A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 October 2019
Version 3.166

Title word cross-reference

#4 [Pet00].
+ [BMV03], 2 [TKHG04]. 3
[KSB+08, PYP+10]. cyclical [YLLS16]. D³
[Evr01]. F² [BCS11]. LU [VD08]. N
[ZJFA09]. π [III01]. QR
[But13, GKK09, VD08].

-based [Ród19]. -Calculus [III01].
-Machine [Evr01]. -way [ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/multi [Taf13]. /multi-threaded [Taf13].
‘01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. ‘12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94e].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KAO05]. 35th [Gol94]. 3D
[Ano97b, Loe97].
4 [BAM93, SKS+92]. 4th [Ass96].

5 [FLR98]. 5th [Cha05].

64-bit [Kus15, SBKK99]. 6th [DLM99].

7th [USE00b].

80 [Bri89]. 821 [HBG02].

Abstract

[CSS+91b, CGSV93, DV99, KPP12, LMA+16, MJ+10, Ném00, CSS+91a, CSS+91c, Dii00, VDB08, ZJF00].

Abstraction

[KI16, Bak95b, GSK+18, GPR11, ZSJ06].

AC

[BGK94a, BGK94b]. Accelerate

[JLA16]. Accelerating [BAZ+19, LS11, SMQ09, VGK+10b].

acceleration [JSMP13, NBBM12].

Accelerators

[NTR16, SGLL+14]. Access

[BP19, Kie00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SHP+07].

Accounting

[LMA+16, EE09b]. Accuracy

[SHK15, TO10]. Accurate

[CPT08, VTS12]. Achieving

[AHW02, SP05, KGGK09, WTKW08].

ACM

[ACM93b, RM03, IEE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZF04].

Activation

[KG94]. Activations

[ABLL92, BVM19, DNR00, SS95]. Active

BK106, BDJ06, Pla02, Ten98, Wei98a, SD95, WHJ+95. actors [Bri89]. actually

[Pra95c]. Ada [ACM93c, Bar09, DiI93, GMB93, KPP+ER06, KR01b]. ADAM

[Far96]. adaptable [LLLC15]. Adaptation

[CMBAN08]. Adaptive

[ABN00]. Adaptive

[ALHI+08, HBTG98, HTDL18, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, ZWL15, B506, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW16].

Adding

[Ply89, Ric99, McM97]. Address

[CLFL94, PWL+11, CKZ12, Lie94].

Addressing

[WA08, CKDK94, ZSB+12].

ADL

[BLV09]. Advanced

[BGG95, BP19, GCG95, Him03, BZ07, GBB+05]. Advances

[IE97, JHM+04, KDDV03, DLM99].

Advantage

[Wei97]. Adversarial [FF10].

Affinity

[HLH16, NAA01]. Age

[Cro98].

agent [Way95]. Agents

[CWBB03, CR02, Way95, BDF98].

Aggregate

[TGO99, TG000]. AGNI

[RBP00]. Agnostic [SL+18]. agreement

[GMW09]. Aid

[Wei97]. aided [MCRS10].

aids [Mat97]. Air

[MPD04]. A1 [TLA+02].

Albuquerque

[An09e]. Algebra

[KLDB09, NBS+15, PHCR90, YSY+09].

Algebraic

[ACM94c, Lak96, MR09, Wat91].

Algorithm

[AT16, ABC+09, CNZS17, HH11, MP13, OR12, R619, TGT03, ZBS15, BKK17, GKK99, KGP12, KNPS16, LCH08, Mah11, Mah13, SCC95, TKHG04, Dav11, HBG02, YFF12].

Algorithmic

[Lei97, BHH+17]. Algorithms

[BP05, EJRB13, FS96, LA93, MNG16, NSP14, Pan99, QOM12, TTKG02, YMR93b, Bar09, CFG12, CLR09, FR95, GK05, Lei97, Lep95, NFBB17, QQOV+09, RRMM12, YMR93a, Li05].

algorithm-by-blocks [QQOV+09].

Algorithms-by-Tiles [QOM+12]. aliasing

[NA07]. Adjusted

[YWJ03]. alignment

[KGP+12]. Allaire

[Hig97]. Alleria

[BP19].

Alleviate

[BD00]. Alloc

[KSU94].

Allocating

[SEP96]. Allocation
[MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04]. **Allocator**
[BMBW00b, BMBW00a, BMBW00c]. **Alpha** [Ano00b]. **alphabet** [KNPS16]. alphabet-independent [KNSP16]. **Alternating** [CYYL18]. **alternative** [SV96c, SV96a, SV96b]. **Alternatives** [MB99, OA19, MKR02]. **Alto** [ACM01]. **ALU** [KDM +98]. **always** [DWS +12]. always-on [DWS +12]. **Amdahl** [CN14, NZ17]. **Among** [CB16, HMC95, SJ95]. analysing [NJK16, PV06]. **Analysis** [AKS06, BCZY16, BVM19, BE12, BBC +00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJRB13, Hao97, Hao12, HLH16, LCK11, LML00, LMG +16, NLB93, REL00b, Rin01, RR99, SBCV90, TAM +08, VP16, Yoo +06, Zou02, AC09, ACC +03, BGZ97, BBI +17, BPSH05, BBD +09, CHH +03, CS12, CVJL08, Cor00, GBCS07, HEJ90, JPN09, KTC12, KC09, Lei97, LBH12, LBE +98, Met95, NWT +07, PFF06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB08, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH +12, dBo9, vPG03].

Analytic [Squ94, MAF19]. **Analytical** [DKF94, SV19, VT96, SBC91]. **Analytics** [JGS +19, LTL +16]. **analyze** [LMC14].

analyzing [FT +13, HLL90]. **Analyzing** [HR08, Kor89, RHH10, TMC10].

anatomy [Rei95]. **Android** [MKM14].

animation [WQLJ18]. **Annotations** [BM94, We98b, AGN09]. **Annual** [ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b].

anomalies [Sch90]. **Anomaly** [KW17]. **antipatterns** [BPSH05]. **Antonio** [USE92a]. any [Hig97, Mar07]. **API** [Ano00b, BDN02, DM98, Van97a]. **APL** [C91]. **applets** [McM96c]. **Application** [AMRR98, HTDL18, KZTK15, KSU94, PG92, PLT +15, SV19, TAM +08, Yas95, DWYB10, EJK +96, HDT +13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA +02, ZJS +11]. **Application-Level** [HTDL18, KSU94, PLT +15, HDT +13, LZ07, ZJS +11]. **Applications** [Ano00c, AZG17, AKP99, BK106, BMBW00b, BNH01, Cha05, Chl15a, DVAE18, DSAD +18, DS16, Don02, Dru95, EV01, FURM00c, HC17, HMC16, HWZ00, JYE +16, JLA16, KMF +02, KRH98, LWSB19, LKP16, Lar97, MGI14, MG15, PCPS15, PWL +11, Pul00, RD06, DFC +19, SGM +97, Sod02, Ten02, Tet94, TSV12, TLG17, VCM19, VP16, Vol93, WJA +19, YG10, ZJ12, Ano92a, Ano92b, Ano94b, ASSS19, AAKK08, BWDZ15, BBFW03, BGZ97, BMBW00a, BMBW00c, BC97, DSEE13, BPSH05, BMV03, CB89, CB90, CSB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLH90, ISS98, JSM12, JSM13, KV +09, LSW +18, MLC11, MKM14, MKIO04, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Om04, PIZ07, RCV +10, Rei95, San04, SSN10, SKP +02, TMC09, TMC10, TP18, VIA +05, VKG +10a, VGG +10b, WCZ +07].

applications [WT10, WOKH96, XMN99, YZ14, kSYHX +11, ZKR +11, Len95]. **apply** [NZ17]. **Applying** [VTSL12, MT02a, MT02b, MT02c]. **Apprendre** [Swi09]. **Approach** [AZG17, BBSG11, CJW +15, ES97, FKT06, GMR98, KKW14, KS16, ND16, RCM +16, TY97, VSDK09, WS08, We99b, YLLS16, BWDZ15, DHM +12, LZW17, LZSS19, LZW +14, MS03, RCM +12, SCZM00, TP18]. **Approaches** [BLPV04, MB07]. **Approximate** [HFV +12, GEG07, GE08, KGPH12]. **Apps** [PCM16]. **April** [Ano00a, Ano03, USE01]. **arbitrary** [BGC14]. **Arc** [CNZS17]. **Arc-Weighted** [CNZS17]. **ARCH** [Ada98]. **Architectural** [ACM94d, HEMK17, IAD +94, KC99, ME15, BS06, CMF +13, Fan93, WHG07].
Architecture [ACM98c, BBD+91, BVL09, BTE98, Car89b, CL95, DS09, DO95, EBKG01, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HMNN91, HHOM91, HHOM92, KBH+94a, KBH+94b, KIAT99, Man91, MM01, MB99, PVS+17, PTMB09, PKB+91, PS01, REL00b, RS08, SLJ+18, SCL05, SHK15, SSYG97, SKK+01, SZ02, TKA+99, VKN99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cho92, Don92, Du95, Evr01, Far96, Fuj97, Gai94, GDSA+17, GL98a, Gol96, HFF88, HKN+92, HNN+92, I+94, KHP+95, KT99, Loh95, Mah13, MK12, Nêno00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TSB+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04].

Architecture-Agnostic [SLJ+18].

Asynchronous [HH11, KFG15, KG07, KSDO4, TP18, Yoo96a, GMR09, Kho97, KASD07].

Atomicity [DEL18, BLM06, BNS11a, BNS11b, BNS12, FF04, FF04Q, FF08, FFLQ08, FFY08, WS06]. atomic [ND13].

Atomizer [FF04, FF08]. Audience1 [BB96]. Augmented [GFJT19, LH09].

August [RM03, IEE99, USE93a, USE93a]. Austin [USE00b]. Austria [Hon94].

Automated [BSSS14, DRV02, KZC15, TR14].

Automatic [BVL09, HBTG98, JJY+03, KW17, Mou00, SEP96, YLLS16, GJ11, JSB+11, SLP+09].

Automatically [NWT+07, TG99, CJC01]. autotuning [CSV10]. Availability [SP07].

AVP [Ano09]. Avoidance [LC13, WLK+09].

avoidance [LC13, WLK+09]. AWP [Ano09]. Aware [AGJ18, BHP+03, CCWY17, FSPD16, FSPD17, GVT+17, HC17, Kim14, LZN+08, LYH16, MNU+15, PR05, SLJ+18, EQT07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAS07, XSAJ08, ZLW+16].

Away [GBK+09]. AWTEvEventMulticaster
[Hol99b]. axiomatic [TVD10]. AXP
[Ano97a].

B [Ano00c, DLZ+13]. back [ECX+12].
Backup [Ano00b]. Balance [SEP96].
balanced [CKZ12]. Balancers [KMAG01].
Balancing [HBTK98, KC98, KR98, PGB16, THA+12, ZP04, Ch95a, Ch95b, Ch96, LTL+16, MK9004]. Baltimore [IEE02]. Bandwidth [FSPD16, LTL+16]. Bandwidth-Aware [FSPD16].

Backup [Ano00b]. Balance [SEP96]. balanced [CKZ12]. Balancers [KMAG01].

Barrier-Based [CJW+15]. barriers [LZBW14, ZJFA09]. Base [VE93]. Based [Alf94, AT16, AKP99, BV09, BNH01, CJW+15, CKRW99, CMBAN08, DSR15, EGP14, GHG+98, GFJT19, HHOM91, HHOM92, KS16, KG05, KEL+03, KW17, KS97, KR98, KNE+14, Kwo03, LLKS12, LG06, LS11, MGS+08, MKC97, OB13, RSN01, SG18, TESK06, WLM15, \
ÁdBDRS05, Ada98, AAH090, An98, AKSD16, BKK17, CNQ13, CK94, CKRW97a, CKRW97b, CVN+06, DG99, DWYB10, EG11, GDSA+17, GE08, HLGD19, JD08, JSMP13, KR01b, KKJ+13, KL16, KKF+12, LK15, LZW17, LLL10, Mus09, NBMM12, NFBB17, PSM06a, PSM06b, PSM06c, PSM08+17, PAB+14, Ram94, RRR06, R Atatürk, RSN08, SKS+92, TE94a, WCW+04b, WCW+04c, WCW+04d, WQLJ18, YL16, Day92a, Day92b, RS98+09].

Bases [AKG96]. batting [DKG18]. Be [Pet03, Ano95a, Ano95b, Boe05, MMTW10].

Beach [USE92b]. becoming [Ano92a].

Behavior [KLS92, LB17, REL00b, ACD+18, DESE13, GS00, REL00a, REL00c].

Behavioral [Sch17]. Benchmark [BTE98, EHSU07, Mul03]. Benchmarking [HHOM92].

Benchmarks [CRE99].

Benefits [MHG95, LB95, LB96b, SD95].

benign [NWT+07]. Berkeley [USE01].

Better [BDM98, Pla99]. Between [WG94, Pan99, SS95, Yam96, ZCSM02a, ZCSM02b].

Beyond [EK92]. biased [RD06].

Bibliography [Bee98]. Big [JLA16, APX12, MLC+09, YZ07].

BIGSAM [Ply89].

binary [BCO10, KBF+12, TJY+11]. binding [RCV+10].

Birthmarking [TLZ+17, TLZ+18]. bisection [RRMJ12].

Block [ABLM19, CCWY17, KS97, ZM07, KTK12, KTLK13]. BlockChop [MK12].

Blocking [An96, GN00, Nak03, SB80]. Blocks [Pet03, QOQOV+09].

Blue [GBB+05].

Boltzmann [SKG+11]. Bonn [Wat91].

Book [Lar97, Van97a, Vre04]. Bookshelf [Ano99, Cro98, Wi97, Wi00].

Boost.Threads [Kem02]. Boosting [AKSD16, APX12, MLC+09, YZ07].

boosts [McM97].

Bootstrapping [KH18b].

Borland [Kel94a, Kel94b]. Borrowed [DC99, DC00]. Borrowed-virtual-time [DC99, DC00].

Boston [Ano94f]. Both

[KK15, CSM16]. Bothnia [CCW+11].

Bottle [DSEE13]. Bottleneck [JSMP12].

Bottlenecks [SU96, ZUB02, DSEE13, CS12, DSG17].

Boulevard [ACM99b]. bounded [LZT15, PA0+17].

Bounding [Lum97, Lum99, MQ07].

BowMapCL [NTR16].

Box [Ano00b]. Braids [BS06].

Branch [AKS06, EPG16, IBST01, CTYP02, CPT08, GL98b, MTS10].

branches [UZU00]. breadth [LAH+12].

breath-first [LAH+12]. Break [BVM19].

breakpoint [Ram94]. Bridge [Ano00b].

Bridging [KBH11, VDBN98].

brief [Hay93].

Briefs [Gar01].

bring [Pra95b].

Bringing [Jon91]. Broadcast [SW08].

Broadcast/Reduction [SW08].

brokers [Sch98]. Browsing [HF96].

BSD [SS95].

BSDCon [USE02]. BSP [SYHL14].
Compatible [MM14, LBH12].
Computational [LNI+19, PCPS15, Bar09].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Bhu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96].
Compute [BBSG11].
Compiler [ACM98c, Ano94a, BVL09, CBV90, Go94, BD06, DNB+12, GK05, I+94, PBD092, WQLJ18].
Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95].
Compiling [ABNP00, ABH+01, TLA+02, HTZ+97, Sch91, Sha98, A+01].
Complement [YFF+12].
Complete [BR15, Sch14, BW97, DWS+12, FFY08, KGGK09, NV15].
Compilation [AGK96, BGK96, LM97, Man98, BGK94c].
Complexity-effective [SKA01].
Component [BGK96, SP05, Hig97].
Components [Gon99, Sho97b].
Computable [MLGW18, SS10, FKS+12].
Compositions [HS97].
Comprehesive [TAM+08].
Condensed [BIK+11].
BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KKD03, confidentiality [NSH14].

Configuration [GPB+17]. Confirmation [CJW+15]. conflict [NJK16, vPG03].

conformant [Stu95]. Congress [Ano94d].

conjunction [Ano94c]. Connect [Ano00b].

conquer [FN17, TP18]. conscious [GPB+07]. Consistency

[ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Ch093, DNB+12, G500, HT14, QSQ14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].

Constrained [TLGM17, GW10, YN09]. constraint [SCG95]. constraints [HB15].

Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05]. Contact [Nak03]. Contemporary [ZJS12, ZJS10].

Content [WLM15]. Content-Based

[WLM15]. Contention

[ALB+18, XSAJ08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].

Contention-aware [XSAJ08]. Context

[TLA+02, GN92, JLS99, FD95, LG04, MQ07, PAdS+17, PFH06, SCB15, Yan97, LG04].

context-bounded [PAdS+17].

context-sensitive [PFH06, LG04]. contexts [BGC14, TE94b, WW93].

Contextual [BGZ97, KH18a, NHFP08].

continuation [AAHF09].

continuation-based [AAHF09].

continuations [DB91, GRR06].

Continuing [Ano99]. Continuous [RCC14].

Continuously [DTLM14]. Contour

[GFJT19]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, DKG18, FK12, FSYA09, GCC15, MLCW11, NT14, PPA+13, PWWD18, Po90, RPB+09, UZU00, WLK+09, Yoo96b]. control-flow

[NT14]. Controlled [ALSJ09, BCG+08, CSS+91b, CGSV93, SCv91a, CSS+91a, CSS+91c, Luk01, MWP07, Sch91, SCv91b].

Controller [RLJ+09]. controllers

[KASD07]. controlling [AGN09, BKC+13]. controls [McM96c]. Controversial [Gar01].

Convention

[ACM98d, ACM99b, ACM00, Hol12].

Conventional [KET06b, HB92].

Convergence [RM03]. conversational [LG04]. Converse [BK96]. Convert [Vol93].

Converting [LEL+97a, LEL+97b].

convolutions [RB18]. convolver [Kep03].

Cool [Ano00a, Ano03, W97].

Cooperation

[BM07, SKBY07].

[AMRR98, DNT16, ILFO01, LC13, KIM+03, MKIO04, TCG95]. coordinated [KKJ+13].

coordination [BDF08]. Coping [San04].

Coprocessor [LRZ16]. copying [HL93].

CORBA

[DHR+01, PCS01, SV96a, SV96b, VS96].

Core

[CC18, CvdBC18, FMY+15, FJ08, GBK+09, IJS18, KST04, KTR+04, MP01, MNU+15, MM01, MB05, PVS+17, PHBC18, PM14, QOIM+12, VCM19, ABC+15, AMPH09, CFG+12, CSM+05, DTR18, DWYB10, GW10, KKT+18, KBF+12, MLCW11, MLC+09, MTPT12, M09, SMQ09, V97, WC+07, YZ07].

CoreDet

[BAD+10a, BAD+10b].

Cores

[CC+16, RRK11, CW506, MAF+09, SW16].

coreSNP [GAC14]. Corner [SW97].

Corona

[VSM+08]. Corporation

[An00b, An00b]. correct [DJLP10, SP00b, Shi00]. Correction

[TLA+02, HTDL18]. corrective [LG04].

Correctness [Ran94].

Correlation

[SLT03, PFH06, SLT02]. cosimulatore

[LT97]. Cost

[TY97, Bet73, D07, Tsa97b].

cost-effective [Tsa97b]. Costs

[MHG95].

COTS

[RRG+12]. counterexamples

[NV15].

Counters

[Wei98b]. Counting

[Hol98c, Rec98]. County

[ACM98d].

Coupled

[MTN+00]. Course

[BLPV04, BZ07, GL07, She98]. coverage

[RRP06, YNPP12]. coverage-driv

[YNPP12]. covering

[BCG13]. Covert

[EPAG16]. CPU
[ASSS19, BSSS14, PGB16, DFC†19]. CPUs
[SKG†11, SMD†10]. Craftworks [Ano97a].
Cray [BCG14, Smi01, VTS12]. Create
[Ber96b, Ber96a, Len95]. Creating
[Han97, Ten98]. Creation
[Eng00, Rin99, Sin97]. Crisis [Ano99].

Critical
[BLG01, CS12, OTY00, DTL14, DISE13,
NM10, RGC†12, San04, SMQ09, YL16].

Criticality
[Lam95, SHK15, BKC†13, CZSB16].
Cross
[Lam95, SHK15]. Cross-platform
[Lam95]. cross-thread
[BKC†13, CZSB16].

CS1 [GL07].

CSMT [GSL10].

CSP [Nev99].

CTS [ASSS19]. CUDA
[LBH12, MM14, PADS†17, WJ12, YZ14].

CUDA-compatible
[LBH12]. CUDA-NP
[YZ14]. CUG306 [Col90a]. current
[IVA†13]. Curve [Rot99]. customizable
[JP92]. cut [JEV04]. Cycle
[LS11, EE09b]. Cycle-Level
[LS11]. Cycles
[CNZS17].

Cyclic
[YLLS16, HKT93]. cyclone [Gro03].
Cyclops
[ACC†03]. Cyrus
[HDT†13].

D [KSB†08, NTK99, PYP†10, TKHG04].

Daemon [Spe94]. DAG
[LQ15]. Dallas
[ACM00, USE91b]. Dame
[IEE96]. dans
[Zig96]. DARPA [Mat97]. Data
[Ano89, ABNP00, DTLW16, EW96].

FHM95a, GAC14, HMC97, HRH08, Hig97,
HLH16, JMS†10, JGS†19, KZC15, KEL†03,
KET06a, KET06b, LPK16, LMJ14, LLD17,
ME15, ME17, RCRH95, SBN†97, SAC†98,
SSYG97, SGN96, TSN06, VTB96,
Wit98, ZLJ16, ZAK01, AGEB08, AGN09,
BAM07, CS95a, CS95b, CDL13, DHH†12,
Evr01, FHM95b, FK12, HL93, LTL†16,
LHS16, Mao96, MNN09, NWT†07, ND13,
PDM16, PRB07, PHCR09, Po90, PS03,
PT03, Sha95a, SP00b, Shi00, Sin99,
SKK09, WDC†13, YKL13, ZJS†11].

data-centric [DHH†12]. Data-Driven
[DTLM16, KET06b, ME15, ME17, TESK06,
Evr01]. Data-Parallel

[ABNP00, SAC†98, HMC97]. data-race
[MMN09]. Database
[BAZ†19, KD97, MM14, YMR93b,
Hig97, LBE†98, YMR93a]. Databases
[AOV†99, GDSA†17, HL08, MIGA18].

Dataflow
[CVJL08, FA19, GGB93a, Gao93,
HPB11, HKS06, HL94, NBM93, RSB01,
SRU98, DFC†19, Tra91, YMR93b, BGG95,
GGB93b, GBG95, HG92, JHM04, KHP†95,
PT91, SKS†92, Sch91, YMR93a].

Dataflow-Based
[RSB01]. dataflow/von
[HH92]. dataarce
[CLL02, CVJL08].

Datarol
[KA97]. Datarol-II
[KA97].

Dawning
[Cro98]. DC
[IEE94c, ACM92, Ano90]. DCE
[RD96, Yam95, Yam96]. DDOS
[HBCG13].

Deadlock
[Hol98a, Mou00, Ver97, ABF†10,
SR14, WLK†09]. Deadlocks
[CC14, CJW†15, CZWC13, JPSN09, PRB07].
dealiased
[RB18]. Deallocate
[LPE†99].

dehart
[Len95]. debate
[Bak95b]. debug
[PT03]. debugger
[CB89, CB90].

Debugging
[Ano98b, Caz02, HWZ00, MQLR16, PHK91,
SJB92a, SJB92b, BGZ97, MLR15, WOKH96].
decentralized
[RPB†09]. Decision
[LFK96, LQ15]. Decisions
[JGS†19].

decomposition
[JEV04]. Decompression
[PBL†17]. Decoupled
[DO95, IXS18, APX12, Evr01, RVO08,
RCG06, SKA01, VS96].
decoupling
[KGK09, PG01].

Decoy
[MIGA18].

Deductive
[AdBdRS08, BK13]. Deeply
[GKCE17]. Defect
[OB13].

Defragmentation
[PVS†17]. Delaunay
[ABC†09]. Delivering
[SCCP13].

Delorean
[MCT08]. Demand
[KKJ†13]. Demand-based
[KKJ†13].

Demus-2
[Sri93]. dense
[ABD†12, MM07].

Dependable
[SUF†12]. Dependence
[CZS†17].

dependencies
[BKC†13, CZSB16].

DepSpawn
[FA19]. Depth
[McM96a,
McM96b, McM96c, McM98a, McM98b.

Derivation [Kim14, SV19]. Derivative [TT03]. describes [Yam97]. Design [ACM94a, ACM99a, AN94c, BMR01, BC94, CL95, GM93, GRS97, GM98, H97b, JGS99, KHP95, LA00, MB99, NBM93, RA93, RCDG06, SCH17, STW93, S95a, SWY94, S94k, TH95, TAM98, V98, ZBS95, AMP90, BBH97, BO96, Car99b, FFL03, HCM94, H96, KU17, KGGK90, Mah11, M95, M96, MKR02, Ném00, OKID98, ORS07, RSB98, S80, S93, V97, WLG94, W94, WCV98, Xue12]. designed [San04]. Designing [Dru95, GK92, LR93, PR98, RB99, S80, S93, V97, WLG94, W94, X92]. Desupport [DHR98]. Detailed [MKR02, ACC03]. Details [FMY15]. Detect [CNZS17, DS16, CZWC13]. Detecting [DSR15, RB90, SK97, FF10, JPSN09]. Detection [ABF10, CC14, HTDL18, KUCT15, KW17, LS18, LS20, MT90, TLZ17, TLZ19, ZLJ16, AF06, CL92, CV98, DF99, HR16, LLLL15, LTHB14, MM14, MN09, NB91, NA90, NA97, PS07, PFH90, RVS13, RM00, SR14, S97, STW93, TDW03, WDC12, ZK11, ZDS12]. Detection/Correction [HTDL18]. Detector [SBN97, SLG06]. determined [Kub15]. determination [BS10, LWV10, LZW13]. Deterministic [DK02, KRB02, LB17, LSS12, VSDL16, BAD10, BAD10, BAD97, BAD98, Bon13, DLCO09, DN91, LBW14, MAA14, OAA99, QSH16]. Deterministically [MCT08]. DetLock [MAAB14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing [SP00b, Shi00, TKA98, OT95].

Development [AN97a, AN98b, AN99, Gil88, S95, Tet94, ARW93, HP97, Pom98, TNB95]. devices [Xue12]. diagnosing [CS12]. diagnostics [GB94, diagrams [SK12].

Diego [ACM93b, ACM98b, USE98, USE99b, USE98]. differences [Yam96].

Direct [PR98]. Direct-threaded [PR98].

Distance [BCZY16, KZTK15, SV19, KNPS16].

distinguish [HL93]. Distinguished [ABH91, TKA91]. Distributed [ABNP95, ABH91, BBD91, BWF05, BH95, BC94, CV98, CK95, DKA96, FSS96, G97, Jen95, MK91, PG92, Pra95a, RLL90, RBPM00, RW97, R95, SFU99, TF03, USE92b, VS96, Y95, Ano96, A91, BCG95, C90, Car89a, Gol96, G99, Gun97, HB92, HMC95, HWW93, HBC95, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MK99, Ong97, P98, Pha91, Ply89, QSQ14, ST02, T95].

Distributed-Memory [R95, BCG95, HWW93].

Distributed-sum [TDW03]. Distribution [SSY97, ZAK01, CY09]. divergence [M90]. Divergent [WJA92], divide [F17, TP18]. Divisors [Kuec92, Kue91].

DMP [DLCO09]. Do [C98b, C98a, RPNT08, Ber96a, Ber96b, YLLS16]. Dock
[BCS11]. Docking [BCS11, TO10].
documentation [HF96]. Does
[HY02, RKK15, ZIS10, San04]. doing
[YAM96]. domains [LAK09]. données
[SWI09]. Don’t [HHPV15]. DOSThread
[VE93]. DoubleVision [ANO00b].
downdating [VV11]. Downturn [GAR01].
DRAM [LLKS12, kSYHX+11]. DRAMs
[ALSJ09]. drf [MSM+16]. DRFX
[MSM+10]. Drinking [CZSB16]. Driven
[DTLW16, FOR95a, FOR95b, HLB94, KET06a, KET06b, LWSB19, ME15, ME17, TESK06, YBL16, CSV10, EVR01, RVS13, RSB09, SLP08, SQP08a, SQP08b, SQP08c, YNPP12].
driver [CCW+11]. DSLs [RKHT17].
DSM [ABH00, AB01, AB02, BDF98, KKH04].
DSM-PM [AB02]. DSM-PM2 [AB01].
DSMs [FBB01]. DTS [BHMK95].
Dual [BBC00, EHG95, KST04, DK02, MB05, WS08, CCW+11, FRL18].
Dual-Core [KST04, MB05].
Dual-Level [BBC00, DK02]. dual-mode [FRL18].
dual-personality [CCW+11].
Dual-Processor [EIH95]. Dual-Thread
[MB05, WS08]. Duplex [KG05].
Duplication [Kwo03]. Dynamic
[BPSH05, CJW+15, FSYA09, GPB+17, HSS+14, HIG97, KMA01, KPC96, KC98, KC99, KUC15, MVZ93, MTS10, NAK01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK+01, STA90, SG96, WHG07, XMN09, ZKW15, ZKR+11, ZL10, AR17, CAR08, ChR95, ChR95b, ChR96, DON92, FF04, FF08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, MR04, NHF08, SCD15, SLG06, TJY+11, WW96, BK13].
dynamic-multithreading [LSJ12].
Dynamically
[PGB12, TLGM17, DMBM16, KE03].
dynamically-typed [DMBM16].
Dynamics [LNI+19]. DyPO [GPB+17].
e6500 [BGH+12]. Early
[GL91, PBL+17, SLP08]. EARTH
[HTZ+97, HMT+96, SOD02, TAK+00, TKA+01, TKA+02, TMAG03, NAK03].
EARTH-MANNA [HMT+96, SOD02].
Easy [FA19, HAF99]. Easyscript [ANO00b].
ECMA [STU95]. ECMA-162 [STU95].
economics [BAR09]. Edinburgh [AOF+99].
edition [KNPS16]. Editors [GGB93a, GJ97].
Education [GAR01]. effect
[BAD09, GL09b, YSY+09]. Effective
[ABL02, DNY94, GH03, GMGZP14, NAW06, NSH14, PGB16, RVS13, SAT02, TMC09, TY97, CBM10, JSB+11, MM09, MTC+07, SCA01, TSH7b].
Effectiveness
[PR05, TE04b]. Effects [CH093, HHR08, KLM+99, KRBJ12, NHF08]. Efficient
[TTK02]. Efficiency
[AJK+12, ANO05, AMPH09, FFG14, GA09, MMM+05, MKW06, PRA95b, RCG+10, SP05].
Efficient
[AD08, ALSJ09, AIL04, ABN99, BCZY16, BGDW12, BJK+96, BL98, BMN99, CZS+17, CYY18, CLL+02, DMBM16, Gao07, GJ+12, GR09, GS06, GN96, HMC16, HSS+14, HR10, HEMK17, KPC96, KASD07, LS18, LA02, LHT+16, LZW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZL16, ATLM+06, BL93, BJK+95, BKH+04, EKKL90, FWL03, FF09, GB09, HSD+12, KSB+08, KNPS16, KSD04, LK13, LVA+10, LHS16, LZW+13, MSM+10, NLK09, OA09, PA07, PGS06a, PGS06b, PGS06c, PRS14, PS07, RL14, Sch91, SARA06, SP06b, SH00, SG04, SQP08a, SQP08b, SQP08c, TO10, Wei98a, SYHX+11, ZLW+16, FSYA09].
Efficiently
[BKK+12, MCT08, SW16, BHL95, BKC+13].
eigenproblems [ABD+12]. eigenvalue
[BK+11]. Elastic [SG18].
Electronic
[ANO00b, BB00]. Elegant [HUB01].
Element [HBGT98, MS02]. elementary
[HKN+92]. elide [MSL15]. Eliminating
[DSG17, OCT14, RD06, MTPT12].
elimination [MK12]. elision [NM10].
Elliptic [LOE97]. EM-4 [BAM93, SKS+92].
Embedded [BVM19, BGH^+12, DS09, Dru95, GKCE17, KG05, KE15, MS15, WM03, ZDTM19, DCK07, KVN^+09, KASD07, KBF^+12, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB^+09, SKP^+02, Xue12].

Embedded-Systems [Dru95]. Embedding [Pul00]. Embedding [Pul00]. Emergencies [MTPT12].

Emerging [VSM^+08, WJA^+19, GBP^+12]. Emerging [VSM^+08, WJA^+19, GBP^+12].

Empirical [LC13]. Employing [CWS06]. Employment [Gar01]. Empowering [JSB^+12]. Enabling [CC18, Pan99, SMZ18, JMS^+10, VGK^+10a, VGK^+10b].

enforcement [GWM07, SCCP13]. Engine [SG18, CNQ13]. Engineering [GJ97, LSB15, WCV^+98]. engines [HB15].

England [ACM94c]. Enhance [FSPD17, FJ08]. Enhanced [Ano00b, EJ93].

Enhancing [KKT^+18, OL02a, OL02b, HWW93, RHH10]. Environment [ABN00, BC00, Cds001, EC98, KKKH03, PG92, BK96, DSH^+10, GCRD04, GCC15, GBB^+05, HMC97, Hud96, KG07, Lan97, Pha91, SWY94, Sta90, Tem97, WCC^+07].

Environments [AKP99, BDN02, KG05, SP00a, EJK^+96, RGG^+12, Sam99, Ver96, Way95]. equality [AD08]. Equalization [TLGM17].

Equations [Loc97]. equivalent [Pra95c]. Eraser [SBN^+97]. Errata [Ano01, Ano05].

Error [EUUVG06, OA19, SSN10]. Errors [SK97, VACG09]. escape [SR01a]. Esterel [LBvH06a, LBvH06b, LBvH06c, LvH12].

Estimating [PCPS15]. etc [Hol98a]. European [DLM99]. EuroPVMMPI [KDV03]. Evaluate [EE14]. Evaluating [BL96, CML00, NPT98, PSCS01, RP005, Sch98, S95, TG90]. Evaluating [Arn92, Boo93, BTE98, CL95, CBN^+00, EJK^+96, Eic97, GLC99, HN91, RNSB96, SC^+15, TT03, ZL10, BGDMWH12, BLCD97, Car89b, Cho92, Don92, L207, Mah11, KMKR02, NFB17, RGG^+12, RCG06, SWY94, SKP^+02, SMS^+03, TGO00, TKA^+02, WLG^+14, WZS19].

Evaluations [MM14, Roh95]. evaluator [SP00b, Shi00]. even [Ano94b].

événements [Swi09]. Event [Ber96b, CRK99, For95a, For95b, Ber96a, CRK97a, CRK97b, GWM07, KCCD99, KBB^+03, Leg01, RVS13]. Event-Based [CRK99, CRK97a, CRK97b].

Event-Driven [For95a, For95b, RVS13]. event-handling [KBP^+03]. Events [BDN02, L207, Van97b]. Evolutionary [TAK^+00, KU17]. Evolving [MS87, MS89].

Exact [Sch17]. examines [Yam96]. Examining [Kan94, Ric91, Rod95a, Tim03]. Example [BLPV04]. Exception [DH98, Lea96]. Exceptions [ADbDR08, KR01b]. exclusion [BRE92]. exclusiveness [Lie94]. execute [APX12].

Executing [Blu95, BS99]. Execution [ABH^+01, CC18, C91, Coo02, EC98, Far96, G18P14, GS06, HMC16, HMK17, HZ12, KS16, KLG08, K19, K94, ME15, MGK^+00, MCT08, NBM03, NS97, PR05, R03, RKK15, RSBN01, STY99, VSDL16, Ann96, A^+01, BAD^+10a, BAD^+10b, GBC14, Dil93, JWTG11, LVN10, Luk01, PAB^+14, PG03, SBC91, SJ12, SGS14, SQP08a, SQP08b, SQP08c, SMQ09, SMS^+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSA08].

Executions [Cds001, HDZ13, Roh95, STR16]. Exemplar [BLCD97]. Existing [Ric99]. EXOCHI [WCC^+07]. expansion [YKL13].

Expectation [SC17]. Expectation-Maximisation [SC17].
expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96]. Experiences [BHK’04, EHG95, PST’92, SGM’97, USE92b]. Experimental [BLCD97, EGC02, YMR93b, GRS06, Pha91, WCW’04b, WCW’04c, WCW’04d, YMR93a]. Experiments [DV97, GMR98, SZM’13, VSM’16, VV00]. Explicit [DV99, VDBN98, BM07, URS02b, URS03, VU00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KVN’09, PSG06a, PSG06b, PSG06c]. Exploiting [AACK92, EUV06, FFQ04, KDM’98, KOE’06, Kwo03, MG99, NAAL01, QSaS’16, SP07, TLZ’16, TEE’96]. Exploration [PTMB09, Sch17]. Exploring [AACK98, BS10a, SE12, WWW’02]. Expressions [Hei03]. Extended [BLG01, DV99, Rot19, VDBN98]. Extending [BF08, Mar03]. Extensible [CdOS01]. Extension [RCC14, CCW’11, Lan97, PDP’13, Tem97]. Extensions [Sch90, Bat92]. external [LWV’10]. Extracting [GP95]. Extremal [MNG16].

[CWS06, PS03, PS07, Sch89]. Focus
[EH97, FPS07, Forecasting
[Ano98b]. fork [ALS10]. fork-join [ALS10].
FORM [TV10]. Formal
[Stä95, BVMO, WP10]. formation
[FSYA09]. forms [BIK+11]. FORTH
[Jon86]. FORTH-like [Jon86]. Fortran
[Ano97a, Bra97, AS14, GOT03, HBG01,
HBL02, Nag01]. forum [Sho97a, Sho97b].
Forwardflow [GW10]. foundation
[MCS15, RBF+89]. Foundations
[BA08, Gol94]. Four
[CH95, MTN+00, KNPS16]. Four-Russians
[KNPS16]. Four-Way [MTN+00]. Fourier
[TT03, TTKG02, BCS11, HN91]. fourth
USE96]. FPGA [DFC+19]. fragment
[APX12, MAF19]. fragments [LG04].
Framework
[BMF+16, BVL09, BF04, BP19, CV98,
DHR+01, EFG+03, KC98, KF97, LCS04,
LMJ14, Lee97, NSP+14, Rei01, DFC+19,
VSM+16, Yam95, ZDTM19, AM+03,
BDF98, EHSU07, GJI11, Hopp98, PV06].
France [FR95]. Francisco
[ACM95b, USE92]. Free
[DELD18, Way95, AR19, DTLM14, GP08,
MLS15, Mic04, ST05]. free-lunch
[DTLM14]. FreeBSD [Ano00b, Bal02].
freeness [AKH08]. Freescale [BGH+12].
French [Zig96]. frequent [GBP+07].
Fthreads [Nag01]. Fukuoka [Ako91]. Full
[MHW02, GB99]. Full-system [MHW02].
fully [RD99, Stu95]. Function
[Hub01, LLS12, Rót19, TO10]. Functional
[Coo95, DCK07, GSO6, Kim94, KIAT99,
LP94, SSP99, Gun97, RKBH11, TAN04,
VGR06, WZWS08, ZSJ06]. Functions
[Bed91, KI16]. Further [GV95]. Fusion
[PW+11, Hig97]. futex [BF08]. Future
[Jon90, TAM+08]. futures [TTY99].

GALAHAD [GOT03]. GAMBIT
[CBM10]. Game [DHR+01]. GAMESS
[BB00]. Garbage [AKP99, LB92, PUF+04,
PF01, QSaS+16, BBYG+05, DL93, HL93].
Garcia [Ano00c]. Gateway [Yas95].
Gating [RRK11]. Gaussian [SC17]. GbA
[LZW17]. GC [HHPV15]. Geant4
[SCD+15]. GEMM [SLJ+19]. Gene
[GBB+05]. Gene/L [GBB+05]. General
[Ber96b, BF04, HSS+14, Man98, YKL13,
ZSA13, Ber96a, Car89a, DC99, DC00,
HSD+12, MQW95, SKA01].
General-Purpose [Ber96b, HSS+14,
Man98, Ber96a, DC99, DC00, HSD+12].
generalized [ABD+12, BCM+07, FTAB14].
Generated [BD00, MJF+10]. Generating
[AZG17]. Generation [ARB+02, BVL09,
Coo95, EFN+01, EEL+97, HEMK17,
HY+15, NBS+15, RNSB96, TGBS05,
Tra91, TSV12, ABC+09, EFN+02, GJ11,
K116, LK13, LSSH12, LSSH19, Way95, CH04].
generational
[DL93, WK08a, WK08b, WK08c].
generations [Roh95]. generators [SLF14].
Generic [ABH+00, AB02, Fer13]. Genetic
[NSP+14]. genome [LHS16]. GeoFEM
[Nak03]. Geometric [Caz02]. Georgia
[ACM99a]. Germany [RM03, Wat91].
ghosts [TVB14]. Gigabit [AWH02].
Gigabit/sec [AWH02]. Gilgamesh [SZ02].
glasses [CZSB16]. Global
[HH11, PWL+11, Ten02, FLW03, LBW14,
OCT14, OA08a, OA08b, OA08c, Ano98b].
globally [CZW13]. gnn_mdiag [SC17].
gnn_full [SC17]. GNAT [dfPRGB99]. Go
[Mia90]. Going [Bak95b]. Goldilocks
[EQT07]. good [Mat03]. GPGPU
[CCWY17, LLKS12, YZ14]. GPGPUs
[LSB15, ZWL15]. GPS [TVB14]. GPU
[APX12, Bon13, DTR18, FTP11, KI17,
LWSB19, LTL+16, LHC+16, LAH+12,
WLG+14, WJA+19, WXG+14, YSS+17,
ZCO10]. GPU-Oriented [LHG+16].
GPUDet [Bon13]. GPU-Mixer [LSB19].
GPUs [CSV10, DNT16, LBH12, SKG+11,
VDO8, WJ12]. Grace [BYLN09]. gradient
[MAF19]. Grain [AZG17, CSS+01b, HG91]

Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DAK16]. Hamilton [Ric91]. Handles [Rec98]. Handling [DH98, LSB15, SK97, BM91, KCCD99, Koo93, KBF+03, Lea96, Met95]. Harbor [BBC+00]. Hardware [AGJ18, BVM19, BAZ+19, CKD94, CSS+91a, DVAE18, FNA+18, KE15, KH18b, LLS06, MWP07, MKM17, Men91, SW08, ZLJ16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB+14, PRS14, RP+05, SE12, TE94b, DWS+12]. hardware-aware [PAB+14]. Hardware/Software [MKM17, LT97]. harmful [NWT+07]. Harmony [KTK12]. Harness [Ama98, EBK01]. Hash [GK05, VB00]. Hash-join [GK05]. Hashing [SMZ18, MIA18]. having [YFF+12]. Head [Mia90]. healing [SLP+09]. Heaps [DGK+03, GFJT19, Man99, Ste01]. help [Len95]. Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here [Ano92a, Pta95c]. Hessenberg [BKK17]. Hessenberg-triangular [BKK17]. Heterogeneity [CCK+16, Kwo03, RKBH11]. Heterogeneous [AT16, AACK92, FBF01, GPB+17, KTR+04, Lu95, NTR16, THA+12, ZDTM19]. Heterogeneous [GJT+12, YJ15, KC98, CK94, BMV03, DZK12, LK13, SJ95, WCC+07]. Hierarchical [HH11, Mah11, OCRS07]. Heuristics [MGI14]. Hewlett [BLCD97]. HFS [KS97]. hiding [BR92]. Hierarchical [GJT+12, YJ15, KC98, CK94, BMV03, DZK12, LK13, SJ95, WCC+07]. Hierarchies [BCZY16, TAM+08]. Hardware [AGJM19, Aka92, FFB01, GPB+17, KTR+04, Lu95, NTR16, THA+12, ZDTM19]. high-powered [RRP06]. High-Level [Sch17]. High-Performance [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CT00, FGK79, Gar01, Hol12, HG91, IEE94b, LCK11, LG06, LM14, LBH12, LH+06, LCH+08, MR94]. High-Speed [Ano00a, Ano03, HG91, SRS98, HG92]. Higher [CJK95, NV15]. Higher-Order
highly
Hill [CY09, USE02]. Hill-climbing [CY09]. Hilton [IEE90]. HippogriFFDB [LTL+16]. Hist [Gar01]. history [Ano97b]. Hoard [BMBW00a, BMBW00b, BMBW00c]. Hoare [KI17]. HoME [OKID92]. Homogeneous [CC18, JGS+19]. Hood [Ven97]. HoPE [PBL+17]. Hot [IER99, PBL+17, Gle91]. Hot-Cacheline [PBL+17]. Hotel [Ano94d, USE02]. Householder [BKK17, VV11]. Householder-based [BKK17]. Householder-like [VV11]. Householder-based [BKK17]. Householder-like [VV11]. Houston [Cha05]. HP [Ano95a, Ano95b, Yam96]. HP-UX [Ano95a, Ano95b, Yam96]. HPC [GKK09, KOC09, PLT+15, SLT+18]. HPF [BMV03, CM98]. HTM [KGGK09]. HTMT [Gar01]. HTTP [Zha00], Hut [ZBS15]. HW [ZDTM19].HW/SW [ZDTM19]. Hybrid [BBG+10, Gao93, JYE+16, LH09, MS02, NMB93, YZ07, GKK09, HG92, LZSS19, MK12, MTC+07, SKS+92, Sha95b, kSYHX+11]. Hybridizing [CZS+17]. Hyperion [A+01]. Hyperobjects [LS18]. hyperscalar [Raj93, Sha95a]. Hyperthreading [HRH08, KM03]. I-WAY [FGT96]. i.e [USE98b]. I/O [RM03, Ano95a, Ano95b, ABB+15, BDN02, KSL94, LTL+16, Man98, MG15, Yoo96a]. IBM [ABB+15, CJB+15, KST04, LSF+07, WZWS08]. Id [Nik94]. IDA* [Mah11]. Ideas [JLA16], ideomptency [KOE+06]. identical [LSW+18], identification [JMP12]. Identifying [BCZY16, SU96, DESE13]. IEEE [ACM98d]. IFIP [BT01]. Igniting [ACM03]. II [HCD+94, IIE89, JJJ91, KA97, KR01a, McM96b, Wal95]. III [Ano00a, USE92b]. Illinois [GHG+98]. Illinois [GHG+98]. Illuminating [BLPV04]. ILP [OCR070, RLJ+09]. Image [WN10, BCQ14, Kep03, RKHT17]. Impact [KLH08, SCL05, TE94a, ZAK01, Div95, Met95, RGG+12, RPNT05]. Impaired [Wei97]. imperative [SV98]. implement [DBRD091]. implementable [TEE+96]. Implementation [ACM94a, ACM99a, Alk94, AB01, AKP99, BBD+91, BHR+03, BRM03, CWHB03, DSH+10, FLR98, HA97b, KA97, MS02, Nik94, STW93, TKA+02, TMA03, BK96, BB90, BMV03, CMX10, DL93, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, L05, LZ07, LAM+12, NFBB17, OKID92, Stu95, Tod95, YZYV107, Ano95a, Ano95b]. Implementations [Han97, SAC+98, Ram94, SKG+11, Sha95b]. implemented [Boe05, KEL+03]. Implementing [ABH+00, AB02, BP05, CB89, CB90, Day92a, Day92b, DPZ97, GMB93, GSC96, HPA+15, KRB01b, KBA08, KIAT99, Pra95a, TY97, TAO4, BHK+04, Lie94]. Implications [RM03, BS96, VSM+08, CSM+05]. Implicit [BAM93, MS02]. Implicitly [ACMA97, PFV03, SAC+98, RB18]. Implicitly-multithreaded [PV03]. Improve [GV95, KH18b, QSA+16, RKK15, Sin99]. Improved [BR92, GMGZP14, LSL06, Smi06]. Improving [AJK+12, BDN02, CCWY17, DKG18, FT96, FM92, FBF01, GA09, IBST01, LYH+16, MA99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10]. In-Memory [BAZ+19]. In-Order [RRK11]. In-place [SGLGL+14, SCM05]. in-situ [LSW+18, RGK99]. IN-Tune [RGK99]. includes [SJ95], incomplete [HR16], incompressible [RM99]. Incorrectly [SCL05]. Increasing [DEL18, PHCR09]. Incremental [BFA+15, Caz02, Lar95, LB92, BBYG+05]. Independent [DS09, EW96, FSS06, USE93a, KNPS16, MEG94, PG03, WZSK19].
Independently [ALSJ09], indexing [MIGA18, MLS15], induced [MTPT12], inducing [CW02].

Industry-Standard [DM98], inference [FFLQ08], inflation [OdSSP12], InfoDock [Ano97a].

Informix [Ger95]. Initial [BTE98]. Inline [GH03, DJLP10, EKKL90].

Informatic [IEE02]. Instruction [DV99, HMNN91, LEL+97a, LEL+97b, MCFT99, RYSN04, RS08, AMC+03, Aru92, Cho92, HKN+92, HMM+92, KBF+12, Mis96, OA08a, OA08b, OA08c, PYP+10, Raj93, SD13, SMS+03, TEE+96, VS11b, VDBN98, VV00].

Instruction-Level [LEL+97a, LEL+97b, MCFT99, SD13].

Instruction-systolic [PPA+13].

Instructions [BFA+15].

Instruction-Level [DG98].

Instructional [Kuc91].

Integrating [Cal00, CM98, DNR00, DTLW16, FKT96, TTC99, Tsa97b].

Integrating [CCW+11, MTS10, RD99].

Integration [CCW+11, MTS10, RD99].

Integration [BHG01, HTDL18, KKD03, MS89, Met95, PS01, SW97, Ada98, DLM99, HG02, Lio05, MQ95, MS87, MEG94, TNB+07, TGT96].

Intercalate [Han97, HF96, LG04].

Interleaving [LGH94, YN09].

Intermediate [McC97], Internals [MM01, Wea08].

Interprocedural [NR06].

Interprocess [RK94].

Interprocess [KE95]. interval [Kub15].

Intra [MKR10].

Intra-application [MKR10].

Introduction [CRS+09, Dra96, GGB93a, GJ97, Mas99, Bir99, GC92, Hay93, She98].

Intrusive [Caz02].

INVX [DNR00].

Invasive [RGK99].

Inverse [HMLB16, GEM07].

Inverses [GE08].

Invocation [SKK+97].

IPC [EE14, Koo93].

IPs [Sch17].

iReplayer [LSW+18].

IRREGULAR [FR95, TSV12, ZAK01, TP18]. irregularly [FR95].

ISA [KTR+01, MNU+15].

ISCOPe [ACM01].

Isolating [CZ02, JTWG11].

Isolation [CMX10, MTC+07, SKBY07].

Isomigration [ABN00].

ISSAC [ACM94, Lak96, Wat91].

Issue [KU00, RYSN04, Ano94c, GGB93b, TEE+96].

Issues [GMB93, PS01, ARvW03, Ann96, GC92, HCD+94, IAD+94, TCG95].

Issuing [HMNN91, HKN+92, HMM+92].

Itanium [MB05, WCW+04b, WCW+04c, WCW+04d].

Itanium-2 [WCW+04b, WCW+04c, WCW+04d].

Iterations [UZU00].

Iterative [MQ07, NA+03, AAC+15].

iThreads [BFA+15].

IUnknown [SW97].

Ivan [Ano00c].

IXP [ARB+02, LCH+08].
SMK10. Latencies [Sch17, BS06]. Latency [BD00, BAZ+19, Fan93, ÖCS01, SW08, Sni01, SKK+01, WWW+02, YLLS16, ASSS19, BR92, DC99, DCO0, Jef94, Luk01, MVY05, PG01, TK98]. Latency-directed [Fan93]. Latency-Resistant [YLLS16]. latency-sensitive [ASSS19, DC99, DCO0]. Latency-Tolerant [OCS01]. latency-aware [SKG+11]. Law [Gar01, NZ17, CN14]. Layer [SHK15, CDD+10]. layers [GSK+18]. lattice [SKK+01]. Law [Gar01, NZ17, CN14]. Layer [SHK15, CDD+10]. layers [GSK+18]. layout [DZKS12, HB15]. Lazy [GSC96, Gol97, LP94]. LCMT [LKBK11]. leadfoot [HHPV15]. Leakage [Mus09, SYHL14]. Leakage-saving [Mus09]. leaks [ZJS+11]. Learned [HPA+15]. Learning [CYYL18, DS16, ROA14, PWWD18]. least [FTAB14]. least-squares [FTAB14]. lecture [Egg10]. Lenient [SCv91a, Sch91, SCv91b]. Lepp [RRMJ12]. Lepp-bisection [RRMJ12]. Lessons [RM03, HPA+15]. Letters [DHR+01, TLA+02]. letting [AC09]. Level [ABLL92, BBC+00, FURM00c, GP95, HDTL18, JYE+16, JLS99, DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, MG14, PLT+15, RR93, Rie99, Sch17, SLT03, YBL16, BBH+17, CCC12, DG99, EE90a, FURM00a, FURM00b, GMW09, GPS14, GRR06, HD+13, JE04, KDM+98, KVN+09, KCO9, Lan97, LZ07, MSLM91, MTOa2, MT02b, MT02c, MQW95, MCFT99, OT95, OCRS07, PO03, PT03, QQOQV+09, STY99, SD13, SLT02, SCZM00, Tem97, WS08, YZYL07, YZ14, ZJS+11]. Level-2 [Ric99]. Leveraging [PRS14]. LFTTHREADS [GP08]. Libraries [Ano00c, BCR01, GF00, Jon91, MLGW18, MM14, ARV-W03, CBM10]. Library [Ano98b, ABN00, BFA+15, CGR92, EH95, G6b94, GHG+98, Kem02, Man91, Rö19, WN10, Yas95, Ad98, Boc05, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. life [KU17]. light [Way95, LZTZ15]. light-weight [Way95]. Lightweight [AGN09, Col90b, DON2, Est93, Fin95, Hai97b, SLJ+18, CASA14, Hai97a, LVN10, MMN09, MEG94, VACG09, WSKS97, LKBK11]. like [DJLP10, Jon86, VV11, Kor89]. limit [ROA14]. limitations [Gal94, HL08]. limited [Bri89]. Limits [LB95, LB96b, AAK08]. Line [Ano00c, FSPD16, FdL02]. Linear [KLDB09, Loe97, MR90, AAC+15, Bak95a, MM07, YSY+09]. Link [Ano00b]. Linked [WJ12]. links [WW96]. LinkScan [Ano00b]. LINQits [CDL13]. List [Kor89]. Lint-like [Kor89]. Linux [Ano97a, Ano00b, Ano00c, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, Rö19, WN10, Yas95, Ad98, Boc05, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. Linux/AXP [Ano97a]. Linux/FreeBSD [Ano00b]. Linz [Hon94]. liquid [KRB12]. Lisp [Nor90]. List [DV99, WJ12, VV00]. LiteRace [MMN09]. little [CDL13]. liveliness [GMR09]. LLCs [PBL+17]. Load [HBTG98, HR10, KMAA01, KC98, KRH98, PGB16, VPQ12, Chr95a, Chr95b, Chr96, MK1004, TKHG04]. load-adaptive [TKHG04]. Load-Balancing [KC98, PGB16, Chr96]. Load-Load [HR10]. Loadable [ZSA13]. Loading [PCM16]. Local [DGK+03, EIE95, WHM03, HZD13, ZLW+16]. localities [CS95a, CS95b]. Locality [BS96, CCWY17, PEA+96, Wei98b, HWW93, KL13, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a, KKT+18]. Location-Independent [USE93a]. Lock [ALB+18, EFMJ07, MNU+15, NM10, PGB14, AR19, CS12, GP08, ML15, MCRS10, Mc04, ST05, TMCP10, ZLW+16]. lock-free [AR19, GP08, ML15, Mic04, ST05]. Lock_manager [Hol98b]. Locking [Bal02, LDT+16, AFF06, Lie94, MMT10, RD06, ZLW+16]. Locks
Mechanising [Loc18]. Mechanism [FD95, GCC15, PWW18, WHJ+95].
Mechanisms [KPC96, KCG99, TKV+13, Loo05, Men91, PT03]. Media [Ano03, Van97a]. medium [CDD+10].
Meeting [DLM99]. meets [Tam95]. Member [BS99]. Memories [HKSL96, KHP+95]. Memory [ALSJ09, AKH+95, BS96, BMBW00a, BMBW00b, BMBW00c, BLM06, BDLM07, BA08, BB00, Boo93, BAM07, CMF+10, Cha05, Cho93, CNV+06, DLZ+13, DLOC09, DPZ97, EKLL90, GL98a, GS00, GKK99, HB92, HWW93, HG92, HHPV15, ISS98, KFG15, Luk01, MCRS10, MS11, MLC04, MMTW10, MS11, Mic04, MTC+07, MVY05, NPC06, NAAL01, OCT14, SLT02].
Meta [FKS+12]. meta-scheduler [FKS+12].
Message-handling [Met95]. message-passing [BCM+07, FM92].
messages [Koo93, SD95, WHJ+95]. meta [FKS+12]. meta-scheduler [FKS+12].
Metering [LMA+16]. Method [CYYL18, LPK16, LGH+16, MAF19, SKG+11].
Methodology [Sri95]. Methods [CMK00, FGKT97]. Metrics [EE14, VS11a].
Metro [Ano00b]. Metro-X [Ano00b].
Mexico [Ano94c, Go94]. MFC [Oni97]. MICE [BK96]. Michael [Yam96].
Michigan [Ano94d]. Micro [Mat97].
Microarchitectural [FM9+15, LS11, WHG07].
Microarchitecture [KM03, AMP09, LF+07, Wil98].
Microarray [GAC14]. microbenchmark [BO01].
Microbenchmarking [FM9+15].
Microcontroller [BP05, PUF+04, KBP+03]. microkernel [BO96].
Microprocessor [KE15, SU96, Aru92, CJB+15, Gul95].
Microprocessors [KET06b, CGL09, CGL10, DL07, RCG+10]. microthreading [CSK+99]. microthreads [CTYP02].
Middleware [RBPM00, KBH+03].
Minimal [BM94, CS+019, Liu97, TY97, CSS+91]. Minimizing [SPDLK+17]. Mining [OB13, GP+07].
Mining-Based [OB13]. Minneapolis [IEE92, IEE95]. Minnesota [IEE92, IEE95].
MIPS [Ar92, Swe07]. miss [SLP08].
migrate [ASSS19]. Mitigating [EPAG16, ODSSP12]. Mitigation [PHBC18].
Mitosis [MGQS+08]. Mixed [XIC12]. mixture [SC17].ML.
Mobile [BCL+98, DL93, MT93]. Mobility [BCDF98, USE93a, APX12].
Mobile [CWHB03, BHK+04, SJ95]. mode [AR19, FRL18]. mode-directed [AR19].
Model [AHK08, ACMA97, CC18, Chl15b, CSV10, CBN+00, DTLW16, DiH00, ES97, FG91, Gao93, Loc18, MSM+16, ND16, SAC+98, Sto02, TESK06, VK99, WC99, ABG+08, BA08, BMV03, CNQ13, Car89a, CYZ98, Chr95a, Chr95b, Chr96, DLZ+13, Dil93, DSH+10, DC07, GKI2, JFS+08, JD08, LZW+13, MSM+10, MQ08, PAdS+17, PG03, RSB+09, Sl05, TMAG03].

Model-Checking [ES97, Sto02].

Model-driven [CSV10, RSB+09].

Modeling [KMjC02, KE15, PPG11, Rot19, TAM+08, WJA+19, AMC+03, CIM+17, DKF94, EE10, EE12, MA96, SBC91, Squ94, TR14].

Models [CMK00, CH95, Den94, HY+15, KZC15, Km14, KW17, LB17, ST98, VT96, BAM07, But14, Cho93, Cor00, Gil94, SC17, TVD10, VDNB98, XC12, ZKW15].

Modern [FC+19, GK05, GBP+07, HL07, NKLJ16, ZJS10].

Modular [Chl15a, FQS02, FFQS05, JBK18, Kuc92, NT14, SQ+13, FK12, GBCS07, MJF+10, ZJS06].

Modularity [LK15].

Module [ALSJ09, ZSA13].

Module [LQ15].

Molecular [LNI+19, MAF19].

Monad [FKS+12].

Monadic [LQ15].

Monitoring [BBFW02, BBFW03, DJLP10, MC06, NFBB17, VGK+10a, VGK+10b].

Monitors [Bec01, S99, KPPF06].

Monsoon [NCA93].

Montecito [MB05].

Monterey [USE91a, Ass96, USE96, USE01].

Mosaic [An94d].

Most [PLT+15].

Moving [At96, Sm97].

MP [Pea92, TTY99].

MPD [PH91].

MPEG [BC00].

MPI [PS01, Vre04, Ada98, ALW+15, ALB+18, BBG+10, BK96, BBC+00, BRM03, CRE99, DSG17, HD02, DLM99, GCC99, IE96, MS02, Pla02, SCB15, STY99, SPH96, TSY99, TSY00, TG09].

MPI-based [Ada98].

MPI-OpenMP [MS02].

MPSoc [GPB+17].

MrBayes [LHG+16].

MS [Wl94a, Wl94b].

MSFV [HHOM91, HHOM92].

MSparc [MN00, MD96].

MT [EC98, TJY+11].

MT-BTRIMER [TJY+11].

MTA [Mat97, Sl01].

MTAC [For97].

MTB [AGJ18].

MTB-Fetch [AGJ18].

Mth [MKM17].

MTraceCheck [LB17].

MTS [Gal94].

MUCH [WLM15].

MultEIP [WM03].

Multi [Ada98, AMRR98, AACK92, AGK96, AR19, ABN00, BC98, Bed91, BBH+17, BC00, BGK94a, BGK94b, BGK96, CV98, CL95, CKRW99, CWWB03, Cdo01, CCC12, CCK+16, CC18, CvdBC18, c91, Chr01, Cor02, Co95, CNZS17, DV99, DS16, DTLW16, EBK01, FMY+15, FD96, Fd02, FJ08, GVT+17, GK94, Gil93, GS06, GH98, HC17, HG91, IIS01, JY15, Jon91, JLS99, KN95, KW17, KRM98, Kuc92, KTR+04, LK15, LB92, Leg01, LKBK11, MLGW18, MNU+15, Mas99, MTN+00, Mc07, Mc07b, MS15, MP13, MG15, MCF99, MGK+00, N00, OR12, PCPS15, PTMB90, PW18, PKB+91, PM14, PRL90, PGB16, RR93, RCC14, RBPM00, RKCW98, RV04, RS08, SV00a, ST93, Sch90, SKG+11, SMZ18, Sei98, Sei99, Sl02, Sl01, SBK09, TG09, Tan87, Tra91, TLGM17].

Multi [VSDK09, VS11a, VB00, VCM19, VK99, Wal00, YLLS16, AB+12, ASS91, BWDZ15, Bak95a, BK13, BM07, BKH+11, DSEE13, CNQ13, CIM+17, CFG+12, CASA14, CRK97a, CRK97b, CSB00, CY98, CL00, CSM+05, DWY10, Don92, EFG+03, EH07, FTAB14, FWL03, FGG14, GCR04, GCC15, GPR11, HLDG19, KHP+95, KDM+98, KHH04, Kep03, Kue91, KBF+12, Lam97, LB+06a, LB+06b, LB+06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mus09, NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, RV+10, RKM+10, RKM+10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Sl02, SQP08a, SQP08b, SQP08c, SMQ09, ST05, Tem97, TCG95].
TMAG03, TJY+11, VIA+05, VDBN98, VV00, VPQ12, WCC+07, WCV+98, YZ07, Yan97, YSY+09, YN09, kSYHX+11, YKL13, ZKR+11, dB09, vPG03, Ano97b, CH04, Multi [Mix94], Multi- [FMV+15].
multi-ALU [KDM+98], Multi-C [Mix94].
multi-context [Yan97].

Multi-Core [CC18, CvdBC18, FJ08, IXS18, KTR+04, MNU+15, PM14, CFG+12, CSM+05, DWYB10, KBF+12, MLC+09, Mus09, SMQP09, WCC+07, YZ07]. Multi-Cores [CCK+16]. Multi-CPU [PGB16].

Multi-dimensional [AR19], multi-engine [CNQ13]. Multi-Level [RR93, CCC12].

Multi-Level-Context [JLS99]. multi-process [WCV+98].

Multi-Processing [MLGW18]. Multi-Processor [SV19, VIA+05, YN09].

Multi-protocol [ABN00]. Multi-Tasking [CvdBC18].

Multi-threaded [MLCW11, MS03, MKK99, NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam99, SC17, SE12, SJ98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, Ten97, TMAG03, TJY+11, VV00, YSY+09, ZKR+11, dB09, vPG03, Ano97b].

Multi-Threading [CvdBC18, CNZS17, LKBK11, MLGW18, McC97a, McC97b, MS15, MP13, OR12, PTMB09, RCC14, Sch90, SMZ18, TG099, YL016, DTLW16, MCF99, NJ00, RVR04, Bak95a, BM07, FWL03, LZW+13, MLC+09, VDBN98, kSYHX+11, YKL13, CH04].

multiaagent [Bar09]. Multicomputer [FKD+97]. multicomputers [BCG+95].

Multicore [ALSJ09, ABLM19, BCZY16, CCH11, CB16, DVAE18, GJ11, HEMK17, KLDB09, LS11, LMA+16, LYH16, LDT+16, MR09, NBMM12, PGB16, RCM+16, RRK11, SLJ+18, SHK15, SM+10, THA+12, ZBS15, CNQ13, CN14, CMX10, KL13, LLLC15, NZ17, RCG+10, RKBH11, SCCP13, SE12, ZSB+12].

Multicore/Multithreaded [RCM+16].

Multicores [FSPD16, FSPD17, RKK15, DTK+15, GARH14, SSN10]. Multifrontal [ABLM19, But13, Dav11].

Multigrain [AZG17]. multigrid [RM99]. Multilevel [PPG11, Cat94, JY+03, CK15].

Multimedia [Spe94, Est93, Gol96].

multimethod [FGT96]. Multiple [CB16, FGKT97, HW92, HKT93, NTR16, OR12, CS95a, CS95b, FD95, HKN+92, LT97, TE94b, TFG10, TAN04, WCT98].

multiple-context [FD95]. multiplication [DTR18], multiply [CV10].

Multiprocessing [EKB+92, Len95, NV94, Wal95, DLCO09, MT93, Pra95b, RGK99].

Multiprocessor [AACK92, AKP99, BC00, Cat94, EH95, GHG+98, HH91, KMA01, MCT08, Pre09, PPG11, SZ92, SEP96, USE92b, WC99, Zub02, Cho93, DCKL90, HBF92, KT99, LVO10, LWV+10, PJZA07, Ano94b].
MultiProcessors
[BMV03, AGJ18, BS96, BL96, BG10, CH95, GMR98, KU00, KKS’08, LS07, LMJ14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA09, HT14, LGGH, Mao96, Men91, MWA’06, QSQ14, SM10, Sha88, SKKC99, TAS07, Yoo96b, YMR93a].

Multithread [BVP’19, LCS04, RMRJ12, SYHL14, CS95a, CS95b, DSH’10, GCC99, JD08, SWY94, ZG98, Zip96].

multithread-safe [GCC99].

Multithreaded
[AddS03, ÁdBdRS08, ABC’93, AT16, AMA98, ALB’18, Ano92a, ANO92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, ABH’00, ABH’01, AB10, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, BAl1, BBFW02, BCR01, BBH’11, BLO9, BIK06, BMBW06, BF04, BKJ’96, BL98, BBO0, BMN99, BDN02, BLP05, BLG10, BTE98, BNP01, BD06, BGDH’12, BBGS11, CCI14, CJW’15, CS02, CGK06, CC04, CHI15a, CH95, Chr95a, Chr95b, CHR96, CTO0, CW98, CBN’00, CMBA98, Dan09, DRN0, DVAE18, DH98, DRV02, DTR18, DO95, EFN’01, EFN’02, EJRB13, EHP’07, EC98, EGP14, FSS06, FT96, FS96, FTP11, FNA’18, FSQ02, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA’15, HMLB16, HTZ’97, HMNN91, HHH91, HHH92, HLBB94, HH11, HWZ00, HPPB11, HY’15, Hug96, HMT’96].

Multithreaded
[I’94, JBK18, JYE’16, JSB’12, KA97, KKW14, KMAG01, KST04, KML04, KC98, KC99, KMMJ02, KR12, KU00, KE15, KG94, Kim14, KU17, KAO05, KOS99, KTR’04, LS07, LG06, LH09, LG04, LB96a, LB98, LB00, LLS06, LVH12, LTMS17, LYH16, LPE’99, Loc18, Loc97, Lun97, Lun99, MGQS’08, MP01, MS89, MB99, MD96, MAF19, Moe95, Moe96, MR09, NA90, NPT98, NGGA94, NTK99, Nik94, OB13, OTY00, PBD90, PFU’04, PG92, PG96, PG99, PF01, PHK91, PWL11, PS01, QOM’12, RCM’16, RW97, RCC12, REL00a, RIN1, RB18, RNSB96, RSBN01, RKK11, RBA05, RR99, SPDLK’17, SRS98, SR14, SBH’97, SCD’15, SCL05, SAC’98, Sh98, SU96, SU01, SZM’13, SGM’97, SMDS’10, SRO1b, SSGC97, SSK’01, Spe94, SR95, SZ02, SUF’12, Sut99, TG99, Ten02, TKA’01, TCI98].

Multithreaded
[TT03, TTG02, TGBS05, TL1’17, TL2’18, TJ98, TVS12, URS02a, VTC12, VO93, VEO93, W94, WS08, Wea98, W91, WLM15, WG94, WC99, YS95, YWJ03, Yoo96a, YM93, ZA13, Zha99, ZJ12, ZBS15, ZP11, ZAK01, Zou02, ÁdBdRS05, ACB’18, Aoa89, Aoa91, Aoa92, ABF’10, ABC’15, AAC’15, ACC’03, AGEB08, An96, ANO95a, ANO95b, A’01, ABC’09, AR17, AR19, ARU92, BGDM912, BBFW03, BRRS10, BGZ97, BCS00, BDA’10a, BAD’10b, BCG13, BGC14, BMBW00a, BMBW00c, BYL09, Blu92, BL93, BLO9, BK95, Blu95, BL99, BS10a, BCG14, BEKK00, BP05, BS10b, BNS11a, BNS11b, BNS12, CWMC13, CS00, CSM03, Car89b, CB89, CB90, ÇFG’12, Cat94, CL94, CN14, CS12, CDL’10, CLL’02, Cho93, Cho92, CGL92a, CGL92b, CJB’15, DJLP10, DSG17, DAV11, DL93, DKF94].

multithreaded
[EJK’96, Eic97, EJ11, EST93, EVR91, FAB93, Far96, Fer13, FFQ05, FF08, FFY08, FRL18, FJ97, GMW09, Gal94, GLJ11, GGB93a, GK10, GPS14, GL98b, GL98a, Goo96, GRS96, GR06, GA09, GLC99, HMC97, HFV’12, HF88, HLBB90, Hig97,
Multithreading-based [GE08]. must [NA07]. mutable [HL93]. Mutex [Hol98b].

Multithreading [BRE92]. Mysteries [Hol99b].

name [ORH93]. Nanophotonic [VSM+08].

Network [ACM98a, RM03, ARB+02, Chl15a, Don02, GRS97, HH11, KML04, KRH98, LZS+08, NGGA94, YG10, ZP04, PH97].

Network-Facing [KML04]. Network-I
Network-I/O [RM03].
Network-on-Chip [LZS+08].
Networking [CT00, FGKT97].
Networks [IEE95, KLH97, Lu98, RR93, PWWD18, SMK10].
Neumann [HG92].
network [PWWD18].
Neurons [LTM+17].
newly [Ano95a, Ano95b].
NewOS [TLA+02, Gei01].
Newport [USE92b].
News [Bra97, Gar01, Mat97, McM97].
Newton [CYYL18].
Next [ARB+02, EEL+97, TSV12, CH04].
Next-Generation [EEL+97, TSV12, CH04].
Nexus [FTK96].
NFV [GDSA+17].
Niagara [KA05].
NLM [Day92a, Day92b].
NLM-Based [Day92a, Day92b].
NoC [YL16].
node [TK98].
Nodes [EHG95].
nodes [GA09].
Non [Caz02, Coo95, JLS99, KIAT99, LB17, SGM+97, SKG+11].
non-blocking [Ann96].
Non-Deterministic [LB17].
Non-Intrusive [Caz02].
non-invasive [RGK99].
Non-numeric [SGM+97].
Non-preemptive [JLS99].
Non-Strict [Coo95, Tra91, KIAT99, SG95].
non-uniform [SKG+11].
Nonblocking [HH11].
nondestructive [AD08].
nondeterminism [HBCG13].
Nondeterministic [DSAD+18, LPS07].
Noninterference [BC02, Smi06].
noninterruptible [AAHF99].
Nonlinear [Nak03, GOT03, Kub15].
nonoperational [GS00].
nonuniformity [WA08].
norm [Ano92a].
Note [APK99, Lie94].
NOTES [Gil98].
notification [BF08].
Notifiers [Pom98].
Notre [IEE96].
Novel [HG91, GKK90].
November [ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a].
NOWs [SLGZ99].
NP [YZ14].
NPB [EGC02].
NT [Ano95b, Hig97, PG96, Pra95c, Pra95b, TCI98, USE98a, Wil94a, Wil94b, Yam96].
NT-Style [Wil94a, Wil94b].
NUMA [LMC14, ZLW+16].
NUMA-aware [ZLW+16].
numeric [LSS12, SLF14].
Numerical [MR09].
Numerics [Ano97a].
NY [SS96].

O
[RM03, Ano95a, Ano95b, ABB+15, BDN02, KUSU94, LTL+16, Man98, MG15, Yoo96a].
Object [Ano99, BBD+91, BC94, GK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ad98, Car99a, CYZ98, CLL+02, FWL03, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yan02, dBo9, vPG03].
Object-Oriented [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ad98, Car99a, CYZ98, CLL+02, FL90, JPS+08, Wei98a, Yan02, dB09, vPG03].
Objects [ACR01, CJK95, CR02, Low00, Pra95a, Ric99, Ten02, Yas95, Bak95a, Bri89, DMBM16].
objet [Swi09].
Oblivious [UALK17, HL08, HZ12].
Observer [Hol99b].
occurance [PAB+14].
Ocean [SAC+98].
OCTET [BKC+13].
October [ACM94d, Ano94d, BT01, IEE95].
ODBC [Ano00b, Hig97].
ODBC-compliant [Hig97].
ODBC-ODBC [Ano00b].
ODE [Bra97].
Off [MH95, AAC+15, DTK+15].
off-chip [DTK+15].
off-the-Shelf [MH95].
offs [Par91].
Old [Wil00].
On-Chip [LKBK11, ZM07, SMK10, TEL95, TEL98a, TEL98b].
On-Line [Ano00c, FSPD16, FdL02].
On-the-fly [Sch89, CWS06, PS03, PS07].
one [Bak95a].
one [QSH16].
one-sided [QSH16].
Online [Ger95, OTY00, RCC14, Sci98, Sei99, SRA06, TGO99, HF96, LW7+10, RS07, VGK+10a, VGK+10b].
only [Dil00, MJF+10, NM10, ZJFA09].
onto [LBvH06a, LBvH06b, LBvH06c].
Open [Ano00c, BMF+16, Ha97b, KR01a, KR01b, RBF+89].
Open-Source [Ano00c].
OpenGL [Röt19].
OpenGL- [Röt19].
OpenMP
[Cha05, ARvW03, BHP+03, BBC+00, Bra97, BMV03, BO01, CRE99, CDK+01, CM98, DM98, HD02, EV01, JJJ+03, KKH03, Lu98, MS02, Mar03, ML04, MPD04, Mat03, MG15, MII03, NAAL01, RBAA05, SLGZ99, Thr99, TGBS05, Vre04, RM99].

OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPiton [BMF+16].

OpenSPARC [Wea08]. Operand [SP07].

Operating [ACM94d, CLFL94, TLA+02, Gei01, IEE89, IEE94a, MS87, REL96b, SEP96, Ano92a, Ano92b, ASS99, BDM98, DBRD91, IEE94d, Jef94, Jen95, IVN90, LA09, Phy89, RBF+89, REL00a, REL00c, She98, Way95].

operation [DKG18, RHI0]. Operational [CKR99, CKR97a, CKR97b].

Operations [KKV+88, KLD05, SCH05, HMC95, RD06].

Opportunistic [YL16]. Opportunities [GJ97, HL08, Mus09]. OPR [QSH16].

Optimal [AT16, GPB+17, Lar95, RCM+12, Lep95, LML00]. Optimistic [WHJ+95, CZB16, DKG18, VPQ12].

Optimization [BLG01, CvdBC18, GN96, RNSB96, SYHL14, TJJ98, TLGM17, WJ12, AM+03, AMPH09, DZK12, G03, Koo03, RKW98, Sin99, TO10, ZCSM02a, ZCSM02b].

Optimizations [HYY+15, JSB+12, KEK06a, LEL+99, Sut99, ZM07, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95]. Optimized [Sin97].

Optimizing [DTK+15, KZTK15, PR98, PSCS01, WCZ+07, G02].

Orange [ACM94d].

Orchestration [GVT+17]. Order [CJK95, Helly19, RRK11, NV15, SJA12, SW16, ZKW15].

Ordering [DEL18, HR10]. Ordering-Free [DEL18].

Oregon [ACM94b, ACM99b, IEE93]. Organization [HG91, HG92]. organizing [LAK09].

Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+16, NPT98, SG96, Ada98, Car89a, CYZ98, CLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei98a, WP10, Yan02, dBO9, vPG03].

Orlando [ACM94a, ACM98d]. OS/2 [DN94, Kan94, Kel94a, Kel94b, Re95, Re95, Rod94].

oscillations [BD06]. OSF [BM91]. OSF/1 [BM91]. Other [SPY+93, MMTW10].

Ottawa [BT01]. Out-of-Core [QOM+12, ABC+15]. out-of-order [SJA12, SW16]. output [MP89].

Outstanding [LSB15]. Overall [SEP96].

Overcome [SW08]. overflow [KOE+06].

Overhead [DSR15, RRP06, YL16, ZHCB15].

Overheads [SHK15]. Overlay [DFC+19]. overview [Li05]. Own [BS99, Sho97a, Sho97b]. Oxford [ACM94c].

P [Ano90b, Nik94, PR05]. P-RISC [Nik94].

P-STAT [Ano90b]. P-Thread [PR05].

Pacific [IE98]. Pacifier [QSG14].

Package [Ano94c, FL90, ACM94]. packages [G0T03, OT95, PL03].

Packaging [RR93].

Packard [BLCD97]. Packet [AHW02, LCH+08, MVY05, WCZ+07].

page [CNV+06]. page-based [CNV+06].

PageRank [KG07]. Pages [JLA16].

Paging [FD96, FDLO2, SE98, SE99].

Pagoda [YSS+17].

PaiLisp [KI95]. pain [Gus05].

Pajé [CDS01, CSM00].

Palo [ACM01].

panel [Ano94c, Bak95b, HCD+94, IAD+94].

Paper [ABH+01, TKA+01].

papers [ACM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05]. par-monad [FKS+12].

ParADE [KKH03]. Paradigm [EW96, JD08, LR15, PPA+13, BCG+95].

Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ana89, ABN00, ACM97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CSZ+17, CL95, CDK+01, CBN+00, D16, Den94, E93, FHM95a, Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JY15, KTLK13, KI95].
KEL+03, Kon00, KKV03, Kwo03, Lea95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSa+16, Sch17, SCv91a, SAC+98, SRI98, WC99, YFF+12, AR\textit{v}W03, ALS10, BBY+05, BCM+07, BAD+09, BB00, Boo93, BE12, BKG94c, CAR08, CFK+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DES+13, EV01, FHM95b, FD95, Fu97, GC92, Gol97, GKK09, GEG07, GE08, GB99, HMC97, HF88, Hop98, HWW93, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, Lu94, MT02a, MT02b, MT02c, MR98, Mi96].

\textbf{Parallel [N]00, NPA92, OD\textit{sSP}12, RÇ+10, RHH10, SBCV90, Sch91, SCv91b, Sha98, SWY94, ST98, SGS14, Taf13, TCG95, VPQ12, VGK+10a, VGK+10b, WZSK19, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, FR95, Vre04, WN10].\textbf{Parallel-Multithreaded [W]99].

\textbf{Parallelism [AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKN15, FURM00c, GV+17, GP05, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCFT99, NB99, RBAA05, SSP99, SMD+10, SG96, Thr99, WSO8, YBL16, Yoo96b, ALHH08, AKSD16, CSS+91a, CSS+91c, EE09a, FN17, FURM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KV+99, KCO9, LAH+12, QQQQ+09, SLG299, SD13, TEL95, TEL98a, TEL98b, VDBN98, VVO01, Wei98a, XSaJ08, YZ14, Zig96]. \textbf{parallelism-aware [LA]9+12}.\textbf{ parallelisme [Zi]96].

\textbf{Parallelization [CRE99, DSAD+18, KC09, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JYY+03, MAJ9, PO03, RKM+10a, RKM+10b, RRMJ12, TFG10]. \textbf{parallelized [C]91].

\textbf{Paralog [BM91, WDC+13, KBF+12]. \textbf{Paralog [VGK+10a, VGK+10b]. \textbf{Parameterized [BCR01, FK12]. \textbf{Parametric [Ano98b, FRT95]. \textbf{Paravirtualization [YSY+09]. \textbf{PARC [Ong97]. \textbf{Pareto [GPB+17]. \textbf{Pareto-Optimal [GPB+17].

\textbf{Parsing [BC00, Lar95, PCM16]. \textbf{Part [Ano92a, Ano92b, KR01a, McM98b, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, McM96b, McM98a]. \textbf{Partial [Loc97, RRP06, SP00b, Shi00, ZKW15, HLG19]. \textbf{partition [LZW17]. \textbf{Partitioning [AMRR98, Coo95, D'H92, EW96, SLJ+19, TG99, DCK07, LZZ+14, MKR10, SCG95, WW96]. \textbf{Partitioning-Independent [EW96].

\textbf{Pascal [Hay93]. \textbf{PASCAL [Hon94]. \textbf{Passing [BWX05, TLA+02, FGT96, KKV03, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14]. \textbf{Path [BLG01, TAK+00, CTYP02, WCT98].}

\textbf{pathfinder [KPP12]. \textbf{Paths [OTY00, Ano95a, Ano95b]. \textbf{Pattern [Ano97b, EGP14, OR12, EG11, GBP+07, SCM05]. \textbf{Pattern-Based [EGP14, EG11]. \textbf{Pattern-recognition [Ano97b]. \textbf{Patterns [DS16, LPK16]. \textbf{PC [Mia90, CKF+91]. \textbf{PCM [AKSD16]. \textbf{PCM-based [AKSD16]. \textbf{PCs [CRE99, NV94]. \textbf{PDE [Chr95a, Chr95b, Chr96, JD08]. \textbf{PDES [LTM+17]. \textbf{pedagogical [CMS03].

\textbf{PegaSoft [Ano00b]. \textbf{Pennsylvania [AC96]. \textbf{Pentium [RGK99]. \textbf{peptides [MIGA18]. \textbf{Per-node [TK98]. \textbf{Per-Thread [Cha02, EE99]. \textbf{Perf [FSPD17]. \textbf{Performance [AC98a, AC98d, ACM00, Aga89, Aga91, Aga92, ABLM19, BS96, BL96, BRM03, BLG01, BNH01, BG+12, BBGS11, Cal97, CRE99, CCH11, CCK+16, CCWY17, CH95, Cho92, CT00, CSM+05, CBN+00, CMBAN08, DVAE18, DWYB10, EGCO2, EE14, FT96, FSPD17, FBF01, FURM00c, FGKT97, Gal94, Gar01, GN00, HH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KH18b, KS97, KTR+04, LWSB19, LCK11, LG06, Lep95, LMJ14, LHG16, LYH16, Mah13, Man99, Mao96, MSM+16, MPD04, ME17, MKW+06, MKC97, MM14, NCA93, NBS+15, NGGA94, Par91, PH97, PS01, QSS+16, RG03, RVOA08, RKK15, SCD+15, SLJ+19, TCI98, TT03, Tsa97a, TLGM17,}
VP16, Wei98b, WG99, WN10, YWJ03, ZL10, ZAK01, Znb02, AAC+15, APX12, AAKK08, BGDmWH12, BS10a, BBM09, BMV03, CML07, Car99b, CIM+17, Cho93.
performance [Div95, Don92, DKF94, ECX+12, FL90, FM92, Fis97, FURM00a, FURM00b, GS02, GEG07, GLC99, HLB90, ICH+10, Kim94, KLH+99, LB95, LB96b, LBH12, LCH+08, LMC14, LBE+98, MLC+09, Mah11, MCRS10, McM97, PjZA07, PGB12, RK99, SE12, SSK+07, SQP08a, SQP08b, SQP08c, SKP+02, TMC09, TR14, TG09, The95, Vv94, WCZ+07, Wok96, WOKH96, YZ07, YM92, ZJS10].
Performance-area [Par91].
Performance-Driven [lWSB19].
Performance-energy [AAC+15].
Performance-Oriented [KS97].
Performance-prediction [BMV03].
Performance/Power [RKK15].
performs [Ven97].
perils [Dye98].
Perl [TLA+02].
Perl/Tk [TLA+02].
persistence [BHK+04].
personality [CCW+11].
perspective [AG06].
Perspectives [PLT+15].
pessimistic [CZSB16].
Petaflops [Sz02].
Peter [Ano00c].
Petri [KMcC02, MKC97].
PGI [Ano00b].
pH [ACMA97].
Phi [SCD+15].
Philadelphia [ACM96].
Phoenix [ACM03].
Photomosaics [TLA+02].
Phylogenetic [LHG+16, LBH12].
physical [AMPH09, KKT+18].
PIC [BMV03].
PicoServer [KSB+08].
picture [AC09].
Piecing [Ano97b].
Pipelining [Gv95, RVOA08].
PIRATE [ICH+10].
Pitfalls [Hol98a, SPY+03, CL00, San04].
place [SCM05, SGLGL+14].
placement [NLK09, TE94a].
Plagiarism [TLZ+17, TLZ+18, TLZ+16].
Plan [DLZ+13, Pre90].
PlanICS [NSP+14].
Planning [NSP+14].
planning [SdHH+14].
plastic [MCS15].
Platform [AB01, AB02, CT00, DTLW16, EEL+97, FSS06, Lam95, MT93, PG03, WCW+04b, WCW+04c, WCW+04d].
Platform-Independent [FSS06].
Platforms [LS11, PWL+11, CNQ13, LSS12].
PLDI [ACM94a, ACM99a].
Plug [DHR+01].
Plug-in [DHR+01].
plus [Ano95a, Ano95b].
PM [AB02].
PM2 [Abn99, Ab01].
Point [LWSB19].
Pointer [RR99, SR01a].
pointers [Sim97, WW96].
Points [CC04, CHH+03].
points [Sim97, WW96].
Pollution [MPD04].
Polynomial [Kuc92, Ki69].
Pool [PSCS01, LML00].
Pools [Cal97].
POPL [ACM94b, ACM95b, ACM98b].
Port [Koo93].
Portability [VSM+16, SP05].
Portable [Ab01, Abn00, BBFW02, Eng00, Kf97, Ldt+16, Yas95, Cso00, Gcrd04, Mix94, Mt93, MaaB14, T979a, T979b].
Portals [BRM03].
Porting [Jj91, Ym96].
Portland [ACM94b, ACM99b, Iee93].
Ports [Man98, Yam96].
post [USE01].
POSIX [Ano00c, Al94, Bmr94, Btr97, Gl91, G000, Gmb93, Hbg01, Hbg02, Sp05, DlPRG99].
POSIX-compliant [Sp05].
Post [LB17].
Post-Silicon [LB17].
Pot [VSDL16].
Potential [CC14, EgC02, Llks12, Mau00, Dg99].
potentials [ABF+10].
Power [GJ11, AkS06, Ano00a, Ano03, Bcz16, Bgh+12, CMBAN08, Mb07, Mr09, Phbc18, Rcc12, Rkk15, Syh14, Tvb+13, Tlgm17, Ecx+12, Gw10, Mlcw11, Mwk+06, Pra95b, Ric91, Sqp08a, Sqp08b, Sqp08c, Cmf+13].
Power-aware [Mr09].
Power-Constrained [Tlgm17, Gw10].
Power-Efficient [Bcz16, Sqp08a, Sqp08b, Sqp08c].
Power-Performance [CMBAN08].
POWER5 [Bcg+08, Mmm+05, Kst04, Ano05].
POWER6 [LSF+07]. powered [Rei95].

PowerPC [BEKK00, SBKK99].

PowerRAC [Ano00b]. Practical
[HW92, LMJ14, MNG16, ND16, PBR+15, RR96, TGBS05, BCCO10, RD99, RPB+09].

PRAM [For97, Lep95]. Pre [PR05, Luk01].

Pre-Execution [PR05, Luk01]. Precise
[HR16, KUCT15, CLL+02, FF09, WTH+12].

Precomputation [MGQS08, WWW+02].

Preconditioning [Nak03, GEG07].

PREDATOR [LTHB14].

Predicate [GPR11, How00].

Predictable [BBdH+11].

Predicting [Lun99]. Prediction
[AKS06, CBAN08, DVAE18, IBST01, PBL+17, BWDZ15, BMV03, CTYP02, CPT08, GL98b, RRP06, TFG10, WHG07].

Prediction-Based [CBAN08, RRP06].

predictive [LTHB14, SRA06]. Predictors
[EPAG16]. preemptive [JLS99].

Prefix [BVP+19, WJ12]. Preliminaries
[NBM93]. Preliminary [EHG95].

Preparation [GH03]. preprocessor
[For97, Mil95]. prescient [AMC+03].

Presentation [Kub15]. presented
[ACM93a, ACM94b, ACM95b, ACM98b].

preserving [M0+11, NFPB17]. pressure
[DTLM14, SLP08]. preventing [PRB07].

Preconditioning
[Ano98b]. Pricing [TT03]. Primer
[LB96a, Wil97]. Primitive [Low00].

primitives [BBH+17, LZ07, NLK09].

principle [LAK09]. Principles [ACM93a, ACM94b, ACM95b, ACM98b, TLA+02].

print [Van97a]. priorities [STV02].

prioritization [FD95]. Priority
[BCG+08, NBMM12, SCCP13, ST05].

priority-based [NBMM12]. Private
[Man99]. privatization [HZ12]. Pro
[Ano97a]. Proactive [FJ08]. Probabilistic
[EE10, EE12, CHH+03, Sni96]. Problem
[HH11, Lee06, YFF+12, BIK+11, Mit96].

Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].

procedure [BGK94c, KADS07, LQ15].

procedures [MCS15]. Proceedings
[ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV+99, Gol94, Hol12, IEE98, IEE99, IEE93, IEE94a, IEE95, IEE96, IE02, Lank6, LCK+11, USE09, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98a, USE98b, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IE07, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IE94b, IE94c, FR95].

Process [FT96, FG91, BM91, HF96, ILS01, MR98, Ply89, WP10, WCV+98].

process-oriented [WP10]. Processes
[CB16, IH01, SPY+93, ZSA13, YZYL07, Zig96].

Processing [AHW02, GAC14, MLGW18, RW97, SG18, SS91, WN10, How98, MVY05, Par91, PYP+10, RKHT17, WZC+07].

Processor [ABC+93, Ano00b, BVM19, BCG+08, BGH+12, EHG95, GV95, HMNN91, HHOM91, HHOM92, KST04, KLM04, KA005, Lvh12, MGQS+08, MG99, MTN+00, MVZ93, MB05, SV19, SW08, Sin97, ST00c, SZ02, SBKK99, SUF+12, UALK17, WS08, AAFH09, APX12, BEKK00, CL94, CY09, Cho92, EE10, Fiz97, FRL18, Fuj97, Goo97, HF88, HKN+92, HMNN+92, KDM+98, Kho97, KBA08, LBvH06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Met95, Moo95, Moo96, OCRS07, Raj93, Sha95a, SJA12, Sin99, ST00a, ST00b, ST02, Squ94, Srd93, Ts97a, Ts97b, TEE+96, VIA+05, WCV+04b, WCV+04c, WCV+04d, YN09, ZP04].

processor-based
[WCV+04b, WCV+04c, WCV+04d].

Processor-In-Memory [SZ02].

Processor-Oblivious [UALK17].

Processors
[ARB+02, AH00, Ano01, BF04, EEL+97, FT96, FJ08, GJT+12, GSL10, JGS+19,
processus [Zig96]. Procs [MT93].

Products [Ano97a, Ano00b, Bra97].

Professional [Ano00b]. Profile [BMR94, SV19]. profile [DTLM14].

Profiling [BP19, DG99]. Program [BVM19, Chi15a, DSR15, EFN+01, GN96, KKW14, NB12, NZ17, PFF03, PAB+14, RGG+12, RCM+12, RPNT08, SLP08, SMS+03, UR02b, UR03, ZSB+12, WM03].

Programmability [THA+12]. programmable [PPA+13]. Programmability [THA+12].

programmed [PYP+10]. program [PYP+10].

programmation [Swi09]. programmed [PPA+13]. Programmer [Cro98, Wil90, MS87, San04, Swi09].

Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BT98, But97, CMK00, CV98, CDK+01, Chi15b, CT00, CW98, DM98, FHM95a, FTP11, FA19, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KK03, KS95, KS96, KIAT99, LB96a, LB00, LVH12, Mas99, NB96, Nor96, PG99, QQOV+09, QOI+12, Rod95b, SBB96, TCI98, Vre04, Wil97, YFF+12, dPRGB99, van95, ALS10, AR17, AG96, ABG+08, BCS00, BO96, BYL09, Bir89, CFK+91, Car89a, CS00, CMS03, Cha05, CYZ98, DSH+10, EV01, FHM95b, GKI12, Gil94, Go09, GL07, HMC97, Hyd00, JPS+08, JHM04, KIM+03, Kim94, LB98, LP09, Man96, MSM+10, KLI00, MR98, Mix94, NHPF08, Nev99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV96c, SV96a, SV96b, She98, She02, Sm05, TB97a].

programming [TB97b, TMAG03, Wal00, WCC+07, Yan02].

Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CdOS01, Ch01, DRV02, EGP14, FQS02, GKCE17, HLB94, JBI08, KI98, LCS04, Lun97, Lun99, MS89, MGK+00, Ob13, PHHK91, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYHL14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BRRS10, BK13, BCG13, BGC14, Blu95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ91, CL00, CLE+02, CVL08, Cor00, DJLP10, Di00, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQS02, FF08, FFF08, GMR09, GRS06, GPR11, HLG91, HZ12, JPS+08, JWTG11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR6, NH90, NS94, NV15, OdSS12, ORS+06, PAdS+17, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCG95].

programs [SRA06, Sen08, SP00b, Shi00, SP05, SG14, Sto02, Taf13, TR14, TLZ+16, WS06, WTH+12, XsaJ08, YCW+14, YNPP12, ZJS10, ZSJ06, dBO9, vPG03].

Progress [FSPD17, TLGM17, ZHCB15].

Progress-Aware [FSPD17]. Progressive [BBdH+11, TG000]. Project [Ano99].

projection [SSkP+07]. Projections [MQLR16, MLR15]. proliferating [Ano94b].

Prolog [EC98, AR91, AN99, KA97, MGK+00].

Promises [Gar01]. Proof [Add93]. ÁdBdRS08, FKP15, ÁdBdRS05, GLPR12].

properties [KTLK13, Van97b]. proposal [GP05]. Proposed [GV95]. protect [San04].

Protein-Protein [BCS11]. Protocol

Redundant [CCK+16, CvBC18, HTDL18, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14]. ReEnact [PT03], Reentrant [AMdBRS02].

Refactoring [Ten02]. Reference [Rec98, Sch14, KOE+06].

Reference-Counting [Rec98]. refinement [GPR11, KPPTR06, KI16]. Reflection [OT95, Bak95a]. region [KBF+12, WZSK19]. region-based [KBF+12]. Regions [DELD18, GPS14].

Relaxing [CZS+17]. RelaxReplay [HT14].

Relay [Zha00]. Release [AB02, PST+92, SLP08, EKB+92, Pea92].

Reliability [CCK+16, CvBC18, OL02a, OL02b, OL02c].

Reliable [KS16, NBS+15, RG03, YZYL07, YCW+14].

relocation [WW93]. remains [Ano94b].

remedies [ALW+15]. remote [TK98, ZLW+16]. Remove [CNZS17].

reordering [DKG18].

Replay [Chr01, UALK17, GCRD04, HDT+13, HT14, LYN0, LWV+10, LZZT15, LSW+18, NWT+07, PDP+13, QSQ14, QSHI16, RD99].

Replaying [MCT08, WKG17]. Replica [AT16, FRL18].

request [Sch98]. Requirements [PCPS15, GL98a]. rescue [SLP+09].

Research [BFM+16, USE01, AG06, RPNT08], réseau [Swi09]. Reservation [LZS+08]. Resilience [SHK15], Resistance [Gar01]. Resistant [YLLS16]. resize [Mit96]. resolution [Ev01].

Resource [HC17, LG06, LZS+08, LHH+16, RSB01, YSS+17, CY09, HCD+94, VS11b].

Resource-Efficient [LH+16]. Resources [LSB15, RGG+12, ZSB+12]. Respec [LWV+10]. Response [BBC+00, Smi01]. responses [BS06]. Responsive [SU+12].

Restart [ZSA13].

Restore [Ano07a], restricted [ABG+08]. restructuring [BVG97]. Results [GV95, GRS06]. Retentive [RRK11].

Rethinking [Xue12, Len95]. retrieval [CML00]. Retrospective [TEL98a].

Reusable [Han97]. Reuse [BCZY16, KZTK15, LPK16, SV19, JSB+11, NAA01, PHCR09], revealing [Dav11].

Reverse [Coo02, LSB15, WCV+98].

Review [Lar97, Van97a, Vre04]. Reviews [Bra97]. Revised [Ch05]. revisionist [PT91].

Reviving [TLZ+17, TLZ+18], revolutions [ECX+12]. Rewriting [BGK94a, BGK94b]. RHEED [BD06].

RISC [Cho92, GV95, MHG95, Men91, Nik94, SBK99], rise [Len95].

Robot [Lev97]. Robust [CMF+13, LG04].

Rockefeller [IEE90]. Rogue [Ano07a].

Role [BC94, KZTK15]. rollback [YZYL07].

root [CMX10]. Ropes [HMC95]. routine [SG18].

Row [KZTK15]. RP3 [CJ91]. RPC [Tod95].

Run [EJ93, LFA96, SSW07, SS96, Pr95c, TNB+95]. Run-Time [EJ93, LFA96, SS96, TS99, TNB+95].

Running [SV19, Cal02, MLCW11, SSN10], runs [Hig97].

Runtime [ABN99, ABP00, ABH+00, ABN00, BJK+96, BMN99],

CZS+17, DNR00, FSS06, KPC96, NPT98,
Semantics-aware [HEJ09]. Semaphore [Hol98b, Kor98]. Semaphores [Hol98c].

Semaphores [Hol98a, CRW99b, KT17, ZHC15]. Semaphore-aware [HEJ09]. Semaphore Sets.

Semaphores [Hol98c]. Semaphore-aware [HEJ09]. Semaphore Sets.

Sequencers [Hol98b, CRW99b, KT17, ZHC15]. Semaphore-aware [HEJ09]. Semaphore Sets.

Semaphore-aware [HEJ09]. Semaphore Sets.

Semaphores [Hol98c]. Semaphore-aware [HEJ09]. Semaphore Sets.

Semaphores [Hol98c]. Semaphore-aware [HEJ09]. Semaphore Sets.

Serendipitous [HLY16]. Sensible [LVA99]. Separation [SCG95, TFG10, TVD14]. September [ACM93c, AOV99, DLM99, FR95, Hon94, IEE98, USE98b]. Sequencers [GH03, FTAB14]. Sequential [CV98, TLZ97, TLZ98, CRW97a, CRW97b, ORS96, SCG95, SNM96].

Sequentialization [HLGD19]. Sequentialization-based [HLGD19].

Serializable [DEL18]. serialization [BHK04]. Server [Ano00b, Cal97, Day92a, Day92b, Smi92, VB00, Zha00, CASA14, Est93, Gal96, Hig97, MEG03, SBB96, Sho90].

server-side [SBB96]. Servers [PHBC18, RCC12, BDM98, BBYG95, BEKK00, KSB95, RPN05, SV96c, SV96a, SV96b].

Service [CGK06, GMW09, Hig97, PSM03]. services [LZ97]. session [Bak95b, HCD94, IAD94, VGR06]. sessions [Ano94c]. set [Artu92, KBF92].

Sets [MNG16]. Seven [But14]. several [FGG14]. shader [PYP94]. shallow [LVA93]. Shanghai [IEE97]. shape [Cor00, GBCS07]. SharC [AGE98].

Shared [BWX95, BS96, DM98, EJ93, FJ98, GM98, GH98, IX98, LB92, MVZ93, MCT08, STH99, SLJ94, Thr99, VB00, WC99, YMR93, BB00, Boo93, DLOC09, DPZ97, EKKL09, EV01, Gle91, ISS99, Jef94, DLC04, MKR10, NPC06, RGG92, TSY99, TSY00, YMR93a, YN09, ZSB92, DB09, Cha05].

Shared-Memory [BS96, DM98, EJ93, IX98, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN09].

shared-variable [DB09]. Sharing [CLFL94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AEG08b, AGN09, LTH14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10].

sharing-aware [TAS07]. sharing-based [TE94a]. Shelf [MH95b]. shell [Ric91].

SIGCOMM [RM03]. Signal [Eng00, BM91]. Signals [GRR06].

Significance [ZJS12]. SIGPLAN [ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT [ACM93a, ACM94b, ACM95b, ACM98b].

Silicon [LB17, TH91]. SIMD [FSY09, SW08]. Simple [AKS06, Ch15a, WS08, BDLM07, CL00, MSM96].

SimpleGraphics [MKK99]. simplify [PO03]. Simplifying [Fon98]. SIMT [CC18, LPK16]. simulate [MA19].

Simulation [For97, GV95, HPB11, JYE16, MD04, SLJ18, VTS12, WG94, Ano97b, BBH17, KBF12, Leg01, Lep95, MHW92, SWCY94, S93].

Simulations [HEMK17, LNI91, LS11, SCD15, ABC15, KU17, IVA13, VPQ12].

Simulator [SR98, PWD92, TSCH99, WZWS08, Nak03]. Simulators [BVL09].

Simulink [HY16]. Simultaneous [An05, CSK99, EEL97, GSL10, HMNN91, LEL97a, LEL97b, LPE99, LEL99, LRZ16, MCF99, REL00b, SP07, SLG04, SHW19, SU01, ST00c, TEL05, Tul96, TEL98b, WS08, YG10, ABC99, AAK08, ABB15, CEC12, EE09a, Fis97, HKN92, HMN92, LBE98, Luk01, Mah13, MMM95, MEG03, PHR09, RCG910, REL00a, REL00c, RM00, RPN05, SLG06, SW16, ST00a, ST00b, STV02, SMS03].
TSCH99, TEE+96, VPC02, TEL98a]. Single
[CLFL94, Dub95, EHP+97, FT96, HHOM91,
JKB18, KH18b, KTR+04, MNU+15,
MTN+09, CSM+05, MLC+09, Pra95c,
VIA+05, YZ07, YSY+09].
Single-Address-Space [CLFL94].
single-and [YSY+09]. Single-Chip
[HHOM91, MTN+00]. Single-ISA
[KTR+04, MNU+15]. Single-Process
[FT96]. Single-program [Dub95].
Single-Thread [KH18b, MLC+09].
Single-Threaded [EHP+07, JKB18, Pra95c,
VIA+05, YZ07].
Singleton [Cha02, Rin99], situ
[LSW+18, RGK99], sixth
[USE98a, ACM94d], size [LML00]. skyline
[WZSK19]. slave [TJY+11]. slice
[PSG06a, PSG06b, PSG06c]. slice-based
[PSG06a, PSG06b, PSG06c]. Slices
[MGQS+08, PF01]. Slicing
[Kri98, FRT95, NR06]. Slick
[PSG06a, PSG06b, PSG06c]. smaller
[Pra95c]. Small [JLA16, Koo93, MM07].
Smalltalk [Bri89]. Smalltalk-80 [Bri89].
small [Sim97]. SMP
[BWXF05, BNH01, CRE99, HD02, KKH03,
KKJ+13, Pra95c, TAS07, TMAG03]. SMPs
[WG99]. SMT [Ano05, AH00, CY09, EE09b,
EE10, EE12, FSPD16, FSPD17, HR10,
KLG08, KH18b, KI16, MG99, MMM+05,
NSP+14, PAdS+17, PAB+14, PLT+15,
RYSN04, RPNT08, SLP08, SHW19, TAS07,
TVB+13, VS11b, WA08]. SMT-based
[KI16, PAdS+17, PAB+14].
SMT-Directory [HR10]. SMT-SA
[SHW19]. SMTp [CHO4]. SoC [ZDTM19].
SOFRITAS [DDEL18]. Soft [EUVG06,
OA19, PSM01, PSM03, SSN10, VACG09].
Software [Ano97a, Ano98b, Ano99, Ano00b,
BVM19, BCRO1, BCG+08, Gar01, Gon90,
GJ97, HB92, Han97, HSS+14, IE94a, KE15,
LPE+99, MKM17, PJS15, SZM+13, SD13,
TVB+13, TLZ+17, TLZ+18, XWG+14,
YBL16, ATLM+06, AC09, ABC+09, BT01,
Bra97, CDD+10, DPZ97, GLPR12, Hai97a,
HSD+12, IEE94d, KKH04, KSD04, KASD07,
LT97, Luk01, MWP07, MCRS10, MGL95,
MEG03, NHFP08, OAA09, OLO2a, OL02b,
OL02c, PV06, RMK+10a, RMK+10b,
RVOA08, San04, SP05, SLP+09, SB80,
TNB+95, WCZ+07, WCV+98, YSY+09,
ZHC15, DWS+12]. Software-Controlled
[BCG+08, Luk01]. Software-Directed
[LPE+99]. Solaris [Cat94, Lum97, Lum99,
MM01, McM97, Pra95b, Sun95]. Solution
[Ano98b, SBC91, WP10]. Solutions
[Ano00b], solve [Bar09, MM07]. Solver
[YFF+12, Kub15, RM99]. Sources
[MR09, Nak03, AAC+13, ZCO10]. Solving
[ABD+12, FTAB14, Loe97, VSD90].
SONET [AHW02]. Sort [GH98, RHH10].
Sound [WTH+12, DWS+12, FFY08,
NFBB17, WQLJ18]. Source
[Ano98c, BMF+16]. sources [SJ95]. South
[ACM93a, Ano94d]. Space [BCL+98, BL93,
BL98, CLFL94, CB16, Eng00, GRS97, GN96,
NB99, PVL+11, Sch17, FWL03, KNPS16,
KASD07, Lie94, LHS16]. Space-Efficient
[BL98, NB99, BL93, KNPS16, KASD07,
LHS16]. Spacecraft [SRS98]. Spaces
[FKP15, Röt19, CKZ12, KGGK09]. Spain
[ACM95a, DLM99, ACM96c]. SPARC
[Cat94, KA005, MD96]. Sparcle [ABC+93].
Sparse [But13, YFF+12, CSV10, Dav11,
DTR18, MM07, PHCR09]. Spatial
[WZSK19]. spatially [PPA+13].
spatially-programmed [PPA+13]. Special
[Ano94e, GGB93b, Ku00]. specialization
[WTH+12]. specialize [CS06]. Specialized
dlPRGB99]. Specific
[Ste01, SP00b, Shi00]. specification [Stä05].
specifications [TV10]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speculated [SCL05]. Speculation
[MGI14, SU01, WS08, YBL16, DG99, GB99,
JEV04, LWV+10, MT02a, MT02b, MT02c,
NB12, PO03, PT03, SCZM00]. Speculative
[AH00, Ano01, Ano02, BF04, IBST01, KLG08, MQQS+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFGC10, WWW+02, ZJFA09, ZL10, CHI+03, DC07, Dub95, KOE+06, KT99, LZW17, LZSS19, LZL+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VS11b, XIC12, ZCSM02a, ZCSM02b]. speed

[LG04]. Speed [Ano00a, Ano03, GV95, Gle91]. Speed-up

[HG91, MR09, HG92, Pra95b, SRS98, TO10]. Speed

[LIK96]. Speedup-generated [MJF+10]. splittable

[SLF14], spots [Gle91]. spreading

[CWS06]. SPSM [Dub95]. SQL [CGK06]. squares [FTAB14]. squash [MK12]. SR

[BO96]. SRAM [kSYHX+11]. SSMT

[CSK+99]. Stabilizers [ZSJ06]. Stabilizing

[BCM+07], stable [YCW+14]. Stacey

[Ano00c]. Stack [Eng00, Xue12]. Stackable

[Loo05]. stacking [KSB+09]. Stackless

[MS15]. stacks [DESE13]. StackThreads

[TTY99]. StackThreads/MP [TTY99].

Standard

[DM98, FSS06, WKG17, BCL+98, Bra97, MT93, Pha98, Pha99].

standardization [Bet73]. Standards

[Thr99, TTY99]. Standing [TLA+02].

Stanford

[IEE99]. STAT [Ano00b]. State

[La00, LP94, MP13, RRK11, Wei98b, Cor00, I+94, TFG10, WHG07]. State-of-the-Art

Statechart

[KW23]. Statechart-Based

[KW17]. stateless [MQ80]. Static [GPS14, Kri98, Lnw97, SGB15, WW96, VPG03, Fer13, NA96, NA07, AFF06, FLF110].

Static/dynamic

[SCB15]. Statistical

[Ano00b, RCM+16, Lnw97, RCM+12, Tem97].

Stay

[GBK+09]. stealing

[ALH08, BL94, BL99, RL14]. Step

[Sho97a, Sho97b, ZG99]. Steroids

[JLA16].

Stethoscope

[Caz92]. Stochastic

[DK02, LTM+17]. Storage

[AT16, Hol12, LCK11, Bak95a, Bhu92, DZKS12, KOE+06, MM07, PDMM16].

stores [TAN04]. strand [RCV+10]. strata

[NPC06]. Strategies

[PCS01, AGEB08, FGG14]. Strategy

[BGK96]. Stream [KSF94, SG18, SG18].

Streaming

[HHOM91, HHOM92, KEL+03]. Streaming/FIFO

[HHOM91, HHOM92]. Streams

[Pre90, SPY+93]. Strength

[Kon00]. Strict

[Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly

[Ano00c]. Strong

[CWHB03, KZC15, MTC+07, ZHCB15]. Structural

[CRW99]. structure

[BB00, YKL13]. Structured

[TCI98, FR95]. Structures

[RCRH95, AGN99, Gol97, ND13]. students

[Fek08]. Study

[AGK96, Chl15a, EGC02, HMT+96, LSB15, Sat02, TAK+00, VK99, WGG94, YMR93b, Bri89, CASA14, CL00, Fis97, HHT+93, HF96, KPER06, MGL95, SP05, Sod02, Tsa97a, YM92, YMR93a].

Style

[Wil94a, Wil94b]. subdivision

[MTR07]. subordinate [CSK+99, CTYP02].

Subsetting

[AJK+12]. Substrate

[ACMA97, Ha97a, JP92]. Subsumption

[Man91]. Subtleties

[BLM06]. Suffix

[OR12, LHS16]. SugarCubes

[BS00]. Suite

[BTE98, BO01, TG99]. Suites

[SPDLK+17].

SuiteSparseQR

[Dav11]. sum

[TDW03]. summary

[I+94]. Summer

[Ano94f, USE92a]. Sun

[McM97]. SunOS

[Cat94, PKB+91]. super

[Kus15].

Supercomputer

[VTS12, GI94].

Supercomputing

[ACM92, ACM95a, ACM96, Ano91, Ano94e, IE90, IE92, IE93, IE94c]. SuperLU

[LI05]. SuperMalloc

[Kus15]. Superscalar

[SNU96, Div95, Fis97, Gil95, Llo95, Men91].

Superthreading

[Tsa97b]. Support

[ACM94d, ALBL92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KC99, MKM17, ME15, MS89, NS97, PTMB09, SSP99, TY97, ZSA13, ATL+06, BS96, BDO96, CMF+13, CKD94, CHH+03, CSS+91a, CSS+91c].

Evr01, Fan93, HMC95, MWP07, MEG03,
MS87, Men91, TSY99, TSY00, TNB+95, WK08a, WK08b, WK08c. Supported [AddS03, ZP11]. Supporting [RCRH95, Sam99, SP00a, DC09, DC00, TDW03]. suppression [JWGTG11]. Surface [Rô19]. surgery [MCS15]. Surprises [BC98]. Survey [Man96, OA19, ZSB+12, Cat94, URS02b, URS03]. Survival [Ano99]. Surviving [Ano99]. SVR4 [SPY+93]. Switzerland [Lak96]. Sy [USE01]. Symantec [Rod95a]. symbiosis [Bri89, EE10, EE12]. Symbiotic [ST00a, ST00b, STV02]. Symbolic [ACM94c, BGC14, Hon94, Lak96, Wat91, BHKR95, Fuj97, HF88, HLGD19]. Symmetric [BMV03, NV94, BIK+11, Pra95b, RGK99, Sha98]. Symmetry [ES97]. Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gaj94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col90a].

Synchronization
[Bec01, Hei03, LA93, Rec98, SLJ+18, DHH+12, DESE13, MT02a, MT02b, MT02c, MTP12, NLK09, PRS14, RD06, Ven97]. Synchronization-Aware [SLJ+18]. synchronization-induced [MTP12]. synchronization-related [RD06].

Synchronizing
[McM96a, McM96b, CZWC13]. Synchronous [BM07, HPB11].

SynchroTrace [SLJ+18]. Synergy [ZDTM19]. syntax [KT17]. Synthesis [FN17, HB15, LNI+19, Sch17, MP89, SR14, STR16, WQL18]. Synthesizing [GLPR12, Kim14, SRJ15]. synthetic [GJ11]. System [AddS03, AdBdRS08, AJK+12, Ano98a, Ano00b, ABN99, ABH+00, BMR94, BBD+91, BJK+96, BTE98, CLFL94, CC18, DNR00, FG91, Gei01, HMT+96, KMAG01, KS97, MS89, NPT98, PH97, PST+92, Pea92, PLT+15, QOIM+12, REL00b, SEP96, Sre93, SG96, TCI98, VSM+08, Yam96, AdBdRS05, AAC+15, Ano96, Ano97b, A+01, AR17, ASSS19, BBFW03, BDM98, BCHS00, BAD+10a, BAD+10b, BJK+95, BAD+09, BLCD97, Cat94, Gil88, Hig97, Joe96, Lan02, MHWO2, MS87, Met95, MTC+07, MC06, OCRS07, PRB07, Ply89, Pom98, REL00a, REL00c, RD99, Sch02, TKA+02, TLZ+16, TMA03, WCC+07, WZWS08, WZSK19, TLA+02, EKB+92, MS87, Pea92]. System [PLT+15]. system-level [OCR87]. systematic [MQ07]. SystemC [RSB+09]. SystemC/C [RSB+09].

SystemC/C-based [RSB+09]. Systems [ACM94d, AG06, Ano00b, ABN00, BMN99, Bre02, BC94, CCH11, CvdBC18, Dru95, FMY+15, FGKT97, GHG+98, GJ97, HRH08, HKSL96, IEE99, IEE99a, KR12, KKH03, KG05, KUC15, KW17, LSS06, LMA+16, LYH16, MS15, PPG11, PGB16, RW97, RR03, SUF+12, SS96, USE92b, WAL95, WC99, ZUB02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWHB10, DZKS12, DSH+10, DBRD91, GJ11, GOL96, KGH97, JHT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Jef94, Jen95, KKH04, KKH05, LLLC15, Leg01, LVA+13, MLC+09, MGL95, MM07, NFB17, PBD09, RCV+10, RFB+89, RSB+09, RVB04, SCMP13, She98, SP05, Sin97, SJ92a, SJB92b, ST05, Wei98a, WCV+98, Ano98b]. Systolic [SHW19, PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wea08]. T1/T2 [Wea08]. T2 [Wea08].

Talking [Ano94c, HCM94]. TAM [CGSV93]. Taming [Hol00, HBCG13, HHPV15]. TapeWare [Ano00b]. Target [MIGA18]. targeting
[LGH94]. Task [CCK+16, GP95, GFJT19, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12].

Task-Based [GFJT19]. Task-Level [GP95].

Tasking [CvdBC18, Di93, KR01a]. Tasks [Fin95, PVS+17, YSS+17, FGG14].

Task-Based [GFJT19]. Task-Level [GP95].

Tasking [CvdBC18, Di93, KR01a].

Tasks [Fin95, PVS+17, YSS+17, FGG14].

Taxonomy [HM96, SPH96].

TC2 [BT01]. TC2/WG2.5 [BT01].

Tcl [Ass96, USE96, USE98b, USE00b, Ama98, MKK99, SBB96].

Tcl-based [Ama98]. Tcl/2k [USE00b].

Tcl/Tk [Ass96, USE96, USE98b, USE00b, MKK99].

TCP [Ano00c, Ano00c].

Teaching [Fek08, CS00, She02].

TeamWork [CZWC13].

Temperature [CCC12].

Template [Cal00, How98].

Ten [Ano09].

Tennessee [IEE94b].

Tera [BTE98, Mat97].

Terabytes [IEE02].

Ten [Ano09].

Techniques [DS16, EKKL90, GS02, Han97, NLK09, OC011, TGBS05, Zig96, BR92, GEG07, OCRS07, Pra97, RCG+10, SV96c, SV96a, SV96b, ZSB+12].

Technologies [Ano00b, Ano98b].

Technical [USE00a, Cat94].

Technique [JSB+12, KG94, Lem02, ÖCS01, PGB16, JSB+11, JPSN09, LGH94, MIGA18, RS07, UZ00, VACC09, WC+98].

Techniques [DS16, EKKL90, GS02, Han97, NLK09, PWL+11, TGBS05, Zieg96, BR92, GEG07, OCRS07, Pra97, RCG+10, SV96c, SV96a, SV96b, ZSB+12].

Temperature [CCC12].

Template [Cal00, How98].

Ten [Ano99].

Tennessee [IEE94b].

Tera [BTE98, Mat97].

Terabytes [IEE02].

Ten [Ano09].

Termination [JKB18, TDW03].

Test [Ama98, EFN+01, GRS09, SPDLK+17, TG09, EFN+02, K16, SR14].

test-case [KI16].

Testing [BBJ+11, Goe01, KH18a, LSC04, RCC14, BGP06, CBM10, EFG+03, EHSU07, MQ07, Sen08, YNPP12].

tests [SRJ15].

Texas [USE92a, USE00b].

TFlux [DTL16].

tgMC [LHG+16].

Their [YWJ03, Gil94].

then [Ano92a, Ano94b].

Theoretic [ES97].

theories [LQ15].

Theory [ACM93b, LLD17, NFBB17, WLK+09].

there [Ano94b].

thermal [WA08].

though [Ano94b].

Thread

[Ama00c, ABN99, ABNP00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, CCWY17, Col90a, DSR15, DELD18, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00b, GF00, GJT+12, GP95, GBCS07, GBK+09, Hag02, Hei03, HG91, ISS98, KG05, Kim14, Kle00, KH18b, KBH+04a, KBH+04b, LLL10, LYH16, LEL+97a, LEL+97b, LLLD, Man99, MG99, MNU+15, MGI14, MTN+00, MB05, MCFT99, ND96, Pan99, PR05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Ric99, RNL99, RSN04, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+09, BKC+13, BHK+04, BC02, CZS16, CZ02, CSM+05, DGBM16, DG99, DWBY10, Don92, DBRD91, Eic97, EE09b, Fek08].

thread [GP08, G0T03, GL90, HC01, JEV04, KDM+98, KC09, KRA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZR+14, Loe05, MLC+09, MTO2a, MTO2b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QQQOV+09, SKG+11, Sha95b, SLG06, SP00b, Shi00, SP96, SS95, SD13, SLT02, S105, SJ95, SCZM10, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02].

Thread-Aware [LIH16].

Thread-Based [KG05, CNQ13, SKS+92].

Thread-Level [LEL+97a, LEL+97b, MG99, MGI14, YBL16, FURM00a, FURM00b, MCFT99, WS08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QQQOV+09, SCZM00, YZ14].

Thread-Local [DGK+03, Whi03].

Thread-management [RCL+10].

Thread-modular [GBCS07].

Thread-Private [Man99].

thread-related [TLZ+16].

Thread-Safe [Kle00, Pla02, Rin99, DMBM16, Fek08, G0T03].

Thread-Sensitive [CO04, RSN04].
Thread-Specific [Ste01, SP00b, Shi00]. thread-switch [Eic97]. threadbare [Bak95b]. Threaded
[AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CKRW99, Coo95, CSS+91b, DV99, EH90, EHP+07, FdL02, GH03, GVT+17, GK94, Gil93, HI01, J78018, JY15, Jon91, KW17, Kri98, Kue92, KIA99, LB92, Mas99, MG15, MKG+00, MS97, PCPS15, Pul00, RKCW98, SV19, STW93, Sei99, Smi92, Sp00b, SBKK99, TLGM17, VSDK09, VS11a, VB00, VCM19, WCT98, Ada98, ABD+12, AACK92, Ano97b, ASS19, BWDZ15, BBH+17, BIK+11, DSEE13, CV98, CIM+17, CASA14, CKRW97a, CKRW97b, CWHB03, CB00, C0000, CYZ98, cC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBKG01, EHSU07, FTAB14, FD96, FGG14, GCRD04, GCC15, GS06, GH98, GPR11, HC17, HLGD19, KHP+95, KI95, KKH04, Kep03, KRH98, KicL91, LK15, threaded
[Lan97, Leg01, LBvH06a, LBvH06b, LBvH06c, LVA+13, MLCW11, MS03, MKK99, NFB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, PWMD18, Pra95c, RCV+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SC17, SE12, Sei98, Sho97a, Sho97b, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Ten97, TMAG03, TJY+11, VIA+05, VV00, VK99, Wa00, Will98, XMN99, YZ07, YSY+09, ZKR+11, db09, vPG03, CS95].

Threading
[BFa+15, CvdBC18, CNZS17, DHR+01, Hoh98d, KS16, LEBKK11, MLGW18, MC97a, MC97b, MS15, MP13, N09, OR12, PTMB09, RCC14, Rei01, Sch90, SMZ18, TG099, YLLS16, Bak99a, BM07, DTLM16, FDL03, LZW+13, MLC+09, MCFT99, N000, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04].

Threading-Based [KS16]. ThreadMentor
[CMS03, She02]. Threads
[Alf94, An90a, ACR01, Ber96b, BCL+98, Boe05, BLV04, BAZ+19, Cal00, CGR92, Co09b, Cri98a, TLA+02, FHM95a, For95a, For95b, GMB93, GSC96, GN06, Gus05, Hai97b, HW92, HGB01, Hol00, How00, HLH16, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MKM17, MP98, McM96c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, San04, SEF96, TGG99, WCW+04a, Wil94a, Wil94b, Wil97, Yam95, Yam96, dIPR99b, An02, Bak95b, BZ07, Ber96a, BW97, BF98, Bir89, BS00, But97, CZW13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FHM95b, FL90, GP05, G097, HCM94, HMC95, Hai97a, HBG02, HJT+93, HKT93, HK92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Kan94, KE95, KSS96, Lan02, LZ07, MLM91, MR98, MQW95, McM96a, McM96b, McM98a].
threads
[McM98b, Men91, Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, ORS+06, PSM03, Pan99, PG03, PL03, RR03, Sch91, SC95, SZG91, SZ92, SC05, SKP+02, TAN04, WCW+04b, WCW+04c, WCW+04d, Wei98a, WCW+98, WW96, ZCMS02a, ZCMS02b, ZP04, ALW+15, Van97a].

Threads.h
[An000b, TB97a, TB97b].

ThreadScope [WT10]. Three
[YMR93b, YMR93a]. Throttling [LG06]. Throttling-Based [LG06]. Throughput
[GJT+12, Wen08, ZDTM19]. Tightly
[MTN*00, LZTZ15]. TileDB
[PDMM16]. Tiles
[QOIM+12]. Time
[BC94, CIM+17, E93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSC01, SUF+12, SS96, Tet04, dIPR99b, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBP+03, KASD07, KBF+12, MK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJ92a, SJ92b, TSY99, TNB+95]. time-
[KASD07]. time-critical
[RGG+12].
time-efficient [GB99]. time-shared [Jef94].
timely [NH09]. Timers [Ho99a, GR06].
Timethread [BC94]. Timethread-Role [BC94].
timing [SK97, MHW02].
timing-first [MHW02]. tiny [Xu12]. Tip
[Pet00]. Tips [Mit96, Pet00]. Tk
[Ass96, USE96, USE98b, USE00b, TLA+02, MKK99]. TLB [PHBC18]. together
[Ano97b, Pol90]. Tokyo [Ano00a].
Tolerance [EU06, OA19, MTS10, PG01, RRP06].
Tolerant [OCS01]. Tolerating
[Add03, Ano99b, Goe01, Kor89, TAM+08, ACD+18, CMS03, CSB00, Hig97, LMC14, RGK99, YNPP12]. Tool-Supported
[Add03]. Toolbox [Bra97]. Toolkit
[SZM+13]. Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95]. Tools.h
[Ano06b]. Toolset [Ano97a]. Top
[Ano99, AB02, DNR00]. Topaz [MS87].
topics [BGG95, GBG95]. Toroidal
[KEL+03]. Totally [DHR+01]. Trace
[RS08, HEJ09]. Trace-based [RS08].
Traces [HEMK17, SLJ+18, WKG17, HR16].
Tracing [Lem02, EKKL90, Tod95].
Tracking [CZS+17, LH09, CZSB16, ZJS+11]. trade
[AAC+15, Par91, KUCT15]. trade-off
[AAC+15]. trade-offs [Par91]. Tradeoff
[SHK15]. tradeoffs
[Aga89, Aga91, Aga92, Ann96, PJZA07].
Traffic [ILH16]. training [MCS15].
Tranquilizer [PGB12]. Transaction
[LZS+08, RW07, SS91, DKG18, EQT07, Ver96]. Transaction-Aware
[LZS+08, EQT07]. Transactional
[GMGZP14, KUCT15, RG03, VSDL16, XWG+14, ZLJ16, ATLM+06, BLM06, BDLM07, CMF+13, CNV+06, GCC15, ML515, MCGRS10, MMTW10, MTC+07, OCT14, VTSL12, ZHCB15]. Transactions
[Ano00c, DTLW16, FNA+18, SKBY07, BD06, Dan09, KROl1a, KROl1b, KGK09, RKM+10a, RKM+10b]. Transform
[BVP+19, HN91, LHS16, TKHG04, TT03, TTKG02]. transformation [TSY00].
transformations
[AC09, D’H92, JSM+10, VV11]. Transient
[RM00, VPC02]. Transient-fault [VPC02].
Transitive
[YMR03, XH06, YM92, YMR93a]. translation
[KBF+12]. translator
[JJYH+11]. Transparency
[GKCE17, KBH+03]. Transparent
[ABN99, IVN10, SLGZ99, ZSA13].
Transparency [CB16, JSB+12].
Transport [GRS07]. transposition
[SGLGL+14]. trap [Ram94, GRS97].
trap-based [Ram94]. Tree
[Pla99, BCC010]. Trees
[GFJT19, AD08, CKZ12]. Trends [Gar01].
TRI [ACM93c]. TRI-Ada [ACM93c].
triangular [BKK17]. Trick [Eng00]. Tridia
[Ano00b]. tridiagonal [ZCO10]. trigger
[Kho97]. Triggered [PPA+13]. Troy [SS96].
TSGL [ACD+18]. TSO [HH16]. Tumbler
[PGB16]. Tune [RGK99]. tuned
[Ano95a, Ano95b, Kub15]. Tuning
[LWSB19, LEL+99, CSB00, RGK99].
Tunnelling [Don02]. Tutorial [Taf13].
Twentieth [ACM93a]. Twenty
[AOV+99, ACM93b]. Twenty-fifth
[AOV+99, ACM93b]. Two
[BBH+17, CM08, JYE+16, STY99, GLC99].
Two-Level [JYE+16, BBH+17, STY99].
TX [Cha05, ACM00, USE91b]. TXRace
[ZLJ16]. Type [Gro03, Loc18, VGR06, BAD+09, GE08, Lan02, Mil95, PRB07].
type-checking [Mil95]. Type-Safe
[Loc18, Gro03]. typed [DMBM16]. Types
[AFF06, FFLQ08, Ten98, BAM07, KS93, VGR06]. typings
[Smi06]. UCITA [Gar01]. UK [AOV+99]. ULT
[PG03]. Ultra [PW1+11]. Ultra-Scale
[PWL+11]. UML [SK12]. Unbounded
[CNV+06, FKP15, BDLM07]. uncommon
[BDLM07]. Unconventional [DSAD+18]. Uncover [WS08]. underdetermined [Kub15]. Undergraduate [BLPV04]. Understandable [MSM+16]. Understanding [BZ07, TLA+02, EPAG16, JGS+19, RRP06]. Undocumented [SW97]. Unfoldings [KH18a, SPDLK+17]. Unicode [Swi09]. Uniform [BDN02, SKG+11]. unifying [MS03]. unimodular [D'H92]. unintrusive [HDT+13]. uniprocessor [GL98a, Yan97]. uniprocessors [BRE92, EJK+96]. Uniscape [Ano99b]. UNISIM-Based [LS11]. UNISIM-Based [LS11]. unit [CBM10, Par91, PAB+14]. United [ACM94c]. Unithreaded [RLJ+09]. Units [RKK15, Gun97]. univariate [CMX10]. University [IEE99]. UNIX [Ano00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91]. Unix-to-NT [Ano98b]. UnixWare [Rod94, Rod95b]. unlocking [XSaJ08]. unravel [But14]. Unraveling [Bec00]. Unsynchronized [DSR15]. unveiled [Ano95a, Ano95b]. Unveiled [AAC+15]. up-and-downdating [VV11]. UPC [EGC02, FA19]. updates [NH09]. Updating [HSS+14, HSD+12, NHFP08]. Ur [Chl15b]. Ur/[Web [Chl15b]. URL [TLA+02]. USA [ACM94a, ACM94d]. Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE94a, IEE96, IEE02, SS96, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01]. Usage [BS96, Kor89, VS11b]. Use [Bak95a, FJ08, HW92, WWW+02]. Use-once [Bak95a]. Useful [Pet03]. USENIX [Ano90, Ano94f]. User [ABLL92, DLM99, Eng00, GRS97, MQW95, SL03, BF08, GP05, GR06, HF96, Li05, MSLM91, OT95, SL02, TNB+95, YZYL07]. User-Level [ABLL92, SL03, MQW95, GR06, MSLM91, OT95, SL02, YZYL07]. User-Space [Eng00, GRS97]. Using [Ano99, ABH+00, AZG17, BDN02, BBC+00, BLG01, BTE98, BAZ+19, CRE99, Cor00, DS16, DTLW16, DBRD91, GH03, HBG01, HJT+93, HBTG98, Hei03, How00, KMJCO2, KH18b, Kwo03, KET06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SCD+15, SEP96, SL02, WKG17, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CTYP02, CDD+10, CVJL08, CZK12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JWCTG11, JJJ+03, KASD07, KBF+12, LK15, MM14, NPC06, NWT+07, Nik94, PT03, RK+10a, RK+10b, RM99, RPNT05, SLGZ99, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VD08, ZJS+11, KSB+08]. UT [Hol12]. Utility [FHM95a, JSPM13, FHM95b]. Utility-based [JSPM13]. utilization [Squ94]. Utilizing [ES97, WZSK19]. UX [Ano95a, Ano95b, Yan96]. V [EKB+92, Pea92, FG91, PST+92]. v1.0 [Ano00b]. Validating [LB17]. Validation [BMV03, LB17, SCB15]. Valley [GBK+09]. value [DG99, TFG10, ZCSM02a, ZCSM02b]. Values [EUVG06]. variable [Evr01, dB09]. Variables [Hol98c, Whi03, Bak95a]. variation [GBK+18]. variety [GMD+18]. VAX [Gil88]. Vector [Goo97, HHOM91, HHOM92, KB+04a, KBH+04b, KKS+08, LRZ16, VD08, CSM05, CSM06, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92]. Vector-Thread [KBH+04a, KBH+04b, KBA08]. vectorization [cC91, JMS+10, RKHT17]. vectorized [TP18]. vectore [TK12]. Velodrome [FFY08]. Verification [ÁMdBdRS02, BCR01, Chl15a, DRV02, EGP14, FK12, JBM18, KKW14, BK13, CASA14, DCK07, EG11, FFQS05, HLGD19, NSH14, Stå05]. Verified [Loc18]. verifiers [GLPR12]. Verifying
wave-based [WQLJ18]. wavelet
[TKHG04]. Way
[KAO05, MTN+00, Rin99, ZJFA09, FGT96].
Ways [Wei97]. Weak [KZC15, TVD14].
Weaving [Pra95b]. Web
[Ano94d, Swi09, Chl15a, Chl15b, Hig97, MG14, PCM16, VP16]. Webrelay [Zha00].
WebThreads [Ano97a]. week
[Ano95a, Ano95b]. weeks [But14]. weight [Way95].
Weighted
[CNZS17, EE14, HFV+12]. Weighted-IPC [EE14]. weighting [VS11b]. Weightless
[SPY+93]. Weld [OCS01]. well [Kub15].
well-determined [Kub15]. West [Ev91].
WG2.5 [BT01]. Wheeler
[BVP+19, LHS16, NTR16]. Where
[EHP+07]. Whole [GN96, BBM09].
Whole-Program [GN96]. Wide
[Ano94d, Ano96, FGT96]. wide-area
[FGT96]. Widening [KKW14]. Will
[BMV19, Ano95a, Ano95b]. WiMAX
[CDD+10]. Win32 [Bec01, BW97, CW98, Har99, How00, Lar97, PG09]. window
[VS11b]. Windows [USE98a, HKT93, YZYI07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter
[Ano90, USE89, USE91b, USE93b]. Wired
[DHR+01]. Within [BP05]. without
[Gus05, LNZB04, Pla02]. woes [Ver97].
WOMPAT [Cha05, Ev91]. Work
[Bar96b, Wal95, ALHH08, Bar96a, BL94, BL99, Lep95, OdSSP12, RL14].
work-optimal [Lep95]. work-stealing
[ALHH08, RL14]. worker [SCM05].
Workers [VP16]. workflows [FGG14].
Working [BT01]. Workload
[EE14, KTR+04, SSG07, LBE+98].
Workloads [DS09, GVT+17, KML04].
LYH16, RCC12, SLJ+18, CML00, SQP08a, SQP08b, SQP08c, WA08]. WorkPlace
[Bra97]. works [Hag97, San04]. Workshop
[ACM98a, RM03, Ano94c, Cha05, EV01, IEE98a, IEE94a, IEE94d].

Year [Ano99]. Yokohama [Ano03]. York [IEE90]. Yosemite [Ano00b].

z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

REFERENCES

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

Antonopoulos:2009:ASH

Aliaga:2015:CMS

Aliaga:2012:SDG

Agarwal:2010:DDP

Auerbach:2008:FTG

Antoniu:2000:IJC

REFERENCES

Antoniu:2001:CMJ

Antoniu:1999:ETT

Anderson:1992:SAE

Amestoy:2019:PSB

Amestoy:2000:PAM
REFERENCES

Antoniu:2000:CDP

Aleen:2009:CAS

Almasi:2003:DCD

Adams:2018:TTV

ACM:1992:CPI

ACM:1993:CRT

[ACM94d] ACM, editor. Sixth International Conference on Architectural Support for Pro-

ACM:1995:CPI

ACM:1996:FCP

ACM:1998:AWJ

ACM:1998:CRP

REFERENCES

ACM:2003:SI1

Arvind:1997:MSC

Attali:2001:GVJ

Adams:2008:ENE

Adamo:1998:MTO

Abraham:2005:ABP

Abraham:2008:DPS

[AdBdRS08] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin Steffen. A deductive proof system for multithreaded Java with excep-
REFERENCES

[Abraham:2003:TSP]

[Abadi:2006:TSL]

[Arnold:1996:MPJ]

[Agerwala:2006:SRC]

[AG06]

[Agarwal:1992:PTM]

[Anderson:2008:SCD]
REFERENCES

AlBarakat: 2018: MFM

Amrhein: 1996: CSM

Anderson: 2009: LAC

Akkary: 2000: CSM

Abdulla: 2008: MCR

Adiletta: 2002: PSA

REFERENCES

Aitken:1996:MCJ

Ahn:2012:ISE

Azagury:1999:NIR

Aciciçmez:2006:PSB

Arjomand:2016:BAP

Amer:2018:LCM

REFERENCES

Alfieri:1994:EKI

Agrawal:2008:AWS

Agrawal:2010:HLF

Ahn:2009:MDE

Amer:2015:MRC

Amamiya:1989:DFC

Amaranth:1998:TBM

Aamodt:2003:FMO

[AMC+03] Tor M. Aamodt, Pedro Marcuellio, Paul Chow, Antonio González, Per Hammarlund, Hong Wang, and John P. Shen. A framework for modeling and optimization of prescient instruction prefetch. ACM SIGMETRICS Performance Evaluation Review, 31
REFERENCES

Abraham-Mumm:2002:VJR

Annavaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Anonymous. It’s a multi-threaded world, part 1: Multi-threaded operating systems are becoming the norm. Here’s how your applications can exploit them. Byte Magazine, 17
REFERENCES

Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous. Wanted: The

Anonymous:1992:MWPb

Anonymous:1994:ICS

Anonymous:1994:MDP

Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous. Wanted: The
Multithreaded CIO. Data-
mation, 40(8):34–??, April 15, 1994. CODEN DTMNAT. ISSN 0011-6963.

Anonymous:1995:HUW

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:TWP

Anonymous:1997:NPW

Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. Linux Journal, 34:??, February 1997. CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Anonymous:1998:MS

Anonymous:1998:NTS

REFERENCES

[Ano00b] Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pega-Soft Canada; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation So-

[Ano01] Anonymous. Errata: “Speculative Multithreaded Proce-

REFERENCES

Atkinson:1999:PTF

Arnau:2012:BMG

Areias:2017:SDP
Areias:2019:MDL

Adiletta:2002:NGI

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

USENIX:1996:ATT

Asyabi:2019:COS

REFERENCES

REFERENCES

ISSN 1094-3641 (print), 1557-9476 (electronic).

Bauer:1992:PCE

Budhkar:2019:AMD

Bolding:2000:MSM

Bova:2000:DLP

Balter:1991:AIG

Ball:2011:PPT

Balis:2002:CPM

[BBFW02] B. Balis, M. Bubak, W. Funnika, and R. Wismüller. A

REFERENCES

Barabash:2005:PIM

Buhr:1994:TRM

Ball:1998:MTA

Bhandarkar:2000:PPM

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD

Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene W. Hodges IV,

[Benner:2007:SLS] Peter Benner, Maribel Castillo, Rafael Mayo, Enrique S.

Ball:2001:PVM

BCR01

Baja:2011:FFP

BD00

BCZY16

REFERENCES

REFERENCES

2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Becker:2000:JSU

Becker:2001:SMW

Beddow:1991:MTC

Beebe:1998:BPA

Borkenhagen:2000:MPP

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

[BHK+04] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma,

Bubek:1995:DSC

Barekas:2003:MAO

Bientinesi:2011:CFS

Birrell:1989:IPT

Blumofe:1995:CEM

Blumofe:1996:CEM

REFERENCES

REFERENCES

REFERENCES

Blundell:2006:STM

Bucker:2004:TUC

Blumofe:1992:MSM

Blumofe:1995:EMP

Bolinger:1991:PSH
D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105–122. LCCN QAX 27.

Baquero:1994:CAC

Bergstra:2007:SCE

Brunst:2001:GBP

Burnim:2011:SCSb

Burnim:2011:SCSa

Benson:1996:DMS

Bull:2001:MSO

[BR92] Bob Boothe and Abhiram Ranade. Improved multi-

Bogdanas:2015:KJC

Bramley:1997:TNRb

Bershad:1992:FME

Brebner:2002:MLC

Briot:1989:OAS

Brightwell:2003:DIP

REFERENCES

REFERENCES

Burnim:2010:ACD

Bartolini:2014:AFG

Boisvert:2001:ASS

Brunett:1998:IET

Butenhof:1997:PPT

Buttari:2013:F

Butcher:2014:SCM
Paul N. Butcher. *Seven concurrency models in seven weeks: when threads unravel*. The Pragmatic Programmers.
REFERENCES

REFERENCES

REFERENCES

Caromel:1989:GMC

CarrerasVaquer:1989:APE

Campanoni:2008:PDC

Catano:2014:CSL

Catanzaro:1994:MSA

Cazals:2002:NID

Caswell:1989:IMD

REFERENCES

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

Cui:2000:MPC

Chiueh:1991:MTV

Chang:2004:TSP

Cai:2014:MSD

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Chung:2013:LBD

REFERENCES

Chaudhry:2002:PTS

Chapman:2005:SMP

Chen:2003:CSS

Chlipala:2015:NIM

Chlipala:2015:UWS

Chowdhury:1992:PEA
Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.
REFERENCES

REFERENCES

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[CLL+02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace detec-

REFERENCES

REFERENCES

C Users Journal, 8(3):55–??, March 1990. ISSN 0898-9788.

Coorg:1995:PNS

Cook:2002:REJ

Corbett:2000:USA

Choi:2008:ABP

Clark:2002:AMT

Cappello:1999:PNB

F. Cappello, O. Richard, and D. Etiemble. Performance of the NAS benchmarks on a cluster of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes in Computer Science, 1602:339–350, 1999. CODEN LNCS99. ISSN 0302-
REFERENCES

Criscolo:1998:JQH

Criscolo:1998:JQ

Cromwell:1998:PBD

Chang:1995:CTS

Carr:2000:PCL

Carothers:2002:CMP

Chen:2012:CLA
Guancheng Chen and Per Stenstrom. Critical lock

ChassindeKergommeaux:2000:PIV

Chappell:1999:SSM

Constantinou:2005:PIS

Culler:1991:FGPa

Culler:1991:FGPb

Culler:1991:FGPc

Choi:2010:MDA

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Chen:2018:ROM

Chugh:2008:DAC

Ravi Chugh, Jan W. Young, Ranjit Jhala, and Sorin

REFERENCES

REFERENCES

Day:1992:INC

deBoer:2009:SVC

Draves:1991:UCI

Duda:1999:BVT

Duda:2000:BVT

Dou:2007:CCM

Das:2007:FVT

DeLozier:2018:SSO

[DELD18] Christian DeLozier, Ariel Eizenberg, Brandon Lu- cia, and Joseph Devietti. SOFRITAS: Serializable ordering-

REFERENCES

1045-9219 (print), 1558-2183 (electronic).

DeRusso:1998:MEH

Dolby:2012:DCA

Duncan:2001:LPD

Dillon:1993:VEM

Dill:2000:MCJ

Divekar:1995:IMP

Dam:2010:PCI

Mads Dam, Bart Jacobs, Andreas Lundblad, and Frank Piessens. Provably correct

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Ding:2018:IOC

Doligez:1993:CGG

Devietti:2009:DDS

Dongarra:1999:RAP

J. J. Dongarra, E. Luque, and Tomas Margalef, editors. *Recent advances*
REFERENCES

REFERENCES

[DSAD+18] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and...
REFERENCES

[DTLW16] Andreas Diavastos, Pedro Trancoso, Mikel Luján, and Ian Watson. Integrating transactions into the data-driven multi-threading model using the TFlux platform. *International Journal of Par-

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ISCA ’12 conference proceedings.

[Esmaeilzadeh:2012:LBL] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S. McKinley. Looking back on the language and hardware revolutions: measured power, per-

Eyerman:2009:MLP

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

Eyerman:2014:RCW

Eggers:1997:SMP

REFERENCES

Edelstein:2003:FTM

Emmi:2007:LA

Edelstein:2001:MJP

Edelstein:2002:MJP

Esparza:2011:CPB

El-Ghazawi:2002:UPP

Eggers:2010:AL

REFERENCES

REFERENCES

Ediger:2013:GMA

[102x681]REFERENCES

Eykholt:1992:BMM

Eggers:1990:TEI

English:1995:MC

Engelschall:2000:PMS

Evtyushkin:2016:UMC

Elmas:2007:GRT

Emerson:1997:USW

E. A. Emerson and A. P. Sistla. Utilizing symme-

Esposito:1996:MVB

Estep:1993:LMM

Ergin:2006:ENV

Eigernann:2001:OSM

Evripidou:2001:MDD

Engelhardt:1996:PIP

REFERENCES

DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Fraguela:2019:EDP

Fan:1993:LMC

Farber:1996:EAM

Figueiredo:2001:IPH

Fiske:1995:TPT

Feuerstein:1996:MTP

Feuerstein:2002:LMT

REFERENCES

REFERENCES

Flanagan:2005:MVM

Flanagan:2008:VSC

Faulkner:1991:PFS

Friccu:2014:ESV

Foster:1997:MMC

REFERENCES

Foster:1996:MIW

Fahringer:1995:UTDb

Fahringer:1995:UTDa
Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Finger:1995:LTC

Fisher:1997:SPS

Fide:2008:PUS

Farzan:2012:VPC

Fillo:1997:MMM
REFERENCES

ISSN 0885-7458 (print), 1573-7640 (electronic).

Farzan:2015:PSU

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

Frigo:1998:ICM

Felten:1992:IPM

REFERENCES

Ferreira:1995:PAI

Forsell:2018:RMM

Field:1995:PPS

Fatouron:1996:SAS

Feliu:2016:BAL

Feliu:2017:PFP

Factor:2006:PID
Michael Factor, Assaf Schuster, and Konstantin Shagin. A platform-independent distributed runtime for standard multithreaded Java. International Journal of Parallel...
References

Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor

Flautner:2000:TLPb

Fang:2003:DGO

Grant:2009:IEE

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

REFERENCES

REFERENCES

Guz:2009:MCV

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR
REFERENCES

Garcia:2000:PTL

Gueunet:2019:TBA

Gao:1993:DMA

Gao:1993:SID

Gruen:1998:NIS

Gagnon:2003:EIT

Girkar:1998:IIM

 REFERENCES

Gibson:1994:CMC

Gilbert:1988:DVN

Gildea:1993:MTX

Giloi:1994:PSA

Gorton:1997:GEI

Ganesan:2011:MMP

Gebhart:2012:HTS

Gerlhof:1994:MTA

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

J. C. Gomez, E. Mascarenhas, and V. Rego. The CLAM approach to multi-threaded communication on shared memory multiprocessors: Design and experiments. *IEEE Transactions on Parallel and Distributed Systems*, 9(1):36–49, January 1998. CODEN ITDSE0. ISSN 1045-9219 (print), 1558-

REFERENCES

[Goldwasser:1994:PAS]

[Gollapudi:1996:MCA]

[Golstein:1997:LTC]

[Gonzalez:1990:MSC]

[Goossens:1997:MVC]

REFERENCES

REFERENCES

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN

Grelck:2006:SF

Goldstein:1996:LTI
Seth Copen Goldstein, Klaus Erik

Gu:2018:CCA

Gupta:2010:CSM

Gulati:1995:MSM

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

B. Goossens and D. T. Vu. Further pipelining and multithreading to improve RISC

Georgakoudis:2017:SSA

Haines:1997:OIA

Hamilton:1996:JSN

REFERENCES

Hanson:2002:AFI

Heber:1998:UMA

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT

Ding:2002:MOP

Honarmand:2013:CUA

REFERENCES

REFERENCES

November 2015. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Hig97] Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–7?, January 1997. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Haines:1995:RSC

Matthew Haines, Piyush Mehrotra, and David Cronk. *Ropes, support for collective operations among distributed threads*. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Haines:1997:DPP

Hashemi:2016:EEB

Hirata:1992:MPA

Hirata:1991:MPA

Hum:1996:SEM

REFERENCES

319–348, August 1996. CODEN JPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

REFERENCES

Holub:1999:PJTb

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

REFERENCES

REFERENCES

[Horwood00] Peter Horwood, Shlomo Wygodny, and Martin Zardecki. Debugging multithreaded applications. Dr. Dobb’s Journal of Software Tools, 25
REFERENCES

[H] Hyde:2000:JTP Paul Hyde. Java thread pro-

[H] Huang:2015:COM Kai Huang, Min Yu, Rongjie Yan, Xiaomeng Zhang, Xiaolang Yan, Lisanne Brislolar, Ahmed Amine Jerraya, and Jiong Feng. Communication optimizations for multi-

[I] Huang:2013:CRL Jeff Huang, Charles Zhang, and Julian Dolby. CLAP: recording local executions to reproduce concurrency fail-

[I] Iwama:2001:ICB Chitaka Iwama, Niko Demus Barli, Shuichi Sakai, and Hidehiko Tanaka. Improv-

Illikkal:2010:PQP

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1989:WOS

IEEE:1993:PSP

IEEE, editor. Proceedings,
REFERENCES

REFERENCES

IEEE:1997:APD

IEEE:1999:HCS

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

REFERENCES

Itzkovitz:1998:TMA

Iliakis:2018:DMS

Jacobs:2018:MTV

Jaisson:2008:IPM

Jeffay:1994:LMT

Jensen:1995:DR

Johnson:2004:MCP

Ji:1998:PMM

[Minwen Ji, Edward W. Felten, and Kai Li. Performance measurements for multithreaded programs. ACM SIGMET-
REFERENCES

Jia:2019:UPD

Johnston:2004:ADP

Jolitz:1991:PUB

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386. The basic kernel multiprogramming and multitasking. II. *Dr. Dobb’s Journal of Software Tools*, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

Jin:2003:AMP

Jung:2016:LPS

Jonsson:1999:NPS

Jang:2010:DTE

Joisha:2012:TTE

Joao:2012:BIS

Joao:2013:UBA

Jeffrey:2011:IBM

Jeon:2015:MTH

Jiang:2016:TLH

REFERENCES

Rainer Koster, Andrew P. Black, Jie Huang, Jonathan Walpole, and Calton Pu. Thread transparency in information flow middleware.
REFERENCES

Krashinsky:2004:VTAA

Krashinsky:2004:VTAB

Kreuzinger:2003:RTE

Karamcheti:1998:HLB

Karamcheti:1999:ASM

Kejariwal:2009:PSA
Arun Kejariwal and Calin Cascaval. Parallelization spectroscopy: analysis of thread-

Reference

Reference

Reference

parallel data streaming implemented for the gyrokinetic toroidal code. In
ACM [ACM03], page ?? ISBN 1-58113-695-1. LCCN ???. URL http://
pap207.pdf.

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

Khan:2012:MAN

Kahkonen:2018:TPC

Kondguli:2018:BUS

Khosla:1997:MAT

Samir Khosla. Multithreading the asynchronous trigger
REFERENCES

[Kavi:1995:DCM]

[KHP+95]

[Kawamoto:1995:MTP]

[Kutsuna:2016:ARM]

[Koji:2017:HLG]

[Kusakabe:1999:INS]

[Kim:1994:FPF]

[Keen:2003:CCP]

Yang-Suk Kee, Jin-So Kim, and Soonhoi Ha. ParADE: An OpenMP programming environment for SMP cluster systems. In ACM [ACM03], page ?? ISBN 1-58113-695-

Kislal:2018:ECC

Kaiser:2014:WAM

Kurzak:2009:SLA

Kleber:2000:TSA

Kang:2008:ISE

Kwak:1997:VMN

Kwak:1999:EMC

REFERENCES

Koopman:1992:CBC

Koufaty:2003:HTN

Kakulavarapu:2001:DLB

Kavi:2002:MMA

Kapil:2004:CMP
Kvatinsky:2014:MBM

Kim:2016:SEA

Kim:2006:ERI

Koniges:2000:ISP

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

REFERENCES

Khyzha:2012:AP

Kaiser:2006:CJC

Kienzle:2001:C TT

Kienzle:2001:IEO

Keckler:2012:MMC

Kawaguchi:2012:DPL

Krone:1998:LBN

REFERENCES

REFERENCES

Kleiman:1996:PT

Kalla:2004:IPC

Krieger:1994:ASF

Yu:2011:SDH

Krishnan:1999:CMA

Kopczynski:2017:LSS

Kambadur:2012:HCA

REFERENCES

Kambadur:2013:PSP

Kumar:2004:SIH

Keller:2000:JUS

Komosinski:2017:MCE

Kubica:2015:PHT

Kuchlin:1991:MCI

REFERENCES

LCCN QA 76.95 I59 1991.
URL http://www.acm.org:
issac/120694/p333-kuchlin/.

Kuchlin:1992:MTC

W. Kuchlin. On the multi-
threaded computation of mod-
ular polynomial greatest com-
mon divisors. Lecture Notes in
Computer Science, 591:369–
ISSN 0302-9743 (print), 1611-
3349 (electronic).

Kestor:2015:TPD

Gokcen Kestor, Osman S. Un-
sal, Adrian Cristal, and Ser-
dar Tasiran. TRADE: Precise
dynamic race detection for
scalable transactional mem-
ory systems. ACM Trans-
actions on Parallel Compu-
ting (TOPC), 2(2):11:1–11:??,
July 2015. CODEN ????
ISSN 2329-4949 (print), 2329-
4957 (electronic).

Kuszmaul:2015:SSF

Bradley C. Kuszmaul. Su-
perMalloc: a super fast mul-
tithreaded malloc for 64-
bit machines. ACM SIG-
PLAN Notices, 50(11):41–55,
November 2015. CODEN SIN-
ODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160
(electronic).

Kejariwal:2009:ELL

Arun Kejariwal, Alexander V.
Veidenbaum, Alexandru Nico-
lau, Milind Girkar, Xinmin
Tian, and Hideki Saito. On
the exploitation of loop-level
parallelism in embedded ap-
plications. ACM Transac-
tions on Embedded Comput-
ing Systems, 8(2):10:1–10:??,
January 2009. CODEN ????
ISSN 1539-9087 (print), 1558-
3465 (electronic).

Kleinmann:2017:ACS

Amit Kleinmann and Avishai
Wool. Automatic construction
of statechart-based anomaly
detection models for multi-
threaded industrial control
systems. ACM Transactions
on Intelligent Systems and
Technology (TIST), 8(4):55:1–
55:??, July 2017. CODEN ????
ISSN 2157-6904 (print), 2157-6912
(electronic).

Kwok:2003:EHC

Yu-Kwong Kwok. On ex-
ploring heterogeneity for clus-
ter based parallel multithread-
ing using task duplication.
The Journal of Supercom-
CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484
(electronic). URL http://
/ipsapp009.kluweronline.
com/content/getfile/5189/
43/4/abstract.htm; http://
/ipsapp009.kluweronline.
com/content/getfile/5189/

Kasikci:2015:ACD

Baris Kasikci, Cristian Zam-
Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

REFERENCES

REFERENCES

Lewis:1998:MPP

Lewis:2000:MPJ

Lee:2017:MVN

Lo:1998:ADW

Ling:2012:HPP

Li:2006:MEMa

REFERENCES

REFERENCES

[180]

Lo:1999:TCO

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Leman:2002:EFT

Leppanen:1995:PWO

LFA96

[Lowenthal:1996:UF]

Limon:2004:MCR

[LG04] Oliver Lemon and Alexander Gruenstein. Multithreaded context for robust conversational interfaces: Context-sensitive speech recognition and interpretation of correc-

REFERENCES

[Lakshminarayana:2012:DSP] Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim,

REFERENCES

Liao:2011:AUB

Lee:2018:ERD

Lashgar:2015:CSR

Le:2007:IPM

Leiserson:2012:DPR

Liu:2018:ISI

REFERENCES

2018. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Liu:2014:TPA

Li:2008:TAN

Li:2019:HSG

Liu:2015:LRT

Lu:2013:REM

Li:2017:GGB

Mushtaq:2014:EHP

REFERENCES

CODEN CCUJEX. ISSN 1075-2838.

CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Marowka:2003:EOT

Marowka:2007:PCD

Masney:1999:IMT

Mendelson:1999:DAM

Mattson:2003:HGO

Mendelson:1999:DAM

McNairy:2005:MDC

REFERENCES

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

REFERENCES

REFERENCES

Michaek:2004:SLF

Maabreh:2018:MHT

Miller:1995:TPC

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

Meng:2010:AOS

Lingchuan Meng, Jeremy Johnson, Franz Franchetti,

Mars:2012:BDS

Moreno:1997:PMP

Moo dy:1999:STT

Maiya:2014:RDA

Marquez:2017:MCH

REFERENCES

Machado:2015:CDD

Morishima:2014:PEG

Makreshanski:2015:LSE

Mathis:2005:CSM

Morandini:2007:UDS

Mauro:2001:SIC

Marino:2009:LES

McKenney:2010:WGM

Metzner:2000:MMR

McAuley:2003:CVC

Marinov:2016:PAF

Markovic:2015:TLS

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

[Mou00] John Mount. Automatic detection of potential deadlock. Dr. Dobb’s Journal
REFERENCES

Massalin:1989:TIO

Manson:2001:CSM

McCreesh:2013:MTS

Martin:2004:HPA

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

Nuno Machado, Daniel Quinta, Brandon Lucia, and Luís Ro-
REFERENCES

203

Mayes:1995:ULT

Marinescu:1994:HLC

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

Meier:2017:PVM

Malan:1991:MA

G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91a], pages 27–40. LCCN QAX 27.
McJones:1987:EUS

McJones:1989:EUS

[MS89] Paul R. McJones and Garret F. Swart. *Evolving the UNIX system interface to support multithreaded programs*. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

Mantel:2003:UAS

McCartney:2015:SMT

Marsh:1991:FCU

Marino:2010:DSE

Marino:2011:CSP

[MSM+11] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and

Matsushita:2000:MSC

Miller:2012:VCE

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA

Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor allocation policy for multiprogrammed shared-memory multiprocessors. *ACM Transactions*
REFERENCES

Morad:2006:PPE

Mahesri:2007:HSS

Naik:2007:CMA

Nikolopoulos:2001:EMA

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS

Kengo Nakajima. Parallel iterative solvers of Ge-
REFERENCES

Naik:2006:ESR

Narlikar:1999:SES

Nagpal:2012:CGE

Nichols:1996:PP

Nichols:1998:PP

Najjar:1993:QAD

Walid A. Najjar, A. P. Wim Bohm, and W. Marcus Miller. A quantitative analysis of dataflow program execution — preliminaries to a hybrid design. Journal of Parallel and Distributed Com-

Nagarakatte:2012:MAP

[Nelson:2015:RGH]

[Natarajan:1993:PVM]

[N] Brian Norris and Brian Demsky. A practical approach

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

Nemawarkar:1994:PIN

Neamtiu:2009:STU

Neamtiu:2008:CEV

REFERENCES

Nikhil:1994:MI

Nielsen:2000:MT

Narayanaswamy:2016:VCA

Nicolau:2009:TEP

Nakaike:2010:LER

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

REFERENCES

ISSN 0163-5964 (print), 1943-5851 (electronic).

| [OA08a] | Guilherme Ottoni and David I. August. Communication op-
timizations for global multi-
threaded instruction schedul-
ing. *ACM SIGARCH Com-
puter Architecture News*, 36
(1):222–232, March 2008. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

Ottoni:2008:COGb

[OA08b] Guilherme Ottoni and David I.
August. Communication op-
timizations for global multi-
threaded instruction schedul-
ing. *Operating Systems Re-
view*, 42(2):222–232, March
2008. CODEN OSRED8. ISSN 0163-5980 (print), 1943-
586X (electronic).

Ottoni:2008:COGc

[OA08c] Guilherme Ottoni and David I.
August. Communication op-
timizations for global multi-
threaded instruction schedul-
ing. *ACM SIGPLAN No-
tices*, 43(3):222–232, March
2008. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic).

Oz:2019:SMA

[OA19] Isil Oz and Sanem Arslan. A sur-
vey on multithreading alter-
atives for soft error fault tol-
erance. *ACM Computing Sur-
veys*, 52(2):27:1–27:??, May
2019. CODEN CMSVAN. ISSN 0360-
0300 (print), 1557-7341 (elec-
acl.org/ft_gateway.cfm?
id=3302255.

Olszewski:2009:KED

Marek Olszewski, Jason
Ansel, and Saman Amarasinghe. Kendo: efficient de-
terministic multithreading in
software. *ACM SIGPLAN Not-
ices*, 44(3):97–108, March
2009. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic).

Ossner:2013:GMB

Christopher Oßner and Kle-
emens Böhm. Graphs for
mining-based defect localiza-
tion in multithreaded pro-
grams. *International Jour-
nal of Parallel Programming*,
CODEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640 (elec-
springer.com/article/10.
1007/s10766-012-0237-2.

Ostler:2007:IHT

Chris Ostler, Karam S.
Chatha, Vijay Ramanurthi,
and Krishnan Srinivasan. ILP
and heuristic techniques for
system-level design on net-
work processor architectures.
*ACM Transactions on De-
sign Automation of Elec-
tronic Systems*, 12(4):48:1–
48:??, September 2007. CO-
DEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (elec-
tronic).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Oplinger:2002:ESRc

Oh:2012:MTS

Omma:2004:BMA

Ongwattanakul:1997:RDM

Odersky:1993:CNA

Ottoni:2006:SPC

Oikawa:1995:RDU

Shuichi Oikawa and Hideyuki Tokuda. Reflection of develop-

Oyama:2000:OCC

Oaks:1997:JT

Oaks:1999:JT

Peternier:2014:IEU

Pereira:2017:SBC

Pant:1999:TCP

REFERENCES

REFERENCES

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Thread tranquilizer:

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Park:1997:HPM

Pham:1991:EMD

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

Pham:2018:TSM

Pichel:2009:IDR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
Porter:2015:MMS

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabhu:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Parashar:2013:TIC

Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gamb-

Prieto:2011:MCM

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1995:WTS

Prasad:1995:WNT

REFERENCES

Pyarali:2001:EOT

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR
REFERENCES

0626 (print), 1532-0634 (electronic).

Peacock:1992:EMS

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pickett:2006:SSF

Pathania:2017:DTM

Anuj Pathania, Va chinathan Venkataramani, Muhammad Shafique, Tulika Mitra, and
REFERENCES

Preissl:2012:CSS

Preissl:2011:MGA

Polap:2018:MTL

Park:2010:ISP

Quintana-Orti:2012:RSP

Quintana-Orti:2009:PMA

[QOQOV09] Gregorio Quintana-Ortí, En-

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RBAA05] Raimi Rufai, Muslim Bozyigit, Jaralla Alghamdi, and Moataz</td>
</tr>
<tr>
<td>Ahmed. Multithreaded parallelism with OpenMP. *Parallel Processing</td>
</tr>
<tr>
<td>(print), 1793-642X (electronic).</td>
</tr>
<tr>
<td>R. Sanzi. Mach: a foundation for open systems (operating systems). In</td>
</tr>
<tr>
<td>[RBK09] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski,</td>
</tr>
<tr>
<td>Benjamin Zorn, Rahul Nagpal, and Karthik Pattabiraman. Detecting and</td>
</tr>
<tr>
<td>1558-1160 (electronic).</td>
</tr>
<tr>
<td>[RBPM00] M. Ranganathan, Mark Bednarek, Fernand Pors, and Doug</td>
</tr>
<tr>
<td>In USENIX [USE00b], page ?? ISBN 1-880446-24-3. LCCN ????? URL http://db.</td>
</tr>
</tbody>
</table>
Rakvic:2010:TMT

Radojkovic:2012:OTA

Radojkovic:2010:TSB

Radojkovic:2016:TAM

Rogers:1995:SDD

Radojkovic:2016:TAM

Ronsse:1999:RFI

Russell:2006:ESRa

Reck:1998:TSR

Reich:1995:DHP

Reilly:2001:TNF

Redstone:2000:AOSa

Redstone:2000:AOSb

Redstone:2000:AOSc

Rajwar:2003:TET

Radojkovic:2012:EIS

Rodgers:1999:TSN

Rashid:2010:AEP

Richman:1991:EHC

Scott Richman. Examining...
REFERENCES

...ing the Hamilton C shell (Unix power for OS/2). Dr. Dobbs’s Journal of Software Tools, 16(1):98, 100, 102, 104–106, January 1991. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

[Roth:2019:AOC] Ágoston Róth. Algorithm 992: An OpenGL- and C++-based function library for curve and
REFERENCES

Roy:2009:LPF

Ruan:2005:EIS

Ruan:2008:DCS

Raghunath:1993:DIN

Robbins:1996:PUP

Rugina:1999:PAM

REFERENCES

Robbins:2003:USP

Reddy:2006:UPB

Roy:2011:SRP

Rivara:2012:MPL

Rosu:2007:ITO

Rounce:2008:DIS

[B. Robatmili, N. Yazdani, S. Sardashti, and M. Nourani. Thread-sensitive instruction issue for SMT processors.}
REFERENCES

Shaw:1998:CIP

Samorodin:1999:SFS

Sanden:2004:CJT
B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SJL

Smith:1980:ASD

Sah:1996:PIS
References

Saez:2013:DFP

Schweitzer:2015:PEM

Schmitz:1990:CEM

Schauser:1995:SCP

ACM order number: 549950.

Schonberg:1989:FDA

Schauser:1991:CDT

Schmidt:1998:EAM

REFERENCES

Stan:2005:IPR

[Schauser:1991:CCM]

[Schauser:1991:CML]

REFERENCES

Sundaresan:1996:COO

Sahin:2018:CSC

Sung:2014:PTR

Sodan:1997:ENN

Sridharan:2014:AEP

Shahnaz:1995:DMD

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Sta-
REFERENCES

Shankar:1995:STI

Shaw:1998:CPM

Shene:1998:MPI

Shinjo:2000:DCEb

Shi:2015:CLM

REFERENCES

3566 (print), 1544-3973 (electronic).

Singh:1992:DRS

Singh:1992:DRT

Stewart:1997:MDH

Shirole:2012:TCU

Sung:2001:MDA

Smaragdakis:2007:TIC

Schonherr:2011:MTI

REFERENCES

Shin:2006:ADT

Scherer:1999:TAP

Sangaiah:2018:SSA

Su:2019:SSC

Sharkey:2008:RRP

Sidiroglou:2009:AAS

REFERENCES

March 2009. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Solihin:2002:UUL

Solihin:2003:CPU

Sodan:2010:PMM

Smith:1992:MTX

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

Daniel Sanchez, George Micheliannakis, and Christos Kozyrakis. An analysis of on-chip interconnection networks for large-scale chip multiprocessors. *ACM Transactions on
REFERENCES

Shinjo:2000:DCEa

Shinjo:2005:AEP

Sharkey:2007:EOA

Saarikivi:2017:MTS

Spero:1994:MMD

Skjellum:1996:TTM

Saxena:1993:PMS

REFERENCES

J. Silc, B. Robic, and T. Ungerer. Asynchrony in parallel computing: From dataflow to multithreading. *Parallel and
REFERENCES

Speer:1991:DTP

Small:1995:SAB

Szymanski:1996:LCR

Sutherland:2010:CTC

Shi:2007:CCP

Soundararajan:2010:CSE

Saito:1999:MRS

[SSP99] H. Saito, N. Stavrakos, and C. Polychronopoulos. Multithreading runtime support

Sohn:1997:DWD

Skillicorn:1998:MLP

Snavely:2000:SJSa

Snavely:2000:SJSb

Snavely:2000:SJSb

Sundell:2005:FLF

Stapleton:1990:DSS

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF

Stuckey:1995:FCI

Snively:2002:SJP

Schmidtmann:1993:DIM
REFERENCES

Shen:1999:ATL
Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??.

Sigmund:1996:IBM

Sigmund:2001:SCS

Suito:2012:DRM

SunSoft:1995:SMP

Sutter:1999:OAM

Schmidt:1996:CAPb

Schmidt:1996:CAPc

Schmidt:1996:CAPa
D. C. Schmidt and S. Vinoski. Comparing alternative

Smith:1998:SIF

Sabarimuthu:2019:ADC

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Gérard Swinnen. *Apprendre à programmer avec Python: objet, multithreading, événements, bases de données, programmation web, programmation réseau, Unicode*. Editions Eyrolles, Paris, France,
REFERENCES

2009. xviii + 341 pp. LCCN ???

Shee:1994:DMA

Shih:2014:COR

Schwan:1992:MRT

Sterling:2002:GMP

Schwan:1991:RTT

Sinenian:2013:MMS

Taft:2013:TPS

Theobald:2000:LCE

[TAK+00] Kevin B. Theobald, Gagan Agrawal, Rishi Kumar, Gerd

[TAN04]

Tamasanis:1995:MMW

[Tam95]

Thoziyoor:2008:CMM

[TAM*08]

Tanner:1987:MTI

[Tan87]

Tolmach:2004:IFL

[TAN04]

Tam:2007:TCS

[TAS07]

Thompson:1997:THP

[TB97a]

Thompson:1997:TPC

[TB97b]
REFERENCES

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: maximizing on-chip paral-
 REFERENCES

REFERENCES

Tan:2000:PEN

Terechko:2012:BPS

Thekkath:1995:DPM

Throop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Thitikamol:1998:PNM

Yatish Turakhia, Guangshuo Liu, Siddharth Garg, and

[Tra91] Kenneth R. Traub. Multithread code generation for dataflow architectures from

[Todd2010:AVI]

Tsai:1997:PSC

Tsai:1997:SIC

Torrant:1999:SMS

Tumeo:2012:DNG

Tang:1999:CRT

Tang:2000:PTR

[TVD10] Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT: checking axiomatic

Turon:2014:GNW

Taura:1997:FGM

Utterback:2017:POR

Ungerer:2002:MP

Ungerer:2002:SPE

Ungerer:2003:SPE

USENIX:1989:PWU

USENIX:1991:PUM

USENIX:1991:PWU

USENIX:1992:PSU

USENIX:1992:SED

USENIX:1993:PUMB

USENIX:1993:PWU

USENIX:1996:PFA
REFERENCES

REFERENCES

library/proceedings/bsdcon02/tech.html.

Vlachos:2010:PEAa

Vlachos:2010:PEAb

Vachharajani:2005:CMP

Vasconcelos:2006:TCM

Vlassen:1999:QMM

Volkman:1993:CCP

Verdu:2016:PSA

REFERENCES

Vander-Swahmen:2009:CAM

Vale:2016:PDT

Vantrease:2008:CSI

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Wayner:1995:F

Wu:1999:GMC

Wang:2007:EAP

Wallace:1998:TMP

Wilde:1998:RES

Wang:2004:HTVd

Wang:2004:HTVa
[WCW+04b] Perry H. Wang, Jamison D.

Wang:2004:HTVb

Wang:2004:HTVc

Wester:2013:PDR

Weisz:1997:MFA

Wei97

Weissman:1998:ATT

Wei98a

Weissman:1998:PCS

Wei98b

Wong:1994:SSI

Wei99

White:2003:UTL

Wallach:1995:OAM

Williams:1994:NST

Wilson:1997:BTP

Wilson:2000:PBC

Wang:2019:MEM

Wei:2012:OLL

Youjip Won, Kyeongyeol Lim, and Jaehong Min. MUCH: Multithreaded content-based file chunking. *IEEE Transactions on Computers*, 64(5):1375–1388, ????. 2015. CODEN ITCOB4. ISSN 0018-
REFERENCES

REFERENCES

Whittaker:1997:TML

Wheeler:2010:VMM

Wu:2012:SPA

Wong:2008:TAF

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Hong Wang, Perry H. Wang, Ross Dave Weldon, Scott M. Ettinger, Hideki Saito, Milind

[REFERENCES]

Wang:2019:SSS

Wang:2008:PIM

Xu:2006:RTR

Xekalakis:2012:MSM

Xu:1999:DIT

Xian:2008:CAS

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

Young-Myers:1992:DTC

Young-Myers:1993:ESTa

Young-Myers:1993:ESTb

Yu:2009:CIC

Yu:2012:MCD

Yoo:1996:CAA
Yoo:1996:PCM

Yeh:2017:PFG

Yousef:2009:PES

Yong:2003:AMC

Yan:2007:HMC

Yang:2014:CNR

Yang:2007:RUL
Jin-Min Yang, Da-Fang Zhang, Xue-Dong Yang, and Wen-Wei Li. Reliable user-level rollback recovery implementation for multithreaded processes on windows. Software—Practice and Experience, 37(3):331–346, March 2007. CODEN SPEXBL. ISSN 0038-
Zoppetti:2001:IDD

Zhang:2015:DMB

Zhai:2002:COSa

Zhong:2019:SHS

REFERENCES

Zhou:1998:LST

Zhang:2000:WMH

Zhang:2015:LOS

Zignin:1996:TDM

Ziarek:2009:SWB

Zhang:2010:DCS

Zhu:2011:TPS
David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall. TaintEraser: protecting sensitive data leaks using

Zhang:2012:SCC

Zhang:2010:SCC

Zhang:2016:DPO

Zhang:2010:PED

Zhang:2016:TED

Zhang:2016:SAN

Zebchuk:2007:BBC

Zhuang:2004:BRA

Zhuang:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB

DEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Zheng:2015:ACC