Title word cross-reference

#4 [Pet00].
+ [BMV03]. 2 [TKHG04]. 3 [KSB+08, PYP+10]. cyclical [YLLS16]. D^4 [Evr01]. F^3 [BCS11]. LU [VD08]. N [ZJFA09]. π [III01]. QR [But13, GKK09, VD08].

-based [Röt19]. -Calculus [III01]. -Machine [Evr01]. -way [ZJFA09].

.NET [Rob03, Tim03, DHR+01, Rei01].

/multi [Taf13]. /multi-threaded [Taf13].

'01 [USE01].
Abstract

[CSS+91b, CGSV93, DV99, KPP12, LMA+16, MJK+10, Nem00, CSS+91a, CSS+91c, DiI00, VDBN08, ZJFA09].

Abstraction

[KI16, Bak95b, GPR11, ZSJ06]. AC

Accelerating [BAZ+99, LS11, SMQP09, VGG+10a, VGG+10b]. acceleration [JSPM13, NBMM12].

Albuquerque [Ano94e]. Algebra

[KLDB09, NBS+15, PHCR09, YSY+09]. Algebraic

Algorithm

[AT16, ABC+09, CNZS17, HH11, MP13, OR12, Rö19, TT03, ZBS15, BKK17, GKK05, Lei97, Lep95, NFBB17, QOQOV+09, RRMJ12, YM92, YMR93a, Li05]. algorithms-by-blocks [QOQOV+09]. Algorithms-by-Tiles [QOIM+12]. aliasing [NA07]. Aligned [YWW03]. alignment [KGPH12]. Alleviate [BD00]. Alloc [KSU94]. Allocating [BGK94a, BGK94b].
3

[SEP96]. Allocation [MVZ93, Nak01, ZWL15, EFJM07, LLL10, Mic04, ZP04].

Allocator [BMBW00b, BMBW00a, BMBW00c].

Alpha [Ano00b], alphabet [KNPS16].

Alternating [CYYL18], alternative [SV96c, SV96a, SV96b].

Alternatives [MB99, OA19, MKR02].

AltO [ACM01].

ALU [KDM +98], always [DWS +12], always-on [DWS +12].

Amdahl [CN14, NZ17].

Among [CB16, HMC95, SJ95].

analysing [NJK16, PV06].

Analyse [AKS06, BCZY16, BE12, BE13, BBC +00, BLG01, BH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJB13, Haf97b, Hol12, HLI16, LML00, LHG +16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM +08, VP16, Yoo96a, Zub02, AC09, ACC +03, BGZ97, BBH +17, BPSH05, BMM09, CHH +03, CS12, CVJL08, Cor00, GBCS07, HEJ09, JPSN09, KTK12, KC09, Lei97, LBH12, LBE +08, Met95, NWT +07, PFIH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WS06, WP10, WOKH96, WTH +12, dB09, vPG03].

Analytic [Squ94].

Analytical [DKF94, SV19, VT96, SBC91].

Analytes [JGS +19, TL +16].

Analyze [LMC14].

analyzer [Fe13, HLI90].

Analyzing [HRH08, Kor89, RHH10, TMCP10].

anatomy [Re95].

Android [MKM14].

animation [WQLJ18].

Annotations [BM94, Wei98b, AGN09].

Annual [ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b].

anomalies [Sch89].

Anomaly [KW17].

antipatterns [BPSH05].

Antonio [USE92a].

any [Hig97, Mar07].

API [Ano00b, BDN02, DM98, Van97a].

APL [CJ91].

applets [McM96c].

Application [AMRR98, KZTK15, KSU94, PG92, PLT +15, SV19, TKA +01, TAM +08, Yas95, DWYB10, EJK +96, HDT +13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA +02, ZJS +11].

Application-Level [KSV94, PLT +15, HDT +13, LZ07, ZJS +11].

Applications [Ano00c, AZG17, AKP99, BK06, BMBW00b, BH01, Cha05, Chl15a, DVAE18, DS16, Don02, Dru95, EV01, FURM00c, HC17, HMCP16, HWZ00, JYE +16, JLA16, KMJ02, KHR98, LWSB19, LPK16, Lar97, MGI14, MG15, PCPS15, PWL +11, Pul00, RD06, SGM +97, Sod02, Ten02, Tet94, TSV12, TLGM17, VP16, Vol93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BWDZ15, BBFW03, BGZ97, BMMW00a, BMBW00c, BW97, DSE13, BPSH05, BMV03, CB89, CB90, CB90, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HL90, ISS98, JSMP12, JSMP13, KVN +09, MLCW11, MK14, MKIO4, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NR06, Omm04, PIZA07, RC +10, Rei95, San04, SNN10, SKP +02, TM09, TMCP10, TP18, VIA +05, VGK +10a, VGK +10b, WCZ +07, WT10, WOKH96, XMN99, YZ14, kSYHX +11, ZKR +11].

Applications [Len95].

apply [NZ17].

Applying [VTS12, MT02a, MT02b, MT02c].

Apprendre [Swi09].

Approach [AZG17, BBG11, CJSW +15, ES97, FKT06, GMR98, KKW14, KS16, ND16, RC +16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, D HM +12, LZW17, LZZ +14, MS03, RC +12, SCZM00, TP18].

Approaches [BLPV04, MB07].

Approximate [HFV +12, GEG07, GE08, KGPH12].

Apps [PCM16].

April [Ano00a, Ano03, USE01].

arbitrary [BGC14].

Arc [CNZS17].

Arc-Weighted [CNZS17].

ARCH [Ada98].

Architectural [ACM94d, HEMK17, IAD +94, KC99, ME15, BS06, CMF +13, Fan93, WHG07].
Architecture [ACM98c, BBD+91, BVL09, BTE98, Car89b, CL95, DS09, DO95, EBKGO1, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HMMN91, HHOM91, HHOM92, KBH+04a, KBH+04b, KIAT99, Man91, MM01, MB99, PVS+17, PTMB09, PKB+91, PS01, REL09b, RS08, SLJ+18, SCL05, SHK15, SSYG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AHAH09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Cho92, Don92, Dub95, Ekr01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HFF88, HKN+92, HNN+92, I+94, KHP+95, Loi95, Mah13, MK12, Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL09a, REL09c, RCDG06, SWYC94, Sod02, TNB+95, Tsa97b, UZU00, Wan94, WCC+07, YZ07, Yan97, CH04].

Architecture-Agnostic [SLJ+18].

Architectures [AT16, ABLM19, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IXS18, IBST01, JLS99, KTR+04, LLKS12, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOM+12, RLJ+09, SGM+97, TG99, TH+12, Tra91, TJY+98, TSV12, WG94, XWG+14, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CFG+12, Cat94, DTR18, FTAB14, GGB93b, GK05, GIA94, GL98b, HFF+12, ICH+10, JMS+10, LMC14, Lu94, MLCW11, MLC04, Miu09, OCRS07, PT91, PPA+13, PJZA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Sqt94, SMQP09, SKB01, TE94a, The95, TKHG04].

Area [AMPH09, FGT96, Part91].

Area-efficiency [AMPH09].

Aren’t [Su99].

Ariadne [MR98].

arising [ArW03].

Array [GS06, LHS+16, PDMM16].

Arrays [BWXF05, AR19].

arrow [GO08].

arrow-type [GO08].

Art [MP13, I+94].

artificial [KU17].

ASAT [SEP96].

Ashes [Th99].

ASN [CJW+15].

Aspects [SB80].

ASPLOS [ACM94d].

ASPLOS-VI [ACM94d].

Asserting [BS10b].

assertion [Adb95].

assertion-based [Adb95].

assessment [Mah13].

Assignment [BC98, BCM+05, MCRS10, ORH93, RCM+12].

assisted [Du95].

associated [Sa04].

Associative [SW08].

Assume [BGP06].

Assume-guarantee [BGP06].

Assumptions [Es97].

ASSURE [SLP+09, Dye98].

Asymmetric [MN+15, GA09, JSMP13, MKW+06, RBK+09, SCCP13, SMQP09].

Asynchronous [HH11, KFG15, KASD07].

Asynchrony [SRU98].

Athena [Egg10, Hud96].

ATL [SW97].

Atlanta [ACM99a].

Atomic [KKS+08, RD06].

atomicity [BLM06, BNS11a, BNS11b, BNS12, FF04, FF04, FF08, FF08, FF08, WS06].

atomics [ND13].

Atomizer [FF04, FF08].

Audience1 [SB96].

Augmented [GFJT19, LH09].

August [RF03, IEE99, USE93a, USE98a].

Austin [USE00b].

Austria [Hon94].

authoring [GFJT19, LH09].

August [RM03, IEE99, USE93a, USE98a].

Austria [Hon94].

authoring [MC05].

Auto [Pol90, RKHT17].

Auto-vectorization [RKHT17].

AutoDock [TO10].

Automata [ES97].

Automata-Theoretic [ES97].

Automated [BSSS14, DR02, KZC15, TR14].

Automatic [BLV09, HBTG98, JPY+03, KW17, MZ00, SEP96, YLLS16, GJ11, JSB+11, SL*09].

Automatically [NWT+07, TG99, CJ91].

autotuning [CSV10].

Availability [SP07].

Avenue [Ano94d].

avoid [Pra95c].

avoidance [LC13, WLK+09].

AVP [Ano00b].

Aware [AGJ18, BHP+03, CCW17, FSPD16, FSPD17, GVT+17, HJ17, K14, LZS+08, LYH+16, MNU+15, PR05, SLJ+18, ERTQ07, EE09a, HEJ09, LAH+12, MR09, NB12, PAB+14, PGB14, TAA07, XSAJ08, ZLW+16].

Away [GBK+09].

AWTEventMulticaster
Barnes [FSPD16]. Balanced [CKZ12]. Balancers [KMAG01].
Balancing [HBTG98, KC98, KRH98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MI9004]. Baltimore [IEE02]. Bandwidth [FSPD16, LTL+16].
Barrier-Based [CJW+15]. barriers [LZB14, ZFA09]. Base [VE93]. Based [AI94, AT16, AKP99, BVL99, BHN01, CJW+15, CRK99, CMB98, DSR15, EG14, GH98, GFJT91, HHOM91, HHOM92, KS16, KGA05, KEL+03, KW17, KS97, KR98, KNE+14, Kwo03, LLKS12, LG06, LS11, MGQS+08, MKC97, OB13, RSN01, SG18, TESK06, WLM15, ÁdPdRS05, Ada98, AAHF09, Ana98, AKS16, BKK17, CNQ13, CKD94, CRK97, CRK97b, CNV+06, DG99, DWB10, EG11, GDSA+17, GE08, JD08, JSMP13, KR01b, KKJ+13, KI16, KBF+12, LK15, LZW17, LLL10, Mns09, NBBM12, NFB17, PG06a, PG06b, PGS06c, PAdS+17, PAB+14, Ram94, RRP06, Röt19, RS8, SKS+92, TE94a, WCW+04a, WCW+04b, WCW+04c, WQLJ18, YL16, Day92a, Day92b, RSB+09]. Bases [GK94, Sw109]. basic [JJ91, KTL13, Es96]. Basis [AGK96]. batching [DKG18]. Be [Pet03, Ano95a, Ano95b, Boe05, MM10].
Beach [USE92b]. becoming [Ano92a].
Behavior [KLS92, LB17, REL00b, ACD+18, DESE13, GSO0, REL00a, REL00c].
Behavioral [Sch17]. Benchmark [BTE98, EHSU07, MUL03]. Benchmarking [HHOM92]. Benchmarks [CRE99].
Benefits [MHG95, LB95, LB96b, SD95].
benign [NWT+07]. Berkeley [USE01]. Better [BMD98, Pla99]. Between [WG94, Pan99, SS95, Yam96, ZCSM02a, ZCSM02b].
Beyond [EK92]. biased [RD06]. Bibliography [Bee98]. Big [JLA16, AC09, CDL13, LTL+16, LHS16].
Boltzmann [SKG+11]. Bonn [Wat91].
Book [Lar97, Van97a, Vre04]. Bookshelf [Ano99, Cro98, Wi97, Wi00].
Boston [Ano94f]. Both [KZC15, CZS16].
Bothnia [CCW+11]. Botte [DSEE13].
Bottleneck [JSMP12]. Bottlenecks [SU96, Zab02, DSEE13, CS12, DSG17].
Boulevard [ACM99b]. bounded [LZT15, PAdS+17]. Bounding [Lun97, Lun99, MQ07]. BowMapCL [NTR16]. Box [Ano00b]. Braids [BS06].
Branch [AKS06, EPAG16, IBST01, CTYP02, CPT08, GL98b, MTS10].
branches [UZU00]. breadth [LAH+12].
bugs [JWGT11, VTS12].

Building
[KS97]+08, Building
[Fon97, KS97, Pet03, ZM07, Omm04].

Building-Block [KS97].

Bulldozer [BBSG11].

Bunka [Ano03].

Burrows [LHS16, NTR16].

Bursty [HMCP16].

Bus [MK97, Cat94, HHPV15].

Bus-Based [MK97].

BVT [DC99, DC00].

Bytecode [ABH+01, Coo02, GH03, A+01, CAR08].

C
[Ke94a, Ke94b, Lev97, Pla98, Pla99, Rod95a, Vre04, Ait96, AGEB08, Ano03, BM94, Bau92, Bed91, BYLN09, BPL07, BA08, CFK+91, CGR92, Dug95, Eng95, Fin95, For95a, For95b, Gib94, Han97, HSD+12, HSS+14, HTZ+97, HH97, Jon91, KD97, La00, Lea96, Man91, Mil95, Mix94, ND13, ND16, Pet00, Pla93, Pom98, PS03, PS07, Pul00, Ric91, Rö91, SG18, SC17, Sch90, TB97a, TB97b, Vol93, Wal00, Yam95, Yam96].

C#
[KPPER06, Sta05].

C-based [RSB+09].

C-Stream [SG18].

C/C [Pla98, Pla99, BYLN09, ND13, ND16, Pet00, Pul00].

C3I
[BTE98].

CA
[ACM94d, IEE89, USE92b, Ass96, USE00a, USE01, USE02].

Cache
[BCZY16, CMX10, CWY17, FJ08, GBP+07, GL98a, HL08, HKSL96, KLS92, KET06a, LLD17, PEA+96, PPG11, SLJ+19, W094, ZJS12, ZWL15, Car92b, Cho92, KHP+95, KHL+99, MKR10, Raj93, Sha95a, Ssk+07, WCZ+07, ZJS10, ZKR+11].

Cache-conscious [GBP+07].

Cache-oblivious [HL08].

CacheFlow
[KET06a].

Cacheline [PBL+17].

Caches
[FJ08, PHBC18, KGK09, ROA14].

Caching
[DNT16, KC99, Bo093].

calculations [BD06].

Calculus
[II01, ORH93].

Calder
[Ano97a].

Calif
[ACM01].

California
[ACM93b, ACM95b, ACM98b, IEE99, USE98, USE91a, USE93b, USE96, USE98b, USE01].

Calc
[GSC96, Hub01, ORH93, Xue12].

callbacks
[VS96].

calling
[TTP99].

calls
[KASD07, TLZ+16].

Cambridge
[USE93a].

Can
[Ber96b, Dye98, Pet03, Ano92a, Ber96a, Hig97].

Canada
[Ano00b, BT01].

cannot
[Boe05].

Cap
[HC17].

Capabilities
[VD08, Fly98].

capability
[CKD94].

capability-based
[CKD94].

capacity
[Skk+07].

Capping
[RCC12].

capturing
[BKC+13].

Carolina
[ACM93a].

Cascadia
[ZL10].

Case
[AH00, AG96, Chl15a, EE14, LSB15, TAK+00, TESK06, VK99, BDL07, CASA14, CL94, HJT+93, KPPÆR06, KI16, MSM+11, MN03, SP05, Sod02, YN09].

Cathedral
[USE02].

causality
[HH16].

cavity
[RM99].

cD
[Ano00b].

CDSChecker
[ND13].

CE
[Tim03].

Center
[ACM98d, ACM99b, ACM00, Ano03, Hol12, IEE90].

Centers
[JGS+19].

Centric
[BDN02, Bre02, Ham96, DHM+12].

CFD
[DK02].

CG
[TAK+00].

CGRAs
[PIJ15].

chain
[SBC91].

Chaining
[JI15, KFG15].

Challenge
[Ano99].

Challenges
[Ano99, GJ97, AG06].

Changing
[Gar01].

channel
[MN03].

Channels
[EPAG16].

chant
[HM94, Ano90c].

Chapter
[SKK+01].

Characterization
[Ano05, BCG+08, DS09, MR94, MMM+05, DWY10].

characterizations
[GS00].

Characterizing
[Gle91, Od00, SN10, MTPT12].

Charleston
[ACM93a].

Chassis
[Ano00b].

Chebyshev
[Rö91].

Checker
[FQS02, FF04, FF08, FFY08].

CheckFence
[BAM07].

Checking
[ES97, ND16, AKH08, AD08, AGE08, B007, BS10b, BNS11a, BNS11b, BNS12, CNQ13, DI00, FFL08, MI05, MQ08, ND13, PAd+17, Sto02, TVD10, VGR06].

Checkpoint
[ZSA13].

Checkpoint/Restart
[ZSA13].

Checkpointing
[CS02, ZSJ06].

Chemkin
[Bra97].

Chicago
[Ano94d].

China
[IEE97].

Chip
[AGJ18, HOM91, KST04, KML04].
KU00, KKS+08, LS07, LZS+08, LKBK11,
LMJ14, MTN+00, MR09, PPG11, SV19,
TESK06, VIA+05, WEA08, ZM07, CSM+05,
DTK+15, GA09, KT99, MWK+06, SMK10,
SKKC09, TEL95, TEL98a, TEL98b.

Chip-Multiprocessor [PPG11, KT99].
Chip-Multiprocessors [KU00, LMJ14].
Chips [ANO00a, ANO03, IEE99]. Chiron
[TNB+95]. Chiron-1 [TNB+95]. Choice
[III00, TEE+96]. Cholesky
[CIM+17, VDO8]. Chores [EJ93].

Chunking [WLM15]. CIL [CAR08]. Cilk
[BJK+95, BJK+96, FLR98, Joe96, Mil95].
Cilk-5 [FLR98]. CIO [ANO94a]. Circuit
[AMRR98]. City [Hol12]. CLAM [GMR98].

CLAP [HZD13]. Class
[BS99, Cha02, Gib94, Rot19, VE93, CS00,
MSLM91, Yam96]. Classes
[Cal00, Fek08, How98, Lam95, SC17].
Classical [JSB+12, JSB+11]. Classics
[Wil00]. Classification
[KZC15, LMJ14, LCH+08]. Classifying
[NWT+07]. Class [WP10]. Client
[Day92a, Day92b, Sri95, Gol96].
client-server [Gol96]. Client/Server
[Day92a, Day92b]. clients [CDL13].
climbing [CY09]. Clique [MP13]. Closure
[YMR93b, YMR92, YMR93a]. cloud
[FKS+12, GDS+17]. clouds [FGG14].
Cluster [BNH01, CRE99, HD02, KKH03,
Kwo03, SCd+15, MWK+06]. Clustered
[GSL10]. Clustering
[JY15, LK15, RVR04, TASA07]. Clusters
[BWXF05, FA19, WG99, ZBS15, BMV03,
FWL03, TMAG03]. CMP
[TAS07, AMPH09, CW506, ICH+10, LLL01,
SLJ+18, SSK+07, ZS10, ZS12].
CMP-based [LLL01]. CMPs [GW10,
JSMP13, SQP08a, SQP08b, SQP08c, SYL16].
Co [Goo97, SG18, AMPH09, BBH+17].
co-design [BBH+17]. co-optimization
[AMPH09]. Co-processor [Goo97].
Co-routine-Based [SG18]. Coarse
[NS97, ZM07]. Coarse-Grain [ZM07].
coated [Lep95]. Code
[BBdH+11, Coo95, HY+15, JSB+12,
Kim14, KEL+03, MS02, NS97, ND16, PR98,
Roh95, RNSB96, TGBS05, Tra91, Ann96,
BB00, JSB+11, SJ95]. Codes
[CMBAN08, PHCR09, PT03]. Codesign
[HPA+15]. Codesigned [MKM17].
cognitive [MCB15, PWD+12]. cognizant
[KL13]. Coir [SG96]. Cold [Hig97, Hig97].
Collaborative [VSDK99]. Collection
[AKP99, LB92, PUF+04, PF01, QSaS+16,
KT12]. Collections
[Kle00, McM98a, McM98b]. collective
[HMC95, SCB15]. collector [BBYG+05,
DL93, HL93, WK08a, WK08c, WK08b].
coloring [CFG+12, GP05, SS10]. Colt
[WN10]. Combinator [KLS92]. combined
[UZU00]. Combining
[KRO1a, LZ07, CSHB16, ZLW+16]. come
[Pol90]. COMET [RCC14]. Coming [LS07].
Commands [KD97]. Commercial
[SBBK99, BEKK00, EJK+96]. Commodity
[ZLJ16, LVN10, RPNT08]. Common
[Hol98a, Kue92, BDF98, BDLM07, CL00,
Kue91]. Communication
[ABN00, BDJ06, DSR15, EHG95, FKT96,
FGKT97, GMR98, HY+15, OA08a, OA08b,
OA08c, Pan99, PWL+11, Rod94, SKK+01,
TCA+01, TCG95, BR92, BDRD91, GRS06,
KASD07, Lam95, QSH16, RR96, RR03,
TG09, TKA+02, HS96, WJH+95, ZCSM02a,
ZCSM02b]. Communications [ANO03,
BMN99, FJ08, SCB15, Sho97b, TP18].
Commutativity [AC09]. Compact
[HEMK17]. compaction
[WK08a, WK08b, WK08c]. Comparative
[SKP+02, Yoo96a, PL03]. Comparing
[KPPR06, SV96c, SV96a, SV96b].
Comparison [ILFO01, SAC+98, GL98b,
KIM+03, MKI004, MMTW10]. Compass
[PWD+12]. Compatible [MM14, LBH12].
compilation [YL16]. Compilation
[ACMA97, HLH94, BRRS10, GC92,
HCD+94, Tsa97b]. Compile
Compile-time [CS95a, CS95b, TSY99]. Compile/run [TSY99].

Compile/run-time [TSY99]. Compiler

[ATLM+06, BD00, BF04, CHH+03, CSS+91b, CGSV93, DZKS12, JSB+12, LEL+99, Loc18, MCRS10, SCv91a, SCv91b, SYHL14, Sin99, TY97, TGBS05, YBL16, ZCSM02a, ZCSM02b, ZP11, BCG95, BAD+10a, BAD+10b, BVG97, CAR08, CSS+91a, CSS+91c, DCO7, Dub95, Fon97, Gol97, Hop98, JSB+11, MSM+11, McM97, Müll03, RKCW98, Sch91, SKKC09, UZU00, WLG+14]. compiler-assisted [Dub95].

Compiler-Controlled [CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91].

Compiler-directed [DZKS12, SKKC09].

Compiler-Driven [YBL16].

compiler-managed [WLG+14].

Compiler-Supported [CSS+91b, SCv91a, SCv91b, CSS+91a, CSS+91c, Sch91].

Compiler-assisted [Dub95].

Complementary

[BR15, Sch14, BW97, DWS+12, FFY08, KGGK99, NV15].

Completion

[AGK96, BGGK96, Sch91, Sha98, A01].

Complete

[YFF+12].

Complete [BR15, Sch14, BW97, DWS+12, FFY08, KGGK99, NV15].

Completion

[AGK96, BGGK96, Sch91, Sha98, BGGK94c].

Complex [SZM+13].

Complexity [EG11, CMX10, SKA01].

complexity-effective [SKA01].

Compliant [BGK96, SP5, Hig97].

component [NFBB17].

component-based [NFBB17].

Components [Gon90, Sho97b].

Composable [MLGW18, SS10, FKS+12].

Compositions [KS97].

Comprehensive [TAM+08].

Compressed [PBL+17].

Computation [ACM94c, BFA+15, CWS06, HLB94, Hon94, HW93, Kuc92, Lak96, OTY00, Wat91, BHKR95, Fun93, Fuj97, KG07, Kic91, NJO00, Sha98, ST98, WHJ+95].

Computational [LNI+19, PCPS15, Bar09].

Computations [BL98, FS96, KC98, KC99, WJ12, YWJ03, Blu92, BL03, BL94, LB99, Chr95a, Chr95b, Chr96].

Compute [BBSSG11].

Computer [ACM98c, Ano94a, BVL09, CBV+00, Go094, BD06, DNB+12, GK05, I+94, PBDO92, WQLJ18].

Computers [Ano94e, SS96, BCM+07, Bo093, LP09, SJ95].

Computing [ACM93b, ACM98a, ACM98d, ACM00, ABC+93, Ama89, CT00, Den94, EJ93, FTP11, FGKT97, Gar01, GRS97, Ham96, Hol12, HG91, IE994b, KR12, Kon00, LCK11, LFA96, ME17, SRU98, SZ02, USE93a, Wea08, WN10, BGG95, BD06, Dan09, FWW03, GBG95, GS02, HFG92, IE97, Joe96, Kim94, KU17, Lan97, Leg01, Lu95, Mar07, PWD+12, SBCV90, Sta90, Ska01, Tem97].

Concept

[AMdBdRS02, BBFW02, KA97].

Concepts [McC97a].

Concrete [NSP+14].

Concurrency [BM94, GMGZP14, MLR15, MQL16, ME17, NFBB17, ZWL15, BA08, But14, CBM10, DKG18, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, SK12, VTSL12, Yan02, ZLW+16, dB09, SB80].

Concurrency-preserving [NFBB17].

Concurrent

[ILFO01, KD97, KCCD99, MSM+16, NPT98, PCM16, PF01, SV19, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCC010, BAMA07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGGK09, MSM+10, MKIO04, Men91, NHPF08, Ne999, ND13, ORS+06, STR16, San04, Se08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZSI06, Hay93].

Condensed [BIK+11].

Condition

[Hol98c, Yan02].

Conditional

[IBST01, NA07].

Conditions [HM96].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM99b, ACM99c, ACM99d, Ano90, Ano94a, AOV+99, BT01, Hol12, IE94b, IE95, IE96, IE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00a, USE00b, USE00b, Ano94d, Ano94f, Est93, KDD03].

confidentiality [NSH14].

Confirmation [CJW+15].

conflict [NJK16, vPG03].

conformant [Stu95].
Congress [Ano94d]. conjunction [Ano94e].
Connect [Ano00b]. conquer [FN17, TP18].
conscious [GBP+07]. Consistency
[ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSQ14, SNM+12]. consistent
[NHFP08]. Consolidated [HC17].
Constrained [TLGM17, GW10, YN09]. constraint
[SCG95]. constraints [HB15].
Construction [KW17, LHS16]. constructs
[BS06]. consumption [SCM05]. Contact
[Nak03]. Contemporary [ZJS12, ZJS10].
Content [WLM15]. Content-Based
[WLM15]. Contention
[ALB+18, XSaJ08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].
Content-aware [XSaJ08]. Context
[TLA+02, JLS99, FJ95, LG04, MQ07, PAdS+17, PFH06, SCB15, Yn07, LG04].
context-bounded [PAdS+17].
context-sensitive [PFH06, LG04]. contexts
[BGC14, TE94b, WW93]. Contextual
[BGZ97, NHFP08]. continuation
[AAHF09]. continuation-based [AAHF09].
continuations [DBRD91, GRR06].
Continuing [Ano99]. Continuous [RCC14].
Continuously [DTLM14]. Contour
[GFTJ19]. Control [BP05, KW17, Lev97, PBR+15, SU01, SMZ+13, SG96, CDD+10, DKG18, FK12, FSYA09, GCC13, MLCW11, NT14, PPA+13, PWWD18, Pol90, RPB+09, UZU00, WLK+09, Yoo96b]. control-flow
[NT14]. Controlled [ALSJ09, BCG+08, CSS+91b, CGSV93, SCV91a, CSS+91c, Luk01, MWPO7, Sch91, SCv91b].
Controller [RLJ+09]. controllers
[KASD07]. controlling [AGN09, BKC+13].
controls [McM96c]. Controversial
[Gar01].
Convention [ACM98d, ACM99b, ACM00, Hol92].
Conventional [KET06b, HB92].
Convergence [RM03]. conversational
[LG04]. Converse [BK96]. Convert [Vol93].
Converting [LEL+97a, LEL+97b].
convolutions [RB18]. convolver [Kep03].
Cool [Ano00a, Ano03, Wei97]. cooperation
[BM07, SKBY07]. Cooperative
[AMRR98, DNT16, ILFO01, LC13, KIM+03, MKIO04, TCG95]. coordinated [KKJ+13].
coordination [BDF98]. Coping [San04].
Coprocessor [LRZ16]. copying [HL93].
CORBA
[DHR+01, PSCS01, SV96a, SV96b, VS96].
Core
[CCL18, CvdBC18, FMY+15, FJ08, GBK+09, IXS18, KST04, KTR+04, MP01, MNU+15, MM01, PVS+17, PHBC18, PM14, QOI+12, ABC+15, AM09, CEG+12, CSM+05, DTR18, DWYB10, GW10, KBF+12, MLCW11, MLC+09, MTP12, Mus09, SMQ09, VPP+12, WCC+07, YZ07].
CoreDet [BAD+10a, BAD+10b]. Cores
[CCK+16, RRR11, CWS06, MAF+09, SW16].
coreSNP [GAC14]. Corner [SW97].
Corona [VSM+08]. Corporation
[Ano00b, Ano00b]. correct
[DJLP10, SP00b, Shi00]. Correction
[TLA+02]. corrective [LG04]. Correctness
[Ram94]. Correlation
[SLOT03, PFH06, SLT02]. cosimulator
[LT97]. Cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG+12]. counterexamples
[NV15]. Counters [Wei98b]. Counting
[Hol98c, Rec98]. County [ACM98d].
Coupled [MTN+00]. Course
[BLPV04, BZ07, GL07, She98]. coverage
[RRP06, YNP012]. coverage-driven
[YNPP12]. covering [BCG13]. Covert
[EPAG16]. CPU [BSSS14, PGB16]. CPUs
[SKG+11, SMD+10]. Craftworks [Ano97a].
Cray [BCG14, Smi01, VTS12]. Create
[Ber96b, Ber96a, Len95]. Creating
[Han97, Ten98]. Creation
[Eng00, Rin99, Sin97]. Crisis [Ano99].
Critical
[BLG01, CS12, OTY00, DTLM14, DESE13,
Criticality [DESE13, NB12]. Cross [Lam95, SHK15, BKC+13, CZSB16]. Cross-Layer [SHK15], cross-platform [Lam95], cross-thread [BKC+13, CZSB16].

Cyclic [YLLS16, HKT93]. cycleone [Gro03]. Cyclops [ACC+03]. Cyrus [HDT+13].

D [KSB+08, NTKA99, PYP+10, TKHG04]. Daemon [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEE96]. dans [Zig96]. DARPA [Mat97]. Data [Ama89, ABNP00, DTLW16, EW06, FHM95a, GAC14, HMC97, HRH08, Hig97, HLH16, JMS+10, JGS+19, KZC15, KEL+03, KET06a, KET06b, LPK16, LLD17, ME15, ME17, RCR95, SBN+97, SAC+98, SSYG97, SG96, Teu98, TESK06, VT96, Wil98, ZLJ16, ZAK01, AGEB08, AGN09, BAM07, CS95a, CS95b, CDL13, DHM+12, Evr01, FHM95b, FK12, HL93, LTL+16, LHS16, Mao96, MMN09, NWT+07, ND13, PDM16, PRB07, PHCR09, Po90, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKKC09, WDC+13, YKL13, ZJS+11].

data-centric [DHM+12]. Data-Driven [DTLW16, KETO6b, ME15, ME17, TESK06, Evr01]. Data-Parallel [ABNP00, SAC+98, HMC97], data-race [MMN09]. Database [BAZ+19, KD97, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a]. Databases [AOV+99, GDSA+17, HL08, MIGA18].

Dataflow [CJVL08, FA19, GGB93a, Gao93, HPB11, HKSL96, LH94, NBM93, RSBN01, SRU98, Tra91, YMR93b, BGG95, GGB93b, GBC95, HGC92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based [RSBN01]. dataflow/von [HG92]. datarace [CLL+02, CJSF08]. Datarol [KA97]. Datarol-II [KA97]. Dawning [Cro90]. DC [IEE94c, ACM92, Ano90]. DCE [RA96, YA95, YA96]. DDOS [HBCG13]. Deadlock [Hol98a, Mon00, Ver97, AFB+10, SR14, WLK+09]. Deadlocks [CC14, CJS+15, CZWC13, JPSN09, PRB07]. dealiased [RB18]. Deallocation [LPE+99]. death [Len95]. debate [Bak95b]. debug [PT03]. debugger [CB89, CB90].

Debugging [Ano98b, Cao20, HWZ00, MQLR16, PHK91, SJBR94, SJBR95, BGG95, BLL+96].

decentralized [RPB+09]. Decision [LFA96, LQ15]. Decisions [JGS+19].

decomposition [JEV04]. Decompression [PBL+17]. Decoupled [DO95, IXS18, APX12, Erv01, RVOA08, RCDG06, SKA01, VS96].

decoupling [KGGK09, PG01].

Decoy [MIGA18].

Deductive [AdBr08, BK13]. Deeply [GKCE17]. Defect [OB13].

Defragmentation [PVS+17]. Delaunay [ABC+09]. Delivering [SCCP13].

DeLorean [MCT08]. Demand [KKJ+13]. Demand-based [KKJ+13]. Demus [Sri93].

Demus-2 [Sri93]. dense [ABD+12, MM07].

Dependable [SUF+12]. Dependence [CZS+17].

dependences [BK+13, CZSB16].

dependencies [NCP06]. Deployment [GARH14].

DepSpawn [FA19]. Robert [McM96a, McM96b, McM96c, McM96a, McM96b].

Derivation [Kim14, SV19]. Derivative [TT03]. describes [Yan96]. Design [ACM94a, ACM99a, ANO94c, BM03, BC94, CL95, GMB93, GRS97, GMR98, HAI97b, JGS+19, KHP+95, La00, MB99, NBM93, Raj93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BOR96, Car89b, Car90b].

Dame [ACM94a, ACM99a, Ano94c, BM03, BC94, CL95, GMB93, GRS97, GMR98, HAI97b, JGS+19, KHP+95, La00, MB99, NBM93, Raj93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BOR96, Car89b, Car90b].

DepSpawn [FA19]. Depth [McM96a, McM96b, McM96c, McM96a, McM96b].

Derivation [Kim14, SV19]. Derivative [TT03]. describes [Yan96]. Design [ACM94a, ACM99a, Ano94c, BM03, BC94, CL95, GMB93, GRS97, GMR98, HAI97b, JGS+19, KHP+95, La00, MB99, NBM93, Raj93, RCDG06, Sch17, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+08, Ven98, ZBS15, AMPH09, BBH+17, BOR96, Car89b, Car90b].
FWL03, HCM94, Hud96, KU17, KGGK09, Mah11, Met95, Moc95, Moo96, MKR02, Ném00, OKID92, OCRS07, RSB+99, SB80, Sri93, Ver97, WLG+14, Wan94, WCV+98, Xue12. designed [San04]. Designing [Dru95, GKZ12, RR93, Rei95, TSV12, Hai97a, TCG95]. Desktop [Ano97a, FURM00c, FURM00a, FURM00b, Mar07, Pra95b, WSX97]. desktops [Ano94b]. despite [Len95]. Destructing [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03]. Details [FMY+15]. Detect [CNZS17, DS16, CZWC13]. Detecting [DSR15, RBK+09, SK97, FF10, JPSN09]. Detection [ABF+10, CC14, KUCT15, KW17, LS18, LLS06, Mou00, TLZ+17, TLZ+18, ZJ16, AFF06, CLL+02, CVJ98, FF09, HR16, LLLC15, LTHB14, MKM14, MN09, NBMI12, NA07, PS03, PS07, PFF06, RVS13, RM00, SR14, Sch90, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12]. Detector [SBN+97, SLC06]. determined [Kub15]. determination [BS10b, LWV+10, LZW+13]. Deterministic [DK02, KRBJ12, LB17, LS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DLCO09, DN3+12, LZW14, MAAB14, OA09, QSH16]. Deterministically [MCT08]. DetLock [MAAB14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing [SP00b, Shi00, TKA+01, OT95]. Development [Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, ARW10, Hig97, Pom98, TNB+95]. devices [Xue12]. diagnosing [CS12]. diagnostics [GGB+05]. diagrams [SK12]. Diego [ACM93b, ACM98b, USE89, USE93b, USE98b, USE00a]. differences [Yam96]. Different [BLPV04, GLC99]. Differential [Loe97, MQLR16, MLR15]. Difficult [CTYP02]. Difficult-path [CTYP02]. Diffusions [LTM+17]. Digital [SS91]. Digraph [CNZS17]. dimension [NJ00]. dimensional [AR19]. DIMM [ALSJ09]. Direct [PR98]. Direct-threaded [PR98]. Directed [LPE+99, STR16, AR19, DZKS12, Fan93, Sen08, SKKC09]. directory [QSQ14, HR10]. DISC [Don92]. disciplines [Bar09]. discrete [Leg01, TKHG04, WLK+09]. discussion [Sho97a, Sho97b]. Disintermediated [BDJ06]. Disjoint [SJA12]. Dispo [MGK+00]. Dissecting [ACC+03]. Distance [BCZY16, KZTK15, SV19, KNPS16]. distinguish [HL93]. Distinguished [ABH+01, TKA+01]. Distributed [ABNP00, ABH+01, BBD+91, BWXF05, BHKK95, BC94, CV98, CJK95, DKA16, FSS06, GJ97, Jen95, MKG+00, PG92, Pra95a, RLJ+09, RBPM00, RW97, RCRH95, SUF+12, TDW03, USE92b, VS96, Yas95, Ano96, A+01, BCG+95, CML00, Car90a, Gol96, GKK09, Gun97, HB92, HMC95, HW93, HBCG13, IEE97, ISS98, Leg01, MS03, MLA04, MLA05, MKK99, Ong97, Ph91, Ploy98, QSQ14, Sto02, Tod95]. Distributed-Memory [RCRH95, BCG+95, HW93]. Distributed-sum [TDW03]. Distribution [SSYG97, ZAK01, CV09]. divergence [MTS10]. divide [FN17, TP18]. Divisors [Kuc92, Kuc91]. DMP [DLCO09]. Do [Cri98b, Cri98a, RPNT08, Ber96a, Ber96b, YLLS16]. Dock [BCS11]. Docking [BCS11, TO10]. documentation [HF96]. Does [Hag02, RKK15, ZJS10, San04]. doing [Yam96]. domains [LAK09]. données [Swi09]. Don’t [HPV15]. DOSTThread [VE93]. DoubleVision [Ano00b]. downdating [VV11]. Downturn [Gar01]. DRAM [LKLS12, kSYXH+11]. DRAMs [ALSJ09]. draf [MSM+16]. DRFX [MSM+10]. Drinking [CZSB16]. Driven [DTRL06, For95a, For95b, HLB94, KET06a, KET06b, KETF06b, KETF06c].
KET06b, LWSB19, ME15, ME17, TESK06, YBL16, CSV10, Evr01, RVS13, RSB+09, SLP08, SQP08a, SQP08b, SQP08c, YNPP12. driver [CCW+11]. DSLs [RKHT17]. DSM [ABH+00, AB01, AB02, BDF98, KKH04]. DSM-PM [AB02]. DSM-PM2 [AB01]. DSMs [FBF01]. DTS [BHKR95]. Dual [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11]. Dual-Core [KST04, MB05]. Dual-Level [BBC+00, DK02]. dual-personality [CCW+11]. Dual-Processor [EHG95]. Dual-Thread [MB05, WS08]. Duplex [KG05]. Duplication [Kwo03]. Dynamic [BPSH05, CJW+15, FSYA09, HSS+14, Hig97, KMAC01, KPC96, KC98, KCU15, MVZ93, MTS10, Nak01, PBL+17, RCRH95, RS08, SBN+97, SLG04, SKK+01, Sta90, SC96, WHG07, XM99, ZKR+11, ZL10, AR17, CAR08, Ch95a, Ch95b, Chr96, Don92, FF04, FF08, FFY08, FF09, HSD+12, JPS09, KBF+12, LSS12, MK12, Mic04, NHFP08, SCB15, SLG06, TJY+11, WW96, BK13]. dynamic-multithreading [LSS12]. Dynamically [PGB12, TLGM17, DMBM16, Kep03]. dynamically-typed [DMBM16]. Dynamics [LNI+19].

e6500 [BGH+12]. Early [GL91, PBL+17, SLP08]. EARTH [HTZ+97, HMT+96, So02, TAK+00, TKA+01, TMA03, Nak03]. EARTH-MANNA [HMT+96, So02]. Easy [FA19, Har99]. Easysoft [An009b]. ECMA [Stu95]. ECMA-162 [Stu95]. economics [Bar09]. Edinburgh [AOV+99]. edit [KNPS16]. Editors [GG93a, GJ97]. Education [Gar01]. effect [BAD+09, GL98b, YSY+09]. Effective [ABLL92, DN94, GH03, GMGZP14, NAW06, NSH14, PGB16, RVS13, Sat02, TM09, TY97, CBM10, JSB+11, MMN09, MTC+07, SKA01, Tsa97b]. Effectiveness [PR05, TE94b]. Effects [Cho93, HRH08, KLH+99, KRB12, NHFP08]. Efficient [TTK02]. Efficiency [AJK+12, An05, TA+12, AMPH09, FGG14, GA09, MAM+05, MWK+06, Pra95b, RCG+10, SP05]. Efficient [AD08, ALSJ09, AI94, ABN99, BCZ+16, BGD+WH12, BJK+96, BL98, BMN99, CSZ+17, CYYL18, DLL+02, DMBM16, Gao93, GJ+12, GR+97, GS06, GN96, HCM16, HSS+14, HR10, HEMK17, KPC96, KSD07, LS18, Lem02, LSG+16, LZBW14, MB07, MAABB, NB99, PS03, SP07, TY97, TGBS05, ZL16, ATL+06, BL93, BJK+95, BHK+04, EKLR00, FLW03, FF09, GB99, HSD+12, KSB+08, KNPS16, KSD04, LK13, LWV+10, LHS16, LZW+13, MSM+10, NLK09, OAA09, Pan99, PSG06a, PSG06b, PS06c, PRS14, PS07, RL14, Sch91, SRA06, SP00b, Shio0, SG14, SQP08a, SQP08b, SQP08c, TO10, Wei98a, kSY+11, ZLW+16, FSYA09]. Efficiently [KBF+12, MCT08, SW16, Blu95, BKC+13]. eigenproblems [ABD+12]. eigenvalue [BLK+11]. Elastic [SG18]. Electronic [An009b, BB00]. Elegant [Hub01]. Element [HBTG98, MS02]. elementary [HKN+92]. elide [MLS15]. Eliminating [DSS17, OCT14, RD06, MTP12]. elimination [MK12]. elision [NM10]. Elliptic [Loe97]. EM-4 [BAM93, SKS+92]. Embedded [BGH+12, DS09, Dru95, GKE17, KG05, KE15, MS15, WM03, DCK07, KV+09, KASD07, KBF+12, LLLC15, LBH06a, LBH06b, LBH06c, RSB+09, SKP+12, Xue12]. Embedded-Systems [Dru95]. Embedding [Pul00]. emergencies [MTPT12]. Emerging [VSM+08, GBP+07, HFV+12]. empirical [LC13]. employing [CWS06]. Employment [Gar01]. Empowering [JSB+12]. Enabling [CC18, Pan99, SMZ18, JMS+10, VG+10a, VG+10b]. End
[SNM+12]. **End-to-end** [SNM+12]. **Energy** [ALSJ09, AJK+12, GJT+12, GKCE17, KE15, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KSB+08, NB12, PJZA07]. **Energy-Aware** [PR05]. **Energy-Effectiveness** [PR05]. **Energy-Efficient** [GJT+12, LK13, RL14]. **Energy-performance** [PJZA07]. **Engine** [SG18, CNQ13]. **Engineering** [GJ97, LSB15, WCV+98]. **engines** [HB15]. **England** [ACM94c]. **Enhance** [FSPD17, FJ08]. **Enhanced** [Ano00b, EJ93]. **Enhancing** [OL02a, OL02b, OL02c, HWW93, RHH10]. **Environment** [ABNP00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, Hud96, K07, Lam97, Pha91, SWYC94, Sta90, Tem97, WCC+07]. **Environments** [AKP99, BDN02, KG05, SP00a, EJK+96, RGG+12, Sam99, Ver96, Way95]. **equality** [AD08]. **Equalization** [TLGM17]. **Equations** [Loe97]. equivalent [Pra95c]. **Eraser** [SBN+97]. **Errata** [Ano01, Ano05]. **Error** [EUUG06, OA19, SSN10]. **Errors** [SK07, VACG09]. **escape** [SR01a]. **Esterel** [LBvH06a, LBvH06b, LBvH06c, LvH12]. **Estimating** [PCPS15]. etc [Hol98a]. **European** [DL99]. **EuroPVMMPI** [KKDV03]. **Evaluate** [EE14]. Evaluating [BL96, CML00, NPT98, PSC01, RPNT05, Sch98, SD95, TG09]. Evaluation [Aru92, Boo93, BTE98, CL95, CBN+00, EJK+96, Eic97, GLC99, HN91, RNSB96, SCD+15, TT03, ZL10, BGDMWH12, BLCDO7, Car98, Cho92, Don92, LZ07, Mah11, MRO2, NFB17, RGG+12, RCDG06, SWYC94, SKP+02, SMS+03, TGO00, TKA+02, WLG+14, WZSK19]. Evaluations [MM14, Roh95]. **evulator** [SP00b, Shi00]. even [Ano94b]. événements [Swi09]. **Event** [Ber96b, CKRW99, For95a, For95b, Ber96a, CKRW97a, CKRW97b, GWM07, KCCD99, KBP+03, Leg01, RVS13]. **Event-Based** [CKRW97a, CKRW97b]. **Event-Driven** [For95a, For95b, RVS13]. event-handling [KBP+03]. **Events** [BDN02, LZ07, Van97b]. **Evolutionary** [TAK+00, EU17]. **Evolving** [MS87, MS89]. **Exact** [Sch17]. examines [Yam96]. Examining [Kan94, Ric91, Rod95a, Tim03]. Example [BLPV04]. **Exception** [DH98, Lea96]. Exceptions [AdBdRS08, KR01b]. exclusion [BRE92]. exclusiveness [Lie94]. execute [APX12]. Executing [Blu95, BS99]. Execution [ABH+01, CC18, C91, Cu02, EC98, Far96, GMGZP14, GS06, HMC16, HEMK17, HZ12, KS16, KLG08, KF95, KF94, ME15, MGK+00, MCT08, NB93, NS97, PR05, RG03, RKK15, RSB01, STY99, VSDL16, Ann96, A+01, BAD+10a, BAD+10b, BCG14, Di93, JWG11, LVS01, Luk01, PAB+14, PG03, SBC91, SJA12, SGs14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TSY99, TSY00, TDW03, UZU00, WCT98, XIC12, XSA08]. Executions [CdOS01, HZD13, Roh95, STR16]. Exemplar [BLCDO7]. Existing [Ric99]. EXOCHI [WCC+07]. expansion [YK13]. Expectation [SC17]. Expectation-Maximisation [SC17]. expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96]. Experiences [BHK+04, EHG95, PST+92, SGM+97, USE92b]. Experimental [BLCDO7, EGC02, YMR93b, GRS06, Pha91, WCCW+04a, WCCW+04b, WCCW+04c, YMR93a]. Experiments [DV99, GMR98, SIZM+13, VSM+16, VV00]. **Explicit** [DV99, VDBN98, BM07, URS02b, URS03, VV00]. explicitly [MT02a, MT02b, MT02c]. exploit [Ano92a]. exploitation [KVN+09, PSS06a, PSS06b, PSS06c].
Exploiting
[AACK92, EUVG06, FFQ04, KDM+98, KOE+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96].

Exploration [PTMB09, Sch17]. Exploring
[AACK08, BS10a, SE12, WWW+].

Expressions [Hei03]. Extended
[BLG01, DV99, Rö919, VDBN98].

Extending [BF08, Mar03]. Extensible
[CdOS01]. Extension
[RRK11, CCC12, kSYHX+11].

FastTrack [PCM16, BDM98].

Features [GMB93, BDM98]. Featuring
[RRK11]. February
[USE89, USE00b, USE02]. Feedback
[SQP08a, SQP08b, SQP08c, TGO99, ALHH08]. Feedback-driven
[SQP08a, SQP08b, SQP08c]. Felix [Aoo00c].

Fernandez [Aoo00c]. fetch
[EE99a, TEE+96, AG18]. FFTs [MJF+10].

Fiber [GDSA+17]. Fiber-based
[GDSA+17]. fibers [BS06]. Fibonacci
[GFJT99]. FIFO
[HHOM91, HHOM92, QSaS+16]. fifth
[ACM93b, AOV+99]. File
[FG91, GJT+12, KS97, Pea92, WLM15, BLCD97, DZKS12].

Files [RRK11, CCC12, kSYHX+11].

Filtering [Kep03]. final [HCM94]. Finding
[MNG16]. Fine [AZG17, BBG+10, BS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, KG94, LGBK11, LVs01, LFA96, MKM17, NS97, PBR+15, TY97, TAK+00, YSS+17, BGK94c, Gol97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, RP8+09, TKH04, Wei98a, kSYHX+11].

Fine-Grained
[BBG+10, BS14, But13, LGBK11, PBR+15, TAK+00, YSS+17, LVs01, BGK94c, Gol97, RP8+09, Wei98a, kSYHX+11].

Fine-Grained
[BBG+10, BS14, But13, LGBK11, PBR+15, TAK+00, YSS+17, LVs01, BGK94c, Gol97, RP8+09, Wei98a, kSYHX+11].

Flexible
[ABG+08, KS97, Lem02, MSM+16, SP00a, Sam99, SCI05, WW93].

Floating
[LSB19]. Floating-Point
[LSB19].

Florida
[ACS98d]. Flow
[AT16, Ana89, HH11, PBR+15, FSYA09, JD08, KBH+03, NT14, Pol90, RM99, RP8+09, SV98].

FluidCheck
[KS16]. fly
[CWS06, PS03, PS07, Sch98]. Focus
[EHP+07]. Forces
[FT11]. Forecasting
[Ano98b]. fork
[ALS10]. fork-join
[ALS10].

FORM
[TV10]. Formal
[Sta05, WP10].

Formation
[FSYAO9]. forms
[BK+11].

FORTH
[Jon86]. FORTH-like
[Jon86].

Fortran
[Ano97a, Bra97, AS14, GOT03, HBG01, HBG02, N00]. forum
[Sho97a, Sho97b]. Forwardflow
[GW10].

Foundation
[MC15, RBF+89].

Foundations
[BA08, Gol94]. Four
[CH95, MTN+00, KNPS16]. Four-Russians
[KNPS16]. Four-Way
[MTN+00]. Fourier
[TT03, TTKG02, BCS11, HN91]. fourth
[USE96]. fragment [APX12]. fragments [LG04]. Framework [BMF+16, BVL09, BF04, CV98, DHR+01, EFG+03, KC98, KF97, LCS04, LMJ14, Loe97, NSP+14, Rei01, VSM+16, Yam95, AMC+03, BDF98, EHSU07, GJ11, Hop98, PV06].

France [FR95]. Francisco [ACM95b, USE02]. Free [Way95, AR19, DTLM14, GP08, MLS15, Mic04, ST05].

free-lunch [DTLM14]. FreeBSD [BGH+12]. French [Zig96].

frequent [GBP+07]. Fthreads [Nag01]. Fukuoka [Ano91]. Full [MHW02, GB99].

Full-system [MHW02]. fully [RD99, Stu95]. Function [Hub01, LLKS12, Röi19, TO10].

Functional [Coo95, DCK07, G506, Kim94, KIAT99, LP94, SSP99, Gm97, RKHB11, TAN04, VGR06, WZWS08, ZS06].

Functions [Bed01, KI16]. Further [GV95].

Fusion [PWL+11, Hig97]. futex [BF08].

Future [Jon91, TAM+08]. futures [TY99].

GALAHAD [GOT03]. GAMBIT [CBM10]. Game [DHR+01]. GAMESS [BB00]. Garbage [AKP99, LB02, PUF+04, PF01, QSaS+16, BBYB+05, DL93, HL93].

Garcia [Ano00c]. Gateway [Yas95].

GC [HVP15]. Geant4 [SCD+15]. GEMM [SLJ+19]. Gene [BBB+05]. Gene/L [BBB+05].

General [Ber96b, BP04, HSS+14, Man98, YKL13, ZSA13, Ber96a, Car89a, DC99, DC00, HSD+12, MQW95, SKA01].

General-Purpose [Ber96b, HSS+14, Man98, Ber96a, DC99, HSD+12].

generalized [ABD+12, BCM+07, FTAB14].

Generated [BD00, MJF+10]. Generating [AZG17].

generalized [DL93, WK08a, WK08b, WK08c]. generations [Roh95]. generators [SLF14].

Generic [ABH+00, AB02, Fer13]. Genetic [NSP+14]. genome [LHS16].

GeoFEM [Nak03]. Geometric [Caz02]. Georgia [ACM99a]. Germany [RM03, Wat91].

ghosts [TVD14]. Gigabit [AHW02].

Gigabit/sec [AHW02]. Gilgamesh [SZ02].

glasses [CZSB16]. Global [HH11, PWL+11, Ten02, FWL03, LZW14, OCT14, OA08a, OA08b, OA08c, Ano98b].

globally [CZWC13]. gmm_diag [SC17].

good [Mat03]. GPGPU [CCYW17, LLKS12, YZ14]. GPGPUUs [LSB15, ZWL15]. GPS [TVD14].

GPU [APX12, Bon13, DTR18, FTP11, KI17, LWSB19, LTL+16, LHW+16, LAH+12, WLG+14, XWG+14, YSS+17, ZO10].

GPU-Oriented [LHG+16]. GPUTED [Bon13].

GPUMixer [LWSB19]. GPUs [CSV10, DNT16, LBH12, SKG+11, VD08, WJ12]. Grace [BYLN09].

Grain [AZG17, CSS+91b, HG91, KG94, LFA96, MKM17, NS97, ZM07, CSS+91a, CSS+91c, KDM+98, Kim94, Loo95, MLC+09, Met95, PL03, TY97, TKHG04].

Grained [BBG+10, BSSS14, But13, LKBK11, PBR+15, TAK+00, YSS+17, BGK94c, Dub95, Gol97, LVS01, RP+09, Wei98a, kSYHX+11].

Grande [ACM01]. Grande/ISCOPE [ACM01].

Granularity [Kl95].

Graph [CFG+12, CL95, EJRB13, HPA+15, KS93, KLS92, MM14, LK15, LZW17, RVR04].

graph-based [LZW17].

GraphCT [EJRB13].

Graphical [ACR01].

graphics [BGDAWH12, CCW+11, FSYA09, PYP+10].

Graphs [HPB11, Ni94, OB13, AO80, ABG+08, DSEE13].

gross [MMTW10].

Greatest [Kuc92, Kuc91].

Green [SKP+02].

greener [MMTW10].

Grid [KEL+03].

Grid-Based [KEL+03].

GRIDiron
MTC+07, SKS+92, Sha95b, kSYHX+11].

Hybridizing [CZS+17], Hyperion [A+01].

Hyperobjects [LS18], hyperscalar [Raj93, Sha95a]. Hyperthreading [HRHO8, KM03].

I-WAY [FGT96]. I.e [USE99b]. I/O [RM03, A019a, Ano95b, ABB+15, BDN02, K86, LTL+16, Man98, MG15, Yoo96a].

IBM [ABB+15, CJB+15, KST04, LSF+07, WZ9+08]. Id [Nik94]. IDA* [Mah11].

Ideas [JLA16]. idempotency [KOE+06].

Identification [JSMP12], Identifying [BCZY16, SU96, DESE13]. IEEE [ACM98d].

IFIP [BT01]. Igniting [ACM03]. II [HCD94, IEEE99, J99, KA97, K01a, Mc96b, Wa95]. III [Ano00a, USE92b].

Illinois [GHG98]. Illinois-Intel [GHG98], Illuminating [BLP04], ILP [BCR07, RLJ+09]. im [HL93].

Image [WN10, BC914, Kep03, RKHT17]. Impact [KLG08, SCL05, TE94a, ZAK01, Div95, Me95, RG+12, RPNT05]. Impaired [Wei97]. imperative [SV98]. implementation [DBRD91], implementable [TEE+96].

Implementation [ACM94a, ACM99a, Ali94, AB01, A999, BBD+91, BHP+03, BRM03, CWHB03, DSH+10, FLR98, Hai97b, KA97, MS02, Nik94, STW93, TKA+02, TMW03, BK96, BB00, BMV93, CMX10, DL93, FGT96, GCC99, GB99, IAD+94, KASD07, Lev97, Li05, LZ07, LAH+12, NFBB17, OKD92, Stu95, Tod95, YY97, Ano95a, Ano95b].

Implementations [Han97, SAC+98, Ram94, SKG+11, Sha95b]. implemented [Boe05, KEL+03].

Implementing [ABB+15, AB02, BP05, CB89, CB90, Day92a, Day92b, DPZ97, GMB93, GSC96, HPA+15, KR01b, KB01a, KIAT99, Fra95a, TY97, TAN04, BHK+04, Lie94].

Implications [RM03, BS96, VSM+08, CSM+05]. Implicit [BAM93, MS02]. Implicitly [ACMA97, PFV03, SAC+98, RB15].

Implicitly-multithreaded [PFV03].

Improve [GV95, KH18, QSaS+16, RKK15, Sin99].

Improved [BR92, GMGZP14, LLS06, Smi06]. Improving [AKJ+12, BDN02, CCWY17, DKG18, FT96, FM92, FBF01, GA09, IBST01, LHI96, Man99, MEG03, Nak01, PG01, PAB+14, MCRS10, TO10].

In-Memory [BAZ+19], In-Order [RRK11].

In-place [SGLGL+14, SCM05]. In-Situ [RGK99]. IN-Tune [RGK99]. includes [S95]. incomplete [HR16].

incompressible [RM99]. Incorrectly [SCL05]. Increasing [PHCR09].

Incremental [BFA+15, Caz02, LB95, BBYG+05]. Independent [DS09, EW96, FSS06, USE93a, KNPS16, MEG94, PG03, WZ19].

Independently [ALSJ09]. indexing [MIGA18, MLS15], induced [MTPT12].

inducing [CZ02]. Industrial [KW17, Kou00]. Industry [DM98].

Informix [Ger95]. Initial [BTE98]. Inline [GH03, DJLP10, EKKL90].

Inline-Threaded [GH03]. Inlining [PR98, LQ15], innovating [JD08].

Innovation [ACM03]. innovations [ABB+15]. Input [BCG13, MP89, Tan87].

Input-covering [BCG13]. input/output [MP89]. Insight [IEE02]. Instruction [DV99, HM99, LEL97a, LEL97b, MCFT99, RYNS04, RS08, AMC+03, Aru92, Cho92, HKN+92, HMY+92, KBF+12, Mis96, OA08a, OA08b, OA08c, PY+10, Raj93, SD13, SMS+03, TE+96, VS11b, VDBN98, VV00]. Instruction-Level [LEL97a, LEL97b, MCFT99, SD13].
instruction-systolic [PYP+10].
instructions [PPA+13]. instrumentation [RS07, XMN99]. Integer [GH98]. integral [Kic91]. integrated [CCW+11, MTS10, RD99]. Integrating [Cal00, CM98, DNR00, DTL16, FKT96, TTY99, Tsa97b]. Integration [BWXF05, KSD04, KASD07, SD13]. integrity [NT14]. Intel [ARB+02, CCW+11, GHG+98, PDP+13, SCD+15]. intensity [BD06]. Intensive [TKA+01, AAKK08, TKA+02, YSY+09]. Interaction [Hei03, HF96, Pan99]. Interactions [WG94, WSK97]. Interconnection [NGGA94, RR93, SMK10]. Interface [Chl15a, HBG01, KKDV03, MS89, Met95, MQ95, MS87, MEG94, TNB+95, FGT96]. Interfaces [Han97, HF96, LG04]. Interleaving [LG94, YN09]. Intermediate [McC97a]. Internals [MM01, Wea08]. International [ACM92, ACM94c, ACM95a, ACM96, ACM98c, Ano91, Ano94a, Ano94d, Ano00a, Ano03, AOV+99, Cha05, EV01, Hol12, Hou94, Lak96, LCK11, Wat91, FR95]. Internationalization [Ano98b]. Internet [Ano96, Hig97, SBB96, van95]. Interoperability [DHR+01, Way95]. interplay [MLS15]. Interpretation [GH03, LG04]. interpreter [OCT14]. Interprocedural [NR06]. Interrupts [Rod94]. Interruptions [KE95]. interval [Kub15]. Intra [MKR10]. Intra-application [MKR10]. Introducing [GL07]. Introduction [CLRS09, Dra96, GGB93a, GJ97, Mas99, Bir89, GC92, Hay93, She98]. Intrusive [Caz02]. INUX [DNR00]. invasive [RGK99]. Inverse [HMLB16, GEG07]. inverses [GE08]. Invocation [SKK+01]. IPC [EE14, Koo93]. IPs [Sch17]. IRREGULAR [FR95, TSV12, ZAK01, TP18]. irregularly [FR95]. ISA [KTR+04, MNU+15]. ISCOPE [ACM01]. Isolating [CZ02, JWT11]. isolation [CMX10, MTC+07, SKBY07]. Isomigration [ABNP00]. ISSAC [ACM94c, Lak96, Wat91]. Issue [KU00, RYSON04, Ano94e, GGB93b, TEE+96]. Issues [GMB93, PS01, ARvW03, Ann96, GC92, HCD+94, IAD+94, TCG95]. Issuing [HMNN91, HKN+92, HNM+92]. Itanium [MB05, WCW+04a, WCW+04b, WCW+04c]. Itanium-2 [WCW+04a, WCW+04b, WCW+04c]. iterations [UZ00]. Iterative [MQ07, Nak03, AAC+15]. iThreads [BFA+15]. IUnknown [SW97]. Ivan [Ano00c]. IXP [ARB+02, LCH+08]. IXP2800 [AHW02]. J.UCS [KU00]. January [ACM94b, ACM95b, ACM98b, Ano90, USE89, USE91b, USE93b, ACM93a]. Japan [Ano91, Ano00a, Ano03]. JaRec [Chr01, GCRD04]. Jason [Ano00c]. Java [ACM98a, ACM01, Ano97a, USE01, AFF06, AMdBdRS02, AddS03, ÁdBrRS05]. ÁdBrRS08. Ait96, Ano96, Ano98b, ABH+00, ABH+01, A+01, AC96, ACR01, ABG+08, BZ07, Ber96b, BV97, BAD+09, BR15, BPS05, BHK+04, BS00, Bra97, BP05, BLPV04, Cal02, CV98, CKRW97a, CKRW97b, CKRW99, CWHB03, CC04, CCH11, Chr01, CT00, Coo92, Cor00, Ctri8b, Ctri8a, DLP10, DH98, DRV02, DLZ+13, DS09, Di00, DGK+03, Dra96, DHR+01, Dye98, EFN+01, EFN+02, EFG+03, EQT07, FSS06, FWL03, Fek08, Fer13, FFLQ08, GH03, GCRD04, GS00, GEG07, GE08, GLC99, Hug02, Ham96, Hei03, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b.
Hol00, Hyd00, KPPÉR06, KPB+03, LB00, LCS04, Loc18, Loc97, Man96, MP01, McM96a, McM96b, McM96c, McM98b, McM97, Mit96, MC06, NAW06, NM10.
Java [NR06, Nev99, OW97, OW99, PSM01, PSM03, PRB07, Pet03, PUF+04, PV06, PG03, RKCW98, San04, SE12, Sat02, Sch14, Sho97a, Sho97b, Sto02, SKP+02, Van97a, Ven97, Ver97, WN10, Whi03, XSa08, Xue12, Yan02, van95]. Java-like [DJLP10]. JavaBeans [Van97b], javar [BVG97].
JavaScript [Ano00a].
KUMP/ [NTKA99].
KAI [Ano98b]. Kaikan [Ano0a]. Karlsruhe [RM03]. Kaspersky [Ano0b]. Kendo [OA09]. Kernel
[Al94, ALB92, Bal02, DNR00, EBKG01, EKB+92, Kor89, MM01, ZSA13, Ano95a, Ano95b, BF08, J91, MF89, SS95].
Kernel-Based [Al94]. Kernels
[KI17, dFPRG99, GLC99]. Kiel [LVH12].
Kikai [Ano0a]. Kikai-Shinko-Kaikan [Ano0a]. kinds [San04]. kinematical BD06]. Kinematics [HMLB16]. King
[AC99b]. Kingdom [AC94c]. Kitsune [HSD+12, HSS+14]. Knoxville [IEE94b].
Kroll [Ano0c]. KUMP [NTKA99].
KUMP/ [NTKA99].

L [DNR00, GBB+05]. L1 [PHBC18]. L2 [SLP08]. L2-miss-driven [SLP08]. L3 [FJ08]. Lab [Ano0b]. labeling [D’H92].
Lafayette [Ev01]. Lake [Hol12]. lambda [ORH93]. Laminar [PBR+15, RPB+09].
LAN [Yas95]. LAN/WAN [Yas95].
Landing [TAK+00]. Language
[AC94a, ACM99a, ACM99b, BS06, FLR98, GS06, KAT99, Sat02, BO96, CFK+91, ECX+12, GPS14, Jon86, LT97, Man96, Mil95, Ong97, PRB07, RL14, SV98, Smi06, TMAG03, VGR06].
Languages [AC93a, ACM94b, ACM94d, ACM95b, ACM98b, Coo95, MSM+16, NPT98, OTY00, SCv91a, SS96, TY97, DMBM16, HL93, J92, JHM04, MSM+10, Sch91, SCv91b, ST98, TAN04].
LAPACK [ArvW03].
Laptops [Ano0c]. Large
[AOV+99, C14, CJW+15, GN92, JLA16, LA93, R8t9, BCM+07, Boo93, GOT03, Koo93, SMK10, WCV+08]. Large-Scale
[CC14, CJW+15, LA93, BCM+07, GOT03, SMK10].
Latencies [Sch17, BS06]. Latency
[BD00, BAZ+19, Fan93, OS101, SW08, Smi01, SKK+01, WWW+02, YLLS16, BR92, DC99, DC00, Jef94, Luk01, MVY05, PG01, TK98]. Latency-directed [Fan93].
Latency-Resistant [YLLS16].
latency-sensitive [DC99, DC00]. Latency-Tolerant [ÖCS01].
lattice [SKG+11]. Law [Gar01, NZ17, CN14].
Layer [SKH15, CDD+10]. layout
[DKZS12, HB15]. Lazy
[GSC96, G97, LF94]. LCMT [LKBK11].
leadfoot [HHPV15]. Leakage
Learning
[CCY18, DS16, ROA14, PWWD18]. least
[FTAB14]. least-squares [FTAB14].
lecture [Egg10]. Lenient
[SCv91a, Sch91, SCv91b]. Lepp [RRMJ12].
Lepp-bisection [RRMJ12]. Lessons
[RM03, HPA+15]. Letters
[DH+01, TLA+02]. letting [AC09]. Level
[ABLL92, BBC+00, FURM00c, GP95, JYE+16, JLS99, DK02, KSLU4, LS11, LEL+97a, LEL+97b, MG99, MR94, MG14, PL+15, RR93, Sch+17, SLT03, YRL+16, BBH+17, CCC12, DG99, EE09a, FURM00a, FURM00b, GMW09, GPS14, GR06, HDT+13, JEV04, KDM+98, KVN+09, KC99, LQA97, MSLM91, MT92a, MT92b, MQW95, MCT99, OT95, OCRS07, P003, PT03, QQOV+09, STY99, SD13, SLT02, SCZM00, Tem97, WS08, YZL07, YZ14, ZJS+11]. Level-2

[PR814]. Leveraging

LFTHREADS [GP08]. Libraries

[Ano98b, ABN00, BFA+15, CGR92, EHG95, Gib94, GHG+98, Kem02, Man91, Rot19, WN10, Yas95, Ada98, Boe05, CS00, GP08, GOT03, Mix94, Ong97, TB97a, TB97b, Yam96, Lev97]. life

[KL06]. light

[Way95, LZT+15]. light-weight

Lightweight

[AGN99, Col90b, Don02, Est93, Fis95, Haf97b, SL+98, CASA14, Haf97a, LVN10, MMN09, MEG94, VACG90, WSK97, LKBK11]. like

[DJLP10, Jon86, VV11, Kor89]. limit

limited [Bri89]. Limits

[LB95, LB96c, AAKK08]. Line

[Ano00c, FSPD16, FDL02]. Linear

[KLDB09, Loe97, MR99, AAC+15, Bak95a, MM07, YS+99]. Link [Ano00b]. Linked

[WJ12]. links [WW96]. LinkScan [Ano00b]. LINVits [CDL13]. Lint [Kor89]. Lint-like [Kor89].

Linux

[An07a, An00b, An00c, An97a, RGK99, SKP+02, WTKW08, ZSA13]. Linux/AXP [An07a]. Linux/FreeBSD [An00b]. Linux

[Hon94]. liquid [KRB12]. Lisp [Nor90].

List [DV99, WJ12, VV00]. LiteRace

[MMN09]. little [CDL13]. liveness

[GM09]. LLCs [PBL+17]. Load

HBTG98, HR10, KMAG01, KC98, KRH98, PGB16, VPQ12, Chr95a, Chr95b, Chr96, MKIO04, TKHG04]. load-adaptive

[TKHG04]. Load-Balancing

[KC98, PGB16, Chr96]. Load-Load [HR10]. Loadable [ZSA13]. Loading [PCM16].

Local

[DK99, Wti03, HZD13, ZLW+16]. localities [CS95a, CS95b]. Locality

[BS96, CCW+17, PEA+96, Wei98b, HWW93, KL13, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization [OB13]. Location [USE93a]. Location-Independent [USE93a].

Lock [ALB+18, EFJM07, MNU+15, NM10, PGB14, AR19, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLW+16].

lock-free

[AR19, GP08, MLS15, Mic04, ST05].

Lock_manager [Hol99b]. Locking

[Bal02, LDT+16, AFF06, Lie94, MMTW10, RDO6, ZLW+16]. Locks

[ACR01, ALS10, MT93, OCT14].

LOCKSMITH [PF06]. LOGFLOW

[NTK99]. Logic

[Bre02, KI17, TAN04, BK13].

Logic-Centric [Bre02]. Logical

[CR02].

LOIS [KT17]. longer [XHB06]. Looking

[ECX+12]. lookup [KNPS16]. Loop

[RLJ+09, SPP99, JSM+10, KVN+09, UZU00].

loop-level [KVN+09]. loops [DH92, FN17].

Low [ALB19, An00a, An03, BGH+12, PHBC18, ZHCB15, GPS14, RRP06].

low-level [KVN+09]. low-overhead [ZHC18, ZP14, RRP06].

Low-Power

[An00a, An03, BGH+12, PHBC18].

Low-Rank [ALBL19]. LPVM [ZG98]. Ltd

[An00b]. lunch [DTLM14]. Luther

[ACM99b]. Lyon [FR95].

M [An00a, USE01, FK+97]. M-Machine

[FK+97]. MA [An04f]. Mach

[USE91a, CB89, CB90, Hoo99b, Koo93, MRGB91, RBF+89].

Machine

[Ama89, CSS+91b, DS16, FK+97, KA97]
[BBFW02, BBFW03, DJLP10, MC06, NFBB17, VGK+10a, VGK+10b]. Monitors [Bec01, SS91, KPP96]. Monsoon [NCA93]. Montecito [MB05]. Monterey [USE91a, Ass96, USE96, USE01]. Mosaic [Ano94d]. Most [PLT+15], mostly [BBYG+05]. Moving [Ait96, Sim97]. MP [Pea92, TTY99]. MPD [PHK91]. MPEG [BC00]. MPI [PS01, Vre99]. MPD [PHK91]. MPEG [BC00]. MPI [PS01, Vre04, GCRD04, GCC15, GPR11, KHP+95, KHHK04, Keo03, Kuc91, KBF+12, Lan97, LBH06a, LBH06b, LBH06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mos09, NFBB17, NH09, SH14, OAA08a, OAA08b, OAO8c, PYP+10, RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam09, SC17, SE12, SV08, Sm06, Sto02, SQP08a, SQP08b, SQP08c, SMQ09, ST05, Ten97, TCC95, TMA03, TJJ+11, VIA+05, VDBN98, VV00, VPQ12, WCV+07, WCV+98, Y079, Yan07, YSY+09, YN09, kSYX+11, YKL13, ZKR+11, dB09, vPG03, An097b, CH04, Mix09]. Multi- [FMY+15], multi-ALU [KDP+98]. Multi-Core [CC18, CvdBC18, FJ08, IXS18, KTR+04, MUN+15, PM14, CFF+12, CSM+05, DWYB10, KBF+12, MLC+09, Mos09, SMQ09, WCV+07, Y077]. Multi-Cores [CCK+16]. Multi-CPU [PGB16]. Multi-dimensional [AR19]. multi-engine [CNQ13]. Multi-Level [RR93, CCC12]. Multi-Level-Context [JLS99]. multi-process [WCV+98]. Multi-Processing [MLGW18]. Multi-Processor [SV19, VIA+05, YN09]. Multi-protocol [ABN00]. Multi-Tasking [CvdBC18]. Multi-Thread [GH91, MT0+00, AMR98, PKB+91, SKG+11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95]. Multi-Threaded [AGK96, BC98, Bed91, BGK94a, BGK94b, BGK+96, CL95, CRK99, Coo95, DFD16, FLL08, GVT+17, GKT94, Gil93, III+01, JY15, Jon91, KLW99, KRW99, KB00, Leg01, LKBK11, MLGW18, MNU+15, Mat09, MTN+00, McC97a, McC97b, MS15, MP13, MG15, MCF09, MGK+00, NJO0, OR12, PCPS15, PTM09, PWWD18, PKB+91, PKI14, Pul00, PGB16, RR93, RCC14, RBPM00, RKCW98, RVR04, RS08, SV19, SP0a, STW93, Scf90, SKG+11, SMZ18, Sel98, Sel99, Sm09, Ste01, SBBK99, TGO99, Tan87, Tra91, TLGM17]. Multi- [VSDK09, VS11a, VB00, VK99, Wal00, YLLL06, ABF+12, BWDZ15, Bak95a, BK13, BM07, BI+11, DSE13, CNQ13, CSM+17, CFF+12, CASA14, CRK97a, CRK97b, CSB00, CYZ98, CL00, CSM+05, DWYB10, Don92, EFG+03, EHSU07, FTAB14, FWL03, FGG14, GCRD04, GCC15, GPR11, KHP+95, KHHK04, Keo03, KUC91, KBF+12, Lan97, LBH06a, LBH06b, LBH06c, LVA+13, LZW+13, MLCW11, MLC+09, MS03, MKK99, Mos09, NFBB17, NH09, SH14, OAA08a, OAA08b, OAO8c, PYP+10, RCV+10, RKM+10a, RKM+10b, RGK99, SCB15, Sam09, SC17, SE12, SV08, Sm06, Sto02, SQP08a, SQP08b, SQP08c, SMQ09, ST05, Ten97, TCC95, TMA03, TJJ+11, VIA+05, VDBN98, VV00, VPQ12, WCV+07, WCV+98, Y079, Yan07, YSY+09, YN09, kSYX+11, YKL13, ZKR+11, dB09, vPG03, An097b, CH04, Mix09]. Multi- [FMY+15], multi-ALU [KDP+98]. Multi-C [Mix94], multi-context [Yan97]. Multi-Core [CC18, CvdBC18, FJ08, IXS18, KTR+04, MUN+15, PM14, CFF+12, CSM+05, DWYB10, KBF+12, MLC+09, Mos09, SMQ09, WCV+07, Y077]. Multi-Cores [CCK+16]. Multi-CPU [PGB16]. Multi-dimensional [AR19]. multi-engine [CNQ13]. Multi-Level [RR93, CCC12]. Multi-Level-Context [JLS99]. multi-process [WCV+98]. Multi-Processing [MLGW18]. Multi-Processor [SV19, VIA+05, YN09]. Multi-protocol [ABN00]. Multi-Tasking [CvdBC18]. Multi-Thread [GH91, MT0+00, AMR98, PKB+91, SKG+11, Tan87, Tra91, DWYB10, Don92, ST05, TCG95]. Multi-Threaded [AGK96, BC98, Bed91, BGK94a, BGK94b, BGK+96, CL95, CRK99, Coo95, DFD16, FLL08, GVT+17, GKT94, Gil93, III+01, JY15, Jon91, KLW99, KRW99, KB00, Leg01, LKBK11, MLGW18, MNU+15, Mat09, MTN+00, McC97a, McC97b, MS15, MP13, MG15, MCF09, MGK+00, NJO0, OR12, PCPS15, PTM09, PWWD18, PKB+91, PKI14, Pul00, PGB16, RR93, RCC14, RBPM00, RKCW98, RVR04, RS08, SV19, SP0a, STW93, Scf90, SKG+11, SMZ18, Sel98, Sel99, Sm09, Ste01, SBBK99, TGO99, Tan87, Tra91, TLGM17]. Multi-
TLGM17, VSDK09, VS11a, VB00, Ada98, AACK92, BBH+17, BC00, CV98, CWHB03, CdOS01, cC91, Chr01, CR02, DS16, EGBK01, FD96, GS06, GH98, HC17, KI95, KRH98, LK15, Leg01, PWWD18, RBPM00, RS08, SP00a, Sei98, VK99, Wal00, ABD+12, BWDZ15, BK13, BIK+11, DSEE13, CM+17, CASA14, CKRW97a, CKRW97b, CB00, CYZ98, CL00, EFG+03, EHSU07, FTAB14, FGG14, GCRD04, GCC15, GPR11, KHP+95, KKH04, Kep03, Kuc91, Lan97, LBvH06a, LBvH06b, LBvH06c, LVA13, MLCW11, MS03, MKK99, NFBB17].

multi-threaded [NH09, NSH14, OA08a, OA08b, OA08c, PYP+10, RCV+10, RK+10a, RK+10b, RGK99, SCB15, Sam99, SC17, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, Tem97, TAMG03, TJy+11, VV00, YSY+09, ZKR+10, Zv02, Cho93, DCK07, EKKL90, HB92, KT99, LVN10, LWY+10, PJZA07, Ano94b].

Multi-Threading [CvdBC18, CNZS17, LKBK11, MLGW18, Mcc97a, Mcc97b, MS15, MP13, OR12, PTMB09, RCC14, Sch90, SMZ18, TGO99, Ylls16, Dtlw16, MCF99, NJ00, RV04, Bak95a, BM07, FWL03, LZW+13, MLC+09, VDBN98, SYHX+11, YKL13, CH04].

multiagent [Bar09].

Multicomputer [FK+97, multicomputers [BCG+95].

Multicore [ALJS09, ABLM19, BCZY16, CCH11, CB16, DvAE18, GJ11, HEMK17, KLDB09, LS11, LMA+16, LYH16, LDT+16, MR09, NBMM12, PGB16, RCM+16, RRK11, SLJ+18, SHK15, SMD+10, THA+12, ZBS15, CNQ13, CN14, CMX10, LK13, Llcc15, NZ17, RCG+10, RKBH11, SCCP13, SE12, ZSB+12].

Multicore/Multithreaded [RCM+16].

Multicore [Fspd16, Fspd17, Rk15, DTK+15, GARH14, SSN10].

Multifrontal [ALBM19, But13, Dav11].

Multigrain [AZG17].

Multilevel [PPG11, Cat94, JYy+03, LK15].

Multimedia [Spe94, Est93, Gol96].

multimethod [FGT96].

Multiple [CB16, Fgkt97, HW92, Hkt93, NTR16, OR12, CS95a, CS95b, FD95, HKN+92, LT97, TE94a, TFG10, TAN04, WCT98].

multiple-context [Df95].

multiply [DTR18].

Multiprocessing [EkB+92, Len95, NV94, Wal95, DLCO09, Mt93, Fra95b, RGK99].

Multiprocessor [Aack92, AKP99, BC00, Cat94, EHG95, GHG+98, HN91, KMA01, MCT08, Pre90, PPG11, Sz92, Sep96, USE92b, WC99, Zub02, Cho93, Dck07, Ekk10, HB92, KT99, LVN10, LVW+10, PJZA07, Ano94b].

Multiprocessor/multithreaded [Cat94].

MultiProcessors [BMV03, AG18, BS96, BL96, BLG01, CH95, GMR98, Ku00, KKS*+08, LS07, LMJ14, LA93, MVZ93, MKC97, NS97, TESK06, YMR93b, BR92, GA90, HT14, LGH94, Mao96, Men91, MKW+06, QsQ14, SMK10, Sha98, SKK09, Taso7, Yoo96b, YMR93a].

Multiprogram [EE14].

Multiprogrammed [MVZ93, Tsy99].

Multiprocessing [Bhp+03, Jj91, Cgl92a, Cgl92b].

MultiRace [PS07].

Multitasking [Col90b, Gib94, Gon90, Jj91].

Multithread [Lcs04, RRMJ12, SYHL14, CS95a, CS95b, Dsh+10, Gcc99, Jdo8, Swyc94, Zg98, Zg96].

multithread-safe [Gcc99].

Multithreaded [Add03, AbdR08, Abc+93, At16, Ama98, Alb+18, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, ABH+00, ABH+01, Ab01, Ab02, AG96, AZG17, Acma97, Abn00, AKP99, Bal02, BBFW02, Bcr01, Bbdh+11, Bvl09, Bki06, Bmwb00b, Bfo04, BJk+96, Bl98, Bbo0, Bmnn99, Bdn02, Bp05, BLG01, Bte98, Bnh01, Bd06, BGh+12, Bbsg11, CC14, CJw+15, Cs02, CGK06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, Cbn+00, Cmba08, Dan09, Dnr00, Dnr98].

multithreading [Dnr98].

Multithreaded [Add03, AbdR08, Abc+93, At16, Ama98, Alb+18, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, ABH+00, ABH+01, Ab01, Ab02, AG96, AZG17, ACMA97, ABN00, AKP99, BAl02, BBFW02, BCR01, BBdH+11, BVL09, BKJ06, Bmwb00b, BF04, BJK+96, BL98, BBO0, BMNN09, BDN02, BP05, BLG01, BTE98, BN01, BD06, BHG+12, BBSG11, CC14, CJW+15, CS02, CGK06, CC04, CHl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN+00, CMBAN08, DAN09, DNR00, DNR98].
DVAE18, DH98, DRV02, DTR18, DO95, EFN+01, EFN+02, EJRB13, EHP+07, EC98, EGP14, FSS06, FT96, FS96, FTP11, FQS02, For97, FLR98, GGB93a, GRS97, GMR98, Goo97, GN00, GN92, HPA+15, HMLB16, HTZ+97, HMNN91, HHOM91, HHOM92, HL94, HH11, HWZ00, HPB11, HYY+15, Hud96, HMT+96, I+94. Multithreaded [JBK18, JYE+16, JSB+12, KA97, KKW14, KMAG01, KST04, KML04, KC98, KC99, KMjC02, KR12, KU00, KE15, KG94, Kim14, KU17, KAO05, Kor89, KTR+04, LS07, LG06, LH09, LB96a, LB98, LB00, LLS06, LvH12, LTM+17, LYH16, LPE+99, Loc18, Loe97, Lun97, Lun99, MGQS+08, MP01, MS89, MB99, MD96, Moo95, Moo96, MR09, Nak01, NPT98, NGAG94, NKA99, Nik94, OB13, OTYO00, PBDO92, PUF+04, PG92, PG96, PG99, PF01, PHK91, PWL+11, PS01, QOI+12, RCM+16, RW97, RCC12, REL00b, Rin01, RB18, RNS96, RSBN01, RRR11, RBA05, RR99, SPIDL+17, SRS98, SR14, SBN+97, SCD+15, SCL05, SAC+98, She98, SU96, SU01, SZM+13, SMG+97, SMD+10, SR01b, SSYG97, SKK+01, Spe94, Sri95, SZ02, SUV+12, Sat99, TG99, Ten02, TKA+01, TC198, TT03, TTKG02].

Multithreaded [TGBS05, TLZ+17, TLZ+18, TJ98, TS12, URS02a, VTM12, Vol93, VE93, Wan94, WS08, Wea08, WIJ7, WL15, W94, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, AdBdRS05, ACD+18, Aga89, Aga91, Aga92, ABF+10, ABC+15, AAC+15, ACC+03, AGEBO8, Ann96, Ano94b, Ano95a, Ano95b, A+01, ABC+09, AR17, AR19, Aru92, BGDmWH12, BFVW03, BRRS10, BGZ97, BCHS00, BAD+10a, BAD+10b, BCG13, BGC14, BMBW00a, BMBW00c, BYL09, Blu92, BL93, BL94, BKJ+95, Blu95, BL99, BS10a, BC14, BEKK00, BPSH05, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car89b, CB89, CB90, CFG+12, Cat94, CL94, CN14, CS12, CDD+10, CLL+02, Cho93, Cho92, CGL92a, CGL92b, CJ+15, DJLP10, DSG17, Dav11, DL93, DFK94, EJK+96, EIC97, EG11]. Multithreaded [Est93, Erv01, Fan93, Far96, Fer13, FF04, FFQS05, FF08, FFY08, Fuj97, GMW09, Ga94, GJ11, GGB93b, GKB93b, GRR06, GRS06, GRR06, GA09, GLC99, HMC97, HFV+12, HF88, HLB90, Hig97, HMN+92, Hop98, JMS+10, JWTG11, JFL98, JSM12, JSM13, Joc96, JSB+11, KGP012, KR01a, KR01b, KNPS16, KMB+03, Kub15, Kus15, LLLC15, Lea96, Lei97, Len95, Lev97, LLI0, LCH+08, LMC14, LBE+98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, Mi95, Mis96, Mix94, MC06, MKR10, MQ07, NB12, NR06, Ném00, NPA92, ND96, NZ17, Omm04, Par91, PFV03, PJZA07, Pha91, Pls99, PDP+13, PS03, PO07, Pra95c, PTO3, RGG+12, RCM+12, Raj93, RCG+10, RHH10, REL00a, REL00c, Rei95, ROA14, Roh95, RS07, SBCV90, SBC91, SR01a, SV96c]. Multithreading [AMdBdRS02, AH00, AGJ18, Ano99, Ano05, BBG+10, BWXF05, Bec00, Bee98, BW97, BD00, BL96, BPL07, Bre02, BLFPV04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FBF01, FTK96, GHG+98, Gv95, Gu95, Gun97, GSL10, Har99,
multithreading-based [GE08]. must [NA07], mutable [HL93]. Mutex [Hol98b]. mutual [BRE92]. Mysteries [Hol99b].

[HG91, GKK90]. **November**
[ACM98d, ACM99b, ACM00, ACM03, Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a], **NOWs** [SLGZ99]. **NP [YZ14]. NPB** [EGC02]. **NT** [Ano98b, Hig97, PG96, Pra95c, Pra95b, TCI98, USE98a, Wil94a, Wil94b, Yam96]. **NT-Style** [Wil94a, Wil94b]. **NUMA** [LMC14, ZLW+16]. **NUMA-aware** [ZLW+16]. **number** [LSS12, SLF14]. **Numeric** [MLGW18, SGM+]. **Numerical** [MR09]. **Numerics** [Ano97a]. **NY** [SS96].

O
[RM03, Ano95a, Ano95b, ABB+15, BDN02, KSU94, LTL+16, Man98, MG15, Yoo96a]. **Object** [Ano99, BBD+91, BC94, GK94, HH97, KC99, Kim14, NPT98, SJ95, SG96, Ada98, Car89a, CYZ98, CLL+02, FWL03, FL90, JPS+08, LLLC15, Sch98, Wei98a, Yam02, dBo9, vPG03]. **Object-Oriented** [Ano99, BBD+91, BC94, Kim14, NPT98, SG96, HH97, Ada98, Car89a, CYZ98, CLL+02, FL90, JPS+08, Wei98a, Yam02, dBo9, vPG03]. **Objects** [ACR01, CJK95, CR02, Low00, Pra95a, Rie99, Ten02, Yas95, Bak95a, Bri99, DMBM16]. **obj** [Swi09]. **Oblivious** [UALK17, HL08, HZ12]. **Observer** [Hol99a]. **occupancy** [PAB+14]. **Ocean** [SAC+98]. **OCET** [BK+13]. **October** [ACM94d, Ano94d, BT01, IEE95]. **ODBC** [Ano00b, Hig97]. **ODBC-compliant** [Hig97]. **ODBC-ODBC** [Ano00b]. **ODE** [Bra97]. **Off** [MHG95, AAC+15, DTK+15]. **off-chip** [DKT+15]. **Off-the-Shelf** [MHG95]. **offs** [Par91]. **Old** [Wil90]. **On-Chip** [LKBK11, ZM07, SMK10, TEK95, TEL98a, TEL98b]. **On-Line** [Ano00c, FSPD16, FdL02]. **On-the-fly** [Sch89, CW06, PS03, PS07]. **once** [Bak95a]. **one** [QSH16]. **one-sided** [QSH16]. **Online** [Ger95, OTY00, RCC14, Sei98, Sei99, SRA06, TGO99, HF96]. **LWV+10, RS07, VGK+10a, VGK+10b]. **only** [Dii00, MJF+10, NIV10, ZJFA09]. **onto** [LBH06a, LBH06b, LBH06c]. **Open** [Ano00c, BMF+16, Hai97b, KR01a, KR01b, RBF+89]. **Open-Source** [Ano00c]. **OpenGL** [Rot19]. **OpenGLe** [Rot19]. **OpenMP** [Cha05, ARvW03, BHR+03, BBC+00, Bra97, BMV03, B001, CRE99, CDT+01, CM98, DM98, HD02, EV01, JYY+03, KKH03, Lu98, MS02, MAR03, ML04, M04, MG15, MM14, Mú03, NAL01, RBA05, SLGZ99, Thr99, TGBS05, Vre04, RM99]. **OpenMP-oriented** [ML04]. **OpenOpt** [N+14]. **OpenPitOn** [BMF+16]. **OpenSPARC** [Wea08]. **Operand** [SP07]. **Operating** [ACM94d, CLFL94, TL+14, Ge01, IEE99, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, BDM98, BDPR91, IE94d, Jef94, Jen95, LVN10, LAK09, Ply89, RBF+89, REL00a, REL00c, She98, Way95]. **operation** [DKG18, RHI10]. **Operational** [CRW99, CRW97a, CRW97b].

Operations
[KK9+08, KLB09, SCL05, HMC95, R06].

Opportunistic [YL16]. **Opportunities** [GJ97, HL08, Mus09]. **OPR** [QSH16].

Optimal
[AT16, Lar95, RCM+12, Lep95, LML00].

Optimistic
[WH1+95, CZS16, DKG18, VPQ12].

Optimization [BLO01, CVD18, GN06, RN896, SYL14, TJY98, TLGM17, W012, AM0+03, AMP09, DZK12, G03, Koo93, RKCW98, Sin99, TO10, ZCSM02a, ZCSM02b]. **Optimizations**
[HY+15, JSB+12, KET06a, LEL+09, Sut99, ZM07, ABC+09, JSB+11, OA08a, OA08b, OA08c, Rob95]. **Optimized** [Sin97].

Optimizing [DTK+15, KZT15, PR98, PSCS01, WC+07, GS02].

Orange
[ACM98d]. **Orchestration** [GVT+17].

Order [CJ95, RRK11, NV15, SAJ12, SW16, ZKW15].

Ordering [HR10]. **Oregon**
[ACM94b, ACM99b, IEE93]. Organization
[HG91, HG92]. organizing [LAK99].
Oriented [Ano99, BBD+91, BC94, Kim14, KS97, LHG+16, NPT98, SG96, Ada98,
Car99, CYZ98, CLL+02, DWYB10, FL90, HH97, JPS+08, MLC04, Wei98a, WP10,
Yan02, dB09, vPG03]. Orlando
[ACM94a, ACM98d]. OS/2
[DN94, Kan94, Kel94a, Kel94b, Rei95, Ric91, Rod94].
oscillations [BD06]. OSF
[BM91]. OSF/1
[BM91]. Other [SPY+93, MMTW10].
Ottawa [BT01]. Out-of-Core
[QOIM+12, ABC+15]. out-of-order
[SJA12, SW16]. output [MP89].
Outstanding [LSB15]. Overall [SEP96].
Overcome [SW08]. overflow [KOE+06].
Overhead
[DSR15, RRP06, YL16, ZHCB15].
Overheads [SHK15]. overview [Li05].
Own [BS99, Sho97a, Sho97b]. Oxford
[ACM94c].

P [Ano00b, Nik94, PR05]. P-RISC [Nik94].
P-STAT [Ano00b]. P-Thread [PR05].
Pacific [IEE93]. Pacifier [QS94].
Package [Ano94c, FL90, HCM94]. packages
[GOT03, OT95, PL03]. Packaging [RR93].
Packet
[BLCD97]. Packet
[AHWO2, LCH+08, MVY05, WCZ+07].
page [CNV+06]. page-based [CNV+06].
PageRank [KG07]. Pages [JLA16].
Paging
[FD96, FdL02, Sei98, Sei99]. Pagoda
[YSS+17]. PalLisp [K95]. pain [Gus05].
Pajé [CdOS01, CSB00]. Palo [ACM01].
panel [Ano94c, Bak95b, HCD+94, IAD+94].
Paper
[ABH+01, TKA+01]. papers
[ACM93a, ACM94b, ACM95b, ACM98b,
KKDV03, Cha05]. par-monad [FKS+12].
ParADE [KKH03]. Paradigm
[EW96, JD08, LK15, PPA+13, BCG+95].
Paradigms
[CM98, HD02, YMR93b, YMR93a]. Parallel
[ABC+93, AMRR98, Ama89, ABNP00,
ACMA97, Bau92, BC00, BFA+15, BE13,
BBC+00, BTE98, CZS+17, CL95, CDK+01,
CBN+00, DS16, Den94, EJ93, FHM95a,
Gil94, GSC96, GJ97, GAC14, HMLB16,
Hon94, HN91, JY15, KTLK13, K95,
KEL+03, Kon00, KKD03, Kwo03, Len95,
LHS16, LFA96, Mah11, MS02, Mar07, MG15,
MRG17, Nak03, NS97, Pan99, QSaS+16,
Sch17, SCv91a, SAc+98, SRL98, WC99,
YFF+12, ARvW03, ALS10, BBY+05,
BCM+07, BAd+09, BB00, Boo93, BE12,
BGK94c, CAR08, CFK+91, Cha05, CSB00,
Chr95a, Chr95b, Chr96, DLM99, DESE13,
EV01, FHM95b, FD95, Fu97, GC92, G097,
GKK09, GEG07, GE08, GB09, HMC97,
HF88, Hop98, HWW93, IEE97, JMS+10,
Joe96, KTK12, Kep03, Kim94, LSS12, Lu94,
MT02a, MT02b, MT02c, MR98, Mis96].
Parallel [N00, NPA92, OsDSSP12, RCV+10,
RHH10, SBCV90, Sch91, SCv91b, Sha98,
SWYC94, ST98, SGS14, Ta93, TCG95,
VPQ12, VGK+10a, VGK+10b, WZSK91,
WK08a, WK08b, WK08c, WOKH96,
WTH+12, YCW+14, FR95, Vre04, WN10].
Parallel-Multithreaded [WC99].
Parallelism [AACK92, ABL92, BAM93,
CSS+91b, DV99, EW96, FKP15, FURM00c,
GVT+17, GP95, DK02, LKBK11, LEL+97a,
LEL+97b, MG99, MR94, Mar03, MCFT99,
NB99, RBA05, SSP99, SMD+10, SG96,
Th99, WS08, YBL16, Yoo96b, ALHH08,
AKSD16, CSS+91a, CSS+91c, EE09a, FN17,
FURM00a, FURM00b, HD+13, KRBJ12,
KDM+98, KVN+99, K90, LAH+12,
QOQOV+09, SLG99, SD13, TEL95,
TEL98a, TEL98b, VDBN98, VV00, Wei98a,
XSaJ08, YZ14, Zig96]. parallelism-aware
[LAH+12]. paralléлизм [Zig96].
Parallelization
[CRE99, KC09, LVA+13, RM99, WZWS08,
YLLS16, AC09, DC07, JJY+03, PO03,
RM+10a, RKM+10b, RMJM12, TFG10].
parallelized [CJ91]. Parallelizing
[BM91, WDC+13, KBF+12]. ParaLog
[VGK+10a, VGK+10b]. Parameterized
[Ano97a]. **Proactive** [FJ08]. **Probabilistic** [EE10, EE12, CHH +03, Smi06]. **Problem** [HH11, Lee06, YFF +12, BIK +11, Mit96].

Problems [DK02, Nak03, AR17, Bar09, FTAB14, FR95]. **procedure** [BGK94c, KASD07, LQ15]. **procedures** [MCS15]. **Proceedings** [ACM94c, ACM98d, ACM99a, ACM01, Ano90, Ano94a, Ano94d, AOV +99, Gol94, Hol98, IEE89, IEE90, IEE92, IEE93, IEE94a, IEE95, IEE96, IEE02, Lak96, LCK11, USE98, USE91a, USE91b, USE92a, USE93a, USE93b, USE96, USE98b, USE98a, USE00b, USE01, USE02, ACM92, ACM95a, ACM96, EV01, IEE97, Wat91, ACM93b, ACM98c, RM03, Ano91, DLM99, IEE94b, IEE94c, FR95].

Process [FT96, FG91, BM91, HF96, LVS01, MR98, Poy89, WP10, WCV +98]. **process-oriented** [WP10]. **Processes** [CB16, III01, SPY +93, ZSA13, YZYL07, Zig96]. **Processing** [AWH02, GAC14, MLGW18, RW97, SG18, SS91, WN10, How98, MVY05, Par91, PYP +10, RKHT17, WCV +07]. **Processor** [ABC +93, Ano00b, BCG +08, BGH +12, EH95, GV95, HMNN91, HHOM91, HHOM92, KST04, KML04, KA005, LhH12, MGQS +08, MG99, MTN +00, MVZ93, MB05, SV19, SW08, Sin97, ST00c, ZS02, SBK99, SUF +12, UALK17, WS08, AAHF09, APX12, BEKK00, CL94, CY09, Cho92, EE10, Fis97, Fij97, Goo97, HF88, HK +92, HMN +92, KDM +98, Khe97, KBA08, LVbH06a, LBvH06b, LBvH06c, LCH +08, Lu94, MK12, Met95, Moo95, Moo96, OCRS07, Raj93, Sha95a, SJA12, Sin99, ST00, ST00b, STV02, Squ94, Srl93, Tsaa97a, Tsaa97b, TEE +96, VIA +05, WCW +04a, WCW +04b, WCW +04c, YN90, ZPO4]. **processor-based** [WCW +04a, WCW +04b, WCW +04c]. **Processor-In-Memory** [SZ02]. **Processor-Oblivious** [UALK17].

Processors [ARB +02, AH00, Ano01, BF04, EEL +97, FT96, FJ08, GJT +12, GSL10, JGS +19, KS16, KLG08, KU00, KLD09, LPE +99, MHG95, MCFTH9, MR09, ÖCS01, PF01, RCM +16, RYSN04, RRK11, SU01, SR10b, US02a, VS11a, YG10, ZP11, Aga89, Aga91, Aga92, AAC +15, BDGMW12, BWDZ15, CS95a, CS95b, CN14, CDD +10, DWYB10, Div95, Eic97, EE09a, EE09b, EE12, FD95, GMW09, GBP +07, KBF +12, LLI10, LBE +98, Luk01, MN03, MEG03, MTPT12, Mis96, NB12, NZ17, PFV03, PAB +14, RGG +12, RCM +12, RPNT08, SLP08, SMS +03, US02b, US03, ZSB +12, WM03]. **process** [Zig96]. **Procs** [MT93].

Products [Ano97a, Ano00b, Bra97]. **Professional** [Ano00b]. **Profile** [BM94, SV19]. **profiler** [DTLM14]. **profiling** [DG99]. **Program** [Ch15a, DSR15, EFN +01, GN96, KKW14, NBM93, PF01, PS01, SHK15, TSY00, TLZ +17, TLZ +18, TUY08, YLRS16, AC09, BGC14, BD06, Cal02, Dan09, Dub95, ENF +02, FRT95, JEV04, JPSN09]. **Programmability** [THA +12]. **programmable** [PYP +10]. **programming** [Swi09]. **programmed** [PPA +13]. **Programmer** [Cro98, Wil00, MS87, San04, Swi09]. **Programming** [ACM93a, ACM94a, ACM94b, ACM94d, ACM95b, ACM98b, ACM99a, BBG +10, BTE98, But97, CMK00, CV98, CDK +01, Chl15b, CT00, CW98, DM98, FHM95a, FTP11, FA19, HC +94, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, ILFO01, KKH03, KSS95, KSS96, KIAT99, LB96a, LB00, LhH12, Mas99, NBF96, Nor96, PG99, QOQOV +09, QOIM +12, Rod95b, SBB96, TC98, Vre04, Wil97, YFF +12, dIPRGB99, van95, ALS10, AR17, AG96, ABG +08, BCHS00, BO96, BYLN09, Bri89, CFK +91, Car89a, CS00, CMS03, Cha05, CY98, DSH +10, EV01, FHM95b, GZK12, Gil94, Gol97, GL07, HMC97, Hyd00, JPS +08,
programming [TB97b, TMAG03, Wal00, WCC +07, Yan02].

Programs [ABNP00, BBFW02, BE13, BLG01, CC14, CJW +15, CRE99, CS02, CC04, CdOS01, Chr01, DRV02, EGP14, FQS02, GKCE17, HL94, JBK18, Kri98, LCS04, Lum97, Lum99, MS89, MGK +00, OB13, PHK91, Rin01, RD96, RR99, SPDLK +17, SBN +97, SYH14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF +10, BRSS10, BK13, BCG13, BGC14, Blu95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CJ91, CL00, CLE +02, CVJL08, Cor00, DJLP10, Dil00, DESE13, EFG +03, EHL12, EHSU07, FKS12, Fer13, FF04, FFQS05, FF08, FFY08, GM90, GRS06, GPR11, HZ12, JPP +08, JWTG11, JFL98, KC09, LC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NSH14, NV15, ODSSH12, ORS +06, PADS +17, PD9 +13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SGC95, SRA06, Sen08].

programs [SP00b, SH00, SP05, SG14, Sto02, Taf13, TR14, TLZ +16, WS06, WTH +12, XSAJ08, YCW +14, YNPP12, ZJS10, ZJS11, bD00, vPG03]. Progress [FSPD17, TLGM17, ZHCB15].

R3000 [Arn92]. Race [HM96, KUC15, LS18, MKM14, SBN +97, Sen08, Yan02, ZL16, AFF06, AHK08, EQT07, FF09, HR16, HHPV15, MMN09, NAW06, NA07, PS03, PS07, PFH06, RVS13, WDC +13, XHB06, DWS +12]. race-freeness [AHK08]. RaceFree [LZ +13]. Races [KZC15, FF10, NWT +07, PRB07, PT03, RBK +09]. racy [SRJ15]. RADISH [DWS +12]. Ramada [Ano94d]. Ramada-Congress [Ano94d]. random [LSS12, Sen08]. random-number [LSS12]. Randomized [Sei98, Sei99, JPS09]. Rank

Reactions [LTM+17]. Reactive [Lvh12, LNI+19]. Reactivity [BDN02]. Real-Time [IEE94a, JLS99, Kim14, KBF+03, MN00, PUF+04, PSC01, SZG91, SUF+12, Tet94, WLG+14, dPRGB99, CZWC13, CMX10, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Jen95, JPNS09, MKK99, OT95, PSM03, RPNT05, San04, S292, SJBJ92a, SJBJ92b].

Real-Time [IEE94a, JLS99, Kim14, MN00, PUF+04, PSC01, S29+12, Tet94, dPRGB99, IEE94d, KBF+03, PSM01, SZG91, Jen95, MKK99, OT95, PSM03, San04, S292, SJBJ92a, SJBJ92b].

Real-Time-and-Distributed [BC94].

reconfigurable [DSH+10, LP09]. ReconOS [LP09]. reconstructive [MCS15]. Record [Ch01, UALK17, ACM93a, ACM94b, ACM95b, ACM98b, GCRD04, HDT+13, HT14, PDP+13, QSQ14, RD99].

record-replay [HDT+13]. Record/Replay [Ch01, GCRD04, RD99]. Recording [MCT08, NPC06, HZD13, LZTZ15, XHB06]. recoverable [LAK09]. Recovery [LAK09, VPC02, WCY+98, YZL07].

RecPlay [RD99]. rectangular [SGLGL+14]. Recursively [BE13, BE12].

Reductions [ZAK01]. Redundant [CCK+16, CvdB18, KS16, MB07, MKR02, PSG06a, PSG06b, PSG06c, RRP06, WLG+14]. ReEnact [PT03]. Reentrant [AMa97]. Refactoring [Ten02].

Reference [Rec98, Sch14, KEO+06]. Reference-Counting [Rec98]. refinement [GPR11, KPPR06, KI16]. Reflection [OT95, Bak95a]. region [KBF+12, WZSK19]. region-based [KBF+12]. regions [GPS14]. Register [GJT+12, LPE+99, RRK11, WW03, CCC12, HKT93, SLP08, kSYHX+11, ZP04].

Relaxing [CZS+17]. RelaxReplay [HT14].

Relay [Zha00]. Release [AB02, PST+92, SLP08, EKB+92, Pea92].

Reliability [CCK+16, CvdBC18, OL02a, OL02b, OL02c]. Reliable [KS16, NBS+15, RG03, YZL07, YCW+14]. relocation [WW93]. remains [Ano94b].

remedies [ALW+15]. remote [TK98, ZLW+16]. Remove [CNZS17].

reordering [DKG18]. Replay [Ch01, UALK17, GCRD04, HDT+13, HT14, LVN10, LWV+10, LZTZ15, NWT+07, PDP+13, QSQ14, QSHI16, RD99].

Replaying [MCT08, WKG17]. Replica [AT16].

request [Sch08]. Requirements [PCPS15, GL98a]. rescue [SLP+09].

Research [BMF+16, USE01, AG06, RPNT08]. réseau

Scalability [ABL19, CCH11, GVT+17, Nak01, VP16, BWZD15, DSEE13, MKW+06, RVOA08, VIA+05]. Scalability-Aware [GVT+17]. Scalable [BBMW00b, CC14, CH04, CKZ12, IEE94b, KUCT15, LMIJ14, LNI+19, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, LZ07, Mao96, PW+12, SCZM00, WZSK19].

Scalar [GL08b, ZCS02a, ZCS02b]. Scale [CC14, CJ+15, HC17, LA93, PWL+11, AG06, BCM+07, GOT03, SMK10, KBA08]. scale-out [AG06]. Scaling [HC17, AR17, ECX+12, KTLK13, SW16].

Scaling-Aware [HC17]. SCALO [GVT+17]. scene [RVR04]. Schedulability [Kim14]. Schedulability-Aware [Kim14]. Schedule [MQLR16, MLR15, NAAL01, WTH+12]. Scheduler [ABLL92, BD02, FSPD17, GJT+12, QSA+S+16, SRS98, SS95, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSa08]. Scheduler-Centric [BDN02].
scheduler-oblivious [HZ12]. schedulers [NBMM12]. schedules [BCG13, CZ02]. Scheduling [BL94, BL98, BL99, CCWY17, FS96, FSPD16, GRS06, JLS99, KLD09, LLKS12, MNu+15, NB99, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSM12, KJ+13, KBB+03, Mis96a, OA08, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAS07, WHJ+95, ZSB+12]. Scheme [ABN99, PJS15, SKKC09]. Schur [YFF+12]. Science [Gol94]. Scientific [CMBAN08, HLB94, LWSB19, WN10, BT01, BD06, Dan09, NJ00, Bra97]. scoring [TO10]. Scotland [AVO+99]. SCP [SLJ+19]. Scriptics [Ano00b]. Scripting [RBPM00]. Scripts [TLA+02]. Seamless [CV98]. Search [AMRR98, BCCO10, LAH+12, Mah11]. searches [TCG95]. Seattle [ACM93c, IEE94a, IEE94d, LCK11, USE98a]. sec [AHW02]. Second [IEE98, IEE96, FR95]. Section [DSR15, MNu+15, CS12, DTLM14, SMQF09, YL16]. Section-Aware [MNu+15]. Section-Based [DSR15]. sections [NM+10]. Secure [SV98]. Security [BRRS10, MS03, Way95]. sedition [Bak95b]. SEDMS [USE92b]. See [Swe07, AC09]. segmentation [BÇG14]. Select [KKD03]. selected [Cha05]. Selection [AT16, PR05, Sta90]. Selections [BAZ+19]. Selective [Nak03, PR98, VACG09, MCRS10]. Self [LLLC15, Pet00, SEP96, BDF98, SLP+09]. Self-Allocating [SEP96]. self-healing [SLP+09]. self-migrating [BDF98]. Sema [Kor89]. semantic [BNS11a, BNS11b, BNS12]. Semantics [BR15, CKRW99, HEJ09, MP01, BLMO6, CKRW97a, CKRW97b, KT17, ZHCB15]. Semantics-aware [HEJ09]. Semaphore [Hol98b, Kor89]. Semaphores [Hol98c]. semiconductor [Ano97b]. Semidefinite [YFF+12]. Seminar [Nev99]. sense [Bak95b]. Sensible [LMA+16]. Sensitive [CC04, RYSN04, DC99, DC00, PFH06, ZJS+11, LG04]. Separation [SCG95, TFG10, TVD14]. September [ACM93c, AOV+99, DLM99, FR95, Hon94, IEE89, USE98b]. Sequences [GH03, FTAB14]. Sequential [CV98, TLZ+17, TLZ+18, CKRW97a, CKRW97b, ORS+06, SCG95, SNM+12]. serialization [BHK+04]. Server [Ano00b, Cal97, Day92a, Day92b, Smi92, VB00, Zha00, CASA14, Est93, Gol96, Hig97, MEG03, SBB06, Sho97b, Sta90]. server-side [SBB96]. Servers [PHBC18, RCC12, BDM98, BBY+05, BEK00, KSB+08, RPNT05, SV96c, SV96a, SV96b]. Service [CGK06, GMW09, Hig97, PSM03]. services [LZ07]. session [Bak95b, HCD+94, IAD+94, VGR06]. sessions [Ano94e]. set [Artu92, KBF+12]. Sets [MNG16]. Seven [But14]. several [FGG14]. shader [YP+10]. shallow [LVA+13]. Shanghai [IEE97]. shape [Cor00, GBCS07]. SharC [AGEB08]. Shared [BWXF05, BS96, DM98, EJ93, FJ08, GMR98, GH98, IXS18, LB92, MVZ93, MCT08, STY99, SLJ+19, Thr99, VB00, WC99, YMR93b, BB00, Boo03, DLC009, DPZ97, EKKL90, EV01, Gle91, ISS98, JeF94, MLC04, MKR10, NPC06, RGG+12, TSY99, TSY00, YMR93a, YN09, ZSB+12, dBO9, Cha05]. Shared-Memory [BS96, DM98, EJ93, IXS18, MVZ93, MCT08, Thr99, WC99, EKKL90, TSY00, YN09]. shared-variable [dBO9]. Sharing [CLFL94, CB16, LLD17, RKK15, SP00a, Wei98b, ZJS12, AGEB08, AGN09, LTHB14, Sam99, SS95, TAS07, TE94a, Ver96, VPQ12, ZJS10]. sharing-aware [TAS07]. sharing-based [TE94a]. Shelf [MH95]. shelf [Ric91]. Shift [Ham96]. Shifting [TVB+13]. Shinko [Ano00a]. Shootdown [PHBC18]. Shop
short [CPT08, Lie94]. shortage
[Ano94b]. Should [EHP+07], SICStus
[EC98]. side [MMTW10, SBB96]. sided
[QSHI16], SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].
SIGCOMM [RM03]. Signal
[Eng00, BM91]. Signals [GRR06],
Significance [ZIS12]. SIGPLAN
[ACM94a, ACM93a, ACM94b, ACM95b,
ACM98b, ACM99a]. SIGPLAN-SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].
Silicon [LB17, THA+12]. SIMD
[FSYA09, SW08]. Simple [AKS06, Cil15b,
WS08, BDLM07, CL00, MSM+10].
SimpleGraphics [MKK99]. simplify
[POO03]. Simplifying [Pon98]. SIMT
[CC18, LPK16]. simulate [MAF+09].
Simulation [For97, GV95, HPB11, JYE+16,
MPD04, SLJ+18, VTSM94, W94, Ano97b,
BBH+17, KBF+12, Leg01, Lep95, MHW02,
SWYC94, Sri93]. Simulations
[HEMK17, LNI+19, LS11, SCD+15,
ABC+15, KU17, LVA+13, VPQ12].
Simulator [SRS98, PWD+12, TSCH99,
WZWS08, Nak03]. Simulators [BVL09].
Simulink [HIY+15]. Simultaneous
[Ano05, CSK+99, EEL+97, GSL10,
HMNN91, LEL+97a, LEL+97b, LPE+99,
LEL+99, LRZ16, MCF799, REL00b, SP07,
SLG04, SU01, ST00c, TEL95, Tua96,
TE98b, WS08, YG10, ABC+09, AAK08,
ABB+15, CCC12, EE99a, Fis97, HKN+92,
HMN+92, LBE+98, Luk01, Mah13,
MMM+05, MEG03, PHCR09, RCG+10,
REL00a, REL00c, RM00, RPNT05, SLG06,
SW16, ST00a, ST00b, STV02, SMS+03,
TSCH99, TEE+96, VPC02, TEL98a]. Single
[CLFL94, Dub95, EHP+07, FT06, HHOM91,
JKB18, KH18, KTR+04, MNU+15,
MTN+00, CSM+05, MLC+09, Pra95c,
VIA+05, YZ07, YSY+09].
Single-Address-Space [CLFL94].
single-and [YSY+09]. Single-Chip
[HHOM91, MTN+00]. Single-ISA
[KTR+04, MNU+15]. Single-Process
[FT96]. Single-program [Dub95].
Single-Thread [KH18, MLC+09].
Single-Threaded
[HEP+07, JBK18, Pra95c, VIA+05, YZ07].
Singleton [Cha02, Rin99]. Situ [RGK99].
sixth [USE98b, ACM94d]. size [LML00].
skyline [WZSK19]. slave [TJY+11]. slice
[PSG06a, PSG06b, PSG06c]. slice-based
[PSG06a, PSG06b, PSG06c]. Slices
[MGQS+08, PF01]. Slicing
[Kri98, FRT95, NR06]. SleK
[PSG06a, PSG06b, PSG06c]. slower
[Pra95c]. Small [JLA16, Koo93, MM07].
Smalltalk [Bri89]. Smalltalk-80 [Bri89].
smart [Sim97]. SMP
[BWXF05, BWH01, CKE99, HD02, KKH03,
KKJ+13, Pra95c, TAS07, TMAG03]. SMPs
WG99].
SMT
[Ano05, AH00, CY09, EE09b, EE10, EE12,
FSPD16, FSPD17, HR10, KLG08, KH18,
KI16, MG99, MMM+05, NSP+14, PAdS+17,
PAB+14, PLT+15, RYSN04, RPN08,
SLP08, TAS07, TVB+13, VS11b, WA08].
SMT-based [K16, PAdS+17, PAB+14].
SMT-Directory [HR10]. SMTp [CH04].
Soft [EUVG06, OA19, PSM01, PSM03,
SSN10, VACG09]. Software [Ano97a,
Ano98b, Ano99, Ano00b, BCR01, BCG+08,
Gar01, Gon90, GJ97, HB92, Han97, HSS+14,
IEE94a, KE15, LPE+99, MKM17, PJS15,
SZM+13, SD13, TVB+13, TLZ+17, TLZ+18,
XWG+14, YBL16, ATLM+06, AC09,
ABC+09, BT01, Bra97, CDD+10, DPZ97,
GLPR12, Hai97a, HSD+12, IEE94d, KKH04,
KSD04, KASD07, LT97, Luk01, MWP07,
MCRS10, MGL95, MEG03, NHFP08,
OAA09, OLO2a, OLO2b, OLO2c, PV06,
RKM+10a, RKM+10b, RVOA08, San04,
SP05, SLP+09, SB80, TNB+95, WCG+07,
WCV+98, YSY+09, ZHCB15, DWS+12].
Software-Controlled [BCG+08, Luk01].
Software-Directed [LPE+99]. Solaris
[Cat94, Lum97, Lum99, MM01, McM97]
Pra95b, Sun95]. **Solution**
[Ano98b, SBC91, WP10]. **Solutions**
[Ano00b]. **solve**
[Bar90, MM07]. **Solver**
[YFF+12, Kub15, RM99]. **Solvers**
[MR09, Nak03, AAC+15, ZCO10]. **Solving**
[ABD+12, FTAB14, Loe97, VSDK09]. **SONET**
[AIW09]. **Sort**
[GH98, RH10]. **Sound**
[WTH+12, DWS+12, FFY08, NFB17, WQLJ18]. **Source**
[Ano00c, BMF+16]. **sources**
[SJ95]. **South**
[ACM93a, Ano94d]. **Space**
[BCL+98, BL93, BL98, CLFL94, CB16, Eng00, GR597, GN96, NB99, PWL+11, Sch17, FWL03, KNPS16, KASD07, Liel94, LHS16]. **Space-Efficient**
[BL98, NB99, BL93, KNPS16, KASD07, LHS16]. **Spacecraft**
[SR98]. **Spaces**
[FKP15, Röt19, CKZ12, KGGK90]. **Spain**
[ACM95a, DLM99, ACM98c]. **SPARC**
[Cat94, KA005, MD96]. **Spacide**
[ABC+03]. **Sparsity**
[But13, YFF+12, CSV10, Dav11, DTR18, MM07, PCH09]. **spatial**
[WZSK19]. **spatially-programmed**
[PPA+13]. **Special**
[Ano94e, GGB93b, KU00]. **specialization**
[WTH+12]. **specialize**
[CWS06]. **Specialized**
[dlPRGB99]. **Specific**
[Ste01, SP00b, Shi00]. **specification**
[Śtå05]. **specifications**
[TVD10]. **Specifying**
[BNS11a, BNS11b, BNS12]. **spectroscopy**
[KC9]. **spectrum**
[DKF94, Shag95]. **Speculated**
[SCL05]. **Speculation**
[MG14, SU01, WS08, YBL16, DG99, GB99, JEV04, LWV+10, MT20a, MT20b, MT20c, NB12, P003, PT03, SCZM00]. **Speculative**
[AH00, Ano01, Ano02, BF04, IBST01, KLG08, MGQ+08, MG99, MT20a, MT20b, MT20c, RKM+10a, RKM+10b, SR01b, TF010, WWV+02, ZJFA09, ZL10, CHI+03, DC07, DUB95, KOE+06, KT09, LZW17, LNZ+14, NB12, OL02a, OL02b, OL02c, PV06, SMS+03, VS11b, XIC12, ZCMS02a, ZCMS02b]. **speech**
[LG04]. **Speed**
[Ano00a, Ano03, GV95, HG91, MR09, HG92, Pra95b, SRS98, TO10]. **Speed-up**
[MR09]. **Speedup**
[Lun99]. **Spin**
[LLS06]. **SPIRAL**
[MJF+10]. **spiral**
[SLF14]. **spiral**
[Gle91]. **spreading**
[CWS06]. **SPSM**
[Dub95]. **SQL**
[CGK06]. **sources**
[FTAB14]. **squash**
[MK12]. **SR**
[BO96]. **SRAM**
[kSYH+11]. **SSMT**
[CSK+99]. **Stabilizers**
[JSJ06]. **Stabilizing**
[BMC+07]. **stable**
[CYC+14]. **Stacey**
[Ano00c]. **Stack**
[Eng00, Xue12]. **Stackable**
[Lo05]. **stacking**
[KSB+08]. **Stackless**
[MSC15]. **stacks**
[DESE13]. **StackThreads**
[TTY99]. **StackThreads/MP**
[TTY99]. **Standard**
[DM98, FSS06, WKG17, BCL+98, Bra97, MT93, Pla98, Pla99]. **standardization**
[Bet73]. **Standards**
[Thr99, TTY99]. **Standing**
[TLA+02]. **Stanford**
[IEE99]. **STAT**
[Ano00b]. **State**
[Laf00, LP94, MP13, RKK11, Wei98b, Cor00, G+94, TF10, WH07]. **State-of-the-Art**
[MP13]. **State-Retentive**
[RRK11]. **Statechart**
[KW17]. **Statechart-Based**
[KW17]. **stateless**
[MQ08]. **Static**
[GPS14, Kri98, Lun97, SCB15, WW96, vPG03, Fer13, NAV06, NA07, AFF06, FFL08]. **Static/dynamic**
[SCB15]. **Statistical**
[Ano00b, RCM+16, Lan97, RCM+12, Tem97]. **Stay**
[GBK+09]. **stealing**
[ALH08, BL94, BL99, RL14]. **Step**
[Sh07a, Sh07b, ZG98]. **Steroids**
[JLA16]. **Stethoscope**
[Caz02]. **Stochastic**
[DK02, LTM+10]. **Storage**
[AT16, Hol12, LCK11, Bak95a, Blu92, DZK12, KOE+06, MM07, PDMM16]. **stores**
[TAN04]. **strand**
[RCC+10]. **strata**
[NPC06]. **Strategies**
[PSCS01, AGEB08, FGG14]. **Strategy**
[BGK96]. **Stream**
[KSU94, SG18, SG18]. **Streaming**
[HHOM91, HHOM92, KEL+03]. **Streaming/FIFO**
[HHOM91, HHOM92]. **Streams**
[Pre90, SPY+93]. **Strength**
[Kon00]. **Strict**
[Coo95, FS96, T91, KIAT99, SCG95]. **Strictly**
[Ano00c]. **Strong**
[CWHB03, KZC15, MTC+07, ZHCB15].
Structural [CKRW99]. structure
[BB00, YKL13]. Structured [TC198, FR95].
Structures
[RCRH95, AGN99, Go197, ND13]. students
[Fek08]. Study [AGK96, Chl15a, EGC02, HMT+96, LSB15, Sat02, TAK+00, VK99, WG94, YMR93b, Bri89, CASA14, CL00, FIS97, HJT+93, HF96, KPP+06, MGL95, SP05, Sod02, Tsa97a, YMJ02, YMR93a].
Style [Wil94a, Wil94b]. subdivision
[MTS10]. subordinate [CS+99, CTYP02].
Subsetting [AJK+12]. Substrate
[ACM97, HAI97a, JP92]. Subsumption
[Man91]. Subtleties [BLM06]. Suffix
[OR12, LI99]. Subtleties
[SUGAR00]. Suite
[BTE98, BO01, TGN99]. Suites [SPDLK+17].
SuiteSparseQR [Dev11]. sum [TDW03].
summary [T94]. Summer
[AN94f, USE92a]. Sun [MCM97]. SunOS
[CT94, PKB+91, super [Kus15].
Supercomputer [VTSM12, Gil94].

Supercomputing
[ACM92, ACM95a, ACM96, Ano91, Ano94e, IEE90, IEE92, IEE93, IEE94c]. SuperLU
[L05]. SuperMalloc [Kus15]. Superscalar
[SU96, Div95, Fis97, Gu95, Loi95, Men91].
Superthreading [Ts97b]. Support
[ACM94d, ABLL92, BBG+10, CZS+17, CSS+91b, EJ93, GHG+98, KC99, MMK17, ME15, MS99, N97, PTMB90, SPP99, TY97, ZSA13, ATLM+06, BS06, BO96, CMF+13, CK94, CHH+03, CSS+91a, CSS+91c, EVR01, FAN93, HMC95, MWP07, MEG03, MS97, Men91, TSY99, TSY00, TNB+95, WK08a, WK08b, WK08c]. Supported
[Add03, ZP11]. Supporting [RCR95, Sam99, SP00a, DC99, DC00, TDW03].
suppression [JWGT11]. Surface [R019].
surgery [MC515]. Surprises [BC98].
Survey [Man96, OA19, ZSB+12, Cat94, UR02b, URS03]. Survival [Ano99].
Surviving [Ano99]. SVR4 [SPY+93]. swap
[ML15]. Swing [Gea98]. Switch
[GN00, EIC97, GW07, TVB+13].
Switzerland [Lak96]. Sy [USE01].
Symantec [Rod95a]. symbiosis
[Bri89, EE10, EE12]. Symbiotic
[ST00a, ST00c, ST00b, STV02]. Symbolic
[ACM94c, BG14, Hon94, Lak96, Wat91, BHKR95, FJ97, HF88]. Symmetric
[BMV03, NV94, BIK+11, Pra95b, RSK99, Sh98]. Symmetry [ES97]. Symposium
[ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Go94, Hlo94, Lak96, USE91, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col90a].

Synchronization
[Bec01, Hei03, LA93, Rec98, SLJ+18, DHM+12, DESE13, MT02a, MT02b, MT02c, MPT12, NLK09, PRS14, RD06, Ven97]. Synchronization-Aware [SLJ+18].
synchronization-induced [MPT12].
synchronization-related [RD06].
Synchronizing
[Bec01, Hei03, LA93, Rec98, SLJ+18].
Synchronous [MP89, SR14, STR18, WQLJ18].

Synthesizing
[GLPR12, Kim14, SR16].
synthetic [B17].

System
[ADD03, AdBdRS08, AJK+12, Ano98a, Ano00b, ABN99, ABH+00, BM94].
Synchronous [BM07, HPB11].
SynchroTrace [SLJ+18]. syntax [K17].
Synthesis [FN17, HB15, LNI+19, Sch17, MP89, SR14, STR18, WQLJ18].
Synchronizing [GLPR12, Kim14, SR16].
synthetic [B17].

System
EKB+92, MS87, Pea92]. **System**- [PLT+15]. **system-level** [OQRS07]. **systematic** [MQ07]. **SystemC** [RSB+09]. **SystemC/C** [RSB+09]. **SystemC/C-based** [RSB+09]. **Systems** [ACM94d, AG06, AN00b, ABN99, Bre92, BC94, CCH11, CvdBC18, Dru95, FMY+15, FGKT97, GHG+98, GJH97, HR98, HKS96, IEE89, IEE94a, KR12, KKH03, KG05, KUCT15, KW17, LSA06, LMA+16, LYH16, MS15, PPG11, PGB16, RW97, RR03, SUF+12, SSS96, USE92b, Wa95, WC99, Zub02, AN00b, AN09b, BCP+07, BC02, CAT94, DCK07, DZYB10, DZKS12, DSH+10, DDB91, GJ91, GKH09, HJT+93, Hop98, HWW93, HBCG13, IEE94d, ISS98, JD08, Je94, Jen95, KKH04, Kub15, LVN10, LLLC15, Leg01, LAK09, LVA+13, MLC+09, MGL95, MM07, NFB97, PBDO92, RCV+10, RBF+89, RVR04, SCCP13, She98, SP05, Sim97, SJ92a, SJ92b, ST05, WE98a, WCV+98, AN09b]. **systolic** [PYP+10].

T [AN00c, NPA92]. **T/TCP** [AN00c]. **T1** [WA08]. **T1/T2** [WEA08]. **T2** [WA08]. **Table** [VB00, KNS16]. **tabling** [AR17, AR19]. **Tabu** [AMRR98]. **taint** [ZJS+11]. **TaintEraser** [ZJS+11]. **Take** [WE97]. **taking** [AN00b]. **Talking** [AN00c, HC94]. **TAM** [GSS93].

Taming [HLO00, HBCG13, HHPV15]. **TapeWare** [AN00b]. **Target** [MGA18]. **targeting** [LHG94]. **Task** [CCK+16, GP95, GTJT19, KHO03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OiSSP12, RC+12]. **Task-Based** [GTJT19]. **Task-Level** [GP95]. **Tasking** [CvdBC18, DII93, KR01a]. **Tasks** [Fl95, PVS+17, YSS+17, FG14].

Taxonomy [HM96, SPH96]. **TC2** [BT01]. **TC2/WG2.5** [BT01]. **Tcl** [AS96, USE96, USE98b, USE00b, AN00b, MKK99, SSB96]. **Tcl-based** [AN98]. **Tcl/2k** [USE00b].

Tcl/Tk [AS96, USE96, USE98b, USE00b, MKK99]. **TCP** [AN00c, AN00b]. **Teaching** [FEO08, S00, SHE02]. **TeamWork** [CZWC13]. **Tech** [AN09b, G01]. **Technical** [USE00a, Cat94]. **Technique** [JSB+12, K94, L02, OCS01, PGB16, JSB+11, JPSN09, LRG94, MGA18, RS07, UZU00, VAG90, WCV+98]. **Techniques** [DS16, EK90, GS02, H97, LN09, PWL+11, TGS05, ZG96, BR92, GEG07, OQRS07, PRA97, RCG+10, SV96c, SV96a, SV96b, ZSB+12]. **Technologies** [AN00b, AN09b]. **Technology** [BR97, KM03, LB00, USE01, VSM+08, KSB+08, Ts97b]. **TeleNotes** [WSK97]. **temperature** [CCC12]. **Template** [Cal00, How98]. **Ten** [AN09b]. **Tennessee** [IEE94b]. **Tera** [BTE98, MAT97]. **Terabytes** [IEE02]. **Term** [BGK94a, BGK94b, BGK96]. **Termination** [JBK18, TWF03]. **Test** [AN98, EFN+01, GRS97, SPDLK+17, TG09, EFN+02, K16, SR14]. **test-case** [KI16]. **Testing** [BBdH+11, G001, LCS04, RCC14, SK12, BGP06, CBM10, EFG+03, EHS07, MQ07, SEN08, YNP12]. **tests** [SRJ15]. **Texas** [USE02a, USE00b]. **TFlux** [DFTL16]. **tgMC** [LHG+16]. **Their** [WJ03, GI94]. **them** [AN92a, AN94b].

Theoretic [ES97]. **theories** [LQ15].

Theory [ACM93b, LLD17, NFBB17, WLK+09]. **there** [AN94b]. **thermal** [WA08]. **though** [AN94b]. **Thread** [AN00c, ABN99, ABNP00, BET73, BS99, CNQ13, Cal97, CC04, Ch02, CWS17, Col90a, DSR15, DGK+03, D02, ENG00, FD95, FUR00a, FUR00c, FUR00b, GF00, GJT+12, GP05, GBCS07, GKB+09, HAG02, H03, HG91, ISS98, K95, KM14, KL00, KH18, KB+03, KBH+04a, KBH+04b, LLL10, LHY16, LEL+97a, LEL+97b, Low00, LLD17, MAN99, MG99, MNU+15, MGI14, MNT+00, MB05, MCF99, ND96, PAN99, PR05,
PEA+96, Pla02, Pla98, Pra95b, PGB12, PSCS01, RCV+10, RCM+16, RCG+10, Rec98, Ric99, Rin99, RYSN04, Rod95b, SKF+92, Sat02, STY99, SLG04, Sin97, SKK+01, SLT03, Ste01, TAS07, TLGM17, Wei98b, WG99, Wei97, Wli03, YBL16, ZP11, AMRR98, ABG+08, BK+13, BHK+94, BC02, CZSB16, CZ02, CSM+05, DMBM16, DG99, DWYB10, Don92, DBRD91, Eic97, EE09b, Fek08, GP08.

thread [GOT03, GLC99, Hyd00, JEV04, KDM+98, KC09, KBA08, KSD04, KASD07, LK13, LZW17, Lie94, LML00, LZL+14, Loe05, MLC+09, MT02a, MT02b, MT02c, MC06, OT95, PAB+14, PRS14, PKB+91, PO03, PT03, PGB14, QQQOV+09, SKG+11, Sha95b, SLG06, SP00b, Shi00, SPH96, SS95, SD13, SLT02, Sta05, SJ95, SCZM00, ST05, SS10, Tan87, TE94a, TCG95, Tra91, Van97b, Ven97, WS08, YZ14, SKF+02]. Thread-Aware [LYH16].

Thread-Based [KG05, CNQ13, SKS+92].

Thread-Level [LEL+97a, LEL+97b, MG99, MGI14, YBL16, FURM00a, FURM00b, MCF99, WS08, DG99, JEV04, KC09, MT02a, MT02b, MT02c, PO03, PT03, QQQOV+09, SCZM00, YZ14].

Thread-Local [DGK+03, Whi00].

Thread-management [RCC+10].

Thread-modular [GBCS07].

Thread-Private [Man99]. thread-related [TLZ+16]. Thread-Safe [Kle00, Pla02, Rin99, DMBM16, Fek08, GOT03].

Thread-Sensitive [CC04, RYSN04].

Thread-Specific [Ste01, SP00b, Shi00]. thread-switch [Eic97].

threadbare [Bak95b].

Threaded [AGK96, BBG+10, BC98, Bed91, BGK94a, BGK94b, BK96, CL95, CRK99, Coo95, CSS+91b, DV99, EH95, EHP+07, Fdl02, GH03, GVT+17, G94, GI93, III01, JBK18, JY15, Jon91, KW17, Kri98, Kuc92, KIAT99, LB92, Mas99, MG15, MGK+00, NS97, PCPS15, Pul00, RKCW98, SV19, STW93, Sei99, Sni92, Ste01, SBKK99, TLGM17, VSDK09, VS11a, VB00, WCT98, Ada98, ABD+12, AACK92, Ano92b, BWDZ15, BK13, BHI+17, BC00, BIK+11, DSEE13, CV98, CIM+17, CASA14, CRKW97a, CRKW97b, CWHB03, CSB00, CdOS01, CY98, cC91, CL00, Chr01, CR02, CSS+91a, CSS+91c, DS16, EFG+03, EBKG01, EHSU07, FTAB14, FD96, FGG14, GCRD04, GCC05, GS06, GH98, GPR11, HC17, KHP+95, K195, KKH04, Kep03, KRH98, Kic91, LK15, Lan97, Leg01, LBvH06a, LBvH06b].

threaded [LBvH06c, IVA+13, MLCW11, MS03, MKK99, NFBB17, NH00, NSH14, OA08a, OA08b, OA08c, PYP+10, PR98, PWWD18, Pra95c, RCV+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SC17, SE12, Sei98, Sho97a, Sho97b, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Tem97, TMAG03, TJI+11, VIA+05, VV00, VK99, Wal00, Wil98, XMM99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGSV93].

Threading [BFA+15, CvdBC18, CNZS17, DHR+01, Hol98d, KS16, LKBK11, MLGW18, McC97a, McC97b, MS15, MP13, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, SMZ18, TGO99, YLLS16, Bak95a, BM07, DTLW16, FWC02, LWZ+13, MLC+09, MCF99, NJ00, RR06, RV04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04].

Threading-Based [KS16]. ThreadMentor [CMS03, She02].

Threads [Al94, Ano94c, ACR01, Ber95b, BCL+98, Boe95, BLP04, BAZ+19, Cal00, CCGG92, Col90b, Cri98b, Cri98a, TLA+02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus05, Hai97b, HW92, HBG01, Hol00, How00, HLH16, JLS99, KSS95, LP94, Lee93, Lee00, LB96a, LFA06, Man98, MKM17, MP89, McM96c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, Pn04, SEP96, TG99, WCW+04d, Wil94a, Wil94b, Wil97, Yam95, Yam96, dIPRGB99].
threads

[McM98b, Men91, Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, ORS+06, PSM03, Pan99, PG03, PL03, RR03, Sch91, SCG95, SZG91, SZ92, SCM05, SKP+06, TAN04, WCW+04a, WCW+04b, WCW+04c, Wei98a, WCW+98, WW96, ZCSM02a, ZCSM02b, ZP04, ALW+15, Van97a].

ThreadScope [WT10].

Three [YMR93b, YMR93a].

Throttling [LG06].

Throttling-Based [LG06].

Throughput [GJT+12, Wea08].

Tightly [MTN+00, LZTZ15].

TileDB [PDMM16].

Tiles [QOIM+12].

Time [BC94, CIM+17, EJ93, GN96, IEE94a, JLS99, Kim14, LFA96, Lun97, MN00, PUF+04, PSSC01, SUF+12, SS96, Tet94, dlPRGB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KBP+03, KASD07, KBF+12, MKK99, ND96, OT95, OdSSP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJB92a, SJB92b, TSY99, TNB+95].

time-critical [RGG+12].

time-efficient [GB99].

time-shared [Jef94].

timely [NH90].

Timers [Hol99a, GRR06].

Timethread [BC94].

Timethread-Role [BC94].

Timing [SK97, MHW02].

timing-first [MHW02].

tiny [Xue12].

Tip [Pet00].

Tips [Mit96, Pet00].

Tk [Ass96, USE96, USE98b, USE00b, TLA+02, MKK99].

TLB [PHBC18].

together [Ano97b, Pol90].

Tokyo [Ano00a].

Tolerance [EUVG06, OA19, MTS10, PG01, RRP06].

Tolerant [ÖCS01].

Tolerating [Luk01, RBK+09, SKK+01].

Tool [AddS03, Ano98b, Goel01, Kor89, TAM+08, ACD+18, CMS03, CSB00, Hig97, LMC14, RG99, YNPP12].

Tool-Supported [AddS03].

Toolbox [Bra97].

Toolkit [SZM+13].

Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95].

Tools.h [Ano00b].

Toolset [Ano97a].

Top [Ano99, AB02, DNR00].

Topaz [MS87].

topics [BGG95, GBG95].

Tool-Supported [AddS03].

Toolbox [Bra97].

Toolkit [SZM+13].

Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95].

Tools.h [Ano00b].

Toolset [Ano97a].

Top [Ano99, AB02, DNR00].

Topaz [MS87].

topics [BGG95, GBG95].

Tool-Supported [AddS03].

Toolbox [Bra97].

Toolkit [SZM+13].

Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95].

Tools.h [Ano00b].

Toolset [Ano97a].

Top [Ano99, AB02, DNR00].

Topaz [MS87].

topics [BGG95, GBG95].

Tool-Supported [AddS03].

Toolbox [Bra97].

Toolkit [SZM+13].

Tools [Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95].

Translations [DS08, MR02, ZS12].

Translation-Aware [LZS+08, RW97, SK91, DKG18, EQT07, Ver96].

Transaction [LZS+08, EQT07].

Transactional [GMGZP14, KUCT15, RG03, VSDL16, XWG+14, ZJL16, ATLM+06, BLM06, BDLM07, CMF+13, CNV+06, GCC15, MLS15, MCRS10, MMTW10, MTC+07, OCT14, VTS12, ZHCB15].

Transactions [Ano00c, DTLW16, SKBY07, BD06, Dan09, KR01a, KR01b, GKG09, RKM+10a, RKM+10b].

Transform [HN91, LHS16, TKHG04, TT03, TTKG02].

transformation [Tsy00].

transformations [AC09, D’H92, JMS+10, VV11].

Transient [RM00, VPC02].

Transient-fault [VPC02].

Transitive [YMR93b, XHB06, YMR93a].

transl. [KBF+12].

translator [TJY+11].

Transparency [GKCE17, KBH+03].

Transparent [ABN99, LVN10, SLGZ99, ZSA13].
Transparently [CB16, JSB+12].
Transport [GR97], transposition [SGLG+14], trap [Ram94, GRS97].
trap-based [Ram94, Tree [Pla99, BCCO10], Trees [GFJT19, AD08, CKZ12]. Trends [Gar01].
TRI [ACM93c], TRI-Ada [ACM93c].
triangular [BKK17]. Trick [Eng00]. Tridia [Ano00b]. tridiagonal [ZCO10], trigger [Kho97]. Triggered [PPA+13], Troy [SS96].
TSGL [ACD+18]. TSO [HH16]. Tumbler [PGB16]. Tune [RGK99], tuned [Ano95a, Ano95b, Kub15]. Tuning [LWSB19, LEL+99, CSB00, RGK99].
Tunnelling [Don02], Tutorial [Taf13].
Twentieth [ACM93a]. Twenty [AOV+99, ACM93b]. Twenty-fifth [AOV+99, ACM93b].
Two [BBH+17, CM98, JYE+16, STY99, GLC99].
Two-Level [JYE+16, BBH+17, STY99].
TX [Cha05, ACM00, USE91b]. TxRace [ZL16].
Type [Gro03, Loc18, VGR06, BAD+09, GE08, Lan02, Mi05, PRB07].
type-checking [Mi05]. Type-Safe [Loc18, Gro03], typed [DMBM16]. Types [AFF06, FFLQ08, Ten89, BAM07, KS93, VGR06].
typings [Sm06].
UCITA [Gar01], UK [AOV+99], ULT [PG03]. Ultra [PWL+11]. Ultra-Scale [PWL+11], UML [SK12].
Unbounded [CNV+06, FKP15, BDL07], uncommon [BDL07]. Uncover [WS08].
underdetermined [Kub15].
Undergraduate [BLPV04].
Understandable [MSM+16].
Understanding [BZ07, TLA+02, EPAG16, JGS+19, RR06].
Undocumented [SW97], Unfoldings [SPDLK+17]. Unicode [Si09]. Unified [Wei98b, ABG+08, GKZ12]. Uniform [BDN02, SKG+11], unifying [MS03].
umimodular [D’H92], unintrusive [HDT+13]. uniprocessor [GL98a, Yan97].
umiprocessors [BRE92, EJK+96].
Uniscape [Ano98b], UNISIM [LS11].
UNISIM-Based [LS11], unit [CBM10, Par91, PAB+14]. United [ACM94c]. Unithreaded [RLJ+09].
Units [RKK15, Gun97]. univariate [CMX10].
University [IEE99], UNIX [Ano00b, FG91, JJ91, Kor89, MS87, MS98, Nor96, RR96, RR03, Yoo96a, Ano98b, Ric91].
Unix-to-NT [Ano98b], UnixWare [Rod94, Rod95b], unlocking [XSa08].
unravel [But14], Unraveling [Bec00].
Unsynchronized [DSR15], unveiled [Ano95a, Ano95b]. Unveiling [AAC+15].
up-and-downdating [VV11], UPC [EGC02, FA19], updates [NH09].
Updating [HSS+14, HSD+12, NHFP08]. Ur [Chl15b], Ur/Web [Chl15b]. URL [TLM+02]. USA [ACM94a, ACM94d].
Cha05, Hol12, ACM96, ACM98d, ACM00, Ano90, EV01, IEE89, IEE94a, IEE96, IEE02, SS96, USE89, USE91a, USE91b, USE92a, USE93a, USE93b, USE00b, USE00a, USE01].
Usage [BS96, Kor89, VS11b]. Use [Bak95a, FJ08, HW92, WWW+02].
Use-once [Bak95a], Useful [Pet03].
USENIX [Ano90, Ano94f]. User [ABLL92, DLM99, Eng00, GR97, MQW95, SLT03, BF08, GP05, GRR06, HF96, LI05, MSL91, OT95, SLT02, TNB+95, YZL07].
User-Level [ABLL92, SLT03, MQW95, GRR06, MSL91, OT95, SLT02, YZL07].
User-Space [Eng00, GR97]. Using [Ano99, ABH+00, AZG17, BDN02, BBC+00, BLO11, BTE98, BAZ+19, CRE99, Cor00, DS16, DTLW16, DRB91, GH03, HBG01, HJT+03, HBTG98, Hei03, How00, KMJC02, KHM18, Kwo03, KEO06, LFA96, MPD04, MCM98a, MCM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SCD+15, SEP96, SLT02, WKG17, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CTYP02, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB93, GEG07, Hig97].
HH97, JWTG11, JJY+03, KASD07, KBF+12, LJ15, MM14, NPC06, NWT+07, Nik94, PT03, RKMM+10a, RKMM+10b, RM99, RPNTO5, SLGZ09, SLT+09, TP18, TFSG10, Tod95, TAN04, VPC02, VDO8, ZJS+11, KSB+08]. UT [Hol12]. Utility [FHM95a, JSMP13, FHM95b]. Utility-based [JSMP13]. utilization [Squ94]. Utilizing [ES97, WZSK19]. UX [Ano95a, Ano95b, Yam96].

V [EKB+92, Pae92, FG91, PST+92]. v1.0 [Ano00b]. Validating [LB17]. Validation [BMV03, LB17, SCB15]. Valley [GBK09]. value [DG99, TFG10, ZCSM02a, ZCSM02b]. Values [EUVG06]. variable [Ev01, dB09]. Variables [Hol98c, Whi03, Bak95a].

Vertex [CNZS17]. Vertex- [CNZS17]. Very [AOV+99, Pet03]. VI [ACM94d, Ano03]. via [BCZY16, CCWY17, FBF01, Hig97, KB12J12, KGPH12, Kim14, LWV+10, LKTZ15, LEL+97a, LEL+97b, RM00, SCCP13, SM+10, Ten98, VV11, WCW+04a, WCW+04b, WCW+04c, WCW+04d, WLK+09]. Viability [KLH97]. Video [BC00]. view [KTLK13, PT91]. Vina [TO10]. Virtual [BSSS14, BBM09, KGO5, KKD03, PRB07, PHBC18, USE01, WCW+04d, DLM99, DPZ97, DCO99, DCM03, MPR17, Ven97, WCW+04a, WCW+04b, WCW+04c, WC08a, WC08b, WC08c]. Virtualization [LRZ16, YSS+17, ABB+15]. Virtually [LB92]. virtues [NJK16]. virus [GJ11]. viscous [RM99]. Visual [PMTB09, Dii93, McM96c, Esp96, Nag01].

Visualization [Ano97a, ACR01, Cal02, Caz02, BCS00, CSM00, KKS99, NCA93]. Visualizing [CdOS01, WT10, ACD+18, DSEE13]. Visually [Dru95]. VL1W [For97, GLS10, OCS01]. VLSI [ABC93]. VM [FGG14]. VMs [KJX+13]. voltage [MTPT12]. volumes [Koo93]. VRSync [MTPT12]. vs [EHP+07, GKB+09, MMTW10, MCFT99, SKP+07, SKP+02]. vulnerability [SSN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits [How00]. WAN [Yas95]. Wanted [Ano94g]. Warnings [CJW+15]. warp [FSYA09, MTS10, Rei95, Tam95]. was [San04]. Washington [ACM92, Ano90, IEE94c, USE98a]. Watch [Ano97b]. water [LVA+13]. Wave [Ano00b, BBC+00, LS07, WQL18]. wave-based [WQL18]. wavelet [TKHG04]. Way [KAO05, MTN+00, Rin99, ZJFA09, FGT96]. Ways [Wei7]. Weak [KZC15, TVD14].

Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, MGI99, PCM16, VP16]. Webrelay [Zha00]. WebThreads [Ano97a]. week [Ano95a, Ano95b]. weeks [But14]. weight [Way95]. Weighted [CNZS17, EE14, HFV+12]. Weighted-IPC EE14]. weighting [VS11b]. Weightless
References

Antoniu:2001:HSC

Aliaga:2015:UPE
REFERENCES

REFERENCES

Axnix:2015:IZF

Agarwal:1993:SMV

Antonopoulos:2009:ASH

Aliaga:2012:SDG

REFERENCES

Antoniu:1999:ETT

Aumage:2000:PAM

Antoniu:2000:CDP

Aleen:2009:CAS

Almasi:2003:DCD

REFERENCES

REFERENCES

1996. ACM order number 415961.

ACM:2000:SHP

Attali:2001:GVJ

Adams:2008:ENE

REFERENCES

REFERENCES

[AH00] Haitham Akkary and Sébastien Hily. The case for speculative multithreading on SMT

Abdulla:2008:MCR

Adiletta:2002:PSA

Aikten:1996:MCJ

Ahn:2012:ISE

Azagury:1999:NIR

Aciicmez:2006:PSB

Onur Aciicmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple branch prediction analysis. Technical report, School of EECS, Oregon State University, Corvallis, OR
Arjomand:2016:BAP

Arjomand:2016:BAP

Amer:2018:LCM

Amer:2018:LCM

Agrawal:2008:AWS

Agrawal:2008:AWS

Agrawal:2010:HLF

Agrawal:2010:HLF

Ahn:2009:MDE

Ahn:2009:MDE

Alfieri:1994:EKI

Alfieri:1994:EKI

Amer:2015:MRC
Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka. MPI+Threads: runtime contention and remedies. *ACM
Amamiya:1989:DFC

Amaranth:1998:TBM

Aamodt:2003:FMO

Abraham-Mumm:2002:VJR

Aamodt:2003:FMO

Amaranth:1998:TBM

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

Aiex:1998:CMT

DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Ano94b] Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. Open Systems Today, 165:60–??, December 1994. ISSN 1061-0839.

[Ano94d] Anonymous, editor. Proceedings of the 2nd Inter-
REFERENCES

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB

Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD

Anonymous:1997:NPW

Anonymous. New products: WebThreads 1.0.1; QUERYFLEX Report Writer; Linux Pro Desktop 1.0; NDP Fortran for Linux; Numerics and Visualization for Java; Craftworks Linux/AXP 2.2; InfoDock Linux Software Development Toolset; Caldera Wabi 2.2 for Linux. Linux Journal, 34:??, February 1997.
REFERENCES

CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Anonymous:1997:TWP

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAA

Anonymous: 2000: SLT

Anonymous: 2001: ESM

Anonymous: 2002: ST

Anonymous: 2003: CCV

Anonymous: 2005: ECS

Atkinson: 1999: PTF

Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez,
Stanley B. Zdonik, and Michael L. Brodie, editors.

Arnau:2012:BMG

Areias:2017:SDP

Areias:2019:MDL

Adiletta:2002:NGI

Arunachalam:1992:EMM

Addison:2003:OIA
C. Addison, Y. Ren, and M. van Waveren. OpenMP issues arising in the develop-

Awile:2014:PWF

USENIX:1996:ATT

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Arteaga:2017:GFG

Boehm:2008:FCC

Bocchino:2009:TES

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A type and effect system for deterministic

[Bergan:2010:CCRa]

[Bergan:2010:CCRb]

[Baldwin:2002:LMF]

[Bic:1993:EUI]

REFERENCES

REFERENCES

[Ball:2011:PPT]

[Balis:2002:CPM]

[Balis:2003: MSM]

[Balaji:2010:FGM]

[Bender:2017:TLM]

Gérard Boudol and Ilaria Castellani. Noninterference

Biagioni:1998:SST

Benner:2007:SLS

Baja:2011:FFP

Badamo:2016:IPE

Beyls:2000:CGM

REFERENCES

Bouajjani:2012:ARP

Bouajjani:2013:ARP

Becker:2000:JSU

Becker:2001:SMW

Borkenhagen:2000:MPP

Beddow:1991:MTC

Beebe:1998:BPA

REFERENCES

[Bagsorkhi:2012:EPE] Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye,

REFERENCES

(BJP+93) Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime...
REFERENCES

Zvonimir Bujanović, Lars Karlsson, and Daniel Kressner. A Householder-based

\textbf{Blumofe:1993:SES}

\textbf{Blumofe:1994:SMC}

\textbf{Bianchini:1996:EPM}

\textbf{Blumofe:1998:SES}

\textbf{Blumofe:1999:SMC}

\textbf{Bordawekar:1997:EEH}

Rajesh Bordawekar, Steven Landherr, Don Capps, and Mark Davis. Experimental evaluation of the Hewlett-

[Berg:2001:POU]

[Blumofe:1992:MSM]

[Blumofe:1995:EMP]

[Bolinger:1991:PSH]

D. Bolinger and S. Mangalat. Parallelizing signal handling and process management in OSF/1. In USENIX [USE91a], pages 105–122. LCCN QAX 27.

Baker:1994:EPP

Briguglio:2003:PPM

Brunst:2001:GBP

Burnim:2011:SCSa

Burnim:2011:SCSb

Burnim:2012:SCS

REFERENCES

don. The design of micro-
kernel support for the SR
concurrent programming lan-
guage. In Szynanski and Sin-
haroy [SS96], pages 227–240.
QA76.58.L37 1996.

O’Neill. A microbench-
mark suite for OpenMP 2.0.
ACM SIGARCH Computer
Architecture News, 29(5):41–
48, December 2001. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

cannot be implemented as a library. ACM SIGPLAN
Notices, 40(6):261–268, June
2005. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic).

[Bond:2013:GDG] Michael Bond. GPUDet: a de-
terministic GPU architecture.
ACM SIGPLAN Notices, 48
(4):1–12, April 2013. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[Boo93] Bob Boothe. Evaluation of
multithreading and caching
in large shared memory par-
allel computers. Thesis
(Ph.D.), University of Califor-
nia, Berkeley, Computer Sci-
ence Division, Berkeley, CA,
Also available as Report
UCB/CSD 93/766.

Implementing control algo-
rithms within a multithreaded
Java microcontroller. Lecture Notes in Computer Sci-
ence, 3432:33–49, 2005. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

[Boehm:2007:MCC] Hans Boehm, Bill Pugh, and
Doug Lea. Multithreading in C and C++.
;lo-
gin: the USENIX Associ-
ation newsletter, 32(1):??,
February 2007. CODEN
LOGNEM. ISSN 1044-6397.
org/publications/login/
february-2007-volume-32-
number-1/multithreading-
c-and-c.

J. Singh, and H. Hallal. Dy-
namic analysis of Java appli-
cations for multithreaded antipatterns. ACM SIGSOFT
Software Engineering Notes,
30(4):1–7, July 2005. CO-
DEN SFENDP. ISSN 0163-
REFERENCES

5948 (print), 1943-5843 (electronic).

REFERENCES

Brightwell:2003:DIP

Barthe:2010:SMP

Bellosa:1996:PIL

Bacon:2006:BFL

Bokhari:2010:EPM
[BS10a] Shahid Bokhari and Joel Saltz. Exploring the performance of massively multi-

Burnim:2010:ACD

Bartolini:2014:AFG

Boisvert:2001:ASS

Brunett:1998:IET

Butenhof:1997:PPT

Buttari:2013:FGM

Butcher:2014:SCM

Bik:1997:JPJ

Beveridge:1997:MAW

Bai:2015:SPA

Basharahil:2005:DSA

REFERENCES

Calkins:2000:ITT

Callaway:2002:VTR
John Callaway. Visualization of threads in a running Java program. Thesis (M.S.), University of California, Santa Cruz, Santa Cruz, CA, USA, 2002.

Caromel:1989:GMC

CarrerasVaquer:1989:APE

Campanoni:2008:PDC
Simone Campanoni, Giovanni Agosta, and Stefano Crespi Reghizzi. A parallel dynamic compiler for CIL byte-
Catano:2014:CSL

Catanzaro:1994:MSA

Caswell:1989:IMD

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi. GAMBIT: effective unit testing for concur-
REFERENCES

[CC18] Chen:2018:ESE

[CC18] Chen:2018:ESE

REFERENCES

Chung:2013:LBD

ChassindeKergommeaux:2001:PEE

Catalyurek:2012:GCA

Canetti:1991:PCP

Cerin:2006:MSS

Culler:1992:AMMa
REFERENCES

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

Nikos Chrisochoides. Multithreaded model for dy-

Chr96

Chr01

CJB+15

CJK95
Henry Cejtin. Higher-order distributed objects. ACM Transactions on Program-
REFERENCES

Chaudhry:1994:CMP

Caudal:1995:DEM

Choi:2000:SCP

Chase:1994:SPS

Choi:2002:EPD

Cormen:2009:IA

REFERENCES

Chapman:1998:OHI

Curtis-Maury:2008:PBP

Cain:2013:RAS

Cahir:2000:PMM

Cahoon:2000:EPD

Carr:2003:TPT

Chen:2010:CCM

Changno Chen, Marc Moreno Maza, and Yuzhen Xie. Cache complexity and multicore implementation for univariate real root isolation. ACM Communications in Computer Algebra, 44(3):97–98, September 2010. CODEN ????? ISSN
REFERENCES

1932-2232 (print), 1932-2240 (electronic).

REFERENCES

Christopher:2000:HPJ

Chappell:2002:DPB

Caromel:1998:JFS

Chen:2018:ROM

Chugh:2008:DAC

Cohen:1998:WMP

REFERENCES

catalog/multithread/;

Chakravarti:2003:ISM

Chakraborty:2006:CSE

Choi:2009:HCS

Chin:2018:EAN

Chen:1998:MTO

Choi:2002:IFI

Cao:2017:HRD

[Man Cao, Minjia Zhang, Aritra Sengupta, Swarnendu Biswas, and Michael D. Bond. Hybridizing and relaxing dependence tracking for efficient parallel runtime support. ACM Transactions on
REFERENCES

Draves:1991:UCI

Duda:1999:BVT

Duda:2000:BVT

Dou:2007:CCM

Das:2007:FVT

Dennis:1994:MMP

DuBois:2013:CSI

tronic). ICSA '13 conference proceedings.

References

http://www.acm.org/pubs/articles/journals/tosem/1993-2-4/p311-dillon/p311-

Dill:2000:MCJ

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP

Denniston:2016:DH

Dubey:1994:APM

Ding:2018:IOC

Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving optimistic concurrency control through transaction batching and operation reordering. Proceedings of the VLDB Endowment, 12(2):169–182, Oc-
REFERENCES

Doligez:1993:CGG

Devietti:2009:DDS

Dongarra:1999:RAP

delaPuente:1999:RTP

Demange:2013:PBB

Dagum:1998:OIS
[DM98] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for
REFERENCES

[Daloze:2016:ETS]

[Dorfman:1994:EMO]

[Devietti:2012:RRC]

[Dublish:2016:CCG]

[Dorojevets:1995:MDA]
REFERENCES

REFERENCES

ISSN 1556-6056 (print), 1556-6064 (electronic).

Deniz:2016:UML

Bois:2013:BGV

Dang:2017:ECB

Dohi:2010:IPE

Das:2015:SBP

Ding:2015:OCA

REFERENCES

[DVAE18] Sander De Pestel, Sam Van den Steen, Shoaib Akram, and Lieven Eeckhout. RPPM:

[Devietti:2012:RAS]

[Ding:2010:PCM]

[Dye98]

[Ding:2012:CDF]

[Elwasif:2001:AMT]

[Eskilson:1998:SMM]
Jesper Eskilson and Mats Carlsson. SICStus MT — a
REFERENCES

Stijn Eyerman and Lieven Eyerman:2010:PJS

[EE09a] Stijn Eyerman and Lieven Eyerman:2010:PJS.

REFERENCES

REFERENCES

El-Ghazawi:2002:UPP

Eggers:2010:AL

Esparza:2014:PBV

Elmasri:1995:TCL

Eager:1993:CER

Emer:2007:STV

Eytani:2007:TFB

Eickemeyer:1997:EMP

Eickemeyer:1997:EMP
REFERENCES

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu- Ghazaleh. Understanding

Elmas:2007:GRT

Epsonito:1996:MVB

Estep:1993:LMM

Ergin:2006:ENV

Eigenmann:2001:OSM

Evripidou:2001:MDD

Fan:1993:LMC

Farber:1996:EAM

Figueiredo:2001:IPH

Fiske:1995:TPT

Stuart Fiske and William J. Dally. Thread prioritization: a thread scheduling mechanism for multiple-context par-

Feuerstein:1996:MTP

Feuerstein:2002:LMT

Fekete:2008:TSD

Ferrara:2013:GSA

Flanagan:2004:ADA

Flanagan:2008:ADA

Flanagan:2009:FEP

Flanagan:2010:AMD

Cormac Flanagan and Stephen N. Freund. Adversarial mem-

Flanagan:2008:TAS

Flanagan:2004:EPA

Flanagan:2005:MVM

Faulkner:1991:PFS

Frincu:2014:ESV

REFERENCES

120

tronic). URL http://link.springer.com/article/10.1007/s00607-014-0410-0. [FHM95b]

Foster:1997:MMC

[FGKT97]

Foster:1996:MIW

[FJ08]

Fahringer:1995:UTDa

Thomas Fahringer, Matthew Haines, and Piyush Mehrotra. On the utility of threads for data parallel programming. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Finger:1995:LTC

Fisher:1997:SPS

Fide:2008:PUS

Farzan:2012:VPC

Azadeh Farzan and Zachary Kincaid. Verification of pa-

Fillo:1997:MMM

Farzan:2015:PSU

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

Frigo:1998:ICM

REFERENCES

Felten:1992:IPM

Fang:2015:MMD

Farzan:2017:SDC

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Fong:1997:BPM

Ford:1995:EDT

Ford:1995:ETC

Forsell:1997:MMV

[Fung:2009:DWF]

[Farcy:1996:ISP]

[Fabregat-Traver:2014:SSG]

[Feinbube:2011:JFM]

[Fujita:1997:MPA]

[Flautner:2000:TLPa]

[Flautner:2000:TLPc]
Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-level parallelism and interactive performance of desktop applica-
REFERENCES

1. Flautner:2000:TLPb

2. Flautner:2000:TLPb

5. Gao:1993:EHD

7. Grant:2009:IEE

REFERENCES

8186-6542-4. x + 450 pp.

Guz:2009:MCV

ISSN 1556-6056 (print), 1556-6064 (electronic).

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

REFERENCES

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

Gasiunas:2017:FBA

Gasiunas:2017:FBA

Gasiunas:2017:FBA

Gravvanis:2008:JMB

Gravvanis:2007:PPA

Geary:1998:SM

REFERENCES

Gueunet:2019:TBA

Gao:1993:DMA

Gao:1993:SID

Gruen:1998:NIS

Gibson:1994:CMC

Gagnon:2003:EIT

Girkar:1998:IM

96–98, May 1994. CODEN DDJOEB. ISSN 1044-789X.

Michael H. Goldwasser and David Letscher. Introducing

Gu:1999:EJT

Gle91

Grebenshchikov:2012:SSV

GMB93

Gonzalez-Mesa:2014:ETM

Gomez:1998:CAM

REFERENCES

REFERENCES

Gollapudi:1996:MCA

Goldstein:1997:LTC

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS
Marisa Gil and Ruben Pinilla. Thread coloring: a scheduler proposal from user to hardware threads. Operating Systems Review, 39(2):
REFERENCES

54–70, April 2005. CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Gidenstam:2008:LLF

Gupta:2011:PAR

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

Gomez:1997:EMU
REFERENCES

Gupta:2010:CSM

Gulati:1995:MSM

Gunther:1997:MDF

Gustafsson:2005:TP

Goossens:1995:FPM

Georgakoudis:2017:SSA

Gibson:2010:FSC

REFERENCES

REFERENCES

[Haines:1992:SMC]

[Hottelier:2015:SLE]

[Hunt:2013:DTN]

[Hankendi:2017:SCS]

[Hanson:2001:UFI]

[Hanson:2002:AFI]

[Heber:1998:UMA]
REFERENCES

Halstead:1994:PCR

Haines:1994:DCT

Ding:2002:MOP

Honarmand:2013:CUA

Heinlein:2003:ATS

Hoffman:2009:SAT

Hroub:2017:EGC

Halstead:1988:MMP

[HF88] R. H. Halstead, Jr. and T. Fujita. MASA: a multithreaded processor archi-
REFERENCES

141

tecture for parallel symbolic
computing. *ACM SIGARCH
Computer Architecture News*,
CODEN CANED2. ISSN
0163-5964 (print), 1943-5851
(electronic).

Hertzum:1996:BQO
Morten Hertzum and Erik
Frøkjær. Browsing and query-
ing in online documenta-
tion: a study of user in-
terfaces and the interaction
process. *ACM Transactions
on Computer-Human Interac-
CODEN ATCIF4. ISSN 1073-
0516 (print), 1557-7325 (elec-
acl.org:80/pubs/citations/
journals/tochi/1996-3-2/
p136-hertzum/.

Halappanavar:2012:A
Mahantesh Halappanavar,
John Feo, Oreste Villa, An-
tonio Tumeo, and Alex
Pothen. Approximate weighted
matching on emerging many-
core and multithreaded archi-
tectures. *The International
Journal of High Performance
Computing Applications*, 26
CODEN IHPCFL. ISSN
1094-3420 (print), 1741-2846
(electronic). URL http://
hpc.sagepub.com/content/
26/4/413.full.pdf+html.

Hum:1991:NHS
H. H. J. Hum and G. R.
Gao. A novel high-speed
memory organization for fine-
grain multi-thread computing.
*Lecture Notes in Computer
CODEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

Hum:1992:HSM
Herbert H. J. Hum and
Guang R. Gao. A high-speed
memory organization for hy-
brid dataflow/von Neumann
computing. *Future Generation
Computer Systems*, 8(4):287–
301, September 1992. CO-
DEN FGSEVI. ISSN 0167-
739X (print), 1872-7115 (elec-
tronic).

Hughes:1997:OOM
Cameron Hughes and Tracey
Hughes. *Object-oriented mul-
tithreading using C++*. John
Wiley and Sons, New York,
NY, USA; London, UK; Syd-
dney, Australia, 1997. ISBN
0-471-18012-2 (paperback).
xvi + 495 pp. LCCN
QA76.73.C153H84 1997.

Hong:2011:AMA
Bo Hong and Zhengyu He. An
asynchronous multithreaded
algorithm for the maximum
network flow problem with
nonblocking global relabel-
ing heuristic. *IEEE Trans-
actions on Parallel and Dis-
tributed Systems*, 22(6):1025–
1033, June 2011. CO-
DEN ITDSEO. ISSN 1045-
REFERENCES

9219 (print), 1558-2183 (electronic).

Huang:2016:MCR

Hironaka:1991:SVP

Hironaka:1992:BVP

Hussein:2015:DRM

Hightower:1997:PDD
Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. *Dr. Dobb’s Journal of Software Tools*, 22(1): 70–77, January 1997. CODEN DDJOEB. ISSN 1044-789X.

Hauser:1993:UTI

Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki, Akio Nishimura, Yoshimori Nakase, and Teiji Nishizawa. An elementary processor architecture with...

Huron:1996:CMD

Hidaka:1993:MTC

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD

Hansen:1990:EPA

Holm:1994:CSP

Hu:2016:TDM

Haines:1995:RSC

Matthew Haines, Piyush Mehrotra, and David Cronk. Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Haines:1997:DPP

Hashemi:2016:EEB

Harish:2016:PIK

Hirata:1992:MPA

H. Hirata, Y. Mochizuki, A. Nishmura, Y. Nakase,

Hirata:1991:MPA

Hum:1996:SEM

Horiguchi:1991:PEP

Holub:1998:PJTb

Holub:1998:PJTc

Holub:1998:PJTd

REFERENCES

Holub:1998:PJT

Holub:1999:PJT

Holub:1999:PJTb

Holub:2000:TJT

Hollingsworth:2012:SPI

Hong:1994:FIS

Hopper:1998:CFM

Michael A. Hopper. *A compiler framework for multithreaded parallel systems*. Thesis (Ph.D.), School of
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 1998. xii + 110 pp.

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Hassanein:2008:AEH

Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation migration: enhancing locality for distributed-
memory parallel systems.
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Horwood:2000:DMA

Hyde:2000:JTP

Huang:2012:EPS

Huang:2013:CRL

Iannucci:1994:MCA

Iannucci:1994:AII

Robert Iannucci, Anant Agarwal, Bill Dally, Anoop Gupta,

REFERENCES

IEEE:1993:PSP

IEEE:1994:PIW

IEEE:1994:PSH

IEEE:1994:PSW

IEEE:1994:ROS

IEEE:1995:PCL

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1999:HCS

IEEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

Takashi Ishihara, Tiejün Li, Eugene F. Fodor, and

Troy A. Johnson, Rudolf Eigenmann, and T. N. Vi-

Ji:1998:PMM

Jia:2019:UPD

Johnston:2004:ADP

Jolitz:1991:PUB

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386. The basic kernel multiprogramming and multitasking. II. *Dr. Dobb’s Journal of Software Tools*, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

Jin:2003:AMP

Jung:2016:LPS

Jonsson:1999:NPS

REFERENCES

Jang:2010:DTE

Joerg:1996:CSP

Jonak:1986:EFL

Jones:1991:BCL

Jagannathan:1992:CSC

Jacobs:2008:PMC

Joshi:2009:RDP

REFERENCES

Joisha:2011:TEA

Joisha:2012:TTE

Joao:2013:UBA

Jeffrey:2011:IBM

Jeon:2015:MTH

REFERENCES

Koster:2003:TTI

Krashinsky:2004:VTAA

Krashinsky:2004:VTAB

Krashinsky:2004:VTAB

Kreuzinger:2003:RTE

Karamcheti:1998:HLB

Karamcheti:1999:ASM

REFERENCES

67–??, August 1994. CODEN CCUJEX. ISSN 1075-2838.

Kelly:1994:MOB

Klasky:2003:GBP

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

Khan:2012:MAN

Kondguli:2018:BUS

Khosla:1997:MAT

Samir Khosla. Multithreading the asynchronous trigger
REFERENCES

Kavi:1995:DCM

Kawamoto:1995:MTP

Kutsuna:2016:ARM

Kojima:2017:HLG

Kusakabe:1999:INS

Kim:1994:FPF

Keen:2003:CCP

REFERENCES

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/128867.html. Also see [KLS92].

REFERENCES

Kaiser:2006:CJC

Kienzle:2001:CTT

Kienzle:2001:IEO

Kecskler:2012:MMC

Kawaguchi:2012:DPL

Krone:1998:LBN

Krinke:1998:SST

REFERENCES

Klarlund:1993:GT

Krieger:1997:HPO

Kalayappan:2016:FRT

Kgil:2008:PUS

Kumar:2004:AST

Kleiman:1995:PT

Kleiman:1996:PT

REFERENCES

Kalla:2004:IPC

Krishnan:1999:CMA

Krieger:1994:ASF

Kopczynski:2017:LSS

Kambadur:2012:HCA

Kambadur:2013:PSP
REFERENCES

Kumar:2004:SIH

Keller:2000:JUS

Komosinski:2017:MCE

Kubica:2015:PHT

Kuchlin:1991:MCI

Kuchlin:1992:MTC

W. Küchlin. On the multi-threaded computation of modular polynomial greatest common divisors. *Lecture Notes in
REFERENCES

Kestor:2015:TPD

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Kleinmann:2017:ACS

Kwok:2003:EHC

Kasikci:2015:ACD

[Baris Kasikci, Cristian Zamfir, and George Candea. Automated classification of data races under both strong and weak memory models. ACM Transactions on Programming Languages and Systems, 37 (3):8:1–8:??, June 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]
REFERENCES

Kandemir:2015:MRR

Lim:1993:WAS

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

Lam:1995:CPC

Lang:1997:MTE

Duncan Walter Temple Lang. A multi-threaded extension to a high level interactive sta-
REFERENCES

REFERENCES

[Bil Lewis and Daniel J. Berg. 2000:MPJ]

[Doowon Lee and Valeria Bertacco. 2017:MVN]

[Xin Li, Marian Boldt, and Reinhard von Hanxleden. 2006:MEMa]

[Xin Li, Marian Boldt, and Reinhard von Hanxleden. 2006:MEMb]
REFERENCES

REFERENCES

Software Tools, 18(10):84–??, Fall 1993. CODEN DDJOEB. ISSN 1044-789X. Special Issue: Windows Sourcebook.

REFERENCES

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

[LG06]

Lowenthal:1996:UFG

[LG06]

Lee:2006:TBR

Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.
REFERENCES

3500 (print), 1557-7295 (electronic).

Liedtke:1994:SNIb

LaFratta:2013:EEM

LaSalle:2015:MTM

Li:2011:LCM

Luo:2017:TDS

Lakshminarayana:2012:DSP

Lin:2010:TAC

[102x702][LLL10] Yi-Neng Lin, Ying-Dar Lin, and Yuan-Cheng Lai. Thread allocation in CMP-based mul-
 REFERENCES

Y. Li, K. Nomura, J. A. Insley, V. Morozov, K. Kumaran,

[Romero:2019:CSE]

[Loebiher:2018:JAR]

[Loeffler:1997:JACM]

[Loepere:2005:OSR]

[Loewy:2000:CC]

[Launchbury:1994:ACM]

[Luebbers:2009:TECS]
REFERENCES

[LS11] Xiongfei Liao and Thambipillai Srikanthan. Accelera-

[LSS12]

Lee:2018:ERD

[Lashgar:2015:CSR]

[LT97]

REFERENCES

2867 (print), 1558-1160 (electronic).

Li:2016:HBG

Lin:2017:MSP

Lu:1994:MPM

Lu:1995:HMC

Lu:1998:ONW

Luk:2001:TML

Lundberg:1997:BMC

Lundberg:1999:PBS

Lars Lundberg. Predicting and bounding the speedup

REFERENCES

05/llnl-purdue-researchers-
harvest-gpu-mixed-precision-
for-accuracy-performance-
tradeoff/.

Lee:2010:REO

[186]

[LWV+10]

[LZBW14]

Liu:2014:TPA

[LYH16]

[Lyu:2016:TAA]

[LZL+14]

Li:2007:CET

[LZ07]

[LZS+08]

REFERENCES

REFERENCES

level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

McManis:1996:JDSb

McManis:1996:JDT

McMillan:1997:NSB

McManis:1998:DUT

McManis:1998:JDU

Mannarswamy:2010:CAS

Sandya Mannarswamy, Dhruva R. Chakrabarti, Kaushik Rajan, and Sujoy Saraswati. Compiler aided selective lock as-
segment for improving the
performance of software trans-
actional memory. ACM SIG-
PLAN Notices, 45(5):37–46,
May 2010. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic).

Mitchell:2015:GIA

Nathan Mitchell, Court Cut-
ting, and Eftychios Sifakis.
GRIDiron: an interactive au-
thoring and cognitive training
foundation for reconstructive
plastic surgery procedures. ACM
Transactions on Graph-
ics, 34(4):43:1–43:??, August
2015. CODEN ATGRDF.
ISSN 0730-0301 (print), 1557-
7368 (electronic).

Montesinos:2008:DRD

Pablo Montesinos, Luis Ceze,
and Josep Torrellas. De-
Lorean: Recording and deter-
ministically replaying shared-
memory multiprocessor execu-
tion efficiently. ACM
SIGARCH Computer Ar-
chitecture News, 36(3):289–
300, June 2008. CODEN CANED2.
ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

Mikschl:1996:MMS

A. Mikschl and W. Datum.
MSparc: a multithreaded
Sparc. Lecture Notes in Com-
puter Science, 1124:461–??, 1996.
CODEN LNCSD9.

ISSN 0302-9743 (print), 1611-
3349 (electronic).

Matheou:2015:ASD

George Matheou and Paraskevas
Evripidou. Architectural sup-
port for data-driven execu-
tion. ACM Transactions on
Architecture and Code Op-
timization, 11(4):52:1–52:??,
January 2015. CODEN ????
ISSN 1544-3566 (print), 1544-
3973 (electronic).

Matheou:2017:DDC

George Matheou and Paraskevas
Evripidou. Data-driven con-
currency for high performance
computing. ACM Trans-
actions on Architecture and
Code Optimization, 14(4):
53:1–53:??, December 2017.
CODEN ???? ISSN 1544-
3566 (print), 1544-3973 (elec-
tronic).

Mukherjee:1994:MII

Bodhisattwa Mukherjee, Greg
Eisenhauer, and Kaushik
Ghosh. A machine indepen-
dent interface for lightweight
threads. Operating Systems
Review, 28(1):33–47, January
ISSN 0163-5980 (print), 1943-
586X (electronic).

McDowell:2003:ISS

Luke K. McDowell, Susan J.
Eggers, and Steven D. Grib-
brule. Improving server software
support for simultaneous mul-
tithreaded processors. ACM
REFERENCES

Mennemeier:1991:HMS

Metz:1995:IDS

Marcuello:1999:EST

Mehta:2015:MTP

Martinsen:2014:HTL

Mohamed:2000:DDM

Marsland:1995:SSM

Madriles:2008:MSM
Carlos Madriles, Carlos García-Quíones, Jesús Sánchez,

Maquelin:1995:CBM

Mauer:2002:FST

Miastkowski:1990:PGG

Michael:2004:SLF

Maabreh:2018:MHT

Miller:1995:TPC

Mishra:1996:TIS

Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors.
REFERENCES

Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

Mitchell:1996:JTM

MixSoftware:1994:UMC

Meng:2010:AOS

Mars:2012:BDS

Moreno:1997:PMP

Maris:2004:CCP
REFERENCES

Moody:1999:STT

Maiya:2014:RDA

Marquez:2017:MCH

Mukherjee:2002:DDE

Muralidhara:2010:IAS

Marowka:2004:OOA

Madriles:2009:BST

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Mathis:2005:CSM

[MM+05]

Marino:2009:LES

[MMN09]

McAuley:2003:CVC

[Derek McAuley and Rolf Neugebauer. A case for virtual channel processors. In Romanow and Mogul [RM03], pages 237–242. ISBN ???? LCCN TK5105.5. ACM order number 534032.]

[MMTW10]

McAuley:2003:CVC

[MNG16]

Markovic:2015:TLS

[Nikola Markovic, Daniel Nemirovsky, Osman Unsal, Mateo Valero, and Adrian Cristal. Thread lock section-aware scheduling on asymmetric single-ISA multi-core.]

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

McCreesh:2013:MTS

Martin:2004:HPA

REFERENCES

Musuvathi:2007:ICB

Musuvathi:2008:FSM

Machado:2016:CDD

Mayes:1995:ULT

Marinescu:1994:HLC

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

Meier:2017:PVM

Ma:1991:MA

McJones:1989:EUS

Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multithreaded programs. In USENIX Association [USE89], pages 393–404.

Mahinthakumar:2002:HMO

Mantel:2003:UAS

McCartney:2015:SMT

REFERENCES

Martinez:2002:SSAb

Martinez:2002:SSAc

Minh:2007:EHT

Matsushita:2000:MSC

Miller:2012:VCE

Meng:2010:DWS

Muller:2003:OCB

Matthias S. Müller. An OpenMP compiler bench-

Nagle:2001:MFV

Nakhimovsky:2001:ISM

Nakajima:2003:PIS

Naik:2006:ESR

Narlikar:1999:SES

Nagpal:2012:CGE

REFERENCES

Norton:1996:TTM

Norris:2013:CCC

Norris:2016:PAM

Nemeth:2000:AMD

Nevison:1999:SSC

Nazarpour:2017:CPS

Nakaike:2010:LER

Nordstrom:1990:TL

Northrup:1996:PUT

Narayanasamy:2006:RSM

Nebro:1998:EMR

Nanda:2006:ISM

Nikhil:1992:MMP

Neves:1997:TRS

REFERENCES

Ngo:2014:EVC

Niewiadomski:2014:SVG

Nogueira:2016:BBW

Norwood:1994:SMP

Nguyen:2015:RCC

Phúc C. Nguyen and David Van Horn. Relatively complete counterexamples for

[OA08b] Narayanasamy:2007:ACB

[OA19] Oz:2019:SMA

[OAA09] Ottoni:2008:COGb

[OA08c] Ottoni:2008:COGc

[OA08a] Ottoni:2008:COGa

[OA09] Olszewski:2009:KED

Marek Olszewski, Jason Ansel, and Saman Amaras-

Ossner:2013:GMB

Ostler:2007:IHT

Ozer:2001:WMT

Odaira:2014:EGI
Rei Odaira, Jose G. Castanos, and Hisanobu Tomari. Eliminating global interpreter locks in Ruby through hardware transactional memory. ACM SIGPLAN Notices, 49(8):131–142, August 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Olivier:2012:CMW

Ogata:1992:DIH
Kazuhiro Ogata, Satoshi Kurihara, Mikio Inari, and

Oplinger:2002:ESR

Oplinger:2002:ESRb

Oplinger:2002:ESRc

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

REFERENCES

Oikawa:1995:RDU

Ottoni:2006:SPC

Oyama:2000:OCC

Oaks:1997:JT

Oaks:1999:JT

Peternier:2014:IEU

Achille Peternier, Danilo Ansaloni, Daniele Bonetta, Cesare Pautasso, and Walter Binder. Improving execution

Pereira:2017:SBC

Pant:1999:TCP

Park:1991:PTM

Papadopoulos:1992:MCS

Park:2017:HHC

Porter:2015:PFG

Donald E. Porter, Michael D. Bond, Indrajit Roy, Kathryn S. Mckinley, and Emmett Witchel.

Peterson:2000:CCT

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

REFERENCES

Price:2003:CAF

Plauger:1993:MCS

Plauger:1998:SCCl

Plauger:1999:SCCg

Plachetka:2002:QTS

Porter:2015:MMS

Plyler:1989:AMC

Kevin Brian Plyler. Adding multithreaded capabilities to the process manager of the BIGSAM distributed operating system. Thesis (M.S.), Arizona State University, Tempe, AZ, USA, 1989. x + 105 + 2 pp.

Pricopi:2014:TSA

REFERENCES

Prabh:2003:UTL

Polychronopoulos:1990:ASC

Pomerantz:1998:CNS

Parashar:2013:TIC

Prieto:2011:MCM

Piumarta:1998:ODT

Petric:2005:EEP

[PR05] Vlad Petric and Amir Roth. Energy-effectiveness of pre-

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISBN</th>
<th>LCCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pra95c]</td>
<td>Shashi Prasad</td>
<td>Windows NT threads — a multithreaded application may actually run slower on an SMP machine than on its single-threaded equivalent. Here’s how to avoid that</td>
<td>Byte Magazine, 20 (11):253–??, November 1995. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISBN</th>
<th>LCCN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISBN</th>
<th>LCCN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISBN</th>
<th>LCCN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISBN</th>
<th>LCCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PRS14]</td>
<td>Darko Petrović, Thomas Ropars, and André Schiper</td>
<td>Leveraging hardware message passing for efficient thread synchronization</td>
<td>ACM SIGPLAN Notices, 49(8):143–154,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

August 2014. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

DEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Piringer:2009:MTA [PTMB09] Harald Piringer, Christian Tominski, Philipp Muigg, and Wolfgang Berger. A multithreading architecture to support interactive visual explo-

Pfeffer:2004:RTG

Pulleyn:2000:EPM

Pickett:2006:SSF

Pathania:2017:DTM

Preissl:2012:CSS

Preissl:2011:MGA

Polap:2018:MTL

[PWWD18] Dawid Polap, Marcin Woźniak, Wei Wei, and Robertas Damasevicius. Multi-threaded

[QSQ14] Xuehai Qian, Benjamin Sahelices, and Depei Qian. Pacifier: record and replay for relaxed-consistency multiprocessors with distributed

REFERENCES

usenix.org/publications/library/proceedings/tcl2k/ranganathan.html.

REFERENCES

ISSN 0018-9340 (print), 1557-9956 (electronic).

Rogers:1995:SDD

Radojkovic:2010:TSP

Ruddock:1996:MPG

Ronsse:1999:RF1

Russell:2006:ESRa

Reck:1998:TSR

Reich:1995:DHP
David E. Reich. *Designing high-powered OS/2 Warp applications: the anatomy of multithreaded programs*. John Wiley and Sons, New York,
REFERENCES

Reilly:2001:TNF

Redstone:2000:AOSa

Redstone:2000:AOSb

Redstone:2000:AOSc

Rajwar:2003:TET

Radojkovic:2012:EIS

1544-3566 (print), 1544-3973 (electronic).

[RKBH11] Dheeraj Reddy, David Koufaty, Paul Brett, and Scott Hahn. Bridging functional heterogeneity in multicore...

Reus:1998:VCO

Ran:2010:SPUa

Ran:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

[P:RLJ09] P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, and D. Verkest. Distributed loop controller for

REFERENCES

REFERENCES

Raghunath:1993:DIN

Robbins:1996:PUP

Rugina:1999:PAM

Robbins:2003:USP

Roy:2011:SRP

Rivara:2012:MPL
Reddy:2006:UPB

Rosu:2007:ITO

Rounce:2008:DIS

Riccobene:2009:SCB

Roh:2001:RMD

Rangan:2008:PSD

REFERENCES

[236] ISSN 1544-3566 (print), 1544-3973 (electronic).

[Sand04] B. Sanden. Coping with Java threads: Java works for many kinds of concurrent soft-

ware, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. *Computer*, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Savage:1997:EDD Stefan Savage, Michael Burrows, Greg Nelson, Patrick

Sanderson:2017:PGP

Saillard:2015:SDV

Saez:2013:DFP

Schweitzer:2015:PEM

Schauser:1995:SCP

REFERENCES

REFERENCES

Seiden:1998:ROM

Seiden:1999:ROM

Sen:2008:RDR

Sev
erance:1996:MOB

Sundaresan:1996:COO

Sahin:2018:CSC

Sung:2014:PTR

I-Jui Sung, Juan Gómez-Luna, José María González-

[She02] Chin-Kuang Shene. ThreadMentor: a system for teaching multithreaded programming. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)*, 34
Shinjo:2000:DCEb

Shi:2015:CLM

Shoner:1997:JSSa

Sinharoy:1997:OTC

Sinharoy:1999:COI

Balaram Sinharoy. Compiler optimization to improve data

Steensgaard:1995:ONC

Sharafeddine:2012:DOE

Singh:1992:DRS

Singh:1992:DRT

Stewart:1997:MDH

Shirole:2012:TCU

Sung:2001:MDA

REFERENCES

Smaragdakis:2007:TIC

Schönherr:2011:MTI

Sohn:2001:CTC

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshi-

Steele:2014:FSP

Shin:2004:NAD

Shin:2006:ADT

Scherer:1999:TAP

Sangaiah:2018:SSA

Su:2019:SSC

Xing Su, Xiangke Liao, Hao Jiang, Canqun Yang, and Jingling Xue. SCP: Shared cache partitioning for high-performance GEMM. *ACM
REFERENCES

REFERENCES

Soden:2002:AMA

Samorodin:2000:SFS

Shinjo:2000:DCEa

Shinjo:2005:AEP

Sharkey:2007:EOA

Saarikivi:2017:MTS

Olli Saarikivi, Hernán Ponce-De-León, Kari Kähkönen, Keijo Heljanko, and Javier Esparza. Minimizing test

Spero:1994:MMD

Skjellum:1996:TTM

Saxena:1993:PMS

Suleman:2008:FDTa

Suleman:2008:FDTb

Suleman:2008:FDTc

Squillante:1994:AMP

Salcianu:2001:PEA

Sohi:2001:SMP

Samak:2014:MTS

Sen:2006:OEP

Srinivasan:1993:SDS

Srinivasan:1995:MMX

[Sri95] Murali V. Srinivasan. A methodology for multithreaded

Samak:2015:SRT

Saghi:1998:MSH

Small:1995:SAB

Szymanski:1996:LCR

Sutherland:2010:CTC

Shi:2007:CCP

Sounudarajan:2010:CSE

Saito:1999:MRS

Sohn:1997:DWD

Skillicorn:1998:MLP

Snavely:2000:SJSa
Allan Snavely and Dean M.
Tullsen. Symbiotic job scheduling for a simultaneous multithreaded processor. [Sta90]

Snavely:2000:SJSc

Snavely:2000:SJSb

Sundell:2005:FLF

Stapleton:1990:DSS

Stark:2005:FSV

Steensgaard:2001:TSH

Stoller:2002:MCM

Samak:2016:DSF
Malavika Samak, Omer Tripp, and Murali Krishna Ra-

Stuckey:1995:FCI

Snavely:2002:SJP

Schmidtmann:1993:DIM

Shen:1999:ATL

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??.

Sigmund:1996:IBM

Sigmund:2001:SCS

Suito:2012:DRM

REFERENCES

CODEN IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic).

SunSoft:1995:SMP

Sutter:1999:OAM

Schmidt:1996:CAPb

Schmidt:1996:CAPc

Schmidt:1996:CAPa

Sabarimuthu:2019:ADC

Shepherd:1997:UCA

Schaffer:2008:UHM

[SW08] Kevin Schaffer and Robert A. Walker. Using hardware multithreading to overcome

Sleiman:2016:ESO

Swee:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

Schwan:1992:MRT

Sterling:2002:GMP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

[Tim03] Martin Timmerman. Examining Windows CE .NET. *Dr.

Zhenzhou Tian, Ting Liu, Qinghua Zheng, Eryue Zhuang, Ming Fan, and Zijiang Yang. Reviving sequential program birthmarking for multithreaded software plagiarism detection. *IEEE Trans-
REFERENCES

Tremblay:2003:IEP

Tallent:2009:EPM

Tallent:2010:ALC

Trott:2010:AV1

Todiwala:1995:DRT

Khushroo Rustom Todiwala. A distributed ray tracing implementation using multi-threaded RPC. Thesis (M.S.), University of Texas at El Paso,

REFERENCES

Tentyukov:2010:MVF

Tembey:2013:SSS

Torlak:2010:MCA

Turon:2014:GNW

Taura:1997:FGM

Utterback:2017:POR

Ungerer:2002:MP

REFERENCES

REFERENCES

[USE00b] USENIX, editor. Proceedings of the 7th USENIX Tcl/Tk
REFERENCES

REFERENCES

Vanhelsuwe:1997:JPE

Vckovski:2000:MTS

Volkov:2008:LQC

Vishkin:1998:EMT

Volkman:1993:CDB

Venners:1997:UHH

Venners:1998:DTS

Verriello:1996:MSM

Vermeulen:1997:JDW

Vlacbos:2010:PEAa

Vlacbos:2010:PEAb

Vasconcelos:2006:TCM

Vachharajani:2005:CMP

Vlassov:1999:QMM
REFERENCES

Volkman:1993:CCP

Verdu:2016:PSA

Vijaykumar:2002:TFR

Vitali:2012:LSO

Vrenios:2004:PPC

Vinoski:1996:DCD
References

V. Vlassov and L.-E. Thorelli. Analytical models of multithreading with data prefetch-
REFERENCES

[Volos:2012:ATM]

[Villa:2012:FAS]

[Vishkin:2000:ELR]

[VanDeGeijn:2011:HPD]

[Winter:2008:ATN]

[Walter:1995:PMS]

[Walnsley:2000:MTP]
REFERENCES

[Watt:1991:IPI]

[Wayner:1995:FAN]

[Wu:1999:GMC]

[Wallace:1998:TMP]

[Wilde:1998:RES]
Norman Wilde, Christopher Casey, Joe Vandeville, Gary Trio, and Dick Hotz. Reverse engineering of software threads: a design recovery technique for large multiprocess systems. The Journal of Systems and Software, 43 (1):11–17, October 1998. CODEN JSSODM. ISSN 0164-
Wang:2004:HTVa

Wang:2004:HTVb

Wang:2004:HTVe

Wang:2004:HTVd

Wang:2007:OSC

Wester:2013:PDR

[WD C+13] Benjamin Wester, David De-

Weaver:2008:OIO

Weisz:1997:MFA

Weissman:1998:PCS

Wong:1994:SSI

Weissman:1999:HPT

Walcott:2007:DPA

Kristen R. Walcott, Greg
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Wil94b]</td>
<td>Al Williams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wei:2012:OLL

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wang:2017:JRJ

Wadden:2014:RWD

Wang:2009:TDA

REFERENCES

[2867 (print), 1558-1160 (electronic).

Won:2015:MMC

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Wang:2018:TWB

Wang:2006:RAA

David S. Wise and Joshua Walgenbach. Static and dy-

Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.

Yu:2016:DLR

Young-Myers:1992:DTC

Young-Myers:1993:ESTa

Young-Myers:1993:ESTb

Yu:2009:CIC

Yu:2012:MCD

Yo:1996:CAA

Yo:1996:PCM

Yeh:2017:PFG

Youseff:2009:PES

Yong:2003:AMC

Yan:2007:HMC

Yang:2014:CNR

Yang:2007:RUL

Jin-Min Yang, Da-Fang Zhang, Xue-Dong Yang, and Wen-

Honbo Zhou and Al Geist. LPVM: a step towards multithreaded PVM. *Concurrency:
REFERENCES

REFERENCES

Zhuan:2004:BRA

Zhuan:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB

Zheng:2015:ACC

REFERENCES

1556-6056 (print), 1556-6064 (electronic).