A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
08 February 2018
Version 3.134

Title word cross-reference

#4 [Pet00].
+ [BMV03], 2 [TKHG04]. 3
[KSB+08, PYP+10], cyclical [YLLS16]. D^3
[Evr01]. F^2 [BCS11]. LU [VD08]. N
[ZJFA09]. π [II01]. QR
[But13, GKK09, VD08].
-Calcultus [III01]. -Machine [Evr01]. -way
[ZJFA09].
.NET [Rob03, Tim03, DHR+01, Rei01].
'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94e].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA005]. 35th [Gol94]. 3D
[Ano97b, Loe97].
4 [BAM93, SKS+92]. 4th [Ass96].
5 [FLR98]. 5th [Cha05].
64-bit [Kus15, SBKK99]. 6th [DLM99].
7th [USE00b].
80 [Bri89]. 821 [HBG02].

Abstract [CSS+91b, CGSV93, DV99, LMA+16, MJF+10, Ném00, CSS+91a, CSS+91c, VDBN98, ZJFA09]. Abstraction [KI16, Bak95b, GPR11, ZSJ06]. AC [BGK94a, BGK94b]. Accelerating [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89].
access/execute [APX12]. accesses [DTK+15]. accessibility [SSKP+07]. Accounting [LMA+16, EE09b]. accuracy [TO10]. Accurate [CPT08, VTSM12].
Achieving [AHW02, SP05, KGGK90, WTKW08]. ACM [ACM93b, RM03, IEE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZP04].
Activation [KG94]. Activations [ABL92, DNR00, SS95]. Active [BK06, Pha02, Ten98, We98a, SD95, WHJ+95].
actors [Bri89]. actually [Pra95c]. Ada [ACM93c, Bar09, Di93, GMB93, KPPÉR06, KR01b]. ADAM [Far96]. adaptable [LLLC15]. Adaptation [CMBAN08].
Adaptive [ABN00]. Adaptive [ALH08, HBTG98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW+16]. Adding [Ply89, Ric99, McM97]. Address [CLFL94, PWL+11, CKZ12, Lie94].
Addressing [WA08, CKD94, ZSB+12].
Advances [IEE97, JHM04, KKD03, DLM99].
Aggregate [TGO99, TGO00]. AGNI [RBPM00]. agreement [GMW09]. Aid [Wei97]. aided [MCRS10]. aids [Mat97].
Air [MPD04]. Al [TLA+02]. Albuquerque [Ano94e]. Algebra [KLDB09, NBS+15, PHCR09, YSY+09].
Algebraic [ACM94c, Lak96, MR09, Wat91]. Algorithm [AT16, ABC+09, HH11, OR12, TT03, ZBS15, GGPH12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HBGO2, YFF+12]. Algorithmic [Lei97, BBH+17]. Algorithms [BP05, EJR13, FS96, LA93, MNG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CFG+12, CLRS09, FR95, GK05, Lei97, Lep95, NFB17, QQOV+09, RRMJ12, YM92, YMR93a, L05].
algorithms-by-blocks [QQOV+09]. Algorithms-by-Tiles [QOIM+12]. aliasing [NA07]. Aligned [YWW03]. alignment [KGPH12]. Alliare [Hig97]. Alleviate [BD00]. Alloc [KSU94]. Allocating [SEP96]. Allocation [MVZ93, Nak01, EFJM07, LLL10, Mic04, ZP04]. Allocator [BMBW00b, BMBW00a, BMBW00c].
Alpha [Ano00b]. alphabet [KNPS16]. alphabet-independent [KNPS16].
alternative [SV96c, SV96a, SV96b].

Analysis [AKS06, BCZY16, BE12, BE13, BBC+00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJRB13, Hai97b, Hol12, LCK11, LML00, LHG+16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM+08, Yoo96a, Zub02, AC09, ACC+03, BGZ97, BBI+17, BBM09, CHH+03, CS12, CVLJ08, Cor00, GBCS07, HEJ09, JPS09, KTK12, KC09, Lei97, LBH12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SBB0, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH+12, dBo9, vP03].

Analytic [Squ94]. Analytical [DKF94, VT96, SBC91]. analyze [LMC14]. analyzer [Fer13, HLB90]. Analyzing [HRH08, Kor89, RH10, TMCP10].

anatomy [Re95]. Android [MKM14].

Annotations [BM94, Wei98b, AGN09]. Annual [ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b].

anomalies [Sch89]. Anomaly [KW17].

Antonio [USE92a]. any [Hig97, Mar07].

API [Ano00b, BN02, DM09, Van97a].

APL [CJ91]. applets [McM96c].

Application [AMRR98, KZTK15, KSU94, PG92, PLT+15, TKA+01, TAM+08, Yas95, DWYB10, EJK+96, HDT+13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11].

Application-Level [KSU94, PLT+15, HDT+13, LZ07, ZJS+11].

Applications [Ano00c, AZG17, AKP99, BK106, BMBW00b, BNH01, Cha05, Chl15a, DS16, Don02, Dru95, EV01, FURM00c, HC17, HWZ00, JYE+16, KMJ02, KRH98, Lar97, MG15, PCPS15, PWW+11, Pul00, RD96, SG1+97, Sod02, Ten02, Tet94, TSV12, TLM17, VOl93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BWDZ15, BBFW03, BGZ97, BMBW00a, BMBW00c, BW97, DSEE13, BM03, CB89, CB90, CSB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLB90, ISS98, JSMP12, JSMP13, KVN+09, MLCW11, MKM14, MKI04, MLC0, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Omn04, PJZA07, RCV+10, Re95, San04, SSN10, SKP+02, TMC09, TMC10, TP18, VIA+05, VGK+10a, VGK+10b, WCZ+07, WT10, WOKH96, XMN99, YZ14, kSYHX+11, ZKR+11, Len95]. apply [NZ17].

Applying [VTSL12, MT02a, MT02b, MT02c].

Apprendre [Swi09]. Approach [AZG17, BBSG11, CJW15, ES97, FKT96, GMR98, KKW14, KS16, ND16, RC16, TY97, VSD09, WS08, Wei98b, YLLS16, BWDZ15, DHM+12, LZW17, LZZ+14, MS03, RCM+12, SCZM00, TP18].

Approaches [BLPV04, MB07].

Approximate [HFV+12, GEG07, GE08, KGPH12]. Apps [PCM16]. April [Ano00a, Ano03, USE01].

arbitrary [BGC14]. ARCH [Ada98].

Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07].

Architecture [ACM98c, BBD+91, BTE98, Car89b, CL05, DO95, EGBK01, For97, Gao93, GKH+98, GV95, GN92, HTZ+97, HMMN91, HHOM91, HHOM92, KBH+04a, KBH+04b, KIAT99, Man91, MB09, PV+17, PTMB09, PKB+91, PS01, REL00b, RS08, SCLO5, SYYG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cha92, Don02, Dub95, Evr01, Far96, Fu97, Gal94, GDSA+17, GL98a, Gol96, HF88, HKN+92, HMM+92, I+94, KHP+95, KT99, Lio95, Mah13, MK12,
Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TNB+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04].

[WG94, ZJS12, Car89b, Cho92, KHP+95, KLH+99, MKR10, Raj93, Sha95a, SSkP+07, WCZ+07, ZJS10, ZKR+11].

Cache-conscious [GBP+07].

Cache-oblivious [HL08]. CacheFlow [KET06a]. Cacheline [PBL+17].

[DNT06, KC99, Boo93]. Calculations [KGGK09, ROA14]. Caching calculi [BD06].

ACM01. California [ACM93a].

[ACM93b, ACM95b, ACM98b, IEE99, USE89, USE91a, USE93b, USE96, USE98b, USE01]. Call [GSC96, Hub01, ORH93, Xue12].

Cacheline [KET06a]. HL08.

[GBP+99, MKR10, Raj93, Sha95a, SSkP+07].

Cache-conscious capability-based [CKD94].

[VK99, BDLM07, KPP ER06, KI16, LSM07, LKBK11, LMJ14, MTN+09, MR09, TESK06, VIA+05, Wea08, CS02, ZJS10, ZKR11].

Get [FQS02, FF04, FF08, FFY08].

CheckFence [BAM07].

Check [ES07, ND16, AHK08, AD08, AGEB08, BAM07, BS10b, BNS11a, BNS11b, BNS12, CNQ13, FFLQ08, MI95, MQ08, ND13, PAdS+17, Sto02, TVD10, VGR06].

Checkpoint [ZSA13]. Checkpoint/Restart [ZSA13].

Checkpoints [CS02, ZJS06, Chemkin [Bra97]. Chicago [An094d]. Chip [HHOM91, KST04, KML04, KU00, KS+08, LS07, LKBK11, LMJ14, MTN+09, MR09, TESK06, VIA+05, Wea08, CS02, ZJS10, ZKR11].

Chip-Multiprocessors [KU00, LMJ14]. Chips [An094a, IEE99].

Chiron [TNB+95]. Chiron-1 [TNB+95]. Choice [III01, TEE+96].

Cholesky [CIM+17, VD08]. Chores [EJ93].

Chunking [WLM15]. CIL [CAR08]. Cilk [BJK+95, BJK+96, FLR98, Joe96, Mil95].

Cilk-5 [FLR98].

CIO [An094g]. Circuit [AMRR98]. City [Hol12].

CLAM [GMR98]. CLAP [HZD13]. Class [BS99, Cha82, Gib94, VE93, CS00, MSLM91, Yam96].

Classes [Cal00, FeK88, How98, Lam95].

Classical [JSB+07, JSB+11]. Classics [Wil00].

Classification [KZC15, LMJ14, LCH+08].

Classifying [NWT+07].

Claud [WP10]. Client [Day92a, Day92b, Srl95, Gol96].

client-server [Gol96]. Client/Server [Day92a, Day92b]. clients [CDL13].

climbing [CY09]. Closure

[YMR93b, YM92, YMR93a]. cloud [FKS+12, GDSA+17]. clouds [FGG14].

Cluster [BNH01, CRE99, HD02, KKH03, Kwo03, SCD+15]. Clustered [GSL10].

Clustering [JY15, KF15, RVR04, TAS07]. Clusters [BWXF05, WG99, ZBS15, BMV03, FWL03, TMAG03].

CMP [TAS07, AMPH09, CWS06, ICH+10, LLL10].

Checker [FQS02, FF04, FF08, FFY08].

CheckFence [BAM07].

Checking [ES07, ND16, AHK08, AD08, AGEB08, BAM07, BS10b, BNS11a, BNS11b, BNS12, CNQ13, FFLQ08, MI95, MQ08, ND13, PAdS+17, Sto02, TVD10, VGR06].

Checkpoint [ZSA13]. Checkpoint/Restart [ZSA13]. Checkpointing [CS02, ZJS06].

Chemkin [Bra97]. Chicago [An094d]. Chip [HHOM91, KST04, KML04, KU00, KS+08, LS07, LKBK11, LMJ14, MTN+09, MR09, TESK06, VIA+05, Wea08, CS02, ZJS10, ZKR11].
SSkP±07, ZJS10, ZJS12. CMP-based [LLL10]. CMPs [GW10, JSMP13, SQP08a, SQP08b, SQP08c, YL16]. Co [Goo97, AMPH09, BBH+17]. co-design [BBH+17]. co-optimization [AMPH09]. Co-processor [Goo97]. Coarse [NS97]. coated [Lep95]. Code [BBdH+11, Coo95, HYY+15, JSB+12, Kim14, KEL+03, MS02, NS97, ND16, PR98, Roh95, RNSB96, TGBS05, Tra91, Ann96, BB00, JSB+11, SJ95]. Codes [Goo97, AMPH09, BBH+17]. Codesign [HPA+15]. cognitive [MCS15, PWD+12]. cognizant [LK13]. Coir [SG96]. Cold [Hig97, Hig97]. Collaborative [VSDK09]. Collection [AKP99, LB92, PUF+04, PF01, QSaS+16, KTK12]. Collections [Kle00, McM98a, McM98b]. collective [HMC95, SCB15]. collector [BBYG+05, DL93, HL93, WK08a, WK08c, WK08b]. coloring [CFG+12, GP05, SS10]. Colt [WN10]. Combinator [KLS92]. combined [UZ00]. Combining [KR01a, LZ07, CZSB16, ZLW+16]. come [Pol90]. COMeT [RCY14]. Coming [LS07]. Commands [KD97]. Commercial [SBKK99, BEKK00, EJK+96]. Commodity [ZL16, LVN10, RPNT08]. Common [Hol98a, Kuc92, BDF98, BDLM07, CL00, Kic91]. Communication [ABN00, DSR15, EH93, FKT96, FGKT97, GMR98, HY+15, OA08a, OA08b, OA08c, Pan99, PWL+11, Rod94, SKK+01, TKA+01, TCG95, BR92, DBDR91, GRS06, KASD07, Lam95, QSHI16, RR96, RR03, TG09, TKA+02, VS96, WHJ+95, ZCSM02a, ZCSM02b]. Communications [Ano03, BMN99, SCB15, Sho97b, TP18]. Commutativity [AC09]. Compact [HEMK17]. compaction [WK08a, WK08b, WK08c]. Comparative [SKP+02, Yoo96a, PL03]. Comparing [KPPÉR06, SV96c, SV96a, SV96b]. Comparison [ILFO01, SAC+98, GL98b, KIM+03, MKIO04, MMTW10]. Compass [PWD+12]. Compatible [MM14, LBH12]. competition [YL16]. Compilation [ACMA97, HLB94, BRRS10, GC92, HCD+94, Tsa97b]. Compile [CS95a, CS95b, TSY99]. Compile-time [CS95a, CS95b]. Compile/run [TSY99]. Compile/run-time [TSY99]. Compiler [ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, JSB+12, LEL+99, MCRS10, SCv91a, SCv91b, SYHL14, Sin99, TY97, TGBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG+95, BAD+10a, BAD+10b, BVG97, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Fon97, Gol97, Hop98, JSB+11, MSM+11, McM97, Mül03, RKCW98, Sch91, SKKC09, UZU00, WLG+14]. compiler-assisted [Dub95]. Compiler-Controlled [CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91]. Compiler-directed [DZKS12, SKKC09]. Compiler-Driven [YBL16]. compiler-managed [WLG+14]. Compiler-Supported [ZP11]. Compilers [SS96]. Compiling [ABN00, ABH+01, TLA+02, HTZ+97, Sch91, Sha98, A+01]. Complement [YFF+12]. Complete [BR15, Sch14, BW97, DWS+12, FFY08, KGGK09, NV15]. Completion [AGK96, BGK96, Lun97, Man98, BGK94c]. Complex [SZM+13]. Complexity [EG11, CMX10, SKA01]. complexity-effective [SKA01]. Compliant [BGK96, SP05, Hig97]. component [NFBB17]. component-based [NFBB17]. Components [Gon90, Sho97b]. Composable [SS10, FKS+12]. Compositions [KS97]. Comprehensive [TAM+08]. Compressed [PBL+17]. Computation [ACM94c, BFA+15, CWS06, HLB94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fuf97, KG07, Kic91, NJ00, Sha98, ST98, WHJ+95]. Computational [PCPS15, Bar09].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute [BBSG11]. Computer [ACM98c, Ano94a, CBN+94, Gol94, BD06, DNB+12, GK05, I+94, PBDO92].

Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95]. Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Anna99, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Hol12, HG91, IEE94b, IEE97, Joe96, Kim94, KU17, Leg01, Lu95, Mar07, PWD+12, SBCV90, STA90, SCA01, Tem97].

Concept [AMdBdRS02, BBFW02, KA97]. Concepts [McC97a]. Concrete [NSP+14].

Concurrency [BM94, GMBZP14, MLR15, MQLR16, ME17, NFBG17, BA08, But14, CBM10, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, VTS12, Yan02, ZLW+16, dB09, SB80].

Concurrency-preserving [NFBB17].

Concurrent [ILFO01, KD97, KCCD99, MSM+16, NPT98, PC16, PF01, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL03, JPS+08, Park92, KIM+03, KGG90, MSM+10, MKIO04, Men91, NNHFP08, Nev99, ND13, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, W08a, WK08b, WK08c, ZS06, Hay93].

Condensed [BIK+11]. Condition [Hol98c, Yan02]. Conditional [IBST01, NA07]. Conditions [HM96].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM01, Ano90, Ano94a, AOV+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KKD03]. confidentiality [NSH14].

Confirmation [CJW+15]. conflict [NJ96]. conformant [ST95].

Congress [Ano94d]. conjunction [Ano94e].

Connect [Ano00b], conquer [FN17, TP18].

conscious [GBP+07]. Consistency [ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSQ14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].

Constrained [TLG17, GW10, YN09]. constraint [SCG95], constraints [HB15].

Construction [KW17, LHS06]. constructs [BS06]. consumption [SCM05]. Contact [Nak03].

Contemporary [ZJS12, ZS10].

Content [WLM15]. Content-Based [WLM15].

Contention [XASa08, ALW+15, DSG17, PFB14, TMCP10, ZK+11].

Contention-aware [XASa08]. Context [TLA+02, GN92, JLS99, DF95, LG04, MQ07, PaD+17, PH06, SCB15, Yan97, LG04].

context-bounded [PaD+17]. context-sensitive [PH06, LG04].

contexts [BGC14, TE94b, WW93].

Contextual [BGZ17, NHFP08].

continuation [AAH09].

continuation-based [AAH09].

continuations [DBR01, GRR06].

Continuing [Ano99]. Continuous [RCC14].

Continuously [DTLM14]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, FK12, FSYA09, GCC15, MLCW11, NT14, PPA+13, PoI90, RPB+09, UZU00, WLK+09, Yoo96b].

control-flow [NT14].

controlled [BGC+08, CSS+91b, CGSV93, SCv91a, CSS+91a, CSS+91c, Luk01, MW07, Sch91, SCv91b].

Controllers [RLJ+09].

Controller [RLJ+09]. controllers [KASD07].

controlling [AGN09, BKC+13].

controls [McM96]. Controversial [Gar01].

Convention [ACM98b, ACM99a, ACM00, Hol12].

Conventional [KET06b, HB92].
[Leg01, TKHG04, WLK⁺⁰⁹].

Discussion [ACC⁺⁰³, Distance [BCZY16, KZTK15, KNPS16]].

Disjoint [SJA⁺⁰⁰].

Dissecting [ACC⁺⁰³, Distance].

[Sho⁹⁷a, Sho⁹⁷b].

Distinguish [HL⁹³].

Distinguished [ABH⁺⁰¹, TKA⁺⁰¹].

Distributed [ABNP00, ABH⁺⁰¹, BBD⁺⁹¹, BWXF05, BHKR95, BC94, CV98, CJ95, DKA16, FSSv06, GJJ7, Jen⁹⁵, PG⁹², Pra⁹⁵a, RLJ⁺⁰⁹, RBPM00, RW⁹⁷, RCRH95, SUF⁺¹², TWDw03, USE⁹²b, VS⁹⁶, Yav⁹⁵, Ano⁹⁶, A⁺⁰¹, BCG⁺⁹⁵, CML⁺⁰⁰, Car⁸⁹a, Go⁹⁶, GKK⁹⁰, Gun⁹⁷, HBR², HMC⁹⁵, HWW⁹³, HBCG13, IEE⁹⁷, ISS⁹⁸, Leg⁰¹, MS⁰³, MGL⁺⁰⁵, MKK⁹⁹, Ong⁹⁷, Pha⁹¹, Ply⁹³, QṢQ⁺¹⁴, Sto⁰², Tod⁹⁵].

Distributed-Memory [RCRH⁹⁵, BCG⁺⁹⁵, HWW⁹³].

Distributed-sum [TDW⁺⁰³].

Distribution [SSYG⁹⁷, ZAK⁺⁰¹, CY⁺⁰⁹].

Divergence [MTS⁺¹⁰].

Divide [FN⁺¹⁷, TP⁺¹⁰].

Divisors [Kuc⁹², Kuc⁹¹].

DMP [DLCO⁺⁰⁹].

Do [Cri⁹⁸b, Cri⁹⁸a, RPNT⁺⁰⁸, Ber⁹⁶a, Ber⁹⁶b, YLLS⁺¹⁶].

Dock [BCS⁺¹¹, TO⁺¹⁰].

Docking [BCS⁺¹¹, TO⁺¹⁰].

Documentation [HF⁹⁶].

Does [Hag⁰², RKK⁺¹⁵, ZJS⁺¹⁰, San⁺⁰⁴].

Doing [Yam⁹⁶].

Domains [LAK⁺⁰⁹].

Données [Swi⁺⁰⁹].

Don't [HHPV⁺¹⁵].

DOSThread [VE⁺⁰³].

DoubleVision [Ano⁺⁰⁰b].

Downdating [VV⁺¹¹].

Downturn [Gar⁺⁰¹].

DRAM [kSYHX⁺¹¹].

DRFX [MS⁺¹⁰].

Drinking [CZSB⁺¹⁶].

Driven [DTLW⁺¹⁶, For⁹⁵a, For⁹⁵b, HLB⁺⁹⁴, KET⁺⁰⁶a, KET⁺⁰⁶b, ME⁺¹⁵, ME⁺¹⁷, TES⁺⁰⁶, YBL⁺¹⁶, CSV⁺¹⁰, Evr⁺⁰¹, RVS⁺¹³, RS⁺⁰⁹⁺, SLR⁺⁰⁸, SQ⁺⁰⁸a, SQ⁺⁰⁸b, SQ⁺⁰⁸c, YNPR⁺¹²].

Driver [CCW⁺¹¹].

DSIs [RKHT⁺¹⁷].

DSM [ABH⁺⁰⁰, AB⁺⁰¹, AB⁺⁰², BDF⁺⁹⁸, KKH⁺⁰⁴].

DSM-PM [AB⁺⁰²].

DSMs [FBF⁺⁰¹].

DTS [BHKR⁹⁵].

Dual [BBC⁺⁰⁰, EHC⁺⁹⁵, KST⁺⁰⁴, DK⁺⁰², MB⁺⁰⁵, WS⁺⁰⁸, CCW⁺¹¹].

Dual-Core [KST⁺⁰⁴, MB⁺⁰⁵].

Dual-Level [BBC⁺⁰⁰, DK⁺⁰²].

Dual-personality [CCW⁺¹¹].

Dual-Processor [EHG⁺⁹⁵].

Dual-Thread [MB⁺⁰⁵, WS⁺⁰⁸].

Duplex [KG⁺⁰⁵].

Duplicacy [Kwo⁺⁰³].

Dynamically [PGB⁺¹², TLGM⁺¹⁷, DMBM⁺¹⁶, Kep⁺⁰³].

Dynamically-typed [DMBM⁺¹⁶].

E⁶⁵⁰⁰ [BGH⁺¹²].

Early [GL⁺⁹¹, PBL⁺¹⁷, SLR⁺⁰⁸].

EARTH [HTZ⁺⁹⁷, HMT⁺⁹⁶, Sod⁺⁰², TAK⁺⁰⁰, TKA⁺⁰¹, TKA⁺⁰², TMG⁺⁰³, NAK⁺⁰³].

EARTH-ANNA [HMT⁺⁹⁶, Sod⁺⁰²].

Easy [Har⁺⁹⁹].

Easysoft [Ano⁺⁰⁰b].

ECMA [Stu⁺⁹⁵].

ECMA-162 [Stu⁺⁹⁵].

Economics [Bar⁺⁰⁹].

Edinburgh [AOV⁺⁰⁹⁺].

Edit [KNPS⁺¹⁶].

Editors [GGB⁺⁹³a, GJ⁺⁹⁷].

Education [Gar⁺⁰¹].

Effect [BAD⁺⁰⁹, GLR⁺⁹⁸b, YSY⁺⁰⁹].

Effective [ABL⁺⁹², DNN⁺⁹⁴, GH⁺⁹³, GMG⁺²⁴, NA⁺⁰⁶, NSH⁺¹⁴, PGB⁺¹⁶, RVS⁺¹³, Sat⁺⁰², TMC⁺⁰⁹, TY⁺⁹⁷, CBM⁺¹⁰, JSB⁺¹¹, MMN⁺⁰⁹, MTC⁺⁰⁷, SKA⁺⁰¹, Tsa⁺⁹⁷].

Effectiveness [PR⁺⁰⁵, TE⁺⁹⁴b].

Effects [Cho⁺⁹³, HR⁺⁰⁸, KLI⁺⁹⁹, KBR⁺⁰², NHF⁺⁰⁸].

Efficient [AB⁺⁰⁸, A⁺⁹⁴, AB⁺⁹⁹, BČ⁺⁰⁶, BGD⁺WH⁺¹², BJ⁺⁹⁺⁶, BL⁺⁹⁸, BM⁺⁹⁹, CŽS⁺¹⁷, CL⁺⁰², DMB⁺¹⁶, Gao⁺⁹³, GJ⁺¹², GRS⁺⁹⁷, GS⁺⁰⁶, GN⁺⁹⁶, HST⁺¹⁴, HEM⁺¹⁷, KPC⁺⁹⁶, KAS⁺⁰⁷, Lem⁺⁰², LH⁺⁶⁺⁶, LZB⁺¹⁴, MB⁺⁰⁷, MA⁺¹⁴, NB⁺⁹⁹, PS⁺⁰³, SP⁺⁰⁷, TY⁺⁹⁷, TGB⁺⁰⁵, ZLJ⁺¹⁶].
ATLM +06, BL93, BJK +95, BHK +04, EKKL90, FWL03, FF09, GB99, HSD +12, KSB +08, KNPS16, KSD04, LG13, LWV +10, LHS16, LZW +13, MSM +10, NLK09, OAA09, Pan09, PSG06a, PSG06b, PSG06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX +11, ZLM +16, FSYA09.

Efficiently
[KBF +12, MCT08, SW16, Bhu95, BKC +13], eigenproblems [ABD +12]. eigenvalue [BIK +11]. Electronic [Ano00b, BB00].

Elegant [Hub01]. Element [HTBG98, MS02]. elementary [HKN +92].

elide [MLS15]. Eliminating [DSG17, OCT14, RD06, MTPT12].

elimination [MK12]. elision [NM10].

Elliptic [Loc97]. EM -4 [BAM93, SKS +92].

Embedded
[BGH +12, Dru95, GKE17, KG05, KE15, MS15, WM03, DCK07, KVN +09, KASD07, KBF +12, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB +09, SKP +02, Xue12].

Embedded-Systems [Dru95]. Embedding [Pul00].

Emergencies [MTP12].

Emerging [VSM +08, GBP +07]. HFV +12]. empirical [LC13]. employing [CWS06].

Employment [Gar01]. Empowering [JSB +12].

Enabling
[Pan99, JMS +10, VGK +10a, VGK +10b].

End [SNM +12]. End-to-end [SNM +12].

Energy [AJK +12, GJT +12, GKE17, KE15, K13, LMA +16, PR05, RL14, AAC +15, CIM +17, GA09, KSB +08, NB12, PJZA07].

Energy-Aware [PR05].

Energy-Effectiveness [PR05].

Energy-Efficient [GJT +12, LK13, RL14].

energy-performance [PJZA07].

enforcement [GWM07, SCCP13]. engine [CNQ13]. Engineering [GJ97, LSB15, WCV +98]. engines [HB15].

England [ACM94c]. Enhance [FSPD17].

Enhanced [Ano00b, EJ93]. Enhancing [OL02a, OL02b, OL02c, HWW93, RHH10].

Environment
[ABN00, BC00, CD0S01, EC98, KKH03, PG92, BKH +06, GCRD04, GCC15, GKB +05, HMC97, HUD96, KG07, LSN97, Pha91, SWYC94, Sta90, Tem97, WCC +07].

Environments
[AKP99, BDN02, KG05, SP00a, EJK +96, RGG +12, Sam99, Ver96, Way95]. equality [AD08].

Equivalence [TLG +17].

Equations [Les97]. equivalent [Pra95c]. Eraser [SBN +97]. Errata [Ano01, Ano05].

error [SSN10]. Errors [SK97, VACG09].

escape [SR01a]. Esterel
[LBvH06a, LBvH06b, LBvH06c, Lvh12].

Estimating [PCPS15]. etc [Hoh98a].

European [DLM99]. EuroPVMMPV

[KKD03]. Evaluating
[BL96, CML00, NPT08, PSCS01, RPNT05, Sch98, SD95, TG90].

Evaluation
[Arn92, Boo93, BTE98, CL95, CB +00]. EJK +96, Eic97, GLC99, HN91, RNSB06, SCD +15, TT03, ZL10, BGDW12, BLC97, Car90, Cho92, Don92, LZ07, M1h1, MKR02, NFBB17, RGG +12, RCDG06, SWYC94, SKP +02, SMS +03, TG000, TKA +02, WLG +14].

Evaluations
[MM14, Roh95]. evaluator [SP00b, Shi00].

even [Ano94b]. événements [Swi09].

Event
[Ber96b, CKRW09. For95a, For95b, Ber96a]. CKRW97a, CKRW97b, GWM07, KCCD09, KBF +03, Leg01, RVS13].

Event-Based
[CKRW99, CKRW97a, CKRW97b].

Event-Driven
[For95a, For95b, RVS13].

event-handling [KBP +03].

Events
[BDN02, LZ07, Van97b].

Evolutionary
[TAK +00, KU17].

Examining
[Ano94b, Ric91, Rod95a, Tim03].

Example
[BLPV04]. Exception
[DH98, Lea96]. Exceptions
[AbdRS05, KR01b]. exclusion [BR92].

exclusiveness [Lie94]. Executing
[Bhu95, BS99].

Execution
[ABH +01, CJ91,
A

RKK15, RSBN01, STY99, VSDL16, Ann96, ME15, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Ann96, A⁰10, BAD⁰10, BAC⁰1b, BGC14, Dil93, JW TG11, LVN10, Luk01, PAB¹4, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS⁰3, TSY99, TSY00, TDV03, U2U00, WCT98, XIC12, XSaJ08.

Expressions [Hei03].

SFQ08c, SMQP09, SMS⁰3, TSY99, TSY00, TDV03, U2U00, WCT98, XIC12, XSaJ08.

Fairness [ES97, FSPD17, GWM07, SCCP13, WTKW08]. false [LTHB14]. farms [MR98].

Fast [BCS11, BRE92, GSC96, HN91, LDT¹6, STY99, SLF14, ST05, VTSM12, ZSA13, ZCO10, BDLM07, CKD94, Kep03, Kus15, TT03, TTKG02]. Faster [PCM16, BDM98]. FastTrack [FF09]. fault [RRP06, RM00, VPC02]. FCRC [ACM96].

Feedback-driven [SQP08a, SQP08b, SQP08c, TGO99, ALHH08]. Feedback [SQP08a, SQP08b, SQP08c]. Felix [Ano00c]. Fernande [Ano00c]. fetch [EE9a, TEE⁰96]. FFFTs [MJF¹90]. Fiber [GDSA²]. Fiber-based [GDSA²].

fibers [BS06]. FIFO [QSAS¹]. fifth [ACM93b, AOV¹⁰]. File [FG91, GJT¹2]. KS97, Pea92, WLM15, BLC 0, ALHL08.

files [RRK11, CCC12, kSYHX¹]. filtering [Kep03]. final [HCM94]. Finding [MNG16]. Fine [AZG17, BBG¹0, BSS14, But13, CSS⁹1a, CSS⁹1b, CSS⁹1c, H91, KG94, LKBK1, LVSO1, LFA96, NS97, PBR¹5, TY97, TAK¹0, YSS¹7, BKG94c, Dub95, Gol97, KDM¹98, Kim94, Loi95, MLC⁰9, Met95, PLS0, RPB¹9, TKHG04, Wei98a, kSYHX¹].

Fine-Grain [AZG17, CSS⁹1b, H91, KG94, LFA96, CSS⁹1a, CSS⁹1c, TY97, KDM¹98, Kim94, Loi95, MLC⁰9, Met95, PL03, TKHG04].

Fine-Grained [BBG¹0, BSS14, But13, LKBK11, PBR¹5, TAK¹0, YSS¹7, LVSO1, BKG94c, Dub95, Gol97, RPB¹9, Wei98a, kSYHX¹].

Finite [HBTG98, MS02, Cor00].

Finite-Element [MS02]. finite-state [Cor00]. firmware [ABB¹]. First [MSLM91, Wei09, LAH¹2, ZH94, Hon94].

First-class [MSLM91]. FL [ACM94a].

FlexBFS [LAH¹]. Flex

[ABG¹0, KS97, Len02, MSM¹6, SP00a,
Florida [ACM98d], Flow [AT16, Ama89, HH11, PBR+15, Sama99, JD08, KBH+03, NT14, Pol90, RM99, RPB+09, SV98], Fluid [JD08], FluidCheck [KS16, fly [CWS06, PS03, PS07, Sch89], Focus [EHP+07], Forces [FTP11], Forecasting [Ano98b], fork [ALS10], fork-join [ALS10], FORM [TV10], Formal [Sta05, WP10], formation [FSYA09], forms [BIK+11], FORTH [Jon86], FORTH-like [Jon86], Fortran [Ano97a, Bra97, AS14, GOT03, HBG01, HBG02, Nag01], forum [Sho97a, Sho97b], Forwardflow [GW10], foundation [MCS15, RBF+89], Foundations [BA08, Go99], Four [CH95, MTN+00, KNPS16], Four-Russians [KNPS16], Four-Way [MTN+00], Fourier [TT03, TTKG02, BCS11, HN91], fourth [USE96], fragment [APX12], fragments [LG04], Framework [BMF+16, BF04, CV98, DHR+01, EFG+03, KC98, KF97, LCS04, LMJ14, Loe97, NSP+14, Rei01, VSM+16, Yam95, AMC+03, BDF98, EHSU07, GJ11, Hop98], France [FR95], Francisco [ACM95b, USE02], Free [Way95, DTLM14, GP08, MLS15, Mic04, ST05], free-lunch [DTLM14], FreeBSD [Ano00b, Bal02], freeness [AHK08], Freescale [BGH+12], French [Zig96], frequent [GBP+07], Fthreads [Nag01], Fukuoka [Ano91], Full [MH02, GB99], Full-system [MHW02], fully [RD99, Sta95], Function [Hub01, TO10], Functional [Coo95, DCK07, G506, Kin94, KIA99, LP94, SSP99, Gun97, RKBH11, TAN04, VGR06, WZWS08, ZSJ06], Functions [Bed91, Ki16], Further [GV95], Fusion [PW+11, Hig97], futex [BF08], Future [Jon91, TAM+08], futures [TTY99].

GALAHAD [GOT03], GAMBIT [CBM10], Game [DHR+01], GAMESS [BB00], Garbage [AKP99, LB92, PUF+04, PF01, QSaS+16, BBYG+05, DL93, HL93], Garcia [Anno0c], Gateway [Yas95], Gating [RRK11], GbA [LZW17], GC [HHPV15], Geant4 [SCD+15], Gene [GBB+05], Gene/L [GBB+05], General [Ber96b, BF04, HSS+14, Man98, YKL13, ZSA13, Ber96a, Car99, DC99, DC00, HSD+12, MQW95, SKA01], General-Purpose [Ber96b, HSS+14, Man98, Ber96a, DC99, DC00, HSD+12], generalized [ABD+12, BCM+07, FTAB14], Generated [BD00, MJF+10], Generating [AZG17], Generation [ARB+02, Coo95, EFN+01, EEL+97, HEMK17, HYY+15, NBS+15, RNSB96, TGBS05, Tra91, TSV12, ABC+09, EFN+02, GJ11, KI16, LK13, LSS12, Way95, CH04], generational [DL93, WK08a, WK08b, WK08c], generations [Roh95], generators [SLF14], Generic [ABH+00, AB02, Fer13], Genetic [NSP+14], genome [LHS16], GeoFEM [Nak03], Geometric [Caz02], Georgia [ACM99a], Germany [RM03, Wat91], ghosts [TV14], Gigabit [AHW02], Gigabit/sec [AHW02], Gilgamesh [SZ02], glasses [CZSB16], Global [HH11, PW+11, Ten02, FWL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b], globally [CZWC13], GNAT [DRPRGB99], Go [Mia00], Going [Bak95b], Goldilocks [EQT07], good [Mat03], GPGPU [YZ14], GPGPU/s [LSB15], GPS [TVD14], GPU [APX12, Bon13, FCP11, KI17, LTL+16, LGH+16, LAH+12, WL+14, YSS+17, ZCO10], GPU-Oriented [LGH+16], GPUTdet [Bon13], GPUs [CSV10, DNT16, LBH12, SKG+11, VDO8, WJ12], Grace [BYLN09], Grain [AZG17, CSS+91b, HG91, KG94, LFA96, NS97, CSS+91a, CSS+91c, KDM+98, KIm94, Loi95, MLC+09, Met95, PL03, TY97, TKHG04], Grained [BBG+10, BSSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, BGK94c, Dub95, Go97,
LVS01, RPB+09, Wei98a, kSYHX+11.
Grande [ACM01]. Grande/ISCOPE [ACM01]. Granularity [K95]. Graph [CFG+12, CL95, EJRJB3, HPA+15, KS93, KLS92, MM14, LK15, LZW17, RVR04].
graph-based [LZW17]. GraphCT [EJRJB3]. Graphical [ACM99]. graphics [BGDmWH12, CCW+11, FSYA09, PYP+10].
Graphs [HPB11, Nik94, OB13, AD08, ABG+08, DSEE13]. grass [MMTW10].
Greener [HPB11, Nik94, OB13, AD08, ABG+08, DSEE13]. greener [MMTW10].
Greene-Based [KEL+03]. GRIDiron [MCS15], grids [SKG+11]. Griffin [Ano00c].
Gröbner [AGK96]. Group [BNH01, DLM99, QSHI16]. Group-Based [BNH01]. Grouping [OR+12, WC99]. Grove [IEE89].
Guarantee [Hag02]. Guarantees [PSM01, YWJ03, GPS14, MTC+07, PSM03, ZHC15]. Guarded [Sim97]. Guest [GGB93a, GJ97].
GUI [Tet94]. Guide [Ano99, BBD+91, LB96a, Wil97, BW97, ND96, RR96, Sim95]. guided [NB12].
Guidelines [RD96], GUIs [Mia90].
Gyrokinetic [KEL+03, PWL+11].
Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DKA16]. Hamilton [Ric91]. Handles [Rec98]. Handling [DH98, LBS15, SK97, BM91, KCCD99, Koo93, KPB+03, Lea96, Met95].
Harbor [BBC+00]. Hardware [CKD94, CSS+91b, KE15, LLS06, MWP07, Men91, SW08, ZLJ16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB+14, PRS14, RPN05, SE12, TE94b, DWS+12].
hardware-aware [PAB+14]. hardware/software [LT97]. harmful [NWT+07]. Harmony [KTK12]. Harness [Ano98, EBKG01]. Hash [GK05, VB00].
Hash-join [GK05]. having [YFF+12]. Head [Mia90]. healing [SLP+09]. Heaps [DGK+03, Man99, Ste01]. help [Len95].
Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here [Ano92a, Pra95c]. Heterogeneous [AT16, AACK92, FBF01, KTR+04, Lu95, NTR16, THA+12, FKS+12, GKZ12, LK13, SJ95, WCC+07].
Heuristic [HH11, Mah11, ORS07]. Hewlett [BLCD97]. HFS [KS97]. hiding [BR92].
Hierarchical [GJT+12, JY15, KC98, KG94, BV03, DZKS12, LK13, LQ15, RCDG06].
Hierarchies [BCZY16, TAM+08].
Hierarchy [BGDmWH12]. High [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CT00, FGKT97, Gar01, Hol12, HG91, MEP99b, LCK11, LG06, LMJ14, LBH12, LMG+16, LCH+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, TCI98, VV11, WG99, WN10, CIM+17, GS02, HG92, Kim94, Lan97, RRP06, Re95, SQP08a, SQP08b, SQP08c, Tem09]. high- [RRP06].
High-Level [Sch17]. High-Performance [ACM98a, BGH+12, FGKT97, Gar01, IEE94b, NBS+15, RG03, TC98, WN10, LCH+08, VV11, CIM+17, Kim94, SQP08a, SQP08b, SQP08c]. high-powered [Re95].
High-Speed [Ano00a, Ano03, HG91, SRS98, HG92].
Higher [CJ95, NV15]. Higher-Order [CJ95, NV15]. highly [BGDmWH12, Kub15, KGGK09, MAAB14].
Hill [CY90, USE02]. Hill-climbing [CY90].
Hilton [IEE90]. HippogriffDB [LTL+16].
Hist [Gar01]. history [Ano97b]. Hoard [BMBW00a, BMBW00b, BMBW00c].
Hoare [KI17]. HoME [OKI92]. Hood [Ven97]. HoPE [PBS+17]. Hot [IEE99, PBL+17, Gle91]. Hot-Cacheline [PBL+17]. Hotel [Ano94d, USE02].
Householder [VY11]. Householder-like [VY11]. Houston [Cha05]. HP [Ano95a, Ano95b, Yam96]. HP-UX
[Ano95a, Ano95b, Yam96]. HPC
[GGK09, KCO9, PLT+15]. HPF
[BMV03, CM98]. HTM [KGGK09]. HTMT
[Gar01]. HTTP [Zha90]. Hut [ZBS15].
Hybrid [BBG+10, Gao03, JAY+16, LHO09,
MS02, NBM93, YZ07, GKK09, HG92, MK12,
MTC+07, SKS+92, Sha95b, kSYHX+11].
Hybridizing [CZS+17]. Hyperion [A01].
hyperscalar [Raj93, Sha95a]. Hyperthreading [HRH08, KM03].
I-WAY [FGT96]. i.e [USE98b]. I/O
[RM03, ABB+15, BDN02, KCU94, LTL+16,
Man98, MG15, Yoo96a]. I/O
[Ano95a, Ano95b]. IBM [ABB+15, CJB+15,
KST04, LSF+07, WZWS08]. Id [Nik94].
IDA* [Mah11]. idempotency [KOE+06].
identification [JSMP12]. Identifying
[BCZL16, SU96, DES+13]. IFIP
[BT01]. Igniting [ACM03]. II [HCD+94, IEE89,
JJ91, KA97, KRO1a, MCM96b, WAK99]. III
[AN00a, USE92b]. Illinois [GHG+98].
Illinois-Intel [GHG+98]. Illuminating
[BLPV04]. ILP [OAR07, RLJ+09]. im
[HL93]. Image
[WN10, BCG14, KEP03, RKHT17]. Impact
[KL08, SCL05, TE94a, ZAK01, Div95,
Met95, RGG+12, RPNT05]. Impaired
[Wei97]. imperative [SV98]. implement
[DBRD91]. implementable [TEE+96].
Implementation
[ACM94a, ACM99a, ALF94, ABO1, AKP99,
BBB+91, BHP+03, BRM03, CHWB03,
DHS+98, FLR98, HI97b, KA97, MS02,
Nik94, STW93, TAK+02, TMA03, BK96,
BB00, BMV03, CMX10, DL93, FGT96,
GCC99, GB99, IAD+94, KASD07, Lev97,
LIO5, LZO7, LAH+12, NFB17, OKID92,
SNU95, TOD95, YZYL07, ABO95a, ABO95b].
Implementations
[Han97, SAC+98, Ram94, SKG+11, Sha95b].
implemented [Boe05, KEL+03].
Implementing
[ABH+00, AB02, BP05, CB89, CB90,
Day92a, Day92b, DPZ97, GMB93, GSC96,
HPA+15, KRO1b, KBA08, KIAIT99, Pra95a,
TY97, TAN04, BHK+04, Lie94].
Implications
[RM03, BS96, VSM+08, CSM+05]. Implicit
[BAM93, MS02]. Implicitly
[ACMA97, PFV03, SAC+98, RB18].
Implicitly-multithreaded [PFV03].
Improve [GV95, QSAS+16, RKK15, Sin99].
Improved
[BR92, GMGZP14, LLS06, Smi06].
Improving
[AK+12, BDN02, FT96, FM92, FBF01,
GA09, IBST01, LYH16, Man99, MEG03,
Nak01, PG01, PAB+14, MCRS10, TO01].
In-Order [KK11]. In-place
[SGLGL+14, SCM05]. In-Situ [RGK99].
IN-Tune [RGK99]. includes [SJ95].
incomplete [HR16]. incompressible
[RM99]. Incorrectly [SL05]. Increasing
[PHCR09]. Incremental
[BFA+15, Caz02, LR95, LB92, BRYG+05].
Independent [EW96, FSS06, USE93a,
KNPS16, MEC94, PG03]. indexing
[MLS15]. induced [MTPT12]. Industrial
[KW17, KOU00]. Industry [DM98].
Industry-Standard [DM98]. inference
[FFLQ08]. inflation [OSSP12]. InfoDock
[AN97a]. Information [BS06, PBR+15,
CML00, KBH+03, RPB+09, SV98].
Informix [Ger95]. Initial [BTE98]. Inline
[GH93, DJLP10, EKKL90].
Inline-Threaded [GH93]. Inlining
[PR98, LQ15]. innovating [JD08].
Innovation [ACM03]. innovations
[ABB+15]. Input [BCG13, MP98, Tan87].
Input-covering [BCG13]. input/output
[MP98]. Insight [IEE02]. Instruction
[DV99, HMNN91, LEL+97a, LEL+97b,
MCFT98, RS08, AMC+03, Aru92, Cho92,
HKN+92, HNN+92, KBF+12, Mis96, OA08a,
OA08b, OA08c, YUP+10, RA93, SD13,
SMS+03, TEE+96, VSS11, VDBN98, VV00].
Instruction-Level
[LEL+97a, LEL+97b, MCFT99, SD13].
instruction-systolic [PPA+13].
instructions [RS07, XMN99].
Integer [GH98], integral [Kuc91].
integrated [CCW+11, MTS10, RD99].
Integrating [Ca00, CM98, DNL00, DTLW16, FKT96, TTY99, Tsa97b].
Integration [BWXF05, KSD04, KASD07, SD13].
integrity [NT14].
Intel [ARB+02, CCW+11, GHG+98, PDP+13, SCD+15].
Intensity [BD06].
Intensive [TKA+01, AAKK08, TKA+02, YSY+09].
Interaction [Hei03, HF96, Pan99].
Interactions [WG94, WSKS97].
Interactive [FURM00c, PTMB09, WOKH96, CSB00, FURM00b, HJT+93, KG07, Lan97, MCS15, Tem97].
Interconnection [NGGA94, RR93, SMK10].
Interface [Chl15a, HBG01, KKDV03, MS89, Met95, PSo1, SW97, Ada98, DLM99, HBGo2, Li05, MQW95, MS87, MEG94, TNP+95, FGT96].
Interfaces [Han97, HF96, LG04].
Interleaving [LGH94, YN09].
Intermediate [McC97a].
Internals [Wea08].
International [ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV+99, Cha05, EV01, Hol12, Hon94, Lak96, LCK11, Wat91, FR95].
Internationalization [Ano98b].
Internet [Ano96, Hig97, SBB96, van95].
Interoperability [DHR+01, Way95].
interplay [MLS15].
Interpretation [GH03, LG04].
interpreter [OCT14].
Interprocedural [NR06].
Interprocess [Rod94].
Interrupts [KE95].
interval [Kub15].
Intra [MKR10].
Intra-application [MKR10].
Introducing [GL07].
Introduction [CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98].
Intrusive [Caz02].
INUX [DNR00].
invasive [RGK99].
Inverse [HMLB16, GEG07].
inverses [GE08].
Invocation [SKK+01].
IPs [Sch17].
IRREGULAR [FR95, TSV12, ZAK01, TP18], irregularly [FR95].
ISA [KTR+04].
Isolating [JW11].
isolation [CMX10, MTC+07, SKBY07].
Isomigration [ABNP00].
ISSAC [ACM94c, Lak96, Wat91].
Issue [KU00, Ano94e, GGB93b, TEE+96].
Issues [GMB03, PS01, ARvW03, Ano06, GC92, HCD+94, IAD+94, TCG95].
Issuing [HMNN91, HKN+92, HNN+92].
Itanium [MB05, WCW+04b, WCW+04c, WCW+04d].
Itanium-2 [WCW+04b, WCW+04c, WCW+04d].
iterations [UZU00].
Iterative [MQ07, Nak03, AAC+15].
iThreads [BFA+15].
IUnknown [SW97].
Ivan [Ano00c].
IXP [ARB+02, LCH+08].
IXP2800 [AHW02].
J.UCS [KU00].
January [ACM94b, ACM95b, ACM98b, Ano90, USE89, USE91b, USE93b, ACM93a].
Japan [Ano91, Ano00a, Ano03].
Java [Chr01, GCRD04].
Java [Ano00c].
Java [AM98a, ACM01, Ano97a, USE01, AFF06, AMD+82].
Java [Ano96, Ano98b, ABH+00, ABH+01, A+01, AG96, ACRO1, ABG+08].
Java [BZ07, Ber96b, BVG97, BAD+09, BR15].
Java [BHK+04, BS00, Bra97, BP05, BLVP04, Cal02].
Java [CV98, CRK97a, CRK97b, CRK+99, CWBH03, CC04, CCH11, Chr01, Coo02].
Java [Cor00, Cri98b, Cri98a].
Java [BTC10, DH98, DRV02, DLZ+13].
Java [DRA96, DHR+01, Dye98, EFN+01, EFN+02].
Java [EFG+03, EQT07, FSS06, FWL03, Fek08].
Java [Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Han96].
Java [Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Hol00, Hyd00, KPPR06].
Java [KBP+03, LB00, LCS04, Lo07, Man96].
MP01, McMM96a, McMM96b, McMM96c, McMM98a, McMM97, McMM96, MC06, NAW06, NM10, NR06, N-ev99, OW97, OW99, PSM01, Java [PSM03, PRB07, Pet03, PUF+04, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP+02, Van97a, Ven97, Ver97, WN10, Yi03, XSaJ08, Xue12, Yan02, van95]. JavaBeans [Van97b]. javar [BVG97]. JavaScript [PM96]. Java-like [DLP99].

K-Java [BR15]. KAI [Ano98b]. Kaikan [Ano99b]. Karlsruhe [RM03]. Kaspersky [Ano00b]. Kendo [OAA09]. Kernel [Alf94, ABL92, Bal02, DNR00, EBG01, EKB+92, Kor98, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95]. Kernel-Based [Alf94]. Kernels [K17, dPRG99, GLC99]. Kiel [Lvh12]. Kikai [Ano00a].

KUMP [NTKA99]. KUMP/ [NTKA99].

L [DNR00, GBB+05]. L2 [SLP08].

L2-miss-driven [SLP08]. Lab [Ano00b]. labeling [D92]. Lafayette [EV01]. Lake [Hol12]. lambda [ORH93]. Laminar [PBR+15, RPB+09]. LAN [Yas95]. LAN/WAN [Yas95]. Landing [TAK+00].

Language [ACM94a, ACM99a, ACMA97, BS06, FLR98, GS06, KIAT99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mi95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06].

Languages [ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM+16, NPT98, OTY00, SCv91a, SS96, TY97, DMBM16, HL93, JP92, JHM04, MSM+10, Sch91, SCv91b, ST98, TAN04].

LAPACK [ARvW03]. Laptops [Ano00c]. Large [AOV+99, CC14, CJW+15, GN92, LA93, BCM+07, Boo93, GOT03, Koo93, SMK10, WC+08].

Large-Scale [CC14, CJ+15, LA93, BCM+07, GOT03, SMK10]. Latencies [Sch17, BS06].

Latency [BD00, Fan93, OCS01, SM96, TAN04]. Latency-Tolerant [OCS01].

Latency-Resistant [YLL16]. latency-sensitive [DC09, DC00].

Latency-Tolerant [OCS01]. lattice [SKG+11].

Lenient [SCv91a, Sch91, SCv91b]. Lepp [RRJ12]. Lepp-bisection [RRJ12].

Lessons [RM03, HPA+15]. Letters [DHR+01, LTA+01].

letting [ACO9]. Level [ABL92, BBC+00, FURM00c, GP95, JYE+16, JLS99, DK02, KUS94, LS11, LEL+97a, LEL+97b, MG99, MR94, PLT+15, RR93, Ric99, Sch17, SLT03, YBL16, BBH+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRR06, HDT+13, JEV04, KDM+98, KVN+09, KCO9, Lan97, LZ07, MSLM91, MT02a, MT02b, MT02c, MQW95, MCFT99, OT95,
OCRSo7, PO03, PO07, QOQ0V+09, STY99, SD13, SLT02, SCZM00, Ten97, WS08, YZY10, YZ14, ZJS+11. Level-2 [Ric99].

Leveraging [PRS14]. LFTHREADS [GP08]. Libraries [Ano00c, BCR01, GF00, Jon91, MM14, ARvW03, CBM10]. Library [Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, WN10, Yas95, Ada98, Boe95, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yan96, Lev97].

light [Way95, LZTZ15]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, CASA14, Hai97a, LVN10, MNN09, MEG94, VACG09, WSKS97, LKBK11]. like [KU17].

light-weight [Way95].

Like [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, CASA14, Hai97a, LVN10, MNN09, MEG94, VACG09, WSKS97, LKBK11]. like [KU17].

library [Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, WN10, Yas95, Ada98, Boe95, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yan96, Lev97].

life [KU17].

light [Way95, LZTZ15].

light-weight [Way95]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, CASA14, Hai97a, LVN10, MNN09, MEG94, VACG09, WSKS97, LKBK11]. like [DNL10, Jon86, Sus99, JVN+09, KVN+09, UZU00].

loop-level [KVN+09]. loops [DNL10, FN17].

Low [An00a, An03, BGH+12, ZHCB15, GPS14, RRP06]. Low-overhead [ZHCB15, RRP06].

Low-Power [An00a, An03, BGH+12]. LPVM [ZG98]. Ltd [Ano00b]. lunch [DTLM14].

Logic-Centric [Bre02]. Logical [CR02].

LOIS [KT17]. longer [XHB06]. Looking [ECX+12]. lookup [KNPS16]. Loop [RLJ+09, SSP99, JMS+10, KVN+09, UZU00].

loop-level [KVN+09]. loops [DNL10, FN17].

Lock [EFJM07, NM10, PGB14, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16]. lock-free [GP08, MLS15, Mic04, ST05].

Lock_manager [Hol98b]. Locking [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16].

Locksmith [PFH06]. LOGFLOW [NTKA99]. Logic [Bre02, KI17, TAN04, BK13].

Locks [ACR01, ALS10, MT93, OCT14].

Loc [Ano00a, An03, BGH+12]. LocManager [Hol98b].

LocK manager [Hol98b].

LocKs [Ano00a, An03, BGH+12].

Loc [Ano00a, An03, BGH+12]. LocManager [Hol98b].

LocKs [ACR01, ALS10, MT93, OCT14].

LocSMITH [PFH06]. LOGFLOW [NTKA99]. Logic [Bre02, KI17, TAN04, BK13].

Limit [KU17]. LIMITS [Way95]. Limits [LB95, LB96b, AAKK08]. Line [An000c, FSPD16, FL02].

Limits [LB95, LB96b, AAKK08]. Line [An000c, FSPD16, FL02].

Linked [KU17].

links [WW96].

LinkScan [Ano00b]. LINQits [CDL13].

Lint [Ano00c, USE01, FKD+97]. M-Machine [FKD+97]. M [An00c, USE01, FKD+97].

M-Machine [FKD+97].

Machine [An00c, USE01, FKD+97]. M-Machine [FKD+97].

Machine [An00c, USE01, FKD+97].

Machines [An00c, USE01, FKD+97].

macromolecular [ABC+15]. Made [Har99].

Magiclock [CC14]. main [AKSD16, BBH+17]. maintenance [TNB+95]. makes [Van97a].

Making [BNL07, LFA96, Lowo0, Pla93, PLT+15, YCW+14].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17]. maintenance [TNB+95]. makes [Van97a].

Making [BNL07, LFA96, Lowo0, Pla93, PLT+15, YCW+14].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].

malloc [Kus15]. Mambo [WZWS08].

MAMPO [GJ11]. managed [WLG+14].

Management [AKSD16, BBH+17].
[ABLL92, GMGZP14, HC17, HRH08, KG94, LG06, LLS06, RSBN01, STY99, ZP11, Bak95a, BM91, DBRD91, HCD+94, ICH+10, Je94, KKH04, RCG+10, SS95]. Manager [An00b, PDMM16, Ply89]. Managing [Blu92, FGKT97, MVY05, PJZA07, SEP96, VS11, ROA14, WSKS97]. MANNA [HMT+96, Sod02]. manual [MS87, PO03]. Many [FMY+15, PVS+17, MLCW11, MPT12, San04]. Many-Core [BMF+16, KS16, BWDZ15, HFV+12]. Maple [YNPP12]. Mapping [CCK+16, LBvH06a, LBvH06b, LBvH06c, NTR16, WK08a, WK08c, WK08b]. Measurements [JFL98]. Measuring [FMY+15, DTLM14]. measuring [FD95, GCC15, WHJ+95]. Mechanisms [KPC96, KC99, SK97, Loe05, Men91, PT03]. Media [An00a, Van97a]. medium [CDD+10]. Meeting [DLM99], meets [Tan95]. Member [BS99]. Memories [HKSL96, KHP+95]. Memory [AJK+12, BS96, BMBW00b, BD00, CH95, DM98, EJ93, EE09a, FMY+15, GMR98, GMGZP14, GH98, HG91, HL07, KZTK15, KZC15, KKH04, KUCT15, LSB15, LB92, LB17, MSM+16, MVZ93, MCT08, Nak01, RCC14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM+08, Thr99, Ver96, WC99, YMR93b, ZLJ16, ATLM+06, AKSD16, AAKK08, BS06, BGDmWH12, BCG+95, BBH+17, BMBW00a, BMBW00c, BDLM07, BA08, BB00, Boo93, BAM07, CMF+13, Cha05, Cho93, CVN+06, DLZ+13, DLO09, DPZ97, EKGL90, EV01, FF10, GCC15, Gle91, GL98a, GS00, GKK09, HK92, HW93, HG92, HHPV15, ISS08, KFG15, Lak01, MLS15, MCRS10, MSM+10, MLC04, MMTW10, MTS10, Mic04, MCT+07, MVY05, NPC06, NAAL01, OCT14, SLT02, TSY99, TSY00, TVD10, TVD14, VTS12, WK08a, WK08b, WK08c, XHB06, YMR93a]. memory [YSY+09, YN09, kSYHX+11, ZKW15, ZHCB15]. memory-intensive [YSY+09]. Memory-level [EE09a]. MemSAT [TVD10]. Merlot [MTN+00]. mesh [ABC+09, Mus09]. mesh-based [Mus09]. Meshes [HBTG98, Lep95]. Message [BWXF05, HLB94, KKD03, PH97, Ada98, BCM+07, DLM99, FM92, Met95, PRS14, SCM05, FGT96, PS01]. message-handling [Met95]. Message-passing [BCM+07, FM92]. messages [Koo93, SD95, WHJ+95]. meta [FKS+12]. meta-scheduler [FKS+12]. Metering [LMA+16]. Method [LHG+16, SKG+11]. Methodology [Sri95]. Methods [CMK00, FGKT97]. Metadata [An00b]. Metro-X [An00b]. Mexico [An094e, Gol94]. MFC [Oni97]. MICE
multimethod

multiple-context [FD96].
multiply

Multithreaded

Multiprogrammed

Multiprogramming

Multitasking

Multithreading

Multithreaded

Multitasking

Multithread-safe

Multithreaded

Multithread

Multithreaded
multithreaded
[FG08, FFY08, Fuj97, GMW09, Gal94].

multithreaded
[GG11, GGB93b, GK05, GPS14, GL98b, GL98a, Gol96, GRS06, GRR06, GA09, GLC99, HMC97, HV+12, HF88, HLB90, Hig97, HMN+92, Hop98, JMS+10, JWG11, JFL98, JSMP12, JSMP13, Joe96, JSB+11, KGP12, KR01a, KR01b, KNPS16, KEB+03, Kub15, Kus15, LLLC15, Lea96, Lei97, Len95, Levi95, Lev97, LLL10, LCH+08, LMC14, LB+98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, M195, M196, Mix94, MC06, MHR10, MQ07, NB12, NR06, Nem00, NPA92, ND96, NZ17, Omm04, Par91, PFV03, PJZ07, Pha91, Ply89, PDP+13, PS03, PS07, P195, PT03, RCG+12, RCM+12, R193, RCG+10, RHH10, REL00a, REL00c, Re95, ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c, SV96a, SV96b, Sch98, SRA06, Sha95a, Sha95b, Sha98, She02, SLG06, SP00b, Shi00, SP05].
Network-I/O [RM03].

Networked [CT00, FGKT97]. Networking [ACM98d, ACM00, Hol12, LCK11, DWYB10].

Networks [IEE95, KLH97, Lu98, RR93, SMK10].

Neumann [HG92]. Neurons [LTM+17].

newly [Ano95a, Ano95b]. NewOS [TLA+02, Gei01]. Newport [USE92b].

News [Bra97, Gar01, Mat97, McM97]. Next [ARB+02, EEL+97, TSV12, CH04].

Next-Generation [EEL+97, TSV12, CH04]. Nexus [FTK96], NFS [Ano95a, Ano95b].

NFV [GDSA+17]. Niagara [KA005].

NLM [Day92a, Day92b]. NLM-Based [Day92a, Day92b]. NoC [YL16]. node [TK98].

Nodes [EHG95]. noise [GA09].

Non [Caz02, Coo95, JLS99, KIAT99, LG17, Man98, MG15, Yoo96a]. non-blocking [Ann96].

Non-Deterministic [LB17]. Non-Intrusive [Caz02]. non-invasive [RGK99].

Non-numeric [SGM+97]. Non-preemptive [JLS99]. Non-Strict [Coo95, Tra91, KIAT99, LG17].

non-uniform [SKG+11]. Nonblocking [HH11]. nondestructive [AD08].

nonterminism [HBCG13]. Nondeterministic [LPS07].

Noninterference [BC02, Smi06]. noninterruptible [AAHF09]. Nonlinear [Nak03, GOT03, Kug15].

November [ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Go94, Ho12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a].

NOWs [SLGZ99]. NP [YZ14]. NPB [EGC02]. NT [Ano98b, Hig97, PG96, Pra95c, Pra95b, TCI98, USE98a, Wil94a, Wil94b, Yam96].

NT-Style [Wil94a, Wil94b]. NUMA [LMC14, ZLW+16]. NUMA-aware [ZLW+16]. number [LSS12, SLF14].

O [RM03, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a]. Object [Ano99, BBD+91, BC94, GKD94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car99a, CLL+02, FWL03, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yan02, db09, vPG03].

Object-Oriented [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ada98, Car99a, CLL+02, FL90, JPS+08, Wei98a, Yan02, db09, vPG03].

Objects [ACR01, CJK95, CR02, Low00, Pra95a, Ric99, Ten02, Yas95, Bak95a, Bri89, DMBM16]. object [Swi09]. Oblivious [UALK17, HL08, HZ12]. Observer [Hol99b].

occupancy [PAB+14]. Ocean [SAC+98].

OCTET [BKC+13]. October [ACM94d, Ano94d, BT01, IEE95]. ODBC [Ano00b, Hig97]. ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [MHG95, AAC+15, DTK+15].

off-chip [DTK+15]. Off-The-Shelf [MHG95]. offS [Par91]. Old [Wi100].

On-Chip [LKBK11, SMK10, TEL95, TEL98a, TEL98b]. On-Line [Ano00c, FSPD16, FdL02]. On-the-fly [Sch89, CWS06, PS03, PS07]. once [Bak95a].

one [QSHI16]. one-sided [QSHI16]. Online [Ger95, OY00, RCC14, Sei98, Sei99, SRA06, TGO99, HF96, LWV+10, RS07, VGO+10a, VGO+10b]. only [MJF+10, NM10, ZJFA09]. onto [LBvH06a, LBvH06b, LBvH06c]. Open [Ano00c, BMF+16, Hai97b, KR01a, KR01b, RBF+89]. Open-Source [Ano00c].

OpenMP [Cha05, ARvW03, BHP+03, BBC+00, Bra97, BMV03, BO01, CRE99, CDK+01, CM98, DM98, HD02, EV01, JYY+03, KKK03, Lu98, MS02, Mar03, MLC04, MPD04, Mat03,
MG15, MM14, Müll03, NAAL01, RBA05, SLGZ99, Thr99, TGBS05, Vre04, RM99.

OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPiton [BMF+16].

OpenSPARC [Wea08]. Operand [SP07]. Operating [ACM94d, CLFL94, TLA+02, Gei01, IEE89, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, BDM98, DBRD91, IEE94d, Jef94, Jen95, LYN10, LAK09, PLY89, RBF+89, REL00a, REL00c, She98, Way95].

operation [RHH10]. Operational [CKRW99, CKRW97a, CKRW97b]. Operations [KKS+08, KLD09, SCL05, HMC95, RD06].

Opportunistic [YL16]. Opportunities [GJ97, HL08, Mus09]. OPR [QSH16].

Optimal [AT16, Lar95, RCM+12, Lep95, LML00]. Optimistic [WHJ+95, CZSB94, VPQ12].

Optimization [BLG01, GN96, RNS96, SYH14, TJY98, TLGM17, WJ12, AMC+03, AMPH90, DZKS12, GOT03, Koo93, RKCW98, Sin99, TO10, ZCSM02a, ZCSM02b].

Optimizations [HYY+15, JSB+12, KET06a, LEL+99, Sant99, ABC+90, JSB+11, OAO8a, OA08b, OA08c, Roh95]. Optimized [Sin97]. Optimizing [DTK+15, KZTK15, PR98, PSC01, WCZ+07, GSO2]. Orange [ACM98a]. Orchestration [GVT+17].

Order [CJ95, RKK11, NV15, SJA12, SW16, ZKW15]. Oregon [ACM94b, ACM99b, IEE93]. Organization [HG91, HG92]. organizing [LAK09].

Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+16, NPT98, SG96, Ad98, Car98a, CLL+02, DWYB10, FL90, HH97, JPS+98, MLC04, Wei98a, WP10, Yan02, dB09, vPG03]. Orlando [ACM94a, ACM98d]. OS/2 [DN94, Kan94, Kel94a, Kel94b, Rei95, Rich1, Rod94]. oscillations [BD06]. OSF [BM91]. OSF/1 [BM91]. Other [SPY+93, MMTW10]. Ottawa [BT01]. Out-of-Core [QOIM+12, ABC+15]. out-of-order [SJA12, SW16]. Outstanding [LSB15].

Overall [SEP96]. Overcome [SW08].

overflow [KOE+06]. Overhead [DSR15, RRPO6, YL16, ZHCB15]. overview [Li05]. Own [BS99, Sho97a, Sho97b]. Oxford [ACM94c].

P [Ano00b, Nik94, PR05]. P-RISC [Nik94].

P-STAT [Ano00b]. P-Thread [PR05].

Pacific [IEE89]. Pacifier [QS94].

Package [Ano94c, FL00, HCM94]. packages [GOT03, OT95, PL03]. Packaging [RR93].

Packard [BLCD97]. Packet [AHW02, LCH+08, MLY05, WCZ+07].

page [CNV+06]. page-based [CNV+06].

Pajé [CDOS01, CSB00]. Palo [ACM01].

panel [Ano94c, Bak95b, HCM94].

Paper [ABH+91, TAK+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKDV03, Cha05]. par-monad [FKS+12].

ParADE [KKH03]. Paradigm [EW96, JD08, LK15, PPA+13, BCG+95].

Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ama89, ABNP00, ACM97, Bau92, BC00, BFA+15, BE13, BBC+05, BTE98, C2Z+17, CL05, CDK+01, CBS+00, D16, Den94, EJ93, FH95a, Gl94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JY15, KTLK13, KI95, KEL+03, Kon00, KKD03, Kwo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, SCV91a, SAC+01, SRR98, WC99, YFF+12, ARW03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BGK94c, CAR08, CFK+91, Cha05, CSM00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fuj97, GC92, Gol97, GKK09, GEG07, GE08, GB99, HMC97].
Parallel [NJ00, NPA92, ODSSP12, RCV+10, RHH10, SBCV90, Sc91, Scv91b, Sg98, SWYC94, ST98, SGS14, Taf13, TCG95, VPQ12, VGK+10a, VGK+10b, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, Fr95, Vre04, Wn10].

Parallel-Multithreaded [WC99].

Parallelism [AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FURM00c, GVT+17, GP95, DK02, LKBB11, LEL+97a, LEL+97b, MG99, MR94, Mr03, MCFT99, NB99, RBA05, SSP99, SMD+10, SG96, Th9r, WS08, YB16, Yoo96b, ALHH08, AKSD16, CSS+91a, CSS+91c, EE99a, FN17, FURM00a, FURM00b, HDR+13, KBBJ12, KMD+98, KV+99, Kc09, LAH+12, QQQV+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDBN98, VV00, We98a, XSaJ08, Yz14, Zg96]. parallelism-aware [Lah12]. parallélisme [Zig96].

Parallelization

[CRE99, Kc09, LVA+13, Rm99, WZWS08, YLSS16, AC99, DC07, JJY+03, PO03, RKM+10a, RKM+10b, RMMJ12, TFG10].

Parallelized [CJ91].

Parallelizing

[BM91, WDC+13, KBF+12]. ParaLog [VGK+10a, VGK+10b].

Parameterized [Bc08, FK12].

Parametric [Ano98b, Ft95].

Paravirtualization [Ys9+09].

PARC [Ong97].

Parsing

[BC00, Lr95, PC+16].

Part [Ano92a, Ano92b, Kr01a, McM98b, Hl98a, Hl98b, Hl98c, Hl99a, Hl99b, McM96b, McM98a].

Partial

[Lc97, RRP06, Sp00b, Sh00, ZK15].

partition [LZW17].

Partitioning

[AMRR98, Coo95, DH92, EW96, TG99, DCK07, LZL+14, MR10, SCG95, WW96].

Partitioning-Independent [EW96].

Pascal [Hay93].

PASCO [Hon94].

Passing

[BWX05, TLA+02, FGT96, KKD03, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14].

Path

[BLG01, TAK+00, CTYP02, WCT98].

Paths [OTY00, Ano95a, Ano95b].

Pattern

[Ano97b, EGP14, Or12, Eg11, GBP+07, SCM05]. Pattern-Based [EGP14, EG11].

Pattern-recognition [Ano97b].

Patterns

[DS16].

PC [Mia90, CFK+91].

PCM [AKSD16].

PCM-based [AKSD16].

PCs [CRE99, NV94].

PDE

[Chr95a, Chr95b, Chr96, JD08].

PDES [LTM+17].

pedagogical [CMS03].

PegasoSoft [An00b].

[NTK99].

C

[BYLN09, ND13, ND16, Puls00].

C-based

[RSt+09].

dynamic [SCB15].

execute

[APX12].

FIFO [HHOM91, HHOM92].

IEEE [ACM98d].

ISCOPE [ACM01].

Linz

[Hon94].

MP [TTY99].

MPI [DLM99].

multi-threaded [Taf13].

Multithreaded

[RCM+16, Cat94].

O [Ano95a, Ano95b].

output

[MP89].

Power [Rkk15].

Reduction

[SW08].

Replay

[Chr01, GCRD04, RD99].

Restart [ZSA13].

run-time [TSY99].

Server

[Day92a, Day92b].

software [LT97].

T2

[We98a].

T

[USE96, USE00b, TLA+02, MKK99].

von

[Hg92].

WAN [Yas95].

Web [Chl15b].

Pennsylvania [ACM96].

Pentium

[RGK99].

Per-node [TK98].

Per-Thread

[Cha02, EE09b].

Perf [FSPD17].

Performance

[ACM98a, ACM98d, ACM00, Aaga89, Aaga91, Aaga92, BS96, BL96, BRM03, BLG01, BNH01, BGH+12, BBSG11, Cal97, CRE99, CCH11, CCK+16, CH95, Ch92, CT00, CSM+05, CB+N00, CMBN08, DWYB10, EGCO2, FT96, FSPD17, FBF1, FURM00c, FGKT97, Gal94, Gar01, GN00, HRH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KS97, KTR+04, LCK11, LG06, Lep95, LMJ14, LH+16, LYH16, Mah13, Man99, Mac96, Msm+16, MPD04, ME17, MKC97, MM14, NCA93, NBS+15, NGGA94, Par91, PH97, PS01, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14].
QSaS++16, RG03, RVOA08, RKK15, SCD++15, TCI98, TT03, Tsa97a, TLGM17, Wei98b, WG99, WWN10, YWJ03, ZL10, ZAK01, Zub02, AAC++15, APX12, AAK08, BDGmWH12, BS10a, BBR09, BMV03, CML00, Car89b, CIM++17, Cho93, Div95, Don92, DKF94, ECX++12, FL90, FM92, Fis97, FURM00a.

Performance

[FURM00b, GS02, GEG07, GLC99, HLB90, ICH++10, Kin94, KLH++99, LB95, LB96b, LB12, LCH++08, LMC14, LBE++98, MLc++09, Mah11, MCRS10, McM97, PJZA07, PGB12, RGK99, SE12, SSK+07, SQP08a, SQP08b, SQP08c, SKP++02, TMC09, TR14, TG09, The95, VV11, Wan94, WCZ++07, WOKH96, YZ07, YM92, ZJS10].

Performance-area [Par91].

Performance-energy [AAC++15].

Performance-Oriented [KS97].

Performance-prediction [BMV03].

Performance/Power [RKK15].

Performance [Ven97].

perils [Dye98].

Perl [TLA+02].

Perl/Tk [TLA+02].

persistance [BHK++04].

personality [CCW++11].

perspective [AG06].

Perspectives [PLT++15].

pessimistic [CZSB16].

Petaloops [SZ02].

Peter [Ano00c].

Petri [KMJC02, MKC97].

PGI [Ano00b].

pH [ACMA97].

Phi [SCD++15].

Philadelphia [ACM96].

Phoenix [ACM03].

Photomosaics [TLA+02].

Phylogenetic [LHG++16, LBH12].

physical [AMPH09].

PIC [BMV03].

PicoServer [KSB++08].

picture [AC09].

Piecing [Ano97b].

Pipelining [GV95, RVOA08].

PIRATE [ICH++10].

Pitfalls [Hol98a, SPY++93, CL00, San04].

place [SCM05, SGLGL++14].

placement [NLK09, TE94a].

Plagiarism [TLZ++17, TLZ++16].

Plan [DLZ++13, Pre90].

PlanICS [NSP++14].

Planning [NSP++14].

plans [GARH14].

plastic [MCS15].

Platform [AB01, AB02, CT00, DTLW16, EEL++97, FSS06, Lam95, MT93, PG03, WCW++04b, WCW++04c, WCW++04d].

Platform-Independent [FSS06].

Platforms

[LS11, PWL++11, CNQ13, LSS12].

PLDI [ACM94a, ACM99a].

Plug [DHR++01].

Plug-in [DHR++01].

plus [Ano95a, Ano95b].

PM [AB02].

PM2 [ABN99, AB01].

Pointer [RR99, SR01a].

pointers [Sim97, WW96].

Points [CC04, CHH++03].

Policies [Eic97, EE09a, KPPF90].

Policy [MNV93].

Polling [Pla02].

Pollution [MPD04].

Polyomavirus [Kuc92, Kic91].

Pool [PSC01, LML00].

Pools [Cal97].

POPL [ACM94b, ACM95b, ACM98b].

Port [Koo93].

Portability [VSM++16, SP05].

Portable [AB01, ABN00, BBFW02, Eng00, KF97, LDT++16, Yas95, CS00, GCRD04, Mix94, MT93, MAAB14, TB97a, TB97b].

Portals [BRM03].

Porting [JJ91, Yam96].

Portland [ACM94b, ACM99b, IEE93].

Ports [Man98, Yam96].

 posixium [USE01].

POSIX

[Ano00c, Alf94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, SP05, dIPRGB99].

POSIX-compliant [SP05].

Post [LB17].

Post-Silicon [LB17].

POT [VSDL16].

Potential [CC14, EGC02, Mou00, DG99].

potentials [ABF++10].

Power [GJ11, AKS06, Ano00a, Ano03, BCZY16, BGG++12, CMBAN08, MB07, MR09, RCC12, RRK11, SYHL14, TLGM17, ECX++12, GW10, MLCW11, Pra95b, Ric91, SQP08a, SQP08b, SQP08c, CMF++13].

Power-aware [MR09].

Power-Constrained [TLGM17, GW10].

Power-Efficient [BCZY16, SQP08a, SQP08b, SQP08c].

Power-Performance [CMBAN08].

POWER5 [BCG++08, MMM++05, KST04, Ano05].

POWER6 [LSF++07].

powered [Rei95].

PowerPC [BEKK00, SBKK99].

PowerRAC [Ano00b].

Practical [HW92, LM14, MNG16, ND16, PBR++15].
LBE+98, Luk01, MN03, MEG03, MTPT12, Mis96, NB12, NZ17, PFV03, PAB+14, RGG+12, RCM+12, RPNT08, SLPO8, SMS+03, URS02b, URS03, ZSB+12, WM03.
processus [Zig96]. Procs [MT93].
Products [Ano97a, Ano00b, Bra97].
Professional [Ano00b]. Profile [BMR94].
profiler [DTLM14]. profiling [DG99].
Program [Chl15a, DSR15, EFN+01, GN96, KKW14, NBM93, PF01, PS01, TSY00, TLZ+17, TJY98, YLLS16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EFN+02, FRT95, JEV04, JPS09]. Programmability [THA+12].
programmable [PYP+10].
programmed [PPA+13]. Programmer [Cro98, Wil00, MS87, San04, Swi09]. Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BTE98, But97, CMK00, CV89, CDK+01, Chl15b, CT00, CW98, DM98, FHM95a, FTP11, HCD+94, Hol89d, Hol98a, Hol98b, Hol98e, Hol99a, Hol99b, ILFO01, KKH03, KSS95, KSS96, KIAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PG99, QOQV+09, QOIM+12, Rod95b, SBB96, TC98, Vre04, Wil97, YFF+12, dPRGB99, van95, ALS10, AR17, AG96, ABG+08, BCHS00, BO96, BLYN09, Bir89, CFK+91, Car89a, CS00, CMS03, Cha05, DSH+10, EVO1, FHM95b, GKY2, Gil94, Go97, GL07, HMC97, Hyd00, JPS+08, JHM04, KIM+03, Kim94, LB98, LP09, Man96, MSM+10, MKIO04, MR98, Mix94, NHFP08, Nev99, NBF98, ND96, PG96, Pra07, RR96, RR03, SKS+92, SV96c, SV96a, SV96b, She98, She02, Sun95, TB97a, TB97b, TAMG03].
programming [Wal00, WCC+07, Yan02].
Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CDA01, Chr01, DRV02, EGP14, FQS02, GKCE17, HLB94, Kri98, LCS04, Lun97, Lun99, MS98, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYHL14, Ste01, TGBS05, Tra91, Vo93, VE93, ABF+10, BRRS10, BK13, BC13, BGC14, Bh95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, C7013, C91, CL00, CLL+02, CVJL08, Cor00, DJL10, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQ505, FF08, GMR09, GRS06, GPR11, HZ12, JPS+08, JWTG11, JFL98, KC09, LQ15, Lea96, LMCL14, LC13, MS03, MS78, MC06, MQ07, NR06, NH09, NSH14, NV15, OiSSP12, PAIS+17, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCG95, SRA06, Sen08, SP0b, Sh00, SP05, SGS14].
Programs [Sto02, Taf13, TR14, TLZ+16, WS06, WTH+12, XSA08, YCW+14, YNP12, ZJS10, ZJS06, dBO9, vPG03].
Progress [FSPD17, TLGM17, ZHCB15].
Progress-Aware [FSPD17]. Progressive [BBdH+11, TGO00]. Project [Ano99].
projection [SSK+07]. Projections [MLR15, MQLR16]. proliferating [Ano94b].
Prolog [EC98, AR17, KA97]. Promises [Gar01]. Proof [Add03, AdBDRS08, FKP15, AdBDRS05, GLPR12]. properties [KTLK13, Van97b]. proposal [GP05].
Proposed [GV95]. protect [San04].
Protein-Protein [BCS11]. Protocol [GRS97, III01, ABN00, KASD07, QSQ14].
Protocols [AB01, AB02, GRR06, TVD14].
Providing [PSM01, PSM03]. proving [Taf13]. Provisioning [BPSS14, FGG14]. pseudorandom [SLF14].
PSO [HH16]. PTF [Yam96]. Pthreads [NBF98, Yam96, LB98, AS14, NBF96].
Publications [Bee98]. Publishing
Purpose
[Ber96b, Hig97].

[Ber96b, HSS+14, Man98, ZSA13, Ber96a, DC99, DC00, HSD+12, SKA01].

Put
[Wal95].

PVM
[DLM99, DPZ97, Pla02, ZG98].

PVM/MPI
[DLM99].

Python
[Swi09, How98, Pul00].

Q
[Ber96b, Cri98a].

Q&A
[Cri98b, Hag02].

QoS
[ICH+10, PSM01].

QR
[Dav96].

quality
[PSM03].

Quantitative
[NM93].

Quasi
[Pla02].

Quasi-
[Pla02].

Queries
[TGO99, TGO00].

query
[Gar12].

QUERYFLEX
[Ano97a].

querying
[HFD96].

Queue
[Cri98b, Cri98a].

queues
[SCM05, ST05].

Queuing
[VK99, KPP+06].

QuickRec
[PP+13].

quicksort
[Mah13].

R3000
[Aru92].

Race
[HM96, KUC715, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EFO97, FF09, HR16, HHPV15, MXN09, NAW06, NA07, PS03, PS07, PFH06, RVS13, WDC+13, XHB06, DWS+1].

race-freeness
[AHK08].

RaceFree
[ZW+13].

Races
[KZC15, FF10, NWT+07, PRB07, PT03, RBK+09].

racy
[SRJ15].

RADISH
[DWS+12].

Ramada
[Ano94d].

Ramada-Congress
[Ano94d].

random
[LSM05, STO5].

random-number
[LSS12, Sen08].

Randomized
[Sei98, Sei99, PSM01].

Rank
[AJK+12, Dav11].

rank-revealing
[Dav11].

Ranking
[DV99, VV00].

ray
[Tod95].

RCDC
[DBN+12].

RCU
[CKZ12].

Reachability
[LCS04, LQ15].

reachability-modulo-theories
[LQ15].

Reactions
[LT+17].

Reactive
[LH12].

Reactivity
[BDN02].

read-only
[NM10].

ready
[Ano92b].

Real
[BC94, IEE94a, IEE94d, JLS99, Kim14, KBP+03, MN00, PUF+04, PSC01, SZ91, SDF+12, Teta94, WFG+14, dIPRMB99, CZWC13, CMX10, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b].

Redundant
[CKK+16, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14].

ReEnact
[PT03].

Reentrant
[AdMdBDS02].

Refactoring
[Ten02].

Reference
[Rec98, Sch14, KOE+06].

Reference-Counting
[Rec98].

renaming
[PP+11, KPP+06, K116].

Reflection
[OT95, BAK95a].

region
[KBF+12].

region-based
[KBF+12].

regions
[PS14].

Register
[GJT+12, LPE+99, RJK11, W993, CCO12, HKT93, SLP08, kSYH+11, ZP04].
regulated [XHB06]. Relabeling [HH11].
related [Bar09, RD06, TLZ+16], relational [HB15]. relative [Bet73]. Relatively [NV15], relaxed [BAM07, DNB+12, HT14, SQS14, KZW15].
relaxed-consistency [HT14, SQS14].
Relaxing [CZS+17]. RelaxReplay [HT14].
Reliability
[CCS+16, OL02a, OL02b, OL02c]. Reliable [KS16, NBS+15, RG03, YZYL07, YCW+14].
relocation [WW93]. remains [Ano94b].
remedies [ALW+15], remote [TK98, ZLW+16]. Replay [UALK17, HDT+13, HT14, LVN10, LWV+10, LZTZ15, NWT+07, PDP+13, SQS14, QSH16].
Replaying [MCT08]. Replica [AT16].
Replication [AKP99, BK06, VACG09].
Replication-Based [AKP99]. request [Sch98]. Requirements [PCPS15, GL98a]. rescue [SLP+09].
Research
[BMF+16, USE01, AG06, RPNT08]. réseau [Swi09]. Resistance [Gar01]. Resistant [YLLS16]. resize [Mit96]. resolution [Evr01].
Resource [HC17, LG06, LHG+16, SBN01, YSS+17, CY09, HCD+94, VS11].
Resource-Efficient [LHG+16]. Resources [LSB15, RGG+12, ZSB+12].
Respect [LVW+10]. Response [BBC+00, Smi01]. responses [BS06]. Responsive [SU+12]. Restore [Ano00b]. restricted [AB+08].
restructuring [BVG97]. Results [GV95, GR06]. Retentive [RRK11].
Rethinking [Xue12, Len95]. retrieval [CML00]. Retrospective [TEL98a].
Reusable [Han97]. Reuse [BCZY16, KZTK15, JSB+11, NAAL01, PHCR09].
revealing [Dav11]. Reverse [Coo02, LSB15, WCV+98]. Review [Lar97, Van97a, Vre04]. Reviews [Bra97].
Revised [Cha05]. revisionist [PT91].
Reviving [TLZ+17]. revolutions [ECX+12]. Rewriting [BGK94a, BGK94b].
RHEED [BD06]. RISC [Cho92, GV95].
Rogue [Ano00b]. Role [BC94, KZTK15].
rollback [YZYL07]. root [CMX10]. Ropes [HMC95].
Row [KZTK15]. RP3 [CJ91].
RPC [Tod95]. RPython [MRG17]. RToss [IEE94a, IEE94d].
Ruby [OCT14]. rules [GLPR12]. Run [EJ93, LFA96, SS96, Pra95c, Swe07, TNB+95].
Run-Time [EJ93, LFA96, SS96, TNB+95]. running [Cal02, MLCW11, SSN10]. runs [Hig97].
Runtime [ABN99, ABNP00, ABH+00, ABN00, BJK+96, BMN99].
CZS+17, DNR00, FSS06, KPC96, NPT98, NS97, QOIM+12, SSP99, WS06, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EQUIT07, Gol97, Ong97, TSY00, TAMAGO3].
runtimes [RL14]. Russians [KNPS16].
SAC [GS06]. Safe [BCL+98, Kle00, Low00, NH09, Pla02, AFD06, BYLN09, DMBM16, Fek08, GCC99, GOT03, Gro03, NHFP08, Nev99, Rin99].
Safe-for-Space [BCL+98]. Safety [Hag02, Pla98, Ric99, VS11].
San [ACM93b, ACM94d, ACM95b, ACM98b, USE98, USE92a, USE93b, USE98b, USE00a, USE02].
Sampled [JYE+16]. sampling [MMN09].
San [ACM93b, ACM94d, ACM95b, ACM98b, USE98, USE92a, USE93b, USE98b, USE00a, USE02].
SC2000 [ACM00]. SC2002 [IEE02].
Scalability [CCH11, GVT+17, Nak01].
BWDZ15, DSEE13, RVOA08, VIA+05].
Scalability-Aware [GVT+17]. Scalable
[BMBW00b, CC14, CH04, CKZ12, IEE94b, KUCT15, LMJ14, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, L07, Mao96, PWD+12, SCZM00], scalar [GL98b, ZCSM02a, ZCSM02b]. Scale [CC14, CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, G0703, SMK10, KBA08]. Scale-out [HC17, AR17, ECX+12, KTLK13, SW16]. Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RVR04]. Schedulability [Kim14]. Schedulability-Aware [Kim14]. Schedule [MQLR16, MLR15, NAAL01, WTH+12]. Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSaS+16, SEP96, BDF98, SL09]. Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12]. schedulers [NBMM12]. schedules [BCG13]. Scheduling [BL94, BL98, BL99, FS96, FSPD16, GRS06, JLS99, KLD09, NB99, PEA+96, PM14, RS08, SLG04, YW03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSP12, KKJ+13, KBB+03, Mis06, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA13, SCCP13, SLG06, ST00a, TAS07, WLI+95, ZSB+12]. Scheme [ABN99, PJ15, SKKC09]. Schur [YFF+12]. Science [Gol94]. Scientific [CMB08, HLB94, WN10, BT01, BD06, Dan09, NJ00, Bra97]. scoring [TO10]. Scotland [AOV+99]. Scriptics [Ano00b]. Scripting [RBPM00]. Scripts [TLA+02]. Seamless [CV98]. Search [AMMR98, BCC010, LAH+12, Mah11]. searches [TC95]. Seattle [ACM93c, IEE94a, IEE94d, LCK11, USE98a]. sec [AHW02]. Second [IEE98, IEE96, FR95]. Section [DSR15, CS12, DTLM14, SMQP09, YL16]. Section-Based [DSR15]. sections [NM10].
EV01, Gle91, Jef94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, ZSB+12, dB09, Cha05.

Shared-Memory
[BS96, DM98, E93, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN09].

shared-variable [dB09]. **Sharing** [CLFL94, CB16, LDL17, RKK15, SP00a, Wei98b, ZJS12, AGBE08, AGN09, LTHB14, Sam99, SS95, TES94, TE97, Ver96, VPO12, ZJS10].

sharing-aware [TAS07]. **sharing-based** [TE94a].

Shelf [MHG95]. **shell** [Ric91].

Shift [Ham96], **Shinko** [Ano00a], **Shop** [Bec00]. **short** [CPT08, Lie94]. **shortage** [Ano94b]. **Should** [EHP+07]. **SICStus** [EC98]. **side** [MMTW10, SBB96]. **sided** [QSHI16]. **SIGACT** [ACM93a, ACM94b, ACM95b, ACM98b].

SIGCOMM [RM03]. **Signal** [Eng00, BM91]. **Signals** [GRR06].

Significance [ZJS12]. **SIGPLAN** [ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99b].

SIGPLAN-SIGACT [ACM93a, ACM94b, ACM95b, ACM98b].

Silicon [LB17, THA+12]. **SIMD** [FSYA09, SW08]. **Simple** [AKS06, Ch15b, WSO8, BDLM07, CL00, MSM+10].

SimpleGraphics [MKK99]. **simplify** [PO03]. **Simplifying** [Pom98]. **simulate** [MAG+09].

Simulation [For97, GV95, HPB11, JYE+16, MPD04, VTSM12, WG94, ANO97b, BHH+17, KBF+12, Leg01, Lep95, MHW02, SWYC94, Srf93].

Simulations [HEMK17, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12].

Simulator [SRS98, PWD+12, TSH99, WZW08, Nak03].

Simulink [HY+15]. **Simultaneous** [Ano05, CSK99, EEL+97, GSL10, HMMN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LIRZ16, MCF99, REL00b, SP07, SLG04, SU01, ST00c, TEL5, Tu96, TEL98b, WS08, YG10, ABC+09, AAK08, ABB+15, CCC12, EE90a, Fis97, HKN+92, HNN+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHC09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TSCH99, TEE+96, VPOC02, TEL98a].

Single [CLFL94, Dub95, EHP+07, FT96, HOM91, KTR+04, MTN+00, CSM+05, MLC+09, Pra95c, VIA+05, YZ07, YSY+09].

Single-Address-Space [CLFL94].

single-and [YSY+09]. **Single-Chip** [HHOM91, MTN+00]. **Single-ISA** [KTR+04].

Single-Process [FT96].

Single-program [Dub95]. **single-thread** [HE97]. **Simulations** [HEMK17, LS11, SCD+15, ABC+09, AAKK08, ABB+15, CCC12, EE90a, Fis97, HKN+92, HNN+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHC09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TSCH99, TEE+96, VPOC02, TEL98a].

Significance [ZJS12]. **Signal** [Eng00, BM91]. **Signals** [GRR06].

Smalltalk [Bri89].

Smalltalk-80 [Bri89].

small [Koo93, MM07].

Software [An97a, An98b, An99, An00b, BCR01, BCG+08, Gar01, Gon90, GJ91, H092, Han97, HSS+14, IE94a, KE15, LPE+99, PJS15, SZM+13, SD13, TLZ+17, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPK07, GLPR12, Hai97a, HSS+12, IE94d, KKH04, KSD04, KASD07, Luk01, MWP07, MCRS07, MGL95, MEG03, NHFP08, OA09, OL02a, OL02b, OLO2c, RKM+10a, RKM+10b, RVO08, San04].

Software [An97a, An98b, An99, An00b, BCR01, BCG+08, Gar01, Gon90, GJ91, H092, Han97, HSS+14, IE94a, KE15, LPE+99, PJS15, SZM+13, SD13, TLZ+17, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPK07, GLPR12, Hai97a, HSS+12, IE94d, KKH04, KSD04, KASD07, Luk01, MWP07, MCRS07, MGL95, MEG03, NHFP08, OA09, OL02a, OL02b, OLO2c, RKM+10a, RKM+10b, RVO08, San04].
Structurally \cite{CKRW99}, structure \cite{BB00, YKL13}. Structured \cite{TCI98, FR95}. Structures \cite{RCRH95, AGN09, Gol97, ND13}. students \cite{Fek08}. Study \cite{AGK96, Chl15a, EGC02, HMT+96, Sat02, TAK+00, VK99, WG94, YMR93b, Bri89, CASA14, CL00, Fis97, HJT+93, HF96, KPP+06, MGL95, SP05, Sod02, Tsa97a, YM92, YMR93a}.

Style \cite{Wil94a, Wil94b} subdivision \cite{MTS10}. subordinate \cite{CSK+99, CTYP02}. Subsetting \cite{AJK+12}. Substrate \cite{ACMA97, Hai97a, JP92}. Subsumption \cite{Man91}. Sux \cite{OR12, LHS16}. SugarCubes \cite{BS00}. Suite \cite{BTE98, BO01, TG09}. Suites \cite{SPDLK+17}. SuiteSparseQR \cite{Dav11}. sum \cite{TDW03}. summary \cite{I+94}. Summer \cite{Ano94f, USE92a}. Sun \cite{McM97}. SunOS \cite{Cat94, PKB+91}. Supercomputer \cite{VTSM12, Gil94}. Supercomputing \cite{ACM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c}. SuperLU \cite{Li05}. SuperMalloc \cite{Kus15}. Superscalar \cite{SU96, Div95, Fin97, Gil95, Loi95, Men91}. Superthreading \cite{TSa97b}. Support \cite{ACM94d, ABLI92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KC99, ME15, MS89, NS97, PTMB09, SSP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CKD94, CHH+03, CSS+91a, CSS+91c, Evr91, Fan93, HMC95, MW07, MEG03, MS87, Men91, TSY99, TSY00, TNB+95, WK08a, WK08b, WK08c}. Supported \cite{AddS03, ZP11}. Supporting \cite{RCRH95, Sam99, SP00a, DC99, DC00, TDW03}. suppression \cite{JWTG11}. surgery \cite{MCS15}. Surprises \cite{BC98}. Survey \cite{Man96, ZSB+12, Cat94, URš02b, URš03}. Survival \cite{Ano99}. Surviving \cite{Ano99}. SVR4 \cite{SPY+93}. swap \cite{MLS15}. Swing \cite{Gea98}. Switch \cite{GN00, Eic97, GWM07}. Switzerland \cite{Lak96}. Sy \cite{USE01}. Symantec \cite{Rod95a}. symbiosis \cite{Bri89, EE10, EE12}. Symbiotic \cite{ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91}. Synapsys \cite{Col90a}.

Synchronization \cite{Bec01, Hei03, LA93, Rec98, DHM+12, DESE13, MT02a, MT02b, MT02c, MTPT12, NLK09, PRS14, RD06, Ven97}. synchronization-induced \cite{MTPT12}. synchronization-related \cite{RD06}. Synchronizing \cite{McM96a, McM96b, CZWC13}.

Synchronous \cite{BM07, HPB11}. syntax \cite{KT17}. Synthesis \cite{FN17, HB15, MP89, SR14, STR16}. Synthesizing \cite{GLPR12, Kim14, SRJ15}. synthetic \cite{GJ11}. System \cite{AddS03, ÁDbdRS08, AJK+12, Ano98a, Ano00b, ABN99, ABH+00, BMR94, BBD+91, BJK+96, BTE98, CLFL94, DNR00, FG91, Gei01, HMT+96, KMA01, KS97, MS89, NPT98, PH97, PST+92, Pea92, PLT+15, QOIM+12, REL00b, SEP96, S93, SG96, TCI98, VSM+08, Yam96, ÁDbdRS05, AAC+15, Ano96, Ano97b, A+01, AR17, BBFW03, BDM98, BCHS00, BAD+10a, BAD+10b, BJK+95, BAD+09, BLC07, Cat94, Gil88, Hig97, Joe96, Lan02, MHW02, MS87, Met95, MTC+07, MC06, OCR07, PRB07, Ply89, Pom98, REL00a, REL00c, RD99, She02, TKA+02, TLZ+16, TMAG03, WCC+07, WZWS08, TLA+02, EKB+92, MS87, Pea92}. System- \cite{PLT+15}.
system-level [OCRS07]. systematic [MQ07]. SystemC [RSB+09]. SystemC/C [RSB+09]. SystemC/C-based [RSB+09].

Systems

[ACM94d, AG06, Ano00b, ABN00, BMN99, Bre02, BC94, CCH11, Dru95, FMY '15, FGKT97, GH '98, GJ97, HRH08, HKSL96, IEE89, IE94a, KR12, KKH03, KG05, KUCT15, KW17, LLS06, LMA '16, LYH16, MS15, PGB16, RW97, RR03, SUF+12, SS96, USE92b, Wal95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB10, DZKS12, DSH+10, DBRD91, GJ11, Go96, GKK99, HJT+03, Hop98, HWW93, HBCG13, IEE94d, ISS98, A00c, JH90, JF94, Jen95, KKH04, Kub15, LVN10, LLLC15, Leg01, LAK09, LVA '13, MLC+09, MGL95, MM07, NFBB17, PBDO92, RCV '10, RBF+89, RS90, RV04, SCCP13, She98, SP05, Sim97, SJ92a, SJ92b, ST05, We98a, WCV '98, Ano98b].

systolic [PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1 [Wea08]. T1/T2 [Wea08]. Table [VB00, KNPS16]. tabling [AR17]. Tabu [AMRR98]. taint [ZJS+11]. TaintEraser [ZJS+11]. Take [Wei97]. taking [Ano92b]. Talking [Ano94c, HCM94]. TAM [CGSV93]. Taming [Hol00, HBCG13, HHPV15]. TapeWare [Ano00b]. targeting [LGH94]. Task [CCK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG '08, CASA14, DCK07, OdSSP12, RCM+12]. Task-Level [GP95].

tasking [Di093, KR01a]. Tasks [Fin95, PVS '17, YSS+17, FGG14].

Taxonomy [HM96, SP96]. TC2 [BT01].

TC2/WG2.5 [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, Ama98, MKK99, SBB96]. Tcl-based [Ama98]. Tcl/2k [USE00b].

Tcl/Tk [USE96, USE00b, MKK99]. Tcl/Tk [Ass96, USE98b]. TCP [Ano00c, Ano00c].

Teaching [Fek08, CS00, She02].

TeamWork [CZWC13]. Tech [Ano97b, Gar01]. Technical [USE00a, Cat94]. Technique [JSB+12, KG94, Lem02, ÖCS01, PGB16, JSB+11, JPSN09, LHG94, RS07, UZU00, VACG09, WCV '98]. Techniques [DS16, EKJ10, GS02, Han97, NKL09, PWL '11, TGBS05, ZG96, BR92, GEG07, OCRS07, Pra97, RCG+10, SV96c, SV96a, SV96b, ZSB+12].

Technologies [Ano00b, Ano98b]. Technology [Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b]. TeleNotes [WSKS97].

temperature [CCC12]. Template [Cal00, How98]. Ten [Ano99]. Tennessee [IEE94b]. Tera [BTE98, Mat97]. Terabytes [IEE02]. Term [BGK94a, BGK94b, BGK96].

termination [TDW03]. Test [Ama98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14]. test-case [KI16]. Testing [BBdH+11, Goe01, LCS04, RCC14, CRM10, EFG+03, EHSU07, MQ07, Sen08, YNPP12].

tests [SRJ15]. Texas [USE92a, USE00b].

TFlux [DTLW16]. tgMC [LHG+16]. Their [YWJ03, Gil94]. them [Ano92a, Ano94b].

Theoretic [ES97]. theories [LQ15].

Theory [ACM93b, LDL17, NFBB17, WLK+09].

there [Ano94b]. thermal [WA08]. though [Ano94b].

Thread [Ano00c, ABN99, ABP00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, Col90a, DSR15, DGK '03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT '12, GP05, GBCS07, Hag02, Hei03, HG91, ISS98, KG05, Kim14, Kle00, KBH '03, KBH '04a, KBH '04b, LL10, LHY16, LEL+97a, LEL+97b, Low00, LL17, Man99, MG99, MTN+00, MB05, MCF99, ND96, Pan99, PR05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV '10, RCM+16, RCG+10, Rec98, Ric99, Rin99, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97,
SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BKC+13, BHK+04, BC02, CZSB16, CSM+05, DMBM16, DG99, DWYB10, Don92, DBRD91, Ei97, EE09b, Fek08, GP08, GOT03, GLC99, Hyd00, JEV04, KDM+98, KC09, KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZL+14, Loe05, MLC+09, MT02a, MT02b, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOQOV+09, SKG+11, Sha95b, SLG06, SP00b, Shi00, SPH96, SS95, SD13, SLT02, Stä05, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02.

Thread-Aware [LYH16]. **Thread-Based** [KG05, CNQ13, SKS+92]. **Thread-Level** [LEL+97a, LEL+97b, MG99, YBL16, FURM00a, FURM00b, MCFT99, WS08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QOQOV+09, SCZM00, YZ14]. **Thread-Local** [DKG+03, Whi03].

Thread-management [RCG+10]. **Thread-modular** [GBCS07]. **Thread-Private** [Man99]. **thread-related** [TLZ+16]. **Thread-Safe** [Kle00, Pla02, Rin99, DMBM16, Fek08, GOT03]. **Thread-Sensitive** [CC04]. **Thread-Specific** [Ste01, SP00b, Shi00].

thread-switch [Eic97]. **threadbare** [Bak95b]. **Threaded** [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CR96a, Coo95, CSS+01b, DV99, EH95, EHP+07, Fdl02, GH03, GVT+17, GK94, GI93, III+01, YJ15, Jon91, KW17, Kri98, Kuc92, KI98, MB98, MG99, MS03, MKK99, OA08a, OA08b, OA08c, PYP+10, PR98, Pra95c, RCV+10, RK+10a, RK+10b, RBPM00, RGK99, RS08, SCB15, Stä99, SS95, SD13, SLT02, Ste05, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02].

Thread-Aware [LYH16]. **Thread-Based** [KG05, CNQ13, SKS+92]. **Thread-Level** [LEL+97a, LEL+97b, MG99, YBL16, FURM00a, FURM00b, MCFT99, WS08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QOQOV+09, SCZM00, YZ14]. **Thread-Local** [DKG+03, Whi03].

Thread-management [RCG+10]. **Thread-modular** [GBCS07]. **Thread-Private** [Man99]. **thread-related** [TLZ+16]. **Thread-Safe** [Kle00, Pla02, Rin99, DMBM16, Fek08, GOT03]. **Thread-Sensitive** [CC04]. **Thread-Specific** [Ste01, SP00b, Shi00].

thread-switch [Eic97]. **threadbare** [Bak95b]. **Threaded** [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CR96a, Coo95, CSS+01b, DV99, EH95, EHP+07, Fdl02, GH03, GVT+17, GK94, GI93, III+01, YJ15, Jon91, KW17, Kri98, Kuc92, KI98, MB98, MG99, MS03, MKK99, OA08a, OA08b, OA08c, PYP+10, PR98, Pra95c, RCV+10, RK+10a, RK+10b, RBPM00, RGK99, RS08, SCB15, Stä99, SS95, SD13, SLT02, Ste05, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02].
LZ07, MSLM91, MR98, MQW95, McM96a, McM96b, McM98a, McM98b, Men91.

threads [Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, PSM03, Pan99, PG93, PL03, RR03, Sch91, SCG95, SZG91, SZ92, SCM05, SKP+02, TAN04, WCW+04b, WCW+04c, Wei98a, WC9+98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a]. Threads.h
[An00b, TB97a, TB97b]. ThreadScope
[WT10]. Three [YM99b, YMR93a]. Throttling
[LG06]. Throttling-Based
[LG06]. Throughput
[AF96a, USE98b]. Tighty
[MTN+00, LVTZ15]. TileDB
[PDMM16]. Tiles [QOIM+12]. Time
[BC94, CCM+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSCS01, SUF+12, SS96, Tet94, dPRGB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBP+03, KASD07, KBF+12, MK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJB92a, SJB92b, TSY99, TN+95].
time
[KASD07]. time-critical [RG99]. time-efficient [Jef94].
time-elicited
[N99]. Timers
[Hol99a, GRR06]. Timemthread [BC94]. Timemthread-Role
[BC94]. Timing
[SK07, MWH02]. timing-first
[MWH02]. tiny
[Xue12]. Tip
[Pet00]. Tips
[Mit96, Pet00]. Tk
[Ass96, USE98b]. together
[An97b, Pol90].

Tokyo
[An90a].
tolerance
[MTS10, PG01, RR06]. Tolerant
[ÖCS10].

Tolerating
[Luk01, RBK+09, SKK+01].

Tool
[AddS03, An98b, Ge01, Kor89, TAM+08, CMS03, CSB00, HG97, LMC14, RGG99, YNP12].

Tool-Supported
[AddS03].

Toolbox
[Bra97].

Toolkit
[SM+13].

Tools
[An98b, Cha05, EV01, WWW+02, EHSU07, Len95].

Tools.h
[An00b].

Toolset
[An97a].

Top
[An99, AB02, DNR00].

Topaz
[MS87].

topics
[BGG95, GBG95].

Toroidal
[KEL+03].

Totally
[DHR+01].

Trace
[RS08, HJ09].

Trace-based
[RS08].

Traces
[HEMK17, HR16].

Tracing
[Lem02, EKL90, Tod95].

Tracking
[CZS+17, LH09, CZS+16, ZJS+11].

trade
[AAC+15, Par91, KUCT15].

trade-off
[AAC+15].

trade-offs
[Par91].

tradeoffs
[Aga89, Aga91, Aga92, Am96, PJZA07].

training
[MCS15].

Tranquilizer
[PG12].

Transaction
[RW97, SS91, EQT07, Ver96].

transaction-aware
[EQT07].

Transactiona[GMZG14, KUCT15, RG03, VSDL16, ZLJ16, ATL+06, BDL07, CMF+13, CNT+06, GCC15, MSL15, MCRS10, MMT10, MTC+07, OCT14, VSTL12, ZHCB15].

Transactions
[An00c, DTLW16, SKBY07, BD06, Dan09, KR01a, KR01b, KGGK09, RKM+10a, RKM+10b].

Transform
[HN91, LHS16, TKHG04, TT03, TTKG02].

transformation
[SY10].

transformations
[AC09, D'92, JMS+10, VV11].

Transient
[R00, VPC02].

Transient-fault
[VPC02].

Transitive
[YM99b, XHB06, YM92, YMR93a].

translation
[KBF+12].

translator
[TJY+11].

Transparency
[GKCE17, KBH+03].

Transparent
[ABN99, IVN10, SLGZ99, ZSA13].

Transparency
[CB16, JSB+12].

Transport
[GRS97].

transposition
[SGLG+14].

trap
[Ram94, GRS97].

trap-based
[Ram94].

Tree
[Pla99, BCCO10].

trees
[AD08, CKZ12].

Trends
[Gar01].

TRI
[ACM93c].

TRI-Ada
[ACM93c].

Trick
[Eng00].

Tridia
[An00b].

tridiagonal
[ZCO10].

trigger
[Kho97].

Triggered
[PPA+13].

Troy
[SS96].

TSO
[HII16].

Tumbler
[PGB16].

Tune
[RGK99].

tuned
[Ano95a, An95b, Kub15].

Tuning
[Don02].

Tutoria[BF13].

Tunnelling
[Don02].

Twentieth
[AOV99, ACM93a].

Twenty
[AOV+99, ACM93b].

Twenty-fifth
[AOV99, ACM93b].

Two
[BBB+17, CM98, JYE+16, STY99, GLC99].
Two-Level [JYE+16, BBH+17, STY99].

TX [Cha05, ACM00, USE91b]. **TxRace** [ZLJ16]. **Type** [Gro03, VGR06, BAD+09, GE08, Lan02, Mi95, PRB07].

type-checking [Mil95]. **Type-safe** [Gro03].

typed [DMBM16]. **Types** [AFF06, FFLQ08, Ten98, BAM07, KS93, VGR06].

typings [Smi06].

UCITA [Gar01]. **UK** [AOV+99]. **ULT** [PG03]. **Ultra** [PWL+11]. **Ultra-Scale** [PWL+11]. **Unbounded** [CNV+06, FKP15, BDLM07]. **uncommon** [BDLM07].

Uncover [WS08]. **underdetermined** [Kub15].

Undergraduate [BLPV04]. **Understandable** [MSM+16].

Understanding [BZ07, TLA+02, EPAG16, RRP06].

Undocumented [SW97]. **Unfoldings** [SPDLK+17].

Unify [DSR15].

unimodular [D'H92].

unintrusive [HDT+13].

unix [CBM10, Par91, PAB+14]. **United** [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, TNB+95, YZYL07].

User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07].

User-Space [Eng90, GRS97].

Utility-based [JSMP13].

Utilizing [ES97].

UX [Ano95a, Ano95b, Yam96].

value [DG99, TFG10, ZCSM02a, ZCSM02b].

variable [Evr01, dB09]. **Variables** [Hol98c, Whi03, Bak95a].

variation [PGB12].

Vector [Goo97, HHOM91, HHOM92].

V [EKB+92, Pea92, FG91, PST+92].

v1.0 [Ano00b]. **Validating** [LB17]. **Validation** [BMV03, LB17, SCB15]. **value** [DG99, TFG10, ZCSM02a, ZCSM02b].

variable [Evr01, dB09]. **Variables** [Hol98c, Whi03, Bak95a].

variation [PGB12].

variety [CML00]. **VAX** [Gil88].
KBH+04a, KBH+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08.
Vector-Processor [HHOM91, HHOM92].
Vector-Thread
[KBH+04a, KBH+04b, KBA08].
vectorization [cC91, JMS+10, RKHT17].
vectorized [TP18]. vectors [KTK12].
Velodrome [FFY08]. Verification
[AMdBdRS02, BCR01, Chl15a, DRV02, EGP14, FK12, KKW14, BK13, CASA14. DC07, EG11, FFQS05, NSH14, Sta05].
verifiers [GLPR12]. Verifying
[GMR09, RKCW98, GPR11]. version
[NHFPO8, TV10]. version-consistent
[NHFP08]. versions [BD06]. Versus
[NSP+14, Ann96, Yam96, dIPR999]. Very
[AV+99, Pet03]. VI [ACM94d, Ano03] via
[BCZY16, FBF01, Hig97, KRB12, KGP12, Kim14, LWV+10, LZTZ15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97].
Video [BC00]. view [KTLK13, PT91].
Vina [TO10]. Virtual
[BSSS14, BBM90, KG05, KKDV03, PRB07, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization
[LRZ16, YSS+17, ABB+15]. Virtually
viscous [RM99]. Visual
[PTMB09, Dil93, MCM96c, Esp96, Nag01]. Visualization
[Ano97a, ACR01, Cal02, Caz02, BCS00, CBB00, MKK99, NCA93]. Visualizing
[CdOS01, WT10, DSEE13]. Visually
[Dru95]. VLW
[For97, GSL10, OCS01]. VLSI
[ABC+93]. VM [FGG14]. VMs
[KKJ+13], voltage
[MTPT12]. volumes [Koo93]. VRSync
[MTPT12]. vs
[EHP+07, MMITW10, MCFT99, SKP+07, SKP+02]. vulnerability
[SSN10, WHG07].
WA [LCK11, ACM93c, IEE94a, IEE94d].
Wabi [Ano97a]. Waiting
[LA93]. Waits
[Hov00]. Wanted [Ano94g]. Warnings
[CJW+15]. warp
[FSYA09, MTS10, Rei95, Tam95]. was
[San04]. Washington
[ACM92, Ano90, IEE94c, USE98a]. Watch
[Ano97b]. water
[LVA+13]. Wave
[Ano00b, BBC+00, LS07]. wavelet
[TKHG04]. Way
[KAO05, MTN+00, Rin99, ZFA09, FGT96].
Ways
[Wei97]. Weak [KZC15, TVD14].
Weaving
[Pra95b]. Web
[Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay
[Zha00]. WebThreads
[Ano97a]. week
[Ano95a, Ano95b]. weeks
[But14]. weight
[Way95]. weighted
[HFV+12]. weighting
[VS11]. Weightless
[SPY+93]. Weld
[OCS01]. well
[Kub15]. well-determined
[Kub15]. West
[EV01]. WG2.5
[BT01]. Wheeler
[LHS16, NTR16]. Where
[EHP+07]. Whole
[GN96, BMM09]. Whole-Program
[GN96]. Wide
[Ano94d, Ano96, FGT96]. wide-area
[FGT96]. Widening
[KK14]. will
[Ano95a, Ano95b]. WiMAX
[CDD+10]. Win32
[Bec01, BW97, CW98, Har99, How00, Lar97, PG99]. window
[VS11]. Windows
[USE98a, HKT93, YZYL07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter
[Ano90, USE89, USE91b, USE93b]. Wired
[DHR+01]. Within
[BP05]. without
[Gus05, LZW14, Pla02]. woes
[Ver97]. WOMPAT
[Cha05, EV01]. Work
[Ber96a, Wal95, ALHH08, Ber96a, BL94, BL99, Lep95, ODSS12, RL14]. work-optimal
[LeP95]. work-stealing
[ALHH08, RL14]. worker
[SCM05]. workflows
[FGG14]. Working
[BT01]. Workload
[KTR+04, SSYG97, LBE+98]. Workloads
[GVT+17, KML04, LYH16, RCC12, CML00, SQP08a, SQP08b, SQP08c, WA08].
REFERENCES

WorkPlace [Bra97]. works [Hig97, San04].
Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IEE89, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation [Ano00b, HN91, IEE89]. Workstations [KLH97, Lu98, LGH94, RGK99, PH97]. World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLG+14]. World-wide [Ano96]. Wrapper [AS14]. Wrappers [Hub01]. Write [Sho97a, Sho97b]. Writer [Ano97a]. written [ND13]. WWOS [IEE89]. WWOS-2 [IEE89].

Year [Ano99]. Yokohama [Ano03]. York [IEE90]. Yosemite [Ano00b].

z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

Antoniou:2001:HSC

Aliaga:2015:UPE

Alverson:1992:EHP

Amamiya:2009:CBN

REFERENCES

Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith Mcguigan, and Raymond Namyst. Implementing Java consistency using a generic, multithreaded DSM runtime system. *Lec-
Antoniou:2001:CMJ

[ABH+01]

Anderson:1992:SAE

[ABLL92]

Antoniou:1999:ETT

[ABN99]

Aumage:2000:PAM

[ABNP00]

Aleen:2009:CAS

Almasi:2003:DCD

ACM:1992:CPI

ACM:1993:PTF

ACM:1993:TCS

ACM, editor. *TRI-Ada ‘93: Conference — September*
REFERENCES

ACM:1994:ASC

ACM:1994:CRP

ACM:1994:IP1

ACM:1994:SIC

ACM:1995:CPI

ACM:1995:CRP

[ACM95b] ACM, editor. *Conference record of POPL ’95, 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: papers presented at the Symposium: San Francisco, Cali-

REFERENCES

(electronic). URL http://dl.acm.org/citation.cfm?id=1341640

Agerwala:2006:SRC

Agarwal:1989:PTM

Agarwal:1991:PTM

Agarwal:1992:PTM

Anderson:2008:SCD

Amrhein:1996:CSM

Anderson:2009:LAC

Akkary:2000:CSM

Haitham Akkary and Sébastien Hily. The case for specula-
Abdulla:2008:MCR

Adiletta:2002:PSA

Aitken:1996:MCJ

Ahn:2012:ISE

Azagury:1999:NIR

Aciicmez:2006:PSB
Onur Aciicmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple branch prediction analysis. Technical report, School of EECS, Oregon State University, Corvallis, OR
Arjomand:2016:BAP

Alfieri:1994:EKI

Agrawal:2008:AWS

Agrawal:2010:HLF

Amer:2015:MRC

Amamiya:1989:DFC

Amaranth:1998:TBM

Aamodt:2003:FMO

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

Aiex:1998:CMT

Annavaram:1996:BVN

Murali Annavaram. Blocking versus non-blocking: issues and tradeoffs in multi-

Anonymous:1990:PWU

Anonymous:1991:PSI

REFERENCES

Anonymous:1992:MWPa

Anonymous:1992:MWPb

Anonymous:1994:ICS

Anonymous:1994:MDP

Anonymous. Multi-processor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Systems Today*, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

Anonymous:1994:SIP

REFERENCES

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

[Ano97a] Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. Linux Journal, 34:??, February 1997. CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Anonymous:1997:TWP

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAa

Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF

Arnau:2012:BMG

tronics). ISCA ’12 conference proceedings.

REFERENCES

Baker:1995:UOV

Baker:1995:GTP

Baldwin:2002:LMF

Bic:1993:EUI

Burckhardt:2007:CCC

Barkstrom:2009:UAS

Bauer:1992:PCE

Bolding:2000:MSM

Bova:2000:DLP

Balter:1991:AIG

Ball:2011:PPT

Balis:2002:CPM

Balis:2003:MSM

REFERENCES

Bergan:2013:ICS

Bokhari:2014:MMM

Bedy:2000:VSM

Biagioni:1998:SST

Benner:2007:SLS

Ball:2001:PVM

REFERENCES

5964 (print), 1943-5851 (electronic).

entific Computing, Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA, August 7, 1998. 15 pp. URL http://www.math.utah.edu/pub/tex/bib/index-table-m.html#multithreading. This report is updated frequently.

Borkenhagen:2000:MPP

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bhomin:2008:EFK

Bhatotia:2015:ITL

Pramod Bhatotia, Pedro Fonseca, Umut A. Acar, Björn B. Brandenburg, and Rodrigo Rodrigues. iThreads: a

REFERENCES

Blumofe:1995:CEM

Blumofe:1996:CEM

Bhandarkar:1996:MPM

Beckert:2013:DLD

Bond:2013:OCC

Basile:2006:ARM

REFERENCES

[BLCD97] Rajesh Bordawekar, Steven Landherr, Don Capps, and Mark Davis. Experimental

Blumofe:1992:MSM

Blumofe:1995:EMP

Bolinger:1991:PSH

Baquero:1994:CA

REFERENCES

REFERENCES

January 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bramley:1997:TNRb

Bershad:1992:FME

Breibner:2002:MLC

Briot:1989:OAS

Brightwell:2003:DIP

Barthe:2010:SMP

Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of multithreaded programs by compilation. ACM Transactions on Information and System Se-
REFERENCES

Bellosa:1996:PIL

Broadman:1999:ECM

Boussinot:2000:JTS

Bacon:2006:BFL

Bokhari:2010:EPM

Burnim:2010:ACD

Bartolini:2014:AFG

Boisvert:2001:ASS

Brunett:1998:IET

Butenhof:1997:PPT

Buttari:2013:FGM

Butcher:2014:SCM

Bik:1997:JPJ

Aart J. C. Bik, Juan E. Villalais, and Dennis B. Gannon. javar: a prototype Java restructuring compiler. *Concurrency: Prac-
REFERENCES

Special Issue: Java for computational science and engineering — simulation and modeling II.

Beveridge:1997:MAW

Bai:2015:SPA

Basharahil:2005:DSA

Berger:2009:GSM

Benaya:2007:UTA

REFERENCES

Calcote:1997:TPS

Calkins:2000:ITT

Callaway:2002:VTR

Caromel:1989:GMC

Campanoni:2008:PDC

Catano:2014:CSL

Catanzaro:1994:MSA
REFERENCES

REFERENCES

Chang:2004:TSP

Cai:2014:MSD

Chen:2012:MLS

Chen:2011:MJP

Chen:2016:TMR

Chinya:2011:BDP

REFERENCES

Chetlur:2010:SWM

Chandra:2001:PPO

ChassindeKergommeaux:2001:PEE

Catalyurek:2012:GCA

Chung:2013:LBD

Canetti:1991:PCP

REFERENCES

Chaudhry:2002:PTS

Chapman:2005:SMP

Chen:2003:CSS

Chlipala:2015:NIM

Chlipala:2015:UWS

Chowdhury:1992:PEA

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.
REFERENCES

Chong:1993:EMC

Chrisochoides:1995:MMDa

Chrisochoides:1996:MMDb

Chrisochoides:1996:MMD

Christiaens:2001:JRR

Catalan:2017:TEM

Ching:1991:EAP

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Cormen:2009:IA

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Cahoon:2000:EPD

Carr:2003:TPT
[CMS03] Steve Carr, Jean Mayo, and Ching-Kuang Shene. ThreadMentor: a pedagogical tool

Chen:2010:CCM

Che:2014:ALM

Cabodi:2013:TBM

Chuang:2006:UPB

Colvin:1990:CTS

Colvin:1990:MLT

Coorg:1995:PNS

Cook:2002:REJ

REFERENCES

[Cri98b] Mike Criscolo. Java Q&A: How do I queue Java threads? *Dr. Dobb’s Journal of Soft-

Cromwell:1998:PBD

Chang:1995:CSM

Chang:1995:CTS

Carr:2000:PCL

Carothers:2002:CMP

Chen:2012:CLA

ChassindeKergommeaux:2000:PIV

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Possibly unpublished, except electronically.

Chugh:2008:DAC

REFERENCES

REFERENCES

[DC07] Dipankar Das, P. P. Chakrabarti, and Rajeev Kumar. Functional verification of task

Dennis:1994:MMP

DuBois:2013:CSI

DeWitt:1999:PTL

Domani:2003:TLH

DHollander:1992:PLL

DeRusso:1998:MEH

Dolby:2012:DCA

[DHM+12] Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and

Duncan:2001:LPD

Dillon:1993:VEM

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH
Dubey:1994:APM

Doligez:1993:CGG

Devietti:2009:DDS

Dongarra:1999:RAP

delaPuente:1999:RTP

Demange:2013:PBB

REFERENCES

2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Dagum:1998:OIS

Daloze:2016:ETS

Dorfman:1994:EMO

Devietti:2012:RRC

Danjean:2000:IKA

Dublish:2016:CCG

REFERENCES

REFERENCES

[David:2014:CMC] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Continuously mea-

Diavastos:2016:ITD

Dubey:1995:SSM

Dugger:1995:MC

Dascal:1999:ELR

Devietti:2012:RAS

Ding:2010:PCM

Jason Jianxun Ding, Abdul Waheed, Jingnan Yao, and Laxmi N. Bhuyan. Performance characterization of multi-thread and multi-core processors based XML application oriented networking

Dyer:1998:CAS

Ding:2012:CDF

Elwasif:2001:AMT

Eskilson:1998:SMM

Esmailzadeh:2012:LBL

Eyerman:2009:MLP

Stijn Eyerman and Lieven Eeckhout. Memory-level parallelism aware fetch policies

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

Eggers:1997:SMP

Edelstein:2003:FTM

Emmi:2007:LA

REFERENCES

Emer:2007:STV

Eytani:2007:TFB

Eickemeyer:1996:EMU

Ediger:2013:GMA

Eykholt:1992:BMM

REFERENCES

Eggers:1990:TEI

[Eng1995:MC]

Engelschall:2000:PMS

Evyushkin:2016:UMC

[Elmas:2007:GRT]

Emerson:1997:USW

Esposito:1996:MVB

[Dino Esposito. Multithreading and Visual Basic. Dr. Dobb’s Journal of Software Tools, 21(12):46–??, Decem-
REFERENCES

REFERENCES

Fisk:1995:TPT

Feuerstein:1996:MTP

Feuerstein:2002:LMT

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:ADA

Flanagan:2008:ADA

REFERENCES

6423 (print), 1872-7964 (electronic).

Flanagan:2009:FEP

Flanagan:2010:AMD

Flanagan:2008:TAS

Flanagan:2005:MVM

Faulkner:1991:PFS

Frincu:2014:ESV

Marc E. Frincu, Stéphane Genaud, and Julien Gossa. On the efficiency of sev-
eral VM provisioning strategies for workflows with multithreaded tasks on clouds.

Foster:1997:MMC

Foster:1996:MIW

Fahringer:1995:UTDb

Fahringer:1995:UTDa

Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Finger:1995:LTC

Fisher:1997:SPS

Farzan:2012:VPC

Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by modular reason-

Fillo:1997:MMM

Farzan:2015:PSU

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

Frigo:1998:ICM

REFERENCES

Felten:1992:IPM

Fang:2015:MMD

Farzan:2017:SDC

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

REFERENCES

[Factor:2006:PID]
REFERENCES

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa

Flautner:2000:TLPc

Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level parallelism and interactive performance of desktop applica-
REFERENCES

Flautner:2000:TLPb

Fang:2003:DGO

GranT:2009:IEE

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD
REFERENCES

Garber:2001:NBT

Giceva:2014:DQP

Greiner:1999:PTE

Giampapa:2005:BGA

Gotsman:2007:TMS

Gao:1995:ATD

Guang R. Gao, Lubomir Bic, and Jean-Luc Gaudiot. Advanced topics in dataflow computing and multithreading. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. ISBN 0-8186-6541-6 (hardcover), 0-8186-6540-8 (paperback), 0-
Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA

Gravvanis:2008:JMB

Geary:1998:SM

Gravvanis:2007:PPA

Geiselbrecht:2001:NOS

Geiser:1995:IO

Garcia:2000:PTL

Gao:1993:DMA

Guang Gao, Jean-Luc Gaudiot, and Lubomir Bic. Dataflow and multithreaded architectures: Guest Editors’ introduction. *Journal of Parallel and Distributed Comput-
REFERENCES

CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic).

Gao:1993:SID

[GBG93b] Guang R. Gao, Jean-Luc Gaudiot,
and Lubomir Bic. Special
issue on dataflow and multi-
threaded architectures. Jour-
nal of parallel and distributed
computing; v. 18, no. 3. Aca-
demic Press, New York, USA,

Gruen:1998:NIS

[GH98] T. Gruen and M. A. Hilleb-
brand. NAS integer sort on
multi-threaded shared
memory machines. Lecture
Notes in Computer Science,
1470:999–??, 1998. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

Gagnon:2003:EIT

Effective inline-threaded in-
terpretation of Java bytecode
using preparation sequences. Lecture
Notes in Computer Science,
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

Girkar:1998:IIM

[GHG+98] Milind Girkar, Mohammad R.
Haghighat, Paul Grey, Hideki
Saito, Nicholas Stavrakos,
and Constantine D. Poly-
chronopoulos. Illinois-Intel
multithreading library: Mul-
tithreading support for In-
tel architecture based mul-
tiprocessor systems. Intel
Technology Journal, (Q1):15,
1998. ISSN 1535-766X. URL
http://developer.intel.com/tech-
ology/ij/q11998/|articles/art_5.htm; http://

Gibson:1994:CMC

Ken Gibson. A C++ mul-
titasking class library. Dr.
Dobb’s Journal of Software
Tools, 19(5):28, 30, 32, 34,
96–98, May 1994. CODEN
DDJOEB. ISSN 1044-789X.

Gilbert:1988:DVN

P. D. Gilbert. Development
of the VAX NOTES system.
Digital Technical Journal,
CODEN DTJOEL. ISSN
0898-901X.

Gildea:1993:MTX

Stephen Gildea. Multithreaded Xlib. The X Re-
source, 5(1):159–166, January
1993. CODEN XRESEA.
ISBN 1-56592-020-1. ISSN
1058-5591.

Giloi:1994:PSA

Wolfgang K. Giloi. Parallel
supercomputer architectures
and their programming mod-
els. Parallel Computing, 20
(10–11):1443–1470, November
3, 1994. CODEN PACOEJ.
REFERENCES

Gorton:1997:GEI

Ganesan:2011:MMP

Gebhart:2012:HTS

Gerlhof:1994:MTA

Garcia:2005:HJA

Georgiou:2017:ETD

Granat:2009:NPQ
Robert Granat, Bo Kågström, and Daniel Kressner. A novel parallel QR algorithm for hybrid distributed memory HPC systems. LAPACK Working Note 216, Department of Computing Science

[Gle91] Ray R. Glenn. Characterizing memory hot spots in a shared memory MIMD ma-
REFERENCES

REFERENCES

Govindarajan:1992:LCM

Grunwald:1996:WPO

Gopinath:2000:PSB

Goeschl:2001:JTT

Goldwasser:1994:PAS

Gollapudi:1996:MCA

REFERENCES

Goldstein:1997:LTC

[Seth Copen Goldstein. Lazy threads: compiler and runtime structures for fine-grained parallel programming. Thesis (Ph.D.), Computer Science Division, University of California, Berkeley, Berkeley, CA, USA, 1997. xi + 174 pp.]

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

[Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and refinement for verifying multi-threaded programs. ACM SIGPLAN No-
REFERENCES

Gerakios:2014:SSG

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN
Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational characterizations for Java memory behavior. ACM Transactions on Computer Sy-
REFERENCES

Garg:2002:TOA

Greleck:2006:SFA

Gupta:2010:CSM

Gulati:1995:MSM

REFERENCES

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Gibson:2010:FSC

Gabor:2007:FES

Haggar:2002:JQD

objects larger than 32 bits, such as long and double, with sample code to exhibit the failure.

REFERENCES

Hunt:2013:DTN

Hanson:2001:UFI

Hanson:2002:AFI

Heber:1998:UMA

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT
Ding:2002:MOP

Honarmand:2013:CUA

Heinlein:2003:ATS

Hertzum:1996:BQO

Halappanavar:2012:AWM

Hum:1991:NHS

Hum:1992:HSM

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1991:SVP

REFERENCES

[Hironaka:1992:BVP]

[Hussein:2015:DRM]

[Hightower:1997:PDD]
Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. Dr. Dobb’s Journal of Software Tools, 22(1):70–??, January 1997. CODEN DDJOEB. ISSN 1044-789X.

[Hauser:1993:UTI]

[Hurson:1996:CMD]
REFERENCES

Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD

Hansen:1990:EPA

Holm:1994:CSP

Helmhbold:1996:TRC
REFERENCES

Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

[102x681]Haines:1997:DPP

[102x681]Hum:1996:SEM

REFERENCES

REFERENCES

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Hsu:2011:MSS

REFERENCES

[HR16] Huang:2016:PMR

[HSS+14] Hassanein:2008:AEH

[HRH08] Hayden:2014:KEG

References

REFERENCES

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. IEEE catalog number 89TH0281-6.

REFERENCES

IEEE:1994:PSW

IEEE:1994:ROS

IEEE:1994:PCL

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1999:HCS

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

Itzkovitz:1998:TMA

Jaisson:2008:IPM

Jefay:1994:LMT

Jensen:1995:DRT

E. Douglas Jensen. Distributed real-time operating

Johnson:2004:MCP

Ji:1998:PMM

Johnston:2004:ADP

Jolitz:1991:PUB

Jin:2003:AMP

Jonsson:1999:NPS

Jang:2010:DTE

REFERENCES

Kacsuk:1997:MIC

Kanalakis:1994:ET

Kongetira:2005:NWM

Kumar:2007:ESI

Krashinsky:2008:ISV

Kyle:2012:EPI

Koster:2003:TTI

Rainer Koster, Andrew P. Black, Jie Huang, Jonathan Walpole, and Calton Pu. Thread transparency in information flow middleware.
REFERENCES

Krashinsky:2004:VTAA

Krashinsky:2004:VTA

Kejariwal:2009:PSA

Arun Kejariwal and Calin Casca val. Parallelization spectroscopy: analysis of thread-

Kekckler:1999:CEH

Kasperrink:1997:CDC

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

[S. A. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney. Grid-based...

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM
REFERENCES

REFERENCES

Kleber:2000:TSA

Kang:2008:ISE

Koopman:1992:CBC

Koufaty:2003:HTN

Kakulavarapu:2001:DLB

P. Kakulavarapu, O. C. Maquelin, J. N. Amaral, and
REFERENCES

Kavi:2002:MMA

Kapil:2004:CMP

Kim:2016:SEA

Kim:2006:ERI

Koniges:2000:ISP

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

Kaiser:2006:CJC

Kienzle:2001:CTT

Kienzle:2001:IEO

Keckler:2012:MMC

REFERENCES

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

Kalayappan:2016:FRT

Kgil:2008:PUS

REFERENCES

October 2008. CODEN ????
ISSN 1550-4832.

Kopczynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP

Kumar:2004:SIH

Keller:2000:JUS

Komosinski:2017:MCE

Kubica:2015:PHT

Kuchlin:1991:MCI

Kuchlin:1992:MTC

Kestor:2015:TPD

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Kleinmann:2017:ACS

[KW17] Amit Kleinmann and Avishai Wool. Automatic construction of statechart-based anomaly detection models for multithreaded industrial control systems. ACM Transactions on Intelligent Systems and
REFERENCES

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

Gu Liu, Hong An, Wenting Han, Xiaojiang Li, Tao Sun, Wei Zhou, Xuechao Wei, and Xulong Tang. FlexBFS: a parallelism-aware implementation of breadth-first search on GPU. ACM SIGPLAN Notices, 47(8):279–280, August 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPOPP ’12 conference proceedings.
REFERENCES

REFERENCES

Lim:1995:LPB

Lewis:1996:TPG

Lim:1996:LPB

Lewis:1998:MPP

Lee:2017:MVN

Lo:1998:AD

REFERENCES

REFERENCES

Li:2004:FRT

LCS04
[Li:2004:FRT]

Lozi:2016:FPL

LDT+16
[Lozi:2016:FPL]

Lee:1996:CEH

Lea96
[Lee:1996:CEH]

Lee:2006:PT

Lee:2006:PT

Legrand:2001:MTD

Legrand:2001:MTD

Leiserson:1997:AAM

Leiserson:1997:AAM

Lo:1997:CTL
Jack L. Lo, Joel S. Emer, Henry M. Levy, Rebecca L.

Lo:1997:CTL

Lee:1993:TW

Lee:1993:TW

Lee:1993:TW

Lo:1997:CTP

Lo:1999:TCO

Leman:2002:EFT

Lenatti:1995:RPM

Leppanen:1995:PWO

Leven:1997:MIR

Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at
Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

2009. CODEN ITVGEA. ISSN 1077-2626 (print), 1941-0506 (electronic), 2160-9306.

Li:2011:LCM

Luo:2017:TDS

Lin:2010:TAC

Lai:2015:SAM

Li:2006:SDH

Liu:2016:SEA

Liu:2014:TAP

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Lo:1999:SDR

[LRZ16]

Laudon:2007:CWM

Liao:2011:AUB

REFERENCES

REFERENCES

Lu:1994:MPM
[Lu94]

Lu:1995:HMC
[Lu95]

Lu:1998:ONW
[Lu98]

Luk:2001:TM
[Luk01]

Lundberg:1997:BMC
[Lun97]

Lundberg:1999:PBS
[Lun99]

Lobeiras:2013:PSW
[LVA+13]
Jacobo Lobeiras, Moisés Viñas, Margarita Amor, Basilio B. Fraguela, Manuel
REFERENCES

Laadan:2010:TLA

Lopes:2001:FGM

Lee:2010:REO

Liu:2016:TAA

Li:2007:CET

Peng Li and Steve Zdancewic. Combining events and threads for scalable network services implementation and evalua-

Lu:2014:EDM

Liu:2014:TPA

Liu:2015:LRT

Lu:2013:REM

Li:2017:GGB

Mushtaq:2014:EHP

Monchiero:2009:HSC

Mahafzah:2011:PMI

Mahafzah:2013:PAM

Man:1991:MLC

Man:1996:SJP

Manley:1998:GPT

Manley:1999:IPT

Mao:1996:PMS

Marowka:2003:EOT

REFERENCES

Marowka:2007:PCD

Masney:1999:IMT

Mateosian:1997:MNT

Mattson:2003:HGO

Mendelson:1999:DAM

McNairy:2005:MDC

Madan:2007:PEA

Moon:2006:TMS

[MC06] Sewon Moon and Byeong-Mo Chang. A thread monitoring system for multithreaded
REFERENCES

Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

REFERENCES

Matheou:2017:DDC

Mukherjee:1994:MII

McDowell:2003:ISS

Mennemeier:1991:HMS

Metz:1995:IDS

Marcuello:1999:EST

Mehta:2015:MTP

Marsland:1995:SSM

REFERENCES

[Mis96] Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

REFERENCES

MixSoftware:1994:UMC

[Mix94]

Meng:2010:AOS

[MK97]

Maris:2004:CCP

Mooody:1999:STT

Maiya:2014:RDA

Mukherjee:2002:DDE

Muralidhara:2010:IAS

Marowka:2004:OOA

Madriles:2009:BST

Ma:2011:SPC

Machado:2015:CDD

Nuno Machado, Brandon Lucía, and Luís Rodrigues. Concurrency debugging with differential schedule projections. *ACM SIGPLAN No-
REFERENCES

Makreshanski:2015:LSE
Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. To lock, swap, or elide: on the interplay of hardware transactional memory and lock-free indexing. *Proceedings of the VLDB Endowment*, 8(11):1298–1309, July 2015. CODEN ???? ISSN ????.

Morandini:2007:UDS

Morishima:2014:PEG

Mathis:2005:CSM

Marino:2009:LES

McKenney:2010:WGM

Metzner:2000:MMR
McAuley:2003:CVC

Marinov:2016:PAF

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

REFERENCES

REFERENCES

Mukherjee:2009:PAS

McJones:1987:EUS

McJones:1989:EUS

Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

Mantel:2003:UAS

REFERENCES

190

???? 2003. CODEN JCSIET. ISSN 0926-227X (print), 1875-8924 (electronic).

McCartney:2015:SMT

Marshall:1991:FCU

Marino:2010:DSE

Morrisett:1993:PLP

Martinez:2002:SSAa

José F. Martínez and Josep Torrellas. Speculative synchronization: applying thread-level speculation to explicitly parallel applications. *ACM
REFERENCES

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA

Mahanpri:2007:HSS

Naik:2007:CMA

Nikolopoulos:2001:EMA

REFERENCES

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS

Naik:2006:ESR

Narlikar:1999:SES

Nagpal:2012:CGE

Nichols:1996:PP

REFERENCES

Nichols:1998:PP

Najjar:1993:QAD

Nagarakatte:2012:MAP

Nelson:2015:RGH

Natarajan:1993:PVM

REFERENCES

REFERENCES

[196]

DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

2867 (print), 1558-1160 (electronic).

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

Narayanasamy:2006:RSM

Nebro:1998:EMR

Nand:2006:ISM

Neves:1997:TRS

REFERENCES

1997.1322/production/pdf;

Ngo:2014:EVC

Niewiadomski:2014:SVG

Niu:2014:MCF

Nemeth:1999:MLK

Nogueira:2016:BBW

Norwood:1994:SMP

Nguyen:2015:RCC

Ostler:2007:IHT

Ozer:2001:WMT

Odaira:2014:EGI

Olivier:2012:CMW

Ogata:1992:DIH

Oplinger:2002:ESRa

REFERENCES

196, December 2002. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Omma:2004:BMA

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

Odersky:1993:CNA

[Pan99] Lalit Pant. Thread communication in parallel algorithms: Enabling efficient interaction between threads. *Dr. Dobb’s*

REFERENCES

Papadopoulos:2016:TAD

Pokam:2013:QPI

Peacock:1992:FSM

Philbin:1996:TSC

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC
Manoj Plakal and Charles N. Fischer. Concurrent garbage collection using program slices
REFERENCES

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Pham:1991:EMD

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

Pichel:2009:IDR

Ponamgi:1991:DMP

REFERENCES

CODEN IESOEG. ISSN 0740-7459 (print), 0740-7459 (electronic).

Pager:2015:SSM

Park:2007:MEP

Powell:1991:SMT

Price:2003:CAF

Plauger:1993:MCS

Plauger:1998:SCCl

Plauger:1999:SCCg

Plachetka:2002:QTS

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

REFERENCES

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1995:WNT

Prasad:1995:WTS

Permandla:2007:TSP

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Presotto:1990:MSP

Petrovic:2014:LHM

Protopopov:2001:MMP

Pozniansky:2003:EFD

Pozniansky:2007:MEF

Pyarali:2001:EOT

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Prvulovic:2003:RUT

Prvulovic:2003:RUT

Piringer:2009:MTA

Piringer:2009:MTA

Pfeffer:2004:RTG

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pulleyn:2000:EPM

Pathania:2017:DTM

Pathania:2017:DTM

Preissl:2012:CSS

Preissl:2012:CSS

Preissl:2012:CSS

Preissl:2011:MGA

Preissl:2011:MGA

Preissl:2011:MGA

Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and Alice Koniges. Multithreaded global address space communication techniques for gyrokinetic fu-
sion applications on ultra-scale platforms. In Lathrop et al. [LCK11], pages 12:1–12:11. ISBN 1-4503-0771-X. LCCN ????

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB

Roberts:2018:MID

Rufai:2005:MPO

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

Reda:2012:APC

Rahman:2014:CCO

Ro:2006:DEH

Rakvic:2010:TMT

Radojkovic:2012:OTA

Radojkovic:2016:TAM

REFERENCES

REFERENCES

DEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

REFERENCES

Roe:1999:PMI

Reinhardt:2000:TFD

ACM:2003:ATA

Roh:1996:GOE

Rogers:2014:LYL

Robison:2003:MCN

REFERENCES

REFERENCES

[Rounce:2008:DIS]

[Riccobene:2009:SCB]

[Roh:2001:RMD]

[Rangan:2008:PSD]

[Roth:2004:MTC]

[Raychev:2013:ERD]

Veselin Raychev, Martin Vcehev, and Manu Sridharan. Effective race detec-

[Ravoor:1997:MTP]

[Shaw:1998:CIP]

[Sam99]

[San04]

B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4, ISSN 0018-9162 (print), 1558-0814 (electronic).

[Sat02]

[SB80]

REFERENCES

ISSN 0163-5999 (print), 1557-9484 (electronic).

[SCCP13] Juan Carlos Sáez, Fernando Castro, Daniel Chaver, and
REFERENCES

Schweitzer:2015:PEM

Schmitt:1998:EAM

Schonberg:1989:FDA

References

REFERENCES

[Shaw:1998:CPM] Andrew Shaw. *Compiling for parallel multithreaded computation on symmetric multiprocessors*. Thesis (Ph.D.), Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
Shene:1998:MPI

Shene:2002:TST

Shinjo:2000:DCEb

Shoffner:1997:JSSa

Shoffner:1997:JSSb

Sime:1997:GPM

Sinharoy:1997:OTC

REFERENCES

Sinharyo:1999:COI

Steensgaard:1995:ONC

Sharafeddine:2012:DOE

Singh:1992:DRS

Singh:1992:DR

Stewart:1997:MDH

Sung:2001:MDA

Smaragdakis:2007:TIC

Schoenherr:2011:MTI

Sohn:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

REFERENCES

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT

Scherer:1999:TAP

Sharkey:2008:RRP

Sidiropoulou:2009:AAS
Solihin:2002:UUL

Solihin:2003:CPU

Sadan:2010:PMM

Smith:1992:MTX

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

REFERENCES

[SP00b] Yasushi Shinjo and Calton Pu. Developing correct and efficient multithreaded programs with thread-specific data and a partial evaluator. *Operating Systems Review*, 34(2):33, April 2000. CODEN OSRED8. ISSN 0163-
REFERENCES

5980 (print), 1943-586X (electronic).

Shinjo:2005:AEP

Sharkey:2007:EOA

Saarikivi:2017:MTS

Spero:1994:MMD

Skjellum:1996:TTM

Saxena:1993:PMS

Suleman:2008:FDTa

M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading: power-efficient and high-

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

Saghi:1998:MSH

Silc:1998:APC

Speer:1991:DTP

REFERENCES

18–32, Winter 1991. CO-
DEN DTJOEL. ISSN 0898-
digital.com/pub/Digital/
info/DTJ/v3n1/Digitals_
ps; http://www.digital.
com:80/info/DTJ102/DTJ102SC.
TXT.

Small:1995:SAB

Christopher Small and Margo
Seltzer. Scheduler activations
on BSD: sharing thread man-
agement between kernel and
application. Technical Report
31-95, Center for Research in
Computing Technology, Har-
vard University, Cambridge,

Szymanski:1996:LCR

Boleslaw K. Szymanski and
Balaram Sinharoy, editors.
Languages, Compilers and
Run-Time Systems for Scal-
able Computers, Troy, NY,
Kluwer Academic Publish-
ers, Dordrecht, The Nether-
lands; Boston, MA, USA,
LCCN QA76.58.L37 1996.

Sutherland:2010:CTC

Dean F. Sutherland and
William L. Scherlis. Compos-
able thread coloring. ACM
SIGPLAN Notices, 45(5):233–
244, May 2010. CODEN SIN-
ODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160
(electronic).

Shi:2007:CCP

Xudong Shi, Feiqi Su, Jih
kwon Peir, Ye Xia, and Zhen
Yang. CMP cache performance projection: accessibility vs. capacity. ACM
SIGARCH Computer Ar-
20, March 2007. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

Soundararajan:2010:CSE

Niranjan Soundararajan, Anand
Sivasubramaniam, and Vijay
Narayanan. Characterizing
the soft error vulnerability
of multicores running multi-
threaded applications. ACM
SIGMETRICS Performance
380, June 2010. CODEN ???
ISSN 0163-5999 (print), 1557-
9484 (electronic).

Saito:1999:MRS

H. Saito, N. Stavrakos, and
C. Polychronopoulos. Multi-
threading runtime support
for loop and functional par-
allelism. Lecture Notes in
Computer Science, 1615:133–
ISSN 0302-9743 (print), 1611-
3349 (electronic).

Sohn:1997:DWD

Andrew Sohn, Mitsuhisa
Sato, Namhoon Yoo, and
Jean-Luc Gaudiot. Data
and workload distribution

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF

Shen:1999:ATL

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??.
REFERENCES

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

[TAM+08] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman, and Norman P. Jouppi. A comprehensive memory modeling tool and its application
REFERENCES

References

Thompson:1997:TPC

References

Tanner:1987:MTI

References

Tolmach:2004:IFL

References

Toulouse:1995:CID

References

Thornley:1998:SSH

References

Tam:2007:TCS

References

Thompson:1997:THP

TempleLang:1997:MTE

Tennberg:1998:CAD

Tennberg:2002:RGO

Trancoso:2006:CCM

Tetewsky:1994:GDR

Tian:2010:SPU

Tang:1999:APT

Xinan Tang and Guang R. Gao. Automatically partitioning threads for multithreaded
REFERENCES

Thekkath:1995:DPM

Throop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Thitikamol:1998:PNM

Theobald:2001:DCI

Tian:2017:RSP

Tremblay:2003:IEP

Tallent:2009:EPM

Trott:2010:AVI

REFERENCES

REFERENCES

Ungerer:2002:SPE

Ungerer:2003:SPE

USENIX:1989:PWU

USENIX:1991:PUM
REFERENCES

1. USENIX:1993:PWU

2. USENIX:1998:PUWa

USENIX:1998:PSA

USENIX:2000:PUT
REFERENCES

REFERENCES

usenix.org/publications/library/proceedings/tc12k/vckovski.html.

Vishkin:1998:EMT

Venners:1997:UHH

Venners:1998:DTS

Verriello:1996: MSM

Vale:2016:PDT

Vantrease:2008:CSI

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

REFERENCES

1045-9219 (print), 1558-2183 (electronic).

REFERENCES

ISSN 0360-5280 (print), 1082-7838 (electronic).

REFERENCES

Wang:2004:HTVb

Wang:2004:HTVc

Wang:2007:OSC

Wester:2013:PDR

Weaver:2008:OIO

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Wong:1994:SSI

Weissman:1999:HPT

Walcott:2007:DPA

White:2003:UTL

Wallach:1995:OAM

REFERENCES

August 1995. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Williams:1994:NST

Williams:1994:NTM

Wilson:1997:BTP

Wilmot:1998:DTM

Wilson:2000:PBC

Wei:2012:OLL

Wegiel:2008:MCVa

Wegiel:2008:MCVb

REFERENCES

REFERENCES

Welch:2010:SCF

Wang:2006:RAA

Warg:2008:DTS

Whittaker:1997:TML

Wheeler:2010:VMM

Wu:2012:SPA

REFERENCES

2867 (print), 1558-1160 (electronic). PLDI ’12 proceedings.

[Waldspurger:1993:RRF]

[Wise:1996:SDP]

[Wang:2002:SPE]

[Wang:2008:PIM]

[Xu:2006:RTR]

[Xekalakis:2012:MSM]

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Xu:1999:DIT

Yam:1995:CFD

Yam:1996:DPV

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb's Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yang:1997:MUA

Xia:2008:CAS

Yam:2002:RCC

Xue:2012:RJC

Yuan Yao and Zhonghai Lu. Opportunistic com-

[YNPP12] Jie Yu, Satish Narayanasamy,

REFERENCES

Yang:2007:RUL

Zoppetti:2001:IDD

Zhai:2002:COSa

Zhai:2002:COSb

[ZCSM02b] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. Compiler optimization of scalar value communication between spec-
Honbo Zhou and Al Geist.

David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi

Zhang:2012:SCC

Zhao:2011:DCC

Zhang:2015:DPO

Zier:2010:PED

Zhang:2016:TED

Zhang:2016:SAN

Zhuan:2004:BRA

Zhuan:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB