Liu, and Feng Tian. Spectral radius and Hamiltonian graphs.
Liu:2013:ECS

Li:2014:SFI

Lee:2011:MVW

Lee:2012:PNI
Lee:2011:PNI

Livshits:2013:PALa

Livshits:2013:PALb

Luzon:2012:IIR

Landsberg:2013:HAM

Ladra:2016:CSC

Special issue in honor of Abram Benaim, Moshe Goldberg, and Raphael Loewy.
Li:2012:PME

Loewy:2012:UGR

Lomadze:2011:RDO

Lomadze:2013:NEF

Lopatin:2011:MGS

Loperfido:2011:SAF

Li:2010:APM

Li:2012:MPJ
Lim:2014:WIM

Leventides:2014:ADA

Luk:2011:PLA

Li:2013:LPT

Huiqiu Lin and Jinlong Shu. Spectral radius of digraphs with given dichromatic number. *Linear Algebra and its Applications*, 434(12):2462–2467, June 15, 2011. CODEN LAAPAW. ISSN 0024-
Le:2012:EEI

Lin:2012:NSC

Liu:2012:RNC

Locatelli:2012:NSC

Laffey:2013:SRM

Li:2013:EDS
Lindner:2013:MDP

Liu:2013:FSR

Liu:2014:RAS

Li:2010:LET

Li:2011:LSRb

Liu:2014:SGD

Luo:2012:CRS

Liu:2011:CRP

Lebtahi:2013:MSI

Limbupasiriporn:2012:LWC

Lim:2010:BLM

Loewy:2010:MEP

Li:2011:LSRa

Lim:2011:ROP

See corrigendum [LT12b].

Lu:2011:LDO

Lu:2012:RBW

Lee:2011:SSS

Lee:2012:SSM

Laurent:2014:PSM

Lang:2012:EGL

Li:2012:LES

Fenggao Li, Kaishun Wang, and Jun Guo. More on

Li:2010:SPS

Li:2012:SPS

Lee:2014:CBD

Lu:2010:EOF

Li:2014:MCC

Ma:2010:NEL

Ma:2010:NPB

Ma:2011:TDR

Ma:2014:IZP

Mahdavi-Amiri:2013:ERR

Mahmoud:2011:NFD

Mourad:2013:ACD

Marovt:2010:HMS

Mary:2011:GIG

X. Mary. On generalized inverses and Green’s relations.

Mary:2011:RGI

Marino:2013:PIJ

Martin:2013:EGP

Mary:2013:RG1

Mom:2012:CEU

Mao:2013:MNP

Meini:2013:SDT

Melson:2014:IDP

Merlet:2010:SMA

Merino:2012:SOM

enhancements/fy1114/2010931704.html.

Mohar:2010:ECD

Mohlenkamp:2013:MMF

Mojskerc:2014:SFD

Molnar:2011:OAP

Moldovan:2012:SDD

Molnar:2013:JTE

Moore:2011:OPE

Morris:2010:CSF

[102] Ian D. Morris. Criteria for the stability of the finiteness property and for the uniqueness

Moslehian:2011:OAI

Mosic:2013:MRG

Mourad:2012:SPD

Muhic:2010:QTP

Muller:2013:GSR

Myskova:2013:RIC

Muhic:2014:MCA
[MP14a] Andrej Muhić and Bor Plestenjak. A method for computing all values λ such that A + λB has a multi-

Myskova:2014:RIM

Merino:2010:PDM

Micic:2011:JIO

Merino:2012:HM

Moghaddamfar:2010:MRA

McDonald:2014:MRE

McTigue:2011:PMW

McTigue:2013:PMW

McTigue:2014:PMC

Mead:2010:LSP

Monsalve:2010:NIF

Moslehian:2010:GIP

Mohammad Sal Moslehian and Rajna Rajić. A Grüss in-

See [MR10b].

Mishra:2012:GMM

Mallik:2013:CGM

Mansour:2013:PSS

Monfared:2013:CMG

Mizuno:2014:SWB

Myskova:2014:RFI

Martin:2013:SLS

Malyshev:2011:CTS

Mofrad:2013:SSL

Mehrmann:2012:IRK

Mishra:2014:SDN

Moon:2014:WCD

Ma:2014:NEC

Mason:2014:ENP

Minchenko:2014:SMR

Ma:2013:PNIb

McKee:2014:TBP

Ma:2013:PNIa

Myskova:2012:IMP

Meng:2010:OPB

Marcellan:2011:DPS

Marcaida:2012:HBO

Matthies:2012:SSS

Mo:2012:MSS

Ma:2013:ESC

Nakaoka:2014:SCM

Nikolov:2013:RNG

Neogy:2011:SMC

Nesetril:2013:NFV

Nemirovsky:2013:TAM

Netzer:2010:SRN

Neytcheva:2011:EES
Niezgoda:2010:AOC

Niezgoda:2011:MRC

Niezgoda:2012:COG

Niezgoda:2013:SSV

Ngo:2014:VCN

Nina:2013:JCF

Nakatsukasa:2013:MAG

Nomura:2010:STP

Nomura:2010:TPR

Napp:2011:LQC

Ivan Oseledets and Ekaterina Muravleva. Fast orthogonalization to the kernel of the discrete gradient operator with...

[Oseledets:2012:RQM]

[OM12]

[Ogura:2013:GJS]

[OM13]

[Olshevsky:2010:GM]

[Oseledets:2010:TCA]

Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross ap-

Osaka:2012:DPS

Olesky:2012:SPN

Otopal:2012:RKC

Okoh:2010:RHC

Ozdemir:2013:SSS

Pagacz:2012:WTD

Palfia:2013:WMM

Miklós Pálfi. Weighted matrix means and symmetriza-

Paniello:2011:SMA

Pan:2012:DMD

Pankov:2012:EGG

Petrovic:2011:FRL

Petrovic:2011:LEC

Pate:2010:LBI

Pate:2012:HTM

357
Patricio:2012:MPI

Porras:2010:CCC

Pan:2012:SMS

Patuzzi:2014:ISC

Potra:2013:CBA

Pellegrino:2014:SCA

Peña:2014:OTA

J. M. Peña. An optimal test for almost strict to-
Peperko:2011:CGS

Peperko:2012:BGJ

Peretz:2012:CAS

PerereiaSilvaeSilva:2013:GIE

Peretz:2014:ASF

359
Petravchuk:2010:PCD

Puchala:2011:PNR

Patricio:2012:DIP

Pokorný:2013:RQI

Pan:2010:APM

Pinter:2011:ADT

Pinkus:2012:BRM

Pituk:2011:LBP

Protasov:2013:LUB

Phat:2012:LAE

Papez:2014:DDA

Pastravanu:2010:DSI

Parraguez:2010:CVS

April 1, 2010. CODEN LAAPA-W. ISSN 0024-3795 (print), 1873-1856 (electronic).

Park:2011:IWT

Polderman:2012:TDD

Poloni:2013:QVE

Poncet:2011:DTM

Popovych:2010:PSQ

Popovici:2012:NEP

Popov:2013:MSB

Popovych:2013:LOO

Popovych:2014:CNU

Park:2011:CNS

Poritz:2011:EPS

Piwowarczyk:2012:HPP

Priyadarshan:2012:PCP

Parton:2013:SMT

Puerta:2013:LSI

Pan:2013:RPV

Perrucci:2013:ZNR

Pan:2011:MCP

Pereira:2013:WTS

Palacios:2010:SRH

Protasov:2010:WDS

Pivovarchik:2013:DNI

Popov:2011:NMS

Pryporova:2010:CCD

Psarrakos:2012:DBP

Pula:2011:MPT

Philipp:2013:NRN

Potts:2013:PEN

Possani:2010:UMT

Pulka:2011:MPE

Protasov:2012:SNM

Wang:2014:GSS

Xue ping Wang and Hui li Wang. The generators of

367

Pang:2010:EOS

Qi:2010:CAL

Qi:2010:CDB

Qi:2013:CLD

Qi:2013:SNT

Qi:2014:EOS

Qi:2014:RUH

Qi:2013:SNT

Quarez:2010:SSA

Quarez:2012:SDR

Quinlan:2011:SMN

Qiu:2012:CLC

[María Robbiano and Raúl Jiménez. Improved bounds for the Laplacian energy of Bethe trees. *Linear Algebra and its Applications*, 432(9):2222–2229, April 15, 2010. CODEN LAAPAW. ISSN 0024-]
Rojo:2011:LGC

Rad:2011:LBA

Rivero:2013:EKT

Rojo:2013:SUB

Rojo:2010:SCS

Rozikov:2014:CEA

Rojo:2010:ACS

Oscar Rojo, Luis Medina, Nair Abreu, and Claudia Justel. On the algebraic connectivity of some caterpillars: a

Ramos:2014:ORM

Ram:2011:PPP

Rodriguez-Ordonez:2010:HCB

Rodman:2012:BRB

Rodman:2012:LPS

Rohn:2011:ACH

Rojo:2011:LGE

Romo:2014:CFP

Rosenthal:2012:WCB

Rosmanis:2012:FSP

Rost:2012:MRS

Rowlinson:2010:MET

Rowlinson:2011:EMG

[RR11] Thomas Ransford and Jérémie Rostand. Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues. *Linear

Rowlinson:2010:SCR

Ruan:2012:IGR

Rubei:2013:CSA

Rudolf:2012:RDK

Tina Rudolf. Reflexivity defect of kernels of the elementary operators of length

Rueda:2013:LSD

Rukhin:2014:BES

Ragnarsson:2013:BTS

M. Soleymani and A. Armandnejad. Linear preservers of circulant majoriza-

Sato:2011:NPL

Sato:2014:NPB

Savostyanov:2012:QRO

Savostyanov:2014:QMV

Somasundaram:2011:SMM

Schulz-Baldes:2012:SIT

Sari:2011:RRM
Bilal Sari, Olivier Bachelier, and Driss Mehdli. Robust S-regularity of matrix pencils applied to the analysis of descriptor models. *Linear Algebra and its Applications*, 435(5):923–942, September 1,

Serra-Capizzano:2011:ACS

Serra-Capizzano:2010:EDP

Soto:2013:NMP

Sedighin:2011:SJA

Sego:2010:TSH

Sego:2014:HSD

Sivas:2013:KTM

Seidel:2014:FTB

Gora:2010:SON

Seo:2013:GPS

Seo:2014:OPM

Sergeev:2011:MAA

Sergeev:2013:FPS

Seven:2010:QFM

Seven:2013:MCF

Shao:2010:PDH

Shi:2013:DIL

Shahryari:2010:RSP

Shankar:2010:T

Sharifi:2011:POC

Shahidi:2013:NSC

Shitov:2013:CBM

Shparlinski:2010:SCQ

Shen:2012:MRT

Shao:2010:LSB

Simson:2010:IBF

Singer:2010:ETF

Singh:2010:ETF

Sinkovic:2010:MNO

Skowronek:2011:CMC

Skulj:2013:CID

Sun:2014:RGQ

Slapnicar:2010:RMM

Slowik:2012:LCS

Slowik:2012:OPN

Slowik:2013:EIM

Roksana Slowik. Expressing infinite matrices as products of involutions. *Linear Algebra and its Applications*, 438(1):399–404, January 1,
Slowik:2014:PMF

[SM10b]

Shpiz:2013:CES

[SM12]

Shaked-Monderer:2013:MAM

[SM13]

Sun:2010:SJA

[SM12]

Sun:2012:LTD

[SM10b]

Sun:2010:GHO

[SM10a]

Stosic:2011:CSP

Marko Stošić, Manuel Marques, and João Paulo Costeira.

[SMC11]

Song:2014:IFD

Sou:2012:GMA

Serrano:2013:DFP

Serrano-Rodríguez:2013:ASM

Serrano-Rodríguez:2013:ICF

Sra:2013:EEC

So:2010:ATK

its Applications, 432(9):2163–2169, April 15, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Iwao Sato and Seiken Saito. A generalized Bartholdi zeta

[Sesana:2013:SAI]

[Setyadi:2013:EGS]

[Sherman:2013:PNM]

[Stampach:2013:CFJ]

[Sen:2014:GIE]
Shan:2010:EGT

Sumi:2013:TRT

Shader:2014:NPM

Shao:2013:SPD

Jia-Yu Shao, Hai-Ying Shan, and Li Zhang. On some

[Saito:2010:DWT]

[Saldanha:2010:CPQ]

[Shieh:2012:CBS]

[Son:2013:SCR]

[Stanic:2012:SGW]

Stevanovic:2010:RAC

Stevanovic:2011:TSC

Stewart:2013:GUH

Storm:2011:SPG

Stoll:2012:KSA

Stupariu:2012:FWQ

Stuart:2013:SFM

Sun:2013:ANJ

Xiaosong Sun. On additive-nilpotency of Jacobian ma-

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>

Note: The journal's CODEN is LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://www.sciencedirect.com/

Tudisco:2011:PAP

Talebi:2013:BBM

Tudisco:2013:ORM

Teranishi:2011:SLS

Terwilliger:2013:FDI

Terwilliger:2014:BAF

Tan:2010:VEI

404
PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Tian:2011:SEO

Tian:2011:MMR

Tian:2012:FCE

Tifenbach:2011:SSD

Timotin:2014:SCR

Tao:2014:SMI

Tan:2013:DAP

Qianrong Tan and Mao Li. Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains.
Tan:2013:NIC

Li:2010:SNB

Tebbens:2014:IGC

Tao:2011:SCM

Theja:2014:NGM

Tayebi:2012:GRF

Trigueros:2013:UEM

Turkmen:2012:SIM

Traldi:2012:LAL

Tran:2013:PRC

Trench:2010:CPM

Trench:2011:APL

Trench:2012:CPC

Tam:2010:RSL

Teufl:2010:DIL

Tian:2011:CEM

Tsai:2011:NWRa

Telloni:2014:SFC

Tang:2012:GLF

Takane:2012:TEM

Urschel:2014:SBG

Vandebril:2010:TMU

Vassiliou:2014:SMM

Vinjamoor:2010:IFI

vonBelow:2013:SHS

vanDam:2014:LSE

vanderHolst:2013:IIP

Voynov:2013:SPP

Varga:2012:ANM

Valcher:2010:AEC

Verde-Star:2011:ITM

Verde-Star:2013:CCC

Dooren:2014:SEP

Verde-Star:2014:RCD

Wang:2011:HPM

Wang:2014:DAS

Wang:2014:LDU

Waterhouse:2013:BMT

Wang:2011:NSL

Wang:2012:SCG

Wang:2013:GWL

Wang:2013:GET

Wu:2011:SIP

Wang:2012:PDI

Weng:2013:SLS

Wang:2010:PSS

Weiner:2010:OSM

Weis:2011:QCS
Stephan Weis. Quantum convex support. Linear Algebra and its Applications, 435 (12):3168–3188, December 15,
2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wei:2013:UID

Wei:2013:JMI

Wang:2014:SLG

Wang:2011:BMD

Wang:2012:SEC

Huang:2012:CLT

Huang:2013:TLT

Wikramaratna:2011:CIM

Wildstrom:2011:DRL

Wilson:2013:OAG

Williams:2014:SFA

Gerald Williams. Smith forms for adjacency matrices of circulant graphs. *Linear Algebra and its Applications*, 443(??):21–33, February 15, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Wu:2012:NAI

Weiguo:2013:FIM

Wei:2010:PBI

Wu:2010:LOS

Wang:2012:LEL

Wang:2011:IED
Wang:2012:MDA

Wang:2011:ASC

Wang:2010:BSQ

Wen:2014:FPF

Wang:2011:GDT

Wang:2013:BRG

Wong:2014:GAZ

Dein Wong, Xiaobin Ma, and Jinming Zhou. The

Woracek:2014:RKA

Wang:2012:LGL

See comments [WY14a].

Wang:2012:OTA

Tan:2013:LCG

Tan:2012:LCT

Wu:2010:MWS

Honglin Wu. On the 0–1 matrices whose squares are 0–1 matrices. *Linear Algebra and its Applications*, 432(11):2909–2924, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wu:2010:GPB

Wu:2013:CAI

Wu:2013:QFL

Wulling:2013:DIS

Wang:2010:CHS

Wang:2013:DNR

Wang:2013:JHU

Wang:2013:MLD
Wasson:2013:NDS

Wang:2014:GME

Wei:2011:HDT

Wang:2010:SLB

Wang:2010:CNPa

Xu:2014:MGM
Wei wei Xu and Hao Liu.

Xu:2019:CSM
Wei wei Xu and Lei Zhu.

Williams:2013:IMB
Joseph J. Williams and Qiang Ye.

Wang:2014:CSL
JianFeng Wang and Juan Yan.

Wu:2012:CSA
Yuezhu Wu and Linsheng Zhu.

See corrigendum [WZ14c].

Wu:2014:CSS

Wu:2012:UBS

Wong:2013:CLG

Xie:2013:EAT

Xu:2013:RWM

Qingxiang Xu, Yonghao Chen, and Chuanning Song. Representations for weighted Moore–Penrose inverses of partitioned adjointable operators. *Linear Algebra

Cai:2011:AMP

Xie:2012:CNN

Xu:2010:SLO

Xue:2011:FIS

Xu:2011:EET

Xu:2013:OGW

Xie:2010:P

Baohua Xie and Yueping Jiang. PU. Linear Algebra and its Applications, 433

Xue:2013:CAR

Xu:2013:SCQ

Xu:2012:RSK

Xu:2014:MFT

Xiao:2010:CMG

Xiao:2010:JHD

Xiao:2012:LTD

Xiao:2013:ACG

Xu:2012:TLC

See corrigendum [Kis15].

Xiao:2014:SBI

Xing:2013:LEL

Xing:2013:DDS

Xing:2013:LEC

Xing:2014:SBS

Xing:2014:EGT

Yamazaki:2013:EPA

Yanagi:2010:URG

Yang:2010:ACF

Yan:2011:NJC

Yan:2014:NRM

[Ye:2011:SI]

[Ye:2010:MSL]

[YiKIS12]

[Yuan:2014:CPD]

[Yuan:2012:EKI]

[Yuan:2013:BGS]

[YHH12]

[YHY14]

[YJ12]
You:2010:MLS

You:2013:SBS

Shu:2011:BSS

Shu:2012:SOV

Shu:2014:CBS

Peng:2011:CIE

Yang:2012:MKS

Shu:2012:SOV

Shu:2014:CBS

Yu:2010:NLD

Ye:2011:IIS

Yu:2012:NLD

Yin:2013:RDT

Yu:2014:IWU

Zhou:2012:SBM

Zhang:2014:RNG

Zhuang:2012:JLG

Zappavigna:2012:ENN

Zhou:2013:CAL

Zhou:2013:SNB

Zhang:2011:MPP

Zhou:2011:PCI

Zou:2012:SIU

Zhang:2012:BRB

Zhao:2012:DSR

Zhao:2012:OPI

Zhao:2012:ATM

[YBZha12d] Yun-Bin Zhao. An approximation theory of matrix rank
minimization and its application to quadratic equations.

Zhang:2013:AAP

Zhang:2013:SSL

Zhang:2014:IED

Zhou:2010:SLS

Zhou:2011:LMD

Zhong:2012:SSP

Zou:2013:IAV

Zhang:2014:CDN

Zhu:2010:SLS

Zhu:2010:UBL

Zhu:2011:BEG

Zhu:2011:CSM

Jiandong Zhu. On consensus speed of multi-agent systems with double-integrator dynamics. *Linear Algebra and

Zhu:2012:LEG

Zhu:2012:MET

Zhu:2012:OUG

Zhang:2013:UMU

Zimmer:2013:NLB

Zivkovic:2012:EFC
Zou:2010:EES

Zhang:2014:MEG

Zhou:2011:BSL

Zhou:2011:TSM

Zhang:2012:EET

Zhai:2012:SUB

Zhang:2014:PRP

Zhou:2014:LSS

Zuo:2010:NDS

Zhai:2012:PCS

Zhang:2012:DIL

Zhao:2013:ICP

Zhang:2010:CSP

Zuo:2013:CCM

Zhu:2010:MMS

Zhang:2012:SPG

Zhao:2010:JAD

Zeng:2011:JHA

Zhu:2014:CHO

Zhao:2012:JHA

Zhang:2013:SLC

Zhu:2014:CTA

Zhang:2013:MPI

Zhang:2011:EIT

Zhang:2010:ADP