A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

05 February 2019
Version 3.151

Title word cross-reference

#4 [Pet00].
+ [BMV03]. 2 [TKHG04]. 3
[KSB+08, PYP+10]. cyclical [YLLS16]. D4
[Evr01]. F2 [BCS11]. LU [VD08]. N
[ZJFA09]. π [III01]. QR
[But13, GKK09, VD08].

-Calculus [III01]. -Machine [Evr01]. -way
[ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/multi [Taf13]. /multi-threaded [Taf13].

'01 [USE01].

1 [BM91, McM98a]. 1003.4 [GL91]. 11
[ND16]. 11th [IEE94a, IEE94d]. '12 [Hol12].
16-20 [IEE92]. 162 [Stu95]. 1991
[Ano91, Ano94e]. 1993 [ACM93b]. 1994
[ACM94a, ACM94d, Hon94, IEE94c].

2 [BCG14, DN94, Kan94, Kel94a, Kel94b, Mil95, Rei95, Ric91, Rod94, Sri93,
WCW+04b, WCW+04c, WCW+04d]. 2.0
[ACM01]. 2003 [RM03, ACM03, AS14].
20th [IEE95]. 21st [ACM94b]. 22nd
[ACM95b]. 25th [ACM98b, ACM98c]. 2k
[USE00b]. 2nd [Ano94d, USE98a].

3.0 [Bra97, BRM03, MRGB91]. 32-Way
[KAO05]. 35th [Gol94]. 3D
[Ano97b, Loe97].
Abstract

[CSS+91b, CGSV93, DV99, KPP12, LMA+16, Ném00, CSS+91a, CSS+91c, Dil00, VDBN98, ZJFA09].

Abstraction

[KI16, Bak95b, GPR11, ZSJ06]. AC [BGK94a, BGK94b]. Accelerating [LS11, SMQP09, VGK+10a, VGK+10b]. acceleration [JSMP13, NBMM12].

Accelerators [NTR16, SGLGL+14]. Access [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY95, Sch89].

access/execute [APX12]. accesses [DTK+15]. accessibility [SSkF+07].

Accounting [LMA+16, EE09b]. accuracy [TO10]. Accurate [CPT08, VTSM12]. Achieving [AHW02, SP05, KGGK09, WTKW08].

ACM [ACM93b, RM03, IEE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZP04].

Activation [KG94]. Activations [ABL92, DNR00, SS95]. Active [BKI06, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada

[ACM93c, Bar09, Dil93, GMB93, KPPÉR06, KR01b]. ADAM [Far96]. adaptable [LLLC15]. Adaptation [CMBAN08].

Adaptive [ABN00]. Adaptive [ALHH08, HBGT98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLGM17, BS06, Chr95a, Chr95b, Chr96, SLGZ99, TKHG04, ZLW+16]. Adding [Ply89, Ric99, McM97]. Address [CLFL94, PWL+11, CKZ12, Lie94].

Addressing [WA08, CKD94, ZSB+12]. Advanced [BGG95, GBB95, Hei03, BZ07, GBB+05]. Advances [IEE97, JHM04, KKD03, DLM99].

Advantage [Wei97]. Adversarial [FF10].

affinity [NAAL01]. Age [Cro98]. agent [Way95]. Agents [CWHB03, CR02, Way95, BDF98].

Aggregate [TGO99, TG00]. AGNI [RBPM00]. Agnostic [SLJ+18]. agreement [GMW09]. Aid [Wei97]. aided [MCRS10]. aids [Mat97]. Air [MPD04]. AI [TLA+02].

Albuquerque [Ano94e]. Algebra [KLDB09, NBS+15, PHCR09, YSY+99].

Algebraic [ACM94c, Lak96, MR09, Wat91]. Algorithm [AT16, ABC+09, HH11, OR12, TT03, ZBS15, KKK17, KGG12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HB02, YFF+12].

Algorithmic [Lai97, BBH+17]. Algorithms [BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan99, QOIM+12, TTKG02, YMR93b, Bar99, CFG+12, CLRS09, FR95, GKO5, Lei97, Lep95, NFBB17, QOOQV+09, RRPA12, YMR93a, Li05].

algorithms-by-blocks [QOQOV+09]. Algorithms-by-Tiles [QOIM+12]. aliasing [NA07]. Aligned [YWJ03]. alignment [KGPH12]. Allaire [Hig97]. Alleviate [BD00]. Alloc [KSU94]. Allocating [SEP96]. Allocation [MVZ93, Nak01, EFJ07, LLL10, Mic04, ZP04]. Allocator [BMBW00b, BMBW00a, BMBW00c].
Alpha [Ano00b]. alphabet [KNPS16].
alphabet-independent [KNPS16].

Alternating [CYYL18]. alternative
[SV96c, SV96a, SV96b]. Alternatives
[MB99, MKR02]. Alto [ACM01]. ALU
[KDM+98]. always [DWS+12]. always-on
[DWS+12]. Amdahl [CN14, NZ17]. Among
[CB16, HMC95, SJ95]. analyzing
[NJK16, PV06].

Analysis
[AKH06, BCZY16, BE12, BE13, BBC+00,
BLG01, BH01, CC04, CH95, CGL92a,
CGL92b, DR15, EJRB13, Ha97b, Hol12,
LC11, LML00, LHY+16, NM93, REL00b,
Rin01, RR99, SBCV90, TAM+08, Yoo96a,
Zub02, AC09, ACC+03, BG97, BBH+17,
BPSH05, BBM09, CHH+03, CS12, CVJ08,
Cor00, GBCS07, HEJ09, JPSN09, KT12,
Ko9, Ld97, LBH12, LBE+98, Met95,
NWT+07, PPH06, PL03, REL00a, REL00c,
RS7, SR01a, SMK10, SRA06, SB80,
TMC09, TR14, Wn94, WS06, WP10,
WOKH96, WTH+12, d909, vPG93].

Analytic [Squ94]. Analytical
[DKF94, VT96, SBC91]. analytics
[LT+16]. analyze [LMC14]. analyzer
[Fe9]. HL90].

Analyzing
[HRH08, Kor89, RHH10, TMCP10].
anatomy [Re95]. Android [MK14].
animation [WQLJ18]. Annotations
[BM94, We98b, AGN09]. Annual
[ACM93a, ACM98c, Go04, Ass96, USE00a,
ACM93b, USE96, USE98b]. anomalies
[Sch98]. Anomaly [K17]. antipatterns
[BP05]. Antonio [USE92a]. any
[Hig97, Mar07]. API
[An00b, BDN02, DM98, Van97a]. APL
[CHJ1]. applets [McM96c]. Application
[AMRR98, KZTK15, KU94, PG92,
PLT+15, TKA+01, TAM+08, Yas95,
DWT+10, EJ+96, HDT+13, LVN10, LZ07,
MRGB91, MKR10, Pha91, Pra95c, SE12,
SS95, TKA+02, ZJS+11].

Application-Level
[KSU94, PLT+15, HDT+13, LZ07, ZJS+11].

Applications
[Ano00c, AZ17, AKP99, BKL06, BMBW00b,
BNH01, Ch05, Ch15a, D16, Don02, Dru95,
EV01, FURM00c, HC17, HWZ00, JYE+16,
KMI+02, KR98, LR97, MG15, PCP15,
PW+11, Pu00, RD96, SMG+97, So02,
Te02, T94, TS12, TLGM17, Vo93,
YG10, ZJS12, Ano92a, Ano92b, An94b,
AAK08, BWDZ15, BFFW03, BG97,
BMBW00a, BMBW00c, BW97, DSEE13,
BPSH05, BM03, CB98, CB90, CS00,
CS12, FM92, FURM00a, FURM00b, GS02,
GRD04, HL90, ISS98, JSM12, JSM13,
KVV+09, MLCW11, MK14, MKI04,
MLC04, MTO2a, MTO2b, MTO2c, MKK99,
MKR10, NR06, Omm04, PJZ07, RV+10,
Re95, San04, SSN0, SKP+02, TMC09,
TMC10, TP18, VIA+05, VGK+10a,
VGK+10b, WCT+07, WT10, WOKH96,
XMN99, YZ14, kSYHX+11, ZKR+11, Len95].

apply [NZ17]. Applying
[VTSL12, MTO2a, MTO2b, MTO2c].
Apprendre [Sw09]. Approach
[AZ17, BBSG11, CJW+15, ES97, FKT96,
GMR98, KK14, K16, ND16, RCM+16,
TY97, VSDK09, WS08, We98b, YLLS16,
BWDZ15, DHM+12, LZW17, LZL+14,
MS03, RCM+12, SCZM00, TP18].

Approaches [BLPV04, MB07].

Approximate
[HFV+12, GEG07, G08, KPH12]. Apps
[PCM16]. April [An00a, An03, USE01].
arbitrary [BG14]. ARCH [Ada98].

Architectural
[ACM94d, HEMK17, IAD+94, KC99, ME15,
BS06, CMF+13, Fan93, WH07].

Architecture
[ACM98c, BBD+91, BTE98, C89b, C95,
DO95, ERK01, For97, Gao93, GK94,
GHG+98, GV95, GN92, HTZ+97, HNN91,
HHOM91, HHOM92, KBH+04a, KBH+04b,
KIA99, Man91, MM01, MB99, PV+17,
PTM09, PKB+91, P01, REL00b, R08,
SLJ+18, SCL05, SYEG97, SKK+01, SZ02,
TKA, VK99, ZL10, ACC +03, AAHF09, Ano97b, BT01, Bon13, CMF +13, CL94, CHH +03, Cho92, Don92, Dub95, Evr01, Far96, Fuji97, Gal94, GDSA +17, GL98a, Gol96, HFK +02, HAN +02, I +94, KHP +95, KT99, Loi95, Mah13, MK12, Ném00, NPA92, PY +10, PDP +13, PWD +12, REL00a, REL00c, RCGD06, SWVC94, Sod02, TNS +95, Ts97b, UZU00, Wan94, WCC +07, YZ07, Yan97, CH04.

Architecture-Agnostic [SLJ +18].

Architectures [AT16, Day92a, Day92b, HD02, GGB93a, GN00, HPA +15, Hol98d, IBST01, JLS99, KTR +04, LB92, LH94, LG06, LDT +16, MS02, MN00, NGGA94, QOIM +12, RLJ +09, SGM +97, TG99, THA +12, Tra91, TJY98, TSV12, WC94, ZAK01, ABD +12, ABC +15, ABC +09, BK +11, BS10a, CML00, CFG +12, Cat94, DTR18, FTAB14, GGB93b, GK05, GJ94, GL98b, HFV +12, ICH +10, JMS +10, LMC14, Lu94, MLCW11, MLC04, MS09, OCRS07, PT91, PPA +13, PJZA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Sqt94, SMQP09, SFA01, TE94a, The95, TKHG04].

Asserting [BS10b]. assertion [AdBDRS05].

Assumptions [ES97]. ASSURE [SLP +09, Dye98]. asymmetric [GA09, JSM13, RBK +09, SCCP13, SMQP09].

Asynchronous [HH11, KFG15, KG07, KSD04, TP18, Yoo96a, GMR09, Kho97, KASD07].

atomicity [BNS11a, BNS11b, BNS12, FF04, FFQ04, FF08, FFLQ08, FFY08, WS06].

atoms [ND13]. Atomizer [FF04, FF08].

AudienceI [SBB96]. Augmented [LH99].

August [RM03, IEE99, USE93a, USE98a].

Austin [USE00b]. Austria [Hon94].

authoring [MCS15]. Auto [Pol90, RKHT17]. Auto-vectorization [RKHT17].

Automated [ES97]. Automata-Theoretic [ES97].

Automated [BSSS14, DRV02, KZC15, TR14].

Automatic [HBTG98, JJJ +03, KW17, Mon00, SEP96, YLLS16, GJ11, JSB +11, SFA09, TG99, CJ91].

autotuning [CSV10]. Availability [SP07].

Avenue [Ano94d]. avoid [Pra95c].

avoidance [LC13, WLK +09]. AVP [Ano00b]. Aware [BHP +03, FSPD16, FSPID17, GVT +17, HC17, Kim14, LHY16, PR05, SLJ +18, EQT07, EE09a, HEJ09, LAH +12, MR09, NB12, PAB +14, PGB14, TAS07, XSaJ08, ZLW +16].

AWTEventMulticaster [Hol99b].

axiomatic [TVD10]. AXP [Ano97a].

B [Ano00c, DLZ +13]. back [ECX +12].

Backup [Ano00b]. Balance [SEP96]. balanced [CKZ12]. Balancers [KMG01].

Balancing [HBTG98, KC98, KHR98, PGB16, THA +12, ZP04, Chr95a, Chr95b, Chr96, LTL +16, MKIO04]. Baltimore [IEE02]. Bandwidth [FSPD16, LTL +16].

Bandwidth-Aware [FSPD16]. Barcelona [ACM95a, ACM98c, DLM99].

Barnes [ZBS15]. Barrier [CJW +15].
HSS+14, HTZ+97, HH97, Jon91, KD97, Laf00, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pha93, Pom98, PS03, PS07, Pul00, Ric91, SG18, SC17, Sch90, TB97a, TB97b, Vol93, Wal00, Yam95, Yam96. C# [KPPÉR06, Stä05]. C-based [RSB+09].

C-Stream [SG18]. C/C [Pla98, Pla99, BLYN09, ND13, ND16, Pet00, Pul00]. C3I [BTE98]. CA [ACM94d, IEE89, USE92b, Ass96, USE00a, USE01, USE02]. Cache [BCZY16, CMX10, GBP+07, GL98a, HL08, HKSL06, KLS92, KET06a, LLD17, PEA+96, SLJ+19, WG94, ZJS12, Car92, KHP+95, KLH+99, MRK10, Ra93, Sha95a, SSkP+07, WCC+07, ZJS10, ZKR+11].

cavity [RM99]. CD [Ano00b]. CDSChecker [ND13]. CE [Tim03]. Center [ACM98d, ACM99b, ACM00, Ano03, Hol12, IEE90]. Centric [BDN02, Bre02, Ham96, DHM+12].

chant [HCM94, Ano94e]. Chapter [KPPER06, Sta05]. Chapterization [Ano05]. C้น [BCG+08, MR94, MMM+05, DWYB10]. characterizations [GS00]. Characterizing [Gle91, OdSSP12, SN10, MTPT12].

Charleston [ACM93a]. Chassis [Ano00b]. Checker [FQS02, FF04, FF08, FFY08]. CheckFence [BAM07]. Checking [ES97, ND16, AHK08, AD08, AGE98, BAM07, BS10b, BNS11a, BNS11b, BNS12, CNQ13, Di00, FGLQ08, Mi95, MQ08, ND13, PAdS+17, Sto02, TVD10, VGR06].

Checkpoint [ZSA13]. Checkpoint/Restart [ZSA13].

Checkpointing [CS02, ZSJ06]. Chemkin [Bra97]. Chicago [Ano94d]. China [IEE97].

Chip [HHOM91, KST04, KML04, KU00, KKS+08, LS07, LKBK11, LM14, MTN+00, MR09, TESK06, VQA+05, Wea08, CSM+05, DTK+15, GA99, KT99, SKK90, TEL95, TEL98a, TEL98b].

chip-multiprocessor [KT99]. Chip-Multiprocessors [KU00, LM14].

Chips [Ano00a, Ano03, IEE99]. Chiron [TNB+95]. Cirrus [AN01]. Choice [II01, TEE+96]. Cholesky [CIM+17, VD08]. Chores [EJ93].

Chunking [WLM15]. CIL [CAR08]. Cilk [BJK+95, BJK+96, FL98, Joo96, Mi95].

CLAP [HZ13]. Class [BS99, Cha02, Gib94, VE93, CS00, MSM91, YN09].

Classes [Cal00, Fek08, How98, Lam95, SC17].

Classical [JSB+12, JSB+11]. Classics [Wil00]. Classification [KZC15, LM14, LCH+08].

classifying
[NWT+07]. Claus [WP10]. Client
[Day92a, Day92b, Sri95, Gol96].
client-server [Gol96]. Client/Server
[Day92a, Day92b]. clients [CDL13],
climbing [CY09]. Closure
[YMR93b, YMR92, YMR03a]. cloud
[FKS+12, GDS+17]. clouds [FFG14].
Cluster [BNH01, CRE99, HD02, KKH03,
Kwo03, SCD+15]. Clustered [GSL10].
Clustering [JY15, LK15, RVR04, TAS07].
Clusters [BWFX05, W99, ZBS15, BMV03,
FWL03, TMAG03]. CMP
[TAS07, AMPH09, CWS06, ICH+10, LLL00,
SLJ+18, SSKP+07, ZIS10, ZIS12].
CMP-based [LLL10]. CMPs [GW10,
JSMP13, SQP08a, SQP08b, SQP08c, YL16].
Co [Goo97, SG18, AMPH09, BBH+17].
co-design [BBH+17]. co-optimization
[AMPH09]. Co-processor [Goo97].
Co-routine-Based [SG18]. Coarse [NS97].
coated [Lep95]. Code
[BBdH+11, Coo95, HY+15, JSB+12,
Kim14, KEL+03, MS02, NS97, ND16, PR98,
Roh95, RNSB96, TGBS05, Tra91, Ann96,
BB00, JSB+11, SJS95].
Codes
[CMBAN08, PHCR09, PT03]. Codesign
[HPA+15]. cognitive [MCS15, PWD+12].
cognizant [LK13]. Coir [SG96].
Cold [Hig97, Hig97]. Collaborative [VSDK09].
Collection [AKP99, LB92, PUF+04, PF01,
Qsas+16, KTK12]. Collections
[Kle00, Mcm98a, Mcm98b].
collective [HMC95, SCB15].
collector [BYBG+05,
DL93, HL93, WK08a, WK08c, WK08b].
coloring [CFG+12, GP05, SS10].
Colt
[WN10]. Combinator [KLS92].
combined [UZU00].
Combining
[KR01a, LZ07, CSB16, ZLW+16].
come
[Pol90]. COMeT [RCC14]. Coming [LS07].
Commands [KD97]. Commercial
[SBKK99, BKK00, EJK+96]. Commodity
[ZZ116, LVN10, RPNT08]. Common
[Hol98a, Kuc92, BDF98, BDLM07, CL00,
Kiec91]. Communication

[ABN00, DSR15, EHG95, FKT96, FGKT97,
GMR98, HY+15, OA08a, OA08b, OA08c,
Pan99, PWL+11, Rod94, SKK+01, TKA+01,
TCS95, BR92, DBRD91, GRS06, KASD07,
Lan95, QSHJ16, RR96, RR03, TG09,
TKA+02, VS96, WHJ+95, ZCSM02a,
ZCSM02b]. Communications
[Ano03, BMN99, SCB15, Shc97b, TP18].
Commutativity [AC90]. Compact
[HEMK17]. compaction
[WK08a, WK08b, WK08c]. Comparative
[SKP+02, Yoo96a, PL03]. Comparing
[KPPER06, SV96c, SV96a, SV96b].
Comparison [ILF01, SAC+98, GL98b,
KIM+03, MKIO04, MMTW10].
Compass
[PWD+12]. Compatible [MM14, LHB12].
competition [YL16]. Compilation
[ACMA97, HLB94, BRRS10, GC92,
HCD+94, Tsa97b]. Compile
[CS95a, CS95b, TSY99]. Compile-time
[CS95a, CS95b]. Compile/run
[TSY99]. Compile/run-time [TSY99].
Compiler
[ATLM+06, BD00, BF04, CHH+03,
CSS+91b, CGSV93, DZKS12, JSB+12,
LEL+99, Loc18, MCRS10, SCv91a, SCv91b,
SYHL14, Shn99, TY97, TGBS05, YBL16,
ZCSM02a, ZCSM02b, ZP11, BCG+95,
BAD+10a, BAD+10b, BVG97, CAR08,
CSS+91a, CSS+91c, DC07, Dub95, Fon97,
Gol97, Hop98, JSB+11, MSS+11, McM97,
Mu03, RKCW98, Sch91, SKKC09, UZU00,
WLG+14]. compiler-assisted [Dub95].
Compiler-Controlled
[CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91].
Compiler-directed [DZKS12, SKKC09].
Compiler-Driven
[YBL16].
Compiler-managed [WLG+14].
Compiler-Supported [ZP11]. Compilers
[SS96]. Compiling
[ABA+00, ABH+01, TLA+02, HTZ+97, Sch91, Sha98, A+01].
Complement [YFF+12]. Complete
[BR15, Sch14, BW97, DWS+12, FFY08,
KGGK09, NV15]. Completion
[AGK96, BGK96, Lun97, Man98, BGK94c].
Complexity [SZM⁺13]. Complexity [EG11, CMX10, SKA01].
complexity-effective [SKA01]. Compliant [BGK96, SP05, Hig97].
component [NFBB17]. component-based [NFBB17].
Components [Gon90, Sho97b]. Composable [MLGW18, SS10, FKS⁺12].
Compositions [KS97]. Comprehensive [TAM⁺08]. Compressed [PBL⁺17].
Computation [ACM94c, BFA⁺15, CWS06, HL94, Hon94, HW93, Kuc92, Lak96,
OTY00, Wat91, BH95, Fun93, Fuj97, KG07, Kic91, NJ00, Sha98, ST98, WHJ⁺95].
Computational [ACM98c, Ano94a, CBN⁺00, Gol94, BD06, DNB⁺12, GK05, I⁺94, PBDO92, WQL18].
Computers [Ano94e, SS96, BCM⁺07, Boo93, LP09, SJ95]. Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC⁺93, Ana89, CT00, Den94, EJ93,
FTP11, FGKT97, Gar01, GRS97, Ham96, Hol12, HC91, IEE94b, KR12, Kon00, LCK11,
LFA96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BBG95, BD06, Dan99, FWL03,
GBG95, GS02, HF98, HG92, IEE97, Joe96, Kim94, KU17, Lan97, Leg01, Lu95, Mar07,
PWD⁺12, SBCV90, Sta90, SKA01, Tem97]. Concept [AmdbdRS02, BBFW02, KA97].
Concepts [McC97a]. Concrete [NSP⁺14].
Concurrency [BM94, GMGZP14, MLR15, MQLR16, ME17, NFBB17, BA08, But14,
CBM10, DKG18, GCC15, HZ13, LZ07, NBMM12, NJK16, RR96, RR03, SK12,
VTSL12, Yan02, ZLW⁺16, dB09, SB80]. Concurrency-preserving [NFBB17].
Concurrent [ILF001, KD97, KCC999, MSM⁺16, NPT98, PCM16, PF01, TJJ98,
AGN09, BBYG⁺05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00,
DL93, FK12, HZ12, HL93, JPS⁺08, JP92, KIM⁺03, KGGK99, MSM⁺10, MKIO04,
Men91, NHFP08, Ney99, ND13, STR16, Sun04, Sen08, ST05, TSA97a, TSA97b,
WK08a, WK08b, WK08c, ZSJ06, Hay93]. Condensed [BIK⁺11]. Condition
[Hol98c, Yn02]. Conditional [IBST01, NA07]. Conditions [HM96].
Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a,
ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM99, Ano90, Ano94a, AOV⁺99,
BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91, USE92, USE93b,
USE98b, USE00a, Ano94d, Ano94f, Est93, KKD03]. confidentiality [NSH14].
Confirmation [CJW⁺15]. conflict [NJK16, vPG03]. conformant [Stu95].
Congress [Ano94d]. conjunction [NJK16, vPG03].
Connect [Ano00b]. conquer [FN17, TP18]. conscious [GBP⁺07]. Consistency
[ABH⁺00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB⁺12, GS00,
HT14, QSJ14, SNM⁺12]. consistent [NHFP08]. Consolidated [HC17].
Constrained [TLG17, GW10, YN09].
constraint [SCG95]. constraints [HB15].
Construction [KW17, LHS16]. constructs [BS06]. consumption [SCM05]. Contact
[Nak03]. Contemporary [ZSJ12, ZSJ10].
Content [WLM15]. Content-Based
[WLM15]. Contention
[ALB⁺18, XSAJ08, ALW⁺15, DSG17, PGB14, TMCP10, ZKR⁺11].
Contention-aware [XSAJ08]. Context
[TLA⁺02, GN92, JLS99, FD95, LG04, MQ07,
PA⁺17, PFH06, SCB15, Yan97, LG04].
context-bounded [PA⁺17].
context-sensitive [PFH06, LG04]. contexts [BCG14, TE94b, WW93].
Contextual [BGZ97, NHFP08].
continuation [AAHF09].
continuation-based [AAHF09].
continuations [DBRD91, GRR06].
Continuing [Ano99]. Continuous [RCC14].
Continuously [DTLM14]. Control
[BP05, KW17, Lev97, PBR+15, SU01,
SZM+13, SG96, CDD+10, DKG18, FK12,
FSYA09, GCC15, MLCW11, NT14, PPA+13,
PWWD18, Po90, RP8+09, UZU00,
WLK+09, Yoo96b]. control-flow [NT14].
Controlled [BCG+08, CSS+91b, CGSV93,
SCv91a, CSS+91a, CSS+91c, Luk01,
MWP07, Sch91, SCv91b]. controllers [KASD07].
Controller [RLJ+09]. controllers [KASD07].
controlling [AGN09, BKC+13]. controls
[McM96c]. Controversial [Gar01].
Convention [ACM98d, ACM99b, ACM00, Hol12].
Conventional [KET06b, HB92].
Convergence [RM03]. conversational
[LG04]. Converse [BK96]. Convert [Vol93].
Converting [LEL+97a, LEL+97b].
convolutions [RB18]. convolver [Kep03].
Cool [Ano00a, Ano03, Wei97]. cooperation
[BM07, SKBY07]. Cooperative
[AMRR98, DNT16, LC13, KIM+03,
MKI04, TCG95]. coordinated [KKJ+13].
coordination [BDF98]. Coping [San04].
Coprocessor [LRZ16]. copying [HL93].
CORBA [DHR+01, PSCS01, SV96a, SV96b, VS96].
Core [CC18, CvdBC18, FMY+15, KST04,
KTR+04, MP01, MM01, MB05, PVS+17,
PM14, QOIM+12, ABC+15, AMPH09,
CFG+12, CSM+05, DTR18, DWYB10,
GW10, KBF+12, MLCW11, MLC+09,
MTP12, Mus09, SMQP09, VPQ12,
WCC+07, YZ07]. CoreDet
[BAD+10a, BAD+10b]. Cores
[CKK+16, RRK11, CW06, MAF+09, SW16].
coreSNP [GAC14]. Corner [SW97].
Corona [VSM+08]. Corporation
[Ano00b, Ano00b]. correct
[DJLJ10, SP00b, Shi00]. Correction
[TLA+02]. corrective [LG04]. Correctness
[Ram94]. Correlation
[SLT03, PFH06, SLT02]. cosimulator
[LT97]. Cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG+12]. counterexamples
[NV15]. Counters [Wei98b]. Counting
[Hol98c, Rec98]. County [ACM98d].
Coupled [MTN+00]. Course
[BLPV04, BZ07, GL07, She98]. coverage
[RPP06, YNPP12]. coverage-driven
[YNPP12]. covering [BGC13]. Covert
[EPAG16]. CPU [BSSS14, PGB16]. CPUs
[SKG+11, SMD+10]. Craftworks [Ano97a].
Cray [BGC14, Smi01, VTS12]. Create
[Ber96b, Ber96a, Len95]. Creating
[Han97, Ten98]. Creation
[Eng00, Rin99, Sin97]. Crisis [Ano99].
Critical
[BLG01, CS12, OTY00, DTLM14, DESE13,
NM10, RGG+12, San04, SMQP09, YL16].
Criticality [DESE13, NB12]. Cross
[Lam95, BKC+13, CSZB16].
Cross-platform [Lam95]. cross-thread
[BKC+13, CSZB16]. CS1 [GL07]. CSMT
[GSL10]. CSP [Nev99]. CUDA
[LBH12, MM14, PA+17, WJ12, YZ14].
CUDA-compatible [LBF12]. CUDA-NP
[YZ14]. CUG306 [Col90a]. current
[LVA+13]. customizable [JP92]. cut
[JEV04]. Cycle [LS11, EE09b].
Cycle-Level [LS11]. Cyclic
[YLLS16, HKT93]. cyclone [Gro03].
Cyclops [ACC+03]. Cyrus [HDT+13].

D
[KS85, NTK99, PYP+10, TKHG04].
Daemon [Spe94]. DAG [LQ15]. Dallas
[ACM00, USE91b]. Dame [IEE96]. dans
[Zig96]. DARPA [Mat97]. Data
[Ama89, ABNP00, DTLW16, EW96, FHM95a,
GAC14, HMC97, HR08, Hig97, JMS+10,
KZC15, KEL+03, KET06a, KET06b, LNJ14,
LLD17, ME15, ME17, RCRH95, SBN+97,
SAC+98, SSYG97, SG96, Ten98, TESK06,
VT96, WIl98, ZLJ16, ZAK01, AEGB08,
AGN09, BAO10, CS95a, CS95b, CDL13,
DHM+12, Evr01, FHM95b, FK12, HL93,
[Stu95]. ECMA-162 [Stu95]. economics
[Bar09]. Edinburgh [AOV+99]. edit
[KNPS16]. Editors [GGB93a, GJ97].
Education [Gar01]. effect
[BAD+09, GL08b, YSY+09]. Effective
[ABLL92, DN94, GH03, GMGZP14, NAW06, NSH14, PGB16, RVS13, Sat02, TMC09, TY97, CBM10, JSB+11, MMSN09, MTC+07, SAK01, Tsa97b]. Effectiveness
[PR05, TE94b]. Effects [Cho93, HRH08, KLH+99, KRBJ12, NHFP08]. Efficient
[TTKG02]. Efficiency [AJK+12, Ano05, THA+12, AMPH09, FGG14, GA09, MMM+05, Pra95b, RCG+10, SP05]. Efficient
[AD08, Alf94, ABN99, BCZY16, BGDrWH12, BJK+96, BL98, BMN99, CZZ+17, CYYL18, CLL+02, DMBM16, Gao93, GJT+12, GRS97, GS06, GN96, HSS+14, HEMK17, KPC96, KASD07, LS18, Lem02, LHC+16, LZBW14, MB07, MAAB14, NB99, PS03, SP07, TY97, TGBS05, ZLJ16, ATL+06, BL93, BJK+95, BHK+04, EKLL90, FWL03, FF09, GB99, HSD+12, KS+08, KNPS16, KSD04, LK13, LWV+10, LHS16, LZW+13, MSM+10, NLK09, OAA09, Pan99, PSG06a, PSG06b, PSSG06, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Sh00, SGS14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSYHX+11, ZIW+16, FSYA09].
Efficiently
[KBF+12, MCT08, SW16, Bhu95, BKC+13]. eigenproblems [ABD+12]. eigenvalue [BKI+11]. Elastic [SG18]. Electronic
[Ano00b, BB00]. Elegant
[HBGT98, MS02]. elementary
[KHN+92]. elide [MLS15]. Eliminating
[DSG17, OCT14, RD06, MTPT12]. elimination [MK12]. elision [NM10].
Elliptic [Loe97]. EM-4 [BAM93, SKS+92]. Embedded
[BGH+12, Dru95, GKCE17, KG05, KE15, MS15, WM03, DCK07, KV+99, KASD07, KBF+12, LLLC15, LBvH06a, LBvH06b, LBvH06c, RSB+09, SKP+02, Xue12].
Embedded-Systems [Dru95]. Embedding
[Pul00]. emergencies [MTPT12]. Emerging [VSM+08, GBP+07, HFV+12].
economic [LC13]. employing [CWS06]. Employment [Gar01]. Empowering
[JSB+12]. Enabling [CC18, Pan99, JMS+10, VGK+10a, VGK+10b]. End
[SNM+12]. End-to-end [SNM+12]. Energy
[AJK+12, GJT+12, GKCE17, KE15, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KB+08, NB12, PJZA07].
Energy-Aware [PR05].
Energy-Effective [PR05].
Energy-Efficient [GJT+12, LK13, RL14].
energy-performance [PJZA07]. enforcement [GWM07, SCCP13]. Engine
[SG18, CNQ13]. Engineering
[GJ97, LS15, WCV+98]. engines [HB15].
England [ACM94c]. Enhance [FSPD17].
Enhanced [Ano00b, EJ93]. Enhancing
[OL02a, OL02b, OL02c, HWW93, RHH10].
Environment
[ABNP00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Had96, KG07, Lan97, Pha91, SWY94, Sta90, Tem97, WCC+07].
Environments
[AKP99, BDN02, KG05, SP00a, EJJK+96, RGG+12, Sam99, Ver96, Way95]. equality
[AD08]. Equalization [TLG17]. Equations
[Loe97]. equivalent [Pra95c]. Eraser
[SBN+97]. Errata [Ano01, Ano05]. error [SS10]. Errors
[SK97, VACG09]. escape [SR01a]. Esterel
[LBvH06a, LBvH06b, LBvH06c, LvH12]. Estimating [PCP+15]. etc [Hol98a].
European [DLM99]. EuroPVMMPI
[KKD03]. Evaluating
[BL96, CML00, NPT98, PSC01, RPNT05, Sch98, SD95, TG09]. Evaluation
[Ar92, Boe93, BTE98, CL95, CBN+00, EJK+96, Ele97, GLC99, HN91, RNSB96, SCD+15, TT03, ZL10, BGDrWH12, BLCD09, Car98b, Cho92, Don92, LZ07]
evaluations [MM14, Roh95]. evaluator [SP00b, Shi00].
even [Ano94b].
evenements [Swi09]. Event [Ber96b, CKRW99, For95a, For95b, Ber96a, CKRW97a, CKRW97b, GWM07, KCCD99, KKB03, Leg01, RVS13]. Event-Based [CKRW99, CKRW97a, CKRW97b]. Event-Driven [For95a, For95b, RVS13]. event-handling [KKB03]. Events [BDN02, LZ07, Van97b]. Evolutionary [TAK+00, KU17]. Evolving [MS87, MS89]. Exact [Sch17]. examines [Yam96]. Examining [Kan94, Ric91, Rod95a, Tim03]. Example [BLPV04]. Exception [DH98, Lea96]. Exceptions [AdBdRS08, KR01b]. exclusion [BRE92]. exclusiveness [Lie94]. execute [APX12]. Executing [Blu95, BS99]. Execution [ABH+01, CC18, CJ91, Coo02, EC98, Far96, GMGZP14, GS06, HEMK17, HZ12, KS16, KLG08, KI95, KG94, ME15, MGK+00, MCT08, NBM93, NS07, PR05, RG03, RKK15, RSB01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BGC14, Dit03, JWTG11, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSA08].

Executions [CdOS01, HZD13, Roh95, STR16].
Exemplar [BLCD97]. Existing [Rie99].
EXOCHI [WCC+07]. expansion [YKL13].
Expectation [SC17].
Expectation-Maximisation [SC17]. expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL01, Yam96].
Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b].
Experimental [BLCD97, EGC02, YMR93b, GR050, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a]. Experiments [DV99, GMR98, SZM+13, VSM+16, VV00]. Explicit [DV99, VDBN98, BM07, URS02b, URS03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a].
exploitation [KVN+09, PSM06a, PSM06b, PSM06c]. Exploiting [AAK92, FFQ04, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSAS+16, SP07, TLZ+16, TEE+96]. Exploration [PTMB09, Sch17]. Exploring [AAK08, BS10a, SE12, WWW+02]. Expressions [Hei03]. Extended [BLG01, DV99, VDBN98]. Extending [BH08, Mar03]. Extensible [CdOS01].

Extension [RCC14, CCW+11, Lan97, PDP+13, Tem97].
Extensions [Sch90, Bau92]. external [LWV+10]. Extracting [GP95]. Extremal [MNG16].

TGBS05, Tra91, TSV12, ABC+09, EFN+02, GJ11, KL16, LK13, LSS12, Way95, CH04.
generational
[DL03, WK08a, WK08b, WK08c],
generations [Rob95], generators [SLF14],
Generic [ABH+00, AB02, Fer13]. Genetic
[NSP+14]: genome [LHS16]. GeoFEM
[Nak03]. Geometric [Caz02]. Georgia
[ACM99a]. Germany [RM03, Wat91].
ghosts [TVD14]. Gigabit [AHW02].
Gigabit/sec [AWH02]. Gigamesh [SZ02].
glasses [CZSB16]. Global
[HH11, PWL15]. Gigabit/sec [SC17].
gmm diag [SC17]. gmm_full [SC17]. GNAT [diPRGB99]. Go
[Mia90]. Going [Bak05b]. Goldilocks
[EQT07]. good [Mat98]. GPGPU [YZ14].
GPGPUs [LBH12]. GPS [TVD14]. GPU
[APX12, Bon13, DTR18, FTP11, KI17,
LTL+16, LTH+16, LAL+12, WLG+14,
YSS+17, ZCO10]. GPU-Oriented
[LHG+16]. GPUDet [Bon13]. GPUs
[CSV10, DNT16, LBH12, SKG+11, VD08,
WJ12]. Grace [BYLN09]. Grain [AZG17,
CSS+91b, HG91, KG94, LFA96, NS97,
CSS+91c, CSS+91e, KDM+98, Kim94, Loi95,
MLC+09, Met95, PL03, TY97, TKHG04].
Grained [BBG+10, BSSS14, But13,
LKBK11, PBR+15, TAK+00, YSS+17,
BGK94c, Gol97, LVS06, RPNT05, WI98a,
sYHX+11]. Grande [ACM01].
Grande/ISOPE [ACM01]. Graniularity
[KI95]. Graph
[CFG+12, CL95, EJR13, HPA+15, KS93,
KL92, MM14, LK15, LZW17, RVR04].
graph-based [LK15]. GraphCT
[EBR13]. Graphical [ACR01], graphics
[BGDmWH12, CCW+11, FSYA09, PYP+10].
Graphs [HPB11, Nik94, OB13, AD08,
ABG+08, DSEE13]. grass [MWT10],
Greatest [Kuc92, Kuc91]. Green [SKP+02].
greener [MWT10]. Grid [KEL+03],
Grid-Based [KEL+03]. GRIDiron
[MCS15]. grids [SKG+11]. Griffin [Ano00c].
Gröbner [AGK96]. Group
[BNH01, DLM99, QSH16]. Group-Based
[BNH01]. Grouping [OR12, WC99],
groups [WZSK19]. Grove [IEE89]. Growth06_v2
[Dan09]. Guarantee [Hag02, BGP06].
Guarantees [PSM01, YJW03, GPS14,
MTC+07, PSM03, ZHCB15]. Guarded
[Sim97]. Guest [GBB93a, GJ97]. GUI
[Tet94]. Guide [Ano99, BBD+91, LB96a,
WJ97, WJ97, ND96, RR96, Sim95]. guided
[BN12]. Guidelines [RD96]. GUIS [Mia90].
Gyrokinetic [KEL+03, PWL+11].
Hagenberg [Hon94]. Hagenberg/Linz
[Hon94]. Halide [DKA16]. Hamilton
[Ric91]. Handles [Rec98]. Handling
[DH98, LBH12, SK97, BM91, KCCD99,
Koo93, KPB+03, Lea96, Met95]. Harbor
[BB+00]. Hardware [CKD94, CSS+91b,
KE15, LLS06, MWP07, Men91, SW08,
ZLJ16, ABC+09, CWS06, CSS+91a,
CSS+91c, EXC+12, FSYA09, GP05, LT97,
MLS15, MQW95, OCT14, PAB+14, PRS14,
RPNT05, SE12, TE94b, DWS+12].
hardware-aware [PAB+14],
hardware/software [LT97]. harmful
[NWT+07]. Harmony [KTK12]. Harness
[Ana98, EBKGO1]. Hash [GK50, VB00].
Hash-join [GK50]. hashing [MGA18].
having [YFF+12]. Head [Mia90]. healing
[SLP+09]. Heaps [DGK+03, Man99, Ste01].
help [Len95]. Helper [ALS10, WCW+04b,
WCW+04c, WCW+04d, WCW+04a]. Here
[Ano92a, Pra95c]. Hessenberg [BKK17].
Hessenberg-triangular [BKK17].
Heterogeneity
[CCW+16, Kwo03, RKBH11].
Heterogeneous [AT16, AACK92, FBF01,
KTR+04, Lu95, NTR16, THA+12, FKS+12,
GKZ12, LK13, S95, WC+07]. Heuristic
[HJ11, Mah11, ORS07]. Hewlett
[BLCD97]. HFS [KS97]. hiding [BR92].
Hierarchical [GJT+12, JY15, KC98, KG94,
Hierarchies [BCZY16, TAM+08].

Hierarchy [BGDMWH12].

High [ACM98a, ACM98d, ACM00, Ano00a, Ano03, BGD+12, CT00, FGKT97, Gar01, Hol12, HG91, IEE94b, LCK11, LG06, LMJ14, LBH12, LG+16, LCH+08, MR94, MSM+16, MPD04, ME17, NBS+15, PH97, RG03, SRS98, Sch17, SLJ+19, TC98, VV11, WA99, WN10, C1M+17, GS02, HG92, Kim94, Lan97, RR06, Re95, SQP08a, SQP08b, SQP08c, Tem97].

High-Level [Sch17]. High-Performance [ACM98a, BGD+12, FGKT97, Gar01, IEE94b, NBS+15, RG03, SLJ+19, TC98, WN10, LCH+08, VV11, CM+17, Kim94, SQP08a, SQP08b, SQP08c].

High-Order [fkk+10, Gao93, JYE+16, LH09, MS02, NBM93, YZ07, GKK09, HG92, MK12, MTC+07, SSK+92, Sha95a, kSYHX+11].

Highly [BGDMWH12, Kub15, KGGK09, MAAB14].

Hill [Camm+17]. Hill-climbing [Camm+17].

Hilton [IEE90]. HippogriFFDB [LT+16].

Hist [Gar01]. history [Ano97b].

Hoare [Kl+17]. HoME [OKID92].

Homogeneous [CC18]. Hood [Ven97].

HoPE [PBL+17]. Hot [IEE99, PBL+17, Gle91]. Hot-Cacheline [PBL+17].

Householder [BKK17, VV11].

Householder-based [BKK17].

Householder-like [VV11].

Hybrid [BBG+10, Gar03, JYE+16, LH09, MS02, NBM93, YZ07, GKK09, HG92, MK12, MTC+07, SSK+92, Sha95a, kSYHX+11].

Hybridizing [CZZ+17]. Hyperion [A+01].

Hyperobjects [LS18]. hyperscalar [Raj93, Sha95a].

Hyperthreading [HRH08, KM03].

I-WAY [FGT96]. i.e [USE98b]. I/O [RM03, Ano95a, Ano95b, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a].

idempotency [KOE+06]. identification [JSM+12].

Identifying [BCZY16, SU96, DESE13]. IEEE [ACM98d].

IFIP [BT01]. Igniting [ACM03]. II [HCD+94, IE89, JK+97, KR01a, MCM96b, Wal95]. III [Ano00a, USE92].

Illinois [GHG+98]. Illinois-Intel [GHG+98].

Impact [KLG08, SL05, TE94a, ZAK01, Div95, Met95, RGG+12, RPNT05]. Impaired [Wei97]. imperative [SV98]. implement [DBRD91]. implementable [TEE+96].

Implementation [ACM94a, ACM99a, Alt94, AB01, AKP99, BB+91, BHP+03, GMB03, CWHB03, DSH+10, FL98, HA97b, KA97, MS02, Nik94, ST93, TKA+02, TMAG03, BK96, BB00, BM03, CM10, DL03, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, Li05, LZ07, LAH+12, NFBB17, OKID02, Stu95, Tod95, YZYL07, Ano95a, Ano95b].

Implementations [Han97, SAC+98, Ram94, SK+11, Sha95b].

implemented [Boe05, KEL+03].

Implementing [ABH+00, AB02, BP05, CBB90, CD92a, Day92b, DPZ97, GM93, GS96, HPA+15, KRA0b, KBA08, KIAT99, PRA95a, TY97, TAN04, BKH+04, Lie94].

Implications [RM03, BS96, VSM+08, CSM+05]. Implicit [BAM93, MS02]. Implicitly [ACM97, PFV03, SAC+98, RB18].

Implicitly-multithreaded [PFV03].
Improve [GV95, QSaS+16, RKK15, Sin99].
Improved [BR92, GMGZP14, LLS06, Smi06].
Improving [AJK+12, BDN02, DKG18, FT96, FM92, FBF01, GA09, IBST01, LYH16, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10]. In-Order [RRK11]. In-place [SGLGL+14, SCM05].
In-Situ [RGK99].
Includes [S95]. Incomplete [HR16]. Incompressible [RM99]. Incorrectly [SCL05]. Increasing [PHCR09].
Incremental [BFA+15, Caz02, Lar95, LB92, BBYG+05].
Independent [EW96, FSS06, USE93a, KNPS16, MEG94, PG03, WZSK19].
Indexing [MIGA18, MLS15]. induced [MTPT12]. inducing [CZ02]. Industrial [RWK11].
Industry-Standard [DM98].
Indexing [MIGA18, MLS15]. induced [MTPT12]. inducing [CZ02]. Industrial [RWK11].
Industry [DM98].
Inference [FFLQ08]. inflation [OdSSP12]. InfoDock [Ano97a]. Information [BS96, PBR+15, CML00, KBH+03, RPB+09, SV98].
Informix [Ger95]. Initial [BTE98]. Inline [GH03, DJLP10, EKLL00].
Inline-Threaded [GH03]. Inlining [PR98, LQ15]. innovating [JD08].
Innovation [ACM03]. innovations [ABB+15]. Input [BCG13, MP98, Tan87].
Input-covering [BCG13], input/output [MP89]. Insight [JEE02]. Instruction [DV99, HMNN91, LEL+97a, LEL+97b, MCFT99, RS08, AME+93, Aru92, Ch092, HKN+92, HMN+92, KBF+12, Mis96, OA08a, OA08b, OA08c, PYP+10, Ra939, SD13, SMS+03, TEE+96, VSS11, VDBN98, VV00].
Instruction-Level [LEL+97a, LEL+97b, MCFT99, SD13].
Intensity [BD06]. Intensive [TKA+01, AAKK08, TKA+02, YSY+09]. Interaction [Hei03, HF96, Pan99]. Interactions [WG94, WSK97].
Interactive [FURM00c, PTMB09, WOKH96, CSB00, FURM00a, FURM00b, HJT+93, K079, Lan97, MCS15, Tem97].
Interconnection [NGGA94, RR93, SMK10].
Interface [Chl15a, HBB01, KKDVT03, MS89, Met95, PS01, SW97, Ada98, DLM99, HBBG02, Li05, MQW95, MS87, MEG94, TNB+95, FGT96].
Interfaces [Han97, HF96, LG04].
Interleaving [LGH94, YN09].
Intermediate [McC97a]. Internals [MM01, Wea08]. International [ACM92, ACM94c, ACM94d, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV+99, Ch059, EV01, Hol12, Hon94, LK96, LCK11, WAT91, FR95].
Internationalization [Ano98b]. Internet [Ano96, Hig97, SBB96, van95].
Interoperability [DHR+01, Way95].
Interplay [LSM15]. Interpretation [GH03, LG04]. interpreter [OCT14].
Intra-application [MKR10]. Introducing [GL07]. Introduction [CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98]. Intrusive [Caz02]. INUX [DNR00]. invasive [RGK99]. Inverse [HMLB16, GEG07].
 inverses [GE08]. Invocation [KK9+01]. IPC [Koo93]. IPs [Sch17]. IRREGULAR [FR95, TSV12, ZAK01, TP18]. irregularly [FR95]. ISA [KTR+04]. ISCOPE [ACM01].
Isolating [CZ02, JWTG11]. isolation [CMX10, MTC+07, SKBY07]. Isomigration
The page contains references to various topics and authors, including:

- **J.UCS [KU00]**: January
 - ACM94f, ACM95b, ACM98b, Ano90, USE98, USE91b, USE93b, ACM93a

- **Java Beans [Van97b]**: javar [BVC97]
- **Java Script [PCM16]**: javan [AN00c]
- **Java-like [DJLP10]**: just-in-time [KBF12]
- **Java Beans [Van97b]**: just [KBF12]
- **Java Beans [Van97b]**: just-in-time [KBF12]
- **JVM [Lan02]**: just-in-time [KBF12]
- **Java Beans [Van97b]**: just [KBF12]
- **K-Java [BR15]**: KAI [Ano98b]
- **Karlsruhe [RM03]**: Kaspersky [Ano00b]
- **Kendo [TAK99]**: KUMP [NTKA99]
- **KUMP [NTKA99]**: KUMP/
- **L2 [SLP08]**: L2-miss-driven [SLP08]
- **LAN/WAN [Yas95]**: Landing [TAK99]
- **Language [ACM94a]**: ACMA97, BS06, FLR98, GS06, KIAS99, SAT02, BO96, CFK+91, ECX+12, GPS14, JIN86, LT97,
Man96, Mil95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06. Languages [ACM93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM+16, NPT98, OTY00, SCv91a, SS96, TY97, DMBM16, HL93, JP92, JHM04, MSM+10, Sch91, SCv91b, ST98, TAN04]. LAPACK [ARvW03]. Laptops [Ano00c]. Large [AOV+99, CC14, CJW+15, GJ92, LA93, BCM+07, Boo93, GOT03, Koo93, SMK10, WCV+98]. Large-Scale [CC14, CJW+15, LA93, BCM+07, GOT03, SMK10]. Latencies [Sch17, BS06]. Latency [BD00, Fan93, OCS01, SW08, SMi01, SK+01, WWW+02, YLLS16, BR92, DC99, DC00, Jef94, Luk01, MVY05, PG01, TK98]. Latency-directed [Fan93]. Latency-Resistant [YLLS16]. Latency-sensitive [DC99, DC00]. Latency-Tolerant [OCS01]. lattice [SKG+11]. Law [Gar01, NZ17, CN14]. layer [CDD+10]. layout [DZKS12, HB15]. Lazy [GSC96, Gol97, LP94]. LCMT [LKBK11]. leadfoot [HHPV15]. Leakage [Mus09, SYHL14]. Leakage-saving [Mus09]. leaks [ZJS+11]. Learned [HPA+15]. Learning [CYYL18, DS16, ROA14, PWWD18]. least [FTAB14]. least-squares [FTAB14]. lecture [Egg10]. Lenient [SCv91a, Sch91, SCv91b]. Lepp [RRMJ12]. Lepp-bisection [RRMJ12]. Lessons [RM03, HPA+15]. Letters [DHR+01, TLA+02]. let [AC90]. Level [ABLL92, BBC+00, FURM00c, GP95, JYE+16, JLS99, DK02, KSU94, LS11, LEL+97a, LEL+97b, MG99, MR94, PLT+15, RR93, Ric99, Sch17, SLT03, YBL16]. BBI+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GRR06, HDT+13, JEV04, KDM+98, KV+99, KC09, Lan97, LZ07, MSLM91, MT02a, MT02b, MT02c, MQW95, MCFT99, OT95, OCRS07, PO03, PT03, QOOQV+09, STY99, SD13, SLT02, SCZM00, Tem97, WS08, YZYL07, YZ14, ZJS+11]. Level-2 [Ric99]. Leveraging [PRS14]. LFTTHREADS [GP08]. Libraries [Ano00c, BCR01, GF00, Jon91, MLGW18, MM14, ARvW03, CBM10]. Library [Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Ken02, Man91, WN10, Yas95, Ada98, Boe05, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. life [KU17]. light [Way95, LSTZ15]. light-weight [Way95]. Lightweight [AGN09, Col90b, Don02, Est93, Fin95, Hai97b, SLJ+18, CASA14, Hai97a, LVN10, MMN09, MEG94, VACG09, WSKS97, LKBK11]. like [DJLP10, Jon86, VV11, Kor89]. limit [ROA14]. limitations [Gal94, HL08]. limited [Bri89]. Limits [LB95, LB96b, AAKK08]. Line [Ano00c, FSPD16, FdL02]. Linear [KLB09, Loe97, MR99, AAC+15, Bak95a, MM07, YSY+09]. Link [An00b]. Linked [WJ12]. links [WW96]. LinkScan [An00b]. LINQits [CDL13]. Lint [Kor89]. Lint-like [Kor89]. Linux [An07a, An00b, An00c, An07a, RK99, SK+02, WTKW08, ZSA13]. Linux/AIX [An07a]. Linux/FreeBSD [An00b]. Linz [Hon94]. liquid [KRB12]. Lisp [Nor90]. List [DV99, WJ12, VV00]. LiteRace [MMN09]. little [CDL13]. liveliness [GM09]. LLCS [PBL+17]. Load [HBTG98, KMA00, KC98, KRH98, PGB16, VPQ12, Chr95a, Chr95b, Chr96, MKI004, TKHG04]. load-adaptive [TKHG04]. Load-Balancing [KC98, PGB16, Chr96]. Loadable [ZSA13]. Loading [PCM16]. Local [DGK+03, IE95, Whi03, HZD13, ZLW+16]. localities [CS95a, CS95b]. Locality [BS96, PEA+96, Weih98, HHW93, LK13, PGO6a, PGO6b, PGO6c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a]. Location-Independent [USE93a]. Lock
[ALB+18, EFJM07, NM10, PGB14, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16]. \textbf{lock-free} [GP08, MLS15, Mic04, ST05].

\textbf{Lock} [Hol98b]. \textbf{Lock manager} [Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLW+16]. \textbf{Locks} [ACR01, ALS10, MT93, OCT14].

\textbf{LOCKSMITH} [PFH06]. \textbf{LOGFLOW} [NTKA99]. \textbf{Logic} [Bre02, KI17, TAN04, BK13]. \textbf{Logic-Centric} [Bre02]. \textbf{Logical} [CR02].

\textbf{LOIS} [KT17]. \textbf{longer} [XHB06]. \textbf{Looking} [ECX+12]. \textbf{lookup} [KNPS16]. \textbf{Loop} [RLJ+09, SS99, JMV+09, UZU00]. \textbf{loop-level} [KVN+09]. \textbf{loops} [D’H92, FN17].

\textbf{low} [Ano00a, Ano03, BGH+12, ZHCB15, GPS14, RRP06]. \textbf{low-level} [GPS14]. \textbf{Low-overhead} [ZHCB15, RRP06]. \textbf{Low-Power} [Ano00a, Ano03, BGH+12]. \textbf{LPVM} [ZG98]. \textbf{Ltd} [Ano00b]. \textbf{lunch} [DTLM14]. \textbf{Luther} [ACM99b]. \textbf{Lyon} [FR95].

\textbf{M} [Ano00c, USE01, FKD+97]. \textbf{M-Machine} [FKD+97]. \textbf{MA} [Ano94]. \textbf{Mach} [USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RBF+89]. \textbf{Machine} [Ano94, CSS+91b, RS16, FKD+97, KA97, KKDV03, Lvo00, USE01, CSS+91a, CSS+91c, DLM99, Glh91, MEG94, Néom95, Pra95c, SKS+92, Ven97, CGSV93, Evr01, PRB07].

Measuring [FMY+15, DTLM14], Mechanising [Loc18], mechanism [FD95, GCC15, PWW18, WHJ+95].
Mechanisms [KPC96, KC99, SK97, Loe95, Men91, PT03].
Media [An903, Van97a], medium [CDD+10]. Meeting [DLM99]. meets [Tan95]. Member [BS99]. Memories [HKL96, KHP+95]. Memory [AJK+12, BS96, BMBW06b, BD00, CH95, DM98, EJ93, EE90a, FMY+15, GMR98, GMGZP14, GH98, HG91, HL07, KZTK15, KZC15, KKH04, KUC15, LSH15, LB92, LB17, MSM+16, MVZ93, CT08, Nak01, RCC14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM+08, Thr99, Ver96, WC99, YMR93b, ZLJ16, ATLM+06, AKSD16, AAKK08, BS06, BGDWH12, BCG+95, BBI+17, BMBW00a, BMBW00c, BDM07, BA08, BB00, Boo93, BAO07, CMF+13, Cha05, Cho93, CVN+06, DLZ+13, DLCO09, DPZ97, EKKL90, EV01, FF10, GCC15, Gle91, GL98a, GS00, GKK90, HB92, HWW93, HG92, HPFV15, ISS98, KFG15, Luk01, MLS15, MCRS10, MSM+10, MLCO4, MMTW10, MTLS10, Mic04, MTC+07, MVX05, NPC06, NAAL01, OCT14, SLT02, TSY99, TSY00, TVD10, TVD14, VTS12, WK08a, WK08b, WK08c, XHB06, YMR93a]. memory [YSY+10, YN90, kSYXH+11, ZK15, ZHC15]. memory-intensive [YSY+09]. Memory-level [EE99a]. MemSAT [TVD10]. Merlot [MTN+00]. mesh [ABC+09, Mus98]. mesh-based [Mus09]. Meshes [HTBTG98, Lep95]. Message [BWXF05, HL04, KKV03, PH97, Ada98, BCM+07, DLMO99, FM92, Met95, PrS14, SCM05, FGT96, PS01]. message-handling [Met95]. message-passing [BCM+07, FM92]. messages [Koo93, SD95, WHJ+95]. meta [FKS+12]. meta-scheduler [FKS+12]. Metering [LMA+16]. Method [CYYL18, LHG+16, SKG+11].
Modularity \cite{LK15}.

\textbf{Model-driven} \cite{CSV10, RSB09, ABN00, BC98, Bed91, BBH07, GK05, GBP, But14, Cho93, Cor00, Gil94, SC17, TVD10, VDB98, XIC12, ZKW15}. \textbf{modern} \cite{GK05, GBP, But14, Cho93, Cor00, Gil94, SC17, TVD10, VDB98, XIC12, ZKW15}.

\textbf{modes} \cite{WZWS08}. \textbf{Modular} \cite{Chli15a, FQF02, FQFS05, JKB18, Kue92, NT14, SZM13, FK12, GBCS07, Mjf10, MSJ06}. \textbf{modularity} \cite{LK15}. \textbf{Module} \cite{ZSA13}.

\textbf{modulo} \cite{LQ15}. \textbf{monad} \cite{FKS12}. \textbf{monadic} \cite{LZ07}. \textbf{Monitoring} \cite{BBFW02, BBFW03, DLJL10, MC06, NFBB17, VGK10a, VGK10b}. \textbf{Monitors} \cite{Bec01, SS91, KP06}. \textbf{Monsoon} \cite{NCA93}. \textbf{Montecito} \cite{MB05}. \textbf{Monterey} \cite{USE91a, Ass96, USE96, USE01}. \textbf{Mosaic} \cite{Ano94d}. \textbf{Most} \cite{PLT15}. \textbf{mostly} \cite{BBYG+05}. \textbf{Moving} \cite{Alt96, Sim97}. \textbf{MP} \cite{Pea92, TTY99}. \textbf{MPD} \cite{PHK91}. \textbf{MPEG} \cite{BC00}. \textbf{MPI} \cite{PS01, Vre04, Ada98, ALW15, ALB18, BBG10, BK96, BBC00, BRM03, CRE99, DSG17, HD02, DL99, FTG96, GCC99, IEE96, MS02, Pla02, SCB15, STY99, SPH96, TSY99, TSY00, TG99}. \textbf{MPI-based} \cite{Ada98}. \textbf{MPI-OpenMP} \cite{MS02}. \textbf{MrBayes} \cite{LHG96}. \textbf{MS} \cite{Wil94a, Wil94b}. \textbf{MS-DOS} \cite{Wil94a, Wil94b}. \textbf{MSFV} \cite{HHOM91, HHOM92}. \textbf{MSparc} \cite{MN00, MD96}. \textbf{MT} \cite{EC98, TJY11}. \textbf{MT-TRIMMER} \cite{TJY11}. \textbf{MTA} \cite{Mat97, Smi01}. \textbf{MTAC} \cite{For97}.

\textbf{MTraceCheck} \cite{LB17}. \textbf{MTS} \cite{Gal94}.

\textbf{MUCH} \cite{WLM15}. \textbf{Multi} \cite{Ada98, AMRR98, AACK92, AGK96, ABN00, BC98, Bed91, BBH17, BC00, BGK94a, BGK94b, BGK96, CV98, CL95, CRK99, CWHB03, CDOS01, CIC12, CCK16, CC18, Cvd18, C91, Chr01, CR02, Coo95, DV99, DS16, DTL16, EGBK01, FMY15, FD96, DFL02, GVT17, GK94, GI93, GS06, GH98, HC17, HG91, H101, JY15, Jon91, JLS99, K195, KW17, K14, Kue92, KTR+04, L15, LB92, Leg01, LKBN11, MLGW18, M199, MTN+00, MC97a, MC97b, MS15, MG15, MCFT99, MGK+00, NH00, OR12, PCPS15, PTMB00, PW18, PK19, PM14, PM00, PGB16, RR93, RCC14, RBPM00, RKCW03, RV04, RS08, SP00a, STW93, SC90, SK11, SE01, Se98, SM02, Ste01, SBK99, TG09, Tan87, Tra91, TLM17, VSDK09, VB00, VK99, WA00, YLLS16, AB12, BW15].

\textbf{multi} \cite{Bak95a, BK13, BM07, BIK11, DSEE13, CN13, CIM17, CF12, CASA14, CRKW97, CRKW97b, CSB00, CZ98, CL00, CSM+05, DWB10, Don92, EFG03, EHSU07, FTAB14, FWL03, FGG14, GCRD04, GCC15, GPR01, KHP+95, KDM+98, KKH04, Kep03, Kuc91, KBF+12, Lan97, LBH06a, LBH06b, LBH06c, LVA13, LZW13, SLWC11, ML10, MS03, MKK99, Mus09, NFBB17, NH09, NSH14, OA08a, OA08b, OA08c, PYP10, RCV10, RKM10a, RKM10b, RGK99, SCB15, Sam99, SC17, SE12, SV08, SM06, ST02, SQP08a, SQP08b, SQP08c, SMQ09, ST05, Tem97, TCG05, TLMAG03, TJY11, VIA+05, VDBN98, VV00, VQQ12, WCC+07, WCV+98, Y207, Yao97, YSY+09, YNO9, kSYXH11, YKL13, ZKK+11, dB09, vPG03, Ano97b, CH04, Mix94]. \textbf{Multi-FMY} \cite{FM15}. \textbf{multi-ALU} \cite{KDM+98}.

\textbf{Multi-C} \cite{Mix94}. \textbf{multi-context} \cite{Yan97}.

\textbf{Multi-Core} \cite{CC18, Cvd18, KTR+04, PM14, CF12, CSM+05, DWB10, KBF+12, ML10, Mus09, SMQ09, WCC+07, Y207].

\textbf{Multi-Cores} \cite{CCK16}. \textbf{Multi-CPU} \cite{PGB16]. \textbf{multi-engine} \cite{CNQ13}.

\textbf{Multi-Level} \cite{RR93, CIC12}.
Multi-Level-Context [JLS99].
multi-process [WCV98].
Multi-Processing [MLGW18].
multi-processor [VIA05, YN09].
Multi-protocol [ABN00].
Multi-Tasking [CvdBC18]. Multi-Thread
[HG91, MTN+00, AMR99, PKB+91, SKG+11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95]. Multi-Threaded
[AGK96, BC98, Bed91, BGK94a, BGK94b, BGK96, CL95, CKRW99, Coo95, DV99, Fdl02, GVT+17, GK94, Gil93, III01, JY15, Jon91, KW17, Kuc92, Lb92, Mas99, MG15, MGK+00, PCPS15, Pul00, RKCW98, STW93, Sei99, Smi92, Ste01, SBKK99, TLGM17, VSDK09, VB00, Ada98, AACK92, BbH+17, BC00, CV98, CwHB03, Cdos01, cC91, Chr01, CR02, Ds16, Ebgk01, Fd96, Gs06, Gh98, Hc17, Kri95, Khr98, Lk15, Leg01, PWjd18, Rbmp00, Rs08, Sp00a, Sc98, Vk99, Wa00, Abd+12, Bwdz15, Bk13, Bk+11, Dseel13, Cim+17, Cas14, Crkw97a, Crkw97b, Csb00, CyZ98, Cl00, Cw99, Ehsu07, Ftab14, Fgg14, Gcrd04, Gcc15, Gpr11, Khp+95, Khk04, Kep03, Lan97, LbvH06a, LbvH06b, LbvH06c, Lva+13, Mlcw11, Ms03, Mkk99, Nfbb17, Nh09, Nsh14]. multi-threaded [OA08a, OA08b, OA08c, Pyp+10, Rcv+10, Rkm+10a, Rkm+10b, Rgk99, Scb15, San09, Sc17, Se12, Sv08, Smi06, Sto02, Sqp08a, Sqp08b, Sqp08c, Taf13, Tem97, Tmag03, Tjy+11, Vvo0, Ysy+09, Zkr+11, Db09, Vpg03, Ano97b].
Multi-Threading [CvdBC18, Lkbk11, MLgw18, Mc97a, Mc97b, Ms15, Or12, Ptmb09, Rcc14, Sch90, Tgo99, Ylls16, Dtlw16, Mcft99, Nj00, Rvr04, Bak95a, Bm07, Flw03, Lzw+13, Mlc+09, Vdbn98, Ksyhx+11, Ykl13, Ch04]. multiagent [Bar09]. Multicomputer [Fkd+97]. multicomputers [Bg+95].
Multicore [Bczy16, Cch11, Cb16, Gj11, Hемk17, Kldb09, Ls11, Lma+16, Lyh16, Ldt+16, Mr09, Nbmm12, Pgb16, Rcm+16, Rrk11, Slj+18, Smd+10, Tha+12, Zbs15, Cnq13, Cn14, Cmx10, Lk13, Lllicl15, Nz17, Rcg+10, Rkbh11, Scp13, Se12, Zsb+12]. Multicore/Multithreaded [Rcm+16]. Multicores [Fspd16, Fspd17, Rk15, Dtk+15, Garh14, SSn10]. Multi-frontal [But13, Dv11]. Multigrain [Azg17]. multigrid [Rm99]. multilevel [Cat94, Jy+03, Lk15]. Multimedia [Spe94, Est93, Gd96]. multithread [Fgt96]. Multithread [Nh94, FCC+97]. Multithreading [Mc97a, Mc97b, Ntv11, Ntw11]. Multithreaded [Lk15]. Multithreaded/Multithreaded [Rcm+16]. Multithreaded/Multithreaded [Rk15]. Multithread Safe [Gcc99]. Multithreading [CvdBC18, Lkbk11, MLgw18]. Multi-core/Full-core [Rc99]. Multiprocessor [Aack92, Akp99, Bc00, Cat94, Eh95, Ghg+98, Hn91, Kmg01, Mct08, Pre90, Sz92, Sep96, Usc92, Wc99, Zpu02, Cho93, Dck07, Ekkl90, Hb92, Kt99, Lvn10, Lwv+10, Pjza07, Ano94b]. multiprocessor/multithreaded [Cat94]. Multi-processors [Bmv03, Bsw96, Bm96, Bg10, Ch95, Gmr98, Ku00, Kcs+08, Ls07, Lmj14, L93, Mvz93, Mck97, Ns97, Tsk06, Ym93b, Br02, Ga09, Htt14, Lgh94, Mao96, Men91, Qsq14, Smk10, Sha8, Skoc09, Tas07, Yoo96b, Ymr93a]. Multiprogrammed [Mvs93, Thy99]. Multiprogramming [Bhp+03, Jj91, Cgl92a, Cgl92b]. Multi-race [Ps07]. Multitasking [Cj90b, Gib94, Gon90, Jj91]. Multithread [Lc04, Rrmj12, Syh14, C95a, C95b, Dsh+10, Gcc99, Jd08, Swyc94, Zg98, Zg96]. multithread-safe [Gcc99]. Multithreaded [Add03, Adbdr908, Abc+93, At16, Ana98, Alb+18, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b].
Ano01, ABH⁺00, ABH⁺01, AB01, AB02, AG96, AZG17, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BbdH⁺11, BKI06, BMBW00b, BF04, BJK⁺96, BL98, BB00, BMN99, BND02, BLG01, BTE98, BNH01, BD06, BGH⁺12, BBSG11, CC14, CJW⁺15, CS02, CGK06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN⁺00, CMBAN08, Dan09, DNR00, DH98, DRV02, DTR18, DO95, EFN⁺01, EFN⁺02, EJRB13, EHP⁺07, EC98, EGP14, FSS06, FT96, FTP11, FQS02, For97, FLR98, GGB93a, GR97, GMR98, Goo97, GN00, GN92, HPA⁺15, HMLB16, HTZ⁺97, HMNN91, HHOM91, HHOM92, HLB94, HH11, HWZ00, HPB11, HY⁺15, Hud96, HMT⁺96, I⁺94, JBK18, JYE⁺16.

Multithreaded

[JSB⁺12, KA97, KKW14, KMAG01, KST04, KML04, KC98, KC99, KMjC02, KR12, KU00, KE15, KG94, Kim14, KU17, KAO05, Kor89, KTR⁺04, LS07, LG06, LH99, LG04, LB96a, LB98, LB00, LLS06, LhH12, LTM⁺17, LYH16, LPE⁺99, Loc18, Loe97, Lmn97, Lun99, MGQS⁺08, MP01, MS89, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGGA94, NTKA99, Nik94, OB13, OTY00, PBD09, PUR⁺04, PG92, PG96, PG99, PF01, PHK91, PWL⁺11, PS01, QOIM⁺12, RCM⁺16, RW97, RCC12, REL00b, Rin01, RB18, RNNS96, RSBN01, RRK11, RBAA05, RR99, SPDLK⁺17, SRS98, SR14, SBN⁺97, SCD⁺15, SCL05, SAC⁺98, She98, SU96, SU01, SZM⁺13, SGM⁺97, SMD⁺10, SR01b, SSYG97, SKK⁺01, Spe94, Sr95, SZ02, SUF⁺12, Sut99, TG99, Ten02, TKA⁺01, TC98, TT03, TTKG02, TGBS05, TLZ⁺17].

Multithreaded

[TLZ⁺18, TJ99, TSV12, UB⁺02a, VTS12, Vol93, VE93, Wan94, WS08, Wea08, WJ12, Wil97, WLM15, WG94, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, ÁdBDRS05, ACD⁺18, Aga89, Aga91, Aga92, ABF⁺10, ABC⁺15, AAC⁺15, ACC⁺03, AGEB08, Ann96, Ano94b, Ano95a, Ano95b, A⁺01, ABC⁺09, AR17, Aru92, BGDmWH12, BBFW03, BRRS10, BG97, BCHS00, BAD⁺10a, BAD⁺10b, BCG13, BGC14, BMBW00a, BMBW00c, BYLN09, Bhu92, BL93, BL94, BJK⁺95, Bu95, Bl99, BS10a, BCG14, BEKK00, BPSH05, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car89b, CB91, CF⁺12, Cat94, CL94, CN14, CS12, CDD⁺10, CLL⁺02, Cho93, Cho92, CGL92a, CGL92b, CJB⁺15, DJLP10, DSG17, Dav11, DL93, DKF94, EJK⁺96, Eic97, EGL11, Est93, Evr01].

Multithreaded

[Fan93, Far96, Fer13, FF04, FFQS05, FF08, FFY08, Fuj97, GMW09, Gal94, GJ11, GGB93b, GK05, GJS12, GL98b, GL98a, Go96, GR06, GR06, GA09, GLC99, HMC97, HFV⁺12, HH88, HLB90, Hig97, HM⁺92, Hop98, JMS⁺10, JWG11, JFL98, JSMP12, JSMP13, Jm96, Jg97, KGH12, KRO01a, KRO1b, KPS16, KBP⁺03, Kub15, Kus15, LLLC15, Lea96, Lei97, Len95, Lev97, LLI10, LCH⁺08, LMC14, LBE⁺98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, Ml95, Mls96, Mix94, MC06, MKR10, MQ07, NB12, NR06, Nm00, NPA92, ND96, NZ17, Om04, Par91, PV03, PZJ10, Pha91, Ply89, PDP⁺13, PS03, PS07, Prah95c, PT03, RG⁺12, RCM⁺12, Raj93, RCG⁺10, RRH10, REL00a, REL00c, Rei95, ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c, SV96a, SV96b].

Multithreaded

[Sch98, SRA06, Sha95a, Sha95b, Sha98, She02, SLG06, SP00b, Sh00, SP05, Sim97, STO0a, STO0b, Sod02, SNN10, Sqr94, Srd93, Sta90, Sun95, SMS⁺03, TMC09, TMCP10, TR14, TV10, TG09, TP18, TE94a, The95, TKA⁺02, TB97a, TB97b, TKHG04, TLZ⁺16, Tod95, Tsa97a, TDW03, UZU00, VGR06, Ver97, Ver96, VGK⁺10a, VGK⁺10b, WS06, WCC⁺07, Way95, WT10, XIC12, XSM08, Yau02, Yan97, YZYL07, Yoo96b, YM92, YMR93a, YNPP12, ZJS10, ZP04.
Multithreading
[AMdBdRS02, AH00, Ano99, Ano05, BBG+10, BWXF05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Bre02, BLPV04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FFB01, FK96, GHG+98, GV95, Gu199, Gsl10, Har99, HBG+98, IAD+94, KIM+03, Kim94, KIM+99, KLH+99, LK+13, Lgh94, LSS12, LZW17, LB95, Lb199, Lz+14, Loi95, LV501, LzbW14, Lzk01, MIG+98, Mwp07, Mao96, MKIO04, Mgl95, Mm+05, Mcm97, Met95, Mkr02, Maab14, Oaa09, Ong97, Psg06a, Psg06b, Psg06c, Pgo1, Phc09, Psv09, Pra95b, Rm00, Rr96, Rpong05, Sbn04, Sch91, Scv91b, Sin99, Sw16, Stv02, Swh9, Tsh99, T101, Tsa97b, Teln95, TEx+96, Tull96, Teln98a, Teln98b, Ur+03, Ur+03, Vpc02, Wlg+14, Ww93, Wcw+04b, Wcw+04c, Wcw+04d, Ycw+14, Lar97].

Multithreading-based [Ge08].

Must [Na07].

Mutable [HL93].

Mutex [Hol98b].

Mutual [Bre92].

Mysteries [Hol99b].

Name [Orh93].

Nanophotonic [Vsm+08].

Narrow [Yss+17].

NAS [Cre99, Gh98].

Native [SJ95].

Navigating [Tvd14].

NDP [Ano97a].

Nearest [Yj15].

Nearest-Neighbor [Yj15].

Need [Slg04, Rpt08].

Neighbor [Yj15].

Nelson [Ano00c].

Nested [Ew96, Nb99, Tg909, To00, Yz14].

Net [Ham96].

Net-Centric [Ham96].

Netburst [Km03].

Nets [KmJ02, Mck97].

Network [AcM98a, Rm03, ArB+02, Ch15a, Don02, Grs97, Hh11, Kml04, Kr+98, Ngga94, Yg10, Zp11, Bdm98, Gl07, KgpH12, Lz07, Lll10, Lch+08, Orc+07, Rcv+10, R Portsmouth05, Sta90, Zp04, Ph97].

Network-Facing [Kml04].

Network-I [Rm03].

Network-I/O [Rm03].

Networked [Ct00, Fkgk97].

Networking [AcM98d, Acm00, Hol12, Lck11, DwYb10].

Networks [AcM98a, Acm00, Hol12, Lck11, DwYb10].

Neumann [Hg92].

Neural [PwWd18].

Neurons [LTM+17].

New [Ano95a, Ano95b].

Newos [Tla+02, Gei01].

Newport [Use92b].

News [Bra97, Gar01, Mat97, Mcm97].

Newton [Cyy18].

Next [ArB+02, EeL+97, Tsv12, Ch04].

Next-Generation [EeL+97, Tsv12, Ch04].

Nexus [Fkgk96].

Nfs [Ano95a, Ano95b].

NFV [Gdsa+17].

Niagara [Kao05].

Nlm [Day92a, Day92b].

Nlm-Based [Day92a, Day92b].

NoC [Yl16].

Node [Tk98].

Nodes [Ehg95].

noise [Ga09].

Non [Caz02, Coo95, JLS99, Kiat99, LB17, Sgm+97, Tra91, Ann96, Rgk99, Scg95, Skg+11].

Non-blocking [Ann96].

Non-Deterministic [LB17].

Non-Intrusive [Caz02].

Non-invasive [Rgk99].

Non-numeric [Sgm+97].

Non-preemptive [Jls99].

Non-Strict [Coo95, Tra91, Kiat99, SgC95].

Non-uniform [Skg+11].

Nonblocking [Hh11].

Nondestructive [Ad08].

Non-determinism [Hbcg13].

Nondeterministic [Lps07].

Noninterference [Bc02, Smi06].
noninterruptible [AAHF09]. Nonlinear [Nak03, GOT03, Kub15]. nonoperational [GS00]. nonuniformity [WA08]. norm [Ano92a]. Note [AKP99, Lie94], NOTES [Gil88], notification [BF08]. Notifiers [Pom98]. Notre [IEE96]. Novel [HG91, GKK09]. November [ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a]. NOWs [SLGZ99]. NP [YZ14]. NPB [EGC02]. NT [Ano98b, Hig97, Pra95c, Pra95b, TC98, USE98a, Wei94a, Wei94b, Yam96]. NT-Style [Wil94a, Wil94b]. NUMA [LMC14, ZLW16]. NUMA-aware [ZLW16]. number [LSS12, SLF14]. Numerical [MR09]. Numeric [MLGW18, SGM97].

O [RM03, Ano95a, Ano95b, ABB15, BDN02, Ksu94, LTL16, Man98, MG15, Yoo96a]. Object [Ano99, BBD91, BC94, Gk94, Hh97, Kc99, Kim14, NPT98, Sj95, SG96, Ad98, Car99a, Cyz98, Cll16, Fw103, Fl90, Jps16, Ll1c15, Sch98, Wei98a, Yn02, db09, vPg03]. Object-Oriented [Ano99, BBD91, BC94, Kim14, NPT98, SG96, Hh97, Ad98, Car99a, Cyz98, Cll16, Fl90, Jps16, Wei98a, Yn02, db09, vPg03]. Objects [ACR01, Cjk95, Cr02, Low00, Pra95a, Ric99, Ten02, Yas95, Bak95a, Bri89, Dmb16]. object [Swi09]. Oblivious [Ual17, Hl08, Hz12]. Observer [Hol99b]. occupancy [Pab14]. Ocean [Sac98]. OCTET [Bkc13]. October [ACM94d, Ano94d, Bt01, Iee95]. ODBC [Ano00b, Hig97]. ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [Mhg95, Aac15, Dtk15]. off-chip [Dtk15]. Off-the-Shelf [Mhg95]. offs [Par91]. Old [Wil00]. On-Chip [Lkbk11, Smk10, TEl95, TEl98a, TEl98b]. On-Line [Ano00c, Fspd16, Fdl02]. On-the-fly [Sch89, Cws06, Ps03, Ps07]. once [Bak95a], one [Qshi16], one-sided [Qshi16]. Online [Ger95, Ott00, RCC14, Se98, Se99, Sra06, Tgo99, HF96, LW98, Rs97, Vg98, Vgk10]. only [Dli00, Mjf10, Nm10, Zjfa09]. onto [Lbv96a, Lbv96b, Lbv96c]. Open [Ano00c, Bmf16, Hai97b, Kr01a, Kr01b, Rbf19]. Open-Source [Ano00c]. OpenMP [Cha05, Arrv03, Bch03, Bra97, Bm03, B001, Crea99, Cdk10, Cm98, Dm98, Hd02, Ev01, Jy98, Kk93, Ls98, Ms92, Mr03, Mlc04, Mpd04, Ma03, Mg15, Mm14, Mui03, Naal01, Rab05, Slgz99, Th99, Tgsb05, Vre04, Rm99]. OpenMP-oriented [Mlc04]. OpenOpt [Nsp14]. OpenPiton [Bmf16]. OpenSPARC [Wea08]. Operand [Sp07]. Operating [ACM94d, Clfl94, Tl102, Gei01, Iee98, Iee94a, Ms87, Rel00b, Sef96, Ano92a, Ano92b, Bdm98, Bdrd91, Iee94d, Jef94, Jen95, Lv10, Lk09, Ply98, Rbf19, Rel00a, Rel00c, She98, Wav95]. operation [Dkg18, Rhh10]. Operational [Ckrw99, Ckrw97a, Ckrw97b]. Operations [Kks08, Klmd09, Scl05, Hmc95, Rd06]. Opportunistic [yl16]. Opportunities [Gj97, Hl08, Mus09]. Opr [Qshi16]. Optimal [At16, Lar95, Rcm12, Lep95, Lml00]. Optimistic [Whj95, Czs16, Dkg18, Vpq12]. Optimization [Bkg01, Cvd18, Gn96, Rnsb96, Syhl14, Tjy98, Tlmg17, Wj12, Amc03, Amph09, Dzks12, Got03, Koo93, Rkcw98, Sin99, To10, Zcsm02a, Zcsm02b]. Optimizations [Hyy15]. Jsb12, Ket06a, Lel99, Sut99, Abc09, Jsb11, Oa08a, Oa08b, Oa08c, Roh95]. Optimized [Sin97]. Optimizing [Dtk15, Smk10, TEl95, TEl98a, TEl98b].

P [Ano00b, Nik94, PR05]. P-RISC [Nik94]. P-STAT [Ano00b]. P-Thread [PR05]. Pacific [IEE98]. Pacifier [QSO14]. Package [Ano94c, FL90, HCM94]. packages [GOT03, OT95, PL03]. Packaging [RR93]. Packard [BLCD97]. Packet [AHW02, LCH+08, MVY05, WCZ+07]. page [CNV+06]. page-based [CNV+06]. PageRank [KG07]. Paging [FD96, FdL02, Sei98, Sei99]. Pagoda [YSS+17]. PaliLisp [KI95]. pain [Gus05]. Pajé [CdOS01, CSB00]. Palo [ACM01]. panel [Ano94c, Bak95b, HCD+94, IAD+94]. Paper [ABH+01, TKA+01]. papers [ACM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05]. par-monad [FKS+12]. parADE [KKH03]. Paradigm [EW96, JD08, JK15, PPA+13, BCG+95]. Paradigms [CM98, HD02, YMR93b, YMR93a]. Parallel [ABC+93, AMRR98, Ama89, ABNP00, ACMA97, Bap92, BC00, BFA+15, BE13, BBC+00, BTE98, CTS+17, CL05, CDK+01, CRN+00, DS16, Den94, EJ93, FHM95a, Gil94, GSC96, GJ97, GAC14, HMLB16, Hon94, HN91, JIY15, KTLK13, KI95, KEL+03, Kon00, KKD03, Len95, LHS16, LFA96, Mah11, MS02, Mar07, MG15, MRG17, Nak03, NS97, Pan99, QSa+16, Sch17, SCv91a, SAC+98, SRU98, WC99, YFF+12, ARvW03, ALS10, BBYG+05, BCM+07, BAD+09, BB00, Boo93, BE12, BBG94c, CAR08, CFK+91, Cha05, CSB00, Chr95a, Chr95b, Chr96, DLM99, DESE13, EV01, FHM95b, FD95, Fu97, GC92, Go97, GKK90, GEG07, GE08, GB99, HMC97, HF88, Hop98, HW93, IE97, JMS+10, Joe96, KTK12, Kep03, Kim94, LSS12, Lu94, MT02a, MT02b, MT02c, MR98, Mis96]. parallel [NJ00, NAP92, OdSSP12, RV+10, RHH10, SBCV90, Sch91, Scv91b, Sh98, SWYC94, ST98, SGS14, Ta13, TC95, VPQ12, VGK+10a, VGK+10b, WZSK19, WK08a, WK08b, WK08c, WOKH96, WTH+12, YCW+14, FR95, Vre04, WN10]. Parallel-Multithreaded [WC99]. Parallelism [AACK92, ABL92, BAA93, CSS+91b, DV99, EW96, FK15, FURM00c, GVT+17, GP95, DK02, LKBK11, LEL+97a, LEL+97b, MG99, MR94, Mar03, MCF99, NB99, RBA05, SPP99, SMD+10, SG96, Thr99, WS90, YBL16, Yoo96b, ALHH08, AKSD16, CSS+91a, CSS+91c, EE09a, FN17, FURM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KV+09, KO09, LAH+12, QOOQ+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDNB98, VV00, Wei98a, XSA08, YZ14, ZIG96]. parallelism-aware [LAH+12]. parallèlisme [Zig96]. Parallelization [CRE99, KC09, LVA+13, RM99, WZS08, YLLS16, AC09, DC07, JY+03, P003, RKM+10a, RKM+10b, RRMJ12, TFG10].
parallelized [CJ91]. Parallelizing
[BM91, WDC+13, KBF+12]. ParaLog
[VGK+10a, VGK+10b]. Parameterized
[BCR01, FK12]. Parametric
[Ano98b, FR95a]. Paravirtualization
[YSY+09]. PARC [Ong97]. Parsing
[BC00, Lar95, PCM16]. Part
[Ano92a, Ano92b, KR01a, McM98b, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, McM96b, McM98a].
Partial
[Loe97, RRP06, SP00b, Shi00, ZKW15].
partition [LZW17]. Partitioning
[AMRR98, Coo95, D'H92, EW96, SLJ+19, TG99, DCK07, LZZ+14, MKR10, SCG95, TG99, DCK07, LZL+14, MKR10, SCG95, WW96]. Partitioning-Independent
[EW96]. Pascal [Hay93]. PASCO [Hon94].
Passing [BWXF05, TLA+02, FGT96, KKDV03, PH97, PS01, Ada98, BCM+07, DLM99, FM92, PRS14].
Path
[BLG01, TAK+00, CTYP02, WCT98].
paths [OTY00, Ano95a, Ano95b].
Pattern
[Ano97b, EGP14, OR12, EG11, GBP+07, SCM05]. Pattern-Based [EGP14, EG11].
Pattern-recognition [Ano97b]. Patterns
[DS16]. PC [Mia90, CFK+91]. PCM
[AKSD16]. PCM-based [AKSD16]. PCs
[CRE99, NV94]. PDE
[Chr95a, Chr95b, Chr96, JD08]. PDES
[LM+17]. pedagogical [CMS03].
PegaSoft [Ano00b]. Pennsylvania
[ACM96]. Pentium [RGK99]. peptides
[MIGA18]. Per-node [TK98]. Per-thread
[Cha02, EE09b]. Perl [FSPD17].
Performance
[ACM98a, ACM98d, ACM00, Aga89, Aga91, Aga92, BS96, BL69, BRM03, BLG01, BNH01, BGH+12, BBSG11, Cal97, CRE99, CCH11, CCK+16, CH95, Cho92, CT00, CSM+05, CBX+00, CMBAN08, DWYB10, EGC02, FT96, FSPD17, FBFO1, FURM00, FGK97, Gal94, Gar01, GN00, HRR08, Hol12, HN19, IEE94b, JFL98, KZTK15, KS97, KTR+04, LCK11, LG06, Lep95, LMJ14, LMG+16, LHY16, Mah13, Man99, Mao96, MSM+16, MPD04, ME17, MKC97, MM14, NCA93, NBS+15, NGGA94, Par91, PH97, PS01, QSaS+16, RG03, RVOA08, RKK15, SCD+15, SLJ+19, TCI98, TT03, Tsa97a, TLGM17, We98b, WG99, WN10, YWJ03, ZL10, ZAK01, Zub02, AAC+15, APX12, AAKK08, BDWH12, BS10a, BMM09, BMV03, CML00, Car99b, CIM+17, Cho93, Divt95, Don92, DFK94, ECG+12, FL90, FM92, Fin97, FURM00a].
performance
[FURM00, GS02, GEG07, GLC99, HLB90, ICH+10, Kim94, KLI+99, LB95, LB96b, LBH12, LCH+08, LMC14, LBE+98, MLC+09, Mah11, MCMS10, McM97, PJZA07, PGB12, RGK99, SE12, SSKP+07, SQP08a, SQP08b, SQP08c, SKP+02, TMC09, TR14, TG09, Th95, VV11, Wan94, WZ+07, WOKH96, YZ07, YM92, ZJS10].
Performance-area
[Par91]. performance-energy
[AAC+15]. Performance-Oriented
[KS97]. performance-prediction
[BVM03].
Performance/Power
[RRK15]. performs
[Ven97]. perils
[Dye98]. Perl
[TLA+02]. Perl/Tk
[TLA+02]. persistence
[BHK+04]. personality
[CCW+11]. perspective
[AG06]. Perspectives
[PLT+15]. pessimistic
[CZSB16]. Petaflops
[SZ02]. Peter
[KMJ02, MKC97]. PGI
[Ano00b]. pH
[ACMA97]. Phi
[SCD+15]. Philadelphia
[ACM96]. Phoenix
[ACM03]. Photomosaics
[TLA+02]. Phylogenetic
[LHG+16, LBH12]. physical
[AMPH09]. PIC
[BVM03]. PicoServer
[KSB+08]. picture
[AC09]. Piecing
[Ano97b]. Pipelining
[GV95, RVOA08]. PIRATE
[ICH+10]. Pitfalls
[Hol98a, SPY+93, CL00, San04]. place
[SCM05, SGLGL+14]. placement
[NLK09, TE94a]. Plagiarism
[TLZ+17, TLZ+18, TLZ+16]. Plan
[DLZ+13, Pre90]. PlanICS
[NSP+14].
Problems
[DK02, Nak03, AR17, Bar09, FTAB14, FR95].

procedure [BGK94c, KASD07, LQ15].

process-oriented [BGK94c, BMD07, LQ15].

processor [ABC93, Ano00b, BCG08, BGH12, EHG95, GV95, HMNN91, HMOM91, HHOM92, KST04, KML04, KA005, Lvh12, MGQS+08, MG99, MTN+00, MVZ93, MB05, SW08, Sin97, ST00c, SZ02, SBK99, SUE+12, UAL17, WS08, AAF09, APX12, BEKK00, CL94, CY09, Cho92, EE10, Fis97, Fu97, Goo97, HFS88, HKN+92, HNX+92, HMM+92, KMD+98, Klo97, KBA08, LBvH06a, LBvH06b, LBvH06c, LCH+08, Lu94, MK12, Met95, Mow95, Mow96, OCR80+97, Raj93, Sha95a, SJA12, Sin99, ST00a, ST00b, STV02, Squ94, Sre93, Tsa97a, Tsa97b, TEE+96, VIA+05, WCW+04c, WCW+04c, WCW+04d, YNO9, ZPO4].

Processor-In-Memory [SZ02].

Processor-Oblivious [UAL17].

Processors
[ARB+02, AH00, Ano01, BF04, EEL+97, FT96, GJT+12, GSL10, KS16, KLG08, KU00, KLDB09, LPE+99, MHG95, MCF99, MR09, ÖCS01, PF01, RCM+16, RKK11, SU01, SR01b, URŠ02a, YG10, ZP11, Aaga98, Aaga91, Aaga92, AAC+15, BGDmWH12, BWDZ15, CS95a, CS95b, CN14, CDD+10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW09, GBP+07, KBF+12, LLL10, LBE+98, Luk01, MN03, MEG03, MTP12, Mis96, NB12, NZ17, PFF03, PAB+14, RGG+12, RCM+12, RPNT08, SLP08, SMS+03, URŠ02b, URŠ03, ZSB+12, WM03].

process [Zig96].

Procs [MT93].

Products [Ano97a, Ano00b, Bra97].

Professional [Ano00b].

Profiler [BMR94].

profiler [DTLM14].

profiling [DG99].

Program [Ch15a, DSR15, EFN+01, GN96, KK14, NBM93, PF01, PS01, SY00, TLE+17, TLZ+18, TJY98, YLL16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, EFN+02, FRT95, JEV04, JPS09].

Programmability [THA12].

programmable [PYP+10].

programmation [Swi09].

programmed [PAPA13].

Programmer [Cro98, Wil00, MS87, San04, Swi09].

Programming
[ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG+10, BTE98, But97, CMK00, CV98, CDK+01, Chl15b, CT00, CW98, DM98, FHM95a, FTP11, HCD+94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KHH03, KSS95, KSS96, KIAT99, LB96a, LB00, Lvh12, Mas99, NBF96, Nor96, PG99, QOQ09+09, QOIM+12, Rod95b, SBB96, TC98, Vre04, Wil97, YFF+12, dPRGB99, van95, ALS10, AR17, AG96, ABG+08, BCHS00, BO96, BLYNO9, Bir99, CFK+91, Car89a, CRO00, CMS03, Cha05, CYZ98, DSH+10, EV01, FHM95b, GKE12, Gil94, Gol97, GL07, HMC97, Hyd00, JPS+08, JHM04, KIM+03, Kim94, LB98, LP09, Man96, MSM+10, MKI004, MR98, Mix94, NHFP08, Nev99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV96c, SV96a].

[HH11, Lee06, YFF+12, BIK+11, Mit96].
SV96b, She98, She02, Sun95, TB97a, TB97b].
programming
[TMAG03, Wal00, WCC+07, Yan02].

Programs
[ABPN00, BBFW02, BE13, BLG01, CC14, CJW+15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, EGP14, FQS02, GKCE17, HLB94, JBK18, Kr98, LCS04, Lun97, Lun99, MS89, MGK+00, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYHL14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BRRS10, BK13, BCG13, BGC14, Blu95, BE12, BC02, BS10b, BNS11a, BNS11b, CNS12, CZWC13, CJ01, CL00, CLL+02, CVJL08, Cor00, DJLP10, Dii00, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FQS05, FF08, FY08, GMR09, GRS06, GPR11, HZ12, JPS+08, JWTG11, JFL98, KC09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, OdSSP17, PA+17, PDP+13, PS03, PS07, RVS13, Re95, RS07, SR01a, SGG14, SRA06, Sen08, SP00b].

programs
[Shi00, SP05, SGS14, Sto02, Taf13, TR14, TLZ+16, WS06, WTH+12, XSa08, YC+14, YNPP12, ZJS10, ZJS06, dB09, vPG03].

Progress
[FSPD17, TLGM17, ZHCB15].

Progress-Aware
[FSPD17].
Progressive
[BBdH+11, TGO00].
Project
[Ano99].
projection
[SSkP+07].

Projections
[MQLR16, MLR15].
proliferating
[Ano94b].

Prolog
[EC98, AR17, KA97, MGK+00].

Promises
[Gar01].

Proof
[Add03, ÁdBdRS08, FK15, ÁdBdRS05, GLPR12].
properties
[KTLK13, V97b].
proposition
[GP05].
Proposed
[GV95].
protect
[San04].
protecting
[ZJS+11].
Protection
[CLFL94].
Protein
[BCCS].
Protein-Protein
[BCS11].
Protocol
[GR97, I1101, AB00, KAS07, QS14].
Protocols
[AB01, AB02, GRR06, TVD14].
Prototype
[BMR94, HHOM91, HHOM92, BK96, BVG97, Far96].
prototyping
[PDP+13].

Provably
[DJLP10, GB99].

provide
[Way95].

provides
[Hig97].

Providing
[PSM01, PSM03].
proving
[Taf13].

Provisioning
[FGG14].
pseudorandom
[SLF14].
PTF
[Yam96].

Pthreads
[NBF98, Yam96, LB98, AS14, NBF96].

Publications
[Bee98].
Publishing
[Ano00b, Hig97].
purity
[FFQ04].
Purpose
[Ber96b, HSS+14, Man98, ZSA13, Ber96a, DC99, DC00, HSD+12, SKA01].
Put
[Wal95].
PVM
[DL99, DPZ97, Pla02, ZG98].

PVM/MPICH
[DL99].
Python
[Swi09, How98, Pul00].

Q
[Ber96b, Cri98a].

Q&A
[Cri98b, Hag02].

QoS
[ICH+10, PSM01].
QR
[Dav11].

quality
[PSM03].

Quantitative
[NBM93].
Quasi
[Pla02].

Queries
[TGO99, TGO00].
query
[GARH14].

QUERYFLEX
[Ano97a].
queuing
[HK96].
Queue
[Cri98b, Cri98a].

queues
[SCM05, ST05].
Quoting
[VK99, KPPER06].

QuickRec
[PDP+13].

quicksort
[Mah13].

R3000
[Ar92].
Race
[HM96, KUCT15, LS18, MKM14, SBN+97, Sen08, Yan02, ZLJ16, AFF06, AHK08, EQQT07, FF09, HR16, HHPV15, MMN09, NA06, NA07, PS03, PS07, PFH06, RVS13, WDC+13, XHB06, DWS+12].
race-freeness
[AKH08].
RaceFree
[LZW+13].
Races
[KZC15, FF10, NWT+07, PR07, PT03, RB+09].

racy
[SRR15].

RADISH
[DWS+12].
Ramada
[Ano94d].

Ramada-Congress
[Ano94d].
random
[LS12, Sen08].
random-number
[LS12].

Randomized
[Sei98, Sei99, JPSN09].
Rank
[AJK+12, Dav11].
rank-revealing
[Dav11].

Ranking
[DV99, VV00].
ray
[Tod95].

RCDC
[DNB+12].
RCU
[CKZ12].
Reachability
[LCS04, LQ15].
reachability-modulo-theories
[LQ15].
Restart [ZSA13]. Restore [Ano00b].
restricted [ABG+08]. restructuring [BVG97]. Results [GV95, GR06].
Retentive [RRK11]. Rethinking [Xue12, Len95]. retrieval [CML00].
Retrospective [TEL98a]. Reusable [Han97]. Reuse [BCZY16, KZTK15], JSB+11, NAAL01, PHCR09], revealing [Dav11]. Reverse [Coo02, LSB15, WCV+98]. Review [Lar97, Van97a, Vre04]. Reviews [Bra97].
Revised [Cha05]. revisionist [PT91]. Reviving [TLZ+17, TLZ+18]. revolutions [ECX+12]. Rewriting [BGK94a, BGK94b].
RP3 [CJ91]. RPC [Tod95]. RPython [MRG17]. RTOSS [IEE94a, IEE94d]. RTR [XHB06]. Ruby [OCT14]. rules [GLPR12]. Run [EJ93, LFA96, Swe07, SS96, Fra95c, TNB+95]. Run-Time [EJ93, LFA96, SS96, TSY99, TNB+95].
running [Cal02, MLCW11, SSN10]. runs [Hig97]. Runtime [ABN99, ABN00, ABB+90, ABN00, BJK+96, BFM09, CZ9+17, DNR00, FSS06, KPC96, NPT98, NS97, QOIM+12, SSP99, WS06, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EQt07, Go97, Ong97, TSY00, TAM03].
runtime [RL14]. Russians [KNPS16].

SableSpMT [PV06]. SAC [GS06]. Safe [BCL+98, Kle00, Loc18, Loc00, NH09, Pla02, AFF06, BYLN09, DMBM16, Fed08, GCC99, GOT03, Gro03, NHFP08, Nvr99, Rin99].
Safe-for-Space [BCL+98]. Safety [Hag02, Pla98, Ric99, SP00a, GPS14, Sam99, San04, SRA06, Taf13, Van97b, Ven98, Yen02]. safety-critical [San04]. Salt [Hol12].
Sampled [JYE+16]. sampling [MMN09]. San [ACM93b, ACM94d, ACM95b, ACM98b, USE89, USE92a, USE93b, USE98b, USE00a, USE02]. Santa [Gol94, WP10]. SAT [VSDK90]. Save [Pla93, Dye98]. saving [Mus09].
SC-preserving [MSM+11]. SC+ [LCK11].
SC2000 [ACM00]. SC2002 [IEE02].
SC2003 [ACM03]. SC98 [ACM98d].
Scale [ACM98d]. SC+99 [ACM99b].
Scalable [BMBW000, CC14, CH94, CKZ12, IEE94b, KUCT15, LMJ14, MLCW11, Mic04, SS96, ZLW+16, BMBW000a, BMBW000c, GW10, LZ07, Mao96, PWD+12, SCZM00, WZSK19]. scalar [GL98b, ZCSM02a, ZCSM02b]. Scale [CC14, CJW+15, HC17, LA93, PWL+11, AG06, BCM+07, GOT03, SMK10, KBA08].
scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16].
Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RV04]. Schedulability [Kim14]. Schedulability-Aware [Kim14].
Schedule [MQLR16, MLR15, NAAL01, WTH+12].
Schedulity [ABLL92, BD02, FSPD17, GJT+12, QSaS+16, SR98, SS95, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSAJ08].
Schedulity-Centric [BDN02].
scheduler-oblivious [HZ12]. schedulers [NBMM12].
Scheduling [BL94, BL98, BL99, FS96, FSPD16, GR06, JL99, KLB09, NB99, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSMP12, KKJ+13, KJP+03, MS96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TASS07, WHJ+95, ZSB+12].
Scheme [ABN99, PJS15, SKK09]. Schur [YFF+12].
Scotland [AOV+99]. SCP [SLJ+19].

Scriptics [Ano00b]. Scripting [RBP00]. Scripts [TLA+02]. Seamless [CV98].

Search [AMRR98, BCCO10, LAH+12, Mah11]. searches [TCG95].

ACM93c, IEE94a, IEE94d, LCK11, USE98a. sec [AHW02].

Second [IEE89, IEE96, FR95]. Section

[DSR15, CS12, DTLM14, SMQP09, YL16].

Section-Based [DSR15]. sections [NM10].

Secure [SV98]. Security

[BRRS10, MS03, Way95]. sedition [Bak95b].

SEDMS [USE92b]. See [Swe07, AC09]. segmentation [BG14]. Select [KKDV03]. selected [Ch05]. Selection

[AT16, PR05, Sta90]. Selective

[Nak03, PR98, VACG09, MCRS10]. Self

[LLLC15, Pet00, SEP96, BDF98, SLP+09].

Self-Allocating [SEP96]. self-healing

[SLP+09]. self-migrating [BDF98]. Sema

[Kor89].

semantic

[BNS11a, BNS11b, BNS12]. Semantics

[BR15, CRKW99, HEJ09, MP01, CRKW97a, CRKW97b, KT17, ZHC15].

Semantics-aware [HEJ09]. Semaphore

[Hol98b, Kor99]. Semaphores [Hol98c].

semiconductor [Ano97b]. Semidefinite

[YFF+12]. Seminar [Nev99]. sense

[Bak95b]. Sensible [LMA+16]. Sensitive

[CC04, DC99, DC00, PFH06, ZJS+11, LG04].

Separation

[SCG95, TFG10, TVD14].

September

[ACM93c, AOV+99, DLM99, FR95, Hon94, IEE89, USE89b]. Sequences

[GH03, FTAB14]. Sequential

[CV98, TLZ+17, TLZ+18, CRKW97a, CRKW97b, SCG95, SNM+12]. serialization

[BHK+04]. Server

[Ano00b, Cal97, Day92a, Day92b, Smi92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB96, Sho97b, Sta90]. server-side [SBB96]. Servers

[RCC12, BDM98, BBYG+05, BEKKK00, KSB+08, RPNT05, SV96c, SV96a, SV96b].

Service

[CGK06, GMW09, Hig97, PSM03]. services [LZ07]. session

[Bak95b, HCD+94, IAD+94, VGR06].

sessions [Ano94c]. set [Aru92, KBF+12].

Sets [MNG16]. Seven [But14]. several

[FGG14]. shader [PY+10]. shallow

[LVA+13]. Shanghai [IEE97]. shape
[Cor00, GBCS07]. SharC [AGEB08].

Shared

[BWRF05, BS96, DM98, EJ93, GMR98, GH98, LB92, MVZ93, MCT08, STY99, SLJ+19, Thr99, VBO0, WC99, YMR93b, BB00, Boo93, DLCO09, DPZ97, EKKL90, EV01, Gle91, ISS98, Jef94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, ZSB+12, dB09, Ch05].

Shared-Memory

[BS96, DM98, EJ93, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN09].

shared-variable [dB09]. Sharing

[CLFL94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10].

sharing-aware [TAS07]. sharing-based

[TE94a]. Shelf

[MG95]. shell

[Ric91].

Shift [Ham96]. Shinko [Ano00a]. Shop

[Bec00]. short

[CPT08, Lie94]. shortage

[Ano49b]. Should

[EHP+07]. SICStus

[EC98]. side

[MMTW10, SBB96]. sided

[QSHI16]. SIGACT

[ACM93a, ACM94b, ACM95b, ACM98b]. SIGCOMM

[RM03]. Signal

[Eng00, BM91]. Signals

[GG06].

Significance [ZJS12]. SIGPLAN

[ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT

[ACM93a, ACM94b, ACM95b, ACM98b]. Silicon

[LB17, THA+12]. SIMD

[FSYA09, SW08]. Simple

[AKS06, Ch15b, WS08, BDLM07, CL00, MSM+10].

SimpleGraphics [MKK99]. simplify

[PO03]. Simplifying

[Pom98]. SIMT
Simulate KBF HMN [CLFL94]. Single-Address-Space [YSY single-and LE]. LEL MLCL SW16, ST00a, ST00b, STV02, SMS REL00a, REL00c, RM00, RPNT05, SLG06, TSCH99, TEE [Ano05, CSK]. Simultaneous [HHOM91, MTN]. Single-program [CLFL94, Dub95]. Single-thread [MC*90]. Single-Threaded [EHP+07, JBK18, Pra95c, VIA+05, YZ07, YSY+09]. Single-Address-Space [CLFL94]. single-and [YSY+09]. Single-Chip [HHOM91, MTN*00]. Single-ISA [KTR+94]. Single-Process [FT96]. Single-program [Dub95]. single-thread [MC*90]. Single-Threaded [EHP+07, JBK18, Pra95c, VIA+05, YZ07]. Singleton [Cha02, Rin99]. Situ [RGK99]. sixth [USE98b, ACM94d]. size [LML00]. skyline [WZSK19]. slave [TJY+11]. slice [PSG06a, PSG06b, PSG06c]. slice-based [PSG06a, PSG06b, PSG06c]. Slices [MGQS+08, PF01]. Slicing [Kri08, FRT95, NR06]. SlicK [PSG06a, PSG06b, PSG06c]. slower [Pra95c]. small [Koo03, MM07]. Smalltalk [Bri89]. Smalltalk-80 [Bri89]. smart [Sim97]. SMP [BWXF05, BHN01, CRE99, HD02, KKH03, KJJ+13, Pra95c, TAS07, TMAG03]. SMPs [WG99]. SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, KLG08, KI16, MG99, MMM+05, NSP+14, PADS+17, PAB+14, PLT+15, RPNT08, SLP08, TAS07, VS11, WA08]. SMT-based [KI16, PADS+17, PAB+14]. SMTp [CH04]. Soft [PSM01, PSM03, SSN10, VACG09]. Software [An097a, An098b, An099, An000b, BCR01, BCG+08, Gar01, Gon90, GJ97, HB92, Han97, HSS+14, IEE94a, KE15, LPE+99, PJ95, SZM+13, SD13, TLZ+17, TLZ+18, YBL16, ATLM*06, AC09, ABC+09, BT01, Bra97, CDD+10, DP97, GLP12, Ha97a, HSD+12, IEE94d, KHH04, KSD04, KASD07, LT97, Lu01, MWP07, MCRS10, MGL95, MEG03, NHFP08, OAA09, OL02a, OL02b, LO2c, PV06, RKM*10a, RKM+10b, RVOA08, S04, S05, SLP+09, S08, TNB+95, WCZ+07, WCV+98, YSY+98, ZHC15, DW+12]. Software-Controlled [BCG+08, Lu01]. Software-Directed [LPE+99]. Solaris [Cat94, LUN97, LUN99, MM01, MCM97, Pra95b, Sun95]. Solution [An098b, SBC91, WP10]. Solutions [An000b]. solve [Bar09, MM07]. Solver [YFF+12, Kub15, RM99]. Solvers [MR09, Nak03, AAC+15, ZCO10]. Solving [ABD+12, FTAB14, Loe97, VSDK09]. SONET [AHW02]. Sort [GH98, RHH10]. Sound [WTH+12, DSW+12, FFY08, NFSB17, WQLJ18]. Source [An000c, BMF+16]. sources [SJ95]. South [ACM93a, An094d]. Space [BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GRS97, GN96, NB99, PWL+11, Sch17, FFW03, KNPS16, KASD07, Lie94, LHS16]. Space-Efficient [BL98, NB99, BL93, KNPS16, KASD07, LHS16]. Spacecraft [SR98]. Spaces [FKP15, CKZ12, KGKK09]. Spain [ACM95a, DLM99, ACM98c]. SPARC [Cat94, KAO05, MD96]. Sparce [ABC+93]. Sparse [But13, YFF+12, CSV10, DAV11, DTR18, MM07, PHCR09]. spatial [WZSK19]. spatially [PPA+13].
spatially-programmed [PPA+13]. Special
[Ano94e, GGB93b, KU00]. specialization
[WTH+12]. specialize [CWS06].
Specialized [dlPRGB99]. Specific
[Ste01, SP00b, Shi00]. specification [Stä05].
specifications [TVD10]. Specifying
[BNS11a, BNS11b, BNS12]. spectroscopy
[KC09]. spectrum [DKF94, Sha95b].
Speculated [SCL05]. Speculation
[SU01, WS08, YBL16, DG99, GB99, JEV04,
LWV+10, MT02a, MT02b, MT02c, NB12,
PO03, PT03, SCZM00]. Speculative
[AH00, Ano01, Ano02, BF04, IBST01,
KLG08, MQQS+08, MG99, MT02a, MT02b,
MT02c, RKM+10a, RKM+10b, SR01b,
TFG10, WWW+02, ZJFA09, ZL10,
CHI+03, DC07, Dub95, KOE+06, KT99,
LZW17, LZL+14, NB12, OL02a, OL02b,
OL02c, PV06, SMS+03, VS11, XIC12,
ZCSM02a, ZCSM02b]. speech [LG04].
Speed [Ano00a, Ano03, GV95, HG91,
MR09, HG92, Pra95b, SRS98, TO10].
Speed-up [MR09]. Speedup [Lun99]. Spin
[LLS06]. SPIRAL [MJF+10].
SPIRAL-generated [MJF+10]. splittable
[SLF14]. spots [Gle91]. spreading
[CWS06]. SPSM [Dub95]. SQL [CGK06].
squares [FTAB14]. squash [MK12]. SR
[BO96]. SRAM [kSYXH+11]. SMT
[CSK+99]. Stabilizers [ZJ06]. Stabilizing
BCM+07]. stable [YC+14]. Stacey
[Ano00c]. Stack [Eng00, Xue12]. Stackable
[Loe05]. stacking [KSB+08]. Stackless
[MS15]. stacks [DESE13]. StackThreads
[TYY99]. StackThreads/MP [TTY99].
Standard [DM98, FSS06, WK17, BCL+98,
Bra97, MT93, Pha98, Pha99].
standardization [Bet73]. Standards
[Thr99, TTY99]. Standing [TLA+02].
Stanford [IEE99]. STAT [Ano00b]. State
[Laf00, LP94, RRK11, Wei98b, Cor00, T+94,
TFG10, WHG07]. State-Retentive
[RKR11]. Statechart [KW17].
Statechart-Based [KW17]. stateless
[MQ08]. Static [GPS14, Kri98, Lun97,
SCB15, WW96, vPG03, Fer13, NAW06,
NA07, AFF06, FFLQ08]. Static/dynamic
[SCB15]. Statistical
[Ano00b, RCM+16, Lan97, RCM+12, Ten97].
stealing [ALHH08, BL94, BL99, RL14].
Step [Sho97a, Sho97b, ZG98]. Stethoscope
[Caz02]. Stochastic [DK02, LTM+17].
Storage
[AT16, Hol16, LCK11, Bak95a, Blu92,
DZKS12, KOE+06, MM07, PDMM16].
stores [TAN04]. strand [RCV+10]. strata
[NPC06]. Strategies
[PSCS01, AGB08, FGG14]. Strategy
[BGK96]. Stream [KSU94, SG18, SG18].
Streaming [HHOM91, HHOM92, KEL+03].
Streaming/FIFO [HHOM91, HHOM92].
Streams [Pre90, SPY+93]. Strength
[Kon00]. Strict
[Coo95, FS96, Tra91, KIAT99, SCG95].
Strictly [Ano00c]. Strong
[CWNB03, KZC15, MTC+07, ZHCB15].
Structural [CKRW99]. structure
[BB00, YKL13]. Structured [TCI98, FR95].

Structures
[RCHR95, AGN09, GoI97, ND13]. students
[Fek08]. Study [AGK96, Chl15a, EGC02,
HMT+96, LSBI5, Sat02, TAK+00, VK99,
WG94, YMR93b, Bria9, CASA14, CL00,
Fis97, HJ3+93, HF96, KPPER06, MGL95,
SP05, Sod02, Tra97a, YMR93a].
Style [Wil94a, Wil94b]. subdivision
[MITS01]. subordinate [CSK+99, CTYP02].
Subsetting [AJK+12]. Substrate
[ACMA97, Hai97a, JP92].
Subsumption [Man91]. Suffix
[OR12, LHS16].
SugarCubes [BS00]. Suite
[BTE98, BO01, TG99]. Suites [SPDLK+17].
SuiteSparseQR [Dav11]. sum [TDW03].
summary [I+94]. Summer
[Ano94f, USE92a]. Sun [McM97]. SunOS
[Cat94, PKB+91]. super [Kus15].
Supercomputer [VTSM12, Gil94].

Supercomputing
[ACM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c]. **SuperLU** [Li05]. **SuperMalloc** [Kus15]. **Superscalar** [SU96, Div95, Fis97, Gui95, Loi95, Men91]. **Supertreading** [Tsa97b]. **Support** [ACM94d, ABLL92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KC99, ME15, MS89, NS97, PTMB90, SSP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CKD94, CHH+03, CSS+91a, CSS+91c, Evr01, Fan93, HMC95, MW97, MEG03, MS87, Men91, TSY99, TSY00, TNB+95, WK08a, WK08b, WK08c]. **Supported** [Add03, ZP11]. **Supporting** [RCR95, Sam99, SP00a, DC99, DC00, TDW03]. **surprise** [JWGT11]. **surgery** [MCS15]. **Surprises** [BC98]. **Survey** [Man96, ZSB+12, Cat94, UR90a, UR90b]. **Survival** [Ano99]. **Surviving** [Ano99]. **SVR** [SPY+93]. **swap** [MLS15]. **Swing** [Gea98]. **Switch** [GN00, Eic97, GWM07]. **Switzerland** [Lak94]. **Sy** [USE01]. **Symbiotic** [Bri89, EE10, EE12]. **Symbiosis** [ST00a, ST00b, ST00c, ST00d]. **Symbolic** [ACM94c, BGC14, Hon94, Lak96, Wat91, BHKR95, Fuj97, HF88]. **Symmetric** [BMV03, NV94, BIK+11, Pra95b, RGK99, Sha98]. **Symmetry** [ES97]. **Symposium** [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. **Synapsys** [Col90a]. **SynchroTrace** [SLJ+18]. **syntax** [KT17]. **Synthesis** [FN17, HB15, Sch17, MP89, SR14, STR16, WQL18]. **Synthesizing** [GLPR12, Kim14, SRJ15]. **synthetic** [GJ11]. **System** [Add03, Adlr98, AJK+12, Ano98a, Ano00b, ABN99, ABH+00, BM94, BBD+91, BJK+96, BTE98, CLFL94, CC18, DMR00, FG91, Ge91, HMT+96, KMG01, KS97, MS89, NPT98, PH97, PST+92, Pea92, PLT+15, QOM+12, REL0b, SEP96, S93, SG96, TCI98, VSM+08, Yam96, Adlr99, AAC+15, Ano96, Ano97b, A+01, AR17, BBF03, BDM98, BCHS00, BAD+10a, BAD+10b, BJK+95, BAD+99, BLC97, Cat94, Gil98, Hig97, Joe96, Lan02, MHW02, MS87, Met95, MTC+07, MC06, OCRS07, PRB07, Ply89, Pom98, RE0b, RL00c, RD99, She02, TKA+02, TLZ+16, TM03, WCC+07, WZWS08, WZSK19, TL+02a, EKB+92, MS87, Pea92]. **System-** [PLT+15]. **system-level** [OCR07]. **systematic** [MQ07]. **SystemC** [RB+09]. **SystemC/C** [RB+09]. **SystemC/C-based** [RB+09]. **Systems** [ACM94d, AG06, Ano00b, ABN00, BMN99, Bre02, BC94, CCH11, CvdBC18, Dru95, FMY+15, FGKT97, GHG+98, GJ97, HR08, HKS06, IEE99, IEE99a, KR12, KKH03, KG05, KUCT15, KW17, LSL06, LMA+16, LYH16, MS15, PGB16, RW97, RR03, SUI+12, SS96, USE92b, Wa95, WC99, Zub02, Ano92a, Ano92b, BCM+07, BC02, Cat94, DCK07, DWWB10, DKZ12, DSH+10, DBRD91, GJ11, Go96, GKK09, HJT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Jef94, Jen95, KKH04, Kub15, LYN10, LLL15, Leg01, LAG09, LVA+13, MLC+09, MGL95, MM07, NFB17, PB0D92, RC+10, RBF+99, RSS+99, RV04, SCC13, She98, SP05, Sim97, SJB92a, SJ92b, ST05, Wei98a, WC+98, Ano98b]. **systolic** [PYP+10]. **T** [Ano00c, NPA92]. **T/TCP** [Ano00c]. **T1**
Table [VB00, KNPS16]. tabling [AR17].
Tabu [AMRR98]. taint [ZJS+11].
TaintEraser [ZJS+11]. Take [Wei97].
taking [Ano94b]. Talking
[Ano94c, HCM94]. TAM [CGSV93].
Taming [Hol00, HBCG13, HHPV15].
TapeWare [Ano00b]. Target [MIGA18].
targeting [LGH94]. Task [CKK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12].
Task-Level [GP95].
Tasking [CvdBC18, Dil93, KR01a].
Tasks [Fin95, PVS+17, YSS+17, FGG14].
Taxonomy [HM96, SPH96].
TC2 [BT01].
TC2/WG2.5 [BT01]. Tcf [Ass96, USE96, USE98b, USE00b, Ama98, MKK99, SBB96].
Tcl-based [Ama98]. Tcl/2k [USE00b].
Tcl/Tk [Ass96, USE96, USE98b, USE00b, MKK99].
TCP [Ano00c, Ano00c].
Teaching [Fek08, CS00, She02].
TeamWork [CZWC13].
Technical [USE00a, Cal94].
Technique [JSB+12, KG94, Len02, OC501, PGB16, JSB+11, JPSN09, LH94, MIGA18, RS07, UZ001, VAGC09, WC+98].
Techniques [DS16, EKKL00, GS02, Han97, NLK09, PFW+11, TGBS05, Zigm6, BR92, GEG07, OCRS07, Prah07, RCG+10, SV+96, SV+96a, SV+96b, ZSB+12].
Technologies [An000b, An09b].
Technology [Bra97, KM03, LB00, USE01, VSM+08, KSB+08, Tsa97b].
TeleNotes [WSK97].
temperature [CCC12].
Template [Cal00, How98].
Ten [Ano99].
Tennessee [IEE94b].
Tera [BTE98, Mat97]. Terabytes [IEE02].
Term [BGK94a, BGK94b, BGK96].
Termination [JKB18, TDW03].
Test [Ama98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, KI16, SR14].
test-case [KI16].
Testing [BBdH+11, Goe01, LCS04, RCC14, SK12, BGP06, CBM10, EFG+03, EHSU07, MQ07, Sen08, NYPP12].
tests [SRJ15].
Texas [USE92a, USE00b].
TFlux [DTLW16].
tgMC [LHG+16].
Their [YWJ03, Gil94].
them [Ano92a, Ano94b].
Theoretic [ES97].
thories [LQ15].
Theory [ACM93b, LLD17, NFBB17, WLK+09].
there [Ano94b].
thermal [WA08].
though [Ano94b].
Thread [Ano00c, ABN99, ABN00, Bet73, BS99, CNQ13, Cal97, CC04, Cha02, Co90a, DSR15, DGK+03, Don02, Eng00, FD95, FURM00a, FURM00c, FURM00b, GF00, GJT+12, GP05, GBCS07, Ha02, Hei03, HG91, ISS98, KG05, Kim14, Kle00, KBH+03, KBH+04a, KBH+04b, LLL10, LHY16, LEL+97a, LEL+97b, Low00, LDL17, Man99, MG99, MTN+00, MB05, MCTF99, ND96, Pan99, PR05, PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, Rod95b, SKS+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WG99, Wei97, Whi03, YBL16, ZP11, AMRR98, ABG+08, BKC+13, BHK+04, BC02, CZSB16, CZ02, CS+05, DMBM16, DG99, DWYB10, Don92, DBRD91, Eic97, EE09b, Fek08, GP08, GTO03, GLC99, Hyd00, JEV04, KDM+98, KC90].
thread [KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZZ+14, Lo95, MLG+09, MTO02a, MTO02b, MTO02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QOQOV+99, SKG+11, Sla05, SLG06, SP000, Sh00, SPAH96, SS+05, SD13, SLT12, Sta05, SJS95, SCZM00, ST05, SS10, Tan87, TE94a, TLZ+16, TCC95, Tra91, Van97b, Ven97, Ven98, WS08, YZ14, SKP+02].
Thread-Aware [LYH16].
Thread-Based [KG05, CNQ13, SKS+92].
Thread-Level [LEL+97a, LEL+97b, MG99, YBL16, FURM00a, FURM00b, MCTF99, WS08, DG99, JEV04, KC09, MTO02a, MTO02b, MTO02c, PO03, PT03, QOQOV+99, SCZM00, YZ14].
Thread-Local
Thread-management [RCG+10]. Thread-Private [Man99]. thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, Rin99, DMB16, Fek08, GOT03].

Thread-Sensitive [CC04]. Thread-Specific [Ste01, SP00b, Shi00]. thread-switch [Eic97]. threadbare [Bak95b].

Threading [BFA+15, CvdBC18, DHR+01, Hol98d, KS16, LKBK11, MLGW18, MeC97a, MeC97b, MS15, Nor90, OR12, PTMB09, RCC14, Re01, Sch90, TGO99, YLLS16, Bak95a, BM07, DTLW16, FWL03, LZW+13, MLC+09, MCFT99, NJ00, RRP06, RVR04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04].

Threading-Based [KSi16]. ThreadMentor [CMS03, She02]. Threads [Ald94, Ano94c; ACR01, Ber96b, BCL+98, Boe05, BLPV04, Cal00, CGR92, Col90b, Cri98b, Cri98a, TLA+02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HBGO1, Hol00, How00, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MP89, McM96c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, San04, SEP96, TG99, WCW+04a, Wil94a, Wil94b, Wil97, Yam95, Yam96, dIPRGB99, Ano02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, But14, But97, CZWC13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FHM95b, FL90, GP05, Gol97, HCM94, HMC95, Hai97a, HBGO2, HJJ+93, HKT93, HKN+92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Kan94, KE95, KSS96, Lan02, LZO7, MSLM91, MR98, MQW95, McM96a, McM96b, McM98a, McM98b, Men91].

threads [Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, PSM03, Pan99, PG03, PL03, RR03, Sch91, SCSG95, SZG91, SZ92, SCM05, SKP+02, TAN04, WCW+04b, WCW+04c, WCW+04d, Wei98a, WCW+98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a]. Threads.h [Ano00b, TB97a, TB97b]. ThreadScope [WT10]. Three [YMR93b, YMR93a]. Throttling [LG06]. Throttling-Based [LG06]. Throughput [GJT+12, Wea08]. Tightly [MTN+00, LZZT15]. TileDB [PDMM16]. Tiles [QOIM+12]. Time [BC94, CIM+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSCS01, SUF+12, SS96, Tet94, dIPRGB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBP+03, KASD07, KFB+12, MKK99, ND96, OT95, OdSPP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92,
SJBJ92a, SJB92b, TSY99, TNB+95. time-
[KASD07], time-critical [RGG+12].
time-efficient [GB99], time-shared [Je94].
timely [NH09], Timers [Ho99a, GRR06].
Timethread [BC94], Timethread-Role
[BC94]. Timing [SK97, MHW02].
timing-first [MHW02]. tiny [Xue12]. Tip
[Petto0].

Tips
Tolerant [MTS10, PG01, RRP06].
tolerance [Ano00a].
together [MKK99].

KR01a, KR01b, KGGK09, RKM
[Ano00c, DTLW16, SKBY07, BD06, Dan09,
OCT14, VTS12, ZHCB15]. Transactions
[An000c, DTJW16, SKBY07, BD06, Dan09,
KR01a, KR01b, KGK09, RKM+10a,
RKM+10b]. Transform
[HN91, LHS16, TKHG04, TT03, TTKG02].

transformation [TSY00]. transformations
[AC09, D'H92, JMS+10, VV11]. Transient
[RM00, VPC02]. Transient-fault [VPC02].

Transitive
[YMR93b, XHB06, YM92, YMR93a].

translation [KBF+12]. translator
[TJY+11]. Transparency
[GGKE17, KBH+03]. Transparent
[ABN99, LVD10, SLGZ99, ZSA13].

transport [GRS97]. transposition
[SGLGL+14]. trap [Ram94, GR97].

trap-based [Ram94]. Tree
[Pla99, BCC10]. trees [AD08, CKZ12].

Trends [Gar01]. TRI [ACM93c]. TRI-Ada
[ACM93c]. triangular [BK17]. Trick
[Eng00]. Tridia [An00b]. tridiagonal
[ZCO10]. trigger [Kho97]. Triggered
[PPA+13]. Troy [SS96]. TSGL [ACD+18].

TSO [HH16]. Tumbler [PG16]. Tune
[RGK99]. tuned [An05a, An05b, Kub15].

Tuning [LEL+99, CSB00, RGK99].

Tunnelling [Don02]. Tutorial [Taf13].

Twentieth [ACM94a]. Twenty
[AOV+99, ACM93b]. Twenty-fifth
[AOV+99, ACM93b]. Two
[BBH+17, CM98, JYE+16, STY99, GLC99].

Two-Level [JYE+16, BBH+17, STY99].

TX [Cha05, ACM00, USE91b]. TxRace
[ZLJ16]. Type [Gro03, Loc18, VGR06,
BAD+09, GE08, Lan02, Mil95, PRB07].
type-checking [Mil95]. Type-Safe
[Loc18, Gro03]. typed [DBB16]. Types
[AFF06, FFLQ08, Ten98, BAM07, KS93,
VGR06]. typings [Smi06].

UCITA [Gar01]. UK [AOV+99]. ULT
[PG03]. Ultra [PW+11]. Ultra-Scale
[PW+11]. UML [SK12]. Unbounded
[CNV+06, FK15, BDL07]. uncommon
[BDL07]. Uncover [WS08].

underdetermined [Kub15].

Undergraduate [BLPV04].

Understandable [MSM+16].
[AOV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZY16, FBF01, Hig97, KRB12, KGPH12, Kim14, LWV+10, LNZT15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97]. Video [BC00]. view [KTLK13, PT91]. Vina [TO10]. VAO+99, Pet03. VI [ACM94d, Ano03]. via [BCZY16, FBF01, Hig97, KRB12, KGPH12, Kim14, LWV+10, LNZT15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCW+04b, WCW+04c, WCW+04d, WCW+04a, WLK+09]. Viability [KLH97]. Video [BC00]. view [KTLK13, PT91]. Vina [TO10]. Virtual [BBSS14, BM09, KG05, KKDV03, PRB07, USE01, WCW+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCW+04b, WCW+04c, WCW+04d, WK08a, WK08b, WK08c]. Virtualization [LRZ16, YSS+17, ABB+15]. Virtually [LB92]. virtues [NJK16]. virus [GJ11]. viscous [RM99]. Visual [PTMB09, Dil93, McM96c, Esp96, Nag01]. Visualization [Ano97a, ACR01, Cal02, Caz02, BCHS00, CSB00, MKK99, NCA93]. Visualizing [CdOS01, WT10, ACD+18, DSEE13]. Visually [Dru95]. VLIW [For97, GSL10, OCS01]. VLSI [ABC+93]. VM [FGG14]. VMs [KKJ+13]. voltage [MTPT12]. volumes [Koo93]. VRSync [MTPT12]. vs [EHP+07, MMTW10, MCFT99, SKP+07, SKP+02]. vulnerability [SSN10, WH07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits [How00]. WAN [Yas95]. Wanted [Ano94g].Warnings [CJW+15]. warp [FSYA09, MTS10, Re95, Tam95]. was [San04]. Washington [ACM92, Ano90, EIE94c, USE98a]. Watch [Ano97b]. water [LVA+13]. Wave [Ano00b, BBC+00, L507, WQL18]. wave-based [WQL18]. wavelet [TKHG04]. Way [KA005, MTS+00, Rin99, ZIFA09, FGT96]. Ways [Wei97]. Weak [KZC15, TVD14]. Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay [Zha00]. WebThreads [Ano97a]. week [Ano95a, Ano95b]. weeks [But14]. weight [Way95]. weighted [HFV+12]. weighting [VS11]. Weightless [SPY+93]. Weld [OCS01]. well [Kub15]. well-determined [Kub15]. West [EV01]. WG2.5 [BT01]. Wheeler [LS16, NTR+16]. Where [EHP+07]. Whole [GN96, BBM09]. Whole-Program [GN96]. Wide [Ano94d, Ano96, FGT96]. wide-area [FGT96]. Widening [KKW14]. will [Ano95a, Ano95b]. WiMAX [CDD+10]. Win32 [Bec01, BW97, W99, Lar97, PG09]. window [VS11]. Windows [USE98a, HKT93, YZY07, Hig97, Lee93, PG96, Pra95c, Pra95b, TCI98, Tim03, Yam96]. Winter [Ano90, USE98a, USE91b, USE93b]. Wired [DHR+97]. Within [BP05]. without [Gus05, LZW14, Pla02]. woes [Ver97]. WOMPAT [Cha05, EV01]. Work [Ber96b, Wal95, ALHH08, Ber96a, BL94, BL99, Lep95, Oa13, RL14]. work-optimal [Lep95]. work-stealing [ALHH08, RL14]. worker [SCM05]. workflows [FGG14]. Working [BT01]. Workload [KTR+04, SSYG97, LBE+98]. Workloads [GVT+17, KMG04, LYH16, RCC12, SLJ+18, CML00, SQP08a, SQP08b, SQP08c, WA08]. WorkPlace [Bra97]. works [Hig97, San04]. Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IE989, IE98a, IE94a, IE94d, Ass96, USE96, FR95]. Workstation [Ano00b, HN91, IEE89]. Workstations [KLH97, L97, LGH94, RK99, PH97]. World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WL14]. World-wide [Ano96]. Wrapper [AS14]. Wrappers [Hub01]. Write [Sho97a, Sho97b]. Writer [Ano97a]. written [ND13]. WWOS-II [IEE89]. WWOS-II [IEE89].
REFERENCES

X [Ano00b, Smi92, Sri95, MSM+16]. Xeon [SCD+15]. Xlib [Gil93, STW93]. XML [DWYB10]. XMT [DV99, VV00, BÇG14, VTSM12, VDBN98]. XMT-2 [BÇG14]. XPS [Ger95].

Year [Ano99]. Yokohama [Ano03]. York [IEE90]. Yosemite [Ano00b].

z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

Antoniu:2001:HSC

Aliaga:2015:UPE

Alverson:1992:EHP

Amamiya:2009:CBN

Athanasaki:2008:EPL

Christos D. Antonopoulos, Filip Blagojevic, Audrey N. Chernikov, Nikos P. Chrisochoides, and Dimitrios S. Nikolopoulos. Algorithm, software, and hardware optimizations for Delaunay mesh generation on simultaneous multi-

[AC09] Farhana Aleen and Nathan

Almasi:2003:DCD

Adams:2018:TTV

ACM:1992:CPI

ACM:1993:CRT

ACM:1993:PTF

REFERENCES

[ACM95b] ACM, editor. Conference record of POPL '95, 22nd ACM SIGPLAN-SIGACT
REFERENCES

ACM:1996:FCP

ACM:1998:AWJ

ACM:1998:CRP

ACM:1998:PAI

ACM:1998:SHP

REFERENCES

Arnold:1996:MPJ

Agerwala:2006:SRC

Agarwal:1989:PTM

Agarwal:1991:PTM

Agarwal:1992:PTM

Anderson:2008:SCD

Amrhein:1996:CSM

REFERENCES

Anonymous:1990:PWU

Anonymous:1991:PIS

Anonymous:1992:MWPa

Anonymous:1992:MWPb

CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Anonymous:1994:ICS

Anonymous:1994:MDP

[Ano94b] Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 16(5):60–??, December 1994. ISSN 1061-0839.

Anonymous:1994:DCT

Anonymous:1994:PIW

REFERENCES

optical information systems.

[Ano95a] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

[Ano95b] Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

[Ano97a] Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. Linux Journal, 34:??, February 1997. CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

REFERENCES

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAa

Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Atkinson:1999:PTF

REFERENCES

REFERENCES

REFERENCES

Bergan:2010:CCRb

Baker:1995:UOV

Baker:1995:GTP

Baldwin:2002:LMF

Bic:1993:EUI

Burckhardt:2007:CCC

Barkstrom:2009:UAS
Bruce R. Barkstrom. On us-
ing Ada to solve problems in computational economics and related disciplines with concurrent, multiagent algorithms. ACM SIGADA Ada Letters, 29(3):61–72, December 2009. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic).

Bauer:1992:PCE

Bolding:2000:MSM

Bova:2000:DLP

Balan:1991:AIG

Ball:2011:PPT

Balis:2002:CPM

Balis:2003:MSM

Balaji:2010:FGM

Bender:2017:TLM

Bratanov:2009:VMW

Butler:2011:BAM

Barabash:2005:PIM
Katherine Barabash, Ori Ben-Yitzhak, Irit Golf, Elliot K. Kolodner, Victor Leikelman, Yoav Ossia, Avi Owshanko, and Erez Petrank. A parallel, incremental, mostly concurrent garbage collector

Buhr:1994:TRM

Ball:1998:MTA

Bhandarkar:2000:PPM

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD

REFERENCES

9162 (print), 1558-0814 (electronic).

Boneti:2008:SCP

Bergan:2013:ICS

Bokhari:2014:MMM

Bedy:2000:VSM

Biagioni:1998:SST

Benner:2007:SLS

REFERENCES

Ball:2001:PVM

Bajaj:2011:FFP

Badamo:2016:IPE

Beyls:2000:CGM

Brzuszek:2006:MTS

Bic:1998:MAD
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bergan:2014:SEM

Baghsorkhi:2012:EPE

Bic:1995:ATD

Burgess:2012:EFL

Buendgen:1994:MAT

REFERENCES

Buendgen:1994:MTA

Bundgen:1994:FPC

Bundgen:1996:SCM

Blundell:2006:AGT

Bednorz:1997:CDA

Bouchenak:2004:EIE

Bubeck:1995:DSC

Barekas:2003:MAO

Bientinesi:2011:CFS

Birrell:1989:IPT

Blumofe:1995:CEM

Blumofe:1996:CEM

Bhandarkar:1996:MPM

Beckert:2013:DLD

REFERENCES

REFERENCES

REFERENCES

[Blumofe:1992:MSM]

[Blumofe:1995:EMP]

[Bolinger:1991:PSH]
D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105–122. LCCN QAX 27.

[Baquero:1994:CAC]

[Bergstra:2007:SCE]

[Berger:2000:HSMa]

[Berger:2000:HSMb]
REFERENCES

[BNS11a] Jacob Burnim, George Necula, and Koushik Sen. Spec-

REFERENCES

Brebner:2002:MLC

Briot:1989:OAS

Brightwell:2003:DIP

Barthe:2010:SMP

Bellosa:1996:PIL

Broadman:1999:ECM

REFERENCES

[Brunett:1998:IET] Sharon M. Brunett, John Thornley, and Marrq Ellen-

Butenhof:1997:PPT

Buttari:2013:FGM

Butcher:2014:SCM

Bik:1997:JPJ

Beveridge:1997:MAW

Bai:2015:SPA

Xiuxiu Bai, Endong Wang, Xiaoshe Dong, and Xingjun Zhang. A scalability prediction approach for multi-threaded applications on

Basharahil:2005:DSA

Berger:2009:GSM

Callaway:2002:VTR

Tamar Benaya and Ela Zur. Understanding threads in an advanced Java course.
CarrerasVaquer:1989:APE

Campanoni:2008:PDC

Catanzaro:1994:MSA

Cazals:2002:NID

Caswell:1989:IMD

Caswell:1990:IMD

D. Caswell and D. Black. Implementing a Mach debug-

[Chen:2018:ESE] Kuan-Chung Chen and Chung-Ho Chen. Enabling SIMT execution model on homogeneous

[Chandra:2001:PPO] Rohit Chandra, Leonardo Dagum, David Kohr, Dror Maydan, Jeff McDonald, and...

Chung:2013:LBD

ChassindeKergommeaux:2001:PEE

Cerin:2006:MSS

Catalyurek:2012:GCA

Canetti:1991:PCP

Culler:1992:AMMa

REFERENCES

[Cha05] Barbara M. Chapman, editor. *Shared memory parallel programming with OpenMP: 5th International Workshop on OpenMP Applications and

Chrisochoides:1995:MMDb

Chrisochoides:1996:MMD

Christiaens:2001:JRR

Catalan:2017:TEM

Ching:1991:EAP

Curran:2015:IZM

Cejtin:1995:HOD

Henry Cejtin, Suresh Jagannathan, and Richard

Cai:2015:ADB

Cenciarelli:1997:SMT

Cenciarelli:1999:EBS

Clements:2012:SAS

Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. Scalable address

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Cahoon:2000:EPD

Carr:2003:TPT

Chen:2010:CCM

REFERENCES

1932-2232 (print), 1932-2240 (electronic).

REFERENCES

Choi:2008:ABP

Clark:2002:AMT

Cappello:1999:PNB
F. Cappello, O. Richard, and D. Etiemble. Performance of the NAS benchmarks on a cluster of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes in Computer Science, 1662:339–??, 1999. CODEN LNCS90. ISSN 0302-9743 (print), 1611-3349 (electronic).

Criscolo:1998:JQH

Criscolo:1998:JQ

Cromwell:1998:PBD
Jeff Cromwell. Programmer’s bookshelf: The dawning of the

Chang:1995:CSM

Chang:1995:CTS

Chen:2012:CLA

ChassindeKergommeaux:2000:PIV

Chappell:1999:SSM

[CSK+99] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and Yale N. Patt. Simultaneous subordinate microthread-

Constantinou:2005:PIS

Culler:1991:FGPa

Choi:2010:MDA

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Chen:2018:ROM

Chugh:2008:DAC

Cohen:1998:WMP

Chakravarti:2003:ISM

Choi:2002:IFI

Cao:2017:HRD

Chen:1998:MTO

Choi:2009:HCS

Chin:2018:EAN

Cao:2016:DBG

Man Cao, Minjia Zhang, Aritra Sengupta, and Michael D. Bond. Drinking from both glasses: combining pessimistic and optimistic track-
ing of cross-thread dependences. ACM SIGPLAN Notices, 51(8):20:1–20:??, Au-
gust 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
tronic).

[CZWC13] Yan Cai, Ke Zhai, Shangrui Wu, and W. K. Chan. Team-
work: synchronizing threads globally to detect real dead-
locks for multithreaded pro-
grams. ACM SIGPLAN No-
tices, 48(8):311–312, August 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
tronic). PPoPP ’13 Confer-
ence proceedings.

[Dan09] Andrzej Daniluk. Multi-
threaded transactions in sci-
entific computing. The Growth06,v2 program. Computer Physics Com-

[DBRD91] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using continuations to imple-
ment thread management and communication in operating systems. Operating Systems Review, 25(5):122–136, Oc-
REFERENCES

REFERENCES

DHollander:1992:PLL

DeRusso:1998:MEH

Dolby:2012:DCA

Dillon:1993:VEM

Dill:2000:MCJ

Dil00 David Dill. Model checking Java programs (abstract only). ACM SIGSOFT Soft-

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Ding:2018:IOC

Doligez:1993:CGG

REFERENCES

80/pubs/citations/proceedings/plan/158511/p113-doligez/. ACM order number 549930.

Devietti:2009:DDS

Dongarra:1999:RAP

DelaPuente:1999:RTP

Demange:2013:PBB

Dagum:1998:OIS

REFERENCES

[Daloze:2016:ETS]

[Dorfman:1994:EMO]

[Devietti:2012:RRC]

[Danjean:2000:IKA]
Vincent Danjean, Raymond Namyst, and Robert D. Russell. Integrating kernel activations in a multithreaded runtime system on top of LINUX. *Lecture Notes in Computer Science*, 1800:1160–??.

[Dublish:2016:CCG]

[Dorojevets:1995:MDA]

[Donalson:1992:DDP]
REFERENCES

REFERENCES

David:2014:CMC

Andreas Diavastos, Pedro Trancoso, Mikel Luján, and Ian Watson. Integrating transactions into the data-driven multi-threading model using the TFlux platform. International Journal of Parallel Programming, 44(2):257–277, April 2016. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (elec-
REFERENCES

REFERENCES

Dyer:1998:CAS

Ding:2012:CDF

Elwasif:2001:AMT

Esmaeilzadeh:2012:LBL

Eyerman:2009:MLP
Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

Eggers:1997:SMP

Edelstein:2001:MJP

Emmi:2007:LA

Edelstein:2003:FTM

Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Multithreaded Java program test genera-
REFERENCES

REFERENCES

[EKL90] S. J. Eggers, David R. Keppel, Eric J. Koldinger, and
REFERENCES

Eigenmann:2001:OSM

Evripidou:2001:MDD

Engelhardt:1996:PIP

Evripidou:2001:MDD

Farber:1996:EAM

Figueiredo:2001:IPH

REFERENCES

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Flanagan:2010:AMD

Flanagan:2008:TAS

Flanagan:2004:EPA

Flanagan:2005:MVM

Flanagan:2008:VSC

Faulkner:1991:PFS

Frincu:2014:ESV

Marc E. Frincu, Stéphane Genaud, and Julien Gossa.

Foster:1997:MMC

Foster:1996:MIW

Fahringer:1995:UTDb

Fahringer:1995:UTDa

Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Finger:1995:LTC

Fisher:1997:SPS

Farzan:2012:VPC

Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by modular reason-
References

Fillo:1997:MMM

Farzan:2015:PSU

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

Frigo:1998:ICM
REFERENCES

Felten:1992:IPM

Fang:2015:MMD

Farzan:2017:SDC

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

REFERENCES

REFERENCES

[FURM00b] Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level parallelism and interactive performance of desktop applica-
REFERENCES

121

Flautner:2000:TLPb

Flautner:2000:TLPb

Fang:2003:DGO

GAC14

Gallagher:1994:PLM

Gao:1993:EHD
REFERENCES

REFERENCES

8186-6542-4. x + 450 pp.

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA

REFERENCES

Gravvanis:2008:JMB

Geary:1998:SM

Gravvanis:2007:PPA

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

Gao:1993:DMA

Guang Gao, Jean-Luc Gaudiot, and Lubomir Bic. Dataflow and multithreaded architectures: Guest Editors’ introduction. Journal of Parallel and Distributed Comput-
REFERENCES

Gao:1993:SID

Gruen:1998:NIS

Gagnon:2003:EIT

Girkar:1998:IIM

Gibson:1994:CMC

Gilbert:1988:DVN

Gildea:1993:MTX

Giloi:1994:PSA

REFERENCES

Garland:2012:DUP

Gallmeister:1991:EEP

Golla:1998:CMR

Golla:1998:CEB

Goldwasser:2007:INP

Gu:1999:EJT

Glenn:1991:CMH

Grebenshchikov:2012:SSV

Giering:1993:IAF

Gonzalez-Mesa:2014:ETM

Ganty:2009:VLA

Gabor:2009:SLA

REFERENCES

Goldstein:1997:LTC

[Seth Copen Goldstein. Lazy threads: compiler and runtime structures for fine-grained parallel programming. Thesis (Ph.D.), Computer Science Division, University of California, Berkeley, Berkeley, CA, USA, 1997. xi + 174 pp.]

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

[Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and refinement for verifying multi-threaded programs. ACM SIGPLAN No-
REFERENCES

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN
Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational characterizations for Java memory behavior. *ACM Transactions on Computer Sys-
CODEN ACSYEC. ISSN
0734-2071 (print), 1557-
7333 (electronic). URL
http://www.acm.org/pubs/
articles/journals/tocs/
2000-18-4/p333-gontmakher/
p333-gontmakher.pdf; http://
www.acm.org/pubs/citations/
journals/tocs/2000-18-4/
p333-gontmakher/.

[Rajat P. Garg and Ilya Sharas-
pov. Techniques for optimiz-
ing applications: high per-
formance computing. Sun
BluePrints Program. Sun Mi-
crosystems Press, Palo Alto,
CA, USA, 2002. ISBN 0-
LCCN QA76.88 .G37 2002.
URL http://www.sun.com/
books/catalog/garg.html/
index.html.

Garg:2002:TOA

[GS02]

Clemens Grelck and Sven-
Bodo Scholz. SAC — a
functional array language for
efficient multi-threaded execu-
tion. International Jour-
nal of Parallel Programming,
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-7640
(electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=34&
issue=4&spage=383.

Grelck:2006:SFA

[GSL10]

M. Gupta, F. Sanchez, and
J. Llosa. CSMT: Simultaneous
multithreading for clustered
VLIW processors. IEEE Trans-
actions on Computers,
59(3):385–399, March
ISSN 0018-9340 (print), 1557-
9956 (electronic). URL
org/stamp/stamp.jsp?tp=
arnumber=5161255.

Gupta:2010:CSM

[Seth Copen Goldstein, Klaus Erik
Schauser, and David E.
Culler. Lazy threads: Im-
plementing a fast paral-
lel call. Journal of Par-
allel and Distributed Com-
puling, 37(1):5–20, August
25, 1996. CODEN JPD-
CER. ISSN 0743-7315 (print),
1096-0848 (electronic). URL
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.0103/production;
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.0103/production/pdf;
http://www.idealibrary.
com/links/doi/10.1006/jpdc.
1996.0104/production;
http://www.idealibrary.
com/links/doi/10.1006/jpdc.

Goldstein:1996:LTI

[GS95] Manu Gulati. Multithread-
ing on a superscalar micropro-
cessor. Thesis (M.S., Engineer-
ing), University of California,
x + 102 pp.

Gulati:1995:MSM
REFERENCES

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Gibson:2010:FSC

Gabor:2007:FES

Haggar:2002:JQD

objects larger than 32 bits, such as long and double, with sample code to exhibit the failure.

Haines:1997:DLT

Haines:1997:OIA

Hamilton:1996:JSN

Hanson:1997:CII

Harrington:1999:WMM

Hayden:1993:BIC

Haines:1992:SMC

Hottelier:2015:SLE

REFERENCES

Hunt:2013:DTN

Hanson:2001:UFI

Hanson:2002:AFI

Heber:1998:UMA

Hankendi:2017:SCS

Halstead:1994:PCR

Haines:1994:DCT
Ding:2002:MOP

Honarmand:2013:CUA

Heinlein:2003:ATS

Hoffman:2009:SAT

Hroub:2017:EGC

Halstead:1988:MMP

Hertzum:1996:BQO

Halappanavar:2012:AWM

Hum:1991:NHS

Hum:1992:HSM

Hughes:1997:OOM

Hong:2011:AMA

Huang:2016:MCR

Hironaka:1991:SVP

REFERENCES

[Hironaka:1992:BVP]

[Hussein:2015:DRM]

[Hightower:1997:PDD]
Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–7?, January 1997. CODEN DDJOEB. ISSN 1044-789X.

[Hauser:1993:UTI]

[Hirata:1992:EPA]

[Hurson:1996:CMD]

REFERENCES

REFERENCES

REFERENCES

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Hsu:2011:MSS

Huang:2016:PMR

Hassanein:2008:AEH

Hayden:2012:KEG

Hayden:2014:KEG

Honarmand:2014:RRR

Hendren:1997:CCE

REFERENCES

7458 (print), 1573-7640 (electronic).

Huang:2013:CRL

Iannucci:1994:MCA

Iannucci:1994:AII

Iwama:2001:ICB

Illikkal:2010:PQP

IEEE:1989:WOS

REFERENCES

IEEE:1990:PSN

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. IEEE catalog number 89TH0281-6.

IEEE:1990:PSM

IEEE:1992:PSM

IEEE:1993:PSN

IEEE:1990:PSM

IEEE:1994:PSH

REFERENCES

IEEE:1994:PSW

IEEE:1994:ROS

IEEE:1995:PCL

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1999:HCS

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

Itzkovitz:1998:TMA

Jacobs:2018:MTV

Jaisson:2008:IPM

REFERENCES

Jef94

Jen95

JHM04

Jin98

JL98

Jonsson1999:NPS

REFERENCES

Stephen Kyle, Igor Böhm, Björn Franke, Hugh Leather, and Nigel Topham. Efficiently parallelizing instruction set simulation of embedded multicore processors using region-based just-in-time dynamic bi-
REFERENCES

[Koster:2003:TTI]

[Krashinsky:2004:VTAa]

[Krashinsky:2004:VTAb]

[Kreuzinger:2003:RTE]

[Karamcheti:1999:HLB]

REFERENCES

154

REFERENCES

67–??, August 1994. CODEN CCUJEX. ISSN 1075-2838.

REFERENCES

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

Khan:2012:MAN

Khosla:1997:MAT

Kavi:1995:DCM
REFERENCES

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF

Keen:2003:CCP

Kim:2014:SMC

REFERENCES

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Kurzak:2009:SLA

Kleber:2000:TSA

Kang:2008:ISE

Kwak:1997:VMN

Kwak:1999:EMC

Koopman:1992:CBC

Koufaty:2003:HTN
REFERENCES

Kakulavarapu:2001:DLB

Kavi:2002:MMA

Kapil:2004:CMP

Kim:2006:ERI
Seon Wook Kim, Chong-Liang Ooi, Rudolf Eigenmann, Babak Falsafi, and T. N. Vijaykumar. Exploiting reference idempotency to reduce speculative storage overflow. ACM Transactions on Programming Languages and Systems, 28(5):
REFERENCES

Koniges:2000:ISP

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

Khyzha:2012:AP

Kaiser:2006:CJC

Kienzle:2001:CTT

REFERENCES

Kgil:2008:PUS

KSB+08

Kumar:2004:AST

KST04

Kalla:2004:IPC

KST94

Krieger:1994:ASF

KSU94

Kleiman:1995:PT

KSS96

Kleiman:1996:PT

Yu:2011:SDH

Krishnan:1999:CMA

Kopczynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP

Kumar:2004:SIH

Keller:2000:JUS

J. Keller and T. Ungerer. J.UCS special issue on multithreaded processors and chip-multiprocessors. *J.UCS: Journal of Universal Com-

Komosinski:2017:MCE

Maciej Komosinski and Szymon Ulatowski. Multi-
threaded computing in evolution-
ary design and in artificial life simu-
lations. The Journal of Supercom-
puting, 73(5):2214–2228, May 2017. CO- DEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (elec-
tronic). URL http://link. springer.com/content/pdf/ 10.1007/s11227-016-1923-
4.pdf.

Kubica:2015:PHT

Bartlomiej Jacek Kubica. Pre-
sentation of a highly tuned multithreaded interval solver for underdetermined and well-
1398 (print), 1572-9265 (elec-
http://link.springer.com/ content/pdf/10.1007/s11075-
015-9980-y.pdf.

Kuchlin:1992:MTC

W. Kuchlin. On the multi-
threaded computation of mod-
ular polynomial greatest com-
mon divisors. Lecture Notes in Com-
puter Science, 591:369–??, 1992. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-
3349 (electronic).

Kestor:2015:TPD

Gokcen Kestor, Osman S. Un-
sal, Adrian Cristal, and Ser-
dar Tasiran. TRADE: Precise dynamic race detection for scalable transactional memory systems. ACM Trans-
actions on Parallel Compu-
ting (TOPC), 2(2):11:1–11:??, July 2015. CODEN ????. ISSN 2329-4949 (print), 2329-
4957 (electronic).

Kuszmaul:2015:SSF

Bradley C. Kuszmaul. Su-
perMalloc: a super fast multi-
threaded malloc for 64- bit machines. ACM SIG-
PLAN Notices, 50(11):41–55, November 2015. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
Kejariwal:2009:ELL

Kleinmann:2017:ACS

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

Lam:1995:CPC

Lang:1997:MTE

Laneve:2002:TSJ

Larchevêque:1995:OIP

REFERENCES

Larbi:1997:BRM

LeSergent:1992:IMT

Lim:1995:LPB

Lewis:1996:TPG

Lim:1996:LPB

Lewis:1998:MPP

Lewis:2000:MPJ

Lee:2017:MN

Doowon Lee and Valeria Bertacco. MTraceCheck: Validating non-deterministic behavior of memory consistency

Lo:1998:ADW

Ling:2012:HPP

Li:2006:MEMa

Li:2006:MEMb

Li:2006:MEMc

Lucia:2013:CEF

Liu:2008:HPP

REFERENCES

Leiserson:1997:AAM

Lo:1997:CTL

Lo:1999:TCO

Lenatti:1995:RPM

Leppänen:1995:PWO

Ville Leppänen. Performance of work-optimal PRAM simulation algorithms on coated

Leven:1997:MIR

Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

Lowenthal:1996:UFG

Lemon:2004:MCR

Lee:2006:TBR

Laudon:1994:IMT

Lee:1994:DAM

Ben Lee and A. R. Hur-

Li:2005:OSA

LaSalle:2015:MTM

Li:2011:LCM

Luo:2017:TDS

Lin:2010:TAC

Lai:2015:SAM

Li:2006:SDH

Liu:2016:SEA

Qixiao Liu, Miquel Moreto, Jaume Abella, Francisco J. Cazorla, Daniel A. Jimenez, and Mateo Valero. Sensible energy accounting with abstract metering for multicore

Liu:2014:TAP

Li:2014:PDC

Ling:2000:AOT

Loebler:1997:MJF

Loepere:2005:STM

Loikkanen:1995:FMS

REFERENCES

Laudon:2007:CWM

Liao:2011:AUB

Lee:2018:ERD

Lashgar:2015:CSR

Le:2007:IPM

Leiserson:2012:DPR

LoCocero:1997:MML

Joseph LoCocero and D. E. (Donald E.) Thomas. A mul-
REFERENCES

REFERENCES

Lundberg:1997:BMC

Lundberg:1999:PBS

Lobeiras:2013:PSW

Li:2012:MRP

Laadan:2010:TLA

Lopes:2001:FGM

Lu:2013:REM

Li:2017:GGB

Mushtaq:2014:EHP

Monchiero:2009:HSC

Mahafzah:2011:PMI

Mahafzah:2013:PAM

Man:1991:MLC

REFERENCES

REFERENCES

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

[MCS15] Nathan Mitchell, Court Cutting, and Eftychios Sifakis. GRIDiron: an interactive authoring and cognitive training
foundation for reconstructive plastic surgery procedures.

Monetinos:2008:DRD

Mikschl:1996:MMS

Matheou:2015:ASD

Matheou:2017:DDC

Mukherjee:1994:MII

McDowell:2003:ISS

Mennemeier:1991:HMS

REFERENCES

[MHW02] Carl J. Mauer, Mark D. Hill, and David A. Wood.
REFERENCES

Miastkowski:1990:PGG

Michael:2004:SLF

Maabreh:2018:MHT

Miller:1995:TPC

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

tem requirements for computer disk: IBM-compatible PC; DOS; Mix, Borland, or Microsoft-compatible C/C++ compilers.

Meng:2010:AOS

Mars:2012:BDS

Moreno:1997:PMP

Mukherjee:2002:DDE

[MKR02] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed de-

Muralidhara:2010:IAS

Marowka:2004:OOA

Madriles:2009:BST

Ma:2011:SPC

Malakhov:2018:CMT

Machado:2015:CDD
Nuno Machado, Brandon Lucía, and Luis Rodrigues. Concurrency debugging with differential schedule projec-
REFERENCES

Makreshanski:2015:LSE

Mauro:2001:SIC

Morandini:2007:UDS

Morishima:2014:PEG

Mathis:2005:CSM

Marino:2009:LES

McKenney:2010:WGM

Paul E. McKenney, Maged M. Michael, Josh Triplett, and
REFERENCES

Metzner:2000:MMR

McAuley:2003:CVC

Marinov:2016:PAF

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

Martin:2004:HPA

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

Mayes:1995:UL

Marinescu:1994:HLC
REFERENCES

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

Meier:2017:PVM

Malan:1991:MA

McJones:1987:EUS

McJones:1989:EUS
Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO
G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP implementation of an implicit finite-element code on parallel architectures. *The Inter-
REFERENCES

[MT93] J. Gregory Morrisett and Andrew P. Tolmach. Procs and locks: a portable multipro-

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

Naik:2007:CMA

McCann:1993:DPA

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Natarajan:1993:PVM

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

[NFBB17] Hosein Nazarpour, Yliès Falcone, Saddek Bensalem, and Marius Bozga. Concurrency-

Nicolau:2009:TEP

Nakaike:2010:LER

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

Narayanasamy:2006:RSM

Nebro:1998:EMR

Nanda:2006:ISM

REFERENCES

1088–1144, November 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Ottoni:2008:COGa

Ottoni:2008:COGb

Ottoni:2008:COGc

Olszewski:2009:KED

Marek Olszewski, Jason Ansel, and Saman Amarasa-

[OKID92] Kazuhiro Ogata, Satoshi Kurihara, Mikio Inari, and...
REFERENCES

Oplinger:2002:ESRa

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Omma:2004:BMA

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

REFERENCES

REFERENCES

Park:2016:CJP

Perez:2015:ECR

Papadopoulos:2016:TAD

Pokam:2013:QPI

Peacock:1992:FSM

Philbin:1996:TSC

REFERENCES

PARCERISA:2001:ILT

PINILLA:2003:UJT

PUSUKURI:2012:TTD

PUSUKURI:2014:LCA

PUSUKURI:2016:TEL

PARK:1997:HPM

PHAM:1991:EMD
Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. The-
sis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

Pichel:2009:IDR

Ponamgi:1991:DMP

Pager:2015:SSM

Park:2007:MEP

Powell:1991:SMT

Price:2003:CAF

Plauger:1993:MCS

Plauger:1998:SCCI

REFERENCES

C/C++ Users Journal, 16 (12):??, December 1998. CODEN CCUJEX. ISSN 1075-2838.

Plauger:1999:SCCg

Plachetka:2002:QTS

Porter:2015:MMS

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

Prabh:2003:UTL

Polychronopoulos:1990:ASC

REFERENCES

Pomerantz:1998:CNS

Parashar:2013:TIC

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1995:WTS

Prasad:1995:WNT

Shashi Prasad. Windows NT threads — a multithreaded application may actually run slower on an SMP machine.

[Prasad:1997:MPT]

[Permandla:2007:TSP]

[Presotto:1990:MSP]

[PS01]

[Pozniansky:2003:EFD]
REFERENCES

Pozniansky:2007:MEF

Pyarali:2001:EOT

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

Peacock:1992:EMS

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Piringer:2009:MTA

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pickett:2006:SSF

REFERENCES

Quintana-Ortí:2009:PMA

Qian:2016:EFS

Qian:2016:ODG

Qian:2014:PRR

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB

Roberts:2018:MID

Rufai:2005:MPO

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

Reda:2012:APC

Rahman:2014:CCO

Ro:2006:DEH

Rakvic:2010:TMT

Radojkovic:2012:OTA

Radojkovic:2016:TAM

Radojkovic:2010:TSB

Rogers:1995:SDD

Ruddock:1996:MPG

David E. Ruddock and Balakrishnan Dasarathy. Multi-

Joshua A. Redstone, Susan J. Eggers, and Henry M. Levy. An analysis of operating system behavior on a simultaneous multithreaded architecture. ACM SIGPLAN No-
REFERENCES

Redstone:2000:AOSc

Rajwar:2003:TET

Radojkovic:2012:EIS

Rodgers:1999:TSN

Rashid:2010:AEP

REFERENCES

Richman:1991:EHC

Scott Richman. Examining the Hamilton C shell (Unix power for OS/2). Dr. Dobb’s Journal of Software Tools, 16(1):98, 100, 102, 104–106, January 1991. CODEN DDJOEB. ISSN 1044-789X.

Richards:1999:ALT

Ringle:1999:SCT

Rinard:2001:AMP

Reedy:2011:BFH

Reus:1998:VCO

Reiche:2017:AVI

Rodrigues:2015:DSE

January 2015. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

Roh:1996:GOE

Rogers:2014:LYL

Robison:2003:MCN

Rodley:1994:UIC

Rodens:1995:ESC

Rodley:1995:TPU

Roh:1995:CGE
REFERENCES

REFERENCES

Samorodin:1999:SFS

Sanden:2004:CJT
B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. Computer, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SLJ

Smith:1980:ASD

Sah:1996:PI

Saavedra-Barrera:1991:ASM

Saavedra-Barrera:1990:AMA
 REFERENCES

Storino:1999:MTB

Savage:1997:EDD

Sanderson:2017:PGP

Saez:2013:DFP

REFERENCES

[Sch98] Schmitt:1990:CEM

[Schauser:1991:CDT]

[Sch89] Schonberg:1989:FD

[Schoenberg:1989:FD]

[Schmidt:1998:EAM]

[Schmidt:1998:EAM]

[Schildt:2014:JCR]

[Schildt:2014:JCR]

[Schafer:2017:PHL]

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Sendag:2005:IIS

Steinke:2005:NPF

Schauser:1991:CCM

Schauser:1991:CML

Spertus:1995:ELB

So:2013:STI

[SD13] Won So and Alexander G. Dean. Software thread integration for instruction-level parallelism. *ACM Transac-
REFERENCES

Sartor:2012:EMT

Seiden:1998:ROM

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO
REFERENCES

Sahin:2018:CSC

Sung:2014:PTR

Sodan:1997:ENN

Sridharan:2014:AEP

Shahnaz:1995:DMD
Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

Shankar:1995:STI

Shaw:1998:CPM

Shene:1998:MPI
Chin-Kuang Shene. Multithreaded programming in an

REFERENCES

Smaragdakis:2007:TIC

Schonherr:2011:MTI

Sohn:2001:CTC

Son:2009:CDD

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshi-

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT

Scherer:1999:TAP

Sangaiah:2018:SSA

Su:2019:SSC

Xing Su, Xiangke Liao, Hao Jiang, Canqun Yang, and Jingling Xue. SCP: Shared cache partitioning for high-performance GEMM. *ACM
REFERENCES

Sharkey:2008:RRP

Sidiroglou:2009:AAS

Solihin:2002:UUL

Solihin:2003:CPU

Sodan:2010:PMM

Smith:1992:MTX

REFERENCES

Smith:2001:CMM

Smith:2006:ITP

Sanchez:2010:ACI

Suleman:2009:ACS

Swanson:2003:ESI

Singh:2012:EES

Sodan:2002:AMA

Samorodin:2000:SFS

Shinjo:2000:DCEa

Shinjo:2005:AEP

Sharkey:2007:EOA

Saarikivi:2017:MTS

Spero:1994:MMD

Simon E. Spero. MDMA — multithreaded daemon for

[Skjellum:1996:TTM]

[Saxena:1993:PMS]

[Squillante:1994:AMP]

[Salcianu:2001:PEA]
Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for multithreaded programs. ACM
Sohi:2001:SMP

Samak:2014:MTS

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

Samak:2015:SRT

REFERENCES

[SSkP07] Xudong Shi, Feiqi Su, Jihkwon Peir, Ye Xia, and Zhen Yang. CMP cache performance projection: accessibility vs. capacity. *ACM
REFERENCES

REFERENCES

CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Snavely:2002:SJP

Schmidtmann:1993:DIM

Shen:1999:ATL

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??

Sigmund:2001:SCS

Suito:2012:DRM

SunSoft:1995:SMP

Sutter:1999:OAM

Herb Sutter. Optimizations that aren’t (in a multithreaded world). *C/C++ Users Journal*, 17(6):??, June
248

REFERENCES

1999. CODEN CCUJEX. ISSN 1075-2838.

Schmidt:1996:CAPb

Schmidt:1996:CAPc

Schmidt:1996:CAPa

Smith:1998:SIF

Shepherd:1997:UCA

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

REFERENCES

Theobald:2000:LCE

Tamasanis:1995:MMW

Thoziyoor:2008:CMM

Tanner:1987:MTI

Tolmach:2004:IFL

Tam:2007:TCS

Thompson:1997:THP

Thompson:1997:TPC

P. Thompson and G. Bumgardner. Threads.h++:
REFERENCES

[Toulouse:1995:CID]

[TE94a]

Thompson:1998:SSH

[TE98]

[TDW03]

[TE94b]

Thekkath:1994:ISB

[TE94c]

Thekkath:1994:EMH

[TEE+96]

Tullsen:1996:ECI

REFERENCES

REFERENCES

Tetewsky:1994:GDR

Tian:2010:SPU

Tang:1999:APT

Thakur:2009:TSE

Tian:2005:PCT

Tan:1999:OFN

Known as VLDB'99.

Tan:2000:PEN

Terechko:2012:BPS

Thekkath:1995:DPM

Throop:1999:SOS

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

REFERENCES

REFERENCES

URL http://www.ddj.com/. See [Gei01].

[TMC09] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance measurement and analysis of multithreaded applications. *ACM
REFERENCES

Traub:1991:MTC

Tsai:1997:PSC

Tsai:1997:SIC

Tumeo:2012:DNG

Tang:1999:CR

Tang:2000:PTR

REFERENCES

[TVD14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: nav-

Taura:1997:FGM

Utterback:2017:POR

Ungerer:2002:MP

Ungerer:2002:SPE

Ungerer:2003:SPE

USENIX:1989:PWU

REFERENCES

REFERENCES

[A. Unger; E. Zehendner; and Th. Ungerer. A combined compiler and archi-

[Vera:2009:SRL]

[VACG09]

[van95]

[VB00]

[Vanhelsuwé:1997:JPE]

[VDBN98]

Uzi Vishkin, Shlomit Das-cal, Efraim Berkovich, and Joseph Nuzman. Explicit
multi-threading (XMT) bridging models for instruction parallelism (extended abstract).

Volkman:1993:CDB

Ven97

Venners:1998:DTS

Verriello:1996:MSM

Vermeulen:1997:JD

Vlachos:2010:PEAb

[Vol93]

[VGR06]

[VIA+05]

[VK99]

[Volkman:1993:CCP]

[VPC02]

[vPG03]

REFERENCES

[102x681] ISSN 0163-5999 (print), 1557-9484 (electronic).

[Vre04]

[VSDK09]

[VSDL16]

[VSM+08]
REFERENCES

VanZee:2016:BFE

Vlassov:1996:AMM

Volos:2012:ATM

Villa:2012:FAS

Vishkin:2000:ELR

VanDeGeijn:2011:HPD

Winter:2008:ATN
Jonathan A. Winter and David H. Albonesi. Addressing thermal nonuniformity in SMT workloads. *ACM Transactions on Architecture and
REFERENCES

Wayner:1995:FAN

Walter:1995:PMS

Walmsley:2000:MTP

Wang:1994:MAD

Wang:2007:EAP

Watt:1991:IPI

Wc99

Way95

Wct98
Steven Wallace, Brad Calder,

Wang:2007:OSC

Wester:2013:PDR

Weaver:2008:OIO

Wong:1994:SSI

Weisz:1997:MFA

Weissman:1998:ATT

Weissman:1998:PCS

Weissman:1999:HPT

Walcott:2007:DPA

White:2003:UTL

Wallach:1995:OAM

Williams:1994:NST

Williams:1994:NTM

Wilson:1997:BTP

books/sol997/pdf/s5115.pdf.

[Won:2015:MMC]

[Watcharawitch:2003:MME]

[Wendykier:2010:PCH]

[Wismuller:1996:IDP]

[Welch:2010:SCF]

[Wang:2018:TWB]

[Jui-Hsien Wang, Ante Qu, Timothy R. Langlois, and Doug L. James. Toward

Wang:2006:RAA

Warg:2008:DTS

Whittaker:1997:TML

Wheeler:2010:VMM

Wu:2012:SPA

Wong:2008:TAF

REFERENCES

Waldspurger:1993:RRF

Wise:1996:SDP

Wang:2002:SPE

Wang:2019:SSS

Wang:2008:PIM

Xu:2006:RTR

Xekalakis:2012:MSM

Polychronis Xekalakis, Nikolas Ioannou, and Marcelo Cintra. Mixed speculative multithreaded execution models. ACM Transactions on Archi-
REFERENCES

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. Dr. Dobb’s Journal of Software Tools, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

[YL16] Yuan Yao and Zhonghai Lu. Opportunistic com-

Yu:2016:DLR

Young-Myers:1992:DTC

Young-Myers:1993:ESTa

Young-Myers:1993:ESTb

Yu:2009:CIC

Yu:2012:MCD

Jie Yu, Satish Narayanasamy,

Yoo:1996:CAA

Yoo:1996:PCM

Yeh:2017:PFG

Yong:2003:AMC

Yan:2007:HMC

Yang:2014:CNR

[ZCSM02b] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. Compiler optimization of scalar value

Zhou:1998:LST

Zhang:2000:WMH

Zhang:2015:LOS

Zignin:1996:TDM

Ziarek:2009:SWB

Zhang:2010:DCS

REFERENCES

Zhu:2011:TPS

Zhang:2012:SCC

Zhao:2011:DCC

Zhang:2015:DPO

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB

REFERENCE

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB