A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

23 January 2018
Version 3.131

Title word cross-reference

#4 [Pet00].

+ [BMV03], 2 [TKHG04]. 3
KSB^08, PYP^10, cyclical [YLLS16]. D^3
Evr01. F^2 [BCS11]. LU [VD08]. N
[ZJFA09]. π [II01]. QR
But13, GKK09, VD08.

-Calculus [III01]. -Machine [Evr01]. -way
[ZJFA09].

.NET [Rob03, Tim03, DHR^01, Rei01].

/ [ACM92]. /multi [Taf13]. /
multi-threaded [Taf13].

'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sre93,
WCW^04b, WCW^04c, WCW^04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM95b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA005]. 35th [Gol94]. 3D
[Ano97b, Loe97].
Abstract [CSS+91b, CGSV93, DV99, LMA+16, MJF+10, Ném00, CSS+91a, CSS+91c, VDBN98, ZJFA09], Abstraction [KI16, Bak95b, GPR11, ZSJ06], AC [BGK94a, BGK94b], Accelerating [LS11, SMQP09, VGK+10a, VGK+10b], acceleration [JSMP13, NBMM12], Accelerators [NTR16, SGLGL+14], Access [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KF15, MVY05, Sch89], access/execute [APX12], accesses [DTK+15], accessibility [SSKP+07], Accounting [LMA+16, EE09b], accuracy [TO10], Accurate [CPT08, VTSM12], Achieving [AHW02, KGGK09, WTKW08], ACM [ACM93b, RM03, IE02, ACM98b, ACM99a], ACM/IEEE [ACM98d], across [ZP04], Activation [KG94], Activations [ABLL92, DNR00, SS95], Active [BK06, Pla02, Ten98, Wei98a, SD95, WHJ+95], actors [Bri89], actually [Pra95c], Ada [ACM93c, Bar09, Dil93, GMB93, KPPÉR06, KR01b], ADAM [Far96], adaptable [LLLC15], Adaptation [CMBAN08], Adaptive [ABN00], Adaptive [ALHH08, HBTG98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Ch95a, Ch95b, Ch96, SLGZ99, TKG04, ZGW+16], Adding [Ply89, Ric99, McM97], Address [CLFL94, FWL+11, CKZ12, Lie94], Addressing [WA08, CKD94, ZSB+12], Advanced [BGG95, GBG95, Hei03, BZ07, GBB+05], Advances [IEE97, JHM04, KKD03, DLM99], Advantage [Wei97], Adversarial [FF10], affinity [NAAL01], Age [Cro98], agent [Way95], Agents [CWHB03, CR02, Way95, BDF98], Aggregate [TGO99, TGO00], AGNI [RBPM00], agreement [GMW09], Aid [Wei97], aided [MCRS10], aids [Mat97], Air [MPD04], AI [TLA+02], Albuquerque [Ano94e], Algebra [KLDB09, NBS+15, PHCR09, YSY+09], Algebraic [ACM94c, Lak96, MR09, Wat91], Algorithm [AT16, ABC+09, HH11, OR12, TT03, ZBS15, GKG12, KNS16, LCH+08, Mah11, Mah13, SCG95, TKG04, Dav11, HBG02, YFF+12], Algorithmic [Lei97, BBH+17], Algorithms [BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOM+12, TTKG02, YMR93b, Bar09, CF+12, CRRS09, FR95, G05, Lei97, Lep97, NFB17, QOQOV+09, RRMJ12, YM92, YMR93a, Li05], algorithms-by-blocks [QOQOV+09], Algorithms-by-Tiles [QOM+12], aliasing [NA07], Aligned [YWJ03], alignment [KGPH12], Allaire [Hig97], Alleviate [BD00], Alloc [KSU94], Allocating [SEP96], Allocation [MVZ93, Nak01, EJFM07, LLL10, Mic04, ZP04], Allocator [BMBW00b, BMBW00a, BMBW00c], Alpha [Ano94e], alphabet [KNPS16], alphabet-independent [KNPS16], alternative [SV96c, SV96a, SV96b].
Alternatives [MB99, MKR02]. Alto [ACM01], ALU [KDM+98], always [DWS+12], always-on [DWS+12]. Amdahl [CN14, NZ17]. Among [CB16, HMC95, SJ95]. analysing [NJK16]. Analysis [AKS06, BCZY16, BE12, BE13, BBC+00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJR13, Hai97b, Hol12, LCK11, LML00, LHV+16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM+08, Yo06a, Zu02, AC09, ACC+03, BGZ97, BBH+17, BMM09, CHH+03, CS12, CVJL08, Cor00, GBCS07, HEJ09, JPSN09, KTK12, K09, Lei97, LBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WP10, WOKH96, WTH+12, dB09, vPG03]. Analytic [Squ94]. Analytical [DKF94, VT96, SBC91]. analyze [LMC14]. analyzer [Fer13, HLB90]. Analyzing [HRH08, Kor89, RHH10, TMCP10]. anatomy [Rei95]. Android [MKM14]. Annotations [BM94, Wei98b, AGN09]. Annual [ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b]. abnormalities [Sch89]. Anomaly [KW17]. Antonio [USE92a]. any [Hig97, Mar07]. API [Ano00b, BDN02, DM98, Van97a]. APL [CJ91]. applets [McM96c]. Application [AMRR98, KZTK15, KSU94, PG92, PLT+15, TKA+01, TAM+08, Yas95, DWYB10, EJY+96, HDT+13, LYN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11]. Application-Level [KSU94, PLT+15, HDT+13, LZ07, ZJS+11]. Applications [Ano00c, AZG17, AKP99, BKI06, BMBW00b, BNH01, Cha05, Chl15a, DS16, Don02, Dru95, EV01, FURM00c, HC17, HWZ00, JYE+16, KM(C)02, KRH98, Lar97, MG15, PWL+11, Pul00, RD96, SG1+97, Sod02, Ten02, Tet94, TSV12, TLGM17, Vol93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BBD+15, BBFW03, BGZ97, BMBW00a, BMBW00c, BW97, DSEE13, BMV03, CB89, CB90, CSB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLB90, ISS98, JSM12, JSM13, KVN+09, MLCW11, MKM14, MKIO04, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Omm04, PZJA07, RCY+10, Re95, SN04, SSN10, SKP+02, TMC09, TMCP10, VIA+05, VGY+10a, VGY+10b, WCZ+07, WT10, WOKH96, XM99, YZ14, kSYH+11, ZKR+11, Len95]. apply [NZ17]. Applying [VTSL12, MT02a, MT02b, MT02c]. Apprendre [Swi09]. Approach [AZG17, BBSG11, CJW+15, ES97, FKT96, GMR98, KKW14, KS16, ND16, RCM+16, TY97, VSDK09, WS08, We98b, YLLS16, BBD+15, DHM+12, LZW17, LZL+14, MS03, RCM+12, SCZM00]. Approaches [BLPV04, MB07]. Approximate [HFV+12, GEG07, E08, KPH12]. Apps [PCM16]. April [Ano00a, Ano03, USE01]. arbitrary [BCG14]. ARCH [Ada98]. Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07]. Architecture [ACM98c, BBD+91, BTE98, Car89b, CL95, DO95, EBKG01, For97, Gao93, GK94, GH+98, GV95, G902, HTZ+97, HMAN91, HHOM91, HHOM92, KBB+04a, KBB+04b, KIAT99, Ma91, MB99, PVS+17, PTMB09, PKB+91, PS01, REL00b, RS08, SCL05, SYCG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cho92, Don92, Dub95, Evr01, Far96, Fuj97, Gal94, GDS1+17, GL98a, Gal96, HF88, HKN+92, HMM+92, H+94, KHP+95, KTH99, Lo95, Mah13, MK12, Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TBB+95, Tsh97b, UZU00,
Wan94, WCC+07, YZ07, Yan97, CH04.

Architectures

[AT16, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IBST01, JLS09, KTR+04, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOIM+12, RLJ+09, SGOM+97, TG99, THA+12, Tra91, TJJ98, WG94, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CFG+12, Cat94, FTAB14, GGB93b, GK05, Gil94, GL98b, HVF+12, ICH+10, JMS+10, LMC14, Lu94, MLCW11, MLCO4, Mus09, OCRS07, PT91, PPA+13, PZJA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Squ94, SMQP09, SKA01, TE94a, The95, TKHG940, Area

B [Ano00c, DLZ+13]. back [ECX+12]. Backup [Ano00b]. Balance [SEP96]. balanced [CKZ12]. Balancers [KMA01].

Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKA00]. Baltimore [IEE02]. Bandwidth [FSP16, LTL+16].

Barrier-Based [CJW+15]. barriers [LZBW14, ZJFA09]. Base [VE03]. Based [Ali94, AT16, AKP99, BH01, CJW+15, CKRW99, CMBAN08, DSR15, EGP14, GHG+98, HHOM91, HHOM92, KS16, KG05, KEL+03, KW17, KS97, KRH98, Kwo03, LG06, LS11, MGQS+08, MKC97, OB13, RSBN1, TESKO, WLM15, AdBdRS05, Ada98, AAHF09, Am98, AKSD16, CNQ13, CKD94, CKRW97a, CKRW97b, CNV+06, DG99, DWYB10, EG11, GDS+17, GE08, JD08, JSMP13, KR01b, KJ+13, KI16, KBF+12, LK15, LZW17, LLL10, Mus09, NBMM12, NFB17, PGS06a, PGS06b,
coated [Lep95]. Code [BBdH+11, Coo95, HYY+15, JSB+12, KEL+03, MS02, NS97, ND16, PR98, Roh95, RNSB96, TGBS05, Tra91, Ann96, BB00, JSB+11, SJ95]. Codes [CMRAN08, PCHR09, PT03]. Codeign [HPA+15]. cognitive [MCS15, PWD+12]. cognizant [LK13]. Coir [SG96]. Cold [Hig97, Hig97]. Collaborative [VSDK09]. Collection [AKP99, LB92, PUF+04, PF01, QSaT+16, KTK12]. Collections [Kle00, McM98a, McM98b]. collective [HMC95, SCB15]. collector [BBYG+05, DL93, HL93, WK08a, WK08c, WK08b]. coloring [CFG+12, GP05, SS10]. Colt [WN10]. Combinator [KLS92]. combined [UZU00]. Combining [KR01a, LZ07, CZSB16, ZLW+16]. come [Pol90]. COMeT [RCC14]. Coming [LS07]. Commands [KD97]. Commodity [ZLJ16, LVN10, RPNT08]. Common [Hol98a, Kuc92, BDF98, BDLM07, CL00, Küc91]. Communication [ABN00, DSR15, EHG95, FKT96, FGKT97, GMR98, HYY+15, OA08a, OA08b, OA08c, Pan99, PWL+11, Rod94, SKK+01, TCG95, BR92, DBRD91, GRS06, KASD07, Lam95, QSH16, RR96, RR93, TC09, TKA+02, VS96, WHJ+95, ZCSM02a, ZCSM02b]. Communications [Ano03, BMN09, SCB15, Sho97b]. Commutativity [AC09]. Compact [HEMK17]. compaction [WK08a, WK08b, WK08c]. Comparative [SKP+02, Yoo96a, PL03]. Comparing [KPPÉR06, SV96c, SV96a, SV96b]. Comparison [ILFO01, SAC+98, GL98b, Kim+03, MKJO04, MMWT10]. Compass [PWD+12]. Compatible [MM14, LBH12]. competition [YL16]. Compilation [ACMA97, HLB94, BRRS10, GC92, HCD+94, Tsa97b]. Compile [CS95a, CS95b, TSY99]. Compile-time [CS95a, CS95b]. Compile/run [TSY99]. Compile/run-time [TSY99]. Compiler [ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, JSB+12, LEL+99, MCRS10, SCv91a, SCv91b, SYHL14, Sin99, TY97, TGBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG+95, BAD+10a, BAD+10b, BVG97, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Fon97, Gol97, Hop98, JSB+11, MSM+11, McM97, Mü103, RKCW98, Sch91, SKKC09, UZU00, WLG+14]. compiler-assisted [Dub95]. Compiler-Controlled [CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91]. Compiler-directed [DZKS12, SKKC09]. Compiler-Driven [YBL16]. compiler-managed [WLG+14]. Compiler-Supported [ZP11]. Compilers [SS96]. Compiling [ABNP00, ABH+01, TLA+02, HTZ+97, Sch91, Sha98, A’01]. Complement [YFF+12]. Complete [BR15, Sch14, BW97, DWS+12, FFY08, KGGK09, NV15]. Completion [AGK96, BGK96, Lmu97, Man98, BGK94c]. Complex [SZM+13]. Complexity [EG11, CMX10, SKA01]. complexity-effective [SKA01]. Compliant [BGK96, Hig97]. component [NFBB17]. component-based [NFBB17]. Components [Gon90, Sho97b]. Composable [SS10, FKS+12]. Compositions [KS97]. Comprehensive [TAM+08]. Compressed [PBL+17]. Computation [ACM94c, BFA+15, CWS06, HLB94, Hon94, HWW93, Kuc92, Lakk96, OTY00, Wat91, BHKR95, Fan93, Fuj97, KG07, Kıcı91, Njo00, Sha98, ST98, WHJ+95]. computational [Bar09]. Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blor92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute [BBSG11]. Computer [ACM98c, Ano94a, CBN+00, Gol94, BD06, DN+12, GKI05, I+94, PBDO92]. Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95].
Computing
[ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Ama89, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Ham96, Hol12, HG91, IEE94b, KR12, Kon00, LCK11, LFA96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BGG95, BD06, Dani09, FWT03, GBG95, GS02, HF88, HG92, IEE97, Joe96, Kim94, KU17, Lan97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta90, SKA01, Tem97].

Concept [AMdBdRS02, BBFW02, KA97].

Concepts [McC97a].

Concrete [NSP+14].

Concurrency [BM94, GMGZP14, MLR15, MQLR16, ME17, NFBB17, BA08, But14, CBM10, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, VTS12, Yan02, ZLW+16, dBo9, SB80].

Concurrency-preserving [NFBB17].

Concurrent [ILF001, KD97, KCCD99, MSM+16, NPT98, PCM16, PF01, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGK90, MSM+10, MKIO04, Men91, NHFP08, Nev99, ND13, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK8a, WK08b, WK08c, ZSJ06, Hay93].

Condensed [BIK+11].

Condition [Hol98c, Yan02].

Conditional [IBST01, NA07].

Conditions [HM96].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM01, Ano94a, AOY+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE98c, USE98d, Ano94d, Ano94f, Est93, KKDVO3].

Confidentiality [NHS14].

Confirmation [CJW+15].

Conflict [NJK16, vPG03].

Conformant [STu95].

Congress [Ano94d].

Conjunction [Ano94e].

Connect [Ano06b].

Conquer [FN17].

Consensus [GBP+07].

Consistency [ABH+00, ABO1, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSQ14, SNM+12].

Consistent [NHFP08].

Consolidated [HC17].

Constrained [TLGM17, GW10, YN09].

Constraint [SGC95].

Constraints [HC17].

Construction [KW17, LHS16].

Constructs [BS06].

Consumption [NHFP08].

Context [XSaJ08, ALW+15, DSG17, PGB14, TMC10, ZKR+11].

Context-aware [XSaJ08].

Context [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM01, Ano94a, AOY+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE98c, USE98d, Ano94d, Ano94f, Est93, KKDVO3].

Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, FK12, FSYA09, GCC15, MLCW11, NT14, PPA+13, Pol90, RPB+09, UZU00, WLP+09, Yoo96b].

Control-flow [NT14].

Controller [RLJ+09].

Controllers [KASD07].

Controllers [KGK96].

Controls [SC91].

Controlled [BCG+08, CSS+91b, CGSV93, SC91a, CSS+91c, Luk01, MW097, Sch91, SC91b].

Controllers [RLJ+09].

Controllers [KASD07].

Controllers [AGN09, BKC+13].

Controls [McM96c].

Controversial [Gar01].

Convention [ACM98d, ACM99b, ACM00, Hol12].

Conventional [KET06b, HB92].

Convergence [RM03].

Conversational [LG04].

Converse [BK96].

Convert [Vo93].

Converting [LEL+97a, LEL+97b].

Convolutions [BR18].

Convolver [Kep03].

Cool [Ano00a, Ano03, We97].

Cooperation [BM07, SKBY07].

Coordinated [KKJ+13].
coordination [BDF98]. Coping [San04]. Coprocessor [LRZ16]. copying [HL93].

CORBA

D [KSB+08, NTKA99, PYP+10, TKHG04]. Daemon [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEE96]. dans [Zig96]. DARPA [Mat97]. Data [Ama89, ABNP00, DTLMW16, EW96, FHM95a, GAC14, HMC97, HRH08, Hig97, JMS+10, KZ15, KET+03, KET06a, KET06b, LMJ14, LLD17, ME15, ME17, RCRH95, SBN+97, SAC+98, SSYG97, SG96, Ten98, TESK06, VT96, WU98, ZLJ16, ZAK01, AGE08, AGN09, BABB07, CSN95a, CSN95b, CDL13, DHM+12, EV01, FHM95b, FK12, HL03, LL16, MSL16, Ma96, MNN09, NWT+07, ND13, PDMM16, PRB07, PHCR09, Po90, PS03, PT03, Sh95a, SP00b, Shi00, Sin99, SKKC09, WDC+13, YKL13, ZJS+11]. data-centric [DHM+12]. Data-Driven [DTLMW16, KET06b, ME15, ME17, TESK06, EV01]. Data-Parallel [ABNP00, SAC+98, HMC97]. data-race [MNN09]. Database [KD97, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a]. Databases [AOV+99, GDSA+17, HL08]. Dataflow [CVL08, GGB93a, Gao93, HPB11, HKS96, LH94, NBM93, RSN01, SRU98, Tra91, YMR93b, BGG95, GGB95, GBG95, H92, JH04, KHP+95, PT91, KSK+92, Sch91, YMR93a]. Dataflow-Based [RBN01]. dataflow/von [HG92]. datarace [CLL+02, CVL08]. Datarol [KA97]. Datarol-II [KA97]. Dawning [Cro98]. DC [IEE94c, ACM92, An090]. DCE [RD96, Yam95, Yam96]. DDOS [HBCG13]. Deadlock [Hol98a, Mon00, Ver97, ABF+10, SR14, WLK+09]. Deadlocks [CJW+15, CZWC13, JPSN09, PRB07]. dealiased [RB18]. Deallocation [LPE+99].
dearth [Len95]. debate [Bak95b]. debug [PT03]. debugger [CB89, CB90].

Debugging
[Ano98b, Caz02, HWZ00, MQLR16, PHK91, SJB92a, SJB92b, BGZ97, MLR15, WOKH96].
decentralized [RPB+09]. Decision
[LFA96, LQ15]. decomposition [JEV04].

Decompression
[PBL+17]. Decoupled
[DO95, APX12, Evr01, RVOA08, RCDG06, SKA01, VS96]. decoupling
[KGGK09, PG01]. Delaunay
[ABC+09]. Delivered
[SCCP13]. DeLorean
[MCT08]. Delivered
[KKJ+13]. Demand-based
[KKJ+13]. Demus
[Sri93]. Demus-2
[Sri93]. dense
[ABD+12, McM96a, McM96b, McM96c, McM96d, McM98a, McM98b]. dense
[ABF+10, KUCT15, KW17, LLS06, Mou00, ZLJ16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTHR14, MMK14, MN00, BB16, NAW06, NA07, PS03, PS07, PFFH06, RVS13, RM00, SR14, Sch98, TLZ+16, TDMW03, WDC+13, ZKR+11, DWS+12].

Detector
[SNB+97, SLG06]. determined
[Kub15]. determination
[BS10b, LWV+10, LZW+13]. Deterministic
[DK02, KRBH+12, LL17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DCOO09, DNB+12, LZW+14, MAAB14, OAA09, QSHI16]. Deterministically
[CTY08]. DetLock
[MAAB14]. developed
[Fek08]. Developer
[IEE96]. developers
[Way95]. Developing
[SP00b, Shi00, TKA+01, OT95].

Development
[Ano97a, Ano98b, Ano99, BDD+05, BDD+04, BDD+03, BDD+02, BDD+01, BDD+00, BDD99, BDD88, BDD87, BDD86, BDD85, BDD84, BDD83, BDD82, BDD81, BDD80, BDD79, BDD78, BDD77, BDD76, BDD75, BDD74, BDD73, BDD72, BDD71, BDD70, BDD69, BDD68, BDD67, BDD66, BDD65, BDD64, BDD63, BDD62, BDD61, BDD60, BDD59, BDD58, BDD57, BDD56, BDD55, BDD54, BDD53, BDD52, BDD51, BDD50, BDD49, BDD48, BDD47, BDD46, BDD45, BDD44, BDD43, BDD42, BDD41, BDD40, BDD39, BDD38, BDD37, BDD36, BDD35, BDD34, BDD33, BDD32, BDD31, BDD30, BDD29, BDD28, BDD27, BDD26, BDD25, BDD24, BDD23, BDD22, BDD21, BDD20, BDD19, BDD18, BDD17, BDD16, BDD15, BDD14, BDD13, BDD12, BDD11, BDD10, BDD9, BDD8, BDD7, BDD6, BDD5, BDD4, BDD3, BDD2, BDD1, BDD0].

Design
[ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GRR97, GMR98, Hai97b, KHP+95, Laff0, MB99, NBM93, Raj93, RCDG06, Sch17, STW93, Shn95a, SWYC94, SBK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car99b, FWL03, HCM94, Hud96, KU17, KGGK09, Mah11, Met95, Moo95, Moo96, MCR02, Ném00, OK92, OCRS07, RSB+09, SB80, Sri93, Ver97, WLG+14, Wan94, WCV+98, Xue12].

designed
[San04]. Designing
[Dru95, GZK12, RR93, Re95, TSV12, Hai97a, TCC95]. Desktop
[Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Pra95b, WSKS97]. desktops
[Ano94b]. despite
[Len95]. Destructing
[Pet00]. destructive
[FF95]. Desupport
[DHR+01]. Detailed
[MKR02, ACC+03].

Details
[FMY+15]. Detect
[DS16, CZWC13]. Detecting
[DSR15, RBK+09, SK97, FF10, JPSN09].

Detection
[ABF+10, KUCT15, KW17, LLS06, Mou00, ZLJ16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTHR14, MKM14, MN00, BB16, NAW06, NA07, PS03, PS07, PFFH06, RVS13, RM00, SR14, Sch98, TLZ+16, TDMW03, WDC+13, ZKR+11, DWS+12].

Deterministic
[CTY08]. DetLock
[MAAB14]. developed
[Fek08]. Developer
[IEE96]. developers
[Way95]. Developing
[SP00b, Shi00, TKA+01, OT95].
SUF+12, TDW03, USE92b, VS96, Yas95, Ano96, A+01, BCG+95, CML00, Car89a, GoI96, GKK90, Gum97, HBB92, HMC95, HWW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, M KK99, Ong97, Pha91, Ply89, QSQ14, Sto02, Tod95.

Distributed-Memory
[RCRH95, BCG+95, HWW93].

Distributed-sum [TDW03].

[SSYG97, ZAK01, CY09].

[MTS10].

[FN17].

[DLCO09].

[CCW+11].

[BCS11].

[BCS11, TO10].

[HF96].

[Hag02, RKK15, ZJS10, San04].

[Yam96].

[LAK09].

[MSM+16].

[CCW+11].

[MSM+10].

[DSM-PM [AB02].

[DSM-P [AB01].

[DSMs [FBF01].

[DRM [KSYHX+11].

[DRFX [MSM+10].

[Drinking [CZSB16].

Driven
[DTLW16, For95a, For95b, HLB94, KET06a, KET06b, ME15, ME17, TESK06, YBL16, CSV10, Evm01, RVS13, RS309, SLPO8, SQPO8a, SQPO8b, SQPO8c, YNPP12].

[driver [CCW+11].

[DSls [RKHT17].

[DSM [ABH00, AB01, AB02, BDF98, KKH04].

[DSM-PM [AB02].

[DSM-P [AB01].

[DSMs [FBF01].

[DTs [BHKK95].

[Dual [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11].

[Dual-Core [KST04, MB05].

[Dual-Level [BBC+00, DK02].

[dual-personality [CCW+11].

[Dual-Processor [EHG95].

[Dual-Thread [MB05, WS08].

[Duplex [KG05].

[Duplication [Kwo03].

[Dynamic [CJW+15, FSY99, HSS+14, Hig97, KMA01, KPC96, KC98, KC99, KUCT15, MVZ93, MTS10, Nak01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK01, Sta90, SG96, WHG07, XMN99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Chr95a, Chr95b, Chr96, Don92, FF04, FF08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SLG06, TJY+11, WW96, BK13].

dynamic-multithreading [LSS12].

Dynamically
[PGB12, TLGM17, DMBM16, Kep03].

dynamically-typed [DMBM16].

e6500 [BGH+12].

Early
[GL1, PBL+17, SLPO8].

EARTH
[HTZ+97, HMT+96, Sod02, TAK+00, TKA+01, TKA+02, TMAG03, NAK03].

EARTH-MANNA
[HMT+96, Sod02].

Easy
[Har99].

Easysoft
[Ano00b].

ECMA
[Stu95].

ECMA-162
[Stu95].

economics
[Bar09].

Edinburgh
[AOV+99].

effect
[BAD+09, GL98b, YSY+09].

Effective
[ABL12, DN94, GH03, GMGZP14, NAW06, NSH14, PGB16, RVS13, Sot02, TMC09, TY97, CBM10, JSB+11, MNN09, MTC+07, SSK01, Tsa97b].

Effectiveness
[PR05, TE94b].

Effects
[Cho93, HRH08, KLH+99, KRBJ12, NHFP08].

Efficient
[TTKG02].

Efficiency
[AJK+12, Ano05, THA+12, AMPH09, FGG14, GA09, MMM+05, Pra95b, RCG+10].

Efficient
[AD08, Alf94, ABN99, BCZY16, BGDMWH12, BJ+96, BL98, BMN99, CZS+17, CLL+02, DMBM16, Gao93, GJT+12, GRS97, GS06, GN96, HSS+14, HEMK17, KPC96, KASD07, Lem02, LH+16, LZW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZLJ16, ATLM+06, BL93, BJK+95, BKH+04, EKKL90, FFL03, FF09, GB99, HSS+12, KSB+08, KNPS16, KSD04, LK13, LWV+10, LHS16, LZW+13, MSM+10, NLK09, OAA09, Pan99, PGS06a, PGS06b, PGS06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQPO8a, SQPO8b, SQPO8c, TO10, Wei98a, kSYHX+11, ZLW+16, FSYA09].

Efficiently
[KBF+12, MCT08, SW16, Blu95, BKC+13].
eigenproblems [ABD+12]. eigenvalue [BIK+11].
Electronic [Ano00b, BB00].
Elegant [Hub01]. Element [HBTG98, MS02].
elementary [HKN+92].
elide [MLS15]. Eliminating [DSG17, OCT14, RD06, MTPT12].
elimination [MK12]. elision [NM10].
Elliptic [Loe97].
EM-4 [BAM98, SKS+92].
Embedded [BGH+12, Dru95, GKCE17, KG05, KE15, MS15, WM03, DCK07, KASD07, KBF+12, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB+09, SKP+02, Xue12].
Embedded-Systems [Dru95]. Embedding [Pul00].
Emerging [VSM+08, GBP+07, HFV+12].
empirical [LC13].
Employment [Gar01].
Enabling [JSB+12].
Energy [AJK+12, GJT+12, GKCE17, KE15, LG13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KB+08, NB12, PJZA07].
Energy-Aware [PR05].
Energy-Effectiveness [PR05].
Energy-Efficient [GJT+12, LX13, RL14].
energy-performance [PJZA07].
England [ACM94c]. Enhance [FSPD17].
Enhanced [Ano00b, EJ93]. Enhancing [OL02a, OL02b, OL02c, HWW93, RH11].
Environment [ABN00, BC00, CD001, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Had96, KG07, Lan97, Pha91, SWYC94, Sta90, Tem97, WCC+07].
Environments [AKP99, BDN02, KG05, SP00a, EJK+96, RGG+12, Sam99, Ver96, Way95]. equality [AD08]. Equalization [TLGM17].

Equations [Loe97]. equivalent [Pra95c].
Eraser [SNB+97]. Errata [Ano01, Ano05].
error [SSN10]. Errors [SK97, VAGC09].
escape [SR01a]. Esterel [LBvH06a, LBvH06b, LBvH06c, Lh12]. etc [Hol98a]. European [DLM99].
EuroPVMMPI [KKD+03]. Evaluating [BL96, CML00, NPT98, PSC01, RPNT05, Sch98, SD95, TG09]. Evaluation [ARu92, Boo93, BTE98, CL95, CBN+00, EJK+96, Eic97, GLC99, HN91, RNBSB06, SCD+15, TT03, ZL10, BGDnWH12, BLCD97, Car99, Don92, LZ07, Mah11, MRK02, NFB17, RGG+12, RCDG06, SWYC94, SKP+02, SMS+03, TG000, TKA+02, WLG+14]. Evaluations [MM14, Roh95]. evaluator [SP00b, Shi00].
even [Ano94b]. événements [Swi09].
Event [BK96b, CRW99, For95a, For95b, B96a, CRW97a, CRW97b, GWM07, KCCD99, KB+03, Leg01, RVS13].
Event-Based [CRW99, CRW97a, CRW97b].
Event-Driven [For95a, For95b, RVS13].
event-handling [KB+03]. Events [BDN02, LZ07, Van97b].
Evolutionary [THA+00, KU17]. Evolving [MS87, MS89].
Exact [Sch17]. examines [Yam96].
Examining [Kan94, Ric91, Rod95a, Tim03].
Example [BLP04]. Exception [DH98, Lea96]. Exceptions [ADBR08, K01b]. exclusion [BRE92].
exclusiveness [Lie94]. Executing [Bl95, BS99].
Execution [ABH+01, CJ91, Coo02, EC98, Far96, GMGZ14, GS06, HEM17, HZ12, KS16, KLG08, KI95, KG94, ME15, MCT08, NBM93, NS07, PR05, RG03, RKK15, RSNB01, STY99, VSD16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, Di93, JWG11, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZ00, WCT98, XIC12, XSAJ08].
Executions
[CdOS01, HZD13, Roh95, STR16]. Exemplar [BLC97]. Existing [Ri99]. EXOCHI [WCC+07]. expansion [YKL13]. expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96]. Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b]. Experimental [BLC97, EGC02, YMR93b, GRS06, Pha91, WCC+04b, WCW+04c, WCW+04d, YMR93a]. Experiments [DV99, GMR98, SZM+13, VSM+16, VV00]. Explicit [DV99, VDBN98, BM07, UR02b, UR03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KVN+09, PSG06a, PSG06b, PSG06c]. Exploiting [AACK92, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96]. Exploration [PTMB09, Sch17]. Exploring [AACK08, BS10a, SE12, WWW97]. Expressions [Hei03]. Extended [BLG01, DV99, VDBN98]. Extending [BF08, Mar03]. Extensible [CdOS01]. Extension [RCC14, CCW+11, Lan97, PDP+13, Tem97]. Extensions [Sch90, Bau92]. external [LW+10]. Extracting [GP95]. Extremal [MNG16].

Fine-Grained [ACM93b, AOV+99]. File [FG91, GJT+12, KS97, Pea92, WLM15, BLC97, DZKS12]. Files [RRK11, CCC12, kSYHX+11]. filtering [Kep03]. final [HCM94]. Finding [MNG16]. Fine [AZG17, BBS+10, BSS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, KG94, LKBK11, LVS01, LFA96, NS97, PBR+15, TY97, TAK+00, YSS+17, BGK94c, Dub95, Gol97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04]. Fine-Grained [AZG17, CSS+91b, HG91, KG94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04].

Fine-Grained [ACM93b, AOV+99]. File [FG91, GJT+12, KS97, Pea92, WLM15, BLC97, DZKS12]. Files [RRK11, CCC12, kSYHX+11]. filtering [Kep03]. final [HCM94]. Finding [MNG16]. Fine [AZG17, BBS+10, BSS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, KG94, LKBK11, LVS01, LFA96, NS97, PBR+15, TY97, TAK+00, YSS+17, BGK94c, Dub95, Gol97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04]. Fine-Grained [AZG17, CSS+91b, HG91, KG94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04]. Fine-Grained [AZG17, CSS+91b, HG91, KG94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04].

GALAHADE [GOT03]. GAMBIT [CBM10]. Game [DHR+01]. GAMESS [BB00]. Garbage [AKP99, LB92, PFU+04, PF01, QSAS+16, BBY+05, DL93, HL93]. Garcia [Ano00c]. Gateway [Yas95]. Gating [RRK11]. GaB [LZW17]. GC [HHPV15]. Geant4 [SCD+15]. Gene [GBB+05]. Gene/L [GBB+05]. General [Ber96b, BF04, HSS+14, Man98, YKL13, ZSA13, Ber96a, Car89a, DC99, DC00, HSD+12, MQW95, SAK01].

General-Purpose [Ber96b, HSS+14, Man98, Ber96a, DC99, DC00, HSD+12].

generalized [ABD+12, BCM+07, FTAB14]. Generated [BD00, MFJ+10]. Generating [AZG17]. Generation [ARB+02, Coo95, EFN+01, EEL+97, HEMK17, HY+15, NBS+15, RNSB96, TGBS05, Tra91, TSV12, ABC+09, EFN+02, GJ11, K116, L133, LSS12, Way95, CH04].

generational [DL93, WK08a, WK08b, WK08c]. generations [Roh95]. generators [SLF14]. Generic [ABH+00, AB02, Fer13]. Genetic [NSP+14]. genome [LHS16]. GeoFEM [Nak03]. Geometric [Caz02]. Georgia [ACM99a], Germany [RM03, Wat91]. ghosts [TVD14]. Gigabit [AW02].

Gigabit/sec [AW02]. Gilgamesh [SZ02]. glasses [CZSB16]. Global [HH11, PWL+10, Ten02, FWL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b]. globally [CZWC13]. GNAT [dIPR99].

Go [Mia90]. Going [Bac95b]. Goldilocks [ETQ07]. good [Mat03]. GPGPU [YZ14].

GPGPUs [LSB15]. GPS [TVD14]. GPU [APX12, Bon13, FTP11, KI17, LTL+16, LHG+16, LHA+12, WLG+14, YSS+17, ZCO10]. GPU-Oriented [LHG+16].

GPUDet [Bon13]. GPUs [CSV10, DNT16, LBH12, SKG+11, VD08, WJ12]. Grace [BYLN09]. Grain [AZG17, CSS+91b, HG91, KG94, LFA96, NS97, CSS+91a, CSS+91c, KDM+98, Kim94, Loi95, MLC+00, Met95, PL03, TY97, TKHG04].

Grained [BBG+10, BSSS14, But13, LKBB11, PBR+15, TAK+00, YSS+17, BG94c, Dub95, Go97, LVS01, RP+09, Wei98, kSYHX+11]. Grande [ACM01]. Grande/ISCOPE [ACM01].

Granularity [K195]. Graph [CFG+12, CL95, EJRB13, HPA+15, KS93, KLS92, MM14, LK15, LZW17, RVR04].

graph-based [LZW17]. GraphCT [EJRB13]. Graphical [ACR01]. graphics [BGDM12, CCW+11, FSYA09, PYP+10].

Graphs [HPB11, Nik94, OB13, AD08, ABG+08, DSEE13]. grass [MWTW10].
Greatest [Kuc92, Kuc91]. Green [SKP+02].

greener [MMTW10]. Grid [KEL+03].

Grid-Based [KEL+03]. GRIDiron [MCS15]. grids [SKG+11]. Griffin [Ano00c].

Gröbner [AGK69].

Grp [BNH01, DLM99, QSH11]. Group-Based [BNH01]. Grouping [OR12, WC99]. Grove [IE89].

Growth06_v2 [Dan09].

Guarantee [Hag02]. Guarantees [PSM01, YYW03, GPS14, MTC+07, PSM03, ZHCB15]. Guarded [Sim97]. Guest [GGB93a, GJ97]. GUI [Tet94].

Guide [Ano99, BBD+04, LB96a, WCW+97, BW97, ND96, RR96, Sim95]. guided [NB12].

Guidelines [RD96]. GUIs [Mia90].

Gyrokinetic [KEL+03, PWL+11].

Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DKA16]. Hamilton [Ric91]. Handles [Rec98]. Handling [DH98, LSB15, SK97, BM91, KCCD99, Koo93, KBF+03, Lea97, Met95].

Harbor [BBC+00]. Hardware [CKD94, CSS+91b, KE15, LLS06, MWP07, Men91, SW08, ZJL16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB+14, PRS14, RPNT05, SE12, TE94b, DWS+12].

hardware-aware [PAB+14].

hardware/software [LT97].

Harmful [NWT+07].

Harmony [KTK12].

Harness [Ama98, EBKGM01].

Hash [GK05, VB00].

Hash-join [GK05].

having [YFF+12].

Head [Mia90].

healing [SLP+09].

Heaps [DGK+03, Man99, Ste01].

help [Len95].

Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a].

Here [Ano92a, Pra95c].

Heterogeneity [CCK+16, Kwo03, RKBH11].

Heterogeneous [AT16, AACK92, FBF01, KTR+04, Lu95, NTR16, THA+12, FKS+12, GZK12, LK13, SJ95, WCC+07].

Heuristic [HH11, Mah11, OCRS07].

Hewlett [BLCD97].

HFS [KS97].

Hiding [BR92].

Hierarchical [GJT+12, JY15, KC98, KG94, BMV03, DZKS12, LK13, LQ15, RCDG06].

Hierarchies [BCZY16, TAM+08].

Hierarchy [BGDMWH12].

High [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CT00, FGKT97, Gar01, Hol12, HGR91, IE94b, LCK11, LG06, LM14, LBH12, LGH+16, LCH+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, TC98, VV11, WGR99, WN10, CIM+17, GS02, HG92, Kim94, Lan97, RRP06, Re95, SQP08a, SQP08b, SQP08c, Ten97].

High-Level [Sch17].

High-Performance [ACM98a, BGH+12, FGKT97, Gar01, IE94b, NBS+15, RG03, TC98, WN10, LCH+08, VV11, CIM+17, Kim94, SQP08a, SQP08b, SQP08c].

High-powered [Re95].

High-Speed [Ano00a, Ano03, HG91, SRS98, HG92].

Higher [CJ95, NV15].

Higher-Order [CJ95, NV15].

Highly [BGDMWH12, Kub15, KGGK09, MAAB14].

Hill [CY09, USE02].

Hill-climbing [CY09].

Hilton [IE90].

HippogriffDB [LT+16].

Hist [Gar01].

history [Ano97b].

Hoard [BMBW00a, BMBW00b, BMBW00c].

Hoare [KI17].

Home [OKID92].

Hood [Ven97].

Hot [IE99, PBL+17, Gle91].

Hot-Cacheline [PBL+17].

Hotel [Ano94d, USE02].

Householder [VV11].

Householder-like [VV11].

Houston [Chat05].

HP [Ano95a, Ano95b, Yam96].

HP-UX [Ano95a, Ano95b, Yam96].

HPC [GKK09, KC09, PLT+15].

HPF [BMV03, CM98].

HTM [KGGK09].

HTMT [Gar01].

HTTP [Zha00].

Hut [ZBS15].

Hybrid [BBG+10, Gao93, JYE+16, LH09, MS02, NBM93, YZ07, GKK09, HG92, MK12, MTC+07, SKS+92, Sha95b, KSYHX+11].

Hybridizing [CZS+17].

Hyperion [A+01].

Hyperscalar [Raj93, Sha95a].

Hyperthreading [HRH08, KM03].
I-WAY [FGT96]. i.e [USE98b]. I/O [RM03, ABB+15, BDN02, KSSU94, LTT+16, Man98, MG15, Yoo96a]. I/O [Ano95a, Ano95b]. IBM [ABB+15, CJ9+15, KST04, LSF+07, WZWS08]. Id [Nik94].

IDA* [Mah11]. idempotency [KOE+06]. identification [JSM91]. Identifying [BCZ916, SU96, DESE13]. IFIP [BT01]. Igniting [ACM93]. II [HCD+94, IEE89, J91, KA97, KR01a, McM96b, Wal95].

Impaired [Wei97]. Imperative [SV98]. implement [DBR99]. Implementable [TEE+96]. Implementation [ACM94a, ACM99a, Alf94, AB01, AKP99, BBD+91, BHP+03, BRM03, CWB03, DSH+10, FLR98, Ha97b, KA97, MS02, Nik94, STW93, TKA+02, TAM03, BK96, BB00, BMV03, CMX10, DL93, FGT96, GGC99, GB99, IAD+94, KASD07, Lev97, L05, LZ07, LAH+12, NFBB17, OKI92, Stu95, Tod95, ZYYL07, Ano95a, Ano95b].

Implementations [Han97, SAC+98, Ram94, SKG+11, Sh95]. implemented [Boe05, KEL+03]. Implementing [ABB+15]. Input [BCG13, MP89, Tan87]. Input-covering [BCG13]. input/output [MP98]. Insight [IEE02]. Instruction [DV99, HMNN91, LEL+97a, LEL+97b, MCT99, RS08, AMC+03, Arn92, Cho92, HKN+92, HN+92, KBF12, Mis96, OA08a, OA08b, OA08c, PYP+10, Raj93, SSM+93, TEE+96, VS11, VDBN98, VV00].

Instruction-Level [LEL+97a, LEL+97b, MCT99, SD13]. instruction-systolic [PYP+10]. instructions [PPA+13]. instrumentation [RS07, XMN99]. Integer [GH98]. integral [Kic91]. integrated [CCW+11, MTS10, RD09]. Integrating [Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tao97]. Integration [BWFX05, KSD04, KASD07, SD13].

Informix [Ger95]. Initial [BTE98]. Inline [GH03, DJLP10, EKLL09]. Inline-Threaded [GH03]. Inlining [PR98, LQ15]. innovating [JD08]. Innovation [ACM93]. innovations [ABB+15]. Input [BCG13, MP89, Tan87]. Input-covering [BCG13]. input/output [MP98]. Insight [IEE02]. Instruction [DV99, HMNN91, LEL+97a, LEL+97b, MCT99, RS08, AMC+03, Arn92, Cho92, HKN+92, HN+92, KBF12, Mis96, OA08a, OA08b, OA08c, PYP+10, Raj93, SSM+93, TEE+96, VS11, VDBN98, VV00].

Instruction-Level [LEL+97a, LEL+97b, MCT99, SD13]. instruction-systolic [PYP+10]. instructions [PPA+13]. instrumentation [RS07, XMN99]. Integer [GH98]. integral [Kic91]. integrated [CCW+11, MTS10, RD09]. Integrating [Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tao97]. Integration [BWFX05, KSD04, KASD07, SD13].

integrity [NT14]. Intel [ARB+02, CCW+11, GHG+98, PDP+13, SCD+15].
Intensity [BD06]. Intensive [TKA+01, AAKK08, TKA+02, YSY+09]. Interaction [Hei03, HF96, Pan99]. Interactions [WG94, WSK97]. Interactive [FURM00c, PTMB09, WOKH96, CSB00, FURM00a, FURM00b, HJT+93, KG07, Lan97, MCS15, Tem97]. Interconnection [NGGA94, RR93, SMK10]. Interface [Chl15a, HBGO1, KKDV03, MS89, Met95, PS01, SW97, Ada98, DLM99, HBGO2, Li05, MQW95, MS87, MEG94, TNB+95, FGT96]. Interfaces [Han97, HF96, LG04]. Interleaving [LGH94, YN09]. Intermediate [McC97a]. Internals [Wea08]. International [ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98a, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV+99, Cha05, EV01, Hol12, Hon94, LCK11, Wat91, FR95]. Internationalization [Ano98b]. Internet [Ano96, Hi97, SBR96, VN09]. Interoperability [DHR+01, Way95]. interplay [MLS15]. Interpretation [GH03, LG04]. interpreter [OCT14]. Interprocedural [NR06]. Interrupts [Rod94]. interval [Kub15]. Intra [MKR10]. Intra-application [MKR10]. Introducing [GL07]. Introduction [CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98]. Intrusive [Caz02]. INUX [DNR00]. invasive [RGK99]. Inverse [HMLB16, GEG07]. inverses [GE08]. Invocation [SKK+01]. IPC [Koo93]. IPs [Sch17]. IRREGULAR [FR95, TSV12, ZA01]. irregularly [FR95]. ISA [KTR+04]. Isolating [JWTG11]. isolation [CMX10, MTC+07, SKBY07]. Isomigration [ABNP00]. ISSAC [ACM94c, Lak96, Wat91]. Issue [KU00, Ano94e, GGB93b, TEE+96]. Issues [GMBO93, P01, ArvW03, An96, GC92, HCD+94, IAD+94, TCG95]. Issuing [HMNN91, HKN+92, HNN+92]. Itanium [MB05, WCW+04b, WCW+04c, WCW+04d]. Itanium-2 [WCW+04b, WCW+04c, WCW+04d]. iterations [UZU00]. Iterative [MQ07, Nak03, AAC+15]. iThreads [BFA+15]. IUnknown [SW97]. Ivan [Ano00c]. IXP [ARB+02, LCH+08]. IXP2800 [AHW02].

J.UCS [KU00]. January [ACM94b, ACM95b, ACM98a, Ano90, USE89, USE91b, USE93b, ACM93a]. Japan [Ano91, Ano00a, Ano03]. JaRec [Ch01, GCRD04]. Jason [Ano00c]. Java [ACM98a, ACM01, Ano97a, USE01, AFF06, AMDbdRS02, AddS03, AdbdRS05, AbdRdS08, Ait96, Ano96, Ano98b, ABH+00, ABH+01, A+01, AG96, ACRO1, ABG+08, BZ07, Ber96b, BVG97, BAD+09, BR15, BHK+04, BS00, Bra97, BP05, BLVP04, Cal02, CV98, CRKRW97a, CRKRW97b, CRKRW99, CWHB03, CC04, CCH11, Chr01, CT00, Coo02, Cor00, Cri98b, Cri98a, DJLP10, DH98, DRV02, DLZ+13, DGK+03, Dra96, DHR+01, Dye98, EFN+01, EFN+02, EFG+03, EQt07, FSS06, FVL03, Fek08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Ham96, Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Hol00, Hyd00, KPPR06, KBR+03, LB00, LCS04, Loeg97, Man96, MP01, McM96a, McM96b, McM96c, McM98b, McM97, Mit96, MC06, NAW06, NM10, NR06, Nev99, OW97, OW99, PSM01]. Java [PSM03, PRB07, Pet03, PUF+04, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP+02, Van97a, Van97, Vor97, WN10, Wh03, XSA08, Xue12, Yan02, van95]. Java-like [DJLP10]. JavaBeans [Van97b]. javar [BVG97]. JavaScript [PCM16]. Javier [Ano00c]. Jersey [MT93]. JIT [McM97]. job [EE10, EE12, ST00a]. Jobscheduling
K-Java [BR15], KAI [Ano98b], Kaikan [Ano00a], Karlsruhe [RM03], Kaspersky [Ano00b], Kendo [OAA09], Kernel [Alf94, ALBL92, Bal02, DNR00, EBKG01, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95], Kernel-Based [Alf94], Kernels [KI17, dlPRGB99, GLC99].

Kiel [LvH12], Kikai [Ano00a], Kikai-Shinko-Kaikan [Ano00a], kinds [San04], kinematical [BD00], Kinematics [HMLB16], King [ACM99b], Kingdom [ACM94c], Kitsune [HSD+12, HSS+14], Knoxville [IEE94b], Kroll [Ano00c], KUMP [NTKA99].

L [DNR00, GBB+05], L2 [SPL08], L2-miss-driven [SPL08], Lab [Ano00b], labeling [D'H92], Lafayette [EV01], Lake [Hol12], lambda [ORH93], Laminar [PBR+15, RBP+09], LAN [Yas95], LAN/WAN [Yas95], Landing [TAK+00], Language [ACM94a, ACM99a, ACM97, BS06, FR98, GS06, KJ99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mil95, Ong97, PRB07, RLP14, SV98, Smi06, TMAG03, VGR06], Languages [ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM+16, NPT98, OTY00, SCv91a, SS96, TY97, DMBM16, HL93, JP92, JHM04, MSM+10, Sch91, SCv91b, ST98, TAN04], LAPACK [ARvW03], Laptops [Ano00c], Large [AOV+99, CJW+15, GN92, LA93, BCM+07, Boo93, G03, Koo93, SMK10, WC+98],

Large-Scale [CJW+15, LA93, BCM+07, G03, SMK10, Latencies [Sch17, BS06], Latency [BD00, Fan93, ÖCS01, SW08, Smi01, SKK+01, WWW+02, YLLS16, BR92, DC99, DC00, Jef94, Lok01, MVY05, PG01, TK98], Latency-directed [Fan93], Latency-Resistant [YLLS16], latency-sensitive [DC99, DC00], Latency-Tolerant [ÖCS01], lattice [SKG+11], Law [Gar01, NZ17, CN14], layer [CDD+10], layout [DKS12, HB15], Lazy [GSC96, Gol97, LP94], LCMT [LKBK11], leadfoot [HPV15], Leakage [Mus09, SYHL14], Leakage-saving [Mus09], leaks [ZJS+11], Learned [HFA+15], Learning [DS16, ROA14], least [FTAB14], least-squares [FTAB14], lecture [Egg10], Lenient [SCv91a, Sch91, SCv91b], Lepp [RRM12], Lepp- bissection [RRM12], Lessons [RM03, HFA+15], Letters [DHR+01, TLA+02], letting [AC09], Level [ABBL92, BBC+00, FURM00c, GP95, JYE+16, JLS99, DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, PLT+15, RR93, Ric99, Sch17, SLT03, YBL16, BBH+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRR06, HDT+13, JEOV4, KDM+98, KVN+09, KC09, Lan97, LZ07, MSLM91, MT02a, MT02b, MT02c, MQW95, MFET99, OT95, OCRS07, PO03, PT03, QOVO+09, ST99, SD13, SLT02, SCZM00, Tem97, WS08, YZ14, YZ14, ZJS+11], Level-2 [Ric99], Leveraging [PRS14], LFTTHREADS [GP08], Libraries [Ano00c, BCR01, GF00, Jon91, MM14, ARvW03, CBM10], Library [Ano98b, ABN00, BFA+15, CCRG92, EHG95, Gib94, GHG+98, Kem02, Man91, WN10, Yas95, Ada98, Bose05, CS00, GP08, G03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97], life [KU17], light [Way95, LZTZ15].
light-weight [Way95]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, CASA14, Hai97a, IJN010, MNN09, MEG94, VACG09, WSK97, LKBK11]. like [DLP10, Jon86, VV11, Kor89]. limit [ROA14]. limitations [Gal94, HL08].

limited [Bri89]. Limits [LB95, LB96b, AAKK08]. Line [Ano00c, FSPD16, FD102]. Linear [KLDI09, Loe97, MR09, AAC+15, Bak95a, MM07, YSY+09]. Link [Ano00b]. Linked [WJ12]. links [WW96]. LinkScan [Ano00b]. LINQits [CDL13]. Lint [Kor89]. Lint-like [Kor89]. Linux [Ano97a, Ano88, Ano89c, Ano97a, RG99, SKP+02, WTKW88, ZSA13]. Linux/AXP [Ano97a]. Linear/FreeBSD [Ano00b].

Liquid [KRBJ12]. LISP [Not90]. List [DV99, WJ12, VV00]. LiteRace [MMN09]. little [CDL13]. liveness [GMR09]. LLCS [PBL+17]. Load [HBTG98, KMA901, KC98, KRHK89, PGR16, VQ12, Chr95a, Chr95b, Chr96, MKIO04, TKHG04].

load-adaptive [TKHG04]. Load-Balancing [KC98, PGB16, Chr96]. Loadable [ZSA13]. Loading [PCM16]. Local [DGK+03, IEE95, Wbi03, HZD13, ZLW+16].

localities [CS95a, CS95b]. Locality [BS96, PEA+96, Wei98b, HW93, LK13, PSG06a, PSG06b, PSG06c, SN99, SD95]. locality-cognizant [LK13]. Localization [OB03]. Location [USE93a].

Location-Independent [USE93a]. Lock [EFJM07, NM10, PGB14, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16]. lock-free [GP08, MLS15, Mic04, ST05].

LockManager [HOL98b]. Locking [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16]. Locks [ACR01, ALS10, MT93, OCT14].

LOCKSMITH [PFH06]. LOGFLOW [NTKA99]. Logic [Bre02, KI17, TAN04, UK13].

Logic-Centric [Bre02]. Logical [CR92].

Low [Ano00a, Ano03, BA9+12, ZHCB15, GPS14, RRP06]. low-level [GPS14].

Low-overhead [ZHC15, RRP06].

Low-Power [Ano00a, Ano03, BA9+12].

LPVM [ZGS98]. Ltd [Ano00b]. Lunch [DTLM14]. Luther [ACM99b]. Lyon [FR95].

M [Ano00c, USE01, FK9+97]. M-Machine [FK9+97].

MA [Ano94f]. Mach [USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RFB+98].

Machine [Ama89, CSS+91b, DS16, FK9+97, KA97, KKV93, LAF00, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, Pra95c, SSK+93, Ven97, CGS93, Evr91, PRB07].

Machines [BSSS14, Den94, GH98, RCR95, STY99, BBM09, DFK94, GKLZ12, GCR92, Kus15, MRG17, TSY99, TSY00, VPQ12].

macromolecular [ABC+15]. Made [Har99].

main [AKS16, BB+17]. maintenance [TNB+95]. makes [Van97a]. Making [BDLM07, LFA96, Low99, Pla93, PLT+15, YCW14].

malloc [Kus15]. Mambo [WZWS08].

MAMBO [GJ11]. managed [WLG+14]. Management [ABL92, GMGZ14, HC17, HRH08, KG94, LG06, LLS06, SBN01, STY99, ZP11].

Bak95a, BM91, DBRD91, HCD+93, ICH+10, Jeff94, KKH04, RCG+10, SSS95].

Manager [Ano00b, PDMM16, Ply89].

Managing [Bli92, FGKT97, MVY05, PJZA07, SEP96, VS11, ROA14, WSK97].

MANNA [HMT+96, Sod02]. manual [MS87, PO03].

Many [FMY+15, PVS+17, MLCW11, MTPT12, San04]. Many-Core [FMY+15, PVS+17, MLCW11, MTPT12].

Manycore
[BMF’16, KS16, BWDZ15, HFV’12].
Maple [YNPP’12].
Mapping
[CCK’16, LBvH06a, LBvH06b, LBvH06c, NTR16, WK08a, WK08c, WK08b].
Mappings [Lun’97].
March
[IEE97, USE92b].
Mark [Ano00c].
Markless [LH09].
Markov [SBC91].
Martin [ACM99b].
Massachusetts [USE93a].
Massive
[HH11, GJ11].
May
[ACM93b, ACM96, ACM99a, Cha05, IEE94a, IEE94b, SS96, MMTW10, Pra95c].
MD
[EE09a].
Message
[BWXF05, HLB94, KKDV03, PH97, Ada98, BCM07, DLM99, FM92, Met95, PRS14, SCM05, FGT96, PS01].
message-handling
[Met95].
message-passing
[BCM07, FM92].
messages
[Koo93, SD95, WHJ95].
Mechanisms
[KPC96, KC99, SK97, Loc05, Men91, PT03].
Mechanisms
[KPC96, KC99, SK97, Loc05, Men91, PT03].
Mechanism
[IKE97, USE92b].
Microbenchmarking
[BO01].
Microcontroller
[BP05, PUF04, KBP03].
Microcontroller
[BO96].
Microprocessor
[KE15, SU96, Arn92, CJB15, Gu95].
Microarchitectural
[FMY15, LS15, WHG07].
Microarchitecture
[BM03, AMPH09, LSF07, Wil98].
Microarray
[GAC14].
Microbenchmark
[BO01].
Microbenchmarks
[FMY15].
Microcontroller
[BP05, PUF04, KBP03].
Microkernels
[BO96].
Microcontroller
[BM03, AMPH09, LSF07, Wil98].
Microarray
[GAC14].
Microbenchmark
[BO01].
Microbenchmarks
[FMY15].
DWYB10, Don92, EFG+03, EHSU07, FTAB14, FWL03, FGG14, GCRD04, GCC15, GPR11, KHP+95, KDM+98, KKH04, Kep03, Kic91, KBF+12, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mus09, NFBB17, NH09, NSh14, OA08a, OA08b, OA08c, PYP+10, RCV+10, RK+10b, RGK99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, SMQP09, ST05, Tem97, TCG95, TMAG03, TJY+11, VIA+05, VDBN98, VV00, VPQ12, WCC+07, WCV+98, Yan97, YSY+09, YN09, kSYHX+11, YKL13, ZKR+11, dB09, vPG03, Ano97b, CH04, Mix94]. Multi- [FMY+15]. multi-ALU [KDM+98]. Multi-C [Mix94]. multi-context [Yan97]. Multi-Core [KTR+04, PM14, CFG+12, CSM+05, DWYB10, KBF+12, MLC+09, Mus09, SMQP09, WCC+07, YZ07]. Multi-Cores [CCK+16]. Multi-CPU [PGB16]. multi-engine [CNQ13]. Multi-Level [RR93, CCC12]. Multi-Level-Context [JLS99]. multi-process [WCV+98]. multi-processor [VIA+05, YN09]. Multi-protocol [ABN00]. Multi-Thread [HG91, MTN+00, AMRR98, PKB+91, SKG+11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95]. Multi-Threaded [AGK96, BC98, Bed91, BGY94a, BGY94b, BGK96, CL95, CKRW99, Coo95, DYN90, FdL02, GVT+17, GKY94, Gil93, III01, JY15, Jon91, KW17, KuC92, LB92, Mus99, MG15, Pul00, RKCW98, STW93, Sei99, Smi92, Sto1, SBKK99, TLGM17, VSDK09, VB00, Ada98, AACK92, BBH+17, BC00, CV98, CWHB03, CdOS01, Ccq91, Chr01, CR02, DS16, EBK90, FD96, GS06, GH98, HC17, K195, KRHH98, LK15, Leg01, RBPM00, RS08, SP00a, Sei98, VK99, Wal00, ABD+12, BWZD15, BK13, BIK+11, DSEE13, CIM+17, CASA14, CKRW97a, CKRW97b, CSB00, CL00, EFG+03, EHSU07, FTAB14, FGG14, GCRD04, GCC15, GPR11, KHP+95, KKH04, Kep03, Kic91, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA+13, MLCW11, MS03, MKK99, NFBB17, NH09, NSh14, OA08a, OA08b, OA08c, PYP+10, multi-threaded [RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Tem97, TMAG03, TJY+11, VV00, YSY+09, ZKR+11, dB09, vPG03, Ano97b]. Multi-Threading [LKBK11, Mcc97a, Mcc97b, MS15, OR12, PTMB09, RCC14, Sch90, TGO99, YLLS16, DTLW16, MCFT99, NJ00, RVR04, Bak95a, BM07, FWL03, LZW+13, MLC+09, VDBN98, kSYHX+11, YKL13, CH04]. multiagent [Bar09]. Multicomputer [FKD+97]. multicomputers [BCG+95]. Multicore [BCZY16, CCH11, CB16, GJ11, HEMK17, KLD09, LS11, LMA+16, LYH16, LDT+16, MR09, NBMM12, PGB16, RCM+16, RKK11, SMD+10, THA+12, ZBS15, CNQ13, CN14, CMX10, UK13, LLLC15, NZ17, RCG+10, RKBH11, SCCP13, SE12, ZSB+12]. Multicore/Multithreaded [RCM+16]. Multicores [FSPD16, FSPD17, RKK15, DTK+15, GARH14, SSN10]. Multifrontal [But13, Dav11]. Multigrain [AZG17]. multigrid [RM99]. multilevel [Cat94, JY+03, LK15]. Multimedia [Spe94, Est93, Gol96]. multiple [CS10]. Multiprocessing [EKB+92, Len95, NV94, Wal95, DLCO09, MT93, Pra95b, RGK99]. Multiprocessor [AACK92, AKP99, BC00, Cat94, EHG95, GHG+98, HH91, KMG01, MCT08, Pre90, SZ92, SEP96, USE92b, WC99, Zab02, Cho93, DCK07, EKMK90, HB92, KT99, LVN10, LW+10, PJZA07, Ano94b].
multiprocessor/multithreaded [Cat94].
MultiProcessors [BMV03, BS96, BL96, BLG01, CH95, GM89, KU00, KKS+08, LS07, LMJ14, LA93, MVZ93, MK97, NS97, TESK06, YMR93b, BR92, GA99, HT14, LGH94, Mao96, Men91, QS94, SMK10, Sha98, SKK09, TAS07, Yoo96b, YMR93a].

Multiprogrammed [MVZ93, TSY99].

Multiprogramming [BHP+03, JJ91, CGL92a, CGL92b].

MultiRace [PS07].

Multitasking [Col90b, Gib94, Gon90, JJ91].

Multithread [LCS04, RRMJ12, SYHL14, CS95a, CS95b, DSH+10, GCC99, JD08, SWY94, ZG98, Zig96]. **multithread-safe** [GCC99].

Multithreaded [AddS03, AdBdRS08, ABC+93, AT16, Ana88, Ana92a, Ana92b, Ana94e, Ana94g, Ana98a, Ana98b, Ana01, ABH+00, ABH+01, AB01, AB02, AG96, AZ97, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BBH+11, BKJ06, BMBW00b, BF04, BJK+96, BL98, BB00, BMN99, BD02, BP05, BLG01, BTE98, BNH01, BD06, BGH+12, BBSG11, CJW+15, CS02, CGK06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CB+00, CBMAN08, Dan09, DN00, DH98, DR92, D095, EFN+01, ENF+02, EJRB13, EHP+07, EC98, EGP14, FS06, FT96, FS96, FTP11, FQS02, For97, FL98, GBS93a, GR97, GM98, Goo97, GN00, GN92, HPA+15, HMLB16, HTZ+97, HMNN91, HHOM91, HHOM92, HLB94, HH11, HWZ00, HPB11, HYY+15, Hud96, HMT+96, I+94, JYE+16, JSB+12, KA97, KK14].

Multithreaded [KMA01, KST04, KML04, KC98, KC99, KMJC02, KR12, KU00, KE15, KG94, KU17, KA005, Kor89, KTR+04, LS07, LG06, LH90, LG04, LB96a, LB98, LB00, LL96, LVH12, LTM+17, LYH16, LPE+99, Loe97, Lun97, Lun99, MGQS+08, MP01, MS89, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGGA94, NTKA99, Nik94, OB13, OTY00, PBDO92, PUF+04, PG92, PG96, PG99, PF01, PH91, PWL+11, PS01, QOM+12, RW97, RCC12, REL00b, Rin01, RB18, RN96, RSN96, RN01, RKK11, RBA05, RR99, SPRDLK+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She98, SU96, SU01, SZM+13, SFG+97, SMD+10, SR01b, SYY97, SKC+01, Spe94, Sri95, SZ02, SUF+12, Sut99, TC97, Ten02, TKA+01, TC98, TT03, TT92, TGBS05, TJ98, TSV12, URS02a, VTS12, Vol93, VE93, Wan94].

Multithreaded [WS08, Wea08, WJ12, Wil97, WLM15, WG94, WC99, Yas95, YW03, Yoo96a, YMR93a, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zou02, ÁdBdRS05, Ag98, Ag99, Ag02, ABF+10, ABC+15, AAC+15, ACC+03, AGB+08, Ann96, Ano94e, Ano95a, Ano95b, A+01, ABC+09, AR17, Ar92, BGDmWH12, BBFW03, BRRS10, BG97, BCSI0, BAD+10a, BAD+10b, BCG13, BCG14, BMBW00a, BMBW00b, BYL90, Bu92, BL93, BL94, BJK+95, Bl95, BL99, BS10a, BÇG14, BEKK00, BS10b, BNS11a, BNS11b, BNS12, CZW13, CS00, CMS03, Car89b, CB89, CB90, CGL+12, CL94, CN14, CS12, CDD+10, CIL+02, Cho93, Ch92, CGL2a, CGL2b, CJ+15, DJLP10, DS17, Dav11, DL93, DFK98, EJ+96, Eic97, EG11, EJ11, Ex93, Ev91, Fun93, Far96, Fer13, FF04, FFQS05, FF08, FF08, Fu97, GMW09, Gal94, GJJ1].

multithreaded [GGB93b, GK05, GPS14, GL89b, GL89a, Gol96, GRS06, GRR06, G90, GLGC99, HMC97, HVG+12, HH88, HLB90, Hig97, HM+92, Hup98, JMS+10, JTWG11, JFL98, JSMP12, JSMP13, Joe96, JSB+11, KGPH12, KR01a, KRO1b, KNPS16, KBP+03, Kub15, Kus15, LLLC15, Lea97, Lea95, Lev97, LLI10, LCH+08, LMC14, LBE+98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG93, MS87, Ml95, Mis96, Mix94, MC06, MRR10, MQ07, NB12, NR06, Ném00, NP92, ND96, NZ17, Omm04, Par91, PVF03, PJZA07,
multithreaded
[ST00b, Sod02, SSN10, Squ94, Sri93, Sta90, Sun95, SMS, ST00a, Sod02, SSN10, Squ94, Sri93, Sta90, SP00b, Shi00, Sin97, ST00a].

Multithreading
[AMdBdRS02, AH00, Ano99, Ano05, BBG+10, BWXF05, Bec00, Boc98, BW97, BD00, BL96, BPL07, Bre02, BLPV04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Esp96, EKB+92, FBF01, FKT96, GHG+98, GV95, Gul95, Gun97, GSL10, Har99, HBTG98, ILFO01, IBST01, KPC96, Ke94a, Ke94b, Kho97, KF97, KLH97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MHG95, MN00, MKC97, Nag01, Oci97, ÖCS01, PJS15, PT91, PST+92, Pea92, Pra97, RL93, RD96, SSP99, SPY+93, SW08, SCv91a, SP07, SLG04, SPT00, Sin97, Sni01, ST00c, SNA01, TY97, Ten98, TAK+00, TESK06, VT96, WWW+02, WCW+04a, Wei97, YG10, ZL10, Ziegel, AAHF09, AAKK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCH12, Div95, DN94]. multithreading
[Du95, Dye98, EE09a, FMI92, Fis97, Fon97, GWM07, GBG95, Geo98, GEG07, GE08, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD99, Kim94, KG07, KT99, KLH+99, LK13, LG94H, LSS12, LZW17, LB95, LB96b, LIZ+14, LOI95, LVS01, LZBW14, LUK01, MWP07, MAO96, MKIO04, MGL95, MM+05, McM97, MET95, MKR02, MAAB14, OAA09, On97, PSG06a, PSG06b, PSG06c, PGR01, PHCR09, Pra95b, RM00, RR96, RPNT05, San04, Sch91, Scv91b, Sin99, SW16, STV02, Swi09, TK98, TSC99, TO10, Tsa97b, TEL95, TEE+96, Tu96, TEL98a, TEL98b, URS02b, URS03, VPC02, WLW+14, WW93, WCW+04b, WCW+04d, YCW+14, LAR97]. multithreading-based [GE08]. must [NA07]. mutable [HL93]. Mutex [Hol98b]. mutual [BRE92]. Mysteries [Hol99b].

Networked [CT00, FGKT97]. Networking [ACM98d, ACM00, Hol12, LCK11, DWY910]. Networks [IEE95, KLM97, L988, RR93, SMK10]. Neumann [HG92]. Neurons [LTM+17]. newly [Ano95a, Ano95b]. NewOS [TIA+02, Gei01]. Newport [USE92b]. News [Bra97, Gar01, Mat97, McM97]. Next [ARB+02, EEL+97, TSV12, CH04]. Next-Generation [EEL+97, TSV12, CH04]. Nexus [FKT96]. NFS [Ano95a, Ano95b]. NFV [GDS+17]. Niagara [KA005]. NLM [Day92a, Day92b]. NLM-Based
Opportunistic [YL16]. Opportunities [GJ97, HL08, Mus09]. OPR [QSH16].

Optimal
[AT16, Lar95, RCM+12, Lep95, LML00].

Optimistic [WLJ+95, CZSB16, VPQ12].

Optimization
[BLG01, GN96, RNSB96, SYHL14, TJY98, TLGM17, WJ12, AMC+03, AMPH09, DZKS12, GOT03, Koo93, RKCW98, Sin99, TO10, ZCSM02a, ZCSM02b].

Optimizations
[HYY+15, JSB+12, KET06a, LEL+99, Sut99, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95].

Optimized
[Sin97].

Optimizing
[DTK+15, KZTK15, PR98, PSCS01, WCZ+07, GS02].

Orange
[ACM98d].

Orchestration
[GVT+17].

Order
[CJK95, RRK11, NV15, SJA12, SW16, ZKW15].

Oregon
[ACM94b, ACM99b, IEE93].

Organization
[HG91, HG92].

Organizing
[LAK09].

Oriented
[Ano99, BBD+91, BC94, KS97, LHV+16, NPT98, SG96, Ada98, Car89a, CLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei98a, WP10, Yan02, dBo9, vPG03].

Orlando
[ACM94a, ACM98d].

OS/2
[DN94, Kan94, Kel94a, Kel94b, Rei95, Ric91, Rod94].

oscillations
[BD06].

OSF
[BM91].

OSF/1
[BM91].

Other
[SPY+93, MMTW10].

Ottawa
[BT01].

Out-of-Core
[QOIM+12, ABC+15].

out-of-order
[SJA12, SW16].

Outstanding
[LSB15].

Overall
[SEP96].

Overcome
[SW08].

overflow
[KOE+06].

Overhead
[DSR15, RRP06, YL16, ZHCB15].

overview
[Li05].

Own
[BS99, Sho97a, Sho97b].

Oxford
[ACM94c].

P
[Ano00b, Nik94, PR05].

P-RISC
[Nik94].

P-STAT
[Ano00b].

P-Thread
[PR05].

Pacific
[IEE99].

Pacificifier
[PSQ14].

Package
[Ano94c, FL90, HCM94].

packages
[GOT03, OT95, PL03].

Packaging
[RR93].

Packard
[BLCD97].

Packet
[AHW02, LCH+08, MVY05, WZC+07].

page
[CVN+06].

page-based
[CVN+06].

PageRank
[KG07].

Paging
[FD96, FDLO2, Sei98, Sei99].

Pagoda
[YSS+17].

PaiLisp
[KI95].

pain
[Gus05].

Paje
[CdOS01, CSB00].

Palo
[ACM01].

ParADe
[KKH03].

Paradigm
[EW96, JD08, LK15, PPA+13, BC9+95].

Paradigms
[CM98, HD02, YMR93b, YMR93a].

Parallel
[ABC+93, AMRR98, Ama89, ABNP00, ACMA97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CJZ+17, CL95, CDK+01, CBN+00, DS16, Den94, EJ93, FHM95a, Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HR11, JY15, KTLK13, KI95, KEL+03, KKD03, Kwo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, SCv91a, SAC+98, SR99, WC99, YFF+12, ARvW03, AL510, BMYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BGK94c, CAR08, CFS+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fu97, GC92, Gill, GKK09, GEG07, GE08, GB99, HMC97, HF88, Hop98, HW90, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, Lu94, MT02a, MT02b, MT02c, MR98, Mis96].

Parallel-Multithreaded
[WC99].

Parallelism
[AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FURM00c, GVT+17, GP95, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCFT99,
performance-area [Par91].

performance-energy [AAC+15].

Performance-Oriented [KS97].

performance-prediction [BMV03].

Performance/Power [RKK15]. performs [Ven97]. perils [Dye98]. Perl [TLA02].

Perl/Tk [TLA02]. persistence [BHK+04]. personality [CCW+11].

perspective [AG06]. Perspectives [PLT+15]. pessimistic [CZSB16].

Photomosaics [TLA02]. Phylogenetic [LHG+16, LBH12]. physical [AMPH09].

PIC [BMV03]. PicoServer [KSB+08].

picture [AC09]. Piecing [Ano97b].

Pipelining [GV95, RVOA08]. PIRATE [ICH+10].

Pitfalls [Hol98a, SPY+93, CL00, San04]. place [SCM05, SGLGL+14]. placement [NLK09, TE94a]. plagiarism [TLZ+16].

Plan [DLZ+13, Pre90]. PlanICS [NSP+14].

Planning [NSP+14]. plans [GARH14].

plastic [MCS15]. Platform [AB01, AB02, CT00, DTLW16, EEL+97, FSS06, Lam95, MT93, PG03, WCW+04b, WCW+04c].

Platform-Independent [FSS06].

Platforms [LS11, PWL+11, CNQ13, LSS12]. PLDI [ACM94a, ACM99a]. Plug [DHR+01].

Plug-in [DHR+01]. plus [Ano95a, Ano95b].

PM [AB02]. PM2 [AB9N9, AB01]. Pointer [RR99, SR01a]. pointers [Sim97, WW96].

Points [CC04, CHH+03].

Points-to [CC04, CHH+03]. policies [Eic97, EE09a, KPPE06].

Policy [MVZ93].

Polling [Pla02]. Pollution [MPD04].

Polynomial [Kuc92, Kic91]. Pool [PSCS01, LML00]. Pools [Cal97].

POPL [ACM94b, ACM95b, ACM98b]. Port [Koo93].

Portability [VSM+16]. Portable [AB01, ABN00, BBFW02, Eng00, KF97, LDT+16, Yas95, CS00, GCRD04, Mix94, MT93, MAAB14, TB97a, TB97b].

Portals [BRM03]. Porting [JJ91, Yam96].

Portland [ACM94b, ACM99b, IEE93].

Ports [Man98, Yam96]. posium [USE01]. POSIX [Ano00c, All94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, dIPRGB99].

Post [LB17]. Post-Silicon [LB17].

Pot [VSDL16]. Potential [EGC02, Mou00, DG99]. potentials [ABF+10].

POWER [GJ11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CBMCAN08, MB07, MR09, RCC12, RKK11, SYHL14, TLGM17, ECX+12, GW10, MLCW11, Pra95b, Ric91, SQP08a, SQP08b, SQP08c, CMF+13].

Power-aware [MR09]. Power-Constrained [TLGM17, GW10].

Power-Efficient [CBZY16, SQP08a, SQP08b, SQP08c].

Power-Performance [CBMCAN08].

POWER5 [BCG+08, MMM+05, KST04, Ano05].

POWER6 [LSF+07]. powered [Re95].

PowerPC [BEKK00, SBK99].

PowerRAC [Ano00b]. Practical [HW92, LMJ14, MCG16, ND16, PBR+15, RR96, TGBS05, BCCO10, RD99, RPB+09].

PRAM [For97, Lep95].

Pre-execution [PRE05, Luk01].

Precise [HR16, KUCT15, CLL+12, WTH+12].

Precomputation [MGQS+08, WWW+02].

Preconditioning [Nak03, GEG07].

PREDATOR [LTHB14].

Predicate [GPR11, How00]. Predictable [BBDH+11].

Predicting [LTHB14].

Prediction [Lun99].

Prediction-Based [CBMCAN08, RR06].

predictive [LTHB14, SR06]. Predictors [EPAG16].

prefetch
[AMC+03]. Prefetcher [LYH16].

Prefetching
[BL96, GK94, MKC97, SLT03, VT96, LB95, LB96b, Mao96, SLT02, SKKC99]. Prefix
[WIJ2]. Preliminaries [NBM93].

Preliminary [EHG95]. Preparation
[GH03, preprocessor [Fon97, Mil95].

prescient [AMC+03]. Presentation
[Kub15]. presented
[ACM93a, ACM94b, ACM95b, ACM98b].

preserving [MSM+11, NFBB17]. pressure
[DTLM14, SLP08]. preventing [PRB07].

Price [Ano98b]. Pricing [TT03]. Primer
[LB96a, Wil97]. Primitive [Low00].

primitives [BBH+17, LZ07, NLK99].

principle [LAK09]. Principles
[ACM93a, ACM94b, ACM95b, ACM98b, TLA+02].

print [Van97a]. priorities [STV02].

prioritization [FD95]. Priority
[BCC+08, NBM12, SCCP13, ST05].

priority-based [NBM12]. Private
[Mao99]. privatization [HZ12]. Pro
[Ano97a]. Probabilistic
[EE10, EE12, CHH+03, Sni06]. Problem
[HH11, Lee06, YFF+12, BIK+11, Mit96].

Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].

procedure [BGK94c, KASD07, LQ15].

procedures [MCS15]. Proceedings
[ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV+99, Go94, Ho12, IEE98, IEE99, IEE92, IEE93, IEE94a, IEE95, IEE96, IEE02, Lek96, LCK11, USE99, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98b, USE98a, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IEE07, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, Fr95].

Process [FT96, FC91, BM91, HF96, LVS01, MR98, Pky89, WP10, WVC+98].

process-oriented [WP10]. Processes
[CB16, III01, SPY+93, ZSA13, YZYL07, Zig96]. Processing
[AHW02, GAC14, RW97, SS91, WN10, How98, Mvy05, Par91, PYP+10, RKHT17, WCZ+07]. Processor
[ABC+93, Ano00b, BCG+08, BGH+12, EHG95, GV95, HMNN91, HHOM91, HHOM92, KST04, KML04, KAO05, Lvh12, MGQS+08, MG99, MTN+00, MVZ93, MB05, SW08, Sin97, ST00c, SZ02, SBKK99, Suf+12, UALK17, WS08, AHAH99, APX12, BEKK00, CL94, CY09, Cho92, EE10, Fis97, Fju97, Goo97, HF88, HKN+92, HNM+92, KDM+98, Kho97, KBA08, LVbh06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Met95, Moo95, Moo96, OCRS07, Raj93, Sha95a, SJA12, Sin99, ST00a, ST00b, STV02, S Quinn, S1i93, Tsa97a, Tsa97b, TEE+96, VIA+05, WCW+04b, WCW+04c, WCW+04d, YN90, ZP04]. processor-based
[WCW+04b, WCW+04c, WCW+04d].

Processor-In-Memory [SZ02].

Processor-Oblivious [UALK17].

Processors
[ARB+02, AH00, Ano01, BF04, EEL+97, FT96, GJT+12, GSL10, KS16, KLG08, KU00, KLD09, LPE+99, MHG95, MCF99, MR09, ÔCS01, PF01, RCM+16, RRK11, SU01, SR01b, URS02a, YG10, ZP11, Aga89, Aga91, Aga92, AAC+15, BDGmWH12, BWDZ15, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW09, GBP+07, KBF+12, LLL10, LBE+98, Luk01, MN03, MEG03, MTPT12, Mis96, NB12, NZ17, PFP03, PAB+14, RGG+12, RCM+12, RPNT08, SLP08, SMS+03, UR502b, UR503, ZSB+12, WM03].

processus [Zig96]. Proces [MT93].

Products [Ano97a, Ano00b, Bra97].

Professional [Ano00b]. Profile [BMH94].

profiler [DTLM14]. profiling [DG99].

Program
[Ch15a, DSR15, EFN+01, GN06, KKW14, NBM93, PF01, PS01, TSY00, TJY98, YL16, AC09, BGC14, BD06, CA02, Dan09, Dub95, EFN+02, FRT95, JEV04, JPSN09].

Programmability [THA+12].

programmable [PYP+10].
programmation [Swith9]. programmed [PPA+13].
Programmer [Cro98, Wil00, MS87, San04, Swi09].
Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BTE98, But97, CMK00, CV98, CDK+01, Chl15b, CT00, CW98, DM98, FHM95a, FTP11, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILF01, KKH03, KSS95, KSS96, KIAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PG99, QOQOV+09, QOIM+12, Rod95b, SBB96, TC98, Vre04, Wil97, YFF+12, dPRGB99, van95, ALS10, AR17, AG96, ABG+08, BCHS00, BO96, BYLN09, Bir89, CFK+91, Car89a, CS00, CMS03, Cha05, DSH+10, EV01, FHM95b, GKCE17, HLB94, Kri98, LCS04, Lun97, Lun99, MS89, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+07, SYHL14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BR91, BK13, BCG13, BGC14, Bhu95, BE12, BC02, BS10b, BNS1a, BNS1b, BNS12, CZWC13, CJ91, CL0, CLL+02, CVJL08, Cor00, DJLP10, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQS05, FF08, FFY08, GMR09, GRS06, GPR11, HZ12, JPS+08, JWJT11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, Pads+17, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCC95, SRA06, Sen08, SP00b, Shi00, SGS14, Sto02].
programs [Taf13, TR14, TLZ+16, WTH+12, XSAJ08, YCW+14, YNPP12, ZJS10, ZJS06, dB09, vPG03]. Progress [FSP17, TLGM17, ZHCB15]. Progress-Aware [FSPD17]. Progressive [BBdH+11, TGO00]. Project [Ano99].
projection [SSkP+07]. Projections [MQLR16, MLR15]. proliferating [Ano94b].
Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02]. QoS [ICH+10, PSM01]. QR [Dav11].
quality [PSM03]. Quantitative [NBM93]. Quasi [Pla02]. Quasi- [Pla02]. Queries [TGO99, TGO00]. query [GARH14]. QUERIFYFLEX [Ano97a]. querying [HF96]. Queue [Cri98b, Cri98a]. queues [SCM05, ST05]. Queuing [VK99, KPPR06]. Quick [Ano00b].
QuickRec [PDP+13]. quicksort [Mah13].

RISC [Cho92, GV95, MHG95, Men91, Nik94, SBK99]. rise [Len95]. Robot [Lev97]. Robust [CFM+13, LG04]. Rockefeller [IEE90]. Rogue [Ano00b].

RPython [MRG17]. RTOSS [IEE94a, IEE94d]. RTR [XHB06]. Ruby [OCT14]. rules [GLPR12]. Run [EJ93, LFA96, SS96, Pra95c, Swe07, TNB+95].

Run-Time [EJ93, LFA96, SS96, TNB+95]. running [Cal02, MLCW11, SSSN10]. runs [Hig97].

Runtime [ABN99, ABNP00, ABH+00, ABN00, BJK+96, BMN99, CZS+17, DNR00, FSS06, KPC96, NPT98, NS97, QOIM+12, SSP99, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EQT07, Gol97, Ong97, TSY00, TMAG03]. runtimes [RL14]. Russians [KNPS16].

SAC [GS06]. Safe [BCL+98, Kle00, Low00, NH09, Pla02, AFF06, BYLN09, DMBM16, Fek08, GCC99, GOT03, Gro03, NHFP08, Nev99, Rin99].

Safe-for-Space [BCL+98]. Safety [Hag02, Pla98, Ric99, SP00a, GPS14, Sam99, San04, SRA06, Taf13, Van97b, Ven98, Yan02]. safety-critical [San04]. Salt [Hol12].

Sampled [JYE+16], sampling [MMN09]. San [ACM93b, ACM94d, ACM95b, ACM99b, USE89, USE92a, USE93b, USE98b, USE00a, USE02]. Santa [Gold94, WP10]. SAT [SDK90]. Save [Pla93, Dye98]. saving [Mus09].

SC-preserving [MSM+11], SC’11 [LCK11].

SC2000 [ACM00]. SC2002 [IEE02].

SC2003 [ACM03], SC98 [ACM98d, ACM98d]. SC99 [ACM99b].

Scalability [CCH11, GVT+17]. Nak01. BWDZ15, DSEE13, RVOS08, VIA+05].

Scalability-Aware [GVT+17]. Scalable [BMBW00a, CH04, CKZ12, IEE94b, KUCT15, LMJ14, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, LZ07, Mao96, PWD+12, SCZM00]. scalar [GL98b, ZCSM00].

Scale [CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, GOT03, SMK10, KBA08].

scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16].

Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RVR04]. Schedule [MQLR16, MLL15, NAAL01, WTH+12].

Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSaS+16, SRS98, SS95, DC99, DCO0, FKS+12, GP05, HZ12, WTKW08, XSaJ08].

Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12].

schedulers
Significance [ZJS12]. SIGPLAN [ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT [ACM93a, ACM94b, ACM95b, ACM98b]. Silicon [LB17, THA12]. SIMD [FSYA09, SW08]. Simple [AKS06, Chl15b, WS08, BDL07, CL00, MSM10]. SimpleGraphics [MKK99]. simplify [PO03]. Simplifying [Pom98]. simulate [MAF99]. Software [Bri98, FRT95, NR06]. SlicK [PSG06a, PSG06b, PSG06c]. slower [Pra95c]. small [Koo93, MM07]. Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart [Sim97]. SMP [BWXF05, BNVH01, CRET99, HD02, KK03, KKJ13, Pra95c, TAS07, TMAG03]. SMPS [WG99]. SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, KL08, KI16, MG99, MMM15, NSP14, PAds17, PAB14, PLT15, RPN08, SL08, TAS07, VS11, WA08]. SMT-based [KI16, PAds17, PAB14]. SMTp [CH04]. Soft [PSM01, PSM03, SSN10, VACG09]. Software [Ano97a, Ano98b, Ano99, Ano00b, BCR1, BCG08, Gar01, Gon90, GJ97, HH92, Han97, LEE14, IE94a, KE15, LPE99, PJS15, SZM13, SD13, YBL16, ATLM06, AC09, ABC09, BT01, Bra97, CDD10, DPZ97, GLPR12, H97a, HSD12, IE94d, KKH04, KSD04, KASD07, Luk01, MWP07, MCRS10, MGL95, MEG03, NHFP08, OA09, OL02a, OL02b, OL02c, RKM10a, RKM10b, RVOA08, San04, SL08, SB08, TNB95, WZC07, WCV98, YSY09, ZHCB15, DSW12]. Software-Controlled [BCG08, Luk01]. Software-Directed [LPE99]. Solaris [Cat94, Lun97, Lun99, McM97, Pra95b, Sun95]. Solution [Ano98b, SBC91, WP10]. Solutions [Ano00b]. solve [Bar09, MM07]. Solver [YFF12, Kub15, RM99]. Solvers [MR09, Nak03, ACC15, ZCO10]. Solving [ABD12, FTAB14, Loe97, VSDK09]. SONET [AW02]. Sort [GH98, RHH10]. Sound [WTH12, DSW12, FFY08, NFB87]. Source [Ano00c, BMF16]. sources [SJ95]. South [ACM93a, Ano94d]. Space [BCL98, BL93, BL98, CLFL94, CB16, Eng00, GR97, GN96, NB99, PWL11, Sch17, F1W03, KNPS16, KASD07, LIE94, LS16]. Space-Efficient [BL98, NB99, BL93, KNPS16, KASD07, LHS16]. Spacecraft
[SRS98]. Spaces
[FKP15, CKZ12, KGGK09]. Spain
[ACM95a, DLM99, ACM98c]. SPARC
[Cat94, KAO05, MD96]. Sparcle [ABC+93].
Sparse [But13, YFF+12, CS+11, Dai11, MM07, PHCR09]. spatially [PPA+13].
spatially-programmed [PPA+13]. Special
[Ano94e, GGB93b, KU00]. specialization [WTH+12]. specialize [CWS06].
Specialized [diPRGB99]. Specific
[Ste01, SP00b, Shi00]. specification [Sta05].
specifications [TVD10]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speculated [SCL05]. Speculation
[Ano00b, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10].
Speculative [AH00, Ano02, BF04, IBST01, KLG08, MGQ9+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFG10, WWW+02, ZJFA09, ZL01, CH+03, DC07, Dub95, KOE+06, KT99, LZW17, LZW+14, NB12, OL02a, OL02b, OL02c, SMS+03, VS11, XIC12, ZCSM02a, ZCSM02b].
speech [LG04]. Speed [Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10].
Speed-up [MR09]. Speedup [Lun99]. Spin
[LLS06]. SPIRAL [MJF+10].
SPIRAL-generated [MJF+10]. splittable
[SLF14]. spots [Gle91]. spreading
[CWS06]. SPSM [Dub95]. SQL [CGK06]. squares [FTAB14]. squash [MK12]. SR
[BO96]. SRAM [KSYHX+11]. SSMT
[CSK+99]. Stabilizers [ZSJ06]. Stabilizing
[BAM+07]. stable [YCW+14]. Stacey
[Ano00c]. Stack [Eng00, Xue12]. Stackable
[Loe05]. stacking [KSB+08]. Stackless
[MS15]. stacks [DESE13]. StackThreads
[TYY99]. StackThreads/MP [TYY99].
Standard [DM98, FSS06, BCL+98, Bra97, MT93, Pl+98, Pl+99]. standardization
[Bet73]. Standards [Thr99, TYY99].
Standing [TLA+02]. Stanford [IEE99].
STAT [Ano00b]. State
[Laf00, LP94, RRK11, Wei98b, Cor00, T+94, TFG10, WHG07]. State-Retentive
[RRK11]. Statechart [Kriv04]. Stateful
[FW87, LR+95]. Statechart-Based [Kriv04]. stateless
[MQ08]. Static [GPS14, Kri98, Lm+97, SCB15, WW96, vFG03, F+13, NAW06, NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[Ano00b, RCM+16, Lan97, RCM+12, Tem97].
stealing [ALHH08, BL94, BL99, RL14].
Step [Sho97a, Sho97b, ZG98]. Stethoscope
[Caz02]. Stochastic [DK02, LTM+17].
Storage
[AT16, Hol12, LCK11, Bak95a, Bhu92, DZK12, KOE+06, MM07, PDMM16].
stores [TAN04]. strand [RCV+10]. strata
[NPC06]. Strategies
[PSCS01, AGE98, FGG14]. Strategy
[BGK96]. Stream [KSVU94]. Streaming
[HOM91, HOM92, KEL+03].
Streaming/FIFO [HOM91, HOM92]. Streams
[Pre90, SPY+93]. Strength
[Kon00]. Strict
[Coe95, FS96, Trea91, KL99]. strong
[CGK96]. strong
[BGK96]. structural
[BB00, YKL13]. Structured
[TCl98, FR95]. Structures
[RCR95, AGN90, Gol97, ND13]. students
[Fek08]. Study
[AGK96, Chl95a, EGC02, HMT+96, LBS15, Sat02, TAK+00, VK99, WG94, YMR93b, Br89, CASA14, CL00, Fis97, HJT+93, HF96, KPP+06, MGL95, Sod02, Ts97a, YM92, YMR93a]. Style
[Wil94a, Wil94b]. subdivision
[MTS10]. subordinate
[CSK+99, CTYP02].
Subsetting
[AJK+12]. Substrate
[ACMA97, Hai97a, JP92]. Subsumption
[Man91]. Suffix
[OR12, LHS16]. SugarCubes
[BS00]. Suite
[BTE98, BO01, TG09]. Suites
[SPDLK+17]. SuiteSparseQR
[Dav11]. sum
[TDW03].
summary [I+94]. Summer
[Ano94f, USE92a]. Sun [McM97]. SunOS
[Cat94, PKB+91]. super [Kus15].
Supercomputer [VTSM12, Gil94].
Supercomputing
[ACM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c].
SuperLU
[Li05]. SuperMalloc
[Kus15]. Superscalar
[VTSM12, Gil94]. Supercomputing
[AcM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c].
SuperLU [Li05]. SuperMalloc [Kus15]. Superscalar
[Su96, Div95, Gu95, Loi95, Men91].
Superthreading
[Tsal97b]. Support
[ACM94d, ABLL92, BBG+10, CZS+17, CSS+91a, CSS+91b, EJR93, GH98, KC99, ME15, MS99, NS97, PTMB99, SS99, TY97, ZSA13, ATLM+06, BSO6, BO96, CMF+13, CKD94, CH9+03, CSS+91a, CSS+91b, Evr91, Fan93, HMC95, MWP97, MEG03, MS97, Men91, TSY99, TSY00, TNB+95, WK99, WK99, WK08c].
Supported
[Add03, ZP11]. Supporting
[RCRH95, Sam99, SP00a, DC99, DC99].
suppression [JWTG11]. surgery
[MCS15]. Surprises
[ACM94d, ABLL92, BBG+10, CZS+17, CSS+91a, CSS+91b, EJR93, GH98, KC99, ME15, MS99, NS97, PTMB99, SS99, TY97, ZSA13, ATLM+06, BSO6, BO96, CMF+13, CKD94, CH9+03, CSS+91a, CSS+91b, Evr91, Fan93, HMC95, MWP97, MEG03, MS97, Men91, TSY99, TSY00, TNB+95, WK99, WK99, WK08c].
supported
[Add03, ZP11].
systematic
[MQ07]. SystemC
[RSB+09]. SystemC/C
[RSB+09]. Systems
[ACM94d, AG06, Ano00b, ABN99, Brea92, BC94, CCH11, Dru95, FMY+15, FGKT97, GH98, GJ97, HR98, HSH96, IEE98, IEE99a, KR12, KKH03].
system-level
[OCR97]. systematic
[MQ07]. SystemC
[RSB+09]. SystemC/C
[RSB+09]. Systems
[ACM94d, AG06, Ano00b, ABN99, Brea92, BC94, CCH11, Dru95, FMY+15, FGKT97, GH98, GJ97, HR98, HSH96, IEE98, IEE99a, KR12, KKH03].
37

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wea08]. T1/T2 [Wea08]. Table [VB00, KNPS16]. tabling [AR17]. Tabu [AMRR98]. taint [ZJS+11]. TaintEraser [ZJS+11]. Take [Wei97]. taking [Ano92b]. Talking [Ano94c, HCM94]. TAM [CGSV93]. Taming [Hol00, HBCG13, HHPV15]. TapeWare [Ano00b]. targeting [LGH94]. Task [CCK+16, GP95, Kwo03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12]. Task-Level [GP95].
tasking [Dil93, KR01a]. Tasks [Fin95, PVS+17, YSS+17, FGG14]. Taxonomy [HM96, SPH96]. TC2 [BT01]. TC2/WG2.5 [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, Ama98, MKK99, SBB96]. Tcl-based [Ama98]. Tcl/2k [USE00b]. Tcl/Tk [Ass96, USE98b]. TCP [Ano00c, Ano00c]. Teaching [Fek08, CS00, She02]. TeamWork [CZWC13]. Tech [Ano97b, Gar01]. Technical [USE00a, Cat94]. Technique [JJS+12, KG94, Lem02, ÖCS01, PGB16, JSB+11, JPSN09, LHG94, RS07, UZU00, VACG09, WCV+98]. Techniques [DS16, EKKLO9, GSO2, Han97, NLSK9, PWP+11, TGBS05, Zig96, BR92, GEG07, OCRS07, Praf97, RCG+10, SV96c, SV96a, SV96b, ZSB+12]. Technologies [Ano00b, Ano98b]. Technology [Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b]. TeleNotes [WSK97].
temperature [CCC12]. Template [Cal00, How98]. Ten [Ano99]. Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02]. Term [BGK94a, BGK94b, BGK96]. termination [TDW03]. Test [Ama98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14]. test-case [KI16]. Testing [BBdH+11, Goe01, LCS04, RCC14, CBM10, EFG+03, EHSU07, MQ07, Sen08, YNPP12]. tests [SRJ15]. Texas [USE92a, USE00b]. TFlux [DTLW16]. tgMC [LHG+16]. Their [VWJ+03, Gil94]. them [Ano92a, Ano94b]. Theoretic [ES97]. theories [LQ15].

Theory

there [Ano94b]. thermal [WA08]. though [Ano94b]. Thread

[Ano00c, ABN99, ABNP00, Bet73, BS99, CNQ13, Cal97, CO04, Cha02, Co09a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, HAG02, Hei03, HG91, ISS98, KGB00, KBH+03, KBH+04a, KBH+04b, LLI+10, LYH16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MTN+00, MB05, MCF99, ND96, Pks99, PR05, PEA+96, Pla03, Pla98, Pr95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Rie99, Rin99, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin07, SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BKC+13, BHK+04, BC02, CJSB16, CSM+05, DMBM16, DG99, DWYB10, Don02, DBRD90, EIC97, EE09b, Fek08, GP08, GTO03, GLC99, HD00, JEV04, KDM+98, KCO09, KBA08, KSD04].

thread [KASD07, KL13, LZW17, Lie94, LML00, LZL+14, Loc05, MLC+09, MT02a, MT02b, MO06, OT95, PAB+14, PRS14, PPK+91, PO03, PR03, PGB14, QQQQV+09, SKG+11, Sha95b, SLG06, SP06b, Shi00, SP06, SS95, SD13, SLT02, Sta05, SJ19, SCZM00, ST05, SS10, Tan97, TE94a, TLZ+16, TCG09, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02].

Thread-Aware [LYH16]. Thread-Based [KG05, CNQ13, SKS+92]. Thread-Level

[LIE+97a, LEL+97b, MG99, YBL16, FURM00a, FURM00b, MCF99, WS08, DG99, JEV04, KCO09, MT02a, MT02b,
MT02c, POO3, PT03, QQ00V+09, SCZM00, YZ14]. Thread-Local [DGK+03, Whi03].
Thread-management [RCG+10].
Thread-modular [GBCS07].
Thread-Private [Man99]. thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, Rin99, DMBM16, Fek08, GOT03].
Thread-Sensitive [CC04].
Thread-Specific [Ste01, SP00b, Shi00]. thread-switch [Eic97]. threadbare [Bak95b]. Threaded [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CKRW99, Coo95, CSS+91b, DV99, EHG95, EHP+07, FdL02, GH03, GVT+17, GZ94, Gil93, II01, JY15, Jon91, KW17, Kri98, Kuc92, KIAT99, LB92, Mas99, MG15, NS97, Pul00, RKCW98, STW93, Sei99, Smi92, Ste01, SBKK99, TLGM17, VSDK99, VB00, WCT98, Ad9a, ABD+12, AACK02, Ano97b, BWDZ15, BK13, BBH+17, BC00, BIK+11, DSEE13, CV98, CIM+17, CASA14, CKRW97a, CKRW97b, CW01, CSB00, C0DS01, cC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBKG01, EHSU07, FTAB14, FD96, FGG14, GCRD04, GCC15, GS06, GH98, GPR11, HC17, KHP+05, KI95, KK04, Kep03, KHR98, Kuc91, LK15, Lan97, Leg01, LBV+06a, LBV+06b, LBV+06c, LVA+13, MLCW11, MS03, MK99, NFB817].
threaded [NH00, NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, Pra95c, RCV+10, RKM+10a, RKM+10b, RBPM00, RG99, RS08, SCB15, Sam99, SP00a, SE12, Se98, Sh097a, Sh097b, SV99, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Tem97, TMAG03, T1YJ+11, VIA+05, VV00, VK99, Wal00, Wi98, XM99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGSV93].
Threading
[BFA+15, DHR+01, Hol98d, KS16, LKBK11, McCW97a, McCW97b, MS15, N909, OR12, PZTMB09, RCC14, Re01, Sch90, TG999, YLLS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, ML+09, MCFT99, NJ90, RR06, RV04, SQP08a, SQP08b, SPQ0c, VDBN98, kSYH9+11, YKL13, CH04].
Threading-Based [KS16]. ThreadMentor [CMS03, She02]. Threads [Al09, An94c, ACR01, Ber96b, BCL+98, Boe05, BLP04, Cal00, CG92, Col99b, Cri98b, Cri98a, TLA+02, FH95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HB01, Hol00, How00, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MP89, Mc96c, Nor96, PSM01, Pet00, Pet03, Pla03, Pia95c, San04, SEP96, TG99, WCV+04a, Wi94a, Wi94b, Wi97, Yam95, Yam96, dPRGB99, Ano02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, Bu14, Bu97, CZWC13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FH95b, FL90, GP05, Gal97, HCM94, HCM95, Hai97a, HB02, HJT+03, HKT93, HKN+92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Kan94, KE95, KSS96, Lan02, LZ07, MSLM91, MR98, MQW95, Mc96a, Mc96b, Mc98a, Mc98b, Men91].
threads [Mitt96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, PSM03, Pan99, PG03, PL03, RR03, Sch91, SC95, SZ91, SZ92, SCM05, SKP+02, TAN04, WCV+04b, WCV+04c, WCV+04d, Wi98a, WCV+98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a]. Threads.h [An000b, TB97a, TB97b]. ThreadScope [WT10]. Three [YMR93b, YMR93a]. Throttling [LG06]. Throttling-Based [LG06]. Throughput [GJT+12, Wea08]. Tightly [MTN+00, LHTZ15]. TileDB [PDMM16]. Tiles [QOM+12]. Time [BC94, CIM+17, EJ93, GN96, IEC94a, JLS99, LFA96, LUS97, MN00, PUF+04, PSCS01, SFU+12, SS96, Tet94, dPRGB99, CS95a, CS95b, DC99, DC00, GBB99, IEC94d, Jef94, Jen95, KPB+03, KASD07, KFB+12, MK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZ91, SZ92,
SJB92a, SJB92b, TSY99, TNB+95. time-
together [KASD07]. time-critical [RGG+12].
time-efficient [GB99]. time-shared [Jef94].
timely [NH09]. Timers [Ho99a, GRR06].
Timethread [BC94]. Timethread-Role
[BC94]. Timing [SK97, MHW02].
timing-first [MHW02]. tiny [Xue12]. Tip
[Tpet00]. Tips [Mit96, Pet00]. Tk
[Ass96, USE98b]. together [Ano97b, Pol90].
Tokyo [An00a]. tolerance
[MTS10, PG01, RRP06]. Tolerant [ÖCS01].
Tolerating [Luk01, RBK+09, SKK+01].
Tool [AddS03, Ano98b, Goe01, Kor89,
TAM+08, CMS03, CSB00, Hig97, LMC14,
RGK99, YNPP12]. Tool-Supported
[AddS03]. Toolbox [Bra97]. Toolkit
[SZM+13]. Tools [Ano98b, Cha05, EV01,
WWW+02, EHSU07, Len95]. Tools.h
[Ano98b]. Toolset [Ano97a]. Top
[Ano99, AB02, DNR00]. Topaz [MS87].
topics [BG95, GB95]. Toroidal
[KEL+03]. Totally [DHR+01]. Trace
[RS08, HEJ09]. Trace-based [RS08].
Traces [HEMK17, HR16]. Tracing
[Lem02, EEKL90, Tod95]. Tracking
[CZS+17, LH09, CzSB16, JJS+11]. trade
[AAC+15, Par91, KUC15]. trade-off
[AAC+15]. trade-offs [Par91]. tradeoffs
[Aga89, Aga91, Aga92, Ann96, PJA07].
training [MCS15]. Tranquilizer [PGB12].
Transaction [RW97, SS91, EQt07, Ver96].
transaction-aware [EQT07].
Transactional [GMGZP14, KUCT15,
RG03, VSDL16, ZLJ16, ALTM+06,
BDLM07, CMF+13, CNV+06, GCC15,
MLS15, MCRS10, MWT10, MTC+07,
OCT14, VTSL12, ZHC15]. Transactions
[Ano00c, DTLL16, SKBY07, BD06, Dan09,
KRO1a, KRO1b, KGGK09, RKM+10a,
RKM+10b]. Transform
[HN91, LHS16, TKHG04, TT03, TTKG02].
transformation [TSY00]. transformations
[AC09, D’H92, JMS+10, VV11]. Transient
[RM00, VPC02]. Transient-fault [VPC02].
Transitive
[YMR93b, XHB06, YM92, YMR93a].
translation [KFB+12]. translator
[TVY+11]. Transparency
[GBK+17, KBH+03]. Transparent
[ABN99, LVN10, SLGZ99, ZSA13].
Transparently [CB16, JSB+12].
Transport [GRS97]. transposition
[SGLGL+14]. trap [Ram94, GRS97].
trap-based [Ram94]. Tree
[Pla99, BCCO10]. trees [AD08, CKZ12].
Trends [Gar01]. TRI [ACM93c]. TRI-Ada
[ACM93c]. Trick [Eng00]. Tridia [An00b].
tridiagonal [ZO10]. trigger [Kho97].
Triggered [PPA+13]. Troy [SS96]. TSO
[HH16]. Tumbler [PGB16]. Tune [RGK99].
tuned [Ano95a, Ano95b, Kub15]. Tuning
[LEL+99, CSB00, RGK99]. Tunnelling
[Don02]. Tutorial [TaF13]. Twentieth
[ACM93a]. Twenty [AVO+99, ACM93b].
Twenty-fifth [AVO+99, ACM93b]. Two
[BBH+17, CM98, YJE+16, STY99, GLC99].
Two-Level [YJE+16, BBH+17, STY99].
TX [Cha05, ACM00, USE91b]. TxRace
[ZLJ16]. Type [Gro03, VGR06, BAD+09,
GE08, Lan02, Mil95, PRB07].
type-checking [Mil95]. Type-safe [Gro03].
typed [DMBM16]. Types [AFF06,
FFLQ08, Ten98, BAM07, KS93, VGR06].
typings [Smi06].

UCITA [Gar01]. UK [AVO+99]. ULM
[PG03]. Ultra [PWL+11]. Ultra-Scale
[PWL+11]. Unbounded
[CNV+06, FKP15, BDLM07]. uncommon
[BDLM07]. Uncover [WS08].
derdetermined [Kub15]. Undergraduate
[BLPV04]. Understandable [SM+16].
Understanding
[BZ07, TLA+02, EPAG16, RRP06].
Undocumented [SW97]. Unfoldings
[SPDL+17]. Unicode [Swi09]. Unified
[Wei98b, ABG+08, GKZ12]. Uniform
unifying [MS03].
unimodular [D’H92].
intrusive [HDT’13].
uniprocessor [GL98a, Yan97].
uniprocessors [BRE92, EJK’96].
Uniscape [Ano98b].
UNISIM [LS11].
UNISIM-Based [LS11].
unit [CBM10, Par91, PAB’14].
United [ACM94c].
Unithreaded [RLJ’09].
Units [RKK15, Gun97].
univariate [CMX10].
University [IEE99].
UNIX [Ano00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].
Unix-to-NT [Ano98b].
UnixWare [Rod94, Rod95b].
unlocking [XSaJ08].
unravel [But14].
Unraveling [Bec00].
Unsynchronized [DSR15].
unveiled [Ano95a, Ano95b].
up-and-downdating [VV11].
UPC [EGC02].
updates [NH09].
Ur [Chl15b].
Ur/Web [Chl15b].
URL [TLA’02].
USA [ACM94a, ACM94d, Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE89, IE94a, IE96, IE02, SS96, USE99, USE91a, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01].
Usage [BS96, Kor89, VS11].
Use [Bak95a, HW92, WWW’02].
Use-once [Bak95a].
Useful [Pet03].
USENIX [Ano90, Ano94f].
User [ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, Li05, MSML91, OT95, SLT02, TNB’95, YZYL07].
User-Level [ABLL92, SLT03, MQW95, GRR06, MSML91, OT95, SLT02, YZYL07].
User-Space [Eng00, GRS07].
Using [Ano99, ABH’00, AZG17, BDN02, BBC’00, BLG01, BTE98, CREE99, Cor00, DS16, DTLW16, DBRD91, GH03, HBG01, HJT’93, HBRTG98, Hei03, How00, KMJC02, Kwo03, KET06b, LFA96, MPD04, MeCM98a, MeCM98b, Mix94, MM07, PF01, PBR’15, PO03, SW08, SCD’15, SEP96, SLT02, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM’07, CML00, Cat94, CTYP02, CDD’10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JUTT11, JYY’03, KASD07, KBF’12, LK15, MM14, NPC06, NWT’07, Nik94, PT03, RKM’10a, RKM’10b, RM99, RPNT05, SLGZ99, SLP’09, TFG10, Tod95, TANC04, VFC02, VD08, ZJS’11, KSB’08].
UT [Hol12].
Utility [FHM95a, JSMQ13, FHM95b].
Utility-based [JSMQ13].
utilization [Squ94].
Utilizing [ES97].
UX [Ano95a, Ano95b, Yam96].
Vina [TO10]. Virtual
[BSSS14, BBM99, KG05, KKDV03, PRB07, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization
[LRZ16, YSS+17, ABB+15]. Virtually
[PTM09, DiI93, McI96c, Esp96, Nag01]. Visualization
[Ano97a, ACR01, Cal02, Caz02, BCS00, CS00, MKK99, NCA93]. Visualizing
[CdOS01, WT10, DSEE13]. Visually
[Dru95]. VLIW
[For97, GSL10, ABC+93]. VM
[FGG14]. VMs
[KKJ+13]. voltage
[MTPT12]. volumes
[Koo93]. VRSync
[MTPT12]. vs
[EHP+07, MMTW10, MCF99, SSk+07, SKP+02]. vulnerability
[SSN10, WHG07]. WA
[LCK11, ACM93c, IEE94a, IEE94d]. Wabi
[Ano97a]. Waiting
[LA93]. Waits
[How99]. Wanted
[Ano94a]. Warnings
[CJW+15]. warp
[FSYA09, MTS10, Rei95, Tam95]. was
[San04]. Washington
[ACM92, Ano90, IEE94c, USE98a]. Watch
[Ano97b]. water
[LVA+13]. Wave
[Ano00b, BBC+00, LS07]. wavelet
[TKH04]. Way
[KAO05, MT+00, Rin99, ZJA09, FGT96]. Ways
[Wei97]. Weak
[KZC15, TVD14]. Weaving
[Pra95b]. Web
[Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay
[Zha00]. WebThreads
[Ano97a]. week
[Ano95a, Ano95b]. weeks
[But14]. weight
[Way95]. weighted
[HFV+12]. weighting
[VS11]. Weightless
[SPY+93]. Weld
[OCS01]. well
[Kub15]. well-determined
[Kub15]. West
[EV01]. WG2.5
[BT01]. Wheeler
[LHS16, NTR16]. Where
[EHP+07]. Whole
[GN96, BBM99]. Whole-Program
[GN96]. Wide
[Ano94d, Ano96, FGT96]. wide-area
[FGT96]. Widening
[KKW14]. will
[Ano95a, Ano95b]. WiMAX
[CD+10]. Win32
[Bec01, BW97, CW98, Har99, How00, Lar97, PG99]. window
[VS11]. Windows
[USE98a, HKT93, ZYL07]. Hire97, Lee93, Pr95c, Pr95b, TCI98, Tim03, Yaw96]. Winter
[Ano90, USE89, USE91b, USE93b]. Wired
[DHR+01]. Within
[BP05]. without
[Gus05, LZBW14, Pla02]. woes
[Ver97]. WOMPAT
[Cha05, EV01]. Work
[Ber96b, Wal95, ALH08, Ber96a, BL94, BL99, Lep95, OdSSP12, RL14]. work-optimal
[Le95]. work-stealing
[ALH08, RL14]. worker
[SCM93]. workflows
[FGG14]. Working
[BT01]. Workload
[KTR+04, SSYG97, LBE+98]. Workloads
[GVT+17, KML04, LYH16, RCC12, CML00, SQP08a, SQP08b, SQP08c, WA08]. WorkPlace
[Bra97]. works
[Hig97, San04]. Workshop
[ACM98a, RM03, Ano94e, Cha05, EV01, IEE94, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation
[Ano00b, HN91, IEE98, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstations
[KLH97, Lu98, LGH94, RGK99, PH97]. World
[Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM99, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WL+14]. World-wide
[Ano96]. Wrapping
[AS14]. Wrappers
[Hub01]. Write
[Sho97a, Sho97b]. Writer
[Ano97a]. written
[ND13]. WWOS
[IEE89]. WWOS-II
[IEE89]. X
[Ano00b, Smi92, Srt95, MSM+16]. Xeon
[SCD+15]. Xlib
[Gil93, STW93]. XML
[DWYB10]. XMT
[DV99, VV00, BGC14, VTM12, VDBN98]. XMT-2
[BGC14]. XPS
[Ger95]. Year
[Ano99]. Yokohama
[Ano03]. York
[IEE90]. Yosemite
[Ano00b].
z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

Antoniu:2001:HSC

Aliaga:2015:UPE

Amamiya:2009:CBN

Athanasaki:2008:EPL

REFERENCES

REFERENCES

Aliaga:2015:CMS

Aliaga:2012:SDG

Agarwal:2010:DDP

Auerbach:2008:FTG

Antoniu:2000:IJC

Antoniu:2001:CMJ
Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith McGuigan, and Raymond Namyst. Compiling multithreaded Java

Anderson:1992:SAE

Antoniu:1999:ETT

Antoniu:2000:CDP

Aumage:2000:PAM

Farhana Aleen and Nathan Clark. Commutativity analysis for software parallelization: letting program transformations see the big picture. ACM SIGPLAN Not-
REFERENCES

Almasi:2003:DCD

ACM:1992:CPI

ACM:1993:PTF

ACM:1993:TCS

ACM:1994:ASC

REFERENCES

ACM:1994:CRP

ACM:1994:IPI

ACM:1995:CPI

ACM:1996:FCP
REFERENCES

Adam:1998:MTO

Abraham:2005:ABP

Abraham:2008:DPS

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

Agerwala:2006:SRC

REFERENCES

Alfieri:1994:EKI

Agrawal:2008:AWS

Agrawal:2010:HLF

Amer:2015:MRC

Aamodt:2003:FMO

REFERENCES

Abraham-Mumm:2002:VJR

Annavaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Aiex:1998:CMT

Amiziz:2009:AEC

Anonymous:1995:HUW

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

[Ano99] Anonymous. Bookshelf: Surviving the top ten challenges...

Anonymous:2000:CCI

Anonymous:2000:NPAa

[Ano00b] Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pegasoft Canada; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation Solutions, Inc.; Threads.h++ and Tools.h++ Professional, Rogue Wave Software; Scrip-

Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF

Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, [ARB+02]

Arnau:2012:BMG

Areias:2017:SDP

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

USENIX:1996:ATT

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG

Jaime Arteaga, Stéphane Zuckerman, and Guang R.
REFERENCES

Boehm:2008:FCC

Bocchino:2009:TES

Bergan:2010:CCRa

Bergan:2010:CCRb

Baker:1995:UOV

Baker:1995:GTP

Baldwin:2002:LMF

Bic:1993:EUI

Bolding:2000:MSM

Bova:2000:DLP

REFERENCES

DEN IHPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic).

REFERENCES

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD

Boneti:2008:SCP

Bergan:2013:ICS

Bokhari:2014:MMM

REFERENCES

REFERENCES

DEN ACSYEC. ISSN 0734-2071 (print), 1557-7333 (electronic).

[Beyls:2000:CGM]

[Brzuszek:2006:MTS]

[Bouge:2002:IRE]

[Bouajjani:2012:ARP]

[Bouajjani:2013:ARP]

[Beddow:1991:MTC]

[Beebe:1998:BPA]

[Borkenhagen:2000:MPP]
Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bergan:2014:SEM

Baghsorkhi:2012:EPE

[BGDmWH12] Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye,

[BGK94c] Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. Contextual debugging and analysis of multithreaded applications. *Concurrency:
REFERENCES

Bouchenak:2004:EIE

Bubek:1995:DSC

Barekas:2003:MAO

Bientinesi:2011:CFS

Birrell:1989:IPT

Blumofe:1995:CEM

Blumofe:1996:CEM

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and

REFERENCES

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

Berger:2000:HSMb

[BMBW00b] Emery D. Berger, Kathryn S. McKi-

nely, Robert D. Blu-

mofe, and Paul R. Wil-

son. Hoard: a scalable memory allocator for multi-
threaded applications. ACM SIG-
PLAN Notices, 35(11):117–128, November 2000. CO-
DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Berger:2000:HSMc

[BMBW00c] Emery D. Berger, Kathryn S. McKi-

nely, Robert D. Blu-

mofe, and Paul R. Wil-

son. Hoard: a scalable memory allocator for multi-
117–128, December 2000. CO-
DEN OSRED8. ISSN 0163-
5980 (print), 1943-586X (elec-
tronic).

Balkind:2016:OOS

[BMF+16] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri
Nguyen, Yuqin Zhou, Alexey
Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xi-
aohua Liang, MatthewMatl, and David Wentzlaff. Open-
Piton: an open source many-
core research framework. Op-
erating Systems Review, 50
(2):217–232, June 2016. CO-
DEN OSRED8. ISSN 0163-
5980 (print), 1943-586X (elec-
tronic).

Bouge:1999:ECM

[BMN99] L. Bouge, J.-F. Mehaut, and R. Namyst. Efficient com-
munications in multithreaded runtime systems. Lecture
Notes in Computer Science, 1586:468–482, 1999. CO-
DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (elec-
tronic).

Baker:1994:EPP

[BMR94] T. P. Baker, Frank Mueller, and Viresh Rustagi. Experi-
ence with a prototype of the POSIX “minimal real-
time system profile”. In IEEE [IEE94d], pages 12–17.

Briguglio:2003:PPM

[BMV03] Sergio Briguglio, Beniamino Di
Martino, and Gregorio Vlad. A performance-prediction model
for PIC applications on clusters of symmetric multipro-
cessors: Validation with hi-
erarchical HPF + OpenMP implementation. Scientific
Programming, 11(2):159–176,
2003. CODEN SCIPEV. ISSN
1058-9244 (print), 1875-919X (elec-
tronic).

Brunst:2001:GBP

[BNH01] Holger Brunst, Wolfgang E.
Nagel, and Hans-Christian

Michael Bond. GPUDet: a deterministic GPU architecture. [Bon13]
References

Boothe:1993:EMC

Brinkschulte:2005:ICA

Boehm:2007:MCC

Boothe:1992:IMT

Bogdanas:2015:KJC

Bramley:1997:TNRb

Bershad:1992:FME

Brian N. Bershad, David D. Redell, and John R. Ellis. Fast

REFERENCES

REFERENCES

Butcher:2014:SCM

Bik:1997:JPJ

Beveridge:1997:MAW

REFERENCES

Caromel:1989:GMC

CarrerasVaquer:1989:APE

Campanoni:2008:PDC

Catanzaro:1994:MSA

Cazals:2002:NID

Caswell:1989:IMD

REFERENCES

REFERENCES

ChassindeKergommeaux:2001:PEE

Cerin:2006:MSS

Catalyurek:2012:GCA

Culler:1992:AMMa

Culler:1992:AMMb

Canetti:1991:PCP

Cattaneo:1992:ACT

Culler:1993:TCC

Chong:1995:PAF

Chaudhuri:2004:SAN

Chaudhry:2002:PTS

Chapman:2005:SMP

Chen:2003:CSS

Chlipala:2015:NIM

Chlipala:2015:UWS

Chowdhury:1992:PEA
Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Chong:1993:EMC

Chrisochoides:1995:MMDa

Chrisochoides:1995:MMDb

Chrisochoides:1996:MMD
Nikos Chrisochoides. Multithreaded model for the dy-

Yan Cai, Changjiang Jia, Shangru Wu, Ke Zhai, and Wing Kwong Chan. ASN: A dynamic barrier-based approach to confirmation of deadlocks from warnings for

Caudal:1995:DEM

Choi:2000:SCP

Chase:1994:SPS

Choi:2002:EPD

Cormen:2009:IA

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Cahoon:2000:EPD

Che:2014:ALM

Caboaldi:2013:TBM
Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Thread-based multi-engine model checking for multicore platforms. ACM Transactions on Design Automation

Chuang:2006:UPB

Colvin:1990:CTS

Colvin:1990:MLT

Coorg:1995:PNS

Cook:2002:REJ

Corbett:2000:USA

Choi:2008:ABP

REFERENCES

5980 (print), 1943-586X (electronic).

CODEN LNCS09. ISSN 0302-9743 (print), 1611-3349 (electronic).

CODEN LNCS09. ISSN 0302-9743 (print), 1611-3349 (electronic).

CODEN CPEXEI. ISSN 1040-3108.

CODEN CPEXEI. ISSN 1040-3108.
Steve Carr and Ching-Kuang Shene. A portable class library for teaching multi-
threaded programming. SIGCS\[E\] Bulletin (ACM Special Inter-
est Group on Computer Science Education), 32(3):124–127, September 2000. CO-
DEN SIGSD3. ISSN 0097-8418.

Christopher D. Carothers and Boleslaw K. Szyman-
ski. Checkpointing mul-
tithreaded programs. Dr. Dobb’s Journal of Software Tools, 27(8):??, August 2002. CODEN DDJOEB. ISSN 1044-789X. URL http:

Chen:2012:CLA Chen:2012:CLA
Guancheng Chen and Per Stenstrom. Critical lock analysis: diagnosing criti-
cal section bottlenecks in multithreaded applications. In Hollingsworth \[Hol12\], pages 71:1–71:11. ISBN 1-
org/sc/2012/papers/1000a099. pdf.

J. Chassin de Kergommeaux, B. Stein, and P. E. Bernard. Pajé, an interactive visualization tool for tuning multi-
//www.elsevier.nl/gej-ng/10/35/21/42/31/24/abstract. html; http://www.elsevier.nl/gej-ng/10/35/21/42/31/
24/article.pdf.

Christopher D. Carothers and Boleslaw K. Szyman-
ski. Checkpointing mul-
tithreaded programs. Dr. Dobb’s Journal of Software Tools, 27(8):??, August 2002. CODEN DDJOEB. ISSN 1044-789X. URL http:

Chapl
el:1999:SSM Chappell:1999:SSM

Theofanis Constantinou, Yian-nakis Sazeides, Pierre Michaud,

Culler:1991:FGPa Culler:1991:FGPa
David E. Culler, Anurag Sah, Klaus E. Schauser, Thorsten von Eicken, and John Wawrzynek. Fine-grain

Culler:1991:FGP

Culler:1991:FGP

Choi:2010:MDA

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Denis Caromel and Julien Vayssiere. A Java framework for seamless sequential, multi-threaded, and distributed programming. In ACM [ACM98a], page ??
REFERENCES

ISBN ???? LCCN ????
Possibly unpublished, except electronically.

Chakravarti:2003:ISM

Choi:2009:HCS

Cao:2017:HRD
Cao:2016:DBG

Cai:2013:TST

Daniluk:2009:MTS

Davis:2011:ASM

Day:1992:INB

Day:1992:INC

deBoer:2009:SVC

Draves:1991:UCI

Richard P. Draves, Brian N. Bershad, Richard F. Rashid,

Duda:1999:BVT

<table>
<thead>
<tr>
<th>DC99</th>
</tr>
</thead>
</table>

Duda:2000:BVT

| DC00 |

Duda:2000:BVT

| DESE13 |

Das:2007:FVT

Dennis:1994:MMP

DuBois:2013:CSI

REFERENCES

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Doligez:1993:CGG

Devietti:2009:DDS

Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark

[DG95]
[DKF94]
[DL93]
[DLCO09]

REFERENCES

REFERENCES

6. Hoang-Vu Dang, Marc Snir, and William Gropp. Eliminating contention bottlenecks in multithreaded MPI. Par-
Dohi:2010:IPE

Das:2015:SBP

Ding:2015:OCA

David:2014:CMC

Diavastos:2016:ITD

Dubey:1995:SSM

[Dub95] Pradeep Dubey. Single-program speculative multithreading (SPSM) architecture: compiler-assisted fine-grained multithreading. Research report RC 19928 (88233), IBM T. J. Watson
REFERENCES

REFERENCES

REFERENCES

REFERENCES

\textbf{Eager:1993:CER}

\textbf{Eickemeyer:1996:EMU}

\textbf{Ediger:2013:GMA}

\textbf{Eykholt:1992:BMM}

\textbf{Eggers:1990:TEI}

\textbf{English:1995:MC}

\textbf{Engelschall:2000:PMS}

[\textit{Eng00}] Ralf S. Engelschall. Portable multithreading — the signal stack trick for user-space thread creation. In

Evtyushkin:2016:UMC

Evtushikin:2016:UMC

Elmas:2007:GRT

Emotion:2007:USW

Espousito:1996:MVB

Estep:1993:LMM

Eigenmann:2001:OSM

Evripidou:2001:MDD

Engelhardt:1996:PIP

Fan:1993:LMC

Farber:1996:EAM

Figueiredo:2001:IPH

Fisk:1995:TPT

Feuerstein:1996:MTP
REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

Feuerstein:2002:LMT

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:ADA

Flanagan:2008:AD

Flanagan:2009:FEP

Flanagan:2010:AMD

Flanagan:2008:TAS

Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for atomicity: Static checking and inference for Java. *ACM Trans-
REFERENCES

REFERENCES

REFERENCES

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

Frigo:1998:ICM

Feltten:1992:IPM

Fang:2015:MMD

REFERENCES

REFERENCES

LCCN QA 76.7 A11 1995.
URL http://www.acm.org:
80/pubs/citations/proceedings/
plan/199448/p379-field/.
ACM order number: 549950.

Fatouron:1996:SAS

P. Fatouron and P. Spirakis. Scheduling algorithms
for strict multithreaded computations. Lecture Notes in
ISSN 0302-9743 (print), 1611-3349 (electronic).

Fatouron:1996:SAS

Feliu:2016:_BAL

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Bandwidth-
aware on-line scheduling in SMT multicores. IEEE Transactions on
Computers, 65(2):422–434, 2016. CODEN ITCOB4. ISSN 0018-
9340 (print), 1557-9956 (electronic).

Feliu:2016:_BAL

Feliu:2017:PFP

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Perf
Fair: A progress-aware scheduler to enhance performance
and fairness in SMT multicores. IEEE Transactions on
ISSN 0018-9340 (print), 1557-9956 (electronic).

Feliu:2017:PFP

Factor:2006:PID

Michael Factor, Assaf Schuster,
and Konstantin Shagin.

Factor:2006:PID

Fung:2009:DWF

Wilson W. L. Fung, Ivan Sham, George Yuan, and
Tor M. Aamodt. Dynamic warp formation: Efficient
MIMD control flow on SIMD graphics hardware. ACM
Transactions on Architecture and Code Optimization, 6(2):
7:1–7:??, June 2009. CODEN ???. ISSN 1544-3566 (print),
1544-3973 (electronic).

Fung:2009:DWF

Farcy:1996:ISP

A. Farcy and O. Temam.
Improving single-process performance with multithreaded
processors. In ACM [ACM96], pages 350–357. ISBN 0-89791-
803-7. LCCN QA76.5 I61 1996. ACM order number
415961.

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Diego Fabregat-Traver, Yuriy S. Aulchenko, and Paolo Bientinesi.
Solving sequences of generalized least-squares problems on multi-threaded ar-
chitectures. Applied Mathematics and Computation, 234
REFERENCES

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPc

Flautner:2000:TLPb

Flautner:2000:TLPa

Fang:2003:DGO

Gran:2009:IEE

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

Garber:2001:NBT

Giceva:2014:DQP

Greiner:1999:PTE

REFERENCES

Giampapa:2005:BGA

Gotsman:2007:TMS

Gao:1995:ATD

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

[GCC99] F. Garcia, A. Calderon, and J. Carretero. MiMPI: a multithread-safe implementation of MPI. In Dongarra et al. [DLM99], pages 207–214. CO-
REFERENCES

[GEG07] George A. Gravvanis, Victor N. Epitropou, and Konstantinos M. Giannoutakis. On the performance of parallel approximate inverse pre-

REFERENCES

[GJT+12] Mark Gebhart, Daniel R.

Granat:2009:NPQ

Garland:2012:DUP

Gallmeister:1991:EEP

Golla:1998:CMR

Prasad N. Golla and Eric C. Lin. Cache memory requirements for multithreaded...
uniprocessor architecture. Technical paper 98-CSE-03, Dept. of Computer Science and Engineering, Southern Methodist University, Dallas, TX, USA, 1998. 32 pp.

M. A. Gonzalez-Mesa, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata. Effective transactional memory execution management for improved concurrency. *ACM Transactions on Architecture* [GMGZP14]
REFERENCES

REFERENCES

Goldstein:1997:LTC

[Seth Copen Goldstein. Lazy threads: compiler and runtime structures for fine-grained parallel programming. Thesis (Ph.D.), Computer Science Division, University of California, Berkeley, Berkeley, CA, USA, 1997. xi + 174 pp.]

[Gonzalez:1990:MSC]

[Goldstein:1997:LTC]

Goldstein:1997:LTC

[Gonzalez:1990:MSC]

[Gonzalez:1990:MSC]

[Goldstein:1997:LTC]

Gould:2003:GLT

REFERENCES

SCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

REFERENCES

0038-0644 (print), 1097-024X (electronic).

Goldstein:1996:LTI

Gupta:2010:CSM

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPF

Georgakoudis:2017:SSA

REFERENCES

Harrington:1999:WMM

Hayden:1993:BIC

Haines:1992:SMC

Hottelier:2015:SLE

Hunt:2013:DTN

Hanson:2001:UFI

Hanson:2002:AFI

Heber:1998:UMA

REFERENCES

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1992:BVP

Hussein:2015:DRM

Hightower:1997:PDD

REFERENCES

Hauser:1993:UTI

Hirata:1992:EPA

Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD
Bingsheng He and Qiong Luo. Cache-oblivious databases:

Hansen:1990:EPA

Helmbold:1996:TRC

Haines:1995:RSC

Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Harish:2016:PIK

Hirata:1991:MPA

Hum:1996:SEM

Horiguchi:1991:PEP

Holub:1998:PJTb

Holub:1998:PJTc

Holub:1998:PJTd

REFERENCES

REFERENCES

Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 1998. xii + 110 pp.

[Hayden:2012:KEG] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-purpose dynamic software updating for C. ACM SIGPLAN Noti-
REFERENCES

Hayden:2014:KEG

Honarmand:2014:RRR

Hendren:1997:CCE

Huber:2001:EFC

Hudson:1996:MDA

Halladay:1992:PUM

Hsieh:1993:CME

Horwood:2000:DMA
Peter Horwood, Shlomo Wygodny, and Martin Zardecki.

Hyde:2000:JTP

Huang:2015:COM

Iannucci:1994:MCA

Iannucci:1994:AI

Iannucci:1994:AI

IEEE:1993:PSP

IEEE:1994:PIW

IEEE:1994:PSH

IEEE:1994:PSW

IEEE:1994:ROS

IEEE:1995:PCL

REFERENCES

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1999:HCS

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

REFERENCES

Itzkovitz:1998:TMA

Jaisson:2008:IPM

Ji:1998:PMM

Johnson:2004:ADP

Jolitz:1991:PUB

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386.
REFERENCES

The basic kernel multiprogramming and multitasking. II. Dr. Dobb’s Journal of Software Tools, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

Jin:2003:AMP

Jonsson:1999:NPS

Jang:2010:DTE

Joerg:1996:CSP

Jonak:1986:EFL

Jones:1991:BCL

Jagannathan:1992:CSC
REFERENCES

REFERENCES

Jerey:2011:IBM

Jeon:2015:MTH

Jiang:2016:TLH

Kacsuk:1997:MIC

Kanalakis:1994:ET

Kongetira:2005:NWM

Kumar:2007:ESI

Nagendra J. Kumar, Vasanth Asokan, Siddhartha Shivshankar, and Alexander G. Dean. Efficient software implementation of embedded communication protocol controllers using asynchronous

REFERENCES

Karamcheti:1998:HLB

Karamcheti:1999:ASM

Kejariwal:2009:PSA

Keckler:1998:EF

Kasperink:1997:CDC

Kuck:1998:KPS

REFERENCES

Kleiman:1995:IT

Kerrison:2015:EMS

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO
Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

K. Kunal, K. George, M. Gautam, and V. Kamakoti. HTM design spaces: complete decoupling from caches and achieving highly concurrent transactions. Operating Systems Review, 43(2):98–99, April 2009. CODEN OSRED8. ISSN 0163-
Khan:2012:MAN

Khosla:1997:MAT

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

REFERENCES

[Kumar:2008:AVO] Sanjeev Kumar, Daehyun Kim, Mikhail Smelyanskiy,
REFERENCES

REFERENCES

Koopman:1992:CBC

Koufaty:2003:HTN

Kakulavarapu:2001:DLB

Kavi:2002:MMA

Kapil:2004:CMP

Kim:2016:SEA

Youngho Kim, Joong Chae Na, Heejin Park, and Jeong Seop

Kim:2006:ERI

Koniges:2000:ISP

Koo93

Korty:1989:SLL

Karamcheti:1996:RME

Kaiser:2006:CJC
gust 2006. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic).

Kienzle:2001:CTT

Kienzle:2001:IEO

Keckler:2012:MMC

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

Klarlund:1993:GT

Krieger:1997:HPO

Nagendra J. Kumar, Siddhartha Shivshankar, and Alexander G. Dean. Asynchronous software thread integration for efficient software.

org/dl/mags/mi/2004/02/m2040.pdf.

Krieger:1994:ASF

Yu:2011:SDH

Krishnan:1999:CMA

Kopcynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP

Kumar:2004:SIH

Rakesh Kumar, Dean M. Tulls, Parthasarathy Ranganathan, Norman F. Jouppi, and Keith I. Farkas. Single-ISA heterogeneous multicore architectures for mult-

Keller:2000:JUS

Komosinski:2017:MCE

Kubica:2015:PHT

Kuchlin:1991:MCI

Kuchlin:1992:MTC

Kestor:2015:TPD

REFERENCES

July 2015. CODEN ???. ISSN 2329-4949 (print), 2329-4957 (electronic).

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Kleinmann:2017:ACS

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

REFERENCES

REFERENCES

REFERENCES

Lee:2017:MVN

Lo:1998:ADW

Ling:2012:HPP

Li:2006:MEMa

Li:2006:MEMb

Li:2006:MEMc

Lucia:2013:CEF

Liu:2008:HPP

Lathrop:2011:SPI

Li:2004:FRT

Lozi:2016:FPL

Leary:1996:CEH

Lee:1993:TW

Lee:2006:PT

Legrand:2001:MTD

Leiserson:1997:AAM

Lo:1997:CTP

Lo:1999:TCO

Leman:2002:EFT

Dmitri Leman. An efficient
REFERENCES

Lenatti:1995:RPM

Leppanen:1995:PWO

Leven:1997:MIR

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Lowenthal:1996:UFG

Lemon:2004:MCR

Lee:2006:TBR

Laudon:1994:IMT

[LGH94] James Laudon, Anoop Gupta,

Lli:1994:DAM

Lee:2009:MHP

Li:2005:OSA

Liedtke:1994:SNb

LaFrat:2013:EEM

LaSalle:2015:MTM

Li:2011:LCM

Luo:2017:TDS

Lin:2010:TAC

Lai:2015:SAM
REFERENCES

Li:2006:SDH

Liu:2016:SEA

Liu:2014:TAP

Liang:2000:AOT

Loeffler:1997: MJF

Loepere:2005:STM

Loikkannen:1995:FMS

Matias Loikkanen. A fine-grain multithreading superscalar architecture. Thesis (M.S., Engineering), Uni-
REFERENCES

Lo:2000:MPO

Launchbury:1994:LFS

Lubbers:2009:RMP

Lo:1999:SDR

Leadbitter:2007:NM

Lal:2015:DID

Lu:2016:VCV

REFERENCE

versity, Pittsburgh, PA, USA, April 1997. 7 pp.

Liu:2014:PPF

LTHB14

Li:2016:HBG

LTL+16

Lin:2017:MSP

LTM+17

Luk:2001:TML

REFERENCES

REFERENCES

Li:2017:GGB

Mushtaq:2014:EHP

Monchiero:2009:HSC

Mahafzah:2011:PMI

Mahafzah:2013:PAM

Man:1991:MLC

Mane:1996:SJP

I. Mane. Survey of the Java programming language. *Elektronik*, 45(17):84–87, ????. 20,

REFERENCES

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??.

REFERENCES

REFERENCES

ISSN 0730-0301 (print), 1557-7368 (electronic).

Montesinos:2008:DRD

Mikschl:1996:MMS

Matheou:2015:ASD

Matheou:2017:DDC

Mukherjee:1994:MII

McDowell:2003:ISS

Mennemeier:1991:HMS

Metz:1995:IDS
David Metz. Interface design and system impact analysis of a message-handling processor for fine-grain multithread-
REFERENCES

Marcuello:1999:EST

Mehta:2015:MTP

Marsland:1995:SSM

Madriles:2008:MSM

Maquelin:1995:CBM

Mauer:2002:FST

Miastkowski:1990:PGG

Michael:2004:SLF

Maged M. Michael. Scalable lock-free dynamic mem-

Miller:1995:TPC

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

Meng:2010:AOS

Mars:2012:BDS

Moreno:1997:PMP

E. D. Moreno, S. T. Kofuji, and M. H. Cintra. Prefetching and multithreading performance in bus-based multipro-

[MKM14] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race detection for Android applications. ACM SIGPLAN Notices, 49(6):316–325, June 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

???

2005. CODEN IBMJAE.

Marino:2009:LES

McKenney:2010:WGM

Metzner:2000:MMR

msparc_multithreading_in_real.

McAuley:2003:CVC

Marinov:2016:PAF

Moore:1995:MPD

Moore:1996:MPD

REFERENCES

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

Martin:2004:HPA

María J. Martín, Marta Parada, and Ramón Doallo. High performance air pollution simulation using OpenMP.

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

REFERENCES

| [MRG17] | Paul R. McJones and Garrett Frederick Swart. *Evolving the UNIX system interface to support multithreaded programs: The Topaz Operating System programmer’s manual*, volume 21 of *Systems Re-
REFERENCES

McJones:1989:EUS

Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

Mantel:2003:UAS

McCartney:2015:SMT

Marsh:1991:FCU

Marino:2010:DSE

Marino:2011:CSP

Marino:2016:DXU

Morrisett:1993:PLP

Martinez:2002:SSAa

Martinez:2002:SSAb

Martinez:2002:SSAc

Minh:2007:EHT

Matsushita:2000:MSC

[MTN+00] Satoshi Matsushita, Sunao Torii, Masahiko Nomura,

Miller:2012:VCE

Meng:2010:DWS

Muller:2003:OCB

Matthias S. Müller. An OpenMP compiler bench-

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA

Mahesri:2007:HSS

Naik:2007:CMA

Nikolopoulos:2001:EMA

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS

Naik:2006:ESR

Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. ACM SIGPLAN Notices, 41(6):308–319, June 2006. CODEN SIN-
REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Nelson:2015:RGH

Natarajan:1993:PVM

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM

Nemeth:2000:AMD

REFERENCES

Narayanaswamy:2016:VCA

Nicolau:2009:TEP

Nakaikene:2010:LER

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

Narayanasamy:2006:RSM

REFERENCES

KUMP/ D. Lecture Notes in Computer Science, 1615:320–??, 1999. CODEN LNCSDD. ISSN 0302-9743 (print), 1611-3349 (electronic).

Nogueira:2016:BBW

Norwood:1994:SMP

Nguyen:2015:RCC

Narayanasamy:2007:ACB

Nutaro:2017:HAA

Ottoni:2008:COGa

Ottoni:2008:COGb

REFERENCES

Ottoni:2008:COGc

Olszewski:2009:KED

Ossner:2013:GMB

Ostler:2007:IHT

Ozer:2001:WMT

Odaira:2014:EGI

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[OdSSP12] Olivier:2012:CMW

[OL02a] Oplinger:2002:ESRa

[OL02b] Oplinger:2002:ESRb

[OL02c] Oplinger:2002:ESRc

[Omm04] Omma:2004:BMA

Paternier:2014:IEU

Pereira:2017:SBC

Pant:1999:TCP

Park:1991:PTM

Papadopoulos:1992:MCS

Park:2017:HHC

Jachyun Park, Seungcheol Baek, Hyung Gyu Lee, Chrysostomos Nicopoulos, Vinson Young, Junghoe Lee, and Jongman Kim. HoPE: Hot-cacheline prediction for dynamic early decompression

Porter:2015:PFG

Park:2016:CJP

Papadopoulos:2016:TAD

Pokam:2013:QPI

Philbin:1996:TSC

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Park:1997:HPM

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

Dave Plauger. Making C++ safe for threads. *C Users
REFERENCES

Plauger:1998:SCC1

Plauger:1999:SCCg

Plachetka:2002:QTS

Porter:2015:MMS

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabh:2003:UTL

Polychronopoulos:1990:ASC

versity of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, December 1990. 28 pp.

Pomerantz:1998:CNS

Parashar:2013:TIC

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1995:WTS

Prasad:1995:WNT

Prasad:1997:MPT

Permandla:2007:TSP

Presotto:1990:MSP

Petrovic:2014:LHM

Protopopov:2001:MMP

Pozniansky:2003:EFD

[PS03] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>210</th>
</tr>
</thead>
</table>

Preissl:2012:CSS

Preissl:2011:MGA

Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and Alice Koniges. Multithreaded global address space communication techniques for gyrokinetic fusion applications on ultrascale platforms. In Lathrop et al. [LCK11], pages 12:1–12:11. ISBN 1-4503-0771-X. LCCN ????

Quintana-Orti:2012:RSP

Quintana-Orti:2009:PMA

Park:2010:ISP

REFERENCES

Qian:2016:EFS

Qian:2016:ODG

Qian:2014:PRR

Ramsey:1994:CTB

Roberts:2018:MID

Rufai:2005:MPO

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.
REFERENCES

2010. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Radojkovic:2012:OTA

Radojkovic:2016:TAM

Rogers:1995:SDD

Radojkovic:2010:TSB

Ruddock:1996:MPG

Ronsse:1999:RFI

REFERENCES

References

REFERENCES

218

1999. CODEN CCUJEX. ISSN 1075-2838.

Raman:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

Reinhardt:2000:TFD

ACM:2003:ATA

Roh:1996:GOE

Rogers:2014:LYL

Robison:2003:MCN

Rodley:1994:UIC

Roh:1995:CGE

Roy:2009:LPF

Ruan:2005:EIS

Yaoping Ruan, Vivek S. Pai, Erich Nahum, and John M. Tracey. Evaluating the impact

Ruan:2008:DCS

Raghunath:1993:DIN

Robbins:1996:PUP

Rugina:1999:PAM

Robbins:2003:USP

Roy:2011:SRP

Sanden:2004:CJT

B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SJL

Smith:1980:ASD

Sah:1996:PIS

Saavedra-Barrera:1991:ASM

Saavedra-Barrera:1990:AMA

Storino:1999:MTB

REFERENCES

Savage:1997:EDD

Saillard:2015:SDV

Saez:2013:DFP

Schweitzer:2015:PEM

Schauser:1995:SCP

Schonberg:1989:FD

REFERENCES

Schmitt:1990:CEM

Schauser:1991:CDT

Schmidt:1998:EAM

Schiltz:2014:JCR

Schafer:2017:PHL

Sendag:2005:IIS

Steinke:2005:NPF

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO

Sung:2014:PTR

Sodan:1997:ENN

REFERENCES

Shoner:1997:JSSb

Sime:1997:GPM

Sinharoy:1997:OTC

Sinharoy:1999:COI

Steensgaard:1995:ONC

Sharafeddine:2012:DOE

Singh:1992:DRS

Gurjot Singh, Moses Joseph, and Dave Barnett. Debugging

REFERENCES

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT
REFERENCES

Scherer:1999:TAP

Sharkey:2008:RRP

Sidiroglou:2009:AAS

Solihin:2002:UUL

Solihin:2003:CPU

Sodan:2010:PMM

Smith:1992:MTX
John Allen Smith. The multithreaded X server. The X
REFERENCES

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

Suleman:2009:ACS

Swanson:2003:ESI

Singh:2012:EES

REFERENCES

Skjellum:1996:TTM

Saxena:1993:PMS

Suleman:2008:FDTa

Squillante:1994:AMP

Salcianu:2001:PEA

Sohi:2001:SMP

Samak:2014:MTS

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

Saghi:1998:MSH

REFERENCES

Allan Snavely and Dean M. Tullsen. Symbiotic job-
REFERENCES

240

Sundell:2005:FLF

Stapleton:1990:DSS

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF

Stuckey:1995:FCI

Snavely:2002:SJP

REFERENCES

Schmidtmann:1993:DIM

Shen:1999:ATL
Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??.

Sigmund:1996:IBM

Sigmund:2001:SCS

Suito:2012:DRM

SunSoft:1995:SMP

Sutter:1999:OAM

Schmidt:1996:CAPb
REFERENCES

56–66, April 1996. CODEN CRPTE7. ISSN 1040-6042.

Schmidt:1996:CAPc

Schmidt:1996:CAPa

Smith:1998:SIF

Shepherd:1997:UCA

Swaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Gérard Swinnen. Apprendre à programmer avec Python: objet, multithreading, événements, bases de données, programmation web, programmation réseau, Unicode. Editions Eyrolles, Paris, France,
REFERENCES

Tamasanis:1995:MMW

[Tamasanis:1995:MMW]

Thoziyoor:2008:CMM

[Thoziyoor:2008:CMM]

Tanner:1987:MTI

[Tanner:1987:MTI]

Tollmach:2004:IFL

[Tollmach:2004:IFL]

Thompson:1997:THP

[Thompson:1997:THP]

Thompson:1997:TPC

REFERENCES

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: maximizing on-chip paral-

Tullsen:1998:RSM

Tullsen:1998:SMM

TempleLang:1997:MTE

Temberg:1998:CAD

Temberg:2002:RGO

Trancoso:2006:CCM

Tetewsky:1994:GDR

Tian:2010:SPU

Tang:1999:APT

Thakur:2009:TSE

Tian:2005:PCT

Tan:1999:OFN

REFERENCES

Tan:2000:PEN

Terechko:2012:BPS

Thekkath:1995:DPM

Throop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Thitikamol:1998:PNM

[TLMG17] Yatish Turakhia, Guangshuo Liu, Siddharth Garg, and

Tian:2016:ETR

Tremblay:2003:IEP

Tallent:2009:EPM

Tallent:2010:ALC

Taylor:1995:CSA

REFERENCES

[TSV12] Antonino Tumeo, Simone Secchi, and Oreste Villa. Designing next-generation massively multithreaded archi-

Tang:1999:CR

Tang:2000:PTR

Thulasiram:2003:PEM

Thulasiram:2002:EMA

Taura:1999:SMI

Tullsen:1996:SM

Dean Michael Tullsen. *Simul-
Taura:1997:FGM

Utterback:2017:POR

Ungerer:2002:MP
REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_45/Issue_03/pdf/450320. [USE91b]

Ungerer:2002:SPE

Ungerer:2003:SPE

USENIX:1989:PWU

USENIX:1991:PWU

USENIX:1991:PWU

USENIX:1992:PSU

USENIX:1992:SED

USENIX:1993:PUMb

REFERENCES

USENIX:1993:PWU

USENIX:1996:PFA

USENIX:1998:PUWa

USENIX:1998:PSA

USENIX:2000:UAT

REFERENCES

USENIX:2001:PJV

USENIX:2002:PBF

Unger:2000:CCA

Vera:2009:SRL

vanHoff:1995:JIP

Vanhelsuwe:1997:BRJ

Vanhelsuwe:1997:JPE

REFERENCES

Anthony Verriello. Memory sharing in multithreaded transaction environments. Thesis (M.S.), Hofstra Uni-

Walter:1995:PMS

Wayner:1995:FAN

Watt:1991:IPI

Wang:1994:MAD

Walmsley:2000:MTP

Winter:2008:ATN

VanDeGeijn:2011:HPD

Vishkin:2000:ELR
C.-C. Wu and C. Chen.
Grouping memory consistency model for parallel-multithreaded shared-memory multiprocessor systems.

Perry H. Wang, Jamison D. Collins, Hong Wang, Dongkeun Kim, Bill Greene, Kai-Ming Chan, Aamir B. Yunus, Terry Sych, Stephen F. Moore, and John P. Shen.
Helper threads via virtual multithreading.
REFERENCES

Wang:2004:HTVb

Wang:2004:HTVc

Wang:2007:OSC

Wester:2013:PDR

Weaver:2008:OIO

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Wong:1994:SSI

Weissman:1999:HPT

Walcott:2007:DPA

White:2003:UTL

Wallach:1995:OAM

REFERENCES

August 1995. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

 REFERENCES

Wegiel:2008:MCVc

Wadden:2014:RWD

Wang:2009:TDA

Won:2015:MMC

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Warg:2008:DTS

Whittaker:1997:TML

Wheeler:2010:VMM

Wu:2012:SPA

Wong:2008:TAF
REFERENCES

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Wang:2008:PIM

Xu:2006:RTR

Xekalakis:2012:MSM

Xu:1999:DIT

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–28, December 1996. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

Yiapanis:2016:CDS

Yang:2014:MPP

Yamashita:2012:APS

Yi:2010:NAS

Yu:2013:GDS

Yao:2016:OCO

Yu:2016:DLR

REFERENCES

0038-0644 (print), 1097-024X (electronic). URL http://
www3.interscience.wiley.
com/cgi-bin/abstract?ID=
16832.

Yo0:1996:PCM
Namhoon Yoo. Parallelism
control in multithreaded multi-
processors. Thesis (Ph.D.),
University of Southern Cali-
fornia, Los Angeles, CA, USA,
1996. x + 86 pp.

Yeh:2017:PFG
Tsung Tai Yeh, Amit Sabne,
Putt Sakdnagool, Rudolf
Eigenmann, and Timothy G.
Rogers. Pagoda: Fine-grained
GPU resource virtualization
for narrow tasks. ACM SIG-
PLAN Notices, 52(8):221–234,
August 2017. CODEN SIN-
ODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160
(electronic).

Yousef:2009:PES
Lamia Youseff, Keith Sey-
mour, Haihang You, Dmitrii
Zagorodnov, Jack Dongarra,
and Rich Wolski. Paravirtu-
alization effect on single-
and multi-threaded memory-
intensive linear algebra soft-
ware. The Journal of Net-
works, Software Tools, and
Cluster Computing, 12(2):
101–122, ???? 2009. ISSN
1386-7857.

Yong:2003:AMC
Xie Yong and Hsu Wen-Jing.
Aligned multithreaded com-
putations and their schedul-
ing with FAB performance
guarantees. Parallel Pro-
cessing Letters, 13(3):353–
??, September 2003. CO-
DEN PPLTEE. ISSN 0129-
6264 (print), 1793-642X (elec-
tonic).

Yan:2007:HMC
Jun Yan and Wei Zhang.
Hybrid multi-core architecture
for boosting single-
threaded performance. ACM
SIGARCH Computer Ar-
chitecture News, 35(1):141–
148, March 2007. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tonic).

Yang:2014:CNR
Yi Yang and Huiyang Zhou.
CUDA-NP: realizing nested
thread-level parallelism in
GPGPU applications. ACM
SIGPLAN Notices, 49(8):93–
106, August 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Yang:2007:RUL
Jin-Min Yang, Da-Fang Zhang,
Xue-Dong Yang, and Wen-
Wei Li. Reliable user-level
rollback recovery implementa-
tion for multithreaded pro-
cesses on windows. Software
—Practice and Experience, 37
(3):331–346, March 2007. CO-
DEN SPEXBL. ISSN 0038-
Zoppetti:2001:IDD

Zhang:2015:DMB

Zhai:2002:COSa

Zhai:2002:COSb

Zhou:1998:LST

Zhang:2010:FTS

REFERENCES

wiley.com/cgi-bin/fulltext?ID=53858&PLACEBO=IE.pdf.

Zhang:2000:WMH

ZHCB15

Zignin:1996:TDM

Ziarek:2009:SWB

Zhang:2010:DCS

Zhu:2011:TPS

Zhang:2012:SCC

Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. The significance of CMP cache sharing on contemporary multithreaded applications. IEEE Transactions on Parallel and Distributed Systems, 23(2):
Zhao:2011:DCC

Zier:2010:PED

Zheng:2015:DPO

Zhao:2011:DCC

Zhang:2016:SAN

Zheng:2016:SAN

Zheng:2011:CST
Xiaotong Zhuang and Santosh Pande. Compiler-supported thread management for multi-threaded network processors.

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB