A Complete Bibliography of the LMS Journal of Computation and Mathematics

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 October 2017
Version 2.14

Title word cross-reference

132 [56].

2 [34]. 2000f [34]. 2B [128].

6 [50].

barycentres [75]. Base [103]. Based
[267]. between [12, 70]. BGJT [282].

BGJT-algorithm [282]. Bianchi [242, 236].

binary [10, 34]. binomials [69]. bipartite
[183]. Birch [200]. Black [92, 61, 172].

Black-Box [92, 61, 172]. blob [63]. blocks
[342]. Borcherds [237]. Borel [143].

Bound [97, 163]. Boundary [108].

[92, 225, 61, 172]. branched [57].

branching [167]. Brauer [125, 216, 42].

breaking [72]. Brownian [344]. Bruhat
[249]. Buchberger [162]. buildings [208].

Calculating [255]. calculation [287, 44].
Calculations [140, 72]. Calculus
[150, 14, 314]. canonical [249, 372, 254, 58].
capture [55]. cardinalities [355]. case [66].
cases [198]. Cassels [179]. Categorical
[116]. census [347, 289]. central [246].
certain [343, 3, 163, 170, 16, 55]. Chamber
[146]. chambers [214]. Champ [304].

champion [231]. Chandra [198].

Character [115, 143, 161, 367, 160, 191].

Characteristic
[99, 117, 283, 365, 33, 49, 164, 36, 47, 270, 158].
characteristics [216]. characters
[246, 311, 346, 216]. checked [7].

Cherednik [304]. Chevalley
[255, 346, 36, 224]. Chief [136].

Chlodowsky [245]. choice [62]. chromatic
[217]. ciphers [220]. Class [91, 287, 294].

128, 293, 371, 186, 340, 368, 235, 48].

Classes [151, 255, 55]. Classical

inequality.

Groups

Interactions implicit.

Integral integration.

Higher-Order Homomorphisms.

Heuristic heuristic.

Hidden hexagons.

Iteration.

Ideals ideals.

Hecke Hecke.

IDEAL.

Inversion.

Inverses.

Invertible.

Inversion.

Inverse.

inverses.

iterative.

Iterating.

Iterative.

Interpolations.

interpolatory.

Intersection.

Intervals.

Inverses.

Iteration.

Iterative.

Interpolations.

Interpolating.

Interpolation.

Interpolation.

Ideal.

imaginary.

ideal.

Hilbert.

Higher.

Higher.

Height.

Heights.

height.

Hecke.

Hecke.

Hecke.

Hecke.

Hecke.

Heis.

Heir.

Hardy.

Hardy.

Harada.

Hayt.

Hasse.

Hausdorff.

Hausdorff.

Hausdorff.

Representations.

Irreducible.

Irreducible.

Isospectral.

Isospectral.
multiset
[19]. Multitude [105].
multiplicative multiplication [271, 348, 349, 7].
natural [228]. Multilinear [156, 110, 159, 236, 290, 37, 284, 272].

Method [94, 106, 15, 206, 243, 45, 314, 212, 326].
methods [28, 53, 345]. Microscale [105].
middle [350]. Minimal [95, 276, 88, 233, 137, 254, 51, 176, 248, 40, 342].
Models [116, 105, 303, 169, 276, 51]. Modular [154, 90, 240, 336, 324, 316, 204, 259, 209, 164, 194, 317, 236, 290, 37, 284, 272].
module [58]. Modules [135, 9, 5, 223, 342].
moduli [277]. monomials [227]. monotone [335, 320]. monotonicity [258].

Mordell [318, 171, 270]. Mori [319].
multilinear [364]. multiple [283, 247, 307].
multiplication [271, 348, 349, 7].
multiplicative [314]. multiplier [170].
multiset [19]. multitransition [185].
Multitude [105]. multivariate [228].
natural [228]. nets [333]. networks [183].
Nice [78]. Nilpotent
[308, 101, 138, 170, 184].
Nilpotent-independent [308].

non-existence [171]. Non-Hurwitz [110].
non-monotone [335, 320].
non-self-adjoint [159]. non-stationary [330, 264].
Non-variational [156].
noncyclotomic [65]. nondegenerate [227].
monic [233]. nonlinear [53, 197, 326].
nonstandard [22]. Nonvanishing [290].
normal [297]. normalisation [14].
Normalizers [172]. norms [69]. Norton [216].
Note [40, 261, 262, 195]. NTRU [364, 350].
Number [145, 85, 97, 283, 214, 293, 299, 323, 329, 340, 287, 369, 368, 41].
Numbers [120, 363, 338, 267, 294, 222].
Numerical [28, 56, 83, 338, 60, 190, 23, 64].
Numerical-symbolic [190].

Obstruction [125, 166]. odd [73, 173, 259].
OM [234]. one [28, 239, 168, 200, 236].
one-step [28]. ones [57].
Operator [121, 209]. operators [156, 4, 13, 245, 201].
Optimal [109, 300, 166]. Optimally [109]. orbitals [8].
ordered [370]. orders [359]. ordinary [270, 326].
orthogonal [339, 311, 165]. Oscillation [335, 320].
oscillator [17, 53]. oscillatory [27].
overconvergent [209, 302].
overlattices [273].

package [319, 304]. Pairing [99, 309, 179].
Pairing-Based [99]. pairing-friendly [309].
pairs [250, 6]. pairwise [205]. parabolic [161].
parallel [325]. parameters [330].
Pathwise [118]. ZF [62].
Perfect [169]. Permutation [103, 339, 1, 54].
permutations [14].
perturbation [226], perturbations [206, 243].
perturbed [17, 197]. Pezzo [157]. Phylogenetic [112].
Picard [214, 82, 111, 207]. planar [244, 52]. plane [277].
Point [153, 348, 117, 244, 337, 7].
Points [119, 94, 175, 299, 171, 334, 333].

sub-Markov [67]. subdivision [261, 264].

sublattice [275]. subsets [195].

substructure [183]. subtrees [20]. successive [281]. suffices [18], sum [329].

Swinnerton [200]. Swinnerton-Dyer [200].

Szász [245].

Table [115, 143, 160]. tables [191, 161]. Tate [179, 354, 367]. technology [50].

tensor [71]. tensor-factorisation [71].

term [200]. test [206, 243]. Testing [203, 259, 184]. their [78, 315, 204, 88].

Theorem [56, 177, 244, 226, 238, 111].

Tits [249]. Tori [99]. toric [157]. Torsion [129, 266, 175, 242, 322]. Tracking [286].

Transfer [127]. transform [344].

transition [265]. transitive [1].

transitively [208]. transportable [37].

Trees [112, 42]. triangles [176].

triangular [208]. trinomial [298].

tripartite [176]. triple [195]. triples [266].

Tropical [152]. truncated [344].

Tuple [357]. twelfth [336]. Twists [144, 290].

Two [322, 313, 198, 358, 47, 270, 352].

Type [138, 191, 17, 343, 174].

unbranched [57]. uniform [66, 262].

Unipotent [141, 311]. Uniqueness [187].

unit [293]. Unitary [140, 61].

Units [129, 288]. unity [336]. unlabelled [20].

untwisted [346]. Upper [69].

use [243, 220]. used [70]. uses [50].

Using [153, 83, 55, 287, 353, 2, 62, 35].

values [298, 247]. vanishing [244]. variable [192].

variable-separated [192]. variation [344].

Variational [100, 156]. Varieties [95, 106, 218, 309]. vector [284].
REFERENCES

yoga [179].

References

REFERENCES

[Borchert:2000:RAS]

[Greenhill:2000:ARE]

[Einsiedler:2000:PSA]

[Fleuriot:2000:MNR]

[Bridges:2000:CAP]

[Kirk:2000:CAC]

[Howroyd:2000:DTA]

[Bleher:2000:SIG]
REFERENCES

REFERENCES

[55] Iain A. Stewart. Using program schemes to capture polynomial-time logically on

[Bley:2003:NEC]

[Kwak:2003:EBS]

[deGraaf:2003:ACC]

[An:2003:AWC]

[Mao:2003:NSS]

[Brooksbank:2003:FCR]

[Paulson:2003:RCA]

[Martin:2003:GBA]

[Higham:2003:EMS]

[64] Desmond J. Higham, Xuerong Mao, and Andrew M. Stuart. Exponential mean-square stability of numerical solutions to stochastic differential equations. *LMS

REFERENCES

REFERENCES

[104] Michael Vaughan-Lee. Simple Lie algebras of low dimension over GF(2).}

REFERENCES

[122] Fatima K. Abu Salem and Kamal Khuri Makdisi. Fast Jacobian group operan-

[125] Davies:2007:ICD

[116] Guy McCusker. Categorical models of syntactic control of interference revis-

[122] Fatima K. Abu Salem and Kamal Khuri Makdisi. Fast Jacobian group opera-

[Ryba:2007:CSI]

REFERENCES

[146] Peter Rowley. The Chamber graph of the M_{24} maximal 2-local geometry. *LMS
REFERENCES

Varilly-Alvarado:2009:ALM

Bley:2009:CRA

Jalsenius:2009:SSM

Huang:2009:GDS

Cummins:2009:CCC

Katz:2009:TI

Chatel:2009:PCA

Broker:2009:MPG

Smith:2010:CIS

Boulton:2010:NVC

Kasprzyk:2010:CCT

REFERENCES

REFERENCES

[180] Le Yang. Riemannian median and its estimation. *LMS Journal of Com-
REFERENCES

References

[204] Clément Dunand. On modular inverses of cyclotomic polynomials and the mag-

REFERENCES

[250] Peter Borwein and Michael J. Mossinghoff. Wieferich pairs and Barker

REFERENCES

[273] Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm based

Chevyrev:2014:CSE

Li:2014:ADS

Fisher:2014:MMC

Lercier:2014:PMS

Barbulescu:2014:MNF

Takemori:2014:CDV

Bernstein:2014:HEC

Petit:2014:FRS

Cheng:2014:TBA

Barbulescu:2014:MNF

[296] Edmond W. H. Lee and Wen Ting Zhang. Finite basis problem for semi-

REFERENCES

37

Corr:2015:NIS

Boxall:2015:HPF

Cashen:2015:VGR

Himstedt:2015:RUC

Duan:2015:SPC

Bouyer:2015:ECC

Riza:2015:RKM

Couveignes:2015:CFJ

Bruin:2015:HMC

Milio:2015:QLT

Bennett:2015:MEC

Hausen:2015:SPM

REFERENCES

Stewart:2016:MME

Bucur:2016:LTC

Lochowski:2016:DLT

Wang:2016:ASC

Kedlaya:2016:CZF

Elsenhans:2016:PCK

Kumar:2016:RMT

vanVredendaal:2016:RMM

Galbraith:2016:AAC

Quertier:2016:EHP

Heer:2016:JEI

Fisher:2016:VEO

Morain:2016:CCQ

Castryck:2016:EDR

Bai:2016:TLS

Labrande:2016:CTF

