A Bibliography of Publications about the *Mach* Operating System

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 March 2014
Version 1.32

Title word cross-reference

3.0 [BDMVL93a, GJ91, JCS+91, LHFL93, MRGB91, RS95, WKF+92]. 3.0-overview [JCS+91]. 3.0/UX [RS95]. 3/DE [THKS95]. 32nd [IEE93c].

4-7 [BS91]. 4.3BSD [BL90c]. 4th [SBC+94].

5th [USE95a].

6000 [Jaf93].

'86 [ACM86]. '89 [IEE89a, IEE89b, Voe89].

8th [TP94].

9 [MMR91]. 90-06 [Ver90]. 90-VAPP [Bur90]. '90s [Wil88]. '92 [ACM92a, Bd92b, Vor92]. '93 [SBC+94]. '94 [IEE94a, NDB94, TP94]. '95 [IEE95a]. 9th [IEE95b, MMR91].

Developments [Rag92]. Device [GSR93, Dan93].
Diego [Ano93a, Ano93c, IEE93d, USE93d]. Digest [IEE89h, IEE93a, IEE95a, IEE88a]. Digital [SBC+94, Ano90, LMR93], discardable [Sub91]. Distributed [ACM93c, Amm90, Ano88a, Ano91b, Ano92a, Ano92b, CKS93, GGDD92, Gir94, IEE90b, IEE93d, IEE94e, IEE94b, MLB+97, Nic91, Seb91b, SPB88, USE91b, USE92b, BPP92, Bau92, BM92, BGW95, BCC+91, CLR94, CNTS93, CLNW90, CCGS92, DW95, For88, FKS92, Hag94, Imaax, JR86, KF93, NCS+90, Pad95, PRK95, Pha91, Ras91, RNJ+90, Rob94, Sha91, Spe87, Sed+89, T194a, Tey87a, WL939, Yep92, YT91, FM93, Seb91a].
distributed-memory [BM92].
Drivers [GSR93, Dan93]. DROL [TST96]. Durham [Boa90, IEE93e]. Dutch [HS94a].
Dynamic [TK94, Ja92, SZ92, Sha91].

ECOO [TP94]. EDCC [EHP94].

Engineering [BS91, Bir92]. enhanced [JM92]. entities [FKS92]. Environment [BRS+85, CP97, MU95, TST96, Bry88, Cha94, GMR93, GW90b, GAD91, Pha91, Roy93, Sha91, Sed+98]. Environments [ACM93c, Ano89b, Bla91, Tew87a]. Eos [GAD91]. Equus [Far89]. error [MMR91].
error-correcting [MMR91].
EUROMICRO [Ano93b]. Europe [Ano92c, NDB94].

First [Ano94, EHP94]. FL [IEE88b]. FLEX [CFH+93a]. Flexible [SP88, CFH+93a, KN93, WW94]. Flight [Ano90a]. Florence [Ano92b]. FME [NDB94]. follow [Ano88a]. formal [GJ94, NDB94]. foundation [ABG+86, RBF+89, Wah90]. Fourth [IEE88b, IEE89a, IEE89b, IEE93b, IEE94c].
framework [And90]. France [Ano90b, Ano92c, CJ92, IEE93a]. Francisco [ACM92a, IEE88a, IEE89b, IEE95a, USE94]. FT [EKM+99]. FT-RT-Mach [EKM+99]. FTCS [IEE93a], FTCS-23 [IEE93a]. FTM [MHP94], functional [FKS92]. future [GGD92, Tev87b, TS89].

I/O [FGB91b, FGB91a]. IBM [Jaf93]. Identification [BST95]. IEEE [IEE88a]. IFAC [Bd92b], IFIP [Gir94]. II [WGR93, Ano91b, HS94b, IEE89d, USE91b].

III [ACM89, USE92b, USE93a, USE93b]. image [WGR93]. impact [CB93]. Implement [DBRD91]. Implementation [ACM92a, Ano94, Bar91, MUI95, Mil94, PC90, Sha91, She91, THKS95, TST96, Wen88, BS91, For88, FKS92, Jal92, LHFL93, OKID92, OMOP93, T94a]. Implementations [GW90a].

Implementing [CB89, CB90, Red92, TNML93]. improvements [BCF+91]. Improving [PRK95]. In-kernel [LHFL93]. Independent [USE93c, Tev87a]. indexed [WB92], indivisible [BA94]. industrial [Fur94, NDB94]. InfoJapan’90 [Ish92].

Information [Ano95, IEE93d, IEE95a, Ish92]. infrastructure [GKK94]. Institute [HS94a]. Integer [KLN91]. Integrated [And90, IEE94c, NKA93]. integration [Sou97]. Integrity [IEE89a]. Intellectual [IEE89b, IEE88a], intelligence [YT91]. intelligent [PHY+92]. interactive [MR95]. interface [BTG+88, KN93, MR95, Min93, Nic91, Rob94, TTG+87]. Interfaces [Hov91, GJ91]. interim [Spe87]. Internals [Bit90]. International [ACM89, ACM92b, Amm90, Ano93a, Bur90, CJ92, GHR89, HS94b, IEE88a, IEE89b, IEE90a, IEE91, IEE92b, IEE93a, IEE93d, IEE94f, IEE94c, IEE94d, IEE94e, IEE95b, IEE95d, MMR91, MSNS91, MMH93, MS95, NDB94, SBC+94, Shr89, Vor92]. Internet [Spe87]. interpretation [May88].

January [Ano90c, HS94b, IEE93d, MSNS91, MMH93, MS95, Shr89, USE90c, USE94, USE95b].

Japan [IEE95d, Ish92].

Joint [Bur90].

July [Ano89a, TP94, Vor92].

June [ACM92a, Ano89b, Ano91a, Bd92b, IEE89a, IEE93a, USE95a].

Kailua [Shr89].

Kernel [ABG +86, Ano93c, CRRS93, JR86, Leh89, RH91, TST96, TBG +87, USE92a, USE93d, BHMR91, BTG +88, Bit92, BTMD89, Car93, CLR94, Dri92, GMSS94, GD91, LHFL93, May88, Ras89, RKO +89, RT90, SR89, Wel91, WKF +92, Pet92].

Kernelized [DA92].

Kernels [USE92a, BM95, CPW93, LHC93, PLL91, SCB93].

Kiel [Jam92].

Kona [Shr89].

KTK [GMSS94].

Lake [USE95a].

Lancaster [SBC +94].

Languages [ACM89, ACM92b, IEE94d, Mai93, USE93c].

Large [BRS +85, CR92, Koo93, Ros89, YMBM94].

Large-Scale [BRS +85, CR92, Ros89].

Latency [Jef94].

Level [GSR93, SP91b, Dea93, DW95, OT94, OT95, SP91a, TNML93].

Leverage [IEE89b, IEE88a].

Leverage/COMPACON [IEE88a].

Libraries [Ano89b].

Life [Pet93].

Linkage [Ros94].

Linux [Bro97].

Lisp [CLNW90, Mac91, Mac92, McD89].

load [Jal92, MGZ93, Sha91].

Local [Mil94].

Location [USE93c].

Location-Independent [USE93c].

Lock [Car93, CPW93].

Logic [Vor92, DLR +92].

Lookaside [BKWW94, BRG +89, Ros89].

Loosely [BAA94].

Lottery [WW94].

Louisiana [USE95b].

Low [Ros89, DW95].

Low-synchronization [Ros89].

LPAR [Vor92].

M [SGM90].

MA [ACM89, ACM92b, IEE94d, Mai93, USE93c].

Maarten [HS94a].

Mach [AKST93, EKM +99, KONT95, Ras89, TN91, USE91a, USE93a, USE93b, ABG +86, ACCB93, BTG +88, JR86, Lac91, Ras87, Tev87b, TBG +87, TTG +87, And90, Bab90, Bab90a, Bab90b, Bacxx, BC88, BRK +85, Bar91, BD92a, BDMVL93b, BDMVL93a, Bas91, Bau92, BB93, Bit90, BS91, Bit92, Bla88, BGO +89, Bla90a, Bla90b, BGJ +91, Bla91, BGJ +92, Bol89, BCC +81, BL90c, BL90b, BKL93, BMT89, BL91, Bro97, BCCR91, Car93, CLR94, CNTS93, CBB90, CB90, Cha94, CR92, CMS90, CJWT93, Chexx, Dun93, Dun94, Dra91, Dra92, Dri92, DW95, Duc91, EKM +99, ES90, FM93, FJ +92, FL94, For88, FGB91b, FGB91a, GBB93a, GBB93b, Gol90, GD91, GJ91, Hov91, Imanx, Ja93, Ja92, Jho91, JCS +91, KF93, KTN93, Koo93, Kup93, KD95, LBLM90, Leh89, LHFL93, MRGB91, Mlo91, McD89, MR95].

Mach [MUI95, MGZ93, MZDG93, Mi94, MLB +97, Min95, Mit91, Mit93, MKT98, Mor96, Moy93, NM91, NYM92, NKT93, Nan91, Nic91, OMOP93, Pad95, PRK95, Pat93, Pet92, PAO93, Rao91, RBF +89, RKO +89, RT90, RMGB91, Ras91, Red92, Rob94, RSS93, RS95, Saa92, SR89, ST93, Seb91b, Seb91a, SP91a, SP91b, Sha91, Spe87, SJ95, THK95, TST96, Tev87a, TS89, TN95, To89, Tok95, USE90, UH92, WKF +92, Wie92, YEP92].

Mach-1 [BRS +85].

Mach-Based [Mor96, Cha94, LBLM90, PRK95].

Mach-US [SJ95].

Mach/4.3BSD [BL90c].

Mach/4.3BSD [BL90b].

Mach/EPEX [Bol89].

Mach/IBM [MC89].

Macintosh [Bro97].

Making [Ano95].

Managed [NUS +93, UNS +94].

Management [SP91b, BGW96, BM91, BFS99, DBBR91, Jef94, Jho91, Lie92, MR95, MDRK93, NKAT93, Nic91, Rob94, RSS93, SP91a].
SCB93, Tev87a, Uhl92, WW94, WB92].

manager [GD91]. Managing
[Ano92c, Sub91, MST93]. Manual
[Ano93d, BTG+88, Mac91, Mac92, McD89].

Manufacturing [IEE94c]. mapped
[MDRK93, TTG+87]. March
[Ano91b, Ano92c, Ano93d, Ciz94, IEE88a, IEE89b, IEE90a, IEE94e, IEE95a, Jam92, USE91b, USE92b]. Marketplace [Ano92c].

Markov [Saa92]. Maryland [Ano95].

Masix [CLR94]. Matching [BM95].

Matchmaker [JR86]. May
[ACM93b, Ano93a, IEE89c, IEE92a, IEE94d, IEE94a, IEE95c, SS96]. MC88200 [Mal91].

MD [IEE89a]. measure [FKJ+92].

Measurement [ACM93b]. measurements [Dan93, Dan94, Leh98]. Measuring
[CPW93]. mechanisms [BHMR91]. media
[And90, TN95, Tok95]. meditation
[BTMD98]. Meeting
[Ano92c, Cit94, Jam92]. Melbourne
[Ano89a]. Memory [ACM93c, BB93, Bit90, BCCR91, SP91b, BM92, BGW89, BCF+91, BJ94, BFS89, BM95, CR92, CB93, CRRS93, For88, GD91, IKWS92, JM92, Joh91, cJmC91, MDRK93, NUMS94, Nic91, Pad95, Red92, Rob94, RP94, Ros89, Saa92, SGM90, SP91a, TI94a, Tev87a, TTG+87, WLT93].

memory-mapped [MDRK93]. message
[BTMD98, To89]. messages
[Koo93, YMBM94]. method [FKS92].

methods [Che93, GJ94, NDB94]. Mexico
[USE93a, USE93b]. Micro [USE92a, BHM91, BM95, Car93, CRRH94, Dri92].

micro-kernel [BHM91, Car93, CRRH94, Dri92].

Micro-Kernels [USE92a, BM95].

Microkernel
[BGJ+91, BGJ+92, CN92, MZDG93, Mil94, THKS95, BCF+93, BO96, CNTS93, CJMT93, GMR93, KD95, LMR93, MGZ93].

Microkernel-based [THKS95, LMR93].

Microkernels [Ano93c, USE93d, vRBC+92].

Microprocessing [Ano93b].

microprocessor [GAR+93].

microprocessor-based [GAR+93].

microprocessors [KL91].

Microprogramming [Ano93b]. Microsoft
[Ano92d]. microtasking [GW90a].

midrange [AG95]. Midwest [Ano93d].

Migrating [FL94]. Migration
[MZDG93, MDP+00, Pha91, WGR93].

MIKE [CNTS93]. MIMD [cJmC91].

MIPS [MYS+93]. mission [BT92].

MITRE [GJ94]. MK [MYS+93]. MKM
[Leh98]. MMU [Mal91]. Mobile [USE93c].

Model
[FL94, May88, Saa92, TSS9, WKF+92].

Modeling [ACM93b, AKST93]. modern
[BM95]. module [Mal91]. monitor
[GAR+93, To89, Leh89]. monitoring
[MR95, PHY+92, TI94b]. Monterey
[Ano94, USE91a]. move [Far89]. movement
[DA92]. Moving [GD91]. MSD [GW90b].

Multi [BJ94, CJMT93, GJ91]. multi-class
[CJMT93]. multi-server [GJ91].

Multi-view [BJ94]. multicast [vRBC+92].

multicomputer [Roy93]. Multimedia
[IEE94d, NM91, YNM92, Dan93, MST94, Dan94]. Multimedia/Realtime
[NYM92, NM91]. multiple
[CCGS92, GMR93, NUMS94, YMBM94].

multiple-API [NUMS94]. multiplication
[KL91].

Multiprocessor
[Ano91b, BRS+85, SZG92, USE91b, USE92b, BAA94, CPW93, CR92, JM92, PHL91, Ros92, TIA94a]. Multiprocessors
[ACM93c, WWT89]. multithreaded
[CB93, CB92, Pha91]. mutual [BRE92].

MVM [GMR93].

Napa [IEE93b]. Nashville [Ano91a].

National [Ano95]. NATO [HS94a].

NATUG [Boa90]. NATUG-2 [Boa90]. NC
[ACM93a, Boa90, IEE93e]. nCUBE
[MUI95]. need [KLM+93]. Nemesis
[Ros94]. Netherlands [Ano92a]. Network
Bar91, SBC+94, Bas91, BL90a, OM93.
networking
[MB93]. Networks [CP97]. neural [BL90a].
Newport [USE92b]. Next [Fur94, She91, Cra90, Min93, TMJY91, TS90, Wil88].
Next-Generation [She91]. Nice [Ano+90b].
Nineteenth [Ano93b]. North [Boa90].
NOSSDAV [SBC+94]. notes [BS91, Bit92].
November [Ano90a, Ano92a, Ano94, BS91, Bit92, SBC+94, USE91a]. NT [AG95].
NUMA [BFS89].

O [FGB91b, FGB91a]. O.S. [Hov91].
Oakland [IEE89c, IEE92a]. Object
[ACM86, CJ92, Dri92, GJ91, HCF+94, IEE91, SJ95, TP94, BCF+93, BBP92, BHM+93, BCC+91, CNTS93, CFH+93b, GADV91, Hag94, Imaxx, JR86, KD95, MFY91, Min95, Min93, Ono93, TS89].
object-based [BBP92, GADV91].
Object-Orientated [ACM86].
Object-Oriented [TP94, GJ91, BCF+93, BCC+91, CNTS93, Hag94, Imaxx, JR86, KD95, MFY91, Min95, Ono93, TS89].
Objects [BST95, GMS99, MDR93].
OCCAM [Ano89a]. October [ACM86, ACM91, ACM92b, ACM93c, Amm90, Ano90b, Ano95, Boa90, EHP94, HS94a, IEE90b, IEE91b, IEE93b, IEE94c, IEE94b, IEE95d, Ish92, MMR91, NDB94, USE90].
OldDiLa [Bau92]. on-chip [NUMS94].
OOPS LA [ACM86]. Open
[Ano93b, Ras89, RBF+89, Wah90].
OpenForum [Ano92a]. Operating
[ACM89, ACM91, ACM92b, ACM93a, Ano94, BRS+85, BT92, Bla90b, BCR91c, CJ92, IEE89d, IEE91, IEE93b, IEE94a, MBS95, MHP94, RP94, SBC+94, THKS95, Tok95, Ano88a, BCF+93, Bla90a, BGG+91, BGI+92, BJ95, BL95, BCR91a, BCR91b, CPW93, CLR94, CLFL94, CB93, CCG92, DBRD91, Drif92, DW95, FKI+92, FKS92, Fuk93, Fur94, GGDD92, Jal92, Jef94, Joh91, KLM+93, Lac91, LMR93, MST94, MRZ94, NUMS94, NM91, PLL91, Rag92, Ras87, RBF+89, Ras91, Rob90, Ros94, SR89, Sha91, Sta94, SCB93, TS89, To89, WWT89].
operations [Min95]. OptiMach [Bacxx].
Optimal [NUMS94, Ben92]. Optimistic
[ACM86]. optimization [Koo93].
Oriented [ACM86]. Orientation
[CP97, GJ91, Min93, Ono93, TS89]. Orlando [IEE88b].
Orleans [IEE90a, MMR91, USE95b]. OS/2
[PAO93]. OS/network [Pet93]. OSDI
[Ano94]. OSF [Bit92, BCF+91, BM91, Mit91, MYS+93, Uhl92, Wah90]. OSF/1
[Bit92, BCF+91, BM91, Mit91, MYS+93, Uhl92, Wah90]. OSF/1-MK [MYS+93].
Other [Ano93c, USE92a, USE93d].
Overview [Seb91a, FKL91, JCS+91].

PA [Ano88b, IEE94e]. Pacific
[ACM91, GHR89, IEE90d]. packages
[OT95]. packet [YMBM94]. Padula
[May88]. Page [Dra91, SC93, Saa92]. pager
[Sub91]. pages [Sub91]. paging [KN93].
Palo [IEE91]. Papers
[IEE89b, IEE93a, IEE95a, IEE88a].
paradigm [CCGS92]. Parafrase [YTC94].
Parafrase-2 [YTC94]. Parallel
[ACM86]. Parallelization
[BL90c, BL90b]. parallelized
[CB93, LBLM90].
Parallelizing
[BM91]. PARSAC [KLN91].
PARSAC-2 [KLN91]. passing
[BTM94].
PC [Cha94, CFK+91]. 4.3BSD
[BL90b].
AIX [Ras91]. Common
[CLNW90].
COMPCON [IEE88a]. DE [THKS95].
EPEX [Bol89]. IBM
[McD89]. IP
[And90, CJMT93, Moy93]. Mach
[Sou97].
network [Pet93]. Realtime
[NYM92, NM91]. Unix [Ras91].

Performance
[BL90a, Dan93, Dan94, GHR89, Ja93,
Joh91, Rao91, She91, BM92, Car93, CPW93,
CB93, FJK+92, For88, FKS92, IKWS92,
KF93, LIHFL93, MB93, SED+89, TS90].
persistence [VBD+92]. Persistent
[HCF+94, CRSS93, MDRK93]. personal
[LMR93]. Personality
[HCF+94, CRRS93, MDRK93].

Pittsburgh [AN93]. Pittsburgh
[Ano88b, IEE94e]. platform
[CNTS93]. PMAP [Ma91]. Point [IEE94b].
policy [Bla91, Min95]. Port [Koo93].

porting [CR92]. Portland
[ACM86, USE88, USE92c]. Practice
[Ano92a]. prefetching [BKW94, SC93].

Preprints [Bd92b]. present [GGDD92].
Primitives [GBB93b, GBB93a]. Principles
[ACM91, ACM93a]. priority
[Bla91, CJMT93, NKAT93, SCI93].
priority-based [CJMT93]. Privacy
[IEE93c, IEE92a]. problem [Ben92].

Proceeding [MMH93]. Proceedings
[ACM86, ACM89, Amm90, Ano88b, Ano89a,
Ano90b, Ano90c, Ano91a, Ano92a, Ano92c,
Ano93c, Ano93d, Ano94, Bao90, Bur90,
CJ92, Ciz94, GHR89, HSH94a, HSH94b, IEE88c,
IEE89a, IEE89c, IEE90b, IEE91,
IEE92a, IEE92b, IEE93b, IEE93c, IEE93e,
IEE93d, IEE94f, IEE94c, IEE94d, IEE94a,
IEE94e, IEE94b, IEE95b, IEE95c, IEE95d,
MSNS91, MS95, SBC+94, Shr89, T994,
USE88, USE91a, USE91c, USE92a, USE92c,
USE93a, USE93b, USE93c, USE93d, USE94,
USE95b, Ver90, Ano95, EHP94, Ish92,
MM91, NDB94, USE90, Vor92]. Process
[IEE93a, MDF+00, BM91]. Processing
[Bur90, IEE95b, SPB88, NII92, SGM90,
SED+89, Tob93, WTT89]. Processor
[MST93, MST94, Wen88]. Processors
[Bla91]. production [YT91].

Programming
[ACM86, ACM89, ACM92a, ACM92b, BD92b,
BKLL93, CP97, TP94, BO96, BCR91c,
CFK+91, CNTS93, CCGS92, DF94, DLR+92,
JMQ92, NCS+90, RJN90, T994b, Vor92].

programs
[Cha94, CJ91, GMR93, YTS88, YEP92].

proportional [WW94].
proportional-share [WW94]. prospective
[Fu94]. Protection
[Hag94, BM95, CLFL94, MRZ94]. Protocol
[MB93, RH91]. protocols [TNML93].

Prototype [E+91, PC90, WKF+92].

Providing [Cha94, Min95]. purpose
[BJ95, SED+89].

QOS [TK94, KONT95]. QoS-Control
[KONT95].

R [GKK94]. R-TICS [GKK94]. Raleigh
[IEE93c]. reactive [PHY+92]. reader
[Ben92]. reader-writer [Ben92]. Real
[BB93, Bd92b, Ciz94, HS94a, IEE88c,
IEE93e, IEE94a, IEE95c, IEE95d, KONT95,
KT93, MKT98, ST93, SZG91, Sta94,
TST96, Ano95, BJ95, Dan93, EKM+99,
Fur94, GKK94, LHC93, MRZ94, NCS+90,
OT94, OT95, RJN90, SZG92, SZ92, TN91,
TK94, AKST93, Dan94, NKAT93, TN95].

Real-Time
[Bd92b, IEE88c, IEE93e, IEE94a, IEE95c,
IEE95d, KONT95, KT93, MKT98, TST96,
ST93, SZG91, Sta94, BJ95, Dan93, EKM+99,
Fur94, GKK94, LHC93, MRZ94, NCS+90,
OT94, OT95, RJN90, SZG92, SZ92, TN91,
TK94, AKST93, Dan94, NKAT93, TN95].

Real-World [Ciz94]. realtime
[DW95, Jen94]. reasoning [Vor92].

Rechensystemen [Jam92]. Recoverable
[P95, CRR93]. recoverable-persistent
[CRR93]. Recovery [Bacxx, Gol90, Red92].
Redirecting [Pat93]. reference [Dra91].

refined [May88]. refinement [Bau91].
Reflection [OT95]. Related [HCF+94].

Reliable [CLNW90, IEE94b, vRBC+92]
BHMR91, BHM+93, NCS+90, RNJ+90.
Remote [MLB+97, MBF+95], replacement [Dra91, Saa92]. Report [Mit93, Spe87].
requirement [BT92]. Research [Boa90, IEE92a, Nil92]. Researches [Tob93]. reserves [MST93, MST94].
resident [BJ95, SG90]. Resource [Mit91, MR95, WW94]. results [MHP94].
review [AG95]. RIG [Ras87]. RISC [Ja93].
RP3 [Bry88, BCR91a, BCR91b, BCR91c, CR92, CJ91]. RPC [Duc91, IMP94]. RT [EMK+99, EKM+99, KTN93, McDo89, MR95, Tko95]. RT-IPC [KTN93].
RT-Mach [EMK+99, MR95]. RTOSS [IEE94a]. Run [ACM93c, MDRK93, SS96].
Run-Time [ACM93c, SS96, MDRK93]. running [GMR93, YEP92]. Runtime [TST96]. Russia [Vor92].
Safety [IEE98a]. Salt [USE95a]. San [ACM92a, Ano93a, Ano93c, IEE88a, IEE89b, IEE93c, IEE93d, IEE95a, USE93d, USE94].
Santa [ACM93b, IEE95b, USE93a, USE93b].
Scalable [SS96]. Scale [BR8+95, CR92, Ros89, WWT89]. Scaling [Ciz94]. Scheduler [BDMV93b, BD92a, BMDV93a, AKST93].
Scheduling [Bla90a, Bla90b, WWT89, BAA94, Bla91, PHY+92, WW94, Wen88].
Schizophrenic [SCSK93]. School [Ver90].
Science [Ciz94]. Sciences [HS94b, MSN91, MMH93, MS95, Shr89].
Seattle [IEE94a, USE92a]. Second [CJ92, IEE89d, IEE93d, IEE94e, IEE95d, NDB94, Shr89]. secure [Ben92]. securing [YTS88]. Security [Ano95, BTM88, IEE88b, IEE89a, IEE90c, IEE92a, USE88, USE95a].
SEDMS [Ano91b, USE91b, USE92b]. self [YTS88]. self-securing [YTS88]. semi [Saa92]. semi-Markov [Saa92]. September [ACM86, ACM93c, Ano88b, Ano92b, Ano93b, Ano93c, Bur90, CJ92, GHR89, IEE89d, IEE92b, Mai93, USE93d, Ver90].
Server [BST95, MKT98, ACCB93, Bas91, For88, GJ91, GJ92, ES90]. Servers [KONT95, SJ95, BHM91, Dan93, LHFL93, RH91]. service [CMJ93, MB93]. services [BHSC98, JCS+91, Nic91].
Seventh [Ano93d, HS94b]. share [WW94, Ano92c].
Shared [BCCR91, HCF+94, BGW98, CR92, CFH+93b, For88, Jef94, JM92, cM91, Pad95, Rob94, RP94, Ros89, TGG+87, WLT93]. shared-memory [CR92, cM91, Ros89]. Sharing [CLF94].
single-address-space [CLF94]. Sint [HS94a]. SISAL [GW90a]. Sixteenth [IEE92b]. Sixth [MMH93]. Sizing [TS90].
small [Koo93, WWT89]. small-scale [WWT89]. Smalltalk [OKI92]. Society [IEE88a, IEE89b, IEE92a, Ish92]. Software [Ano89b, Ano93b, BKW94, Che93, HS94b, IEE89a, IEE92b, IEE94a, Shr91, TMI9Y1, Ulh92, Wath90, BRG+89, GW90b, NUS+93, RJO+89, RT90, T94b, To98, UNS+94, Voe95, WGR93]. software-managed [NUS+93, UNS+94]. solution [Ben92].
Some [BBP92]. sound [Min93]. space [CLF94, Ros94]. Spain [Ano93b, NDB94].
Spring [Ano92c, IEE88a, IEE89b]. Sprite [Kup93]. SR [BO96]. St [Vor92]. Stardust [CP97]. status [JCS+91]. Step [Bau99].
stock [KLN91]. storage [MDRK93].
StrongBox [YTS88]. structure [CK93].
Structured [BCCR91]. Study [HS94a, MLB+97]. Subjects [BST95].
Suite [FKL91, KF93]. suited [BCF+93]. Summer [Ano91a]. Supercomputer [WGR93].
Supercomputers [Ano88b].
superdatabase [PC90]. Superhighway [IEE95a]. Support [ACM89, ACM92b, Bla90b, BJ95, HCF+94, Hov91, SBC+94, BCF+93, BO96, Bla90a, BCR91c, CN92, CFH+93b, CRR93, GMS94, JR86, MST94, MR95, MDRK93, MBS95, Red92, RH91,
Supporting [BCC+91, BCCR91, Imaxx, BJ95, VBD+92]. Switzerland [Bur90]. Symposium [ACM91, ACM93a, Ano90a, Ano91b, Ano93a, Ano93b, Ano94, IEE88c, IEE89c, IEE92a, IEE93a, IEE93c, IEE94f, IEE94b, IEE95b, IEE95c, MMR91, Mit93, NDD94, USE91a, USE91b, USE92b, USE93a, USE93b, USE93c, USE93d, USE95a].

synchronization [Ros89, TN91]. synthesis [WGR93].

Task [MZDG93, MBS95]. Tasking [MLB+97]. Tasks [Bacxx, GSR93, BAA94]. TC2000 [WGR93]. TCP [And90, CJMT93, Moy93]. TCP/IP [And90, CJMT93, Moy93]. Technical [Ano92a, USE92c, USE95b]. Techniques [She91, BFS89]. Technologies [IEE95a, Mai93]. Technology [Ano89a, Ano90a, HS94b, IEE94c, IEE95c, Voe89, BCF+93, Ish92, Rag92, TMJY91].

Telecommunications [Ano89a]. Temporal [MRZ94]. testbed [Dan93, SGM90, Dan94].

Third [ACM89, IEE88a, IEE93a]. Thirteenth [IEE88a]. Thirty [IEE88a, IEE92b, USE95b]. Thirty-Third [IEE88a]. Thread [DF94, FL94, DBRD91, Lie92, OT95].

Threads [Duc91, NCS+90, RJH+90, Dea93, OT94, SZG91, SZG92, SZ92, TI94b, TG+87, TK94]. Three [GJ94]. TICS [GKK94].

Time [ACM93c, Bdh92b, HS94a, IEE88c, IEE93e, IEE94a, IEE95d, KONT95, KTN93, MKT98, SS96, TST96, BJ95, Dan93, EKM+99, Fur94, GKK94, Jef94, LHC93, MRZ94, MDRK93, NCS+90, OT94, OT95, RNJ+90, ST93, SZG91, SZG92, SZ92, Sta94, TN91, TK94, Wen88, AKST93, Dan94, NKA93, TN95].

time-driven [Wen88]. time-shared [Jef94].

timers [ST93]. TLB [Uhl92]. TLBs [NUS+93, UNS+94]. TMach [May88]. TN [Ano91a]. Tokyo [IEE95d, Ish92]. Tolerant [Bab90b, Cheex, IEE93a, ACCB93, Bab90a, Bab90b, BHM91, EKM+99, Nan91, RSS93].

tool [CFH+93a, TI94b]. Tools [Ano89b].

top [CLR94, CNTS93, FKS92, MGZ93, MZDG93]. Toulouse [IEE93a]. tracing [Che93, GAR+93]. Track [Shr89]. tradeoffs [NUS+93, UNS+94]. train [EKM+99].

Transaction [GHR89, Nan91, SPB88, SGM90, Spe87, SED+89]. Translation [BRG+89, BKM94, Ros89]. Transparent [Go90, RSS93, RS95]. Transputer [Ano89a, Boa90]. transputers [SR89].

treatment [IMP94]. Troy [IEE94c, SS96]. Trusted [BST95, E+91, FM93, Seb91b, Seb91a, BCB88, BMT88, BL89, ES90].
REFERENCES

Twenty [HS94b, IEE93a, MSNS91, MMH93, MS95, Shr89]. Twenty-Eighth [MS95].
Twenty-Fifth [MSNS91]. Twenty-Second [Shr89]. Twenty-Seventh [HS94b].
Twenty-Sixth [MMH93]. Twenty-Third [IEE93a]. TX [IEE93c, USE91c].

UK [Ano89b, SBC+94]. uniprocessors [BRE92]. universal [CCGS92, Dri92]. Unix [Imaxx, ABG+86, Ano88b, Bas91, Jal92, Mor96, SJ95, Tev87b, TGB+87, TTG+87, USE88, USE95a, Ano88a, Ano92d, BCC+91, Dri92, Rao91, Roy93, TS89].

usage [MST93]. USENIX [USE90, Ano88b, Ano90c, Ano91a, Ano92b, Bd92b, CJ92, GHR89, IEE89d, IEE90b, IEE91, IEE93b, IEE94a, IEE95d, SBC+94, USE88, USE92a, USE90]. Workstations [CP97, AG95, Mal91].

References

Accetta:1986:MNK

[ABG+86] Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian, and Michael Young. MACH: a new kernel foundation for UNIX de-
REFERENCES

Arevalo:1993:FSM

ACM:1986:OOO

ACM:1989:APT

ACM:1991:TAS

ACM:1992:ASC

ACM:1992:FIC

REFERENCES

REFERENCES

[Ano92b] Anonymous. *Anonymous, editor. Parallel and Distributed Worksta-
REFERENCES

Anonymous:1992:PSE

Anonymous:1992:WEW

Anonymous:1993:AIS

Anonymous:1993:NES

Anonymous:1993:PUS

Anonymous:1993:SAM

Anonymous:1994:PFU
Anonymous, editor. Proceedings of the First USENIX Symposium on Operating Systems Design and Implementa-
REFERENCES

Anonymous:1995:NIS

Bataineh:1994:ESA

Babaoglu:1989:FTC

Babaoglu:1990:FCBb

Bacon:19xx:OOR

Barrera:1991:FMN

Basavaiah:1991:MIC

Baumgarten:1992:SSR

Bernadat:1993:RMM

Philippe Bernadat and David Black. Real memory Mach.
REFERENCES

[BCR91b] R. Bryant, Hung-Yang Chang, and B. Rosenburg. Oper-
RECOMMENDATIONS

19

Paul Barton-Davis. Adding
scheduler activations to Mach
3.0. Technical report 92-
08-03, University of Washing-
ton, Dept. of Computer Science
and Engineering, Seattle, WA,
USA, August 1992. 30 pp. Re-

L. Boullart and J. A. de
la Puente, editors. Real-
time Programming (WRTP
'92). Preprints of the IFAC
Workshop, Bruges, Belgium,
June 23–26, 1992. Pergamon
ISBN 0-08-041894-5. LCCN

Barton-Davis:1993:ASA

P. Barton-Davis, D. McNamee,
R. Vaswani, and E. D. La-
zowska. Adding scheduler ac-
tivations to Mach 3.0. In USE-
NIX [USE93a], pages 119–136.
QA 76.76 O63 U85 1993.

In USENIX [USE93a], pages
LCCN QA 76.76 O63 U85 1993.

Benson:1992:OSS

G. Benson. An optimal solu-
tion to the secure reader-writer
problem. In IEEE [IEE92a],
pages 251–258. ISBN 0-8186-
2825-1. LCCN QA 76.9 A25
I34 1992. IEEE catalog number
92CH3157-5. IEEE Computer
Society Press order number
2825.

Bolosky:1989:SET

W. J. Bolosky, R. P. Fitzgerald,
and M. L. Scott. Simple but
effective techniques for NUMA
memory management. Operat-
ing Systems Review, 23(5):19–
31, 1989. CODEN OS-
RED8. ISSN 0163-5980.

Black:1991:MOS

D. L. Black, David B.
Golub, Karl Hauth, Avadis
Tevanian, and Richard Sanzi.
The Mach exception handling
facility. ACM SIGPLAN No-
tices, 24(1):45–56, January
1989. CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

Black:1991:MOS
REFERENCES

Black:1992:MOS

Black:1989:CMD

Banatre:1993:EDR

Banatre:1991:HDR

Bhatti:1998:CSC

Bitar:1990:MVM

Bitar:1992:MOC

Bodorik:1994:MAC

P. Bodorik and D. N. Jutla. Multi-view access control memory computer system. In Ciz-
REFERENCES

parallelism in the Mach operating system. *Computer*, 23 (5):35–43, May 1990. CO-
DEN CPTRB4. ISSN 0018-
9162 (print), 1558-0814 (elec-
tronic). See [Bla90a].

Black:1991:PPP

[Bla91] D. L. Black. Processors, priority, and policy: Mach schedul-
ing for new environments. In USENIX [USE91c], pages 1–12.

Bolinger:1991:PSH

[BM91] D. Bolinger and S. Mangalat. Parallelizing signal han-
dling and process manage-
ment in OSF/1. In USE-
NIX [USE91a], pages 105–122.

Bisiani:1992:DHW

[BM92] R. Bisiani and O. Martin. A distributed-memory, high-
performance workstation. In Ano-
nymous [Ano92b], pages 83–91. CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

Bryce:1995:MMM

[BM95] G. Bryce and G. Muller. Matching micro-kernels to modern applications using fine-
grained memory protection. In IEEE [IEE95d], pages 272–279.
alog number 95TB100002.

Benson:1996:DMS

[BO96] G. D. Benson and R. A. Ols-
son. The design of microkernel
support for the SR concurrent
programming language. In Szy-
manski and Sinharoy [SS96], pages 227–240. ISBN 0-7923-
9635-9. LCCN QA76.58.L37
1996.

M. Branstad, H. Tajalli, and F. Mayer. Security issues of the Trusted Mach system. In IEEE
REFERENCES

[Branstad:1989:AMM]

[BTMD89]

[Burkhart:1990:CIJ]

[CaraDonna:1993:LPA]

[Caswell:1989:IMD]
D. Caswell and D. Black. Implementing a Mach debugger for multithreaded applications. In Anonymous [Ano90c], pages 25–39.

[Car93]
J. B. Chen and B. N. Bershad. The impact of operating system structure on memory system performance. In ACM [ACM93a], pages 120–133. CODEN OSRED8. ISSN 0163-5980.

[Cohn:1992:UDP]
D. L. Cohn, M. R. Casey, P. M. Greenawalt, and J. E. Saldanha. A universal distributed programming paradigm for multiple operating systems. In USENIX [USE92b], pages 191–203.

[CFH+93a]
REFERENCES

Chevalier:1993:ESO

Canetti:1991:PCP

Chandranmenon:1994:PEE

Chen:19xx:BFS

Cizmar:1994:AAC

Ching:1991:EAP

Cabrera:1992:PSI

REFERENCES

Ju:1991:EAD

Chen:1993:PMSE

Carr:1993:DC

Chase:1994:SPS

Clamen:1990:RDC

Card:1994:DMD

Chao:1990:MVA

[Chia Chao, Milon Mackey, and Bart Sears. Mach on a virtually addressed cache architecture. In USENIX [USE90], pages 31–?? LCCN QA76.9.M45 M33 1990.

Chen:1992:MSC

[Rong Chen and T. P. Ng. Microkernel support for checkpointing. In Anonymous [Ano92a], pages 35–43.

Castro:1993:MDO

[M. Castro, N. Neves, P. Trancoso, and P. Sousa. MIKE: a distributed object-oriented programming platform on top of

REFERENCES

[Draves:1991:UCI]

[Dean:1993:UCB]

[Demeure:1994:TSC]

[Dorochevsky:1992:EPP]

[Draves:1991:PRR]

[Draves:1992:M]

[Dripke:1992:MUU]

[Duchamp:1991:ETR]

[Drummond:1995:LLA]

[Epstein:1991:PSA]

[E+91] Jeremy Epstein et al. A prototype B3 Trusted X Window

Echtle:1994:DCF

Egan:1999:FTR

Epstein:1990:PUM

Jeremy Epstein and Marvin Shugerman. A Trusted X Window System Server for Trusted Mach. In Proceedings of the USENIX Mach Conference. ????, Burlington, VT, USA, October 1990. This paper describes the initial architecture of the Trusted X Window System prototype developed at TRW. This paper was superseded by the paper at the Seventh Annual Computer Security Applications Conference [E+91].

Farncombe:1989:EM

Forin:1991:ISMa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1993:PSI

IEEE:1993:PRS

IEEE:1993:PIW

IEEE:1994:PSR

IEEE:1994:PFI

IEEE:1994:PIC

REFERENCES

IEEE:1994:PSI

IEEE:1994:PAI

IEEE:1995:DPC

IEEE:1995:PIP

IEEE:1995:PRT

IEEE:1995:PSI

REFERENCES

Inouye:1992:EVA

Issarny:1994:ETF

Issarny:1992:IIT

Jaffer:1993:PAM

Jalan:1992:CID

[Ajay Jalan. Comparison and implementation of dynamic load balancing facilities under the UNIX and Mach operating systems. Thesis (m.s.), Worcester Polytechnic Institute, Worcester, MA, USA, 1992. vi + 69 pp.]

Jammel:1992:ARG

Julin:1991:GES

[D. P. Julin, J. J. Chew, J. M. Stevenson, P. Guedes, P. Neves,

Jeffay:1994:LMT

Jensen:1994:ADR

Jiang:1992:WEC

Y. Jiang and A. Makinouchi. WARASA: an enhanced C++ for concurrent programming on shared memory multiprocessor computers. In IEEE [IEE92b], pages 257–262. ISBN 0-8186-3000-0. LCCN ????

John:1991:PEV

Jones:1986:MMK

Kurtzman:1995:DGO

Kinicki:1993:CMD

Kiczales:1993:NCO

Kuechlin:1991:IMP

Khalidi:1993:FEP

Kawachiya:1995:EQS

Koontz:1993:PBM

Kitayama:1993:RIE

Kupfer:1993:SM

Lacapra:1991:MOS

Langerman:1990:HMV

Lehr:1989:MMK

Lo:1993:ACD

IEEE Computer Society order number 895.

REFERENCES

[Min95] S. E. Minear. Providing policy control over object operations in a Mach based system. In USENIX [USE95a], pages 141–155.

(MMH93) T. N. Mudge, V. Milutinovic, and L. Hunter, editors. Proceeding of the Twenty-Sixth Hawaii International Conference on System Sciences, Wailea, HI, USA, January 5–8, 1993. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

REFERENCES

REFERENCES

Nakajima:1992:MEM

Ogata:1992:DIH

Orman:1993:FGI

Onodera:1993:GCC

Patience:1993:RSC

Phelan:1993:OPM

Oikawa:1994:URT

Oikawa:1995:RDU

Padmanaban:1995:RDS

REFERENCES

Pu:1990:IPS

Peterson:1992:MK

Peterson:1993:LOB

Pham:1991:EMD

Paul:1992:IRM

Paciorek:1991:DMO

Park:1995:IUC

Ragoonaenan:1992:DOS

Rao:1991:PCI

Rashid:1987:RAM

Rashid:1989:COS

R. Rashid. A catalyst for open systems (mach kernel). *Data-
REFERENCES

[Rashid:1991:MDO]

[Rashid:1989:MFO]

[Reddy:1992:IRS]
Aram Jyothi Reddy. Implementing recovery support for virtual memory databases in Mach 3.0. Thesis (m.a.), University of Texas at Austin, Austin, TX, USA, 1992. ix + 36 pp.

[Rob90a]
L. Robertson. Introduction to operating systems. In Verkerk [Ver90], pages 309–336.

[Rob94]
REFERENCES

REFERENCES

REFERENCES

Shriver:1989:PTA

Stevenson:1995:MUG

Sours:1997:CMI

Sechrest:1991:ULP

Sechrest:1991:UPM

Spector:1988:CFD

Spector:1987:CDT

Sane:1989:OSK

Szymanski:1996:LCR

REFERENCES

Savage:1993:RMT

Stankovic:1994:ROS

Subramanian:1991:MDP

Schwan:1992:TDM

Schwan:1991:RT

Schwan:1992:MRT

Tevanian:1987:MTU

Tevanian:1987:AIV

Tevanian:1987:MBF

Takano:1995:IMM
Y. Takano, C. Howson, K. Konishi, and T. Sugawara. Imple-
REFERENCES

Tabata:1994:ICC

Tabata:1994:ICC

Tanaka:1994:SMT

Tokuda:1994:DQC

Tzeka:1995:EBC

Thekkath:1993:INP

Tokuda:1994:DQC

Tobe:1993:RPP

[Tof89] Elizabeth Claire Toftner. An extensible software message monitor for the Mach operating system. Thesis (m.s.), California Polytechnic State Univer-

Tof89

[TNML93]
REFERENCES

Tokuda:1995:OSS

Tokoro:1994:OPE

Tevanian:1989:MMF

Thompson:1990:SCN

Tokashio:1996:DID

Tevanian:1987:UIS

Uhlig:1992:STM

Uhlig:1994:DTS

REFERENCES

1994. CODEN ACSYEC. ISSN 0734-2071.

REFERENCES

vanRenesse:1992:RMB

vRBC+92

Wahl:1990:OSF

Wah90

Wheeler:1992:CMV

WB92

Welch:1991:FSB

Wel91

Wendorf:1988:IET

WGR93

Wolfer:1993:IIS

WGR93

Wiecek:1992:VM

Wie92

Williams:1988:NAD

Wil88

Wiecek:1992:MPV

WKF+92

Wilson:1993:HAD

A. W. Wilson, Jr., R. P. LaRowe, Jr., and M. J. Teller. Hardware assist for distributed shared memory. In IEEE
Waldspurger:1994:LSF

Wendorf:1989:SOS

Yep:1992:DSB

Yuhara:1994:EPD

Yoshida:1991:PSB

Yang:1994:AP

Yee:1988:SSS