A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 September 2019
Version 3.161

Title word cross-reference

#4 [Pet00].


2 [BÇG14, DN94, Kan94, Kel94a, Kel94b, Mil95, Rei95, Rod94, Sri93, WCW+04b, WCW+04c, WCW+04d]. 2.0 [BO01]. 2.6 [McM97]. 2000 [Ano99]. 2001 [ACM01]. 2003 [RM03, ACM03, AS14].


3.0 [Bra97, BRM03, MRGB91]. 32-Way [KAO05]. 35th [Gol94]. 3D [Ano97b, Loe97].
4 [BAM93, SKS+92]. 4th [Ass96].
5 [FLR98]. 5th [Cha05].
64-bit [Kus15, SBKK99]. 6th [DLM99].
7th [USE00b].
80 [Bri89]. 821 [HBG02].
9 [Pre90, Yam96]. '90 [IEE90, GOT03]. '91 [Wat91, Ano94e]. 915 [Dav11]. '92 [IEE92].

Abstract
[CSS+91b, CGSV93, DV99, KPP12, LMA+16, MIF+10, Nêmo00, CSS+91a, CSS+91c, Dil00, VDBN98, ZJFA09].

Abstraction
[KI16, BAK95b, GPR11, ZSJ06]. AC [BGK94a, BGK94b]. Accelerate [JLA16]. Accelerating [BAZ+19, LS11, SMQP09, VGK+10a, VGK+10b]. acceleration [JSMPL12, NBMM12]. Accelerators [NTR16, SGLGL+14]. Access [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SSkP+07].

Accounting
[LMA+16, EE09b]. Accuracy [SHK15, TO10]. Accurate [CPT08, VTSM12]. Achieving [AWH02, SP05, KGK09, WTKW08].

ACM
[ACM93b, RM03, IEE92, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZP04].

Activation
[KG94]. Activations [ABLL92, DNR00, SS95]. Active [BKI06, BDJ06, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada [ACM93c, Bar09, Dil93, GMB93, KPPÉR06, KRO1b]. ADAM [Far96]. adaptable [LLLC15]. Adaptation [CMBAN08]. Adaptive [ABN00].

Adaptive
[ALHH08, HBGT98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, ZWL15, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW+16].

Adding
[Ply89, Ric99, McM97]. Address [CLFL94, PWL+11, CKZ12, Lie94].

Addressing
[WAO8, CKD94, ZSB+12].

ADL
[BLV09]. Advanced [BGG95, GBC95, Hei03, BZ07, GBB+05]. Advances [IEE97, JHM04, KKD03, DLM99].

Advantage
[Wei97]. Adversarial [FF10].

Affinity
[HLH16, NAAL01]. Age [Cro98]. agent [Way95]. Agents [CWHB03, CR02, Way95, BDF98].

Aggregate
[TGO99, TG000]. AGNI [RBPM00]. Agnostic [SLJ+18]. agreement [GMW09]. Aid [Wei97]. aided [MCRS10]. aids [Mat97]. Air [MPD04]. AI [TLA+02].

Albuquerque
[Ano94e]. Algebra [KLD09, NBS+15, PHCR09, YSY+09].

Algebraic
[ACM94c, Lak96, MR09, Wat91].

Algorithm
[AT16, ABC+09, CNZS17, HH11, MP13, OR12, Rét19, TT03, ZBS15, BKK17, GKK09, KGP91, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HBG02, YFF+12].

Algorithmic
[Lei97, BBH+17]. Algorithms [BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CF+12, CLRS09, FR95, GK05, Lei97, Lep95, NFBB17, QOQOV+09, RRMJ12, YM92, YMR93a, Li05]. algorithms-by-blocks [QOQOV+09].

Algorithms-by-Tiles
[QOQOV+09].

Allaire
[Hig97]. Alleviate [BD00]. Alloc [KUS94]. Allocating
Allocation [MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04].
Allocator [BMBW00b, BMBW00a, BMBW00c].
Alpha [Ano00b], alphabet [KNPS16].
alphabet-independent [KNPS16].
Alternating [CYYL18].
alternative [SV96c, SV96a, SV96b].
Alternatives [MB99, OA19, MKR02].
Alto [ACM01].
ALU [KDM+98].
always [DWS+12].
always-on [DWS+12].
Amdahl [CN14, NZ17].
Among [CB16, HMC95, SJ95].
analysing [NJK16, PV06].
Analysis [AKS06, BCZY16, BE12, BE13, BBC+00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJR13, Hai97b, Hol12, HLH16, LCI11, LML00, LHG+16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM+08, VP16, Yoo96a, Zub02, AC09, ACC+03, BGZ97, BBH+17, BPSH05, BBM09, CHH+03, CS12, CVL08, Cor00, GBCS07, HEJ09, JPSN09, KTK12, KC09, Lei97, LBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH+12, dB09, vPG03].
Analytic [Squ94].
Analytical [DKF94, SV19, VT96, SBC91].
Analytics [JGS+19, LLT+16].
analyse [LMC14].
analyzer [Fe13, HJL90].
Analyzing [HRH08, Kor89, RHH10, TMCP10].
anatomy [Rei95].
Android [MKM14].
animation [WQLJ18].
Annotations [BM94, Wei98b, AG09].
Annual [ACM93a, ACM98c, Glb94, Ass96, USE00a, ACM93b, USE96, USE98b].
anomalies [Sch89].
Anomaly [KW17].
antipatterns [BPSH05].
Antonio [USE92a].
any [Hig97, Mar07].
API [Ano00b, BDN02, DM98, Van97a].
APL [CJ91].
applets [McM96c].
Application [AMRR98, KZTK15, KUS94, PG92, PLT+15, SV19, TKA+01, TAM+08, Yas95, DWYB10, EJK+96, HDT+13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11].
Application-Level
[KSU94, PLT+15, HDT+13, LZ07, ZJS+11].
Applications [Ano00c, AZG17, AKP99, BK106, BMBW00b, BNH01, Cha05, Chl15a, DVAE18, DS16, Don02, Dru95, EV01, FURM00c, HC17, HMC16, HWZ00, JYE+16, JLA16, KVMC02, KRH98, LWSB19, LPK16, Lar97, MGI14, MG15, PCPS15, PWL+11, Pul00, RD96, SGM+97, Sod02, Ten02, Tet94, TSV12, TLGM17, VP16, Vol93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, ASSS19, AAKK08, BWDZ15, BBFW03, BGZ97, BMBW00a, BMBW00c, BW97, DSEE13, BPSH05, BM03, CB89, CB90, CS00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLB90, ISS98, JSMP12, JSMP13, KV+99, MLCCW11, MKM14, MKIO04, MLCD04, MT02a, MT02b, MT02c, MKKK99, MKR10, NR06, Omm04, PJZA07, RCV+10, Rei95, San04, SSN10, SKP+02, TMC09, TMCP10, TP18, VIA+05, VGK+10a, VGK+10b, WCZ+07, WT10, WOKH96, XMN99, YZ14, kSYHX+11].
aplications [ZKR+11, Len95].
apply [NZ17].
Applying
[VTSL12, MT02a, MT02b, MT02c].
Apprendre [Swi09].
Approach
[AZG17, BBSG11, CJW+15, ES97, FKT06, GMR98, KKW14, KS16, ND16, RC+16, TY97, VSDK09, WS08, Wei98b, YLSL16, BWDZ15, DHM+12, LZW17, LZW+14, MS03, RC+12, SCZM00, TP18].
Approaches [BLSO04, MB07].
Approximate
[HFV+12, GEG07, GE08, KGP12].
Apps
[PCM16].
April [Ano00a, Ano03, USE01].
arbitrary [BGC14].
Arc [CNZS17].
Arc-Weighted [CNZS17].
ARCH [Ada98].
Architectural
[ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07].
Architecture [ACM98c, BBD+91, BVL09, BTE98, Car89b, CL95, DS09, DO95, EBKG01, For97, Gao93, GK94, GH+98, GV95, GN92, HTZ+97, HMNN91, HHOM91, HHOM92, KBH+04a, KBH+04b, KIAT99, Man91, MM01, MB99, PVS+17, PTMB09, PKB+91, PS01, REL00b, RS08, SLJ+18, SCL05, SHK15, SSYG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cho92, Don92, Dub95, Evr01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HFF88, HXN+92, HMN+92, I+94, KHP+95, Loi95, Mah13, MK12, Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TNB+95, Tsa97b, UZ00, Wan94, WCC+07, YZ07, Yan97, CH04].

Architecture-Agnostic [SLJ+18].

Architectures [AT16, ABLM19, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IXS18, IBST01, JLS99, KTR+04, LLKS12, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOM+12, RLJ+09, SGM+97, TG99, THA+12, Tra91, TJY+98, TSV12, WG94, XWG+14, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CFG+12, Cat94, DTR18, FTAB14, GGB93b, GLL+88, GI94, GL98b, HFV+12, ICH+10, JMS+10, LMC14, Lu94, MLCW11, MLCO4, Mno09, OCRS07, PT91, PPA+13, PJZA07, PHCR09, RHH10, RBKH11, SBCV90, Sch98, Sha95b, SLG06, Squ94, SMQP09, SKA01, TE94a, The95, TKHG04].

Area [AMP+89, FGT96, Par91].

Area-efficiency [AMP+90].

Aren’t [Sut99].

Ariadne [MR98].

arising [ArV03].

Array [GS06, LHS16, PDMM16].

Arrays [BWX+05, AR19].

arrow [GE08].

arrow-type [GE08].

Art [ML13, I+94].

artificial [KU17].

ASAT [SEP96].

Ashes [Thr99].

ASN [CJW+15].

Aspects [SB80].

ASPLOS [ACM94d].

ASPLOS-VI [ACM94d].

Assuming [BS10b].

assertion [Adb95].

assertion-based [Adb95].

assessment [Mah13].

Assignment [BC98, RC+16, MCRS10, ORH93, RC+12].

assisted [Du95].

associated [San04].

Associative [SW08].

Assume [BGP06].

Assume-guarantee [BGP06].

Assumptions [ES97].

ASSURE [SL+09, Dye98].

Asymmetric [MNU+15, GA09, JSMP13, MWK+06, RBK+09, SCCP13, SMQP09].

Asynchronous [HH11, KFG15, KASD07].

Asynchrony [SRU98].

Athena [Egg10, Hud96].

ATL [SW97].

Atlanta [ACM99a].

Atomic [KKS+08, RD06].

atomicity [BLM06, BNS11a, BNS11b, BNS12, FF04, FFQ04, FF08, FFLQ08, FFY08, WS06].

atomics [ND13].

Atomizer [FF04, FF08].

Audience1 [SB96].

Augmented [GFJT19, LH90].

Avogadro [RY03, USE93a, USE98a].

Austin [USE99a].

Auto [MCS15].

Auto-vectorization [RKHT17].

AutoDock [RO10].

Automata [ES97].

Automata-Theoretic [ES97].

Automated [BS14, DV02, KZC15, TR14].

Automatic [BVL09, HBTG98, JY+03, KW17, Mou00, SEP96, YLLS16, GJ11, JSB+11, SL+09].

Automatically [NWT+07, TG99, CJ91].

autotuning [CSV10].

Availability [SP07].

Avenue [Ano94d].

avoid [Pra95c].

avoidance [LC13, WLK+09].

AVP [Ano00b].

Aware [AG18, BHP+03, CCW17, FSPD16, FSPD17, GVT+17, HC17, Kim14, LZS+08, LH16, MNU+15, PR05, SLJ+18, EQT07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAO07, XSA08, ZLW+16].

Away [GBK+09].

AWTEventMulticaster
axiomatic [TVD10]. **AXP**

**B** [Ano00c, DLZ+13]. **back** [ECX+12].

**Backup** [Ano00b]. **Balance** [SEP96].

**balanced** [CKZ12]. **Balancers** [KMA01].

**Balancing** [HB598, KCS98, KHR90, PGB16, THA+12, ZP94, Chr95a, Chr95b, Chr96, LTL+16, MKZ04]. **Baltimore** [IEE92]. **Bandwidth** [FSPD16, LTL+16].

**Bandwidth-Aware** [FSPD16]. **Barcelona** [ACM98a, ACM98d, DLM10]. **Barnes** [ZBS15]. **Barrier** [CKJ+15].

**Barrier-Based** [CKJ+15]. **barriers** [LZBW14, ZJFA09]. **Base** [VE93]. **Based** [Alf94, AT16, AKP99, BVL90, BHH01, CKJ+15, CRR99, CMZ10, DSR15, EGP14, GHG9, GFT19, HHM91, HHH92, KS16, KG05, KEL+03, KW17, KS97, KR98, KNE+14, KWO03, LLKS12, LG06, LS11, MGGQ+08, MK97, OB13, RSN01, SG18, TESK06, WLM15, ÁdBdRS05, AAd98, AAH09, Ana98, AKSD16, BKK17, CNQ13, CKD94, CRR97a, CRR97b, CNV+06, DG99, DWYB10, EG11, GDS+17, GE08, JD08, JSM13, KR01b, KK+13, KI16, KKF+12, LK15, LZW17, LLL10, MUs09, NBM12, NFB17, PSG06a, PSG06b, PSG06c, PAdS+17, PAB+14, Ram94, RRP06, Rôt19, RS08, SK89, TE94a, WCV+04b, WCV+04, WCV+04d, WQLJ18, YL16, Day92a, Day92b, RSB+9].

**Bases** [GK94, Swi09]. **basic** [JJ19, KTLK13, Exp96]. **Basis** [AGK96].

**batching** [DKG18]. **Be** [Pet03, Ano95a, Ano95b, Boe05, MMT10].

**Beach** [USE92b]. **becoming** [Ano92a].

**Behavior** [KL92, LB17, REL00b, AC+18, DS13, GS00, REL00a, REL00c].

**Behavioral** [SCH17]. **Benchmark** [BTE98, ESHU07, MUL03].

**Benchmarking** [HHM92]. **Benchmarks** [CRE99].

**Benefits** [MHG95, LB95, LB96b, SD95].

**benign** [NWT+07]. **Berkeley** [USE01].

**Better** [BDM98, PLA99]. **Between** [WG94, Pan99, SS95, Yam96, ZCSM02a, ZCSM02b].

**Beyond** [EBK+92]. **biased** [RD06].

**Bibliography** [Bee98]. **Big** [JLA16, AC09, CDL13, LTL+16, LHS16].

**BIGSAM** [Pl989]. **binary** [BCC010, KBF+12, TJY+11].

**binding** [RCD+10]. **Birthmarking** [TLZ+17, TLZ+18].

**bisection** [RRR000]. **bit** [Kus15, SBK99]. **Black** [Pl999].

**BLAS** [ARW03]. **BLIS** [VSM+16]. **Block** [ABLM19, CCWY17, K897, ZM07, KTK12, KT13].

**BlockChop** [MK12]. **Blocking** [Ann96, GN00, NAO93, SB80].

**Blocks** [Pet93, OOOQ+09]. **Blue** [GBB+05].

**Boltzmann** [SKG+11]. **Bonn** [Bol01].

**Book** [Lar97, Van97a, Vre04]. **Bookshelf** [Ano99, Cro98, W1997, W100].

**Boost.Threads** [Kem002]. **Boosting** [AKSD16, APX12, MLC+09, YZ07].

**Boots** [McM97]. **Bootstrapping** [KH15]. **Borland** [K19a, Kel94b].

**Borrowed** [DC99, DC00].

**Borrowed-virtual-time** [DC99, DCO].

**Boston** [Ano94f]. **Both** [KZC15, C016].

**Bothnia** [CCW+11]. **Bottle** [DSEE13].

**Bottleneck** [JSM12]. **Bottlenecks** [SU96, Zab02, DSEE13, CS12, DSG17].

**Boulevard** [ACM999]. **bounded** [LZT15, PAdS+17]. **Bounding** [Lun97, Lun99, MQ7].

**BowMapCL** [NTR16]. **Box** [An00b]. **Braids** [BS06].

**Branch** [AKS06, EPA16, IBST01, CTY10, CPT08, GL19b, MTS10].

**branches** [UZU00]. **breadth** [LAH+12].

**breadth-first** [LAH+12]. **breakpoint** [Ram94].

**Bridge** [Ano00b]. **Bridging** [RK011, VDN98].

**brief** [Hay93]. **Briefs** [Gar01]. **bring** [Pra95b]. **Bringing** [Jon91].

**Broadcast** [SW08]. **Broadcast/Reduction** [SW08].

**brokers** [Sch98]. **Browsing** [H96].

**BSD** [SS95]. **BSDCon** [USE02]. **BSP** [SYHL14].

**BTRIMMER** [TJY+11]. **buffered** [DLZ+13]. **buffers** [Koo93].

**bug**
[NBMM12]. bugs [JWGTG11, VTSL12].
build [KSB+08]. Building
[Fon97, KS97, Pet03, ZM07, Omn04].
Building-Block [KS97]. bulk [RD06].
Bulldozer [BBSG11]. Bunka [Ano03].
Burrows [LHS16, NTR16]. Bursty
[HMCP16]. Bus [MK97, Cat94, HHPV15]. Bus-Based [MK97]. BVT [DC99, DC00].
Bytecode [ABH+01, Coo02, GH03, A+01, CAR08].

C
[Ke94a, Ke94b, Lev97, Pla98, Pla99, Rod95a, Vre94, Ait96, AGB08, Ano99, BM94, Bau92, Bed91, BYLN09, BPL07, BA08, CFF+91, CCR92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jon91, KD97, Lafo0, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pons98, PS03, PS07, Pul00, Ric91, Rö19, SG18, SC17, Sch90, TB97a, TB97b, Vol93, Wal00, Yam95, Yam96]. C#
[KPPER06, Stå05]. C-based [RSB+09].
C-Stream [SG18]. C/C [Pla98, Pla99, BYLN09, ND13, ND16, Pet00, Pul00]. C3I [BTE98]. CA [AC94d, IEE99, USE92b, Ass96, USE00a, USE01, USE02]. Cache
[BCZ16, CMX10, CCWY17, FJ08, GBP+07, GL98a, HL08, HKS96, KLS92, KET06a, LLD17, PEA+96, PPG11, SLJ+19, WG94, ZJS12, ZWL15, Car89b, Cho92, KHP+95, KLR+99, MCR10, Raj93, Sha95a, SSKP+07, WCZ+07, ZJS10, ZKR+11]. Cache-conscious [GBP+07].
Cache-oblivious [HL08]. CacheFlow
[KET06a]. Cacheline [PBL+17]. Caches
[FJ08, PHBC18, KGGK09, ROA14].
Caching [DNT16, KCC99, Boo93]. calculations [BD06]. calculi [LVS01].
Calculus [II01, ORH93]. Caldera
[Ano97a]. Calif [AC01]. California
[AC93b, ACM95b, ACM98b, IEE99, USE89, USE91a, USE93b, USE96, USE98b, USE01]. Call
[GSC96, Hub01, ORH93, Xue12]. callbacks
[VS96]. calling [TTY99]. calls
[KASD07, TLZ+16]. Cambridge [USE93a].
Can [Ber96b, Dye98, Pet03, Ano92a, Ber96a, Hig97]. Canada [Ano00b, BT01]. cannot
[Boe05]. Cap [HC17]. Capabilities
[V08, Fly98]. capability [CKD94].
capability-based [CKD94]. capacity
[SSk+07]. Capping [RCC12]. capturing
[BKC+13]. Carolina [ACM93a]. Cascadia
[ZL10]. Case [AH00, AKG96, Ch15a, EE14, LSB15, TAK+00, TESK06, VK99, BDLM07, CAS14, CL94, HJT+93, KPPER06, KI16, MSM+11, MN03, Sp05, Sod02, YN09].
Cathedral [USE02]. causality
[HH16]. cavity
[RM99]. CD [Ano00b].
CDSChecker [ND13]. CE [Tim03]. Center
[ACM98d, ACM99b, ACM00, Ano03, Hol12, IEE90]. Centers [JGS+19]. Centric
[BDN02, Bre02, Han96, DHM+12]. CFD
[DK02]. CG [TAK+00]. CGRAAs [PJS15].
chain [SBC91]. Chaining [JY15, KFG15].
Challenge [Ano99]. Challenges
[Ano99, GJ97, AG06]. Changing [Gar01]. channel
[MN03]. Channels [EPAG16].
chant [HCM94, Ano94c]. Chapter
[SSk+01]. Characterization
[Ano05, BCG+08, DS09, MR94, MMM+05, DWY10]. characterizations [GS00].
Characterizing
[Gle91, OdSSP12, SSN10, MTPT12].
Charleston [ACM93a]. Chassis [Ano00b]. Chebyshev
[Rö19]. Checker
[FQ02, FF04, FF08, FF08]. CheckFence
[BAM07]. Checking
[ES97, ND16, AKH08, AD08, AGE98, BAM07, BS10b, BNS11a, BNS11b, BNS12, CNQ13, D100, FFLQ08, Mil05, MQ08, ND13, PAdS+17, Sto02, TFD10, VGR06].
Checkpoint [ZSA13].
Checkpoint/Restart [ZSA13].
Checkpointing [CS02, ZSJ06]. Chemkin
[Bra97]. Chicago [Ano94d]. China [IEE97].
Chip [AGJ18, HHOM91, KST04, KML04].
KU00, KKS+08, LS07, LZZ+08, LKBK11, LMJ14, MTN+00, MR09, PPG11, SV19, TESK06, VIA+05, Wea08, ZM07, CSM+05, DTK+15, GA09, KT99, MKW+06, SMK10, SKKC09, TEL95, TEL98a, TEL98b.

**Chip-Multiprocessor** [PPG11, KT99].

**Chip-Multiprocessors** [KU00, LMJ14].

Chips [Ano00a, Ano03, IEE99]. Chiron [TNB+95]. Chiron-1 [TNB+95]. Choice [III01, TEE+96]. Cholesky [CIM+17, VDO8]. Chores [EJ93].

Chunking [WLM15]. CIL [CAR08]. Cilk [BJK+95, BJK+96, FLR98, Joe96, Mil95].

Cilk-5 [FLR98]. CIO [Ano94g]. Circuit [AMR98]. City [Hol12]. CLAM [GMR98].

**CLAP** [HZD13]. Class [BS99, Cha02, Gib94, Röt19, VE93, CS00, MSLM91, Yam96]. Classes [Cal00, Fek08, How98, Lam95, SC17].

**Classical** [JSB+12, JSB+11]. Classics [Wil00]. Classification [KZC15, LMJ14, LCH+08]. classifying [NWT+07]. **Claus** [WP10]. Client [Day92a, Day92b, Sri95, Goh96].

**client-server** [Goh96]. **Client/Server** [Day92a, Day92b]. clients [CDL13].

**climbing** [CY09]. Clique [MP13]. Closure [YMR93b, YMR92, YMR93a]. cloud [FKS+12, GDS+17]. clouds [FGG14].

**Cluster** [BNH01, CRE99, HD02, KKH03, Koo03, SCD+15, MKW+06]. **Clustered** [GSL10]. Clustering [JY15, LK15, RVR04, TAS07]. Clusters [BWXF05, FA19, WG99, ZBS15, BMV03, FWL03, TMAG03].

**CMP** [TA07, AMPH09, CWS06, ICH+10, LLL10, SLJ+18, SSK+07, ZJS10, ZJS12].

**CMP-based** [LLL10]. **CMPs** [GW10, JSM+13, SQP08a, SQP08b, SQP08c, YL16]. Co [Goo97, SG18, AMPH09, BBH+17].

**co-design** [BBH+17]. co-optimization [AMPH09]. co-processor [Goo97].

**Co-routine-Based** [SG18]. Coarse [NS97, ZM07]. Coarse-Grain [ZM07].

**coated** [Lep95]. Code [BBdH+11, Coo95, HY+15, JSB+12, Kim14, KEL+03, MS02, NS97, ND16, PR98, Roh95, RNSB96, TGBS05, Tra91, Ann96, BB00, JSB+11, SJ95].

**Codes** [CBM+08, PHCR09, PT03]. Codesign [HPA+15]. Codesigned [MKM17].

cognitive [MCS15, PWD+12]. cognizant [LK13]. Coir [SG96]. Cold [Hig97, Hig97].

Collaborative [VDK09]. Collection [AKP99, LB92, PUF+04, PF01, QSAS+16, KTK12].

**Collections** [Kle00, McM98a, McM98b]. collective [HMC95, SCB15]. collector [BBYG+05, DL93, HL93, WK08a, WK08c, WK08b].

**coloring** [CFG+12, GP05, SS10]. Colt [WN10]. Combinator [KLS92]. combined [UZ00].


Commands [KD97]. Commercial [SBKK99, BEK00, EJK+96]. Commodity [ZLJ16, LVN10, RP108]. Common [Hol98a, Kue92, BDF98, BDL10, CL00, Kue91].

**Communication** [ABN00, BDJ06, DSR15, EHG95, FKT96, FGKT97, GMR98, HYY+15, OA08a, OA08b, OA08c, Pan99, PWL+11, Rod94, SKK+01, TKA+01, TGG95, BR92, DBRD91, GR506, KASD07, Lam95, QSH16, RR96, RR03, TG09, TKA+02, VS06, WHJ+95, ZCMS+02a, ZCMS02b].

**Communications** [Ano03, BMN99, FJ08, SCB15, Sho97b, TP18].

**Commutativity** [AC09]. Compact [HEM17]. compaction [WK08a, WK08b, WK08c].

**Comparative** [SKP+02, Yoo96a, PL03]. Comparing [KKP+16, SV96c, SV96a, SV96b].

**Comparison** [ILFO01, SAC+98, GL98b, KIM+03, MKIO04, MMT10]. Compass [PWD+12].** Compatible** [MM14, LBH12].

**competition** [YL16]. Compilation [ACMA97, HLB94, BRRS10, GC92, HCD+94, Tsa97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time [CS95a, CS95b]. Compile/run [TSY99]. Compiler
[ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, JSB+12, LEL+99, Loc18, MCRS10, SCv91a, SCv91b, SYHL14, Sin99, TY97, TGBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG95, BAD+10a, BAD+10b, BVG97, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Fon97, Goi97, Hop98, JSB+11, MSM+11, McM97, Mül03, RKCW98, Sch91, SKKC09, UZU00, WLG+14], compiler-assisted [Dub95].
Compiler-Controlled [CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91].
Compiler-directed [DZKS12, SKKC09].
Compiler-Driven [YBL16].
compiler-managed [WLG+14].
Complement [YFF+12]. Complete [BR15, Sch14, BW97, DWS+12, FFY08, KGK90, NV15].
Completion [AGK96, BGK96, Lun97, Man98, BGK94c]. Compaex [SZM+13]. Complexity
[EG11, CMX10, SKA01]. complexity-effective [SKA01]. Compliant
[BGK96, SP05, Hig97]. component
[NFBB17], component-based [NFBB17]. Components [Gon90, Sh097b].
Composable [MLGW18, SS10, FKS+12].
Compositions [KS97]. Comprehensive
[TAM+08]. Compressed [PBL+17].
Computation [ACM94c, BFA+15, CWS06, HLBR94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fun93, Fuj97, KG07, Kac91, NJ00, Sha98, ST98, WHJ+95].
Computational [LNI+19, PCPS15, Bar09].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Bhu92, BL03, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute
[BBSG11]. Computer [ACM98c, Ano94a, BVL09, CB+00, Goi94, BD06, DNB+12, GK05, I+94, PBDO92, WQLJ18].
Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95].
Computing
[ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Anm89, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Ham96, Hol12, HG91, IE94b, KR12, Kon00, LCK11, LFA96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BGG95, BD06, Dan09, FWL03, GBG95, GS02, HG92, IE97, Joe96, Kim94, KU17, Lz97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta90, SCA01, Tem97].
Concept [ÂMdBdRS02, BBFW02, KA97].
Concepts [McC97a]. Concrete
[NSP+14].
Concurrency [BM94, GMZP14, MLR15, MQLR16, ME17, NFBB17, ZWL15, BA08, But14, CBM10, DKG18, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, SK12, VTS12, Yan02, ZWL+16, dB09, SB80].
Concurrency-preserving [NFBB17].
Concurrency
[ILFO01, KD97, KCDD99, MSM+16, NPT98, PCM16, PF01, SV19, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAO07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGK90, MSM+10, MKIO04, Men91, NHPF08, Ne99, ND13, ORS+06, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZSJ06, Hay93].
Condensed [BIK+11]. Condition
[Hol98c, Yan02]. Conditional
[IBST01, NA07]. Conditions
[HM96].
Conference
[ACM92, ACM93a, ACM93c, ACM94a, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM99c, Ano90, Ano94a, AOV+99, BT10, Hol12, IE94b, IIE95, IIE96, IIE02, LCK11, USE98, USE99, USE99b, USE99c, USE99d, USE00b, USE00a, Ano94d, Ano94f, Est93, KKV03]. confidentiality [NSH14].
Confirmation
[ACM92, ACM93a, ACM93c, ACM94a, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM99c, Ano90, Ano94a, AOV+99, BT10, Hol12, IE94b, IIE95, IIE96, IIE02, LCK11, USE98, USE99, USE99b, USE99c, USE99d, USE00b, USE00a, Ano94d, Ano94f, Est93, KKV03]. confidential [NSH14].
confirmation [Stu95].
Congress [Ano94d]. conjunction [Ano94e].
Connect [Ano00b]. conquer [FN17, TP18].
conscious [GBP+07]. Consistency
[ABH+00, AB01, AB02, CH95, LB17, Rob03,
WC09, BAM07, Cho93, DNB+12, GSO0,
HT14, QSQ14, SNM+12]. consistent
[NHFP08]. Consolidated [HC17].
Constrained [TLGM17, GW10, YN09].
constraint [SCG95]. constraints [HB15].
Construction [KW17, LHS16]. constructs
[BS06]. consumption [SCM05]. Contact
[Nak03]. Contemporary [ZJS12, ZJS10].
Content [WLM15]. Content-Based
[WLM15]. Contention
[ALB+18, XSJ08, ALW+15, DSG17,
PGB14, TMCP10, ZKR+11].
Contention-aware [XSJ08]. Context
[TLA+02, JG92, JF95, LG04, MQ07,
PAAn+17, PFH06, SCB15, YH07, LG04].
context-bounded [PAAn+17].
context-sensitive [PFH06, LG04].
contexts [BGC14, TE94b, WW93].
Contextual [BGZ97, NHFP08].
continuation [AAHF09].
continuation-based [AAHF09].
continuations [DBR91, GRR06].
Continuing [Ano99]. Continuous [RCC14].
Continuously [DTL14]. Contour
[GFJ19]. Control [BP05, KW17, Lev97,
PB+15, SU01, SZM+13, SG96, CDD+10,
DKG18, FK12, FSY09, GCC15, MLCW11,
NT14, PPA+13, PWW18, Pol90, RP+09,
UZU00, WLK+09, Yoo96b]. control-flow
[NT14]. Controlled [ALSJ09, BCG+08,
CSS+09b, CGSV93, SCV91a, CSS+91a,
CSS+91c, Luk01, MWP07, Sch91, SCV91b].
Controller [RLJ+09]. controllers
[KASD07]. controlling [AGN09, BK+13].
controls [McM96c]. Controversial [Gar01].
Convention
[ACM98a, ACM99b, ACM00, Hol12].
Conventional [KET06b, HB92].
Convergence [RM03]. conversational
[LG04]. Converse [BK96]. Convert [Vol93].
Converting [LEL+97a, LEL+97b].
convolutions [RB18]. convolver [Kep03].
Cool [Ano00a, Ano03, Wei97]. cooperation
[BM07, SKBY07]. Cooperative
[AMRR98, DNT16, ILF001, LC13, KIM+03,
MKIO04, TCG95]. coordinated [KKJ+13].
coordination [BDF98]. Coping [San04].
Coprocessor [LRZ16]. copying [HL93].
CORBA
[DRH+01, PSCS01, SV96a, SV96b, VS96].
Core
[CC18, CvdBC18, FMY+15, FJ08, GBK+09,
IXS18, KST04, KTR+04, MP01, MNU+15,
MM01, MB05, PVS+17, PHB18, PM14,
QOM+12, ABC+15, AMPH09, CF+12,
CSM+05, DTR18, DWYB10, GW10,
KBF+12, MLCW11, MLC+09, MTPD12,
Mus09, SMQ09, VPQ12, WCC+07, YZ07].
CoreDet [BAD+10a, BAD+10b]. Cores
[CCK+16, RRK11, CW06, MAF+09, SW16].
coreSNP [GAC14]. Corner [SW97].
Corona [VSM+08]. Corporation
[Ano00b, Ano00b]. correct
[DJLP10, SP00b, Shi00]. Correction
[TLA+02]. corrective [LG04]. Correctness
[Ram94]. Correlation
[SLT03, PFH06, SLT02]. cosimulator
[LT97]. Cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG+12]. counterexamples
[NV15]. Counters [Wei98b]. Counting
[Hol98c, Rec98]. Count [ACM98d].
Coupled [MTN+00]. Course
[BLP04, BZ07, GL07, She98]. coverage
[RRP06, YNPP12]. coverage-driven
[YNPP12]. covering [BCG13]. Covert
[EPAG16]. CPU [ASSS19, BSSS14, PGB16].
CPUs [SKG+11, SMD+10]. Craftworks
[An097a]. Cray [BCG14, Smi01, VTS12].
Create [Ber96b, Ber96a, Len95]. Creating
[Han97, Ten98]. Creation
[Eng00, Rin99, Sin97]. Crisis [An99].
Critical
[BLG01, CS12, OTY00, DTL14, DESE13,
NM10, RGG+12, San04, SMQP09, YL16].
Criticality [DESE13, NB12]. Cross [Lam95, SHK15, BKC+13, CZSB16].
Cross-Layer [SHK15]. Cross-platform [Lam95]. cross-thread [BKC+13, CZSB16].
CS1 [GL07], CSMT [GSL10], CSP [Nev99]. CTS [ASSS19]. CUDA
[LBH12, MM14, PAdS+17, WJ12, YZ14].
CUDA-compatible [LBH12]. CUDA-NP [YZ14].
Cyclops [ACC+03]. Cyrus [HD+13].
D [KSB+08, NTKA99, PYP+10, TKHG04].
Daemon [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEEE96]. dans
[Zig96]. DARPA [Mat97]. Data
[Ama89, ABNP00, DTLW16, EW96, FHM95a, GAC14, HMC97, HRH08, Hig97, HLH16, JMS+10, JGS+19, KZC15, KEL+03, KET06a, KET06b, LPK16, LLMJ14, LLD17, ME15, ME17, RCRH95, SBN+97, SAC+98, SSY97, SG96, Taa98, TESK06, VT96, WIL98, ZLJ16, ZAK01, AGEB08, AGN09, BAMP07, CSH95a, CSH95b, CDL13, DHM+12, Evr01, FHM95b, FK12, HL93, LTL+16, LHS16, Mao96, MNN09, NWT+07, ND13, PDM16, PRB07, PHCR09, Po90, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKK09, WDC+13, YLK13, ZJS+11].
data-centric [DHM+12]. Data-Driven
[DTLW16, KET06b, ME15, ME17, TESK06, Evr01].
Data-Parallel
[ABNP00, SAC+98, HMC97]. data-race
[MNN09]. Database
[BAZ+19, KKS97, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a]. Databases
[AOV+99, GDSA+17, HL08, MIGA18].
Dataflow [CVJL08, FA19, GGB93a, Gao93, HPB11, HKSL96, LH94, NBM93, RSBN01, SRU98, Tra91, YMR93b, BGG95, GGB93b, GBG95, HG92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based
[RSBN01]. dataflow/von [HG92]. datarace
[CLL+02, CVJL08]. Datarol [KA+97].
Datarol-II [KA+97]. Dawning [Cro98]. DC
[IEE94c, ACM92, Ano90]. DCE
[RD96, Yam95, Yam96]. DDOS [HBCG13].
Deadlock [Hol98a, Mou00, Ver97, ABF+10, SR14, WKL+09]. Deadlocks
[CC14, CJW+15, CZWC13, JPSN09, PRB07]. dealiased [RB18]. Deallocation
[LPE+99]. death [Len95]. debate [Bak95b]. debug
[PT03]. debugger [CB89, CB90].
Debugging
[Ano98b, Caz02, HWZ00, MQLR16, PHK91, SJB92a, SJB92b, BGZ97, MLR15, WOK96].
decentralized [RPB+09]. Decision
[LFA96, LQ15]. Decisions [JGS+19].
decomposition [JEV04]. Decompression
[PBL+17]. Decoupled
[DO95, IXS18, APX12, Evr01, RVOA08, RCDG06, SA01, VS96]. decoupling
[KGGK09, PG01]. Decoy [MIGA18].
Deductive
[AdbD08, BK13]. Deeply
[GKCE17]. Defect
[OB13].
Defragmentation
[PVS+17]. Delaunay
[ABC+09]. Delivering
[SCCP13].
DeLorean
[MCT08]. Demand
[KKJ+13]. Demand-based
[KKJ+13]. Demus
[Sri93].
Demus-2
[Sri93]. dense
[ABD+12, MM07]. Dependable
[SUF+12]. Dependence
[CZS+17]. dependencies
[BKC+13, CZSB16]. dependencies
[NPC06]. Deployment
[GARH14].
DepSpawn
[FA19]. Depth
[McM96a, McM96b, McM96c, McM96d].
Derivation
[Kim14, SV19]. Derivative
[TT03]. describes
[Yam96]. Design
[ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GRS97, GMR98, Hai97b].
JGS+19. KHP+95. L Fa90, MB99, NBM93, Raj93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BH+17, BO96, Car89b,
FWL03, HCM94, Hud96, KU17, KGGK09, Mah11, Met95, Moc95, Moo96, MKR02, Ném00, OKID92, OCRS07, RSB+99, SB80, Sri93, Ver97, WLG+14, Wan94, WCV+98, Xue12. designed [San04]. Designing [Dru95, GZK12, RR93, Rei95, TSV12, Hai97a, TCG95]. Desktop [Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Pra95b, WSK97]. desktops [Ano94b]. despite [Len95]. Destructing [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03]. Details [FMY+15]. Detect [CNZS17, DS16, CZWC13]. Detecting [DSR15, RBK+09, SK97, FF10, JPSN09]. Detection [ABF+10, CC14, KUCT15, KW17, LS18, LLS06, Mou00, TLZ+17, TLZ+18, ZLJ16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTHB14, MKM14, MNN09, NBMM12, NA07, PS03, PS07, PFF06, RVS13, RM00, SR14, Sch99, TLZ+16, TWD03, WDC+13, ZKR+11, DWS+12]. Detector [SBN+97, SLC06]. determined [Kub15]. deterministic [BS10b, LWV+10, LZW+13]. Deterministic [DK10, KRBJ12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DLO09, DN3+12, LZW14, MAAB14, OAA+09, QSH16]. Deterministically [MCT08]. DetLock [MAAB14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing [SP06b, Shi00, TKA+01, OT95]. Development [Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, ARwV03, Hig97, Pom98, TNB+95]. devices [Xue12]. diagnosing [CS12]. diagnostics [GGB+05]. diagrams [SK12]. Diego [ACM93b, ACM98b, USE89, USE93b, USE98b, USE00a]. differences [Yam96]. Different [BLPV04, GLC99]. Differential [Loe97, MQLR16, MLR15]. Difficult [CTYP02]. Difficult-path [CTYP02]. Diffusions [LTM+17]. Digital [SS91]. Digraph [CNZS17]. dimension [NJ00]. dimensional [AR19]. DIMM [ALSJ09]. Direct [PR98]. Direct-threaded [PR98]. Directed [LPE+99, STR16, AR19, DZKS12, Fan93, Sen08, SKKC09]. directory [QSQ14, HR10]. DISC [Don92]. disciplines [Bar09]. discrete [Leg01, TKG04, WLK+09]. discussion [Sho97a, Sho97b]. Disintermediated [BDJ06]. Disjoint [SJA12]. Dispo [MGK+00]. Dissecting [ACC+03]. Distance [BCZY16, KZTK15, SV19, KNS16]. distinguish [HL93]. Distinguished [ABH+01, TKA+01]. Distributed [ABNP00, ABH+01, BBD+91, BWX05, BHKR95, BC94, CV98, CJK95, DKA16, FSS06, GJ97, Jen95, MGK+00, PG92, Pra95a, RLJ+09, RBPM00, RW97, RCRH95, SUF+12, TWD03, USE92b, VS96, Yas95, Ano96, A+01, BCG+95, CML00, Car89a, Gol96, GKK09, Gun97, HB92, HMC95, HW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97, Pha91, Ply89, QSQ14, Sto02, Tod95]. Distributed-Memory [RCRH95, BCG+95, HW93]. Distributed-sum [TWD03]. Distribution [SSYG97, ZAK01, CY09]. divergence [MTS10]. divide [FN17, TP18]. Divisors [Kuc92, Kiic91]. DMP [DLCO09]. Do [Cri98b, Cri98a, RPNT08, Ber96a, Ber96b, YLLS16]. Dock [BCS11]. Docking [BCS11, TO10]. documentation [HF96]. Does [Hag02, RKK15, JZS10, San04]. doing [Yam96]. domains [LAK09]. données [Swi09]. Don't [HVP15]. DOSThread [VE93]. DoubleVision [Ano00b]. downdating [VV11]. Downturn [Gar01]. DRAM [LLK02, kSYH+11]. DRAMs [ALSJ09]. dnf [M3M+16]. DRFX [M3M+10]. Drinking [CZSB16]. Driven [DTLW16, For95a, For95b, HLB94, KET06a,
KET06b, LWSB19, ME15, ME17, TESK06, YBL16, CSV10, Evt01, RVS13, RSB+09, SLP08, SQP08a, SQP08b, SQP08c, YNPP12. driver [CCW+11]. DSLs [RKHT17]. DSM [ABH+00, AB01, AB02, DBF98, KKH04]. DSM-PM [AB02]. DSM-PM2 [AB01]. DSMs [FBF01]. DTS [BHKR95]. Dual [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11]. Dual-Core [KST04, MB05]. Dual-Level [BBC+00, DK02]. dual-personality [CCW+11]. Dual-Processor [EHG95]. Dual-Thread [MB05, WS08]. Duplex [KG05]. Duplication [Kwo03]. Dynamic [BPSH05, CJW+15, FSYA09, HSS+14, Hig97, KMAC01, KPC96, KC98, KC99, KUCT15, MVZ93, MTS10, Nak01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK+01, Sta90, SC96, WHG07, XMN99, ZK15, ZKR+11, ZL10, AR17, CAR08, Ch95a, Ch95b, Chr96, Don92, FF04, FO08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SCB15, SLG06, TJY+11, WW96, BK13]. dynamic-multithreading [LSS12]. Dynamically [PGB12, TLGM17, DMBM16, Kep03]. dynamically-typed [DMBM16]. Dynamics [LNI+19].

e6500 [BGH+12]. Early [GL91, PBL+17, SLP08]. EARTH [HTZ+97, HMT+96, Sod02, TAK+00, TKA+01, TKA+02, TMAG03, Nak03]. EARTH-MANNA [HMT+96, Sod02]. Easy [FA19, H99]. Easyscript [An00b]. ECMA [Stu95]. ECMA-162 [Stu95]. economics [Bar09]. Edinburgh [AOV+99]. edit [KNPS16]. Editors [GGB93a, GJ97]. Education [Gar01]. effect [BAD+09, GL98b, YSY+09]. Effective [ABLL92, DN94, GH03, GMGZP14, NAU06, NSH14, PGB16, RVS13, Sat02, TMC09, TY97, CBM10, JSB+11, MMN09, MTC+07, SKA01, Tsa97b]. Effectiveness [PR05, TE94b]. Effects [Cho93, HRH08, KLB+99, KRBJ12, NHFP08]. Efficient [TTKG02]. Efficiency [AKJ+12, An005, THA+12, AMPH09]. FGG14, GA09, MMM+05, MWK+06, PRA95b, RCC+10, SP05]. Efficient [AD08, ALSJ09, AI94, ABN99, BCZ+16, BGDmWH12, BJK+96, BL98, BMN99, CZS+17, CYYL18, CLL+02, DMBM16, Gac93, GJT+12, GRS97, GS06, GN96, HMCP16, HSS+14, HR10, HEMK17, KPC96, KASD07, LS18, Lem02, LHS+16, LZW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZL16, ATLM+06, BL93, BJK+95, BHK+04, EK120, FWL03, FF09, GB99, HSD+12, KSB+08, KNPS16, KSD04, LK13, LWV+10, LHS16, LZW+13, MSM+10, NKL09, OAA09, Pan99, PS06a, PG06b, PG06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Sh100, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZL16+16, FSYA09]. Efficiently [KBF+12, MCT08, SW16, Blu95, BKC+13]. eigenproblems [ABD+12]. eigenvalue [BLK+11]. Elastic [SG18]. Electronic [An00b, B500]. Elegant [Hub01]. Element [HBTG98, MS02]. elementary [HK+92]. elide [MLS15]. Eliminating [DSG17, OCT14, RD06, MTP12]. elimination [MK12]. elision [NM10]. Elliptic [Loe97]. EM-4 [BAM93, SKS+92]. Embedded [BGH+12, DS09, Dru95, GKE17, KG05, KE15, MS15, WM03, DCK07, KV+09, KASD07, KBF+12]. LLC15, LBVH06a, LBBvH06b, LBBvH06c, RSB+09, SKP+02, Xue12]. Embedded-Systems [Dru95]. Embedding [Pul00]. emergencies [MTP12]. Emerging [VSM+08, GBP+07, HFV+12]. empirical [LC13]. employing [CWS06]. Employment [Gar01]. Empowering [JSB+12]. Enabling [CC18, Pan99, SMZ18, JMS+10, VGG+10a, VGG+10b]. End


Engine [SG18, CNQ13]. Engineering [GJ97, LSB15, WCV+98]. engines [HB15].  

England [ACM94c]. Enhance [FSPD17, FJ08]. Enhanced [Ano00b, EJ93]. Enhancing [OL02a, OL02b, OL02c, HWW93, RHH10].  

Environment [ABNP00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, K07, Lan97, Pha91, SWYC94, Sta90, Tem97, WCC+07]. Environments [AKP99, BDN02, KG05, SP00a, EJK+96, RGG+12, Sam99, Ver96, Way95]. equality [AD08]. Equalization [TLGM17]. Equations [Loe97]. equivalent [Pra95c]. Eraser [SBN+97]. Errata [Ano01, Ano05]. Error [EUVG06, OA19, SSN10]. Errors [SK07, VAG09]. escape [SR01a]. Estimator [LBvH06a, LBvH06b, LBvH06c, LvH12]. Estimating [PCPS15], etc [Hlo98a].  

European [DLM99]. EuroPVMMPI [KKDV03]. Evaluate [EE14]. Evaluating [BL96, CML00, NPT98, PSC01, RPT05, Sch98, SD95, TG09]. Evaluation [Aru92, Boo93, BTE98, CL95, CBN+00, EJK+96, Eic97, GLC99, HN91, RNSB96, SCD+15, TT03, ZL10, BDmWH12, BLCD07, Car98b, Cho92, Don92, LZ07, Mah11, MKR02, NFB00, RGG+12, RCDG06, SWYC94, SKP+02, SMS+03, TGO00, TKA+02, WLG+14, WZSK19]. Evaluations [MM14, Rok95]. evaluator [SP00b, Shi00]. even [Ano94b]. événements [Swi09]. Event [Ber96b, CKRW99, For95a, For95b, Ber96a, CKRW97a, CKRW97b, GWM07, KCCD99, KBP+03, Leg01, RV13]. Event-Based [CKRW99, CKRW97a, CKRW97b]. Event-Driven [For95a, For95b, RV13]. event-handling [KBP+03]. Events [BDN02, LZ07, Van97b]. Evolving [TAK+00, EU17]. Evolving [MS87, MS89]. Exact [Sch17]. examines [Yam96]. Examining [Kan94, Ric91, Rod95a, Tim03]. Example [BLPV04]. Exception [DH98, Lea96]. Exceptions [Ano01, RO15], exclusion [BRE92]. exclusiveness [Lae94], execute [APX12]. Executing [Blu95, BS99]. Execution [AHB+01, CC18, C391, Coo02, EC98, Far96, GME03, GSW06, HEMK17, HZ12, K16, KLO8, K15, KG94, ME15, MGK+00, MCT08, NBM93, NS97, PR05, R03, RKK15, RSW01, STY99, VDNL16, Ann96, A+01, BAD+10a, BAD+10b, BCG14, Dii93, JWTG11, LVN10, Luk01, PAB+14, PG03, SBC91, SIA12, SG14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSA08].  

Executions [CdOS01, HZD13, Roh95, STR16]. Exemplar [BLCD07]. Existing [Ric99]. EXOCHI [WCC+07]. expansion [YK13]. Expectation [SC17]. Expectation-Maximisation [SC17]. expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96]. Experiences [BKH+04, EHG95, PST+92, SGM+97, USE92b]. Experimental [BLCD07, EGC02, YMR93a, GR05, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a]. Experiments [DV99, GMR98, SZM+13, VSM+16, VV00]. Explicit [DV99, VDBN98, BM07, URS02b, URS03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KVN+09, PSC06a, PSC06b, PSC06c].
Exploiting 
[AACK92, EUVG06, FFQ04, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96]. 
Exploration [PTMB09, Sch17]. Exploring 
[AACK08, BS10a, SE12, WWW+02]. 
Expressions [Hei03]. Expressions 
[BLG01, DV99, Röd19, VDBN98]. 
Extending [BF08, Mar03]. Extending 
[FF09, JD08, MSLM91, Wei97, LAH+09]. 
Extensions [Sch90, Bau92]. external 
[LWV+10]. Extracting [GP95]. Extremal 
[MNG16]. 

FAB [YWW03]. Facility [KU94]. Facing 
[KML04]. Factorization 
[ABL19, But13, CYYL18, CIM+17, Dav11]. 
Factorizations [VD08]. failing [STR16]. 
failure [CZ02, LC13]. failure-inducing 
[CZ02]. failures [HZD13]. Fair 
[MQ08, FSPD17]. Fairness [ES97, FSPD17, GWM07, VS11a, SCCP13, WTKW08]. false 
[LTHB14]. farms [MR98]. Fast 
[BCS11, BRE92, GSC96, HN91, LCT+16, SMZ18, STY99, SLF14, ST05, VTS12, ZSA13, ZCO10, BDLM07, CKD94, Kre03, Kus15, TTO3, TTKG02]. Faster 
[PCM16, BDM98]. FastTrack [FF09]. Fault 
[OA19, RRP06, RM00, VPC02]. FCRC 
[ACM96]. Fe [Gol94]. Feature [LH90]. 
Features [GMB93, BDM98]. Featuring 
[RRK11]. February 
[USE89, USE00b, USE02]. Feedback 
[SQP08a, SQP08b, SQP08c, TGO99, ALHH08]. Feedback-driven 
[SQP08a, SQP08b, SQP08c]. Felix [An00c]. 
Fernandez [An00c]. fetch 
[EE09a, TEE+96, AGJ18]. FFTs [MJF+10]. 
Fiber [GDSA+17]. Fiber-based 
[GDSA+17], fibers [BS06]. Fibonacci 
[GFJT19]. FIFO 
[HHOM91, HHOM92, QSaS+16]. fifth 
[ACM93b, AOV+99]. File [FG91, GJT+12, 
KS97, Pea92, WLM15, BLCD97, DZKS12]. 
Files [RRK11, CCC12, kSYHX+11]. 
filtering [Keo03]. final [HCM94]. Finding 
[MNG16]. Fine [AZG17, BBG+10, BSS14, But13, CSS+11a, CSS+11b, CSS+11c, HG91, KG94, LKBK11, LVS01, LFA96, MKM17, NS97, PBR+15, TV97, TAK+00, YSS+17, BGK94c, DGB97, Goi97, KDM+95, Kim94, Loi95, MLC+09, Met95, PL03, RBP+09, TKHG04, Wei98a, kSYHX+11]. Fine-Grained 
[BBG+10, BSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, LVS01, BGK94c, DGB97, Goi97, RBP+09, Wei98a, kSYHX+11]. Finite 
[HBTG98, MS02, Cor00]. Fine-Element [MS02]. finite-state 
[Cor00]. firmware [ABB+15]. First 
[MSLM91, Wei97, LAH+12, MHWW02, Hon94]. First-class [MSLM91]. FL [ACM94a]. 
FlexBFS [LAH+12]. Flexible 
[ABG+08, KS97, Le02, MSM+16, SP00a, Sam99, SCM05, WW93]. Floating 
[LWSB19]. Floating-Point [LWSB19]. Florida [ACM98a]. Flow [AT16, Ana89, HH11, PBR+15, FSYA09, JD08, KBH+03, NT14, Pol90, RM99, RBP+09, SV98]. fluid 
[JD08]. FluidCheck [KS16]. fly 
[CWS06, PS03, PS07, Sch98]. Focus 
[EHP+07]. Forces [FTP11]. Forecasting 
[An00b]. fork [ALS10]. fork-join [ALS10]. FORM 
Fortran [An00a, Bra97, AS14, G0T03, HBG01, HBG02, N0G01]. forum 
[Sho97a, Sho97b]. Forwardflow [GW10]. foundation [MCS15, RBF+09]. Foundations [BA08, Gol94]. Four 
[CH95, MTN+00, KNPS16]. Four-Russians 
[KNPS16]. Four-Way [MTN+00]. Fourier 
[TT03, TTKG02, BCS11, HN91]. fourth
Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DKA16]. Hamilton [Ric91]. Handles [Rec98]. Handling [DH98, LS95, SK97, BM91, KCCD99, Koo93, KBP93, Lea96, Met95]. Harbor [BBC+00]. Hardware [AGJ18, BAZ19, CKD94, CSS+91b, DVAE18, KE15, KH18, LS06, MWP07, MKM17, Men91, SW08, ZL16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MSL15, MQW95, OCT14, PAB+14, PRS14, RPNT05, SE12, TE94b, DWS+12]. hardware-aware [PAB+14]. Hardware/Software [MKM17, LT97]. harmful [NWT+07]. Harmony [TKT12]. Harness [Ama98, EBK01]. Hash [GK05, VB00]. Hash-join [GK05]. Hashing [SMZ18, MIGA18]. having [YFF+12]. Head [Mia90]. healing [SLP+09]. Heaps [DGK+03, GFT19, Man99, St01]. help [Len95]. Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here [Ano92a, Pr95c]. Hessenberg [BKK17]. Hessenberg-triangular [BKK17]. Heterogeneity [CCK+16, Kwo03, RKHB11]. Heterogeneous [AT16, AAC92, FBF01, KTR+04, Lu95, NTR16, THA+12, FKS+12, GKZ12, LK13, SJ95, WCC+07]. Heuristic [HH11, Mah11, OCRS07]. Heuristics [MG14]. Hewlett [BLCD97]. HFS [KS97]. hiding [BR92]. Hierarchical [GJT+12, JY15, KC98, KG94, BM03, DZKS12, LK13, LQ15, RCDG06]. Hierarchies [BCZY16, TAM+08]. Hierarchy [ZM07, BGDmWH12]. High [ACM98a, ACM98d, ACM00, Ano02a, Ano03, BGH+12, CT00, FGKT97, Gar01, Hol12, HG91, IEE94b, LCK11, LG06, LMJ14, LBH12, LHG+16, LCH+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, SLJ+19, TC198, VV11, WG99, WN10, CIM+17, GS02, HG92, Kim94, Lan97, RRP06, Re95, SQP08a, SQP08b, SQP08c, Tem97]. high- [RRP06]. High-Level [Sch17]. High-Performance [ACM98a, BGH+12, FGKT97, Gar01, IEE94b, NBS+15, RG03, SLJ+19, TC198, WN10, LCH+08, VV11, CIM+17, Kim94, SQP08a, SQP08b, SQP08c]. high-powered [Re95]. High-Speed [Ano02a, Ano03, HG91, SRS98, HG92]. Higher [CJ95, NV15]. Higher-Order [CJ95, NV15]. highly [BGDmWH12, Klu15, KGGK09, MAAB14]. Hill [CY09, USE02]. Hill-climbing [CY09]. Hilton [IEE90]. HippogriffDB [LTL+16]. Hist [Gar01]. history [Ano97b]. Hoard [BMBW00a, BMBW00b, BMBW00c]. Hoare [Ki17]. HoME [OKD92]. Homogeneous [CC18, JGS+19]. Hood [Ven97]. HoPE [PBL+17]. Hot [IEE99, PBL+17, Gle91]. Hot-Cacheline [PBL+17]. Hotel [Ano94d, USE02]. Householder [BKK17, VV11]. Householder-based [BKK17]. Householder-like [VV11]. Houston [Cha05]. HP [Ano95a, Ano95b, Yan96]. HP-UX [Ano95a, Ano95b, Yan96]. HPC [GKK09, KCO9, PLT+15, SLJ+18]. HPF [BM03, CM98]. HTM [KGGK09]. HTMT [Gar01]. HTTP [Zha00]. Hut [ZBS15]. Hybrid [BBG+10, Ga093, JYE+16, LH09, MS02, NBM93, YZ07, GKK09, HG92, MK12,
Hybridizing [CZS\textsuperscript{+}17], Hyperion [A\textsuperscript{+}01], Hyperobjects [LS18], hyperscalar [Raj93, Sha95a], Hyperthreading [HRH08, KM03].

I-WAY [FGT96]. I\textsc{e} [USE98b]. I/O [RM03, Ano95a, Ano95b, ABB\textsuperscript{+}15, BDN02, KSU94, LTL\textsuperscript{+}16, Man98, MG15, Yoo96a]. IBM [ABB\textsuperscript{+}15, CJB\textsuperscript{+}15, KST04, LS\textsuperscript{+}07, WZ\textsuperscript{+}08]. Id [Nik94]. IDA* [Mah11]. Ideas [JLA16]. idempotency [KOE\textsuperscript{+}06]. identification [JSMP12]. Identifying [BCZY16, SU96, DESE13]. IEEE [ACM98d]. IFIP [BT01]. Igniting [ACM03]. II [HCD94, IEEE99, J91, KA97, KR01a, McM96b, Wal95]. III [Ano00a, USE92b]. Illinois [GHG\textsuperscript{+}98]. Illinois-Intel [GHG\textsuperscript{+}98]. Illuminating [BLPV04]. ILP [ACRS07, RLJ\textsuperscript{+}09]. im [HL93]. Image [WN10, BCG14, Kep03, RKHT17]. Impact [KLG08, SCL05, TE94a, ZAK01, Div95, Met95, RGG\textsuperscript{+}12, RPNT05]. Impaired [Wei97]. imperative [SV98]. implementable [TEE\textsuperscript{+}96]. Implementation [ACM94a, ACM99a, Alf94, AB01, AKP99, BBD\textsuperscript{+}91, BHP\textsuperscript{+}03, BRM03, CWBH03, DSH\textsuperscript{+}10, FLR98, Hai97b, KA97, MS02, Nik94, STW93, TKA\textsuperscript{+}02, TMAG03, BK96, BB00, BMV03, CMX10, DL93, FGT96, GCC99, GB99, IAD\textsuperscript{+}94, KASD07, Lev97, Li05, LZ07, LAH\textsuperscript{+}12, NFBB17, OKID92, Stu95, Tod95, YYZL07, Ano95a, Ano95b]. Implementations [Han97, SAC\textsuperscript{+}98, Ram94, SKG\textsuperscript{+}11, Sha95b]. implemented [Boe05, KEL\textsuperscript{+}03]. Implimenting [ABB\textsuperscript{+}15]. Input [BCG13, MP89, Tan87]. Input-covering [BCG13]. input/output [MP89]. Insight [IEE02]. Instruction [DV99, HMNN91, LEL\textsuperscript{+}97a, LEL\textsuperscript{+}97b, MCFT99, RYSN04, RS08, AMC\textsuperscript{+}03, Aru92, Cho92, HKN\textsuperscript{+}92, HMN\textsuperscript{+}92, KBF\textsuperscript{+}12, Mis96, OA08a, OA08b, OA08c, PYP\textsuperscript{+}10, Raj93, SD13, SMS\textsuperscript{+}03, TEE\textsuperscript{+}96, VS11b, VDBN98, VV00]. Instruction-Level [LEL\textsuperscript{+}97a, LEL\textsuperscript{+}97b, MCFT99, SD13]. Implicit

Implicit

[ACMA97, PFV03, SAC\textsuperscript{+}98, RB18]. Implicitly-multithreaded [PFV03]. Improve [GV95, KH18, QSaS\textsuperscript{+}16, RKK15, Sin99]. Improved [BR92, GMGZP14, LLS06, Smi06]. Improving [AK\textsuperscript{+}12, BDN02, CCWY17, DKG18, FT96, FM92, FFB01, GA09, IBST01, LYH16, Man99, MEG03, Nak01, PG01, PAB\textsuperscript{+}14, MCRS10, TO10]. In-Memory [BAZ\textsuperscript{+}19]. In-Order [RRK11]. In-place [SGLGL\textsuperscript{+}14, SCMO95]. In-Situ [RGK99]. IN-Tune [RGK99]. includes [SJ95]. incomplete [HR16]. incompressible [RM99]. Incorrectly [SCL05]. Increasing [PHCR09]. Incremental [BFA\textsuperscript{+}15, Caz02, Lar95, LB92, BBYG\textsuperscript{+}05]. Independent [DS09, EW96, FSS06, USE93a, KNPS16, MEG94, PG03, WZSK19]. Independently [ALSJ09]. indexing [MIGA18, MLS15]. induced [MTPT12]. inducing [CZ02]. Industrial [KW17, Kon00]. Industry [DM98]. Industry-Standard [DM98]. Inference [FFLQ08]. inflation [OdSSP12]. InfoDock [Ano97a]. Information [BS96, PBR\textsuperscript{+}15, CML00, KBH\textsuperscript{+}03, RPB\textsuperscript{+}09, SV98]. Informix [Ger95]. Initial [BTE98]. Inline [GH03, DJLP10, EKKL90]. Inline-Threaded [GH03]. Inlining [PR98, QL15]. innovating [JD08]. Innovation [ACM03]. innovations [ABB\textsuperscript{+}15].
instruction-systolic [PYP+10].
instructions [PPA+13]. instrumenta-
[RS07, XMN99]. Integer [GH98]. integral
[Kic91]. integrated
[CCW+11, MTS10, RD99]. Integrating
[Cal00, CM98, DNR00, DTLW16, FKT96,
TTY99, Ts99a]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity
[NT14]. Intel [ARB+02, CCW+11, GHG+98,
PDP+13, SCD+15]. intensity [BD06]. Intensive
[TKA+01, AAKK08, TKA+02, YSY+09]. Interaction
[Hei03, HF96, Pan99]. Interactions
[WG94, WSK97]. Interconnection
[NJGA94, RR93, SMK10]. Interface
[Chl15a, HBG01, KKDV03, MS89, Met95,
PS01, SW97, Ada98, DLM99, HB02, Li05,
MQW95, MS87, MEG94, TNB+95, FGT96]. Interfaces
[Han97, HF96, LG04]. Interleaving
[LGH94, YN09]. Intermediate
[MM01, WEA08]. International
[ACHM92, ACM94c, ACM94d, ACM95a,
ACM96, ACM98c, An91, An94a, An94d,
An00a, An03, AOV+99, Cha05, EV01,
Hol12, Hou94, Lak96, LCK11, Wat91, FR95].
Internationalization
[An98b]. Internet
[An96, Hig97, SB96, van95]. Interoperability
[AHRD+01, Way95]. interplay
[ML05]. Interpretation
[GH03, LG04]. interpreter
[OCT14]. Interprocedural
[NR06]. Interrupts
[KD91]. interval
[KUB15]. Intra
[MKR10]. Intra-application
[MKR10]. Introducing
[GL07]. Introduction
[CLRS09, DRA96, GGB93a, GJ97, Mas99,
Bir89, GC92, Hay93, She98]. Intrusive
[Caz02]. INUX
[DNR00]. invasive
[RGK99]. Inverse
[HMLB16, GEG07]. inverses
[GE08]. Invocation
[SKK+01]. IPC
[EE14, Koo93]. IPs
[SCH17]. IRREGULAR
[FR95, TSV12, ZAK01, TP15]. irregularly
[FR95]. ISA
[KTR+04, MNU+15]. ISCOPE
[ACM01]. Isolating
[CZ02, JGT91]. isolation
[CMX10, MTC+07, SKBY07]. Isomigration
[ABNP00]. ISSAC
[ACM94c, Lak96, Wat91]. Issue
[KU00, RYSN04, An94e, GGB93b, TEE+96]. Issues
[GMB93, PS01, ARW03, An96,
GC92, HCD+94, IAD+94, TCG95]. Issuing
[HHMN91, HKN+92, HNM+92]. Itanium
[MB05, WCW+04b, WCW+04c, WCW+04d].
Itanium-2
[WCW+04b, WCW+04c, WCW+04d].
iterations
[UZ00]. Iterative
[MQ07, Nak03, AAC+15]. iThreads
[BFA+15]. IUnknown
[SW97]. Ivan
[An900c]. IXP
[ARB+02, LCH+08]. IXP2800
[AHW02].
Hol00, Hyd00, KPPÉR06, KBP+=03, LB00, LCS04, Loc18, Loc97, Man96, MP01, McM96a, McM96b, McM96c, McM98b, McM97, Mit96, MC06, NAW06, NM10.
Java [NR06, Nev99, OW97, OW99, PSM01, PSM03, PRB07, Pet03, PUF+04, PV06, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP+02, Van97a, Ven97, Ver97, WN10, Whoi3, XSaJ08, Xue12, Yan02, van95].
Java-like [DJLP10].
JavaBeans [Van97b].
JavaScript [PCM16, VP16].
Javier [Ano00c].
Jersey [MT93].
JIT [McM97].
job [EE10, EE12, ST00a].
Jobscheduling [ST00c, ST00b, STV02].
John [Ano00c].
Joho [Ano03].
join [ALS10, GK05].
Joint [FTP11].
Jones [Ano00c].
Jorgenson [Ano98b].
Journeyman [Bec00].
JPF [WKG17].
JPR [WKG17].
Jr [ACM99b].
July [ACM92, ACM94c, ACM95a, ACM98c, EV01, IEE96, Lak96, Ass96, USE96, Wat91].
June [ACM94a, ACM98c, ACM01, Ano94f, USE92a, USE00a].
JUnit [Goe01].
just [KBF+12].
just-in-time [KBF+12].
JVM [Lan02, McM97, USE01, WKG17].
K-Java [BR15].
KAi [Ano98b].
KaiKan [Ano00a].
Karlsruhe [RM03].
Kaspersky [Ano00b].
Kendo [OA09].
Kernell [Al94, ABLL92, Bal02, DNR00, EBK91, EKB+92, Kor89, MM01, ZSA13, Ano95a, Ano95b, BF08, J991, MF89, SS95].
Kernel-Based [Al94].
Kernels [KI17, dFRGB99, GL99].
Kiel [LvH12].
Kikai [Ano00a].
Kikai-Shinko-KaiKan [Ano00a].
kinds [San04].
kinematical [BD06].
Kinematics [HMLB16].
King [ACM99b].
Kiongdom [ACM94c].
Kitsune [HSD+12, HSS+14].
Knoxville [IEE94b].
Kroll [Ano00c].
KUMP [NTKA99].
KUMP/ [NTKA99].
L [DNR00, GBB+05].
L1 [PHBC18].
L2 [SLP08].
L2-miss-driven [SLP08].
L3 [FJ08].
Lab [Ano00b].
labeling [D'H92].
Lafayette [EV01].
Lake [Hol12].
lambda [ORH93].
Laminar [PBR+15, RPB+09].
LAN [Yas95].
LAN/WAN [Yas95].
Landing [TAK+00].
Language [ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIAT99, Sat02, B096, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mil95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06].
Languages [ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, SNE+16, NPT98, OTY00, SNe91a, SSS97, TNE97, DMB16, HLL93, JP92, JHM04, SNS+10, Sch91, SCv91b, ST98, TANE01].
LAPACK [ARvW03].
Laptops [Ano00c].
Large [AOV+99, CC14, CJW+15, GN92, JLA16, LA93, RSt19, BCM+07, Boo93, G0T03, Koo93, SMK10, WVC+08].
Large-Scale [CC14, CJW+15, LA93, BCM+07, G0T03, SMK10].
Latencies [Sch17, BS06].
Latency [BD00, BAZ+19, Fan93, OC01, SW08, Smi01, SKK+01, WWW+02, YLS16, ASS09, BR92, DC99, DC00, Jef94, Luk01, MV05, PG01, TK98].
Latency-directed [Fan93].
Latency-Resistant [YLS16].
lateness-sensitive [ASS09, DC99, DC00].
Latency-Tolerant [OS01].
lattice [SKG+11].
Law [Gar01, NZ17, CN14].
Layer [SHK15, CDD+10].
layout [DZKSI2, HB15].
Lazy [GSC96, Gol97, LF94].
LCMT [LKBK11].
leadfoot [HHPV15].
Leakage [Mus09, SYHL14].
Leakage-saving [Mus09].
leaks [ZJS+11].
Learned [HPA+15].
Learning [CYYL18, DS16, ROA14, PWWD18].
least [FTAB14].
least-squares [FTAB14].
lecture [Egg10].
Lenient [SCv91a, SCH91, SCv91b].
Lepp [RRMJ12].
Lepp-bisection [RRMJ12].
Lessons [RM03, HPA+15].
Letters [DHR+01, TL+10].
letting [AC09].
Level
[ABLL92, BBC+00, FURM00c, GP95, JYE+16, JLS99, DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, MG14, PLT+15, RR93, Ric99, Sch17, SHT03, YRL16, BBH+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRP06, HDT+13, JEV04, KDM+98, KVN+09, KC99, PGB16, Chr96]. Loadable [ZSA13]. Loading [PCM16].

Local
[DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, MG14, PLT+15, RR93, Ric99, Sch17, SHT03, YRL16, BBH+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRP06, HDT+13, JEV04, KDM+98, OHW93, KL91, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13].

Localization [OB13]. Location [USE93a].

Location-Independent [USE93a]. Lock [ALB+18, EFJM07, MNU+15, NM10, PGB14, AR19, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16].

lock-free
[AR19, GP08, MLS15, Mic04, ST05].

Locking [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16].

Locks [ACR01, ALS10, MT93, OCT14].

LOOKSMITH [PFH06]. LOGFLOW [NTKA99].

Logic
[Bre02, KI17, TAN04, BK13].

Logic-Centric [Bre02]. Logical [CR02].

LOIS [KT17]. longer [XHB06]. Looking [ECX+12].

lookup [KNPS16]. Loop
[RLJ+09, SP99, JMS+10, KVN+09, UZU00].

loop-level [KVN+09]. loops [D'H92, FN17].

Low [ABLM19, Ano00a, Ano03, BGH+12, PHBC18, ZHC15, GPS14, RRP06].

low-level
[GPS14]. Low-overhead [ZHC15, RRP06].

Low-Power [Ano00a, Ano03, BGH+12, PHBC18].

Low-Rank [ABLM19]. LPVM [ZG98].

Lunch [DTLM14]. Luther [ACM99b].

M [Ano00a, USE01, FKD+97]. M-Machine [FKD+97].

Mach [USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89].

Machine
[Ama89, CSS+91b, DS16, FKD+97, KA97,
KKDV03, Laf00, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, Pra95c, SKS+92, Ven97, CGSV93, Evr01, PRB07.


Mathematica [Tam95]. mathematical [KI16]. Matlab [Bra97]. Matrices [But13, SGLG+14]. Matrix [NBS+15, QOIM+12, YFF+12, CSV10, DTR18, QOQOV+09]. matrix-vector [CSV10]. matter [ZJS10]. maxflow [BÇG14]. Maximal [HH16, HR16]. Maximisation [SC17]. maximize [RCG+10]. Maximizing [AT16, HH11, MP13, GJ11]. May [ACM93b, ACM96, ACM99a, Cha05, IEE02a, IEE04a, SS96, MMTW10, Pra95c]. MD [IEE02]. MDMA [Spe94]. measured [ECX+12]. Measurement [LDD+17, TMC09]. measurements [JFL98]. Measuring [FMY+15, DTL14]. Mechanising [Loc18]. mechanism [FD95, GCC15, PWW18, WHJ+95]. Mechanisms [KPC96, KC99, SK97, TVB+13, Lee05, Men91, PT03]. Media [Ano03, Van97a]. medium [CDD+10]. Meeting [DLM99]. meets [Tam95]. Member [BS99]. Memories [HKSL96, KHP+95]. Memory [ALSJ09, AYK+12, BS96, BMBW00b, BD00, BAZ+19, CH95, DM98, EJ93, EE09a, FMY+15, GM98, MGZP14, GH98, HG91, HL07, IAS16, JAL16, KZTK15, KZC15, KKH0, KUC15, LBS15, LB92, LB17, MSM+16, MVZ93, MCT08, Nak01, RCC14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM+08, Thr99, Ver96, WC99, XWG+14, YMR93b, ZM07, ZLJ16, ATLM+06, AKSD16, AAKK08, BS06, BDWH12, BCG+95, BHH+17, BMBW00a, BMBW00c, BLM06, BDL10, BA08, BHO0, Boo93, BAM07, CMF+13, Cha05, Cho93, CVN+06, DLZ+13, DCO09, DPZ97, EKPKL09, EZY01, FF10, GAC15, Gle91, GL98a, GS00, GKK09, HB92, HWW93, HG92, HHPV15, ISS98, KFG15.
monadic [LZ07]. Monitoring
[BBFW02, BBFW03, DJLP10, MC06, NFBB17, VGK+10a, VGK+10b]. Monitors
[Bec01, SS91, KPPER06]. Monsoon
[NCA93]. Montecito [MB05]. Monterey
[USE91a, USE96, USE01]. Mosaic
[Ano94d]. Most [PLT+15, mostly
[BBYG+05]. Moving [Ait96, Sim97]. MP
[Pea92, TTY99]. MPD [PHK91]. MPEG
[BC00]. MPI
[PS01, Vre99]. MPD
[PHK91]. MPEG
[BC00]. MPI
Multithreaded [NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, RÇV+10, RK+10a, RKM+10b, RGK99, SCB15, Sam97, SC17, SE12, SV98, Sm06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, Tem97, TMAG03, TJJ+11, VV00, YSY+09, ZKR+11, dB09, vPG03, Ano97b].

Multi-Threading
[CvdBC18, CNZS17, LKBK11, MLGW18, Mc97a, Mc97b, MS15, MP13, OR12, PTMB09, RCC14, Sch90, SMZ18, TGO99, YLLS16, DT1LW16, MCFT99, NJ00, RVR04, Bak95a, BM07, FWL03, LW+13, MLC+09, VDBN98, kSYH+11, YKL13, CH04].

multiagent [Bar09].

Multicomputer [FKD+97].

Multicomputers [BCG+95].

Multicore
[ALSJ09, ABLM19, BCZ91, CCH11, CB16, DVAE18, GJ11, HEM91, KLDB09, LS11, LMA+16, LHY16, LD+16, MR09, NBMM12, PGB16, RCM+16, RRK11, SLJ+18, SHK15, SMD+10, THA+12, ZSB5, CNN13, CN14, CMX10, KL13, LLLC15, NZ17, RCC+10, RKBH11, SCCP13, SE12, ZSB+12].

Multicore/Multithreaded [RCM+16].

Multicores [FSPD16, FSPD17, RKK15, DTK+15, GARH14, SSN10].

Multifrontal
[ABL19, But13, Dav11].

Multigrain
[AZG17].

Multilevel
[PPG11, Cat94, JJJ+03, LK15].

Multimedia [Spe94, Est93, Gol96].

multimethod [FGT96].

Multiple
[CB16, FGKT97, HW92, HKT93, NTR16, OR12, CS95a, CS95b, FD95, HKN+92, LT97, TE94b, TFG10, TAN04, WCT98].

multiple-context [FD95].

multiplication
[DTR18].

Multiply
[CSV10].

Multiprocessing [EBK+92, Len95, NV94, Wal95, DLCO09, MT93, Pra95b, RGK99].

Multiprocessor
[AACK92, AKP99, BC00, Cat94, EHG95, GHG+98, HN91, KMA01, MCT08, Pre90, PPG11, SZ92, SEP96, USE92b, WC99, Zub02, Cho93, DCKL90, HB92, K109, LYN10, LWV+10, PJZA07, Ano94b].

Multiprocessor/multithreaded
[Cat94].

Multicores [FSPD16, FSPD17, RKK15, DTK+15, GARH14, SSN10].

Multifrontal
[Add03, AdBDRS08, ABC+93, AT16, Ama98, ALB+18, Ano92a, Ano92b, Ano94c, Ano94g, Ano98a, Ano98b, Ano1, ABH+00, ABH+01, AB01, AB02, AG96, AZG17, ACMA97, AB00, AKP99, Bal02, BBFW02, BCR01, BBdH+11, BVL09, B106, BMBW00b, BF04, BJK+96, BL98, BB00, BMN99, BDN02, BP05, BLG01, BTE98, BHN01, BD06, BHG+12, BBSG11, CC14, CJW+15, CS02, CGK06, CC04, Ch15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN+00, CBMAN08, Dan09, DRN00,
DVAE18, DH98, DRV02, DTR18, DO95, EFN+01, EFN+02, EJRB13, EHP+07, EC98, EGP14, FSS06, FT96, FS96, FTP11, FQS02, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA+15, HMLB16, HTZ+97, HMMN91, HHOM91, HHOM92, HLB94, HH11, HWZ00, HPB11, HYY+15, Hud96, HMT+96, I+94. Multithreaded [JBK18, JYE+16, JSB+12, KA97, KKW14, KMAG01, KST04, KML04, KC98, KC99, KMjC02, KR12, KU00, KE15, KG94, Kim14, KU17, KAO05, Kor89, KTR+04, LS07, LG06, LH09, LB96a, LB98, LB00, LLS06, LvH12, LTM+17, LYH16, LPE+99, Loc18, Loe97, Lun97, Lun99, MGQS+08, MP01, MS89, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGGA94, NTKA99, Nik94, OB13, OTOY00, PB092, PUF+04, PG92, PG96, PG99, PF01, PHK91, PWL+11, PS01, QOI+12, RCM+16, RW97, RCC12, REL00b, Rin01, RB18, RNS96, RSB01, RRK11, RBA05, RR99, SPDLK+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She98, SU96, SU01, SZM+13, SGM+97, SMD+10, SR01b, SYYG97, SKK+01, Spe94, Srl95, SZ02, SUF+12, Sut99, TG99, Ten02, TKA+01, TC198, TT03, TTKG02]. Multithreaded [TGBS05, TLZ+17, TLZ+18, TJ98, TSV12, URS02a, VTM12, Vol93, VE93, Wan94, WS08, Wea08, WJ12, Wil97, WLM15, WG94, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, ÁdDrS05, ACD+18, Aga89, Aga91, Aga92, ABF+10, ABC+15, AAC+15, ACC+03, AGEB08, Ann96, Ano94b, Ano95a, Ano95b, A+01, ABC+09, AR17, AR19, Aru92, BGDmWH12, BFW03, BRRS10, BGZ97, BCHS00, BAD+10a, BAD+10b, BCG13, BGC14, BMBC00a, BMBC00c, BLYN09, Blu92, BL93, BL94, BKJ+95, Blu95, BL99, BS10a, BCG14, BEKK00, BPSH05, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car89b, CB89, CB90, CFG+12, Cat94, CL94, CN14, CS12, CDD+10, CLI+02, Chos93, Chos92, CGL92a, CGL92b, CJ+15, DJLP10, DSG17, Dav11, DL93, DKF94, EJK+96, Eic97, EG11]. multithreaded [Est93, Evr01, Fan93, Far96, Fer13, FF04, FFSQ05, FF08, FFY08, Fu97, GMW09, Gal94, GJ11, GGB93b, GKS14, GL98b, GL98a, Go96, GRS06, GR06, GA09, GLC99, HMC97, HFV+12, HF88, HL90, Hig97, HNM+92, Hsp98, JMS+10, JWG11, JFL98, JSM12, JSM13, Joo96, JSB+11, KGPH12, KR01a, KR01b, KNPS16, KRP+03, Kub15, Kus15, LLCL15, Lea96, Lei97, Len95, Lev97, LLI+08, LMC14, LBE+98, LT97, Lu94, Lu95, LC93, Mah11, Mah13, MEG03, MS87, Mil95, Mis96, Mix94, MC06, MRK10, MQ07, NB12, NR06, Ném00, NPA92, ND96, NZ17, Om04, Par91, PFV03, PJZA07, Pha91, Ply89, PDP+13, PS03, PS07, Pra95c, PT03, RGG+12, RCM+12, Raj93, RCG+10, RHH10, REL00a, REL00c, Rei95, ROA14, Roh95, RS07, SBC90, SBC91, SR01a, SV96c]. multithreading [AMdBdRS02, AH00, AGJ18, Ano99, Ano05, BBG+10, BWX05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Brel02, BLVP04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FBF01, FTK96, GHG+98, GV95, Grl95, Gun97, GSL10, Har99,
multithreading

[CDC12, Div95, DN94, Dub95, Dye98, EE09a, FM92, Fos97, Fon97, GWM97, GBG95, Gna98, GEG07, GE98, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCC99, Kim94, KG07, KT99, KLI+99, KL13, LCH94, LSS12, LZW17, LB95, LB96b, LZL+14, Loh95, LV01, LW14, Luk01, Mag01, MWP07, Mao96, MD00, MGL95, MMM+05, MeM97, Met95, MKR02, MAAB14, OAA09, Ong97, PSG06a, PSG06b, PSG06c, PG01, PHCR99, PV06, Pr95b, RM00, RR96, RPNT05, San04, Sch91, SCv91b, Sin99, SW16, STV02, Sw09, TK98, TSC99, TO10, Tsa97b, TEL95, TEE+96, TUI96, TEL98a, TEL98b, URS02b, URS03, VPC02, WLG+14, WW93, WCW+04b, WCW+04c, YCW+14, Zat17].


ewly [Ano95a, Ano95b]. NewOS [TLA+02, Gei01]. Newport [USE92b].

News [Bra97, Gar01, Mat97, McM97]. Newton [CYY18]. Next [ARB+02, EEL+97, TSV12, CH04].

Next-Generation [EEL+97, TSV12, CH04]. Nexus [FKT96]. NFS [Ano95a, Ano95b]. NFV [GDSA+17]. Niagara [KA05].

NLM [Day92a, Day92b]. NLM-Based [Day92a, Day92b]. NoC [YL16]. node [TK98].

Nodes [EHG95]. noise [GA09].

Non [Caz02, Coo99, JLS99, KIA99, LB17, SG+97, Tra91, Am96, RGBK99, SCG95, SK+11]. non-blocking [Am96].

Non-Deterministic [LB17].

Non-Intrusive [Caz02]. non-invasive [RGK99]. Non-numeric [SGM+97].


nondeterminism [HBCG13].

Nondeterministic [LPS07].

Noninterference [BC02, Sni06].

noninterruptible [AAHF09]. Nonlinear [Nak03, GTO03, Kuh15]. nonoperational [GSO0].


Novel
[HG91, GKK09]. **November**

[ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a], **NOWs** [SLGZ99]. NP [YZ14]. **NPB** [EGC02]. **NT** [Ano98b, Hig97, PG96, Pra95c, Pra95b, TCI98, USE98a, Wi94a, Wil94b, Yam96]. **NT-Style** [Wil94a, Wil94b]. **NUMA** [LMC14, ZLW+16]. **NUMA-aware** [ZLW+16]. **number** [LSS12, SLF14]. **Numeric** [MLGW18, SGM+97]. **Numerical** [MR09]. **Numerics** [Ano97a]. **NY** [SS96].

**O**

[R03, Ano95a, Ano95b, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a]. **Object** [Ano99, BBD+91, BC94, GK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car98a, CY98, CLL+02, FWL03, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yan02, d09, vPG03]. **Object-Oriented** [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ada98, Car98a, CY98, CLL+02, FL90, JPS+08, Wei98a, Yan02, d09, vPG03]. **Objects** [ACR01, CJK95, CR02, Low00, Pra95a, Ric99, Ten92, Yas95, Bak95a, Bri89, DMBM16]. **objet** [Swi09].

**Observer** [Hol99b]. **occupancy** [PAB+14]. **Ocean** [SAC+98]. **OCTET** [BKC+13]. **October** [ACM94d, Ano94d, BT01, IEE95]. **ODBC** [Ano00b, Hig97]. **ODBC-compliant** [Hig97]. **ODBC-ODBC** [Ano00b]. **ODE** [Bra97]. **Off** [MH95, AAC+15, DTK+15]. **off-chip** [DTK+15]. **Off-the-Shelf** [MH95]. **offs** [Par91]. **Old** [Wii00]. **On-Chip** [LKBK11, ZM07, SMK10, TEL95, TEL98a, TEL98b]. **On-Line** [Ano00c, FSPD16, FdL02]. **On-the-fly** [Sch89, CWS06, PS03, PS07]. **once** [Bak95a]. **one** [QSHI16]. **one-sided** [QSHI16]. **Online** [Ger95, OTY00, RCC14, Sei98, Sei99, SRA06, TGO99, HF96, LWV+10, RS07, VGK+10a, VGK+10b]. **only** [Dil00, MJF+10, NM10, ZJFA09]. **onto** [LBVH06a, LBvH06b, LBvH06c]. **Open** [Ano00c, BMF+16, Ha97b, KR01a, KR01b, RBF+89]. **Open-Source** [Ano00c]. **OpenGL** [Röt19]. **OpenGL-** [Röt19]. **OpenMP** [Cha05, ARvW03, BHP+03, BBC+00, Bra97, BVM03, B001, CRE99, CDK+01, CM98, DM98, HD02, EV01, JJJ+03, KKH03, Lu98, MS02, Mar03, MLC04, MDP04, Mat03, MG15, MM14, Mü03, NAAL01, RBA05, SLGZ99, Thr99, TGB05, Vre04, RM99]. **OpenMP-oriented** [MLC04]. **OpenOpt** [NSP+14]. **OpenPiton** [BMF+16]. **OpenSPARC** [Wea08]. **Operand** [SP07]. **Operating** [ACM94d, CLFL94, TLA+02, Gei01, IEE89, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, ASSS19, BDM98, DBRD91, IEE94d, Je94, Jen95, LVN10, LAK90, Ply89, RBF+89, REL00a, REL00c, She98, War95]. **operation** [DKG18, RHH10]. **Operational** [CKRW99, CRKW97a, CRKW97b].

**Operations** [KKS+08, KDB09, SCL05, HMC95, RD06]. **Opportunistic** [YL16]. **Opportunities** [GJ97, HL08, Mns09]. **OPR** [QSHI16]. **Optimal** [AT16, Lar95, RCM+12, Lep95, LML00]. **Optimistic** [WHJ+95, CZSB16, DKG18, VPQ12]. **Optimization** [BLG01, CvdBC18, GN96, RNSB96, SYHL14, TJY98, TLGM17, WJ12, AMC+03, AMPO99, DZKS12, GTO3, Koo93, RKCW98, Sin99, TO10, ZCSM02b, ZCSM02a]. **Optimizations** [HYY+15, JSB+12, KET06a, LEL+99, Sut99, ZM07, ABC+09, JSB+11, OA08a, OA08b, OA08c, Rol95]. **Optimized** [Sin97]. **Optimizing** [DTK+15, KZTK15, PR98, PSCS01, WCZ+07, GS02]. **Orange** [ACM98d]. **Orchestration** [GVT+17]. **Order** [CJJ95, RRK11, NV15, SJA12,
Ordering [HR10]. Oregon [ACM94b, ACM99b, IE93]. Organization [HG91, HG92].

Oriented [Ano99, BBD+91, BC94, Kim14, K57, LMG+16, NPT98, SG96, Ada98, Car89a, CYZ98, CLL+02, DWYB10, FL90, HH97, JPS+08, MLCo4, Wei98a, WP10, Yan02, dBo99, vPG03]. Orlando [ACM94a, ACM98d].

oscillations [BD06]. OSF [BM91]. OSF/1 [BM91]. Other [SPY+93, MMTW10].

Ottawa [BT01]. Out-of-Core [QOIM+12, ABC+15]. out-of-order [SJA12, SW16]. output [MP89].

Overall [SEP96]. Overall [SEP96].

Overhead [DSR15, RRP06, YL16, ZHCB15].

Own [BS99, Sho97a, Sho97b]. Oxford [ACM94c].

P [Ano00b, Nik94, PR05]. P-STAT [Ano00b]. P-Thread [PR05].

Pacific [IEE89]. Pacifier [QS14].

Package [Ano94c, FL90, HCM94]. packages [GOT03, O'T95, PL03]. Packaging [RR93].

Packard [BLCD97]. Packet [AHW02, LCH+08, MVY05, WZC+07].

page [CNV+06]. page-based [CNV+06].


Pajé [CdOS01, CSB00]. Palo [ACM01].

panel [Ano94c, Bak95b, HCD+94, IAD+94].

Paper [ABC+17, TKA+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKDv03, Cha05].

par-monad [FKS+12].

ParADE [KKH03]. Paradigm [EW96, JD08, LK15, PPA+13, BCG+95].

Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ama89, ABN00, ACMA97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CTS+17, CL50, CDK+01, CNH+00, D16, Den94, EJ93, FHM95a, Gll94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN19, JY15, KTLK13, KI95, KEL+03, Kon00, KKDv03, Kwo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, NAK03, NS97, Pau99, Q8aS+16, Sch17, SCv91a, SAC+98, SRT98, WC99, YFF+12, ARW03, ALS10, BBY+05, BCM+07, BAD+08, BB00, Boo93, BE12, BGK94c, CAR08, CFB+91, Cha05, C8SB00, Ch89a, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fu97, GC92, Gol97, GKK90, GEG07, GFE+08, GB99, HMC97, HF88, Hop98, HWW93, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, La94, MTO02a, MTO02b, MTO02c, MR98, Mis96].

parallel [NJ00, N8A92, ODSSP12, RCV+10, RRH10, SBCV90, Sch91, SCv91b, Sha98, SWYC94, ST98, SG14, Taf13, TCG95, VPK12, VGK+07, WZC+19, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+12, FR95, Vre04, WN10].

Parallel-Multithreaded [WC99].

Parallelism [AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FUR00c, GVT+17, GP95, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCFT99, NB99, RBA05, SS99, SM+10, SG96, Thr99, W808, YBL16, Yoo96b, ALH08, AKS16, CSS+91a, CSS+91c, EE09a, FN17, FURM00a, FURM00b, HDT+13, KRB12, KDM+98, KVN+99, CO9, LAH+12, MOQOQ+09, SLG299, SD13, TEL95, TEL98a, TEL98b, VDBN08, VV00, Wei98a, XSS08, 8YZ14, Zig96]. parallelism-aware [LAH+12]. parallellisme [Zig96].

Parallelization [CRE99, KCO9, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JJY+03, PO03, RKM+10a, RKM+10b, RRMJ12, TF010].

parallelized [CJ91]. Parallelizing [BM91, WDC+13, KBF+12]. ParaLog
Parameterized
[BCR01, FK12]. Parametric
[Ano98b, FRT95]. Paravirtualization
[YSY+09]. PARC [Ong97]. Parsing
[BC00, Lar95, PCM16]. Part [Ano92a, Ano92b, KR01a, McM98b, Hol98a, Hol98c, Hol99a, Hol99b, McM96b, McM98a].

Partial
[Loe97, RRP06, SP00b, Shi00, ZKW15].

partition
[LZW17]. Partitioning
[AMRR98, Coo95, D’H92, EW96, SLJ+99, TG99, DCK07, LZX+14, MKR10, SCG95, WW96]. Partitioning-Independent
[EW96].

Parsing
[BC00, Lar95, PCM16].

Passing
[BWXF05, TLA+02, FGT96, KK95, PS01, Ada98, BCM+07, DLM99, FM92, PRS14].

Path
[BLG01, TAK+00, CTYP02, WCT98].

Paravirtualization
[YSY+09]. PARC [Ong97].

Passing
[BWXF05, TLA+02, FGT96, KK95, PS01, Ada98, BCM+07, DLM99, FM92, PRS14].

Path
[BLG01, TAK+00, CTYP02, WCT98].

Pathfinder
[KPP12]. Paths
[OTY00, Ano95a, Ano95b].

Pattern
[Ano97b, EGP14, OR12, EG11, GBP+07, SCM05]. Pattern-Based
[EGP14, EG11].

Pattern-recognition
[Ano97b]. Patterns
[DS16, LPK16].

Performance
[ACM98a, ACM98d, ACM00, Aga89, Aga91, Aga92, ABLM91, BS96, BL96, BRM03, BLG01, BNH01, BGH+12, BBG611, Cal97, CRE99, CCH11, CCK+16, CCWY17, CH95, Cho92, CT00, CSM+05, CBN+00, CMBA08, DAVE18, DWYB10, EGC02, EE14, FT96, FSPD17, FBF01, FURM00c, FGK97, Gal94, Gar01, GN00, HRH98, Hol12, HN91, IEE94b, JFL98, KZTK15, KH18, KS97, KTR+04, LWSB19, LCK11, LG06, Lep95, LMJ14, LGH+16, LYH16, Mah13, Man99, Mao96, MSM+16, MPD04, ME17, MWK+06, MKC97, MM14, NCA93, NBS+15, NNGA94, Par91, PH97, PS01, QSaS+16, RG03, ROA08, RKK15, SCD+15, SLJ+19, TCI98, TT03, Tsa97a, TLGM17, VP16, We198b, WC99, WN10, YW103, ZL10, ZAK01, Zub02, AAC+15, APX12, AAKK08, BGDmWH12, BS10a, BBM09, BMV03, CML00, Car98b, CIM+17, Cho93].

Performance-area
[Par91].

Performance-Driven
[LWSB19].

Performance-energy
[AAC+15].

Performance-Oriented
[KS97].

Performance-prediction
[BMV03].

Performance-Driven
[LWSB19].

performance
[Ven97].

performances
[Ven97].

performances
[Ven97].

perform novel
[Ven97].

performances
[Ven97].
[Man99]. privatization [HZ12]. Pro
[Ano97a]. Proactive [FJ08]. Probabilistic
[EE10, EE12, CHH +03, Smi06]. Problem
[HH11, Lee06, YFF +12, BIK +11, Mit96]. Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95]. procedure [BGK94c, KASD07, LQ15].
procedures [MCS15]. Proceedings
[ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV +99, Gol94, Hol12, IEE98, IEE90, IEE92, IEE94a, IEE95, IEE96, IE902, Lk96, LCK11, USE98, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98b, USE98a, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, GD95, GMW09, GBP +07, KBF +12, LLI10, LBE +98, Lk91, MN03, MEG03, MPTT12, Mis96, NB12, NZ17, PFV03, PAB +14, RGG +12, RCM +12, RPNT08, SLP08, SMS +03, URS02a, URS03, ZSB +12, WM03].

problems [Zig96]. Procs [MT93].
Products [Ano97a, Ano00b, Bra97]. Professional
[Ano00b]. Profile
[BMR94, SV19]. profiler [DTLM14].
profiling [DG99]. Program
[Ch15a, DSR15, EFN +01, GN96, KKW14, NBM93, PS01, SHK15, TSY00, TLZ +17, TLZ +18, TJY98, YLLS16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EF95 +02, FRT95, JEV04, JPSN09].
Programmability [THA +12].
programmable [PYP +10].
programmation [Swi09]. programmed
[PAA +13]. Programmer
[Cro98, Wi00, MS87, San04, Swi09].
Programming
[ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM99a, BBG +10, BTE98, But97, CMK00, CV98, CDK +01, Chl15b, CT00, CW98, DM98, FHM95a, FTP11, FA19, HCD +94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KKK03, KSS97, KSS96, KIAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PFG99, QOQOV +09, QOIM +12, Rod95b, SBB96, TCI98, Vre04, Wi97, YFF +12, dLPGB99, van95, ALS10, AR17, AG96, ABG +08, BCS00, BO96, BLN09, Bir89, CFK +91, Car89a, CS00, CMS03, Cha05, CYZ98, DSH +10, EV01, FHM95b, GKKZ12, Gil94,
programming [TB97b, TMAG03, Wal00, WCC +07, Yan02].

Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW +15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, EGP14, FQS02, GKCE17, HLB94, JBK18, Kri98, LCS04, Lun97, Lun99, MS89, MGK +00, OB13, PHK91, Rin01, RD96, RR99, SPDLK +17, SBN +97, SYHL14, Ste01, TGBS05, Tra91, Vol93, AFB +10, BRS01, BK13, BCG13, BGC14, Blu95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ01, CL00, CLL +02, CVJL08, Cor00, DJLP10, Dil00, DESE13, EFG +03, EGI1, EHSU07, Fab13, FF04, FFQS05, FF08, FFY08, GMR09, GRS06, GPR11, JFL98, KCO9, LQ15, Lea96, LMC14, LC13, MS03, MSS7, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, ORS +06, PAdS +17, PDP +13, PS03, PS07, RVS13, Rei95, RS07, SRO1a, SCG95, SRA06, Sen08].

programs [SP00b, Shi00, SP05, SG14, Sto02, Taf13, TR14, TLZ +16, WS06, WTH +12, XSaJ08, YCW +14, YNP12, ZJS10, ZSJ06, dB09, vPG03].

Progress [FSPD17, TLGM17, ZHCB15].

Progress-Aware [FSPD17]. Progressive [BBdH +11, TGO00]. Project [Ano99].

projection [SskP +07]. Projections [MQLR16, MLR15]. proliferating [Ano94b].

Prolog [EC98, AR17, AR19, KA97, MKG +00].


Protein-Protein [BCS11]. Protocol [GRS97, III01, ABN00, KASD07, QS041].

Protocols [AB01, AB02, GRR06, TVD14].


provide [Way95]. provides [Hig97].

Providing [PS03, PS07]. proving [Taf13]. Provisioning [BSSS14, FGG14].

pseudorandom [SLF14]. PSO [HH16].

PTF [Yam96]. Pthreads [NBF98, YAM96, LB98, AS14, NBF96].

Publications [Bee98]. Publishing [Ano00b, Hig97].

purity [FFQ04]. Purpose [Ber96b, HSS +14, Man98, ZSA13, Ber96a, DC99, DC00, HSD +12, SKA01]. Put [Wal95]. PVM [DLM99, DPZ97, Pla02, ZG98]. PVM/mpi [DLM99].

Python [Swi09, How98, Pul00].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02].

QoS [ICH +10, PSM01]. QR [Dav11].

quality [PSM03]. Quantitative [LPK16, NBM93]. Quasi [Pla02]. Quasiquotes [TGO99, TGO00]. query [GARH14].

QUERYFLEX [Ano97a].

querying [HF96]. Queue [Cri98b, Cri98a]. queues [SCM05, ST05]. Queuing [VK99, KPP 06]. Quick [Ano00b].

QuickRec [PDP +13]. quicksort [Mah13].

R3000 [Arn92]. Race [HM96, KUC15, LS18, MKM14, SBN +97, Sen08, Yan02, ZLJ16, AFF06, AHN08, ERT07, FF09, HR16, HHPV15, MMN09, NAW06, NA07, PS03, PS07, PFH06, RVS13, WDC +13, XHB06, DWS +12]. race-freeness [AHK08].

RaceFree [LZW +13]. Races [KZC15, FF10, NWT +07, PR07, PT03, RBK +09]. racy [SRJ15]. RADISH [DWS +12]. Ramada [Ano94d].

Ramada-Congress [Ano94d]. random [LSS12, Sen08]. random-number [LSS12].
Randomized [Sei98, Sei99, JPSN09]. Rank
[AJK+12, ABLM19, Dav11].
rank-revealing [Dav11]. Ranking
[DV99, VV00]. Rapid [DVAE18]. ray
[Tod95]. RCDC [DNB+12]. RCU [CKZ12].
Reachability [LCS04, LQ15]. reachability-module-theories [LQ15].
Reactions [LTM+17]. Reactive
[LvH12, LNI+19]. Reactivity [BDN02].
Read [NM10]. read-only [NM10].
ready [Ano92b]. Real
[BC94, IEE94a, IEE94d, LJS99, Kim14,
KBP+03, MN00, PSM01, PUF+04, PSCS01,
SZG91, SUF+12, Tod94, WLG+14,
dlPRGB99, CZWC13, CMX10, Hol98d,
Hol98a, Hol98b, Hol99c, Hol99a, Hol99b,
Jen95, JPSN09, MKK99, OT95, PSM03,
RPNT05, San04, SZH92, SJBB92a, SJBB92b].
Real-Time [IEE94a, JLS99, Kim14, MN00,
PUF+04, PSCS01, SUF+12, Tod94,
dlPRGB99, IEE94d, KPB+03, PSM01,
SZG91, Jen95, MKK99, OT95, PSM03,
San04, SZH92, SJBB92a, SJBB92b]. Real-Time-and-Distributed [BC94].
Real-world [WLG+14]. Reality [LH09].
realizing [YZ14]. Realtime [BMR94].
reasoning [FK12]. rebiasing [RD06].
recognition [Ano97b, LG04]. reconfigurable [DSH+10, LP09]. ReconOS
[LP09]. reconstructive [MCS15]. Record
[Chr01, UALK17, ACM93a, ACM94b,
ACM95b, ACM98b, GCRD04, HDT+13,
HT14, PDP+13, QSQ14, RD99].
record-replay [HDT+13]. Record/Replay
[Chr01, GCRD04, RD99]. Recording
[MCT08, NPC06, HZD13, LZZT15, XHB06].
recoverable [LAK90]. Recovery
[LAK09, VPC02, WCV+98, YZYL07].
Recall [RD99]. rectangular
[SGLGL+14]. Recursively [BE13, BE12].
[KSU94]. Reduce
[DSR15, CCC12, Cor00, KOE+06]. reduced
[GA09]. Reducer [LS18]. Reducing
[SLP08, SYHL14, PGB12]. Reduction
[AMA89, CL95, HLH16, KLS92, SW08,
BKK17, HH16, XHB06, YL16, ZKW15].
Reductions [ZAK01]. Redundant
[CKK+16, CvdBC18, KS16, MB07, MKR02,
PSC06a, PSC06b, PSC06c, RRP06,
WLG+14]. ReEnact [PT03]. Reentrant
[AMDBrS02]. Refactoring [Ten02].
Reference [Rec98, Sch14, KOE+06].
Reference-Counting [Rec98]. refinement
[GPR11, KPPER06, KI16]. Reflection
[OT95, Bak95a]. region
[KBF+12, WZSK19]. region-based
[KBF+12], regions [GPS14]. Register
[GJT+12, LPS+99, RRK11, WW93, CCC12,
HKT93, SLP08, kSYHX+11, ZP04].
regulated [XHB06]. Relabeling [HH11].
related [Bar09, RD06, TLZ+16]. relational
[HB15]. relative [Bet73]. Relatively
[NV15]. relaxed
[BAM07, DNB+12, HT14, QSQ14, ZKW15].
relaxed-consistency [HT14, QSQ14].
Relaxing [CZS+17]. RelaxReplay [HT14].
Relay [Zha00]. Release
[AB02, PST+92, SLP08, EKB+92, Pea92].
Reliability
[CKK+16, CvdBC18, OL02a, OL02b, OL02c]. Reliable
[KS16, NBS+15, RG03, YZYL07, YCW+14].
relocation [WW93]. remains [Ano94b].
remedies [ALW+15]. remote
[TK98, ZLW+16]. Remove [CNZS17].
reordering [DKG18]. Replay
[Chr01, UALK17, GCRD04, HDT+13, HT14,
LVN10, LWW+10, LZZT15, NWT+07,
PDP+13, QSQ14, QSH16, RD99].
Replaying [MCT08, WKG17]. Replica
[AT16]. Replication
[AKP99, BKM06, VACG09].
Replication-Based [AKP99]. Report
[Ano97a, HCM94]. reproduce [HDD13].
request [Sch98]. Requirements
[PCPS15, GL98a]. rescue [SLP+09].
Research
réseau [Swi09], Reservation [LZS+08], Resilience [SHK15], Resistance [Gar01], Resistant [YLLS16], resize [Mit96], resolution [Evr01].

Resource [HC17, LG06, LZS+08, LHG+16, RSBN01, YSS+17, CY09, HCD+94, VS11b].

Resource-Efficient [LHG+16]. Resources [LSB15, RGG+12, ZSB+12]. Respec [LWV+10]. Response [BBC+00, Sni01]. responses [BS06]. Responsive [SUF+12].

Restart [ZSA13]. Restarting [EE14].

Restore [Ano00b]. restricted [ABG+08]. restructuring [BVG97]. Results [GV95, GR06]. Retentive [RRK11].

Rethinking [Xue12, Len95]. retrieval [CML00]. Retrospective [TEL98a].

Reusable [Han97]. Reuse [BCZY16, KZTK15, LPK16, SV19, JSB+11, NAAL01, PHCR09]. revealing [Dav11].

Reverse [Coo02, LSB15, WCV+98].

Review [Lar97, Van97a, Vre04]. Reviews [Bra97]. Revised [Cha05]. revisionist [PT91].

Reviving [TLZ+17, TLZ+18].

revolutions [ECX+12]. Rewriting [BGK94a, BGK94b]. RHEED [BD06].

RISC [Cho92, GV95, MGH95, Men91, Nik94, SBKK99]. rise [Len95]. Robot [Lev97]. Robust [CMF+13, LG04].

Rockefeller [IEE90]. Rogue [Ano00b].

Role [BC94, KZTK15]. rollback [ZYYS07].

root [CMX10]. Ropes [HMC95]. routine [SG18].

Row [KZTK15]. RP3 [CJ91]. RPC [Tod95].

RPDM [DVA18]. RPython [MRG17]. RTOSS [IEE94a, IEE94d]. RTR [XB06].

Ruby [OCT14]. rules [GLPR12].

Run [EJ93, LFA96, Sww07, SS96, Pra95c, TNB+95]. Run-Time [EJ93, LFA96, SS96, TSY99, TNB+95].

Running [SV19, Cal02, MLCW11, SSN10].

runs [Hig97].

Runtime [AB99, ABNP00, ABH+00, ABN00, BJK+96, BMN99, CZZ+17, DN00, FSS06, KPC96, NPT98, NS97, QOIN+12, SSP99, WS06, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EQT07, Gol97, Ong97, TSY00, TMAG03].

routines [RL14]. Russians [KNPS16].

SableSpMT [PV06]. SAC [GS06]. Safe [BCL+98, Kle00, Loc18, Low00, NH09, Pla02, AFF06, BYLN09, DMBM16, Feld08, GCC99, GOT03, Gro03, NHFP08, Nev99, Rin99].

Safe-for-Space [BCL+98]. Safety [Hag02, Pla98, Ric99, SP00a, GPS14, Sam99, Sam04, SRA06, Taf13, Van97b, Ven98, Yan02].

safety-critical [San04]. Salt [Hol12].

Sampled [JYE+16]. sampling [MMN09].

San [ACM93b, ACM94d, ACM95b, ACM98b, USE99, USE92a, USE93b, USE98b, USE00a, USE02].


SC2000 [ACM00]. SC2002 [IEE02].


Scalability [ABLM19, CCH11, GVT+17, Nak01, VP16, BWDZ15, DSEE13, MKW′06, RVOA08, VIA+15].

Scalability-Aware [GVT+17].

Scalable [BMBW00b, CC14, CH04, CKZ12, IEE94b, KUCT15, LMC14, LNI+19, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, LZO7, Mao96, PWD+12, SCZM00, WZSK19].

scalar [GL08b, ZCSM02a, ZCSM02b].

Scale [CC14, CJB+15, HC17, LA93, PWE+11, AG06, BCM+07, GOT03, SMK10, KBA08].

scale-out [AG06].

Scaling [HC17, AR17, ECX+12, KTLK13, SW16].

Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RV04].

Schedulability [Kim14]. Schedulability-Aware [Kim14].

Schedule [MQL16, MLR15, NAAL01, WTH+12].

Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSA+S+16, SRS08, SS95, ASSS19, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSA08]. Scheduler-Centric
schedulers [NBMM12]. Schedules
[BCG13, CZ02]. Scheduling
[BL94, BL98, BL99, CCWY17, FS96, FSPD16, GRS06, JLS99, KLDB09, LLKS12, MNU+15, NB99, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSM12, KJJ+13, KBP+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAS07, WHJ+95, ZSB+12]. Scheme
[ABN99, PJS15, SKKC09]. Schur
[YFF+12]. Science
[Gol94]. Scientific
[CMBAN08, HLB94, IWSB19, WN10, BT01, BD06, Dan90, NJ00, Bra97]. scoring
[TO10]. Scotland
[AOV+99]. SCP
[SLJ+19]. Scriptics
[Ano00b]. Scripting
[RBPMM00]. Scripts
[TLA+02]. Seamless
[CV08]. Search
[AMRR98, BCC010, LAH+12, Mah11]. searches
[TCG95]. Seattle
[ACM93c, IEE94a, IEE94d, LCK11, USE98a]. see
[AHW02]. Second
[IEE89, IEE96, FR95]. Section
[DSR15, MNU+15, CS12, DTL14, SMQ09, YL16]. Section-Aware
[MNU+15]. Section-Based
[DSR15]. sections
[NM10]. Secure
[SV98]. Security
[BRRS10, MS03, Way95]. sedition
[Bak95b]. SEDMS
[USE92b]. See
[Swe07, AC09]. segmentation
[BCG14]. Select
[KKDV03]. selected
[Cha05]. Selection
[AT16, PR05, Sta90]. Selections
[BAZ+19]. Selective
[Nak03, PR98, VACG09, MCRS10]. Self
[LLLC15, Pet00, SEP96, BDF98, SLP+09]. Self-Allocating
[SEP96]. self-healing
[SLP+09]. self-migrating
[BDF98]. Sema
[Kor89]. semantic
[BNS11a, BNS11b, BNS12]. Semantics
[BR15, CRW99, HEJ90, MP01, BLM06, CRW97a, CRW97b, KT17, ZHCB15]. Semantics-aware
[HEJ09]. Semaphore
[Hol98b, Kor89]. Semaphores
[Hol98c]. semiconductor
[Ano97b]. Semidefinite
[YFF+12]. Seminar
[Nev99]. sense
[Bak95b]. Sensible
[LMA+16]. Sensitive
[CC04, RYS04, ASSS19, DC99, DC00, PFH06, ZJS+11, LG04]. Separation
[SCG95, TFG10, TFD14]. September
[ACM93c, AOY+99, DLM99, FR95, Hon94, IEE89, USE98b]. Sequences
[GH03, FTAB14]. Sequential
[CV98, TLZ+17, TLZ+18, CRW97a, CRW97b, ORS+06, SCG95, SNN+12]. serialization
[BHK+04]. Server
[Ano00b, Cal97, Day92a, Day92b, SM92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sha97b, Sta90]. server-side
[SBB96]. Servers
[PHBC18, RCC12, BDM98, BBYG+05, BEKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b]. Service
[CG06, GMW09, Hig97, PSM03]. services
[LZ07]. session
[Bak95b, HCD+94, IAD+94, VGR06]. sessions
[Ano04c]. set
[ARU92, KBF+12]. Sets
[MNG16]. Seven
[But14]. several
[FGG14]. shader
[PYP+10]. shallow
[LVA+13]. Shanghai
[IEE97]. shape
[Cor00, GBCS07]. SharC
[AGEB08]. Shared
[BWXF05, BS96, DM98, EJ93, FJ08, GMR98, GH98, IXL18, LB92, MVZ93, MCT08, STY99, SLJ+19, Thr99, VB00, WC99, YMR93b, BB00, Bo03, DLMCO9, DPZ97, EKGL90, EVO1, Gle91, ISS98, Jef94, MLCO4, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN90, ZSB+12, dBO9, Cha05]. Shared-Memory
[BS96, DM98, EJ93, IXL18, MVZ93, MCT08, Thr99, WC99, EKGL90, TSY00, YN90]. shared-variable
[dBO9]. Sharing
[CLLF94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAT07, TE94a, Ver96, VPQ12, ZJS10]. sharing-aware
[TAS07]. sharing-based
[TE94a]. Shelf
[MHG95]. shell
[Ric91]. Shift
[Ham96]. Shifting
[TVB+13]. Shinko
[Ano00a]. Shootdown [PHBC18]. Shop
[Bec00]. short [CPT08, Lie94]. shortage
[Ano94b]. Should [EHP+07]. SICStus
[EC98]. side [MWT10, SBB96]. sided
[QSH16]. SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b]. SIGCOMM [RM03]. Signal
[Eng00, BM91]. Signals [GRR06]. Significance [ZS12]. SIGPLAN
[ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].

Silicon
[FSYA09, SW08]. Simple [AKS06, C15b, WS08, BDL07, CL00, MSM+10].
SimpleGraphics [MKK99]. simplify
[PO03]. Simplifying [Pom98]. SIMT
[CC18, LPK16]. simulate [MAF+09].

Simulation
For97, GV95, HPB11, JYE+16, MPD04, SLJ+18, VSTM12, WC94, Ano97b,
BBH+17, KBF+12, Lep01, Lep95, MHW02, SWYC94, Sim. Simulations
[HEMK17, LNI+19, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12].

Simulator
[SRS98, PWD+12, TSC99, WZWS08, Nak03]. Simulators [BVL09].
Simplelink [HY+15]. Simultaneous
[Ano05, CSK+99, EEL+97, GSL10, HMNN19, LEL+97a, LEL+97b, LPE+99,
LEL+99, LRZ16, MCF799, REL00b, SP07, SLG04, SU01, ST00c, TEL95, Tu96,
TEL98b, WS08, YG10, ABC+09, AAK08, ABB+15, CCC12, EE09a, Fis97, HKN+92,
HMM+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHCR09, RCG+10,
REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03,
TSC99, TEE+06, VPC02, TEL98a]. Single
[CLFL94, Dub95, EHP+07, FT96, HHOM91, JKB18, KH18, KTR+04, MNU+15,
MTN+00, CSM+05, MLC+09, Pra95c, VIA+05, YZ07, YSY+09]. Single-Address-Space [CLFL94].
single-and [YSY+09]. Single-Chip

[HHOM91, MTN+00]. Single-ISA
[KTR+04, MNU+15]. Single-Process
[FT96]. Single-program [Dub95].

Single-Thread [KH18, MLC+09]. Single-Threaded
[EHP+07, JBK18, Pra95c, VIA+05, YZ07]. Singleton
[Cha02, Rin99]. Situ [RGK99].
sixth [USE98b, ACM94d]. size [LML00].
skyline [WZSK19]. slave [TJY+11]. slice
[PSG06a, PSG06b, PSG06c]. slice-based
[PSG06a, PSG06b, PSG06c]. Slices
[MGQS+08, PF01]. Slicing
[Kri98, FRT95, NR06]. SlicK
[PSG06a, PSG06b, PSG06c]. slower
[Pra95c]. Small [JLA16, Koo93, MM07].
Smalltalk [Bri89]. Smalltalk-80 [Bri89].
smart [Sim97]. SMP
[BWX05, BNH01, CRE99, HD02, KKH03, KK+13, Pra95c, TAS07, TMG03]. SMPs
[WG99]. SMT
[Ano05, AH00, CY99, E09b, EE10, EE12,
FSPD16, FSPD17, HR10, KLG08, KH18,
KI6, MG99, M+05, NP+14, PAdS+17,
PAB+14, PLT+15, RYN04, RPNT08,
SLP08, TAS07, TVB+13, VS11b, WA08].
SMT-based [KI6, PAdS+17, PAB+14].
SMT-Directory [HR10]. SMTp [CH04].
Soft [EUV06, OA19, PSM01, PSM03,
SSN10, VAC09]. Software [Ano97a,
Ano98b, Ano99, Ano00b, BCR01, BCG+08,
Gar01, Gon90, GC97, Han97, HSS+14,
I094a, KI15, LPE+99, MKM17, PJS15,
SZM+13, SD13, TVB+13, TLZ+17, TLZ+18,
XWG+14, YBL16, ATLM+06, AC90,
ABC+09, BT01, Bra97, CDD+10, DPZ97,
GLPR12, Hai97a, HSD+99, KKH04,
KSD04, KASD07, IEE94d, KKH04,
LPE+99, MA90, MCFT99, VIA93, KKH04,
MNU+00, OAA09, OL02a, OL02b, OL02c, PV06,
RKM+10a, RKM+10b, RVOA08, SAP04,
SP05, SL+09, SB80, TNN+95, WCZ+07,
WCV+98, YSY+09, ZHC15, DWS+12].
Software-Controlled [BCG+08, Luk01].
Software-Directed [LPE+99]. Solaris
[Cat94, Lun97, Lun99, MM01, McM97, Pra95b, Sun95]. **Solution**
[Ano98b, SBC91, WP10]. **Solutions**
[Ano00b]. **solve** [Bar09, MM07]. **Solver**
[YFF+12, Kub15, RM99]. **Solvers**
[MR09, Nak03, AAC+15, ZCO10]. **Solving**
[ABD+12, FTAB14, Loe97, VSDK09]. **SONET** [AHW02]. **Sort** [GH98, RRH10]. **Sound**
[WTH+12, DWS+12, FFY08, NFB17, WQLJ18]. **Source**
[Ano00c, BMF+16]. **sources** [SJ95]. **South**
[ACM93a, Ano94d]. **Space** [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, Sch17, FWL03, KNPS16, KASD07, Lie94, LHS16]. **Space-Efficient**
[BL98, NB99, BL93, KNPS16, KASD07, LHS16]. **Spacecraft** [SRS98]. **Spaces**
[FKP15, Röt19, CKZ12, KGGK09]. **Spain**
[ACM95a, DLM99, ACM98c]. **SPARC**
[Cat94, KAO05, MD96]. **Sparcle** [ABC+03]. **Spatial**
[But13, YFF+12, CSV10, Dav11, DTR18, MM07, PHCR09]. **spatial**
[WZSK19]. **spatially** [PPA+13]. **spatially-programmed** [PPA+13]. **Special**
[Ano94c, BMF+16]. **specialization** [WTH+12]. **specialize** [WCS06].
**Specialized** [dPRGB99]. **Specific**
[Ste01, SP00b, Shi00]. **specification** [Stä05].
**specifications** [TVD10]. **Specifying**
[BNS11a, BNS11b]. **SNS12}. **specroscopy**
[KC09]. **spectrum** [DKF94, Sha95b].
**Speculated** [SCL05]. **Speculation**
[MGI14, SU01, WS08, YBL16, DG99, GB99, JEV04, LWV+10, MT02a, MT02b, MT02c, NB12, PO03, PT03, SCZM00]. **Speculative**
[AH00, Ano01, Ano02, BF04, IB09].
**KL08, MGQS+08, MG99, MT02a, MT02b, MT02c, RKLM+10a, RKLM+10b, SR01b, TFG10, WWW+10, ZJFA09, ZL10, CHI+03, DC07, Dub95, KOE+06, KT99, LZW17, LZW+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VS11b, XIC12, ZCSM02a, ZCSM02b]. **speech** [LG04].
**Speed** [Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10].
**Speed-up** [MR09]. **Speedup** [Lun99]. **Spin**
[LLS06]. **SPIRAL** [MF+10].
**SPIRAL-generated** [MF+10]. **spltitable** [SLF14]. **spots** [Gle91]. **spreading**
[CWS06]. **SPSM** [Dub95]. **SQL** [CGK06]. **squares** [FTAB14]. **sush** [MK12]. **SR**
[BK06]. **SRAM** [kSYHX+11]. **SSMT**
[CSK+99]. **Stabilizers** [ZSJ06]. **Stabilizing**
[BCM+07]. **stable** [YCW+14]. **Stacey**
[Ano00c]. **Stack** [Eng00, Xue12]. **Stackable**
[Loc05]. **stacking** [KSB+08]. **Stackless**
[MS15]. **stacks** [DESE13]. **StackThreads**
[TTY99]. **StackThreads/MP** [TTY99].
**Standard** [DM98, FSS06, WKG17, BCL+98, Bra97, MT93, Pla98, Pla99].
**standardization** [Bet73]. **Standards**
[Thr99, TTY99]. **Standing** [TLA+02]. **Stanford** [EE99]. **STAT** [Ano00b]. **State**
[Laf00, LP94, MP13, RRK11, Wei98b, Fer13, NAW06, NA07, AFF06, FFLQ08].
**Static/dynamic** [CB15]. **Statistical**
[Ano00b, RCM+16, LNM07, RCM+12, Tem97].
**Stay** [GBK+09]. **stealing**
[ALHH08, BL94, BL99, RL14]. **Step**
[Sho97a, Sho97b, ZG98]. **Steroids** [JLA16].
**Stethoscope** [Caz02]. **Stochastic**
[DK02, LTM+17]. **Storage**
[AT16, Hol12, LCK11, Bak95a, Bhu92, DZKS12, KOE+06, MM07, PDMM16].
**stores** [TAN04]. **strand** [RCV+10]. **strata**
[NPC06]. **Strategies**
[PSCS01, AGEB08, FGG14]. **Strategy**
[BGK96]. **Stream** [KSF94, SG18, SG18].
**Streaming** [HHOM91, HHOM92, KEL+03].
**Streaming/FIFO** [HHOM91, HHOM92].
**Streams** [Pre90, SPY+93]. **Strength**
[Kon00]. **Strict**
[Coo95, FS96, Tra91, KIAT99, SCG95].
Strictly [Ano00c]. Strong
[CWHB03, K2C15, MTC+07, ZHCB15].
Structural [CRWR99]. structure
[BB00, YKL13]. Structured [TC198, FR95].
Structures
[RCRH95, AGN09, Gol97, ND13]. students
[Fek08]. Study [AGK96, Chl15a, EGQ02,
HMT+96, LSB15, Sat02, TAK+00, VK99,
WG94, YMR93b, Bri89, CASA14, CL00,
Fis97, HJ+93, HF96, KPPP96, MGL95,
SP05, Tsa97a, YM92, YMR93a].
Style [Wil94a, Wil94b]. subdivision
[MTS10]. subordinate [CSK+99, CTYP02].
Subsetting [AJK+12]. Substrate
[ACMA97, Hai97a, JP92]. Subsumption
[Man91]. Subtleties [BLM06]. Suffix
[OR12, LHS16]. Sugar Cubes [BS00]. Suite
[BTE98, BO01, TG90]. Suites [SDPLK+17].
SuiteSparseQR [Dav11]. sum [TDW03].
summary [T+94]. Summer
[An094f, USE92a]. Sun [McM97]. SunOS
[Cat94, PKT+91]. super [Kus15].
Supercomputer [VTSM12, Gil94].
Supercomputing
[ACM92, ACM95a, ACM96, Ano91, Ano94e,
IEE90, IEE92, IEE93, IEE94c]. SuperLU
[Li95]. SuperMalloc [Kus15]. Superscalar
[SU96, Div95, Fis97, Gu95, Loi95, Men91].
Superthreading [Ts97b]. Support
[ACM94d, ABLT92, BBG+10, CZS+17,
CSS+11b, EJ93, GHG+08, KC99, KM17,
ME15, MS89, NS97, PTMB99, SSP99, TY97,
ZSA13, ATLM+06, BS06, BO96, CMF+13,
CKD94, CHH+03, CSS+91a, CSS+91c,
Evr01, Fan93, HMC95, MWP07, MEG03,
MS87, Men91, TSY99, TSY00, TNB+95,
WK98a, WK08b, WK08c]. Supported
[Add03, ZP11]. Supporting [RCRH95,
Sam99, SP00a, DC09, DC00, TDW03].
suppression [JWLG91]. Surface [Rt97].
surgery [MCS15]. Surprises [BC98].
Survey [Man96, OA19, ZSB+12, Cat94,
URS02b, URS03]. Survival [Ano99].
Surviving [Ano99]. SVR4 [SPY+93]. swap
[MLS15]. Swing [Gee98]. Switch
[GN00, Eic97, GWM07, TVB+13].
Switzerland [Lak96]. Sy [USE01].
Symantec [Rod95a]. symbiosis
[Bri89, EE10, EE12]. Symbiotic
[ST00a, ST00c, ST00b, TV02]. Symbolic
[ACM94c, BGC14, Hon94, Lak96, Wat91,
BHKR95, Fu97, HF88]. Symmetric
[BM03, NV94, BK+11, Pr95b, RKG99,
Sh98]. Symmetry [ES97]. Symposium
[ACM93a, ACM93b, ACM94b, ACM94c,
ACM95b, ACM98b, ACM98c, Ano91,
Ano94a, Ano00a, Ano03, Gol94, Hon94,
Lak96, USE91a, USE92b, USE93a, USE98a,
Wat91]. Synapsys [Col90a].
Synchronization
[Bec01, Hei03, LA93, Rec98, SLJ+18,
DHM+12, DESE13, MT02a, MT02b, MT02c,
MTPT12, NLK09, PRS14, RD06, Ven97].
Synchronization-Aware [SLJ+18].
synchronization-induced [MTPT12].
synchronization-related [RD06].
Synchronizing
[McM96a, McM96b, CZWC13].
Synchronous [BM07, HPB11].
SynchroTrace [SLJ+18]. syntax [KT17].
Synthesis [FN17, HB15, LNI+19, Sch17,
MP89, SR14, STR16, WQL18].
Synthesizing [GLPR12, Kim14, SRJ15].
synthetic [GJ11]. System
[Add03, AddB08, AJK+12, Ano98a,
Ano00b, ABN99, ABH+00, BM94,
BBD+91, BJK+96, BTE98, CLFL94, CC18,
DNR00, FG91, Ge01, HMT+96, KMA01,
K97, MS89, NPT08, PH97, PST+92, Pea92,
PLT+15, QOM+12, REL00b, SEP96, Sri93,
SG96, TCI98, VSM+08, Yan96, AdBDR05,
AAC+15, Ano96, Ano97b, A+01, AR17,
ASS19, BBFW03, BDM98, BCHS00,
BAD+10a, BAD+10b, BJK+95, BAD+09,
BLCD97, Cat94, GIL88, Hig97, Joe96, Lan02,
MH02, MS87, Met95, MTC+07, MC06,
OCR07, PRB07, PLY89, Pom98, REL00a,
REL00c, RD99, SHE02, TKA+02, TLZ+16,
TMAG03, WCC+07, WZWS08, WZSK19,
TLA+02, EKB+92, MS87, Pea92]. System-
[PLT+15]. Systemic [MQ07]. Systematic [MQ07].
SystemC [RSB+09]. SystemC[C [RSB+09].
SystemC/C-based [RSB+09]. Systems
[ACM94d, AG06, Ano00b, ABN00, BMN99,
Bre02, BC94, C911, CvdBC18, Dru95,
FMY+15, FGKT97, GHG+98, GJ97, HRH08,
HKS96, IEE99, IE94a, KR12, KKH03,
KG95, KUC+15, KW17, LLS06, LMA+16,
LYH16, MS15, PGP11, PGB16, RW97, RR03,
SUF+12, SS96, USE92b, Wal95, WC99,
Zub92, Ano92a, Ano92b, BCM+07, BC02,
Cat94, DCK07, DWYB10, DZKS12, DSH+10,
DBRD91, GJ11, Go96, GKK90, HJT+93,
Hop98, HWW93, HBCG13, IEE94d, ISS98,
JD08, Je94, Jen95, KKH04, Kub15, LYN10,
LLC15, Leg01, LAK09, LVA+13, MLC+09,
MGL95, MM07, NFBB17, PBDO92,
RCV+10, RBF+89, RSB+09, RVR04,
SCCP13, She98, SP05, Sim97, SJB92a,
SJB92b, ST05, Wei98, WCV+98, Ano98b].
systolic [PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1
[Wea08]. T1/T2 [Wea08]. T2 [Wea08].
Table [VB00, KNP16]. tabling
[AR17, AR19]. Tabu [AMRR98]. tail
[ASSS19]. taint [ZJS+11]. TaintEraser
[ZJS+11]. Take [Wei97]. taking [Ano92b].
Talking [Ano94c, HCM94]. TAM
[CGSV93]. Taming
[Hol00, HBCG13, HHPV15]. TapeWare
[Ano00b]. Target [MIGA18]. targeting
[LG94]. Task [CCK+16, GP95, GFJT19,
Kw03, Mar03, Min96, PM14, ABG+08,
CAS14, DCK07, ODS99, RCM+12].
Task-Based [GFJT19]. Task-Level [GP95].
Tasking [CvdBC18, Di93, KR01a]. Tasks
[Fin95, PVS+17, YSS+17, FGG14].
Taxonomy [HM96, SP96]. TC2 [BT01].
TC2/WG2.5 [BT01]. Tcl [Ass96, USE96,
USE98b, USE00b, Ama98, MKK99, SBB96].
Tcl-based [Ama98]. Tcl/2k [USE00b].
Tcl/Tk
[Ass96, USE96, USE98b, USE00b, MKK99].
TCP [Ano00c, Ano00c]. Teaching
[Fek08, CS00, She02]. TeamWork
[CDWC13]. Tech [Ano97b, Gar01].
Technical [USE00a, Cat94]. Technique
[JSB+12, KG94, Lm02, ÖCS01, PGB16,
JSB+11, JPSN09, LGH94, MIGA18, RS07,
UZ00, VACG09, WCV+98]. Techniques
[DS16, EKKL90, GS02, Han97, LG94,
RS07, OCRS07, Pra97, RCG+10, SV99,
SV99a, SV99b, ZSB+12]. Technologies
[Ano00b, Ano98b]. Technology
[Bra97, KM03, LB00, USE01, VSM+08,
KSB+08, Tsa97b]. TeleNotes
[WSKS97]. temperature [CC12]. Template
[Cal00, How98]. Ten [Ano99]. Tennessee
[IEE94b]. Tera [BTE98, Mat97]. Terabytes
[IEE02]. Term [BG94a, BG94b, BG96].
Termination [JKB18, TDW03]. Test
[Ano98, EFN+01, GRS97, SPDLK+17,
TG99, EFN+02, KI16, SR14]. test-case
[KI16]. Testing [BBdH+11, Geo01, LCS04,
RCC14, SK12, BGP06, CBM10, EFG+03,
EHSU07, MQ07, Sen08, YNP12]. tests
[SRJ15]. Texas [USE92a, USE00b]. TFlux
[DTLW16]. tgMC [LGH+16]. Their
[YWJ03, Gil94]. them [Ano92a, Ano94b].
Theoretic [ES97]. theories [LIQ15].
Theory
[ACM93b, LLD17, NFB17, WLK+09].
there [Ano94b]. thermal [WA08]. though
[Ano94b]. Thread [Ano00c, ABN99,
ABNP00, Bet73, BS99, CNQ13, Cal97,
CC04, Cha02, CCWY17, Col90a, DSR15,
DGK+03, Don02, Eng00, FD95, FUR00a,
FUR00c, FUR00b, GF00, GJT+12,
GP05, GBCS07, GKB+09, Hag02, Hei03,
HG91, ISS98, KG95, Kim14, Kle00, KH18,
KHB+03, KHB+04a, KHB+04b, LLL10,
LYH16, LEL+97a, LEL+97b, Low00, LLD17,
Man99, MG99, MNU+15, MG914, MTN+00,
MB05, MCFT99, ND96, Pan99, PR05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCC+10, Rec98, Ric99, Rin99, RYSN04, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97, SKK+92, Sat02, TAS07, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BKC+04, BC02, CZSB16, CZ02, CSM+05, DMBM16, DG99, DWYB10, Don92, DBRD91, Eic97, Fek08, GP08.

Thread [GOT03, GLC99, Hyd00, JEV04, KDM+98, KC09, KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZL+14, Loe05, MLC+99, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOQOV+09, SKG+11, Sha95b, SLG06, SP00b, Shi00, SPH96, SS95, SD13, SLT02, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Ven97b, Ven97, Ven98, WS08, YZ14, SKP+92]. Thread-Aware [GOT03, GLC99, Hyd00, JEV04, KDM+98, KC09, KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZL+14, Loe05, MLC+99, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOQOV+09, SKG+11, Sha95b, SLG06, SP00b, Shi00, SPH96, SS95, SD13, SLT02, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Ven97b, Ven97, Ven98, WS08, YZ14, SKP+92]. Thread-Based [KG05, CNQ13, SKS+92]. Thread-Level [LEL+97a, LEL+97b, MG99, MGI14, YBL+03, FURM00a, FURM00b, MCFT99, WS08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QOQOV+09, SCZM00, YZ14]. Thread-Local [DGK+03, Whi03]. Thread-Management [RGC+10]. Thread-Modular [GBCS07].

Thread-Private [Man99], thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, Rin99, DMBM16, Fek08, GOT03]. Thread-Sensitive [CC04, RYSN04]. Thread-Specific [Ste01, PO00b, Shi00]. Thread-Switch [Eic97]. Threadbare [Bak95b]. Threaded [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CRKRW99, Coo95, CSS+91b, DV99, EHG95, EHP+07, FdL02, GH03, GVT+17, GK94, Gil93, Hl01, JBK18, JY15, Jon91, KW17, Kri98, Kuc92, KIAT99, LB92, Mas99, MG15, MK+00, NS97, PCPS15, Pul00, RKCW98, SV19, STW93, Sei99, Sni92, Ste01, SBKK99, TLGM17, VSDK09, VS11a, VB00, WCT98, Ada98, ABD+12, ACK92, Ano97b, ASSS19, BWDZ15, BK13, BBH+17, BC00, BIK+11, DSEE13, CV98, CIM+17, CASA14, CRKRW97a, CRKRW97b, CWHB03, CSB00, CDC01, CYZ98, eC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBG01, EHSU07, FTAB14, FD96, FGG14, GCRD04, GCC15, GS06, GH98, GPR11, HC17, KHP+95, KI95, KKH04, Kep03, KRH98, Kück11, LF15, Lan97, Leg01]. Threaded [LBvH06a, LBvH06b, LBvH06c, LVA+13, MLCCW11, MS03, MKK99, NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, PWWD18, Pra95c, RCV+10, RKM+10a, RKM+10b, RPKM00, RGG99, RS08, SCB15, Sam99, SP00a, SC17, SE21, Sei98, Sho97a, Sho97b, SV98, Sm06, Sto02, SQP08a, SQP08b, SQP08c, Ta13, TSY99, TSY00, Ten97, TAMG03, TJY+11, VIA+05, VV00, VK99, Wal00, Wil98, XMNN99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGSV93].

Threading [BFA+15, CvdBC18, CNZS17, DHR+01, Hol98d, KS16, LKBK11, MLGW18, McC97a, McC97b, MS15, MP13, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, SM18, TGO99, YLBS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, MLC+09, MCFT99, NJ00, RRPM06, RVR04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04]. Threading-Based [KS16]. ThreadMentor [CMS03, She02]. Threads [Alf94, Ano94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, BAZ+19, Cal00, CGR92, Co90b, Cri98b, Cri98a, TLA+02, FHM95a, For95a, For95b, GM93, GSC96, GN96, Gus05, Hai97b, HW92, HBG01, Hol00, How00, HLH16, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MKM17, MP89, McM96c, Nor96, PS01, Pet00, Pet03, Pla93, Pra95c, San04, SEP96, TG99, WCW+04a, Wil94a,
Transparently [ABN99, LVN10, SLGZ99, ZSA13].

Transport [GRS97]. transposition [SGLGL+14], trap [Ram94, GRS97].

trap-based [Ram94]. Tree

[Pla99, BCC10]. Trees

[GFJT19, AD08, CKZ12]. Trends [Gar01].

TRI [ACM93c]. TRI-Ada [ACM93c].

triangular [BKK17]. Trick [Eng00]. Tridia

[Ano00b]. tridiagonal [ZCO10]. trigger

[Kho97]. Triggered [PPA+13]. Troy [SS96].

TSGL [ACD+18]. TSO [HH16]. Tumbler

[PGB16]. Tune [RGK99]. tuned

[Ano95a, Ano95b, Kub15]. Tuning

[LWSB19, LEL+99, CSB00, RGK99].

Tunnelling [Don02]. Tutorial [Taf13].

Twentieth [ACM93a]. Twenty

[AOV+99, ACM93b]. Twenty-fifth

[AOV+99, ACM93c]. Two

[BBH+17, CM98, JYE+16, STY99, GLC99].

Two-Level [JYE+16, BBH+17, STY99].

TX [Cha05, ACM00, USE91b]. TxRace

[ZLJ16]. Type [Gro03, Loc18, VGR06].

BAD+09, GE08, Lan02, Mil95, PRB07].

type-checking [Mil95]. Type-Safe

[Loc18, Gro03]. typed [DMBM16]. Types

[AFF06, FFLQ08, Ten98, BAM07, KS93, VGR06].

typings [Smi06].

UCITA [Gar01]. UK [AOV+99]. ULT

[PG03]. Ultra [PWL+11]. Ultra-Scale

[PWL+11]. UML [SK12]. Unbounded

[CNV+96, FKP15, BDLM07]. uncommon

[BDLM07]. Uncover [WS08].

underdetermined [Kub15].

Undergraduate [BLPV04].

Understandable [MSM+16].

Understanding

[BZ07, TLA+02, EPG16, JGS+19, RR06].

Undocumented [SW97]. Unfoldings

[SPDLK+17]. Unicode [Swi09]. Unified

[Wei98b, ABG+08, GKBZ12]. Uniform

[BDN02, SKG+11]. unifying [MS03].

unimodular [DH92]. unintrusive

[HDT+13]. uniprocessor [GL98a, Yan97].

uniprocessors [BRE92, EJK+96].

Uniscope [Ano98b]. UNISIM [LS11].

UNISIM-Based [LS11]. unit

[CBM10, Par91, PAB+14]. United

[ACM94]. Unithreaded [RLJ+09]. Units

[RRK15, Gun97]. univariate [CMX10].

University [IEE99]. UNIX

[Ano00b, FG91, JJ91, Koa99, MS87, MS98, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].

Unix-to-NT [Ano98b]. UnixWare

[Rod94, Rod95b]. unlocking [XSaJ08].

unravel [But14]. Unraveling [Bec09].

Unsynchronized [DSR15]. unveiled

[Ano95a, Ano95b]. Unveiling [AAC+15].

up-and-downdating [VV11]. UPC

[EGC02, FA19]. updates [NH09].

Updating [HSS+14, HSD+12, NHF08]. Ur

[Chl15b]. Ur/Web [Chl15b]. URL

[TLA+02]. USA [ACM94a, ACM94d].

Cha05, Hol12, ACM96, ACM98d, ACM00,

Ano90, EV01, IE89, IE94a, IE96, IEO2,

SS96, USE89, USE91a, USE91b, USE92a,

USE93a, USE93b, USE00b, USE00a, USE01].

Usage [BS96, Kor89, VI11b]. Use

[Bak95a, FJ08, HW92, WWW+02].

Use-once [Bak95a]. Useful [Pet03].

USENIX [Ano90, Ano94f]. User

[ABLL92, DLM99, Eng00, GRS97, MQW95].

SLT03, BF08, GP05, GRR06, HP06, Ll05,

MSLM91, OT95, SLT02, TNB+95, YZYL07].

User-Level [ABLL92, SLT03, MQW95],

GRR06, LSLM91, OT95, SLT02, YZYL07].

User-Space [Eng00, GRS97]. Using

[Ano99, ABH+00, AZG17, BDN02, BBC+00].

BLG01, BTE98, BAZ+19, CRE99, Cor00,

DS16, DTLW16, DBRD91, GH03, HBG01,

HJT+93, HTBG98, Hei03, How00, KJMC02,

KH18, Kwo03, KETO6b, LFA96, MPD04,

McM98a, McM98b, Mix94, MM07, PFO1,

PBR+15, P003, SW08, SCD+15, SEP96,

SLT02, WKG17, WJ12, Who03, ZLI16,

Ano96, Bar09, BCM+07, CMLO0, Cat94,

CTY02, CDD+10, CVJL08, CKZ12,
DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JWTG11, JJY+03, KASD07, KB+12, KL15, MM14, NPC06, NWT+07, Nik94, PT03, RK+10a, RK+10b, RM99, RPNTO5, SLGZ99, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VD08, ZJS+11, KSB+08. UT [Hol12]. Utility [FHM95a, JSMP13, FHM95b]. Utility-based [JSMP13]. Utilization [Squ94]. Utilizing [ES97, WZSK19]. UX [Ano95a, Ano95b, Yam96].

V [EB+92, Pea92, FG91, PST+92]. v.1.0 [Ano00b]. Validating [LB17]. Validation [BMV03, LB17, SCB15]. Valley [GBK+09]. Values [EUVG06]. variable [Ev01, dB09]. Variables [Hol98c, Chl15a]. variation [PGB12]. variety [CML00]. VAX [Gil88]. Vector [Goo97, HHOM91, HHOM92, KB+04a, KB+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92]. Vector-Thread [KB+04a, KB+04b, KBA08]. vectorization [cC91, JMS+10, RKHT17]. vectorized [TP18]. vectors [KTK12]. Velodrome [FFY08]. Verification [Amdbrs02, BCR01, Chl15a, DRV02, EGP14, FK12, JBK18, KKW14, KBSA14, DCK07, EG11, FFQS05, NSH14, Stä05]. Verified [Loc18]. verifiers [GLP12]. Verifying [GMOR09, RKCW98, GPR11]. version [NHF08, TV10]. version-consistent [NHF08]. versions [BD06]. Versus [NSP+14, Ann96, Yam96, dIPR99]. Vertex [CNZS17]. Vertex- [CNZS17]. Very [AOV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZ16, CCWY17, FBFO1, Hig97, KRBJ12, KGPH12, Kim14, LWV+10, LZT15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97]. Video [BC00]. view [KTLK13, PT91]. Vina [TO10]. Virtual [BSS14, BBM09, KG05, KKD03, PRB07, PHBC18, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization [LRZ16, YSS+17, ABB+15]. Virtually [LB92]. virtues [NJK16]. virus [GJ11]. viscous [RM99]. Visual [PTMB09, Dii93, MCM96c, Es96, Nag01]. Visualization [Ano97a, ACR01, Cal02, Caz02, BCS00, CSB00, MCK99, NCA93]. Visualizing [CdOS01, WT10, ACD+18, DSEE13]. Visually [Dru95]. VLIW [For97, GSL10, ÖCS01]. VLSI [ABC+93]. VM [FGG14]. VMs [KKJ+13]. voltage [MTPT12]. volumes [Koo93]. VRSync [MTPT12]. vs [EHP+07, GBK+09, MMTWT10, MCTF99, SSK+07, SKP+02]. vulnerability [SSN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits [How00]. WAN [Yas95]. Wanted [Ano94g]. Warnings [CJW+15]. warp [FSYA09, MTS10, Rei95, Tam95]. was [San04]. Washington [ACM92, Ano90, IEE94c, USE98a]. Watch [Ano97b]. water [IVA+13]. Wave [Ano00b, BBC+00, LS07, WQLJ18]. wave-based [WQLJ18]. wavelet [TKHG04]. Way [KAO05, MTN+00, Rin99, ZJF09, FG19]. Ways [We97]. Weak [KZC15, TFD14]. Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, MGI14, PCM16, VP16]. Webrelay [Zha00]. WebThreads [Ano97a]. week [Ano95a, Ano95b]. weeks [But14]. weight [Way95]. Weighted [CNZS17, EE14, HFV+12]. Weighted-IPC
References

Antoniu:2001:HSC


Aliaga:2015:UPE

REFERENCES


Axnix:2015:IZF


Agarwal:1993:SMV


Antonopoulos:2009:ASH


Aliaga:2015:CMS


Aliaga:2012:SDG


Agarwal:2010:DDP

R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-Buchbinder, S. Stoller,


**Antoniu:1999:ETT**


**Antoniu:2000:CDP**


**Aleen:2009:CAS**


**Almasi:2003:DCD**


REFERENCES

1996. ACM order number 415961.


REFERENCES


Haitham Akkary and Sébastien Hily. The case for speculative multithreading on SMT.


REFERENCES


**Arjomand:2016:BAP**

**Amer:2018:LCM**

**Agrawal:2008:AWS**

**Agrawal:2010:HLF**

**Ahn:2009:MDE**

**Amer:2015:MRC**
Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka. MPI+Threads: runtime contention and remedies. *ACM
REFERENCES

SIGPLAN Notices, 50(8):239–248, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


DEN LNCS D9. ISSN 0302-9743 (print), 1611-3349 (electronic).

**Annavaram:1996:BVN**


**Anonymous:1990:PWU**


**Anonymous:1991:PIS**


**Anonymous:1992:MWPa**

Anonymous. It’s a multi-threaded world, part 1: Multithreaded operating systems are becoming the norm. Here’s how your applications can exploit them. *Byte Magazine*, 17 (5):289–??, May 1992. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

**Anonymous:1992:MWPb**


**Anonymous:1994:ICS**


**Anonymous:1994:MDP**

Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Systems Today*, 165:60–??, December 1994. ISSN 1061-0839.

**Anonymous:1994:DCT**


**Anonymous:1994:PIW**

Anonymous, editor. Proceedings of the 2nd Inter-
REFERENCES


Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.


Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. *Linux Journal*, 34:??, February 1997.


Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. *Linux Journal*, 34:??, February 1997.
REFERENCES

CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Anonymous:1997:TWP


Anonymous:1998:MS


Anonymous:1998:NTS


Anonymous:1999:BST


Anonymous:2000:CCI


Anonymous:2000:NPAA

[Ano00b] Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pegasoft Canada; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation Solutions, Inc.; Threads.h++ and Tools.h++ Professional, Rogue Wave Software; Scrip- tics Connect 1.0, 1.1, Scrip-

Anonymous:2000:SLT


Anonymous:2001:ESM


Anonymous:2002:ST


Anonymous:2003:CCV


Anonymous:2005:ECS


Atkinson:1999:PTF

Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez,

Arnau:2012:BMG


Areias:2017:SDP


Adiletta:2002:NGI


Arunachalam:1992:EMM


Addison:2003:OIA

C. Addison, Y. Ren, and M. van Waveren. OpenMP issues arising in the develop-

**Awile:2014:PWF**


**USENIX:1996:ATT**


**Asyabi:2019:COS**


**Altiparmak:2016:MMF**


**Adl-Tabatabai:2006:CRS**


**Arteaga:2017:GFG**


**Boehm:2008:FCC**

Hans-J. Boehm and Sarita V. Adve. Foundations of the

**Bocchino:2009:TES**


**Bak95b**


**Baldwin:2002:LMF**

REFERENCES


**Balter:1991:AIG**


**Ball:2011:PPT**


**Balis:2002:CPM**


**Balis:2003:MSM**


**Balaji:2010:FGM**


**Bender:2017:TLM**

[BBH+17] Michael A. Bender, Jonathan W. Berry, Simon D. Ham-

Bratano:2009:VMW


Butler:2011:BAM


Barabash:2005:PIM


Buhr:1994:TRM


Ball:1998:MT


Bhandarkar:2000:PPM

Boudol:2002:NCP


Bronson:2010:PCB


Banerjee:1995:PCD


Boneti:2008:SCP


Bergan:2013:ICS


Bokhari:2014:MMM


Bedy:2000:VSM


Biagioni:1998:SST


Benner:2007:SLS


Ball:2001:PVM


Bajaj:2011:FFP


Badamo:2016:IPE

[BCZY16] Michael Badamo, Jeff Casarona,

Beyls:2000:CGM

Brzuszek:2006:MTS

Bic:1998:MAD

Bracy:2006:DAC

Blundell:2007:MFC

Bangs:1998:BOS
REFERENCES

1998. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).


<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>


REFERENCES


REFERENCES

0626 (print), 1532-0634 (electronic).


Beckert:2013:DLD


Bond:2013:OCC

REFERENCES


pp. Also available as Report MIT/LCS/TR 552.

Blumofe:1995:EMP


Bolinger:1991:PSH


Baquero:1994:CAC


Bergstra:2007:SCE


Berger:2000:HSMa


Berger:2000:HSMb


Berger:2000:HSMc

REFERENCES


**Burnim:2012:SCS**


**Benson:1996:DMS**


**Bull:2001:MSO**


**Boehm:2005:TCI**


**Bond:2013:GDG**


**Boothe:1993:EMC**


**Brinkschulte:2005:ICA**

Boehm:2007:MCC


Boroday:2005:DAJ


Boothe:1992:IMT


Bogdanas:2015:KJC


Bramley:1997:TNRb


Bershad:1992:FME


Brebner:2002:MLC

REFERENCES


REFERENCES

Bacon:2006:BFL


Bokhari:2010:EPM


Burnim:2010:ACD


Bartolini:2014:AFG


Boisvert:2001:ASS


Brunett:1998:IET

Butenhof:1997:PPT


Buttari:2013:F


Butcher:2014:SCM


Bik:1997:JPJ


Barnes:2009:XBA


Beveridge:1997:MA


Bai:2015:SPA

[BWDZ15] Xiuxiu Bai, Endong Wang, Xiaoshe Dong, and Xingjun Zhang. A scalability pre-
REFERENCES


CarrerasVaquer:1989:APE


Campanoni:2008:PDC


Catanzaro:1994:MSA


Cazals:2002:NID


Caswell:1989:IMD


Caswell:1990:IMD

D. Caswell and D. Black. Implementing a Mach debug-

**Creech:2016:TSS**


**Coons:2010:GEU**


**Cui:2000:MPC**


**Chiueh:1991:MTV**


**Chang:2004:TSP**


**Cai:2014:MSD**


**Chen:2018:ESE**

Kuan-Chung Chen and Chung-Ho Chen. Enabling SIMT execution model on homogeneous

Chen:2012:MLS


Chen:2011:MJP


Chen:2017:IGP


Chetlur:2010:SWM

REFERENCES

Chandra:2001:PPO


Chung:2013:LBD


ChassindeKergommeaux:2001:PEE


Catalyurek:2012:GCA


Canetti:1991:PCP


Cerin:2006:MSS

Christophe Cérin, Jean-Luc Gaudiot, and Michel Koskas.


REFERENCES

Chaudhry:2002:PTS


Chapman:2005:SMP


Chen:2003:CSS


Chlipala:2015:NIM


Chlipala:2015:UWS


Chowdhury:1992:PEA

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Chong:1993:EMC

Yong-Kim Chong. Effects of memory consistency models on multithreaded multiprocessor performance. Thesis (M.S.), University of Southern
REFERENCES

California, Los Angeles, CA, USA, 1993. viii + 89 pp.

Chrisochoides:1995:MMDa


Chrisochoides:1995:MMDb


Chrisochoides:1996:MMD


Ching:1991:EAP


Christiaens:2001:JRR


Catalan:2017:TEM


Curran:2015:IZM

B. W. Curran, C. Jacobi, J. J. Bonanno, D. A. Schroter,


[Clements:2012:SAS]


[Chaudhry:1994:CMP]


[Caudal:1995:DEM]


[Cho:2000:SCP]


[Chase:1994:SPS]


[Choi:2002:EPD]

REFERENCES

Cormen:2009:IA


Chapman:1998:OHI


Curtis-Maury:2008:PBP


Cain:2013:RAS


Cahir:2000:PMM


Cahoon:2000:EPD


Carr:2003:TPT

March 2003. CODEN ???? ISSN 1531-4278.

**Chen:2010:CCM**


**Che:2014:ALM**


**Cui:2017:MTA**


**Colvin:1990:CTS**


**Colvin:1990:ML**


**Coorg:1995:PNS**

REFERENCES

1995. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).


ChassindeKergommeaux:2000:PIV


Chappell:1999:SSM


Constantinou:2005:PIS


Culler:1991:FGPa


Culler:1991:FGPb


Culler:1991:FGPc

Choi:2010:MDA


Christopher:2000:HPJ


Chappell:2002:DPB


Cheng:2018:ROM


Chugh:2008:DAC

REFERENCES


REFERENCES

5948 (print), 1943-5843 (electronic).


REFERENCES

**deBoer:2009:SVC**


**Draves:1991:UCI**


**Duda:1999:BVT**


**Duda:2000:BVT**


**Dou:2007:CCM**


**Das:2007:FVT**


**Dennis:1994:MMP**

REFERENCES


[DHR+01] Ray Duncan, Duncan Harris, Douglas Reilly, Craig Rodrigues, Michael Birken, and Paul S. Person. Letters: Plug-in desupport; threading and the .Net framework; CORBA interoperability; game over for Java; totally wired. *Dr. Dobb’s Journal of Software*


REFERENCES

Dillon:1993:VEM

Dill:2000:MCJ

Divekar:1995:IMP

Denniston:2016:DH

Dubey:1994:APM
REFERENCES

J. Watson Research Center, Yorktown Heights, NY, USA, May 3, 1994. 27 pp. [DLM99]

Ding:2018:IOC


Doligez:1993:CGG


Devietti:2009:DDS


Dongarra:1999:RAP


delaPuente:1999:RTP


Demange:2013:PBB

Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David Pichardie,

[Dagum:1998:OIS]

[Daloze:2016:ETS]

[Devietti:2012:RRC]

[Danjean:2000:IKA]

[Dniblish:2016:CCG]
REFERENCES

Dorojevets:1995:MDA


Donalson:1992:DDP


Donnelly:2002:LTT


Dou:1997:ISV


Drake:1996:IJT


Drusinsky:1995:VDE


Delzanno:2002:TAV

REFERENCES

109


Ding:2015:OCA


David:2014:CMC


Diavastos:2016:ITD


Deveci:2018:MSM


Dubey:1995:SSM


Dugger:1995:MC


Dascal:1999:ELR


Eskilson:1998:SMM


Esmaeilzadeh:2012:LBL


Eyerman:2009:MLP


Eyerman:2009:PTC


Eyerman:2010:PJS


Eyerman:2012:PMJ

REFERENCES

2012. CODEN ???. ISSN 1544-3566 (print), 1544-3973 (electronic).

Eyerman:2014:RCW


Eggers:1997:SMP


Emmi:2007:LA


Edelstein:2001:MJP


Edelstein:2002:MJP

REFERENCES

journal/sj/411/edelstein.pdf.


REFERENCES


Eager:1993:CER

Eickemeyer:1996:EMU

Ediger:2013:GMA

Eykholt:1992:BMM

Eggers:1990:TEI

English:1995:MC

Engelschall:2000:PMS
[Ralf S. Engelschall. Portable multithreading — the sig-

**Evtyushkin:2016:UMC**


**Eltosito:1996:MVB**


**Estep:1993:LMM**


**Ergin:2006:ENV**


**Eigenmann:2001:OSM**


Evripidou:2001:MDD

Fan:1993:LMC

Farber:1996:EAM

Figueiredo:2001:IPH
REFERENCES

Fiske:1995:TPT

Feuerstein:1996:MTP

Feuerstein:2002:LMT

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:AD

Flanagan:2008:AD

Flanagan:2009:FEP
Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race detection. *ACM SIGPLAN...
References


Flanagan:2010:AMD


Flanagan:2008:TAS


Flanagan:2004:EPA


Flanagan:2005:MVM


Flanagan:2008:VSC


Faulkner:1991:PFS

REFERENCES


John E. Faust and Henry M. Levy. The performance of an object-oriented threads pack-
REFERENCES


2. Felten:1992:IPM

3. Fang:2015:MMD

4. Farzan:2017:SDC

5. Fong:1997:BPM


REFERENCES

Factor:2006:PID

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa
Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level par-

**Flautner:2000:TLPc**


**Flautner:2000:TLPb**


**Fang:2003:DGO**


**Grant:2009:IEE**


**Guzzi:2014:CPP**


**Gallagher:1994:PLM**

Gao:1993:EHD


Garber:2001:NBT


Giceva:2014:DQP


Greiner:1999:PTE


Giampapa:2005:BGA


Gotsman:2007:TMS

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Gao:1995:ATD

Guz:2009:MCV

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC
REFERENCES


REFERENCES


REFERENCES

ISSN 0734-2071 (print), 1557-7333 (electronic).

Gerlhof:1994:MTA


Garcia:2005:HJA


Georgiou:2017:ETD


Granat:2009:NPQ


Garland:2012:DUP


Gallmeister:1991:EEP


Golla:1998:CMR


Golla:1998:CEB

Prasad N. Golla and Eric C. Lin. A comparison of the effect of branch prediction on
REFERENCES

132


Goldwasser:2007:INP


Gu:1999:EJT


Glenn:1991:CMH


Grebenshchikov:2012:SSV


Giering:1993:IAF


Gonzalez-Mesa:2014:ETM


Gomez:1998:CAM

J. C. Gomez, E. Mascarenhas, and V. Rego. The CLAM approach to multithreaded communication on


[Goe01] Siegfried Goeschl. The JUnit++ testing tool. *Dr. Dobb’s Journal of Software*
REFERENCES


Goldwasser:1994:PAS

Gollapudi:1996:MCA

Goldstein:1997:LTC

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL
REFERENCES


 REFERENCES


REFERENCES

1096-0848 (electronic). URL

M. Gupta, F. Sanchez, and J. Llosa. CSMT: Simultaneous multithreading for clustered VLIW processors. 
ISSN 0018-9340 (print), 1557-9956 (electronic). URL


ISSN 1544-3566 (print), 1544-3973 (electronic).
REFERENCES

Gibson:2010:FSC


Haines:1997:DLT


Haines:1997:OIA


Hamilton:1996:JSN


Hanson:1997:CII

REFERENCES

Harrington:1999:WMM


Hayden:1993:BIC


Haines:1992:SMC


Hottelier:2015:SLE


Hunt:2013:DTN


Hanson:2001:UF1


Hanson:2002:AF1


Heber:1998:UMA

REFERENCES

Hankendi:2017:SCS


Halstead:1994:PCR


Haines:1994:DCT


Ding:2002:MOP


Honarmand:2013:CUA


Heinlein:2003:ATS


Hoffman:2009:SAT

REFERENCES


[HH97] Cameron Hughes and Tracey Hughes. *Object-oriented mul-
REFERENCES


Hong:2011:AMA


Huang:2016:MCR


Hironaka:1992:BVP


Hussein:2015:DRM


Hightower:1997:PDD

Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–7?, January 1997. CODEN DDJOEB. ISSN 1044-789X.
References


REFERENCES

Hansen:1990:EPA

Hansen:1994:CSP

Haines:1995:RSC
Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Haines:1997:DPP

Hashemi:2016:EEB
REFERENCES

December 2016. CODEN ????. ISSN 1556-6056 (print), 1556-6064 (electronic).


[Hum:1996:SEM] Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Guang R. Gao, and Laurie J. Hendren. A study of the EARTH-
REFERENCES

146


Holub:1998:PJTd


Holub:1998:PJTb


Holub:1999:PJTb


Holub:2000:TJT


Hollingsworth:2012:SPI


Hong:1994:FIS

[Hon94] Hoon Hong, editor. First International Symposium on

Hopper:1998:CFM


Howes:1998:TPC


Howard:2000:UPW


Halappanavar:2015:CLL


Hsu:2011:MSS


Hilton:2010:SDE


Huang:2016:PMR

Hassanein:2008:AEH


Hayden:2012:KEG


Hayden:2014:KEG


Honarmand:2014:RRR


Hendren:1997:CCE


Huber:2001:EFC


Hudson:1996:MDA

[Hud96] Greg Hudson. Multithreaded design in the Athena environment. Thesis (M. Eng.), Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
REFERENCES


Halladay:1992:PUM


Hsieh:1993:CME


Horwood:2000:DMA


Hyde:2000:JTP


Huang:2015:COM


Huang:2012:EPS


Huang:2013:CRL


Iannucci:1994:MCA

Robert A. Iannucci et al., editors. *Multithreaded com-

Iannucci:1994:AII


Iwama:2001:ICB


IEEE:1989:WOS


IEEE:1990:PSN

REFERENCES


Kazunori Iwata, Shingo Itabashi, and Naohiro Ishii. A pro-


REFERENCES


REFERENCES


**Joshi:2009:RDP**


**JPSN09**


**JSB+11**


**Joao:2012:BIS**


**Joao:2013:UBA**

Dennis Jeffrey, Yan Wang, Chen Tian, and Rajiv Gupta. Isolating bugs in multi-

**Jeon:2015:MTH**


**Jiang:2016:TLH**


**Kacsuk:1997:MIC**


**Kanalakis:1994:ET**


**Kongetira:2005:NWM**


**Kumar:2007:ESI**

REFERENCES

حبون بين حرية العلماء (KBH+03)


حبون بين حرية العلماء (KBH+04a)


حبون بين حرية العلماء (KBH+04b)


حبون بين حرية العلماء (KBF+12)


حبون بين حرية العلماء (KBB+03)


حبون بين حرية العلماء (Koster:2003:TTI)

Karamcheti:1998:HLB


Karamcheti:1999:ASM


Kekckler:1999:CEH


Kaspinkr:2009:CDC


Keckler:1998:EFG

REFERENCES

Kleiman:1995:IT


Kerrison:2015:EMS


Kelly:1994:MBC


Kelly:1994:MOB


Klasky:2003:GBP


Kempf:2002:BTL


Kepner:2003:MTF


Kyriacou:2006:CCO


Kyriacou:2006:DDM

[KET06b] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-driven multithreading using conventional

**Kougiouris:1997:PMF**


**Kocberber:2015:AMA**


**Kim:1994:HAM**


**Keller:2005:TBV**


**Kollias:2007:APC**


**Kunal:2009:HDS**


**Khan:2012:MAN**

Arif M. Khan, David F. Gleich, Alex Pothen, and Mahantesh Halappanavar. A multithreaded algorithm for
REFERENCES


Kondguli:2018:BUS


Khosla:1997:MAT


Kavi:1995:DCM


Kawamoto:1995:MTP


Kutsuna:2016:ARM


Kojima:2017:HLG


Kusakabe:1999:INS

REFERENCES

Kim:1994:FPF

Keen:2003:CCP

Kim:2014:SMC

Kranzlmuller:2003:RAP

Kee:2003:POP

Kee:2004:MMM
REFERENCES


REFERENCES


Kvatinsky:2014:MBM


Kim:2016:SEA


Korty:1989:SLL

REFERENCES

Karamcheti:1996:RME


Khyzha:2012:AP


Kaiser:2006:CJC


Kienzle:2001:CTT


Kienzle:2001:IEO


Keckler:2012:MMC


Kawaguchi:2012:DPL

REFERENCES

2867 (print), 1558-1160 (electronic). PLDI ’12 proceedings.


Kleiman:1995:PT

[102x681]REFERENCES


Kleiman:1996:PT


Kalla:2004:IPC


Krieger:1994:ASF


Yu:2011:SDH


Krishnan:1999:CMA


Kopczynski:2017:LSS

Eryk Kopczynski and Szymon Toruńczyk. LOIS: syntax and
REFERENCES


**Kambadur:2012:HCA**


**Kambadur:2013:PSP**


**Kumar:2004:SIH**


**Keller:2000:JUS**


**Komosinski:2017:MCE**


**Kubica:2015:PHT**

REFERENCES

171


Kuchlin:1991:MCI


Kuchlin:1992:MTC


Kestor:2015:TPD


Kuszmaul:2015:SSF


Kejariwal:2009:ELL


Kleinmann:2017:ACS


Kwok:2003:EHC

Yu-Kwong Kwok. On exploiting heterogeneity for cluster based parallel multithreading using task duplication.


Gu Liu, Hong An, Wenting Han, Xiaqiang Li, Tao Sun, Wei Zhou, Xuechao Wei, and Xulong Tang. FlexBFS: a parallelism-aware implementation of breadth-first search on GPU. ACM SIGPLAN Notices, 47(8):279–280, August 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPOPP ’12 conference proceedings.

REFERENCES


REFERENCES


Lim:1996:LPB


[LB96b] Lim:1996:LPB

[Lewis:1998:MPP]


[Lo:1998:ADW]

REFERENCES

Li:2006:MEMa


Li:2006:MEMb


Li:2006:MEMc


Lucia:2013:CEF


Liu:2008:HPP


Lathrop:2011:SPI


Li:2004:FRT


ics, 3:2730–2734, 2004. CODEN ????. ISSN 1062-922X.


REFERENCES


[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

REFERENCES


REFERENCES


REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


REFERENCES


**LoCocero:1997:MML**


**Liu:2014:PPF**


**Li:2016:HBG**


**Lin:2017:MSP**


**Lu:1994:MPM**


**Lu:1995:HMC**


**Lu:1998:ONW**


June 2010. CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

Lopes:2001:FGM


Laguna:2019:GPD


Lee:2010:REO


Liu:2016:TAA


Li:2007:CET


Lu:2014:EDM


Matteo Monchiero, Jung Ho Ahn, Ayose Falcón, Daniel
REFERENCES


**Mahafzah:2011:PMI**


**Mahafzah:2013:PAM**


**Man:1991:MLC**


**Mane:1996:SJP**


**Manley:1998:GPT**


**Manley:1999:IPT**


**Mao:1996:PMS**


**Marowka:2003:EOT**

REFERENCES

Marowka:2007:PCD

Masney:1999:IMT

Mateosian:1997:MNT

Mattson:2003:HGO

Mendelson:1999:DAM

McNairy:2005:MDC

Madan:2007:PEA

Moon:2006:TMS
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

**McCarthy:1997:MTI**


**McCarthy:1997:WMT**


**Mitchell:1999:ILP**

[MCFT99] Nicholas Mitchell, Larry Carter, Jeannie Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

**McManis:1996:JDSa**


**McManis:1996:JDSb**


**McManis:1996:JDT**


**McMillan:1997:NSB**


Matheou:2017:DDC


Mukherjee:1994:MII


McDowell:2003:ISS


Mennemeier:1991:HMS


Metz:1995:IDS


Marcuello:1999:EST


Mehta:2015:MTP


Martinsen:2014:HTL

Mohamed:2000:DDM


Marsland:1995:SSM


Madriles:2008:MSM


Maquelin:1995:CBM


Mauer:2002:FST


Miastkowski:1990:PGG


Michael:2004:SLF


Maabreh:2018:MHT

Majdi Maabreh, Hafez Irshid, Ajay Gupta, and Izzyat Alasmadi. A multithreading and hashing technique for indexing Target—

**Miller:1995:TPC**


**Mishra:1996:TIS**

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

**Mitchell:1996:JTM**


**MixSoftware:1994:UMC**


**Meng:2010:AOS**


**Mars:2012:BDS**

REFERENCES


196

REFERENCES

2867 (print), 1558-1160 (electronic).

Marowka:2004:OOA

Madriles:2009:BST

Ma:2011:SPC

Malakho

v:2018:CMT

Machado:2015:CDD

Makreshanski:2015:LSE
Mauro:2001:SIC


Morandini:2007:UDS


Morishima:2014:PEG


Mathis:2005:CSM


Marino:2009:LES


McKenney:2010:WGM


Metzner:2000:MMR

REFERENCES

/Mwww.jucs.org/jucs_6_10/
msparc_multithreading_in_real.

McAuley:2003:CVC

[Derek McAuley and Rolf Neugebauer. A case for virtual channel processors. In Romanow and Mogul [RM03], pages 237–242. ISBN ???? LCCN TK5105.5. ACM order number 534032.]

Marinov:2016:PAF


Markovic:2015:TLS


Moore:1995:MPD


Mount:2000:ADP


Massalin:1989:TIO


Manson:2001:CSM

[Jeremy Manson and William Pugh. Core semantics of multithreaded Java. In

REFERENCES


REFERENCES


Mascarenhas:1998:MTP


Mukherjee:2009:PAS


Meier:2017:PVM


Malan:1991:MA


McJones:1987:EUS


McJones:1989:EUS

Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP im-


REFERENCES

Morrisett:1993:PLP


Martinez:2002:SSAa


Martinez:2002:SSAb


Martinez:2002:SSAc


Minh:2007:EHT


Matsushita:2000:MSC


Miller:2012:VCE

[MTPT12] Timothy N. Miller, Renji Thomas, Xiang Pan, and Radu Teodorescu. VRSync: characterizing and eliminating

**Meng:2010:DWS**


**Muller:2003:OCB**


**Musoll:2009:LSO**


**Mudigonda:2005:MMA**


**McCann:1993:DPA**


**Morad:2006:PPE**

References


REFERENCES


Christopher H. Nevison. Seminar: safe concurrent programming in Java with CSP.
**REFERENCES**


**Nazarpour:2017:CPS**


**Nemawarkar:1994:PIN**


**Neamtiu:2009:STU**


**Neamtiu:2008:CEV**


**Nikhil:1994:MI**


**Nielsen:2000:MTN**


actions on Computational Biology and Bioinformatics, 13 (5):926–938, September 2016. CODEN ITCBCY. ISSN 1545-5963 (print), 1557-9964 (electronic).

Norwood:1994:SMP


Nguyen:2015:RCC


Narayanasamy:2007:ACB


Nutaro:2017:HAA


Ottoni:2008:COGa


Ottoni:2008:COGb


Ottoni:2008:COGc

REFERENCES


REFERENCES

Olivier:2012:CMW


Ogata:1992:DIH


Omma:2004:BMA


Oplinger:2002:ESRb


Oplinger:2002:ESRc


REFERENCES


ACM order number 415922.
IEEE Computer Society Press
order number 2630 IEEE catalog
cnumber 92CH3216-9.

Park:2017:HHC

Porter:2015:PFG

Park:2016:CJP

Perez:2015:ECR

Papadopoulos:2016:TAD

Pokam:2013:QPI
REFERENCES


REFERENCES

Pham:1992:MDA


Pham:1996:MPW


Pham:1999:MPW


Parcerisa:2001:ILT


Pinilla:2003:UJT


Pusukuri:2012:TTD


Pusukuri:2014:LCA


Pusukuri:2016:TEL

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Tumbler: an effective


Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA


Prabh:2003:UTL


Polychronopoulos:1990:ASC


Pomerantz:1998:CNS


Parashar:2013:TIC


Prieto:2011:MCM

REFERENCES

Piumarta:1998:ODT


Petric:2005:EEP


Prabhakar:1995:IDO


Prasad:1995:WTS


Prasad:1997:MPT


Permandla:2007:TSP

REFERENCES

Presotto:1990:MSP


Petrovic:2014:LHM


Protopopov:2001:MMP


Pozniansky:2003:EFD


Pozniansky:2007:MEF


Pyarali:2001:EOT


Parashar:2006:SSBa

Angshuman Parashar, Anand Sivasubramaniam, and Sud-


Prvulovic:2003:RUT


Piringer:2009:MTA


Pfeffer:2004:RTG


Pulleyn:2000:EPM


Pickett:2006:SSF


Pathania:2017:DTM


Preissl:2012:CSS


Qian:2016:ODG


Qian:2014:PRR


Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB


Roberts:2018:MID


Rufai:2005:MPO


Rashid:1989:MFO


Ratanaworabhan:2009:DTA

Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul Nagaral, and Karthik Pattabira-


REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ASPLOS ’12 conference proceedings.


Scott Richman. Examining the Hamilton C shell (Unix power for OS/2). Dr. Dobb’s Journal of Software Tools, 16(1):98, 100, 102, 104–106, January 1991. CODEN DDJOEB. ISSN 1044-789X.


Martin Rinard. Analysis of multithreaded programs. Lecture Notes in
Reddy:2011:BFH


Reus:1998:VCO


Reiche:2017:AVI


Raman:2010:SPUa


Raman:2010:SPUb


Rodrigues:2015:DSE


[ROA14] Timothy G. Rogers, Mike O’Connor, and Tor M.

Robison:2003:MCN


Robison:2003:MCN


Rodley:1994:UIC


Rodens:1995:ESC


Roden:1995:ESC


Roh:1995:CGE


Roth:2019:AOC


Roy:2009:LPF

Yaoping Ruan, Vivek S. Pai, Erich Nahum, and John M.

Ruan:2005:EIS

Ruan:2008:DCS


Raghunath:1993:DIN


Robbins:1996:PUP


Rugina:1999:PAM


Robbins:2003:USP


Roy:2011:SRP

Rivara:2012:MPL

Maria-Cecilia Rivara, Pedro Rodriguez, Rafael Monte
tegro, and Gaston Jor
quera. Multithread parallel
elization of Lepp-bisection al
gorithms. Applied Numerical
Mathematics: Transactions of
IMACS, 62(4):473–488, April
2012. CODEN ANMAEL.
ISSN 0168-9274 (print), 1873-
5460 (electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0168927411001292.

Reddy:2006:UPB

Vimal K. Reddy, Eric Roten-
berg, and Sailashri Partha
asarathy. Understanding pre
diction-based partial redundant threading for low-overhead, high-
coverage fault tolerance. ACM
SIGPLAN Notices, 41(11):83–
94, November 2006. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Rosu:2007:ITO

Grigore Roșu and Koushik
Sen. An instrumentation technique for online analy-
sis of multithreaded programs.
Concurrency and Compu-
tation: Practice and Experi-
ence, 19(3):311–325, March
10, 2007. CODEN CCEPEO.
ISSN 1532-0626 (print), 1532-
0634 (electronic).

Roh:2001:RMD

Lucas Roh, Bhanu Shankar,
Wim Böhm, and Walid Naj
jar. Resource management in
dataflow-based multithreaded
execution. Journal of Par-
allel and Distributed Com-
puting, 61(5):581–608, May
1, 2001. CODEN JPDC.
ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.
com/links/doi/10.1006/jpdc.

Riccobene:2009:SCB

Elvinia Riccobene, Patrizia
Scandurra, Sara Bocchio, Al-
berto Rosti, Luigi Lavazza,
and Luigi Mantellini. SystemC/C-based model-driven
design for embedded systems.
ACM Transactions on Embed-
ded Computing Systems, 8(4):
30:1–30:??, July 2009. CO-
DEN ????. ISSN 1539-
9087 (print), 1558-3465 (elec-
tronic).

Rounce:2008:DIS

Peter A. Rounce and Al-
berto F. De Souza. Dy-
namic instruction scheduling
in a trace-based multithreaded architecture. Inter-
national Journal of Parallel
Programming, 36(2):184–205,
April 2008. CODEN IJPPE5.
ISSN 0885-7458 (print), 1573-
7640 (electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=36&
issue=2&spage=184.

Roh:2001:RMD

Lucas Roh, Bhanu Shankar,
Wim Böhm, and Walid Naj
jar. Resource management in
dataflow-based multithreaded
execution. Journal of Par-
allel and Distributed Com-
puting, 61(5):581–608, May
1, 2001. CODEN JPDC.
ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
REFERENCES


REFERENCES


[San04] B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).


REFERENCES

https://www.hindawi.com/journals/sp/2015/980752/.


Sendag:2005:IIS


Steinke:2005:NPF


Schauer:1991:CCM


Schauer:1991:CML


Steffan:2000:SA


Spertus:1995:ELB


So:2013:STI


REFERENCES


Sung:2014:PTR


Sodan:1997:ENN


Sridharan:2014:AEP


Shahnaz:1995:DMD

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

Shankar:1995:STI


Shaw:1998:CPM


Shene:1998:MPI

Chin-Kuang Shene. Multi-threaded programming in an introduction to operating systems course. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 30(1):242–246, March 1998. CODEN SIGSD3. ISSN
Shene:2002:TST


Shinjo:2000:DCEb


Shi:2015:CLM


Sime:1997:GPM


Sinharoy:1997:OTC


Shoner:1997:JSSa


Shoner:1997:JSSb

REFERENCES

Sinharoy:1999:COI

Steensgaard:1995:ONC

Sharafeddine:2012:DOE

Shirole:2012:TCU
REFERENCES


Sato:1992:TBP


Steele:2014:FSP


Shin:2006:ADT


Scherer:1999:TAP


Sangaiah:2018:SSA


Shin:2004:NAD

Su:2019:SSC


Shark:2008:RRP


Sidiroglou:2009:AAS


Solihin:2002:UUL


Solihin:2003:CPU


Sodan:2010:PMM

REFERENCES

9162 (print), 1558-0814 (electronic).

Smith:1992:MTX


Smith:1992:MTX


REFERENCES


REFERENCES


REFERENCES

Srinivasan:1995:MMX


Samak:2015:SRT


Saghi:1998:MSH


Silc:1998:APC


Speer:1991:DTP


Small:1995:SAB


Szymanski:1996:LCR

REFERENCES


Sutherland:2010:CTC


Shi:2007:CCP


Soundararajan:2010:CSE


Saito:1999:MRS


Sohn:1997:DWD


Skillicorn:1998:MLP

Snavely:2000:SJSA


Snavely:2000:SJSC


Snavely:2000:SJSB


Sundell:2005:FLF


Stapleton:1990:DSS


Stark:2005:FSV


Steensgaard:2001:TSH


Stoller:2002:MCM

REFERENCES

Samak:2016:DSF


Stuckey:1995:FCI


Snavely:2002:SJP


Schmidtmann:1993:DIM


Shen:1999:ATL


Sigmund:1996:IBM


Sigmund:2001:SCS


Suito:2012:DRM

REFERENCES


SunSoft:1995:SMP


Sutter:1999:OAM


Schmidt:1996:CAPb


Schmidt:1996:CAPc


Schmidt:1996:CAPa


Smith:1998:SIF


Sabarimuthu:2019:ADC


Shepherd:1997:UCA

REFERENCES


IEEE [IEE02], page ??


[TAK+00] Theobald:2000:LCE


[TAM+08] Thoziyoor:2008:CMM


REFERENCES


[TE94a] R. Thekkath and S. J. Eggers. Impact of sharing-

Thekkath:1994:EMH

Tullsen:1996:ECI

Tullsen:1998:SMM

Tullsen:1998:RSM
Order Plan Catalog Number 98CB36235.

TempleLang:1997:MTE


Tenberg:1998:CAD


Tenberg:2002:RGO


Trancoso:2006:CCM


Tetewsky:1994:GDR


Tian:2010:SPU


Tang:1999:APT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES


Tian:2018:RSP


Tremblay:2003:IEP


Tallen:2010:ALC


Taylor:1995:CSA


Trott:2010:AV1

REFERENCES

8651 (print), 1096-987X (electronic).


REFERENCES


 REFERENCES


Robert Utterback, Kunal Agrawal, I-Ting Angelina Lee, and Milind Kulkarni. Processor-oblivious record

**Ungerer:2002:MP**


**Ungerer:2002:SPE**


**Ungerer:2003:SPE**


**USENIX:1989:PWU**


**USENIX:1991:PUM**


**USENIX:1991:PWU**


**USENIX:1992:PSU**


**USENIX:1992:SED**

USENIX, editor. *Symposium on Experiences with Distributed and Multiprocessor Systems (SEDMS III), March*
REFERENCES


**USENIX:1993:PUMb**


**USENIX:1993:PWU**


**USENIX:1996:PFA**


**USENIX:1998:PUWa**


**USENIX:1998:PSA**


**USENIX:2000:UAT**

REFERENCES

usein.org/publications/

USENIX:2000:PUT


USENIX:2001:PJV


USENIX:2002:PBF


USENIX:2001:PFV


USENIX:2002:PBF


USENIX:2000:PFV


USENIX:2000:PFV


Unger:2000:CCA


Vera:2009:SRL


vanHoff:1995:JIP


Vanhelsuwe:1997:BRJ

[Laurence Vanhelsuwe. Book review: The Java Threads API makes it to print me-
REFERENCES


**Vanhelsuwe:1997:JPE**


**Vckovski:2000:MTS**


**Volkov:2008:LQC**


**Vishkin:1998:EMT**


**Volkman:1993:CDB**


**Venners:1997:UHH**

REFERENCES

Venners:1998:DTS

Verriello:1996:MSM

Vermeulen:1997:JDW

Vlacbos:2010:PEAb

Vasconcelos:2006:TCM

Vachharajani:2005:CMP
REFERENCES


**REFERENCES**

**Vandierendonck:2011:FMM**


**Vandierendonck:2011:MSR**


**Vander-Swalmen:2009:CAM**


**Vale:2016:PDT**


**Vantrease:2008:CSI**


**VanZee:2016:BFE**

REFERENCES

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

Vishkin:2000:ELR

VanDeGeijn:2011:HPD

Winter:2008:ATN

Walter:1995:PMS

Walmsley:2000:MTP
Mark Walmsley. *Multithreaded programming in C++*. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
Wang:1994:MAD


Watt:1991:IP1


Wayner:1995:FAN


Wu:1999:GMC


Wang:2007:EAP


Wallace:1998:TMP


Wilde:1998:RES

Norman Wilde, Christopher Casey, Joe Vandeville, Gary Trio, and Dick Hotz. Reverse engineering of software threads: a design recovery technique for large multiprocess systems. The Journal
REFERENCES


REFERENCES


REFERENCES

Walcott:2007:DPA

White:2003:UTL

Wallach:1995:OAM

Williams:1994:NST

Williams:1994:NTM

Wilson:1997:BTP

Wilmot:1998:DTM

Wilson:2000:PBC
REFERENCES

[281]

Wei:2012:OLL


[WJ12]

Wei:2008:MCVa


[WK08a]

We gi:2008:MCVb


[WK08b]

Wei:2008:MCVc


[WKG17]

Wang:2017:JRJ


[WKG+17]

Wadden:2014:RWD


[WLG+14]

Wang:2009:TD

Yin Wang, Stéphane Laforest, Terence Kelly, Manjunath Kudlur, and Scott Mahlke. The theory of deadlock avoidance via discrete control. ACM SIGPLAN Not-
REFERENCES


Won:2015:MMC

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Wang:2018:TWB

Wang:2006:RAA
2006. CODEN IESEDJ.
ISSN 0098-5589 (print), 1939-
3520 (electronic). URL
org/stamp/stamp.jsp?arnumber=
1599419.

[WS08] Fredrik Warg and Per Sten-
strom. Dual-thread specu-
lation: a simple approach
to uncover thread-level parallelism
on a simultaneous multithreaded processor. In-
ternational Journal of Parallel
Programming, 36(2):166–183,
April 2008. CODEN IJPPE5.
ISSN 0885-7458 (print), 1573-
7640 (electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=36&
issue=2&spage=166.

[WSKS97] Steve Whittaker, Jerry Swan-
son, Jakov Kucan, and Candy
Sidner. TeleNotes: managing light-
weight interactions in the des-
top. ACM Transactions on
Computer-Human Interac-
CODEN ATCIF4. ISSN 1073-
0516 (print), 1557-7325 (elec-
acm.org:80/pubs/citations/
journals/tochi/1997-4-2/
p137-whittaker/.

[WTKW08] Chee Siang Wong, Ian Tan,
Rosalind Deena Kumari, and
Fun Wey. Towards achieving fairness
in the Linux scheduler. Operating Systems
CODEN OSRED8. ISSN
0163-5980 (print), 1943-586X
(electronic).

[WTH+12] Jinyue Wu, Yang Tang,
Gang Hu, Heming Cui, and
Junfeng Yang. Sound and pre-
cise analysis of parallel pro-
grams through schedule special-
ization. ACM SIGPLAN
Notices, 47(6):205–216, June
2012. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic). PLDI ’12 proceedings.

[WTKW08] Kyle B. Wheeler and Dou-
glas Thain. Visualizing mas-
ively multithreaded applica-
tions with ThreadScope. Con-
currency and Computation:
Practice and Experience, 22
(1):45–67, January 2010. CO-
DEN CCPEBO. ISSN 1532-
0626 (print), 1532-0634 (elec-
tronic).

[Wu:2012:SPA] Carl A. Waldspurger and
William E. Weihl. Register
relocation: flexible contexts
for multithreading. ACM
SIGARCH Computer Archi-
tecture News, 21(2):120–130,
May 1993. CODEN CANED2.
ISSN 0163-5964 (print), 1943-
5851 (electronic).
REFERENCES


REFERENCES

Xian:2008:CAS


Xue:2012:RJC


Xu:2014:STM


Yam:1995:CFD


Yam:1996:DPV

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yang:1997:MUA


Yan:2002:RCC

REFERENCES

Yasrebi:1995:EDO


Yiapanis:2016:CDS


Yang:2014:MPP


Yamashita:2012:APS


Yi:2010:NAS


Yu:2013:GDS


Yao:2016:OCO

Yuan Yao and Zhonghai Lu. Opportunistic com-

Yu:2016:DLR


Yu:2009:CIC


[YNPP12] Jie Yu, Satish Narayanasamy,


Yi Yang and Huiyang Zhou.


[ZSM02b] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. Compiler optimization of scalar value


REFERENCES

[291]

Zh:2011:TPS


Zhang:2012:SCC


Zhao:2011:DCC


Zhang:2015:DPO


Zier:2010:PED


Zhang:2016:TED


Zhang:2016:SAN

Zebchuk:2007:BBC

Zhuang:2004:BRA

Zhuang:2011:CST

Ziarabi:2013:LSF

Zhiblov:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB
W. M. Zuberek. Analysis of performance bottlenecks in multithreaded mul-