A Complete Bibliography of Publications in
Linear [and] Multilinear Algebra

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu,
beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 July 2017
Version 1.06

Title word cross-reference

(0, 1) [FV97, Kim97, Zel85, BF15, KS88, LN10, Min74d, Zho16], (0, 1, 1) [GZ99]. (1, 0) [MP13b]. (1, 1) [Che03b]. (2) [Che95a]. (2, 2, 2) [SF17]. (2, p) [YD14]. (α, β) [YZ13]. (α, β, γ) [KO10]. (AXB, CXD) = (E, F) [YLLW15]. (c(xr, ys)) [Pre85]. (k) [Cha77, Cha79a]. (k + 1) [BT06]. (k, l) [Rem90]. (k = 2, 3, 4) [Sta15b]. (max, +) [HKT15]. (n + 1) [Sch78, Sch75]. (n, k) = (4, 2) [JLL88]. (p, q) [KL95]. (p, σ) [ADRP14]. (qr) [Raw81]. (R, S) [LLyP15, Pen15]. (s, p) − w [Ras17]. (√7 − 1)/2 [Sim95]. (T) [Che95b]. (v, k, λ) [Der83]. (Zm)+ [How86]. −2 [Aro16b, BPS16]. 0 [HNS99, HLZ05, JS96, Wu09]. 0, 1 [MS79, BX07]. 0 \not\in F(A^m) [JL90]. 1 [CM15, Fra17, HNS99, HLZ05, JS96, KP14a, Min77, Sta10, Wu09]. 1, 2, 1 [KHG13]. {1, 2, 3} [ZX10]. {1, 2, 4} [ZX10]. 10 [LN10]. 12 [EM95]. 2 [BL10, BL01, BdPN14, BDvW16, BM89, But10a, DP09, DD10, Dim15b, DL92, Dok93, Ere15, Far94, Fur08, GS06, Hai88a, KY17, LGA+13, Liu16a, Mah82, SG09a, SF17, WYM11]. 2n − 2r(≥ n) [LM95]. 2 × 2
\[\text{MSZ04, Mia93a, Nab98, NP80, NS92, vD96, Ber12, Den14, JOvdD85, MRT16, NS93, yT86, WD17. } M_n(\mu) [FoS05b]. M_X [CIP17]. \text{Mat}_n(K) [dB16]. S_2 [BS13]. F_3 [BS13]. Z [Ger04]. f_{\varphi}(S) [CdSS17]. f_{\varphi}(C) [MS08]. \]
\[m \times n = (m - 1)n [MS15]. \mu [Dia90a, dF05]. N \]
\[Sh90, BL10, Bed11, Cha79a, E\text{"O}15, GLOT13, GR10, HW75, KP16, LZ13, LDL17, Pop17, Qi15, SV14, Uhl14, Wer87, YLL90, dB16]. n \geq 3k [Ch77]. \]
\[n \times n \text{ [CZY12, Gal77, SvW14]. } O [Lop11a]. O(N) [Uhl99]. O(N^2) [Uhl99]. O(p, q) [Les93]. } [EV77]. \Omega(r, s) [Har87]. \Omega_n [DH91]. P \]
\[AEdF13a, AEdF13b, DdF15, ES98a, EMS02, KS14a, Tau74, BB96, HS93b, Kra06, Roh91b, Sin77, So90]. P_+ [KS14a]. P_0 [RP90]. \partial W_v(A) [Beb86]. \]
\[\text{per}(I - A) [Mal86]. \Phi [HSM17]. \Pi [LH13]. PSL_n(F) [Gur97]. Q \]
\[ND05, YGW15, CNP05, CN05, CPN06, CN07, Gar79, KHG13, Li98, LN98, PV00, Sal12, Sal14, WH17, Zha97]. \]
\[R [AW13, LZ15a, BL93a, BT15, HH14, MC85]. S [GMZ11, XL17]. S(1^a, b)[P_L] [CR'95]. S(n, p, 2, 2) [Hai92a, Hai92b]. s(\varphi) [GW98a, GW98b]. S_n [SS98]. S_n [Di 88, Reg87a]. \Sigma [BCKP10, Ben16, Lee16]. SL(2, R) [Sch79]. SL(3) [Raj09]. \]
\[SL(n, F) [New82b]. SL(n, K) [Wat84b]. SL_2 [AC13, Aln15, Gau76]. Sp(2n, Z) [New85b]. * [RD12]. T [WB14, BT08b, GL16, LM93, vBW95]. T^* [LZ12, LZ13]. \tau [Meh84]. \theta [ZT12]. U(n) [DM79]. U_p(sl_2) [Aln11]. W \]
\[Arm17, SKM17, WMR16, ZT12]. W(12, 11) [KMS07]. W(2, 2) [ZT12]. \]
\[X + M* X^{-1} M - N* X^{-1} N = 1 [Zha16b]. X = (x_{ij})_{N \times N} [WM84]. \]
\[X^* Y + Y X^* [LJ11]. x_{ij} = -1, 0, 1 [WM84]. X A Y = A [Wal75a]. X A^* Y = A^* [Wal75a]. X C = D [fLL+17]. \xi [LLF14, YZ13]. X m + A \ast X - n A = I \]
* [FdSV16, GV95, GdSV16, IT16, LWZ15, Ng14, QZ16]. *-algebras [Ng14]. *
*-derivations [LWZ15, QZ16]. *-identities [GV95]. *-isomorphisms [IT16]. *-superalgebras [FdSV16, GdSV16]. *-congruence [HS09].
\]
\- difference [Sal14]. - dimensional [Far94, YLL90]. - Divergence [KD16].

3-tensors [LPZ13].

6 [TT78]. 63 [Ano16c]. 64 [Ano16b].

7 [Ano79b].

A. [Mar76]. abelian [CCS98, ES76b, MN80, MP13b, Nir11, Odo83, STME10, WL16a, WL16b, BF96].

Absolute [Fie90a, KP02, Jam95, ST73, SA10, Tag12]. absolutely [PSS15]. Abstract [Sin83, Sal79]. Accretive [BJ75, LS17]. accurate [Uhl14]. acting [Fri97, KMEO12]. action [Liu16b, Mer78b]. actions [RP04]. acyclic [AEdF13a, AEdF13b, DdF15, KS09, Moh16b, dF13]. Addendum [JR93a, Ric87a, Bal76]. addition [EL09, LS96a, LS96b]. additions [LLS16, NS93]. Additive [BHD10, BLZ11, Che14a, DHB07, FLS88, Gha12, JQ15, Kuz05, LP02, OK07, Pet97, Tag12, TZ06, XCC99, XPY16, XL17, Zha04b, ZS05, ZCCI12, AS15, CdS03, Ch010, Fin92, MO13, Smi83, mWyD11, YZ13]. Additivity [DW12b, QH11, AA12, Gro99, Har81b, Tia05a]. Adjacency [Hua10, Lim10, BR14, But10b]. Adjacent [DJK08, CW93]. adjoint [CGY13, CL16, DRW93, FJS14, HH16, Kyr08, LLMT05, LT13, Moo95, TZ06, Tan13b]. adjointness [Kit91b, Sin84a]. Adjoints [Mar75, ER81].

adjugate [Sin82a]. adjusted [MH12]. Adjustment [Har95]. admissibility [BV16b]. admissible [Aze99]. admitting [Gar75b, MID17]. advances [Mer79c]. affects [Har81a]. affine [BBT07, FP17, GX17b, Kes83, dSP16b, W11]. afforded [Mer78b]. Aitken [Min74c]. Alexander [Min74c]. Algebra [DS02a, Mac09, SK03, Ahn11, BPS00, Bed11, BLZ11, BV92, Boa13, Bre12b, BF96, BSS12, Car88, Car90, Cha09a, CKLP13, DK11, De 82b, Din15b, FW73, Gai77, G83, GR10, GPK94, GV87, Guz88, IKR12, Jac79, KS15, LCL13, Lip96, LZ12, LGB17, MS85a, Ma’15b, Mer92, OWX09, Pat86, Pat89, Pow88, Prz92, Wad90, Wai79a, WOY06, IWP14, YWO07, ZT12, ZWW10, ZW14, dBS00, Ano79b, Ano16b, Ano16c, TT78, MT84]. Algebraic [ASZ02, BJ96, BP98a, FKP03, Gur97, KN97, KP02, Pat86, Tho90, WOW09, Wu05, Zel85, BL12, Bar07, Bar12, Ben10, CK84, Din00, Epk89a, FN14, Fie90a, GL97, Haw05, HX16, KF98, Kir00, KMN01, KN04, KN81, LRR87, Lim92b, LGB17, Ma’15b, New85a, PT10, Pie92c, Put82a, Put82b, TJ16, XSL15]. Algebraically [Had83]. Algebras [Boz97, Bre15, Che03a, DS04, Fin92, Kay17, LR17, Luk74, MS02, ST15, ARH15, AF11a, AF11b, AF12, AM15, AN14, AAP92, Ak093, AAB15, AG15, AH13, AXH15, BHD10, BL10, BHD11, BWL12, BD12, BW15, Bed10, BX11, BBBS09, BR10, BB17b, BBM15, Ben15, Ben16, BCS14, BM14, BB14, BG16, BH13, BH16, BM17b, BTW07, Bre14, Bre16, BH15b, BL11, BFJ12, Bun94, Caf13, CR15, aCC17, CGNT15,
CCGO11, CGOT13, CV94, CLOK13, Cen11, CW11b, CX12, CW12, Chi78, Cho10, CIDK07, DM17, Di 88, DKS09, Dok73, Dre93, DW12b, DW16, Egg95, EM15, EK014, EPR16a, EPR16b, Fur93b, FJK14, FZ17, GLOT13, GP14, Gha12, Gha13, GS95, Gol07, GT11, Gra10, Gra11, Gur80, HK16a, Hil76, HFS15, Hou17, Hua96, HXZL15, JP15a, JZL12, QJS13. \textbf{algebras}

[JQ15, JX13, Kan16, KK75, KP16, KLO14, Kov77, Lai80, Lai84, LZ09, Lee15, LS16, LB11, LPS13, LF13, LLF14, LWXF15, Lim77, Lim92c, LJ11, LZ13, LCL14, Liu15, Liu16b, Liu16a, LBV13, MJ07, MDW11, ML12, MM92, MM05, Mar12, MHA17, Mil15, Mit10, MRS10, Nas74, Ng14, Nir11, ORT15, Pat96, Per17, Per15, PW78, QH11, Qi15, RH11a, RH11b, Reg93, RZ17, Rom89, SV14, SDVWT16, STME10, SX15, SL15, Spi04, ST99, Tag12, TRD16, Tho92c, WOY06, WHX08, WOW09, WYL11, WJ16, Wan16d, WX12, XWF15, YD14, YZ13, YW10, Zha97, Zha15c, ZL15, Zha16a, ZWZ10].

\textbf{alg`ebres}

[MM92]. \textbf{algorithm} [AAB17, Fog73, Gre99, HKT15, fLLyP15, Mum86b, TT15, Uhl13, XJW17, vD96]. \textbf{algorithms} [Blo95, Che95a, Mum86c, Stud92]. \textbf{all-derivable} [LPS13, ZXL16]. allow [FHL+13, LHB+15]. \textbf{Almost} [Rum97, GdSV16, ND05, PR12, WHG17, Zel75]. \textbf{almost-commuting} [Zel75]. \textbf{alone} [De 82b, along] [BB17b, Sza09, ZCP16, ZPCZ16, ZCP17]. \textbf{alternate} [Kuz05]. \textbf{Alternating} [Bri89, BS07, GQ06, Hor04, MN13, Mis17, Rei75]. \textbf{Alternative} [ST80, Bar07, Mel10, Veil83a]. \textbf{alternatives} [Rob04]. \textbf{Althuge} [And04, JLL07, RS08b]. \textbf{AM} [Bak16]. \textbf{AM-GM} [Bak16]. \textbf{Amitsur} [Ari16]. \textbf{among} [Tan10, TLL11, TLC16, XL11]. \textbf{Analog} [Mia93a, CH87, Foa79]. \textbf{analogous} [CW91]. \textbf{Analogos} [Kyr08, HINS10, WW76]. \textbf{Analogue} [Bed11]. \textbf{analogue} [AdFK15, Gar79, HS96, Hon92, Hon93, LN16, Zha97]. \textbf{Analysis} [CLX03, BX11, BVW84, Chu84b, KW89, LYSL15, MMRR09, Ste94a, jXL15, ZY13, ZBW12, vD96]. \textbf{Analytic} [FS83, Fla74a, LCC17, Tur02, Fan83, FJS14]. \textbf{Ando} [FS15]. \textbf{angle} [Bal80, Zha13]. \textbf{angles} [Gal08]. \textbf{Anisotropic} [Pic74]. \textbf{Annihilating} [MW74a]. \textbf{announcement} [Tho90]. \textbf{answer} [GR14]. \textbf{Answers} [BH76]. \textbf{Anti} [BFJ12, AF11a, AF11b, AF12, AAB17, BSZW13, HS12, LLL90, LL10a]. \textbf{anti-} [AAB17, LL10a]. \textbf{Anti-automorphisms} [BFJ12]. \textbf{anti-involution} [AF11a, AF11b, AF12]. \textbf{anti-Loewner} [HS12]. \textbf{anti-symmetric} [LL10a]. \textbf{anti-triangular} [BSZW13]. \textbf{anticommuting} [Ito16]. \textbf{Antiderivations} [Lin77]. \textbf{antidiagonal} [AFVL00]. \textbf{antiinvariant} [Tam98]. \textbf{antiregular} [BZ00]. \textbf{antisymmetry} [Pat95]. any [Hua10]. \textbf{Anzahl} [GL16]. \textbf{appended} [MN04]. \textbf{Application} [MR12, Pat81, AB16, ALP94, BKL97, BC91, CDJ13, CH06, Che91, Fri75, JKD16, Ng14, Paz84, SR17, So99, Wan79, WSZL17, ZLS11]. \textbf{Applications} [Fur08, Gor83, Mer92, Whi80, BAN12, BLZ11, Bru79a, CGMR11, CV94, Che92, Cro89, CCLN16, De 82b, FJK98, GKS01, GHK16, GL16, GLS16, Gur98, HW13, Iov15, KMR89, KT06, LS16, LL16b, LPH17, Mai11, Mer94, MS12, Mou04, Mou13, SRW07, SQH15, ySpW17, SL95, Son14, Tia01, Tia11a, Tia11b, Tia11c, Uhl79, Wan80,
WH12, Wit11, YSY17, YW09, ZZY16, Zha15a, ZPCZ16, vD96. Approach [ASZ02, ACMR17, Bar07, BAN12, Bur11, CKLP13, Cla92, DP98, Hau12, HRMP95, MPVS14, Mou04, SK15b, TX13]. Approximate [LK16, How83, MMR07, Pas15, Sol14]. Approximation [TD16, Che91, Hau12, Hav88, HUZ17, UZ16]. approximations [DTSI15, DH16, Hal86, SF17]. Arbitrary [Bom02, BM12, CM07, Fu176, GS01, HRT15, KW11, MY12, Mee80, Moh16b, Pea84, Uh179, WM17, Wan17, ZHL13]. area-preserving [MR12]. Arf [Bae84]. arguments [Neu83, Rai14b, Rai14a]. arising [DHL13, Lom76]. Arithmetic [Sur98, GHT11, ST94, TLC16]. Arithmetical [Lor00, BL93b, Hau12, Hon99]. arrays [Bre12a, BS13, GP74, Sim83]. articles [Ano97b]. articulation [BLP12].artinian [HPV84, HPV88, LQ95]. ary [Bed11, GR10, KP16]. Aspects [Wbi74, MM06, WW01]. assignment [BHH86, CF10, Gib87]. associated [An11, AO97, BCI13, BL93b, BT15, Ca12, Cha92, Cha93a, CKN95, DP00, Dia90b, DJL94, Fa97, Heo16, HS88, HT92, HK16b, Hon99, HH14, JLDS12, KH05, LTT11, MP73, Moo95, TLC16]. associative [Bas17, Gol07, Hu96]. Asymptotic [Har78a, Hon09, BSA17, DBH07, Geh15, Min80a, MF12]. Atkinson [BBBS09]. attached [ACMR17]. Audenaert [AK17]. Author [Bal76]. Automorphic [Pee84]. Automorphism [MW16, ZWM17a, AF12, TW17]. Automorphisms [BL11, DM13, Fos05a, GZW16, HLZ02, Leg06, OWX09, Wan16a, YWO07, ZWM17b, AC15, BFJ12, HS17, Ter06, Ter09]. Autonne [Hz12]. autonomous [MR12]. average [DH16]. axis [HH12, Nas75]. Azumaya [SX12].

Bessel-type [DKM10], Best [Pat03a, CLL14, GKS01, SF17], beta [Sal12], Bethe [ACMR17], Between [Cai93, CD03, BD12, Ben10, BDvW12, Cho10, GZ76, HK16a, Haw05, LT88a, Lim79b, Lon73, MP98, Pat07, PT87, TZ06, TOM88, Tho92c, Wal79a, WOY06, Wat86, WW12, ZS05, ZCW12, Zha13, ZBW16, ZG08]. Beyond [GLS13], Bezout [SK15a, SK15b], Bezoutian [CK84, LM85, Ota13, Wim88]. Bi- [MS10a, BB17a, HS16, Wer86, YLW15], bi-block [HS16], bi-complementarity [Wal79a], bi-Hermitian [AAB17], bi-homogeneous [BB17a], bialgebras [ML85], bi-Hermitian [AAB17], bi-homogeneous [BB17a], BHH [Ikr15a], Bicommuting [Dra17b], biconnected [Ste94a], Bicyclic [Koo95], bigraphs [GVS96]. Bihermitian [HW14], Bijections [HS17], Bijective [Blo95, Rem82, Slo13a, WZC11, CW16, Hua10, RW84, Rem90, RS06, RS08a]. Bilinear [MR75, Bre14, CL80, GQ06, HMM91, IKR12, JSY14, MS82a, RS85, Ruc89, Wag87]. bimodules [SDVWT16], Binary [JT04, Bed10, BLSV12, CO12, Tan81]. Binet [Bun91], binomial [AC13, BCD09, FWT73, Gar73, Rei77, Whi80]. binomial-type [Whi80]. Biography [Mar03], biorthogonal [CJ12], bipartite [BP16, BS93, GLS16, LZW11, Obo16, PGLM00, SSfW15, zSqSZ16, WHG17, YHS13, ZG08, dLMO17], bipermanents [Cla82], Birkhoff [CP13]. Bisection [UZ16], bistochastic [OP13], bisymmetric [CCL17, DH11, ZH11], bivariate [SK15a], bivectors [Wes81b], BK [EB17]. BK-space [EB17], Block [ES98a, EMS02, Liv94, Piz87, Tia02, TSY82, Wei98, Zim89, Aud15, BS11, BLP12, BR14, BGdh92, BLZ11, BZZ10, CM92, CdM15, CTW15, Cho10, CICC09, DTS14, DD10, DHS95, Doo16, FH89, GR91, GR93b, HS16, Hua01, Ikr15b, JK10, JSE90, LW12, MH996, MS10b, Ric87b, Tan94, TL12, Tis93, Uhl79, YQ90, ZBW12], block-diagonalization [MS10b], Block-matrix [Liv94], block-shift [Tam94], block-Toeplitz [GR91, GR93b], block-triangular [CdM15], blocked [Con90], Blocks [AY74, Sjo93, Yua98], BLUPs [TJ16], BMV [Bur11], Board [Ano11a, Ano12a, Ano13, Ano14, Ano15, Ano16a, Ano79a, Ano80a, Ano80b, Ano80c, Ano80d, Ano80e, Ano81a, Ano81b, Ano81c, Ano81d, Ano81e, Ano82a, Ano82b, Ano82c, Ano83b, Ano83c, Ano83d, Ano83e, Ano83f, Ano83g, Ano83h, Ano83i, Ano83j, Ano84a, Ano84b, Ano84c, Ano85a, Ano85b, Ano85c, Ano85d, Ano85e, Ano85f, Ano86a, Ano86b, Ano86c, Ano86d, Ano86f, Ano87a, Ano87b, Ano87c, Ano87d, Ano87e, Ano87f, Ano87g, Ano88a, Ano88b, Ano88c, Ano88d, Ano88e, Ano89b, Ano89c, Ano89d, Ano89e, Ano89f, Ano89g, Ano89h, Ano90a, Ano90b, Ano90c, Ano90d, Ano90e, Ano90f, Ano90g, Ano90h, Ano90i, Ano91a, Ano91b, Ano91c, Ano91d, Ano91e, Ano91f, Ano91g, Ano92a, Ano92b, Ano92c, Ano92d, Ano92e, Ano92f, Ano93a, Ano93b, Ano93c, Ano93d, Ano93e], board [Ano93f, Ano93g, Ano93h, Ano94a, Ano94b, Ano94c, Ano94d, Ano94e, Ano95a,
Ano95b, Ano95c, Ano95d, Ano95e, Ano95f, Ano95g, Ano96a, Ano96b, Ano96c, Ano96d, Ano96e, Ano96f, Ano97a, Ano97b, Ano98a, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano98g, Ano99a, Ano99b, Ano99c, Ano99d, Ano99e, Ano99f, Ano00a, Ano00b, Ano00c, Ano00d, Ano00e, Ano01a, Ano01b, Ano01c, Ano01d, Ano01e, Ano01f.

Bogart [Mer79b].

Bohnenblust [JRMFMASS16, MFPSS12].

Bohr [MR10].

Book [Ake80, AR80, AK78, Ano83a, Ano89a, BFMM73, CST75, CS79, Con94, DW76, Doz79, EA77, FAR78, Fan81, Fan84, GMS76, Hum83, JTH77, JM77, Joh83, Kap80, Keg87, LW78, Lei81, Mer98a, MB76, MS80, MBXL74, MGK74, Pie92a, PA79, Ry73, Sch92a, SB75, Sen81, Sha95, SA77, Sko85, Sta94, TB76, Tho81a, Tho81b, Tho82e, Tho82f, MTh78, WNM74, Yaq80, ZF78, MT83, Tho82b, Tho82c, Tho82d, Tho82f].

boolean [Bo01, GPK94, HKS94, KP92, Liu92, LB99, KS12, LT14].

Bootstrap [BC06].

bordered [Tia10].

Borel [Chu84a, WOW09, YWO07].

Bott [CLX03].

Bound [Cal03, Pat03a, Zhu91, Bal14, BGV11, BD84, CR15, Kir00, KMN10, Kir09, Mar97, Pat09, QK92, Raj09, Sol00, SQ71, TD16, ZBW16].

Boundary [NS85, jAS15, BD88, Che14b, Che16, CN07, CN08, ERS12, GMZ17, GW08, LLS14, LLS16, NTT95, Nak95, Nan94, Spa80, TG09, Uhl14].

Bounded [NP73, CLN13, JKD16, Loc01, MRS10, Pop17, Rho94].

Bounds [Cla92, GRSW92, KOS70, LLS10, LL15, LL10b, LSZ68, Min08b, NS15, Rad12, Rom97, Sch92b, VM07, Wal11, YHS13, AS12, Ben90, Bén11, CQW16, CW10, CW11a, CR77, CGH14, Dat16, DTS14, GHL11, Hav88, Hon99, JKB17, Kar83, Lás91, LZ11b, LGA13, LL17, LS12, LS13, LZ17, MC89, Mel13b, MZ15, Mer94, Neu84, PlH01, Pat87, Rho87, Rho94, Rob75, ST94, ST15, Sha91, SWL13, Sou03, TD14, WMR16, YZ14, YSH13, ZL13, Zhou08].

Boyle [KNX95, KNX93].

brackets [Kay17].

Branch [JS08].

branching [CPT15].

Brauer [HK13, LLL15, LZ16, Mel10].

Brauer-type [LLL15, LZ16].

Brègman [Sol00].

bridge [Ste94b, Wil93].

brief [BL92, Far93a].

broken [BS95].

Browder [AFM13, BHC16, ZZZ16].

Bruhat [TT15].

Bruno [Wen06].

bundles [CP10, KL92, Lla96, SL95].

Bunyakovsky [Dra11].

Buzano [Dra17a].

C [Ano97b, Day97, Don91, GPR84, Min74c, New97, Shk12, GT08].

C. [Rub89].

cacti [SYZL17, WDJ10].

calculation [Bel83, SW81].

calculations [Har96].

calculus [BBT07, Cro08, Nie14, Par78].

Callebaut [BM15a].

Campbell [BB14, DST91, NST89].

can [GHL16].

Cancellation [Wag87].

Canonical [Ar37, BS13, HS09, Sta14, Sta15b, Wil93, HL09, Hor04, LK16, PS19, Uhl79, You80].

capacitated [Li85].

Capelli [Reg93, Wil18].

caps [Kes83].

Carathéodory [CH12, Sch89].

carrier [Ste94a].

Cartan [GLOT13].

Cartesian [QD85].

case [BFZ07, Cai93, CH12, FJ09, Gut01, GLS13, JLL88, Lf87, Le83, PA10, Rai87, SfW14].

Cases [JN90a, BCDHP10, Hia94, Lf78].

Cassini [Miel82, Miel13a].

categories [BF96].

category [Nas74, Smi83].

Cauchy [Boz98a, Boz98b, Boz99, Bun91, Dra11, GT11, HKO16, Oktu91, Sol06, ZY11].
Cayley [Bed11, CW81, FSFSO +14, Paz84, Sch95, Van95]. Cebotarev [New76a]. Chebyshev [Dra10, Dra16]. center [For79d, Pat07, Zim98]. Central [BD13a, CN14, Kim13, Lip96, Per15, ZH11]. centrality [REG07]. centralizer [ASAS79, dSP11]. centralizers [Bre15, DB14b, Lin16b]. Centralizing [LWXF15, XWF15, Wan16d]. centroid [Pat07]. Certain [Lev74, MR74, RJ04, BK83, BWF83, BP98b, BD85, Cha88, CN08, Düf97, FV97, FJM00, FX12, Fei75, Fri90a, Fri97, GZ76, Go79, HSX16, Hem93, HT92, Hu81, JN00, Kit91b, LT88a, LT90a, LP93, LLWX17, Lim15, Lon83, LSZ86, MS83, MSO83, MS79, MHA17, MO13, MGA17, MM76, Mon13, Ota13, Pat77, Pat89, Raj09, Rho94, WHX08, Wea83, vR11]. Cesàro [Geh15]. chain [AS11b, MS10a]. chained [LMLL17]. chains [BC94, Gue17, Gur98, HH14, Kir14, LT12b, ORT15, PT10, Sie99, Tan10, TLL11, TLo16, XLI11]. change [BCdHP10, Har81a, JLDS12]. chaotic [FJK98]. Chapter [BLP92, LT92b, LT92d, Lim92a, Loe92, McD92a, Pie92e, Pie92b]. character [DF87, FJK14, Fon89, HT91a, SS98]. characterisation [BKs12, La84]. Characteristic [Ben74, BH74, Fit94, GB77, Ger04, KNS96, KL92, Mir81, Nom73, Ric81, SL95, Tre87, Ami80, BS15a, BP98a, BG79, DP09, Fu76, GMZ11, Hia88b, Li84, Lit17, Nor95, Nor08, Pat07, Prz92, Wad85, WW12, Zim98, dO75]. characteristics [AHK92, HS89, HS91, Koh11, MMRR16]. Characterization [AH13, BP12, FJK98, Geh15, HDJT97, HOT15, Lin16b, Sed11, Šem97, WM17, AAS14, AXH15, Ben78, BS15b, Cha77, Dok73, Dom14, HH89, HLZ11, JK10, Kir04, Koh11, LM95, LH13, MH16, MS83, MHA17, McD82, NP80, Pan15, Sel81, Shi90, Ste94b, TL13, TG09, TW16, WSH 11, WBZ14, WW15, Yua98, ZB13]. Characterizations [AH10, BT08a, De 78, FsV16, JQS13, Li95, LZJ1a, Pan13, Rue89, SRW07, SZWB16, WL15, WZD16, Wer94, YZ13, ZXL16, B-J96, Die84, ES98b, LST89, SSW15, IWW15, ZWL15]. Characterized [EMS02]. Characterizing [GKT97, Joh11, LZ14a, Qi15]. Characters [Leh76, BG79, Bri89, Fon92, Hol04, HK16b, Hua90, Kim91, Mer78b, Mer83b, Mit10, Pat93, Reg87a, Sil84, Sta84a]. Charles [Ano79b]. Chebyshev [Ma’15b]. checking [RR95]. Choices [AP74]. chordal [JL93]. chordality [BJ96]. circle [Dat80, Tho92c]. circuit [DP98]. circuits [Mer83b]. Circulant [GN02, Sj93, Wat85a, BSA17, Bm02, BT15, DPP17, GKS01, XJW17]. Circular-style [Wat85a]. circulars [Lkr15b, New80a]. Circular [BJS13, GWW16, Tur16, CL13]. Circularity [Tam94]. Clarkson [Kan87]. Class [Ber02, BR04, MSZ04, BL10, Bea83a, Bea83b, Bea84, BR01, BM89, BZ11, Cha78, Cha96, Cla92, DD10, DS09, DW14, Ell95, ES76a, Fu79, FNBR96, GMW86, HM76, HM78, JP86, Jun88, LT93, MRT16, MCS2, Mer82, Mon13, PSMA16, Phu80, Pok87, Rei75, Sed11, SGS05, Sol80, WG91a, Wat82]. Classes [GK02, MR74, ARH15, CL86a, CL86b, DP00, DF95, FJM00, Fie95, Hii76, HT92, HK13, HK16b, Hon99, KsMB16, KCB87, KS76, Kur04, Lim76a, Lim76b, Lim82, Lim90b, MS08, MS83, MSO83, MC86, MM76, Mer78c, Mer79c, ND05, Pop14, RH11b, Rob77b, Sil88c, Sil90, Sil93, SS96,
[JJK95]. **Completable** [YD14]. **Complete** [GS95, JN14a, TL13, EM95, HZ11, HJ77, IS16, Obo16, Shr90, Tan13b, WOW09, ZWL15]. **Completely** [DYL94, AG15, BSM98, DJ98, HH14, JP15b, Koo95, Lei95b, LP11, MP16b, SBMP16, Stu89, SL17, ZX16]. **Completeness** [Den05, LBV13, IS15].

completion [BC05, BZ90, BR01, CKP16, Der16, DJ98, DJK08, JJK95, JN14a, JTU00].

Completions [GMR81, GKV89, GRSW92, JR84, JW91, Woe93, Woe97].

Complex [Ano79b, Bal78, CN04, JKS79, Mac09, MY12, Mir81, Wal73, Bal14, Cha90a, CT09, CH87, CL74, DL92, Dok93, HZ12, Li84, LT88d, LM93, LT07, MF92, RH11a, RH11b, RS06, Rom89, Sin82a, Sin84a, ST91, ST96, Soa08, Tan13b, Tie16, Wes81b]. **complexity** [BZ89, Con90, Har85].

Complexes [Den05, LBV13, IS15].

completion [BC05, BZ90, BR01, CKP16, Der16, DJ98, DJK08, JJK95, JN14a, JTU00].

Completions [GMR81, GKV89, GRSW92, JR84, JW91, Woe93, Woe97].

Complex [Ano79b, Bal78, CN04, JKS79, Mac09, MY12, Mir81, Wal73, Bal14, Cha90a, CT09, CH87, CL74, DL92, Dok93, HZ12, Li84, LT88d, LM93, LT07, MF92, RH11a, RH11b, RS06, Rom89, Sin82a, Sin84a, ST91, ST96, Soa08, Tan13b, Tie16, Wes81b]. **complexity** [BZ89, Con90, Har85].

Complexity [AP04, GW04, JM85a].

Concurrent [BC91, TMOvdD93].

Concurrents [AY93, BM07, Wul73].

Compressing [EM15].

Compressions [Far94]. **Computation** [KK16, Ma'15b, Uhl14]. **Computational** [Zel85].

Compute [YZ16, FP17, McF79b, vD96].

Computer [MP87a, KCBR87].

Computations [AY93, BM07, Wul73].

Components [B´en10, KF98, Lla96, Mum86a, NS92, NS93, Vo83b].

Componentwise [Rum97].

Composite [Que08, KW93].

Composition [Tan81, TH80].

Composition [AR15, Shi15b]. **Concerning** [Har96, Sin80, Sin81a, Sin93, ST99, Tau74, BK87, GT79, Gyi78, KNX93, KNX95, Mou13, Sin82b, TT78, TH80, Zou12].

Concomitants [BB96].

Condensation [Cal91].

Condition [LPS09, CC98, DS13, HB83, Jam88, Jan95, LLW'11, LL17, Liu17, Pal79, Rou98, Zim98].

Conditional [HS12, BG16, Joh'82a]. **Conditionally** [Józ15].

Conditioning [Que08].

Conditions [Ibr00, JNT96, Lim92b, PH03, AE10, iAS15, BMGMC15, DJK08, EOvdD09a, EOvdD09b, GMZ17, Gue17, HB83, Hua16, Ikr15a, Mar90, Mat11, Okn93, Pet09, SQ15, Tia05a, Wan82, ZW17].

Cone [KS02, LMR00, And96, Hi107a, Hi111, Pat03b, TB92, YH05].

Cone-Systems [KS02].

Cone-transitive [LMR00].

Cones [FH73, HS88, SS79, Bar74, Bar78, BC80, BKS12, CL14, Hi107b, NS85, NST91, Tan77].

Conferences [Ano79c, LRT08].

Configuration [NS09, Nat13, SG06].

Configurations [TL13]. **Conformal** [aCC17].

Congruence [LT92a, Lei98, MA75, AC15, Bot97, FJ01, FJ09, GL97, HH89, HS09, JR09, Lei91, Lei95b, LM93, LPWX10, Tam85, Tho80, Wat90, Wil83].

Conjecture [Kit81, Wan07, AYT83, BMD87, BD96, Bri89, Bur11, Cha89, Cha83a, Cha84b, DJ89a, EM95, EF98, Esh17, Fie84, For79c, Fri78, Fri82a, Gib87, Gou13, Gum15, GLS13, HS93b, Hu87, Hu94, HL10, Jia92, KM84, Koo95, Lon80, Lon81, ML12, Mal89, MR07, Min74d, Min82b, Moh15, NT94, Pat89, Pat93, Rad80, Ric85, Ric87a, Rub89, SYZL17, Sii84, Sin81b, Tam86, Wan77, Wri93, Yu96, Zou12, dF05].

Conjectured [Tho86b].

Conjectures [Ash16, Cha90b, Kop94, Meh84, Shi16].

Conjugacy [Ell95].

Conjugate [CD01, JTW17].

Conjugate-Hankel [JTW17].
conjugate-Toeplitz [JTW17]. conjugation [Gal01]. Connected [RP90, ACMR17, MT11, Put82a, Put82b, SSIW15, SHS17, ZW17].

13
MW74b, MA75, QI15, QZ16, ST99, TRD16, WY11, XW12, YZ13, ZWZ10].

Derivative [Tur02, Dec74, DM87, MS81, Ovd77]. **derivatives** [KE82].

derived [EB17, HS91, SK15b]. **Description** [GMZ11, Hil07a, Hil11, Li92].

Design [Chu84b, WM84]. **Designs** [GK02, NW02, Der83, GGW76, LN10].

detection [Kar90]. **Determinant** [CD03, Nag17, BS15b, BM07, Cal91, FV97, FLR85, HS96, Hon91, JOTvD94, Lau81, LSOvdD95, Lim79b, Lit17, LC83, McD82, Min77, QK92, Rou98, Ve182c, Wen06]. **Determinantal** [CD03, Nag17, BS15b, BM07, Cal91, FV97, FLR85, HS96, Hon91, JOTvD94, Lau81, LSOvdD95, Lim79b, Lit17, LC83, McD82, Min77, QK92, Rou98, Ve182c, Wen06]. **Determinant** [BT15, HZ11, LT12b, MN80, Mah82, New80a, PA94, Pri78, SwW14, TT12, Tan14, TT78, BMD87, Bla77, ES73, Est80, FW86, Gar75b, Hon99, HH14, JNT96, LP508, Loe87, MS89, Min80b, Odo83, San14, Sim83, Sto79, TX13, Tho75a, Ve182c, Ve182a, Ve183a, Ve183b]. **determine** [LL16b].

determined [Bre12b, BH15b, Gha13, Gra10, Gra11, MDW11, MA15c]. **Determining** [BMGMC15, Kas85, Vo83a, AS12]. **developable** [BB13].

Developments [CD85]. **Diagonal** [Wan76, Bal79b, BBP78, BOvdD91, BKS12, BS08, Bur95, DHS95, DD12, FS89, HH85, Hon91, Ikr15b, JR09, JLS12, LM89, Lon90, Mir92, Moo76, Neu83, Pat82, Pok87, Pri78, Sha91, Sto79, TT78, WOY06, WC12, Zab89]. **diagonalisability** [Kob06]. **diagonalizability** [FHL+13]. **Diagonalizable** [Tur02, KS16, Nie14, WW12]. **Diagonalization** [AY74, MS10b].

diagonals [Uhl79]. **diagonally** [BCKP10, LMLL17]. **Diagonals** [EM73, Pf87, BS08, Lás91, Web83]. **dialgebras** [BP5012, FSFSO+14, KV13, SDVWT16]. **Diameter** [JS16, Tsi83, GL11, LP07, T111, VH95, WH11]. **diamond** [Cir17, LPT14].

diassociative [Bre17]. **Dickson** [FSFSO+14]. **dicyclic** [DP00]. **Dieudonné** [BGLS07]. **Difference** [KR03, JHT85, FN14, HP90a, Ig99, JvdD91, Mia93a, Sal14, SiI88c, SiI88b, S996, TC13]. **differences** [TX13]. **different** [Bén10].

differentiable [CFP10, Nom73]. **differential** [BBT07, BZZ11, Cam83, DTS15, Fin92, HSX16, Lon76, N999, N991, Wit11, XSL15]. **differing** [New93]. **digital** [Chu84b, Sto79]. **digraph** [BBZ15, DK17, LM10, SZWB16].

digraphs [BP50, BP16, CFGM06, KP12, LM10, PR08, Rad12, SGS05, SG09a, SG09b, SSG12]. **Diheredal** [Ano16c, Ous15b, CP15, HK13]. **Dilation** [GW98a]. **dilations** [CL00]. **dilute** [Din15a]. **Dimension** [ASZ02, Gra80, How80, Lin00, BM14, BM16, Cen11, CL86a, CL86b, CR77, Con77, GPK94, MM09, Mn13, Pam87, Rob75, Rom89, TH14, Wri93].

Dimensional [BR04, ySpW14, ARH15, BC83, Bar07, BB14, Car88, CD13, CW11b, CX12, Das17, Dok83, Edw78, Far94, Gol79, Gol07, KK75, KL15, LF15, Liv94, Nag17, Nir11, Pas15, Rai87, RH11a, RH11b, RS08a, Rš09, Sel81, WC12, YLL90].

Dimensionality [Hil76]. **Dimensions** [MR74, Cas91, Jón78, MO91, MM76, WL16a, WL16b]. **dimer** [Min80a].

d’intégrales [BC06]. **direct** [BHK10, Fow80, Gol92, Hol84, Hol85, KLO14, KL13, LW10, Tho92c].
[Bha91, Cha93b, Roh13, Sch15, Ano73, Ram02]. Editorial
[Ano79a, Ano80a, Ano80b, Ano80c, Ano80d, Ano80e, Ano81a, Ano81b, Ano81c, Ano81d, Ano81e, Ano82a, Ano82b, Ano82c, Ano82d, Ano82e, Ano83b, Ano83c, Ano83d, Ano83e, Ano83f, Ano83g, Ano83h, Ano83i, Ano83j, Ano83k, Ano83l, Ano84a, Ano84b, Ano84c, Ano84d, Ano85a, Ano85b, Ano85c, Ano85d, Ano85e, Ano86a, Ano86b, Ano86c, Ano86d, Ano87a, Ano87b, Ano87c, Ano87d, Ano87e, Ano87f, Ano87g, Ano88a, Ano88b, Ano88c, Ano88d, Ano88e, Ano89a, Ano89b, Ano89c, Ano89d, Ano89e, Ano89f, Ano89g, Ano89h, Ano90a, Ano90b, Ano90c, Ano90d, Ano90e, Ano90f, Ano90g, Ano90h, Ano90i, Ano91a, Ano91b, Ano91c, Ano91d, Ano91e, Ano91f, Ano91g, Ano92a, Ano92b, Ano92c, Ano92d, Ano92e, Ano92f, Ano93a, Ano93b, Ano93c, Ano93d, Ano93e, Ano93f].

Effect [LLF08]. Effective [CMM17]. Effects [GLS16, TJ16]. Efficient [AAB17].

eigenparameter [GMZ17]. eigenparameter-dependent [GMZ17].

Eigenproblem [WpW14, BOvdD95]. eigenspaces [GTM14]. Eigenvalue [Har78a, JSE90, MMRR16, Ano16b, BNP06, BLPO8, Bel15, BPS16, BFW16, Bén11, BCK15, CC17, CiqW16, CCL16, CR90, ES76a, Esc93, Fan05, FdF09, Gar85, Guo07, Har95, Joh84, JL85, JLR92, JD99, JLS09, JLD12, KMT96, LP00, LLPO8, LLZ13, LLL15, LL16b, LXL6, LW12, LZ15b, LGX17, Loc73, MMM15, MS15a, PLH01, dSP12, Rea96, SG96, Shi15a, Sim95, Smi05, Sta10, Tho92b, Tre85, Tre86, Ves80, Wai11, ZX16, ZH11, Zhu15].
eigenvalue-eigenvector [Har95]. Eigenvalues [JHT85, JM85b, And04, BW83, But10a, Cas91, FJMO0, FIS06, GKV89, Gro95, HLP03, MS95, Rod02, Ter90, VH95, Wae93, AM13, AS17, AB78, Ano79b, Ash16, AOTR11, BF05, BOvdD91, Ben90, BT07, Bru82, CTW15, Cra99, Da 05, Das04, Deu80, DM79, DJ98b, Edw78, ELG88, EJ91, Esc93, FJ15, FW12, FS14, Fer10a, FW13, FSS9, GRSW92, GJM1W86, GZ90, GHK16, Ha89, Her83, HS93b, HUZ17, HW75, IIm16, JIn17, JKB17, JKS79, JS08, JWS10, Kir91, Kir09, KLKP17, KNX93, KNX95, KK16, LS10, LL14a, Mac09, MVPS14, MS99, MR07, Mer94, Mon13, NS99, Nie10, NTU93, Pal79, PGLM00, SU77, ST15, Si88a, Si93, Si99, Ter01, Ter06, Tho74, TL12, dLMO17, dOMD77].

Eigenvector [RP90, Che14a, CPZ17, Har81a, Har95, Hav88]. Eigenvectors [BD14, AM13, AGM13, BWF83, BDK+05, ERS81, Fan88, FJS14, Fre76, GF10, HQ14, Lit17, MOvdD90, Mc69b, Moh16a, Wei83]. Eigenwerte [SU77].

Eight [Tia10, Dok83]. eight-dimensional [Dok83]. Einstein [BM17a, SZBW16]. element [BB17b, DHS95, Fer09, HW75, ZCP16, ZCP17].
Elementary [BC91, CL13, FL16a, Gau76, MW74b, Mcf79a, MP73, MS02, Pie85, Sed04, Aue95, Boa13, DS16, For87, Jam81, Joh81b, KKR12, Kri87, Li87b, MS82b, MKS84a, McF79b, Min76, Min82a, Nor08, Oge94]. Elements [Ger04, BBB09, Boa13, BM17b, Bre15, BS07, Deu80, DKS09, Hon91, HK10, KM5, LR13, LPT13, Lim10, Lon90, MV91, Mir92, dSP16a, Sch79, Slo13c, ZCCIW12]. eliminated [TB01]. elimination [BJ94, LW10, Stu92]. Elliptic [CN15, GW08, GW12]. Elliptical [BS04]. embedded [Fon92]. Embedding [Cra91, Wal6, Gue17, TZ17]. embeddings [De 08, Hor04, Pan13, S285, VDW85]. empty [LPS09]. enclosing [vD96]. endomorphism [ZY08]. endomorphisms [GR14, Mol15, Rus16]. Energy [Mer94, PR08, Ste05, BP16, BSA17, BBZ15, BSG+12, FHT14, GB11, Hou01, Rad12, Tan12, ZZ15]. Engel [DS13, Liu17, Mat11]. entanglement [Aud15, Joh14]. entire [SK15a, SK15b]. Entries [Sin81a, BGV11, CJ97, CL14, FW07, FW86, Her83, HNS99, INO15, It016, JKD16, Mee80, Min84, Moo76, Pok87, SG96, Sil98, STZ94, Zel75]. Entropy [Zha14a, Dm13, Fur11, MN12, ZBW16]. Entry [Che03b, Cha84a, JLD12, KS82]. Enumeration [Chu90, WW76, WH79, Wil83]. enumerative [Whi75]. envelope [Chi98]. EP [BT08a, DKS09, HS38b, MRT16, PM14, WD17]. Epimorphisms [Slo15b]. epr [MR17]. epr-sequences [MR17]. equal [AW83, Bot87, FHT14, HW75, Lim90a, Lon90]. Equalities [ACT87, BC13, MS74, MC80, Tia01, Tia05b, Tia11c]. Equality [CGW14, Hia94, CL85, DSD83, Din98, HS89, HS91, JN90a, LW11b, LW10, MC83, Oku93]. Equation [AP74, Che93a, Tia03, AGR91, Bak84, BGdH92, Che93b, CK84, CIDK07, Dat80, De 13, DWL13, DWL14, GPM98, HW13, Igl99, LRR87, Lei83, LQ95, LT10, LR89, MK16, Ned98, Roh04, Sal14, SWL13, SKP15, Ve83a, Wil83, YL11, YLW15, YZL17, Zha16b]. Equations [DH03, Flt74a, Pas16, BBP78, BC06, BZZ11, BSS12, Camp83, CL80, CCL10, DH86, DTS15, DH11, Din00, EÖ15, FHW16, FN14, Fin92, Gra80, Har94, HKT15, HW14, HW15, HSW16, Hla17, JvdD91, JSY14, KP11, KN81, fLLL+17, Lip96, Lon76, Mag83, NS99, New80b, Pen15, PM78, Roh91a, SLUG04, Son14, SK15a, SK15b, STQ7b, Tia00, Wal75a, WH12, WZH13a, WZH13b, XSL15, YQ16, YW16, Zha04c, BC06]. equienergetic [LS09]. equiponderant [Pf87]. equitable [Ahn11, AC13, Ahn15]. Equivalence [Gol87, New79, Zha01b, Ari16, CH87, Drn13, EOvdD09a, EOvdD09b, Gow80, Grü76, HW08, Hon09, New78, Oge94, Pet00]. Equivalent [AXH15, Bru79a, Hou09, Ve83b]. erasures [Ano16c, Ous15b]. Erdos [LN16]. Erdos [GX17b]. Ergodic [MS01, Har84b]. ergodicity [Sen83]. Ernst [Ve83a]. Erratum [Ano79b, Ano16b, Ano16c, JZ95]. Error [Har88, MS16b, Ned98, SWL13, UZ16]. errors [AM13, CLW15]. Essential [BHC16, JKD16, JLL07, ABJ16, JR94]. Essentially [Joh73, Joh74a, Joh81b, NST91]. Estimate [Gil93, Bou06, Con77]. Estimates [Fri93, GKH16, LLW+11, MFPS12, AP17, CPLH17]. estimations [ZFSX17]. Estrada [Sha15]. Euclidean
<table>
<thead>
<tr>
<th>Page</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Euler [Prz92, TD14]. Eulerian [Gar79, TB01]. evaluated [Mes13]. evaluating [Cal95a, TX13]. even [AM13, CQW16, CCLN16, HH14, Jin17, JKB17, SA14]. Eventual [YHWC14]. Every [Sto17]. evolution [CGOT13, ORT15]. Exact [FP17, FHWH16, HSX16, Hua01, MO93, XSL15]. exactly [Ese93, HW75]. Examples [Wes90, KCBR87]. exceed [BPW16, Sta10]. exceeding [LZ15b]. Existence [DH95, Her83, AE10, Fow80, LRR87, MHA17, Nas74, Roh91a, Tie16]. expanding [Che95b, EM15]. expansion [CRY95, Hon91, Krä87, TSYB82]. expansions [RW96, Wil87]. expectations [BG16]. experiments [Con90]. Explicit [CICX99]. explicitly [KS16]. Exploiting [HWSH13]. exponent [HJP17, HL10, LM95, Lü92]. Exponential [SW18, BV16b, Bel83, Chu84a, How83, Mar84, Tho86b]. exponentials [Can78, ST91, ST00]. Exponents [SGS05, SG09a, LB99, SG09b]. exposé [Gar73]. exposed [HK16a, Mar13, YH05]. exposition [Mar89]. expressive [Pat83]. expression [Tia11b]. Expressions [BL13, Wei98, FP17, Tia10]. Extended [GRAMA13, De 75, GHL16, Mar84, Mas10]. Extendible [BS07]. Extension [Cir16, Sol00]. Extending [Cir16, Sol00]. Extending [Cir16, Sol00]. Extensions [All14, Atk89, Dji16, Gar75a, Hal86, LL14b, SPS15, BWLL12, BG83, EL90, Eps89b, Eps89n, Far93a, Hua09, MV75, Mti92, MP13b, TT12, Wer84, Wes96, ZL15]. Exterior [Tam98, AGR91, Coa99, Gre99, GV87, Jac79, Lin77]. External [SM94, Le95]. extrema [For87, KKR12]. Extremal [BP98b, CJ97, CH12, Grz89, GLS13, KN00, Tia11b, AO78, BSG+12, BK87, CSCHO1, Fla75, Li85]. Extremals [YH05]. Extreme [Pat03b, Tho75a, Kan87]. extensions [ELG88].</td>
</tr>
</tbody>
</table>

[CM85]. **frame** [KL13, SA17]. **Frames**

[AB17, Ano16c, FD14, KLS08, Ous15b]. **Frattini** [GLOT13]. **Fredholm**

[BBBS09, MS09, MO13, Yu14]. **Free**

[Alp95, Dre93, Egg95, GB77, PA94, Sla16, Sur98]. **freedom** [HS93c]. **freely**

[Sch79]. **French** [BC06, De94, MM92]. **friendly** [Koh11]. **Frobenius**

[BOvdD95, BGLS07, Bla77, Fie73, GS83, Gut01, HL84, MHH96, Mit10, Nag17, SP15, Wan79, Zou12]. **Fuglede** [Ras17]. **Full**

[Har91, Mum86a, AEdF13a, AEdF13b, Laf84, ZWM17b]. **Fully**

[Har87, HL10, Liu92]. **function** [AFM13, BH16, Bou14a, Bou14b, CRY95, Cha92, Cha93a, Da 88, EDK07, FD14, GP14, GP74, HSM17, HFS15, How80, Jam81, Kap77, KN04, KK16, Lei95b, Lim00, Lon73, Pam87, Per17, RW84, Sal14, SMM14, SMM16, SK15a, Wan79, WZD16]. **function-induced** [Da 88]. **function-valued** [FD14]. **Functional**

[Alp95, Dre93, Egg95, GB77, PA94, Sla16, Sur98].

G. [BMD87, TT78]. **Galilei** [aCC17]. **Galois** [Ota13]. **gamma** [Sal12].

gammoids [Mum86a]. **Gaps** [YMYS13]. **gauge** [Che91, DLR91]. **Gauss** [Sal14].

Gaussian [BJ94, CP16]. **Gaussian/Bernoulli** [CP16]. **gcd**

[Zha14b, AB17, HNS10, Hau12, Li92, Tan10, TLL11, XL11, Zha14b].

gcd-closed [Zha14b, Li92]. **Gelfand** [Cen11, HT10]. **General**

[CHK00, HSX16, NP80, Uhl99, XSL15, Che93b, CW12, CPT15, HW15, Hum83, Hum86, KH05, LCL13, LLLW07, Pan13, Pen15, Pie92b, SMM16, WL16a, Wat89, Zha04c]. **Generalised**

[Fri75, FNBR96, HK80].

Generalization [Mon13, BM07, CGMR11, CC92, Fie84, Hey92, HZ12, Kan87, KS14a, Kov86, MP94, MP95, dC13]. **Generalizations**

[BC80, Dra13a, MR10, Sla16, Dat16, FS83, Fri78, GS83, Liv94, MP90].

Generalized [BGK99, Bea83a, Bea83b, Bea84, BLDPS04, BLPDNP17, CM84, Cha96, CLX03, CL05, DD15, Esh17, JP15b, KP16, KL12, LW11a, LPS12, LCL14, MJ07, MP13a, Mer79a, Mer83a, PSA14, PUÖ15, Pto00, Rao81, Sin84a, Siv06a, SPK15, Tm02, Til77, Wer86, Zar01, ZZC17, AAB17, AYT83, AYC93, AyT84, BOvdD95, BI95, BF05, Bar80, BCDF09, BHK78, BC82, BC85, BM17a, BT06, BL13, Bo01, BC94, CC17, Cha92, Cha93a, CC14,
generalized [LTT84, LMR94a, Li96, LLS10, LB11, LPT11, LWXF15, LW11b, LWB11a, LL11, Liu17, Man87, MKS84b, MR15, MS09, Mer74, Mer82, Mia93b, MS12, MMG15, Mos15, Mou04, Mum86b, Nah98, Nas75, ND13, NT86, Pat03b, Pat08, P10, Poo80b, Rad16, RS09, RS08b, SMM16, SMI7, SMI7, yT86, Tam86, TX13, TT06, Tai10, TCI13, Tsi81, UP16, WC15, Wil81, Wim88, YLS10, YZ13, YBCW96, YW05, YW09, Z16].

generate [BT17]. generated [Ber05, GPK94, KCBR87, KL80, MP87a, RS07, Sch79, Tre85, Tre86, Tre87, Wad90]. Generating

[New85a, BdPNdP17, Lew77, Lop11a, RW84, Spi76]. generation [Dre93].

generator [BTV07, Mah82]. Generators
[TW17, Aln11, Gai77, SL15, Wat89]. Generic
[Wil87, BFZ07, FW86, For79d, Lei83, MMRR16, PS91]. genetic [Pan17].
genus [Ger82]. Geodesic [CGNT15]. Geometric
[CF15, Sei95, Z00, EJ88, EB17, FSY16, GHT11, JK10, LS17, ST94, SMI74].
Geometrical [BD94, Pan15, CL94, MM06]. geometries [Kes83]. Geometry

[CGHK08, HW06, GL16, Jam88, Lei93c, NP91, Wit11]. German [SU77].

Gerschgorin [AB78]. Gersgorin [EV77, LLL15]. Gersgorin-type [LLL15].
girth [LDD17]. give [Kap77]. given

[BJS98, DJ98, FTZ08, FLZ07, GJM86, HZG14, HLZ05, KK90, LT12a, LC14, Moo68, SM94, SYZ17, Slo14a, WH11, Wu09]. Global
[BV84, DK14, Mll15]. GM [Bak16]. GMRES [Doo16]. Goldberg

[MS82b]. Golden [Hia94]. Goldman [Bla77]. good [Hal91]. Gordon
[Mer79b]. Graded [Din15b, CCG01, Cen12, CMM15, CSM17, Egg95, RZ17].

Gradient [LT13]. grafting [LL08, ZLS11]. gram [Pat82]. Graph
[Con90, Mor94, AN14, JM85b, ACMR17, Ano79b, AH16a, Ari16, Ash16, BC05, BP98a, BKP01, BS11, BR14, BH411, CT16, Cla92, CP10, CD85, CR90, Cve95, Da05, Das04, Das17, Fan05, Guo07, Guz88, HZ11, HJ77, HS16, HZ17, JK89, JD99, JS08, Kir00, Kir14, Koo95, KL95, LP00, LLF08, LPWX10, LX17, MW16, Mer95, Mer98b, MA15c, Mum86b, PL01, PR03, Ric78, SMM14, SMM16, So99, SL95, zS016, Ter01, Ter06, Ter09, Tho90, TW17, UZ16, Wan16a, Wat90, ZWL15, ZWM17a, ZWM17a, ZWL15, Zhu15].

graphic [Kas85]. Graphs [AS80, FKP03, HS95, HLP03, KP02, LS95, LZ15b, MSZ04, Mohn6a, RP90, TB92, Yiz02, Yiz03, AAT17, AGM13, ACMR17, Ano16b, AOTR11, BGK99, BL12, Bar08, BCDF09, Beir, BPS16, BPW16, BVV84, BECM12, BZ00, BSA17, Bru82, BS93, BSG12, But10, CP15, CL17b, CG16, CSH10, CP17, DGR08, DIF13, FTZ08, FDD14, FS14, FY1813, Fd09, Fer10a, Fie90b, FG06, Fri93, FHT14, GL11, Gol06, Gol16, GM90, Gro95, GWZ14, GWZ16, GB11, GLS16, HRMP95, Hor01, HW08, HWW15, HZ03, LJS09, KT95, KF98, KMN01, KADM10, Lee98, LZZ11b, L11. general}
LS12, LS13, LL10b, LZ14a, LZ14b, LDL17, Lor00, MW15, MH16, MS16b, MGA17, Mer97, MS10c, MTR11, MN04, NS15, NS09, Nat13, NP15, NP09, NG15, Obo16, Ost74, PP16, Pan17, PGLM00, Pow88, REG07, RY93].

Grothendieck [PS15]. Group [BT98, CKN95, DS02b, Pat96, SQM99, yT00, ZBW12, Abd09, AF12, Ano16c, BB06, BAN12, BT06, BLZ10, BSUO13, Bot79, BZZ10, Cha90a, CCSV98, Chu84a, CW93, DP00, Ell93, Ell95, ES76b, Fal97, Far90, FJK14, FP17, Fri85, GA85, HK13, Hun83, Hun86, JGK79, KW92, Lew77, Lip87, LWY11, LWB11b, MW16, MN80, Mal92, Mal95, MT11, MP16a, MS16b, MS16c, NS15, Ota13, Pat89, Put82b, PH97, RA17, RP04, Sch75, Sch78, SX12, TW17, Wan80, WZL13, Wan16a, YQ90, ZWM17a]. groupoids [RD12]. Groups [BCEM12, BCS14, DH91, Est80, JGK79, JS84, JOvdD84, ˇSem97].

H [Cha84b, MP13a, WSLZ17, Wan77]. H-tensors [WSZL17]. H. [Cha83a, For79c, Jia92, Kra87, Mal89, New83]. Hadamard [AHJ87, Aue98, Bap91, Boz99, Cra91, Du10, EM95, EF98, ES76a, FKR93, Fri75, GP74, GN02, GMJMW84, GMW86, GM87a, HB83, Hey92, HJ87, Hun98, HXL16, HK17, Joh77a, Joh77b, Joh77c, Joh78b, Joh78c, Joh85a, JOvdD84, ˇSem97].

Handelman [KNX95, KNX93].

[LLT93, Mit10]. **Height** [HS89, AHK92, HS91]. **Heinz** [Ala16, BM15b, GHT11, KM11, KK13, LS15, SYK15]. **Henryk** [Mar03]. **heptadiagonal** [Lit17]. **Hereditary** [EGT16, KM98]. **Hermite** [Ala16, BM15b, GHT11, KM11, KK13, LS15, SYK15]. **Henryk** [Mar03]. **Hermitian** [–Dok93, AM13, AAB17, AY93, AB78, AY74, BT08a, BY76, BL83, BM16, Bur11, CM92, CTW15, De 08, DL92, Dra17a, Fdf09, FHS9, Gro97, GJM86, HR85, HNS99, HW06, HM95, JN80, JR84, JP86, JL91, JS08, KIm91, KN81, LL16a, LP03, LW17, Loe87, Mas10, Mir92, NT93, NT94, OK07, Pat92, Pat03b, ST73, ST91, Sta15a, Tho92b, TL12, Tis93, Tra84, WZH13a, WZH13b, Woe97, YLW15, Zha04c]. **Herstein** [AEV12, IT16]. **Hessenberg** [KP14a, MR15]. **hierarchical** [BCDF09]. **high** [SWL13, WG91a]. **higher** [BdP12, CGW14, CGHK08, CLMR09, DTSI15, FHL+14, Jon78, KP14b, Li87c, LPS09, LPS13, MCR6, MP73, Mer78c, MS15b, MS16b, OR15, Woe08, XW12]. **higher-rank** [BdP12, CGW14, CGHK08]. **Hilbert** [ACMS10, AR15, AB17, AY84, BR04, DKM10, Dra10, Dra11, Dra16, JS15, KS16, MR10, SA10, Son14, Tau73a]. **Hilbert-modules** [AB17]. **Hilbertian** [MSS13]. **Hille** [RJMFMAS16, MFPS12]. **historical** [Pri78, TT78]. **history** [HPS83]. **Hochschild** [Hou17]. **Hölder** [AO97]. **Hölder-type** [AO97]. **Hodge** [Sam78]. **Hoffman** [MV91]. **Hölder** [Mer81, Mer78a]. **holds** [MO91]. **hollow** [FJ15]. **holomorphic** [MRS10]. **Hom** [SX15]. **homeomorphisms** [Pan15]. **homogeneous** [BB17a, BMP10, BPR12, Fri97, HSX16, LT07, MO93, Ssa08, XSL15]. **Homomorphisms** [DK16, Tho92c, AAB15, Ben05, BM16, BMGMC15, EPR16a, EPR16b, LZ11a, ML12, TOM88]. **Hook** [CW81, Pat95, Hey88, JP87, Mer83b, Ren90, TOM88]. **Hopf** [Adu15, Egg95, FJK14, Lla90, MZ04]. **Hori** [Vei83a]. **Horn** [Mas10]. **Hua** [XXZ11, And80a, LW11b]. **Huang** [Uhl13]. **Hull** [Ando4, Gil12, KSBM16, LT89a, Poo94, Tho75a, TI77]. **hulls** [AS11a, SA07, Tho75b]. **Hungary** [BL08]. **Hurwitz** [Ang90, AYC93, CCL10, Kri87]. **hybrid** [fLLyP15]. **hyper** [BT17]. **hyper-ideals** [BT17]. **hyperbolic** [HK10, LL17]. **hyperbolicity** [BV16a]. **hypercomplex** [Lei93c]. **hypercubic** [GR10]. **Hypercyclic** [Shk12]. **hyperdeterminant** [Bre12a]. **Hyperdeterminants** [Luq08, WHL16, Sun15]. **hypergeneralized** [TC11]. **hypergeometric** [Sal14]. **hypergraph** [SCH15, XQ16a]. **Hypergraphs** [BG79, Rod02, Rod03, BS08, LCC17, SSF15]. **hypergroups** [BS91, Bha93]. **hypermatrices** [Im16]. **hypermatrix** [CD15]. **Hypernormal** [Mal94]. **Hypersurfaces** [Pat84]. **Hypertournament** [Kir91]. **hypertournaments** [KKP13]. **hyponormal** [CH10, KY17, Ras17]. **Hypotheses** [Red02].
Idempotency [BT08b, Pet10, Xu15]. Idempotent
[Bot96, Ma15a, AS95, AH10, BB06, BT08b, Fos05a, Fur08, GH98, Laf83, LWY11, Tia11a, Tia11c, You15]. Idempotents
[ABvW16, Do10, KR02, KR03, RR02, AF11b, AJL14, Ben15, Bun94, CS10, FL16a, FD12, Gha12, HP90a, HP90b, HK16b, Hua96, Slo14b, YQ90].
Identities [For79a, GdSV16, RZ17, BP09, Car06, CbM15, CbSS17, Din15b, Dom95, Dii97, Eri15, GV95, Hon92, Hon93, KV13, Lee16, Reg87b, Reg89, Reg93, Rem88, TC04, Wen06, dC13, dC15]. Identity
[Zha04a, Bre14, Dok75, Fei79, Gil14, GV87, Gur83, JOTvD94, MS85a, Mer74, Pat08, Reg87a, Ste82, Whi80, Wil81]. Ihre [SU77].
II [Ano79b, AF11b, AS11a, Bea83b, Ben74, BKL97, CL92, Cha93a, DM14, Fan83, Fon89, Gar75a, GLK82, GGL03, GTM14, Gur97, Hill11, HW06, JKS79, JP86, KK75, KS07, KL92, Lim90b, Loc74, Lez93b, MM76, Mer78c, Mer98b, MP95, NP80, Nie07, Rho90, RS10, Sch78, Sil88a, SCH02, DLL11, TAU74, Wea83, Wes95]. III [AF12, Bea84, BH74, GL97, MM92, Wes74].
image [Lim00, Pani87]. Imaginärteil [SU77]. imaginary
[CCL10, EJ91, GHH16, HHC12, SU77]. imbedding [Adk95]. Immanant
[CA03, CD98, CD01, Do96, Gro85, Ito16]. Immanants
[Jam92, Pat90, Gan00, GMW86, GM87a, Har85, JP87, Pat95, RS10, Wat86]. immanent [Fer10b]. Immanent [Hey88]. Implicit [JSW09]. Imprimitive
[MM11, FW07]. imprimitivity [BP92]. improper [Tho75b]. Improved
[Li17, CPH17, GB77]. Improving [GJM84]. Inaccurate [Ned98].
incidence [Bap97, BL11, BFJ12, DW16, HZ11, Khr16, KH05, Mum86b, Rys73, Rys75, Spi04, ZZ15]. including [LL14a]. Inclusion
[GZ76, JR93, JR94, LS04, PT87, LST89]. increase [Kuz05]. increasing
[Cho10]. Indecomposable
[LF16, BB15b, HK16a, Har87, HK16b, HL10, Liu92]. Indefinite
[BdLPS04, Bdp12, BdPN14, LMMR01a, LMMR01b, Ro81].
Independences [JX13]. independent [Bra86, Mer78b, Pat83].
Indeterminates [Rys73]. index
[BP92, BS95, dAB17, BG16, BF15, CMM17, CM15, EDKA07, HRT15, Jun88, Kir93, LLT93, LLL09, LHbL15, MC82, MM07, MM09, Mer89, PJ90, Raj09, RRR93, RY93, Sha15, Ye11, YGW15, dBi4a]. indices
[BFZ07, Bo01, DF95, MZ04]. Induced [CL80, Sch95, CL85, Da88, Gau76, HWL92, JN00, KL95, Lez93a, Lez93b, Ma95, MO94, Ste94b, Tam88].
Inequalities [SH98]. Inequalities
[Ala16, And80b, ES73, Fur11, Haw05, HMM91, JL88, JSG94, Lee91, Lev74, Li91, MS74, Pat82, SAV01, ACT87, AAP82, AkK17, AW07, AdF15, And80a, AO97, Anj17, AA12, BM15a, BDK09, BP98b, BCK15, BKL97, BOL12, BHK10, Bun91, CLL14, CL17a, DM17, DCM10, Dra10, Dra16, DL14, Du10, Fan92, FH15b, FH15a, FJK98, FSY16, GHT11, Gur98, Gyi78, HB83, Hia94, Hla17, HTO15, How80, Hua08, HXL16, JM85a, JN14b, Kan87, KM85, Kan94, Kim91, KS07, KM11, KK13, KT83, KW89, LM96, LPS12, LL13, LS15, Lim00, Mos12, Nie07, RK94, SYK15, Sed11, SA10, SG96, ST86, Tho78,
inequalities-an

Inequality

Inertia

Inertially

Inertias

infimum

Infinite-dimensional

infinity

inflations

influence

Influences

Information

Invariance

Invariants

inventory

Inverse
Inverses

\[\text{Inverses} \{ BP74, GN02, MR15, Rao81, Zha04b, BI95, BHK78, BM17a, BT06, BL13, BGV11, BT15, BGZW16, CKN95, Dra13b, Dra17b, HK79, HK80, HM76, HM77, JKG79, KS15, KM14, KR14, Kyr08, LPT13, Li11, LW11b, LW08, MR13, MP13a, Mia93b, MS12, Nab98, PP16, Rad16, Siv06a, Smi74, Sol14, Sta15a, SPS15, Tia01, TC04, TS05, TT06, Tia10, VM07, WC15, XCC99, QXZ13, YLS10, Zar01, ZX10 \}.

Inversion

\[\text{Inversion} \{ JTW17, FZ11, JS91, Jon78 \}.

Invertibility

\[\text{Invertibility} \{ BLR12, Den14, FSvW11, KR02, KR03, SR17, Wat83, Zel75, Aue95, Aue98, BLZ10, Bou13a, BMGMC15, CQH15, DW12a, DD12, HC14, LD17, MS09, PA10, SA17, TC13, ZZ16, ZCCI12 \}.

Invertible

\[\text{Invertible} \{ BLSV12, Gur97, GL97, BSUÖ13, Che07, Fra13, Gow80, GHL16, HBM15, LpW16, LWB11b, Siv06a, Siv06b, Tan13a, XPY16, ZC17 \}.

Inversion

\[\text{Inversion} \{ AF11a, AF11b, AF12, BCI13, BB17b, HPV88, KR07, Leo15, QZ16, RD12, Xu15 \}.

Involutions

\[\text{Involutions} \{ Slo13b, BL11, BFJ12, Fie95 \}.

involutive

\[\text{involutive} \{ LWB11a \}.

Involutions

\[\text{Involutions} \{ ARH15, Oge94, Cve95, Dix79, RH11b \}.

Isometries

\[\text{Isometries} \{ DLR91, KL95, LS02, MN12, Dok90, GWW16, HS83b, HFS15, LT88d, Mol15 \}.

Isometry

\[\text{Isometry} \{ CP16 \}.

Isomorph

\[\text{Isomorph} \{ Whi74 \}.

Isomorphism

\[\text{Isomorphism} \{ LRIH15, Oge94, Cve95, Dix79, RH11b \}.

Isomorphisms

\[\text{Isomorphisms} \{ BDvW12, BD12, BDvW16, DPvW13, IT16, LWXF15, Pan15, Wn16d, XWF15 \}.

Irreducible

\[\text{Irreducible} \{ HH10, LRIH15, Qin99, Rad05, Siv12, Tan12, YZ14, ZCP15, ZPCZ16, ZCP17, vR11 \}.

Irreducibility

\[\text{Irreducibility} \{ MM05, Mer75, Mur89 \}.

Irreducible

\[\text{Irreducible} \{ GT14, Lla96, Min74b, Abd09, BCS14, Bru79a, Coh88, DF87, Els78, Fon89, Fri12, Hol04, Hua90, Hun83, Hun86, JP15b, KSM16, Kra05, LZ09, Li95, Min74a, Pat93, Pru75, Roh06, SZWB16, TB92, IWW15, YSY17 \}.

Irregular

\[\text{Irregular} \{ SHS17 \}.

Isolated

\[\text{Isolated} \{ BS08, SRW07 \}.

Isomorphisms

\[\text{Isomorphisms} \{ BDvW12, BD12, BDvW16, DPvW13, IT16, LWXF15, Pan15, Wn16d, XWF15 \}.

Isospectral

\[\text{Isospectral} \{ Mer97 \}.

Iteration

\[\text{Iteration} \{ Fan83, CH06, LZ16, TT15 \}.

Iterations

\[\text{Iterations} \{ CC17, DH86, AAB17, ALP94, Gib89 \}.

IV

\[\text{IV} \{ Ch90 \}.

Iwahori

\[\text{Iwahori} \{ Mit10 \}.

J

\[\text{J} \{ New83 \}.

Jacobian

\[\text{Jacobian} \{ WR93, Yu96 \}.

Jacobians

\[\text{Jacobians} \{ Neu83 \}.

James

\[\text{James} \{ CP13 \}.

James-orthogonality

\[\text{James-orthogonality} \{ CP13 \}.

Jensen

\[\text{Jensen} \{ Anj17, BHK10 \}.

Johnson

\[\text{Johnson} \{ Ano79b, Moh15, Hu94, Rub89 \}.

Join

\[\text{Join} \{ MH12 \}.

Joint

\[\text{Joint} \{ GR93c, MS15a, DM14, JX13 \}.

Jordan

\[\text{Jordan} \{ MC17, AAB15, AEV12, AH10, AGAG96, Ben05, Ben16, BDvW16, Bree16, BN88, BC94, BM16, BMGMC15, DPvW13, DW12b, FKKS11, FJ09, GT11, Gra11, HL09, HS91, HZXL15, IT16, Kay17, Khr16, LWZ15, Lee16, LZ11a, }

27
LB11, LPS13, LF13, MJ07, Mol15, Nor95, Nor08, Pas15, PT10, PS91, QZ16,
Roi99, ST15, Slo17, TRD16, WHX08, Yua98, Zha16a, ZW14]. Jordan*
[LLF14]. Jordan-multiplicative [AGAG96].

K. [Mer79b]. Kac [Mar00]. Kakutani [Esh17]. Kantor [EKO14].
Kantorovich [MP94, MP95, Zha01b]. Karcher [FS15]. Kato [ZZC17].

[LLWX17, CL17a, Hu86, Jøz15]. Khinchin [zY11].

types [LLWX17, SLUG04]. King [Don91]. Kirchhoff [CMM17, Ye11]. Kirillov

[Cen11]. Kittaneh [WZ14]. knots [Bae84]. known [Kræ87]. Ko [GX17b].

Kobayashi [Hsu85]. Koethe [CKLP13]. Kolmogoroff [FP17]. König
[Kov86, Aha76, HL84]. Kostant [HK10, Tam97]. Kostka [ER90].

Koteljanskii [JN14b]. Krahn [ZZZ12]. Krawtchouk [KHG15]. Krein
[LLMT05]. Kronecker [Cal99, Atk91, Cal97, Cal03, De 78, Di 88, HZ11,
HS81, HPS83, Lew96, Nor08, RW96, SW81, Tia05b, Wan80, vR11].

Krusemeyer [Ric85a, Ric85]. Kuratowski [HW88]. Ky
[Gro17, JLL88, MP94, MP95, Mos12].

L [Mag83, YW16]. L-structured [Mag83, YW16]. labelings [KT95].

Lagrange [Jon78]. Lagrangian [MMRR09, PT10]. Laguerre [ASAS79].

Laplacian
[AAS14, JM85b, AH16a, Ash16, AOTR11, BKP01, Bar08, BLP08, BPW16,
But10b, CP15, CL17b, Con90, Das04, DP17, DK17, FTZ08, FLZ07, FYIS13,
FHT14, GHL10, GM90, GZ90, Guo07, GLS16, HMO11, HLP03, HUZ17,
HHW15, Kir04, KADM10, LP07, LP00, LLF08, LZ11b, LC14, LPWX10,
LL15, LZ15b, LL10b, LPH17, LDI17, MH16, Mer97, NP09, PLH01, PGL00,
Rod02, Rod03, SYZL17, SHS17, So99, TJ11, Tan12, Vrb86, WSH+11, WH11,
WZ13, WBZ14, WW21, Wat90, XZL14, ZLS11, ZZ15, ZG08]. Laplacian-like
[Tan12]. Laplacians [Fie95, Lee98, Lor00, Mer95]. Large
[GZ90, Loe01, Mer97, NW02, Din15a, KMEO12, Pat03b, dSP16b, Sol14].

largest [AAT17, Bel15, BPW16, Bén11, CR90, Das04, DdF15, Guo07, LP00,
LXG17, Sim95, Sta10, Wal11, XZ16]. Last [KMS02]. latin [SMF95]. Lattice
[Cir15, BV92, CYZ12, JS94, RW84, YW10]. lattices [GT14, Ger04, Ye11].

Laurent [JK10]. Lavoie [YLS10]. law
[CID16, DD14, LW08, Mal92, Rad16, XQ16b, ZCP17]. laws
[CIN15, LFY16, XO15, ZX10, dC15]. layered [Mur89]. LCM
[HINS10, Tan10, TLL11, XL11, Zha14b]. LDU [Smi83]. leading [Hol84].

leaping [Kom10]. Least
[YL11, YLW15, YZL17, AAB17, Ano16b, BPS16, Din98, Fan05, JS84, Joh84,
KS82, LLW07, LW08, LW10, Pen15, Wan15, Wan17, XQZ13, XQ16b, Zhu15].

least-squares [AAB17]. leave [Ben78, Sin73]. leaving [LT93]. Lefschetz
[Sam78]. Left [CQH15, EKO14, HMB15, Kre16, Tho86a, DS16, Dok73,
GMZ17, LCL14, LGB17, MVP14, MRD15]. Left-star [Kre16, MRD15].

left-symmetric [LGB17]. Leibniz [ARH15, AM15, BCS14, CCGO11,
CLOK13, GLOT13, KLO14, Mil15, RH11a, RH11b. \textbf{Lemma} [CGMR11, Bar07, Bar12]. \textbf{Length} [BP90, CCGO11, CW81, Ell93, Wes80]. \textbf{Leonard} [Ahn11, CGH15, HZG14, KHG15, KC16, WHG17]. \textbf{Leslie} [Har96]. less [Bot87, Lim90a, Sin95, dB16]. \textbf{Letter} [Bha91, Cha93b, Ram02, Roh13, Sch15]. \textbf{Letters} [Min74c]. level [AHK92, HS89, HS91, Lew90]. \textbf{Levitzki} [Ari16]. Li [FS15]. Lie [AH16b, BL10, BWL12, BD12, BW15, Bas17, BV92, BBM15, Ben07, Ben15, BCS14, BM14, BB14, BTV07, Bre14, CR15, CGNT15, CCGO11, CV94, CW11b, CX12, CW12, Che03a, Chu84a, CPT15, Do07, FD17, Far93b, FZ17, GS95, Gra10, HH16, Houn17, JZ12, JQS13, JL12, KK75, Lee94, LCL13, LW11a, LF13, LXF15, LL10a, LL11, LZ12, LZ13, Lin16a, LBV13, Luk74, MC17, MT11, MHA17, Mou04, N11, OWX09, Q11, Qi15, Rom89, SV14, STME10, SX15, Spi04, ST99, ST97b, WOW09, WY11, WL16a, Wan16c, WL16b, WJ16, Wan16d, WX12, XWF15, YD14, YZ13, YWO07, Zha15c, ZL15]. \textbf{Lie-theoretic} [Mou04]. \textbf{Lie-type} [MHA17]. \textbf{Lieb} [Pat96]. like [BD14, Tan12, Zha97]. \textbf{Limit} [Ger86, Cam78, Har84b, Kat75, LYZW12, Rei83, Tos79]. \textbf{Limiting} [Sie99, LN14]. \textbf{Lindström} [Geh15]. \textbf{Line} [GW08, HJ77, HT91b, WBZ14, ZB13]. \textbf{Lineability} [BMP10]. \textbf{Lineaire} [Del94]. \textbf{Linear} [AS17, ASZ02, Bea78, BP89, BP90, BP92, BL93a, BL01, BBBS09, Bot79, Bot87, CL83, CL92, CL95, CLN13, CLMR09, Coe96, DGJ+16, FHS13, FHL+14, Ho75, Hua96, HW75, HSK94, JS94, JS84, Jam81, JP86, JLL88, JLR+92, KP92, LL90, LL16a, Lau81, Lev74, Li87c, LT83c, LT88b, LT90b, LT90a, LT90c, LT93, LM93, LP93, LMR94b, LS01, LZ01, LM03, LS04, Lim76a, Lim79a, Lim82, Lim90a, Lim90b, Lim97, Lim01, Loe93a, Loe93b, Lor14, Luk74, MPI17, MF79, MC80, MS09, Min77, Mol09, Prz92, RK94, Sin82a, SA14, SB03, Wat82, Wes74, Whi74, Zha05, ZXF15, ZW14, Abd09, AC13, Ahi15, AFM13, Ami11, Ano92g, AW83, BB06, Bar07, BS16, BGdH92, BT08b, BLZ10, BR10, Ben78, BZZ10, BMGMC16, BF96, BSS12, Cam83, CW90, CL91, CS10, CTKL13, Che93b, CW12]. \textbf{Linear} [CL05, CKL16, Chu84b, CPT15, CF15, DM17, DPP17, DH86, Del94, Den14, Din00, Doo16, Dre93, EL09, E15, FK91, FW73, For87, Fos05b, Fow80, FH15a, GP06, GL85, Gib89, Gur98, HK16a, H1a7, HH16, Hua16, Hum83, Hum86, ISCS11, INO15, IKR12, Joh11, KP11, Kas85, Knu85, KTS83, KKR12, Kvet77, Kun99, Leh76, LCL13, LT88a, LT92b, LT92c, LT92d, LM96, LF14, LF16, LZ16, LD17, Lia80, LLWX17, Lim10, Lim15, Lip96, LWB11a, Mag83, MM06, MR97, MR12, MHA17, MID17, Ma15b, McD92a, MN06, MS09, Ned09, ND13, NT91, New80b, Nie07, Pan13, Pap13, Pat77, Pat83, PU05, PW78, Pic79, Pop17, R1a14a, R1a14b, RJ04, Roh91a, ST86, SSZ93, Sin83, Sl1a, Sl15a, SPK15, Sti87, ST97b, TRD16, Tan13b, Tia00, Tia11a, TJ16, UÖ15, UPÖ16]. \textbf{Linear} [Wal79a, WL16a, Wat83, Wat85b, Wat89, Wei93, Wer84, Wri93, WL16c, XLL15, Xu15, YT15, YqS16, YW16, ZL17, Ano79b, Ano16b, Ano16c, TT78, MT84]. \textbf{Linear-algebraic} [Bar07]. \textbf{Linearisations} [Ves80]. \textbf{Linearity} [GR14, Rom07]. \textbf{Linearizations}

M [GT08, SA14, GT08, Wan77, XCC99]. M. [Cha83a, For79c, Hsu85, Krä87, Mal89]. M/M/c [GT08]. MacMahon [BX11]. magic [Lor14]. Magnitude [Sin81a]. Main [Ter01, Ter06, AFWL00, Bu95, FS14, FS89]. maj [Gar79]. Majorization [Bap87, BJ93, KPP13, GM90, JLL11, JMP17, LW12, Mas10, Nie07, SA14, yT00, ZL17]. Malcev [BPS012]. Manasrah [WZ14]. manifold [MR75]. Manifolds [GH98]. many [BS15b, Hua96, TLC16]. map [AF11a, AC13, Ahn15, Chu84a, LM96, LP16, San14]. Mapping [ST08, Gol83, Gol90]. Mappings [Pet10, BSO13, CL01, Eba92, Gha12, HZXL15, JL12, Kuz05, LF13, Lim82, Lim90a, Loe93a, Loe93b, MW74a, McD92a, PR12, Pet97, Tag12, Wit11, ZL17]. Maps [BD913, BM15c, CGY13, Cho03b, D01, Do14, Dol07, EM15, FKK15, L11, Slo14b, TH14, WJ16, Zha04b, ZH09, ZWW10, AVE12, AS17, AG15, BHD10, BH11, BBB09, BH13, Bot87, Bre12b, CL80, CL85, CW11b, CW12, Che14a, CW16, Cho10, CKL16, Cos14, DM17, DS13, DHB07, DW12b, Fos05b, FHL14, Fra13, Fru17, FH15a, GP06, HK16a, HR85, He016, Hil07a, Hil07b, Hii1, HHH16, Hua10, JS94, QJ15, JP86, JLR92, LP11, LF16, Lii15, Mar13, MA75, MR12, MS09, MO13, Mo09, MN12, Nag17, Nie07, OP13, Oge94, OK07, dSP16b, PW78, Pie79, QHH11, RAI87, RJO4, RS06, RSO8a, Ruc89, Slo13a, Slo16a, SDL10, SL17, TB92, TXC08, WZC11, WZL13, Wat83, XCC99, XPY16, XL17, YH05, ZCZ12, ZX16, Zha16a, ZXF15, ZW14]. Marcus [And80a, AYT83, BD96, Cha89, Cha83a, For79c, GLS13, Huh87, Hu89, Krä87, Mal89, ST80, Tam86, Tam91, Wan77]. marginal [Joh82a].
Markov [AS11b, Gue17, Gur98, Kir14, Sie99]. Martices [MNN+98, Wer87].
Martin [Koo95]. mass [BS15b]. matching
[FLZ07, LC14, Mum86c, SYZL17, ZZ15]. Mathias [FS15]. Mathieu [dB16].
matric [PM78]. matrical [AK94]. Matrices
[AY74, BKL02, BL93b, BS04, BT98, Bru79a, Bru82, BF75, CLX03, CA03,
CD03, Cra09, De 82a, Dom95, EMS02, Gib92, GN02, Gra87, GK77, HS83a,
JR93a, Joh81a, JL90, JL93, JT95, JT04, JP07, Kap77, KMS02, Lev74, LP02,
MS74, Min74d, Nab98, New80b, Pei02, RR04, Rao81, Ric81, Ric85, Ric87a,
Rob77a, ST73, Sin76b, SHC02, SJ02, SK03, SB03, Stu89, Tau74, Zab89,
Zab90, Zha04b, dO75, AC15, Ach77, AS95, AG16, AAK16, AAB17, AAT16,
AAJ12a, AJL14, AAJ12b, AW07, Alp95, AST05, Ami80, AMZ13, AEf13a,
AEf13b, AO78, AB78, And80b, Ang00, AG96, Arm17, Aue95, Aue98,
ALP94, Aze99, BS15a, BHC16, BJS98, BB06, BT08a, BT10, BG86, Bal77,
Bal7c, BLS3, BDK09, BS91, BPS00, BCN05, BK17, BZ90]. matrices
[BZ99, Bar74, Bar80, BG83, BOvdD91, BH90, BT90, BHK78, Bea78, Bea85,
BL93a, BL97, BL01, BS16, BS17b, BPD88, BLD91, BL92, BP98b, BDS13,
Ben74, BH74, BB75, BT06, BLZ10, BL13, BSÚ13, BBM15, Ben05, Ben07,
Ben78, BGV11, Ber12, BB15b, BP74, BS97, BMS98, BX07, BDK+05, Ber05,
BZ99, dAB17, BS85, BH15a, BS17c, BLSV12, Bo01, BR01, Bot94, Bot96,
Bot97, BB96, BB17c, Bou13a, Boz98a, Boz98b, Boz99, BT15, Bra86, BC17,
BD13a, BCKP10, Bru85, BS08, BD13b, Bru79b, BK87, BZZ10, BSWZ13,
BGZW16, BM16, Bur95, Buh10b, CC17, CM92, Cal97, Cal99, CP81, CCS16,
CGY13, CK17, CP97, CdM15, CL92, CCS98, Cha83b, Cha84a, Cha88,
CGW14, Che92, CKN95, Che07, CW10, CW11a, CYZ12, CP16, CW16,
CT15, CT96, CL14]. matrices
[CL05, CNP06, CNP06, CN08, CLN13, CKL16, CL01, CKP09, Coe96, CR77,
Cos14, Cra91, CL74, CGH14, CPLH17, DPP17, De 90, De 75, Dec95, DTS14,
DD10, DC1W10, DH95, Din15a, Do 96, Dod13, BL92, Dk93, Do07, Dom14,
DGJ+16, DJL94, Dr15u, Dfd15, DÜf97, ERS12, ELG88, EL90, Ers78, ER81,
EJ88, ES89a, ES89b, ES00, ES76a, EV77, EM73, Est80, FL16a, Fa97,
FV97, FJM00, FX12, Fan73, Fan92, FW07, FJ15, FWZ11, Fen10, FdF09,
Fer10b, FS83, Fie90b, FP17, Fit94, Fla75, For79a, For79b, FS86, For88,
For79d, Fos80a, FLH+14, Fra13, Fra17, Fre76, FH89, FM78, Fri84, FS88,
Fri12, FL16b, FS15, FY16, FSO6, FS89, Ga77, GP98, Gar85, GWW15,
Geh15, GJG97, GKS01, Ger86, GPM14, GV95, Gib67, GZ99]. matrices
[Gil14, GKL82, GZ76, GTZ75, Gol87, Gol92, GH98, GR10, GR93c, Gro97,
Gro99, GLP92, GP96, Gro17, GHT11, GHH16, GHL16, Gru79, Gur92, Gy178,
Ha88, HC14, HK79, Hal91, HJP17, HZ11, Har87, Har78b, HS83b, HS83c,
HMAD13, HINS10, Hau12, HDJT97, HR85, Her83, HS88, HS93b, HNS99,
HS12, Hl17, HKO16, Hol85, HH85, Hon99, HJ87, HZ12, HM76, HM77, HM78,
Hsi78, HLZ05, HH14, Hua01, HW06, Hua08, Hua10, HLZ11, HK17, Hwa85,
Hwa91, HK92, HS93c, HKS94, HM95, HKS95, lbr00, IS15, IS16, It016,
JGK79, JGS90, JS96, JR93b, JM13, JT17, JK10, Joh73, Joh74a, Joh77a,
Joh74b, Joh77b, Joh81b, Joh82b, JR84, JP86, JP87, JSE90, JKS94, JWP98,
matrices [KLZ10, KP14a, Kim97, KS09, Kim13, Kim91, Kir91, KP92, KS93, Kir93, Kir04, Kir09, Kir11, KM11, JS07, KS82, Kob06, KNX93, KH05, KE82, KS83, KS84, KM98, Kuz05, LR17, Laf78, Laf83, LL16a, Lau81, Lee91, Lei95a, Lei93c, Lew77, Lew97, Li86, Li87a, Li87c, LT88c, LT88d, LST89, LT90b, LT90a, LT93, LM93, Li95, LSOvdD95, LEH96, Li98, LSS01, LPS08, LZZ13, LL14a, LL15, fLLyP15, LZ16, LLGL16, LMLL17, LM95, LL99, ILpW16, Lim79a, LT14, Lim15, LT12b, LW12, LZ17, LMMR01a, LMMR01b, Lit17, Liu92, Li99, IYWY11, LWB11a, LWB11b, LL78, Loe87, Loe01, Lon80, Lon81, Lon83, LSZ6, LM89, Lon90, LR89, Lop11b, MM11, MVP14, Mag83, MN80, Mah82, MM90, Mal91, Mal94, MRT16, Man92, MHH96, MZ94, MS79, MKS84a, MS89, MR13, MR15, MSZ04, MR07, Mas10, MH12]. matrices [MP90, McC85, McD92b, McF79b, MS10b, Mee80, MMRR09, MMRR16, Mee84, MO93, Ml12, MV91, Mer94, Mer98b, Mes90, Mes13, Mia93a, Min74b, Min74a, Min75, Min77, Min82a, Min84, Min92, MS12, Mis17, MS10c, MMG15, Moh16b, Moh15, MP16b, MS98, Moi09, Moi15, Moo76, Moo4, Moul3, MAM15, MA15c, Mur89, ND05, ND13, NS99, Neu79, NP80, Neu84, NST91, NS92, NS93, New74, New75, NT86, Nie14, Nie10, Nof15, Nom73, NP91, NTU93, OP13, Oml14, OK07, Pat92, dSP12, dSP16a, dSP17, PU05, Pet09, Pet00, Phu80, Pif87, Piz87, Pok87, PT87, Pop14, Pul75, QK92, RRR93, Rea96, RW96, RR95, Rho78, Rho90, RS74, Ric78, Ric87b, RD12, Rob75, Rod79, Rod91b, Rys73, ST94, ST79, SSh07, Shn83, SM94, SMBB+15, Sha91, SG96]. matrices [Shi15b, Sil88b, Sil88c, Sil88b, Sil90, Sil93, Sil95, Sil98, Sil99, SP87, Sin90, SAV01, Sin73, Sin76a, Sin77, Sin80, Sin82a, Sin82b, Sin84a, Sin93, Slo13a, Slo14b, Slo15b, Slo15a, Slo16a, Slo16b, Smi05, Smi76, Smi94, SH98, ST91, STZ94, Sol06, Sol14, Sou83, Sou03, Sou86, Sou92, Sta15a, Sul08, SH92, SWZB15, SK15a, SK15b, SvW14, TD14, Tam86, Tam94, TT12, Tan10, TLL11, Tan13a, Tan14, TLC16, TG09, Tau81, Tho74, Tho75a, Tho75b, Tho86a, Tho86c, Tho87a, Tho88, Tia01, TS05, Tia05a, Tia05b, TT06, Tia11a, Tia11c, TL12, TJ16, Tll77, Tll98, Tis93, Ton87, Tra89, Tra90, Tre85, Tre86, Tre87, TGW14, TMOvdD93, UÖÖ15, UÖÖ16, Uhl79, Uhl14, Vas87, VM07, Wad90, Wai73, Wai75b, Wai86, Wai76, Wan76, Wan79, Wan80, Waz95, WOY06, WZC11, WYMM11, WZL13, iWPW14]. matrices [iWW15, Wan16a, WC16, Wan05, Wat84b, Wat85a, Wat85b, Wat77, Wat82, Web83, Wes87, Wim85, Wim88, Woe93, WM84, Wn09, XCC99, XQZ13, Xu93, XXZ11, XL11, Xu15, XPY16, XL17, YLS10, You80, YBCW96, Yu96, YW16, ZZ16, Zel85, Zel75, Zha00, Zha01a, Zha89, ZS05, Zha05, Zha14a, ZZZ16, ZFSX17, ZWW10, ZHZ11, Zha14b, ZF15, Zho16, ZBW12, ZW14, Zim89, Zou12, cc85, dF13, dPN81, vBW95, vR11, KNX95]. matrices-nonsingularity [ES98b]. Matricial [Far93a, MRS10, CH12]. matrices [DDJ76, HK80, NU94]. Matrix [AMP02, AP04, Afi73, AP74, Amd04, jAS15, AW13, AM90, BD94, Bomm02, BC94, Che93a, DAt80, Der16, DSO2a, DSO4, EMS02, Fan92, Fla74a, Foa79, Gal03, Gil12, GMR81, Har95, JT03, Leh91, LT92d, LM96, LP03, Mir81,
OW02, Pat03a, PT02, PY82, Rum97, Sin81a, Tho78, Tia02, Tia03, Tur02, Wei98, Zha04b, Zha04a, AFVL00, Adh13, AS11a, AM13, AN14, Ake83, AAB15, AdFK15, AG15, Ano79b, Ano79c, AY95, Aud15, BK83, Bak84, BB06, BCR91, BJ75, BY76, Bap97, BGK99, BGK00, BKP01, BS11, BR14, BWF83, Bas17, BC82, Bea83a, Bea83b, BC85, BGrH92, Bel83, Ben90, Bén11, BT08b, BT07, Bot94, Bou13b, Bou14a, Bou14b, BHK10, Boz97, Bra86, BC91, BF15, BZZ10, Bum91, BSS12, Caf13, Cal95a, Cam78, CKP16, CL80].

matrix

[135x634]matrix

[135x598]matrix

[135x562]matrix

[135x527]matrix

[135x491]matrix

[135x455]matrix

[135x419]matrix

[135x383]matrix

[135x347]matrix

[135x311]matrix

[135x276]matrix

[135x240]matrix

[135x204]matrix

[135x180]matrix-subadditive

[135x168]matrix-weighted

[135x144]Matrizen

[135x122]Max

[135x102]33

[CLOK13, KLO14]. nilspaces [Oml14]. no [TT78]. node [IWpW14]. Non
[Das17, Fos05b, HH16, KS09, LLF14, Mas10, TRD16, Ano79b, BL10, Bre15,
Cho10, DP09, Gha12, GP96, GLS16, Hou09, JKS79, Kan94, KADM10,
LPS09, Lim10, MM11, MF77, MR12, Mar12, Nir11, Pal79, Pul75, RS74,
Rou98, STME10, SR17, Smi74, Spi00, SDL10, WYM11, dLMO17]. non-abelian
[Nir11, STME10]. non-autonomous [MR12]. non-bipartite
[GLS16, dLMO17]. Non-commutative [Mas10, Mar12]. non-empty
[LPS09]. non-equivalent [Hou09]. non-increasing [Cho10]. Non-linear
[Fos05b, HH16, LLF14, TRD16]. non-negative
[Ano79b, GP96, JKS79, Kan94, Pul75, RS74, Rou98, Smi74]. non-nilpotent
[BL10]. non-perfect [DP09]. non-powerful [MM11, WYM11]. non-round
[Sp00]. non-scalar [Bre15]. Non-singular [KS09, SDL10]. non-threshold
[KADM10]. non-trivial [Gha12]. non-uniform [SR17]. non-vanishing
[MF77]. Non-zero [Das17, Lim10, Pal79]. nonabelian [Mah82]. nonbinary
[KP92]. noncanonical [BG86]. Nonchordal [GLP92]. Noncircular
[GW12]. Noncommutative [Yu96, Gut01, Nas74, dP88]. Noncommutative-nilpotent
[Yu96]. noncommuting [FW86]. Nonconvexity [Sol97]. nondegenerate [CH12]. nonderogatory
[FW13, Lff78]. Nondifferentiable [Beb86]. nonegative [EM73]. Nong
[Uhl13]. nonincreasing [CL01, Loe93a, Loe93b]. nonintersecting [AST05]. Nonlinear
[BH13, CW11b, CX12, CW12, CW16, FJ17, HZXL15, JZ12,
XW12, Zha16a, BH16, DWL14, MK16, SLUG04]. Nonnegative
[Bak84, BN88, Che92, DS16, JGK79, JT03, Lew77, Shi15a, SB03, Zha04c,
AAJ12a, AAJ12b, BS92, BP74, BC94, BSS12, CP81, DJ98, DJK08,
Els78, EJD88, FW07, FJ15, FLS88, Gar85, HJP17, Har94, Hav88, HK92, JS84,
JGS90, Joh75a, JMS15, KSMB16, Kir11, KNX93, KNX95, LEH96,
LZ78, Mcl13b, MV91, MS12, NST91, Rea96, Rod81, Roh06, Smi05,
Sou83, Sou03, ZSWB16, SPS15, VM07, Wim85, Xu93, YSY17, vBW95]. Nonnegative-definite
[Zha04c]. Nonnegatively [LS10]. nonnegativity
[HRT15]. nonperiodic [CKN95]. nonpositive [FJ15]. powerful
[GSS09, SSG12, YMYS13]. nonprincipal [Loe87]. nonreal [EJ91, Esc93]. nonregular
[Gil12]. nonrelation [Tho88]. nonself [FJS14]. nonself-adjoint
[FJS14]. Nonsingular
[AEdF13, AEdF13b, BY76, BNP06, FJ09, HT10, HXL16, IS15, JT95]. Nonsingularity
[BLZ10, BSUÔ13, ES98b, LWB11b]. nonsymmetric
[BJ94, BT07, BSO17]. Nonuniform [BV16b, BV16a]. Nonzero
[CL86a, CL86b, DF90, CM07, Fri12, KMOV07, MY12]. Nörlund
[CW10, TD14]. Norm [Du10, Faj74b, FSY16, Joh14, Neu74, Sed04, SA10,
AE10, AA12, BJ13, Bou06, CL17a, DM87, FH73, Gar75a, Gil93, Hia94,
HM78, Joh77a, JLL88, JN90a, JN92, KL95, LTT84, Lon83, LSZ86, MO94,
Oku91, Oku93, Pat09, Pre85, Roh00, ST73, YSK15, YL11, ZFSX17, Zou12]. Normal
[AP04, BD94, Far94, GW04, JMS15, KL15, LMMR01a, New94,
Arm17, Ay95, BT08a, BK17, BD88, Cha96, CN05, Der83, Epk89b, Epk89a,
FX12, GR91, GR93b, GRMA13, Hua90, HI11, KLS08, KN99, Li98,
LMRM01b, MRT16, MV75, McC85, MZ91, NTU93, Pro95, QK92, Rad12, STZ94, SPK15, Woe97, Xu93]. normal-preserving [Kun99]. Normality [Ikri15a, Kit91a, LST89, Man92, WZ95]. Normalized [DP17, JT04, But10b, CL17b, GLS16, Hun83, JP87, LLF08]. Normalizers [Luk74]. normed [KT83, Ng14, Pan15, Pas15]. Norms [BKL02, HWL92, LT89b, OW02, So90, AGAG96, AG96, Bar76, Boz98a, Boz98b, Boz99, CW11a, CM15, Gol87, Gro17, Hem93, HJ87, HNM91, JL88, JN00, LT87, LT89a, LT90b, LT90c, Li91, LT92c, LLW07, LPT11, MS83, MS083, MKS84b, MC89, Mar92, MM07, Mer78a, Mer81, OvdD77, Que08, Rho94, RSP17, SAV01, Sol06, TD14, Wan17, ZHH09]. notation [Car06]. Note [Ano73, Ano82d, Ano83k, Ano84d, DSD83, DS02a, HHC12, Lau81, ILW16, Mar82a, Mir81, Sam78, Tam85, ABJ16, Ano82e, Ano83l, ACMS10, AOTR11, Bap91, BOvdD91, Bar12, Ben90, BZ00, dAB17, BH15a, But10b, Cha83a, Cha84b, CTW15, CRL16, Da 05, Da 88, Dif97, Els78, For79b, Fri12, Gol89, GMJSW6, Gum15, Gur79, Gur92, Har78b, Har81b, HWY17, Hug90, JS96, Jon92, KP11, KT95, KJ13, KKR12, LHP75, LN80, Li84, LP00, LPWX10, Lim79b, Lim15, LGB17, LL78, Mal89, Mal92, MS89, MR13, MM09, Min82b, Moo76, Mos15, MAM15, New78, OvdD77, dSP17, Pri78, Pul75, RR95, San14, SP87, TC08, TT78, Til98, Uhl82, Vin06, WfMR16, wWyD11, Wei93, WL16c, XQ16b, YZ14, Zha16b, vBW95]. Notes [Ami11, Cha83b, Joh75a, Wan16d, Zha89, Mar92, Sim95]. notion [MS12]. notions [Hou09]. Nowhere [AGM13]. Nowhere-zero [AGM13]. NP [Roh00]. NP-hard [Roh00]. null [BT13, Bea85, CLOK13, KLO14]. null-space [BC94]. Nullspaces [TMovD93]. Number [NW02, AEdF13a, AEdF13b, AYC93, BC05, BS16, Ben74, BT15, Cha96, Dat80, DH16, DfF15, Ekp89a, FS14, FL07, Kir00, KAN0, LW1+1, LT12a, LC14, LL15, Man78, MP13b, Ota13, Pat83, PGM00, Rem82, RW84, SYZ17, SS96, SMS15, ZZ15]. numbers [EB17, FW07, Fer09, Haw05, Hou09, HL05, LL17, Ost74, TB01, Wu09]. Numerical [AMP02, BDK09, BB15a, BD94, Bdp98, BldPS04, Ber02, BM17b, BS04, CN04, CN14, CL00, DTS15, ERS12, Far02, GW98b, GW04, GWW15, Joh75b, LN98, LS02, LS04, LR04, MM07, Sed04, haYsS99, AS11a, AAK16, AYT83, AY84, Ay95, AY98, ALP94, Bal90, BDS8, BLD91, BLD92, BD96, Bdp12, Bdp14, Cha92, Cha39a, CC14, CGW14, Che94, CL94, CT96, CT09, CL13, Che14b, CL14, Che16, CM15, Chi98, CNP05, CN05, CNP06, CN07, CN08, Chin11, CN15, CGL16, CH10, CGHK08, CKP09, CLM09, Cro08, Da 94, DkHS08, DM14, EDKA07, EM15, FT87, Fc9a, FNR96, FHL14, FL16b, GW08, GW12, GWW16, GTZ75, GL79, HH16, Hu89, HT91b, HT91b, Huy90, JLL07, JL88, JSG94, Jon92, JNBR93, JR93c, JR94, KPL+09, KP14b, LLS14, LLS16, Lei91, Lei92, LT92a, Lei93a, Lei93b]. numerical [Lei95b, Lei95a, Lei98, LTT84, Li87c, LT88a, LT88c, LT88b, LT91, LT92c, LMR94a, Li94, Li96, Li98, LSS01, LZ01, LPS09, LT09, LPT11, LP16, 37
Man87, Man91, Man92, Mar75, MF79, MS79, MW80, MS82b, MS85b, MP87a, MS87, MR97, MP98, MM90, MS15b, MS16b, NNT95, Oku93, Poo80b, Poo94, PV00, Rod08, RS08b, SA07, ShDHG08, ST80, STZ94, ST96, Spi00, Sza09, Tam85, yT86, Tam88, Tam94, Tam98, yT00, Tho80, Tho87b, TGW14, Tsi83, Tsi81, WZD16, Wes75, Woe08, WC12, Yua98, bPFZH08, ZHH09, vD96.

Obstacles [NW02, LN10], oblique [BT13, GT98, Gro99]. observations [Egg95]. obstructions [Ko90]. occurring [JWP98]. odd [AM13, SS15]. odd-bipartite [SS15]. Off [DHS95, WC12, Nab98]. Off-diagonal [DHS95, WC12, Zab89]. Olga [Sch77]. Oliveira [BMD87, GMS13]. One [Bre17, Cha84a, BHD10, BLP08, Ben90, Bén11, dAB17, Bot87, BM16, Cho10, CL01, DH16, ECI95, Esc93, Gur79, KS82, LL16a, Lim90a, LZ15b, MM15, MW16, Shil15a, So99, SH92, Wat85b, ZS05]. One-parameter [Bre17]. ones [HLZ05, Liu92, Wan05, Wan09]. only [MO19]. open [dF11, dF13]. operads [Bre17, BS17]. opérateurs [Del94]. operation [Bre14]. Operational [Rom82]. operations [Cir15, Joh11, LZ15a, MN04, Zha14a]. Operator [CW11a, DH03, Far02, Gus94, MS02, RS85, WZ14, YSK15, AAP92, All14, AXH15, AO07, Anj17, BHC16, Bak16, BDK09, BJS15, BSD4, BH16, Boui13a, CL91a, CDJ13, Che14a, CNUV16, CIP17, DD10, DC11, DD12, FJS14, FH15, FJK98, HC14, HS15, HOU15, Ikr15a, JX13, KS14b, KD16, Kit19, KK13, LM85, LS15, LFY16, MO94, PSA14, PSMA16, dSP16b, Rad16, Rai14a, Rai14b, Sed11, SR17, Son14, TD14, XQ16b, Yu14, Z16, ZH09, ZZZ16, dPN81]. operator-eigenvector [Che14a]. operator-entried [dPN81]. Operator-norm [YSK15]. Operators [BLdPS04, Ber02, DS02a, HT91b, MS02, Sed04, SB03, ADRP14, AFM13, AP17, BHD10, BM15a, BP89, BP90, BP92, BL39a, BD14, BL11, Boa13, BJZ13, BPR14, BT17, BM15c, Cam14, CW81, CQH15, CL17a, CN05, CGL+16, CH10, CIN15, De94, Den14, DM13, Dra10, Dra11, Dra16, Esh17, Fan83, FNR95, Fur08, GT14, GR14, GW12, Gil16, GR91, GR3b, HBM15, HH16, HSK94, ISCS11, Jac79, JD16, JX13, JS13, JS15, Kan16, KP92, Kit91b, KL15, KLS08, LLMT05, LS96a, LS96b, LS17c, LT85c, LT85b, LT90b, LT90a, LT90c, LT93, LM93, LP93, LMR94b, LSS01, LZ01, Li11, LPT11, LS17, MSS13, MF79, MS09, MZ91, MN12, PSS15, Pep11, Pet10, Pep17, RT09, RS85, RS17, Rho94, Rod08, RSPT17, Sam78, Sed11, SA10, Shkl12, TH14, TD16, Tan13b, Wal79b].

operads [WD17, Wil81, WC12, Z16, ZZZ17, ZZZ00, dBS00]. optical [FP17]. Optimal [AP17, dBS00, BG11, Blo95, Ig99, Kms85, LN10, NW02, PSS15, SS79, Sh81, Ves80, WVP14, WM84]. optimal-node [WVP14]. orbs [DR93]. LPS08, LT13]. Order [AAT17, KW17, Peñ02, vBW95, ACMS10, jAS15, BH13, BH16, BMGMC16, Cam83, CQW81, CJ12, Cir15, Cir16, Cir17, CM07, CCL16, CIN15, CID16, DTS15, DD14, DL92, Dok93, Dok09, EM95, FTZ08, FP17, FJK98, GHT16, HS83c, HSX16, HSM17, Hil07b, HK10, Jin17, JKB17, KMS16, Kre16, Kri87, LPT14, Leg06, LW08, LFY16, MRT14, Mat90, Mit92, New80a, Rad16.
SWL13, Slo14a, Sta15b, SF17, Tos79, XQ15, XQ16b, XSL15, ZK10, ZCP17, order- [Sta15b, SF17]. ordered [Leg06]. ordering [Har78b, WL15, WC15]. Orderings [MP16b, Gro97, Hey88]. orders [And96, JS15, MRT14, Mar15, MRD15]. ordinary [ZG08]. oriented [CT16]. orthant [Mar92]. orthant-monotonic [Mar92]. Orthochronous [Les93]. Orthogonal [BD97, GP14, GK20, GGW76, Hol95, HK13, Hor04, Lop11b, Per17, BT11, Bas17, BMM15, CH87, DP00, Dok09, Ell95, Gal08, GZ99, GHT16, JWP98, KW92, KL08, LM93, Lim01, Ma95, MRT12, MR08, TL12, Vin06, WG91a, Zha01a]. Orthogonality [DS02b, Gro17, Hol04, RˇS06, RˇS08a, AR15, CP13, Fan88, GP14, Per17, RˇS09]. Orthonormal [KCBR87, LZ01, MC86, WG91b]. orthostochastic [PT87]. orthosymplectic [Lee94]. oscillatory [CP97]. Osima [HK16b]. Ostrowski [Mar76, She77]. other [BY76, Bar07, BSS12, MRT14, Pie92c]. otherwise [Bal78]. Oussa [Ano16c]. Outer [KM14, SPKC15, AB17, LMR94b, LYZW12, Tia01, TS05, YHS13, YGW15]. outer-planar [YHS13, YGW15]. outerplanarity [Vo83a]. outindependent [FG06]. outstanding [Joh82b]. oval [Mel13a]. Ovals [Mel12]. Overgroups [Gur97, GL97]. overlapping [Vei83b].

Sil95, Sil98, Tho75a, TI77, Zab89, Zab90, Zel85, dO75.

presence [FW13]. Preserve [Lim90a, SB03, BCN05, BP89, BP92, HKS94, JS94, JLL88, JP07, LT88c, MZ91, Slo16a, Wat77, Wat82]. preserved [Can80]. preserver [Ano92g, BLP92, CL01, Hua16, Joh11, MS98, ST08]. Preservers [BJ15, Gur97, LM03, LS04, LR04, RS09, SK03, SBMP16, BPS00, BS92, BL97, BL01, BSL01, BS16, BS17b, BH16, BMGMC16, CL95, CC14, CL05, CLN13, CLMR09, DGJ+16, FHL13, GP14, GL97, KS12, KP14a, LL16a, LT88a, LT92b, LT92c, LT92d, Lim97, Lim01, Lim10, LT14, Lim15, Loe92, Min77, Per17, Sin82a, Slo15a, SA14, TZ06, ZS05, Zha05]. preserves [Coe96]. Preserving [DˇS04, Dol04, Kob06, Zha04b, AS17, BHD10, BHD11, BP90, BL93a, BBS09, BDS13, BS07, BH13, Bot79, Bot87, BM15c, BSO13, BMGMC15, CGY13, Che14a, CW16, Cos14, DS13, Dol07, DHB07, EL90, Fos05b, FKK11, FHL+14, HR85, HS17, HH16, Hua10, HZXL15, JQ15, JLR+92, Joh11, KP92, Kow77, Kun99, Li87c, LT88b, LT90b, LT90a, LT90c, LM93, LP93, LMR94b, LSS01, LZ01, Lim10, LJ11, LL11, Liu15, MF79, MR12, MS90, MO13, McD92a, Mol09, MN12, Pett7, Pet10, Pie79, Rai87, RJO4, RS06, RS08a, Slo13a, Slo14b, Tag12, TH14, TB92, TXC08, WZC11, WZL13, WJ16, Wat83, Wat85b, XCC99, ZHH09, ZCZ12, ZX16, ZWW10, ZXF15, ZL17].

Price [TT78]. prime [Cen11, DS13, JL12, LWZ15, New80a, Nor95, Nor08, Per15, Sta14, Sta15b]. primeness [Per15]. Primes [RS74]. Primitive [BS17b, dSP16a, WYM11, AF11b, GSS09, LLS10, LM95, LLL09, Liue92, SSG12, YMY13]. primitivity [BP89]. Principal [Dr15, LP03, LMMR15, NS92, NS93, Rao81, Vrb86, XFG14, Bén10, Cho82, Dis79, Fie81, HK15, HS87, HKB16, Hol84, HT91a, HO17, Joh84, JOvdD84, Nas75, NTU93, Pri78, ST08, TT78, Tho92b, ZH12]. principle [dC13]. principles [LL14b, Sin83]. Private [KP14b]. Probabilistic [BAN12, WW76, Sim83]. probabilities [Ger86, Joh82a]. probability [CPZ17, DPP17, LN14, S687]. Problem [Ano82f, CLL793, Tho82a, Adu15, AKH92, AS11b, AG15, A078, Ang00, Ano83m, Ano85g, Ano86e, Atk84, BC05, Bap92, Bar88, Btu87, BK87, CC17, Cal95b, CKLP13, CH12, Che91, CCLN16, Cve95, DS16, DF82, Dod13, DJK08, DWL13, FdF09, Fie90b, Fla75, FH99, Gar85, GB77, Gra93, JC74, JL85, Joh89, JJK95, JKN14a, LW96, LW07, FLy15, LMMR01b, LW10, LL78, Mer79a, Mill15, Min80a, Min82a, MMG15, MS15a, MAM15, Mum86a, ND13, New83, Raw81, Rea96, RP04, SR17, Sin84b, Sni05, Sol06, Sol80, Sto79, Tau73b, Tho85, Tho87b, Tho91, Tre85, Tre86, Ves80, Wan17, WW01, Zha92, ZY13]. Problems [BL80, AAB17, Ano82g, Ano84e, Ano84f, Ano92g, jAS15, BCR91, BLP92, BR01, CQW16, Che92, CL01, CID16, De 84, Din98, DJ98, Fri88, GMZ17, GKT97, GM87b, HRMP95, Hua16, Joh82b, Joh11, JTU00, KPL+09, Li85, LT88a, LZ16, MM06, Man91, Mer91, MS98, SQM99, Sch91, Sin82b, TT85, Wll83, WL16c, Xu93, YLW15, Zha00, ZH12], [dF13]. Processi [Reg87a]. process [FSFSO+14]. produced [Tia11a]. Product [AK94, BLDPS04, Cal03, CGL+16, GN02, AF12, JHT85, AHJ87, Aze99, 42
BCDF09, BM17a, dAB17, Boa13, BM15c, BM17b, Boz99, BH15b, BZZ10, BM16, Can78, Can80, CK17, CW16, Con77, CD15, Di 88, DM13, FD14, FKKS11, Fow80, Gha13, Gra10, Gra11, GT98, HZ11, HPS83, Hol85, HH16, HXL16, HWSH13, HZXL15, IS15, Joh77b, JN90a, JS99, JN00, KT06, KR14, Lee94, fLLL +17, Lim90a, LMMR01b, LJ11, Mar97, MP16a, Mat92, McF79b, Mir92, Neu74, Nor95, Nor08, Pat08, Pat09, Rad16, RW96, Rod81, STME10, Si93, SAV01, SZBW16, Tan13b, Tho74, Tho88, WZD16, WJ16, XQ16b, YZ16, Zha00, ZPCZ16, vR11.

Products

[Bal77, Bal79c, EM87, Ell95, Gib76, Laf83, MKS84a, O’R15, Pat81, Rod97, ST91, Sul08, Wil99, Alp95, AO97, BK83, BJ75, Bar76, BJS93, BJS15, Brel12b, Brel16, BSO13, CW81, CGY13, CL85, Che95b, CKL16, CG16, DSD83, De 78, DF90, Dol07, Du10, FL16a, FJM00, FHL 14, FIS06, GWW15, Gil16, Gro96, Hal91, Har84b, HS81, Hol84, HMM91, Hua08, JHT85, BR10, BCI13, Gal08, KW17, KR07, LD17, MR08, Rei83].

programming

Projective

[Jam88, Rei75, Den05, Ng14, Pan13, RS06, RS08a, RS09, SZ85]. projectors [BT11, BT13, DW12a, GT98, KR14, TL12, TCI13].

prolems [EJ88]. Proof [Kit81, Rad80, Tho86b, AY95, Aue95, Bar12, BD96, Fri82a, HL09, Koh11, Min82b, Poo80a, Reg87a, RW84, Rem90, Roi99, Tam91].

proofs [CL13, DHT94, MS82b, Rem82, ST80]. proper

[AMZ13, Ger82, Tho75b, IWW15]. Properly [Fri97]. Properties

[BD94, EMS02, HM77, HK17, KY17, McC85, WD17, BC82, BS17c, CL94, CJK13, DSTR91, Din15a, Dra13b, Dra17b, EB17, JNBR93, KI16, KW17, KS84, KM98, LZ14a, Lor00, Mai11, MSS13, MRT14, Mar13, MIH12, NG15, PRS03, RP04, SMBB 15, SSW15, ST08, SKM17, SL17, TG09, Tra89, Tra90, VM07, WC12, Zel85].

Property

[Che95b, CN04, Ger74, BNP06, BEM12, Can80, CP16, GF10, Har84a, LS17, LFY16, LC83, ND05, Per15, Rom07, TAU74, Wer87, XQ15, ZCI12].

QR [LYS15]. Quadratic

[BSO17, Rob77b, Adh13, Bae84, Che92, Edw80, Fei75, Ful76, Ger82, KML95, Lew97, LPT11, Pap13, PUÖ15, Rus16, Shr90, Sol80, SPM14, Tau81, TS05, Tia11b, UÖÖ15, UPÖ16, Ves80]. quadraticity [PUÖ15, UÖÖ15, UPÖ16]. Qualitative [Jvd91]. quantifying [Aud15]. quantitative [Fie73, IT16]. Quantized [JP15a]. Quantum

[KLZ10, MS16b, Ahn11, CGH15, Da 94, DHKSH08, Drn13, F HLS13, JP15a,
Quasi-coprime [TLC16]. Quasi-filiform [LBV13]. Quasi-orders [And96]. Quasi-range-compatible [dSP16b]. Quasi-strongly [Gol06]. Quasi-Whittaker [aCC17]. Quasidirect [LS96a, LS96b]. Quasimonotonic [Gol90]. Quasinormality [Ras17]. Quaternary [BX11, BSO17]. Quaternionic [haYsS99, AAB17, AY84, AY95, CCL10, EÖ15, Fen10, MVPS14, Rod08, ST96]. Quaternions [Kri87]. Quotient [ZY13]. Quotients [BdPNdP17]. R [Ano79b, Fie84, Shk12, Zha95]. R. [Don91]. Racah [WHG17]. Radical [MV75]. Radicals [GLOT13]. Radii [Gol79, LR04, AO97, CC14, CL14, CLMR09, FNBR96, GWW15, Gol79, Le91, Le95a, Le98, LT89b, LT92c, LMR94b, Li94, LZ01, LDI17, MS82b, MS85b, Tan98, YHS13]. Radius [Fla74b, LS02, PT02, ALP94, BDK90, BM17b, BBZ15, CCS16, Cha92, Cha93a, Cos14, DM14, DIF13, FTZ08, FLZ07, FYIS13, Fri93, GL11, GT75, GB11, GLS16, HH16, JL88, JSC94, LP07, LTT84, Li87c, LT88a, LT88c, LT88b, LS80, LT09, LT11, LT12a, LC14, LS12, LS13, LL15, LZ17, LL10b, Man91, MO94, MP96, NP13, NG15, Oka93, Pep11, SYZ17, SWS17, SWS16, sT86, T911, Ton87, WH11, WDJ10, XZL14, YSY17, ZHH09, ZG11, dP09]. Rado [GX17b]. Radon [AYC93, GP74, Lee98]. Raising [GR81]. Random [Tan13b, Din15a, Sha15, TJ16]. Random-effects [TJ16]. Range [AMP02, BK83, BD94, CN04, Far02, GW04, KR07, LN98, Sed04, haYsS99, AAK16, AYT83, AY84, Ay95, BJS98, B180, BB15a, BD88, BLD91, BL92, B96, BPN14, C97, Che94, CL94, CT96, CT97, CL13, Ch98, CP05, CN06, CN07, Chi11, CN14, CGL+16, CH10, CKP09, Cra08, EM15, FST7, Far93a, GWW98b, GW08, Gro06, HH16, How80, Hu89, HT91a, Hug90, Jam88, Jam95, JLL07, Jon92, JR94, JR94, LL81, LL16, Le92, LT92a, Le93b, Le95b, LT88a, LT88c, LT91, LMR94a, LSS01, LPS90, LT09, LD17, LP16, LT11, Man87, Man91, Mar75, MF79, MS79, MW80, MS82a, MS87, MS15b, MS16b, NTT95, Naks95, dSP16b, Poo80b, Poo94, PV00, Rod08, RS08b, ShDHG08, ST80, STZ94, ST96, Spi00, Tam85, Tam88, yT00, Tho80, Tho87b, Ts83, WZD16, Wes75, Woe08, WC12]. Range [Yua98, bPFZH08]. Ranges [BLdPS04, Ber02, BS04, LS04, LR04, Lec74, AyT84, BDP98, BDP12, CGW14, Che14b, Che16, CN05, CN08, CN15, CL00, CGHK08, CLMR09, Da 94, DHKSH08, ERS12, FHL+14, FL16b, GW12, GWW16, Gol79, HT91b, JNBR93, KPL+09, KP14b, Lei93a, Lei98, LT92c, L94, Li96, Li98, LPT11, Mag13, Mag14, Man92, MP87a, MR97, MP98, Sza09, Tam94, TGW14, Tsi81, vD96]. Rank [BT11, BPS00, BL97, CM15, Cho10, CL01, Dod13, EL90, Fer09, Gal01, GVS96,
JT03, KP14a, Mar13, MF92, OW02, Pat03a, ST97a, So99, SLH16, Tia01, Tia02, Wal79b, AW83, BHD10, Bal14, BI95, BOvdD91, BL01, BS16, BdP12, Ben90, Bén11, BHH+11, Bot87, CCS98, CGW14, CT16, Che14b, CGHK08, CLN13, CLMR09, CO12, Dec95, Der16, DH16, FW13, Fie81, Fra17, Ful76, FS89, GRMA13, Gro99, Gur79, GL83, Hai88a, Har81b, HS87, HLZ05, HKS94, JW91, KS12, KP14b, Kuz05, Laf78, LL16a, Lau81, LPZ13, LPS09, LGA+13, Lim90a, Lim92a, LT14, Loc93a, Loel93b, Lon80, Lon81, MS16a, Mar11, MRRR16, Min77, MS15b, MS16b, NS15, Ned98, dSP16a, Pet09, SdF12, Šem97, SMBB+15, Shi15a, Shi16, SMF95, Sil88c, Sil88b, SS12, SBMP16, SF17, Tia05a]

rank [Tia05b, TWZ16, Wan79, Wan15, WM17, Wat85b, Wes80, Wes81a, Wes87, Wes90, Woe93, Woe08, Wu09, WW12, XL17, ZS05, Zha05, ZY17, ZX15, Zho16]. Rank-

[CM15, KP14a, BL01, Che14b, Fra17, Loe93a, Loe93b, SF17, XL17].

Rank-additivity [Har81b].

Rank-one [Cho10, CL01, BHD10, Che14b, Fra17, Loe93a, Loe93b, SF17, XL17].

Rank-preserving [EL90].

rank-subtractivity [Zha05].

rank-sum-maximum [Zha05].

Rank-two [CLN13].

Ranking [VDW85]. Ranks

[HS93a, LPS08, MS74, SK03, Tia03, AC78, BB13, Bal14, BS92, Bot94, FKR93, HK79, Haw05, KJ13, LGA+13, Lim15, MRS10, Pat87, SMS15, Tia11b]. rate [Doo16].

Rational [AMP02, AFR73, AMZ13, Bri89, LPS08, MS74, SK03, Tia03, AC78, BB13, Bal14, BS92, Bot94, FKR93, HK79, Haw05, KJ13, LGA+13, Lim15, MRS10, Pat87, SMS15, Tia11b].

Real [Joh81b, LP02, Slo13c, SB03, Wes81a, haYsS99, AF11a, AF11b, AF12, Adk95, AS12, AGZ00, Ball4, BS92, BB75, CO12, CIDK07, DH86, Den80, Dok83, Dru15, EJ91, Ese93, Fan73, GP14, GKH16, Ha89, HW13, HW14, HS88, HLZ11, Jin17, JKB17, Joh84, KML95, LS16, LM93, MRR16, Mes90, Mir09, Moh16a, NP91, ORT15, Ota13, Pal79, Pas15, Per17, RS06, RS09, Rom89, SU77, SL15, SMS15, SK15b, TT12, Tho75b, Tie16, Wes80, Wes81a, Zha01a].

Real-positive [CIDK07]. realizability [JMP17]. realizable [LS10].

realization [JMS15]. Realizations [NU94, AM90]. realizing [CJK+13].

Realteil [SU77]. rearrangements [TI77]. reas [KLZ96]. Reciprocal

[AH16b, BNP06, HINS10]. recongising [Gre99]. reconstruction [SS07].

rectangles [LOR14]. rectangular

[BCR91, CKP09, Cra91, LT88d, MHH96, Mis17, ZS05]. recurrence [Kom10].

recursion [BVW84]. reduced [Car06]. reduces [For79a]. reducibility [OR09]. reducible [Cav10, CNP06, CN07, GSS09, Ikr15b, Stu89]. Reducing

[Bap88]. Reflecting [AFVL00]. Reflection [LM03, Ell93]. reflections

[DM79, EM87, Ell95]. Reflexive [Mia93b, AH13, CIN15, Had83, Qi15].
réflexivité [Del94]. reflexivity [CHK00, Del94]. regarding [DJ89a].

regional [JLR+92]. Regions [LS04, LL14a]. Regular [KS15, Peníu02, AG16, BCEM12, CP81, CLW15, DP17, DGR08, EB17, FG06, Gol06, HS95, KMS16, Koo95, LR13, LM10, MS10c, NS99, PH15, Rod03, Sta10, TW17, Zho16].

Regularity [FG02, BV16a, CFGM06, HRT15, RR95]. regularized [DPP17].

Rejection [Whi74]. related [AkK17, Ala16, AGR91, Car90, CKLP13, CN14, CL01, For79a, GX17a, Hon92, LPT13, LT87, LFY16, McD92a, Mef79a, SMBB+15, Sin84b, Sto79, SK15a, Tra01, Tra84, WZ14, XQ15, ZBW12].

relating [JL88, Li91, Pat82]. Relation [CD03, Bén10, Dji16, DK16, Fie90b, Lim79b, MW16, Wan16a]. Relations [DS02b, CC92, Che14a, GZ76, JR93c, JR94, Kom10, LST89, LT92d, PT87, Put82a, Sin83, Tam91]. Relationship [WW12]. relationships [SPS15].

Research [Ano82f, Ano82g, Ano83m, Ano84e, Ano84f, Ano85g, Ano86e, BC05, Bap92, Bar88, Cal95b, CLLT93, De 84, EJ88, Fri88, Gra93, GM87b, JC74, Joh89, KPL+09, LMMR01b, Mer91, RP04, Sch91, Sol06, TT85, Tau73b, Tho82a, Tho85, Tho87b, Tho91, WW01, Zha92, Ano97b, LW96, Mer79a, Zha00].

Restricted [Pop13, Bal79a, Che93b, Che93a, CP16, Ned98, SG96, SPK15, SPKC15, Wer84]. restricted-rank [Ned98]. restriction [Wan15].

restrictions [BZ99, Far94]. result [AkK17, BB17a, Har84b, JLL11, New74, New82a, Poo80a, Ric87b, Tam91, ZZY16]. resultant [Bar80, GKLRR2, Orz84]. resulting [MP87a]. Results [LN98, Tau74, TH80, AAK16, AN14, BL83, BHK78, BM17a, BLZ11, BZZ10, BSZW13, CL13, De 82b, DCIW10, DW12a, DHT94, DIF13, GHL10, GX17a, Guz88, Li84, LT87, MR97, Mou13, NS85, New75, Nie10, SMBB+15, Sin82b, SWZB15, Tam77, WC15, mWyD11, Wer87, ZCP16]. Retarded [DGR08]. reversal [Kir93]. Reverse [CIN15, KM11, LW08, Rad16, ZCP17, CID16, DD14, HKO16, LFY16, RW84, WZ14, XQ15, XQ16b, ZX10]. Reversed [DL14, Bak16]. Revires [BM15b]. Review [Fan81, Kap80, Lei81, Theo83, Yaq80, AK78, Ano83a, Ano89a, BFMM73,
Con94, Fan84, HS81, Hum83, Joh83, Keg87, MS80, Mer98a, Pie92a, Sch92a, Sha95, Sko85, Sta94, Tho82b, Tho82c, Tho82d, Tho82f, Wat84a. **Reviewers** [Ano12b]. **Reviews** [Ake80, AR80, CST75, DW76, Doz79, EA77, FAR78, HUSG74, JM77, MB76, MBSL74, MGK+74, RY73, SB75, Sen81, SA77, TB76, Tho81a, Tho81b, Tho82e, WNM74, CS79, GMS+76, JTH77, LW78, Pat97, WTM78, ZF78]. **revisited** [DD14, Ere15, FHL+13, Joh90, JZ95, Per17]. **Revisiting** [Lip87]. **Ribbon** [FJK14]. **Riccati** [CK84, FN14, Igl99, LRR87]. **Richardson** [AW13, AM90, BG90]. **Richman** [BHM76]. **Rickart** [Cir15, Cir16, Cir17, Kre16, Mar15, MRD15]. **Riemann** [Red02]. **Riesz** [CDJ13, FJS14, HSM17, ZZC17]. **right** [Ake83, Bal80, Dok73, HBM15, MRD15, Pat89, Tho86a]. **right-star** [MRD15]. **ring** [Bas17, BH15a, DL92, Dok93, For79d, Hua10, HPV84, HPV88, LPT13, LCL13, Lew90, LQ95, MW16, OWX09, Piz87, Slo15b, SX12, TW17, WOY06, WZL13, YWO07, ZWM17a, ZWM17b, ZCCI12]. **Rings** [GMR81, RR04, Rao81, AH10, ÅBw16, AW13, Bas17, BLR12, BCI13, BB17b, BDvW12, BDvW16, Cir15, Cir16, Cir17, Coa99, DPvW13, DS13, DD15, Eri15, FJK14, Fog73, FSvW11, GV89, Gus81, Haw05, Jam88, Jam95, JL12, Khr16, KL12, KR07, Kre16, LPT14, LWZ15, LL10a, LCL14, Mar15, MRD15, MP13a, MP87b, McD92a, New85a, PA10, QZ16, RS08a, ST97b, TZ17, Tau73a, Wan16b, Wat85b, YW05, YQ90, ZWZ10, ZY08, ZCP16]. **Robert** [Ano97b, Day97, GPR84, New97]. **Robertson** [JZ95, Joh90]. **Robinson** [Foa79]. **robust** [Ano16c, Ous15b, Sol14]. **role** [MN96]. **Root** [Hai92b, BAN12, CGH15, EJD88, FZ11, Hai92a, Mel13b, Mey15, vBW95]. **roots** [AAT16, CL74, HHC12, JN80, KN81, Nom73, Ota13, Tie16, Uhl99]. **rootsystems** [Hai88a, Hai88b, Hai97]. **rose** [MH16]. **Rota** [FW73, Gar73, ML16]. **rotation** [GTM14]. **rotational** [Sjo93]. **Rotations** [Edw80, Edw78]. **Rottel’d** [FL16b, HWY17, Zha15b]. **Roth** [FW13]. **round** [Spi00]. **Row** [Joh81a, SS12, FV97, Har81a, Kap77, LSOvdD95, MH12]. **row-adjusted** [MH12]. **RSVD** [LT10]. **rule** [BG90, CRV95, Che93b, CPT15, Wer84]. **rules** [Che93a, Kyr08, Kyr11, MS10a]. **Rutishauser** [TT15]. **Ryser** [MS85a, New83].

S [Ano16b]. **S.** [DF82]. **Sachs** [AAT17]. **Safety** [GHV99]. **same** [CW90, Do 96, Fer10b, JGK79]. **sampling** [KKP13, SR17]. **Samuel** [Yu14]. **Sandy** [Tam86]. **Santa** [Ano79c]. **satisfied** [Wan82]. **satisfy** [McD92b]. **satisfying** [CW11b, CW12, Diu97, Pet09]. **Scalar** [Est80, AF12, Bre15, PY82, Rod81]. **Scaled** [BKL02]. **Scaling** [JR09, FLS88, HS85, Sha91]. **Scalings** [HS85, SS79]. **scattering** [MS10c]. **Schatten** [FNBR96, So90]. **Schmidt** [LF15]. **Schneider** [BHM76]. **Schur** [AO97, Bap88, BT06, Bun91, CRV95, CPLH17, Dia79, DS02b, ES98b, ES00, FJ15, GMZ11, Gur83, HS75, JK10, Kim91, LM98, Liv94, Mas10, MO94, Neu81, NT86, Rem90, SV14, Sni83, Tam02, WZ97, Wat86, Zha04a].
shaped [CT96]. Sharp
[BR04, BG66, CNUV16, Tam94, TGW14]. shifts [KY17]. Short
[MT83, Tho81a, Tho81b, Tho82e, Tho82d, Tho83, Tho82f, Ay95, Bar12, KP11, Ro99]. shuffle [Lew96]. sided [EÖ15, Tur16]. Sign
[BJS98, EJ91, EHL+13, JWP98, KS02, KMT96, Kir11, LGA+13, MOVt03, Pe02, Reg87b, AG16, Cai93, Car06, GS06, GSS09, Hem93, HS93a, Jvd88, JP07, Kin13, LL10, LHbl+15, MM11, Ma15a, MMRR16, Rem88, TI77, WYm11, WW01, YMYS13, YHCW14, ZBW12]. sign-balanced [WW01]. sign-central [Kim13]. Sign-patterns [KMT96]. Sign-Solvable [KS02]. sign-stability [Cal93]. Signature
[HR85, GLR82, WT16]. signatures [PT10]. Signed
[HLP03, BPW16, BP16, FDD14, GVS96, SSG12, TI77, TWZ16, Wan05]. significance [ShDHG08]. Signless
[MH16, WBZ14, ZZ15, AH16a, Ash16, AOTR11, FY13, LZ11b, LL15, LZ15b, LDL17, SY1L17, SH1S, WH11, WZ13, XZ1L14]. Simić [Ano16b]. Similar [Bou13b, Joh81a, Lon90, Slo17]. similarities [Bal75, Bal76, LT89b, L91]. Similarity
[Bea86, BB75, DS09, GP06, Gur97, New82b, New85b, RJ04, Wat84b, BGdH92, BG82, CR77, DB07, FI13, GB77, GH99, GL97, Gus81, Kur04, LT89a, LT90c, LM93, MW74a, Rob75, Si18c, Si90, Si93, SS96, Tia11c, Wat82]. Similarity-preserving [RJ04]. similitude [Vin06]. Simon [Raw81]. Simple
[MP87b, BHH+, BB11, Che07, CW11b, CX12, Chu84a, GT11, HPV84, HPV88, LQ95, LP96, RZ17, WY11]. simplices [ST86]. simplicial [Rad80]. Simplex
[TP90, Grü76, Lf78, Bed10, HH85, MS10b, Uhl79]. Small
[Fer10b, ST97a, Bref15, CH14, Dk09, Fer09, LT93, Mes13, PAT83, dSP11, PGLM00, SS12]. smallest
[CL86a, CL86b, Dec95, LL08, PLLH01]. Smith
[Arm17, BK17, Cha96, Der83, GRM13, HS96, HI11, Koo95, LT12b, New94, Pro95, Tho88]. sole [DSP12]. Solution
[JY14, AHK92, ALP94, BZZ11, Che93b, Che93a, De 13, DWL14, Gra80, HKT15, HW14, JS84, JN14a, MK16, Min80a, SPM14, Vei83a,
Solutions [DH03, Fla74a, Tia03, Bak84, BBP78, CC17, CH12, CCL10, CIDK07, CID16, DH86, DH11, FHW16, HW15, HSX16, Li85, Pen15, PM78, Son14, Wan15, Wer84, XSL15, YZL17].
Solvability [Lev74, fLLL+17, YqS16, AG15, JvdD91, KP11, Lip96, Tia00].
Solvable [KS02, BL10, CLOK13, Far93b, KLO14]. solve [LT10]. Solving [ST97b, fLLyP15, LZ16, LW10, XJW17].
Some [AAK16, AN14, AW07, AyT84, BS15a, Bal75, Bal76, BG83, BD94, BKL97, BZZ10, BSZW13, Cha89, CL94, DST91, DCIW10, DH91, Dra16, EMS02, EB17, Fan92, FH15a, GLOT13, Gai77, Gro97, GX17a, HS83c, HS96, Hua08, Hua09, HXL16, Jh92b, K116, KS84, LT88d, Li96, LM98, LN98, MM06, MW80, MR97, Mar92, MH12, MTR11, MS98, New75, Odo83, Oku93, PH15, Pop14, SQH15, SSW15, SG96, Sim95, Sin82b, SWZB15, Tam77, TT78, Tau74, TC04, Tia05b, Wan82, WH12, Wer87, YT15, Zha00, ZW17, dF11, AE10, BK17, Bel15, BH74, BZ99, BSA17, BD14, Cal94, CGOT13, CGMR11, CL13, CM15, CL01, DP17, Deu80, DHT94, Din15a, DDJ76, EL09, FD12, Fen10, FH15b, GP15, GT11, GL97, HW15, Hua16, JKD16, KMR89, KSMB16, KT06, Kop94, KL92, Le95a, LT87]. some [LT88a, LPS13, Mah82, MSS13, MP87a, Mar89, Mar00, MT11, MM07, Meh84, Mon13, New80b, Nie10, PP16, PM78, Reg93, Rho87, Rho90, Son14, Sta84, SL17, Sur98, TL12, Tra89, Tra90, Ye11, ZWL15, ZBW12, dC15]. sorting [CW91]. Soules [Pat89]. Sp [Ber86]. Sp-modules [Ber86]. Space [BLdPS04, ACI15, Adh13, AGR91, Bea85, CDJ13, Cla92, CR77, Das17, DTS14, Dok83, EB17, Flaj75, HT12, How80, JS15, LYZW12, MS88, MM09, MN13, Pat77, Rob75, SA10, TD14]. Spaces [AW83, BR04, HLZ02, LT92d, dSP12, Wes74, Wes87, Zha04b, AF12, ACMS10, Atk84, AT13, BBT07, Bar07, Bea85, BL97, BdPN12, BZ99, BP12, Boz97, Cha79b, CL83, Che91, CLN13, Con77, De 08, DP09, Dok90, Dra10, Dra11, Dra16, EDKA07, Edw80, FLR85, Fri97, GIl16, Gra80, GX17b, HSM17, HS85, Hol95, IKR12, Jam95, KC16, KL16, KT83, Kru06, KMEO12, LLMT05, Lim90a, Lo01, MSS13, MID17, MZ91, Mer78b, Mes90, Mol15, Pan15, Pas15, dSP16a, dSP16b, Pet09, RT09, RS85, R08, R09, RS85, SSfW15, SL17, TD16, TZ06, Til77, Wan82, Wes90, Wes95, YQ90, ZS05, ZCZ12]. Span [Zha01a]. spanned [Bun94]. Spans [How86]. sparse [Sol14]. sparsity [SM94]. spatial [LMMR15]. Specht [MMR07]. Special [LPT13, AG16, Bas17, CL91, CL17a, Dok99, HS83c, Joh81b, JLL88, KS76, KV13, LT09, Mal15, Mal95, New80b, Phu80, Pop14]. specializations [MF77]. Specified [Che03b, Ano97b, JKS79, Kap77, Kir14, PRS03]. specifying [Joh77a]. Spectra [BP16, G016, LZ15a, LPT11, LM10, LZ14b, MOTvdD03, MGA17, BHC16, Bar08, BS17a, BDS13, BJS15, Ber05, CL17b, CD15, CD85, DK17, F182b, Fr12, GR93c, GM90, JKD16, JMS15, Kra06, LS10, Me84, MA15c, NP15, NP09, WZ13, ZLS11, ZG08]. Spectral [Fla74b, FJ01, IS15, LN16, NG15, Tos79, Tur02, WC12, XQ16a, Yiz02, Yiz03, ZB13, AAS14, ACMR17, BPD88, BD84, BKL97, BBZ15, CCS16, Cos14, Din15a, DIF13, FTZ08, Far94, FLZ07, FYIS13, Fri81, Fri93, GL11, GTZ75,
[DS13, FG02, LL11, Liu15, MO91, Cir17, Har84a, Pan13, SSG12, dB14a].

strongly

[ADRP14, BP89, BP90, BP92, BL93a, Cam14, FG06, Gol06, YW10, YBCW96].

structurable [EK014].

structural

[AAB15, DPvW13, FSvW11, GPM98, HLZ11].

Structure [Gur80, AMZ13, Boz97, FJ15, FJ09, GL85, Grz89, Heo16, HSM17, Kra05, KMS07, Krc16, LWZ15, LEH96, MHH96, Mar12, Mer78c, Min74a, NP09, RJ04, ZZ00].

structured [BR01, Mag83, MMRR16, MS15a, YW16].

structures

[ABvW16, LGB17, So90, WZH13a, WZH13b, Wil73, Wis12, vR11].

study [CW89, Fri78, HRT15, Mis17, TJ16].

Sturm [GMZ17].

style [Wat85a].

Sub [CK17, AA12, BZZ10, WM17].

sub-additivity [AA12].

sub-block [BZZ10].

Sub-defect [CK17].

sub-long [WM17].

subadditive [Tik98].

subalgebra [YWO07].

Subalgebras [Ake83, BT07, CW11b, CX12, CW12, GLOT13, LZh0, LCL13, Liu16b, Ous15a, dSP11, WOW09, YW11, WL16a].

subclass [RH11a, RH11b].

Subconstituents [GZW14, GZW16].

subdefinite [ND13].

Subdirect [LLGL16, LMLL17].

subdiscriminants [Dom14].

subdivision

[CMM17, DP17, LPH17].

subdivision-coronas [DP17].

subdivision-edge [LPH17].

subdivision-vertex [LPH17].

subdominant [Kir09].

subgraphs

[AAT17, FG06, HW88, LS09, ZWL15].

subgroup [MS16b, Sur98, Wan16a].

subgroup-relation [Wan16a].

Subgroups

[LLT93, Sch79, Chn84a, Da 88, Den05, GL97, Hua90, Les93].

subject [Wan15, YqS16].

submajorization [BCK15].

Submatrices

[LP03, Cho82, Cra09, De 82a, FJM00, Fie81, GKV89, HS87, HK17, Joh84, Loe87, MN96, NTU93, SP87, Tko92b, Zab89, dO75].

submatrix

[DS09, ZHZ11].

submultiplicative [Kra05, Kra06].

submultiplicativity [HJS7, JN90a, JN92, JN00, Mer78a].

Subnorms

[GGL03, GL01, Gol07].

Superpermanents

[Min75, HM95, MM90, Ma91, Vrb86].

subrings [MP87b].

subsequences [ACJ17].

subset [Bal79a].

subsets [MO13].

subspace

[GP06, YW10].

subspaced [RFR93].

Subspaces

[BR04, CD01, Gal08, haYs89, BG86, CDJ13, CLW15, CLR81, CHK00, CS95, CF15, Dat16, Far94, GQ06, JS94, JP15b, KME01, MMRR10, Pat77, Pat84, Rod81, ySPW14, Tam98, WG91b, XFG14, Zha13, dB16].

substochastic [CKP16, CK17].

subtends [Bal80].

subtractivity [Zha05].

subunitary [ZYL13].

subvarieties [Fan92].

Sufficient

[CC98, EOvdD09a, EOvdD09b, AW07, HB83, Pal79, Ron98, SQ15, Wan82, ZW17].

Sum

[KR02, KL13, Ami80, Ash16, BP09, Caf13, Cal97, Cal99, Dji16, Fow80, GR14, Gra87, Gro99, HP90b, KM85, KLO14, LP08, LT13, MM09, Mal91, MV91, Nor08, QK92, Sil88a, Sin90, TCI13, Vas86, Vas87, XQZ13, Zel85, Zha05].

sum-of-squares [Caf13].

summation [IW95].

sufficient
LSOvdD95, LLGL16, LMLL17, MRT12, PH15, dSP17, Ric85, Ric87a, TT12, TH80, Tho92c, Tia05a, Wan76, dP74, vR11. Super [CPT15, FD17, AA12, Mit10]. super-additivity [AA12]. Super-biderivations [FD17]. superalgebra [CPT15, GMZ11].

Superalgebras [LR13, CV94, FD17, GdSV16, Lee94, WL16a, Wan16c, WL16b].
supercommuting [HDJ97]. superderivations [Wan16c].

switch-setting [GKT97]. Sylvester
[Bar80, Bed11, DH11, GPM98, HKT15, HK17, Lei83, SWL13]. Symbiosis [NT91]. Symbols [GN02]. Symmetric [BBM15, CA03, CD03, DS02b, GR81, JTO4, JMP17, LR96, Pat81, Pie85, Zha04b, All14, Bal14, BL97, BS16, BS17b, Ben90, Bén11, Ben74, BH74, BB75, BB15b, BLSV12, CL85, CL92, Che91, CT09, CLN13, Coe96, CW93, DH11, Deu80, Đok75, DL91, Fan73, FJ15, Fit94, For87, GS06, Gib76, HHC12, HWL92, JKB17, JR09, KK12, KN81, LR13, Lei95b, Li87b, fLLyP15, LLL95, LLL09, LL10a, Lim79a, Lim90a, Lim92b, Lim92c, Lim97, Lim10, LT14, Liu92, LTT11, LGB17, Loe01, Lop11b, MM05, MS85a, Mat92, Mat11, Mer94, Min76, MMG15, MAM15, MA15c, Neu74, Neu83, New74, Nom73, NTU93, OP13, Pat83, Pat86, Pat92, Pat08, Pat09, Pen15, PM81, RR91, Rei75, RW96, Rod97, SG09a, ST91, Sou83, Sta14, Sta15b, SvW14, Til77, Tre87, Uhl79, Wag87, Wim85].
symmetric [Zha05]. symmetric-indecomposable [BB15b]. symmetries [HWSH13].
Symmetrization [HO17]. symmetrize [Pat90]. symmetrized
[BJ93, BD97, Hb95, Hb72, MC78, Mar78, MC83, MC89, Mer77, WG91a].
symmetrizers [CdS03, Uhl13]. Symmetry
[DF95, HT92, HK16b, MS08, MR74, Wb81, Cha78, CL86a, CL86b, CL13, DP00, Der83, Fin92, Hil76, HK13, Jin17, Jun88, KCR87, Lim76a, Lim76b, Lim82, Lim90b, MC82, MC86, MM76, Mer78c, Mer79c, Pat95, Rob77b, yT86, WG91a, WG91b].
symmetry-antisymmetry [Pat95]. Symplectic
[BB17c, DP09, Don05, Don91, FP17, LYS15, Mal92, MMRR09, New75]. system [DH11, FHW16, HW14, KO10, Ned98, Pop17, SPK15, Sti87].

Systems
[Gib89, JR93a, KS02, KT83, Lev74, BC83, Cam83, CJ12, CF15, DPP17, DH86, Din00, Doo16, EKO14, GR93c, Hai92a, Hai92b, HMD13, HW15, HRT15, Hla17, JS84, JR93b, JSY14, KP11, LF15, Lia80, Lop11a, MC17, NT91, Roh91a, ST86, Sin83, ST97b, Wer84, WW80, XLL15, XJW17, YqS16].

T [Ano16b, Slo13c]. T [Cha84b]. T = AB [AP74]. T = AB-BA [AP74].
tableaux [Ber86, Chu90, CPT15, Don91, KW92, KW93, Mal15, Rem82].
tails [Gol16]. Takagi [HZ12]. taken [Odo83]. tangent [BB13, Til77]. Tate
[AST07, GR14, Rom07]. Taussky
[JZ95, Jol90, Sch77]. Taussky-Todd
Techniques

Techniques

Tensor

Tensors

Term

Theorem

Theorems

there

denotes

Theorems
Toeplitz [Sch77, ACI15, BG83, BdPN14, Boz98a, Boz98b, Boz99, CN08, Doo16, FH89, GR91, GR93b, G913, H76, HM78, JTW17, JS91, KL15, LL14a, Mc12, So06, Ti98, To03, Tre85, Tre86, Tre87, YZL17, Zim89]. **Toeplitz** [?]plus-CauchySolak:2006:RPN. Toeplitz-plus-Hankel [Ikr15b]. Toeplitz-plus-Hankel [Ikr15b]. Topeheavy [BC80, FH73]. **topics** [McD92a]. topological [EB17, Hau12, MVPS14, MRS10]. Tor [Coa99]. Top [BC80, FH73]. topics [McD92a]. Topological [EB17, Hau12, MVPS14, MRS10]. toroidal [Ye11]. torsionfree [BDvW16]. Total [Wan17, CC98, LIW07, Zar01, ZWM17a]. Totally [CJ12, WHG17, DJK08, Gar85]. Tournament [MP90, Dec95, KS93, Kir93]. TP [JN14a]. Trace [BF15, Epk89b, Epk89a, GR14, G91, Krov77, Lew96, MP13b, AW07, AST07, Car06, Dra16, Ebe80, Gal79, Gel78, Kap77, Mau78, Reg87b, Rem88, Rev81, Rob77a, Rom07, SQH15, SW81, Tk98, YSK15, ZY13, Z16, ZBW16]. **trace-distance** [ZBW16]. trace-form [Mau78]. traceable [ZW17]. Traced [RSPT17]. traceless [LT14]. traces [Fra13, LWXF15, Wan16d, XWF15]. Tragedy [Die79]. trains [HWSH13]. **transference** [FP17]. transform [AL78, JLL07, Lo073, RS08b, ST08]. transformation [BG82, CS10, CR77, Diaz90b, El93, Lim76a, LM10, Rob75]. transformations [Hau17, Lo074, Wes74, Wes95, AW83, Bea78, Ben78, BP12, Bot79, CL83, CL92, DK17, Gau76, Had83, Jam81, JLL88, Kov77, Kun99, LL90, Lau81, LLWX17, Lim79a, Lim90b, MHH96, Mcf79a, MP73, Min77, Neu83, Pat77, Pea84, SSZ93, Wat85b, Wat82, Wei93]. Transforms [And04, Lee98]. Transition [RW96, Tau74, CPZ17, LN14, Wal11]. transitive [CL86b, LZ09, LMR00]. translation [Sel81]. translations [PY82]. transportation [Har91]. transpose [Gow80]. transposed [CR77, Rob75]. Transposes [Ric81, Sin93]. transposition [AF11a, AF11b, AF12]. transversal [Kas85, Mum86a]. treatment [Smi74]. **Tree** [LHbL+15, Bap97, BGK99, BGK00, BCD09, JD99, JS08, Mer89, NP09, NU94, Pat07, PJ90, Zim98]. tree-patterned [NU94]. Trees [MSZ04, Moh16b, AAS14, BGK00, BNP06, BLP08, Bru79b, FLZ07, Fie90a, FOR79, GHL10, GF10, JSW09, JS16, KNS96, KN97, KN00, LP07, LT12a, LC14, LH13, MN04, Moo95, NP13, SG06, TJ11, WBZ14, ZB13]. Triangle [AAP82, Tho89, YW10]. **Triangular** [BKLI02, Ches0a, Gal03, Iov15, BCH16, BT90, Ben05, Ben07, Ben16, BGV11, BH15a, BDO16, Bou13a, BSZW13, CdM15, CW16, Cho10, CL01, DTS14, Do07, DW12b, EGT16, Eme15, FZ17, Foa05a, Gha13, HC14, HH85, Hua10, JLZ12, JSE90, JUO0, K06, LSS01, LB11, Li11, MJ07, MS08, Neu83, QHI11, Ric78, S100, Slo13a, Slo13b, Slo14a, Slo14b, Slo15a, Slo16a, Slo17, TZ17, VMO06, WZC11, WZL13, Wan16a, Wan16b, Wan16d, XW12, XWF15, YZ13, ZZZ16, ZWW10]. triangularizability [DK14, YT15]. triangularizable [Rus16]. triangularization [Laf78]. triangularization [Wri93]. **Triangularizing** [Bot97]. triconnected [Vo83b]. tricyclic [GL11, HHW15]. Tricyclic [RY93]. Tridiagonal [SJ02, AC13, Al15, BG82, Dnu00, Doo16, MR13, MNN98, SR17, YHCW14].
V [Ano16c]. \textit{valid} [Sin81b]. \textit{valuation} [AW13, Piz87]. \textit{valuations} [GM90]. \textit{value} [AS15, CQW16, CH87, GHT11, JN90b, MS81, SA10, YZ16]. \textit{valued} [AW13, BG16, Bri89, DD10, EDKA07, FD14, Gil93, HSM17, MS81, Sil84, Tho89, Tur02]. \textit{Values} [Mir81, AHJ87, Bap87, BI95, CJK+13, GRSW92, Hil17, JRMFMASS16, Joh75b, Kap77, Kar83, KNS96, Li84, LT90a, LT92b, LT93, LCL14, MS85b, Mat92, Nie10, Odo83, ST00, Tag12, Tho75a, Tho75b, Uhl14, Zha00]. \textit{Vandermonde} [Bra86, GKL82, Ric87b, WLX16]. \textit{vanishing} [GQ06, MF77, Mer77, Pok87]. \textit{Variable} [CSCH01, KY17]. \textit{variables} [Est80, Paz84]. \textit{Variation} [Fri82b, FJ09, Ben90, BD84, BE90, BKL97, Deu80, Fri90b, FJ01, JP07, Kir04]. \textit{Variations} [Yiz02, Yiz03, BM15b, MW80]. \textit{varieties} [BB13, Hul81, Pat86]. \textit{variety} [BCS14, GP15, Lim92b]. \textit{Various} [CID16]. \textit{vec} [HS81]. \textit{vec-permutation} [HS81]. \textit{Vector} [Adh13, BHJ90, SL15, Cla92, Con77, Das17, DPP17, DM87, Dok83, EDKA07, HS85, How80, KL95, KMEO12, MN13, Pan15, R809]. \textit{vector-valued} [EDKA07]. \textit{Vectors} [GMD85, BdPND17, CJ97, CJK+13, DMdO92, JP07, Kir91, LK16, Nom73, Roh06]. \textit{Vein} [Fie84]. \textit{verbally} [Cen11, Per15]. \textit{Vergne} [Ous15a]. \textit{version} [BGK00, HL84, IT16, KS14b, LMMR15, MMR07, Mer89, MP94, MP95, Nag17, PSA14, Pas15, Tho89]. \textit{versions} [AEV12, EL09, Orz84]. \textit{Vertex} [KP02, MS87, LPH17]. \textit{vertical} [MN96]. \textit{vertices} [AEdF13a, AEFD13b, ACMR17, DdF15, HZ03, KNS96, LT12a, LDL17, WH11, WDJ10, Zhu15]. \textit{via} [BM17a, Gran76, HRT15, Ikr15b, JMP17, Joh11, KNS96, PSM16, RW84, Sta15a, SZWB16, SZBW16, Tan81, Uhl13, XQ16a]. \textit{Viennet} [Foa79]. \textit{viewpoint} [Dic84].

w.r.t [Cha96]. \textit{Waerden} [Fri78, Fri82a, Lon80, Min82b, Sin81b, Sin84b]. \textit{Walk} [Rod03]. \textit{Walk-regular} [Rod03]. \textit{walks} [FS14]. \textit{Wang} [Cha89, Hu87, Hu89]. \textit{Watkins} [Pat93]. \textit{ways} [How83]. \textit{Weak} [EPR16a, EPR16b, Neu79, CFGM06, IS15, JGS90, ND13, Wer86]. \textit{Weak-local} [EPR16a, EPR16b]. \textit{Weakening} [Hua16, You15]. \textit{Weakly} [Fra17, IS16, KSM16, KY17, LMLL17, SZWB16]. \textit{Wedderburn} [LMMR15]. \textit{Weierstrass} [Atk91]. \textit{weighing} [KMS07, LN10]. \textit{Weighings} [NW02]. \textit{weight} [KN04, LT11, LT12a, TJ11]. \textit{Weighted} [AG96, MS10c, SKM17, BSG+12, CW10, CL17a, Che16, CNUV16, DTS14, EJD88, Fer10a, KS16, KY17, KNS96, KN97, KF98, LT11, LT12a, SMM14, TD14, TD16, TJ11, TGW14, WMR16, Win85, YLS10, ZY17, vBW95].
weights \[B\text{én}10, \text{Lee}94\]. **Welch** [Dat16]. **Westwick** [Atk84, Poo80a]. **Weyl** [BHC16, ML12, TOM88, ZZ16]. wheels [BS95]. **Where** [Bal80, BLR12, CD01]. **which** [Ano16c, BB75, Ben78, Bre15, BF96, FH73, HS83a, JL90, JLS09, Kap77, KMT96, KE82, Loe93a, Loe93b, MZ91, MN04, Ous15b, PP16, Ric81, Sin76b, Sin81b]. **Whittaker** [aCC17]. whose [AS95, Ano16b, AOTR11, BP90, BPS16, BPW16, BGZW16, CCGO11, DH86, DM87, FdF09, HNS99, JD99, JS08, KLO14, LR13, MSZ04, Nab98, Sim95, Sin73, Sin76a, Sta10, Stu89]. **WHS** [EOvdD09a, EOvdD09b]. **WHS-matrix** [EOvdD09a, EOvdD09b]. **width** [HM76, HM78, Tsi83]. **Wielandt** [CNP06, Gum15, LL14b, Zha01b]. **Wiener** [Adu15, MZ04, Mer89]. **Williamson** [Wal75b]. **wise** [Gue17]. **without** [GL85, MS10a, New79, Pok87, Tam91]. **witnesses** [LF15]. **Witt** [Hai97, Haw05, Hua09, Lew90, LGB17, Zha97]. **Witt-like** [Zha97]. **Words** [WZ95]. work [New97].

\[^x\] [Bea86].

Yamaguti [BBM15, Bre14, ZL15]. **Yamazaki** [Veí83a]. **Yound** [Rem82]. **Young** [AdFK15, Cds03, KM11, Nas75, SYK15]. **Young-type** [AdFK15].

Z [BSS12, CdM15, HMO11]. **Z-matrix** [BSS12]. **Zero** [BCR91, BSL01, BS16, Gha13, Gra10, Gra11, Soa08, Ach77, AGM13, Bre12b, BH15b, Bur95, BSO13, CLX03, CW16, CM07, Das17, FLR85, FKKS11, HS93a, JL93, KMOV07, KS82, Lim10, LM89, MDW11, MOvdD90, McD92b, MY12, Min84, Pal79, Pat90, dSP17, Rob77a, Slo16b, SH92, ZWW10, ZWW10, ZWW17]. **zero-divisor** [ZWW17]. zero-nonzero [CM07, KMOV07, MY12]. zero-patterns [JL93]. zero-sets [Soa08]. zero-star [BS16]. **Zero-term** [BSL01, BS16]. zeroes [LR96]. Zeros [AGZ00, LT07, AS12, Dat80, KS07, KK90, Mel13a]. **Zeta** [CP10, Sat11, SMM14, SMM16]. Zwahlen [TT74].

References

[AAB15] E. Akkurt, M. Akkurt, and G. P. Barker. Jordan homomorphisms of the structural matrix algebras. *Linear Multilinear Algebra*, 58...
Ahmadi-Asl:2017:EIA

Alahmadi:2012:SSN

Alahmedi:2012:MNM

Aghamollaei:2016:SRN

Akemann:1982:TIO

Aalipour:2014:LSC

Agrawala:1978:EIR

Alnajjar:2013:BTL

Cai:2017:QWM

Achilles:1977:PDS

Abdikalykov:2015:UCA

Aryal:2017:HMS

Andrade:2017:BGA

Enide Andrade, Domingos M. Cardoso, Luis Medina, and Oscar Rojo. Bethe graphs attached to the vertices of a connected graph — a spectral approach. *Linear Multilinear Algebra*.
Antezana:2010:NSO

Alzer:2015:YTI

Adhikari:2013:VSL

Adkins:1995:FP1

Achour:2014:FSC

Adukov:2015:RTF

Alizadeh:2010:EUI

Andelic:2013:NAMa

Andelic:2013:NAMb

Alaminos:2012:MVH

Ablamowicz:2011:TAIa

Ablamowicz:2011:TAIb

Ablamowicz:2012:TAI

Alvarez:2013:CFL

Afriat:1973:RCF

Abrams:2000:RPM

Arens:1996:WNM

Ambrozie:2015:IPC

Adm:2016:ISS

Arens:1996:JMN

Aharoni:1976:TDK

Ando:1987:SVH

Agha:1992:SIH

Alahmadi:2014:DSM

Amiad:1978:BR

Ando:1994:PMD

Ake:1980:BRa

Ake:1983:SRI

Charles A. Akemann. Subalgebras and right ideals in matrix algebras. *Linear and Multilinear Algebra*, 12(4):311–313,

Axelsson:1994:NRM

Alperin:1995:FPM

Azenhas:1990:MRL

Ahmad:2013:BEE

Agore:2015:ITM

Amitsur:1980:CPS

Amiraslani:2011:NLF

Anonymous:1980:EBb

Anonymous:1980:EBc

Anonymous:1980:EBd

Anonymous:1980:EBe

Anonymous:1981:EBa

Anonymous:1981:EBb

Anonymous:1981:EBc

Anonymous:1981:EBd

71
Anonymous:1981:EBe

Anonymous:1982:EBa

Anonymous:1982:EBb

Anonymous:1982:EBc

Anonymous:1982:ENa

Anonymous:1982:ENb

Anonymous:1982:RPa

Anonymous:1982:RPb
Anonymous:1983:BR

Anonymous:1983:EBa

Anonymous:1983:EBb

Anonymous:1983:EBc

Anonymous:1983:EBd

Anonymous:1983:EBe

Anonymous:1983:EBf

Anonymous:1983:EBg

Anonymous:1983:EBh

Anonymous:1983:EBi

Anonymous:1983:ENa

Anonymous:1983:ENb

Anonymous:1983:RP

Anonymous:1984:EBa

Anonymous:1984:EBb

Anonymous:1984:EBc

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Anonymous: 1992: EBf

Anonymous: 1992: SLP

Anonymous: 1993: EBa

Anonymous: 1993: EBb

Anonymous: 1993: EBc

Anonymous: 1993: EBd

Anonymous: 1993: EBe

Anonymous: 1993: EBf

Anonymous:1995:EBb

Anonymous:1995:EBc

Anonymous:1995:EBd

Anonymous:1995:EBe

Anonymous:1995:EBf

Anonymous:1995:EBg

Anonymous:1996:EBa

Anonymous:1996:EBb

Anonymous:1996:EBc

Anonymous:1996:EBd

Anonymous:1996:EBe

Anonymous:1996:EBf

Anonymous:1997:EB

Anonymous:1997:RCT

Anonymous:1998:EBa

Anonymous:1998:EBb

Anonymous:1998:EBc

Anonymous:1998:EBd

Anonymous:1998:EBe

Anonymous:1998:EBf

Anonymous:1998:EBg

Anonymous:1999:EBa

Anonymous:1999:EBb

Anonymous:1999:EBc

Anonymous:1999:EBd

Anonymous:2000:EBa

Anonymous:2000:EBb

Anonymous:2000:EBc

Anonymous:2000:EBd

Anonymous:2000:EBe

Anonymous:2000:EBf

Anonymous:2001:EBa

Anonymous:2001:EBb

Anonymous:2001:EBc

Anonymous:2001:EBd

Anonymous:2001:EBe

Anonymous:2001:EBf

Anonymous:2010:TR

Anonymous:2011:EB

Anonymous:2011:TR

Anonymous:2012:EB

Anonymous:2012:LR

Anonymous:2013:EB

Anonymous:2014:EB

Anonymous:2015:EB

Anonymous:2016:EB

Anonymous:2016:EBF

Anonymous:2016:EOV

Gustavo Araújo and Daniel Pellegrino. Optimal estimates for summing multilinear operators. *Linear Multilinear Algebra*, 90

Allison:2011:FMM

Al-Saket:2012:DBR

Aydogdu:2015:AC

Alizadeh:2017:LMP

Al-Salam:1979:CLP

Ashraf:2016:TCS

Altinisik:2005:GMP

Au-Yeung:1995:SPT

Au-Yeung:1993:TFG

Au-Yeung:1983:CMG

Au-yeung:1984:STG

Azenhas:1999:AII

Baeza:1984:AIQ

Baksalary:1984:NDP

Jerzy K. Baksalary. Nonnegative definite and positive definite solutions to the matrix equation $AXA^* = B$. *Linear
Bakherad:2016:RRG

Ballantine:1975:SIS

Ballantine:1976:AAS

Ballantine:1977:PIM

Ballantine:1978:CCO

Balasubramanian:1979:CFR

Balasubramanian:1979:MDS

Ballantine:1979:PCC

Ballantine:1980:WNR

Ballico:2014:UBR

Ben-Ari:2012:PAP

Bapat:1987:MSV

Bapat:1988:RSI

Bapat:1991:NPH

Bapat:1992:RP

Bapat:1997:MPI

Barker:1974:SMC

Barker:1976:MNT

Barker:1978:FDC

Barnett:1980:GCD

Barker:1988:RP

Bartl:2007:FLO
David Bartl. Farkas’ Lemma, other theorems of the alternative, and linear programming in infinite-dimensional spaces.

Bendaoud:2009:LMP

Benito:2015:SMO

Barker:1978:PDS

Barile:2007:PDC

Bozkurt:2015:SRE

Beasley:1978:PS

Barker:1980:GTC

Beasley:1982:MPG

Barker:1983:IST

Beasley:1985:TSG

Brualdi:1991:EDR

Bru:1994:NJC

Bakonyi:2005:RPC

Boularas:2006:EAI

Breaz:2017:SNM

Barriere:2009:HPG

Beitia:2010:CFI

Bendito:2012:DRG

Benitez:2013:EIA

Bhat:2015:SEI

Bru:2010:SSD

Rafael Bru, Ljiljana Cvetković, Vladimir Kostić, and Francisco Pedroc.

[Bapat:2005:FPM]

[Ball:1991:ZDI]

[Bermudez:2014:ICV]

[Bhatia:1984:BSV]

[Bhatia:1985:CCF]

[Bebiano:1988:BNR]

[Bebiano:1994:SGP]

Natália Bebiano and Joao Da Providência. Some geometrical properties of the c-numerical range of a normal matrix. *Lin-

Bani-Domi:2009:NRI

Bebiano:1998:NRP

Bebiano:2012:IHR

Bebiano:2014:NRB

Bebiano:2017:GRQ

Bendaoud:2013:MMP

Beasley:1985:NSS

Beard:1986:SX

Bebiano:1986:NP

Bedratyuk:2010:PSA

Bedratyuk:2011:ACS

Bellman:1983:CME

Belardo:2015:LES

Bender:1974:CPSa

Edward A. Bender. Characteristic polynomials of symmetric matrices II: Local number fields. *Linear and Multilinear Al-
Benenson:1978:CLT

Benasseni:1990:NBV

Benkovic:2005:JHT

Benkovic:2007:LDT

Benasseni:2010:ARB

Benasseni:2011:LBL

Benkovic:2015:LTD

Benkovic:2016:JDT

Berele:1986:CSM

Bercovici:2002:NRO

Bernik:2005:GSM

Berliner:2012:CCM

Brualdl:1975:MCP

Busque:1996:ACW

Barioli:2005:EGD

Francesco Barioli and Shaun Fallat. On the eigenvalues of generalized and double generalized stars. *Linear Multilinear
Brualdi:2015:TIM

Brusamarello:2012:AAI

Barrodale:1973:BR

Baragana:2007:HIS

Bogart:1979:HCP

Bunse-Gerstner:1982:STT

Barnett:1983:SEH

Bergeron:1990:SFL

Blanchard:2016:UBA

Etienne Blanchard and Ilja Gogić. On unital \(C(X) \)-algebras and \(C(X) \)-valued conditional expectations of finite index. *Linear Multilinear Algebra*, 64(12):2406–2418, 2016. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Beitia:1992:LME

Bapat:1999:GMT

Bapat:2000:EVM

Beasley:2007:FDT

Leroy B. Beasley, Alexander E. Guterman, Sang-Gu Lee, and Seok-Zun Song. Frobenius and Dieudonné theorems over

Brualdi:1986:AF

Booth:2011:MSR

Batigne:1978:FRI

Bourin:2010:JMI

Borosh:1976:AQP

Bapat:1995:SVM

Ballantine:1975:AMP

Ballantine:1983:SDR

Bebiano:1992:BSD

Beasley:1993:LOS

Bourque:1993:MAA

Beasley:1997:RPS

Beasley:2001:LPD

Bai:2010:CNN

Beasley:1992:CMP

Barik:2008:TLE

Bapat:2012:ACG

Benitez:2012:IRC

Blunck:2012:ISB

Benitez:2010:NGI

Benitez:2011:ARG

Bapat:2012:P

Brualdi:1989:CMP

Brunat:2007:PGP

Bodine:2012:SAP

Bernik:2014:SLA

Bakherad:2015:CRI

Bakherad:2015:RVH
Mojtaba Bakherad and Mohammad Sal Moslehian. Reverses and variations of Heinz inequality. Linear Multilinear Algebra,

121

Eugene Boman. The Moore–Penrose pseudoinverse of an arbitrary, square, k-circulant matrix. *Linear Multilinear Alge-
Botta:1979:LTP

Botta:1987:LMP

Peter Botta. Linear maps preserving rank less than or equal to one. *Linear and Multilinear Algebra*, 20(3):197–201, 1987. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Botha:1994:FSM

Botha:1996:IFM

Botha:1997:TMC

Boumazgour:2006:END

Boumazgour:2013:DIU

Bourgeois:2013:SPM

Bourgeois:2014:AMF

Bourgeois:2014:CAM

Barrett:1991:NEF

Bapat:1995:PFT

Bozzo:1997:AMS

Bozkurt:1998:NCTa

Bozkurt:1998:NCTb

Bozkurt:1999:NHP

Berman:1974:INM

Beasley:1989:LOS

Beasley:1990:LOS

Beasley:1992:LOS

Bapat:1998:ACC

Bebiano:1998:EMC

Bremner:2009:PIT

Besenyei:2012:CMT

Bhat:2016:SEB

Bebiano:1988:SCM

Zachlin:2008:NRM

Botelho:2012:PSH

V. Bolotnikov and L. Rodman. Finite dimensional backward shift invariant subspaces of a class of reproducing ker-

[Bre15] Matej Bresar. Algebras in which non-scaler elements have small centralizers. *Linear Multilinear Algebra*, 63(9):1864–

Barik:2017:DSC

Beasley:2017:PSM

Bisht:2017:IIM

Blazquez-Sanz:2017:CAF

Brualdi:2012:EEI

Beasley:2001:ZTR

H. Bart and G. Ph.A. Thijssen. Simultaneous reduction to companion and triangular forms of sets of matrices. *Linear and
Bru:1998:GIG

Benitez:2006:GSC

Bondesson:2007:NMI

Baksalary:2008:CEN

Benitez:2008:ILC

Baksalary:2010:CIM

Baksalary:2011:RFP

Carini:1990:PSR

Carini:2006:CCS

Caserta:1991:EID

Cavers:2010:RMP

chuan:1985:FSI

Cassam-Chenai:1992:GPR

Craven:1998:SCS

Chan:2014:TDP

Cai:2017:ISG

Camacho:2011:FLA

Cheng:2010:PIQ

Cui:2016:EPE

Chan:1998:MRA

Canto:2016:SSR

Camacho:2013:DSE

Chang:2014:EHR

Cao:2013:MPC

Choudhury:1987:ASV

Chen:2006:PIA

Cho:2010:RNR

Chen:2012:ESM
2012. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

[Cha79a] G. H. Chan. Minimal \((k)\)-groups of degree \(n \leq 3k\), \(3k < n \leq 4k\). *Linear and Multilinear Algebra*, 7(2):155–166, 1979. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Chu:1984:EMB

Chui:1984:DAL

Chu:1990:DMP

Cvetkovic-Ilic:2009:ERD

Cvetkovic-Ilic:2016:VSR

Cvetkovic-Ilic:2007:PRP

Cvetkovic-Ilic:2015:ROL

[CIN15] Dragana S. Cvetković-Ilić and Jovana Nikolov. Reverse order laws for reflexive generalized inverse of operators. *Linear Mult-

153
Cvetković-Ilić:2017:PRS

Cirulis:2015:LOR

Cirulis:2016:ESO

Cirulis:2017:DPO

Carlson:1997:EPD

Choi:2012:TIB

Corey:2013:CPV

Dan Corey, Charles R. Johnson, Ryan Kirk, Brian Lins, and Ilya Spitkovsky. Continuity properties of vectors realizing

Chorianopoulos:2009:DNR

Cao:2016:MCD

Cross:1974:SRC

Carlson:1980:IBM

Chan:1983:LTT

Carlson:1985:EMI

Chan:1986:NSCa

Chen:2014:BCM

Chan:1993:RP

Clark:2009:LPH

Chooi:2013:LSP

Casas:2013:CSL

Choi:1981:CIS

Mario Chica and Javier Merí. Rank-1 numerical index of some families of norms on the plane. *Linear Multilinear Algebra*, 160.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CP10]</td>
<td>Samuel Cooper and Stratos Prassidis</td>
<td>Zeta functions of infinite graph bundles</td>
<td>Linear Multilinear Algebra</td>
<td>58(2)</td>
<td>185–201</td>
<td>2010</td>
<td>LNMLAZ</td>
<td>0308-1087 (print), 1563-5139 (electronic)</td>
</tr>
<tr>
<td>[CP16]</td>
<td>Yingtong Chen and Jigen Peng</td>
<td>Influences of preconditioning on the mutual coherence and the restricted isometry property of Gaussian/Bernoulli measurement matrices</td>
<td>Linear Multilinear Algebra</td>
<td>64(9)</td>
<td>1750–1759</td>
<td>2016</td>
<td>LNMLAZ</td>
<td>0308-1087 (print), 1563-5139 (electronic)</td>
</tr>
<tr>
<td>[CPLH17]</td>
<td>Jingjing Cui, Guohua Peng, Quan Lu, and Zhengge Huang</td>
<td>The new improved estimates of the dominant degree and disc theorem for the Schur complement of matrices</td>
<td>Linear Multilinear Algebra</td>
<td>65(7)</td>
<td>1329–1348</td>
<td>2017</td>
<td>LNMLAZ</td>
<td>0308-1087 (print), 1563-5139 (electronic)</td>
</tr>
</tbody>
</table>

deBruyn:2010:GMU

dBondt:2014:SNI

Dolzan:2014:MMC

DeBondt:2016:MSC

Michiel de Bondt. Mathieu subspaces of codimension less than n of $\text{Mat}_n(K)$. *Linear Multilinear Algebra*, 64(10):2049–2067, 2016. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

diBenedetto:2000:OMM

deCamargo:2013:GME

DeCamargo:2015:SDI

Deutsch:1980:VER

Dicks:1982:PSP

DiasDaSilva:1987:MPI

DiasDaSilva:1990:NSP

DiasDaSilva:1995:SCT

daFonseca:2005:CAP

daFonseca:2011:SOQ

Mehdi Dehghan and Masoud Hajarian. On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations. *Linear Multilinear
Draisma:2016:ANC

Du:2007:AMP

Dmitrishin:2016:SCD

Dirr:2008:RBN

DiasDaSilva:1995:EMP

Dey:1994:SPS

[Di 88] O. M. Di Vincenzo. On the Kronecker product of S_n-
cocharacters for P.I. algebras. *Linear and Multilinear Algebra*,
23(2):139–143, 1988. CODEN LNMLAZ. ISSN 0308-1087
(print), 1563-5139 (electronic).

ISSN 0308-1087 (print), 1563-5139 (electronic).

ISSN 0308-1087 (print), 1563-5139 (electronic).

[Dia90b] J. A. Dias Da Silva. On the minimal polynomial of the associated
transformation. *Linear and Multilinear Algebra*, 27(4):
275–283, 1990. CODEN LNMLAZ. ISSN 0308-1087 (print),
1563-5139 (electronic).

[Dic84] Wayne E. Dick. Discrete characterizations of planarity part i:
the classical viewpoint. *Linear and Multilinear Algebra*, 16(1–4):
39–65, 1984. CODEN LNMLAZ. ISSN 0308-1087 (print),
1563-5139 (electronic).

[Die79] J. Dieudonné. The tragedy of Grassmann. *Linear and Mul-
0308-1087 (print), 1563-5139 (electronic).

[Du13] Zhibin Du, Aleksandar Ilić, and Lihua Feng. Further results
on the distance spectral radius of graphs. *Linear Multilinear
Algebra*, 61(9):1287–1301, 2013. CODEN LNMLAZ. ISSN
0308-1087 (print), 1563-5139 (electronic).

[Din98] Jiu Ding. On the perturbation of least squares problems with
equality constraints. *Linear and Multilinear Algebra*, 45(1):

178

Drew:1998:CPD

Djikic:2016:EFF

Dryden:2008:AEC

Drew:1994:CPM

Dacorogna:2011:DGA

Drnovsek:2014:LGI

Dolinar:2016:HCR

Dolinar:2013:ALP

Drnovsek:2014:JNR

Dadkhah:2017:GTI

Duffner:1992:SVC

DoRosarioFernandes:1996:PMS

deOliveira:1975:MPC

Dodig:2013:RDP

Dozier:1979:BR

dePillis:1974:DTS

DaFonseca:1998:PPC

Darafsheh:2000:OBS

DeBruyn:2009:SPS

Das:2017:NLS

dePillis:1981:NST
Dasari:2017:SSP

Dascalescu:2013:JIG

Dragomir:2010:CTI

Dragomir:2011:RCB

Dragomir:2013:GFI

Drazin:2013:CPG

Dragomir:2016:STI

Dragomir:2017:BTI

Drazin:2017:BPG

Drensky:1993:FGI

Drnovsek:2013:NEU

Drury:2014:FTD

Drury:2015:PPM

Dooley:1993:SAO

DiBenedetto:2002:NSM

Donley:2002:SOR

Dolinar:2004:MMA

Dodig:2009:SCM

DeFilippis:2013:SCE

Diaz:2016:NIE

DeOliveira:1983:NES

Defez:2015:NAS

Du:2010:NII

Duffner:1997:NSM

Davis:1976:BR

Day:1992:PSC

Deng:2012:FRM

Du:2012:AJM

Dugas:2016:FIA

Duan:2013:MEA

Duan:2014:PDS

Ernest:1977:BR

Ercan:2017:STG

Ebanks:1992:FMM

Eberlein:1980:TF

Erdogdu:2015:TSL

Eisner:2009:SCP

Elsner:2009:SCP

Epkenhans:1989:TFNb

Epkenhans:1989:TFNa

Essaleh:2016:WLDa

Essaleh:2016:WLDb

Elsner:1981:EAM

Egecioglu:1990:CII

Eremita:2015:FID

Eldred:2012:NRC

Engel:1973:IDP

Engel:1976:HF1

Erdös:1976:HAF

Elsner:1998:BM

Elsner:1998:CCM

Elsner:2000:CSS

Eschenbach:1993:SPR

Eshkaftaki:2017:GKC

Estes:1980:SMM

Engel:1977:MGS

Falikman:1997:PCM

Fan:1973:RMP

Fan:1981:BR

Fan:1983:IAF

Fan:1984:BR

Fan:1988:ROE

Fan:1992:SIM

Ky Fan. Some inequalities for matrices A such that $A - I$ is positive definite or an M-matrix. *Linear and Multilinear

[Fosner:2013:LPQ] Ajda Fošner, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze. Linear preservers and quantum information science. *Linear

Fiedler:1995:MPI

Finston:1992:ADE

Furtado:2006:EPM

Fitzgerald:1994:CPS

Furtado:2001:SVU

Furtado:2009:VJS

Farber:2015:SSC
Fujii:1998:CCO

Fauser:2014:RHA

Fallat:2000:EPM

Feki:2014:RBE

Fellows:1991:SLT

Fosner:2011:MPM

Fallat:2003:MAC

Shaun M. Fallat, Steve Kirkland, and Sukanta Pati. Maximizing algebraic connectivity over unicyclic graphs. *Linear

Foster:1993:DRH

Facchini:2016:EMP

Fu:2016:RIP

Flanders:1974:ASM

Flanders:1974:NSR

Flanders:1975:EPS

Li:2017:SME

Li:2015:HAS

Fillmore:1985:MSZ

Friedland:1988:ADN

Feng:2007:MLS

Friedland:1978:MPD

Ferrante:2014:RTD

Felton:1996:GNR

Anthony J. Felton, B. Nashvadia-Bakhsh, and H. P. Rogosinski. On generalised \(k\)-numerical radii of Schatten class oper-

Formanek:1979:CRG

Foregger:1987:REL

Foregger:1988:PCC

Fosner:2005:APU

Fosner:2005:NLC

Fowler:1980:ELF

Fiori:2017:ELO

Simone Fiori and Stilian Prifti. Exact low-order polynomial expressions to compute the Kolmgoroff–Nagumo mean in the

[Fri82a] Shmuel Friedland. A proof of a generalized van der Waerden conjecture on permanents. *Linear and Multilinear Algebra*.

Raúl Felipe-Sosa, Raúl Felipe, Juana Sánchez-Ortega, Murray R. Bremner, and Michael K. Kinyon. The Cayley–Dickson

Fallat:2012:SCN

Feng:2013:SLS

Faliva:2011:IFM

Fei:2017:NGL

Gay:1985:CPI

Gaines:1977:SGA

Gallagher:1979:LTF

Galantai:2001:RRF

Galantai:2003:PTM

Galantai:2008:SAP

Gamas:2000:SFI

Garsia:1973:EMR

Garbanati:1975:EHN

Gardner:1975:MAD

Garsia:1979:MIA

Garloff:1985:IEP

Gauger:1976:EDI

Gauger:1977:CFI

Gover:1990:GBM

Gungor:2011:DSR

Giambruno:2016:ISA

216

Goldberg:2003:SSI

Geramita:1976:OD

Gonzalez:1998:MIM

Ghahramani:2012:AMD

Ghahramani:2013:ZPD

Gumus:2016:ERI

Geng:2010:FRP

Guo:2016:NDI

Gumus:2011:SVI

Guterman:2016:NMP

Gracia:1999:SNI

Gibson:1976:PSD

Gibson:1987:DCA

Guo:2016:ATG

Gago:2013:SRF

Grone:1992:NPS

Gohberg:1982:FSM

Guterman:2013:ECM

Guo:2016:ENL

Grone:1987:HIT

Grone:1987:RP

Grone:1990:CME

Goncalves:1985:VPM

Gustafson:1981:MCD

Gerstein:1976:BR

Grone:1986:HDT

Grishkov:2011:DCM

Moshe Goldberg. Quasimonotonic functions on c^n and the mapping $f \rightarrow f^+$. *Linear and Multilinear Algebra*, 27(1):63–
Goldwasser:1992:MPD

Goldberg:2006:QSR

Goldberg:2007:RSF

Golinskii:2016:SIG

Gordon:1983:AGA

Gouveia:2013:TPC

Gow:1980:EIM

Geramita:1974:RFH

Grone:1996:DNN

Garcia-Planas:2006:SPL

Garces:2014:OFO

Giuzzi:2015:SSG

Gregory:1994:DAG

Garcia-Planas:1998:GSE

Ghanbari:2014:CJM

Grunenfelder:1984:CTR

Gow:2006:VSA

Garsia:1981:SFR

Gohberg:1991:UBT

Giarrusso:1993:PFC

Gohberg:1993:CBT

Israel Gohberg and Boris Reichstein. Classification of block-Toeplitz h-normal operators. *Linear and Multilinear Algebra*,
Greiner:1993:JSC

Goze:2010:AAT

Gonzalez:2014:NAQ

Gracia:1980:DSS

Granville:1987:MSF

Grady:1993:RP

Grasic:2010:ZPD
Grasic:2011:ZPD

Greenhill:1999:ARE

Golpar-Raboky:2013:EIR

Grone:1985:ISI

Grone:1995:EDS

Grob:1996:CRI

Grob:1997:SRP

Moshe Goldberg and E. G. Staraus. On generalizations of the Perron–Frobenius theorem. *Linear and Multilinear Alge-

Gibson:1995:CLA

Gao:2001:IAP

Gao:2006:ISS

Gao:2009:BLB

Guralnick:1979:RCU

Grob:1998:POP

Grassmann:2008:CSQ

232

Gustafson:1994:OT

Guterman:2001:FTT

Guzman:1988:TRP

Greub:1987:BIM

Giambruno:1989:NPR

Giambruno:1995:MIM

Gregory:1996:RDS

Gau:1998:DI

Gau:1998:NR

Gau:2004:NRN

Gau:2008:LSE

Gau:2012:NED

Gau:2015:NRT

Gau:2016:CNR

Gu:2014:SUG

Gu:2016:ASU

Gumus:2017:SNR

Guo:2017:EKR

Gyires:1978:ICM

Golberg:1976:IRB

Grone:1990:LEL

Hailat:1992:RST

Hailat:1997:CWR

Halmos:1986:EA

Halmos:1991:BPG

Hartfiel:1978:ABP

Hartwig:1978:NPO

Hartfiel:1981:HRC

239

Hocine:2015:LRG

Hai:2014:IUT

Haulk:1997:CSM

Hemasinha:1993:SIC

Heo:2016:SIC

Hershkowitz:1983:EMP

Heyfron:1988:IDO

Hao:2012:NRL

Huang:2015:LIT

Hiai:1994:ECM

Hillel:1976:DAS

Hildebrand:2007:LDC

Hildebrand:2007:PMS

Hildebrand:2011:LDC

Hilberdink:2017:SVM

Haukkanen:2010:UAG

Hoffman:1977:LGC

Horn:1987:HCS

Han:2017:CEG

Hall:1979:RIG

Hall:1980:MIG

Hwang:1994:LOP

Hwang:1995:MCM

Hashemi:2015:CTA

Hartfiel:1984:DVF

Han:2009:NPJ

Huang:2010:CFI
Hladik:2017:TIL

Hou:2003:LES

Havlicek:2002:AFS

Hu:2005:PNO

Huang:2011:SCR

Hoskins:1976:ICT

Hoskins:1977:PIS

Hoskins:1978:INI

Hwang:1995:ISP

Hashemi:2013:MPS

Horn:1991:IUI

Higuchi:2011:SDL

Hershkowitz:1999:HPS

Huang:2017:SPM

Hoffman:1975:LF

Holmquist:1985:DPP

Holmes:2004:OCR

Hong:1992:PAD

Hong:1993:TDI

Hong:1999:LBD

Hora:2004:ODC

Hoa:2015:COM

Hou:2001:BGM

Hou:2009:ANN

Hou:2017:LDH

Howard:1980:DIR

Howland:1983:FWA

Howell:1986:SM

Hartwig:1990:WMD

Hartwig:1990:WMS

Henderson:1983:HKP

Huylebrouck:1984:MPI

Huylebrouck:1988:MPI

Hu:2014:ET

Helton:1985:SPL

Helmberg:1995:SAB

Herrero:2015:ASN

Herstein:1975:ETS

Henderson:1981:VPM

Daniel Hershkowitz and Hans Schneider. Height bases, level bases, and the equality of the height and the level character-

[Hershkowitz:1991:CBD]

[Hershkowitz:1993:RZP]

[Hershkowitz:1993:CEM]

[Hwang:1993:MPM]

[Haemers:1995:GCD]

[Haukkanen:1996:SAS]

Hu:1995:MWM

Hu:1994:CDJ

Huang:1990:EIC

Huang:1996:LAA

Huang:2001:CST

Huang:2008:SIH

Huang:2009:SEW

Huang:2010:APB

Huang:2016:WCS

Hughes:1990:NSG

Hulek:1981:RCM

Humphreys:1983:BR

Hunter:1983:CIN

Hunter:1986:KIR

Huang:2016:SNI

Hwang:2003:PGC

Hanusa:2011:DKP

Horn:2012:GCA

Hou:2014:LTE

Huo:2015:NMP
Ibragimov:2000:CPD

Iglesias:1999:RDE

Ilmonen:2011:SMS

Izhakian:2012:DSB

Ikramov:2015:NCB

Ikramov:2015:TPH

Ilmonen:2016:MHT

Charles R. Johnson, R. B. Kellogg, and A. B. Stephens. Complex eigenvalues of a non-negative matrix with a specified graph II. *Linear and Multilinear Algebra*, 7(2):129–143, 1979. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic). See correction of Figure 6 [Ano79b].

[Joh90] Charles R. Johnson. The Robertson–Taussky inequality re-
CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (elec-
tronic). See erratum [JZ95].

[Joh11] Nathaniel Johnston. Characterizing operations preserving sep-
arability measures via linear preserver problems. *Linear Mul-
ISSN 0308-1087 (print), 1563-5139 (electronic).

[Jon78] S. A. Joni. Lagrange inversion in higher dimensions and um-
bral operators. *Linear and Multilinear Algebra*, 6(2):111–122,
1978. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (elec-
tronic).

[Jon92] Mark S. Jones. A note on the shape of the generalized e-
numerical range. *Linear and Multilinear Algebra*, 31(1–4):81–
84, 1992. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-
5139 (electronic).

[JOvdD94] Charles R. Johnson, D. D. Olesky, Michael Tsatsomeros, and
P. van den Driessche. An identity for the determinant. *Lin-
LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

M-matrix products having positive principal minors. *Linear
and Multilinear Algebra*, 16(1–4):29–38, 1984. CODEN LNML-
LAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Jiao:2015:AMP

Ji:2013:CLD

Johnson:1984:IPC

Jefferies:1993:ACS

Jefferies:1993:CSS

Jones:1993:IRN

Jones:1994:IRI

Kotin:1982:MWC

Kegel:1987:BR

Kestenband:1983:PFA

Kirkland:1998:PCA

Korkee:2005:GFM

Kang:2013:IPS

Kang:2015:LTK

283

Kirkland:2000:BAC

Kirkland:2004:CSI

Kirkland:2009:CBB

Kirkland:2011:SPE

Kirkland:2014:LBM

Kittappa:1981:PCP

Kittaneh:1991:NOP

Hilkka Kankaanpää and Jorma Kaarlo Merikoski. Two inequalities for the sum of elements of a matrix. *Linear and Mult-

M. G. Krein and M. A. Naimark. The method of symmetric and Hermitian forms in the theory of the separation of

[Kirkland:1997:ACW]

[Kirkland:2000:EFP]

[Kirkland:2004:ACF]

[KNS96]

[Knut:1985:SOB]

[KNX93]

[KNX95]
I. Koltracht, M. Neumann, and D. Xiao. Corrections: On a question of Boyle and Handelman concerning eigenvalues of

1977. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
Komiya:1983:SLI

Khosrovshahi:1995:NLG

Karaev:2006:SAD

Kunicki:1999:CPN

Kurtz:2004:SPM

Kuzma:2005:AMD

Kolesnikov:2013:SID

Lei:2013:TGT

Liu:2014:GSD

Li:2017:IRC

Liu:2017:SLS

Lee:1991:IM

Lee:1994:SDW

Lee:1998:RTL

Lee:2015:SFM

Lee:2016:FIJ

Legisa:2006:AMP

Lehmer:1976:CLP

Lehmer:1991:MP

Li:1996:SNC

Leipnik:1981:BR

Leipnik:1983:ENF

Lei:1991:CNR

Lei:1992:GNR

Lei:1993:GNR

Lei:1993:NRI

Leite:1993:GHM

Lei:1995:MSE

Lei:1995:GCN

Tian-Gang Lei. On the generalized congruence numerical range with the completely symmetric function. *Linear and
Lei:1998:CNR

Lester:1993:OS

Levin:1974:SMS

Lewin:1977:NMG

Lewis:1990:LWR

Lewis:1996:TFK

Lewis:1997:HMQ

Liu:2013:SCS

Luo:2015:TSP

Leahey:1975:NP

Li:1984:NMR

Chi-Kwong Li. A note on Miranda’s results about the characteristic values and the three types of singular values of a complex matrix. *Linear and Multilinear Algebra*, 16(1–4):297–303, 1984. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic). See [Mir81].

Li:1985:ESC

Li:1986:SRC

Li:1987:CM

147. 1979. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Lim:1982:LMS

Lim:1990:LMS

Lim:1990:LTS

Lim:1992:CRT

Lim:1992:CDS

Lim:1992:DSA

Lim:1997:LPD

LitadaSilva:2017:CPE

Liu:1992:FIE

Liu:2015:SCP

Liu:2016:LLD

Liu:2016:CCN

Liu:2017:ECG

Livshits:1994:BMG

Li:2014:NRI

Liang:2014:EWM

Lin:2015:BDS

Lau:2016:LRO

Li:2016:ELS

Li:2017:NPB

Llarull:1996:ICF

Li:2016:SAE

Loewy:1973:MEL

Loewy:1974:RLT

Loewy:1987:DNS

Loewy:1992:CIP

Loewy:1993:LMWa

Loewy:1993:LMWb

Lee:2016:EAA

Lin:2017:PGM

Li:1995:MPD

Li:2001:LOPa

Lim:2016:P

Li:1989:CMC

London:1986:BSN

Chi-Kwong Li and Nam Kiu Tsing. Norms that are invariant under unitary similarities and the C-numerical radii. *Linear

[LT92c] Chi-Kwong Li and Nam-Kiu Tsing. Chapter 6: linear preservers on numerical ranges, numerical radii and unitary sim-

[Li:1992:CLPc]

[Li:1993:LOL]

[Li:2004:E]

[Lourenco:2007:ZCH]

[Li:2009:PSI]

[Liu:2010:HUR]

[Li:2011:SRW]

Shuchao Li and Yi Tian. On the spectral radius of weighted unicyclic graphs with a positive weight set. *Linear Multilinear

[LWXF15] Xinfeng Liang, Feng Wei, Zhankui Xiao, and Ajda Fošner. Centralizing traces and Lie triple isomorphisms on generalized

Li:2011:CJD

[JZ11a] Jiankui Li and Jiren Zhou. Characterizations of Jordan deriv-

Li:2011:PBS

[LZ11b] Shuchao Li and Li Zhang. Permanental bounds for the sign-

Liu:2012:ELA

Liu:2013:ELA

Liu:2014:CPP

[LZ14a] Shunyi Liu and Heping Zhang. Characterizing properties of perma-

Liu:2014:SNC

[LZ14b] Xiaogang Liu and Sanming Zhou. Spectra of the neighbour-

Lan:2015:SGO

Mau:2015:CCL

Mourad:2015:SDS

Machado:1995:M

Machado:2009:CEB

Magnus:1983:SML

Magajna:2013:BRD

Magajna:2014:BRD

Mahoney:1982:DIG

Maiti:2011:CPS

Malek:1986:M

Malek:1989:NPC

Malek:1991:MSS

Maliakas:1992:NSL

Malek:1994:HM

Maliakas:1995:IMT

Mourad:2015:NIS

Man:1987:CGN

Man:1991:INR

Man:1992:NRN

Marcus:1975:ANR

Marcus:1976:CFI

Marcus:1978:DSTb

Marcus:1982:EN

Marcus:1982:RPP

Marcus:1984:EG

Marcus:1989:UES

MarquesDeSa:1990:IDC

MarquesDeSa:1992:SNO

Marcus:1997:LBP

Marvin Marcus and John Chollet. Linear groups defined by decomposable tensor equalities. *Linear and Multilinear Algebra*.
Marcus:1982:ISC

Marcus:1983:EDS

Marcus:1986:COB

Marcus:1989:LBN

Ma:2017:JLT

McCloskey:1985:PNP

McDonald:1982:CD

McDonald:1992:CIP

McDonald:1992:PZE

McFall:1979:EDT

McFall:1979:HCE

Ma:2011:SZD

Meenakshi:1980:MEA

Mehrmann:1984:SCS

Melman:2010:ABS

Melman:2012:OCT

Melman:2013:SOC

Melman:2013:ULB

Merris:1974:IIG

Merris:1975:IK

Merris:1977:VDS

Merikoski:1978:SNH

[Mer78a] Jorma Kaarlo Merikoski. On the submultiplicativity of norms of Hölder and Minkowski type. Linear and Multilinear Algebra,

Marcus:1979:LOP

Marcus:1992:RIC

Munoz-Fernandez:2012:EAB

Mehranian:2017:SPG

Murdock:1974:BR

Mattila:2012:SPR

Ma:2016:SLS

Minc:1974:SIM

Minc:1974:IM

Minc:1974:SLA

Minc:1974:UCP

Minc:1975:SDS

Minc:1976:IES

Minc:1977:LTM

Minc:1980:ASM
1980. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

353
Miranda:1992:PDE

Mirman:2009:PPF

Mishra:2017:FSA

Mitra:1992:BES

Mitsuhashi:2010:SFF

Ma:2007:GJD

Meng:2016:PDS

Mehl:2009:PAL

Mehl:2016:EPT

Mahoney:1980:DAG

Mohan:1996:RRS

Molitierno:2004:OWG

Molnar:2012:IRE

Mohammadian:2016:GTR

Mohammadian:2016:TAM

Molnar:2009:LMM

Molnar:2015:JTE

Moon:1976:NMG

Moon:1995:AMA

Moslehian:2012:KFI

Mosic:2015:NCF

Mourad:2004:LTA

Mourad:2013:GSR

Maybee:1990:PZE

Merris:1973:EDH

Marcus:1987:CGN

Maxson:1987:SSM

1987. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

[MP13b] Karli Morris and Robert Perlis. Trace forms of abelian extensions of number fields of type (1,0). *Linear Multilinear Algebra*.
Mary:2016:GIP

Mohindru:2016:OSC

Madariaga:2017:LRF

Merris:1974:DCS

Marcus:1975:BFG

Markus:1997:SRN

Mashreghi:2007:CAE

Mazorchuk:2008:MMO

Moslehian:2010:GBI

Marrero:2012:ACF

Marrero:2013:NRI

Marrero:2015:IGH

Martinez-Rivera:2017:CFP

Marovt:2015:SLS

Janko Marovt, Dragan S. Rakić, and Dragan S. Djordjević. Star, left-star, and right-star partial orders in Rickart *-rings.

Marcus:1987:VPN

Marcus:1988:BIT

Marcus:1989:NDE

Martins:1995:EMC

Molnar:1998:SLP

Molnar:2002:EOS

Madadi:2008:SCT

Mbekhta:2009:LMP

Ma:2010:DCR

McKinley:2010:SBD

Mizuno:2010:WSM

Mishra:2012:DNS

Monfared:2015:SIE

Mousavi:2015:JHR

Mallik:2016:GMS

Mousavi:2016:QEC

Malek-Shahmirzadi:1983:CCM

Majdak:2013:EPO

Martinez:2004:CMW

Marcus:1983:SBR

Marcus:1984:LMA

Merikoski:1991:LHI

Macias-Virgos:2014:TAL

Marcus:1974:APS

Marcus:1974:EDD

Marcus:1980:SVN

Ma:2015:NCG

Ma:2016:AGI

Bo Ning and Jun Ge. Spectral radius and Hamiltonian properties of graphs. *Linear Multilinear Algebra*, 63(8):1520–1530,
Niezgoda:2007:BMI

Niezgoda:2010:CSR

Niemiec:2014:FCD

Niroomand:2011:TSN

Nakazato:1995:BNR

Noferini:2015:WHM

Nomizu:1973:CRV

Norman:1995:JFT

Norman:2008:JBT

Newman:1973:BMG

Neumann:1980:MCI

Nomizu:1991:LGR

Neumann:2009:LSG

Nath:2013:DSR

Neubauer:2002:ODS

Oblak:2012:NCN

Oboudi:2016:CCB

Odoni:1983:SRV

Oger:1994:IEE

Dokovic:1973:CML

Dokovic:1975:NIS

381
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Ostrand:1974:CNG

Otake:2013:CND

Oussa:2015:CVP

Oussa:2015:DGF

Olesky:1977:NMN

Okubo:2002:RRM

Ou:2009:ANL

383

PereiradaSilvaSilva:2015:PPC

Peralta:2017:OFO

Petek:1997:AMP

Petrychkovych:2000:GEP

Petrovic:2009:BSM

Petrovic:2010:MPI

Petrovic:2000:BGS

Puystjens:1997:GIC

Pan:2003:TNC

Yong-Liang Pan and Yao-Ping Hou. Two necessary conditions for $\lambda^2(G) = d^2(G)$. *Linear Multilinear Algebra*, 51(1):31–38, 2003. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Patricio:2015:SRS

Phuong:1980:BPS

Pierce:1974:AMF

Piercet:1979:DPL

Pierce:1985:ESF

Pierce:1992:BR

Prokip:1995:MSN

Petrovic:2003:GCS

Przeslawski:1992:LAC

Poljak:1991:CGJ

Pal:2014:GOV

Pal:2016:NCO

Pellegrino:2015:GTA

Richman:1981:MWC

Richman:1985:MSS

Richman:1987:AMS

Richman:1987:RAB

Ren:2004:CSS

Rohn:1994:LII

Robinson:1975:LBD

Robinson:1977:MZT

Robinson:1977:QFS

Rodman:1981:NIS

Rodman:1997:PSS

Rodriguez:2002:LEM

Rodriguez:2003:LSW

Rodman:2008:PQS

Roman:1982:OF

Romdhani:1989:CRC

Romo:2007:LPT

Rousseau:1998:SCN

Rowlinson:1995:I

Ruzieh:1990:DSP

Rodman:2004:RPL

Ran:1991:SFR

Rex:1995:NCR

Radjavi:2002:CI

Radjabalipour:2004:RMD

Ran:1993:SII

Richman:1974:PSN

Ramanujan:1985:OIS

[Soleymani:2014:LPE]
M. Soleymani and A. Armandnejad. Linear preservers of even majorization on $m_{n,m}$. *Linear Multilinear Algebra*, 62(11): 1437–1449, 2014. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

[Shamsabadi:2017:IFF]

[Salazarf:1979:AMM]

[Salem:2012:GBM]

[Salem:2014:BGH]

[Samelson:1978:NLH]

[Sano:2014:NDM]
Sato:2011:BZF

Singh:2001:IHP

Seidenberg:1975:BR

Song:2003:LOP

Song:2016:PCP

Schwerdtfeger:1975:PIG

Schneider:1977:OTT

Schwerdtfeger:1978:PIG

Scharlemann:1979:SFG

Schmidt:1991:RP

Scheinerman:1992:BR

Schwarz:1992:BCD

Schellwat:1995:ICG

Schmale:2015:LE

Sciriha:2012:RSG

Salazar-Díaz:2016:CDT

Seddik:2004:NRN

Seddik:2011:CCU

Seidel:1995:GRG

Sell:1981:CFD

Semrl:1997:CMH

Seneta:1981:BR

Seneta:1983:SLE

Stegeman:2017:BRR

Shen:1996:SEI

Sciriha:2006:MCT

Shao:2009:ECL

Shao:2009:ETC

Shao:2005:ECT

Sun:1992:DOM

Smith:1998:IMP

Shapiro:1991:UBN

Shahriari:1994:M

Shahriari:1995:BR

Shang:2015:DEI

Song:2002:MPF
Seok-Zun Song, Suk-Geun Hwang, and Gi-Sang Cheon. Minimum permanents on a face of the polytope of doubly stochastic...

Schulte-herbruggen:2008:SBN

Shemesh:1977:TO

Shitov:2015:NRM

Shitov:2015:TCS

Shitov:2016:MMT

Shkarin:2012:HTO

Shreve:1990:QFC

Shiu:2017:SLS

Sierksma:1999:LPP

Silva:1984:CAR

Silva:1988:ESM

Silva:1988:RDMb

Silva:1988:RDMa

Silva:1990:SPM

417

Richard Sinkhorn. Doubly stochastic matrices squares leave the permanent invariant. *Linear and Multilinear Alge-

Sivakumar:2006:MPI

Song:2002:MPT

Sjogren:1993:CBR

Song:2003:CRT

Suyama:2015:BEB

Suyama:2015:NAB

Stanimirovic:2017:RPW

Skorohod:1985:BR

Sohn:1995:CPC

Song:2015:VGR

Sun:2017:EPS

[Xiuhong Sun and Yuan Li. Extension properties of some completely positive maps. *Linear Multilinear Algebra*, 65(7):1374–1385, 2017. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).]

Slanina:2016:GFP

Stavrou:2016:RCT

Slowik:2013:BMI

Slowik:2016:SSZ

Slowik:2017:EIT

Shi:2004:TKN

Shaked-Monderer:1994:EPS

Shaked-Monderer:2015:NRC

Shiu:1995:RCL

Smith:1974:GTN

[Sumi:2015:TRT] Toshio Sumi, Mitsuhiro Miyazaki, and Toshio Sakata. Typical ranks of $m \times n \times (m-1)n$ tensors with $3 \leq m \leq n$ over the real number field. *Linear Multilinear Algebra*, 63(5):940–955, 2015. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Soleymani:2014:FRA

Song:2014:CSS

Soules:1983:CSN

Sourour:1986:FTM

Sourour:1992:NFM

Soules:2003:NPU

Simoes-Pereira:1987:NCS

Song:2015:NSC

Shao:2015:SNT

Santana:1999:GRM

Selvan:2017:ITO

Shao:2007:CAI

Saunders:1979:CGO

Silva:1996:PNI

Fernando C. Silva and Wasin So. Possibilities for the number of invariant polynomials of the difference of two similarity

Stavros G. Stavrou. Canonical forms of $2 \times 2 \times 2$ and $2 \times 2 \times 2 \times 2$ symmetric tensors over prime fields. *Linear Multilinear Algebra*, 62(9):1169–1186, 2014. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Stavros Georgios Stavrou. Canonical forms of order-k ($k = 2, 3, 4$) symmetric tensors of format $3 \times \ldots \times 3$ over prime fields. *Linear Multilinear Algebra*, 63(6):1111–1124, 2015. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Steeba:1981:EFK

Shi:2013:BEP

Sun:2015:SRR

Szeto:2012:MRA

Sheng:2015:HLA

Sababheh:2015:IYH

Shen:2017:CSL

Schwarz:1985:EPS

Szafraniec:2009:DNR

Sun:2016:MPI

Sun:2016:CSR

Taghavi:2012:AMA

Tam:1977:SRP

Tam:1985:NPT

Tan:2010:DAP

Tan:2012:LCL

Tan:2013:IMC

Tang:2013:RST

Tan:2014:DMS

Tan:2016:IPS

Taussky:1973:HTM

Tian:2010:EEG

Tian:2011:DID

Tian:2011:ERQ

Tian:2011:TUS

Tie:2016:ECR

Tikhonov:1998:MSF

Tilgner:1977:GTR

Yongge Tian and Bo Jiang. An algebraic study of BLUPs under two linear random-effects models with correlated covariance matrices. *Linear Multilinear Algebra*, 64(12):2351–2367, 2016. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Algebra, 64(10):2030–2048, 2016. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Tan:2011:DAP

Tsatsomeros:1993:NMT

Teresa:1988:HBW

Tong:1987:SRM

Tosio:1979:SOM

Trapp:1984:HSM

Tran:1989:CPS

Cam Van Tran. Combinatorial properties of some classes of matrices over GF(2). Linear and Multilinear Algebra, 24(3):

[Tran:1990:CCP]

[Taghavi:2016:NLJ]

[Trench:1985:EPT]

[Trench:1986:EPT]

[Trench:1987:CPS]

[Tian:2005:CST]

[Tsing:1981:SGN]
CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

[TT12] Tin-Yau Tam and Mary Clair Thompson. Determinants of sums of two real matrices and their extensions. *Linear Mult-

Xiao-Min Tang, Jin-Li Xu, and Chong-Guang Cao. A note on idempotence-preserving maps. *Linear Multilinear Alge-

Frank Uhlig. Faster and more accurate computation of the field of values boundary for n by n matrices. *Linear Multilinear

Veselic:1980:OLQ

VanDam:1995:EDG

Vinroot:2004:F

Vinroot:2006:NOS

Vecchio:2007:BIN

Vo:1983:DOU

Vo:1983:FTC

Vo:1983:SGD

vonRosen:2011:ICP

Vrba:1986:PSL

Wadsworth:1985:DCT

Wadsworth:1990:AGT

Wagner:1987:CSB

Wallis:1973:CHM

Wall:1975:DSM

Wallis:1975:CWT

Wales:1979:CBF

Wall:1979:RFP

Wallis:1986:EMH

Walker:2011:BSL

Wang:1976:DSD

Weaver:1983:EEC

Webster:1983:HMD

Weintraub:1993:NLT

Wei:1998:EDI

Wenchang:2006:FBD

Werner:1984:ECR

Werner:1986:GIW

Werner:1987:SRR

Werner:1994:CMS

Westwick:1974:LTG

Westwick:1975:TNR

Westwick:1980:MLR

Westwick:1981:RTRb

Westwick:1981:RTRa

Chi Song Wong and Joseph C. Masaro. A-optimal design matrices $X = (x_{ij})_{N \times n}$ with $x_{ij} = -1, 0, 1$. *Linear and Multilinear Algebra*, 15(1):23–46, 1984. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Woerdeman:1993:MRC

Woerdeman:1997:HNC

Woerdeman:2008:HRN

Wang:2009:ALA

Wang:2006:DIL

Wright:1993:JCL

Wang:2011:LSC

Xian:1999:AMP

Xu:2014:PIS

Xie:2017:FAS

Xu:2011:DAP

Xu:2017:AMR

Xia:2015:FTT

Xu:2016:AMI

Xiaowei Xu, Yue Pei, and Xiaofei Yi. Additive maps on invertible matrices. *Linear Multilinear Algebra*, 64(7):1283–1294,

Chuang Xu. On the idempotency, involution and nilpotency of a linear combination of two matrices. *Linear Multilinear

Yan:2014:CTS

Ye:2011:KIS

Yu:2015:MIO

Yopp:2005:EEF

Yu:2014:EPT

Yu:2013:BSR

Yizheng:2002:SIV

Tam:1986:GDN

Tam:2000:GME

Yan:2015:SRL

Yu:1996:NNM

Yu:2014:SMS

Yuanwu:1998:NRC

Yuzvinsky:1984:SMP

Yu:2005:GIC

Yu:2009:DRG

Yongfeng:2010:DLD

Yuan:2016:SQM

Yu:2007:ASB

Yang:2013:CAG

Yang:2014:NMP

Yuan:2016:CPS

Yongxin Yuan and Kezheng Zuo. Compute $\lim_{\lambda \to 0} X(\lambda I_p + Y^T A X)^{-1} Y$ by the product singular value decomposition. *Linear Multilinear Algebra*, 64(2):269–278, 2016. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

Yuan:2017:LST

Zaballa:1989:MPI

Zaballa:1990:MPI

Zarnowski:2001:GIT

Zhou:2013:SCL

Zhou:2012:GIB

Zelmanowitz:1978:BR

Zhang:2017:RNE

Zhou:2008:CBO

Zhang:2011:CMD

Zhang:1989:NHP

Zhang:1992:RP

Zhan:1995:QPR

Zimmerman:1989:BTP

Zimmermann:1998:MCC

Zhang:2015:DEL

Zhu:2017:LMM

Zhai:2011:EGT

Zou:2012:CCF

Zhu:2016:IAP

Zhang:2005:ARO

Song:2016:UBN

Zhang:2012:URA

Zhou:2014:LMM

Zhou:2017:SSS

Zhang:2015:PSC

Zhou:2017:AGT

[ZX10] Bing Zheng and Zhi-Ping Xiong. The reverse order laws for \(\{1, 2, 3\} \)- and \(\{1, 2, 4\} \)-inverses of multiple matrix products. Linear Multilinear Algebra, 58(6):765–782, 2010. CODEN LNMLAZ. ISSN 0308-1087 (print), 1563-5139 (electronic).

[ZXL16] Jun Zhu, Changping Xiong, and Pan Li. Characterizations of all-derivable points in \(B(H) \). Linear Multilinear Algebra,

