Title word cross-reference

(−1, 1) [AAFG12], (0, 1)
[BBS12b, NP10, Ghe14a], (2, 2, 0)
[CI13, PH12], (A, B) [PP13b], (α, β)
[HW11, HZM10], (C, λ, μ) [dMR12], (ℓ, m)
[DFG10], (H, m) [BOZ10], (n, τ)
[CSZ10, CR10c], (λ, 2) [BBS12b], (m, s, 0)
[GH13b], (n − 3) [CGO10], (n − 3, 2, 1)
[CCGR13], (ω) [CL12a], (P, R) [KNS14].
(R, Sω) [Tre12]. −1 [LZG14]. 0 [AKZ13, Ano12-30, CGGS13, DLMZ14, Wu10a]. 1
[Ano12-30, AHL14, CGGS13, GM14, Kal13b, LM12, Wu10a]. 1/n [CNPP12].
1 < t < 2 [Sco14]. 2 [AIS14, AM14, AKA13, BDF11, BdlC14, BDK11, CvDKP13, CL13b, CNPP12, DoMP09, Ere13, GMT13, GG13, KY14, Rim12, Rud12, YHH12, vdH14]. 24
[KAAK11], 2n − 3 [BCS10, Hil13]. 2 × 2
[CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14].
2 × 2 [Ber13b]. 3
[BZWL13, Bre14, CILL12, CKAC14, Fri12, GovdD14, GX12a, Kal13b, KK14, YHH12].
3n2 − 2√2n3/2 − 3n [MR13].
3n2 − 2√2n3/23a [MR14a]. 3 × 3
[DRu14, GLZ14, Sev14]. 3 × 3 × 2 [Ber13b].
3 × 3 × 3 [BH13b]. 4 [Ban13a, BDK11, BZ12b, CK13a, FP14, NSW13, Nor14]. 4 × 4
[CJR11]. 5
[BH13b, CHY12, KRH14, Kol13, MW14a].
5 × 5 [BAD09, DA10, Hil12a, Spe11]. 5 × n
[CJR11]. 6
[DK13c, DK11, DK12a, DK13b, Kar11a]. 7
[PP13a, Zho12]. 70 [GRS11]. [1, n]
\[\log(XY) = \log(X) + \log(Y) \]
\[\sum_{j=1}^{m} A^{n-j} X A^{j-1} = B \] [Fur10b].

- entropy [CH11]. - extensions [LCM13].
- function [SS12a]. - game [W13].
- generalized [CMRR13]. - graded [Cen11].
- graphs [LHVL12]. - Hermitian [QSW14].
- involutory [FLH11, Tre10]. - isometries [BMN13b, Gu14, Dug12]. - Jacobi [HSS10, HSS14]. - Krawtchouk [Wor13].
- Local [AKA13]. - Lucas [DGMS14].
- optimality [FM12]. - orthogonal [VS14b, dCDlRM14, AMP10].
- palindromic [BM14a]. - parameters [JLLY10]. - paranormal [DJK12b]. - partial
additional [DS13].

Additive [BS11b, xCwXL11, JH10, MD10, PIM+10, CGMS10b, EN11, QCH11, Sun13].
additive-nilpotency [Sun13].

Additivity [ACG13a, BG13, Wan11a, CGMPS14].

ADI [Jbi10].
adic [ZYL10]. Adin [Alo14].

adjacency [AFLN12, AAF+12, Bap13b, BB10, CCF+12, HO11, HTW13, ST10b, Wil14, XC13, YFW10].
adjoint [ADW13, BT13, CN10c, CN11d, DL14, DZ12a, OR12, RS14a, SS11d, SSR13, vBM13].
adjoint-commuting [CN10c, CN11d].
adjointable [FMWW12, WD10, XCS13].

adjustment [GOSV12].
admissible [CS13b].

admit [AT11, CGMJ14].

Affine [BDV12, AY13, AN13, BB13a, BV11, BB11b, Bud11, DS11, Dau12, KLP13, Lee13b, dSP12a, Wal11a].

algebra [ACGVK14, AM13b, Ago14].

algorithm [BM13a, BBE+10, CFPP13, CILL12, GOSV12, HK10, KY13, KM14, L13b, LdlP11, LQ11, MSP13, MAM+13, RAAGAVS11, Roh11, SA10, Wal11b, WJ12, XY11, XSS13, ZCQ13].

Algorithmic [MPS10].

alignment [YZ12a].

All-derivable [ZZW10, ZZ11, ZZ10, ZZ12, QH10]. Allan [Gar10].
allow [BDM+12, OS14].

Almost [MM10a, BD13, DvDF11, Fid10, HLZ12, Peñ14, PS14b, Wor14, dSW12]. alternant
[JL12]. Alternating
BE10, LKN13, BM14a, BKMS13, BC14c, FHS14a, JJKS11, MMMM10]. alternative
[Bar12a]. Aluthge
[BJ10b, HT10b]. ambiguous
[JMS11]. among
[FJ14, TL13a, VDVJT13]. Analogs
[BFdP10]. analogue
[CJL13, Kra13]. analogues
[Ern13]. Analysis
[BFRR14, Dum13b, HJ12, NT14, AS10, BHMR12, Cas13, CQYY13, Est12b, GP13a, GNE+14, GMV11, Giv12, HYF14, Hua13a, HZ14, KG12a, LYS13, Lop11b, Oto12, PPZ14, PS14a, SMB11, SS13b, TH11, XSS13, Gre13]. Analytic
[AL13c, Nik14, FP11, GMS13, Zha13]. analyzing
[GHT11]. ancient
[SS10c]. Anderson
[PE13]. Ando
[Lim11a]. anisotropic
[KG14]. Annihilator
[LP10]. Annihilator-preserving
[LP10]. annihilators
[WZ12, WZ14c]. Announcement
[Ano12a]. Anti
[YT13b, BH14b, CCL14, DH12a, KB12, SN14, XSH14]. anti-commuting
[KB12]. Anti-diagonals
[YT13b]. anti-magic
[CCL14]. anti-norms
[BB14b]. anti-reflexive
[DH12a]. anti-topical
[SN14]. anti-triangular
[XSH14]. Antichains
[Ghe14a]. antieigenvalues
[GS10e, Sed11]. antieigenvectors
[GS10e, Sed11]. antinegative
[Per11]. antireflexive
[DH10b]. antiring
[Tan11]. antirings
[Tan10b]. antisymmetric
[Ja11, Rub13]. any
[AGV12, Ldp11, dSP10b, ZHQ14]. anzahl
(GL14, GLW13]. apart
[MAS12]. APOS
[PO10]. appearing
[FGQ11]. Appl
[Che14b, DW14, Duk15, EKSV18, HS14a, KB14a, KKL13a, Ks15, LMO16, LT16, MR14c, Vla12, Wik12, wXZ19, Yua15, MR14a]. Appl.
[WZ14c]. application
[Aud10b, Dah12b, DS13, DD11a, Est12b, FMR12, FNY13, FL10, GH13a, GP13a, JJKS11, LQY13, LHZH11, LTLZ12, LJY13, MLC+10, MSvdD14, Mou12, OM10, VR12, Zha12d]. application-based
[MLC10]. Applications
[Grü12, MOA11, Rei11a, SRdAG10, BL13a, BFH+12, BK12, CTW11, DMMY10, FFS11a, FG13b, GZX14, GLW13, GL14, HT14, HN10, HZGY12, Jim10, KLS12, KLP12, LRT12, LZ10, LCwCL11, MGLW11, MR11, Mol11, NPP13, Nie13, PM10, Per14, Sah10, Sha13b, SYH14, ySpW12, SS13f, Tia10, Tia11b, Tia12, TT11, WFM11, ZZC14, dFBRS14, dMR12, AM13b, BPRY11, Zha12a]. Applied
[BBFD13, Gar12, Rod12a, GMH14b, GMRS14, Sag13, SMB11]. approach
[AFHP14, BDD13, BMS10, BOZ10, BOZ11a, BOZ11b, Böt13, BBS12a, CA10, Ern13, FDS13, Füh10a, GHMPVP11, KMNS12, KKLY14, Lin13, MPS10, MR14b, NP13a, Nem13, PKR12, RR11, RR12, SHZ10, Stol12, TD11, VS13, Wan14a, ZYL10, Zha13]. approaches
[TnYsH11]. Approximate
[Ano12a, KH13, KPR14, BDD13, CP11, GB13, LPK14]. approximately
[Wój14a]. Approximating
[SCS11]. approximation
[AGNS11, BV12a, BKG13, BV13b, CAV13, CN11e, DS13, DD11b, DBZZ14, LB14, fLyH11, OT10, yPjXL11, Reg13, SA10, SR12, SC10, Zha12d]. approximations
[DZ12a, GO13, LS14, Ney11, Pin12]. Araki
[Aud13a]. arbitrarily
[Tra13]. arbitrary
[BCS13a, BJZ12, Bot10b, Bot12, CSC13, Car11, FKW13, GS11a, GS12a, GS13b, Ma11, MGSW14, dSP10c, dSP12c, RS14b, WZL13, Wu10b]. Arc
[Kuz10]. Arc-transitive
[Kuz10]. arcs
[YW11]. arise
[GLS13a]. arising
[BTY12, CL13b, DKOT12, DBZZ14, GL10c, Jim10, Pan11, RR14, SK14, Shi12a, Wik11, Wik12, Wu13a]. arithmetic
[KLL11, MPPS10, ST10b, WLL14, Yam13, BT11c]. arithmetic-geometric
[Yam13, BT11c]. ARMAX
[KM14]. Arnold
[Zha12a, LV14]. Arnoldi
[LBLS12, MV12]. arrangement
[CGW14]. arrangements
[Buj13]. array
[BH13b]. arrays
[AMPT13, BH12, CC10, Zha12d].
associated [AKN12, ARZ11, BBdH13, BC12a, BCF12, CH11, CN12b, CN13a, FDS13, FKR11b, FKR12, Guo13, HHMS10, He11, HKPR13, HNZ12, HHL114, JKN14, KHG14, Kim13d, fLyH11, LLMZ12, MS14a, San10, dFBRS14].

Assumptions [DLNN14].

August [BDK10].

Authorities [BEK13].

AutoGraphiX [Ste10].

Automorphisms [DH12b, GS12e, Moll11, WMZ14].

Autonomous [BM10].

Averages [BJ11, PP11b].

Axion [JS13a].

Axiomatic [LM10b].

Axiomatization [XWD13].

Back [HB12].

Backward [AA11, CLCL12, GJTP13, HZ14], Bade [AGPPF12].

Bakonyi [Rod12a].

Balance [KG12a].

Balanced [Cha12, GO13, Gőv12, HLP12].

Balancedness [Bel14].

Ball [MM10b, ST12].

Balls [FRK12].

Banach [AF12, BR11, BDFP11, BMGMC12, CGMS10b, DP10, DX13, ES13, For14, GD11a, HZ11a, Hua11a, HZGY12, HZJ12, JZ11, Kec13, LL11a, LMM11, LM12, LT13, MM13, Mos13, PR13a, QH10, SH13, SM12, WC12, YW10, ZW12b, ZHQ14].

Banachiewicz [CGMS10a].

Band-dominated [Sei14].

Banded [Irv12, Ang13, Hua12b, SC13].

Banks [MZ12c].

Bannai [HWG13].

Bannai/Ito [HWG13].

Bapat [Sat14].

Bar [AY13].

Barabanov [Mor10].

Barbour [Nak13].

Barel [Gem10].

Bar [Ano13d, Ano13e].

Bartholdi [MS14b, SS13a].

Bas [Lim13b].

Base [CL10b, Din11, WLHL10, YW11].

Based [BT10, BFS11, BB10, CH12, CFJKS13, CM12a, CNPP12, CS10b, Dah12b, FS11, GH13a, GH13b, GZX14, GH11, Ika11, IPFD13, IK+13, KOR14, KMS13, LL10d, LL14b, MLC+10, MR14b, RJH11, SHZ10, DDP14, WAH13, WAZ14, wXL14, wXZ14].

Bases [BG11, ySpW11, Tam14a, BPDC14, KP13, KS11a, LM12, LLH10, Mel14, MSS14, PT14, ySpW14, YS13].

Basic [SW11, Tam12, FH10a, FH12b, FH13, FH14].

Basics [BS10].

Bath [DGU14].

Baxter [Kaw13].

Bell [BHAP12].

Bernoulli [CD14].

Bernstein [Bar10b, Aud12, MM10c, Sla10].

Best [AGNS11, BV13b, Pin12, SC10].

Beta [ANF11, BRA11, DGY10].

Bethe [RJ10, RJ11].

Between [AvW13, AH13b, BV12b, BAD09, CFJKS13,
circuits

Circulant

Circulant-Hankel

Circulants

Circular

Class

Classes

Classical

Classification

Classifying

claws

clean

cleanness

clique

cliques

Clique

Class

Closed

closure

Colin

collections

Collocation

color

colored

colorings

Column

Column-

Column-finite

Columns

Comaximal

combination

Combinatorial

combined

Combining

Coming

Comment

Comments

Common

Communicability

Communication

Commutator

Commutative

Commutator

Commutators

Commute

Codimension

Coding

Coefficient

Coefficients

coincidences

cokernel

Coincidence

Coinbra

coincide

coincidences

Coefficient

Coefficient

Cohomology

Colimbra

Colm

comment

comments

Common

Communicability

Communication

Commutator

Commutative

Commutator

Commutators

Commute

10
commutes [FMM13]. Commuting [DO11a, DW12a, Fra12, Fra13, XW10a, BC12a, Bou13, CN10c, CN11d, Hwa12, KSS12, KY14, KB12, LD12, Mig13, NS14, Pet10, Sar14, Siv12b, Siv12a, TZ13b, dOHKS12].

Compact [LT13, AK12b, BV13b, GP14, SM10b, TT12]. compactly [GHMPVP11]. Compactness [MN12b, DDK14].

Companion [EKSV14, EKSV18, MR11, BBE+10, DDM12, Gau10, GS10d, GS12c, GS12d, LD11, MZ13, Mac13, Pat12b, DDP13, DDP14].

Comparing [WNM13]. Comparison [DXG12, HTS14, BSKL13, BBM14, EvdD10, GEP10]. compensators [BO12].

Competition [Kim10, Kim11a, KP12, Kim13a]. complement [BBF+12, DW11, DC13, LHZH11, LNZL12, Mit11a, Ney11, SvdH11].

complementarity [AS10, Bal10, CPV10, Dai11, GEP10, GEP13, JV11, SVP11, wXL14, wXZ19].

complementary [ACM14, FH10a, FH12b, FH13, FH14].

complementation [DV10, GLS13a, Tra12]. complements [Ago14, BEV13, FZW11, GS10c, HL10b, LW12b, LH10b, NY13, RTR10, Row12b, Row14b, Row14d, SC12, ZH11b, vdhH13].

completable [HJN12]. Complete [HLS11, JZ14, BC131a, CFK+10b, CI10, FGS11, HTS14, HP11, Kuz10, PHS13, Raf14, Row14b, Sin10a, Zha14a, ZWL13].

Completely [BS12c, BP11, LT12b, LT16, SS13d, Aud12, BAD09, DA10, GST13, HKPR13, HH11b, Lin14a, Tao13, BSU14].

completely-Q [Tao13]. Completion [Dod13, MS10b, BC10, BC12b, Dod10, DS14, JKK51, JW13, KBS13, KKR11, LV14, SS11a].

Completions [Rod12a, BW11, BHZ10, CH11, HZ11b, HZ12b, MQ11, MQ13, Rub13, dSW12].

Complex [DGJ10, GKL11, HS12a, JS13a, Pry10, Sz613, ANF11, BB13d, BGP13, BG12b, BW13a, Buj13, Byd10, CILL12, CK13c, FP14, GPT12, GPR13, GP13b, lkr10, Kar11a, Kar11b, KK14, LRT13, LNT13, MZ11, MARC13, Mat13a, NV12, Ref12, SH13, dCdlRMP14].

complexity [DS12b, KKL10, Shi13]. component [TH11]. Components [JZ13, ABBO11, LSR11, RW10].

Computable [BD13]. Computation [BHAP12, KD12, SPKS12, TD11]. Computational [HS12c, NR10].

 Computations [Gem10, HWSH13, MM10b, PIM+10, PQZC11, PS14b, SE13].

Computer [CS11]. Computing [BBH+12, BI13, FHS14b, KG12b, ST12, BGV12, BMS10, Fis14, LJIY13, MV12, MP14a, RBP12, Roh11, Row12a, Sha14b, Uhl13, WJT13]. concave [Aud13a, FGQ11].

Concavity [Hia13, Niel1]. concept [PO10].

concerning [Bap10, BG12b, He14, LGZ14].

concise [Rho10]. condensed [BD13, Ji12a].

Condition [DPPD13, AAK11, AL13a, AHAPP10, Alt13, BB13c, DH10b, Gar13, LJ11, LWY14, LS12d, XD12]. conditions [JAS13, CHK+13, EGR12, FN11, FS14b, HZ12, Hu10, JKN14, LLD13, Nak12, Sha13a, ZHVF13, vBM13]. Cone [Kus12, Niel1, AV12, BB13c, DDGH13, FW14b, GST13, Hili2a, ISYY11, Jun12, Lim14, LT1X14, NN10, Pro10, Sk11, WX1H10b].

Cone-theoretic [Kus12]. Cones [Sko11, AGK11, AL13b, Bar12a, BZ12a, CPH11, CFL13b, JV11, JSS13, KL13b, LT10b, LXX12, RSS10, San10, Ser11, TG13, VS10].

Conference
configuration [AFLN12]. configurations [FW14b, HW14b]. confluent [KS14b].
congruent [Kr10]. Conics [Wu13a, Mir10].
conjecture [Bap10, BBF12, CH12, CW12a, Cho13, Das11, Drn13a, Drn11, Drn12b, EGR12, GS12a, GC12, GKR13, He14, HJLS11, LYL13, LL14c, Mig13, Mit11a, NT10b, YY14a, YHY14, ZW12a, Zha13, ZC14, Drn13, Yan11].
Conjectures [Das10a, AH10, CHZ13, Das10b, Das13, HL10a, Hil14c, JNS13, Ste10].
Conjugacies [BV12b].
Conjugacy [BB11b, Dau12, FG13c].
Conjugation [Mat13b].
Connected [CT11b, LM10a, SBMT10, CH14, CK14, HY14, LS12b, MY14, PAS11a, ZLW12].
Connectedness [UZ14].
Constructions [CN11b, HLS11e, KRvS14, MS13c, PP11a, PO10, ABBO11, BW13a, CMNW14, CNPP12, HNZ12, IPFD13, JNS13, VS13].
Constructions [GOvdD12, ZXX13, CGM10].
constructive [Laf12]. contained [GL10b, KK14]. containing [BS12e, HLW10a, MAGR13, Ros12a, Ziv12].
continued [GWZ13], continuing [Mac13].
continuity [GMMFSS12, Pep11].
Continuous [ZWZ10, BS14, CI14, GG13, JLW11, KKS12, LT13, LTX14].
contraction [AT14b, GW10, Li10].
Contractions [Pop14, BV12b, DJK12b, DJK12a, MS14a].
Contractive [KS14a, BDS13].

Consequences [AJ13, DK13a, MMK13].
Consistent [HC14].
Consistency [FDS13].
Conversely [AIP12].
Convex [AL13b, MO14, San10, SMC11, Aud13a, Bar12a, BH11a, Dra12a, OT12, PCC12, Rez13, Wei11, Zha14c].

Convexity [Nor11, Alt13, CN13c, Hen10, MPP11, NS11c, WZ14a, WA10].

Corach [CMS12b].
Core [RDD14].
Cored [HQS13].
corepresentations [Dor10].
cores [BSST13].
corinoids [CSS14].
corollaries [Hil13].
corona [CRS14].
coronaes [CT12, LL13c, MM11b].
corrected
correction [HYF14]. correlation [Cha14, DBZZ14, HH12a, HYF14, Oto12, SA10].
corresponding [AK11].
Corrigendum [Che14b, DWW14, Duk15, EKSV18, HS14a, KB14a, Kis15, LMO16, LT16, MR14a, MR14c, Wik12, WZ14c, wXZ19, Yua15].
cosine [LdS13].
cosparse [GNE+14].
cospectral [BZW14].
Cospectrality [AO14].
countable [Car11].
counterexample [Dru11].
Counterexamples [AH13b, CL14a].
counterpart [FLS10]. counterparts [MO14].
Counting [AG12, GM12, Shp10].
counts [DKS13b, MW14c].
coupled [AS10, BS13a, DH10a].
coupling [Tim14, THR13].
couplings [dSW12].
covariance [CFPP13, Guv12].
cover [Sin10c, TF10].
coverage [ACM14].
Covering [KN13a, KN13b, NCdS14, SS13a, Suz13, dSC14].
covers [CS13b].
Coxeter [Lak10a, PS14b, Sim10].
cp [BSU14].
cp-rank [BSU14].
CPCA [TH11].
Crawford [Uhl13, WWG10].
Cramer [Ji12a].
Critical [CN12b, YHH12, AK12a, CV13, FdCR10, GLZ14, GKR13, JLW11, MPS10, PS14b].
cross [LJ12, OT10, Savy14].
cross-validation [LJ12].
crosspolytope [HLW10a].
Crouzeix [Chol3, GC12].
cryptography [Cha13b].
cube [HMP+11].
cubelike [CG11].
cubic [He14, LHL13, Row14a].
Curriculum [Ano13d].
curvature [TZ12a, XW11].
curves [ABGSS14, Buc10, CM12b, CN12b, FP13, HK13, KK10, OZ10].
Cut [ST10b, GX12c, Row12a, WF10, Zhu10a, Zhu11a].
cut-and-paste [ST10b].
cut-points [GX12c].
cut-vertex [Row12a].
cutsets [BMN+13a].
Cvetkovic [GRS+11, GRS+10].
Cycle [BB11a, DF14, GK14a, LS12c].
Cycles [dQFK+13, AJRT14, ABS14, Mir10, MSvdD14, Nik10b, QSW14, RRM11, Yua14, Yua15].
Cyclic [Kec13, SS10a, CN13a, CN13b, DK12b, GLS10, JPS13, KZ11, LL11c, LMT10, NCdS14, TL13b].
Cyclotomic [Gre12, BHKM13].
cylinders [KK10].
D [CNPP12].
Dai [BBGM12].
d'algèbre [Cas10].
Danny [BELK12].
Darboux [CGMPSS14, DD11b, Nat13].
Darboux-like [CGMPSS14, Nat13].
data [DS13, KD12, MS13c, Wei13b].
Datta [BPRY11].
deblurring [FN11].
Decay [BB14, EY13, CSV14].
decisions [DT10].
Decomposable [FdCR10].
de decomposing [dSP10b].
Decomposition [AR10, UW11, BFR14, BH12, BL13a, Bha13, BLL12, BCMT10, CC10, CKAC14, CM10a, DoMP09, DMP11, Duk12, Duk15, GL12b, GMP13, Guv12, Kak10, Kim11b, KKB11, LKN13, Liu13, MM11a, MPP10, Pag12, Pon11, Rho10, Sar14, Seg14, SWA12, ZHZF13].
Decompositions [BKM+13, AS12b, BKV14, CM11b, FRS14, GMS12, KNS14, KR12, SC13].
decreasing [CGTR14].
Dedekind [Eas10].
Dedication [Ano10b, Bai11].
Defect [GW10, Tad12, Ban13b, BDS13, Rud12, WW13d].
defective [ABBO11].
defined [DV14, Kaw12, Lak10a].
definite [AAT12a, AHAPP10, BH14a, BI13, BCS13b, BLL12, BL14, CM12a, FM13, Fu10, HP12b, ISYY11, KKB11, LLY11, LL13b, LLB13, Lim11b, Lim12, Lim14, MY14, Mol11, NV10, PP14, QS14, Yam13, vdW14].
definiteness [GR12, HS12c, SH10].
Definition [BPDC14, Qui11].
deflate [Mei13].
Deflating [TGM11].
deformations [DFS12, Qui11].
deformed [Han11a].
degenerate [Han11a].
degenerations [CKLO13]. degree [AW13b, BMSW10, BZI2b, CH14, Ere13, Hil13, HK13, LLS11, LL10c, LL11c, aLW13, MAS12, SWT13, TW10a, Tan10a, YHY14].
degrees [DD10b, GM12]. Delannoy [YNZpYH13].
delay [BCY12, Liu13, Mah11, RMT11, WZ13b]. delays [PKR12, Sha14a]. deleting [LSR11].
delta [CW11]. delta-monotone [CW11].
denumerable [MA10b]. dependence [Hi11b2, Lu11, PS12, Wa11b]. dependent [jAS13, BRA11, DT10, GKS+10, ZHJF13].
Description [MMP13a, RRKK12, COYd10, LM10b, Pol12]. descriptor [BV13a, HRT10, Jun14, Köh14, SBM11].
Design [BO12, Jim10, LLMZ12, Mah11]. designs [FMR12, Kla10, LHG10, Mit11b, NP10].
Detecting [Hen10, NV10]. Determinant [FMM13, MH13b, TT10, TW10b, AAFG12, CMS12a, CM12a, CH11, DHS12, DDC13, FMR12, KKL10, Vsc12]. Determinantal [CM12b, CN12c, Ens10, GMT13, Abe14, BT11c, CEY14, CN11b, Dru13, GS10c, KLS12, Lin13, LSR11, NT12a, Qua10, Qua12, VS11, Wan14a, LPK14].
Determinants [GK10, SR13a, TT12, Bün14, CY11, CHZ13, DU14, EWY12, Kni14, Mat14b, RBP12, Sbu10, Sch10, SSZ13]. determination [MR14b, PR13b]. determine [DV14, RR11].
determined [ABEV10, BT14b, BG14b, BZI2b, BZW14, Gha13, HH13, JZ14, KKL13a, KKL13b, LSC14, Sto11, WFM11, WLLX11, WLG11, WS12, WLG12, WLM13, WY14a].
determining [DGH+10, XY11]. deterministic [NNW14]. Deveci [Hi11c4].
Diagonal [PM10, BOZ11a, BOZ11b, BC12b, BC14b, BV13b, CFJS13, Drn13b, EM12, Fri11, HZ12a, LS13c, Mol12, Pry10, Reh10, Reh11, Rub13]. Diagonalizability [KKLY14]. diagonalizable [BFK11, KB12, Lány10a, RdSP11].
Diagonalization [R11, DFR13, Fut12, GB13]. diagonally [CHLS12, Far11b, FLH12, HZ10, L10b, LHZ11, L21]. Diagonals [Lee13a, WW13a, CD13, Dok12, Sen10, PRW11, YT13b]. diameter [CLL12, CvDKL10, H12, HWG13, KSH12, LLS12, LL14c, WKV10, WL10b].
Dieudonné [clCdlRMP14, RAAGAVS11]. difference [Baj14, BM12b, BAD09, DLLV11, FLS10, LS14, MN12b, Pit11, SS11d, TX12, VS14b, Vul12, Zuo10]. differences [HKK+12, RW10, ZZCW13]. different [BBM14, HRT13, Koz14b, LRT13, Tra13]. Differential [Lan10b, BM12b, BCF12,
Lom11, NT11a, PLS14, Rue13, Tre11].

diffusion [KRS13]. digraph [ABS10, CK14, DK13d, GR10, HL10c, Kim10, KP12, KSH12, MS14b, MSvdD14].
digraphs [BB11a, BM14b, Bru10, BS13b, CGR14, DL13, GX12a, GL12c, HY14, Kal13b, Kim13b, LH10, LS11b, LS12b, LY13, Moh10, Rad10, Sch11, TC13, YW11].
dilation [Dum13a, GWW14a]. dilations [ADW13].
dimensional [BCS13a, BCF12, Cau11, dHLMS13, KK14, Lop11a, MMS12, Mar10].
dimensionality [Cha10].
dimensionality [CEM14, FK13, HMR12, Ry12b, AW10, BJRS11, BJ13, Cas13, Cha12, CM10n, Czo10, CN10d, CN11e, FV13b, HDPT12, HRT10, Hii12b, Jun14, LTX14, NRS12, OM10, RS14a, Sad12, VS14b, Wei13a].
displacement [YZ10].
dissimilarity [WNM13].
dissipative [ADW13, DP12b, GO13, Lin13]. Distance [AH14, BN11, Fil10a, NOL13, Ps12, AH13a, Ban13a, BS11a, BN12, BN13, BYZZ14, Cer10, CBB13, CLS13, DvDF11, DV14, DS14, Est12a, FGG10, Fio12, FS11, GH11, Gro14, HKP13, HRW99, HLW14, LH10a, Hua10, LH11b, JM12a, JZ14, KS12b, KY11, KPY11, KT10, KT12, KM13b, Lee13b, LwW14, LP12, Lim10, LC10, LHWS13, LZG14, LZ14, MAS12, NP12, NP14, NM14, SS10b, ST12, WZ13c, XZ13b, XZD14, Yu13, Zha12a, Zha14a, vDF14]. distance-biregular [Fio12].
distance-regular [Ban13a, Cer10, DvDF11, FGG10, Fio12, KY11, KPY11, Lee13b, LwW14, vDF14].
distances [BT14b, HN14, JS12]. distinct [BB13a, CGMJ14, CHLS12, FLH12, HTW13, KS13b, NS13].
distributed [Cart13].
distributions [Cha14, DGJ10, MW10, OM14, Sku13].
distributive [HW14a]. Dittert [CW12a].
divergence [CM12a]. divided [TX12].
Divisibility [TL13a, MM10a]. division [Bot14, KLZ14b, Liu14a, Mar10]. divisor [Bot14, TL13a, WMZ14]. divisors [CS10a, Ens10, FH10b, SDNS13].
do [Pro10, RR11, XG13]. Dodgson [Abe14].
does [BMSW11, LY11a, dSP12d, Sta12, WBHM13].
domain [Pol12]. domains [BCS10, BC12b, BC12c, Ens10, Hua12a, IW13, SZ14].
dominance [Mol12].
Dominant [Fie11a, BGV12, Far11b, HZ10, LH10b, LHZH11, LHLZ12].
dominated [Sei14]. dominating [CT11b]. domination [AHS10, Har14, LL14b, XF11, Zhu12a].
Double [OT12, AdFST11, BC14a, FG13a, God12, JL12, KSM12, Lee13b, Mol12, PY10, WJ12, Zhu11b]. double-integrator [Zhu11b].
doubling [WCKL13]. Doubly [GS10a, AT14a, BAD09, DSH12, Fan10b, GS10b, GKR13, HP04, JP11, JLIW11, JPS13, LXL14, LZ14, Mou12, MAM13, NS12c, PSW11, Sar14, Sha13a, Sha14b, XLG13].
doubly-infinite [Sha14b].
doubly-stochastic [DHS12]. Dragos [GRS+10, GRS+11].

Dragos [GRS+10, GRS+11].

Drazin [BZ13, CGMS10a, CGMS10b, CI13, DW11, DMS10, DMS13, HRT13, KCID12, MD10, Mos13, PH12, SH13, WC12, Wli13, XWS12, XSZ13, ZW12b, ZBW12, ZCC12].

Dual [CT14b, Wor13, CD10, DMMY10, GMH14b, HM14a, KAAK11, KKL13c, LH11a, LWGM10, LWGM12, LH10c, MGLW11, MSS14, RDD14, Tif11, BDK11].

Duality [BHMR12, MRS12, FP11, Pin11].

Ducci [HNZ12].

due [Seo14].

Dun [ACG14].

Dunkl [ST10a].

dyadic [MZ12c].

Dynamic [Wil11].

dynamical [DZ12a, FGQ11, NP13a, VB10].

dynamics [JDY13, MSvdD14, Zhu11b].

Dyson [Yan10a].

e-ISBN [Tam12, Zha12a].

economics [TP13].
ed [Tam12].

Edge [CW12b, LS13b, LTL13, LHL14, BYZZ14, CL14a, Cio10a, Cio10b, EHH+12, LLI13, LHGL14, SS12a, SSGL10, Sto11, TF10, WAH13].

dynamical [LLT13, Cio10a, Cio10b].

dynamic [CW12b, LS13b, LHL14, LHGL14].

dynamics [LLT13, Cio10a, Cio10b].

Editor [Ano11z, Bru11, Bru13, Bru14].

Editor-in-Chief [Bru13, Bru14, Bru11].

Editorial [Ano13a, Ano13b, Ano13c, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h].

Editors [Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano10t, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano11t, Ano11u, Ano11v, Ano11w, Ano11x, Ano11y, Ano11z, Ano12a, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano12t, Ano12u, Ano12v, Ano12w, Ano12x, Ano12y, Ano12z, Ano12-27, Ano12-28, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x].

Edmonds [KW13].
effect [Mit11b, ZXD14].

Effective [ESV+11].
effects [Dug11].

Efficient [BHAP12, CFP13].

Ehrenpreis' [Lom13].

Ehrlich [BN13, GN13].

eigendata [GP12].

Eigenfunctions [WAH13].
eigenparameter [AS13].
eigenparameter-dependent [jAS13].
eigenproblem [GPT14].
eigenproblems [AA11, GHT11, MSS12, WZ14b].
eigenspaces [Ada14, GTV12].
eigenstructure [LDSP11].

Eigenvalue [FZ13, HKK+12, JTT13, MMA11, MMRR11, Row14a, YZ12a, Zha14b, AAK11, AKM14, AHL11, BCY12, BV11, BM14a, BDFdP11, BFDp12, Bel14, Bey12, BBE+10, BN13, Bds10, CW10, CQYV13, Das10b, Das11, DS11, Duk12, Duk15, Elo11, FF12, FZW11, Fan10b, FHL+11, Gar13, GP12, GSY14, GM14, HHL10, HRW99, HMP12, HP04, JM12a, Jar12, JDY13, Kall13b, KP14a, KMS11, Kol13, KZ11, KPY11, LaG12, LXL+14, LCwCL11, LY11a, LW12b, LQY13, LL14a, LL10d, LH111, LLI13, LJY14, MD13, Mow12, MAM+13, MP10, MP14a, Nak10, NS12a, NM14, NP13b, NY14, OS14, yPjXL11, PAS11a, PAS11b, Row11, SVP11, SS14, SCSS10, SS11e, Sta12, TF10, TG13, WF10, WFD12, WZ13b, Wei13b, Wei13a, WJ12, XD12, XZ13c, XLG+13, XE11, YZ11, Yu13, YWX13, Zhu12a, dLOdAN11, dLN13].

Eigenvalues [Alo14, CMRR13, Cio10a, Cio10b, JS13a, LLMZ12, LWY10, MR12, Moh10, MAS12, RW12, AFHP14, AGM14, AAT12a, AOTr13, BFDp11, BZZ14a, BK12, Bwn14, CSZ10, CS13a, CPZ13, CFJKS13, CFK+10b, CGW14, CH14, CGMJ14, CHLS12, CJ14, CW12b, DXL13, DLS14, DP12a, Dok12, Yll10b, Yll10c, Yll10d, Yll10e, Yll10f, dlOdAN11, dLN13].
Dom13, DZ12c, DGU14, FLH12, FHRT11, GKZ11, HMT10, HO11, Har14, HS14a, HS14b, HQS13, JPS13, KS13b, KY11, KT12, Kus13, LSC10, lLyLwqW10, LntgW12, LS13b, LGS13, LzG14, LZ14, Lip10, LHL14, LHGL14, MVP10, MV12, NS13, NR10, Ogu13, dSP14, Fsa12, QSW14, Qui11, RR11, Roj11, Row10, SS10b, SYH14, Sra13, Ste11, Th10, Wal14, WB11, WBWH13, Xc13, Xz13a, YT13b, YY14a, ZLW12, ZL12, ZC14, ZCWZ13, ZSWB14, Zhu10b, Zhu11a, Zj10, vDo11, JT11a, RJ11.

Eigenvector [GK14b, GLS13a, MM12, RW10].

Eigenvectors [BBGM12, Bun14, BM13d, SLS13, Sri13, XZ13a, FK13].

Eight [NP10].

Element [Drn13b, Ney11].

Element-by-element [Ney11].

Elementary [BJ10b, BJ10c, CP12, CS10a, CS10b, CDDY10, FH10b, Kec13, Kuz10, Per13, Rud12, Ruk14, SZ14, SDNS13, Yam13].

Elements [Cas10, BR11, BPC14, CGMS10b, Che14a, CK13c, DDGH13, LLI1b, LHL12, Lim10, MS11b, WLG11, WLG12, WZ13a, Zhu11, Cas10].

Eleven [BSU14].

Elimination [VS14a, HZ14, Ji12b].

Elliptic [CEM14, Dkot12, KK12, KK13, SS11a].

Elliptical [ATS12].

Embedded [Mit11b].

Embedding [HH12a, Wag11].

Embeddings [Pani12b, RV13].

Emphasis [KN10].

Enclosure [Miy13, Miy14].

Enclosures [FHS14b].

Encountered [RL13a].

Encyclopedia [Grü12].

Endomorphism [PY14, ABK14].

Endomorphisms [DGZ13, HHLS14, Mol13, OZ10, Rom14, SR13a].

Energies [LS12a, XF11, Zhu12b, Zhu12c].

Energy [GRM10, KAMS11, LW12a, ACG11, ABS10, AW11, CGTR14, CFX10a, CLL13a, CLL13b, CL13a, CRR14, DXG12, DG14, DG14, DlL11, FHRT14, GKZ11, Gx12a, GH14, GS11b, GMR14, GFB14, Hjl10, HLS11, HjLS11, Il10a, LLS10, LLS11, Rad10, RGC13, RJ10, RJ11, Roj11, RL13b, SS11b, SSGL10, SW13, SRdAG10, Tia11a, TC13, VDVJT13, WL12, WZY14, YM12, Zz13, Zha14a, ZK14].

Eneström [RL13a].

Enforcement [BV13a].

Engel [Bie13].

Ensembles [DGGJ13].

Entangled [Fid10].

Entries [BG13, BC14, CFJ13, CDDY10, FFJ14, NT11b, RR14, Shp10].

Entropies [Ben14b, BP13, EdlPH14, Iik13].

Entropy [CFPP13, Ch11, DgZ13, Dlls10, EdlP14, Kim13d, MS10c, PP11b].

Entropy-preserving [PP11b].

Enumerating [IJ12].

Enumeration [AM14, Car13, SS13c, GL10b].

EP [BR11, TW11a].

Equal [FFJ14, HL11c, HTW13].

Equalities [Tia10, pop12].

Equality [Ber13a, CPH11, JM14].

Equation [Bou10a, Bou11, CGGS13, DD11a, DDG13, Fuh10a, Fur10b, Gs13a, Gk11, HN10, Hwa12, Kaw13, LwCJL11, Lim11b, MR10b, MR14c, Per14, SK14, ZLD11].

Equations [Aoi12a, PQ10, AiS13, Ara12, Ag10, Baj14, BK11a, Ble13, BM12b, Bj13, Car13, C11e, DH10a, DH12a, DKS13b, DLDV11, Dun13a, Fmmw12, Fgr13, FH12c, GMH14b, GL10c, Guo13, Hla13, IW13, Jbi10, J12a, Jim10, JK13, KL13a, Kyr13, LV11, LV12, LLW14, LS14, LTX14, Miy13, MS13, Mys12, PQ12, PLS14, Pit11, Pol13, RY12b, Roh11, Sad12, SS11d, Tre11, VS14b, WW10, WD10, WCKL13, XX14, XSZ13, Zha12d].

Equiangular [DS10, Sin10b, Bod13, FMT12, HS12a, Sz13].

Equivalents [JT11b].

Equipped [Dor10].

Equitable [Ter13].

Equivalence [Sze14a, thr13, GPT12, GTW13, LV12, dSP10a, DDM14, Tim14].

Equivalences [GHS13].

Equivalent [Hu10, CHLS12, FLH12, LMMZ12, LMT10, OM12, Van10, ZLL12].

Erasure [FM12].

Erasure-robust [FM12].

Erasures [HS12a, LH11a, LHH13, LH10c].

Erdos [OLW14].

Ergodic [Fid10, Puh11].

Faber [CKS10]. Faces [CM10b, PSW11]. factor [LNN14, LFA13, Sh12c, YZ12b]. Factored [Cha13a]. Factoring [DT11].

Factorization [CW11, KM11, Lak10b, Bot10b, BH13a, CRU13, CRU14, Dur12, For14, GS12d, HLZP13, Hua13a, Hua13b, LYS13, MR11, SPS12, VW14].

Factorizations [BBG14, KKL14, Lim12, HL11c, Hua12b, KG12b, LW13b].

Factorizing [Sow13]. factors [Jar12, Koz14b, LWY10, Sbu10, SC13]. Facts [Ber09, Sla10]. faithful [LW12d].

Feedback

Jun14, SSS13, BO12, CC14, Liu13]. Ferrers
[AdF11]. few [AJRT14, BG12b, FMNW14, Kla10, Mol11, dSP14]. Fibonacci
[CLX13, DGMS14, LaG13]. fidelity
[Kim13d]. Fiedler
[BOZ11b, Gru12, Ano13y, BHMO13, BC14, BF14c, DDM12, Mac13, NdM13, Nik13, Ser13, Stu13, DPF13, DDP14]. field
[AKM13, AW13c, Biel13, Bot10b, Bot12, CK13c, CJK +13, EJLS11, HK13, dHLMS13, HCY10a, LHP10, Ma11, MNP13a, dSP10a, dSP10c, dSP10d, dSP12c, Qui11, Rad13, SS10d, Wu10b, de 13]. fields
[AG12, BB13a, BBC +14, BC13, FL12, GH13a, GH13b, HHS14, KK14, Kra13, KS11b, Lds13, LT13, MZ12c, MSP13, PP13a, Per13, RS14b, SV13]. field
[CT14a, CGO10, CLOK13, LMO16, Wu13b, CCGVO13, CCGO14]. fillings
[AWS10]. filter
[BOZ10, Jim10, LLMZ12, Mah11, MZ12c]. Filters
[GLP +13]. Filtrations
[Stu12]. finding
[CS13b, Ern13]. Finding
[AS12b, BDD13, PQZC11]. Finite
[Ter13, AiS13, AG12, Ada14, jASZ12, BB13a, Bar10a, Bar13a, BS11c, BS13a, BPC14, CK13e, CKL +13, DHLX12, Dai13, DKM +14, Dub14, DDK14, FL12, FG13c, GH13a, GH13b, GW14a, GW14b, GJ11, HW14a, HM14a, HS12b, HK13, HN10, HHS14, KKS12, LHP10, Lds11, Lds13, LX13, MB13, MSP13, Moj14, NS11a, Pol12, PRW11, Rom14, Row14c, Row14d, SR13a, Sev10, Sev13, Sha14b, Shi12a, Sim10, Sko11, SQ14, SS11e, Ter14, VW10a, VJ14, Vull12, Wój14a, Wol12, Xu14]. finite-difference
[Vu12]. Finite-dimensional
[Ter13, BS11c, BS13a, Dub14, HN10, Moj14, Sko11, Ter14, Wój14a]. finite-step
[DHLX12]. finitely
[Bar12a, Ma11, TL13a, Yan10b]. finitely-generated
[Bar12a]. Finiteness
[CGSCZ10, Dai13, Mor10]. Finsler
[Vla12, Bal12a, Bal12b, TNP12]. First
[DD10a, LJY14, LZ11b, AM14, BM10, Bos11, JMS11, NS11b, Zhu12c]. first-order
[BM10]. Fischer
[Dru13, Lin13]. Fisher
[KS10, KS12b, KM14]. Fissioned
[MM10c, Moh13]. five
[BOZ11a, BOZ11b, NS12a, Ste11, XX14]. five-diagonal
[BOZ11a, BOZ11b]. five-point
[XX14]. Fixed
[Per14]. Fixing
[Lip10]. flag
[Ber13a, DFM+14]. Flanders
[DLNN14]. flat
[CSAC10, CSAC11]. flats
[WLG11]. Flies
[LZ11b]. flipping
[MSP13]. flow
[BOZ10, LL10d]. flows
[AZ13, AJ13]. forbidden
[LS13d, Yua14, Yua15]. forcing
[BBF +10, CL14a, EHH +12, EEH +13, GB14, HCY10b, Mey12, Row12a]. form
[BBdH13, BFdP12, BIT12, BDK11, CRU14, CT11a, FDS13, FP11, FHS11, GSI2b, GK11, Mar13b, NS13, Nom14, Rad13, Reh10, TX12]. formal
[TZ13a]. format
[BGK13]. formats
[KRS13]. forms
[AW13a, AIS14, BDK11, CGMS10a, CN13a, DFS12, DS10, EN11, FV13a, GHI13, GMMP12, HS12, Hu10, JR14, KKLY14, KLZ14a, KB12, MM13, MPS10, NT11a, Pop10, Reh11, Sim10, Sze14a, TW14, Wil14]. formula
[AS12d, Dai12, Gro14, KLS12, Kon13, Koz14a, KR10, Ma10a, MS11a, OM14, RW10, SR13c, TX12]. Formulae
[BT14a]. Formulas
[Ber09, Tia12, BZ13, DK13e, Ern13, GS10c, GMV11, GLW13, GL14, Kyr13, MGLW11, MAGR13, Ruc13, Sla10]. four
[Ben14a, BW13b, Mar10, RRM11, Tia12]. four-term
[Tia12]. Fourier
[Ban13b, FK13, Sav12, Xu14]. Fourth
[HSZ12, jASZ12, DSH10, Lop11b]. fraction
[Dur12, KY13]. fraction-free
[Dur12]. Fractional
[Bec13, LdS13, Mat13a, Mat14a, GMH14a].
generate [AKM13, Cha13a, Kau12]. generated [Bar12a, BS11c, BS13a, GS10d, KM12, Ma11, Rez13, Yan10b]. Generating [CK13b, CN10b, Lop11a]. Generation [BFBD13, JSS13, RRZ13, Wik11, Wik12].

generators [pWIW14, WY14b]. Generic [Bat14, KBS13, Fri12, HS10, MMRR11, MMRR12]. genetic [Pan11]. genetics [LLR14]. gentle [BS10]. Geodesic [Fuj11, HN14]. Geometric [Bat13a, CvDKP13, ISYY11, AGV12, BG12a, BCS13b, DMMY10, GG12, Han14a, JLLY10, KLL11, Kim13d, LLY11, Lim11a, Lim12, Seo13, Wal14, Yam13, BT11c, DD10c].

generators [pWlW14, WY14b]. Generic [Bat14, KBS13, Fri12, HS10, MMRR11, MMRR12]. genetic [Pan11]. genetics [LLR14]. gentle [BS10]. Geodesic [Fuj11, HN14]. Geometric [Bat13a, CvDKP13, ISYY11, AGV12, BG12a, BCS13b, DMMY10, GG12, Han14a, JLLY10, KLL11, Kim13d, LLY11, Lim11a, Lim12, Seo13, Wal14, Yam13, BT11c, DD10c].

gradient [JRMFSS12, LL10d, OM10].

grading [Mar14a]. Gradings [Cir13, MFG14, Per13]. graft [XZD14].

grafting [SSGL10]. Gram [SST14, Wil13]. Gramian [HG11a]. grand [FNY13]. Graph [CS11, ACM+12, AAJ12, AV12, Alt13, AH10, AH13a, AHLvdH13, AOTR13, BB13c, Bap13b, BBF+12, Baa12, BOZ10, BRZ11, Boz13, BZZ14a, BW12, CMRR13, CAV13, Cer10, CTW11, CW10, CS13b, CLS13, CL13a, DGH+10, Dea11, DC13, EH+12, EFN09, EFN10, ES+11, FTDA10, FH13, FL12, GX12b, GX12c, GCY14, HHMS10, HS14a, HS14b, HS10, HCY10b, HCY10a, IMA10, KR12, Kir10, Kir14, KPY11, Kuz10, La13, LRST10, LW12, LFS12, LW12e, nLW13, MYL13, MSM10, Mit11a, MS13c, NS13, Nik13, Odl1AK10, PRT13, RHT11, RL12, RJ11, Roj11, Row12a, Row11, SS12a, SS13a, SS14, SM13, SrdAG10, Suz13, TW10a, TF10, Ter11, WF10, WL12, WA1H13, WMZ14, Yu13, ZC14, ZHu10b, ZHu12a, Zim13]. graph-theoretic [BB13c].

Graphical [COvdD10]. Graph [BMSS11, BL12, BCF12, CT10, DV14, Fei11b, Gru12, HT13, HLS14, LS12, OS14, WK10, WLX11, WX14, vDO11, AO14, AFHP14, AFN12, AJRT14, AK12, AKZ13, AK14, AS13c, AdFST11, AdFM11, AW11, ABS14, AH14, AT14b, AJ13, BB13a, Ban13a, BKP12, BG14a, BFK11, BHvdH11, BHMO13, BP10, Baa12, BB11a, BMSS10, Bel14, Ben14b, BFF+11, BNP11, BNP13, BZu12a, BYZ14, CvDP13, CFG+14, CR10c, CFF10a, CCF+12, CM11a, CT11b, CHY11, CHY12, CFH14, CK+10b, CLL13a, CLL13b, CGW14, CH14, CGMJ14, CL11a, CLL12, CG11, CKST11, Cio10a, CvDKL10, Cio10b, CW12b, CV13, CSAC10, CSAC11, CTG13, CS10b, DFG10, DvDF11, Ds10a, Das10b, Das11, Das13, DKL13, DG14, DLS14, DC14, DO11a, DO11b, DLS10, DL11, DZ2b, DSY12, DZ12c, DP12b, DJ14, Est12a, EdPH14, FF12, FWW13, FS14a, FA11, FY10, FN10].

graphs [FGG10, Fio12, GL10a, GZH14, GLS10, GL12a, GZK12, GB11, GFY10, GHY+13, GM12, GLS13a, GW11, GZ13, Gu13, Guo10b, GSL11, GLS12, GLS13b, GW13b, GM14, GRM+10, GS11b, HMTR10, HL10a, HL12, HWW14, HW14c, Hua10,
null
interpolating [BPDC14]. Interpolation [AL14, HW14, AL13b, AL12, BO11, FKR11a, Fuh10b, KOR14, PT14, Sav14, SV13]. interpolatory [AL13b, AIL12, BO11, FKR11a, Fuh10b, KOR14, PT14, Sav14, SV13]. interpretation [GG12]. intersection [MGLW11, SB12]. intertwining [Che13].

Interpolation [AL14, HWH14, AL13b, AL12, BO11, FKR11a, Fuh10b, KOR14, PT14, Sav14, SV13]. interpolatory [AL13b, AIL12, BO11, FKR11a, Fuh10b, KOR14, PT14, Sav14, SV13]. intersection [MGLW11, SB12]. intertwining [Che13].

Interval [GPT14, Mys12, BHMR12, Dah11, Hla13, KS12a, LDL13, LLW14, LL13d, MMP13b, MP13b, MS14c, MP14b, NS11c, PM10, PK12, Roh11, SH10]. Intervals [AG13, FZ13]. Introduction [Est12b]. Invariance [dSP10a, Bai14, dSC14, BK11b, BLLM13, Bou13, CH13, Cir14, CLHQ14, DXG12, DGC14, Dom10, DZ12a, FGS11, FCL10, FJ10b, Fur12, GK11, GV11, HG11a, HL11d, IJ12, Jun12, MZ14, MA12, Pro10, PP13b, RSS10, Sku13, WL12, Wöh14b, ZH12]. Invariants [AW10, Bap10, DLR10, DJ14, FV13a, Fü10a, Göm10, GS10b, Lop11a].

Inverse [BS14, JSL10]. Invariant [AF13, JSL10, NM14, SV11, BM14a, BdF11, BS14, BT13, BEM12, Boz13, BZ13, BZZ+4b, xCW11, BS14, CGSI10a, CGSI10b, CGVR13c, CI13, DS11, Den11, DW11, DMS10, DMS13, Fan10b, FHSI4b, GP12, HRW99, HLS10, HHI1a, HP04, JM12a, Ji12b, JYD13, JS13b, KS12a, KW12, LT12a, XL+14, LMY11, LJY13, LSH13, MH13b, MZ10, MD10, Mos13, Mou12, MAM+13, NS12a, NS11b, Nor11, PH12, Pat12b, yP12X11, PRT13, RDD14, SS14, SH13, Wei13b, Wei13a, WJT13, WJ12, Wü13, XX14, XLG+13, XSS14, Yul14, YZ11, YWX13, ZW12b, Zha12c, ZHI1b, ZC12, vdH13].

J [Rod12a]. Jackknife [HYF14]. Jacobi [BP12, BdP11, BFD11, BEM12, BF14d, DD11b, HSS10, HSS14, KZ11, SB12, SS11c, SS13f, Wei13b, WJ12, XU12].
Jacobian [BVV12, Gna12, Sun13, Yan11].
Jacobians [GS12a].
Jacobson [Wu10b, ZCC12].
James [AR12, CP11].
J* [Ili10b].
JB*-triples [Ili10b].
Jensen [BH14b, Kin14, KLP12, KP14b, MPP11].
Johnson [Gar12, GZH14].
join [BHvdH11, BYZZ14, CMRR13, MH13b].
joined [MR12].
Joint [CN10b, Dmu13a, GZ13, CN13c, DHLX12, GB13, GMV11, Koz10, Koz14a, LV11, LP12, LX13, MR14b, OM13, OM14, Pep12, Sed11].
Jordan [DW14, BS12b, BH10, BM13c, BF14d, CT11a, CM14, CMZ10, DW14, FMM13, GS10c, GTR12, GC12, HW11, HL10b, JV10, Ji12b, JH10, LW12d, MMM10, Mar13b, MW10, Mol12, Mol13, NSC13, SM10b, Tao11, Tao13, TKLX14, WW13b, WX10b, ZZ11, ZH11a, ZZ10, ZZ12].
Jörj [Gre13].
Jose [LPQdS10, FdC12].
jumping [DKOT12].
Kaczmarz [BT14].
Kadanoff [BBGM12].
Kadison [BR10, DH12b, WY14b, YJ12].
Kakeya [RL13a].
Kamvar [Gle11].
Kapranov [Shi12b].
Karaduman [Hi14c].
Karcher [BI13, LY13].
Kato [BL10a, Tao13, TLKX14, WW13b, WX10b, ZZ11, ZH11a, ZZ10, ZZ12].
Kato [Gre13].
Keller [YT13a].
Kellogg [Joh12].
kernel [BKV14, BCD10, CD12c, Dur12, OM10, Oto12, SST14, SWA12, Wor14].
Kernels [HG11a, Che13, Hum14, Kec13, Lon11, Rud12].
Kerov [GH12, Slo12a].
Khinchin [FT10].
kind [Xu12].
Kippenhahn [GW13a].
Kirchhoff [BCE+10, DXG12, DC13].
Kittaneh [Dru12a].
KKR [BTYZ12].
Klein [GS12c].
Kleiner [SY12].
Kleinn [KK14, Yan10b].
Ko [OLW14].
Kohn [YM12].
Krawtchouk [NT12b, Wor13].
Krein [AGPP12, PT13a].
Kronecker [BJRS11, CSV14, Dod13, HFS13, HTS14, HF12, OZ10, Tad12].
Kruskal [BH13b, Der13, Rho10].
Krylov [BFS11, CK13d, DZ12a, JR11, Jbi10, MSS12, RRZ13, Sad12, SE13, Sto12, Xu11, Gre13].
Krylov-type [SE13].
Ky [Lin11, GMRS14, SRdAG10].
labeled [WNN13].
Lagrange [Ma10a, TX12].
Laguere [Lau14].
Lanczos [BFS11, PPZ14].
Laplace [MW10, TW10b].
Laplace [LT11a, AFHP14, ACG+11, ACM+12, AKM14, AOTR13, AT14b, BS11a, Bap13a, BMSW11, Bel14, BL10b, BRZ11, Boz13, BZ12a, CGTR14, CKF10a, CT10, CW10, CJ12, CT12, CTG13, CS10b, Das10b, Das11, DXG12, DLX13, DGC14, DLS14, DL10, DZ12c, Est12b, FF12, FTDA10, FY10, FHR11, FHR14, GKI4b, GLS13a, GLS12, GLS13b, GW13b, GCY14, HMTR10, HL10a, Har14, HL11a, HL12, HJZ13, HT10a, HY14, HQS13, LSC10, LS10, LSC11, LWZ11, LW12b, LZ12b, LTS13, LGS13, LY11b, LL10c, LL11c, LW12c, LL13, LL14b, LL14c, LSD14, MK12, NS13, NP14, NLL13, QSW14, QY12, RJ10, RW10, SW13, Sri13, Sus13, TW10a, wTM11, wT1W13, Ter11, VDVJT13, WB11, WL12, WF12, WBHM13, WAH13, XZ13b, XM11, YY14a, YFW10, YL10, YWS11a, YWS11b, ZZ13, ZHG13, Zho10, ZSWB14, Zhu10a, Zhu10b, dLOdAN11, dLN13, vDO11, vDF14].
Laplacian-eigenvector [RW10].
Laplacian-energy-like [DXG12, GC14, WL12].
Laplacianness [Hu10].
Laplacians [AH13a, Bau12, BFF+11].
Large [AM13c, BGP13, BFdP12, GM14, LR12, LSV12, dSP12a, AW11, BMO13, FHR14, GG13, Jbi10, KKM13, LH10a, MAS12, dSP11a, dSP11b, dSP12b, Sad12, Wan11b, WCKL13, WZ14b, ZL11].
Large-scale [LR12, KKM13, Sad12, WCKL13].
largest [AHL11, ABK14, CFK+10b, CW10, CQYY13, Das10b, Das11, Kol13, KY11, KPY11, LY11a, LGS13, LGSC14, LW11, Nik11, PJ13, QSW14, Sta12, WZY14,
Lattice [NN13, HW14a, IPFD13, Maz10, PY10, Suz13].

Lattice-like [NN13].

Lattices [CMZ10, CSC13, Kub13].

Laurent [KB14a, Kla10b].

law [DD11c, MTS11].

laws [CIH11, SR13a].

Lawson [Geo14].

layout [LRST10].

LB [Nom14].

LCM [TL13a].

LCMs [BDD13].

LDU [BH12, Kim11b].

leading [JN13, KS11a].

learning [MLC+10, YZ12a].

Least [LB14, MR10a, Bel14, Byd10, DS13, Dmm13b, FF12, FZ11, GJTP13, GCY14, HMR12, Ji12a, Kol13, Kyr13, Lj11, LW12b, LWY14, LZ11a, LZZ14, Lxz12, MM10c, MR13, MR14a, MS11b, My14, PO11, dPS12d, PAS11a, PAS11b, PPKR12, TF10, WF10, WF12, WWH13, XZ13c, XZ13a, Yu13, Zhu12a, LKN13, SS10c].

least-squares [GJTP13, HMR12, Ji12a, LK12, LKN13, SS10c].

least-squares [GJTP13, HMR12, Ji12a, LXK12, LKN13, SS10c].

least-squares [GJTP13, HMR12, Ji12a, LXK12, LKN13, SS10c].

Least [LB14, MR10a, Bel14, Byd10, DS13, Dmm13b, FF12, FZ11, GJTP13, GCY14, HMR12, Ji12a, Kol13, Kyr13, Lj11, LW12b, LWY14, LZ11a, LZZ14, Lxz12, MM10c, MR13, MR14a, MS11b, My14, PO11, dPS12d, PAS11a, PAS11b, PPKR12, TF10, WF10, WF12, WWH13, XZ13c, XZ13a, Yu13, Zhu12a, LKN13, SS10c].

least-squares [GJTP13, HMR12, Ji12a, LK12, LKN13, SS10c].

Least [LB14, MR10a, Bel14, Byd10, DS13, Dmm13b, FF12, FZ11, GJTP13, GCY14, HMR12, Ji12a, Kol13, Kyr13, Lj11, LW12b, LWY14, LZ11a, LZZ14, Lxz12, MM10c, MR13, MR14a, MS11b, My14, PO11, dPS12d, PAS11a, PAS11b, PPKR12, TF10, WF10, WF12, WWH13, XZ13c, XZ13a, Yu13, Zhu12a, LKN13, SS10c].

least-squares [GJTP13, HMR12, Ji12a, LK12, LKN13, SS10c].

Left [CL12b, Raf14, MVPS10].

Left-looking [Raf14].

Left-symmetric [CL12b].

Lehman [Shi12a].

Leibniz [LMO16, AM13b, BCS13a, CGO10, CCG13, CCGO14, CI13, CILL12, CLOK13, CKLO13, KRH14, MD12a, MSD13, RRK12, TX12].

Leja [KOR14].

Lemmas [BL12, ZCC12].

Lemmata [Lim13b].

length [CCGO14, CK13b, CDM12, DF14, Nik10b, Rud12].

Lengths [CL11b].

Leonard [BM12a, GWH13, Hand11b, Han13b, Han14b, HW14G, HW14H, xW12, NT12b, Nom14, Wor13].

less [LZ14G, LHW11].

letter [AM14, HMS13].

letters [AM14].

level [Bli12, KO13, KW12].

Lives [MR12].

Levi [BdlC13].

Levine [Sat11].

Lewin [LYL13].

Lexicographical [WL10b].

Li [Lim11a, Dru12b].

Lie [AIS14, BD12a, BZWL13, BM12a, BDF11, BdlC13, BdlC14, Ben11, BE12, BCS13a, BM13b, BS12e, BV12, CT14a, CNT2, CdGS12, CLHQ14, DDF13a, DD10b, DW12b, GST13, Han11a, HT10b, JQ11, LL11b, LW12d, LCM13, LNT13, LJ10, MD12b, Mar14a, MSvW12, NT12b, Pop13b, QCH11, QH13, SH10, SM12, TTT12, WGL12, WW13c, Wan14b, Wu13b, XW12, YZ10, YZ12b].

Lie-orthogonal [Pop13b].

Lie-solvable [MSvW12].

Lieb [Aud13a, GK14c].

Liesen [Gre13].

like [CGMP14, DX12, DG14, DF14, GNE14, GTR12, Nat13, NN13, PT13b, WL12].

Limit [BHDW12, BMSW11, OM14].

Limited [EM12].

Limited-memory [EM12].

Limiting [PS12].

limits [SC12, V10b].

Line [CKAC14, RJ11, Rej11, ZSWB14, GKZ11, GW13b, GRM10, LW12a, LL10a, LFS12, MWZ13, MV12, Vj14, WS12, Wy14a, WF14].

Lineability [CGMP14, BG13].

Lineaire [Cas10].

Linear [Ano12a, AJ13, BEM12a, BD11, BBFD13, Bra10, Che14a, Che14b, CD12a, DS13, DS12b, DD10c, DW14, Duk15, EKSV18, Gem10, HS14a, HQ13, KSB12, KB14a, KKK13a, KPR14, LM10b, LT16, LPS13, Lu11, MR14a, MR14c, NT11a, PQ10, Rue13, SHZ10, SA14, Vla12, Wiki2, WZ14c, XW11, YW13, You15, Zho11, AS10, Ara12, AMJ14, ADW13, BB13a, BV12a, BEM12b, BLLX11, Bal10, BBCC13, BV11, BGP13, BM10, Ben10, BS12d, BLM13, BJRS11, Bou10b, CD10, Car13, CC14, Cas10, Ccc10, CM13, CPV10, CFHL14, CA10, CW11, CL11b, Cos14, CT14b, CMN10, Czo10, CN10d, CN11e, Dai11, Dai12, DLDV11, DX13, EY13, FFS11a, FGQ11, FSS1b, FGR13, FS14b, Fur11, FRS14, GZ14, GEP10, GEP13, GD11a, GrdS12, GMH14a, GMH14b, GK11, GHT11, GJTP13, GD11b].

Linear [Hla13, HM10, HG10, HG12, HN10, HZ11a, Hua11a, HZJ12, Irv12, JV10, JV11, Ji12a, Jmp13, Jun14, KH13, KSAM12, KRS13, KrtvS12, KrtvS14, Kts15, Kla10, KN13b, KN13c, KKM13, KB12, Lan13, Lii12, LW13a, LL10d, LL14, LT10a, LH11, LJ12, LS14, LMMR13a, LMMR13b, LM10b, LdlP11, LL13d, MMS12, Mah11, MD13,
MZ12a, MR11, MLC⁺10, MW14b, MO14, MSP13, MR10c, Mys12, NP13a, NRS12, OLW14, PQ12, dSP10b, dSP10c, dSP10e, dSP12b, dSP12d, Per11, PKR12, PPKR12, PTPL10, PE13, Pro10, RAY14, RdSP11, RS14a, Rš10, Roh11, RS12c, SSS13, SB12, SVP11, SW11, SS1id, SH13, SLS13, SS10e, TZ13b, TmYsH11, Tao13, Tra12, Tre11, TP13, Wal11b, WGL12, XDFL10, XX12, wXL14, wXZ19, YT13a, YW10, YJ12, ZW12b, dOFK13, dlP11, dSC14, BPRY11.

majorizations [Nie12]. make [DTL11].
manifold [YZ12a]. Manin [FP13].
manpower [DT10]. many
[DLNN14, Mat14a, MO14, TL13a]. map
[GK11, Ha13, HNZ2, Lin14a, dSP12d].
Maple [GS12b, Kla10]. mappings
[AA14, JSS13, Sko11]. mapping
[ABSV12, Cos11, GN14, HLW10b, HH11b, JG10, LP12, MS10c, WLG12, ZH11a, ABEV10, BS12g, Bou10b, BMS14a, CC12, Che14a, CFL13b, CLS10, DD10b, DHKQ13, DW12a, Fra12, Fra13, FH10b, Fur11, Gna12, GZ13, HKPR13, HQ13, fka11, JH10, KS14a, KSAM12, LT12h, LT16, LP10, LW12c, LW13a, LHL12, LT10a, LL10b, LT13, Liu14a, Liu14b, MR10c, Nie13, Pan12a, RO10, Sun13, Wan11a, WFM11, YT13a, YJ12, dLP11].
Marcus [LL12]. Marcus-Minc [LL12].
Marix [BW11]. market [Vas14]. Markov
[CK13b, Cas13, DT10, DGU14, Gom10, HB12, Hun10, Hun14, Kir10, Kir14, MA10b, Nemi13, PR10, PU11, Rhei10, Sku13, VV13, Vas14]. Markovian [Hun14, Koz14a].
Marshall [Zha12a]. Martingale [Dah12a].
Massey [KY13]. Masntronardi [Gem10].
matchgates [LMN13]. matching
[Beh13, GL12a, HL11a, KW13, LT11a, SS11c, Ste10, wTms12]. matchings
[GX12b, LSC10, TS12]. mathematical
[BELK12]. Mathematics
[Ber09, Gar12, Grü12, Lim13b, Rod12a, Sla10, FdC12, Bar10b]. Mathias [Lim11a].
matrice [BW12]. Matrices [Bari12b, Bra10, FJ11, Fie11b, Gem10, HMS13, KKL13a, KKL13b, LSTW13, Rei11a, SM13, AMP10, AIs13, AG12, AFLN12, AA14, AG13, AM13a, AAF12, AKM13, AGM14, AB12, AHAPP10, Ali12, ANP13, Alol14, ÁNPQ12, ÁAFG12, AdF11, ART13, ALRV12, Ang13, AT11, AT14a, AK11, Aud10a, Aud13c, BBG14, BT14a, BB13b, BT11a, BB13c, Ban13b, BS11a, BG14a, BP12, BKM+13, BB13d, BH12, BMW10, BSK12, BSKL13, BFdp10, BLdpn10, BFdp11, BdFdp11, BFdp12, BT13, Bdp13, BDH+12, BOZ10, BOZ11a, BANP12, BCEM10, BCEM12, Ben10, BM13a, Ben14a, BB10, BB14, BS12c, BP11, BGD13, BD13, Bie13, Bie14, BB+10, BI13, BH10, BBGM12, BYTZ12, BS14, BCS13b, BC12c, BC14b, Bot10a, Bot12, Bou13, BLL12, BLL13, BL14, BRZ13, Bre14, BRLS12, BHZ10, BK10, BD12h].
matries [BFH+12, BKMS13, BC14c, BBS12b, BLS14, BZ13, BK12, Buj13, Bün14, BAD09, BS13b, BW13b, CRS14, CRSS14, CHJ13, CD14, CRU10, CRU13, CRU14, CSV14, CH13, Car10a, CT11a, CN12a, CFP13, CR10b, CK13b, CAV13, CGM11, CGMS10a, CGRVC13, Cov10D, Cov11, CCF+12, CS10a, Cha14, Cha13a, CPR10, CTW11, CM12a, CLT1a, CMG14, CL10b, CG13, Che14b, CJ11, CK13d, CN13a, CN13b, Cho13, CN11d, CGSC10, CD13, Cir13, CM14, CNPP12, CD12a, Coh14, CDM12, CP10, Cos11, CFLW13, CL12c, Dah10, Dah11, Dai11, DHLX12, DoMP09, DL14, Dax10, DLNN14, DH10a, DMP11, DD11b, DK12b, DP12a, DHS12, DGM14, DFS12, DFS14, DS14, Dok12, DKOT12, DHKQ13, DO11a, DO11b, Dom10, Dom13, DA10, DT11, DfF13b, DfF14, DBZ14, DdC13, DGM10, DHS10, ER13, Ecl11, Evd10].
matrizes [Ens10, ES11, Est12b, EGR12, Fan10b, FM11a, FFM14, FG11, FFG+11, Far11b, FK13, FJ10a, FdC10, Fie10, FH10a, FM11b, Fie11a, FH12a, FH12b, FM13, FH13, Fie13, FHS14a, FH14, FMR12, FFK11, FOU14, FG1R13, Fra12, Fra13, FW14b, Fuj10, FJ10b, FJ14, Fut12, FHS11, GMS12, GEP10, GOSvD14, Gar13, Gau10, GTW13, Ghe14a, God12, Gol13, GS10b, GL12b, GGK+13, Gre12, GS10d, GS12d, GZ12, GR12, GKR13, Guo13, LY13, GS12f,
matrices

matrices

matrices

matrices

matrices

matrices

matrices

matrices

Matricial

Matrix
FMM13, Fis14, FHL+11, FP11, FG13b, FKR12, FH12c, FHS14b, Fuh10b, FLS10, FL10, FRlS14, GE13, GHMPV11, GPT12, GS13a, GW14a, GWW14a, GN13, Ger12, Gho13, GP13a, Grc10, GIP12, Gro14, GTV12, GS10d, GS12c, Guo10a, GKL11, GM11b, Guv12, HH12a, Han13, Hia13, HW14c, Hu10, Hwa11, IM11, IPFD13, JM14, Jbi10, Jit12b, Jim10, JN13, Jun12, KLI3a, Kak10, KOR14, KHK13, KSA11, Kaw12, KR12, Kha13, KLS12, Kim11a, Kim11b, KLI1, Kim13a, Kis15, KS10, KS10b, KM14, KS14b, KKR11, KZ11, KZl1a, KZl1b, KZ12, LAL11, LL12, LNN14, LTV12, LS11a, LZ12a, LW12c, LW13a, LY13, Lin10, LS13c, LH10b, LSR11, LMMZ12, LW13b, LX13, LNT13, LSI2d, Lop11b, LSI2f, LZ12b, LZ13a, LHL13, Ln11b, Mat13a, Mat14a, Mei13, Mei13b, MIS12, MR10b, MR10c, Mood, NR10, NM14, NS11b, NV10, O12, OT12, Pol13, PIM+10, PCC12, PPK13, Pat12a, Pat10b, dsp10b, Per13, PS12, Pin12, PRW11, Pop13a, Psia12, Rah13, Rei11b, Rim12, Rod11, Rod12b, Sah10, ST10b, SS11a, SMB11, SK14, SK13, Shi13, SA10, SC13, SR12, Sta14, Ste13, TD13, Tan11, TZ12b, TZ13a, Tym11, TTZ13, DMD14, Tia11b, Tia12, TGM11, TTL1, TTD13, Uhl13, VS13, WLI13, WW13b, WW13c, Wat13, Wei13b, WJT13, Wei10, WCK13, Wik11, Wik12, WZL12, WY14b, Will13, WX10a, XDI12, Xu11].

matrix [XX12, wXL14, wZX19, YnZpYH13, YZ12a, YZ13, Zha12d, ZDL1, ZXX10, dF10, vdw14, KY13, Tam12, Rod12a].

matrix-based [Dah12b, IPFD13].

matrix-convex [Dah12b, IPFD13].

matrix-monotone [Dah12b, IPFD13].

matrix-valued [KOR11, Tia12].

matroids [LM10a, TN14].

Matsaev [Dru11].

Max [EvdD10, FH14, Ser11, AGNS11, BM13d, Cc10, Fie11a, GPT14, GM11a, GM11b, GMS13, KSS12, Mer10, MP13a, Mys12, MP14b, Nit10, NS11c, Pep11, SW11, Ser13, WLL14].

Max-algebra [EvdD10].

Max-algebraic [Ser11].

max-linear [SW11].

max-min [GPT14].

max-plus [AGNS11, BM13d, Mers10, Mys12, MP14b].

max-weighted [SW11].

Maxima [Yu14, Yu15].

Maximal [BCFP12, Fan12, FMR12, LT10b, RRM11, Sev14, AAFG12, ADW13, BNP13, CT14a, CT10, CT11b, CVW10, CDM12, DF14, DdF13b, HLS11, HJLS11, LLS11, SSS11, SSS11, SBMT10, TW10a, WX14, DDI11].

maximality [HZ12].

Maximization [Tia11b].

Maximizing [YFW10, WKK10].

Maximum [CKL13, EdlP14, HS10, NY13, Sin10c, VDVJT13, BZ12b, CCGO14, Car11, CFPP13, CH11, CH14, CCL14, CL10b, DZX12, EHH12, GL12a, Ghe14b, LLS11, LQY13, LL11c, LHL13, SSS11, SW13].

maximum-volume [SS14].

maxitive [Pon11].

may [SC10].

MDP [ANP13].

MDS [CNPP12, La14].

MDS-convolutional [La14].

mean [AGK11, BP11, BG12a, Bis13, Gom10, JLLY10, KLL11, KIM13d, LLI13b, NS11b, WLL14, YAM13, BT11c].

Means [CM12a, Aud13b, AH13b, BCS13b, BH14b, DLV13, Fuj11, Han14a, HP12b, HIK+12, KSA12, KLL11, LLY11, LL12, Lim11a, Lim12, LY13, LP14, Nrk13, Pfl13, PEP14, Seo13, Seo14, Sk10].

measure [GN14, KKR11, Mak10, WNM13].

measured [KD12].

measurements [ALPV14, FMNW14, Jen13, KF14].

measures [DW10, KSI1b, Pon11, DGH+11].

median [GM14].

mediant [HNZ12].

meeting [Agn12-30].

Meini [Lim11a].

members [BRA11].

Memorial [BMS14b].

Memoriam [Tsa12, BDK+10, Lin11].

memory [EM12].

Mena [Kar13].

Mertens [Car10a].

mesh [GS12].

metabelian [DDF13a].

method [BCY12, BFS11, BVV12, Bey12, BN13].
Methods

[Gre13, HRW99, JM12a, BV12a, BGV12, Blo12, BFF+11, BJ13, CAV13, CQYY13, DS12b, DYW14, FS14b, GOSV12, GL10c, HSS10, Jar12, Jbi10, Ji12b, LB14, NRS12, Nik14, PT13b, RRZ13, SE13, SK14, SWA12, Wan11b, WJT13]. metric

[BT10, GB13, GO13, ISYY11, Lim13a, SB11, Wol12, WC11]. metrics

[HP12b, HKPR13, Kum11, LRST10, TNP12]. Metropolis

[Dim11]. Metzler

[VS10]. Metropolis

[Ano10u]. Michael

[DFS12, DFS14]. Mihaly

[Rod12a]. Miki

[Tsa12]. Milman

[AGPPF12]. min

[Cec10, GPT14, Nit10, NS11c]. Minc

[BL11]. Minimal

[AHAPP10, HLW10a, Hil14b, KS11a, LW12d, Lop11a, Zhu12b, ALRV12, BL10b, BJ11, Dod13, GLZ14, HJJ10, Lip10, WLGM11, ZK14]. minimality

[KrVs14]. Minimax

[HP12]. minimization

[Wil13, LNN14, LLB13, TmYsH11, Tia11b, Zha12d]. minimizations

[Fou14]. Minimizing

[O’D14, YM12, LLS12]. Minimum

[CH11, CJ12, GK14a, Hog10, MD13, MNZ10, PSW11, SK12, TG13, AAF+12, AHL+14, BBF+10, BBF+12, BKM+13, BMN+13a, BL12, BMS14a, DGH+10, Dea11, EHH+12, FCL10, FL12, Gar13, GHV+13, HHHMS10, HK13, HCY10b, HCY10a, JMS11, Ji12a, Kir14, Kyr13, LS10, MS13a, MGSW14, Mit11a, MNZ12, NS11a, SM13, SHS12, SvdH11, YL10, YW11, Zim13]. minimum-norm

[Ji12a]. Minisymposium

[Ano13y]. Miniversal

[DFS12, DFS14]. Minkowski

[BdFdP11, BH14b, Lán10a]. minor

[CN12a, TN14]. minors

[BS11a, Bap13a, BR14c, CN12a, CJR11, JN13, KN12, OTdV12, JMW11]. Minoux

[GS12f, Shi11]. Miroslav

[Grü12, Año13y, Nik13, Stu13]. Mirsky

[Dok12]. missing

[MS10a]. misspecification

[HYF14]. Mixed

[DD11c, FP13, Dk+14, GP12, GD11b, Güv12, Lan14, LWY14, LJY14, Nems13, Wei13b]. Mixed-type

[DD11c]. mixing

[Kir10, Puh11]. mixture

[CR10b]. MLE

[TZ12a]. mobility

[JP11]. Mock

[IT11]. mode

[ZHF13]. model

[BG12, Biö12, Böt13, DT10, GNE+14, GD11b, Güv12, HYF14, JDY13, Kd12, LwCJL11, LBLS12, PS12, SS11c, TP13, VV13, WX11]. modeling

[FGQ11]. modelled

[LH13]. Modelling

[BL11]. models

[ATS12, Ball12a, Ball12b, Bos11, CR10b, FH10c, LZ11b, PTPL10, SM11, SK14, TZ12a, Vla12, YKIS12]. modes

[DD10c]. modification

[LL14a]. modified

[DMS13, LTM10, wXL14, wXZ19]. Modular

[Sze14b, WZ13a]. module

[DLT11, LT12b, LT16, NCD14]. modules

[AR12, AF12, BO12, aCCS14, Cer10, Dub14, GD11a, IRT14, MLC+10, OZ10, PYZ14, Pop12, RAY14, Sha11, Ter13, Ter14, Wag11, WW10, WD10, WZ12, WZ13e, WZ14e, dSC14]. moduli

[BMS14a, FP14]. modulo

[Gu13, LWG13]. modulus

[wXL14, wXZ19]. modulus-based

[wXL14, wXZ19]. moment

[DW10, Lop11b, PLL12]. Moments

[Rei11a, Rod12a, AW13b, BW11, CLL12, MW14e, Nems13, SWBS13, WL10b]. monoid

[ABK14, Bre14, Car13]. monomial

[KS11a]. monomials

[JMP13]. monotone

[Aud12, BHD12, CW11, HKPR13, JP11, Kum11, OT12, PCC12, San14, Uch10]. Monotonically

[Reg13]. monotonicity

[Aud13b, FJMP14, JMP12, MS12]. Monotony

[BM12b]. Monov

[CL14b]. Moore

[Boz13, xCwX11, HF12, HZ11a, Ji12b, KS12a, MŠ10a, MZ10, Nor11, Pat12b, RDD14, WJT13, XCS13, Yan14, ZZCW13].
multi-filar [EFN09, EFN10]. multigrid [BFF+11]. multilinear [BW13b, FGH13, FKLT13, GMFSPS12, Kon13, Moh13, NA13, Pel14, SRI13b, ST13c, FdC12]. multinomial [YiKIS12]. multipartite [CHLW14, JZ14, PHS13]. Multiple [DGAM14, DKS13a, FPC13, KSH12, LNTgW12, Lip10, MP14a, PSA12, Row10, Sha14a, XD12, ZY12b]. multiple-sets [ZY12b]. multiplication [HH13, Kau12, MR13, MR14a, Sow13]. multiplications [BLLX11, RO10].
mutually [Kis15, XX12]. Mysteries [NSW13].

needed [DTL11]. negacyclic [La14]. negative [Aud10a, BV13a, CR10b, FKM13, KS13b, MYL13, MWZ13, PT13a, WOL12, ZCKS12]. neighbor [ACM+12, Bt13].
network [BCE+10, FFS11a, SB11, TN14]. networks [BFRR14, Car11, Est12b, GPR13, Gle11, HWSH13, Kam10].
Neumann [Tsa12, BD12a, BMS14b, DLLS10, LZ10, LFF13, PRT13, QH13, SS10a, SS13, YZ12b]. Nevanlinna [AL13b]. Neville [HZ14].
news [ZCKS12]. Newton [BH13a, BJ13, CA10, FS11, Guo10a, Jar12, JMP10, JMP13, SK14, SV11].
Nomura [CM11a]. Non [JRMFSS12, MMA12, ALPV14, Aud10a, BH14a, BP10, BT13, BCS13a, CR10b, CKST11, COS14, DL14, FKM13, GK11, KS13b, LLH10, LLY13, MPP13a, Net10, dSP10e, dSP12b, Per14, PT13a, Qui11, Seo13, WZ14b, YW11, dO12].
Optimizing [Gol13, LS11a]. optimum [CLL13a, GX12a]. options [PZV11]. Orbit [RMP14, Bar10a, Bar13a, Dau12, MZ12a, Rez13]. orbits [Baj14, CN12c, DD11a, LPS13, TT12].

Parametric [He13]. parametrization [BO12, Dau12]. parametrized [Fuj10, GHT11]. paranormal [DJ12b].

Paratransitive [LMMR13a, LMMR13b]. Parity [MS13b]. Parseval [Kas13]. part [Li10, AAT12a]. Parter [FdC14b]. Partial [BP13, HZ12b, MQ11, MQ13, MQ14, RMT11, WZ13b, AM13d, BF12, BCY12, BO11, CFLW13, DM11, Fan10a, GW14a, GW14b, Kho12, MD13, PLS14, PP12a, Rub13, SvdH11, Zha12c, vdH13]. particular [BBdH12, BD12, GOvdD14, SS11c].

partite [Zhu14a, ZWL13]. partition [FdC14a, HM10, NS11a]. partitioned [BL13, CGMS10a, CTW11, XCS13].

Path
[Est12b, Fuji11, HM14b, Nak13, SS14, Sin10c].
paths [AS12c, Gum13, Nik10b, QSW14].
npattern [AT11, AHL14, AM14, BDH12, CFJKS13, CL10b, DT11, HL11d, JMS11, LSR11, MGFW14, PP11a, WLHL10, YS13, ZLH14].

Patterns [BKMS13, BVV12, BDM12, BFH12, CP10, EKSV14, EKSV18, GS11a, GL14, GS12a, GS13b, GOvdD14, GOvdD14, GK14b, GB14, GOvdD12, GS12f, HJN12, HSL10, Hua11b, MZ14, Ma14, Mit11b, OTdDv12, YHH12, dS12a, NT14].

Payo [AGK11].

Peak [GS12b, PS14b].
Peano [ABGPSS14].
Peculiar [RR14].
Pedagogical [Kla10].
Pell [Mel13], pencil
[Dod13, GHMPVP11, XD12].
Pencils
[RS12a, RS14b, Pat14, BIT12, BCF14, BF14c, DK13b, Dod10, DS14, FRS14, LLB13, MSP11, Re11b, SBM11], pendant [GFY10, LWZ11, LZ12b, LJY14, Saz13, XZ13c].

Pendant [BNP11, BNP13, HJL10, NOL13].
Penrose [Boz13, xCwXL11, HF12, HZ11a, Ji12b, KS12a, MZ10, Nor11, Pat12b, RDD14, WJT13, XCS13, Yan14, ZW13].

Pentadiagonal [Elo11].
Perfect
[BP10, CG11, Beh13, LSC10, wTmS12].

Perfectness [FPC13], perform [CHK13].

Periodic [AS12c, BM10, Li12, ZLH14, BdFp11, BT13, Cal12, Fid10, SB12, Tsa11, Xu12, YMY12].

Peripheral [ZH11a].

Permanent [Cra13, DD13, Zha11, dF10].

Permanental [Ad11, LZ13].

Permuted [Bu13], permanents
[Br12, CW12a, FH12b, PS11].

Permissible
[Bu13], permutahedra
[Dah10].

Permutation
[DF14, LS13c, RR14, SMC11].

Permutation-like [DF14].

Permutations
[AK11, BF14b, ST12].

Perron
[Lim13b, Czo10, FGH13, FJMP14, JMP12, LN12, NV12, Pit11, ZH11b].

Personalized
[GPR13, Gle11, Kam10].

Perturbation
[BV12a, BK11b, CM13, HZGY12, LNTgW12, MMRR12, AL13c, BI12, BBdH12, BBdH13, xCwXL11, CS10a, DD10a, DX13, Guo10b, Jai11, LS11a, LYS13, Lip10, MMRR11, MZ10, MA10b, Vul12, WF12, WL10a, YW10].

Perturbations
[CGM11, CL14b, HZ11a, Bat14, BCdP11, BHKL10, BdS10, CL12a, DvDF11, FGR13, FGvRR13, Hua11a, HZJ12, MMRR11, MMRR12, RW12, Rod12b, SWA12].

Perturbed [BDG13, BR14c, CGMS10b, GC12, GTV12, HHH1a, Mat14b, PPZ14].

Pete [Bai11].

Petz [Fuj10].

Pfaffian
[Buc10, TT10].

Pfaffians [Ika11].
Phase
[FMNW14, Byd10, Gull11].

Phenomenon
[BL11, RR14].
Pick [AL13b, CH11].

Piecewise [FGQ11, CA10].
Piling [OT12].

Pinkus [Gar10].
Pisa [BBG13], pivot
[BH11b, Bri13, KB14a, KB14b, Mit11b].
Pivoted [LQ11], pivoting
[SP14a, PQZ13, Raf14], planar
[BHMO13], plan
[Buc10, Buj13, CM12b, HK13, MZ11, dD11].

Planes [Dau12], planning [DT10].

Player
[Jun14].

Plus [AGNS11, BH12, BM13d, Mer10, Mys12, MP14b].
Poincaré [BFdP10].

Point
[ACG14, CLCL12, CH14, DY14, DD14, GOSV12, JH10, LWGM10, LWGM12, Per14, SS13b, Ter13, Wan11b, XX14, XSS13, ZW10].

Point-stabilizer [LWM10].

Points
[AK12a, AR10, BS11b, CN13b, GX12c, Li12, Pan12a, QH10, WLL14, Wu13a, ZZ11, ZZ10, ZZ12, ZZ10].

Poisson [Mar13a, XX14].
Polar
[CM10a, AGK11, CD10, CM11b, DoMP09, DMP11, GMP13, LNN14, LWGM10, LWGM12, MGLW11, MPP10, WLGM11, Wor13].

Pole
[BO12, KBS13, RMT11].

Poloni [Lim11a].

Polya [Seo13].

Polygon [VV10b].

Polyhedral [LT10b, MS11b].

Polynomial
[AM13a, LMM11, LM12, MM10c, Mar13b, AA11, AB12, ABSV12, BMS10, BN13, BC14b, BO11, BH11b, BHAP12, Cer10, CL13b, DTL11, FH10c, Gaa12, GX12b].
polynomial-Vandermonde [ZYL10].

Polynomials
[NT12a, AAK11, AK12a, Aga14, AAT12a, AAT12b, AL14, Bal14, BM14a, BR14b, BK11b, BG12b, BL10a, BSS10, BH13a, BMM12, BR12, BW13b, CMS12a, CKS10, CN10a, CN11b, CL11b, Cim11, CD12c, DD10a, DDM12, DTS11, DW10, DD10b, ES11, FPC13, GMMPFSS12, GW13a, GN13, GS12d, GM11b, He14, HLW14, Hen10, HT10a, Hwa11, IM11, Kal13a, KHK13, KH13, LT12a, Lan14, Lav10, LL10a, LZ13, M1MM10, M1M13, MZ12a, M1Z1, Mei13, Mel13, NV10, NT12b, Ps12, QY12, Qua12, RB12, RL13a, Sha10a, Sim10, TTT13, DDP14, DDM14, TGM11, TTT1, VS13, WLLX11, WML13, WZ13d, dF10, d102].

polytope
[CGSCZ10, CM10b, KAAK11, PSW11].

Polytopes
[Dah11, ACDM14, Bar12a, Beh13, BG12b, BW13a, Dah12a].

polyvectors [De 11].

Poncelet
[Mir10, Mir12].

Potapov
[FKR11a, FKR12].

potent
[CL10, GS12b, PS14b, SY12, Sim10].

Power
[GW14a, AH13b, für10a, GW14b, HQS13, JMS11, LY13, PP12a, SS11b, Seo14, SHS12, TL13a, WF14].

powerful
[LLH10, LY13, YW11, Z11H14].

powers
[BL1dPS10, Bie14, CL13b, DXL13, GW10, GKR13, Jai11, JLW11, Pat10, Rim12, SS10b, WW10, WZ13d, HOT13].

pp
[Bar10b, Gar12, Grü12, Lim13b, Rod12a, Tam12, Zha12a].

PPT
[L14a].

pre
[BM13c, Pop12].

pre-Hilbert
[Pop12].

pre-Jordan
[BM13c].

preconditioned
[J10].

preconditioner
[CJ10, DKOT12, GOSV12, Raf14].

preconditioners
[JZT14, LZ11a, PVZJ11, T1TD13].

Preconditioning
[BTYZ12, PMP10, SS13b, Tre11, T1D1, Wan11b].

predetermined
[MVS10].

predictable
[KS11a].

Preface
[ACGN10, ACT14, A10o, A10o-27, A10o-29, A10o-30, BBD11, BBS13, BB1+13, BFBD13, BBD+13, BGG1+11, CFPT12, EGL14, F1K13, KPR14, BFH+12].

Preliminary
[Ara12].

Preprocessing
Prescribed
[Kra12, Bar12b, BCDp11, BMSW10, BC12b, BC14b, Fri11, LL10e, MS13c, NR10, Psa12, RS12a, RS14b, SDNS13, WL10b, YT13b]. presence [LS13a]. preserve [Cos11, FdC10]. preserved [DV10]. preserving [AA11, ABSV12, BB13c, BCS13b, Bou10b, BMS14a, CFL13b, CLS10, CL14b, DD10b, GN14, HLW10b, HQ13, hL10a, hL11b, hH11b, JG10, LL12, LP10, LP12, LFL13, LHL12, Lim10, LL10b, Lu14b, MS10c, PP11b, Rod12b, Ros12b, TGM11, ZH11a]. Press [Bar10b, Gar12, Gle11, Gri12, Lim13b, Re11a, Rod12a]. Pretty [FG13a].

pricing [PZVJ11]. prime [DF14, DW14, FK13, Hir10, LL11b, LHL12, LL10b, QCH11, SS11b, Sbu10]. Primitive [AB12, CL10b, YW11, CL10a, HL10c, Kim10, Kim11a, KP12, Kim13b, LHL10, LY13, PPK13, WLH10, YHY14].

principal [JS13a, BBC14+, BFp11, BR14c, Bri13, BDovd12, FG13b, Guo10a, JN13, KB14a, KB14b, LS12d, OTDdv12, Sev13, TH11]. Principally [SS13c]. principle [Car11, Kra13, Lon13, MW12b, Pu11].

problem [AW13a, BBDh13, BV11, BM14a, BDF1d11, BCEM12, BBGM12, BC12b, Byd10, CV10, CI10, CS11, Dd10, DS12c, DS14, Fun10b, FKR11a, GS10a, GEP13, GP12, HH12a, HRW99, HMP12, HLS11, HP04, JJKS11, JM12a, JDY13, LXL+14, LCwCL11, LJ11, LWY14, LGZ14, Moul12, MAM+13, MP10, NS12a, NM14, NS11b, Niki10a, OM10, PI12, yPXL11, PRT13, SS11a, SS14, SS11c, SR12, SS11c, SMC11, TD11, VS10, Wu12, Wei13b, WJ12, XLY+13, YWX13, Zha12c, ZY12b, vDH13, LPK14].

Systems [MNZ10, AA14, AS10, jASZ12, jAS13, ACG14, BAI10, BBF+10, BFp12, BT13, Bdp13, Bv12, BN13, BC12b, BJRS11, Brä12, BGMGMC12, CRS13, Da11, DS13, DKOT12, DW14, GMS12, GEP10, GJTP13, HMR12, Hoge10, WH11, Jar12, JV11, JRMFSS12, JW13, KKR11, KZ11, LT12a, LRST10, fLYH11, LZ11a, LL10d, LKK12, MS10b, MR10a, Miy14, Nak10, NRS12, NY14, Pin11, PPKR12, PE13, RŠ13, SVP11, SHZ10, SB11, Stu12, TmYsH11, Wan11b, Wei13a, wXL14, wXZ19, XE11, XSS13, YZ11]. procedure [LBLS12, SV11]. procedures [Pål13].

Procrustes [fLyH11]. produce [Tra13].

Product [PGM+11, AR10, All12, Aud10a, BM13c, BZZ+14b, Cal12, Chad13, CG13, Che14b, CJ+13, CT14b, Dug12, EM11, FF10, Gha13, GKIa4, GKI2, HFS13, HTS14, HMT10, HLW10b, HP11, KSH12, KY14, tLYLwq10, LPS13, LFL13, LD11, Lin14b, LH10b, Pat12a, dSP11b, RAAGAV11, SP13, Sha13b, Sha11, Tad12, WLG12, ZCW13].

produce-set [Cal12]. Products [ACG13b, BMN13b, Bot10a, CM11b, SZ14, AM13b, BG14b, CSV14, CLH14, DKS10, DD11c, DD14, Ens10, FHL+11, FJ14, GKI11, HM14b, Hua11c, JG10, Kim12, KN13a, KN13c, KLZ14a, Koz14b, Kub13, LW12c, MARC13, Pep12, PV12, QCH11, SCSS10, Slo13, Slo14, Tan14b, Voy13, ZH11a, ZCW13].

projection [Cha10, Hua11a, LRV12, LB14, NN10, NN13, PPKR12]. Projective
[BJ11, ACG13b, ACG14, BS10, CSC13, CM10a, CM13b, Ili10b, JG10, SS10d, WL10a, ZCCW13].

Projections [BJ11, ACG13b, ACG14, BS10, CSC13, CM10a, CM11b, Ili10b, JG10, SS11b, LT12a, MPS10, MR10a, Mei13, MP10, NT11a, dSP12c, Pop10, Sha13a, Tia12, TGM11, XSZ13, Zha12d].

Quadratic [BB10, Re11a, BFR14]. quadratic [GS12e].

Prony [PT13b]. Prony-like [PT13b].

Proof [Das11, Das13, JS13a, ZW12a, BL13a, CP12, Cho13, Dom10, FGG10, GS12a, Hill14c, Kak10, KN13c, Kon13, LYL13, Rh10, Yam13, ZY12a, vdW14].

proofs [CHZ13, Dra14, FF10, Sat11, Sat14]. proper [MS12, TG13]. Properties

[ANF11, CFLY12, DCIW12b, HM14a, ANPQ12, ACG13a, BHWD12, BCD10, BB14, BJ10c, BLS14, CPV10, CJ11, Dax10, Den10, DJK12b, DGS10, Far11b, FPC13, FH10a, FH13, FJ10b, GB13, GM11a, GM11b, HG11b, HLI11d, Hun10, hun14, ISY11, Jun12, KKL13c, Kus13, LaG12, LIZ13, M510a, Nor12, Ref12, Rod11, Rod12b, ST10b, SSZ13, SSR13, Sto11, Tre10, Tre12, WC11, Zho12].

property [Aud13b, Bai14, Bal10, Ben10, CL12a, CGSCZ10, DK14, GTR12, GLS13a, JV10, JV11, KPi4a, KS11a, Lân10a, LNN14, Mor10, Mou12, NP13b, PP12b, Pu11, Slo12b, Tao13, TGS14, AGPP12, LV14, UW11].

protocol [AIP12]. PSD [LMT10]. Pseudo

[Fio12, WC12, BdP13, Kni14, Wik11, Wik12], pseudo-determinants [Kni14].

Pseudo-distance-regularized [Fio12]. pseudo-random [Wik11, Wik12].

pseudo-symmetric [BdP13].

Pseudographs [LL14d]. Pseudospectra [RR11, AGV12]. pseudospectral

[ABBO11]. pseudospectrum [CFLY12].

Ptáč [Ser13]. PU [XJ10]. Publications

[Ano13e, Ano13f]. Pure

[BFBBD13, HQ13, SK14]. Putnam [DK14].

pyramid [BPDC14]. Python [GS12b].

Q [Tao13]. QR [BBE10, LYS13]. QRacah [wH12]. QTT [KRS13, Sav12]. QTT-rank-one [Sav12]. Quadratic

[GS12l, KDI12, Pol13, BCY12, DS11, Den10, EY13, GS10a, GLP13, GS12b, Gre12, HMP12, Hu10, JV10, Jun14, KS11b, LT12a, MPS10, MR10a, Mei13, MP10, NT11a, dSP12c, Pop10, Sha13a, Tia12, TGM11, XSZ13, Zha12d].

Quadrature [BB10, Re11a, BFR14]. quadratic [GS12e].

quadratics [Baj14, BS11d]. quadraticalized [ST10b]. quantized [Han11a]. Quantum

[Dug11, Wei11, BC14a, CHLW14, GZ13, HWSH13, Jen13, KLS12, SL14, Wor13].

quantum-trace [KLS12]. Quasi [aCCS14, CRU13, MS14a, Wu13b, BM10, BFdp12, BIT12, BDFP11, CRU14, DS14, DJK12a, ES13, ET13, Fuji11, GLS10, HTS14, HF12, Kim12, iO12, PLL12, WHL10, WLL14, XM11, YLS12].

Quasi-CRU13, GLS10, CRU14]. quasi-arithmetic [WLL14]. Quasi-Arnoldi [YLS12].

quasi-Banach [BDFP11], quasi-class [DJK12a], quasi-inverses [HTS14].

Quasi-isometries [MS14a]. quasi-Jacobi [BFdp12]. quasi-Kronecker [HF12].

quasi-tree [XM11]. quasi-trees [PLL12].

quasi-triangular [ES13].

quasi-Weierstraß [BIT12].

QTT-Whittaker [aCCS14].

quasideterminants [Abe11].

Quasi-optimality [Sav14]. quasiseparable [BOZ10, BOZ11a, BOZ11b, OM12].

quaternary [BE10]. quaternion [Kyr13].

Quaternionic [Kim13c, KAAK11].

question [Cha13b, CL14a, Dru12a, Qui11].

questions [CL14b, Shp10]. quiver [Stu12].

Quivers [Sev10, GS12b, Lop11a], quotient

[BO12, Bot14, LL10d]. quotients [Dax10].

R [Gar12, Gem10]. R. [Vse12]. Racah

[BC14a, GWH13, HWG14, NT10b].

raceetrack [SS10c]. Radial
[Sri13, CGR14, MZ11]. \textbf{radii}

[CLS10, FKR11b, LSC11, LL11c, ST13, XZ13b, XG13, YWS11a, YWS11b]. \textbf{radius}

[Alt13, Aud10a, BMSW10, BMSW11, BL10b, BNP11, BNP12, BC14c, BS13b, CT10, CLS13, CKST11, CVDKL10, CTG13, DHLLX12, Dai12, DP10, DZ13, Dum13a, FY110, FN10, GLS10, GL12a, GP14, GR10, GMV11, GLS12, GL12c, GLS13b, HJZ13, HY14, Hua11c, KI10, Koz10, Koz14a, LLS12, LL13a, LS10, LT11a, LWZ11, LWV12, LP12, LS11b, LCZ10, LL10c, LX13, aLwW13, LLT12, MR14b, MP13a, NR10, NOLL13, OM13, OM14, Pep11, Pep12, SWT13, WXH10a, WB12, WZ13c, XZD14, XZ14, YFW10, ZW12a, Zha12b, ZHG13, Zho10, Zhu10a]. \textbf{radix}

[Dum13a]. \textbf{radix-rational}

[Dum13a]. \textbf{Rado}

[CP12, OLW14]. \textbf{Rado-Horn}

[CP12]. \textbf{ramified}

[MM10a]. \textbf{Ramsey}

[ZC14]. \textbf{Randic}

[CFK10a, GMRS14, GFB14]. \textbf{Random}

[Bod13, LAL11, Bos11, CLL13b, DLLS10, DLL11, PS12, Wik11, Wik12]. \textbf{randomization}

[PQ12]. \textbf{Randomized}

[PQ10, PQZ13, GO12, NT14]. \textbf{range}

[Alt12, BT11a, CG13, Che14b, CN10b, CN11c, CN13c, DWXS12, DDK14, DGH+11, For14, GH11, HH12a, KI10, LPS13, NRS12, PT13a, PGM+11, Sha11, SL14, VU14, WC11]. \textbf{ranges}

[ACG13a, BS12a, CGWW13, CN11a, CN12b, CLS10, DD11d, Go11, GW13a, GTW13, GW14b, GZ13, HMP+11, Lee13a, TW11b, Tsai11, WW13a]. \textbf{Rank}

[BSC13b, DP12b, FGvRR13, IW13, LT11b, LX13, MNZ10, iO12, AAF+12, ABEV10, AHL+14, BGV12, BT10, Bal14, BBF+10, BBF+12, BKM+13, BCC+14, Bar10a, Bar13a, Bat14, BMN+13a, Bea12, BDG13, BR14c, BSU14, BC13, BdS10, BH13b, BRLS12, BHZ10, BDOvdD12, BKMS12, BZZ+14b, CT14a, CRU14, CR10b, CAV13, Cau11, CHY11, CHY12, CN11a, CN12b, CLS10, DHLLX12, DoMP09, DGH+10, Dea11, DS14, DBZZ14, DGMS10, EHH+12, FM11a, FP13, FdC14a, Fra13, FL12, Fri13, GW13a, GG12, GS12f, HHMS10, HOG10, HCY10b, HCY10a, HZ11b, HTW13, IMA10, JKV13, KGI12b, KRS13, Kim11a, Lec13b, LT10a, LC10, LTX14, MAGR13, MS13a, MR13, MR14a, MZ12b, MQ13, MQ14, MMRR11, MMRR12, Mit11a, MNZ12, dSP11a, dSP12a, Per11, Pin12, RW12, Sad12, Sag11, Sav12, SM13, SHS12, Shi11, Shi12c, SvdH11]. \textbf{rank}

[SK12, SC10, Tia11b, Tra13, TDT13, WFM11, WZL13, WMZ14, Zha12d, Zim13]. \textbf{rank-}

[BdS10, Fra13]. \textbf{rank-1}

[SC10]. \textbf{Rank-one}

[LX13, Bat14, DHLLX12, Sag11]. \textbf{Rank-preserving}

[BSC13b]. \textbf{Rank-width}

[iO12]. \textbf{Ranking}

[BEK13, Dah12b, Tra13]. \textbf{Ranks}

[BL13b, BSK12, BSKL13, Ber13b, BMM14, CHLW14, Fri12, JZ11, KSB12, MQ11, Shi12b, Shi13, SSM13, Tia12]. \textbf{Raphael}

[Ano13-27]. \textbf{rate}

[CNPP12, EY13]. \textbf{rates}

[GL10c]. \textbf{ratio}

[EJLS11]. \textbf{Rational}

[BKV14, Duk12, Duk15, Lom11, AL13b, AIL12, Baj14, BT11b, Boj13, Bre14, Dum13a, MR10b, MR14c, Rad13]. \textbf{rationals}

[HNZ12]. \textbf{ratios}

[BRA11]. \textbf{Ray}

[LS12c, GS11a, JMS11, LSR11, LS13d, MGSW14, ZLH+14]. \textbf{Rayleigh}

[LL10d, SS12c]. \textbf{rays}

[BF14b, Hill2a, MZ11]. \textbf{rd}

[CKAC14]. \textbf{Re}

[NC13]. \textbf{Re-nmd}

[NC13]. \textbf{reachability}

[BLLM13]. \textbf{reachable}

[SS10a]. \textbf{real}

[AGa14, AKM13, AAT12a, Bal14, BGP13, BH13a, BDOvdD12, Bün14, Cau11, CGSCZ10, Coh14, Dai13, FGvRR13, Gre12, He14, Ikr10, Kal13a, Lav10, MS10b, MSS12, PR13b, RdSP11, Sag13, SYH14, WZ13d, Wód14, XZ13a]. \textbf{real-nonreal}

[PR13b]. \textbf{realisable}

[ES14]. \textbf{realizability}

[CL14b, DHLLX12]. \textbf{realization}

[OZ10]. \textbf{Realizations}

[BCdP11, BKV4]. \textbf{realized}

[FW14b]. \textbf{reals}

[KN10]. \textbf{Rearrangement}

[TCL11]. \textbf{reasoning}

[DD10c]. \textbf{receptance}

[RMT11]. \textbf{Recht}

[CMS12b]. \textbf{reciprocal}

[DKOT12, KP14a, LaG12, NP13b]. \textbf{reciprocals}

[GIP12]. \textbf{reciprocity}

[SR13a].

Regarding [Wal11b]. region [CKAC14, LSR11]. regression [ATS12, HLP12, LJ12, YiKIS12].

Regular [CD10, CLL13a, CCL14, GX12a, Han14a, KS13b, Kol13, Kub13, LS14, QSW14, Row12b, AAJ12, AKA13, Ban13a, BP12, Bat14, BIT12, BZ12a, CvDKP13, CSZ10, CR10a, CR10c, Cer10, CMNW14, CS13b, Cio10a, Cio10b, CW12b, CP10, DFG10, DvDF11, DS14, ES13, FGG10, Fio12, FP11, FG13c, GW14b, GM14, HM10, HL10b, HLZ12, Hua12b, HLZP13, Hua13b, KS14c, KY11, KPY11, LZ10, LLN+12, Lee13b, LwW14, LLS10, LGZ14, MM10a, MSP11, MW14c, NS12c, NS12b, RTR10, RS10a, SSS13, SS13a, Ste11, WML13, vDF14]. regularity [CN10d, EdlP14, GZ12, SBM11]. regularization [HRT10, LRV12, SS10c].

regularized [Fio12, XSS13, LB14, LKN13]. Regularizing [FRS14]. regulators [EY13]. related [Ano12-30, BG12a, CD14, Car10a, CMS12b, Dah11, Dru14, Duk12, Duk15, GMS12, HW11, HP12b, JRMFSS12, KSAM12, KP14b, LRST10, Maz10, MPSS10, MTS11, Naj13, Nak13, Rah13, RO10, Sei14, SHZ10, Tim14, TT11, ZYL10]. relating [Ste10]. relation [CFJKS13, DdC13, GB13, JV10, LSH12, Yan10a]. Relations [LRT13, AK12a, ADW13, BR12, CM13, DW10, JR11, KP14b, LM10c, Mar11, Mar13c, Tim14, Wój14a, IY12].

Representation [BY11, OM12, YZ13, Ben14a, BD13, BBS12a, CM12b, CN11b, DMS10, DkM+14, Irv12, KAAK11, Ky13, Qua12, Sag13]. Representations [DW11, XCS13, XSH14, jASZ12, jAS13, BY11, BE10, Buc10, CN12c, Den11, DD10c, Dor10, Han11a, IM11, Kaw13, LW12d, LZ11b, Ma11, Net10, NT12a, Qua10, RMP14, Ros12c, SY12, Sze14b, VS11, XSZ13, Yan14, GMT13]. represented [GN13]. Reprint [BOZ11b, Mar13c]. Reproducing [Wor14, Che13, CD12c, SST14]. require [BDM+12, GOvd14]. Required [CP10]. residual [CI14, KOR14, Lin10, ZWZ10]. residuations [GMH14b]. Resistance [BYZZ14, BS11a, ESV+11]. Resolution [Ste10]. resolvent [BMW10, EFN09, EFN10, JZZ13, KL13b, Sah10]. Resource [Cec10, Wil11]. resources [Cec10]. respect [FZ11, ISYY11, KKR11, Wu10b]. respective [Köh14]. restarted [MV12, Mss12]. Restricted [Oto12, BT14a, Cha10, NRS12, Shp10]. restrictions [Wój14b]. result [Cam13]. Resultant [ER13, Rue13]. resultants
second-neighbor [Böt13], second-order [LRLS12, LS14, SS11d]. section [Sha14b].

Seidel [DHS10]. selecting [HYF14, YK12]. Self [OR12, RS14a, SS11d, ADW13, BT13, DL14, DJ212a, Gle11, HSZ12, Kam10, M11s, SSR13, Tif11, vBM13, BDK11].

Self-adjoint [OR12, RS14a, SS11d, ADW13, DJ212a, HSZ12, SSR13, vBM13]. self-dual [MSS14, Tif11, BDK11]. self-organizing [Gle11, Kam10]. selfadjoint [Dra12a, MMRR12, RS12b].

Semi [LW12c, Vas14, AS12a, BCS13b, BL14, CKAC14, C14t, DYW14, FKR11b, GL10a, Gon11, Hun10, KN13b, LLB13, Lopi1a, VV13, ZH11a, vdW14]. semi-Cayley [GL10a]. Semi-centralizing [LW12c]. semi-convergence [DYW14].

semi-triple [ZH11a]. semicircass [DD14]. semidefinite [AHAPP10, Bal10, BM10, BMN13a, CPV10, Dea11, EEH13, FJ10a, FS14b, Fur10b, Kak10, LV14, Mit11a, MNZ12, Net10, Pop10, Sag11, Sag13, SM13, SvdH11, WXH10b, Zha14b, Zim13].

semidefiniteness [Dra14]. semifields [Sin10a]. Semigroup [Mer10, Tan11].

Semi-groups [Mer10, BPA11, BMR11, CD13, Jun12, KLP13, Mar10, OR12, PRW11, Pop13a, SL13]. semilinear [KP13, ySpW11, ySpW12, ySpW14, dOHKS12, dOFK13]. semimodules [AGNS11, BHI1a, LT10a, Sin10a, SN12, SN14, Tan14a, Tan14b].

seminorms [GD11a]. semipositive [JT11b].

Semiregular [BL10b]. semiring [FKW13, JP11, SB11, Tan14b]. semirings [AB12, BMHR12, DO11a, DO11b, KP13, KSB12, Per11, SS11c, Shi11, ySpW11, ySpW14, Tan14a]. Semiseparable [Gen10].

separating [LV11, LT13]. Separation [Bar12a, AMLH14, BH11a, CJ14, GH10b, NS11, vdH14]. separators [NdM13]. sequence [AW13b, BBC14, BM10, BDS13, BDF11, BCP12, BDOvdD12, CCG13, CGTR14, CH12, CK14, DP10, Lac13, aLwW13, MN12b, PPK13, Pep12, TD13, Tan10a]. sequences [BV12a, Ben10, BHK10, CC12, CL13b, CPG11, DNS13a, FKR11b, FKR12, FKM13, HN212, JJKS11, JKM13, LL10e, LM10c, SCS11, Sev14, VS13, VSI4b, Wan14a, YI12, dF10]. sequential [Dug11].

Series [G12, Ro12a, Zha12a, dMR12, BGP11, B0j13, He11, KM14, Lak10b, Slo12a]. set [AHLOvH13, BS14, B13c, BHvdH11, Cal12, FdC10, JZZ13, Kim13b, LT11a, Lopi1a, LdIP11, MS13b, Mar14a, Roh11, Tan10a, XWD13]. Sets [FdC14b, PV12, BB+12, BJ10a, BHI1a, Cal12, CSZ10, CR10c, CP11, CLH14, Dau12, FHL+11, GLZ14, HT14, HHL10, HRT13, HCY10b, JSS13, Lim13a, MH13b, Mey12, MS11b, NN13, Net10, Pep12, PR13a, Row14c, Sin10b, VW10b, WLHL10, YH12, ZY12b, ZSWB14, Ziv12, dSI2a, dSC14, vdH14]. setting [GJ11, Gul11]. seven [BSU14]. Several [GL14, ZY12b, CHZ13, FJ10b, Pro10, SV11, Zha14c].

Sobolev-type \cite{KKLY14}. SOC \cite{PCC12}. SOC-convex \cite{PCC12}. SOC-monotone \cite{PCC12}.

Solution \cite{Ano12a, Byd10, Dru12b, HJLS11, KPRT14, LwCJL11, CQYY13, CI10, DS11, DD11a, DDG13, DKS13b, Dod10, DS12c, GKL11, HMR12, HLS11, Ji12a, Jim10, Ji12a, Jim10, KMS13, KD12, LCwCL11, LHZH11, LdlP11, MS11a, PLS14, Roh11, SMC11, VS10, pWIW14, Zha12c, ZLD11}. Solutions \cite{Bra12, AiS13, AG10, BLLX11, BM10, BM12b, DH12a, FMWW12, FH12c, Fur10b, Kyr13, LV11, LV12, LLD13, LL13d, LTX14, Mir12, Miy13, Miy14, Sag11, SW11, WW10, WD10, XSS13}. Solvability \cite{LLW14, XSZ13, Bie13, Hla13}. Solvable \cite{SM10b, WGL12, CLOK13, CKLO13, CM13, KRH14, LMO16, MsvW12, SK10}. solve \cite{Bou11}. solved \cite{AA11}. Solvents \cite{LT12a}. solver \cite{PPKR12}. solves \cite{BGW12}. Solving \cite{BN13, MZ12b, MSP13, PQ12, SB11, TmYsH11, WCKL13, Bey12, HN10, KKM13, SK14, SHZ10, XX14, ZY12b}. Some \cite{AT14a, BDH12, BCD10, Bai14, BR11, BFK+13, BEV13, BPDC14, DK13a, DK13c, CD12c, Dai13, DK11, DK12a, DK13b, DV14, DWXS12, DK14, FP14, GH13b, GN14, HKK+12, HN14, dHLS13, KL12, LS12v, MARC13, Mat13b, Mer10, MMM13, PO10, dSP11b, dSP12b, PGM+11, QH10, Ros12b, Tim14, pWIW14, WC11, vBM13}. Spaceability \cite{BS14, BDFP11, BCFP12, CGMPSS14, RS14c}. spaceable \cite{BFPSS12}. Spaces \cite{Özd13, dSP14, Qui11, AS12a, AM13c, ARZ11, ABGPSS14, BG13, BDD14, BdFdP11, BDFP11, BCFP12, BCF12, BRZ13, Bad11, CD10, Cau11, CM13, Cir14, De 11, DW10, Dra12a, DP10, DX13, Dub14, Fan12, FM11a, FFS11b, For14, GZX14, Gon11, GIW13, GL14, HMT10, HZ11a, Hua11a, HZGY12, HZJ12, KP13, Kec13, Köh14, Lac13, Lán10a, LL13, LG1014, LT11b, LT13, MMS12, MZ12a, MZ11, MM13, MN12b, OW14, dSP12a, Pep12, Per11, PT13a, RAAGAVS11, RS14c, SP13, SST14, ySpW11, ySpW12, ySpW14, SM12, TD13, Wal11a, WLGM11, WY13, Wój14a, Wol12, Wor14, YW10, ZHQ14, de 13, dSW12, thR13}. spanned \cite{LT10a, YY12b}. Spanning \cite{GS10b, Bap10, CW12b, Góm10, LS13b, LHL14, LHGL14}. Sparse \cite{Ano12a, Dum13b, GP13a, KR12, KPRT14, PT14, CCL14, MSP13, NNW14, Rue13, Wan11b}. Sparsity \cite{KKLY13c, DT11, JKN14, MZ13, Zho12}. Special \cite{BM13c, GRS+10, HP12a, LPOdS10, Stu13, AAH13, BDH+12, DGMS10, FM11b, FV13b, FKL13, HLS10, Nor12, Nor14, PDVD14, RR14, TYZ12a, TD13, Xu12, BBD+11, KPRT14}. specified \cite{Nik10b}. Spectra \cite{Bal12a, Bal12b, Bru10, CD12b, DL14, DK13d, JMP10, LL13c, MM11b, Nor14, Vla12, AB14, AH14, BV12a, Ben13, Ben14a, Bou10b, BZ12b, BZW14, BW12, 46}
 Spectral [ANPQ12, AS10, AW13b, Aud10a, BV13a, CR10a, FN10, GM11b, HY14, JS12, Kal13b, LS11b, LHW11, aLwW13, Lop11b, LTT12, MW14c, Ref12, RM10, SS13b, SSR13, DDM14, UZ14, WC11, Alt13, AH10, BT13, Bao13, BMSW10, BMSW11, BR14b, BL10b, BNP11, BNP12, BNP13, BH13a, BC14c, BS13b, CT10, CLS13, CLL12, CKST11, CvDKL10, CTG13, CS10b, DHLX12, Dai12, DD10a, DP10, DZ13, Dumb13a, FYI10, FZ13, FG10, FG13b, Fur10a, FJ10b, GLS10, GL12a, GR10, GMV11, GLS12, GL12c, GLS13b, GW13b, Giv12, HJ13, Hil12b, HH11b, Hua11c, JZZ13, KG12b, Ko10, Ko14b, KKL13c, LLS12, LL13a, LS10, LT11a, LSC11, LWZ11, LW12e, LCZ10, LC10e, LC11c, LW12e, LH13, LHL13, LHX3, MR14b, MS13c, Mou12, MP13a, NP12, Nik10b, Nik13, NOL13, NLL13, OM13, OM14].

Spectrally [Bot10b, ES13, GS11a, GS12a, GS13b, MGSW14].

Spectrum [DHKQ13, KM12, Suz13, ACM12, AR10, Ang13, jASZ12, AT14b, BS11b, CJ12, Cos11, Cos14, CT12, CI14, Drn13b, FTDA10, GL10a, HIW10b, HZ12b, Kra12, LV11, LHWS13, LL14b, MSP11, SDNS13, TW10a, Ter11, ZW10, ZH11a, ZL11, vBM13, YF12b].

Spedicato [MA13].

Splenoids [MP13a, KK10, KK12, KK13].

Spherical [DGJ13].

spill-over [KD12, MD13].

Spin [PP13a].

Spitzer [AS14].

split [JZ11, MD12a, MD12b, MSD13, Ros12c, ZY12b].

splitting [DJV14, MZ12c, Rad13, wXL14, wZ19].

splittings [JM12b, MS12].

spread [CL14a, Drn13b, EHH12, LL10c, OdLdAK10, SK13, WZL12, XM11, YL10].

Springer [Tan12, Zha12a].

square [BP10, Bot12, BLS14, Che14a, DD10a, DF14, FHS14b, GS12d, Lav10, MARC13, Nor12].

square-free [GS12d].

square-zero [Bot12, Che14a].

squares [BP10, Bot12, BLS14, Che14a, DD10a, DF14, FHS14b, GS12d, Lav10, MARC13, Nor12].

SSM [JV10].

SSM-property [JV10].

stabilisation [LS12d].

Stability [CN11e, Fou14, Kal13a, Lan13, Vul12, BV12a, BG12b, Dai12, Fis14, FV13b, GV11, GM11a, HDPT12, HKP13, HRT10, KKB11, LS11a, LR10, OM13, PM10, PKR12, PP13b, RJ10].

stabilizability [FV13b].

stabilizer [Liu13].

star [DM11, RTR10, Row14d, JR14, PRT13, Row12b, Row14b, Row14c, ZSWB14].

Starlike [BZ12b, SHS12].

stars [FG13a].

State [Liu13, ARZ11, BP10, BLLM13, CFG14, CG11, FG13a, GKS10, RvS13].

state-dependent [GKS10].

states [AS12b, CHLW14, HQ13, MS10c, SS10a].

static [Per12].

stationarity [Pos11].

stationary [FS14b, Gu11].

statistical [KS12b].

statistically [CC12].

Statistics [Zha12a].

Stein [Ara12, Fuh10a].

Steiner [FMT12].

step [BCY12, DHLX12].

Stiefel [FV13a].

Stieltjes [FKM13, PRT13].
superset [Cal12].

super-operators [Ros12b].

superadditive [Nie13].

superalgebras [LW12d, LCM13, MSD13].

Superfast [KMS13].

superoperators [MNZ12].

supergraphs [MNZ12].

superoptimal [CJ10].

superpositions [FK13, Wei11].

superalgebras [LW12d, LCM13, MSD13].

Superfast [KMS13].

superadditive [Nie13].

superalgebras [LW12d, LCM13, MSD13].

Superfast [KMS13].
Totally
[BK10, FJ11, Gar10, HJN12, HWG14, AG13, CRU10, CRU13, CRU14, CDP10, FFJM14, GL12b, Hua13a, KS11c, Gar12].
tournament [BRLS12]. tournaments [BF14a, NS12c]. TP [HJN12, JW13, PS14b].
TP-critical [PS14b]. Trace
[Aud12, BLdPS10, DK13e, LLB13, FL10, HH13, Hia13, KLS12, KK14, Lu11, MY14, MSvW12, Ros12b, Spe11, WLHL10].
trace-preserving [Ros12b]. traces [FF10, KHG14, WXH10a, WZ13a]. track [Han13a]. Tracts [Lim13b]. traditional
[SLS13]. traffic [FGQ11]. training [DT10].
transfer [BK14V, BP10, CFG+14, CG11, FG13a]. transfer-function [BK14V]. transform
[BH14a, Boj13, BJ10b, Bri13, DH10b, FK13, HFS13, KB14a, KB14b, O’D14].
transformation [DMMY10, Lak10a, Li12, LLMZ12, TZ13b, XZD14, XE11, ZLL12].
Transformations [FKM13, BB13a, Bal10, Buc10, DK13d, DD11b, DGAM14, DFS14, GTR12, HG10, HG12, JV10, RAY14, Sim10, wtW13, Tao13, TG13, TGM11, VW10b].
transpositions [KM12]. transversals [AGK11, Fan10a]. treatment [AMPT13].
tree [Bap10, CGTR14, DT11, FHRT11, Góm10, GS10b, LLS11, MR14b, SHS12, XM11].
tree-based [MR14b]. tree-structured
[DT11]. trees [AJRT14, AW13b, BL10b, BZ12b, CJ12, CW12b, DZ11, FZW11, FHRT14, GFY10, GLS13a, HL11a, HT10a, wH13, JNS13, KS13a, LSC10, LT11a, LWZ11, LW12b, LSI13, LGSC14, LY11b, LZ14, LHL14, LHL14, MWZ13, NP13b, NOL13, PLL12, PfDFV14, RJ10, RJ11, Row10, SvdH11, SWT13, Tan10a, wTmS12, WT12, WF14, WL10b, XF11, ZL11, Zhu12b, vdh13, JT11a]. tri [EN11].
tri-additive [EN11]. triangle
[Dea11, MPSS10, PY10]. triangle-free
[Dea11]. triangles [He13, LHL13]. Triangular
[DGMS14, Kaw12, ÁvW11, ÁvW13, BBG14, BG14a, Ben11, BE12, Bie13, Cir13, CM14, CI14, DYW14, DW12a, DW14, DW14, ES13, Ere13, FFG+11, FdC10, Gho13, HC14, HW11, JQ11, LMYY11, MW12a, VS11, Van11a, WWD13, WW13b, WX11, WMZ14, XW10b, XW12, XSH14, YZ13, YZ10, ZZ10, ZZ12].
triangularizability [YT13a].
triangularizable [dSP12c, RY12a]. Triangularizing [TTZ13]. trichotomy
[MSG11]. tricyclic
[CL11a, GL12a, LWZ11, LY11a]. Tridiagonal
[BC14a, NT10b, NT11b, ÁNPQ12, AMJ14, BT13, BDH+12, BDG13, BC12a, BK12, CM10b, GG13, HH11a, INT11, IT11, KHG14, LLLH10, MS11a, NT10a, Qua10, Rim12, SC12, Van10, Wü13, dF10, dS12a].
tridiagonalization [PPZ14].
trigonometric
[CN11b, LdSP11, LLMZ12, Sra13, ZLL12].
trilinear [DS10]. triple
[Mol13, Reh10, Reh11, SM12, XW12, ZH11a].
triples [AAT12b, BM12a, GWH13, HWG13, HWG14, wH12, Siv12b, Siv12a, Ili10b].
Tripotency [Kis15, XX12]. tripotent
[Kis15, XX12]. tripotents [BY11].
trivectors
[DK13a, DK13c, DK11, DK12a, DK13b]. Tropical
[AGM14, AGK11, BS11d, DHS12, GS12f, dP11, Cas10, CJR11, GMH14a, GMH14b, JK11, KNS14, LdP11, Shi12b, Shi12c, SLS13, Wag11, Wil11]. tropicale
[Cas10]. truncated [DK13e, Sto12].
truncation [Cha12, DGMS14]. trust
[CKAC14]. Tsallis [IIK+13]. TSV
[BJRS11]. TT-cross [OT10]. Tucker
Two-tuple [BGK13], tuples [BDS13]. Two
[AH13a, BC12a, BSST13, wH13, IPFD13, LB14, LHG10, LYS13, Ma11, Seg10, Ste11, TT11, AKM14, AR10, AIL12, AK11, BB13b, Bot10a, Bot12, BS10, BS11c, BS13a, Bräi12, BZ13, CGMJ14, CN10a, HO11, Hil14c, HMP12, Jun14, Kis15, KW12, KKM13, KR10, LLS11, LwCJL11, LSR11, Lop11a, LMT10, MW14a, Mar10, MI13b, MP10, NR10, NS12a, PPZ14, dSP10c, dSP12c, Pet10, PWS11, SW11, SH13, TZ12a, TH10, TZ13b, WBWH13, XX12, ZW12b, Ziv12, Zuo10, FF10].

two-by-two [BB13b, KKM13].
two-cyclic [LMT10].
two-dimensional [Ma11, LwCJL11].
two-level [KW12].
two-sided [LYS13, Seg10, PPZ14].
two-variable [AIL12].
Tykhonov [SS10c].
type [AiS13, AAT12a, AK11, BR14a, BRA11, BdlC14, BFS11, BC14a, CL12a, CA10, Dai12, DD11c, Dra12a, FPC13, GH13b, GWH13, GD11a, He11, HM14b, HWG13, HWG14, wH12, IS14, JKN14, KKL14, Lee10, Lin13, Lin14b, LK12, MFGD14, NY14, NT10b, Pag12, Pat12a, Rho10, ST10a, SE13, SS10c, Sch10, Seo13, Sev10, Sev13, Tao11, TP12, Wad14, Wik11, Wik12, Wil13, Wol12, Wor13, CGGS13]. Typical
[SSM13, Bal14, Ber13b, Fri12].

UK [Lim13b].
unbital [Ern13].
unbounded [Aud13, CGM12, For14, GMMFPSS12, Pop14].
uncertainty [Liu13, Sha14a].
unconditional [LM12].
underapproximation [GP13a].
underdetermined [Miy14].
undirected [CGMJ14, CFHL14, FS14a].
uni [ZHZF13].
uni-mode [ZHZF13].
unicellular [FGS11].
unicyclic [AW11, AKM14, BMSW10, CLL12, DC14, DZ12b, FWW13, FY10, GHW+13, HL12, HJL10, HLS11, Kal13b, KP14a, LFS12, LTS13, LZ14, SSGL10, YL10, YZF14, Zhu12c].
Unified [AM13b, KJN14].
uniform [LMY11, CD12b, JZZ13, Nik14, QSW14, XC13].
uniformly [MD12c].
unimodular [GY13, KBS13, MRW11].
union [Ziv12].
unions [Dau12].
unipotent [CHJ13, Bot10a].

 unzip [KKL13a, KKL13b, Lee13c].
uniqueness [LL10a, Der13, Sta14, Wei13a, ZHZF13, Dra14].
unit [AG12, BR12, DW10, MPS10, Refi12, RL13a].
Unital [KLP13, BS12b, BG14b, Wan14b].
unitaly [FCL10, Fur12, Ikr10, MA12, Van10, ZH12].
unitary [GPT12, Ger12, LNT13, AR10, BFK+13, Bud11, CLHQ14, Far11a, FGS11, FFG+11, FHS11, GHS13, KAMS11, LNN14, Li10, LWGM10, LPS13, LMW12, Mol13, Pop10, SY12, Ste13, Tad12, TMSS14, GTW13].
uniterangular [Bie14].
univ [Gle11].
univariate [BL10a].
universal [CFG+14, HO11, AAF+12, AN13, LV14].
universally [HCY10a].

Universitext [Tam12].
University [Bar10b, Gar12, Grüi12, Reil11a, Rod12a].
unordered [KS13a].
unreduced [Wil13].
unstructured [WR12].
updates [EM12].
Updatability [SWA12, JDY13, KD12].
upon [CFJKS13].
Upper [BHKM13, CFL13b, DLS14, DZ12c, WZL12, AHS10, BBG14, CR10a, CGTR14, CSL13, Cir13, CM14, CGR14, CTG13, CI14, DW14, DW14, FFG+11, FTA11, FdC10, Gho13, GLS13b, HC14, JMS11, PJ13, RMAJ10, RL13b, SK13, SWT13, TC13, WW13b, WMZ14, ZLW12, ZZ10, Zhu10b].
upset [BRLS12].
Uriel [BMS14b, Loe12].
Use [PTPL10, VS10].
Using [MS11a, TP13, AHAPP10, AHS10, BBH+12, BEK13, BRZ11, BTTY12, BHAP12, CNT12, GS12d, Han11b, Han13b, Han14b, Kim11a, KZ11, MSP13, OM12, PS14b, RMT11, RW10, SPKS12, TMSS14, UV13, VS13, WXH10a].

Adhikari:2011:BES

Adhikari:2014:SMP

Ahmadi:2012:MRU

Alvarez:2012:MDC

V. Álvarez, J. A. Armario, M. D. Frau, and F. Gudiel. The maximal determinant of cocyclic (−1,1)-matrices

References

Adhikari:2011:BES

Abe:2013:ISO

Abe:2013:ISO

Abe:2013:ISO

Abe:2013:ISO

Albuquerque:2014:PCT

Araujo:2014:LSE

Adiga:2010:SED

Anuradha:2014:SSG

Alaminos:2012:MPZ

Cai:2014:QWM

Abreu:2014:SAB

[ACDM14] Nair Abreu, Liliana Costa, Geir Dahl, and Enide Martins. The skeleton of acyclic

Abreu:2011:BSL

Arias:2013:APO

Adashev:2014:NGZ

Arias:2010:P

Abreu:2012:LSL

Abreu:2014:CCI

Abreu:2014:P

Adam:2014:DEC

Alzer:2011:NPB

Andelic:2011:NVS

Andelic:2011:BID

Azizov:2013:CMD

Asadi:2012:CHM

Abiad:2014:IAB

Abdel-Ghaﬀar:2012:CMF

Asadi:2012:CHM

Abiad:2014:IAB

Abdel-Ghaﬀar:2012:CMF

Armentia:2012:IPG

Aouchiche:2010:SAC

Aouchiche:2014:DSG

Al-Homidan:2010:MCN

Aouchiche:2011:EVS

Aouchiche:2013:TLD

Audenaert:2013:MIB

Arav:2014:MRS

Aouchiche:2010:SUB

Abaid:2012:CPC

Abara:2013:NSE

Ahmadi:2014:LAB

Ayala:2013:LFM

Abreu:2014:OTG

Atreas:2011:BIM

Adm:2012:BMR

Audeh:2012:SVI

Ayupov:2013:LDM

Shavkat Ayupov, Karimbergen Kudaybergenov, and

Angerer:2013:SBH

Anonymous:2010:LEa

Anonymous:2010:LEb

Anonymous:2010:LEc

Anonymous:2010:LED

Anonymous:2010:LEe

Anonymous:2010:LEf

Anonymous:2010:LEG

Anonymous:2010:LEh

Anonymous:2010:LEi

Anonymous:2010:LEj

Anonymous:2010:LEk

Anonymous:2010:LEl

Anonymous:2010:LEM

Anonymous:2010:LEn

Anonymous:2010:LEo

Anonymous:2010:LEp

Anonymous:2010:LEq

Anonymous:2010:LER

Anonymous:2010:LEs
Anonymous: 2012: D

Anonymous: 2012: LR

Anonymous: 2012: LEa

Anonymous: 2012: LEb

Anonymous: 2012: LEc

Anonymous: 2012: LEd

Anonymous: 2012: LEe

Anonymous: 2012: LEf

Anonymous: 2012: LEg

Anonymous. Lists of Editors. *Linear Algebra and its App-
Anonymous:2013:HBL

Anonymous:2013:LPA

Anonymous:2013:LEb

Anonymous:2013:LEc

Anonymous:2013:LEd

Anonymous:2013:LEe

Anonymous:2013:LEf

Anonymous:2013:LEg

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Anonymous:2013:LEh

Anonymous:2013:LEi

Anonymous:2013:LEj

Anonymous:2013:LEk

Anonymous:2013:LEl

Anonymous:2013:LEM

Anonymous:2013:LEN

Anonymous:2013:LEo

Anonymous:2013:LEp

Anonymous:2013:LEq

Anonymous:2013:LER

Anonymous:2013:MHM

Anonymous:2013:MG

Anonymous:2013:RL

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Almeida:2013:NCS

Alvarez-Nodarse:2012:SPC

Abdollahi:2014:CG

Arambasi:2012:BJO

Almeida:2013:NCS

Araujo:2014:LBC

Albeverio:2010:DSO

Ashraf:2013:SSL

João Ferreira Alves and Luís Silva. Periodic paths on nonautonomous graphs. *Linear Algebra and its Applications*, 437(3):1003–1015,

Samuel Burer, Kurt M. Anstreicher, and Mirjam Dür. The difference between 5×5 doubly nonnegative and completely positive matrices. *Linear Algebra and its Applications*, 431(9):1539–1552, October 1, 2009. [BAD09]

Balan:2012:SSTb

Ballico:2014:TRR

Bang:2013:GDR

Banica:2013:DGF

Ben-Ari:2012:IFT

Bapat:2010:CCS

Bapat:2013:MCM

Batzke:2014:GRO

Bauer:2012:NGL

Benzi:2010:QRB

Beasley:2011:CEG

Budnitska:2011:CAO

Bach:2013:NDF

Bai:2013:NBT

Murray R. Bremner, Mike G. Bickis, and Mohsen Soltanifar. Cayley’s hyperdeterminant: a combinatorial approach via representation theory. Linear Algebra and its Applications,

Bockting-Conrad:2014:TPR

Borobia:2014:NMP

Bruалdi:2014:NSR

Benhida:2010:SPK

Breaz:2013:NCM

Beitia:2011:RPO

Bendito:2010:KIN

Bevilacqua:2013:CRA

Batselier:2013:GAF

Batselier:2014:NSM

Bartolone:2011:NLA

Bebiano:2011:IEP

Botelho:2011:SBQ

Behn:2012:SNT

Bart:2010:MIG

Bilge:2011:MLS

Benito:2013:LEN

Benito:2014:EFN

Bodine:2012:SPR
E. Bodine, L. Deaett, J. J. McDonald, D. D. Olesky, and P. van den Driessche. Sign patterns that require or allow particular refined inertias. *Linear Algebra and

Benko:2012:MLD

Beasley:2012:INV

Behrend:2013:FPM

Benzi:2013:RHA

Belardo:2014:BLE

Benner:2012:MBD

Bahrami:2012:LPM
F. Bahrami, A. Bayati Eshkaftaki, and S. M. Manjegani.

Beneduci:2010:SMP

Benko:2011:GLD

Bernstein:2009:MMT

Dennis S. Bernstein. *Matrix Mathematics: Theory,
Berget:2013:EST

Bergqvist:2013:EPT

Braun:2013:LCP

Beyn:2012:IMS

Brualdi:2014:BOT

Brualdi:2014:HTX

Matthias Bolten, Stephanie Friedhoff, Andreas Frommer, Matthias Heming, and

Peter Benner, Helke Faßbender.

Bruhn:2011:BCU

Bhatia:2012:NIR

Bialas:2012:FRC

Murray R. Bremner and Jiaxiong Hu. On Kruskal’s theorem that every $3 \times 3 \times 3$ array has rank at most 5. *Linear Algebra and its Applications*, 439(2):401–421, July 15, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Zhong-Zhi Bai and Apostolos Hadjidimos. Optimization of extrapolated Cayley transform with non-Hermitian pos-

Bourin:2014:JMI

Bhatia:2013:BD

Bulo:2012:ECI

Behrndt:2012:LPM

Bishop:2010:IFS

Betsumiya:2013:UBC

Barriere:2013:FVL

Brunsch:2012:DIA

Barrett:2011:ISJ

Brualdi:2010:SNB

Bahri:2012:NHD

Bini:2013:CKM

Bier:2013:SEE

Agnieszka Bier. On solvability of Engel equations in the group of triangular matrices over a field. *Linear

Abderrahman Bouhamidi and Khalide Jbilou. On the convergence of inexact Newton methods for discrete-time algebraic Riccati equations. *Linear Algebra and

Bouhamidi:2011:ETM

Botelho:2012:SIA

Buchholzer:2012:BEE

Bessenyei:2011:FEG

Betcke:2011:PER

Brualdi:2010:TNM

Barrett:2013:DMR

Wayne Barrett, Mark Kemp-ton, Nicole Malloy, Curtis Nelson, William Sexton, and John Sinkovic. Decompositions of minimum rank

112

Brualdi:2013:PAS

Bapat:2012:WDG

Bistritz:2010:BRU

113

Boutin:2011:MRP

Biyikoglu:2012:GGO

Benitez:2013:SPM

Buczynski:2013:RTG

Bourin:2014:DSP

Bebiano:2012:RHK

Bebiano:2010:TIL

Bourin:2012:DLP

Bourin:2013:PMP

Bai:2011:SSL

Blomeling:2012:MLS

Brunnock:2014:SRN

[BM13c] Murray R. Bremner and Sara Madariaga. Special identities for the pre-Jordan product in

Butkovic:2013:IES

Batzke:2014:IEP

Beasley:2014:PD

Burgos:2012:SPP

Branquinho:2012:RAO

Beagley:2013:BMS

Jonathan Beagley, Lon H. Mitchell, Sivaram K. Narayan, Eileen Radzwon, Sara P. Rimer, Rachael Tomasino, Jennifer Wolfe, and Andrew M. Zimmer. Bounds for minimum semidefinite rank from superpositions and cut-sets. Linear Algebra and
Bermúdez:2013:PI

Bernik:2011:PMS

Belardo:2010:SRU

Francesco Belardo, Enzo M. Li Marzi, Slobodan K. Simić, and Jianfeng Wang. On the spectral radius of unicyclic graphs with prescribed degree sequence. Linear Algebra and its Applications, 432(9):2323–2334, April 15, 2010. CODEN LAAPAW. ISSN 0024-
Belardo:2011:GWS

Bauschke:2010:RAP

Bini:2013:SPE

Bose:2011:DSR

Bose:2012:DSR

Bose:2013:MDS

Brambilla:2011:PPI

Bella:2011:QAF

Bella:2011:RQA

Bozzo:2013:MPI

Basic:2010:PST

Besenyei:2011:CPM

Barreras:2012:CJS

Besenyei:2013:PSE

Barreras:2014:EST

Brualdi:2011:CBD

Baeth:2011:NTM

Bourin:2010:AKI

Bravo:2014:DPI

Branquinho:2012:SRO

Petter Brändén. Solutions to two problems on permanents. *Linear Algebra and its Applications*, 436
Bremner:2014:SRM

Brijder:2013:NTP

Brown:2012:BRU

Brualdi:2010:SD

Brualdi:2011:EC

Brualdi:2013:EC

Brualdi:2014:EC

Boley:2011:CTD

Bracic:2013:HCS

Bottcher:2011:GGB

Bapat:2011:IML

Bendaoud:2011:ALS

Bottcher:2011:CFD

Brodsky:2011:TQT

Bebiano:2012:NRT

Marek Balcerzak and Filip Strobin. Spaceability of the...

[BT10] Oskar Maria Baksalary and Götz Trenkler. On a subspace metric based on matrix rank. *Linear Algebra and

Baksalary:2011:DRM

Barkovsky:2011:HRF

Bayat:2011:AGM

Bebiano:2013:DIS

Baksalary:2014:SDD

Bolten:2012:PSA

Barnsley:2011:EPL

Badawy:2012:PTA

Buzinski:2013:MPF

Bikchentaev:2011:RTR

Bydder:2010:SCL

Bu:2014:RDS

Bu:2012:SLS

Bu:2012:STW

Cristina Caldeira. Pairs of sets with small sunset and small periodic product set. *Linear Algebra and...

Campos:2013:ARC

Cardinal:2010:SMR

Carriegos:2013:ECL

Castella:2010:EAL

Carrieu:2010:CCS

Cardanobile:2011:SMP

Caswell:2013:SAD

Causin:2011:DSR

Cason:2013:IML

Chebotarev:2013:SEL

Caiafa:2010:GCR

Chang:2012:MMS

Carriegos:2014:TFA

Cavers:2012:SAM
M. Cavers, S. M. Cioaba, S. Fallat, D. A. Gregory,

Camacho:2014:FLA

Camacho:2013:LAN

Camacho:2013:FZA

Chen:2014:RSA

Cardinali:2010:RPD

Cigler:2011:LGS

Grega Cigler and Roman Drnovšek. From local to global similarity of matrix groups. *Linear Algebra and

Cigler:2013:SMN

Can:2014:EBS

Cho:2010:EOH

Cicalo:2012:SDN

Conflitti:2012:MLC

Carnicer:2010:RMT

Cechlarova:2010:MML

Carmona:2014:DEO

Centrone:2011:GIG

Cerzo:2010:STI
Chang:2014:VDP

Cameron:2014:UST

Charles:2013:RBD

Cavers:2010:NLE

Chen:2010:LEB

Chang:2014:LGN

139

Cheung:2011:PST

Cheng:2013:NNR

Chan:2013:MEI

Couselo:2010:SCL

Castillo:2011:PST

Corach:2012:USI

Chen:2014:UGH

Zhao Chen, Matthew Grimm, Paul McMichael, and Charles R. Johnson. Undirected graphs of Hermitian matrices that

Ciesielski:2014:LSA

Castro-Gonzalez:2010:DIP

Castro-Gonzalez:2013:GIM

Cruz:2014:UBE

Roberto Cruz, Hernán Giraldo, and Juan Rada. An upper bound for the energy of radial digraphs. *Linear Algebra and its Applications*, 442(??):75–81, February 1, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Chen:2013:IOR

Chen:2014:LMC

Cheng:2014:CSN

See [CG13].

Chiumiento:2013:NOL

Can:2013:UIM

Casazza:2013:NSC

Choi:2012:EIM

Man-Duen Choi, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze. Every invertible

Cadney:2014:IRM

Choi:2013:PCC

Chugunov:2010:CSN

Chang:2012:CGR

Chang:2013:DME

Chang:2014:IRM

Chugunov:2010:CSN

Cirrito:2013:GAU

Cirici:2014:CIS

Chen:2010:GSP

Cheon:2011:SPR

Chen:2012:MVC

Cigler:2014:SEC

Corey:2013:PFV

Cheon:2013:ARG

Cheon:2013:EFO

Chan:2011:MMT

Melody Chan, Anders Jensen, and Elena Rubei. The 4×4 minors of a $5 \times n$ matrix are a tropical basis. *Linear Algebra and its Applications*, 435(7):1598–1611, October 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Canete:2013:CDL

Casanellas:2013:GME

Choi:2014:MSB

Jihoon Choi and Suh-Ryung Kim. On the matrix sequence $\{\Gamma(A^m)\}_{m=1}^{\infty}$ for a Boolean matrix A whose digraph is linearly connected.

[CKAC14]

[CKS10]

[CKST11]

Shexi Chen and Bolian Liu. The scrambling index of symmetric primitive matrices. *Linear Algebra and its Applications*, 433(6):1110–1126, November 1, 2010. CODEN LAAPAW. ISSN 0024-

Sean Clark, Chi-Kwong Li, and Nung-Sing Sze. Multiplicative maps preserving the higher rank numerical ranges and radii. *Linear Algebra and its Applications*, 432(11):2729–2738, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Czornik:2010:EED

Chan:2014:CRM

Cardoso:2013:EHG

Chammam:2012:OPC

Conde:2012:OIR

Covas:2010:LJA

Cheung:2010:RBZ

Chien:2010:JNR

Chooi:2010:CA

Czornik:2010:RDL

Chien:2011:BHR

[CN11a] Mao-Ting Chien and Hiroshi Nakazato. The boundary of
higher rank numerical ranges.

Chien:2011:CDR

Chien:2011:RNR

[CN11c] Mao-Ting Chien and Hiroshi Nakazato. Reduction of the c-numercial range to the classical numerical range.

Chooi:2011:CAC

Czornik:2011:SLA

Adam Czornik and Aleksander Nawrat. Stability by the linear approximation for discrete equations.

Cardon:2012:NMM

Chien:2012:CVH

[CN12b] Mao-Ting Chien and Hiroshi Nakazato. Critical values for higher rank numerical ranges associated with roulette curves.

Chien:2012:DRC

Linear Algebra and its Applications, 157

Amber Church, Rajesh Pereira, and David Kribs. Majoriz-

Chandrashekaran:2010:SM

Chandrashekaran:2010:PSL

Chang:2013:SVP

Cardoso:2010:SUB

Carlini:2010:PMN

Carvalho:2010:IGR

Paula Carvalho and Paula Rama. Integral graphs and

Crane:2013:SAI

Camara:2014:OSI

Camenga:2014:GWN

Canto:2010:CR

Canto:2013:QFN

Canto:2014:FRF

Ccapa:2010:EDP

Cvetkovic:2010:TST

Cvetkovic:2011:GSC

Cartwright:2013:NET

Chen:2013:HFG

Costa:2010:CGT

Costa:2011:CGT

Campello:2013:PAL

Leandro Cagliero and Paulo Tirao. The cohomology of

Cheng:2010:CMF

Chen:2010:SBL

Chen:2011:FDM

Cheon:2012:SRT

Cioaba:2010:PED

Cameron:2011:HDS

Czornik:2010:PED

Dong:2010:NCP

Hongbo Dong and Kurt Anstreicher. A note on 5×5

[Dahl:2010:MPM]

[Dahl:2011:PRI]

[Dahl:2012:MMC]

[Dahl:2012:MBR]

[Dai:2011:EBL]

[Dai:2012:GTS]

[Dai:2013:SCS]

Xiongping Dai. Some criteria for spectral finiteness of a finite subset of the real matrix space $\mathbb{R}^{d\times d}$, *Linear Algebra and its Applications*, 438(6):2717–2727, March 15, 2013. CODEN LAAPA W. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Das:2010:CIA

Das:2010:CIS

Das:2011:PCI

Das:2013:PCI

Daugulis:2012:PMC

Dax:2010:EPO

Duan:2014:GLR

Deng:2013:KIC

Deng:2014:EBU

Deng:2012:ICP

Deng:2012:PCC

DeTeran:2010:FOS

Dinh:2010:MPZ
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Dogan-Dunlap:2010:LAS

DeTeran:2011:SEA

Derevyagin:2011:DTJ

Dincic:2011:MTR

Dou:2011:NOP

Duchsherer:2014:SPD

Dufner:2013:RBD

Deng:2010:PGQ

Deng:2011:CRG

Derksen:2013:KUI

daFonseca:2010:PTM

deFreitas:2014:MAD

deFreitas:2010:IFI

Dumas:2010:SMS

Dixon:2014:TTF

Dyer:2014:SEH

Dikranjan:2013:EAG

Dehghan:2010:GCM

Donatelli:2010:CNA

Dehghan:2012:GRA

David M. Duncan, Thomas R. Hoffman, and James P. Solazzo. Equiangular tight

Dinitz:2012:TDI

Dinwoodie:2011:SMB

Dascalescu:2013:FSM

Ducey:2014:IIA

Duggal:2012:QCC

Duggal:2012:PCP

DeBruyn:2011:TDS

B. De Bruyn and M. Kwiatkowski. On the trivectors of a 6-dimensional symplectic vector

Dym:2013:TF

Duggal:2014:PFC

Dolgov:2012:RPS

DiVincenzo:2010:GIT

Draper:2014:FRF

DAndrea:2013:SMR

ISSN 0024-3795 (print), 1873-1856 (electronic).

Du:2010:NNE

Dubsky:2014:CIS

deLima:2011:SES

DeTeran:2014:FTM

delaPuente:2011:TLM

delaRosa:2012:HM

[Kennett L. de la Rosa, Dennis I. Merino, and Agnes T. Paras. The J–Householder matrices. *Linear Algebra
Das:2014:UBS

Dumitru:2013:SVI

Dolinar:2011:SPO

Dohi:2010:DTB

DelaCruz:2011:PDM

deMalafosse:2012:SSA

Dopazo:2010:FRR

E. Dopazo and M. F. Martinez-Serrano. Further re-

Dopazo:2013:DDI

Dolzan:2011:CGM

Dolzan:2011:NGM

deOliveira:2012:SSP

Dodig:2010:ESR

Dodig:2013:CMP

Marija Dodig. Completion up to a matrix pencil with column minimal indices as the only nontrivial Kronecker invariants. *Linear Algebra and its Applications*, 438(8):3155–3173, April 15, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

deOliveira:2013:CLS

Debora Duarte de Oliveira, Vyacheslav Futorny, Tatiana Klimchuk, Dmitry Kovalenko,

Dieci:2012:HMD

Duarte:2012:RSD

Dossal:2010:NEC

Ding:2013:TNT

Dragomir:2012:HHT

Drazin:2012:COG

Drazin:2014:GIU

[dSP11b] Clément de Seguins Pazzis. To what extent is a large space of matrices not closed under...

Pazzis:2012:LAS

Pazzis:2012:LPN

Pazzis:2012:STT

Pazzis:2012:WDL

Pazzis:2014:SMF

Dimitriou:2010:ETD

Druinsky:2011:FMT

Diaz–Toca:2011:PBN

Defez:2011:IBH

DeMarchi:2014:CMV

[DU14] Emilio Defez, Michael M. Tung, and Jorge Sastre. Improvement on the bound of Hermite matrix polynomials.

Dubsky:2014:CSW

Duggal:2011:QES

Duggal:2012:TPI

Dukes:2012:RDD

Dukes:2015:CSD

Dumas:2013:JSR

Dumitrescu:2013:STL

Dureisseix:2012:GFF

Delvaux:2010:SPG

[DV10] Steven Delvaux and Marc Van Barel. Structures preserved

[DeSchepper:2014:GDW]

[Dalfo:2011:PAD]

[Dette:2010:MMU]

[Deng:2011:RDI]

[Du:2012:CMT]

[Du:2012:LDG]

[Du:2013:BGM]
Yiqiu Du and Yu Wang. Biderivations of generalized...

Du:2014:JHU

Du:2014:CSH

Deng:2012:DRO

Du:2013:CSP

Das:2012:CBK

Das:2013:SPL

Du:2012:MEI

Estrada:2014:MWE

Estrada:2014:WEG

Ekstrand:2013:PSZ

Ejov:2009:NGR

Ejov:2010:ENG

Ernst:2014:P

Oliver G. Ernst, Chun-Hua Guo, Jörg Liesen, and Leiba

Euler:2012:SCC

Edholm:2012:VES

Einstein:2011:RFV

Eastman:2014:CMP

Eastman:2018:CSC

Elouaﬁ:2011:ELT
[Mohamed Elouaf, An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices. Linear Algebra
Elsner:2011:BMP

Erway:2012:LMB

Ebanks:2011:HTA

Ensenbach:2010:DDP

Ehrhardt:2013:RMI

Eremita:2013:FID

Ernst:2013:UAF

Erdmann:2011:CPS

Ehrhardt:2013:BAQ

Ellard:2014:CNR

Estrada:2012:CDG

Estrada:2012:PLM

Ellens:2011:EGR

Esslamzadeh:2013:SQO

Ellers:2011:CSC

Elsner:2010:MAP

Eu:2012:HDS

Estevez:2013:DRE

Fanai:2010:EPT

Fang:2010:NIE

Fang:2012:MVS
Farenick:2011:ACU

Farid:2011:NMD

Fong:2010:AUI

Fernandes:2012:MAJ

Fernandes:2014:TRP

Fernandes:2014:SPV
Fernandes:2010:DCT

Feng:2013:MAA

Fleischhack:2010:APH

Fallat:2012:BLE

Farenick:2011:CUSb

Farber:2014:EET

Foniok:2011:CCM
68–80, January 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

S. Friedland, S. Gaubert, and L. Han. Perron–Frobenius theorem for nonnegative mul-

Fiedler:2012:M

Fiedler:2012:NPG

Fiedler:2013:SGT

Fiedler:2014:MAC

Forstall:2011:PEI

Virginia Forstall, Aaron Herman, Chi-Kwong Li, Nung-Sing Sze, and Vincent Yannello. Preservers of eigenvalue inclusion sets of matrix products. *Linear Algebra and its Applications*, 434(1):285–293, January 1, 2011. CODEN LAAPAW. ISSN 0024-

[Fid10] Francesco Fidaleo. The entangled ergodic theorem in the

[Fid14]

Fiedler:2010:NHC

Fiedler:2011:DMM

Fiedler:2011:MGG

Fiedler:2013:SOV

Fial:2012:PDR

Fischer:2014:SSA

Ferguson:2010:GOI

Furtado:2010:OIS

Fallat:2011:TNM

Furtado:2014:SCA

Furtado:2014:SMP

Fendler:2013:DFT

Friedland:2013:PSI

[FKLT13] Shmuel Friedland, Tamara Kolda, Lek-Heng Lim, and Eugene Tyrtyshnikov. Preface to the special issue on tensors and multilinear al-

Friedland:2012:MRG

Fong:2011:NNC

Feng:2012:ENM

Fujii:2010:DCM

Li:2011:PPA

Fania:2011:VSS

Fiedler:2011:CMS

Fickus:2012:NER

Fiedler:2013:MM

Ferrer:2013:DMC

Fickus:2014:PRV

Filippiak:2012:MDC

Fickus:2012:SET

Farid:2012:HSS

[F. O. Farid, M. S. Moslehian, Qing-Wen Wang, and Zhong-Cheng Wu. On the Hermitian solutions to a system of adjointable operator

Fiedler:2010:SRH

Fan:2011:SBC

Fujii:2013:SGF

Fournier:2014:MRI

Foucart:2014:SRI

Franchi:2011:IRA

Farnell:2013:FAS

Shawn Farnell and Rachel Pries. Families of Artin–

Takayuki Furuta. Positive semidefinite solutions of the operator equation $\sum_{i=1}^m A_i^{-1} X A_i^{-1} = B$. *Linear Algebra and its Applications*...

Peter E. Frenkel and Mihály Weiner. On vector configurations that can be realized in the cone of positive matrices. *Linear Algebra and its Applications*, 459(??):465–474, October 15,

See [FJ11].

Garoni:2013:EME

Gau:2010:NRR

Goldberg:2011:CVN

Goldberg:2013:ZFS

Greenbaum:2012:CCP

Gutman:2014:RE

Gong:2010:NGP

Gillis:2012:GIN

Gougeia:2013:WNM

Gath:2011:BME

Gupta:2012:CSV

Ghosseiri:2013:BUT

Gerasimova:2013:SUE

Grammont:2011:FAN

Gong:2013:IWO

Greco:2012:PIM

Ghobber:2011:UPF

Gratton:2013:SBE

Gover:2010:DVP

Gongopadhyay:2011:EIN

Gunther:2012:STB

Ghareghani:2014:MCB

Goldberg:2014:SPS

Gunther:2014:LFP

222
Guo:2011:CSS

Guillot:2013:CEC

Griggs:2010:QLF

Germina:2011:PLG

Guo:2010:CRS

Xianya Geng, Shuchao Li, and Slobodan K. Simić. On the spectral radius of quasi-k-

Guo:2012:SLS

Griffing:2013:EIP

Guo:2013:NUB

Gao:2014:MCS

Gursoy:2011:PAS

Godjali:2012:THP

Goldberg:2013:OCV

Gonzalez:2011:ONI

Ghidini:2012:CHP

Garnett:2014:INM

Grundy:2012:CPS

Garnett:2014:NSP

Ghanbari:2012:GIE

Gillis:2013:SNM

Gongopadhyay:2013:RCH

Goncalves:2014:IGN

Ganikhodzhaev:2010:DSQ

Gomez:2010:STI

Gowda:2010:SCS

Guersenzvaig:2010:SMA

Gustafson:2010:SAS

Gao:2011:NCS

Gutman:2011:ECW

Garcia:2013:MEI

See also Part II [CGGS13].

Garnett:2013:NCM

Guo:2011:AACL

Gowda:2013:AGC

Goowda:2012:PLL

Grubisic:2012:REP

Guo:2013:ARE

Guven:2012:SDC

Gracia:2011:LSC

Gu:2011:SOG

Gau:2013:HRN

Guo:2013:SLS

[GX12a] Shi-Cai Gong and Guang-Hui Xu. 3-regular digraphs with optimum skew energy. *Linear Algebra and its Applications*,

Edward Hanson. A characterization of Leonard pairs us-
ing the parameters \(\{a_i\}_{i=0}^d \).

Hansen:2014:ROM

Hanson:2014:CBL

Huang:2010:TNN

Hai:2014:CIU

Huang:2010:NUO

Huang:2010:MRZ

Halikias:2012:SSD

He:2011:RAA

He:2013:PCN

He:2014:CCI

Henrion:2010:DRC

Heersink:2012:MPI

[HF12] Daniel K. Heersink and Reinhard Furrer. On Moore-

ISSN 0024-3795 (print), 1873-1856 (electronic).

[HHM10] H. Tracy Hall, Leslie Hogben, Ryan Martin, and Bryan Shader. Expected values...
of parameters associated with the minimum rank of a graph.

Holmes:2013:ABI

Hiai:2013:CCM

Hildebrand:2012:ERC

Hilscher:2012:OTD

Hill:2013:IDS

Hilberdink:2014:GSI

Hildebrand:2014:MZC

Hiller:2014:PTC

Hirn:2010:NHF

Horn:2012:MA

Huo:2010:NUG

Huo:2011:SCM

Hoff:2012:TPS

He:2013:SBS

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Hirzallah:2012:EID
[HKK12] Omar Hirzallah, Fuad Kittaneh, Mario Kri

Halikias:2013:DSS

Hiai:2013:FCP
Hansen:2010:BCS

Huang:2010:SCS

Huang:2010:GSI

He:2011:OTF

Huang:2011:BFS

Huang:2011:ZPI

Huang:2011:ZPI

Hwang:2011:CBW

He:2012:SLI

Hladik:2013:WSS

Hu:2012:MER

Huo:2011:CSP

Henk:2010:MZC

Hou:2010:MPS

Hentzel:2012:SIB

Hiai:2012:RMP

Hou:2013:LMP

Hu:2013:CHP

Heinig:2011:FAT

Herrero:2010:NSR

Herrero:2013:RBD

Hayden:1999:MCD

Hogben:2010:MGN

Homan:2012:CET

Holubowski:2012:PSG

Huhtanen:2012:CGP

Harrell:2014:CSS

[Hua12a]

[Hua12b]

[Hua13a]

[Hua13b]

Huang:2012:EHT

[Hun10]

Hunter:2010:SSP

[Hun14]

Hunter:2014:GIM

257
Hurlimann:2013:GHL

Han:2011:JDT

Harrison:2014:RIF

Hwang:2011:GCH

Hwang:2012:RCH

Hobart:2014:ABC

Holguín:2014:SMA

Irving:2012:BHR

Ito:2014:TPT

Ito:2011:GPP

Ito:2011:MTS

Ito:2013:RMG

Jain:2011:DA

Jarlebring:2012:CFN

Jiang:2013:SGI

Jencova:2013:EGQ

Ji:2010:MPO

Jiao:2010:AMD

Meiyan Jiao and Jinchuan Hou. Additive maps derivable or Jordan derivable at zero point on nest algebras.

Jablonski:2011:HCP

Johnson:2011:MST

Johansson:2013:SFR

Johnson:2012:SEB

Jung:2010:WGM

Jean-Louis:2013:SAS

Johnson:2011:CEC

Jaklic:2012:NMC

See [HRW99].

Johnston:2013:GMC

Jacobs:2011:LET

Johnson:2011:ESM

Jacobs:2013:ELT

Jungers:2012:APM

Jungers:2014:FSD

Jeyaraman:2010:JQS

Jaroslav Kautsky. Generalized Pascal matrices generate classes closed under...

Kawamura:2012:TBD

Kawamura:2013:MYB

Kumbasar:2012:CFF

Kannan:2014:CSP

Kannan:2014:GPP

Kalaimani:2013:GPA

Koliha:2012:GDI

Kuo:2012:QMU

Koshlukov:2013:PIA

Keckic:2013:CKE

K:2012:BGG

Kalofolias:2012:CSN

M. T. Karaev and N. Sh. Iskenderov. Numerical range

Kim:2013:QHF

Kim:2013:OEF

Kirkland:2010:FET

Kirkland:2014:MCE

Kisi:2015:CTL

Ko:2013:SSC

Kari:2012:CWF

Kang:2012:CHT

Kaashoek:2013:CMP

Kum:2013:RAS

Klasa:2010:FPD

Kim:2011:MGM

Krnic:2012:MJO

280
Kribs:2013:UAS

Khurana:2012:QTD

Kosan:2014:BFM

Kosan:2014:WEM

Kilmer:2011:FST

Kosan:2010:DRI

Kosan:2012:SCG

Roi Krakovski and Bojan Mohar. Spectrum of Cayley graphs on the symmet-
Katsouleas:2013:IHN

Kurata:2013:CMB

Klein:2014:AEF

Karapiperi:2012:EAE

Khalil:2013:SST

Kaur:2014:FRH

Knuppel:2010:CGO

Knuppel:2013:CIP

Knuppel:2013:CSL

Knull:2014:CBP

Katz:2014:CTH

Khudoyberdiyev:2013:CAL

A. Kh. Khudoyberdiyev and B. A. Omirov. The classi-

Kohler:2014:CSD

Kirkland:2011:ACA

Koledin:2013:RGG

Konstantopoulos:2013:MAP

Kutyniok:2013:SF

Kandolf:2014:RBE

Kozyakin:2010:ELC

Kozyakin:2014:BWF

Kozyakin:2014:MPC

Kim:2012:BGC

Kanan:2013:NCB

Kalita:2014:REP

Krnic:2014:MA

Mario Krnić and Josip Pecarić. More accurate weak majorization relations for the Jensen and some related inequalities. *Linear Algebra...
Kutyniok:2014:PSI

Koolen:2011:IIS

Kulkarni:2010:FGB

Khare:2012:SMD

Krakovski:2012:PAV

Krakovski:2013:ABM

Kushel:2011:GEO

Kannan:2012:MPI

Klein:2012:TSD

Kim:2013:UML

Koledin:2013:RBG

Kapil:2014:CMO

Klein:2014:BHG

Koledin:2014:RBR

Kaur:2011:GMV

Kaur:2012:GDI

Kang:2012:LPT

Kim:2012:EDD

Katz:2012:CMM

Ricardo D. Katz, Hans Schneider, and Sergy Sergeev. On commuting matrices in max algebra and in classical

Kurata:2010:MED

Kurata:2012:MEE

Kushel:2012:CTG

Kushel:2013:IPE

Kuzman:2010:ATE

Boštjan Kuzman. *Arc-transitive elementary abelian covers of the complete graph K_5*. *Linear Algebra and its Applications*, 433(11–12):
Kaltofen:2013:FFM

Kim:2014:SPT

Kyrchei:2013:ERF

Lee:2014:TPM

Li:2012:SQA

Liu:2013:HNO

Li:2011:PGE

Liu:2010:SNB

Lee:2013:PDR

Lee:2013:MMU

Lee:2013:SLL

Li:2012:NLG

Li:2013:SCT

Liu:2014:OPC

Huang:2010:BDP

Liu:2010:SCD

Lopez:2010:ODF

Leng:2011:ODF

Huang:2011:BDP

Liu:2013:LSC

Li:2010:TEC

Liu:2014:NED

Qinghai Liu, Yanmei Hong, Xiaofeng Gu, and Hongjian Lai. Note on edge-disjoint spanning trees and eigenvalues. *Linear Algebra

Leng:2013:PMO

[172x646] Leng:2013:PMO

Liau:2012:NSC

[172x646] Liau:2012:NSC

Liu:2013:NSC

[172x646] Liu:2013:NSC

Liu:2014:EDS

Li:2010:IGT

Liu:2011:SCG

Liu:2012:SCG

Li:2010:NUP

Lin:2013:DSG

Liu:2011:TSC

Li:2012:PPL

Lim:2010:SGP

Lim:2011:SCA

Yongdo Lim. Symmetric \(\Gamma \)-submanifolds of positive definite matrices and the Sylvester equation \(XM = NX \). *Linear Algebra and its Applications*, 435(9):2285–2295, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Lin:2013:FTD

Lin:2014:CPM

Lin:2014:OTI

Lippert:2010:FME

Liu:2013:SFS

Liu:2014:CMI

Liu:2014:SCP

Lin:2010:SCP

Liu:2010:SLS

Liu:2010:MBR

Liu:2010:SRB

Liu:2010:SRS

Lee:2011:CSD

Liau:2011:GLD

Muhuo Liu and Bolian Liu. On the spectral radii and the signless Laplacian spectral radii of \(c \)-cyclic graphs with fixed maximum degree. *Linear Algebra and its Applications*, 435(12):3045–3055,
December 15, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Mei Lu, Huiqing Liu, and Feng Tian. Spectral radius and Hamiltonian graphs.

Jing Li, Xueliang Li, and Yongtang Shi. On the maximal energy tree with two maximum degree vertices. *Linear Algebra and its Applications*, 435(9):2272–2284, November 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).
Liu:2013:ECS

Li:2014:SFI

Lee:2011:MVW

Lemos:2010:CHB

Lomadze:2010:SIL

Luzon:2010:RRP

Lee:2011:PNI

Livshits:2013:PAla

Livshits:2013:PAlb
See [CLOK13].

Louka:2010:MPE

Liu:2012:FAG

Liu:2011:UBN

Lemmens:2012:NPF

Lankeit:2014:MML

Liu:2013:USC

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.
Li:2012:PME

Loewy:2012:UGR

Lomadze:2011:RDO

Lomadze:2013:NEF

Lopatin:2011:MGS

Loperfido:2011:SAF

Li:2010:APM

Li:2012:MPJ
Lim:2014:WIM

Leventides:2014:ADA

Luk:2011:PLA

Li:2013:LPT

Luk:2011:PLA

Li:2013:SME

Huiqiu Lin and Jinlong Shu. Spectral radius of digraphs with given dichromatic number. *Linear Algebra and its Applications*, 434(12):2462–2467, June 15, 2011. CODEN LAAPAW. ISSN 0024-

Liu:2011:CRP

Lebtahi:2013:MSI

Limbupasiriporn:2012:LWC

Lim:2010:BLM

Loewy:2010:MEP

Li:2011:LSRa

Lim:2011:ROP

Levene:2016:CSC

Li:2013:SLC
Lu:2011:LDO

Lu:2012:RBW

Lee:2011:SSS

LV12

Laurent:2014:PSM

Lang:2012:EGL

Li:2012:LES

Fenggao Li, Kaishun Wang, and Jun Guo. More on

Li:2010:SPS

Li:2012:SPS

Lu:2010:EOF

Li:2014:MCC

Li:2011:SLS

Liu:2013:ROC

Luo:2012:LTL

Lei:2014:SDS

Liu:2013:PCL

Vakhtang Lomadze and M. Khurram Zafar. First order rep-

Li:2012:PPS

Li:2012:SLI

Liu:2012:SCS

Mahmoud:2011:NFD

Mourad:2013:ACD

Marovt:2010:HMS

Mary:2011:GIG
X. Mary. On generalized inverses and Green’s relations.

Martino:2013:PIJ

Mary:2013:RG1

Mom:2012:CEU

Mao:2013:MNP

Meini:2013:SDT

Melman:2013:GVP

Merlet:2010:SMA

Merino:2012:SOM
Mey:2012:ZFS

Martin:2014:GSH

Ma:2011:GFI

Mey:2014:MNN

Marsli:2013:FRG

Mattila:2013:DIJ

Miguel:2013:NCA

Mirman:2010:SCP

Mitrouli:2011:ODE

Miyajima:2013:FES

Miyajima:2014:CES

Mitchell:2011:GCC

Mirzakhah:2012:SRS

Maryam Mirzakhah and Dariush Kiani. Some results on signless Laplacian coefficients of graphs. *Linear Algebra and its Applications*, 437...
Martin:2010:ILT

Malmskog:2010:ADI

Marco:2010:PLS

Maehara:2011:SSV

McLeman:2011:SC

Magret:2012:ECE

Mohammad Sal Moslehian and Hamed Najafi. An extension of the Löwner–Heinz...

enhancements/fy1114/2010931704.html.

[Mor10] Ian D. Morris. Criteria for the stability of the finiteness property and for the uniqueness

Myskov:2014:RIM

Merino:2010:SOM

Merino:2012:HM

Dennis I. Merino, Agnes T. Paras, and Terrence Erard D. Teh. The A_s-Householder

Merino:2010:PDM

Marczak:2010:CIQ

Moghaddamfar:2010:MRA

Merino:2012:HM

Dennis I. Merino, Agnes T. Paras, and Terrence Erard D. Teh. The A_s-Householder

McDonald:2014:MRE

McTigue:2011:PMW

McTigue:2013:PMW

McTigue:2014:PMC

Mead:2010:LSP

Monsalve:2010:NIF

Moslehian:2010:GIP

Mohammad Sal Moslehian and Rajna Raji. A Grüss in-

Marrero:2011:CFG

Medina:2012:ECW

Massarenti:2013:RIM

Monsalve:2014:CSN

Mishra:2012:GMM

Mallik:2013:CGM

Mansour:2013:PSS

Monfared:2013:CMG

Mbekhta:2014:QIA

Mizuno:2014:SWB

Myskova:2014:RFI

Antonio J. Calderón Martíń and José M. Sánchez-Delgado. On split Leibniz superalge-
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Alexander Malyshev, Miloud Sadkane, and Olivier Pourquier. Circular tricho-
tomy of the spectrum of regular matrix pencils. Linear Algebra and its Applications, 435(3):717–
733, August 1, 2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Asieh A. Mofrad, M.-R. Sadeghi, and D. Panario. Solving sparse linear sys-
tems of equations over finite fields using bit-flipping algorithm. Linear Algebra and its Applications, 439(7):
1815–1824, October 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

V. Mehrmann, C. Schröder, and V. Simoncini. An implicitly-restarted Krylov
subspace method for real symmetric/skew-symmetric eigenproblems. Linear Al-
science/article/pii/S0024379513003431.

Alok Mishra, Rajendra Kumar Sharma, and Wagish Shukla. On the self-dual
science/article/pii/S0024379514003164.

J. W. Moon, Zhisheng Shuai, and P. van den Driessche. Walks and cycles on a di-
graph with application to population dynamics. Linear Algebra and its Applications, 451(?):182–196, June
science/article/pii/S0024379514003164.

341
Meyer:2012:CHT

Moslehian:2011:SNI

Ma:2012:FTS

Macias-Virgos:2010:SMP

Masaro:2010:CWL

Mert:2012:UPG

M. Ram Murty and Junho Peter Whang. The uncertainty principle and a generalization

Ma:2014:NEC

Mason:2014:ENP

Minchenko:2014:SMR

Ma:2013:PNIb

McKee:2014:TBP

Ma:2013:PNIa

343
Myskova:2012:IMP

Meng:2010:OPB

Marcellan:2011:DPS

Marcaida:2012:HBO

Matthies:2012:SSS

Mo:2012:MSS

Ma:2013:ESC

Nakaoka:2014:SCM

Nikolov:2013:RNG

Neogy:2011:SMC

Nesetril:2013:NFV

Nemirovsky:2013:TAM

Netzer:2010:SRN

Neytcheva:2011:EES

Niezgoda:2010:AOC

Niezgoda:2011:MRC

Niezgoda:2012:COG

Niezgoda:2013:SSV

Nikiforov:2010:CZP

Nikiforov:2010:SRG

Nikiforov:2011:SLS

Nikiforov:2013:IMF

V. Nikiforov. The influence of Miroslav Fiedler on spectral graph theory. Linear Algebra and its Applications, 439(4):818–821, August 15,

Reshmi Nair and Bryan L. Shader. Acyclic matrices

Special issue in honor of Abraham Berman, Moshe Goldberg, and Raphael Loewy.

Ngo:2014:VCN

Nina:2013:JCF

Nakatsukasa:2013:MAG

Nomura:2010:STP

Nomura:2010:TPR

Napp:2011:LQC

Ivan Oseledets and Ekaterina Muravleva. Fast orthogonalization to the kernel of the discrete gradient operator with...

Oseledets:2010:TCA

Ogura:2013:GJS

Ogura:2014:LFJ

M. Ogura and C. F. Martin. A limit formula for joint spectral radius with p-radius of probability distributions. *Linear Algebra and its Applications*, 458(??):605–625, October 1, 2014. CODEN LAAPAW.

Olshevsky:2010:GM

Omladic:2012:SAS

Oblak:2014:GAA

Oseledets:2012:RQM

Osaka:2012:DPS

Olesky:2012:SPN

Otopal:2012:RKC

Okoh:2010:RHC

Ozdemir:2013:SSS

Pagacz:2012:WTD

Palfa:2013:WMM

Miklós Pálfi. Weighted matrix means and symmetriza-
Paniello:2011:SMA

Pan:2012:DMD

Pankov:2012:EGG

Petrovic:2011:FRL

Petrovic:2011:LEC

Pate:2010:LBI

Pate:2012:HTM
Patricio:2012:MPI

Porras:2010:CCC

Pan:2012:SMS

Patuzzi:2014:ISC

Potra:2013:CBA

Pellegrino:2014:SCA

Peña:2014:OTA

J. M. Peña. An optimal test for almost strict to-

Peperko:2011:CGS

Peperko:2012:BGJ

Pereira:2011:BLR

Peretz:2012:CAS

PereiradaSilvaeSilva:2013:GIE

Peretz:2014:ASF

Marcela Parraguez and Asuman Oktac. Construction of the vector space concept from the viewpoint of APOS theory. *Linear Algebra and its Applications*, 432(8):2112–2124,
April 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Popovych:2014:CNU

Park:2011:CNS

Poritz:2011:EPS

Piwowarczyk:2012:HPP

Priyadarshan:2012:PCP

Parton:2013:SMT

Puerta:2013:LSI

Pan:2013:RPV

Pan:2011:MCP

Palacios:2010:SRH

Pereira:2013:WTS

Perrucci:2013:ZNR

Protasov:2010:WDS

Pivovarchik:2013:DNI

Popov:2011:NMS

Pryporova:2010:CCD

Pfael:2012:LSD

Psarrakos:2012:DBP

Petra:2014:ACR

Polak:2014:CSC

Psarrakos:2012:DBP

Pula:2011:MPT

Kyle Pula, Seok-Zun Song, and Ian M. Wanless. Minimum permanents on two faces of the polytope of doubly

366

Philipp:2013:NRN

Potts:2013:PEN

Possani:2010:UMT

Pulka:2011:MPE

Protasov:2012:SNM

Wang:2014:GSS

Xue ping Wang and Hui li Wang. The generators of

Pang:2010:EOS

Pei:2014:EAT

Pang:2011:CPP

Qi:2010:CDB

Qi:2010:CAL

Qi:2013:CLD

Qi:2013:SNT

Qi:2014:EOS

Qi:2014:RUH

Quarez:2012:SDR

Quinlan:2011:SMN

Qiu:2012:CLC

Rakic:2014:GMP

Rande:2011:LPR

Rezghi:2011:DTC

Reff:2012:SPC

Regalia:2013:MCA

Rehkopf:2010:STD

Rehkopf:2011:CTD

Reichel:2011:RMM

Lothar Reichel. Review of “Matrices, Moments and Quadrature with Applications” by G. H. Golub and

Reis:2011:LEE

Rezaei:2013:CHG

Rada:2013:EDH

Rhee:2010:NFI

Rhodes:2010:CPK

Rimas:2012:EEP

Robbiano:2010:IBL

María Robbiano and Raúl Jiménez. Improved bounds for the Laplacian energy of Bethe trees. *Linear Algebra and its Applications*, 432(9):2222–2229, April 15, 2010. CODEN LAAPAW. ISSN 0024-

Oscar Rojo, Luis Medina, Nair Abreu, and Claudia Justel. On the algebraic connectivity of some caterpillars: a

[Ramos:2014:ORM]

[Rodman:2011:RLP]

[Rodman:2012:BRB]

[Rodman:2012:LPS]

Reff:2012:OHA

Rabe:2014:PPP

Rakhimov:2012:DSC

Rasajski:2011:MR

Rendel:2013:ING

Rodman:2010:LTL

Rowlinson:2010:SCR

Ruan:2012:IGR

Rubei:2013:CSA

Rudolf:2012:RDK
Tina Rudolf. Reflexivity defect of kernels of the elementary operators of length

Ragnarsson:2013:BTS
Ran:2013:DSE

Roy:2010:EFD

Ran:2012:ERO

Radjavi:2012:IAS

Robinson:2012:DNE

Simon:2010:MAC

Soleymani:2014:LPC

M. Soleymani and A. Armandnejad. Linear preservers of circulant majoriza-

[Sadkane:2012:LRK]

[Sag11]

[Sag13]

[Sahi:2010:NRN]

[San10]

[Sano:2014:FDO]

[Sarkar:2014:WDD]
Sato:2011:NPL

Sato:2014:NPB

Savostyanov:2012:QRO

Savostyanov:2014:QMV

Somasundaram:2011:SMM

Schulz-Baldes:2012:SIT

Sari:2011:RRM
Bilal Sari, Olivier Bachelier, and Driss Mehdi. Robust S-regularity of matrix pencils applied to the analysis of descriptor models. *Linear Algebra and its Applications*, 435(5):923–942, September 1,

Serra-Capizzano:2011:ACS

Serra-Capizzano:2010:EDP

Soto:2013:NMP

Savas:2013:KTM

Seddighin:2011:SJA

Sego:2010:TSH

Sego:2014:HSD

Seidel:2014:FTB

Gora:2010:SON

Seo:2013:GPS

Seven:2010:QFM

Shao:2013:GPT

Shang:2014:ACM

Shao:2014:FSM

Shitov:2011:IGM

Shinohara:2012:TLM

Shitov:2012:KRT

Shitov:2012:TMS

Sivic:2012:VCTb

Sivic:2012:VCTa

Sivakumar:2013:NGI

Snobl:2010:CSL

Sinkovic:2012:MRO

Sharma:2013:RUB

Seo:2014:CPR

Sko wronek:2011:CMC

Skulj:2013:CID

Sun:2014:RGQ

Skulj:2012:LCS

Slapničar:2010:RMM

Slowik:2012:OPN

Sun:2013:EIM

Roksana Slowik. Expressing infinite matrices as products of involutions. *Linear Algebra and its Applications*, 438(1):399–404, January 1,

Marko Stošić, Manuel Marques, and João Paulo Costeira.

Singer:2012:TFS

Singer:2014:EVT

Sowa:2013:FMD

Spector:2011:CTZ

Stanimirovic:2012:SCI

Wasin So, María Robbiano, Nair Maria Maia de Abreu, and Ivan Gutman. Applications of a theorem by Ky Fan in the theory of graph energy. *Linear Algebra and
Srinivasan:2013:REL

Saez-Schwedt:2010:CAR

Sander:2010:EDP

Schaffrin:2010:TLS

Simoncini:2010:FVO

Stanimirovic:2010:ILC

Saleh:2011:EMC

Sander:2011:ICG

Shang:2011:FZM

Shi:2011:SAE

Stampach:2011:EPP

Sato:2012:EFG

Savchuk:2012:PAM

Schwertlick:2012:NRF

Sato:2013:GBZ

[SS13a] Iwao Sato and Seiken Saito. A generalized Bartholdi zeta

Jia-Yu Shao, Hai-Ying Shan, and Li Zhang. On some...

Saito:2010:DWT

Saldanha:2010:CPQ

Shieh:2012:CBS

Son:2013:SCR

Stanic:2012:SGW

Stanford:2014:UOS

Stevanovic:2010:RA

Stevanovic:2011:TSC

Stewart:2013:GUH

Storm:2011:SPG

Stoll:2012:KSA

Stupariu:2012:FWQ

Stuart:2013:SFM

Sun:2013:ANJ

Xiaosong Sun. On additive-nilpotency of Jacobian ma-

Tudisco:2011:PAP

Talebi:2013:BBM

Tudisco:2013:ORM

Teranishi:2011:SLS

Terwilliger:2013:FDI

Terwilliger:2014:BAF

Tan:2010:VEI

[TF10] Ying-Ying Tan and Yi-Zheng Fan. The vertex (edge) independence number, vertex (edge) cover number and the least eigenvalue of a graph. Linear Algebra and its Applications, 433(4):790–795, October 1, 2010. CODEN LAA-
Minimum eigenvalue inequalities for Z-transformations on proper and symmetric cones.

Françoise Tisseur, Seamus D. Garvey, and Christopher Munro. Deflating quadratic matrix polynomials with structure preserving transformations.

Zikai Tang and Yaoping Hou. The integral graphs with index 3 and exactly two main eigenvalues.

Sanne ter Horst and André C. M. Ran. Equivalence after extension and matricial coupling coincide with Schur coupling, on separable Hilbert spaces.

Yongge Tian. Equalities and inequalities for inertias of Hermitian matrices with applications.

Tian:2011:SEO

Tian:2011:MMR

Tian:2012:FCE

Tifenbach:2011:SSD

Timotin:2014:SCR

Tao:2014:SMI

Tan:2013:DAP

Qianrong Tan and Mao Li. Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains.

Tsatsomeros:2012:MMM

Tam:2012:DPS

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Taslaman:2013:TMP

Vsemirnov:2012:ERC

Vandanja:2014:NRS

Vulanovic:2012:SFD

Vassiliou:2013:ABS

Vale:2010:SGF

Vartziotis:2010:CPS

Wenzel:2010:ICI

David Wenzel and Koenraad M. R. Audenaert. Impressions of convexity: an illustration

[WB11]

[WB12]

[WBHM13]

[Wang:2011:NSL]

[Wang:2012:SCG]

[Wang:2013:GWL]

Stephan Weis. Quantum convex support. *Linear Algebra and its Applications*, 435(12):3168–3188, December 15,
2011. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Wei:2013:UID

Wei:2013:JMI

Wang:2010:LEG

Wang:2012:LES

Wang:2014:SLG

Wang:2011:BMD

Wang:2012:SEC

Huang:2012:CLT

Huang:2013:TLT

Wikramaratna:2011:CIM

Wikramaratna:2012:CCI

Wildstrom:2011:DRL

Wilson:2013:OAG

Williams:2014:SFA

Gerald Williams. Smith forms for adjacency matrices of circulant graphs. *Linear Algebra and its Applications*, 443(??):21–33, February 15, 2014. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-

Wang:2012:MDA

Wang:2011:ASC

Wang:2010:BSQ

Wen:2014:FPF

Wang:2011:GDT

Wong:2013:BRG

Wong:2014:GAZ

Dein Wong, Xiaobin Ma, and Jinming Zhou. The

Chalermpong Worawannotai. Dual polar graphs, the quantum algebra $U_q(f_{1,2}^2)$, and Leonard systems of dual q-Krawtchouk type. *Linear Algebra and its Applications*, 438(1):443–497, January 1, 2013. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http:
Woracek:2014:RKA

Wang:2012:LGL

See comments [WY14a].

Wang:2012:OTA

Tan:2013:LCG

Tan:2012:LCT

Wu:2010:MWS

[Honglin Wu. On the 0–1 matrices whose squares are 0–1 matrices. Linear Algebra and its Applications, 432(11):2909–2924, June 1, 2010. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).]

Wu:2010:GPB

[Huazhang Wu. Generalized polynomial Bezoutian with respect to a Jacobson chain basis over an arbitrary field. Linear Algebra and its Applications, 432(12):3351–3360,]

[Wasson:2013:NDS]

[Wang:2013:DTA]

[Wang:2010:CNPa]

[Wang:2011:HDT]

[Wang:2010:SLB]

[Wang:2010:CNPa]

Wang:2013:TEM

Wang:2013:PEA

Wang:2013:DSR

Wang:2013:HPP

Wu:2013:SWM

Wang:2014:LCA

Wu:2014:ESS

Gang Wu and Lu Zhang. On expansion of search subspaces

Wu:2014:CSS

[WZ14c]

See [WZ12].

Wu:2012:UBS

[WZ12]

Xie:2013:EA

[WZY14]

[XC13]

[XCS13]

Wong:2013:CLG

[WZL13]

See [WZ12].

Xu:2012:TLC

See corrigendum [Kis15].

Xiao:2014:SBI

Xing:2013:LEL

Xing:2013:DDS

Xing:2013:LEC

Ye:2011:SI

Ye:2010:MSL

Yu:2013:BGS

Yuan:2014:CPD

Yanagihara:2012:BCA

Yuan:2012:EKI

Yan:2013:LTS

Yan:2013:ADS

Yu:2013:LDE

Yuan:2014:MIF

See corrigendum [Yuan:2015:CSQ].

Yuan:2015:CSQ

See [Yuan:2014:MIF].

Yang:2010:SNP

You:2011:PNP

Yu:2011:SBS

Yu:2011:SLS

Yuan:2013:LPI

Yang:2013:EM

Yuan:2014:ST

[Yuan:2014:SRT]

[Yu:2010:NLD]

[Ye:2011:IIS]

[Ye:2012:EBA]

[Yu:2012:NLD]

[Yin:2013:RDT]

[Yu:2014:IWU]
Zhou:2012:SBM

Zhang:2014:RNG

Zhuang:2012:JLG

Zappavigna:2012:ENN

Zhou:2013:CAL

Zhou:2013:SNB

Zhang:2011:MPP

Zhou:2011:PCI

Zou:2012:SIU

Zhang:2012:BRB

Zhang:2012:DSR

Zhao:2012:OPI

Zhao:2012:ATM

[Yun-Bin Zhao. An approximation theory of matrix rank...

Zhang:2013:AAP

Zhang:2013:IED

Zhang:2014:EMI

Zhang:2014:SOC

Zhou:2010:SLS

Zh:2012:LEG

[ZHZF13]

Zhang:2013:UMU

Zhu:2012:MET

[Zim13]

Zimmer:2013:NLB

Zhu:2012:OUG

[Ziv12]

Zivkovic:2012:EFC

Zhou:2014:LSS

Zuo:2010:NDS

Zhai:2012:PCS

Zhang:2012:DIL

Zhao:2013:ICP

Zhang:2010:CSP

Zuo:2013:CCM

Zhao:2012:JHA

Zhang:2013:SLC

Zhu:2014:CTA

Zhang:2013:MPI

Zhang:2011:EIT

Zhang:2010:ADP