A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 June 2018
Version 3.140

Title word cross-reference

#4 [Pet00].

+ [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA05]. 35th [Gol94]. 3D
[Ano97b, Loe97].
Abstract

[CSS+91, CGSV93, DV99, LMA+16, MJF+10, Ném00, CSS+91a, CSS+91c, VDBN98, ZJFA09]. Abstraction

[KL16, Bak95b, GPR11, ZSJ06]. AC

[BGK94a, BGK94b]. Accelerating

[LS11, SMQP09, VGK+10a, VGK+10b]. acceleration

[JSMP13, NBMM12]. Accelerators

[NTR16, GSK+14]. Access

[Klep00, Spe94, VB00, AKS16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute

[DTK+15]. accessibility

[KGPH12]. Accounting

[LMA+16, EE09b]. accuracy

[TO10]. Accurate

[CPT08, VTSM12]. Achieving

[AHW02, SP05, KGGK09, WTKW08]. ACM

[ACM93b, RM03, IEE92, ACM98b, ACM99a]. ACM/IEEE

[ACM98d]. across

[ZP04]. Activation

[KG94]. Activations

[ABL92, DNP00, SS95]. Active

[BK06, Pha02, Ten98, Wei98a, SD95, WHJ+95]. actors

[Bri89]. actually

[ACM93c, Bar09, Dil93, GMB93, KPPR06, KR01b]. Ada

[ACM93c, Bar09, Dil93, GMB93, KPPR06, KR01b]. ADAM

[LLL15]. Adaptation

[CMBAN08]. Adaptive

[ABN00]. Adaptive

[ALHH08, HBTG98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW+16]. Adding

[PLy89, Ric99, McM97]. Address

[CLFL94, PWL+11, CKZ12, Lie94]. Addressing

[WA08, CKD94, ZSB+12]. Advanced

[BGG95, GBG95, Hei03, BZ07, GBB+05]. Advances

[IEE97, JHM04, KKD16, DLM99]. Advantage

[We97]. Adversarial

[FF10]. affinity

[NAAL01]. Age

[Cro98]. agent

[Way95]. Agents

[CWH03, CR02, Way95, BDF98]. Aggregate

[TGO99, TGO00]. AGNI

[RBPM00]. agreement

[GMW09]. Aid

[Wei97]. aided

[MCRS10]. aids

[Mat97]. Air

[MPD04, AL+10]. Albuquerque

[Ano94e]. Algebra

[KLDB09, NBS+15, PHCR09, YSY+09]. Algebraic

[ACM94c, Lak96, MR09, Wat91]. Algorithm

[AT16, ABC+09, HH11, OR12, TT03, ZBS15, KGP12, KNS16, LCH+08, Mah13, SCG95, TKHG04, Dav11, HBG02, YFF+12]. Algorithmic

[Lei97, BBH+17]. Algorithms

[BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CFG+12, CLRS09, FR95, GK05, Le97, Lep95, NFBB17, QOQOV+09, RMJ12, YM92, YMR93a, LI05]. algorithms-by-blocks

[QOQOV+09]. Algorithms-by-Tiles

[QOIM+12]. aliasing

[NA07]. Aligned

[YWJ03]. alignment

[KGPH12]. Allaire

[Hig97]. Alleviate

[BD00]. Alloc

[KSU94]. Allocating

[SEP96]. Allocation

[MVZ93, Nak01, EFJN07, LLI10, Mic04, ZP04]. Allocator

[BMBW00b, BMBW00a, BMBW00c]. Alpha

[Ano00b]. alphabet

[KNPS16]. alphabet-independent
alternative [SV96c, SV96a, SV96b].

Alternatives [MB99, MKR02]. *Alito* [ACM01]. *ALU* [KDM+98]. *always (DWS+12).* *always-on (DWS+12).* *Amdahl (CN14, NZ17).* *Among (CB16, HMC95, SJ95).*

analysing [NJK16].

Analysis [AKS06, BCZY16, BE12, BE13, BBC+00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJRB13, Hai97b, Hol12, LCK11, LML00, LHG+16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM+08, Yoo96a, Zub02, AC09, ACC+03, BGZ97, BHH+17, BMM09, CHH+03, CS12, CVJL08, Cor00, GBC07, HEJ09, JPS09, KTK12, KC09, Leig97, LBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH+12, dBo99, vPG03].

Analytic [Squ94]. Analytical [DKF94, VT96, SBC91].

analyze [LMC14]. analyzer [Fer13, HLB90].

Apprendre [Swi09]. *Approach* [AZG17, BBSG11, CJW+15, ES97, FKT96, GMR98, KKW14, KS16, ND16, RCM+16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, DHM+12, LZW17, LNZ+14, MS03, RCM+12, SCZM00, TP18].

Approaches [BLPV04, MB07].

Approximate [HFV+12, GEG07, GE08, KGPH12]. *Apps* [PCM16]. *April* [Ano00a, Ano03, USE01].

arbitrary [BGC14]. *ARCH* [Ada98].

Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07].

Architecture [ACM98c, BBD+91, BTE98, Car89b, CL95, DO95, EBKG01, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HMMN91, HHOM91, HHOM92, KBH+04a, KBH+04b, KIAT99, Man91, MB99, PVS+17, PTMB09, PKB+91, PS01, REL00b, RS08, SCL05, SYG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cho92, Don92, Dub95, Evr01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HF88, HKN+92, HNN+92, I+94, KHP+95, KT99, Lai95, Mah13, MK12,
Architectures
[AT16, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IBST01, JLS99, KTR+04, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOI+12, RLJ+09, SGM+97, TG99, THA+12, Tra91, TJY98, TSM12, WG04, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CGF+12, Cat94, FTA14, GGB93b, GK05, GI94, GL98b, HFV+12, Ich+10, JMS+10, LMC14, Lu94, MLCW11, MLC04, Mis09, OCRS07, PT91, PPA+13, PJZA07, PHCR09, RH10, RBKH11, SBCV90, Sch98, Sha95b, SLG06, Squ94, SMQP09, SKA01, TE94a, The95, TKHG04].

Area
[AMPH09, FGT96, Par99].

Area-efficiency
[AMPH09].

Aren't
[Sut99].

Ariadne
[MR98].

arising
[SR99].

Array
[GS06, LHS16, PDMM16].

Arrays
[BWXF05].

arrow
[GE08].

arrow-type
[GE08].

art
[1994].

artificial
[1997].

ASAT
[SEP96].

Ashes
[Thr99].

ASN
[CJW+15].

Aspects
[SB80].

ASPLOS
[ACM94d].

ASPLOS-VI
[ACM94d].

Asserting
[BS10b].

assertion-based
[AdBdRS05].

assessment
[Mah13].

Assignment
[BCH98, RC+16, MCRS10, ORH93, RC+12].

assisted
[Dub95].

associated
[San04].

Associative
[SW08].

Assumptions
[ES97].

ASSURE
[SLP+09, Dye98].

asymmetric
[GA09, JSM+13, RBK+09, SCCP13, SMQP09].

Asynchronous
[HH11, KFG15, KG07, KSD04, TP18, Yoo96a, GMR09, Kho97, KASD07].

Asynchrony
[SBU98].

Athena
[Egg10, Hud96].

ATL
[SW97].

Atlanta
[ACM99a].

Atomic
[KKS+08, RD06].

atomicity
[BNS11a, BNS11b, BNS12, FF04, FF08, FFLQ08, FFY08, WS06].

atomics
[ND13].

Atomizer
[FF04, FF08].

Audience
[SB96].

Augmented
[LH09].

August
[RM03, IEE99, USE93a, USE98a].

Austin
[USE93b].

Austria
[Hon94].

authoring
[MCS15].

Auto
[Pol90, RKHT17].

Auto-vectorization
[RRKHT17].

Automatic
[HBGT98, JJY+03, KW17, Mon00, SEP96, YLLS16, Gl11, JSB+11, SLP+09].

Automatically
[NWT+07, TG99, CJ91].

autotuning
[CSV10].

Availability
[SP07].

Avenue
[Ano94d].

avoid
[Pra95c].

avoidance
[LC13, WLK+09].

AVP
[Ano94b].

Aware
[BHP+03, FSPD16, FSPD17, GVT+17, HC17, Kim14, LYH16, PR05, EQT07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAS07, Sida08, ZLW+16].

AWTEventMulticaster
[Hol99b].

axiomatic
[TVD10].

AXP
[Ano97a].

B
[Ano00c, DLZ+13].

back
[ECX+12].

Backup
[Ano00b].

Balance
[SEP96].

balanced
[CKZ12].

Balancers
[KMAG01].

Balancing
[HBGT98, KC98, KRH98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKIO04].

Baltimore
[IEE02].

Bandwidth
[FSPD16, LTL+16].

Bandwidth-Aware
[FSPD16].

Barcelona
[ACM95a, ACM98c, DLM99].

Barnes
[ZBS15].

Barrier
[CJW+15].

Barrier-Based
[CJW+15].

barriers
[LZBW14, ZJFA09].

Base
[VE93].

Based
[Al94, AT16, AKP99, BNH01, CJW+15, CKRW99, CMN08, DSR15, EG14, GHG+98, HHOM91, HHOM92, KS16, KG05, KEL+03, KW17, KS97, KRH98, Kwo03, LG06, LS11, MGQS+08, MKC97, OB13, RSBN01, TESK06, WLM15, ADADO10, Ada98, AAF09, Ama98, AKSD16, CNQ13,
HKSL96, KLS92, KET06a, LLD17, PEA+96, WG94, ZJS12, Car89b, Cho92, KHP+95, KLH+99, M KR10, Ra93, Sha95a, SSKP+07, WCZ+07, ZJS10, ZKR+11.

Cache-conscious [GBP+07].
Cache-oblivious [HL08]. CacheFlow [KET06a]. Cacheline [PBL+17].

calculations [KGGK09, ROA14]. Caching [BD06].

California [ACM01].

Caching [BDN02, Bre02, Ham96, DHM+12]. CFD

[DK02]. CG [TAK+00]. CGRAs [PJS15].
chain [SBC91]. Chaining [YJ15, KFG15].

channel [MN03]. Channels [EPAG16].
chaint [HCM94, Ano94c]. Chapter

[SKK+01]. Characterization [Ano05].

BCG+08, MR94, MMM+05, DWYB10]. characterizations [GS00]. Characterizing

[Gle91, OdSSP12, SSN10, MTPT12].

Charleston [ACM93a]. Chassis [Ano00b].
Checker [FQS02, FF04, FF08, FFY08].
CheckFence [BAM07]. Checking

[ES97, ND16, AHK08, AD08, AGBE08, BAM07, BS10b, BNS11a, BNS11b, BNS12, CNQ13, FFLQ08, Mi95, MQ08, ND13, PAdS+17, Sto02, TVD10, VGR06].

Checkpoint [ZSA13].
Checkpoint/R estart [ZSA13].
Checkpointing [CS02, ZSJ06]. Chemkin

[Bra97]. Chicago [Ano94d]. China [IEE97].

Chip [HHOM91, KST04, KML04, KU00, KKS+08, LS07, LKBK11, LMJ14, MTN+00, MR09, TESK06, VIA+05, Wea08, CSM+05, DTK+15, GA09, KT99, SMK10, SKKC09, TEL95, TEL98a, TEL98b].

chip-multiprocessor [KT99].

Chip-Multiprocessors [KU00, LMJ14].

Chips [Ano00a, Ano03, IEE99]. Chiron

[TNB+95]. Chiron-1 [TNB+95]. Choice

[II01, TEE+96]. Cholesky

[CIM+17, VD08]. Chores [EJ93].

Chunking [WLM15]. CIL [CAR08]. Cilk

[BJK+95, BJK+96, FLR98, Joe96, Mi95].

Cilk-5 [FLR98]. CLO [Ano94g]. Circuit

[AMRR98]. City [Hol12]. CLAM [GMR98].

CLAP [HZD13]. Class [BS99, Cha02, Gib94, VE93, CS00, MSLM91, Yam96].

Classes [Cal00, Fek08, How98, Lam95].

Classical [JSB+12, JSB+11]. Classics

[Wi100]. Classification

[KZC15, LMJ14, LCH+08]. classifying

[NWT+07]. Claus [WP10]. Client

[Day92a, Day92b, Sri95, Go96].

client-server [Go96]. Client/Server

[Day92a, Day92b]. clients [CDL13].

climbing [CY09]. Closure

[YMR93b, YM92, YMR93a]. cloud

[FKS+12, GDSA+17]. clouds [FG14].

Cluster [BNH01, CRE99, HD02, KKH03, Kwo03, SCD+15]. Clustered [GSL10].

Clustering [JY15, LK15, RVR04, TAS07].

Clusters [BWXF05, WG99, ZBS15, BMV03, FWW03, TMA03]. CMP
Computational [PCPS15, Bar09].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute [BBS11]. Computer [ACM98c, Ano94a, CBN00, Gol94, BD06, DNB+12, GK05, I+94, PBD092].
Computers [Ano94e, SS96, BCM07, Boo93, LP09, SJ95]. Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Ama89, CT00, Den94, EJ93, FTP11, FGK97, Gar01, GR97, Ham96, Hol12, HG91, IEE94b, KR12, Kon00, LCK11, LFA96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BGG95, BD06, Dan94, EJ93, GBG95, GS02, HF88, HG92, IEE97, Joe96, Kim94, KU17, Lan97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta09, SKA01, Tem97].
Concept [AMdBdRS02, BBFW02, KA97]. Concepts [McC97a]. Concrete [NSP14].
Concurrency [BM94, GMGZP14, MLR15, MQLR16, ME17, NFB17, BA08, But14, CBM10, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, VTS12, Yan02, ZLW+16, dBoy09, SB08].
Concurrency-preserving [NFB17]. Concurrent [ILF001, KDa97, KCCD99, MSM+16, NPT98, PCM16, PF01, TJY98, AGN09, BBYG+05, Bar09, B096, BC02, BCCO10, B0407, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGK09, MSM+10, MKIO4, Men91, NHFP08, Nev99, ND13, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZSJ06, Hay93].
Condensed [BIK+11]. Condition [Hol98c, Yan02]. Conditional [IBST01, NA07]. Conditions [HM96]. Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM01, Ano90, Ano94a, AOV+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00aa, Ano94d, Ano94f, Est93, KKV93]. Confidentiality [NSH14].
Confirmation [CJW+15]. conflict [NIK16, vPG03]. Conformant [Sta95].
Congress [Ano94d]. conjunction [Ano94e]. Connect [Ano00b]. conquer [FN17, TP18].
conscious [GBP07]. Consistency [ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSF14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].
Constrained [TGM17, GW10, YN09]. constraint [SCG95]. constraints [HB15].
Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05]. Contact [Nak03]. Contemporary [ZJS12, ZJS10]. Content [WLM15]. Content-Based [WLM15]. Contention [XaJ08, ALW+15, DSG17, P14, TMCP10, ZK+11].
Contention-aware [XaJ08]. Context [TLA+02, GN92, DLS99, FD05, LG04, MQ07, PAdS+17, PFH06, SCB15, Yan97, LG04].
context-bounded [PAdS+17]. context-sensitive [PFH06, LG04].
contexts [BG14, TE94b, WW93]. Contextual [BGZ97, NHFP08].
continuation [AAHF09]. continuation-based [AAHF09].
continuations [DBR91, GRR06].
Continuing [Ano99]. Continuous [RCC14].
Continuously [DTLM14]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, FK12, FSYA09, GC15, MLCW11, NT14, PPA+13, PWD18, Pol90, RPB+09, UZU00, WLK+09, Yoo96b].
control-flow [NT14]. Controlled [BCG+08, CSS+91b, GSV93, SCv91a, CSS+91a, CSS+91c, LUK01, MWP07, Sch91, SCv91b]. Controller [RLJ+09]. controllers [KASD07]. controlling [AGN09, BKC+13].
controls [McM96c]. Controversial [Gar01].
Convention [ACM98d, ACM99b, ACM00, Hol12].
Conventional [KET06b, HB92].
Convergence [RM03]. conversational [LG04]. Converse [BK96]. Convert [Vol93].
Converting [LEL +97a, LEL +97b].
convolutions [RB18]. convolver [Kep03].
Cool [Ano00a, Ano03, Wei97]. cooperation [BM07, SKBY07]. Cooperative [AMRR98, DNT16, ILF01, LC13, KIM +03, MKIO04, TCG95]. coordinated [KKJ +13].
coordination [BDF98].
Coping [San04].
Coprocessor [LRZ16]. copying [HL93].
CORBA [DHR +01, PSCS01, SV96a, SV96b, VS96].
Core [CvdBC18, FMY +15, KST04, KTR +04, MP01, MB05, PVS +01, QIOM +12, ABC +15, AMPH09, CFG +12, CS1 +05, DWYB10, GW10, KBF +12, MLCW11, MLC +09, MTPT12, Mus09, SMQ09, VPQ12, WCC +07, YZ07].
CoreDet [BAD +10a, BAD +10b].
Cores [CCK +16, RRK11, CWS06, MAF +09, SW16].
coreSNP [GAC14].
Corona [VSM +08].
Corporation [Ano00b, Ano00b]. correct [DJLP10, SP00b, Shi00]. Correction [Ram94].
Correlation [SLT03, PFH06, SLT02]. cosimulator [LT97].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG +12]. counterexamples [NV15].
Counters [Wei98b]. Counting [Hol98c, Rec98].
County [ACM98d].
Coupled [MTN +00]. Course [BLPV04, BZ07, GL07, She98]. coverage [RRP06, YNPP12]. coverage-driven [YNPP12].
covering [BCG13]. Covert [EPAG16].
CPU [BSSS14, PGB16]. CPUs [SKG +11, SMD +10].
Craftworks [Ano97a].
Cray [BÇ14, Smi01, VTSM12].
Create [Ber96b, Ber96a, Len95]. Creating [Han97, Ten98].
Creation [Eng00, Rin99, Sin97]. Crisis [Ano99].
Critical [BLG01, CS12, OTY00, DTLM14, DESE13, NM10, RGG +12, San04, SMQF09, YL16].
Criticality [DESE13, NB12]. Cross [Lam95, BK +13, CSZB16].
Cross-platform [Lam95]. cross-thread [BK +13, CSZB16]. CS1 [GL07]. CSMT [GSL +10].
CSP [Nev99]. CUDA [LBH12, MM14, PA +17, WJ12, YZ14]. CUDA-compatible [LBH12]. CUDA-NP [YZ14].
 Cyclops [ACC +03].
Cyprus [HDT +13].
D [KSB +08, NTKA99, PYP +10, TKHG04].
Daemon [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b].
Dans [Zig96]. DARPA [Mat97]. Data [Ama89, ABNP00, DTLW16, EW96, FHM95a, GAC14, HM +07, Hig97, JMS +10, KZC15, KEL +03, KET06a, KET06b, LMJ14, LL +17, ME15, ME17, RCH +15, SBN +15, SAC +16, SSSYG97, SG96, Ten98, TESK06, VT96, Wi98, ZLJ16, ZAK01, AEGB08, AGN09, BAM07, CS95a, CS95b, CDL13, DHM +12, Ero +11, FMH95b, FK12, HL03, LTL +16, LHS16, Mak96, MNN09, NWT +07, ND13, PDM +16, PB07, PHCR90, Po90, PS03, PS07, PT03, Sh95a, Sp00b, Shi00, Sin99, SKKC09, WDC +13, YKL13, ZJS +11].
data-centric [DHM +12]. Data-Driven [DTLW16, KET06b, ME15, ME17, TESK06, Ero +11].
Data-Parallel [ABNP00, SAC +16, HMC97]. data-race [MMN09].
Database [KD97, MM14, YMR93b, Hig97, LBE +18, YMR93a].
Databases [AOV +99, GDSA +17, HL08].
Dataflow [CVJL08, GGB93a, Gao93, HPB11, HKS +96, LH94, NBM39, RSB01, SRU98, Tra91, YMR93b, BGG95, GGB93b, GBC95, HG92, JHM04, KHP +15, PT91, SKS +12, Sch91, YMR93a]. Dataflow-Based
[RSBN01]. Dataflow/von [HG92]. Datarace [CLL+02, CVJL08]. Datarol [KA97].
Datarol-II [KA97]. Dawning [Cro98]. DC [IEE94c, ACM92, Ano90]. DCE [RD96, Yam95, Yam96]. DDSO [HBCG13].
Deadlock [HoI98a, Mou00, Ver97, ABF+10, SR14, WLK+09]. Deadlocks [CC14, CJW+15, CZWC13, JPSN09, PRB07].
dealiased [RB18]. Deallocation [LPE+99]. dearth [Len95]. debate [Bal95b].
debug [PT03]. debugger [CB89, CB90]. Debugging [Ano98b, Caz02, HWZ00, MQLR16, PHK91, SJB92a, SJB92b, BGZ97, MLR15, WOKH96]. decentralized [RPB+09]. Decision [LFA96, QL51]. decomposition [JEV04].
Decompression [PBL+17]. Decoupled [DO95, APX12, Evr01, RVOA08, RCDG06, SKA01, VS96]. decoupling [KGGK09, PG01]. Deductive [AdBdRS08, BK13]. Deeply [GW08].
Defect [OB13]. Defragmentation [PVS+17]. Delaunay [ABC+09].
Dependable [SUF+12]. Dependence [CZS+17]. dependences [BKC+13, CZSB16]. dependencies [NPC06]. Deployment [GARH14]. Depth [McM96a, McM96b, McM96c, McM98a, McM98b].
Derivation [Kim14]. Derivative [TT03]]. describes [Yam96]. Design [ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GR97, GM99, HA97b, KHP+95, Lao00, MB90, NBM93, RJa93, RCDG06, Sch17, STW93, Sh97, SWY94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car99b, FVL03, HCM94, HUD96, KU17, KGGK09, Mah11, Met95, Moot95, Moot96, MKR02, Némo00, OKID92, OCRS07, RB+09, SB80, Srit93, Ver97, WLG+14, Wan94, WCV+98, Xue12].
designed [San04]. Designing [Dru95, GKKZ12, RR95, Re495, TSV12, Hai97a, TCG95]. Desktop [Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Pra95b, WSKS97]. desktops [Ano94b]. despite [Len95]. Destructing [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03].
Details [FMY+15]. Detect [DS16, CZWC13]. Detecting [DSR15, RBK+09, SK97, FF10, JPSN09].
Detection [ABF+10, CC14, KUC815, KW17, LLS06, Mou00, TLZ+17, TLZ+18, ZLJ16, AFF06, CCL+02, CVJL08, FF09, HR16, LLLC15, LTHB14, MKM14, MMN09, NBMM12, NAW06, NAO7, PS03, PS07, PFH06, RVS13, RM00, SR14, Sch98, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12]. Detector [SBN+97, SLG06]. determined [Kub15].
determinism [BS10b, LW+10, LW+13]. Deterministic [DK02, KRB12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DCO09, DNB+12, LBW14, MAAB14, OAA09, QH16].
Deterministically [MCT08]. DetLock [MAA14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing [SP00b, Shi00, TKA+01, OT95].
Development [Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, Art85, Hig97, Pom98, TNB+95]. devices [Xue12]. diagnosing [CS12].
diagnostics [BBB+05]. Diego [ACM93b, ACM98b, USE99, USE93b, USE98b, USE00]. differences [Yam96].
Diffusions [LTM+17]. Digital [SS91].
dimension [NJ00]. Direct [PR98].
Direct-threaded [PR98]. Directed [LPE+99, STR16, DZKS12, Fan93, Sen08, SKK09]. directory [QSQ14]. DISC
[Don92]. disciplines [Bar09]. discrete
[Leg97a, TKHG04, WLK+09]. discussion
[Sho97a, Sho97b]. Disjoint [SJAJ12]. Dispo
[MGK+00]. Dissecting [ACC+03].
Distance [BCZY16, KZTK15, KNPS16].
distinguish [HL93]. Distinguished
[ABH+01, TKA+01]. Distributed
[ABNP00, ABH+01, BBD+91, BWXF05,
BHKR95, BC94, CV98, CJK95, DKA16,
FSS06, G97, Jen95, MGK+00, PG92,
Pra95a, RLI+09, RBPM00, RW97, RCRH95,
SU+12, TDW03, USE92b, VS96, Y95,
Ano96, A+01, BCG+95, CML00, Car89a,
Gol96, GKK97, Q94, Rub95, SJA+03,
Pha91, Ply89, QSQ14, Sto02, Tod95].
Distributed-Memory
[RCRH95, BCG+95, HWW93].
Distributed-sum [TDW03].
Distribution [SSYG97, ZAK01, CY09].
divergence [MTS10]. divide [FN17, TP18]. Divisors
[Kuc92, Kuc91]. DMP [DLCO09]. Do
[Cri98b, Cri98a, RPNT08, Ber96a, Ber96b,
YLLS16]. Dock [BCS11]. Docking
[BCL10]. documentation [HF96].
Does [Hag02, RKK15, ZJS10, San04]. doing
[Yam96]. domains [LAK09]. données
[SW09]. Don't [HHPV15]. DOSThread
[VE93]. DoubleVision [Ano00b].
downdating [VV11]. Downturn [Gar01].
DRAM [kSYHX+11]. drf [MSM+16].
DRFX [MSM+10]. Drinking [CZSB16].
Driven
[DTLW16, For95a, For95b, HLB94, KET06a,
KET06b, ME15, ME17, TESK06, YBL16,
CSV10, Evr01, RVS13, RS8+09, SLP08,
SQP08a, SQP08b, SQP08c, YNP12].
driver [CCW+11]. DSLs [RKHT17]. DSM
[ABH+00, AB01, AB02, BDF98, KKH04].
DSM-PM [AB02]. DSM-PM2 [AB01].
DSMs [FBF01]. DTS [BHKR95].
Dual
[BC+00, EHG95, KST04, DK02, MB05,
WS08, CCW+11]. Dual-Core
[KST04, MB05]. Dual-Level
[BBC+00, BK02]. dual-personality
[CCW+11]. Dual-Processor [EHG95].
Dual-Thread [MB05, WS08]. Duplex
[KG05]. Duplication [Kwo03]. Dynamic
[CJW+15, FSYA09, HSS+14, Hig97,
KMA01, KPC96, K99, K99, KUC15,
MVZ93, MTS10, Nak01, PBL+17, RCRH95,
RS8, SBN+97, SLG04, SKK+01, Sta90,
SG96, WHG07, XMN99, ZKW15, ZKR+11,
ZL10, AR17, CAR08, Chr95a, Chr95b,
Chr96, Don92, FF04, FF08, FF09, FF09,
HSD+12, JPSN09, KBF+12, SLS12, MK12,
Mic04, NHF08, SCB15, SLG06, TJY+11,
WW96, BK13]. dynamic-multithreading
[LSS12]. Dynamically
[PGB12, TLGM17, DMBM16, Kep03].
dynamically-typed [DMBM16].
e6500 [BGH+12]. Early
[GL91, PBL+17, SLP08]. EARTH
[HTZ+97, HMT+96, Sod02, TAK+00,
TKA+01, TKA+02, TMAG03, Nak03].
EARTH-MANNA [HMT+96, Sod02].
Easy [Har99]. Easysoft [Ano00b]. ECMA
[Stu95]. ECMA-162 [Stu95]. economics
[Bar09]. Edinburgh [AV+99]. edit
[KNPS16]. Editors [GGB93a, GJ97].
Education [Gar01]. effect
[BAD+09, GL98b, YSY+09]. Effective
[ABLL92, DN94, GH03, GMGZP14, NAW06,
NSH14, PGB16, RVS13, Sat02, TMC19,
TY97, CMB11, JSB+11, MMN99, MTC+07,
SKA01, Tsa97b]. Effectiveness
[PR05, TE94b]. Effects [Cho93, HR08,
KLL+99, KRB12, NHF08]. Efficient
[TTK12]. Efficiency [AJK+12, Ano05,
THA+12, AMF00, FGG14, GA09,
MM+05, Pra95b, RCG+10, SP05].
Efficient [AD08, Al194, ABN09, BCZ16,
BDmWH12, BJ+96, BL98, BMN99,
CZS+17, DLL+02, DMBM16, Gao93,
GJT+12, GRS97, GS06, GN96, HSS+14,
HEMK17, KPC96, KAS07, Lemo2,
LHG+16, LZBW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZLJ16, ATLM+06, BL93, BKJ+95, BHK+04, EKKL90, FWL03, FF09, GB99, HSD+12, KSB+08, KNPS16, KSD04, LJ13, LWV+10, LHS16, LZW+13, MSM+10, NLK09, OAA09, Pan99, PSL06a, PSL06b, PSG06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZLW+16, FSYA09.

Eciently [KBF+12, MCT08, Blu95, BKC+13].

eigenproblems [ABD+12].
eigenvalue [BIK+11].

Electronic [Ano00b, BB00].

Elegant [Hub01].

Elementary [HBTG98, MS02].

elide [MLS15].

Eliminating [DSG17, OCT14, RD06, MTPT12].

equations [AD08].

Equalizing [TLGM17].

Equations [Loe97].
equivalent [Pra95c].

Eraser [SBN+97].

Errata [Ano01, Ano05].

error [SSN10].

escape [SR01a].

Enhanced [Ano00b, EJ93].

Enhancing

OL02a, OL02b, OL02c, HWW93, RHH10].

Environment

[ABNP00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWY94, Sta90, Tem97, WCC+07].

Environments

[AKP99, BDN02, KG05, SP00a, EJK+96, RG+12, Sam99, Ver96, Way95].
equality [AD08].

Equalization [TLGM17].

Evaluating

BL96, CML00, NPT98, PSCS01, RPNT05, Sch98, SD95, TG09].

Evaluation

[ARu92, Boe93, BTE98, CL95, CB95, CBN+00, EJK+96, Eic97, GLC99, HN91, RNSB96, SCD+15, TT03, ZL10, BGDmWH12, BLCD97, Car98b, Cho92, Don92, LZ07, Mah11, MRR02, NFB+17, RGG+12, RCDG06, SWY94].

evaluator [SP00b, Shi00].

even [Ano94b].

evénements [Swi09].

Event

[BER96b, CRKW99, For95a, For95b, Ber96a, CRKW97a, CRKW97b, GMM07, KCCD99, KBP+03, Leg01, RV13].

Event-Based

[CRKW99, CRKW97a, CRKW97b].

Event-Driven

[For95a, For95b, RV13].

event-handling [KBP+03].

Events

[BD02, LZ07, Van97].

Exact

Sch17].

Examining

[For94, Ric94, Rod95a, Tim03].

Example

[BLPV04].

Exceptions

[DH98, Lea96].

Exception

[AdBD08, KR01b].

elide [MLS15].

elision [NM10].

Elliptic [Loe97].

Embedded-Systems [Dru95].

Embedding

[PO00].

evaluating [PCPS15].

equality [AD08].

Equalizing [TLGM17].

Evaluations

[MM14, Roh95].

evaluator [SP00b, Shi00].

even [Ano94b].

evénements [Swi09].

Event

[BER96b, CRKW99, For95a, For95b, Ber96a, CRKW97a, CRKW97b, GMM07, KCCD99, KBP+03, Leg01, RV13].

Event-Based

[CRKW99, CRKW97a, CRKW97b].

Event-Driven

[For95a, For95b, RV13].

event-handling [KBP+03].

Events

[BD02, LZ07, Van97].

Exact

Sch17].

Examining

[For94, Ric94, Rod95a, Tim03].

Example

[BLPV04].

Exceptions

[DH98, Lea96].

Exception

[AdBD08, KR01b].

elide [MLS15].

elision [NM10].

Elliptic [Loe97].

Embedded-Systems [Dru95].

Embedding

[PO00].

evaluating [PCPS15].

equality [AD08].

Equalizing [TLGM17].

Evaluations

[MM14, Roh95].

evaluator [SP00b, Shi00].

even [Ano94b].

evénements [Swi09].

Event

[BER96b, CRKW99, For95a, For95b, Ber96a, CRKW97a, CRKW97b, GMM07, KCCD99, KBP+03, Leg01, RV13].

Event-Based

[CRKW99, CRKW97a, CRKW97b].

Event-Driven

[For95a, For95b, RV13].

event-handling [KBP+03].

Events

[BD02, LZ07, Van97].

Exact

Sch17].

Examining

[For94, Ric94, Rod95a, Tim03].

Example

[BLPV04].

Exceptions

[DH98, Lea96].

Exception

[AdBD08, KR01b].

elide [MLS15].

elision [NM10].

Elliptic [Loe97].

Embedded-Systems [Dru95].

Embedding

[PO00].

evaluating [PCPS15].

equality [AD08].

Equalizing [TLGM17].

Evaluations

[MM14, Roh95].

evaluator [SP00b, Shi00].

even [Ano94b].

evénements [Swi09].

Event

[BER96b, CRKW99, For95a, For95b, Ber96a, CRKW97a, CRKW97b, GMM07, KCCD99, KBP+03, Leg01, RV13].

Event-Based

[CRKW99, CRKW97a, CRKW97b].

Event-Driven

[For95a, For95b, RV13].

event-handling [KBP+03].

Events

[BD02, LZ07, Van97].

Exact

Sch17].

Examining

[For94, Ric94, Rod95a, Tim03].

Example

[BLPV04].

Exceptions

[DH98, Lea96].

Exception

[AdBD08, KR01b].
exclusiveness [Lie94]. execute [APX12].
Executing [Blu95, BS99]. Execution [ABH+01, CJH01, Coo02, EC98, Far96, GMGZP14, GS06, HEMK17, HZ12, KS16, KLG08, KJ95, KG94, ME15, MGG+00, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, Dil93, JWGT11, LVM10, Luk01, PAB+14, PG03, SBC91, SJA12, SGP08a, SGP08b, SQP08c, SMQP09, SSM+03, TSY09, TSY00, TWD03, UZU00, WCT98, XIC12, XSaJ08].
Executions [CdOS01, HZD13, Roh95, STR16].
Exemplar [BLCD97]. Existing [Ric99].
EXOCHI [WCC+07]. expansion [YKL13].
expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96].
Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b].
Experimental [BLCD97, EGC02, YMR93b, GR506, Pha91, WCW+04b, WCW+04d, YMR93a].
Experiments [DV99, GMR98, SZM+13, VSM+16, VVO0].
Explicit [DV99, VDBN98, BM07, URS02b, URS03, VVO0]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano02a].
exploitation [KVN+09, PSG06a, PSG06b, PSG06c].
Exploiting [ACK92, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSaS+16, SP20, TLZ+16, TEE+96]. Exploration [PTMB09, Sch17].
Exploring [AABB08, BSI0a, SE12, WWW+02].
Expressions [Hei03]. Extended [BLG01, DV99, VDBN98].
Extending [BF08, Mar03]. Extensible [CdOS01].
Extension [RCC14, CCW+11, Lan97, PDP+13, Tem97].
Extensions [Sch90, Bau92]. external [LWV+10]. Extracting [GP95]. Extremal [MNG16].
FAB [YWW03]. Facility [KS94].
Factorization [But13, CIM+17, Dav11].
Factorizations [VD08]. failing [STR16]. failure [LC13].
failures [HZD13]. Fail [MQ08, FSPD17].
Fairness [ES97, FSPD17, GWM07, SCCP13, WTKW08]. false [LTHB14]. farms [MR98].
Fast [BCS11, BRE92, GSC96, HN91, LDT+16, STY99, ST05, VTM12, ZSA13, ZCM10, BDLM07, CKD94, Kus03, Kus15, T003, TTKG02]. Faster [PCM16, BDM98]. FastTrack [FF09].
fault [RRP06, RM00, VPC02]. FCRC [ACM96].
Fe [Gol94]. feature [LH09]. Features [GMB93, BDM98].
Featuring [RRK11].
February [USE89, USE00b, USE02].
Feedback [SQP08a, SQP08b, SQP08c, TGO99, ALHH08]. Feedback-driven [SQP08a, SQP08b, SQP08c].
Felix [Ano00c]. Fernandez [Ano00c].
Fibers [BS06].
FIFO [HHOM91, HHOM92, QSaS+16].
finite [ACM93b, AOV+99]. File [FG91, GJT+12, KS97, Pea92, WLM15, BLCD97, DZKS12].
Files [RRK11, CCC12, kSYHX+11].
filtering [K03]. final [HCM94]. Finding [MNG16].
Fine [AZG17, BBG+10, BSS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, K94, LKBK11, LVS01, LFA96, NS97, PRB+15, TY97, TAK+00, YSS+17, B94c, Dub95, Gol97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, RPB+09, TKHG04, Wei98a, kSYHX+11]. Fine-Grain [AZG17, CSS+91b, HG91, KG94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04].
Fine-Grained [BBG+10, BSS14, But13, LKBK11, PRB+15, TAK+00, YSS+17, LVS01, B94c, Dub95, Gol97, RPB+09, Wei98a, kSYHX+11].
Finite [HBTG98, MS02, Cor00].
Finite-Element [MS02]. finite-state [Cor00].
firmware [ABB+15]. First
[MSLM91, Wei97, LAH+12, MHW02, Hon94].
First-class [MSLM91]. FL [ACM94a].
FlexBFS [LAH+12]. Flexible
[ABG+08, KS97, Lem02, MSM+16, SP00a, Sam99, SCM05, WW93]. Florida [ACM98d].
Flow [AT16, Ama89, HH11, PBR+15, FSYA09, JD08, KBH+03, NT14, Pol90, RM99, RB+09, SV98]. fluid [JD08].
FluidCheck [KS16]. fly
[CWS06, PS03, PS07, Sch89]. Focus
[EH+07]. Forces [FTP11]. Forecasting
[Ano98b]. fork [ALS10]. fork-join [ALS10].
FORM [TV10]. Formal [Sta05, WP10].
formation [FSYA09]. forms [BIK+11].
FORTH [Jon86]. FORTH-like [Jon86].
Fortran [Ano97a, Bra97, AS14, GOT03, HBG01, HBG02, Nag01].
found [Sho97a, Sho97b]. Forwardflow [GW10].
found [MCS15, RBF+89].
Foundations [BA08, Go99]. Four
[CH95, MTN+00, KNPS16]. Four-Russians
[KNPS16]. Four-Way [MTN+00]. Fourier
[TT03, TTKG02, BCS11, HN91]. fourth
[USE96]. fragment [APX12]. fragments
[LG04]. Framework
[BMF+16, BF04, CV98, DHR+01, EFG+03, KC98, KF97, LCS04, LMJ14, Le97, NSP+14, Rei01, VSM+16, Yam95, AMC+03, BDF98, EHSU07, GJ11, Hop98]. France
[FR95]. Francisco [ACM95b, USE02]. Free
[Way95, DTL14, GP08, MLS15, Mic04, ST05]. free-lunch [DTLM14]. FreeBSD
[Ano00b, Bal02]. freeness [AHK08].
Freescale [BGH+12]. French [Zig96].
frequent [GBP+07]. Fthreads [Nag01].
Fukuoka [Ano91]. Full [MHW02, GB99].
Full-system [MHW02]. fully [RD99, Stu95].
Function [Hub01, TO10]. Functional
[Coo95, DCK07, GS06, Kim94, KIAT99, LP94, SSP99, Gun97, RKBH11, TAN04, VGR96, WZWS08, ZSJ06]. Functions
[Bed91, Ki16]. Further [GV95]. Fusion
[PWL+11, Hig97]. futex [BF08]. Future
[Jon91, TAM+08]. futures [TTY99].
GALAHAD [GOT03]. GAMBIT
[CBM10]. Game [DHR+01]. GAMESSS
[BB00]. Garbage [AKP99, LB92, PUF+04, PF01, QSaS+16, BBYG+05, DL93, HL93].
Garcia [Ano00c]. Gateway [Yas95].
[HHPV15]. Geant4 [SCD+15]. Gene
[GBB+05]. Gene/L [GBB+05]. General
[Ber96b, BF04, HSS+14, Man98, YKL13, ZSA13, Ber96a, Car89a, DC99, DC00, HSD+12, MQW95, SKA01].
General-Purpose [Ber96b, HSS+14, Man98, Ber96a, DC99, DC00, HSD+12].
generalized [ABD+12, BCM+07, FTAB14].
Generated [BD00, MJF+10]. Generating
[AZG17]. Generation
[ARB+02, Coo95, EFN+01, EEL+97, HEMK17, HYY+15, NBS+15, RNS96, TGBS05, Tra91, TSV12, ABC+09, EFN+02, GJ11, Ki16, LK13, LSS12, Way95, CH04].
generational
[DL93, WK08a, WK08b, WK08c].
generations [Roh95]. generators [SLF14].
Generic [ABH+00, AB02, Fer13]. Genetic
[NSP+14]. genome [LHS16]. GeoFEM
[Nak03]. Geometric [Cow2]. Georgia
[ACM99a]. Germany [RM03, Wat91].
ghosts [TV14]. Gigabit [AHW92].
Gigabit/sec [AHW92]. Gigamesh [SZ02].
glasses [CZSB16]. Global
[HH11, PWL+11, Ten02, FWL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b].
globally [CZW13]. GNAT [dPRGB99].
Go [Mia90]. Going [Bak95b]. Goldilocks
[EQT07]. good [Mat03]. GPGPU [YZ14].
GPGPUs [LSB15]. GPUs [TV14].
GPU [APX12, Bon13, FTP11, Ki17, LTL+16, LHC+16, LAH+12, WLG+14, YSS+17, ZCO10]. GPU-Oriented
[LHC+16].
GPUDet [Bon13]. GPUs [CSV10, DNT16, LHB12, SKG+11, VD08, WJ12]. Grace
[BYLN09]. Grain [AZG17, CSS+91b, HG91, KG94, LFA96, NS97, CSS+91a, CSS+91c, KDM+98, Kim94, Loi95, MLCT+09, Met95].
Householder [VV11]. Householder-like [VV11]. Houston [Cha05]. HP
[Ano95a, Ano95b, Yam96]. HP-UX
[Ano95a, Ano95b, Yam96]. HPC
[GBK9, KC90, PLT'15]. HPF
[BMV03, CM98]. HTM [KGGK09]. HTMT
[Gar01]. HTTP [Zha00]. Hut [ZBS15].
Hybrid [BBG'10, Gao93, JYE'16, LH09,
MS02, NBM93, YZ07, GKK09, HG92, MK12,
MTC'07, SKS'92, Sha95b, kSYHX'11].
Hybridizing [CZS'17]. Hyperion [A'01].
hyper scalar [Raj93, Sha95a].
Hyperthreading [HRH08, KM03].

I-WAY [FGT96]. i.e [USE98b]. I/O
[RM03, Ano95a, Ano95b, ABB'15, BN02,
KSR94, LTL'16, Man98, MG15, Yoo96a].
IBM [ABB'15, CJB'15, KST04, LSF'07,
WZW908]. Id [Nik94]. IDA* [Mah11].
Idempotency [KOE'06]. Identification
[JSMP12]. Identifying
[BCZY16, SU96, DESE13]. IEEE [ACM98].
IFIP [BT01]. Igniting [ACM03]. II
[HCD'94, IEE89, J91, KA97, KR01a,
McM96b, Wal95]. III [Ano00a, USE92b].
Illinois [GHG'98]. Illinois-Intel
[GHG'98]. Illuminating [BLP04]. ILP
[OCR07, RLJ'09]. im [HL93]. Image
[WN10, BCG14, Kep03, RKI17]. Impact
[KLG08, SCL05, TE94a, ZAK01, Div95,
Met95, RGG'12, RPNT05]. Impaired
[Wei97]. imperative [SV98]. implement
[DBRD91]. implementable [TEE'96].
Implementation
[ACM94a, ACM99a, Alf94, AB01, AKP99,
BBR'91, BHP'03, BRR03, CWB03,
DSH'10, FLR98, Hau97b, KA97, MS02,
Nik94, STW93, TKA'02, TMAG03, BK96,
BB00, BMV03, CMX10, DL93, FGT96,
GCC99, GB99, IAD'94, KASD07, Lev97,
Li05, LZ07, LAH'12, NFB017, OKID92,
Stu95, Tod95, YZYL07, Ano95a, Ano95b].
Implementations
[Han97, SAC'98, Ram94, SKG'11, Sha95b].
implemented [Boe05, KEL'03].
Implementing
[ABH'00, AB02, BP05, CB9, CB90,
Day92a, Day92b, DPZ97, GM93, GSC96,
HPA'15, KRO01b, KBA98, KIA99, Pra95a,
TY97, TAN94, BKH'04, Lie94].
Implications
[RM03, BS96, VSM'08, CSW'05]. Implicit
[BAM93, MS02]. Implicit
[ACM97, PFV03, SAC'98, RB18].
Implicitly-multithreaded [PFV03].
Improve [GV95, QSaS'16, RKK15, Sin99].
Improved
[BR92, GMGZP14, LLS06, Smi06].
Improving
[AJK'12, BDN02, FT96, FM92, FFB01,
GGA99, IS01, LHY96, Man99, MEG03,
Nak01, PG01, PAB'14, MCRS10, TO10].
In-Order [RRK11]. In-place
[SGLG14, SCM05]. In-Situ [RGK99].
IN-Tune [RGK99]. includes [S95].
incomplete [HR16]. incompressible
[RM99]. Incorrectly [SCL05]. Increasing
[PHCI09]. Incremental
[BFA'1, Caz92, La95, LB92, BBYG'05].
Independent [EW96, FSS06, USE93a,
KNPS16, MEG94, PG03]. indexing
[MLS15]. induced [MTPT12]. Industrial
[KW17, Kon00]. Industry [DM98].
Industry-Standard [DM98]. inference
[FFLQ08]. inflation [ODSS12]. InfoDock
[Ano97]. Information [BS96, PBR'15,
CML01, KBH'03, RPB'09, SV98].
Informix [Ger95]. Initial [BTE98]. Inline
[GH03, DJLP10, EKLL90].
Inline-Threaded [GH03]. Inlining
[PR89, LQ15]. innovating [JD08].
Innovation [ACM03]. innovations
[ABB'15]. Input [BCG13, MP98, Tan87].
Input-covering [BCG13]. input/output
[MP89]. Insight [IEE02]. Instruction
[DV99, HMN91, LEL'97, LEL'97b,
MCF99, RS08, AMC'03, Aru92, Cho92,
HKH92, HNN'92, KBF'12, Mis96, OA08a,
...
17

OA08b, OA08c, PYP+10, Raj93, SD13, SMS+03, TEE+96, VS11, VDBN98, VV00).

Instruction-Level
[LEL+97a, LEL+97b, MCFT99, SD13].
instruction-systolic [PYP+10].
instructions [PPA+13].
integrating [RS07, XMN99].
integer [GH98].
integrals [Kuc91].
Integrating [CCW+11, MTS10, RD99].
Integrating [Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b].
Integration [BWXF05, KSD04, KASD07, SD13].
integration [RS07, XMN99].
Integral [GH98].
integrated [Kuc91].
Integrated [CCW+11, MTS10, RD99].
Intel [ARB+02, CCW+11, GHG+98, PDP+13, SCD+15].
Intensive [TKA+01, AAKK08, TKA+02, YSY+09].
Interaction [Hei03, HF96, Pan99].
Interactive [FURM00c, PTMB09, WOKH96, CSB00, MCS15, Tem97].
Interconnection [NGGA94, RR93, SMK10].
Interface
[Chl15a, HBG01, KKDVO3, MS89, Met95, P501, SW97, Ada98, DLM99, HBG02, Li05, MQW95, MS87, MEG94, TNB+95, FGT96].
Interfaces [Han97, HF96, LG04].
Interleaving [LGH94, YN09].
Intermediate [McC97a]. Internals
[Wea08]. International
[ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV+99, Cha05, EV01, Hol12, Hon94, Lakh6, LCK11, Wat91, FR95].
Internationalization [Ano98b]. Internet
[Ano96, Hig97, SBB96, van95].
Interoperability [DHR+01, Way95].
Interplay [MSL15]. Interpretation
[GH03, LG04]. interpreter [OCT14].
Interprocedural [NR06]. Interprocess
[Rod94]. Interrupts [KE95]. interval
[Kub15]. Intra [MKR10].
Intra-application [MKR10]. Introducing
[GL07]. Introduction

CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98. Intrusive
[Caz02]. INUX [DRN00]. invasive
[RGK99]. Inverse [HMLB16, GEG07]. inverses [GE08]. Invocation [SKK+01].
IPC [Koo93]. IPs [Sch17]. IRREGULAR
[FR95, TSV12, ZAK01, TP18]. irregularly
[FR95]. ISA [KTR+04]. ISOCOPE [ACM01].
Isolating [JWGT11]. isolation
[CMX10, MTC+07, SKBY07]. Isomigration
[ABNP00]. ISSAC
[ACM94c, Lak96, Wat91]. Issue
[KU00, Ano94c, GGB93b, TEE+96]. Issues
[GMB93, P501, ARvW03, Ann96, GC92, HCD+94, IAD+94, TCG95]. Issuing
[HMNN91, HKN+92, HNM+92]. Itanium
[MB05, WCW+04b, WCW+04c, WCW+04d]. Itanium-2
[WCW+04b, WCW+04c, WCW+04d]. iterations [UZ00]. Iterative
[MQ07, Nak03, AAC+15]. iThreads
[BFA+15]. IUnknown [SW97]. Ivan
[Ano00c]. IXP [ARB+02, LCH+08].
IXP2800 [AHW02].

J.UCS [KU00]. January
[ACM94b, ACM95b, ACM98b, Ano90, USE89, USE91b, USE93b, ACM93a]. Japan
[Ano91, Ano00a, Ano03]. JaRec
[Chr01, GCRD04]. Jason [Ano00c]. Java
[ACM98a, ACM01, Ano97a, USE01, AFF06, AMdBD02, AddS03, AdBD05, AdBD08, Ait96, Ano96, Ano98b, ABH+00, ABH+01, A+01, AG96, ACR01, ABG+08, BZ07, Ber96b, BVC97, BADD+09, BR15, BHK+04, BS00, Bra97, BP05, BLP04, Cal02, CV98, CRKRW97a, CRKRW97b, CRKRW99, CWHB03, CC04, CCH11, Chr01, CT00, Coo02, Cor90, Cri98b, Cri98a, DJLP10, DH98, DRL02, DLZ+13, DGK+03, Dra96, DHR+01, Dye98, EFN+01, EFN+02, EFG+03, EFT07, FSS06, FWL03, Fek08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Ham96,
Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Hol00, Hyd00, KPPE06, KBP+03, LB00, LCS04, Loe97, Man96, MP01, McM96a, McM96b, McM96c, McM98b, McM97, Mit96, MC06, NAW06, NM10, NR06, Nev99, OW97, OW99, PSM01.

Java [PSM03, PRB07, Pet03, FUF+04, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP+02, Van97a, Ven97, Ver97, WN10, Whi03, XSaJ08, Xue12, Yan02, van95].

Java-like [DJLP10].

JavaScript [PCM16].

Jersey [MT93].

JIT [McM97].

job [EE10, EE12, ST00a].

Jobscheduling [ST00c, ST00b, STV02].

John [Ano00c].

K-Java [BR15].

KAI [Ano98b].

KaiKan [Ano00a].

Karlsruhe [RM03].

Kaspersky [Kendo [OA90a]].

Kernel [Al94, ABLL92, Bal02, DNR90, EBK90, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BF88, JJ91, MP98, SS95].

Kernels [KI17, dIPRDB99, GLC99].

Kiel [LvH12].

Kikai [Ano00a].

Kikai-Shinko-KaiKan [Ano00a].

kins [San04].

kinematical [BD06].

Kinematics [HML816].

King [AC99b].

Kingdom [AC99c].

Kitsune [HSD+12, HSS+14].

Knoxville [IEE94b].

Kroll [Ano00c].

KUMP [NTK99b].

KUMP/ [NTK99a].

L [DNR00, GBB+05].

L2 [SLP08].

L2-miss-driven [SLP08].

Lab [Ano00b].

labeling [D'H92].

Lafayette [EV01].

Lake [Hol12].

lambda [ORH93].

Laminar [RPB+09].

LAN [Yas95].

LAN/WAN [Yas95].

Landing [TAK+00].

Language [ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIA99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mil95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06].

Languages [ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM+16, NPT98, OTY00, SCv91a, SS96, TY97, DMBM16, HL93, JP92, JHM04, MS+10, Sch91, SCv91b, ST98, TAN04].

LAPACK [ARvW03].

Laptops [Ano00c].

Large [AOV+99, CC14, CJW+15, GN92, LA93, BCM+07, Boo93, GOT03, Koo93, SMK10, WCV+98].

Large-Scale [CC14, CJW+15, LA93, BCM+07, GOT03, SMK10].

Latencies [Sch17, BS06].

Latency [BD00, Fan93, ÖCS01, SW08, Smi01, SKK+01, WWW+02, YLLS16, BR92, DC99, DC00, Je94, Luk01, MVY05, PG01, TK98].

Latency-directed [Fan93].

Latency-Resistant [YLLS16].

latency-sensitive [DC99, DC00].

Latency-Tolerant [ÖCS01].

lattice [SKG+11].

Law [Gar01, NZ17, CN14].

layer [CDD+10].

layout [DZK12, HB15].

Lazy [GSC96, Gol97, LP94].

LCMT [LKBK11].

leadfoot [HHPV15].

Leakage [Mus09, SYHL14].

Leakage-saving [Mus09].

leaks [JSL+11].

Learned [HAA+15].

Learning [DS16, ROA14, PWWD18].

least [FTAB14].

least-squares [FTAB14].

lecture [Egg10].

Lenient [SCv91a, Sch91, SCv91b].

Lepp [RRM12].

Lepp-bisection [RRM12].

Lessons [RM03, HAA+15].

Letters [DHR+01, TLA+02].

letting [AC09].

Level [ABLL92, BBC+00, FURM00c, GP95, JYE+16, JLS09, DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, PLT+15, RR93, Ric99, Sch17, SLT03, YBL16, BBH+12, CCC12, DG99, EE09a, FURM00a,
FURM00b, GMW09, GPS14, GRR06, HDT+13, JEV04, KDM+98, KV+09, KC09, Lan97, LZ07, MSLM91, MT02a, MT02b, MT02c, MQW95, MCFT99, OT95, OCRS07, PO03, PT03, QQOV+09, STY99, SD13, STH2, SCZM00, Tem97, WS08, YZYL07, YZ14, ZJS+11. Level-2 [Ric99].

Leveraging [PRS14]. LFTHREADS [GP08]. Libraries [Ano00c, BCR01, GF00, Jon91, MM14, ARvW03, CBM10]. Library [Ano98b, ABN00, BFA15, CGR92, EHG95, Gib94, GHG98, Kem02, Man91, WN10, Yas95, Ada98, Boe05, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. life [KU17]. light [Way95, LZZ99]. lightweight [Way95]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, CAS14, Hai97a, LVN10, MNN09, MEG94, VACG90, WS97, LKBK1]. like [DJLP10, Jon86, VV11, Kor89]. limit [ROA14]. limitations [Gal94, HLO8]. limited [Bri89]. Limits [LB95, LB96b, AAKK08]. Line [Ano00c, FSPD16, FD102]. Linear [KLB98, Loe97, MR90, AAC+15, Bak92, MM07, YSY+99]. Link [Ano00b]. Linked [WJ12]. links [WW96]. LinkScan [Ano00b]. LINQts [CDL13]. Lint [Kor98]. Lint-like [Kor89]. Linux [Ano97a, Ano00b, Ano00c, Ano97a, RGG99, SKP+02, WTKW08, ZSA13]. Linux/XP [Ano97a]. Linux/FreeBSD [Ano00b]. Linz [Hon94]. liquid [KRB1J12]. Lisp [Nor90]. List [DV99, WJ12, VV00]. LiteRace [MNN09]. little [CDL13]. liveness [GMR09]. LLCs [PBL+17]. Load [HBTG98, KMAG01, KC09, KRH98, PGB16, VPQ12, Chr95a, Chr95b, Chr96, MKIO04, TKHG04]. load-adaptive [TKHG04]. Load-Balancing [KC98, PGB16, Chr96]. Loadable [ZSA13]. Loading [PCM16]. Local [DGK+03, IEE95, Whi03, HZD13, ZLW+16]. localities [CS95a, CS95b]. Locality [BS96, PEA+96, WeI98b, HWW93, LK13, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a]. Location-Independent [USE93a]. Lock [EFJMM07, NM10, PGB14, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16]. lock-free [GP08, MLS15, Mic04, ST05]. Lock_manager [Hol98b]. Locking [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16]. Locks [ACR01, ALS10, MT93, OCT14]. LOCKSMITH [PFH06]. LOGFLOW [NTKA99]. Logic [Bre02, KI17, TAN04, BK13]. Logic-Centric [Bre02]. Logical [CR02]. LOIS [KT17]. longer [XHB06]. Looking [ECX+12]. look-up [KNPS16]. Loop [RL1+09, SSP99, JMS+10, KV+09, UZU00]. loop-level [KV+09]. loops [D'H92, FN17]. Low [Ano00a, Ano03, BGH+12, ZHCB15, GPS14, RRP06]. low-level [GPS14]. Low-overhead [ZHC01, RRP06]. Low-Power [Ano00a, Ano03, BGH+12]. LPVM [ZG98]. Ltd [Ano00b]. lunch [DLTM14]. Luther [ACM99b]. Lyon [FR95].

M [Ano00c, USE01, FPK+97]. M-Machine [FKD+97]. MA [Ano94f]. Mach [USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89]. Machine [Ama89, CSS+91b, DS16, FKD+97, KA97, KKV97, LfM00, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, Pra95c, SSK+92, Ven97, CGSV93, Evr01, PRB07]. Machines [BSSS14, Den94, GH98, RCR95, STY99, BBM09, DKF94, GZZ12, GC92, Kus15, MRG17, TSY99, TSY00, VPQ12]. macromolecular [ABC+15]. Made [Har99]. Magiclock [CC14]. main [AKSD16, BBH+17]. maintenance [TBN+95]. makes [Van97a]. Making
multi

[BM07, BIK+, DSEE13, CNQ13, CIM+, CFG+, CASA14, CRKW97a, CRKW97b, CB00, CL00, CSM+, DWYB10, Don92, EFC+, EHSU07, FTAB14, FWLO3, FG14, GCRD04, GCC15, GPR11, KHP+, KDM+, KKH04, Kep03, Kiec91, KBF+, Lan97, LBH06a, LBH06b, LBH06c, LVA+, LZW+, MLCW11, MLC+, MS03, M KK99, Mus09, NFBB17, NH09, NHS14, OA08a, OA08b, OA08c, PYP+, RCV+, RKM+, RKM+, RGK99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, SMQP09, ST05, Ten97, TCG95, TMAG03, TJY+, VIA+, VDBN08, VVO0, VPQ12, WCC+, WCV+, WCV+, YZ07, Yan97, YSY+, YN09, kSYHX+, YKL13, ZKR+, dB09, vPG03, A no97b, CH04, Mix94]. Multi- [FMY*15].

multi-ALU [KDM+, KMC [Mix94].

multi-context [Yan97]. Multi-Core [Cvdc18, KTR+, PM14, CFG+, CSM+, DWYB10, KBF+, MLC+, Mus09, SMQP09, WCC+, YZ07].

Multi-Level [RR93, ECC12]. Multi-Level-Context [JLS99].

multi-process [WCV+98].

multi-processor [VIA+, YN09].

Multi-protocol [ABN00]. Multi-Tasking [Cvdc18]. Multi-Thread [HG1, MTN+, AMRR98, PKB+, SKG+, Tan87, Tra91, DWYB10, Don92, ST05, TCG95]. Multi-Threaded [AGK96, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CRKW99, Coo95, DSV9, FdL02, GVT+, GKT94, Hill, III01, JY15, Jon91, KJ95, KW17, KRH98, Kuc92, KTR+, LK15, LB02, Leg01, LKBK11, Mas99, MTN+, Mc97a, Mc97b, MS15, MG15, MCAFT99, MK+, N000, OR12, PCPS15, PTMB09, PWW18, PKB+, PM14, Pul00, PG16, RR93, RCC14, RBPM00, RKW98, RV04, RS08, SP00a, STW93, Sch90, SKG+, Se98, Se99, SMI92, Ste01, SBK99, TG099, Tan87, Tra91, TLGM17, VSDK09, VBO0, VK09, Wal00, YL016, ABY+, BWZ15, Bak95a, BK13].
CMX10, LK13, LLLC15, NZ17, RCG+10, RKBH11, SCCP13, SE12, ZSB+12.

Multiprocessor/ Multithreaded [RCM+16].

Multiprocessors [FSPD16, FSPD17, RKK15, DTK+15, GARH14, SSN10].

Multifrontal [But13, Dav11].

Multigrain [AZG17].

Multithreaded/Multithread [RM99].

multilevel [Cat94, JY+03, LK15].

Multimedia [Spe94, Est93, Ga96].

multithreaded [FGT96].

Multiple [CB16, FGKT97, HW92, HKT93, NTR16, OR12, CS95a, CS95b, FD95, HKN+92, LT97, TE94b, TF90, TAN04, WCT98].

multiple-context [FD95].

multithreaded [CSV10].

Multiprocessing [EKB+92, Len95, NV94, Wal95, DLCO09, MT93, Pra95b, RGK99].

Multiprocessor [AAC92, AKP99, BC00, Cat94, EHG95, GH+98, HN91, KMAG01, MCT08, Pre90, S92, SEP96, USE92b, WC99, Z92].

Multithreaded/Multithread [Cat94].

MultiProcessors [BMV03, BS96, BL96, BLG01, CH95, GMR98, KU00, KKS+08, LS07, LMP14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA09, HT14, LGH94, Mao96, Men91, QS94, SMK10, Sha98, SKK09, TNS07, Yoo96b, YMR93a].

Multithreaded/Multithreaded [Cat94].

MultiProcessors [BMV03, BS96, BL96, BLG01, CH95, GMR98, KU00, KKS+08, LS07, LMP14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA09, HT14, LGH94, Mao96, Men91, QS94, SMK10, Sha98, SKK09, TNS07, Yoo96b, YMR93a].

Multithreaded/Multithread [Cat94].

Multiple [BHP+03, JJ91, CGL92a, CGL92b].

MultiRace [PS07].

Multitasking [Co90b, Gib94, Gou90, JJ91].

Multithread [LC90, RRM12, SYH14, CS95a, CS95b, DSH+10, GCC99, JDO8, SWYC94, Z98, Z96].

multithread-safe [GCC99].

Multithreaded [Add03, AbdRS08, ABC+93, AT16, Ama98, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, ABH+00, ABH+01, AB01, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BBdH+11, BK106, BMBW00b, BF04, BJK+96, BL98, BB00, BM99, BD02, BP05, BLG01, BTE98, BNH01, BD06, BG+12, BBSG11, CC14, CJW+15, CS02, CG06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CRN+00, CMBAN08, Dan09, DNR00, DH98, DRV02, DO95, EFN+01, EFN+02, EJR13, EHP+07, EC98, EGP14, FSS07, FT96, FS96, FTP11, FQS02, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA+15, HML16, HTZ+97, HMNN91, HHOM91, HHOM92, HLB94, HH11, HWZ00, HP11, HYY+15, Hud96, HMT+96, I+94, JYE+16, JSB+12, KA97, KKW14].

Multithreaded [KMA01, KST04, KLM04, KC98, KC99, KM+02, KR12, KU00, KE15, KG94, Kin14, KU17, KAO05, Kor89, KTR+04, LS07, LG06, LH09, LG04, LB96a, LB98, LB00, LLS06, LHS12, LT+17, LYH16, LPE+99, Loo97, Lun97, Lun99, MGQ+08, MP01, MS99, MB99, MD96, M90, M96, MR90, Nak01, NPT98, NG94, NTKA99, N94, OB13, OTY00, PB00, PUF+04, PG92, PG96, PG99, PF01, PH91, PWL+11, PS01, QOM+12, RCM+16, RW97, RCC12, REL00b, Rin01, RB18, RNSB96, RSBN01, RRA05, RR99, SPDLK+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She08, SU96, SU01, SZM+13, SGM+97, SMD+10, SR01b, SSS97, SKK+01, Spe94, ST+95, SZ02, SUF+12, Sut99, TG99, Ten02, TKA+01, TCI98, TT03, TTKG02, TGBS05, TLZ+17, TLZ+18, TJY98, TSV12, URS02a, VTS12].

Multithreaded [Vol93, VE93, Wan94, WS08, Wea08, WJ12, Wil97, WLM15, WG94, WC99, Y95, YW03, You96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, AbdRS05, ACD+18, Aga89, Aga91, Aga92, ABF+10, ABC+15, AAC+15, ACC+03, AEGB08, Ann96, Ano94b, Ano95a, Ano95b, A+01, ABC+09, AR17, Aru92, BDWh12, BBFW03, BRRS10, BGZ97, BCHS00, BAD+10a, BAD+10b, BCG13, BGC14,
multithreading

[FFY08, Fuj97, GMW09, Gal94, GJ11, GGB93b, GK05, GPS14, GL98b, GL98a, Gol96, GRS06, GRR06, GA09, GLC99, HMC97, HFV+12, HF88, HL890, Hi97, HNN+92, Hop98, JMS+10, JWTG11, JFL98, JSMP12, JSMP13, Joe96, JSG+11, KGPH12, KR01a, KR01b, KN16, KB+03, Kub15, Kus15, LLLC15, Lea96, Lei97, Len95, Lev97, LLL10, LCH+08, LMC14, LBE+98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, Mi95, Mi96, Mix94, MC06, MMR10, MQ07, NB12, NR06, Ném00, NPA92, ND96, NZ17, Om04, Par91, PFV03, PJZA07, Pha91, Ply89, PDP+13, PS03, PS07, Pra95c, PT03, RGG+12, RCM+12, Ra93, RCG+10, RHH10, REL00a, REL00c, Rei95, ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c, SV96a, SV96b, Sch98, SRA06, Sha95a, Sha95b, Sha98, She02].

multithreading [SLG06, SP00b, Shi00, SP05, Sin97, ST00a, ST00b, Sod02, SSN10, Sqn94, Sra93, Sta90, Sin95, SMS+03, TMC09, TMC10, TR14, TV10, TG09, TP18, TE94a, The95, TKA+02, TB97a, TB97b, TKGH04, TLZ+16, Tod95, Tsa97a, TdW03, UZ00, VGR06, Ver97, Ver96, VGG+10a, VGG+10b, WS06, WCC+07, Way95, WT10, XIC12, XSaJ08, Yan02, Yan97, YZYL07, Yoo96b, YM92, YMR93a, YNP12, ZIS01, ZP04, WM03, LP09].

Multithreading

[AmDb02, AH00, Ano99, Ano05, BBG+10, BWXF05, Bec00, Bec98, BW97, BD00, BL96, BPL07, Bre02, BLP04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FB01, FKT96, GHG+98, GV95, Gu95, Gun97, GSL10, Har99, HTG98, ILFO01, IBST01, KPC96, Ke194a, Ke194b, Kho97, KF97, KKLH97, Kwo03, KETO06a, KETO06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MH95, MN00, MKC97, Nag01, Oni97, ŌCS01, PJS15, PT91, PST+92, Pera92, Pr97, RLJ+09, RG03, RD96, SSP09, SPY+93, SW08, SGC91a, SP09, SLG04, SRU98, Sin07, Smi01, ST00c, SKA01, TV97, Ten98, TAK+00, TESK06, VT96, WWW+02, WCW+04a, Wei97, YG10, ZL10, Zig96, AAH09, AAK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCC12, Div95, DN94]. multithreading

[Dub95, Dye98, EE09a, FM92, Fis97, Fon97, GW07, GGC95, Gea98, GEG07, GE08, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD09, Kim94, KG07, KT99, KLH+99, KL13, LGH94, LSS12, LZW17, LB95, LB96b, LCL+14, Loi95, LVS01, LZW14, Luk01, MW07, Ma96, MK004, MGL95, MMM+05, McM97, Met95, MKR02, MAAB14, OA09, On97, PS06a, PSCG06b, PSC06c, PG01, PHCR09, Prah5b, RM00, RR06, RNP05, San04, Sch91, SCV91b, Sin99, SW16, STV02, Swi09, TK98, TSC99, TO10, Tsa97b, TEL95, TEE+96, Tu96, TEL98a, TEL98b, UR92b, UR93, VPC02, WLG+14, WW93, WCW+04b, WCW+04c, WCW+04d, YCW+14, LAR97]. multithreading-based [GE08]. must

[NA07]. mutable [HL93]. Mutex [Ho98b]. mutual [BRE92]. Mysteries [Hol99b].

O [RM03, Ano95a, Ano95b, ABB+15, BDN02, Ksu94, LTL+16, Man98, MG15, Yoo96a].

Object [Ano99, BBD+91, BC94, CK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car89a, CLL+02, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yan02, dB09, vPG03].

Object-Oriented [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ada98, Car89a, CLL+02, FL90, JPS+08, Wei98a, Yan02, dB09, vPG03].

Open [Ano00c, BMF+16, Hai97b, KR01a, KR01b, RBF+89]. Open-Source [Ano00c].

OpenMP [Cha05, ARvW03, BHP+03, BBC+00, Bra97, BMV03, BO01, CRE98, CDK+01, CM98, DM98, HD02, EV01, JHY+03, KKHH03, Lu98, MS02, Mar03, MLC04, MPD04, Mat03, MG15, M14, M10, NAAL01, RBAA05, SLGZ99, Thr99, TGBS05, Vre04, We98, WP10, Yan02, dB09, vPG03]. Orlando [ACM94a, ACM98d]. OS/2 [DN94, Kan94, Kel94a, Kel94b, Rei95, Rod94].

oscillations [BD06]. OSF [BM91]. OSF/1 [BM91]. Other [SPY+93, MMTW10].

Ottawa [BT01]. Out-of-Core [QOM+12, ABC+15]. out-of-order [SJA12, SW16]. output [MP99].

Outstanding [LBS15]. Overall [SEP96].

Overcome [SW08]. overflow [KOE+06].

Overhead [DSR15, RRP06, YL16, ZHCB15]. overview [Li05]. Own [BS99, Sho97a, Sho97b].

Oxford [ACM94c].

P [Ano00b, Nik94, PR05]. P-RISC [Nik94].

P-STAT [Ano00b]. P-Thread [PR05].

Pacific [IEE89]. Pacifier [QSQ14].

Package [Ano94c, FL90, HCM94]. packages [GOT03, OT95, PL03]. Packaging [RR93].

Packard [BLCD97]. Packet [AHW02, LCH+08, MVY05, WCZ+07].

page [CNV+06]. page-based [CNV+06].

PageRank [KG07]. Paging [FD96, FD02].

Panasonic [ACM93a, ACM94b, ACM95b, ACM98b, AMRR98, AM98, AM99, AM99b, AM99c].

Pajek [CD01]. Palo [ACM01].

panel [Ano94c, Bak95b]. HCD+94, IAD+94.

Paper [ABH+01, TKA+01]. papers [AM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05]. par-monad [FK9+12].

ParADE [KKH03]. Paradigm [EW96, JD08, KL15]. PPA+13, BCG+95.

Paradigms [CM98, HD02, YM93b, YM93a]. Parallel [ABC+93, AMRR98, Ama99, ABNP00, ACMA97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CZS+17, CL95, CDK+01, CBN+00, DS16, Den94, EJ93, FHM95a].

Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+98, NPT98, SG96, Ada98, Car98a, DLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, We98a, WP10, Yan02, dB09, vPG03].
Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JY15, KTLK13, KI95, KEL+03, Kon00, KKV03, Kvo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, SCv91a, SAC+98, SRU98, WC99, YFF+12, ARvW03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BKG94c, CAR08, CKF+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fuji97, GC92, Gol97, GKK09, GEG07, GE08, GB99, HM97, HF88, Hop98, HWW93, IEE97, JMS+10, Joe96, KTK12, Ke03, Kim94, LSS12, Lu94, MTO2a, MT02b, MT02c, MR98, Mis96.

parallel [NJ00, NPA92, ODSSP12, RCV+10, RHH10, SBCV90, Sch91, SC91b, Sha98, SWYC94, ST98, SGS14, Taf13, TCG95, VPQ12, VGK+10a, VGK+10b, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, FR95, Vre04, WN10].

Parallel-Multithreaded [WC99].

Parallelism [AAC92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FURM00c, GVT+17, GP95, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCFT99, NB99, RBAA05, SSP99, SMD+10, SG96, Thr09, WS08, YBL16, Yoo96, ALH08, AKSD16, CSS+91a, CSS+91c, EE09a, FN17, FURM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KVN+09, KC09, LAH+12, QOQOV+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDBN98, VV00, Wei98a, Xsa09, YZ14, Zig96]. parallelism-aware [LAH+12]. parallélisme [Zig96].

Parallelization [CRE99, KC09, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JJY+03, PO03, RKM+10a, RKM+10b, RRMJ12, TFG10].

Partial [Loc97, RRP06, SP00b, Shi00, ZKW15]. partition [IZW17]. Partitioning [AMRR98, Coo95, D'H92, EW96, TG99, DCK07, LZL+14, MRR10, SGG95, WW96]. Partitioning-Independent [EW96].

Pascale [Hay93]. PASCOC [Hon94]. Passing [BWXF05, TLA+02, FGT96, KKV03, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14]. Path [BLG01, TAK+00, CTYP02, WCT98].

Paths [OTY00, Ano95a, Ano95b]. Pattern [Ano97b, EGP14, OR12, EG11, GBP+07, SCM05]. Pattern-Based [EGP14, EG11].

Pattern-recognition [Ano97b]. Patterns [DS16]. PC [Mia90, CFK+91]. PCM [AKSD16]. PCM-based [AKSD16]. PCs [CRE99, NV94]. PDE [Chr95a, Chr95b, Chr96, JD08].

PDES [LTM+17]. pedagogical [CMS03].

PegaSoft [Ano00b]. Pennsylvania [ACM96]. Pentium [RGK99]. Per-node [TK98]. Per-Thread [Cha02, EE09b]. Perf [FSPD17]. Performance [ACM98a, ACM98d, ACM00, Aga89, Aga91, Aga92, BS96, BL96, BRM03, BLG01, BNH01, BGH+12, BBSG11, Cal97, CRE99, CCH11, CCK+16, CH95, Cho92, CT00, CSM+05, CBN+00, CMBAN08, DWYB10, EGO2, FT96, FSPD17, FBF01, FURM00c, FGKT97, Gal94, Gar01, GN00, HRH08, Hol12, HN91, IE94b, JFL98, ZKTK15, KS97, KTR+04, LCK11, LG06, Lep95, LMJ14, LHG+16, LH16, Mah13, Maa99, Maa06, MSM+16, MP04, ME17, MK97, MM14, NCA03, NBS+15, NGGA94, Par91, PH97, PS01, QSaS+16, RG03, RV0A08, RKK15, SCD+15, TCI98, TT03, Tsa97a, TLM17, Wei98b, WG99, WN10, YLJ03, ZL10, ZAK01, Zub02, AAC+15, APX12, AAKK08, BDGMWH12.
28

BS10a, BBM09, BMV03, CML00, Car89b, CIM+17, Cho93, Div95, Don92, DKF94, ECX+12, FL90, FM92, Fis97, FURM00a.

Performance
[FURM00b, GS02, GEG07, GLC99, HLB90, ICH+10, Kim94, KLH+99, LB95, LB96b, LBH12, LCH+08, LMC14, LBE+98, MLC+09, Mah11, MCRS10, McM97, PJZA07, PGB12, RGK99, SE12, SSK+07, SQP08a, SQP08b, SQP08c, SKP+02, TMC09, TR14, TG09, The95, VV11, Wan94, WCZ+07, WOKH96, YZ07, YM92, ZJS10].

Performance-area [Par91].

Performance-energy [AAC+15].

Performance-Oriented [KS97].

Performance-prediction [BMV03].

Performance/Power [RKK15].

Performs [Ven97].

Perils [Dye98].

Perl [TLA+02].

Perl/Tk [TLA+02].

Persistence [BHK+04].

Personality [CCW+11].

Perspective [AG06].

Perspectives [PLT+15].

Pessimistic [CZSB16].

Petaop [SZ02].

Peter [Ano00c].

Petri [KMjC02, MKC97].

PGI [Ano00b].

pH [ACMA97].

Philadelphia [ACM96].

Photomosaics [TLA+02].

Phylogenetic [LHG+16, LBH12].

Physical [AMPH09].

PIC [BMV03].

PicoServer [KSB+08].

Picture [AC09].

Piecing [Ano97b].

Pipeline [GV95, RVOA08].

PIRATE [ICH+10].

Pitfalls [Hol98a, SPY+93, CL00, San04].

Place [SCM05, SGLGL+14].

Placement [NLK09, TE94a].

Plagiarism [TLZ+17, TLZ+18, TLZ+16].

Plan [DLZ+13, Pre90].

PlanICS [NSP+14].

Planning [NSP+14].

Plans [GARH14].

Plastic [MCS15].

Platform [AB01, AB02, CT00, DTLW16, EEL+97, FSS06, Lam95, MT93, PG03, WCW+04b, WCW+04c, WCW+04d].

Platform-Independent [FSS06].

Platforms [LS11, PWL+11, CNQ13, LSS12].

PLDI [ACM94a, ACM99a].

Plug [DHR+01].

Plug-in [DHR+01].

plus [Ano95a, Ano95b].

PM [AB02].

PM2 [ABN99, AB01].

Pointer [RR99, SR01a].

pointers [Sim97, WW96].

Points [CC04, CHH+03, SLP+09].

Points-to [CC04, CHH+03].

Policies [Eic97, EE09a, KPPER06].

Policy [MVZ93].

Polling [Pla02].

Pollution [MPD04].

Polynomial [Kuc92, Kuc91].

Pool [Koo93].

Portability [VSM+16, SP05].

Portable [AB01, ABN00, BBFW02, Eng00, KF97, LDT+16, Yas95, CS00, GCRD04, Mix94, MT93, MAAB14, TB97a, TB97b].

Portals [BRM03].

Porting [JJ91, Yam96].

Portland [ACM94b, ACM95b, ACM98b].

Port [Koo93].

Post-Silicon [LB17].

Poster [ACM94b, ACM99b, IEE93].

Post-Silicon [LB17].

Poster [ACM94b, ACM99b, IEE93].

Poster [ACM94b, ACM99b, IEE93].

POSIX [Ano00c, Alf94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, SP05, dRPG99].

POSIX-compliant [SP05].

Post [LB17].

Post-Silicon [LB17].

Pot [VSDL16].

Potential [CC14, EGC02, Mou00, DG99].

potentials [ABF+10].

Power [GG11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CBM08, MB07, MR09, RCC12, RKK15, RRK11, SYHL14, TLGM17, ECX+12, GW10, MLCW11, Pra95b, Ric91, SQP08a, SQP08b, SQP08c, CMF+13].

Power-aware [MR09].

Power-Constrained [TLGM17, GW10].

Power-Efficient [BCZY16, SQP08a, SQP08b, SQP08c].

Power-Performance [CBM08].

POWER5 [BCG+08, MMM+05, KST04, Ano05].

POWER6 [LSF+07].

powered [Rei95].

PowerPC [BEKK00, SBKK99].

PowerRAC [Ano00b].

Practical [HW92, LMJ14, MNG16, ND16, PBR+15, RR96, TGBS05, BCCO10, RD99, RPB+09].

PRAM [For97, Lep95].

Pre [PR05, Luk01].
Pre-Execution [PR05, Luk01]. Precise [HR16, KUCT15, CLL⁺02, FF09, WTH⁺12].
Precomputation [MGQS⁺08, WWW⁺02].
Preconditioning [Nak03, GEG07].
PREDATOR [LTHB14]. Predicate [GPR11, How00]. Predictable [BBdH⁺11].
Predicting [Lun99]. Prediction [AKS06, CMBAN08, IBST01, PBL⁺17, BWDZ15, BMV03, CYPOT2, CPT08, GL98b, RRP06, TFG10, WHG07].
Prediction-Based [CMBAN08, RRP06]. predictive [LTHB14, SRA06]. Predictors [EPAG16]. preemptive [JLS99].
Prefetch [AMC⁺03]. Prefetcher [LYH16].
Prefetching [BL96, GK94, MKC97, SLT03, VT96, LB95, LB96b, Mao96, SLT02, SKKC09].
Prefix [WJ12]. Preliminaries [NBM93].
Preliminary [EHG95]. Preparation [GH03]. preprocessor [For97, Mil95].
prescient [AMC⁺03]. Presentation [Kub15], presented [ACM93a, ACM94b, ACM95b, ACM98b].
preserving [MSM⁺11, NFBB17]. pressure [DTLM14, SLP08]. preventing [PRB07].
Price [An098b]. Pricing [TT03]. Primer [LB96a, Wil97]. Primitive [LW00]. primitives [BBH⁺17, LZ07, NLK09].
principle [LAK09]. Principles [ACM93a, ACM94b, ACM95b, ACM98b, TLA⁺02].
print [Van97a]. priorities [STV02].
prioritization [FD95]. Priority [BCG⁺08, BBM12, SCCP13, ST05].
Problems [DK02, Nak03, AR17, Bar09, FTAB14, FR95].
procedure [BGK94c, KASD07, LQ15]. procedures [MC15]. Proceedings [ACM94c, ACM98d, ACM99a, ACM01, An090, An094a, An094d, AOV⁺99, Gol94, Hol12, IEE89, IEE90, IEE92, IEE93, IEE94a, IEE95, IEE96, IEE02, Lak06, LC11, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98b, USE98a, USE00b, USE01, USE02, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, An091, DLM99, IEE94b, IEE94c, FR95].
Process [FT96, FG91, BM01, HF06, LV01, MR98, Pld89, WP10, WC⁺98].
process-oriented [WP10]. Processes [CB16, HI01, SPY⁺93, ZSA13, YYL07, Zip96]. Processing [AHW02, GC14, RW97, SS91, WN10, How98, MV05, Par91, PY⁺10, RKHT17, WCZ⁺07].
Processor [ABC⁺93, An00b, BCG⁺08, BGH⁺12, EH95, GV95, HHMON91, HHO92, KST04, Kao05, Lxh12, MGQS⁺08, MG99, MTN⁺00, MVZ93, MB05, SW08, Sin97, ST00c, SZ02, SBBK99, SUF⁺12, UALK17, WS08, AHHF09, APX12, BEKK00, CL94, CY90, Cho92, EE10, Fis97, Fju97, Goo79, HF⁺88, HKN⁺92, HNN⁺92, KDM⁺98, Kho97, KBQA08, LBvH06a, LBvH06b, LBvH06c, LCH⁺08, Lu94, MK12, Met95, Moc96, OCRS07, RA93, Sh95a, SJA12, Sin99, ST00a, ST00b, STV02, Squ94, Srr93, Tsa97a, Tsa97b, TEE⁺96, VIA⁺05, WC⁺04b, WC⁺04c, WC⁺04d, YN09, ZP04]. processor-based [WC⁺04b, WC⁺04c, WC⁺04d].
Processor-In-Memory [SZ02].
Processor-Oblivious [UALK17].
Processors [ARB⁺02, AH00, An001, BF04, EEL⁺97, FT96, GJT⁺12, GSL10, KS16, KLG08, KU00, KLD09, LPE⁺99, MHG95, MCFT99, MR09, OC501, PF01, RCM⁺16, RRK11, SU01, SR01b, URS02a, YG10, ZP11, Aga91, Aga92, AAC⁺15, BDWHO12, BWDZ15, CS95a, CS95b, CN14, CDD⁺10, DWYB10, Dim95, Eic97, EE09a, EE09b, EE12, FD95, GMV09, GBP⁺07, KFB⁺12, LLL10, LBE⁺98, Luk01, MN03, MEG03, MTPT12, Mis96, NB12, NZ17, PFV03, PAB⁺14.
processus [Zig96].

Products [Ano97a, Ano00b, Bra97].

Professional [Ano00b].

programming [Swi09]. programmed [PPA +13].

Program [Cro98, Wil00, MS87, San04, Swi09].

Programmability [THA +12].

programmable [PYP +10].

programmation [Swi09]. programmed [PPA +13].

Programmer [Cro98, Wil00, MS87, San04, Swi09].

Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG +10, BTE98, But97, CMK00, CV98, CDK +01, Chl15b, CT00, CW98, DFM95a, FTP11, HCD +94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KKH03, KSS95, KSS96, KIAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PG99, QOOQV +09, QOIM +12, Rod95b, SBB96, TC98, Vre04, Wil97, YFF +12, dIPRG9B99, van95, ALS10, AR17, AG96, ABG +08, BCHS00, BO96, BYLN09, Bir89, CFK +91, Car89a, CS00, CMS03, Cha05, DSH +10, EV01, FHM95b, GKZ12, Gil94, Gol97, GL07, HMC97, Hyd00, JPS +08, JHM04, KIM +03, Kim94, LB98, LP09, Man96, MSM +10, MKIO04, MR98, Mix94, NHF908, Nev99, NBF98, ND96, PG96, Pra07, RR96, RR03, SKS +92, SV96c, SV96a, SV96b, She98, She02, Sun95, TB97a, TB97b, TMAG03].

programming [Wal00, WCC +13, Yen02].

Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW +15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, EGP14, FQS02, GKE17, HLB94, Kri98, LCS04, Lun97, Lun99, MS89, MKG +00, OB13, PHK91, Rin01, RD96, RR99, SPDLK +17, SBN +97, SYH14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF +10, BRRS10, BK13, BCG13, BGC14, Bhr95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ91, CL00, CLL +02, CVJL08, Cox00, DJLP10, DESE13, EFG +03, EG11, EHSU07, FK12, Fer13, FF04, FFQS05, FF08, FFY08, GMR09, GRS06, GPR11, HZ12, JPS +08, JWGT11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, PAdS +17, PDP +13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCG95, SRA06, Sen08, SP00b, Shi00, SP05].

programs [SGS14, Sto02, Taf13, TR14, TLZ +16, WS06, WTH +12, XSa08, YCW +14, YNPP12, ZJS10, ZSJ06, dB09, vPG03].

Progress [FSPD17, TLGM17, ZHCB15].

Progress-Aware [FSPD17].

Progressive [BBdH +11, TGO00].

Project [Ano99].

projection [SSkP +07].

Propositions [MQLR16, MLR15].

Proliferating [Ano94b].

Prolog [EC98, AR17, KA97, MGK +00].

Promises [Gar01].

Proof [AddS03, Ád9bRS08, FKP15, Ád9bRS05, GLPR12].

properties [KTLK13, Van97b]. proposal [GP05]. Proposed [GV95]. protect [San04].

protecting [ZJS +11].

Protecting [CLFL94].

Protein [BCS11].

Protein-Protein [BCS11].

Protocol [GRS97, IIO1, ABN00, KASD07, QSQ14].

Protocols [AB01, AB02, GRR06, TVD14].

Prototype [BMR94, HHOM91, HHOM92, BK96, BGV97, Far96].

prototyping [PDP +13].

Provably [DJLP10, GB99].

provide [Way95].

provides [Hig97].

Providing [PSM01, PSM03].

proving [Tae13].

Provisioning [BSSS14, FGG14].

Pseudorandom [SLF14].

PSO [HH16].

PTF [Yam96].

Pthreads [NB98, Yam96, LB98, AS14, NBF96].

Publications [Bee98].

Publishing [Ano00b, Hig97].

Purpose
[Ber96b, HSS+14, Man98, ZSA13, Ber96a, DC99, DC00, HSD+12, SKA01]. Put [Wal95]. **PVM**
[DLM99, DPZ97, Pla02, ZG98]. **PVM/MPI** [DLM99]. Python [Swi09, How98, Pul00].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02]. QoS [ICH+10, PSM01]. QR [Dav11].

quality [PSM03]. Quantitative [NBM93].

Quasi [Pla02]. Quasi- [Pla02]. Queries [TG099, TG000]. query [GARH14].

QUERYFLEX [Ano97a]. querying [HF96]. Queue [Cri98b, Cri98a]. queues [SCM05, ST05]. Queuing [VK99, KPPÉR06]. Quick [Ano00b].

QuickRec [PDP+13]. quicksort [Mah13].

R3000 [Ar92]. Race [HM96, KUCT15, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EQT07, FF09, HR16, HHPV15, MMN09, NAW06, NA07, PS03, PS07, PFH06, RVS13, WDC+13, XHB06, DWS+12]. race-freeness [AHK08]. RaceFree [LZW+13]. Races [KZC15, FF10, NWT+07, PRB07, PT03, RBK+09]. racy [SRJ15]. RADISH [DWS+12]. Ramada [Ano94d].

Ramada-Congress [Ano94d]. random [LSS12, Sen08]. random-number [LSS12].

RCDC [DNB+12]. RCU [CKZ12]. Reachability [LCS04, LQ15]. reachability-modulo-theories [LQ15].

Reactions [LTM+17]. Reactive [LvH12].

Reactivity [BDN02]. read [NM10]. read-only [NM10]. ready [Ano92b]. Real [BC94, IEE94a, IEE94d, JLS99, Kim14, KBP+03, MN00, PSM01, PUF+04, PSCS01, SZG91, SUF+12, Tet94, WLG+14, dIPRPGB99, CZWC13, CMX10, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Jen95, JPSN09, MKK99, OT95, PSM03, RPNT05, San04, SZ92, SJ92a, SJ92b].

Real-Time [IEE94a, JLS99, Kim14, MN00, PUF+04, PSCS01, SUF+12, Tet94, dIPRPGB99, IEE94d, KBP+03, PSM01, SZG91, Jen95, MKK99, OT95, PSM03, San04, SZ92, SJ92a, SJ92b].

recognition [Ano97b, LG04].

reconfigured [DSS+10, LP09]. ReconOS [LP09]. reconstructive [MCS15]. Record [Chr01, UALK17, ACM93a, ACM94b, ACM95b, ACM98b, GCRD04, HT14, PDP+13, QSQ14, RD99].

record-replay [HT14]. Record/Replay [Chr01, GCRD04, RD99]. Recording [MCT08, NPC06, HZD13, L2TZ15, XHB06].

recoverable [LAK09]. Recovery [LAK09, VPC02, WCV+98, YZZL07].

RecPlay [RD99]. rectangular [SGLGL+14]. Recursively [BE13, BE12].

Red [Pla99]. Red-Black [Pla99]. Redesign [KUS94]. Reduce [DSR15, CCC12, Cor00, KOE+06]. reduced [GA09]. Reducing [SLP08, SYHL14, PGB12]. Reduction [AMA89, CL95, KLS92, SW08, HH16, XHB06, YL16, ZKW15].

Reductions [ZAK01]. Redundant [CC+16, CvdBC18, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14]. ReEnact [PT03]. ReEnact [PT03]. ReEntrant [AMBD13].

Refactoring [Ten02]. Reference [Rec98, Sch14, KOE+06].

Reference-Counting [Rec98]. refinement [GPR11, KPPÉR06, KI16]. Reflection [OT95, Bak95a]. region [KBF+12].

region-based [KBF+12]. regions [GPS14]. Register [GJT+12, LPE+99, RKK11, WW93, CCC12, HKT93, SLP08, kSYHX+11, ZP04].

regulated [XHB06]. Relabeling [HH11].
Scalability [CCH11, GVT+17, Nak01, BWDZ15, DSEE13, RVOA08, VIA+05].
Scalability-Aware [GVT+17]. Scalable [BMBW00b, CC14, CH04, CKZ12, IEE94b, KUCT15, LMCW11, Mic04, SS96, ZLIW+16, BMBW00a, BMBW00c, GW10, L107, Mao96, PWD+12, SCZM00]. scalar [GL98b, ZCSM02a, ZCSM02b]. Scale [CC14, CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, GOT03, SMK10, KBA08]. scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16]. Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RVR04]. Schedulability [Kim14]. Schedulability-Aware [Kim14]. Schedule [MQLR16, MLR15, NAAL01, WTH+12]. Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSa+16, SR98, SS95, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSAJ08]. Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12]. schedulers [NBMM12]. schedules [BCG13]. Scheduling [BL94, BL98, BL99, FS96, FSPD16, GRS06, JLS99, KLD09, MR01, KCRW97a, KCRW97b, WT17, ZHCB15]. Science [Gol94]. Scientific [CMBAN08, HLB94, WN10, BTO1, BD06, Dan09, NJ00, Bra97]. Scriptics [Ano00b]. Scripting [RBPM00]. Scripts [TLA+02]. Seamless [CV98]. Search [AMRR98, BCCO10, LAH+12, Mah11]. searches [TCG95]. Seattle [ACM93c, IEE94a, IEE94d, LCK11, USE98a]. sec [AHWO2]. Second [IEE89, IEE96, FR95]. Section [DSR15, CS12, DTLM14, SMQP09, YL16]. Section-Based [DSR15]. sections [NM10]. Secure [SV98]. Security [BRRS10, MS03, Way95].sedition [Bak95b]. SEDMS [USE92b]. See [Swe07, AC09]. segmentation [BCG14]. Select [KKD03]. selected [Cha95]. Selection [AT16, PR05, Sta90]. Selective [Nak03, PR98, VACG09, MCRS10]. Self [LLLC15, Pet00, SEP96, BDF98, SLP+09]. Self-Allocating [SEP96]. self-healing [SLP+09]. self-migrating [BDF98]. Sema [Kor99]. Semantic [BNS11a, BNS11b, BNS12]. Semantics [BR15, CRBW99, HEJ09, MP01, KCRW97a, KCRW97b, KT17, ZHCB15]. Semantics-aware [HEJ09]. Semaphore [Hol98b, Kor89]. Semaphores [Hol98c]. semiconductor [Ano97b]. Semidefinite [YFF+12]. Seminar [Nev99]. sense [Bak95b]. Sensible [LMA+16]. Sensitive [CC04, DC99, DC00, PFH06, ZJS+11, LG04]. Separation [SCG95, TFG10, TVD14]. September [ACM93c, AOV+99, DLM99, FR95, Hon94, IEE89, USE98b]. Sequences [GH03, FTAB14]. Sequential [CV98, TLZ+17, TLZ+18, KCRW97a, KCRW97b, SCG95, SNM+12]. serialization [BHK+04]. Server [Anou00b, Cal97, Day92a, Day92b, Sni92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sho97b, Sta90]. server-side [SBB96]. Servers [RCC12, BDM98, BBYG+05, BEKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b]. Service [CGK06, GMW90, Hig97, PSM03]. services [LZ07]. session [Bak95b, HCD+94, IAD+94, VGR06]. sessions [Anou94c]. set [Aru92, KBF+12]. Sets [MNG16]. Seven [But14]. several [FGG14]. shader [PYP+10]. shallow [LVA+13]. Shanghai [IEE97]. shape [Cor00, GBCS07]. SharC [AGEB08].
Shared [BWXF05, BS96, DM98, EJ93, GMR98, GH98, LB92, MVZ93, MCT08, STY99, Thr99, VB00, WC99, YMR93b, BB00, Boo93, DLEC09, DPZ97, EKLL90, EV01, Gle91, ISS98, Jef94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, ZSB+12, dB09, Cha05].

Shared-Memory [BS96, DM98, EJ93, MVZ93, MCT08, Thr99, WC99, EKLL90, TSY00, YN09].

shared-variable [dB09].

Sharing [CLFL94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10].

sharing-aware [TAS07].

sharing-based [TE94a].

Shelf [MHG95].

shell [Ric91].

Shift [Ham96].

Shinko [Ano00a].

Shop [Bec00].

shortage [Ano94b].

Should [EHP+07].

SiCStus [EC98].

size [LML00].

slave [TJY+11].

slice [PSG06a, PSG06b, PSG06c].

Slices [PSG06a, PSG06b, PSG06c].

slice-based [PSG06a, PSG06b, PSG06c].

SlicK [PSG06a, PSG06b, PSG06c].

Slower [Pra95c].

Smalltalk [Bri89].

Smalltalk-80 [Bri89].

smart [Sim97].

SMP [BWXF05, BNH01, CREE99, HD02, KKH03, KKJ+13, Pra95c, TAS07, TMAG03].

SMPs [WG99].

SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, KLGO8, KI16, MG99, MMM+05, MSP+14, PADS+17, PAB+14, PLT+15, RPTN08, SLPO8, TAS07, VS11, WA08].

SMT-based [KI16, PADS+17, PAB+14].

SMTp [CH04].

Soft [PSM01, PSM03, SSN10, VACG09].

Software [Ano97a, Ano98b, Ano99, Ano00b, BCR01, BCG+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IEE94a, KE15, LPE+99, PJS15, SZM+13, SD3, TLZ+17, TLZ+18, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97,}
Software-Controlled [BCG+08, Luk01].
Software-Directed [LPE+09]. Solaris
[Cat94, Lun97, Lun99, McM97, Pra95b, Sun95]. Solution [Ano98b, SBC91, WP10].
Solutions [Ano00b]. solve [Bar09, MM07].
Solver [YFF+12, Kub15, RM99]. Solvers
[MR09, Nak03, AAC+15, ZCO10]. Solving
[ABD+12, FTAB14, Loer97, VSDK09].
SONET [AHW02]. Sort [GH98, RHH10].
Sound
[WTH+12, DWS+12, FFY08, NFBB17].
Source [Ano00c, BMF+16]. sources [SJ95].
South [ACM93a, Ano94d]. Space [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GR97, GN96, NB99, PWL+11, Sch17, FWL03, KNPS16, KASD07, Lie94, LHS16].
Space-Efficient [BL98, NB99, BL93, KNPS16, KASD07, LHS16]. Spacecraft
[SRS98]. Spaces
[FKP15, CKZ12, KGGK09]. Spain
[ACM95a, DLM99, ACM98c]. SPARC
[Cat94, KAO05, MD96]. Sparcle [ABC+03].
Sparse [But13, YFF+12, CSV10, Dav11, MM07, PHCR09]. spatially [PPA+13].
spatially-programmed [PPA+13]. Special
[Ano94e, GGB93b, UK00]. specialization [WTH+12]. specialize [CWS06].
Specialized [dlPRGB99]. Specific
[Ste01, SP00b, Shi00]. specification [Stä05].
specifications [TVD10]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speculated [SCL05]. Speculation
[SU01, WS08, YBL16, DG99, GB99, JE04, LWV+10, MT02a, MT02b, MT02c, NB12, PO03, PT03, SCZM00]. Speculative [AH00, Ano01, Ano02, BF04, IBST01, KLG08, MGQS+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFG10, WWW+02, ZJFA09, ZL10, CHH+03, DC07, Dub95, KOE+06, KT99, LZW17, LZL+14, NB12, OL02a, OL02b, OL02c, SMS+03, VS11, XIC12, ZCMS02a, ZCMS02b]. speech
[LG04]. Speed [Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10].
Speed-up [MR09]. Speedup [Lun99]. Spin
[LLS06]. SPIRAL [MJF+10].
SPIRAL-generated [MJF+10]. splittable
[SLF14]. spots [Gle91]. spreading
[CWS06]. SPSM [Dub95]. SQL [CGK06].
squares [FTAB14]. squash [MK12]. SR
[BO96]. SRAM [kSYHX+11]. SSMT
[CSK+99]. Stabilizers [ZS06]. Stabilizing
BCM+07]. stable [YC+14]. Stacey
[Ano00c]. Stack [Eng00, Xue12]. Stackable
[Loc05]. stacking [KSB+08]. Stackless
[MS15]. stacks [DESE13]. StackThreads
[TTY99]. StackThreads/MP [TTY99].
Standard [DM98, FSS06, BCL+98, Bra97, MT93, Pia98, Pla99]. standardization
[Bet73]. Standards [Thr99, TTY99].
Standing [TLA+02]. Stanford [IEE99].
STAT [Ano00b]. State
[Laf00, LP94, RK11, Wei98b, Cor00, 1+94, TFG10, WH07]. State-Retentive
[RK11]. Statechart [KW17].
Statechart-Based [KW17]. stateless
[MQ08]. Static [GPS14, Kri08, Lun97, SCB15, WW96, vPG03, Fer13, NAW06, NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[Ano00b, RCM+16, Lan97, RCM+12, Tem97]. stealing [ALHH08, BL94, BL99, RL14].
Step [Sho97a, Sho97b, ZG98]. Stethoscope
[Caz02]. Stochastic [DK02, LT+17].
Storage
[AT16, Holl12, LCK11, Bak95a, Bh92, DZKS12, KOE+06, MM07, PDM16].
stores [TAN04]. strand [RCV+10]. strata
[NPC06]. Strategies
[PSCS01, AGEB08, FGG14]. Strategy
Stream [KSU94]. Streaming [HHOM91, HHOM92, KEL+03]. Streaming/FIFO [HHOM91, HHOM92]. Streams [PRE90, SPY+93]. Strength [KOI00]. Strict [COO95, FS96, TRA91, KIAT99, SCG95]. Strictly [ANO06]. Strong [CWHB03, KZC15, MTC+07, ZHCB15]. Structural [CKRW99]. Structure [BB00, YKL13]. Structured [TCI98, FR95]. Structures [RCRH95, AGN09, GOI97, ND13]. students [FEK08]. Study [AGK96, CHI15a, EGC02, HMT+96, LSB15, SAT02, TAK+00, VK99, WG94, YMR93b, BRI89, CASA14, CL00, FIS97, HJT+93, HF96, KPPER06, MGL95, SP05, SOD02, TSA97a, YM92, YM93a]. Style [WIL94a, WIL94b]. subdivision [MTS10]. subordinate [CSK+99, CTYP02]. Subsetting [AJK+12]. Substrate [ACMA97, HAI97a, JP92]. Subsumption [MAN91]. Suffix [OR12, LHS16]. SugarCubes [BS00]. Suite [BTE98, BO01, TG09]. Suites [SPDLK+17]. SuiteSparseQR [DAV11]. sum [TDW03]. summary [I+94]. Summer [ANO94f, USE92a]. Sun [MCM97]. SunOS [CAT94, PKB+91]. super [KUS15]. Supercomputer [VTSM12, GI94]. Supercomputing [ACM92, ACM95a, ACM96, ANO91, ANO94e, IEE90, IEE92, IEE93, IEE94c]. SuperLU [LIO95]. SuperMalloc [KUS15]. SuperScalar [SU96, DIV95, FIS97, GU95, LOI95, MEN91]. Superthreading [TSA97b]. Support [ACM94d, ABLL92, BCG+10, CZS+17, CSS+91b, EJ93, GHG+98, KC99, ME15, MS89, NS97, PTMB09, SSP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CKD94, CHH+03, CSS+91a, CSS+91c, EVR01, FAN93, HMC95, MWPO7, MEG03, MS87, MEN91, TSY99, TSY00, TNB+95, WK08a, WK08b, WK08c]. Supported [ADD03, ZP11]. Supporting [RCRH95, SAM99, SP00a, DC99, DC00, TDW03]. suppression [JWGT11]. surgery [MCS15]. Surprises [BC98]. Survey [MAN96, ZSB+12, CAT94, URS02b, URS03]. Survival [ANO99]. Surviving [ANO99]. SVR4 [SPY+93]. swap [MLS15]. Swing [GEA98]. Switch [GN00, EIC97, GWM07]. Switzerland [LAI96]. Sy [USE01]. Symantec [RDO95a]. symbiosis [BRI89, EE10, EE12]. Symbolic [ST00a, ST00c, ST00b, STV02]. Symbolic [ACM94c, BGC14, HON94, LAK96, WAT91, BHKR95, FUJ97, HF88]. Symmetric [BMV03, NV94, BIK+11, PRA95b, RGG99, SHA98]. Symmetry [ES97]. Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, ANO91, ANO94a, ANO94a, ANO94b, GOI94, HON94, LAK96, USE91a, USE92b, USE93a, USE98a, WAT91]. Synapsys [CO90a]. Synchronization [REC01, HEI03, LA93, REC98, DHM+12, DESE13, MT02a, MT02b, MT02c, MPTF12, NLK09, PRS14, RD06, VEN97]. synchronization-induced [MPTF12]. synchronization-related [RD06]. Synchronizing [MCM96a, MCM96b, CZWC13]. Synchronous [BM07, HPB11]. syntax [KT17]. Synthesis [FN17, HB15, SCH17, MPS9, SR14, STR16]. Synthesizing [GLPR12, KIM14, SRJ15]. synthetic [GJ11]. System [ADD03, ABDRS08, AKJ+12, ANO98a, ANO00b, ABN99, ABH+00, BMRI94, BBD+91, BJ+96, BTE98, CLFL94, DNR00, FG91, GEI01, HMT+96, KMAO1, KS97, MS89, NPT98, PH97, PST+92, PEA92, PLT+15, QOIM+12, REL00b, SEP96, SRI93, SG96, TC198, VSM+08, YAM96, ABDRS05, AAC+15, ANO96, ANO97b, A+01, AR17, BBFW03, BDM98, BCS00, BAD+10a, BAD+10b, BJ+95, BAD+09, BLC97, CAT94, GI88, HIG97, JOE96, LAM02, MHW02, SAM99, SP00a, DC99, DC00, TDW03]. suppression [JWGT11]. surgery [MCS15]. Surprises [BC98]. Survey [MAN96, ZSB+12, CAT94, URS02b, URS03]. Survival [ANO99]. Surviving [ANO99]. SVR4 [SPY+93]. swap [MLS15]. Swing [GEA98]. Switch [GN00, EIC97, GWM07]. Switzerland [LAI96]. Sy [USE01]. Symantec [RDO95a]. symbiosis [BRI89, EE10, EE12]. Symbolic [ST00a, ST00c, ST00b, STV02]. Symbolic [ACM94c, BGC14, HON94, LAK96, WAT91, BHKR95, FUJ97, HF88]. Symmetric [BMV03, NV94, BIK+11, PRA95b, RGG99, SHA98]. Symmetry [ES97]. Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, ANO91, ANO94a, ANO94a, ANO94a, GOI94, HON94, LAK96, USE91a, USE92b, USE93a, USE98a, WAT91]. Synapsys [CO90a].
MS87, Met95, MTC+07, MC06, OCRS07, PRB07, Ply89, Pom98, REL00a, REL00c, RD99, She02, TK+02, TLZ+16, TMAG03, WCC+07, WZWS08, TLA+02, EKB+92, MS87, Pea92]. System- [PLT+15].

system-level [OCRS07]. systematic [MQ07]. SystemC [RSB+09]. SystemC/C [RSB+09]. SystemC/C-based [RSB+09]. Systems [ACM94d, AG06, Ano00b, ABN00, BMN99, Bre92, BC94, CCH11, CvdBC18, Dru95, FMY+15, FGKT97, GHG+98, GJ97, HRH08, HKSL06, IEE89, IEE94a, KR12, KKK03, KG05, KUCT15, KW17, LLS06, LMA+16, LYH16, MS15, PGB16, RW97, RR03, SUF+12, SU89, USE92b, Wal95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB10, DZKS12, DSH+10, DBRD91, GJ11, Gol96, GKK09, IHT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Je94, Jen95, KKH04, Kub15, LSN10, LLC15, Leg01, LAK09, LVA+13, MLC+09, MGL95, MM07, NFBB17, PBDO92, RCV+10, RBF+09, RVR04, SCPC13, She98, SP05, Sim97, SJBJ92a, SJBJ92b, ST05, We98a, WCV+98, Ano98b].
systolic [PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wea08]. T1/T2 [Wea08]. T2 [Wea08]. Table [VB00, KNPS16]. tabling [AR17].

taking [Ano92b]. Talking [Ano94c, HCM94]. TAM [CGSV93].

Taming [Hol00, HBCG13, HHPV15].

TapeWare [Ano00b]. targeting [LGH94].

Task [CCX+16, G95, Kwo03, Mar03]. Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12]. Task-Level [GP95].

Tasking [CvdBC18, Dil93, KR01a]. Tasks [Fin95, PVS+17, YSS+17, FGG14].

Taxonomy [HM96, SP96]. TC2 [BT01].

TC2/WG2.5 [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, An98a, MKK99, SBB96].

tcl-based [Ama98]. Tcl/2k [USE00b].

Tcl/Tk

[Ass96, USE96, USE98b, USE00b, An98a]. Teaching [Fek08, CS00, She02]. TeamWork [CZW13].

Technical [USE00a, Cat94]. Technique [JSB+12, KG94, Lem02, OCS01, PGB+16, JSB+11, JPSN09, LKH04, RS07, UZU00, VACG09, WCV+98].

Techniques [DS16, EKKL90, GS02, Han97, NLK09, PWL+11, TGBS05, ZH96, BR2, GEG07, OCRS07, Pri97, RCG+10, SV96c, SV96d, ZSB+12]. Technologies [Ano00b, Ano98b]. Technology [Bra97, KM93, LB00, ELSE90, USE01, VS+08, KSB+08, Tsa97b].

TeleNotes [WSK97].

temperature [CCC12]. Template [Cal00, How98]. Ten [An99].

Tennessee [IIE94b]. Tera [BTE98, Mat97]. Terabytes [IIE02]. Term [BGK94a, BK94b, BGK96]. termination [TDW03]. Test [Ama98, EFN+10, GRS97, SPDLK+17, TG09, EFN+02, K16, SR14].

test-case [KI16].

Testing [BBdH+11, Goe01, LCS04, RCC14, CMB10, EFC+03, EHSU07, MQ07, Sen08, YNP12].

tests [SRJ15]. Texas [USE92a, USE00b].

TFLUX [DTLW16]. tgMC [LGH+16]. Their [YWJ03, Gil94]. them [Ano92a, Ano94b].

Theoretic [ES97]. theories [LQ15].

Theory [ACM93b, LLD17, NFBB17, WLK+09].

there [Ano94b]. thermal [WA08]. though [Ano94b].

Thread [Ano00c, ABB99, ABNP00, Bet73, BS99, CNQ13, Cal97, COA04, CH00a, Col90a, DSR15, DGK+03, Don02, Eng00, FD95, FRRM00a, FRRM00b, FRRM00c, FRRM00d, GF00, GJT+12, GP05, GBCS07, HAG02, Hei03, HG91, ISS98, KG05, Kim14, Klo00, KBH+03, KBH+04a, KBH+04b, LLL10, LYH16, LEL+97a, LEL+97b, Low00, LLL17, Man99,
MG99, MTN +00, MB05, MCFT99, ND96, Pan99, PR05, PEA +96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RČV +10, RCM +16, RCG +10, Rec98, Ric99, Rin99, Rod95b, SKS +92, Sat02, STY99, SLG04, Sin97, SKK +01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WC99, We97, Wli03, YBL16, ZP11, AMRR98, ABG +08, BKC +13, BHK +04, BC02, CSB16, CSM +05, DMBM16, DG99, DWYB10, Don92, DBRD91, Eic97, EE09b, Fek08, GP08, GOT03, GLC99, Hyd00, JEV04, KDM +98, KC09, KBA08]. thread [KSD04, KASD07, LK13, LZW17, Lie94, LML00, LLI +14, Loe05, MLC +09, MT02a, MT02b, MT02c, MC06, OT95, PAB +14, PRS14, PGB +11, PO03, PT03, PGB14, QQOQV +09, SKG +11, Sh95a, SLG06, SP00b, SH69, S95, SDL3, SLT02, Stä05, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ +16, TCC95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP +02]. Thread-Aware [LYH16]. Thread-Based [KG05, CNQ13, SKS +92]. Thread-Level [LEL +97a, LEL +97b, MG99, YBL16, FURM00a, FURM00b, MCF99, WSO8, DG99, JEV04, KCO9, MT02a, MT02b, MT02c, PO03, PT03, QQOQV +09, SCZM00, YZ14]. Thread-Local [DGK +03, WHI03]. Thread-management [RCG +10]. Thread-modular [GBCS07]. Thread-Private [Man99]. thread-related [TLZ +16]. Thread-Safe [Kle00, Pla02, Rin99, DMBM16, Fek08, GTO03]. Thread-Sensitive [C04]. Thread-Specific [Ste01, SP00b, Shi00]. thread-switch [Eic97]. threadbare [Bak95b]. Threaded [AGK96, BBG +10, BC98, Bed91, BGK94a, BGK94b, BK96, CL95, CRKW99, CO95, CSS +91b, DV99, EHG95, EHP +07, FDLO2, GH03, GVT +17, GK94, GI93, I01, JY15, Jon91, KW17, Kri98, Kue92, KIA10, LB92, Mas99, MG15, MK +00, NS97, PCPS15, Pul00, RCKW98, STW93, Sei99, SMI92, Ste01, SBKK99, TLGM17, VSDK99, VB00, WCT98, Ada98, ABD +12, AACK92, Ano97b, BWDZ15, BK13, BAH +17, BC00, BIK +11, DSEE13, CV98, C1M +17, CASA14, CRKW97a, CRKW97b, CWB03, CSB00, Cdo01, C91, CL00, Chr01, CR02, CSS +91a, CSS +91c, DS16, EFG +03, EBBK01, EHSU07, FTAB14, FD06, FGG14, GCRD04, GCC15, GS06, GH98, GPR11, HC17, KHP +95, K19, KK04, Kep03, KRH98, Kuc91, L15, Lan97, Leg01, LBvH06a, LBvH06b, LBvH06c, LVA +13, MLCW11, MS03, MKK99]. threaded [NFBB17, NH09, NSH14, OA08a, OA08b, OA08e, PY +10, PR98, PWDD18, Pra95c, RČV +10, RK +10a, RK +10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SE12, Sei98, Sho97a, Sho97b, SV98, Smi06, St02, SQP08a, SQP08b, SQP08c, Ta13, TSY99, TS00, Tem97, TAM03, T1J +11, VIA +05, VV00, VK99, Wa00, Wil98, XMM99, YZ07, YSY +09, ZKR +11, DB09, vPG03, CGSV93]. Threading [BFA +15, CvdBC18, DHR +01, Hol98d, KS16, LKBK11, McC97a, McC97b, MS15, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, TGO99, YLLS16, Bak95a, BM07, DTLW16, FWL03, LZW +13, MLC +09, MCF99, NJ00, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDBN98, KSY0X +11, YKL13, CH04]. Threading-Based [KS16]. ThreadMentor [CMS03, She02]. Threads [Alf94, Ano94c, ACR01, Ber96b, BCL +98, Boseo5, BLP04, Cal00, CGR92, Co90b, Cri98a, Cri98a, TLA +02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, H92, HBGO1, Hol00, How00, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MP89, McM96c, Nor96, P0S01, P0700, Pet03, Pla93, Pra95c, San04, SEP96, TGG99, WC +04a, Wil94a, Wil94b, Wil97, Yam95, Yam96, dPRGB99, Ano02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, But14, But97, CZWC13, Cal02.
Tune [RGK99]. Tuned
[Ano95a, Ano95b, Kub15]. Tuning
[LEL+99, CSB00, RGK99]. Tunnelling
[Don02]. Tutorial [Taf13]. Twentieth
[ACM93a]. Twenty
[AOV+99, ACM93b]. Twenty-fifth
[AOV+99, ACM93b]. Two
[BBH+17, CM98, JYE+16, STY99, GLC99]. Two-Level
[JYE+16, BBH+17, STY99]. TX
[Cha05, ACM00, USE91b]. TxRace
[ZLJ16]. Type
[Gro03, VGR06, BAD+09, GE08, Lan02, Mil95, PRB07]. Type-checking
[Mil95]. Type-safe
[Gro03]. Typed
[DMBM16]. Types
[AFF06, FFLQ08, Ten98, BAM07, KS93, VGR06]. Typings
[Smi06]. UCITA
[Gar01]. UK
[AOV+99]. ULT
[PG03]. Ultra
[PWL+11]. Ultra-Scale
[ACM93a]. Unbounded
[CNV+06, FKP15, BDLM07]. uncommon
[BDLM07]. Uncover
[WS08]. underdetermined
[Kub15]. Undergraduate
[BLPV04]. Understandable
[MSM+16]. Understanding
[BZ07, TLA+02, EPAG16, RRP06]. Undocumented
[SW97]. Unfoldings
[SPDLK+17]. Unicode
[Swi09]. Unified
[Wei98b, ABG+08, GKZ12]. Uniform
[BDN02, SKG+11]. unifying
[MS03]. unimodular
[D'H92]. unintrusive
[HDT+13]. uniprocessor
[GL98a, Yan97]. uniprocessors
[BRE92, EJ+96]. Uniscape
[Ano98b]. UNISIM
[LS11]. UNISIM-Based
[LS11]. unit
[CBM10, Par91, PAB+14]. United
[ACM94c]. Unthreaded
[RJ+09]. Units
[RKK15, Gun07]. univariate
[CMX10]. University
[IEE99]. UNIX
[Ano00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91]. Unix-to-NT
[Ano98b]. UnixWare
[Rod94, Rod95b]. unlocking
[XSaJ08]. unravel
[But14]. Unraveling
[Bec00]. Unsynchronized
[DSR15]. unveiled
[Ano95a, Ano95b]. Unveiling
[AAC+15]. up-and-downdating
[VV11]. UPC
[EGC02]. updates
[NH09]. Updating
[HSS+14, HSD+12, NHFP08]. Ur
[Cha15b]. Ur/Web
[Cha15b]. URL
[TLA+02]. USA
[ACM94a, ACM94d, Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE89, IEE94a, IEE96, IE02, SS96, USE89, USE91a, USE91b, USE93a, USE93b, USE00b, USE00a, USE01]. Usage
[BS96, Kor89, VS11]. Use
[Bak95a, HW92, WWW+02]. Use-once
[Bak95a]. Useful
[Pet03]. USENIX
[Ano90, Ano94f]. User
[ABL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, LI05, MSLM91, OT95, SLT02, TNB+95, YZYL07]. User-Level
[ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07]. User-Space
[Eng00, GRS97]. Using
[Ano99, ABH+00, AZG17, BDN02, BBC+00, BLG01, BTE98, CRE99, Cor00, DS16, DTLW16, DBRD91, GHB01, HJT+93, HBTG98, Hei03, How00, KMc02, Kwo03, KET06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SCD+15, SEP06, SLT02, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CTYP02, CDD+10, CVLJ08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JWTG11, JJY+03, KASD07, KBF+12, LL95, MM14, NPC06, NTT+07, Nik94, PT03, RKM+10a, RKM+10b, RMM99, RPNT05, SLGZ99, SLP+09, TP18, TFG10, Tod05, TAN04, VPC02, VD08, ZJS+11, KSB+08]. UT
[Hol12]. Utility
[FHM95a, JSMP13, FHM95b]. Utility-based
[JSMP13]. utilization
[Squ94]. Utilizing
[ES07]. UX
[Ano95a, Ano95b, Yam96]. V
[EKB+92, Pea92, FG91, PST+92]. v1.0
Validating [LB17]. Validation [BMV03, LB17, SCB15]. value [DG99, TFG10, ZCSM02a, ZCSM02b].

variable [Evr01, dB09]. Variables [Hol98c, Whi03, Bak95a]. variation [PGB12]. variety [CML00]. VAX [Gil88].

Vector [Goo97, HHOM91, HHOM92, KBH+04a, KBH+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92]. Vector-Thread [KBH+04a, KBH+04b, KBA08].

vectorization [cC91, JMS+10, RKHT17]. vectorized [TP18]. vectors [KTK12].

Velodrome [FFY08]. Verification [AMdBDRS02, BCR01, Chl15a, DRV02, EGP14, FK12, KKW14, CASA14, DCK07, EG11, FFQS05, NSH14, Sta05].

Very [AOV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZY16, FBF01, Hig97, KRBJ12, KGPH12, Kim14, LWV+10, LZZT15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLL+09]. Viability [KLH97].

Video [BC00]. view [KTLK13, PT91]. Vina [TO10].

viscous [RM99]. Visual [PTMB09, Di93, McM96c, Esp96, Nag01]. Visualization [Ano97a, ACR01, Cal02, Caz02, BCS90, CSB00, MKK99, NCA93].

Visualizing [CdOS01, WT10, ACD+18, DSEE13]. Visually [Dru95]. VLIW [For97, GSL10, OCS01]. VLSI [ABC+93].

VM [FFG14]. VMs [KKJ+13]. voltage [MTPT12]. volumes [Koo93]. VRSync [MTPT12]. vs [EHP+07, MMTW10, MCFT99, SSK+07, SKP+02].

vulnerability [SN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits [How00]. WAN [Yas95]. Wanted [Ano94g].

Warnings [CJW+15]. warp [FSYA09, MTS10, Rei95, Tam95]. was [San04]. Washington [ACM92, Ano90, IEE94c, USE98a]. Watch [Ano97b]. water [IVA+13]. Wave [Ano00b, BBC+00, LS07]. wavelet [TKHG04].

Way [KA05, MTN+00, Rin99, ZJFA09, FGT96]. Ways [Wei97]. Weak [KZC15, TVD14].

Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay [Zha00]. WebThreads [Ano97a]. week [Ano95a, Ano95b]. weeks [But14]. weight [Way95]. weighted [HFV+12]. weighting [VS11].

Weightless [SPY+93]. Weld [OCS01]. well [Kub15]. well-determined [Kub15]. West [EV01]. WG2.5 [BT01].

Widening [KKW14]. will [Ano95a, Ano95b]. WiMAX [CDD+10].

Windows [USE98a, HKT93, YZYL07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter [Ano90, USE89, USE91b, USE93b]. Wired [DHR+01]. Within [BP05]. without [Gus05, LZBW14, Pla02]. woes [Ver97].

WOMPAT [Cha05, EV01]. Work [Ber96b, Wal95, ALHH08, Ber96a, BL94].
References

Satoshi Amamiya, Makoto Amamiya, Ryuzo Hasegawa, and Hiroshi Fujita. A continuation-based noninter-

Antonopoulos:2009:ASH

Aliaga:2012:SDG

Agarwal:2010:DDP

Auerbach:2008:FTG

REFERENCES

[ACM93a] ACM, editor. *Conference record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: papers presented at the symposium, Charleston,
ACM:1993:PTF

ACM:1993:TCS

ACM:1994:ASC

ACM:1994:CRP

ACM:1994:IPI

ACM:1994:SIC

REFERENCES

NY 10036, USA, November 1994. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

ACM:1998:SHP

ACM:1999:SPO

ACM:2000:SHP

ACM:2001:PAJ

REFERENCES

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

Agerwala:2006:SRC

Agarwal:1989:PTM

Agarwal:1991:PTM

Agarwal:1992:PTM

Anderson:2008:SCD
Zachary Anderson, David Gay, Rob Ennals, and Eric Brewer. SharC: checking data sharing strategies for multithreaded C. *ACM SIGPLAN
REFERENCES

Amrhein:1996:CSM
Beatrice Amrhein, Oliver Gloor, and Wolfgang Küchlin.
A case study of multithreaded Gröbner basis completion.
In Lakshman Y. N. [Lak96], pages 95–102.
LCCN QA 76.95 I59 1996.

Anderson:2009:LA
Lightweight annotations for controlling sharing in concurrent data structures.
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Akkary:2000:CSM
Haitham Akkary and Sébastien Hily.
The case for speculative multithreading on SMT processors.
CODEN LNCSD9.
ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/1940/19400059.htm;

Abdulla:2008:MCR
Parosh Aziz Abdulla, Frédéric Haziza, and Mats Kindahl.
Model checking race-freeness.
CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Adiletta:2002:PSA
Matthew Adiletta, Donald Hooper, and Myles Wilde.
Packet over SONET: Achieving 10 Gigabit/sec packet processing with an IXP2800.
ISSN 1535-766X.
URL http://developer.intel.com/technology/itj/2002/volume06issue03/art05_packetoversonet/p01_abstract.htm;

Aitken:1996:MCJ
Gary Aitken.
Moving from C++ to Java.
CODEN DDJOEB.
ISSN 1044-789X.
Ahn:2012:ISE

Azagury:1999:NIR

Aciicmez:2006:PSB

Agrawal:2008:AWS

Agrawal:2010:HLF

Arjomand:2016:BAP

Arimoto:1994:EKI

Amer:2015:MRC

Amamiya:1989:DFC

Amaranth:1998:TBM

Aamodt:2003:FMO

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

Ailex:1998:CMT

search with an application to circuit partitioning. *Lecture Notes in Computer Science*, 1457:310–??, 1998. CO-
DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (elec-
tronic).

Annavaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

[Ano92a] Anonymous. It’s a multithreaded world, part 1: Multithreaded operating systems are becoming the norm. Here’s how your applications can exploit them. *Byte Magazine*, 17 (5):289–??, May 1992. CO-
DEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (elec-
tronic).

Anonymous:1992:MWPb

[Ano92b] Anonymous. It’s a multi-
threaded world, part 2: Multi-
threaded operating systems are taking over. Are your applications ready? *Byte Magazine*, 17(6):351–??, June 1992. CO-
DEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (elec-
tronic).

Anonymous:1994:MDP

[Ano94b] Anonymous. Multiproces-
sor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Sys-
tems Today*, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

8186-6605-6 (paper), 0-8186-6606-4 (microfiche), 0-8186-
Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

[Ano97a] Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2;
REFERENCES

Anonymous:1997:TWP

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAa
Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pega-Soft Canada; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation So-
REFERENCES

REFERENCES

Awile:2014:PWF

USENIX:1996:ATT

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG

Boehm:2008:FCC

Bocchino:2009:TES

REFERENCES

June 2007. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Barkstrom:2009:UAS]

[Bauer:1992:PCE]

[Bolding:2000: MSM]

[Bova:2000:DLP]

[Balter:1991:AIG]

[Ball:2011:PPT]

[Balis:2002:CPM]
B. Balis, M. Bubak, W. Funika, and R. Wismüller. A concept of portable moni-
Balis:2003:MSM

Balaji:2010:FGM

Bender:2017:TLM

Bratanov:2009:VMW

Butler:2011:BAM

REFERENCES

Barabash:2005:PIM

Buhr:1994:TRM

Ball:1998:MTA

Bhandarkar:2000:PPM

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD
[BCG+95] Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene W. Hodges IV,

Boneti:2008:SCP

Bergan:2013:ICS

Bokhari:2014:MMM

Bedy:2000:VSM

Biagioni:1998:SST

Benner:2007:SLS

Peter Benner, Maribel Castillo, Rafael Mayo, Enrique S.

Ball:2001:PVM

Baja:2011:FFP

Badamo:2016:IPE

Beyls:2000:CGM

Brzuszek:2006:MTS

Bic:1998:MAD

Blundell:2007:MFC

Bangs:1998:BOS

Bouge:2002:IRE

Bouajjani:2012:ARP

Bouajjani:2013:ARP

Becker:2000:JSU

REFERENCES

Becker:2001:SMW

Beddo:1991:MTC

Beebe:1998:BPA

Borkenhagen:2000:MPP

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bok000
REFERENCES

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bic:1995:ATD

Burgess:2012:EFL

[BHP+03] Vasileios K. Barekas, Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopoulos,

REFERENCES

[BL98] Robert D. Blumofe and Charles E. Leiserson. Space-

Blumofe:1999:SMC

Bordawekar:1997:EEH

Broberg:2001:POU

Bucker:2004:TUC

Blumofe:1992:MSM

REFERENCES

REFERENCES

2011. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

REFERENCES

Bokhari:2010:EPM

Burnim:2010:ACD

Bartolini:2014:AFG

Boisvert:2001:ASS

Brunett:1998:IET

Butenhof:1997:PPT

Buttari:2013:FGM

REFERENCES

CODEN SJOCET. ISSN 1064-8275 (print), 1095-7197 (electronic).

Butcher:2014:SCM

Bik:1997:JPJ

Beveridge:1997:MAW

Bai:2015:SPA

Basharahil:2005:DSA

Berger:2009:GSM

Emery D. Berger, Ting Yang, Tongping Liu, and Gene No-

Benaya:2007:UTA

Calcote:1997:TPS

Calkins:2000:ITT

Callaway:2002:VTR

John Callaway. Visualization of threads in a running Java program. Thesis (M.S.), University of California, Santa Cruz, Santa Cruz, CA, USA, 2002.

Caromel:1989:GMC

CarrerasVaquer:1989:APE

Campanoni:2008:PDC

Catano:2014:CSL

Néstor Cataño, Ijaz Ahmed, Radu I. Simineceau, and

J. Cui, J. L. Bordim, K. Nakano, T. Hayashi, and

Chiueh:1991:MTV

Chang:2004:TSP

Cai:2014:MSD

Chen:2012:MLS

Chen:2011:MJP

Chen:2016:TMR

Kuan-Hsun Chen, Jian-Jia Chen, Florian Kriebel, Semeen Rehman, Muhammad Shafique, and Jörg Henkel. Task mapping for redundant multithreading in multi-cores.
REFERENCES

[CFG+12] Ümit V. Çatalyürek, John

REFERENCES

Canetti:1991:PCP

Cerin:2006:MSS

Culler:1992:AMMa

Culler:1993:TCC

Culler:1992:AMMb

Cattaneo:1992:ACT

Culler:1993:TCC

REFERENCES

REFERENCES

2867 (print), 1558-1160 (electronic).

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Catalan:2017:TEM

Ching:1991:EAP

Curran:2015:IZM

Cejtín:1995:HOD

Cai:2015:ADB

Carter:1994:HSF

Cenciarelli:1997:SMJ

Cenciarelli:1997:SMT

Cenciarelli:1999:EBS

Clemen
ts:2012:SAS

Chaudhry:1994:CMP

Caudal:1995:DEM
[CL95] F. Caudal and B. Lecus-
san. Design and evaluation of a multi-threaded architecture for parallel graph re-

Choi:2000:SCP
Chase:1994:SPS

Choi:2002:EPD

Cormen:2009:IA

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

[CMK00] Margaret Cahir, Robert Moench, and Alice E. Koniges.

REFERENCES

Colvin:1990:CTS

Colvin:1990:MLT

Coorg:1995:PNS

Cook:2002:REJ

Choi:2008:ABP

Clark:2002:AMT

Corbett:2000:USA
James C. Corbett. Using shape analysis to reduce finite-state models of concurrent Java programs.

REFERENCES

Cappello:1999:PNB

Criscolo:1998:JQH

Criscolo:1998:JQ

Cromwell:1998:PBD

Chang:1995:CSM

Chang:1995:CTS

Carr:2000:PCL

Carothers:2002:CMP

[CS02] Christopher D. Carothers and Boleslaw K. Szymanski. Checkpointing multithreaded programs. Dr.
REFERENCES

Chen:2012:CLA

Chassin de Kergommeaux:2000:PIV

Chappell:1999:SSM

Constantinou:2005:PIS
Theofanis Constantinou, Yia-

Culler:1991:FGPa

Culler:1991:FGPb
David E. Culler, Anurag Sah, Klaus E. Schauer, Thorsten von Eicken, and John Wawrzynek. Fine-grain parallelism with minimal hardware support: a

REFERENCES

????, ????, 2003. CODEN ????? ISSN 0190-3918.

Man Cao, Minjia Zhang, Ari-

Cai:2013:TST

Daniluk:2009:MTS

Davis:2011:ASM

Day:1992:INB

Day:1992:INC

deBoer:2009:SVC

Draves:1991:UCI

Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using continuations to implement thread management and communication in operating systems. *Operating Systems*
References

Duda:1999:BVT

Duda:2000:BVT

Dou:2007:CCM

Das:2007:FVT

Dennis:1994:MMP

DuBois:2013:CSI

DeWitt:1999:PTL
REFERENCES

1999. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Domani:2003:TLH

DHollander:1992:PLL

DeRusso:1998:MEH

Dillon:1993:VEM

Duncan:2001:LPD

Dolby:2012:DCA

REFERENCES

[Dubish:2016:CCG] Yong Dou, Zhengbing Pang, and Xingming Zhou. Implementing a software virtual shared memory on PVM.
REFERENCES

In IEEE [IEE97], page ??

Drake:1996:IJT

[DS16]

Drusinsky:1995:VDE

[DSEE13]

Delzanno:2002:TAV

[DSG17]

Deniz:2016:UML

Bois:2013:BGV

Dang:2017:ECB

REFERENCES

REFERENCES

REFERENCES

Eskilson:1998:SMM

Esmaeilzadeh:2012:LBL

Eyerman:2009:MLP

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

REFERENCES

2012. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Eggers:1997:SMP

Edelstein:2001:MJP

Edelstein:2002:MJP

Esparza:2011:CPB

REFERENCES

El-Ghazawi:2002:UPP

Eggers:2010:AL

Esparza:2014:PBV

Elmasri:1995:TCL

Emer:2007:STV

Eytani:2007:TFB

Eickemeyer:1997:EMP

Eager:1993:CER

REFERENCES

1–32, February 1993. CO-
DEN ACSYEC. ISSN 0734-
2071 (print), 1557-7333 (elec-
acm.org:80/pubs/citations/
journals/tocs/1993-11-1/
pi-eager/.

Richard J. Eickemeyer, Ross E.
Johnson, Steven R. Kunkel,
Mark S. Squillante, and Shia-
fun Liu. Evaluation of mul-
tithreaded uniprocessors for
commercial application envi-
ronments. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (print), 1943-5851
(electronic).

David Ediger, Karl Jiang,
E. Jason Riedy, and David A.
Bader. GraphCT: Multi-
threaded algorithms for mas-
sive graph analysis. IEEE
Transactions on Parallel and
Distributed Systems, 24(11):
CODEN ITDSEO. ISSN
1045-9219 (print), 1558-2183
(electronic).

J. R. Eykholt, S. R. Kleiman,
S. Barton, R. Faulkner,
D. Stein, M. Smith, A. Shiv-
alingiah, J. Voll, M. Weeks,
and D. Williams. Beyond mul-
tiprocessing: Multithreading
the System V Release 4 ker-
nel. In USENIX [USE92a],
pages 11–18. ISBN 1-880446-
44-8. LCCN QA 76.76 O63

S. J. Eggers, David R. Keppel,
Eric J. Koldinger, and
Henry M. Levy. Techniques
for efficient inline tracing on
a shared-memory multiproces-
sor. ACM SIGMETRICS Per-
formance Evaluation Review,
18(1):37–47, May 1990. CO-
DEN ????? ISSN 0163-
5999 (print), 1557-9484 (elec-
tronic).

John English. Multithreading
in C++. ACM SIG-
PLAN Notices, 30(4):21–28,
April 1995. CODEN SIN-
ODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160
(electronic).

Ralf S. Engelschall. Portable
multithreading — the signal
stack trick for user-
space thread creation. In
USENIX [USE00a], pages
239–249. ISBN 1-880446-22-
7. LCCN ????? URL http:
//www.usenix.org/events/
usenix2000/general/engelschall.
h.html.

Dmitry Eytyushkin, Dmitry
Ponomarev, and Nael Abu-
Ghazaleh. Understanding

Elmas:2007:GRT

Emerson:1997:USW

Evripidou:2001:MDD

REFERENCES

issn=0178-4617&volume=32&issue=1&spage=36.

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:ADA

Flanagan:2008:TAS

Flanagan:2009:FEP

Flanagan:2010:AMD

Flanagan:2008:TAS

Flanagan:2005:MVM

Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia. Modular...

REFERENCES

[FK12] Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by modular reason-

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

Flanagan:2002:MCM

Ferreira:1995:PAI

Field:1995:PPS
REFERENCES

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa

Flautner:2000:TLPb

Fang:2003:DGO

Grant:2009:IEE

[GA09] Ryan E. Grant and Ahmad Afsahi. Improving energy efficiency of asymmetric chip multithreaded multiprocessors through reduced OS noise scheduling. *Concurrency and
REFERENCES

REFERENCES

Giampapa:2005:BGA

Gotsman:2007:TMS

Gao:1995:ATD

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

REFERENCES

References

Gibson:1994:CMC

Gilbert:1988:DVN

Gildea:1993:MTX

Giloi:1994:PSA

Gorton:1997:GEI

Ganesan:2011:MMP

Gebhart:2012:HTS
Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally, Erik Lindholm, and Kevin Skadron. A hierarchical thread scheduler and register file for energy-efficient throughput processors. ACM Transactions on Computer
REFERENCES

Gerlhof:1994:MTA

Garcia:2005:HJA

Georgiou:2017:ETD

Granat:2009:NPQ

Garland:2012:DUP

Gallmeister:1991:EEP

Golla:1998:CMR

REFERENCES

REFERENCES

/Gwww.jucs.org/jucs_6_10/performance_of_switch_blocking/

Goeschl:2001:JTT

Goldwasser:1994:PAS

Gollapudi:1996:MCA

Goldstein:1997:LTC

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

REFERENCES

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

[GSC96] Seth Copen Goldstein, Klaus Erik

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Giorgis Georgakoudis, Hans Vandierendonck, Peter Thoman, Bronis R. De Supinski, Thomas Fahringer, and Dimitrios S. Nikolopoulos. SCALO: Scalability-aware parallelism orchestration for multi-threaded...

Gibson:2010:FSC

Gabor:2007:FES

Haggar:2002:JQD

Haines:1997:DLT

Haines:1997:OIA

Hamilton:1996:JSN

Hanson:1997:CII

REFERENCES

Harrington:1999:WMM

Hayden:1993:BIC

Haines:1992:SMC

Hottelier:2015:SLE

Hunt:2013:DTN

Hanson:2001:UF1

Hanson:2002:AFI

Heber:1998:UMA

REFERENCES

Hankendi: 2017: SCS

Halstead: 1994: PCR

Haines: 1994: DCT

Ding: 2002: MOP

Honarmand: 2013: CUA

Heinlein: 2003: ATS

Hoffman: 2009: SAT

REFERENCES

2867 (print), 1558-1160 (electronic).

Hroub:2017:EGC

Halstead:1988:MMP

Hertzum:1996:BQO

Halappanavar:2012:AWM

Hum:1991:NHS

Hum:1992:HSM

REFERENCES

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1992:BVP

Hussein:2015:DRM

Hightower:1997:PDD

Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Jour-
REFERENCES

Hauser:1993:UTI

Hirata:1992:EPA

Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD
Bingsheng He and Qiong Luo. Cache-oblivious databases:

Hansen:1990:EPA

Holm:1994:CSP

Helmbold:1996:TRC

Harish:2016:PIK

Hirata:1992:MPA

H. Hirata, Y. Mochizuki, A. Nishmura, Y. Nakase,

REFERENCES

Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 1998. xii + 110 pp.

[Hayden:2012:KEG] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-purpose dynamic software updating for C. ACM SIGPLAN No-
REFERENCES

[HWZ00] Peter Horwood, Shlomo Wygodny, and Martin Zardecki.
REFERENCES

Hyde:2000:JTP

Huang:2015:COM

Iannucci:1994:MCA

Huang:2013:CRL

Iannucci:1994:AI

REFERENCES

REFERENCES

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1999:HCS

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP
REFERENCES

Itzkovitz:1998:TMA

Jaisson:2008:IPM

Jia:1998:PMM

Jen:1995:DRT

Johnson:2004:MCP

Jolitz:1991:PUB
W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386.
The basic kernel multiprogramming and multitasking.
II. Dr. Dobb’s Journal of Software Tools, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

ISSN 1058-9244 (print), 1875-919X (electronic).

ISSN 0302-9743 (print), 1611-3349 (electronic).

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

ISSN 0362-1340 (print), 1558-1160 (electronic).

REFERENCES

Jacobs:2008:PMC

Joishi:2009:RDP

Joisha:2012:TTE

Joao:2012:BIS

Joao:2013:UBA

REFERENCES

[KASD07] Nagendra J. Kumar, Vasanth Asokan, Siddhartha Shivshankar, and Alexander G. Dean. Efficient software implementation of embedded communication protocol controllers using asynchronous

REFERENCES

REFERENCES

5964 (print), 1943-5851 (electronic).

Kleiman:1995:IT

Kerrison:2015:EMS

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

REFERENCES

5980 (print), 1943-586X (electronic).

Khan:2012:MAN

Khosla:1997:MAT

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

REFERENCES

Kim:1994:FPF

Keen:2003:CCP

Kim:2014:SMC

Kranzlmuller:2003:RAP

Kee:2003:POP

Kee:2004:MMM

Kim:2013:DBC

[KKJ+13] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joon-won Lee, and Seungryoul
REFERENCES

[Maeng:2013]

Kumar:2008:AVO

[Kumar+08]

Kaiser:2014:WAM

[KKW14]

Kurzak:2009:SLA

[KLDB09]

Kleber:2000:TSA

[Kle00]

Kang:2008:ISE

[KLG08]

Kwak:1997:VMN

[KLH97]

Kwak:1999:EMC

H. Kwak, B. Lee, A. R. Hurson, Suk-Han Yoon, and Woo-Jong Hahn. Effects

REFERENCES

Kaiser:2006:CJC

Kienzle:2001:CTT

Kienzle:2001:IEO

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

Klarlund:1993:GT

REFERENCES

LCCN QA76.7 .A15 1993.
URL http://www.acm.org:80/pubs/citations/proceedings/plan/158511/p196-klarlund/
. ACM order number 549930. [KSD04]

Krieger:1997:HPO

Kalayappan:2016:FRT

Kgil:2008:PUS

Kalla:2004:IPC

REFERENCES

[Kopczynski:2017:LSS]

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kestor:2015:TPD</td>
<td>Gokcen Kestor, Osman S. Unsal, Adrian Cristal, and Ser-</td>
</tr>
</tbody>
</table>

Mahmut Kandemir, Hui Zhao, Xulong Tang, and Mustafa Karakoy. Memory row reuse distance and its role in optimizing application performance. *ACM SIGMETRICS Performance Evalua-
REFERENCES

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

Lam:1995:CPC

Lang:1997:MTE

REFERENCES

[Laneve:2002:TSJ]

[Larchevêque:1995:OIP]

[Larbi:1997:BRM]

[LeSergent:1992:IMT]

[Lewis:1996:TPG]

[Lewis:1996:MPP]
REFERENCES

Lewis:2000:MPJ

Lee:2017:MVN

Ling:2012:HPP

Li:2006:MEMa

Li:2006:MEMb

Li:2006:MEMc

Lucia:2013:CEF

Liu:2008:HPP

Lathrop:2011:SPI

Lozi:2016:FPL

Leary:1996:CEH

Lee:1993:TW

David Lee. Threads for Windows 3. Dr. Dobb’s Journal of
REFERENCES

Software Tools, 18(10):84–??, Fall 1993. CODEN DDJOEB. ISSN 1044-789X. Special Issue: Windows Sourcebook.

Lee:2006:PT

Legrand:2001:MTD

Leiserson:1997:AAM

Lo:1997:CTP

Lo:1997:CTL

Lo:1999:TCO

REFERENCES

Leman:2002:EFT

Lenatti:1995:RPM

Leppanen:1995:PWO

Leven:1997:MIR

Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Lowenthal:1996:UF

Lemon:2004:MCR

Lee:2006:TBR

S.-W. Lee and J.-L. Gaudiot. Throttling-based resource management in high performance multithreaded architectures. IEEE Trans-
references

ISSN 0018-9340 (print), 1557-9956 (electronic). URL

ISSN 0018-9162 (print), 1558-0814 (electronic).

ISSN 1077-2626 (print), 1941-0506 (electronic), 2160-9306.

3500 (print), 1557-7295 (electronic).

[LLC15] Bo-Cheng Charles Lai, Kun-Chun Li, Guan-Ru Li, and Chin-Hsuan Chiang. Self adaptable multithreaded object detection on embedded

REFERENCES

Loikk:1995:FMS

Lo:1999:SDR

Lowy:2000:MPO

Launchbury:1994:LFS

Lubbers:2009:RMP

Lal:2015:DID

Leadbitter:2007:NM
Lu:2016:VCV

Laudon:2007:CWM

Liao:2011:AUB

Lashgar:2015:CSR

Le:2007:IPM

Leiserson:2012:DPR

LoCocero:1997:MML

Liu:2014:PPF

Li:2016:HBG

Lin:2017:MSP

Lu:1994:MPM

Lu:1995:HMC

Lu:1998:ONW

Luk:2001:TML

[Luk01] Chi-Keung Luk. Tolerating memory latency through software-controlled pre-execution

Lundberg:1997:BMC

Lundberg:1999:PBS

Lobeiras:2013:PSW

Li:2012:MRP

Laadan:2010:TLA

Lopes:2001:FGM

L. Lopes, V. T. Vasconcelos, and F. Silva. Fine-grained multithreading with process calculi. *IEEE Trans-
REFERENCES

Richard F. Man. A multithreading library in C for

Mane:1996:SJP

Manley:1998:GPT

Manley:1999:IPT

Mao:1996:PMS

Marowka:2007:PCD

Masney:1999:IMT

Mateosian:1997:MNT

Mattson:2003:HGO

Mendelson:1999:DAM

[MB99] Avi Mendelson and Michael Bekerman. Design alterna-
REFERENCES

180

[McC97a]

Cameron McNairy:2005:MDC

[McC97b]

[MCFT99]

Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

[McCarth97:MTI]

[MCC97b]

[Mitchell:1999:ILP]

REFERENCES

McManis:1996:JDSb

McManis:1996:JDT

McManis:1998:DUT

McManis:1998:JDU

Mannarswamy:2010:CAS

Mitchell:2015:GIA

Nathan Mitchell, Court Cutting, and Eftychios Sifakis. GRIDiron: an interactive authoring and cognitive training

REFERENCES

[MW02] Carl J. Mauer, Mark D. Hill, and David A. Wood.
Full-system timing-first simulation. *ACM SIGMETRICS Performance Evalua-
tion Review*, 30(1):108–116, June 2002. CODEN ????. ISSN 0163-5999 (print), 1557-
9484 (electronic).

Miastkowski:1990:PGG

Michael:2004:SLF

Maged M. Michael. Scalable lock-free dynamic memory allocation. *ACM SIG-
PLAN Notices*, 39(6):35–46, May 2004. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (electronic).

Miller:1995:TPC

Robert C. (Robert Chisolm) Miller. A type-checking pre-
processor for Cilk 2, a multi-
threaded C language. Thesis (M. Eng.), Massachusetts In-
itute of Technology, Depart-
ment of Electrical Engineering
and Computer Science, Cam-

Mishra:1996:TIS

Amitabh Mishra. Task and in-
struction scheduling in parallel
multithreaded processors. Thesis (M.S.), Department
of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

Mix Software, Inc. *Using Multi-C: a portable multithreaded C programming li-
brary*. PTR Prentice-
606195-8. vi + 257 pp. LCCN QA76.73.C15 U85 1994. System requirements for com-
puter disk: IBM-compatible PC; DOS: Mix, Borland, or Microsoft-compatible C/C++ compilers.

Meng:2010:AOS

2240 (electronic).
Mars:2012:BDS

Moreno:1997:PMP

Maris:2004:CCP

Moody:1999:STT

Maiya:2014:RDA

Mukherjee:2002:DDE

Muralidhara:2010:IAS

REFERENCES

Marowka:2004:OOA

Madriles:2009:BST

Ma:2011:SPC

Machado:2015:CDD

Makreshanski:2015:LSE

Morandini:2007:UDS

Morishima:2014:PEG
Shin Morishima and Hiroki Matsutani. Performance evaluations of graph database using CUDA and OpenMP compatible libraries. *ACM*
REFERENCES

Mathis:2005:CSM

Marino:2009:LES

McKenney:2010:WGM

Metzner:2000:MMR

McAuley:2003:CVC

Marinov:2016:PAF

Moore:1995:MPD

Machado:2016:CDD

Mayes:1995:ULT

Marinescu:1994:HLC

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

Meier:2017:PVM

REFERENCES

Malan:1991:MA

McJones:1987:EUS

McJones:1989:EUS

[MS89] Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

Mantel:2003:UAS

McCartney:2015:SMT

Marsh:1991:FCU

Marino:2010:DSE

REFERENCES

Matsushita:2000:MSC

Miller:2012:VCE

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

REFERENCES

McCann:1993:DPA

Mahesri:2007:HSS

Naik:2007:CMA

Nikolopoulos:2001:EMA

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS
REFERENCES

REFERENCES

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Nielsen:2000:MTN

Narayanaswamy:2016:VCA

Nicolau:2009:TEP

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

Nakaike:2010:LER
REFERENCES

[NT14] Ben Niu and Gang Tan. Modular control-flow in-

Nemeth:1999:MLK

Nogueira:2016:BBW

Norwood:1994:SMP

Nguyen:2015:RCC

Narayanasamy:2007:ACB

Nutaro:2017:HAA

Ottoni:2008:COGa

Ottoni:2008:COGb

Ottoni:2008:COGc

Olszewski:2009:KED

Ossner:2013:GMB

Ostler:2007:IHT

Ozer:2001:WMT

Odaira:2014:EGI

Olivier:2012:CMW

Ogata:1992:DIH

Oplinger:2002:ESRa

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Omma:2004:BMA
REFERENCES

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

Odersky:1993:CNA

Oikawa:1995:RDU

Oyama:2000:OCC

Oaks:1997:JT
REFERENCES

Oaks:1999:JT

Petricer:2014:IEU

Pereira:2017:SBC

Pant:1999:TCP

Park:1991:PTM

Papadopoulos:1992:MCS

order number 2630 IEEE catalog number 92CH3216-9.

[102x681]REFERENCES

Park:2017:HHC

Porter:2015:PF

Park:2016:CJP

Perez:2015:ECR

Papadopoulos:2016:TAD

Pokam:2013:QPI
Peacock:1992:FSM

Philbin:1996:TSC

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Tumbler: an effective
REFERENCES

Park:1997:HPM

Pham:1991:EMD

Pichel:2009:IDR

Ponamgi:1991:DMP

Pager:2015:SSM

Park:2007:MEP

Powell:1991:SMT

Price:2003:CAF

Plauger:1993:MCS

Plauger:1998:SCC1

Plauger:1999:SCCg

Plachtetka:2002:QTS

Porter:2015:MMS

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.
Pricopi:2014:TSA

Prabh:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Parashar:2013:TIC

Piumarta:1998:ODT

Petric:2005:EEP

REFERENCES

Prabhakar:1995:IDO

Prasad:1995:WTS

Prasad:1995:WNT

Prasad:1997:MPT

Permandla:2007:TSP

Presotto:1990:MSP

Petrovic:2014:LHM

REFERENCES

REFERENCES

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

Peacock:1992:EMS

Papadopoulos:1991:MR

Prvulovic:2003:RUT

Piringer:2009:MTA

Harald Piringer, Christian Tominski, Philipp Muigg, and Wolfgang Berger. A multithreading architecture to support interactive visual exploration. *IEEE Transactions on Visualization and Com-
REFERENCES

Quintana-Ortí:2012:RSP

Quintana-Ortí:2009:PMA

Qian:2016:ODG

Qian:2014:PRR

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineer-
REFERENCES

ing, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

[RGK99] Jeremy B. Rodgers, Rhonda Kay Gaede, and Jeffrey H. Kulick. IN-Tune: an In-Situ non-invasive performance tuning tool for multi-threaded Linux on symmetric multiprocessing Pentium workstations. *Software—Prac-
REFERENCES

Reiche:2017:AVI

Rodrigues:2015:DSE

Raman:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

[RM99] Kevin Roe and Piyush Mehrotra. Parallelization of a
REFERENCES

Reinhardt:2000:TFD

ACM:2003:ATA

Roh:1996:GOE

Rogers:2014:LYL

Robison:2003:MCN

Rodley:1994:UIC

REFERENCES

REFERENCES

pp. LCCN QA76.76.O63 R615 1996.

REFERENCES

REFERENCES

[San04] B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

[SBB96] A. Sah, K. Brown, and E. Brewer. Programming the Internet from the server-side with Tcl and Audience1. In Association
[Ass96], pages 235–??, 183–188. ISBN 1-880446-78-2. LCCN QA76.73.T44 T44 1996.

Saavedra-Barrera:1991:ASM

Saavedra-Barrera:1990:AMA

Storino:1999:MTB

Savage:1997:EDD

Saillard:2015:SDV

Saez:2013:DFP

REFERENCES

Schafer:2017:PHL

Sendag:2005:IIS

Steinke:2005:NPF

Steffan:2000:SAT

Spertus:1995:ELB

So:2013:STI

Sartor:2012:EMT

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO
Neelakantan Sundaresan and

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

REFERENCES

[Shene:1998:MPI]

[Shene:2002:TST]

[Shoffner:1997:JSSa]

[Shoffner:1997:JSSb]

[Shinjo:2000:DCEb]

[Sime:1997:GPM]

[Sinharoy:1997:OTC]
REFERENCES

- **Sinhary:1999:COI**

- **Steensgaard:1995:ONC**

- **Sharafeddine:2012:DOE**

- **Singh:1992:DRS**

- **Singh:1992:DRT**

- **Stewart:1997:MDH**

- **Sung:2001:MDA**

REFERENCES

Solihin:2002:UUL

Solihin:2003:CPU

Sadan:2010:PMM

Smith:1992:MTX

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

REFERENCES

[SP00b] Yasushi Shinjo and Calton Pu. Developing correct and efficient multithreaded programs with thread-specific data and a partial evaluator. *Operating Systems Review*, 34 (2):33, April 2000. CODEN OSRED8. ISSN 0163-
REFERENCES

arnumber=4042681.

[Suleman:2008:FDTa] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading: power-efficient and high-

REFERENCES

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

Saghi:1998:MSH

Silc:1998:APC

Speer:1991:DTP
REFERENCES

Skillicorn:1998:MLP

Snavely:2000:SJSa

Snavely:2000:SJSb

Snavely:2000:SJSb

Sundell:2005:FLF

Stapleton:1990:DSS

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF

Shen:1999:ATL

REFERENCES

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Shee:1994:DMA

Shih:2014:COR

Sweetman:2007:SMR

Swinnen:2009:APA

Swee:2007:SMR

Swinnen:2009:APA

Swinnen:2009:APA

Swee:2007:SMR

Schwan:1992:MRT

Sterling:2002:GMP

Schwan:1991:RTT

Sinenian:2013:MMS

Taft:2013:TPS

Theobald:2000:LCE

Tamasanis:1995:MMW

Thoziyoor:2008:CMM

[TAM+08] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman, and Norman P. Jouppi. A comprehensive memory modeling tool and its application

Tanner:1987:MTI

Tolmach:2004:IFL

Tam:2007:TCS

Thompson:1997:THP

Thompson:1997:TPC

Toulouse:1995:CID

Thornley:1998:SSH

REFERENCES

Tseng:2003:DST

Thekkath:1994:ISB

Thekkath:1994:EMH

Tullsen:1996:ECl

Tullsen:1995:SMM

Tullsen:1998:SMM

Tullsen:1998:RSM

TempleLang:1997:MTE

Tennberg:1998:CAD

Tennberg:2002:RGO

Tetewsky:1994:GDR

Tian:2010:SPU

Tang:1999:APT

Xinan Tang and Guang R. Gao. Automatically partitioning threads for multithreaded

Thakur:2009:TSE

Tian:2005:PCT

Tan:1999:OFN

Tian:2005:PCT

Tan:2000:PEN

Terechko:2012:BPS

REFERENCES

Trott:2010:AVI

Todiwala:1995:DRT

Thebault:2018:AMC

Tarvo:2014:AAM

Traub:1991:MTC

Tsai:1997:PSC

Tsai:1997:SIC

Jenn-Yuan Tsai. Superthreading: integrating compilation technology and processor architecture for cost-effective concurrent multithreading. Technical report
REFERENCES

Parimala Thulasiraman, Kevin Theobald, Ashfaq A. Khokhar, and Guang R. Gao. Efficient
REFERENCES

 REFERENCES

USENIX:1992:SED

USENIX:1993:PUMb

USENIX:1993:PWU

USENIX:1996:PFA

USENIX:1998:PUWa

USENIX:1998:PSA

USENIX:2000:UAT

[USE00a] USENIX, editor. 2000 USENIX Annual Technical Conference: San Diego,
References

USENIX:2000:PUT

USENIX:2001:PJV

USENIX:2002:PBF

Unger:2000:CCA

Vera:2009:SRL

vanHo:1995:JIP
REFERENCES

REFERENCES

0163-5964 (print), 1943-5851 (electronic).

Vlassov:1999:QMM

Volkman:1993:CCP

Vijaykumar:2002:TFR

vonPraun:2003:SCA

Vitali:2012:LSO

Vrenios:2004:PPC

Vinoski:1996:DCD

Vandierendonck:2011:MSR

[VS11] Hans Vandierendonck and
REFERENCES

Vander-Swahmen:2009:CAM

Vale:2016:PDT

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Haris Volos, Andres Jaan Tack, Michael M. Swift, and Shan Lu. Applying transac-

REFERENCES

Watt:1991:IPI

Wayner:1995:FAN

Wu:1999:GMC

Wang:2004:HTVd

Wallace:1998:TMP

Wilde:1998:RES

Wang:2007:EAP

[WCW+04a] Perry H. Wang, Jamison D. Collins, Hong Wang, Dongkeun Kim, Bill Greene, Kai-Ming Chan, Aamir B. Yunus, Terry Sych, Stephen F. Moore, and John P. Shen. Helper threads
via virtual multithreading.
CODEN IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic).
URL http://csdl.computer.org/dl/mags/mi/2004/06/m6074.htm; http:
//csdl.computer.org/dl/mags/mi/2004/06/m6074.pdf.

[Wang:2004:HTVa]

[Wang:2004:HTVc]

[Wester:2013:PDR]
REFERENCES

REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

Wheeler:2010:VMM

Wu:2012:SPA

Wong:2008:TAF

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Wang:2008:PIM

WW96

WWW+02

ISSN 0163-5980 (print), 1943-586X (electronic).

Xu:2006:RTR

Xekalakis:2012:MSM

Xue:2012:RJC

Yam:1995:CFD

Yam:1996:DPV

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. Dr. Dobb’s Journal
of Software Tools, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yang:1997:MUA

Yang:2002:RCC

Yasrebi:1995:EDO

Yiapanis:2016:CDS

Yamashita:2012:APS

Yi:2010:NAS

REFERENCES

Yu:2013:GDS

Yu:2016:DLR

Young-Myers:1992:DTC

Young-Myers:1993:ESTa

Young-Myers:1993:ESTb

REFERENCES

DEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Yan:2007:HMC

Yang:2014:CNR

Yang:2007:RUL

Zoppetti:2001:IDD

Zhang:2015:DMB

Zhang:2010:FTS

Zhai:2002:COSa

Zhai:2002:COSb

Zhang:2015:LOS

Zignin:1996:TDM

Ziarek:2009:SWB

Lukasz Ziarek, Suresh Jagannathan, Matthew Fluet, and Umut A. Acar. Speculative N-way barriers (abstract only). *ACM SIGPLAN Notices*, 44(5):8, May 2009. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
Zhang:2010:DCS

Zhu:2011:TPS

Zhang:2012:SCC

Zhao:2011:DCC

Zhang:2015:DPO

Zier:2010:PED

Zhang:2016:TED
Tong Zhang, Dongyoon Lee, and Changhee Jung. TxRace: Efficient data race detection using commodity hardware

Zuberek:2002:APB