A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

22 June 2020
Version 3.183

Title word cross-reference

#4 [Pet00].
+ [BMV03], 2 [TKHG04], 3
[KSB+08, PYP+10]. [YLLS16]. D^i
[Evr01]. F^2 [BCS11]. k [ZTN19]. LU
[VDO8]. N [ZJFA09]. π [III01]. QR
[But13, GKK09, VDO8].

-based [Rót19]. -Calculus [III01].
-Machine [Evr01]. -way [ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].
/multi [Taf13]. /multi-threaded [Taf13].
'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d], '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b, Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA05]. 35th [Gol94]. 3D
[Ano97b, Loe97].
4 [BAM93, SKS+92]. 4th [Ass96].
5 [FLR98]. 5th [Cha05].
64-bit [Kus15, SBKK99]. 6th [DLM99].
7th [USE00b].
80 [Bri89]. 821 [HBG02].

Abstract

[CSS+91b, CGSV93, DV99, KPP12, LMA+16, MJF+10, Ném00, CSS+91a, CSS+91c, Dil00, VDBN98, ZJFA09].

Abstraction

[KI16, Bak95b, GSK+18, GPR11, ZSJ06].

AC

[BGK94a, BGK94b].

Accelerate

[JLA16].

Accelerating

[BAZ+19, LS11, S MQP09, VGK+10a, VGK+10b].

acceleration

[JSM13, NBMM12].

Accelerators

[NTR16, SGLGL+14].

Access

[BP19, Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SSkP+07].

Accounting

[LMA+16, EE09b].

Accuracy

[SHK15, TO10].

Achieving

[CPT08, VTSM12].

Achieving

[AHW02, SP05, KGGK09, WTKW08].

ACM

[ACM93b, RM03, IEE02, ACM98b, ACM99a].

ACM/IEEE

[ACM98d].

Activation

[KG94].

Activations

[ABLL92, BV M19, DNR00, SS95].

Active

[BKI06, BDJ06, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada [ACM93c, Bar09, Dil93, GMB93, KPPR06, KR01b]. ADAM [Far96]. adaptable [LLL95]. Adaptation [CMBAN08]. Adaptive [ABN00].

Adaptive

[ALHH08, HBT98, HTDL18, KI95, LHY96, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, WYT+20, ZWL15, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW+16]. Adding

[PLY89, Rie99, MCM07]. Address

[CLFL94, PWL+11, CKZ12, Lie94].

Addressing

[WA08, CKD94, ZSB+12].

ADL

[BVL09]. Advanced

[BGG95, BP19, GBG95, Hei03, BZ07, GBB+05].

Advances

[IEE97, JHM04, KKDV03, DLM99].

Advantage

[Wei97]. Adversarial

[FF10].

Affinity

[HLH16, NAAL01].

Age

[Cro98].

agent

[Way95].

Agents

[CWHB03, CR02, Way95, BDF98].

Aggregate

[TGO99, TG00].

AGNI

[RBP00].

Agnostic

[SLJ+18].

agreement

[GMW09].

Aid

[Wei97]. aided

[MCRS10].

aids

[Mat97].

Air

[MPD04].

AI

[TLA+02].

Albuquerque

[Ano94e].

Algebra

[KLDB09, NBS+15, PHC909, YSY+09].

Algebraic

[ACM94c, Lak96, MR09, Wat91].

Algorithm

[AT16, ABC+09, CNZ9, HH11, MP13, OR12, Ró69, TT03, WYT+20, ZBS15, BKK17, GKK99, KGPH12, KNPS16, LCH+08, Mah11, Mah13, S C G95, TKHG04, Dav11, HBG02, YFF+12].

Algorithmic

[Lei97, BBH+17].

Algorithms

[BP05, EJRB13, FS96, LA93, MNG16, NSF+14, Pan99, QOM+12, TTK902, YMR93b, Bar09, CF+12, CLRS09, FR95, GKK05, Lei97, Lep95, NFBB17, QQOV+09, RRMJ12, YMR93a, Li05]. algorithms-by-blocks

[QQOV+09].

Algorithms-by-Tiles

[QQOV+09].

aliasing

[NA07].

aligned

[MCRS10].

alignments

[KGPH12].

Allaire

[Hig97].

Alleria

[BP19].

Alleviate

[BD00].

Alloc

[KSU94].

Allocating

[SEP96].

Allocation
Allocations [LK20].

Allocator
BMBW00b, BMBW00a, BMBW00c.

Allocation [MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04].

Allocator
BMBW00b, BMBW00a, BMBW00c.

Allocation [MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04].

Alternatives
[SV96c, SV96a, SV96b]. Alternatives
[MB99, OA19, MKR02]. Alto [ACM01].

ALU [KDM+98]. always [DWS+12].

always-on [DWS+12]. Amdahl
[CN14, NZ17]. Among
[CB16, HMC95, Sj95]. analysing
[NJK16, PV06]. Analysis
[AKS06, BCZY16, BVM19, BE12, BE13, BTL+19, BBO+00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJRB13, Hai97b, Hol12, HL16, LCK11, LML00, LHG+16, NBM93, REL00b, Rin01, RR99, SBCV09, TAM+08, VP16, Yoo96a, Zuh02, AC09, ACC+03, BGZ97, BBH+17, BPSH05, BMM09, CHH+03, CS12, CVJL08, Cor00, GBCS07, HEJ09, JPSN09, KTK12, KC09, Lei97, LBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH+12, dB09, vP03].

Analytic
[Squ94, MAF19]. Analytical
[DKF94, SV19, VT96, SBC91]. Analytics
[JGS+19, LTL+16].

analyse [LMC14].

analyser [Fer13, HLB90]. Analyzing
[HRH08, Kor98, RHH10, TMCP10].

anatomy [Re95]. Android
[MKM14].

Animation [WQLJ18]. Annotations
[BM94, We98b, AGN99]. Annual
[ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b]. anomalies
[Sch89]. Anomaly [KW17].

antipatterns
[BPSH05]. Antonio [USE92a]. any
[Hig97, Mar07].

API
[Ano00b, BDN02, DM98, Van97a].

APL
[CJ91].

apps
[McM96c]. Application
[AMRR98, CA20, HTDL18, KZTK15, KSU94, PG92, PLT+15, SV19, TKA+01, TAM+08, Yas95, DWYB10, EJK+96, HDT+13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11]. Application-Level
[HDTL18, KSW04, PLT+15, HDT+13, LV07, ZJS+11]. Applications
[Ano00c, AZG17, AKP99, BKS06, BMBW00b, BNH01, Cha05, Chl15a, DVA15, DSAD+18, DSI6, Don02, Dru95, EV01, FURM00c, HW01, HWZ00, JYE+16, JLA16, KMjC02, KRH98, LWVB19, LPK16, Lar97, MGI14, MG15, PCPS15, PWL+11, Pul00, RD96, DFC+19, SGM+97, Sod02, Ten02, Tet94, TSV12, TLGM17, VCM19, VP16, Vo09, WJA+19, YG10, ZJS12, Ano92a, Ano92b, Ano94b, ASS99, AAKK08, BWDZ15, BBFW03, BGG97, BMBW00a, BMBW00c, BW97, DSEE13, BPSH05, BM03, CB99, CB99, CSB00, CR12, FM92, FURM00s, GSO2, GCRD04, HL90, ISS98, JSM12, JSM13, KVN+09, LSW+12, MLCW11, MKM14, MKIO04, MLC04, MTO02a, MTO02b, MTO02c, MKK99, MKR10, NRO6, Omm04, PJZA07, RC+10, Ref95, San04, SSN10, SKP+12, TMC09, TMC10, TR18, VIA+05, VGK+10a, VGK+10b, WAZ+07].

Applications
[WT10, WOKH96, XZN99, YZ14, kSYH+11, ZKR+11, Len95]. apply
[NZ17]. Applying
[VTSL12, MTO02a, MTO02b, MTO02c].

Apprendre [Swi09]. Approach
[AZG17, BBSG11, CJW+15, ES97, FKT96, GM69, KKW14, KS16, ND16, RC+16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, DHM+12, LZW17, LZS19, LZZ+14, MS03, RC+12, SCZG00, TP18].

Approaches
[BLPV04, MB07].

Approximate
[HVF+12, GEG07, GE08, KGPH12]. Apps
[PCM16]. April
[Ano00a, Ano03, USE01]. arbitrary
[BGC14]. Arc
[CNZ17].

Arc-Weighted
[CNZ17]. ARCH
[Ada98].

Architectural
[ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07].

Architecture [ACM88c, BBD+91, BVL09, BTE98, Car89b, CL95, DS09, DO95, ERKGO1, For97, Ga03, GK94, GHG+98, GV95, GN92, HTZ+97, HMNN91, HHOM91, HHO92, KBH^+04a, KBH^+04b, KIA99, Man91, MM01, MB99, PVS+17, PTMS09, PKB^+91, PS01, REL00b, RS08, SLJ+18, SCL05, SHK15, SSYG97, SKK^+01, SZ02, TKA^+01, VK99, ZL10, ACC^+03, AAHF09, Ano97b, BT01, Bon13, CMF^+13, CL94, CHH^+03, Cho92, Don92, Du95, Eyr01, Far96, Fu97, Gal94, GDA^+17, GL98a, Go96, HF88, HKN^+92, HNN^+92, I^+94, KHP^+95, KT99, Loi95, Mah13, MK12, N^+00, NPA92, PYP^+10, PDP^+13, PWD^+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TB^+95, Ts97b, UZU00, Wan94, WCC^+07, YZ07, Yan97, CH04].

Architecture-Agnostic [SLJ+18].

Architectures [AT16, ABLM19, Day92a, Day92b, HD02, GGB93a, GN00, HPA^+15, HMLB16, Ho98d, IXS18, IBST01, JLS99, KTR^+04, LLKS12, LB92, LH94, LG06, LDT^+16, MS02, MN00, NGGA94, QOIM^+12, RLJ^+09, SGM^+97, TG99, THA^+12, Tra91, TJY98, TSV12, VCM19, WG94, WXG^+14, ZAK01, ABD^+12, ABC^+15, ABC^+09, BIK^+11, BS10a, BH95, CML^+10, CFG^+12, Cat94, DTR18, FTAB14, GGB93b, GK05, Gil94, GL98b, HFV^+12, ICH^+10, JMS^+10, LMC14, Lu94, MLCW11, MLC04, Mus09, OCRS07, PT91, PPA^+13, PJZ07, PHCR09, RHH10, RKBH11, SBCV90, Sch08, Sha95b, SLG06, Squ94, SMQP09, SKA01, TE94a, The95, TKHG04, ZTN19].

Area [AMP19, FGTR96, Par91].

Area-efficiency [AMP19].

Aren’t [Sut99].

Ariadne [MR98].

arising [ArV03].

Array [BVP^+99, GS06, LHS16, PDMM16].

Arrays [BWXF05, SHW19, AR19].

arrow [GE08].

arrow-type [GE08].

Art [MP13, I^+94].

artificial [KU17].

ASAT [SEP96].

Ashes [Th99].

ASN [CJW^+15].

Aspects [SB80].

ASPLOS [ACM94d].

ASPLOS-VI [ACM94d].

Assuming [BS06].

assertion [AdBdR05].

assertion-based [AdBdR05].

assessment [Mah13].

Assignment [BC98, RCM^+16, KKT^+18, MCRS10, ORF93, RCM^+12].

assisted [Du95].

associated [San04].

Associative [SW08].

Assume [BGP06].

Assume-guarantee [BGP06].

Assumptions [ES97].

ASSURE [S09, Dye98].

Asymmetric [MNU^+15, GA09, JSMP13, MWK^+06, RBK^+09, SCCP13, SMQP09].

Asynchronous [HH11, KFG15, KG07, KSD04, TP18, Yoo96a, GMR09, Kho97, KASD07].

Asynchrony [SRU98].

Athena [Egg10, Hud96].

ATL [SW97].

Atlanta [ACM99a].

Atomic [KK^+08, RD06].

Atomicity [DELD18, BLML06, BNS11a, BNS11b, BNS12, FF04, FFQ04, FF08, FF08, FSQ08, FFY08, WS06].

atomics [ND13].

Atomizer [FF04, FF08].

Attacks [SBE^+19].

Audience [SBB96].

Augmented [GFJT19, LH09].

August [RM03, IEE99, USE93a, USE98a].

Austin [USE00b].

Austria [Hon94].

authoring [MCS15].

Auto [Pol90, RKHT17].

Auto-vectorization [RKHT17].

AutoDock [TO10].

Automata [ES97].

Automata-Theoretic [ES97].

Automated [BSSS14, DR02, KZC15, TR14].

Automatic [BVL09, HBTG98, JJJ+03, KW17, Mou00, SEP96, YLLS16, GJ11, JSB^+11, SL^+09].

Automatically [NWT^+07, TG99, CJ91].

autotuning [CSV10].

Availability [SP07].

Avenue [Ano94d].

avoid [Pra95c].

avoidance [LC13, WLK^+09].

AVP [Ano00b].

Aware [AGJ18, BHP^+03, CCWY17, FSPD16, FSPD17, GVT^+17, HC17, Kim14, LZS^+08, LYH16, MNU^+15, PR05, SLJ^+18, EQT07].
A [Ano00c, DLZ+13]. \texttt{back} [ECX+12].
\texttt{Backup} [Ano00b]. \texttt{Balance} [SEP96].
\texttt{Balanced} [CKZ12]. \texttt{Balancers} [KMAG01].
\texttt{Balancing} [HBTG98, KC98, KRH98, PGB16, THA+12, WYT+20, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MIIO04].
\texttt{Baltimore} [IEE02]. \texttt{Bandwidth} [FSPD16, LTL+16]. \texttt{Bandwidth-Aware} [FSPD16]. \texttt{Barcelona} [ACM95a, ACM98c, DLM99]. \texttt{Barnes} [ZBS15]. \texttt{Barrier} [CJW*15]. \texttt{Barrier-Based} [CJW+15]. \texttt{barriers} [LZBW14, ZJFA09]. \texttt{Base} [VE93]. \texttt{Based} [Alf94, AT16, AKP99, BVL09, BNH01, CJW+15, CKRW99, CMBAN08, DSR15, EGP14, GHG+98, GFJT19, HHOM91, HHOM92, KS16, KEL+03, KW+20, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MIIO04].
\texttt{Bibliography} [Bee98]. \texttt{Big} [JLA16, AC09, CDL13, LTL+16, LHS16]. \texttt{BIGSAM} [Ply89]. \texttt{binary} [BCCO10, KBF+12, TJY+11]. \texttt{binding} [RCV+10]. \texttt{Birthmarking} [TLZ+17, TLZ+18]. \texttt{bisection} [RRMJ12]. \texttt{bit} [Kus15, SBKK99]. \texttt{Black} [Pla99]. \texttt{BLAS} [ARvW03]. \texttt{BLIS} [VSM+16]. \texttt{Block} [ABLM19, CCWY17, KS97, ZM07, KTK12, KTLK13]. \texttt{BlockChop} [MK12]. \texttt{Blocking} [Ann96, GN00, Nak03, SB80]. \texttt{Blocks} [Pet03, QOOQV+09]. \texttt{Blue} [GBB+05]. \texttt{Boltzmann} [SKG+11]. \texttt{Bonn} [Wat91].
\texttt{Book} [Lar97, Van97a, Vre04]. \texttt{Bookshelf} [Ano99, Cre09, Wil97, Wil00].
\texttt{Boost.Threads} [Kem02]. \texttt{Boosting} [AKSD16, APX12, MLC+09, YZ07]. \texttt{boosts} [McM97]. \texttt{Bootstrapping} [KH18b].
\texttt{Borland} [Kel94a, Kel94b]. \texttt{Borrowed} [DC99, DC00]. \texttt{Borrowed-virtual-time} [DC99, DC00]. \texttt{Boston} [Ano94f]. \texttt{Both} [KZC15, CZSB16]. \texttt{Bothnia} [CCW+11].
\texttt{Bottle} [DSEE13]. \texttt{Bottleneck} [JSMP12]. \texttt{Bottlenecks} [SU96, Zeb02, DSEE13, CS12, DSG17].
\texttt{Boulevard} [ACM99b]. \texttt{bounded} [LZTZ15, PAdS+17]. \texttt{Bounding} [Lun97, Lun99, MQ07]. \texttt{BowMapCL} [NTR16]. \texttt{Box} [Ano00b]. \texttt{Braids} [BS06].
\texttt{Branch} [AKS06, EPAG16, IBST01, CTYP02, CPT08, GL98b, MTS10]. \texttt{branches} [UZU00]. \texttt{breath} [LAH+12]. \texttt{breath-first} [LAH+12]. \texttt{Break} [BVM19].
\texttt{breakpoint} [Ram94]. \texttt{Bridge} [Ano00b].
\texttt{Bridging} [RKBH11, VDBN98]. \texttt{brief} [Ano09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAS07, XSa08, ZLW+16].
\texttt{Away} [GBK+09]. \texttt{AWTEventMulticaster} [Hol99b]. \texttt{axiomatic} [TVD10]. \texttt{AXP} [Ano97a].
[Hay93]. Briefs [Gar01]. bring [Pra95b].
Bringing [Jon91]. Broadcast [SW08].
Broadcast/Reduction [SW08]. brokers
[Sch98]. Browsing [HF96]. BSD [SS95].
BSDLCon [USE02]. BSP [SYHL14].
BTRIMER [TJY+11]. buffered [DLZ+13].
buffers [Koo93]. bug [NBMM12]. bugs
[JWTG11, VTS12]. Build
[Tro18, KSB+08]. Building
[Fon97, KS97, Pet03, ZM07, Omm04].
Building-Block [KS97]. bulk [RD06].
Bulldozer [BBSG11]. Bunka
[An03]. Burrows [BVP+19, LHS16, NTR16].
Bursty [HMCP16]. Bus
[MKC97, Cat94, HHPV15]. Bus-Based
[MKC97]. BVT [DC99, DC00]. Bytecode
[ABH+01, Coo02, GH03, A+01, CAR08].
C [Kel94a, Kel94b, Lev97, Pla98, Pla99,
Rod95a, Vre04, Ait96, AGEBO8, Ano99,
BM94, Bau92, Bed91, BLYN09, BPL07,
BA08, CFK+91, CGR92, Dug95, Eng95,
Fin95, For95a, For95b, Gib94, Han97,
HSd+12, HSS+14, HTZ+97, HLGD19,
HH97, Jon91, KD97, Lea00, Lea96, Man91,
Mll95, Mix94, ND13, ND16, Pet00, Pla93,
Pom98, PS03, PS07, Pul00, Ric91, Rôt91,
SG18, SC17, Sch90, TB97a, TB97b, Vo93,
Wal00, Yam95, Yam96]. C#
[KPPÊR06, Stå05]. C-based [RSB+09].
C-Stream [SG18]. C/C [Pla98, Pla99].
BYLN09, ND13, ND16, Pet00, Pul00]. C3I
[BTE98]. CA [ACM94d, IEE99, USE92b,
Ass96, USE00a, USE01, USE02]. Cache
[BCZY16, CMX10, CWWY17, FJ08, GBP+07,
GL98a, HL08, HRK96, KLS92, KET06a,
LLD17, PEA+96, PPG11, SLJ+19, WG94,
ZJS12, ZWL15, Car89b, Ch092, KHP+95,
KLH+99, MKR10, PGPS20, Raj93, Sha95a,
SSk+07, WZC+07, ZJS10, ZKR+11].
Cache-conscious [GBP+07].
Cache-oblivious [HL08]. CacheFlow
[KET06a]. Cacheline [BPL+17]. Caches
[FJ08, PHBC18, KGGK09, ROA14].
Caching [DNT16, KC99, Boo93]. calculations [BD06]. calculi [LSV01].
Calculus [II01, ORH93]. Caldera
[Ano97a]. Calif [ACM01]. California
[ACM93a, ACM95b, ACM98b, IE99].
USE98, USE91a, USE93b, USE96, USE98b,
USE01]. Call
[GS96, Hub01, ORH93, Xue12]. callbacks
[VS96]. calling [TTY99]. calls
[KASD07, TLZ+16]. Cambridge [USE93a].
Can [Ber96b, Dye98, Pet03, Ano92a, Ber96a,
Hig97]. Canada [Ano00b, BT01]. cannot
[Bo05]. Cap [HC17]. Capabilities
[VD08, Ply09]. capability [CK94].
capability-based [CKD94]. capacity
[SSk+07]. Capping [RCC12]. capturing
[BKC+13]. Carolina [ACM93a]. Cascadia
[ZL10]. Case [AH00, AGK96, EE14,
LSB15, TAK+00, TESK06, VK99, BDLM07,
CASA14, CL94, HTJ+93, KPPÊR06, KI16,
MSM+11, MN03, SP05, Sod02, YN09].
Cathedral [USE02]. causality [HH16].
cavity [RM99]. CD [Ano00b].
CDSChecker [ND13]. CE [Tim03]. Center
[ACM98d, ACM99b, ACM00, Ano03, Hol12,
IEE90]. Centers [JGS+19]. Centric
[BDN02, Bre02, Ham96, DHM+12].
Certified [GSK+18]. CFD [DK02]. CG
[TAK+00]. CGRAs [PS15]. chain
[SBC91]. Chaining [JJ15, KFG15].
Challenge [Ano99]. Challenges
[Ano99, GJ97, AG06]. Changing [Gar01].
channel [MN03]. Channels [EPAG16].
chant [HCM94, Ano94c]. Chapter
[SKK+01]. Characterization
[Ano05, BCG+08, DS09, MR94, MMM+05,
DYW10]. characteristics [GS00].
Characterizing
[CA20, Gle91, OdT12, SSN10, MTPT12].
Charleston [ACM93a]. Chassis [Ano00b].
Chebyshev [Rôt19]. Checker
[FF08, FF04, FF08, FFY08]. CheckFence
[BM07]. Checking
[ES97, ND16, AHK08, AD08, AGEBO8,
Comparative

[WK08a, WK08b, WK08c]. Comparative

[SKP +02, Yoo96a, PL03]. Comparing

[KPP +06, SV96c, SV96a, SV96b]. Comparing

[ILFO01, SAC +98, GL98b, KIM +03, MKIO04, MMTW10]. Compass

[PWD +12]. Compatible

[YL16]. Compilation

[ACMA97, HL94, BRRS10, GC92, HCD +94, Tsa97b]. Compile

[CS95a, CS95b, TSY99]. Compile-time

[CS95a, CS95b]. Compilation

[ACMA97, HLB94, BRRS10, GC92, HCD +94, Tsa97b]. Compile

[ACM94c, BFA +15, CWS06, HL94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fuj97, KKT +18, KG07, Kuc91, NJ00, Sha98, ST98, WHJ +95].

[ACM94c, BFA +15, CWS06, HL94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fuj97, KKT +18, KG07, Kuc91, NJ00, Sha98, ST98, WHJ +95].

[ACM94c, BFA +15, CWS06, HL94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fuj97, KKT +18, KG07, Kuc91, NJ00, Sha98, ST98, WHJ +95].

[ACM94c, BFA +15, CWS06, HL94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fuj97, KKT +18, KG07, Kuc91, NJ00, Sha98, ST98, WHJ +95].
ACM95b, ACM96, ACM98b, ACM98d, Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM98b, ACM98d, ACM99a, ACM01, Ano90, Ano94a, AOVi+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KKD03. Confidentiality [NSH14].

Confidently [Tro18]. Configuration [GPB+17]. Confirmation [CJW+15].

Conflict [NJK16, vPG03]. Conformant [Stu95]. Congress [Ano94d]. conjunction [Ano94e]. Connect [Ano00b]. conquer [FN17, TP18]. conscious [GBP+07]. Consistency [ABH+00, AB01, AB02, CH95, LB17, Ro603, WC99, BAM07, Cho93, DN+12, GS00, HT14, QS014, SM+12].

consistent [NHFP08]. Consolidated [HC17]. Constrained [TLGM17, GW10, YN09]. constraint [SCG05]. constraints [HB15].

Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05]. Contact [Nak03]. Contemporary [ZJS12, ZJS10].

Content [WLM15]. Content-Based [WLM15]. Contention [ALB+18, XSA10, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].

Contention-aware [XSA10]. Context [TLA+02, GN02, JLS99, FD95, LG04, MQ07, PADS+17, PFH06, SCB15, Yan07, LG04].

context-bounded [PADS+17]. context-sensitive [PFH06, LG04]. contexts [BGC14, TE94b, WW93].

Contextual [BGZ07, KH18a, NHFP08].

continuation [AAHF09].

continuation-based [AAHF09]. continuations [DBDR91, GRR06].

Continuing [Ano99]. Continuous [RCC14].

Continuously [DTLM14]. Contour [GJFT19]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, DKG18, FK12, FSYA09, GCC15, MLCW11, NT14, PPA+13, PWWD18, Po90, RP+09, UZU00, WLK+09, Yoo96b. control-flow [NT14]. Controlled [ALSJ09, BCG+08, CSS+19]. CSW93, SCh91a, CSS+91a, CSS+91c, Luke01, MWP07, Sch91, SCV91b].

Controller [RLJ+09]. controllers [KASD07]. controlling [AGN09, BKC+13]. controls [McM96c]. Controversial [Gar01].

Convention [ACM98d, ACM99b, ACM00, Hol12].

Conventional [KETO6b, HB92].

Convergence [RM03]. conversational [LG04]. Converse [BK96]. Convert [Voi93].

Converting [LEL+97a, LEL+97b].

convolutions [RB18]. convolver [Kep03].

Cool [Ano00a, Ano03, Wei97]. cooperation [BM07, SKBY07]. Cooperative [AMRR98, DNT16, ILFO01, LC13, KIM+03, MK04, TCG95]. coordinated [KKJ+13].

coordination [BDY98]. Coping [San04].

Coprocessor [LRZ16]. copying [HL93].

CORBA [DHR+01, PSCS01, SV96a, SV96b, VS96].

Core [CC18, CvdBC18, FMY+15, FJ08, GBK+09, IXS18, KST04, KTR+04, MP01, MNU+15, MM01, MB05, PVS+17, PHBC18, PM14, QOiM+12, VCM19, ABC+15, AMPP10, CFS+12, CSM+05, DTR18, DWY10, GW10, KKT+18, KFB+12, MLCW11, MLC+09, MTT12, Myo09, SMQ09, FPPQ12, WCC+07, YZ07].

CoreDet [B+10a, B+10b]. Cores [CCK+16, RRK11, CWS06, MAF+09, SW16].

coreSNP [GAC14]. Corner [SW97].

Corona [VSM+08]. Corporation [Ano00b, Ano00b]. correct [DJLP10, SP00b, Shi00]. Correction [TLA+02, HTDL18]. corrective [LG04].

Correctness [Ram94]. Correlation [SLT03, PFH06, SLT02]. cosimulator [LT97]. Cost [TY97, Bet73, DC07, Tsa97b].

cost-effective [Tsa97b]. Costs [MHG95].

COTS [RGG+12]. counterexamples
Counters [Wei98b]. Counting [Hol98c, Rec98]. County [ACM98d].
Coupled [MTN'00]. Course [BLPV04, BZ07, GL07, She98], coverage [RRP06, YNPP12], coverage-driven [YNPP12]. covering [BCG13]. Covert [EPAG16].
CPU [ASSS19, BSS14, DFC+19]. CPUs [SKG+11, SMD+10]. Craftworks [Ano97a].
Cray [BCG14, Smi01, VTSM12]. Create [Ber96b, Ber96a, Len95]. Creating [Han97, Ten98]. Creation [Eng00, Rin99, Sin97]. Crisis [Ano99].
Critical [BLG01, CS12, OTY00, DTLM14, DESE13, NM10, RGG+19, San04, SMQ09, YL16]. Criticality [DESE13, NB12]. Cross [Lam95, SHK15, BKC+13, CSB16].
CS1 [GL07]. CSMT [GSL10]. CSP [Neve]. CTS [ASSS19].
D [KSB+08, NTKA99, PYP+10, TKHG04]. Daemons [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEE96]. dans [Zig96]. DARPA [Mat97]. Data [Ama89, ABNP00, DTLW16, EOW96].
FHM95a, GAC14, HMC97, HH08, HG97, HLH16, JMS+10, JGS+19, KZC15, KEL+03, KETO6a, KETO6b, LPK16, LMJ14, LLD17, ME15, ME17, RCRH95, SBN+97, SAC+98, SSYG97, SG96, Ten98, TESK06, VT96, Wi98, ZLJ16, ZAK01, AGEB08, AGN09, BAMS07, CS95a, CS95b, CDL13, DHM+12,
Evr01, FHM95b, FK12, HL93, LTL+16, LHS16, Mao96, MN09, NWT+07, ND13, PDDM16, PRB07, PHC90, PoJ90, P03, PS07, PT03, Sha95a, SP00b, Sh00, Sin99, SKKC09, WDC+13, XJL13, ZJS+11].
data-centric [DHM+12]. Data-Driven [DTLW16, KETO6b, ME15, ME17, TESK06, Ev01]. Data-Parallel [ABNP00, SAC+98, HMC97]. data-race [MM09]. Database [BAZ+19, MM14, YM92, YMR93b, Hg97, LBE+98, YMR93a]. Databases [AV+99, GDSA+17, HL08, MIGA18].
Dataflow [CVJL08, FA19, GGB93a, Gao93, HMC97, Hig97, LBE+98, YMR93a]. Databases [AOV+99, GDSA+17, HL08, MIGA18].
Dataflow-Based [SB+91, dataflow/von [HG92], datarace [CLL+02, CVJL08].
Datarol [KA97]. Datarol-II [KA97], Dawn [Cr98]. DC [IEE94c, ACM92, Ano90]. DCE [RD96, Yan95, Yan96]. DDOS [RPCG13].
Deadlock [Hol98a, Mon00, Ver97, ABF+10, SR14, WLK+09]. Deadlocks [CC14, CJ+15, CZWC13, JPSN09, PRB07].
dealised [RB18]. Deallocation [LPE+99]. earth [Len95]. debate [Bak95b]. debug [PT03].
debugger [CB99, CB90]. Debugging [Ano98b, Cor02, HWZ00, MQLR16, PHK91, SJB92a, SJB92b, BGG95, GGB93b, GB95, HG92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a].
Defragmentation [PVS+17]. Delaunay [ABC+09]. Delivering [SCC13].
DeLorean [MCT08]. Demand [KKJ+13]. Demand-based [KKJ+13]. Demus [Sri93]. Demus-2 [Sri93]. dense [ABD+12, MM07]. Dependable [SUF+12]. Dependence [CZS+17]. dependences [BKC+13, CZSB16]. dependencies [NPC06]. Deployment [GARH14]. DepSpawn [FA19]. Depth [McM96a, McM96b, McM96c, McM98a, McM98b]. Derivation [Kim14, SV19]. Derivative [TT03]. describes [Yam96]. Design [ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GRS97, GMR98, Hai97b, JGS+19, KHP+95, Lafo00, LML+19, MB99, NBM93, Ra9j3, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car98b, FWL03, HCM94, Hud96, Ku17, KGGK09, Mah11, Met95, Moo95, Moo96, MKR02, Ném00, OKID92, OCRS07, RSB+09, SB80, Sri93, Ver97, WLG+14, Wan94, WCV+98, Xue12]. designed [San04]. Designing [Dru95, GKY92, RR93, Rei95, TSV12, Hai97a, TCCG95]. Designs [SM19]. Desktop [Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Pra95b, WSKS97]. desktops [Ano94b]. despite [Len95]. Destructing [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03]. Details [FMY+15]. Detect [CNZS17, DS16, CZWC13]. Detecting [DR15, RBK+09, SK97, FF10, JPSN09]. Detection [ABF+10, CC14, HTDL18, KUCT15, KW17, LS18, LLS06, Mot00, TLZ+17, TLZ+18, ZLJ16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTHB14, MKM14, MMN09, NBLM12, NAOW06, NA07, PS03, PS07, PFH06, RVS13, RM00, SR14, Sch89, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12]. Detection/Correction [HTDL18]. Detector [SBN+97, SLG06]. determined [Kub15]. determinism [BS10b, LWV+10, LZW+13]. Deterministic [DK02, KRBH12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DQCO09, DNB+12, LZBW14, MAAB14, OAA09, QSHI16]. Deterministically [MCT08]. DetLock [MAAB14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing [SP00b, Shi00, TKA+01, OT95]. Development [Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, ARVW03, Hig97, Pom98, TNB+95]. devices [Xue12]. diagnosing [CS12]. diagnostics [GBB+05]. diagrams [SK12]. Diego [ACM93b, ACM98b, USE89, USE93b, USE98b, USE00a]. differences [Yam96]. Different [BLPV04, GLC99]. Differential [BTL+19, Loe97, MQLR12, MLR15]. Difficult [CTYP02]. Difficult-path [CTYP02]. Diffusions [LT+17]. Digital [SS91]. Digraph [CNZS17]. dimension [NJ00]. dimensional [AR19]. DIMM [ALSJ09]. Direct [PR98]. Direct-threaded [PR98]. Directed [LPE+99, STR16, AR19, DZKS12, Fan93, Sen08, SKKC09]. directory [QSQ14, HR10]. DISC [Don92]. disciplines [Bar09]. Discrete [WYT+20, Leg01, TKHG04, WLK+09]. discussion [Sho97a, Sho97b]. Disintermediated [BDJ06]. Disjoint [SJA12]. Dispo [MGK+00]. Dissecing [ACC+03]. Distance [BCZY16, KZTK15, SV19, KNPS16]. distinguish [HL93]. Distinguished [ABH+01, TKA+01]. Distributed [ABNP00, ABH+01, BBD+91, BWX05, BHKR95, BC94, CV98, CJK95, DKA16, FSS06, GJ97, Jen95, MKG+00, PG92, Pr95a, RLJ+09, RBP00, RW97, CRH95, SUF+12, TDW03, USE92b, VS96, Yas95, Ano96, A+01, BCG+95, CML00, Car89a, Gol96, GKK09, Gun97, HB92, HMC95, HWW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97,
Distributed-Memory [RCRH95, BCG+95, HW93].
Distributed-sum [TDW03]. Distribution [SSYG97, ZAK01, CY99].
divergence [MTS10]. Divergent [WJA+19]. divide [FN17, TP18]. Divisors [Kuc92, Kuc91].
DMP [DLCO09]. DNA [LZL+20]. Do [Cri98b, Cri98a, RPNT08, Ber96a, Ber96b, YLLS16].
Dock [BCS11]. Docking [BCS11, TO10]. document [JCP17].
documentation [HF96]. Does [Hag02, RKK15, ZJS10, San04].
doing [Yam96]. domains [LAK09]. données [Swi09]. Don’t [HHPV15]. DOSThread [VE93].
DoubleVision [Ano00b]. downdating [VV11]. Downturn [Gar01].
DRAM [LLKS12, kSYHX+11]. DRAMs [ALSJ09]. drf [MSM+16]. DRFX
[MSM+16]. Drinking [CZSB16]. Driven
[DTWL16, For95a, For95b, HL94, KET06a, KET06b, LWSB19, ME15, ME17, TESK06, YBL16, CSV10, EVr01, RVS13, RSB+09, SLP08, SQP08a, SQP08b, SQP08c, YNP12].
driver [CCW+11]. DSLs [KHT17]. DSM
[ABH+00, AB01, AB02, BDF98, KKH04]. DSM-PM [AB01]. DSM-PM2 [AB01].
DSMs [FBF01]. DTS [BHKR95]. Dual
[BBC+00, EHG95, KST04, DK05, DB00, MS08, CCW+11, FRL18]. Dual-Core
[KST04, MB05]. Dual-Level
[BBC+00, DK02]. dual-mode [FRL18].
dual-personality [CCW+11]. Dual-Processor [EHG95]. Dual-Thread
[MB05, WS08]. Duplex [KG05].
Duplication [Kwo03]. Dynamic
[BPSS05, CJW+15, FSYA09, GPB+17, HSS+14, Hig97, KMSG01, KPC96, KC98, K99, KU15, MK20, MVZ93, MTS10, Nak01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK+01, Sta00, SG96, WHG07, XMN99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Chr95a, Chr95b, Chr96, Don92, FF04, FF08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHF08, SCB15, SLG06, TJY+11, WW96, BK13].
dynamic-multithreading [LSS12].
Dynamically [PGB12, TLGM17, DMBM16, Kep03].
dynamically-typed [DMBM16].
Dyanmics [LNI+19]. DyPO [GPB+17].
e6500 [BGH+12]. Early
[BL91, PBL+17, SL08]. EARTH
[HTZ+97, HMT+96, Sod02, TAK+00, TKA+01, TMA03, Nak03].
EARTH-MANNA [HMT+96, Sod02].
Easy [FA19, Har99]. Easysw [Ano00b]. ECMA [Stu95]. ECMA-162 [Stu95].
economics [Bar09]. Edinburgh [AOV+99].
edite [KNPS16]. Editors [GG93a, GJ97].
Education [Gar01].
effect [BAD+09, GL98b, YSY+09]. Efffective
[ABLL92, DN94, GH03, GMZP14, NAW06, NSH14, PGB16, RVS13, Sat02, TMC09, TY97, WLT19, CBM10, JB+11, MNN09, MTC+07, SKA01, Tsa97b]. Efectiveness
[PR05, TE94b]. Effects [Cho93, HRH08, KLH+99, KRB12, NHF08].
Efficient
[TKG02]. Efficiency
[AJK+12, Ano05, THA+12, AMPH09, FGG14, GA09, MMM+05, MWK+06, Pr95b, RCG+10, SP05].
efficient
[AD08, ALSJ09, AI94, ABN99, BCZY16, BGdWH12, BJK+96, BL98, BMN99, CZZ+17, CYYL18, CCL+02, DMBM16, Gao93, GJT+12, GR97, GS06, GN96, HMC16, HSS+14, HR10, HEMK17, KPC96, KASD07, LS18, Len02, LHG+16, LZBW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, Tro18, ZL16, ZTN19, ATLM+06, BL93, BJK+95, BHK+04, EK1K0, FWW03, FF09, GB99, HSD+12, KSB+08, KNPS16, KSD04, LK13, LWV+10, MLL+19, LH16, LW+13, MNS+10, NKL09, OAA09, Pan99, PSG06a, PSG06b, PSG06c, PRS14, PS07, PPGS20, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10,
Wei98a, kSYHX+11, ZLW+16, FSYA09.

Efficiently
[KBF+12, MCT08, SW16, Blu95, BKC+13].
eigenproblems [ABD+12], eigenvalue
[BK+11]. Elastic [SG18]. Electronic
[Ano00b, BB00]. Elegant [Hub01].
Element [HBTG98, MS02], elementary
[HKN+92]. elide [MLS15]. Eliminating
[DSG17, OCT14, RD06, MTPT12].
elimination [MK12]. elision [NM10].
Elliptic [Loe97]. EM-4 [BAM93, SKS+92].
Embedded [BVM19, BGH+12, DS09, Dru95, GKCE17, KG05, KE15, MS15, WM03, ZDTM19, DCK07, KVN+09, KASD07, KBF+12, LLC15, LBvH06a, LBvH06b, LBvH06c, RSB+09, SKP+02, Xue12].
Embedded-Systems [Dru95]. Embedding [Pul00]. emergencies [MTPT12].
Emerging [VSM+08, WJA+19, GBP+07, HFV+12]. empirical [LC13]. employing [CWS06]. Employment [Gar01]. Empowering [JSB+12].
Enabling [CC18, Pan99, SMZ18, JMS+10, VGK+10a, VGK+10b]. End
[SNM+12]. End-to-end [SNM+12]. Energy
[ALSJ09, AJK+12, GJT+12, GKCE17, KE15, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KSB+08, MAF19, NB12, PJZA07]. Energy-Aware
[PR05]. Energy-Efficiency [PR05].
Energy-Efficient
[GJT+12, LK13, LMA+19, RL14].
ergy-performance [PJZA07]. enforcement [GWM07, SCCP13]. Engine
[SG18, CNQ13]. Engineering
[MGJ+07, LSB15, WCV+98]. engines [HB15].
England [ACM94c]. Enhance
[FSPD17, FJ08]. Enhanced [Ano00b, EJ93].
Enhancing [KKT+18, OL02a, OL02b, OL02c, HWW93, RHH10]. Environment
[ABN00, BC00, CDOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWYC94, Sta90, Tem97, WCC+07].
Environments
[AKP99, BD02, KG05, SP00a, EJK+96, RGG+12, Sam90, Ver96, Way95]. equality
[AD08]. Equalization [TLGM17]. Equations [Loe97]. equivalent [Pra95c].
Eraser [BN+97]. Errata [Ano01, Ano05]. Error [EUUVG06, OA19, SSN10]. Errors
[SK97, VACG09]. escape [SR01a]. Esterel
[LBvH06a, LBvH06b, LBvH06c, Lvh12]. Estimating [PCPS15] etc [Hol98a].
European [DLM99]. EuroPVMPPI
[KKDV03]. Evaluate [EE14]. Evaluating
[BL96, CML00, NPT08, PSCR01, RPNT05, Sch98, SD95, TG09]. Evaluation
[ARU92, BBO93, BTE98, CL95, CBN+00, EJK+96, Eic97, GLC99, HN91, RN09, SCD+15, T003, ZL10, BGDmWH12].
BLCD97, Car98b, Cho92, Don92, LZ07, Mah11, MRR02, NFBB17, RGC+12, RCDG06, SWYC94, SKP+02, SMS+03, TGO00, TKA+02, WLG+14, WZSK19].
Evaluations [MM14, Roh95]. evaluator
[SP00b, Sh00]. even [Ano94b]. événements [Swi09]. Event
[Ber96b, CRRW99, For95a, For95b, WYT+20, Ber96a, CRRW97a, CRRW97b, GWM07, KCCD99, KBP+03, Leg01, RVS13].
Event-Based
[CRRW99, CRRW97a, CRRW97b]. Event-Driven
[For95a, For95b, RVS13]. event-handling [KBP+03]. Events
[BDH96, LZ07, Van97b]. Evolutionary
[TAK+00, KU17]. Evolving [MS87, MS89].
Exact [Sch17]. examines [Yam96].
Examining [Kan94, Ric91, Rod95a, Tim03].
Example [BLPV04]. Exception
[DH98, Lea96]. Exceptions
[AdBdRS08, KR01b]. exclusion [BRE92]. exclusiveness [Lie94]. execute [APX12].
Executing [Blu95, BS99]. Execution
[ABH+01, BTL+19, CC18, C091, Coo02, EC98, Far96, GMMZP14, GS06, HMC16, HEM17, HZ12, KS16, KLG08, KI95, KG94,
ME15, MGK+00, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, Di93, JWTG11, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSaJ08]. Executions [CdOS01, HZD13, Roh95, STR16]. Exemplar [BLCD97]. Existing [Ric99]. EXOCHI [WCC+07]. expansion [YKL13]. Expectation [SC17]. Expectation-Maximisation [SC17]. expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96]. Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b]. Experimental [BLCD97, EGC02, YMR93b, GRS06, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a]. Experiments [DV99, GMR98, SZM+13, VSM+16, VV00]. Explicit [DV99, VDBN98, BM07, URS02b, URS03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KVN+09, PGS06a, PGS06b, PGS06c]. Exploiting [AACK92, EUVG06, FFQ04, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96]. Exploration [PTMB09, Sch17]. Exploring [AACK08, BS10a, SE12, WWW+02]. Expressions [Hei03]. Extended [BLG01, DV99, Röf19, VDBN98]. Extending [BF08, Mar03]. Extensible [CdOS01]. Extension [RCC14, CCW+11, Lan97, PDP+13, Tem97]. Extensions [Sch90, Bau92]. external [LWV+10]. Extracting [GP95]. Extremal [MNG16].

gradient [MAF19]. Grain [AZG17, CSS91h, HG91, KG94, LFA06, MKM17, NS97, ZM07, CSS91a, CSS91c, KDM98, Kim94, Loo95, MLC09, Met95, PL03, TY97, TKHG04]. Grained [BBG10, BSS14, But13, LKBK11, PBR15, DFC19, TAK10, YSS17, BGK94c, Dub95, Gol97, LVS01, RPB90, Wei98a, KSYX11]. Grande [ACM01]. Grande/ISOCOPE [ACM01]. Granularity [K195]. Graph [CFG12, CL95, EJR13, HPA15, KS93, KLS92, MM14, LKI15, LZW17, RVR04].

graph-based [LZW17]. GraphCT [EJR13]. Graphical [ACR01]. graphics [BGdmWH12, CCW11, FSYA99, PY10]. Graphs [HPB11, Nik94, OB13, AD08, ABG8, DSEE13, grass [MWT10]]. Greatest [Kuc92, Kuc91]. Green [SKP02]. greener [MMT10]. Grid [KEL03].

Grid-Based [KEL03]. GRIDiron [MCS15]. grids [SKG11]. Griffin [An00c].

Gröbner [AGK96]. Group [BNH01, DLM99, QSH16]. Group-Based [BNH01]. Grouping [OR12, WC99]. groups [WZSK19]. Grove [EE89]. Growth06_v2 [Dan09]. Guarantee [Hag02, BGP06].

Gyrokinetic [KEL103, PWL11].

Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DAK16]. Hamilton [Ric91]. Handles [Rec98]. Handling [DH98, LSB15, SK97, BM91, KCCD99, Koo93, KBP03, Lea96, Met95]. Hands [Tro18]. Hands-on [Tro18]. Harbor [BBC00]. Hardware [AGJ18, BAZ19, CKD94, CSS91b, DVAE18, FNA18, KE15, KH18b, LLS06, MWP07, MKM17, Men91, SW08, ZLI16, ABC09, BMF19, CWS06, CSS91a, CSS91c, ECX12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB14, PRS14, RPNT05, SE12, TE94b, DWS12].

hardware-aware [PAB14]. Hardware/Software [MKM17, LT97].

harmful [NWT07]. Harmony [KTK12].

Harness [Ama98, EBK01]. Hash [GK05, VB00]. Hash-join [GK05]. Hashing [SMZ18, MIGA18]. having [YFF12]. Head [Mia90].

healing [SLP09]. Heaps [DGK03, GFJ19, Man99, Ste01]. help [Len95]. Helper [ALS10, WCW04b, WCW04c, WCW04d, WCW04a]. Here [An092a, Pra95c].

Hessenberg [BK17].

Hessenberg-triangular [BK17].

Heterogeneity [CCK16, Kwo03, RKB11].

Heterogeneous [AT16, AACK92, FBF01, GPB17, KTR04, Lu95, NTR16, SM19, THA12, ZDM19, FKS12, GZK12, LK13, S95, WCC07].

Heuristic [HH11, Mah11, OCRS07].

Heuristics [MIGA14]. Hewlett [BLCD97].

HFS [KS97]. hiding [BR92]. Hierarchical [GJT12, JY15, KC98, KG94, BMV03, DZKS12, LK13, LQ15, RGD06].

Hierarchies [BCZY16, TAM10].

Hierarchy [ZM07, BDWH12]. High [ACM08a, ACM08d, ACM00, An00a, An03, BGH12, CT00, FGKT97, Gar01,
High-Powered [Rei95]. High-Speed
[Ano00a, Ano03, HG91, SRS98, HG92].
High-Humidity [WLT19]. Higher
[CJK95, NV15]. Higher-Order
[CJK95, NV15].
Highly
[BGDmWH12, Kub15, KGGK09, MAAB14].
High [CY09, USE02]. Hill-climbing [CY09].
Hilton [IEE90], HippogriffDB [LTL16],
Hist [Gar01]. History [Ano97b]. Hoard
[BBBW00a, BBBBB00b, BBBBB00c].
Hoare [KI17], HoME [OKID92].
Homogeneous [CC18, JGS’19]. Hood
[Ven97]. HoPE [PBL+17]. Hot
[IEEE99, PBL+17, Gle91]. Hot-Cacheline
[PBL+17]. Hotel [Ano94d, USE02].
Householder [BKK17, VV11].
Householder-based [BKK17].
Householder-like [VV11]. Houston
[Cha05]. HP [Ano95a, Ano95b, Yam96].
HP-UX [Ano95a, Ano95b, Yam96]. HPC
[GGG09, CBO9, PLT’15, SLJ’18]. HPF
[BM03, CM98]. HTM [KGGK09]. HTMT
[Gar01]. HTTP [Zha00]. Hut [ZBS15].
HW [ZDTM19]. HW/SW [ZDTM19].
Hybrid [BBB+10, Gao93, JYE’16, LH09,
MS02, NB03, YZ07, GKK09, HG92,
LS0019, MK12, MTC’07, SSK+09, Shea95b,
KSYHX’+11]. Hybridizing [CZZ’17].
Hyperion [A’01]. Hyperobjects [LS18].
hyperscalar [Raj93, Shea95a].
Hyperthreading [HRH08, KM03].
[FR95, TSV12, ZAK01, TP18]. irregularly
[FR95]. ISA [KTR+04, MNU+15].
ISCOSPE [ACM01]. Isolating
[CFZ02, JWGT11]. Isolation
[FSPE20, CMX10, MTC+07, SKBY07].
Isomigration [ABNP00]. ISSAC
[ACM94c, Lak96, Wat91]. Issue
[KU00, RYSN04, Ano94c, GGB93b, TEE+96].
Issues [GMB93, PS01, ARvW03, Ano96,
GC92, HCD+94, IAD+94, TCG95]. Issuing
[HMNN91, HKN+92, HMN+92]. Itanium
[MB05, WCW+04b, WCW+04c, WCW+04d].
Itanium-2
[WCW+04b, WCW+04c, WCW+04d]. Itemset
[WLT19]. iterations [UZU00]. Iterative
[MQ07, Nak03, AAC+15]. iThreads
[BFA+15]. IUknown
[SW97]. Ivan
[Ano00c]. IXP
[ARB+02, LCH+08]. J.UCS
[KU00]. January
[ACM94b, ACM95b, ACM98b, Ano90,
USE89, USE91b, USE93b, ACM93a]. Japan
[Ano91, Ano00a, Ano03]. Java
[Chr01, GCRD04]. Jason
[Ano00c]. Java
[ACM98a, ACM01, Ano97a, USE01, AFF06,
álBCM+RS02, AddS03, ÁàBàRS05,
AdBàRS08, Aít96, Ano96, Ano98b, ABH+00,
ABH+01, A+01, AG96, ACR01, ABG+08,
BZ07, Ber96b, BVC97, BAD+09, BR15,
BPH05, BHK+04, BS00, Bra97, BP05,
BPLV04, Cal02, CV98, CKRW97a,
CKRW97b, CKRW99, CWBH03, CC04,
CCH11, Chr01, CT00, Coo02, Cor00, Cri98b,
Cri98a, DJLJ10, DH98, DRV02, DLZ+13,
DS09, Dí00, DKG+03, Dra96, DHR+01,
Dye98, EFH+01, EFH+02, EFG+03, EQT07,
FSS06, FWL03, Fac08, Fer13, FFLQ08,
GH03, GCRD04, GS00, GEG07, GE08,
GLC99, Hag02, Ham96, Hei03, Hol98d,
Hol98a, Hol98b, Hol98c, Hol99a, Hol99b,
Hol00, Hyd00, KPPÈR06, KPB+03, LB00,
LCS04, Loc18, Loc97, Man96, MP01,
McM96a, McM96b, McM96c, McM98b,
McM97, Mit96, MC06, NAW06, NM10]. Java
[NR06, Nev99, OW97, OW99, PSM01,
PSM03, PB07, Pet03, PUF+04, PV06,
PG03, RKCW98, San04, SE12, Sat02, Sch14,
Sho97a, Sho97b, SBE+10, Sto02, SKP+02,
Van97a, Ven97, Ver97, WN10, Whi03,
X5aJ08, Xue12, Yan02, van95]. Java-like
[DJLP10]. JavaBeans
[Van97b]. javar
[BVG97]. JavaScript
[PCM16, VP16]. Javier
[Ano00c]. Jersey [MT93]. JIT
[McM97]. job [EE10, EE12, ST00a].
Jobscheduling
[ST00c, ST00b, STV02].
John
[Ano00c]. Johno
[Ano03]. join
[ALS10, GKM05]. Joint
[FTP11]. Jones
[Ano00a]. Jorgenson
[Ano00c]. Jose
[ACM94d]. Journeymen
[Bec00]. JPF
[WKG17]. JPR
[WKG17]. Jr [ACM99b].
July
[ACM92, ACM94c, ACM95a, ACM98c,
EV01, IEE96, Lak96, Ass96, USE96, Wat91].
June
[ACM94a, ACM98c, ACM01, Ano94f,
USE92a, USE00a]. JUnit
[Goe01]. just
[KBF+12]. just-in-time
[KBF+12]. JVM
[Lan02, McM97, USE01, WKG17].
K-Java
[BR15]. KAI
[Ano98b]. Kaikan
[Ano00a]. Karlsruhe
[RM03]. Kaspersky
[Ano00b]. Kendo
[OA09]. Kernel
[Alf94, ABLL92, Bal02, DNR00, EBKG01,
EKB+92, Kor89, MM01, ZSA13, Ano95a,
Ano95b, BF08, JF11, MP99, SS95].
Kernel-Based
[Alf94]. Kernels
[KI17, dlPRGB99, GLC99]. Kiel
[LvH12]. Kikai
[Ano00a]. Kikai-Shinko-Kaikan
[Ano00a]. kinds
[San04]. kinematical
[BD06]. Kinematics
[HMLB16]. King
[ACM99b]. Kingdom
[ACM94c]. Kitsune
[BSD+12, HSS+14]. Knoxville
[IEE94b]. Kroll
[Ano00c]. KUMP
[NTKA99].
KUMP /
[NTKA99].
L
[DNR00, GBB+05]. L1
[PHBC18]. L2
[SLP08]. L2-miss-driven
[SLP08]. L3
[FJ08]. Lab
[Ano00b]. labeling
[D’H92]. Lafayette
[EV01]. Lake
[Hol12]. lambda
Load-Balancing [KC98, PGB16, Chr96]. Load-Load [HR10]. Loadable [ZSA13]. Loading [PCM16].

Local [DGK03, IEE95, Whi03, HZD13, ZLW16]. localities [CS95a, CS95b]. Locality [BS96, CCWY17, PEA96, Wei98b, HWW93, LK13, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a, KKT18]. Location-Independent [USE93a].

Lock [Bal02, LDT16, AFF06, Lie94, MMTW10, RD06, ZLW16]. Locks [ACR01, ALS10, MT93, OCT14]. LOCKSMITH [PFH06]. LOGFLOW [NTKA99].

Lock manager [Hol98b]. Locking [Bal02, LDT16, AFF06, Lie94, MMTW10, RD06, ZLW16]. Locks [ACR01, ALS10, MT93, OCT14].

Look [ALB+18, EFJM07, MNU+15, NM10, PGB14, AR19, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW16].

Lock-free [AR19, GP08, MLS15, Mic04, ST05].

Lock-manager [Hol98b]. Locking [Bal02, LDT16, AFF06, Lie94, MMTW10, RD06, ZLW16]. Locks [ACR01, ALS10, MT93, OCT14].

LOOKSMITH [PFH06], LOGFLOW [NTKA99]. Logic [Bre02, KI17, TAN04, BK13].

Logic-Centric [Bre02]. Logical [CR02].

LOIS [KT17]. longer [XH06]. Longest [BVP+19]. Looking [ECX+12]. lookup [KNPS16]. Loop [RLJ+09, SSP99, JMS+10, KVNB09, UZU00].

loopy [KVNB09]. loops [D'H92, FN17].

Low [ABL19, Ano00a, Ano03, BGH+12, PHBC18, SM19, ZHCB15, GPS14, PPSS02, RRP06]. low-level [GPS14]. Low-overhead [ZHCB15, RRP06].

Low-Power [Ano00a, Ano03, BGH+12, PHBC18, SM19]. Low-Rank [ABL19]. LPVM [ZG98]. Ltd [Ano00b]. lunch [DTLM14]. Luther [ACM99b]. Lyon [FR95].

M [Ano00c, USE01, FKD97]. M-Machine [FKD97]. MA [Ano94f]. Mach [USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89]. Machine [Ama89, CSS+91b, DS16, FKD97, KA97, KKD03, Lafo00, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, PRA95c, SSKS+92, Ven97, CGSV93, Evr01, PRB07]. Machines [BSSS14, CYYL18, Den94, GH98, GBK+09, RCRH95, STY99, BBM09, DFK94, GKRZ12, GC92, Kus15, MRG17, TSY99, TSY00, VQP12]. macromolecular [ABC+15]. Made [Har99]. Magiclock [CC14]. main [AKSD16, BBH+17, ZTN19]. main-memory [ZTN19]. maintenance [TNP+95]. makes [Van97a]. Making [BDLM07, LFA96, Low00, Pla93, PLT15, YCW+14].

molloch [Kus15]. Mambo [WZWS08]. MAMPO [GJ11]. managed [WLG+14]. Management [AGL+18, ABL92, GMGZP14, HC17, HRH08, KG94, LG06, LLS06, RSB01, STY99, VCM19, ZP11, BA95a, DBRD91, HCD94, IC910, Jef94, KKHO4, RCG+10, SS95].

Manager [Ano00b, PDMM16, Ply89].

MAMPO [GJ11]. managed [WLG+14]. Management [AGL+18, ABL92, GMGZP14, HC17, HRH08, KG94, LG06, LLS06, RSB01, STY99, VCM19, ZP11, BA95a, DBRD91, HCD94, IC910, Jef94, KKHO4, RCG+10, SS95].

Manager [Ano00b, PDMM16, Ply89].

Many [FMY+15, GBK+09, PV+97, PHBC18, VCM19, DTR18, MCW11, MTPT12, Sn04]. Many-Core [FMY+15, GBK+09, PV+97, PHBC18, VCM19, DTR18, MCW11, MTPT12].

Many-Thread [GBK+09]. Manycore [BMF+16, KS16, BWDZ15, HFV+12].

Map [YNPP12]. Mapping [CCK+16, HLH16, LBVH06a, LBVH06b, LBVH06c, NTR16, WK08a, WK08c, WK08b].

Mappings [Lun97]. MapReduce [IXS18].

Maps [BC94]. March [IEE97, USE92b].

Mark [Ano00c]. Markerless [LH99].

Markov [SBC91]. Martin [ACM99b].

MASA [HF88]. Masking [BAZ+19].

Massachusetts [USE93a]. Massive [EJR13, OR12, SMZ18, Mus09, RCV+10].

Massively [BCG14, KR12, TSV12, BS10a, CFG+12, CDD+10, Lu94, NJ00, NPA92, ROA14, WT10, WOKH06]. master [TJY+11]. master-slave [TJY+11].

Matching
[HPA⁺15, OR12, HFV⁺12, KGPH12]. Mathematica [Tam95], mathematical [KI16]. Matlab [Bra97]. Matrices
[But13, SGLGL⁺14]. Matrix
[NBS⁺15, QOIM⁺12, YFF⁺12, CSV10, DTR18, QOQOV⁺09]. matrix-vector
[CSV10]. matter [ZJS10], maxflow
[BÇG14]. Maximal [HH16, HR16]. Maximisation [SC17], maximize
[RCG⁺10]. Maximizing [LKBK11, TEL95, TEL98a, TEL98b]. Maximum [AT16, HH11, MP13, GJ11]. May
[ACM93b, ACM96, ACM99a, Cha05, IEE94a, IEE94b, IEE94d, SS96, MMTW10, Pra95c].
MBTAC [FRL18]. MD [IEE02]. MDMA [Spe94]. measured
[ECX⁺12]. Measurement [LLD17, TMC09]. measurements [JFL98]. Measuring
[FMY⁺15, DTLM14]. Mechanising [Loc18]. mechanism
[FD95, GCC15, PWWD18, WHJ⁺95]. Mechanisms [KPC96, KC99, SK97, TVB⁺13, Loeo5, Men91, PT03]. Media
[Ano03, Van97a]. medium [CDD⁺10]. Meeting [DLM99], meets
[Tam95]. Member [BS99]. Memories
[HKSL96, KHP⁺95]. Memory
[ALSJ09, AJK⁺12, BS96, BMWB00b, BD00, BP19, BAZ⁺19, CH95, DM98, EJ93, EE09a, FMY⁺15, GMR98, GCMZP14, GH98, HG91, HL07, IXS18, JLA16, KZTK15, KZC15, KKH04, KUCT15, LK20, LSNB15, LB92, LB17, LML⁺19, MSM⁺16, MV293, MCT08, Nak01, RCC14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM⁺08, Thro99, Tro18, VCM19, Ver96, WJA⁺19, WC99, XWG⁺14, YMR93b, ZM07, ZLJ16, ATLM⁺06. AKSD16, AAKK08, BS06, BGDMWH12, BCG⁺15, BBH⁺17, BMBW00a, BMBW00c, BLM06, BDLM07, BA08, BB00, Boo93, BAML07, C MF⁺13, Cha05, Cho93, CNV⁺06, DLZ⁺13, DLOO99, DP297, EKKL90, EVO1, FF10, GCC15, Gle91, GL98a, GS00, GKK09, HB92, HWW93, HG92, HHPV15, ISS98, KFG15, Luk01, MLS15, MCRS10, MSM⁺10, MLC04, MMTW10, MTS10, Mic04, MTC⁺07, MVL05, NPC06, NAAL01]. memory
[OCT14, SLOT2, TSY99, TSY00, TVD10, TVD14, VTS12, WK08a, WK08b, WK08c, XHBO6, YMR93a, YSY⁺09, YN09, kSYHX⁺11, ZKW15, ZHCB15, ZTN19]. Memory-Divergent [WJA⁺19]. memory-intensive
[YSY⁺09]. Memory-level [EE09a]. Memory-safe [Tre18]. Memristor [KNE⁺14]. Memristor-Based [KNE⁺14]. MemSAT
[TVD10]. Merlot [MTN⁺00]. mesh
[ABC⁺09, Mus09]. mesh-based [Mus09]. Meshes [HTBT98, Lep95]. Message
[BWXF05, HLB94, KKDV03, PH97, Ada98, BCM⁺07, DLM99, FM92, Met95, PRS14, SCM05, FGT96, PS01]. message-handling
[Met95]. message-passing
[BCM⁺07, FM92]. messages
[Koo93, SD95, WHJ⁺95]. meta [FKS⁺12]. meta-scheduler [FKS⁺12]. Metering
[LMA⁺16]. Method [CYYL18, LPK16, LHG⁺16, MAF19, SKG⁺11]. Methodology
[Sri95]. Methods [CMK00, FGKT97]. Methylation
[LZL⁺20]. Metrics
[EE14, VS11a]. Metro [Ano00b]. Metro-X [Ano00b]. Mexico [Ano94e, Gol94]. MFC
[FMY⁺15, LS11, WHG07]. Microarchitecture
[KM03, AMPH09, LSF⁺07, Wil98]. Microarray [GAC14]. microbenchmark
[BO01]. Microbenchmarking [FMY⁺15]. Microcontroller
[BP05, PUF⁺04, KPB⁺03]. microkernel
[BO96]. Microprocessor
[KE15, SU96, Aru92, CJB⁺15, GUL95]. Microprocessors [Gep97, KET06a, CGL92a, CGL92b, HH07, RCG⁺10]. microthreading [CSK⁺99]. microthreads
[CTYP02]. Middleware
[RBPM00, KBH +03]. Migrant [MR98].
Migrating [PG92, BDF98]. Migration
[ABN99, Sat02, WG99, CWS06, CSM +05, HWW93, ISS98, Pha91]. migrations
[PGB14]. MIMD [FSYA09, Gle91]. MiMPI
[GCC99]. Min [JEV04]. Min-cut [JEV04].
Minimal [BMR94, CSS +91b, Lun97, TY97, CSS +91a, CSS +91c]. Minimizing
[SPDLK +17]. Mining
[OB13, WLT19, GBP +07]. Mining-Based
[OB13]. Minneapolis [IEE92, IEE95].
Minnesota [IEE92, IEE95]. MIPS
[Aru92, Swe07]. miss [SLP08]. mitigate
[ASSS19]. Mitigating [EPAG16, OdSSP12].
Mitigation [PHBC18]. Mitosis
[MGQS +08]. Mixed [XIC12]. mixture
[SC17]. ML [BCL +98, DL93, MT93]. Mobile
[BDF98, USE93a, APX12]. Mobility
[CWHB03, BHK +04, SJ95]. mode
[AR19, FRL18]. mode-directed [AR19].
Model [AHK08, ACMA97, CC18, Ch15b, CSV10, CBN +00, DTLW16, Dii00, ES97, FG91, Gao93, Loc18, MSM +16, ND16, SAC +98, Sto02, TESK06, VK99, WC99, ABG +08, BA08, BMV03, CNQ13, Car89a, CY92, Chr95a, Chr95b, Chr96, DLZ +13, DiI93, DSH +10, DC07, GKZ12, JPS +08, JD08, LZW +13, MSL +10, MQ08, PAdS +17, PG03, RSB +09, Sto05, TMAG03].
Model-Checking [ES97, Sto02].
Model-driven [CSV10, RSB +09].
Modeling
[KMJCO2, KE15, PPG11, Röt19, TAM +08, WJA +19, AMC +03, CIM +17, DFK94, EE10, EE12, Mao96, SBC91, Squ94, TR14].
Models [CMK00, CH95, Den94, HY +15, KZC15, Kim14, KW17, LB17, ST98, VTK6, BAMB07, BUT14, Cho93, Cor00, GIL94, SC17, TVD10, VDBN98, XIC12, ZKW15].
Modern [DFC +19, GK05, GBP +07, HL07, NJK16, ZJS10]. modes [WZWS08].
Modular [Chi15a, FQS02, FFFQ05, JKB18, Kuc92, NT14, SZM +13, FK12, GBCS07, MJF +10, ZSJ06]. modularity [LK15].
Module [ALSJ09, ZSA13]. modulo [LQ15].
Molecular [LNI +19, MAF19]. monad
[FKS +12]. monadic [LZ07]. Monitoring
[BBFW02, BBFW03, DJLP10, MC06, NFB17, VGK +10a, VGK +10b]. Monitors
[Bec01, S91, KPPR06]. Monsoon
[NGA93]. Montecito [MB05]. Monterey
[USE91a, Ass96, USE96, USE01]. Mosaic
[Ano94d]. Most [PLT +15]. mostly
[BBYG +05]. Motifs [LZ +20]. Moving
[Ait96, Sim97]. MP [Pea92, TTY99]. MPD
[PHK91]. MPEG [BC00]. MPI
[PS01, Vre04, Ada98, ALW +15, ALB +18, BBG +10, BK96, BBC +00, BRM03, CRE99, DSG17, HD02, DLM99, FGT96, GCC99, IEEE6, MS02, Pla02, SCB15, STY99, SPH96, TSY99, TSY00, TG09]. MPI-based
[Ada98]. MPI-OpenMP [MS02]. MPSoCs
[GPB +17]. MrBayes [LHG +16]. MS
[Wil94a, Wil94b]. MS-DOS
[Wil94a, Wil94b]. MSFV
[HHOM91, HHOM92]. MSpArc
[MN00, MD96]. MT [EC98, TJ +11].
MT-BTRIMER [TJ +11]. MTA
[Mat97, SMI01]. MTAC [For97]. MTB
[AGJ18]. MTB-Fetch [AGJ18]. Mth
[MKM17]. MTraceCheck [LB17]. MTS
[Gal94]. MUCH [WL15]. MulTEP
[WM03]. Multi [Ada98, AMR98, AACK92, AGK96, AR91, AB00, BC98, Bed91, BBH +17, BC00, BGK94a, BGK94b, BGK96, CV98, CL95, CRK99, CWHB03, CD001, CCC12, CCK +16, CC18, CvdBC18, cC91, Chr01, CR02, Coo95, CNZS17, D99, DS16, DTLW16, EBKG01, FMY +15, FD96, FDL02, FJ08, GVT +17, GKH94, GIL93, GS06, GH98, HC17, HGH91, IXS18, III01, JY15, Jon91, JLS09, KI95, KW17, KRH98, Kuc92, KTR +04, LK15, LK20, LB92, Leg01, LKBK11, LZL +20, MLGW18, MNU +15, Mas99, MTN +00, MC97a, MC97b, MS15, MP13, MG15, MCF99, MGK +00, NJ00, OR12, PCPS15, PTMB09, PWW18,
PKB+91, PM14, Pul00, PGB16, RR93, RCC14, RBPM00, RKCW98, RVR04, RS08, SV19, SP00a, STW93, Sch90, SKG+11, SMZ18, Sei98, Smi92, Ste01, BBK99, TG099, Tan87]. Multi
[Tra91, TLGM17, VSDK09, VS11a, VB00, VCM19, VK99, Wal00, YLLS16, ABD+12, ASSS19, BWZD15, Bak95a, BK13, BM07, BIK+11, DSEE13, CNQ13, CIM+17, ČFG+12, CASA14, CRW97a, CRW97b, CSB00, CYZ98, CL00, CSM+05, DWYB10, Don92, EFG+03, EHSU07, FTAB14, FFWLO3, FGG14, GCRD04, GCC15, GPR11, HLGD19, JCP17, KHP+95, KDM+98, KKH04, Kep03, Kuc91, KBF+12, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mus09, NFBB17, NH09, NHS14, OA08a, OA08b, OA08c, PY+10, RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Smo06, Sto02, SQP08a, SQP08b, SQP08c, SMQP09, ST05, Tem97, TCG95, TMAG03, TJJ+11, VIA+05, VDBN98, VV00, VPQ12, WCC+07, WCV+98, YZ07, Yan97, Yee20, YSY+09, YN90, kSYHX+11, YKL13, ZKR+11, db09]. multi [vPG03, Ano97b, CH04, Mix94].
Multi-C [Mix94] multi-context [Yan97].
Multi-Core [CC18, CvdBC18, FJ08, IXS18, KTR+04, MNU+15, PKB+91, PM14, PY+10, RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Smo06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, Tem97, TMAG03, TJJ+11, VIA+05, VDBN98, VV00, VPQ12, WCC+07, WCV+98, YZ07, Yan97, Yee20, YSY+09, YN90, kSYHX+11, YKL13, ZKR+11, db09].
Multi-Engine [CNQ13].
Multi-Engine [VCN96].
Multi-Engine [VCN96].
Multi-Level [RR93, CCC+12].
Multi-Level-Context [JLS99]. multi-process [WCV+98].
Multi-Processing [MLGW18].
Multi-Processor [SV19, VIA+05, YN90].
Multi-Protocol [ABN00].
Multi-Tasking [CvdBC18]. Multi-Thread [HG91, LZL+20, MTN+00, AMRR98, PKB+91, SKG+11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95]. Multi-Threaded [AGK96, BC98, Bed91, BGK94a, BGK94b, BK13, BM07, BIK+11, DSEE13, CNQ13, CIM+17, ČFG+12, CASA14, CRW97a, CRW97b, CSB00, CYZ98, CL00, CSM+05, DWYB10, Don92, EFG+03, EHSU07, FTAB14, FFWLO3, FGG14, GCRD04, GCC15, GPR11, HLGD19, KHP+95, KDM+98, KKH04, Kep03, Kuc91, KBF+12, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mus09, NFBB17, NH09, NHS14, OA08a, OA08b, OA08c, PY+10, RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Smo06, Sto02, SQP08a, SQP08b, SQP08c, SMQP09, ST05, Tem97, TCG95, TMAG03, TJJ+11, VIA+05, VDBN98, VV00, VPQ12, WCC+07, WCV+98, YZ07, Yan97, Yee20, YSY+09, YN90, kSYHX+11, YKL13, ZKR+11, db09].
Multi-Threading [CvdBC18, CNZS17, LKKB11, MLGW18, McC97a, McC97b, MS15, MP13, OR12, PTMB09, RCC14, Sch90, SMZ18, TGO99, YLLS16, DTWL16, MCFryn99, NJ00, RVR04, Bak95a, BM07, FWLO3, LZW+13, MLC+09, VDBN98, kSYHX+11, YKL13, CH04].
Multiagent [Bar09]. Multicomputer [FKD+97]. multicomputers [BCG+95]. Multicore [ALSJ09, ABLM19, BCZY16, CCH11, CB16, DVAE18, FSPE20, GJ11, HEMK17, KLDB09, LS11, LMA+16, LYH16, LDT+16, MR09, NBBM12, PGB16, RCM+16, RRK11, SLJ+18, SHK15, SM+10, THA+12, ZBS15, CNQ13, CN14, CMX10, LK13, LLLC15, NZ17, RCG+10,
RKBH11, SCCP13, SE12, ZSB+12, ZTN19.

Multicore/Multithreaded [RCM+16].

Multicores [FSPD16, FSPD17, RKK15, DTK+15, GARH14, SSN10].

Multifrontal [ABL19, But13, Dav11].

Multigrain [AZG17].

multigrid [RM99].

Multilevel [PPG11, Cat94, JPY+03, LK15].

Multimedia [Spe94, Est93, Gol96].

multimethod [FGT96].

MultiMotifMaker [LZL+20].

Multiple [CB16, FGKT97, HW92, HKT93, NTR16, OR12, CS95a, CS95b, FD95, HKN+92, LT97, TE94b, TFG10, TAN04, WCT98].

multiple-context [FD95].

Multiprocessing [EKB+92, Len95, NV94, Wal95, DLCO09, MT93, Pra95b, RGK99].

Multiprocessor [AACK92, AKB99, BC00, Cat94, EHG95, GHG+98, HN91, KMA01, MCT08, Pre90, PPG11, SZ92, SEP96, USE92b, WC99, Zab02, Cho93, DCK07, EKKL90, HLB92, KTN90, LW+10, PJZA07, Ano94b].

multiprocessor/multithreaded [Cat94].

Multiprocessors [BMV03, AGJ18, BS96, BL96, BLG01, CH95, GMR98, KU00, KKS+08, LS07, LMJ14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA09, HT14, LGH94, Mao96, Men91, MWK+06, QSM06, SKM10, SHA98, SKKC09, TAS07, Yoo96b, YMR93a].

Multiprogram [EE14].

Multiprogrammed [MVZ93, TSY99].

Multiprogramming [BHP+03, J91, CGL92a, CGL92b].

MultiRace [PS07].

Multistring [BVP+19].

Multitasking [Col90b, Gib94, Gon90, JJ91].

Multithread [BVP+19, LCS04, RRM12, SYHL14, CS95a, CS95b, DSH+10, GCC99, JD08, SWYC94, ZG98, ZG96].

multithread-safe [GCC99].

Multithreaded [Add03, AbdBRS08, ABC+93, AT16, Ama98, ALB+18, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, ABH+00, ABH+01, AB01, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCRT01, BBdH+11, BVL09, BK106, BMBW00b, BF04, BJK+96, BL98, BB00, BMN99, BN02, BP05, BLG01, BTE98, BNH01, BD06, BGH+12, BBSG11, BH95, CC14, CJW+15, CS02, CKG06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN+00, CBAN08, Dan09, DNR00, DVAE18, DH98, DRV02, DTR18, DO95, EFN+01, EFN+02, EJRB13, EHP+07, EC98, EGP14, FSS06, FT96, FS96, FTP11, FNA+18, FQS02, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA+15, HMLB16, HTZ+97, HMNN91, HHOM91, HHOM92, HLB94, HH11, HWZ00, HPB11, HYY+15, Hud96].

Multithreaded [HMT+96, I+94, JBK18, JYE+16, JSB+12, KA97, KKW14, KST04, KML04, KFC98, KC99, KMjC02, KR12, KU00, KE15, KG94, Kim14, KU17, KAO05, Kor89, KTR+04, LS07, LG06, LH09, LG04, LB96a, LB98, LB00, LLS06, Lvh12, LTM+17, LYH16, LPE+99, Loc18, Loe97, Lun97, Lun99, MGQS+08, MP01, MS89, MB99, MD96, MAF19, Moo95, Moo96, MR09, Nak01, NPT98, NNGA94, NTKA99, Niki94, OB13, OTY00, PBDO92, PUF+04, PG92, PG96, PG99, PF01, PHK01, PWL+11, PS01, QOM+12, RCM+16, RW97, RCC12, REL00b, Rin01, RB18, RNSB96, RBSN01, RRK11, RBAA05, RR99, SPD7K+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She98, SU96, SU01, SZM+13, SGM+97, SMD+10, SR01b, SYY97, SKK+01, Spe94, SRI95, SZ02, SUP+12, Sut99, TG99, Ten02, TKA+01, TCI98].

Multithreaded [TT03, TTKG02, TGBS05, TLZ+17, TLZ+18, TJY98, TSV12, UR02a, VTSM12, Vol93, VE93, Wan94, WSS08, Wea08, WJ12, Wil97, WLM15, W9G4, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12,
ZBS15, ZP11, ZAK01, Zub02, ÁdBdRS05, ACD+18, Aga89, Aga91, Aga92, ABF+10, ABC+15, AAC+15, ACC+03, AGEB08, Ann96, Ano94b, Ano95a, Ano95b, A+01, ABC+09, AR17, AR19, Aru92, BDGMWh12, BBFW03, BRRS10, BGZ97, BCHS00, BAD+10a, BAD+10b, BCG13, BGC14, BMBW00a, BMBW00c, BYLNo9, Blu92, BL93, BL94, BJK+95, Blu95, BL99, BS10a, BC+14, BEKK00, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car89b, CB89, CB90, CLL+10, CLL+02, Cho93, Cho92, CGL92a, CGL92b, CJB+15, DJLP10, DSG17, Dav11, DL93, EJK+96, Eic97, EG11, Est93, Evr01, Fan93, Far96, Fer13, FF04, FFQS05, FF08, FFY08, FRL18, Fuj97, GMW09, Gal94, GJ11, GGB93b, GK05, GPS14, GL98a, Gol96, GRS06, GR06, GA09, GLC99, HMC97, HFV+12, HF88, HLB90, Hig97, HMM+92, Hop98, JMS+10, JFJ98, JSMP12, JSMP13, Jr96, JSB+11, KGP912, KRB01a, KRB01b, KNPS16, KBP+03, Kub15, Kus15, LLLC15, Lea96, Le97, Len95, Lev97, LLL10, LCH+08, LMC14, LSW+18, LBE+08, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, MII95, Mis96, Mix94, MC06, MKR10, MQ07, NB12, NR06, Nam00, NP92, ND96, NZ17, Omm04, Par91, PFV03, PJZ07, Pha91, Ply89, PDP+13, PS03, PS07, Pr95c, PT03, PFGS20, RGG+12, RCM+12, Ra93, RCG+10, RHH10, REL00a, REL00c, Rei95, ROA14.

multithreaded

[AMdBdRS02, AH00, AGJ18, Ano99, Ano05, BBG+10, BWXF05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Bre02, BLVP04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FF01, FKT96, GHG+98, GV95, Gul95, Gun97, GSL10, Har99, HBTG98, HTDL18, ILF001, IBST01, KPC96, Ke094a, Ke094b, Kho97, KF97, KNE+14, KL9H97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MHG95, MN00, MKC97, N9g01, Oni97, OA19, OCS01, PSJ15, PT91, PST+92, Pera92, Pre97, RLJ+09, RG03, RD96, SSP99, SPY+93, SW08, SCv91a, SP07, SLG04, SHW19, SRU98, SFC+19, Sin97, Smi01, ST00c, SAKA01, TY97, Ten98, TAK+00, TESK06, VT96, WWW+02, WCW+04a, Wei97, YG10, ZL10, ZG96, AAHF99, AAKK08, ABB+15, BCM+07, BGG95].

multithreading

[BK92, Boo93, CHH+03, CCC12, Div95, DN94, Dub95, Dye98, EE09a, FM92, Fis97, Fon97, GWM07, GBC95, Gae98, GEG07, GE08, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD99, Kim94, KG07, KT99, KLH+99, LK13, LKH94, LSS12, LZW17, LZSS19, LB95, LB96b, LZL+14, Lrd95, LVS01, LZBW14, Luk01, MIGA18, MW007, Mae96, MKIO04, MGL95, MM+05, Mc97, Met95, MKR02, MAAB14, OA09, On97, PSC06a, PSC06b, PSC06c, PG01, PHCR09, PV06, Pra95b, RM00, RR96, RPNT05, San04, Sch91, SCv91b, Sin99, SW16, STV02, Svi09, TK98, TSC99, TO10, Ts97b, TEL95, TEE+96, Tul96, TEL98a, TEL09b, URS02a, URS03, VPC02, WLQ+14, WW93, WCW+04b, WD03, UZU00, GVR06, Ver97, Ver96, VGK+10a, VGK+10b, WS06, WCC+07, Way95, WT10, XSA08, Yan02, Yan97, YZL07, Yoo96b, YM92, YMR93a, YNPP12, ZJ10, ZP04, WM03, LP09].

Net [Ham96]. Net-Centric [Ham96]. Netburst [KM03]. Nets [KMjC02, MK97]. Network [ACM98a, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IE02, LCK11, USE91a].

NOWs [SLGZ99]. NP [YZ14]. NB [EGC02]. NT [Ano98b, Hig97, PG96, Pra95c, Pra95b, TCI98, USE98a, Wil94a, Wil94b, Yam96].

O [RM03, Ano95a, Ano95b, ABB +15, BDN02, KSU94, LTL +16, Man98, MG15, Yoo96a]. Object [Ano99, BBD +91, BC94, GK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car89a, CYZ98, CLL +02, FWL03, FL90, JPS +08, LLLC15, Sch98, Wei98a, Yan02, dB09, vPG03]. Object-Oriented [Ano99, BBD +91, BC94, Kim14, NPT98, SG96, HH97, Ada98, Car89a, CYZ98, CLL +02, FL90, JPS +08, Wei98a, Yan02, dB09, vPG03].
Oblivious
[UALK17, UALK19, HL08, HZ12].
Observer [Hol99b]. occupancy [PAB+14].
Ocean [SAC+98]. OCTET [BKC+13].
October [ACM94d, Ano94d, BT01, IEE95].
ODBC [Ano00b, Hig97].
ODBC-compliant [Hig97]. ODBC-ODBC
[Ano00b]. ODE [Bra97]. Off
[MHG95, AAC+15, DTK+15, Gep00].
off-beat [Gep90]. off-chip [DTK+15].
Off-the-Shelf [MHG95]. offs [Par91]. Old
[Wil00]. On-Chip [LKBK11, ZM07, SMK10,
TEL95, TEL98a, TEL98b]. On-Line
[Ano00c, FSPD16, FdL02]. On-the-fly
[Sch89, CWS06, PS03, FS07]. one [Bak95a].
one [QSHI16]. one-sided [QSHI16]. On-line
[Ger95, OTY00, RCC14, Sei98, Sei99,
SRA06, TGO99, HF96, LWV+10, RS07,
VKG+10a, VKG+10b]. only
[Di00, MJ+10, NM10, ZFA09]. onto
[Lb+H06a, Lb+H06b, Lb+H06c]. Open
[Ano00c, BMF+16, Hai97b, BMF+19,
KR01a, KR01b, RBF+89]. Open-Source
[Ano00c]. OpenGL [Rö19]. OpenGL-
Rö19]. OpenMP
[Cha05, ARvW03, BHP+03, BBC+00, Bra97,
BMV03, B001, CRE99, CDK+01, CM98,
DM98, HD02, EV01, JYY+03, KKH03, Lu98,
MS02, Mar03, MLC04, MPD04, Mat03,
MG15, MI14, Mil03, NAA01, RBAA05,
SLGZ99, Th99, TGBS05, Vre04, RM99].
OpenMP-oriented [MLC04]. OpenOpt
[NISP+14]. OpenPiton
[BMF+16, BMF+19]. OpenSPARC
[Wea08]. Operand [SP07]. Operating
[ACM94d, CLFL94, TLA+02, Gei01, IEE89,
IEE94a, MS87, REL00b, SEP96, Ano92a,
Ano92b, ASSS91, BDM98, BRDR91,
IEE94d, Jef94, Jef95, LYN10, LAK09, Phy89,
RBF+89, REL00a, REL00c, She98, Way95].
operation [DKG18, RHH10]. Operational
[CRK99, CRK97a, CRK97b].
Operations
[KKS+08, KLDB09, SCL05, HMC95, RD06].
Opportunistic [YL16]. Opportunities
[GM07, HL08, Msu09]. OPR [QSHI16].
Optimal [AT16, GPB+17, Lar95, RCM+12,
Lep95, LML00]. Optimistic
[WHJ+95, CZSB16, DKG18, VPQ12].
Optimization [BLG01, CdBC18, GN96,
RNSB96, SYH14, TJY98, TLGM17, WJ12,
AMC+03, AMPH09, DZKS12, GOTO3,
Koo93, RKCW98, Sin99, TO10, ZCSM02a,
ZCSM02b]. Optimizations
[HY+15, JSB+12, KET06a, LEL+99,
Sut99, ZM07, ABC+09, JSB+11, OA08a,
OA08b, OA08c, Rohl95]. Optimized [Sin97].
Optimizing [DTK+15, KZTK15, PR98,
PSCS01, WC+07, GS02]. Orange
[ACM98d]. orbital [MAF19]. Orchestration [GVT+17]. Order
[CKJ95, HLDG19, RRRK11, NV15, SJA12,
SW16, ZKV15]. Ordering
[DEL18, HR10]. Ordering-Free
[DEL18]. Oregon
[ACM94b, ACM99b, IEEE93]. Organization
[HG91, HG92, PPGS20]. organizing
[LAK09]. Oriented [Ano99, BBD+91, BC94,
Kim14, KS97, LHG+16, NPT98, SG96,
Ada98, Car99a, CYZ98, CLL+02, DWYB10,
FL90, HH97, JPS+08, MLC04, Wei98a,
WP10, Yan02, dB09, vPG03]. Orlando
[ACM94a, ACM98d]. OS/2 [DN94, Kan94,
Kel94a, Kel94b, Re95, Rick, Rod94].
oscillations [BD06]. OSF [BM91]. OSF/1
[BM91]. Other [SY+93, MMTW10].
Ottawa [BT01]. Out-of-Core
[QOIM+12, ABC+15]. out-of-order
[SJA12, SW16]. output [MP89].
Outstanding [LSB15]. Overall [SEP96].
Overcome [SW08]. overflow [KOE+06].
Overhead
[DSR15, RRP06, YL16, ZHCB15].
Overheads [SHK15]. Overlay [DFC+19].
overview [Li05]. Own
[BS99, Sho97a, Sho97b]. Oxford [ACM94c].
P [Ano00b, Nik94, PR05]. P-RISC [Nik94].
P-STAT [Ano00b]. P-Thread [PR05]. Pacbio [LZL+20]. Pacific [IEE89]. Pacifier [QSQ14]. Package [Ano94c, FL90, HCM94]. packages [GOT03, OT95, PL03]. Packaging [RR93]. Packard [BLCD97]. Packet [AHW02, LCH,+08, MVY05, WZC,+07]. page [CNV,+06]. page-based [CNV,+06]. PageRank [KG07]. Pages [JLA16]. Paging [FD96, FdL02, Sei98, Sei99]. Pagoda [YSS,+17, YSS,+19]. PaiLisp [KI95]. pain [Gus05]. Paje [CdOS01, CSB00]. Palo [ACM01]. panel [Ano94e, Bak95b, HCD,+94, IAD,+94]. Paper [ABH,+01, TKA+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05]. parallel-monad [FKS,+12]. ParADE [KKH03]. Paradigm [EW96]. Paradigms [CM98, HD02, YM93b, YMR93a]. Parallel [ABC,+93, AMRR98, Ano89, ABNP00, ACMA97, Bau92, BC00, BFA,+98, BC00, BFA,+98, BFA,+98]. Parallel-Multithreaded [WC99]. Parallelism [AACK92, ABLL92, BAM93]. CSS,+91b, DV99, EW96, FKP15, FURM00c, GVT,+17, GP95, DK02, LKBK11, LEL,+97a, LEL,+97b, MG99, MR94, Mar03, MCFT99, NW99, RBAA05, SS99, SMD,+10, SG96, Th99, WS08, YBL16, Yoo96b, ALHH08, AKSD16, CSS,+91a, CSS,+91c, EE09a, FN17, FURM00a, FURM00b, HDT,+13, KRBJ12, KDM,+98, KVF,+09, KCF99, LAH,+12, QOQOV,+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDBN98, VV00, Wei98a, XSAj08, YZ14, Zip96]. parallelism-aware [LAH,+12]. parallelisme [Zip96]. Parallelization [CRE99, DSAD,+18, KC09, LVA,+13, RM99, WZWS08, YLLS16, AC09, DC07, JYy,+03, MAF19, PO03, RKy,+10a, RKy,+10b, RRMJ12, TFG10]. parallelized [CJ91]. Parallelizing [BM91, WDC,+13, KBF,+12]. ParaLog [VGK,+10a, VGK,+10b]. Parameterized [BGR01, FK12]. Parametric [Ano98b, FTR95]. Paravirtualization [YS,+09]. PARC [Ong97]. Pareto [GPB,+17]. Pareto-Optimal [GPB,+17]. Parsing [BC00, Lar95, PCM16]. Part [Ano92a, Ano92b, KR01a, McM98b, Hol98a, Hol98b, Hol98c, McM96b, McM98a]. Partial [Loo97, RRP06, SP00b, Shi00, ZK15, HLGD19]. partition [LCW17]. Partitioning [AMRR98, Coo95, D'H92, EW96, SLJ,+19, TG99, DCK07, LZL,+14, MKR10, SCG95, WW96]. Partitioning-Independent [EW96]. Pascal [Hay93]. PASCO [Hon94]. Passing [BMW05, TLA,+02, FGT96, KKDV03, PH97, PS01, Ada98, BCM,+07, DLM99, FM92, PRS14]. Path [BLG01, TAK,+00, CTYP02, WCT98]. pathfinder [KPP12]. Paths [OTY00, Ano95a, Ano95b]. Pattern
Pattern-recognition [Ano97b, EGP14, OR12, EG11, GBP+07, SCM05]. Pattern-Based [EGP14, EG11].

PC [DS16, LPK16]. PCM [AKSD16]. PCM-based [AKSD16]. PCs [CRE99, NV94]. PDE [Chr95a, Chr95b, Chr96, JD08]. PDES [LTM+17]. pedagogical [CMS03].

Performance [ACM98a, ACM98d, ACM00, Aga90, Aga91, Aga92, ABLM19, BS96, BL96, BRM03, BLG01, BNH01, BHG+12, BBSG11, Cal97, CRE99, CCH11, CCK+16, CCYW17, CH95, Cho92, CT00, CSM+05, CBN+00, CMBAN08, DVAE18, DWYB10, EGC02, EE14, FT96, FSPD17, FBF01, FURM00c, FGKT97, Gal94, Gar01, GN00, HRH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KH18b, KS97, KTR+04, LWSB19, LCK11, LG06, Lep95, LMIJ14, LHG+16, LYH16, Mah13, Man99, Mao96, MSM+16, MPD04, ME17, MWK+06, MKC97, MM14, NCA93, NBS+15, NGGA94, Par91, PH97, PS01, QSaS+16, RG03, RVOA08, RKK15, SCD+15, SLJ+19, TCI98, TT03, Tsa97a, TLG17, VP16, Wei98b, WG99, WN10, YWJ03, ZL10, ZAK01, Zub02, AAC+15, APX12, AAKK08, BGDmWH12, BS10a, BM09, BM03, CML00, Car89b, CIM+17, Cha93].

performance [Div95, Don92, DFK94, ECX+12, FL90, FM92, Fis97, FURM00a, FURM00b, GS02, GEG07, GLC99, HLB90, ICH+10, Kim94, KLA+09, LML+19, LB95, LB96b, LBH12, LCH+08, LMC14, LBE+08, MLC+09, Mah11, MCRS10, McM97, PJZA07, PGBI2, RGK99, SE12, SSaP+07, SQP08a, SQP08b, SQP08c, SK+02, TMC09, TR14, TG09, The95, VV11, Wan94, WZC+07, WOKH96, YZ07, YM92, ZJS10].

Perspectives [PLT+15]. pessimistic [CZSB16]. Petaflops [SZ02]. Peter [Ano00c]. Petri [KMJ+92, MKC97]. PGI [Ano00b]. pH [ACMA97]. Phase [CA20].

pi-program [Yee20]. PIC [BMV03]. PicoServer [KSB+08]. picture [AC09]. Piecing [Ano97b]. Pipelining [GV95, RVOA08]. PIRATE [ICH+10].

Pitfalls [Hol98a, SPY+93, CL00, San04]. place [SCM05, SGLGL+14]. placement [NLK09, TE94a]. Plagiarism [TLZ+17, TLZ+18, TLZ+16]. Plan [DLZ+13, Pre90]. PlanICS [NSP+14].

Planning [NSP+14]. plans [GARH14]. plastic [MCS15]. Platform [AB01, AB02, CT00, DTWL16, EEL+97, FS06, BMF+19, Lam95, MT93, PG03, WCW+04b, WCW+04c, WCW+04d].

Points [CC04, CHH+03, SL+09]. points-to [CC04, CHH+03]. policies [Eic97, EE09a, KPPER06]. Policy [LLKS12, MVZ93]. Polling [Pha02].

Pollution [MD+04]. Polynomial [Kuc92, Kuc91]. Pool [PSC01, LML00].
Pools [Cal97]. **POPL** [ACM94b, ACM95b, ACM98b]. **Port** [Koo93]. **Portability** [VSM+16, SP05]. **Portable** [ABN00, BBFW02, Eng90, KF97, LDT+16, Yas95, CS00, GCR04, Mix94, MT93, MAAB14, TB97a, TB97b]. **Portals** [BRM03]. **Porting** [JJ91, Yam96]. **Portable** [ABN00, ABN01, BBFW02, Eng90, KF97, LDT+16, Yas95, CS00, GCR04, Mix94, MT93, MAAB14, TB97a, TB97b]. **Portals** [BRM03]. **Porting** [JJ91, Yam96]. **POSIX** [Ano00c, Alf94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, SP05, dlPRGB99]. **POSIX-compliant** [SP05]. **Post** [LB17]. **Post-Silicon** [LB17]. **Pot** [VSDL16]. **Potential** [CC14, EGC02, LLKS12, Mou00, DG99]. **potentials** [ABF+10]. **POwer** [GJ11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CMBAN08, MB07, MR09, PHBC18, RCC12, RKK15, RRK11, SYHL14, TVB+13, TLGM17, ECX+12, GW10, MLCW11, MWK+06, Pra95b, PPGS20, Rich91, SM19, SQP08a, SQP08b, SQP08c, CMF+13]. **Power-aware** [MR09]. **Power-Constrained** [TLGM17, GW10]. **Power-Efficient** [BCZY16, SQP08a, SQP08b, SQP08c]. **Power-Performance** [CMBAN08]. **POWER5** [BCG+08, MMM+05, KST04, Ano05]. **POWER6** [LSF+07], **POWERPC** [BEKK00, SBKK99]. **PowerRAC** [Ano00b]. **Practical** [HW92, LJM14, MNG16, ND16, PBR+15, RRR+6, TGBS05, BCC010, RD99, RPB+09]. **PRAM** [For97, Lep95]. **Pre** [PR05, Luk01]. **Pre-Execution** [PR05, Luk01]. **Precise** [HR16, KUCT15, CLL+02, FF09, WTH+12]. **Precomputation** [MGQS+08, WWW+02]. **Preconditioning** [Nak03, GEG07]. **Pre** [LTHB14]. **Predicate** [GPR11, How00]. **Predictable** [BBdH+11]. **Predicting** [Lun99]. **Prediction** [AKS06, CMBAN08, DVAE18, IBST01, PBL+17, BWZD15, BMV03, CTYP02, CPT08, GL98b, RRP06, TFG10, WHG07]. **Prediction-Based** [CMBAN08, RRP06]. **predictive** [LTHB14, SRA06]. **Predictors** [EPAG16]. **preemptive** [JLS99]. **prefetch** [AMC+03]. **Prefetcher** [LYH16]. **Prefetching** [AGJ18, BL96, GK94, MKC97, SLT03, VT96, LB95, LB96b, Maa96, SLT02, SKKC09]. **Prefix** [BVP+19, WJ12]. **Preliminaries** [NBM93]. **Preliminary** [EHG95]. **Preparation** [GH03]. **preprocessor** [Fon97, Mil95]. **prescient** [AMC+03]. **Presentation** [Kub15]. **presented** [ACM93a, ACM94b, ACM95b, ACM98b]. **preserving** [MSM+11, MFBB17]. **pressure** [DTLM14, SL08], **preventing** [PRB07]. **Price** [Ano98b]. **Priming** [TT03]. **Primer** [LB96a, Wil97]. **Primitive** [Low00]. **primitives** [BBH+17, LZ07, NKL09]. **principal** [LAK09]. **Principles** [ACM93a, ACM94b, ACM95b, ACM98b, TLA+02]. **print** [Van97a]. **priorities** [STV02]. **prioritization** [FD95]. **Priority** [BCG+08, BNM12, SCCP13, ST05]. **priority-based** [BNM12]. **Private** [Man99]. **privatization** [HZ12]. **Pro** [Ano97a]. **Proactive** [FJ08]. **Probabilistic** [EE10, EE11, SMI06]. **Problem** [HH11, Lee06, YFF+12, BIK+11, Mit96]. **Problems** [DK02, Nak03, AR17, Bar09, FTAB14, FR95]. **procedure** [BGK94c, KASD07, LQ15]. **procedures** [MCS15]. **Proceedings** [ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV+99, Go04, Hol12, IEE01, IEE02, IEH93, IEE94a, IEE95, IEE00, IEE92, IEH02, Lak96, LCK11, USE89, USE91a, USE92, USE93a, USE93b, USE96, USE98, USE98a, USE98b, USE98c, USE99, USE00b, USE01, USE2, ACM92, ACM95a, ACM96, EV01, IEH97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEH94b, IEE94c, FR95]. **Process** [FT96, FG91, BM91, HF96, LV01,
MR98, Ply89, WP10, WCV+98].
process-oriented [WP10]. Processes [CB16, III01, SPY+93, ZSA13, ZYL07, Zig96]. Processing [AHW02, GAC14, MLGW18, RW97, SG18, SS91, WN10, How98, MVY05, Par91, PYP+10, RKHT17, WCZ+07]. Processor [ABC+93, Ano00b, BVM19, BCG+08, BGH+12, EH95, GV95, HMNN91, HHOM91, KST04, KML04, KA005, LVH12, MGQS+08, MG99, MTN+00, MVZ93, MB05, SV19, SW08, Sin97, ST00c, SZ02, SBBK99, SUF+12, UALK17, UALK19, WS08, AAHF09, APX12, BEK00, BH95, CL94, CY99, Cho92, EE10, Fis97, FRL18, Fu97, Goo97, HF88, HKN+92, HMM+92, KDM+98, Kho97, KBA08, LBvH06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Moo95, Moo06, OCRS07, Raj93, Sha95a, SJA12, Sin99, ST00a, ST00b, STV02, Squ94, SRI93, Tsa97a, Tsa97b, TEE+96, VIA+05, WCW+04b, WCW+04c, WCW+04d, YNO9, ZP04].

processor-based [WCW+04b, WCW+04c, WCW+04d]. Processor-In-Memory [SZ02]. Processor-Oblivious [UALK17, UALK19]. Processors [ARB+02, AH00, Ano01, BF04, EEL+97, FT96, FSPE20, FJ08, GJT+12, GSL10, JGS+19, KS16, KLG08, KU00, KLDB09, LPE+99, MHG95, MTPT12, MR09, OCS01, PFO1, RCM+16, RYN04, RKK11, SU01, SR01b, URŠ02a, VSI1a, YG10, ZPI1, Aga89, Agra91, Aga92, AAC+15, BGDmWH12, BWZD215, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW09, GBP+07, KBF+12, LLL10, LBE+98, Luk01, MN03, MEG03, MTPT12, Msg96, NB12, NZ17, PFV03, PAB+14, PPGS20, RGG+12, RCM+12, RPNT08, SLPO8, SMS+03, URŠ02b, URŠ03, ZSB+12, WM03].

processus [Zig96]. Procs [MT93].

Professional [Ano00b]. Profile [BMR94, SV19]. profilier [DTLM14]. Profiling [BP19, DG99]. Program [BVM19, Chl15a, DSR15, EFN+01, GN96, KKW14, NBM93, PF01, PS01, SHK15, TSY00, TLZ+17, TLZ+18, TJS98, YLL16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EFN+02, FRT95, JEV04, JPS09, Yee20]. Programmability [THA+12]. programmable [PYP+10]. programmation [PPA+13]. Programmer [Cro98, Wil00, MS87, San04, Swi09]. Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BO17, BTE98, But97, CMK00, CV98, CDK+01, Chl15b, CT00, CW98, DM98, FHM95a, FTP11, FA19, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KKH03, KS95, KS96, KIAT99, LB96a, LB00, LVH12, Mas99, NBF96, Nor96, PG99, QOQO+09, QOM+12, Rod95b, SBB96, TCI98, Vre04, Wil97, YFF+12, dIPRGR99, van95, ALS10, AR17, AG96, ABG+08, BCS00, BO96, BYLN90, Bir89, CKF+91, Car99a, CS00, CMS03, Cha05, CYZ98, DSH+10, EV01, FHM95b, GKZ12, GII04, Gol97, GL07, HMC97, Hyd00, JPS+08, JHM04, KIM+03, Kim94, KN19, LB98, LP09, Man96, MSM+10, MKIO04, MR98, Mix94, NHPF08, Nev99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV95c, SV96a, SV96b, She98]. programming [She02, Sun95, TB97a, TB97b, TMAG03, Wal00, WCC+07, Yan02].

Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, Codos01, Ch01, DRV02, EGP14, FQS02, GKE17, HB94, JBK18, KH18a, Kri98, LK20, LCS04, Lun97, Lum99, MS89, MKG+00, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYHL14, Ste01, TGBS05, Tra91,
Vol93, VE93, ABF$^+$10, BRRS10, BK13, BCG13, BGC14, Blu95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ91, CL00, CLL$^+$02, CVJL08, Cor00, DJLP10, Di00, DESE13, EFG$^+$03, EG11, EHSU07, FK12, Fer13, FF04, FFQS05, FF08, FFY08, GMR09, GRS06, GPR11, HLGD19, HZ12, JPS$^+$08, JWTG11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, ORS$^+$06, PAdS$^+$17, PDP$^+$13, PS03, PS07, RVS13, Rei95, RS07, SR01a].

programs [SCG95, SRA06, Sen08, SP00b, Shi00, SP05, SGS14, Sto02, Taf13, TR14, TLZ$^+$16, WS06, WTH$^+$12, XSAJ08, YCW$^+$14, YNPP12, ZJS10, ZSJ06, dB09, vPG03]. Progress [FSPD17, TLGM17, ZHCB15].

Progress-Aware [FSPD17].

Progressive [BBdH$^+$11, TGO00]. Project [Ano99].

projection [SSkP$^+$07]. Projections [MQLR16, MLR15].

proliferating [Ano94b].

Prolog [EC98, AR17, AR19, KA97, MGK$^+$00].

Promises [Gar01]. Proof [AddS03, ÁdBrRS08, FK15, ÁdBrRS05, GLPR12].

properties [KTLK13, Van97b]. proposal [GP05]. Proposed [GV95]. protect [San04].

Protein-Protein [BCS11]. Protocol [GRS97, II01, AB00, KASD07, QSQ14].

Protocols [AB01, AB02, GRR06, TVD14].

Prototype [BMR94, HHOM91, HHOM92, BK96, BVG97, Far96]. prototyping [PDP$^+$13].

Provably [DJLP10, GB99].

provide [Way95]. provides [Hig97].

Providing [PSM01, PS03]. proving [Taf13].

Provisioning [BSSS14, FGG14].

Pruning [WLT19]. pseudorandom [SLF14]. PSO [HH16].

Pthreads [NBF98, Yam96, LB98, AS14, NBF96].

Publications [Bee98]. Publishing [Ano00b, Hig97]. purity [FFQ04]. Purpose [Ber96b, HSS$^+$14, Man98, ZSA13, Ber96a, DC99, DC00, HSD$^+$12, SKA01].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02].

QoS [ICH$^+$10, PSM01]. QR [Dav11].

quality [PSM03]. Quantitative [LPK16, NBM93]. Quasi [Pla02].

Queries [TGO99, TG000]. query [GARH14]. QUERYFLEX [Ano97a].

querying [GF96]. Queue [Cri98b, Cri98a].

queues [SCM05, ST05]. Queuing [VK99, KPPER06]. Quick [Ano00b].

QuickRec [PDP$^+$13]. quicksort [Mah13].

R3000 [Aru92]. Race [HM96, KUCT15, LS18, MKM14, SBN$^+$97, Sen08, Yan02, ZLJ16, Aff00, AHK08, EQt07, FF09, HR16, HHPV15, MMN09, NAW06, NA07, PS03, PS07, PFH06, RVS13, WDC$^+$13, XHB06, DWS$^+$12]. race-freeness [AHK08]. RaceFree [LZW$^+$13].

Races [KZC15, FF10, NWT$^+$07, PR07, PT03, RBK$^+$09].

Racy [SR15]. RADISH [DWS$^+$12].

Ramada [Ano94d].

Ramada-Congress [Ano94d]. random [LSS12, Sen08]. random-number [LSS12].

Randomized [Sei98, Sei99, PSM09].

Rank [AJK$^+$12, ABLM19, Dav11].

rank-revealing [Dav11]. Ranking [DV99, VV00]. Rapid [DAVE18].

ray [Tod95]. RCDC [DNB$^+$12]. RCU [CKZ12].

Reachability [LCS04, LQ15].

reachability-modulo-theories [LQ15]. Reactions [LTM$^+$17].

Reactive [LvH12, LNT$^+$19]. Reactivity [BDN02].

read [NM10]. read-only [NM10]. Reads [LZL$^+$20].

readly [Ano92b, DFC$^+$19]. Real [BC04, IEE94a, IEE94d, JHS99, Kim14, KBP$^+$03, MN00, PSM01, PUF$^+$04, PSCS01, SZG91, SM19, TUF$^+$12, TET94, WLG$^+$14].
Real-Time [IEE94a, JLS99, Kim14, MN00, PUF+04, PSCS01, SUF+12, Tet94, dlPRGB99, IEE94d, KBP+03, PSM01, SZG91, SM19, Jen95, MKK99, OT95, PSM03, San04, SZ92, SJ92a, SJ92b], Real-Time-and-Distributed [BC94].

Reduction [Anma89, CL85, HLH16, KLS92, SW08, BK17, HH16, BOX06, YL16, ZKW15, HLGD19]. Reductions [ZAK01]. Redundant [CCK+16, CvdBC18, HTDL18, KSL6, MB07, MKR02, PSC06a, PSC06b, PSC06c, RRP06, WLG+14]. ReEnact [PT03]. Reentrant [AMdBdRS02]. Refactoring [Ten02]. Reference [Rec98, Sch14, KOE+06]. Reference-Counting [Rec98]. refinement [GPR11, KPPER06, KI16]. Reflection [OT95, Bak95a]. region [KBF+12, WZSK19]. region-based [KBF+12]. Regions [DELD18, GPS14].

Restart [ZSA13]. Restating [EE14].
Restore [Ano00b], restricted [ABG+08].
restructuring [BVG97]. Results
[GV95, GRS06]. Retentive [RRK11].
Rethinking [Xue12, Len95]. retrieval
[CML00]. Retrospective [TEL98a].
Reusuable [Han97]. Reuse
[BCY16, KZTK15, LPK16, SV19, JSB+11,
NAAL01, PHCR09]. revealing [Dav11].
Reverse [Lar97, Van97a, Vre04]. Reviews
[Bra97]. Revised [Cha05]. revisionist
[PT91]. Reviving [TLZ+17, TLZ+18].
revolutions [ECX+12]. Rewriting
[BGK94a, BGK94b]. RHEED [BD06].
RISC [Cho92, GV95, MHG95, Men91,
Nik94, SBKK99]. rise [Len95].
Robot [Lev97]. Robust [CMF+13, LG04].
Rockefeller [IEE90]. Rogue [Ano00b].
Role [BC94, KZTK15]. rollback [YZYL07].
root [CMX10]. Ropes [HMC95]. routine
[SG18]. Row [KZTK15]. RP3 [CJ91]. RPC
[Tod95]. RPPM [DVAE18]. RPython
[MRG17]. RTOSS [IEE94a, IEE94d]. RTR
[XHB06]. Ruby [OCT14]. rules [GLPR12].
Run [EJ93, LFA96, Swe07, SS96, Pra95c,
TNB+95]. Run-Time
[EJ93, LFA96, SS96, TSY99, TNB+95].
Running [SV19, Cal02, MLCW11, SSN10].
runs [Hig97]. Runtime
[ABN99, ABPN00, ABH+00, ABN00,
BJK+96, BMN99, CZS+17, DNR00, FSS06,
KPC96, NPT98, NS97, QOIM+12, SS99,
WS06, YSS+19, ATL+16, ALW+15,
BAD+10a, BAD+10b, BJK+95, EQT07,
Gol97, Ong97, TSY00, TMA03]. runtimes
[RL14]. Russians [KNPS16]. Rust
[BO17, KN17, KN19, Tro18].
SA [SHW19]. SableSpMT [PV06]. SAC
[GS06]. Safe [BCL+98, Kle00, Loc18, Low00,
NH09, Pla02, AFF06, BYL09, DMBM16,
Fek08, GCC99, GOT03, Gro03, NHP08,
Nev99, Rin99, Tro18]. Safe-for-Space
[BCL+98]. Safety
[Hag02, Pla98, Ric99, SP00a, GPS14, Sam99,
San04, SRA06, Taf13, Van97b, Ven98, Yan02].
safety-critical [San04]. Salt [Hol12].
sample [LZSS19]. Sampled [JYE+16].
sampling [MMN09]. San [ACM93b, ACM94d,
ACM95b, USE98, USE92a, USE93b, USE99b, USE00a, USE02].
Santa [Gol94, WP10]. SAT [VSDK09].
Save [Pla93, Dye98]. saving [Mus09].
SC2000 [ACM00]. SC2002 [IEE02].
SC2003 [ACM03]. SC98
[ACM98d, ACM98d]. SC'99 [ACM99b].
Scalability [ABLM19, CCH11, GVT+17,
Nak01, VP16, BWDZ15, DSEE13,
MKW+06, RVOA08, VIA+05].
Scalability-Aware [GVT+17]. Scalable
[BMBW00b, CC14, CH04, CKZ12, IEE94b,
KUCT15, LMIJ14, LNI+19, MLCW11,
Mic04, SS96, ZLW+16, BMBW00a,
BMBW00c, GW10, LZ07, Maa06, PWD+12,
SCZM00, WZSK19]. Scalably [DELD18].
scalar [GL98b, ZCSM02a, ZCSM02b]. Scale
[CC14, CJW+15, HC17, LA93, PWL+11,
AG06, BCM+07, GOT03, JCP17, SMK10,
KBA08]. scale-out [AG06]. Scaling
[HC17, AR17, ECX+12, KTLK13, SW16].
Scaling-Aware [HC17]. SCALO
[GVT+17]. scene [RVR04]. Schedulability
[Kim14]. Schedulability-Aware [Kim14].
Schedule
[MLR16, MLR15, NAAL01, WTH+12].
Scheduler [ABLL92, BDN02, FSPD17,
GJT+12, QSaS+16, SRS98, SS05, ASSS19,
DC99, DC00, FKS+12, GP05, HZ12,
WTKW08, XSaJ08]. Scheduler-Centric
[BDN02]. scheduler-oblivious [HZ12].
schedulers [NBMM12]. schedules
[BCG13, CZ02]. Scheduling
[BL94, BL98, BL99, CCWY17, FS96,
FSPD16, FSPE20, GRS06, JLS99, KLDB09,
LLKS12, MNU+15, NB99, PEA+96, PM14,
RS08, SM19, SLG04, YWJ03, BL93, CS95a,
Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12]. Science [Gol94]. Scientific [CMBAN08, HLB94, LWSB19, WN10, BT01, BD06, Dan09, NJ00, Bra97]. Scoring [TO10]. Scotland [AOV+99]. SCP [SLJ+19]. Scratchpad [VCM19]. Scratchpad-Memory [VCM19]. Scriptures [Ano00b]. Scripting [RBPM00]. Scripts [TLA+02]. Seamless [CV98]. Search [AMRR98, BCCO10, LAH+12, Mah11]. searches [TCG95]. Seattle [ACM93c, IEE94a, IEE94d, LCK11, USE98a]. sec [AHW02]. Second [IEE89, IEE96, FR95]. Section [DSR15, MNU+15, CS12, DTM14, SMQP09, YL16]. Section-Aware [MNU+15]. Section-Based [DSR15]. sections [NM10]. Secure [SV98]. Service [CGK06, GMW09, Hig97, PSM03]. services [LZ07]. session [Bak95b, HCD+94, IAD+94, VGR06]. sessions [Ano94e]. set [Aru92, KBF+12]. Sets [MNG16]. Seven [But14]. several [FGG14]. shader [YPY+10]. shallow [LVA+13]. Shanghai [IEE97]. shape [Cor00, GBCS07]. SharC [AGEB08]. Shared [BWXF05, BS96, DM98, EJ93, FJ08, GMR98, GH98, IKS18, LB92, MVZ93, MCT08, STY99, SLJ+19, Thr99, VB00, WC99, YMR93b, BB00, Boo93, DLCO09, DPZ97, EKKL90, GLE91, ISS98, Jef94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, YZM95]. Sharing [CLFL94, CB16, LLD17, RKK15, SP00a, WEI98b, ZJS12, AGE08, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, VER96, VPQ12, ZJS10]. sharing-aware [TAS07]. sharing-based [TE94a]. shelf [MHG95]. shell [Ric91]. Shift [Ham96]. Shifting [TVB+13]. Shinko [Ano00a]. Shootdown [PHBC18]. Shop [Bec00]. short [CPT08, Lie94]. shortage
Should [EHP+07]. SICStus [EC98]. side [MMTW10, SBB96]. sided [QSH16]. SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b]. SIGCOMM [RM03]. Signal
[Eng00, BM91]. Signals [GRR06]. Significance [ZJS12]. SIGPLAN
[ACM94a, ACM93a, ACM94b, ACM95b, ACM98b]. SIGPLAN-SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].

Silicon [LB17, THA+12]. SIMD
[FSYA09, SW08]. Simple [AKS06, Ch15b, WS08, BDLM07, CL00, MSM+09].
SimpleGraphics [M KK99]. simplify [PO03]. Simplifying [Pom98]. SIMT
[CC18, L PK16]. simulate [MAF+09].

Simulation [For97, GV95, HPB11, JYE+16, MPD04, SLJ+18, VTSM12, WYT+20, WG94, Ano97b, BBH+17, KBF+12, Lep01, Lep95, MHW02, SWYC94, Sri93].

Simulations [HEMK17, LNI+19, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12].

Simulator [SRS98, PWD+12, TSCH99, WZWS08, Nak03]. Simulators [BVL09].

Simulink [IYY+15]. Simultaneous
[Ano05, C Sk+99, EEL+97, GSL10, HMNN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LRZI6, MCF T99, REL00b, SP07, SLG04, SHW19, SU10, ST00c, TEL95, Tul96, TEL98b, WS08, YG10, ABC+09, AAKK08, ABB+15, CCC12, EE09a, Fis97, HKN+92, H MN+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHCR09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TSC99, TEE+96, VPC02, TEL98a]. Single
[CLFL94, Dub95, EHP+07, FT96, HHOM91, J BK18, KH18b, KTR+04, MNU+15, MTN+00, CSM+05, MLC+09, Pra95c, V IA+05, YZ07, YSY+09].

Single-Address-Space [CLFL94].

single-and [YSY+09]. Single-Chip
[HHOM91, MTN+00]. Single-ISA
[KTR+04, MNU+15]. Single-Process

[FT96]. Single-program [Dub95]. Single-Thread [KH18b, MLC+09]. Single-Threaded
[EHP+07, J BK18, Pra95c, VIA+05, YZ07]. Singleton [Cha02, Rin99]. situ
[LSW+18, RGK99]. sixth
[USE98b, ACM94d]. size [LML00]. skyline
[WZSK19]. slice [PSG06a, PSG06b, PSG06c]. slice-based
[PSG06a, PSG06b, PSG06c]. Slices
[MGQS+08, PF01]. Slicing
[Kri98, FRT95, NR06]. SlicK
[PSG06a, PSG06b, PSG06c]. slower
[Pra95c]. Small [JLA16, Koo93, MM07].

Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart [Sim97]. SMP
[BWXF05, BHN01, CRE99, HD02, KKH03, KJK+13, Pra95c, TAS07, TMAG03]. SMPs
[WG99]. SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, FSPE20, HR10, KLG08, KH18b, K16, MG99, MMM+05, NSP+14, PAIS+17, PAB+14, PLT+15, RYSN04, RPNT08, SLP08, SHW19, TAS07, TVB+13, VS11b, WA08]. SMT-based [KI16, PAIS+17, PAB+14].

SMT-Directory [HR10]. SMT-SA
[SHW19]. SMTp [CH04]. SoC [ZDTM19].

SOFRITAS [DELD18]. Soft [EUVG06, OA19, PSM01, PSM03, SSN10, VACG09].

Software [Ano97a, Ano98b, Ano99, Ano00b, BVM19, BCR01, BCG+08, Car01, Gon90, GJ97, HB92, Han97, HSS+14, IEE94a, KE15, LPE+99, MKM17, PJS15, SZM+13, SD13, TVB+13, TLZ+17, TLZ+18, Tro18, XGW+14, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLPR12, Hai97a, HSD+12, IEE94d, KKH04, KSD04, KASD07, LT97, Luk01, MWP07, MCRTS10, MGL05, MEG03, NHFP08, OAA09, OL02a, OL02b, OL02c, PV06, RKM+10a, RKM+10b, RVOA08, San04, SP05, SLT+09, SB80, TNB+95, WCZ+07, WCV+98, YSY+09, ZHCB15, DWS+12].

Software-Controlled [BCG+08, Luk01].
Software-Directed [LPE+99]. Solaris
[Cat94, Lun97, Lun99, MM01, McM97, Pra95b, Sun95]. Solution
[Ano98b, SBC91, WP10]. Solutions
[Ano00b]. solve [Bar99, MM07]. Solver
[YFF+12, Kub15, RM99]. Solvers
[MR09, Nak03, AAC+15, ZCO10]. Solving
[ABD+12, FTAB14, Loe97, VSDK09].
SONET [AHWO2]. Sort [GH98, RHH10].
Sound [WTH+12, DWS+12, FFY08, NFBB17, WQLJ18]. Source
[Ano00c, BMF+16, BMF+19]. sources
[SJ95]. South [ACM93a, Ano94d]. Space
[BCL+98, BL98, CLFL94, CB16, Eng00, GR97, GN96, NB99, PWL+11, Sch17, FWL03, KNPS16, KAD07, Lhe94, LHS16]. Space-Efficient
[BL98, NB99, BL93, KNPS16, KAD07, LHS16].
Spacecraft [SRS98]. Spaces
[FKP15, Röt19, CKZ12, KGGK09]. Space
[ACM95a, DLM99, ACM98c]. SPARC
[Cat94, KA05, MD96]. Sparcle [ABC+93]. Sparse
[But13, YFF+12, CSV10, Dav11, DTR18, MM07, PHCR09]. spatial
[WZK19]. spatially [PPA+13]. spatially-programmed [PPA+13]. Special
[Ano94e, GGB93, KU00]. specialization
[WTH+12]. specialize [CWS06].
Specialized [dIPRGB99]. Specific
[Sto1, SP00b, Shi00]. specification [Stä05],
specifications [TVD10]. Specifying
[BNS1a, BNS1b, BNS12]. spectroscopy
[KC09]. spectrum [DFK94, Sha95b].
Speculated [SCL05]. Speculation
[MGI14, SU01, WS08, YBL16, DG99, GB99, JEV04, LWV+10, MT02a, MT02b, MT02c, NB12, PO03, PT03, SCZM00]. Speculative
[AH00, Ano01, Ano02, BF04. IBST01, KLG08, MQQS+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFFG10, WWW+02, ZJFA09, ZL10, CHH+03, DC07, Dub95, KOE+06, KT99, LZW17, LZS19, LZL+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VS11b, XIC12, ZCSM02a, ZCSM02b]. speech
[LG04]. Speed [Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10]. Speed-up [MR09]. Speedup [Lun99]. Spin
[LLS06]. SPIRAL [MJF+10].
SPIRAL-generated [MJF+10]. splittable
[SLF14]. spots [Gle01]. spreading
[CWS06]. SPSM [Dub95]. SQL [CGK06]. squares [FTAB14]. squash [MK12]. SR
[BO96]. RAM [kSYHG+11]. SSMT
[CSK+99]. Stabilizers [ZSJ06]. Stabilizing
BCM+07]. stable [YCW+14]. Stacey
[Ano00c]. Stack [Eng00, Xue12]. Stackable
[Loe05]. stacking [KSB+08]. Stackless
[MS15]. stacks [DESE13]. StackThreads
[TYY99]. StackThreads/MP [TTY99].
Standard [DM98, FSS06, WKG17, BCL+98, Bra97, MT93, Pla98, Pla99].
standardization [Bet73]. Standards
[Thr99, TYY99]. Standing [TLA+02].
Stanford [IEE99]. STAT [Ano99]. State
[La00, LP94, MP13, RKR11, WeI98b, Cor00, I+94, TFG10, WHG07]. State-of-the-Art
[MP13]. State-Retentive [RKR11].
Statechart [KW17]. Statechart-Based
[KW17]. stateless [MQ08]. Static
[GPS14, Kri98, Lun97, SCB15, SB+19, WW96, vPG03, Fer13, NAW06, NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[Ano00b, RCM+16, Lan97, RCM+12, Tem97].
Stay [GBK+09]. stealing
[ALHH08, BL94, BL99, RL14, WYT+20].
Step [Sho97a, Sho97b, ZG98]. Steroids
[JLA16]. Stethoscope [Caz02]. Stochastic
[DK02, LTM+17]. Storage [AT16, Hol12, LCK11, Bak95a, Blh92, DZKS12, KOE+06, MM07, PDMM16, PPGS20]. stores
[TAN04]. strand [RCV+10]. strata
[NPC06]. Strategies
[PSCS01, WLT19, AGEB08, FGG14].
Strategy [BGK96]. Stream
[KSU94, SG18, SG18]. Streaming
[HHOM91, HHOM92, KEL+03].
Streaming/FIFO [HHOM91, HHOM92]. Streams [Pre90, SPY+93]. Strength [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95]. Strictly [Ano00c]. Strong [Kon00]. Strict [Coo95, FS96, Tra91, KIAT99, SCG95].
BLCD97, Cat94, Gil88, Hig97, Joe96, JCP17, Lan02, MHW02, MS87, Met95, MTC+07, MC06, OCRS07, PRB07, Ply89, Pom98, REL00a, REL00c, RD99, She02, TKA+02, TLZ+16, TAMG03, WCC+07, WZWS08, WZSK19, TLA+02, EKB+92, MS87, Pea92].

System- [PLT+15]. system-level [OCRS07]. systematic [MQ07]. SystemC [RSB+09]. SystemC/C [RSB+09]. SystemC/C-based [RSB+09]. Systems [ACM94d, AG06, Ano00b, ABN00, BMN99, Bre02, BC94, CCH11, CvdBC18, Dru95, FMY+15, FGKT97, GHG+98, GJ97, HRH08, HKSJ06, IEE89, IEE94a, KR12, KKH03, KG05, KUCT15, KW17, LLS06, LMA+16, LYH16, MS15, PPG11, PGB16, RW97, RR03, SUF+12, SS96, USE92b, Wai95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB10, DZKS12, DSH+10, DBRD91, GJ11, Gol96, GKK09, HJT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Jen94, Jen95, KKH04, Kubi5, LNN10, LLLC15, Leg01, LAK09, LVA+13, LMC+09, MLG95, MM07, NFBB17, PBDO92, RCV+10, RBF+89, RSB+09, RVR04, SCCP13, She98, SP05, Sim97, SJB92a, SJB92b, ST05, Wei98a, WCV+98, Ano98b].

Systolic [SHW19, PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wen08]. T1/T2 [Wen08]. T2 [Wen08].

Talking [Ano94c, HCM94]. TAM [CGSV93].

Taming [Hol00, HBCG13, HHPV15]. TapeWare [Ano00b]. Target [MIGA18]. targeting [LGH94]. Task [CCK+16, GP95, GFJT19, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12].

Task-Based [GFJT19]. Task-Level [GP95].

Tasking [CvdBC18, Dil93, KR01a]. Tasks [Fin95, PVS+17, YSS+17, YSS+19, FGG14].

Taxonomy [HM96, SPH96]. TC2 [BT01].

TC2/WG2.5 [BT01]. Tc1 [Ass96, USE96, USE98b, USE00b, Ano98, MKK99, SBB96]. Tc1-based [Ano98].

Tcl/Tk [Ass96, USE96, USE98b, USE00b, MKK99].

TCP [Ano00c, Ano00c]. Teaching [Fen08, Cen00, She92]. TeamWork [CZW13].

Technical [USE00a, Cat94]. Technique [JSB+12, KG94, Len02, OCS01, PGB16, JSB+11, JPSN09, LGH94, MIGA18, RS07, UZ00, VSC00, WCV+98]. Techniques [Ano00b, Ano98b]. Technology [Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b].

TeleNotes [WSK97].

temperature [CCC12]. Template [Cal00, How98]. Ten [Ano99].

Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02].

Termination [JKB18, TDW03]. Test [Ano98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14]. test-case [KI16]. Testing [BBDH+11, Goe01, KH18a, LCS04, RCC14, SK12, BGP06, CMB10, EFG+03, EHSU07, MQ07, Sen08, YNP12].

tests [SRJ15]. Texas [USE92a, USE00b].

TFlux [DTLW16]. tgMC [LHG+16]. Their [YWJ03, Gil94].

Theoretic [ES97]. theories [LQ15].

Theory [ACM93b, LLD17, NFBB17, WLK+09].

there [Ano94b]. thermal [WA08]. though [Ano94b].

Thread [Ano00c, ABN99, ABN00, Bet73, BTL+19, BS99, CNQ13, Cal97, CC04, Cha02, CCW17, Col90a, DSR15, DELD18, DGK+03, Don02, Eng00, FSPF07, FD95, FURM00a, FURM00c, FURM00b, GF00,
41

GJT+12, GP05, GBCS07, GBK+09, Hag02, Hei03, HG91, ISS98, KG05, Kim14, Kie00, KHL8b, KBH+03, KBH+04a, KBH+04b, LML+19, LZY+20, LLL0, LYM16, LEL+97a, LEL+97b, Low00, LLID17, Man99, MG99, MNU+15, MG14, MTN+00, MB05, MCF99, ND06, Pan99, PR05, PEA+96, Pia02, Pia98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, RYSN04, Rod95b, SK+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAO7, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+98, BKC+98, BGK94b, BGK96, CL95, CKRW99, Coo95, CSS+91b, DV99, EHG95, EHP+07, Fei02, GH03, GV17+17, GK94, Gil93, III01, JBFK18, JY15, Jon91, KV17, Kuc92, KIAT99, LK20, LB92, MAs99, MG15, MK+00, NS97, PCPS15, Pul00, RCKW98, SV19, STW93, Sei99, Smi92, Ste01, SBK99, TLGM17, VSDK9, VS11a, VB00, VC91, WCT98, Ada98, ABD+12, AAC92, AN97b, ASS91, BWZ15, BK13, BB+17, BC00, BIK+11, DSEE13, CV98, C+17, CASA14, CKRW97a, CKRW97b, CWB03, CSB00, CdOS01, CYZ98, cC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, D16, EFG+03, EBGK01, EHSU07, FTAB14, FD96, FGG14, GCRD04, GCC15, GS06, GH98, GPR11, HC17, HLG19, JCP17, KHP+95, KI95, KKH04, Kep03, KR98. threaded [Kue91, LK15, Liao97, Leg01, LB+06a, LB+06b, LB+06c, LVA+13, ML11, MS03, MKK99, NFB17, NH09, NSH14, OA08a, OA08b, OA08c, PY+10, PR98, PWW18, Pra95c, RVC+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SC17, SE12, Sei98, Sho97a, Sho97b, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, SY98, TCI1, VC98, X19, Y12, Yee20, YSY+09, ZKR+11, dB09, vPG03, CGSV93].

Threading [BFA+15, CvdBC18, CNZS17, DHR+01, Hol98d, KS16, LSQLB, MLG18, MC97a, MC97b, MS15, MP13, N090, OR12, PTMB09, RCC14, Rei01, Sch90, SMZ18, TG099, YLLS16, Bak95a, BM07, DTLW16, FOWL03, LZW+13, LMC+09, MCF99, NJ00, RR06, RV04, SQP08a, SQP08b, SQP08c, VDBN18, kSYH+11, YKL13, CH04].

Threading-Based [KS16]. ThreadMentor [CMS03, She02]. Threads [Alf94, AN94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, BAZ+19, Cal00, CGR92, Col90b, Crit98b, Crit98a, TLA+02, FHM95a, For95a, For95b,
GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HBG01, Hol00, How00, HLH16, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MKM17, MP89, McM96c, Nor96, PS01, Pet00, Pet03, PL94, Pra95c, San04, SEP96, TG99, WC+W+04a, Wil94a, Wil94b, Wil97, Yam95, Yam96, dPRGB99, Ano02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir99, BS00, But14, But97, CZWC13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FHM95b, FL90, GP05, Gol97, HCM94, HMC95, Hai97a, HBG02, HJT+93, HKT+93, HKN+92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Kan94, KE95, KSS96, Lan02, LZ07, MSLM91, MR98, MQW95, McM96a, McM96b, McM98a.

threads [McM98b, Men91, Mit96, MEG94, OW97, OW99, OL02a, OL02b, ORS+06, PS03, Pan99, PG03, PL03, RR03, Sch91, SC95, SZ91, SZ92, SCM05, SKP+02, TAN04, WC+W+04b, WC+W+04c, WC+W+04d, Wei98a, WC+W+98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a].

Threads.h [Ano00b, TB97a, TB97b].

ThreadScope [WT10].

Three [YMR93b, YMR93a].

Throttling [LG06].

Throttling-Based [LG06].

Throughput [GJT+12, Wea08, ZDTM19].

Tightly [MTN+00, LZT15].

TileDB [PDMM16].

Tiles [QOM†+12].

Time [BC94, CIM†+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lum97, MN00, PUF+04, PSCS01, SU†+12, SS96, Tet94, dPRGB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBP+03, KASD07, KFB+12, MKK99, ND96, OT95, OdSSP12, PS01, PS03, RGG+12, San04, SZ91, SZ92, SM19, SJ92a, SJ92b, TSY99, TNB+95].

time- [KASD07].

time-critical [RGG+12].

time-efficient [GB99].

time-shared [Jef94].

timely [NH09].

Timers [Hol99a, GRR06].

Timethread [BC94].

Timethread-Role [BC94].

Timing [SK97, MHW02].

timing-first [MHW02].

tiny [Xue12].

Tip [Pet00].

Tips [Mit96, Pet00].

Tk [Ass96, USE96, USE98b, USE00b, TL+02, MKK99].

TLB [PHBC18].

together [Ano97b, Pol90].

Tokyo [Ano00a].

Tolerance [EUVO06, OA19, MTS10, PG01, RRP06].

Tolerant [OCS01].

Tolerating [Luk01, RBK†99, SKK†01].

Tool [AddS03, Ano98b, Goe01, Kor89, LZZ+20, TAM+08, AC+18, CMS03, CSB00, Hig97, LMC14, RGK99, YNPP12].

Tool-Supported [AddS03].

Toolbox [Bra97].

Tools [Ano98b, Ano99, EV01, WWW+02, EHSU07, Len95].

Toolset [Ano97a].

Toolship [ZTN19].

Top [Ano99, AB02, DNR00, ZTN19].

top-zzn [ZTN19].

Topaz [MS87].

Topics [BGG95, GBG95].

Tightly [LHL16].

training [MCS15].

Tranquilizer [PGB12].

Transaction [LZS+08, RW97, SS91, DKG18, EQT07, Ver96].

Transaction-Aware [LZS+08, EQT07].

Transactional [GMGZP14, KUC15, RG03, VSDL16, XWG+14, ZLJ16, ATLM+06, BL06, BDM07, CMF+13, CNV+06, GCC15, MLS15, MCRS10, MMTW10, MTC+07, OCT14, VTL12, ZHCB15].

Transactions [Ano00c, DTLW16, FNA+18, SKBY07, BD06, Dan09, KR01a, KR01b, KGGK09, RKM+10a, RKM+10b].

Transform [BVP+19, HN91, LHS16, TKHG04, TT03, TTKG02].

transformation [TSY00].
transformations [AC09, DH92, JMS+10, VV11]. Transient [RM00, VPC02]. Transient-fault [VPC02].

Transitive
[YMR93b, XHB06, YM92, YMR93a].

translation [KBF+12]. translator [TJY+11]. Transparency
[GKCE17, KBH+03]. Transparent [ABN99, LVN10, SLGZ99, ZSA13].

Transparency [CB16, JSB+12].

Transport [GRS97].

transposition [SGLGL+14]. trap [Ram94, GRS97].

trap-based [Ram94]. Tree
[Pla99, BCCO10]. Trees
[GFJT19, AD08, CKZ12]. Trends [Gar01].

TRI [ACM93c]. TRI-Ada [ACM93c].

triangular [BKK17]. Trick [Eng00]. Tridia
[Ano00b].

tridiagonal [ZCO10].

trigger [Kho97]. Triggered [PPA+13]. Troy [SS96].

TSGL [ACD+18]. TSO [HH16]. Tumbler
[PGB16]. Tune [RGK99], tuned
[Ano95a, Ano95b, Kub15]. Tuning
[LWSB19, LEL+99, CSB00, RGK99].

Tunnelling [Don02]. Tutorial [Taf13].

Twentieth [ACM93a]. Twenty
[AOV+99, ACM93b]. Twenty-fifth
[AOV+99, ACM93b]. Two
[BBH+17, CM98, JYE+16, STY99, GLC99].

Two-Level [JYE+16, BBH+17, STY99].

TX [Cha05, ACM00, USE91b]. TXRace
[ZLI16]. Type
[Gro03, Loc18, VGR06].

BAD+09, GE08, Lan02, Mil95, PRB07.

type-checking [Mil95]. Type-Safe
[Loc18, Gro03]. typed [DMB16]. Types
[AFF06, FFLQ08, Ten98, BAMA07, KS93, VGR06].

typing [Smi06].

UCITA [Gar01]. UK [AOV+99]. ULT
[PG03]. Ultra [PWL+11]. Ultra-Scale
[PWL+11]. UML [SK12].

Unbounded [CNV+06, FKP15, BDLM07]. unbounded
[BDLM07]. Unconventional [DSAD+18].

Uncover [WS08]. underdetermined
[Kub15]. Undergraduate [BLPV04].

Understandable [MSM+16].

Understanding [BZ07, TLA+02, EPAG16, JGS+19, RRP06].

Undocumented [SW97]. Unfoldings
[KH18a, SPDLK+17]. Unicode [Swi09].

Unified [Wei98b, ABG+08, GKKZ12].

Uniform [BDN02, SKG+11]. unifying
[MS03]. unimodular [D’H92]. unintrusive
[HDT+13]. uniprocessor [GL98a, Yan97].

uniprocessors [BRE92, EJK+96].

Uniscope [Ano98b]. UNISIM [LS11].

UNISIM-Based [LS11]. unit
[CBM10, Par91, PAB+14]. United
[ACM94c]. Unithreaded [RLJ+09]. Units
[RKK15, Gun97]. univariate [CMX10].

University [IEE99]. UNIX
[AOV00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].

Unix-to-NT [Ano98b]. UnixWare
[Rod94, Rod95b]. unlocking [XSA08].

unravel [But14]. Unraveling [Bec00].

Unsynchronized [DSR15], unveiled
[Ano95a, Ano95b]. Unveiling [AAC+15].

up-and-downdating [VV11]. UPC
[EGC02, FA19]. updates [NH09].

Updating [HSS+14, HSD+12, NHFP08]. Ur
[Chl15b]. Ur/Web [Chl15b]. URL
[TLA+02]. USA [ACM94a, ACM94d].

Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE89, IEE94a, IEES02, SS96, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01].

Usage [BS96, Kor99, VS11b]. Use
[Bak95a, FJ08, HW92, WWW+02].

Use-once [Bak95a]. Useful [Pet03].

USENIX [Ano90, Ano94f]. User
[ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF06, Li05, MSLM91, OT95, SLT02, TNR+95, YZYL07].

User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07].

User-Space [Eng00, GRS97]. Using
[AOV99, ABH+00, AZG17, BDN02, BTL+19, BBC+00, BLG01, BTE98, BAZ+19, CRE99].
Cor00, DS16, DTLW16, DBRD91, GH03, HBG01, HJT+93, HBTG98, Hei03, How00, KM(C)02, HK18b, Kwo03, KET06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SCD+15, SEP96, SLT02, WKG17, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM07, CML00, Cat94, CTYP02, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JWTG11, JY+03, JCP17, KASD07, KBF+12, LK15, MM14, NPC06, NWT+07, Nik94, PTO3, RKM+10a, RKM+10b, RM99, RPNT05, SLGZ99, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VD08, TFG10, Tod95, TAN04, VFC02, VD08, ZJS+11, KSB+08]. UT [Hol12], Utility [FHM95a, JSMP13, WLT19, FHM95b], Utility-based [JSMP13]. utilization [Squ94]. Utilizing [ES97, WZSK19]. UX [Ano95a, Ano95b, Yam96].

V [EKB+92, Pea92, FG91, PST+92], v1.0 [Ano00b]. Validating [LB17], Validation [BMV03, LB17, SCB15], Valley [GBK+09]. value [DG99, TFG10, ZCSM02a, ZCSM02b]. Values [EUVG06]. Variable [CA20, Evr01, dB09]. Variables [Hol98c, Whi03, Bak95a]. variation [PGB12]. variety [CMLO0]. VAX [Gil88]. Vector [Goo97, HHOM91, HHOM92, KBH+04a, KBH+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92]. Vector-Thread [KBH+04a, KBH+04b, KBA08]. vectorization [cC91, JMS+10, RKHT17]. vectorized [TP18], vectors [TK12].

Velodrome [FFY08]. Verification [AMdDdRS02, BCR01, Chi15a, DRV02, EG14, FK12, JBK18, KKW14, BK13, CASA14, DCK07, EG11, FFQS05, HLGD19, NSH14, Stã05]. Verified [Loc18], verifiers [GLPR12]. Verifying [GMR09, RKCW98, GPR11]. version [NHFP08, TV10], version-consistent [NHFP08]. versions [BD06]. Versus [NSP+14, Ann96, Yam96, dIPRGG99]. Vertex [CNZS17], Vertex- [CNZS17]. Very [AOV+99, Pet03], VI [ACM94d, Ano03], via [BCZY16, CCWY17, FBF01, Hig97, KRBJ12, KGPH12, Kim14, LWV+10, LZTZ15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97]. Video [BC00]. view [KTLK13, PT91].

Vina [TO10]. Virtual [BSSS14, BBM09, KGDV03, PRB07, PHBC18, USE01, WCW+04a, DLM09, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization [LRZ16, YSS+17, ABB+15]. Virtually [LB92]. virtues [NJK16], virus [GJ11]. viscous [RM99]. Visual [PTMB09, Dlh93, McM96c, Esp96, Nag01], Visualization [Ano97a, ACR01, Cal02, Caz02, BCHS00, CSB00, MKK99, NCA93]. Visualizing [CdOS01, WT10, ACD+18, DSEE13]. Visually [Dru95], VLW [For97, GSL10, ÔCS01]. VLSI [ABC93]. VM [FGG14]. VMs [KKJ+13], voltage [MTPT12], volumes [Koo93], VRSync [MTPT12], vs [EHP+07, GBK+09, MMTW10, MCF109, SSK+07, SKP+02]. vulnerability [SSN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a], Waiting [LA93], Waits [How00], WAN [Yas95]. Wanted [Ano94g]. Warnings [CJW+15]. warp [FSYA09, MTS10, Rei95, Tam95]. war [San04]. Washington [ACM92, Ano90, IEE94c, USE98a]. Watch [Ano97b]. water [IVA+13]. Wave [An00b, BBC+00, LS07, WQLJ18]. wave-based [WQLJ18], wavelet [TKHG04]. Way
REFERENCES

[KAO05, MTN+00, Rin99, ZJFA09, FGT96].

Ways [Wei97]. Weak [KZC15, TVD14].

Weaving [Pra94d]. Web
[Ano94d, Swi09, Chl15a, Chl15b, Hig97, MG114, PC1M16, VP16].

Web relay [Zha00].

WebThreads [Ano97a]. week
[Ano95a, Ano95b].

weeks [But14].

Weight [Way95]. Weighted
[CNZS17, EE14, HFV+12]. Weighted-IPC
[EE14]. Weighting [VS11b]. Weightless
[SPY+93]. Weld [OCS01]. well [Kub15].

well-determined [Kub15]. West
[EV01].

WG2.5 [BT01]. Wheeler
[BVP+19, LHS16, NTR16]. Where
[EHP+07].

Whole [GN96, BMM09].

Whole-program [GN96]. Wide
[Ano94d, Ano96, FGT96]. Wide-area
FGT96]. Widening [KKW14]. Will
[BVM19, Ano95a, Ano95b].

WiMAX [CDD+10]. Win32
[CSC01, BW97, CW98, Har99, How00, Lar97, PG99].

window [VS11b]. Windows
[SEH98a, HKT93, ZYJL07, Hig97, Lee93, PG96, Pra95c, Pra95b, TC98, Tim03, Yam96].

Winter
[Ano90, USE89, USE91b, USE93b].

Wired
[DHR+01]. Within [BP05].

without
[Gus05, LHZB14, Pla02].

WoE [Ver97].

WOMPAT [Cha05, EV01].

Work
[Ber96b, Wal95, WYT+20, ALHH08, Ber96a, BL14, BL99, Lep95, OdSS12, RL14].

work-optimal [Lep95]. Work-stealing
[WYT+20, ALHH08, RL14]. worker
[SCM05].

Workers [VP16]. Workflows
[FGG14].

Working [BT01].

Workload
[EE14, KTR+04, SSYG97, LBE+98].

Workloads
[DS09, GVT+17, KML04, LHY16, RCC12, SLJ+18, CML00, PP2S20, SQP08a, SQP08b, SQP08c, WA08].

WorkPlace [Bra97].

works [Hig97, San04].

Workshop
[ACM98a, RM03, Ano94e, Cha05, EV01, IEE99, IEE94a, IEE94d, Ass96, USE96, FR95].

Workstation
[Ano00b, HN91, IEE99].

Workstations
[KLH97, Lu98, LGH94, RGG99, PH97].

World
[Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLG+14].

World-wide
[Ano96].

Wrapper
[AS14].

Wrappers
[Hub91].

Write
[Sho97a, Sho97b].

Writer
[Ano97a].

written
[ND13].

WWOS
[IEE99].

WWOS-II
[IEE99].

X
[Ano00b, Sni92, Sni95, MSM+16].

Xeon
[SCD+15].

XML
[BVL09, DWBY10].

XML-Based
[BVE09].

XMT
[DV99, VV00, BC1G16, VTS12, VDBN98].

XMT-2
[BC1G14].

Y-cruncher
[Yee20].

Year
[Ano99].

Yokohama
[Ano03].

York
[IEE99].

Yosemite
[Ano00b].

z13
[ABB+15, CJB+15].

Zurich
[Lak96].

References

Antoniu:2001:HSC

Aliaga:2015:UPE

José I. Aliaga, Hartwig Anzt, Maribel Castillo, Juan C.

[AAKK08]

[AB01]

[AAAHF09]

[AB02]

[AAHF09]

[AAKK08]

Gabriel Antoniu and Luc Bougé. Implementing multithreaded protocols for release consistency on top of

Axnix:2015:IZF

Agarwal:1993:SMV

Antonopoulos:2009:ASH

Aliaga:2015:CMS

Aliaga:2012:SDG

Josué I. Aliaga, Paolo Bientinesi, Davor Davidović, Edoardo Di Napoli, Francisco D. Igual, and Enrique S. Quintana-Ortí. Solving dense generalized eigenproblems on multi-threaded architectures. *Applied Mathe-
REFERENCES

REFERENCES

[Almasi:2003:DCD] George Almási, Călin Cașcaval, José G. Castaños, Monty Denneau, Derek Lieber, José E.
REFERENCES

Adams:2018:TTV

ACM:1992:CPI

ACM:1993:CRT

ACM:1993:PTF

ACM:1993:TCS

ACM:1994:ASC

[ACM94a] ACM, editor. *ACM SIGPLAN ’94 Conference on Programming Language Design and

REFERENCES

ACM:1996:FCP

ACM:1998:AWJ

ACM:1998:CRP

ACM:1998:PAI

ACM:1998:SHP

ACM:1999:PASa

REFERENCES

ACM:1999:SPO

ACM:2000:SHP

ACM:2001:PAJ

ACM:2003:SII

Arvind:1997:MSC

Attali:2001:GVJ

Adams:2008:ENE

Michael D. Adams and R. Kent Dybvig. Effi-

REFERENCES

REFERENCES

Akkary:2000:CSM

Abdulla:2008:MCR

Adiletta:2002:PSA

Aitken:1996:MCJ

Ahn:2012:ISE

Azagury:1999:NIR
REFERENCES

REFERENCES

Amer:2015:MRC

Amamiya:1989:DFC

Amaranth:1998:TBM

Aamodt:2003:FMO

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

Aiex:1998:CMT

Annavaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Anonymous. It’s a multithreaded world, part 1: Multithreaded operating systems are becoming the norm. Here’s how your applications can exploit them. *Byte Magazine*, 17 (5):289–??, May 1992. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Anonymous:1992:MWPb

Anonymous:1994:ICS

Anonymous:1994:MDP

Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Systems Today*, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

REFERENCES

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

[Ano97a] Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2;
REFERENCES

Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pega-Soft Canada; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation So-
Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF

Arnau:2012:BMG

Areias:2017:SDP

Adiletta:2002:NGI

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

USENIX:1996:ATT

Asyabi:2019:COS

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG
REFERENCES

Bic:1993:EUI

Barr:1992:PCE

Budhkar:2019:AMD

Bolding:2000:MSM

Bova:2000:DLP
Steve W. Bova, Clay P. Breshears, Christine E. Cuic-

Balter:1991:AIG

Ball:2011:PPT

Balis:2002:CPM

Balis:2003:MSM

Balaji:2010:FGM

References

Bender:2017:TLM

Bratano:2005:PIM

Butler:1994:TRM

Bratanov:2009:VMW

Butler:2011:BAM

Ball:1998:MT

Bhandarkar:2000:PPM
Suchendra M. Bhandarkar and Shankar R. Chandrasekaran.

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD

Boneti:2008:SCP

Bergan:2013:ICS

Bokhari:2014:MMM

Shahid H. Bokhari, Ümit V. Çatalyürek, and Metin N. Gurcan. Massively multithreaded maxflow for image

Badamo:2016:IPE

Beyls:2000:CGM

Brzuszek:2006:MTS

Bic:1998:MAD

Bracy:2006:DAC

Blundell:2007:MFC

Bangs:1998:BOS

Gaurav Bangs, Peter Druschel, and Jeffrey C. Mogul. Better operating system features for faster network

[Bouge:2002:IRE]

[Bouajjani:2012:ARP]

[Bouajjani:2013:ARP]

[Bec00]

[Bec01]

[Bed91]

[Beebe:1998:BPA]

REFERENCES

multithreading. This report is updated frequently.

Bergan:2014:SEM

Baghsorkhi:2012:EPE

Bic:1995:ATD

Burgess:2012:EFL

Buendgen:1994:MAT

Buendgen:1994:MTA

Bundgen:1994:FPC

Paolo Bientinesi, Francisco D. Igual, Daniel Kressner, Matthias...

REFERENCES

712, October 2013. CODEN SINODOQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings.

REFERENCES

REFERENCES

Blumofe:1995:EMP

Bolinger:1991:PSH
D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105--122. LCCN QAX 27.

Baquero:1994:CAC

Bergstra:2007:SCE

Berger:2000:HSMa

Berger:2000:HSMb

Berger:2000:HSMc
REFERENCES

Balkind:2016:OOS

Balkind:2019:OOS

Bouge:1999:ECM

Baker:1994:EPP

Briguglio:2003:PPM

Brunst:2001:GBP
REFERENCES

Burnim:2011:SCSa

Burnim:2011:SCSb

Burnim:2012:SCS

Benson:1996:DMS

Bull:2001:MSO

Blandy:2017:PR

Boehm:2005:TCI

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bond:2013:GDG

Boothe:1993:EMC

Brinkschulte:2005:ICA

Brais:2019:AAM

Boehm:2007:MCC

Boroday:2005:DAJ

Boothe:1992:IMT
REFERENCES

Bogdanas:2015:KJC

Bramley:1997:TNRb

Bershad:1992:FME

Brightwell:2003:DIP

Brebner:2002:MLC

Briot:1989:OAS
Barthe:2010:SMP

Bellosa:1996:PIL

Bacon:2006:BFL

Bokhari:2010:EPM

Broadman:1999:ECM

Burnim:2010:ACD

REFERENCES

Butcher:2014:SCM

Bik:1997:JPJ

Barnes:2009:XBA

Bajczi:2019:WMP

Bonizzoni:2019:MMB

Beveridge:1997:MAW
Jim Beveridge and Robert Wiener. Multithreading ap-

REFERENCES

CODEN DDJOEB. ISSN 1044-789X.

[Car89b] Carlos Carreras Vaquer.

[CAR08] Simone Campanoni, Giovanni Agosta, and Stefano Crespi.
REFERENCES

[CC04] B. M. Chang and J. D. Choi. Thread-sensitive points-to analysis for multithreaded Java programs. Lecture Notes in Computer Science,
Cai:2014:MSD

Chen:2018:ESE

Chen:2012:MLS

Chen:2011:MJP

Chen:2016:TMR

Chinya:2011:BDP
REFERENCES

[CFG12] Umit V. Catalyurek, John Feo, Assefaw H. Gebremedhin, Mahantesh Halappanavar, and Alex Pothen. Graph coloring algorithms for multicore and massively multithreaded architectures. *Parallel Computing*, 38(10–11):...
REFERENCES

Canetti:1991:PCP

Cerin:2006:MSS

Cattaneo:1992:A

Culler:1992:AMMa

Culler:1992:AMMb

Culler:1993:TCC

REFERENCES

Chlipala:2015:UWS

Chowdhury:1992:PEA
Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Chong:1993:EMC

Chrisochoides:1995:MMDa

Chrisochoides:1996:MMD

Christiaens:2001:JRR

Catalan:2017:TEM
Sandra Catalán, Francisco D. Igual, Rafael Mayo, Rafael

[CJW+15]

[CJ91]

[CKD94]

[Cai:2015:ADB]

[Carter:1994:HSF]

Cenciarelli:1997:SMJ

Cenciarelli:1997:SMT

Cenciarelli:1999:EBS

Chaudhry:1994:CMP

Caudal:1995:DEM

Choi:2000:SCP

REFERENCES

Chase:1994:SPS

Choi:2002:EPD

Cormen:2009:IA

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM
Margaret Cahir, Robert Moench, and Alice E. Koniges.
REFERENCES

Cappello:1999:PNB

Criscolo:1998:JQH

Criscolo:1998:JQ

Chang:1995:CSM

Chang:1995:CTS

Carr:2000:PCL

Steve Carr and Ching-Kuang Shene. A portable class library for teaching multithreaded programming. SIGCSE
REFERENCES

Carothers:2002:CMP [CSK+99]

Chen:2012:CLA [CSM+05]

ChassindeKergommeaux:2000:PIV [CSS+91a]

Chappell:1999:SSM [CSK+99]

Constantinou:2005:PIS [CSM+05]

Culler:1991:FGPa [CSS+91a]
David E. Culler, Amurag Sah, Klaus E. Schauer, Thorsten von Eicken, and John Wawrzynek. Fine-grain parallelism with minimal hardware support: a compiler-controlled threaded abstract machine. ACM SIGARCH
REFERENCES

Culler:1991:FGB

Culler:1991:FGC

Choi:2010:MD

Christopher:2000:HPJ

Chappell:2002:DPB

Carmel:1998:JFS

REFERENCES

Possibly unpublished, except electronically.

Chen:2018:ROM

Chugh:2008:DAC

Chauvain:1998:WMP

Chakravarti:2003:ISM

Chakraborty:2006:CSE

Choi:2009:HCS

Chin:2018:EAN
Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, and

Chen:1998:MTO

Chen:1998:MTO

Choi:2002:IFI

Cai:2013:TST

Danyuk:2009:MTS

Cao:2016:DBG

Daniluk:2009:MTS

Andrzej Daniłuk. Multithreaded transactions in scientific computing. The Growth06.xv2 program. *Computer Physics Communications*, 180(7):1219–1220, July 2009. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

[Dou07:CCM] Jialin Dou and Marcelo Cintra. A compiler cost model for speculative parallelization. *ACM Transactions on Archit-
REFERENCES

Das:2007:FVT

DeLozier:2018:SSO

Dennis:1994:MMP

Silva:2019:RF

DeWitt:1999:PTL

REFERENCES

ISSN 0163-5964 (print), 1943-5851 (electronic).

[Dill:2000:MCJ] David Dill. Model check-
REFERENCES

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Ding:2018:IOC

Doligez:1993:CGG

Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector for a multithreaded implementation of ML. In ACM [ACM93a], pages 113–123. ISBN 0-89791-560-7 (soft cover), 0-89791-
REFERENCES

561-5 (series hard cover).
LCCN QA76.7 .A15 1993.
ACM order number 549930.

Devietti:2009:DDS

Dongarra:1999:RTP

DelaPuente:1999:RTP

Demange:2013:PBB

Dagum:1998:OIS

REFERENCES

REFERENCES

Donnelly:2002:LTT

Dou:1997:ISV

Drake:1996:IJT

Drusinsky:1995:VDE

Delzanno:2002:TAV

Desai:2009:AIC

Deniz:2016:UML

REFERENCES

DV99

DePestel:2018:RRP

Sander De Pestel, Sam Van den Steen, Shoaib Akram, and Lieven Eeckhout. RPPM:
REFERENCES

Devietti:2012:RAS

Ding:2010:PCM

Dyer:1998:CAS

Ding:2012:CDF

Elwasif:2001:AMT

Eskilson:1998:SMM
Jesper Eskilson and Mats Carlsson. SICStus MT — a
REFERENCES

REFERENCES

Eggers:1997:SMP

Edelstein:2001:MJP

Edelstein:2002:MJP

Esparza:2011:CPB

[Ref]

El-Ghazawi:2002:UPP

Eggers:2010:AL

Esparza:2014:PBV

Elmasri:1995:TCL

Emer:2007:STV

Eytani:2007:TFB

Eickemeyer:1997:EMP

Eager:1993:CER

Eickemeyer:1996:EMU

Eggers:1990:TEI

Eggers:1995:MC

Engelschall:2000:PMS

Eykholt:1992:BMM

English:1995:MC

Engelschall:2000:PMS

Evytushkin:2016:UMC

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Understanding

Evripidou:2001:MDD

Fan:1993:LMC

Engelhardt:1996:PIP

Farber:1996:EAM

Figueiredo:2001:IPH

Fiske:1995:TPT
Stuart Fiske and William J. Dally. Thread prioritization: a thread scheduling mechanism for multiple-context par-

Feuerstein:1996:MTP

Feuerstein:2002:LMT

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:ADA

Flanagan:2008:ADA

Flanagan:2009:FEP

Flanagan:2010:AMD

Cormac Flanagan and Stephen N. Freund. Adversarial mem-
REFERENCES

REFERENCES

tronic). URL http://link.springer.com/article/10.1007/s00607-014-0410-0. [FHM95b]

Foster:1997:MMC

Fahringer:1995:UTDa

Finger:1995:LTC

Fisher:1997:SPS

Fide:2008:PUS

Farzan:2012:VPC

Azadeh Farzan and Zachary Kincaid. Verification of pa-

Fillo:1997:MMM

Farzan:2015:PSU

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

Frigo:1998:ICM

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Felten:1992:IPM

Fang:2015:MMD
ISSN 1544-3566 (print), 1544-3973 (electronic).

Farzan:2017:SDC

Fix:2018:HMT
ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Fong:1997:BPM

Ford:1995:EDT
ISSN 1044-789X.

Ford:1995:ETC
ISSN 1044-789X.
REFERENCES

[Forsell:1997:MMV]

[Forsell:2018:RMM]

[Flanagan:2002:MCM]

[Ferreira:1995:PAI]

[Flanagan:2002:MCM]

[Felius:2016:BAL]
REFERENCES

DEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

Feliu:2017:PFP

Feliu:2020:TII

Factor:2006:PID

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

DEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

Garber:2001:NBT

Giceva:2014:DQP

Greiner:1999:PTE

Giampapa:2005:BGA

M. E. Giampapa, R. Bellofatto, M. A. Blumrich, D. Chen, M. B. Dombrowa, A. Gara,

Gotsman:2007:TMS

Gao:1995:ATD

Guz:2009:MCV

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

F. Garcia, A. Calderon, and J. Carretero. MiMPI: a multithread-safe implementation of MPI. In Dongarra et al.
REFERENCES

[GEG07] George A. Gravvanis, Victor N. Epitropou, and Kon-

Geiselbrecht:2001:NOS

Geppert:2000:MBG

Gerber:1995:IOX

Garcia:2000:PTL

Gueunet:2019:TBA

Gao:1993:DMA

Gao:1993:SID

Guang R. Gao, Jean-Luc Gaudiot, and Lubomir Bic. Special issue on dataflow and multithreaded architectures. Journal of parallel and distributed
REFERENCES

[Ganesan:2011:MMP]

[GJ11]

[GK94]

ISSN 0302-9743 (print), 1611-3349 (electronic).

[Garcia:2005:HJA]

[Georgiou:2017:ETD]

[Granat:2009:NPQ]

[Garland:2012:DUP]

Michael Garland, Manjunath Kudlur, and Yili Zheng. Designing a unified programming model for heterogeneous machines. In

Gallmeister:1991:EEP

Golla:1998:CMR

Golla:1998:CEB

Goldwasser:2007:INP

Gu:1999:EJT

Glenn:1991:CMH

Grebenshchikov:2012:SSV

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. Synthesizing software verifiers from

Giering:1993:IAF

Gonzalez-Mesa:2014:ETM

Gomez:1998:CAM

Ganty:2009:VLA

Gabor:2009:SLA

Govindarajan:1992:LCM

Grunwald:1996:WPO

Dirk Grunwald and Richard Neves. Whole-program optimization for time and space
REFERENCES

137

SINODQ. ISBN 0-89791-767-7. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160
(electronic). URL http://
as SIGOPS Operating Systems Review 30(5), December 1996, and as SIGARCH

on multithreaded architectures. *J.UCS: Journal of Universal Computer Science*,
6(10):928–947, October 28, 2000. CODEN ???. ISSN 0948-695X (print), 0948-6968
(electronic). URL http://

Siegfried Goeschl. The JUnit++ testing tool. *Dr. Dobb’s Journal of Software

Science*, November 20–22, 1994, Santa Fe, New Mexico. IEEE Computer Society
Press, 1109 Spring Street, Suite 300, Silver Spring, MD
QA 76 S979 1994. IEEE catalog number 94CH35717. IEEE
Computer Society Press Order Number 6580-02.

of Computer Science, State University of New York
at Buffalo, Buffalo, NY, USA, 1996. viii + 72 pp. Also available as technical report 96-13.

Dean W. Gonzalez. Multitasking software components. *ACM SIGADA Ada
REFERENCES

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2017:DDP

Gupta:2011:PAR

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and refinement for verifying multi-threaded pro-

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN

Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational characterizations for Java memory behavior. *ACM Transactions on Computer Sys-
REFERENCES

[GSL10] M. Gupta, F. Sanchez, and J. Llosa. CSMT: Simultaneous multithreading for clustered VLIW processors. IEEE Transactions on Com-
Gulati:1995:MSM

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Gibson:2010:FSC

Gabor:2007:FES
REFERENCES

CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

[HB92] Matt Haines and Anton Pedro Willem Bohm. Soft-

[Halstead:1994:PCR] Burt Halstead, David Callahan, Jack Dennis, R. S. Nikhil, and Vivek Sarkar. Program-

REFERENCES

REFERENCES

Huang:2016:MCR

Hironaka:1991:SVP

Hironaka:1992:BVP

Hussein:2015:DRM

Hightower:1997:PDD

[Hig97] Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–7?, January 1997. CODEN DDJOEB. ISSN 1044-789X.

Hauser:1993:UTI

Hirata:1992:EPA

REFERENCES

Hurson:1996:CMD

Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD

Hansen:1990:EPA

REFERENCES

REFERENCES

REFERENCES

Holub:1998:PJTd

Holub:1998:PJTa

Holub:1999:PJTb

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hoon Hong, editor. *First International Symposium on Parallel Symbolic Computation, PASCO ’94, Hagenberg/Linz, Austria, September 26–28, 1994*, volume 5 of Lect-
REFERENCES

Wessam M. Hassanein, Layali K. Rashid, and Moustafa A.

REFERENCES

[HZD13] Jeff Huang, Charles Zhang,

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:PIW

IEEE:1994:PSH

IEEE:1994:PSW
REFERENCES

IEEE:1994:ROS

IEEE:1995:PCL

IEEE:1999:HCS

IEEE:2002:STI

REFERENCES

Sungbo Jung, Dar-Jen Chang, and Juw Won Park. Large scale document inversion using a multi-threaded computing system. *ACM SIGAPP*
REFERENCES

Jaisson:2008:IPM

Jea:1994:LMT

Jensen:1995:DRT

Johnson:2004:MCP

Ji:1998:PMM

Jia:2019:UPD

Johnston:2004:ADP

Jolitz:1991:PUB

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386.
REFERENCES

The basic kernel multiprogramming and multitasking. II. Dr. Dobb’s Journal of Software Tools, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

Jin:2003:AMP

Jung:2016:LPS

Jonsson:1999:NPS

Jang:2010:DTE

Joerg:1996:CSP

Jonak:1986:EFL

Jones:1991:BCL

Jagannathan:1992:CSC

Suresh Jagannathan and Jim Philbin. A customiz-

Jacobs:2008:PMC

Joshi:2009:RDP

Joisha:2012:TTE

Joao:2012:BIS

Joao:2013:UBA

[JSM13] Josè A. Joao, M. Aater Sule-

Kumar:2007:ESI

Krashinsky:2008:ISV

Krashinsky:2004:VTAA

Krashinsky:2004:VTAB

Kreuzinger:2003:RTE

Karamcheti:1998:HLB

Karamcheti:1999:ASM

Kejariwal:2009:PSA

Kekckler:1999:CEH

Kasperink:1997:CDC

Keckler:1998:EFG

Kelly:1994:MOB

Kleiman:1995:IT

Klasky:2003:GBP

Kerrison:2015:EMS

Kepner:2003:MTF

Kelly:1994:MBC

Kempf:2002:BTL

Kyriacou:2006:CCO

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

References

REFERENCES

Kunal:2009:HDS

Khan:2012:MAN

Kahkonen:2018:TPC

Kondguli:2018:BUS

Khosla:1997:MAT

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

[KI16] Takuro Kutsuna and Yoshinao Ishii. Abstraction and refinement of mathematical func-

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:2014:SMC

Kranzlmuller:2003:RAP

Kee:2003:POP

Kee:2004:MMM

Kim:2013:DBC

Kumar:2008:AVO

Kislal:2018:ECC

Kaiser:2014:WAM

REFERENCES

Kurzak:2009:SLA

Kleber:2000:TSA

Kang:2008:ISE

Koopal:1992:CBC

Koufaty:2003:HTN

REFERENCES

Kakulavarapu:2001:DLB

Kavi:2002:MMA

Kapil:2004:CMP

Klabnik:2017:RPL

Klabnik:2019:RPL

Kvatinsky:2014:MBM

[KN19] Shahar Kvatinsky, Yuval H.

[Kim:2016:SEA] [Koo93]

[Kim:2006:ERI] [Kor89]

Koniges:2000:ISP

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

REFERENCES

Khyzha:2012:AP

Kaiser:2006:CJC

Kienzle:2001:CTT

Kienzle:2001:IEO

Keckler:2012:MMC

Kawaguchi:2012:DPL

Krone:1998:LBN
REFERENCES

Krinke:1998:SST

Klarlund:1993:GT

Krieger:1997:HPO

Kgill:2008:PUS

Kumar:2004:AST

Kleiman:1995:PT

REFERENCES

Kambadur:2013:PSP

Kumar:2004:SIH

Keller:2000:JUS

Kosmosinski:2017:MCE

Kuchlin:1991:MCI

LCCN QA 76.95 I59 1991.
URL http://www.acm.org:
80/pubs/citations/proceedings/issac/120694/p333-kuchlin/.

Kuchlin:1992:MTC

Kestor:2015:TPD

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Kleinmann:2017:ACS

Kwok:2003:EHC

Kasikci:2015:ACD

[Baris Kasikci, Cristian Zam-
REFERENCES

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

KZTK15

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

REFERENCES

REFERENCES

Lewis:1998:MPP

Lo:1998:ADW

Ling:2012:HPP

Li:2006:MEMa
REFERENCES

REFERENCES

Lo:1999:TCO

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Leman:2002:EFT

Lenatti:1995:RPM

Leppanen:1995:PWO

Leven:1997:MIR

[LG04] Oliver Lemon and Alexander Gruenstein. Multithreaded context for robust conversational interfaces: Context-sensitive speech recognition and interpretation of correc-
REFERENCES

[LHS16] Yongchao Liu, Thomas Hankeln, and Bertil Schmidt. Parallel and space-efficient construction of Burrows–Wheeler transform and suffix array for big genome data. IEEE/ACM Transactions on Computational Biology and Bioinfor-
REFERENCES

Li:2005:OSA

Liedtke:1994:SNIb

LaFratta:2013:EEM

LaSalle:2015:MTM

Langr:2020:RII

Li:2011:LCM
REFERENCES

REFERENCES

186

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Loikkanen:1995:FMS

Lo:1999:SDR

Lowy:2000:MPO

Launchbury:1994:LFS

Lubbers:2009:RMP

Lai:2016:QMD

Leadbitter:2007:NM

REFERENCES

[LSF+07] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti,
REFERENCES

REFERENCES

REFERENCES

Li:2012:MRP

Laadan:2010:TLA

Lopes:2001:FGM

Laguna:2019:GPD

Lee:2010:REO

Liu:2016:TAA

[Li:2007:CET]

[Lu:2014:EDM]

[Liu:2014:TPA]

[Li:2020:MMT]

[Li:2008:TAN]

[Li:2019:HSG]

Liu:2015:LRT

Lu:2013:REM

Li:2017:GGB

Mushtaq:2014:EHP

Monchiero:2009:HSC

Mironov:2019:MPE

Mahafzah:2011:PMI

REFERENCES

Mateosian:1997:MNT

Mattson:2003:HGO

Mendelson:1999:DAM

McNairy:2005:MDC

Madan:2007:PEA

Moon:2006:TMS

McCarthy:1997:MTI

REFERENCES

McCarthy:1997:WMT

Mitchell:1999:ILP

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

McManis:1996:JDSb

McManis:1996:JDT

McManis:1996:JDSb

McManis:1996:JDU

[McM98b] Chuck McManis. In depth: Using threads with collections, part 2. JavaWorld:

Mannarswamy:2010:CAS

Mitchell:2015:GIA

Montesinos:2008:DRD

Mikschl:1996:MMS

Matheou:2015:ASD

Matheou:2017:DDC

Mukherjee:1994:MII

Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine independent interface for lightweight

REFERENCES

[Mil95] Robert C. (Robert Chisolm) Miller. A type-checking pre-

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

Meng:2010:AOS

Mars:2012:BDS

Moreno:1997:PMP

REFERENCES

Maris:2004:CCP

Moody:1999:STT

Maiya:2014:RDA

Marquez:2017:MCH

Mukherjee:2002:DDE

Muralidhara:2010:IAS

Marowka:2004:OOA

REFERENCES

Morandini:2007:UDS

Morishima:2014:PEG

Mathis:2005:CSM

McAuley:2003:CVC

McKenney:2010:WGM

Metzner:2000:MMR

McAuley:2003:CVC

REFERENCES

Marinov:2016:PAF

Markovic:2015:TLS

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

REFERENCES

McCreesh:2013:MTS

Martin:2004:HPA

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

Mayes:1995:ULT

Marinescu:1994:HLC

REFERENCES

Mascarenhas:1998:MTP

Mukherjee:2009:Pas

Meier:2017:PVM

Malan:1991:MA
G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91a], pages 27–40. LCCN QA X 27.

McJones:1987:EUS

McJones:1989:EUS
Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

(electronic). ISCA '12 conference proceedings.

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA

Morad:2006:PPE

Mahesri:2007:HSS

REFERENCES

Naik:2007:CMA

Nikolopoulos:2001:EMA

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS

Naik:2006:ESR

Narlikar:1999:SES

REFERENCES

Natarajan:1993:PVM

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM

Nemeth:2000:AMD

Nevison:1999:SSC
Nazarpour:2017:CPS

Nemawarkar:1994:PIN

Neamtiu:2009:STU

Neamtiu:2008:CEV

Nikhil:1994:MI

Nielsen:2000:MTN

Narayanawamy:2016:VCA

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Nicolau:2009:TEP

Nakaike:2010:LER

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

Narayanasamy:2006:RSM

Nebro:1998:EMR

Nanda:2006:ISM

Mangala Gowri Nanda and S. Ramesh. Interprocedural slicing of multithreaded programs with applications

REFERENCES

1545-5963 (print), 1557-9964 (electronic).

Norwood:1994:SMP

Nguyen:2015:RCC

Narayanasamy:2007:ACB

Nutaro:2017:HAA

Ottoni:2008:COGa

Ottoni:2008:COGb

Ottoni:2008:COGc

Oz:2019:SMA

Olszewski:2009:KED

Ossner:2013:GMB

Odaira:2014:EGI

Ozer:2001:WMT

Olivier:2012:CMW

Ogata:1992:DIH

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Omma:2004:BMA

Ongwattanakul:1997:RDM

Songpol Ongwattanakul. A runtime distributed multithreading library for the

Oaks:1999:JT

[OW99]

Petersenier:2014:IEU

[PAB+14]

Pant:1999:TCP

[Pan99]

Park:1991:PTM

[Par91]

Papadopoulos:1992:MCS

[PBD092]

Pereira:2017:SBC

[PAdS+17]

Porter:2015:PFG

Park:2016:CJP

Perez:2015:ECR

Papadopoulos:2016:TAD

Pokam:2013:QPI

Peacock:1992:FSM

J. Kent Peacock. File system multithreading in System V Release 4 MP. In USENIX
Philbin:1996:TSC

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MDA

LCCN QA 76.76 O63 U83 1992.

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

REFERENCES

Powell:1991:SMT

Price:2003:CAF

Plauger:1993:MCS

Plauger:1998:SCC1

Plauger:1999:SCCg

Plachtka:2002:QTS

Porter:2015:MMS

Plyler:1989:AMC
Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University,
Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabhu:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Pom98

Parashar:2013:TIC

Prieto:2011:MCM

Puche:2020:ECF

José Puche, Salvador Petit, María E. Gómez, and Julio Saluquillo. An efficient cache flat storage organization for multithreaded

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1997:MPT

Permandla:2007:TSP

[PRB07] Pratibha Permandla, Michael Roberson, and Chandrasekhar

Irfan Pyarali, Marina Spivak, Ron Cytron, and Douglas C. Schmidt. Evaluating and optimizing thread pool strategies for real-time CORBA. *ACM SIGPLAN*

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

Peacock:1992:EMS

REFERENCES

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulley:2000:EPM

Pickett:2006:SSF

Pathania:2017:DTM

Preissl:2012:CSS

Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner, Raghavendra

Preissl:2011:MGA

Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and Alice Koniges. Multithreaded global address space communication techniques for gyrokinetic fusion applications on ultrascle platforms. In Lathrop et al. [LCK11], pages 12:1–12:11. ISBN 1-4503-0771-X. LCCN ????

Polap:2018:MTL

Park:2010:ISP

Quintana-Orti:2012:RSP

Quintana-Orti:2009:PMA

Qian:2016:EFS

Qian:2016:ODG

Qian:2014:PRR

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB

Roberts:2018:MID

Rufai:2005:MPO

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

Reda:2012:APC

CODEN IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic).

Rahman:2014:CCO

Ro:2006:DEH

Rakvic:2010:TMT

Russell:2006:ESRa

Reck:1998:TSR

Reich:1995:DHP

Reilly:2001:TNF

Redstone:2000:AOSa

Redstone:2000:AOSb

Redstone:2000:AOSc

REFERENCES

Rajwar:2003:TET

Radojkovic:2012:EIS

Rodgers:1999:TSN

Rashid:2010:AEP

Richman:1991:EHC

Richards:1999:ALT
[Ric99] Etienne Richards. Adding level-2 thread safety to existing objects. C/C++ Users Journal, 17(2):??, February
Ringle:1999:SCT

Rinard:2001:AMP

Reddy:2011:BFH

Reus:1998:VCO

Reiche:2017:AVI

Rodrigues:2015:DSE

Raman:2010:SPUa

Raman:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

Reinhardt:2000:TFD

ACM:2003:ATA

Roh:1996:GOE

[RPB+09] Indrajit Roy, Donald E. Porter, Michael D. Bond,
REFERENCES

REFERENCES

REFERENCES

Andrew Shaw, Arvind, Kyoo-Chan Cho, Christopher Hill, R. Paul Johnson, and John

Saavedra-Barrera:1990:AMA

Spoto:2019:SI

Storino:1999:MTB

Savage:1997:EDD

Sanderson:2017:PGP

Saillard:2015:SDV

Douglas C. Schmidt. Evaluating architectures for multithreaded object request brokers. *Communications*
REFERENCES

Schmidt:2014:JCR

Schneider:2017:PHL

Sendag:2005:IIS

Steinke:2005:NPF

Schauser:1991:CCM

Schauser:1991:CML

REFERENCES

Stefan:2000:SA

Spertus:1995:ELB

So:2013:STI

Sartor:2012:EMT

Seiden:1998:ROM

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO

Sahin:2018:CSC

Sung:2014:PTR

Sodan:1997:ENN

Sridharan:2014:AEP

Shahnaz:1995:DMD
Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Sta-
REFERENCES

Shankar:1995:STI

Shaw:1998:CPM

Shene:1998:MPI

Shene:2002:TST

Shinjo:2000:DCEb

Shi:2015:CLM

Shoffner:1997:JSSa

3566 (print), 1544-3973 (electronic).

Singh:1992:DRS

Singh:1992:DRT

Stewart:1997:MDH

Shirole:2012:TCU

Sung:2001:MDA

Smaragdakis:2007:TIC

Schoenherr:2011:MTI

Shin:2006:ADT

Scherer:1999:TAP

Su:2019:SSC

Sharkey:2008:RRP

Sidiroglou:2009:AAS

REFERENCES

REFERENCES

Sanchez:2010:ACI

Suleman:2009:ACS

Swanson:2003:ESI

Scionti:2018:EMM

Singh:2012:EES

Sodan:2002:AMA

REFERENCES

Skjellum:1996:TTM

Saxena:1993:PMS

Suleman:2008:FDTa

Squillante:1994:AMP

Salcianu:2001:PEA

REFERENCES

Sohi:2001:SMP

Samak:2014:MTS

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

Saghi:1998:MSH
Saghi, Gene, Reinholdt, Kirk, and Savory, Paul A. A multithreaded scheduler for a high-speed spacecraft simulator. *Software—Practice and Experience*, 28(6):...
REFERENCES

REFERENCES

[SL00c] Allan Snavely and Dean M. Tullsen. Symbiotic job-

Schmidt:1996:CAPc

Schmidt:1996:CAPa

Smith:1998:SIF

Sabarinuthu:2019:ADC

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Dominic Sweetman. *See MIPS Run*. Morgan Kaufmann Publishers, Los Altos, CA 94022,

[STERLING:2002:GMP]

[Schwan:1991:RTT]

[SZG91]

REFERENCES

37, March 1997. CODEN CRPTE7. ISSN 1040-6042.

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

[TESK06] Pedro Trancoso, Paraskevas Evripidou, Kyriakos Stavrou, and Costas Kyriacou. A

[Tetewsky:1994:GDR]

[Tian:2010:SPU]

[TG99]

[Thakur:2009:TSE]

[Tian:2005:PCT]

[Tan:1999:OFN]

Kian-Lee Tan, Cheng Hian Goh, and Beng Chin Ooi. On-line feedback for nested ag-

Tan:2000:PEN

Terechko:2012:BPS

Theroop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Xuping Tu, Hai Jin, Zhibin Yu, Jie Chen, Yabin Hu, and Xie Xia. MT-BTRIMER: A master-slave multi-threaded dynamic binary translator.

[TLA+02] The Editors, Kim Reidar Lantz, Ze’ev Atlas, Pete Nelson, and Gus J. Grubba. Letters: URL correction [“The NewOS Operating System”]; passing context to threads; compiling Perl/Tk scripts; standing by Al’s principles; understanding photo-

Turakhia:2017:TPE

Tian:2016:ETR

Tian:2017:RSP

Tremblay:2003:IEP

REFERENCES

Tallent:2010:ALC

Taylor:1995:CSA

Trott:2010:AVI

Todiwala:1995:DRT

Thebault:2018:AMC

Tarvo:2014:AAM

REFERENCES

558, June 2014. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

[Traub:1991:MTC]

[Tsai:1997:PSC]

[Tsai:1997:SIC]

[Tsai:1997:SIC]

[Tumeo:2012:DNG]

REFERENCES

[Tulasiram:2003:PEM]

[Thulasiram:2002:EMA]

[Taula:1999:SM]

[Tullsen:1996:SM]

REFERENCES

sciencedirect.com/science/article/pii/S0010465510001207

Tembey:2013:SSS

Torlak:2010:MCA

Turon:2014:GNW

Taura:1997:FGM

Utterback:2017:POR

Utterback:2019:POR

CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

REFERENCES

[USE00b] USENIX, editor. Proceedings of the 7th USENIX Tcl/Tk
REFERENCES

REFERENCES

Neil Vachharajani, Matthew Iyer, Chinmay Ashok, Man-

REFERENCES

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

Vlassov:2016:AMM

VanDeGeijn:2011:HPD

Winter:2008:ATN

REFERENCES

REFERENCES

chitecture News, 26(3):238–249, June 1998. CO-
DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

[WCV+98] Norman Wilde, Christopher Casey, Joe Vandes-
ville, Gary Trio, and Dick Hotz. Reverse engineering of soft-
ware threads: a design recovery technique for large multi-
process systems. The Journal of Systems and Software, 43
(1):11–17, October 1998. CO-
DEN JSSODM. ISSN 0164-1212 (print), 1873-1228 (elec-
tronic).

Kim, Bill Greene, Kai-Ming Chan, Aamir B. Yunus, Terry
Sych, Stephen F. Moore, and John P. Shen. Helper threads
via virtual multithreading on an experimental Itanium-
2 processor-based platform. ACM SIGARCH Computer
Architecture News, 32(5):144–155, December 2004. CO-
DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

Kim, Bill Greene, Kai-Ming Chan, Aamir B. Yunus, Terry
Sych, Stephen F. Moore, and John P. Shen. Helper threads
via virtual multithreading on an experimental Itanium-2 processor-based platform.
SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Kim, Bill Greene, Kai-Ming Chan, Aamir B. Yunus, Terry
Sych, Stephen F. Moore, and John P. Shen. Helper threads
via virtual multithreading on an experimental Itanium-2 processor-based platform. Op-
erating Systems Review, 38
(5):144–155, December 2004. CODEN OSRED8. ISSN
REFERENCES

Wang:2007:OSC

Wester:2013:PDR

Weav:2008:OIO

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Wong:1994:SSI
W. F. Wong and E. Goto. A simulation study on the interactions between multi-threaded architectures and

Weissman:1999:HPT

Wallach:1995:OAM

Williams:1994:NST

Wilson:1997:BTP

REFERENCES

REFERENCES

ISSN 0163-5948 (print), 1943-5843 (electronic).

Wadden:2014:RWD

Wang:2009:TDA

Won:2015:MMC

Wu:2019:HUI

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

[WOHK96] Roland Wismüller, Michael Oberhuber, Johann Krammer, and Olav Hansen. Interactive debugging and performance analysis of massively parallel

REFERENCES

Wu:2012:SPA

Wong:2008:TAF

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Wenjie:2020:APW

Xu:2014:STM

Yam:1995:CFD

Yam:1996:DPV

[Yam96] Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yang:1997:MUA

Yan:2002:RCC

Yasrebi:1995:EDO

Yiapanis:2016:CDS

REFERENCES

Yang:2014:MPP

Yee:2020:CMT

Yamashita:2012:APS

Yu:2016:DLR

Yi:2010:NAS

REFERENCES

[YM93a] Young-Myers:1993:ESTa

[YM93b] Young-Myers:1993:ESTb

[YN09] Yu:2009:CIC

[Yoo96a] Yoo:1996:CAA
REFERENCES

Yoo:1996:PCM

Yeh:2017:PFG

Yeh:2019:PGR

Youseff:2009:PES

Yang:2003:AMC

Yan:2007:HMC

Yang:2014:CNR

d/2015/07/06837521-abstract.html.

Guanwen Zhong, Akshat Dubey, Cheng Tan, and Tulika Mitra. Synergy: an

Zhou:1998:LST

Zhang:2000:WMH

Zhang:2015:LOS

Zignin:1996:TDM

Ziarek:2009:SWB

Zhang:2010:DCS

REFERENCES

Zhao:2011:DCC

Zier:2010:PED

Zhang:2015:DPO

Zhang:2016:SAN

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Zebchuk:2007:BBC

Zhuang:2004:BRA

Zhuang:2011:CST

Ziarek:2006:SMC

Zois:2019:EMM

Vasileios Zois, Vassilis J. Tsostras, and Walid A. Najjar. Efficient main-memory top-
