Title word cross-reference

#4 [Pet00].
+ [BMV03, 2 [TKHG04]. 3
[KSB+08, PYP+10]. cyclical [YLLS16]. D4
[Evr01]. F2 [BCS11]. k [ZTN19]. LU
[VD08]. N [ZJFA09]. π [III01]. QR
[But13, GKK09,VD08].

-based [Rót19]. -Calculus [II01].
-Machine [Evr01]. -way [ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/multi [Taf13]. /multi-threaded [Taf13].

'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94e].

2 [BCG14, DN94, Kan94, Kel94b, Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[BO01, LPD+11]. 2.6 [McM97]. 2000
[Ano99]. 2001 [ACM01]. 2003
[RM03, ACM03, AS14]. 2010 [Egg10]. 2011
[ACM94b]. 22nd [ACM95b]. 25th
[ACM98b, ACM98c]. 2k [USE00b]. 2nd
[Ano94d, USE98a].

3.0 [Ano97c, Bra97, BRM03, MRGB91],
32-Way [KAO05]. 35th [Gol94]. 3D
[Ano97b, Loc97].
Abstract

ACM [ACM93b, RM03, IEE02, ACM98b, ACM99a].

ACM/IEEE [ACM98d].
[MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04]. Allocations [LK20].

Allocations
[BMBW00b, BMBW00a, BMBW00c].

Alpha [Ano00b]. alphabet [KNPS16].

alphabet-independent [KNPS16].

Alternating [CYYL18]. alternative [SV96c, SV96a, SV96b]. Alternatives [MB99, OA19, MKR02].

Alto [ACM01].

ALU [KDM +98]. always [DWS +12]. always-on [DWS +12].

Amdahl [CN14, NZ17]. Among [CB16, HMC95, SJ95]. analysing [NJK16, PV06]. Analysis [AKS06, BCZY16, BVM19, BE12, BE13, BTL +19, BBC +00, BLG01, BNH01, CGS +20, CC04, CH95, CGL92a, CGL92b, DSR15, EJRB13, Hai97b, Hol12, HLH16, LCK11, LML00, LHG +16, NBJ93, REL00b, Rin01, RR99, SBCV90, TAM +08, VP16, Yoo06a, Zub02, AC09, ACC +03, BGZ97, BBH +17, BPSH05, BMM09, CHH +03, CS12, CVJL08, Cor00, GBCS07, HEJO9, JPSN09, KTK12, KC09, Lei97, LHB12, LBE +98, Met95, NWT +07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH +12, dB09, vPG03].

analyzer [Fer13, HLB90]. Analyzing [HRH08, Kor89, RH110, TMCP10].

anatomy [Rei95]. Android [MKM14].

animation [WQLJ18]. Annotations [BM94, Wei98b, AGN09]. Annual [ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b]. anomalies [Sch89]. Anomaly [KW17]. antipatterns [BPSH05]. Antonio [USE92a]. any [Hig97, Mar07]. API [Ano00b, BDN02, DM98, LPD +11, Van97a].

APL [CJ91]. applets [McM96c].

Application [AMRR98, CA20, HTDL18, KZTK15, KSN94, PG92, PLT +15, SV19, TKA +01, TAM +08, Yas95, DWYB10, EJK +96, HDT +13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA +02, ZJS +11]. Application-Level [HTDL18, KSN94, PLT +15, HDT +13, LZ07, ZJS +11]. Applications [Ano06c, AZG17, AKP99, BKI06, BMBW00b, BNH01, Cha05, Chl15a, DVAE18, DSAD +18, DS16, Don02, Dru95, EV01, FURM00c, HC17, HMCP16, HWZ00, JYE +16, JLA16, KjMc02, KRR98, LWSB19, LPK16, Lar97, MGI14, MG15, PCPS15, PWL +11, Pul00, RD06, DFC +19, SGM +97, So02, Ten02, Tet94, TS12, TLGM17, VCM19, VP16, Vol93, WJA +19, YG10, ZJS12, Ano92a, Ano92b, Ano94b, ASSS19, AAKK08, BWDZ15, BBFW03, BGZ97, BMBW00a, BMBW00c, BW97, DSEE13, BPSH05, BM03, CB90, CB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLBR90, ISS98, JSMP12, JSMP13, KVN +09, LSW +18, MLWWW11, MKM14, MKIO04, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Omm04, PIZA07, RCV +10, Rei95, San04, SSN10, SKP +02, TM09, TMCP10, T018, VIA +05, VGK +10a, VGK +10b, WCZ +07]. applications [WT10, WOKH96, XMN99, YZ14, kSYH +11, ZKR +11, Len95]. apply [NZ17]. Applying [VTSL12, MT02a, MT02b, MT02c].

Apprendre [Swi09]. Approach [AZG17, BBSG11, CJW +15, ES97, FKT96, GMR98, KKW14, KS16, ND16, RMC +16, TY97, VSDK09, WS08, Wei98b, YLLIS16, BWDZ15, DHM +12, LZW17, LZZS19, LZL +14, MS03, RCM +12, SCZM00, TP18].

Approaches [BLPV04, MB07].

Approximate [HFV +12, GEG07, GE08, KGP12]. Apps [PCM16]. April [AN00a, AN03, USE01]. arbitrary [BCG14]. Arc [CNZS17].

Arc-Weighted [CNZS17]. ARCH [Ada98].

Architectural...
[ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07].

Architecture
[ACM98c, BBD, BVL09, BTE98, Car89b, CL95, DS09, DQ95, EBK91, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HHM991, HHOM91, HHOM92, KBH+94a, KBB+04b, KIAT99, Ma91, MM01, MB99, PVS+17, PTMB91, PKB+91, PS01, REL00b, RSO8, SLJ+18, SCL05, SHK15, SSG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, An97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cho92, Don92, Dub95, Evr01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HF88, HKN+92, HMN+92, I+94, KHP+95, KT99, K095, Mah13, MK12, Nm00, NPA92, PYP+10, PDP+13, PWD+12, RGT17, REL00a, Rel00c, RCDG06, SWY94, Soc02, TNB+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04].

Architecture-Agnostic [SLJ+18].

Architectures
[AT16, AB19, Day92a, Day92b, H02, GBB93a, GN00, HPA+15, HMLB16, Ho98d, IXS18, IBST01, JLS99, KTR+04, LLKS12, LB92, LH94, LG06, LDTr+16, MS02, MN00, MSU+16, NGGA94, QOIM+12, RJL+09, SGM+97, TG99, THA+12, Tra91, TJY98, TSV12, VCM91, WG94, XWG+14, ZAK01, ABD+12, ABC+15, ABC+09, BI+11, BS10a, BH95, CML00, CFG+12, Cat94, DTR18, FTAB14, GBB93b, G05, Gil94, GL98b, HFV+12, ICT+10, JMS+10, LMC14, Lu94, MLCW11, MLC04, Mus09, OCRS07, PT91, PPA+13, PJ3A07, PHCR09, RH10, RKBH11, SBCV90, Sch08, Sha95b, SLG06, S49, SQM09, SKA01, TEG94a, The95, TKHG04, ZT98].

Area

Asynchronous [HH11, KFG15, KG07, KSD04, TP18, Yoo96a, GMR90, Khe97, KASD07].

Asynchrony [SR98]. Athena [Egg10, Hud96]. ATL [SW97]. Atlanta [ACM99]. Atomic [KKS+08, RD06]. Atomicity [DEL18, MWP+21, BLM06, BNS11a, BNS11b, BNS12, FF04, FFQ04, FF08, FFLQ08, FFY08, WS06].

Auto-vectorization [RKHT17].

AutoDock [TO10]. Automata [ES97].

Automata-Theoretic [ES97]. Automated [BS14, DVR02, KZC15, TR14].

Automatic
[BV09, HBTG98, JJY+03, KW17, Mou00, SEP96, YLL16, GJ11, JSB+11, SLP+09].

Automatically [NWT+07, TG99, CJ91].

autotuning [CSV10]. Availability [SP07]. Avenue [An09]. avoid [Pra95c]. avoidance [LC13, WLK+09].

AVP [An00]. Aware [AG18, BHP+03, CCWY17, FSPD16, FSPD17, GVT+17, HC17, Kim14, LZS+08,
Away [GBK+09]. AWTEventMulticaster [Hol99b], axiomatic [TVD10]. AXP
[Ano97a].

B [Ano00c, DLZ+13]. Back [ECX+12]. Backup [Ano00b]. Balance [SEP96]. balanced
[CKZ12]. Balancers [KMAG01]. Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, WYT+20, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKIO04]. Baltimore [IEE02]. Bandwidth
[FSPD16, LTL+16]. Bandwidth-Aware [FSPD16]. Barcelona
[ACM95a, ACM98c, DLM99]. Barnes [ZBS15]. Barrier [CJW+15]. Barrier-Based
[CJW+15]. barriers [LZW+14, ZJFA09]. Base [VE93]. Based
[Alf94, AT16, AKP99, BVL09, BNH01, CJW+15, CKRW99, CMBAN08, DSR15, EGP14, GHG+98, GFJT19, HHOM91, HHOM92, KS16, KG05, KEL+03, KW17, KS97, KRH98, KNE+14, Kwo03, LLKS12, LG06, LS11, MWP+21, MGQS+08, MKC97, OB13, RSBN01, SG18, TESK06, WLM15, \AdBrRs05, Ada98, AAHF09, Ama98, AKSD16, BKK17, CNQ13, CKRW97a, CKRW97b, CNV+06, DG99, DQ26B, EG11, GDA+17, GE10, HLGd19, JD08, JSMP13, KR01b, KKJ+13, KI16, KBF+12, LK15, LZW17, LLL10, Mus09, NBMM12, NFBB17, PGG06a, PGG06b, PGG06c, PAdS+17, PAB+14, Ram94, RRPP06, Rto19, RS08, SKS+92, TE94a, WCW+04b, WCW+04c, WCW+04d, WQLJ18, YL16, Day92a, Day92b, RSB+09]. Bases [GK94, Swi99]. basic
[JJ91, KTLK13, Esp96]. Basis [AGK96].

Batching [LML+19, DKG18]. Be [Pet03, Ano95a, Ano95b, Bov05, MMTW10]. Beach [USE92b]. beat [Gep00]. becoming
[Ano92a]. Behavior
[CA20, KLS92, LB17, REL00b, ACD+18, DESE13, GS00, REL00a, REL00c]. Behavioral
[Sch17]. Benchmark
[BTE98, EHSU07, MIl03]. Benchmarking
[HHOM92]. Benchmarks [CRE99]. Benefits
[MHG95, LB95, LB96b, SD95]. benign
[NWT+07]. Berkeley [USE01]. Better
[BDM98, Pla99]. Between [WG94, Pan99, SS95, Yam96, ZCSM02a, ZCSM02b]. Beyond
[EBK+92]. biased [RD06]. Bibliography [Bee98]. Big
[JLA16, AC09, CDL13, LTL+16, LHS16]. BIGSAM
[Ply89], binary
[BCCO10, KBF+12, TJJ+11]. binding
[RČV+10]. Birthmarking
[TLZ+17, TLZ+18]. bisection [RRMJ12]. bit
[Kus15, SBKK99]. Black [Pla99]. BLAS
[ARvW03]. BLIS
[VSM+16]. Block
[ABLM19, CWW17, KS97, ZM07, KTK12, KTLK13]. BlockChop
[MK12]. Blocking
[Am96, GN00, Nak03, SB80]. Blocks
[Pet03, QOOQV+09]. Blue
[GBB+05]. Boltzmann
[SKG+11]. Bonn
[Wat91]. Book
[Lar97, Van97a, Vre04]. Bookshelf
[Ano99, Cre98, Wil97, Wil00]. Boost.Threads
[Kem02]. Boosting
[AKSD16, APX12, MLC+09, YZ07]. boosts
[McM97]. Bootstrapping
[KH18b]. Borland
[Kel94a, Kel94b]. Borrowed
[DC99, DC00]. Borrowed-virtual-time
[DC99, DC00]. Boston
[Ano94f]. Both
[KZC15, CSZB16]. Bothnia
[CCW+11]. Bottle
[DEE13]. Bottleneck
[JSMP12]. Bottlenecks
[SU96, Zab02, DSIEE13, CS12, DSG17]. Boulevard
[ACM99b]. bounded
[LZZT15, PAdS+17]. Bounding
[Lun97, Lun99, MQ07]. BowMapCL
[NTR16]. Box
[Ano00b]. Braids
[BS06]. Branch
[AKS06, EPAG12, IBST01, CTYP02, CPT08, GL98b, MTS10]. branches
[UZU00]. breadth
[LAH+12]. breadth-first
[LAH+12]. Break
[BBM19]. breakpoint
[Ram94]. Bridge
[Ano00b].

BSDCon Bringing BTRIMER [TJY+11]. Browsing [Hay93]. **Briefs** [Gar01]. **brief** [Pra95b]. Bringing [Jon91]. **Broadcast** [SW08]. **Broadcast/Reduction** [SW08], brokers [Sch98]. Browsing [HF06], BSD [SS95]. **BSDCon** [USE02], **BSP** [SYHL14]. BTRIMER [TJY+11], buffered [DLZ+13]. buffers [Koo93]. bug [NBMM12], bugs [JWTG11], VTS12. **Build** [Tro18], **KSB+08**. Building [Fon97], KS97, Pet03, ZM07, Omm04. **Building-Block** [KS97], bulk [RD06]. **Bulldozer** [BBSG11], Bunka [Ano03]. Burrows [BVP+19], LHS16, NTR16. **Bursty** [HMCP16], **Bus** [MKC97], Cat94, HHPV15. **Bus-Based** [MKC97]. BVT [DC99, DC00]. **Bytecode** [ABH+01], Coo02, GH03, A+01, CAR08.

C [Kel94a, Kel94b, Lev97, Pla98, Pla99, Rod95a, Vre04, Ait96, AGEB08, Ano99, BM94, Bae92, Bed91, BYLN99, BPL07, BA08, CFK+91, CGR92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HLGD19, HH97, Jon91, KDG97, La00, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pom98, PS03, PS07, Pul00, Ric91, Röt91, SG18, SC17, Sch90, TB07a, TB07b, Vo93, W100, Yam95, Yam96]. C# [KPPR06, Stä05]. **C-based** [RSB+09]. C-Stream [SG18]. C/C [Pla98, Pla99, BYLN99, ND13, ND16, Pet00, Pul00]. C3I [BTE98]. CA [ACM94d, IEE89, USE92b, Ass96, USE00a, USE01, USE02]. Cache [BCZY16, CMX10, CCWY17, FJ08, GBP+07, GL98a, HLO8, HKS96, KLS92, KET06a, LLD17, PEA96, PPG11, SLJ+19, W94, ZJS12, ZWL15, Car89b, Cho92, KHP+95, KLH+99, MKR10, PPGS20, Raj93, Sha95a, SSK+07, WCC+07, ZJS10, ZKR+11]. Cache-conscious [GBP+07]. Cache-oblivious [HL08]. CacheFlow [KET06a]. Cacheline [PBL+17]. Caches [FJ08, PHBC18, KGGK09, ROA14]. Caching [DNT16, KC99, Boo93]. calculations [BD06], calculi [LVS01]. Calculus [II+01], ORH93. Caldera [Ano94a], Calif [AMC01]. **California** [ACM93b, ACM95b, ACM98b, IEE99], USE89, USE91a, USE93b, USE96, USE98b, USE01. Call [GC96, Hub01, ORH93, Xue12]. callbacks [VS96]. calling [TYY99]. calls [KASD07, TLZ+16]. **Cambridge** [USE93a]. Can [Ber96b, Dye98, Pet03, Ano92a, Ber96a, Hig97]. **Canada** [Ano00b, BT01], cannot [Bo05]. **Cap** [HC17]. **Capabilities** [VD08, Ply89]. capability [CKD94]. capability-based [CKD94]. capacity [SSkP+07]. Capping [RCC12], capturing [BKC+13]. **Carolina** [ACM93a]. Cascadia [ZL10]. Case [AH00, AGK96, Ch15a, EE14, LSB15, TAK+00, TES06, VK99, BDLM07, CAS14, CL14, HJ+93, KPPR06, KI16, MSM+11, MN03, SP05, Sod02, YN09, LPD+11]. **Cathedral** [USE02], **causality** [HH16]. cavity [RM99]. CD [Ano00b]. CDSChecker [ND13]. CE [Tim03]. Center [ACM98d, ACM99b, ACM00, Ano03, Hol12, IEE90]. Centers [JGS+19]. Centric [BD02, Bre02, Ham96, DHM+12]. Certified [GSK+18]. CFD [DK02]. CG [TAK+00]. **CGRAs** [PJS15]. chain [SBC91]. Chaining [JY15, KFG15]. Challenge [Ano99]. Challenges [Ano99, GJ97, AG06]. Changing [Gar01]. channel [MN03]. Channels [EPAG16]. chant [HCM94, Ano94c]. Chapter [SKK+01]. Characterization [Ano05, BCG+08, DS09, LPM17, MR94, MM+05, DWYB10]. characterizations [GS00]. Characterizing [CA20, Gle91, OdSSP12, SSN10, MTPT12]. Charleston [ACM93a]. **Chass** [Ano00b]. Chebyshev [Röt91]. Checker [FQS02, MWP+21, FF04, FF08, FFY08]. CheckFence [BAM07]. Checking [ES97].
BMN99, FJ08, SCB15, Sho97b, TP18).

Commutativity [AC09]. Compact [HEMK17]. compaction
[WK08a, WK08b, WK08c]. Comparative [SKP+02, Yoo96a, PL03]. Comparing
[KPPÉR06, SV96c, SV96a, SV96b].

Comparison [ILFO01, SAC+98, GL98b, KIM+03, MKIO04, MMTW10]. Compass
[PWD+12]. Compatible [MM14, LBH12]. competition
[YL16]. Competitive [MAH18]. Compilation
[ACMA97, HLB94, BRRS10, GC92, HCD+94, Tsa97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time
[CS95a, CS95b]. Compile/run
[TSY99]. Compile/run-time
[TSY99]. Compiler
[ATLM+06, BD00, BF04, CHH+03, CSS+91b, SCv91a, SCv91b, SYHL14, Sin99, TY97, TGB05, YBL16, CZSM02a, ZCSM02b, ZP11, BCG+95, BAD+10a, BAD+10b, BVC97, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Fon97, Gol97, Hop98, JSB+11, MSM+11, McM97, Müh03, RKCW98, Sch91, SKKC09, UZU00, WLG+14]. compiler-assisted
[Dub95]. Compiler-Controlled
[CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91]. Compiler-directed
[DKZS12, SKKC09]. Compiler-Driven
[YBL16].

compiler-managed
[WLG+14]. Compiler-Supported
[ZP11]. Compilers
[SS96]. Compiling
[ABNP00, ABH+01, TLA+02, HTZ+97, Sch91, Shao8, A+01].

Complement [YFF+12]. Complete
[BR15, MWP+21, Sch14, BW97, DWS+12, FFY08, KGGK09, NV15]. Completion
[AGK96, BGK96, Lun97, Man98, BGK94c]. Complex
[SZM+13]. Complexity
[EG11, CMX10, SKA01]. complexity-effective
[SKA01]. Compliant
[BGK96, SP05, Hig97]. component
[NFBB17]. component-based
[NFBB17]. Components
[Gar01]. Composability
[MLGW18, SS10, FKS+12]. Compositions
[KS97]. Comprehensive
[TAM+08]. Compressed
[PBL+17]. Computation
[ACM94c, BFA+15, CWS06, HLB94, Hon94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Füj97, KKT+18, KG07, Kör91, NJ00, Sha98, ST98, WHJ+95]. computation-to-core
[KKT+18]. Computational
[LNI+19, PCPS15, Bar09]. Computing
[BL98, FS96, KC98, KC99, WJ12, YYJ03, Bhu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96]. Compute
[BBBG11]. Computers
[Ano94a, ANO94b, BVL09, CNB+00, Gol94, BD06, DNB+12, GKe05, I+94, PBDO92, WQLJ18].

Computers
[Ano94e, SS96, BCM+07, Boo93, LP09, SJ95]. Computing
[ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Ama89, CGS+20, CT00, Den94, EJ93, FPT11, FGKT97, Gar01, GRS97, Ham96, Hol12, HC1, IEE97, Joe96, JCP17, Kim94, KU17, Lan97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta90, SKA01, Tem97]. Concept
[AMdBdRS02, BB80]. Concepts
[McM97a]. Concrete
[NP+14].

Concurrency
[BM94, GMGZP14, MLR15, MQLR16, ME17, NFBB17, Tro18, ZWL15, BA08, But14, CBM10, DKG18, GCC15, HZD13, L07, NBMM12, NJK+16, RR96, RR03, SK12, VTSL12, Yan02, ZWL+16, dB09, SB80].

Concurrence
[BVLM19, ILFO01, K097, KCCD99, MSM+16, NPT98, PCLM16, PF01, SV19, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, GSK+18, HZ12, HL93, JPS+08, JP92, KIM+03, KGGK09, LPD+11, MSM+10, MKIO04,
Men91, NHFP08, Nef99, ND13, ORS+06, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZSJ06, Hay93.

Condensed [BIK+11], Condition [Hol98c, Yao02], Conditional [IBST01, NA07]. Conditions [HM96].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM01, Ano90, Ano94a, AOV99, BT01, Hol12, IEE94b, IEE95, IEE96, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94c, Est93, KKD03]. confidentially [NSH14].

Confidentially [Tro18], Configuration [GPB+17], Confirmation [CJW+15]. conflict [NJ16, vPG03]. conformant [Stu95]. Congress [Ano94d], conjunction [Ano94e]. Connect [Ano00b]. conquer [FN17, TP18]. conscious [GBP+07].

Consistency [ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, AAS+19, BAM07, Cho93, DNB+12, GS00, HT14, QS14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].

Constrained [TLGM17, GW10, YN09]. Constraint [YDLW20, SCG95]. constraints [HB15]. Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05]. Contact [Nak03].

Contemporary [ZJS12, ZJS10]. Content [WLM15]. Content-Based [WLM15].

Contention [ALB+18, XSA+08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].

Contention-aware [XSA+08]. Context [TLA+02, GN92, JLS99, FD95, LG04, MQ07, PAD+17, PFH06, SCB15, Yn07, LG04]. context-bounded [PAD+17]. context-sensitive [PFH06, LG04]. contexts [BGC14, TE94b, WW93].

Contextual [BGZ97, KH18a, NHFP08]. continuation [AAHF09]. continuation-based [AAHF09]. continuations [DBRD91, GRR06].

Continuing [Ano99]. Continuous [RCC14]. Continuously [DTLM14]. Contour [GFJT19]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, DKG18, FK12, FSYA09, GCC15, MLW11, NT14, PPA+13, PWJ18, Polo90, RP+09, UZO00, WLK+09, Yoo96b]. control-flow [NT14]. Controlled [ALSJ09, BCG+08, CSS+91b, CGSV93, SCv91a, CS+91a, CSS+91c, Luk01, MWP07, Sch01, SCv91b].

Controller [RLJ+09], controllers [KASD07]. controlling [AGN09, BKC13]. controls [McM96c]. Controversial [Gar01].

Converting [LEL97a, LEL97b]. convolutions [RB18]. convolver [Kep03]. Cool [Ano00a, Ano03, Wei97]. cooperation [BM07, SKBY07]. Cooperative [AMRR98, DNT16, ILFO01, LC13, KIM+03, MKIO04, TCG95]. coordinated [KK13].

Coordination [BDF98]. Coping [San04]. Coprocessor [LRZ16]. copying [HL93].

CORBA [DHR+01, PSCS01, SV96a, SV96b, VS96]. Core [CC18, CVD18, FMY+15, FJ08, GBK+09, IJS18, KST04, KT+14, MP01, MNU+15, MM01, MB05, PVS+17, PHBC18, PM14, QOM+12, VCM19, ABC+15, AMPH09, CFB+12, CS+05, DTR18, DWYB10, GW10, KKT+18, KBF+12, MLW11, MLC+09, MTPT12, Mus09, RGT17, SMQ09, VPQ12, WCC+07, YZ07].

CoreDet [BAD+10a, BAD+10b]. Cores [CCK+16, RKK11, TCS20, CWS06, MAF+09, SW16]. coreSNP [GAC14].

Corner [SW97]. Corona [VSM+08].

Corporation [Ano00b, Ano00b]. correct [DJLP10, SP00b, Shi00]. Correction [TLA+02, HTDL18]. corrective [LG04].

Correctness [Ram94]. Correlation
Deductive [AdBdRS08, BK13]. Deep
[SM19]. Deeply [GKCE17]. Defect [OB13].
Defragmentation [PVS+17]. Delaunay
[ABC+09]. Delivering [SCCP13].
DeLorean [MCT08]. Demand [KKJ+13].
Demand-based [KKJ+13]. Demus [Sri93].
Demus-2 [Sri93]. deepen [ABD+12, MM07].
Dependable [SUF+12]. Dependence
[CSZ+17]. Dependences
[DSR17, BKc+13, CBB+16]. dependencies
[NPC06]. Deployment [GARH14].
DepSpawn [FA19]. Depth [McM96a, McM96b, McM96c, McM98a, McM98b].
Derivation [Kim14, SV19]. Derivative
[TT03]. describes [Yam96]. Design
[ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GM93, GRS97, GM98, Hai97b, JGS+19, KGP+95, La900, LML+19, MB99, NB93, Ra93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBK99, The95, TAM+08, Ven98, ZBS15, AM909,
BBH+17, BO96, Car98b, FWL03, HCM94, Hud96, KU17, KGGK09, Mah11, Met95, Moo95, Mof96, MKR02, N6m00, OKID92, OCR907, RSB+09, SB90, Srt93, Ver97, WLG+14, Wan94, WCV+98, Xue12].
designed [San04]. Designing
[Dru95, GKFZ12, R9093, R9e195, T912, Hai97a, TCC95]. Designs [SM19]. Desktop
[Ano97a, FURM00b, FURM00a, FURMO0b, Mar97, Pra95b, WSK907]. desktops
[Ano94b]. despite [Len95]. Destrocing
[Pet00]. destructive [FF10]. Desupport
[DHR+01]. Detailed [MKR02, ACC+03].
Details [FMY+15]. Detect
[CZS17, DS16, CZWC13]. Detecting
[DSR15, RBK+09, SK97, FF10, JPS09].
Detection
[ABF+10, CC14, HDTL18, UKCT15, KW17, LS18, LLS06, Mou00, TLZ+17, TLZ+18, ZLJ16, ACF06, CLL+02, CVJL08, FFO9, HR16, LLLC15, LTHB14, MKM14, MNN09, NBMM12, NAW06, NA07, PS03, PS07, PFH06, RVS13, RM00, SR14, Sch89, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12].
Detection/Correction [HTDL18].
Detector [SBN+97, SLG06]. determined
[Kub15]. determination
[BS10b, LWV+10, LZW+12]. Deterministic
[DK02, KRB12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DLCO09, DNB+12, LZW14, MAAB14, OAA09, QSH16]. Deterministically
[MCT08]. DetLock [MAA14]. develop
[Fek08]. Developer [IEE96]. developers
[Way95]. Developing
[SP00b, Shi00, TKA+01, OT95].
Development
[Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, ARvW03, Hig97, Pom98, TNB+95]. devices [Xue12]. diagnosing [CS12].
diagnostics [GGB+05]. diagrams [SK12].
Diego [ACM93b, ACM98b, USE99, USE93b, USE98b, USE00a]. differences [Yam96].
Different [BLPVO4, GLC99]. Differential
[BTL+19, Loe97, MQLR16, MLR15].
Difficult [CTYP02]. Difficult-path
[CTYP02]. Diffusions [LTM+17]. Digital
[SS91]. Digraph [CNZS17]. dimension
[NJ00]. dimensional [AR19]. DIMM
[ALS09]. Direct [PR98]. Direct-threaded
[PR98]. Directed [LPE+99, STR16, AR19, DZKS12, Fan93, Sen08, SKKC09].
directory [QSOL14, HR10]. DISC [Don92].
disciplines [Bar09]. Discrete
[WTY+20, Leg01, TKHG04, WLK+09].
discussion [Sho97a, Sho97b]. Disintermediated
[BDJ06]. Disjoint
[SJA12]. Dispo [MGK+00]. Dissecting
[ACC+03]. Distance
[BCZY16, KZTK15, SV19, KNP16].
distinguish [HL93]. Distinguished
[ABH+01, TKA+01]. Distributed
[ABNPO0, ABH+01, BBD+91, BWXF05, BHKR95, BC94, CV98, CKJ95, DKA16, FSO06, G979, Jen95, MKG+00, PG92, Pra95a, RLJ+09, RBP000, RW97, RCRH95, SUF+12, TDW03, USE92b, VS96, YAS95, ZLJ98].
Ano96, A+01, BCG+95, CML00, Car89a, Gol96, GKK09, Gum97, HB92, HMC95, HWW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97, Pha91, Ply99, QSQ14, Sto02, Tod95.

Distributed-Memory
[RCRH95, BCG+95, HWW93].

Distributed-sum [TDW03].

Distributed-sum [TDW03].

Distribution [SSYG97, ZAK01, CY09].

divergence [MTS10].

Divergent [WJA+19].

divide [FN17, TP18].

Divisors [Kuc92, Kuc91].

DMP [DLCO09].

DNA [LZL+20].

Do [Cri98b, Cri98a, RPNT08, Ber96a, Ber96b, YLLS16].

Dock [BCS11].

Docking [BCS11, TO10].

do [JCP17].

Document [HF96].

Does [Hag02, RKK15, San04].

doing [Yam96].

domains [Swi09].

donor [HHPV15].

DOSThread [VE93].

DoubleVision [Ano00b].

downdating [VV11].

Downturn [Gar01].

DRAM [LLKS12, kSYHX+11].

DRAMs [ALSJ09].

drf [MSM+16].

DRFX [MSM+16].

Drinking [CZSB16].

Driven [DTLW16, For95a, For95b, HLB94, KET06a, KET06b, LWSB19, ME15, ME17, TESK06, YBL16, CSV10, Evr01, RVS13, RSB+09, SLP08, SQP08a, SQP08b, SQP08c, YNPP12].

driver [CCW+11].

DSLs [RKH+17].

DSM [ABH+00, AB01, AB02, BDF98, KKH04].

DSM-PM [AB02].

DSM-PM2 [AB01].

DSMs [FBF01].

DTS [BHHR95].

Dual [BCC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11, FRL18].

Dual-Core [KST04, MB05].

Dual-Level [BCC+00, DK02].

Dual-mode [FRL18].

dual-personality [CCW+11].

Dual-Processor [EHH95].

Dual-Thread [MB05, WS08].

Duplex [KG05].

Duplication [Kwo03].

Dynamic [BPS05, CJC+15, FSYA09, GPB+17, HSS+14, Hig97, KMA01, KPC96, KSC98, KSC99, KUC15, LK20, MVZ93, MTS01, Nak01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK+01, Sta90, SG96, WHG07, XMN99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Chr95a, Chr95b, Chr96, Don92, FF04, FF08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SCB15, SLG06, TJY+11, WW96, BK13].

Dynamic-multithreading [LSS12].

Dynamically
[PGB12, TLGM17, DMBM16, Kep03].

dynamically-typed [DMBM16].

Dynamics [LNI+19].

DynPO [GPB+17].

e5500 [BGH+12].

Early
[GL91, PBL+17, SLF08].

EARTH
[HTZ+97, HMT+96, Soc02, TAK+00, TKA+01, TKA+02, TMA03, Nak03].

EARTH-MANNA [HMT+96, Soc02].

Easy [FA19, Har99].

Easysoft [Ano00b].

ECMA [Stu95].

ECMA-162 [Stu95].

Economics [Bar09].

Edinburgh [AVO+99].

edit [KNPS16].

Editors [GBB93a, GJ97].

Education [Gar01].

Eff [BAD+09, GLB+88b, YS+09].

Effective
[ABLL92, DN94, GH03, GMGZP14, NAW06, NSH14, PGB16, RVS13, Sat02, TMC09, TY97, WLT19, CBM10, JSB+11, MNN09, MTC+07, SKEA01, Tsa97b].

Effectiveness [PR05, TE94b].

Effects [Cho03, HRH08, KLH+99, KRBJ12, NHFP08].

Efficient [TOK02].

Efficiency
[AJK+12, Ano05, TAH+12, AMPH09].

Efficient
[AD08, ALSJ09, AlH94, ABN99, BCZY16, BGDMWH12, BJ+96, BL98, BMN99, CZS+17, CYYL18, CLL+02, DMBM16, GA03, GJT+12, GRS97, GS06, GN96, HMCP16, HSS+14, HR10, HEMK17, KPC96, KASD07, LS18, Lem02, LHG+16, LZBW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, Tro18, ZLJ16, ZTN19, ATL+06, BL93, JK+95, BK+04, EKKL90, FWL03, FF09, GB99, HSD+12, KSB+08, KNPS16, KSD04, LK13, LW+10, LML+19, LHS16,
LZW+13, MSM+10, NLK09, OAA09, Pan99, PSG06a, PSG06b, PSG06c, PRS14, PS07, PPGS20, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZLW+16, FSYA09.

Efficiently

[KBFR+12, MCT08, SW16, Blu95, BKC+13].

eigenproblems [ABD+12].

eigenvalue [BIK+11].

Elastic [SG18].

Electronic [Ano00b, BB00].

Elegant [Hub01].

Element [HBTG98, MS02].

Elementary [HKN+92].

elide [MLS15].

Eliminating [DSG17, OCT14, RD06, MTPT12].

elimination [MK12].

elision [NM10].

Elliptic [Loe97].

EM-4 [BAM93, SKS+92].

Embedded [BVM19, BGH+12, DS09, Dru95, GKCE17, KG05, KE15, MS15, WM03, ZDTM91, DCK07, KVN+13, KBF+12, LLLC15, LVbH06a, LVbH06b, LVbH06c, RSb+09, SKP+13].

Embedded-Systems [Dru95].

Embedding [Pul00].

Energy-Aware [PR05].

Energy-Efficient [GJT+12, LRK+13, KE15].

energy-performance [PJZ07].

enforcement [GWM07, SCCP13].

Engine [SG18, CNQ13].

Engineering [GJ97, LSB15, WCV+98].

engines [HB15].

England [ACM94c].

Enhance [FSPD17, FJ08].

Enhanced [Ano00b, EJ93].

Enhancing [KKT+18, OL02a, OL02b, OL02c, HW93, RHH10].

Environment [ABNP00, BC00, CDOS01, EC98, KKH03, PG92, BK96, DS+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWCY94, Sta90, Tem97, WCC+07].

Environments [AKP99, BDN02, KG05, SP00a, EJJ+96, RGG+12, Sam99, Ver96, Way95].

equality [AD08].

Equalization [TLGM17].

Equations [Lowe97].

equivalence [AAJ+19].

equivalent [Pra95c].

Eraser [SBN+97].

Errata [Ano01, Ano05].

Error [EUVE06, OA19, SSN10].

Errors [SK97, VACG09].

escape [SR+19].

Esterel [LBVH06a, LBVH06b, LBVH06c, LVH12].

Evaluating [BL96, CML00, NPT98, PSCS01, RPNT05, Sch98, SD95, TG09].

Evaluation [Aru92, Boo93, CML98, CL95, CBN+00, EJK+96, Eic97, GLC99, HN91, RNBS96, SC+15, TT03, ZL10, BGD+07].

Evaluation [MM14, Roh95].

evaluator [SP00b, Shi00].

even [Ano94b].

événement [Swi09].

Event [Ber96b, CKR99, For95a, For95b].

Event-Driven [For95a, For95b].

event-handling [KBEP+03].

Events [BDN02, L207, Van97b].

Evolutionary [TA+00, KU17].

Examining [MS87, MS89].

exact [Sch17].

exclusion [BRE92].

except [DH98, Lea96].

Exceptions [AdBdRS08, KR01b].
exclusiveness [Lie94]. execute [APX12].
Executing [Blu95, BS99]. Execution
[ABH+01, BTL+19, CC18, CJ91, Coo02, EC98, Far96, GMGZP14, GS06, HMCP16, HEMK17, HZ12, KS16, KLG08, KI95, KG94, ME15, MKG+00, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSN01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, DiI93, JWTG11, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSaJ08].
Executions [CdOS01, HZD13, Roh95, STR16].
Exemplar [BLC97].
Existing [Ric99].
EXOCHI [WCC+07].
expansion [YKL13].
Expectation [SC17].
Expectation-Maximisation [SC17].
expediting [YL16].
Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96].
Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b].
Experimental [BLC97, EGC02, YMR93b, GRS06, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a].
Experiments [DV99, GMR98, SZM+13, VSM+16, VV00].
Explicit [DV99, VDBN98, BM07, UR+02b, URS03, VV00].
explicitly [MT02a, MT02b, MT02c].
exploit [Ano00c].
exploitation [KVN+09, Pгон60a, Pгон60b, Pгон60c].
Exploiting [AAC92, EUVG06, FFQ04, KDM+98, KEO+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96].
Exploration [PTMB09, Sch17].
Exploring [AACK08, BS10a, LPM17, SE12, WWW+02].
Expressions [Hei03].
Extended [BLG01, DV99, Рот19, VDBN98].
Extending [BF08, Mar03, TCS20].
Extensible [CdOS01].
Extension [RCC14, CCW+11, Lan97, PDP+13, Tem97].
Extensions [Sch90, Bau92].
external [LWV+10].
Extracting [GP95].
Extremal
[FAB [YWJ03].
Facility [KSU94].
Facing [KML04].
Factorization
[ABLM19, But13, CYYL18, CIM+17, Dav11].
Factorizations [VD08].
failure [STR16].
failure [CZ02, LC13].
failure-inducing [CZ02].
fails [HZD13].
Fair
[MQ08, FSPD17].
Fairness [ES97, FSPD17, GWM07, VS11a, SCCP13, WTKW08].
false [LTHB14].
Fast
[PCM16, BDM98].
FlexibleTrack [FF09].
Fault
[BVM19, HTDL18, OA19, RRP06, RM00, VPC02].
Faulty [BVM19].
FCRC [ACM96].
Fe
[Gol94].
Felix
[Ano00c].
Fernandez
[Ano00c].
fetch
[EE09a, TEE+96, AGJ18].
FFTs
[MJF+10].
Fiber
[GDSA+17].
Fiber-based
[GDSA+17].
fibers
[BS06].
Fibonacci
[GFJT19].
FIFO
[HHOM91, HHOM92, QSaS+16].
fifth
[ACM93b, AQV99].
File
[FG91, GJT+12, KS97, Pea92, WLM15, BLC97, DZKS12].
Files
[RRK11, CCC12, kSYHX+11].
filtering
[Kep03].
final [HCM94].
Finding
[MNG16].
Fine
[AZG17, BBG+10, BSSS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, KG94, LKBK11, LV01, LFA96, MKM17, NS97, PBR+15, DFC+19, TY97, TAK+00, YSS+17, BGC94c, Dub95, Gol97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, RP+09, TXH04, We98a, kSYHX+11].
Fine-Grain
[AZG17, CSS+91b, HG91, KG94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94,
Loi95, MLC+09, Met95, PL03, TKHG04.

Fine-Grained [BBG+10, BSSS14, But13, LKBK11, PBR+15, DFC+19, TAK+00, YSS+17, IBS01, BOK94c, Dub95, Gol97, RPB+09, We98a, kSYHX+11]. Finite [HBTG98, MS02, Cor00]. Finite-Element [MS02]. finite-state [Cor00]. firmware [ABB+15]. First [MLSM91, We97, LAH+12, MHW02, Hon94].

First-class [MLSM91]. FL [ACM94a]. flat [PPGS20]. FlexBFS [LAH+12]. Flexible [ABG+08, KS07, Lem02, MSM+16, SP00a, Sam99, SCM05, WW93]. Floating [MCS15, RBF+89]. Floating-Point [MCS15, RBF+89]. Foundations [BA08, Gol94].

Four [CH95, MTN+00, KNPS16]. Four-Russians [KNPS16]. Four-Way [MTN+00]. Fourier [TT03, TTKG02, BCS11, HN91]. fourth [USE96]. FPGA [DFC+19]. fragment [APX12, MAF19]. fragments [LG04]. Framework [BMF+16, BTL09, BF04, BP19, CV98, DHR+01, EFG+03, KC98, KF97, LCS04, LMJ14, Lo97, NSP+14, Rei01, DFC+19, VSM+16, Yam95, ZD1M9, AMC+03, BDF98, EHSU07, GJ11, Hop98, PV06].

France [FR95]. Francisco [ACM95b, USE02]. Free [DELD18, Way95, AR19, DTLM14, GP08, MLS15, Mic04, ST05]. free-lunch [DTLM14]. FreeBSD [An00b, Bal02]. freeness [AHK08]. Freescale [BGH+12].

French [Zig96], frequent [GBP+07]. Fthreads [Nag01]. Fukuoka [An00c]. Full [MHW02, GB99]. Full-system [MHW02].

Geant4 [SCD+15]. GEMM [SLJ+19]. Gene [GBK+05]. Gene/L [GBK+05]. General [Ber96b, BF04, HSS+14, Man98, YKL31, ZSA13, Ber96a, Car99a, DC99, DC00, HSD+12, MQW95, SKA01].

General-Purpose [Ber96b, HSS+14, Man98, Ber96a, DC99, DC00, HSD+12].

generalized [ABD+12, BCM+07].

Generating [BD00, MJF+10]. Generating [AZG17]. Generation [ARB+02, BTL09, Coo95, EFN+01, EEL+97, HEMK17, HYY+15, NBS+15, RNSB96, TGS05, Tra91, TSVI2, ABC+09, EFN+02, GJ11, Gep00, KI16, KL13, LSS12, LSS19, Way95, CH04].

generational [DL93, WK08a, WK08b, WK08c].

genereations [Ro95]. generators [SLF14].

Generic [ABH+00, AB02, Fer13]. Genetic [NSP+14]. genome [LHS16].

GeoFEM [Nak03]. Geometric [Caz02]. Georgia [ACM99a].

Germany [RM03, Wat91].

guesting [MAH18]. ghosts [TV14].
Gigabit [AHW02]. Gigabit/sec [AHW02].
Gilgamesh [SZ02]. glasses [CZSB16].

Global
[HH11, PWL+11, Ten02, FLWL03, LZBW14, OCT14, OA08a, OA08b, OA08c, Ano98b].
globally [CZWC13]. gmm_diag [SC17].
gmm_full [SC17]. GNAT [dIPRGG99]. Go [Mia90]. Going [Bak05b]. Goldilocks
[EQT07]. good [Mat03]. GPGPU
[CCWY17, LLKS12, YZ14]. GPGPUs
[LSB15, ZWL15]. GPS [TVD14]. GPU
[APX12, Bon13, DTR18, FTP11, KI17, LWSB19, LTL+16, LML+19, LHG+16, LAH+12, WLG+14, WA+19, XWG+14, YSS+17, YSS+18, ZCO10]. GPU-Oriented
[LHG+16]. GPUTet [Bon13]. GPMixer
[LWSB19]. GPUs [CV10, DNT16, LBH12, SKG+11, VDO8, WJ12]. Grace [BYLN09].
gradients
[EQT17]. grain
[AZG17, CSS+91b, HG91, KG94, LFA96, MKM17, NS97, ZM07, CSS+91a, CSS+91c, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TY97, TKGH04]. Grained
[BBG+10, BSSS14, But13, LKBK11, PRB+15, DFC+19, TAK+00, YSS+17, BKG94c, Dub95, Gol97, LVS01, RPB+09, We99a, kSYHX+11]. Grande [ACM01].
Granule/ISCOPE [ACM01]. Granularity
[KI95]. Graph
[CFG+12, CL05, EJRB13, HPA+15, KS93, KLS92, MM14, LK15, LZW17, RVR04].
graph-based [LZW17]. GraphCT
[EJRB13]. Graphical [ACR01]. graphics
[BDGWH12, CCW+11, FSYA09, PYP+10].
Graphs
[HPB11, Nik94, OB13, AD08, ABG+08, DSE13]. Grass [MWTW10].

Greastest
[Kuc92, Kuc91]. Green
[SKP+02].

greener
[MWTW01]. Grid
[KEL+03].

Grid-Based
[KEL+03]. GRIDDiron
[MCS15]. grids
[SKG+11]. Griffin
[Ano00c].

Gröbner
[AGK96]. Group
[BH01, DLM99, QSH16]. Group-Based
[BH01]. Grouping
[OR12, WC99]. groups
[WZSK19]. Grove
[EE89]. Growth06_v2
[Dan09]. Guarantee
[Hag02, BGP06].

Guarantees
[PSM01, YWJ03, GPS14, MTC+07, PSM03, ZHCB15]. Guarded
[Sim97]. Guest
[GBB93a, GJ97]. GUI
[Tet94]. Guide
[Ano99, BBD+09, LB96a, Wil97, BW97, ND96, RR96, Sun95]. guided
[NB12]. Guidelines
[RD96]. GUIs
[Mia90].

Gyrokinetic
[KEL+03, PWL+11].

Hagenberg
[Hon94]. Hagenberg/Linz
[Hon94]. Halide
[DKA16]. Hamilton
[Ric91]. Handles
[Rec98]. Handling
[DH98, LSB15, SK97, BM91, KCCD99, Koo93, KBP+03, Lea96, Met95]. Hands
[Tro18]. Hands-on
[Tro18]. Harbor
[BBC+00]. Hardware
[AGJ18, BM19, BAZ+19, CKD94, CSS+91b, DVAE18, FNA+18, KE15, KH18b, LLS06, MWP07, MKM17, Men91, SW08, ZLJ16, ABC+09, BMF+19, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB+14, PRS14, RPNT05, SE12, TE94b, DWS+12].

Hardware-aware
[PAB+14]. Hardware/Software
[MMK17, LT97].

harmful
[NWT+07]. Harmony
[GTK12].

Harness
[Ama98, EBK01]. Hash
[GK05, VB00]. Hash-join [GK05]. Hashing
[SMZ18, MIGA18]. having
[YFF+12]. Head
[Mia90]. healing
[SLP+09]. Heaps
[DGK+03, GFJ19, Man99, Ste01]. help
[Len95]. Helper
[ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here
[Ano92a, Pra95c]. Hessenberg
[BKK17].

Hessenberg-triangular [BK17].

Heterogeneity
[CCK+16, Kwo03, RKBB11].

Heterogeneous
[AT16, AACK92, FBF01, GPB+17, KTR+04, LPM17, Lu95, NTR94, SM89, THA+12, ZDMM91, FKS+12, GKO12, LK13, SJ95, WC+07].

Heuristic
[HH11, Mah11, OCRS07]. Heuristics
[MG14]. Hewlett
[BLCD97]. HFS
[K97]. hiding
[BR92]. Hierarchical
High-Performance
[ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CGS+20, CT00, FGKT97, Gar01, Hol12, HG91, IEE94b, LCK11, LG06, LMJ14, LML+19, LHH+16, LCH+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, SLJ+19, TCI98, VV11, WG99, WN10, WLT19, ZDTM19, CIM+17, GS02, HG92, Kim94, Lan97, RRP06, Rei95, SQP08a, SQP08b, SQP08c, Ten97]. high-
[RRP06]. **High-Level** [Sch17].

IWAY [FGT96]. i.e [USE98b]. I/O
[RM03, Ano95a, Ano95b, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a]. IBM
[ABB+15, CBJ+15, KST04, LSF+07, WZWS08]. Id [Nik94]. IDA* [Mah11].

Illinois [GHH+98]. Illinois-Intel
[GHG+98]. **Illuminating** [BLPV04]. ILP
[OCRS07, RLJ+09]. im [HL93]. Image
[WN10, BC94, Kep03, RKHT17]. Impact
[KLG08, LK20, SCL05, TE94a, ZAK01, Div95, Met95, RGG+12, RPNT05].

Impaired [Wei97]. imperative [SV98].
implement [DBRD91]. **implementable** [TEE+96]. **Implementation** [ACM94a, ACM99a, Alf94, AB01, AKP99, BBD+91, BHP+03, BRM03, CWHB03, DSH+10, FRL98, Hal97b, KA97, MS02, Nik94, STW93, TKA+02, TMAG03, BK96, BB00, BMV03, CMX10, DL93, FG96, GCC99, GB99, IAD+94, KASD07, Lev97, Li05, LZ07, LAL+12, NFBB17, OKID92, RG17, STU95, Tod95, YZYL07, Ano95a, Ano95b].

Implementations
[Han97, SAC+98, Ran94, SKG+11, Sha95b].
implemented [Boe05, KEL+03].

Implementing
[ABH+00, AB02, BP05, CB89, CB90, Day9a, Day9b, DPZ97, GMB93, GSC96, HPA+15, KR01b, KBA08, KIAT99, Pra95a,
Implied
[RM03, BS96, VSM+08, CSM+05]. Implicit
[BAM93, MS02]. Implicitly
[ACMA97, PFV03, SAC+98, RB18]. Implicit-multithreaded [PFV03].

Implicitly
[BAM93, MS02]. Implicitly
[ACMA97, PFV03, SAC+98, RB18]. Implicitly-multithreaded [PFV03].

Improve
[FSPE20, GV95, KH18b, QSaS+16, RKK15, Sin99]. Improved
[BR92, GMGZP14, LLS06, Smi06]. Improving
[AJK+12, BDN02, CCWY17, DKG18, FT96, FM92, FBF01, GA09, IBST01, LYH16, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10].

In-Memory
[BAZ19]. In-Order
[RRK11]. In-place
[SGLGL+14, SCM05]. in-situ
[LSW+18, RGK99]. IN-Tune
[RGK99]. in-compressible
[RM99]. Incorrectly
[SCL05]. Increasing
[DELD18, PHCR09]. Incremental
[BFA+15, Cas02, Lar95, LB92, BBYG+05]. Independent
[DS09, EW96, FSS06, USE93a, KNPS16, MEG94, PG03, WZSK19]. Independently
[ALSJ09]. indexing
[MIGA18, MLS15]. induced
[MTPT12]. inducing
[CZ02]. Industrial
[KW17, Kon00]. Industry
[DM98]. Industry-Standard
[DM98]. inference
[FFLQ08]. inflation
[OdSSP12]. InfoDock
[Ano97a]. Information
[BS96, PBR+15, CML00, KKT+18, KBH+03, RPB+09, SV98]. Informix
[Ger95]. Initial
[BTE98]. Injection
[SBE+19]. Inline
[GH03, DJLP10, EKLL90]. Inline-Threaded
[GH03]. Inlining
[PR98, LQ15]. innovating
[JD08]. Innovation
[ACM03]. innovations
[ABB+15]. Input
[BCG13, MP89, Tan87]. Input-covering
[BCG13]. input/output
[MP89]. Insight
[IEE02]. Instruction
[DV99, HMNN91, LEL+97a, LEL+97b, MCFT99, RYSN04, RS08, TCS20, AMC+03, Aru92, Cho92, HKN+92, HNN+92, KBF+12, Mis96, OA08a, OA08b, OA08c, PYP+10, Raj93, SD13, SMS+03, TEE+96, VS11b, VDBN98, VV00]. Instruction-Level
[LEL+97a, LEL+97b, MCFT99, SD13]. instruction-systolic
[PYP+10]. instructions
[PPA+13]. instrumentation
[RS07, XMN99]. Integer
[GH98]. integral
[Kuc91]. integrated
[CCW+11, MTS10, RD99]. Integrating
[Cal00, CM98, DNR00, DTLW16, FKT96, TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13]. integrity
[NT14]. Intel
[ARB+02, CCW+11, GHG+98, PDP+13, SCID+15]. intensity
[BD06]. Intensive
[LK20, TKA+01, AAKK08, TKA+02, YSY+09]. Interaction
[Hei03, HF96, Pan99]. Interactions
[WG94, WSKS97]. Interactive
[FURM00c, PTMB09, WOKH96, CB00, FURM00b, HJT+03, KG07, Lan97, MCS15, Tem97]. Interconnection
[NGGA94, RR93, SMK10]. Interface
[Chl15a, HBG01, HTDL18, KKDV03, MS89, Met95, PS01, SW97, Ada98, DLM99, HBG02, Li05, MQW95, MS87, MEG94, TNB+95, FGT96]. Interfaces
[Han97, HF96, LG04]. Interference
[BTL+19]. Interleaving
[LG94, YN09]. Intermediate
[McC97a]. Internals
[MM01, Wea08]. International
[ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV+99, Cha05, EV01, Hol12, Hon94, Lak96, LCK11, Wat91, FR95]. Internationalization
[Ano98b]. Internet
[Ano96, Hig97, SBB96, van95]. Interoperability
[DHR+01, Way95]. interplay
[MLS15]. Interpretation
[GH03, LG04]. interpreter
[OCT14]. Interprocedural
[NR06]. Interprocess
[Rod94]. Interrupts
[KE95]. interval
[Kub15]. Intra
[MR10]. Intra-application
[MR10]. Introducing
[GL07]. Introduction
[CLRS09, Dra96, GGB93a, GJ97, Mas99].
Kroll [Ano00c]. KUMP [NTKA99].

KUMP/ [NTKA99].

L [DNR00, GBB+05]. L1 [PHBC18]. L2 [SLP08]. L2-miss-driven [SLP08]. L3 [FJ08]. Lab [Ano00b]. labeling [D’H92].

Lafayette [EV01]. Lake [Hol12]. lambda [ORH93].

LAN [Yas95]. LAN/WAN [Yas95].

Landing [TAK+00]. Language [ACM94a, ACM99a, ACM97a, BS06, FLR98, GS06, KN17, KIAT99, Sat02, BO96, CTK+91, ECX+12, GPS14, Jon86, KN19, LT97, Man96, Miy95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06].

Languages [ACM93a, ACM94b, ACM95b, ACM98b, MSM+16, NPT98, OTO00, SCv91a, SS96, TMAG03, VGR06].

LAPACK [ARvW03]. Laptops [Ano00c].

Large-Scale [CC14, CJW+15, LA93, BCM+07, BOR93, GOT03, Koo93, SMK10, WC+98].

Large-Resistant [Fan93].

Latency [YLS16].

latency-sensitive [ASS91, DC99, DC00].

Latency-Tolerant [OCS01].

Latency [SKG+11]. Law [Gar01, NZ17, CN14].

Layer [SHK15, CDD+10]. layers [GSK+18].

layout [DKS12, HB15]. Lazy [GSK96, Ga97, LP94].

LCMT [LKBK11].

leakage [HHPV15]. Leakage-saving [Mus09].

leaks [ZJS+11]. Learned [HPA+15].

Learning [CYYL18, DS16, LPM17, ROA14, PWWD18].

least [FTAB14]. least-squares [FTAB14].

lecture [Egg10]. Lenient [SCv91a, Sch91, SCv91b]. Lepp [RRMJ12].

Lepp-bisection [RRMJ12]. Lessons [RM03, HPA+15]. Letters [DHR+01, TLA+02]. letting [ACM94a]. Level [ABLL92, BBC+00, FURM00c, GP95, HTDL18, JYE+16, JLS99, DK02, KSN94, LS11, LEL+97a, LEL+97b, MG99, MR94, MG114, PLT+15, RR93, Ric99, Sch17, SLT03, YBL16, BB+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRR06, HDT+13, JEV04, KDN+98, KVN+09, KSN95, LD07, MSZM09, Tem97, WS08, ZYLY70, TZ14, ZJS+11].

Level-2 [Ros99]. Leveraging [PRS14].

LFTTHREADS [GP08]. Libraries [Ano00c, BCR01, CGS+20, GF00, Jon91, MLG18, MM14, Arv03, CBM10].

Library [Ano08b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, KMO2, Man91, RÖ19, WN10, YAS95, ADA98, BOE05, CS00, GP08, GTO03, Mix94, Ong97, TB97a, TB97b, YAN96, Lev97]. life [KU17]. light [Way95, LQTZ15]. light-weight [Way95].

Lightweight [AGN09, C090b, DON02, Est93, Fin95, HAT97b, SLJ+18, CASA14, Hai07, LVN10, MMN09, MEG94, VACG09, WSKS97, LKBK11]. like [DJLP10, Jon86, VW11, KOR89]. limit [ROA14].

limited [Bri89]. Limits [LB95, LB96b, AA0K08]. Line [Ano00c, FSPD16, FDL02]. Linear [KLDB09, LOE97, MR09, AAC+15, BAK95a, CM20, MM07, YSY+09]. Link [Ano00b].

Linked [WJ12]. links [WW96]. LinkScan [Ano00b]. LINQits [CDL13]. Lint [KOR89].

Lint-like [KOR89]. Linux [Ano97a, Ano00b, Ano00c, Ano97a, RGG99, SKP+02, WTKW08, ZA13]. Linux/AXP [Ano97a]. Linux/FreeBSD [Ano00b]. Linz
[Hon94]. liquid [KRBJ12]. Lisp [Nor90].
List [DV99, WJ12, VV00]. LiteRace
[MMN09]. little [CDL13]. liveness
[GMR09]. LLCs [PBL+17]. Load
[HBTG98, HR10, KMG01, KC98, KRH98,
PGB16, VPQ12, WYT+20, Chr95a, Chr95b,
Chr96, MKIO04, TKHG04]. load-adaptive
[TKHG04]. Load-Balancing
[KC98, PGB16, Chr96]. Load-Load [HR10].
Loadable [ZSA13]. Loading [PCM16].
Local
[DGK+03, IEE95, Whi03, HZD13, ZLW+16].
localities [CS95a, CS95b]. Locality [BS96,
CCVV17, PEA+96, Wei98b, HWW93, LK13,
PSG06a, PSG06b, PSG06c, Sin99, SD95].
locality-cognizant [LK13]. Localization
[OB13]. Location [USE93a, KKT+18].
Location-Independent [USE93a]. Lock
[ALB+18, EFJM07, MNU+15, NM10,
PGB14, AR19, CS12, GP08, MLS15,
MCRS10, Mic04, ST05, TMCP10, ZLW+16].
lock-free
[AR19, GP08, MLS15, Mic04, ST05].
Lock_manager [Hol98b]. Locking
[Bal02, LDT+16, AFF06, Lie94, MMTW10,
RD06, ZLW+16]. Locks
[ACR01, ALS10, MT93, OCT14].
LOCKSMITH [PFH06]. LOGFLOW
[NTKA99]. Logic
[Bre02, KI17, TAN04, BK13].
Logic-Centric [Bre02]. Logical [CR02].
LOIS [KT17]. longer [XHB06]. Longest
[BVP+19]. Looking [ECX+12]. lookup
[KNPS16]. Loop
[RLJ+09, SSP09, JMS+10, KVN+09, UZU00].
loop-level [KVN+09]. loops [DH92, FN17].
Low [ABLM19, Ano00a, Ano03, BGH+12,
PHBC18, RGT17, SM19, ZHC15, GPS14,
PPS20, RRP06]. Low-level
[RGT17, GPS14]. Low-overhead
[ZHC15, RRP06]. Low-Power
[Ano00a, Ano03, BGH+12, PHBC18, SM19].
Low-Rank [ABLM19]. LPVM [ZG98]. Ltd
[Ano00b]. lunch [DTLM14]. Luther
[ACM99b]. Lyon [FR95].
M [Ano00c, USE01, F KD+97, MSU+16].
M-Machine [FKD+97]. MA [Ano94f].
Mach [USE91a, CB89, CB90, Hol99b,
Koo93, MRGB91, RBF+89]. Machine
[AMA98, CSS+91b, DS16, F KD+97, KA97,
KKDV03, Lafo0, LPM17, USE01, CSS+91a,
CSS+91c, DLM99, Gle91, MEG94, Ném00,
Pra95c, SKS+92, Ven97, CGSV93, Evr01,
PRB07]. Machines [BSSS14, CYYL18,
Den94, GH98, GBK+09, RCRH95, STY99,
BRM09, DKF94, G KZ12, GC92, Kus15,
MRG17, TSY99, TSY00, VPQ12].
macromolecular [ABC+15]. Made [Har99].
Magiclock [CC14]. main
[AKSD16, BBH+17, ZTN19].
main-memory [ZTN19]. maintenance
[TNB+95]. makes [Van97a]. Making
[BDLM07, LFA96, Low00, Pla93, PLT+15,
YCWX14]. malloc [Kus15]. Manmo
[WZWS08]. MAMPO [GJ11]. managed
[WLG+14]. Management [ALB+18,
ABLL92, GMGZP14, HC17, HRH08, KG94,
LG06, LLS06, RBNO1, STY99, VCM19,
ZP11, Bak95a, BM91, D Breg91, HCD+94,
ICH+10, Jef94, KKH04, RCG+10, SS95].
Manager [Ano00b, PDMM16, Ply89].
Managing [Blu92, FGKT97, MVY05,
PZAO7, SEP96, VS11b, ROA14, WSK97].
MANNA [HMT+96, Sod02]. manual
[MS87, PO03]. Many [FYM+15, GBK+09,
PVS+17, PHBC18, VCM19, DTR18,
MLCW11, MTP12, San04]. Many-Core
[FMY+15, GBK+09, PVS+17, PHBC18,
VCM19, DTR18, MLCW11, MTP12].
Many-Thread [GBK+09]. Manycore
[BMF+16, KS16, BWDZ15, HFV+12].
Maple [YNPP12]. Mapping
[CCK+16, HLH16, LBvH06a, LBvH06b,
LBvH06c, NTR16, WKO8a, WKO8c, WKO8b].
Mappings [Lun97]. MapReduce [IXS18].
Maps [BC94]. March [IEE97, USE92b].
Mark [Ano00c]. Markerless [LH09].
Markov [SBC91]. Martin [ACM99b].
MASA [HF88]. Masking [BAZ+19].
Massachusetts [USE93a]. Massive
[ERJRB13, OR12, SMZ18, Mus09, RCV+10].
Massively [BCG14, KR12, MSU+16,
TSV12, BS10a, CFG+12, CDD+10, Lu94,
NJ00, NPA92, ROA14, WT10, WOKH96].
Matching
[HPA+15, OR12, HFV+12, KGP12].
Mathematica [Tam95]. mathematical
[KI16]. Matlab [Ano97c, Bra97].
Matrices [But13, SGLGL+14]. Matrix
[NBS+15, Q0IM+12, YFF+12, CSV10,
DTR18, Q0QOV+09]. matrix-vector
[CSV10]. Massively
[B CG14, KR12, MSU+16, TSV12, BS10a, CFG+12, CDD+10, Lu94,
NJ00, NPA92, ROA14, WT10, WOKH96].
Matrix
[BCG14].
Massively
[BCG14, KR12, MSU+16, TSV12, BS10a, CFG+12, CDD+10, Lu94,
NJ00, NPA92, ROA14, WT10, WOKH96].
matches [BCG14].
Massively
[BCG14, KR12, MSU+16, TSV12, BS10a, CFG+12, CDD+10, Lu94,
NJ00, NPA92, ROA14, WT10, WOKH96].
May
[ACM93b, ACM96, ACM99a, Cha05, IEE94a,
IEE94b, SS96, MMTW10, Pra95c].
MBTAC [FR17]. MD [EE02]. MDMA
[Spe94]. measured [ECX+12]. Measurement
[LLD17, TMC09]. measurements [JFL98]. Measuring
[FMY+15, DTL14]. Mechanising [Loc18].
mechanism
[DF95, GCC15, PWW18, WHJ+95].
Mechanisms
[KPC96, KC99, SK97, TVB+13, Loec05, Men91, PT+03]. Media
[An003, Van97a]. medium [CDD+10].
Meeting [DL99]. meets [Tam95].
Member [BS99]. Memories
[HKL96, KHP+95]. Memory
[ALSJ09, AJK+12, BS96, BMBW00b, BD00,
BP19, BAZ+19, CH95, DM98, EJ93, EE09a,
FMY+15, GMR98, GMGZ14, GH98, HG91,
HL07, IXS18, JLA16, KZTK15, KZC15,
KHH04, KUCT15, LK20, LSB15, LB92,
LB17, LML+19, MSM+16, MV293, MCT08,
Nak01, RCC14, Rob03, RCRH95, SCL05,
STY99, SLT03, SZ02, TAM+08, Thr99, Tri08,
VCM19, Ver96, WJA+19, WC99, XWG+14,
YMR93b, ZM07, ZLJ16, ATLM+06].
AKS16, AAK08, BS06, BGMW12, BCG+95, BHH+17, BMBW0a, BMBW0c,
BLM06, BDM07, BA08, BB00, Boo93,
BAM07, CMF+13, Cha05, CH03, CV+06,
DLZ+13, DLO09, DP297, EKDK10, EV01,
FF10, GCC15, Gle91, GL98a, GS00, GKK10,
HB92, HWW93, HG92, HHV15, ISS98,
KFG15, Luk01, MLS15, MCRS10, MSM+10,
MLC04, MMTW10, MTS10, Mic04,
MTC+07, MMY05, NPC06, NAAL01].
Memory
[OCT14, SLT02, TS99, TSY00,
TVD10, TVD14, VTS12, WK0a, WK08b,
WK08c, XHB06, YMR93a, YS+09, YN09,
kSYH+11, ZK15, ZC15, ZTN19].
Memory-Divergent [WJ+19].
memory-intensive [YSY+09].
Memory-level [EE09a]. Memory-safe
[Tri08]. Memristor [KNE+14].
Memristor-Based [KNE+14]. MemSAT
[TVD10]. Merlot [MTN+00]. mesh
[ABC+09, Mus09]. mesh-based [Mus09].
Mesher [HBTG98, Lep95]. Message
[BWXF05, HLB94, KKDV03, PH97, Ada98,
BCM+07, DLM99, FM92, M1T, PRS14,
SCM05, FG19, PS01]. message-handling
[Met95]. message-passing
[BCM+07, FM92]. messages
[Koo93, SD95, WHJ+95]. meta [FKS+12].
meta-scheduler [FKS+12]. Metering
[LMA+16]. Method [CYYL18, LPK16,
LHG+16, MAF19, SKG+11]. Methodology
[Sri95]. Methods [CMK00, FGT97].
Methylation [LZL+10]. Metrics
[EE14, VS11a]. Metro [An00b]. Metro-X
[An00b]. Mexico [An94a, Go94]. MFC
[On97]. MICE [BK96]. Michael [Yam96].
Michigan [An04d]. Micro [Mat97].
Microarchitecture
[MY+15, LS11, WHG07].
Microarchitecture
[KM03, AMF09, LS+07, Wil98].
Multi-Engine [CNQ13]. Multi-Dimensional [AR19].
Multi-Processing [MLGW18].
Multi-Processor [SV19]. Multi-Protocol [ABN00]. Multi-Tasking [CvdBC18]. Multi-Thread [HG91].
Multi-Threading [AGK96, Bed91, BGK94a, BGK94b, BK13, BM07, BK+11, DSEE13, CNQ13, CML+17,
CML+09, MCL98, ml+13, LZW+13, MLC+11, MLCW11, MLC+09, MS03, MCK99, M09, NBFB17, NH09, OA08a,
OA08b, OA08c, R+10, RCV+10, RGT17, RKM+10a, RKM+10b, RKG99, SCB15, Sam99, SC17, SE12, SV98, Sm06,
St02, SQP08a, SQP08b, SQP08c, SMQP09, ST05, Tem97, TCG95, TMA03, TJY+11, VIA+05, VDBN98, VV00,
VPQ12, WCC+07, WCV+98, YZ07, Yn97, Yee20, YSY+09, YN09, kSYHX+11].
Multi-Cores [CC+16]. Multi-CPU [PGB16].
VDBN98, kSYHX+11, YKL13, CH04].
multiagent [Bar09]. Multicomputer
[FKD+97]. Multicomputers [BCG+95].
Multicore [ALSJ09, ABLM19, BCZY16,
CCH11, CB16, DVAE18, FSPE20, GJ11,
HEMK17, KLDB09, LS11, LMA+16, LYH16,
LDT+16, MR09, NBMM12, PGB16,
RCM+16, RRK11, SLJ+18, SHK15,
SM+10, THA+12, ZBS15, CNQ13, CN14,
CMX10, LK13, LLLC15, NZ17, RCG+10,
RKBH11, SCCP13, SE12, ZSB+12, ZTN19].
Multicore/Multithreaded [RCM+16].
Multicores [FSPD16, FSPD17, RKK15,
DTK+15, GARH14, SSN10].
Multifrontal
[ABL19, But13, Dav11].
Multigrain
[AZG17]. multigrid [RM99].
Multilevel
[PPG11, Cat94, JJY+03, LK15].
Multimedia
[Spe94, Est93, Gol96].
Multimethod [FGT96].
MultiMotifMaker [LZL+20]. Multiple
[CB16, FGKT97, HW92, KHT93, NTR16,
OR12, CS95a, CS95b, FD95, HKN+92, LT97,
TE94b, TFG10, TAN04, WCT98].
multiple-context [FD95]. multiplication
[DTR18]. multiply [CSV10].
Multithreading [AddS03, AdBDRS08,
ABC+93, AT16, Ana98, ALB+18, Ano92a,
Ano92b, Ano94e, Ano94g, Ano98a, Ano98b,
Ano01, ABH+00, ABH+01, AB01, AB02,
AG96, AZG17, ACM97, ABN00, AKP99,
Bal02, BBF02, BCR01, BbD+11, BVL09,
BKL06, BMBW00b, BF04, BJ+96, BL98,
BB00, BMN99, BDN02, BP05, BLG01,
BTE98, BNH01, BD06, BGH+12, BBSG11,
BH95, CC14, CJIW+15, CS02, CGK06,
CC04, Chl15a, CH95, Chr95a, Chr95b,
Chr96, CT00, CW98, CBN+00, CMBA08,
Dan09, DNR00, DVAE18, DH98, DRV02,
DTR18, D095, EFN+01, EFN+02, EJRR13,
EHP+07, EC98, EGP14, FT69, FS96,
FTP11, FNA+18, FQ02, Fro97, Flr98,
GGB93a, GRS97, GMR98, Goo97, GN00,
GN92, HPA+15, HMLB16, HTZ+97,
HMNN91, HHOM91, HHOM92, HL94,
HH11, HW200, HPB11, HY+15, Hude96].
Multithread
[BB16, BK18, JYE+16, JSB+12, KA97,
KKW14, KMA01, KE15, KG94, Kim14, Ku05,
Kor89, KTR+04, LS07, LG06, LHO9, LG04, LB96a,
LB98, LB00, LLS06, Lh12, LT+17,
LYH16, LPE+99, Loc18, Loc97, Lun97,
Lun99, MGQS+08, MP01, MS89, MB99,
MD96, MAF19, Moe05, Moe06, MR09,
Naka01, NPT98, NGA94, NTKA99, Nik94,
OB13, OY00, PDD09, PUF+04, PG92,
PG96, PG99, PF01, PHK91, PWL+11, PS01,
QOM+12, RCM+16, RW97, Rcc12,
REL00b, Rin01, RB18, RNSB96, RSBN01,
RRK11, RBAA05, RR99, SPDLK+17,
SRS98, SR14, SBH+97, SCD+15, SL05,
SAC+98, She98, SU96, SU01, SZM+13,
SGM +97, SMD +10, SR01b, SSYG97, SSK +01, Spe94, Sri95, SZ02, SUF +12, Sut99, TG99, Ten02, TKA +01, TCI98.

Multithreaded

[TT03, TTKG02, TGBS05, TLZ +17, TLZ +18, TJY98, TSV12, URŠ02a, VTS12, Vol93, VEG93, Waa94, WS08, Waa08, WJ12, WII97, WLM15, WG94, WC99, Yas95, WYJ03, Yoo96a, YMR93b, SZA13, Zha00, ZJI12, ZBS15, ZP11, ZAK01, Zuo02, AdBdRS05, ACD +18, Aga89, Aga91, Aga92, ABF +10, ABC +15, AAC +15, ACC03, AGEB08, Ann96, Ano94b, Ano95a, Ano95b, AOR, ABC +09, AR17, AR19, Ano92, BGDmWH12, BBFW03, BRRS10, BGZ97, BCH99, BAD +10a, BAD +10b, BCR13, BC141, BMWW00a, BMWW00c, BYL909, Bhu92, BL93, BL94, BL99, BS10a, BCG14, BEKK00, BPSH05, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car99b, CB90, CFG +12, CIL94, CN14, CS12, CDF +10, CLL +02, Cho93, Cho92, ÇM20, CGL92a, CGL92b, CJB +15, DJLP10, DSG17, Dav11, DL93.

Multithreading

[DKF94, EJK +96, Eic97, EG11, Est93, Evr01, Fan93, Far96, Fer95, FF04, FFQS05, FF08, FFY08, FRL18, Fuj97, GMW09, Gal94, GJ11, GGB93b, GK05, GPS14, GL98b, GL98a, Gol96, GRS06, GRR06, GA09, GL99, HMC97, HFL +12, HFF8, HL90, Hig97, HM +92, Hop98, JMS +10, JWTG11, JFL98, JSMP12, JSMP13, Joe96, JSB +11, KGPH12, KR01a, KR01b, KNPS16, KPB +03, Kub15, Kus15, LLLC15, Lea96, Le97, Len95, Le97, LLL10, LCH +08, LMC14, LSW +18, LVE +98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, MI95, Mis96, Mis94, MO06, MKR10, MQ07, NB12, NR06, Ndr90, NPA92, ND96, NZ17, Omm04, Par91, PFV03, PPJ107, Pha91, Pyl98, PDP +13, PS03, PS07, Pra95c, PT03, PPGS20, RGG +12, RCM +12, Raj93, RCG +10, RHH10, REL00a, REL00c, Rei95].

Multithreaded

[ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c, SV96a, SV96b, Sch98, SRA06, Sha95a, Sha95b, Sha98, She02, SLG06, SP00b, Shii0, SP05, Sim97, ST00a, ST00b, Soc02, SSN10, Squ94, SRI93, Sta90, Sun95, SMS +03, TMC09, TMCP10, TR14, TV10, TG09, TP18, TE94a, The95, TKA +02, TB97a, TB97b, TKHG04, TLZ +16, Tod95, Tsa97a, TDW03, UZU00, VGR06, Ver97, Ver96, VGK +10a, VGK +10b, WS06, WCC +07, Way95, WT10, XSA98, Yan02, Yan97, YZYL07, Yoo96b, YM92, YMR93a, YNP12, ZJS10, ZP04, WM03, LP09].

Multithreading

[ÁMdBdRS02, AH00, AGJ18, Ano99, Ano05, BBG +10, BWXF05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Bre02, BLPV04, But13, CCH11, CCK +16, Cro98, Dug95, EEL +97, Eng00, Eng95, Esp96, EKB +92, FBI01, FKT96, GHG +98, GV95, Gu05, Gun97, GSL10, Har99, HBTG08, HTDL18, ILFO01, IBST01, KPC96, Ke94a, Ke94b, Kho97, KF97, KNE +14, KLH97, Kwo03, KET06a, KET06b, LP97, LH94, LEL +97a, LEL +97b, LEL +99, LRZ16, M070, Man91, MHG95, MN00, MKC97, Nag01, Oni97, OA19, ÖCS01, PTS15, PT91, PST +92, Pea92, Pra97, RLJ +09, RG03, RD96, SSP99, SPY +93, SW08, SCV91a, SP07, SLG04, SHW19, SRU98, DFC +19, Sin97, Smi01, ST00c, SAK01, TY97, Ten98, TAK +00, TESK06, VT96, WWW +02, WCW +04a, Wei97, YG10, ZL10, Zif96, AAHF09, AAKK08, ABB +15, BCM +07, BGG95].

Multithreading

[BR92, Boo93, CHH +03, CCC12, Div95, DN94, Dub95, Dye98, EE90a, FM92, Fis97, Fon97, GWM07, GB95, Gea98, GEG07, GE08, Gro03, HB92, HCD +94, Hol98a, HH97, IAD +94, KIM +03, KCCD99, Kim94, KG07, KT99, KLH +99, LK13, LG94, LSS12, LZW17, LZZS19, LB95, LB96b, LZL +14, Lot95, LVS01, LZW14, Luk01, MIGA18, MWP07, Mao96, MKIO04,
Object-Oriented [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ada98, Car89a, CYZ98, CLL+02, FL90, JPS+08, We198a, We198b, Yan02, dB09, vPG03].

Objects [ACR01, CJK95, CR02, Low00, Pra95a, Ric99, Ten02, Yas95, Bak95a, Bri89, DMBM16].

Oblivious [UALK17, UALK19, HL08, HZ12].

Observer [Hol99b].

occur [PAB+14].

Ocean [SAC+98].

OCTET [BKC+13].

October [ACM94d, Ano94d, BT01, IEE95].

ODBC [Ano00b, Hig97].

ODBC-compliant [Hig97].

ODBC-ODBC [Ano00b].

ODE [Ano97c, Bra97].

Off [MHG95, Gep00].

off-beat [Gep00].

Off-the-Shelf [MHG95], off [Par91].

One [Wil00].

On-Chip [LKBK11, ZM07, SMK10, TEL95, TEL98a, TEL98b].

On-Line [Ano00c, FSPD16, FdL02].

On-the-fly [Sch99, CWS06, PS03, PS07].

one [QSHI16].

one-sided [QSHI16].

Online [Ger95, OTO00].

OnLine [LAK09].

onto [LBvH06a, LBvH06b, LBvH06c].

Open [Ano00c, BMF+16, Hai97b, BMF+19, KR01a, CR01b, RBF+89].

Open-Source [Ano00c].

OpenGL [Röt19].

OpenGL- [Röt19].

OpenMP [Cha05, ARvW03, Ano97c, BHP+03, BBC+00, Bra97, BMV03, BO01, CRE99, CK+01, CM98, DM98, HD02, EV01, JFY+03, KKH03, Lu98, MS02, Mar03, MLC04, MPD04, Mat03, MG15, MM14, Mü03, NAAL01, RBA05, SLGZ99, Thr99, TGBS05, Vre04, RM99].

OpenMP-oriented [MLC04].

OpenOpt [NSP+14].

OpenPiton [BMF+16, BMF+19].

OpenSPARC [Wea08].

Operand [SP07].

Operating [ACM94d, CLFL94, TLA+02, Gei01, IEE89, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, ASSS19, BDM08, DBRD91, IEE94d, Jen95, LVD10, LAK99, Plv89, RBF+89, REL00a, REL00c, Sh198, Way95].

operation [DKG18, RHH10].

Operational [CPRW99, CRW97a, CRW97b].

Operations [KKS+08, KLDB09, SCL05, HMC95, RD06].

Opportunistic [Y1L6].

Opportunities [GJ07, HL08, Mus09].

Optimal [AAI+19, AT16, GPB+17, Lar95, RCM+12, Lep95, LML00].

Optimistic [WHJ+95, CZZSB16, DKG18, VPQ12].

Optimization [BLG01, CvdBC18, GN96, NRSB96, SYHL14, TJ998, TLGM17, WJ12, AMC+03, AMPH09, DZKS12, GOT03, Koo93, RCKW98, Sin99, TO10, ZCSM02a, ZCSM02b].

Optimizations [HYY+15, JSB+12, KET06a, LEL+99, Sut99, ZM07, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95].

Optimized [Sin97].

Optimizing [DTK+15, KZTK15, PR98, PSCS01, WC+07, GS02].

Orange [ACM98d].

Orbital [MAF19].

Orchestration [GVT+17].

Order [CJ95, HLD19, RRK11, TCS20, NV15, SJA12, SW16, ZK15].

Ordering [DELD18, HR10].

Ordering-Free [DELD18].

Oregon [ACM94b, ACM99b, IEE93].

Organization [HG91, HG92, PPGS20].

organizing [LAK09].

Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+16, NPT98, SG96, Ada98, Car89a, CYZ98, CLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, We198a, WP10, Yan02, dB09, vPG03].

Orlando [ACM94a, ACM98d].

OS/2 [DN94, Kajo94, Kel94a, Kel94b, Kel95, Ric91, Rod94].

oscillations [BD06].

OSF [BM91].

OSF/1 [BM91].

Other [SPY+93, MMTW10].

Ottawa [BT01].

Out-of-Core [QOIM+12, ABC+15].

Out-of-Order
Outstanding [LSB15]. Overall [SEP96].

Overhead [SW08]. output [KOE+06].

Overheads [SHK15]. PacBio [LZL+20].

Overview [Li05]. Overhead [DSR15, RRP06, YL16, ZHC15].

Oxford [ACM94c]. P-RISC [Nik94].

Overheads [SHK15]. Overlays [DFC+19].

Own [BS99, Sho97a, Sho97b]. Paje [CdOS01, CSB00].

Oxymoron [Li05]. Oxford [ACM94c].

P [Ano00b, Nik94, PR05]. P-RISC [Nik94].

P-Thread [PR05]. [DFC+19].

P-Thread [PR05]. PacBio [LZL+20]. Pacifier [QSQ14].

Paciﬁer [IEE89]. Paciﬁer [IEE89].

Paciﬁer [IEE89]. Paciﬁer [IEE89].

PageRank [KG07]. Pages [JLA16].

PageRank [KG07]. Pages [JLA16].
Partitioning [AMRR98, Coo95, D’H92, EW96, SLJ+19, TG99, DCK07, LZL+14, MKR10, SGC95, WW96].
Partitioning-Independent [EW96], Pascal [Hay93], PASCO [Hon94]. Passing [BWX05, TLA+02, FGT96, KKD03, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14]. Path [BLG01, TAK+00, CTYP02, WCT98].
Performance [ACM98a, ACM98d, ACM00, Aga99, Aga91, Aga92, ABLM19, BS96, BL96, BRM03, BLG01, BNH01, BGH+12, BBSG11, Cal97, CRE99, CGS+20, CCH11, CCK+16, CCW+17, CH95, Cho92, CT00, CSM+05, CBN+00, CMBAN08, DVAE18, DWYB10, EGC02, EE14, FT96, FSPD17, FB01, FURM00c, FGKT97, Gal94, Gar01, GN00, HRH08, Hol12, HN91, IEE94b, JFL98, KZTK15, KH18b, KS97, KTR+04, LWSB19, LCK11, LG06, Lep95, LMJ14, LHN+16, LH61, Mah13, Man99, Mao96, MSM+16, MPD04, ME17, MWK+06, MKC97, MM14, NCA93, NBS+15, NGGA94, Par91, PH97, PS01, QSaS+16, RG03, RVOA08, RKK15, SCD+15, SLJ+19, TCI98, TT03, Tsa97a, TLM17, VP16, Wei98b, WGR99, WN10, YWJ03, ZL10, ZAK01, Zub02, AAC+15, APX12, AAKK08, BGDMWH12, BS10a, BBM09, BMV03, CML00, Car89b, CIM+17].
performance [Cho93, Div95, Don92, DKL94, DKL94, ECM+12, FL90, FM92, Fis97, FURM00a, FURM00b, GS02, GEG07, GLC99, HL90, ICH+10, Kim94, KLM+99, LML+19, LB95, LB96b, LBH12, LCH+08, LMC14, LBE+08, MLC+09, Mah11, MCRS10, McM97, PJZA07, PGB12, RGG99, SE12, SSR+07, SQP08a, SQP08b, SQP08c, SKP+02, TMC09, TR14, TG95, The95, VV11, Wan94, WCZ+07, WOK96, YZ07, YM92, ZJS10].
Platforms [LS11, PWL+11, CNQ13, LSS12].

PLDI [ACM94a, ACM99a]. Plug [DHR+01]. Plug-in [DHR+01]. plus [Ano95a, Ano95b], PM [AB02], PM2 [ABN99, AB01], Point [LWSB19]. Pointer [RR99, SR01a]. pointers [Sim97, WW96].

Points [CC04, CHH+03, SLp+09].

Points-to [CC04, CHH+03], policies [Eic97, EE09a, KPPP06]. Policy [LLKS12, MVZ93]. Polling [Pla02].

Pollution [MPD04]. Polynomial [Kuc92, Kuc91]. Pool [PSCS01, LML00]. Pools [Cal97].

POPL [ACM94b, ACM95b, ACM98b]. Port [Koo93]. Portability [VSM+16, SP05].

Portable [AB01, ABN00, BBFW02, Eng00, KF97, LDT+16, YAs95, CS00, GCRD04, Mix94, MT93, MAAB14, TB97a, TB97b].

Portals [BRM03]. Porting [JJ91, Yam96]. Portland [ACM94b, ACM99b, IEE93]. Ports [Man98, Yam96], posium [USEO1].

POSIX [Ano00c, Alf94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, SP05, dIPRGB99].

POSIX-compliant [SP05]. Post [LB17].

Post-Silicon [LB17]. Pot [VSDL16].

Potential [CC14, EGC02, LLKS12, MOn00, DG99]. potentials [ABF+10]. Power [JJ11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CMBAN08, MB07, MR09, PHPB18, RCC12, RKK15, RRK11, SYHL14, TVB+13, TLGM17, ECX+12, GW10, MLCW11, MKW+06, Pra95b, PPGS20, Ric91, SM19, SQP08a, SQP08b, SQP08c, CMF+13].

Power-aware [MR09].

Power-Constrained [TLGM17, GW10].

Power-Efficient [BCZY16, SQP08a, SQP08b, SQP08c]. Power-Performance [CMBAN08].

POWER5 [BCG+08, MMM+05, KST04, Ano05].

POWER6 [LSF+07], powered [Rei95]. PowerPC [BEKK00, SBKK99].

PowerRAC [Ano00b]. Practical [HW92, LMJ14, MNG16, ND16, PBR+15, RR96, TGBS05, BCCO10, LPD+11, RD99, RPB+09]. PRAM [For97, Lep95]. Pre [PR05, Luk01]. Pre-Execution [PR05, Luk01].

Precise [HR16, KUCT15, CL+02, FF09, WTH+12].

Precomputation [MGQS+08, WWW+02].

Preconditioning [Nak03, GEG07].

Predicting [Lun99]. Prediction [AKS06, CMBAN08, DVAE18, IBST01, PBL+17, BWZD15, BMV03, CTYP02, CPT08, GL98b, RRP06, TFG10, WHG07].

Prediction-Based [CMBAN08, RRP06].

predictive [LTHB14, SRA06]. Predictors [EPAG16], preemptive [JLS99]. prefetch [AMC+03]. Prefetcher [LYH16].

Prefetching [AGJ18, BL96, GKH94, MKC97, SLT03, VT96, LB95, LB96b, Maa06, SLT02, SKK09].

Prefix [BVP+19, WJ12]. Preliminaries [NBM93]. Preliminary [EHG95].

Preparation [GH03]. preprocessor [Fon97, Mil95]. present [AMC+03].

Presentation [Kub15]. presented [ACM93a, ACM94b, ACM95b, ACM98b].

preserving [MSS+11, NFBB17].

Pressure [DTLM14, SLP08], preventing [PRB07].

Price [Ano98b]. Pricing [TT03]. Primer [LB96a, Wil97].

Primitive [Low00].

primitives [BBH+17, LZh07, NLK09].

principle [LAK09]. Principles [ACM93a, ACM94b, ACM95b, ACM98b].

print [Van97a]. priorities [MAH18, STV02].

prioritization [FD95]. Priority [BCG+08, NBMM12, SCCP13, ST05].

priority-based [NBMM12]. Private [Man99]. privatization [HZ12].

Pro [Ano97a]. Proactive [FJ08].

Probabilistic [EE10, EE12, CHH+03, SM06]. Problem [HH11, Lee06, YFF+12, BIK+11, Mlt96].

Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].

procedures [BGK94c, KASD07, LQ15].

procedures [MCS15].

Proceedings [ACM94c, ACM98d, ACM99a, ACM01, Ano69, Ano94a, Ano94d, AOV+99, Gol94, Hol12, IEE89, IEE90, IEE92, IEE93, IEE94a, IEE95, IEE96, IEE02, Lak96, LCK11, USE89, USE91a, USE91b, USE93a, USE93b, USE96, USE98b, USE98e, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, FR95].

Process [FT96, FG91, BM91, HF96, LVS01, MR08, Ply89, WP10, WCV+98].

process-oriented [WP10]. Processes [CB16, III01, SPY+93, ZSA13, YZYL07, Zig96].

Processing [AHW02, GAC14, MLGW18, RW97, SG18, SS91, How98, MV05, Par91, PYP+10, RKHT17, WCZ+07].

Processor [ABC+93, Ano00b, BM09, BCG+08, BGH+12, EHC95, GY95, HMNN91, HHOM91, HHOM92, KST04, KML04, KAO05, LvH12, MGQS+08, MG99, MTN+00, MV93, MB05, SV19, SW08, Sin97, ST00c, SZ02, SBK999, SUF+12, UALK71, UALK19, WS08, AAHF09, APX12, BEKK00, BH95, CL94, CY90, Cho92, EE00, Fis97, FRL18, Fuj97, Goo97, HF88, HKN+92, HNN+92, KDM+98, Kho97, KBA08, LBvH06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Met95, Miy95, Moc06, OCRS07, Raj93, Sha95a, SJA12, Sin99, ST00a, ST00b, SV02, Squ94, Srt93, Tsa97a, Tsa97b, TEE+96, VIA+05, WCW+04b, WCW+04c, YN09, ZP04].

processor-based [WCW+04b, WCW+04c, WCW+04d].

Processor-In-Memory [SZ02].

Processor-Oblivious [UALK17, UALK19].

Processors [ARB+02, AH00, Ano01, BF04, EEL+97, FT96, FSPE20, FJ08, GJT+12, GSL10, JGS+19, KS16, KLG08, KU00, KLDB09, LPE+99, MHG95, MCF99, MR09, ÖCS01, PF01, RCM+16, RYSN04, RKK11, SU01, SR01b, US02a, VS11a, YG10, ZP11, Aga89, Aga91, Aga92, AAC+15, BGDnWH12, BWDZ15, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW09, GBP+07, KBF+12, LLL10, LBE+98, Luk01, MN03, MEG03, MTPT12, Mis96, NBI2, NZ17, PFV03, PAB+14, PPG20, RGG+12, RCM+12, RPNT08, SL08, SMS+03, UR02b, UR03, ZSB+12, WM03].

process [Zig96].

Processes [Ano97a, Ano00b, Ano97c, Bra97].

Professional [Ano00b].

Profile [BMR94, SV19].

profilers [DTLM14].

Profiling [BP19, DG99].

Program [BVM19, Chl15a, DSR15, EFN+01, GN96, KKU14, NBM93, PF01, PS01, SHK15, TS00, TLZ+17, TLZ+18, TJ19, YDL20, YLLS16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EFN+02, FRT95, JEV04, JPS09, Yee20].

Programmability [THA+12].

programmable [PYP+10].

programmation [Swi09].

programmed [PPA+13].

Programmer [Cro98, Wil00, MS87, San04, Swi09].

Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BO17, BTE98, But97, CMK00, CV98, CDK+01, Chl15b, CTO0, CW98, DM98, FHM95a, FT11, FA19, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99b, ILF01, KKH03, KN17, KSS95, KSS96, KJAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PG99, QQQQV+09, QOM+12, Rod95b, SBB96, TC198, Vre04, Wil97, YFF+12, dIPR18, van95, ALS10, AR17, AG96, ABG+08, BHS00, BO96, BYL909, Bir89, CKF+91, Car89a, CS00, CMS03, Cha05, CYZ98, DSH+10, DMSM18, EV01, FHM95b, GZ12, GIl94, Gol97, GL07, HMC97, Hyd00, JPS+08, JHM04, KIN+03, Kim94, KN19, LB98, LPD+11, LP09, Man96,
programming

[SV96b, She98, She02, Sun95, TB97a, TB97b, TMAG03, Wal00, WCC+07, Yan02].

Programs

[ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, DSR17, EG14, FQS02, GKCE17, HL94, JBK18, KH18a, Kri98, LK20, LCS04, Lun97, Lun99, MS89, MGK+00, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SV96c, SV96a].

Programs

[AB01, AB02, GRR06, TVD14]. Prototype

[BMR94, HHOM91, HHOM92, BK96, BGT97, Far96]. prototyping [PDP+13].

Provably [DJLP10, GB99]. provide

[Way95]. provides [Hig97]. Providing

[PSM01, PSM03]. proving [Taf13].

Provisioning [BSS14, FFG14]. Pruning

[WL19], pseudorandom [SLF14]. PSO

[HH16]. Pthreads

[NBF98, Yam96, LB98, AS14, NBF96].

Publications [Bee98]. Publishing

[Ano00b, Hig97]. purity [FFQ04]. Purpose

[Ber96b, HSS+14, Man98, ZSA13, Ber96a, DC99, DC00, BSD+12, SKA01]. Put

[Wal95]. PVM

[DL99, DPZ97, Pla02, ZG98]. PVM/MPI

[DL99]. Python

[Swi09, How98, Pul00].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02].

QoS [ICH+10, PSM01]. QR [Dav11].

quality [PSM03]. Quantitative

[LPK16, NBM93]. Quasi

[Pla02]. Quasiqueual

[TGO99, TGO00]. query

[GarH14]. QUERYFLEX [Ano97a].

querying [HF96]. Queue

[Cri98b, Cri98a]. queues

[SCM05, ST05]. Queuing

[VK99, KPP07,06]. Quick

[Ano00b]. QuickRec

[PDP+13]. quicksort [Mah13].

R3000 [Arn92]. Race

[HM96, KUCT15, LS18, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AKH08, EQT07, FF99, HR16, HHVP15, MMN09, NAV06, NA07, PS03, PS07, PPH06, RVS13, WDC+13, XHB06, DWS+12]. race-freeness

[AHK08]. RaceFree [LZW+13]. Races

[KZC15, FF10, NWT+07, RP07, PT03, RBK+09]. racy [SRJ15]. RADISH

[DWS+12]. Ramada [Ano94d].

Ramada-Congress [Ano94d]. random

[LSS12, Sen08]. random-number [LSS12].
Randomized [Sei98, Sei99, JPSN09]. Rank
[AJK+12, ABLM19, Dav11].
rank-revealing [Dav11]. Ranking
DV99, VV00). Rapid [DVAE18], ray
[Tod95]. RCDC [DNB+12], RCU [CKZ12].
Reachability [LCS04, LQ15].
reachability-modulo-theories [LQ15].
Reactions [LTM+17]. Reactive
LV12, LMS18. Reactivity
BDN02. read [NM10], read-only [NM10].
Reads [LZL+20, AAJ+19], reads-from
AAJ+19. ready [Ano92b, DFC+19]. Real
BC94, IEE94a, IEE94d, JLS99, Kim14,
KBP+03, MN00, PUF+04, PSCS01,
SZG91, SM19, SUF+12, Tet94, WLG+14,
dPRGB99, CZWC13, CMX10, Hol98d,
Hol98a, Hol98b, Hol98c, Hol99a, Hol99b,
Jen95, JPSN09, MKK99, OT95, PSM03,
RPNT05, San04, SZ92, SJBB92a, SJBB92b.
Real-Time [IEE94a, JLS99, Kim14, MN00,
PUF+04, PSCS01, SUF+12, Tet94,
dPRGB99, IEE94d, KBL+03, PSM01,
SZG91, SM19, Jen95, MKK99, OT95,
PSM03, San04, SZ92, SJBB92a, SJBB92b].
Real-Time-and-Distributed [BC94].
Real-world [WLG+14]. Reality [LH09].
realizing [YJ14]. Realtime [BMR94].
reasoning [FK12], rebiasing [RD06].
recognition [Ano97b, LG04].
reconfigurable [DSH+10, LP09]. ReconOS
[LP09]. reconstructive [MCS15]. Record
[Chr01, UALK17, UALK19, ACM93a,
ACM94b, ACM95b, ACM98b, GCRD04,
HDT+13, HT14, LSW+18, PDP+13, QSQ14,
RD99]. record-and-replay [LSD+18].
record-replay [HDT+13]. Record/Replay
[Chr01, GCRD04, RD99]. Recording
MCT08, NPC06, HZD13, LZTZ15, XHB06].
recoverable [LAK09]. Recovery
LAK09, VPC02, WCV+98, YZYL07].
RecPlay [RD99]. rectangular
[SGLG+14]. Recursively [BE13, BE12].
[KSU94]. RedThreads [HTDL18]. Reduce
[DSR15, CCC12, Cor00, KOE+06]. reduced
[GA09]. Reducer [LS18]. Reducing
[LK20, SLP08, SYHL14, PGB12].
Reduction [AMA91, CL95, HLH16, KLS92,
SW08, BKK17, HH16, XHB06, YL15,
ZKW15, HLDG19]. Reductions [ZAK01].
Redundant [CCK+16, CvdBC18, HTDL18,
KS16, MB07, MKR02, PSG06a, PSG06b,
PSG06c, RRP06, WLG+14]. ReEnact
[PT03]. Reentrant [AMdBRS02].
Refactoring [Ten02]. Reference
[Rec98, Sch14, KOE+06].
Reference-Counting [Rec98]. refinement
[GPRI11, KPPÉR06, KII16]. Reflection
[OT95, Bak95a]. region
[KBF+12, WZSK19]. region-based
[KBF+12]. Regions [DELD18, GPS14].
RegionTrack [MWP+21]. Register
[GJ+12, LE+99, RRK11, WW93, CCC12,
HT93, SLP08, kSYXH+11, ZP04].
regulated [XHB06]. Relabeling [HH11].
related [Bar09, RD06, TLZ+16], relational
[HB15]. relative [Bet73]. Relatively
[NV15]. relaxed
[BAM07, DNB+12, HT14, QSQ14, ZKW15].
relaxed-consistency [HT14, QSQ14].
Relaxing [CZS+17]. RelaxReplay [HT14].
Relay [Zha00]. Release
[AB02, PST+92, SLP08, EKB+92, Pea92].
Reliability
[CCK+16, CVDBC18, OL02a, OL02b, OL02c].
Reliable
[KS16, NBS+15, RG03, YZYL07, YCW+14].
relocation [WW93]. remains [Ano94b].
remedies [ALW+15]. remote
[TK98, ZLW+16]. Remove [CNZS17].
reordering [DKG18]. Repaiss [Chr01,
UALK17, UALK19, GCRD04, HDT+13,
HT14, LNV10, LW+10, LZTZ15, LSW+18,
NWT+07, PDP+13, QSQ14, QSHI16, RD99].
Replaying [MCT08, WKG17]. Replica
[AT16, FRL18]. Replication
[AKP99, BKL06, VACG09].
Replication-Based [AKP99]. Report
[Ano97a, HCM94]. reproduce [HZD13]. request [Sch98]. Requirements [PCPS15, GL98a]. rescue [SLP+09].
Research [BMF+16, USE01, AG06, BMF+19, RPNT08]. réseau [Swi09].
Resource [HC17, LG06, LZS+08, LHG+16, RSNB01, YSS+17, CY09, HCD+94, VS11b].
Resource-Efficient [LHG+16]. Resources [LSB15, RGG+12, ZSB+12]. Respec [LWV+10]. Response [BBC+00, Smi01]. responses [BS06]. Responsive [SUF+12].
Rethinking [Xue12, Len95]. retrieval [CML00]. Retrospective [TEL98].
Reusable [Han97]. Reuse [BCZY16, KZTK15, LPK16, SV19, JSB+11, NAAL01, PHCR09]. revealing [Dav11].
Reverse [Coo02, LSB15, WCV+98]. Review [Lar97, Van97a, Vre04]. Reviews [Ano97c, Bra97]. Revised [Cha05].
revisionist [PT91]. Reviving [TLZ+17, TLZ+18]. revolutions [ECX+12].
Rewriting [BGK94a, BGK94b]. RHEED [BD06]. right [MAH18]. RISC [Cho92, GV95, MHG95, Men91, Nik94, SBK99].
rise [Len95]. Robot [Lev97]. Robust [CMF+13, LG04]. Rockefeller [IEE90].
RP3 [CJ91]. RPC [To95]. RPPM [DVAE18]. RPython [MRG17]. RTOSS [IEE94a, IEE94d]. RTR [XHB06]. Ruby [OCT14]. rules [GLPR12]. Run [EJ93, LFA96, Swe07, SS96, Pra95c, TNB+95].
Run-Time [EJ93, LFA96, SS96, TSY99, TNB+95]. Running [SV19, Cal02, MLCW11, SSN10].
runs [Hig97]. Runtime [ABN99, ABNP00, ABH+00, ABN00, BJK+96, BMN99, CZS+17, DNR00, FSS06, KPC96, NPT98, NS97, QQI+12, SSP99, WS06, YSS+19, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EQT07, Gob97, Ong97, TSY00, TMAG03]. runtimes [RL14]. Russians [KNPS16]. Rust [BO17, KN17, KN19, Tro18].
SA [SHW19]. SableSpMT [PV06]. SAC [GS06]. Safe [BCL+98, Kle00, Loc18, Lov00, NH09, Pla02, AFF06, BYLN09, DMBM16, DMSM18, Fek08, GCC99, GOT03, Gro03, NHFP08, Ne09, Ni99, Tro18].
Safe-for-Space [BCL+98]. Safety [Hag02, Pla98, Ric99, SP00a, GPS14, San99, San04, SRA06, Taf13, Van97b, Ven98, Yan02].
safety-critical [San04]. Salt [Hol12]. sample [LZS+19]. Sampled [JYE+16].
sampling [MMN09]. San [ACM93b]. ACM94d, ACM95b, ACM98b, USE89, USE92a, USE93b, USE98b, USE00a, USE02].
Santa [Gol94, WP10]. SAT [VDK90].
Save [Pla93, Dye98]. saving [Mus09].
SC2000 [ACM00]. SC2002 [IEE02].
Scalability [ABL19, CCH11, GVT+17, Nak01, VP16, BWDZ15, DSEE13, MKW+06, ROAO18, VIA+05].
Scalability-Aware [GVT+17]. Scalable [BMBW00a, CC14, CH04, CKZ12, IEE94b, KUCT15, LMJ14, LNI+19, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, LZ07, Mao06, PWD+12, SCZM00, WZSK19].
Scalably [DELD18].
scalar [GLO8b, ZCSM02a, ZCSM02b]. Scale [CC14, CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, GOT03, JCP17, SMK10, KBA08]. scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16].

Schedule [MQLR16, MLR15, NAAL01, WTH+12]. Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSaS+16, SRS98, SS95, ASSS19, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSa08]. Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12]. schedulers [NBMM12]. schedules [BCG13, CZ02]. Scheduling [BL94, BL98, BL99, CCWY17, FS96, FSPD16, FSPE20, GR06, JLS99, KLD09, LLKS12, MNU+15, NB99, PEA+98, PM14, RS08, SM19, SLG04, YDLW20, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DCOO, EE10, EE12, FD95, FKS+12, GA09, HL07, JSMP12, KJJ+13, KPB+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAS07, WHJ+95, ZSB+12]. Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12].

serialization [BHK+04]. Server [An00b, Cal97, Day92a, Day92b, SMI92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sho97b, Sta90]. server-side [SBB96]. Servers [PHBC18, RCC12, BDM98, BBYG+05, BEKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b]. Service [CGK06, GMW09, Hig97, PSM03]. services [LZ07]. session [Bak95b, HCD+94, IAD+94, VGR06]. sessions [An04c]. set [Aru92, KBF+12]. Sets [MNG16]. Seven [Bue14]. several [FGG14]. shader [YP+10]. shallow [LVA+13]. Shanghai [IEE97]. shape [Cor00, GBCS07]. SharC [AGEB08].

Shared [BWXF05, BS96, DM98, EJ93, FJ08, GMR98, GH98, IXX18, LB92, MVZ93, MCT08, STY99, SLJ+19, Thr99, VB00, WC99].
YMR93b, BB00, Boo93, DLCO09, DPZ97, EKKL90, Ev01, Gle91, ISS98, Jef94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, ZSB+12, dB09, Cha05.

Shared-Memory
[BS96, DM98, EJ93, IXS18, MVZ93, MCT08, Th99, WC99, EKKL90, TSY00, YN09].

shared-variable [dB09]. Sharing [CLFL94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AGE86, AGN09, LTHB14, Sam99, SS95, TES94a, Ver96, VPQ12, ZJS10].

sharing [TE94a]. Shelf [MHH95]. shell [Ric91].

Shift {Ham96}. Shifting [TVB+13]. Shinko {Ano00a}. Shootdown [PHBC18]. Shop [Bec00]. short [CPT08, Lie94]. shortage {Ano94a}. Should [EH*+07]. SICStus [EC98]. side [MMT10, SBB96]. sided [QSHI16]. SIGACT [AC93a, ACM94b, ACM99b, ACM99b].

SIGCOMM {RM03}. Signal [Eng00, BM91]. Signals [GRR06].

Significance {ZJS12}. SIGPLAN [AC94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT [AC93a, ACM94b, ACM95b, ACM98b].

Silicon [FSY09, SW08]. Simple {AKS06, Ch15b, WS08, BDL07, CL00, MSM+10}.

SimpleGraphics {MKK99}. simplify {P003}. Simplifying {Pom98}. SIMT [CC18, LPK16, TCS20]. SIMT-X [TCS20]. simulate [MAD+99]. Simulation [For97, GV95, HPB11, JYE+16, MPD04, SLJ+18, VTSM12, WYT+20, WG94, Ano97b, HBH+17, KBF+12, Lep91, Lep95, MHW02, SMMC94, Srr93]. Simulations [HEM17, LNI+19, LS11, SCD+15, ABC+15, KU17, LVA+13, VQ12].

Simulator [SRS98, PWD+12, TSHC99, WZWS08, Nak03]. Simulators [BVL09].

Simulink [HYY+15]. Simultaneous [Ano05, CSK+99, EEL+97, GSL10, HMNN91, LEL+97a, LEL+97b, LEP+99, LEL+99, LRZ16, MCFT99, REL00b, SP07, SLG04, SHW19, SU01, ST00c, TEL95, Tuo96, TEL98b, WSO8, YG10, ABC+09, AAKO8, ABB+15, CCE12, EE09a, Fis97, HKN+92, HN+92, LBE+98, Luk01, Mah13, MMM+05, MEG03, PHC+09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TCH99, TEE+96, VPC02, TEL98a]. Single [CLFL94, Dub05, EHP+07, FT96, HHOM91, JBK18, KH18b, KTR+04, MNU+15, MTN+00, TCS20, CSM+05, MLC+09, Pra95c, VIA+05, YZ07, YSY+09].

Single-Threaded [EHP+07, JBK18, Pra95c, VIA+05, YZ07].

Singleton [Cha02, Rin99]. SISC [RGT17]. situ [LSW+18, RGK99]. sixth [USE98b, ACM94d]. size [LML00]. skyline [WZSK19]. slave [TJY+11]. slice [PSG06a, PSG06b, PSG06c]. slice-based [PSG06a, PSG06b, PSG06c]. Slices [MGQ+10, PF01]. Slicing [Kri98, FRT95, NR06]. SlicK [PSG06a, PSG06b, PSG06c]. slower [Pra95c].

Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart [Sim97]. SMP [BWX05, BNB01, CRE99, HD02, KKH03, KKJ+13, Pra95c, TAO7, TMAG03]. SMTs [WG99]. SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSP16, FSP17, FSP20, HR10, KLG08, KH18b, K116, MG99, MMM+05, NSP+14, PADS+17, PAB+14, PLT+15, RYSN04, RPNT08, SLP08, SHW19, TCS07, TVB+13, VS11b, WA08]. SMT-based [K116, PADS+17, PAB+14].

SMT-Directory [HR10]. SMT-SA [SHW19]. SMTp [CH04]. SoC [ZDTM19].
[SOFRITAS] [DELD18]. Soft [EUVEG06, OA19, PSM01, PSM03, SSN10, VACG09].
Software [Ano97a, Ano98b, Ano99, Ano00b, BVM19, BCR01, BCG+08, Gar01, Gon90, GJ97, Hau97, HSS+14, IEE94a, KE15, LPE+09, MKM17, PJS15, SZM+13, SD13, TVB+13, TLZ+17, TLZ+18, Tro18, XWG+14, YBL16, ATLM+06, AC09, Ano97c, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLPR12, Ha97a, HSD+12, IEE94d, KKH04, KSD04, KASD07, LT07, Luk01, MWP07, MCRS10, MGL95, MEG03, NHFP08, OAA09, OL02a, OL02b, OL02c, PV06, RKM+10a, RKM+10b, RVOA08, San04, SP05, SLF+09, SB80, TSB+95, WCT+07, WCV+98, YST+09, ZHC15, DWS+12].
Software-Controlled [BCG09, Luk01].
SONET [AHW02]. Sort [GH98, RRH10]. Sound [MWP+21, WTH+12, DWS+12, FFY08, NFB17, WQL+18]. Source [An000c, BMF+16, BMF+19]. sources [SJ95]. South [ACM93a, Ano94d]. Space [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, Sch17, FLW03, KNPS16, KASD07, Lie94, LHS16]. Space-Efficient [BL98, NB99, BL93, KNPS16, KASD07, LHS16].
Spacecraft [SR958]. Spaces [FKP15, Rö919, CKZ12, KGK90]. Spain [ACM95a, DLM99, ACM98c]. SPARC [Cat94, KAO05, MD96]. Sparcle [ABC+93]. Sparse [But13, YFF+12, CSV10, ÇM20, Dav11, DTR18, MM07, PHCR09]. spatial [WZSK19]. spatially [PPA+13]. spatially-programmed [PPA+13]. Special [Ano94e, GGB93b, KU00]. specialization [WTH+12]. specialize [CWS06]. Specialized [dPRGB99]. Specific [Ste01, SP00b, Shi00]. specification [LPD+11, Stå05]. specifications [TVD10]. Specifying [BNS11a, BNS11b, BNS12, LPD+11]. spectroscopy [KC09]. spectrum [DKF94, Sha95b]. Speculated [dlPRGB99]. Speculation [MG14, SU01, WSB16, DG99, GB99, JEV04, LWV+10, MT02a, MT02b, MT02c, NB12, PO03, PT03, RGT17, SCZM00]. Speculative [AH00, Ano01, Ano02, BF04, IBST01, KL08, MGQ+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b, TFG10, WWW+02, ZJFA09, ZL10, CHH+03, DC07, Dub95, KOE+06, KT99, LZW17, LZSS19, LZL+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VS11b, XIC12, ZCSM02a, ZCSM02b]. speech [LG04]. Speed [An00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10]. Speed-up [MR09]. Speedup [Lun99]. Spin [LSS06]. SPIRAL [MJF+10]. SPIRAL-generated [MJF+10]. splittable [SLF14]. spots [Gle91]. spreading [CWS06]. SPSM [Dub95]. SQL [CGK06]. squares [FTAB14]. squash [MK12]. SR [BO96]. SRAM [kSYH+11]. SSMT [CSK+99]. Stabilizers [ZJ06]. Stabilizing [BCM+07]. stable [VC+14]. Stacey [An000c]. Stack [Eng00, Xue12]. Stackable [Loo05]. stacking [KSB+08]. Stackless [MS15]. stacks [DESE13]. StackThreads [TTY99]. StackThreads/MP [TTY99]. Standard [DM98, FSS06, WKG17, Ano97c, BCL+98, Bra97, MT93, Pla98, Pla99]. standardization [Bet73]. Standards [Thr99, TTY99]. Standing [TLA+02]. Stanford [IEE99]. STAT [An000b]. State [Laf00, LP94, MP13, RRK11, Wei98b, Cor00, 1+94, TFG10, WHG07]. State-of-the-Art [MP13]. State-Retentive [RRK11]. Statechart [KW17]. Statechart-Based
stateless [AAJ+19, MQ08]. Static [GPS14, Kri98, Lun97, SBC15, SBE+19, WW96, vPG03, Fer13, NAW06, NA07, AFF06, FFLQ08]. Static/dynamic [SCB15]. Statistical [Ano00b, RCM+16, Lan97, RCM+12, Tem97]. Stay [GBK+09]. stealing [ALHH08, BL94, BL99, RL14, WYT+20].

Step [Sho97a, Sho97b, ZG98]. Steroids [JLA16]. Stethoscope [Caz02]. Stochastic [DK02, LTM+17]. Storage [AT16, Hol12, LCK11, Bak95a, Blu92, DZKS12, KOE+06, MM07, PDMM16, PPGS20]. stores [TAN04]. strad [RCV+10]. strata [NPC06]. Strategies [PSCS01, WLT19, AGEBO8, FGG14].

Strategy [BGK96]. Stream [KSU94, SG18, SG18]. Streaming [HHOM91, HHOM92, KEL+03]. Streaming/FIFO [HHOM91, HHOM92]. Streams [Pre90, SPY+93]. Strength [Kou00]. Strict [Coo95, FS96, Tra91, KIAT99, SGC95].

Strictly [Ano00c]. Strong [CWHB03, KZC15, MTC+07, ZHCB15]. Structural [CKRW99]. structure [BB00, YKL13]. Structured [TC198, FR95].

Structures [RCHR95, AGN09, Gol97, ND13]. students [Fek08]. Study [AGK96, Chl15a, ECG02, HMT+96, LSB15, Sat02, TAK+00, VK99, WG94, YMR93b, Bri89, CASA14, CL00, Fis97, HJT+93, HF96, KPPERM6, LDP+11, MGL95, SP05, Sod02, Tsa97a, YM92, YMR93a]. Style [Wil94a, Wil94b]. subdivision [MTS10]. subordinate [CSK+99, CTP02].

Subsetting [AKJ+12]. Substrate [ACMA97, Hai97a, JP92]. Subsumption [Man91]. Subtleties [BLM06]. Suffix [OR12, LHS16]. SugarCubes [BS00]. Suite [BTE98, BO01, TG09]. Suites [SPDLK+17].

Supercomputing [ACM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c]. SuperLU [Li05]. SuperMalloc [Kus15]. Superscalar [SU96, Div95, Fis97, Gtl95, Loj95, Men91].

Superthreading [Tsa97b]. Support [ACM94d, ABLL92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KCT99, MKM17, ME15, MS89, NS97, PTMB09, SSP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CKD94, CHH+03, CSS+91a, CSS+91c, Evr01, Fan93, HMC95, MW07, MEG03, MS87, Men91, TS99, TSY00, TNB+95, WK08a, WK08b, WK08c]. Supported [AddS03, ZP11]. Supporting [RCRH95, Sam99, SP00a, DC99, DCO0, TDW03]. suppression [JWGT11]. Surface [Rot19].

surgery [MSC15]. Surprises [BC98]. Survey [CA20, Man96, OA19, ZSB+12, Cat94, URS02b, URS03]. Survival [Ano99].

Switzerland [Lak96]. Sy [USE01]. Symantec [Rod95a]. symbiosis [Bri89, EE10, EE12]. Symbiotic [FSPE20, ST00a, ST00c, ST00b, STV02]. Symbolic [ACM94c, BGC14, Hon94, Lak96, Wat91, BHKR95, Fiu97, HF88, HLG19].

Symmetric [BMV03, NV94, BI8+11, Pra95b, RGK99, Sha98]. Symmetry [ES97].

Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM96b, ACM98c, Ano91, Ano94a, Ano90a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col90a].

Synchronization [Bec01, DSR17, Hei03, LA93, Rec98, SL+18, DHM+12, DESE13, MT02a, MT02b, MT02c, MTPT12, NLK09, PRS14, RD06, Ven97].

Synchronization-Aware [SL+18].
synchronization-induced \cite{MTPT12}, synchronization-related \cite{RD06}.

Synchronizing
\cite{McM96a, McM96b, CZWC13}.

Synchronous \cite{BM07, HPB11}.

SynchroTrace \cite{SLJ∗18}.

Synergy \cite{ZDTM19}.

Syntax \cite{KT17}.

Synthesis \cite{FN17, HB11, McM96a, McM96b, CZWC13}.

Synthesizing \cite{GLPR12, Kim14, SRJ∗15, Sch17, MP89, SR14, STR16, WQL18}.

System \cite{Add90, Add91, Aco00a, Add00b, ABN∗00, BMN99, Bre02, BC94, CCH11, CvdBC18, Dru95, FMY∗15, FGKT97, GHG∗98, GJ97, HRH08, HKS∗06, IEE99, IEE99a, KR12, KKH03, KG05, KUC15, KW16, LSO6, LMA∗16, LHY16, MS15, PPG11, PGB16, JR09, RR03, SFS∗12, SNS∗06, USE92, Wal95, WCG∗99, Zul∗02, Ano92a, Ano92b, BCM∗07, BC∗02, CAT94, DCK07, DWYB10, DZKS12, DSH∗10, DBR∗91, GJ11, Gol96, GKK09, HJJ∗93, Hop98, HWW93, HBC13, IEE94d, ISS∗98, JD08, JEF94, JEN95, KKH04, KUB15, LYN10, LLLC15, Leg01, LAK09, LVA∗13, MLC∗09, MGL∗95, MM∗07, NFBB17, PBDO∗92, RC∗10, RBF∗89, RSB∗09, RVR∗04, SCCP13, She98, SP05, Sim97, SJB92a, SJH92b, ST05, We98a, WC∗∗98, Ano98b}.

Systolic \cite{SHW19, PYP∗10}.

T \cite{Ano00c, NPA92}.

T/TCP \cite{Ano00c}.

T1 \cite{Wea08}.

T1/T2 \cite{Wea08}.

T2 \cite{Wea08}.

Table \cite{VB00, KNPS16}.

Tabling \cite{AR17, AR19}.

Tabu \cite{AMRR98}.

Tail \cite{ASSS19}.

Taint \cite{ZJS∗11}.

TaintEraser \cite{ZJS∗11}.

Take \cite{Wei97}.

Taking \cite{Ano92b}.

Talking \cite{Ano94c, HCM94}.

TAM \cite{CSG∗93}.

Taming \cite{Hol00, HBC13, HPV15}.

TapeWare \cite{Ano00b}.

Target \cite{MIGA18}.

Targeting \cite{LGH94}.

Task \cite{CCK∗16, GuP∗95, GFJT19, Kwo03, Mar03, MIS96, PM14, ABG∗08, CASA14, DCK07, OSSP12, RCM∗12}.

Task-Based \cite{GFJT19}.

Task-Level \cite{GP95}.

Tasking \cite{CvdBC18, DiI∗03, KRO∗1a}.

Tasks \cite{Fin95, PVS∗17, YSS∗17, YSS∗19, FG∗14}.

Taxonomy \cite{HM96, SPH96}.

TC2 \cite{BT01}.

TCL/2G \cite{BT01}.

Tcl \cite{Ass96, USE96, USE98b, USE00b, AMA98, MKK99, SBB96}.

Tcl-based \cite{AMA98}.

Tcl/2k \cite{USE00b}.

Tcl/Tk \cite{Ass96, USE96, USE98b, USE00b, MKK99}.

TCP \cite{Ano00c, Ano00c}.

Teaching \cite{Fek08, CS∗00, SHE02}.

TeamWork \cite{CZW13}.

Tech \cite{Ano97b, Gar01}.

Technical \cite{USE00a, Cat94}.

Technique \cite{JSB∗12, KRG∗09, LEM02, OS∗01, PGB16, JS∗11, JPSN09, LGH94, MIGA18, RS07, UZ00, VAC09, WC∗∗98}.

Techniques \cite{CA20, DS16, EKKL90, GS02, Han97, NLK09, PWL∗11, TGS05, ZIG96, BR92, GEG07, OCRS07, PRA97, RCG∗10, SV96c, SV96a, SV96b, ZSB∗12}.

Technologies \cite{Ano00b, Ano98b}.

Technology \cite{Ano97c, Bra97, KM03, LB00, USE01, VSM∗08, KSB∗08, Tsa97b}.

TeleNotes \cite{WSKS97}.

Temperature \cite{CCC12}.

Template \cite{Cal00, HOW98}.

Ten \cite{Ano99}.
Tennessee [IEE94a]. Tera [BTE98, Mat97]. Terabytes [IEE02]. Term [BGK94a, BGK94b, BGK96]. Termination [JBK18, TDW03]. Test [Ama98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14]. test-case [KI16]. Testing [BBdH+11, Goe01, KH18a, LCS04, RCC14, SK12, BGP06, CMB10, EFG+03, EHSU07, MQ07, Sen08, YNPP12]. tests [SRJ15]. Texas [USE92a, USE00b]. TFlux [DTLW16]. tgMC [LHG+16]. Their [YWJ03, Gil94]. them [Ano92a, Ano94b]. Theoretic [ES97]. theories [LQ15]. Theory [ACM93b, LLD17, NFBB17, WLK+09]. there [Ano94b]. thermal [WA08]. though [Ano94b]. Thread [Ano00c, ABN99, ABNP00, Bet73, BTL+19, BS99, CNQ13, Cal97, CC04, Cha02, CCWY17, Col90a, DSR15, DELD18, DGK+03, Don02, DMSM18, DSR17, Eng00, FSPE20, FD95, FURM00a, FURM00b, GF00, GJT+12, GP05, GBCS07, GBK+09, Hag02, Hei03, HG91, ISS98, KG05, Kin14, Kle00, KH18b, KBH+03, KBH+04a, KBH+04b, LPM17, LML+19, LZL+20, LLL10, LHY16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MNU+15, MG14, MTN+00, MB05, MCFT99, ND96, Pan99, PR05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RC+16, RCG+10, Rec98, Ric99, Rin99, RYS04, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLGM17, W99, We97, WHi03, YBL16, ZP11, AMRR98, ABG+08, BKC+13, BHK+04, BC02, CSZB16, C202, CSM+05, DMBM16, DG99]. thread [DWYB10, Don92, DBRD01, Eic97, EE09b, Fek08, GP08, GDT03, GLC99, Hydro, JEV04, KDM+98, KC09, KBA08, KSD04, KASD07, K13, LZW17, Lje94, LML00, LZL+14, Loc05, LMC+09, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QQOV+09, RGT17, SKG+11, Sh95b, SLG06, SP00b, Shi00, SPH96, SS95, SD13, SLT02, St95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCC95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02]. Thread-Aware [LYH16]. Thread-Based [KG05, CNQ13, SKS+92]. Thread-Level [LEL+97a, LEL+97b, MG99, MGI14, YBL16, FURM00a, FURM00b, MCFT99, WS08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QQOV+09, RGT17, SCZM00, YZ14]. Thread-Local [DGK+03, Don03]. Thread-management [RCG+10]. Thread-modular [GBCS07]. Thread-Private [Man99]. thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, DMSM18, Rin99, DMBM16, Fek08, GT03]. Thread-Sensitive [CC04, RYNS04]. Thread-Specific [Ste01, PO00b, Sh90]. thread-switch [Eic97]. threadbare [Bak95b]. Threaded [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BBG96, CL95, CRKW99, Coo95, CSS+91b, DV99, EHG95, EHP+07, FdL02, GH03, GVT+17, GK94, G93, II01, JBK18, JY15, Jon91, KW17, K98, K92, KIAT99, LK20, LB92, Mas99, MG15, MGK+00, MSU+16, NS97, PCPS15, Pu90, RKCW98, SV19, STW93, Sei99, Sni92, Ste01, SBK99, TLGM17, VSDK09, VS11a, VB90, VCM19, WC98, YD20, Ada98, ABD+12, AACK92, Ano97b, ASSS19, BWDZ15, BK13, BB+17, BC00, BIK+11, DSEE13, CV98, CIM+17, CASA14, CRKW97a, CRKW97b, CWHB03, CSH00, DADO1, CY98, c91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBKG01, EHSU07, FTAB14, FD96, FGG14, GCRD04, GCC15, G506, GH98, GPR01, HC17, HLGD19, JCP17, KHP+95, KJ95, KKH04]. threaded [Kep03, KRH98, Kic91, LK15, Lan97, Leg01, LBvH06a, LBvH06b, LBvH06c, LVA+13, MLCW11, MS03, MKK99, NFBB17, NH09].
NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, PWWD+18, Pra95c, RCV+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SC17, SE12, Sei98, Sho97a, Sho97b, SV98, Sm06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Tem97, TMAG03, TJY+11, VIA+05, VV00, VK99, Wal00, Wi98, XMN99, YZ07, Yee20, YSY+09, ZKR+11, dB09, vPG03, CGSV93.

Threading [BFA+15, CGS+20, CvdBC18, CNZS17, DHR+10, Hol98d, KS16, LKBK11, MLGW18, Mc97a, Mc97b, MS15, MP13, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, SMZ18, TGO09, TCS20, YLS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, MLC+09, MCFT99, NJ00, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDB98, kSYHX+11, YKL13, CH04].

Threading-Based [KS16]. ThreadMentor [CMS03, She02]. Threads [Alf94, Ano94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, BAZ+19, Hol98d, KS16, LKBK11, MLGW18, Mc97a, Mc97b, MS15, MP13, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, SMZ18, TGO09, TCS20, YLS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, MLC+09, MCFT99, NJ00, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDB98, kSYHX+11, YKL13, CH04].

ThreadScope [WT10]. Three [YMR93b, YM93a]. Throttling [LG06]. Throttling-Based [LG06]. Throughput [GJT+12, Wea08, ZDTM15]. Tightly [MTN+00, LZTZ15]. TileDB [PDMM16].

Tiles [QIOI+12]. Time [BC94, CIM+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSC01, SUF+12, S996, Tet94, dIPR99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBB+03, KASD+07, KBF+12, MK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZ91, SZ92, SM19, SJB92a, SJB92b, TS9Y99, TNB+95].

Time [BC94, CIM+17, EJ93, GN96, IEE94a, IEE94d, Jef94, Jen95, KBB+03, KASD+07, KBF+12, MK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZ91, SZ92, SM19, SJB92a, SJB92b, TS9Y99, TNB+95].

time- [KASD+07]. time-critical [RGG+12]. time-efficient [GB99]. time-shared [Jef94]. timely [NH09]. Timers [Hol99a, GRR06].

Timethread [BC94]. Timethread-Role [BC94]. Timing [SK97, MHW02].

Timing-first [MHW02]. tiny [Xue12]. Tip [Pet00]. Tips [Mit96, Pet00]. Tk [Ass96, USE96, USE98b, USE98b, TLA+02, MK99]. TLB [PHBC18]. together [Ano97b, Pol90]. Tokyo [Ano00a].

Tolerance [EUVG06, OA19, MTS10, PG01, RR06].

Tolerant [ÖCS01]. Tolerating [Luku01, RBK+09, SKK+01]. Tool [Add03, Ano98b, Goe01, Kor89, LZZL20, TAM+08, ACD+18, CMS03, CSB00, Hig97, LMC14, RGK99, YNPP12].

Tool-Supported [Add03]. Toolbox [Ano97c, Bra97]. Toolkit [MSU+16, SZM+13]. Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95]. Tools.h [Ano00b]. Toolset [Ano97a]. Top [Ano99, AB02, DNR00, ZTN19].

Top [MS87]. Topaz [BGG95, GBG95]. Toroidal [KEL+03].
Unix-to-NT [Ano98b]. UnixWare [Rod94, Rod95b]. unlocking [XSaJ08]. unravel [But14]. Unraveling [Bec00].

Unsynchronized [DSR15]. unveiled [Ano95a, Ano95b]. Unveiling [AAC+15].

up-and-downdating [VV11]. UPC [EGC02, FA19]. updates [NHFP08].

Usage [BS96, Kor89, VS11b]. Use [Bak95a, FJ08, HW92, WWW+02].

Use-once [Bak95a]. Useful [Pet03]. USENIX [Ano90, Ano94f]. User [ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, Li05, MSLM91, OT95, SLT02, TNB+95, YZYL07].

User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07].

User-Space [Eng00, GRS97]. Using [Ano99, ABH+00, AZG17, BDN02, BTL+19, BBC+00, BLG01, BTE98, BAZ+19, CRE99, Cor00, DS16, DTLW16, DRD901, GH03, HBG01, HJT+93, HBTG98, Hei03, How00, KM+02, KH18b, Kwo03, KTE06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, P003, SW08, SCD+15, SEP96, SLT02, WKG17, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CTP02, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JWTG11, JJY+03, JCP17, KASD07, KBE+12, KLM15, MM14, NPC06, NWT+07, Nik94, PT03, RKM+10a, RKM+10b, RM99, RPN05, SLGZ99, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VD08, ZJS+11, KSB+08]. UT [Hol12]. Utility [FHM95a, JSMP13, WLT19, FHM95b].

Utility-based [JSMP13]. utilization [Squ94]. Utilizing [ES97, WZSK19]. UX [Ano95a, Ano95b, Yam96].

V [EBK+92, Pea92, FG91, PST+92]. v1.0 [An00b]. Validating [LB17]. Validation [BMV03, DSR17, LB17, SCB15]. Valley [GBK+09]. value [DG99, TFG10, ZCSM02a, ZCSM02b]. Values [EUVG06]. Variable [CA20, Evr01, dB09]. Variables [Hol98c, Whi03, Bak95a]. variation [PGB12]. variety [CMLO00]. VAX [Gil88].

Vector [Go09, HHOM91, HHOM92, KBH+04a, KBH+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92]. Vector-Thread [KBH+04a, KBH+04b, KBA08].

vectorization [cC91, JMS+10, RKHT17]. vectorized [TP18]. vectors [KTK12]. Velodrome [FFY08]. Verification [AMdBdRS02, BCR01, Chl15a, DRV02, EGP14, FK12, JBK18, KKW14, YDLW20, BK13, CASA14, DCK07, EG11, FFQS05, HLGD19, NSH14, Stä05]. Verified [Loc18].

Vertex [CNZS17]. Vertex- [CNZS17]. Very [AOV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZY16, CCWY17, FB01, Hig97, KRB12, KHP12, Kin14, LWV+10, LTTZ15, LEL+94a, LEL+97b, RM00, SCCP13, SMD+10, Ten08, VV11, WCW+04a, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97]. Video [BC00]. view [KTLK13, PT91].

Vina [TO10]. Violations [MWP+21].

Virtual [BSSS14, BBM09, KG05, KKD03, PRB07, PHB18, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MGR17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c].
REFERENCES

[DV99, VV00, BC14, VTSM12, VDBN98].
XMT-2 [BC14].
XPS [Ger95].
y-cruncher [Yee20].
Yokohama [Ano03].
Yosemite [Ano00b].
z13 [ABB15, CJB15].
Zurich [Lak96].

References

REFERENCES

Antonopoulos:2009:ASH

Aliaga:2015:CMS

Aliaga:2012:SDG

Agarwal:2010:DDP

Auerbach:2008:FTG

Antoniou:2000:IJC

Gabriel Antoniou, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith Mcguigan, and Raymond Namyst. Implementing Java consistency using a generic, multithreaded DSM runtime system. *Lec-

[ABN00] Olivier Aumage, Luc Bougé, and Raymond Namyst. A portable and adaptative multi-protocol communication library for multithreaded runtime systems. Lecture
Antoniu:2000:CDP

Aleen:2009:CAS

Almasi:2003:DCD

Adams:2018:TTV

ACM:1992:CP1

REFERENCES

[ACM00] ACM, editor. Proceedings of the ACM 2001 Java...

ACM:2003:SII

Arvind:1997:MSC

Attali:2001:GVJ

AD:2008:ENE

Adamo:1998:MTO

Abraham:2005:ABP

Abraham:2008:DPS
Erika Ábrahám, Frank S.

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

Agerwala:2006:SRC

Agarwal:1989:PTM

Agarwal:1991:PTM

Agarwal:1992:PTM

Anderson:2008:SCD

AlBarakat:2018:MFM

Amrhein:1996:CSM

Anderson:2009:LAC

Akkary:2000:CSM

Abdulla:2008:MCR

Adiletta:2002:PSA

REFERENCES

REFERENCES

[AMC+03] Tor M. Aamodt, Pedro Marcuello, Paul Chow, Antonio González, Per Hammarlund, Hong Wang, and John P. Shen. A framework for

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

Aiex:1998:CMT

Annavaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Anonymous:1992:MWPb

Anonymous:1994:ICS

Anonymous:1994:MDP

[Ano94b] Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

REFERENCES

Anonymous. Wanted: The Multithreaded CIO. *Data-

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. *Linux Journal*, 34:??, February 1997. CODEN LLIJFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

REFERENCES

[Ano00c] Anonymous. Strictly on-line: T/TCP: TCP for Transac-

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF
Arnau:2012:BMG

Areias:2017:SDP

Areias:2019:MDL

Adiletta:2002:NGI

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

REFERENCES

USENIX:1996:ATT

Asyabi:2019:COS

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG

Boehm:2008:FCC

Bocchino:2009:TES

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen

Bergan:2010:CCRa

Bergan:2010:CCRb

Baker:1995:UOV

[Bak95a] Henry G. Baker. “use-once” variables and linear objects: storage manage-

Baker:1995:GTP

Baldwin:2002:LMF

Bic:1993:EUI

REFERENCES

Barkhorn:2009:UAS

Bar09

Bauer:1992:PCE

Buda:2019:AMD

Bolding:2000:MSM

Bova:2000:DLP

Balter:1991:AIG

R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freyssinet, S. Krakowiak, M. Meysembourg, P. Le Dot,
REFERENCES

REFERENCES

[Boudol:2002:NCP]

[Bronson:2010:PCB]

[Banerjee:1995:PCD]

[Bonet:2008:SCP]

[Bergan:2013:ICS]

[Bokhari:2014:MMM]

[Bedy:2000:VSM]
Michael Bedy, Steve Carr, Xianlong Huang, and Ching-Kuang Shene. A visualization system for multithreaded programming. *SIGCSE Bulletin (ACM Special Interest Group*
Biagioni:1998:SST

Benner:2007:SLS

Ball:2001:PVM

Bajaj:2011:FFP

Badamo:2016:IPE

Beyls:2000:CGM

[K. E. Beyls and E. H. Beyls]

REFERENCES

REFERENCES

[BGWh12] Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye,

REFERENCES

(2):1–1:??, March 2006. CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

Bujanovic:2017:HBA

Blumofe:1993:SES

Blumofe:1998:SES

Bianchini:1996:EPM

Blumofe:1999:SMC

Bordawekar:1997:EEH

Broberg:2001:POU

Blundell:2006:STM

Bucker:2004:TUC

Blumofe:1992:MSM

Blumofe:1995:EMP

Bolinger:1991:PSH

Baquero:1994:CAC

Bergstra:2007:SCE

Berger:2000:HSMa

Berger:2000:HSMb

Berger:2000:HSMc

Balkind:2016:OOS

REFERENCES

5964 (print), 1943-5851 (electronic).

Burnim:2011:SCSb

Burnim:2012:SCS

Benson:1996:DMS

Bull:2001:MSO

Blandy:2017:PR

Boehm:2005:TCI

Bond:2013:GDG

Boothe:1993:EMC
Bob Boothe. *Evaluation of multithreading and caching*

Brinkschulte:2005:ICA

Brais:2019:AAM

Boehm:2007:MCC

Boroday:2005:DAJ

Boothe:1992:IMT

Bogdanas:2015:KJC

Bramley:1997:TNRb

Randall Bramley. Technology news & reviews: Chemkin software; OpenMP

Bershad:1992:FME

Brebner:2002:MLC

Briot:1989:OAS

Brightwell:2003:DIP

Barthe:2010:SMP

Bellosa:1996:PIL

Frank Bellosa and Martin Steckermeier. The perfor-

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

REFERENCES

[Catano:2014:CSL]
REFERENCES

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

Cui:2000:MPC

Chiueh:1991:MTV

Chang:2004:TSP

Cai:2014:MSD

Chetlur:2010:SWM

Chandra:2001:PPO

ChassindeKergommeaux:2001:PEE

Catalyurek:2012:GCA

Chung:2013:LBD

Canetti:1991:PCP
REFERENCES

Chowdhury:1992:PEA

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Chong:1993:EMC

Chrisochoides:1995:MMDa

Chrisochoides:1995:MMDb

Chrisochoides:1996:MMD

Christiaens:2001:JRR

Catalan:2017:TEM

Sandra Catalán, Francisco D. Igual, Rafael Mayo, Rafael Rodríguez-Sánchez, and Enrique S. Quintana-Ortí. Time and energy modeling of a high-performance multithreaded Cholesky factorization. The Journal of Supercomputing, 73(1):139–151, January 2017. CO-
REFERENCES

DEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

REFERENCES

Choi:2002:EPD

Cormen:2009:IA

Chapman:1998:OHI

Cugu:2020:PMS

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Margaret Cahir, Robert Moench, and Alice E. Koniges.

Cahoon:2000:EPD

Carr:2003:TPT

Chen:2010:CCM

Che:2014:ALM

Cabodi:2013:TBM

Chuang:2006:UPB

REFERENCES

REFERENCES

ture Notes in Computer Science, 2407:33-??, 2002.
CODEN LNCS69. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/2407/24070033.htm;

Cappello:1999:PNB

Criscolo:1998:JQH

Cromwell:1998:PBD

Chang:1995:CSM

Chang:1995:CTS

Carr:2000:PCL

Steve Carr and Ching-Kuang Shene. A portable class library for teaching multithreaded programming. SIGCSE
REFERENCES

Carothers:2002:CMP

Chen:2012:CLA

ChassindeKergommeaux:2000:PIV

Chappell:1999:SSM

Constantinou:2005:PIS

Culler:1991:FGPa
David E. Culler, Amurag Sah, Klaus E. Schauser, Thorsten von Eicken, and John Wawrzynek. Fine-grain parallelism with minimal hardware support: a compiler-controlled threaded abstract machine. ACM SIGARCH
REFERENCES

Culler:1991:FGPb

Culler:1991:FGPc

Choi:2010:MD

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

REFERENCES

Possibly unpublished, except electronically.

Chen:2018:ROM

Chugh:2008:DAC

Cohen:1998:WMP

Chakravarti:2003:ISM

Chakraborty:2006:CSE

Choi:2009:HCS

Chin:2018:EAN

Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, and

Chen:1998:MTO

Cai:2013:TST

Cao:2017:HRD

Cao:2016:DBG

Cai:2013:TST

Andrzej Daniłuk. Multithreaded transactions in scientific computing. The Growth06.x2 program. *Computer Physics Communications*, 180(7):1219–1220, July 2009. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

107

[dB09] Jialin Dou and Marcelo Cintra. A compiler cost model for speculative parallelization. ACM Transactions on Archi-
REFERENCES

Das:2007:FVT

DeLozier:2018:SSO

Dennis:1994:MMP

DuBois:2013:CSI

Silva:2019:RFG

DeWitt:1999:PTL

REFERENCES

[Dill:2000:MCJ] David Dill. Model check-
REFERENCES

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Doligez:1993:CGG

Denniston:2016:DH

Dubey:1994:APM

DL93

[DL93] Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector for a multithreaded implementation of ML. In ACM [ACM93a], pages 113–123. ISBN 0-89791-560-7 (soft cover), 0-89791-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

ISSN 1556-6056 (print), 1556-6064 (electronic).

Deniz:2016:UML

Deiana:2018:UPN

Bois:2013:BGV

Das:2015:SBP

Dang:2017:ECB

Dohi:2010:IPE

Dutta:2017:SVC

Ding:2015:OCA

David:2014:CMC

Diavastos:2016:ITD

Deveci:2018:MSM

Dubey:1995:SSM
REFERENCES

[DWS+12] Wei Ding, Yuanrui Zhang, Mahmut Kandemir, and Seung Woo Son. Compiler-
REFERENCES

Elwasif:2001:AMT

Eskilson:1998:SMM

Esmaeilzadeh:2012:LBL

Eyerman:2009:MLP

Eyerman:2009:PTC

Eyerman:2010:PJS

Stijn Eyerman and Lieven Eeckhout. Probabilistic job
REFERENCES

Eyerman:2012:PMJ

Eyerman:2014:RCW

Eggers:1997:SMP

Edelstein:2003:FTM

Emmi:2007:LA

Edelstein:2001:MJP

REFERENCES

Edelstein:2002:MJP

Esparza:2011:CPB

El-Ghazawi:2002:UPP

Eggers:2010:AL

Esparza:2014:PBV

Elmasri:1995:TCL

Emer:2007:STV

Eytani:2007:TFB
Yaniv Eytani, Klaus Havelund.
REFERENCES

Eickemeyer:1997:EMP

Eager:1993:CER

Eickemeyer:1996:EMU

Ediger:2013:GMA

Eykholt:1992:BMM

Eggers:1990:TEI

REFERENCES

5999 (print), 1557-9484 (electronic).

English:1995:MC

Engelschall:2000:PMS

Evtyushkin:2016:UMC

Elmas:2007:GRT

Emerson:1997:USW

Esposito:1996:MVB

Estep:1993:LMM

Ergin:2006:ENV

REFERENCES

122

Architecture Letters, 5(2):12, February 2006. CODEN ????
ISSN 1556-6056 (print), 1556-6064 (electronic).

Rudolf Eigenmann and Michael J. Voss, editors. OpenMP shared
memory parallel programming: International Workshop on OpenMP Applications
and Tools, WOMPAT 2001, West Lafayette, IN, USA, July 30–31, 2001: proceedings,

Paraskevas Evripidou. D³-

REFERENCES

Roger Faulkner and Ron Gomes. The process file
REFERENCES

Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

REFERENCES

Fisher:1997:SPS

Fide:2008:PUS

Farzan:2012:VPC

Foltzer:2012:MSP

Foster:1996:NAI
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Year</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>

REFERENCES

2867 (print), 1558-1160 (electronic).

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

Flanagan:2002:MCM

Ferreira:1995:PAI

Forsell:2018:RMM
REFERENCES

REFERENCES

???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa

Flautner:2000:TLPb

Flautner:2000:TLPc

REFERENCES

REFERENCES

REFERENCES

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA
Geiselbrecht:2001:NOS
Travis K. Geiselbrecht. The NewOS operating system.

Garcia:2000:PTL

Gueunet:2019:TBA
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny.

Gao:1993:DMA

Gao:1993:SID

Gruen:1998:NIS

Gibson:1994:CMC

Gilbert:1988:DVN

REFERENCES

CODEN DTJOEL. ISSN 0898-901X.

Gildea:1993:MTX

Giloi:1994:PSA

Gorton:1997:GEI

Ganesan:2011:MMP

Gebhart:2012:HTS

Gerlhof:1994:MTA

Garcia:2005:HJA

REFERENCES

of the 12th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE’07).

Gu:1999:EJT

Glenn:1991:CMH

Grebenshchikov:2012:SSV

Gering:1993:IAF

Gonzalez-Mesa:2014:ETM

Gomex:1998:CAM

Gant:2009:VLA

[Pierre Ganty, Rupak Majumdar, and Andrey Rybalchenko. Verifying liveness for asynchronous programs. *ACM SIGPLAN No-
REFERENCES

REFERENCES

Gollapudi:1996:MCA

Goldstein:1997:LTC

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF
Anders Gidenstam and Marina Papatriantafillou. LTHREADS: a lock-free thread library. ACM SIGARCH Computer
REFERENCES

REFERENCES

143

com/links/doi/10.1006/jpdc.1996.0104/production; [Gun97]

Gu:2018:CCA

Gupta:2010:CSM

Goossens:1995:FPM

Georgakoudis:2017:SSA

Giorgis Georgakoudis, Hans Vandierendonck, Peter Thoman, Bronis R. De Supinski, Thomas Fahringer, and Dimitrios S. Nikolopoulos. SCALO: Scalability-aware parallelism orchestration for multi-threaded...

Gibson:2010:FSC

Gabor:2007:FES

Haggar:2002:JQD

Haines:1997:DLT

Haines:1997:OIA

Hamilton:1996:JSN

Hanson:1997:CII

REFERENCES

REFERENCES

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT

Ding:2002:MOP

Honarmand:2013:CUA

Heinlein:2003:ATS

Hoffman:2009:SAT

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PAGE DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hightower:1997:PDD</td>
<td>Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fu-</td>
</tr>
</tbody>
</table>
Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb's Journal of Software Tools*, 22(1):70–77, January 1997. CODEN DDJOEB. ISSN 1044-789X.

[Ibrahim Hur and Calvin Lin. Memory scheduling for modern microprocessors. *ACM Transactions on Com-
REFERENCES

DEN ACSYEC. ISSN 0734-
2071 (print), 1557-7333 (elec-
tronic).

He:2008:COD

Bingsheng He and Qiong Luo.
Cache-oblivious databases:
Limitations and opportuni-
ties. ACM Transactions
on Database Systems, 33(2):
8:1–8:??, June 2008. CO-
DEN ATDSD3. ISSN 0362-
5915 (print), 1557-4644 (elec-
tronic).

Hansen:1990:EPA

G. J. Hansen, C. A. Linthicum,
and G. Brooks. Experience
with a performance analyzer
for multithreaded applica-
tions. In IEEE [IEE90], pages
124–131. ISBN 0-8186-2056-
0 (paperback: IEEE Com-
puter Society), 0-89791-412-0
(paperback: ACM). LCCN
QA 76.88 S87 1990. ACM
order number 415903. IEEE
Computer Society Press or-
der number 2056. IEEE cat-
alog number 90CH2916-5.

Holm:1994:CSP

J. Holm, A. Lain, and
P. Banerjee. Compilation
of scientific programs into
multithreaded and message
driven computation. In IEEE
[IEE94b], pages 518–525.
ISBN 0-8186-5680-8, 0-
8186-5681-6. LCCN QA76.5
.S244 1994. IEEE catalog
number 94TH0637-9.

Herdt:2019:CSB

Vladimir Herdt, Hoang M.
Le, Daniel Große, and Rolf Drechsler. Combining
sequentialization-based veri-
fication of multi-threaded C
programs with symbolic Par-
tial Order Reduction. Inter-
national Journal on Soft-
ware Tools for Technology
Transfer (STTT), 21(5):545–
565, October 2019. CO-
DEN ????? ISSN 1433-
2779 (print), 1433-2787 (elec-
springer.com/article/10.
1007/s10009-019-00507-5.

Hu:2016:TDM

Qi Hu, Peng Liu, and
Michael C. Huang. Threads
and data mapping: Affinity
analysis for traffic reduc-
tion. IEEE Computer Archi-
tecture Letters, 15(2):133–136,
July/ December 2016. CODEN
???? ISSN 1556-6056 (print), 1556-
6064 (electronic).

Helmbold:1996:TRC

D. P. Helmbold and C. E.
McDowell. A taxonomy of
race conditions. Journal of
Parallel and Distributed Com-
puting, 33(2):159–164, March
15, 1996. CODEN JPDC-
CER. ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.0034/production;
REFERENCES

Haines:1995:RSC
Matthew Haines, Piyush Mehrotra, and David Cronk. *Ropes, support for collective operations among distributed threads*. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Haines:1997:DPP

Hashemi:2016:EEB

Harish:2016:PIK

Hirata:1992:MPA

Hirata:1991:MPA

Hum:1996:SEM

Horiguchi:1991:PEP
Susumu Horiguchi and Takeo Nakada. Performance evaluation of parallel fast Fourier

Holub:1998:PJTb

Holub:1998:PJTa

Holub:1998:PJTC

Holub:1999:PJTa

Holub:1999:PJTb

REFERENCES

ISSN 1091-8906. URL http://www.holub.com/goodies/javaworld/jw_index.html. [Hol00]

Holub:2000:TJT

Hollingsworth:2012:SPI

Howes:1998:TPC

Hopper:1998:CFM

Howard:2000:UPW

Halappanavar:2015:CLL

Hong:1994:FIS

REFERENCES

238, March 2014. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Hyde:2000:JTP

Huang:2015:COM

Huang:2012:EPS

Huang:2013:CRL

Iannucci:1994:MCA

Iannucci:1994:AI

Iwama:2001:ICB

Illikkal:2010:PQP

IEEE:1989:WOS

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1993:PSP

REFERENCES

IEEE:1994:PIW

IEEE:1994:PSH

IEEE:1994:PSW

IEEE:1994:ROS

IEEE:1994:RCL

IEEE:1996:PSM

[IEE96] IEEE, editor. Proceedings. Second MPI Developer’s Con-
REFERENCES

Ayal Itzkovitz, Assaf Shustes, and Lea Shalev. Thread

Iliakis:2018:DMS

Jacobs:2018:MTV

Jung:2017:LSD

Jaisson:2008:IPM

Jeffay:1994:LMT

Jensen:1995:DRT

Johnson:2004:MCP

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Jonsson:1999:NPS

[Jang:2010:DTE] Byunghyun Jang, Perhaad Mistry, Dana Schaa, Rodrigo Dominguez, and David

Pramod G. Joisha, Robert S. Schreiber, Prithviraj Banerjee, Hans J. Boehm, and Dhruba R. Chakrabarti. A

Joisha:2012:TTE

Joao:2012:BIS

Joao:2013:UBA

Jerey:2011:IBM

Jeon:2015:MTH

Jiang:2016:TLH

[JYE+16] Chuntao Jiang, Zhibin Yu, Liwen Eeckhout, Hai Jin, Xiaofei Liao, and Chengzhong Xu. Two-level hybrid sam-

Kacsuk:1997:MIC

Kanalakis:1994:ET

Kongetira:2005:NWM

Kumar:2007:ESI

Krashinsky:2008:ISV

Kyle:2012:EP1

REFERENCES

Koster:2003:TTI

Krashinsky:2004:VTAA

Krashinsky:2004:VTAB

Kreuzinger:2003:RTE

Karamcheti:1998:HLB

Karamcheti:1999:ASM

REFERENCES

Kejariwal:2009:PSA

Keckler:1999:CEH

Kasperink:1997:CDC

Kerrison:2015:EMS

Kelly:1994:MBC

Keckler:1998:EFG

Kleiman:1995:IT

REFERENCES

REFERENCES

Kunal:2009:HDS

Kolahonen:2018:TPC

Kondguli:2018:BUS

Sushant Kondguli and Michael Huang. Bootstrapping: Using SMT hardware to im-

Khosla:1997:MAT

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF
REFERENCES

Kumar:2008:AVO

Kislal:2018:ECC

Kaiser:2014:WAM

Kurzak:2009:SLA

Kleber:2000:TSA

Kang:2008:ISE

Kwak:1997:VMN

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

Kwak:1999:EMC

Koopman:1992:_CBC

Koufaty:2003:HTN

Kulakavarapu:2001:DLB

Kavi:2002:MMA

Kapil:2004:CMP

[KML04] Sanjiv Kapil, Harlan McGhan, and Jesse Lawrendra. A chip multithreaded proces-

Koniges:2000:ISP

Koon tz:1993:PBM

Kort y:1989:SLL

Karam chanti:1996:RME

Khyzha:2012:AP

Kaiser:2006:CJC

Kienzle:2001:CTT

Kienzle:2001:IEO

[KR01b] Jörg Kienzle and Alexander Romanovsky. Implementing exceptions in open mul-
REFERENCES

Keckler:2012:MMC

Kawaguchi:2012:DPL

Kline:1998:SST

Klarlund:1993:GT

Krieger:1997:HPO

Kalayappan:2016:FRT

Rajshekar Kalayappan and Smruti R. Sarangi. FluidCheck: a redundant threading-based approach for reliable

Kgil:2008:PUS

Kumar:2004:AST

Kleiman:1995:PT

Kleiman:1996:PT

Kalla:2004:IPC

Krieger:1994:ASF

Yu:2011:SDH

Wing kei S. Yu, Ruirui Huang, Sarah Q. Xu, Sung-En Wang,

Krishnan:1999:CMA

Kopczynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP

Kumar:2004:SIH

Keller:2000:JUS

Kosmosinski:2017:MCE

Kuchlin:1991:MCI

Kuchlin:1992:MTC

Kubica:2015:PHT

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Arun Kejariwal, Alexander V. Veidenbaum, Alexandru Nico-

Kleinmann:2017:ACS

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

Lam:1995:CPC

Lang:1997:MTE

Laneve:2002:TSJ

Larchevque:1995:OIP

Larbi:1997:BRM

Michael Larbi. Book review: Multithreading Appli-
REFERENCES

181

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

[Lo:1998:ADW]

Ling:2012:HPP

[LC13]

Li:2006:MEMb

[Li:2006:MEMb]

Li:2006:MEMc

[Li:2006:MEMc]

Lucia:2013:CEF

[Lucia:2013:CEF]

Liu:2008:HPP

REFERENCES

February 2008. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

Leven:1997:MIR

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Lowenthal:1996:UFG

Lemon:2004:MCR

Lee:2006:TBR

Laudon:1994:IMT

Lee:1994:DAM

[LG94] Ben Lee and A. R. Hurson. Dataflow architectures

Lee:2009:MHF

Ling:2016:MTH

Liu:2016:PSE

Li:2005:OSA

Liedtke:1994:SNIb

LaFratta:2013:EEM

LaSalle:2015:MTM

Langr:2020:RII

Li:2011:LCM

Luo:2017:TDS

Lakshminarayana:2012:DSP

Lin:2010:TAC

Lai:2015:SAM

Bo-Cheng Charles Lai, Kun-Chun Li, Guan-Ru Li, and Chin-Hsuan Chiang. Self adaptable multithreaded object detection on embedded

Li:2006:SDH

[LLS06]

Li:2014:PDC

Liu:2016:SEA

[LMA+16]

Ling:2000:AOT

REFERENCES

Li:2011:FSM

Lo:1999:SDR

Lai:2016:QMD

Li:2017:EML

Leadbitter:2007:NM

Lal:2015:DID

Lu:2016:VCV
Yaojie Lu, Seyedamin Rooholamin, and Sotirios G. Ziavras.

REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPOPP ’12 conference proceedings.

REFERENCES

Laadan:2010:TLA

Lopes:2001:FGM

Laguna:2019:GPD

Lee:2010:REO

Liu:2016:TA

Li:2007:CET

Lu:2014:EDM

Liu:2014:TPA

Li:2008:TAN

Li:2019:HSG

Liu:2015:LRT

Lu:2013:REM

Kai Lu, Xu Zhou, Xiaoping Wang, Wenzhe Zhang, and Gen Li. RaceFree: an efficient multi-threading model

Li:2020:MMT

REFERENCES

Muller:2018:CPG

Man:1991:MLC

Mane:1996:SJP

Manley:1998:GPT

Manley:1999:IPT

Mao:1996:PMS

Marowka:2003:EOT

Marowka:2007:PCD

Masney:1999:IMT

Mateosian:1997:MNT

REFERENCES

Mattson:2003:HGO

Mendelson:1999:DAM

McNairy:2005:MDC

Madan:2007:PEA

Moon:2006:TMS

McCarthy:1997:MTI

McCarthy:1997:WMT
Martin McCarthy. What is multi-threading? *Linux Journal*, 34:??, February 1997. CODEN LIJOFX. ISSN 1075-
REFERENCES

Mitc hell:1999:ILP
Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

McManis:1996:JDSb

McManis:1996:JDT

McMillan:1997:NSB

McManis:1998:DUT

McManis:1998:JDU
Mannarswamy:2010:CAS

Mitchell:2015:GIA

Montesinos:2008:DRD

Mikschl:1996:MMS

Matheou:2015:ASD

Matheou:2017:DDC

Mukherjee:1994:MI

McDowell:2003:ISS

Mennemeier:1991:HMS

Metz:1995:IDS

Marcuello:1999:EST

Mehta:2015:MTP

Martinsen:2014:HTL

Mohamed:2000:DDM

Marsland:1995:SSM

T. A. Marsland, Yaoqing Gao, and Francis Chi-Moon Lau. A study of software multithreading in distributed systems. Technical report TR 95-23, Dept. of Computing Science,
REFERENCES

REFERENCES

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitc

MixSoftware:1994:UMC

Mix Software, Inc. Using Multi-C: a portable multithreaded C programming lib-

Meng:2010:AOS

Mars:2012:BDS

Moreno:1997:PMP

E. D. Moreno, S. T. Kofuji, and M. H. Cintra. Prefetching and multithreading performance in bus-based multipro-

Maris:2004:CCP

Justin T. Maris, Aaron W. Keen, Takashi Ishihara, and Ronald A. Olsson. A comparison of concurrent programming and cooperative multithreading under load balancing applications. Concurrency

REFERENCES

Moody:1999:STT

Maiya:2014:RDA

Marquez:2017:MCH

Mukherjee:2002:DDE

Muralidhara:2010:IAS

Marowka:2004:OOA

Madriles:2009:BST

Carlos Madriles, Pedro López, Josep M. Codina, Enric Gib

Ma:2011:SPC

Ma:2011:SPC

Machado:2015:CDD

Makreshanski:2015:LSE

Malakhov:2018:CMT

Malakhov:2018:CMT

Mauro:2001:SIC

Mauro:2001:SIC

Morandini:2007:UDS

Marco Morandini and Paolo Mantegazza. Using dense storage to solve small sparse linear systems. *ACM Transactions on Mathematical Software*, 33

Morandini:2007:UDS
REFERENCES

2016. CODEN ???? ISSN 1084-6654.

Markovic:2015:TLS

Marko Markovic, Daniel Nemirovsky, Osman Unsal, Mateo Valero, and Adrian Cristal. Thread lock section-aware scheduling on asymmetric single-ISA multi-core.

Moore:1995:MPD

Moore:1996:MPD

Moun:2000:ADP

Moun:2001:CSM

Manson:2001:CSM

McCreesh:2013:MTS

Massalin:1989:TIO

REFERENCES

REFERENCES

Mukherjee:2009:PAS

Meier:2017:PVM

Malan:1991:MA

McJones:1987:EUS

McJones:1989:EUS

Mahinthakumar:2002:HMO

Mantel:2003:UAS

REFERENCES

???? 2003. CODEN JCSIET. ISSN 0926-227X (print), 1875-8924 (electronic).

McCartney:2015:SMT

Marsh:1991:FCU

Marino:2010:DSE

Marino:2011:CSP

Marino:2016:DXU

Moreland:2016:VMA

Morrisett:1993:PLP

Martinez:2002:SSAa

Martinez:2002:SSAb

Martinez:2002:SSAc

Matsushita:2000:MSC

Minh:2007:EHT

Miller:2012:VCE
Timothy N. Miller, Renji Thomas, Xiang Pan, and

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA

Morad:2006:PPE

[Nak03] Kengo Nakajima. Parallel iterative solvers of GeFEM with selective blocking preconditioning for nonlinear

Naik:2006:ESR

Narlikar:1999:SES

Nagpal:2012:CGE

Nichols:1996:PP

Nichols:1998:PP

Najjar:1993:QAD

REFERENCES

ISSN 0743-7315 (print), 1096-0848 (electronic). URL

Nagarakatte:2012:MAP

Nelson:2015:RGH

Natarajan:1993:PVM

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM
Brian Norris and Brian Demsky. A practical approach for model checking C/C++11 code. ACM Transactions on
REFERENCES

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

Nemawarkar:1994:PIN

Neamtiu:2009:STU

Neamtiu:2008:CEV

REFERENCES

ISSN 0163-5964 (print), 1943-5851 (electronic).

Narayanasamy:2006:RSM

Nebro:1998:EMR

Nanda:2006:ISM

Neves:1997:TRS

Ngo:2014:EVC

Niewiadomski:2014:SVG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottoni:2008:COGa</td>
<td>Communication op-</td>
<td>Guilherme Ottoni and David I. August</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ottoni:2008:COGb

Ottoni:2008:COGc

Oz:2019:SMA

Olszewski:2009:KED

Ossner:2013:GMB

Ostler:2007:IHT

Oplinger:2002:ESRc

Oh:2012:MTS

Omma:2004:BMA

Ongwattanakul:1997:RDM

Ottoni:2006:SPC

Oikawa:1995:RDU

Shuichi Oikawa and Hideyuki Tokuda. Reflection of development-

Papadopoulos:2016:TAD

Pokam:2013:QPI

Peacock:1992:FSM

Philbin:1996:TSC

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

[Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Thread tranquilizer:
REFERENCES

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

REFERENCES

Porter:2015:MMS

Plyler:1989:AMC
Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabhu:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Parashar:2013:TIC
Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gamb-

Prieto:2011:MCM

Puche:2020:ECF

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1995:WTS

[Pra95b] Shashi Prasad. Weaving a thread — Solaris and Windows NT bring the power, speed, and efficiency of multithreading and symmetric multiprocessing to the desktop. *Byte Magazine*, 20(10):173–??, October 1995. CODEN BYTEDJ. ISSN 0360-
5280 (print), 1082-7838 (electronic).

Prasad:1995:WNT

Prasad:1997:MPT

Permandla:2007:TSP

Presotto:1990:MSP

Petrovic:2014:LHM

Protopopov:2001:MMP

Pozniansky:2003:EFD

Eli Pozniansky and Assaf
REFERENCES

Pozniansky:2007:MEF

Pyarali:2001:EOT

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

Peacock:1992:EMS

Papadopoulos:1991:MRV

Pruvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulleyn:2000:EPM

REFERENCES

Park:2010:ISP

Preissl:2012:CSS

Preissl:2011:MGA

Polap:2018:MTL
Quintana-Ortí:2012:RSP

Quintana-Ortí:2009:PMA

Qian:2016:ODG

Qian:2014:PRR

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB

REFERENCES

[Radojkovic:2010:TSB] Petar Radojković, Vladimir Ćakarević, Javier Verdu, Alex Pajuelo, Francisco J. Cazorla, Mario Nemirovsky, and Mateo Valero. Thread to strand binding of parallel network ap-

Ruddock:1996:MPG

Ronsse:1999:RFI

Russell:2006:ESRa

Rec:1998:TSR

Reich:1995:DHP

Reilly:2001:TNF

Redstone:2000:AOSa

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Rashid:2010:AEP

Richman:1991:EHC

Richards:1999:ALT

Ringle:1999:SCT

Rinard:2001:AMP

Reddy:2011:BFH

Reus:1998:VCO

[Reiche:2017:AVI]

[RKHT17]

[RK+10a]

[RK+10b]

[RL14]

[RJL+09]

[Roe:1999:PMI]
Kevin Roe and Piyush Mehrotra. Parallelization of a
REFERENCES

REFERENCES

REFERENCES

2 (microfiche), 0-8186-4342-0 (hardback), 0-8186-4346-3 (CD-ROM). ISSN 1063-9535. LCCN QA76.5 .S96 1993.

Robbins:1996:PUP

Rugina:1999:PAM

Robbins:2003:USP

Roy:2011:SRP

Rivara:2012:MPL

Reddy:2006:UPB
REFERENCES

REFERENCES

8493 (print), 1873-7084 (electronic).

Raychev:2013:ERD

Ravoor:1997:MTP

Robatmili:2004:TSI

Shaw:1998:CIP

Samorodin:1999:SFS

Sanden:2004:CJT

[B. Sanden] Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

www.hotchips.org/hotc11_index.html.

[SCG95] Klaus E. Schauser, David E. Culler, and Seth C. Goldstein. Separation constraint partitioning: a new algorithm for partitioning non-strict programs into sequential threads. In ACM [ACM95b], pages...
REFERENCES

Schonberg:1989:FDA

Schmitt:1990:CEM

Schauser:1991:CDT

Schmidt:1998:EAM

Schildt:2014:JCR

Schafer:2017:PHL

Sendag:2005:IIS

REFERENCES

250

9219 (print), 1558-2183 (electronic).

REFERENCES

Seiden:1998:ROM

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO

Sahin:2018:CSC

Sung:2014:PTR

I-Jui Sung, Juan Gómez-Luna, José María González-
REFERENCES

Soadan:1997:ENN

Sridharan:2014:AEP

Shahnaz:1995:DMD

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

Shank:1995:STI

Shaw:1998:CPM

Shene:1998:MPI

Shene:2002:TST

Ching-Kuang Shene. ThreadMentor: a system for teaching multithreaded programming. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)*, 34
REFERENCES

\[\text{Shinjo:2000:DCEb}\]

\[\text{Shi:2015:CLM}\]

\[\text{Shoffner:1997:JSSa}\]

\[\text{Shoffner:1997:JSSb}\]

\[\text{Shomron:2019:SSS}\]

\[\text{Sime:1997:GPM}\]

\[\text{Sinharoy:1997:OTC}\]

Sinharoy:1999:COI

[SJB92a]

Sinharoy:1999:COI

[SJB92b]

[SK97]

Stewart:1997:MDH

[SJA12]

Shirole:2012:TCU

Sung:2001:MDA

Smaragdakis:2007:TIC

Schonherr:2011:MTI

Sohn:2001:CTC

Son:2009:CDD

Sung:2002:CPE

Minyoung Sung, Soyoung Kim, Sangsoo Park, Nackhyuck Chang, and Heonshik Shin. Comparative performance evaluation of Java threads for embedded applications: Linux Thread vs. Green Thread. *Information*
Sato:1992:TBP

Shin:2004:NAD

Scherer:1999:TAP

Sangaiah:2018:SSA

Steele:2014:FSP

Shin:2006:ADT

Scherer:1999:TAP

Sangaiah:2018:SSA

Shin:2004:NAD

SLG04

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

So dan:2010:PMM

Smith:1992:MTX

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

Suleman:2009:ACS

Swanson:2003:ESI

REFERENCES

0734-2071 (print), 1557-7333 (electronic).

REFERENCES

Sharkey:2007:EOA

Saarikivi:2017:MTS

Spero:1994:MMD

Skjellum:1996:TTM

Saxena:1993:PMS

Suleman:2008:FDTa

Suleman:2008:FDTb

M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading: power-efficient and high-performance execution of

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

Saghi:1998:MSH

Silc:1998:APC

Speer:1991:DTP

Small:1995:SAB

Christopher Small and Margo Seltzer. Scheduler activations on BSD: sharing thread management between kernel and application. Technical Report

REFERENCES

[Ste01] Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs. *ACM
Stoller:2002:MCM

Samak:2016:DSF

Stuckey:1995:FCI

Snively:2002:SJP

Schmidtmann:1993:DIM

Shen:1999:ATL

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ???

Sigmund:1996:IBM

Sigmund:2001:SCS

REFERENCES

1704–1721, August 2019. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

Schwan:1992:MRT

Karsten Schwan and Hongyi Zhou. Multiprocessor real-time threads. Operating
REFERENCES

Sterling:2002:GMP

Schwan:1991:RTT

Sinenian:2013:MMS

Taft:2013:TPS

Theobald:2000:LCE

Tamasanis:1995:MMW

Thoziyoor:2008:CMM

Shyamkumar Thoziyoor, Jung Hee Ahn, Matteo Monchiero, Jay B. Brockman, and Norman P. Jouppi. A comprehensive memory modeling tool and its application to the design and analysis of future memory hierarchies. ACM SIGARCH Computer Architecture News, 36
REFERENCES

Tseng:2003:DST

Thekkath:1994:ISB

Thekkath:1994:EMH

Tullsen:1996:ECI

Tullsen:1995:SMM

Tullsen:1998:RSM

REFERENCES

Tullsen:1998:SMM

TempleLang:1997:MTE

Tennberg:1998:CAD

Tennberg:2002:RGO

Trancoso:2006:CCM

Tetewsky:1994:GDR

Tian:2010:SPU

Andrei Terechko, Jan Hoogerbrugge, Ghiath Alkadi, Surendra Guntur, Anirban Lahiri, Marc Duranton, Clemens Wiist, Phillip Christie, Axel Nackaerts, and Aatish Kumar. Balancing programmability and silicon efficiency of...

REFERENCES

Theobald:2002:IEC

Thulasiraman:2004:FGL

ISSN 0743-7315 (print), 1096-0848 (electronic).

Editors:2002:LUC

Turakhia:2017:TPE

Tian:2016:ETR

Zhenzhou Tian, Ting Liu, Qinghua Zheng, Ming Fan, Eryue Zhuang, and Zijiang Yang. Exploiting thread-related system calls for plagiarism detection of multi-threaded programs. *The Jour-

REFERENCES

user interface development, maintenance, and run-time
ACM Transactions on Computer-Human Interac-
tion, 2(2):105–144, June 1995. CODEN ATCIF4. ISSN 1073-
0516 (print), 1557-7325 (elec-

Oleg Trott and Arthur J. Ol-
son. AutoDock Vina: Im-
proving the speed and accu-
Trott:2010:AVI
racy of docking with a new
scoring function, efficient op-
timization, and multithreading.
Journal of Compu-
tational Chemistry, 31(2):455–
461, January 30, 2010. CO-
DEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (elec-
tronic).

Khushroo Rustom Todiwala. A distrib-
Todiwala:1995:DRT
uted ray tracing implementation using multi-
threaded RPC. Thesis (M.S.),
University of Texas at El Paso,
El Paso, TX, USA, 1995. xi +
140 pp.

Loïc Thébault and Eric Pe-
Todb:1991:MTC
tit. Asynchronous and multi-
threaded communications on
irregular applications using
vectorized divide and conquer
approach. Journal of Par-
allel and Distributed Com-
puting, 114(??):16–27, April
2018. CODEN JPDCER.
ISSN 0743-7315 (print), 1096-
0848 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731517303350.

Alexander Tarvo and Steven P.
Reiss. Automated analysis
of multithreaded programs for
performance modeling. ACM
SIGMETRICS Performance
Evaluation Review, 42(1):557–
558, June 2014. CODEN ????
ISSN 0163-5999 (print), 1557-
9484 (electronic).

Kenneth R. Traub. Multi-
thread code generation for
dataflow architectures from
non-strict programs. Lecture
Notes in Computer Sci-
cence, 523:73–??, 1991. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

Brian L. Troutwine. Hands-
Trot18
on Concurrency with Rust: Con-
fidently Build Memory-
safe, Parallel, and Efficient
Software in Rust. Packt
Publishing, Birmingham, UK,
2018. ISBN 1-78839-997-
8 (paperback), 1-78847-835-
5. v + 449 pp. LCCN QA76.76.A65. URL http://
proquest.safaribooksonline.com/?fpi=9781788399975.
Tsai:1997:PSC

Tsai:1997:SIC

Torrant:1999:SMS

Tumeo:2012:DNG

Tang:1999:CRT

Tang:2000:PTR

Thulasiram:2003:PEM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[VCM19] Vanchinathan Venkataramani, Mun Choon Chan, and Tu-

Vermeulen:1997:JDW

Vlacbos:2010:PEAa

Vlacbos:2010:PEAb

Vasconceos:2006:TCM

Vachharajani:2005:CM

Vlassov:1999:QM

Volkman:1993:CCP

Verdu:2016:PSA

[VP16] Javier Verdu and Alex Pajueto. Performance scalabil-

Stephen M. Watt, editor. *ISSAC ’91: proceedings of

REFERENCES

REFERENCES

Inc., 860 Aviation Parkway, Suite 300, Morrisville, NC 27560, USA, 2008.
opensparc.net/publications/books/opensparc-internals.html.

REFERENCES

Wallach:1995:OAM

[WHJ+95]

Williams:1994:NST

[Wil94a]

Williams:1994:NTM

[Wil94b]

Wilson:1997:BTP

[Wil97]

Wilmot:1998:DTM

[Wil98]

Wilson:2000:PBC

[Wil00]

Wei:2012:OLL

[WJ12]

Wang:2019:MEM

Youjip Won, Kyeongyeol Lim, and Jaehong Min. MUCH:

[Wang:2006:RAA]

[Warg:2008:DTS]

[Whittaker:1997:TML]

[Wheeler:2010:VMM]

[Wu:2012:SPA]

[Wong:2008:TAF]

Chee Siang Wong, Ian Tan, Rosalind Deena Kumari, and Fun Wey. Towards achieving fairness in the Linux scheduler. *Operating Systems Re-
REFERENCES

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Wenjie:2020:APW

Wang:2019:SSS

Wang:2008:PIM

Xu:2006:RTR

[XHB06] Min Xu, Mark D. Hill, and

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows.
NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. Dr. Dobb’s Journal of Software Tools, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yang:1997:MUA

Yan:2002:RCC

Yasrebi:1995:EDO

Yiapanis:2016:CDS

Yan:2014:MPP

Yin:2020:SCA

Yee:2020:CMT

REFERENCES

[Young-Myers:1993:ESTa] Helene Young-Myers and Louqa Raschid. An experimental study of three dataflow paradigms in multithreaded database transitive closure algorithms on shared memory multiprocessors. Technical re-
REFERENCES

Young-Myers:1993:ESTb

Yu:2009:CIC

Yu:2012:MCD

Yoo:1996:CAA

Yoo:1996:PCM

Yeh:2017:PFG

REFERENCES

1523-2867 (print), 1558-1160 (electronic).

Yeh:2019:PGR

Youseff:2009:PES

Yong:2003:AMC

Yang:2007:RUL

Zoppetti:2001:IDD
Gary Zoppetti, Gagan Agrawal, and Rishi Kumar. Impact of data distribution on performance of irregular reductions on multithreaded architectures. *Lecture Notes in
Zhang:2015:DMB

Zhang:2010:FTS

Zhai:2002:COSa

Zhai:2002:COSb

Zhang:2010:FTS

Zhong:2019:SHS

Zhou:1998:LST

REFERENCES

Zhang:2000:WMH

Zhang:2015:LOS

Zhang:2010:DCS

Zhu:2011:TPS

Zhuan:2004:BRA

Zhuan:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zois:2019:EMM

Zuberek:2002:APB

Zheng:2015:ACC