A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

01 March 2018
Version 3.135

Title word cross-reference

#4 [Pet00].
+ [BMV03], 2 [TKHG04], 3
[KSB+08, PYP+10], cyclical [YLLS16], D³
[Evr01], F² [BCS11]. LU [VD08]. N
[ZJFA09]. π [HI01]. QR
[But13, GKK09, VD08].

-Calculus [III01]. -Machine [Evr01]. -way
[ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/ [ACM92]. /multi [Taf13]. /
multi-threaded [Taf13].

'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BC¹G14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KAO05]. 35th [Gol94]. 3D
[Ano97b, Loe97].
Abstract [CSS91b, CGSV93, DV99, LMA+16, MJF+10, Ném00, CSS+91a, CSS+91c, VDBN98, ZJFA09]. Abstraction [KI16, Bak95b, GPR11, ZSJ06]. AC [BGK94a, BGK94b]. Accelerating [LS11, SMQP09, VGK+10a, VGK+10b]. acceleration [JSMP13, NBMM12]. Accelerators [NTR16, SGLGL+14]. Access [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SspP+07]. Accounting [LMA+16, EE09b]. accuracy [TO10]. Accurate [CPT08, VTM12]. Achieving [AHW02, SP05, KGGK09, WTKW08]. ACM [ACM93b, RM03, IEE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZIP04]. Activation [KG94]. Activations [ABLL92, DNR00, SS95]. Active [BK06, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada [ACM93c, Bar09, Dil93, GMB93, KPPÉR06, KR01b]. ADAM [Far96]. adaptable [LLLC15]. Adaptation [CMBAN08]. Adaptive [ABN00]. Adaptive [ALHH08, HBTG98, KI95, LHY+16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKG04, ZLV+16]. Adding [Ply89, Rie99, McM97]. Address [CLFL94, PWL+11, CKZ12, Lie94]. Addressing [WA08, CKD94, ZSB+12]. Advanced [BGG95, GBC95, Hei03, BZ07, GBB+05]. Advances [IEE97, JHM04, KKD03, DLM99]. Advantage [Wei97]. Adversarial [FF10]. affinity [NAAL01]. Age [Cro98]. agent [Way95]. Agents [CWHB03, CR02, Way95, BDF98]. Aggregate [TGO99, TGO00]. AGNI [RBPM00]. agreement [GMW09]. Aid [Wei97]. aided [MCRS10]. aids [Mat97]. Air [MPD04]. A1 [TLA+02]. Albuquerque [Ano94e]. Algebra [KLDB09, NBS+15, PHCR09, YSY+09]. Algebraic [ACM94e, Lak96, MR09, Wat91]. Algorithm [AT16, ABC+09, HH11, OR12, TT03, ZBS15, GKKH12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HBGO2, YFF+12]. Algorithmic [Lei97, BBH+17]. Algorithms [BP05, EJRB13, FS96, LAA93, MNG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CFFG+12, CLR09, FR95, GK05, Lei97, Lep95, NFBB17, QOQOV+09, RRNNJ12, YM92, YMR93a, Lk05]. algorithms-by-blocks [QOQOV+09]. Algorithms-by-Tiles [QOIM+12]. aliasing [NA07]. Aligned [YWW03]. alignment [KGPH12]. Allelair [Hig97]. Alleviate [BD00]. Alloc [KSU94]. Allocating [SEP96]. Allocation [MVZ93, Nak01, EFJM07, LLL10, Mic04, ZP04]. Allocator [BMBW00b, BMBW00b, BMBW00c]. Alpha [Ano00b]. alphabet [KNPS16]. alphabet-independent [KNPS16].
alternative [SV96c, SV96a, SV96b].

Alternatives [MB99, MKR02]. Alto [ACM01], ALU [KDM+98], always [DWS+12]. always-on [DWS+12]. Amdahl [CN14, NZ17]. Among [CB16, HMC95, SJ95]. analysing [NJK16].

Analysis [AKS06, BCZY16, BE12, BE13, BBC+00, LML00, LMG+16, NBM93, REL00b, RIN01, SBCV90, TAM+98, Yoo96a, Zub02, AC09, ACC+03, BGZ97, BHH+17, BBM09, CHH+03, CS12, CVJL08, Cor00, GBCS07, HEJ09, JPSN09, KTK12, KC09, Lei97, LKBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SRO1a, SMX10, SRA06, SBB06, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH+12, dBG03].

Analytic [Squ94]. Analytical [DKF94, VT96, SBC91]. analyze [LMC14]. analyzer [Fer13, HLB90]. Analyzing [HRH08, Kor89, RIH10, TMCP10].

anatomy [Rei95]. Android [MK14]. Annotations [BM94, Wei98b, AGN09]. Annual [ACM93a, ACM98c, Go194, Ass96, USE00a, ACM93b, USE96, USE98b].

anomalies [Sch89]. Anomaly [KW17].

Antonio [USE92a]. any [Hig97, Mar07].

API [Ano00b, BD01, DM98, Van97a].

APL [CJ91]. applets [McM96c].

Application [AMRR98, KZTK15, KSU94, PG92, PLT+15, TKA+01, TAM+08, YAS95, Dwyb10, EJ+96, HDT+13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11].

Application-Level [KSU94, PLT+15, HDT+13, LZ07, ZJS+11].

Applications [Ano00a, AZG17, AKP99, BKL06, BMBW00b, BNN01, Cha05, Chl15a, DS16, Don02, Drnu95, EV01, FURM00c, HC17, HWZ00, JYE+16, KMJC02, KRH98, Lar97, MG15, PCPS15, PWL+11, Pul00, RD96, SGM+97, Sod02, Ten02, Tet94, TSV12, TLGM17, Vol93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BWDZ15, BBFW03, MGZ97, BMBW00a, BMBW00c, BW97, DSEE13, BMV03, CB39, CB90, CSB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLB90, ISS98, JSMP12, JSMP13, KVN+09, MLCW11, MKM14, MKIO04, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Omm04, PJZ07, RV+10, Re95, San04, SSN10, SKP+02, TMC09, TMCP10, TP18, VIA+05, VGK+10a, VGK+10b, WCZ+07, WT10, WOKH96, XMM90, YZ14, kSYHX+11, ZKR+11, Len95].

apply [NZ17].

Applying [VTSL12, MT02a, MT02b, MT02c].

Apprendre [Swi09]. Approach [AZG17, BBSG11, CJW+15, ES97, FKT96, GMR98, KKW14, KS16, RC+16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, DHM+12, LZW17, LZX+14, MS03, RC+12, SCZM00, TP18].

Approaches [BLPV04, MB07].

Approximate [HFV+12, GEG07, GE08, KGP12]. Apps [PCM16]. April [Ano00a, Ano03, USE01].

arbitrary [BGC14]. ARCH [Ada98].

Architectural [ACM94d, EHM17, IAD+94, KC09, ME15, BS06, CPM+13, Fan93, WHG07].

Architecture [ACM98c, BBD+91, BTE98, Car89b, CLD95, DO95, EBBK01, For97, Gao93, GKH+98, GV95, GNB97, HNM91, HHOMB91, HHOMB92, KBBH+04a, KBBH+04b, KIA97, Man91, MB99, PVS+17, PTMB09, PKB+91, PS01, REL00b, RS08, SCL05, SSYG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CPM+13, CL94, CHH+03, Cho92, Don92, Dub95, Evr01, Far96, Fu97, Gal94, GDSA+17, GL98a, Go196, HF88, HKN+92, HNM+92, I+94, KHP+95, KT99, Lc95, Mah13, MK12,
Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, So02, TNB+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04.

Architectures

[AT16, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IBST01, JLS99, KTR+04, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOIM+12, RLJ+09, SGM+97, TG99, THA+12, Tra91, TJY98, TSV12, WG94, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CFG+12, Cat94, FTAB14, GGB93b, GK05, Gl94, GL98b, HFV+12, ICH+10, JMS+10, LMC14, Lu94, MLCW11, MLC04, Mus09, OCRS07, PT91, PPA+13, PJZA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Squ94, SMQP09, SKA01, TE94a, The95, TKHG04].

Area

[AMPH09, FGT96, Par91]. **Area-efficiency** [AMPH09]. **Aren’t** [Sut99]. **Ariadne** [MR98]. **arising** [AR-W03]. **Array** [GS06, LHS16, PDMM16]. **Arrays** [BWXF05]. **arrow** [GE08]. **array-type** [GE08]. **art** [I’94]. **artificial** [KU17].

ASAT [SEP96]. **Ashes** [Thr99]. **ASN** [CJW+15]. **Aspects** [SB80]. **ASPLOS** [ACM94d]. **ASPLOS-VI** [ACM94d].

Asserting [BS10b]. **assertion** [AdBdRS05]. **assertion-based** [AdBdRS05]. **assessment** [Mah13]. **Assignment** [BC98, RCM+16, MCRS10, ORH93, RCM+12]. **assisted** [Dub95]. **associated** [San04]. **Associative** [SW08].

Assumptions [ES97]. **ASSURE** [SLP+09, Dye98]. **asymmetric** [GA09]. **ASSOCIATIVE** [JMP13, RBK+09, SCCP13, SMQP09].

Asynchronous

[HH11, KFG15, KG07, KSD04, TP18, Yoo96a, GMR09, Kho97, KASD07].

Asynchrony [SU98]. **Athena** [Egg10, Hud96]. **ATL** [SW97]. **Atlanta** [ACM99a].

Atomic [KKS+08, RD06].

atomicity [BNS11a, BNS11b, BNS12, FF04, FF08, FFLQ08, FFY08, WS06]. **atoms** [ND13]. **Atomizer** [FF04, FF08].

Audience [SBB96]. **Augmented** [LH09]. **Augment** [RM03, IEE99, USE93a, USE98a].

Austin [USE00b]. **Austria** [Hon94].

authoring [MCS15]. **Auto** [Pol90, RKHT17]. **Auto-vectorization** [RKHT17]. **AutoDock** [TO10]. **Automata** [ES97]. **Automata-Theoretic** [ES97].

Automated [BSSS14, DRV02, KZC15, TR14].

Automatic [HBTG98, JY+03, KW17, Mon00, SEP96, YLLS16, GJ11, JB+11, SL+09].

Automatically [NWT+07, TG99, CJ01]. **autotuning** [CSV10]. **Availability** [SP07].

Avenue [Ano94d]. **avoid** [Pra95]. **avoidance** [LC13, WL+09]. **AVP** [Ano00b].

Aware [BHP+03, FSPD16, FSPD17, GVT+17, H17, Kim14, LYH16, PR05, EQT07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAS07, XSaJ08, ZLW+16].

AWTEventMulticaster [Hol99b].

axiomatic [TVD10]. **AXP** [Ano97a].

B [Ano00c, DLZ+13]. **back** [ECX+12].

Backup [Ano00b]. **Balance** [SEP96].

balanced [CKZ12]. **Balancers** [KMG01].

Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, ZP04, Ch95a, Ch95b, Ch96, LT+16, MK004].

Baltimore [IEE02]. **Bandwidth** [FSPD16, LT+16].

Bandwidth-Aware [FSPD16]. **Barcelona** [ACM95a, ACM98c, DLM99].

Barnes [ZBS15]. **Barrier** [CJW+15].

Barrier-Based [CJW+15]. **barriers** [LZBW14, ZJFA09].

Base [VE93].

Based [Alf94, AT16, AKP99, BN01, CJCW+15, CKRW99, CMBAN08, DSR15, EGP14, GHG+98, HOM91, HOM92, KS16, KG05, KEL+03, KW17, KS97, KRH98, Kho03, LG06, LS11, MGQS+08, MK97, OB13, RSBN01, TESK06, WLM15, AdBdRS05, Ada98, AAHF09, Ama98, AKSD16, CNQ13,
CKD94, CKRW97a, CKRW97b, CNV+06, DG99, DWYB10, EG11, GDSA+17, GE08,
JD08, JSM13, KK01b, KKJ+13, KI16, KBF+12, LK15, LZW17, LLL10, Mus09,
NBMM12, NFBB17, PSG06a, PSG06b, PSG06c, PAdS17, PAB14, Ram94,
RRP06, RS08, SKS+92, TE94a, WCW+04b, WCW+04c, WCW+04d, YL16, Day92a,
Day92b, RSB+09. Bases [GK94, Swi09].

basic [JJ91, KTLK13, Esp96]. Basis [AGK96]. Be [Pet03, Ano95a, Ano95b, Boe05, MMTW10].

Beach [USE92b]. becoming [Ano92a].

Behavior [KLS92, LB17, REL00b, REL00c, REL00d, REL00e]. Behavior [Sch17].
Behaviors [JJ91, KTLK13, Esp96]. Basis [AGK96].

Bibliography [Bee98]. big [AC09, CDL13, LTL+16, LHS16]. BIBSAM [Ply89].

BICO10, KBF+12, TJY+11. binding [RCV+10]. Birthmarking [TLZ+17].

disection [RMJ12]. bit [Kus15, SBK99].

Black [Pla99]. BLAS [ARvW03]. BLIS [VSM+16]. Block [KS97, KTK12, KTLK13].

BlockChop [MK12]. Blocking [Ann96, GN00, Nak03, SB80]. Blocks [Pet03, QOQOV+09]. Blue [GBB+05].

Boost.Threads [Kem02]. Boosting [AKS16, APX12, MLC+09, ZY07]. boosts [MCM97].

Borland [Kes94a, Kes94b].

Borrowed [DC99, DC00]. Borrowed-virtual-time [DC99, DC00].

Bottleneck [JSMP12]. Bottlenecks [SU96, Zab02, DSEE13, CS12, DSG17].

BowMapCL [NTR16]. Box [Ano00b]. Braids [BS06].

Branch [AKS06, EPAG16, IBST01, CTYP02, CPT08, GL98b, MTS10].

branches [UZU00]. breadth [LAH+12].

Broadcast [SW08]. Broadcast/Reduction [SW08]. brokers [Sch98]. Browsing [HF96].

BSD [SS95]. BSDCon [USE02]. BSP [SYHL14].

BTRimer [TVJ+11]. buffered [DLZ+13]. buffers [Koo93].

bugs [JWGT11, VTS12]. build [KSB+08].

Building [Fon97, KS97, Pet03, Omm04].

Building-Block [KS97]. bulk [RD06].

Bulldozer [BBSG11]. Burkha [Ano03].

Burrows [LHS16, NTR16]. Bus [MKC97, Cat94, HHPV15]. Bus-Based [MKC97].

BVT [DC99, DCO0]. Bytecode [ABH+01, Coo92, GH03, A+01, CAR08].

C [Kel94a, Kel94b, Lev97, Pla98, Pla99, Rod95a, Vre04, Ait96, AGB08, Ano99, BM94, Bau92, Bed91, BYLN09, BPL07,

BA08, CFK+91, CGR92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jon91, K97, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Omm04, PSL07, Pul00, Ric91, Sch90, TB97a, TB97b,

Vol93, Wal00, Y89a, Y89b, Y99].

C# [KPPR06, St+05]. C/C [Pla98, Pick99, Pet00]. C/C

[BYLN09, ND13, ND16, Pul00]. C3I [BTE98]. CA [ACM94d, IE89, USE92b, Ass96, USE00e, USE01, USE02]. Cache [BCZY16, CMX10, GBP+07, GL98a, HL08, HKS96, KLS92, KET06a, LLD17, PEA+96].
WG94, ZJS12, Car89b, Cho92, KHP+95, KLH+99, MKR10, Ra93, Sha95a, SskP+07, WCZ+07, ZJS10, ZKR+11.

Cache-conscious [GBP+07].
SSK+07, ZJS10, ZJS12. **CMP-based** [LLL10]. **CMPs** [GW10, JSM13, SQP08a, SQP08b, SQP08c, YL16]. **Co** [Goo97, AMPH09, BBH+17]. **co-design** [BBH+17]. **co-optimization** [AMPH09]. **Co-processor** [Goo97]. **Coarse** [NS97].

coated [Lep95]. **Code** [BBdH+11, Coo95, HYY+15, JSB+12, Kim14, KEL+03, MS02, NS97, ND16, PR98, Roh95, RNS96, TGBS05, Tra91, Ann96, BB00, JSB+11, SJ95].

Codes [CMBAN08, PHCR09, PT03]. Codesign [HPA+15]. cognitive [MCS15, PWD+12].

cognizant [LK13]. **Coir** [SG96]. Cold [Hig97, Hig97]. Collaborative [VSDK09].

Collection [AKP99, LB92, PUF+04, PF01, QAS+16, KTK12]. Collections [Kle00, McM98a, McM98b]. collective [HMC95, SCB15]. collector [BBYG+05, DL93, HL93, WK08a, WK08c, WK08b].

coloring [CF+12, GP05, SS10]. Colt [WN10]. Combinator [KLS92]. combined [UZU00].

Combining [KR01a, LZ07, CZS16, ZLW+16]. come [Pol90]. **COME**T [RVC14]. Coming [LS07].

Commands [KD97]. Commercial [SBK99, BEKK00, EJK+96]. Commodity [ZLJ16, LVN10, RPNT08]. Common [Hol98a, Kuc92, BDF98, BDLM07, CL00, Kuc91].

Communication [ABN00, DSR15, EH93, FKT96, FGKT97, GMR98, HY+15, OA08a, OA08b, OA08c, Pan99, PWL+11, Rod94, SKK+01, TKA+01, TCG95, BR92, DBDR91, GRS06, KASD07, Lam95, QSHI16, RR96, RR03, TG09, TKA+02, VS96, WHJ+95, ZCSM02a, ZCSM02b]. Communications [Ano03, BMN09, SCB15, Sho97b, TP18].

Commutativity [AC09]. Compact [HEMK17]. compaction [WK08a, WK08b, WK08c]. Comparative [SKP+02, Yoo96a, PL03]. Comparing [KPPÉR06, SV96c, SV96a, SV96b].

Comparison [ILFO01, SAC+98, GL98b, KIM+03, MKIO04, MMTW10]. Compass [PWD+12]. Compatible [MM14, LBP12].

competition [YL16]. Compilation [ACMA97, HL94, BRRS10, GC92, HCD+94, Tsa97b]. Compile [CS95a, CS95b, TSY99]. Compile-time [CS95a, CS95b]. Compile/run [TSY99].

Compile/run-time [TSY99]. Compiler [ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, JSB+12, LEL+99, MCRS10, Scv91a, Scv91b, SYHL14, Sin99, TY97, TGBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG+95, BAD+10a, BAD+10b, BVG097, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Fon97, Gol97, Hop98, JSB+11, MSM+11, McM97, Mül03, RKCW98, Sch91, SKC09, UZU00, WLG+14]. compiler-assisted [Dub95].

Compiler-Controlled [CSS+91b, Scv91a, Scv91b, CSS+91a, CSS+91c, Sch91].

Compiler-directed [DZKS12, SKC09]. Compiler-Driven [YBL16].

compiler-managed [WLG+14]. Compiler-Supported [ZP11]. Compilers [SS96]. Compiling [ABNP00, ABH+01, TLA+97, Sch91, Sha98, A+01].

Complement [YFF+12]. Complete [BR15, Sch14, BW97, DWS+12, FY08, KGGK09, NV15]. Completion [AGK96, BKG96, Lun97, Man98, BGK94c].

Complex [SZM+13]. Complexity [EG11, CMX10, SKA01].

complexity-effective [SKA01]. Compliant [BGK96, SP05, Hig97]. component [NFBB17]. component-based [NFBB17].

Components [Gon90, Sh97b]. Composable [SS10, FKS+12].

Compositions [KS97]. Comprehensive [TAM+08]. Compressed [PBL+17].

Computation [ACM94c, BFA+15, CWS06, HL94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fui97, KG07, Kuc91, N00, Sha98, ST98, WHJ+95].

Computational [PCPS15, Bar09].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute [BBSG11]. Computer [ACM98c, Ano94a, CBN+ 00, Gol94, BD06, DNB+ 12, GK05, I+ 94, PBDO92].

Computers [Ano94e, SS96, BCM+ 07, Boo93, LP09, SJ95]. Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+ 93, Am089, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Ham96, Hol12, HG91, IEE94b, KR12, Kon00, LCK11, LFA96, ME17, SRU98, SZ02, USE93a, Wec08, WN10, BGG95, BD06, Dau09, FWT03, GBC95, GS02, HF88, HG92, IEE97, Joe96, Kim94, KU17, Lan97, Leg01, Liu95, Mar07, PWD+12, SBCV90, Sta90, Ska01, Tem97].

Concept [AMdBdRS02, BBFW02, KA97]. Concepts [McC97a]. Concrete [NSP+14].

Concurrency [BM94, GMGZP14, MLR15, MQLR16, ME17, NFCB97, BA08, But14, CBM10, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, VTSL12, Yan02, ZLW+16, dBi09, SB80]. Concurrency-preserving [NFBB17].

Concurrent [ILFO01, KD97, KCCD99, MCM+16, NPT98, PCM16, PF01, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HJ03, JPS+08, JP92, KIM+03, KGGK09, MCM+10, MKIO04, Men91, NHFP08, Nev99, ND13, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZJS06, Hay93]. Condensed [BIK+11]. Condition [Hol98c, Yan02]. Conditional [IBST01, NA07]. Conditions [HM96].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM01, Ano90, Ano94a, AOY+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KRDV03]. confidentiality [NSH14].

Confirmation [CJW+15]. conflict [NJK16, vPG03]. conformant [Str95].

Congress [Ano94d]. conjunction [Ano94e]. Connect [Ano00b]. conquer [FN17, TP18].

conscious [GBP+07]. Consistency [ABH+09, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSQ14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].

Constrained [TLGM17, GW10, YN09]. constraint [SCG95]. constraints [HB15].

Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05]. Contact [Nak03]. Contemporary [ZJS12, ZJS10].

Content [WLM15]. Content-Based [WLM15]. Contention [XaJ08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].

Content-aware [XaJ08]. Context [TLA+02, GN92, JLS99, FD95, LG04, MQ07, PaD+17, PFH06, SCB15, Yan97, LG04]. context-bounded [PaD+17]. context-sensitive [PFH06, LG04]. contexts [BGC14, TE94b, WW93].

Contextual [BGZ97, NHFP08]. continuation [AAHF09]. continuation-based [AAHF09]. continuations [DBR09, GRR06].

Continuing [Ano99]. Continuous [RCC14].

Continuously [DTLM14]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, FK12, FSYA09, GCC15, MLCW11, NT14, PPA+13, Po90, RPB+09, UZU00, WLK+09, Yoo96b].

control-flow [NT14]. Controlled [BCG+08, CSS+91b, CGSV93, SCv91a, CSS+91a, CSS+91c, Lu01, MW07, Sch91, SCv91b]. Controller [RLJ+09]. controllers [KASD07]. controlling [AGN09, BKC+13].

controls [McM96c]. Controversial [Gar01].

Convention [ACM98, ACM99b, ACM00, Hol12].

Conventional [KET06b, HB92].
Convergence [RM03]. conversational [LG04]. Converse [BK96]. Convert [Vol93].
Converting [LEL+97a, LEL+97b].
convolutions [RB18]. convolver [Kep03].
Cool [Ano00a, Ano03, Wei97]. cooperation [BM07, SKBY07]. Cooperative [AMRR98, DNT16, ILFO01, KIM+03, MKI04, TCG95]. coordinated [KKJ+13].
coordination [BDF98].
Coping [San04].
Coprocessor [LRZ16]. copying [HL93].
CORBA [DHR+01, PSCS01, SV96a, SV96b, VS96].
Core [FMY+15, KST04, KTR+04, MP01, MB05, PVS+17, PM14, QOIM+03, MKIO04, TCG95].
CoreSnP [GAC14].
CoreDet [BAD+10a, BAD+10b].
Cores [CCK+16, RRK11, CWS06, MAF+09, SW16].
coreSNP [GAC14].
Corner [SW97].
Corona [VSM+08]. Cooperation [Ano00b, Ano00b]. correct [DJLP10, SP00b, Shi00].
Correction [TLA+02]. corrective [LG04]. Correctness [Ram94].
Correlation [SLT03, PFH06, SLT02]. cosimulator [LT97]. Cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG+12]. counterexamples [NV15].
Counters [Wei98b]. Counting [Hol98c, Rec98]. County [ACM98d].
Coupled [MTN+00]. Course [BLPV04, BZ07, GL07, She98]. coverage [RRP06, YNPP12].
coverage-driven [YNPP12]. covering [BCG13]. Covert [EPAG16].
CPU [BSS14, PGB16]. CPUs [SKG+11, SMD+10].
Craftworks [Ano97a].
Cray [BCG14, Sm01, VTS12]. Create [Ber96b, Ber96a, Len95].
Creating [Han97, Ten98]. Creation [Eng00, Rin99, Sin97]. Crisis [Ano99].
Critical [BLG01, CS12, OTY00, DTLM14, DESE13, NM10, RGG+12, San04, SMQP09, YL16]. Criticality [DESE13, NB12]. Cross [Lam95, BK+13, CSB16].
CUDA-compatible [LBH12]. CUDA-NP [YZ14].
Cyclops [ACC+03]. Cyrus [HDT+13].
[Leg01, TKHG04, WLK+09]. discussion [Sho97a, Sho97b]. Disjoint [SJAA].
Dissecting [ACC+03]. Distance [BCZT16, KZTK15, KNPS16]. distinguish [HL93]. Distinguished [ABH+01, TKA+01].
Distributed [ABNP00, ABH+01, BBD+91, BWXF05, BHKR95, BC94, CV98, CJK95, DKA16, FS06, GJ97, Jen95, PG92, Pra95a, RJ+99, RBPM00, RW97, RCRH95, SUF+12, TDW03, USE92b, VS96, YS95, An96, B+01, BCG+95, CML00, Car99a, Gol96, GKK09, Gun97, HB92, HMC95, HW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97, P91, BCG95, CML00, Car89a, Gol96, GKK09, Gun97, HB92, HMC95, HW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97, Pha91, Ply99, QSQ14, Sto02, Tod95].
DRFX [MSM+10]. Drinking [CZSB16]. Driven [DTLW16, For95a, For95b, HLB94, KET06a, KET06b, ME15, ME17, TESK06, YBL16, CSV10, Evoor1, RVS13, RS07a, SLP08, SQP08a, SQP08b, SQP08c, YNPP12].
driver [CCW+11]. DLS [RKHT17]. DSM [ABH+00, AB01, AB02, BDF98, KKH04]. DSM-PM [AB02]. DSM-PM2 [AB01]. DSSMs [FBF01]. DTS [BHHR95]. Dual [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11]. Dual-Core [KST04, MB05]. Dual-Level [BBC+00, DK02].
Dual-personality [CCW+11]. Dual-Processor [EHG95]. Dual-Thread [MB05, WS08]. Duplex [KG95]. Duplication [Kw03]. Dynamic [CJW+15, FSYA09, HSS+14, Hig97]. KMAK01, KPC96, KC98, KC99, KUCT15, MVZ93, MTS10, Nak01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK+01, Sta90, SG96, WH07, XMM99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Ch95a, Ch95b, Ch96, Don92, FF04, FF08, FF08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SLG06, TJY+11, WW96, BK13]. dynamic-multithreading [LSS12].
Dynamically [PB12, TLGM17, DMBM16, Kep03].
dynamically-typed [DMBM16].
e6500 [BGH+12]. Early [GL91, PBL+17, SLP08]. EARTH [HTZ+97, HMT+96, Sod02, TKA+00, TKA+02, TMAG03, Nak03].
EARTH-MANNA [HMT+96, Sod02].
Editors [GGB93a, GJ97]. Education [Gar01]. effect [BAD+09, GL98b, YSY+09]. Effective [PR05, TE94b]. Effects [Cho93, HRH08, KLI+99, KRBJ12, NHFP08]. Efficient [TTKG02]. Efficiency [AJK+12, Ano05, TH+12, AMPH09, FGG14, GA09, MMM+05, Pra95b, RCG+10, SP05].
Efficient [AD08, Alf94, ABN99, BCG95, BGDHWH12, BJ+96, BL98, BMN99, CZS+17, CLL+02, DMBM16, Gao93, GJT+12, GRS97, GS06, GN96, HSS+14, HEMK17, KPC96, KAS07, Len02, LHG+16, LZW14, MB07, MAAB14, NB99, PS03, SP07, T97, TGBS05, ZL16].
ATLM+06, BL93, BJK+95, BHK+04, EKKL90, FWL03, FF09, GB99, HSD+12, KSB+08, KNPS16, KSD04, LK13, LWV+10, LHS16, LZW+13, MSM+09, NLK09, OAA09, Pan99, PSG06a, PSG06b, PSG06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZLW+16, FSYA09).

Efficiently [KBF+12, MCT08, SW16, Blu95, BKC+13].
eigenproblems [ABD+12].
eigenvalue [BIK+11].
Electronic [Ano00b, BB00].
Elegant [Hub01].
Element [HBTG98, MS02].
elementary [HKN+92].
elide [MLS15].
Eliminating [DSG17, OCT14, RD06, MTPT12].
elmination [MK12].
elision [NM10].
Elliptic [Loe97].
EM-4 [BAM93, SKS+92].
Embedded
[BGH+12, Dru95, GKCE17, KG05, KE15, MS15, WM03, DCK07, KV+99, KASD09, KBF+12, LLKC15, LBvH06a, LBvH06b, LBvH06c, RSB+09, SKP+02, Xue12].
Embedded-Systems [Dru95].
Embedding [Pul00].
Emergencies [MTPT12].
Emerging [VSM+08, GBP+07, HFV+12].
emprirical [LC13].
employing [CWS06].
Employment [Gar01].
Empowering [JSP+12].
Enabling
[Pan99, JMS+10, VGK+10a, VGK+10b].
End [SNM+12].
End-to-end [SNM+12].
Energy
[AKJ+12, GJT+12, GKCE17, KE15, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KSB+08, NB12, PJZA07].
Energy-Aware [PR05].
Energy-Effectiveness [PR05].
Energy-Efficient [GJT+12, LK13, RL14].
energy-performance [PJZA07].
enforcement [GMW07, SCCP13].
gene [CNQ13].
Engineering
[GJ97, LSB15, WCV+98].
genes [HB15].
England [ACM94].
Enhance [FSPD17].
Enhanced [Ano00b, EJ93].
Enhancing
[OL02a, OL02b, OL02c, HW93, RHH10].

Environment
[ABN00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWY94, Sta90, Tem97, WCC+07].

Environments
[AKP99, BD02, KG05, SP00a, EJK+96, RGG+12, Sam99, Ver96, Way95].
equality
[AD08].

equivalence
[PR05].

Evaluating
[BL96, CML00, NPT98, PSCS01, RPNT05, Sch98, SD95, TG09].
Evaluation
[Ar92, Boo93, BTE98, CL95, CB9+00, EJK+96, Eic97, GCH99, HN91, RNSB06, SCD+15, TT03, DNM10].
Evaluations
[MM14, Roh95].
Evaluator
[SP00b, Shi00].
even
[Ano94b].
evénements
[Swi09].

Event
[BDN02, LZ07, Van97b].
Event-Based
[AKJ+00, KU17].

Event-Driven
[For95a, For95b, For96b, CRK99a, CRK99b, GWM07, KCCD99, KPB+03, Leg01, RVS13].

Event-Handling
[KBP+03].

Events
[BDN02, LZ07, Van97b].

Evolutionary
[TAK+00, KU17].

Evolving
[MS87, MS89].

Exact
[Sch17].

Examinations
[Yam96].

Example
[BLPV04].

Execution
[BH98, Lec96].

Exceptions
[AdBr90a, KRN01b].
exclusion
[BRE92].
exclusiveness
[Lie94].

Execution
[BL95, BS99].

English [ABN00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWY94, Sta90, Tem97, WCC+07].
A RKK15, RSBN01, STY99, VSDL16, Ann96, ME15, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Ann96, A+01, BAD++0a, BAD++0b, BGC14, DiI03, JWGT11, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS++03, TSY99, TSY00, TDV03, UZU00, WCT98, XIC12, XSaJ08.

Executions
[CdOS01, HZD13, Roh95, STR16].
Exemplar [BLCD07].
EXOCHI [WCC+07].
expediting [YL16].
Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96].
Experiences [BHK+04, EHG95, PST+92, SGM++97, USE92a].
Experimental [BLCD97, EGG02, YMR93b, GR060, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a].
Experiments [DV99, GMR98, SZM++13, VSM++16, VV00].
Explicit [DV99, VDBN98, BM07, URS03b, URS03, VV00].
explicitly [MT02a, MT02b, MT02c].
exploit [Ano00c].
exploitation [KVN++09, PSG06a, PSG06b, PSG06c].
Exploiting [AACK92, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+06].
Exploration [TT97, Sch17].
Exploring [AACK98, BS10a, SE12, WWW+02].
Expressions [Hei03].
Extended [BLG01, DV99, VDBN98].
Extending [BF08, Mar03].
Extensible [CdOS01].
Extension [RCC14, CCCW+11, Lan97, PDP+13, Tem97].
Extensions [Sch90, Bau92].
external [LWV++10].
Extracting [GP95].
Extral [MNG16].

FAB [YWJ03].
Facility [KSV94].
Facing [KML04].
Factorization [But13, CIM+17, Dav11].
Factorizations [VD08].
failing [STR16].
failure [LC13].

failures [HZD13].
Fair [MQ08, FSPD17].
Fairness [ES97, FSPD17, GWM07, SCCP13, WTKW08].
false [LTHB14].
farms [MR98].
Fast [BCS11, BRE92, GSC96, HN91].
LDT+16, STY99, SLF+14, ST05, VTM312.
ZSA13, ZCO10, BDLM07, CKD94, Kep93.
Kus15, TT03, TTK02.
Faster [PCM16, BDM98].
FastTrack [FF09].
fault [RRK15, CCC12, kSYHX+11].
菲 [Ano00c].
Fernandez [Ano00c].
fetch [EE09a, TEE+06].
FFTs [MJF+10].
Fiber [GDSA+17].
Fiber-based [GDSA+17].
fibers [BS06].
FIFO [QSaS+16].
fifth [ACM93b, AOV+99].
File [FG91, GJT+12, KS97, PEA92, WLM15, BLCD97, DZKS12].
Files [RRK11, CCC12, kSYHX+11].
filtering [Kep03].
final [HCM94].
Finding [MNG16].
Fine [AZG17, BBG+10, BSS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, KG94, LKB11, LVS01, LFA96, NS97, PBR+15, TY97, TAK+00, YSS+17, BGK94c, DUB95, Gol97, KDM+98, Kim94, L095, MLC+09, Met95, PL03, RPB+09, TKG04, Wei98a, kSYHX+11].
Fine-Grain [AZG17, CSS+91b, HG91, KG94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94, L095, MLC+09, Met95, PL03, TKG04].
Fine-Grained [BBG+10, BSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, LVS01, BGK94c, DUB95, Gol97, RPB+09, Wei98a, kSYHX+11].
Finite [HBTG98, MS02, Cor00].
Finite-Element [MS02].
finite-state [Cor00].
firmware [ABB+15].
First [MSLM91, Wei97, LAH+12, MHW02, Hon94].
first-class [MSLM91].
FL [ACM94].
FlexBFS [LAH+12].
Flexible [ABB+08, KS97, L092, MSM+16, SP00].
Florida [ACM98d].
Flow [AT16, Ama89, HH11, PR+15, FSYA90, JD08, KBH+03, NT14, Pol90, RM99, RP+09, SV+98]. Fluid [JD08].

FluidCheck [KS16, fly]
[CWS06, PS03, PS07, Sch89]. Focus [EHP+07]. Forces [FTP11]. Forecasting [AN+91b]. fork [AL120]. fork-join [ALS01].

FORM [TV10]. Formal [Sta05, WP10]. Foundation [FSY99, HAL89]. FORTH [Jon85]. FORTH-like [Jun82]. Fortran [Ano97, Bra97, AS14, GOT03, HBG01, HBG02, Nag01].

Forwardflow [Sho97a, Sho97b]. Forwardflow [Sho97a, Sho97b]. Forwardflow [Sho97a, Sho97b]. Forwardflow [Sho97a, Sho97b].

Fourier [TT03, TTKG02, BCS11, HN91]. fourth [USE96]. fragment [APX12]. fragments [LG04].

Framework [BMF+16, BF04, CV98, DHR+01, EFG+03, KCG98, KF97, LCS05, LMI90, Loe97, NSP+14, Rei01, VSM+16, Yam95, AM+03, BDF98, EHSU07, GJ11, Hop98].

France [FR95]. Francisco [ACM95, USE02]. Free [Way95, DTLM14, GP08, LSF15, Mic04, ST05]. free-lunch [DTLM14]. FreeBSD [Ano00a, Bal02]. freeness [AHK08].

Freescle [BGH+12]. French [Zig96]. frequent [GBP+07]. Fthreads [Nag01].

Fukuoka [Ano91]. Full [MH902, GB99].

Full-system [MH902]. fully [RD99, Stu95].

Function [Hub01, TO10]. Functional [Coo95, DCK07, GS06, Kim94, KIAT99, LP94, SPP99, Gun97, RKBF91, TAN04, VGR06, WZWS08, JS06]. Functions [Bed91, KI16]. Further [GV95].

Fusion [PP+11, Hig97]. futex [BF90]. Future [Jon91, TAM+08]. futures [TTY99].

GALAHAD [GOT03]. GAMBIT [CBM10]. Game [DHR+01]. GAMESS [BB00]. Garbage [AKP99, LB92]. PUF+04, PF01, QSaS+16, BSYG+05, DL93, HL93].

Garcia [Ano00c]. Gateway [Yas95].

Gating [RRK91]. GbA [LZW17]. GC [THM15]. Genet4 [SCD+15]. Gene [GBP+05]. Gene/L [GBP+05]. General [Ber96b, BF04, HSS+14, Man98, YKL13, ZSA13, Ber96a, Car99a, DC99, DC00, HSD+12, MQW95, SKA01].

General-Purpose [Ber96b, HSS+14, Man98, Ber96a, DC99, DC00, HSD+12].

generalized [ABD+12, BCM+07, FTA14]. Generated [BD00, MJF+10]. Generating [AZG17]. Generation [ARB+02, Coo95, EFN+01, EEL+97, HEMK17, H+Y+15, NBS+15, RN90, TGB05, Tra91, TSV12, ABC+09, EFN+02, GJ11, K16, LK16, LSS12, Way95, CH04].

generational
[DL93, WK98a, WK98b, WK08c].

generations
[Ro195]. generators [SLF14].

Generic [ABH+00, AB02, Fer13]. Genetic [NSP+14]. genome [LHS16].

GeoFEM [Nak03]. Geometric [Caz02].

Georgia [ACM99a]. Germany [RM903, Wat91].

ghosts [TV14].

Gigabit [AHW02].

Gigabit/sec [AHW02].

Gigabyte [BAPB99].

Go [Mia90].

Going [Bak95b].

Goldilocks [EQT07].

good [Mat93].

GPU [YD91].

GPUP [LSB15].

GPS [TV14].

GPU [TV+12, Bon13, FIn11, K17, LTL+16, LHS+16, LHS+12, WLG+14, YSS+17, ZCO10].

GPU-Oriented [LHS+16].

GPUDet [Bon13].

GPUs [CSV10, DNT16, LBB12, SKG+11, VD08, WJ12].

Grace [BYLN09].

Grain [AZG17, CSS+91b, HG91, K94, LFA96, NS97, CSS+91a, CSS+91c, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TY97, TKHG04].

Grained [BBG+10, BSS14, But13, LKB11, PR+15, TAK+00, YSS+17, BGK94c, Dub95, Go97].
LVS01, RPB+09, Wei98a, kSYHX+11.

Grande [ACM01]. Grande/ISCOPE [ACM01]. Granularity [K95].

Graph [CFG+12, CL95, EJRB13, HPA+15, KS93, KLS92, MM14, LK15, LZW17, RVR04].

graph-based [LZW17]. GraphCT [EJRB13]. Graphical [ACR01].

[BBGmWH12, CCW+11, FSYA09, PYP+10].

Graphs [HPB11, Nik94, OB13, AD08, ABG+08, DSE13]. grass [MMTW10].

Greens [Kuc92, Kuc91]. Green [SKP+02].

[MTMT10]. Grid [KEL+03].

Grid-Based [KEL+03]. GRIDiron [MCS15]. grids [SKG+11]. Griffin [Ano00c].

Gröbner [AGK96]. Group [BNH01, DLM99, QSHH16]. Group-Based [BNH01].

Grouping [OR, WC99]. Grove [IEE89].

Growth60v2 [Dan09].

Guarantee [Hag92]. Guarantees [PSM01, YWJ03, GPS14, MTC+07, PSM03, ZHC15].

Guarded [Sim97]. Guest [GGB93a, GJ97].

Guidelines [RD96]. GUIs [Mia90].

Gyrokinetic [KEL+03, PWL+11].

Hagengberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DKA16]. Hamilton [Ric91].

Handles [Rec98]. Handling [DH98, LS15, SK97, BM91, KCCD99, Koo93, KPB+03, Lea96, Met95].

Harbor [BBC+00]. Hardware [CDKD94, CSS+91b, KE15, LSL06, MWP07, Men91, SW08, ZLJ16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB+14, PRS14, RPN05, SE12, TE94b, DWS+12].

hardware-aware [PAB+14]. hardware/software [LT97]. harmful [NWT+07].

Harmony [KT12]. Harness [Anaa98, EBKG01]. Hash [GK05, VB00].

Hash-join [GK05]. having [YFF+12].

Head [Mia90]. healing [SLP+09]. Heaps [DGK+03, Man99, Ste01]. help [Len95].

Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here [Ano92a, Pra95c]. Heterogeneity [CCK+16, Kwo03, RKBH11].

Heterogeneous [AT16, AACK92, FBF01, KTR+04, Lat95, NTR16, THA+12, FKS+12, GKY12, LK13, S95, WCC+07].

Heuristic [HH11, Mah11, OCRS07]. Hewlett [BLCD97]. HFS [KS97]. hiding [BR92].

Hierarchical [GJT+12, JY15, KC98, KG94, BMV03, DZK12, LK13, LQ15, RCDG].

Hierarchies [BCZY16, TAM+08].

hierarchy [BDGmWH12]. High [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CT00, FGTK97, Gar01, Hol12, HG91, IEE94b, LCK11, LG06, LJM14, LBH12, LHC+16, LHC+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, TCI98, VV11, WG99, WNL00, C+17, GS02, HG92, K94, Lan97, RRP06, Re95, SQP08a, SQP08b, SQP08c, Tem97]. high-powered [Rei95].

High-Speed [Ano00a, Ano03, HG91, SRS98, HG92].

Higher [CJ95, NV15]. Higher-Order [CJ95, NV15].

highly [BGDmWH12, Kub15, KGGK09, MAAB14].

Hill [C90, USE02]. Hill-climbing [C90].

Hilton [IEE90]. HippogriffDB [LT+16].

Hist [Gar01]. history [Ano97b]. Hoard [BMBW00a, BMBW00b, BMBW00c].

Hoare [KI17]. HoME [OKID92]. Hood [Ven97]. HoPE [PBL+17].

Hot [IEE99, PBL+17, Gle91]. Hot-Cacheline [PBL+17].

Hotel [Ano94d, USE02].

Houston [Cha05]. HP [Ano95a, Ano95b, Yam96]. HP-UX
[Ano95a, Ano95b, Yam96]. HPC
[GKK09, KC09, PLT+15]. HPF
[BMV03, CM98]. HTM [KGGK09]. HTMT
[Gar01]. HTTP [Zha00]. Hut [ZBS15].
Hybrid [BBG+10, Gao03, JYE+16, LH09,
MS02, NBM03, YZ07, GKK09, HG92, MK12,
MTC+07, SKS+02, Sha95b, kSYHX+11].
Hybridizing [CZS+17]. Hyperion [A+01].
Hyperscalar [Raj93, Sha95a]. Hyperthreading [HRH08, KM03].
I-WAY [FGT96]. i.e [USE98b]. I/O
[RM03, ABB+15, BDN02, KSHU94, LTL+16,
Man98, MG15, Yoo96a]. I/O
[Ano95a, Ano95b]. IBM [ABB+15, CJB+15,
KST04, LSF+07, WZWS08]. Id [Nik94].
IDA* [Mah11]. idempotency [KOE+06].
identification [JSMP12]. Identifying
[BBCZY16, SU96, DESE13]. IFIP [BT01].
Igniting [ACM03]. II [HCD+94, IEE89,
J91, KA97, KRO1a, McM96b, Wal95]. III
[Ano00a, USE92b]. Illinois [GHG+98].
Illinois-Intel [GHG+98]. Illuminating
[BLPV04]. ILP [OCRS07, RLJ+09]. im
[HL93]. Image
[WN10, BCG14, Kep03, RKHT17]. Impact
[KLG08, TCL05, TE94a, ZAK01, Div95,
Met95, RGG+12, RPN05]. Impaired
[Wei97]. imperative [SV98]. implement
[DBR91]. implementable [TEE+96].
Implementation
[ACM94a, ACM99a, Alf94, AB01, AKP99,
BB+91, BHP+03, BRM03, CWBH03,
DHH+10, FLM98, KA97b, KA97, MS02,
Nik94, STW93, TKA+02, TAMG03, BK96,
BB00, BMV03, CMX10, DL93, FGT96,
GCC99, GBB99, IAD+94, KASD07, Lev97,
Li05, LZ07, LAH+12, NFBB17, OKID92,
Sth95, Tsd95, YZYL07, Ano95a, Ano95b].
Implementations
[Han97, SAC+98, Ram94, SKG+11, Sha95b].
implemented [Boe05, KEL+03].
Implementing
[ABH+00, AB02, BP05, CB89, CB90,
Day92a, Day92b, DPZ97, GMB93, GSC96,
HPA+15, KR01b, KBA08, KIAT99, Pra95a,
TY97, TAN0, BHK+04, Lie94].
Implications
[RM03, BS96, VSM+08, CSM+05]. Implicit
[BAM03, MS02]. Implicitly
[ACMA97, PFV03, SAC+98, RB18].
Implicitly-multithreaded [PFV03].
Improve [GV95, QSST+16, RKK15, Sin99].
Improved
[BR92, GMRZ14, LSS06, Smm06]. Improving
[AJK+12, BDN02, FT96, FM92, FB01,
GA09, IBST01, LYH16, Man99, MEG03,
Nak01, PG01, PA+14, MCRS10, TO10].
In-Order [RRK11]. In-place
[SGLGL+14, SCM05]. In-Situ [RGK99].
IN-Tune [RGK99]. includes [SJ95].
incomplete [HR16]. Incompressible
[RM99]. Incore [SCL05]. Increasing
[PHCR09]. Incremental
[BFA+15, Caz02, Lar95, LB92, BBAYG+05].
Independent
[EW96, FSS06, USE93a, KNSA16, MEG94, PG03]. indexing
[MLS15]. induced [MTPT12]. Industrial
[KKW17, Knn00]. Industry
[DM98]. Industry-Standard
[DM98]. Inference
[FFLQ08]. inflation [OdSS08]. InfoDock
[Ano97a]. Information
[BS96, PBB+15, CML00, KBH+03, RBP+09, SV98].
Informix
[Ger95]. Initial
[BTE98]. Inline
[GH03, DJLP10, EKCL90]. Inline-
Threaded [GH03]. Inlining
[PR98, LQ15]. Innovating
[JD08]. Innovation
[ACM03]. Innovations
[ABB+15]. Input
[BCG13, MP89, Tan87]. Input-covering
[BCG13]. input/output
[MP89]. Insight
[IEE02]. Instruction
[DV99, HMMN91, LEL+97a, LEL+97b,
MCFT99, RS08, AM+03, Aru92, Cho92,
HKN+92, HMN+92, KBF+12, Mis96, OA08a,
OA08b, OA08e, PYP+10, Ra93, SD13,
SMS+03, TEE+96, VS11, VDBN98, VV00].
Instruction-Level
[LEL+97a, LEL+97b, MCFT99, SD13]. instruction-systolic [PPA+10].
instructions [PPA+13]. instrumentation [RS07, XMN99]. Integer [GH98]. integral
[Küc91]. integrated [CCW+11, MTS10, RD99]. Integrating
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. integrative
Java [PSM03, PRB07, Pet03, PUF+04, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP+02, Van97a, Ven97, Ver97, WN10, Whi03, XSaJ08, Xue12, Yan02, van95]. Java-like [DJLP10].
JavaBeans [Van97b] just [BGV97].
JavaScript [PCM16]. javar [BVG97].
Jersey [MT93]. JIT [McM97]. job [EE10, EE12, ST00a].
Jobscheduling [ST00c, ST00b, STV02]. John [Ano00c].
Johno [Ano03] just-in-time [KBF+12].
June [ACM94a, ACM94d]. Journeyman [Bec00]. Jr [ACM99b].
July [ACM92, ACM94c, ACM95a, ACM98c, EV01, IEE96, Lac96, Ass96, USE96, Wat91].
KAI [Ano98b].
Kapsersky [Ano00b]. Karlsruhe [Ano00c]. Kando [KBF+12].
K@student [Ano00a]. Kernel [Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP99, SS95].
Kernel-Based [Alf94]. Kernels [KI17, dlPRGB99, GLC99].
Kiel [LvH12]. Kikai [Ano00a].
Kikai-Shinko-Kaikan [Ano00a]. kinds [San04].
kinesiatal [BD06]. Kinematics [HMLB16]. King [ACM99b].
Kings [ACM94c]. Kitsune [HSD+12, HSS+14].
Knoxville [IEE94b]. Kroll [Ano00c].
KUMP [NTKA09]. KUMP/ [NTKA09].

K-Just [BR15]. KAI [Ano98b]. Kaikan [Ano00a]. Karlsruhe [RM03]. Kaspersky [Ano00b]. Kendo [OAA09].
Kernel [Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP99, SS95].
Kernel-Based [Alf94]. Kernels [KI17, dlPRGB99, GLC99].
Kiel [LvH12]. Kikai [Ano00a].
Kikai-Shinko-Kaikan [Ano00a]. kinds [San04].
kinesiatal [BD06]. Kinematics [HMLB16]. King [ACM99b].
Kings [ACM94c]. Kitsune [HSD+12, HSS+14].
Knoxville [IEE94b]. Kroll [Ano00c].
KUMP [NTKA09]. KUMP/ [NTKA09].

L [DNR00, GBB+05]. L2 [SLP08].
L2-miss-driven [SLP08]. Lab [Ano00b].
labeling [D’H92]. Lafayette [EV01]. Lake [Hol12]. lambda [ORH93]. Laminar [PBR+15, RPB+09]. LAN [Yas95]. LAN/
OCRS07, PO03, PT03, QQOV+09, STY99, SD13, SLT02, SCZM00, Tem97, WS08, YZYL07, YZ14, ZJS11. Level-2 [Ric99]. Leveraging [PRS14]. LFTHREADS [GP08]. Libraries [Ano00c, BCR01, GF00, Jon91, MM14, ARvW03, CBM10]. Library [Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, WN10, Yas95, Ada98, Boc95, CS00, GP08, GTP03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. life [KU17]. light [Way95, LZTZ15]. light-weight [Way95]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, CASA14, Hai97a, LVN10, MNN09, MEG94, VACG09, WSKS97, LKBK11]. like [DJLP10, Jon86, VV10, Kor89]. limit [ROA14]. limitations [Gal94, HL08]. limited [Bri89]. Limits [LB95, LB96b, AAKK08]. Line [Ano00c, FSPD16, FdL02]. Linear [KLDB09, Lo97, MNN09, AAC+15, Bak95a, MM07, YSY+09]. Link [Ano00b]. Linked [WJ12]. links [WW96]. LinkScan [Ano00b]. LINQits [CDL13]. Lint [Kor89]. Lint-like [Kor89]. Linux [Ano97a, Ano00b, Ano00c, Ano97a, RGK99, SKP+02, WTKW08, ZSA13]. Linux/AXP [Ano97a]. Linux/FreeBSD [Ano00b]. liquid [KRB11]. Lisp [Nor90]. List [DV99, WJ12, VV00]. LiteRace [MNN09]. little [CDL13]. liveness [GMR09]. LLCs [PBL+17]. Load [HBTC98, KMG01, KC98, KRH98, PGB16, VPQ12, Chr95a, Chr95b, Chr96, MKIO04, TKHG04]. load-adaptive [TKHG04]. Load-Balancing [KC98, PGB16, Chr96]. Loadable [ZSA13]. Loading [PCM16]. Local [DGK+03, IEE95, Whi03, HDZ13, ZLW+16]. localities [CS95a, CS95b]. Locality [BS96, PEA+96, Wei98b, HWW93, LK13, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a].

Location-Independent [USE93a]. Lock [EFJM07, NM10, PGB14, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16]. lock-free [GP08, MLS15, Mic04, ST05].

Lock_manager [Hol98b]. Locking [Bal02, DLT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16]. Locks [ACR01, ALS10, MT93, OCT14].

LOCKSMITH [PFH06]. LOGFLOW [NTKA99]. Logic [Bre02, KI17, TAN04, BK13]. Logic-Centric [Bre02]. Logical [CR02].

LOIS [KU17]. longer [XHB06]. Looking [ECX+12]. lookup [KNPS16]. Loop [RLJ+09, SPP99, JMS+10, KVN+09, UZU00]. loop-level [KVN+09]. loops [DH92, FN17].

Low [Ano00a, Ano03, BGH+12]. Low-level [GPS14]. Low-Power [Ano00a, Ano03, BGH+12].

LPVM [ZG98]. Ltd [Ano00b]. lunch [DTLM14]. Luther [ACM99b]. Lyon [FR95].

M [Ano00c, USE01, FKD+97]. M-Machine [FKD+97]. MA [Ano94f]. Mach [USE01a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89]. Machine [Aha89, CSS+91b, DS16, FKD+97, KA97, KKD03, La90, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, Pr95c, SKS+92, Ven97, CGS+93, Evr01, PRB07]. Machines [BSSS14, Den94, GH98, RCRH95, STY99, BBM09, DFK94, GKT12, G92, Kus15, MRG17, TSY99, TSY00, VPQ12].

[ABL92, GMGZP14, HC17, HRH08, KG94,
LG06, LLS06, RSBN01, STY99, ZP11,
Bak95a, BM91, DBRD91, HCD+94, ICH+10,
Jef94, KKH04, RCG+10, SS95].
Manager
[Ano00b, PDMM16, Ply89].
Managing
[Blu92, FGKT97, MVY05, PJZA07, SEP96,
VS11, ROA14, WSKS97]. MANNA
[HMT+96, Sod92]. manual
[MS87, PO03]. Many
[FMY+15, PVS+17, MLCW11,
MTPT12, San04]. Many-Core
[BMF+16, KS16, BWDZ15, HFV+12]. Maple
[YNPP12]. Mapping
[CCK+16, LBvH06a, LBvH06b, LBvH06c,
NTR16, WK08a, WK08c, WK08b]. Mappings
[Lun97]. March
[IEE97, USE92b]. Mark
[Ano00c]. Markerless
[LS99]. Markov
[SBC91]. Martin
[ACM99b]. MASA
[HF88]. Massachusetts
[USE93a]. Massive
[EJRB13, OR12, Mus09, RCV+10]. Massively
[BÇG14, KR12, TSV12, BS10a,
ÇFG+12, CDD+10, Lu94, NJ00, NPA92,
ROA14, WT10, WOK96]. master
[TJY+11]. master-slave
[TJY+11]. Matching
[HPA+15, OR12, HFV+12, KGP912]. Mathematica
[Tam95]. mathematical
[KI16]. Matlab
[Bra97]. Matrices
[But13, SGLGL+14]. Matrix
[NBS+15, QOIM+12, YFF+12, CSV10, QOQOV+09]. matrix-vector
[CSV10]. matter
[ZJS10]. maxflow
[BCG14]. Maximal
[HH16, HR16]. maximize
[RCG+10]. Maximizing
[LKBK11, TEL95, TEL98a, TEL98b].
Maximum
[AT16, HH11, GJ11]. May
[ACM93b, ACM96, ACM99a, Cha05, IEE94a,
IEE94b, IEE94d, SS96, MMTW10, Pra95c].
MD
[IEE02]. MDMA
[Spe94]. measured
[ECX+12]. Measurement
[LLD17, TMC09]. measurements
[JFL98]. Measuring
[FMY+15, DTLM14]. mechanism
[FD95, GCC15, WHJ+95]. Mechanisms
[KPC96, KC99, SK97, Loe05, Men91, PT03].
Media
[Ano03, Van97a]. medium
[CDD+10]. Meeting
[DLM99]. meets
[Tam95]. Member
[BS99]. Memories
[HKL96, KHP+95]. Memory
[AJK+12, BS96, BBDW00b, BD00, CH95,
DM98, EJ93, EE09a, FMY+15, GMR98,
GMGZP14, GH98, HG91, HL07, KZTK15,
KZC15, KKH04, KUCT15, LS81, LB92,
LB17, MVM+16, MVZ93, MCT08, Nak01,
RCC14, Rob03, RCRH95, SCL05, STY99,
SLT03, SZ02, TAM+08, Th99, Ver96,
WC99, YMR93b, ZL16, ATLM+06].
AKS16, AAK08, BS06, BGDW12,
BGG+95, BH+17, BMBW00b, BMBW00c,
BDLM07, BA08, BO00, Bo03, BAM07,
CMF+13, Cha05, Cho93, CNV+06, DLZ+13,
DLCO99, DPZ97, EKRD10, EV01, FF10,
GCC15, Gle91, GL98a, GS00, GKK10, HB92,
HWW93, HG92, HHPV15, ISS89, KFG15,
Lak01, MLS15, MCRS10, MSM+10, MLC04,
MMT10, MTS10, Mic04, MTC+07,
MVY05, NPC06, NAAL01, OCT14, SALT02,
TS99, TSY00, TVD10, TVD14, VSSL12,
WK08a, WK08b, WK08c, XHB06, YMR93a].
memory
[YSY+09, YN09, kSYHX+11,
ZKW15, ZHCB15]. memory-intensive
[YSY+09]. Memory-level
[EE09a]. MemSAT
[TVD10]. Merlot
[MTN+00]. mesh
[ABC+09, Mus09]. mesh-based
[Mus09]. Meshes
[HBTG98, Lep95]. Message
[BWXM05, HLB94, KDDV03,
PH97, Ada98, BCM+07, DLM99, FMI92,
Met95, PS914, SCM05, FGT96, PS01].
message-handling
[Met95]. message-passing
[BCM+07, FM92]. messages
[Koo93, SD95, WHJ+95]. meta
[FKS+12]. meta-scheduler
[FKS+12]. Metering
[LHM+16]. Method
[LHG+16, SKG+11]. Methodology
[Sri95]. Methods
[CMK00, FGKT97]. Metro
[Ano00b]. Metro-X
[Ano00b]. Mexico
[Ano94e, Gol94]. MFC
[Oni97]. MICE
LK15, LB92, Leg01, LKBK11, Mas99, MTN+00, McC97a, McC97b, MS15, MG15, MCF799, NJ00, OR12, PCPS15, PNB99, PKB+01, PM14, Pul00, PGB16, RR93, RCC14, RBPM00, RKCW98, RVR04, RS08, SP00a, STW93, Sch90, SKG+11, Sei98, Sei99, Tkl92, Ste01, SBKK99, TGO99, Tan87, Tra91, TLGGM17, VSPO97, VB00, VK99, Wal00, YLLS16, ABD+12, BWDZ15, Bak95a, BK13, BM07, BI8+11, DSE13.

multi [CNQ13, CIM+17, CFF+12, CASA14, CKRW97a, CKRW97b, CSB00, CL00, CSM+05, DWHYB10, Dom92, EFG+03, EHSU07, FTAB14, FWL03, FGSA14, GCRD04, GCC15, GPR91, KHP+95, KDM+98, KKH04, Kp93, KBF+12, Lan97, LTB06a, LTB06b, LTB06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mus09, NFBB17, NH09, NSH09, OA08a, OA08b, OA08c, PYP+10, RCV+10, RKM+10a, RKM+10b, RKK99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SPO08a, SPO08b, SPO08c, SMQY09, ST05, Tem97, TCG95, TMA03, TJY+11, VIA+05, VDBN98, VV00, VPPQ12, WCC+07, WVC+98, YZ07, Yan97, YSY+09, YN09, kSYHX+11, YKL13, ZKR+11, dBO9, vPG03, An097b, CH04, Mix94].

multi- [FMY+15].

multi-ALU [KDM+08].

Multi-C [Mix94].

multi-context [Yan97].

Multi-Core [KTR+04, PM14, CFF+12, CS+05, DWHYB10, KBF+12, MLC+09, Mus09, SMQY09, WCC+07, YZ07]. Multi-Cores [CKK+16].

Multi-CPU [PGB16].

multi-engine [CNQ13].

Multi-Level [RR93, CCC12].

Multi-Level-Context [JLS99].

multi-process [WVC+98].

multi-processor [VIA+05, YN09].

Multi-protocol [ABN00].

Multi-Thread [HG91, MTN+00, AMRR98, PKB+91, SKG+11, Tan87, Tra91, DWHYB10, Dom92, ST05, TCG95].

Multi-Threaded

AGK96, BC98, Bed91, BGK9a, BGK9b, BGK96, CL95, CKRW99, Coo95, DV99, Fdl02, GVT+17, GK94, Gil93, HI10, JY15, Jon91, KWi17, Kuc92, LB92, Mas99, MG15, PCPS15, Pul00, RKCW98, STW93, Sei99, Smi92, Ste01, SBKK99, TLGM17, VSDK09, VB00, Ada98, AACK92, BBH+17, BC00, CV98, CWBH03, CDSO01, cC91, Chr01, CR02, DS16, EBKG01, FD96, GS06, GH98, HC17, K19, KHR98, KL15, Leg01, RBPM00, RS08, SP00a, Sei98, VK99, Wal00, ABD+12, BWDZ15, BK13, BI8+11, DSE13, CIM+17, CASA14, CKRW97a, CKRW97b, CSB00, CL00, EFG+03, EHSU07, FTAB14, FGGA14, GCRD04, GCC15, GPR91, KHP+95, KKH04, Ke09, Lan97, LBH06a, LBH06b, LBH06c, LVA+13, MLCP11, MS03, MCKK99, NFBB17, NH09, NSH09, OA08a, OA08b, OA08c, PYP+10, RCV+10, RKM+10a, RKM+10b, RKK99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SPO08a, SPO08b, SPO08c, SMQY09, ST05, Tem97, TCG95, TMA03, TJY+11, VIA+05, VDBN98, VV00, VPPQ12, WCC+07, WVC+98, YZ07, Yan97, YSY+09, YN09, kSYHX+11, YKL13, ZKR+11, dBO9, vPG03, An097b, CH04, Mix94].

Multi-threaded

[PYP+10, RCV+10, RKM+10a, RKM+10b, RG99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SPO08a, SPO08b, SPO08c, Tem97, TMAG03, TJY+11, Vtv0, YSV+09, ZKR+11, dBO9, vPG03, An097b].

Multi-Threading

[LKBK11, McC97a, McC97b, MS15, OR12, PMB09, RCC14, Sch90, TGO99, YLLS16, DTLW16, MCF799, NJ00, RVR04, Bak95a, BM07, FWL03, LZW+13, MLC+09, VDBN98, kSYHX+11, YKL13, CH04].

multiagent [Bar09].

Multicomputer [FKD+97].

multicomputers [BCG+95].

Multicore

[BCZY16, CCH11, CB16, GJ11, HEMK17, KLDB09, LS11, LMA+16, LYH16, LDT+16, MR09, NBMM12, PGB16, RCM+16, RKK11, SMD+10, TAH+12, ZBS15, CNQ13, CN14, CMX0, LK13, LLLC15, NZ17, RCG+10, RKBH11, SCCP13, SE12, ZSB+12].

Multicore/Multithreaded [RM+16].

Multicores [FSP16, FSPD17, RKK15, DTK+15, GARH14, SSN10].

Multifrontal [But13, Dav11].

Multigrain [AZG17].

multigrid [RM99].

multilevel

[Cat94, JJY+03, LK15].

Multimedia
multimethod

Multiple

[CB16, FGKT97, HW92, HKT93, NTR16, OR12, CS95a, CS95b, FD95, HKN+92, LT97, TE94b, TFG10, TAN04, WCT98],
multiple-context [FD95], multiply

[CSV10], Multiprocessing

[EKB+92, Len95, NV94, Wal95, DLOC09, MT93, Pra95b, RGK99],
Multiprocessor

[AACK92, AKP99, BC00, Cat94, EHG95, GHG+98, HN91, KMAS01, MCT08, Pre90, SZ92, SE96, USE92b, WC99, Zub02, Cho93, DCK07, EKKL90, HB92, KT99, LVN10, LW+10, PIZA07, An094b],
multiprocessor/multithreaded [Cat94].

MultiProcessors

[BMV03, BS96, BL96, BLG01, CH95, GMR98, KU00, KKS+08, LS07, LMJ14, LA93, MZV93, MKC97, NS97, TESK06, YMR93b, BR92, GA99, HT14, LGH94, Mao96, Men91, QSO14, SKM10, SHA98, SKCC09, TASS07, Yoo06b, YMR93a].

Multiprogrammed

[MVZ93, TSY99].

Multiprogramming

[BHP+03, JJ91, CGL92a, CGL92b].

MultiRace [PS07].

[Multithread]

[Col90b, Gib94, Gom90, JJ91].

MultiThread

[CS04, RRMJ12, SYHL14, CS95a, CS95b, DSH+10, GCC99, JD08, SWY94, ZG98, ZG96].

Multithread-safe [GCC99].

Multithreaded

[Add03, AdBr08],
ABC+93, AT16, Am09a, An09b, An09c, An04e, An09g, An09a, An09b, An01, ABH+00, ABI+01, ABI01, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BBdH11, BK06, BMBW06, BF04, BJ+96, BL98, BBO0, BMN99, BDN02, BP05, BLG01, BTE98, BNI01, BD06, BGH+12, BBSC11, CCCI, CJW+15, CS02, CG06, CC04, Ch15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN+00, CMBAN08, Dan09, DNR00, DH98, DRV02, DO95, EFN+01, EFN+02, EJMR13, EHP+07, EC98, EGP14, FSS06, FT96, FS96, FTP11, FQS02, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA+15, HMLB16, HTZ+97, HMMN91, HHOM91, HOM92, HLB94, HN11, HWZ00, HPB11, HY+15, Hud96, HMT+96, I+94, JYE+16, JSB+12, KA97, KK14].

Multithreaded

[KMAS01, KST04, KLM04, KC98, KC99, KMjC02, KR12, KU00, KE15, KG94, KIM14, KU17, KAO05, Kor89, KTR+04, LS07, LG06, LH04, LB96a, LB98, LBO0, LLS06, Lvh12, LTM+17, LYH16, LPE+99, Loe97, Lmn97, Lmn99, MGQS+08, MP01, MS98, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGGA94, NTKA99, NIK94, OB13, OTY00, PBDO92, PUF+04, PG92, PG96, PG99, PF01, PHK91, PWL+11, PS01, QOM+12, RW97, RCC12, REL00b, Rin01, RB18, RNSB96, RSBN01, ROK11, RBA05, RR99, SPDLK+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She08, SU96, SU01, SZM+13, SGM+97, SMX+10, SR01b, SYYG97, SKK+01, Spe94, Sr95, SZ02, SUF+12, Sut99, TG99, Ten02, TKA+01, TCI98, TT03, TTKG02, TGBS05, TLZ+17, TJY98, TSV12, URS02a, VTM12, Vo93, VE93].

Multithreaded

[Wan94, WS08, Wea08, WJ12, Wil97, WLM15, W94, WC99, Ysa95, YWJ03, Yoo06a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, AdBr05, Aga08, Aga91, Aga92, ABF+10, ABC+15, ACC+03, AGE08, Ann06, An04b, An09a, An09b, A+01, ABC+09, AR17, Aru92, BGdWH12, BBF03, BRS10, BGZ97, BCHS00, BAD+10a, BAD+10b, BCG13, BGC14, BMBW00a, BMBW00c, BYLN09, Bh02, BL93, BL94, BL95, BNL95, BN09, BSL0a, BCG14, BEKK00, BS10b, BSN11a, BSN11b, BSN12, CZWC13, CS00, CMS03, Cars98, CB89, CB90, CF+12, CL94, CN14, CS12, CDD+10, CL+02, Cho93, Cho92, CGL92a, CGL92b, CJ+15, DJLP10, DSG17, Dav11, DL93, DKF94, EJK+96, Eic97, EG11, Est93, Evr01, Fan93, Far96, Fer13, FF04, FFQS05,
multithreaded [GJ11, GGB93b, GK05, GPS14, GL98b, GL98a, Gol06, GRS06, GRR06, GA09, GLC99, HMC97, HFV+12, HF88, HL90, Hig97, HNM+92, Hop98, JMS+10, JWTG11, JFL98, JSMP12, JSMP13, Joe96, JSB+11, KGPH12, KR01a, KR01b, KNPS16, KEP+03, Kub15, Kus15, LLLC15, Lea96, Lei97, Len95, Lev97, LEN+95, LMC14, LBE+98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, Mil95, Mis96, Mix94, MC06, MKR10, MQ07, NB12, NR06, Ném00, NPA92, ND96, NZ17, Omm04, Par91, PFV03, PJZA07, Pha91, Ply89, PDP+13, PS03, PS07, Pra95c, PT03, RGG+12, RCM+12, Raj93, RCG+10, RHH10, REL00a, REL00c, Rei95, ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c, SV96a, SV96b, Sch98, SRA06, Sha95a, Sha95b, Sha98, She02, SLG06, SP00b, Shi00, SP05].

multithreaded [Sim97, ST00a, ST00b, Sod02, SSN10, Squ94, Sri93, Sta90, Sun95, SMS+03, TMC09, TMCp10, TR14, TV10, TG09, TP18, TE94a, The95, TKA+02, TB97a, TB97b, TKHG04, TLZ+16, Tod95, Tsa97a, TDW03, UZU00, VGR06, Ver97, Ver96, VGK+10a, VLG+10b, WS06, WCC+07, Way95, WT10, XIC12, XSJA08, Yan02, Yan97, YZYL07, Yoo06b, YMJ92, YMR93a, YNPP12, ZJS10, ZP04, WM03, LP09].

Multithreading [AMdBdRS02, AH00, Ano99, Ano05, BBG+10, BWXP05, Bee00, Bee98, BW97, BD00, BL96, BPL07, Brot02, BLPV04, Bru13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FBF01, FKT96, GHG+98, GV95, Gu95, Gun97, GSL10, Har99, HBTG98, ILFO01, IBST01, KPC96, Kela94a, Kela94b, Kho97, KF97, KLH97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MH95, MN00, MK97, Nag01, Oni97, OCS01, PJS15, PT91, PST+92, Pea92, Pra97, RLJ+09, RG03, RD96, SSP99, SYR+93, SW08, SCv91a, SP07, SLG04, SRU98, Sin07, Sni01, ST00c, Ska01, TY97, Ten98, TAK+00, TESK06, VT96, WWW+02, WC+04a, Wei97, YG10, ZL10, Zig96, AAHF09, AAKK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCC12, Div95, DN94]. multithreading [Dub95, Dye98, EE09a, FM92, Fis97, Fon97, GWM07, GBG95, Gea98, GEG07, GE08, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KC09, Kmg94, KTG99, KLH+99, KL93, LGH94, LSS12, LZW17, LB95, LB96b, LZL+14, Loi95, LVS01, LZW14, Luk01, MWP07, Mao96, MKIO04, MGL95, MMM+05, McM97, Met95, MKR02, MAAB14, OAA09, Ong97, PSG06a, PSG06b, PSG06c, PG01, PHCR09, Pra95b, RM00, RR96, RPNT05, San04, Sch91, Scv91b, Sin99, SW16, STV02, Swi09, TK98, TSC99, TOL01, Tsa97b, TEL95, TEE+96, Tlu96, TEL98a, TEL98b, TESK06, VT96, WWW+02, WCW+04a, WCW+04d, WCW+04e, YGW+10, Yw97]. multithreading-based [GE08]. must [NA07]. mutable [HL93]. Mysteries [Hol98b]. mutual [BRE92]. Mysteries [Hol99b].

Network-I/O [RM03].
Networked [CT00, FGKT97]. Networking [ACM98d, ACM00, Hol12, LCK11, DWYB10].
Networks [IEE95, KLH97, Lu98, RR93, SMK10].
Neumann [HG92]. Neurons [LTM+17].
newly [Ano95a, Ano95b]. NewOS [TLA+02, Gei01]. Newport [USE92b].
News [Bra97, Gar01, Mat97, McM97]. Next [ARB+02, EEL+97, TSV12, CH04].
Next-Generation [EEL+97, TSV12, CH04]. Nexus [FKT96]. NFS [Ano95a, Ano95b].
NFV [GDSA+17]. Niagara [KAO05]. NLM [Day92a, Day92b].
NLM-Based [Day92a, Day92b]. NoC [YL16]. node [TK98].
Nodes [EHG95]. noise [GA09]. Non [Cas02, Coo95, KIA99, LB17, SGM+97, Tra91, Ann96, RGK99, SGM+97, SKG+11]. non-blocking [Ann96].
Non-Deterministic [LB17].
Non-Intrusive [Cas02]. non-invasive [RGK99]. Non-numeric [SGM+97].
nondeterminism [HBCG13]. Nondeterministic [LPS07].
Noninterference [BC02, Smi06].
noninterruptible [AAHF09]. Nonlinear [Nak03, GOT03, Kuh15]. nonoperational [GS00].
Novel [HG91, GKK09] . November [ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a].
NOWs [SLG99]. NP [YZ14]. NPB [EGC02].
NT [Ano98b, Hig97, PG96, Pra95c, Pra95b, TCI98, USE98a, Wil94a, Wil94b, Yam96].
NT-Style [Wil94a, Wil94b]. NUMA [LMC14, ZLW+16]. NUMA-aware [ZLW+16]. number [LSS12, SLF14].
numeric [SGM+97]. Numerical [MR09]. Numerics [Ano97a].
O [RM03, ABB+15, BDN02, K.94, LTL+16, Man98, MG15, Yoo96a]. Object [Ano99, BBD+91, BC94, GKF94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car89a, CLL+02, FKL03, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yan02, db09, vPG03]. Object-Oriented [Ano99, BBD+91, BC94, Ker14, NPT98, SG96, HH97, Ada98, Car89a, CLL+02, FL90, JPS+08, Wei98a, Yan02, db09, vPG03].
Objects [ACR01, CJK95, CR02, Low00, Pra95a, Ric92, Ten02, Yas95, Bak95a, Bri99, DMBM16]. object [Swi09]. Oblivious [UALK17, HL08, HZ12]. Observer [Hol99b]. occupancy [PAB+14]. Ocean [SAC+98].
OCTET [BKC+13]. October [ACM94d, Ano94d, BT01, IEE95]. ODBC [Ano00b, Hig97]. ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [MHG95, AAC+15, DTK+15].
off-chip [DTK+15]. Off-the-Shelf [MHG95].
offs [Par91]. Old [Wil00].
On-Chip [LKBK11, SMK10, TEL95, TEL98a, TEL98b]. On-Line [Ano00c, FSPD16, FdL02].
On-the-fly [Sch89, CWS06, PS03, PS07]. once [Bak95a]. one [QSH16]. one-sided [QSH16].
Online [Ger95, OTY00, RCC14, Sei98, Sei99, SRA06, TGO99, HF96, LWV+10, RS07, VGK+10a, VGK+10b]. only [MJJF+10, NM10, ZJFA09]. onto [LBvH06a, LBvH06b, LBvH06c].
Open [Ano00c, BFM+16, Haisb7a, KRo1a, KRo1b, RBF+89]. Open-Source [Ano00c].
OpenMP [Cha05, ARvW03, BHP+03, BBC+00, Bra97, BMV03, B001, CRE99, CDK+01, CM98, DM98, HD02, EV01, JJJ+03, KKH03, Lu98, MS02, Mar03, MLC04, MDP04, Mat03,]
MG15, MM14, Müll03, NAAL01, RBAA05, SLGZ99, Thr99, TGBS05, Vre04, RM99.
OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPiton [BMF+16].
OpenSPARC [Wea08]. Operand [BMF+16]. OpenPiton [BMF+16].
OpenSPARC [Wea08]. OpenOpt [NSP+14]. OpenOpt [NSP+14].
Operand [SP07]. OpenSPARC [Wea08]. Operation [RHH10].
Operational [CKRW99, CKRW97a, CKRW97b]. Operations [KKS+08, KLDB09, SCL05, HMC95, RD06].
Opportunistic [YL16]. Opportunities [GJ97, HL08, Mus09]. OPR [QSHI16].
Optimal [AT16, Lar95, RCM+12, Lep95, LML00]. Optimistic [WHJ+95, CJSB16, VPQ12].
Optimization [BLG01, GN96, RNSB96, SYH14, TJY98, TLGM17, WJ12, AMC+03, AMPH09, DZKS12, GOT03, Koo93, RKCW98, Sin99, TO10, ZCSM02a, ZCSM02b].
Optimizations [HYY+15, JSB+12, KET06a, LEL+99, Sun99, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95]. Optimized [Sin97]. Optimizing [DK+15, KZTK15, PR98, PSCS01, WCY+07, GSK2].
Order [CK95, RRK11, NV15, SJA12, SW16, ZKW15]. Oregon [ACM94b, ACM99b, IEE93]. Optimization [HG91, HG92]. optimizing [LAK09].
Organized [HG91, HG92]. organizing [LAK09]. Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHC+16, NPT98, SG96, Ada98, Car99a, CL1+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei98a, WP10, Yan02, dB09, vPG03]. Orlando [ACM94a, ACM98d]. OS/2 [DN94, Kan94, Kel94a, Kel94b, Rei95, Ric91, Rod94].
Oscillations [BD06]. OSF [BM91]. OSF/1 [BM91]. Other [SPY+93, MMT10].
Ottawa [BT01]. Out-of-Core [QOIM+12, ABC+15]. out-of-order [SJA12, SW16]. Outstanding [LSB15]. Overall [SEP96]. Overcome [SW08].
overflow [KOEB+06]. Overhead [DSC15, RR09, YL16, ZHCB15]. overview [Li05]. Own [BS99, Shoa97a, Shoa97b].
Oxford [ACM94c].
P [Ano00b, Nik94, PR05]. P-RISC [Nik94]. P-STAT [Ano00b]. P-Thread [PR05].
Pacific [IEE89]. Pacific [QSHI16].
Package [Ano00b, FL90, HCM94]. packages [GOT03, OTE05, PL03]. Packaging [RR93].
Packard [BLCD97]. Packet [AHW02, LCH+08, MVY05, WCY+07].
Palisp [Ko95]. pain [Gus05].
Pajé [CDSO01, CSB00]. Palo [ACM91]. panel [Ano94e, Baki95b, HCD+94, IAD+94].
Paper [ABH+01, TKA+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKDV03, Cha05]. par-monad [FKS+12].
ParADE [KKH03]. Paradigm [EW96, JD08, LK15, PPA+13, BCG+95].
Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ama89, ABNP00, ACM97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CZS+17, CL95, CDN+01, CBN+00, DS16, Den94, EJ93, FHM95a, Gid94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, J15, KTLK13, KI95, KEL+03, Kon00, KKD03, Kvo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, SCv91a, SAC+98, SRU98, WC99, YFF+12, ARY03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BGK94c, CAR08, CFK+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fuj97, GC92, Gol97, GKK09, GEG07, GE08, GB99, HMC97, IEE94a].
Page [CNV+06]. page-based [CNV+06]. PageRank [KG07]. Pajé [CDSO01, CSB00]. Palo [ACM91]. panel [Ano94e, Baki95b, HCD+94, IAD+94].
Paper [ABH+01, TKA+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKDV03, Cha05]. par-monad [FKS+12].
ParADE [KKH03]. Paradigm [EW96, JD08, LK15, PPA+13, BCG+95].
Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ama89, ABNP00, ACM97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CZS+17, CL95, CDN+01, CBN+00, DS16, Den94, EJ93, FHM95a, Gid94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, J15, KTLK13, KI95, KEL+03, Kon00, KKD03, Kvo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, SCv91a, SAC+98, SRU98, WC99, YFF+12, ARY03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BGK94c, CAR08, CFK+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fuj97, GC92, Gol97, GKK09, GEG07, GE08, GB99, HMC97, IEE94a].
Parallel \cite{[ej00, npa92, odssp12, rcv+10, rhh10, sbcv90, sch91, scv91b, sha98, swyc94, st08, sgs14, taf13, tgc95, vpq12, vgk+10a, vgk+10b, wk08a, wk08c, wk08d, wk09, wokh96, wth+12, ycw+14, fr95, vre04, wn10].

Parallel-Multithreaded \cite{wc99}. Parallelism \cite{aack92, abll92, bam93, css+91b, dv99, ew96, fkp15, furm00c, gvt+17, gp95, dk02, lkbk11, lel+97a, lel+97b, mg99, mr94, mar03, mcf99, nb99, rbaa05, ss99, smd+10, sg96, thr99, ws08, ybl16, yoo96b, alhh08, akside6, css+91a, css+91c, ee99a, fn17, furm00a, furm00b, hdt+13, kbrj12, kdm+98, kvn+09, kc09, lath+12, qoqv+09, slg+99, sd13, tel95, tel98a, tel98b, vdbn98, vv00, wei98a, xsa+08, yz14, zig96]. parallelism-aware \cite{la+12}. parallelisme \cite{zig96]. Parallelization \cite{cre99, kco99, lva+13, rkm99, rzws08, ylls16, ac99, dco7, jjy+03, po03, rkm+10a, rkm+10b, rrmj12, tfg10]. parallelized \cite{cji91]. Parallelizing \cite{bm91, wdc+13, kbf+12}. Paralog \cite{vgk+10a, vgk+10b}. Parameterized \cite{bcro1, fkr12]. Parametric \cite{ano98b, frr95]. Parametric-aware \cite{ano98b}. Parsimony \cite{ysy+09}. PARC \cite{ong97]. Parsing \cite{bc00, lar95, pcm16}. Parse \cite{ano92a, ano92b, kro01a, mcm98b, hol98a, hol98b, hol98c, hol99a, hol99b, mcm96b, mcm98a]. Partial \cite{loe97, rrp06, sp00b, shi00, zk15]. Partition \cite{lzw17]. Partitioning \cite{amrr98, coo95, dh92, ew96, tg99, dck07, lzl+14, mkr10, scg95, ww96]. Partitioning-Independent \cite{ew96]. Pascal \cite{hay93}. PASCO \cite{hon94]. Passing \cite{bwxf05, tla+02, fgt96, kkd03, ph97, ps01, ad98, bcm+07, dlm99, fm92, prs14]. Path \cite{blg01, tak+00, cytp02, wct98]. Paths \cite{oty00, ano95a, ano95b]. Pattern \cite{ano97b, egp14, or12, eg11, gb+07, scm05]. Pattern-Based \cite{egp14, eg11]. Pattern-recognition \cite{ano97b}. Patterns \cite{ds16}. PC \cite{mia90, cfk+91}. PCM \cite{akside6}. PDES \cite{ltm+17}. pedagogical \cite{cms03}. PegaSoft \cite{ano00b}. C \cite{byln09, nd13, nd16, pul00]. C-based \cite{rsb09}. dynamic \cite{scb15}. execute \cite{apx12}. FIFO \cite{hhom91, hhom92}. IEEE \cite{acm98d}. ISCOPE \cite{acm01}. Linz \cite{hon94]. MP \cite{tt99}. MPI \cite{dlm99}. multi-threaded \cite{taf13}. Multithreaded \cite{rcm+16, car94}. O \cite{ano95a, ano95b}. output \cite{mp89}. Power \cite{rkk15}. Reduction \cite{sw08}. Replay \cite{chr01, grd04, rd99}. Restart \cite{zsa13]. run-time \cite{tsy99}. Server \cite{day92a, day92b}. software \cite{lty97}. T2 \cite{wca08}. Tk \cite{use96, use00b, tla+02, mkk99]. von \cite{hg92}. WAN \cite{yas95}. Web \cite{chi15b]. Pennsylvania \cite{acm96}. Pentium \cite{rgk99}. Per-node \cite{tk98}. Per-Thread \cite{cha02, ee09b}. Perf \cite{fspd17]. Performance \cite{acm98a, acm98d, acm00, aga89, aga91, aga92, bs96, bl96, brm03, blg01, bnh01, bh+12, bbgs11, cal97, cre99, cch11, cck+16, ch95, cho92, ct00, cs+05, cb+00, cmbn08, dwy10, egc02, ft96, fspd17, fbf01, furm00c, fgkt97, gal94, gar01, gno00, hrh08, hol12, hn91, ie94b, jfl98, kztk15, ksk97, ktr+04, lck11, lg06, lep95, lmj14, lhp+16, lyh16, mah13, man99, mao96, ms+16, mpd04, me17, mkc97, mm14, nca93, nbs+15, ngga94, par91, ph97, ps01}.
performances
RR96, TGBS05, BCCO10, RD99, RPB+09.
PRAM [For97, Lep95]. Pre [PR05, Luk01].
Pre-Execution [PR05, Luk01]. Precise
[HR16, KUCT15, CLL+02, FF09, WTH+12].
Precomputation [MGQS+08, WWW+02].
Preconditioning [Nak03, GEG07].
PREDATOR [LTHB14]. Predicate
[GPR11, How00]. Predictive
[LTHB14, SRA06]. Predictors
[EPAG16]. preemptive [JLS99]. prefetch
[ACM+03]. Present
[ACM93a, ACM94b, ACM95b, ACM98b].
preserving [MSM+11, NFBB17]. pressure
[DTLM14, SLP08]. preventing [PRB07].
Price [Ano08b]. Pricing [TT03]. Primer
[LB96a, Wi97]. Primitive [Lov00].
primitives [BBH+17, LZ07, NLK09].
principle [LAK09]. Principles [ACM93a,
ACM94b, ACM95b, ACM98b, TLA+02].
print [Van97a]. priorities [STV02].
prioritization [FD95]. Priority
[BCG+08, NBMM12, SCCP13, ST05].
priority-based [NBMM12]. Private
[Man99]. privatization [HZ12]. Pro
[Ano97a]. Probabilistic
[EE10, EE12, CHH+03, Sni06]. Problem
[HH11, Lee06, YFF+12, BI+11, Mit96].
Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].
procedure [BGK94c, KASD07, LQ15].
procedures [MCS15]. Proceedings
[ACM94c, ACM98d, ACM99a, ACM01,
Ano90, Ano94a, Ano94d, AOV+99, Gol94,
Hol12, IEE99, IEE99, IEE92, IEE93, IEE94a,
IEE95, IEE96, IEE02, Lak96, LCK11, USE89,
USE91a, USE91b, USE92a, USE93a, USE93b,
USE96, USE98b, USE98a, USE00b, USE01,
USE02, ACM92, ACM95a, ACM96, EV01,
EE97, Wat91, ACM93b, ACM98c, RM03,
Ano91, DLM99, IEE94b, IEE94c, FR95].
Process [FT96, FG91, BM91, HF96, LVS01,
MR98, Pfy89, WP10, WC+98].
process-oriented [WP10]. Processes
[CB16, III01, SPY+93, ZS13, ZYL07,
Zig96]. Processing [AHW02, GAC14,
RW97, SS91, WN10, How98, MVY05, Par91,
PYP+10, RKHT17, WCZ+07]. Processor
[ABC+93, Ano00b, BCG+08, BGH+12,
EHG95, GV95, HMMN91, HHOM91,
HHOM92, KST04, KML04, KAO05, Lvh12,
MGQS+08, MG99. MTN+00, MVZ93,
MB05, SW08. Sin97, ST00a, ST00b,
STV02, Squ94, Sra97a, Tsa97b,
TEE+96, VIA+05, WCW+04b, WCW+04c,
WCW+04d, YN09, ZP04]. processor-based
[WCW+04b, WCW+04c, WCW+04d].
Processor-In-Memory [SZ02].
Processor-Oblivious [UALK17].
Processors
[ARB+02, AH00, Ano01, BF04, EEL+97,
FT96, GJT+12, GSL10, KS16, KLG08, KU00,
KLB09, LPE+99, MHG95, MCF99, MR09,
ÖCS01, PF01, RCM+16, RRK11, SU01,
SR01b, UR502a, YG10, ZP11, Aga89, Aga91,
Aga92, AAC+15, BDGWH12, BWDZ15,
CS95a, CS95b, CN14, CDD+10, DWY10,
Div95, Eic97, EE09a, EE09b, EE12, FD95,
GMW09, GBP+07, KBF+12, LLL10,
processus [Zig96]. Procs [MT93].
Products [Ano97a, Ano00b, Bra97].
Professional [Ano00b]. Profile [BMR94].
profiler [DTLM14]. profiling [DG99].
Program [Chl15a, DSR15, EFN +01, GN96,
KKW14, NBM93, PF01, PS01, TSY00,
TLZ +17, TJY98, YLS16, AC09, BGC14,
BD06, Cal02, Dan09, Dub05, EFN +02,
FRT95, JEV04, JPS90].
Programmability [THA +12].
programmable [PYP +10].
programmation [Swi09]. programmed [PPA +13].
Programmer [Cro98, Wil00, MS87, San04, Swi09].
Programming [ACM93a, ACM94a, ACM94b, ACM94d,
ACM95b, ACM98b, ACM99a, BGG +10,
BTE98, BuT97, CMK00, CV98, CDK +01,
Chl15b, CT00, CW98, DM98, FHM95a,
FTP11, HCD +94, Hol98d, Hol98a, Hol98b,
Hol98c, Hol99a, Hol99b, ILFO01, KKH03,
KSS95, KSS96, KIAT99, LB96a, LB00,
LvH12, Mas99, NBF96, Nor96, PG99,
QOQV +09, QOMI +12, Rod95b, SBB96,
TCI98, Vre04, Wil08, YFF +12, dlrP RB99,
van95, ALS10, AR17, AG96, ABG +08,
BCHS00, BO96, BYLN09, Bir89, CFK +91,
Car89a, CS00, CMS30, Cha05, DSH +10,
EVO1, FHM95b, GZK2, Gil94, Go97, GL07,
HMC97, Hyd00, JPS +08, JHM04, KIM +03,
Kim94, LB98, LP09, Man96, MSM +10,
MKIO04, MR98, Mix94, NHFP98, Nev99,
NBF98, ND96, PG96, Pra07, RR96, RR03,
SKS +92, SV96c, SV96a, SV96b, She98,
She02, Sun95, TB97a, TB97b, TMAG03].
programming [Wal00, WCC +07, Yan02].
Programs [ABNP00, BBFW02, BE13, BLG01, CC14,
CJW +15, CRE99, CS02, CC04, CdOS01,
Chr01, DRV02, EGP14, FQS02, GKCE17,
HLB94, Kri98, LCS04, Lun97, Lun99, MS89,
OB13, PHK91, Rin01, RD96, RR99,
SPDLK +17, SBN +97, SYHL14, Ste01,
TGBS05, Tra91, Voj93, VE93, ABF +10,
BRRS10, BK13, BGC13, BGC14, Blu95,
BE12, BC02, BS10b, BNS11a, BNS11b,
BNS12, CZWC13, C9J1, CL00, CLL +02,
CVJL08, Cor00, DJLP10, DESE13, EFG +03,
EG11, EHSU07, FK12, Fer13, FF04,
FFQS05, FF08, FFY08, GMR09, GRS06,
GPR11, HZ12, JPS +08, JWGT11, JFL98,
KC09, LQ15, Lea96, LMC14, LC13, MS03,
MS87, MC06, MQ07, NR06, NH09, NSH14,
NV15, OdSSP12, PAIS +17, PDP +13, PS03,
PS07, RVS13, Rei95, RS07, SR01a, SCG95,
SRA06, Sen08, SP00b, Shi00, SP05, SG14].
programs [Sto02, Taf13, TR14, TLZ +16,
WS06, WTH +12, XSAJ08, YCW +14,
YNPP12, ZJS10, ZJS06, db09, vPG03].
Progress [FSPD17, TLG17, ZHCB15].
Progress-Aware [FSPD17]. Progressive
[BBdH +11, TGO00]. Project [Ano99].
projection [SSkP +07]. Projections
[MQLR16, MLR15]. proliferating [Ano94b].
Prolog [EC98, AR17, KA97]. Promises
[Gar01]. Proof [Add03, AdDrs08,
FKP15, AdDrs05, GLPR12]. properties
[KTLK13, Van97b]. proposal [GP05].
Proposed [GV95]. protect [San04].
protecting [ZJS +11]. Protection
[CLFL94]. Protein [BSC11].
Protein-Protein [BSC11]. Protocol
[GR97, II01, ABN00, KASD07, QSQ14].
Protocols [AB01, AB02, GRR06, TVD14].
Prototype [BMR94, HHOM91, HHOM92,
BK96, BVG97, Far96]. prototyping
[PDP +13]. Provably [DJLP10, GB09].
provide [Way95]. provides [Hig97].
Providing [PSM01, PSM03]. proving
[Taf13]. Provisioning [BSSS14, FGG14].
pseudorandom [SLF14]. PSO [HH16].
PTF [Yam96]. Pthreads
[NBF98, Yam96, LB98, AS14, NBF96].
Publications [Bee98]. Publishing
Purpose

Ber96b, Hig97, Man98, ZSA13, Ber96a, DC99, DC00, HSD+12, SKA01. Put

Wal95. PVM

DLM99, DPZ97, Pla02, ZG98. PVM/MPI

DLM99. Python [Swi09, How98, Pul00].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02].

QoS [ICH+10, PSM01]. QR [Dev11].

quality [PSM03]. Quantitative [NB93].

Quasi [Pla02]. Quasi- [Pla02]. Queries

TGO99, TGO00.

query [GARH14]. QUERYFLEX [Ano97a]. querying [HF06]. Queue

Cri98b, Cri98a. queues

SCM05, ST05. Queuing

VK99, KPP´ER06. Quick

TGO99, TGO00.

QuickRec [PDP+13]. quicksort [Mah13].

R3000 [Aru92]. Race

HM96, KUCT15, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EQT07, FF09, HR16, HHPV15, MN09, NA06, NA07, PS03, PS07, PFH06, RVS13, WDC+13, XHB06, DWS+12. race-freeness [AHK08]. RaceFree [LZW+13]. Races

KZC15, FF10, NWT+07, PRB07, PT03, RBK+09. racy [SRJ15]. RADISH

DWS+12. Ramada [Ano94d].

Ramada-Congress [Ano94d]. random

LSL12, Sen08. random-number

LSL12. Randomized

Sei98, Sei99, JPSN09. Rank

AJK+12, Dav11. rank-revealing [Dav11].

Ranking [DV99, VV00]. ray [Tod95].

RCDC [DNB+12]. RCU [CKZ12].

Reachability

LCS04, LQ15. reachability-modulo-theories [LQ15].

Reactions

LT+17. Reactive [LvH12].

Reactivity

BDN02. read [NM10].

read-only [NM10]. ready [Ano92b]. Real

BC94, IEE94a, IEE94d, JLS99, Kim14, KBP+03, MN00, PSM01, PUF+04, PSCS01, SZG91, SUF+12, Tet94, WLG+14, dIPRGB99, CZWC13, CMX10, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Jen95, JPSN09, MKK99, OT95, PSM03, RPNT05, Sen04, SZ92, SJB92a, SJB92b.

Real-Time [IEE94a, JLS99, Kim14, MN00, PUF+04, PSCS01, SUF+12, Tet94, dIPRGB99, IEE94d, KBP+03, PSM01, SZG91, Jen95, MKK99, OT95, PSM03, Sen04, SZ92, SJB92a, SJB92b].

Real-Time-and-Distributed [BC94].

reconfigurable [DSh+10, LP09]. ReconOS

LP09. reconstructive [MCS15]. Record

Chr01, UALK17, ACM93a, ACM94b, ACM95b, ACM98b, GCRD04, HDT+13, HT14, PDP+13, QSQ14, RD99].

record-replay [HDT+13]. Record/Replay

Chr01, GCRD04, RD99]. Recording

MCT08, NPC06, HZD13, LZTZ15, XHB06]. recoverable [LAK09]. Recovery

LAK09, VPC02, WCV+98, ZYL07].

RecPlay [RD99]. rectangular

SGLGL+14. Recursively [BE13, BE12].

KSU94]. Reduce

DSR15, CCC12, Cor00, KOE+06]. reduced [GA09]. Reducing

SLP08, SYHL14, PGB12]. Reduction

Ama89, CL95, KLS92, HH16, XHB06, YL16, ZKW15]. Reductions

ZAK01]. Redundant

[CCK+16, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14].

ReEnact [PT03]. Reentrant

[AMdBR02]. Refactoring [Ten02].

Reference

Rec98, Sch14, KOE+06].

Reference-Counting

Rec98. refinement [GPR11, KPP´ER06, KI16]. Reflection

OT95, BAK95a. region

KBF+12]. region-based [KBF+12]. regions [GPS14].

Register

GJT+12, LPE+99, RRK11, WW93, CCC12, HKT93, SL08, kSYHX+11, ZP04].
regulated [XHB06]. Relabeling [HH11].
related [Bar09, RD06, TLZ+16]. relational
HB15]. relative [Bet73]. Relatively
[NV15]. relaxed
[BAM07, DBN+12, HT14, QSQ14, ZKW15].
relaxed-consistency [HT14, QSQ14].
Relaxing [CZS+17]. RelaxReplay [HT14].
Relay [Zha00]. Release
[AB02, PST+02, SLP08, EKB+02, Pea92].
Reliability
[CCK+16, OL02a, OL02b, OL02c]. Reliable
[KS16, NBS+15, RG03, YZYL07, YCW+14].
relocation [WW93]. remains [Ano94b].
remedies [ALW+15]. remote
[TK98, ZLW+16]. Replay [UALK17,
HDT+13, HT14, LYN10, LWV+10, LZZT15,
NWT+07, PDP+13, QSQ14, QSHI16].
Replaying [MCT08]. Replica [AT16].
Replication [AKP99, BK10, VACG09].
Replication-Based [AKP99]. Report
[Ano97a, HCM94]. reproduce [HJD13].
request [Sch98]. Requirements
[PCPS15, GL98a]. rescue [SLP+09].
Research
[BMF+16, USE01, AG06, RPNT08]. réseau
[Swi09]. Resilience [Gar91]. Resistant
[YLLS16]. resize [Mit96]. resolution
[Ev101]. Resource [HC17, LG06, LHG+16,
RSBN01, YSS+17, CY09, HCD+94, V511].
Resource-Efficient [LHG+16]. Resources
[LSB15, RGG+12, ZSB+12]. Respec
[LWV+10]. Response [BBC+00, Smi01].
responses [BS06]. Responsive [SUF+12].
Restore [Ano00b]. restricted [ABG+08].
restructuring [BVG97]. Results
[GV5, GR06]. Retentive [RRK11].
Rethinking [Xue12, Len95]. retrieval
[CML00]. Retrospective [TEL98a].
Reusable [Han97]. Reuse [BCZY16,
KZTK15, JSB+11, NAAL01, PHCRC09].
revealing [Dav11]. Reverse
[Coo02, LSB15, WCV+98]. Review
[LAR97, Van97a, Vre04]. Reviews [Bra97].
Revised [Cha05]. revisionist [PT91].
Reviving [TLZ+17]. revolutions
[ECX+12]. Rewriting [BGK94a, BGK94b].
RHEED [BD06]. RISC [Cho92, GY95,
MHG95, Men91, Nik94, SBK90]. rise
[Len95]. Robot [Lev97]. Robust
[CMF+13, LG04]. Rockefeller [IEE90].
Rogue [Ano00b]. Role [BC94, KZTK15].
rollback [YZYL07]. root [CMX10]. Ropes
[HMC95]. Row [KZTK15]. RP3 [CJ91].
RPC [Tod95]. RPython [MRG17]. RTOSS
[IEE94a, IEE94d]. RTR [XHB06]. Ruby
[Oct14], rules [GLPR12]. Run [EJ93,
LFA96, SS96, Pra95c, Swe07, TNB+95].
Run-Time [EJ93, LFA96, SS96, TNB+95].
running [Cal02, MLCW11, SSN10]. runs
[Hag97]. Runtime [ABN99, ABN00,
ABH+00, ABN00, BJK+96, BMM99,
CZS+17, DNR00, FSS06, KPC96, NPT98,
NS97, QOM+12, SSS99, WSS06, ATLM+06,
ALW+15, BAD+10a, BAD+10b, BJK+95,
EQT07, GOL10, Ong97, TSY00, TMA03].
runtimes [RL14]. Russians [KNPS16].

SAC [GS06]. Safe
[BCL+98, KLE00, LOP00, NH09, Pla02,
AFF06, BYLN09, DBMB16, Fck08, GCC99,
GOT03, Gro03, NHFP08, Nev99, Rin99].
Safe-for-Space [BCL+98]. Safety
[Hag02, Pla98, Rtc99, SP00a, GPS14, Sam99,
San04, SRA06, Taf13, Van97b, Ven98, Yan02].
safety-critical [San04]. Salt [Hol12].
Sampled [JYE+16]. sampling [MMN09].
San [ACM93b, ACM94d, ACM95b,
ACM98b, USE89, USE92a, USE93b,
USE95b, USE00a, USE02]. Santa
[Gold94, WP10]. SAT [VSD09]. Save
[Pla93, Dye98]. saving [Mus90].
SC2000 [AMC00]. SC2002 [IEE02].
SC2003 [AMC03]. SC98
[ACM98d, ACM98d]. SC’99 [ACM99b].
Scalability [CCH11, GVT+17, Nak01,
BWDZ15, DSEE13, RVOA08, VIA+05].
Scalability-Aware [GVT+17]. Scalable
[BMBW00b, CC14, CH04, CKZ12, IEE94b, KUCT15, LMJ14, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, L07, Mao96, PWD+12, SCZM00]. scalar [GL98b, ZCSM02a, ZCSM02b]. Scale [CC14, CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, GOT03, SMK10, KBA08]. scale-out [AG06].

Scaling [HC17, AR17, ECX+12, KTLK13, SW16]. Scaling-Aware [HC17]. SCALO [GVT+17].

scene [RVR04]. Schedulability [Kim14]. Schedulability-Aware [Kim14]. Schedule [MQLR16, MLR15, NAAL01, WTH+12].

Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSaS+16, SR598, SS95, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSaJ08]. Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12]. schedulers [NBMM12]. schedules [BCG13].

Scheduling [BL94, BL98, BL99, FS96, FSPD16, GRS06, JLS99, KLDB09, NB99, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSM12, KKJ+13, KBB+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAT07, WHJ+95, ZSB+12]. Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12].

Science [Gol94]. Scientific [CMBAN08, HL94, WN10, BT01, BD06, Dan09, NJ00, Bra97]. scoring [TO10].

Scotland [AOV+99]. Scriptures [Ano00b].

Scripting [RBPM00]. Scripts [TLA+02].

Seamless [CV98]. Search [AMR98, BCC010, LAH+12, Mah11].

searches [TCG95]. Seattle [ACM93c, IEE94a, IEE94d, LCK11, USE98a].

sec [AHW02]. Second [IEE89, IEE96, FR95].

Section [DSR15, CS12, DTL04, SMQP09, YL16]. Section-Based [DSR15]. sections [NM10].

Secure [SV98]. Security [BRRS10, MS03, Way95]. sedition [Bak95b].

SEDMS [USE92b]. See [Swe07, AC09]. segmentation [BCG14]. Select [KKD03].

selected [Cha05]. Selection [AT16, PR05, Sta90].

Semantics [BR15, CKRW99, HEJ09, MP01, CKRW97a, CKRW97b, KT17, ZHCB15].

Semantics-aware [HEJ09]. Semaphore [Hol98b, Kor89]. Semaphores [Hol98c].

semiconductor [Ano97b]. Semidefinite [YFF+12].

Seminar [Nev99]. sense [Bak95b]. Sensitive [CC04, DC99, DC00, PFH06, ZJS+11, LG04].

Separation [SCG95, TF10, TVD14]. September [ACM93c, AOV+99, DLM99, FR95, Hon94, IEE89, USE98b].

Sequences [GH03, FTAB14]. Sequential [CV98, TLZ+17, CKRW97a, CKRW97b, SCG95, SNM+12].

serialization [BHK+04].

Server [Ano00b, Cal97, SM92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sho97b, Sta90]. server-side [SBB96]. Servers [RCC12, BDM98, BBYG+05, BEKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b].

Service [CGK06, GMW09, Hig97, PSM03]. services [LZ07]. session [Bak95b, HCD+94, IAD+94, VGR06].

sessions [Ano94c]. set [Aruf92, KFB+12].

Sets [MNG16]. Seven [But14]. several [FG14]. shader [YP+10].

shallow [LVA+13]. Shanghai [IEE97]. shape [Cor00, GBCS07]. SharC [AGEB08].

Shared [BWXF05, BS96, DM98, EJ93, GMR98, GH98, LB92, MVZ93, MCT08, STY99, Thr99, VB00, WC99, YMR93b, BB00, Boo93, DLM09, DPZ97, EKKL90, ELK98, EMK98].
Shared-Memory
[BS96, DM98, EJ93, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN09].

shared-variable [dB09]. Sharing [CLFL94, CB16, LDL17, RKK15, SP00a, Wei98b, ZJS12, AGEBO8, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10].

sharing-aware [TAS07]. sharing-based [TE94a].

Shelf [MHC95]. shell [Ric91].

Shift [Ham96]. Shinko [Ano00a]. Shop [Bec00]. short [CPT08, Lie94]. shortage [Ano94b]. Should [EHP+07]. SICStus [EC98]. side [MMTW10, SBB96]. sided [QSH11]. SIGACT

[ACM93a, ACM94b, ACM95b, ACM98b].

SIGCOMM [RM03]. Signal [Eng00, BM91]. Signals [GRR06].

Significance [ZJS12]. SIGPLAN [ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT

[ACM93a, ACM94b, ACM95b, ACM98b].

Silicon [LB17, THA+12].

SimpleGraphics [MKK99]. simplify [PO03]. Simplifying [Pom98]. simulate [MAF+09].

Simulation [For97, GV95, HPB11, JYE+16, MPD04, VTM12, WG94, Ano97b, BBH+17, KBF+12, Leg01, Lep95, MHW02, SWYC94, Sfr93].

Simulations [HEMK17, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12].

Simulator [SRS98, PWD+12, TSC99, WZW08, Nak03].

Simulink [HY+15].

Simultaneous [Ano05, CSK+99, EEL+97, GSL10, HMMN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LRZ16, MCF79, REL00b, SP07, SLG04, SU01, ST00c, TEL95, Tu96, TEL98b, WS08, YG10, ABC+09, AAKK08, ABB+15, CCC12, EE09a, Fis97, HKN+92, HMN+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHCR09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TSC99, TEE+96, VPC02, TEL98a].

Single [CLFL94, Dub95, EHP+07, FT96, HHOM91, KTR+04, MTN+00, CSM+05, MLC+09, Pra95c, VIA+05, YZ07, YSY+09].

Single-Address-Space [CLFL94].

Single-program [Dub95], single-thread [MLC+09]. Single-Threaded

[EHP+07, Pra95c, VIA+05, YZ07].

Singleton [Cha02, Rin99]. Situ [RGK99].

sixth [USE98b, ACM94d]. size [LML00].

slave [TJY+11]. slice [PSG06a, PSG06b, PSG06c]. slice-based [PSG06a, PSG06b, PSG06c]. Slices

[MGQS+08, PF01]. Slicing [Kri98, FRT95, NR06]. SlicK [PSG06a, PSG06b, PSG06c]. slower [Pra95c]. small [Koo93, MM07]. Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart [Sim97].

SMP

[BMW05, BHH01, CRE99, HD02, KKH03, KKJ+13, Pra95c, TAS07, TMAG03]. SMPs

[WG99]. SMT [Ano05, AH00, CY90, EE09b, EE10, EE12, FSPD16, FSPD17, KLGO8, KI16, MG99, MMM+05, NSP+14, PAdS+17, PAB+14, PLT+15, RPNT08, SLP08, TAS07, VS11, WA08]. SMT-based

[KI16, PAdS+17, PAB+14]. SMTp [CH04]. Soft [PSM01, PSM03, SSN10, VAC90].

Software [Ano97a, Ano98b, Ano99, Ano00b, BCR01, BCG+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IEE94a, KE15, LPE+99, PJS15, SZM+13, SD13, TLZ+17, YBL16, ATLJ+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLDR12, Hai97a, HSD+12, IEE94d, KKH04, KSD04, KASD07, Luk01, MWP07, MCRS10, MGL+95, MEG03, NHFP08, OAA09, OL02a, OL02b, OL02c, RKM+10a, RKM+10b, RVOA08, San04].
Software-Controlled [BCG+08, Luk01]. Software-Directed [LPE+99]. Solaris [Cat94, Lun97, Lun99, McM97, Pra95b, Sun95]. Solution [Ano98b, SBC91, WP10]. Solutions [Ano00b]. solves [Bar09, MM07]. Solver [YFF+12, Kub15, RM99]. Solvers [MR09, Nak03, AAC+15, ZCO10]. Solving [ABD+12, FTAB14, Loe97, VSDK09].

SONET [AHW02]. Sort [GH98, RHH10]. Sound [WTH+12, DWS+12, FFY08, NFBB17]. Source [Ano00c, BMF+16]. sources [SJ95]. South [ACM93a, Ano94d]. Space [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GR97, GN96, NB99, PWL+11, Sch17, FWL03, KNPS16, KASD07, Lie94, HLS16].

Specialized [dlPRGB99]. Specific [Ste01, SP00b, Shi00]. specification [Stä05]. specifications [TVD10]. Specifying [BNS11a, BNS11b, BNS12]. spectroscopy [KC09]. spectrum [DKF94, Sha95b].

Speculated [SCL05]. Speculation [SU01, WS08, YBL16, DG99, GB99, JEV04, LWV+10, MT02a, MT02b, MT02c, NB12, PO03, PT03, SCZM00]. Speculative [AH00, Ano01, Ano02, BF04, IBST01, KLG08, MGQS1+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFG10, WWW+02, ZJFA09, ZL10, CHH+03, DC07, Dub95, KOE+06, KTF99, LZW17, LZZ1+14, NB12, OL02a, OL02b, OL02c, SMS+03, VS11, XIC12, ZCMS02a, ZCMS02b]. speech [LG04]. Speed [Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10]. Speed-up [MR09]. Speedup [Lun99]. Spin [LLS06]. SPAR [MJF+10].

Standing [TL+02]. Stanford [IEE99]. STAT [Ano00b]. State [La00, LP94, RKK11, Wei98b, Cor00, TFG10, WHG07]. State-Retentive [RRK11].

Statechart-Based [KW17]. Statechart-Related [KW17]. stateless [MQ08]. Static [GPS14, Kri98, Lun97, SCB15, WW96, vPG03, Fer13, NAW06, NA07, AFF06, FFLQ08]. Static/dynamic [SCB15]. Statistical [Ano00b, RCM+15, Loo7, RCM+12, Tem97]. stealing [ALHH08, BL94, BL99, RL14].

Step [Sho97a, Sho97b, ZG98]. Stethoscope [Cas02]. Stochastic [DK02, LTM+17].

Storage [AT16, Hol12, LCK11, Bak95a, Blu92, DJK012, KOE+06, MM07, PDMM16]. stores [TAN04]. strand [RCV+10]. strata [NPC06]. Strategies [PSCS01, AGEB08, FGG14]. Strategy [BGK96]. Stream [KU94]. Streaming [HHOM91, HHOM92, KEL+03].

Streaming/FIFO [HHOM91, HHOM92]. Streams [Pre90, SPR+93]. Strength [Kou00]. Strict
system-level [OCRS07]. systematic [MQ07]. SystemC [RSB+09]. SystemC/C [RSB+09]. SystemC/C-based [RSB+09].

Systems
[ACM94d, AG06, Ano00b, ABN00, BMN99, Bre02, BC94, CCH11, Dru95, FMY+15, FGKT97, GHG+98, GJ97, HRH08, HKS96, IEE89, IEE94a, KR12, KKH03, KG05, KUCT15, KW17, LLS06, LMA+16, LYH16, MS15, PGB16, RW97, RR03, SUF+12, SS96, USE92b, Wal95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB10, DZKS12, DSH+10, DBRD91, GJ11, Go96, GKK09, HJJ+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Jef94, Jen95, KKH04, Kub15, LVN10, LLLC15, She98, SP05, Sim97, SJB92a, SJB92b, ST05, Wei98a, WCV98, Ano98b, Ano92a, ABN00, ABNP00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, Col90a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, Hag02, Hei03, HG91, ISS98, KG05, Kin14, Kle00, KBH+03, KBH+04a, KBH+04b, LLL00, LYH16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MTN+00, MB05, MCFT99, ND96, Pan99, PR05, PEA96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RˇCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, Rod95b, SKS+92, Sat02, ST99, SLG04, Sin97,

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wei08]. T1/T2 [Wei08]. Table [VB00, KNPS16]. tabling [AR17]. Tabu [AMRR98]. taint [ZJS+11]. TaintEraser [ZJS+11]. Take [Wei97]. taking [Ano92b].

Talking [Ano94c, HCM94]. TAM [CGSV93]. Tuning [Hol00, HBCG13, HHPV15]. TapeWare [Ano00b]. targeting [LGH94]. Task [CCK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12]. Task-Level [GP95].

tasking [Diu93, KR01a]. Tasks [Fin95, PVS+17, YSS+17, FGG14].

Taxonomy [HM96, SPH96]. TC2 [BT01]. TC2/WG2.5 [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, Ano98, MKK99, SBB96]. Tcl-based [Ano98]. Tcl/2k [USE96, USE00b, MKK99]. Tcl/Tk [Ass96, USE98b]. TCP [Ano00c, Ano94c].

Teaching [Fek08, CS00, She02]. TeamWork [CZWC13]. Tech [Ano97b, Gar01]. Technical [USE00a, Cat94]. Technique [JSB+12, KG94, Lem02, OCS01, PGB16, JSB+11, JPSN09, LGH94, RS07, UZ00, VACG09, WCV+98]. Techniques [DS16, EKKL90, GS02, Han97, NLK09, PWL+11, TGBS05, Zig96, BR92, GEG07, OCRS07, Pra97, RCG+10, SV96c, SV96a, SV96b, ZSB+12]. Technologies [Ano00b, Ano98b]. Technology [Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b]. TeleNotes [WSKS97].

temperature [CCC12]. Template [Cal00, How98]. Ten [Ano99]. Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02]. TCL [Ass96, USE98b]. TCL/2k [USE00b]. TCL/Tk [USE96, USE00b]. TCP [Ass96, USE98b].

temperature [CCC12]. template [Cal00, How98]. ten [Ano99]. Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02]. TCL [Ass96, USE98b]. TCL/2k [USE00b]. TCL/Tk [USE96, USE00b]. TCP [Ass96, USE98b].

temperature [CCC12]. template [Cal00, How98]. ten [Ano99]. Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02]. TCL [Ass96, USE98b]. TCL/2k [USE00b]. TCL/Tk [USE96, USE00b]. TCP [Ass96, USE98b].

temperature [CCC12]. template [Cal00, How98]. ten [Ano99]. Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02]. TCL [Ass96, USE98b]. TCL/2k [USE00b]. TCL/Tk [USE96, USE00b]. TCP [Ass96, USE98b].

Their [YWJ03, Gil94]. them [Ano92a, Ano94b]. theoretic [ES97]. theories [LQ15].

Theory [ACM93b, LLD17, NFBB17, WLK+09]. there [Ano94b]. thermal [WA08]. though [Ano94b].

Thread [Ano00c, ABN99, ABNP00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, Col90a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, Hag02, Hei03, HG91, ISS98, KG05, Kin14, Kle00, KBH+03, KBH+04a, KBH+04b, LLL00, LYH16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MTN+00, MB05, MCFT99, ND96, Pan99, PR05, PEA96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RˇCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, Rod95b, SKS+92, Sat02, ST99, SLG04, Sin97,
SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei99b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BKC+13, BHK+04, BC02, CZSB16, CSM+05, DBM16, DG99, DWYB10, Do92, DBRD91, Ei+97, EE09b, Fek08, GP08, GOT03, GLC99, Hyd00, JEV04, KDM+98, KC09, KBA08], thread [KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZL+14, Loe95, MLC+09, MT02a, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOQOV+09, SKG+11, Sl95b, SLG06, SPF0b, Shi00, SPH96, SS95, SD13, SLT02, St+05, SJ95, SCZM00, ST+05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02]. Thread-Aware [KSD04]. Thread-Based [KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZL+14, Loe95, MLC+09, MT02a, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOQOV+09, SKG+11, Sl95b, SLG06, SPF0b, Shi00, SPH96, SS95, SD13, SLT02, St+05, SJ95, SCZM00, ST+05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02]. Thread-Local [LML00]. Thread-Private [Man99]. thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, Rin99, DBM16, Fe08, GTO3]. Thread-Sensitive [CC04]. Thread-Specific [Ste01, SPF0b, Shi00]. thread-switch [Eic97]. threadbare [Bak95b]. Threaded [AGK96, BBG+10, BC09, Bed91, BKG94a, BKG94b, BK96, CL95, CRRK99, Co95, CSS+91b, DV99, EHG95, EHP+07, Fdl02, GH03, GVT+17, GK94, GI93, II01, JY15, Jon91, KWI7, Kri98, Kuc92, KIAT99, LB92, Ma99, MG15, NS97, PCPS09, Piu00, RKCW98, STW93, Se99, Sni92, Ste01, SBKK99, TLGM17, VSDK09, VB00, WCT98, Ada98, ABD+12, AACK92, An97b, BWDZ15, BK13, BBH+17, BC00, BIK+11, DEE13, CV98, CMI+17, CASA14, CRRK97a, CRRK97b, CWHB03, CSB00, CdO01, cC91, CL00, Ch01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBK95, EHSU07, FTAB14, FD90, FGG14, GCRD04, GCC15, GS96, GH98, GPR11, HC17, KHP+95, KI95, KKH04, Kep03, KR98, Kuc91, LK15, Lan97, Leg01, LBvH6a, LBvH6b, LBvH6c, LVA+13, MLCW11, MS03, MKK99, NFBB17]. threaded [NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, Pra95c, RCV+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SE12, Se98, Sho97a, Sho97b, SV98, Sni06, St02, SQP08a, SQP08b, SQP08c, Ta13, TS99, TS00, Tem97, TMAG03, TJY+11, VIA+05, VV00, VK99, Wai00, Wil98, XMS99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGS93]. Threading [BFA+15, DHR+01, Hol98d, LKKB11, McC97a, McC97b, MS15, Nor90, OR12, PTM09, RCC14, Re01, Sch90, TGO99, YLLS16, Bak95a, BM07, DTLW16, FLW03, LZW+13, MLC+09, MCFT99, NJ00, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04]. Threading-Based [KS16]. ThreadMentor [CMM93, She02]. Threads [Alf94, An94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, Cal00, CRR92, Col90b, Cri98b, Cri98a, TLA+02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HBG01, Hol00, How00, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man99, MP89, McM96c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, San04, SEP96, TG99, WCW+04a, Wai94a, Wil94b, Wil97, Yam95, Yam96, dPRGB99, An02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, But14, But97, CZWC13, Cal02, CPT08, Dra96, DEE13, DC99, DC00, FHM95b, FL90, GP05, Go97, HCM94, HMC95, Hai97a, HBG02, HJT+93, HKT93, HKN+92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Kan94, KE95, KSS96, Lan02,
Two-Level [JYE+16, BBH+17, STY99].
TX [Cha05, ACM00, USE91b]. TxRace
[ZLJ16]. Type [Gro03, VGR06. BAD+09,
GE08, Lan02, Mi95, PRB07].
type-checking [Mil95]. Type-safe [Gro03].
typed [DMBM16]. Types [AFF06,
FFLQ08, Ten98, BAM07, KS93, VGR06].
typings [Sni06].

UCITA [Gar01]. UK [AVO+99]. ULT
[PG03]. Ultra [PWL+11]. Ultra-Scale
[PWL+11]. Unbounded
[CNV+06, FKP15, BDLM07]. uncommon
[BDLM07]. Uncover [WS08].
underdetermined [Kub15].
Undergraduate [BLPV04].
Understandable [MSM+16].
Understanding
[BZ07, TLA+02, EPAG16, RRP06].
Undocumented [SW97]. Unfoldings
[SPDLK+17]. Unicode [Swi09]. Unified
[Wei98b, ABG+08, GKZ12]. Uniform
[BDN02, SKG+11]. unifying [MS03].
unimodular [DH92]. unintrusive
[HDT+13]. uniprocessor [GL98a, Yan97].
uniprocessors [BRE92, EJK+96].
Uniscape [Ano98b]. UNISIM [LS11].
UNISIM-Based [LS11]. unit
[CBM10, Par91, PAB+14]. United
[ACM94c]. Unithreaded [RLJ+09]. Units
[RKK15, Gun97]. univariate [CMX10].
University [IEE99]. UNIX
[An00b, FG91, JJ91, Kor98, MS87, MS89,
Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].
Unix-to-NT [Ano98b]. UnixWare
[Rod94, Rod95]. unlocking [XSaJ08].
unravel [But14]. Unraveling [Bec00].
Unsynchroized [DSR15]. unveiled
[Ano95a, Ano95b]. Unveiling [AAC+15].
up-and-downdating [VV11]. UPC
[EGC02]. updates [NH09]. Updating
[HSS+14, HSD+12, NHFP08]. Ur [Ch15b].
Ur/Web [Ch15b]. URL [TLA+02]. USA
[ACM94a, ACM94d, Cha05, Hol12, ACM96,
ACM98d, ACM00, Ano90, EV01, IEE89,
IEE94a, IEE96, IEE02, SS96, USE89,
USE91a, USE91b, USE92a, USE93a,
USE93b, USE00b, USE00a, USE01]. Usage
[BS96, Kor89, VS11]. Use
[Bak95a, HW92, WW+02]. Use-once
[Bak95a]. Useful [Pet03]. USENIX
[Ano90, Ano94]. User
[ABLL92, DLM99, ENG00, GRS97, MQW95,
SL03, BF08, GP05, GR06, HF96, LO50,
MSLM91, OT95, SLT02, TNB+95, YZYL07].
User-Level [ABLL92, SLT03, MQW95,
GR06, MSLM91, OT95, SLT02, YZYL07].
User-Space [Eng00, GRS97]. Using
[An09, ABH+00, AZG17, BDN02, BBC+00,
BLG01, BTE98, CRE99, Cor00, DS16,
DTLW16, DBRD91, GH03, HBG01,
HJT+93, HBTG98, Hei03, How00, KMC02,
Kwo03, KET06b, LFA96, MDP04, McM98a,
McM98b, Mix94, MM07, PF01, PBR+15,
PO03, SW08, SCD+15, SEP06, SLT02,
W12, Whi03, ZLJ16, Ano96, Bar09,
BCM+07, CML00, Cat94, CTYP02,
CDD+10, CVJL08, CKZ12, DESE13,
GCC15, GMB93, GEG07, Hig97, HH97,
JWTC11, JJJ+03, KASD07, KBF+12, HK15,
MM14, NPC06, NWT+07, Nik94, PT03,
RKM+10a, RKM+10b, RM99, RPNT05,
SLGZ09, SLP+09, TP18, TFG10, Tod95,
TAN04, VPC02, VDO8, ZJS+11, KSB+08].
UT [Hol12]. Utility
[FHM95a, JSMP13, FHM95b].
Utility-based [JSMP13]. utilization
[Squ94]. Utilizing [ES97]. UX
[Ano95a, Ano95b, Yam96].

V [EKB+92, Pea92, FG91, PST+92]. v1.0
[An00b]. Validating [LB17]. Validation
[BMV03, LB17, SCB15]. value
[DG99, TFG10, ZCSM02a, ZCSM02b].
variable [Ev01, dB09]. Variables
[Hol8c, Whi03, Bak95a]. variation
[PGB12]. variety [CML00]. VAX [Gil88].
Vector [Goo97, HHOM91, HHOM92]
REFERENCES

WorkPlace [Bra97]. works [Hig97, San04].
Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IEE89, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation [Ano00b, HN91, IEE89]. Workstations [KLH97, Lu98, LGH94, RGK99, PH97].
World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLG+14].
World-wide [Ano96]. Wrapper [AS14]. Wrappers [Hub01]. Write [Sho97a, Sho97b]. Writer [Ano97a]. written [ND13]. WWOS [IEE89].
WWOS-II [IEE89].
Year [Ano99]. Yokohama [Ano03]. York [IEE90]. Yosemite [Ano00b].
z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

[Aliaga:2015:UPE]

[Alverson:1992:EHP]

[Amamiya:2009:CBN]
Athanasaki:2008:EPL

Antoniu:2001:DPP

Antoniu:2002:IMP

Axnix:2015:IZF

Agarwal:1993:SMV

REFERENCES

??, 1993. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[ABH+00] Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith McGuigan, and Raymond Namyst. Implementing Java consistency using a generic, multithreaded DSM runtime system. Lec-
CODEN LNCS-DC. ISSN 0302-9743 (print), 1611-3349 (electronic). URL

Antoniu:2001:CMJ

Aumage:2000:PAM

Anderson:1992:SAE

G. Antoniu, L. Bougé, R. Namyst, and C. Pérez. Compiling data-parallel pro-

REFERENCES

[ACM95b] ACM, editor. Conference record of POPL '95, 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: papers presented at the Symposium: San Francisco, Cali-

REFERENCES

ACM:1999:PASa

ACM:1999:SPO

ACM:2000:SHP

ACM:2001:PAJ

ACM:2003:SII

Arvind:1997:MSC

Attali:2001:GVJ

Isabelle Attali, Denis Caromel, and Marjorie Russo. Graphical visualization of Java objects, threads, and locks. IEEE Distributed Systems Online, 2(1), 2001. ISSN 1541-4922 (print), 1558-1683
Adams:2008:ENE

Adamo:1998:MTO

Abraham:2005:ABP

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

REFERENCES

[AH00] Haitham Akkary and Sébastien Hily. The case for specula-

Abdulla:2008:MCR

Adiletta:2002:PSA

Aitken:1996:MCJ

Ahn:2012:ISe

Azagury:1999:NIR

Aciicmez:2006:PSB

Onur Aciicmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple branch prediction analysis. Technical report, School of EECS, Oregon State University, Corvallis, OR
REFERENCES

Aamodt:2003:FMO

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

Aiex:1998:CMT

Annavaaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1992:MWPa

Anonymous. It’s a multi-threaded world, part 1: Multithreaded operating systems are becoming the norm. Here’s how your applications can exploit them. *Byte Magazine*, 17(5):289–??, May 1992. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Anonymous:1992:MWPb

Anonymous:1994:ICS

Anonymous:1994:MDP

Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Systems Today*, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. Linux Journal, 34:??, February 1997. CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Anonymous:1997:TWP

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous. New tools: Software development: Uniscape’s
REFERENCES

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAa

Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF

Arnau:2012:BMG

REFERENCES

tronic). ISCA ’12 conference proceedings.

REFERENCES

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG

Boehm:2008:FCC

Bocchino:2009:TES

Bergan:2010:CCRa

Bergan:2010:CCRb

REFERENCES

[Baldwin:2002:LMF]

[Bic:1993:EUI]

[Burckhardt:2007:CCC]

[Barkstrom:2009:UAS]

[Bauer:1992:PCE]
Bolding:2000:MSM

Bova:2000:DLP

Balter:1991:AIG

Ball:2011:PPT

Balis:2002:CPM

Balis:2003:MSM

REFERENCES

Balaji:2010:FGM

Butler:2011:BAM

Barabash:2005:PIM

Buhr:1994:TRM

Bender:2017:TLM

Bratanov:2009:VMW

REFERENCES

REFERENCES

Bajaj:2011:FFP

Badamo:2016:IPE

Beyls:2000:CGM

Brzuszek:2006:MTS

Bic:1998:MAD

Blundell:2007:MFC
REFERENCES

5964 (print), 1943-5851 (electronic).

Borkenhagen:2000:MPP

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bahmann:2008:EFK

Bhatotia:2015:ITL
Pramod Bhatotia, Pedro Fonseca, Umut A. Acar, Björn B. Brandenburg, and Rodrigo Rodrigues. iThreads: a

Bergan:2014:SEM

Baghsorkhi:2012:EPE

Buendgen:1994:MAT

Buendgen:1994:MTA

Bundgen:1994:FPC

REFERENCES

[Bir89] Andrew D. Birrell. An introduction to programming with

REFERENCES

Blumofe:1993:SES

Blumofe:1994:SMC

Bianchini:1996:EPM

Blumofe:1998:SES

Blumofe:1999:SMC

Bordawekar:1997:EEH
Rajesh Bordawekar, Steven Landherr, Don Capps, and Mark Davis. Experimental

Broberg:2001:POU

Blumofe:1992:MSM

Bucker:2004:TUC

Bolinger:1991:PSH

D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105–122. LCCN QAX 27.

Baquero:1994:CAC

REFERENCES

REFERENCES

REFERENCES

January 2015. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[BRRS10] Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of multi-threaded programs by compilation. ACM Transactions on Information and System Se-
REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boisvert, Ping Tak Peter Tang, editors.</td>
<td>Boisvert:2001:ASS</td>
</tr>
<tr>
<td>Butenhof, David R.</td>
<td>Butenhof:1997:PPT</td>
</tr>
<tr>
<td>Buttari, Alfredo</td>
<td>Buttari:2013:FGM</td>
</tr>
<tr>
<td>Butcher, Paul N.</td>
<td>Butcher:2014:SCM</td>
</tr>
<tr>
<td>Bik, Aart J. C.</td>
<td>Bik:1997:JPJ</td>
</tr>
<tr>
<td>Juan E. Villacis, and Dennis B. Gannon. javar: a prototype Java restructuring compiler. Concurrency: Prac-</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Beveridge:1997:MAW

[BW97]

BYLN09

Berger:2009:GSM

[BZ07]

Benaya:2007:UTA

Basharahil:2005:DSA

Bai:2015:SPA

[BWDZ15]

Basharahil:2005:DSA

Berger:2009:GSM

Benaya:2007:UTA

REFERENCES

[Tex89] Texas at Austin, Austin, TX, USA, 1989. xii + 108 pp.
Cazals:2002:NID

Caswell:1989:IMD

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

Cui:2000:MPC

Chiueh:1991:MTV

Chetlur:2010:SWM

Chandra:2001:PPO

Chung:2013:LBD

ChassindeKergommeaux:2001:PEE

Catalyurek:2012:GCA

Canetti:1991:PCP

Cerin:2006:MSS

Culler:1992:AMMa

Culler:1992:AMMb

Chong:1995:PAF

Chaudhuri:2004:SAN

[CH04] Mainak Chaudhuri and Mark Heinrich. SMTp: An Architecture for Next-generation...

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

REFERENCES

REFERENCES

[CMS03] Steve Carr, Jean Mayo, and Ching-Kuang Shene. Thread-Mentor: a pedagogical tool
REFERENCES

Chen:2010:CCM

Che:2014:ALM

Cabodi:2013:TBM

Chuang:2006:UPB

Colvin:1990:CTS

Colvin:1990:MLT

Coorg:1995:PNS

Cook:2002:REJ

Corbett:2000:USA

Cappello:1999:PNB

Criscolo:1998:JQH

Criscolo:1998:JQ
Mike Criscolo. Java Q&A: How do I queue Java threads? Dr. Dobb’s Journal of Soft-

Cromwell:1998:PBD

Chang:1995:CSM

Chang:1995:CTS

ChassindeKergommeaux:2000:PIV

Chen:2012:CLA

Carothers:2002:CMP

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Chugh:2008:DAC

Cohen:1998:WMP

Chakravarti:2003:ISM

REFERENCES

REFERENCES

[D. P. Chakrabarti and Rajeev Kumar. Functional verification of task

Dennis:1994:MMP

DuBois:2013:CSI

DeRusso:1998:MEH

Dolby:2012:DCA

Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and...

REFERENCES

Dubey:1994:APM

Doligez:1993:CGG

Devietti:2009:DDS

Dongarra:1999:RAP

delaPuente:1999:RTP

Demange:2013:PBB

REFERENCES

2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[David:2014:CMC] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Continuously mea-

Diavastos:2016:ITD

Dubey:1995:SSM

Dugger:1995:MC

Dascal:1999:ELR

Devietti:2012:RAS

Ding:2010:PCM

Jason Jianxun Ding, Abdul Waheed, Jingnan Yao, and Laxmi N. Bhuyan. Performance characterization of multi-thread and multi-core processors based XML application oriented networking

Dyer:1998:CAS

Ding:2012:CDF

Elwasif:2001:AMT

Eskilson:1998:SMM

Esmaeilzadeh:2012:LBL

Eyerman:2009:MLP

Stijn Eyerman and Lieven Eeckhout. Memory-level parallelism aware fetch policies

REFERENCES

REFERENCES

REFERENCES

REFERENCES

6423 (print), 1872-7964 (electronic).

[FFG14] Marc E. Frincu, Stéphane Genaud, and Julien Gossa. On the efficiency of sev-

Foster:1997:MMC

Fahringer:1995:UTDb

Fahringer:1995:UTDa

Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Finger:1995:LTC

Fisher:1997:SPS

Farzan:2012:VPC

Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by modular reason-
REFERENCES

REFERENCES

Felten:1992:IPM

Fang:2015:MMD

Farzan:2017:SDC
Azadeh Farzan and Victor Nicolet. Synthesis of divide and conquer parallelism for loops. ACM SIGPLAN Notices, 52(6):540–555, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV
REFERENCES

Flanagan:2002:MCM

Ferreira:1995:PAI

Field:1995:PPS

Fatouron:1996:SAS

Feliu:2016:BAL

Feliu:2017:PFP

Factor:2006:PID

REFERENCES

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa

Flautner:2000:TLPc
Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level parallelism and interactive performance of desktop applica-
Flautner:2000:TLPb

Fang:2003:DGO

Grant:2009:IEE

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

REFERENCES

REFERENCES

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA

Gravvanis:2008:JMB

Geary:1998:SM

Gravvanis:2007:PPA

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

Gao:1993:DMA

Guang Gao, Jean-Luc Gaudiot, and Lubomir Bic. Dataflow and multithreaded architectures: Guest Editors’ introduction. *Journal of Parallel and Distributed Comput-
REFERENCES

REFERENCES

Robert Granat, Bo Kågström, and Daniel Kressner. A novel parallel QR algorithm for hybrid distributed memory HPC systems. LAPACK Working Note 216, Department of Computing Science

Garland:2012:DUP

Gallmeister:1991:EEP

Golla:1998:CEB

Goldwasser:2007:INP

Gu:1999:EJT

Gle:1991:CMH

Ray R. Glenn. Characterizing memory hot spots in a shared memory MIMD ma-
REFERENCES

[125]

chine. Technical report SRC-TR-91-039, Supercomputing Research Center: IDA, Lan-

Grebenshchikov:2012:SSV

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. Synthe-

Giering:1993:IAF

Gonzalez-Mesa:2014:ETM

Ganty:2009:VLA

Gabor:2009:SLA

REFERENCES

/Govindarajan:1992:LCM

/Grunwald:1996:WPO

/Goldwasser:1994:PAS

/Gollapudi:1996:MCA

/Goeschl:2001:JTT
Goldstein:1997:LTC

[Seth Copen Goldstein. Lazy threads: compiler and runtime structures for fine-grained parallel programming. Thesis (Ph.D.), Computer Science Division, University of California, Berkeley, Berkeley, CA, USA, 1997. xi + 174 pp.]

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

[Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and refinement for verifying multi-threaded programs. ACM SIGPLAN No-]
REFERENCES

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN
Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational characterizations for Java memory behavior. *ACM Transactions on Computer Sys-
REFERENCES

[Garg:2002:TOA]

[Greulck:2006:SFA]

[Goldstein:1996:LTI]

[Gupta:2010:CSM]

REFERENCES

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Gibson:2010:FSC

Gabor:2007:FES

Haggar:2002:JQD

objects larger than 32 bits, such as `long` and `double`, with sample code to exhibit the failure.

Hunt:2013:DTN

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT
REFERENCES

Halappanavar:2012:AWM

Hum:1991:NHS

Hum:1992:HSM

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1991:SVP

Hironaka:1992:BVP

Hussein:2015:DRM

Hightower:1997:PDD

Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1):70–??, January 1997. CODEN DDJOEB. ISSN 1044-789X.

Hauser:1993:UTI

Hirata:1992:EPA

Hurson:1996:CMD

REFERENCES

Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD

Hansen:1990:EPA

Holm:1994:CSP

Helmbold:1996:TRC

REFERENCES

REFERENCES

Holub:1998:PJTb

Holub:1998:PJTa

Holub:1998:PJTc

Holub:1998:PJTd

Holub:1999:PJTa

Holub:1999:PJTb

REFERENCES

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Hsu:2011:MSS

Huang:2016:PMR

Hassanein:2008:AEH

Hayden:2012:KEG

Hayden:2014:KEG

Honarmand:2014:RRR

Hendren:1997:CCE

REFERENCES

7458 (print), 1573-7640 (electronic).

Huang:2013:CRL

Iannucci:1994:MCA

Iannucci:1994:AII

Iwama:2001:ICB

Illikkal:2010:PQP

IEEE:1989:WOS

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. IEEE catalog number 89TH0281-6.

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:PIW

IEEE:1994:PSH

REFERENCES

REFERENCES

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

Itzkovitz:1998:TMA

Jaisson:2008:IPM

Jeffay:1994:LMT

Jensen:1995:DRT

E. Douglas Jensen. Distributed real-time operating

REFERENCES

REFERENCES

Joisha:2012:TTE

Joao:2012:BIS

Joao:2013:UBA

Jeffrey:2011:IBM

Jeon:2015:MTH

Jiang:2016:TLH

REFERENCES

REFERENCES

Krashinsky:2004:VTAa

Krashinsky:2004:VTAb

Kreuzinger:2003:RTE

Karamcheti:1998:HLB

Karamcheti:1999:ASM

Kejariwal:2009:PSA
Arun Kejariwal and Calin Casca\c{a}val. Parallelization spectroscopy: analysis of thread-
REFERENCES

Kekckler:1999:CEH

Kasperink:1997:CDC

Kekckler:1998:EFG

Kleiman:1995:IT

Kerrison:2015:EMS

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

[Scott Alan Klasky, Stephane Ethier, Zhilong Lin, Kevin Martins, Doug McCune, and Ravi Samtaney. Grid-based

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO

Kyriacou:2006:DDM

Kepner:2003:MTF

Kepner:2003:MTF

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

REFERENCES

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF

Keen:2003:CCP

Kim:2014:SMC

Kranzlmuller:2003:RAP

Dieter Kranzlmüller, Peter Kacsuk, Jack Dongarra, and

Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia. Scheduling linear algebra operations on multicore processors. LAPACK Working Note 213, Department
REFERENCES

of Computer Science, University
of Tennessee, Knoxville,
Knoxville, TN 37996, USA,
February 2009. URL http:
//www.netlib.org/lapack/
lawnpdf/lawn213.pdf.

Kleber:2000:TSA

Jeff Kleber. Thread-safe ac-
to collections. C/C++
Users Journal, 18(5):36–??,
May 2000. CODEN CCUJEX.
ISSN 1075-2838.

Kang:2008:ISE

Dongsoo Kang, Chen Liu, and
Jean-Luc Gaudiot. The im-
pact of speculative execution
on SMT processors. Interna-
tional Journal of Parallel Pro-
gramming, 36(4):361–385, Au-
 gust 2008. CODEN IJPPE5.
ISSN 0885-7458 (print), 1573-
7640 (electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=36&
issue=4&page=361.

Koopman:1992:CBC

Philip J. Koopman, Jr., Peter
Lee, and Daniel P. Siewiorek.
Cache behavior of combina-
tor graph reduction. ACM
Transactions on Program-
ming Languages and Sys-
tems, 14(2):265–297, April
1992. CODEN ATPSDE.
ISSN 0164-0925 (print), 1558-
4593 (electronic). URL
http://www.acm.org/pubs/
toc/Abstracts/0164-0925/
128687.html. Also see [KLS92].

Koufaty:2003:HTN

David Koufaty and Debo-
rah T. Marr. Hyperthreading
technology in the netburst
microarchitecture. IEEE Mi-
cro, 23(2):56–65, March/April
2003. CODEN IEMIDZ. ISSN
0272-1732 (print), 1937-4143
(electronic). URL http:
//dlib.computer.org/mi/
books/mi2003/pdf/m2056.
pdf; http://www.computer.
org/micro/mi2003/m2056abs.
htm.

Kakulavarapu:2001:DLB

P. Kakulavarapu, O. C.
Maquelin, J. N. Amaral, and
REFERENCES

REFERENCES

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

Kienzle:2001:CTT

Kienzle:2001:IEO

Keckler:2012:MMC

REFERENCES

DEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

Klarlund:1993:GT

Krieger:1997:HPO

Kalayappan:2016:FRT

Kgil:2008:PUS
Kumar:2004:AST

Kleiman:1995:PT

Kleiman:1996:PT

Kalla:2004:IPC

Krieger:1994:ASF

Yu:2011:SDH

Krishnan:1999:CMA

V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative multithreading. *IEEE

Kopczynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP

Kumar:2004:SIH

Keller:2000:JUS

Komosinski:2017:MCE

REFERENCES

REFERENCES

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

REFERENCES

REFERENCES

REFERENCES

Ling:2012:HPP

Li:2006:MEMa

Li:2006:MEMb

Li:2006:MEMc

Lucia:2013:CEF

Liu:2008:HPP

Lathrop:2011:SPI

REFERENCES

Li:2004:FRT

[LCS04]

Lozi:2016:FPL

[LDT+16]

Leary:1996:CEH

[Lea96]

Lee:1993:TW

[Lee:2006:PT]

Lee:1993:TW

[LCS04]

Lozi:2016:FPL

[Legrand:2001:MTD]

Leiserson:1997:AAM

[Leiserson:1997:AAM]

Lo:1997:CTL

[Jack L. Lo, Joel S. Emer, Henry M. Levy, Rebecca L.]

[LEL+97a]
REFERENCES

[LEL+97b] [Len95] [Lep95] [Lev97]

[Lev97]

Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at...
REFERENCES

Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

2009. CODEN ITVGGA. ISSN 1077-2626 (print), 1941-0506 (electronic), 2160-9306.

REFERENCES

REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Li:2014:PDC

Ling:2000:AOT

Loeffler:1997:MJF

Loepere:2005:STM

Loikkanen:1995:FMS

Lowy:2000:MPO

Launchbury:1994:LFS

Lubbers:2009:RMP

173

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LTM+17]</td>
<td>Zhongwei Lin, Carl Tropper, Robert A. McDougal, Mohammad Nazrul Ishlam Patoary, William W. Lytton, Yiping Yao, and Michael L.</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

[LYH16] Peng Li and Steve Zdancewic. Combining events and threads for scalable network services implementation and evalua-

REFERENCES

0129-6264 (print), 1793-642X (electronic).

[MC06] Sewon Moon and Byeong-Mo Chang. A thread monitoring system for multithreaded
REFERENCES

Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

REFERENCES

REFERENCES

REFERENCES

REFERENCES

MixSoftware:1994:UMC

[Mix94]

[MKC97]

Moreno:1997:PMP

[Meng:2010:AOS]

[MJF+10]

MKO04

Maris:2004:CCP

[MKIO04]

Moody:1999:STT

[MKK99]

Mars:2012:BDS

[MK12]
REFERENCES

REFERENCES

Makreshanski:2015:LSE

Morandini:2007:UDS

Morishima:2014:PEG

Mathis:2005:CSM

Marino:2009:LES

McKenney:2010:WGM

Metzner:2000:MMR

REFERENCES

187

McAuley:2003:CVC

Marinov:2016:PAF

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

REFERENCES

REFERENCES

[MS89] Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

190

McCartney:2015:SMT

Marsh:1991:FCU

Marino:2010:DSE

Marino:2011:CSP

Morrisett:1993:PLP

Martinez:2002:SSAa

José F. Martínez and Josep Torrellas. Speculative synchronization: applying thread-level speculation to explicitly parallel applications. *ACM*
REFERENCES

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

Nichols:1998:PP

Najjar:1993:QAD

Nagarakatte:2012:MAP

Nelson:2015:RGH

Natarajan:1993:PVM

REFERENCES

[ND96]

[Norris:2013:CCC]

[ND13]

[Nemawarkar:1994:PIN]

REFERENCES

DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

2867 (print), 1558-1160 (electronic).

Nordstrom:1990:TL

Nebro:1998:EMR

Northrup:1996:PUT

Nanda:2006:ISM

Nikhil:1992:MMP

Narayanasamy:2006:RSM

Neves:1997:TRS

REFERENCES

Ostler:2007:IHT

Ozer:2001:WMT

Odaira:2014:EGI

Olivier:2012:CMW

Ogata:1992:DIH

Oplinger:2002:ESRa

REFERENCES

196, December 2002. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

plan/158511/p43-odersky/. ACM order number 549930.

Oikawa:1995:RDU

Oyama:2000:OCC

Oaks:1997:JT

Oaks:1999:JT

Pereira:2017:SBC

Pant:1999:TCP
[Lalit Pant. Thread communication in parallel algorithms: Enabling efficient interaction between threads. *Dr. Dobb’s

Peternej:2014:IEU

Pereira:2017:SBC

Pant:1999:TCP
[Lalit Pant. Thread communication in parallel algorithms: Enabling efficient interaction between threads. *Dr. Dobb’s

Pereira:2017:SBC

Pant:1999:TCP
[Lalit Pant. Thread communication in parallel algorithms: Enabling efficient interaction between threads. *Dr. Dobb’s
REFERENCES

Park:1991:PTM

Papadopoulos:1992:MCS

Park:2016:CJP

Porter:2015:PFG

Park:2017:HHC

Perez:2015:ECR

REFERENCES

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Park:1997:HPM

Pham:1991:EMD

Pichel:2009:IDR

Ponamgi:1991:DMP

Porter:2015:MMS

Plyler:1989:AMC

Pricopi:2014:TSA

Prabhu:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Parashar:2013:TIC

[102x681]REFERENCES

[Pra95b] Shashi Prasad. Weaving a thread — Solaris and Win-
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2003:PSR

Peacock:1992:EMS

Papadopoulos:1991:MRV

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Prvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pathania:2017:DTM

Preissl:2012:CSS

Preissl:2011:MGA

Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and Alice Koniges. Multithreaded global address space communication techniques for gyrokinetic fu-
REFERENCES

sion applications on ultra-scale platforms. In Lathrop et al. [LCK11], pages 12:1–12:11. ISBN 1-4503-0771-X. LCCN ????

Park:2010:ISP

Quintana-Orti:2012:RSP

Quintana-Orti:2009:PMA

Qian:2016:EFS

Qian:2016:ODG

Qian:2014:PRR

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB

Roberts:2018:MID

Rufai:2005:MPO

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

REFERENCES

Reda:2012:APC

Rahman:2014:CCO

Ro:2006:DEH

Rakvic:2010:TMT

Radojkovic:2012:OTA

Radojkovic:2016:TAM

REFERENCES

REFERENCES

Reilly:2001:TNF

Redstone:2000:AOSa

Redstone:2000:AOSb

Redstone:2000:AOSc

Rajwar:2003:TET

Radojkovic:2012:EIS
REFERENCES

Rodgers:1999:TSN

Rashid:2010:AEP

Richman:1991:EHC

Richards:1999:ALT

Ringle:1999:SCT

Rinard:2001:AMP

Reddy:2011:BFH
REFERENCES

DEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

[Reus:1998:VCO]

[Reiche:2017:AVI]

[Rodrigues:2015:DSE]

[Raman:2010:SPUb]

[Ribic:2014:EEW]

[Raghavan:2009:DLC]
REFERENCES

REFERENCES

Rodley:1994:UIC

Rodens:1995:ESC

Rodley:1995:TPU

Roh:1995:CGE

Roy:2009:LPF

Ruan:2005:EIS

Ruan:2008:DCS

Raghunath:1993:DIN

REFERENCES

technique for online analysis of multithreaded programs.
*Concurrency and Compu-
tation: Practice and Experi-
ence*, 19(3):311–325, March
10, 2007. CODEN CCPEBO.
ISSN 1532-0626 (print), 1532-
0634 (electronic).

[Rounce:2008:DIS] Peter A. Rounce and Al-
berto F. De Souza. Dy-
amic instruction schedul-
ing in a trace-based multi-
threaded architecture. *Inter-
national Journal of Parallel
Programming*, 36(2):184–205,
April 2008. CODEN IJPPE5.
ISSN 0885-7458 (print), 1573-
7640 (electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=36&
issue=2&page=184.

[Riccobene:2009:SCB] Elvinia Riccobene, Patrizia
Scandurra, Sara Bocchio, Al-
berto Rosti, Luigi Lavazza,
and Luigi Mantellini. Sys-
temC/C-based model-driven
design for embedded systems.
*ACM Transactions on Embed-
ded Computing Systems*, 8(4):
30:1–30:??, July 2009. CO-
DEN ????? ISSN 1539-
9087 (print), 1558-3465 (elec-
tronic).

[Roh:2001:RMD] Lucas Roh, Bhanu Shankar,
Wim Böhm, and Walid Naj-
jar. Resource management in
dataflow-based multithreaded
execution. *Journal of Par-
allel and Distributed Compu-
1, 2001. CODEN JPDC-
CER. ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.com/
links/doi/10.1006/jpdc.
idealibrary.com/links/doi/
10.1006/jpdc.2001.1708/
pdf; http://www.idealibrary.com/
links/doi/10.1006/jpdc.
2001.1708/ref.

[Rangan:2008:PSD] Ram Rangan, Neil Vachhar-
jani, Guilherme Ottoni, and
David I. August. Performance
scalability of decoupled soft-
ware pipelining. *ACM Trans-
actions on Architecture and
Code Optimization*, 5(2):8:1–
8:??, August 2008. CODEN
???? ISSN 1544-3566 (print),
1544-3973 (electronic).

[Roth:2004:MTC] Marcus Roth, Gerrit Voss,
and Dirk Reiners. Multi-
threading and clustering for
scene graph systems. *Com-
puters and Graphics*, 28(1):
63–66, February 2004. CO-
DEN COGRD2. ISSN 0097-
8493 (print), 1873-7684 (elec-
tronic).

[Raychev:2013:ERD] Veselin Raychev, Martin
Vechev, and Manu Sridha-
ran. Effective race detec-

Ravoor:1997:MTP

Shaw:1998:CIP

Samorodin:1999:SFS

Sanden:2004:CJT

[B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SJL

Smith:1980:ASD

ISSN 0163-5999 (print), 1557-9484 (electronic).

[SCCP13] Juan Carlos Sáez, Fernando Castro, Daniel Chaver, and
REFERENCES

Schweitzer:2015:PEM

Schmitt:1990:CEM

Schonberg:1989:FDA

Schmitt:1990:CEM

Schonberg:1995:SCP

Schmidt:1998:EAM

REFERENCES

Schildt:2014:JCR

Schafer:2017:PHL

Sendag:2005:IIS

Steinke:2005:NPF

Schauser:1991:CCM

Schauser:1991:CML

Steffan:2000:SAT

REFERENCES

Spertus:1995:ELB

So:2013:STI

Sartor:2012:EMT

Seiden:1998:ROM

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB
REFERENCES

[Sundaresan:1996:COO]

[Sung:2014:PTR]

[Sodan:1997:ENN]

[Sridharan:2014:AEP]

[Shahnaz:1995:DMD]
Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

[Shankar:1995:STI]

[Shaw:1998:CPM]
Andrew Shaw. *Compiling for parallel multithreaded computation on symmetric multiprocessors*. Thesis (Ph.D.), Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
REFERENCES

REFERENCES

Smaragdakis:2007:TIC

Schonherr:2011:MTI

Sohn:2001:CTC

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT

Scherer:1999:TAP

Sharkey:2008:RRP

Sidiroglou:2009:AAS

REFERENCES

Yasushi Shinjo and Calton Pu. Developing correct and efficient multithreaded programs with thread-specific data and a partial evaluator. *Operating Systems Review*, 34 (2):33, April 2000. CODEN OSRED8. ISSN 0163-
REFERENCES

5980 (print), 1943-586X (electronic).

[SQP08a] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading: power-efficient and high-

238

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Sen:2006:OEP

Sri93

Sri95

Sri1993:SDS
Srinivasan:1993:SDS

SRS98

SRU98

Silc:1998:APC

Speer:1991:DTP

REFERENCES

[SS95]

[SS96]

[SS10]

[SSkP07]

[SSN10]

[SSP99]

[SSYG97]
Andrew Sohn, Mitsuhisa Sato, Namhooon Yoo, and Jean-Luc Gaudiot. Data and workload distribution

REFERENCES

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF

Stuckey:1995:FCI

Snavely:2002:SJP

Schmidtmann:1993:DIM

Shen:1999:ATL

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

REFERENCES

Schwan:1992:MRT

Sterling:2002:GMP

Schwan:1991:RTT

Sinenian:2013:MMS

Taft:2013:TPS

Theobald:2000:LCE

Tamasanis:1995:MMW

Thoziyoor:2008:CMM

[TAM+08] Shyamkumar Thoziyoor, Jung Hee Ahn, Matteo Monchiero, Jay B. Brockman, and Norman P. Jouppi. A comprehensive memory modeling tool and its application

Tanner:1987:MTI

Tolmach:2004:IFL

Tam:2007:TCS

Thompson:1997:THP

Toulouse:1995:CID

Thornley:1998:SSH

Tseng:2003:DST

Thekkath:1994:ISB

Thekkath:1994:EMH

Tullsen:1996:ECI

Tullsen:1998:RSM

Tullsen:1998:SMM

Chen Tian, Min Feng, and Rajiv Gupta. Speculative parallelization using state separation and multiple value prediction. ACM SIGPLAN Notices, 45(8):63–72, August 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Xinan Tang and Guang R. Gao. Automatically partitioning threads for multithreaded

[TGO99]

Thakur:2009:TSE

[TG09]

[TGO00]

Tan:1999:OFN

[Tan:2000:PEN]

Tian:2005:PCT

[TGBS05]

Terechko:2012:BPS

REFERENCES

Thekkath:1995:DPM

Throop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Thitikamol:1998:PNM

Theobald:2001:DCI

REFERENCES

REFERENCES

255

REFERENCES

REFERENCES

[VC00]

[VD08]

[VD98]

[VD93]

[Ven97]

[Ven98]

Anthony Verriello. Memory sharing in multithreaded transaction environments. Thesis (M.S.), Hofstra Uni-
REFERENCES

Vale:2016:PDT

Vantrease:2008:CSI

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

REFERENCES

262

[102x681]REFERENCES
[102x681]262

1045-9219 (print), 1558-2183 (electronic).

REFERENCES

ISSN 0360-5280 (print), 1082-7838 (electronic).

Wang:2004:HTVb

Wang:2004:HTVc

Wang:2007:OSC

Wester:2013:PDR

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Wong:1994:SSI

Weissman:1999:HPT

Walcott:2007:DPA

White:2003:UTL

Wallach:1995:OAM

REFERENCES

August 1995. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

References

Welch:2010:SCF

Wang:2006:RAA

Warg:2008:DTS

Whittaker:1997:TML

Wheeler:2010:VMM

Wu:2012:SPA

Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang. Sound and precise analysis of parallel programs through schedule specialization. ACM SIGPLAN Notices, 47(6):205–216, June 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
REFERENCES

2867 (print), 1558-1160 (electronic). PLDI ’12 proceedings.

Yasrebi:1995:EDO

Yiapanis:2016:CDS

Yang:2014:MPP

Yamashita:2012:APS

Yi:2010:NAS

Yu:2013:GDS

Yao:2016:OCO

Yuan Yao and Zhonghai Lu. Opportunistic com-

Jie Yu and Satish Narayanasamy,

[ZSM02b] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. Compiler optimization of scalar value communication between spec-
REFERENCES

Zhou:1998:LST

Zhang:2000:WMH

Zhang:2015:LOS

Zignin:1996:TDM

Ziarek:2009:SWB

Zhang:2010:DCS

Zhu:2011:TPS
David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi

Zhang:2012:SCC

Zhao:2011:DCC

Zhao:2015:DPO

Zier:2010:PED

Zhang:2016:TED

Zhang:2016:SAN

REFERENCES

[277]

Zhuang:2004:BRA

Zhuang:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB