A Complete Bibliography of Publications in Linear Algebra and its Applications: 2015–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

08 November 2023
Version 1.81

Title word cross-reference

(0, 1) [BD19, CR18a, CLT15, CMQV16, GT18, NS15a, NA17, ZM16, dCFF17],
(2, 1, 0) [WG15]. (75, 32, 10, 16) [AM18].
(76, 30, 8, 14) [BPR17]. (A, m) [BSZ18], (b, c) [Rak17]. (d, k, δ) [FJ19]. (δ, c) [Zha18b].
(e, f) [KC16]. (I − A) [CC18]. (m, m − 1, 0) [HZ17]. (m, q) [BMN16]. (P^1)^n [LM16a].
(N − 4) [HAM16]. (p, n − p) [PR18a]. (p, r) [AdF19, EJ18]. (v, b, r, k, λ) = (10, 15, 6, 4, 2) [Mic16]. * [DI16]. −(1 + √17)/2 [LM16b],
−1 [BK17a], {−1, 0, 1} [JMP18],
−1 ≥ σ(S−I S) [GMP16c]. −2 [CRS15]. −3 [KLY18]. 0 [BBH16, HL19b, Shi18b], {0, 1} [XLQC16, XCQ18]. 0 < p ≤ 1 [LC19]. 1
BBH16, BR17, Hir18, HL19b, KY18, KLW16, MHL15, OP16a, PCI15, Shi18b], 14
[Je18]. 2 [AK15, AK16a, AA17, BLdS16, BC15a, BH16a, CP16a, CG19b, CW15a, CL18, CJ17d, DFK^+15, DHS18, EV15,
HPSS19, Hoo19, KLP15, KY15, KY18, KIS18, LY16, LWX17, MMS16, Mic16, ME15, NP15a, QK18, QKP16, Sam17,
STW19, YL15b, YLT16, ZXW19, ZGW16]. 2(n − 1)/3 [LS15a]. 2n [dlCMP17a, dlCdR17].
2 × 2 [GHK17, GLRT18, KLP18, KM16,
She17, Uhl19, UG19]. 2 × 2 × 3 [LS15b].
2 × N [Sar19]. 3
[BK17a, BKL16, CLZ16a, DFK^+15, KN18, Kal16, LEE15c, LWX17, Sam17]. 3 × 3
[BBDH18, HK18b]. 4
[BDV+15, KH17, LWX17, SS17a]. 5
[AMR^+16, BDV+15, JMP17, Jør15]. 5 × 5
[LS17b, SW18a]. 7 × 7 [HLPS19]. 9 [Kar16].
Z₄ [Mor16b]. \(|V(G)| - 2m + 2c(G) \) [zSqST15].

* [DD16b]. *-rings [DD16b].

-adic [BSS17, EG15]. -algebra [CILL16].

-algebras

[BCP16, CP16a, EP18a, LCLW18, Mol18b].

cospectral [ZLS17]. -cut [Nik16b, vDS16].

cyclic [MP16b]. -density [BDG15].

derivations [NP15a]. -designs [BH16a].

digraphs [FJ19]. -dimensional [BC15a, FMM16, KLP15, HAM16].

divergence [Vir16]. -eigenpair [LV15].

eigenvalue

[FulIK16, HWXC18, Lin15a, SWB19, ZG18].

eigenvalues [CLM19b, HQX15, YQS16].

-integral [PS19a]. -inverses [KC16, PCI15].

-isometries [BMN16, BBMP19, CGL16, MMS16, BSZ18].

-isomorphisms [STW19]. -join [CDR18].

-Laplacians [NS17, Nag19]. -less [FZwCW16]. -linear [ANAPS17, RT16, BGCMASS19]. -Local [AKR15, AK16a, AA17, CW15a, CP16a, NP15a]. -majorization [NA15].

-majorizing [Sab19]. -matrices [AMG19, BD19, CR18a, GT18, NA17, wXZ19, ZM16, dCFF17, BA15a, CS19a, DN16, GL16, JS16, KLS19a, Kus16, MY16, OP19b, SH15b, S18, VB18, wXL14, ZLL18]. -matrix

-modules [MEMM17, XF17, Yan18].

-negative [Wol18]. -norm [Hoo19, Nik17a, OP16a]. -norms [CL15b].

nuclear [BM17c]. -numerical [CJ17a, CCCNT19, Zan19, Cha15].

-Onsager [Ter17b]. -optimal [Sma15].

-order [DV18]. -orthogonality [KZ17].

-problem [CG19b]. -Racah [NT17, Ter17a].

-rank [WYLW17]. -ranks [WLWZ19]. -rays [Dah15a]. -Regular [CLZ16a, MM17c].

-resolvable [Mic16]. -rings [BBEE18].

-Riordan [BT17b, CJ15]. -scalar [GX19].

-scalings [Kus15]. -Schatten [CM16].

-Schur [FKM17a, FKM17b]. -SDD [WLL19]. -semiclassical [GGMPC15].

-special [Ern18]. -spectra [JMP17, LXS18, NPS17]. -spectral

-symmetric [BFY18]. -symmetries [dICdR17]. -tensors [LQL15, DLQ18, HWXC18, KSMB15, LL15a, OP19a, SWB19, ZSWB16].

-type [LJL16]. -uniform [YYQ19].

-unitaly [CCIT18]. -universal [Bou16a].

-variable [KY15, KY18, LY16]. -vertex
Niv15, Olk15, Pas19, PS18b, RLP19, SGH16, SB15, Ser15, Ter17b, UG18, Wan19, dlP18.

Algebraic [BJ15, CCGV +19, EHK16, Oi19, PS19e, Sch17, AAMM18, Alf18b, BD15a, BBEE15, BB16a, BGCMPR15, BGdCCMSS17, BS15, Ser15, Ter17b, UG18, Wan19, dlP18].

Algebraically [KQZ16, DB19a, LS15b].

Algebras [CRVSS19, AM15a, AEV16, ALH15, AEV15, AKR15, AK16a, AK16b, BZ16a, BKRE18, BY19, Bal17a, BES16, BGV17, BC15a, BdlCL17, CS15, BCS16, BCS15, BCS16, BLdSV19, BP19b, BDF18, BBS16b, Bre17, BS19c, BCP16, Bur18, CP16a, CMV16, CMV17, CMV18, CLOK13, CPS17, Cha15, CW15a, CL15a, CR18b, CD17a, CMD17, CME18, Co19a, Co19b, CDH18, DIR16, Der19, DKNS16, DOR16, EL16, EP18a, EF17, EF19, FKPS18, GGH15, Gol16, Gon19, LMO16, LL19, LZ16b, LZ16c, LZ16c, LZ16e, LZ15b, LZ15a, M116, M117, Mol18b, Mon19, MX16, NINS16, OW17, Oi19, Pel17, PR19, PR18b, Ral19, RE16, SBB15, SY15, Shi16a, TW16, Tom15, Wan16c, WZ17b, WFS19, Xur17a, ZK17].

algebras [Zha17, Zus17a, Zus17b, vWZ17].

algorithm [AAG +18, Ais16a, Ais18b, BB17a, BDL16a, CML16a, CM16, DD17c, Fay18, Fis17, FM17a, FM17b, GCC16, KWD16, LLL17, LC19, Miz16, Pan15b, RKT15, SZ17, YIN19, CA18].

Algorithms [Ao16a, BMVW16, KLS17, Per18, SdJJ +16].

Aliasing [BMS15].

ALIF [CGSC19].

allow [LP15].

Almost [SW16, VQ19, CS15b, Pol19, WHG17].

almost-equidistant [Pol19].

Almost-invariant [SW16].

Almost-nonsingular [VQ19].

along [Nag19].

alternate [GL15a, NAS18].

Alternating [BD19, FGH +15, HS16, Kob17, Pan15b, dSP16a, dSP16d, dSP16e, Ter18].

alternative [Koz16].

Aluthge [CM17, EP18b].

amenable [NINS16].

American [Zha15a].

among [BS18b].

analog [MM19b, Nie19a].

analogs [HT18a].

analogue [GKR16].

Analogues [MP17, AJ19, LN17].

Analysis [And16a, BMVW16, Tsa16b, AL16, BZ16b, CL19, CN19a, CA18, CS19, GZ19, GZ19, GCC16, GCQX15, JLT17, Kir15, KIS18, KLS17, MM16a, MP17, Mz16, OZ15b, SN16, See18, SLY17, Bar15, Br16a].

analytic [JLM18].

analytical [GS18].

Analyticity [DvSW16].

ancestral [ADW19].

Ando [Ric19, Wad18].

angle [LMX19].

Angles [CPZ16a].

angular [CS15a].

anisotropic [AL16].

annihilating [NN19b].

annihilator [HAM16].

anomaly [Zin15].

antisat [FS18a].

antecedents [Bar19].

anti [AyLPS18, AT15, BF19a, DDC +16, FT18, GJK18, MV16, YW16].

anti-banded [BF19a].

anti-circulant [AT15].

anti-community [FT18].

anti-negative [GJK18].

anti-reflective [DDSC +16].

anti-regular [AyLPS18].

anti-triangular [MV16, YW16].

anticommuting [Hru16].

antiperiodic [DO16].

antipodal [Fil18].

Anzahl [GL15b, GL15a].

Apartments [Pan17, Pan16b].

Appl [ASMN17a, Ali20, Ano16a, AG20, Bal18, BF17b, BKSP23, Duk15, EKSV18, FJS21, GP18, GWL +18, Hou20, KAPS20, Kis15, KHI16a, LMO16, LT16a, LLS17a, LZ15a, PW20, RB19, SM18, WZZ19, Yua15, ZL15a, dCDFK18].

Application [AMH11, Ab1i19, AO18, ACM17, BM16a, BFMK18, CRX15, DGGP18, DHW18, FBH19, FL15, GJK15, KV19, PHW16, RGPH16, Ste15, YYSX19, BTN +18].

Applications [APR +17, Ano16a, BMVW16, DH15, He16a, PCI15, AAG +18, AM16a, ANP16, AL19a, BBM19, BKNS17, BJKR17, BCE19].
Barabanov [GMW18]. Bartholdi [TH16a].
barycenter [HL17a, HL18, KLL16].
barycentric [EG19]. base
[BS16e, CDR+19]. base-orderability
[BS16e]. based
[Ais18a, AM16b, BL15, BB18, BKL16, CIY15, DGM+18, DV19a, FT18, GCC18, MHA18, RD15, RMKJ18, RBKA16, RW17, Som17, SZW16, VT18, WG15, WL16, XXZ16, wXL14, wXZ19, ZD15, ZZR15].
Bases [Shi15, BDP+18b, DA19b, DA19c, DV18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].

Bases [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
Basic [Shi15, BDP+18b, DA19b, DA19c, VD18, DPV19, DV19b, FS17a, HHR16, LS17a, MP16a, MB15, PM18, RAI19, Szá16, DDMV16, DDV16, WZW19, War17].
blow [LM16a]. blow-up [LM16a]. Board [Ano18-27, Ano18-28, Ano18-29, Ano18z, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17m, Ano17n, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano17t, Ano17u, Ano17v, Ano17w, Ano18a, Ano18-30, Ano18-31, Ano18-32, Ano18-33, Ano18-34, Ano18-35, Ano18-36, Ano18-37, Ano18-38, Ano18-39, Ano18-40, Ano18-41, Ano18-42]. Board [Ano18-43, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano18r, Ano18s, Ano18t, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z].

bound [ARR18, AL15, ARS17, BL18a, Bal15c, Ber18, BH16a, CLF18, GRS15, HW15b, IL17a, LCWZ19, LwW16, Mol18a, Ob19b, Vec16, WF19, Xu17b, ZWS18]. boundaries [AGV17, BS18b]. Boundary [CN19b, BL15, CN15, DDSC+16, EHK16, EH18, GM16a, HJW19, Piv19, YLB15].

Bounded [Pan19a, AB19, CM19, DDL17, DD17b, GSP16, LT12, LT16a, LZ16c, PSG16, PSM18, dSP16a, dSP16c, dSP16d, Pep17, RMS16].

Bounding [Sta19, AO18]. Bounds [ALMZ+19, DiISJdFDV15, FW17, Gil16, HHL19, HMNP15, Lia17, LL18a, Mel16a, OP16a, Pep17, Run19, VV18, WM17a, dPJG18, ACT16, AR16, ACRR15, AGR16, AdFRR18, ADLR19, AP15a, BG15, BaHOS15, CR19b, bCR18, CLE15, CL17b, CL18, CJ16c, CJ16d, DHZ19, DV19a, DR18, DM18, Drn19, EA17, GM17, IGW17, Ken16, Lan15, LLV15, LWY16, LTM16, Lot15, MR17b, MS17b, MHS15, OVW18, Rod19, SZ23, SK17b, Sku17, TLL15, TWM16, WZL17, WLL19, WZW19, WWC18, YZL15, vDS16, ELN18].

Braess [HK19b]. Brauer [BJLD17, DLB18, LL16a]. Brauer-type [BJLD17, DLB18, LL16a].

Bregman [MPV16]. bridge [CDM19]. bridging [LS17a]. Brill [Gua18]. Brouwer [GP18, Che18b, Che19a, GAP16, HT17].

Brunn [Liu16a]. bundles [DFK+15, EM16, Gall17]. Bures [Mol18b].

Butson [EC19]. butterfly [LZSD17, LZSD18]. butterfly-like [LZSD17, LZSD18].

CAM [Bru16a]. Cambridge [Bar15]. Can
[dCdSA15, Nom16]. CANDECOMP
[KL18b]. CANDECOMP/PARAFAC
[KL18b]. Canonical
[BBDH18, DD17c, LS15b, AEKP16, BTW16,
BGSS18, CXLF16, CNX17, CW17, DFK+15,
FdC15, GLAdS19, MN19b, Rad17].
Carathéodory [BFMK18, IL17a].
cardinality [CRVSS19, MMR17, Yor17].
Carlen [Bek16].
Carleson [DPS19].
Carlitz [KT19].
Carlo [WC15].
Cartan [HL17a, HL18, KLL16, LL19, MM19a, PR19,
WZ17b]. Cartesian [BK19, KMY15].
case [ACS19, Bar17a, BDK+17a, DV19b, EHHL17,
IHS16, Mat15a, Pan15b, ZHC16, dFRS16].
cases [MP17].
Catalan [HS17, YDHX18].
category [MVPST19].
Cauchon [AAG+18].
Cauchy [HL17a, HL18, KLL16, LL19, MM19a, PR19,
WZ17b]. Cauchy-like [Mel16b].
causal [FKD15].
Cayley [AT15, BBM19, BBS16b, CFH19, KM15b,
KLW15, LZ15d, RB16, SLY17, TFC19].
Cayley-type [RB16]. cell [KT15]. cells
[GMLT19]. Central
[Yin18, BDDO16, EF17, EF19, Lék16].
centrality [AM16b, BFK19, HKS19].
centralizer [AGP+17]. centralizers
[Han19a, dCDFK17, dDFK18].
centralizing [Wan16c]. centrally [Mig16].
Centrosymmetric [JRS19, Bur15]. certain
[AKYD16, Ege16, EEV17, FKP18, Hia16a,
Joe16, JMP17, Kol15, KLW18, Lin17a,
Liu18, Lot15, Mol19, NP15c, PP18, Sch17,
She17, Tab16, VHB18, vWZ17]. certificate
[CJ17c, Dic19]. Cesàro [AB19]. chain
[AAS16, BK17c, Cho19, WC15]. chains
[BLPT15, BCF+18, Hun16, Hun18a,
Hun18b, JLT17, LZ15a, Mas17, MP16b,
NP15b, SY16a, Sku17, Ter18, VB18, Vas15].
Change [DFK+15, JST19, VSV18].
changing [GM15, SV17]. channels
[FL16, HJ19, LPPZ19, Lev18]. chaos
[BCM MASS15]. character [Che15b].
Characteristic
[AW15a, BLdS16, Ben18, BCS16, BBFF17,
BCF+16, CCD19, CK15b, EV15, FOvdD16,
FMR18, HY18, HZ19, HZ17, KMS17b,
LL18b, MW15, MMR16, MMR17, MMR18,
Niv15, Shi16f, WW18, W19W19, ZGW16].
characteristics [AKPS19, JKKL15,
KAPS20, Koz16, MNTX16].
Characterization
[BJKR17, DP16, GLZ16a, GSSvdD16,
HT18b, JT18b, Kim15b, LD16a, MWT16a,
QH15, RW17, Wój19, ZWX19, Abi19,
CRRY15, CLR+18, DGCC16, DP18, DP15b,
DP17, IFwW16, GGMP15, GH16a, GX17,
HvD18, HJW19, Hoo15, KY18, LzSD17,
LzSD18, LWCL19, MHL15, MM16b, NS18,
PP15, SW18a, zSqtST15, TSH16, WM17b,
XvdBvdLS15, YCL17].
Characterizations
[HM17a, Mol19, RS17a, AyLPS18, ABDN18,
BP15, DDF18, He15, He18, LL15b, LW18C,
SBB15, Sol19, UYY17, WZ15, ZSWB16].
Characterizing
[BDMB19, CJ16c, FM19, Lz15b, HK19a].
characters [AR15a]. Charles [Bar15].
Chebyshev [Guo19, KMM17, Cm15].
Chevalley [MRR18]. Chief
[Ano18-44, Bru15, Bru16b, Bru17]. Chip
[BMZB18]. Chip-firing [BMZB18]. Choi
[GKR16]. Cholesky [LWY16].
Cholesky-like [LWY16]. Christoffel
[AM15b]. Chromatic [KM19, AL15,
FCL+16, KN15, Ton15, vDS16]. circle
[Cas19, IR19, MS15a]. circles [Rum19].
circuits [MT15]. circulant
[AT15, AMNR18, H11b, Joe16, KK17,
Lee19a, NW19, Nie19c, PS15, PS18b,
QWC15, RR18b, San15, San18, SB18, TG19].
circulants [DM16b, Sbu17]. class
[ASMN17a, ASMN17b, AMR18, AMG19,
BG15, BPP16, BR16a, BHP17, CX17,
Chu19, CM16, FPGP17, Hoo15, HSTW17,
JLM18, uIFK15, KY18, LD18, MI17,
Min17, Mir18, Nob16, OK18, Ris16,
RBKA16, San17, XXZ16, ZD15, Zhu19].
classes [AG15a, CHJM18, DGS18, EC19,
Egg15, ETF18, Far19, FM19, Gre18,
GJLS16, LCF19, MR17a, Mar15a, Pan19b, Pel17, Rob19, Sha16, SS18, VLG15, Ye17, ZM16, dSRST17. \textit{Classical}\cite{HLG15, OVW18, Ota15, Saw16}. Classification\cite{AMC18, BKRE18, BCS15, CMV17, CLOK13, DdFR16, EEV17, HA16, LMO16, LZ16c, MSSZ17, RE16, SWZ18, GSZ15, GSZ16, Gas19, HAM16, Sim18, YdB19, dFRS16, dFFRS17}. Classifying\cite{BP19b, FKPS18}. Clean\cite{BM16b}. Clifford\cite{CK15a}. Clique\cite{FHJT19, HFS15, Yus17}. Clique-width\cite{FHJT19}. Close\cite{BCF+18, BaHOS15}. Closed\cite{DKSV19, AYK17, Bie15, LS15b, LMX19, XS17}. Closest\cite{KT15}. Cluster\cite{TLL15}. Cluster-robust\cite{TLL15}. Clustering\cite{BCF+18, EB17, Bai18, Est16}. Clusters\cite{CR17b}. Clutter\cite{MFdM15}. CMV\cite{MS15a}. Co\cite{Bru16a, Tsa16b, Alf18b}. Co-rank\cite{Alf18b}. Coadjoint\cite{BC15a}. Coarse\cite{KN16}. Cocycle\cite{Ong18}. Code\cite{LA16}. Codes\cite{AGP+17, ANP16, BDMB19, CG16, CG19a, CLHL15, CMPZ18, DGGP18, GZ19, GR16, La16, LCF19, Ouy17, Pud16, SS15, TZK17, TZ19}. Codimension\cite{MS19, RZ17}. Coefficient\cite{BDDSC17, PRS18}. Coefficients\cite{BS15c, BF17a, Ben18, CLR+18, JLM18, LG18, Sug17, TH16a, WZZ19}. Coffey\cite{SSC16}. Cognitive\cite{Dog18}. Coherence\cite{CKM16, Góri7, GX16, GX19}. Communicability\cite{DHHZI19}. Community\cite{FT18}. Commutation\cite{Nie18}. Commutative\cite{BS19b, AM15a, AA17, GPI18, GMM16, KM19, LZ15d, OW17, SNDM17, Ser16}. Commutativity\cite{Pan19b, Pie18, SB15}. Commutator\cite{GH15, CL17b}. Commutators\cite{SB15, CL15b, GW17a, Hou19, XCJ18, dCdR17}. Commute\cite{BFFN16, Kis15, XX12}. Commuting\cite{Bon16b, CHT19, Shi18a, Wan16c, BF18a, BS19c, BKS15, BKPS17, BKSP23, CM19, CJSW19, DBK17, FKPS18, GMM19, IKVZ18, KS17, LdIP15, LY17, Mig16, MT16, QH15, Sha16, aHRT15}. Compact\cite{ABM16, CN19a, JLM18, LWC18, PS19c}. Compactly\cite{AKPS19, KAPS20}. Companion\cite{EKS14, EKSV18, BM16b, GSSvdD16, Lee15c, VV18}. Compared\cite{QKP16}. Comparison\cite{ABD19, DU16a}. Compatible\cite{BKS15, BKSP23, LT19a, dSP15, dSP16c}. Competition\cite{FGS+16, Kim15b}. Complement\cite{AG16, AAMM18, CGMSR15, Row18, WYL19}. Complementarity\cite{JS16, See18, Bal15a, Bal15b, BP16a, CN15, CN15, DN16, DN18, WLL19, XXZ16, wXL14, wXZ19, ZGR15, ZLQ16}. Complementary\cite{FJT17, Szá16, CcdFV18}. Complements\cite{CMM19, LD17a, Row15, YCL17, YZLC18}. Completability\cite{SMBDK16}. Complete\cite{BSMSZ19, HK19b, BK18, BE19, CI15a, CGSZ16, DP18, DD17b, LN17, NS18, Obo19a, Obo19c, Shi19, VSV18, WYL19}. Completely\cite{Gow16, LT12, LT16a, Sal16, Zha18a, BDS15, GdLL17, SSV17, DDMV16, XLQC16}. Completion\cite{Ber17, Dod16, MFdM15, BA15, CMQV16, DH15, Dod17}. Completions\cite{Cal16, CJ16b, JLD17, PCI15, VQ17}. Complex\cite{HP15, LWX17, AM19, AGQ19,
cycles
[ABDN18, Ash19, GH19, MWT16a, Mac16, NY15, WZZ19, Yua14, Yua15, ZLG15].

Cyclic
[BGV17, BM18, BMR17, CLUP17, Dal17b, Far16, MP16b, Ziz16].

cyclomatic
[HHL19, TH17].

cyclotomic
[CFW15, LA16].

D
[BKLP16, Sam17].

DAHA
[NT17].

Darboux
[AM15b, CG15].

Dashnic
[LCWZ19, ZLLL18].

Data
[SUBG18, BCJ +16, CS15a, CJ16c, HPZ19, KRZ +17, KRZ +18, MM15b, Wei15].

data-driven
[SUBG18].

Davidson
[BM17a, WP17].

Davis
[ABR18, CJ17a, LSZ18].

decomposability
[LL17].

decomposable
[CW18b, YLT16].

Decomposition
[FM19a, GT16, Hou19, ÁVAK +19, BC19b, CRX15, CQCZ19, CP16b, DD17c, DU16b, DKPU18, Duk12, Duk15, FZW16, FR16, FX19, GHI16b, dMG19, GMP15b, GMP16b, GM17, HKM18, HAW16, HIR18, JS19, KMY15, KL18b, Lop15, MVPST19, MM16a, MM17, MMV19, MF1515, MV16, MMR18, Nie18, Nie19, RBKA16, Sav16, SP16, SS15b, SSB15a, SSB15a, SG17b, Van17, Wan16a, WL16].

Decompositions
[KK18, Mar18, BBEE18, BF17, CMV16, CCG17, FSSW17, FS19, Lee16, Nom15c, Ota15, Szá16, Ty19, Urs18, Ye17, dCMP17b].

decomposition
[BL15, Win16].

decreases
[JDS17].

dedicated
[BBF19].

defined
[He16b, Hon18, HC19, PMW19, Ram17, Zho17].

defining
[CR18a].

definite
[ACM17, BS15d, BJL19, BC19a, BDK +17b, CJ16b, CLS17, Fie15b, GLRT18, HL17a, HK17, KL15, KLI16, Lz17b, LNT16c, Min17, MS15b, MPV16, PR19, Riv15b, Sch16, SH15b, STZ15].

definiteness
[DLB18, HT18a].

deflated
[KR17].

deflating
[WZL17].

deflation
[LNT16c].
deformations
[BSS17, Dmy16, Dmy19].
degenerate
[Bob16, KK17].

Degree
[DGM +18, Chu16, CW16a, Das18, De 16b, DD17b, DK16, Fer15, NLW18, Sku17, Wan15b, XWL17, YHY15, ZLS17, ZWS18].

Degree-based
[DGM +18].

degrees
[BD15a, DGM17, DV19b, LLS17a, LLS17b, PS19a].
delay
[BTN +18, FM17, PM16, SN16, WZ17a].
deletion
[VSV18].

Demmel
[AGV18].
dense
[Dal17a, Duk12, Duk15, FGH +15].
density
[BDG15, Lie18, Mol18b, SCD17].
dependent
[DLHT19, GM16a, PCL15].
depending
[EH18].
derangement
[MR19].
derivable
[WMC15].
derivation
[LZ16c].

Derivations
[Bre17, Hou15, AKR15, AK16b, AA17, BCP16, CL15a, CL18, EP18a, LZ17c, NP15a, ZK17].
derivative
[UUG15].
derivatives
[Eld15, Gir19].
derived
[JLD17, LMR16].

Desarguesian
[Van16b].
descent
[VK16].
descent-like
[VK16].
descents
[AR15a].
description
[BmBCC17, DDL17, Ong18, PS19e, Ser15].
descriptions
[DSCD17, May15].
descriptor
[Mar15b].
design
[AKPS19, Bel16, KAPS20, Mic16, RGPH16].

Designing
[Van16a].
designs
[BMS15, BH16a, BL16, HMS17, Ma16, Sma15].
detection
[FT18].
determinant
[BDK +17b, BR17, Chol17b, Cos19b, Dd16, GSS15, Hil18, Hol18, HLS +16, KMS16, Rum18, RB19, Rum19, Sh18b, Yur15, Min17].

Determinantal
[LP18, CNY18, CN18, DP18, HI16, LS18a, MT15, Ple17, dCSA15].

Determinants
[HZ19, Riz19, Sot17, ABO15, BS18a, BK17b, BS18b, CLS19, HM16, Sbu17, Sci18, Zhe19].
determination
[AAG +18].
determined
[ALH15, BCC +18, BSMS19, HNR16, KHI16a, KHI16b, MW15, MLW15].
detrended
[CW15, LA16].

Detre
Developed [DKS15]. deviation [DHLT19].

DGL [BBMFM17]. DGMRES [GKS18].

Diagonal
[AM16a, AMV17, APS18, BBH16, Bik19,
BR16b, BMR17, ELN18, Far19, GX16,
GX17, HN18, HK18b, Lee15a, Nom15b,
PM15a, PPZ19, SP16, SV17, SSB15a, ZH17].

Diagonality [ACM17].

diagonalizability [dlCF16].

diagonalizable [JLDS18, JKP +17, wXjMZL19].

diagonalization [ACM17, CL19, LUC19, cSfCfX15].

Diagonally [Roh18, DM18, HW15b].

diagram [Bal15c, LCF19].

Diagrams [Sch15].

diameter [BK17a, CC17b, CNM19, DBK17, HSS16a,
LS15a, Mig16, XWD18, ZLG17].

Diaz [MF16].

dichotomy [Dra18].

dicyclic [CFH19].

difference [Dra18, EJ19, PHW16,
SNP16, SJD16, Sug17, UWYY15, UZ19].

Differences [Cos16b].

different [ALMZ +19, SY16b].

Differential [Gon15, BMO15, HLM17, LMS15, Mat15a,
Obe16, PMB15, PRS18, RRV15].

Differential-algebraic [PMB15, PRS18].

differentiating [Hol18].

differing [Dog18].

Diffuse [GHS16].

Diffusion
[BK17a, CC17b, CNM19, DBK17, HSS16a,
LS15a, Mig16, XWD18, ZLG17].

Dimations [BEKS17].

dilation [AM16a, AK16a, AK16b,
Bc15a, BB16a, BCS15, BGT +19, CG16, CVV19, Cho19, CGGV15,
CFT19, DdSjDfdv15, Das15, DR18, DL15,
FdFdSdv18, GK15, Geh15, GLW17, Hey17,
HC15, HFS15, Kpl18, Khi16a, Khi16b,
KT15, KB19, LM16b, LZ15c, LLL15, LD16a,
LC16, LZ16b, LD17a, LDZ18, LG15,
LHH17, LHL18a, Ma16, MqtW18, Mmp16,
MM17a, MS15b, Som17, TWR15, TWM16,
TW17, TW18a, XSW19a, XSW19b, X18,
ZLG17, ZD16a, ZD16b, Zhou17].

distance-based [Som17].

Distance-

Distance-regular
Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19o, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z.

Editors [Ano18-44]. Editors-in-Chief [Ano18-44]. effect [BLPT15, BTN + 18, FJP15a, GWL + 18, GTL + 18, LMS16, LZ16b, Yus17]. effective [KLS19b, WDV17]. effects [Ruk15, Wan16b]. efficiencies [SSH15]. Efficient [RV18, Sas18, CP16b, Per18, RKT15].

eigenstructures [DD17b]. Eigenvalue [AAS16, CR17a, ES16, FHJT19, Gho19, Mel19, Nag19, Row16a, SCS16, ATM18, Ais18a, Ais18b, ABH + 19, ABD19, BM16a, BK17a, BPP16, BPP17, BZi16c, BBC18, BMS16a, BC17b, BWSZ15b, BJJD17, CRX15, CPR18, CLQW17, CRS15, DLB18, DHW18, Duk12, Duk15, ELN18, EH18, FuIK16, FWB + 19, FI16, GM15, Gil16, GRS18, HL17b, HWXC1, HL19a, IK18, IR19, JP16, JMP17, JST19, JP18, KJS15, JS15, Kal16, KKY16, KLY18, KU16, LCL15, LM16b, LL16a, LJJ16, LLL17, LDL18, Lin15a, Ma15, MLH15, MQTW18, MPS17, Mck18, MNT19, NN19a, Nik16b, Obo16, PP17b, RMK18, See18, SzS16, SLY17, SWS19, SdFZ15, SW18b, Sta19, SSB15b, SSB15a, TW18a, Van16a, VT18, WZL17, WZ17a, Wei15, WZL15, XL18, Yas16, Yin19, ZG18]. Eigenvalue-free [Gho19].

Eigenvalues [BSS18, GM15, GM16a, JTT15, YSZ17, ASMN17a, ASMN17b, Ais18b, ABG16a, AGS17, AAKS17, APS18, AB15a, AKYD16, ARSB18, ABvN19, BK15, BK16, BM18, BGS15, BGM + 19, BM19b, BDVRT15, BCF + 18, BB16b, BF15, CR17b, Che18c, Che18b, CLF18, Che19a, CLM19b, CJSS18, Das15, DMT16, DMS19, EA17, ET16, EG15, IFwW16, FJT17, FdFdSDV18, FM19b, GAP16, GP18, Gho16, GWL + 18, GTL + 18, HKLQ16, HL18, HXL19, HQX15, HHL15, HH17, HK18b, IHH08, Jia15, JDS17, JLDS18, JMM16, KM15a, KPL18, Kri15, KIW16, KLW18, LOS19, LD16a, LWCS16, LDZ18, LTT19, Mat15c, Mel16a, Mon17, MRT15, NN19a, Nik15, Os16, PM15b, PG15, Piv19, PP18, Ref16, Row16b, SW15, Sam17, Sod18, TY15, TS18, TWR15, TW17, WLP16, WH18, Xu17b, wXjMZL19, YYMK17, YG15, YQL15, YQS16, Yua16, Zhu19].

Eigenvariety [FBH19]. eigenvector [AM16b, BMS16a, DdSDjFDV15, HW16, Ken16, Rin17, SCS16]. eigenvector-based [AM16b]. Eigenvectors [BBGM16, DT15, FWB + 19, AB16, BM19b, BS18c, Chu19, DA19b, DA19a, DV19a, GHT16, LZB18, LKY16]. eight [CF18]. element [DH18]. Elementary [CGL16, AHV19, AMZ17, Bon16a, BR17, CQ15a, JLM18, KMS17a, Lee16, MB18, Pan19a, Pas19, PR18b, SJS15]. elements [Bal17a, Bre18, CDG16, DD16b, GLAdS19, HM17a, HC19, KLIW15, MY19, Rai19, Van16b]. elimination [PQY15, PZ17b].

Ellipsoids [Kim15a, KKP19]. elliptic [CEM15b, HA15a, Kim15a, Yur15].

Elliptical [AAS18]. embedding [DPS19, VB18]. embeddings [De 16a, Han18, Pan16a]. empirical [GJLS16]. enclosure [Miy15]. encountered [BDLM16]. end [Nom15a]. end-entries [Nom15a]. endomorphism [CD16d, MMR18]. endomorphisms [KOST15, SR18, Shi16g]. endpoint [LS18b, MM17a]. energies [DMG17, DGM + 18, DR18, LL15c]. Energy
Egg15, Koz16, NW19. Finsler [Cim15]. firing [BMZB18]. First [PM15b, BK17c, Chui16, GHPS19, Hun18a, Kal16, KT17, LDZ18, Lon17, OQY17, XWD18]. Fischer [CTZ19]. fitting [HPZ19, UM16]. five [HA16]. five-dimensional [HA16]. fixed [CMQV16, DD18, FG17, JKS15, JKP16, KLL16, KKY16, NLW18, PS15, RR18a, SJD16, You15]. fixed-point [FG17]. fixing [KLW15, KLW16, KLW18]. flag [BF19b]. flags [Lax16]. Flanders [dSP16b]. Flat [KY15, BBM16, JSST16, SS17a, WH19a]. flattenings [Hu15]. flow [DvSW18, Li15b, MGM17, Per18]. flows [Ban16, HL17a, VG18]. fluctuations [MNT19]. fluid [BDLM16]. forbidden [FdFdSDV18, Li15b, MGM17, Per18]. flows [Ban16, OBRA15, XW16]. formulas [MN19b, AB16, AL18, AL19a, ACS19, BKN17, Bar17b, BBSS18, BGCMAS19, CFL16, CPW17, DS18b, DSX15, Hun18b, JCM19, KMS16, KMMS19, Som17, TH16a]. Functional [Ere16, Wan15b, Nevi18, Wój19]. functionals [Gir19, dSP19a, Pop16b, SST15, WH19b]. Functions [MN19b, AB16, AL18, AL19a, ACS19, BKN17, Bar17b, BBSS18, BGCMAS19, BEKS17, Bi19, BS19c, BU18, CPZ16a, CMP18, CR18b, CW18b, CRVS19, CLP16, DR16, DDF18, DM15, FI19a, Fa19, Fay18, FNX19, FKMB17, FKRS17, GS16, HM17a, He16a, HNS15, Hia16a, Hiu15, Hon18, HMO8, JMRV16, JG17, JS18a, JLM18, KM16, LT19a, MY16, MR17b, Mon19, NW15, Naj17, Nie19b, Pas18, RRT16, RV18, SR19, Sch16, Shi18a, dSN15, Skr17, SZ19, SS15b, UUG15, Van16a, Vol17, Yam15]. fundamental [AHV19, GZB19, IHS16, ZD15]. Further [AAG+18, BTN+18, DPU18, LW15, YHY15, ZM16]. Fuss [IS17]. fuzzy [MP15b].

Gabidulin [TZ19]. Gabor [DV18]. Gaddum [EA17, HL19a, LOS19].

Gale [RT16]. Galois [GL15b, GL15a]. game [GR15].

gaps [FCLP18]. Gau [CDR+19, Lee15b].

Gauss [BV18a]. Gaussian [FL15, FI16, Hoo19, PCL15, PQY15, PZ17b, SH15b, Zim15].
gcd [AYK17, AKYD16, AYK17, GW19b, HT18a].
gcd-closed [AYK17]. Gelfand [FH19].

General [DSCD17, FSW19, ABP15, BCM17, Bar17a, BMM16, CDR18, DL16, EH18, Hia15, KSMB15, KM18, Li15a, LX17, Miz16, RH15, SK17a, SZB19, Uch15, wXL14, wXZ19, ZKLB17].

Generalization [DFKS17, Roo19, AOK19, BFR16, Hia16b, HP15, KPRvdO16, Rao18, TW16, TGi19, Vec16]. Generalizations [Liu16a, HS19a].

Generalized [BS18c, FT16, IK18, MT15, Zem16, ZZZC15, AMPT16, AHV19, Bai18, Bla16, Bar16a, BBS16b, CEM15a, CCW18, CK15a, CJJ17c, CHT19, DA19b, DL16, DIPR18a, DIPR18b, Dra16a, DHW18, DGP+15, DM15, FuIKT16, FGS+16, FM19a, FX19, GSSvdD16, GH16a, HAW17, HPZ19, Hua19, IR19, JT18a, JZZ18, KP17, Kim15b, Koo19, KST18, KMM17, LJX16, LNT16b, LLPS19, LZ15e, dMa15, MW15, MLW15, MS17a, MS15b, NN19a, Nie19b, Pep17, PF18, RD15, SMH19, SR18, SR19, SB15, TZ19, WM17b, XSW19b, XSW17, wXMZL19, Yin19, YMZ19, ZH15, dCdSA15, BS16f]. Generalizing [SP16].
generated [FM19a, Jia15, JLM18, Kan16, KS17, KLW15, MS19, Pas19]. generates [RS18]. Generating [Mon19, SO16, AGHN18, BN17, CN15, CN19b, Vij15].
generation [RAAGA16]. generator [LMS16].

Generators [CS18b, Chi18, FH19]. Generic [DD17b, DD18, Mor17, SS15a, BC15a, Bou15].

GMRES [DHW18]. Gohberg [XW16].
gons [VGG17]. Gorenstein [Jel18]. Grad [Zha15a]. grade [DD18]. Graded [BY19, BFD18, BZ16a, BKRE18, CC16, CLOK13, CR15, LMO16, RZ17].

Gram [CA19, GSZ16, Sei18, Sim19, Yas16]. Graph [BK16, dSN15, YYMK17, ACT16, ARS16, AAMM18, AL15, AJPS16, AvdHS15, ALOR19, AM16b, AM18, AB18, BDMB19, Ben16, BPR17, BF15, CLT15, CD16b, Che18b, CLF18, CD16c, CGSZ16, COvdD16, DHL+17, Dal19, DMI16a, DMG17, DR18, DT15, DHS18, EA17, FW17, GAP16, GP18, GCP18, GK15, Gho16, GRV16, HLL19, HFS15, HZ17, JT17, JLS18, Ken16, Kob17,
KMS16, KIS18, KMMS19, KLW15, KLW16, KLW18, LHL18b, MWT16b, Mes17, Mig16, MMS18, MM15b, MS16c, Mon17, NS15c, Nik15, Nik16a, OP16b, Per18, PG15, Piv19, SW15, SAfF15, STW18, STW19, TNK16, TWR15, TW18a, VSV18, Wan15a, WM17a, WDV17, WH18, WYL19, WF19, WWC18, XLLS18, ZG18, Zho17, ZWS18, vDS16.

Grassmann [SFW18, FZL +17].

Graphs [Alf18b, BFM19, CRS15, LS15a, MQTW18, TW17, dFNP16, AAB +16, AAG +19, AJO15, Abi19, AG15a, AyLPS18, ASM17a, ASMN17b, AHMM18, ABH +19, AAS16, AAKS17, AT15, AAC +15, ACRR15, AGR16, APR +17, ARS17, ALMZ +19, AB17, Ash19, AH16, AP15b, ABK19, BMM19, BK15, Bah19, BM17b, BK17a, BPP16, BPP17, BK18, BF17, BS15c, BP15, BSS16, BZ16c, BBC18, BCC +18, BSM19, BSP19, BK17c, BF15, BH16b, CR17a, CR17b, CR18, CPR18, CcDV18, CR19b, CLL15, CL16a, CL17a, Che19a, CLM19b, CFI19, CJKM19b, CJKM19a, CV18, CW16b, CGG15, CJ17d, Dah15b, Das15, DMT16, DGM16, DS17a, DGM +18, DG18, Das18, DHHZ19, DMS19, DLG16, DР19, DBK17, DL16, DL15, DM15, ET16, EB17, EHHL17, EHP18, ETF18, FIw16, FCL +16, FJT17, Fio16, FKD15, FSSW17, FS19, FHJT19, GGH15, GH19, GS17].

Grassmannians [BHML15, Pan16b, Pan17].

Green [CEGM16, CEM15a, GJK18].

Grid [CDRT17, KN16, OL16].

Ground [LM19].

Group [FJMP15, KY17, AMC18, ABP15, Bie15, BS19b, BJ15, CS19a, CH19, CJ17b, CS18b, DHH18, Gae16, GH15, He16b, HS17, KLW15, KMM17, LH17, LMM +16, MBB +18, MY19, PB16, Pop16a, RB16, Sri17, Van16b, Wei17, WH18, XW16, ZMT19].

Group-subgroup [RB16].

Group-theoretic [FJMP15].

Groups [AJ19, BD15a, BRN18, BMZB18, CLUP17, Che15b, CHK17, CW17, DF15, DF18, DH19, Far16, GG18, Gae16, GP19b, KMOR19, LMPM17, MS19, MOR16a, NT19, Oi19, Saw16, Sin17, TZ19, Zem16].

Grover [KST18, LT18].

Growth [AB19, CR15, bCR18, LHC15, RZ17].

Grundy [Lin19].

GTS [NS19].

Guarantee [Lin16a].

Guarantees [ZC15].

Guo [AB15b, AMNR18, Rob19].

gyroscopic
[CL15c].

H [CS19b]. H-matrices [CS19b].
Haagerup [Ali20, HAD19]. Hadamard [FJS21, AMV17, BS15a, BGKP19, CM18, DHW16, FJS17, GW16b, GX17, HL17b, HW15b, Jai17, JKP17, Kar16, LK16, NS17, NW19, Pep17, RS17a, Roo19, RWH17, TG19, Zha18c]. Hadamard-type [HW15b]. Hadamards [MB15]. Hajós [Jen17]. Hajos-type [Jen17].

Half [EV15, YDYY18, AM19, CD16a, HT18b]. Half-radial [HT18b]. Half-spin [CD16a].

Halfspaces [SW16]. Halley [LG18].

Halmos [LMX19]. Halves [Bar19].

Hamburger [CJ16b, HZC15]. Hamilton [BBS16b, LN17].

Hamiltonian [LSX15, LS18b, SS15c, ZG18, Zhu19].

Hamiltonicity [Ben16].

Hankel [Al’17, BS18a, CJ16b, CI15a, CI15b, DS19b, FM19a, HKM18, Xu16, Yur15].

Hans [BMS16b].

Hard [BC17b, FS19a, RSS17]. HARDI [CS15a].

Hardy [AP15a, ANAPSR17, HJW19, Nin17].

Harmonic [Vec16, Yam15, Yin19].

Harpe [Ali20, HAD19].

Haukkanen [AKYD16].

Having [BK17a, BBH16, ET16, HLG15, IKVZ18, Nom15a, Nom15b].

Hecke [Rai19].

Hedetniemi [KM19].

Heisenberg [LZ15e, Pop16a].

Helly [BJC15].

Hemispaces [EHN16].

Herglotz [ACS19].

Hermite [BDM18, ACDT+15, Joe16, PP18, Reb19].

Hermitian [ACM17, BS18, BBGM16, BBFF17, CG19a, CRC17, CLZ16a, CS18b, CSQ18, FM16, GXY217, GMO19, Lai18, LL15c, MNTX16, Moh16, Ore16a, Ore16b, Sch16, SW128, TC15, Vec16, Yin19].

Hermitian-adjacency [L15c].

Hermitianity [HK19c].

Hamiltonity [Ho17].

Hessenberg [BR16b, DHW18, Mar16].

Hessenberg-upper [DHW18].

Hessian [CPW17].

Heterogeneous [Ruk15, Zha15c].

Hiai [Wad18].

Hidden [DN16, LL16b].

Hierarchical [DH15].

Hierarchy [Ong18].

High [CS15a, GdLL17, KU16, Lom17, MH15, SSH15, TW18b, WZ17a].

High-dimensional [KU16].

Higher [BBMF17, AAS18, AMC18, BGV17, BBT15, CLUP17, CL16, Fre18, GH16b, GS15, HMNP15, KKP19, LZ15a, SL16].

Higher-dimensional [CL16].

Higher-order [GH16b, LZ15a, SL16].

Highly [CLM19a].

Higman [LMP+17].

Hilbert [AK19, BF18a, BCKL17, BSZ18, Bil19, CR19a, CGL16, DY15, GKR16, Jel18, LMX19, MS17a, MEMM17, OZ15b, Pan16b, PCI15, Pop16a, Vir16, XF17].

Hilbertian [BFA18, FG16, Zam19].

Hille [Bob16, CJRMF+15].

Hille-type [Bob16].

Hilton [GL17].

Hlawka [BS15d].

Hoffman [KLY18, KSTY19].

Hold [DV18, Wad18].

Hölder [Kal18, Zou19].

Holomorphic [BGCM17, SS16, Bal17a, BGdCM17, Bil19, FCM17b, Nev18].

Homogeneous [BB16b, IL17b, PC15, Vas15, Zue18].

Homology [BBMF17, CCW18].

Homomorphism [Jen17].

Homomorphisms [GRV16, OP16b, dSP15, dSP16c].

Homotopies [BV18a].

Homotopy [KL18b].

Hook [NS17, Sri17].

Hopf [BBdH16, BBdH18, MG18b].

Horizontal [CJB18].

Horn [Bar15, CW18a, DP15a].

Hou [Bai19].

Hourglass [Koz16].

Householder [RMP18].

HSS [Bai18].

Hua [HIS16, LHZ16, Lin16b].

Hua-type [LZ16].

Hulls [AM19, KS15a].

Hurwitz [BS18a, Dya17, PM15a, Riv15b].

Hurwitz-type [BS18a].

Hyper [BT15].

Hyper-ideals [BT15].

Hyperbolic [GT16, LP18, MHS15].

Hyperbolical [SO16].

Hyperboloid [SO16].

Hyperboloids [Kim15a].

Hypercube [Mir18].

Hypercubes [KHI16a, KHI16b].
hyperdeterminant [YLB15]. hypergraph [HQX15, Pea15]. hypergraphic
[CRRY15, CLR+18]. Hypergraphs [Nik17b, BL18a, BCM17, CLN15, Duk12,
Duk15, DR19, FuIKT16, FBW+19, FBH19, JZZ18, KNY15, uIKF15, LZB18, LZ16a,
LZM16, LZW17, LZ17a, LKY16, LM16c, OQY17, RS17a, SY17, SZB19, XLQC16,
YYB19, YQS16, ZLK18].
Hyperinvariant [AW15b, AW15a, FMM16].
hypermatrices [Nik17a, Nik17b].
hypermatrix [GF17, Pea15].
Hyperplanes [Pan15b].
hyperplane [FGG+18].
hyperplanes [Pan15b].
Hyperpower [SSH15].
Hypersurfaces [UM16].
Hyperinvariants [Rei19a].
Hypersurfaces [UM16].
Hypertrees [GZ18, ZKSB17].
Hyponormality [Lee19a].
Ideal [HR17, Pop16b, Ris16]. ideals [AKS17a, AKS17b, BT15, CKM19, HR17,
JLM18, KVV17, Ris16]. idempotence [LP15].
Idempotent [Bot16a, GT17, LP15, Ste18, TXZ18].
Idempotents [AJL16, BES16].
Identifiability [Wan16b]. Identification [LPPZ19, Hoo19, NAS18]. identifications [SBB15].
Identifiers [GZ19]. identifying [BDMB19].
Identities [UG18, AGN18, BY19, BKNS18, BLDsV19, BV18b, CR15,
Ere16, HHJ15, LMR16, TZZ17, Wan15b].
Identity [AMPT16, BaHOS15, LMS16, LLSX15, Rum18, RB19, Zha18b, dCdSA15, vWZ17].
Identities [BR16a, DPV19, DvD16]. Ihara [KMMS19, Son17].
II [dSP19c, AKS17a, BS16c, CJKM19b, CSJ16, DV19b, EHLP18, FMK17b, GH15, Hia16a,
KLY18, Ore16b, PT19, She17]. III [AKS17b].
ILAS [CFH+16, FLV18, GPW15, GHPS19]. ill-posed [BB18].
Ilmonen [AKYD16]. image [DdSc+16, PS16, Win16]. images [AEV15, Fag19, LNT16a, Lau18, LT16b, MO16].
imaging [CS15a]. immanantal [NS17, NS19]. immanants [Tab16].
Implementing [CG19a]. Implications [BDP18a]. implicit [CMV19, SNP16].
imprecise [Sku17]. imprecision [Sku17].
imprimitive [MP16c]. Imprimitivity [AGH17]. improve [AM16b]. Improved
[Che18b, DM18, XL18, LH17, Xu17b]. Improving [OVW18].
incentive [LT19a]. incidence [AB18, CR18b, CDH18, IIMH08, Ma16, MMM19, WZZ19, ZK17]. including
[Ern18, JLD17]. inclusion [BWSZ15b, BJLD17, DLB18, ELN18,
LCL15, LL16a, XF17, YZL+19].
Incomplete [LSM18, Mic16, iT16, iT19]. inconsistent [BW19]. increasing
[CR19b, Gar17]. Indecomposable [CPS17].
indefinite [MV16, MSSZ17, ME15, NN19a,
SG17a, VK16]. independence [ACT16, JL16a, LL18a, ZLG17].
independent [bCR18, MC19, OL16, Vij15].
determinates [HZ15].
index [AGH17, AMNR18, BOT19, CR19b, DG18,
DS19b, FW17, JDS17, Kim15b, LZ15b,
LS19, LL17, LL18a, MMS18, NY15, NR18,
PS15, Rob19, SPBB19, SG16, Yua14, Yua15,
ZW16, dFNP16, Rod19]. indices [WWT18].
indices [APR+17, DA19c, FGS+16, HLW15,
HWL15c, Pa16, Son17, SS17b]. induced
[KSTY19, Mar18]. inductive [MHA18].
Inequalities [BM19b, BJ19, CS19a, Chol17a, Cho17b,
HvdD16, AOK15, AO18, AKS17a, AKS17b,
AN17, AK19, ANAPS17, Bar17a, BS15d,
BLY16, BBP19, CPZ16a, CM16, DKS15,
DS15, GW18, GHK17, GLRT18, HRM18,
Hoa17, HWXC18, JM16, JML18, Kal18,
KMY15, KL17, KMS17a, Lin16b, Lek16,
MN15, MRS15, MF16, NS17, Nie15a, Nie15b,
Reb19, Ric19, Sab15, Sab18, SMH19, SDK17,
She17, SWB19, TNK16, Uch15, Ulu19,
WDFS17, XCJ18, Zam19, Zha18a, Zha19a,
Zou19]. inequality [Ali20, ACPR15, AP15a, BNST17,
CJRMF+15, CPZ16b, CTZ19, CS17, CW15b,
CJ16c, CJ16d, FS19b, GXYZ17, HAD19, Hay19, HL17b, IKW16, JZC19, LS18a, Lin15c, Liu16a, Nun17, RRV15, Roo19, RWH17, Wad18, Zha19b, Zou17. **Inertia** [HT18a, NN19a, AvdHS15, AvdHS16, BS16a, FW17, LS19, LLL15, LOvdD18, WWT18]. **inertias** [BOvdD17, COvdD16]. **inexact** [BM17a]. **Infimum** [WLL19]. **Infinite** [BGdCCMSS17, DE15, ET18, MS17a, Min17, ABO15, AMZ17, Bie15, BS16e, CG19c, CJ17c, Dya17, Egg15, EGT15, HLZ17, Hou19, Hou20, KL19b, LD17b, LMR16, MK18, NT19, Pan17, PMW19, PP15, PPZ19, SR18]. **infinite-by-infinite** [Egg15]. **Infinite-dimensional** [Min17, CG19c, Pan17]. **Infinitely** [VB18]. **infinity** [GS19b, LCWZ19]. **Inflation** [SZ17]. **inflations** [MM19a]. **influence** [BK17c]. **information** [DKS17, Mel19]. **initial** [AGQ19, AL19b, BEKS17, FZwCW16, FS19b, Mag16, MSSS17, PP18, SG17a]. **inputs** [LPPZ19]. **Insight** [CQ15b]. **Instances** [DK16]. **instructional** [Dog18]. **integer** [Bor17, Mac16]. **integers** [San15]. **Integral** [BK18, CFH19, San15, ALOR19, Bal17a, Cal16, CDMP15, CS15a, CX17, CW16b, DN18, FdC15, HK19a, JKP16, Mir18, Ota15, PS19a, San18, Wim16]. **integrality** [DN18]. **Integrally** [MS16a, PS17]. **integration** [BPT15, Van16a]. **Integrators** [AMH11]. **intercyclic** [VV18]. **interlaced** [MM15b]. **Interlacing** [DK16]. **interlaced** [MM15b]. **Interpolated** [Sab15]. **Interpolating** [Zha19b, RV18]. **Interpolation** [BDM18, AL18, HZC15, MM17c, Ste15]. **interpolational** [UY17]. **interpretation** [FKD15]. **interpretations** [LPP15]. **interrelations** [Riv15b]. **intersection** [KKL17, PRS19, SXD16]. **intersections** [RV18]. **intertwiners** [Ter17a]. **intertwining** [DSCD17, MMS16]. **Interval** [Mys16, RS18, WT18, Gho19, Hla15, HS19b, Li15a, LX17, Li19, MP15b, MP19, PM15a, PS18b, Rub19, wXjMZL19]. **intervals** [XL18]. **intriguing** [BM19a]. **Introduction** [Bru16a]. **Invariance** [AG17, BJ15]. **Invariant** [CQ15a, ACRR15, AG15b, AG20, BBEE19, BB16a, CK17, CFP18, CJW19, DG18, DH19, DS15, JLM18, KT17, KLL18, KMS17a, Lee19b, LP18, LNW17, MRS18, MOR16a, NINS16, NP15c, Ouy17, Ram17, Sab15, SK17a, SW16, WL15, Zha19b, Zha15c, Zou19]. **invariants** [DS19c, GRV16, KLP18, Obe16]. **Inverse** [BS16a, CS19b, CIY15, CNY18, ES16, ES17, HC15, HFS15, Wei15, AT18, AIS18a, AIS18b, AB18, BW16, BPP17, BFM19, Bik19, BC17b, BC16b, CJ17a, CGMSR15, CGDM16, CL15c, COO15, DHO18, EJ18, GMLdS16, Hoo19, JT18a, JMRV16, JP16, JMP17, JP18, JS15, KB15, LD1L18, LCWZ19, LL16c, LMM16, MA15, MN15, MPS17, Miy15, MK18, NMBA19, Nor18, QWW18, Rak17, SL17, SW18b, Wei17, XSW17, YW16, ZC15, ZHO17]. **inverse-free** [JMRV16]. **Inverses** [LL19, PP17a, WZ17b, BJKR17, BKNS18, BB16, CFM16, DM18, Dra16a, ELN18, HWZ15, KC16, Niv15, OP16a, OP19b, PS15, PCI15, PHW16, RD15, SR18, SH17a, SSHA15, SZX16, WX16, ZMT19, ZZC15]. **inversion** [EGT15, KP19]. **Invertibility** [PPZ19, DS19b, YMYK17]. **invertible** [CS19a, CKT19, KKA15, LY17, Ore16a, Ore16b, PS17]. **investigation** [GO18]. **involution** [BLdSV19, UG18, ZZC15]. **involutions** [AR18, BKRE18, GT16, HLZ17, Hou19, Hou20, LMP17, dlC15]. **involutive** [FKS16]. **involutory** [Kim15, XX12]. **involving** [CGMSR15, Das18, FI19a, GHK17, HL17b, KMS17a, LIN15a, SS17b, UWYY15]. **Iowa** [GHPS19]. **irrationals** [OZ15a]. **irreducibility** [GJ18].
Laplacian-energy-like \cite{DG18}. Laplacians \cite{FCLP18, MM19b, NS17, Nag19, SCD17}. Large \cite{BDFR15, dSP16c, dSP16d, BW19, BGM +19, BB16a, BDLM16, CR18a, EM17, HK18a, Jia15, LMS15, MNT19, PS19d, VHB18, Yin18}. large-scale \cite{BB16a, EM17, HK18a, LMS15}. larger \cite{YSS16}. largest \cite{ABH +19, AB15a, BK17c, Che19a, CLM19b, DMS19, IFwW16, FuIKT16, HQX15, Kim15b, Lin15a, LDZ18, MHL15, McK18, Obo16, OQY17, SAdFZ15, Sta19, TW18a, XWD18, YQS16}. lasso \cite{WLH18}. latin \cite{War17, Shi18c}. lattice \cite{EHLP18, Joe16, MMR16, MMR17, MMR18, WDFS17, YDYY18}. Lattices \cite{BFG +16, BF17b, Bie15, LM17, MdlP16, Str18, Yam15}. Laurent \cite{Che18a}. law \cite{PCI15, XSW17, dCdSA15}. laws \cite{NN19a}. Lax \cite{AS17}. Layout \cite{RR18b}. LCM \cite{AYK17, HT18a}. leading \cite{De 16b, HJ16}. learning \cite{SH15b}. least \cite{BZ16c, BBC18, CGDM16, CKM16, CGM17, CRS15, DS18b, Eld15, GFM17, HK18a, JKS15, KL15, KLY18, LM16b, LC19, LHC15, NZZ15, SZ17, UM16, WZL15, YAS16, ZG18}. Lee \cite{Mor16b, SSS15, TZK17}. Left \cite{Dra16a, HW16, Lie18}. Legendre \cite{Reb19}. Leibniz \cite{LMO16, CC16, CLOK13, CILL16, KKO15}. lemma \cite{Alf15, CS15b, CJ17c, DP15a, Lev15, Cim15}. Length \cite{GMM19, WZW19, DF15, DF18, LMS16}. Lengths \cite{GMM16}. Leonard \cite{AC15, HLG15, LGH15, Nom15a, Nom15b, NT17, SGH16, Ter17a, WHG17}. Leslie \cite{Ben18}. less \cite{FZwCW16}. Leuven \cite{FLVV18}. level \cite{KRZ +17, MP18, WQH19, Zas16}. lexicographic \cite{WW18}. LFED \cite{Zha17}. Lipski \cite{MRS15, MRS18}. Lie \cite{ABM18, AEV15, AKN15, AK16a, AK16b, BC15a, BdCL17, BCS15, BCS16, BP19b, CCIT18, CPS17, CCW18, CW15a, CL15a, Chi18, Cos19a, CLP16, Der19, DR17, EF19, FKPS18, GIP18, HAM16, Hol16, HK19, KLS19b, LL19, LZ16c, LZ17c, LGZ18, PR19, RZ17, Saw16, Wani16, WZ17b, ZK17, Zms17b, vWZ17}. Lieb \cite{Bek16, FS17b, Hua19}. lifts \cite{CV17}. like \cite{AB16, BDP +18a, CCGO17, DG18, DA19c, DF15, DF18, LWY16, LZSD17, LZSD18, Mel16b, Nie15b, RW16, VK16, Zhe19}. likelihood \cite{Ruk15}. Lim \cite{DDF17a}. limit \cite{Ban16, LMM +16, Yin18}. limited \cite{EM17}. limited-memory \cite{EM17}. Limiting \cite{Tab16, CG15}. limits \cite{Bik19, Ege16, Nat19, PR18b}. Line \cite{Her16, ALMZ +19, CG19a, DF16, Dal17a, DGM16, DM16a, FdC15, GCP18, Gre18, HS19a, LMDRZ18, MST15, Ref16}. line-Hermitian \cite{CG19a}. Linear \cite{AMR19, ASMN17a, Ali20, Ano16a, AG20, Ball15a, Ball15c, Ball18, BR19, BTW16, BMVW16, BF17b, BO17, BKS23, CC17b, CR18b, Dog18, Duk15, EKS18, EP18a, FJS21, FL15, GP18, GWL +18, GJK18, GHS19, HF18, Hou20, HSS16b, KAPS20, KS19, KHI16a, LMO16, LM16a, Laut18, LT16a, LLS17a, LZSD18, LD16b, LD17b, MR15, Nom15c, PW20, Pud16, RB19, SM18, XFDZ17, Yua15, ZL15a, dCDFK18, dS19a, ABP15, AAdFS19, AJ19, AKM17, ABO15, ANAPSR17, ABGJR +18, AW15b, BW19, Bal15b, BP16a, BLPT15, Ble16, BF17a, BGCMüss19, BS16c, BRN18, BM17c, BL19, BMO15, CEM15a, CVV19, CNX17, CJ16c, CJ16d, CJ17c, COS18, CFNP17, Cus17, DGCC16, DGMP18, DS18b, DdF16, DU16a, DN16, DN18, DdC16, EE16, Ema18, EJ19, FM17, FHS17b, FKPS18.
GM15, GSP16, GC19, GR15, Gow16]. linear
[Gré18, GRBS15, GHT16, Hla15, HR16,
HS9b, Hoo19, HM17b, KL18a, KKA15,
Kis15, KÖ16, LNT16a, LPPZ19, Lee19b,
Li15a, LX17, LLL17, Li19, LS18b, Lom17,
Mar18, MSSZ17, MMR16, NA15, NN19b,
NINS16, NT19, NP15a, Nie15b, Obe16,
Ok15, ÖK18, PSG16, PSM18, dSP19a,
PMB15, Ram17, RJK18, RH15, RT16, RW17,
SFW18, SR18, SNP16, SDK17, SK17b, SSS15,
Shi16b, Shi16c, Sug17, SS15c, TZK17, TXZ18,
VGG17, VF17, VG18, Wan16b, WZL17,
WT18, WLL19, Wan19, Wój19, XX12,
wX14, XvdBvdLS15, wXZ19, YLT16, Yin18,
ZD15, ZZR15, ZC15, ZH17, ZLQ16, Zha19].
linearization [BSS18, VT18].
Linearizations [MP16a, PM18, AB16, BDFR15, BBFF17,
CCGV +19, DA19a, DMQ19, FS17a, NP15b].
linearly [Mar15a, MC19, Vij15].
lines [CGSZ16].
Liouville [GM16a, YSZ17].
Lipschitz [AAdFS19, BP16a, BZ16b, GMW18, Oi19].
lists [HMPT18].
list [AMR18, BCJ +16, JZ18, MAR17, MN19a].
Littlewood [AP15a, ANAPSR17, Num17].
LNED [Zha17].
load [Zha15c].
Local [AKR15, AK16a, AK16b, AA17, CW15a,
CL15a, Cos19a, CDH18, LZ17c, MRS18,
AAM15, ABM18, ÁVAK +19, BM17a, BE15,
Ben15, BM15, BL18c, BCP16, CP16a,
CJ16c, Cos16a, CS18b, CQS18, EJ17, EG15,
Est16, HLM17, NT19, NP15a].
local-global [NT19].
Localization [BM18, BM16a, JL16, Mel19, NN19a].
localizations [SKC18].
locally [AW15b, Beh17, Bik19, Che18a, DF16,
Man19, TXZ18].
location [AAS16, FHJT19].
loci [BBT15].
Log [Jel18].
Log-Determinant [Min17].
Log-majorization [AGS17, Hia19, Hia16b].
Log-majorizations [HL18, LS18a].
logarithm [Miy19]. logarithmic [BES16].
logarithms [BNST17]. logistic [KM18].
lollipop [BP15]. long [GH19]. look [UZ19].
look-ahead [UZ19]. loop
[BGM+19, BBGM16, GS16, Sz17, Zaj19].
loop-free [GSZ16, Sz17, Zaj19]. loops
[AvdHS15, AvdHS16, GPI18, Sim19]. loose
[Xu17a]. loose-coherent [Xu17a]. Lorentz
[Bal15a, HC19]. losing [BdP18a]. Lovász
[OP15].
Low [BA15, GS19b, RS17, BB16a, BR16b,
COC15, FS19a, GH17, HKM18, IHS16, KU16,
MS19, Mor17, OV18, PQ15, RGP16].
low-dimensional [BB16a].
Low-rank [BA15, GS19b, FS19a, GH17, KU16, Mor17,
PQ15].
Lower [AR16, AP15a, CLL15,
DTZ16, TWM16, WW18, AL15, ARS17,
AdFRR18, Bal15c, CR19b, HW15b, Mor17,
Obo19b, SP16, ACRR15].
lower-upper-lower [SP16].
Lowering [Ter15].
Lowering-raising [Ter15].
Löwner [Pas18].
LS [MVPST19]. LS-category [MVPST19].
LSMR [HKP17].
LSQR [CN19a, HKP17].
Lur’e [SL16].
Lvov [DK16].
Lyapunov [eFLYL15, Gö17, GX16, GX17, GX19].
MacWilliams [TZK17].
made [Kai16].
magic [KKL15, War17]. magnetic
[FCLP18].
maintaining [MGM17].
Majorization
[DS18, Fie15a, Nie15a, AGS17, Dah15b,
EE15, EM15, Gow17, Hia16b, Hia19, Lin15c,
Lju15, LD16b, LD17b, NA15, Obo19a,
Obo19c, PP15, XF17].
majorizations
[HL18, LS18a].
majorizing [Sab19].
Malcev [HAM16].
manifold
[BA15, DH15, DSX15].
manifolds [BC19a].
map [BP16a, Dyn16, MPS17].
mapping
[Cus17, GMLdS16, Tsa16a].
mappings
[AAdFS19, BMGP15, CC17b, DGG17, DS15, DdFR16,
FJ17, FJM18, eFLYL15,
FHS17b, MSSZ17, Wój19, WMC15, Zha18b].
Maps
[AAM15, BE15, BM15, KP17, MPV16, Pet15,
ZH15, AKS17a, AKS17b, BS16c, Bou16b, BL18c, BL19, CP16a, CHK19, CKL17, CTK19, COS18, Cos16a, Cos16b, Cos19b, DdC16, EJ17, EP18a, FMR19, Gow17, HF18, HYH15, HLS+16, KVP19, LT12, LT16a, LT16b, LY17, MR17a, Mar18, MS16b, MM17c, Nie15b, Oi19, Ong18, PC15, QH15, SDK17, SK17b, STZ15, Vir16, XFDZ17, YT16, YdB19, YLT16, YL17, dB19b.

Mardia [H¨ur15]. marked [CFP18].

Markham [LZ17b].

Markov [BPZ17, BK17c, BCF18, CLR19, Cho19, GZB19, Hun16, Hun18a, Hun18b, JLT17, LZ15a, Mas17, Reb19, SY16a, Sab19, Sku17, SH15b, VB18, Vas15, WC15].

Markovian [GCQX15]. mass [HZC15]. matchable [AJ19]. matching [Ash19, HHL19, MWT16b, TH17, TW16a, WW18c].

matches [Mes17, MM16b, TD15, YG15]. mates [CHJM18].

Mathematical [Zha15a]. Mathematics [Bru16a].

Matic [Zha15b]. Matrices [AR15a, Bre18, CLST18, CSJ16, GS17, GdLL17, Hill17a, LdlP15, RFPS18, AMR16, AOK15, AM19, AAS18, ATM18, AG17, AMR19, AJL16, AK19, Alfi1a, APS18, ANP16, Alo15, AKY16, AYK17, ACM17, AMZ16, AdF19, ARS17, AMNR18, AMR18, AMG19, APT17, AGV18, ABK19, BJ16, BW16, BAI18, BFF16, BM18, Ball15a, Ball15c, Bal17b, Bal18, BM16a, BS15a, BK19, BBdH16, BBdH18, BDDO16, BP16b, BBH16, Bar16b, BG15, BGM+19, BF18b, BF19a, BS18, BM19b, BE15, BN17, Ben18, Ber17, BS16c, BJL19, BC19a, Bi15, BDLM16, BR16b, BBGM16, BBC+15, BDS15, BC17a, Bor17, BC19b, Bot16a, Bot16b, Bou16b, BM15, BC15b, BSS17, BGSS18, BHSS18, BS16f, BM16b, BaHOS15, Bri17, BCU15, BGGS16, BD19, BR18, BO15, BO17, Bur15, BV18b, CCIT18, CRX15, CU18].

matrices [CC19, CDR18, CEM15a, CR19b, CLR19, CPZ16a, CGMSR15, CM18, CHK19, CR18a, Cha19, bCR18, CRC17, CS19a, CS19b, CLW15, CXL16, CIY15, CL17b, CKS16, CJB18, CS18a, CK19, CN17a, CN17b, CN18, Cho17b, CTK19, CS15b, CHB15, Chu19, CI15a, CI15b, Chu15, CM19, CD16c, CW16a, Cos16a, Cos16b, CJW19, CLP16, CLS17, DD17a, Dahl15a, DA19a, DA19c, DB19a, Dax17, DDCY17, Dev19, DD16a, DD19, DAG16, DEH16, DDF17b, DKF+15, Dmy16, Dmy19, DO16, DL16, DM19, DM18, Df15, DE15, DN16, Dc16, DS17b, DU16b, DKPU18, DWH16, Dya17, ELN18, Ege16, Egg15, EHK16, EM16, Ern18, EGT15, ET18, EW19, Fag19, FOvdD16, Far19, FT16, FMR19, FdC15, FM19a, Fie15b, FGH+15, FM16, Fik18, FM19b, FI16, FKM17a, FR15, FR18, GG18, GSW16, GSSvdD16].

matrices [Gar17, GW16b, GWW16, GL19, GXYZ17, GH17, GIM16, GM16b, GT17, GMP16c, GW19b, GHT16, GKH17, GLRT18, GL15b, GL15a, GL16, GMM16, GS16, GJ18, GT18, GMM19, HS18, HKM18, HvdD16, HT18a, HAWM16, HS17, HJW19, HL17a, HJ16, Hill17b, HW15b, HP15, HT18b, Hon18, HL17a, Hou19, Hou20, Hrou16, HWZ15, Hu15, HSS16b, HSS16, HNR16, HLS+16, Hu19, HL19b, H¨ur15, HK18b, IKVZ18, IW15, IHM08, IK18, IKW16, Jai17, JT18b, JS16, Jia15, Jin15, JSST16, JZ16, JZ17, JZ18, KLS19a, Kan16, KS17, Kar16, KLP18, KKL+17, Kim15b, KL16, KLL16, KK18, KLL19, KQZ16, Kis15, KL17, KM16, Kob17, KLS19b, KK17, KY17, KH17, Koz16, Kurs15, Kus16, LL17, Lai18, LLP19, Lee15b, LP15, Lee15c, LL19, LT16b, LHZ16, LDL18, LCW19, Lia17, Lie18, Lin15b].

matrices [Lin16b, Lin17a, LZ17b, LL15c, Liu15, LY17, LT19b, Lek16, LS17b, LSM16, LMS18, LMR16, Lyn15, MO16, MY16, MM19a, MS16a, MAR17, MS15a, MM16a, MMP17, MMV19, Mar16, Mar15a, MV16, Mat15b, Mat15c, MP16b, MP16c, MN19a, MNT19, MN19b, Moli18a, MS15b, MPV16, ...
matrices [She17, Shi16e, Shi18a, SSV17, SCD17, SH15b, SS18, SB18, SUY16, Sol18b, SW18a, Sot17, SJS15, SS15b, SV17, Ste18, SSB15b, SSB15a, SG17a, STZ15, SW18, TH16b, Tan16b, Tan19, Tar18, TS18, DDM16, Ter18, TW18b, Tsa16a, TW19, TCD15, TC15, TG19, Uhl19, UG18, VB18, VQ17, VQ19, VV18, Vec16, VHB18, VG15, VB19, Wan15a, WLP16, WQ19, WLL19, WZ17b, WMC15, WHC17, XW16, XW12, wXL14, XFZD17, XSW17, wXZ19, Yan16, YDH18, Yin18, Yor17, YZZ18, ZS17, Zha18c, ZMT19, Zha19a, ZLL18, Zhe19, ZM16, ZF15, Zim15, dCF17, dC15, dCMP15, dC15, dCG18, Tsa16b].

matricial [FKM17a, FKM17b, FKMS18, HZC15, JP17, ZHC16].

Matrix [AMH11, BLdSV19, Bru16a, BPT15, Che18d, CPW17, DKS17, Eve18, He15, KMS15, MN15, MHA18, MP16c, Nat19, PW18, PV17, Rao18, ZSQ19, Zhe19, AMR+16, AR16, AG17, ARR18, ASM17a, ASM17b, Ais18a, AGH17, AGS17, AGN18, AB16, Al17, AB15a, AMZ17, ADW19, ABD19, AL16, ACDT+15, ABK19, AA17, AB18, BR15, BntBCC17, BS15b, BS16a, BES16, BDG15, BB18, Beh17, BGKP15, Ben15, BGT+19, Ber18, BLy16, BR16a, BHK16, BFD18, BHP17, BA15, Bou15, BDK+17b, BC16b, BaHOS15, BS19c, BDFR15, Bün17, BR17, CL19, Cal16, CJ17a, CG15, Cha15, CCGV+19, CLT15, CMQ16, CPW17, CLR+18, CLM19a, CJ15, CA19, CJ16b, CS17, CYD19, Ciu15, CDTZ15, Cos19b, CHT19, DGS18, DdSJaFDV15, DA19b, DI16, DLL17, DDMP19, DR16, DKS15, DHLT19, DF15, DF18, DPR19].

Matrix-products [BR15].

Matrix-tree [BPT15].

Matrix-variate [Mat15a, MP17].

Matroid
Model [WLH18, BFFN16, BCMASS15, HvdD16, KM18, LHC15, Mar15b].
models [DV18, Ema18, FL15, GH16b, HPZ19, KÖ16, ÖK18, QWW18, RH15, Ruk15, SNDM17, Wan16b, Zha15c].
moderate [ET16].
modifications [SSB15a].
modified [AL19b, CLLS17, JM16, JLM18, wXL14, wXZ19].
Modified [HMS17, SY16, TC15].
modularity [BBC15, FT16, FT18].
module [CD16d, Gua18, IKR16, LT12, LT16a, LMX19, Shi16g].
Modules [HCS17, CPS17, Gon15, LZ16c, LZ15e, MM17a, MEMM17, XF17, Yan18, dSRST17].
moduli [AGS17, Pie18].
modulus [Cos16b, MS16b, XXZ16, wXL14, wXZ19].
modulus-based [XXZ16, wXL14, wXZ19, ZZR15].
mohy [Fis17].
moment [CIY15, CJ16b, DE15, EGT15, FKM17a, FKMS18, HZC15, LM17, Lop15, PS19e, Riv15a, ZHC16].
moments [Léke16].
monic [CK15a, FK16].
monoid [CD16d, CLR16].
monomers [NS15a].
monomial [Lax16].
monotone [Sch16, BU18, DDF18, Hoa15, JS18a, Mas17, Naj17, Nob16, Pas18, iT16, iT19].
Monotonic [Gre18, AB15a].
Monotonically [ZF15].
Monotonicity [LG18, WL15, Cas19, DKS17, DDF17b, GMW18, Nag19, NW15].
Monte [WC15].
Montgomery [Cox15].
Moody [Sin17].
Moon [LN17].
Moore [AB18, CGMSR15, CGDM16, Dal19, HWZ15, KB15, Nor18, XW16, XSW17].
Moreau [Sol19].
Moreau-type [Sol19].
Morphisms [Cha19, EC19, CLR16, DKNS16].
Morrison [ACM15].
Moser [LN17].
mot [Alfi18b, CJ17d, EHK16, PS19a, TW17].
Mostow [GM17].
MRD [CMPZ18, GZ19].
MRD-codes [CMPZ18, GZ19].
MUBs [Kar16].
Muir [dCdSA15].
multi [AKPS19, CJ17b, KAPS20, XLQC16, Zas16].
multi-dimensional [AKPS19, CJ17b, KAPS20].
multi-hypergraphs [XLQC16].
multi-level [Zas16].
multigraph [McK18].
multigraphs [Gn16, O16].
Multigrid [CDRT17, BDDSC17, BHK16].
Multilinear [An16a, BMVV16, CW16a, BT15, BM17c, CR19a, DGK+17, DKS15, DK16, Feng19, LT16b, Pop16b].
multiple [Ais18b, AM15b, BBT15, BDK+17a, BTN+18, CDMP15, CKM16, DKSV19, LPPZ19, NSCV16, PM15b].
multiplicity [Beh17, CYD19, DK18].
Multiplicative [CGDM16, CL16, MRS15, XSW17, CJZ18, Hii15, Hii17a, MI16].
Multiplicatively [BL18c].
multiplicativity [San15].
Multiplicities [FdFsdV18, Piv19].
Multiplivity [JZ18, ARSB18, BK15, BK16, BCJ+16, CR17a, CPR18, ET16, JDS17, JLD18, JST19, LH17, MQTW18, OS17, Row16a].
Multipliers [JC18, LH17, PQY15].
multisplitting [ZZR15].
Multivariate [CHK17, FD15, Ham19b, HMK18, KRZ+17, KRZ+18, KPRvdO16, LW15, LH17, Lop15, Ruk15].
Murdock [Fik18, FM19b].
mutation [CKS16].
Mutually [BL16, Kist15, Lie18, MB15, Sz16, XX12].

Narayana [AMPT16, Bar16a].
natural [Lie18].
naturally [CLOK13, LMO16].
Near [MOR16a, DL15].
Near-invariant [MOR16a].
nearest [GKS19].
nearly [MOR16a].
nearness [HRN16, NR16b].
necessarily [Mon17].
Necessary [Bar17a, Li15a, LS17b].
negative [FW17, GSZ15, GSZ16, GJK18, JLM18, Koz16, LS19, MM19a, SZ17, TW17, Wol18, Zaj19].
Neighborhood [BSS17].
Nekrasov [OP19b].
nest [CL15a].
nested [AAC15].
network [GZB19, QWW18, Sar19, SZW16].
networks
Neumann, Newton, Neural, Newton, nice, Neip, Nikiforov, nil, nil-clean, nilpotent, nilradical, nilradicals, NMF, No, Nodal, nodes, Noetherian, Noetherianity, Noise, Non, Non-Archimedean, non-autonomous, non-backtracking, Non-bipartite, Non-commutative, Non-derivation, Non-divisibility, Non-existence, non-extendability, non-homogeneous, non-integral, non-Lie, non-modulus, non-negative, non-Noetherian, non-normal, non-odd-bipartite
Li15b, LL15b, LCWZ19, Nik17a, NA17, OP16a, Pet15, Reb19, SPH15, SS15a, Tan16b, WDFS17, XCJ18, Zha18c.

norm/energy [NA17].

Normal

norm/energy [NA17].

Normal

normal [

Normal

normality

[BS15, DD18, DDL17, EG15, GSW16, GMP16a, GMP15, GMP16b, GMP16c, GBRS15, HZ15, VN15, IW15, JS18, JTS16, KMP16, KS15a, LWC18, Lin15b, LL15b, LLH17, Nie18, Nie19a, NL17a, Sh17, SZ23, SG17a, YZZ18, dlCG18]. normality

[FD15].

normalizable

[MS16a].

normalized

[BM17b, CCC+18, BDVRT15, BH16b, BS17a, LS18, MM19, SY17, cSfCfX15].

normal

[AA18-44, BaHOS15, CLF18, DHL+17, ySpW17, Sri17, YG15, Bün17, Bür18, DR15b, GS17a, HHL19, HML19, JL16a, JLDS18, LOS19, Lin15a, Lin19, LL15b, LLT19, MWT16a, MWT16b, PF18, QKP16, RM17, RMS16, TH17, TW17, TW18a, Tom15, TD15, WM17a, WZL15, WWC18, Xu17b, ZLG17, Zim15, vDS16]. numbers

[ABD19, BZ16a, CDR+19, Che18d, DTZ16, DS18b, KM19, Lee15b, ME15, Van17, WYL15]. Numerical

[AOK15, Ano16a, Ball19, BBP19, BMV16, CJK+16, GW16b, GW16, GO18, KLN16, PW18, Sab18, She17, AOK19, AAS18, AM18, AR18, AMR19, AK19, BFA18, Ball17b, Ball18, BFM19, BD15b, CJ17a, CD19, CC17b, CCNT19, CL16, CN15, CNY18, CN19b, CNM19, CJ17c, Dax17, DGP+15, FK16, GW1a, GW1a, GW1b, GL19, GWW19a, HA15b, HNNP15, KS15a, KKP19, KMY15, Krm19, LNT16b, LLPS19, Lee15c, LTWW15, LS18, MR17b, SPBB19, SWZ18, Zua19, Cha15]. Numerically

[PA17, PQY15].

objective [Fay18]. oblique [BB17, BMS15]. observations [Sma15]. occasion [BBF19].

odd

[AA18, BA15a, AL15, Ash19, BL18a, CC17a, CLT15, CUPW15, CW16b, Cox15, DR16, FM16, FdC18, HL19, HHL19, HZ15, IL17a, JL16a, JDS17, JLS18, LOS19, Lin15a, Lin19, LL18a, LLT19, MWT16a, MWT16b, PF18, QKP16, RM17, RMS16, TH17, TW16, TW18a, Tom15, TD15, WM17a, WZL15, WWC18, Xu17b, ZLG17, Zim15, vDS16]. numbers

[ABD19, BZ16a, CDR+19, Che18d, DTZ16, DS18b, KM19, Lee15b, ME15, Van17, WYL15]. Numerical

[AOK15, Ano16a, Ball19, BBP19, BMV16, CJK+16, GW16b, GW16, GO18, KLN16, PW18, Sab18, She17, AOK19, AAS18, AM18, AR18, AMR19, AK19, BFA18, Ball17b, Ball18, BFM19, BD15b, CJ17a, CD19, CC17b, CCNT19, CL16, CN15, CNY18, CN19b, CNM19, CJ17c, Dax17, DGP+15, FK16, GW1a, GW1a, GW1b, GL19, GWW19a, HA15b, HNNP15, KS15a, KKP19, KMY15, Krm19, LNT16b, LLPS19, Lee15c, LTWW15, LS18, MR17b, SPBB19, SWZ18, Zua19, Cha15]. Numerically

[PA17, PQY15].

objective [Fay18]. oblique [BB17, BMS15]. observations [Sma15]. occasion [BBF19].

odd

[AA18, BA15a, AL15, Ash19, BL18a, CC17a, CLT15, CUPW15, CW16b, Cox15, DR16, FM16, FdC18, HL19, HHL19, HZ15, IL17a, JL16a, JDS17, JLS18, LOS19, Lin15a, Lin19, LL18a, LLT19, MWT16a, MWT16b, PF18, QKP16, RM17, RMS16, TH17, TW16, TW18a, Tom15, TD15, WM17a, WZL15, WWC18, Xu17b, ZLG17, Zim15, vDS16]. numbers

[ABD19, BZ16a, CDR+19, Che18d, DTZ16, DS18b, KM19, Lee15b, ME15, Van17, WYL15]. Numerical

[AOK15, Ano16a, Ball19, BBP19, BMV16, CJK+16, GW16b, GW16, GO18, KLN16, PW18, Sab18, She17, AOK19, AAS18, AM18, AR18, AMR19, AK19, BFA18, Ball17b, Ball18, BFM19, BD15b, CJ17a, CD19, CC17b, CCNT19, CL16, CN15, CNY18, CN19b, CNM19, CJ17c, Dax17, DGP+15, FK16, GW1a, GW1a, GW1b, GL19, GWW19a, HA15b, HNNP15, KS15a, KKP19, KMY15, Krm19, LNT16b, LLPS19, Lee15c, LTWW15, LS18, MR17b, SPBB19, SWZ18, Zua19, Cha15]. Numerically

[PA17, PQY15].

objective [Fay18]. oblique [BB17, BMS15]. observations [Sma15]. occasion [BBF19].

odd

[AA18, BA15a, AL15, Ash19, BL18a, CC17a, CLT15, CUPW15, CW16b, Cox15, DR16, FM16, FdC18, HL19, HHL19, HZ15, IL17a, JL16a, JDS17, JLS18, LOS19, Lin15a, Lin19, LL18a, LLT19, MWT16a, MWT16b, PF18, QKP16, RM17, RMS16, TH17, TW16, TW18a, Tom15, TD15, WM17a, WZL15, WWC18, Xu17b, ZLG17, Zim15, vDS16]. numbers

[ABD19, BZ16a, CDR+19, Che18d, DTZ16, DS18b, KM19, Lee15b, ME15, Van17, WYL15]. Numerical

[AOK15, Ano16a, Ball19, BBP19, BMV16, CJK+16, GW16b, GW16, GO18, KLN16, PW18, Sab18, She17, AOK19, AAS18, AM18, AR18, AMR19, AK19, BFA18, Ball17b, Ball18, BFM19, BD15b, CJ17a, CD19, CC17b, CCNT19, CL16, CN15, CNY18, CN19b, CNM19, CJ17c, Dax17, DGP+15, FK16, GW1a, GW1a, GW1b, GL19, GWW19a, HA15b, HNNP15, KS15a, KKP19, KMY15, Krm19, LNT16b, LLPS19, Lee15c, LTWW15, LS18, MR17b, SPBB19, SWZ18, Zua19, Cha15]. Numerically

[PA17, PQY15].
operators-valued [FS19b, HJ19, Zam16].

Operators [AR15b, DIR16, MMS16, W´oj15, AB19, AAM15, AO18, And15, AAC17, AG18, ANAPSR17, ABGR+18, AG15b, AG20, BFA18, BF18a, BG15, BLPT15, BŠŠ18, BBSS18, BDRC16, BMN16, Bob16, BT15, BM17c, Bou16a, CDMP15, CEM15b, CEGM16, CPZ16b, CDRT17, CMM19, DS19b, DSCD17, EE16, EJ17, EM15, EHH17, EHL18, FPGPV17, FKPS18, GPS16, He16b, HA15b, HK17, JLM18, Kim18, KL19b, KMS17a, KNR18, Lee19a, LTWW15, LWC18, Lju15, LD17c, LMX19, MS16b, Mat15a, Min17, Mol19, Nag15, NINS16, Nie15a, Nie15b, Pan19a, Pan19b, PSG16, PSM18, PMW19, PCI15, Pep17, Pie18, PPZ19, PR18b, Pop16b, PRS18, Rao17, Sab19, Sam17, SST15, Tur17, Vir16, WFS19, XF17, Zam19, Zem16, ZH15].

Optimal [ANAPSR17, CCO15, CFM16, GMP16a, Hon18, DDSC+16, Had17, iHS16, HK19c, JIMPS18, La16, LCF19, MRS15, NAS18, Sma15, WC15]. Optimality [Fas19, Li15a].

Optimization [DH15, BA15, FS17b, FM17, Hill15, Kri15, Kur19].

Optimizing [BDSC17, DeV19].

Optimum [GW17b, CLZ16a]. OPUC [MS15a]. orbit [IKVZ18]. orbits [BC15a, LNT16a, Lau18, MM15a, MBB+18].

order [ABO15, BP16a, BGV17, BBMF17, CFNP17, DV18, DY15, DFM17, DD17c, GM15, GL17, Gao18, GH16b, GS15, HA15b, JKS15, Kar16, KH17, LS15a, LZ15a, LUC19, Lom17, PCI15, PM15b, PS15, PPZ19, SY16a, SL16, Shi19, Sug17, TH17, WZ17a, XSW17, ZWS18, dCF17]. orderability [BS16e]. Ordered [HW15a, CKS16].

Ordering [YSS16, BOT19, LLS17a, LLS17b]. orderings [IKR16]. orders [AB19, BMGP15, CIMW15, ET18, Mos17, RD15, WL16]. Orientation [HM16]. orientations [COvdD16]. Oriented [Ref16, AdlPR16, CRRY15, CL15, CL17a, CLR+18, DR19, HMT19, LHL18b, MWT16b, RS17a, WF19, ZXW19]. original [BS18c].

Orthogonal [Lin15b, Pan16b, War17, AM15b, BG17, BF19b, BL16, CRX15, CG15, CJ16a, DEH16, DMQ19, DSCD17, DH19, FS17a, GGMPC15, GMP16c, HZ17, IR19, Jin15, LNT16a, LUC19, Mac18, MP18, Ota15, Riv15a, Riv15b, RAAGA16, RMP18, SNDM17, SJD16, Shi16d, Sim17, WQH19, ZS17, ZGW16, dCF15, cSJC/X15].

orthogonalities [Wój19]. Orthogonality [GSP16, AR15b, ABR18, CSW17, HHJM15, KL19b, KZ17, PSG16, PSM18, PMW19, SPH15, Tur17, Zha18b].

optimally [CW18b]. orthoplex [BH16a]. oscillation [EH18].

Oserman [NR16a]. Ostrowski [Nie19b].

other [CFW15, EA17, GSW16, KL18a]. outcome [LT19a]. Outer [BJKR17, BKN18, LHC15, Shi17a, SSH15, SZW16]. output [Bel16, NN19b]. outputs [LPFPZ19].

overdetermined [BW19].

packet [Far16].

packing [Gu16, LLT19].

Padé [PW18]. pair [BMS15, BGSS18, FHH15, Nom16, WHG17].

Pairs [SJD16, BGV17, BHSS18, BKS15, BKP23, DdFR16, Dmy16, Dmy19, GMM16, GMM19, Lyn15, Mor17, NS15b, Nom15a, Nom15b, NT17, Ram16, RB16, SGG16, wX1MZL19].

pairwise [MC19]. palindromic [DDMP19].

PARAFAC [KL18b]. parallel [KH17, SdJY16]. parallelepipeds [Bil19].

parallelism [Zam16]. Parallelogramic [LMP+17].

Parameter [AL19b, Zha15c, Eh18, Fik18, FM19b, Gil16, KOST15, LMR16]. Parameter-invariant [Zha15c].

parameters [ACRR15, ACD19, BPZ17, HLW15, Ken16, KRZ+17, LHC15, Mic16, Wan16b].
parametric [HS19b, RW17].
Parametrizing [And15]. paraorthogonal [Cas19]. Parking [MY16]. Parseval [KAPS20, AKPS19, MBB+18]. part [DU16a, DMQ19, KLY18, LNW17, Ter17b].
Parter [BEF16, JS18b]. Partial [CIMW15, FG16, RD15, WL16, WZ17a, BS15a, BC19b, Cho17a, Eld15, FX19, GS17, Mel19, Shi19, aHRT15]. partially [BW19].
partite [KNY15]. partition [GK15, JZZ18, NS18, WDFS17]. partitioned [Hir18]. Partitions [CC19, CDG16, RNC17, Abi19, ARSB18, CD16a, Col19, dS18a]. parts [MMS16].
Pascal [KT17, Zhe19]. Pascal-like [Zhe19].
passage [BK17c, Hun18a]. Paterson [Fas19].
paths [LN17, NR18, PS19b, YDYY18, ZLG15].
pattern [BES16, BWSZ15a, KSVW17, LP15, LT19b, OS17, SUY16, VQ17, VQ19].
patterns [BOvdD17, DB19a, EKSV14, EKSV18, FGG+18, FGH+15, GL16a, GLZ16b, GL17, Gao18, GM19, HZ15, LOvdD18, Liu18, MM17b, OvdDV17, Shi17b, Stu17]. Pauli [AMC18, RZ17, Sam17]. payoff [EW19].
Pellet [Mel16b]. Pellet-like [Mel16b].
pencil [AHV19, Rin17]. pencils [BGT+19, BR16a, BDP+18b, DA19b, DA19c, DDL17, Dod16, Dod17, DHW18, dMG19, HY18, NP15b, PD17, Sch17].
pendant [CPR18, PS19b]. pendent [NR18].
terrible [BKLP16]. Penrose [AB18, CGMS15, CGDM16, HWZ15, KB15, Nor18, WX16, XW17]. Penttila [BM19a]. per-nullity [WZ15].
Periodic [Yam15, Ban16, Bre18, Fre18, GM15, SSF16, YSZ17]. Periodicity [KSTY18, MdIP16, KSTY19, Vas15].
peripheral [ZH15]. perplectic [CCW18]. permanent [CC18, GT18, Hut17, Liu17, Shc16, Shi16b, dS19a]. permanent-on-top [Shc16]. permanental [dS18a]. permanents [CP16b, CLLS19, KK17, Roo19, Sbu17].
Permutability [CI15b, CI15a].
Permutation [DF15, DF18, Ouy17, AJL16, Dah15a, TC15].
Permutation-invariant [Ouy17].
Permutation-like [DF15, DF18]. permutative [FT19]. permuting [Sim17].
Perron [AG16, ACD19, FK16, GH16a, JP16, Lia17, LT19b, Tar18]. Persymmetric [JS15, SJS15]. Perturbation [CL19, GM17, GCQX15, JGW17, SZZ3, Sku17, AG17, CR17b, CGDM16, JLT17, JZ16, KR17, LWY16, MM16a, OVV18, PM15b, SK17b, cSFCX15, Wei17, XL18, Xu17b].
Perturbations [CEM15b, XS17, BLPT15, BM19b, DFK+15, DV18, DV19b, Hun16, MS15a, MRS15, SV17, WHC17, XSW17, wXjMZL19]. Perturbed [CFP18, GHT16, Run18, RB19]. Perturbing [WLP16]. Petersen [COvdD16, KMM17]. Pfaffians [EW19].
Pickard [BFN15]. piecewise [GBRS15]. pineapple [TSH16]. pivoting [PZ17b].
pluripotential [Wan19]. plus [BR16b, BDS15, DS19b, EHN16, Hoo15, Hoo19, Li19, Mys16, RLP19, Shi16b, WT18, ZD15].
Poincaré [AL16]. point [Bai18, EP18a, FGG+18, FG17, Had17, KLL16, KLW16, KLW18, Kur19, LMS16].
LSM18, RR18a, WMC15].

point-hyperplane \(\text{[FGG} + \text{18].} \)**

points

\[\text{BDG15, BDM18, CN17b, Eve18, FL16, HLM17, HMPT18, Jel18, KLW15, NAS18, Rao17, WWT18]. \]**

polar

\[\text{De 16a, FX19, GMP15, GMP16b, Pan16a, Shi16a, Sol19, SG17b, dICMP17b]. \]**

Polarity

\[\text{Sol18a].} \]**

poles

\[\text{PW18].} \]**

poly

\[\text{RT16].} \]**

P´olya

\[\text{MF16].} \]**

polyadic

\[\text{DD17c}.] **

polygons

\[\text{HMNP15, VG18].} \]**

polyhedral

\[\text{SPBB19].} \]**

Polynomial

\[\text{KS15a, RLP19, SS16, DDMV16, VT18, Win16, YT16, AMR19, AGS17, AP15a, BY19, BBdH16, BBdH18, Ben18, BLdSV19, BR16a, BV18a, CJRMF} + \text{15, CK15a, CLQW17, Che18a, CFD19, Cox15, DMQ19, FJ18, FJM18, Fio16, GK15, HWZ15, KPL18, KMS17b, Lie18, LW15, LL18b, Mel15, MMW17, NN19b, Shi16f, VV18, WW18, WZ19, YdL19, dB19b, dLMP18]. **

polynomials

\[\text{AO18, ABG16a, AMZ17, ABD19, AEV15, AM15b, BGV17, BJS19, BB16b, BDFR15, CDR} + \text{19, CW18a, Cas19, CG15, CM18, CCGO17, CCGV} + \text{19, CK15b, CJ16a, CMK16, Cin15, CP17, CW16a, DA19b, DDMP19, DP18, DD17b, Dmy17, DD18, DPV19, DK16, Fag19, Fas19, FS17a, FS18a, FM19a, FK16, GGMP15, GIM16, He16a, HK19a, HY18, HZ19, IR19, KM15a, KPL18, KMM17, Lee16, Liu17, LM16a, LMR16, MO16, MP16a, MW15, MNTX16, Mel15, Mei16a, Mei16b, NS19, Niv15, Ota15, Ouy17, PM18, PP18, Ple17, Re1b, Riv15a, Riv15b, RV18, SAs18, Ser16, DDMV16, Tya17, WLWZ19, Yan15, Yan18, Zem16]. **

polyominoes

\[\text{CEM15a].} \]**

polytope

\[\text{CC19, HLM17]. \]**

polytopes

\[\text{AK17, Fer15, GSS15, JKK15, KJ16, NT18, SS19, War17, WH19b]. \]**

Poncelet

\[\text{CN15].} \]**

Popov

\[\text{RRV15].} \]**

Popoviciu

\[\text{BS15d].} \]**

population

\[\text{DOR16, HvdD16]. \]**

posed

\[\text{BB18].} \]**

poset

\[\text{FI19b, Liu16b, Nag19, NS19, Ter18]. \]**

posets

\[\text{CX17, GSZ15, Gas19]. Positive} \]**

positive-definite

\[\text{ACM17].} \]**

positivities

\[\text{Xu16].} \]**

Positivstellens¨atze

\[\text{KVV17].} \]**

possessing

\[\text{SSH15].} \]**

possible

\[\text{BaHOS15].} \]**

posteriori

\[\text{Fis17].} \]**

potence

\[\text{Stu17].} \]**

potent

\[\text{SR18, Stu17].} \]**

potential

\[\text{CDFK19, Fay18].} \]**

Potentials

\[\text{DMS16].} \]**

potents

\[\text{XFZD17].} \]**

Poupard

\[\text{FHS17a].} \]**

Power

\[\text{Lee16, LYY17, BV18a, CJS16, CM19, DD19, DKS17, DF15, DF18, DDF17b, FuIK16, GH16a, HNS15, JZZ18, KL15, LG18, MG18a, TCD15, UWYY15, VB19, aHRT15]. \]**

powers

\[\text{BGKP19, Ege16, FJS17, FJS21, GW19b, GW19a, Ja17, Mag16]. PPT} \]**

\[\text{Car17, Lee15a}. \]**

pre

\[\text{Mos17]. \]**

pre-orders

\[\text{Mos17]. \]**

precoherent

\[\text{DD16b].} \]**

Preconditioned

\[\text{VK16, BT17a, BA15, Miz16].} \]**

preconditioner

\[\text{Bai18].} \]**

preconditioners

\[\text{Hon18, LSM18]. \]**

preconditioning

\[\text{AL19b, DDSC} + \text{16, NSCV16, RMK18]. \]**

predictions

\[\text{KÔ16, ÕK18]. \]**

Preface

\[\text{BFH} + \text{17, BDIM15, BBF19, CFH} + \text{16, DLW15, FLV18, GPW15, GHPS19]. \]**

preorders

\[\text{BES19].} \]**

preprocessing
prescribed [APS18, BL18b, Bal15c, DS17b, HK18b, KPL18, SJS15, WYL19, YZLC18]. presence [GLMS18]. preservation [CYD19, MR17b].

Preservers [Ben15, BBS16a, BBSS18, CLP16, EP18b, Poo15, AMR19, AEV16, BS16b, CCN18, CL16, GW19a, HSS16b, LL17, LCLW18, LD16b, LD17b, NA15, Oik19, ORE16a, Ore16b, dSP19a, dSP19c, Riv15a, SdJY+16, cSRCX15, SW18b, Ste15, SS17b, Tan16b, VB18, Wei15, XL18, Yua16, ZLQ16, BDM18, ES16, VF17].

Preserving [STZ15, AAM15, AR15b, BN17, BM15, BL18c, BMGP15, Bur15, CPZ16a, CHK19, CC17b, CV17, Cos16a, Cos16b, Cos19b, Dmy17, DiC16, EJ17, EM15, GJK18, HF18, HYH15, HM16, HLS+16, KP17, KM16, KLS17, Li15b, LLL17, MS16b, MS15b, MPV16, Pan17, Pan19b, Pet15, SdJY+16, Vir16, Wój15, Wój19, XFZD17, ZH15, Zha18b].

Press [Bar15]. pressing [CD16a]. Primal [Fay18, RR18a].

Primal-dual [Fay18, RR18a]. primary [FI19a]. prime [DD16a, DD19, DF15, VB19]. prime-power [DD19, VB19]. Primitive [BS16b, CLN15, FG5+16, HY15, SG16, YHY15]. Principal [Bil19, LZB18, ÖK18, BC15b, BCF+16, DdSJDdDV15, FOvdD16, Gas19, HR17, HJ16, LKY16, Miy19, RKT15, Ris16].

probability [GCQX15, KL15, LZ15a, Lie18, SY16a].

problem [AO18, ATM18, AA16, ACM17, ACE15, BZ16b, BR19, Bel16, BF17a, BP19b, BC17b, BC16b, CW18a, CJ17a, CI19b, CGM16, CL17a, CL15c, CI15a, CQ15b, DM16b, DS18b, Dd17, DE15, DN16, DN18, FPGP17, FK17a, FK17b, FMS18, Geh15, Gil16, GSI18, Had17, Hill15, IR19, JP16, JMP17, JP18, JS15, Lee15c, LL17, Ma15, MPS17, Miz16, MS16c, MK18, NMBA19, NN19b, dSP19b, dSP19c, Piv19, PS19e, Pud16, RMKJ18, RKT15, Riv15a, SdJY+16, cSRCX15, SW18b, Ste15, SS17b, Tan16b, VB18, Wei15, XL18, Yua16, ZLQ16, BDM18, ES16, VF17].

problems [Ais18a, Ais18b, BT17a, Bal15b, BP16a, BB18, BMS16a, BGCM1SSS16, BCA19, CLQW17, CFNP17, DHW18, EH18, Fay18, FKPS18, GM15, GM16a, HJ16, HPZ18, Hoo19, HZC15, HNR16, HL19a, IK18, JLD17, KU16, Kri15, LQZ19, LLL17, LDL18, Mat15b, MP18, MT15, NN19a, NS15a, NR16b, SLY17, STZ15, Van16a, WZL17, WLL19, XXZ16, wXL14, wXZ19, Yin19, YHY15, YSZ17, ZHC16, ZD15, ZZR15, ZC15].

procedure [FKRS17]. Proceedings [CFH+16, GPW15, FLV18, GHPS19].

process [CG15, CLM19a, DHLT19, Lin16a].

processes [CLR19, EHHL17, EHPV18, Hun18b].

Procrust [AA16]. Procrustes [BC19a, GS18]. Product [BS15b, HN18, LPW16, AAM15, ABM18, AGQ19, AMV17, AL19b, BK19, BM15, CPZ16b, CF18, CJ18, DD17a, DiC16, EH15, FZCW16, FK18, FS19b, GW16b, HJW19, HL17b, Huh15, KH16, LTWW15, LHC15, Mag16, MSSZ17, Pet15, SWB19, Sod18, SG17a, SG17b, WW18, YLB15, ZD16b, dClC15, dClCdR17].

Products [AG18, Bot16a, CLS17, GS15, dClCG18, AJL16, BR15, BBMF17, Ben15, BBS16a, BBSS18, Brc17, CQ15a, CHK19, CLKL17, CL16, DGVS17, FJS17, FJS21, F16, GW16a, GW17a, GL19, GF17, GX17, Hill17a, Hill18, HLZ17, Hou19, Hou20, SS16b, IKW16, KKA15, LL17, Lot15, MX16, PP18, XCF18, XFD17, Xu17a, ZH15, Zhi18c].

Profiles [CKS16]. program [Li15a].

programming [BT17a, Fay18]. programs [CJ17c].

Projection [BFN15, CVV19, SXD16, BKLP16, CYD19, Col19, CFNP17, DY15, FJP15a, FG17, LNT16c, Miz16, NZZ15, NN16, Pan15b].

projection-cost [CYD19]. Projections...
Projective

Prony

Proof

Proofs

propagation

proper

Properties

Pseudo

Pseudo-direct

pseudo-Euclidean

Pseudo-inverses

pseudo-partition

Pseudo-skeleton

Pseudo-spectra

pseudo-orthogonal

Pseudopolynomial

Pseudoregular

pseudo-tensor

Pseudosymmetric

Pseudosymmetric

Pseudotensor

Pseudosymmetric

QBD

Qing

QR

Quadratic

Quadratically

quadrature

quadrifocal

quaternion

quaternionic

quaternions

qubit

qudit

Questions

Quotient

Quotient-polynomial

Publishing

R

Racah

radial

Radii

radius

Radius
LHX18, aLwW15, LLZ17, LWCL19, LM16c, LHH17, MMM19, Mol18a, Mor17, Nik17c, NLW18, NLWJ18, Obo19a, Obo19c, PS19b, Pep17, PV17, Sab18, She17, XSW19a, XS18, XLLS18, Zam19, ZLG17, ZLKB17, raising [Ter15]. Ramanujan [CV17, DTZ16, San15]. Randić [AdFRR18, BM16a, GRS15]. Random [OVW18, PQY15, B´SS18, BB16b, DMS16, DE15, GJLS16, HLLZ17, Hua19, LLH17, Liu18, OBRA15, PSZ15, RR18b, RJK18, Ruk15, SH15b, XL18, Yasi16]. Randomized [NZZ15, BW18, BW19, BDK +17b, CYD19, PZ17a]. Range [ACM15, dSP15, dSP16e, AAS18, AMC18, Bal17b, Bal18, Bal19, BS19b, CJ17a, CC17b, CCNT19, CN15, CNY18, DF17, FK16, HA15b, Kum19, LNT16b, LLP19, LS18, Rub19, XF17]. Range-compatible [dSP15, dSP16e]. ranks [AR18, BFA18, BD15b, CDM19, CL16, CN19b, CNM19, CJ+16, GWW16, GW19b, GWW19a, HMPN15, KKP19, KLN16, Lee15c, LTWW15, SWZ18]. Rank [BBS16b, DdC16, GS16, Hua15, MV16, AAS18, AAG+18, AMC18, Alf18b, ARSZ15, Al17, Bal15c, BS19b, BLPT15, BM19b, Ber17, BR16b, BS16d, BPS15, BC17a, BA15, BCU15, BWS15a, BC+16, CU18, CF18, CHB15, CJ18, CCO15, Dax17, De 16b, DDL17, DM16b, DJ16, DP17, DD17b, DD18, DR17, EHK16, EM16, FOvdD16, FMR18, FS19a, GH17, GS19b, GdLL17, GCC18, HKM18, HHL19, Hir18, HMP15, HSS16b, Joe16, Jor15, KKP19, KU16, LCF19, LWX17, LW18, LHL18b, MWT16b, Mes17, Mor17, ME15, OW18, PQY15, Pan19b, PS18a, PSS19, PC15, dSP16a, dSP16c, dSP16d, PF18, RSS17, Rub19, Shi18c, Shi19, SZW16, SS15a, Tok17, TW18b, VQ17, Van17, WLY17, WF19, ZXW19, ZM16, Zui17, db19b]. rank/trace [BES19, Shi19]. Ranks [FG+15, BS18b, FGG+18, dMG19, Mat15b, MHN18, SP16, WLV19]. Rao [Rak17]. rapid [PCL15]. rate [BW18, GKS18]. rates [bCR18, JMRV16]. ratio [Bun17]. Rational [CA18, Duk12, Duk15, SSV17, AB16, AL18, AL19a, AMZ16, CM19, CFW15, DA19a, DA19c, DMQ19, EG19, Fas19, FKRS17, JMRV16, JTR18b, RV18, RAAGA16, Van16a, Vol17, WQ19, DBD18]. rationally [KVV17]. Ray [Liu15, LT19b, Liu18, Stu17]. Rayleigh [SK17a]. rays [Dah15a]. re [LC19]. re-weighted [LC19]. Reachability [MP19, PS18b]. Real [BP19a, BS16d, CW18a, DGP+15, FI16, KKP19, Alf18b, AL18, BD15a, BZ16a, BKE18, BS15, BR16b, BS19a, BC17b, BS18b, Bün17, Bur15, CJ16, CJMF+15, Che18d, CL17b, CHB15, DAG16, EE16, GM16b, JP16, LNT16a, LS15b, LDL18, MS19, MM15b, NMB19, NN19a, RE16, RGP16, Se18, SSB15b, TY15]. realizability [CJS18, DDMP19, GM19, HMPT18, JMS19]. Realizable [AM18, MAR17, MN19a, BPZ17, HMPT18]. realization [AL19a, BR19, JRS19, SUB18, DDM16]. Realizing [PT19]. receptance [WZ17a]. Recessive [SH15a]. reciprocal [BPP16, BPP17, PP17b]. reconstruction [BKLP16, BBT15, BS18c, Sc16]. recoverability [WLH18]. Recovering [Col19, RJK18]. Recovery [AB16, DA19c, DA19b, DA19a, FS19a, FK17, KSTX15, LLM16b, LS15c, RSS17]. Rectangular [MO18, BL16, CL15, Hua15, MM16a, YZL+19]. recurrence [IR19]. recurrences [AHO15, EJ19, Grc18, LMR16]. recursions [BF17a]. recursive [ATM18, CLW15, HK18a]. Recursiveness [LY16]. Redheffer [CK19]. Reduced [Pie18, CFP18, Cos16b, MS16b, TH16a]. Reducibility [CN17a, KMOR19]. reducing

semi-infinite [CJ17c]. semi-monic [FK16].
Semi-nonnegative [CHB15]. semi-smooth [CFNP17].
semidefinite [Cho17b, FMY16, FS17b, FG17, GS18, GdLL17, HNS15, KL17, Lin17a, SUY16, Ulu19, Vir16]. semidefiniteness [KM16, NR17]. semifields [GJK18].
series [Bru16a, Bar16a, BV18a, CIY15, CJS16, CD16c, EE16, EJ19, FKM17a, FKM17b, Gar17, HMSC19, JC18, KT17, LM17, MHA18, OZ15a, PW19, PW20, Riv15b, SB18, WZ19, XWL17, ZLS17]. sequential [CR18b].
Sergeichuk [BBF19]. Series [Bru16a, Bar16a, BV18a, CIY15, CJS16, DS19c, Dya17, LG18]. Serre [CQ15b, PR19].
Serrin [ACE15]. sesqui [Bil19]. sesqui-holomorphic [Bil19]. sesquilinear [Wój15, dFRS16, dFFRS17]. Set [SS18, AvdHS15, AvdHS16, BDM18, BGT+19, BGCMBP15, DL17, DdF15, DlS18, Gör17, HYY15, Hillb7, LLP19, LCL15, LL16a, LL16b, LD17b, MS16a, May15, NS15b, SR19, SG16, Tar18, Yor17].
Set-theoretic [SS18]. Sets [BVo17, Kan16, AYK17, ABM16, BM19a, BH16a, BWSZ15b, BJLD17, CR18a, bCR18, DLB18, DD17b, DO16, ELN18, Eve18, GJ18, JG17, Jin15, KL19a, Koz16, Lax16, LL16a, Lin15b, MC19, MB15, MRV15, NS15c, OL16, Pep17, Pol19, RW17, ySpW17, SXD16, Tan16a, YZL+19]. setting [ABC+16b, AS17]. Several [GL15b, GL15a, LCF19, CKM16, Ern18, Ken16, Naj17].
shadow [DGP+15]. Shannon [Nie15b]. shape [VG18]. shaped [HP15]. shapedness [LNT16a, LNT16b]. Sharp [DR18, Ken16, BMGP15, CL17b]. Sheffer [CJ16a]. shell [ABR18, CJ17a, LSZ18].
Sherman [ACM15]. Shift [CV17, He16b, APT17, BR19, BMN16, BS16f, Chuc15, CUPW15, Skr17, ZSQZ19]. shifts [KY15, KY18, LY16]. Shmu [Tsa16b]. Shoda [SB15]. short [BP19a, Bün17, MC19, May15, Mic16, SS17b].
sign-real [Bün17]. Signal [Per18, PHW16]. signals [KKLP17]. Signature [MG18a, HS19a, MWT16a, PR18a]. signatures [Ma16]. Signed [AHMM18, BZZ16c, BBC18, WW18, YYQ19, ASMN17a, ASMN17b, ABDN18, ABH+19, AvdHS15, AvdHS16, AH16, Bah19, BS15c, BP15, BS16, SP18, CR15, HHL19, LZW18, RS17a, RS17b, SS16, STW18, STW19, Sta19, WH18].
Signless [GCP18, HL19a, ACP15, ADLR19, CR17b, CcdIPv18, DsSDdFDV15, Ds15, DM16a, IFwW16, FWB+19, GR17, HQX15, LD16a, LZ16b, LZW17, LLS17a, LLS17b, LL16a, MM19b, NLWJ18, Obo19c, TWR15, WZZ19, WZL15, XSW19a, 42.
Soules [Hür15]. South [CFH+16].

space [AM19, AL19a, BCKL17, BGCMPP15, CCW16, CGL16, CMM19, DY15, DdFR16, EE16, FJM18, HJW19, HL17a, JMP18, Kim15a, KL15, Ku15, Lee19a, LNW17, Liu16b, Mag16, OZ15b, PSM18, Pop16a, Sab19, SG17b, WG15, Zam19].

space-filling [BGCMPP15]. Spaces [BM17c, EM16, AGQ19, BFA18, BF18a, BS18b, Bil19, BHS18, BDFR15, BO17, CR19a, CG19b, CDFK19, CFW15, CSW17, CG19c, DA19a, De 16a, DdFR16, EE15, EM15, ET18, FzwCW16, FS17a, FS18a, FPGPV17, FG16, FKPS18, GMP16a, Gol17, HW15a, HHR16, JC18, KL19b, KS15b, Mar18, MSS17, Mes17, MM17c, MRV15, Mol18b, Nag15, NP15c, Pan17, PMW19, PR18a, Pci15, dSP15, dSP16a, dSP16d, dSP16e, Rao17, RT16, SPBB19, Shi16c, SG17a, VF17, Vir16, WH19a, Wol18, XS17].

Specht [FHS17b, dSRST17]. Special [DLW15, SS15b, Zus17b, ABGJR +18, BBF19, Ern18, LNT16a]. specified [KM15a, Nom15a, ZLG15].

Spectra [BCM17, CCdFV18, DR19, LJK16, VHB18, AAB+16, AJO15, ACFR15, AB17, AH16, BW16, BR15, BS17, BCC+18, CLQW17, CJ518, Cos16a, Dal17b, DS17a, DM15, GF17, JLNR15, JMP17, JRS19, JMP19, Kan16, KHI16a, KHI16b, LXS18, LS18b, LHL18a, MAR17, MN19a, NPRS17, PT19, SY17, Shi17b, SS15c, WHC17, XS17, ZL15a, ZL15b, ZKS17].

Spectral [ACT16, AO18, AyLPS18, ABDN18, AEV16, AL16, BL18b, BP15, BOT19, Ben16, BBC+15, BS16f, CGSC19, DLM15, DHW16, FCLP18, FZL+17, Fik18, Gu16, GJLS16, HT17, HMT19, JG16, JG17, LN17, LZ17a, aLwW15, MHL15, MM16b, MHS15, Pea15, SZH19, ZLG15, BL18a, Ba18, BF18a, BG15, BBS16a, BTN+18, BJLD17, Bin17, BS18c, CM17, CL17a, Che19b, Cj17d, DV19a, Dru19, DvSW18, EJ17, EH15, EH18, EB17, FuIKT16, FBH19, FT18, FCL+16, GH19, GJ18, GMO19, GMW18, GZ18, HvvdD16, HvvdH16, IJ16, HMSc19, HLLZ17, HSS16a, JI16a, KNY15, Ken16, ulKF15, KIS18, Koz16, LS15a, LzB18, Lia17, LZ15c, LZ16a, LZ16b, LZM16, LZW17, LHX18, LXS15, LLS17a, LLS17b, LZSD17, LZSD18, LWCl19, Lot15, LM16c, LHH17, Mel19, MIM19, Mol18a, MM15b, Mor17, NMB19, Nik17a, Nik17c, NLW18, NLWj18]. spectral [NSCV16, Obo19a, Obo19c, OQY17, PS19b, PS17, Pep17, PV17, Sim18, Skr17, TWM16, TSH16, Tsj15, WM17b, WZ15, XSW19a, XWL17, XD18, Xs18, XLS18, Yin18, YSS16, ZLG17, ZLKB17, Zhai18c, dIPJG18, CRC17, CJKM19b]. Spectrally [GM19, KSVW17, MM17b, OvdDV17].

spectratopecs [JP16]. Spectrum [Chu19, AAM15, ABM18, AP15b, BDMB19, BM17b, BE15, Ben15, Ber18, BSMSZ19, BM15, BL18c, CM18, CX17, CW18b, CJ17d, Gil16, Hua19, JZZ18, KL18, LTWW15, LD17a, LS17b, LN18, MLMW15, Moh16, MK18, MP15a, Nik17b, SSB15, YSSX19, ZH15].

spectrum-preserving [BL18c]. sphere [Tan16b]. spheres [Che15a, Jia15].
[BDK*17a, DKS19]. subsemimodules [ySpW17, Tan16a]. subset [ABG16b].

subsets [AJ19, DHS18, NP15c, Shi16d, Vij15].

Subspace [Zas16, BBEE19, BMS16a, BS19a, DdFR16, GR16, MMR16, NS18, Ram17, Sch16].

subspaces [AW15a, AW15b, Bal15c, Bal19, BB16a, BEKS17, CFP18, CJW19, FMM16, Huh15, MOR16a, MMR17, MMR18, NNS16, Pan15b, RMP18, SK17a, TLL15, WG15, WZL17, XS17].

substochastic [CC19, Lju15].

subtle [RWH17].

subtournaments [MS17b].

Successful [CD16c]. such [CLT18].

Sudoku [War17].

Sufficient [LSX15, PM15a, Bar17a, ES16, Li15a, MPS17].

Sugeno [Mar15b].

suggested [NR16b].

Suleimanova [PT19].

sum [AMR+16, AG17, AT15, BJC15, BDDO16, BNST17, Che18b, CLF18, Che19a, Ch19, DMS19, EA17, GAP16, GP18, GF17, GMP16c, Hua19, KS15a, Lee16, Sol18b, Ste18, TXZ18, WH18, dICMP17a].

summability [BDG15].

summation [JKP16].

summing [CDMP15].

Sums [BES16, Shi16g, AO18, ABG16b, Bre18, FJS17, FJS21, FdC15, GS15, HS16, HS17, Lot15, Xu17a].

Sunder [Lin15c].

Superadditivity [UGU15]. superalgebras [CCW18, Iop18, LL19, RZ17, WZ17b].

superdiffusive [EHHL17, EHLP18].

supereigenvalue [Ser15].

supereigenvalues [But16].

superinvolution [Iop18].

superinvolutions [GIM16].

supermajorization [LD17c].

Superregular [ANP16].

superstability [IT18].

superstochastic [LD17c].

supertail [NS18].

supertrees [XWL17, XWD18, YSS16].

supertropical [IKR16, Niv15, Shi16f].

support [BP19a, Hili17b].

supported [AKPS19, KAPS20, MS15a].

supporting [Pan15b].

Surjective [YL17].

survey [Dal19].

SVD [GM16b, GCC18, PS19d].

SVD-based [GCC18]. switching [BMS19, ETF18, Gre18, IM19, Moh16, WQH19].

Sylvester

[DI18a, DI18b, Dra16b, HAWM16, RMK17, Wim16, dCdSA15].

Sylvester-based [RMK18].

Sylvester-type

[DI16, DI18b, Wim16].

Symbolic [Sim19].

symbols [BGM+19, BBGM16, Lee19a].

Symmetric

[BBH16, BF19b, CR19a, SCD17, ARS17, BGS15, BGM+19, BM19b, BFY18, BLdSV19, BC15b, BDK+17b, BS18, BHSS18, BC16b, BDFR15, BO17, CP16a, CM18, CS15b, CW18b, Dev19, DP16, Dmy16, Dmy17, DD18, Dmy19, ET18, FOvd16, FHB19, Fay18, FHH15, GG18, GKR16, GC19, HW15b, J17, J28, KH17, KLW15, KLL17, KOST15, Lee16, LWY16, LLL17, LDL18, LUC19, LS17b, LNT16c, Ma15, MO16, MPS17, MV16, May15, MM15b, Mon17, Nik17b, OS17, dSP16a, dSP16d, dSP16e, QWC15, RKT15, SR19, Sod18, Sry17, SSB15b, Tar18, VK16, XL18, dCFF17, ES16].

symmetrically [BF19a].

symmetries [BFW17, FSSW17, FSW19, GS15, LCNZ19, dICMP15, dCdR17].

symmetrization [Rad17].

symmetrized [HMSC19].

symmetrizers [DU16a].

Symmetry

[PMW19, AH16, FK18, TC15, Tur17, dSRST17].

Symplectic

[BBHSS18, AM19, BF19b, BR17, CG16, DR17, DH19, EH18, HL18, IGW17, RMP18, SH15a, S223, WG15, dIC15, dC16, dICMP17a, dCdR17, dC18].

symplectic/orthogonal [BF19b].

synaptic [FJP15a, FJP15b].

synchronous [ZZR15].

synthesis [BZ16b].

system

[BTN+18, BB16b, GKS19, Hoo19, WZ17a].

systems

[AAdFS19, BW19, BPZ17, Bel16, BTN+18, CC16, CHASSSG15, CDG16, CNX17, CR18b, CL15c, CJ16c, CJ16d, DGCC16, 46]
T [MM17a]. T-modules [MM17a].
Tangent [Kut18]. TarSKI [DP15a]. Taylor [DR16, JLM18, SZ19]. TD [Nom15b].
technique [Row18]. techniques [BK16, KS19, RW17]. technology [SSCS16].
Ten [CRS15]. Tensor [CJZ18, GH16a, KKA15, BL18b, BJS18, Bre17, CPZ16b, CLQW17, CF18, CKL17, DH15, DdC16, FuIKT16, GL19, GZB19, dMGC19, GCC18, Hil17a, Hu15, HSS16b, Kuta18, LL17, LV15, LL16c, RSS17, Sar19, Sch15, Shi18c, Sod18, Van17, WDFS17, XJC18, XFZD17].
Tensor-tensor [KK15]. Tensors [ARSZ15, YLB15, BS15d, BWSZ15a, BWSZ15b, BJLD17, CLQW17, CQCZ19, CW15b, CW18b, CLN15, DLB18, DLQ18, Dd17c, FBH19, FGS19, GH16a, HYY15, HWXC15, JZZ18, KSBM15, KLN16, KL18b, LS15b, LL15a, LQL15, LCL15, LL16a, LJJ16, LUC19, MS17a, NR16a, OP19a, QWC15, Sei18, SY16b, SWB19, Tsu15, XLQC16, Xu16, XQ18, YZL19, YYQ15, YHY15, ZSWB16, dSRST17]. term [De 16b, dMGC19]. Terminating [Kwo16].
terms [DGCC16, IfWw16, HHL19, LWZ18, MWT16b, TWM16, WM17a, WF19, WWC18, ZWS18]. ternary [CN17a, De 16b]. Terwilliger [GGH15, GK15, MMP16, Mor16b, MX16]. tesselable [HPSS19, KIS18]. Test [CILL16]. th [Guo19, LG18, YG15]. their [ABP15, AJ919, Ball15c, BKNS17, Bar19, BCC18, BSMSZ19, BDS15, BM17c, BC15b, CR19a, CM16, CR15, ÇMP18, CI15, CHK17, CJ18, DGGP18, DLQ18, DdFR16, DH18w, FGH15, GL15b, HT18a, He16b, HS17, He18, HC16, KHI16a, KHI16b, LTWW15, Lin19, MW15, MLW15, Mas17, MO18, Mor16b, Niv15, PSZ15, PS17, PHW16, RFPS18, Riv15b, RGPH16, SKC18, SC17, Ter17a, Ulu19, WYL15, Xu16, Yan18].
Trotter [HK17]. truncated [FKM17a, FKM17b, FKMS18, HZC15, Riv15a].

truncation [BDR16]. truncations [Mas17]. Tsetlin [FH19].

TU [XvdBvdLS15]. Tucker [CS15b, DH15].

Tuples [PS19c]. turns [EV15]. Twenty [GHPS19]. Twenty-first [GHPS19].

Twisted [AGP+17, CH19, TZ19].

Two [FJP15b, HAWM16, HLSP17, LT19a, Obé16, QWW18, TNK16, XXZ16, Alf18b, ARSZ15, AL19b, BG15, BOGY15, BBH16, CVV19, bCR18, CF18, CS18, DS17a, DF18, DdFR16, DSCD17, DR17, DHW18, FKPS18, GSZ15, GSZ16, Geh15, Gil16, GMP16c, HKLQ16, HS19a, HN18, JKKL15, KS17, Kis15, LS17a, LPW16, Lin16c, LDZ18, LMX19, MM17a, MP18, PC15, Riv15b, 1017, iT16, WW18, WH19a, XWD18, XX12, XvdBvdLS15, ZHCl5, dB19b, EHLP18].

Two-by-two [AL19b]. two-dimensional [FKPS18, WH19a, EHLP18].

two-distance [BGoy15].

two-level [MP18]. Two-player [LT19a].

Two-sided [HAWM16]. Two-step [XXZ16, iT16]. type [AM15a, AS17, AM15b, BBEE18, BKNS18, BJ15, BS18a, BLds16, Bob16, BFMK18, BWSZ15b, BJLD17, CJ16a, CK19, De 16a, DIPR18a, DIPR18b, DLB18, FK17a, FKM17b, GSZ15, Gas19, GXYZ17, HRM18, HW15b, HLG15, Hua15, HLI19a, HZ17, IKVZ18, IR19, Jen17, KT19, KNR18, LL16a, LZH16, LJI16, LB17, LCWZ19, LHG15, Mar15a, MR19, MF16, Niel15a, NT17, OP15, OZ15b, PR19, PPZ19, RB15, Riv15b, Roo19, Saw16, Sol19, TKZ17, Ter17a, WG15, WHG17, Wim16, Wol18, XW16, ZLL18].

types [EEV17, SY16b, Sim18, TNK16].

typical [BS18b].

Ulam [WH19a]. Ultra [Shi16b].

unconstrained [CDTZ15]. uncountable [Hol16].

underlying [Der19, LWZ18, LHL18b]. unextendible [Sz16].

unfoldings [WDFS17]. unicyclic [ABH+19, BPP17, GRS17, LDZ18, MHL15, OQY17].

Unification [Zou19]. unified [ACPR15, JLT17, JS18a, Li15a, RD15, YDH18].

Uniform [Lie18, RFPS19, CSL18, Cus17, EM16, GH17, GZ18, HQX15, KNY15, uIKF15, LMB18, Lz16a, LZM16, LZW17, LZ17a, LKY16, PRRS19, SY17, XLW17, XDW18, YYQ19, YZL15, YSS16, YQS16, ZKS17].

uniformly [Liu18, Man19].

Unifying [LZ17b]. unimodular [DS17b].

Unimodularity [MB18].

union [CHJM18, WM17b]. Unions [BES19, LS17a]. unipotent [KLS19b]. unique [KL18b, LOvdD18]. Uniquely [Sma15, Sku17].

Uniqueness [DI16, Lee15c, Bal15b, DIPR18a, DIPR18b, DD17c, SZ19, ZC15].

unit [Cas19, IR19, LW17, MS15a, Tan16b].

unital [AHV19, CW10a].

Unitaries [Sim15].

Unitarily [KMS17a, JLM18].

Universal [Sma15, Sku17].

Universality [CGK+17].

University [Bar15, GHPS19]. unsolvability [HR16].

update [PS19d]. updated [BCU15].

Upper [ARR18, AGRR16, bCR18, GRS15, LZM16, MS17b, WF19, Yan16, AM19, BG15, BFD18, Bou16b, CXLF16, CLF18, DR18, DHW18, Ere16, Fag19, KY17, Moll8a, SP16, UG18, Wan15a, WMC15, WHC17, Xu17b, YZL15, ZWS18].

Using

Xiao [Bru16a]. Xiao-Qing [Bru16a]. Xingzhi [Zha15a].

Zero [ALH15, BDDO16, Gao18, Lin19, TD15, AJPS16, BES16, Ben18, BOvdD17, Bot16a, Bot16b, CW18a, EJ17, FMY16, FWB+19, FGG+18, HLPS19, Hii17b, HL19b, KL19a, Lin16a, MM17b, MS16c, Nom15b, PM15b, Ram16, Shi16g, Shi17b, SW18a, Wan15a, WMC15]. zero-diagonal [Nom15b]. zero-divisor [Wan15a]. Zero-nonzero [Gao18, BOvdD17, FGG+18, MM17b, Shi17b]. zeros [AO18, BBP19, Cas19, CMQV16, HK19a, PW18]. zeta [DM15, KMS16, KMMS19, Som17, TH16a]. Zhan [Zha15a]. Zhang [QWW18, UZ19]. zigzag [DDMV16]. Zusmanovich [LCWZ19, ZLLL18].

References

Adhikari:2016:SPP

Ayupov:2017:LDA

Afshari:2019:SRL

Aalipour:2016:DSG

Ghodratollah Aalipour, Aida.

Andelic:2015:SNC

Antezana:2017:SFO

Alazemi:2019:LPS

Adm:2018:FAC

Alazemi:2017:DRG

Abdelali:2015:MPL

Adam:2018:EHR

Afshari:2018:ACG

Altinisik:2015:PCM

Ercan Altinisik and Serife Büyükköse. A proof of a conjecture on mono-

Ackelsberg:2016:LST [ABC+16a] Ethan Ackelsberg, Zachary Brehm, Ada Chan, Joshua Mundinger, and Christino Tamon. Laplacian state

Arauz:2015:DSP

Arias:2015:RAS

Alyani:2017:DMH

Andrade:2015:FIL

Andrade:2015:LSG

Andriantiana:2019:AMR

Abo:2016:EJC

Anzis:2015:ILP

Alaminos:2016:SPA

Aguilar:2015:LCC

Ay:2015:RSA

Armentia:2017:BSP [AGV17] Gorka Armentia, Juan-Miguel Gracia, and Francisco-

Amie Albrecht, Phil Howlett, and Geetika Verma. The fundamental equations for

Aishima:2018:QCAa

Aishima:2018:QCAb

Aliabadi:2019:MSA

Alahmadi:2016:QPS

Abdollahi:2015:DBS

Ansill:2016:FSZ

[AJPS16] Thomas Ansill, Bonnie Jacob, Jaime Penzella, and Daniel Saavedra. Failed

[AKPS19] N. Atreas, N. Karantzas, M. Papadakis, and T. Stavroulakis. On the design of multidimensional compactly supported Parseval framelets with directional characteristics. *Linear Algebra and

Ayupov:2015:LDF

Aggarwal:2017:CMOa

Aggarwal:2017:CMOb

Altinisik:2016:CIH

Ando:2015:PCL

Arioli:2016:SAA

Mario Arioli and Daniel

Alpin:2017:HMR

Alpay:2018:SWS

Alpay:2019:CRF

Axelsson:2019:PMV

Alfakih:2015:FLD

Alfakih:2018:YJY

A. Y. Alfakih. On yielding and jointly yielding entries of Euclidean distance ma-

Alfaro:2018:GRA

An:2015:ZJP

Alizadeh:2020:CEH

Andrade:2019:BDS

Alon:2015:ASB

Arizmendi:2019:CIF

Octavio Arizmendi, Beatriz Carely Luna-Olivera, and Marcelino Ramirez Ibáñez. Coulson integral formula for the vertex energy of a graph.
Liu:2015:SRB

Agore:2015:TCA

Araznibarreta:2015:JTC

Azarija:2018:TNS

Acharya:2019:ACS

Afshin:2018:PGC

Araujo:2019:CNM

Al-Mohy:2011:CAM

Andrade:2018:BMG

Agapito:2016:CGN

A. Amparan, S. Marcaida, and I. Zaballa. On matrix polynomials with the same finite and infinite elemen-

Andrade:2017:LBE

Alpay:2017:BLT

Ashraf:2019:EMN

Ahmadizadeh:2017:CSE
[ASMN17a] Saeed Ahmadizadeh, Iman Shames, Samuel Martin, and Dragan Nesić. Corrigendum to “On eigenvalues of Laplacian matrix for a class of directed signed graphs” [Linear Alge-

See [ASMN17b].

Ahmadizadeh:2017:ELM

See corrigendum [ASMN17a].

Amooshahi:2015:CSC

Adeli:2018:RMC

Alvarez-Vizoso:2019:GCR

Arav:2015:ISS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
</table>
Ballico:2017:NIE

Ballico:2017:NRM

Ballico:2018:CNR

Ballico:2019:NRF

Banasiak:2016:EFL

Bart:2015:RMA

Barry:2016:RAG

Barvinok:2016:CMD

Barabanov:2017:NSC

Barbarino:2017:EBG

Benner:2016:SLS

Breiding:2016:DER

Paul Breiding and Peter Bürgisser. Distribution of the eigenvalues of a ran-

[Beltita:2017:NOP]

[Beltita:2018:SBG]

[Bazan:2018:SNI]

Baragana:2016:RWH

[Baragana:2018:CFR]

Bagheri-Bardi:2018:WTD

Bagheri-Bardi:2019:RAS

Bebiano:2019:PSI

Bogoya:2016:EHT

Barrett:2016:SMI

Bucero:2016:CGC

Badaoui:2019:RBC

Belchí:2017:HOW

Bermúdez:2019:EDP

Bhunia:2019:NRI
Bendaoud:2016:PPS

Bendaoud:2018:PRU

Braatvedt:2016:RBA

Bertolini:2015:CLP

Beltita:2015:CLA

Boussairi:2015:SSM

Abderrahim Boussaïri and Brahim Chergui. Skew-symmetric matrices and their principal minors. *Linear Algebra and its Applications*, 485(??):47–57,
Bausch:2016:CD

Brandts:2016:GAS

Borobia:2017:AMC

Borobia:2017:RNI

Bhatia:2019:PPR

Borobia:2019:WDP

Rafael Bru, Rafael Cantó,

Baaijens:2015:EDD

Bracic:2015:RNR

Brualdi:2019:ASM

Bueno:2015:LVS

Bertaccini:2017:OMR

Bhattacharjee:2017:DWS

Bendaoud:2015:PLS

Benediktovich:2016:SCH

Benvenuti:2018:NFD

Bernstein:2017:CTM

Bergqvist:2018:CEB

Bart:2016:SIL

Bart:2019:URT

Bottcher:2017:ASL

Brouwer:2015:DRG

Benvenuti:2017:RLR

See [BFG16].

Baklouti:2018:JSR

Bigeni:2019:SDC

Bebiano:2018:SDN

Bluhm:2019:DRS

Baklouti:2018:JNR

Borges:2018:GIU

See addendum [BF17b].

Bapati:2017:P

Benzi:2019:GAN

Brugger:2018:ACC

Matthias Brugger, Maximilian Fiedler, Bernardo González Merino, and Anja Kirschbaum. Additive colourful Carathéodory type results with an application to radii. Lin-
Barrios:2015:PSC

Barrett:2017:EDG

Benner:2018:SRC

Bandtlow:2015:EUB

Bernal-Gonzalez:2019:LCS

Bernal-Gonzalez:2016:HFN
L. Bernal-González, M. C. Calderón-Moreno, J. López-Salazar, and J. B. Seoane-Sepúlveda. Holomorphic functions on non-Runge do-

Bernal-Gonzalez:2015:SSF

Bernal-Gonzalez:2017:IDH

Bru:2016:CMS

Belton:2019:SKM

Batalshchikov:2019:AEL

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856
Barg:2015:FTD

Batalshchikov:2015:AES

Bodmann:2016:AOB

Bovdi:2018:RPS

Berger:2019:GDS

Baseilhac:2017:CTP

Butler:2016:CFG

Bolten:2016:SMA

Batzies:2015:GMG

Bier:2015:LCS

[Bie15] Agnieszka Bier. On lattices of closed subgroups in...

120

Bhatia:2019:IWM

Bu:2017:BTE

Berg:2018:ETP

Bahmani:2015:MAE

Bahmani:2016:GRT

Bang:2017:DRG

Sejoung Bang and Jack Koolen. Distance-regular graphs of diameter 3 having eigenvalue −1. *Lin-

See [BKS15].

M. Barone, J. B. Lima, and R. M. Campello de Souza. The eigenstructure and Jordan form of the Fourier

Bessades:2019:MAI

Behrndt:2015:EFR

Bhatia:2016:SNI

See comment [DDF17a].

Bourhim:2015:MPL

Banerjee:2016:ELT

Breaz:2016:NCC

Bai:2017:LQC

Banerjee:2017:NST

Botelho:2017:SNL

Baker:2018:LED

Bamberg:2019:ISP

Benasseni:2019:IEA

Jacques Bénasséni and Alain Mom. Inequalities for the eigenvectors associated to

Benac:2015:AOD

Bellalij:2016:DEK

Benoist:2017:BUM

Bini:2016:SNL

See corrigendum [Ano16a].

Brown:2018:CFG

Bruaïl:2016:HS

BN17

Belardo:2019:SOT

Bourgeois:2015:NGM

Boumazgour:2016:UEO

Bounds:2016:CMR

Berliner:2017:SRI

Belardo:2015:SCS

M. H. Bien and M. Ramezan-Nassab. Engel subnormal

R. B. Bapat and Sivaramakrishnan Sivasubramanian. Product distance matrix of a tree with ma-

Belardo:2015:LCS

Berndt:2015:HPI

Bapat:2016:SDM

Bleicherman:2016:RRR

Bhatia:2016:PLM

Beasley:2016:PEP

Bonin:2016:IFE

Boyle:2016:SSE

Barik:2017:LSS

Baricz:2018:HTT

Brambilla:2018:ABA

Bunimovich:2018:GEI
Blum-Smith:2019:RGW

Bovdi:2019:CBD

Bresar:2019:CCF

Berman:2019:CMG

Bhat:2018:BSG

Belardo:2016:ESC

Butkovic:2016:TS

Bliss:2018:MGN

Bytsko:2018:TPM

Bai:2016:NIT

Bai:2018:CRR

Bai:2019:PRE

Peter G. Casazza and Xue-mei Chen. Frame scalings: a condition number

[Chan:2017:LMP]

[Chen:2018:MP]

[Cardoso:2018:SSL]

Domingos M. Cardoso, Paula Carvalho, Maria Aguiar A. de Freitas, and Cybele T. M. Vina-gre. Spectra, signless Laplacian and Laplacian spectra of complementary prisms of graphs. *Linear Algebra and its Applications*, 544 143

Cardinali:2016:RPH

Chen:2016:SRL

Cooper:2016:SPS

Courtemanche:2016:AEA

Chavez-Dominguez:2019:FPF

Carriegos:2016:PEM

[CDRT17] M. Charina, M. Donatelli, L. Romani, and V. Turati. Multigrid methods:

[Chen:2018:TRT] Lin Chen and Shmuel Friedland. The tensor rank of tensor product of two three-qubit W states is eight. *Linear Algebra and

[CFNP17] Albert Compta, Josep Ferrer, and Marta Peña. Per-
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
sience/article/pii/S0024379516301029.

Cardinali:2019:ILH
Ilaria Cardinali and Luca Giuzzi. Implementing line-
Hermitian Grassmann codes. Linear Algebra and its Applications, 580(??):96–120, November 1, 2019. CO-
DEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
sience/article/pii/S0024379519302721.

Castillo:2019:BFE
Jesús M. F. Castillo and Ricardo García. Bilinear forms
and the Ext 2-problem in Banach spaces. Linear Alge-
bra and its Applications, 566 (??):199–211, April 1, 2019.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
sience/article/pii/S0024379519300060.

Chmielinski:2019:CDS
Jacek Chmieliński and Moshe Goldberg. Continuity and discontinuity of seminorms on infinite-dimensional vec-
tor spaces. Linear Algebra and its Applications,

Castro-Gonzalez:2016:MPT

Coutinho:2015:PST

Contino:2017:WLS

Connelly:2017:UPS

Cho:2016:EP1

Cicone:2019:SCA [CGSC19]

Coutinho:2016:ELC [CGSZ16]

Cheng:2019:TGF

Chan:2015:NRI [Cha15]

Chamizo:2019:MPM

Carriegos:2015:RTS

Chouh:2015:SNR

Chen:2015:DGK

Cheng:2015:CTP

Chebotar:2018:SLP

Chen:2018:IRB

Chen:2018:AEA

Chen:2018:MRR

Chen:2019:BCS

Chen:2019:EAS

Chistopolskaya:2018:NGL

Cioaba:2018:CMU

Cheon:2017:MRG

Catalano:2019:MPP

Choi:2017:IRP

Choi:2017:IRT

Choi:2019:RDM

Choi:2017:IRT

Choi:2019:GDM

Chuysurichay:2015:SSE

Chu:2016:FDF

Chu:2019:SEC [Chu19]

Chugunov:2015:CSP [CI15a]

Chugunov:2015:PTH [CI15b]

Casas:2016:TLA [CILL16]

Cimpric:2015:FLM [Cim15]

Cvetkovic-Ilic:2015:POI [CIMW15]

Christandl:2018:TRM

Cheon:2019:MEM

Chapman:2015:GCA

Christou:2016:ALC

[CKM16] Dimitrios Christou, Nicos Karkanias, and Marilena Mitrouli. Approximate least common multiple of several polynomials using the ERES division algorithm. *Linear Algebra and its Applications*, 511(??):141–175,

Xiaodan Chen, Jingjian Li, and Yingmei Fan. Note on

[CLHL15]

[CLM19a]

[CLL15]

[CLL19a]

[CLM19b]

Casas:2019:MPC

Cui:2017:PPS

Cheng:2018:FUS

Catral:2018:MSR

Chen:2015:NCC

Cano:2017:PCG

Clouatre:2019:JSC

Cordova-Martinez:2018:GSA

Contino:2019:SCS

Cesmelioglu:2018:VBF

Csajbok:2018:NFM

Chen:2016:CMC

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>

[Paolo Casati, Andrea Previtali, and Fernando Szechtman. Indecomposable modules of a family of solv-]

[CR18b] Ricky X. F. Chen and Christian M. Reidys. Linear sequential dynamical systems, incidence algebras,

Cruickshank:2018:GRU

Chatterjee:2019:IGI

Chatterjee:2019:IHM

Chmielinski:2017:AON

[CVV19] R. Caseiro, M. A. Facas Vi-cente, and José Vitória. Pro-

Chretien:2018:SSC

Chen:2019:NTP

Chen:2017:CPI

Chowdhury:2019:SCP

Das:2019:ASS

Ranjan Kumar Das and Rafikul Alam. Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases. *Linear Algebra and its Applications*, 569
Das:2019:ARE

Das:2019:RMB

Delgado:2016:NRR

Dahl:2015:RPM

Dahl:2015:LET

Dalfo:2017:ILD
C. Dalfo. Iterated line digraphs are asymptotically dense. *Linear Algebra and its Applications*, 529(??):391–396, September 15, 2017. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856.

Dolzan:2017:DCC

daCruz:2017:MDS

daCruz:2018:CSM

deCamargo:2015:CSD

daCruz:2017:MMB

182

Trung Hoa Dinh, Raluca Dumitru, and Jose A. Franco.

P. Dell’Acqua, M. Donatelli, S. Serra-Capizzano, D. Sesana, and C. Tablino-

Carlos M. da Fonseca, Vyacheslav Futorny, Tetiana Rybalkina, and Vladimir V. Sergeichuk. Topological classification of systems of...

Dahl:2018:MMC

Daepp:2017:MTB

Das:2019:SBT

Drensky:2019:NIT

[DHW16]

[DHLT19]

[DHS18]

[DHW16]

[Du2018:TGI]

Dickinson:2019:NCC

DeTeran:2018:CSU

DeTeran:2018:SUC

Dykema:2016:IKL

Draga:2018:WMB

Dong:2016:LMG

Deng:2018:BTE

delaCruz:2015:ESM

delaCruz:2016:DMS

delaCruz:2018:PSN

Das:2016:ELG

Das:2017:RBD

Goulart:2019:MRM

Dopico:2019:SLR

Dellacherie:2016:PRW

Das:2019:SLE

Kinkar Chandra Das, Seyed Ahmad Mojallal, and Shaowei

Dolzan:2016:MSN

Dodig:2016:CQR

Dodig:2017:MCP

Dogan:2018:DIM

Dzhumadildaev:2016:CEA

DeSimone:2015:FLH

Droflán M. Dopico, Javier Pérez, and Paul Van Dooren. Block minimal bases l-

Drazin:2016:RJJ

Dragicevic:2018:NNE

Drnovsek:2019:SBS

Duffner:2015:III

Das:2017:DBN

Duffner:2017:EUM

deSa:2018:NPN

Eduardo Marques de Sá. Noncrossing partitions, noncrossing graphs, and q-

[dSN15] Celso Marques da Silva,
Jr. and Vladimir Niki-
forov. Graph functions max-
imized on a path. Lin-
ear Algebra and its Ap-
lications, 485(??):21–32,
November 15, 2015. CO-
DEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379515004127.

Pazzis:2015:RCH

Range-compatible homo-
morphisms on matrix spaces.
Linear Algebra and its Ap-
lications, 484(??):237–289,
November 1, 2015. CO-
DEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379515003778.

Pazzis:2015:ASS

[dSP16a] Clément de Seguins Pazzis.
Affine spaces of symmet-
ic or alternating matrices
with bounded rank. Lin-
ear Algebra and its Ap-
lications, 504(??):503–558,
September 1, 2016. CO-
DEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379516301252.

Pazzis:2016:FTD

[dSP16b] Clément de Seguins Pazzis.
The Flanders theorem over
division rings. Linear Al-
gebra and its Applications,
493(??):313–322, March 15,
2016. CODEN LAA-
PAW. ISSN 0024-3795
(print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379515006965.

Pazzis:2016:LSB

Clément de Seguins Pazzis.
Large spaces of bounded
rank matrices revisited. Lin-
ear Algebra and its Ap-
lications, 504(??):124–189,
September 1, 2016. CO-
DEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S002437951630074X.

Pazzis:2016:LSS

Clément de Seguins Pazzis.
Large spaces of symmetric
or alternating matrices
with bounded rank. Linear
Algebra and its Applications,
508(??):146–189, November 1,
2016. CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379516302671.

Pazzis:2016:RCH

Clément de Seguins Pazzis.
Range-compatible homo-
morphisms on spaces of sym-
metric or alternating ma-
trices. Linear Algebra and
its Applications, 503(??):
Pazzis:2019:LPS

Pazzis:2019:SGPa

Pazzis:2019:SGPb

daSilva:2017:NSC

Dodig:2015:MQF

Duarte:2015:EIG

Dopico:2016:CMS

Dufosse:2016:NBN

Dukes:2012:RDD

See corrigendum [Duk15].

Dukes:2015:CSD

See [Duk12].

DeCarli:2018:SRG
Laura De Carli and Pierluigi Vellucci. Stability results for Gabor frames and the p-order hold models. Linear Algebra and its Applications, 536(2):
Devriendt:2019:TSB

Dopico:2019:RPM

Duvenhage:2018:ASP

Dyachenko:2017:HMD

Dymarsky:2016:CSB
Elphick:2017:NGO

Estrada:2017:CSG

Egan:2019:MBC

Eshkaftaki:2015:CMD

Eftekhari:2016:ILO

Eggers:2017:CCT

Evans:2017:ROD

Evans:2019:ROD

Feng:2015:CAN

Elsheikh:2015:RAE

Elsworth:2019:CBB

Eger:2016:LPC
Eggermont:2015:FPC

Escribano:2015:IIM

Elsner:2015:MSR

Elyseeva:2018:DOT

Estrada:2017:PLO

Eggermont:2016:ABM

Estrada:2018:PLO

Ehrmann:2016:GSM

Elhodaibi:2017:MPO

Encinas:2018:EIT

Encinas:2019:TSC

Eastman:2014:CMO

See corrigendum [EKSV18].

Eastman:2018:CSC

Echeverría:2018:BDD

Elduque:2016:NEA

Elden:2015:CFD

Echkaftaki:2015:SPO

Ellia:2016:SMC

Ellard:2016:CSC

Estrada:2016:WLG

Elsasser:2016:IGH

Et-Taoui:2018:IFE

Et-Taoui:2018:SCG

Ellers:2015:HTC

Evert:2018:MCS

Evans:2019:PTP

Fagundes:2019:IMP

Farashahi:2016:WPT

Farid:2019:TCM

Fasi:2019:OPS

Faybusovich:2018:PDP

Leonid Faybusovich. Primal-dual potential reduction algorithm for symmetric pro-

Fan:2019:ENS

Fernandes:2018:NPV

Fernandes:2018:MDL

Fernandes:2015:CDV

Fongi:2016:PIP

Fiedler:2015:RDA

Francisco:2017:FPM

Fang:2018:MRS

Dominique Foata, Guo-Niu Han, and Volker Strehl. The Entringer–Poupard matrix sequence. *Linear Algebra and its Applications*, 512(??):71–96, January 1, 2017. CODEN LAAPAW. ISSN
Futorny:2017:SCS

Forrester:2016:RES

Fasi:2019:CPS

Fonseca:2019:DPV

Fiedler:2015:MEG

Forrester:2016:RES

Fiedler:2015:ONA

See corrigendum [FJS21].

Fallat:2021:CTP

See [FJS17].

Fernandes:2017:CEG

Forster:2016:PFT

Filipiak:2018:AKP

Fox:2015:CIA

Fritzsche:2017:SAEa

Bernd Fritzsche, Bernd Kirstein, and Conrad Mädler. On a simultaneous approach to the even and odd trun-

Klyuchkov, and Vladimir V. Sergeichuk. Roth’s solvability criteria for the matrix equations \(AX - XB = C \) and \(X - A\overline{X}B = C \) over the skew field of quaternions with an involutive automorphism \(q \mapsto \overline{q} \). *Linear Algebra and its Applications*, 510(??):246–258, December 1, 2016. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://www.sciencedirect.com/science/article/pii/S0024379516003597.

Fenzi:2017:RSO

Ferrari:2019:DSH

Fikioris:2019:DBE

Ferrer:2016:CDH

Fallat:2018:QPR

Feliu:2019:CIC

FMM16

FMM16

226
Fasino:2018:MBS

Fan:2016:LES

Fan:2017:BPN

Fan:2019:ELS

Fu:2019:RPI

Feng:2017:SCS

Garza:2015:MCS

Lino G. Garza, Luis E. Garza, Francisco Marcellán, and Natalia C. Pinzón-Cortés. A matrix characterization for the $D_{
u}$-semiclassical and $D_{

Gupta:2015:CSV

Gautier:2016:TNM

Gerard:2016:HOL

Georgieva:2017:BUA

Gao:2019:SRG

Gil:2016:BST

Michael Gil’.
Bounds for the spectrum of a two parameter matrix eigenvalue problem.
Linear Algebra and its Applications, 498 (??):201–218, June 1, 2016.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Giambruno:2016:SPM

Antonio Giambruno, Antonino Ioppolo, and Fabrizio Martino.
Standard polynomials and matrices with superinvolutions.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Girard:2019:DDT

Mark W. Girard.
On directional derivatives of trace functionals of the form $A \rightarrow \text{Tr}(Pf(A))$.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Gowda:2018:CSS

M. Seetharama Gowda and Juyoung Jeong.
On the connectedness of spectral sets and irreducibility of spectral cones in Euclidean Jordan algebras.
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Guterman:2018:LIP

Alexander Guterman, Marianne Johnson, and Mark Kambites.
Linear isomorphisms preserving Green’s relations for matrices over anti-negative semifields.
CODEN LAA-PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Gu:2016:SCR

Jiao Gu, Jürgen Jost, Shiping Liu, and Peter F. Stadler.
Spectral classes of regular, random, and empirical graphs.
CODEN LAA-PAW. ISSN 0024-3795 (print), 1873-1856 (electronic).

Gumus:2018:PSD

Gong:2017:HMT

Gao:2016:CSS

Gao:2016:SPR

Gao:2016:EDS
Wei Gao and Ruyun Ma. Eigenvalues of discrete Sturm–Liouville problems with eigenparameter dependent boundary conditions. *Linear Algebra and...

Guterman:2019:LRP

Greaves:2019:IFH

Granario:2015:IPD

Daryl Q. Granario, Dennis I. Merino, and Agnes T. Paras. The \(\phi_S \) polar decomposition when the cosquare of \(S \) is normal. *Linear Algebra and its Applications*, 467(??):75–85, February 15, 2015.

Granario:2016:PDW

Daryl Q. Granario, Dennis I. Merino, and Agnes T. Paras. The sum of two \(\phi_S \) orthogonal matrices when \(S^T S \) is normal and \(-1 \not\in \sigma(S^{-1}T) \). *Linear Algebra and its Applications*, 495(??):51–66, April 15, 2016.

Granario:2016:STO

Daryl Q. Granario, Dennis I. Merino, and Agnes T. Paras. The sum of two \(\phi_S \) orthogonal matrices when \(S^T S \) is normal and \(-1 \not\in \sigma(S^{-1}T) \). *Linear Algebra and its Applications*, 495(??):51–66, April 15, 2016.
Gowda:2016:CML

Gowda:2017:PDS

Ganie:2018:CSS

Gowda:2017:PDS

Gernandt:2019:SRT

Goel:2019:CGI

Grishkov:2018:LCC

[Guo:2017:MLS] Ji-Ming Guo, Ji-Yun Ren, and Jin-Song Shi. Maximizing the least signless

[GS16] Alexander Guterman and Yaroslav Shitov. Rank functions of tropical matri-
Gillis:2019:LRM

Ghosh:2016:OBL

Gajula:2015:TDT

Garnett:2016:CFG

Garcia:2016:SBN

Gasiorek:2015:SCD

See [GTL+18].

Hegazi:2016:CFD

Hadjidimos:2017:EOR

Hamedi:2019:EH

Tian-Xiao He. Sequence characterizations of double Riordan arrays and their

Hilberdink:2015:OPC

Hilberdink:2017:MME

Hirai:2018:CDD

Higgins:2016:ISP

Hladik:2015:ASA

Hou:2015:LTH

Hu:2017:SDR

Holohan:2017:EPL

Hambric:2019:MNN

Huang:2016:TDP

He:2017:TSG

Changxiang He, Lin Lei,

Huang:2016:RMD

Helton:2015:FSR

Holbrook:2015:STG

Hoa:2015:COM

Hoa:2017:SIM

Holubowski:2016:NSL

Holbrook:2018:DPD

Andrew Holbrook. Differentiating the pseudo determinant. *Linear Algebra
Hon:2018:OPS

Horvath:2017:IMG

Hou:2015:DCK

Hou:2019:DIM

Hladik:2016:RSU

Hrubes:2016:FAM

Heuberger:2017:CIM

Habibzadeh:2018:OKF

He:2016:RSA

He:2017:FCM

Christoph Helmberg and Vilmar Trevisan. Spec-

Haukkanen:2018:IPD

Hnetynkova:2018:CHR

Hu:2015:RNN

Huang:2015:RSP

Huang:2019:GLT

Huh:2015:IPD

Marko Huhtanen. The product of matrix subspaces. *Linear Algebra and its Applications*, 471(??): 266

Huang:2015:MPI

He:2015:EPM

Hong:2019:VCE

He:2015:ESN

Huang:2015:NNE

Hu:2018:CPM

Huo:2017:SOG

Idel:2017:PBW

See note [SZ23].

Ilmonen:2008:EMJ

Ilmonen:2018:GEP

Ioppolo:2018:ESS

Ismail:2019:TRG

Tsukada:2016:APC

Ilisevic:2018:SWE

Tsukada:2019:UEC

Ito:2017:SET

Idel:2015:SNF

Jain:2017:HPS

Javanshiri:2018:MNS

Jelisiejew:2018:VCF

Jung:2019:CSG

Johnson:2017:NDE

273
Jensen:2017:GHH

Jeong:2016:SCE

Jeong:2017:SSF

Jiang:2015:DEL

Jing:2015:UOE

Johnson:2015:CTP

Jung:2015:DMS

Wooseok Jung, Jon-Lark Kim, Yeonho Kim, and Kisun Lee. The dimension of magic squares over fields of characteristics two

[JLD17] Charles R. Johnson and António Leal-Duarte. On the solvability of derived...

Johnson:2018:MNE

Jivulescu:2015:PRS

Jivulescu:2017:UPA

Jocic:2018:NIC

Jocic:2016:ROC

Jorgensen:2015:DSR

Johnson:2016:PSR

Johnson:2017:MVK

Johnston:2018:IEP

Julio:2019:CNR

Julio:2015:PBN

Koolen:2016:HDT

See corrigendum [KHI16a].

Kim:2015:EEH

Kim:2015:CIB

Kisi:2015:CTL

Kisi:2015:QOB
Konno:2018:SAU

Joji:2016:SRA

Kocharovsky:2017:PCD

Kim:2018:DMM

Kernfeld:2015:TTP

Kho:2017:PIM
Keiper:2017:CSF

Kloster:2018:WEW

Kim:2016:STG

Kim:2015:PML

Kittaneh:2017:TIP

Kauffman:2018:CBF

Kuo:2018:CUC

Kenter:2019:EPS

Kim:2019:BJO

Kline:2019:SMR

Kim:2016:FPM

Kum:2017:RAS

Kim:2018:RIG

Kim:2019:GMB

Ke:2016:NRT

Kaygorodov:2015:CAD
Koberda:2019:ELK

Ku:2016:SEP

Kalauch:2019:SIM

Ku:2018:SEC

Koolen:2018:FHG

Karow:2015:MPS

Kiani:2015:UCG

Klotz:2016:SFP

Kubkowski:2018:PGB

289

Kulkarni:2017:CPA

Kittaneh:2015:CDN

Kehl:2016:ASC

Kumar:2018:KTT

Kang:2015:SRP

Kuran:2016:GAM
Kobayashi:2017:DGS

Kolokolnikov:2015:MAC

Kooij:2019:GWG

Kuzma:2015:EOP

Kozyakin:2016:HAF

Karder:2017:MSP

Kircheis:2019:DIN

Kokabifar:2018:DMP

Kunis:2016:MGP

Kirkland:2016:APM

Kahl:2017:DCG

Krivulin:2015:EPT

Kannan:2015:SPS

Kong:2015:SRE

Kubota:2018:PGW

Kubota:2019:QWI

Kim:2017:SAP

Kurata:2015:CMC

Kushel:2015:MIS

Kushel:2016:PSP

Kutschan:2018:TCT

Khosravi:2019:ABE

Klep:2017:NPR

Kwon:2016:TEA

Kim:2015:FPV

Koshlukov:2017:GGJ

Kim:2018:NCS

Krelifa:2017:RAO

LaGuardia:2016:OCC

Guardia:2016:CCC

Lange:2015:RBS
Lau:2018:LIJ

Lax:2016:APS

Liang:2019:IRW

Liu:2019:SCO

Li:2015:NEI

Liu:2018:DPW

Ljubenovic:2017:WSF

Lin:2018:FTL

Li:2018:CIE

Lee:2015:DBP

Lee:2015:GWN

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0024379515003821.

[Li15b] Jiaojiao Li. L^2 norm preserving flow in matrix geometry. *Linear Algebra and its
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0024379515005248.

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL https://
//www.sciencedirect.com/
science/article/pii/S0024379519302289.

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0024379517303099.

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0024379517306341.

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S0024379515000634.

CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://
Lin:2015:SAM

Lin:2016:UNZ

Lin:2016:HMI

Lin:2016:RTR

Lin:2016:DSB

Lin:2017:NPC

Lin:2017:ZFN
Jephian C.-H. Lin. Zero forcing number, Grundy domination number, and their

See [LLS17b].

[L Liu:2017:NSL]

See corrigendum [LLS17a].

[H Li:2015:EBI]

[L Liu:2017:SLI]

[Laface:2016:LSB]

Antonio Laface and Joaquín Moraga. Linear systems on the blow-up of $(P^1)^n$. *Linear Algebra and its Applications*, 492(??):52–67,

See [CLOK13].

Lazzarin:2019:NTG

Luo:2019:HTP

Looseova:2018:FSD

Lau:2016:CSS

Pan-Shun Lau, Tuen-Wai Ng, and Nam-Kiu Tsing. Convexity and star-shapedness of real linear images of special orthogonal orbits. Linear Algebra and its Applications, 507(??):51–67, October 15, 2016. CODEN LAAPAW. ISSN

See corrigendum [LT16a].

See [LT12].

Luo:2018:GWS

Lin:2019:TPI

Liu:2019:RPM

Li:2015:SPO

Li:2019:ADT

Liu:2015:FRM
Li:2018:SCM

Liu:2019:SRC

Lu:2017:CUG

Lin:2016:DDL

Lin:2016:BLS

Lin:2016:NRP

Lu:2018:RSG

Li:2017:FTC

Lin:2018:SG

Lee:2016:RPV

Liu:2017:PCA

Lynch:2015:CPC

Hongying Lin and Bo Zhou. The effect of graft transformations on distance signless Laplacian spectral radius. *Linear Algebra and

Ma:2016:DSI

MacCaig:2016:SIM

Mackenzie:2018:AOM

Magnusson:2016:IPE

Manuilov:2019:AUL

Martin:2015:SWT

Marx:2015:DTS
Benoît Marx. A descriptor Takagi–Sugeno approach...

Maroulas:2016:FHM

Manzaneda:2017:RLS

Martin:2018:DLS

Masuyama:2017:CTB

Mathai:2015:FDO

Matsuki:2015:CPR

Mattila:2015:ECM

Mayer:2015:TSD

Maxwell:2015:PKH

Mukherjee:2018:SEP

Mendez:2018:BPF

Martinhao:2019:NSC

McKee:2018:CTL

Melman:2015:NMP

Mroz:2016:PBL

Melman:2016:BEM

Melman:2016:CLP

Melman:2019:ELU

A. Melman. Eigenvalue localization under partial

Moghaddam:2017:IMF

Ma:2015:SCU

Matejas:2015:HRA

Massart:2018:MGM

Muller-Hermes:2018:OSR

Muller-Hermes:2015:SVB

Miyajima:2015:FEM

Miyajima:2019:VCM

Mizutani:2016:RAP

Mao:2015:NMC

Manivel:2015:SMC

Makuracki:2019:RSI

Monfared:2019:AMT

Milovanovic:2019:NLS

MacLean:2016:TAB

Marco:2017:ABD

Mingueza:2016:CSL

David Mingueza, M. Eulàlia Montoro, and Alicia Roca.

Lili Mu, Jianxi Mao, and Yi Wang. Row polynomial matrices of Riordan arrays. *Linear Algebra and
Manjegani:2015:MFI

Medina:2019:RLS

Merlino:2019:FJC

Merlevede:2019:ULE

Mehrmann:2016:SCH

Ma:2016:IJP

[Alexander Ma and Jamie Oliva. On the images of Jordan polynomials evaluated over symmetric matrices. *Linear Algebra and its Applications*, 492(??):13–

Montaner:2019:GFA

Mastnak:2016:NIS

Morales:2016:LAS

Morris:2017:GPL

Mosic:2017:WPO

Muller:2015:SMA

Myskova:2015:WRI

[MP15b] Helena Mysková and Ján Plavka. On the weak robustness of interval fuzzy

[MP16]

[MP16a]

[MP16b]

[MP18]

Marijuan:2017:MSC

Marciniak:2017:MPM

Molnár:2016:MPD

Ma:2018:GSD

Mező:2019:CAD
Mallik:2016:INM

Mashreghi:2016:NMP

Monfared:2016:NZE

Mei:2017:IFD

Momihara:2017:UBS

Martino:2019:FGG

Mao:2015:CGD

Muzychuk:2016:TAW

Ma:2016:PFN

Munshi:2019:SAE

Myskova:2016:IMP

Nadoshan:2015:MLP

Nikiforov:2017:MTN

Nagy:2015:ISS

Nagar:2019:EML

Najafi:2017:MOM

Neyshaburi:2018:EPI

Fahimeh Arabyani Neyshaburi, Ali Akbar Arefijamaal, and Ghadir Sadeghi. Extreme points and identification of optimal alternate dual

Ning:2018:MSR

Ning:2018:SLS

Nader:2019:NRI

Nmeth:2016:IRI

Nakatsukasa:2019:ILL

Narayanan:2019:LSO

Niazi:2015:WLD

Nikiforov:2017:ST

Noferini:2015:DMP

Nikolayevsky:2016:DPO

Nogueira:2015:SCS

Noschese:2016:SMN

complete characterization of the minimum size super-
tail in a subspace partition. Linear Algebra and its
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379518304348

Nagar:2019:LIP

Nagar Kumar Nagar and Sivaramakrishnan Sivakumar.
Laplacian immanantal polynomials and the GTS poset on trees. Linear
CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic).
URL http://
www.sciencedirect.com/
science/article/pii/S0024379518304610

Noutsos:2016:ESE

D. Noutsos, S. Serra-
Capizzano, and P. Vassa-
lkos. Essential spectral equiv-
alance via multiple step pre-
conditioning and applications to ill conditioned
Toeplitz matrices. Linear
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379515004899

Nomura:2017:UDT

Kazumasa Nomura and Paul
Terwilliger. The universal
DAHA of type C_1^r, C_1 and
Leonard pairs of q-Racah
type. Linear Algebra and its
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379517304342

Nagaoka:2018:RPA

Takahiro Nagaoka and Akiyoshi
Tsuchiya. Reflexive polytopes arising from edge polytopes. Linear Algebra and its
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379518303859

Ngoan:2019:SLG

Ngô Thụ Ngoan and Nguyễn Quôc
Thắng. On some local-global principles for linear
algebraic groups over infinite algebraic extensions of
global fields. Linear Algebra and its Applications,
CODEN LAAPAW. ISSN
0024-3795 (print), 1873-1856 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379518302660

Oberst:2016:TIW

Oboudi:2016:TLE

Oboudi:2019:NSR

Oboudi:2019:RBS

Oboudi:2019:DSR

Ould-Baba:2015:CFC

Marko Orel. Adjacency preservers on invertible Hermi-

Marko Orel. Adjacency preservers on invertible Her-

Shuichi Otake. A Bezoutian approach to orthog-
onal decompositions of trace forms or integral trace forms of some classical polynomi-

Aaron Ostrander. Laplacian matrices and Alexan-
Ouyang:2017:PIQ

Olesky:2017:BSA

Odegard:2015:QID

Oswald:2015:CAK

Osinsky:2018:PSA

Palacios:2016:SMI

Pan:2015:TMS

Pang:2015:AAP

Pankov:2016:EGG

Pankov:2016:OAH

Pankov:2017:APT

Aljosa Peperko. Bounds on the joint and generalized spectral radius of the Hadamard geometric mean of bounded sets of positive kernel operators. *Linear Algebra and its Applications*, 532(??):

Pivovarchik:2019:MEB

Plestenjak:2017:MDR

Pastravanu:2015:SCS

Pelaez:2015:FOS

Perovic:2018:LMP

Phat:2015:RFT

Panda:2017:IWG

Panda:2017:SGW

Plesinger:2018:EEC

Pilipovic:2019:IMT

Pan:2015:RMN

Pavlova:2018:IPE

Pavlickova:2017:CII

Parnas:2018:APB

Plavka:2018:REI

Park:2019:IGE

Passbani:2019:SRG

Passer:2019:CCT

Pena:2019:SUM

[PS19d] Juan Manuel Peña and Tomas Sauer. SVD update methods for large ma-

Protasov:2017:MSC

Price:2020:CSS

Perotti:2018:MMP

Price:2019:STM

See corrigendum [PW20].

Pan:2017:NSR

Pan:2017:NSG

15, 2017. CODEN LAAPA-
W. ISSN 0024-3795
(print), 1873-1856 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S002437951730232X.

Qi:2015:CCA
[QH15] Xiaofei Qi and Jinchuan
Hou. Characterization of
k-commuting additive maps
on rings. Linear Algebra
and its Applications, 468
CODEN LAAPA. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379514000202.

Qi:2015:TDS
[QWC15] Liqun Qi, Qun Wang, and
Yannan Chen. Three di-
mensional strongly symmet-
tric circulant tensors. Lin-
ear Algebra and its Applica-
tions, 482(?):207–220,
October 1, 2015. CO-
DEN LAAPA. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379515003432.

Qiao:2018:TFT
[QWW18] Sanzheng Qiao, Xue-Zhong
Wang, and Yimin Wei. Two
finite-time convergent Zhang
neural network models for
time-varying complex matrix
Drazin inverse. Linear
Algebra and its Applications,
CODEN LAAPA. ISSN
0024-3795 (print), 1873-1856
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379517301763.

Rodrguez-Andrade:2016:GAR
[RAAGA16] M. A. Rodr´ıguez-Andrade,
G. Arag´on-Gonz´alez, and
J. L. Arag´on. The gen-
eration of all rational or-
thogonal matrices in $\mathbb{R}^{p,q}$.
Linear Algebra and its Applica-
tions, 496(?):101–113,
May 1, 2016. CODEN
LAAPA. ISSN 0024-3795
(print), 1873-1856 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0024379516000604.

Radjabalipour:2017:SJC
[Rad17] M. Radjabalipour. A sym-
metrization of the Jor-
dan canonical form. Linear
Algebra and its Applications,
528(?):94–112, September 1, 2017. CO-
Rainbolt:2019:REB

Ram:2017:NLT

Rakic:2017:NRM

Raouafi:2018:GKM

Reyes-Bustos:2016:CTG

Cid Reyes-Bustos. Cayley-type graphs for group-subgroup pairs. *Linear
Rump:2019:ASE
See [Rum18].

Roozbeh:2016:CBE

Rakic:2015:POR

Rodrigo-Escudero:2016:CDG

Rebs:2019:BCM

Reff:2016:OGG
Nathan Reff. Oriented

[Rin17] Claus Michael Ringel. The eigenvector variety of a ma-
Rissner:2016:NIM

Rivero:2015:DRM

Rivero:2015:MHT

Rizzolo:2019:DSM

Rocha:2018:RSR

Rising:2015:EAS

Justin Rising, Alex Kulesza, and Ben Taskar. An efficient

Rowlinson:2018:ESC

Ribeiro:2018:CPD

Richter:2018:LRC

Rakosnik:2016:MF

Reichel:2016:NBQ

Reis:2015:KYP

Reff:2017:CBH

Nathan Reff and Howard Skogman. A connection

Ren:2017:CMN

Rohn:2018:IMR

Rukhin:2015:RLR

Rump:2018:EDP

Rump:2019:BDG

See addendum [RB19].

Robol:2018:EEA

Ran:2016:ALI

Rozanski:2017:MSV

Rozanski:2017:MSV

Sastre:2018:EEM

Solak:2018:SPC

Sawyer:2016:CID

Schulz:2015:TCS

Schulz:2015:CCD

Sburlati:2017:CPD

[Sui17a] Xuefang Sui and Paolo Gon- dolo. Factorizations into normal matrices in indefinite inner product spaces. *Linear Algebra and its Ap-
Sui:2017:NPD

Sang:2016:LPQ

Sharma:2016:SSC

Shchesnovich:2016:PTC

Shemesh:2016:STR

Shebrawi:2017:NRI

Shimabukuro:2016:MAA

Shinawara:2016:UDP

Shitov:2016:CTL

Shitov:2016:EOS

Yaroslav Shitov. Extending orthogonal subsets of semimodules. *Linear Algebra and its Applications*, 508(??):225–233, November 1, 2016. CODEN LAAPAW. ISSN
Shitov:2016:NSR

Shitov:2016:CPS

Shitov:2016:SSZ

Shitov:2017:COI

Shitov:2017:TRS

Shitov:2018:CFM

Shitov:2018:DSM

Yaroslav Shitov. On the determinant of a sparse 0–1 matrix. *Linear Algebra
Shitov:2018:RLT

Shitov:2019:POR

Simon:2017:UPT

Sinchuk:2017:NKK

Shaked-Monderer:2016:SCG

Saubabheh:2019:NIG

Santos:2017:JMC

Sau:2016:PSA

Simsek:2016:GHR

Sodomaco:2018:PES

Soltan:2018:PSC

Solymosi:2018:SNM

Soltan:2019:MTC

Somodi:2017:IZF

Sothanaphan:2017:DBM

Serre:2016:GBL

Sain:2019:NIP

F. Stampach and P. Stovicek. Special functions and spectrum of Jacobi matrices. *Linear Algebra and its Applications*, 464(??):38–61,

Minjia Shi, Keisuke Shiro moto, and Patrick Solé. A note on a basic exact

Sebestyen:2015:EPO

Sikiric:2017:RFC

Stanic:2019:BLE

Stefanovski:2015:RAB

Ster:2018:EMZ

Strapasson:2018:NSL

Solus:2016:EPS

Stehlik:2017:SCD

Saito:2015:TSP

Sirotkin:2016:AIE

Somphotphisut:2018:CTZ

Somphotphisut:2018:BNI

Shen:2019:SIM

Shimabukuro:2015:MAA

Saburov:2016:CCS

Shao:2016:SPT

Jiayu Shao and Lihua You. On some properties of three different types of triangular blocked tensors. *Linear Algebra and its Applications*, 511(?):110–140,
Shao:2017:SPL

Simson:2017:IAL

Skripka:2019:SUP

Sun:2019:SPG

Lizhu Sun, Jiang Zhou, and Changjiang Bu. Spectral properties of general hypergraphs. *Linear Algebra and its Applications*, 561(??):
Stanimirovic:2016:NNA

Tabata:2016:LBI

Tan:2016:FSF

Tanaka:2016:STP

Tanimoto:2019:EM

Tarazaga:2018:SSS

[Ter18] Paul Terwilliger. A poset Φ_n whose maximal chains are in bijection with the...

Tan:2019:PST [TFC19]

Turek:2019:GCH [TG19]

Tahaei:2016:CRB [TH16a]

Tam:2016:NSR [TH16b]

Tam:2017:NGG [TH17]

Teng:2015:CRA [TLL15]

Takemura:2016:TTD
Kazuo Takemura, Atsushi Nagai, and Yoshinori Kametaka.
Two types of discrete Sobolev inequalities on a weighted Toeplitz graph.

Tokcan:2017:WRB
Neriman Tokcan. On the Waring rank of binary forms.

Tomon:2015:CNR
István Tomon. On the chromatic number of regular graphs of matrix algebras.

Tavakolipour:2018:TET
Hanieh Tavakolipour and Fatemeh Shakeri. On tropical eigenvalues of tridiagonal Toeplitz matrices.

Tsatsomeros:2016:GMP

Tsatsomeros:2016:BRM
Linear Algebra and its Applications, 508(??):301–303, November 1, 2016. CODEN

Fenglei Tian and Dein Wong. Graphs whose distance matrix has at most three negative eigenvalues. *Linear Algebra and its Applications*, 530(??):470–484, October 1, 2017. CODEN LAAPAW. ISSN 0024-3795 (print), 1873-1856 (electronic). URL http://

Tam:2015:KFR

Tyaglov:2017:SIP

Tygert:2019:RAD

Trombetti:2019:NAG

Tang:2017:MTI

Uchiyama:2015:OIG

Yoichi Udagawa, Shuhei Wada, Takeaki Yamazaki,

[Vecharynski:2016:PSD]

[Volcic:2017:DNR]

[Volcic:2017:DNR]

[Van:2017:MRC]

[Van:2019:ANE]
Varghese:2018:DEC

VanBarel:2018:PES

VanderMeulen:2018:BPR

vanWyk:2017:LSI

Wada:2018:WDA

Wang:2015:NAZ

Wang:2016:CED

Wang:2016:ICP

Wang:2016:CCT

Wang:2019:LAQ

Warrington:2017:OBT

Wu:2015:COT

Wang:2017:ONI

Wei:2017:APG

Wang:2019:UBS

Wen:2019:IOF

Wang:2015:ASB

Wang:2018:SLE

Wang:2019:MUP

Wu:2019:CFC

Wu:2017:SAP

Wang:2017:LTE

Yan Wang, Bo Hou, and Suogang Gao. Leonard triples extended from a given totally almost bipartite Leonard pair of Ban-

nai/Itô type. *Linear Algebra and its Applications*, 519 (??):111–135, April 15, 2017. CODEN LAAPAW. ISSN

419
Wojcik:2015:OPS

Wojcik:2019:CLS

Wolf:2018:EGF

Wu:2017:CEJ

Wang:2019:CGG

Wang:2018:ISS

Wang:2018:CPL

[WW18] Zhijun Wang and Dein Wong. The characteristic polynomial of lexicographic

[Wong:2018:LBG]

[Wang:2018:SGC]

[Xu:2014:MGM]

[Xu:2019:CSM]
See [wXL14].

Wang:2015:CNN

Wang:2019:RGP

Wang:2017:MGH

Wu:2015:PSC

Wang:2017:PEA

Wei:2017:ICM

See corrigendum [Kis15].

Yu:2019:TPK

Yordzhev:2017:CFS

Youssef:2015:EBF

Yuan:2016:PCL

Shu:2017:NFS

Yuan:2016:OSU

Yuan:2017:EPS

[YSZ17] Yaping Yuan, Jiong Sun, and Anton Zettl. Eigen-

[Yan:2016:PMN]

[Yua14]

[Yua15:CSQ]

[Yur15]

[Yus17]

Yu:2016:DIA

Ye:2017:GIM

Yuan:2015:SUB

Yao:2019:SVI

Rong Zhang and Shu-Guang Guo. On the least Q-eigenvalue of a non-bipartite...

Zhao:2017:LLC

Zhang:2018:CPC

Zhang:2018:IAO

Zhang:2018:SSN

Zhang:2019:SIR

Zhang:2019:IRI

Zhan:2016:MWS

Zheng:2019:MMD

Zhou:2017:IDM

Zhu:2019:NEC

Zimmermann:2015:CNA

Zizler:2016:NSC

Zhang:2017:LDI

[ZK17] Xian Zhang and Mykola Khrypchenko. Lie derivations of incidence algebras.
Zhang:2017:SUH

Zhang:2015:CSL

Zhang:2017:SLS

Zhai:2015:SCE

Zhang:2017:CDI

Zhang:2017:SPS
Wei Zhang, Lele Liu, Liying Kang, and Yanqin Bai. Some properties of the spectral radius for general hyper-
Zhao:2018:DZT

Zheng:2016:NML

Zhang:2017:WCG

Guangliang Zhang, Muhuo Liu, and Haiying Shan. Which Q-cospectral graphs have same degree sequences.

Zhou:2017:EGI

Zuiddam:2017:NGB

Zusmanovich:2017:NSG

Zusmanovich:2017:SEM

Zhang:2016:MLE

Zhou:2018:UBN

Zhang:2019:COG
