A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
19 October 2018
Version 3.143

Title word cross-reference

#4 [Pet00].

+ [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. ’12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94e].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b,
Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
[Hol12]. 20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KA05]. 35th [Gol94]. 3D
[Ano97b, Loe97].

/ multi [Taf13]. / multi-threaded [Taf13].
’01 [USE01].
Abstract

ACM/IEEE [ACM98d].

Algebra

AGNI [RBPM00].

Algorithmic [Lei97, BBH+17].

Algorithms [BP05, EJRB13, FS96, LA93, MG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CFG+12, CLRS09, FR95, GK05, Lei97, Lep95, NFBB17, QOQOV+09, RRMJ12, YMR93a, Li05].

algorithms-by-blocks [QOQOV+09].

Algorithms-by-Tiles [QOIM+12].

aliasing [NA07].

Aligned [YWJ03].

alignment [KGPH12].

Allaire [Hig97].

Allocating [SEP96].

Allocation [MVZ93, Nak01, EFJMO7, LLL10, Mic04, ZP04].

Allocator [BMBW00b, BMBW00a, BMBW00c].

Abstract

CSS+91b, CGSV93, DV99, KPP12, LMA+16, MJF+10, Ném00, CSS+91a, CSS+91c, Di100, VDBN98, ZJFA09].

Abstraction

[KL16, Bak95b, GPR11, ZSJ06].

AC

[BGK94a, BGK94b].

Accelerating

[LS11, SMQ09, VGK+10a, VGK+10b].

acceleration [JSM13, NBMM12].

Accelerators

[NTR16, SGLGL+14].

Access

[Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY95, Sbh95].

access/execute [APX12].

accesses [DTK+15].

accessibility [SSK+07].

Accounting

[LMA+16, EE09b].

accuracy [TO10].

Accurate

[CPT08, VTSM12].

Achieving

[AHW02, SP05, KGGK90, WTKW08].

ACM

[ACM93b, RM03, IEE02, ACM98b, ACM99a].

ACM/IEEE [ACM98d].

Activation

[KG94].

Activations

[ABLL92, DNR00, SS95].

Active

[BKI06, PLA02, Ten98, Weiz8a, SD95, WJ+95].

actors [Bri89].

actually [Pra95c].

Ada

[ACM93c, Bar09, Di103, GMB93, KPPÉR06, KR01b].

ADAM [Far96].

adaptable

[LLLC15].

Adaptation

[CMBAN08].

Adaptive

[ABN00].

Adapting

[ALH+08, HBTG98, KI95, LYG+16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZL+15].

Adding

[Pla89, Ric99, McM97].

Address

[CLFL94, PWL+11, Czek92, Lie14].

Addressing

[WA08, CKD94, ZSB+12].

Advanced

[IEE97, JH90, KDVT93, DLM99].

Advantage

[We197].

Adversarial

[FF10].

affinity [NA01].

Age

[Cro99].

agent [Way95].

Agents

[CWHB00, CR02, Way95, BDF98].

Aggregate

[TGO99, TGO00].

AGNI

[RBPM00].

agreement [GMW09].

Aid

[Wei97].

aided [MC97].

aids [M97].

Air

[MPD04].

Albuquerque

[Ano94e].

Algebra

[KLDB90, NBS+15, PHCR09, YSY+09].

Algebraic

[ACM94c, Lak96, MR90, Wat91].

Algorithm

[AT16, ABC+09, HH11, OR12, TT03, ZBS15, KGPH12, KNS16, LCH+08, Mah11, Mah13, SCG95, TKH94, Dav11, HBG92, YFF+12].

Algorithmic

[Lei97, BBH+17].

Algorithms

[BP05, EJRB13, FS96, LA93, MG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar09, CFG+12, CLRS09, FR95, GK05, Lei97, Lep95, NFBB17, QOQOV+09, RRMJ12, YMR93a, Li05].

algorithms-by-blocks [QOQOV+09].

Algorithms-by-Tiles [QOIM+12].

aliasing [NA07].

Aligned [YWJ03].

alignment [KGPH12].

Allaire [Hig97].

Allocate [SEP96].

Allocation [MVZ93, Nak01, EFJMO7, LLL10, Mic04, ZP04].

Allocator [BMBW00b, BMBW00a, BMBW00c].
Alpha [Ano00b]. alphabet [KNPS16].
alphabet-independent [KNPS16].
alternative [SV96c, SV96a, SV96b].
Alternatives [MB99, MKR02]. Alto
[ACM01]. ALU [KDM+98]. always
[DWS+12]. always-on [DWS+12]. Amdahl
[CN14, NZ17]. Among
[CB16, HMC95, SJ95]. analysing
[NJK16, PV06]. Analysis
[AKS06, BCZY16, BE12, BE13, BBC+00,
BLG01, BNH01, CC04, CH95, CGL92a,
CGL92b, DSR15, EJRB13, Hai97b, Hol12,
LCK11, LML00, LHG+16, NBM93, REL00b,
Rin01, RR99, SBCV90, TAM+08, Yoo96a,
Zub02, AC09, ACC+03, BGZ97, BBH+17,
BPSh05, BBM09, CHH+03, CS12, CVJL08,
Cor00, GBCS07, HEJ09, KTK12,
KC09, Lei97, LBH12, LBE+98, Met95,
NWT+07, PFH06, PL03, REL00a, REL00c,
RS07, SR01a, SMK10, SRA06, SB80,
TMC09, TR14, Wan94, WS06, WP10,
WOKH96, WTH+12, dBo99, vPG03].
Analytic [Squ94]. Analytical
[DKF94, VT96, SBC91]. analyze
[LMC14]. Analyzing
[HRH08, Kor89, RHH10, TMCP10].
anatomy [Rei95]. Android
[BPSH05, BMV03, CB89, CB90, CSB00,
CS12, FM92, FURM00a, FURM00b, GS02,
GCRD04, LB90, ISS98, JSP12, JSP13,
KVN+09, MLCW11, MKM14, MKIO04,
MCL04, MT02a, MT02b, MT02c, MK99,
MKR10, NR06, Omm04, PJZA07, RCV+10,
Rei95, San04, SNN10, SKP+02, TM09,
TMC10, TP18, VIA+05, VGK+10a,
VGK+10b, WCZ+07, WT10, WOKH96,
XMN99, YZ14, kSYHX+11, ZKR+11, Len95].
apply [NZ17]. Applying
[VTSL12, MT02a, MT02b, MT02c].
Apprendre [Swi09]. Approach
[AZ17, BBSSG11, CJW+15, ES97, FKT96,
GMR98, KK94, HS91, ND16, RC+16,
TY97, VSDK09, WS08, We98b, YLSS16,
BWDZ15, DMM+12, LZL14, MS03, RC+16,
SCZM00, TP18].
Approaches [BLPV04, MB07].
Approximate
[HFV+12, GEG07, GE08, KGPH12]. Apps
[PCM16]. April [Ano00a, Ano03, USE01].
arbitrary [BGC14]. ARCH [Ada98].
Architectural
[ACM94d, HEMK17, IAD+94, KC99, ME15,
BS06, CMF+13, Fan93, WHG07].
Architecture
[ACM98c, BBD+91, BTE98,
Car9b, CL95, DO95, EKBG01, For97,
Gao93, GK49, GH+89, GV95, GN92,
HTZ+97, HMNN91, HHOM91, HHOM92,
KBH+04a, KBH+04b, KIAT99, Man91,
MB99, PVS+17, PTMB09, PKB+91, PS01,
REL00b, RS08, SCL05, SSY97, SKK+01,
SZ02, TKA+01, VK99, ZL10, ACC+03,
AAHF09, Ano97b, BT01, Bon13, CMF+13,
CKRW99, CMBAN08, DSR15, EGP14, GHG+98, HHOM91, HHOM92, KS16, KG05, KEL+03, KW17, KS97, KRH98, Kwo03, LG06, LS11, MGQS+08, MIK97, OB13, RSBN01, TESK06, WLM15, ArabdRS05, Ada98, AAHF09, Ama98, AKSD16, CNQ13, CKD94, CKRW97a, CKRW97b, CNV+06, DG99, DWYB10, EG11, GDSA+17, GE08, JD08, JSM13, KRI01b, KK1+13, KI16, KBF+12, LK15, LZW17, LLL10, Mus09, NBMM12, NFBB17, PSG06a, PSG06b, PSG06c, PADs+17, PAB+14, RM94, RR06, RS08, SKS+92, TE94a, WCW+04b, WCW+04c, YL16, Day92a, Day92b, RSB+09.

Bases [GK94, Swi09].

basic [JJ91, KTLK13, Esp96]. Basis [AGK96]. 

Be [Pet03, Ano95a, Ano95b, Boe05, MMTW10].

Beach [USE92b].

becoming [Ano92a].

Behavioral [KLS92, LB17, REL00b, ACD+18, DESE13, GS00, REL00a, REL00c].

Behavior [KLS92, LB17, REL00b, ACD+18, DESE13, GS00, REL00a, REL00c].

Behavioral [Sch17].

Benchmark [BTE98, EHSU07, Mül03].

Benchmarking [HHOM92].

Benchmarks [CRE99].

Benefits [MHG95, LB95, LB96b, SD95].

benign [NWT+07].

Better [USE92b].

Between [WG94, Pan99, SS95, Yam96, ZCSM02a, ZCSM02b].

Beyond [EKB+92].

Beyond [EKB+92].

Beyond [Koo93].

bug [NBMM12].

bugs [JWTG11, VTSL12].

build [KSB+08].

Building [Fon97, KS97, Pet03, Omm04].

Building-Block [KS97].

bulk [RDB06].

Bulldozer [BBSG11].

Bunka [Ano93].

Burrows [LHS16, NTR16].

Bus [MKC97, Cat94, HHPV15].

Bus-Based [MKC97].

BVT [DC99, DC00].

Bytecode [ABH+01, Coo02, GH03, A+01, CAR08].

C [Kel94a, Kel94b, Lev97, Pla98, Pla99, Rod95a, Vre04, Ait96, AGBE08, Ano99, BM94, Bau92, Bed91, BYLN09, BPL07, BA08, CFB+91, CER92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jon91, KDS97, Lafa0, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pom98, P0, PS03, PS07, Pul00, Ric91, SC17, Sch90, TB97b, TB97b, Vol93, Wal00, Yam95, Yam96].

C# Boost.Threads [Kem02].

Boosting [AKSD16, APX12, MLC+09, YZ07].

boosts [McM97].

Borland [Kel94a, Kel94b].

Borrowed [DC99, DC00].

Borrowed-virtual-time [DC99, DC00].

Boston [Ano94].

Both [KZC15, CZSB16].

Bothnia [CCW+11].

Bottle [DSEE13].

Bottle [TESK06].

Bottleneck [JSMP12].

Bottlenecks [SU96, Zub02, DSEE13, CS12, DSG17].

Boulevard [ACE99].

Bounded [CRE99].

Bounding [Lun97, Lun99, MQ07].

BowMapCL [NTR16].

Box [Ano00b].

Braids [BS06].

Branch [AKS06, EPAG16, IBST01, CTYP02, CPT08, GL98b, MTS10].

Branches [UZU00].

breath [LAH+12].

breath-first [LAH+12].

breakpoint [Ram94].

Bridge [Ano94b].

Bringing [Hay93].

Briefs [Gar01].

bring [Pra95b].

Broadcast [SW08].

Broadcast/Reduction [SW08].

brokers [Sch98].

Browsing [HF96].

BSD [SS95].

BSDCon [USE02].

BSP [SYHL14].

BTRIMER [TJY+11].

buffered [DLZ+13].

buffers [Koo93].

bug [NBMM12].

bugs [JWTG11, VTSL12].

build [KSB+08].

Building [Fon97, KS97, Pet03, Omm04].

Building-Block [KS97].

bulk [RDB06].

Bulldozer [BBSG11].

Bunka [Ano93].

Burrows [LHS16, NTR16].

Bus [MKC97, Cat94, HHPV15].

Bus-Based [MKC97].

BVT [DC99, DC00].

Bytecode [ABH+01, Coo02, GH03, A+01, CAR08].

C [Kel94a, Kel94b, Lev97, Pla98, Pla99, Rod95a, Vre04, Ait96, AGBE08, Ano99, BM94, Bau92, Bed91, BYLN09, BPL07, BA08, CFB+91, CER92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jon91, KDS97, Lafa0, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pom98, P0, PS03, PS07, Pul00, Ric91, SC17, Sch90, TB97b, TB97b, Vol93, Wal00, Yam95, Yam96].

C#
C-based [RSB+09]. C/C [Pla98, Sta05], Cache [ACM94d, IEE90], C3I [BTE98], CA [ACM94d, IEE90], C/C [Pla98, Sta05], C3I [BTE98], CA [ACM94d, IEE90].

Cache [BCZY16, CMX10, GBP+07, GL8a, HL08, HKSL96, KLS92, KET06a, LLD17, PEA+96, WG94, ZJS12, Car96, Cho92, KHP+95, KLS92, MHR09, RAj93, ShA95a, SK+98, WZC+07, ZJS10, ZKR+11].

Cache-conscious [GBP+07].

Cache-oblivious [HL08].

CacheFlow [KET06a].

Cacheline [PBL+17], caches [KGGK09, ROA14].

Caching [BD06], calculi [LVS01].

Calculus [III+04, ORH93].

Calderia [Ano99].

California [ACM93b, ACM95b, ACM98b, IEE99, USE89, USE91a, USE93b, USE96, USE98b, USE98b, USE01].

California [ACM93b, ACM95b, ACM98b, IEE99, USE89, USE91a, USE93b, USE96, USE98b, USE98b, USE01].

Call [GSC96, Hub91, ORH93, Xue12].

Callbacks [VS96].

Calling [TTY99].

Calling [BD06].

Can [Ber94, Dye98, Pet03, Ano92a, Ber96a, Hig97].

Canada [Ano00a, BT01].

cannot [Boe95].

Capability [HC17].

Capabilities [VD08, Plv89].

Capability [CB94].

Capability-based [CB94].

Capacity [SSP+07].

Capping [RCC12].

Capturing [BKC+13].

Carolina [ACM93a].

Cascadia [ZL10].

Case [Ah00, AGK96, Chl15a, LSB15, TAK+00, TES06, VK99, BDL07, CASA14, CL94, HJT+93, KPP+06, KI16, MSM+11, MN03, SP05, Sod02, YN09].

Cathedral [USE02].

Causality [HI16].

Cavity [RM99].

CD [Ano00b].

CDSChecker [ND13].

CE [Tim03].

Center [ACM98d, ACM99b, ACM00, Ano03, Hol12, IEE90].

Centric [BDN02, Bre02, Ham96, DHM+12].

CFD [DK02].

CG [TAK+00].

CGRAs [PJS15].

Chain [SBC91].

Chaining [JY15, KFG15].

Challenge [Ano99].

Challenges [Ano99, GJ97, AG06].

Changing [Gar01].

channel [MN03].

Channels [EPAG16].

chant [HCM94, Ano94c].

Chapter [SK+01].

Characterization [Ano05, BCG+08, MR94, MMM+05, DWYB10].

Characterizations [GSP00].

Characterizing [Gle91, OdS12, SSN10, MTPT12].

Charleston [ACM93a].

Chassis [Ano00a, BT01].

Checker [FQS02, FF04, FF08, FFY08].

CheckFence [BAM07].

Checking [ES07, ND16, AHH08, AD08, AGBE08, BM07, BS10b, BNS11a, BNS11b, BNS12, CN13, Di00, FFLQ08, Mi05, MQ08, ND13, PA+17, St02, TVD10, VGR06].

Checkpoint [ZSA13].

Checkpoint/Restart [ZSA13].

Checkpointing [CS02, ZS06].

Chemkin [Bra97].

Chicago [Ano94d].

China [IEE97].

Chip [HHM02, KST04, KU00, KKS+08, LS07, LKBK11, LMJ14, MTN+00, MR09, TESK06, VIA+05, Wea08, CSM+05, DTK+15, GA09, KT99, SKMC09, TEL95, TEL98a, TEL98b].

Chip-Multiprocessor [KU00].

Chips [Ano00a, Ano03, IEE99].

Chip-Multiprocessors [KU00, LMJ14].

Choir [TBN+95].

Chiron-1 [TBN+95].

Choice [III+04, TEE+96].

Cholesky [CIM+17, VD08].

Chores [EJ93].

Chunking [WLM15].

CIL [CAR08].

Cilk [BJK+95, BJK+96, FLR98, Joe96, Mi05].

Cilk-5 [FLR98].

CIO [Ano94g].

Circuit [AMR98].

City [Hol12].

CLAM [GMR98].

CLAP [HZD13].

Class [BS99, Cha02, Gb94, VE99, CS00, MSLM91, Yan96].

Classes [Cal00, Feh08, How98, Lam95, SC17].

Classical [JSB+12, JSB+11].

Classics [Wi00].

Classification [KZC15, LJM14, LCH+08].

classifying [NWT+07].

Claus [WP10].

Client [Day92a, Day92b, Sip95, Gol96].

client-server [Gol96].

Client/Server [Day92a, Day92b].

clients [CDL13].

climbing [CY09].

Closure [CIM+17, VD08].
[YMR93b, YM92, YMR93a]. cloud
[FKS+12, GDSA+17]. clouds [FGG14].
Cluster [BNH01, CRE99, HD02, KKH03, Kwo03, SCD+15]. Clustered [GSL10].
Clustering [JY15, LK15, RVRO4, TAS07].
Clusters [BWXF05, WG99, ZBS15, BMV03, FWL03, TMAG03]. CMP
[TAS07, AMPH09, CWOS06, ICH+10, LLI10, SSkP+07, ZJS10, ZJS12]. CMP-based
[LLI10]. CMPs [GW10, JSMP13, SQPO8a, SQPO8b, SQPO8c, YL16].
Co [Goo97, AMPH09, BBH+17]. Co-design [BBH+17]. Co-optimization [AMPH09].
Co-processor [Goo97]. Coarse [NS97].
coated [Lep95]. Code
[BBdH+11, Coo95, HyY+15, JSB+12, Kim14, KEL+03, MS02, NS97, ND16, PR98, Roh95, RNSB96, TGBS05, Tra91, Ann96, BB00, Jsb+11, Sj95].
Codes [GMBN08, HLB94, BR92, JSB+11, JSB+12, Kim14, KEL+03, Mck93, McM97, McM98a, McM98b].
Codesign [HPA+15]. cognitive [MCS15, PWD+12].
cognizant [LK13]. Coir [SG96]. Cold [Hig97, Hig97]. Collaborative [VSDK09].
Collection [AKP99, LB92, PUF+04, PF01, QSaS+16, KTK12]. Collections
[Kle00, MCM98a, McM98b]. collective [HMC95, SCB15]. collector [BBYG+05, DL93, HL93, WK08a, WK08c, WK08b].
coloring [CFG+12, GP05, SS10]. Colt [WN10]. Combinator [KLS92]. combined [UZ00]. Combinings
Commands [K97]. Commercial
[SBKK99, BEKK00, EJK9+96]. Commodity
[ZLJ16, LV10, RPNT08]. Common
[Hol98a, Kuc92, BDF98, BDLM07, CL00, Kuc91]. Communication
[ABN00, DSR15, EH95, FKT96, FGTK97, GMR98, HY+15, OA08a, OA08b, OA08c, Pan99, PWL+11, Rod94, SKK+01, TKA+01, TCG95, BR92, DBRD91, GRS06, KASD07, Lam95, QSHI16, RR96, RR03, TG09, TKA+02, VS96, WHJ+95, ZCSM02a, ZCSM02b]. Communications
[AN003, BMN99, SCB15, Shc97b, TP18].
Commutativity [AC09]. Compact
[HEMK17]. compaction
[WK08a, WK08b, WK08c]. Comparative
[SKP+02, Yoo06a, PL03]. Comparing
[KPP+R06, SV96c, SV96a, SV96b].
Comparison [ILFO01, SAC+98, GL98b, Kim+03, MKI004, MMTW10]. Compass
[PWD+12]. Compatible [MM14, LBH12].
competition [YL16]. Compilation
[ACMA97, HLB94, BRRS10, GC92, HCD+94, Tsa97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time
[CS95a, CS95b]. Compile/run [TSY99].
Compile/run-time [TSY99]. Compiler
[ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, Jsb+12, LEL+99, Loc18, MCRS10, Scv91a, Scv91b, SYHL14, Sin99, TY97, TBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG+95, BAD+10a, BAD+10b, BVG97, CAR08, CSS+91a, CSS+91c, DC07, Dub95, Fon97, Gol97, Hop98, Jsb+11, Msm+11, McM97, Mull03, Rkcw98, Sch91, Skkc09, Uzo00, Wlg+14]. compiler-assisted [Dub95].
Compiler-Controlled [CSS+91b, Scv91a, Scv91b, CSS+91a, CSS+91c, Sch91].
Compiler-directed [DZKS12, Skkc09]. Compiler-Driven [YBL16].
compiler-managed [Wlg+14].
Compiler-Supported [ZP11]. Compilers
[SS96]. Compiling
[ABNP00, ABH+01, TIA+02, HTZ+97, Sch91, Sha98, A+01].
Complement [YFF+12]. Complete
[BR15, Sch14, BW97, DWS+12, Ffy08, Kggk09, NV15].
Completion
[AGK96, BGK96, Lme97, Mnh98, BGK94c].
Complex [SZM+13]. Complexity
[EG11, CMX10, SKA01]. complexity-effective [SKA01].
Compliant
[BGK96, SP05, Hig97]. component
[NFBB17]. component-based [NFBB17].
Components
[Gou90, Sho97b].
Composable [MLGW18, SS10, FKS+12].
Compositions [KS97]. Comprehensive [TAM+08]. Compressed [PBL+17].
Computation [ACM94c, BFA+15, CWS06, HLR94, Hor94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fu97, KG07, Kuc91, NJ00, Sha98, ST98, WHJ+95].
Computational [PCPS15, Bar95].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96].
Computation [ACM94c, BFA+15, CWS06, HLR94, Hor94, HWW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fan93, Fu97, KG07, Kuc91, NJ00, Sha98, ST98, WHJ+95].
Computational [PCPS15, Bar95].
Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blu92, BL93, BL94, BL99, Chr95a, Chr95b, Chr96].
Compute [BBSG11].
Computer [ACM98c, Ano94a, CBN+00, Gol94, BD06, DNB+12, GKO5, I+94, PBDO92].
Computers [Ano94e, SS96, BCM+07, Boo93, LP09, SJ95].
Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Ano89, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Ham96, Hol12, HG91, IEE94b, KR12, Kon00, LCK11, LF96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BGG95, BD06, Dau09, FWL03, GBG95, GS02, HF88, HG92, IEE97, Jee96, Kim94, KU17, Lan97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta09, SKA01, Tem97].
Concept [AMdBdRS02, BBFW02, KA97]. Concepts [McC97a].
Concrete [NSP+14].
Concurrency [BM94, GMGZP14, MLR15, MQLR16, ME17, NFFB17, BA08, But14, CBM10, GCC15, HDZ13, LZ07, NBMN12, NJK16, RR96, RR03, SK12, VTS12, Yan02, ZI+16, dBo9, SB80].
Concurrency-preserving [NFFB17].
Concurrent [ILF001, KD97, KCCD99, MSM+16, NPT98, PCM16, PF01, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGK09, MSM+10, MKIO04, Men91, NHFP08, Nev99, ND13, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZSJ06, Hay93]. Condensed [BIK+11]. Condition [Hol98c, Yan02]. Conditional [IBST01, NA07]. Conditions [HM96].
Conference [ACM92, ACM93a, ACM94b, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM99b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM91, Ano90, Ano94a, AOY+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KKV03]. Confidentiality [NSh14].
Confirmation [CJW+15].
Confirmation [NJK16, vPG03]. Conformant [Stu95].
Congress [Ano94d].
Connect [Ano00b]. conquer [FN17, TP18].
conscious [GBP+07]. Consistency [ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Ch03, DNB+12, GS00, HT14, QSQ14, SNM+12]. consistent [NHF08]. Consolidated [HC17].
Constrained [TLGM17, GW10, YN09]. constraint [SCG95]. constraints [HB15].
Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05].
Contextual [ZSJ12, ZSJ10].
Content [WLM15]. Content-Based [WLM15].
Contention [XSaJ08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].
Content-aware [XSaJ08]. Context [TLM+02, GJL99, FD05, LG04, MQ07, PAD+17, PFH06, SCB15, Yan97, LG04].
context-bounded [PAD+17].
context-sensitive [PFH06, LG04]. contexts [BGC14, TE94b, WW93].
Contextual [BGZ97, NHFP08].
continuation [AAHF09].
continuation-based [AAHF09].
continuations [DBRD01, GRR06].
Continuing [Ano99]. Continuous [RCC14].
Continuously [DTML14]. Control [BP05, KW17, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, FK12, FSYA09, GCC15, MLCW11, NT14, PPA+13, PWWD18, Pol90, RPB+09, UZU00, WLK+09, Yoo96b].
control-flow [NT14]. Controlled
[BCG+08, CSS+91b, CGSV93, Scv91a, CSS+91a, CSS+91c, Luk01, MWP07, Sch91, Scv91b]. **Controller** [RLJ+09]. controllers [KASD07], controlling [AGN09, BKC+13]. controls [McM96c]. Controversial [Gar01].

**Convention**
[ACM98d, ACM99b, ACM00, Hol12].

**Conventional** [KET06b, HB92].

**Convergence** [RM03]. conversational [LG04]. Converse [BK96]. Convert [Vol93].

**Converting** [LEL+97a, LEL+97b]. convolutions [RB18]. convolver [Kep03].

**Cool** [Ano00a, Ano03, Wei97]. cooperation [BM07, SKBY07]. Cooperative

**Core** [CdBC18, FMY+15, KST04, KTR+04, MP01, MB05, PVS+17, PM14, QOIM+12, ABC+15, AMPH09, CFG+12, CSM+05, DWYB10, GW10, KBF+12, MLCW11, MLA+09, MTPT12, Mus09, SMQP09, VPQ12, WCC+07, YZ07].

**CoreDet** [BAD+10a, BAD+10b]. Cores [CCK+16, RRK11, CW506, MAF+09, SW16].

**coreSNP** [GAC14]. Corner [SW97].

**Corona** [VSM+08]. Corporation [Ano00b, Ano00b]. correct

**correct** [DJLP10, PS00b, Shi00]. Correction

**Correlation** [TLA+02]. corrective [LG04]. Correctness [Ram94].

**Correlation**

**SLT03, PFH06, SLT02, cosimulator**

**LT97**, Cost [TY97, Bet73, DC07, Tsa97b]. cost-effective [Tsa97b]. Costs [MHI95].

**COTS** [RGG+12]. counterexamples

**NV15**. **Counters** [Wei98b]. **Counting**

**County** [ACM98d].

**Coupled** [MTN+00]. Course

**BLPV04, BZ07, GL07, She98**. coverage

**RRP06, YNPP12**. coverage-driven

**YNPP12**. covering [BCG13]. Covert

**EPAG16**. CPU [BSSS14, PGB16]. CPUs

**SKG+11, SMD+10**. **Craftworks** [Ano97a].

**Cray** [BCG14, Smi01, VTSM12]. Create

**Ber96b, Ber96a, Len95**. Creating

**Han97, Ten98**. Creation

**Eng00, Rin99, Sin97**. Crisis [Ano99].

**Critical**

**BLG01, CS12, OTY00, DLTL14, DESE13, NM10, RGG+12, San04, SMQP09, YL16**.

**Criticality** [DESE13, NB12]. Cross

**Lam95, BKC+13, CZSB16**.

**Cross-platform** [Lam95]. cross-thread

**BKC+13, CZSB16**. CS1 [GL07]. CSMT

**GSL10**. **CSP** [Nev99]. CUDA

**LBH12, MM14, PAdS+17, WJ12, YZ14**. CUDA-compatible [LBH12]. CUDA-NP

**YZ14**. **CUG306** [Col90a]. current

**LVA+13**. customizable [JP92]. cut

**JVE04**. **Cycle** [LS11, EE09b].

**Cycle-Level** [LS11]. **Cyclic**

**YLLS16, HKT93**, **cyclone** [Gro03].

**Cyclops** [ACC+03]. **Cyrus** [HDT+13].

**D** [KSB+08, NTKA99, PYP+10, TKHG04].

**Daemon** [Spe94]. **DAG** [LQ15]. **Dallas**

**ACM00, USE91b**. **Dame** [IEE96]. **dans**

**Zig96**. **DARPA** [Mat97]. **Data** [Ama89].

**ABNP00, DTLW16, EW96, FHM95a, GAC14, HMC97, HRH08, Hig97, JMS+10, KZC15, KEL+03, KET06a, KET06b, LMIJ14, LLD17, ME15, ME17, RCRH95, SBN+97, SAC+98, SYYG97, SG96, Ten98, TESHK06, VT96, Wil98, ZLJ16, ZAK01, AGBE08, AGN09, BAMP07, CS95a, CS95b, CDL13, DHM+12, Evr01, FHM95b, FKI2, HL93, LTL+16, LH16, Mac96, MNN09, NWT+07, ND13, PDMM16, PRB07, PHCR09, Poi90, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKKCO9, WDC+13, YKL13, ZJS+11].

**data-centric** [DHM+12]. Data-Driven

**DTLW16, KET06b, ME15, ME17, TESHK06, Evr01**. Data-Parallel

**ABNP00, SAC+98, HMC97**. data-race

**MMN09**. **Database** [KD97, MM14, YM92].

**Data-Driven** [DTLW16, KET06b, ME15, ME17, TESHK06, Evr01]. Data-Parallel

**ABNP00, SAC+98, HMC97**. data-race

**MMN09**. **Database** [KD97, MM14, YM92].
Databases
[AOV+99, GDSA+17, HL08, MIGA18].

Dataflow [CVJL08, GGB93a, Gao93, HPB11, HKS196, LH94, NBM93, RSBN01, SRU98, Tra91, YMR93b, BGG95, GGB93b, GBB95, HG92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based [RSBN01].

dataflow/von [HG92].

data/von [HG92].

data/von/ [HG92].

data/von/ [HG92].

Datarol-II [KA97].

Dawning [Cro98].

DC [IEE94c, ACM92, Ano90].

DCE [RD96, Yam95, Yam96].

DDOS [HBCG13].

Deadlock [Hol98a, Mou00, Ver97, ABF+10, SR14, WLG+14, Wan94, WCV+98, Xue12].

Deadlocks [CC14, CJW+15, CZWC13, JPSN09, PRB07].

dealised [RB18].

dealisation [LPE+99].

death [Len95].

Debugging [Ano98b, Caz02, HWZ00, MQLR16, PHK91, SJ1B92a, SJ1B92b, BGZ97, MLR15, WOKH96].

decentralized [RPB+09].

decentralization [LFA+96, LQ15].

decomposition [JEV04].

Decompression [PBL+17].

Decoupled [DO95, APX12, Evr01, RVOA08, RCDG06, SKA01, VS96].

decoupling [KGGK09, PG01].

Decoy [MIGA18].

Deductive [AdBdRS08, BK13].

Deeply [GKE17].

Defect [OB13].

Degragmentation [PVS+17].

delaunay [ABC+09].

Delivering [SCCP13].

DeLorean [MCT08].

Demand [KKJ+13].

Demand-based [KKJ+13].

Demus [Sri93].

Demus-2 [Sri93].

dense [ABD+12, MM07].

Dependable [SUF+12].

Dependence [CZS+17].

dependences [BKC+13, CSB16].

dependencies [NPC06].

Deployment [GARH14].

Depth [McM96a, McM96b, McM96c, McM98a, McM98b].

Derivation [Kim14].

Derivative [TT03].

describes [Yam96].

Design [ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GRS97, GMR98, Hai97b, KHP+95, Lafl00, MB99, NBM93, Raj93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car89b, FWL03, HCM94, Hud96, KU17, KGGK09, Mah11, Met95, Moo95, Moo96, MKR02, Ném00, OKID92, OCRS07, RSB+09, SB80, Sri93, Ver97, WLG+14, Wan94, WCV+98, Xue12].

designed [San04].

Designing [Dru95, GZK12, RR95, TSV12, Hai97a, TCG95].

Desktop [Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Prag95b, WSKS97].

desktops [Ano94b].

despite [Len95].

Destructing [Pet00].

destructive [FF10].

Desupport [DHR+01].

Detailed [MKR02, ACC+03].

Details [FMY+15].

Detect [DS16, CZWC13].

Detecting [DSR15, RBK+09, SK97, FF10, JPSN09].

detection [ABF+10, CC14, KUCT15, KW17, LLS06, Mou00, TLZ+17, TLZ+18, ZLJ16, AFF06, CLL+02, CVJL08, FF09, HR16, LLLC15, LTHB14, MKM14, MN90, NBBM12, NAW06, NA07, PS03, PS07, PFH06, RVS13, RM00, SR14, Sch89, TLZ+16, TWD03, WDC+13, ZK+11, DWS+12].

Detector [SBN+97, SLG06].

determined [Kub15].

determinism [BS10b, LWV+10, LZW+13].

Deterministic [DK02, KRB12, LB17, LSS12, VSD16, BAD+10a, BAD+10b, BAD+09, Bon13, DLO09, DNB+12, LZW14, MAAB14, OAA09, QSH16].

Deterministically [MCT08].

DetLock [MAAB14].

develop [Fek08].

Developer [IEE96].

developers [Way95].

Developing [SP00b, Shi00, TKA+01, OT95].

Development [Ano97a, Ano98b, Ano99, Gill88, Sri95, Tet94, ARvW03, Hig97, Pom98, TN9+95].

devices [Xue12].

diagnosing [CS12].

diagnostics [GBB+05].

diagrams [SK12].

Diego [ACM93b, ACM98b, USE98, USE93b, USE98b, USE00a].

differences [Yam96].

Divergence [Yam96].

Diagonal [Yam96].
KLH\textsuperscript{+99}, KRBJ12, NHFP08]. \textbf{Efficient} [TTKG02]. \textbf{Efficiency} [AJK\textsuperscript{+12}, Ano05, THA\textsuperscript{+12}, AMPH09, FG14, GA09, MMM\textsuperscript{+05}, Pra95b, RCG\textsuperscript{+10}, SP05]. \textbf{Efficient} [AD08, AIB94, ABN99, BCZY16, BDWmWH12, BJK\textsuperscript{+96}, BL98, BMN99, C1\textsuperscript{+17}, CLL\textsuperscript{+02}, DMBM16, Gao93, GJT\textsuperscript{+12}, GR97, GS06, GN96, HSK\textsuperscript{+14}, HEMK17, KPC96, KASD07, Lem02, LHG\textsuperscript{+16}, MB97, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZLJ16, ATL\textsuperscript{+06}, BL93, BJK\textsuperscript{+95}, BHK\textsuperscript{+04}, EKKL90, FWL03, FF99, GRT12, HAM03, KSB\textsuperscript{+08}, KNPS16, KSD04, LK13, LW\textsuperscript{+10}, LHS16, LZ\textsuperscript{+13}, MSM\textsuperscript{+10}, NLK99, OAA09, Pan99, PSG06a, PSG06b, PSG06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shi00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX11, ZI\textsuperscript{+16}, FSYA09].

\textbf{Efficiently} [KBF\textsuperscript{+12}, MCT08, SW16, Bh95, BKC\textsuperscript{+13}]. \textbf{Eigenproblems} [ABD\textsuperscript{+12}]. \textbf{Eigenvalue} [BIK\textsuperscript{+11}]. \textbf{Electronic} [Ano00b, BB00]. \textbf{Elegant} [Hub01]. \textbf{Element} [HBTG98, MS02]. \textbf{Elementary} [HKN\textsuperscript{+92}]. \textbf{Elide} [MLS15]. \textbf{Eliminating} [DSG17, OCT14, RD06, MTPT12]. \textbf{Elimination} [MK\textsuperscript{+12}]. \textbf{Elision} [NM10]. \textbf{Elliptic} [Loe97]. \textbf{EM-4} [BAM93, SKS\textsuperscript{+92}]. \textbf{Embedded} [BG\textsuperscript{+12}, Dru95, GKCE17, KG05, KE15, MS15, WM03, DCK07, KVEN\textsuperscript{+09}, KASD07, KBF\textsuperscript{+12}, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB\textsuperscript{+09}, SKF\textsuperscript{+02}, Xue12]. \textbf{Embedded-Systems} [Dru95]. \textbf{Embedding} [Pul00]. \textbf{Emergencies} [MTPT12]. \textbf{Emerging} [VSM\textsuperscript{+08}, GBP\textsuperscript{+07}, HFV\textsuperscript{+12}]. \textbf{Empirical} [LC13]. \textbf{Employing} [CWS06]. \textbf{Employment} [Gar01]. \textbf{Empowering} [JSB\textsuperscript{+12}]. \textbf{Enabling} [Pan99, JMS\textsuperscript{+10}, VGK\textsuperscript{+10a}, VGK\textsuperscript{+10b}]. \textbf{End} [SNM\textsuperscript{+12}]. \textbf{End-to-end} [SNM\textsuperscript{+12}]. \textbf{Energy} [AJK\textsuperscript{+12}, GJT\textsuperscript{+12}, GKCE17, KE15, LK13, LMA\textsuperscript{+16}, PR05, RL14, AAC\textsuperscript{+15}, CIM\textsuperscript{+17}, GA09, KSB\textsuperscript{+08}, NB12, PJZA07]. \textbf{Energy-Aware} [PR05]. \textbf{Energy-Effectiveness} [PR05]. \textbf{Energy-Efficient} [GJT\textsuperscript{+12}, LK13, RL14]. \textbf{Energy-performance} [PJZA07]. \textbf{Enforcement} [GWM07, SCCP13]. \textbf{Engine} [CNQ13]. \textbf{Engineering} [GJ97, LSB15, WCV\textsuperscript{+98}]. \textbf{Engines} [HB15]. \textbf{England} [ACM04c]. \textbf{Enhance} [FSPD17]. \textbf{Enhanced} [Ano00b, EJ93]. \textbf{Enhancing} [OL02b, OL02c]. \textbf{Equalization} [TLG\textsuperscript{+17}]. \textbf{Equations} [Loe97]. \textbf{Equivalent} [Pra95c]. \textbf{Errata} [Ano01, Ano05]. \textbf{Error} [SSN10]. \textbf{Errors} [SK97, VACG09]. \textbf{Escape} [SR01a]. \textbf{Esterel} [LBvH06a, LBvH06b, LBvH06c, LvH12]. \textbf{Estimating} [PCPS15]. \textbf{Evaluating} [BL96, CML00, NPT98, PSCS01, RPNT05, Sch98, SD95, TG09]. \textbf{Evaluation} [Aru92, Boo93, BTE98, CL95, CBN\textsuperscript{+00}, EJK\textsuperscript{+96}, Eic97, GLC99, HN91, RNSB96, SCD\textsuperscript{+15}, TT03, ZL10, BDWMWH12, BLCD97, Car98, Cho92, Don92, LZ07, Mah11, MK02, NFBB17, RGG\textsuperscript{+12}, RCGD06, SWYC94, SKF\textsuperscript{+02}, SMS\textsuperscript{+03}, TGO00, TKA\textsuperscript{+02}, WLG\textsuperscript{+14}]. \textbf{Evaluations} [MM14, Roh95]. \textbf{Evaluator} [SP00b, Shi00]. \textbf{Even} [Ano94b]. \textbf{Événements} [Swi09]. \textbf{Event} [Ber96b, CRK99, For95a, For95b, Ber96a, CRK97a, CRK97b, GWM07, KCCD99, KBD\textsuperscript{+03}, Leg01, RVS13]. \textbf{Event-Based} [CRK99, CRK97a, CRK97b].
Event-Driven [For95a, For95b, RVS13].
event-handling [KBP+03]. Events
[BDN02, LZ07, Van97b]. Evolutionary
[TAK+00, KU17]. Evolving
[MS87, MS89].

Exact [Sch17]. examines [Yam96].
Examination [Kan94, Ric91, Rod95a, Tim03].
Example [BLPV04]. Exception
[DH98, Lea96]. Exceptions
[AdBdRS08, KR01b]. exclusion [BRE92].
exclusiveness [Lie94]. execute [APX12].
Executing [Blu95, BS99]. Execution
[ABH+01, CJ91, Coo02, EC98, Far96, GMGZP14, GS06, HEMK17, HZ12, KS16, KL08, KI05, KG94, ME15, MK9+00, MCT08, NBM93, NS97, PR05, RG03, RKK15, RSBN01, ST99, VSDL16, Ann96, A+01, B+10a, B+10b, BGC14, Dil93, JWTG11, LN00, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, TSY09, TSY00, TDW03, UZU00, WCT98, XIC12, XSaJ08].

Executions [CdOS01, HZD13, Roh95, STR16].

Exemplar [BLCD97]. Existing [Ric99].
EXOCHI [WCC+07]. expansion [YKL13].
Expectation [SC17].
Expectation-Maximisation [SC17].
expediting [YL16]. Experience [BMR94, HLT90, Jon86, Yas95, RM03, GL91, Yam96].
Experiences [BHK+04, EHG95, PST+92, SG+97, USE92b]. Experimental
[BLCD97, EGC02, YMR93b, GRS06, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a]. Experiments
[DV99, GMR98, SZM+13, VSM+16, VV00].
Explicit [DV99, VDBN98, BM07, URS02b, UR03, VV00]. explicitly
[MT02a, MT02b, MT02c]. exploit [Ano92a].
exploitation
[KVN+09, PSG06a, PSG06b, PSG06c].
Exploiting [AAK92, FFQ04, KDM+98, KOE+06, Kwo03, MG99, NAA+01, QSA+16, SP07, TLZ+16, TEE+96].
Exploration [PTMB09, Sch17]. Exploring
[AACK08, BS10a, SE12, WWW+02].

Expressions [Hei03]. Extended
[BLG01, DVB99, VDBN98]. Extending
[BF08, Mar03]. Extensible
[CdOS01].

Extension
[RCC14, CCW+11, Lan97, PDP+13, Tem97].
Extensions [Sch90, Bann02]. external
[LW+10]. Extracting [GP95]. Extremal
[MNG16].

FAB [YWJ03]. Facility [SU94]. Facing
[KML04]. Factorization
[But13, CIM+17, Dav11]. Factorizations
[VD08]. failing [STR16]. failure
[EP02, LC13]. failure-inducing [EP02]. failures
[HZD13]. Fair [MQ08, FSPD17].
Fairness [ES97, FSPD17, SCC+13, WTKW08]. false [LTHB14]. farms [MR98].
Fast [BBS11, BRE92, GCS96, HN91, LDT+16, STY99, SLF14, ST05, VSM12, ZSC13, ZCO10, BDL07, CK94, Kus15, TT10, TTKG02]. Faster
[CPM16, BDM98]. FastTrack [EF09]. fault
[RRP06, RM00, VPC02]. FCRC [ACM96].

Fe [Go94]. Feature [LH99]. Features
[GMB93, BDM98]. Featuring [RRK11].

Feedback [SQP08a, SQP08b, SQP08c, TGO99, ALHH08]. Feedback-driven
[SQP08a, SQP08b, SQP08c]. Felix [Ano00c].
Fernandez [Ano00c]. fetch
[EE09a, TEE+96]. FFTs [MJF+10]. Fiber
[GDS+17]. Fiber-based [GDS+17]. fibers [BS06]. FIFO
[HOM91, HOM92, QSA+16]. fifth
[ACM93b, AO+99]. File [FG91, GJ+12, KS97, Pea92, WLM15, BLCD97, DZK12]. Files [RRK11, CCC12, kSYH+11].
filtering [Kep03]. final [HM+94]. Finding
[MNG16]. Fine [AZ17, BBG+10, CSS+14, But13, CSS+19a, CSS+19b, CSS+19c, HCG1, KG94, LKBK11, LVS01, LFA96, NS97, PBR+15, TY97, TAK+00, YSS+17, BKGK94c, Dub95, Gol97, KDM+98, Kim94, Loi95].
glasses [CZSB16]. Global [HH11, PWL+11, Ten02, FWL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b].
globally [CZWC13]. gmm_diag [SC17].
GPGPU [LSB15]. GPS [TVD14]. GPU [AX12, Bon13, FTP11, KI17, LTL+16, LH+16, LAH+12, WLG+14, YSS+17, ZCO10]. GPU-Oriented [LHG+16].
GPUDet [Bon13]. GPUs [CSV10, DNT16, LBH12, SKG+11, VD08, WJ12]. Grace [BYLN09]. Grain [AZG17, CSS+91b, HG91, KG94, LFA96, NS97, CSS+91a, CSS+91c, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TY97, TKHG04].
Grained [BBG+10, BSSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, BGK94c, Dub95, Go97, LVS01, RPB+09, Wei98a, sKHYX+11].
Grande [ACM01]. Grande/ISCOPe [ACM01]. Granularity [KI95].
Graph [CFG+12, CL95, EJRB13, HPA+15, KS93, KLS92, MM14, LK15, LZW17, RV04].
graph-based [LZW17]. GraphCT [EJRB13]. Graphical [ACR01]. graphics [BGdWH12, CCW+11, FSYA09, PYP+10].
Graphs [HPB11, Nik94, OB13, AD08, ABG+08, DSE13]. grass [MWTW10].
Greatest [Kuc92, Kic91]. Green [SKP+02].
greener [MWTW10]. Grid [KEL+03].
Grid-Based [KEL+03]. GRIDiron [MCS15]. grids [SKG+11]. Griffin [Ano00c].
Gröbner [AGK96]. Group [BNH01, DLM99, QSH16]. Group-Based [BNH01].
Grouping [OR12, WC99]. Grove [IEE89]. Growth06v2 [Dan09].
Guarantee [Hag02, BGP06]. Guarantees [PSM01, YWJ03, GPS14, MTC+07, PSM03, ZHC015]. Guarded [Sim97]. Guest [GBB93a, GJ97]. GUI [Tet94].
Guide [Ano99, BBD+91, LBH96a, Wi97, BW97, ND96, RR96, Sun95]. guided [NB12].
Guidelines [RD96]. GUIs [Mia90].

Gyrokinetic [KEL+03, PWL+11].

Hagenberg [Hon94]. Hagenberg/Linz [Hon94]. Halide [DKA16]. Hamilton [Ric91]. Handles [Rec98]. Handling [DH98, LSB15, SK97, BM91, KCCD99, Koo93, KPB+03, Lea96, Met95].
Harbor [BBC+00]. Hardware [CKD94, CSS+91b, KE15, LLS06, MWP07, Men91, SW08, ZLJ16, ABC+09, CWS06, CSS+91a, CSS+91c, ECX+12, FSYA09, GP05, LT97, MLS15, MQW95, OCT14, PAB+14, PRS14, RPNT05, SE12, TE94b, DWS+12].
hardware-aware [PAB+14].
hardware/software [LT97]. harmful [NWT+07]. Harmony [KTK12]. Harness [Ama98, EBKG01]. HASH [GK05, VB00].
Hash-join [GK05]. hashing [MIGA18].
Having [YFF+12]. Head [Mia90]. healing [SLP+09].
Heaps [DGK+03, Man99, Ste01]. help [Len95]. Helper [ALS10, WCW+04b, WCW+04c, WCW+04d, WCW+04a]. Here [Ano92a, Pra95c].
Heterogeneity [CCK+16, Kwo03, RKBH11].
Heterogeneous [AT16, AAC92, FBF01, KTR+04, Lu95, NTR16, THA+12, FKS+12, GKZ12, LK13, SJ95, WCC+07]. Heuristic [HH11, Mah11, OCRS07]. Hewlett [BTC97]. HFS [KS97]. hiding [BR92].
Hierarchical [GJT+12, JY15, KC98, KG94, BMV03, DZKS12, LK13, LQ15, RCDG06].
Hierarchies [BCZ16, TAM+08].
hierarchy [BGdWH12]. High [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGH+12, CT00, FGKT97, Gar01, Hol12, HG91, IEE94b, LCK11, LG06, LMJ14, LBH12, LHG+16, LCH+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, TCI08, VV11, WG99, WN10, CIM+17, GS02, HG92, Kim94, Lan97, RRP06, Ren95, SQP08a, SQP08b, SQP08c, Ten97]. high- [RRP06].
High-Level [Sch17]. High-Performance [ACM98a, BGH+12, FGKT97, Gar01,
High-powered (Rei95).

High-Speed (Ano00a, Ano03, HG91, SRS98, HG92).

Higher (CJK95, NV15).

Higher-Order (CJK95, NV15).

Hill-climbing (CY09).

Hilton (IEE90).

HippogriDB (LTL+16).

Hist (Gar01).

History (Ano97b).

Hoard (BMBW00a, BMBW00b, BMBW00c).

Hoare (KI17).

HoME (OKID92).

Hood (Ven97).

HoPE (PBL+17).

Hot (IEE99, PBL+17, Gle91).

Hot-Cacheline (PBL+17).

Hotel (Ano94d, USE02).

Householder (VV11).

Householder-like (VV11).

Houston (Cha05).

HP (Ano95a, Ano95b, Yam96).

HP-UX (Ano95a, Ano95b, Yam96).

HPC (GKK09, KC09, PLT+15).

HPF (BMV03, CM98).

HTM (KGGK09).

HTMT (Gar01).

HTTP (Zha00).

I-WAY (FGT96).

I/O (RM03, Ano95a, Ano95b, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a).

IBM (ABB+15, CJB+15, KST04, LSF+07, WZWS08).

Id (Nik94).

IDA* (Mah11).

idempotency (KOE+06).

identification (JSPM12).

Identifying (BCZY16, SU96, DESE13).

IEEE (ACM98d).

IFIP (BT01).

Igniting (ACM03).

II (HCD+94, IEE89, JJ91, KA97, KR01a, McM96b, Wa95).

III (Ano00a, USE92b).

Illinois (GHG+98).

Illinois-Intel (GHG+98).

Illuminating (BLPV04).

ILP (OCR07, RLJ+09).

Image (WN10, BCY+14, Kep03, RKHT17).

Impact (KLG08, SCL05, TE94a, ZAK01, Div95, Met95, RGG+12, RPNT05).

Impaired (Wei97).

implement (DBRD91).

implementable (TEE+96).

Implementation (ACM94a, ACM99a, Al94, AB01, AKP99, BBD+91, BHP+03, BRM03, CWHB03, DSH+10, FLR98, Hai97b, KA97, MS02, Nik94, STW93, TKA+02, TAMG03, BK96, BB00, BMV03, CMX10, DL93, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, Lf05, LZ07, LAH+12, NFB07, OKID92, Stu95, Tod95, ZYLY97, Ano95a, Ano95b).

Implementations (Han97, SAC+98, Ram94, SKG+11, Sha95b).

implemented (Boe05, KEL+03).

Implementing (ABH+00, AB02, BP05, CB99, CB90, Day92a, Day92b, DPZ97, GMB93, GSC96, HPA+15, KR01b, KBA08, KIAT99, Pra95a, TY97, TAN04, BHK+04, Lie94).

Implications (RM03, BS96, VSM+08, CSM+05).

Implicit (BAM93, MS02).

Implicitly (ACMA97, PFV03, SAC+98, RB18).

Implicitly-multithreaded (PFV03).

Improve (GV95, QSaS+16, RKK15, Sin99).

Improved (BR92, GMGZP14, LLS06, Smi06).

Improving (AJK+12, BDN02, FT96, FM92, FBF01, GA99, IBST01, LHY16, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10).

In-Order (RRK11).

In-place (SGLGL+14, SCM05).

In-Situ (RGK99).

IN-Tune (RGK99).

includes (SJ95).

incomplete (HR16).

incompressible (RM99).

Incorrectly (SCL05).

Increasing (PHCR09).

Incremental (BFA+15, Caz02, Lar95, LB92, BBYG+05).

Independent (EW96, FSS06, USE93a, KNPS16, MEG94, PG03).

indexing (MIGA18, MLS15).

induced (MTP12).
inducing [CZ02]. Industrial
[KW17, Kon00]. Industry [DM98].

Industry-Standard [DM98]. inference
[FFLQ08], Inflation [OdSSP12]. InfoDock
[Ano97a]. Information [BS96, PBR+15,
CML00, KBH+03, RPB+09, SV98].
Informix [Ger95]. Initial [BTE98]. Inline
[GH03, DJLP10, EKLL90].

Inline-Threaded [GH03]. Inlining
[PR98, LQ15]. innovating [JD08].
Innovation [ACM03]. innovations
[ABB+15]. Input [BCG13, MP89, Tan87].
Input-covering [BCG13]. input/output
[MP89]. Insight [EE02]. Instruction
[DV99, HMNN91, LEL+97a, LEL+97b,
MCFT99, RS08, AMC+03, Aru92, Cho92,
HKN+92, HMN+92, KBF+12, Mis96, OA08a,
OA08b, OA08c, PYP+10, Ra93, SD13,
SMS+05, TEE+98, VS11, VDBN98, VV00].

Instruction-Level
[LEL+97a, LEL+97b, MCFT99, SD13].

instruction-systolic [PYP+10].
instructions [PPA+15]. instrumentation
[RS07, XM99]. Integer [GH98]. integral
[Kue91]. integrated [CCW+11, MTS10, RD99].
Integrating [Cal00, CM98, DNR00, DTLW16, FKT96,
TTY99, Tsa97b]. Integration
[BWXF05, KSD04, KASD07, SD13].

integration [NT14]. Intel [ARB+02,
CCW+11, GHG+98, PDP+13, SCD+15].
inference [BD06]. Intensive
[TKA+01, AAKK08, TKA+02, YSY+09].
Interaction [H003, HF96, Pan99].

Interactions [WG94, WSK97].
Interactive [FURM00, PTMB09,
WOKH96, CSB00, FURM00a, FURM00b,
HJT+93, KGO7, Lan97, MCS15, Tem97].

Interconnection [NGGA94, RR93, SMK10].

Interface
[Ch15a, HBG01, KKDV03, MS89, Met95,
PS01, SW97, Ada98, DLM99, HBG02, Li05,
MQW95, MS87, MEG94, TNB+95, FGT96].

Interfaces [Han97, HF96, LG04].

Interleaving [LGH94, YN09].
Intermediate [McC97a]. Internals
[Wea08]. International
[ACM92, ACM94c, ACM94d, ACM95a,
ACM96, ACM98c, Ano91, Ano94a, Ano94d,
Ano00a, Ano03, AOV+99, Ch05, EV01,
Hol12, Hon94, Lak96, LCK11, WAT91, FR95].

Internationalization [Ao98b]. Internet
[Ano96, Hig97, SBB96, van95].

Interoperability [DHR+01, Way95].
interplay [MBS15]. Interpretation
[GH03, LG04]. interpreter [OCT14].

Interprocedural [NR06]. Interprocess
[Rod94]. Interrupts [KE95]. interval
[Kub15]. Intra [MKR10].

Intra-application [MKR10]. Introducing
[GL07]. Introduction
[CLRS09, Dra66, GBB93a, GJ97, Mas99,
Bir89, GC92, Hay93, She98]. Intrusive
[Caz02]. INUX [DNR00]. invasive
[RGK99]. Inverse [HMLB16, GEG07].

inversons [GE08]. Invocation [SKK+01].
IPC [Koo93]. IPs [Sch17]. IRREGULAR
[FR95, TSV12, ZAK01, TP18]. irregularly
[FR95]. ISA [KTR+04]. ISCOPE [ACM01].

Isolating [CZ02, JWTG11]. isolation
[CMX10, MTC+07, SKBY07]. Isomigration
[ABN00]. ISAC
[ACM94c, Lak96, Wat91]. Issue
[KU00, Ano94c, GGB93b, TEE+96]. Issues
[GMB93, PS01, ARvW03, Ano96, GC92,
HCD+94, IAD+94, TCG95]. Issuing
[HMNN91, HKN+92, HMN+92]. Itanium
[MB05, WCW+94b, WCW+94c, WCW+94d].

Itanium-2
[WCW+94b, WCW+94c, WCW+94d].

iterations [UZ00]. Iterative
[MQ07, Nak03, AAC+15]. iThreads
[BFA+15]. IUknown [SW97]. Ivan
[Ano00c]. IXP [ARB+02, LCH+08].

IXP2800 [AHW02].

J.UCS [KU00]. January
[ACM94b, ACM95b, ACM98b, Ano90,
USE91, USE93b, ACM93a. Japan [Ano91, Ano00a, Ano03]. JaRec [Chr01, GCRD04]. Jason [Ano00c]. Java [ACM98a, ACM01, Ano97a, USE01, AFF06, ÁMdBdRS02, Add03, ÁMdBdRS05, ÁMdBdRS08, Ait96, Ano96, Ano98b, ABH^00, ABH^01, A^01, AG96, ACR01, ABG^08, BZ07, Ber96b, BV97, BAD^09, BR15, BPSH05, BHK^04, B500, Bra97, BP05, BLPV94, Cal02, CV98, CKRW97a, CKRW97b, CWHB03, CC04, CCH11, Chr01, CT00, Coo02, Cor00, Cri98b, Cri98a, DJLP10, DH98, DRV02, DLZ^13, Dil00, DGK^03, Dra96, DHR^01, Dye98, EFN^01, EFN^02, EFG^03, EQT07, FSS06, FWL03, Fek08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hag02, Ham96, Hei03, Hol98d, Hol99a, Hol99b, Hol00, Hyd00, KPPER06, KBP^03, LB00, LCS04, Loc18, Loe97, Man96, MP01, McM96a, McM96b, McM96c, McM97, Mit96, MC06, NAV06, NM10, NR06]. Java [Nev99, OW97, OW99, PSM01, PSM03, PRB07, Pet03, PU^04, PV06, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP^02, Van97a, Ven97, Ver97, WN10, Whi03, XSA09, Xu12, Yau02, yan95]. JavaBeans [Van97b]. JavaScript [PCM16]. Javier [Ano00c]. Jersey [MT93]. JIT [McM97]. job [EE10, EE12, ST00a]. JScoder [ST00c, ST00b, STV02]. John [Ano00c]. Jho [Ano03]. Join [ALS10, GK05]. Joint [FTP11]. Jones [Ano00c]. Jose [ACM94d]. Journeyman [Bec00]. JPF [WKG17]. JPR [WKG17]. Jr [ACM99b]. July [ACM92, ACM94c, ACM95a, ACM98c, EV01, IEE96, Lak96, Ass96, USE96, Wat91]. June [ACM94a, ACM98c, ACM01, Ano94f, USE92a, USE00a]. JUnit [Goe01]. just [KBF^02]. just-in-time [KBF^02]. JVM [Lan02, McM97, USE01, WKG17].

K-Java [BR15]. KAI [Ano98b]. Kaikan [Ano00a]. Karlsruhe [RM03]. Kaspersky [Ano00b]. Kernel [Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB^92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95]. Kernel-Based [Alf94]. Kernels [KBF^12]. just-in-time [KBF^12]. JVM [Lan02, McM97, USE01, WKG17].

K-Java [BR15]. KAI [Ano98b]. Kaikan [Ano00a]. Karlsruhe [RM03]. Kaspersky [Ano00b]. Kernel [Alf94, ABLL92, Bal02, DNR00, EBKG01, EKB^92, Kor89, ZSA13, Ano95a, Ano95b, BF08, JJ91, MP89, SS95]. Kernel-Based [Alf94]. Kernels [KBF^12]. just-in-time [KBF^12]. JVM [Lan02, McM97, USE01, WKG17].

L [DNR00, GBB^05]. L2 [SLP08]. L2-miss-driven [SLP08]. Lab [Ano00b]. labeling [D'H92]. Lafayette [EV01]. Lake [Hol12]. lambda [ORH93]. Laminar [PBR^15, RPB^09]. LAN [Yas95]. LAN/WAN [Yas95]. Landing [TAK^00].

Language [ACM94a, ACM99a, ACMA97, BS06, FLR98, GS06, KIAT99, Sat02, BO96, CFK^91, ECX^12, GPS14, Jon86, LT97, Man96, Mil95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06]. Languages [ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM^16, NPT98, OTY00, SCv91a, SS96, TY97, DBM16, HL93, JP92, JHM04, MSM^10, Sch91, SCv91b, ST98, TAN04]. LAPACK [ARvW03]. Large [Ano00c]. Large [AOV^99, CC14, CJW^15, GN92, LA93, BCM^07, Bo03, GOT03, Koo03, SMK10, WCV^98]. Large-Scale [CC14, CJW^15, LA93, BCM^07, GOT03, SMK10]. Latencies [Sch17, BS06]. Latency [BD00, Fan93, ÖCS01, SW08, Smi01, SKK^01, WWW^02, YLLS16, BR92, DC99, DC00, Jef94, Luk01, MIVY05, FG01, TK98]. Latency-directed [Fan93]. Latency-Resistant [YLLS16]. latency-sensitive [DC99, DC00].
Latency-Tolerant [ÖCS01], lattice [SKG+11], Law [Gar01, NZ17, CN14], layer [CDR+10], layout [DZK12, HB15], Lazy [GSC96, GGold97, LP94], LCMT [LKBK11], leadfoot [HHPV15], Leakage [Mus09, SYHL14], Leakage-saving [Mus09], leaks [ZJS+11], Learned [HPA+15], Learning [DS16, ROA14, PWWD18], least-squares [FTAB14], least-squares [FTAB14], lecture [Egg10], Lenient [SCv91a, Sch91, SCv91b], Lepp [RRMJ12], Lepp-bisection [RRMJ12], Lessons [RM03, HPA+15], Letters [DHR+01, TLA+02], letting [AC09], Level [ABLL92, BBC+00, FURM00c, GP95, JYE+16, JLY99, DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, PLT+15, RR93, Ric99, Sch17, SLT03, YZYL07, ZJS+11], Level-2 [Ric99], Leveraging [PRS14], LFTHREADS [GP08], Libraries [Ano00c, BCR01, GF00, Jon91, MLGW18, MM14, ArvW03, CBM10], Library [Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, WN10, Yas95, Ada98, Boe95, CS00, GP08, GKT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97], life [KU17], light [Way95, LYTZ15], light-weight [Way95], Lightweight [AGN09, Col90b, Dom02, Est93, Fin95, Hai97b, CASA14, Hai97a, LV10, MMN09, MEG94, VACG99, WSKS97, LKBK11], like [DJLP10, Jon86, VV11, Kor89], limit [ROA14], limitations [Gal94, HL08], limited [Br08], Limits [LB95, LB96b, AAKK08], Line [Ano00c, FSPD16, FdL02], Linear [KLDB09, Loc97, MR09, AAC+15, Bak95a, MM07, YSY+09], Link [Ano00b], Linked [WJ12], links [WW96], LinkScan [Ano00b], LINQits [CDL13], Lint [Kor89], Lint-like [Kor89], Linux [Ano97a, Ano00b, Ano00c, Ano97a, RGK99, SKP+02, WTKW08, ZSA13], Linux/AXP [Ano97a], Linux/FreeBSD [Ano00b], Linz [Hon94], liquid [KRB912], Lisp [Nor90], List [DV99, WJ12, VV00], LiteRace [MMN09], little [CDL13], liveliness [GMRO9], LLCs [PBL+17], Load [HBTG98, KMAG01, KC98, KRH98, PGB16, VPPQ12, Chr95a, Chr95b, Chr96, MKIO04, TKHG04], load-adaptive [TKHG04], Load-Balancing [KC98, PGB16, Chr96], Loadable [ZSA13], Loading [PCM16], Local [DGK+03, IEE95, Whi03, HZD13, ZLW+16], localities [CS95a, CS95b], Locality [BS96, PEA+96, Wei98b, HWW93, LK13, PGS06a, PGS06b, PGS06c, Sin99, SD95], locality-cognizant [LK13], Localization [OB13], Location [USE93a], Location-Independent [USE93a], Lock [EFJM07, NM10, PGB14, CS12, GP08, MLS15, Mic04, ST05, TMCP10, ZLW+16], lock-free [GP08, MLS15, Mic04, ST05], Lock manager [Hol98b], Locking [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16], Locks [ACR01, ALS10, MT93, OCT14], LOCKSMITH [PFH06], LOGFLOW [NTKA99], Logic [Bre02, KI17, TAN04, BK13], Logic-Centric [Bre02], Logical [CR02], LOIS [KT17], longer [XHB06], Looking [ECX+12], lookup [KNPS16], Loop [RLJ+09, SSP99, JMS+10, KV+09, UZU00], loop-level [KV+09], loops [DTH92, FN17], Low [Ano00a, Ano03, BGH+12, ZHCB15, GPS14, RRRP06], low-level [GPS14], Low-overhead [ZHCB15, RRRP06].
[USE91a, Ass96, USE96, USE01]. Mosaic
[Ano94d]. Most [PLT+15]. mostly
[BBYG+05]. Moving [Ait96, Sim97]. MP
[Pea92, TTY99]. MPD [PHK91]. MPEG
[BC00]. MPI
[PS01, Vre04, Ada98, ALW+15, BBG+05]. mostly
[BBYG+05]. Moving [Ait96, Sim97]. MP
[Pea92, TTY99]. MPD [PHK91]. MPEG
[BC00]. MPI
[PS01, Vre04, Ada98, ALW+15, BBG+05]. mostly
[BBYG+05]. Moving [Ait96, Sim97]. MP
[Pea92, TTY99]. MPD [PHK91]. MPEG
[BC00]. MPI
[PS01, Vre04, Ada98, ALW+15, BBG+05]. mostly
[BBYG+05]. Moving [Ait96, Sim97]. MP
[Pea92, TTY99]. MPD [PHK91]. MPEG
[BC00]. MPI
BK13, BIK\(^+\)11, DSEE13, CIM\(^+\)17, CASA14, CKN\(^+\)97a, CKR\(^+\)97b, CSB00, CYZ98, CL00, EFG\(^+\)03, EHSU07, FTAB14, FGG14, GCRD04, GCC15, GPRI1, KHP\(^+\)95, KKH04, Kep03, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA\(^+\)13, MLCW11, MS03, MKK99, NFBB17, NH09, NSH14, multi-threaded [OA08a, OA08b, OA08c, PYP\(^+\)10, RCV\(^+\)10, RKM\(^+\)10a, RKM\(^+\)10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Sn06, SQP08a, SQP08b, SQP08c, Taf13, Tem97, TMAG03, TJY\(^+\)11, VV00, YSY\(^+\)09, ZKR\(^+\)11, dB09, vPG03, Ano97b].

**Multi-Threading** [CvdBC18, LKBK11, MLGW18, MCC97a, MCC97b, MS15, OR12, PTMB09, RCC14, Sch90, TGO99, YLLS16, DTLW16, MCF99, SC17, SE12, SV98, Sn06, SQP08a, SQP08b, SQP08c, Taf13, Tem97, TMAG03, TJY\(^+\)11, VV00, YSY\(^+\)09, ZKR\(^+\)11, dB09, vPG03, Ano97b].

**Multicomputer** [FKD\(^+\)97, multicomputers [BCG\(^+\)95].

**Multicore** [BCZY16, CCH11, CB16, GJ11, HEMK17, KLDB09, LS11, LMA\(^+\)16, LHY16, LDT\(^+\)16, MR09, NBMM12, PGB16, RCM\(^+\)16, RKK\(^+\)16, SMD\(^+\)10, THA\(^+\)12, ZBS15, CNQ13, CN14, CMX10, LK13, LLC15, NZ17, RCG\(^+\)10, RKBH11, SCCP13, SE12, VDBN98, kSYHX\(^+\)11, YKL13, CH04].

**Multicores** [FSPD16, FSPD17, KKK15, DTK\(^+\)15, GARH14, SSN10].

**Multichip** [But13, Dav11].

**Multigrain** [AZG17].

**Multigrid** [RM99].

**Multilevel** [Cat94, JJY\(^+\)03, LK15].

**Multimedia** [Spe94, Est93, Gol96].

**Multimethod** [FGT96].

**Multiple** [CB16, FGKT97, HW92, KHT93, NTR16, OR12, CS95a, CS95b, FD95, HKN\(^+\)92, LT97, TE94b, TFG10, TAN04, WCT98].

**Multiple-context** [FD95].

**Multiply** [CV10].

**Multiprocessing** [EKB\(^+\)92, Lenz95, NV94, Wal95, DLOC09, MT93, Pra95b, RGK99].

**Multiprocessor** [ACK92, AKP99, BC00, Cat94, EHG95, GHG\(^+\)98, HN91, KMAG01, MCT08, Pre90, SZ92, SEP96, USE92b, WC99, Zube02, Ch93, DCK90, EKKL90, HB92, KT99, LNW10, LWV\(^+\)10, PZA07, Ano94b].

**Multiprocessor/multithreaded** [Cat94].

**MultiProcessor** [BCM03, BS96, BL96, BGO1, CH95, GPR98, KU00, KKS\(^+\)08, LS07, LMJ14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA09, HT14, LGH94, Mao96, Men91, QS94, SKM10, Sha98, SKK90, TAS07, Yoo96b, YMR93a].

**Multiprogrammed** [MVZ93, TSY99].

**Multiprogramming** [BHP\(^+\)03, JJ91, CGL92a, CGL92b].

**MultiRace** [PS07].

**Multitasking** [Col90b, Gon90, JJ91].

**Multithread** [LC904, RRMJ12, SYHL14, CS95a, CS95b, DS\(^+\)10, GCC99, JD08, SWY94, ZG98, Zig96].

**Multithreaded** [Add03, AdBrRS08, ABC\(^+\)93, AT16, Ano92a, Ano92b, Ano94e, Ano94g, Ano95a, Ano95b, Ano01, ABH\(^+\)00, ABH\(^+\)01, AB01, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BBH\(^+\)11, BKI06, BMBW06b, BF04, BJK\(^+\)95, BL98, BB00, BMN99, BDN02, BF04, BTE98, BNH01, BD06, BGH\(^+\)12, BBG01, CC14, CJW\(^+\)15, CS02, CGK06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CN04, CMB08, Dan09, DNR00, DH98, DVM02, DO95, EFN\(^+\)01, EFN\(^+\)02, EJRB13, EHP\(^+\)07, EC98, EG14, FSS06, FT96, FS96, FTP11, FQS02, For97, FLR98, GG93a, GRS97, GM98, Goo97, GN00, GN92, HPA\(^+\)15, HMLB16, HTZ\(^+\)97, HMNN91, HHOM91, HHOM92, HL94, HH11, HWZ00, HPB11, HYX\(^+\)15, Huy96, HMT\(^+\)96, I\(^+\)94, JKB18, JYE\(^+\)16, JSB\(^+\)12, KA97].

**Multithreaded** [KKW14, KMAG01, KST04, KML04, KC98, KC99, KC02, KE12, KE00, KE15, KG94, Kim14, KU17, KAO05, KOR89, KTR\(^+\)04, LS07, LG06, LH09, LG04, LB96a, LB98].

O [RM03, Ano95a, Ano95b, ABB +15, BDN02, Ksu94, LTL +16, Man98, MG15, Yoo96a].
Object [Ano99, BBD+91, BC94, GK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ad98, Car89a, CYZ98, CLL+02, FWL03, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yan02, dB09, vPG03]. Object-Oriented [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ad98, Car89a, CYZ98, CLL+02, FL90, JPS+08, Wei98a, Yan02, dB09, vPG03].

October [ACM94d, Ano94d, BT01, IEE95].

ODBC [Ano00b, Hig97].

ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [MHG95, AAC+15, DTK+15]. off-chip [DTK+15]. Off-the-Shelf [MHG95]. offs [Par91]. Old [Wii00]. On-Chip [LKBK11, SMK10, TEL95, TEL98a, TEL98b].

On-Line [Ano00c, FSPD16, FlD02].

On-the-fly [Sch99, CWS06, PS03, PS07]. once [Bak95a]. one [QSHI16]. one-sided [QSHI16]. Online [Ger95, OTY00, RCC14, Sei98, Sei99, SRA06, TGO99, HF96, LWV+10, RS07, VGK+10a, VGK+10b].

only [Dil00, MJF+10, NM10, ZJFA09]. onto [LBvH06a, LBvH06b, LBvH06c]. Open [Ano00c, BMF+16, Hai97b, KR01a, KR01b, RBF+89]. Open-Source [Ano00c].

OpenMP [Cha05, ARvW03, BHP+03, BBC+00, Bra97, BMV03, B001, CREE99, CDK+01, CM98, DM98, HD02, EV01, JJJ+03, KKHH3, Lu98, MS02, Mar03, MLC04, MPD04, Mat03, MG15, MM14, Mi03, NAAL01, RBA05, SLGZ99, Thr99, TGBS05, Vre04, RM99].

OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPiton [BMF+16].

OpenSPARC [Wea08]. Operand [SP07].

Operating [ACM94d, CLFL94, TLA+02, Gci01, IEE89, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, BDM98, BRD91, IEE94d, Jef94, Jen95, LN10, LAK09, Ply89, RBF+89, REL00a, REL00c, She98, Way95].

operation [RHH10]. Operational [CRWR99, CRWR97a, CRWR97b].

Operations [KKS+08, KLDB09, SCL05, HMC95, RD06].

Opportunities [M09, GL97, HLO8, Mus09]. OPR [QSHI16].

Optimal [AT16, Lar95, RCM+12, Lep95, LML00].

Optimistic [WHJ+95, CZSB16, VPQ12].

Optimization [BLC01, CvdBC18, GN96, RNS06, SYHL14, TJ98, TGLM17, WJ12, AMC+03, AMPH09, DZKS12, G0T03, Koo93, RKKW98, Sin99, TO10, ZCSM02a, ZCSM02b]. Optimizations [HY+95, JSB+12, KET06a, LEL+99, Sut99, ABC+09, JSB+11, OA08a, OA08b, OA08c, Roh95].

Optimized [Sin97]. Optimizing [DTK+15, KZTK15, PR98, PSCS01, WCZ+07, GS02].

Orange [ACM98d]. Orchestration [GVT+17]. Order [CJK95, RRK11, NV15, SJA12, SW16, ZKW15].

Oregon [ACM94b, ACM99b, IEE93]. Organization [HG91, HG92]. organizing [LAK09].

Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+16, NPT98, SG96, Ad98, Car89a, CYZ98, CLH+02, DWHY10, FL90, HH97, JPS+08, MLC04, Wei98a, WP10, Yan02, dB09, vPG03]. Orlando [ACM94a, ACM98d]. OS/2 [DN94, Kan94, Kel94a, Kel94b, Rei95, Re91, Rod94].

oscillations [BD06]. OSF [BM91]. OSF/1 [BM91].

Other [SP+93, MMTW10].

Ottawa [BT01]. Out-of-Core [QIQM+12, ABC+15]. out-of-order [SJA12, SW16]. output [MP89].

Outstanding [LSB15]. Overall [SEP96].

Overcome [SW08]. overflow [KOE+06].

Overhead [DSR15, RR06, YL16, ZHC15]. overview [Li05]. Own [BS99, Sho97a, Sho97b].

Oxford [ACM94c].
P [Ano00b, Nik94, PR05]. P-RISC [Nik94]. P-STAT [Ano00b]. P-Thread [PR05]. Pacific [IEE89]. Pacifier [QS14]. Package [Ano94c, FL90, HCM94]. packages [GOT03, OT95, PL03]. Packaging [RR93]. Packard [BLCD97]. Packet [AHW02, LCH+08, MVY05, WCZ+07]. page [CNV+06]. page-based [CNV+06]. PageRank [KG07]. Paging [FD96, FdL02, Sei98, Sei99]. Pagoda [YSS+17]. PaiLisp [KI95]. pain [Gus05]. Paje [CdOS01, CSB00]. Palo [ACM01]. panel [Ano94e, Bak95b, HCD+94, IAD+94]. Paper [ABH+01, TKA+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKDV03, Cha05]. Par-monad [FKS+12]. ParADE [KKH03]. Paradigm [EW96, JD08, LK15, PPA+93, BCG+95]. Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ama89, ABNP00, ACMA97, Bau92, BC00, BFA+15, BE13, BBC+00, BTE98, CSZ+17, CL95, CDK+01, CBN+00, DS16, Den94, EJ93, FHM95a, Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JY15, KTLK13, KI95, KEL+03, Kon00, KKDV03, Kwo03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSaS+16, Sch17, Scv91a, SAC+98, SRU98, WC99, YFF+12, ARvW03, ALS10, BBY+05, BCM+07, BAD+09, BB00, Boo93, BE12, BGK94c, CAR08, CFK+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DES13, EV01, FHM95b, FD95, Fu97, GC92, Go97, GKK09, GEG07, GE08, GB99, HMC97, HF88, Hop98, HWW93, IEE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, Lu94, MT02a, MT02b, MR98, Mis96]. parallel [NJ00, NPA92, OdISSP12, RCV+10, RHH10, SBCV90, Sch91, SCv91b, Sha98, SWYC94, ST98, SGS14, Ta93, TCG95, VPQ12, VGK+10a, VGK+10b, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, FR95, Vre04, WN10]. Parallel-Multithreaded [WC99]. Parallelism [AACK92, ABLL92, BAM93, CSS+91b, DV99, EW96, FKP15, FURM00c, GVT+17, GP95, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCFT99, NB99, RBAAA5, SSP99, SMD+10, SG96, Thr99, WS08, YBL16, Yoo96b, ALHH08, AKSD16, CSS+91a, CSS+91c, EE09a, FN17, FURM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KVN+09, KC09, LAH+12, QOQOV+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDBN98, VV00, Wei98a, XSAJ08, YZ14, Zig96]. parallelism-aware [LAH+12]. parallélisme [Zig96]. Parallelization [CRE99, KC09, LVA+13, RM99, WZWS08, YLLS16, AC09, DC07, JYY+03, PO03, RKM+10a, RKM+10b, RRMJ12, TFG10]. parallelized [CJ91]. Parallelizing [BM91, WDC+13, KBF+12]. ParaLog [VGK+10a, VGK+10b]. Parameterized [BCR01, FK12]. Parametric [Ano98b, FRT95]. Paravirtualization [YSY+09]. PARC [Ong97]. Parsing [BC00, Lar95, PCM16]. Part [Ano92a, Ano92b, KR01a, McM98b, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, McM96b, McM98a]. Partial [Loo97, RRP06, SP00b, Shi00, ZKW15]. partition [LZW17]. Partitioning [AMRR98, Coo95, D’H92, EW96, TG99, DCK07, LIZL+14, MRR10, SCG95, WW96]. Partitioning-Independent [EW96]. Pascal [Hay93]. PASCO [Hon94]. Passing [BWX+05, TLA+02, FGT96, KKD93, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14]. Path [BLG01, TAK+00, CTP02, WCT98]. pathfinder [KPP12]. Paths [OTY00, Ano95a, Ano95b]. Pattern [Ano97b, EGP14, OR12, EG11, GBP+07, SCM05]. Pattern-Based [EGP14, EG11]. Pattern-recognition [Ano97b]. Patterns
[DS16]. PC [Mia90, CFK+91]. PCM
[AKSD16]. PCM-based [AKSD16]. PCs
[CRE99, NV94]. PDE
[Chr95a, Chr95b, Chr96, JD08]. PDES
[LTM+17]. pedagogical [CMS03].
PegaSoft [Ano00b]. Pennsylvania
[ACM96]. Pentium [RGK99]. peptides
[MIGA18]. Per-node [TK98]. Per-Thread
[Cha02, EE09b]. Perf [FSPD17].

Performance
[ACM98a, ACM98d, ACM00, Aga89, Aga91, Aga92, BS96, BL96, BRM03, BLG01, BNH01, BGD12, BBSG11, Cal97, CRE99, CCH11, CCK+16, CH95, Cho02, CT00, CSM+05, CBN+00, CBMB10, DWSB10, EGCO2, FT96, FSPD17, FBF01, FURM00c, FGTK97, Ga94, Gar01, GNN00, HHRH08, Hol12, H91, IE99+09, JFL98, KZTK15, KS97, KR+10, LCK11, LG06, Lep95, LMJ14, LHG+16, LHY16, Mah13, Man99, Mao96, MSM+16, MPD04, ME17, MKC97, MM14, NCA93, NBS+15, NNGA94, Par91, PH97, PS01, QSA+16, RG03, RVOA08, RKK15, SCD+15, TCI98, TT03, Tsa97a, TLGM17, Wei98b, WG99, WN10, YWJ03, ZL10, ZAK01, Zub02, AAC15, APX12, AAKK08, BGDMWH12, BS10a, BM09, BMV03, CML00, Car98b, CIM+17, Cho93, Div95, Don92, DKF94, ECX+12, FL90, FM92, Fis97, FURM00a]. performance
[KMjC02, MKC97]. PGI [Ano00b]. pH
[ACM97a]. Phi [SCD+15]. Philadelphia
[ACM96]. Phoenix [ACM03].

Photomosaics [TLA+02]. Phylogenetic
[LHG+16, LBH12]. physical [AMPH09].
PIC [BMV03]. PicoServer [KSB+08].
picture [AC09]. Piecing [Ano97b].

Pipelining [GV95, RVOA08]. PIRATE
[ICH+10]. Pitfalls
[Hol98a, SPY+93, CL00, San04]. place
[SCM05, SGLGL+14]. placement
[NL09, TE94a]. Plagiarism
[TLZ+17, TLZ+18, TLZ+16]. Plan
plastic [MCS15]. Platform
[AB01, AB02, CT00, DTLW16, EEL+97, FSS06, Lam95, MT93, PG03, WCW+04b, WCW+04c, WCW+04d]. Platform-Independent [FSS06].
Platforms
[LSL11, PWL+11, CQ13, LSL12]. PLDI
[ACM94a, ACM99a]. Plug [DHR+01].
Plug-in [DHR+01]. plus [Ano95a, Ano95b].
PM [AB02]. PM2 [AB99, AB01]. Pointer
[RR99, SR01a]. pointers [Sim97, WW96].
Points [CC04, CHH+03, SLP+09].
Points-to [CC04, CHH+03]. policies
[Eic97, EE09a, KPPER06]. Policy [MVZ93].
Polling [Pla02]. Pollution [MPD04].
Polynomial [Kuc92, Kic01]. Pool
[PCS01, LML00]. Pools [Cal97]. POPL
[ACM94b, ACM95b, ACM98a]. Port
[Koo93]. Portability [VSM+16, SP05].
Portable [AB01, ABN00, BBFW02, Eng00, KF97, LDT+16, Yas95, CS00, GCRD04, Mix94, MT93, MAABB14, TB97a, TB97b].
Ports [BRM03]. Porting [JJ91, Yam96].
Portland [ACM94b, ACM99b, IEE93].
Ports [Man98, Yam96].

POSIX [Ano00c, Alf94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, SP05, dIPRBGB99].

POSIX-compliant [SP05].

Post-Silicon [LB17].

Post [LB17].

Potential [CC14, EGC02, Mou00, DG99].

potentials [ABF +10].

POwer [GJ11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CMBAN08, MB07, MR09, RCC12, RKK15, RRK11, SYHL14, TLGM17, ECX+12, GW10, MLCW11, Pra95b, Ric91, SQP08a, SQP08b, SQP08c, CMF+13].

Power-aware [MR09].

Power-Constrained [TLGM17, GW10].

Power-Efficient [BCZY16, SQP08a, SQP08b, SQP08c].

Power-Performance [CMBAN08].

POW5 [BCG+08, MMM+05, KST04, Ano05].

POWER6 [LSF+07], powered [Rei95].

PowerPC [BEKK00, SBKK99].

PowerRAC [Ano00b].

Practical [HW92, LMJ14, MNG16, ND16, PBR+15, RR96, TGBS05, BCC010, RD99, RPB+09].

PRAM [For97, Lep95].

Pre [PR05, Luk01].

Pre-Execution [PR05, Luk01].

Precise [HR16, KUCT15, CLL+02, FF09, WTH+12].

Precomputation [MGQS+08, WWW+02].

Preconditioning [Nak03, GEG07].

PREDATOR [LTHB14].

Predicate [GPR11, How00].

Predictable [BBdH+11].

Predicting [Lun99].

Prediction [AKS06, CMBAN08, IBST01, PBL+17, BWDZ15, BMV03, CTYP02, CPT08, GL98b, RRPO6, TFG10, WHG07].

Prediction-Based [CMBAN08, RRPO6].

predictive [LTHB14, SRA06].

Predictors [EPAG16].

preemptive [JLS99].

prefetch [AMC+03].

Prefetcher [LYH16].

Prefetching [BL96, GK94, MKC97, SLT03, VT96, LB95, LB96b, Mao96, SLT02, SKKC09].

Prefix [WJ12].

Preliminary [EHG95].

Preparation [GH03].

preprocessor [Fon97, Mil95].

prescient [AMC+03].

Presentation [Kub15].

presented [ACM93a, ACM94b, ACM95b, ACM98b].

preserving [MSM+11, NFBB17].

pressure [DTLM14, SLP08].

preventing [PRB07].

Price [Ano98b].

Pricing [TT03].

Primitive [LB96a, Wi97].

primitives [BBH+17, LZ07, NLK09].

principle [LAK09].

Principles [ACM93a, ACM94b, ACM95b, ACM98b, MLA+02].

print [Van97a].

priorities [STV02].

prioritization [FD95].

Priority [BCG+08, NBMM12, SCCP13, ST05].

priority-based [NBMM12].

Private [Man99].

privatization [HZ12].

Pro [Ano97a].

Probabilistic [EE10, EE12, CHH+03, Sni06].

Problem [HH11, Lee06, YFF+12, BIK+11, Mit96].

Problems [DK02, Nak03, AR17, Bar09, FTAB14, FR95].

procedure [BGK94c, KASD07, LQ15].

procedures [MCS15].

Proceedings [ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV+99, Gol94, Hol12, IEE89, IEE90, IEE92, IEE93, IEE94a, IEE95, IEE96, IEE02, Lak96, LCK11, USE98, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98b, USE98a, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, FR95].

Process [FT96, FG91, BM91, HF96, LV801, MR98, P8y9, WP10, WCV+98].

process-oriented [WP10].

Processes [CB16, III01, SPY+93, ZSA13, YZYL07, Zig96].

Processing [AHW02, GAC14, MLGW18, RW97, SS91, WN10, How98, MYV05, Par91, PYP+10, RKHT17, WCZ+07].

Processor [ABC+93, Ano00b, BCG+08, BGH+12, EHG95, GV95, HMNN91, HHOM91, HHOM92, KST04, KML04, KAO05, LHV12].
MGQS+08, MG99, MTN+00, MVZ93, MB05, SW08, Sin97, ST00c, SZ02, SBKK99, SUF+12, UALK17, WS08, AAHF09, APX12, BEKK00, CL94, CY09, Cho92, EE10, Fis97, Fuj97, Goo97, HF88, HKN+92, HMN+92, KDM+98, Kho97, KBA08, LBvH06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Met95, Moo95, Moo96, OCRS07, Raj93, Sha5a, SJA12, Sin99, ST00a, ST00b, STV02, Squ94, Srl93, Tsa97b, TEE+96, VIA+05, WCW+04b, WCW+04c, WCW+04d, YN09, ZP04]. processor-based [WCW+04b, WCW+04c, WCW+04d]. Processor-In-Memory [SZ02]. Processor-Oblivious [UALK17]. Processors [ARB+02, AH00, Aoo01, BF04, EEL+97, FT96, GJT+12, GSL10, KS16, KLG08, KU00, KLDB09, LPE+99, MHG95, MCFT99, MR09, ÖCS01, PF01, RCM+16, RRK11, SU01, SR01b, URS02a, YG10, ZP11, Aga89, Aga91, Aga92, AAC+15, BGDmWH12, BWDZ15, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW99, GBP+07, KBF+12, LLL10, LBE+98, Luk01, MN03, MEG03, MPT12, Mis96, NB12, NZ17, PFV03, PAB+14, RGG+12, RCM+12, RPNT08, SLP08, SMS+03, URS02b, URS03, ZSB+12, WM03]. processus [Zig96]. Procs [MT93]. Products [Aoo01a, Aoo01b, Aoo02b, Bmr94]. Professional [Aoo01b]. Profile [Bmr94]. profiler [DTLM14]. profiling [DG99]. Program [Chl15a, DSR15, EFN+01, GN96, KK14, NB93, PF01, PS01, TSY00, TLZ+17, TLZ+18, TYZ98, YL16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, ENF+02, FRT95, JEV04, JPSN09]. Programmability [THA+12]. programmable [PYP+10]. programmation [Swi09]. programmed [PPA+13]. Programmer [Cro98, Wil00, MS87, San04, Swi09]. Programming [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BTE95, But97, CMK00, CV98, CDK+01, Chl15b, CT00, CW98, DM98, FH95a, FTP11, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KKH03, KSS95, KSS96, KIAT99, LB96a, LB00, LvH12, Mas99, NBF96, Nor96, PG99, QOQOV+09, QOIM+12, Rod95b, SBB96, TC19, Vre04, Wil97, YFF+12, dPRGB99, van95, ALS10, AR17, AG96, ABG+08, BCS00, BO96, BYL09, Bir89, CFK+91, Car89a, CS00, CMS03, Cha05, CYZ98, DSH+10, EV01, FHM95b, GKZ12, Gll94, Gol97, GL07, HMC97, Hyd00, JPS+08, JHM04, KIM+03, Kim94, LB98, LP09, Man96, MNS+10, MKIO04, MR98, Mix94, NHPF08, Ne99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV96c, SV96a, SV96b, She98, She02, Sun95, TB97a, TB97b]. programming [TMAG03, Wal00, WCC+07, Yan02]. Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CdO01, Chr01, DRV02, EGP14, FQS02, GKE17, HLB94, JKB18, Kri98, LCS04, Lun97, Lun99, MS99, MGK+00, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYHL14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BRRS10, BK13, BCG13, BGC14, Bhn95, BE12, BC02, BS01b, BSN11a, BNS11b, BNS12, CZWC13, CJ91, CL00, CLL+02, CVJL08, Cor00, DJLP10, Dil00, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQS05, FF08, FFY08, GMR09, GRS06, GPR11, HZ12, JPS+08, JWTG11, JFL98, KCO9, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP12, PAdS+17, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCC95, SRA06, Sen08, SP00b]. programs [Shi00, SP05, SGS14, Sto02, Taf13, TR14, TLZ+16, WS06, WTH+12,
XSaJ08, YCW +14, YNPP12, ZJS10, ZSJ06, dB09, vPG03. Progress [FSPD17, TLGM17, ZHCB15]. Progress-Aware [FSPD17]. Progressive [BBdH +11, TG000]. Project [Ano99].
projection [SSkP +07]. Projections [MQLR16, MLR15]. proliferating [Ano94b].
Prolog [EC98, AR17, KA97, MGK +00]. Promises [Gar01].
Proof [AddS03, AdBdRS08, FKP15, AdBdRS05, GLPR12]. properties [KTLK13, Van97b].
proposal [GP05]. Proposed [GV95].
Protocols [AB01, AB02, GRR06, TVD14]. Prototype [BMR94, HHOM91, HHOM92, BK96, BVG97, Far96].
prototyping [PDP +13]. Provably [DJLP10, GB99].
PTF [Yam96]. Pthreads [NBF98, Yam96, LB98, AS14, NBF96]. Publications [Bee98]. Publishing [Ano00b, Hig97]. purity [FFQ04]. Purpose [Ber96b, HSS +14, Man98, ZSA13, Ber96a, DC99, DC00, QoS [PSM01]. Quantitative [NBM93].
Quasi [Pla02]. Quasi- [Pla02]. Queries [TGO99, TG000]. query [GARH14].
QUERYFLEX [Ano97a]. querying [HF96]. Queue [Cri98b, Cri98a]. queues [SCM05, ST05].
Queuing [VK99, KPP1R06]. Quick [Ano00b]. QuickRec [PDP +13]. quicksort [Mah13].
R3000 [Aru92]. Race [HM96, KUCT15, MMK14, SBN +97, Sen08, Yuan02, ZLJ16, AFF06, AHK08, EQT07, FF09, HR16, HHPV15, MMN09, NAW06, NA07, PS03, PS07, PFH06, RVS13, WDC +13, XHB06, DWS +12]. race-freeness [AHK08]. RaceFree [LZV +13]. Races [KKZ15, FF10, NWT +07, PRB07, PT03, RBK +09]. racy [SRJ15]. RADISH [DWS +12]. Ramada [Ano94d].
Ramada-Congress [Ano94d]. random [LSS12, Sen08]. random-number [LSS12].
Ranking [DV99, VV00]. ray [Tod95].
RCDC [DNB +12]. RCU [CKZ12]. Reachability [LCS04, LQ15].
reachability-modulo-theories [LQ15].
Reactions [LTM +17]. Reactive [LVH12]. Reactivity [BDN02]. read [NM10].
read-only [NM10]. ready [Ano92b]. Real [BC94, IEE94a, IEE94d, JLS99, Kim14, KBP +03, MN00, PSM01, PUF +04, PSCS01, SZG91, SUF +12, Tet94, WLG +14, dIPRGB99, CZWC13, CMX10, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Jen95, JPSN09, MKK99, OT95, PSM03, RPNT05, San04, SZ92, SJBJ292a, SJBJ292b].
Real-Time [IEE94a, JLS99, Kim14, MN00, PUF +04, PSCS01, SUF +12, Tet94, dIPRGB99, IEE94d, KBB +03, PSM01, SZG91, Jen95, MKK99, OT95, PSM03, San04, SZ92, SJBJ292a, SJBJ292b].
Real-Time-and-Distributed [BC94].
Real-world [WLG +14]. Reality [LH09].
realizing [YZ14]. Realtime [BMR94].
reasoning [FK12]. rebiasing [RD06].
recognition [Ano97b, LG04].
reconfigurable [DSH +10, LP09]. ReconOS [LP09]. reconstructive [MCS15]. Record [Ch01, UALK17, ACM93a, ACM94b, ACM95b, ACM98b, GCRD04, HDT +13, HT14, DWS +13, QSQ14, RD99].
record-replay [HDT +13]. Record/Replay
[Chr01, GCRD04, RD99]. Recording
[MCT08, NPC06, HZD13, LTZT15, XHB06]. recoverable [LAK09]. Recovery
[LAK09, VPC02, WCV98, YZYL07]. RecPlay [RD99]. rectangular
[SGLGL+14]. Recursively [BE13, BE12].
[KSU94]. Reduce
[DSR15, CCC12, Cor00, KOE+06]. reduced
[GA09]. Reducing
[SLP08, SYHL14, PGB12]. Reduction
[Ama89, CL95, KLS92, SW08, HH16, XHB06, YL16, ZKW15]. Reductions
[ZAK01]. Redundant [CCK+16, CvdBC18, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14]. ReEnact
[PT03]. Reentrant [AMdBRS02].
Refactoring [Ten02]. Reference
[Rec98, Sch14, KOE+06].
Reference-Counting [Rec98]. refinement
[GPR11, KPPER06, KI16]. Reflection
[OT95, Bak95a]. region [KBF+12].
region-based [KBF+12]. regions [GPS14]. Register
[GJT+12, LPE+99, RRRK11, WW93, CCC12, HK93, SLP08, kSYH+11, ZP04].
regulated [XHB06]. Relabeling [HH11].
related [Bar09, RD06, TLZ+16]. relational
[HB15]. relative [Bet73]. Relatively
[NV15]. relaxed
[BAM07, DNB+12, HT14, QSQ14, ZKW15].
relaxed-consistency [HT14, QSQ14].
Relaxing [CZS+17]. RelaxReplay [HT14].
Relay [Zha00]. Release
[AB02, PST+92, SLP08, EKB+92, Pea92].
Reliability
[CCK+16, CvdBC18, OL02a, OL02b, OL02c].
Reliable
[KS16, NBS+15, RG03, YZYL07, YCW+14]. relocation [WW93]. remains [Ano94b].
remedies [ALW+15]. remote
[TK98, ZLW+16]. Replay
[Chr01, UALK17, GCRD04, HDT+13, HT14, LVN10, LWV+10, LTZT15, NWT+07, PDP+13, QSQ14, QSHI16, RD99].
Replaying [MCT08, WKG17]. Replica
[AT16]. Replication
[AKP99, BKI06, VACG09].
Replication-Based [AKP99]. Report
[Ano97a, HCM94]. reproduce [HZD13].
request [Sch98]. Requirements
[PCPS15, GL98a]. rescue [SLP+09].
Research
[BMF+16, USE01, AG06, RPNT08]. réseau
[Swi09]. Resistance [Gar01]. Resistant
[YLLS16]. resize [Mit96]. resolution
[Ev01]. Resource [HC17, LG06, LHG+16, RSBN01, YSS+17, CY90, HCD+94, VS11].
Resource-Efficient [LHG+16]. Resources
[LSB15, RGG+12, ZSB+12]. Respec
[LWV+10]. Response [BBC+00, Sm01].
responses [BS06]. Responsive [SUF+12].
Restart [ZSA13]. Restore [Ano00b].
restricted [ABG+08]. restructuring
[BVG97]. Results [GV95, GRS06].
Retentive [RRK11]. Rethinking
[Xuc12, Len95]. retrieval [CML00].
Retrospective [TEL98a]. Reusable
[Han97]. Reuse [BCZY16, KZTK15, JSB+11, NAAL01, PHCR09]. revealing
[Dav11]. Reverse
[Coo02, LSB15, WCV+98]. Review
[Lar97, Van97a, Vre04]. Reviews [Bra97].
Revised [Cha05]. revisionist [PT91].
Reviving [TLZ+17, TLZ+18]. revolutions
[ECX+12]. Rewriting [BGK94a, BGK94b].
RHEED [BD06]. RISC [Cho92, GV95, MHG95, Men91, Nik94, SBKK99]. rise
[Len95]. Robot [Lev97]. Robust
[CMF+13, LG04]. Rockefeller [IEE90].
Rogue [Ano00b]. Role [BC94, KZTK15].
rollback [YZYL07]. root [CMX10]. Ropes
[HMC95]. Row [KZTK15]. RP3 [CJ91].
RPC [Tod95]. RPython [MRG17].
RTOSS [IEE94a, IEE94d]. RTR [XHB06].
Ruby [OCT14]. rules [GLPR12]. Run
[EJ93, LFA96, SS96, Pra95c, Swe07, TNB+95]. Run-Time
[EJ93, LFA96, SS96, TSY99, TNB+95]. running [Cal02, MLCW11, SSN10]. runs [Hig97]. Runtime [ABN99, ABNP00, ABH+00, ABN00, ABK+96, BMN99, CSZ+17, DRN00, FSS06, KPC96, NPT98, NS97, QOM+12, SSP99, WS06, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EKT07, Go97, Ong97, TSY00, TMAG03]. runtimes [RL14]. Russians [KNSP16].

SableSpMT [PV06]. SAC [GS06]. Safe [BCL+98, Klc00, Loc18, Lw00, NH09, Pla02, Aff06, BYLN09, DMBM16, Fek08, GCC99, GOT03, Gro03, NHFP08, Ne99, Ria99]. Safe-for-Space [BCL+98]. Safety [Hag02, Pla98, Ric99, Sp00a, GPS14, Sam99, San04, SRA06, Ta13, Van97b, Ven98, Yan02]. safety-critical [San04]. Salt [Hol12]. Sampling [JYE+16]. sampling [MMN09]. Save [Pla93, Dye98]. saving [Mus99]. SC-preserving [MM+11]. SC’11 [LCK11]. SC2000 [ACM00]. SC2002 [IEE02]. SC2003 [ACM03]. SC98 [ACM98a, ACM98a]. SC’99 [ACM99b]. Scalability [CCH11, GVT+17, Nak01, BWZD15, DSEE13, RVOA08, VIA+05]. Scalability-Aware [GVT+17]. Scalable [BMBW00b, CC14, CH04, CKZ12, IEE94b, KUC15, LMJ14, MLCW11, Mc04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, LZ07, Mao96, PWD+12, SCZM00]. scalar [GL98b, ZCSM02a, ZCSM02b]. Scale [CC14, CJC+15, HC17, LA93, PWC+11, AG06, BCM+07, GOT03, SMK10, KBA08]. scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16]. Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RVR04]. Schedulability [Kim14]. Schedule [MQLR16, MLR15, NAAL01, WTH+12]. Scheduler [ABLL92, BDN02, FSPD17, GJT+12, QSaS+16, SRS98, SS95, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSA08]. Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12]. schedulers [NBMM12]. Scheduling [BL94, BL98, BL99, FS96, FSPD16, GR06, JLS99, KLB09, NB99, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSM12, KJ+13, KBF+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TIAS07, WHJ+95, ZSB+12]. Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12]. Science [Gol94]. Scientific [CMBAN08, HLB94, WN10, BT01, BD06, Dan09, NJ00, Bra97]. scripting [TO10]. Scotland [AOV+99]. Scriptics [Ano00b]. Scripting [BPBM00]. Scripts [TLA+02]. Seamless [CV98]. Search [AMMR98, BCC10, LAL+12, Mah11]. searches [TGC95]. Seattle [ACM93c, IEE94a, IEE94d, LCK11, USE98a]. sec [AHW02]. Second [IEE98, IEE96, FR95]. Section [DSR15, CS12, DTLM14, SMQP09, YL16]. Section-Based [DSR15]. sections [NM10]. Secure [SV98]. Security [BRRS10, MS03, Way95]. sedition [Bak95b]. SEDMS [USE99]. See [Swe07, AC09]. segmentation [BCG14]. Select [KKDV03]. selected [Cha05]. Selection [AT16, PR05, Sta90]. Selective [Nak03, PR98, VAC09, MCRS10]. Self [LLL15, Pet00, SEP96, BDF98, SL+09]. Self-Allocating [SEP96]. self-healing [SLP+09]. self-migrating [BDF98]. Sema [Kor89]. semantic [BNS11a, BNS11b, BNS12]. Semantics [BR15, CRWR99, HEJ09, MP01, CRWR97a].
Shift [Ham96]. Shinko [Ano00a]. Shop [Bec00]. short [CPT08, Lie94]. shortage [Ano94b]. Should [EHP+07]. SICStus [EC98]. side [MWTW10, SBB96]. sided [QSH16]. SIGACT [ACM93a, ACM94b, ACM95b, ACM98b]. SIGCOMM [RM03]. Signal [Eng00, BM91]. Signals [GRR06]. Significance [ZJS12]. SIGPLAN [ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT [ACM93a, ACM94b, ACM95b, ACM98b]. Silicon [LB17, THA+12]. SIMD [FSY09, SW08]. Simple [AKS06, Ch15b, WS08, BDL07, CL00, SSM+10]. SimpleGraphics [MKG99]. simplify [PQ03]. Simplifying [Pom98]. simulate [MAF+09]. Simulation [For97, GV95, HPB11, JYE+16, MPD04, VTM12, WGG94, Ano97b, BBH+17, KBF+12, Lep01, Lep95, MHW02, SWY94, S93]. Simulations [HEM17, LS11, SCD+15, ABC+15, KU17, LVA+13, VPQ12]. Simulator [SRS08, PWD+12, TCH99, WZS08, Nak03]. Simulink [HYY+15]. Simultaneous [Ano05, CSK+99, EEL+97, GSL10, HMNN91, LEL+97a, LEL+97b, LPE+99, LEL+99, LRZ16, MCRFT99, REL00b, SP07, SL04, SU01, ST00c, TEL95, Tu96, TEL98b, WS08, YG10, ABC+09, AAK08, ABB+15, CCC12, EEO99, Fis97, HKN+92, HMN+92, LBE+98, Luk01, Mah13, MFF+05, MEG03, PHCR09, RCG+10, REL00a, REL00c, RM00, RPNT05, SLG06, SW16, ST00a, ST00b, STV02, SMS+03, TSC99, TEE+96, VPC02, TEL98a]. Single [CLFL94, Du95, EHP+07, FT96, HHO91, JBK18, KTR+04, MTN+00, CSM+05, MLC+09, Pra95c, VIA+05, YZ07, YSY+09]. Single-Address-Space [CLFL94]. single-and [YSS+09]. Single-Chip [HHOM91, MTN+00]. Single-ISA [KTR+04]. Single-Process [FT96]. Single-program [Du95]. single-thread
[MLC+09]. **Single-Threaded**
[EHK+07, JBK18, Pra95c, VIA+05, YZ07].
**Singleton** [Cha02, Rin99]. **Situ** [RGK99].
sixth [USE98b, ACM94d]. **size** [LML00].
slave [TYJ+11]. **slice**
[PGS06a, PGS06b, PGS06c]. **slice-based**
[PGS06a, PGS06b, PGS06c]. **Slices**
[MGQS+08, PF01]. **Slicing**
[Kiri98, FRT95, NR06]. **SlicK**
[PGS06a, PGS06b, PGS06c]. **slower**
[Pra95c]. **small** [Koo93, MM07]. **Smalltalk**
[Bri89]. **Smalltalk-80** [Bri89]. **smart**
[Sim97]. **SMP**
[BWXF05, BNI01, CRE99, HD02, KKH03, KJ+13, Pra95c, TAS07, TMAG03]. **SMPs**
[WG99]. **SMT** [Ano05, AH00, CY99, EE09b, EE10, EE12, FSPD16, FSPD17, KLG08, KI16, MG99, MMM+05, NPA+14, PAsS+17, PAB+14, PDC+15, RPNT08, SLPO8, TAS07, VS11, WA08]. **SMT-based**
[KL16, PAsS+17, PAB+14]. **SMTp** [CH04].
**Soft** [PSM01, PSM03, SSN10, VACG09].
**Software** [Ano97a, Ano98b, Ano99, Ano00b, BCR01, BCG+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IE94a, KE15, LPE+99, PJS15, SZM+13, SD13, TLZ+16, TLZ+18, YBL16, ATLM+06, AC09, ABC+09, BT01, Bra97, CDD+10, DPZ97, GLPR12, Hais97, HSi+12, IEE94d, KK104, KSD04, KASD07, LT97, Luk01, MWP07, MCRS10, MGL95, MEG03, NHPF08, OAA09, OL02a, OL02b, OL02c, PV06, RKM+10a, RKM+10b, RVOA08, San04, SP05, SLPS+09, SBS0, TNN+95, WCV+07, WCV+09, YSY+19, ZHCB15, DWS+12].
**Software-Controlled** [BCG+08, Luk01].
**Software-Directed** [LPE+99]. **Solaris**
[Cat94, Lun97, Lun99, McM97, Pra95b, Sun95]. **Solution** [Ano98b, SBC91, WP10].
**Solutions** [Ano00b]. **solve** [Bar99, MM07].
**Solver** [YFF+12, KUB15, RM99]. **Solvers**
[MR09, Nak03, AAC+15, ZCO10]. **Solving**
[ABD+12, FTAB14, Loe97, VSDK09].
**SONET** [AHW02]. **Sort** [GH98, RHH10].

**Sound**
[WHF+12, DWS+12, FFY08, NFBB17].
**Source** [Ano00e, BMF+16]. **sources** [SJH5].
**South** [ACM93a, Ano94d]. **Space** [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, Sch17, FWW03, KNPS16, KASD07, Lie94, LHS16].
**Space-Efficient** [BL98, NB99, BL93, KNPS16, KASD07, LHS16]. **Spacecraft**
[SRS98]. **Spaces**
[FKP15, CKZ12, KGGK09]. **Spain**
[ACM95a, DLM99, ACM98c]. **SPARC**
[Cat94, KAO05, MD96]. **Sparclet** [ABC+93].
**Sparse** [But13, YFF+12, CSV10, Dav11, MM07, PHCR09]. **spatially** [PPA+13].
**spatially-programmed** [PPA+13]. **Special**
[Ano94e, GBG93b, KU00]. **specialization**
[AHM99, CHG99, JEV04, GB99, GJ97, KSL05]. **Speculated**
[SLC05]. **Speculation**
[SU01, WS08, YBL16, DG99, GB99, JEV04, LWV+10, MTO2a, MTO2b, MTO2c, NB12, PO03, PT03, SCZM00]. **Speculative**
[AH00, Ano01, Ano02, BF04, IBST01, KLG08, MGQS+08, MG99, MTO2a, MTO2b, MTO2c, RKM+10a, RKM+10b, SR01b, TFG10, WWW+02, ZJFA09, ZL10, CHH+03, DC07, Dub95, KOE+06, KT99, LZW17, LZL+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VSI1, XIC12, ZCSM02a, ZCSM02b]. **spech** [LG04].
**Speed** [Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10].
**Speed-up** [MR09]. **Speedup** [Lun99]. **Spin**
[LLS06]. **SPIRAL** [MJF+10].
**SPIRAL-generated** [MJF+10]. **splitable**
[SLF14]. **spots** [Gle91]. **spreading**
[CWS06]. **SPASM** [Dub95]. **SQL** [CGK06].
**squares** [FTAB14]. **squeak** [MK12]. **SR**
[BO96]. **SRAM** [KSYHX+11]. **SSMT**
[CSK+99]. **Stabilizers** [ZSJ06]. Stabilizing
[BCM+07]. **stable** [YCW+14]. **Stacey**
[Ano00c]. **Stack** [Eng00, Xue12]. **Stackable**
[Loe05]. **stacking** [KSB+08]. **Stackless**
[MS15]. **stacks** [DESE13]. **StackThreads**
[TTY99]. **StackThreads/MP** [TTY99].
**Standard** [DM98, FSS06, WKG17, BCL+98, 
Bra97, M1T93, P1a98, P1a99].
**standardization** [Bet73]. **Standards**
[Thr99, TTY99]. **Standing** [TLA+02].
**Stanford** [IEE99]. **STAT** [Ano00b]. **State**
[Laf00, LP94, RRR11, Wei98b, Cor00, I+94, 
TFG10, WHG07]. **State-Retentive**
[RRR11]. **Statechart** [KW17].
**Statechart-Based** [KW17]. **stateless**
[MQ08]. **Static** [GPS14, Kri98, Lun97, 
SCB15, WW96, vPG03, Fer13, NAW06, 
NA07, AFF06, FFLQ08]. **Static/dynamic**
[SCB15]. **Statistical**
[Ano00b, RCM+16, Lam97, RCM+12, Tem97].
**stealing** [ALHH08, BL94, BL99, RL14].
**Step** [Slo97, Slo97b, ZG98]. **Stethoscope**
[Caz02]. **Stochastic** [DK02, LTM+17].
**Storage**
[AT16, Hol12, LCK11, Bak95a, Blu92, 
DZKS12, KOE+06, MM07, PDMM16].
**stores** [TANY04]. **strand** [RVC+10]. **strata**
[NPC06]. **Strategies**
[PCSC01, AGE08, FGG14]. **Strategy**
[BGK96]. **Stream** [KSS94]. **Streaming**
[HHOM91, HHOM92, KEL+03].
**Streamming/FIFO** [HHOM91, HHOM92].
**Streams** [Pre90, Spy+93]. **Strength**
[Kon00]. **Strict**
[Coo95, FS96, Tra91, KIAT99, SCG95].
**Strictly** [Ano00c]. **Strong**
[CWHB03, KZC15, MTC+07, ZHCB15].
**Structural** [CKRW99]. **structure**
[BB00, YKL13]. **Structured** [TCI98, FR95].
**Structures**
[RCRH95, AGN09, Gol97, ND13]. **students**
[Fek08]. **Study** [AGK96, Chi15a, EGC02, 
HMT+96, LSB15, Sat02, TAK+00, VK99, 
WG94, YMR93b, Bri98, CASA14, CL00, 
Fis97, HJT+93, HF96, KPP+06, MGL95, 
SP05, Sod02, Tsa97a, YMI92, YMR93a].
**Style** [Wl94a, Wl94b]. **subdivision**
[MTS10]. **subordinate** [CSK+99, CTYP02].
**Subsetting** [AJK+12]. **Substrate**
[ACMA97, Hai97a, JP92]. **Subsumption**
[Man91]. **Suffix** [OR12, LHS16].
**SugarCubes** [B000]. **Suit**
[BTE98, BO01, TG09]. **Suites** [SPDL+17].
**SuiteSparseQR** [Dav11]. **sum** [TDW03].
**summary** [I+94]. **Summer**
[Ano94f, USE92a]. **Sun** [MCM97]. **SunOS**
[Cat94, PKB+91]. **super** [Kus15].
**Supercomputer** [VTSM12, Gil94].
**Supercomputing**
[ACM92, ACM95a, ACM96, Ano91, Ano94e, 
IEE00, IEE92, IEE93, IEE94c]. **SuperLU**
[L05]. **SuperMalloc** [Kus15]. **Superscalar**
[SU96, Div95, Fis97, Gui95, Loi95, Men91].
**Superthreading** [Tsa97b]. **Support**
[ACM94d, ABL12, BBG+10, CS+17, 
CSS+91b, EJ93, GHG+98, KC99, ME15, 
MS89, NS07, PTMB09, SSP09, TY97, 
ZSA13, ATM+06, BO96, BO96, CMF+13, 
CKD94, CHH+03, CSS+91a, CSS+91c, 
Evr01, Fan93, HMC95, MWP07, MEG03, 
MS87, Men91, TSY99, TSY00, TNB+95, 
WK08a, WK08b, WK08c]. **Supported**
[Add03, ZP11]. **Supporting** [RCRH95, 
Sam99, SP00a, DC99, DC00, TDW03].
**suppression** [JGTG11]. **surgery** [MCS15].
**Surprises** [BC98]. **Survey**
[Man96, ZSB+12, Cat94, URS02b, URS03].
**Survival** [Ano99]. **Surviving** [Ano99].
**SVR4** [Spy+93]. **swap** [MLS15]. **Swing**
[Gea98]. **Switch** [G000, Eic97, GW07].
**Switzerland** [Lak96]. **Sy** [USE01].
**Symantec** [Rod95a]. **symbiosis**
[Bri89, EE10, EE12]. **Symbiotic**
[ST00a, ST00c, ST00b, STV02]. **Symbolic**
[ACM94c, BGC14, Hon94, Lak96, Wat91, 
BHKR95, FJ97, HF88]. **Symmetric**
[BMV03, NV94, BIK+11, Pra95b, RGG99, 
Sha98]. **Symmetry** [ES97]. **Symposium**
37

[ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col00a].

Synchronization
[Bec01, Hei03, LA93, Rec98, DHM+12, DESE13, MT02a, MT02b, MT02c, MTPT12, NL09, PR14, RD06, Ven97].

synchronization-induced [MTPT12].

synchronization-related [RD06].

Synchronizing [McM96a, McM96b, CZWC13].

Synchronous [BM07, HPB11]. syntax [KT17]. Synthesis [FN17, HB15, Sch17, MP98, SR14, STR16].

Synthesizing [GLPR12, Kim14, SR15].

synthetic [GJ11]. System [AddS03, AdDaRS08, AK+12, Ano98a, Ano00b, ABN99, ABH+00, BM94, BBD+91, BJK+96, BTE98, CLF94, DNR00, FG91, Ge01, HMT+96, KMA01, KS97, MS98, NPT98, PH97, PST+92, Pea92, PLT+15, QOM+12, REL00b, SEP96, Srip93, SG96, TCI98, VSM+08, Yam96, AddRS05, AAC+15, Ano96, Ano97b, A+01, AR17, BBFW03, BMD98, BCS00, BAD+10a, BAD+10b, BJK+95, BAD+09, BLC97, Cat94, Gil88, Hig97, Joe96, Lan02, MHW02, MS97, Met95, MTC+07, MC06, OCR97, PR07, Ply99, Pom98, REL00a, REL90c, RD99, She02, TKA+02, TLZ+16, TAM03, WCC+07, WZWS08, TLA+02, EKB+92, MS97, Pea92]. System- [PLT+15].


Systems [ACM94d, AG06, Ano00b, ABN00, BMN99, Bres02, BC94, CCH11, CvdBC18, Drn95, FMY+15, FGKT97, GHG*98, GJ97, HHR08, HKSL96, IEE89, IEE94a, KR12, KKH03, KG05, KUCT15, KW17, LLS06, LMA+16, LYH16, MS15, PGB16, RW97, RR03, SRF+12, SS96, USE92b, WAI95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWYB10, DZKS12, DS+10, DBRD01, GJ11, Gol96, GKK90, HJT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JDO8, Jef94, Jen95, KKH04, Kub15, LYN10, LLLC15, Leg01, LAK09, LVA+13, MC+09, MGL95, MM07, NFBB17, PBDO92, RCV+10, RBF+99, RSR+09, RVR04, SCCP13, She98, SP05, Sin97, SJB92a, SJB92b, ST05, We98a, WC99+98, Ano98b].

syntactic [PYP+10].

T [An00c, NPA92]. T/TCP [An00c]. T1 [We98a]. T1/T2 [We98a]. T2 [We98a].

Table [VB00, KNPS16]. tabling [AR17].

Tabu [AMRR98]. taint [ZJS+11].

TaintEraser [ZJS+11]. Take [Wei97].

taking [Ano92b]. Talking [Ano94c, HCM94]. TAM [CGSV93].

Taming [Hol00, HBCG13, HHPV15].

TapeWare [An00b]. Target [MGA18].

targeting [LGH94]. Task [CK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12].

Task-Level [GP95]. Tasking [CvdBC18, Di93, KRO1a]. Tasks [Fin95, PVS+17, YSS+17, FGG14].

Taxonomy [HM96, SP96]. TC2 [BT01].

TC2/WG2.5 [BT01]. Tcl [Ass96, USE96, USE98b, USE00b, Am98, MK09, SBB96].

Tcl-based [Ama98]. Tcl/2k [USE00b].

Tcl/Tk [Ass96, USE96, USE98b, USE00b, MKK99].

TCP [An00c, An00c]. Teaching [Fek08, CS00, She02]. TeamWork [CZWC13]. Tech [An097b, Gar01].

Technical [USE00a, Cat94]. Technique [JSB+12, KG94, LEM02, OCS01, PGB16, JSB+11, JPSN09, LGH94, MGA18, RS07, UZU00, VACG09, WCV+98].

Techniques [DS16, EKLL90, GS02, Han97, NLK09, PWT+11, TGBS05, Zig96, BR92, GEG07, OCR97, Pra97, RCG+10, SV96c, SV96a,
SV96b, ZSB+12. **Technologies**
[Ano00b, Ano98b]. **Technology**
[Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b]. **TeleNotes** [WSK97].
**temperature** [CCC12]. **Template**
[Cal00, How98]. **Ten** [Ano99]. **Tennessee**
[IEE94b]. **Tera** [BTE98, Mat97]. **Terabytes**
[IEE02]. **Term** [BGK94a, BGK94b, BGK96].
**Termination** [JBA18, TWD03]. **Test**
[Ama98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14]. **test-case**
[KI16]. **Testing** [BBdH+11, Goe01, LCS04, RCC14, SK12, BGP06, CBM10, EFG+03, EHSU07, MQ07, Sen08, YNP12]. **tests**
[SRIJ15]. **Texas** [USE92a, USE00b]. **TFlux**
[DTL16]. **tgMC** [LHG+16]. **Their**
[YWJ03, GIl94]. **them** [Ano92a, Ano94b].
**Theoretic** [ES97]. **theories** [LQ15].
**Theory**
[ACM93b, LLD17, NFBB17, WLK+09]. **there** [Ano94b]. **thermal** [WA08]. **though**
[Ano94b]. **Thread**
[Ano00c, ABN99, ABNP00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, Col90a, DSR15, DGK+03, Don02, Eng90, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, Hag02, Hei03, HG91, ISS98, KG05, Kim14, Kle00, KBH+03, KBH+04a, KBH+04b, LLI10, LHY16, LEL+97a, LEL+97b, Lov00, LLD17, Man99, MG09, MTN+00, MB05, MCF99, ND96, Pan99, Pr05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Ric99, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WC99, Wei97, Wli03, YBL16, ZP11, AMRR98, ABG+08, BK+13, BH+04, BC02, CSZB16, CZ02, CSM+05, DMBM16, DG99, DWYB10, Don92, DBR91, Eic97, EE09b, Fek08, GF08, GOTO3, GLC99, Hyd00, JEV04, KDM+98, KC09]. **thread**
[KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LNZ+14, Loe05, MLC+09, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOOV+09, SKG+11, Sha95b, SLG06, SP00b, Shi00, SPH96, SS95, SD13, SLT02, Stä05, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCG95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02]. **Thread-Aware** [LYH16].
**Thread-Based** [KG05, CNQ13, SKS+92].
**Thread-Level** [LEL+97a, LEL+97b, MG99, YBL16, FURM00a, FURM00b, MCF99, WO08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QOOV+09, SCZM00, YZ14]. **Thread-Local**
[DGK+03, Whi03]. **Thread-management**
[RGE+10]. **Thread-modular** [GB07].
**Thread-Private** [MAn99]. **thread-related**
[TLZ+16]. **Thread-Safe** [Kle01, Pla02, Rin99, DMBM16, Fek08, GOTO3].
**Thread-Sensitive** [CC04].
**Thread-Specific** [Ste01, SP00b, Shi00].
**thread-switch** [Eic97]. **threadbare**
[Bak95b]. **Threaded**
[AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CRK99, Coo95, CSS+91b, DV99, EHG95, EHP+07, FD90, GH03, GVT+17, GKL94, Gil93, Ill01, JBA18, JY15, Jon91, KW17, Kri98, Kuc92, KIT99, LB92, Mas99, MG15, MKG+00, NS97, PCPS15, Pul00, RKCW98, STW03, Sei99, Sm00, Ste01, SBBK99, TLGM17, VSDK99, VB00, WCT98, Ada98, ABD+12, AACK92, Ano97b, BWDZ15, BK13, BBH+17, BC00, BI+11, DSE13, CV98, CIM+17, CASA14, CRK97a, CRK97b, CWB03, CSB00, Cd00, CYS30, CC39, CL00, Ch01, Cr02, CSS+91a, CSS+91c, DSE16, EFG+03, EBKGM01, EHSU07, FTAB14, FD06, FGG14, GCRD04, GCC15, GSO0, GH98, GPR11, HC17, KHR+95, KKH04, Kep03, KRIH98, Kue91, LK15, Lts00, Leg01, LBH06a, LBH06b, LBH06c, LVA+13].
**threaded**
[MLC11, MS03, MKK99, NFBB17, NH09,
NHS14, OA08a, OA08b, OA08c, PYP+10, PR98, PWWD18, Pra95c, RCV+10, RKM+10a, RKM+10b, RBP900, RGK99, RS08, SCB15, San99, SP00a, SC17, SE12, Sei98, Sh09a, Sh09b, SV98, Sm06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Ten97, TMAG03, TJY+11, VIA+05, VVO0, VK99, Wal00, Wi98, XMN99, YZ07, YY+09, ZKR+11, dB09, vPG93, +.

Threading [BFA+15, CvdBC18, DHR+01, Hol98d, KS16, LKBK11, MLGW18, McC97a, McC97b, MS15, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, TGO99, VIA05, VV00, VK99, Wal00, Wi98, XMN99, YZ07, YY+09, ZKR+11, dB09, vPG93, +.

Threading-Based [KS16]. ThreadMentor [CMS03, She02].

Threads [Alf94, Ano94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, Cal00, CGR92, Col90b, Cri98b, Cri98a, TLA02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HBG01, Hol00, How00, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MP98, McM96c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, San04, SEP96, TG99, WCW+04a, Wi98a, Wi98b, Wi98d, Y995, Yam95, Yam96, dPBR99, Ano92, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, But14, But97, CZWC13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FHM95b, FL90, GP05, Go97, HCM94, HMC95, Hai97a, HB02, HJT+93, HKT93, HKN+92, Hol98d, Hol98e, Hol98f, Hol99a, Hol99b, Kan94, KE95, KSS96, Lan02, LZ07, MSLM91, MR98, MQW95, Mc96a, Mc96b, Mc96f, Mc98a, Mc98b, Men91]. threads [Mit96, MEC94, OW97, OW99, OL02a, OL02b, OL02c, PSM03, Pan99, PG03, PL03, RR03, Sch91, SCG95, SZG91, NZ92, SCM05, SKP*02, TAN04, WCW+04b, WCW+04c, WCW+04d, Web98a, WCW+98, WW96, ZCS02a, ZCS02b, ZP04, ALW+15, Van97a]. Threads.h [An00b, TB97a, TB97b]. ThreadScope [WT10]. Three [YMR93b, YMR93a].

Throttling [LG06, Throttling-Based [LG06]. Throughput [GJT+12, Wea08].

Tightly [MTN+00, LZZT15]. TileDB [PDM16]. Tiles [QOM+12]. Time [BC94, CIM+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSCS01, SUF+12, SLS96, TET04, dPBR99, CS95a, CS95b, DC99, DC00, GB99, IE94d, Jef94, Jen95, KBB+03, KASD07, KBB+12, MKK99, ND96, OT95, Oss02, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJB92a, SJB92b, TSY99, TBB+95].

time-based [KASD07]. time-critical [RGG+12].

time-efficient [GB99]. time-shared [Jef94].

timely [NH09]. Timers [Hol99a, GRR06].

Timethread [BC94]. Timethread-Rule [BC94]. Timing [SK97, MHW02].
timing-first [MHW02]. tiny [Xuc12]. Tip [Pet00]. Tips [Mit96, Pet00]. Tk [Ass96, USE96, USE98b, USE00b, TLA+02, MKK99].
together [Ano97b, Fol90].

together [Ano97b, Fol90]. Tokyo [An00a]. tolerance

[MTS10, PG01, RRP06]. Tolerant [ÖCS01].

Tolerating [Luk01, RBK+09, SKK+01].

Tool [AddS03, Ano98b, Goe01, Kor98, TAM+08, ACD+12, CMS03, CSB00, Hig97, LMC14, RGK99, YNP12].

Tool-Supported [AddS03].

Toolbox [Bra97]. Toolkit [SZM+13]. Tools [Ano98b, Cha05, EV01, WWW+02, EHS07, Len95].

Tools.h [Ano98b]. Toolset [Ano97a].

topics [MS87].

topics [BGG95, GBG95].

Toroidal

[KEL+03]. Totally [DHR+01]. Trace [RS08, HEJ09]. Trace-based [RS08].

Traces [HMK17, WKG17, HR16].

Tracing [Len02, EKLL90, Tod95].

Tracking [CZS+17, LH09, CSB16, ZJS+11].

trade [AAC+15, Par91, KUCT15]. trade-off [AAC+15].

tradeoffs [Par91].

tradeoffs [Par91].

Tips [Mit96, Pet00].

Tk [Ass96, USE96, USE98b, USE00b, TLA+02, MKK99].
together [Ano97b, Pol90].

together [Ano97b, Pol90].

Tokyo [Ass96, USE96, USE98b, USE00b, TLA+02, MKK99].
together [Ano97b, Pol90].

together [Ano97b, Pol90].

Tolerating [Luk01, RBK+09, SKK+01].

Tool [AddS03, Ano98b, Goe01, Kor98, TAM+08, ACD+12, CMS03, CSB00, Hig97, LMC14, RGK99, YNP12].

Tool-Supported [AddS03].

Toolbox [Bra97]. Toolkit [SZM+13]. Tools [Ano98b, Cha05, EV01, WWW+02, EHS07, Len95].

Tools.h [Ano98b]. Toolset [Ano97a].

topics [MS87].

topics [BGG95, GBG95].

Toroidal

[KEL+03]. Totally [DHR+01]. Trace [RS08, HEJ09]. Trace-based [RS08].

Traces [HMK17, WKG17, HR16].

Tracing [Len02, EKLL90, Tod95].

Tracking [CZS+17, LH09, CSB16, ZJS+11].

trade [AAC+15, Par91, KUCT15]. trade-off [AAC+15]. tradeoffs [Par91].

tradeoffs [Par91].
training [MCS15]. Tranquilizer [PGB12].
Transaction [RW97, SS91, EQT07, Ver96].
transaction-aware [EQT07].
Transactional [GMGZP14, KUCT15,
RG03, VSDL16, ZLJ16, ATLM°06,
BDLM07, CMF°13, CNV°06, GCC15,
MLS15, MCRS10, MMTW10, MTC°07,
OCT14, VTSL12, ZHCB15]. Transactions
[Ano00c, DTLW16, SKBY07, BD06, Dan09,
KR01a, KR01b, KGGK09, RKM°10a,
RKM°10b]. Transform
[HN91, LHS16, TKHG04, TT03, TTKG02].
transformation [TSY00]. transformations
[AC09, D’H°92, JMS°10, VV11]. Transient
[RM00, VPC02]. Transient-fault [VPC02].
Transitive
[YMR93b, XHB06, YM92, YMR93a].
transformation [KBF°12]. translator
[TJY°11]. Transparency
[KGKE17, KBH°03]. Transparent
[ABN99, LVN10, SLGZ99, ZSA13].
Transparely [CB16, JSB°12].
Transport [GRS97]. transposition
[SGLGL°14]. trap [Ram94, GRS97].
trap-based [Ram94]. Tree
[Pla99, BCCO10]. trees [AD08, CKZ12].
Trends [Gar01]. TRI [ACM93c]. TRI-Ada
[ACM93c]. Trick [Eng00]. Tridia [Ano00b].
triagonal [ZCO10]. trigger [Kho97].
Triggered [PPA°13]. Troy [SS96]. TSGL
[ACD°18]. TSO [HH16]. Tumbler
[PGB16]. Tune [RGK99]. tuned
[Ano95a, Ano95b, Kub15]. Tuning
[LEL°99, CSB00, RGK99]. Tunnelling
[Don02]. Tutorial [Taf13]. Twentieth
[ACM93a]. Twenty [AV°99, ACM93b].
Twenty-fifth [AV°99, ACM93b]. Two
[BBH°17, CM98, JYE°16, STY99, GLC99].
Two-Level [JYE°16, BBH°17, STY99].
TX [Cha05, ACM00, USE91b]. TxRace
[ZLJ16]. Type [Gro03, Loc18, VGR06,
BAD°09, GE08, Lan02, Mil95, PRB07].
type-checking [Mil95]. Type-Safe
[Loc18, Gro03]. typed [DMBM16]. Types
[AFF06, FFLQ08, Ten98, BAM07, KS93,
VGR06]. typings [Smi06].
UCITA [Gar01]. UK [AV°99]. ULT
[PG03]. Ultra [PWL°11]. Ultra-Scale
[PWL°11]. UML [SK12]. Unbounded
[CNV°06, FKP15, BDLM07]. uncommon
[BDLM07]. Uncover [WS08].
underdetermined [Kub15].
Undergraduate [BLPV04].
Understandable [MSM°16].
Understanding
[BZ07, MLA°02, EPAG16, RRP06].
Undocumented [SW97]. Unfoldings
[BPDLK°17]. Unicon [Swi09]. Unified
[Wei98b, ABG°08, GKM12]. Uniform
[BD02, SKG°11]. unifying [MS03].
unimodular [D’H°92]. unintrusive
[HDT°13]. uniprocessor [GL98a, Yan97].
uniprocessors [BRE02, EJK°96].
Uniscape [Ano98b]. UNISIM [LS11].
UNISIM-Based [LS11]. unit
[CBM10, Par91, PAB°14]. United
[ACM94c]. Unithreaded [RLJ°09]. Units
[RKK15, Gum97]. univariate [CMX10].
University [IEE99]. UNIX
[Ano95b, FG91, JJ91, Kor89, MS87, MS89,
Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].
Unix-to-NT [Ano98b]. UnixWare
[Rod94, Rod95b]. unlocking [XSA°10].
unravel [But14]. Unraveling [Bec00].
Unsynchronized [DSR°15]. unveiled
[Ano95a, Ano95b]. Unveiling [AAC°15].
up-and-downdating [VV11]. UPC
[EGC02]. updates [NH09]. Updating
[HSS°14, HSD°12, NHFP08]. Ur [Chl15b].
Ur/Web [Chl15b]. URL [TLA°02]. USA
[ACM94a, ACM94d, Cha05, Hol12, ACM96,
ACM98d, ACM00, Ano00, EV01, IEE89,
IEE94a, IEE96, IEE02, SS96, USE89,
USE91a, USE91b, USE92a, USE93a,
USE93b, USE00b, USE00a, USE01]. Usage
[BS96, Kor89, VS11]. Use
Bak95a, HW92, WWW°02]. Use-once
Bak95a, Useful [Pet03]. USENIX
[Ano90, Ano94f]. User
[ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, Li05, MSLM91, OT95, SLT02, TNB+95, YZYL07]. User-Level [ABLL92, SLT03, MQW95, GRN06, MSLM91, OT95, SLT02, YZYL07].

Useful [Pet03]. USENIX [Ano90, Ano94f]. User
[ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, Li05, MSLM91, OT95, SLT02, TNB+95, YZYL07]. User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07].

User-Space [Eng00, GRS97]. Using [Ano99, ABH+00, AZG17, BDN02, BBC+00, BLG01, BTE98, CRE99, Cor00, DS16, DTLW16, DBRD91, GH03, HBG01, HJ+93, HBTG98, Hei03, How00, KMJc02, Kwo03, KET06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SC+15, SEP96, SLT02, WKG17, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CYTP02, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97, HH97, JWTG11, JY+03, KASD07, KBF+12, LK15, MM14, NPC06, NWT+07, Nkh94, PT03, RKM+10a, RKM+10b, RM99, RPNT05, SLGZ99, SLP+09, TP18, TFG10, Tod95, TAN04, VPC02, VD08, ZJS+11, KSB+08].

UT [Hol12]. Utility [FHM95a, JSM913, FHM95b]. Utility-based [JSM913]. utilization [Squ94]. Utilizing [ES97]. UX [Ano95a, Ano95b, Yam96].

V [EBK+92, EOB92, FG91, PST+92]. v1.0 [Ano00b]. Validating [LB17]. Validation [BMV03, LB17, SCB+15]. value [DG99, TFG10, ZCSM02a, ZCSM02b]. variable [Evr01, DB09]. Variables [Hol98c, Whi03, Bak95a]. variation [PGB12]. variety [CML00]. VAX [Gil88].

Vector [Goo97, HHOM91, HHOM92, KBH+04a, KBH+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08].

Vector-Processor [HHOM91, HHOM92].

Vector-Thread [KBH+04a, KBH+04b, KBA08].

vectorization [cC91, JMS+10, RKHT17].

vectorized [TP18]. vectors [KTK12].

Velodrome [FFY08]. Verification [AMdBR02, BCR01, Chl15a, DRV02, EG14, FK12, JKB18, KKW14, BK13, CASA14, DCK07, EG11, FFQS05, NSH14, Stä05]. Valid [Loc18]. versifiers [GLPR12].

Versus [NHFP08, TV10]. version-consistent [NHFP08]. versions [BD06].

Video [BC00]. view [KTLK13, PT91].

Vina [T010]. Virtual [BSSS14, BBM09, GKO5, KKD03, PB07, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MGR17, Ven97, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97].


viscous [RM99]. Visual [PTMB09, DHH09, MCM96c, ESP96, NAG01].

Virtualization [Ano97a, ACR01, CA01, CA02, BCS00, CS00, MCK99, NCA93].

Visualizing [CDO01, W10, ACD+18]. volumes [Koo93]. VRSync [MTP12].

vulnerability [SS10, WHG07].

WA [LC11, ACM93c, IEE94a, IEE94d].

Wabi [Ano97a]. Waiting [LA93]. Waits [How00].

WAN [Yas95]. Wanted [Ano94g].

Warnings [CJW+15]. warp
[FSYA09, MTS10, Rei95, Tam95]. was
San04]. Washington
[ACM92, Ano90, IEE94c, USE98a]. Watch
[Ano97b]. water [LVA+13]. Wave
[Ano00b, BBC+00, LS07]. wavelet
[TKH04]. Way
[KA005, MTN+00, Rin99, ZJFA09, FGT96]. Ways
[Wei97]. Weak [KZC15, TVD14].
Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay
[Zhao00]. WebThreads [Ano97a]. week
[Ano95a, Ano95b]. weeks [But14]. weight
[Way95]. weighted [HFV+12]. weighing
[VS11]. Weightless [SPY+93]. Weld
[OCS01]. well [Kub15]. well-determined
[Kub15]. West [EV01]. WG2.5 [BT01].
Wheeler [LHS16, NTR16]. Where
[EHPP07]. Whole [GN96, BBM99].
Whole-Program [GN96]. Wide
[Ano94d, Ano96, FGT96]. wide-area
[FGT96]. Widening [KKW14]. will
[Ano95a, Ano95b]. WiMAX [CDD+10].
Win32 [Bec01, BW97, CW98, Har99, How00, Lar97, PC99]. window [VS11].
Windows [USE98a, HKT93, ZYL07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter
[Ano90, USE89, USE91b, USE93b]. Wired
[DRH+01]. Within [BP05]. without
[Gus05, LZBW14, Pla02]. woes [Ver97].
WOMPAT [Cho05, EV01]. Work
[Ber96b, Wai95, ALHH08, Ber96a, BL94, BL99, Lep95, OdSPP12, RL14].
work-optimal [Lep95]. work-stealing
[ALHH08, RL14]. worker [SCM05].
workflows [FGG14]. Working [BT01].
Workload [KTR+04, SSY97, LBE+98].
Workloads
[GVT+17, KML04, LYH16, RCC12, CML00, SQP08a, SQP08b, SQP08c, WA08].
WorkPlace [Bra97]. works [Hig97, San04].
Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IEE89, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation
[Ano00b, HN91, IEE89]. Workstations
[KLH97, Lu98, LGH94, RGK99, PH97].
World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLG+14].
World-wide [Ano96]. Wrapper [AS14].
Wrappers [Hub01]. Write
[Sho97a, Sho97b]. Writer [Ano97a].
written [ND13]. WWOS [IEE89].
WWOS-II [IEE89].

X [Ano00b, Smi92, Sri95, MSM+16]. Xeon
[SCD+15]. Xlib [Gil93, STW93]. XML
[DWYB10]. XMT
[DV99, VV00, BC14, VTSM12, VDBN98].
XMT-2 [BC14]. XPS [Ger95].

Year [Ano99]. Yokohama [Ano03]. York
[IEE90]. Yosemite [Ano00b].
z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

Antoniu:2001:HSC


Aliaga:2015:UPE

José I. Aliaga, Hartwig Anzt, Maribel Castillo, Juan C.

**Alverson:1992:EHP**


**Amamiya:2009:CBN**


**Athanasaki:2008:EPL**


**Antoniu:2001:DPP**


**Antoniu:2002:IMP**

Gabriel Antoniu and Luc Bougé. Implementing multithreaded protocols for release consistency on top of

Axnix:2015:IZF


Agarwal:1993:SMV


Aliaga:2015:CMS


Aliaga:2012:SDG

REFERENCES


Agarwal:2010:DDP


Auerbach:2008:FTG


Antoniu:2000:IJC


Antoniu:2001:CMJ


Anderson:1992:SAE


Joel C. Adams, Patrick A. Crain, Christopher P. Dilley, Christiaan D. Hazlett, Eliz-
 REFERENCES

abeth R. Koning, Serita M. Nelesen, Javin B. Unger, and Mark B. Vande Stel.
TSGL: A tool for visualizing multithreaded behavior. [ACM93b]
Journal of Parallel and Distributed Computing, 118 (part 1)(??):233–246, August 2018.
science/article/pii/S0743731518301035

ACM:1992:CPI

QA 76.88 I57 1992. Sponsored by ACM SIGARCH.

ACM:1993:CR

[ACM93a] ACM, editor. Conference record of the Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages: papers presented at the symposium, Charleston, South Carolina,
http://www.acm.org/pubs/contents/proceedings/plan/

158511/index.html. ACM order number 549930.

ACM:1993:PTF

A13 1993. ACM order no. 508930.

ACM:1993:TCS

[ACM93c] ACM, editor. TRI-Ada ’93: Conference — September
der No. 825930.

ACM:1994:ASC

[ACM94a] ACM, editor. ACM SIGPLAN ’94 Conference on Programming Language Design and
Implementation (PLDI). Orlando, FL, USA, 20–24 June, 1994, volume 29(6) of ACM
SINO0Q. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

ACM:1994:CRP

ACM SIGPLAN-SIGACT
Symposium on Principles of
REFERENCES


[ACM98a] ACM, editor. *ACM 1998 Workshop on Java for High-
REFERENCES


**ACM:1998:CRP**


**ACM:1998:PA1**


**ACM:1998:SHP**


**ACM:1999:PASa**


**ACM:1999:SPO**

References

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1999. [ACMA97]

ACM:2000:SHP


ACM:2001:PAJ


ACM:2003:SII


Arvind:1997:MSC


Attali:2001:GVJ


Adams:2008:ENE


Adamo:1998:MTO

Jean-Marc Adamo. *Multi-threaded object-oriented MPI-based message passing interface: the ARCH library*, volume SECS 446 of The


ISSN 0302-9743 (print), 1611-3349 (electronic).


Adiletta:2002:PSA


Aitken:1996:MCJ


Ahn:2012:ISE


Azagury:1999:NIR


Aciicmez:2006:PSB


Arjomand:2016:BAP

REFERENCES


REFERENCES

Azizi:2009:AEC


Aiex:1998:CMT


Annnavaram:1996:BVN


Anonymous:1990:PWU


Anonymous:1991:PIS


Anonymous:1992:MWPa

Anonymous. It’s a multi-threaded world, part 1: Multithreaded operating systems are becoming the norm. Here’s how your applications can exploit them. *Byte Magazine*, 17(5):289–??, May 1992. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Anonymous:1992:MWPb

REFERENCES

CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Anonymous:1994:ICS


Anonymous:1994:MDP

[Ano94b] Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 165:60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT


Anonymous:1994:PIW


Anonymous:1994:SIP


Anonymous:1994:USC


Anonymous:1994:WMC


Anonymous:1995:HUW

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??,
REFERENCES

February 1995. ISSN 1061-0839.

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. *Open Systems Today*, 168:34–??, February 1995. ISSN 1061-0839.


REFERENCES


**Anonymous:2000:CCI**


**Anonymous:2000:NPAa**

[Ano00b] Anonymous. New products: AVP for Linux/FreeBSD UNIX, Kaspersky Lab Ltd.; API PowerRAC Chassis 320, Alpha Processor Inc.; ODBC-ODBC Bridge, Easysoft Ltd.; LinkScan 6.1, Electronic Software Publishing Corporation; Metro-X Enhanced Server CD, Metro Link, Inc.; P-STAT Statistical Software, P-STAT, Inc.; System Manager in a Box v1.0, Pegaso Soft Canada; PGI Workstation 3.1, PGI; Quick Restore 2.6, Workstation Solutions, Inc.; Threads.h++ and Tools.h++ Professional, Rogue Wave Software; Scrip- 
tics Connect 1.0, 1.1, Scrip- 
tics Corporation; TapeWare 6.2 Backup Software, Yosemite Technologies, Inc.; DoubleVi- 
sion for Linux Systems, Tridia Corporation. *Linux Jour- 
nal*, 71:??, March 2000. CODEN LIJOFX. ISSN 1075-

**Anonymous:2001:ESM**


**Anonymous:2002:ST**

[Ano02] Anonymous. Speculative...

**Anonymous:2003:CCV**


**Anonymous:2005:ECS**


**Atkinson:1999:PTF**


**Arnau:2012:BMG**


**Areias:2017:SDP**


**Adiletta:2002:NGI**

Matthew Adiletta, Mark Rosenbluth, Debra Bernstein, Gilbert Wolrich, and Hugh Wilkinson. The next generation of Intel IXP network processors. *Intel Technology Journal*, 6(3):6–18, August 15,


Boehm:2008:FCC


Bocchino:2009:TES


Bergan:2010:CCRb


Baker:1995:UOV


Baker:1995:GTP

REFERENCES

[Baldwin:2002:LMF]

[Bic:1993:EUI]

[Burckhardt:2007:CCC]

[Bova:2000:DLP]
REFERENCES

DEN IHPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic).


**Bratanov:2009:VMW**


**Butler:2011:BAM**


**Barabash:2005:PIM**


**Buhr:1994:TRM**


**Ball:1998:MT**


**Bhandarkar:2000:PPM**

REFERENCES


Boudol:2002:NCP


Bronson:2010:PCB


Banerjee:1995:PCD


Boneti:2008:SCP


Bergan:2013:ICS


Bokhari:2014:MMM

REFERENCES


REFERENCES


Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

Bakmann:2008:EFK

Bhatotia:2015:ITL

Bergan:2014:SEM

Baghsorkhi:2012:EPE
Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye,

Bic:1995:ATD


Burgess:2012:EFL


Buendgen:1994:MAT


In Hong [Hon94], pages 84–93. ISBN 981-02-2040-5. LCCN QA76.642.158 1994.

Buendgen:1994:MTA


Bundgen:1994:FPC


Bundgen:1996:SCM


Blundell:2006:AGT

Barekas:2003:MAO

Bientinesi:2011:CFS

Birrell:1989:IPT

Blumofe:1995:CEM
Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime
REFERENCES


Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multi-
LCCN QA 76.6 A13 1993. URL http://www.acm.org/pubs/articles/proceedings/
stoc/167088/p362-blumofe/p362-blumofe.pdf; http:
//www.acm.org/pubs/citations/
proceedings/stoc/167088/
p362-blumofe/. ACM order
no. 508930.

**Blumofe:1994:SMC**

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. In Goldwasser
[Go94], pages 356–368. CO-
DEN ASFPDV. ISBN 0-
8186-6582-3. ISSN 0272-
5428. LCCN QA 76 S979
1994. IEEE catalog number
94CH35717. IEEE Computer
Society Press Order Number
6580-02.

**Blumofe:1998:SES**

Robert D. Blumofe and
Charles E. Leiserson. Space-
efficient scheduling of multi-
threaded computations. SIAM
Journal on Computing, 27
CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111
(electronic). URL http://
epubs.siam.org/sam-bin/dbq/article/25947.

**Blumofe:1999:SMC**

Robert D. Blumofe and
Charles E. Leiserson. Schedul-
ing multithreaded computa-
tions by work stealing. Jour-
nal of the ACM, 46(5):720–
748, September 1999. CO-
DEN JACOAH. ISSN 0004-
5411 (print), 1557-735X (elec-
acm.org/pubs/citations/
journals/jacm/1999-46-5/
p720-blumofe/.

**Bianchini:1996:EPM**

Ricardo Bianchini and Beng-
Hong Lim. Evaluating the
performance of multithreading
and prefetching in multi-
processors. Journal of Par-
allel and Distributed Com-
puting, 37(1):83–97, August
25, 1996. CODEN JPD-
CER. ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.
com/linkso/doi/10.1006/jpdc.
1996.0109/production;
http://www.idealibrary.
com/linkso/doi/10.1006/jpdc.

**Bordawekar:1997:EEH**

Rajesh Bordawekar, Steven
Landherr, Don Capps, and
Mark Davis. Experimental
evaluation of the Hewlett–
Packard Exemplar file sys-
tem. ACM SIGMETRICS
Performance Evaluation Re-
view, 25(3):21–28, December
1997. CODEN ???? ISSN
0163-5999 (print), 1557-9484
(electronic).

**Broberg:2001:POU**

Magnus Broberg, Lars Lund-
berg, and Håkan Grahn. Per-

**Blumofe:1992:MSM**

**Blumofe:1995:EMP**

**Bolinger:1991:PSH**
D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105–122. LCCN QAX 27.

**Baquero:1994:CA**

**Bergstra:2007:SCE**
REFERENCES


REFERENCES


Brunst:2001:GBP


Burnim:2011:SCSa


Burnim:2011:SCSb


Burnim:2012:SCS


Benson:1996:DMS


Bull:2001:MSO


Boehm:2005:TCI

REFERENCES

2005. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


Bramley:1997:TNRb


Bershad:1992:FME


Brebner:2002:MLC


Briot:1989:OAS


Brightwell:2003:DIP


Barthe:2010:SMP

REFERENCES

Bellosa:1996:PIL


Bacon:2006:BFL


Bokhari:2010:EPM


Burnim:2010:ACD


Bartolini:2014:AFG

Davide B. Bartolini, Filippo Sironi, Donatella Sciuto, and Marco D. Santambrogio. Automated fine-grained CPU...

**Boisvert:2001:ASS**


**Brunett:1998:IET**


**Butenhof:1997:PPT**


**Buttari:2013:FGM**


**Butcher:2014:SCM**


**Bik:1997:JPJ**

Special Issue: Java for computational science and engineering — simulation and modeling II.


[Cal97] John Calcote. Thread pools and server performance. Dr.
REFERENCES


Calkins:2000:ITT


Callaway:2002:VTR


Caromel:1989:GMC


CarrerasVaquer:1989:APE


Campanoni:2008:PDC


Catano:2014:CSL


Catanzaro:1994:MSA


Cazals:2002:NID

Frédéric Cazals. Non-intrusive debugging and incremental

**Caswell:1989:IMD**


**Caswell:1990:IMD**


**Creech:2016:TSS**


**Coons:2010:GEU**


**Cui:2000:MPC**


**Chiueh:1991:MTV**


**Chang:2004:TSP**

B. M. Chang and J. D. Choi. Thread-sensitive points-

**Chen:2012:MLS**


**Chen:2011:MJP**


**Chen:2016:TMR**


**Chinya:2011:BDP**


**Chetlur:2010:SWM**


REFERENCES


REFERENCES

5964 (print), 1943-5851 (electronic).


Chong:1993:EMC [Cho93] Yong-Kim Chong. Effects of memory consistency models on multithreaded multipro-

Chrisochoides:1995:MMDa

Chrisochoides:1995:MMDb

Chrisochoides:1996:MMD


Christiaens:2001:JRR


Catalan:2017:TEM


Ching:1991:EAP


Curran:2015:IZM

B. W. Curran, C. Jacobi,

Cejtin:1995:HOD


Cai:2015:ADB


Carter:1994:HSF


Cenciarelli:1997:SMJ


Cenciarelli:1997:SMT

Cenciarelli:1999:EBS


Clements:2012:SAS


Chaudhry:1994:CMP


Chaudal:1995:DEM


Choi:2000:SCP


Chase:1994:SPS


Choi:2002:EPD

REFERENCES

May 2002. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


Chen:2010:CCM


Che:2014:ALM


Cabodi:2013:TBM


Chuang:2006:UPB


Colvin:1990:CTS


Colvin:1990:MLT


Coorg:1995:PNS


Cook:2002:REJ

REFERENCES

Corbett:2000:USA

Cappello:1999:PNB

Criscolo:1998:JQ

Criscolo:1998:JQH
Mike Criscolo. Java Q&A: How do I queue Java threads? *Dr. Dobb’s Journal of Soft-

Cromwell:1998:PBD


Chang:1995:CSM


Chang:1995:CTS


Carr:2000:PCL


Carothers:2002:CMP


Chen:2012:CLA


ChassindeKergommeaux:2000:PIV

REFERENCES


Christopher:2000:HPJ


Chappell:2002:DPB


Caromel:1998:JFS


Chen:2018:ROM


Chugh:2008:DAC


Cohen:1998:WMP

Chakravarti:2003:ISM


Chakraborty:2006:CSE


Choi:2009:HCS


Chen:1998:MTO


Choi:2002:IFI


Cao:2017:HRD


Cao:2016:DBG

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


[DC99] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-


[Domani:2003:TLH] Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez Pe-
REFERENCES


**D'Hollander:1992:PLL**


**DeRusso:1998:MEH**


**Dolby:2012:DCA**


**Duncan:2001:LPD**


**Dillon:1993:VEM**


**Dill:2000:MCJ**

REFERENCES


REFERENCES


[DPZ97] Yong Dou, Zhengbing Pang, and Xingming Zhou. Implementing a software virtual shared memory on PVM.
REFERENCES


Dohi:2010:IPE


Das:2015:SBP


Ding:2015:OCA


David:2014:CMC


Diavastos:2016:ITD


Dub:1995:SSM


Dugger:1995:MC

[Dug95] Jim Dugger. Multithreading


REFERENCES

Eskilson:1998:SMM

Esmaeilzadeh:2012:LBL

Eyerman:2009:MLP

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ
REFERENCES

2012. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).


REFERENCES

El-Ghazawi:2002:UPP

Eggers:2010:AL

Esparza:2014:PBV

Elmasri:1995:TCL

Eickemeyer:1997:EMP

Eager:1993:CER
REFERENCES


Eickemeyer:1996:EMU


Eggers:1990:TEI


English:1995:MC


Engelschall:2000:PMS


Eykholt:1992:BMM


Eykholt:1992:BMM

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Understanding


REFERENCES


REFERENCES

issn=0178-4617&volume=32&issue=1&page=36.


**Flanagan:2005:MVM**


**Flanagan:2008:VSC**


**Faulkner:1991:PFS**


**Fincu:2014:ESV**


**Foster:1997:MMC**

REFERENCES


REFERENCES

2867 (print), 1558-1160 (electronic).

Foltzer:2012:MSP


Foster:1996:NAI


Faust:1990:POO


Frigo:1998:ICM


Felten:1992:IPM


Fang:2015:MMD

Zhenman Fang, Sanyam Mehta, Pen-Chung Yew, Antonia Zhai, James Greensky, Gautham Beeraka, and Binyu Zang. Measuring microarchitectural details of multi- and many-core memory systems through microbenchmarking. *ACM Transactions on Architecture and Code Optimiza-
REFERENCES

Farzan:2017:SDC

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Ferreira:1995:PAI

Flanagan:2002:MCM

Forsell:1997:MMV
REFERENCES

Field:1995:PPS


Fatouron:1996:SAS


Feliu:2016:BAL


Feliu:2017:PFP


Fung:2009:DWF


Farcy:1996:ISP

REFERENCES


[FWL03] Weijian Fang, Cho-Li Wang, and Francis C. M. Lau. On the design of global object space for efficient multi-


Greiner:1999:PTE


Giampapa:2005:BGA


Gotsman:2007:TMS


Gao:1995:ATD


Ghoting:2007:CCF


Gokhale:1992:ICI

REFERENCES


REFERENCES


REFERENCES


[Gil93] Stephen Gildea. Multithreaded Xlib. The X Re-


REFERENCES


Gebhart:2012:HTS


Gerlhof:1994:MTA


Garland:2012:DUP


Gallmeister:1991:EEP

Golla:1998:CMR


Golla:1998:CEB


Goldwasser:2007:INP


Gu:1999:EJT


Glenn:1991:CMH


Grebenshchikov:2012:SSV


Giering:1993:IAF


Gonzalez-Mesa:2014:ETM

M. A. Gonzalez-Mesa, Eladio Gutierrez, Emilio L. Za-

**REFERENCES**


**Govindarajan:1992:LCM**


**Grunwald:1996:WPO**


**Gopinath:2000:PSB**

REFERENCES


REFERENCES


REFERENCES

CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Gomez:1997:EMU

GRS97

Gomez:2006:SCM

GRS06

Gontmakher:2000:JCN

GS00

Garg:2002:TOA

GS06

Grelck:2006:SFA
Goldstein:1996:LTI


Gupta:2010:CSM


Gulati:1995:MSM


Goossens:1995:FPM


Georgakoudis:2017:SSA

Giorgis Georgakoudis, Hans Vandierenonck, Peter Thoman.

Gibson:2010:FSC


Gabor:2007:FES


Haggar:2002:JQD


Haines:1997:DLT


Hanson:1997:CII

[Han97] David R. Hanson. C Interfaces and Implementations: Techniques for Creating Reusable Software. Addison-

Harrington:1999:WMM

Hayden:1993:BIC

Haines:1992:SMC

Hottelier:2015:SLE

Hunt:2013:DTN

Hanson:2001:UF1

Hanson:2002:AFI
REFERENCES

Heber:1998:UMA


Hankendi:2017:SCS


Halstead:1994:PCR


Haines:1994:DCT


Ding:2002:MOP


Honarmand:2013:CUA


Heinlein:2003:ATS

REFERENCES


**Hughes:1997:OOM**


**Hong:2011:AMA**


**Huang:2016:MCR**


**Hironaka:1991:SVP**


**Hironaka:1992:BVP**


**Hussein:2015:DRM**


**Hightower:1997:PDD**

Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool
that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–??, January 1997. CODEN DDJOEB. ISSN 1044-789X.


REFERENCES


[HMLB16] Pawan Harish, Mentar Mahmudi, Benoît Le Calleme, and Ronan Boulic. Parallel inverse kinematics for multithreaded architectures. ACM Transactions on Graphics,


[HMLB16] Pawan Harish, Mentar Mahmudi, Benoît Le Calleme, and Ronan Boulic. Parallel inverse kinematics for multithreaded architectures. ACM Transactions on Graphics,
REFERENCES


REFERENCES


Hopper:1998:CFM


Howes:1998:TPC


Howard:2000:UPW


Halappanavar:2015:CLL


Hsu:2011:MSS


Huang:2016:PMR


Hassanein:2008:AEH


Hayden:2012:KEG

Christopher M. Hayden, Edward K. Smith, Michail
REFERENCES


REFERENCES

Horwood:2000:DMA

Hyde:2000:JTP

Huang:2015:COM

Huang:2012:EPS

Huang:2013:CRL

Iannucci:1994:MCA


# REFERENCES

Society Press order number 2630 IEEE catalog number 92CH3216-9.

**IEEE:1993:PSP**


**IEEE:1994:PIW**


**IEEE:1994:PSH**


**IEEE:1994:PSW**


**IEEE:1994:ROS**


**IEEE:1995:PCL**

REFERENCES


IEEE:1996:PSM


IEEE:1997:APD


IEEE:1999:HCS


IEEE:2002:STI


Iwata:2001:PMT


Ishihara:2001:CCP

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic). URL
com/link/service/series/
0558/bibs/1900/19000729.
htm;  http://link.springer-
ny.com/link/service/series/|
0558/papers/1900/19000729.
pdf.

DEN JSSODM. ISSN 0164-
1212 (print), 1873-1228 (elec-
tronic).


2867 (print), 1558-1160 (elec-
tronic).


DEN ????. ISSN 1389-
1286 (print), 1872-7069 (elec-
tronic).

REFERENCES

ISSN 0163-5999 (print), 1557-9484 (electronic).

**Johnston:2004:ADP**


**Jolitz:1991:PUB**

[W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386. The basic kernel multiprogramming and multitasking. II. *Dr. Dobb's Journal of Software Tools*, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.]

**Jin:2003:AMP**


**Jonsson:1999:NPS**


**Jang:2010:DTE**


**Joerg:1996:CSP**


**Jonak:1986:EFL**


**Jones:1991:BCL**

[Michael B. Jones. Bringing the C libraries with us into a multi-threaded future. In
USENIX [USE91b], pages 81–92. LCNN QA 76.76 O63 U84 1992.

Jagannathan:1992:CSC


Jacobs:2008:PMC


Joshi:2009:RDP


Joisha:2011:TEA


Joisha:2012:TTE


Joao:2012:BIS

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ASPLOS ’12 conference proceedings.


Kumar:2007:ESI


Koster:2003:TTI


Krashinsky:2004:VTAb


Kyle:2012:EPI

REFERENCES


Kreuzinger:2003:RTE


Karamcheti:1998:HLB


Karamcheti:1999:ASM


Kejariwal:2009:PSA


Kekckler:1999:CEH


Kasperink:1997:CDC

Harold R. Kasperink and John C. Dekker. Concurrent database commands and
REFERENCES


**Keckler:1998:EFG**


**Kleiman:1995:IT**


**Kerrison:2015:EMS**


**Kelly:1994:MBC**


**Kelly:1994:MOB**


**Klasky:2003:GBP**


**Kempf:2002:BTL**


**Kepner:2003:MTF**

REFERENCES


Kyriacou:2006:CCO


Kyriacou:2006:DDM


Kougiouris:1997:PMF


Kochberber:2015:AMA


Kim:1994:HAM


Keller:2005:TBV


Kollias:2007:APC


Kusakabe:1999:INS


Kim:1994:FPF


Keen:2003:CCP


Kim:2014:SMC


Kranzlmuller:2003:RAP


Kee:2003:POP


Kee:2004:MMM

[KKH04] Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha. Mem-

Kim:2013:DBC


Kumar:2008:AVO


Kaiser:2014:WAM


Kurzak:2009:SLA


Kleber:2000:TSA


Kang:2008:ISE


Kwak:1997:VMN

[KLH97] H. Kwak, B. Lee, and A. R. Hurson. Viability of mul-

Kwak:1999:EMC


Koopman:1992:CBC


Koufaty:2003:HTN


Kakulavarapu:2001:DLB


Kavi:2002:MMA

REFERENCES

Kapil:2004:CMP


Koniges:2000:ISP


Koonatz:1993:PBM


Korty:1989:SLL


Karamcheti:1996:RME

Vijay Karamcheti, John Plevyak, and Andrew A. Chien. Runtime mechanisms for efficient dynamic multithreading. *Journal of Par-
REFERENCES

Khyzha:2012:AP


Kaiser:2006:CJC


Kienzle:2001:CTT


Kienzle:2001:IEO


Keckler:2012:MMC


Kawaguchi:2012:DPL


Krone:1998:LBN

O. Krone, M. Raab, and B. Hirsbrunner. Load balancing for network based multithreaded applications. *Lecture Notes in Computer Sci...*
REFERENCES

ence, 1497:206–??, 1998. CODEN LNCS97d. ISSN 0302-9743 (print), 1611-3349 (electronic).


Kalayappan:2016:FRT


Kgil:2008:PUS


Kumar:2004:AST


Kleiman:1995:PT

Steve Kleiman, Devang Shah, and Bart Smaalders. Programming With Threads. SunSoft Press, Mountainview,
REFERENCES


Kleiman:1996:PT

Kalla:2004:IPC

Krieger:1994:ASF

Yu:2011:SDH

Krishnan:1999:CMA

Kopczynski:2017:LSS
REFERENCES


**Kuchlin:1991:MCI**


**Kuchlin:1992:MTC**


**Kestor:2015:TPD**


**Kuszmaul:2015:SSF**


**Kejariwal:2009:ELL**


**Kleinmann:2017:ACS**


**Kwok:2003:EHC**


REFERENCES


Lozi:2016:FPL


Legrand:2001:MTD


Leary:1996:CEH


Leiserson:1997:AAM


Lee:1993:TW


Lee:2006:PT


Lo:1997:CTL

REFERENCES


[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.


REFERENCES


**Liu:2016:PSE**


**Li:2005:OSA**


**Liedtke:1994:SNIb**


**LaFratta:2013:EEM**


**LaSalle:2015:MTM**


**Li:2011:LCM**

REFERENCES

Luo:2017:TDS


Lin:2010:TAC


Lai:2015:SAM


Li:2006:SDH


Liu:2016:SEA


Liu:2014:TAP


Li:2014:PDC

REFERENCES

0018-9340 (print), 1557-9956 (electronic).

Ling:2000:AOT


Loikkanen:1995:FMS


Loew:2000:MPO


Launchbury:1994:LFS


Lubbers:2009:RMP


Li:2012:MRP


Laadan:2010:TLA


Lopes:2001:FGM


Lee:2010:REO


Liu:2016:TAA


Li:2007:CET

Peng Li and Steve Zdancewic. Combining events and threads for scalable network services implementation and evalu-

Lu:2014:EDM


[LZW+13]

Liu:2014:TPA


Liu:2014:TPA

Liu:2015:LR


Li:2017:GGB

Mushfaq:2014:EHP

[Monchiero:2009:HSC]

[Mahafzah:2011:PMI]

[Mahafzah:2013:PAM]

[Man:1991:MLC]

[Man:1996:SJP]


[Manley:1999:IPT]

[Mao:1996:PMS]

[Marowka:2003:EOT]
REFERENCES

0129-6264 (print), 1793-642X (electronic).

Marowka:2007:PCD


Masney:1999:IMT


Mateosian:1997:MNT


Mattson:2003:HGO


Mendelson:1999:DAM


McNairy:2005:MDC


Madan:2007:PEA


Moon:2006:TMS

[MC06] Sewon Moon and Byeong-Mo Chang. A thread monitoring system for multithreaded...
REFERENCES


[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??.


REFERENCES

McManis:1998:DUT

McManis:1998:JDU

Mannarswamy:2010:CAS

Mikschl:1996:MMS

Matheou:2015:ASD

Montesinos:2008:DRD

Mitchell:2015:GIA
Matheou:2017:DDC


Mukherjee:1994:MII


McDowell:2003:ISS


Mennemeier:1991:HMS


Metz:1995:IDS


Marcuello:1999:EST


Mehta:2015:MTP


Mohamed:2000:DDM

REFERENCES

185

Marsland:1995:SSM


Madriles:2008:MSM


Maquelin:1995:CBM


Mauer:2002:FST


Miastkowski:1990:PGG


Michael:2004:SLF


Maabreh:2018:MHT

REFERENCES


[MLC09] Carlos Madriles, Pedro López, Josep M. Codina, Enric Gilbert, Fernando Latorre, Alejandro Martínez, Raúl Martínez, and Antonio González. Boosting single-thread performance in multi-core sys-

Ma:2011:SPC


Ma:2011:SPC

[MLR15] Nuno Machado, Brandon Lucía, and Luís Rodrigues. Concurrency debugging with differential schedule projec-


Malakhov:2018:CMT


Malakhov:2018:CMT


Morandini:2007:UDS


Morishima:2014:PEG

[MMM+05] H. M. Mathis, A. E. Meri-

Marino:2009:LES


McKenney:2010:WGM


Metzner:2000:MMR


McAuley:2003:CVC


Marinov:2016:PAF


Moore:1995:MPD


Moore:1996:MPD


Mount:2000:ADP


Massalin:1989:TIO


Manson:2001:CSM


Martin:2004:HPA


Musuvathi:2007:ICB


Musuvathi:2008:FSM


Machado:2016:CDD

Nuno Machado, Daniel Quinta, Brandon Lucia, and Luís Ro-
Mayes:1995:ULT


Marinescu:1994:HLC


Mascarenhas:1998:MTP


Mukherjee:2009:PAS


Meier:2017:PVM


Malan:1991:MA

G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91a], pages 27–40. LCCN QAX 27.

[MS89] Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.


[MSM11] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and

Marino:2016:DXU


Morrisett:1993:PLP


Martinez:2002:SSAa


Martinez:2002:SSAb


Martinez:2002:SSAc


Minh:2007:EHT

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).


REFERENCES

195


Mahanesi:2007:HSS


Nag:2001:MFV


Nakhimovsky:2001:ISM


Nakajima:2003:PIS

Naik:2006:ESR


Narlikar:1999:SES


Nagpal:2012:CGE


Nichols:1998:PP


Nichols:1996:PP


Najjar:1993:QAD


REFERENCES


REFERENCES

Nielsen:2000:MTN


Narayanaswamy:2016:VCA


Nicolau:2009:TEP


Nakaike:2010:LER


Nordstrom:1990:TL


Northrup:1996:PUT


Nikhil:1992:MMP


Narayanasamy:2006:RSM

[NPC06] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory dependencies using

**Nebro:1998:EMR**


**Nanda:2006:ISM**


**Neves:1997:TRS**


**Ngo:2014:EVC**


**Niewiadomski:2014:SVG**


**Niu:2014:MCF**

In addition, the authors refer to several key works in the field of parallel computing:


Ottoni:2008:COGb


Ottoni:2008:COGc


Olszewski:2009:KED


Ossner:2013:GMB


Ostler:2007:IHT


Ozer:2001:WMT


Odaira:2014:EGI

[OCT14] Rei Odaira, Jose G. Castanos,

**Olivier:2012:CMW**


**Ogata:1992:DIH**


**Oplinger:2002:ESRb**


**Oplinger:2002:ESRc**


**Omma:2004:BMA**

REFERENCES

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

Odersky:1993:CNA

Oikawa:1995:RDU

Oyama:2000:OCC

Oaks:1997:JT
Oaks:1999:JT

Pant:1999:TCP

Pereira:2017:SBC

Park:2017:HHC
Jaehyun Park, Seungcheol Baek, Hyung Gyu Lee,


Philbin:1996:TSC

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MD
Pham:1996:MPW


Pham:1999:MPW


Parcerisa:2001:ILT


Pinilla:2003:UJT


Pusukuri:2012:TTD


Pusukuri:2014:LCA


Pusukuri:2016:TEL

REFERENCES


REFERENCES

80. LCCN QA 76.76 O63 U84 1992.


Price:2003:CAF


Plauger:1993:MCS


Plauger:1998:SCCI

Porter:2015:MMS

Plyler:1989:AMC

Pricopi:2014:TSA

Porter:2015:MMS

Plyler:1989:AMC

Pricopi:2014:TSA

Porter:2015:MMS

Plyler:1989:AMC

Pricopi:2014:TSA

Porter:2015:MMS

Plyler:1989:AMC

Pricopi:2014:TSA
REFERENCES

**Prabhu:2003:UTL**

**Polychronopoulos:1990:ASC**

**Pomerantz:1998:CNS**

**Petric:2005:EEP**

**Prabhakar:1995:IDO**
Ernest N. Prabhakar. Implementing distributed objects.
REFERENCES


Prasad:1995:WTS


Prasad:1995:WNT


Prasad:1997:MPT


Permandla:2007:TSP


Presotto:1990:MSP


Petrovic:2014:LHM


Protopopov:2001:MMP

[PS01] Boris V. Protopopov and Anthony Skjellum. A multi-threaded Message Passing Interface (MPI) architecture: Performance and program

Pozniansky:2003:EFD


Pozniansky:2007:MEF


Pyarali:2001:EOT


Parashar:2006:SSBa


Parashar:2006:SSBb


Parashar:2006:SSBc

Angshuman Parashar, Anand Sivasubramaniam, and Sudhanva Gurumurthi. SlicK: slice-based locality exploitation for efficient redundant multithreading. *ACM SIG-
REFERENCES


**[PT91]**

Pang:2001:PSR


**[PSM01]**

Pang:2003:PSR


**[PT03]**

Peacock:1992:EMS


**[PST92]**

Papadopoulos:1991:MRV


**[PSM03]**

Prvulovic:2003:RUT


**[PTMB09]**

Piringer:2009:MTA


**[PUF+04]**

Pfeffer:2004:RTG

M. Pfeffer, T. Ungerer, S. Fuhrmann, J. Kreuzinger, and U. Brinkschulte. Real-time garbage collection for a
REFERENCES


**Pulleyen:2000:EPM**


**Pickett:2006:SSF**


**Pathania:2017:DTM**


**Preissl:2012:CSS**


**Preissl:2011:MGA**

Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and Alice Koniges. Multithreaded global address space communication techniques for gyrokinetic fusion applications on ultra-scale platforms. In Lathrop et al. [LCK11], pages 12:1–12:11. ISBN 1-4503-0771-X. LCCN ????

**Polap:2018:MTL**


**Park:2010:ISP**

Jung-Wook Park, Hoon-Mo Yang, Gi-Ho Park, Shin-Dug

**Quintana-Ortí:2012:RSP**


**Quintana-Ortí:2009:PMA**


**Qian:2016:EFS**


**Qian:2016:ODG**


**Qian:2014:PRR**


**Rajagopal:1993:DMI**

Arjun Rajagopal. Design of a multithreaded instruction
cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB


Roberts:2018:MID


Rufai:2005:MPO


Rashid:1989:MFO


Ratanaworabhan:2009:DTA


Ranganathan:2000:AMT


Reda:2012:APC

CODEN IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic).


[RCR95] Anne Rogers, Martin C. Carlisle, John H. Reppy, and L. J. Hendren. Supporting dynamic data structures on distributed-memory machines. *ACM Transactions on Programming Lan-
 REFERENCES


[RD06]


[RD96]


[RD99]


[RD06]


[Rec98]


[Rei95]

REFERENCES


[RGK99] Jeremy B. Rodgers, Rhonda Kay Gaede, and Jeffrey H. Kulick. IN-Tune: an In-Situ non-invasive performance tuning tool for multi-threaded Linux on symmetric multiprocessing Pentium workstations. *Software—Prac-
REFERENCES


**References**

**Reiche:2017:AVI**


**Rodrigues:2015:DSE**


**Raman:2010:SPUb**


**Ribic:2014:EEW**


**Raghavan:2009:DLC**


**Roe:1999:PMI**

[RM99] Kevin Roe and Piyush Mehrotra. Parallelization of a
REFERENCES


**Reinhardt:2000:TFD**


**ACM:2003:ATA**


**Roh:1996:GOE**


**Rogers:2014:LYL**


**Robison:2003:MCN**


**Rodley:1994:UIC**


Ru:05} Yaoping Ruan, Vivek S. Pai, Erich Nahum, and John M. Tracey. Evaluating the impact
REFERENCES

pp. LCCN QA76.76.O63 R615 1996.

**Rugina:1999:PAM**


**Robbins:2003:USP**


**Roy:2011:SRP**


**Rivara:2012:MPL**


**Reddy:2006:UPB**


**Rosu:2007:ITO**

REFERENCES


REFERENCES


[San04] B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTBR4. ISSN 0018-9162 (print), 1558-0814 (electronic).


[SBB96] A. Sah, K. Brown, and E. Brewer. Programming the Internet from the server-side with Tcl and Audience1. In Association
REFERENCES

[Ass96], pages 235–??, 183–188. ISBN 1-880446-78-2. LCCN QA76.73.T44 T44 1996.

**Saavedra-Barrera:1991:ASM**


**Saavedra-Barrera:1990:AMA**


**Storino:1999:MTB**


**Savage:1997:EDD**


**Sanderson:2017:PGP**


**Saillard:2015:SDV**

Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Static/dynamic validation of MPI collective communications in multi-threaded context. ACM SIGPLAN Notices, 50(8):279–280, August 2015. CODEN SINODQ.
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


REFERENCES


Schloldt:2014:JCR

Schafner:2017:PHL

Sendag:2005:IIS

Steinke:2005:NPF

Schauer:1991:CCM

Schauer:1991:CML
Stefan:2000:SA


Spertus:1995:ELB


So:2013:STI


Sartor:2012:EMT


Seiden:1998:ROM


Seiden:1999:ROM


Sen:2008:RDR


Severance:1996:MOB


Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

REFERENCES


REFERENCES


REFERENCES


Sung:2002:CPE


Sato:1992:TBP


Steele:2014:FSP


Shin:2006:ADT


Scherer:1999:TAP


Sharkey:2008:RRP


**Sidiroglou:2009:AAS**


**Solihin:2002:UUL**


**Solihin:2003:CPU**


**Sodan:2010:PMM**


**Smith:1992:MTX**


**Smith:2001:CMM**


**Smith:2006:ITP**

Geoffrey Smith. Improved typings for probabilistic non-

Sanchez:2010:ACI


Suleman:2009:ACS


Swanson:2003:ESI


Singh:2012:EES


Sodan:2002:AMA


Samorodin:2000:SFS

REFERENCES

Shinjo:2000:DCEa

Shinjo:2005:AEP

Sharkey:2007:EOA

Skjellum:1996:TTM
REFERENCES


REFERENCES


REFERENCES


Silc:1998:APC


Speer:1991:DTP


Small:1995:SAB


Szymanski:1996:LCR


Sutherland:2010:CTC


Shi:2007:CCP


Soundararajan:2010:CSE

Niranjan Soundararajan, Anand Sivasubramaniam, and Vijay Narayanan. Characterizing the soft error vulnerability of multicores running multithreaded applications. ACM
REFERENCES


REFERENCES


Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ???


REFERENCES


REFERENCES


REFERENCES


Tamasanis:1995:MMW


Thoziyoor:2008:CMM


Tanner:1987:MTI


Tolmach:2004:IFL


Tam:2007:TCS


Thompson:1997:THP


Thompson:1997:TPC

REFERENCES


[TB95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: maximizing on-chip paral-

**Tullsen:1998:RSM**


**Tullsen:1998:SMM**


**Temberg:1998:CAD**


**Temberg:2002:RGO**


**Trancoso:2006:CCM**

REFERENCES

issn=0885-7458&volume=34&issue=3&page=213.


Theobald:2001:DCI


Theobald:2002:IEC


Thulasiraman:2004:FGL


Editors:2002:LUC


Turakhia:2017:TPE

Yatish Turakhia, Guangshuo Liu, Siddharth Garg, and


REFERENCES

Tallon:2010:ALC


Taylor:1995:CSA


Trott:2010:AVI


Todiwa:1995:DRT


Thebault:2018:AMC


Tarvo:2014:AAM


Traub:1991:MTC

[Tra91] Kenneth R. Traub. Multithread code generation for dataflow architectures from


REFERENCES


REFERENCES


REFERENCES


Volkman:1993:CDB

Venners:1997:UHH

Venners:1998:DTS

Verriello:1996:MSM

Vermeulen:1997:JDW

Vlachos:2010:PEAa

Vlachos:2010:PEAb


REFERENCES


REFERENCES


Walmsley:2000:MTP


Wang:1994:MAD


Watt:1991:IPI


Wayner:1995:FAN


Wu:1999:GMC


Wang:2007:EAP


Wallace:1998:TMP

Wilde:1998:RES


Wang:2004:HTVd


Wang:2004:HTVa


Wang:2004:HTVb


Wang:2004:HTVc


Wang:2007:OSC

[WCV+07] Qin Wang, Junpu Chen, Weihua Zhang, Min Yang, and Binyu Zang. Optimizing Optimization...

Wester:2013:PDR


Weaver:2008:OIO


Weisz:1997:MFA


Weissman:1998:ATT


Weissman:1998:PCS


Wong:1994:SSI


Weissman:1999:HPT

B. Weissman and B. Gomes. High performance thread migration on clusters of

**Walcott:2007:DPA**


**White:2003:UTL**


**Wallach:1995:OAM**


**Williams:1994:NST**


**Williams:1994:NTM**


**Wilson:1997:BTP**


**Wilmot:1998:DTM**


[WLG+14] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and Scott

Won:2015:MMC

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Wang:2006:RAA

Warg:2008:DTS
Fredrik Warg and Per Stenstrom. Dual-thread speculation: a simple approach

**Whittaker:1997:TML**


**Wheeler:2010:VMM**


**Wu:2012:SPA**


**Wong:2008:TAF**


**Waldspurger:1993:RRF**


**Wise:1996:SDP**

REFERENCES


[XIC12] Polychronis Xekalakis, Nikolas Ioannou, and Marcelo Cin-
REFERENCES

1523-2867 (print), 1558-1160 (electronic). LCTES '12 proceedings.


[YM93a] Helene Young-Myers and Louiqa Raschid. An experimental study of three dataflow paradigms in multithreaded database transitive closure algorithms on shared memory multiprocessors. Technical re-
References


**Young-Myers:1993:ESTb**


**Yu:2009:CIC**


**Yu:2012:MCD**


**Yoo:1996:CAA**


**Yoo:1996:PCM**


**Yeh:2017:PFG**


[Zhang:2015:DMB] Junchao Zhang, Babak Be-

[Zhang:2010:FTS]


[Zhang:2000:WMH]


[Zhai:2002:COSa]


[Zhai:2002:COSB]


[Zhang:2015:LOS]

Minjia Zhang, Jipeng Huang, Man Cao, and Michael D. Bond. Low-overhead software transactional memory with progress guarantees and strong semantics. *ACM SIGPLAN Notices*, 50(8):97–108,
REFERENCES

August 2015. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Zignin:1996:TDM


Ziarek:2009:SWB


Zhang:2010:DCS


Zhu:2011:TPS


Zhang:2012:SCC


Zhao:2011:DCC


Zhang:2015:DPO

Naling Zhang, Markus Kusano, and Chao Wang. Dy-


