A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

31 January 2019
Version 3.150

Title word cross-reference

#4 [Pet00].

+ [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[BO01]. 2.6 [McM97]. 2000 [Ano99].
2001 [ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA005]. 35th [Gol94]. 3D
[Ano97b, Loe97].

.NET [Rob03, Tim03, DHR+01, Rei01].

/multi [Taf13]. /multi-threaded [Taf13].

'01 [USE01].
Abstract

[CSS+91b, CGSV93, DV99, KPP12, LMA+16, ML4+10, Ném00, CSS+91a, CSS+91c, Dil00, VDBN98, ZJFA09].

Abstraction

[KI16, Bak95b, GPR11, ZSJ06]. AC

[KG94]. Activating

[LS11, SMQP09, VGK+10a, VGK+10b]. acceleration

Algorythms [NTR16, SGLGL+14]. Access

[Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MV09, Sch89]. access/execute [APX12]. accesses

[DTK+15]. accessibility [SSK+07].

Accounting [LMA+16, EE09b]. accuracy

[TO10]. Accurate [CPT08, VSTM12]. Achieving

[AHW02, SP05, KKGK99, WTKW08]. ACM

Activation [KG94]. activations

[ABL92, DNR00, SS95]. Active [BKI06, Pia02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada

[ACM93c, Bar09, Dil93, GMB93, KPP+ER06, KR01b]. ADAM [Far96]. adaptable

[LLLCL5]. Adaptation [CMBAN08].

Adaptive [ABN00]. Adaptive

[ALHH08, HBTG98, KI95, LYY+16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLM17, BS06, Ch095a, Ch95b, Ch96, SLGZ99, TKHG04, ZLW+16]. Adding

[Ply89, Rie99, MCM97]. Address

[CLFL94, PWL+11, CKZ12, Lie94]. Addressing

[WA08, CKD94, ZSB+12]. Advanced

[BBG95, GBB95, Hei03, BZ07, GBB+05]. Advances

[IEE97, JHM04, KKD03, DLM99]. Advantage [Wei97]. Adversarial [FF10]. affinity [NAAL01]. Age [Cro98]. agent

[Way95]. Agents

[CWHB03, CR02, Way95, BDF98]. Aggregate [TGO99, TG000]. AGNI

[RBP+100]. Agnostic [SL+18]. agreement

[GMW09]. Aid [Wei97]. aided [MCB10]. aids [Mat97]. Air [MPD04]. AI [TLA+02].

Albuquerque [Ano94e]. Algebra

[KLDB09, NBS+15, PHC09, YSY+09]. Algebraic

[ACM94c, Lak96, MR09, Wat91]. Algorithm

[AT16, ABC+09, HH11, OR12, TT03, ZBS15, KGBK9, KPH+12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HB02, YFF+12].

Algorithmic [Lei97, BBH+17]. Algorithms

[BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CFP+12, CLR09, FR95, Gk05, Lei97, Lep95, NFBB17, QOQOV+09, RRMMJ12, YMR93a, Li05]. algorithms-by-blocks [QOQOV+09].

Algorithms-by-Tiles [QOIM+12]. aliasing

[NA07]. Aligned [YVJ03]. alignment

[KGP+12]. Allaire [Hig97]. Alleviate

[BD00]. Alloc [KSU94]. Allocating

[SEP96]. Allocation [MV93, Nak01, EFJ07, LLL10, Mic04, ZP04]. Allocator

[BMBW00b, BMBW00a, BMBW00c].
Alpha [Ano00b], alphabet [KNPS16], alphabet-independent [KNPS16], Alternating [CYYL18], alternative [SV96c, SV96a, SV96b], Alternatives [MB99, MKR02], Alto [ACM01], ALU [KDM+98], always [DWS+12], always-on [DWS*12], Amdahl [CN14, NZ17], Among [CB16, HMC95, SJ95], analysing [NJK16, PV06], Analytic [Squ94], Analytical [DKF94, VT96], analyze [LMC14], analyzer [Fer13, HLB90], Analyzing [HRH08, Kor89, RHH10, TMCP10], anatomy [Rei95], Android [MKM14], animation [QWLJ18], Annotations [BM94, Wei98b, AGN09], Annual [ACM93a, ACM98c, Go94, Ass96, USE00a, ACM93b, USE96, USE98b], anomalies [Sch89], Anomaly [KW17], antipatterns [BPSH05], Antonio [USE92a], any [Hig97, Mar07], API [Ano00b, BDN02, DM98, Van97a], APL [CJ91], applets [McM96c], Application [AMRR98, KZTK15, KSV94, PG92, PLT+15, TK2+01, TAM+08, Yas95, DWYB10, EJK+96, HDT+13, LVN10, LZ07, MRGB91, MRRK10, Pra95c, SE12, SS95, TK2A+02, ZJS+11], Application-Level [KSV94, PLT+15, HDT+13, LZ07, ZJS+11], Applications [Ano00c, AZG17, AKP99, BKL06, BMBW00b, BNH01, Cha05, Chl15a, DS16, Don02, Dru95, EV01, FURM00c, HC17, HWZ00, JYE+16, KmjC02, KRH98, Lar97, MG15, PCPS15, PVL+11, Puh00, RD96, SGM+97, Sod02, Ten02, Tet94, TSV12, TLGM17, Vol93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BWDZ15, BFFW03, BG97, BMBW00a, BMBW00c, BW97, DSEE13, BPSH05, BMV03, CB90, CSS00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLB90, IS98, JSP12, JSP13, KV+99, LMCW11, MKMI04, MKIO04, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Omm04, PJZA07, RCV+10, Rei95, San04, SSN10, SKP+02, TMC09, TMC10, TP18, VIA+05, VGK+10a, VGK+10b, WCZ+07, WT10, WOKH96, XN99, YZ14, kSYHX+11, ZKR+11, Len95], apply [NZ17], Applying [VTSL12, MT02a, MT02b, MT02c], Apprendre [Swi09], Approach [AZG17, BBSG11, CJW+15, ES97, FKT96, GMR98, KK+14, KS16, ND16, RCM+16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, DTM+12, LZW17, LZL+14, MS03, RCM+12, SCZM00, TP18], Approaches [BLPV04, MB07], Approximate [HFV+12, GEG07, GE08, KGP12], Apps [PCM16], April [Ano00a, Ano03, USE01], arbitrary [BG14], ARCH [Ada98], Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07], Architecture [ACM98c, BBD+91, BTE98, Car99a, CL95, DO95, ERK01, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HNN91, HHOM91, HHOM92, KBH+04a, KBH+04b, Kiat99, Man91, MM01, MB99, PV+17, PTMB09, PKB+91, PS01, REL00b, RS08, SLJ+18, SCL05, SYYG97, SKK+01, SZ02,
Architecture-Agnostic [SLJ+18].

Architectures [AT16, Day92a, Day92b, HD02, GGB93a, GN00, HPA15, HMLB16, Hol98d, IBST01, JLS99, KTR04, LB92, LH94, LG06, LDT16, MS02, MN00, NGGA94, QOIM12, RLJ09, SGM97, TG99, THA12, Tra91, TJJ98, TSV12, WC94, ZAK01, ABD12, ABC15, ABC10, BSI0a, CML00, CFG12, Cat94, DTR18, FTAB14, GGB93b, GK05, Gil94, GL98b, HFV12, ICH10, JMS10, LMC14, Lu94, MLCW11, MLC04, Mus09, OCRS07, PT91, PPA13, PIZA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Sqt94, SMQP09, SKA01, TE94a, The95, TKHG04].

Assumptions [ES97]. ASSURE [SLP+09, Dye98]. asymmetric [GA09, JSP13, RBK+09, SCCP13, SMQP09].

Asynchronous [HH11, KFG15, KG07, KSD04, TP18, Yoo96a, GMR09, Kho97, KASD07].

atomicity [BNS11a, BNS11b, BNS12, FF04, FFQ04, FF08, FFLQ08, FFY08, WS06].

atoms [ND13]. Atomizer [FF04, FF08]. Audience1 [SB96]. Augmented [HL90].

August [RM03, IEE99, USE93a, USE98a].

Austin [USE00b]. Austria [Hon94]. authoring [MCS15].

Auto [Pol90, RKHT17]. Auto-vectorization [RKHT17].

Automata [ES97]. Automata-Theoretic [ES97].

Automated [BSSS14, DRV02, KZC15, TR14].

Automatic [HBTG98, JJY03, KW17, Mon00, SEP96, YLLS16, GJ11, JSB11, SLP09, SLJ18, EQT07, HEJ09, LAH12, MR09, NB12, PAB14, PGB14, TAT07, XSaJ08, ZLW16].

AWTEventMulticaster [Hol99b].

axiomatic [TVD10]. AXP [Ano07a].

B [Ano00c, DLZ+13]. back [ECX+12].

Backup [Ano00b]. Balance [SEP96]. balanced [CKZ12]. Balancers [KMA01].

Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKIO04]. Baltimore [IEE02]. Bandwidth [FSPD16, LTL+16].

TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano07b, BT01, Bon13, CMF+13, CL94, CHI+03, Cho92, Don92, Dub95, Evr01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HF88, HKN+92, HNM+92, I+94, KHP+95, KT99, Loo95, Mah13, MK12, Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TNN+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04].

C [Kel94a, Kel94b, Lev97, Pla98, Pla99, Rod95a, Vre04, Aih96, AGEB08, Ano99, BM94, Bau92, Bed91, BYLN09, BL07, BA08, CFK+91, CGR92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12,
[NWT+07]. Claus [WP10]. Client
[Day92a, Day92b, Srt95, Gol96].
client-server [Gol96]. Client/Server
[Day92a, Day92b]. clients [CDL13].
climbing [CY09]. Closure
[YMR93b, YM92, YMR93a]. cloud
[FKS+12, GDA8+17]. clouds [FSG14].
Cluster [BNH01, CRE99, HD02, KKH03,
Kwo03, SCX9+15]. Clustered [GSL10].
Clustering [YJ15, KI15, RVR04, TAS07].
Clusters [BWFX05, WG99, ZBS15, BMV03,
FWL03, TMAG03]. CMP
[TAS07, AMPH09, CWS06, ICH+10, LLL10,
SLJ+18, SSKP+07, ZJS10, ZJS12].
CMP-based [LLL10]. CMPs [GW10,
JSMP13, SQP08a, SQP08b, SQP08c, YL16].
Co [Goo97, SG18, AMPH09, BBH+17].
co-design [BBH+17]. co-optimization
[AMPH09]. Co-processor [Goo97].
Co-routine-Based [SG18]. Coarse [NS97].
coated [Lep95]. Code
[BBdH+11, Coo95, HYX+15, JSB+12,
Kim14, KEL+03, MS02, NS97, ND16, PR98,
Roh95, RNSB06, TGBS05, Tra91, Ann96,
BB00, JSB+11, SJ95]. Codes
[CMBAN08, PHCR909, PT03]. Codesign
[HPA9+15]. cognitive [MCS15, PWD+12].
cognizant [LK13]. Coir [SG96].
Cold [HG97, Hig97]. Collaborative [VSDK09].
Collection [AKP99, LB92, PUF+04, PF01,
QSA+16, KTK12]. Collections
[Kle90, McM98a, McM98b]. collective
[HMC95, SCB15]. collector [BBYG+05,
DL93, HL93, WK08a, WK08c, WK08b].
coloring [CFG+12, GP05, SS10]. Colt
[WN10]. Combinator [KLS92]. combined
[UZU00]. Combining
[KRO1a, LZ07, CZSB16, ZLW+16]. come
[Pol90]. COMeT [RCC14]. Coming [LS07].
Commands [KD97]. Commercial
[SBKK99, BEK00, EJK+96]. Commodity
[ZRJ16, LVLN10, RPNT08]. Common
[Hol98a, Kuc92, BDF98, BDL107, CL00,
Küc191]. Communication
[ABN00, DSR15, EHG95, FKT96, FGKT97,
GMR98, HYX+15, OA08a, OA08b, OA8c,
Pan99, PWL+11, Rod94, SKK+01, TKA+01,
TCA95, BR92, DBRD91, GR06, KASD07,
Lam95, QSHI16, RR96, RR03, TG09,
TKA+02, VS96, WHJ+95, ZCSM02a,
ZCSM02b]. Communications
[An003, BMN99, SCB15, She97b, TP18].
Commutativity [AC90]. Compact
[HMK17]. compaction
[WK08a, WK08b, WK08c]. Comparative
[SKP+02, Yoo96a, PL03]. Comparing
[KPÆR06, SV96c, SV96a, SV96b].
Comparison [ILFO01, SAC+98, GL89b,
KIM+03, MKI04, MMT10]. Compass
[PWD+12]. Compatible [MM14, LBH12].
competition [YL16]. Compilation
[ACMA97, HLB94, BR110, GC92,
HCD+94, Tsa97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time
[CS95a, CS95b]. Compile/run [TSY99].
Compile/run-time [TSY99]. Compiler
[ATLM+06, BD00, BF04, CHH+03,
CSS+91b, CGSV93, DZKS12, JSB+12,
LEL+99, Loc18, MCRS10, SCV91a, SCV91b,
SYHL14, Si99, TY97, TGBS05, YBL16,
ZCSM02a, ZCSM02b, ZP11, BCG+95,
BAD+10a, BAD+10b, BVG97, CAR08,
CSS+91a, CSS+91c, DC07, Du95, Fon97,
Gol97, Hop98, JSB+11, MM+11, McM97,
Mü03, RCW98, Sch91, SKKC09, UZU00,
WLG+14]. compiler-assisted [Du95].
Compiler-Controlled [CSS+91b, SCV91a,
SCV91b, CSS+91a, CSS+91c, Sch91].
Compiler-directed [DZKS12, SKKC09].
Compiler-Driven [YBL16].
compiler-managed [WLG+14].
Compiler-Supported [ZP11]. Compilers
[SS96]. Compiling [ABN00, ABH+01,
TLA+02, HTZ+97, Sch91, Sha98, A+01].
Complement [YFF+12]. Complete
[BR15, Sch14, BW97, DWS+12, FFY08,
KGGK09, NV15]. Completion
[AGK96, BGK96, Lut97, Man98, BGK94c].
Complex [SZM+13]. Complexity [EG11, CMX10, SKA01].
complexity-effective [SKA01]. Compliant [BGK96, SP05, Hig97].
component [NFBB17]. component-based [NFBB17].
Components [Gon90, Sho97b]. Composable [MLGW18, SS10, FKS+12].
Compositions [KS97]. Comprehensiveness [TAM+08]. Compressed [PBL+17].
Computation [ACM94c, BFA+15, CWS06, HL894, Hon94, HW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fun93, Fuj97, KG07, Kur91, Nip98, Sh98, ST98, WHJ+95].
Computational [PCPS15, Bar09].
Computations [BL98, FS96, KC98, KC99, WJ12, YW93, Bhs92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96].
Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95].
Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Ano89, CT00, Den94, EJ93, FTP11, FGK97, Gar01, GR97, Ham96, Hol12, HG91, IEE94b, KR12, Kon90, LCK11, LFA96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BGG95, BD06, Dan99, FOWL03, GBC95, GS02, HF88, HG92, IEE97, Joe96, Kin94, KUL97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta90, SKA01, Tem97].
Concepts [AMdBdRS02, BBFW02, KA97].
Concept [McC97a]. Concrete [NSP+14].
Concurrency [BM94, GMGZP14, MLR15, MQLR16, Me17, NFBB17, BA08, But14, CBB10, DKG18, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, SK12, VTSL12, Yan02, ZLW+16, dB09, SB80].
Concurrency-preserving [NFBB17].
Concurrent [ILFO01, KG97, KCC99, MM+16, NPT98, PCM16, PF01, TJJ98, AGN90, BBYG+05, Bar90, BO96, BCO2, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGGK99, MS+10, MKIO04, Men91, NHFP08, NeV99, ND13, STR16, Sun04, Snt08, ST05, Ts97a, Ts97b, WK08a, WK08b, WK08c, ZSJ06, Hay93].
Condensed [BIK+11]. Condition [Hol98c, Yan02].
Conditional [IBST01, NA07].
Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM99b, Ano94a, AOV+99, BTO1, Hol12, IEE94b, IEEE95, IEEE96, IEEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KKD03]. confidentially [NSH14].
Confirmation [CJW+15]. conflict [NJ06, vPG03]. conformant [Stu95].
Congress [Ano94d].
Connect [Ano00b]. conquer [FN17, TP18].
conscious [GBP07]. Consistency [ABH00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSQ14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].
Constrained [TLGM17, GW10, YN09].
constraint [SCG95]. constraints [HB15].
Construction [KW17, LHS16].
construction [BS06]. consumption [SCM05]. Contact [Nak03].
Contemporary [ZJS12, ZJS10].
Content [WLM15]. Content-Based [WLM15].
Content [WLM15].
Content [ALB+18, XSAJ08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].
Contention-aware [XSAJ08]. Context [TLM+02, GN92, JLS99, FD95, LG04, MQ07, PaDS+17, PFH06, SCB15, Yan97, LG04].
context-bounded [PaDS+17].
context-sensitive [PFH06, LG04].
contexts [BGC14, TE94b, WW93].
Contextual [BGZ97, NHFP08].
continuation [AAHF09].
continuation-based [AAHF09].
continuations [DBRD91, GRR06].
Continuing [Ano99]. Continuous [RCC14].
Continuously [DTLM14]. Control
[BP05, KW17, Lev97, PBR+15, SU01,
SZM+13, SG96, CDD+10, DKG18, FK12,
FSYA09, GCC15, MLCW11, NT14, PPA+13,
PWW18, Po90, RB+09, UZU00,
WLN+09, Yoo96b]. control-flow [NT14].
Controlled [BCG+08, CSS+91b, CGSV93,
SCv91a, CSS+91a, CSS+91c, Luk01,
MWP07, Sch91, SCv91b]. Controller
[RLJ+09]. controllers [KASD07].
controlling [AGN09, BKC+13]. controls
[McM96c]. controversial [Gar01].
Convention
[ACM98d, ACM99b, ACM00, Hol12].
Conventional [KET06b, HB92].
Conformance [RM03]. conversational
[LG04]. Converse [BK96]. Convert [Vol93].
Converting [LEL+97a, LEL+97b]. convolutions
[RB18]. convolver [Kep03].
Cool [Ano00a, Ano03, Wei97]. cooperation
[BM07, SKBY07]. Cooperative
[AMRR98, DNT16, LC13, KIM+03,
MKO04, TC995]. coordinated [KKJ+13].
coordination [BDF98]. Coping [San04].
Coprocessor [LRZ16]. copying [HL93].
CORBA
[DH+01, PSCS01, SV96a, SV96b, VS96].
Core [CC18, CvdBC18, FMY+15, KST04,
KTR+04, MP01, MM01, MB05, PV+17,
PM14, QOIM+12, ABC+15, AMPH09,
CFG+12, CSM+05, DTR18, DWYB10,
GW10, KBF+12, MLCW11, MLC+09,
MTPT12, Mus09, SMQP09, VPQ12,
WCC+07, YZ07]. CoreDet
[BAD+10a, BAD+10b]. Cores
[CC+16, RRK11, CSW06, MAF+09, SW16].
coreSNP [GAC14]. Corner [SW97].
Corona [VSM+09]. Corporation
[Ano00b, Ano00b]. correct
[DJLP10, SP00b, Shi00]. Correction
[TLA+02]. corrective [LG04]. Correctness
[Ram94]. Correlation
[SLT03, PFH06, SLT02]. cosimulator
[LT97]. Cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG+12]. counterexamples
[NV15]. Counters [Wei98b]. Counting
[Hol98c, Rec98]. County [ACM98d].
Coupled [MTN+00]. Course
[BLP04, BZ07, NL97, SCH98]. coverage
[RPP06, YNP12]. coverage-driven
[YNP12]. covering [BCG13].
Covering [EPAG16]. CPU [BSSS14, PGB16]. CPUs
[SKG+11, SMD+10]. Craftworks [Ano97a].
Cray [BCG14, SM01, VTSM12]. Create
[Ber96b, Ber96a, Len95]. Creating
[Han97, Ten98]. Creation
[Eng00, Rin99, Sin97]. Crisis [Ano99].
Critical
[BLG01, CS12, OY00, DTLM14, DESE13,
NM10, RGG+12, San04, SMQP09, YL16].
Criticality [DESE13, NB12]. Cross
[Lam95, BK+13, CSZB16].
Cross-platform [Lam95]. cross-thread
[BCK+13, CSZB16]. CS1 [GL07]. CSMT
[GL10]. CSP [Nev99]. CUDA
[LBH12, MM14, PAd+17, WJ12, YZ14].
CUDA-compatible [LBH12]. CUDA-NP
[YZ14]. CUG306 [Col90a]. current
[LVA+13]. customizable [JP92]. cut
[JE04]. Cycle [LS11, EE09b].
Cycle-Level [LS11]. Cyclic
[YLLS16, HKT93]. cyclone [Gro03].
Cyclops [ACC+03]. Cyrus [HDT+13].
D [KSB+08, NTKA99, PYP+10, TKHG04].
Daemon [Spe94]. DAG [LQ15]. Dallas
[ACM00, USE91b]. Dame [IE96]. dans
[Zig96]. DARPA [Mat97]. Data
[Ama89, ABNP00, DTLW16, EW96, FMH95a,
GAC14, HMC97, HRH08, Hig97, JMS+10,
KZC15, KEL+03, KET06a, KET06b, LMB14,
LLD17, ME15, ME17, RCR95, SBN+97,
SAC+98, SSYG97, SG96, Ten98, TESK06,
VT96, WIL98, ZLJ16, ZAK01, AGE08,
AGN09, BAM07, CS95a, CS95b, CDL13,
DHM+12, Evr01, FMH95b, FK12, HL93,
LTL+16, LHS16, Mao96, MMN09, NWT+07, ND13, PDMM16, PRB07, PHCR09, Pol90, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKKC09, WDC+13, YKL13, ZJS+11. data-centric [DHH+12]. Data-Driven [DTLW16, KET06b, ME15, ME17, TESK06, Evr01]. Data-Parallel [ABN00, SAC+98, HMC97]. data-race [MMN09]. Database [KD97, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a]. Databases [AOV+99, GDSA+17, HL08, MIGA18]. Dataflow [CVJL08, GGB93a, Gao93, HPB11, HKSL96, LH94, NBM93, RSBN01, SRU98, Tra91, YMR93b, BG95, GGB93b, GBC93, HG92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based [RSBN01]. dataflow/von [HG92]. datarace [CLL+02, CVJL08]. Datarol [KA97]. Datarol-II [KA97]. Dawning [Cro08]. DC [IEE94c, ACM92, Ano90]. DCE [RD96, YAM95, YAM96]. DDOS [BCG13]. Deadlock [Hol98a, Mou00, Ver97, ABF+10, SR14, WKL+09]. Deadlocks [CC14, CJW+15, CWC13, JPSN09, PRB07]. dealiased [RB18]. Deallociation [LPE+99]. hearth [Len95]. debate [Bak95b]. debug [PT03]. debugger [CB89, CB90]. Debugging [Ano98b, Caz02, HWZ00, MQLR16, PHK91, SJ92a, SJ92b, BG97, MLR15, WOKH96]. decentralized [RPB+09]. Decision [LFA96, LQ15]. decomposition [JEV04]. Decompression [PBL+17]. Decoupled [DO95, APX12, Evr01, RVOA08, RCDG06, SKA01, VS96]. decoupling [KGGK09, PG01]. Decoy [MIGA18]. Deductive [AdBRS08, BK13]. Deeply [GKCE17]. Defect [OB13]. Defragmentation [PVS+17]. Delaunay [ABC+09]. Delivering [SCCP13]. Delorean [MCT08]. Demand [KKJ+13]. Demand-based [KKJ+13]. Demus [Sri93]. Demus-2 [Sri93]. dense [ABD+12, MM07]. Dependable [SUF+12]. Dependence [CZS+17]. dependences [BKC+13, CZSB16]. dependencies [NPC06]. Deployment [GARH14]. Depth [McM96a, McM96b, McM96c, McM98a, McM98b]. Derivation [Kim14]. Derivative [TT03]. describes [Yam96]. Design [ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GR97, GMR98, Ha97b, KHP+95, LAF00, MB99, NBM93, RAj93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car99b, FWL03, HCM9, Hud96, KU17, KGK90, Mah11, Met95, Moc95, Moc96, MKR02, Ném00, OKID92, OCR97, RB+90, SB80, SRI93, Ver97, WLG+14, Wan94, WCV+98, Xue12]. designed [San04]. Designing [Dr95, GZK12, RR95, Re95, TSV12, Hai97a, TCG95]. Desktop [Ano97a, FURM00a, FURM00b, Moc97, PRA95b, WKS97]. desktops [Ano94b]. despite [Len95]. Destructing [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03]. Details [FMY+15]. Detect [DS16, CWC13]. Detecting [DS15, RBK+09, SK97, FF10, JPSN09]. Detection [ABF+10, CC14, KUC15, KW17, LS18, LLS06, Mon00, TLZ+17, TLZ+18, ZJL16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTBH14, MM14, MMN09, NBM12, NAW06, NA07, PS03, PS07, PFH06, RVS13, RM00, SR14, Sch91, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12]. Detector [SBN+97, SLG06]. determined [Kub15]. determinism [BS10b, LWV+10, LZW+13]. Deterministic [DK02, KRB12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DLC09, DN96, LBW14, MAAB14, OAA09, QSH16]. Deterministically [MCT08]. DetLock [MAA14]. develop
[Fek08]. Developer [IEE96]. developers
Way95. Developing
[SP00b, Shi00, TKA+01, OT95].

Development
[Ano97a, Ano98b, Ano99, Gil88, Sri95,
Tet94, ARWv03, Hig97, Pom98, TNB+95].
devices [Xue12]. diagnosing [CS12].
diagnostics [GBB+05]. diagrams [SK12].

Diego [ACM93b, ACM98b, USE89, USE93b,
USE98b, USE00a]. differences [Yam96].

Different [LPE+99, STR16, DZKS12, Fan93, Sen08,
SKCC09]. directory [CSQ14].

Dissecting [ACC+03].

Distance [BCZY16, KZTK15, KNPS16].
distinguish [IL93]. Distinguished
[AB+01, TKA+01]. Distributed
[ABNP00, ABH+01, BBD+91, BWXF05,
BHKR95, BC94, CV98, CJK95, DKA16,
FSS06, GJ97, Jen95, MGG+00, PG92,
Pra95a, RLJ+99, RBPM00, RW97, RCRH95,
SU+12, TDW03, USE92b, VS96, Yas95,
Ano96, A+01, BC+95, CML00, Car89a,
Gol96, GKK09, Gun97, HB92, HMC95,
HHW93, HBCG13, IEE97, ISS89, Leg01,
MS03, MLC04, MGL95, MKK99, Ong97,
Pha91, PIs97, SQS14, St02, Td95].

Distributed-Memory
[RCRH95, BC+95, HHW93].

Distributed-sum [TDW03]. Distribution
[SSYG97, ZAK01, CY90]. divergence
[MTS10]. divide [FN17, TP18]. Divisors
[Kue92, Kue91]. DMP [DLC09]. Do
[Cri98b, Cri98a, RPNT08, Ber96a, Ber96b,
YLLS16]. Dock [BCS11]. Docking
[BCS11, TO10]. documentation [HF96].

Does [Hag02, RKK15, ZJS10, San04]. doing
[Yam96]. domains [LAK09]. données
[Swi90]. Don’t [HHPV15]. DOSThread
[VE93]. DoubleVision [Ano00b].
downdating [VV11]. Downturn [Gar01].

DRAM [kSYH+11]. drf [MSM+16].

DRFX [MSM+10]. Drinking [CZSB16].

Driven
[DTLW16, For95a, For95b, HLB94, KET06a,
KET06b, ME15, ME17, TESK06, YBL16,
CSV10, EVr01, RVS13, RSBI+09, SLP08,
SQP08a, SQP08b, SQP08c, YNPP12].
driver [CCW+11]. DSLs [RKHT17]. DSM
[ABH+00, AB01, AB02, BDF98, KKH04].

DSM-PM [AB02]. DSM-PM2 [AB01].

DSMs [FBF01, DTS]. [BHHR95].

Dual [BBC+00, EHG95, KST04, DK02, MB05,
WS08, CCW+11]. Dual-Core
[KST04, MB05]. Dual-Level
[BBC+00, DK02]. dual-personality
[CCW+11]. Dual-Processor [EHG95].

Dual-Thread [MB05, WS08]. Duplex
[KG05]. Duplication [Kwo03].

Dynamic
[BPSH05, CJW+15, FSYA09, HSS+14,
Hig97, KMAG01, KPC96, KC98, KC99,
KUC+15, MVZ93, MTS10, Nak01, PBL+17,
RCRH95, RS08, SBN+97, SLG04, SKK+01,
Sta90, SG96, WHG07, XMN99, ZKW15,
ZKR+11, ZL10, AR17, CAR08, Chr95a,
Chr95b, Chr96, Don92, FF04, FF08, FFY08,
FF09, HSD+12, JPSN09, KBF+12, LSS12,
MK12, Mic04, NHFP08, SCB15, SLG06,
TJY+11, WW96, BK13].
dynamic-multithreading [LSS12].

Dynamically
[PGB12, TLGM17, DMBM16, Kep03].
dynamically-typed [DMBM16].
Mah11, MKR02, NFBB17, RGG+12, RCDG06, SWYC94, SKP+02, SMS+03, TGO00, TKA+02, WLG+14. Evaluations [MM14, Roh95]. evaluator [SP00b, Shi00], even [Ano94b]. événements [Swi09].

Event [Ber96b, CRKW99, For95a, For95b, Ber96a, CRKW97a, CRKW97b, GWM07, KCCD99, KJP+03, Leg01, RV913]. Event-Based [CRKW99, CRKW97a, CRKW97b]. Event-Driven [For95a, For95b, RV913]. event-handling [KJP+03]. Events [BDN02, LZ07, Van97b]. Evolutionary [TAK+00, KU17]. Evolving [MS87, MS89].

Executing [Blu95, BS99]. Execution [ABH+01, CC18, CJ91, Coo02, EC98, Far96, GMMZP14, GS06, HEMK17, HZ12, KS16, KL08, KI95, KG94, ME15, MK+00, MCT98, NS07, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, Dil93, JWTG11, LVN10, Luk01, PAB+14, PG03, SBC91, SA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSA08].

Executions [CdOS01, HZD13, Roh95, STR16]. Exemplar [BLCD97]. Existing [Ri99]. EXOCHI [WCC+07]. expansion [YKL13]. Expectation [SC17]. Expectation-Maximisation [SC17]. expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL01, Yam96]. Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b]. Experimental [BLC97, EGC02, YMR93b, GR506, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a]. Experiments [DV99, GM98, SZM+13, VSM+16, VV00]. Explicit [DV99, VDB98, BM07, URS02b, URS03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KV+09, PSC06a, PSC06b, PSC06c].

Exploiting [AACK92, FFQ04, KDM+98, KEO+06, Kus03, MG99, NAAL01, QSa+16, SP07, TLZ+16, TEE+96]. Exploration [PTMB09, Sch17]. Exploring [AAKK08, BS10a, SE12, WWW+02]. Expressions [Hei03]. Extended [BLG01, DV99, VDBN98]. Extending [BF08, Mar03]. Extensible [CdOS01].

Extension [RCC14, CCW+11, Lan97, PDP+13, Tem97]. Extensions [Sch90, Bau92]. external [LWV+10]. Extracting [GP95]. Extremal [MNG16].

FAB [YWJ03]. Facility [KU94]. Facing [KML04]. Factorization [But13, CYYL18, CIM+17, Dav11].

fibers [BS06]. FIFO [HHOM91, HHOM92, QSaS’96]. fifth
[ACM93b, AOV’99]. File [FG91, GJT’+12, KS97, Pena92, WLML5, BLCD97, DZKS12]. Files [RRK11, CCC12, kSYH’+11]. filtering [Kep03]. final [HCM94]. Finding
[MNG16]. Fine [AZG17, BBG’10, BSSS14, But13, CSS’91a, CSS’91b, CSS’91c, HG91, KG94, LKBK11, LV01, LFA96, NS97, PBR’+15, TY97, TAK’+00, YSS’+17, BGK94c, Dub95, Gol97, KDM’+98, Kim94, Loi95, MLC’+09, Met95, PL03, RPB’+09, TKHG04, Wei98a, kSYH’+11]. Fine-Grain
[AZG17, CSS’91b, HG91, KG94, LFA96, CSS’91a, CSS’91c, TY97, KDM’+98, Kim94, Loi95, MLC’+09, Met95, PL03, TKHG04]. Fine-Grained
[BBG’10, BSSS14, But13, LKBK11, PBR’+15, TAK’+00, YSS’+17, LV01, BGK94c, Dub95, Gol97, RPB’+09, Wei98a, kSYH’+11]. Finite
[HBTC98, MS02, Cor00]. Finite-Element [MS02]. finite-state
[Cor00]. firmware [ABB’+15]. First
[MSLM91, Wei97, LAH’+12, MHWO2, Hon94]. First-class
[MSLM91]. FL [ACM94a]. FlexBFS [LAH’+12]. Flexible
[ABG’+08, KS97, Lemo2, MSM’+16, SP00a, Sam99, SCM05, WW93]. Florida [ACM98d]. Flow [AT16, Ama89, HH11, PBR’+15, FSYA09, JD08, KBH’+03, NT14, Pol90, RM09, RPB’+09, SV98]. fluid [JD08]. FluidCheck [KS16]. fly
[CWS06, PS03, PS07, Sch89]. Focus
[EHP’+07]. Forces [FTP11]. Forecasting
[An98b]. fork [AL10]. fork-join [AL10]. FORM
[TV10]. Formal
[Sta05, WP10]. formation [FSYA09]. forms [BIK’+11]. FORTH
[Jon86]. FORTH-like
[Jon86]. Fortran
[An97a, Bra97, AS14, G003, HBG01, HBG02, Nag01]. forum
[Sho97a, Sho97b]. Forwardflow
[GW10]. foundation
[MSC15, RBF’+89]. Foundations [BA08, Go94]. Four
[CH95, MTN’+00, KNPS16]. Four-Russians
[KNPS16]. Four-Way
[MTN’+00]. Fourier
[TT03, TTKG02, BCS11, HN91]. fourth
[USE95]. fragment
[APX12]. fragments
[LG01]. Framework
[BMF’+16, BF04, CV01, DHR+01, EFG’+03, KC98, KF97, LCS04, LMJ14, Loe97, NSP’+14, Rei01, VSM’+16, Yam95, AMC’+03, BDF98, EHSU07, GJ11, Hop98, PV06]. France
[FR95]. Francisco
[ACM95b, USE02]. Free
[Way95, DTLM14, GP08, MLS15, Mic04, ST05]. free-lunch
[DTLM14]. FreeBSD
[An90b, Bal02]. freeness
[AHK04]. Freescall
[BGH’+12]. French
[Zig96]. frequent
[GBP’+07]. Fthreads
[Nag01]. Fukuoka
[An90l]. Full
[MHW02, GB90]. Full-system
[MHW02]. fully
[RD99, Sru95]. Function
[Hb01, TO10]. Functional
[Coo95, DCK07, GS06, Kim94, KIA99, NR92, RKBH11, TAN04, VGR06, WZWS08, ZSJ06]. Functions
[Bed91, KI16]. Further
[GV94]. Fusion
[An00c]. Gateway
[YS95]. Gating
[RRK11]. Gaussian
[SC17]. GbA
[LZ16]. GC
[HHPV15]. Geant4
[SCh’+15]. GEMM
[SLJ’+19]. Gene
[GGB’+05]. Gene/L
[GGB’+05]. General
[BER96b, BF04, HSS’+14, Man98, YKL13, ZSA13, Ber96a, Car99a, DC99, DC00, HSD’+12, MQW95, SKA01]. General-Purpose
[BER96b, HSS’+14, Man98, Ber96a, DC99, DC00, HSD’+12]. generalized
[ABD’+12, BCM’+07, FTB14]. Generated
[BD00, MJF’+10]. Generating
[AZG17]. Generation
[ARB’+02, Coo99, EFM’+01, EEL’97, HEMK17, HYY’+15, NBS’+15, RSNB96].
TGBS05, Tra91, TSV12, ABC+09, EFN+02, GJ11, KI16, LK13, LSS12, Way95, CH04.
generational
[DL93, WK08a, WK08b, WK08c],
generations [Rob95], generators [SLF14],
Generic [ABH+00, AB02, Fer13]. Genetic
[NSP+14], genome [LHS16]. GeoFEM
[Nak03]. Geometric [Caz02]. Georgia
[ACM99a]. Germany [RM03, Wat91].
ghosts [TVD14]. Gigabit [AHW02].
Gigabit/sec [AHW02]. Gilgamesh [SZ02].
glasses [CZSB16]. Global
[HH11, PWL+11, Ten02, FWL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b].
globally [CZWC13]. gmm_diag [SC17].
gmm_full [SC17]. GNAT [diPRGB99]. Go
[Mia90]. Going [Bak05b]. Goldilocks
[EQT07]. good [Mat03]. GPGPU [YZ14].
GPGPUs [LSB15]. GPS [TVD14]. GPU
[APX12, Bon13, DTR18, FTP11, KI17, LTL+16, LHH+16, LAA+12, WLC+14, YSS+17, ZCO10].
GPGPU-Oriented [LHG+16]. GPUDet [Bon13]. GPUs
[CSV10, DNT16, LBH12, SKG+11, WD08, WJ12].
Grace [BYLN09]. Grain [AZG17, CSS+91a, HG91, KG94, LFA96, NS97, CSS+91a, CSS+91c, KDM+98, Kim94, Loo95, MLC+09, Met95, PL03, TY97, TKG+04].
Grained [BBB+10, BSSS14, But13, LKK11, PBR+15, TAK+00, YSS+17, BGK94c, Durb95, Go97, LVS01, RP0+09, Wei98a, kSYHX+11]. Grande [ACM01].
Grande/ISCOPE [ACM01]. Granularity
[K15].
Graph
[CFG+12, CL95, EJR13, HPA+15, KSS93, KLS92, MM14, LK15, LZW17, RVR04].
graph-based [LZW17]. GraphCT
[EJR13]. Graphical [ACR01]. graphics
[BGM0WH12, CCW+11, FSYA09, PYP+10].
Graphs [HPB11, Nik94, OB13, AD08, ABG+08, DSE13]. grass [MXTW10].
Greatest [Kuc92, Kue91]. Green [SKP+02].
greener [MXTW10]. Grid [KEL+03].
Grid-Based [KEL+03]. GRIDiron
[MCS15]. grids [SKG+11]. Griffin [Ano90c].
Gröbner [AGK96]. Group
[BNH01, DLM99, QSH16]. Group-Based
[BNH01]. Grouping [OR12, WC99]. Grove
[IEE89]. Growth06_v2 [Dan09].
Guarantee [Hag02, BGP06]. Guarantees
[PSM01, YWJ03, GPS14, MTC+07, PSM03, ZHB15]. Guarded [Sim97]. Guest
[GBG93a, GJ97]. GUI [Tet94]. Guide
[Ano99, BBD+91, LB96a, Wil97, BW97, ND96, RR96, Sun95]. guided [NB12].
Guidelines [RD96]. GIUs [Mia90].
Gyrokinetic [KEL+03, PWL+11].

Hagenberg [Hon94]. Hagenberg/Linz
[Hon94]. Halide [DKA16]. Hamilton
[Ric91]. Handles [Rec98]. Handling
[DH98, LSB15, SK79, BM91, KCD99, Koo93, KPB+03, Lea96, Met95]. Harbor
[BBC+00]. Hardware [CKD94, CSS+91b, KE15, LLS06, MWP07, Men91, SW08, ZLJ16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW93, OCT14, PAB+14, PRS14, RPNT05, SE12, TE94b, DWS+12].
hardware-aware [PAB+14].
hardware/software [LT97]. harmful
[NWT+07]. Harmony [KTK12]. Harness
[Ama98, EBKG01]. Hash [K05, VB00].
Hash-join [KAP01]. hashing [MGA18].
having [YFF+12]. Head [Mia90]. healing
[SLP+09]. Heaps [DK+03, Man99, Ste01].
help [Len95]. Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here
[Ano92a, PRA96]. Hessenberg
[BK17]. Hessenberg-triangular [BKK17].
Heterogeneity
[CCK+16, Kwo03, RKBH11].
Heterogeneous [AT16, AACK92, FBF01, KTR+04, Lu95, NTR16, THA+12, FKS+12, GKKZ12, LK13, SJ95, WCC+07]. Heuristic
[HH11, Mah11, OCRS07]. Hewlett
[BLC097]. HFS [K97]. hiding [BR92].
Hierarchical
[GJT+12, JY15, KC98, KG94,
Hierarchies [BCZY16, TAM+08].

High [BGDmWH12].

High-Level [Sch17].

High-Performance [ACM98a, BGH+12, FGKT97, Gar01, IEE94b, NBS+15, RG03, SRS98, Sch17, SLJ+19, TCI98, VV11, WN10, CIM+17, Kim94, Lan97, RRP06, Re695, SQP08a, SQP08b, SQP08c, Tem97].

High-Order [CJJK95, NV15].

Highly [BGDMWH12, Kub15, KGGK09, MAAB14].

Hilton [IEE90].

HippogriDB [LTL+16].

Hist [Gar01].

Hoare [KI17].

HoME [OKID92].

Homogeneous [CC18].

Hill [CY09, USE02].

Hill-climbing [CY09].

I-WAY [FGT96].

I/O [RM03, Ano95a, Ano95b, ABB+15, BDN02, KSLU94, LTL+16, Man98, MG15, Yoo96a].

IBM [ABB+15, CJB+15, KST04, LSF+07, WZWS08].

Idempotency [KOE+06].

Identification [JSM12].

ILP [OCRS07, RLJ+09].

Illuminating [BLPV04].

Im[HL93].

Image [WN10, BCG14, Kep03, RHT17].

Impact [KLG08, SCL05, TE94a, ZAK01, Div95, Met95, RGG+12, RPNT05].

Impaired [Wei97].

Imperative [SV98].

Implemental [TEE+96].

Implementation [ACM94a, ACM99a, Alf94, AB01, AKP99, BBD+91, BHP+03, BRM03, CWHB03, DSH+10, FR98, Hai97b, KA97, MS02, Nik94, STW93, TKA+02, TMAG03, BK96, BB00, BM03, CMX10, DL93, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, Li05, LZ07, LAH+12, NFB17, OKID02, Stu95, Tod95, YZYL07, Ano95a, Ano95b].

Implementations [Han97, SAC+98, Ram94, SKG+11, Sha95b].

Implemented [Boe05, KEL+03].

Implementing [ABH+00, ABO2, BP05, CB89, CB90, Day92a, Day92b, DPZ97, GMB93, GSC96, HPA+15, KRO01, KBA02, KIAT99, Pra95a, TY97, TAN04, BHK+04, Lie94].

Implications [RM03, BS96, VSM+08, CSM+05].

Implicit [BAM93, MS02].

Implicitly [ACMA97, PFV03, SAC+98, RB18].

Implicitly-multithreaded [PFV03].
Improve [GV95, QSaS+16, RKK15, Sin99].
Improved [BR92, GMGZP14, LLS06, Smi06].
Improving [AJK+12, BDN02, DKG18, FT96, FM92, FFBF01, GA09, IBST01, LYH16, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10]. In-Order [RRK11]. In-place [SGLGL+14, SCM05].
In-Situ [RGK99]. In-Tune [RGK99]. In-complete [HR16]. Incompressible [RM99]. Incorrectly [SCL05]. Increasing [PHCR09]. Incremental [BFA+15, Caz02, Lar95, LB92, BBYG+05].
Inline-Threaded [GH03]. Inlining [PR98, LQ15]. Innovating [JD08]. Innovation [ACM92]. innovations [ABB+15]. Input [BCG13, MP89, Tan87]. Input-covering [BCG13]. input/output [MP89]. Insight [IEE02]. Instruction [DV99, HMNN91, LEL+97a, LEL+97b, MCF99, RS08, AMC+03, Aru92, Cho92, HKN+92, HMN+92, KBF+12, Mis96, OA08a, OA08b, OA08c, PYP+10, Ra9j39, SD13, SMS+03, TEE+96, VSI1, VDBN98, VV00].
intensity [BD06]. Intensive [TKA+01, AAKK08, TKA+02, YSY+09]. Interaction [Hei03, HF96, Pan99]. Interactions [WG94, WSK99].
Interactive [FURM00c, PTMB09, WOKH96, LCK11, Wat91, FR95]. International [Ano98b]. Internet [Ano96, Hig97, SBB96, van95]. Interoperability [DHR+01, Way95].
[ABNP00]. **ISSAC**
[ACM94c, Lak96, Wat91]. **Issue**
[KU00, Ano94e, GGB93b, TEE+96]. **Issues**
[GMB93, PS01, ARvW03, AnS96, GC92, HCD+94, IAD+94, TCG95]. **Issuing**
[HMNN91, HKN+92, HMM+92]. **Itanium**
[MB05, WCW+04b, WCW+04c, WCW+04d]. **Iterations**
[UZU00]. **Iterative**
[MQ07, Nak03, AAC+15]. **iThreads**
[BFA+15]. **IUnknown**
[SW97]. **Ivan**
[Ano00c]. **IXP**
[ARB+02, LCH+08]. **IXP2800**
[AHW02]. **J.UCS** [KU00]. **January**
[ACM94b, ACM95b, ACM98b, Ano90, USE89, USE91b, USE93b, ACM93a]. **Japan**
[Ano91, Ano00a, Ano03]. **JaRec**
[Chr01, GCRD04]. **Jason** [Ano00c]. **Java**
[ACM98a, ACM01, Ano97a, USE01, AFF06, ÁMdBdRS02, AddS03, ÁMdBdRS05, ÁMdBdRS08, Ait96, Ano96, Ano98b, ABH+00, ABH+01, A+01, AG96, ACR01, ABG+08, BZ07, Ber96b, BVG97, BAG+09, BR15, BPSH05, BHK+04, BS00, Bra97, BP05, BLPV04, Cal02, CV98, CKRW97a, CKRW97b, CKRW99, CWWB03, CC04, CCH11, Chr01, CT00, Coo02, Cor00, Cri98b, Cri98a, DJLP01, DHH98, DRV02, DLZ+13, Di00, DGK+03, Dra96, DHR+01, Dye98, EFN+01, EFN+02, EFG+03, EQT07, FSS06, FWL03, Fek08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Ham96, Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Hol00, Hy00, KPÆR06, KPB+03, LB00, LCM04, Loc18, Led97, Man96, MP01, McM96a, McM96b, McM96c, McM98b, McM97, Mit96, MC06, NAV06, NM10, NR06]. **Java**
[Nev99, OW97, OW99, PSM01, PSM03, PRB07, Pe03, PUF+04, PV06, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, St02, SKP+02, Van97a, Ven97, Ver97, WN10, Whi03, XSAj08, Xue12, Yan02, van95]. **Java-like** [DJLP10]. **JavaBeans** [Van97b]. **Java** [BVG97]. **JavaScript** [PCM16]. **Javier** [Ano00c]. **Jersey** [MT93]. **JIT** [McM97]. **job**
[EE10, EE12, ST00a]. **Jobscheduling**
[ST00c, ST00b, STV02]. **John** [Ano00c]. **Joho** [Ano03]. **join** [ALS10, GK05]. **JDEV** [FTP11]. **Jones** [Ano00c]. **Jorgenson**
[Ano00c]. **Journeyman**
[Bec00]. **JPF** [WKG17]. **JPR** [WKG17]. **Jr** [ACM99b]. **July**
[ACM92, ACM94c, ACM95a, ACM98c, EV01, IE96, Lak96, Ass96, USE96, Wat91]. **June**
[ACM94a, ACM98c, ACM01, Ano94f, USE92a, USE00a]. **JUnit** [Goe01]. **just** [KBF+12]. **just-in-time** [KBF+12]. **JVM**
[Lan02, McM97, USE01, WKG17]. **K-Java** [BR15]. **KAI** [Ano98b]. **Kaikan**
[Ano00a]. **Karlsruhe** [RM03]. **Kaspersky** [Ano00b]. **Kendo** [OAA09]. **Kernel**
[Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB+92, Kor89, MM01, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95]. **Kernel-Based** [Alf94]. **Kernels**
[KI17, dlPRGB99, GLC99]. **Kiel** [LvH12]. **Kikai** [Ano00a]. **Kikai-Shinko-Kaikan**
[Ano00a]. **kinds** [San04]. **kinematical** [BD06]. **Kinematics** [HMLB16]. **King**
[ACM99b]. **Kingdom** [ACM94c]. **Kitsune**
[HSD+12, HSS+14]. **Knoxville** [IEE94b]. **Kroll** [Ano00c]. **KUMP** [NTKA99]. **KUMP/** [NTKA99]. **L** [DNRO00, GBB+05]. **L2** [SLP08]. **L2-miss-driven** [SLP08]. **Lab** [Ano00b]. **labeling** [D’H92]. **Lafayette** [EV01]. **Lake**
[Hol12]. **lambda** [ORH93]. **Laminar**
[PBR+15, RPB+09]. **LAN** [Yas95]. **LAN/WAN** [Yas95]. **Landing** [TAK+00]. **Language** [ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIA99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97,

Level-2 [Ric99]. Leveraging [PR01]. LFTTHREADS [GP08]. Libraries [Ano00c, BCR01, GF00, Jon91, MLGW18, MM14, ARvW03, CBM10]. Library [Ano98b, ABN00, BFA+15, CCRM92, EHG95, Gi94, GHG+98, Kem02, Man91, WN10, Yas95, Ada98, Boe05, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. life [KU17]. light [Way95, LZTZ15]. light-weight [Way95]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hia97b, SLJ+18, CASA14, Hia97a, LVN10, MMN09, MEG94, VACG09, WSKS97, LKBK11]. like [DJLP10, Jon86, VV11, Kor89]. limit [ROA14]. limitations [Gal94, HL08]. limited [Bri89]. Limits [LB95, LB96b, AAKK08]. Line [Ano00c, FSPD16, FdL02]. Linear [KLDB09, Loe97, BM95, AAC+15, Bak95a, MM07, YSY+09]. Link [Ano00b]. Linked [WJ12]. links [WW96]. LinkScan [Ano00b]. LINQits [CDL13]. Lint [Kor89]. Lint-like [Kor89]. Linux [Ano97a, Ano00b, Ano00c, Ano97a, RGK99, SK+02, WTKW08, ZSA13]. Linux/AXP [Ano97a]. Linux/FreeBSD [Ano00b]. Linz [Hon94]. liquid [KRBJ12]. Lisp [Nor90]. List [DV99, WJ12, VV00]. LiteRace [MMN09]. little [CDL13]. liveliness [GM09]. LLCs [PBL+17]. Load [HBTG98, KMMG01, KC98, KRH98, PGB16, VQ12, Chr95a, Chr95b, Chr96, MCI04, TKH04]. load-adaptive [TKH04]. Load-Balancing [KC98, PGB16, Chr96]. Loadable [ZSA13]. Loading [PCM16]. Local [DGK+03, IEE95, Wh03, HZD13, ZLW+16]. localities [CS95a, CS95b]. Locality [BS96, PEA+96, Wei98b, HWW93, LK13, PGG06a, PGG06b, PGG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a]. Location-Independent [USE93a]. Lock
lock-free [GP08, MLS15, Mic04, ST05].
Lock manager [Hol98b].
Locking [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZEW+16].
Locks [ACR01, ALS10, MT93, OCT14].
LOCKSMITH [PFH06].
LOGFLOW [NTKA99].
Logic [Bre02, KI17, TAN04, BK13].
Logic-Centric [Bre02].
Logical [CR02].
LOIS [KT17].
larger [XHB06].
looking [KNPS16].
Loop [RLJ+09, SSP99, JMS+10, KVN+09, UZU00].
loop-level [KVN+09].
loops [D’H92, FN17].
 Lowe [Ano00a, Ano03, BGH+12, ZHCB15, GPS14, RRP06].
Low-overhead [ZHCB15, RRP06].
Low-Power [Ano00a, Ano03, BGH+12].
LPVM [ZG98].
lunch [DTLM14].
Luther [ACM99b].
M [Ano00c, USE01, FKD+97].
M-Machine [FKD+97].
MA [Ano94f].
Mach [USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89].
Machine [Ama89, CSS+91b, DS16, FKD+97, KA97, KKV93, Laj00, USE91a, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném04, Pra95c, SKS+92, Ven97, CSSV93, Evr01, PRB07].
Machines [BSSS14, CYYL18, Den94, GH98, RCRH95, STY99, BMM09, DFK94, GKF12, GC92, Kus15, MRG17, TSY99, TSY00, VPQ12].
macromolecular [ABC+15].
Made [Har99].
MagiClock [CC14].
main [AKS16, BBH+17].
maintenance [TNB+95].
makes [Van97a].
Making [BDLM07, LFA96, Low00, Pla09, PLT+15, YCV+14].
malloc [Kus15].
Mambo [WZWS08].
MAMPO [GJ11].
managed [WLG+14].
Management [ALB+18, ABL92, GMGZP14, HC17, HRH08, KG94, LG06, LLS06, RSBN01, STY99, ZP11, Bak95a, BM91, DBRD91, HCD+94, HPL+10, Jef94, KKH04, RCG+10, SS95].
Manager [Ano00b, PDMM16, Ply89].
Managing [Blu92, FGKT97, MJV05, PJZA07, SEP96, VS11, ROA14, WSK97].
MANNA [HMT+96, Sod02].
manual [MS87, PO03].
Many [FMY+15, PVS+17, DTR18, MLCW11, MTPT12, San04].
Many-Core [FMY+15, PVS+17, DTR18, MLCW11, MTPT12].
Manycore [BMF+16, KS16, BWDZ15, HFV+12].
Maple [YNPP12].
Mapping [CCK+16, LBvH06a, LBvH06b, LBvH06c, NTR16, WK08a, WK08c, WK08b].
Mappings [Lun97].
Maps [BC94].
March [IEE97, USE92b].
Mark [Ano00c].
Markerless [LK90].
Markov [SBC91].
Martin [ACM99b].
MASA [HF88].
Massachusetts [USE93a].
Massive [EJRB13, OR12, Mus99, RCY+10].
Massively [BdCG14, KR12, TSV12, BS10a, CFG+12, CDD+10, Lu94, NJ00, NPA92, ROA14, WT10, WOKH96].
master [TJY+11].
master-slave [TJY+11].
Matching [HPA+15, OR12, HFV+12, KGP12].
Mathematica [Tam95].
mathematical [KI16].
Matlab [Bra97].
Matrices [But13, SGLGL+14].
Matrix [NBS+15, QOIM+12, YFF+12, CSV10, DTR18, QOQOV+09].
matrix-vector [CSV10].
matter [ZJS10].
maxflow [BdCG14].
Maximal [HH16, HR16].
Maximisation [SC17].
mmaximize [RCG+10].
Maximizing [LKDK11, TEL95, TEL98a, TEL98b].
Maximum [AT16, HH11, GJ11].
May [ACM93b, ACM06, ACM99a, Cha05, IEE94a, IEE94b, IEE94d, SS96, MMTW10, Pra95c].
MD [IEE02].
MDMA [Spe94].
measured [ECX+12].
Measurement [LLD17, TMC09].
measurements [JFL98].
Measuring [FMY+15, DTLM14].
Mechanising [Loc18]. mechanism [FD05, GCC15, PWWD18, WHJ+95].
Mechanisms [KPC96, KC99, SK97, Loe05, Men91, PT03].
Media [Ano03, Van97a]. medium [CDD+10]. Meeting [DLM99]. meets [Tam95]. Member [BS99]. Memories [HKSL96, KHP+95]. Memory [AJK+12, BS96, BMBW00b, BD00, CH95, DM98, EJ93, EE09a, FMY+15, GMR98, GMGZP14, GH98, HG91, HL07, KZTK15, KZC15, KKH04, KUCT15, LSB15, LB92, LB17, LSM+16, MVZ93, MCT08, Nak01, RCU14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM+08, Thr99, Ver96, WC99, YMR93b, ZLL16, ATLM+06, AKSD16, AAKK08, BS06, BGDmWH12, BCG+95, BBH+17, BMBW00a, BMBW00c, BDL07, BA08, BBo00, BAm07, CMF+13, Cha05, Cho93, CVN+06, DLZ+13, DLCO09, DPZ97, EKLL90, EV01, FF10, GCC15, Gle91, GL98a, GS00, GKK09, HB92, HWW93, HG92, HHPV15, ISS98, KFG15, Luk01, MLS15, MCRS10, MSM+10, MLC04, MTTW10, MT510, Mic04, MTC+07, MVX05, NPC06, NAAL01, OCT14, SLT02, TSY99, TSY00, TVD10, TVD14, TVS12, WK08a, WKB08, WK08c, XBH06, YMR93a]. memory [YSY+09, YN09, kSYHX+11, ZK15, ZHCB15]. memory-intensive [YSY+09]. Memory-level [EE09a].
JD08, LZW+13, MSM+10, MQ08, PA4S+17, PG03, RSB+09, Stã05, TMAG03.
Model-Checking [ES97, Stã02].
Model-driven [CSV10, RSB+09].
Modeling [KMc02, KE15, TAM+08, AMC+03, CIM+17, DFK94, EE10, EE12, Mao06, SBC91, Squ94, TR14].
Models [CMK00, CH95, Den94, HY+15, KZC15, Kim14, KW17, LB17, ST98, VT96, BAM07, But14, Cho03, Cor00, Gil94, SC17, TVD10, VDBN98, XIC12, ZKW15].
modern [GK05, GB+07, HL07, NJK16, ZJS10].
modular [US91a, Ass96, US96, US01].
modularity [LK15].
module [LQ15].
monad [FKS+12].
monadic [US91a, Ass96, US96, US01].
Mosaic [An69].
Most [PLT+15].
mostly [BBYG+05].
Moving [Ait96, Sim97].
MP [Pea92, TTY99].
MPD [PHK91].
MPEG [BC00].
MPI [PS01, Vre04, Ada98, ALW+15, ALB+18, BBG+10, BK96, BBC+00, BM03, CRE99, DSG17, HD02, DLM99, FGT96, GCC99, IE06, MS02, Pla02, SCB15, STY99, SPH96, TSY99, TSY00, TG09].
MPI-based [Ada98].
MPI-OpenMP [MS02].
MrBayes [LHG+16].
MS [Wil94a, Wil94b].
MS-DOS [Wil94a, Wil94b].
MSFV [HHOM91, HHOM92].
Msparc [MN00, MD96].
MT [EC98, TTY+11].
MT-BTRIMER [TVJY+11].
MTA [Mat97, Smi01].
MTAC [For97].
MTraceCheck [LB17].
MTS [Gao94].
MUCH [WL15].
Multipe [WMO3].
Multi [Ada98, AMRR98, AACK92, AGK96, ABN00, BC98, BBI+17, BC00, BGK94a, BGK94b, BGK96, CV98, CL95, CRW99, CWHB03, C0D01, C12].
CCK+16, CC18, CvcBC18, cvC91, Chr01, CR02, Coo95, DV99, DS16, DTLW16, EBG01, FMY+15, FD96, Fdl02, GVT+17, G94, Gil93, GS06, GH98, HC17, HG91, HI01, JY15, Jon91, JLS99, K95, KW17, KRH98, Kuc92, KTR+04, LK15, LB92, Lg01, LKBK11, MLGW18, Mas99, MTN+00, MC97a, MC97b, MS15, MG15, MCF99, MGK+00, NJ00, OR12, PCPS15, PTMB09, PWWD18, PKB+91, PM14, P00, PGB16, RR93, RCC14, RBP00, RCW98, RVR04, RS08, SP00a, STW93, Shc90, SKG+11, Se98, Se01, S11, S17, S199, T099, Ta91, TLGM17, VSDK99, VB00, VK99, W00, YLS16, AB+12, BWDZ15].
multi [Bak95a, BK13, BM07, BIK+11, DSEE13, CN13, CIM+17, CFG+12, CASA14, CRW97a, CRW97b, CSB00, CY98, CL00, CS05, DMYB10, Dom92, EFG+03, EHSU07, FTA14, FUL03, FGG14, GCRD04, GCC15, GPR11, KHP+95, KDM+98, KKH04, Kep03, Kãc91, KBF+12, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA+13, LZW+13, LMCW11, MLC+09, MS03, MKK99, Mus09, NFBB17, NH09, N010, O80a, O80b, O08c, PYP+10, RCV+10, RK+10a, RK+10b, RKG99, SCB15, Sam99, SC17, SE12, SV08, Smi06, Sto02, SQ08a, SQP08b, SQP08c, SMQ09, ST05, Temp07, TCC95, TMAG03, TVJY+11, VIA+05, VDBN98, VV00, VPQ12, WCC+07, WC98, YZ07, Yan97, YSY+09, YN09, kSYHX+11, YKL13, ZKR+11, dB09, vPG03, Ano97b, CH04, Mix94].
Multi-[FMY+15].
multi-ALU [KDM+98].
Multi-C [Mix94].
multi-context [Yan97].
Multi-Core [CC18, CvdBC18, KTR+04, PM14, CFZ+12, CSM+05, DWYB10, KBF+12, MLC+09, Mus09, SMQ09, WCC+07, YZ07].
Multi-Cores [CCK+16].
Multi-CPU [PGB16].
multi-engine [CNQ13].
Multi-Level [RR93, C12].
Multi-Level-Context [JLS99].
multi-process [WCV+98].
Multi-Processing [MLGW18].
multi-processor [VIA+05, YN09].
Multi-protocol [ABN00]. Multi-Tasking [CvdBC18].
Multi-Thread [HG91, MTN+00, AMR98, PKB+91, SKG+11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95].
Multi-Threaded [AGK96, Bed91, BGK94a, BGK94b, BGK96, CL95, CKR99, Coo95, DV99, FdL02, GVT+17, GK94, Gil93, III01, JY15, Jon91, KW17, Kuc92, LB92, Mas99, MG15, MK+10, PCPS15, Pul00, RKCW98, STW93, Sei99, Smi92, Ste01, SBKK99, TLGM17, VSDK09, VB00, Ada98, AACK92, BBT+17, BC00, CV98, CWB93, CdOS01, cC91, Chr01, CR02, DS16, EBK01, FD96, GS06, GH98, HC17, IK95, KRH98, LK15, Leg01, PWWD18, RBPM00, RS08, SP00a, Sei98, VK99, Wai00, ABD+12, BDZ15, BK13, BIK+11, DSEE13, CIM+17, CASA14, CRRW97a, CRRW97b, CSB00, CYZ98, CLo00, EFG+03, EHSU07, FTA14, FGG14, GCRD04, GCC15, GPR11, KHP+95, KKH04, Kep03, Lan97, LBvH06a, LBvH06b, LpHS05, LS07, LMJ14, LA93, MVZ93, MK97, NS97, TESK06, YMR93b, BR02, GA09, HT14, LGH94, Mao96, Men91, QSQ14, SMK10, Shat88, SKC09, TASS07, Yoo96b, YMR93a].
multi-threaded [OA08a, OA08b, OA08c, PYP+10, RCV+10, RKM+10a, RKM+10b, RGK90, SCB01, Sam09, SC17, SE12, SV08, Smi06, Sto02, SQP08a, SQP08b, SQP08c, TsA13, TnM97, TMA03, TJJ+11, VV00, YSY+09, ZKR+11, dB09, vPG03, Ano97b].
Multi-Threading [CvdBC18, LKBK11, MLGW18, McC97a, McC97b, MS15, OR12, PTMB09, RCC14, Sch90, TGO99, YLLS16, DTLW16, MCF99, NJ00, RVO4, Bak95a, BM07, FWL03, LZW+13, ML+09, VDBN98, kSYH+11, YKL13, CH04].
multiagent [Bar09].
Multicomputer [FKD+97].
Multicomputers [BG+95].
Multiprocessor [AACK92, AKP99, BC00, Cat94, EHG95, GH+98, HN91, KAMG01, MCT08, Pre90, SZ92, SEP96, USE92b, WC99, ZUB02, Cho93, DCK07, EKQL90, HB92, KT99, LTN10, LWV+10, PZJ07, Ano94b].
multithread-safe [GCC99].
Multithreaded [AddS03, AdBdRS08, ABC+93, AT16, Ano98, ALB+18, Ano92a, Ano92b, Ano94a, Ano94b, Ano98a, Ano98b, BHP+03, JJ91, CGL92, CGL92b].
Multi-Race [PS07].
Multitasking [Col90b, Gib94, Gon90, JJ91].
Multithread [LCS04, RRMJ12, SYHL14, CS95a, CS95b, DSH+10, GCC99, JD08, SWY94, ZG98, ZG96].
multithread-safe [GCC99].
Multithreaded [AddS03, AdBdRS08, ABC+93, AT16, Ano98, ALB+18, Ano92a, Ano92b, Ano94a, Ano94b, Ano98a, Ano98b].
Multithreading

Multithreading [AMdBdRS02, AH00, Ano99, Ano05, BBG+10, BWXF05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Bre02, BLPV04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FBF01, FKT96, GHG+98, GV95, Gu95, Gun97, GSL10, Har99, HBTG98, ILFO01, IBST01, KPC96, Kel94a, Kel94b, Kho97, KF97, KI97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MHG95, MN00, MKC97, Nag01, Oni97, ÖCS01, PJS15, PT91, PST+92, Pea92, Pra97, RLJ+99, RG03, RD96, SSP99, SPY+93, SW08, Scv91a, SP07, SLG04, SRU98, Shin97, Smi01, ST00c, Ska01, TY97, Ten98, TAK+00, TESK06, V96, WWW+02, WCW+04a, Wei97, YG10, ZL10, Ziq96, AAHF09, AAKK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCC12, Div95, DN94].

multithreading [Duh95, Dye98, EE99a, FM92, Fis97, Fon97, GWM07, GBG95, Geo98, GEG07, Geo88, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD99, Kim94, KG07, KIT99, KLH+99, LK13, LGH94, LSS12, LZW17, LB95, LB96b, LZW+14, Loi95, LVS01, LZW14, Lulk01, MIGA18, MW07, Mao96, MK1004, MGL95, MMM+05, MCM97, Met95, MKR02, MAAB14, OAA09, Ong97, PG06a, PG06b, PGS06c, PG01, PHCR09, PV06, Pra95b, RM00, RR96, RPNT05, Sun04, Sch91, Scv91b, Sin99, SW16, STV02, Swi09, TK98, TSH99, TO10, Tsa97b, TEL95, TEE+96, Tu96, TEL98a, TEL98b, URS02b, URS03, VPC02, WLG+14, WW93, WCW+04b, WCW+04c, WCW+04d, YCW+14, Lar97].

multithreading-based [GE08].
must [NA07].
mutable [HL93].
 Mutex [Hol98b].
 mutual [BRE92].
 Mysteries [Hol98b].

name [ORH93].
 Nanophotonic [VSM+08].
 Narrow [YSS+17].
 NAS [CRE99, GH98].
native [SJ95].
navigating [TVD14].
 NDP [Ano97a].
 Nearest [JY15].
 Nearest-Neighbor [JY15].
 Need [SLG04, RPNT08].
 Neighbor [JY15].
 Nelson [Ano90c].
 Nested [EW96, NB99, TGO99, TGO00, YZ14].
 Net [Ham96].
 Net-Centric [Ham96].
 Netburst [KM03].
 Nets [KM02, MKC97].
 Network [ACM98a, RM03, ARB+02, Chl15a, Don02, GRS97, HH11, KML04, KRH98, NGGA94, YG10, ZP11, BDM98, GLO7, KGPH12, LZO7, LLL10, LCH+08, OCRS07, RCV+10, RPNT05, Sta90, ZP04, PH97].

Network-Facing [KML04].
 Network-I [RM03].
 Network-I/O [RM03].
 Networked [CT00, FGK97].
 Networking [ACM98d, ACM00, Hol12, LCK11, DWYB10].
 Networks [IEEE95, KLH97, Lu98, RR93, PWDD18, SMK10].
 Neumann [HG92].
 neural [PWDD18].
 Neurons [LTM+17].
 newly [Ano95a, Ano95b].
 NewOS [TLA+02, Gei01].
 Newport [USE92b].
 News [Bra97, Gar01, Mat97, McM97].

Newton [CYYL18].
 Next [ARB+02, EEL+97, TSV12, CH04].
 Next-Generation [EEL+97, TSV12, CH04].
 Nexus [FKT96].
 NFS [Ano95a, Ano95b].
 NFV [GDSA+17].
 Niagara [KA005].
 NLM [Day92a, Day92b].
 NLM-Based [Day92a, Day92b].
 NoC [YL16].
 node [TK98].
 Nodes [EH95].
 noise [GA09].
 Non [Caz02, Coo95, JLS99, KIAT99, LB17, SGM+97, Tra91, Ann96, RGK99, SCG95, SKG+11].
 non-blocking [Ann96].
 Non-Deterministic [LB17].
 Non-Intrusive [Caz02].
 non-invasive [RGK99].
 Non-numeric [SGM+97].
 Non-preemptive [JLS99].
 Non-Strict [Coo95, Tra91, KIAT99, SCG95].
 non-uniform [SKG+11].
 Nonblocking [HH11].
 nondestructive [AD08].
 nondeterminism [HBCG13].
 Nondeterministic [LPS07].
 Noninterference [BC02, Smi06].
noninterruptible [AAHF09]. Nonlinear
[Nak03, GOT03, Kub15]. nonoperational
[GS00]. nonuniformity [WA08]. norm
[Ano92a]. Note [AKP99, Lie94]. NOTES
[Gil88]. notification [BF08]. Notifiers
[Pom98]. Notre [IEE96]. Novel
[HG91, GKK09]. November
[ACM98d, ACM99b, ACM00, ACM03,
Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92,
IEE93, IEE94c, IEE02, LCK11, USE91a].
NOWs [SLGZ99]. NP [YZ14].
NPB [EGC02]. NT
[Ano98b, Hig97, PG96, Pra95c, Pra95b,
TC98, USE98a, Wil94a, Wil94b, Yam96].
NT-Style [Wil94a, Wil94b]. NUMA
[LMC14, ZLW+16]. NUMA-aware
[ZLW+16]. number [LSS12, SLF14].
Numeric [MLGW18, SGM+97]. Numerical
[MR09]. Numerics [Ano97a]. NY [SS96].

O
[RM03, Ano95a, Ano95b, ABB+15, BDN02,
KSU94, LTL+16, Man98, MG15, Yoo96a].
Object [Ano99, BBD+91, BC94, GKR94,
HH97, KC99, Kim14, NPT98, SJ95, SG96,
Ada98, Car98a, CYZ98, CLL+02, FWL03,
FL90, JPS+08, LLLC15, Sch98, Wei98a,
Yan02, dB09, vPG03]. Object-Oriented
[Ano99, BBD+91, BC94, Kim14, NPT98,
SG96, HH97, Ada98, Car98a, CYZ98,
CLL+02, FL90, JPS+08, Wei98a,
Yan02, dB09, vPG03]. Objects [ACR01, CJK95,
CR02, Low00, Pra95a, Ric99, Ten02, Yas95,
Bak95a, Bri89, DMBM16]. object [Swi09].
Oblivious [UALK17, HL08, HZ12].
Observer [Hol99b]. occupancy [PAB+14].
Ocean [SAC+98]. OCTET [BK+13].
October [ACM94d, Ano94d, BT01, IEE95].
ODBC [Ano00b, Hig97].
ODBC-compliant [Hig97]. ODBC-ODBC
[Ano00b]. ODE [Bra97]. Off
[MHG95, AAC+15, DTK+15]. off-chip
[DTK+15]. Off-the-Shelf [MHG95]. offs
[Par91]. Old [Wil00]. On-Chip [LKBK11,
SMK10, TEL95, TEL98a, TEL98b].
On-Line [Ano00c, FSPD16, FdL02].
On-the-fly [Sch89, CWS06, PS03, PS07].
On-time [Bak95a]. one [QSHI16]. one-sided
[QSHI16]. Online [Ger95, OTY00, RCC14,
Sei98, Sei99, SRA06, TGO99, HF96,
LW+10, RS07, VGK+10a, VGK+10b].
only [Di00, MIF+10, NM10, ZJFA09]. onto
[LBvH06a, LBvH06b, LBvH06c]. Open
[Ano00c, BMF+16, Hai97b, KR01a, KR01b,
RBF+89]. Open-Source [Ano00c].
OpenMP
[Cha05, ARvW03, BHP+03, BBC+00, Bra97,
BMV03, BO01, CRE99, CDK+01, CM98,
DM98, HD02, EV01, JYY+03, KKH03, Lu98,
MS02, Mart03, MLC04, MPD04, Mat03,
MG15, MLI14, Mii03, NAAL01, RBA05,
SLGZ99, Thr99, TGBS05, Vre04, RM99].
OpenMP-oriented [MLC04]. OpenOpt
[NSP+14]. OpenPiton [BMF+16].
OpenSPARC [Wea08]. OpenSparc [SP07].
Operating [ACM94d, CLFL94, TLA+02,
Gei01, IEE89, IEE94a, MS87, REL00b,
SEF96, Ano92a, Ano92b, BDM98, DBRD91,
IEE94d, Jef94, Jen95, LVN10, LAK09, LYY98,
RBF+89, REL00a, REL00c, She98, Way95].
operation [DKG18, RHH10]. Operational
[CRW99, CRW97a, CRW97b].
Operations
[KKS+08, KLDB09, SCL05, HMC95, RD06].
Opportunistic [YL16]. Opportunities
[GJ97, HL08, Mus09]. OPRA [QSHI16].
Optimal
[AT16, Lar95, RCM+12, Lep95, LML00].
Optimistic
[WHJ+95, CZSB16, DKG18, VPQ12].
Optimization [BLG01, CvdBC18, GN96,
RNSB96, SYHL14, TJJY98, TLGM17, WJ12,
AMC+03, AMPH09, DZKS12, GOT03,
Koo93, RKCW98, Sin99, TO10, ZCSM02a,
ZCSM02b]. Optimizations
[HYW+15, JVB+12, KET06a, LEL+99, Sut99, ABC+09,
JVB+11, OA08a, OA08b, OA08c, Roh95].
Optimized [Sin97]. Optimizing [DKT+15,
KZTK15, PR98, PSCS01, WCZ+07, GS02. **Orange** [ACM98d]. **Orchestration** [GVT+17]. **Order** [CJK95, RRK11, NV15, SJA12, SW16, ZKW15]. **Oregon** [ACM94b, ACM99b, IEE93]. **Organization** [HG91, HG92]. **organizing** [LAK09]. **Oriented** [Ano99, BBD+91, BC94, Kim14, KS97, LHX+16, NPT98, SG96, Ada98, Car98a, CY98, CLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei98, WP10, Yan02, dB09, vPG04]. **Orlando** [ACM94a, ACM98d]. OS/2 [DN94, Kan94, Kel94a, Kel94b, Rei95, Ric91, Rod94]. **oscillations** [BD06]. OSF [BM91]. OSF/1 [BM91]. Other [SPY+93, MMTW10]. Ottawa [BT01]. **Out-of-Core** [QOIM+12, ABC+15]. **out-of-order** [SJA12, SW16]. output [MP89]. **Outstanding** [LSB15]. **Overall** [SEP96]. **Overcome** [SW08]. **overflow** [KOE+06]. **Overhead** [DSR15, RRP06, YL16, ZHCB15], **overview** [Li05]. **Own** [BS99, Sho97a, Sho97b]. Oxford [ACM94c].

P [Ano00b, Nik94, PR05]. **P-RISC** [Nik94]. **P-STAT** [Ano00b]. **P-Thread** [PR05]. Pacific [IEE93]. **Pacifier** [QSG04]. Package [Ano94c, FL90, HCM94]. packages [GOT03, OT95, PL03]. **Packaging** [RR93]. **Packard** [BLCD97]. Packet [AHW02, LCH+08, MVY05, WCZ+07]. page [CNV+06], **page-based** [CNV+06]. **PageRank** [KG07]. Paging [FD06, FdL02, Sei98, Sei99]. Pagoda [YSS+17]. **PaILisp** [KI95]. **pain** [Gus05]. Paijé [CdOS01, CSB00]. Palo [ACM01]. **panel** [Ano94c, Bak95b, HCD+94, IAD+94]. **Paper** [ABH+01, TKA+01]. **papers** [ACM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05]. **par-monad** [FKS+12]. **ParADE** [KKH03]. **Paradigm** [EW96, JD08, KK15, PPA+13, BCG+95]. Paradigms [CM98, HD02, YMR93b, YMR93a]. **Parallel** [ABC+93, AMRR98, Anr89, ABSNP00, ACM97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CTS+17, CL05, CDK+01, CRN+00, DS16, Den94, EJ93, FMH05a, GIl94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JLY15, KTLK13, KI95, KEL+03, Kon00, KKD03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, SCv91a, SAC+98, SRU98, WC99, YFF+12, ARvW03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BK94c, CAR08, CFK+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM05b, FD95, Fu97, GC92, Go97, GKK09, GEG07, GE08, GB99, HMC97, HF88, Hop98, HW93, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, L094, M02a, M02b, M02c, MR08, Mis96]. parallel [NJ00, NPA92, OdSSP12, RCV+10, RHH10, SBCV90, Sch91, Scv91b, Sha08, SWYC94, ST06, SGS14, Taf13, TCG05, VQ12, VGF+10a, VGF+10b, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, FR95, Vre04, WN10]. **Parallel-Multithreaded** [WC99]. **Parallelism** [AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FURM02c, GVT+17, GP95, DK02, LKB11, LEL+07a, LEL+07b, MG99, RO94, Mar03, MCF109, NB99, RBA05, SSP99, SMD+10, SG96, Th99, WS08, YBL10, Yoo96b, ALH08, AKSD16, CSS+91a, CSS+91c, EE09a, F017, FURM00b, FURM00b, HDT+13, KRB12, KMD+08, KVN+09, KO09, LAH+12, QOQOV+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDBN98, V000, Wei98a, XAS08, ZY14, Zig06]. parallelisms-aware [LAH+12]. parallélisme [Zig96]. **Parallelization** [CRE99, CK09, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JYJ+03, PO03, RKM+10a, RKM+10b, RRMJ12, TFG010].
parallelized [CJ91]. Parallelizing
[BM91, WDC+13, KBF+12]. ParaLog
[VGK+10a, VGK+10b]. Parameterized
[BCR01, FK12]. Parametric
[Ano98b, FRT95]. Paravirtualization
[YX+09]. PARC [Ong97]. Parsing
[BC00, LPR95, PC16]. Part [Ano92a,
Ano92b, KR01a, McM98b, Hol98a, Hol98b,
Hol98c, Hol99a, Hol99b, McM96b, McM98a].
Path
[Loe97, RRP96, SP00b, Shi00, ZK05].
partition [LZ17]. Partitioning
[AMRR98, Coo95, D’H92, EW96, SLJ+19,
TG99, DCK07, LRL+14, MKR10, SCG95,
WW96]. Partitioning-Independent
[EW96]. Pascal [Hay93]. PASCAL [Hon94].
Passing [BWXF05, TLA+02, FGT96,
KDV03, PH97, PS01, Ada98, BCM+07,
DL99, FM92, PRS14]. Path
[BG01, TAK+00, CTY02, WCT98].
Pathfinder [KPP12]. Paths
[OTY00, Ano95a, Ano95b]. Pattern
[Ano97b, EGP14, OR12, EG11, GBP+07,
SCM05]. Pattern-Based [EGP14, EG11].
Pattern-recognition [Ano97b]. Patterns
[DS16]. PC [Mia90, CFK+91]. PCM
[AKS09]. PC-based [AKS10]. PCs
[CX99, NV94]. PDE
[CR05, Chr95b, Chr96, JD08]. PDES
[LTM+17]. pedagogical [CMS03].
PegaSoft [Ano90b]. Pennsylvania
[ACM96]. Pentium [RGK99]. peptides
[MIG+98]. Per-node [TK98]. Per-Thread
[Cha02, EE99b]. Perl [FSPD17].
Performance [ACM98a, ACM98d, ACM00,
Aga99, Aja91, BSH96, BLM6, BRM03,
BLG01, BNH01, BGH+12, BBSG11, Cal97,
CRE99, CCH11, CCK+16, CH95, Cho92,
CT00, CSM+05, CBN+00, CBM98, DYYB10,
EGC02, FT96, FSPD17, FB01,
FURM99c, FGKT97, Gal94, Gar01, GN00,
HR08, Hol12, HN91, IEE94b, JFL98,
KZTK15, KS97, KTR+04, LCK11, LG06,
Lep95, LMJ14, LGH+16, LYH16, MAH13,
Man99, Mao96, MSM+16, MPD04, ME17,
MK97, MM14, NCA93, NBS+15, NGGA94,
Par91, PH97, PS01, QA+16, RG03,
RVOA8, RKK15, SCD+15, SLJ+19, TCI98,
TT03, Tsa97a, TLGM17, We98b, WG99,
WN10, YWJ03, ZL10, ZAK01, Zob02,
AAC+15, APX12, AAKK08, BDW012,
BS10a, BMBM09, BMV03, CML00, Car9b,
CIM+17, Cho93, Div95, Don92, DKF94,
ECX+12, FL90, FM92, Fis97, FURM00a].
Performance
[FURM00b, GS02, GEG07, GLC99, HL90,
ICH+10, Kim94, KLI+99, LB95, LB96b,
LBH12, LCH+08, LMC14, LBE+98,
MLC+09, Mah11, MCRS10, McM97,
PJA07, PGB12, RGK99, SE12, SSK+07,
SQP08a, SQP08b, SQP08c, SK+02,
TMC09, TR14, TG90, The95, VV11, Wan94,
WCZ+07, WOK96, YZ07, YM92, ZJS10].
Performance-area [Par91].
Performance-energy [AAC+15].
Performance-Oriented [K97].
Performance-prediction [BMV03].
Performance/Power [RK15]. performs
[Ven97]. perils [Dye98]. Perl [TLA+02].
Perl/Tk [TLA+02]. persistence
[BHK+04]. personality [CCW+11].
Perspective [AG06]. Perspectives
[PLT+15]. pessimistic [CSB16].
Petafllops [SZ02]. Peter [Ano00c]. Petri
[KM02, MK97]. PG [Ano00b]. pH
[ACM97]. Phi [SCD+15]. Philadelphia
[ACM96]. Phoenix [ACM03].
Photomosaics [TLA+02]. Phylogenetic
[LHG+16, LBH12]. physical [AMPH09].
PIC [BMV03]. PicoServer [KB+08].
picture [AC09]. Piecing [Ano97b].
Pipelining [GV95, RVOA08]. PIRATE
[ICH+10]. Pitfalls
[Hol98a, SPY+93, CL00, San04]. place
[SCM05, SGL+14]. placement
[NLK09, TE94a]. Plagiarism
[TLZ+17, TLZ+18, TLZ+16]. Plan
[DLZ+13, Pre90]. PlanICS [NS+14].
Planning [NSP+14]. plans [GARH14].
plastic [MCS15]. Platform
[AB01, AB02, CT00, DTLW16, EEL+97, FSS06, Lam95, MT93, PG03, WCW+04b, WCW+04c, WCW+04d].
Platform-Independent [FSS06].
Platforms
[LS11, PWL+11, CNQ13, LSS12]. PLDI
[ACM94a, ACM99a]. Plug [DHR+01].
Plug-in [DHR+01]. plus [Ano95a, Ano95b].
PM [AB02]. PM2 [ABN99, AB01]. Pointer
[RR99, SR01a]. pointers [Sim97, WW96].
Points [CC04, CHH+03, SLP+09].
Points-to [CC04, CHH+03]. policies
[Eic97, EGC02, Mou00, DG99].
Potential [CC14, EGC02, Mou00, DG99]. potentials [ABF+10].
Power [GJ11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CMBAN08, MB07, MR09, RCC12, RKK15, RRK11, SYHL14, TLGM17, ECX+12, GW10, MLCW11, Pna95b, Ric91, SQP08a, SQP08b, SQP08c, CMF+13].
Power-aware [MR09].
Power-Constrained [TLGM17, GW10].
Power-Efficient [BCZY16, SQP08a, SQP08b, SQP08c].
Power-Performance [CMBAN08].
POWER5 [BCG+08, MMM+05, KST04, Ano05].
POWER6 [LSF+07]. powered [Rei95].
PowerPC [BEKK00, SBKK99].
PowerRAC [Ano00b]. Practical
[HW92, LMIJ14, MNG16, ND16, PBR+15, RR96, TGBS05, BCC010, RD99, RPB+09].
PRAM [For97, Lep95]. Pre [PR05, Luk01].
Pre-Execution [PR05, Luk01]. Precise
[HR16, KUC15, CCL+02, FF09, WTH+12].
Precomputation [MGQS+08, WWW+02].
Preconditioning [Nak03, GEG07].
PREDATOR [LTHB14]. Predicate
[GR11, How00]. Predictable [BBdH+11].
Predicting [Lun99]. Prediction
[AKS06, CMBAN08, IBST01, BPL+17, BWDZ15, BMV03, CTYP02, CPT08, GL98b, RRP06, TFG10, WHG07].
Prediction-Based [CMBAN08, RRP06]. predictive [LTHB14, SRA06]. Predictors
[EPAG16]. preemptive [JLS99]. prefetch
[AMC+03]. Prefetcher [LYH16].
Prefetching
[BL96, GK94, MKC97, SLP03, VT96, LB95, LB96b, Mao96, SLP02, SKK09].
Prefix [WJ12]. Preliminaries [NB93].
Preparation [EHG95]. Preamplifier
[GH03]. preprocessor [For97, Mil95].
prescient [AMC+03]. Presentation
[Kub15]. presented
[ACM93a, ACM94b, ACM95b, ACM98b].
preserving [MSM+11, FBFB+17]. pressure
[DTLM14, SLP08]. preventing [PRB07].
Price [Ano98b]. Pricing [TT03]. Primer
[LB96a, Wl97]. Primitive [Low00].
primitives [BBH+17, LZ07, NLK09].
principle [LAK09]. Principles
[ACM93a, ACM94b, ACM95b, ACM98b].
print [Van97a]. priorities [STV02].
prioritization [FD95]. Priority
[BCG+08, NBMM12, SCCP13, SLP05].
priority-based [NBMM12]. Private
[Man99]. privatization [HZ12]. Pro
[Ano97a]. Probabilistic
[EE10, EE12, CHH+03, Smi06]. Problem
Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].

procedure [BGK94c, KASD07, LQ15].

procedures [MCS15]. Proceedings
[ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOVS99, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94a, IEE95, IEE96, IEE02, Lak06, LCK11, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98a, USE98b, USO01, USE01, USE92, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, FR95].

Process [FT96, FG91, BM91, HF96, LVS01, MR98, Ply89, WP10, WCV+98].

process-oriented [WP10]. Processes
[CB16, III01, SPY+93, ZSA13, YZYL07, Zig96].

Processing
[AHW02, GAC14, MLGW18, RW97, SG18, SS91, WN10, How98, MVS05, Par91, PYP+10, RKHT17, WCV+07].

Processor
[ABC+93, Ano00b, BCG+08, BGP+12, EHG95, GV95, HMNN91, HHOM91, HHOM92, KST04, KML04, KA005, LvH12, MGQS+08, MG99, MTT+00, MV93, MB05, SW08, Sin97, ST00c, SZ02, SBKK99, SUF+12, UALK17, WS08, AAHF09, APX12, BEKK00, CL94, CY09, Cho92, EE10, Fis97, Fu97, Goo97, HF88, HKN+92, HNN+92, KDM+98, Klo97, KBA08, LBV06a, LBVH06b, LBVH06c, LCH+08, Lu94, MK12, Met95, M095, Moo96, OCR907, Raj93, Sha95a, SJA12, Sin99, ST00a, ST00b, STV02, Squ94, Sr93, Ts97a, Ts97b, TEE+96, VIA+05, WCV+04b, WCV+04c, WCV+04d, YN09, ZP04]. processor-based
[WCV+04b, WCV+04c, WCV+04d].

Processor-In-Memory [SZ02].

Processor-Oblivious [UALK17].

Processors
[ARB+02, AH00, Ano01, BF04, EEL+97, FT96, GJT+12, GSL10, KS16, KLG08, KU00, KLB09, LPE+99, MHG95, MCF99, MR09, ÖCS01, PF01, RCM+16, RRK11, SU01, SR01b, URŠ02a, YG10, ZP11, Aga89, Aha91, Aha92, AAC+15, BGD+WH12, BW15, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW90, GBP+07, KBF+12, LLL10, LBE+98, Lulf01, M003, MEG03, MTP+12, Mis96, NB12, NZ17, PFS+03, PAP+14, RGG+12, RCM+12, RP+08, SL08, SMS+03, US02b, US03, ZSB+12, WM03].

processus [Zig96].

Procs [MT93].

Products [Ano97a, Ano00b, Bra97].

Professional [Ano00b], Profile [BM94], profilier [DTLM14], profiling [DG99].

Program [CH15a, DSR15, EFT+01, GN96, KKW14, NBM93, P001, PS01, TSY00, TLZ+17, TLZ+18, TYY98, YLLS16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EFT+02, FRT95, JEV04, JPS09].

Programmability [THA12].

programmable [PYP+10].

programming [Swi09]. programmed [PAP+13].

Programmer
[Cr098, Wil00, MS97, San04, Swi09].

Programming
[ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BTE89, But97, CMM00, CVM98, CDM+91, Ch115b, CT00, CW98, DM98, FHM95a, FTP11, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILF001, KHK03, KSS95, KSS96, KIAT99, LB96a, LB97, LvH12, Mas99, NBF96, Nor96, PG99, QOQ+09, QOIM+12, ROD95b, SBB96, TCI98, Vre04, Wil97, YFF+12, dPRG99, van95, ALS10, AR17, AG96, ABG+08, BCS00, B096, BYL09, Bin89, CFEK+91, Car89a, CS00, CMS03, Cha05, CYZ98, DSH+10, EV01, FHM95b, GKF12, G0194, Gol97, GL07, HM09, Hyd00, JPS+08, JHM04, KIM+03, Kin94, LB98, LP09, Man96, MS+10, MKIO04, MR98, Mix94, NHF98, NeV99, NBF98, ND96, PG96, Pra97, RR96, RR03, S0S+92, SV96c, SV96a]
SV96b, She98, She02, Sun95, TB97a, TB97b.
programming [TMAG03, Wal00, WCC+07, Yan02].

Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, EGP14, FQS02, GKCE17, HLB94, JBK18, Kr98, LCS04, Lun97, Lun99, MS89, MGK+00, OB13, PHK99, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYHL14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BRRS10, BK13, BCG13, BGC14, Blu95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ01, CL00, CLL+02, CVJL08, Cor00, DJLP10, Dli00, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FQS05, FF08, FYS08, GMR09, GRS06, GPR11, HZ12, JPS+08, JWTG11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, PAdS+17, PDP+13, PS03, PS07, RVS13, Re05, RS07, SR01a, SCG95, SRA06, Sen08, SP00b].

programs [Shi00, SP05, SGS14, Sto02, Taf13, TR14, TLZ+16, WS06, WTH+12, XSaJ08, YCWY14, YNPP12, ZHS0, ZSL01, ZSL06, dB09, vPG03].
Progress [FSPD17, TLGM17, ZHCB15].

Progress-Aware [FSPD17]. Progressive [BBdH+11, TG00]. Project [Ano99].

projection [SSK+07]. Projections [MQLR16, MLR15]. proliferating [Ano94b].

Prolog [EC98, AR17, KA97, MGK+00].

Promises [Gar01].

proof [Add03, ÁdBrS08, FP15, ÁdBrS05, GLP12].

properties [KTLK13, Van97b]. proposal [GP05]. Proposed [GV95]. protect [San04].

protecting [ZJS+11]. Protection [CLFL94].

Protocols [AB01, AB02, GRR06, TVD14].

provide [Way95]. provides [Hig97].

Providing [PSM01, PSM03]. proving [Taf13]. Provisioning [BSSS14, FGG14].

pseudorandom [SLF14].

PTF [Yam96]. Pthreads [NBF98, Yam96, LB98, AS14, NBF96].

Publications [Bee98]. Publishing [Ano99].

Q&A [Cri98b, Hag02].

QoS [ICH+10, PSM01]. QR [Dav11].

quality [PSM03]. Quantitative [NBM93].

Quasi [P0a2]. Quasi- [P0a2]. Queries [TGO99, TGO00]. query [GARH14].

QUERYFLEX [BFF9a]. querying [AF96]. Queue [Cri98b, Cri98a]. queues [SCM05, ST05]. Queuing [VK99, KPER06]. Quick [Ano00b].

QuickRec [PDP+13]. quicksort [Mab13].

R3000 [Aru92]. Race [HM96, KUCT15, LS18, MKM14, SBN+97, Sen08, Y02, ZLJ16, AFF06, AHK08, EQT07, FF09, HR16, HHPV15, MMN09, NA0, NA0, PS03, PS07, PFH06, RVS13, WDC+13, XH06, DWS+12]. race-freeness [AHK08]. RaceFree [LWZ+13]. Races [KZC15, FF10, NWT+07, PR07, PT03, RBK+09]. racy [SR15]. RADISH [DWS+12].

Ramada [Ano94d].

Ramada-Congress [Ano94c]. random [LSS12, Sen08]. random-number [LSS12].

Ranking [DV99, VV00]. ray [Tod95].

RCDC [DNP+12]. RCU [CKZ12].

Reachability [LCS04, LQ15]. reachability-modulo-theories [LQ15].
Restart [ZSA13]. Restore [Ano00b].
restricted [ABG+08]. restructuring [BVG97]. Results [GV95, GR06].
Retentive [RRK11]. Rethinking [Xue12, Len95].
Retrospective [TEL98a]. Reusable [Han97]. Reuse [BCZY16, KZTK15, JSB+11, NAAL01, PHCR09], revealing [Dav11].
Reverse [Coo02, LSB15, WCV+98]. Review [Lar97, Van97a, Vre04]. Reviews [Bra97].
Revised [Cha05]. revisionist [PT91]. Reviving [TLZ+17, TLZ+18], revolutions [ECX+12]. Rewriting [BGK94a, BGK94b].
RHEED [BD06]. RISC [Cho92, GV95, MHG95, Men91, Nik94, SBKK99]. rise [Len95].
Robot [Lev97]. Robust [CMF+13, LG04]. Rockefeller [IEE90].
Rogue [Ano00b]. Role [BC94, KZTK15].
rollback [YZYL07]. root [CMX10]. Ropes [HMC95]. routine [SG18]. Row [KZTK15].
Run [EJ93, LFA96, Swe07, SS96, Pra95c, TNB+95]. Run-Time [EJ93, LFA96, SS96, TSY99, TNB+95].
running [Cal02, MLCW11, SSN10]. runs [Hig97].
Scenario [TW92]. Scenario-Aware [TW92]. Scenario-Aware-Aware [TW92].
Scenario-Driven [TW92]. Scenario-Oblivious [TW92]. Scenarios [TW92].
scenarios [TW92]. scheduler [TW92]. scheduler-related [TW92].
schedulers [TW92]. scheduling [TW92]. scheduling-Aware [TW92]. scheduling-Oblivious [TW92].
scheduling-related [TW92]. Schedule [TW92]. Scheduling [TW92].
Sampled [JYE+16]. sampling [MMN09].
San [ACM93b, ACM94d, ACM95b, ACM98b, USE98, USE92a, USE93b, USE98b, USE00a, USE02]. Santa [Gol94, WP10]. SAT [VSDK09]. Save [Pla93, Dye98]. saving [Mus09].
SC2000 [ACM00]. SC2002 [IEE02].
Scalability [CH911, GVT+17, Nak01, BWDZ15, DSee13, RVOA08, VIA+05].
Scalability-Aware [GVT+17]. Scalable [BMBW00b, CC14, CH04, CKZ12, IEE94b, KUCT15, LMJ14, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, Lz07, Mao96, PWD+12, SCZM00]. scalar [GL98b, ZCSM02a, ZCSM02b]. Scale [CC14, CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, G0T03, SMK10, KBA08].
scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16].
Schedule [MQLR16, MLR15, NAAL01, WTH+12].
Scheduling [BL94, BL98, BL99, FS96, FSDP16, GR06, JLS99, KLB09, NB09, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GP95, HZ12, WTKW08, XSWJ08].
Scheduling-Centric [BDN02].
scheduler-oblivious [HZ12]. schedulers [NBMM12]. schedules [BCG13, CZ02].
Scheduling [BL94, BL98, BL99, FS96, FSDP16, GR06, JLS99, KLB09, NB09, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GP95, HZ12, JSMP12, KJ+13, KFP+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAS07, WHJ+95, ZSB+12]. Scheme [ABN99, PJS15, SKK09]. Schur [YFF+12].
Safety [BCL+98]. Safety [Hag02, Pla98, Ric99, SP00a, GPS14, Sam99, San04, SRA06, TaF13, Van97b, Ven98, Yam02]. safety-critical [San04]. Salt [Hol12].
Science [Go94]. Scientific
[CMBAN08, HL94, WN10, BT01, BD06, Dan90, NJ00, Bra97]. Scoring [TO10].
Scotland [AOV*99, SCP, SLJ*19]. Scripts [Ano00b]. Scripting [RBP00].
Scripts [TLA+02]. Seamless [CV89].
Search
[AMRR98, BCC010, LAH*12, Mah11]. Searches [TCG95].
[ACM93c, IEE94a, IEE94d, LCK11, USE98a]. sec [AHV02]. Second
[IEE89, IEE96, FR95]. Section
[DSR15, CS12, DTL14, SMQP09, YL16]. Section-Based [DSR15]. sections [NM10].
Secure [SV98]. Security
[BRRS10, MS03, Way95]. sedition [Bak95b].
SEDMMS [USE92b]. See [Swe07, AC09]. segmentation [BCG14]. Select [KKDV03].
selected [Chao5]. Selection
[AT16, PR05, Sta90]. Selective
[Nak03, PR98, VACG09, MCRS10]. Self
[LLL15, Pet00, SEP96, BDF98, SLP*09]. Self-Allocating [SEP96]. self-healing
[SLP*09]. self-migrating [BDF98]. Sema
[Kor89]. semantic
[BNS11a, BNS11b, BNS12]. Semantics
[BR15, CCRW99, HEJ09, MP01, CCRW97a, CCRW97b, KT17, ZHC15].
Semantics-aware [HEJ09]. Semaphore
[Hol98b, Kor89]. Semaphores [Hol98c].
semiconductor [Ano97b]. Semidefinite
[YFF*12]. Seminar [Nev99]. sense
[Bak95b]. Sensible [LMA*16]. Sensitive
[CC04, DC99, DC00, PFH06, ZJS*11, LG04]. Separation
[SCG95, TFG10, TVD14].
September
[ACM93c, AOV*99, DLM99, FR95, Hon94, IEE89, USE89b]. Sequences
[GH03, FTAB14]. Sequential
[CV98, TLZ*17, TLZ*18, CCRW97a, CCRW97b, SCG95, SNM*12]. serialization
[BHK*04]. Server
[Ano00b, Cal97, Day92a, Day92b, Smi92, VB00, Zha90, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sh09b, Sta90].
server-side [BB96]. Servers
[RCC12, BDM98, BYG*05, BEKK00, KSB*08, RPNT05, SV96c, SV96a, SV96b].
Service [CGK06, GMW09, Hig97, PSM03]. services [LZ07]. session
[Bak95b, HCD*94, IAD*94, VGR06]. sessions [Ano94c]. set [Aru92, KBF*12].
Sets [MNG16]. Seven [But14]. several
[FGG14]. shader [PYP*10]. shallow
[LVA*13]. Shanghai [IEE97]. shape
[Cor00, GBCS07]. SharC [AGEB08].
Shared [BWXF05, BS96, DM98, EJ93, GMR98, GH98, LB92, MZZ93, MCT08, STY99, SLJ*19, Thr99, VB00, WC99, YMR93b, BB00, Boo93, DLCO09, DPZ97, EKKL09, EV01, Gle91, ISS98, Jef94, MLCO4, MKR10, NPC06, RGG*12, TSY99, TSY00, YMR93a, YN09, ZSB*12, dBO9, Chao5].
Shared-Memory
[BS96, DM98, EJ93, MZZ93, MCT08, Thr99, WC99, EKKL09, TSY00, YN09].
shared-variable [dBO9]. Sharing [CLFL94, CB16, LLD17, RKK15, SP06a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAK07, TE94a, Ver96, VPK12, ZJS10].
sharing-aware [TAS07]. sharing-based
[TE94a]. Shelf [MH95]. shell [Ric91].
Shift [Ham96]. Shinko [Ano00a]. Shop
[Bec00]. shortcut [CPT08, Lie94], shortage
[Ano94b]. Should [EHP*07]. SICStus
[EC98]. side [MWTW10, SBB96]. sided
[QSH16]. SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b]. SIGCOMM [RM03]. Signal
[Eng00, BM91]. Signals [GRR06].
Significance [ZJS12]. SIGPLAN
[ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].
Silicon [LB17, THA*12]. SIMD
[FSY09, SW08]. Simple [AKS06, Ch11b, WS08, BDM07, CL00, MSTM*10].
SimpleGraphics [MKK99]. simplify
[PO03]. Simplifying [Pom98]. SIMT
[CC18]. simulate [MAF+09]. Simulation
[Fort97, GV95, HPB11, JYE+16, MPD04, SLJ+18, VTSM12, WG94, Ano97b, BBH+17, KBF+12, Leg01, Lep95, MHW02, SWYC94, Srr93]. Simulations [HEMK17, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12]. Simulator [SRS98, PWD+12, TSCH99, WZWS08, Nak03]. Simulink [HY+15].

Simultaneous
[Ano05, CSK+99, EEL+97, GSL10, HMMN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LRUZ16, MCFT99, REL00b, SP07, SLG04, SU01, ST00c, TEL95, Tu96, TEL98b, WS08, YG10, ABC+09, AAKK08, ABB+15, CCC12, EE09a, Fis97, HKN+92, HN+92, LBE+98, Luk01, Mal13, MMM+05, MEG03, PHCR09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TSCH09, TEE+06, VPC02, TEL98a]. Single [CLFL94, Dub95, EHP+07, FT96, HHOM91, JBK18, KTR+04, MTN+00, CSM+05, MLC+09, Pr95c, VIA+05, YZ07, YSY+09].

sixth [USE98b, ACM94d]. size [LML00].
slave [TJY+11]. slice [PGS06a, PGS06b, PGS06c]. slice-based [PGS06a, PGS06b, PGS06c]. Slices [MGQS+08, PF01]. Slicing [Kri08, FRT95, NR06]. SlicK [PGS06a, PGS06b, PGS06c]. slower [Pra95c]. small [Koo03, MM07]. Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart [Sim97]. SMP [BWXF05, BHN01, CRE99, HD02, KKH03, KKK+13, Pra95c, TAS07, TMAG03]. SMPs [WG99]. SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, KLG08, KI16, MG99, MMM+05, NSP+14, PAD+17, PAB+14, PLT+15, RPNT08, SLP08, TAS07, VS11, WA08]. SMT-based [KI16, PAD+17, PAB+14]. SMT{p} [CH04]. Soft [PSM01, PSM03, SSN10, VACG09].

Software [Ano97a, Ano97b, Ano99, Ano00b, BCR01, BCG+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IEE94a, KE15, LPE+99, PJS15, SZM+13, SD13, TLZ+17, TLZ+18, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLPR12, Ha97a, HSD+12, IEE94d, KHK04, KSD04, KASD07, LT97, Lu01, MWP07, MCRS10, MGL95, MEG03, NHFP08, OAA09, OLO2a, OLO2b, OLO2c, PV06, RKM+10a, RKM+10b, RVOA08, San04, SP05, SLP+09, SB80, TNB+95, WCF+07, WCV+98, YSY+09, ZHCB15, DWS+12]. Software-Controlled [BCG+08, Lu01].

SONET [AHW02]. Sort [GH98, RHH10].

Sound [WTH+12, DWS+12, FFY08, NFBB17, WQLJ18]. Source [Ano00c, BMF+16]. sources [SJ95]. South [ACM93a, Ano94d]. Space [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, Sch17, FWT03, KNPS16, KASD07, Lie94, LHS16]. Space-Efficient [BL98, NB99, BL93, KNPS16, KASD07, LHS16]. spacecraft [SRS98]. Spaces [FKP15, CKZ12, KGGK09]. Spain [ACM95a, DLM09, ACM98c]. SPARC [Cat94, KA005, MD96]. SparcLe [ABC+93]. Sparse [But13, YFF+12, CSV10, DAV11, DTR18, MM07, PHCR09]. spatially [PPA+13]. spatially-programmed
Special [Ano94c, GGB93b, KU00]. specialization [WTH+12]. specialize [CWS06].
Specialized [dlPRGB99]. Specific
[Ste01, SP00b, Shi00]. specification [Sta05].
specifications [TVD10]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speculated [SCL05]. Speculation
[Ste01, SP00b, Shi00]. specification
[Sta05]. specifications [TVD10]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speed [Ano00a, Ano03, GV95, HG91,
MR09, HG92, Pra95b, SR98, TO10].
Speed-up [MR09]. Speedup [Lun99]. Spin
[LLS06]. SPIRAL [MJF+10].
SPIRAL-generated [MJF+10]. splittable
[SLF14]. spots [Gle91]. spreading
[CWS06]. SPSM [Dub95]. SQL [CGK06].
squares [FTAB14]. squash [MK12]. SR
[BO96]. SRAM [kSYH11+]. SSMT
[CSK+99]. Stabilizers [ZSJ06]. Stabilizing
BCM+07]. stable [YCW+14]. Stacey
[An00c]. Stack [Eng00, Xue12]. Stackable
[Loe05]. stacking [KSB+08]. Stackless
[MS15]. stacks [DESE13]. StackThreads
[TTY99]. StackThreads/MP [TTY99].
Standard [DM98, FSS06, WK17, BCL+98,
Bra97, MT93, Pha98, Pha99].
standardization [Bet73]. Standards
[Thr99, TTY99]. Standing [TLA+02].
Stanford [IEE99]. STAT [Ano00b]. State
[La90, LP94, RKK11, Wei98b, Cor00, T+94,
TFG10, WHG07]. State-Retentive
[RKK11]. Statechart [KW17].
Statechart-Based [KW17]. stateless
[MQ08]. Static [GPS14, Kri98, Lun97,
SCB15, WW96, vPG03, Fer13, NAW06,
NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[Ano00h, RCM+16, Lan97, RCM+12, Tem97].
stealing [ALHH08, BL94, BL99, RL14].
Step [Sho97a, Sho97b, ZG98]. Stethoscope
[Caz02]. Stochastic [DK02, LTM+17].
Storage
[AT16, Hol16, LCK11, Bak95a, Blu92,
DZKS12, KOE+06, MM07, PDMM16].
stores [TAN04]. strand [RČV+10]. strata
[NPC06]. Strategies
[PSCS01, AGE08, FGG14]. Strategy
[BGK96]. Stream [KSV94, SG18, SG18].
Streaming [HHOM91, HHOM92, KEL+03].
Streaming/FIFO [HHOM91, HHOM92].
Streams [Pre90, SPY+93]. Strength
[Kon00]. Strict
[Coo95, FS96, Trg91, K1AT99, SCG95].
Strictly [An00c]. Strong
[CWHB03, KZC15, MTC+07, ZHCB15].
Structural [CRK99]. structure
[BB00, YKL13]. Structured [TCI98, FR95].
Structures
[RCH95, AGN09, Go197, ND13]. students
[Fek08]. Study [AGK96, Chl15a, EGC02,
HMT+96, LSB15, Sat02, TAK+00, VK99,
WG94, YMR93b, Bri97, CASA14, CL00,
Fis97, HJT+93, HF96, KPE906, MGL95,
SP05, Sod02, Ts97a, YMR93a].
Style [Wil94a, Wil94b]. subdivision
[MTS10]. subordinate [CSK+99, CTY02].
Subsetting [AKJ+12]. Substitute
[ACMA97, Hah97a, JP92]. Subsumption
[Man91]. Suffix [OR12, LHS16].
SugarCubes [BS00]. Suite
[BTE98, BO01, TG09]. Suites [SPDLK+17].
SuiteSparseQR [Dav11]. sum [TDW03].
summary [I+94]. Summer
[An094f, USE92a]. Sun [McM97]. SunOS
[Cat94, PKB+91]. super [Kus15].
Supercomputer [VTSM12, Gil94].
Supercomputing
[ACM92, ACM95a, ACM96, Ano91, Ano94c, IEE90, IEE92, IEE93, IEE94c]. SuperLU [Li95]. SuperMalloc [Kus15]. Superscalar [SU96, Div95, Fis97, Gu195, Loi95, Men91]. Supertreading [Tsa97b]. Support [ACM94d, ABL92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KK99, ME15, MS89, MS97, P Tao09, SS99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CK94, CHH+03, CSS+91a, CSS+91c, Evr01, Fau93, HMC95, MWP07, MEG03, MS87, Men91, TSY99, TSY00, TNB+95, WK08a, WK08b, WK08c]. Supported [AddS03, ZP11]. Supporting [RCRH95, Sam99, SP00a, DC99, DC00, TDW03]. suppression [JWTG11]. surgery [MCS15]. Surprises [BC98]. Survey [Man96, ZSB+12, Cat94, UR902b, UR903]. Survival [Ano99]. Surviving [Ano99]. SVR4 [SPY+93]. swap [MLS15]. Swing [Gea98]. Switch [GN00, Eic97, GW907]. Switzerland [Lak96]. Symantec [Rod95a]. symbiosis [Bri89, EE10, EE12]. Symbiotic [ST00a, ST00c, ST00b, ST002]. Symbolic [ACM94c, BGC14, Hon94, Lak96, Wat91, BHKR95, Fui97, HF88]. Symmetric [BMV03, NV94, BIK+11, Pra95b, RY99, Sha98]. Symmetry [ES97]. Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col90a].

Synchronization [Bec01, Hei03, LA93, Rec98, SLJ+18, DMM+12, DEE13, MT02a, MT02b, MT02c, MTP12, NLK09, PRS14, RD06, Ven97]. Synchronization-Aware [SLJ+18]. synchronization-induced [MTPT12]. synchronization-related [RD06].

Synchronizing [McM96a, McM96b, CZWC13]. Synchronous [BM07, HPB11].

SynchroTrace [SLJ+18]. syntax [KT17].

System [AddS03, AdBdRS08, AJK+12, Ano98a, Ano00b, ABN99, ABH+00, BM94, BBD+91, BJK+96, BTE98, CLFL94, CC18, DNR00, FG91, Gei01, HMT+96, KMA01, KS97, MS89, NPT98, PH97, PST+92, Pea92, PLT+15, QOM+12, REL00b, Sep96, S90, SG96, TC98, VSM+08, Yan96, AdBdRS05, AAC+15, Ano96, Ano97b, A+01, AR17, BBFW03, BDM98, BCS00, BAD+10, BAD+10b, BJ9+95, BAD+09, BLD97, Cat94, Gil88, H97, Joe96, Lan02, MH92, MS87, Met95, MTC+07, MC06, OCRS07, PRB07, Ply99, Pom98, REL00a, REL00c, RD99, She02, TKA+02, TLZ+16, TMA03, WCC+07, WZWS08, TLA+02, EKB+92, MS87, Pea92]. System- [PLT+15].

system-level [OCRSM07]. systematic [MQ07]. SystemC [RST+09]. SystemC/C [RST+09]. SystemC/C-based [RST+09].

Systems [ACM94d, AG06, Ano00b, ABN00, BMN99, BRE09, BC94, CCH11, CvdBC18, Drn95, FMY+15, FGKT97, GHG+98, GP97, HRH08, HKS96, IEE98, IEE98a, KR12, KKO93, KG05, KUC15, KW17, LLS06, LMA+16, LYH16, MS15, PGB16, RW97, RR03, S+12, SS96, USE92b, W95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWDYB10, DZKS12, DSH+10, DBRD91, GJ11, Go16, GKK99, HJT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Jef94, Jen95, KKK94, Kub15, LSN10, LLL15, LMC95, LAK09, LVA+13, MLC+09, MLG95, MM07, NFB17, PBD092, RCV+10, RBF+99, RS+09, RV04, SCCP13, She98, SP05, Sim97, SJB92a, SJB92b, ST05, Wei98a, WCV+98, Ano98b].

systolic [PYP+10].

T [Ano00c, NPA92]. T/TCP [Ano00c]. T1
Table [VB00, KNPS16]. Tabling [AR17].

Tableau [AMRR98]. taint [ZJS+11].

TaintEraser [ZJS+11]. Take [Wei97].

taking [Ano92b]. Talking
[Ano94c, HCM94]. TAM [CGSV93].

Taming [Hol00, HBCG13, HHPV15].

TapeWare [Ano00b]. Target [MIGA18].

targeting [LGH94]. Task [CKK+16, GP95, Kwo93, Mar93, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12].

Task-Level [GP95]. Tasking
[CvdBC18, Di93, KR01a]. Tasks
[Fin95, PVS+17, YSS+17, FGG14].

Taxonomy [HM96, SPH96]. TC2 [BT01].

TC2/WG2.5 [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, Ama98, MKK99, SBB96].

Tcl-based [Ama98]. Tcl/2k [USE00b].

Tcl/Tk
[Ass96, USE96, USE98b, USE00b, MKK99].

TCP [Ano00c, Ano00c]. Teaching
[Fek08, CS00, She02]. TeamWork
[CZWC13]. Tech [Ano97b, Gar01].

Technical [USE00a, Cal94]. Technique
[JSB+12, KG94, Lem02, OC01, PGB16, JSB+11, JPS09, LGH94, MIGA18, RS07, UZ000, VACG09, WCV+98].

Techniques
[DS16, EKLL09, GS02, Han97, NLK09, PWL+11, TGBS05, Zig96, BR92, GEG07, OCRS07, Pra97, RGC+10, SV96c, SV96a, SV96b, ZSB+12].

Technologies
[An000b, An98b]. Technology
[Bra97, KM93, LB00, USE01, VSM+08, KSB+08, Tsa97b].

TeleNotes [WSK97].

temperature [CCC12]. Template
[Cal00, How98]. Ten [Ano99]. Tennessee
[IE94b]. Tera [BTE98, Mat97]. Terabytes
[IE02]. Term [BGK94a, BGK94b, BGK96].

Termination [JKB18, TDW03]. Test
[Ama98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14].

test-case [KI16]. Testing [BBH+11, Goe01, LCS04, RCC14, SK12, BGP06, CBM10, EFG+03, EHSU07, MQ07, Sen08, YNPP12].

tests
[SRJ15]. Texas [USE92a, USE00b]. TFlux
[DTLW16]. tgMC [LHG+16]. Their
[YWJ03, Gil94]. them [Ano92a, Ano94b].

Theoretic [ES97]. theories [LQ15].

Theory
[ACM93b, LLD17, NFBB17, WLK+09].

there [Ano94b]. thermal [WA08]. though
[Ano94b]. Thread
[An000c, ABN99, ABNP00, Bet73, BS99, CNQ13, Cal97, CO04, Cha02, Col00a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, Hag02, Hei03, HG01, ISS98, KG05, Kin14, Kle00, KBH+03, KBH+04a, KBH+04b, LLL10, LYH16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MTN+00, MB05, MCFT99, ND96, Pan99, PR05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, Rod95b, SSK+92, Sat02, ST09, SL04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BK+13, BHK+04, BC02, CYSB16, CZ02, CS+05, DMBM16, DG99, DWYB10, Dau92, DBRD91, Eic97, EE09b, Fek08, GP08, GOT03, GLC99, Hyd00, JEV04, KDM+98, KC09]. thread
[KB08, KSD04, KASD07, KL13, LZW17, Lie94, LML00, LEL+14, Loe05, MLC+09, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, OQOV+09, SKG+11, Sh95b, SLG06, SPP00, Shi00, SPH96, S95, SD13, SLT02, St95, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCC95, Tr91, Van97b, Ven97, Ven98, WSS8, YZ14, SKP+02]. Thread-Aware [LYH16].

Thread-Based [KG05, CNQ13, SKS+92].

Thread-Level [LEL+97a, LEL+97b, MG99, YB16, FURM00a, FURM00b, MCFT99, WS08, DG99, JE04, KC09, MT02a, MT02b, MT02c, PO03, PT03, OQOV+09, SCZM00, YZ14].

Thread-Local
Thread-management

Thread-Private [Man99].

Thread-related

Thread-Safe [Kle00, Pla02, Rin99, DMBM16, Fek08, GOT03].

Thread-Sensitive [CC04].

Thread-Specific [Ste01, SP00b, Shi00].

thread-switch [Eic97].

threadbare [Bak95b].

threaded [MLCW11, MS03, MKK99, NFBB17, NH09, NSH14, OA08a, OA08b, OA08e, PYP10, PR98, PWWD18, Pra95a, RCV10, RKM10a, RKM10b, RBPM00, RGG99, RS08, SCB15, Sam99, SP00a, SC17, SE12, Se98, Sho97a, Sho97b, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Tem97, TAMAG03, TAJY11, VIA105, VV00, VK99, Wal00, Wil98, XMN99, YZ07, YSY109, ZKR111, dB09, vPG03, CGSV93].

threaded

Threading [BFA15, CvdBC18, DHR01, Hol98d, KS16, LKBK11, MLGW18, McC97a, McC97b, MS15, Nor90, OR12, PTMB09, RCC14, Re01, Sch90, TGO99, YLLS16, Bak95a, BM07, DTLW16, FWL03, LZW13, MLC09, MCFT99, NJ00, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX11, YKL13, CH04].
SJB92a, SJB92b, TSY99, TNB+95. time-
[KASD07]. time-critical [RGG+12].
time-efficient [GB99]. time-shared [Je94].
timely [NH09]. Timers [Ho99a, GRR06].
Timethread [BC94]. Timethread-Role
[BC94]. Timing [SK97, MHW02].
timing-first [MHW02]. tiny [Xue12]. Tip
[Pet00].

Tolerant
[MTS10, PG01, RRP06].
tolerance
[Ano00a].
together
MKK99.

Transactions
[KASD07].
time-critical
[AddS03, Ano98b, Goe01, Kor89,
Tool
[AddS03]. Tool-Supported
[AdS03]. Toolbox
[Br97]. Toolkit
[SZM+13]. Tools
[Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95].
Tools.h
[Ano90b]. Toolset
[Ano97a]. Top
[Ano99, AB02, DNR00]. Topaz
[MS87].
topics
[BGG95, GBG95]. Toroidal
[KEL+03]. Totally
[DHR+01]. Trace
[RS08, HEJ09]. Trace-based
[RS08].
Traces
[HEMK17, SLJ+18, WKG17, HR16].
Tracing
[Lem02, EKKL90, Tod95].

Tracking
[CZS+17, LH09, CZSB16, ZJS+11].
\textit{trade}
[AC+15, Par91, KUC15].
\textit{trade-off}
[AC+15].
\textit{trade-offs}
[Par91].
\textit{tradeoffs}
[Aga89, Aga91, Aga92, Anm96, PJZA07].

training
[MCS15].
Tranquilizer
[PGB12].

Transaction
[RW97, SS91, DKG18, EQT07, Ver96].

\textit{transaction-aware}
[EQT07].

Transaction-\textit{al}
[GMGZ14, KUCT15].
RG03, VSDL16, ZLJ16, ATLM+06,
BDLM07, CMF+13, CNV+06, GCC15,
ML15, MCRS10, MMTW10, MTC+07,
OCT14, VTSL12, ZHCB15].

Transactions
[Ano00c, DTJ16, SKBY07, BD06, Dan09,
KR01a, KR01b, KGK99, RKM+10a,
RKM+10b].

Transform
[HN91, LHS16, TKHG04, TT03, TTKG02].

transformation
[TSY00].

\textit{transformations}
[AC09, D'H92, JMS+10, VV11].

\textit{Transient}
[RM00, VPC02].

\textit{Transient-fault}
[VPC02].

Transitive
[YMR93b, XHB06, YM92, YMR93a].

\textit{translation}
[KBF+12].

\textit{translator}
[TJY+11].

\textit{Transparency}
[GKCE17, KBH+03].

\textit{Transparent}
[ABN99, LVN10, SLGZ99, ZSA13].

\textit{Transurally}
[CB16, JSB+12].

\textit{Transport}
[GRS97].

\textit{transposition}
[SGLGL+14].

\textit{trapping}
[Ram94, GRS97].

\textit{trap-based}
[Ram94].

\textit{Tree}
[Pla99, BCC010].

\textit{trees}
[AD08, CKZ12].

\textit{Trends}
[Gar01].

\textit{TRI}
[ACM93c].

\textit{TRI-Ada}
[ACM93c].

\textit{triangular}
[BKK+17].

\textit{Trick}
[Eng00].

\textit{Tridia}
[Ano97a].

\textit{trigger}
[Kho97].

\textit{Triggered}
[PPA+13].

\textit{Troy}
[SS96].

\textit{TSGL}
[ACD+18].

\textit{TSO}
[HH16].

\textit{Tumbler}
[PGB16].

\textit{Tune}
[RGK99].

\textit{tuned}
[Ano95a, Ano95b, Kub15].

\textit{Tuning}
[LEL+99, CSM00, RGK99].

\textit{Tunnelling}
[Don02].

\textit{Tutorial}
[Taf13].

\textit{Twentieth}
[ACM93a].

\textit{Twenty}
[AOV+99, ACM93b].

\textit{Twenty-fifth}
[AOV+99, ACM93b].

\textit{Two}
[BBH+17, CM98, JYE+16, STY99, GLC99].

\textit{Two-Level}
[JYE+16, BBH+17, STY99].

\textit{TX}
[Cha05, ACM00, USE91b].

\textit{TxRace}
[ZJ16].

\textit{Type}
[Gro03, Loc18, VGR06,
BAD+09, GE08, Lan92, Mil95, PRB07].

\textit{type-checking}
[Mil95].

\textit{Type-Safe}
[Loc18, Gro03].

\textit{typed}
[DMBM16].

\textit{Types}
[AFF06, FFLQ08, Ten98, BAM07, KS93,
VGR06].

\textit{typings}
[Smi06].

\textit{UCITA}
[Gar01].

\textit{UK}
[AOV+99].

\textit{ULT}
[PG03].

\textit{Ultra}
[PWL+11].

\textit{Ultra-Scale}
[PWL+11].

\textit{ULM}
[SK12].

\textit{Unbounded}
[CNV+06, FK15, BDLM07].

\textit{uncommon}
[BDLM07].

\textit{Uncover}
[WS08].

\textit{underdetermined}
[Kub15].

\textit{Undergraduate}
[BDLM07].

\textit{Understandable}
[MSM+16].
Understanding
[BZ07, TLA+02, EPAG16, RRP06].
Undocumented [SW97]. Unfoldings [SPDLK+17], Unicode [Swi09]. Unified [Wei98b, ABG+08, GKZ12]. Uniform [BDN02, SKG+11]. unifying [MS03].
uniform [D’H92]. unintrusive [HDT+13]. uniprocessor [GL98a, Yan97].
uniprocessors [BRE92, EJK+96]. Uniscape [Ano98b]. UNISIM [LS11]. UNISIM-Based [LS11]. unit [CBM10, Par91, PAB+14]. United [ACM94c]. Unithreaded [RLJ+09]. Units [RKK15, Gun97]. univariate [CMX10]. University [IEE99]. UNIX [Ano00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91]. Unix-to-NT [Ano98b]. UnixWare [Rod94, Rod95b]. unlocking [XSaJ08]. unravel [But14]. Unraveling [Bec00]. Unsynchronized [DSR15]. unveiled [Ano95a, Ano95b]. Unveiling [AAC+15]. up-and-downdating [VV11]. UPC [EGC02]. updates [NH09]. Updating [HSS+14, HSD+12, NHFP08]. Ur [Chl15b]. Ur/Web [Chl15b]. URL [TLA+02]. USA [ACM94a, ACM94d, Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EEV01, IEE89, IEE94a, IEE96, IEE02, SSS6, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01]. Usage [BS96, Kor89, VS11]. Use [Bak95a, HW92, WWW+02]. Use-once [Bak95a]. Useful [Pet03]. USENIX [Ano90, Ano94f]. User [ABLL92, DLM99, Eng90, GRS97, MQW95, SLT03, BF08, GP05, GRRO6, HF06, Li05, MSLM91, OT95, SLT02, TN895, YZYL07]. User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07]. User-Space [Eng00, GRS97]. Using [Ano99, ABH+00, AZG17, BDN02, BBC+00, BLG01, BTE98, CRE99, Cor00, DS16, DTLW16, DBRD91, GH03, HBG01, HJT+93, HBTG98, Hei03, How00, KMJC02, Kwo03, KET06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SCD+15, SEP06, SLT02, WKG17, WJ12, WH03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CTYP02, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JVTG11, JJJ+03, KASD07, KBF+12, LK15, MM14, NPC06, NWT+07, Nik94, PTO3, RKM+10a, RKM+10b, RM99, RPNT05, SLGZ99, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VDO8, ZJS+11, KSB+08]. UT [Hol12]. Utility [FHM95a, JSMP13, FHM95b]. Utility-based [JSMP13]. utilization [Squ94]. Utilizing [ES97]. UX [Ano95a, Ano95b, Yam96].
[AOV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZY16, FBF01, Hig97, KRB12, KGPH12, Kim14, LWV+10, LZZ15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KHL97]. Video [BC00]. view [KTLK13, PT91].

Vina [T010]. Virtual [BSS11, BMM90, KG05, KKDV03, PRB07, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization [LRZ16, YSS+17, ABB+15]. Virtually [LB92]. virtues [NJ016]. virus [GJ11]. viscous [RM99]. Visual [PTB09, Dill93, McM96c, Esp96, Nag01]. Visualization [Ano97a, ACR01, Cal02, Caf20, BCH00, CS00, MKK99, NCA93]. Visualizing [Cd01, WT10, ACD+18, DSE13]. Visually [Dru95]. VLIW [For97, GSL10, OSC01]. VLSI [ABC+93]. VM [FGG14]. VMs [KKJ+13]. voltage [MTPT12]. volumes [Koo93]. VRSync [MTPT12]. vs [EPH+07, MMT10, MCFT99, SSKP+07, SKP+02].

vulnerability [SSN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits [How00]. WAN [Yas95]. Wanted [Ano94g].

Windows [USE98a, HKT93, YZL07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter [Ano90, USE89, USE91b, USE93b]. Wired [DHR+05]. Within [BP05]. without [Gus05, LZW14, Pla02]. woes [Ver97].

WOMPAT [Cha05, EV01]. Work [Ber96b, Wal95, ALH98, Ber96a, BL94, L95, OdSSP12, RL14]. work-optimal [Lep95]. work-stealing [ALHH08, RL14]. worker [SCM05]. workflows [FGG14]. Working [BT01].

Workload [KTR+04, SSY97, LBE+98]. Workloads [GVT+17, KML04, LYH16, RCC12, SLJ+18, CML00, SQP08a, SQP08b, SQP08c, WA08]. WorkPlace [Bra97]. works [Hig97, San04].

Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IEE89, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation [An00b, HN91, IEE89]. Workstations [KLH97, Lu98, LGH94, RGK99, PH97]. World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BMM90, Hol983, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLG+14].

World-wide [Ano96]. Wrapper [AS14]. Wrappers [Hub01]. Write [Sho97a, Sho97b]. Writer [Ano97a]. written [ND13]. WWOS [IEE89]. WWOS-II [IEE89].
REFERENCES

X [Ano00b, Smi92, Sri95, MSM+16]. Xeon [SCD+15]. Xlib [Gil93, STW93]. XML [DWYB10]. XMT [DV99, VV00, BÇG14, VTSM12, VDBN98]. XMT-2 [BÇG14]. XPS [Ger95].

Year [Ano99]. Yokohama [Ano03]. York [IEE90]. Yosemite [Ano00b].

z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

Antoniu:2001:HSC

Aliaga:2015:UPE

Amamiya:2009:CBN

[AAC+15]

Athanasaki:2008:EPL

[AAC+15]

REFERENCES

[ABC+09] Christos D. Antonopoulos, Filip Blagojevic, Audrey N. Chernikov, Nikos P. Chrisochoides, and Dimitrios S. Nikolopoulos. Algorithm, software, and hardware optimizations for Delaunay mesh generation on simultaneous multi-

Aliaga:2015:CMS

Aliaga:2012:SDG

Agarwal:2010:DDP

Auerbach:2008:FTG

Antoniu:2000:IJC

REFERENCES

Almasi:2003:DCD

Adams:2018:TTV

ACM:1992:CPI

ACM:1993:CRT

ACM:1993:PTF

REFERENCES

[ACM95b] ACM, editor. *Conference record of POPL '95, 22nd ACM SIGPLAN-SIGACT*
REFERENCES

REFERENCES

[ACM:1999:PASa]

[ACM:1999:SPO]

[ACM:2000:SHP]

[ACM:2001:PAJ]

[ACM:2003:SII]

[Attali:1997:MSC]

[ACR01] Isabelle Attali, Denis Caromel, and Marjorie Russo.

Adams:2008:ENE

Adamo:1998:MTO

Abraham:2005:ABP

Abraham:2008:DPS

Abraham:2003:TSP

Abadi:2006:TSL
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1990:PWU

[Ano90]

Anonymous:1991:PIS

[Ano91]

Anonymous:1992:MWPa

[Ano92a]

Anonymous:1992:MWPb

[Ano92b]

Anonymous:1994:ICS

[Ano94a]

Anonymous:1994:MDP

[Ano94b]
Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 16(5):60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

[Ano94c]

Anonymous:1994:PIW

[Ano94d]
REFERENCES

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

[Ano97a] Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. Linux Journal, 34:??, February 1997. CODEN LJIOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

REFERENCES

Anon Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAAa

[Ano00b] Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pegaso Software; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation Solutions, Inc.; Threads.h++ and Tools.h++ Professional, Rogue Wave Software; Scrip-

ics Connect 1.0, 1.1, Scrip-tics Corporation; TapeWare 6.2 Backup Software, Yosemite Technologies, Inc.; DoubleVi-

sion for Linux Systems, Tridia Corporation. *Linux Journal*, 71:??, March 2000. CODEN LIJOFX. ISSN 1075-
Anonymous:2000:SLT

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF
REFERENCES

REFERENCES

Bruce R. Barkstrom. On us-

REFERENCES

Balis:2003:MSM

Balaji:2010:FGM

Bender:2017:TLM

Bratanov:2009:VMW

Butler:2011:BAM

Barabash:2005:PIM
Katherine Barabash, Ori Ben-Yitzhak, Irit Gof, Elliot K. Kolodner, Victor Leikehman, Yoav Ossia, Avi Owshanko, and Erez Petrank. A parallel, incremental, mostly concurrent garbage collector
REFERENCES

Buhr:1994:TRM

Ball:1998:MTA

Bhandarkar:2000:PPM

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD

Boneti:2008:SCP

Bergan:2013:ICS

Bokhari:2014:MMM

Benner:2000:VSM

Biagioni:1998:SST

CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

REFERENCES

REFERENCES

Beddow:1991:MTC

Beebe:1998:BPA

Borkenhagen:2000:MPP

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhownik:2004:GCF

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bergan:2014:SEM

Baghsorkhi:2012:EPE

Bic:1995:ATD

Burgess:2012:EFL

Buendgen:1994:MAT
REFERENCES

REFERENCES

Ricardo Bianchini and Beng-Hong Lim. Evaluating the performance of multithreading and prefetching in multiprocessors. *Journal of Parallel and Distributed Com-
REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blumofe:1992: MSM</td>
</tr>
<tr>
<td>Blumofe:1995:EMP</td>
</tr>
<tr>
<td>Bolinger:1991:PSH</td>
</tr>
<tr>
<td>Baquero:1994: CAC</td>
</tr>
<tr>
<td>Bergstra:2007:SCE</td>
</tr>
<tr>
<td>Berger:2000:HSMa</td>
</tr>
<tr>
<td>Berger:2000:HSMb</td>
</tr>
</tbody>
</table>
REFERENCES

[BNS11a] Jacob Burnim, George Necula, and Koushik Sen. Spec-

Burnim:2011:SCSb

Burnim:2012:SCS

Benson:1996:DMS

[BO01] Burnim:2011:SCSb

[BNS11b]

Boehm:2005:TCL

Bond:2013:GDG

Boothe:1993:EMC

REFERENCES

REFERENCES

[Brunett:1998:IET] Sharon M. Brunett, John Thornley, and Marrq Ellen-

[BWDZ15] Xiuxiu Bai, Endong Wang, Xiaoshe Dong, and Xingjun Zhang. A scalability prediction approach for multithreaded applications on

[Car89a] Denis Caromel. A general model for concurrent and distributed object-oriented programming. ACM SIGPLAN Notices, 24(4):102–104, April 1989. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
REFERENCES

Carlos Carreras Vaquer: 1989: APE

REFERENCES

84

Creech:2016:TSS

Coons:2010:GEU

Cui:2000:MPC

Chiueh:1991:MTV

Chang:2004:TSP

Cai:2014:MSD

Chen:2018:ESE

Kuan-Chung Chen and Chung-Ho Chen. Enabling SIMT execution model on homogeneous

Chen:2012:MLS

Chen:2011:MJP

Chen:2016:TMR

Chiny:2011:BDP

Chetlur:2010:SWM

Chandra:2001:PPO

Rohit Chandra, Leonardo Dagum, David Kohr, Dror Maydan, Jeff McDonald, and
REFERENCES

Chung:2013:LBD

ChassindeKergommeaux:2001:PEE

Cerin:2006:MSS

Catalyurek:2012:GCA

Canetti:1991:PCP

Culler:1992:AMMa

REFERENCES

[Chapman:2005] Barbara M. Chapman, editor. *Shared memory parallel programming with OpenMP: 5th International Workshop on OpenMP Applications and
REFERENCES

[Cho92] Indrauil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Chrisocoides:1995:MMDb

Chrisocoides:1996:MMD

Christiaens:2001:JRR

Catalan:2017:TEM

Ching:1991:EAP

Curran:2015:IZM

Cejtin:1995:HOD
[CJK95] Henry Cejtín, Suresh Jagannathan, and Richard

Chaudhry:1994:CMP

Caudal:1995:DEM

Choi:2000:SCP

Chase:1994:SPS

Choi:2002:EPD

Cormen:2009:IA

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Caho0n:2000:EPD

Carr:2003:TPT

Chen:2010:CCM

Changno Chen, Marc Moreno Maza, and Yuzhen Xie. Cache complexity and multicore implementation for univariate real root isolation. ACM Communications in Computer Algebra, 44(3):97–98, September 2010. CODEN ????. ISSN
REFERENCES

1932-2232 (print), 1932-2240 (electronic).

James C. Corbett. Using shape analysis to reduce finite-state models of concurrent Java programs.
REFERENCES

Choi:2008:ABP

Clark:2002:AMT

Cappello:1999:PNB

F. Cappello, O. Richard, and D. Etiemble. Performance of the NAS benchmarks on a cluster of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes in Computer Science, 1662:339–??, 1999. CODEN LNCSDN. ISSN 0302-9743 (print), 1611-3349 (electronic).

Criscolo:1998:JQH

Criscolo:1998:JQ

Cromwell:1998:PBD

Jeff Cromwell. Programmer’s bookshelf: The dawning of the

Chang:1995:CSM

Chang:1995:CTS

Carr:2000:PCL

Carothers:2002:CMP

Chen:2012:CLA

ChassindeKergommeaux:2000:PIV

Chappell:1999:SSM

[CSK+99] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and Yale N. Patt. Simultaneous subordinate microthread-

Constantinou:2005:PIS

Culler:1991:FGPa

Culler:1991:FGPc

Choi:2010:MDA

Christopher:2000:HPJ

REFERENCES

REFERENCES

???, ???, 2003. CODEN ???. ISSN 0190-3918.

Chakraborty:2006:CSE

Choi:2009:HCS

Chin:2018:EAN

Chen:1998:MTO

Choi:2002:IFI

Cao:2017:HRD

Cao:2016:DBG

Man Cao, Minjia Zhang, Aritra Sengupta, and Michael D. Bond. Drinking from both glasses: combining pessimistic and optimistic track-

Cai:2013:TST

Day:1992:INB

Day:1992:INC

deBoer:2009:SVC

Draves:1991:UC1

REFERENCES

REFERENCES

[Dil00] David Dill. Model checking Java programs (abstract only). ACM SIGSOFT Soft-

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Ding:2018:IOC

Doligez:1993:CGG

REFERENCES

80/pubs/citations/proceedings/plan/158511/p113-doligez/. ACM order number 549930. [dPRGB99]

REFERENCES

REFERENCES

Dang:2017:ECB

Dohi:2010:IPE

Das:2015:SBP

Ding:2015:OCA

David:2014:CMC

Diavastos:2016:ITD

REFERENCES

REFERENCES

0743-7315 (print), 1096-0848 (electronic).

REFERENCES

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

Edelstein:2003:FTM

Emmi:2007:LA

Edelstein:2001:MJP

[EFN+01] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Multithreaded Java program test genera-
REFERENCES

[Edelstein:2002:MJP]

[Edelstein:2011:CPB]

[Elmasri:1995:TCL]

[Emer:2007:STV]
Joel Emer, Mark D. Hill, Yale N. Patt, Joshua J. Yi, Derek Chiou, and Resit Sendag. Single-threaded vs. multithreaded: Where should we focus? IEEE Micro, 27(6):...
REFERENCES

Eytani:2007:TFB

Eickemeyer:1996:EMU

Eickemeyer:1997:EMP

Eager:1993:CER

Eykholt:1992:BMM

Eggers:1990:TEI

S. J. Eggers, David R. Keppel, Eric J. Koldinger, and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Flanagan:2010:AMD

Flanagan:2008:TAS

Flanagan:2004:EP A

Flanagan:2005:MVM

Flanagan:2008:VSC

Faulkner:1991:PFS

Frincu:2014:ESV

Marc E. Frincu, Stéphane Genaud, and Julien Gossa.

Foster:1997:MMC

Fahringer:1995:UTDb

Fahringer:1995:UTDa

Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Finger:1995:LTC

Fisher:1997:SPS

Farzan:2012:VPC

Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by modular reason-
Fillo:1997:MMM

Farzan:2015:PSU

Foltzer:2012:MSP

Frisch:1990:POO

REFERENCES

Felten:1992:IPM

Fang:2015:MMD

Farzan:2017:SDC

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

REFERENCES

Flanagan:2002:MCM

Ferreira:1995:PAI

Field:1995:PPS

Fatouron:1996:SAS

Feliu:2016:BAL

Feliu:2017:PFP

Factor:2006:PID

REFERENCES

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa

Flautner:2000:TLPc
Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level parallelism and interactive performance of desktop applica-
REFERENCES

Flautner:2000:TLPb

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

REFERENCES

8186-6542-4. x + 450 pp.

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA

Gravvanis:2008:JMB

Gravvanis:2007:PPA

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

Gao:1993:DMA

Guang Gao, Jean-Luc Gaudiot, and Lubomir Bic. Dataflow and multithreaded architectures: Guest Editors’ introduction. Journal of Parallel and Distributed Comput-
REFERENCES

Gao:1993:SID

Gruen:1998:NIS

Gagnon:2003:EIT

Girkar:1998:IIM

Gibson:1994:CMC

Gilbert:1988:DVN

Gildea:1993:MTX

Giloi:1994:PSA

REFERENCES

[126]

Gorton:1997:GEI

Ganesan:2011:MMP

Gebhart:2012:HTS

Gerlhof:1994:MTA

Garcia:2005:HJA

P. Garcia and H. F. Korth. Hash-join algorithms on modern multithreaded computer architectures. Report LUCSE-05-001, Lehigh University, Bethlehem, PA, USA, ????.

Georgiou:2017:ETD

Granat:2009:NPQ

Robert Granat, Bo Kägström, and Daniel Kressner. A novel parallel QR algorithm for hybrid distributed memory HPC systems. LAPACK Working Note 216, Department of Computing Science

REFERENCES

shared memory MIMD ma-
chine. Technical report SRC-
TR-91-039, Supercomputing
Research Center: IDA, Lan-
ham, MD, USA, October 15,

Grebenshchikov:2012:SSV

[GLPR12] Sergey Grebenshchikov, Nuno P.
Lopes, Corneliu Popeea, and
Andrey Rybalchenko. Synthe-
sizing software verifiers from
proof rules. ACM SIGPLAN
2012. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic). PLDI ’12 proceedings.

Giering:1993:IAF

[GMB93] E. W. Giering, F. Mueller,
and T. P. Baker. Implementing Ada 9X
features using POSIX threads: Design
issues. In ACM [ACM93c],
pages 214–228. ISBN 0-89791-
621-2. LCCN ????. ACM Or-
der No. 825930.

Gonzalez-Mesa:2014:ETM

[GMGZP14] M. A. Gonzalez-Mesa, Ela-
dio Gutierrez, Emilio L. Za-
pata, and Oscar Plata. Ef-
effective transactional memory
execution management for im-
proved concurrency. ACM
Transactions on Architecture
and Code Optimization, 11 (3):
CODEN ????. ISSN 1544-
3566 (print), 1544-3973 (elec-
tronic).

Gomez:1998:CAM

J. C. Gomez, E. Mascaren-
has, and V. Rego. The CLAM
approach to multi-
threaded communication on
shared memory multipro-
cessors: Design and experi-
ments. IEEE Transactions
on Parallel and Distributed
Systems, 9(1):36–49, January
1998. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic). URL http:
//dlib.computer.org/td/
books/trd1998/pdf/10036.
pdf; http://www.computer.
org/tpds/trd1998/10036abs.
htm.

Ganty:2009:VLA

[Pierre Ganty, Rupak Ma-
jumdar, and Andrey Ry-
balchenko. Verifying live-
ess for asynchronous pro-
grams. ACM SIGPLAN No-
tices, 44(1):102–113, January
2009. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic).

Gabor:2009:SLA

Ron Gabor, Avi Mendelson,
and Shlomo Weiss. Ser-
vice level agreement for mul-
tithreaded processors. ACM
Transactions on Architecture
and Code Optimization, 6(2):
6:1–6:??, June 2009. CODEN
???? ISSN 1544-3566 (print),
1544-3973 (electronic).
REFERENCES

[Grunwald:1996:WPO]

[Goeschl:2001:JTT]

[Goldwasser:1994:PAS]

[Gollapudi:1996:MCA]

Goldstein:1997:LTC

[Seth Copen Goldstein. Lazy threads: compiler and runtime structures for fine-grained parallel programming. Thesis (Ph.D.), Computer Science Division, University of California, Berkeley, Berkeley, CA, USA, 1997. xi + 174 pp.]

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

[Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and refinement for verifying multi-threaded programs. ACM SIGPLAN No-
REFERENCES

[GS00] Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational characterizations for Java memory behavior. *ACM Transactions on Computer Sys-

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN

Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational characterizations for Java memory behavior. *ACM Transactions on Computer Sys-

REFERENCES

Garg:2002:TOA

Grelck:2006:SFA

Goldstein:1996:LTI

Gupta:2010:CSM

Gulati:1995:MSM

REFERENCES

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Gibson:2010:FSC

Gabor:2007:FES

Haggar:2002:JQD

objects larger than 32 bits, such as long and double, with sample code to exhibit the failure.

Haines:1997:DLT

Haines:1997:OIA

Hamilton:1996:JSN

Hanson:1997:CII

Harrington:1999:WMM

Hayden:1993:BIC

Haines:1992:SMC

Hottelier:2015:SLE

REFERENCES

Hunt:2013:DTN

Hanson:2001:UFI

Hanson:2002:AFI

Heber:1998:UMA

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT
REFERENCES

[Ding:2002:MOP]

Honarmand:2013:CUA

[Honarmand:2013:CUA]

[Heinlein:2003:ATS]

[Halstead:1988:MMP]

Halappanavar:2012:AWM

Hum:1991:NHS

Hum:1992:HSM

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1991:SVP

REFERENCES

[Hironaka:1992:BVP]

[Hussein:2015:DRM]

[Hightower:1997:PDD]
Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. Dr. Dobb’s Journal of Software Tools, 22(1): 70–77, January 1997. CODEN DDJOEB. ISSN 1044-789X.

[Hauser:1993:UTI]

[Hirata:1992:EPA]

[Hurson:1996:CMD]
Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

Helmbold:1996:TRC

REFERENCES

Haines:1995:RSC
Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Haines:1997:DPP

Harish:2016:PIK

Hirata:1991:MPA

Hirata:1992:MP

Hum:1996:SEM

Horiguchi:1991:PEP
REFERENCES

REFERENCES

REFERENCES

Huang:2016:PMR

Hassanein:2008:AEH

Hayden:2012:KEG

Hayden:2014:KEG

Honarmand:2014:RRR

Hendren:1997:CCE

REFERENCES

Huang:2013:CRL

Iannucci:1994:MCA

Iannucci:1994:AII

Iwama:2001:ICB

Illikkal:2010:PQP

IEEE:1989:WOS

REFERENCES

IEEE:1990:PSN

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:PIW

IEEE:1994:PSH
REFERENCES

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

Itzkovitz:1998:TMA

Jacobs:2018:MTV

Jaiisson:2008:IPM

REFERENCES

Jaye:1994:LMT

Jensen:1995:DRT

Johnston:2004:ADP

Jin:2003:AMP

JLS99

Jonsson:1999:NPS

REFERENCES

Jang:2010:DTE

Joerg:1996:CSP

Jonak:1986:EFL

Jones:1991:BCL

Jagannathan:1992:CSC

Jacobs:2008:PMC

Joshi:2009:RDP
Joisha:2011:TEA

Joisha:2012:TTE

Joao:2013:UBA

Jeffrey:2011:IBM

Jeon:2015:MTH
Jiang:2016:TLH

Kacsuk:1997:MIC

Kanalakis:1994:ET

Kongetira:2005:NWM

Kumar:2007:ESI

Krashinsky:2008:ISV

Kyle:2012:EPI

Stephen Kyle, Igor Böhm, Björn Franke, Hugh Leather, and Nigel Topham. Efficiently parallelizing instruction set simulation of embedded multicore processors using region-based just-in-time dynamic bi-
REFERENCES

Koster:2003:TTI

Krashinsky:2004:VTAA

Karamcheti:1998:HLB

Krashinsky:2004:VTAB

Kreuzinger:2003:RTE

Karamcheti:1999:ASM

REFERENCES

Kejariwal:2009:PSA

Kekckler:1999:CEH

Kasperink:1997:CDC

Keckler:1998:EFG

Kleiman:1995:IT

Kerrison:2015:EMS

Kelly:1994:MBC

REFERENCES

67–??, August 1994. CODEN CCUJEX. ISSN 1075-2838.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF

Keen:2003:CCP

Kim:2014:SMC

REFERENCES

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Kurzak:2009:SLA

Kleber:2000:TSA

Kang:2008:ISE

Kwak:1997:VMN

Kwak:1999:EMC

Koopman:1992:CBC

Koufaty:2003:HTN
REFERENCES

REFERENCES

REFERENCES

Kienzle:2001:IEO

Keckler:2012:MMC

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

Klarlund:1993:GT

Krieger:1997:HPO

Kalayappan:2016:FRT

[KS16] Rajshekar Kalayappan and Smruti R. Sarangi. Fluid-
References

Kgil:2008:PUS

Kumar:2004:AST

Kleiman:1995:PT

Kleiman:1996:PT

Kalla:2004:IPC

Krieger:1994:ASF

Komosinski:2017:MCE

Kuchlin:1991:MCI

Kuchlin:1992:MTC

Kestor:2015:TPD

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Kleinmann:2017:ACS

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IP1

Lenharth:2009:RDO

Lam:1995:CPC

Lang:1997:MTE

Laneve:2002:TSJ

Larchevêque:1995:OIP

REFERENCES

[Lo:1998:ADW]

Lo:1998:ADW

[LBE+98]

[LBE+98]

[LBH12]

Ling:2012:HPP

[Li:2006:MEMa]

Li:2006:MEMa

[Li:2006:MEMb]

Li:2006:MEMb

[Li:2006:MEMc]

Li:2006:MEMc

[LCH+08]

Liu:2008:HPP

Duo Liu, Zheng Chen, Bei Hua, Nenghai Yu, and Xianan Tang. High-performance

Leiserson:1997:AAM

Lo:1997:CTL

Lo:1997:CTP

Lo:1999:TCO

Leman:2002:EFT

Lenatti:1995:RPM

Leppänen:1995:PWO

[Ville Leppänen. Performance of work-optimal PRAM simulation algorithms on coated...

Leven:1997:MIR

Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Lowenthal:1996:UFG

Lemon:2004:MCR

Lee:2006:TBR

Laudon:1994:IMT

Lee:1994:DAM

Ben Lee and A. R. Hur-

REFERENCES

LaSalle:2015:MTM

Li:2011:LCM

Luo:2017:TDS

Lin:2010:TAC

Lai:2015:SAM

Li:2006:SDH

Liu:2016:SEA
Qixiao Liu, Miquel Moreto, Jaume Abella, Francisco J. Cazorla, Daniel A. Jimenez, and Mateo Valero. Sensible energy accounting with abstract metering for multicore

Liu:2014:TAP

Li:2014:PDC

Ling:2000:AOT

Lochbihler:2018:MTS

Loofer:1997:MFJ

Loepere:2005:STM

Loikkanen:1995:FMS

REFERENCES

Laudon:2007:CWM

Liao:2011:AUB

Lee:2007:IPM

Leiserson:2012:DPR

LoCocero:1997:MML

Joseph LoCocero and D. E. (Donald E.) Thomas. A mul-

[Lu94]

[LTHB14]

[Li:2016:HBG]

[Lu:2014:PPF]

[Lu:1994:MPM]

[Lu:1995:HMC]

[Lu:1998:ONW]

Chi-Keung Luk. Tolerating memory latency through software-controlled pre-execution in simultaneous multithreading processors. ACM SIGARCH Computer Architecture News,
REFERENCES

Lundberg:1997:BMC

Lundberg:1999:PBS

Lobeiras:2013:PSW

Li:2012:MRP

Laadan:2010:TLA

Lopes:2001:FGM
REFERENCES

Lu:2013:REM

Li:2017:GGB

Mushtaq:2014:EHP

Monchiero:2009:HSC

Mahafzah:2011:PMI

Mahafzah:2013:PAM

Man:1991:MLC

Mane:1996:SJP

Manley:1998:GPT

Manley:1999:IPT

Mao:1996:PMS

Marowka:2003:EOT

Marowka:2007:PCD

Masney:1999:IMT

Mateosian:1997:MNT

Mattson:2003:HGO

Mendelson:1999:DAM

Avi Mendelson and Michael Bekerman. Design alternatives of multithreaded architecture. *International Journal of Parallel Programming,*
McNairy:2005:MDC

Madan:2007:PEA

Moon:2006:TMS

McCarthy:1997:MTI

McCarthy:1997:WMT

Mitchell:1999:ILP

Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

REFERENCES

[MCS15] Nathan Mitchell, Court Cutting, and Eftychios Sifakis. GRIDiron: an interactive authoring and cognitive training

Montesinos:2008:DRD

Mikschl:1996:MMS

Matheou:2015:ASD

Matheou:2017:DDC

Mukherjee:1994:MII

McDowell:2003:ISS

Mennemeier:1991:HMS

REFERENCES

REFERENCES

Miastkowski:1990:PGG

Michael:2004:SLF

Maabreh:2018:MHT

Miller:1995:TPC

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

tem requirements for computer disk: IBM-compatible PC; DOS; Mix, Borland, or Microsoft-compatible C/C++ compilers.

Meng:2010:AOS

Mars:2012:BDS

Moreno:1997:PMP

Maris:2004:CCP

Moody:1999:STT

Maiya:2014:RDA

Mukherjee:2002:DDE

Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed de-

Muralidhara:2010:IAS

Marowka:2004:OOA

Madriles:2009:BST

Ma:2011:SPC

Malakhov:2018:CMT

Machado:2015:CDD

Nuno Machado, Brandon Lucía, and Luís Rodrigues. Concurrency debugging with differential schedule projec-
Makreshanski:2015:LSE

Darko Makreshanski, Justin Levandoski, and Ryan Stutsman.

Mauro:2001:SIC

Morandini:2007:UDS

Morishima:2014:PEG

Mathis:2005:CSM

Marino:2009:LES

McKenney:2010:WGM

Paul E. McKenney, Maged M. Michael, Josh Triplett, and...
REFERENCES

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

DEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

[MQ08] Manson:2001:CSM

REFERENCES

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

Meier:2017:PVM

Mukherjee:2009:MA

McJones:1987:EUS

McJones:1989:EUS
Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO
G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP implementation of an implicit finite-element code on parallel architectures. *The Inter-
REFERENCES

194

[MT93] J. Gregory Morrisett and Andrew P. Tolmach. Proc and locks: a portable multipro-

Martinez:2002:SSAa

Martinez:2002:SSAb

Martinez:2002:SSAc

Minh:2007:EHT

Matsushita:2000:MSC

Miller:2012:VCE

REFERENCES

Naik:2007:CMA
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Nikolopoulos:2001:EMA

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS

Naik:2006:ESR

Narlikar:1999:SES

REFERENCES

REFERENCES

Natarajan:1993:PVM

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

Hosein Nazarpour, Yliès Falcone, Saddek Bensalem, and Marius Bozga. Concurrency-

REFERENCES

REFERENCES

1088–1144, November 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Norwood:1994:SMP

Nguyen:2015:RCC

Narayanasamy:2007:ACB

Nutaro:2017:HAA

Ottoni:2008:COGa

Ottoni:2008:COGb

Ottoni:2008:COGc

Olszewski:2009:KED

[OA09] Marek Olszewski, Jason Ansel, and Saman Amaras-

Rei Odaira, Jose G. Castanos, and Hisanobu Tomari. Eliminating global interpreter locks in Ruby through hardware transactional memory. ACM SIGPLAN Notices, 49(8):131–142, August 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Kazuhiro Ogata, Satoshi Kurihara, Mikio Inari, and...

Oplinger:2002:ESRa

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

Pereira:2017:SBC

Pan:1999:TCP

Park:1991:PTM

Papadopoulos:1992:MCS

Park:2017:HHC

Porter:2015:PFG

REFERENCES

Park:2016:CJP

Perez:2015:ECR

Papadopoulos:2016:TAD

Pokam:2013:QPI

Peacock:1992:FSM

Philbin:1996:TSC

REFERENCES

0130109126.html. Includes CD-ROM.

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Park:1997:HPM

Pham:1991:EMD

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. The-
sis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

REFERENCES

C/C++ Users Journal, 16 (12):??, December 1998. CODEN CCUJEX. ISSN 1075-2838.

Plauger:1999:SCCg

Plachetka:2002:QTS

Porter:2015:MMS

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabhu:2003:UTL

Polychronopoulos:1990:ASC

REFERENCES

[Pras95c] Shashi Prasad. Windows NT threads — a multithreaded application may actually run slower on an SMP machine

References

Pra97

PRB07

Pre90

Prasad:1997:MPT
Prasad:1997:MPT

Permandla:2007:TSP

Presotto:1990:MSP

Petrovic:2014:LHM

Protopopov:2001:MMP

Pozniansky:2003:EFD
REFERENCES

Pozniansky:2007:MEF

Pyarali:2001:EOT

Parashar:2006:SSBa

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

James C. Pang, Gholamali C. Shoja, and Eric G. Manning. Providing soft real-time quality of service guarantees for

PSM01

PSM03

PSM06

PS07

PSC01

PSG06a

PSG06b

PSG06c

References

Peacock:1992:EMS

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pickett:2006:SSF

REFERENCES

Pathania:2017:DTM

Preissl:2012:CSS

Preissl:2011:MGA

Polap:2018:MTL

Park:2010:ISP

Quintana-Ortí:2012:RSP

REFERENCES

Rakvic:2010:TMT

Radojkovic:2012:OTA

Radojkovic:2016:TAM

Radojkovic:2010:TSB

Ruddock:1996:MPG
David E. Ruddock and Balakrishnan Dasarathy. Multi-

REFERENCES

openurl.asp?genre=article&
issn=0920-8542&volume=53&
issue=2&page=293. [RKBH11]

Scott Richman. Examining the Hamilton C shell
(Unix power for OS/2). Dr.
Dobb’s Journal of Software Tools,
DDJOEB. ISSN 1044-789X.

Etienne Richards. Adding
level-2 thread safety to exist-
ing objects. C/C++ Users
Journal, 17(2):??, February
1999. CODEN CCUJEX.
ISSN 1075-2838.

Jonathan Ringle. Singleton
creation the thread-safe way.
C/C++ Users Journal, 17
(10):??, October 1999. CO-
DEN CCUJEX. ISSN 1075-
2838.

Martin Rinard. Analysis of multithreaded
programs. Lecture Notes in
Computer Science, 2126:1–
ISSN 0302-9743 (print), 1611-
3349 (electronic). URL
com/link/service/series/
0558/bibs/2126/21260001.
htm; http://link.springer-
ny.com/link/service/series/
0558/papers/2126/21260001.
df.

Dheeraj Reddy, David Ko-
ung, Paul Brett, and Scott
Hahn. Bridging functional
heterogeneity in multicore
architectures. Operating
Systems Review, 45(1):21–
33, January 2011. CO-
DEN OSRED8. ISSN 0163-
5980 (print), 1943-586X (elec-
tronic).

B. Reus, A. Knapp, P. Cen-
ciarelli, and M. Wirsing. Ver-
ifying a compiler optimization
for multi-threaded Java. Lecture
Notes in Computer Science,
1376:402–??, 1998. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

Oliver Reiche, Christof Kobylko,
Frank Hannig, and Jürgen Te-
ich. Auto-vectorization for image
processing DSLs. ACM
SIGPLAN Notices, 52(4):21–
30, May 2017. CODEN SIN-
ODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160
(electronic).

Rance Rodrigues, Israel Ko-
ren, and Sandip Kundu. Does
the sharing of execution units
improve performance/power of
multicores? ACM Transactions
on Embedded Computing
Systems, 14(1):17:1–17:??,
Raman:2010:SPUa

Raman:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

Reinhardt:2000:TFD

ACM:2003:ATA

Allyn Romanow and Jeff Mogul, editors. *Proceedings of

REFERENCES

REFERENCES

Roy:2011:SRP

Soumyaroop Roy, Nagara-

Rivara:2012:MPL

Maria-Cecilia Rivara, Pe-
dro Rodriguez, Rafael Mon-
tenegro, and Gaston Jor-

Reddy:2006:UPB

Vimal K. Reddy, Eric Roten-

Rosu:2007:ITO

Rounce:2008:DIS

Peter A. Rounce and Al-
berto F. De Souza. Dyna-
mic instruction scheduling in a trace-based multi-

Riccobene:2009:SCB

Elvinia Riccobene, Patrizia Scandurra, Sara Bocchio, Al-
REFERENCES

228

Roh:2001:RMD

Rangan:2008:PSD

Raychev:2013:ERD

Ravoor:1997:MTP

Shaw:1998:CIP

Samorodin:1999:SFS

Sanden:2004:CJT

B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SLJ

Smith:1980:ASD

Sah:1996:PIS

Saavedra-Barrera:1991:ASM

Saavedra-Barrera:1990:AMA

Storino:1999:MTB

Savage:1997:EDD

Sanderson:2017:PGP

Saillard:2015:SDV

Saez:2013:DFP

Schweitzer:2015:PEM

REFERENCES

[Sch90] David A. Schmitt:1990:CEM

[Sch91] Klaus Erik Schauser:1991:CDT

[Sch14] Herbert Schildt:2014:JCR

[Sch17] Benjamin Carrion Schafer:2017:PHL
Den ATASPO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[So:2013:STI] Won So and Alexander G. Dean. Software thread integration for instruction-level parallelism. *ACM Transac-
REFERENCES

Sartor:2012:EMT

Seiden:1998:ROM

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO

Sahin:2018:CSC

Sung:2014:PTR

Sodan:1997:ENN

Sridharan:2014:AEP

Shahnaz:1995:DMD

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

Shankar:1995:STI

Shaw:1998:CPM

Shene:1998:MPI

Chin-Kuang Shene. Multithreaded programming in an
REFERENCES

Balaram Sinharoy. Compiler optimization to improve data
REFERENCES

Steensgaard:1995:ONC

Sharafeddine:2012:DOE

Singh:1992:DRS

Singh:1992:DRT

Shirole:2012:TCU

Sung:2001:MDA

Stewart:1997:MDH

Smaragdakis:2007:TIC

Schonherr:2011:MTI

Sohn:2001:CTC

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshi-

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT

Scherer:1999:TAP

Sangaiah:2018:SSA

Su:2019:SSC

Xing Su, Xiangke Liao, Hao Jiang, Canqun Yang, and Jingling Xue. SCP: Shared cache partitioning for high-performance GEMM. *ACM...
REFERENCES

Shark:2008:RRP

[SLP08]

Sidiroglou:2009:AAS

[SLP+09]

Solihin:2002:UUL

[SMD10]

Solan:2010:PMM

[SLT02]

Smith:1992:MTX

REFERENCES

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

Suleman:2009:ACS

Swanson:2003:ESI

Singh:2012:EES

Sodan:2002:AMA
REFERENCES

[Spe94] Simon E. Spero. MDMA — multithreaded daemon for
multimedia access. In Anonymous [Ano94d], page ?? CO-
DEN ONCDEW. ISSN 0309-
csa.uiuc.edu/SDG/IT94/
Proceedings/WWW2_Proceedings.

[SPH96] A. Skjellum, B. Protopopov, and S. Hebert. A thread tax-
onomy for MPI. In IEEE
[IEE96], pages 50–57. ISBN 0-
8186-7533-0. LCCN QA76.642
M67 1996.

[Saxena:1993:PMS] Sunil Saxena, J. Kent Pea-
cock, Fred Yang, Vijaya
Verma, and Mohan Krish-
nan. Pitfalls in multithreading
SVR4 STREAMS and other weightless processes. In USENIX
[USE93b], pages 85–96. ISBN 1-880446-48-
0. LCCN QA 76.76 O63
usenix.org/publications/
library/proceedings/sd93/

[SQ08a] M. Aater Suleman, Moinud-
din K. Qureshi, and Yale N.
Patt. Feedback-driven thread-
ing: power-efficient and high-
performance execution of multi-threaded workloads on
CMPs. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (print), 1943-5851
(electronic).

modeling of processor utiliza-
tion in multithreaded proces-
sor architectures. Research re-
port RC 19543 (84999), IBM
T. J. Watson Research Center,
Yorktown Heights, NY, USA,

[Salcianu:2001:PEA] Alexandru Salcianu and Mar-
tin Rinard. Pointer and
escape analysis for multi-
threaded programs. ACM
Sohi:2001:SMP

Samak:2014:MTS

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

REFERENCES

REFERENCES

REFERENCES

CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Snavely:2000:SJSb

Sundell:2005:FLF

Stapleton:1990:DSS

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF

Stuckey:1995:FCI

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??

Herb Sutter. Optimizations that aren’t (in a multithreaded world). *C/C++ Users Journal*, 17(6):??, June
REFERENCES

1999. CODEN CCUJEX. ISSN 1075-2838.

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

Schwan:1992:MRT

Sterling:2002:GMP

REFERENCES

Theobald:2000:LCE

Tamasanis:1995:MMW

Thoziyoor:2008:CMM

Tanner:1987:MTI

Tolmach:2004:IFL

Tam:2007:TCS

Thompson:1997:THP

Thompson:1997:TPC

P. Thompson and G. Bumgardner. Threads.h++:

REFERENCES

Tullsen:1995:SMM

Tullsen:1998:RSM

TempleLang:1997:MTE

Tennberg:1998:CAD

Tennberg:2002:RGO

Trancoso:2006:CCM

REFERENCES

Tan:2000:PEN

Terechko:2012:BPS

Thekkath:1995:DPM

Throop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

REFERENCES

REFERENCES

URL http://www.ddj.com/. See [Gei01].

Turakhia:2017:TPE

Tian:2016:ETR

Tian:2017:RSP

Tremblay:2003:IEP

Talent:2009:EPM

[TMC09] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance measurement and analysis of multithreaded applications. *ACM
Tallent:2010:ALC

Taylor:1995:CSA

Trott:2010:AVI

Todiwala:1995:DRT

Thebault:2018:AMC

Tarvo:2014:AAM

REFERENCES

REFERENCES

Thulasiram:2003:PEM

Thulasiraman:2002:EMA

Taura:1999:SMI

Tullsen:1996:SM

Tentyukov:2010:MVF

Torlak:2010:MCA

Turon:2014:GNW

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: nav-

REFERENCES

USENIX:1991:PUM

USENIX:1991:PWU

USENIX:1992:PSU

USENIX:1992:SED

USENIX:1993:PUMb

USENIX:1993:PWU

USENIX:1996:PF

REFERENCES

[UZU00] A. Unger, E. Zehendner, and Th. Ungerer. A combined compiler and archi-

Vera:2009:SRL

vanHoff:1995:JIP

Vanhelsuwe:1997:BRJ

Vanhelsuwe:1997:JPE

Vckovski:2000:MTS

Volkov:2008:LQC

Vishkin:1998:EMT

[VDBN98] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman. Explicit
REFERENCES

multi-threading (XMT) bridging models for instruction parallelism (extended abstract).

[VGK10b] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen, Babak Falsafi, Phillip B. Gibbons, and

REFERENCES

[266] ISSN 0163-5999 (print), 1557-9484 (electronic).

References

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

Vishkin:2000:ELR

VanDeGeijn:2011:HPD

Winter:2008:ATN

Jonathan A. Winter and David H. Albonesi. Addressing thermal nonuniformity in SMT workloads. ACM Transactions on Architecture and...
REFERENCES

Walter:1995:PMS

Walmsley:2000:MTP

Wang:1994:MAD

Watt:1991:IP1

Wayner:1995:FAN

Wu:1999:GMC

Wang:2007:EAP

Wallace:1998:TMP
Steven Wallace, Brad Calder,

Wilde:1998:RES

Wang:2004:HTVd

Wang:2004:HTVc

Wang:2004:HTVa

Wang:2007:OSC

Wester:2013:PDR

Weaver:2008:OIO

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Wong:1994:SSI

books/so1997/pdf/s5115.pdf.

[Wei:2012:OLL]

[Wegiel:2008:MCSVa]

[Wegiel:2008:MCSVb]

[Wegiel:2008:MCSVc]

[Wang:2017:JRJ]

[Wadden:2014:RWD]

Wang:2009:TDA

Won:2015:MMC

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Wang:2018:TWB

[WQLJ18] Jui-Hsien Wang, Ante Qu, Timothy R. Langlois, and Doug L. James. Toward
REFERENCES

Wang:2006:RAA

Warg:2008:DTS

Whittaker:1997:TML

Wheeler:2010:VMM

Wu:2012:SPA

Wong:2008:TAF

REFERENCES

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Xekalakis:2012:MSM

Xu:2006:RTR

Xu:2009:PIM

Xu:1999:DIT

Xian:2008:CAS

Xue:2012:RJC

Yam:1995:CFD

Yam:1996:DPV

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yam:1997:MUA

Yasrebi:1995:EDO

number PR07162. IEEE catalog number 95TB100005.

References

[YLLS16] Hairong Yu, Guohui Li, Jianjun Li, and Lilchyun Shu. D0cyclical: a latency-resistant

[Yoo96a] H. Chuck Yoo. Comparative analysis of asyn-

[YZL07] Jin-Min Yang, Da-Fang Zhang, Xue-Dong Yang, and Wen-Wei Li. Reliable user-level

Zoppetti:2001:IDD

Zhang:2010:FTS

Zhai:2002:COSa

Zhang:2015:DMB

Zhai:2002:COSb

Zhou:1998:LST

Honbo Zhou and Al Geist. LPVM: a step towards multithread PVM. *Concurrency: Practice and Experience*, 10
Zhang:2000:WMH

Zhang:2015:LOS

Zh:2011:TPS

Zhang:2000:WMH

Zhang:2010:DCS

Zhu:2011:TPS

Zignin:1996:TDM
REFERENCES

Zhang:2012:SCC

Zhao:2011:DCC

Zhang:2015:DPO

Zhang:2016:TED

Zhang:2016:SAN

Zhuang:2004:BRA

REFERENCES

2867 (print), 1558-1160 (electronic).

Zhuan:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB