A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0990
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
23 December 2017
Version 3.128

Title word cross-reference

#4 [Pet00].

+ [BMV03], 2 [TKHG04], 3
[KSB+08, PYP+10], cyclical [YLLS16], D³
[Evr01], F² [BCS11], LU [VD08], N
[ZJFA09], π [HI01], QR
[But13, GKK09, VD08].

-Calculus [III01]. -Machine [Evr01]. -way
[ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/ [ACM92]. /multi [Taf13]. /
multi-threaded [Taf13].

’01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16], 11th [IEE94a, IEE94d]. ’12 [Hol12].
16-20 [IEE92]. 162 [Stn95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94e].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mll95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KAO05]. 35th [Gol94]. 3D
[Ano97b, Loe97].
Abstract

[CSS+91b, CGSV93, DV99, LMA+96, MJF+10, Ném99, CSS+91a, CSS+91c, VDBN98, ZJFA09]. Abstraction

[KI16, Bak95b, GPR11, ZSJ06]. AC

[BGK94a, BGK94b]. Accelerating

[LS11, SMQP09, VGK+10a, VGK+10b]. acceleration

[JSMP13, NBMM12]. Access

[Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SSkP+07]. Accounting

[LMA+16, EE09b]. accuracy [TO10]. Accurate

[CPT08, VTSM12]. Achieving

[AHW02, KGGK09, WTKW08]. ACM

[ACM93b, RM03, IE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZP04]. Activation

[KG94]. Activations

[ABL92, DRN00, SS95]. Active

[BIK06, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada

[ACM93c, Bar90, Dll93, GMIB93, KPPER06, KR01b]. ADAM [Far96]. adaptable

[LLLC15]. Adaptation

[MBN00]. Adaptive

[ALHH98, HBTG98, KI95, LHY16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW+16]. Adding

[Ply89, Ric99, McM97]. Address

[CLFL94, FWL+11, CKZ12, LIE94]. Addressing

[WA08, CKD94, ZSB+12]. Advanced

[BGG95, GBG95, HIE03, BZ07, GBB+05]. Advances

[IEE97, JHM04, KKV03, DLM99]. Advantages

[Wei97]. Adversarial

[FF10]. affinity [NAAL01]. Age

[CRO98]. agent

[Way95]. Agents

[CWHB03, CR02, Way95, BDF98]. Aggregate

[TG099, TG000]. AGNI

[RBP000]. agreement [GMW09]. Aid

[Wei97]. aided [MCRL01]. aids [Mat97]. Air

[MPD04]. Al [TLA+02]. Albuquerque

[Ano94e]. Algebra

[KLDB09, NBS+15, PHCR09, YSY+09]. Algebraic

[ACM94c, Lak96, MR09, Wat91]. Algorithm

[AT16, ABC+09, HH11, OR12, TT03, ZBS15, GKK09, KPH12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HBGO2, YFF+12]. Algorithmic

[Lei97, BBH+17]. Algorithms

[BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOM+12, TTKG02, YMR93b, Bar09, CFC+12, CULR09, FR95, GKK09, Lei97, Lep95, NFBB17, QQQOV+09, RRRJ12, YM92, YMR93a, Li05]. algorithms-by-blocks [QOM+12]. aliasing

[NA07]. Aligned

[YYW03]. alignment

[KPH12]. Allaire

[Hig97]. Alleviate

[BD00]. Alloc

[KSU94]. Allocating

[SEP96]. Allocation

[MVZ93, NAK01, EFM07, HLL10, Mic04, ZP04]. Allocator

[BMBW00b, BMBW00a, BMBW00c]. Alpha

[Ano94e]. alphabet

[KNPS16]. alphabet-independent [KNPS16].
 Alternatives [MB99, MKR02]. Alto [AC01, ACM01, ALU [KDM+98], always [DWS+12], always-on [DWS+12]. Amdahl [CN14, NZ17]. Among [CB16, HMC95, SJ95]. analysing [NJK16]. Analysis [AKS06, BCZ16, BE12, BE13, BBC+00, BLG01, BHN01, CC04, CH95, CGL92a, CGL92b, DSR15, EJRB13, Hai97b, Hol12, LCK11, MLM00, LGH+16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM+08, Yoo96a, Zub02, AC09, ACC+03, BBH+17, BMM09, CHH+03, CS12, CVJL08, Cor00, GBCS07, HEJ09, JPSN09, KTK12, KI97, LHI12, LBE+98, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SBB08, TMC09, TR14, Wan94, WP10, WOKH96, WTH+12, dB09, vPG03]. Analytic [Squ94]. Analytical [DKF94, VT96, SBC91]. analyze [LMC14]. analyzer [Fer13, HLB90]. Analyzing [HRH08, Kor89, RHH10, TMCP10]. anatomy [Rei95]. Android [MKM14]. Annotations [BM94, Wei98b, AGN09]. Annual [ACM93a, ACM98c, Gol94, As96, USE00a, ACM93b, USE96, USE98b]. anomalies [Sch89]. Anomaly [KW17]. Antonio [USE92a]. any [Hig97, Mar07]. API [Ano00b, BDN02, DM98, Van97a]. APL [CJ91]. applets [McM96]. Application [AMRR98, KZTK15, KSU94, PG92, PLT+15, TKA+01, TAM+08, Ye95, DWYB10, EJK+96, HDT+13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11]. Application-Level [KSU94, PLT+15, HDT+13, LZ07, ZJS+11]. Applications [An000c, AZG17, AKP99, BKO06, BMMW00b, BHN01, Cha05, Chl15a, DS16, Don02, Dru95, EV01, FURM00c, HC17, HWZ00, JYE+16, KMJ02, KRH98, Lar97, MG15, PWL+11, Pul00, RD96, SG+97, Sod02, Ten02, Tet94, TSV12, TLGM17, Vo93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BDZD15, BBFW03, BGZ97, BMBW00a, BMBW00c, BW97, DSEE13, BMV03, CB89, CB90, CSB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HL90, ISS98, JSPM12, JSPM13, KV+99, MLCW11, MKM14, MKI04, MLC04, MT02a, MT02b, MT02c, MK99, MKR10, NR01, Omm04, PZJA07, RCV+10, Rei95, San04, SSN10, SKP+02, TMC09, TMCP10, VIA+05, VGK+10, WCZ+07, WT10, WOKH96, XMN99, YZ14, kSYHX+11, ZKR+11, Len95]. apply [NZ17]. Applying [VTSL12, MT02a, MT02b, MT02c]. Appendre [Swi09]. Approach [AZG17, BBSG11, CJW+15, ES97, FKT96, GMR98, KKW14, ND16, RC17, TY97, VSD30, WS08, We98b, YLLS16, BWDZ15, DLM+12, LZZ+14, MS03, SCM+12, SCZM00]. Approaches [BLPV04, MB07]. Approximate [HFV+12, GEG07, GE08, KGPH12]. Apps [PCM16]. April [An000a, Ano03, USE01]. arbitrary [BGC14]. ARCH [Ada98]. Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CMF+13, Fan93, WHG07]. Architecture [ACM98c, BBD+91, BTE98, Car99, DO95, EBBG01, For97, Gao93, GKH+98, GV95, GN02, HTZ+97, HMNN91, HHOM91, HHOM92, KBH+04a, KBH+04b, KIAT99, Man91, MB09, PVS+17, PTM09, PKB+91, PS01, REL00b, RS08, SCL05, SSY97, SKK+01, SY97, VSDK09, WS08, We98b, YLLS16, BWDZ15, DLM+12, LZZ+14, MS03, SCM+12, SCZM00].
Arising [MR98].

Austria [USE93a, USE98a].

Atomizers [FF08, FFLQ08, FFY08].

Augmented [BH95].

Assumption [ES97].

Assurance [SLP+99, Dye98].

Asynchronous [HH11, KFG15, KG07, KSD04, Yoo96a, GMR90, Kho97, KASD07].

Asynchrony [SRU98].

Atlanta [ACM99a].

Atomicity [BNS11a, BNS11b, BNS12, FFO4, FF08, FFLQ08, FFY08].

Atomizer [FF04, FF08].

Audience [BSB96].

Augmented [BH95].

Autonomous [RM03, IEE99, USE93a, USE98a].

Auto [Pol90, RKHT17].

Auto-vectorization [RKHT17].

AutoDock [TO10].

Automata [ES97].

Automata-Theoretic [ES97].

Automated [BSSS14, DRV02, KZC15, TR14].

Automatic [HBTG98, JJY+03, KW17, Mou00, SEP96, YLLS16, GJ11, JSB+11, SLF+09].

Automatically [NWT+07, TG99, CJ91].

Autotuning [CSV10].

Availability [SP07].

Avenue [Ano94d].

Avoidance [LC13, WLK+09].

AVP [Ano00b].

Aware [BHP+03, FSPD16, FSPD17, GVT+17, HC17, LYH16, PR05, EQT07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAS07, XSA08, ZLW+16].

AWTEventMulticaster [Hol99b].

Axiomatic [TVD10].

AXP [Ano97a].

B [Ano00c, DLZ+13].

Back [ECX+12].

Backup [Ano00b].

Balance [SEP96].

Balanced [CKZ12].

Balancers [KMAG01].

Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKI004].

Baltimore [IEE02].

Bandwidth [FSPD16, LTL+16].

Bandwidth-Aware [FSPD16].

Barcelona [ACM95a, ACM98c, DLM09].

Barnes [ZBS15].

Barrier [CJW+15].

Barrier-Based [CJW+15].

Barriers [LZBW14, ZJFA09].

Base [VE03].

Based [Alf94, AT16, AKP99, BHN01, CJW+15, CRK99, CMBAN08, DSR15, EGP14, GHG+98, HHOM91, HHOM92, KS16, KG05, KEL+03, KW17, KSR97, KRH98, Kwo03, LG06, LS11, MGQS+08, MKC97, OB13, RSB01, TESK06, WLM15, ÁAdBrS05, Ada98, AAHF09, Ama98, AKS16, CNQ13, CKD94, CRK97a, CRK97b, CNV+06, DG99, DWYB10, EG11, GDSA+17, GE08, JD08, JSMP13, KR01b, KKJ+13, K16, KBF+12, LB15, LLL10, Mus09, NBMM12, NFBB17, PSC06a, PSC06b, PSC06c].

C [Kelf94a, Kelf94b, Lev07, Pla98, Pla99, Rod95a, Vre04, Ait96, AGE80, Ano99, BM04, Bau92, Bed91, BYLN90, BPL07, BA08, CFW+91, CRG92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jon91, KD97, Laho0, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pom98, PS03, PS07, Pul00, Ric91, Sch90, TB97a, TB97b, Vol93, Wal00, Yam95, Yam96]. C# [KPPP10, Stä05]. C/C [Pla98, Pla99, Pet00]. C/C

BYLN09, ND13, ND16, Pul00]. C3I [BTE98]. CA [AC094d, IEE89, USE92b, Ass96, USE00a, USE01, USE02]. Cache [BCZY16, CMX10, GPB+07, GL98a, HLO8, HSL96, KLS92, KET06a, LDDL17, PEA+96, WG94, ZJS12, Car89b, Cho92, KHP+95, KLI+99, MKR10, Raf93, Sha95a, SSKP+07, WCR+07, ZJS10, ZKR+11].

[CMBAN08, PHCR09, PT03]. Codesign
[HPA+15]. cognition [MCS15, PWD+12].
cognizant [LK13]. Coir [SG96]. Cold
[Hig97, Hig97]. Collaborative [VSDK09].
Collection [AKP99, LB92, PUF+04, PF01,
QSa+16, KTK12]. Collections
[Kie00, McH98a, McH98b]. collective
[HMC95, SCB15]. collector [BBYG+05,
DL93, HL93, WK98a, WK98c, WK98b].
coloring [CFG+12, GP95, SS10]. Colt
[WN10]. Combinator [KLS92]. combined
[UZU00]. Combining
[KR01a, LZ07, CZSB16, ZLW+16]. come
[Pol90]. COMeT [RCC14]. Coming [LS07].
Commands [KD97]. Commercial
[SBKK99, BEKK00, EJK+96]. Commodity
[ZL16, LVN10, RPNT08]. Common
[Hol98a, Kuc92, BDF98, BDL07, CL00,
Küc91]. Communication
[ABN00, DSR15, EHG95, FKT96, FGT97,
GMR98, HY+15, OA08a, OA08b, OA08c,
Pan99, PWL+11, Rod94, SKK+01, TKA+01,
TCG95, BR92, DBRD91, GR06, KASD07,
Lam95, QSH16, RR96, RR93, TG09,
TKA+02, VS96, WHJ+95, ZCSM02a,
ZCSM02b]. Communications
[Ano03, BMN99, SCB15, Sh97b].
Commutativity [AC09]. Compact
[HEMK17]. compaction
[WK90a, WK90b, WK90c]. Comparative
[SKP+02, Yoo96a, PL03]. Comparing
[KPÆ06, SV96c, SV96a, SV96b].
Comparison [ILFO01, SAC+98, GL98b,
KIM+03, MKJO04, MMT10]. Compass
[PWD+12]. Compatible
[MIM14, LBH12]. competition [YL16]. Compilation
[ACMA97, HLB94, BRRS10, GC92,
HCD+94, Ts97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time
[CS95a, CS95b]. Compile/run [TSY99].
Compile/run-time [TSY99]. Compiler
[ATLM+06, BD00, BF04, CHH+03,
CSS+91b, CGSV93, DZKS12, JSB+12,
LEL+99, MCRS10, Scv91a, Scv91b,
SYHL14, Sin99, TY97, TGBS05, YBL16,
ZCSM02a, ZCSM02b, ZP11, BC+95,
BAD+10a, BAD+10b, BVG97, CAR08,
CSS+91a, CSS+91c, DC07, Dub95, Fon97,
Gol97, Hop98, JSB+11, MSM+11, McM97,
Mülo3, SKCW98, Sch91, SKK09, UZU00,
WLG+14]. compiler-assisted [Dub95].
Compiler-Controlled [CSS+91b, Scv91a,
Scv91b, CSS+91a, CSS+91c, Sch91].
Compiler-directed [DZKS12, SKK09].
Compiler-Driven [YBL16].
compiler-managed [WLG+14].
Compiler-Supported [ZP11]. Compilers
[SS96]. Compiling [ABNP00, ABH+01,
TLA+02, HTZ+97, Sch91, Sha98, A+01].
Complement [YFF+12]. Complete
[BR15, Sch14, BW97, DWS+12, FFY08,
KGGK09, NV15]. Completion
[AG96, BGG96, LK97, Man98, BGK94c].
Complex [SZM+13]. Complexity
[EG11, CMX10, SKA01].
complexity-effective [SKA01]. Compliant
[BG96, Hig97]. component [NFBB17].
component-based [NFBB17].
Components [Gou90, Sh97b].
Composable [SS10, FKS+12].
Compositions [KS97]. Comprehensive
[TAM+08]. Compressed [PBL+17].
Computation [AC94c, BFA+15, CWS06,
HLB94, Hon94, HWW93, Kuc92, Lak96,
OTY00, Wat91, BH95, Fan93, Fuj97,
KG07, Küc91, NJ00, Sha98, ST98, WHJ+95].
computational [Bar09]. Computations
[BL98, FS96, KC98, KC99, WJ12, YW03,
Blu92, BL93, BL94, BL95, Chr95a, Chr95b,
Chr96]. Compute [BBSG11]. Computer
[AC98c, Ano94a, CBN+00, Gol94, BD06,
DNB+12, GKO5, I+94, PBDO92].
Computers
[Ano94c, SS96, BCM+07, Boo93, LP09, SJ95].
Computing
[AC93b, ACM98a, ACM98d, ACM95,
ABC+93, Ama89, CT00, Den94, EJ93,
FTP11, FGT97, Gar01, GRS97, Ham96,
MB05, PVS+17, PM14, QOIM+12, ABC+15, AMPH09, CFG+12, CSM+05, DWYB10, GW10, KBF+12, MLCW11, MLC+09, MTPT12, Mus09, SMQP09, VQP12, WCC+07, YZ07. CoreDet [BAD+10a, BAD+10b]. Cores [CKC+16, RRK11, CWS06, MAF+09, SW16].

coreSNP [GAC14]. Corner [SW97].

Corona [VSM+08]. Corporation [Ano00b, Ano00b]. correct [DJLP10, SP00b, Shi00]. Correction [TLA+02]. corrective [LG04]. Correctness [Ram94].

Correlation [SLT03, PFH06, SLT02]. cosimulator [LT97]. Cost [TY97, Bet73, DC07, Tsa97b]. cost-effective [Tsa97b]. Costs [MHG95].

Coupled [MTN+00]. Course [BLLP04, BZ07, GL07, She98]. coverage [RRP06, YNPP12]. coverage-driven [YNPP12]. covering [BCG13]. Covert [EPAG16].

CPU [BSSS14, PGB16]. CPUs [SKG+11, SMG+10]. Craftworks [Ano97a].

Critical [BLG01, CS12, OTY00, DTL14, DESE13, NM10, RGG+12, San04, SMQP09, YL16].

Criticality [DESE13, NB12]. Cross [Lam95, BKC+13, CSB16].

Cyclops [ACC+03]. Cyrus [HDT+13].

D [KSB+08, NTKA99, PYP+10, TKHG04]. Daemen [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEE96]. dans [Zig96].

DARPA [Mat97]. Data [AMA89, ABN00, DTLW16, EW96, FHM95a, GAC14, HMC97, HRH98, Hig97, JMS+10, KZC15, KEL+03, KET06a, KET06b, LJM14, LLD17, ME15, ME17, RCH95, SBN+97, SAC+98, SYG97, SG96, Ten98, TESK06, VT96, Will98, ZLJ16, ZAK01, AGEB08, AGN09, BAM07, CSN95a, CSNB5b, CDL13, DHH+12, Eev01, FHM95a, FK12, HL03, LTL+16, LHS16, Maa96, MMN09, NWT+07, ND13, PDMM16, PRB07, PHCR09, Po90, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKKC09, WDC+13, YKL13, JZS+11].

data-centric [DHH+12]. Data-Driven [DTLW16, KET06b, ME15, ME17, TESK06, Evr01]. Data-Parallel [ABNP00, SAC+98, HMC97]. data-race [MMN09]. Database [KD97, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a].

Databases [AOV+99, GSDA+17, HL08]. Dataflow [CVJL08, GGG93a, Gao93, HP81, HKSL96, LH94, NBM93, RSB01, SRR98, Tra91, YMR93b, BGG95, GGB93b, GBG95, HG92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based [RSNB01]. dataflow/von [HG92]. datarace [CLL+02, CVJL08]. Datasol [KA97].

Dataarol-II [KA97]. Dawning [Cru89]. DC [IEE94c, ACM92, Ano98].

DCE [RD96, Yam95, Yam96]. DDO [HBCG13].

Deadlock [Hol98a, Mon00, Ver97, ABF+10, SR14, WLM+09]. Deadlocks [CZW+15, CZWC13, JPSN09, PRB07].

Deallocation [LPE+99]. death [Len95].

debate [Bak95b]. debug [PT03]. debugger [CB89, CB90]. Debugging [Ano98b, Caz02, HWZ00, MQLR16, PHK91, SJB92a, SJB92b, BGZ97, MLR15, WOKH90].

decentralized [RPB+09]. Decision [ZS+11, YZ14].
Decompression [PBL+17]. Decoupled [DO95, APX12, Evr01, RVOA08, RCDG06, SKA01, VS96]. decoupling [KGGK09, PG01]. Deductive [AdBdRS08, BK13]. Deeply [GKCE17].

dependencies [BKC+13, CZSB16]. dependencies [NPC06]. Deployment [GARRH14]. Depth [McM96a, McM96b, McM96c, McM98a, McM98b]. Derivative [TT03]. describes [Yam96]. Design [ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GM93, GRS97, GM98b, Hai97b, KHP+95, Laf00, MB99, NBM93, Raj93, RCDG06, STW93, Sha95a, SWYC94, SBK99, The95, TAM+98, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car99b, FWL03, HCM94, Hud96, KU17, KGGK90, Mah11, Met95, Mou95, Moo96, MR02, Ném00, OKI92, OCRS07, RSB+09, SB80, Sri93, Ver97, WLC+14, Wan94, WCV+98, Xue12].

designed [San04]. Designing [Dru95, GKZ12, RR93, Re95, TSV12, Hai97a, TCG95]. Desktop [Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Pra95b, WSKS97]. desktops [Ano94b], despite [Len95]. Derecting [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03]. Details [FMY+15]. Detect [DS16, CZWC13]. Detecting [DS15, RBK+09, SK97, FF10, JPSN09].

Detection [ABF+10, KUCT15, KW17, LLS06, Mou00, ZLJ16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTHB14, MKM14, MMN09, NBMM12, NA06, NA07, PS03, PS07, PFH06, RSV13, RM00, SR14, Sch89, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12].

Detector [SBN+97, SLG06]. determined [Kub15]. determinism [BS10b, LWV+10, LZW+13]. Deterministic [DK02, KRBJ12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DLO09, DNB+12, LZW14, MAAB14, OAA09, QSH16]. Deterministically [MCT08]. DetLock [MAAB14]. develop [Fek08]. Developer [IEE96]. developers [Way95].

Developing [S00b, Shi00, TKA+01, OT95].

Development [Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, ARVW03, Hig97, Pom98, TNE+95]. devices [Xue12]. diagnosing [CS12].

diagnostics [GBB+05]. Diego [ACM93b, ACM98b, USE99, USE93b, USE98b, USE00a]. differences [Yam96].

Different [BLPV04, GLC99]. Differential [Loe97, MQLR16, MLR15]. Difficult [CTYP02]. Difficult-path [CTYP02].

Diffusions [LTM+17]. Digital [SS91].

dimension [NJ00]. Direct [PR98].

Dissecting [ACC+03]. Distance [BCZY16, KZTK15, KNPS16]. distinguish [HL93]. Distinguished [ABH+01, TKA+01].

Distributed [ABNP00, ABB+01, BBD+91, BWX05, BHKR95, BC94, CV98, CJK95, DKA16, FSS06, GJ97, Jen95, PG92, Pra95a, RLJ+09, RBPM00, RW97, RCRH95, SUF+12, TDW03, USE92b, VS96, YAS95, Ano96, A+01, BC+95, CML00, Car89a, Gol96, GKK09, Gun97, HB92, HMC95, HWW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97, Pha91, Ply89, Q5Q14, Sto02, Tod95].
Distributed-Memory [RCHR95, BCG+95, HW993].
Distributed-sum [TDW03]. Distribution [SSYG97, ZAK01, CY99].
divergence [MTS10]. divide [FN17]. Divisors [Kuc92, Kuc91].
DMP [DC009]. Do [Cri98b, Cri98a, RPNT08, Ber96a, Ber96b, YLLS16].
Dock [BCS11]. Docking [BCS11, TO10]. documentation [HF96].
Does [Hag02, RKK15, ZJS10, San04]. doing [Yam96].
domains [LAK09]. données [Swi09]. Don’t [HHPV15].
DOSThread [VE93].
DoubleVision [Ano00b].
downdating [VV11]. Downturn [Gar01].
DRAM [kSYHX+11].

driver [CCW+11]. DSLs [RKHT17]. DSM [ABH+00, AB01, AB02, BDF98, KKH04].
DSM-PM [AB02]. DSM-PM2 [AB01].
DSMs [FBF01]. DTS [BHHR95]. Dual [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11].
Dual-Core [KST04, MB05]. Dual-Level [BBC+00, DK02]. dual-personality [CCW+11].
Dual-Processor [EHG95].
Dual-Thread [MB05, WS08]. Duplex [KG05]. Duplication [Kwo03].
Dynamic [CJW+15, FSYA09, HS+15, Hig97, KMA01, KPC96, KC98, KC99, KUCT15, MV93, MTS10, Nak01, PBL+17, RCHR95, RSO8, SBN+97, SL04, SSK+01, Sta90, SG96, WHG07, XMN99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Chr95a, Chr95b, Chr96, Don92, FF04, FF08, FHY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SL06, TJY+11, WW96, BK13].
dynamic-multithreading [LSS12].
Dynamically [PG12, TLGM17, DMBM16, Kep03].
dynamically-typed [DMBM16].
e6500 [BGH+12]. Early [GL91, PBL+17, SLP08]. EARTH [HTZ+97, HMT+96, Sod02, TAK+00, TKA+01, TKA+02, TMAG03, Nak03].
EARTH-MANNA [HMT+96, Sod02].
Easy [Har99]. Easysoft [Ano00b]. ECMA [Stu95]. ECMA-162 [Stu95].
economics [Bar09]. Edinburgh [AV+99]. edit [KNPS16].
Editors [GGB93a, GJ97].
Education [Gar01].

effect [BAD+09, GL98b, YSY+09]. Effective [PR05, TE+94]. Effects [Cho93, HRH08, KLH+99, KBRJ12, NHFP08]. Efficient [TTKG02]. Efficiency [AJK+12, Ano05, THA+12, AMH09]. Effcient [AD08, Al94, ABN99, BCGY16, BGDmWH12, BJK+96, BL98, BMN99, CJS+17, CLL+02, DMBM16, Gao93, GJT+12, GRS97, GS06, GN96, HSS+14, HEMK17, KPC96, KASD07, Lem02, LHG+16, LZBW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZL16, ATLM+06, BL93, BJK+95, BHK+04, EKKL90, FFWL03, FF09, GB99, HSD+12, KSB+08, KNPS16, KST04, LK13, LW+10, LHS16, LZW+13, MSM+10, NLK09, OA09, Pan99, PFG06a, PFG06b, PFG06c, PPR14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZLW+16, FSYA09].

Efficiently [KBF+12, MCT08, SW16, Blu95, BKC+13].
eigenproblems [ABD+12].
eigenvalue [BK+11]. Electronic [Ano00b].

Elegant [Hub01]. Element [HBTG98, MS02]. elementary [HKN+92].
elide [MLS15]. Eliminating
[DSG17, OCT14, RD06, MTPT12].

elimination [MK12].

Elliptic [Loe97].

EM-4 [BAM93, SKS+92].

Embedded
[BGH+12, Dru95, GKCE17, KG05, KE15, MS15, WM03, DCK07, KVN+09, KASD07, KBF+12, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB+09, SKP+02, Xue12].

Embedded-Systems [Dru95].

Embedding [Pul00].

emergencies [MTPT12].

Emerging [VSM+08, GBP+07, HFV+12].

empirical [LC13].

employing [CWS06].

Employment [Gar01].

Empowering [JSB+12].

End [SNM+12].

End-to-end [SNM+12].

Energy [AJK+12, GJT+12, GKCE17, KE15, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KSB+08, NB12, PJJA07].

Energy-Aware [PR05].

Energy-Effectiveness [PR05].

Energy-Efficient [PR05].

energy-performance [PJJA07].

enforcement [GWM07, SCCP13].

engine [CNQ13].

Engineering
[GJ97, LSB15, WCV+98].

engines [HB15].

England [ACM94c].

Enhance [FSPD17].

Enhanced [Ano00b, EJ93].

Enhancing [OL02a, OL02b, OL02c, HWW93, RH10].

Environment
[ABN00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, KG07, Lan97, Pha91, SWYC94, Sta90, Ten97, WCC+07].

Environments
[AKP99, BDN02, KG05, SP00a, EJK+96, RGG+12, Sam99, Ver96, Way95].

equality [AD08].

Equalization [TLGM17].

Equations [Loe97].

equivalent [Pra95c].

Eraser [SBN+97].

Errata [Ano01, Ano05].

error [SSN10].

Errors [SK97, VACG09].

escape [SR01a].

Esterel
[LBvH06a, LBvH06b, LBvH06c, LvH12].

etc [Ho98a].

European [DLM99].

EuroPVM MPI [KDV03].

Evaluating
[BL96, CML00, NPT98, PSCh01, RPNT05, Sch98, SD95, TG09].

Evaluation
[Aru92, Boo93, BTE98, CL95, CB+00, EJK+96, Eic97, GLC99, HN91, RN5B06, SCD+15, TT03, ZL10, BGDuWH12, BLC97, Car89b, Cho92, Don92, ZL07, Mah11, MKR02, NFBB+17, RGG+12, RCGD06, SWYC94, SKP+02, SMS+03, TGO00, TKA+02, WLG+14].

Evaluations
[MM14, Roh95].

evaluator [SP00b, Shi00].

even [Ano94b].

Event
[Ber96b, CRW99, For95a, For95b, Ber96a, CRK97a, CRW97b, GWM07, KCDD99, KB+03, Leg01, RVS13].

Event-Based
[CRW99, CRKW97a, CRKW97b].

Event-Driven
[For95a, For95b, RVS13].

event-handling [KBP+03].

Events
[BDN02, ZL07, Van97b].

Evolutionary
[TAK+00, KU17].

Evolving
[MS87, MS89].

examines [Yam96].

Examining
[Kan94, Ric91, Rod95a, Tim03].

Example
[BLPV04].

Exception
[DH98, Lea96].

Exceptions
[AdBrS08, KB01].

exclusion [BRE92].

exclusiveness [Lie94].

Executing
[Bhu95, BS99].

Execution
[ABH+01, CJ91, Coo02, EC98, Far96, GMGZP14, GS06, HEMK17, HZ12, KS16, KL+08, KI95, KG94, ME15, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, ST99, VSDL16, Anm96, A+01, BAD+10a, BAD+10b, BGC14, Di93, JWTG11, LVN10, Luk01, PAB'14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XaJ08].

Executions
[CdOS01, HDZ13, Roh95, STR16].

Exemplar
[BLCD97].

Existing
[Ric99].

EXOCHI
[WCC+07].

expansion
[YKL13].

expediting
[YL16].

Experience
[BMR+94, HLB90, Jon86, Yas95, RM03, GL91, Yam96].

Experiences
[BSH+09, EHG95, PST+92].
 Experimental
[BLC97, EGC02, YMR93b, GR06, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a].

Extensions
[DV99, GMR98, SMS+13, VSM+16, VV00].

Explicit
[DV99, VDBN98, BM07, URS02b, URS03, VV00]. explicitly
[MT02a, MT02b, MT02c]. exploit
[Ano92a].

exploitation
[KV97, PSG06a, PSG06b, PSG06c].

Exploiting
[AACK92, KDM+98, KOE+06, Kwa03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96]. Exploration
[PTMB09].

Expressing
[Hei03].

Extended
[BLG01, DV99, VDBN98].

Extending
[BF08, Mar03].

Extensible
[CD08].

Extension
[RCC14, CCW+11, Lan97, PDP+13, Tem97].

Extensions
[Sch90, Bau92]. external
[LWV+10].

Extending
[GP95].

Extracting
[PGP95].

Extremal
[MNG16].

FAB
[YWJ03]. Facility
[KSU94].

Facing
[KML04].

Factorization
[But13, CIM+17, Dav11].

Factorizations
[VD08].

Failing
[STR16].

Failure
[LC13].

failures
[HVD13].

Fair
[MQ08, FSPD17].

Fairness
[ES97, FSPD17, GWM07, SCCP13, WTKW08].

false
[LTHB14].

farms
[MRR98].

Fast
[BCS11, BRE92, GSC96, HN91, LDT+16, STY99, SLF14, ST05, VTS12, ZSA13, ZCO10, BDL07, CKD94, Kep03, Kus15, TTO3, TTKG02].

Faster
[PM16, BDM98].

FastTrack
[FF09].

fault
[RRP06, RM00, VPC02].

FCRC
[ACM96].

Fe
[Go94].

Feature
[LIH90].

Features
[GMB93, BDM98].

Featuring
[RRK11].

February
[USE89, USE00b, USE02].

Feedback
[SQP08a, SQP08b, SQP08c, TGO09, ALHH08].

Feedback-driven
[SQP08a, SQP08b, SQP08c].

Felix
[Ano00c].

Fernandez
[Ano00c].

fetch
[EE09a, TEE+96].

FFTs
[MJF+10].

Fiber
[GDA+17].

Fiber-based
[GDA+17].

fibers
[BS06].

FIFO
[QSaS+16].

fifth
[ACM93b, AOV+99].

File
[FG91, GJT+12, KS97, Pea92, WLM15, BLCD97, DZKS12].

Files
[RRK11, CCR12, kSYHX+11].

filtering
[Kep03].

final
[HCM94].

Finding
[MNG16].

Fine
[AZG17, BB+10, BSSS14, But13, CSS+91a, CSS+91b, CSS+91c, H91, KG94, LKBK11, LVS01, LFA96, NS97, PBR+15, TY97, TAK+00, YSS+17, BGK94, Dub95, Gol97, KDM+98, Kim94, Lof95, MLC+09, Met95, PL03, RP+09, TKHG04, Wei98a, kSYHX+11].

Fine-Grained
[BBG+10, BSSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, LVS01, BGK94, Dub95, Gol97, KDM+98, Kim94, Lof95, MLC+09, Met95, PL03, TKHG04].

Fine-Grained
[BBG+10, BSSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, LVS01, BGK94, Dub95, Gol97, KDM+98, Kim94, Lof95, MLC+09, Met95, PL03, TKHG04].

Finite
[HBTG98, MS02, Cor00].

Finite-Element
[MS02].

finite-state
[Cor00].

firmware
[ABB+15].

First
[MML91, Wei97, LAH+12, MHW02, Hon94].

First-class
[MML91].

FL
[ACM94a].

FlexBFS
[LAH+12].

Flexible
[ABG+08, KSB97, Len02, MSM+16, SP00a, Sam99, SCM05, WW93].

Flexible
[ACM98d].

Flow
[AT16, Ana89, HH11, PBR+15, FS0A9, JD08, KBH+03, NT14, Pol90, RM99, RP+09, SV98].

fluid
[JD08].

FluidCheck
[KSM16].

fly
[CWS06, PS03, PS07, Sch89].

Focus
[EHP+07].

Forces
[FTP11].

Forecasting
[Ano98b].

fork
[ALS10].

fork-join
[ALS10].

FORM
[TV10].

Formal
[Sta05, WP10].

formulation
[FS0A9]. forms
[BK+11].

FORTH
[JRS86].

FORTH-like
[JRS86].

Fortran
[Ano97a, Bra97, AS14, G093, HBG01, HBG02, Nag01].

forum
[Sho97a, Sho97b].

Forwardflow
[GW10].

foundation
[MCS15, RFB+89].

Foundations
[BA08, Gol94].

Four
Four-Russians \[CH95, MTN+00, KNPS16\]. Four-Way \[MTN+00\]. Fourier \[TT03, TTKG02, BCS11, HN91\]. fourth \[USE96\]. fragment \[APX12\]. fragments \[LG04\]. Framework \[BMF+16, BF04, CV98, DHR+01, EFG+03, KC98, KF97, LCS04, LMJ14, Loe97, NSP+14, Rei01, VSM+16, Yam95, AMC+03, BDF98, EHSU07, GJ11, Hop98\]. France \[FR95\]. Francisco \[ACM95b\]. FreeBSD \[Ano90c\]. Fthreads \[Bak95b\]. Futex \[FR95\].

Frequent \[GBP+03\]. FPlanning \[UOS95\]. FSA \[Lee95\]. Fuzzy \[FT07\].

Generations \[Roh95\]. Generators \[SLF14\].

Generic \[ABH+00, AB02, FD91\]. Genetic \[NSP+14\]. genome \[LHS16\]. GeoFEM \[Nak03\].

Geometric \[Caz02\]. Georgia \[ACM99a\]. Germany \[RM03, Wat91\].

ghosts \[TVD14\]. Gigabit \[AHW02\].

Gigabit/sec \[AHW02\]. Gilgamesh \[SZ02\].

glasses \[CZSB16\]. Global \[HH11, PWL+11, Ten02, FDL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b\].

globally \[CZWC13\]. GNAT \[dPRGB99\].

go [Mia90]. Going \[Bak95b\]. Goldilocks \[EQT07\].

good \[Mat03\]. GPGPU \[YZ14\].

GPGPUs \[LSB15\]. GPS \[TVD14\].

GPU \[APX12, Bon13, FPL11, KI17, LTL+16, LGH+16, LAH+12, WLG+14, YSS+17, ZCO10\].

GPU-Oriented \[LHG+16\].

GPUDet \[Bon13\].

GPU-Oriented \[LHG+16\].

Granularity \[K195\].

Graph \[CFG+12, CL95, EJRB13, HPA+15, KS93, KLS92, MM14, LK15, VR04\].

GraphCT \[EJRB13\].

Graphical \[ACR01\].

graphics \[BGDmWH12, CCW+14\].

Graphs \[HPB11, Nik94, DB13, AD08, ABG+08, DSEE13\].

great \[MMPW10\].

Greates \[Kuc92, Kuc91\].

Green \[SKP+02\].

greener \[MMPW10\].

Grid \[KEL+03\].

Grid-Based \[KEL+03\].

GIRDiron \[MCS15\].

grids \[SKG+11\].

Griffin \[Ano00c\].

Gröbner \[AGK96\].

Group \[BNH01, DLM99, QSH16\].

Group-Based \[BNH01\].

Grouping \[OR12, WC99\].

Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DKA16]. Hamilton [Rec91]. Handles [Rec98]. Handling [DH98, LSW15, SK97, BM91, KCCD99, Koo93, KTB+03, Lea96, Met95]. Harbor [BBC+00]. Hardware [CKD94, CSS+91b, KE15, LLS06, MWP07, Men91, SW08, ZLJ16, ABC+09, CWS06, CSS+91a, CSS+91e, ECX+12, FSYA09, GP05, LT97, ML15, MQW95, OCT14, PAB+14, PRS14, RPNT05, SE12, TE94b, DWS+12]. hardware-aware [PAB+14]. hardware/software [LT97]. harmful [NWT+07].

Harmony [KTK12]. Harness [Ano98, EBK01]. Hash [GK05, VB00]. Hash-join [GK05]. having [YFF+12]. Head [Mia90]. healing [SLP+09]. Heaps [DGK+03, Man99, Ste01]. help [Len95]. Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here [Ano92a, Pra95c]. Heterogeneity [CCK+16, Wko03, RKBH11].

Heterogeneous [AT16, AACK92, FBFO1, KTR+04, Lu95, NTR16, THA+12, FKS+12, GKT12, LK13, SJ95, WCC+07]. Heuristic [HH11, Mah11, OCRS07]. Hewlett [BLC97]. HFS [KS97]. hiding [BR92].

Hierarchical [GJT+12, JY15, KC98, KG94, BM03, DZKS12, LK13, LQ15, RCDG06]. Hierarchies [BCZY16, TAM+08]. hierarchy [BGDMW12]. High [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CT00, FGKT97, Gar01, Hol12, HCG91, IEE94b, LCK11, LG06, LMJ14, LBH12, LGH+16, LCH+08, MR94, MSM+16, MPDO4, ME17, NBS+15, PH97, RG03, SRS98, TCI98, VV11, WG99, WN10, CIM+17, GSO2, HG92, Kim94, Lan97, RRP06, Rei95, SQP08a, SQP08b, SQP08c, Tem97]. high- [RRP06].

High-Performance [ACM98a, BGD+12, FGKT97, Gar01, IEE94b, NBS+15, RG03, TCI98, WN10, LCH+08, VV11, CIM+17, Kim94, SQP08a, SQP08b, SQP08c].

high-powered [Rai95]. High-Speed [Ano00a, Ano03, HGC98, HG92]. Higher [CJM95, NV15]. Higher-Order [CJM95, NV15]. highly [BGDEWH12, Kub15, KKGK09, MAAB14].

Hill [CY09, USE02]. Hill-climbing [CY09]. Hilton [IEE90]. HippogriffDB [LTL+16].

Hist [Gar01]. history [Ano97b]. Hoard [BMBW00a, BMBW00b, BMBW00c]. Hoare [KI17]. HoME [OKI92]. Hood [Ven97]. HoPE [PBL+17]. Hot [IEE99, PBL+17, GLE91]. Hot-Cacheline [PBL+17]. Hotel [Ano94d, USE02].

Householder [VV11]. Householder-like [VV11]. Houston [Chat05]. HP [Ano95a, Ano95b, Yam96]. HP-UX [Ano95a, Ano95b, Yam96]. HPC [GKK09, KC09, PLT+15]. HPF [BM03, CM09]. HTM [KKGK09]. HTMT [Gar01]. HTTP [Zha00]. Hot [ZBS15].

Hybrid [BBG+10, Gao93, JYE+16, LH09, MS02, NBM93, YZ07, GKK09, HG92, MK12, MTC+07, SKS+92, Sha95b, KSYHX+11].

Hybridizing [CZS+17]. Hyperion [A+01]. hyperscalar [Raj93, Sha95a]. Hyperthreading [HRH08, KM03].

I-WAY [FGT96]. i.e [USE98b]. I/O [RM03, ABB+15, BDNO2, KSU94, LTL+16, Man98, MG15, Yoo96a]. I/O [Ano95a, Ano95b, IBM]. I/O [ABB+15, CJB+15, KSTO4, LSF+07, WZWS08]. Id [NK94].

IDA* [Mah11]. idempotency [KOE+06].

identification [JSMP12]. Identifying
[BCZY16, SU96, DESE13]. **IFIP** [BT01].

Igniting [ACM03]. II [HCD+94, IEE89, JJ91, KA97, KR01a, McM96b, Wal95]. III [An900a, USE92b]. **Illinois** [GHG+98].

Illinois-Intel [GHG+98]. **Illuminating** [BLPV04]. **ILP** [OCRS07, RLJ+09]. im [HL93]. **Image** [WN10, BCG14, Kep03, RKHT17]. **Impact** [KLH08, SCL05, TE94a, ZAK01, Div95, Met95, RG+12, RPNT05]. **Impaired** [Wei97].

imperative [SV98]. **implement** [DBRD91]. **implementable** [TEE+96].

Implementation [ACM94a, ACM99a, Alf94, AB01, AKP99, BBD+91, BHP+03, BRM03, CWHB03, DSH+10, FLR98, Hai97b, KA97, MS02, Nik94, STW93, TKA+02, TMAG03, BK96, BB00, BMV03, CMX10, DL93, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, Li05, LZ07, LAH+12, NFB17, OKD92, Stu95, Tod95, YYLO7, An95a, An95b].

Implementations [Han97, SAC+98, Ram94, SKG+11, Sha95b]. **implemented** [Boe05, KEL+03].

Implementing [ABH+00, AB02, BP05, CB89, CB90, Day92a, Day92b, DPZ97, GMB93, GSC96, HPA+15, KR01b, KBA08, KIAT99, Pra95a, TY97, TAN04, BHK+04, Lie94].

Implications [RM03, BS96, VSM+08, CS+05]. **Implicit** [BAM93, MS02]. **Implicitly** [ACMA97, PFV03, SAC+98].

Implicitly-multithreaded [PFV03].

Improve [GV95, QSaS+16, RKK15, Sin99]. **Improved** [BR92, GMGZP14, LLS06, Smi06].

Improving [AJK+12, BDN02, FT96, FM92, FBF01, GA09, IBST01, LYH16, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10].

In-Order [RRK11]. **In-place** [SGLGL+14, SCMO5]. **In-Situ** [RGK99].

IN-Tune [RGK99]: includes [SJ95].

Incomplete [HR16]. **incompressible** [RM99]. **Incorrectly** [SL95]. **Increasing** [PHCR09]. **Incremental** [BFA+15, CA902, LB95, BBYG+05].

Independent [EW96, FSS06, USE93a, KNPS16, MEG94, PG03]. **indexing** [MIS15]. **induced** [MTPT12]. **Industrial** [KW17, Kon00]. **Industry** [DM98].
Interconnection [NGGA94, RR93, SMK10].

Interface
[Chl15a, HBG01, KKD03, MS89, Met95, PS01, SW97, Ada98, DLM99, HBG02, Li05, MQW95, MS87, MEG94, TNG95, FGT96].

Interfaces [Han97, HF96, LG04].

Interleaving [LGH94, YN09].

Intermediate [McC97a].

Internals [Wea08].

International
[ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV99, Cha05, EV01, Hol12, Hon94, Lak96, LCK11, Wat91, FR95].

Internationalization [Ano98b].

Internet [Ano96, Hig97, SBB96, van95].

Interoperability [DHR01, Way95].

Interplay [MLS15].

Interpretation
[GH03, LG04].

Interprocedural [NR06].

Interprocess [Rod94].

Interrupts
[KE95].

Interval
[Kub15].

Intra-application [MKR10].

Introducing
[GL07].

Introduction
[CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98].

Intrusive [Caz02].

inux [DNR00].

Inverses [GE08].

Invocation [SKK99].

IPC
[Koo93].

IRREGULAR
[FR95, TSV12, ZAK01].

irregularly [FR95].

ISA
[KTR04].

Isolating [JWTG11].

Isomigration [ABNP00].

ISSAC
[ACM94c, Lak96, Wat91].

Issue
[KU00, Ano94e, GGB93b, TEE96].

Issues
[GMB93, PS01, ARvW03, Am96, GC92, HCD94, IAD94, TCG95].

Issuing
[HMMN91, HKN92, HMN92].

Itanium
[MB05, WCW04b, WCW04c, WCW04d].

Itanium-2
[WCW04b, WCW04c, WCW04d].

iterations [UZU00].

Iterative
[MQ07, Nak03, AAC15].

iThreads
[BFA15].

IUknown
[SW97].

Ivan
[Ano00c].

IXP
[ARB02, LCH08].

IXP2800
[AHH02].

J.UCS
[KU00].

January
[ACM94b, ACM95b, ACM98a, ACM98b, ACM93a].

Japan
[Ano91, Ano00a, Ano03].

JaRec
[Char01, GRD04].

Jason
[Ano00c].

Java
[ACM98a, ACM01, Ano97a, USE01, AFF06, AMdbRS02, AddS03, AdbRS05, AdbRS08, Ait96, Ano96, Ano98b, ABH00, ABH01, A01, AG96, ACR01, ABG08, BZ07, Ber96b, BVG97, BAD90, BR15, BHK04, BS00, Bra97, BP05, BLV04, Cal02, CV98, CRWR97a, CRWR97b, CRWR99, CWHB03, CC04, CCH11, Chr01, CT00, Co02, Cor00, Cr98a, Cra96, DJLP10, DH98, DRV02, DLZ13, DGK03, Dra96, DHR01, Dye98, EFN01, EFN02, EFG03, EFT07, FSS06, FVL03, Fe08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Han96, Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Hol00, Hyd01, KPPER06, KBP03, L00, LCS04, Loi97, Man96, MP01, Mc96a, Mc96b, Mc96c, Mc98b, Mc97, Mit96, MC06, NAW06, NM10, NR06, Nev99, OW97, OW90, PSM01].

Java
[PSM03, PRB07, Pet03, PUT04, PG03, RCKW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP02, Van97a, Ven97, Ver97, WN10, Whi03, XSaJ08, Xue12, Yan02, van95].

Java-like
[DJLP10].

JavaBeans
[Van97b].

JavaScript
[PCM16].

Javier
[Ano00c].

Jersey
[MT93].

JIT
[McM97].

job
[EE10, EE12, ST00a].

Jobscheduling
[ST00c, ST00b, STV02].

John
[Ano00c].

Joho
[Ano03].

join
[ALS10, GK05].

Joint
[FTP11].

Jones
[Ano00c].

Jorgenson
[Ano00c].

Jose
[ACM94d].

Journeyman
[Bec00].

Jr
[ACM99b].

July
[ACM92, ACM94c, ACM95a, ACM98c, EV01, IEE96, Lak96, Ass96, USE96, Wat91].
June [ACM94a, ACM98c, ACM01, Ano94f, USE92a, USE00a]. JUnit [Goe01]. just [KBF+12]. just-in-time [KBF+12]. JVM [Lan02, McM97, USE01].

K-Java [BR15]. KAI [Ano98b]. Kalkan [Ano00a]. Karlsruhe [RM03]. Kaspersky [Ano00b]. Kendo [OAA09]. Kernel [Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95]. Kernel-Based [Alf94]. Kernels [KI17, dlPRGB99, GLC99].

Knoxville [IEE94b]. Kroll [Ano00c]. KUMP [NTKA99]. KUMP/ [NTKA99].

L [DNR00, GBB+05]. L2 [SLP08]. L2-miss-driven [SLP08]. Lab [Ano00b]. labeling [D’H92]. Lafayette [EV01]. Lake [Hol12]. lambda [ORH93]. Laminar [PBR+15, RPB+09]. LAN [Yas95]. LAN/ WAN [Yas95]. Landing [TAK+00].

Language [ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIAT99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mi10, Ong97, PRB07, RL14, SV08, Smi06, TMAG03, VGR06]. Languages [ACM93a, ACM94a, ACM94d, ACM95b, ACM98b, Coo95, MSN+16, NPT98, OTY00, SCV91a, SS96, TY97, DMBM16, HL93, JP92, JHM04, MSN+10, Sch91, SCV91b, ST98, TAN04]. LAPACK [ARvW03].

Laptops [Ano00c]. Large [AOV+99, CJW+15, GN92, LA93, BCM+07, Boo93, GOT03, Koo93, SMK10, WCV+98].

Large-Scale [CJW+15, LA93, BCM+07, GOT03, SMK10]. latencies [BS06]. Latency [BD00, Fan93, OCS01, SW08, Smi01, SKK+01, WWW+02, YLLS16, BR92, DC99, DC00, Jef94, Luk01, MVY05, PG01, TK98].

Latency-directed [Fan93]. Latency-Resistant [YLLS16]. latency-sensitive [DC99, DC00]. Latency-Tolerant [OCs01]. latency [Goe01]. just [KBF+12]. just-in-time [KBF+12]. JVM [Lan02, McM97, USE01].

K-Java [BR15]. KAI [Ano98b]. Kalkan [Ano00a]. Karlsruhe [RM03]. Kaspersky [Ano00b]. Kendo [OAA09]. Kernel [Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95]. Kernel-Based [Alf94]. Kernels [KI17, dlPRGB99, GLC99].

Knoxville [IEE94b]. Kroll [Ano00c]. KUMP [NTKA99]. KUMP/ [NTKA99].
Martin [ACM99b]. MASA [HF88].
Massachusetts [USE93a]. Massive [EJRB13, OR12, Mos95, RCV+10].

Matching [HPA+15, OR12, HFV+12, KGPH12].
matrix-vector [CSV10].

Media [Ano03, Van97a]. medium [CDD+10]. Meeting [DLM99]. meets [Tam95]. Member [BS99]. Memories [HKSL96, KHP+95]. Memory [AKJ+12, BS96, BMBW00b, BD00, CH95, DM98, EJ93, EEE99a, FMY+15, GM98, GMGZP14, GH98, HG91, HL07, KZTK15, KZC15, KKHO4, KUCL15, LBS15, LB92, LB17, MSM+16, MZV93, MCT08, NAK01, RCL14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM+08, Thr99, Ver96, WC99, YMR93b, ZL16, ATLM+06, AKSD16, AAKK08, BS06, BGDM912, BCG+95, BBH+17, BMBW00a, BMBW00c, BDLMO7, BA08, BB00, BOO93, BANM7, CMF+13, Cha05, Cho93, CNV+06, DLZ+13, DLCO09, DPZ97, EKLL90, EV01, FF10, GCC15, GLE91, GL98a, GS00, GKK09, HB92, HWW93, HG92, HHPV15, ISS98, KFG15, LK01, MLS15, MCRS10, MSN+10, MLC04, MMTW10, MTS10, Mic04, MTC+07, MVY05, NCO06, NAA01, OCT14, SLT02, TSY99, TSY00, TVD10, TVD14, VTS12, WK08a, WK08b, WK08c, XHB06, YMR93a].

memory [YSY+09, YN09, kSYH+11, ZKW15, ZHC15]. memory-intensive [YSY+09]. Memory-level [EE09a]. MemSAT [TVD10]. Merlot [MTN+00]. mesh [ABC+09, Mos95]. mesh-based [Mos95].
Meshes [HBTG98, Lep95]. Message [BW XF05, HL B94, KKD V03, PH97, Ada98, BCM+07, DLM99, FM92, Met95, PRS14, SCM05, FGT96, PS01].
message-handling [Met95].

message-passing [BCM+07, FM92]. messages [Koo93, SD95, WHJ+95]. meta [FKS+12]. metascheduler [FKS+12].

Microarchitectural [FMY+15, LS11, WHG07].
Microarchitecture [KM03, AMPH09, LSF+07, Wil98].

Microarray [GAC14]. microbenchmark [BO01]. Microbenchmarking [FMY+15].
Microcontroller [BP05, PUF+04, KBP+03]. microkernel [BO96]. Microprocessor [KE15, SU96, ARU92, CJB+15, Gul95].
Microprocessors [KET+06, CGL92a, CGL92b, HL07, RCG+10]. microthreading [CSK+99]. microthreads [CTY+09].

Middleware [RBPM00, KBH+03].
Migrant [MR98]. Migrating [PG92, BDF98]. Migration [ABN99, Sat02, WG99, CWS06, CSM+05].
migrations

[HWW93, ISS98, Pha91],

[HWW93, ISS98, Pha91],

[HWW93, ISS98, Pha91],

[HWW93, ISS98, Pha91].

[HWW93, ISS98, Pha91].

[HWW93, ISS98, Pha91].

[HWW93, ISS98, Pha91].
PYP +10, RČV +10, RKM +10a, RKM +10b, RKG99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, SMQ09, ST05, Tem97, TCG95, TMAG03, TJY +11, VIA +05, VDBN08, VV00, VPQ12, WCC +07, WCV +98, YZ07, Yan97, YSY +09, YN09, kSYHX +11, YKL13, ZKR +11, dB09, vPG03, Ano97b, CH04, Mix94. Multi- [FMY +15].
multi-ALU [KDM +98]. Multi-C [Mix94].
multi-context [Yan97]. Multi-Core
KTR +04, PM14, CFG +12, CSM +05, DWYB10, KBF +12, MLC +09, Mus09, SMQ09, WCC +07, YZ07. Multi-Cores
[CK +16]. Multi-CPU [PGB16].
multi-engine [CNQ13]. Multi-Level
[RR93, CCC12]. Multi-Level-Context [JLS99]. multi-process [WCV +98].
multi-processor [VIA +05, YN09].
Multi-protocol [ABN00]. Multi-Thread
HG91, MTN +00, AMMR98, PKB +91, SKG +11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95. Multi-Threa
ded [AGK96, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CKRW99, Coo95, DV99, FuL02, GVT +17, GK94, Gil93, III01, JY15, Jon91, KIW17, Kuc92, LB92, Mas99, MG15, Pul00, RKCW98, STW93, Sei99, Smi92, Ste01, SBKK99, TLGM17, VSDK09, VB00, Ada98, AACK92, BHH +17, BC00, CV98, CHWB03, CD00, cC91, Chr01, CR02, DS16, EGBK01, FD96, GS06, GH98, HC17, KI95, KRH98, LK15, Leg01, RBPM00, RS08, SP00a, Sei98, VK99, Wai00, ABD +12, BWZD15, BK13, BIK +11, DSEE13, CIM +17, CASA14, CKRW97a, CKRW97b, CSB00, CL00, EFG +03, EHSU07, FTAB14, FG14, GCRD04, GCC15, GPR11, KHP +95, KKH04, Kep03, Kuc91, Lan97, LBVH06a, LBVH06b, LBVH06c, LVA +13, MLWC11, MS03, MCK99, NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP +10].
multi-threaded [RČV +10, RKM +10a, RKM +10b, RKG99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Tem97, TMAG03, TJY +11, VV00, YSY +09, ZKR +11, dB09, vPG03, Ano97b].
Multi-Threading
[LBK11, McC97a, McC97b, MS15, OR12, PTMB09, RCP14, Sch90, TGO99, YLLS16, DTLW16, MCF99, NJ00, RV04, Bak95a, BM07, FW03, LZW +13, MLC +09, VDBN98, kSYHX +11, YKL13, CH04].
multiagent [Bar99]. Multicomputer [FKD +97]. multicomputers [BCG +95].
Multicore
[BCZY16, CCH11, CB16, GJ11, HEMK17, KLD09, LS11, LMA +16, LHY16, LDT +16, MR09, NBMM12, PGB16, RCM +16, RRK11, SM +10, THA +12, ZBS15, CNQ13, CN14, CMX10, LK13, LLLC15, NZ17, RCG +10, RKBH11, SSCP13, SE12, ZSB +12].
Multicore/Multithreaded [RCM +16].
multigrid [RM99]. multicore [Cat94, JJY +03, LK15]. Multimedia
[Spe94, Est93, Gol96]. multimethod [FGT96].
Multiple
[CB16, FGT97, HW92, HKT93, NTR16, OR12, CS95a, CS95b, FD95, HK +92, LT97, TE94b, TFG10, TAN04, WCT98].
multi-context [FD95]. multiply [CSV10]. Multiprocessing
[EKB +92, Len95, NV94, Wai95, DLCO09, MT93, Pra95b, RGK99].
Multiprocessor [AAC92, AKP99, BC00, Cat94, EHG95, GH +98, HN91, KMAG01, MCT08, Pre90, SZ92, SEP96, USE92b, WC99, ZFB02, Che93, DCK07, EKDL90, HB92, KT99, LVN10, LWV +10, PJZA07, Ano94b].
multiprocessor/multithreaded [Cat94].
Multiprocessors [BMV03, BS96, BL96, BLG01, CH95, GMR98, KU00, KKS +08, LS07, LMJ14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA09, HT14, LGH94, MA06, Men91, QSO14, SMK10, Sh98, SKKC09, TOS07, Yoo96b, YMR93a].
Multiprogrammed [MVZ93, TSY99].
Multiprogramming [BHP+03, JJ91, CGL92a, CGL92b].
MultiRace [PS07].
Multitasking [Col90b, Gib94, Gou90, JJ91].
Multithread [LCS04, SYH14, CS95a, CS95b, DSH+10, GCC99, JD08, SWYC94, ZG98, ZG96].
multithread-safe [GCC99].
Multithreaded [AddS03, ´AdBdRS08, ABC+93, AT16, Ama98, Ano92a, Ano92b, Ano94e, Ano94g, Ano94h, Ano98a, Ano98b, Ano01, ABB+00, ABB+01, AB01, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BBDH+11, BKN06, BMBW00b, BF04, BJK+96, BL98, BB00, BMN99, BDN02, BP05, BLG01, BTE98, BNH01, BD06, BGH+12, BBSG11, CJW+15, CS02, CGK06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN+00, CMBAN08, Dan09, DNR00, DR98, DRV02, DO95, EFN+01, EFN+02, EJRB13, EHP+07, EC98, EGP14, FS06, FT96, FS96, FTT11, FQ00, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA+15, HMLB16, HTZ+97, HMNN91, HHOM91, HHOM92, HL94, HH11, HWZ00, HPB11, HY+15, Hud96, HMT+96, I+94, JYE+16, JSB+12, KA97, KKKW14].
Multithreaded [KMAG01, KST04, KML04, KC98, KC99, KM+02, KR12, KU00, KE15, KG94, KU17, KA05, KU05, KTR+04, LS07, LG06, LH09, LG04, LB96a, LB98, LB00, LL06, LVH12, LTM+17, LYH16, LPE+99, Loe97, Lyn97, Lun99, MGQS+08, MP01, MS89, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGA94, NTKA99, Nik94, OB13, OTY00, PBB09, PUF+04, PG92, PG96, PH99, PF01, PH91, PWL+11, PS01, QOM+12, RW97, RCC12, REL00b, Rin01, RNSB96, RSNB01, RRK11, RBA05, RR99, SPDLK+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She98, SU96, SU01, SZM+13, SGM+97, SMD+10, SR01b, SSYG97, SKK+01, Spe94, SRi95, SZ02, SUF+12, Sut99, TG99, Ten02, TKA+01, TCI98, TT03, TTKG02, TGBS05, TJY98, TSV12, URS02a, VSM12, Vo93, VE93, Wan94, WS08, Wea08].
Multithreaded [WJ12, Wil97, WLM15, WG94, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZA01, ZI02, AdBdRS05, Aga91, Aga92, ABF+10, ABC+15, ACC+03, AGE08, Am96, Ano94b, Ano95a, Ano95b, A+01, ABC+09, AR17, Ar92, BGDMWH12, BBFW03, BRRS10, BGZ97, BCS00, BAD+10a, BAD+10b, BCG13, BCG14, BMBW00a, BMBW00c, BLYN09, Blu92, BL93, BL94, BJK+95, Blu95, BL99, BS10a, BCG14, BEKK00, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CSM03, Car89b, CB90, CFG+12, CL94, CN14, CS12, CDD+10, CLL+02, Cho93, Cho92, CGL92a, CGL92b, CJ+15, DJLP10, DSG17, Dav11, DL93, DKF94, EJ+96, Eir97, EGP14, FS06, FT96, FS96, FP11, FQ00, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HP+15, HMLB16, HTZ+97, HMNN91, HHOM91, HHOM92, HL94, HH11, HWZ00, HPB11, HYY+15, Hud96, HMT+96, I+94, JYE+16, JSB+12, KA97, KKKW14].
Sun95, SMS+03, TMC09, TMCP10, TR14, TV10, TG09, TE94a, The95, TKA+02, TB97a, TB97b, TKHG04, TLZ+16, Tod95, Tsa97a, TDW03, UZU00, VGR06, Ver97, Ver96, VGG+10a, VGG+10b, WCC+07, Way95, WTB10, XCI12, XSA+08, Yan02, Yan97, YZYL07, Yo06b, YM92, YMR93a, YNPP12, ZJS10, ZP04, WM03, LP09.

Multithreading
[AMdBR02, AH00, Ano99, Ano05, BBG+10, BWX05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Bre02, BLPV04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FBF01, FKT96, GHG+98, GV95, Gu95, Gun97, GSL10, Har99, HBTG98, ILFO01, IBST01, KPC96, Kel94a, Kel94b, Kho97, KF97, KHL97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MHG95, MN00, MKC97, Nag01, Oni97, ÖCS01, PJS15, PT91, PST+92, Psa92, Psa97, RLJ+00, RG03, RD96, SSP99, SPY+93, SW08, SCv91a, SP07, SLG04, SRR98, Sin97, Smi01, ST00c, SKA01, TY97, Ten98, TAK+02, TESK06, VT96, WWW+02, WCC+04a, We97, YG10, ZL10, Zlg96, AAHF09, AAKK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCCI12, Div95, DN94].

Multithreading
[Dub95, Dye98, EE99a, FM92, Fis97, Fon97, GWM07, GBC95, Gea98, GEG07, GE08, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD99, Kin94, KG07, KT99, KHL+99, LK13, LGH94, LSS12, LB95, LB96b, LZX+14, LQ95, LV01, LZBW14, Luk01, MWP07, Mac96, MKIO04, MGL95, MM+05, Mc97, Met95, MKRO2, MAAB14, AAA09, Ong97, PSG06a, PSG06b, PSG06c, PG01, PHCR09, Pra95b, RM00, RR96, RPNT05, San04, Sch91, SCv91b, Sin99, SW16, STV02, Swi09, TK98, TSC99, TO10, Tsa97b, TEL95, TEE+96, Tuf96, TEL98a, TEL98b, UR92b, UR93, VPC02, WLG+14, WW93, WCC+04b, WCW+04c, WCW+04d, YCW+14, Lar97].

Multithreading-based [GE08].
must
[NA07].
mutable [HL93].
Mutex [Hol98b].
mutual [BRE92].
Mysteries [Hol99b].

name [ORH93].
Nanophotonic [VSM+08].
Narrow [YSS+17].
NAS [CRE99, GH98].
native [SJ95].
navigating [TVD14].
NDP [Ano97a].
Nearest [JY15].
Nearest-Neighbor [JY15].
Need
[SLG04, RPNT08].
Neighbor [JY15].
Nelson [Ano00c].
Nested
[EW96, NB99, TG099, TG00, YZ14].
Net
[Ham96].
Net-Centric [Ham96].
Netburst [KM03].
Nets [KMjC02, MKC97].
Network
[ACM98a, RM03, ARB+02, Chl15a, Don02, GRS97, HH11, KML04, KRH98, NGG94, YG10, ZP11, BDM98, GL07, KGP912, LZ07, LLL10, LEL+08, OCRS07, RCV+10, RPNT05, Sta90, ZP04, PH97].

Network-Facing [KML04].
Network-I
[RM03].
Network-I/O [RM03].
Networked
[CT00, FGKT97].
Networking
[ACM98d, ACM00, Hol12, LCK11, DWYB10].

Networks
[IEE95, KLH97, Lu98, RR93, SMK10].
Neumann [HG92].
Neurons [LTM+17].
nearly
[Ano95a, Ano95b].
NewOS
[TLA+02, Gei01].
Newport [USE92b].
News
[Bra97, Gar01, Mat97, Mc97].
Next
[ARB+02, EEL+97, TSV12, CH04].
Next-Generation
[EEL+97, TSV12, CH04].
Nextest

Nexus
[FKT96].
NFs [Ano95a, Ano95b].
NFV [GDSA+17].
Niagara [KA005].
NLM
[Day92a, Day92b].
NLM-Based
[Day92a, Day92b].
NoC [YL16].
node
[TK98].
Nodes [EHG95].
noise [GA09].
Non
[Caz02, Coo95, JLS99, KIAT99, LB17, SGM+97, Tra91, Ann96, RGK99, SCG95, SKG+11].
non-blocking [Ann96].

Non-Deterministic [LB17].
Non-Intrusive [Caz02].
non-invasive
[RGK99].
Non-numeric [SGM+97].
Non-preemptive [JLS99].
Non-Strict
Coo95, Tra91, KIAT99, SCG95.
non-uniform [SKG+11]. Nonblocking [HH11]. nondestructive [AD08].
nondeterminism [HBCG13]. Nondeterministic [LPS07]. Noninterference [BC02, Smi06].
noninterruptible [AAHF09]. Nonlinear [Nak03, GOT03, Kub15]. Nonlinear [Nak03, GOT03, Kub15].
nonoperational [GS00]. Nonuniform [WA08]. norm [Ano92a]. Note [AKP99, Lie94]. NOTES [Gil88].
notification [BF08]. Notifiers [Pom98]. Notre [IEE96]. Novel [HG91, GKK09].
November [ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a].
NOWs [SLGZ99]. NP [Y214]. NPB [EGC02]. NT [Ano98b, Hig97, PG96, Pra95b, Pra95c, TC98, USE98a, Wil94a, Wil94b, Yam96].
NT-Style [Wil94a, Wil94b]. NUMA [WMC94, ZLW+16]. NUMA-aware [ZLW+16]. number [LSS12, SLF14].
O [RM03, ABB+15, BDN02, Ksu94, LTL+16, Man98, MG15, Yoo96a]. Object [Ano99, BBD+91, BC94, Gk94, HH97, KC99, NPT98, SJ95, SG96, Ada98, Car98a, Cll+92, FWL03, FL90, JPS+98, LLCl5, Sch98, Wei98a, Yan02, db09, vPG03].
Object-Oriented [Ano99, BBD+91, BC94, NPT98, SG96, HH97, Ada98, Car98a, Cll+92, FWL03, FL90, JPS+98, Wei98a, Yan02, db09, vPG03].
Objects [ACR01, CJK95, CR02, Lw00, Pra95a, Ric99, Ten02, Yst95, Bak95a, Bri89, DMBM16]. objet [Sri09]. Oblivious [ULK17, HL08, HZ12]. Observer [Hol99b]. occupancy [PAB+14]. Ocean [SAC+98].
OCTET [BKC+13]. October [ACM94d, Ano94d, BT01, IEE95]. ODBC [Ano00b, Hig97]. ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [MGH95, AAC+15, DTK+15].
off-chip [DTK+15]. Off-the-Shelf [MGH95]. offs [Par91]. Old [Wil00].
On-Chip [LKBK11, SMK10, TEL95, TEL98a, TEL98b]. On-Line [Ano00c, FSPD16, FdL02]. On-the-fly [Sch89, CWS06, PS03, PS07]. once [Bak95a].
one [QSH16]. one-sided [QSH16]. Online [Ger95, OTY00, RCC14, Sei98, Sei99].
ORA06, TGO99, HF96, LW+10, RS07, VGG+10a, VGG+10b]. only [MjF+10, NM10, ZJFA09]. onto [LBvH06a, LBvH06b, LBvH06c]. Open [Ano00c, BMF+16, Hai97b, KR01a, KR01b, RBF+89]. Open-Source [Ano00c].
OpenMP [Cha05, ArvW03, BHP+03, Bbc+99, Bra97, BMV03, B001, CRE99, CDK+01, CM98, DM98, HD02, EV01, JF+93, KKH03, Lu98, MS02, Mar03, MLC04, MDP04, Mat03, MG15, MM14, Mii03, NAAL01, RBAA05, SLGZ99, Thr99, TGBS05, Vere04, RM99].
OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPitOn [BMF+16].
OpenSPARC [Wea08]. Operand [SP07]. Operating [ACM94d, CLFL94, TLA+02].
Gei01, IEE98, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, BDM98, DBRD91, IEE94d, Jef94, Jen95, Lvn10, LAK09, Ply89, RBF+89, REL00a, REL00c, She98, Way95].
operation [RHH10]. Operational [CKR99, CKRW997a, CKRW97b].
Operations [KKS+08, KLDB09, SCL05, HMC95, RD06].
Opportunistic [YL16]. Opportunities [GJ07, HL08, Mus09]. OPR [QSH16].
Optimal [AT16, Lar95, CMC+12, Lep95, LML00].
Optimistic [WHJ+95, CZSB16, VPQ12].
Optimization [BLG01, GN96, RNSB96, SYHL14, TJY98, TLGM17, WJ12, AMC+03, AMPH09, DZK12, GOT03, Koo93, RKCW98, Sin99,
TO10, ZCSM02a, ZCSM02b.

Optimizations [HYY+15, JSB+12, KET06a, LEL+99, Sut99, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95]. Optimized [Sin97].

Optimizing [DTK+15, KZTK15, PR98, PSCS01, WCZ+07, GS02]. Orange [ACM98d].

Order [CJK95, RKK11, NV15, SJAI12, SW16, ZKW15].

Oriented [Ano99, BBD+91, BC94, KS97, LHG+16, NPT98, SG96, Ada98, Car89a, CLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei98a, WP10, Yan02, db09, vPG03].

Orlando [ACM94a, ACM99a, ACM99b, IEE93].

Out-of-Core [QOIM+12, ABC+15].

out-of-order [SJA12, SW16].

outstanding [LSB15].

Overall [SEP96].

overhead [DSR15, RRP06, YL16, ZHCB15].

overview [Li05].

Ottawa [BT01].

Out-of-order [SJA12, SW16].

Outstanding [LSB15].

Own [BS99, Sho97a, Sho97b].

Oxford [ACM94c].

P [Ano00b, Nik94, PR05].

P-RISC [Nik94].

P-STAT [Ano00b].

P-Thread [PR05].

Pacific [IEE89].

Pacifier [QS14].

Package [Ano94c, FL90, HCM94].

packages [GOT03, OT95, PL03].

Packaging [RR93].

Packard [BLC97].

Packet [AHW02, LC+08, MVY05, WCZ+07].

page [CNV+06].

PageRank [KG07].

Paging [FD96, FdL02, Sc198, Sei99].

Pagoda [YSS+17].

Pal Lisp [KI95].

pain [Gus05].

Pajé [CdOS01, CSB00].

Palo [ACM01].

panel [Ano94c, Bak95b, HCD+94, IAD+94].

Paper [ABH+01, TKA+01].

papers [ACM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05].

par-monad [FKS+12].

ParADE [KKH03].

Paradigm [EW96, JD08, LK15, PPA+13, BCG+95].

Paradigms [CM98, HD02, YMR93b, YMR93a].

Parallel [ABC+93, AMRR98, Ama89, ABN00, ACM97, Bar92, BC00, BFA+15, BE13, BBC+00, BTE98, CZS+17, CL05, CDK+01, CBN+00, DS16, Den94, EJ93, FMH95a, Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN92, JY15, KTLK13, KI95, KEL+03, Kon00, KKD03, Kwo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSa+16, Scv91a, SAC+98, SRE+98, WC99, YFF+12, ARv03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo03, BE12, BGK94c, CAR08, CFK+01, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FMH95b, FD95, Fj97, GC92, Gol97, GKK09, GEG07, GE08, GB99, HMC97, HF88, Hop98, HWW93, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, Lu94, MT02a, MT02b, MT02c, MR98, Mis96, N00].

Parallel [NPA92, OdSSP12, RCV+10, RHH10, SBC90, Sch91, Scv91b, Sha98, SWYC94, ST98, SGS+94, Taft, TCC95, VPQ12, VGK+10a, VGK+10b, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, FR95, Vre04, WN10].

Parallel-Multithreaded [WC99].

Parallelism [AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FURM00c, GVT+17, GP95, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCFT99, NB99, RABAA05, SSP99, SMD+10, SG96, Thr99, WS08, YBL16, Yoo96b, ALIH08, AKSD16, CSS+91a, CSS+91c, EE90a, FN17, FURM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KV+90, KO99, LAH+12, QQOV+09, SLG299, SD13, TEL95, TEL98a, TEL98b, VDBN98, VV00, Wei98a, XSAJ08, YZ14, Zig96].

parallelism-aware [LAH+12].

parallèlisme [Zig96].
Parallelization
[CRE99, KC09, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JJY+03, PO03, RKM+10a, RKM+10b, RRMJ12, TFG10]. parallelized [Ca91], Parallelizing [BM91, WDC+13, KBF+12]. ParaLog [VGK+10a, VGK+10b]. Parameterized [BCR01, FK12]. Parametric [Ano98b, FRT95]. Paravirtualization [YSY+09]. PARC [Ong97]. Parsing [BC00, Lar95, PCM16]. Part [Ano92a, Ano92b, KR01a, McM98b, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, McM96b, McM98a]. Partial [Loe97, RRP06, SP00b, Shi00, ZKW15].

Partitioning

Performance
[ACM98a, ACM98d, ACM00, Aga89, Aga91, Aga92, BS96, BL96, BFM03, BLG01, BNH01, BGH+12, BBSG11, Cal97, CRR+99, CCH+11, CCK+16, CH95, Cho92, CT00, CSM+05, CBN+00, CBM+08, DWY98, ECG02, FT96, FSPD17, FB01, FURM00c, FGKT97, Gal94, Gar01, GN00, HRH08, Hol12, HN91, IE94b, JFL98, KZTK15, KS97, KTR+04, LCK11, LG06, Leyer95, LM+14, LH+16, LHY96, Man99, Mao96, MSM+16, MPD04, ME17, MKC97, MM14, NCA93, NBS+15, NGGA94, Par91, PH97, PS01, QSat+16, RG03, RVOA08, RKK15, SC+15, TCI98, TT03, Tsak97a, TL97, WBin98, WG99, WN10, WYJ03, ZL10, ZAK01, ZOS02, AAC+15, APX12, AAKO8, BGDM12, BS10a, BM09, BMV03, CML00, Car89b, CIM+17, Cho93, Div95, Don92, DLF94, ECX+12, FL90, FM92, Fis97, FURM00].

performance
[FURM00b, GS02, GEG07, GLC99, HL89, ICH+10, Kim94, KLI++99, LB95, LB96b, LBH12, LCH+08, LMC14, LBE+98, MLC+09, Mah11, MCRS10, MCM97, PIZA07, PGB12, RGK99, SE12, SSK+07, SQP08, SQP08a, SQP08b, SQP08c, SK+02, TMC09, TR14, TG09, The95, VV11, Wan94, WCZ+07, WOK96, YZ07, YM92, ZJS10].

personality [CCW+11]. perspective [AG06]. Perspectives [PLT+15]. pessimistic [CZSB16].

Petaflops [SZ02]. Peter [Ano00c]. Petri [KMjC02, MKC97]. PGI [Ano00b]. pH [ACMA97]. Phi [SCD+15]. Philadelphia [ACM96].

Photomosaics [TLA+02]. Phylogenetic [LHG+16, LBH12]. physical [AMPH09].

PIC [BMV03]. PicoServer [KSB+08]. picture [AC09]. Piecing [Ano97b]. Pipelining [GV95, RVOA08]. PIRATE [ICH+10]. Pitfalls [Hol98a, SPY+93, CL00, San04]. place [SCM05, SGLGL+14]. placement [NLK09, TE94a]. plagiarism [TLZ+16].

Plug-in [DHR+01]. plus [Ano95a, Ano95b]. PM [AB02]. PM2 [ABN99, AB01]. Pointer [RR99, SR01a]. pointers [Sim97, WW96]. Points [CC04, CHH+03, SLP+09].

POWER5 [BCG+08, MMM+05, KST04, Ano05].

POWER6 [LSF+07]. powered [Rei95]. PowerPC [BEKK00, SBKK99].

PowerRAC [Ano00b]. Practical [HW92, LMJ14, MNG16, ND16, PBR+15, RR96, TGBS05, BCCO10, RD99, RBP+09].

PRAM [For97, Lep95]. Pre [PR05, Luk01]. Pre-Execution [PR05, Luk01]. Precise [HR16, KUCT15, CLL+02, FF09, WTH+12].

Precomputation [MGQS+08, WWW+02]. Preconditioning [Nak03, GEG07].

Predicting [Lun99]. Prediction [AKS06, CMBAN08, IBST01, PBL+17, BWDZ15, BMV03, CTYP02, CPT08, GL98b, RR06, TFG10, WHG07].

Prediction-Based [CMBAN08, RRP06]. predictive [LTHB14, SRA06]. Predictors [EPAG16]. preemptive [JLS99]. prefetch [AMC+03]. Prefetcher [LYH16].

Prefetching [BL96, GK94, MKC97, SLT03, VT96, LB95, LB96b, Mao96, SLT02, SKKC09].

Prefix [WJ12]. Preliminaries [NBM93].

Preliminary [EHG95]. Preparation [GH03]. preprocessor [Fon97, Mil95].

prescient [AMC+03]. Presentation [Kub15]. presented
preserving [ACM93a, ACM94b, ACM95b, ACM98b].
priorities [BBH+17, LZ07, NLK09].
principles [LAK09]. Principes [ACM93a, ACM94b, ACM95b, ACM98b, TLA+02].
print [Van97a]. priorities [STV02].
prioritization [FD95]. Priority
[BCG+08, NBMM12, SCCP13, ST05].
priority-based [NBMM12]. Private
[Man99]. privatization [HZ12]. Pro
[Ano97a]. Probabilistic
[EE10, EE12, CHH+03, Smi06]. Problem
[HH11, Lee06, YFF+12, BIK+11, Mit96].
Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].
procedure [BGK94c, KasD07, LQ15].
procedures [MCS15]. Proceedings
[ACM94c, ACM98d, ACM99a, ACM01,
Ano90, Ano94a, Ano94d, AOV+99, Gol94,
Hol12, IEE89, IEE90, IEE92, IEE94a,
IEE95, IEE96, IEE02, Lak96, LCK11, USE89,
USE91a, USE91b, USE92a, USE93a, USE93b,
USE96, USE98b, USE98a, USE00b, USE01,
USE02, ACM92, ACM95a, ACM96, EV01,
IEE97, Wat91, ACM93b, ACM98c, RM03,
Ano91, DLM99, IEE94b, IEE94c, FR95].
Process [FT96, FG91, BM91, HF96, LVS01,
MR98, Pll89, WP10, WC+98].
process-oriented [WP10]. Processes
[CB16, HI01, Spy+93, ZSA13, YZYL07,
Zig96]. Processing [AW02, GAC14,
RW97, SS91, WNM10, Hox98, MVV05, Par91,
PYP+10, RHK17, WCZ+07]. Processor
[ABC+93, Ano00b, BCG+08, BGH+12,
EH95, GV95, HMN91, HHOM91,
HHOM92, KST04, KML04, KA005, LHV12,
MGQS+08, MG99, MN+00, MVZ93,
MB05, SW08, Sin97, ST00c, SZ02, SBKK99,
SUF+12, UALK17, WS08, AAHF09, APX12,
BEKK00, CL94, CY09, Ch092, EE10, Fis97,
Fuj97, Goo97, HF88, HKN+92, HMN+92,
KDM+98, Kho97, KBA08, LBvH06a,
LBvH06b, LBvH06c, LCH+08, Lu94, MK12,
Met95, Moo95, Moo96, OCRS07, Ra93,
Sha95a, SJA12, Sin99, ST00a, ST00b,
STV02, Squ94, Srr91, Tsa97a, Tsa97b,
TEE+96, VIA+05, WCW+04b, WCW+04c,
WCW+04d, YNO9, ZP04]. processor-based
[WCW+04b, WCW+04c, WCW+04d].
Processor-In-Memory [SZ02].
Processor-Oblivious [UALK17].
Processors
[ARB+02, AH00, Ano01, BF04, EE+97,
FT96, GJT+12, GSL10, KS16, KLG08, KU00,
KLDB09, LP+99, HCM95, MCFT99, MR09,
ÖCS01, PF01, RCM+16, RRK11, SU01,
SR01b, URS02a, YG10, ZP11, Aga89, Aga91,
Aga92, AAC+15, BGDmWH12, BWDZ15,
CS95a, CS95b, CN14, CDD+10, DWYB10,
Div95, Eic97, EE09a, EE09b, EE12, FD95,
GMW09, GBP+07, KBF+12, LLL10,
LBE+98, Luk01, MN03, MEG03, MPT12,
Mis96, NB12, NZ17, PFV03, PAB+14,
RRG+12, RCM+12, RPN10, SLP08,
SMS+03, URS02b, URS03, ZSB+12, WM03].
processus [Zig96]. Procs [MT93].
Products [Ano97a, Ano00b, Bra97].
Professional [Ano00b]. Profile [BM94].
profiler [DTML14]. profiling [DG99].
Program
[Ch15a, DSR15, EFN+01, GN96, KKW14,
NBMM93, PF01, PS01, TS00, TJY98,
YLLS16, AC09, BGC14, BD06, Cal02, Dan09,
Duv95, EFN+02, FRT95, JEV04, JPSN09].
Programmability [THA+12].
programmable [PYP+10].
programmation [Swi09]. programmed
[PPA+13]. Programmer
[Cro98, W100, MS87, San04, Swi09].
Programming
[ACM93a, ACM94a, ACM94b, ACM94d,
ACM95b, ACM98b, ACM99a, BBG+10,
BTE98, Bat97, CMK00, CV98, CDK+01,
Ch15b, CT00, CW98, DM98, FH95a,
FTP11, HCD+94, Hol98d, Hol98a, Hol98b,
Hol98c, Hol99a, Hol99b, ILFO01, KKH03, KSS95, KSS96, KIAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PG99, QOQOV+09, QOIM+12, Rod95b, SBB96, TC98, Vre04, Wi97, YFF+12, dPRGB99, van95, ALS10, AR17, AG96, ABG+08, BCHS00, BO96, BYLN09, Bir89, CFK91, Car89a, CS00, CMS03, Cha05, DSH+10, EV01, FHMY95b, GKZ12, Gil94, Gol97, GL07, HMC97, Hyd00, JPS+08, JHM04, KIM+03, Kim94, LB98, LP09, Man96, MSM+10, MKIO04, MR98, Mix94, NHFP08, Nev99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV96c, SV96a, SV96b, She98, She02, Sum95, TB97a, TB97b, TAMAG03.

programming [Wal00, WCC+07, Yan02].
Programs [ABNP00, BBFW02, BE13, BLG01, CJW+15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, EGP14, FQS02, GKCE17, HLB94, Kri98, LCS04, Lun97, Lun99, MS89, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+07, SYHL14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BRRS10, BK13, BCG13, BGC14, Bhu95, BE12, BC02, BS10b, BNS1a, BNS1b, BNS12, CZWC13, CJ91, CL00, CLL+02, CVJL08, Cor00, DJLP10, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQS05, FF08, FFY08, GMR09, GRS06, GPR11, HZ12, JPS+08, JWGT11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCG95, SRA06, Sen08, SP06b, Shi00, SGS14, St02, Taf13, TR14].

programs [TLZ+16, WTH+12, XSAJ08, YCW+14, YNP12, ZJS10, ZS06, dB09, vPG03].
Progress [Fspd17, TLGM17, ZHC15].
Progress-Aware [Fspd17]. Progressive [BBdH+11, TGO00]. Project [Ano99].
projection [SSKP+07].

projecTions [MQLR16, MLR15]. proliferating [Ano94b].
Prolog [EC98, AR17, KA97]. Promises [Gar01].

Proof [AddS03, ÀdBrRS08, FKP15, ÀdBrRS05, GLPR12]. properties [KTLK13, Van97b]. proposal [GP05].
Proposed [GV95].

Protein-Protein [BCS11]. Protocol [GRS97, III10, ABN00, KASD07, QSQ14].

Protocols [AB01, AB02, GRR06, TVD14].
Prototype [BMR94, HHHM91, HHHM92, BK96, BVC97, Far96].

prototyping [PDP+13]. Provably [DJLP10, GB09].

provide [Way95]. provides [Hig97].

Providing [PS03, PS07, RVS13].

Providing [BSSS14, FGG14].

pseudorandom [SL14]. PSO [HH16].

PTF [Yam96].

Pthreads [Bee98].

Publications [Bee98]. Publishing [Ano00b, Hig97].

Purpose [Ber96b, HSS+14, Man98, ZSA13, Ber96a, DC99, DC00, HSD+12, SKA01].
Put [Wal95].

PVM [HLM99, DPZ97, Pla02, ZG98]. PVM/MPI [HLM99].

Python [Swi09, How98, Pul00].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02].

QoS [ICH+10, PSM01]. QR [Dav11].

quality [PSM03]. Quantitative [NB93].

Quasi [Pla02].

Quasi- [Pla02]. Queries [TGO99, TGO00]. query [GARH14].

QUERYFLEX [Ano97a]. querying [HF96].

Queue [Cri98b, Cri98a]. queues [SCM05, ST05].

Queueing [VK99, KPPR06]. Quick [Ano00b].

QuickRec [PDP+13]. quicksort [Mah13].

R3000 [Aru92].

Race [HM96, KUCT15, MM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AKH08, EKT07, FF09, HR16, HHPV15, MM09, NAW06, NA07, PS03, PS07, PH06, RVS13, WDC+13, XH106, DWS+12]. race-freeness [AHK08].

RaceFree [LZ13].

Races
[KZC15, FF10, NWT+07, PRB07, PT03, RBK+09]. racy [SRJ15]. RADISH
[DWS+12]. Ramada [Ano94d].
Ramada-Congress [Ano94d]. random
[LSS12, Sen08]. random-number [LSS12].
Randomized [Sei98, Sei99, JPSN09]. Rank
[AJK+12, Dav11]. rank-revealing [Dav11].
Ranking [DV99, VV00]. ray [Tod95].
RCDC [DNB+12]. RCU [CKZ12].
Reachability [LCS04, LQ15]. reachability-modulo-theories [LQ15].
Reactions [LTM+17]. Reactive [LvH12].
Reactivity [BDN02]. read [NM10].
read-only [NM10]. ready [Ano92b]. Real
[BC94, IEE94a, IEE94d, JLS99, KBP+03, MN00, PSM01]. PUF+04, PSCS01. SZG91,
SUF+12, Tet94. WLG+14, dIPRGB99. CZWC13, CMX10, Hol98d, Hol98a, Hol98b,
Hol98c, Hol99a, Hol99b, Jen95, JPSN09, MKK99, OT95, PSM03, RPN05, San04,
SZ92, SJB92a, SJB92b]. Real-Time
[IEE94a, JLS99, MN00, PUF+04, PSCS01, SUF+12, Tet94, dIPRGB99, IEE94d.]
KBP+03, PSM01, SZG91, Jen95, MKK99, OT95, PSM03, San04, SZ92, SJB92a,
SJB92b]. Real-Time-and-Distributed
[BC94]. Real-world [WLG+14]. Reality
[LH09]. realizing [YZ14]. Realtime
[BMR94]. reasoning [FK12]. rebiasing
[RD06]. recognition [Ano97b, LG04].
reconfigurable [DSH+10, LP09]. ReconOS
[LP09]. reconstructive [MCS15]. Record
[Chr01, UALK17, ACM93a, ACM94b, ACM95b, ACM98b, GCRD04, HDT+13,
HT14, PDP+13, QSI14, RD99].
record-replay [HDT+13]. Record/Replay
[Chr01, GCRD04, RD99]. Recording
[MCT08, NPC06, HZD13, LHTZ15, XHBO6].
recoverable [LAK09]. Recovery
[LAK09, VPC02, WCV+98, YZYL07].
RecPlay [RD99]. rectangular
[SGLGL+14]. Recursively [BE13, BE12].
[KSU94]. Reduce
[DSR15, CCC12, Cor00, KOE+06]. reduced
[GA09]. Reducing
[SLP08, SYHL14, PGB12]. Reduction
[Ama89, CL95, KLS92, HH16, XHBO6, YL16,
ZKW15]. Reductions [ZAK01].
Redundant
[CCK+16, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14].
ReEnact [PT03]. Reentrant
[AMdBR02]. Refactoring [Ten02].
Reference [Rec98, Sch14, KOE+06].
Reference-Counting [Rec98]. refinement
[GPR11, KPP+06, KH16]. Reflection
[OT95, Bak95a]. region [KBP+03, region-based [KBP+03]. regions [GPS14].
Register
[GJT+12, LPE+99, RRK11, WW93, CCC12, HKT93, SLP08, kSYHX+11, ZP04].
regulated [XHBO6]. Relabeling [HH11].
related [Bar09, RD06, TLZ+16]. relational
[HB15]. relative [Bet73]. Relatively
[NV15]. relaxed
[BAM07, DNB+12, HT14, QSI14, ZKW15].
relaxed-consistency [HT14, QSI14].
Relaxing [CZS+17]. RelaxReplay [HT14].
Relay [Zha00]. Release
[AB02, PST+92, SLP08, EKB+92, Pea92].
Reliability
[CCK+16, OL02a, OL02b, OL02c]. Reliable
[KS16, NBS+15, RG03, YZYL07, YCW+14].
relocation [WW93]. remains [Ano94b].
remedies [ALW+15]. remote
[TK98, ZLW+16]. Replay [UALK17, HDT+13, HT14, LTN10, LTV+10, LHTZ15,
NWT+07, PDP+13, QSI14, QSH16].
Replaying [MCT08]. Replica [AT16].
Replication [AKP99, BKI06, VACG09].
Replication-Based [AKP99]. Report
[Ano97a, HCM94]. reproduce [HZD13].
request [Sch98]. requirements [GL98a].
rescue [SLP+09]. Research
[BMF+16, USE01, AG06, RPNT08]. réséau
[Swi09]. Resistance [Gar01]. Resistant
[YLLS16]. resize [Mit96]. resolution
ST00a, TAS07, WHJ+95, ZSB+12. **Scheme** [ABN99, PJS15, SKK09]. **Schur** [YFF+12]. **Science** [Go94]. **Scientific** [CMBAN08, HLBB94, WN10, BT01, BD06, Dan09, NJ00, Bra97]. **scoring** [TO10]. **Scotland** [AOV+09]. **Scriptics** [Ano09b]. **Scripting** [RBPM00]. **Scripts** [TLA+02]. **Seamless** [CV98]. **Search** [AMRR98, BCC010, LAH+12, Mah11]. **searches** [TCCG95]. **Seattle** [ACM93c, IEE94a, IEE94d, LCK11, USE98a]. **sec** [AHHW02]. **Second** [IEE89, IEE96, FR95]. **Section** [DSR15, CS12, DTM14, SMQ09, YL16]. **Section-Based** [DSR15]. **sections** [NM10]. **Secure** [SV98]. **Security** [BRRS10, MS03, Way95]. **sedition** [Bak95b]. **SEDMS** [USE92b]. **See** [SW07, AC09]. **segmentation** [BG14]. **Select** [KKDV03]. **selected** [Cha05]. **Selection** [AT16, PR05, St90]. **Selective** [Nak03, PR98, VACG09, MCRS10]. **Self** [LLL15, Pet00, SEP96, BDF98, SLP+09]. **Self-Allocating** [SEP96]. **self-healing** [SLP+09]. **self-migrating** [BDF98]. **Sema** [Kar89]. **semantic** [BNS11a, BNS11b, BNS12]. **Semantics** [BR15, CKRW99, HEJ09, MP01, CKRW97a, CKRW97b, KT17, ZHC15]. **Semantics-aware** [HEJ09]. **Semaphore** [Hol98b, Kar89]. **Semaphores** [Hol98c]. **semiconductor** [Ano97b]. **Semidefinite** [YFF+12]. **Seminar** [Nev99]. **sense** [Bak95b]. **Sensible** [LMA+16]. **Sensitive** [CC04, DC99, DC00, PFP06, ZJS11, LG04]. **Separation** [SCG95, TFG10, TFD14]. **September** [ACM93c, AOV+99, DLM99, FR95, Hon94, IEE89, USE98b]. **Sequences** [GH03, FTAB14]. **Sequential** [CV98, CKRW97a, CKRW97b, SGC95, SMN+12]. **serialization** [BHK+04]. **Server** [Ano00b, Cal97, Smi92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sho97b, Sta90]. **server-side** [SBB96]. **Servers** [RCC12, BDM98, BBYG+05, BEKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b]. **Service** [CGK06, GMW09, Hig97, PSM03]. **services** [LZ07]. **session** [Bak95b, HCD+94, IAD+94, VGR96]. **sessions** [Ano94e]. **set** [Ar92, KBF+12]. **Sets** [MGN16]. **Seven** [But14]. **several** [FGG14]. **shader** [YP+10]. **shallow** [LVA+13]. **Shanghai** [IEF97]. **shape** [Cor00, GBCS07]. **SharC** [AGEB08]. **Shared** [BWXF05, BS96, DM98, EJ93, GMR98, GH98, LB92, MVZ93, MCT08, STY99, Thr99, VB00, WC99, YMR93b, BB00, Boo93, DLO09, DPZ97, EKKL90, EV01, Gle91, Iss98, Jef94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, ZSB+12, dB09, Cha05]. **Shared-Memory** [BS96, DM98, EJ93, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN09]. **shared-variable** [dB09]. **Sharing** [CLFL94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10]. **sharing-aware** [TAS07]. **sharing-based** [TE94a]. **Shelf** [MHG95]. **shell** [Ric91]. **Shift** [Ham96]. **Shinko** [Ano00a]. **Shop** [Bec00]. **short** [CPT08, Lie94]. **shortage** [Ano94b]. **Should** [EHP+07]. **SICStus** [EC98]. **side** [MMTW10, SBB96]. **sided** [QSH16]. **SIGACT** [ACM93a, ACM94b, ACM95b, ACM98b]. **SIGCOMM** [RM03]. **Signal** [Eng00, BM91]. **Signals** [GRR06]. **Significance** [ZJS12]. **SIGPLAN** [ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. **SIGPLAN-SIGACT** [ACM93a, ACM94b, ACM95b, ACM98b]. **Silicon** [LB17, THA+12]. **SIMD** [FYSA09, SW08]. **Simple** [AKS06, Chl15b, WS08, BDL07, CL00, MCM+10]. **SimpleGraphics** [MKG99]. **simplify** [PO03]. **Simplifying** [Pom98]. **simulate** [PO03].
[MAF+09]. Simulation [For97, GV95, HPB11, JYE+16, MPD04, VTM12, WG94, Ano97b, BBH+17, KBF+12, Leg01, Lep95, MHWO2, SWY94, Srd93]. Simulations [HEMK17, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12]. Simulator [SRS98, PWD+12, TSCH99, WZWS08, Nak03]. Simulink [HYY+15]. Simultaneous

[Ano05, CSK+99, EEL+97, GSI10, HMNN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LRZ16, MCFT99, REL00b, SP07, SLG04, SU01, ST00c, TEL95, Tul96, TEL98b, WS08, YG10, ABC+09, AAKK08, ABB+15, CCC12, EEO9a, Fis97, HKN+92, HMN+92, LBE+98, Luk01, Mah13, MMT+05, MEG03, PHCR09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, ST02, SMS+03, TSC99, TEE+96, VPC02, TEL98a]. Single [CLFL94, Dub95, EHP+07, FT96, HHom91, KTR+04, MTT+00, LMC+05, LMC+09, Pra95c, VIA+05, YZ07, YSY+09].

Single-Address-Space [CLFL94].

slave [TJY+11]. slice [PSG06a, PSG06b, PSG06c]. slice-based [PSG06a, PSG06b, PSG06c]. Slices [MQS+08, PFO1]. Slicing [Kir98, FRT95, NR06]. SlicK [PSG06a, PSG06b, PSG06c]. slower [Pra95c]. small [Koo93, MM07]. Smalltalk [Bro89]. Smalltalk-80 [Bro89]. smart [Sim97].

SMP [BWXF05, BHN01, CRE99, HD02, KKH03, KKJ+13, Pra95c, TAS07, TMAG03]. SMPs [WG99].

SMT [Ano05, AH00, CY09, EEO9b, EE10, EE12, FSPD16, FSPD17, KLGO8, KI16, MG99, MMM+05, NSP+14, PAB+14, PLT+15, RPNT08, SLP08, TAS07, VS11, WA08].

Software [Ano97a, Ano98b, Ano99, Ano00b, BCR01, BCG+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IEE94a, KE15, LPE+99, PJS15, SZM+13, S13, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLPR12, Hai97a, HSD+12, IEE94d, KKH04, KSD04, KASD07, Luk01, MWP07, MCRS10, MLG95, MEG03, NHFP08, AOA09, OL02a, OL02b, OL02c, RKM+10a, RKM+10b, RVOA08, Son04, SLP+09, SB80, TBN95, WCZ+07, WCV+98, YSY+09, ZHCB15, DWS+12].

Software-Controlled [BCG+08, Luk01].

Software-Directed [LPE+99]. Solaris [Cat94, Lun97, Lun99, McM07, Pra95b, Sun95]. Solution [Ano98b, SBC91, WP10].

Solutions [Ano00b]. solve [Bar09, MM07].

Solver [YFF+12, Kub15, RM99]. Solvers [MR09, Nak03, AAC+15, ZCO10].

Solving [ABD+12, FTAB14, Loe97, VSDK09].

SONET [AHW02]. Sort [GH98, RHH10].

Sound [WTH+12, DWS+12, FFY08, NFBB17].

Source [Ano00c, CM+16]. sources [SJ05].

South [ACM93a, Ano94b]. Space [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, FWL03, KNS16, KASD07, Lie94, LHS16].

Space-Efficient [BL98, BL93, KNS16, KASD07, LHS16].

Spacecraft [SRS98].

Spaces [FKP15, CKZ12, KGGK09].

Spain [ACM95a, DLM99, ACM98c]. SPARC [Cat94, KAO05, MD96]. Sparcle [ABC+93].

Sparse [But13, YFF+12, CSV10, Dav11, MM07, PHCR09]. spatially [PPA+13].

spatially-programmed [PPA+13]. Special [Ano94e, GGB93b, KU00]. specialization
Specialized [dlPRGB99]. Specifc
[Ste01, SP00b, Shi00]. specification [Stä05].
specifications [TVD01]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speculated [SCL05]. Speculation
[SU01, WS08, YBL16, DG99, GB99, JEV04,
LWV+10, MT02a, MT02b, MT02c, NB12,
PO03, PT03, SCZM00]. Speculative
[AH00, Ano01, Ano02, BF04, IBST01,
KLG08, MGRS08, MG99, MT02a, MT02b,
MT02c, RKM+10a, RKM+10b, SR01b,
TFG10, WWW+02, ZJFA09, ZL10, CHH+03,
DC07, Dub95, KOE+06, KT99, LZZ+14,
NB12, OL02a, OL02b, OL02c, SMS+03,
VS11, XIC12, ZCSM02a, ZCSM02b]. speech
[LG04]. Speed [Ano00a, Ano03, GV95,
HG91, MR09, HG92, Pra95b, SR98, TO10].
Speed-up [MR09]. Speedup [Lun99]. Spin
[LS06]. SPIRAL [MJF+10].
SPIRAL-generated [MJF+10]. splittable
[SLF14]. spots [Gle91]. spreading
[CWS06]. SPSM [Dub95]. SQL [CGK06].
squares [FTAB14]. squash [MK12], SR
[BO96]. SRAM [kSYHX+11]. SSMT
[CSK+99]. Stabilizers [JSZ06]. Stabilizing
BCM+07]. stable [YCW+14]. Stacey
[Ano00c]. Stack [Eng00, Xue12]. Stackable
[Loe05]. stacking [KSB+08]. Stackless
[MS15]. stacks [DESE13]. StackThreads
[TTY99]. StackThreads//MP [TTY99].
Standard [DM98, FSS06, BCL+98, Bra97,
MT93, Pla98, Pla99]. standardization
[Bet73]. Standards [Thr99, TTY99].
Standing [TLA+02]. Stanford [IEE99].
STAT [Ano00b]. State
[La00, LP94, RKR11, Wei98b, Cor00, I+94,
TFG10, WH07]. State-Retentive
[RKR11]. Statechart [KW17].
Statechart-Based [KW17]. stateless
[MQ08]. Static [GPS14, Kri98, Lmn97,
SCB15, WW96, vPG03, Fer13, NAW06,
NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[Ano00b, RCM+16, Lan97, RCM+12, Tem97].
stealing [ALHH08, BL94, BL99, RL14].
Step [Sho97a, Sho97b, ZG98]. Stethoscope
[Caz02]. Stochastic [DK02, LTM+17].
Storage
[AT16, Hol12, LCK11, Bak95a, Blu92,
DZKS12, KOE+06, MM07, PDMM16].
stores [TAN04]. strand [RCV+10]. strata
[NPC06]. Strategies
[PSCS01, AGE08, FGG14]. Strategy
[BGK96]. Stream [KSU94]. Streaming
[HHOM91, HHOM92, KEL+03].
Streaming//FIFO [HHOM91, HHOM92].
Streams [Pre90, SPY+93]. Strength
[Kon00]. Strict
[Coe95, FS96, Tra91, KIAT99, SCG95].
Strictly [Ano00c]. Strong
[CWBB03, KZC15, MCT+07, ZHC15].
Structural [CWR99]. structure
[BBO0, YKL13]. Structured [TCI98, FR95].
Structures
[RCHR95, AGN90, GoI97, ND13]. students
[Fek08]. Study [AGK96, Chi15a, EGC02,
HMT+96, LSSB15, Sat02, TAK+00, VK99,
WG94, YMR93b, Bri89, CASA14, CL00,
Fis97, HJT+93, HF96, KPPR+06, MGL95,
Sod02, Tsa97a, YM92, YMR93a]. Style
[Wil94a, Wil94b]. subdivision [MTS10].
subordinate [CSK+99, CTY02].
Subsetting [AJK+12]. Substrate
[ACMA97, Hai97a, JP92]. Subsumption
[Man91]. Suffix [ORI2, LH16].
SugarCubes [BS00]. Suite
[BTE98, BO01, TG09]. Suites [SPDLK+17].
SuiteSparseQR [Dav11]. sum [TDW03].
summary [I+94]. Summer
[Ano94f, USE92a]. Sun [McM97]. SunOS
[Cat94, PKB+91]. Super [Kus15].
Supercomputer [VTS12, Gil94].
Supercomputing
[ACM92, ACM95a, ACM96, Ano91, Ano94e,
IEE90, IEE92, IEE93, IEE94c]. SuperLU
[Li05]. SuperMalloc [Kus15]. Superscalar
[SU96, Div95, Fis97, Gul95, Loi95, Men91].

Superthreading [Tsa97b]. Support [ACM94d, AL99, BBG96, CZS+17, CSS+91b, EJ93, GHG+98, KC99, ME15, MS99, NS97, PTM99, SSP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CKH94, CHH+03, CSS+91a, CSS+91c, Evr01, Fan93, HMC95, MWF97, MEG03, MS87, Men91, TSY99, TSY00, TSY97, WK08a, WK08b, WK08c]. Supported [AddS03, ZP11]. Supporting [RCRH95, Sam99, SP00a, DC99, DC00, TDW03].

Support [ACM94d, ABLL92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KC99, ME15, MS99, NS97, PTM99, SSP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CKH94, CHH+03, CSS+91a, CSS+91c, Evr01, Fan93, HMC95, MWF97, MEG03, MS87, Men91, TSY99, TSY00, TSY97, WK08a, WK08b, WK08c]. Supported [AddS03, ZP11]. Supporting [RCRH95, Sam99, SP00a, DC99, DC00, TDW03].

suppression [JWTG11]. surgery [MCS15].

Surprises [BC98]. Survey [Man96, ZSB+12, Cat94, URˇS02a, DC99, DC00, TDW03].

Survival [Ano99]. Surviving [Ano99].

SVR4 [SPY+93]. swap [MLS15].

Swing [Gea98].

Switch [GN00, Eic97, GWM07].

Switzerland [Lak96]. SY [USE01].

Symantec [Rod95a]. symbiosis [Bri99, EE10, EE12]. Symbiotic [ST00a, ST00c, ST00b, STV02]. Symbiotic [ST00a, ST00c, ST00b, STV02].

Symmetry [ES97]. Symposium [ACM94a, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col90a].

Synchronization [Bec01, Hei03, LA93, Rec98, DHM+12, DESE13, MT02a, MT02b, MT02c, MTP12, NLK09, PRS14, RD06, Ven97]. synchronization-induced [MTP12]. synchronization-related [RD06].

Synchronizing [McM96a, McM96b, CZWC13].

Synchronous [BM07, HPB11]. syntax [KT17]. Synthesis [FN17, HB15, MP89, SR14, STR16].

Synthesizing [GLPR12, SRJ15]. synthetic [GJ11]. System [AddS03, ÁdBdRS08, AJK+12, Ano98a, Ano00b, ABN99, ABH+00, BMR94, BBD+91, BJ+96, BTE98, CLFL94, DNR00, FG91, Gei01, HMT+96, KMA01, KS97, MS89, NPT98, PH97, PST+92, Pea92, PLT+15, QOI+12, REL00b, SEP96, Sri93, SG96, TCI98, VSM+08, Yan96, ÁdBdRS05, AAC+15, Ano96, Ano97b, A+01, AR17, BBFW03, BDM98, BCS00, BAD+10a, BAD+10b, BJK+95, BAD+09, BLD97, Cat94, Gil88, Hig97, Joe96, Lan02, MHW02, MS87, Met95, MTC+07, MC06, OCR07, PR07, Piy98, Pom98, REL00a, REL00c, RD99, She02, TKA+02, TLZ+16, TMA03, WCC+07, WZWS08, TLA+03, EKB+92, MS87, Pea92].

System [PLT+15]. system-level [OCR07]. systematic [MQ07]. SystemC [RSB+09]. SystemC [RSB+09].

SystemC/C-based [RSB+09]. Systems [ACM94d, AG06, Ano00b, ABN00, BMN99, Boc02, BC94, CCH11, Dru95, FMY+15, FGKT97, GHG+98, GJ97, HRH08, HKS19, IKE98, IEE94a, KR12, KKH03, KG05, KU01, KU15, KS06, LMA+16, LYH16, MS15, PGB16, RW97, RR03, SFU+12, SS96, USE92b, Wal95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB01, DZKS12, DSH+10, DRD91, GJ11, Gol96, GKK09, HJT+93, Hop98, HWW93, HBC13, IEE94d, ISS98, JD08, Je94, Jen95, KKH04, Kub15, LVN10, LLLC15, Log01, LAK09, LVA+13, MLC+09, MGL95, MM07, NFB17, PB09, RCV+10, RBF+89, RSB+09, RVR04, SCCP13, She98, Sim97, SJ92a, SJ92b, ST05, Wei98a, WCV+98, Ano98b].

systolic [PYP+10].

T [An00c, NPA92]. T/TCP [An00c]. T1 [Wea08]. T1/T2 [Wea08]. Table [VB00, KNPS16]. tabling [AR17]. Tabu [AMRR98]. taint [ZJS+11]. TaintEraser [ZJS+11]. Take [Wei97]. taking [Ano92b]. Talking [Ano94c, HCM94]. TAM
[CGSV93]. **Taming**
[Hol00, HBCG13, HHPV15]. **TapeWare**
[Ano00b]. **targeting** [LGH94]. **Task**
[CKK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12]. **Task-Level** [GP95].

tasking [Dl93, KR01a]. **Tasks**
[Fin95, PV5+17, YSS+17, FGG14].

taxonomy [HM96, SPH96]. **TC2** [BT01]. **TC2/WG2.5** [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, Ama98, MKK99, SBB96]. Tcl-based [Ama98]. Tcl/2k [USE00b]. Tcl/Tk [USE96, USE00b, MKK99]. Tcl/Tk [Ass96, USE98b]. **TCP** [Ano00c, Ano00c].

Teaching [Fek08, CS00, She02].

TeamWork [CZWC13]. **Tech**
[Ano97b, Gar01]. **Technical**
[USE00a, Cat94]. **Technique**
[JSB+12, KG94, Lem02, ÖCS01, PGB16, JSB+11, JPSN09, LG9H94, RS07, UZU00, VACG09, WCV+98]. **Techniques**
[DS16, EKKL00, GS02, Han97, NLK09, PWL+11, TGBS05, Zg96, BR92, GEG07, OCRS07, Pra97, RGC+10, SV96c, SV96a, SV96b, ZSB+12]. **Technologies**
[Ano00b, Ano98b].

thread [Ano99]. **thread-related**
[Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b]. **TeleNotes** [WSK97].

temperature [CCC12]. **Template**
[Cal00, How98]. Ten [Ano99]. **Tennessee**
[IEE94b]. **Tera** [BTE98, Mat97]. **Terabtyes**
[IEE02]. **Term** [BGK94a, BGK94b, BGK96].

termination [TDV03]. **Test**
[Ano98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14]. **test-case** [KI16]. **Testing**
[BBDH+11, Goe01, LCS04, RCC14, CBM10, EFG+03, EHSU07, MQ07, Sen08, YNP12].

tests [SRJ15]. **Texas** [USE92a, USE00b].

TFlux [DTLW16]. **tgMC** [LHG+16]. **Their**
[YWJ03, Gil94]. them [Ano92a, Ano94b].

Theoretic [ES97]. **theories** [LQ15].

Theory
[ACM93b, LLD17, NFBB17, WLK+09]. **there** [Ano94b]. **thermal** [WA08]. **though** [Ano94b]. **Thread**
[Ano00c, ABN99, ABP00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, Co90a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, Hag02, Hei03, HG91, ISS98, KG05, Kle00, KBH+03, KBH+04a, KBH+04b, LLL10, LHY16, LEL+97a, LEL+97b, Low00, LLD17, Man99, MG99, MTN+00, MB05, MCF799, ND96, Pan99, PR05, PEA+96, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin97, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLG17, Wei98b, W99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BKC+13, BHK+04, BC02, CJSB16, CSN+05, DBMB16, DG99, DWYB10, Don92, DBDR91, Eic97, EE09b, Fek08, GP08, G0T03, GLC99, Hyd00, JEV04, KDM+98, KCO09, KBA08, KS04].

thread [KASD07, LK13, Lie94, LLM00, LZZ+14, Lot05, LMC+09, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QQOV+09, SKG+11, Sha95b, SLG06, SP00b, Sh00, SPH96, SS95, SL93, SLT02, St05, SJ05, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, W08, YZ14, SKP+02].

Thread-Aware [LHY16]. **Thread-Based**
[KG05, CNQ13, SKS+92]. **Thread-Level**
[LEL+97a, LEL+97b, MG99, YBL16, FURM00a, FURM00b, MCF799, WS08, DG99, JEV04, KCO09, MT02a, MT02b, PO03, PT03, QQOV+09, SCZM00, YZ14]. **Thread-Local** [DGK+03, Whi03].

Thread-management [RCG+10].

Thread-modular [GBCS07].

Thread-Private [Man99]. **thread-related**
[TLZ+16]. **Thread-Safe** [Kle00, Pla02, Rin99, DMBM16, Fek08, G0T03].

Thread-Sensitive [CC04].
Thread-Specific [Ste01, SP00b, Shi00].

thread-switch [Eic97].

threadbare [Bak95b].

Threaded [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CRW99, Coo95, CSS+91b, DV99, EHG95, EHP+07, FdL02, GH03, GVT+17, G9K, Gil93, II01, JY15, Jon91, KW17, Kri98, Kuc92, KIAT99, LB92, Mas99, MG15, NS97, Pul00, RCW98, STW93, Sei99, Smi92, Ste01, SBK99, TLG17, VSDK09, VB00, WCT98, Ada98, ABD+12, AACK92, Ano97b, BWZD15, BK13, BBH+17, BC00, BIK+11, DSEE13, CV98, CIM+17, CASA14, CRW97a, CRW97b, CWB03, CSB00, CdOS01, cC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBK10g, EHSU07, FTABA14, FD96, FGG14, GCRD04, GCC15, GS06, GH98, GPR11, HC17, KHP+95, K95, KKH04, Kep03, KHR98, Kucr91, KL15, Lan97, Leg01, LBvH06a, LBvH06b, LBvH06c, IVA+13, MLC11, MS03, MKK99, NFB17].

threaded [NH09, NSH14, OA08a, OA08b, OA08c, FYP+10, PR98, Pra95c, RCV+10, RKI+10a, RKI+10b, RBPM00, R9K99, RS08, SCB15, Sam99, SP00a, SE12, Sei98, Sho97a, Sho97b, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, T99Y, T99Y0, Ten97, TMAG03, TJY+11, VIA+05, V00, VK99, Wal00, Wil98, XMM99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGSV93].

Threadinging [BFA+15, DHR+01, Hol98d, KS16, LKB11, McC97a, McC97b, MS15, Nor90, OR12, PTMB99, RICC14, Rei01, Sch90, TGO99, YLLS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, MLC+09, MCF99, N900, RR06, RV04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHXX1, YKL13, CH04].

Threading-Based [KS16].

ThreadMentor [CMS03, She02].

Threads

[Alf94, Ano94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, Cal00, CGR92, Col90b, Cri98b, Cri98a, TLA+02, FHMK95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HGW01, Hol00, How00, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MP98, McM96c, Nor96, PSM01, Pet00, Pet03, Paha95e, San04, SEP96, TG99, WCW+04a, Wil94a, Wil94b, Wil97, Yam95, Yam96, dIPREGB99, Ano02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, But14, But97, CZW13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FH95b, FL90, GP05, Gol97, HCM94, HMC95, Hai97a, HBG02, HJJ+93, HKT93, HNK+92, Hol98d, Hol98a, Hol98b, Hol89c, Hol99a, Hol99b, Han94, KE95, KSS96, Lan02, LZ07, MSLM91, MR98, MQW95, McM96a, McM96b, McM98a, McM98b, Men91].

threads [Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, PSM03, Pan99, PG03, PL03, RR03, Sch91, SCC95, SZ91, SZ92, SCM05, SPK+02, TAN04, WCW+04b, WCW+04c, WCW+04d, Wei98a, WCW+98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a].

Threads.h

[Ano00b, TB97a, TB97b].

ThreadScope [WT10].

Three [YMR93b, YMR93a].

Throttling [LG06].

Throttling-Based [LG06].

Throughput [GJT+12, Wea08].

Tightly [MTN+00, LZZ15].

TileDB [PDD16].

Tiles [QOM+12].

Time

BC94, CIM+17, EJ93, GN96, IEE94a, JLS99, LFA96, Lun97, MN00, PUT+04, PSC01, SUF+12, SS96, Tet94, dIPREGB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBP+03, KASD07, KBF+12, MKK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJ92a, SJ92b, TSY99, TNB+95].

time-based [KASD07].

time-critical [RGG+12].

time-efficient [GB99].

time-shared [Jef94].

timely [NH09].

Timers [Hol99a, GRR06].

Timethread [BC94].

Timethread-Role [BC94].

Timing [SK97, MHW02].

timing-first [MHW02].

tiny [Xue12].

Tip [Pet00].

Tips [Mit96, Pet00].

Tk
[Ass96, USE98b]. together [Ano97b, Pol90].

Tokyo [Ano00a]. tolerance

[MTS10, PG01, RRP06]. Tolerant [ÖCS01].

Tolerating [Luk01, RBK Tolerating +09, SKJ+01].

Tool [AddS03, Ano98b, Goe01, Kor89]. TAM+08, CMS03, CSB00, Hig97, LMC14, RGK99, YNPP12]. Tool-Supported [AddS03]. Toolbox [Bra97]. Toolkit

[SZM+13]. Tools [Ano98b, Cha05, EV01].

WWW+02, EHSU07, Len95]. Tools.h [Ano00b]. Toolset [Ano97a]. Top [Ano99, AB02, DNR00]. Topaz [MS87].

topics [BGG95, GBG95]. Toroidal [KEL+03]. Totally [DHR+01]. Trace

[RS08, HEJ09]. Trace-based [RS08].

Traces [HEMK17, HR16]. Tracing

[Lem02, EKKL90, Tod95]. Tracking

[CSZ+17, LH09].

trading [ZJS+11]. trade

[AAC+15, Par91].

KUCT15]. trade-off

[AAC+15].

trade-offs [Par91]. tradeoffs

[Aga89, Aga91, Aga92, Ann96, PJZA07]

training [MCS15].

Tranquilizer [PGB12].

Transaction [RW97, SS91, EQT07, Ver96].

transaction-aware [EQT07].

Transactional [GMGZ14, KUCT15].

RG03, VSDL16, ZLJ16, ATLM+06,

BDLM07, CMF+13, CNV+06, GCC15,

MLS15, MCRS10, MMTW10, MTC+07,

OCT14, VTSL12, ZHCB15]. Transactions

[Ano00c, DTLW16, SKBY07, BD06, Dan09,

KR01a, KR01b, KGGK99, RKM+10a,

RKM+10b]. Transform

[HN91, LHS16, TKHG04, TT03, TTKG02].

transformation [TSY00]. transformations

[AC09, D’H92, JMS+10, VV11]. Transient

[RM00, VPC02]. Transient-fault [VPC02].

Transitive

[YM93b, XHB06, YM92, YMR93a].

translation [KBF+12]. translator

[TJY+11]. Transparency

[FKCE17, KBH+03]. Transparent

[ABN99, LSN01, SLGZ99, ZSA13].

Transparently [CB16, JSB+12].

Transport [GRS97]. transposition

[SGLGL+14]. trap [Ram94, GRS97].

trap-based [Ram94]. Tree

[Pla99, BCCO10]. trees [AD08, CKZ12].

Trends [Gar01]. TRI [ACM93c]. TRI-Ada

[ACM93c]. Trick [Eng00]. Tridia [Ano00b].

tridiagonal [ZCO10]. trigger [Kho97].

Triggered [PPA+13]. Troy [S96]. TSO

[HH16]. Tumbler [PG16]. Tune [RG99].

tuned [Ano95a, Ano95b, Kub15]. Tuning

[LEL+99, CSB00, RK99]. Tunnelling

[Don02]. Tutorial [TaF13]. Twentieth

[ACM93a]. Twenty [AOV+99, ACM93b].

Twenty-fifth [AOV+99, ACM93b]. Two

[BBH+17, CM98, YJE+16, STY99, GLC99].

Two-Level [YJE+16, BBH+17, STY99].

TX [Cha05, ACM00, USE91b]. TxRace

[ZL16]. Type [Gro03, VGR06, BAD+09,

GE08, Lan02, Mi95, PR07].

type-checking [Mi95]. Type-safe [Gro03].

typed [DMB16]. Types [AFF06,

FFLQ08, Ten08, BAM07, KS93, VGR06].

typings [Smi06].

UCITA [Gar01]. UK [AOV+99]. ULT

[PG03]. Ultra [PWL+11]. Ultra-Scale

[PWL+11]. Unbounded

[CNV+06, FKP15, BDLM07]. uncommon

[BDLM07]. Uncover [WS08].

underdetermined [Kub15].

Undergraduate [BLPV04].

Understanding [MSM+16].

Understanding [BZ07, TLA+02, EPAG16, RRP06].

Undocumented [SW97]. Unfoldings

[SPDLK+17]. Unicode [S09]. Unified

[Wei98b, ABG+08, GZ92]. Uniform

[BDN02, SGGK11]. unifying [MS03].

unimodular [D’H92]. unintrusive

[HDT+13]. uniprocessor [GL98a, Yan97].

uniprocessors [BRE92, EJK+96].

Uniscape [Ano98b]. UNISIM [LS11].

UNISIM-Based [LS11]. unit

[CB10, Par91, PAB+14]. United

[ACM94c]. Unithreaded [RLJ+09]. Units
[RKK15, Gun97]. univariate [CMX10].
University [IEE99]. UNIX
[Ano00b, FG91, JJ91, Kor89, MS87, MS89, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].
Unix-to-NT [Ano98b]. UnixWare
[Rod94, Rod95b]. unlocking [XSaJ08].
unravel [But14]. Unraveling [Bec00].
Unsynchronized [DSR15]. unveiled [Ano95a, Ano95b]. Unveiling [AAC+15].
up-and-downdating [VV11]. UPC
[EGC02]. updates [NH09]. Updating [HSS+14, HSD+12, NHFP08]. Ur [Chl15b].
Ur/Web [Chl15b]. URL [TLA+02]. USA
[Ano98b]. UnixWare
RS94a, ACM94d, Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE89, IE94a, IEE96, IE02, SS96, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01]. Usage
[BS96, Kor89, VS11]. Use
[Bak95a, HW92, WWW+02]. Use-once [Bak95a]. Useful [Pet03].
User [ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, Li05, MSLM91, OT95, SLT02, TNB+95, YZYL07]. User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07].
User-Space [Eng00, GRS97]. Using
[Ano99, ABH+00, AZG17, BD02, BBC+00, BGLO, BTE98, CRE99, Cor00, DS16, DTLW16, DBRD91, GH03, HGB01, HJT+93, HBTG98, Hei03, How00, KMjC02, Kwo03, KET06b, LFA96, MPD04, MC98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SC00+15, SEP96, SLT02, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM07, CML00, Cat94, CTYP02, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JJWTG11, JY+03, KASD07, KB+12, LK15, MM14, NPC06, NWT+07, Nik94, PT03, RKM+10a, RKM+10b, RM99, RPN05, SLGZ99, SLP+09, TFG10, Tod95, TAN04, VPC02, VD08, ZJS+11, KSB+08].
UT [Hol12]. Utility
[FHM95a, JSMP13, FHM95b]. Utility-based [JSMP13]. utilization
[Squ94]. Utilizing [ES97]. UX
[Ano95a, Ano95b, Yam96].
viscous [RM99]. Visual
[PTMB09, DiI93, McM96c, Esp96, Nag01].
Visualization [Ano97a, ACR01, Cal02, Cap02, BCHS00, CSB00, MKK99, NCA93].
Visualizing [CdOS01, WT10, DSEE13].
Visually [Dru95]. VLIW
[For97, GSL10, OCS01]. VLSI [ABC+93].
VM [FGG14]. VMs [KKJ+13], voltage
[MTPT12]. volumes [Koo93]. VRSync
[MTPT12]. vs [EHP+07, MMTW10, MCF99, SKP+07, SKP+02].
vulnerability [SSN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d].
Wabi [Ano97a]. Waiting [LA93]. Waits
[How00]. Wanted [Ano94g]. Warnings
[CJW+15]. warp
[FSYA09, MTS10, Rei95, Tam95]. was
[San04]. Washington
[ACM92, Ano90, IEE94c, USE98a]. Watch
[Ano97b]. water [IVA+13]. Wave
[Ano00b, BBC+00, LS07]. wavelet
[TKH04]. Way
[KAO05, MTN+00, Rin99, ZJFA09, FGT96].
Ways [Wei97]. Weak [KZC15, TVD14].
Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay
[Zha00]. WebThreads [Ano97a]. week
[Ano95a, Ano95b]. weeks [But14]. weight
[Way95]. weighted [HFV+12]. weighting
[VS11]. Weightless [SPY+93]. Weld
[OCS01]. well [Kub15]. well-determined
[Kub15]. West [EVO1]. WG2.5 [BT01].
Wheeler [LHS16, NTR16]. Where
[EHP+07]. Whole [GN96, BBM09].
Whole-Program [GN96]. Wide
[Ano94d, Ano96, FGT96]. wide-area
[FGT96]. Widening [KKW14]. will
[Ano95a, Ano95b]. WiMAX [CDD+10].
Windows [USE98a, HKT93, YZYL07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter
[Ano90, USE89, USE91b, USE93b]. Wired
[DHR+01]. Within [BP05]. without
[Gus05, LWBW14, Pla02]. woes [Ver97].
WOMPAT [Cha05, EV01]. Work
[Ber96b, Wai95, ALHH08, Ber96a, BL94, BL99, Lep95, OdSSP12, RL14].
work-optimal [Lep95]. work-stealing
[ALHH08, RL14]. worker [SCM05].
workflows [FGG14]. Working [BT01].
Workload [KTR+04, SSYG97, LBE+98].
Workloads
[GVT+17, KML04, LYH16, CML00, SQP08a, SQP08b, SQP08c, WA08].
WorkPlace [Bra97]. works [Hig97, San04].
Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IEE89, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation
[Ano00b, HN91, IEE89]. Workstations
[KLH97, Lu98, LGH94, RGK99, PH97].
World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLW+14].
World-wide [Ano96]. Wrapper [AS14].
Wrappers [Hub01]. Write
[Sho97a, Sho97b]. Writer [Ano97a].
written [ND13]. WWOS [IEE89].
WWOS-II [IEE89].

X [Ano00b, Smi92, Srr95, MSM+16]. Xeon
[SCD+15]. Xlib [Gil93, STW93]. XML
[DWYB10]. XMT
[DV99, VV00, BCG14, VTS12, VDBN98].
XMT-2 [BCG14]. XPS [Gar95].

Year [Ano99]. Yokohama [Ano03]. York
[IEE90]. Yosemite [Ano00b].

z13 [ABB+15, CJB+15]. Zurich [Lak96].
References

[ABB+15] Jos´e I. Aliaga, Jos´e M. Badía, Maribel Castillo, Davor Davidović, Rafael Mayo, and Enrique S. Quintana-Ortí. Out-
REFERENCES

Aliaga:2012:SDG

Agarwal:2010:DDP

Auerbach:2008:FTG

Antoniu:2000:IJC

Antoniu:2001:CMJ
Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith Mcguigan, and Raymond Namyst. Compiling multithreaded Java bytecode for distributed execution (distinguished paper). *Lecture Notes in Computer Science*, 1900:1039–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-
REFERENCES

REFERENCES

ACM SIGPLAN-SIGACT

[ACM94c]

[ACM94SIC]

[ACM94d]

[ACM95c]

[ACM95CRP]
REFERENCES

REFERENCES

[Ada98] Jean-Marc Adamo. Multi-threaded object-oriented MPI-

Abraham:2005:ABP

Abraham:2008:DPS

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

Agerwala:2006:SRC

Agarwal:1989:PTM

Agarwal:1991:PTM

Agarwal:1992:PTM

Anderson:2009:LAC

Akkary:2000:CSM

Abdulla:2008:MCR

Parosh Aziz Abdulla, Frédéric Haziza, and Mats Kindahl.
REFERENCES

[AKP99]

[AHS06]

[AJ12]

[AKSD16]

REFERENCES

REFERENCES

Azizi:2009:AEC

Aiex:1998:CMT

Annavaram:1996:BVN

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Anonymous:1992:MWPb

REFERENCES

CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Anonymous:1994:ICS

Anonymous:1994:MDP

[Ano94b] Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??,
February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. *Linux Journal*, 34:??, February 1997. CODEN LJIOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Anonymous:1997:TWP

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAa

Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous. Speculative

Matthew Adiletta, Mark Rosenbluth, Debra Bernstein, Gilbert Wolrich, and Hugh Wilkinson. The next generation of Intel IXP network processors. Intel Technology Journal, 6(3):6–18, August 15,
REFERENCES

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

USENIX:1996:ATT

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG

Boehm:2008:FCC

Bocchino:2009:TES

Bergan:2010:CCRa

Bergan:2010:CCRb

Baker:1995:UOV

Baker:1995:GTP

Baldwin:2002:LMF

Bic:1993:EUI

Burckhardt:2007:CCC

Barkstrom:2009:UAS

Bauer:1992:PCE

Bolding:2000:MSM

Bova:2000:DLP

Balter:1991:AIG

Ball:2011:PPT

Balis:2002:CPM

Balis:2003:MSM

Balaji:2010:FGM

Bender:2017:TLM

REFERENCES

[BG02]

[BCG10]

[BG195]

[BG14]
REFERENCES

Bedy:2000:VSM

Biagioni:1998:SST

Benner:2007:SLS

Ball:2001:PVM

Bajaj:2011:FFP

Badamo:2016:IPE

REFERENCES

DEN ACSIYEC. ISSN 0734-2071 (print), 1557-7333 (electronic).

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bergan:2014:SEM

Baghsorkhi:2012:EPE

[BGDmWH12] Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye,

[BGZ97] M. Bednorz, A. Gwozdowski, and K. Zieliński. Contextual debugging and analysis of multithreaded applications. *Concurrency:
REFERENCES

Bouchenak:2004:EIE

Bubeck:1995:DSC

Barekas:2003:MAO

Blumofe:1995:CEM

Blumofe:1996:CEM

Birrell:1989:IPT

Bientinesi:2011:CFS

REFERENCES

REFERENCES

Bucker:2004:TUC

Blumofe:1992:MSM

Blumofe:1995:EMP

D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105–122. LCCN QAX 27.

Baquero:1994:CAC

Bergstra:2007:SCE

Berger:2000:HSMa

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: a scalable memory allocator for multithreaded applications. ACM SIGARCH Computer Ar-
Berger:2000:HSMb

Berger:2000:HSMc

Balkind:2016:OOS

Bouge:1999:ECM

Baker:1994:EPP

Briguglio:2003:PPM

Brunst:2001:GBP
[BNH01] Holger Brunst, Wolfgang E. Nagel, and Hans-Christian

Benson:1996:DMS

Bull:2001:MSO

Boehm:2005:TCI

Bond:2013:GDG
REFERENCES

Boothe:1993:EMC

Boothe:1992:IMT

Brinkschulte:2005:ICA

Boehm:2007:MCC

Bogdanas:2015:KJC

Bramley:1997:TNRb

Bershad:1992:FME

Brian N. Bershad, David D. Redell, and John R. Ellis. Fast

REFERENCES

REFERENCES

[Bai:2015:SPA]

[Basharahil:2005:DSA]

[Berger:2009:GSM]

[Benaya:2007:UTA]

[Calcote:1997:TPS]

[Calkins:2000:ITT]

[Callaway:2002:VTR]
John Callaway. Visualization of threads in a running Java program. Thesis (M.S.), University of California, Santa Cruz, Santa Cruz, CA, USA, 2002.
REFERENCES

Caromel:1989:GMC

CarrerasVaquer:1989:APE

Campanoni:2008:PDC

Catanzaro:1994:MSA

Cazals:2002:NID

Caswell:1989:IMD

REFERENCES

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

Cui:2000:MPC

Chang:2004:TSP

Chen:2012:MLS
REFERENCES

REFERENCES

Chass indeKergommeaux:2001:PEE

Cerin:2006:MSS

Catalyurek:2012:GCA

Culler:1992:AMMb

Cattaneo:1992:ACT

Chaudhuri:2004:SAN

Chaudhry:2002:PTS

Chapman:2005:SMP

[Cho92] Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

[Chr96] Nikos Chrisochoides. Multithreaded model for the dy-

Christiaens:2001:JRR

Catalan:2017:TEM

Ching:1991:EAP

Curran:2015:IZM

Cejtin:1995:HOD

Cai:2015:ADB

Yan Cai, Changjiang Jia, Shangru Wu, Ke Zhai, and Wing Kwong Chan. ASN: A dynamic barrier-based approach to confirmation of deadlocks from warnings for

Caudal:1995:DEM

Choi:2000:SCP

Chase:1994:SPS

Choi:2002:EPD

Cormen:2009:IA

Chapman:1998:OHI

Curtis-Maury:2008:PBP

REFERENCES

Cain:2013:RAS

Cahir:2000:PMM

Cahoon:2000:EPD

Carr:2003:TPT

Chen:2010:CCM

Che:2014:ALM

Cabodi:2013:TBM
Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Thread-based multi-engine model checking for multicore platforms. *ACM Transactions on Design Automation*
REFERENCES

[Corbett:2000:USA]
REFERENCES

Clark:2002:AMT

Cappello:1999:PNB

Criscolo:1998:JQH

Chang:1995:CSM

Chang:1995:CTS
REFERENCES

[Culler:1991:FGPa] David E. Culler, Amr Saab, Klaus E. Schraser, Thorsten von Eicken, and John Wawrzynek. Fine-grain...

Culler:1991:FGPb

Culler:1991:FGPc

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Denis Caromel and Julien Vayssiere. A Java framework for seamless sequential, multi-threaded, and distributed programming. In *ACM [ACM98a], page ??*
REFERENCES

ISBN ???? LCCN ????
Possibly unpublished, except electronically.

[Chugh:2008:DAC]

[CW98]

[Cohen:1998:WMP]

[CY09]

[CWS06]

[Chakraborty:2006:CSE]
Cao:2016:DBG

Cai:2013:TST

Davis:2011:ASM

Day:2013:INB

Day:2013:INC

deBoer:2009:SVC

Draves:1991:UCI

[DBRD91] Richard P. Draves, Brian N. Bershad, Richard F. Rashid,

DeWitt:1999:PTL

Domani:2003:TLH

DHollander:1992:PLL

DeRusso:1998:MEH

Dolby:2012:DCA

Duncan:2001:LPD

Dillon:1993:VEM

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DL

Denniston:2016:DH

Dubey:1994:APM

Doligez:1993:CGG

Devietti:2009:DDS
Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark
REFERENCES

REFERENCES

Dorfman:1994:EMO

Devietti:2012:RRC

Danjean:2000:IKA

Donalson:1992:DDP

Donnelly:2002:LTT

Dublish:2016:CCG

Dorojevets:1995:MDA

Dubois:2016:CCG

Donalson:1992:DDP

Donnelly:2002:LTT

REFERENCES

service/series/0558/papers/2546/25460048.pdf.

Dou:1997:ISV

Drake:1996:IJT

Drusinsky:1995:VDE

Delzanno:2002:TAV

Deniz:2016:UML

Bois:2013:BGV

Dang:2017:ECB

[DSG17] Hoang-Vu Dang, Marc Snir, and William Gropp. Eliminating contention bottlenecks in multithreaded MPI. Par-
REFERENCES

Dohi:2010:IFE

Das:2015:SBP

Ding:2015:OCA

David:2014:CMC

Diavastos:2016:ITD

Dubey:1995:SSM

Pradeep Dubey. Single-program speculative multithreading (SPSM) architecture: compiler-assisted fine-grained multithreading. Research report RC 19928 (88233), IBM T. J. Watson

Elwasif:2001:AMT

Eskilson:1998:SMM

Esmaeilzadeh:2012:LBL

Eyerman:2009:MLP

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

Eggers:1997:SMP

Emmi:2007:LA

Edelstein:2001:MJP

Edelstein:2002:MJP

Edelstein:2003:FTM

Eager:1993:CER

Eickemeyer:1996:EMU

Ediger:2013:GMA

Eykholt:1992:BMM

Eggers:1990:TEI

English:1995:MC

Engelschall:2000:PMS

[Ralf S. Engelschall. Portable multithreading — the signal stack trick for userspace thread creation. In

Evtyushkin:2016:UMC

Elmas:2007:GRT

Emerson:1997:USW

Esposito:1996:MVB

Estep:1993:LMM

Eigenmann:2001:OSM

Evripidou:2001:MDD

Engelhardt:1996:PIP

Fan:1993:LMC

Farber:1996:EAM

Figueiredo:2001:IPH

Fiske:1995:TPT

Feuerstein:1996:MTP

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

Feuerstein:2002:LMT

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:ADA

Flanagan:2008:ADA

Flanagan:2009:FEP

Flanagan:2010:AMD

Flanagan:2008:TAS

Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for atomicity: Static checking and inference for Java. *ACM Trans-
REFERENCES

Flanagan:2005:MVM

Flanagan:2008:VSC

Faulkner:1991:PFS

Foster:1997:MMC

Frincu:2014:ESV
REFERENCES

REFERENCES

REFERENCES

Farzan:2017:SDC

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

Flanagan:2002:MCM

Ferreira:1995:PAI

Field:1995:PPS

REFERENCES

Fatouron:1996:SAS

Feliu:2016: BAL

Feliu:2017:PFP

Factor:2006:PID

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

REFERENCES

Feinbube:2011:JFM

Fujita:1997:MPA

Fang:2003:DGO

Flautner:2011:JFM

Flautner:2000:TLPa

Flautner:2000:TLPb

Flautner:2000:TLPc

FURM00a

FURM00b

FURM00c

FWL03

Grant:2009:IEE

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

Garber:2001:NBT

Giceva:2014:DQP

Greiner:1999:PTE
REFERENCES

Giampapa:2005:BGA

Gotsman:2007:TMS

Gao:1995:ATD

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

[GCC99] F. Garcia, A. Calderon, and J. Carretero. MiMPI: a multithread-safe implementation of MPI. In Dongarra et al. [DLM99], pages 207–214. CO-
REFERENCES

[GEG07] George A. Gravvanis, Victor N. Epitropou, and Konstantinos M. Giannoutakis. On the performance of parallel approximate inverse pre-

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

Gao:1993:DMA

Gao:1993:SID

Gruen:1998:NIS

Gagnon:2003:EIT

REFERENCES

Gerlhof:1994:MTA

Garcia:2005:HJA

Georgiou:2017:ETD

Granat:2009:NPQ

Garland:2012:DUP

Gallmeister:1991:EEP

Golla:1998:CMR

Prasad N. Golla and Eric C. Lin. Cache memory requirements for multithreaded
uniprocessor architecture. Technical paper 98-CSE-03, Dept. of Computer Science and Engineering, Southern Methodist University, Dallas, TX, USA, 1998. 32 pp.

Golla:1998:CEB

Goldwasser:2007:INP

Gu:1999:EJT

Gonzalez-Mesa:2014:ETM

M. A. Gonzalez-Mesa, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata. Effective transactional memory execution management for improved concurrency. *ACM Transactions on Architecture*
REFERENCES

REFERENCES

Goeschl:2001:JTT

Goldwasser:1994:PAS

Gollapudi:1996:MCA

Goldstein:1997:LTC

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT
REFERENCES

SCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

REFERENCES

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN

Garg:2002:TOA

Grelck:2006:SFA
Goldstein:1996:LTI

Gupta:2010:CSM

Gulati:1995:MSM

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Giorgis Georgakoudis, Hans Vandierendonck, Peter Thoman, Bronis R. De Supinski, Thomas Fahringer, and Dimitrios S. Nikolopoulos. SCALO.

Hanson:1997:CII [Han97] David R. Hanson. *C Interfaces and Implementations: Techniques for Creating Reusable Software*. Addison-Wesley Professional Computing Series. Addison-Wesley, Reading, MA, USA,
REFERENCES

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT

Ding:2002:MOP

Honarmand:2013:CUA

Heinlein:2003:ATS

Hoffman:2009:SAT

 REFERENCES

June 2009. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1999:SVP

Hironaka:1992:BVP

Hussein:2015:DRM

Hightower:1997:PDD

Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. Dr. Dobb’s Jour-
REFERENCES

Hauser:1993:UTI

Hirata:1992:EPA

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD
Bingsheng He and Qiong Luo. Cache-oblivious databases:

Hansen:1990:EPA

Holm:1994:CSP

Helmbold:1996:TRC

Haines:1995:RSC
Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Holm:1994:CSP

Harish:2016:PIK

Hirata:1992:MPA
H. Hirata, Y. Mochizuki, A. Nishmura, Y. Nakase,
REFERENCES

REFERENCES

Holub:1998:PJTa

Holub:1999:PJTb

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM
Michael A. Hopper. *A compiler framework for multithreaded parallel systems*. Thesis (Ph.D.), School of
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 1998. xii + 110 pp.

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Huang:2016:PMR

Hassanein:2008:AEH

Hayden:2012:KEG
Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-purpose dynamic software updating for C. *ACM SIGPLAN No-
REFERENCES

REFERENCES

Hyde:2000:JTP

Huang:2015:COM

Huang:2012:EPS

Huang:2013:CRL

Iannucci:1994:MCA

Iannucci:1994:AII

REFERENCES

REFERENCES

Itzkovitz:1998:TMA

Jiaisson:2008:IPM

Jeffay:1994:LMT

Jenkin:1995:DRT

Johnson:2004:MCP

Ji:1998:PMM

Johnston:2004:ADP

Jolitz:1991:PUB

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386.
The basic kernel multiprogramming and multitasking. II. Dr. Dobb’s Journal of Software Tools, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

REFERENCES

Jeffrey:2011:IBM

Jeon:2015:MTH

Jiang:2016:TLH

Kacsuk:1997:MIC

Kanalakis:1994:ET

Kongetira:2005:NWM

Kumar:2007:ESI

[KASD07] Nagendra J. Kumar, Vasanth Asokan, Siddhartha Shivshankar, and Alexander G. Dean. Efficient software implementation of embedded communication protocol controllers using asynchronous

Karamcheti:1998:HLB

Karamcheti1553/index.htm.

Karamcheti:1999:ASM

Kejariwal:2009:PSA

Kekckler:1999:CEH

Kasperink:1997:CDC

Keckler:1998:EFG

Kleiman:1995:IT

Kerrison:2015:EMS

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO
REFERENCES

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

REFERENCES

5980 (print), 1943-586X (electronic).

Khan:2012:MAN

Khosla:1997:MAT

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF

Keen:2004:MMM

Kranzlmuller:2003:RAP

Kumar:2008:AVO

Sanjeev Kumar, Daehyun Kim, Mikhail Smelyanskiy,
REFERENCES

155

REFERENCES

Koopman:1992:CBC

Koufaty:2003:HTN

Kakulavarapu:2001:DLB

Kavi:2002:MMA

Kapil:2004:CMP

Kim:2016:SEA

[KNPS16] Youngho Kim, Joong Chae Na, Hjejin Park, and Jeong Seop.

Kim:2006:ERI

Koniges:2000:ISP

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

Kaiser:2006:CJC

Kienzle:2001:CTT

Kienzle:2001:IEO

Keckler:2012:MMC

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

Klarlund:1993:GT

Krieger:1997:HPO

Orran Krieger and Michael Stumm. HFS: a performance-oriented flexible file system

Kalayappan:2016:FRT

Kgil:2008:PUS

Kalla:2004:IPC

REFERENCES

Krieger:1994:ASF

Yu:2011:SDH

Krishnan:1999:CMA

Kopczynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP

Kumar:2004:SIH

Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I. Farkas. Single-ISA heterogeneous multicore architectures for mul-

Keller:2000:JUS

Kosmosinski:2017:MCE

Kubica:2015:PHT

Kuchlin:1991:MCI

Kuchlin:1992:MTC

Kestor:2015:TPD

REFERENCES

July 2015. CODEN ???
ISSN 2329-4949 (print), 2329-4957 (electronic).

Kuszmaul:2015:SSF

Kejariwal:2009:ELL
ISSN 1539-9087 (print), 1558-3465 (electronic).

Kleinmann:2017:ACS
ISSN 2157-6904 (print), 2157-6912 (electronic).

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR
ISSN 0163-5999 (print), 1557-9484 (electronic).
REFERENCES

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

Lam:1995:CPC

Lang:1997:MTE

Lanve:2002:TSJ

REFERENCES

REFERENCES

REFERENCES

[Leven97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

[Laudon94] James Laudon, Anoop Gupta,

Lee:1994:DAM

Lee:2009:MHP

Ling:2016:MTH

Liu:2016:PSE

Li:2005:OSA

Liedtke:1994:SNID

LaFratta:2013:EEM

LaSalle:2015:MTM

Li:2011:LCM

Luo:2017:TDS

Lin:2010:TAC

Lai:2015:SAM

REFERENCES

Li:2006:SDH

Liu:2016:SEA

Liu:2014:TAP

Li:2014:PDC

Ling:2000:AOT

Loeffler:1997:MJF

Loepere:2005:STM

Loikkanen:1995:FMS
[Loi95] Matias Loikkanen. A fine-grain multithreading superscalar architecture. Thesis (M.S., Engineering), Uni-

Lowy:2000:MPO

Launchbury:1994:LFS

Lubbers:2009:RMP

Lo:1999:SDR

Leadbitter:2007:NM

Lal:2015:DID

Lu:2016:VCV

Laudon:2007:CWM

Liao:2011:AUB

Lashgar:2015:CSR

Le:2007:IPM

Leiserson:2012:DPR

LoCocero:1997:MML

REFERENCES

versity, Pittsburgh, PA, USA, April 1997. 7 pp.

Lu:1994:MPM

Lu:1995:HMC

Lu:1998:ONW

Luk:2001:TML

REFERENCES

REFERENCES

[Mushtaq:2014:EHP]

[Monchiero:2009:HSC]

[Mahafzah:2013:PMI]

[Man:1991:MLC]

[Mane:1996:SJP]

[Manley:1999:IPT]

Kevin Manley. Improving performance with thread-private
CODEN CCUJEX. ISSN 1075-2838.

REFERENCES

Madan:2007:PEA

Moon:2006:TMS

McCarty:1997:MTI

McCarty:1997:WMT

Mitchell:1999:ILP

Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

McManis:1996:JDSb

McManis:1996:JDT

Chuck McManis. Java in depth: Threads and applets and visual controls. *JavaWorld: IDG’s maga-
REFERENCES

McMillan:1997:NSB

McManis:1998:DUT

McManis:1998:JDU

Mannarswamy:2010:CAS

Mitchell:2015:GIA

Montesinos:2008:DRD

REFERENCES

[Mikschl:1996:MMS]

[Matheou:2015:ASD]

[Matheou:2017:DDC]

[Mukherjee:1994:MII]

[McDowell:2003:ISS]

[Mennemeier:1991:HMS]

[Metz:1995:IDS]

[Marcuello:1999:EST]

[Mehta:2015:MTP]
Kshitij Mehta and Edgar Gabriel. Multi-threaded par-

REFERENCES

[Mis96] Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Moody:1999:STT

Maiya:2014:RDA

Mukherjee:2002:DDE

Muralidhara:2010:IAS

Marowka:2004:OOA

Madriles:2009:BST

REFERENCES

REFERENCES

Manson:2001:CSM

Martin:2004:HPA

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

Mayes:1995:ULT

Marinescu:1994:HLC

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

McJones:2017:PVM

Malan:1991:MA

G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91a], pages 27–40. LCCN QAX 27.

McJones:1987:EUS

McJones:1989:EUS

Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP im-

[Mantel:2003:UAS]

[Marino:2010:DSE]

[Marino:2011:CSP]

[Marino:2016:DXU]

REFERENCES

Morrisett:1993:PLP

Martinez:2002:SSAa

Martinez:2002:SSAb

Martinez:2002:SSAc

Minh:2007:EHT

Matsushita:2000:MSC

Miller:2012:VCE

[MTPT12] Timothy N. Miller, Renji Thomas, Xiang Pan, and Radu Teoadorescu. VRSync: characterizing and eliminating
REFERENCES

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Mudigonda:2005:MMA

McCann:1993:DPA

Mahesri:2007:HSS

Naik:2007:CMA

[NA07] Mayur Naik and Alex Aiken. Conditional must not alias-
REFERENCES

REFERENCES

Natarajan:1993:PVM

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

[Hosein Nazarpour, Yliès Falcone, Saddek Bensalem, and Marius Bozga] Concurrency-preserving and sound monitoring of multi-threaded
REFERENCES

REFERENCES

REFERENCES

1088–1144, November 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Norwood:1994:SMP

Norwood:1994:SMP

Nguyen:2015:RCC

Narayanasamy:2007:ACB

Nutaro:2017:HAA

Ottoni:2008:COGa

Ottoni:2008:COGb

Ottoni:2008:COGc

Olszewski:2009:KED
Marek Olszewski, Jason Ansel, and Saman Amaras-

REFERENCES

Odersky:1993:CNA

Oikawa:1995:RDU

Oyama:2000:OCC

Oaks:1997:JT

Oaks:1999:JT

Peternier:2014:IEU

REFERENCES

Pant:1999:TCP

Park:1991:PTM

Papadopoulos:1992:MCS

Park:2016:CJP

Park:2017:HHC

Papadopoulos:2016:TAD

Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson. The

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks.
REFERENCES

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Park:1997:HPM

Pham:1991:EMD

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

Pichel:2009:IDR

Ponamgi:1991:DMP

Pager:2015:SSM

Jared Pager, Reiley Jeyapaul, and Aviral Shrivastava. A software scheme for multithreading on CGRAs.
REFERENCES

Park:2007:MEP

Powell:1991:SMT

Price:2003:CAF

Plauger:1993:MCS

Plauger:1998:SCCl

Plauger:1999:SCCg

Plachetka:2002:QTS

Porter:2015:MMS
Leo Porter, Michael A. Laurenzano, Ananta Tiwari, Adam Jundt, William A. Ward, Jr., Roy Campbell, and Laura Carrington. Making the most of SMT in HPC: System-

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabhu:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Parashar:2013:TIC

Piumarta:1998:ODT

Ian Piumarta and Fabio Ri-

Petric:2005:EEP

Pra95a

Pra95c

Pra97

Pra95b

Pre90
D. L. Presotto. Multiprocessor streams for Plan 9. In

References

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Peacock:1992:EMS

Papadopoulos:1991:MRV

Prvulovic:2003:RUT
Milos Prvulovic and Josep Torrellas. ReEnact: using

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pathania:2017:DTM

Preissl:2012:CSS

Preissl:2011:MGA

Rajagopal:1993:DMI

Ramsey:1994:CTB

Rufai:2005:MPO

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

Reda:2012:APC

Rahman:2014:CCO

REFERENCES

Radojkovic:2012:OTA

[Radojkovic:2010:TSB]

[Ruddock:1996:MPG]

[Ronsse:1999:RFI]

[Russell:2006:ESRa]

[Reck:1998:TSR]

[Reich:1995:DHP]

[Reilly:2001:TNF]

Redstone:2000:AOSb

Redstone:2000:AOSc

Rajwar:2003:TET

Radojkovic:2012:EIS

Rodgers:1999:TSN

REFERENCES

interscience.wiley.com/cgi-bin/fulltext?ID=62501865 PLACEBO=IE.pdf.

Reiche:2017:AVI

Rodrigues:2015:DSE

Raman:2010:SPUa

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

REFERENCES

August 1995. CODEN DDJOEB. ISSN 1044-789X.

[Rugina:1999:PAM] Radu Rugina and Martin Rinard. Pointer analy-

Robbins:2003:USP

Roy:2011:SRP

Rivara:2012:MPL

Reddy:2006:UPB

Rouce:2008:DIS

Rouce:2008:DIS

[RS08] Peter A. Rounce and Alberto F. De Souza. Dynamic instruction scheduling in a trace-based multithreaded architecture. *Inter-
REFERENCES

Riccobene:2009:SCB

[RSB+09]

Rohan:2001:RMD

[RSBN01]

Rangan:2008:PSD

[RVOA08]

Roth:2004:MTC

[RV04]

Raychev:2013:ERD

[RVS13]

Ravoor:1997:MTP
Suresh B. Ravoor and Johnny S. K. Wong. Multithreaded transaction processing in distributed systems. The Journal of Systems and Software,
REFERENCES

Shaw:1998:CIP

Samorodin:1999:SFS

Sanden:2004:CJT
B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SJL

Smith:1980:ASD

Sah:1996:PIS
Saavedra-Barrera:1991:ASM

Saavedra-Barrera:1990:AMA

Storino:1999:MTB

Savage:1997:EDD

Saillard:2015:SDV

Saez:2013:DFP

REFERENCES

[SGLGL14] I-Jui Sung, Juan Gómez-Luna, José María González-Linares, Nicolás Guil, and...
REFERENCES

REFERENCES

REFERENCES

CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Sharafeddine:2012:DOE

Singh:1992:DRS

Singh:1992:DRT

Smaragdakis:2007:TIC

Stewart:1997:MDH

Sung:2001:MDA

Smaragdakis:2007:TIC

Schonherr:2011:MTI

REFERENCES

[Sohn:2001:CTC]

[Sato:1992:TBP]

[Son:2009:CDD]

[Sung:2002:CPE]

[SLF14]

[SLG04]
Shin:2006:ADT

Scherer:1999:TAP

Sharkey:2008:RRP

Sidiroglou:2009:AAS

Solihin:2002:UUL

Solihin:2003:CPU

REFERENCES

dl/trans/tf/2003/06/10563.pdf.

REFERENCES

Singh:2012:EES

Sodan:2002:AMA

Samorodin:2000:SFS

Shinjo:2000:DCEa

Sharkey:2007:EOA

Saarikivi:2017:MTS

Spero:1994:MMD

Skjellum:1996:TTM

Saxena:1993:PMS

Suleman:2008:FDTa

Suleman:2008:FDTb

Suleman:2008:FDTc

Squillante:1994:AMP

Mark S. Squillante. Analytic modeling of processor utilization in multithreaded processor architectures. Research re-
port RC 19543 (84999), IBM T. J. Watson Research Center, Yorktown Heights, NY, USA, April 1994. 9 pp.

REFERENCES

REFERENCES

Shi:2007:CCP
Shi:2007:CCP

Soundararajan:2010:CSE

Saito:1999:MRS

Sohn:1997:DWD

Skillicorn:1998:MLP

Snavely:2000:SJSa

Allan Snavely and Dean M. Tullsen. Symbiotic job scheduling for a simultaneous multithreaded processor. ACM SIGARCH Computer

ber 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Stuckey:1995:FCI

Snavely:2002:SJP

Schmidtmann:1993:DIM

Shen:1999:ATL

Sigmund:1996:IBM

Sigmund:2001:SCS

Suito:2012:DRM

SunSoft:1995:SMP

[Sun95] SunSoft. *Solaris multithreaded*
REFERENCES

programming guide. Sun-
Soft Press, Mountainview,
CA, USA, 1995. ISBN 0-
13-160896-7. xviii + 158
pp. LCCN QA76.76.O63 S635
1995.

[Sut99] Herb Sutter. Optimiza-
tions that aren’t (in a mul-
tithreaded world). C/C++
Users Journal, 17(6):??, June
1999. CODEN CCUJEX.
ISSN 1075-2838.

[SV96a] D. C. Schmidt and S. Vi-
noski. Comparing alterna-
tive programming techniques for
multithreaded CORBA
servers. C++ Report, 8(4):
56–66, April 1996. CODEN
CRPTE7. ISSN 1040-6042.

Comparing alternative pro-
gramming techniques for mul-
tithreaded CORBA servers.
C++ Report, 8(7):47–56, July
1996. CODEN CRPTE7.
ISSN 1040-6042.

[SV96c] D. C. Schmidt and S. Vi-
noski. Comparing alternative
programming techniques for
multithreaded servers. C++
Report, 8(2):50–59, February
1996. CODEN CRPTE7.
ISSN 1040-6042.

[SV98] Geoffrey Smith and Dennis
Volpano. Secure informa-
tion flow in a multi-threaded
imperative language. In
ACM [ACM98b], pages 355–
URL http://www.acm.org:
80/pubs/citations/proceedings/
plan/268946/p355-smith/.
ACM order number: 549981.

[SV99] Herb Sutter. Optimiza-
tions that aren’t (in a mul-
tithreaded world). C/C++
Users Journal, 17(6):??, June
1999. CODEN CCUJEX.
ISSN 1075-2838.

[SV96a] D. C. Schmidt and S. Vi-
noski. Comparing alterna-
tive programming techniques for
multithreaded CORBA
servers. C++ Report, 8(4):
56–66, April 1996. CODEN
CRPTE7. ISSN 1040-6042.

Comparing alternative pro-
gramming techniques for mul-
tithreaded CORBA servers.
C++ Report, 8(7):47–56, July
1996. CODEN CRPTE7.
ISSN 1040-6042.

[SV96c] D. C. Schmidt and S. Vi-
noski. Comparing alternative
programming techniques for
multithreaded servers. C++
Report, 8(2):50–59, February
1996. CODEN CRPTE7.
ISSN 1040-6042.

[SV98] Geoffrey Smith and Dennis
Volpano. Secure informa-
tion flow in a multi-threaded
imperative language. In
ACM [ACM98b], pages 355–
URL http://www.acm.org:
80/pubs/citations/proceedings/
plan/268946/p355-smith/.
ACM order number: 549981.
REFERENCES

Sweetman:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Schwan:1991:RTT

Sterling:2002:GMP

Shih:2014:COR

Sinienian:2013:MMS

REFERENCES

REFERENCES

[Tel95]

[Tel98]

Trancoso:2006:CCM

Tetewsky:1994:GDR

Tian:2010:SPU

Tang:1999:APT

Thakur:2009:TSE

Tian:2005:PCT

REFERENCES

REFERENCES

[Editors:2002:LUC] The Editors, Kim Reidar Lantz, Ze’ev Atlas, Pete Nel-
REFERENCES

[Taylor:1995:CSA]

[Trotto:2010:AVI]

[Traub:1991:MTC]

[Tsai:1997:PSC]

[Tsai:1997:SIC]
REFERENCES

REFERENCES

USENIX:1993:PUMb

USENIX:1993:PWU

USENIX:1996:PFA

USENIX:1999:PUWa

USENIX:1998:PSA

USENIX:2000:UAT

REFERENCES

[Van97a] Laurence Vanhelsuwe. Book review: The Java Threads API makes it to print me-
REFERENCES

Vanhelsuwe:1997:JPE

Vckovski:2000:MTS

Volkov:2008:LQC

Vishkin:1998:EMT

Volkman:1993:CDB

Venners:1997:UHH

REFERENCES

Haris Volos, Andres Jaan Tack, Michael M. Swift, and Shan Lu. Applying transac-

Villa:2012:FAS

Vishkin:2000:ELR

VanDeGeijn:2011:HPD

Winter:2008:ATN

Walter:1995:PMS

Walmsley:2000:MTP

Wang:1994:MAD

REFERENCES

“Free agents: a new generation of lightweight, multithreaded operating environments provide security and interoperability for agent developers.”

“Grouping memory consistency model for parallel-multithreaded shared-memory multiprocessor systems.”

“EXOCHI: architecture and programming environment for a heterogeneous multi-core multithreaded system.”

“Threaded multiple path execution.”

“Reversing engineering of software threads: a design recovery technique for large multiprocess systems.”

“Helper threads...”

REFERENCES

REFERENCES

Wegiel:2008:MVCVa

Wegiel:2008:MVCb

Wegiel:2008:MVCc

Wadden:2014:RWD

Wang:2009:TDA

Won:2015:MMC

Watcharawitch:2003:MME

REFERENCES

Wu:2012:SPA

Wang:2002:SPE

Wong:2008:TAF

Waldspurger:1993:RRF

Wise:1996:SDP

Xu:2006:RTR

REFERENCES

Yao:2016:OCO

Yu:2016:DLR

Young-Myers:1992:DTC

Yu:2009:CIC

Yu:2012:MCD

Yoo:1996:CAA

Yoo:1996:PCM

Yeh:2017:PFG

Youseff:2009:PES

Yong:2003:AMC

Yan:2007:HMC

Yang:2014:CNR

Yang:2007:RUL

Zoppetti:2001:IDD

Zhang:2015:DMB

Zhang:2010:FTS

Zhai:2002:COSa

REFERENCES

Zhai:2002:COSb

Zhou:1998:LST

Zhang:2000:WMH

Zhang:2015:LOS

Zignin:1996:TDM

Ziarek:2009:SWB

Zhang:2010:DCS
Zhu:2011:TPS

Zhang:2012:SCC

Zhao:2011:DCC

Zhang:2015:DPO

Zier:2010:PED

Zhang:2016:TED

Zhang:2016:SAN

Mingzhe Zhang, Francis C. M. Lau, Cho-Li Wang, Luwei Cheng, and Haibo Chen. Scalable adaptive NUMA-aware lock: combining local locking

Zhuang:2004:BRA

Zhuang:2011:CST

Ziarabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB