A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

20 August 2019
Version 3.159

Title word cross-reference

#4 [Pet00].

+ [BMV03], 2 [TKHG04], 3
[KSB+08, PYP+10]. cyclical [YLLS16]. D^i
[Evr01]. F^2 [BCS11]. LU [VD08]. N
[ZJFA09]. π [III01]. QR
[But13, GKK09, VD08].

-based [Röt19]. -Calculus [III01].
-Machine [Evr01]. -way [ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/multi [Taf13]. /multi-threaded [Taf13].
'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stn95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mii95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA005]. 35th [Gol94]. 3D
[Ano97b, Loe97].
Abstract

[CSS+91b, CGSV93, DV99, KPP12, LMA+16, MIF+10, Ném00, CSS+91a, CSS+91c, Dil00, VDBN98, ZJFA09].

Abstraction

[KI16, Bak95b, GPR11, ZSJ06]. AC [BGK94a, BGK94b]. Accelerate [JLA16]. Accelerating [BAZ+19, LS11, SMQP09, VGK+10a, VGK+10b]. acceleration [JSPM13, NBMM12]. Accelerators [NTR16, SGLGL+14]. Access [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MAV05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SSkP+07]. Accounting [LMA+16, EE09b]. Accuracy [SHK15, TO10]. Accurate [CPT08, VTM12]. Achieving [AHWO2, SP05, KGGK90, WTKW08]. ACM [ACM93b, RM03, IEE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZP04].

Activation [KG94]. Activations [ABLL92, DNR00, SS95]. Active [BK106, BDJ06, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bre89]. actually [Pra95c]. Ada [ACM93c, Bar09, Dil93, GMB93, KPPÉR06, KR01b]. ADAM [Far96]. adaptable [LLLC15]. Adaptation [CMBAN08]. Adaptive [ABN00].

Adaptive

[ALHH08, HBTG98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, ZWL15, BS06, Chr95a, Chr95b, Chr96, SLG99, TKG04, ZLW+16].

Adding [Ply89, Ric99, MeM97]. Address [CLFL94, PWL+11, CKZ12, Lie94]. Addressing [WA08, CKD94, ZSB+12].

ADL [BVL09]. Advanced [BGG95, GBG95, Hei03, BZ07, GBB+05]. Advances [IEE97, JHM04, KKDV03, DLM99].

Albuquerque [Ano94e]. Algebra [KLD09, NBS+15, PHCR09, YSY+09]. Algebraic [ACM94c, Lak96, MR09, Wat91].

Algorithm

[AT16, ABC+09, CNZS17, HH11, MP13, OR12, Rót19, TO03, ZBS15, BKK17, GKK09, KGH12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HBG02, YFF+12].

Algorithmic [Lei97, BBH+17]. Algorithms [BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOIM+12, TTTG02, YMR93b, Bar09, CFC+12, CLRS09, FR95, GM05, Lei97, Lep95, NFLB17, QQOV+09, RRJ12, YM92, YM93a, Li07]. algorithms-by-blocks [QQOV+09]. Algorithms-by-Tiles [QOIM+12]. aliasing [NA07]. Aligned [YWJ03]. alignment [KGPH12]. Allaire [Hig97]. Allieviate [BD00]. Alloc [KSU94]. Allocating
Allocation [MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04].

Allocator [BMBW00b, BMBW00a, BMBW00c].

Alpha [Ano00b]. alphabet [KNPS16].

alpha-independent [KNPS16].

Alternating [CYYL18]. alternative [SV96c, SV96a, SV96b]. Alternatives [MB99, MKR02].

Alto [ACM01].

ALU [KDM+98]. always [DWS+12]. always-on [DWS+12].

Amdahl [CN14, NZ17]. Among [CB16, HMC95, SJ95]. analysing [NJK16, PV06].

Analysis [AKS06, BCZY16, BE12, BE13, BBC+00, BLG01, BH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJR13, Ha97b, Hol12, HLH16, LCK11, LML00, LMG+16, NBM93, REL00b, Rin01, RR99, SBC90, TAM+08, VP16, Yoo96a, Zub02, AC09, ACC+03, BGZ97, BBH+17, BP505, BMM09, CHH+03, CS12, CVJL08, Cor00, GBCS07, HEJ99, JPSN09, KTK12, KC09, Lei97, LBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTW+12, dB09, vPG03].

analyser [Fer13, HLH90].

Analyzing [HRH08, Kor89, RHH10, TMCP10].

anatomy [Rei95]. Android [MKM14].

animation [WQLJ18].

Applications [Len95]. apply [NZ17].

Applying [VTSL12, MT02a, MT02b, MT02c].

Apprendre [Swi09].

Approach [AZG17, BBSG11, CJW+15, ES97, FKT96, GMR98, KKW14, KS16, ND16, RCM+16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, DHM+12, LZW17, LZX+14, MS03, RCM+12, SCZM00, TP18].

Approaches [BZL06, MB07].

Approximate [HFV+12, GEG07, GE08, KJPH12].

Apps [PCM16].

April [Ano00a, Ano03, USE01].

arbitrary [BGC14].

Arc [CNS17].

Arc-Weighted [CNZ17].

ARCH [Ada98].

Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07].

Architecture [ACM98c, BBD+91, BVL09]
BTE98, Car89b, CL95, DS09, DO95, EBKG01, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HMNN91, HHOM91, HHOM92, KBB+04a, KBB+04b, KIAT99, Man91, MM01, MB99, PV+01, PTMB09, PKB+91, PS01, REL00b, RS08, SLJ+18, SCL05, SHK15, SSYG97, SK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CL94, CHH+03, Cho92, Don92, Dub95, Evr01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HF88, HKN+92, HKN+92, I+94, KHP+95, KT99, Loi95, Mah13, MK12, Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TNB+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04.

Architecture-Agnostic [SLJ+18].

Architectures [AT16, ABLM19, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IXS18, IBST01, JLS+94, LLKS12, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOM+12, RLP+09, SGM+97, TG99, THA+12, Tra91, TJJY98, TSV12, W94, WXG+14, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CF+12, Cat94, DTR18, FTAB14, GGB93b, Gk95, Gi94, GL98b, HFV+12, ICH+10, JMS+10, LM14, Lu94, MLWC11, MLC04, Mus09, OCRS07, PT91, PPA+13, PJZA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Sqt94, SMQF09, Ska01, TE94a, The95, TKHG04].

Area [AMPH09, FGT96, Par91].

Area-efficiency [AMPH09].

Aren’t [Sut99].

Ariadne [MR98].

arising [ArV90].

Array [GS06, LHS16, PDMM16].

Arrays [BWXF05, AR19].

arrow [GE08].

arrow-type [GE08].

Art [MP13, I+94].

artificial [KU17].

ASAT [SEP96].

Ashes [Thr99].

ASN [CWJ+15].

Aspects [SB80].

ASPLOS [ACM94d].

ASPLOS-VI [ACM94d].

Asserting [BS10b].

assertion [ÁdBdRS05].

assertion-based [ÁdBdRS05].

assessment [Mah13].

Assignment [BC98, RCM+16, MCRS10, ORH93, RCM+12].

assisted [Dub95].

associated [San04].

Associative [SW08].

Assume [BGP06].

Assume-guarantee [BGP06].

Assumptions [ES97].

ASSURE [SLP+09, Dye98].

Asymmetric [MNU+15, GA09, JSMP13, MK+06, RBK+09, SCCP13, SMQF09].

Asynchronous [HH11, KFG15, KG07, KSD04, TP+18, Yoo96a, GMR09, Kho97, KASD07].

Asynchrony [SRU98].

Athena [Egg10, Hud96].

ATL [SW97].

Atlanta [ACM99a].

Atomic [KKS+08, RD06].

atomicity [BLM06, BNS11a, BNS11b, BNS12, FF04, FF04, FF08, FLQF08, WS06].

atoms [ND13].

Atomizer [FF04, FF08].

Augmented [BGP06].

Automate [ACM99d].

Automata [ES97].

Automata-Theoretic [ES97].

Automated [BSS14, DRV02, KZC15, TR14].

Automatic [BVL09, BNS11a, BNS11b, BNS12, FF04, FF04, FF08, FLQF08, WS06].

Automatically [NWT+07, TG99, CJ91].

Availability [SP07].

AVP [Ano00b].

Aware [AGJ18, BHP+03, CCY17, FSPD16, FSPD17, GY+17, HC17, Kim14, LZZ+08, LYH16, MNU+15, PR05, SLJ+18, EQT07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TNS07, XSAj08, ZLW+16].

Away [GBK+09].

AWTEventMulticaster [Hol99b].

axiomatic [TVD10].

AXP
[Ano97a].

B [Ano00c, DLZ+13]. back [ECX+12].
Backup [Ano00b]. Balance [SEP96].
balanced [CKZ12]. Balancers [KMAG01].
Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKI004]. Baltimore
[IEE02]. Bandwidth [FSPD16, LTL+16].
Bandwidth-Aware [FSPD16].
Benchmarks [BTE98, EHSU07, Mul03].
Beneﬁts
[Pet03, Ano95a, Ano95b, Boe05, MMTW10].
Better [BDM98, Pla99]. Between [WG94, Pan99, SS95, Yam96, ZCMS02a, ZCMS02b].
Beyond [EKB+92]. biased [RD06].
Bibliography [Bee98]. Big
[JLA16, AC09, CDL13, LTL+16, LHS16].
BIGSAM [Ply89].
Binary
[BCCO10, KBF+12, TJY+11]. binding
[RCC+10]. Birthmarking
[TLZ+17, TLZ+18]. bisection [RRMJ12].
bit [Kus15, SBK99]. Black [Pla99].
BLAS [ARvW03]. BLIS [VSM+16].
Block
[ABLM19, CCWY17, KS97, ZM07, KTK12, KTLK13].
BlockChop [MK12].
Blocking
[Ann96, GN00, Nak03, SB80].
Blocks
[Pet03, QOQOV+09].
Blue [GBB+05].
Boltzmann [SKG+11].
Bonni [Wat91].
Book
[Lar97, Van97a, Vre04].
Bookshelf
[Ano99, Cro98, Wil97, Wil00].
Boost.Threads [Kem02]. Boosting
[AKSD16, APX12, MLC+09, YZ07]. boosts
[McM97].
Bootstrapping [KH18].
Borland
[Ke94a, Ke94b].
Borrowed [DC99, DC00].
Borrowed-virtual-time [DC99, DC00].
Boston [Ano94f]. Both
[KZC15, ZCBS16].
Bothnia
[CCW+11].
Bottle [DSEE13].
Bottleneck
[JSMP12].
Bottlenecks
[SU96, Zub02, DSEE13, C12, DSG17].
Boulevard
[ACM99b]. bounded
[LZTZ15, PAdS+17].
Bounding
[Lun97, Lun99, MQ07].
BowMapCL
[NTR16].
Box [Ano00b].
Braids [BS06].
Branch
[AKS06, EPAG16, IBST01, CTYP02, CPT08, GL98b, MT510].
branches [UZU00]. breadth [LAH+12].
breadth-ﬁrst [LAH+12]. breakpoint
[Ram94].
Bridge [Ano00b].
Bringing
[RBH11, VDBN98]. brief [Hay93].
Briefs
[Gar01]. bringing [Pra95b].
Bringing [Jon91].
Broadcast
[SW08].
Broadcast/Reduction
[SW08].
brackers [Sch98].
Browsing [HF96].
BSD
[SS95].
BSDCOn [USE02]. BSR
[SYHL14].
BTRIMER
[TJY+11]. buffered
[DLZ+13]. buffers [Koo93].
bug
[BMW12], bugs [JWGT11, VTSL12].
built [KSB+08]. Building
Building-Block [KS97]. | bulk [RD06].
Builddozer [BBSG11]. | Bunka [Ano03].
Burrows [LHS16, NTR16]. | Bursty [HMCP16].
Bus [MKC97, Cat94, HHPV15]. | Bus-Based [MKC97].
Bytecode [ABH+01, Coo02, GH03, A+01, CAR08].
C [Kel94a, Kel94b, Lev97, Pla98, Rod95a, Vre04, Ait96, AGEB08, Ano99, BM94, Bau92, Bed91, BYLN09, BPL07, BA08, CFK+91, CGR92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jou91, KD97, LaF00, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pom98, PS07, Pul00, Ric91, Röt19, SG18, SC17, Sch90, TB97a, TB97b, Vol93, Wal00, Yam95, Yam96].
C# [KPPER06, Sta05].
C-based [RSB+09].
C-Stream [SG18].
C/C [Pla98, Pla99, BYLN09, ND13, ND16, Pet00, Pul00].
C3I [BTE98].
CA [ACM94d, IEE89, USE01, USE02].
Cache [BCZY16, CMX10, CCWY17, FJ08, GBP+07, GL98a, HLO8, HKSL96, KLS92, KET06a, LLD17, PEA+96, PPG11, SLJ+19, WGF94, ZJS12, ZLL15, Car99b, Cho92, KHP+95, KLI+99, MRK10, Raj93, Sha95a, SSK+07, WCZ+07, ZJS10, ZKR+11].
Cache-conscious [GBP+07].
Cache-oblivious [HL08].
CacheFlow [KET06a].
Cacheline [PBL+17].
Caches [FJ08, PHBC16, KGGK09, ROA14].
Caching [DNT16, KC99, Boo93].
calculations [BD06].
calculi [LVS01].
Calculus [III01, ORH93].
Caldera [Ano97a].
Calif [ACM01].
California [ACM93b, ACM95b, ACM98b, IEE99, USE93, USE91a, USE93b, USE96, USE98b, USE01].
Call [GSC96, Hub01, ORH93, Xue12].
callbacks [VS96].
calling [TTY99].
VIA+05, Wea08, ZM07, CSM+05, DTK+15,
GA09, KT99, MWK+06, SMK10, SKKC09,
TEL95, TEL98a, TEL98b.

Chip-Multiprocessor [PPG11, KT99].

Chip-Multiprocessors [KL00, LMJ14].

Chips [Ano00a, Ano03, IEE99]. Chiron
[TNB+95]. Chiron-1 [TNB+95]. Choice
[III01, TEE+96]. Cholesky
[CDM+17, VD08]. Chores [EJ93].

Chunking [WLM15]. CIL [CAR08]. Cilk
[BJK+95, BJK+96, FLR98, Joe96, Mil95].

Cilk-5 [FLR98]. CIO [Ano94g].

Circuit [AMRR98]. City [Hol12].

CLAM [GMR98]. CLAP [HZD13].

Class [BS99, Cha02, Gib94, Rött93, VE93,
CS00, MSLM91, Yam96]. Classes
[Cal00, Fek08, How98, Lam95, SC17].

Classical [JSB+12, JSB+11]. Classics
[Wil00]. Classification
[KZC15, LMJ14, LCH+08]. classifying
[NWT+07]. Claus [WP10]. Client
[Day92a, Day92b, Si95, Go96].

client-server [Go96]. Client/Server
[Day92a, Day92b]. clients [CDL13].

climbing [CY09]. Clique [MIP13]. Closure
[YM92, YM92a, YM93]. cloud
[FKS+12, GDS+17]. clouds [FGG14].

Cluster [BNH01, CEE99, HDO2, KKH03,
Kwo03, SCD+15]. Clustered
[GSL10]. Clustering
[JY15, LK15, RVR04, TAS07]. Clusters
[BWXF05, WG09, ZBS15, BMV03, FWL03,
TMAG03]. CMP
[TAS07, AMPH09, CWS06, ICH+10, LLL10,
SLJ+18, SSkP+07, ZIS10, ZIS12].

CMP-based [LLL10]. CMPs [GW10,
JSMP13, SQP08a, SQP08b, SQP08c, YL16].

Co [Goo97, SG18, AMPH09, BBH+17].

code-design [BBH+17]. code-optimization
[AMP09]. Co-processor [Goo97].

Co-routine-Based [SG18]. Coarse
[NS97, ZM07]. Coarse-Grain [ZM07].

colored [Lep95]. Code
[BBdH+11, Coo95, HY+15, JSB+12,
Kim14, KEL+03, MS02, NS97, ND16, PR98,
Roh95, RNSB96, TGBS05, Tra91, Ann96,
BB00, JSB+11, SJ95]. Codes
[CMBAN08, PHCR09, PT03]. Codesign
[HPA+15]. Codesigned [MKM17].

cognitive [MC+15, PWD+12]. cognizant
[KL13]. Coin [SC06]. Cold [Hig97, Hig97].

Collaborative [VSDK09]. Collection
[AKP99, LB92, PUF+04, PF01, QSaS+16,
KTK12]. Collections
[Kle00, McM98a, McM98b]. collective
[HMC95, SCB15]. collector [BBY+05,
DL92, HL92, WK08a, WK08c, WK08b].

coloring [CFG+12, GP05, SS10]. Colt
[WN10]. Combinator [KLS92]. combined
[UZU00]. Combining
[KR01a, L207, CZSB16, ZLW+16]. come
[Pol90]. COMET [RCC14]. Coming [LS07].

Commands [KD97]. Commercial
[SBKK99, BEKK00, EJK+96]. Commodity
[ZL16, LVN10, RPNT08]. Common
[Hol98a, Kuc92, BDF98, BDLM07, CL00,
Kuc91]. Communication
[ABN00, BDJ06, DSR15, EHG95, FKT96,
FGKT97, GMR98, HY+15, OA08a, OA08b,
OA08c, Pan99, PWL+11, Rod94, SKK+01,
TAK+01, TCG95, BR92, DBRD91, GRS06,
KASD07, Lam95, QSHH16, RR96, RR03,
TG09, TAK+02, VS96, WHJ+05, ZCSM02a,
ZCSM02b]. Communications [Ano03,
BMN99, FJ08, SCB15, Sho97b, TP18].

Commutativity [AC09]. Compact
[HEMK17]. compaction
[WK08a, WK08b, WK08c]. Comparative
[SKP+02, Yoo96a, PL03]. Comparing
[KPP+06, SV96c, SV96d, SV96b].

Comparison [ILFO01, SAC+98, GL98b,
KIM+03, MKIO04, MMTW10]. Compass
[PWD+12]. Compatible [MM14, LBH12].

competition [YL16]. Compilation
[ACMA97, HLB94, BRRS10, GC92,
HCD+94, TSA97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time
[CS95a, CS95b]. Compile/run [TS99].
Compile/run-time [TSY99]. Compiler [ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, JSB+12, LEL+99, Loc18, MCRS10, SCv91a, SCv91b, SYHL14, Sin99, TY97, TGBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG+95, BAD+10a, BAD+10b, BVC97, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Hop97, JSB+11, MSM+11, MCM97, Mü13, KRCW98, Sch91, SKK09, UZ00, WLG+14].

Compiler-assisted [Dub95]. Compiler-Controlled [CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91]. Compiler-directed [DZKS12, SKKC09]. Compiler-Driven [YBL16]. Compiler-Supported [ZP11]. Compilers [SS96]. Compiling [ABNP00, ABH+01, TLA+02, HTZ+97, Sch91, Sh98, A+01].

Computation [ACM94c, BFA+15, CSW06, HLB94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fun93, Fu97, KG07, Kic91, Nj00, Sha98, ST98, WHJ+95].

Computational [LNI+19, PCPS15, Bar09]. Computations [BL98, FS96, KC98, Kc99, WJ12, YWJ03, Bh92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute [BBSSG11]. Computer [ACM98c, Ano94a, BVL09, CBW+00, Go94, BD06, DNB+12, GK05, T+94, PBDO09, WQL18]. Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95].

Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Am98, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Ham96, Hoi12, HG91, IE94b, KR12, Kon00, LCK11, LFA96, ME17, SRU98, SZ2, USE93a, Wea08, WN10, BGG95, BD06, Dan09, FWL03, GBC95, GS02, HFG8, HG92, IE97, Joe96, Kim94, KU17, Lan97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta90, SKA01, Tem97].

Concept [AMdBDRS02, BBFW02, KA97]. Concepts [McC97a]. Concrete [NSP+14].

Concurrency [BM94, GMGZ14, MLLR16, ME17, NFB17, ZW15, BA08, But14, CBM10, DKG18, GCC15, HZD13, L207, NM12, NJK16, RR96, RR03, SK12, VTS12, Yan02, ZLW+16, dB09, SB80].

Concurrency-preserving [NFB17]. Concurrent [ILFO01, KD97, KCC99].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, AM90, ANo94a, AV+99, BT01, Hoi12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KDV03].

Condition [Hol98c, Yan02]. Conditional [IBST01, NA07]. Conditions [NM96].

Compliance [BGK96, BK96, Lun97, Man98, BGK94c]. Confident [NSH14].

Commitment [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, AM90, ANo94a, AV+99, BT01, Hoi12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KDV03].

Confidentiality [NSH14].

Conflict [NJK16, vPG03]. Conformant [Stu05].

Congress [Ano94d]. conjunction [Ano94e]. Connect [Ano00b]. conquer [FN17, TP18].

Consistent [GBP+07]. Consistency

D [KSB+08, NTKA99, PYP+10, TKHG04]. Daemon [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEE96]. dans [Zig96]. DARPA [Mat97]. Data
[Ama89, ABP00, DTL16, EW96, FH95a, GAC14, HMC97, HR98, Hig97, HLI16, JMS+10, JGS+19, KZC15, KEL+03, KET06a, KET06b, LPM16, LMJ14, LLD17, ME15, ME17, RCRH95, SBN+97, SAC+98, SYY97, SG96, Ten98, TESK06, VT96, Wli98, ZLJ16, ZAK01, AGB08, AGN09, BAM07, CS95a, CS95b, CDL13, DHM+12, Evr01, FH95b, FK12, HL93, LTL+16, LHS16, Maa96, MNN09, NWT+07, ND13, PDM16, PRB07, PHCR09, Po09, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKC09, WDC+13, YKL13, ZIS+11].
data-centric [DHM+12]. Data-Driven [DTL16, KET06b, ME15, ME17, TESK06, Evr01]. Data-Parallel [ABP00, SAC+98, HMC97]. data-race [MMN09]. Database
[BAZ+19, KDD07, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a]. Databases
[AV+99, GDS+17, HL08, MIGA18]. Dataflow [CVJL08, GGB93a, Gao93, HPB11, HKSL96, LH94, NBM93, RSBN01, SRU98, Tra91, YMR93b, BGG95, GGB93b, GCG95, HG92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based
[RSBN01]. dataflow/von [HG92]. datarace
[CLL+02, CVJL08]. Datarol [KA97]. Datarol-II [KA97]. Dawning [Cro98]. DC [IEE94c, ACM92, Ano90]. DCE
[RD96, Yam95, Yam96]. DDOS [HBCG13]. Deadlock [Hol98a, Mon00, Ver97, ABF+10, SR14, WLK+09]. Deadlocks
[CC+14, CJW+15, CZW13, JPS99, PRB07]. dealiased [RB18].Deallocation [LPE+99]. death [Len95]. debate [Bak95b]. debug
[PT03]. debugger [CB89, CB90].

Debugging
[An098b, Caz02, HWZ00, MQL16, PHK91, SJB92a, SJB92b, BGZ97, MLR15, WOKH96].
decentralized [RPB+09]. Decision
[LFA96, LQ15]. Decisions [JGS+19]. decomposition [JVE04]. Decompression
[PBL17]. Decoupled
[DO95, IXS18, APX12, Evr01, RVOA08, RCGD06, SAK01, V96]. decoupling
[KGGK09, PG01]. Decoy [MIGA18].

Deductive [AdBDR08, BK13]. Deeply
[GC17]. Defect [OB13].

Defragmentation [PVS+17]. Delaunay
[ABC+09]. Delivering [SCCP13].

DeLorean [MCT08]. Demand [KKJ+13]. Demand-based [KKJ+13]. Demus [Sri93].

Demus-2 [Sri93]. dense [ABD+12, MM07]. Dependable
[SUF+12]. Dependence
[CSZ+17]. dependences
[BKC+13, CSZB16]. dependencies
[NPC06]. Deployment [GARH14]. Depth
[McM96a, McM96b, McM96c, McM98a, McM98b]. Derivation [Kim14]. Derivative
[TT03]. describes [Yam96]. Design
[ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GRS97, GMR98, Ha97b, JGS+19, KHP+95, Lahf00, MB99, NBM93, Raj93, RCGD06, Sch17, STW93, Sha95a, SWY94, SBK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car89b, FKL03, HCM94, Hu96, KU17, KGGK09, Mah11, Met95, Mop95, Mop96, MKR02, Ném00, OKID92, OCRS07, RSB+09, SB00, Siri93, Ver97, WLG+14, Wan94, WCV+98].
Xue12]. designed [San04]. Designing [Dru95, GJKZ12, RR93, Rei95, TSV12, Hai97a, TCG95]. Desktop
[ANO97a, FURM00c, FURM00a, FURM00b, Mar07, Pran95b, WS97]. Desktops [ANO94b]. despite [Len95]. Destructing
Detection [ABF10, CC14, KUC15, KBW17, LSS12, VSD16, BAO00, TLZ17, TLZ18, ZLJ16, AFF09, CL10, CVJL08, FF90, HR16, LLLC15, LTHB14, MKM14, MN09, NBMM12, NAW06, NA07, PS03, PS07, PFC06, RVS13, RM00, SR14, Sch99, TLZ16, TDW03, WDC13, ZKR11, DWS12]. Detector [SB10, SLG06]. determined [Kub15]. determination [BS10b, LW17, LZW13]. Deterministic [DK02, KRB12, LB17, LSS12, VSD16, BAD10, BAD10b, BAI9, Bon13, DLCO10, DNB12, LZW14, MAAB14, OAA09, QSH16]. Deterministically [MCT08]. DetLock [MA14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing [SP90b, SH10, TKA91, OT95].
Development [ANO97a, Ano98b, Ano99, Gil88, SRI95, Tet94, ARvW03, Hig97, POM98, TNB95]. devices [Xue12]. diagnosing [CS12]. diagnostics [GBB95]. diagrams [SK12]. Diego [ACM93b, ACM98b, USE98, USE93b, USE98b, USE90a]. differences [Yam96].
Direct [PR98]. Direct-threaded [PR98]. Directed [LPE99, STR16, AR19, DZKS12, Fan93, Sen08, SKKC09]. directory
[QSQ14, HR10]. DISC [Don92]. disciplines [Bar09]. discrete [Leg01, TKHG04, WLD9]. discussion
[SH97a, Sho97b]. Disintermediated [BDJ06]. Disjoint [SJA12]. Dispo [MGK90]. Dissecting [ACC93].
Distance [BCZ16, KZ15, KNPS16]. distinguished [HL93]. Distinguish [ABH91, TKA91]. Distributed
[ABNP00, ABH91, BBD1, BWX15, BHKR95, BC94, CV98, CJK95, DKA16, FSS90, GJ97, Jen95, MGK+95, PG92, Pra95a, RLJ10, RPB00, RW97, RCR95, SUL12, TDW03, USE92b, VS96, Ys95, Ano96, A+01, BCG95, CML00, Car99a, Gol96, GKK99, Gun97, HMC95, HWW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ono97, Pah91, Ply99, QSQ14, St02, Tod95]. Distributed-Memory
[RCR95, BCG95, HWW93]. Distributed-sum [TDW03]. Distribution [SSY97, ZAK01, CY99]. divergence [MTS10]. divide [FN17, TP18]. Divisors [Kuc92, Kic91]. DMP [DLCO99]. Do [Cri98b, Cri98a, RPNT08, Ber96a, Ber96b, YLLS16]. Dock [BCS11]. Docking [BCS11, TO10]. documentation [HF96].
Does [Hag02, RKK15, ZJS10, San04]. doing [Yam96]. domains [LA09]. données [Swi09]. Don’t [HHV95].
Don’t [YEF93]. DoubleVision [Ano00].
downdating [YV11]. Downturn [Gar01].
DRAM [LLKS12, kSY11]. DRAMs [ALS99]. driver [CCW11]. DSLs [KKH17]. DSM
[ABH90, AB01, AB02, BDF98, KKH04].
DSM-PM [AB02]. **DSM-PM2** [AB01].
DSMs [FBF01]. **DTS** [BHKR95]. **Dual** [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11]. **Dual-Core** [KST04, MB05]. **Dual-Level** [BBC+00, DK02]. **Dual-personality** [CCW+11]. **Dual-Processor** [EHG95].

Dual-Thread [MB05, WS08]. **Duplex** [KG05]. **Duplication** [Kwo03]. **Dynamic** [BPSH05, CJW+15, FSYA09, HSS+14, Hig97, KMAC01, PCK96, KC98, KC99, KUCT15, MVZ93, MTS10, Nak01, PBL+17, RCROH95, RS08, SBN+97, SLG04, SKK+01, Sta90, SG96, WHG07, XMN99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Chr95a, Chr95b, Don92, FF04, FF08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SCB15, SLG06, TJJ+11, WW96, BK13].

dynamic-multithreading [LSS12].

Dynamically [PGR12, TLGM17, DMBM16, Kep03].

dynamically-typed [DMBM16].

Dynamics [LNI+19].

e6500 [BGH+12]. **Early** [GL91, PBL+17, SLPO8]. **EARTH** [HTZ+97, HMT+96, Sdo02, TAK+00, TKA+01, TKA+02, TMG03, Nak03].

EARTH-MANNA [HMT+96, Sdo02].

Easy [Har99]. **Easysoft** [Ano00b]. **ECMA** [Stu95]. **ECMA-162** [Stu95]. **economics** [Bar09]. **Edinburgh** [AVO+99]. **edit** [KNPS16]. **Editors** [GGB93a, GJ97].

Education [Gar01]. **effect** [BAD+09, GL98b, YSY+09]. **Effective** [ABLL92, DN94, GH03, GMZP14, NAW06, NSH14, PGB16, RVS13, Sat02, TMC09, TY97, CBM10, Jsb+11, MMN09, MTC+07, Ska01, Tsa97b]. **Effectiveness** [PR05, TE94b]. **Effects** [Cho93, HRH08, KHL+99, KRB12, NHFP08]. **Efficient** [TTKG02]. **Efficiency** [AJK+12, Ano05, THA+12, AMPH09, FGG14, GA09, MMM+05, MWK+06, Pra95b, RCG+10, SP05]. **Efficient** [AD08, ALSJ09, ALF94, ABN99, BCZY16, BGDmWH12, BJ+96, BL98, BMN99, CZS+17, CYYL18, CCM+02, DMBM16, Gao93, GJT+12, GRS97, GS06, GN96, HCMP16, HSS+14, HR10, HEMK17, KPC96, KASD07, LS18, Lem02, LHG+16, LZBW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGS05, ZL16, ATLM+06, BL93, BJK+95, BHK+04, EKKL90, FWL03, FF09, GB99, HSS+12, KSB+08, KNPS16, KSD04, LK13, LW+10, LHS16, LZW+13, MSM+10, NLK09, OAA09, Pan99, PSG06a, PS06b, PSG06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZLW+16, FSYA09]. **Efficiently** [KBF+12, MCT08, SW16, Blu95, BKC+13].

eigenproblems [ABD+12]. **eigenvalue** [BIK+11]. **Elastic** [SG18]. **Electronic** [Ano00b, BB00]. **Elegant** [Pul00].

Element [HBGTG98, MS02]. **elementary** [HKN+92]. **elide** [MLS15]. **Eliminating** [DSG17, OCT14, RD06, MTP12].

elimination [MK12]. **elision** [NM10].

Elliptic [Loe97]. **EM-4** [BAM93, SKS+92].

Embedded [BGH+12, DS09, Dru95, GKCE17, KG05, KE15, MS15, WM03, DCK07, KV+10, KASD07, KBF+12, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB+09, SKP+02, Xue12].

Embedded-Systems [Dru95]. **Embedding** [Pul00]. **emergencies** [MTP12].

Emerging [VSM+08, GBP+07, HVF+12]. **empirical** [LC13]. **employing** [CWS06].

Employment [Gar01]. **Empowering** [JSB+12]. **Enabling** [CC18, Pan99, SMZ18, JMS+10, VGG+10a, VK+10b]. **End** [SNM+12]. **End-to-end** [SNM+12].

Energy [ALSJ09, AJ+12, GJT+12, GKCE17, KE15, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KSB+08, NB12, PJZA07].

Energy-Aware [PR05].
Energy-Effectiveness [PR05].

Energy-Efficient [GJT+12, LK13, RL14].

ergy-performance [PJZA07].

enforcement [GWM07, SCCP13]. Engine [SG18, CNQ13].

Engineering [GJ97, LSB15, WCV+98]. engines [HB15].

England [ACM94c]. Enhance [FSPD17, FJ08].

Enhanced [Ano00b, EJ93]. Enhancing [OL02a, OL02b, OL02c, HWw93, RHH10].

Environment [AKP99, BDN02, GJ97, KKH03, PG92, BK96, DSH+10, GCD04, GGC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWYC94, Sta90, Tem97, WCV+07].

Environments [BDN02, LZ07, Van97b].

equality [AD08].

Equalization [TLGM17].

Equations [Loe97]. equivalent [Pra95c].

Eraser [SBN+97]. Errata [Ano01, Ano05].

Error [EUVG06, SSN10]. Errors [SK97, VACG09]. escape [SR01a].

Esterel [LBvH06a, LBvH06b, LBvH06c, LvH12].

Evaluating [BL96, CML00, NPT98, PSCS01, RPNT05, Sch98, SD95, TG99]. Evaluation [Aru92, Boo93, BTE98, CL95, CBN+00, EJK+96, Eic97, GLC99, HN91, RNSB96, SCD+15, TT03, ZL10, BGdmW912, BLC97, Car89b, Cho92, Don92, LZ07, Mah11, MKR02, NFB17, RGG+12, RCDG06, SWYC94, SKP+02, SMS+03, TG000, TKA+02, WLG+14, WZSK19].

Evaluations [MM14, Roh95]. evaluator [SP00b, Shi00]. even [Ano94b]. événements [Swi09]. Event [Ber96b, CRKRW99, For95a, For95b, Ber96a, CRKRW97a, CRKRW97b, GWM07, KCCD99, KBP+03, Leg01, RVS13]. Event-Based [CRKRW99, CRKRW97a, CRKRW97b].

Event-Driven [For95a, For95b, RVS13]. event-handling [KBP+03]. Events [BDN02, LZ07, Van97b]. Evolutionary [TAK+00, Ku17]. Evolving [MS87, MS89].

Exact [Sch17]. examines [Yam96].

Examining [Kan94, Ric91, Rod95a, Tim03]. Example [BLPV04]. Exception [DH98, Lea96].

Exceptions [AdBdRS08, KR01b]. exclusion [BRE92]. exclusiveness [Lie94]. execute [APX12].

Executing [Blu95, BS99].

Execution [ABH+01, CC18, Cj91, Coo02, EC98, Far96, GMMZP14, GS06, HMCP16, HEMK17, HZ12, KS16, KLG08, KL95, KG94, ME15, MGK+00, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, Dil93, JWG+01, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSAJ08].

Executions [CDOS01, HZD13, Roh95, STR16].

Exemplar [BLCD97]. Existing [Ric99].

EXOCHI [WCC+07]. expansion [YKL13].

Expectation [SC17].

Expectation-Maximisation [SC17].

expediting [YL16]. Experience [BMR94, HLB90, Jun86, Yas95, RM03, GL91, Yam96].

Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b]. Experimental [BLCD97, EGC02, YMR93b, GRS06, Pha91, WCW+04b, WCW+04c, YMR93a]. Experiments [DV99, GMR98, SZM+13, VSM+16, VV00].

Explicit [DV99, VDNB98, BM07, URS02b, URS03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KVN+09, PGS06a, PGS06b, PGS06c].

Exploiting [AACK92, EUVG06, FFQ04, KDM+98, KOE+06, Kwe03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96].

Exploration [PTMB09, Sch17]. Exploring
[AAKK08, BS10a, SE12, WWW+02].
Expressions [Hei03]. Extended [BLG01, DV99, Röd19, VDBN98].
Extending [BF08, Mar03]. Extensible [CdO01]. Extension
[RCC14, CCW+11, Lan97, PDP+13, Tem97].
Extensions [Sch90, Bart92]. external
[LW*10]. Extracting [GP95]. Extremal
[MNG16].

FAB [YWJ03]. Facility [KSM94]. Facing
[KML04]. Factorization
[ABLM19, But13, CYYL18, CIM+17, Dav11].
Factorizations [VD08]. failing [STR16].
failure [CZ02, LC13]. failure-inducing
[CZ02]. failures [HZD13]. Fair
[MQ08, FSPD17]. Fairness [ES97, FSPD17,
GWM07, VS11a, SCCP13, WTKW08]. false
[LTHB14]. farms [MR98]. Fast
[BCS11, BRE92, GSC96, HN91, LDT+16,
SMZ18, STY99, SLF14, ST05, VTS12,
ZSA13, ZCO10, BDL07, CKD94, Kep03,
Kus15, TT03, TTKG02]. Faster
[FCM16, BDM98]. FastTrack [FF09]. fault
[RRP06, RM00, VPC02]. FCRC [ACM96].
Fe [Gol94]. Feature [LH09]. Features
[GMB93, BDM98]. Featuring [RRK11].
February [USE89, USE00b, USE02].
Feedback [SQP08a, SQP08b, SQP08c,
TG099, ALHH08]. Feedback-driven
[SQP08a, SQP08b, SQP08c]. Felix [Ano00c].
Fernandez [Ano00c]. fetch
[EE09a, TEE+96, AGJ18]. FFTs [MJJ+10].
Fiber [GDSA+17]. Fiber-based
[GDSA+17]. fibers [BS06]. FIFO
[HHOM91, HHOM92, QSA+16]. fifth
[ACM93b, AOV+99]. File [FG91, GJT+12,
KS97, Pea92, WLM15, BLC97, DZKS12].
Files [RRK11, CCC12, kSYHX+11].
filtering [Kep03]. final [HCM94]. Finding
[MNG16]. Fine [AZG17, BBG+10, BSSS14,
But13, CSS+91a, CSS+91b, CSS+91c, H91,
KG94, LKBK11, LVS01, LFA96, MKM17,
NS97, PBR+15, TY97, TAK+00, YSS+17,
BGK94c, Dub95, Gol97, KDM+98, Kim94,
Lof95, MLC+09, Met95, PL03, RPB+09,
TKHG04, Wei98a, kSYHX+11]. Fine-Grain
[AZG17, CSS+91b, HG91, K94, LFA96,
CSS+91a, CSS+91c, TY97, KDM+98, Kim94,
Lof95, MLC+09, Met95, PL03, TKHG04].
Fine-Grained
[BBG+10, BSSS14, But13, LKBK11,
PBR+15, TAK+00, YSS+17, LVS01, BGK94c,
Dub95, Gol97, RPB+09, Wei98a, kSYHX+11].
Finite [HBGT98, MS02, Cor00].
Finite-Element [MS02]. finite-state
[Cor00]. firmware [ABB+15]. First
[MSLM91, Wei97, LAH+12, MHW02, Hon94].
First-class [MSLM91]. FL [ACM94a].
FlexBFS [LAH+12]. Flexible
[ABG+08, KS97, Len02, MSM+16, SP00a,
Sam99, SCMO95, WW93]. Floating
[LWSB19]. Floating-Point [LWSB19].
Florida [ACM98d]. Flow [AT16, Ama89,
HH11, PBR+15, FSYA09, JD08, KBH+03,
NT14, Pol90, RM99, RPB+09, SV98]. fluid
[JD08]. FluidCheck [KS16]. fly
[CW06, PS03, PS07, Sch89]. Focus
[EHP+07]. Forces [FTP11]. Forecasting
[Ano98b]. fork [ALS10]. fork-join [ALS10].
FORM [TV10]. Formal [Sta05, WP10].
formation [FSYA09]. forms [BI+11].
FORTH [Jon86]. FORTH-like [Jon86].
Fortran [Ano97a, Bra97, AS14, GOT03,
HBG01, HBG02, Nag01]. forum
[Sho97a, Sho97b]. Forwardflow [GW10].
foundation [MCS15, RBF+09].
Foundations [BA08, Gol94]. Four
[CH95, MTN+00, KNPS16]. Four-Russians
[KNPS16]. Four-Way [MTN+00]. Fourier
[TT03, TTKG02, BCS11, HN91]. fourth
[USE96]. fragment [APX12]. fragments
[LG04]. Framework
[BMF+16, BVL09, BF04, CV98, DHR+01,
EF0+03, KC98, KF07, LCS04, LMJ14, Loe97,
NSP+14, Rei01, VSM+16, Yam95, AMC+03,
BDF98, EHSU07, GJ11, Hop98, PV06].
France [FR95]. Francisco
[ACM95b, USE02]. Free [Way95, AR19, DTLM14, GP08, MLS15, Mic04, ST05].
free-lunch [DTLM14]. FreeBSD
[Ano00b, Bal02], freeness [AKH08].
Freescale [BGH +12]. French [Zig96].
frequent [GBP +07]. Fthreads [Nag01].
Fusion [Ano91]. Full [MHW02, GB99].
Full-system [MHW02]. fully [RD99, Stu95].
Function [Hub01, LLKS12, Röt19, TO10].
Functional [Coo95, DCK07, GS06, Kim94, KIAT99, LP94, SSP99, Gun97, RKBH11, TAN04, VGR06, WZWS08, ZSJ06].
Functions [Bed91, KI16]. Further [GV95].
Fusion [PWL +11, Hig97]. futex [BF08].
Future [Jon91, TAM +08]. futures [TTY99].

GALAHAD [GOT03]. GAMBIT [CBM10]. Game [DHR +01]. GAMESS [BB00]. Garbage [AKP99, LB92, PUF +04, PF01, QSaS +16, BYBG +05, DL93, HL93].
Garcia [Ano00c]. Gateway [Yas95].
Gating [RRK11]. Gaussian [SC17]. GbA
[LZW17]. GC [HHPV15]. Geant4
[SCD +15]. GEMM [SLJ +19]. Gene
[GBB +05]. Gene/L [GBB +05]. General
[Ber96b, BF04, HSS +14, Man98, YKL13, ZSA13, Ber96a, Car89a, DC99, DC00, HSD +12, MQW95, SAKA01].
General-Purpose [Ber96b, HSS +14, Man98, Ber96a, DC99, DC00, HSD +12].
generalized [ABD +12, BCM +07, FTAB14].
Generated [BD00, MJF +10]. Generating
[AZG17]. Generation
[ARB +02, BVL09, Coo95, EFN +01, EEL +97, HEMK17, HYY +15, NBS +15, RNS896, TGBS05, Tra91, TSV12, ABC +09, EFN +02, GJ11, KI16, LK13, LSS12, Way95, CH04].
generational
[DL93, WK08a, WK08b, WK08c].
generations [Roh95]. generators [SLF14].
Generic [ABH +00, AB02, Fer13]. Genetic
[NSP +14]. genome [LHS16]. GeoFEM
[Nak03]. Geometric [Caz02]. Georgia
[ACM99a]. Germany [RM03, Wat91].
ghosts [TVD14]. Gigabit [AWH02].
Gigabit/sec [AWH02]. Gilgamesh [SZ02].
glasses [CZSB16]. Global
[HH11, PWL +11, Ten02, FWL03, LBZW14, OCT14, OA08a, OA08b, OA08c, Ano98b].
globally [CZWC13]. gmm_diag [SC17].
gmm_full [SC17]. GNAT [diPRG99]. Go
[Mia90]. Going [Bak95b]. Goldilocks
[EQT07]. good [Mat03]. GPGPU
[CCWY17, LLKS12, YZ14]. GPGPUs
[LSB15, ZWL15]. GPS [TVD14]. GPU
[APX12, Bon13, DTR18, FTP11, KI17, LWSB19, LTL +16, LHG +16, LAH +12, WLG +14, XWG +14, YSS +17, ZCO10].
GPU-Oriented [LHG +16]. GPUDet
[Bon13]. GPUMixer [LWSB19]. GPUs
[CSV10, DNT16, LBH12, SKG +11, VD08, WJ12]. Grace [BYLN09]. Grain
[AZG17, CSS +91b, HG91, KG94, LFA96, MKM17, NS97, ZM07, CSS +91a, CSS +91c, KDM +98, Kim94, Loi95, MLC +99, Met95, PL03, TY97, TKH04]. Grained
[BBG +10, BSSS14, But13, LKKB11, PBR +15, TAK +00, YSS +17, BGRK94, DUB95, Gol97, LVS01, RPB13, We99a, KSYHX +11].
Grande [ACM01]. Grande/ISCOPe
[ACM01]. Granularity [KI95]. Graph
[CFG +12, CL95, EJRB13, HPA +15, KS93, KLS92, MM14, LK15, LZW17, RVR04].
graph-based [LZW17]. GraphCT
[EJRB13]. Graphical [ACR01]. graphics
[BGDMWH12, CCW +11, FSYA09, PYP +10].
Graphs [HPB11, Nik94, OB13, AD08, ABG +08, DSEE13]. grass
[MMTW10]. Greatest [Kuc92, Kuc91]. Green
[SKP +02]. groener
[MMTW10]. Grid [KEL +03]. Grid-Based
[KEL +03]. GRIDiron
[MCS15]. grids [SKG +11]. Griffin
[Ano00c]. Gröbner [AGK96]. Group
[BNH01, DLM99, QSHI16]. Group-Based
[BNH01]. Grouping [OR12, WC99]. groups
[WZSK19]. Grove [IEE89]. Growth06_v2
[Dan09]. Guarantee [Hag02, BGP06].
Guarantees [PSM01, YWJ03, GPS14].
MTC+07, PSM03, ZHCB15]. Guarded
[Sim97]. Guest [GGB93a, GJ97]. GUI
[Tet94]. Guide [Ano99, BBD+91, LB96a,
Wil97, BW97, ND96, RR96, Sun95]. guided
[NB12]. Guidelines [RD96]. GUIs [Mia90].
Gyrokinetic [KEL+03, PWL+11].

Hagenberg [Hon94]. Hagenberg/Linz
[Hon94]. Halide [DKA16]. Hamilton
[Ric91]. Handles [Rec98]. Handling
[DH98, LSB95, SK97, BM91, KCCD99,
Koo93, KBP+03, Lea96, Met95]. Harbor
[BBC+00]. Hardware [AGJ18, BAZ+19,
CKD94, CSS+91b, DVAE18, KE15, KH18,
LLS06, MWP07, MKM17, Men91, SW08,
ZLJ16, AB+99, CWS06, CSS+91a,
CSS+91c, ECX17, FSYA09, GP05, LT97,
MLS15, MQW95, OCT14, PAB+14, PRS14,
RPNT05, SE12, TE94b, DWS+12].
hardware-aware [PAB+14].
Hardware/Software [MKM17, LT97].

Harmful [NWT+07]. Harmony [KTK12].
Harness [Ama98, EBK90]. Hash
[GK05, VB00]. Hash-join [GK05]. Hashing
[SMZ18, MIGA18]. having [YFF+12]. Head
[Mia90]. healing [SLP+09]. Heaps
[DGK+03, Man99, Ste01]. help [Len95].
Helper [ALS10, WCW+04b, WCW+04c,
WCW+04d, WCW+04a]. Here
[Ano92a, Pra95c]. Hessenberg [BKK17].
Hessenberg-triangular [BKK17].

Heterogeneity
[CCK+16, Kwo03, RKBH11].
Heterogeneous [AT16, AACK92, FBF01,
KTR+04, Lu95, NTR16, THA+12, FKS+12,
GKZ12, LK13, SJ95, WCC+07]. Heuristic
[HH11, Mah11, OCRS07]. Heuristics
[MGI14]. Hewlett [BLC97]. HFS [KS97].

hiding [BR92]. Hierarchical
[GJT+12, JY15, KC98, KG94, BMV03,
DZKS12, LK13, LQ15, RCDG06].
Hierarchies [BCZJ16, TAM+08].
Hierarchy [ZM07, BGDMWH12]. High
[ACM98a, ACM98d, ACM00, Ano00a,
Ano03, BGH+12, CT00, FGKT97, Gar01,
Hol12, HG91, IEE94b, LCK11, LG06,
LMJ14, LBH12, LHC+16, LHC+08, MR94,
MSM+16, MPD04, ME17, NBS+15, PH97,
RG03, SRS98, Sch17, SLJ+19, TCI98,
WN10, LCH+08, VV11. CIM+17, GS02, HG92,
Kim94, Lan97, RRP06, ReI95, SQP08a,
SQP08b, SQP08c, Tem97]. high-
[RRP06]. High-Level [Sch17]. High-Performance
[ACM98a, BGH+12, FGKT97, Gar01,
IEE94b, NBS+15, RG03, SLJ+19, TCI98,
WN10, LCH+08, VV11. CIM+17, Kim94,
SQP08a, SQP08b, SQP08c]. high-powered
[ReI95]. High-Speed
[Ano00a, Ano03, HG91, SRS98, HG92].
Higher [CJK95, NV15]. Higher-Order
[CJK95, NV15]. highly
[BGDWH12, Kub15, KGGK09, MAAB14].
Hill [CY09, USE02]. Hill-climbing [CY09].
Hilton [IEE90]. HippogriffDB [LTT+16].
Hist [Gar01]. history [Ano97b]. Hoard
[BMBW00a, BMBW00b, BMBW00c].
Hoare [KI17]. HoME [OKID92].
Homogeneous [CC18, JGS+18]. Hood
[Ven97]. HoPE [PBL+17]. Hot
[IEE99, PBL+17, Gle91]. Hot-Cacheline
[PBL+17]. Hotel [Ano94d, USE02].
Householder [BKK17, VV11].
Householder-based [BKK17].
Householder-like [VV11]. Houston
[Cha05]. HP [Ano95a, Ano95b, Yam96].
HP-UX [Ano95a, Ano95b, Yam96]. HPC
[GKK09, KO09, PLT+15, SLJ+18]. HPF
[BMV03, CM98]. HTM [KGGK09]. HTMT
[Gar01]. HTTP [Zha00]. Hut [ZBS15].
Hybrid [BBG+10, Gao93, JYE+16, LH09,
MS02, NBM93, YZ07, GKK90, HG92, MK12,
MTC+07, SKS+92, Sh95b, kSYHX+11].
Hybridizing [CZS+17]. Hyperion [A+01].
Hyperobjects [LS18]. hyperscalar
[Rai93, Sha95a]. Hyperthreading
[HRH08, KM03].

I-WAY [FGT96]. I.e [USE98b]. I/O
[RM03, Ano95a, Ano95b, ABB+15, BDN02, KUS94, LTL+16, Man98, MG15, Yoo96a].

IBM [ABB+15, CJB+15, KST04, LS+F07, WZW08], Id [Nik94], IDA* [Mah11].

Ideas [JLA16], idempotency [KOE+06].

identification [JSMP12], Identifying [BCZ16, SU96, DESE13], IEEE [AMC98d].

IFIP [BT01], Igniting [ACM03].

II [HCD+94, IEE89, JJ91, KA97, KR01a, McM96b, Wal95].

Illinois [GHG+98], Illinois-Intel [GHG+98].

Illuminating [BLPV04], ILP [OCRS07, RLJ+09].

im [HL93], Image [WN10, BCG14, Kep03, RKH17].

Impact [KLG08, SCL05, TE94a, ZAK01, Div95, Met95, RGG+12, RPNT05].

Impaired [Wei97].

imperative [SV98].

implement [DBRD91].

Implementation [ACM94a, ACM99a, ALf94, AB01, AKP99, BBD+91, BHF+03, BRM03, CWHB03, DSH+10, FLR98, Hai97b, KA97, MS02, Nik94, STW93, TKA+02, TMAG03, BK96, BB00, BMV03, CMX10, DI93, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, L05, LZ07, LAH+12, NFB91, OKI92, Stu95, Tod95, YZYL07, Ano95a, Ano95b].

Implementations [Han97, SAC+98, Ram94, SKG+11, Sha95b].

implemented [Boe05, KEL+03].

Implementing [ABH+00, AB02, BP05, CB89, CB90, Day92a, Day92b, DPZ97, GMB93, GSC96, HPA+15, KR01b, KBA08, KIA99, Pra95a, TY97, TAN04, BHK+04, Liet94].

Implications [RM03, BS96, VSM+08, CSN+05].

Implicit [BAM93, MS02].

Implicitly [ACMA97, PFV03, SAC+98, BBV18].

Implicitly-multithreaded [PFV03].

Improve [GV95, KH18, QSaS+16, RKK15, Sin99].

Improved [BR92, GMGZP14, LLS06, Smi06].

Improving [AJK+12, BDN02, CCWY17, DKG18, FT96, FM92, FBF01, GA09, IBST01, LYH16, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10].

In-Memory [BAZ+19], In-Order [RKK11].

In-place [SGLGL+14, SCM05], In-Situ [RGK99].

IN-Tune [RGK99].

includes [SJ95].

Incorrectly [SM99].

Increasing [PHCR09].

Incremental

Independent [DS09, EW96, FSS06, USE93a, KNPS16, MEG94, WZSK19].

Independently [ALSJ09], induced [MTPT12].

inducing [CZ02].

Industrial [KW17, Kout00].

Industry [DM98].

Industry-Standard [DM98], inference [FFLQ08].

inflation [OdSSP12].

InfoDock [Ano97a].

Information [BS96, PBR+15, CML00, KBH+03, RBP+09, SV98].

Informix [Ger95].

Initial [BTE98].

Inline [GH03, DJLP10, EKKL90].

Inlinage [OdSSP12].

Input/Output [MP89].

Instrumentation [RS07, XMN99].

Integer [GH98].

integral [Kue01].

Integrated

instruction-systolic [PYP+10], instructions [PPA+13].

instrumentation [RS07, XMN99].

Integrating [Cal00, CM98, DNR00, DTLL16, FKT96, TTY99, Tsa97b].

Integration
[BWXF05, KSD04, KASD07, SD13].

integrity [NT14]. Intel [ARB+02, CCW+11, GHG+98, PDP+13, SCD+15].

intensity [BD06].

[TKA+01, AAKK08, TKA+02, YSY+09].

Interaction [Hei03, HF96, Pan99]. Interactions [WG94, WSKS97].

Interactive [FURM00c, PTMB09, WOKH96, CSB00, FURM00a, FURM00b, HJT+93, KG07, Lan97, MCS15, Tem97]. Interconnection [NGGA94, RR93, SMK10].

Interface [Chl15a, HBG01, KKDV03, MS89, Met95, PS01, SW97, Ada98, DLM99, HBG02, Li05, MOW95, MS87, MEG94, TNB+95, FGT96]. Interfaces [Han97, HF96, LG04].

Interleaving [LGH94, YN09].

Intermediate [McC97a]. Internals [MM01, Wea08].

International [ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOY+99, Chao5, EV01, Hol12, Hon94, Lak96, LCK11, Wat91, FR95].

Internationalization [Ano98b]. Internet [Ano96, Hig97, SBB96, van95].

Interoperability [HR+91, Way95].

Interprocess [Rod94]. Interrupts [KE95]. interval [Kub15]. Intra [MKR10].

Intra-application [MKR10]. Introducing [GL07].

Introduction [CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98]. Intrusive [Caz02]. INUX [DNR00]. invasive [RGK99]. Inverse [HMLB16, GEG07]. inverses [GE08]. Invocation [SK+01].

IPC [EE14, Koo93]. IPs [Sch17].

IRREGULAR [FR95, TSV12, ZAK01, TP18]. irregularly [FR95]. ISA [KTR+04, MNU+15].

ISCOPE [ACM91]. Isolating [CZ02, JWTG11]. isolation [CMX10, MTC+07, SKBY07]. Isomigration [ABNP00]. ISSAC [ACM94c, Lak96, Wat91]. Issue [KU00, RYSN04, Ano94c, GGB93b, TEE+96]. Issues [GBM93, PS01, ARvW03, Ann96, GC92, HCD+94, IAD+94, TCG95]. Issuing [HMNN91, HK+92, HN+92]. Itanium [MB05, WCW+04b, WCW+04c, WCW+04d].

Itanium-2 [WCW+04b, WCW+04c, WCW+04d].

iterations [UZU00]. Iterative [MQ07, Nak03, AAC+15]. iThreads [BFA+15]. IUnknown [SW97]. Ivan [Ano00c]. IXP [ARB+02, LCH+08].

IXP2800 [AHW02].

J.UCS [KU00]. January [ACM94b, ACM95b, ACM98b, Ano90, USE89, USE91b, USE93b, ACM93a]. Japan [Ano91, Ano00a, Ano03]. JaRec [Chr01, GCRD04]. Jason [Ano00c]. Java [ACM98a, ACM01, Ano97a, USE01, AFF06, AMDbRS02, AddS03, AdbRS05, AdbRS08, Ait96, Ano96, Ano98b, ABH+00, ABH+01, A+01, AG96, ACR01, ABG+08, BZ07, Ber96b, BCV97, BAD+09, BR15, BPSH05, BHK+04, BS00, Bra97, BP05, BLPV04, Cal02, CV98, CRKW97a, CRKW97b, CRKW99, CWEH98, CC04, CCH11, Chr01, CT00, Coo02, Cor00, Cri98b, Cri98a, DJLP10, DH98, DRV02, DL+13, DS09, Dii00, DGK+03, Dra96, DHR+01, Dye98, EFN+01, EFN+02, EFC+03, EQT07, FSS06, FWL03, Fek08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Ham96, Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Hol00, Hyd00, KPPR+06, KPB+03, LB00, LCS04, Loc18, Loc97, Man96, MP10, McM96a, McM96b, McM96c, McM98b, McM97, Mit96, MC06, NAW06, NM10].

Java [NR06, Nev99, OW97, OW99, PSM01, PSM03, PRB07, Pet03, PUF+04, PV06, PG03, RWCW98, San04, SE12, Sat02, Sch14,
Sho97a, Sho97b, Sto02, SKP+02, Van97a, Ven97, Ver97, WN10, Whi03, XSAJ08, Xue12, Yan02, van95. Java-like [DJLP10].
JavaBeans [Van97b]. javar [BVG97].
JavaScript [PCM16, VP16].
Java [Ano00c]. Jersey [MT93]. JIT [McM97].
job [EE10, EE12, ST0a]. Jobscheduling [ST0c, ST0b, STV02].
John [Ano00c].
Joho [Ano03].
join [ALS10, GK05].
Joint [FTP11].
Jones [Ano00c]. Jorgenson [Ano00c].
Jose [ACM94d].
Journeyman [Bec00].
JPF [WKG17]. JPR [WKG17]. Jr [ACM99b].
July
[ACM92, ACM94a, ACM94c, ACM95a, ACM98c, EV01, IEE96, Lak96, Ass96, USE96, Wat91].
June [ACM94a, ACM98c, ACM01, Ano94f, USE92a, USE00a].
K-Java [BR15]. KAI [Ano98b]. Kaidan [Ano00a].
Kahluru [RM03]. Kaspersky [Ano00b].
Kendo [OAA09]. Kernel [Alf94, ABL19, Bal02, DNR00, EBK01, EKB+92, Kor89, MM01, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95].
Kernell-Based [Alf94]. Kernels
[KI17, dPRGB99, GLC99]. Kiel [LvH12].
Kikai [Ano00a]. Kikai-ShinKai [Ano00a].
kinds [San4a].
kinnematical [BD06].
Kinematics [HMLB16].
King [ACM996].
Kingdom [ACM94c].
Kitsune [HSD+12, HSS+14].
Knoxville [IEE94b].
Kroll [Ano00c]. KUMP [NTKA99].
KUMP/ [NTKA99].
K
[ACM92, ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIAT99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mil95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06].
Languages
[ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM+16, NPT09, OTY00, SCv91a, SS96, TY97, DMBM16, HL93, JPR92, JHM04, MSM+10, Sch91, SCv91b, ST98, TAN04].
LAPACK [ARvW03].

Laptops [Ano00c]. Large
[AOV+99, CC14, CJW+15, GN92, JLA16, LA93, R6t19, BCM+07, Boo93, GOT03, Koo93, SMK10, WCV+98].
Large-Scale
[CC14, CJW+15, LA93, BCM+07, GOT03, SMK10].
Latencies [Sch17, BS06].
Latency
[BD00, BAZ+19, Fan93, OCS01, SW08, Smi01, SKK+01, WWW+02, YLLS16, BR92, DC99, DC00, Jef94, Luk01, MVY05, PG01, TK98].
Latency-directed [Fan93].
Latency-Resistant [YLLS16].
latency-sensitive [DC99, DC00].
Latency-Tolerant [OCS01]. lattice
[SKG+11].
Law [Gar01, NZ17, CN14].
Layer [SHK15, CDD+10].
layout
[DHKS12, HB15].
Lazy
[GSC96, Gol97, LP94].
LCMT [LKBK11].
leadfoot [HHPV15].
Leakage
[Mus09, SYHL14].
Leakage-saving [Mus09].
leaks [ZJS+11].
Learned [HPA+15].
Learning
[CYYL18, DS16, ROA14, PWWD18].
least
[FTAB14].
least-squares [FTAB14].
lecture [Egg10].
Lenient
[SCv91a, Sch91, SCv91b].
Lepp [RRMJ12].
Lepp-bisection [RRMJ12].
Lessons
[RM03, HPA+15].
Letters
[DH+01, TLA+02].
letting [AC09].
Level
[ABL19, BBC+00, FURM00c, GP95, JYE+16, JLS09, DK02, KU94, LS11, LEL+97a, LEL+97b, MG99, MR94, MGI14, PLT+15, RR93, Ric99, Sch17, SLT03, YBL16, BBH+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRR06, HDT+13, JEV04, KDM+98,}
KVN+09, KC09, Lan97, LZ07, MSLM91, MT02a, MT02b, MT02c, MQW95, MCFT99, OT95, OCRS07, PO03, PT03, QOOV+09, STY99, SD13, SLT02, SCZM00, Tem97, WS08, YZYL07, YZ14, ZJS+11. Level-2 [Ric99]. Leveraging [PRS14]. LFTHREADS [GP08]. Libraries
[Ano00c, BCR01, GF00, Jon91, MLGW18, MM14, ARvW03, CBM10]. Library
[Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, Rot19, WN10, Yas95, Ada98, Boe05, CS00, GP08, GOT03, Mix94, Ong97, Tem97, WSks97, LKBK11]. like
[DJLP10, Jon86, VV11, Kor89]. limit
[ROA14]. limitations [Gal94, HL08]. limited [Bri89]. Limits
[LB95, LB96b, AAKK08]. Line
[Ano00c, FSPD16, FdL02]. Linear
[KLD09, Loc97, MR09, AAC+15, Bak95a, MM07, YSY+09]. Link [Ano00b]. Linked
[WJ12]. links [WW96]. LinkScan [Ano00b]. LINQts [CDL13]. Lint [Kor89]. Lint-like
[Kor89]. Linux
[Ano97a, Ano00b, Ano00c, Ano97a, RCG99, SKP+02, WTKW08, ZSA13]. Linux/AXP [Ano97a]. Linux/FreeBSD [Ano00b]. Linz
[Hou94]. liquid [KRB12]. Lisp [Nor90]. List
[DV99, WJ12, VV00]. LiteRace
[MM09]. little [CDL13]. liveness
[GM09]. LLCs [PBL+17]. Load
[HBTG98, HR10, KMA01, KC98, KR98, PGB16, VPQ12, Chr95a, Chr96, MKJO04, TKHG04]. load-adaptive
[TKHG04]. Load-Balancing
[KC98, PGB16, Chr96]. Load-Load [HR10]. Loadable [ZSA13]. Loading [PCM16]. Local
[DGK+03, IEE95, Whi03, HZD13, ZLw+16]. localities [CS95a, CS95b]. Locality
[BS96, CCWY17, PEA+96, Wei98b, HWW93, LK13, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a]. Location-Independent [USE93a]. Lock
[ALB+18, EFJM07, MNU+15, NM10, PGB14, AR19, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLw+16]. lock-free
[AR19, GP08, MLS15, Mic04, ST05]. Lock-manager [Hol98b]. Locking
[Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLw+16]. Locks
[ACR01, ALS10, MT93, OCT14]. LOCKSMITH [PFH06]. LOGFLOW
[NTKA99]. Logic
[Bre02, KI17, TAN04, BK13]. Logic-Centric [Bre02]. Logical [CR02]. LOIS [KT17]. longer [XHB06]. Looking
[ECX+12]. lookup [KNPS16]. Loop
[RLJ+09, SSP99, JMS+10, KVN+09]. loop-level [KVN+09]. loops [DTH92, FN17]. Low
[ABLM19, Ano00a, Ano03, BGH+12, PHBC18, ZHCB15, GPS14, RRP06]. low-level [GPS14]. Low-overhead
[ZHB15, RRP06]. Low-Power
[Ano00a, Ano03, BGH+12, PHBC18]. Low-Rank
[ABLM19]. LVPM [ZG98]. Ltd
[Ano00b]. lunch [DTLM14]. Luther
[ACMN99b]. Lyon [FR95]. M
[Ano00c, USE01, FKD+97]. M-Machine
[FKD+97]. MA [Ano94f]. Mach
[USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89]. Machine
[Ano89, CSS+91b, DS16, FKD+97, KA97, KKDV03, La00, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, Pra95c, SKS+92, Ven97, CGSV93, Evr01, PRB07]. Machines
[BSSS14, CYYL18, Den94, GH98, GBK+09, RCRH95, STY99, BBM09, DFK94, GKZ12, GC92, Kus15, MRG17, TSY99, TSY00, VPQ12]. macromolecular
maintenance [TNB+95]. makes [Van97a].
Making [BDLM07, LFA96, Low90, Pla93, PLT+15, YCW+14]. malloC [Kus15].
Mambo [WZWS08]. MAMPO [GJ11].
maintained [AKSD16, BBH+17].
Manager [Van97a]. Making [BDLM07, LFA96, Low90, Pla93, PLT+15, YCW+14]. malloc [Kus15].
Mambo [WZWS08]. MAMPO [GJ11].
maintained [AKSD16, BBH+17].
Manager [Van97a].
[Pea92, TTY99]. MPD [PHK91]. MPEG [BC00]. MPI
[PS01, Vre04, Ada98, ALW+15, ALB+18,
BBG+10, BK96, BBC+00, BRM03, CRE99,
DSG17, HD02, DLM99, FGT96, GCC99,
IEE96, MS02, Pla02, SCB15, STY99, SPH96,
TS99, TSY00, TG09]. MPI-based
[Ada98]. MPI-OpenMP [MS02]. MrBayes
[LHG+16]. MS [Wil94a, Wil94b]. MS-DOS
[Wil94a, Wil94b]. MSFV
[HHOM91, HHOM92]. Msparc
[MN00, MD96]. MT [EC98, TJIY+11].
MT-BTRIMER [TJIY+11]. MTA
[Mat97, Smi01]. MTAC [For97]. MTB
[AGJ18]. MTB-Fetch [AGJ18]. Mth
[MKM17]. MTraceCheck [LB17]. MTS
[Gal94]. MUCH [WLM15]. MultiTEP
[WM03]. Multi [Ada98, AMRR98,
AACK92, AGK96, AR19, ABNO0, BC98,
Bed91, BBH+17, BC00, BGK94a, BGK94b,
BGK96, CV98, CL95, CKRW99, CWHB03,
CdOS01, CCC12, CCK+16, CC18, CvdBC18,
cC91, Chr01, CR02, Coo95, CNZS17, DV99,
DS16, DTLW16, EBKG01, FMY+15, FD96,
FDL02, FJ08, GVT+17, GK94, GiL93, GS06,
GH98, HC17, HG91, IXS18, IIOI1, JY15,
Jon91, JLS99, KI95, KW17, KKH98, Kuc92,
KTR+04, LK15, LB92, Leg01, LKBK11,
MLGW18, MNU+15, Mas99, MTN+00,
McC97a, MeC97b, MS15, MP13, MG15,
MCFT99, MGK+00, NJ00, OR12, PCPS15,
PTMO99, FWWD18, PKB+91, PM14,
Pu00, PGB16, RR93, RCC14, RBPM00,
RKCW98, RVR04, RS08, SP00a, STW93,
Sch90, SKG+11, SNZ18, SeI98, SeI99, Smi92,
Ste01, SBKK99, TGO99, Tan87, Tra91,
TLGM17, VSDK09]. Multi
[VI11a, VB00, VK99, WaL00, YLLS16,
ABD+12, BW2D15, Bak95a, BK13, BM07,
BIK+11, DSEE13, CNQ13, CIM+17,
CFG+12, CASA14, CRKW97a, CRKW97b,
CS00, CYZ98, CL00, CSM+05, DWYB10,
Don92, EFG+03, EHSU07, FTAB14,
FWL03, FGG14, GCRD04, GCC15, GPR11,
KHP+95, KDM+98, KKH04, Kep03, Küc91,
KBF+12, Lan97, LBvH06a, LBZ06b,
LBvH06c, LVA+13, LZW+13, MLCW11,
MLC+09, MS03, MKK99, Mus09, NBEB17,
NH09, NOS08, OA08a, OA08b, OA08c,
PYP+10, RCV+10, RKM+10a, RKM+10b,
RGK99, SCB15, Sam99, SC17, SE12, SV98,
Smi06, St02, SQP08a, SQP08b, SQP08c,
SMQ09, ST05, Tem97, TCG95, TMAG03,
TJIY+11, VIA+05, VDBN98, VV00, VPQ12,
WCC+07, WCV+98, YZ07, Yan97, YSY+09,
YN09, kSYHX+11, YKL13, ZKR+11, dB09,
vPG03, Ano97b, CH04, Mix94]. Multi-
[FMY+15]. multi-ALU [KDM+98].
Multi-C [Mix94]. multi-context [Yan97].
Multi-Core [CC18, CvdBC18, FJ08, IXS18,
KTR+04, MNN+15, PM14, CFG+12,
CSM+05, DWYB10, KBF+12, MLC+09,
Mus09, SMQ09, WCC+07, YZ07].
Multi-Cores [CCK+16]. Multi-CPU
[PGB16]. Multi-dimensional [AR19].
multi-engine [CNQ13]. Multi-Level
[RR93, CCC12]. Multi-Level-Context
[JLS99]. multi-process [WCV+98].
Multi-Processing [MLGW18].
multi-processor [VIA+05, YN09].
Multi-protocol [ABN00]. Multi-Tasking
[CvdBC18]. Multi-Thread
[HHG1, MTN+00, AMRR98, PKB+91,
SKG+11, Tan87, Tra91, DWYB10, Don92,
ST05, TCG95]. Multi-Threaded
[AGK96, BC98, Bed91, BGK94a, BGK94b,
BGK96, CL95, CRKW99, Coo95, DV99,
FDL02, GVT+17, GK94, GiL93, IIOI1, JY15,
Jon91, KW17, Kuc92, LB92, Mas99, MG15,
MGK+00, PCPS15, Puk00, RKCW98,
STW93, SeI99, Smi92, Ste01, SBKK99,
TLGM17, VSDK09, VI11a, VB00, Ada98,
AACK92, BBH+17, BC00, CV98, CWHB03,
CdOS01, cC91, Chr01, CR02, DS16,
EBKG01, FD96, GS06, GH98, HC17, KI95,
KRH98, LK15, Leg01, PWWD18, RBPM00,
RS08, SP00a, SeI98, VK99, WaL00, ABD+12,
BW2D15, BK13, BIK+11, DSEE13,
CIM+17, CASA14, CKRW97a, CKRW97b, CSB00, CYZ98, CL00, EFG+03, EHSU07, FTAB14, FGG14, GCRD04, GCC15, GPR11, KHP+95, KKH04, Kep03, Kuc91, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA+13, MLcw11, MS03, MKK99, NFBB17, NH09].

multi-threaded
[NSH14, Oa08a, Oa08b, Oa08c, PYP+10, RCv+10, RKm+10a, RKm+10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, Ten97, TMAG03, TJY+11, VV00, YSY+09, ZKR+11, db09, vPg03, Ano97b].

Multi-Threading
[CvdBC18, CNZS17, LKBK11, MLGW18, McC97a, McC97b, MS15, MP13, OR12, PTMB09, RCC14, Sch90, SMZ18, TGO99, YLLS16, DTLW16, MCFT99, NJ00, RVR04, Bak95a, BM07, FwL03, LWz+13, MLC+09, VDBN98, kSYHX+11, YKl13, CH04].

multiagent [Bar09].

Multicomputer
[FKD+97].

Multicore
[ALSJ09, ABLM19, BCZY16, CCH11, CB16, DVAE18, GJ11, HEMK17, KLDB09, LS11, LMA+16, LHY16, LDT+16, MR09, NBMm12, PGB16, RCM+16, RKK11, SLJ+18, SHK15, SMd+10, THA+12, ZBS15, CNQ13, CN14, CMX10, LK13, LLLC15, NZ17, RCc+10, RKRh11, SCCP13, SE12, ZSB+12].

Multicore/Multithreaded [RCM+16].

Multicores [FSDP16, FSPD17, RKK15, DTK+15, GARH14, SSN16].

Multifrontal
[ABLm19, But13, Dav11].

Multigrain [AZG17].

Multilevel
[PPG11, Cat94, JJJy+03, Lk15].

Multimedia [Spe93, Est93, Gol96].

multimethod [FGT96].

Multiple [CB16, FgKt97, Hw92, Hkt93, NTR16, OR12, CS95a, CS95b, Fd95, HKN+92, Lt97, Te94b, TFG10, Tan04, Wct98].

multiple-context [FD95].

Multiprocessing [EKB+92, Len95, NV94, Wal95, DlCo09, Mt93, Pra95b, Rgk99].

Multiprocessor
[AACK92, AKp99, BC00, Cat94, EHG95, GHG+98, Hn91, KmA01, MtCT08, Pre90, PPG11, Sz92, SEP96, USE92b, WC99, Zub02, Cho93, DkC07, EKkL90, HB92, KgT99, LV11, LWV+10, PjZa07, Ano94b].

multiprocessor/multithreaded [Cat94].

MultipleProcessors
[BmV03, AGJ18, Bs96, BL96, BlG01, Ch95, Gmr98, Ku00, Kks+08, LS07, LmJ14, La93, MvZ93, Mkc97, Ns97, TesK06, Ymr93b, Br92, Ga09, Ht14, Lgh94, Mao96, Men91, MWk+06, QsQ14, Smk10, Sha98, SkkC09, TaS07, Yoo96b, Ymr93a].

Multiprogram [EE14].

Multiprogrammed [MvZ93, Tsy99].

Multiprogramming
[Bhp+03, JJ91, Cgl92a, Cgl92b].

MultiRace [Ps07].

Multitasking
[Co90b, Gb94, Gon90, Jj91].

Multithread
[Lcs04, Rrmj12, Syl14, Cs95a, Cs95b, Dsh+10, Gcc99, Jd08, SwyC94, Zg98, Zg96].

multithread-safe [Gcc99].

Multithreaded
[AddS03, AbdBR08, Abc+93, At16, Ama98, AlB+18, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, Abh+00, Abh+01, Ab01, Ab02, Ag96, Azg17, Acma97, Abn00, Akp99, Bål02, Bbfw02, Bcr01, BbdH+11, Bvl09, Bk06, BmbW00b, Bf04, Bjk+96, Bl98, Bb00, Bm99, Bdn02, Bp05, BlG01, Bte98, Bnh01, Bd06, Bhg+12, BbsG11, Cc14, Cjw+15, Cs02, Cgk06, Cc04, Chl15a, Chh95, Chr95a, Chr95b, Chr96, Ct00, Cw98, Cbn+00, CbMAn08, Dan09, Dnr00, DvAE18, Dh98, DrV02, DTr18, Do95, EfN+01, EfN+02, JbrB13, EhP+07, Ec98, EgP14, Fss06, Ft96, Fs96, Ftp11, Fqs02, For97, Flr98, GgB93a, GrS97, Gmr98, Goo97, Gn00, Gn92, Hpa+15, HmlB16, Htz+97, Hmn91, HhoM91, HhoM92, Hlb94, Hh11, HwZ00, Hpb11, HyY+15,
Hud96, HMT + 96, I + 94]. Multithreaded

[JBK18, JYE + 16, JSB + 12, KA97, KKW14, KMAG01, KST04, KML04, KC98, KC99, KMjC02, KR12, KU00, KE15, KG94, Kim14, KU17, KAO05, Kor89, KTR + 04, LS07, LG06, LH09, LG04, LB98, LB00, LS06, LveH12, LTM + 17, LYH16, LPE + 99, Loc18, Loef97, Lun97, Lun99, MGQS + 08, MP01, MS99, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGGA94, NTKA99, Nik94, OB13, OTY00, PBDO92, PUF + 04, PG92, PG96, PG99, PF01, PHK91, PWL + 11, PS01, QOIM + 12, RCM + 16, RW97, RCC12, REL00b, Rin01, RB18, RNSB96, RSBN01, RRK11, RBA05, RR99, SPDLK + 17, SR98, SR14, SBN + 97, SCD + 15, SCL05, SAC + 98, She98, SU96, SU01, SZM + 13, SGM + 97, SMD + 10, SR01b, SSYG97, Spec94, Sr95, SZ02, SUP + 12, Sut99, TG99, Ten02, TKA + 01, TC198, TT03, TTKG02].

Multithreaded

[TGBS05, TLZ + 17, TLZ + 18, TZY98, TSV12, URS02a, VTM12, Vo93, VE93, Wan94, WS08, Wea08, WJ12, Wil97, WLM15, WG94, WC99, Yas95, YW03, Yoo96a, YMR93b, ZSA13, Zhe90, ZJS12, ZBS15, ZP11, ZAK01, Zul02, ÁdBD05, ACD + 18, Aga89, Aga91, Aga92, ABF + 10,ABC + 15, ACF + 15, ACC + 03, AGEBO8, Ann96, Ano94b, Ano95a, Ano95b, A + 01, ABC + 09, AR17, AR19, Aru92, BGDMWH12, BBFW03, BRRS10, BG297, BCSO0, BAD + 10a, BAD + 10b, BG13, BGC14, BMBW00a, BMBW00c, BLY109, Blu92, BL93, BL94, BJK + 95, Blu95, BL99, BS10a, BCG14, BEKK00, BPS05, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car89b, CB90, ÇFG + 12, Cat94, CL94, CN14, CS12, CDD + 10, CLL + 02, Ch93, Cho92, CGL92a, CGL92b, CJB + 15, DJLP10, DSG17, Dav11, DL93, DKKF94, EJK + 96, Eic97, EG11].

multithreaded

[Est93, Evro1, Fan93, Far96, Fer13, FF04, FFQS05, FF08, FFYY08, Fuji97, GMW09, Gal94, GJ11, GGB93b, GK05, GPS14, GL98b, GL98a, Gal96, GRS06, GRR06, GA09, GLC99, HMC97, HFV + 12, HF08, HLB90, Hig97, HSM + 92, Hop98, JMS + 10, JXTG11, JFL98, JSM12, JSM + 13, Jee96, JSB + 11, KGPH12, KR01a, KR01b, KNS16, KBP + 03, Kub15, Kus15, LLLC15, Lea96, Lei97, Leu95, Lev97, LLL10, LCH + 08, LMC14, LBE + 98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, Mi95, Mis96, Mix94, MC06, MKR10, MQ07, NB12, NR06, Né90, NPA92, ND96, NZ17, Om004, Par91, PF03, PZA07, Pha91, Ply89, PPF + 13, PS03, PS07, Pra95c, PT03, RGG + 12, RCM + 12, Raj93, RCG + 10, RHH10, REL00a, REL00c, Ref95, ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c].

multithreaded

[SV96a, SV96b, Sch98, SRA06, Sh95a, Sh95b, Sha98, She02, SLG06, SP00b, Shi00, SP05, Sim97, ST00a, ST00b, Sod02, SSN10, Squ94, Sris08, San95, SMS + 03, TMC09, TMCP10, TR14, TV10, TG09, TP18, TE94a, The95, TK + 02, TB97a, TB97b, TKG04, TLZ + 16, Tod95, Tsa97a, TDW03, UZ00, VGR06, Ver97, Ver96, VGK + 10a, VGK + 10b, WS06, WCC + 07, Way95, WT01, XIC12, XSAJ08, Yan02, Yan97, ZYLY07, Yoo96b, YM92, YMR93a, YNPP12, ZJS10, ZP04, WM03, LP09].

Multithreading

[AJdBdRS02, AH00, AG18, An099, An05, BBG + 10, BWFX05, Bec00, Bec98, BW97, BD00, BL96, BPL07, Bre02, BLPV04, But13, CCH11, CCK + 16, Cro98, Dug95, EEL + 97, Eng00, Eng95, Esp96, EK + 92, FBF01, FK10, GH + 98, GV95, Gu95, Gun97, GSL10, Har99, HBTG98, ILF001, IBST01, KPC96, Kel94a, Kel94b, Kho97, KF97, KNE + 14, KLH97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL + 97a, LEL + 97b, LEL + 99, LRZ16, MB07, Man91, MH95, MN00, MKC97, Nao91, On97, ÖCS01, PJS15, PT91, PST + 92, Pea92, Pra97,
RLJ+09, RG03, RD96, SSP99, SPY+93, SW08, SCv91a, SP07, SLG04, SRU98, Sin97, Sni01, ST00c, SKA01, TY97, Ten98, TAK+00, TESK06, VTK6, WWW+02, WCV+04a, Wei97, YG10, ZL10, Zigg96, AAHF09, AAKK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCC12.

multithreading
[Div95, DN94, Dub95, Dye98, EE09a, FM92, Fis97, Fon97, GBG95, Gao98, GEG07, GE08, Gro03, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD99, Kim94, KG07, KT99, KLM+99, LK13, LGH94, LSS12, LZW17, LB95, LB96b, LZN+14, Loi95, LVS01, LZBW14, Luk01, MIGA18, MWP07, Mao96, MKIO04, MGL95, MMM+05, McM97, Met95, MAAB14, OAA09, Ong97, PSG06a, PSG06b, PSG06c, PG01, PHCR09, PV06, PRA95b, RM00, RR96, RPNT05, Sch91, SCv91b, Sin99, SW16, STV02, Swi09, TK98, TCH09, TO10, Tsa97b, TEL95, TEE+96, TUL96, TEL98a, TEL98b, URŠ02b, URŠ03, VPC02, WLG+14, WW93, WCV+04b, WCV+04c, WCV+04d, YCW+14, Lar97].
multithreading-based [GE08]. must [NA07]. mutable [HL93]. Mutex [Hol98b]. mutual [BRE92]. Mysteries [Hol99b].

Nearest-Neighbor [JY15]. Need [SLG04, RPNT08]. Neighbor [JY15].

Nelson [Ano00c]. Nested [EW96, NB99, TG099, TG000, YZ14]. Net [Ham96]. Net-Centric [Ham96]. Netburst [KM03]. Nets [KMjC02, MKC97]. Network [ACM98a, RM03, ARB+02, Chl15a, Don02, GRS97, HH11, KML04, KRH98, LZS+08, NGGA94, YG10, ZP11, BDM98, GL07, KGP+12, LZ07, LLL10, LCH+08, OCRS07, RCV+10, RPNT05, Sta90, ZP04, PH97].

Network-Facing [KML04]. Network-I [RM03]. Network-I/O [RM03].

Network-on-Chip [LZS+08]. Networked [CT00, FGK97]. Networking [ACM98d, ACM00, Hol12, LCK11, DWYB10].

Networks [IE95, KLH97, Lu98, RR93, PWWD18, SMK10]. Neumann [HG92]. neural [PWWD18]. Neurons [LT+17].

newly [Ano95a, Ano95b]. NewOS [TIA02, Gei01]. Newport [USE92b]. News [Bra97, Gar01, Mat97, McM97]. Newton [CYYL18]. Next [ARB+02, EEL+97, TSV12, CH04].

Next-Generation [EEL+97, TSV12, CH04]. Nexus [FKT96]. NFS [Ano95a, Ano95b].

NFV [GDSA+17]. Niagara [KAO05]. NLM [Day92a, Day92b]. NLM-Based [Day92a, Day92b]. NoC [YL16]. node [TK98]. Nodes [EH95]. noise [GA09].

Non [Caz02, Coo95, JLS99, KIAT99, LB17, SGM+97, Tra91, Ann96, RGK99, SCG95, SKG+11]. non-blocking [Ann96].

Non-Deterministic [LB17]. Non-Intrusive [Caz02]. non-invasive [RGK99]. Non-numeric [SGM+97].

non-determinism [HBC13]. Nondeterministic [LPS07]. Noninterference [BC02, Sni06].

November [ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94c, Gol94, Hol12, IE90, IE92, IE93, IE94c, IE02, LCK11, USE91a].

NOWs [SLGZ99]. NP [YZ14]. NPB [EGC02]. NT.
[Ano98b, Hig97, PG96, Pra95c, Pra95b, TC98, USE98a, Wil94a, Wil94b, Yam96].

NT-Style [Wil94a, Wil94b]. NUMA [LMC14, ZLW+16]. NUMA-aware [ZLW+16]. number [LSS12, SLF14].

O [RM03, Ano95a, Ano95b, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a].

Object [Ano99, BBD+91, BC94, GK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car89a, CYZ98, CLE+02, FWL03, FL90, JPS+08, LLLC15, Sch08, Wei89a, Yan02, db09, vPG03]. Object-Oriented [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, Ada98, Car89a, CYZ98, CLE+02, FL90, JPS+08, Wei89a, Yan02, db09, vPG03]. Objects [ACR01, CJK95, CR02, Low00, Pra95a, Ric99, Ten02, Yaa95, Bak95a, Bri89, DMBM16].

Oblivious [UALK17, HL08, HZ12]. Observer [Hol99b]. occupancy [PAB+14].

Ocean [SAC+98]. OCTET [BKC+13].

October [ACM94d, Ano94d, BT01, IEE95].

ODBC [Ano00b, Hig97]. ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [MH95, AAC+15, DTK+15]. off-chip [DTK+15]. Off-the-Shelf [MHG95]. offs [Far91]. Old [Wil00]. On-Chip [LKBK11, ZM07, SMK10, TEL95, TEL98a, TEL98b].

On-Line [Ano00c, FSPD16, Fl02].

On-the-fly [Sch99, CWS06, PS03, PS07].

once [Bak95a]. one [QSH16]. one-sided [QSH16]. Online [Ger95, OTY90, RCC14, Sc98, Se99, SRA06, TGO99, HF96, LWV+10, RS07, VGK+10a, VGK+10b].

only [Dil00, MJF+10, NM10, ZJFA09]. onto [LBVH06a, LBVH06b, LBVH06c].

OpenGL [Röt19]. OpenGL- [Röt19]. OpenMP [Cha05, ArvW03, BHP+03, BBC+00, Bra97, BMV03, B01, CRE99, CDK+01, CM98, DM98, HD02, EV01, JJJ+03, KKH03, Lu98, MS02, Mar03, MLC04, MDE00, Mat03, MG15, MM14, Mül03, NAAL01, RBAA05, SLGZ99, Thr99, TGBS05, Vre04, RM99].

OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPiton [BMF+16].

OpenSPARC [Wea08]. Operand [SP07].

Operating [ACM94d, CLFL94, TLA+02, Gei01, IEE89, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, BD98, DBRD91, IEE94d, Jef94, Jen95, LVN10, LAK90, Ply89, RBF+89, REL00a, REL00c, She98, Way95].

operation [DKG18, RHI10]. Operational [CKRW99, CRKRW97a, CRKRW97b].

Operations [KKS+08, KLDB09, SCL05, HMC95, RD06].

Opportunistic [YL16]. Opportunities [GJ07, HL08, Mus09]. OPR [QSHI16].

Optimal [AT16, Lar95, RCM+12, Lep95, LML00].

Optimistic [WHJ+95, CZSB16, DKG18, VPQ12].

Optimization [BLG01, CvdBC18, GN96, RNSB96, SYHL14, TJJY98, TLGM17, WJ12, AMC+03, AMPH09, DZKS12, GOT03, Koo93, RKCW98, Sin99, TO10, ZCSM02a, ZCSM02b].

Optimizations [HYY+15, JSB+12, KET06a, LEL+99, Sut99, ZM07, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95].

Optimized [Sin97].

Optimizing [DTK+15, KZTK15, PR98, PSCS01, WCZ+07, GS02].

Orange [ACM98d]. Orchestration [GVT+17].

Order [CJK95, RRK11, NV15, SJA12, SW16, ZKW15]. Ordering [HR10].

Oregon [ACM94b, ACM99b, IEE93]. Organization [HG91, HG92]. organizing [LAK09].

Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+16, NPT98, SG96, Ada98, Car89a, CYZ98, CLE+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei89a, WP10,
Yan02, dB09, vPG03. **Orlando** [ACM94a, ACM98d]. **OS/2** [DN94, Kan94, Kel94a, Kel94b, Rei95, Ric91, Rod94]. **oscillations** [BD06, OFS [BM91], OSF/1 [BM91]. **Other** [SPY+93, MMTW10].

Ottawa [BT01]. **Out-of-Core** [QOIM+12, ABC+15]. **out-of-order** [SAJ12, SW16]. **output** [MQ94].

Outstanding [LSB15]. **Overall** [SEP96].

Overcome [SW08]. **overview** [KOE+06].

Overhead [DSR15, RRP06, YL16, ZHCB15].

Overheads [SHK15]. **overview** [Li05].

Own [BS99, Sho97a, Sho97b]. **Oxford** [ACM94c].

P [Ano00b, Nik94, PR05]. **P-RISC** [Nik94].

P-STAT [Ano00b]. **P-Thread** [PR05].

Pacific [IEE98]. **Pacifier** [MQ94].

Package [Ano94c, FL90, HCM94].

packages [GOT03, OT95, PL03]. **Packaging** [RR93].

Packard [BLCD97]. **Packet** [AHW02, LCH+08, MVY05, WCZ+07].

page [CNV+06]. **page-based** [CNV+06].

PageRank [KG07]. **Pages** [JLA16]. **Paging** [FD96, FL90, Sei98, Sei99].

Pagoda [YSS+17]. **PaiLisp** [K195]. **pain** [Gus05].

Pajé [CDoS01, CSB00]. **Palo** [ACM01].

panel [Ano94c, Bak95b, HCD+94, IAD+94].

Paper [ABH+01, TKA+01]. **papers** [ACM93a, ACM94b, ACM95b, ACM98b, KKD97, Cha05].

par-monad [FKS+12].

ParADE [KHK03].

Paradigm [EW96, JD08, LK15, PPA+13, BCG+95].

Paradigms [CM98, HD02, YMR93b, YMR93a]. **Parallel** [ABC+93, AMRR98, Ana89, ABP00, ACMA97, BAU92, BC00, BFA+15, BE13, BRC+00, BTE98, CZS+17, CL95, CDP+01, CBN+00, DS16, Den94, EJ93, FHM95a, Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JY15, KTLK13, K195, KEL+03, Kon00, KKD97, Kw03, Lea95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, ScV91a, SAC+98, SRU98, WC99, YFF+12, ARvW03, AL510, BBYG+05, BCM+07, BAG+09, BB00, Boo93, BE12, BGK94c, CAR08, CFB+91, Cha05, CSM90, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fuj97, GC92, Go197, GKK09, GEG07, GE08, GB99, HM97, HF88, Hop98, HHW93, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, Lu94, MT02a, MT02b, MT02c, MR98, Mis96].

parallel [NJ00, NPA92, OSPP12, RCV+10, RHH10, SBC90, Sch91, SC91b, Sha98, SWYC94, ST98, SG14, Ta93, TCG95, VPQ12, VGK+10a, VGK+10b, WZSK91, WK08a, WK08b, WK08c, WOK96, WTH+12, YCV+14, FR95, Vre04, WN10].

Parallel-Multithreaded [WC99].

Parallelism [AACK92, ABLL92, Bcej93, CSS+91b, DV99, EW96, FKP15, FURM00c, GVT+17, GP95, DK02, LK911, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCT99, NB99, RBAA05, SPP99, SMD+10, SG96, Thr99, WS80, YBL6, Yoo96b, ALHH08, AKSD16, CSS+91a, CSS+91c, EE09a, FN17, FURM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KV+09, KC09, LAH+12, QQLQ+09, SLZ99, SD13, TEL95, TEL98a, TEL98b, VDB99, VV00, Wei98a, XSaJ08, YZ14, Z96].

parallelism-aware [LAH+12].

parallélisme [Zig96].

Parallelization [CRE99, KC09, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JJY+03, P003, RK+10a, RK+10b, RRM12, TFG10].

parallelized [CJ91].

Parallelizing [BM91, WDC+13, KBF+12].

ParaLog [VGK+10a, VGK+10b].

Parameterized [BCR01, FK12].

Parametric [Ano98b, FRT95].

Paravirtualization [YSY+09].

PARC [Ong97].

Parsing [BC00, Lar95, PCM16].

Part [Ano92a, Ano92b, KR01a, MCM98b, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, MCM96b, MCM98a].
Partial
[Loe97, RRP06, SP00b, Shi00, ZKW15].
partition [LZW17].
Partitioning
[AMRR98, Coo95, D’H92, EW96, SLJ’19, TG99, DCK07, LZN’14, MKR10, SCG95, WW96].
Partitioning-Independent
[EW96]. Pascal [Hay93].
PASCIO [Hon94].
Passing
[BWXF05, TLA’02, FGT96, KKL93, PH97, PS01, Ada98, BCM’07, DLM99, FM92, PRS14]. Path
[BLG01, TAK’00, CTYP02, WCT98].
Pathfinder
[KPP12].
Paths
[OTY00, Ano95a, Ano95b]. Pattern
[Ano97b, EGP14, OR12, EG11, GBP’07, SCM05]. Pattern-Based
[EGP14, EG11]. Pattern-recognition
[Ano97b]. Patterns
[DS16, LPK16, LTM’17].
PegaSoft
[Ano00b].
Pennsylvania
[ACM96]. Pentium
[RGK99]. peptides
[MIGA18]. Per-node
[TK98]. Per-Thread
[Cha’02, EE09b]. Perl
[FSPD17].
Performance
[ACM98a, ACM98d, ACM00, Aga89, Aga91, ABLM19, BS96, BL96, BRM03, BLG01, BH01, BHG’12, BBG11, Cal97, CRE99, CCH11, CCK’16, CCY’17, CH95, Ch02, CT00, CSM’05, CBH00, CM Clan08, DVA18, DWB10, EG02, EE14, FT96, FSPD17, FB01, FURM09, FGT97, Gal94, Gar01, GOS00, HRH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KH01, KSR7, KTR’04, LWSB19, LCK11, LG06, LMMJ14, LHG’16, LHY16, Mah13, Man99, Mao96, MSM’16, MPD04, ME17, MWK’06, MKC97, MM14, NCA93, NBS’15, NGA94, Par91, PH97, PS01, QSA’16, RG03, RVOA08, RKK15, SCD’15, SLJ’19, TCI98, TT03, Tsa97a, TLGM17, VP16, Wei98b, WG99, WN10, YW03, ZL10, ZAK01, Zuh02, AAC’15, APX12, AAKK08, BGDWH12, BS10a, BBM09, BMV03, CML00, Car89b, CIM’17, Cho93].
performance
[Div95, Don92, DKK94, ECX’12, FL90, FM92, Fis97, FURM09, FURM09, GS02, GEG07, GLC90, HLB90, ICH’10, Kim94, KLI’99, LB95, LB96b, LHY16, LHY16, LMC14, LBE’98, MLC’09, Nak11, MCRS10, McMe97, PZLA97, PGB12, RGG99, SE12, SSKP’07, SQP08a, SQP08b, SQP08c, SKP’02, TMC09, TR09, The95, TV11, Wan94, WCZ’07, WOKH96, YZ07, YML02, ZJS10].
Performance-area
[Par91]. Performance-Driven
[LWSB19].
Performance-energy
[ACM98a, ACM98d, ACM00, Aga89, Aga91, ABLM19, BS96, BL96, BRM03, BLG01, BH01, BHG’12, BBG11, Cal97, CRE99, CCH11, CCK’16, CCY’17, CH95, Ch02, CT00, CSM’05, CBH00, CM Clan08, DVA18, DWB10, EG02, EE14, FT96, FSPD17, FB01, FURM09, FGT97, Gal94, Gar01, GOS00, HRH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KH01, KSR7, KTR’04, LWSB19, LCK11, LG06, LMMJ14, LHG’16, LHY16, Mah13, Man99, Mao96, MSM’16, MPD04, ME17, MWK’06, MKC97, MM14, NCA93, NBS’15, NGA94, Par91, PH97, PS01, QSA’16, RG03, RVOA08, RKK15, SCD’15, SLJ’19, TCI98, TT03, Tsa97a, TLGM17, VP16, Wei98b, WG99, WN10, YW03, ZL10, ZAK01, Zuh02, AAC’15, APX12, AAKK08, BGDWH12, BS10a, BBM09, BMV03, CML00, Car89b, CIM’17, Cho93].
Performance-energy
[ACM98a, ACM98d, ACM00, Aga89, Aga91, ABLM19, BS96, BL96, BRM03, BLG01, BH01, BHG’12, BBG11, Cal97, CRE99, CCH11, CCK’16, CCY’17, CH95, Ch02, CT00, CSM’05, CBH00, CM Clan08, DVA18, DWB10, EG02, EE14, FT96, FSPD17, FB01, FURM09, FGT97, Gal94, Gar01, GOS00, HRH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KH01, KSR7, KTR’04, LWSB19, LCK11, LG06, LMMJ14, LHG’16, LHY16, Mah13, Man99, Mao96, MSM’16, MPD04, ME17, MWK’06, MKC97, MM14, NCA93, NBS’15, NGA94, Par91, PH97, PS01, QSA’16, RG03, RVOA08, RKK15, SCD’15, SLJ’19, TCI98, TT03, Tsa97a, TLGM17, VP16, Wei98b, WG99, WN10, YW03, ZL10, ZAK01, Zuh02, AAC’15, APX12, AAKK08, BGDWH12, BS10a, BBM09, BMV03, CML00, Car89b, CIM’17, Cho93].
procedures [MCS15]. Procedures
[ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV99, Gol94, Hol12, IEE89, IEE90, IEE92, IEE93, IEE94a, IEE95, IEE96, IE02, Lak96, LCK11, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98b, USE98e, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, FR95].

Process [FT96, FG91, BM91, HF96, LVS01, MR98, Pyl98, WP10, WCV+98].

process-oriented [WP10]. Processes
[CB16, I101, SPR+93, ZSA13, YZYL07, Zlg96]. Processing
[AHW02, GAC14, MLGW18, RW97, SG18, SS91, WN10, How98, MVV05, Par91, PYP+10, RKHT17, WCZ+07]. Processor
[ABC+93, Ano00b, BCG+08, BGH+12, EHG95, GV95, HMNN91, HHH09, KHM02, KST04, KML04, KA05, LvH12, MGQS+08, MG99, MTN+00, MVZ03, MB05, SW08, Sin97, ST00c, SZ02, SBKK99, SUF+12, UALK17, WS08, AAFH09, APX12, BEKK00, CL94, CY90, Ch092, EE10, Fis97, Fu97, Goo97, HF88, HKN+92, HNN+92, KDM+98, Kho97, KBA08, LBvH06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Met95, Moo95, Mow96, OCRS07, Rj93, Sh99, SjA12, Sin99, ST00a, ST00b, STV02, S4u94, S119, Tsa97a, Tsa97b, TEE+96, VIA+05, WCW+04b, WCW+04c, WCW+04d, YN09, ZP04]. processor-based
[WCW+04b, WCW+04c, WCW+04d].

Processor-In-Memory [SZ02].

Processor-Oblivious [UALK17].

Processors
[ARB+02, AH00, Ano01, BF04, EEL+97, FT96, FJ08, GJT+12, GSL10, JGS+19, KS16, KLG08, KU00, KLB09, LPE+99, MHC95, MCFT99, MR09, OCS01, PF01, RCM+16, RYSN04, RRR11, SU01, SR01b, US02a, VS11a, YG10, ZP11, Aga90, Ag91, Ag92, AAC+15, BGDmWH12, BWDZ15, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW09, GBP+07, KBB+12, LLL10, LBE+98, Luk01, MN03, MEG03, MTPT12, Mis96, N12, NZ17, PFV03, PAB+14, RGG+12, RCM+12, RPNT08, SL08, SMS+03, USR02b, USR03, ZSB+12, WM03].

process [Zlg96]. Procs [MT93].

Products [Ano97a, Ano00b, Bra97].

Professional [Ano00b]. Profile [BMR94].

profiler [DTLM14]. profiling [DG99].

Program [Chil5a, DSR15, EFN+01, G96, KKW14, NBM93, PF01, PS01, SHK15, TS00, TLZ+17, TLZ+18, TJY98, YLLS16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EFN+02, FRT95, JEV04, JPS09].

Programmability [TH+12].

programmable [PYR+10].

programmation [Swi09]. programmed [PAA+13]. Programmer
[Cro98, Wil00, MS87, San04, Swi09].

Programming
[ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM99a, ABB+10, BTE98, Bt97, CMK00, CV98, CDK+01, Chil5b, CT00, CW98, DM98, FHM95a, FTP11, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KKHH03, KSS95, KSS96, KLI00, L06a, LB00, LvH12, Maa99, NF06, Nor96, PG99, QQQV+09, QOM+12, Rod95b, SBB96, TCI98, Vre04, Wil97, YFF+12, dPPRB99, van95, ALS10, AR17, AG96, ABG+08, BCS00, BO96, BYL09, Bir89, CFK+91, Car89a, CS00, CMS03, Cha05, CYZ98, DSH+10, EV01, FMH95b, GKZ12, Gil94, Gol97, GL07, HMC97, Hy00, JPS+08, JHM04, KIM+03, Kim94, LB98, LP09, Man96, MSM+10, MK004, MR98, Mix94, NHF00, Nev99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV96c, SV96a, SV96b, She98, She02, Sun95, TB97a, TB97b].

programming
[TMAG03, Wal00, WCC+07, Yaa02].
Programs
[ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CdS01, Chr01, DRV02, EGP14, FQS02, GKCE17, HL94, JB18, Kr98, LSC04, Lum97, Lun99, MS89, MGK+00, OB13, PHK91, Rin01, RS96, RR99, SPD9+17, SBN+97, SYHL14, Ste01, TGB905, Tra91, Vol93, VE93, ABF+10, BRS10, BK13, BCG13, BGC14, Bh95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ01, CL00, CLL+02, CVJL08, Cor00, DJLP10, Di00, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQS05, FF08, FFY08, GMR09, GR06, GPR11, HZ12, JPS+08, JWGTG11, JFL98, KCO9, LC14, LC13, MS03, MS87, MC06, MQ07, RR06, NH09, NS14, NV15, OdDSSP12, ORS+06, PAdS+17, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SRO1a, SCG95, SRA06, Sen08].

Projects
[GP05, Gar01].

Proofing
[Taf13].

Providing
[PSM01, PSM03].

Proofs
[BCS11].

Publications
[Bee98].

Python
[Swi09, How98, Pul00].

Q
[Gar01].

QuickRec
[PDP+13].

QuickSort
[Mah13].

R
[Toy96, UCT15, LS18, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EBT07, FF09, HR16, HHPV15, MNN90, NAW06, NA07, PS03, PS07, PF06, RVS13, WDC+13, XHBO6, DWS+12].

RACE
[Toy96, UCT15, LS18, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EBT07, FF09, HR16, HHPV15, MNN90, NAW06, NA07, PS03, PS07, PF06, RVS13, WDC+13, XHBO6, DWS+12].

random
[LSS12, Sen08].

randomness
[LSS12].

Rank
[AJ+12, ABLM19, Dav11].

Ranking
[Dav11].

reactive
[Toy96, UCT15, LS18, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EBT07, FF09, HR16, HHPV15, MNN90, NAW06, NA07, PS03, PS07, PF06, RVS13, WDC+13, XHBO6, DWS+12].

reachability-modulo-theories
[LQ15].

Reactions
[LT+17].

Reactive
[Toy96, UCT15, LS18, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EBT07, FF09, HR16, HHPV15, MNN90, NAW06, NA07, PS03, PS07, PF06, RVS13, WDC+13, XHBO6, DWS+12].
[LSB15, RGG+12, ZSB+12]. Respec
[102x646] [LWV+10]. Response [BBC+00, Sni01].
responses [BS06]. Responsive [SUF+12].
Restart [ZSA13]. Restating [EE14].
Restore [Ano00b]. restricted [ABG+08].
restructuring [BVG97]. Results
[GV95, GR98]. Retentive [RRK11].
Rethinking [Xue12, Loo95]. Rethinking
[CML00]. Retrospective [TEL98a].
Reusable [Han97]. Reuse
[BCZY16, KZTK15, LPK16, JSB+13].
NAA01, PHCR09]. revealing [Dav11].
Reverse [Coo03, LSB15, LWV15].
Restart [ZSA13]. Repeat
[TP96, Gol97, Ong97, TSY00, TMAG03].
Review [Lar97, Van97a, Vre04]. Reviews
[Bra97]. Revised [Cha05]. revisionist
[PT91]. Reviving [TLZ+17, TLZ+18].
revolutions [ECX+12]. Rewriting
[BV95, BG94b]. RHEED [BD06].
RISC [Cho92, GV95, MKH91].
Men91, Nik94, SBK99]. rise [Len95]. Robot
[Lev97]. Robust [CMF+13, LG04].
Rockefeller [IEE90]. Rogue [Ano00b].
Role [BC94, KZTK15]. rollback [YZYL07].
root [CML90]. Ropes [HM95]. routine
[SG18]. Row [KZTK15]. RP3 [CJ91]. RPC
[Tod95]. RPPM [DVAE18]. RPython
[MRS17]. RTOSS [IEE94a, IEE94d]. RTR
Run [EJ93, LF96, Swe07, SS96, Pra95c,
TNB+05]. Run-Time
[EJ93, LFA96, SS96, TSY99, TNB+05].
running [Cal02, MLCW11, SSN10]. runs
[Hag02]. RunTime [ABN99, ABN00,
ABH+00, ABN00, BJK96, BM99].
CZS+17, DNR06, FSS06, KPC96, NPT98,
NS97, QOM+12, SSP99, WS06, ATLM+06,
ALW+15, BAD+10a, BAD+10b, BJK95,
EQT07, Gol97, Ong97, TSY00, TMAG03].
runtimes [RL14]. Russians [KNP16].
SableSpMT [PV06]. SAC [GS06]. Safe
[BCL+98, Kle90, Loc18, Low90, NH99, Pla02,
AFF06, BYLN99, DBMB16, Fek08, GCC99,
GOT03, Gro03, NHFP08, Nev99, Rin99].
Safe-for-Space [BCL+98]. Safety
[Hag02, Pla98, Ric99, SP00a, GPS14, San99,
San04, SRA06, Taf13, Van97b, Ven98, Yan02].
safety-critical [San04]. Salt [Hol12].
Sampled [JYE+16]. sampling [MMN09].
San [ACM92b, ACM94d, ACM95b,
ACM98b, USE89, USE92a, USE93b,
USE98b, USE00a, USE02]. Santa
[Go94, WP10]. SAT [VDK90]. Save
[Pl93, Dye98]. saving [Mus99].
SC-preserving [MSC+12]. SC’11 [LCK11].
SC2000 [ACM00]. SC2002 [IEE02].
SC2003 [ACM03]. SC98
[ACM98d, ACM98d]. SC’99 [ACM99b].
Scalability [ABLM19, CCH11, GVT+17],
Nak01, VP16, BWZ15, DSEE13, MWK+06,
RVOA08, VIA+05]. Scalability-Aware
[GVT+17]. Scalable [BMBW00b, CC14,
CH04, CKZ12, IEE94b, KUC15, LM14,
LNI+19, MLHC11, Mio04, SS96, ZLW+16,
BMBW00a, BMBW00c, GW10, LZ07,
Mao96, PWD+12, SCZM00, WZK19].
scalar [GL98a, ZCSM10, ZCSM10]. Scale
[CC14, CJW+17, HC17, LA93, PWL+11,
AG06, BCM+07, GOT03, SMK10, KBA08].
scale-out [AG06]. Scaling
[HC17, AR17, ECX+12, KTLK13, SW16].
Scaling-Aware [HC17]. SCALO
[GVT+17]. scene [RVR04]. Schedulability-Aware
[Kim14]. Schedulability-Aware [Kim14].
Schedule
[MQLR16, MLR15, NAAL01, WTH+12].
Scheduler
[ABLL92, BDN02, FSPD17, GJT+12,
QSA+16, SR08, SMK99, DC99, DC00,
F0K+12, G0P+5, HZ12, WTKW08, XSAJ08].
Scheduler-Centric [BD02].
scheduler-oblivious [HZ12]. schedulers
[NBMM12]. schedules [BCG13, CZ02].
Scheduling
[BL94, BL98, BL99, CCWY17, FS96, FSPD16, GR06, JLS99, KLD09,
LLK12, MNU+15, NB99, PEA+96, PM14,
R08, SLG04, YWJ03, BL93, CS99, CS95b,
CC12, DC99, DC00, EE10, EE12, FD95,
FKS+12, GA09, HL07, JSMP12, KKJ+13, KBP+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAS07, WHJ+95, ZSB+12. Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12].

Science [Gol94]. Scientific [CMBAN08, HL94, IWSB19, WN10, BT01, BD06, Dan09, NJ00, Bra97].

Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12].

Science [Gol94]. Scientific [CMBAN08, HLB94, IWSB19, WN10, BT01, BD06, Dan09, NJ00, Bra97].

Scientific [CMBAN08, HLB94, IWSB19, WN10, BT01, BD06, Dan09, NJ00, Bra97].

scoring [TO10].

Scotland [AOV+99].

SCP [SLJ+19].

Scriptics [Ano00b].

Scripting [RBPM00].

Scripts [TLA+02].

Seamless [CV98].

Search [AMRR98, BCC010, LAH+12, Mah11].

Search [AMRR98, BCC010, LAH+12, Mah11].

Second [IEE89, IEE96, FR95].

Section [DSR15, MNU+15, CS12, DTLM14, SMQP09, YL16].

Section-Aware [MNU+15].

Section-Based [DSR15].

Sections [NM10].

Secure [SV98].

Security [BRRS10, MS03, Way95].

sedition [Bak95b].

SEDMS [USE92b].

See [Swe07, AC09].

segmentation [BÇG14].

Select [KDDV03].

selected [Cha05].

Selection [AT16, PR05, Sta90].

Selections [BAZ+19].

Selective [Nak03, PR98, VACG09, MCRS10].

Self [LLLC15, Pet00, SEP96, BDF98, SLP+09].

Self-Allocating [SEP96].

self-healing [SLP+09].

self-migrating [BDF98].

Sema [Kor89].

semantic [BNS11a, BNS11b, BNS12].

Semantics [BR15, CKRW99, HE09, MP01, BLM06, CKRW97a, CKRW97b, KT17, ZHCB15].

Semantics-aware [HE09].

Semaphore [Hol98b, Kor89].

Semaphores [Hol98c].

semiconductor [Ano97b].

Semidefinite [YFF+12].

Seminar [Nev99].

sense [Bak95b].

Sensible [LMA+16].

Sensitive [CC04, RYSN04, DC99, DC00, PFH06, ZJS+11, LG04].

Separation [SCG95, TFG10, TVD14].

September [ACM93c, AOV+99, DL09, FR95, Hon94, IEE89, USE98b].

Sequences [GH03, FTAB14].

Sequential [CV98, TLZ+17, TLZ+18, CKRW97a, CKRW97b, ORS+06, SCG95, SNM+12].

serialization [BHK+04].

Server [Auo00b, Cal97, Day92a, Day92b, Smi92, VB00, Zha00, CASA14, Est03, Gol96, Hig97, MEG03, SBB96, Sho97b, Sta90].

server-side [SBB96].

Servers [PHBC18, RCC12, BDM98, BBYG+05, BEKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b].

Service [CGK06, GMW09, Hig97, PSM03].

services [LZ07].

Session [Bak95b, HCD+94, IAD+94, VGR06].

sessions [Auo94c].

set [Aru92, KBF+12].

Sets [MNG16].

Seven [But14].

several [FGG14].

shading [PYP+10].

shallow [LVA+13].

Shanghai [IEE97].

shape [Cor00, GBCS07].

SharC [AGEB08].

Shared [BWXF05, BS96, DM98, EJ93, FJ08, GMR98, GH98, IXS18, LB92, MVZ93, MCT08, STY99, SLJ+19, Thr99, VB00, WC99, YMR93b, BB00, Boo93, DLCO09, DPZ97, EKKL90, EV01, Gle91, IBS99, JF94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN99, ZSB+12, dB09, Cha05].

Shared-Memory [BS96, DM98, EJ93, IXS18, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN90].

shared-variable [dB09].

Sharing [CLFL94, CB16, LLD15, RKK15, SP00a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10].

sharing-aware [TAS07].

sharing-based [TE94a].

Shelf [MHG95].

shell [Ric91].

Shift [Ham96].

Shifting [TVB+13].

Shinko [Ano00a].

Shootdown [PHBC18].

Shop [Bec00].

short [CPT08, Lie94].

shortage [Ano94b].

Should [EHP+07].

SICStus [EC98].

side [MMTW10, SBB96].

sided [QSHI16].

SIGACT [ACM93a, ACM94b, ACM95b, ACM98b].

SIGCOMM [RM03].

Signal [Eng00, BM91].

Signals [GRR06].
Significance [ZJS12]. SIGPLAN
[ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].

Silicon [LB17, THA+12]. SIMD
[FSYA09, SW08]. Simple [AKS06, Chat01b, WS08, BDL07, CL00, MSM+10].
SimpleGraphics [MKK99]. simplify [PO03]. Simplicity [Pom98].

Simulation [For97, GV95, HPB11, JYE+16, MPD04, SLJ+18, VTSM12, WG94, Ano97b, BBH+17, KBF+12, Leg01, Lep95, MH02, SWYC94, Situ93]. Simulations
[HEMK17, LNI+19, LSI1, SCD+15, ABC+15, KU17, LVA+13, VPQ12].
simulator [CC18, LPK16]. simulate [MAF+09].
Simulation [For97, GV95, HPB11, JYE+16, MPD04, SLJ+18, VTSM12, WG94, Ano97b, BBH+17, KBF+12, Leg01, Lep95, MH02, SWYC94, Situ93]. Simulations
[HEMK17, LNI+19, LSI1, SCD+15, ABC+15, KU17, LVA+13, VPQ12].

Simulink [HY+15]. Simultaneous
[Ano05, CSK+99, EEL+97, GSL10, HMMN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LRZ+16, MCF+99, REL00b, SP07, SLG04, SU01, ST00c, TEL95, Tul96, TEL98b, WS08, YG10, ABC+99, AAKK08, ABB+15, CCC12, EE09a, Fis97, HKN+92, HMM+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHCR09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TOSCH99, TEE+06, VPC02, TEL89a]. Single
[CLFL94, Dub95, EHP+07, FT96, HOMN91, JBK18, KH18, KTR+04, MNU+15, MTN+00, CSM+05, MLC+09, Pra95c, VIA+05, YZ07, YSY+09].

Single-Address-Space [CLFL94]. single-and [YSY+09]. Single-Chip
[HHM091, MTN+00]. Single-ISA
[KTR+04, MNU+15]. Single-Process
[FT96]. Single-program [Dub05].

Single-Thread [KH18, MLC+09]. Single-Threaded
[EHP+07, JBK18, Pra95c, VIA+05, YZ07]. Singleton
[Cha02, Rin99]. Situ
[RGK99]. sixth [USE98b, ACM94d]. size [LML00].

skyline [WZSK19]. slave [TJY+11]. slice
[PSG06a, PSG06b, PSG06c]. slice-based
[PSG06a, PSG06b, PSG06c]. Slices
[MGQS+08, PF01]. Slicing
[Kri98, FRT95, NR06]. SlicK
[PSG06a, PSG06b, PSG06c]. slower
[Pra95c]. Small [JLA16, Koo93, MM07].
Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart
[Simm97]. SMP
[BWXF05, BHN01, CRE99, HD02, KKH03, KKJ+13, Pra95c, TAS07, TMAG03]. SMPs
[WG99].

SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, HR10, KL08, KH18, KI16, MG99, MMM+05, NSP+14, PAdS+17, PAB+14, PLT+15, RYSN04, RPNT08, SL08, TAS07, TVB+13, VS11b, WA08].

SMT-based [K16, PAdS+17, PAB+14].
SMT-Directory [HR10]. SMTp [CH04].

Soft
[EUVR06, PSM01, PSM03, SSB+10, VACG09].
Software [Ano97a, Ano98b, Ano99, Ano00b, BCR01, BC+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IE94a, KE15, LPE+99, MKM17, PJS15, SZM+13, SD13, TVB+13, TLZ+17, TLZ+18, XWG+14, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLPR12, HMP97, HSD+12, IE94d, KKH04, KSD04, KASD07, LMT97, Luk01, MWP07, MCRS10, MGL95, MEG03, NHFP08, OAA09, OL02a, OL02b, OL02e, PV06, RKM+10a, RKM+10b, RVOA08, San04, SP05, SLP+09, SBR08, TNB+95, WCT+07, WCV+98, YSY+09, ZHC05, DWS+12]. Software-Controlled
[BCG+08, Luk01]. Software-Directed
[LPE+99]. Solaris
[Cat94, Lun97, Lun99, MM01, McM97, Pra95b, Sun95].

Solution
[Ano98b, BSC91, WP10]. Solutions
[Ano00b]. solve [Bar09, MM07]. Solver
[YFF+12, Kub15, RM99]. Solvers
[MR09, Nak03, AAC+15, ZCO10]. Solving
[ABD+12, FTAB14, Loe97, VSDK09].

SONET [AWH02]. Sort [GH98, RHH10].
Sound [WTH+12, DWS+12, FFY08, NFB17, WQL18]. Source
[Ano00c, BMF+16]. sources [SJ95]. South
[ACM93a, Ano94d]. Space [BCL+98, BL93, BL98, CBLF94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, Sch17, FLW03, KNPS16, KASD07, Li94, LHS16]. Space-Efficient
[BL98, NB99, BL93, KNPS16, KASD07, LHS16]. Spacecraft
[SRS98]. Spaces
[FKP15, Röt19, CKZ12, KGGK09]. Spain
[ACM95a, DLM99, ACM98c]. SPARC
[Cat94, KAO05, MD96]. Sparcle
[SPARC]. Specialization
[dlPRGB99]. Specialized
[Ste01, Sp00b, Shi00]. specialization
[Stä05]. specifications
[TVD10]. Specifying
[BNS11a, BN11b, BNS12]. spectroscopy
[KC09]. spectrum
[DFK94, Sha95b]. Speculated
[SCL05]. Speculation
[MGI14, SU01, WS08, YBL16, DG99, GB99, JEV04, LWV+10, MT02a, MT02b, NB12, P003, PT03, SCZM00]. Speculative
[Ano00, An00b, Ano02, BF04, IBST01, KLG08, MGQS+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFG10, WWW+02, ZJFA09, ZL10, CHH+03, DC07, Dub95, KOE+06, KT99, LWV17, LZL+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VS11b, XIC12, ZCSM02a, ZCSM02b]. speech
[LG04]. Speed
[Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SR98, TO10]. Speed-up
[MR09]. Speedup
[LSS06]. SPIRAL
[MJF+10]. SPIRAL-generated
[MJF+10]. splittable
[SLF14]. spots
[Gle91]. spreading
[CWS06]. SPSM
[Dub95]. SQL
[CGK06]. squares
[FTAB14]. squash
[MK12]. SR
[BO96]. SRAM
[kSYHX+11]. SSMT
[CSK+99]. Stabilizers
[ZSJ06]. Stabilizing
[BCM+07]. stable
[YCW+14]. Stacey
[An00c]. Stack
[Eng00, Xue12]. Stackable
[Loe05]. stacking
[KSB+08]. Stackless
[MS15]. stacks
[DESE13]. StackThreads
[TTY99]. StackThreads/MP
[TTY99]. Standard
[DM98, FSS06, WKG17, BCL+98, Bra97, MT93, Pla98, Pla99]. standardization
[Bet73]. Standards
[Thr99, TTY99]. Standing
[TLA+02]. Stanford
[EE99]. STAT
[An00b]. State
[Laf00, LPM94, MP13, RRK11, Wei98b, Cor00, I+94, TFG10, WHG07]. State-of-the-Art
[MP13]. State-Retentive
[RRK11]. Statechart
[KW17]. Statechart-Based
[KW17]. stateless
[MQ08]. Static
[GPS14, Kri98, Lun97, SCB15, WW96, vPG03, Fer13, NA06, NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[An00b, RCM+16, Lan97, RCM+12, Tem97]. Stay
[GBK+09]. stealing
[ALHH08, BL94, BL99, RL14]. Step
[SH097a, SH097b, ZG98]. Steroids
[JLA16]. Stethoscope
[Caz02]. Stochastic
[DK02, LTM+17]. Storage
[AT16, Hol12, LCK11, Bak95a, Blh92, DZKS12, KOE+06, MM07, PDMM16]. stores
[TAN04]. strand
[RCV+10]. strata
[NPC06]. Strategies
[PSCS01, AGEB08, FGG14]. Strategy
[BGK96]. Stream
[KSU94, SG18, SG18]. Streaming
[HHOM91, HHOM92, KEL+03]. Streaming/FIFO
[HHOM91, HHOM92]. Streams
[Pre90, SPY+93]. Strength
[Kon00]. Strict
[Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly
[An00c]. Strong
[CWBB03, KZC15, MCT+07, ZHCB15]. Structural
[CRK99]. structure
[BB00, YKL13]. Structured
[TCI98, FR95]. Structures
[RCH95, AGN09, GoI97, ND13]. students
[Fek08]. Study
[AGK96, Chl15a, EGC02, HMT+96, LSB15, Sat02, TAK+00, VK99,
WG94, YMR93b, Bri89, CASA14, CL00, Fis97, HJT93, HF96, KPPER06, MGL95, SP05, Sod02, Tsa97a, YM92, YMR93a.

Style [Wil94a, Wil94b].

subdivision [MTS10].

Subordinate [CSK+99, CTYP02].

Subsetting [AJK+12].

Substrate [ACM97, Hal97a, JP92].

Subsumption [Man91].

Subtleties [BLM06].

Sux [OR12, LHS16].

SugarCubes [BS00].

Suite [BTE98, BO01, TG09].

Suites [SPDLK+17].

SuiteSparseQR [Dav11].

sum [TDW03].

summary [I+94].

Summer [Ano94f, USE92a].

Sun [McM97].

SunOS [Cat94, PKB+91].

super [Kus15].

Supercomputer [VTSM12, Gil94].

Supercomputing [ACM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c].

SuperLU [Li05].

SuperMalloc [Kus15].

Superscalar [SU96, Div95, Fis97, Gul95, Loi95, Men91].

Superthreading [Tsa97b].

Suppression [JWTG11].

Survey [Man96, ZSB+12, Cat94, UR902b, UR903].

Survival [Ano98].

Swing [Gea98].

Switch [GN00, Eic97, GWM07, TVB+13].

Switzerland [Lak96].

Symantec [Rod95a].

Symmetric [BMV03, NV94, BJK+91, Pra95b, RGK99, Sha98].

Symmetry [ES97].

Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano93, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91].

Synapsys [Col90a].

Synchronization [Bec01, Hei03, LA93, REC98, SLJ+18, DHM+12, DESE13, MT02a, MT02b, MT02c, MTPT12, NLK09, PRS14, RD06, Ven97].

Synchronization-Aware [SLJ+18].

synchronization-induced [MTPT12].

synchronization-related [MTPT12].

Synchronizing [McM96a, McM96b, CZWC13].

Synchronous [BM07, HPB11].

SynchroTrace [SLJ+18].

Sy [USE01].

System [AddS03, AdBdRS08, AK+12, Ano98a, Ano00b, ABN99, ABH+00, BMR94, BBD+91, BJK+96, BTE98, CLFL94, CC18, DNR00, FG91, Gei01, HMT+96, KMAG01, KS97, MS89, NPT98, PH97, PST+92, Pea92, PLT+15, QOM+12, REL00b, SEP96, Sri93, SG96, TCL98, VSM+08, Yam96, AdBdRS05, AAC+15, Ano96, Ano97b, A+01, AR17, BBFW03, BDM98, BCRS00, BAD+10a, BAD+10b, BJK+95, BAD+09, BLD97, Cat94, GIL88, Hig97, Joe96, Lan02, MHW02, MS87, Met95, MTC+07, MC06, OCRS07, PRBO7, Pyl90, Pom98, REL00a, REL00c, RD09, She02, TKA+02, TLZ+16, TMAG03, WCC+07, WZWS08, WZSK19, TLA+02, EKB+92, MS87, Pea92].

Systems [PLT+15].

system-level [OCR57].

systematic [MQR07].

SystemC [RSB+09].

SystemC[C [RSB+09].

SystemC/C-based [RSB+09].

Systems [ACM94d, AG06, Ano00b, ABN00, BMN99].
Bre02, BC94, CCH11, CvdBC18, Dru95, FMY+15, FGKT97, GHG+98, GJ07, HRH08, HKS06, IEE89, IEE94a, KR12, KKH03, KG05, KUCT15, KW17, LLS06, LMA+16, LYH16, MS15, PP011, PGB16, RW97, RR03, SUF+12, SS96, USE92b, Wal95, WC99, Zub92, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB10, DZKS12, DSH+10, DDBD91, GJ11, Go96, GKK09, HJT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Jen94, Jen95, KKH04, Kub15, LVN10, LLLC15, Leg01, LAK09, IVA+13, MLC+09, MGL95, MM07, NFBB17, PBDO92, RCY+10, RBF+89, RSB+09, RVR04, SCCP13, She98, SP05, Sim97, SJB92b, ST05, Wei98a, WCV+98, Ano98b). systolic [PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wei08]. T1/T2 [Wei08]. T2 [Wei08]. Table [VB00, KNPS16]. tabling [AR17, AR19]. Tabu [AMRR98]. taint [ZJS+11]. TaintEraser [ZJS+11]. Take [Wei97]. taking [Ano94c]. Talking [Ano94c, HCM94]. TAM [CGSV93]. Taming [Hol00, HBCG13, HHPV15].

TapeWare [Ano00b]. Target [MIGA18]. targeting [LGH94]. Task [CKK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, ODSSP12, RCM+12].

Task-Level [GP95]. Tasking [CvdBC18, Dii93, KR01a]. Tasks [Fin95, PVS+17, YSS+17, FGG14].

Taxonomy [HM96, SPH96]. TC2 [BT01]. TC2/WG2.5 [BT01]. TcI [As96, USE96, USE98b, USE00b, Ama98, MKK99, SBB06].

tcl-based [Ama98]. Tcl/2k [USE00b].

tcl/Tk [As96, USE96, USE98b, USE00b, MKK99].

TCP [Ano00c, Ano00c]. Teaching [Fek08, CS00, She02]. TeamWork [CZWC13]. Tech [Ano97b, Gar01].

Technical [USE00a, Cat94]. Technique [JSB+12, KG94, Lem02, ÖCS01, PGB16, JSB+11, JPSN09, LGH94, MIGA18, RS07, UZO00, VACG09, WCV+98].

Techniques [DS16, EKKK90, GS02, Han97, NLK90, PWL+11, TGBS05, Zig96, BR92, GEG07, OCRS07, Pra97, RCG+10, SV96c, SV96a, SV96b, ZSB+12].

Technologies [Ano00b, Ano98b].

Technology [Br97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97].

TeleNotes [WKS97].

temperature [CCC12].

Template [Cal00, How98].

Tennessee [IEE94b].

Tera [BTE98, Mat97].

Terabytes [IEE02].

Term [BGK94a, BGK94b, BGK96].

Termination [JBK18, TDW03].

Test [Ama98, EFN+01, GRS97, SPDLK+17, TG99, EFN+02, K16, SR14].

test-case [KI16].

Testing [BBdH+11, Go01, LCS04, RCC14, SK12, BGP06, CBM10, EFG+03, EHSU07, MQ07, Sen08, YNPP12].

tests [SRJ15].

Texas [USE92a, USE00b].

TFlux [DTLW16].

tgMC [LHG+16].

Their [YWJ03, Gil94].

them [Ano92a, Ano94b].

Theoretic [ES97].

theories [LQ15].

Theory [ACM93b, LLD17, NFB17, WLK+09].

there [Ano94b].

thermal [WA08].

though [Ano94b].

Thread [Ano00c, ABN99, ABN00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, CWWV17, Col90a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBS07, GBK+09, Hag02, Hei03, HG91, ISS98, KG05, Kim14, Kle00, KH18, KDH+03, KBH+04a, KBH+04b, LLL10, LLYH16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MNU+15, MGH14, MTN+00, MB05, MCF799, ND96, Pan99, PR05, PEA+96, PLA02, PLA98, Pra95b, PGB12, PSCS01, RCY+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, RYSN04, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin07, SKK+01, SLT03, Ste01, TAO7, TLGM17, Wei98b, WC99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BK2+13,
BHK+04, BC02, CZSB16, CZ02, CSM+05, DBMB16, DG99, DWYB10, Don92, DBRD91, Eic97, EE09b, Fek08, GP08.

thread [GOT03, GLC99, Hyd00, JEVO4, KDM+98, KC09, KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LBL+14, Lo95, MLC+99, MT01b, MT02e, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QQ0QV+99, SKG+11, Sha95b, SLG06, SP00b, Shl00, SPH96, SSSl9, SDF13, SLT02, Sti05, SJC5, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Van97, Van98, WS08, YZ14, SKP+02]. Thread-Aware [LYH16].
Thread-Based [KG05, CNQ13, SKS+92].
Thread-Level [LEL+97a, LEL+97b, MG99, MGI14, YBL16, FURM00a, FURM00b, MCFT99, WS08, DG99, JEVO4, KC09, MT02a, MT02b, MT02e, PO03, PT03, QQ0QV+99, SCZM00, YZ14].
Thread-Local [DGK+03, Whi03].
Thread-management [RCG+10].
Thread-modular [GBCS07].
Thread-Private [Man99]. thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, Rin99, DBMB16, Fek08, GOT03].
Thread-Sensitive [CC04, RYSN04].
Thread-Specific [Ste01, SP00b, Shl00].
thread-switch [Eic97]. threadbare [Bak95b]. Threaded [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CKRW99, Coo95, CSS+91b, DV99, EHC95, EHP+07, FdL92, GHO3, GVT+17, GK94, Gil93, III01, JBK18, JY15, Jon91, KW17, Kri98, Kuc92, KIAT99, LB92, Mas99, MG15, MGK+00, NS97, PCPS15, Pul00, RKCW98, STW93, Sei99, Smi92, Ste01, SBKK99, TLGM17, VSDK09, VS11a, VB00, WCT98, Ada98, AB+12, AACK92, Ano97b, BWDZ15, BK13, BHH+17, BC00, BIK+11, DSEE13, CV98, CIM+17, CASA14, CKRW97a, CKRW97b, CWHB03, CSB00, Cdos01, CYZ98, cC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBKG01, EHSU07, FTA14, FD96, FG114, GCRD04, GCC15, GS06, GHK8, GPR11, H17, H1P+95, K195, KKH04, Kep03, KRRH98, Küh91, LK15, Lan97, Leg01, LBvH06a, LBvH06b, LBvH06c]. threaded [LVA+13, MLCW11, MS03, MKK99, NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, PWWD18, P99Rc, RCV+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SC17, SE12, Sei98, Sho97a, Sho97b, SV98, Smi06, Stu02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Tem97, TMAG03, TJY+11, VIA+05, VV00, VK99, Wal00, Wil98, XMN99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGSV93].

Threading [BFA+15, CvdBC18, CNZS17, DHR+01, Hol98d, KS16, LKKB11, MLGW18, McC97a, McC97b, MS15, MP13, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, SMZ18, TGO99, YLLS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, MLG+09, MCFT99, NJ00, RRF06, RRV04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04].

Threading-Based [KS16]. ThreadMentor [CMS03, She02].

Threads [Al94, Ano94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, BAZ+19, Cal00, CGR92, Co90b, C98b, C98a, TLA+02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HBG01, Hol00, How00, LH16, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MKM17, MP98, McM96c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, San04, SEP96, TG99, WCW+04a, Wil94a, Wil94b, Wil97, Yam95, Yam96, dPREG99, Ano92, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, Bt14, Bt97, CZWC13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FHM95b, FL90, GP05, Go97, HCM94, HM095, Hai97a, HBG02, HJT+93, HKT93, HKN+92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Kan94, KE95,
threads [McM98b, Men91, Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, ORS+06, PSM03, Pan99, PG03, PL03, RR03, Sch91, SCG95, SZG91, SZ92, SCM05, SKP*02, TAN04, WCW*04b, WCW*04c, WCW*04d, Wei98a, WCV*98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a].

Threads.h [Ano00b, TB97a, TB97b].

ThreadScope [WT10].

Three [YMR93b, YMR93a].

Throttling [LG06].

Throttling-Based [LG06]. Throughput [GJT+12, Wea08].

Tightly [MTN*00, LZTZ15].

Tiles [QOI*M12].

Time [BC94, CIM+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSCS01, SUF+12, SS96, Tet94, dPRGB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Je94, Jen95, KBP+03, KASD07, KBF+12, MKK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJBJ92a, SJBJ92b, TSY99, TWB+95].

Time-QM [KASD07].

Time-efficient [GB99].

Time-shared [Je94].

Timely [NH09].

Timers [Hol99a, GRR06].

Timethread [BC94].

Timethread-Role [BC94].

Timing [SK97, MHWO2].

Timing-first [MHWO2].

Tiny [Xuc12].

Tip [Pet00].

Tips [Mit96, Pet00].

Tk [Ass96, USE96, USE96b, USE00b, TLA+02, MKK99].

TLB [PHBC18], together [Ano97b, Po90].

Tokyo [Ano00a].

Tolerance [EUVG06, MTS10, PG01, RRP06].

Tolerant [ÖCS01].

Tolerating [Luk01, RBK+09, SKK+01].

Tool [AddS03, Ano98b, Goe01, Kor89, TAM+08, ACD+18, CMS03, CSB00, Hig97, LMC14, RGK99, YNPP12].

Tool-Supported [AddS03].

Toolbox [Bra97].

Toolkit [SZM+13].

Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95].

Tools.h [Ano00b].

Toolset [Ano97a].

Top [Ano99, AB02, DNR00].

Topaz [MS87].

topics [BGG95, GBG95].

Toroidal [KEL+03].

Totally [DHR+01].

Trace [RS08, HEJ09].

Trace-based [RS08].

Traces [HEMK17, SLJ+18, WKG17, HR16].

Tracing [Len02, EK11, Tod95].

Tracking [CZS+17, LH09, CZSB16, ZJS+11].

trade [AAC+15, Par91, KUCT15].

trade-off [AAC+15].

trade-offs [Par91].

Tradeoff [SHK15].

Tradeoffs [Aga89, Aga91, Aga92, Ann96, PJZA07].

Traffic [ILH16].

training [MCS15].

Tranquilizer [PGB12].

Transaction [LZS*08, RW97, SS91, DKG18, EQT07, Ver96].

Transaction-Aware [LZS*08, EQT07].

Transactional [GMGZP14, KUCT15, RG03, VSDL16, XWG+14, ZLJ16, ATLM*06, BLM06, BDL07, CMF+13, CVN+06, GCC15, MLS15, MCRS10, MMTW10, MTC+07, OCT14, VTS12, ZHC15].

Transactions [Ano00c, DTLW16, SKBY07, BD06, Dan09, KR01a, KR01b, KGGK09, RKK+10a, RKK+10b].

Transformation [HS10].

transformations [AC09, D’H92, JMS+10, VV11].

Transience [RM00, VPC02].

Transient-fault [VPC02].

Transitive [YMR93b, XHB06, YM92, YMR93a].

translation [KBF+12].

translator [TJY+11].

Transparency [GKCE17, KBH+03].

Transparent [ABN99, IVN10, SLGZ99, ZSA13].

Transparently [CB16, JSB+12].

Transport [GRS97].

transposition [SGLGL+14].

trap [Ram94, GRS97].

trap-based [Ram94].

Tree [Pla99, BCO010].

trees [AD08, CKZ12].

Trends [Gar01].

TRI [ACM93c].

TRI-Ada [ACM93c].

Triangular [BKK17].

Trick
[Eng00]. Tridia [Ano00b]. tridiagonal
[ZCO10]. trigger [Kho97]. Triggered
[PPA+13]. Troy [SS96]. TSGL [ACD+18].
TSO [HI16]. Tumbler [PGB16]. Tune
[RGK99]. tuned [Ano95a, Ano95b, Kub15].
Tuning
[LWSB19, LEL+99, CSB00, RGK99].
Tunnelling [Don02]. Tutorial [Taf13].
Twentieth [ACM93a]. Twenty
[AOV+99, ACM93b]. Twenty-fifth
[AOV+99, ACM93b]. Two
[BBH+17, CM98, JYE+16, STY99, GLC99].
Two-Level [JYE+16, BBH+17, STY99].
TX [Cha05, ACM00, USE91b]. TxRace
[ZLJ16]. Type [Gro03, Loc18, VGR06, BAD+09, GE08, Lan02, Mil95, PRB07].
type-checking [Mil95]. Type-Safe
[Loc18, Gro03]. typed [DMBM16]. Types
[AFF06, FFLQ08, Ten98, BAM07, KS93, VGR06].
typings [Smi06].

UCITA [Gar01]. UK [AOV+99]. ULT
[PG03]. Ultra [PWL+11]. Ultra-Scale
[PWL+11]. UML [SK12]. Unbounded
[CNV+06, FKP15, BDLM07]. uncommon
[BDLM07]. Uncover [WS08].
underdetermined [Kub15]. Undergraduate
[BLP04]. Understandable [MSM+16].
Understanding
[BZ07, TLA+02, EPAG16, JGS+19, RRP06].
Undocumented [SW97]. Unfoldings
[SPDLK+17]. Unicode [Swi09]. Unified
[Wei98b, ABG+08, GZK12]. Uniform
[BDN02, SKG+11]. unifying [MS03].
unimodular [DH92]. unintrusive
[HDT+13]. uniprocessor [GL98a, Yan97].
uniprocessors [BRE92, EJK+96].
Uniscape [Ano98b]. UNISIM [LS11].
UNISIM-Based [LS11]. unit
[CBM10, Par91, PAB+14]. United
[ACM94c]. Unithreaded [RLJ+09]. Units
[RKKK, Gun97]. univariate [CMX10].
University [IEE99]. UNIX
[Ano00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].
Unix-to-NT [Ano98b]. UnixWare
[Rod94, Rod95b]. unlocking [XSaJ08].
unravel [But14]. Unraveling [Bec00].
Unsynchronized [DSR15]. unveiled
[Ano95a, Ano95b]. Unveiling [AAC+15].
up-and-downdating [VV11]. UPC
[EGC02]. updates [NH90]. Updating
[HSS+14, HSD+12, NHFP08]. Ur [Ch15b].
Ur/Web [Ch15b]. URL [TLD+02]. USA
[ACM94a, ACM94d, Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE99, IEE94a, IEE96, USE98, USE99, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01]. Usage
[BS96, Kor89, VS11b]. Use
[Bak95a, FJ08, HW92, WWW+02]. Use-once
[Bak95a]. Useful [Pet03].
USENIX [Ano90, Ano94f]. User
[ABLL92, DLM99, Eng00, GR97, MQW95, SLT03, RF05, P06, G06, H06, L05, MSLM91, OT95, SLTO, TNB+95, YZYL07].
User-Level [ABLL92, SLT03, MQW95, G06, MSLM91, OT95, SLTO, YZYL07].
User-Space [Eng00, GR97]. Using
[An99, ABH+00, AGZ17, BDN02, BBC+00, BLG01, BTE98, BAZ+19, CRE99, Cor00, DS16, DTLW16, DBRD91, GH03, HBG01, HJT+93, HBTG98, Hei03, How00, KMC02, KH18, Kwo03, KETO6b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, P003, SW08, SCD+15, SEP96, SLTO, WKG17, WJ12, Whi03, ZLI16, Ano96, Bar09, BCM+07, CML00, Cat94, CTYP02, CDD+10, CVJ08, CKZ12, DESE13, GCC15, GBM93, GEG07, Hig97, HH97, JWG01, JJY+03, KAS07, KBF+12, LK15, MM14, NPC06, NWT+07, Nik94, PT03, RKM+10a, RKM+10b, RM99, RPNT05, SLGZ09, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VDO8, ZJS+11, KSB+08]. UT [Hol12]. Utility
[FBM95a, JSM13, FBM95b].
Utility-based [JSMP13]. utilization [Squ94]. Utilizing [ES97, WZSK19]. UX [Ano95a, Ano95b, Yam96].

V [EKB+92, pea92, FG91, PST+92]. v.1.0 [Ano00b]. Validating [LB17]. Validation [BMV03, LB17, SCB15]. Valley [GBK+09].

value [DG99, TFG10, ZCSM02a, ZCSM02b]. Values [EUVG06]. variable [Evrl01, dBo99].

Variables [Hol98c, Whi03, Bak95a].

variation [PGB12]. variety [CML00]. VAX [Gil88]. Vector [Goo97, HHOM91, HHOM92, KBH+04a, KBH+04b, KKS+08, LRZ16, VDo8, CS95a, CS95b, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92]. Vector-Thread [KBB+04a, KBH+04b, KBA08].

textureization [cC91, JMS+10, RKHT17].

texturized [TP18]. textures [KTK12].

Vertex [CNZS17]. Vertex- [CNZS17]. Very [AV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZY16, CCWY17, FBFO1, Hig97, KRBJJ12, KGP12, KIm14, LVW+10, LTTZ15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97].

Video [BC00]. view [KTLK13, PT91].

Vina [TO10]. Virtual

[BSSS14, BBM09, KG05, KKDVO3, PR07, PHBC18, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization [LRZ16, YSS+17, ABB+15]. Virtually [LB92]. virtues [NJ016]. virus [GJ11].

viscous [RM99]. Visual

[PTM BS09, Dil93, McM96c, Esp96, Nag01]. Visualization [Ano97a, AC1R01, CAI02, CAZ02, BCS00, CSB00, M KK99, NCA93].

Visualizing [CD0S01, WT10, ACD+18, DSEE13]. Visually [Dru95]. VLIW

[For97, GOL10, OCS01]. VLSI [ABC+93]. VM [FGG14]. VMs [KKJ+13]. voltage [MTPT12]. volumes [Koo93]. VRSync [MTPT12]. vs [EHP+07, GBK+09].

MMTW10, MCF109, SSKP+07, SKP+02]. vulnerability [SSN10, WHK97].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits [Hov00]. WAN [Yas95]. Wanted [Ano94].

Warnings [CWJ+15]. warp

[FSY90, MT10, RE95, TAM95]. was [San04].

Washington [ACM92, Ano90, IEE94c, USE98a]. Watch [Ano97b]. water [IVA+13]. Wave

[Ano00b, BBC+00, LST07, WQLJ18]. wave-based [WQLJ18]. wavelet [TKHG04]. Way

[KA005, MTN+00, Rin99, ZJFA09, FGT96]. Ways [Wei97]. Weak [KZC15, TVD14].

Weaving [Pra96]. Web

[Ano94d, SW09, CH15a, CH15b, Hig97, MG14, PC16, VP16]. Webrelay [Zha00].

WebThreads [Ano97a]. week

[Ano95a, Ano95b]. weeks [But14]. weight [W95].

Weighted [CNZS17, EE14, HVF+12]. Weighted-IPC [EE14]. weighting [VS11b]. Weightless

[SPY+93]. Weld [OCS01]. well [Kub15]. well-determined [Kub15]. West [EV01].

WG2.5 [BT01]. Wheeler [LH16, NTR16]. Whole [EHP+07]. Whole [GN96, BMB09].

Whole-Program [GN96]. Wide

[Ano94d, Ano96, FGT96]. wide-area

[FTG96]. Widening [KKW14]. will
References

Antoniu:2001:HSC

Aliaga:2015:UPE

Alverson:1992:EHP

C. Axnix, G. Bayer, H. Bohm, J. von Buttlar, M. S. Farrell, L. C. Heller, J. P. Kubala, S. E. Lederer, R. Mansell,

Agarwal:1993:SMV

Antonopoulos:2009:ASH

Aliaga:2010:DDP

Aliaga:2015:CMS

Agarwal:2010:DDP
REFERENCES

ISSN 0018-8646 (print), 2151-8556 (electronic).

REFERENCES

[ACM:1994:IP] [ACM95b]

[ACM:1996:C] [ACM96]

[ACM:1998:AW] [ACM98a]

ACM, editor. ACM 1998 Workshop on Java for High-
REFERENCES

Abraham:2005:ABP

Abraham:2008:DPS

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

Agerwala:2006:SRC

Agarwal:1989:PTM

[Anant Agarwal. Performance tradeoffs in multithreaded processors. Technical Report 89-566, Massachusetts Institute of Technology, Microsys-

Abdulla:2008:MCR

Adiletta:2002:PSA

Aitken:1996:MCJ

Ahn:2012:ISE

Azagury:1999:NIR

Aciicmez:2006:PSB
Arjomand:2016:BAP

Amer:2018:LCM

Agrawal:2010:HLF

Ahn:2009:MDE

Amer:2015:MRC

REFERENCES

Murali Annavaram. Blocking versus non-blocking: issues and tradeoffs in multi-

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Anonymous:1992:MWPb

Anonymous:1994:ICS

Anonymous:1994:MDP

[Ano94b] Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Systems Today*, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

[Ano97a] Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. *Linux Journal*, 34:??, February 1997. CODEN LIJOFX. ISSN 1075-3583 (print); 1938-3827 (electronic).

Anonymous:1997:TWP

3D semiconductor simulation.
Multi-threaded architecture.

[Ano00b] Anonymous:2000:NPAAa

Arnau:2012:BMG

Areias:2017:SDP

Areias:2019:MDL

Adiletta:2002:NGI

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

USENIX:1996:ATT

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Artéaga:2017:GFG

Boehm:2008:FCC

Bocchino:2009:TES

REFERENCES

Bergan:2010:CCRa

Bergan:2010:CCRb

Baker:1995:UOV

Baker:1995:GTP

Baldwin:2002:LMF

Bic:1993:EUI

Burckhardt:2007:CCC

REFERENCES

June 2007. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

Butler:2011:BAM

Barabash:2005:PIM

Buhr:1994:TRM

Ball:1998:MT

Bhandarkar:2000:PPM

Boudol:2002:NCP
REFERENCES

[BCL+98] Edoardo Biagioni, Ken Cline,
References

REFERENCES

REFERENCES

127, November 1996. CODEN DDJOEB. ISSN 1044-789X.

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bergan:2014:SEM

Baghsorkhi:2012:EPE

REFERENCES

1523-2867 (print), 1558-1160 (electronic). PPOPP ’12 conference proceedings.

Bouchenak:2004:EIE

Bubeck:1995:DSC

Barekas:2003:MAO

Bientinesi:2011:CFS

Birrell:1989:IPT

Blumofe:1995:CEM

REFERENCES

REFERENCES

0163-5999 (print), 1557-9484 (electronic).

REFERENCES

Bergstra:2007:SCE

Berger:2000:HSMa

Berger:2000:HSMb

Berger:2000:HSMc

Balkind:2016:OOS

Bouge:1999:ECM
Baker:1994:EPP

Briguglio:2003:PPM

Brunst:2001:GBP

Burnim:2011:SCSa

Burnim:2011:SCSb

Burnim:2012:SCS

Benson:1996:DMS

Bull:2001:MSO

Boehm:2005:TCI

Bond:2013:GDG

Boothe:1993:EMC

Brinkschulte:2005:ICA

Boehm:2007:MCC

Boroday:2005:DAJ

Boothe:1992:IMT

Bob Boothe and Abhiram Ranade. Improved multi-
REFERENCES

Bogdanas:2015:KJC

Bramley:1997:TNRb

Bershad:1992:FME

Brebner:2002:MLC

Briot:1989:OAS

Brightwell:2003:DIP

REFERENCES

Burnim:2010:ACD

Bartolini:2014:AFG

Boisvert:2001:ASS

Brunett:1998:IET

Butenhof:1997:PPT

Buttari:2013:FGM

Butcher:2014:SCM
Paul N. Butcher. Seven concurrency models in seven weeks: when threads unravel. The Pragmatic Programmers.
REFERENCES

[Car08] Simone Campanoni, Giovanni Agosta, and Stefano Crespi Reghizzi. A parallel dynamic compiler for CIL bytecode. ACM SIGPLAN Notices, 43(4):11–20, April 2008. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
Catano:2014:CSL

Caswell:1989:IMD

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

REFERENCES

May 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Chen:2016:TMR

Chiny:2011:BDP

Chetlur:2010:SWM

Chandra:2001:PPO

Chung:2013:LBD

Chassin de Kergommeaux:2001:PEE

Catalyurek:2012:GCA

Canetti:1991:PCP

Cerin:2006:MSS

Culler:1992:AMMa

Culler:1992:AMMb

Cattaneo:1992:ACT

Cattaneo:1992:ACT

Chaudhuri:2004:SAN

Chaudhry:2002:PTS

Chapman:2005:SMP

Chen:2003:CSS

Chlipala:2015:NIM

Chlipala:2015:UWS

Chowdhury:1992:PEA

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Chong:1993:EMC

Chrisochoides:1995:MMDa

Chrisochoides:1995:MMDb

REFERENCES

REFERENCES

cdoc/Abstracts/0164-0925/
213986.html.

[CAI:2015:ADB]
Yan Cai, Changjiang Jia, Shangru Wu, Ke Zhai, and
Wing Kwong Chan. ASN: A dynamic barrier-based ap-
proach to confirmation of deadlocks from warnings for
large-scale multithreaded programs. *IEEE Transactions on
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (elec-
computer.org/csdl/trans/
td/2015/01/06747310-abs.
html.

[CKD94]
Nicholas P. Carter, Stephen W. Keckler, and William J.
Dally. Hardware support for fast capability-based address-
CODEN SINODQ. ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
acm.org:80/pubs/citations/
proceedings/asplos/195473/
p319-carter/.

[CKRW97a]
P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From
sequential to multi-
threaded Java: An event-
Based operational semantics.
*Lecture Notes in Computer
CODEN LNCSDE9. ISSN
0302-9743 (print), 1611-3349
(electronic).

[CKRW97b]
P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From
sequential to multi-
threaded Java: An event-
based operational semantics.
*Lecture Notes in Computer
CODEN LNCSDE9. ISSN
0302-9743 (print), 1611-3349
(electronic).

[CKRW99]
P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based struc-
tural operational semantics
of multi-threaded Java. *Lecture Notes in Computer
Science*, 1523:157–??, 1999. CODEN LNCSDE9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

[CKZ12]
Austin T. Clements, M. Frans
Kaashoek, and Nickolai Zel-
dovich. Scalable address
spaces using RCU balanced
trees. *ACM SIGARCH Com-
puter Architecture News*, 40
(1):199–210, March 2012. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic). ASPLOS ‘12 confer-
ence proceedings.
REFERENCES

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Cahoon:2000:EPD

Carr:2003:TPT

Chen:2010:CCM

Che:2014:ALM

Hao Che and Minh Nguyen. Amdahl’s Law for multithreaded multicore processors. *Journal of Paral-

REFERENCES

Corbett:2000:USA

Cappello:1999:PNB

Criscolo:1998:JQH

Criscolo:1998:JQ

Choi:2008:ABP

Clark:2002:AMT

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
REFERENCES

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Chen:2018:ROM

Chugh:2008:DA

Cohen:1998:WMP

REFERENCES

Cao:2016:DBG

Cai:2013:TST

Daniluk:2009:MTS

Davis:2011:ASM

Day:1992:INB

Day:1992:INC

deBoer:2009:SVC

Draves:1991:UCI

Richard P. Draves, Brian N. Bershad, Richard F. Rashid,
REFERENCES

REFERENCES

DeWitt:1999:PTL

Domani:2003:TLH

D'Hollander:1992:PLL

DeRusso:1998:MEH

Dolby:2012:DCA

Duncan:2001:LPD

Dillon:1993:VEM

Dill:2000:MCJ

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Ding:2018:IOC
REFERENCES

Doligez:1993:CGG

Devietti:2009:DDS

Dongarra:1999:RAP

DelaPuente:1999:RTP

Demange:2013:PBB

Dagum:1998:OIS

REFERENCES

Daloze:2016:ETS

Dorfman:1994:EMO

Devietti:2012:RRC

Dublish:2016:CCG

Dorojevets:1995:MDA

Donalson:1992:DDP

Douglas Dale Donalson. DISC: a dynamic performance evaluation of a multi-thread ar-
REFERENCES

chitecture. Thesis (M.S.), Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA, 1992. ix + 88 pp.

Donnelly:2002:LTT

Dou:1997:ISV

Drake:1996:IJT

Dru:1995:VDE

Delzanno:2002:TAV

Desai:2009:AIC

Deniz:2016:UML
Etem Deniz and Alper Sen. Using machine learning techniques to detect parallel pat-

Bois:2013:BGV

Dang:2017:ECB

Dohi:2010:IPE

Das:2015:SBP

Ding:2015:OCA

David:2014:CMC

REFERENCES

Devietti:2012:RAS

Ding:2012:CDF

Ding:2010:PCM

Dyer:1998:CAS

[EBKG01]

Elkasif:2001:AMT

REFERENCES

Esmaeilzadeh:2012:LBL

Eyerman:2010:PJS

Eyerman:2012:PMJ

Eyerman:2014:RCW

Eggers:1997:SMP

REFERENCES

[EHJ+96] Richard J. Eickemeyer, Ross E. Johnson, Steven R. Kunkel, Mark S. Squillante, and Shi-

Ediger:2013:GMA

Eykholt:1992:BMM

Eggers:1990:TEI

English:1995:MC

Engelschall:2000:PMS

Evtuyushkin:2016:UMC

Elmas:2007:GRT

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-aware

REFERENCES

Engelhardt:1996:PIP

Fan:1993:LMC

Farber:1996:EAM

Figueiredo:2001:IPH

Fisk:1995:TPT

Feuerstein:1996:MTP

Feuerstein:2002:LMT

REFERENCES

|----------------|------------------|

|------------------|------------------|

|------------------|------------------|

|------------------|------------------|
DEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

Flanagan:2005:MVM

Flanagan:2008:VSC

Faulkner:1991:PFS

Frincu:2014:ESV

Foster:1997:MMC
REFERENCES

[Fin95]

[FHM95a]

[FHM95b]

[FK12]

[FKD+97]

[Fis97]

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FMY+15]</td>
<td>Zhenman Fang, Sanyam Mehta, Pen-Chung Yew, Antonia Zhai, James Greensky,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Afonso Ferreira and Jose Rolim, editors. Parallel algorithms for irregularly structured problems: second international workshop, IRREGULAR 95, Lyon, France, September, 4–6, 1995:
REFERENCES

Field:1995:PPS

Fatouron:1996:SAS

Feliu:2016:BAL

Feliu:2017:PFP

Factor:2006:PID

Fung:2009:DWF

Farcy:1996:ISP

A. Farcy and O. Temam. Improving single-process performance with multithreaded processors. In ACM [ACM96],

Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris. Deployment of query

Greiner:1999:PTE

Giampapa:2005:BGA

Gotsman:2007:TMS

Gao:1995:ATD

Guz:2009:MCV

Ghoting:2007:CCF

Amol Ghoting, Gregory Buehrer, Srinivasa Parthasarathy, Dae-hyun Kim, Anthony Nguyen, Yen-Kuang Chen, and Pradeep Dubey. Cache-conscious fre-

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA

Gravvanis:2008:JMB

George A. Gravvanis and Victor N. Epitropou. Java multithreading-based par-

Geary:1998:SM

Gravvanis:2007:PPA

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

Gao:1993:DMA

Gao:1993:SID

REFERENCES

Ian Gorton and Innes E. Jelly. Guest Editors introduction: Software engineering for

Ganesan:2011:MMP

Gebhart:2012:HTS

Gerlhof:1994:MTA

Granat:2009:NPQ

Garland:2012:DUP

Georgiou:2017:ETD

Garcia:2005:HJA

References

Gallmeister:1991:EPP

Golla:1998:CMR

Golla:1998:CEB

Goldwasser:2007:INP

Gu:1999:EJT

Glenn:1991:CMH

Grebenshchikov:2012:SSV

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. Synthesizing software verifiers from

Giering:1993:IAF

Gonzalez-Mesa:2014:ETM

Gomez:1998:CAM

Ganty:2009:VLA

Gabor:2009:SLA

Govindarajan:1992:LCM

Grunwald:1996:WPO

Dirk Grunwald and Richard Neves. Whole-program optimization for time and space

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[GS02] Rajat P. Garg and Ilya Shara-

Grelck:2006:SFA

Goldstein:1996:LTI

[GS06]

Gulati:1995:MSM

Gunther:1997:MDF
REFERENCES

Haines:1997:OIA

Hamilton:1996:JSN

Hanson:1997:CII

Haines:1992:SMC

Hottelier:2015:SLE

Harrington:1999:WMM

Hayden:1993:BIC

REFERENCES

Hanson:2001:UFI

Hanson:2002:AFI

Heber:1998:UMA

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT

Ding:2002:MOP
Honarmand:2013:CUA

Heinlein:2003:ATS

Homan:2009:SA

Hroub:2017:EGC

Halstead:1988:MMP

Hertzum:1996:BQO

Halappanavar:2012:AWM

[HFV+12] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and Alex Pothen. Approximate weighted matching on emerging many-core and multithreaded architectures. *The International
REFERENCES

Hironaka:1991:SVP

Hironaka:1992:BVP

Hong:2011:AMA

Huang:2016:MCR

Hughes:1997:OOM

Hum:1991:NHS

Hum:1992:HSM

Hum:1999:NHS

Huang:2011:AMA
REFERENCES

[Hig97] Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–??, January 1997. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD

Hansen:1990:EPA

Holm:1994:CSP

Hu:2016:TDM

Helmbold:1996:TRC

REFERENCES

REFERENCES

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Mahantesh Halappanavar, Alex Pothen, Ariful Azad, Fredrik Manne, Johannes Langguth, and Arif Khan. Codesign lessons learned from implementing graph matching on multithreaded architectures. *Computer*, 48(8):46–55, August 2015. CODEN CPTRE4. ISSN 0018-9162 (print), 1558-0814 (elect-
REFERENCES

REFERENCES

Hendren:1997:CCE

Huber:2001:EFC

Hyde:2000:JTP

Huang:2015:COM

Kai Huang, Min Yu, Rongjie Yan, Xiaomeng Zhang, Xiaolang Yan, Lisane Brisolara, Ahmed Amine Jerraya, and Jiong Feng. Communica-

Hsieg:1993:CME

Horwood:2000:DMA

Hudson:1996:MDA

Halladay:1992:PUM

Steve Halladay and Michael Wiebel. A practical use for

[HZ12] Huang:2012:EPS

[IAD+94] Iannucci:1994:MCA

[IH+10] Illikkal:2010:PQP

[ICH+10] Ilakkal:2010:PQP

IEEE:1989:WOS

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:PIW

REFERENCES

IEEE:1999:HCS

IEEE:1999:HCS

IEEE:1999:HCS

IEE99

IEEE:1999:HCS

[ILFO01]

Ishihara:2001:CCP

IEEE:2002:STI

IEEE:2002:STI

IEEE02

IEEE:2002:STI

[ISS98]

Itzkovitz:1998:TMA

IEEE:2018:DMS

Iliakis:2018:DMS

Iwata:2001:PMT

Itzkovitz:1998:TMA
REFERENCES

[Jacobs:2018:MTV]

[Jaisson:2008:IPM]

[Jeffay:1994:LMT]

[Jensen:1995:DRT]

[Ji:1998:PMM]

[Jia:2019:UPD]

[Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Mil-

[Johnston:2004:ADP]
 REFERENCES

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386. The basic kernel multi-pro-
gramming and multitasking. II. Dr. Dobb’s Journal of Soft-
ware Tools, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB.
ISSN 1044-789X.

Haoqiang Jin, Gabriele Jost, Jerry Yan, et al. Automatic multilevel paralleliza-
tion using OpenMP. Scientific Programming, 11(2):177–
190, 2003. CODEN SCIPEV. ISSN 1058-9244 (print), 1875-
919X (electronic).

Daejin Jung, Sheng Li, and Jung Ho Ahn. Large pages
on steroids: Small ideas to ac-
celerate big memory applica-
tions. IEEE Computer Archi-
tecture Letters, 15(2):101–104,
July/December 2016. CO-
DEN ????. ISSN 1556-
6056 (print), 1556-6064 (elec-
tronic).

J. Jonsson, H. Loenn, and K. G. Shin. Non-preemptive
scheduling of real-time threads
on multi-level-context archi-
tectures. Lecture Notes in
Computer Science, 1586:363–
??, 1999. CODEN LNCSV.
ISSN 0302-9743 (print), 1611-
3349 (electronic).

Christopher F. (Christopher Frank) Joerg. The
Cilk system for parallel mul-
tithreaded computing. Thesis
(Ph.D.), Massachusetts Insti-
tute of Technology, Depart-
ment of Electrical Engineering
and Computer Science, Cam-
bridge, MA, USA, 1996. 199
pp.

J. E. Jonak. Experience with a
FORTH-like language. ACM
SIGPLAN Notices, 21(2):27–
36, February 1986. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).
Jones:1991:BCL

Jagannathan:1992:CSC

Jacobs:2008:PMC

Joisha:2011:TEA

Joisha:2012:TTE

Joao:2012:BIS
José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. Bottleneck identification and schedul-

Joao:2013:UBA

Jeffrey:2011:IBM

Jeon:2015:MTH

Jiang:2016:TLH

Kacsuk:1997:MIC

Kanalakis:1994:ET

Kongetira:2005:NWM
Poonacha Kongetira, Kathirga-mar Aingaran, and Kunle

Kumar:2007:ESI

Krashinsky:2008:ISV

Kyle:2012:EPI

Koster:2003:TTI

Krashinsky:2004:VTAa

REFERENCES

REFERENCES

Kasperink:1997:CDC

Keckler:1998:EF

Kleiman:1995:IT

Kerrison:2015:EMS

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

Kempf:2002:BTL
CODEN CCUJEX. ISSN 1075-2838.

Kepner:2003:MTF

Kyriacou:2006:CCO

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Giorgos Kollias and Efstratios Gallopoulos. Asynchronous PageRank computation.
REFERENCES

Kunal:2009:HDS

Khan:2012:MAN

Kondguli:2018:BUS

Khosla:1997:MAT

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

[Takuro Kutsuna and Yoshinao Ishii. Abstraction and refine-

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF

Kim:2014:SMC

Kranzmuller:2003:RAP

REFERENCES

REFERENCES

Kleber:2000:TSA

Kang:2008:ISE

Kwak:1997:VMN

Kwak:1999:EMC

Koopman:1992:CBC

Koufaty:2003:HTN

Kakulavarapu:2001:DLB

REFERENCES

6264 (print), 1793-642X (electronic).

REFERENCES

[Kienzle:2001:IEO] Jörg Kienzle and Alexander Romanovsky. Implementing exceptions in open mul-

Keckler:2012:MMC

Kawaguchi:2012:DPL

Korne:1998:LBN

Krinke:1998:SST

Krieger:1997:HPO

Kalayappan:2016:FRT

Rajshekar Kalayappan and Smruti R. Sarangi. Fluid-Check: a redundant threading-based approach for reliable

[KSYHX+11] Wing kei S. Yu, Ruirui Huang, Sarah Q. Xu, Sung-En Wang,

[Kambadur:2012:HCA]

[Kambadur:2013:PSP]

[Krishnan:1999:CMA]

Komosinski:2017:MCE

Kubica:2015:PHT

Kuchlin:1991:MCI

Kuchlin:1992:MTC

Kestor:2015:TPD

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Arun Kejariwal, Alexander V. Veidenbaum, Alexandru Nico-
Kleinmann:2017:ACS

Kandemir:2015:MRR

Kwok:2003:EHC

Lim:1993:WAS

Lafreniere:2000:SMD

REFERENCES

May 2000. CODEN CCUJEX. ISSN 1075-2838.

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

Lan:1995:CPC

Lang:1997:MTE

Laneve:2002:TSJ

Larchevêque:1995:OIP

Larbi:1997:BRM

Michael Larbi. Book review: Multithreading Appli-
REFERENCES

173
cations in Win32. C/C++
Users Journal, 15(7):65–72,
July 1997. CODEN CCUJEX.
ISSN 1075-2838.

T. Le Sergent and B. Berthomieu
Incremental multi-threaded
garbage collection on virtually
shared memory architectures. Lecture Notes in
ISSN 0302-9743 (print), 1611-3349 (electronic).

Beng-Hong Lim and Ricardo
Bianchini. Limits on the
performance benefits of multi-
threading and prefetching.
Research report RC 20238
(89547), IBM T. J. Watson
Research Center, Yorktown
Heights, NY, USA, October

Bil Lewis and Daniel J. Berg.
Multithreaded Programming
with Java Technology. Sun
BluePrints Program. Sun
 Microsystems Press, Palo Alto,
CA, USA, 2000. ISBN 0-13-
017007-0. xxvi + 461 pp.
LCCN QA76.73.J38

Doowon Lee and Valeria
Bertacco. MTraceCheck: Vali-
dating non-deterministic
behavior of memory consistency
models in post-silicon valida-
tion. ACM SIGARCH Com-
puter Architecture News, 45
(2):201–213, May 2017. CO-
REFERENCES

Lo:1998:ADW

Ling:2012:HPP

Li:2006:MEMa

Li:2006:MEMb

Li:2006:MEMc

Lucia:2013:CEF

Liu:2008:HPP
REFERENCES

February 2008. CODEN ????. ISSN 1539-9087 (print), 1558-3465 (electronic).

Lathrop:2011:SPI

Li:2004:FRT

Lozi:2016:FPL

Leary:1996:CEH

Lee:1993:TW

Lee:2006:PT

Legrand:2001:MTD

REFERENCES

REFERENCES

Leven:1997:MIR

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Lowenthal:1996:UFG

Lemon:2004:MCR

Lee:2006:TBR

Laudon:1994:IMT

Lee:1994:DAM

[LH94] Ben Lee and A. R. Hurson. Dataflow architectures
Lee:2009:MHF

Ling:2016:MTH

Liu:2016:PSE

Li:2005:OSA

Liedtke:1994:SNIb

LaFratta:2013:EEM

REFERENCES

LaSalle:2015:MTM

Li:2011:LCM

Luo:2017:TDS

Lakshminarayana:2012:DSP

Lin:2010:TAC

Lai:2015:SAM

Li:2006:SDH

REFERENCES

1. Liu:2016:SEA

3. Li:2014:PDC

4. Ling:2000:AOT

5. Li:2019:SRM

7. Loeffler:1997:MFJ
G. Loeffler. A multithreaded Java framework for solving linear elliptic partial differen-
REFERENCES

Loepere:2005:STM

Loikkalanen:1995:FMS

Lowy:2000:MPO

Launchbury:1994:LFS

Lubbers:2009:RMP

Lo:1999:SDR

Lai:2016:QMD
REFERENCES

[LPS07] Leadbitter:2007:NM

[LRZ16] Lu:2016:VCV

[LS18] Lee:2018:ERD

REFERENCES

21, September 2015. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

[Le:2007:IPM]

[Leiserson:2012:DPR]

[Lin:2017:MSP]

REFERENCES

Li:2012:MRP

Laadan:2010:TLA

Lopes:2001:FGM

Laguna:2019:GPD

Lee:2010:REO

Liu:2016:TAA

REFERENCES

Practice and Experience, 29 (21):??, November 10, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Mushtaq:2014:EHP

Monchiero:2009:HSC

Mahafzah:2013:PAM

Man:1991:MLC

Mance:1996:SJP

Manley:1998:GPT

Manley:1999:IPT

REFERENCES

CODEN CCUJEX. ISSN 1075-2838.

REFERENCES

Madan:2007:PEA

Moon:2006:TMS

McCarthy:1997:MTI

McCarthy:1997:WMT

Mitchell:1999:ILP

Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

McManis:1996:JDSb

McManis:1996:JDT

REFERENCES

REFERENCES

[MG15] Kshitij Mehta and Edgar Gabriel. Multi-threaded par-

Martinsen:2014:HTL

Mohamed:2000:DDM

Marsland:1995:SSM

Madriles:2008:MSM

Maquelin:1995:CBM

Mauer:2002:FST

Miastkowski:1990:PGG

Michael:2004:SLF

Maabreh:2018:MHT

Miller:1995:TPC

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

Meng:2010:AOS

Lingchuan Meng, Jeremy Johnson, Franz Franchetti,
REFERENCES

REFERENCES

References

McKenney:2010:WGM

Metzner:2000:MMR

McAuley:2003:CVC

Marinov:2016:PAF

Markovic:2015:TLS

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

John Mount. Automatic detection of potential deadlock. Dr. Dobb’s Journal
REFERENCES

Massalin:1989:TIO

Manson:2001:CSM

McCreeesh:2013:MTS

Martin:2004:HPA

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

Nuno Machado, Daniel Quinata, Brandon Lucia, and Luís Ro-
REFERENCES

Mayes:1995:ULT

Marinescu:1994:HLC

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

Meier:2017:PVM

Malan:1991:MA
REFERENCES

[MS89] Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

[MSM+11] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and

Marino:2016:DXU

Morrisett:1993:PLP

Martinez:2002:SSAa

Martinez:2002:SSAb

Martinez:2002:SSAc

Minh:2007:EHT

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Matsushita:2000:MSC

Miller:2012:VCE

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA
Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor allocation policy for multiprogrammed shared-memory multiprocessors. ACM Transactions
REFERENCES

Kengo Nakajima. Parallel iterative solvers of Ge-

Naik:2006:ESR

Narlikar:1999:SES

Nagpal:2012:CGE

Nichols:1996:PP

Nichols:1998:PP

Najjar:1993:QAD

[NBM93] Walid A. Najjar, A. P. Wim Bohm, and W. Marcus Miller. A quantitative analysis of dataflow program execution — preliminaries to a hybrid design. Journal of Parallel and Distributed Comput-
REFERENCES

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

Nemawarkar:1994:PIN

Neamtiu:2009:STU

Neamtiu:2008:CEV

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottoni:2008:COGa</td>
<td>Guilherme Ottoni and David August. Communication op-</td>
</tr>
</tbody>
</table>

[Ottoni:2008:COGb]

[Ottoni:2008:COGc]

[Olszewski:2009:KED]

[Ossner:2013:GMB]

[Ostler:2007:IHT]

[Ozer:2001:WMT]

Odaira:2014:EGI

Olivier:2012:CMW

Ogata:1992:DIH

Oplinger:2002:ESRa

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Omma:2004:BMA

REFERENCES

[OTY00] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Online computation of critical paths for multithreaded languages. Lecture Notes in
REFERENCES

G. M. Papadopoulos, A. P. W. Bohm, A. T. Dahbura, and

REFERENCES

REFERENCES

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi Narayan Bhuyan. Lock contention...

Pusukuri:2016:TEL

Park:1997:HPM

Pham:2018:TSM

Pichel:2009:IDR

Ponamgi:1991:DMP
REFERENCES

[Porter:2015:MMS] Leo Porter, Michael A. Laurenzano, Ananta Tiwari,

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

REFERENCES

tronic). ICSA ’13 conference proceedings.

REFERENCES

[PSCS01] Irfan Pyarali, Marina Spivak, Ron Cytron, and Douglas C. Schmidt. Evalu-

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

Peacock:1992:EMS

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulley:2000:EPM

Pickett:2006:SSF

Pathania:2017:DTM

Preissl:2012:CSS

[PUF+04] Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner, Raghavendra
REFERENCES

Preissl:2011:MGA

Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and Alice Koniges. Multithreaded global address space communication techniques for gyrokinetic fusion applications on ultra-scale platforms. In Lathrop et al. [LCK11], pages 12:1–12:11. ISBN 1-4503-0771-X. LCCN ???.

Polap:2018:MTL

Park:2010:ISP

Quintana-Orti:2012:RSP

Quintana-Orti:2009:PMA

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A& M University, College Station, TX, USA, 1993. ix + 84 pp.

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

Reda:2012:APC

Rahman:2014:CCO

Ro:2006:DEH

Rakvic:2010:TMT

Russell:2006:ESRa

Reck:1998:TSR

Reich:1995:DHP

Reilly:2001:TNF

Redstone:2000:AOSa

Redstone:2000:AOSb

Redstone:2000:AOSc

REFERENCES

Rajwar:2003:TET

Radojkovic:2012:EIS

Rodgers:1999:TSN

Rashid:2010:AEP

Richman:1991:EHC

Richards:1999:ALT

Etienne Richards. Adding level-2 thread safety to existing objects. *C/C++ Users Journal*, 17(2):??, February
REFERENCES

1999. CODEN CCUJEX. ISSN 1075-2838.

Raman:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

Reinhardt:2000:TFD

ACM:2003:ATA

Roh:1996:GOE

REFERENCES

Robbins:1996:PUP

Robbins:2003:USP
REFERENCES

REFERENCES

Roh:2001:RMD

Rangan:2008:PSD

Roth:2004:MTC

Raychev:2013:ERD

Ravoor:1997:MTP

Robatmili:2004:TSI

Shaw:1998:CIP
Andrew Shaw, Arvind, Kyoo-Chan Cho, Christopher Hill, R. Paul Johnson, and John

Samorodin:1999:SFS

Sanden:2004:CJT

B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SJL

Smith:1980:ASD

Sah:1996:PIS

Saavedra-Barrera:1991:ASM

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

180856-6. xxxiv + 1274 pp. LCCN QA76.73.J38 S332 2014eb.

Schafer:2017:PHL

Sendag:2005:IIS

Steinke:2005:NPF

Schauser:1991:CCM

Schauser:1991:CML

Steffan:2000:SAT

Spertus:1995:ELB

So:2013:STI

Sartor:2012:EMT

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO

[Sg96] Neelakantan Sundaresan and

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

REFERENCES

Sime:1997:GPM

Sinharoy:1997:OTC

http://www3.oup.co.uk/computer_journal/Volume_40/Issue_06/06.body.html#AbstractSinharoy.

Sinharoy:1999:COI

Steensgaard:1995:ONC

Sharafeddine:2012:DOE

Singh:1992:DRS

Singh:1992:DR

REFERENCES

Stewart:1997:MDH

Shirole:2012:TCU

Sung:2001:MDA

Smaragdakis:2007:TIC

Schonherr:2011:MTI

Sohn:2001:CTC

REFERENCES

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT

Scherer:1999:TAP
[SLGZ99] Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel. Transparent adaptive parallelism on

Sangaiah:2018:SSA

Su:2019:SSC

Sharkey:2008:RRP

Sidiroglou:2009:AAS

Solihin:2002:UUL

Solihin:2003:CPU

[S LT03] Yan Solihin, Jaejin Lee, and
REFERENCES

Sadan:2010:PMM

Smith:1992:MTX

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

Suleman:2009:ACS

Swanson:2003:ESI

Scionti:2018:EMM

Singh:2012:EES

Sodian:2002:AMA

Samorodin:2000:SFS

Shinjo:2000:DCEa

REFERENCES

REFERENCES

Suleman:2008:FDTb

Suleman:2008:FDTc

Squillante:1994:AMP

Salcianu:2001:PEA

Sohi:2001:SMP

Samak:2014:MTS

REFERENCES

REFERENCES

REFERENCES

ary 1, 1997. CODEN JPD-CER. ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.1262/production;
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.1262/production/pdf;
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.1262/production/ref.

Skillicorn:1998:MLP

[ST98] David B. Skillicorn and
Domenico Talia. Models and languages for par-
allel computation. ACM
Computing Surveys, 30(2):
123–169, June 1998. CO-
DEN CMSVAN. ISSN 0360-
0300 (print), 1557-7341 (elec-
acm.org:80/pubs/citations/
journals/surveys/1998-30-
2/p123-skillicorn/.

Snavely:2000:SJSa

[ST00a] Allan Snavely and Dean M.
Tullsen. Symbiotic job-
scheduling for a simultane-
ous multithreaded processor. ACM
SIGARCH Computer
Architecture News, 28(5):234–
244, December 2000. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5867 (electronic).

Snavely:2000:SJSb

Allan Snavely and Dean M.
Tullsen. Symbiotic job-
scheduling for a simultane-
ous multithreaded processor. ACM
SIGPLAN Notices, 35(11):
234–244, November 2000. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (electronic).

Sundell:2005:FLF

Håkan Sundell and Philippas
Tsigas. Fast and lock-free
concurrent priority queues for
multi-thread systems. Journal of Parallel and Distributed
Computing, 65(5):609–627,
May 2005. CODEN JPDCER.
ISSN 0743-7315 (print), 1096-
0848 (electronic).

Stapleton:1990:DSS

Joseph Francis Stapleton. Dy-
amic server selection in a
multithreaded network com-
puting environment. Thesis
(M.S.), Iowa State University,

Stark:2005:FSV

Robert F. Stärk. Formal spec-
ification and verification of the
C# thread model. Theoreti-
cal Computer Science, 343(3):
REFERENCES

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ???

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

Sigmund:2001:SCS

Suito:2012:DRM

SunSoft:1995:SMP

Sutter:1999:OAM

Schmidt:1996:CAPb

Schmidt:1996:CAPc

Schmidt:1996:CAPa

Smith:1998:SIF

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

Schwan:1992:MRT

REFERENCES

[257]

5980 (print), 1943-586X (electronic).

Tanner:1987:MTI

Tolmach:2004:IFL

Tam:2007:TCS

Thompson:1997:THP

Thompson:1997:TPC

Thomson:1998:SSH

Tseng:2003:DST

REFERENCES

8191 (print), 1872-7336 (electronic).

Thekkath:1994:ISB

Thekkath:1994:EMH

Tullsen:1995:SMM

Tullsen:1998:RSM

Tullsen:1998:SMM

References

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Thitikamol:1998:PNM

Theobald:2001:DCI

Theobald:2002:IEC

Kevin B. Theobald, Rishi Kumar, Gagan Agrawal, Gerd Heber, Ruppa K. Thulasiram, and Guang R. Gao. Implementation and evaluation of a communication intensive application on the EARTH

Thulasiraman:2004:FGL

Editors:2002:LUC

Tian:2016:ETR

Tian:2017:RSP

Turanhkia:2017:TPE

Tian:2018:RSP

Tremblay:2003:IEP

Tallent:2009:EPM

Tallent:2010:ALC

Taylor:1995:CSA

Trott:2010:AV1

Oleg Trott and Arthur J. Olson. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient op-

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Tullsen:1996:SM

Tentyukov:2010:MVF

Tebraey:2013:SSS

Torlak:2010:MCA

Turon:2014:GNW

Taura:1997:FGM

Utterback:2017:POR

Ungerer:2002:MP

Ungerer:2002:SPE

Ungerer:2003:SPE

USENIX:1989:PWU

USENIX:1991:PUM

USENIX:1991:PWU

USENIX:1992:PSU

USENIX:1992:SED

USENIX:1993:PUMb

USENIX:1993:PWU

USENIX:1996:PFA

USENIX:1998:PUWa

USENIX:1998:PISA

USENIX:2000:UAT

[USE00a] USENIX, editor. 2000 USENIX Annual Technical Conference: San Diego,

REFERENCES

REFERENCES

[Venners:1998:DTS]

[Verriello:1996:MSM]

[Vermeulen:1997:JDW]

[Vlacchos:2010:PEAb]

[Verriello:1996:MSM]

[Vasconcelos:2006:TCM]

[Vachharajani:2005:CMP]
0163-5964 (print), 1943-5851 (electronic).

REFERENCES

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

Vishkin:2000:ELR

VanDeGeijn:2011:HPD

Winter:2008:ATN

Walter:1995:PMS

REFERENCES

Walsley:2000:MTP

Wang:1994:MAD

Watt:1991:IPI

Wayner:1995:FAN

Wu:1999:GMC

Wallace:1998:TMP

Wester:2013:PDR

Weaver:2008:OIO

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Wong:1994:SSI

Weissman:1999:HPT

B. Weissman and B. Gomes. High performance thread migration on clusters of

REFERENCES

Wilson:2000:PBC

Wei:2012:OLL

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wang:2017:JRJ

Wadden:2014:RWD

Wang:2009:TDA

[WLK+09] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and Scott
REFERENCES

Won:2015:MMC

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Wang:2018:TWB

Wang:2006:RAA

REFERENCES

Wise:1996:SDP

Wang:2002:SPE

Wang:2019:SSS

Wang:2008:PIM

Wang:2006:RTR

Xekalakis:2012:MSM

Xu:1999:DIT

Xian:2008:CAS

Xue:2012:RJC

Xu:2014:STM

Yam:1995:CFD

Yam:1996:DPV

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yang:1997:MUA

Yan:2002:RCC

[YL16] Yuan Yao and Zhonghai Lu. Opportunistic co-

Yu:2016:DLR

Young-Myers:1992:DTC

Young-Myers:1993:ESTa

Young-Myers:1993:ESTb

Yu:2009:CIC

Yu:2012:MCD

Jie Yu, Satish Narayanasamy,
Cristiano Pereira, and Gilles Pokam. Maple: a coverage-driven testing tool for multithreaded programs. ACM

[H. Chuck Yoo. Comparative analysis of asynchronous I/O in multithreaded UNIX. Software—
www3.interscience.wiley.com/cgi-bin/abstract?ID=16832.

[Yo96a]

[Yo96b]

[Tsung Tai Yeh, Amit Sabne, Putt Sakdhagool, Rudolf Eigenmann, and Timothy G. Rogers. Pagoda: Fine-grained GPU resource virtualization for narrow tasks. ACM SIG-
PLAN Notices, 52(8):221–234, August 2017. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[YSY+09]

[Lamia Youseff, Keith Seymour, Haihang You, Dmitrii Zagorodnov, Jack Dongarra, and Rich Wolski. Paravirtualization effect on single-
and multi-threaded memory-intensive linear algebra software. The Journal of Net-

[YSS+17]

[Xie Yong and Hsu Wen-Jing. Aligned multithreaded computations and their schedul-
ing with FAB performance guarantees. Parallel Process-
ing Letters, 13(3):353–??, September 2003. CODEN PPLTEE. ISSN 0129-
6264 (print), 1793-642X (electronic).

[YWJ03]

[Jun Yan and Wei Zhang. Hybrid multi-core architecture for boosting single-
threaded performance. ACM SIGARCH Computer Ar-
chitecture News, 35(1):141–148, March 2007. CODEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (electronic).

[YZ07]

[Yang:2014:CNR]

Yang:2007:RUL

Zoppetti:2001:IDD

Zhai:2002:COSa

Zhai:2002:COSb

Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. Compiler optimization of scalar value

Zhu:2011:TPS

Zhang:2012:SCC

Zhao:2011:DCC

Zier:2010:PED

Zhang:2016:DPO

Zhang:2016:SAN

Zebchuk:2007:BBC

Zhuang:2004:BRA

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB

W. M. Zuberek. Analysis of performance bottlenecks in multithreaded mul-