A Bibliography of Publications about Multithreading

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

25 October 2017
Version 3.124

Title word cross-reference

#4 [Pet00].
+ [BMV03], 2 [TKHG04], 3 [KSB08, PYC10], cyclical [YLLS16], D^3 [Evr01], F^2 [BCS11], LU [VD08], N [ZJFA09], π [H101], QR [But13, GKK09, VD98].
-Calculus [III01]. -Machine [Evr01]. -way [ZJFA09].
.NET [Rob03, Tim03, DHR01, Rei01].
'01 [USE01].

1 [BM91, McM98a], 1003.4 [GL91]. 11 [ND16], 11th [IEE94a, IEE94d]. '12 [Hol12]. 16-20 [IEE92], 162 [Stu95], 1991 [Ano91, Ano94e]. 1993 [ACM93b], 1994 [ACM94a, ACM94d, Hon94, IEE94c].
2 [BGM14, DN94, KEL94, KEL94b, MIL95, Rei95, RIC91, ROD94, SRI93, WCW04b, WCW04c, WCW04d]. 2.0 [BO01], 2.6 [McM97], 2000 [Ano99], 2001 [ACM01], 2003 [RM03, ACM03, AS14]. 2010 [Egg10], 2011 [LCK11], 2012 [Hol12]. 20th [IEE95], 21st [ACM94b]. 22nd [ACM95b]. 25th [ACM98b, ACM98c]. 2k [USE00b], 2nd [Ano94d, USE98a].
3.0 [Bra97, BRM03, MRGB91]. 32-Way [KAO05], 35th [Gol94]. 3D [Ano97b, Loe97].
Abstract [CSS91b, CGSV93, DV99, LMA+91, MJF+91, Ném00, CSS+91a, CSS+91c, VDBN98, ZJFA09]. Abstraction [KI16, Bak95b, GPR11, ZSJ06]. AC [BGK94a, BGK94b]. Accelerating [LS11, SMQP09, VGK+10a, VGK+10b]. acceleration [JSMP13, NBMM12]. Accelerators [NTR16, SGLgL+14]. Access [Kle00, Spe94, VB00, AKSD16, APX12, CDD+10, Hig97, KFG15, MVY05, Sch89]. access/execute [APX12]. accesses [DTK+15]. accessibility [SSkP+07]. Accounting [LMA+16, EE09b]. accuracy [TO10]. Accurate [CPT08, VTSM12]. Achieving [AHW02, KGGK09, WTKW08]. ACM [ACM93b, RM03, IE02, ACM98b, ACM99a]. ACM/IEEE [ACM98d]. across [ZP04]. Activation [KG94]. Activations [ABLL92, DNR00, SS95]. Active [BK106, Pla02, Ten98, Wei98a, SD95, WHJ+95]. actors [Bri89]. actually [Pra95c]. Ada [ACM93c, Bar09, Dil93, GMIB93, KPPER06, KR01b]. ADAM [Far96]. adaptable [LLLC15]. Adaptation [CMBAN08]. Adaptive [ABN00]. Adaptive [ALHH08, HBTG98, KI95, LYH16, PM14, RCC12, STY99, SLG04, SLG06, SGS14, TLMG17, BS06, Chr95a, Chr95b, Chr96, SLG92, TKHG04, ZLW+16]. Adding [Ply89, Rie99, McM97]. Address [CLFL94, PWL+11, CKZ12, Lie94]. Addressing [WA08, CKD94, ZSB+12]. Advanced [BGG95, GBG95, Hei03, BZ07, GBB+05]. Advances [IEE97, JHM04, KKDV03, DLM99]. Advantage [Wei97]. Adversarial [FF10]. affinity [NAAL01]. Age [Cro98]. agents [Way95]. Agents [CWHB03, CR02, Way95, BDF98]. Aggregate [TGO99, TGO00]. AGNI [RBP100]. agreement [GMW09]. Aid [Wei97]. aided [MCRS10]. aids [Mat97]. Air [MPD04]. A1 [TLA+02]. Albuquerque [Ano94e]. Algebra [KLD09, NBS+15, PCH09, YSY+09]. Algebraic [ACM94c, Lak96, MR09, Wat91]. Algorithm [AT16, ABC+09, HH11, OR12, TT03, ZBS15, GKK09, KGP12, KNPS16, LCH+08, Mah11, Mah13, SCG95, TKHG04, Dav11, HBG02, YFF+12]. Algorithmic [Lei97, BBH+17]. Algorithms [BP05, EJRB13, FS96, LA93, MNG16, NSP+14, Pan09, QOIM+12, TTKG02, YMR93b, Bar09, ÇFG+12, CLRS09, FR95, GKO, Lei97, Lep95, QQOV+09, RRMJ12, YM92, YM93a, Li95]. algorithms-by-blocks [QOQOV+09]. Algorithms-by-Tiles [QOQOV+12]. aliasing [NA07]. Aligned [YWW03]. alignment [KGPH12]. Alloa [Hig97]. Alleviate [BD00]. Alloc [KS94]. Allocating [SEP96]. Allocation [MVZ93, Nak91, EFJ07, LLL10, Mic04, ZP04]. Allocator [BMBW00b, BMBW00a, BMBW00c]. Alpha [Ano94e]. alphabet [KNPS16]. alphabet-independent [KNPS16]. alternative [SV96c, SV96a, SV96b].
Alternatives [MB99, MKR02]. Alto [ACM01]. ALU [KDM+98]. always [DWS+12]. always-on [DWS+12]. Amdahl [CN14, NZ17]. Among [CB16, HMC95, SJ95]. analysing [NJK16]. Analysis [AKS06, BCMY16, BE12, BE13, BBC+00, BLG01, BNH01, CC04, CH95, CGL92a, CGL92b, DSR15, EJR13, Hai97b, Hol12, LCK11, LML00, LHG+16, NBM93, REL00b, Rin01, RR99, SBCV90, TAM+08, Yoo96a, Zuh02, AC09, ACC+03, BGZ97, BBH+17, BBM09, CHH+03, CS12, CVJL08, Cor00, GBCS07, HEJ09, JPS09, KTK12, KC09, Lei97, LBH12, LBE+08, Met95, NWT+07, PFH06, PL03, REL00a, REL00c, RS07, SR01a, SMK10, SRA06, SB80, TMC09, TR14, Wan94, WP10, WOKH96, WTH+12, db09, vPG03]. Analytic [Squ94]. Analytical [DKF94, VT96, SBC91]. analyze [LMC14]. analyzer [Fer13, HLB90]. Analyzing [HRH08, Kor89, RHH10, TMCP10]. anatomy [Rei95]. Android [MKM14]. Annotations [BM94, Wei98b, AGN90]. Annual [ACM93a, ACM98c, Gol94, Ass96, USE00a, ACM93b, USE96, USE98b]. anomalies [Sch89]. Antonio [USE92a]. any [Hig97, Mar07]. API [Ano00b, BDN02, DM98, Van97a]. APL [CJ91]. applets [Mc96a]. Application [AMRR98, KZTK15, KSU94, PG92, PLT+15, TKA+01, TAM+08, Yos95, DWYB10, EJ9+96, HDT+13, LVN10, LZ07, MRGB91, MKR10, Pha91, Pra95c, SE12, SS95, TKA+02, ZJS+11]. Application-Level [KSU94, PLT+15, HDT+13, LZ07, ZJS+11]. Applications [Ano00c, AKP99, BKL06, BMBW00b, BNH01, Cha05, Chl15a, DS16, Don02, Dru95, EV01, FURM00c, HC17, HWZ00, JYE+16, KMjC02, KR989, Lar97, MG15, PWL+11, Pul00, RD96, SGM+97, Sod02, Ten02, Tey94, TSYV12, TLGM17, Vol93, YG10, ZJS12, Ano92a, Ano92b, Ano94b, AAKK08, BWDZ15, BBFW03, BGM97, BMW00a, BMW00c, BW97, DSEE13, BMV03, CB89, CB90, CSB00, CS12, FM92, FURM00a, FURM00b, GS02, GCRD04, HLBB09, ISS08, JSMP12, JSMP13, KVN+09, MLCW11, MKM14, MKIO04, MLC04, MT02a, MT02b, MT02c, MKK99, MKR10, NM06, Omm04, PJZA07, RCV+10, Rei95, San04, SSN10, SKP+02, TMC09, TMCP10, VIA+05, VGK+10a, VGK+10b, WC+07, WT10, WOKH96, XMN99, YY14, kSYX+11, ZKR+11, Len95]. apply [NZ17]. Applying [VTSL12, MT02a, MT02b, MT02c]. Approche [Swi09]. Approach [BBSG11, CJW+15, ES97, FKT96, GMR98, KK14, KS16, ND16, RCM+16, TY97, VSDK09, WS08, Wei98b, YLLS16, BWDZ15, DHM+12, LZL+14, MS03, RCM+12, SCZM00]. Approaches [BLPV04, MB07]. Approximate [HFV+12, GEG07, GE08, KGPSH12]. Apps [PCM16]. April [Ano00a, Ano03, USE01]. arbitrary [BGC14]. ARCH [Ada98]. Architectural [ACM94d, HEMK17, IAD+94, KC99, ME15, BS06, CFM+13, Fan93, WHG07]. Architecture [ACM98c, BBD+91, BTE98, Car89b, CL95, DO95, EBKG01, For97, Gao93, GK94, GHG+98, GV95, GN92, HTZ+97, HMNN91, HHOM91, HHOM92, KBH+04a, KBH+04b, KIAT99, Man91, MB99, PVS+17, PTMB09, PK8+91, PS01, REL00b, RS08, SCL05, SSYG97, SKK+01, SZ02, TKA+01, VK99, ZL10, ACC+03, AAHF09, Ano97b, BT01, Bon13, CMF+13, CL94, CHH+03, Ch02, Don92, Dub95, Eru01, Far96, Fuj97, Gal94, GDSA+17, GL98a, Gol96, HF88, HKN+92, HMN+92, I+94, KHP+95, KT99, L095, Mah13, MK12, Ném00, NPA92, PYP+10, PDP+13, PWD+12, REL00a, REL00c, RCDG06, SWYC94, Sod02, TNB+95, Tsa97b, UZU00, Wan94, WCC+07, YY14, Yen97, Ch04].
Architectures
[AT16, Day92a, Day92b, HD02, GGB93a, GN00, HPA+15, HMLB16, Hol98d, IBST01, JLS99, KTR+04, LB92, LH94, LG06, LDT+16, MS02, MN00, NGGA94, QOIM+12, RJ+09, SGM+97, TG99, THA+12, Tra91, TJY98, TSV12, WG94, ZAK01, ABD+12, ABC+15, ABC+09, BIK+11, BS10a, CML00, CFP+12, CAT14, GGB93b, GK05, Gil94, GL98a, HFV+12, ICH+10, JMS+10, LMC14, Lu94, LMCW11, MLC04, Mus09, OCRS07, PT91, PPA+13, PJA07, PHCR09, RHH10, RKBH11, SBCV90, Sch98, Sha95b, SLG06, Squ94, SMQP09, SKA01, TE94a, The95, TKHG04]. Area
[AMPH09, FGT96, Par91]. Area-efficiency [AMPH09]. Aren’t [Su99]. Arildne
[MR98]. arising [ArvW03]. Array [GS06, LHS16, PDMM16]. Arrays
[BWXF05]. arrow [GE08]. arrow-type [GE08]. art [I+94]. artificial [KU17]. ASAT [SEP96]. Ashes [Thr99]. ASN
[CJW+15]. Aspects [SB80]. ASPLOS
[Mah13]. Assignment [BC98, RCM+16, MCRS10, ORH93, RCM+12]. assisted [Dub95]. associated [San04]. Associative
[SW08]. Assumptions [ES97]. ASSURE
[SLP+09, Dye98]. asymmetric [GA09, JSMP13, RBK+09, SCCP13, SMQP09]. Asynchronous
[HH11, KFG15, KG07, KSD04, Yoo96a, GMR90, Kho97, KSD07]. Asynchrony [SRU98]. Athena
[Egg10, Hud96]. ATL [SW97]. Atlanta
[ACM99a]. Atomic [KK+98, RD06]. atomicity [BNS11a, BNS11b, BNS12, FF04, FF08, FFLQ08, FXY08]. atomics [ND13]. Atomizer
[FF04, FF08]. Audience
[SB96]. Augmented
[LS99]. August
[RM03, IEE99, USE93a, USE98a]. Austin
[USE00b]. Austria [Hon94]. authoring
[MCS15]. Auto [Pol90, RKHT17]. Auto-vectorization [RKHT17]. AutoDock
[TO10]. Automata
[ES97]. Automata-Theoretic
[ES97]. Automated
[BSSS14, DRV02, KZC15, TR14]. Automatic
[HBTG98, JYY+03, Mou90, SEP96, YLLS16, GJ11, JSB+11, SLP+09]. Automatically
[NWT+07, TG99, CJ91]. autotuning
[CSV10]. Availability
[SP07]. Avenue
[An94d]. avoid [Pra95c]. avoidance
[LC13, WLK+09]. AVP
[An00b]. Aware
[HH11]. Balancers
[KKM01]. Balancing
[HBTG97, KC98, KR98, KB98, PGB16, THA+12, ZP04, Chr95a, Chr95b, Chr96, LTL+16, MKIO04]. Baltimore
[IEE02]. Bandwidth
[FSPD16, LTL+16]. Bandwidth-Aware
[FSPD16]. Barcelona
[ACM95a, ACM98c, DLM99]. Barnes
[ZBS15]. Barrier
[CJW+15]. Barrier-Based
[CJW+15]. barriers
[LSBW14, ZJFA09]. Base
[VE03]. Based
[AL94, AT16, AKP99, BHN01, CJW+15, CKRW99, CMBANO8, DSR15, EGP14, GHG+98, HHOM91, HHOM92, KS16, KG05, KEL+03, KS97, KRH98, Kwo03, LG06, LS11, MGQS+08, MKC97, OB13, RSBN01, TESK06, WLM15, AdBdRS05, Ada98, AAMF09, Am98, AKS16, CNQ13, CK94, CKRW97a, CKRW97b, CNV+06, GG99, DWYB10, EGI11, GDSA+17, GE08, JD08, JSMP13, KR01b, KKKJ+13, KI16, KBF+12, KL15, LLLL0, Mus90, NBBM12, PSG06a, PSG06b, PSG06c, PAB+14, Ran94, RRP06, RS08, SSK+92, TE94a, WC+04b, WC+04c, WC+04d, YL16, Day92a, Day92b, RSB+09]. Bases
[GK94, Swi09].
USE89, USE91a, USE93b, USE96, USE98b, USE01a. Call
[GSC96, Hub01, ORH93, Xue12]. callbacks
[VS96]. calling [TTY99]. calls
[KASD07, TLZ+16]. Cambridge [USE93a], Can [Ber96b, Dye98, Pet03, Ano92a, Ber96a, Hig97]. Canada [Ano00b, BT01]. cannot
[Boe05]. Cap [HC17]. Capabilities
[VD08, Ply89]. capability [CKD94].
capability-based [CKD94].
capacity [SSkP].
Capping [RCC12]. capturing
[BKC94].
Carolina [ACM93a].
CPG [DK02].
Checkpoint/Restart
[ZSA13].
Checkpointing
[CS02, ZSJ06].
Checkpoints
[BNH01, CRE99, HD02, KKH03, Kwo03, SCD 12, GDSA 15].
CheckFence
[BAM07].
Chaining
[JY15, KFG15].
Challenges
[Ano99]. Challenges
[Ano99, GJ97, AG06]. Changing
[Gar01].
channel
[MN03]. Channels
[EPAG16].
chant
[HC94, Ano94c].
Chapter
[SKK+01]. Characterization
[Ano95]. BCG+08, MR94, MMM+05, DWTY10].
characterizations
[GS00]. Characterizing
[Ge91, Ods99, SSSN10, MTPT12].
Charleston
[ACM93a]. Chassis
[Ano00b].
Checker
[FQ502, FF04, FF08, FFY08].
CheckFence
[BAM07].
Checking
[ES97, ND16, AHK98, AD08, AGE08, BAM07, BS10b, BNS11a, BNS11b, BS11c, CNQ13, FFLQ08, M195, MQ08, ND13, Sto02, TVD10, VGR06].
Checkpointing
[CS02, ZSJ06].
Chemkin
[Bra97]. Chicago
[Ano94d]. China
[IEE97].
Chip
[HHOM91, KST04, KML04, KU00, KKS+08, LS07, LKBJ11, LJM14, MTN+00, MR09, TESK06, VIA+05, Wea08, CSM+05, DTK+15, GA09, KT99, SM91, SKK09, TEL95, TEL98a, TEL98b].
chip-multiprocessor
[KT99].
Chip-Multiprocessors
[KU00, LJJ14].
Chips
[Ano00a, Ano03, EIE99].
Chiron
[TNB+95].
Chiron-1
[TNB+95].
Choice
[HI01, TEE+96].
Cholesky
[CIM+17, VD08].
Chores
[EJ93].
Chunking
[ML015].
CIL
[CAR08].
Cilk
[BJK+95, BJK+96, FRR98, Joe96, Mil95].
Cilk-5
[FLR98].
CIO
[Ano94g].
Circuit
[AMRR98].
City
[Hol12].
CLAM
[GMR98].
CLAP
[HZD13]. Class
[BS99, Cha02, Gib94, VE93, CS00, MSLM91, Yam96].
Classes
[Cal00, Fek08, How98, Lam95].
Classical
[JSB+12, JSB+11].
Classics
[Wil00].
Classification
[KZC15, LMJ14, LCH+08].
classifying
[NWT+07].
Classes
[Ano00b, BT01].

Change
[HCM94, Ano94c]. Characterization
[Ano95]. BCG+08, MR94, MMM+05, DWTY10].
characterizations
[GS00]. Characterizing
[Ge91, Ods99, SSSN10, MTPT12].
Charleston
[ACM93a]. Chassis
[Ano00b].
Checker
[FQ502, FF04, FF08, FFY08].
CheckFence
[BAM07].
Checking
[ES97, ND16, AHK98, AD08, AGE08, BAM07, BS10b, BNS11a, BNS11b, BNS11c, CNQ13, FFLQ08, M195, MQ08, ND13, Sto02, TVD10, VGR06].
Checkpointing
[CS02, ZSJ06].
Chemkin
[Bra97]. Chicago
[Ano94d]. China
[IEE97].
Chip
[HHOM91, KST04, KML04, KU00, KKS+08, LS07, LKBJ11, LJM14, MTN+00, MR09, TESK06, VIA+05, Wea08, CSM+05, DTK+15, GA09, KT99, SM91, SKK09, TEL95, TEL98a, TEL98b].
chip-multiprocessor
[KT99].
Chip-Multiprocessors
[KU00, LJJ14].
Chips
[Ano00a, Ano03, EIE99].
Chiron
[TNB+95].
Chiron-1
[TNB+95].
Choice
[HI01, TEE+96].
Cholesky
[CIM+17, VD08].
Chores
[EJ93].
Chunking
[ML015].
CIL
[CAR08].
Cilk
[BJK+95, BJK+96, FRR98, Joe96, Mil95].
Cilk-5
[FLR98].
CIO
[Ano94g].
Circuit
[AMRR98].
City
[Hol12].
CLAM
[GMR98].
CLAP
[HZD13]. Class
[BS99, Cha02, Gib94, VE93, CS00, MSLM91, Yam96].
Classes
[Cal00, Fek08, How98, Lam95].
Classical
[JSB+12, JSB+11].
Classics
[Wil00].
Classification
[KZC15, LMJ14, LCH+08].
classifying
[NWT+07].
Client
[Day92a, Day92b, Sri95, G90].
client-server
[GL96].
Client/Server
[Day92a, Day92b].

Cold
[SBJ+95, HJS95, LK13].
 Clubs
[HPA00, JHPA00, LK13].

cognitive
[MCS15, PWD+12].
cognizant
[LLT+15].
Coir
[MMMM91, SMK00, SKKC09].

Cold
PWD+12, SBCV90, Sta90, SKA01, Tem97].

Concept [AMdBRS02, BBFW02, KA97].

Concepts [McC97a]. Concrete [NSP+14].

Concurrency
[BM94, GMGZP14, MLR15, MQLR16, BA08, But14, CMB10, GCC15, HZD13, LZ07, NBMM12, NJK16, RR96, RR03, VTS112, Yan02, ZLW+16, dB09, SB80].

Concurrent [ILFO01, KD97, KCCD99, MSM+16, NPT98, PCM16, PF01, TJY98, AGN09, BBYG+05, Bar09, BO96, BC02, BCCO10, BAM07, Car89a, CVJL08, Cor00, DL93, FK12, HZ12, HL93, JPS+08, JP92, KIM+03, KGGK09, MSM+10, MKIO04, Men91, NHFP08, Nev99, ND13, STR16, San04, Sen08, ST05, Tsa97a, Tsa97b, WK08a, WK08b, WK08c, ZSJ06, Hay93].

Condensed [BIK+11]. Condition [Hol98c, Yan02].

Condition [Hol98c, Yan02].

Conditions [HM96].

Conference [ACM92, ACM93a, ACM93c, ACM94a, ACM94b, ACM94d, ACM95a, ACM95b, ACM96, ACM98b, ACM98d, ACM99a, ACM910, Ano90, Ano94a, AOV+99, BT01, Hol12, IEE94b, IEE95, IEE96, IEE02, LCK11, USE89, USE91b, USE92a, USE93b, USE98b, USE00b, USE00a, Ano94d, Ano94f, Est93, KKD03]. Confidentiality [NHS14].

Confirmation [CJW+15]. conflict [NJK16, vPG03]. conformant [Sta95].

Congress [Ano94d]. conjunction [Ano94c].

Connect [Ano00b]. conquer [FN17].

conscious [GBP+07]. Consistency [ABH+00, AB01, AB02, CH95, LB17, Rob03, WC99, BAM07, Cho93, DNB+12, GS00, HT14, QSQ14, SNM+12]. consistent [NHFP08]. Consolidated [HC17].

Constrained [TLGM17, GW10, YN90].

constraint [SCG95]. constraints [HB15].

construction [LHS16]. constructs [BS06].

consumption [SCM05]. Contact [Nak03].

Contemporary [ZJS12, ZJS10]. Content [WLM15]. Content-Based [WLM15].

Contention [XSAJ08, ALW+15, DSG17, PGB14, TMCP10, ZKR+11].

Contention-aware [XSAJ08]. Context [TLA+02, GN92, JLS99, FD05, LG04, MQ07, PFH06, SCB15, Yan97, LG04].

context-sensitive [PFH06, LG04].

contexts [BGC14, TE94b, WW93].

Contextual [BGZ97, NHFP08].

continuation [AAHF09].

continuation-based [AAHF09].

continuations [DBR01, GRR06].

Continuing [Ano99]. Continuous [RCC14].

Continuously [DTLM14]. Control [BP05, Lev97, PBR+15, SU01, SZM+13, SG96, CDD+10, FK12, FSAY09, GCC15, MLCW11, NT14, PPA+13, Pol00, RPB+09, UZU00, WLK+09, Yoo96b]. control-flow [NT14]. Controlled [BCG+08, CSS+91b, CGSV93, SCv91a, CSS+91a, CSS+91c, Luk01, MWP07, Sch91, SCv91b].

Controller [RLJ+09]. controllers [KASD07]. controlling [AGN09, BKC+13].

controls [McM96c]. Controversial [Gar01].

Convention [ACM98d, ACM99b, ACM00, Hol12].

Conventional [KET06b, HB92].

Convergence [RM03]. conversational [LG04].

Converse [BK96]. Convert [Vol93].

Converting [LEL+97a, LEL+97b].

convolver [Kep03]. Cool [Ano00a, Ano03, Wei97]. cooperation [BM07, SKBY07]. Cooperative [AMRR98, DNT16, ILFO01, LC13, KIM+03, MKIO04, TCG95].

coordinated [KKJ+13].

coordination [BDF98]. Coping [San04].

Coprocessor [LRZ16]. copying [HL93].

CORBA [DHR+01, PSCS01, SV96a, SV96b, VS96].

Core [FMY+15, KST04, KTR+04, MP01, MB05, PVS+17, PM14, QOIM+12, ABC+15, AMPH09, CFG+12, CSM+05, DWYB10, GW10, KBF+12, MLCW11, MLC+09, MTPT12, Mus09, SMQP09, VPD12, WCC+07, YZ07].

CoreDet [BAC+10a, BAC+10b]. Cores
[CCK+16, RRK11, CWS06, MAF+09, SW16].
coreSNP [GAC14]. Corner [SW97].
Corona [VSM+08]. Corporation [Ano00b, Ano00b].
correct [DJLP10, SP00b, Shi00]. Correction [TLA+02].
corrective [LG04]. Correctness [Ram94].
Correlation [TLT03, PFH06, SLT02]. cosimulator [LT97].
cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Cost [TY97, Bet73, DC07, Tsa97b].
cost-effective [Tsa97b]. Costs [MHG95].
COTS [RGG+12]. counterexamples [NV15].
counters [Wei98b]. Counting [Hol98c, Rec98].
County [ACM98d].
Coupled [MTN+00]. Course [BLPV04, BZ07, GL07, She98].
coverage [RRP06, YNPP12]. coverage-driven [YNPP12].
covering [BCG13]. Covert [EPAG16].
CPU [BSSS14, PGB16]. CPUs [SKG+11, SMD+10].
Craftworks [Ano97a].
Cray [BCG14, Smi01, VTSM12]. Create [Ber96b, Ber96a, Len95].
Creating [Han97, Ten98]. Creation [Eng00, Rin99, Sin97].
Critical [BLG01, CS12, OTY00, DTLM14, DESE13, NM10, RGG+12, San04, SMQP09, YL16].
Criticality [DESE13, NB12]. Cross [Lam95, BKC+13, CSZS16].
Cross-platform [Lam95]. cross-thread [BKC+13, CSZS16].
CS1 [GL07]. CSMT [GSL10].
CSP [Nes99]. CUDA [LBH12, MM14, WJ12, YZ14].
CUDA-compatible [LBH12]. CUDA-NP [YZ14]. CUG306 [Col90a].
customizable [JP92]. cut [JEV04]. Cycle [LS11, EE09b].
Cycle-Level [LS11]. Cyclic
[YLSS16, HKT93]. cyclone [Gro03].
Cyclops [ACC+03]. Cyrus [HDT+13].
D [KSB+08, NTKA99, PYP+10, TKHG04].
Daemon [Spe94]. DAG [LQ15]. Dallas [ACM00, USE91b]. Dame [IEE96].
dans [Zig96]. DARPA [Mat97]. Data
[Ama89, ABNP00, DTLW16, EW96, FHM95a, GAC14, HMC97, HRH08, Hig97, JMS+10, KZC15, KEL+03, KET06a, KET06b, LMJ14, ME15, RCRH95, SBN+97, SAC+98, SSYG97, SG96, Ten98, TESK06, VT96, Wll98, ZLJ16, ZAK01, AGB08, AGN09, BAM07, CS95a, CS95b, CDL13, DHM+12, Evr01, FHM95b, FK12, HL93, LTL+16, HLS16, Mao96, MMN09, NWT+07, ND13, PDMM16, PRB07, PHCR09, Pol90, PS03, PS07, PT03, Sha95a, SP00b, Shi00, Sin99, SKKC09, WDC+13, YKL13, ZJS+11].
data-centric [DHM+12]. Data-Driven
[DTLW16, KET06b, ME15, TESK06, Evr01].
Data-Parallel [ABNP00, SAC+98, HMC97].
data-race [MMN09]. Database
[KD97, MM14, YM92, YMR93b, Hig97, LBE+98, YMR93a]. Databases
[AOV+99, GDASA+17, HL08]. Dataflow
[CVJL08, GGB93a, Gao93, HPB11, HKS19, LH94, NBM93, RSB01, SRU98, Tra91, YMR93b, GGB93b, GBB93d, GBB93f, HGB92, JHM04, KHP+95, PT91, SKS+92, Sch91, YMR93a]. Dataflow-Based [RSBN01].
dataflow/von [HG92]. datarace
[CLL+02, CVJL08]. Datarol [KA97].
Datarol-II [KA97]. Dawning [Cro98]. DC
[IEE94c, ACM92, Ano90]. DCE
[RD96, Yam95, Yam96]. DDOS [HBCG13].
Deadlock [Hol98a, Mon00, Ver97, ABF+10, SR14, WLT+09]. Deadlocks
[CFM+15, CZWC13, JPSN09, PRB07].
Deallocation [LPE+99]. dearth [Len95].
debate [Bak95b]. debug [PT03].
debugger [CB99, CB90]. Debugging
[Ano98b, Cas02, HWW00, MQLR16, PHK91, SJB92a, SJB92b, BG927, MLR15, WOKH96].
decentralized [RPB+09]. Decision
[LFA96, LQ15]. decomposition [JEV04].
Decompression [PBL+17]. Decoupled
[DO95, APX12, Evr01, RVOA08, RCDG06, SKA01, VS96]. decoupling
[KGGK09, PG01]. Deductive
[AdBDRS08, BK13]. Deeply [GKCE17].
dependencies [NPC06]. Deployment [GARH14]. Depth [McM96a, McM96b, McM96c, McM98a, McM98b]. Derivative [TT03]. describes [Yam96]. Design [ACM94a, ACM99a, Ano94c, BRM03, BC94, CL95, GMB93, GRS97, GMR98, Hai97b, KHP+95, Laf00, MB99, NBM93, Raj93, RCDG06, STW93, Sha95a, SWYC94, SBKK99, The95, TAM+98, Ven98, ZBS15, AMPH09, BBH+17, BO96, Car89b, FWL03, HCM94, Hud96, KU7, KGGK99, Mah11, Met95, Moo95, Moo96, MRR02, Ném00, OKID92, OCRS07, RB+09, SB80, Srió, Ver97, WLG+14, Wan94, WCV+98, Xue12]. designed [San04]. Designing
[Dru95, GKKZ12, RR93, Re95, TSV12, Hai97a, TCG95]. Desktop
[Ano97a, FURMO0c, FURMO0a, FURMO0b, Mar97, Pra95b, WSKS97], desktops [Ano94b]. despite [Len95]. Destructing [Pet00]. destructive [FF10]. Desupport [DHR+01]. Detailed [MKR02, ACC+03].
Details [FMY+15]. Detect [DS16, CWZC13]. Detecting [DSR15, RKB+90, SK97, FF10, JPNS09].
Detection [ABF+10, KUCT15, LLS06, Mou00, ZLJ16, AFF06, CLL+02, CVJLO8, FF09, HRL16, LLLC15, LTBH14, MKM14, MNN99, NBMM12, NAW06, NA07, PS03, PS07, PFH06, RVS13, RM00, SR14, Sch99, TLZ+16, TDW03, WDC+13, ZKR+11, DWS+12]. Detector [SBN+97, SL06g]. determined [Kub15].
determinism [BS10b, LWV+10, LZW+13]. Deterministic [DK02, KRBJ12, LB17, LSS12, VSDL16, BAD+10a, BAD+10b, BAD+09, Bon13, DLCO09, DNB+12, LZW14, MAAB14, OAA09, QSHI16]. Deterministically [MCT08]. DetLock [MAAB14]. develop [Fek08]. Developer [IEE96]. developers [Way95]. Developing
[SP00b, Shi00, TKA+01, OT95].
Development
[Ano97a, Ano98b, Ano99, Gil88, Sri95, Tet94, ARwW03, Hig97, Pom98, TNB+95]. devices [Xue12]. diagnosing [CS12].
diagnostics [GBB+05]. Diego [ACM93b, ACM98b, USE98, USE93b, USE98b, USE00a]. differences [Yam96]. Different [BLPV04, GLC99]. Differential
[Loo97, MQLR16, MLR15]. Difficult [CTYP02]. Difficult-path [CTYP02].
Diffusions [LTM+17]. Digital [SS91]. dimension [NJ00]. Direct [PR98].
Direct-threaded [PR98]. Directed [LPE+99, STR16, DZKS12, Fan93, Sen08, SKKC09]. directory [QSQ14]. DISC [Don92]. disciplines [Bar90]. discrete [Leg01, TKHG04, WLK+09]. discussion [Sho97a, Sho97b]. Disjoint [SJA12]. Dissecting [ACC+03]. Distance
[BCZY16, KZTK15, KNPS16]. distinguish [HL93]. Distinguished [ABH+01, TKA+01]. Distributed [ABNP00, ABH+01, BBD+91, BWXF05, BHRK95, BC94, CV98, CJ95, DKA16, FSS06, GJ97, Jen95, PG02, Pra95a, RLJ+09, RBPM00, RW97, RCRH95, SUF+12, TDW03, USE92b, VS96, Yas95, Ano96, A+01, BC+95, CML+00, Car89a, Gol96, GKK99, Gun97, HB92, HMC95, HWW93, HBCG13, IEEE97, ISS98, Leg01, MS03, MLC04, MGL95, MKK99, Ong97, On97, Pha91, Ply89, QSQ14, Sto02, Tod95].
Distributed-Memory
[RCRH95, BC+95, HWW93].
Distributed-sum [TDW03]. Distribution [SSY97, ZAK01, CY09]. divergence [MTS10]. divide [FN17]. Divisors
[Kuc92, Kuc91]. DMP [DLCO09]. Do
Dock [BCS11]. Docking [BCS11, TO10]. documentation [HF96].

Does [Hag02, RKK15, ZJS10, San04]. doing [Yan96]. domains [LAK09].

Don't [HHPV15]. DOSThread [VE93].

downdating [VV11]. Downturn [Gar01].

DRAM [kSYHX+11].

drf [MSM+16].

Driven [DTS] [BHKR95]. Dual [BBC+00, EHG95, KST04, DK02, MB05, WS08, CCW+11].

Dual-Core [KST04, MB05].

Dual-Level [BBC+00, DK02]. dual-personality [CCW+11].

Dual-Processor [EHG95].

Dual-Thread [MB05, WS08]. Duplex [KG05].

Duplication [Kwo03]. Dynamic [CJW+15, FSYA90, HSS+14, Hig97, KMA01, KPC96, KKC99, KUCT15, MVZ93, MTS10, Nak01, PBL+17, RCR95, RS08, SBN+97, SLG04, SKK+01, Sta90, SG96, WHG07, XMN99, ZKW15, ZKR+11, ZL10, AR17, CAR08, Chr95a, Chr95b, Chr96, Don92, FF04, FF08, FFY08, FF09, HSD+12, JPSN09, KBF+12, LSS12, MK12, Mic04, NHFP08, SLG06, TJY+11, WW96, BK13].

dynamic-multithreading [LSS12].

Dynamically [PGB12, TLGM17, DMBM16, Kep03].

dynamically-typed [DBBM16].

e6500 [BKG+12]. Early [GL91, PBL+17, SL08].

EARTH [HTZ+97, HMT+96, Sod02, TAK+00, TKA+01, TKA+02, TAMG03, Nak03].

EARTH-MANNA [HMT+96, Sod02].
Embedded-Systems [Dru95]. Embedding [Pul00]. emergencies [MTPT12].
Emerging [VSM+08, GBP+07, HFV+12]. empirical [LC13]. employing [CWS06].
Employment [Gar01]. Empowering [JSB+12]. Enabling [Pan99, JMS+10, VGK+10a, VGK+10b].
End [SNM+12]. End-to-end [SNM+12].
Energy [AKJ+12, GJT+12, GKCE17, LK13, LMA+16, PR05, RL14, AAC+15, CIM+17, GA09, KSB+08, NB12, PJZA07]. Energy-Aware [PR05].
Energy-Effectiveness [PR05]. Energy-Efficient [GJT+12, LK13, RL14].
England [ACM94c]. Enhance [FSPD17]. Enhanced [Ano00b, EJ93]. Enhancing [OL02a, OL02b, OL02c, HWW93, RHH10]. Environment [ABNP00, BC00, CdOS01, EC98, KKH03, PG92, BK96, DSH+10, GCRD04, GCC15, GBB+05, HMC97, KG07, Lam97, Pha91, SWYC94, Sta90, Tem97, WCC+07].
Environments [AKP99, BDN02, KG05, SP00a, EJK+06, RGG+12, Sam99, Ver96, Way95]. equality [AD08]. Equalization [TLGM17].
Equations [Loc97]. equivalent [Pra95c]. Eraser [SBN+97]. Errata [Ano01, Ano05]. error [SSN10]. Errors [SK97, VACG09]. escape [SR01a]. Esterel [LBvH06a, LBvH06b, LBvH06c, LvH12]. etc [Ho08a]. European [DLM99].
EuroPVM MPI [KJDV03]. Evaluating [BL96, CML00, NPT98, PSCS01, RPNT05, Sch98, SD95, TG09]. Evaluation [Aru92, Boo93, BTE98, CL95, CBN+00, EJK+06, Eic97, GLC99, HN91, RNSB96, SCD+15, TT03, ZL10, BGDmWH12, BLCD97, Car89b, Cho92, Don92, LZ07, Mah11, MKR02, RGG+12, RCDG06, SWYC94, SKP+02, SMS+03, TOG00, TKA+02, WLG+14].
Evaluations [MM14, Roh95]. evaluator [SP00b, Shi00]. even [Ano94b]. événements [Swi09].
Event [Ber96b, CKRW99, For95a, For95b, Ber96a, CKRW97a, CKRW97b, GWM07, KCCD99, KGP+03, Leg01, RV13].
Event-Based [CKRW99, CKRW97a, CKRW97b].
Event-Driven [For95a, For95b, RV13]. event-handling [KBP+03]. Events [BDN02, LZ07, Van97b]. Evolutionary [TAK+00, KU17]. Evolving [MS87, MS89]. examines [Yam96]. Examining [Can94, Ric91, Rod95a, Tim03]. Example [BLPV04]. Exception [DH98, Lea96]. Exceptions [AdBrR08, KR01b]. exclusion [BRE92]. exclusiveness [Lie94].
Executing [Blu95, BS99]. Execution [ABH+01, CJ91, Coo02, EC98, Far96, GMMGP14, GS06, HEMK17, HZ12, KL16, KL18, KG94, ME15, MCT90, NBM93, NS97, PR05, RG03, RKK15, RSBN01, STY99, VSDL16, Am96, A+01, BAD+10a, BAD+10b, BGC14, Di93, JWTG11, LVN10, Luk01, PAB+14, PG03, SBC91, SJA12, SGS14, SQP08a, SQP08b, SQP08c, SMQP09, SMS+03, TS99, TS99, TDW03, UZU00, WCT98, XIC12, XSaJ08].
Executions [CdOS01, HZD13, Roh95, STR16].
Exemplar [BLCD97]. Existing [Ric99]. EXOCHI [WCC+07]. expansion [YKL13].
expediting [YL16]. Experience [BMR94, HLB90, Jon86, Yas95, RM03, GL91, Yam96].
Experiences [BH+04, EHG95, PST+92, SG+97, USE92b]. Experimental [BLCD97, EGC02, YMR93b, GR06, Pha91, WCW+04b, WCW+04c, WCW+04d, YMR93a]. Experiments [DV99, GMR98, SM+13, VSM+16, VV00].
Explicit [DV99, VDBN98, BM07, URS02b, URS03, VV00]. explicitly
[MT02a, MT02b, MT02c]. exploit [Ano92a].
exploitation
[MT02a, MT02b, MT02c].

Exploiting [AACK92, KDM+98, KEO+06, Kwo03, MG99, NAAL01, QSaS+16, SP07, TLZ+16, TEE+96]. Exploration
[FTMB09].

Expressions [Hei03]. Extended
[BLG01, DV99, VDBN98]. Extending
[BF08, Mar03]. Extensible
[CSS90, Bau92].

Extensions
[RCC14, CCW+11, Lan97, PDP+13, Tem97].

Extension
[Sch90, Bau92], external
[LWV+10]. Extracting
[GP95]. Extremal
[MNG16].

FAB
[YWJ03]. Facility
[KSU94]. Facing
[KML04]. Factorization
[But13, CIM+17, Dav11]. Factorizations
[VD08]. failing
[STR16]. failure
[LC13]. failures
[HZD13]. Fair
[MQ08, FSPD17].

Fairness
[ES97, FSPD17, GWM07, SCCP13, WTKW08]. false
[LTHB14]. farms
[MNG16].

Fast
[BCS11, BRE92, GSC96, HN91, LDT+16, STY99, SLF14, ST50, VTSM12, ZSA13, ZCO10, BDLM07, CKD94, Kep03, Kus15, TST03, TTKG02]. Faster
[PCM16, BDM98]. FastTrack
[FF09]. fault
[RRP06, RM00, VPC02]. FCRC
[ACM96].

Fe [Gal94]. Feature
[LH09]. Features
[GMB93, BDM98]. Featuring
[RRK11].

February
[USE98, USE00b, USE02].
Feedback
[SQP08a, SQP08b, SQP08c, TG099, ALHH08]. Feedback-driven
[SQP08a, SQP08b, SQP08c]. Felix
[Ano00c].

Fernandez
[Ano00c]. fetch
[EE09a, TEE+96]. FFTs
[MJF+10]. Fiber
[GDS+17]. Fiber-based
[GDS+17].

fibers
[BS06], FIFO
[QSaS+16]. fifth
[ACM93b, AOV+99]. File
[FG91, GJT+12, KS97, Pea92, WLM15, BLC97, DZKS12]. Files
[RRK11, CCC12, kSYHX+11].

filtering
[Kep03], final
[HCM94]. Finding
[MNG16]. Fine
[BBG+10, BSSS14, But13, CSS+91a, CSS+91b, CSS+91c, HG91, KG94, KLBK11, LVS01, LFA96, NS97, PBR+15, TY97, TAK+00, BGK94c, Dub95, Gal97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, RP+09, TKHG04, Wei98a, kSYHX+11].

Fine-Grain
[CSS90, HG91, KDM94, LFA96, CSS+91a, CSS+91c, TY97, KDM+98, Kim94, Loi95, MLC+09, Met95, PL03, TKHG04].

Fine-Grained
[BBG+10, BSSS14, But13, KLBK11, PBR+15, TAK+00, LVS01, BGK94c, Dub95, Gal97, RP+09, Wei98a, kSYHX+11].

Finite
[HBT98, MS02, Cor00].

Finite-Element
[MS02]. finite-state
[Cor00]. firmware
[ABB+15]. First
[MSLM91, Wei97, LAH+12, MHW02, Hon94].

First-class
[MSLM91]. FL
[ACM94a].

FlexBFS
[LAH+12]. Flexible
[ABG08, KSS97, LSF+02, SP00a, Sam99, SCM05, WW93]. Florida
[ACM98d].

Flow
[AT16, Ama89, HHI+15, FSYA09, JD08, KBK+03, NT14, Pol90, RM99, RP+09, SV98], fluid
[JD08].

FluidCheck
[KS16]. fly
[CWS06, PS03, PS07, Sch89]. Focus
[EH+07]. Forces
[FPT06]. Forecasting
[Ano98b]. fork
[ALS10], fork-join
[ALS10].

FORM
[TV10]. Formal
[Sta05, WP10]. formation
[FSYA09], forms
[BIK+11].

FORTH
[Jon86]. FORTH-like
[Jon86].

Fortran
[Ano97a, Bra97, AS14, GOT03, Hon94]. farm
[CH95, MTN+00, KNPS16]. Four
[CH95, MTN+00, KNPS16]. Four-Way
[MTN+00]. Fourier
[TT03, TTKG02, BCS11, HH91]. fourth
[USE98]. fragment
[APX12]. fragments
[LG04]. Framework
[BMF16, BF04, CV98, DHR+01, EFG+03].

Foundation
ND96, RR96, Sun95. guided [NB12].
Guidelines [RD96]. GUIs [Mia90].
Gyrokinetic [KEL10, PWL11].

Hagenberg [Hon94]. Hagenberg/Linz
[Hon94]. Halide [DKA16]. Hamilton
[Ric91]. Handles [Rec98]. Handling
[DH98, LSB15, SK97, BM91, KCCD99,
Koo93, KPB+03, Lea96, Met95]. Harbor
[BBC10]. Hardware
[CKD94, CSS+91b, LLS06, MWP07, Men91,
SW08, ZLJ16, ABC+99, CWS06, CSS+91a,
CSS+91c, ECX+12, FSYA09, GP05, LT97,
MLS15, MQW95, OCT14, PAB+14, PRS14,
RPN05, SE12, TE94b, DWS+12].
hardware-aware [PAB+14]. hardware/
software [LT97]. harmful [NWT07].
Harmony [KTK12]. Harness
[Ama98, EBK00]. Hash [GK05, VB00].
Hash-join [GK05]. having [YFF+12].
Head [Mia90]. healing [SLP+09]. Heaps
[DGK03, Man99, Ste01]. help [Len95].
Helper [ALS10, WCW+04b, WCW+04c,
WCW+04d, WCW+04a]. Here
[Ano92a, PRA95]. Heterogeneity
[CCK+16, Kwo03, RKBH11].
Heterogeneous [AT16, AACK92, FBF01,
KTR+04, Lu95, NTR16, THA+12, FKS+12,
GKZ12, LK13, SJJ95, WCC+07]. Heuristic
[HHL11, Mah11, OCRS07]. Hewlett
[BLC97]. HFS [KS97]. hiding [BR92].
Hierarchical [GJT+12, JY95, KC98, KG94,
BMV03, DZKS12, LK13, LQ15, RCDG06].
Hierarchies [BCZY16, TAM+08].
hierarchy [BGDmWH12]. High
[ACM98a, ACM98d, ACM00, Ano00a,
Ano03, BGH+12, CT00, FGKT97, Gar01,
Hol12, HG91, IEE94b, LCK11, LG06, LMJ14,
LBH12, LHG+16, LCH+08, MR94, MSM+16,
MPD04, NBS+15, PH97, RG03, SRS98,
TCI98, VV11, WG99, WN10, CIM+17,
GSO2, HG92, Kim94, Lan97, RRP06, Rei95,
SQP08a, SQP08b, SQP08c, Tem97]. high-
[RRP06]. High-Performance
[ACM98a, BGH+12, FGKT97, Gar01,
IEE94b, NBS+15, RG03, TCI98, WN10,
LCH+08, VV11, CIM+17, Kim94, SQP08a,
SQP08b, SQP08c]. high-powered [Rei95].

High-Speed
[Ano90a, Ano95b, YANG94, FGK92].
Higher [CJ95, TN15]. Higher-Order
[CJ95, TN15]. highly
[BBGmWH12, Kub15, KGK09, MAAB14].
Hill [Cy90, USE02]. Hill-climbing
[Cy90]. Hilton [IEE90]. HippowriffDB
[LT16]. Hist [Gar91]. history [Ano97b]. Hoard
[BMBW00a, BMBW00b, BMBW00c].
Hoare [KII17]. HoME [OKD92]. Hood
[Ven97]. HoPE [PBL17]. Hot
[IEE99, PBL17, Gle91]. Hot-Cacheline
[PBL17]. Hotel [Ano94d, USE02].
Householder [VV11]. Householder-like
[VV11]. Houston [Cha05]. HP
[Ano95a, Ano95b, Yam96]. HP-UX
[Ano95a, Ano95b, Yam96]. HPC
[GK90, KC90, PL15]. HPF
[BMV03, CM98]. HTM [KGGK90]. HTMT
[Gar01]. HTTP [Zha00]. Hut [ZBS15].
Hybrid [BBG+10, Gao93, JYE+16, LH09,
MS02, NBM93, YZ07, GKK09, HG92, MK12,
MTC+07, SKS+92, Sh95b, kSYHX+11].
Hybridizing [CZS+17]. Hyperion
[A+01]. hyperscalar
[Raj93, Sha95a]. Hyperthreading
[HR90, KMO03].

I-WAY [FGT96]. i.e [USE98b]. I/O
[RM03, ABB+15, BDN02, KUS94, LTL+16,
Man98, MG15, Yoo96a]. I/O
[Ano95a, Ano95b]. IBM [ABB+15, CJB+15,
KST04, LSF+07, WZWS08]. Id [Nik94].
IDA* [Mah11]. idempotency [KOE+06].
identification [JSMP12]. Identifying
[BCZY16, SU96, DESE13]. IF0 [BT01].
Ignoiting [ACM03]. II [HCD+94, IES99,
JL91, KA97, KRO1a, MeM96b, Wal95]. III
[Ano00a, USE92b]. Illinois [GHG+98].
Illinois-Intel [GHG+98]. Illuminating
[BLVP04]. ILP [OCR07, RL+09]. im
Interleaving [LGH94, YN09].
Intermediate [McC97a]. Internals
[Wea08]. International
[ACM92, ACM94c, ACM94d, ACM95a,
ACM96, ACM98c, Ano91, Ano94a, Ano94d,
Ano00a, Ano03, AOV+99, Cha05, EV01,
Hol12, Hon94, Lak96, LCK11, Wat91, FR95].
Internationalization [Ano98b]. Internet
[Ano96, Hig97, SBB96, van95].
Interoperability [DHR+01, Way95].
interplay [MLS15]. Interpretation
[GH03, LG04]. interpreter [OCT14].
Interprocedural [NR06]. Interprocess
[Rod94]. Interrupts [KE95].
interval [Kub15]. Intra
[MKR10]. Intra-application
[MKR10]. Introducing
[GL07]. Introduction
[CLRS09, Dra96, GGB93a, GJ97, Mas99,
Bir89, GC92, Hay93, She98].
Intrusive [Caz02]. INUX [DNR00].
invasive [RGK99]. Inverse
[HMLB16, GEG07]. inverses [GE08]. Invocation
[SKK+01]. IPC [Koo93]. IRREGULAR
[FR95, TSV12, ZAK01]. irregularly [FR95].
ISA [KTR+04]. Isolating
[JWTG11]. isolation
[CMX10, MTC+07, SKBY07].
Isomigration [ABN90]. ISSAC
[ACM94c, Lak96, Wat91]. Issue
[KU00, Ano94c, GGB93b, TEE+96]. Issues
[GMB93, PS01, ARvW03, Ann96, GC92,
HCD+94, IAD+94, TCG95]. Issuing
[HMNN91, HKN+92, HMN+92]. Itanium
[MB05, WCW+04b, WCW+04c, WCW+04d].
Itanium-2
[WCW+04b, WCW+04c, WCW+04d]. iterations
[UZU00]. Iterative
[MQ07, Nak03, AAC+15]. iThreads
[BFA+15]. IUnknown [SW97]. Ivan
[Ano00c]. IXP [ARB+02, LCH+08].
IXP2800 [AHW02].

J.UCS [KU00]. January
[ACM94b, ACM95b, ACM98b, Ano90,
USE89, USE91b, USE93b, ACM93a]. Japan
[Ano91, Ano00a, Ano03]. JaRec
[Chr01, GCRD04]. Jason [Ano00c]. Java
[ACM98a, ACM01, Ano97a, USE01, AFF06,
ÁMdbrS02, AddS03, ÁDbdrS05,
ÁDbdrS08, Ait96, Ano96, Ano98b, ABH+00,
ABH+01, A+01, AG96, ACR01, ABG+08,
BZ07, Ber96b, BVG97, BAD+09, BR15,
BHK+04, BS00, Bra97, BP05, BLPV04,
Cal02, CV98, CRWR97a, CRWR97b,
CRWR99, CWHB03, CC04, CCH11, Chr01,
CT00, Coo02, Cor00, Cr98a, C98a,
DJLP10, DH98, DRV02, DLZ+13, DGK+03,
Dra96, DHR+01, Dye98, EFN+01, EFN+02,
EFG+03, EQT07, FSS06, FWL03, Fek08,
Fer13, FFLQ08, GH03, GCRD04, GS00,
GEG07, GE08, GL99, Hag02, Ham96,
Hei03, Hol98d, Hol98a, Hol98b, Hol98e,
Hol99a, Hol99b, Hol00, Hyd00, KPPÉR06,
KBP+03, LB00, LCS04, Loe97, Man96,
MP01, McM96a, McM96b, McM96c,
McM98b, McM97, Mit96, MC06, NAW06,
NM10, NR06, Nev99, OW97, OW99, PS01].
Java [PJM93, PRB07, Pet03, PUF+04,
PG03, RKCW98, San04, SE12, Sat02, Sch14,
Sho97a, Sho97b, Sto02, SKP+02, Van97a,
Ven97, Ver97, WN10, Whi03, XRJ08,
Xue12, Yan02, van95]. Java-like
[DJLP10]. JavaBeans
[Van97b]. javar [BVG97].
JavaScript [PCM16]. Javier [Ano00c].
Jersey [MT93]. JIT [McM97]. job
[EE10, EE12, ST00a]. Jobscheduling
[ST00c, ST00b, STV02]. John [Ano00c].
Joho [Ano93]. join [ALS10, GK05]. Joint
[FPT11]. Jones [Ano00c]. Jorgenson
[Ano00c]. Jose [ACM94d]. Journeyman
[Bec00]. Jr [ACM99a]. July
[ACM92, ACM94c, ACM95a, ACM98c,
EV01, IEE96, Lak96, Ass96, USE96, Wat91].
June [ACM94a, ACM98c, ACM01, Ano94f,
USE92a, USE00a]. JUnit [Goe01]. just
[KBF+12]. just-in-time [KBF+12]. JVM
[Lan02, McM97, USE01].

K-Java [BR15]. KAI [Ano98b]. Kaikan
Kaspersky [Ano00a].
Kernel [Alf94, ABLL92, Bal02, DNR00, EBGK01, EKB+92, Kor89, ZSA13, Ano95a, Ano95b, BFOJ, 1991, MPS9, SS95].
Kiership [Alf94].
Kernels [KI17, dlPRGB99, GLC99].
Kiel [LvH12].
Kikai [Kapk].
Kikai-Shinko-Kaikan [Ano00a].
Kinds [San04].
Kinematical [BD06].
Kinematics [HMLB16].
King [ACM99b].
Kingdom [ACM94c].
Kitsune [HSD+12, HSS+14].
Knoxville [IEE99b].
Kroll [Ano00c].
KUMP [NTKA99].
KUMP/[NTKA99].
L [DNR00, GBB05].
L2 [SLP08].
L2-miss-driven [SLP08].
Lab [Ano00b].
Labeling [D’H92].
Lafayette [EV01].
Lake [Hol12].
Lambda [ORH93].
Laminar [PBR+15, RPB+09].
LAN [Yas95].
LAN/WAN [Yas95].
Landing [TAK+00].
Language [ACM94a, ACM99a, ACMA97, BSO6, FLR98, GS06, KIAT99, SAT02, BO06, CFK+91, ECX+12, EPS14, JON86, LT97, MAN96, MIB95, ONG97, PRB07, RL14, SV98, SM106, TMA903, VGR06].
Languages [ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIAT99, SAT02, BO06, CFK+91, ECX+12, EPS14, JON86, LT97, MAN96, MIB95, ONG97, PRB07, RL14, SV98, SM106, TMA903, VGR06].
Laptops [An90c].
Large [AVO+99, CJW+15, GN92, LA93, BCM+07, BO93, GOTO93, KOO93, SMK10, WCV+98].
Large-Scale [CJW+15, LA93, BCM+07, GOTO93, SMK10, WCV+98].
Latencies [BS06].
Latency [BD00, FAN93, OCS01, SW08, SM01, SKK+01, WWW+02, YLLS16, BR92, DC99, DC00, JEF94, LUK01, MVY95, PG01, TK98].
Latency-directed [FAN93].
Latency-Resistant [YLLS16].
Latency-sensitive [DC99, DC00].
Latency-Tolerant [OCS01, lattice [SKG+11].
Law [Gar01, NZ17, CN14].
Layer [CDD+10].
Layout [DZKS12, HB15].
Lazy [GSC96, GOL97, LP94].
LCMT [KLBK11].
Leadfoot [HHPV15].
Leakage [Mus09, SYHL14].
Leakage-saving [Mus09].
Leak [ZJS+11].
Learning [DS16, ROA14, least [FTAB14].
least-squares [FTAB14].
lecture [Egg10].
Lenient [ACM94a, ACM99a, ACMA97, BS06, FLR98, GS06, KIAT99, SAT02, BO06, CFK+91, ECX+12, EPS14, JON86, LT97, MAN96, MIB95, ONG97, PRB07, RL14, SV98, SM106, TMA903, VGR06].
Languages [ACM94a, ACM99a, ACM97, BS06, FLR98, GS06, KIAT99, SAT02, BO06, CFK+91, ECX+12, EPS14, JON86, LT97, MAN96, MIB95, ONG97, PRB07, RL14, SV98, SM106, TMA903, VGR06].
Lessons [RM03, HPA+15].
Letters [DHR+01, TLA+02].
letting [AC09].
Level [ABLL92, BBC+00, FURM00c, GP95, JYE+16, JLS99, DK02, KSM05, JYB16, BBH+17, CCC12, DG99, EEO99, FURM00a, FURM00b, GMW90, GSC14, GPP06, HDT+13, JEV04, KDM+08, KVN+09, KOC9, LAN97, LZ07, MSL91, MT02a, MT02b, MT02c, MQW95, MCF79, OT95, OCRS07, PO03, PT03, QQQOV+99, STY99, SD13, SLT02, SCZ00, Tem97, WSO8, YZLY07, YZ14, ZJS+11].
Level-2 [Ric99].
Leveraging [PRS14].
LFTHREADS [GP08].
Libraries [An00c, BCR01, GF00, JON91, MM14, ARV03, CBM10].
Library [An09b, AB00, BFA+15, CGR92, EHG95, GIB94, GHG+08, KEM02, MAN91, WN10, YAS95, ADA98, BOE05, CS00, GP08, GOTO93, MIX94, ONG97, TB97a, TB97b, YAM96, LEV97].
Life [KU17].
light [WAY95, LZTZ15].
light-weight [WAY95].
Lightweight [AGN09, COL90b, DON02, EST93, FIN95, HAL97b, CASA14, HAL97a, LVA90, MMN90, MEG94, VAG09, WSF97, LKBK11].
like [DJLP10, JON96, VV11, KOR96].
limited [BRI17].
Limits [LB95, LB96b, AKK008].
Line [An00c, FSPD16, FDL02].
Linear [KLDB09, LOE97, MR09, AAC+15, BAK95a, MM07, YSY+09].
Link [An00b].
Linked [WJ12].
Links [WW96].
LinkScan [An00b].
LINQits [CDL13].
Lint [KOR96].
Lint-like
[Kor89]. Linux
[Ano97a, Ano00b, Ano00c, Ano97a, RGK99, SKP+02, WTKW08, ZSA13]. Linux/AXP
[Ano97a]. Linux/FreeBSD [Ano00b].
liquid [KRBJ12]. Lisp [Nor90]. List
[DV99, WJ12, VV00]. LiteRace [MMN09].
little [CDL13]. liveness [GMR09]. LLCs
[PBL+17]. Load [HBTC98, KMG01, KC98, KRH98, PGBK+16, VPQ12, Chr95a, Chr95b, Chr96, MKIO04, TKHG04].
load-adaptive [TKHG04]. Load-Balancing [KC98, PGBK+16, Chr96]. Loadable [ZSA13]. Loading [PCM16].
Local [DGK+03, IEE95, WHD13, ZLIW+16]. localities [CS95a, CS95b]. Locality
[BS96, PEA+96, We99b, HWW93, KLI, PSG06a, PSG06b, PSG06c, Sin99, SD95]. locality-cognizant [LK13]. Localization
[OB13]. Location [USE93a]. Location-Independent [USE93a]. Lock
[EFJM07, NM10, PGBK+14, CS12, GP08, MLS15, MCRS10, Mic04, ST05, TMCP10, ZLIW+16]. lock-free
[GP08, MLS15, Mic04, ST05]. Lock_manager [Hol98b]. Locking
[Bal02, LDT+16, AFF06, Lie94, MMTW10, RD06, ZLIW+16]. Locks
[ACR01, ALS10, MT93, OCT14]. LOCKSMITH [PFH06]. LOGFLOW
[NTK99]. Logic
[Bre02, KI17, TAN04, BK13]. Logic-Centric [Bre02]. Logical [CR02].
LOIS [KT17]. longer [XHB06]. Looking
[ECX+12]. lookup [KNPS16]. Loop
[RLJ+09, SSP99, JMS+10, KVN+09, UZU00]. loop-level [KVN+09]. loops [D'HIQ92, FN17].
Low [Ano00a, Ano03, BHG+12, ZHCB15, GPS14, RRP06]. low-level [GPS14].
Low-overhead [ZHC015, RRP06]. Low-Power [Ano00a, Ano03, BHG+12].
LPVM [ZG98]. Ltd [Ano00b]. lunch
[DTLM14]. Luther [ACM99b]. Lyon
[FR95]. M [Ano00c, USE01, FKD+97]. M-Machine
[FKD+97]. MA [Ano94f]. Mach
[USE91a, CB89, CB90, Hol99b, Koo93, MRGB91, RFB+89]. Machine
[Ama89, CSS+91b, DS16, FKD+97, KA97, KKDV03, La00, USE01, CSS+91a, CSS+91c, DLM99, Gle91, MEG94, Ném00, Fra95c, SKS+92, Ven97, CGSV93, Evr01, PRB07].
Machines [BSSS14, Den94, GH98, RCRH95, STY99, BBM09, DFK94, GKC12, GC92, Kus15, MRG17, TSY99, TSY00, VPQ12]. macromolecular [ABC+15]. Made [Har99].
main [AKSD16, BH+17]. maintenance
[TNB+95]. makes [Van97a]. Making
[BDLM07, LFA96, Low00, PLA+15, PLT+15, YCW+14]. malloc [Kus15]. Mambo
[WZWS08]. MAMPO [JG11]. managed
[WL+14]. Management
[ABLL92, GMGZP14, HC17, HRH08, KG94, LG06, LLS06, RSBN01, STY99, ZP11, Bak95a, BM91, DBRD91, HCD+94, ICH+10, Je94, KKH04, RCG+10, SS95]. Manager
[Ano00b, PDMM16, Ply89]. Managing
[BL99, FGK+97, MVY05, PZJ+10, SEP96, VS11, ROA14, WSKS97].
Many [FMY+15, PVS+17, MLCW11, MTPT12, San04]. Many-Core
[FMY+15, PVS+17, MLCW11, MTPT12]. Many-core
[BMF+16, KS16, BWDZ15, HVF+12]. Maple
[YNPP12]. Mapping
[CK+16, LBH06a, LBH06b, LBH06c, NTR16, WK08a, WK08c, WK08b].
Mappings [Lun97]. Maps [BC94]. March
[IEE97, USE92b]. Mark [Ano00c].
Markerless [LH90]. Markov [SBC91].
Martin [ACM99b]. MASA [HF98].
Massachusetts [USE93a]. Massive
[EJRB13, OR12, Mus90, RV+10].
Massively [BCG14, KR12, TS12, BS10a, CFG+12, CDD+10, Lu94, N300, NPA92, ROA14, WT10, WOKH96]. master
Matching
[HPA+15, OR12, HFV+12, KGPH12].
Mathematica [Tam95]. mathematical
[KI16]. Matlab [Bra97]. Matrices
[But13, SGLGL+14]. Matrix [NBS+15, QOIM+12, YFF+12, CSV10, QOQOV+09].
matrix-vector [CSV10]. matter [ZJS10].
maxflow [BÇG14]. Maximal
[HH16, HR16]. maximize [RCG+10].
Maximizing [LKBK11, TEL95, TEL98a, TEL98b]. Maximum [AT16, HH11, GJ11]. May
[ACM93b, ACM96, ACM99a, Cha05, IEE94a, IEE94b, IEE94d, SS96, MMTW10, Pra95c].
MD [IEE02]. MDMA [Spe94]. measured
[ECX+12]. measurement [TMC09]. measurements [JFL98]. Measuring
[FMY+15, DTLM14]. mechanism [FD95, GCC15, WHJ+95]. Mechanisms
[KPC96, KC99, SK97, Loe05, Men91, PT03]. Media [Ano03, Van97a]. medium
[CDD+10]. Meeting [DLM99]. meets
[Tam95]. Member [BS99]. Memories
[HKSL96, KHP+95]. Memory
[AJK+12, BS96, BMBW00b, BD00, CH95, DM98, EJ93, EE90a, FMY+15, GMR98, GMZP14, GH98, HCH1, KZT15, KZC15, KKH04, KUCT15, LS15, LB92, LB17, MVM+16, MV293, MCT08, Nak01, RCC14, Rob03, RCRH95, SCL05, STY99, SLT03, SZ02, TAM+08, Th99, Ver96, WC99, YMR93b, ZLJ16, ATLM+06].
Akkd16, AAkk08, BS06, BGDmWH12, BCG+95, BBH+17, BMBW00a, BMBW00c, BDLM07, BA08, BB00, Boo93, BAM07, CMF+13, Cha05, Cho93, CNV+06, DLZ+13, Dlco09, DP297, EKKL90, EV01, FF10, GCC15, Gle91, GL98a, GS00, GKK09, HB92, HWW93, HG92, HHPV15, ICS98, KFG15, Lun01, MLS15, MCRS10, MSM+10, MLC04, MMTW10, MTS10, Mic04, MTC+07, MVY05, NCP06, NAAK01, OCT14, SLO2, TSY99, TSY00, TVD10, TVD14, VTSL12, WK08a, WK08b, WK08c, XHB06, YMR93a].
memory [YSY+09, YN09, kSYHX+11, ZKW15, ZHCB15]. memory-intensive
[YSY+09]. Memory-level [EE90a]. MemSAT [TVD10]. Merlot [MTN+00].
mesh [ABC+09, Mus09]. mesh-based
[Mus09]. Meshes [HBTG98, Lep95]. Message [BWFX05, HLB94, KKD10, PH97, Ada98, BCM+07, DLM99, FM92, Met95, PRS14, SC50, FGT96, PS01]. message-handling [Met95]. messages [BCM+07, FM92]. messages [Koo93, SD95, WHJ+95]. meta
[FKS+12]. meta-scheduler [FKS+12]. Metering [LMA+16]. Method
[LHG+16, SKG+11]. Methodology [Sri95]. Methods [CMK00, FGK2017]. Metro
[Ano00b]. Metro-X [Ano00b]. Mexico
[Ano94e, Gol94]. MFC [Oni97]. MICE
[BK96]. Michael [Yam96]. Michigan
[Ano94d]. Micro
[Mat97]. Microarchitectural
[FMY+15, LS11, WHG07]. Microarchitecture
[KM03, AMPH09, LS1+07, Wil98]. Microarray [GAC14]. microbenchmark
[BO01]. Microbenchmarking [FMY+15]. Microcontroller
[BP05, PUF+04, KPB+03]. microkernel
[BO96]. Microprocessor
[SU96, Aru92, CJB+15, Gul95]. Microprocessors [KET06b, CGL92a, CGL92b, HL07, RCG+10]. microthreading
[CSK+99]. microthreads
[CTY02]. Middleware [RBPM00, KBH+03]. Migrant
[MR98]. Migrating
[PG92, BDF98]. Migration
[ABN99, Sat02, WG99, CWS06, CSM+05, HWW93, ISS98, Pha91]. migrations
[PGB14]. MIMD [FSY90, Gle91]. MiMPLI
[GCC99]. Min [JEV04]. Min-cut [JEV04]. Minimal
[BMH+94, CSS+91b, Lun97, TY97, CSS+91c]. minimizing
[SPDLK+17]. Mining [OB13, GBP+07]. Mining-Based [OB13]. Minneapolis
Minnesota [IEE92, IEE95].

MIPS [Aru92, Swe07]. miss [SLP08].

Mitigating [EPAG16, OdSSP12]. Mitosis [MGQS+08]. Mixed [XIC12]. ML [BCL+98, DL93, MT93]. Mobile [BDF98, USE93a, APX12]. Mobility [CWHB03, BHK+04, SJ95]. Model [AHK08, ACMA97, CSV10, CBN+00, DTLW16, GC91, Gao93, MSM+16, ND16, SAC+98, Sto02, TESK06, VK99, WC99, ABG+08, BA08, BMV03, CQ13, Car99a, Ch95b, Ch96, DLZ+13, Di93, DSH+10, DCO07, GKVZ12, JPS+08, JD08, LZW+13, MSM+10, MQ08, PG03, RSB+09, Stå05, TMA03]. Model-Checking [ES97, Sto02]. Model-driven [CSV10, RSB+09]. Modeling [KMjC02, TAM+08, AMC+03, CIM+17, DKF94, EE10, EE12, Mao96, SBC91, Squ94, TR14]. Models [CMK00, CH95, Den94, KZC15, LB17, ST98, VT96, BAM07, But14, Cho93, Cor00, Gil94, TVD01, VDBN98, XIC12, ZKW15].

modern [GK05, GBP+07, HL07, NJK16, ZJS10].

MPI [PS01, Vre04, Ada01, ALW+15]. BBG+10, BK96, BBC+00, BRM03, CRE99, DSG17, HD02, FGT96, GCC99, IEE96, MS02, Pla02, SCB15, STY99, SPH96, TSY99, TG09]. MPI-based [Ada98]. MPI-OpenMP [MS02]. MrBayes [LHG+16]. MS [Wil94a, Wil94b]. MS-DOS [Wil94a, Wil94b]. MSFV [HHOM91, HHOM92]. MSpac [MN00, MD96]. MT [EC98, TJY+11]. MT-BTRIMER [TJY+11]. MTA [Mat97, Smi01]. MTAC [For97]. MTraceCheck [LB17]. MTS [Gal94]. MUCH [WLM15]. MulTEP [WM03]. Multi [Ada98, AMRR98, AACK92, AGK96, ABN00, BC98, Bed91, BBH+17, BC00, BGK94a, BGK94b, BGK96, CV98, CL95, CIR99, CWHB03, CD01, CCCC12, CCK+16, C91, Chr01, CR02, Coo95, DV99, DS16, DTLW16, EBKG01, FMY+15, FD96, FiL02, G94, Gil93, G93, GH98, HC17, HG91, III01, JY15, Jov99, JLS99, K95, KKH04, Kuc92, KTR+04, K15, LB92, Leg01, LKBK11, Mas99, MTN+00, McC97a, McC97b, MS15, MG15, MCFT99, NJ00, OR12, PTM09, PKB+91, PM14, Pul00, PGB16, RR93, RCC14, RBPM00, RCKW98, RV04, RS08, SP00a, STW93, Sch90, SKG+11, Se98, Se99, Smi92, Ste01, SBK99, TGO99, Tan87, Tra91, TLG07, VSD90, V90, VK99, Wal00, YLLS16, AB+12, BWDZ15, Bak95a, BK13, BM07, BK+11, DSEE13, CNQ13, CIM+17, CF+12]. multi [CASA14, CIR99, CRRW97a, CRW97b, CSB00, CL00, CSM+05, DWYB10, Don92, EFG+03, EHSU07, FTAB14, FWL03, FGG14, GCRD04, GCC15, GPR11, KHP+95, KDM+98, KKH04, Kep93, Kuc91, KBF+12, Lan97, LBH06a, LBH06b, LBH06c, LVA+13, LZW+13, MLWC11, MLC+09, MS03, MCK99, Mus09, NH09, NH14, OA05, OA08b, OA08c, PYP+10, RCV+10, RKM+10a, RKM+10b, RK99, SCB15, Sam99, SE12, SV98, Smi06, Sto02, SQP08a, SQP08b, SQP08c, SMQP09, ST05, Tem97, TCG95, TMAG03, TJY+11, VIA+05, VDBN98, VVO, VP12, WCC+07, WCV+98, YZ07, Yan97, YSY+09, YN09,
multi-ALU [KDM+98]. Multi-C [Mix94].

multi-context [Yan97]. Multi-Core
[TR+04, PM14, CFG+12, CSM+05, DWYB10, KBF+12, MLC+09, SMQ+09, WCC+07, YZ+07]. Multi-Cores [CCK+16]. Multi-CPU [PG+16].
multi-engine [CN+13]. Multi-Level
[RR93, CCC12]. Multi-Level-Context
[JLS99]. multi-process [CNQ+13].
multi-processor [LN91, BN91, CH+05].
multi-threaded
[SP+08, AP+08, DZ+10, BS96, BL96, BLG+01, CH95, GMR+98, KU00, KKS+08, LS07, LMJ+14, LA+93, MVZ+93, MKC97, NS97, TESK06, YMR+98b, BR92, GA90, HT14, LGH+94, Ma+96, Men91, QS+14, SMK10, Sha98, SKC+09, TAS+07, Yoo96b, YMR+98a].
multi-threaded [CSB+15, Sam99, SE+12, SV+98, Smi06, St+02, SQP+08a, SQP+08b, SQP+08c, Tem97, TAM+03, TJY+11, VV+00, YSY+09].

multi-Threading
[LB+11, CC+97a, CC+97b, MS15, OR12, PTB+09, RC+14, Sch90, TG+09, YLL+16, DTLW+16, MCF+99, NJ00, RVR+04, B+95a, BM+07, FWL+03, LZW+13, MLC+09, VDBN+98, kSYHX+11, YKL+13, CH04].
multiagent [Bar+09]. Multicomputer
[FK+97]. multi-computers [BCG+95].

Multicore
[BC+16, CCH+11, CI+16, GJ+11, HEM+17, KDL+09, LS11, L+16, LY+16, LDT+16, MR+09, NBMM+12, PGB+16, RCM+16, RRK+11, SMD+10, TH+12, ZBS+15, CN+13, CN+14, CM+10, L+13, LL+15, NZ+17, RCG+10, RKB+11, SCCP+13, SE+12, ZSB+12].

Multicore/Multithreaded [RCM+16].

Multicores [FSPD+16, FSPD+17, RKK+15, DTK+15, GARH+14, SS+10].

Multifrontal [B+13, D+11]. multigrid [RM+99].

multilevel [Cat94, J+03, LK+15].

Multimedia [Spe94, Ext93, Go96].

multimethod [FG+96].

MultiProcessing
[EA+92, LN+94, WA+95, DL+09, MT+93, Pr+95b, RGK+99].

MultiProcessor [AAC+92, AKP+99, BC+00, Cat94, EH+95, GHG+98, HN+91, KMA+01, MCT+08, Pre90, S+92, SEP+96, USE+92b, WC+99, Z+02, Cho+93, DCK+07, EKK+90, HB+92, KT+99, L+10, LW+10, PJA+07, An+94b].

multi-processor/multithreaded [Cat94].

MultiProgrammed [MVZ+93, TS+99].

Multiprocessing
[EB+92, LN+94, WA+95, DL+09, MT+93, Pr+95b, RGK+99].

MultiProcessors [BM+03, BS+96, BL+96, BL+95, CH+95, GMR+98, KU+00, KKS+08, LS+07, LMJ+14, LA+93, MVZ+93, MKC+97, NS+97, TESK06, YMR+98b, BR+92, GA+90, HT+14, LGH+94, Ma+96, Men91, QS+14, SMK10, Sha98, SKC+09, TAS+07, Yoo96b, YMR+98a].

Multiprogrammed [MVZ+93, TS+99].

MultiProgramming
[BH+03, J+91, CG+92a, CG+92b].

MultiRace [PS+07].

Multitasking
[CL+90b, G+94, Go+90, JJ+91].

Multithread
[LC+04, RRM+12, SY+14, CS+95a, CS+95b, DSH+10, GCC+99, JD+08, SW+94, ZG+98].
Zig96], **multithread-safe** [GCC99].

Multithreaded

[AddS03, ÁdBdRS08, ABC+93, AT16, Ama98, Ano92a, Ano92b, Ano94e, Ano94g, Ano98a, Ano98b, Ano01, ABH+’00, ABH+’01, AB01, AB02, AG96, ACMA97, ABN00, AKP99, Bal02, BBFW02, BCR01, BBdH+11, BK106, BMBWV00b, BF04, BJK+’96, BL98, BB00, BMN99, BDNO2, BP05, BLG01, BTE98, BNH01, BD06, BGH+’12, BBSG11, CJW+’15, CS02, CGK06, CC04, Chl15a, CH95, Chr95a, Chr95b, Chr96, CT00, CW98, CBN+’00, CMBAN08, Dan09, DNR00, DH98, DRV02, DO95, EFN+’01, EFN+’02, EJRB13, EHP+’07, EC98, EGP14, FSS02, For97, FR98, GGB93a, GRS97, GRM98, Goo97, GN00, GN92, HPA+’15, HMLB16, HTZ+’97, HMNN91, HHT09, HLB94, HH11, HWZ00, HPB11, Hud96, HMT+’96, I+’94, JYE+’16, JSB+’12, KA97, KKW14, KMA01, KST04].

Multithreaded [KML04, KC98, KC99, KMjC02, KR12, Ku00, KC94, Ku17, KAO05, Kor89, KTR+’04, LS07, LG96, LH09, LG04, LB96a, LB98, LB00, LLS06, Lvh12, LTM+’17, LHY16, LPE+’99, Loe97, Lun97, Lun99, MGQ5+’08, MP01, MS99, MB09, MD96, Moc95, Moc96, MR09, Nak01, NPT98, NGA94, NTKA99, nik94, OB13, OTY00, PBD09, PUF+’04, PG92, PG96, PG99, PF01, PH91K, PFL+’11, PS01, QOM+’12, RW97, RCLC12, REL00b, Rin01, RNSB06, RSNB01, RRRK11, RBAA05, RR99, SPDLK+’17, SR958, SR14, SBD+’97, SCDD+’15, SCLO5, SAC+’98, She98, SU96, SU01, SZM+’13, SGM+’97, SMD+’10, SR01b, SSFY97, SKK+’01, Spe94, Srt95, SZ02, SUF+’12, Sut99, TG99, Ten02, TKA+’01, TC98, TTO3, TTKG02, TGBS05, TJV98, TSV12, URSO2a, VTM12, Vol03, VE93, Wan94, WSO8, Wea08, WJ12, Wil97, WLM15]. **Multithreaded** [WG94, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, ÁdBdRS05, Aga89, Aga91, Aga92, ABF+’10, ABC+’15, AAC+’15, ACC+’03, AGE08, Ann96, Ano94b, Ano95a, Ano95b, A+’01, ABC+’09, AR17, Aru92, BGDW12, BFFW03, BRSS10, BGZ97, BCH00, BAD+’10a, BAD+’10b, BC13, BGC14, BBM00a, BBMV00e, BLYL09, Blu92, BL93, BL94, BJK+’95, Blu95, BL99, BS10a, BCG14, BEKK00, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car99b, CB89, CB90, CF+’12, CL94, CN14, CS12, CDD+’10, CLL+’02, Cho93, Cho92, CGL92a, CGL92b, CJB+’15, DJLP10, DSG17, Day11, DL93, DKF94, EJK+’96, Eic97, EG11, Est93, Evr01, Fan93, Far96, Fer13, FF04, FFQS05, FF08, FFY08, Fj97, GMW09, Gal94, GJ11, GGB93b, GK05, GPS14, GL98].

multithreaded

[GL98a, Gol96, GRS06, GRR06, GA09, GLC99, HMC97, HFV+’12, HF88, HLB90, Hig97, HNM+’92, Hop98, JMS+’10, JWGT11, JFL98, JSM12, JSM13, Joe96, JSB+’11, KGP12, KR01a, KR01b, KNPS16, KRP+’03, Kub15, Kus15, LLLC15, Lee96, Lei97, Len95, Lev97, LLL10, LCH+’08, LMC14, LBE+’98, LT97, Lu94, Lu95, LC13, Mah11, Mah13, MEG03, MS87, Mil95, Mis96, Mix94, MO96, MR09, MK10, Nk90, NPT98, NGA94, NTKA99, nik94, OB13, OTY00, PBD09, PUF+’04, PG92, PG96, PG99, PF01, PH91K, PFL+’11, PS01, QOM+’12, RW97, RCLC12, REL00b, Rin01, RNSB06, RSNB01, RRRK11, RBAA05, RR99, SPDLK+’17, SR958, SR14, SBD+’97, SCDD+’15, SCLO5, SAC+’98, She98, SU96, SU01, SZM+’13, SGM+’97, SMD+’10, SR01b, SSFY97, SKK+’01, Spe94, Srt95, SZ02, SUF+’12, Sut99, TG99, Ten02, TKA+’01, TC98, TTO3, TTKG02, TGBS05, TJV98, TSV12, URSO2a, VTM12, Vol03, VE93, Wan94, WSO8, Wea08, WJ12, Wil97, WLM15]. **Multithreaded** [WG94, WC99, Yas95, YWJ03, Yoo96a, YMR93b, ZSA13, Zha00, ZJS12, ZBS15, ZP11, ZAK01, Zub02, ÁdBdRS05, Aga89, Aga91, Aga92, ABF+’10, ABC+’15, AAC+’15, ACC+’03, AGE08, Ann96, Ano94b, Ano95a, Ano95b, A+’01, ABC+’09, AR17, Aru92, BGDW12, BFFW03, BRSS10, BGZ97, BCH00, BAD+’10a, BAD+’10b, BC13, BGC14, BBM00a, BBMV00e, BLYL09, Blu92, BL93, BL94, BJK+’95, Blu95, BL99, BS10a, BCG14, BEKK00, BS10b, BNS11a, BNS11b, BNS12, CZWC13, CS00, CMS03, Car99b, CB89, CB90, CF+’12, CL94, CN14, CS12, CDD+’10, CLL+’02, Cho93, Cho92, CGL92a, CGL92b, CJB+’15, DJLP10, DSG17, Day11, DL93, DKF94, EJK+’96, Eic97, EG11, Est93, Evr01, Fan93, Far96, Fer13, FF04, FFQS05, FF08, FFY08, Fj97, GMW09, Gal94, GJ11, GGB93b, GK05, GPS14, GL98].
Multithreading

[AMdBR02, AH00, Ano99, Ano05, BBG+10, BWX05, Bec00, Bee98, BW97, BD00, BL06, BPL07, Bre02, BLPV04, But13, CCH11, CCK+16, Cro98, Dug95, EEL+97, Eng00, Eng95, Esp96, EKB+92, FBF01, FKT96, GHG+98, GV95, Gu95, Gu97, GSL10, Har99, HBTG98, ILFO01, IBST01, KPC96, Ke94a, Ke94b, Kh97, KF97, KLH97, Kwo03, KET06a, KET06b, LPS07, LH94, LEL+97a, LEL+97b, LEL+99, LRZ16, MB07, Man91, MHG95, MN00, MKC97, Nag01, Oni97, ÖCS01, PJS15, PT91, PST+92, Pea92, Prah7, RLJ+99, RG03, RD96, SSP99, SPY+93, SW08, SCv91a, SP07, SLG04, SRU98, Sin97, Smi01, ST00c, SKA01, TY97, Ten98, TESK06, VTF96, WWW+02, WCW+04a, Wei97, YG10, ZL10, Zig96, AAHF09, AAKK08, ABB+15, BCM+07, BGG95, BR92, Boo93, CHH+03, CCC12, Div95, DN94].

multithreading

[Dub95, Dye98, EEO9a, FM92, Fis97, Fon97, GWM07, GBB95, Gea98, GEG97, Ge98, Gro03, HB92, HCD+94, Hol98a, HH97, IAD+94, KIM+03, KCCD99, Kim94, KG07, KT99, KLH+99, KLI03, LGH94, LSS02, LB95, LB96b, LLL+14, LLo95, LVS01, LZB14, Luk01, MWP07, Mac96, MKIO04, MGL95, MMM+05, McM97, Met95, MKR02, MAAB14, OAA09, Ong97, PSS96a, PSS96b, PS90c, PG01, PHCR09, Prah95b, RM00, RR96, RPNT05, San94, Sch91, SCv91b, Sin99, SW16, STV02, Swi09, TK98, TSC99, TO10, Tsa97b, TEL95, TEE+96, Tuf96, TEL98a, TEL08b, URs02b, URs03, VPC02, WLG+14, WW03, WCW+04b, WCW+04c, WCW+04d, YCW+14, Lar97].

multithreading-based [GE08].
multithreading-based [GE08]. must

[NA07].
mutable [HL93].
mutable [HL93].

name [ORH93].

name [ORH93].

Nanophotonic [VSM+08].

Nas [CRE99, GH98].
native [SJ95].

navigating [TVD14].

NDP [Ane097a].

Nearest [JY15].

Nearest-Neighbor

[JY15].

Need [SLG04, RPNT08].

Neighbor

[JY15].

Nelson [Ane097a].

Nested

EW96, NB99, TGO99, TGO00, YZ14. Net

Ham96. Net-Centric [Ham96].

Netburst

KM03. Nets [KM220, MKC97].

Network

[ACM98a, RM93, ARB+02, Chr15a, Don02, GRS97, HH11, KML04, KRH98, NGA94, YG10, ZPI1, BDMA98, GL07, KGP912, L07, LLL+08, OCRS07, RC+10, RPNT05, Sta90, ZP04, PH97].

Network-Facing [KML04].

Network-I

[RM03].

Network-I/O [RM03].

Networked

[CT00, FGKT97].

Networking

[ACM98d, ACM00, Hol12, LCK11, DWY10].

Networks

[IEE95, KLH97, Lu98, RR93, SMK91].

Neumann [HG92].

Neurons [LTM+17].

newly

[Ano95a, Ano95b].

NewOS

[TLA+02, Gei01].

Newport [USE92b].

News

[Bra97, Gar01, Mat97, McM97].

Next

[ARB+02, EEL+97, TSV12, CH04].

Next-Generation

[EEL+97, TSV12, CH04].

Nexus [FKT96].

NF

[Ana95a, Ano95b].

NFV [GDS+17].

Niagara [KA005].

NLM

[Day92a, Day92b].

NLM-Based

[Day92a, Day92b].

NoC

[YL16].

node

[TK98].

Nodes

[EHG95].

noise [GA09].

Non

[Caz02, Coo95, JLS99, KIA90, LB17, SGM+97, Tra91, Ann96, RGG99, SCG95, SKG+11].

Non-blocking

[Ann96].

Non-Deterministic

[LB17].

Non-Intrusive

[Caz02].

non-invasive

[RGK99].

Non-numeric

[SGM+97].

Non-preemptive

[LSJ99].

Non-Strict

[CO95, Tra91, KIA90, SCG95].

non-uniform

[SKG+11].

Nonblocking

[HH11].

nondestructive

[AD08].

nondeterminism

[HBC13].

Nondeterministic

[LPS07].

Noninterference

[BC02, Smi06].

noninterruptible

[AAHF09].

Nonlinear
Ano98b, Hig97, PG96, Pra95c, Pra95b, Pom98. NOWs [SLGZ99]. Ano91, Ano94e, Gol94, Hol12, IEE90, IEE92, IEE93, IEE94c, IEE02, LCK11, USE91a. OCTET [BKC11, SMK10, TEL95, On-Chip [Ano00c, FSPD16, FdL02] Observer [HL08, HZ12]. Observer [Hol99b]. occupancy [PAB+14], Ocean [SAC+98]. OCTET [BKC+13]. October [ACM94d, Ano94d, BT01, IEE95]. ODBC [Ano99b, Hig97]. ODBC-compliant [Hig97]. ODBC-ODBC [Ano00b]. ODE [Bra97]. Off [MHG95, AAC+15, DTK+15]. off-chip [DTK+15]. Off-the-Shelf [MHG95]. offs [Par91]. Old [Wil00]. On-Chip [LKBK11, SMK10, TEL95, TEL98a, TEL98b]. On-Line [Ano00c, FSPD16, FdL02]. On-the-fly [Sch89, CWS06, PS03, PS07]. once [Bak95a]. one [QSH16]. one-sided [QSH16]. Online [Ger95, OTY90, RCC14, Sei98, Sei99, SRA06, TGO99, HF96, LWV+10, RS07, VGK+10a, VGK+10b]. only [MJJ+10, NM10, ZJFA09]. onto [LBvH06a, LBvH06b, LBvH06c]. Open [Ano00c, BMF+16, Hai97b, KR01a, KR01b, RBF+89]. Open-Source [Ano00c]. OpenMP [Cha05, ARvW03, BHP+03, BCP+00, Bra97, BMV03, BO01, CRE99, CDP+01, CM98, DM98, HD02, EV01, JPY+03, KKK93, Lu98, MS02, Mar03, MLC04, MPD04, Mat03, MG15, MM14, Mii03, NAAL01, RAAB05, SLG99, Thr99, TGBS05, Vee04, RM99]. OpenMP-oriented [MLC04]. OpenOpt [NSP+14]. OpenPiton [BMF+16]. OpensPARC [Wec08]. Operand [SP07]. Operating [ACM94d, CLFL94, TLA+02, Gei01, IEE89, IEE94a, MS87, REL00b, SEP96, Ano92a, Ano92b, DMB98, DBRD91, IEE94d, Jef94, Jen95, LYN10, LAK09, PLY98, RBF+89, REL00a, REL00c, She98, Way95]. operation [RH10]. Operational [CKRW99, CRW97a, CRW97b]. Operations [KKS+08, KLDB09, SCL05, HMC95, RD06]. Opportunistic [YL16]. Opportunities [GJ97, HL08, Mus09]. OPR [QSH16]. Optimal [AT16, LR95, CMC+12, LEP95, LML00]. Optimistic [WHJ+95, CZSB16, VPQ12]. Optimization [BLG01, GN96, RNSB96, SYHL14, TJY98, TLMG17, WJ12, AMC+03, AMPH09, DZKS12, GOT93, Koo93, KRCW98, Sin99, TO10, ZCSA02a, ZCSM02b]. Optimizations [JSB+12, KEO66a, LEL+99, SUT99, ABC+09, JSB+11, OA08a, OA08b, OA08c, ROH95]. Optimized [Sin97]. Optimizing [DTK+15, KZTK15, PR98, PSCS01, WZ+07, GSP02]. Orange [ACM98d]. Order [CJK95, RRK11,
organizing [LAK09].

Organized

[ACM94b, ACM99b, IEEE93].

Organization

[HG91, HG92].

Oregon

[ACM94a, ACM98d].

OS/2

[DN94, Kan94, Kel94a, Kel94b, Re91, Rod94].

oscillations [BD06].

OSF [BM91].

Other

[SPY93, MMMT10].

Ottawa [BT01].

Out-of-Core

[QOM+12, ABC+15].

out-of-order [SJA12, SW16].

Outstanding

[LSB15].

Overall

[SEP+96].

Overcome

[SW08].

overflow [KOE+06].

Overhead

[DS15, RRP06, YL16, ZHCB15].

overview

[L05].

Ow n [BSN99, SH097a, SH097b].

Oxford [ACM94c].

P

[ANO00b, Nik94, PR05].

P-RISC [Nik94].

P-STAT [AN000b].

P-Thread [PR05].

Pacific [IEEE98].

Pacificifier [QSI+14].

Package

[ANO94c, FL90, HCM94].

packages [GOT03, OT95, PL03].

Packaging

[RR93].

Packard

[BCD97].

Packet

[AHW02, LCH+08, MVY05, WCZ+07].

page

[CNV+06].

page-based [CNV+06].

PageRank

[KG07].

Paging

[FD06, FL02, SE98, SE99].

PaiLisp [K95].

pain [G05].

Pajé [CD01, CSB00].

Palo

[ACM01].

panel

[ANO94e, Bak95b, HCD+94, IAD+94].

Paper

[ABI+01, TKA+01].

papers

[ACM93a, ACM94b, ACM95b, ACM98b, KKD03, Cha05].

par-monad [FKS+12].

ParADE

[KKH03].

Paradigm

[EW96, JD08, KL15, PPA+13, BCG+95].

Paradigms

[CM98, HD02, YMR93b, YMR93a].

Parallel

[ABC+93, AMRR98, AM99, ABNP00, ACM997, Baus02, BC00, BFA+15, BEE13, BHC+00, BTE98, CTS+17, CL95, CDM+01, CBN+00, DS16, Den94, EJ93, FHMM95a, GI04, GSC96, GI97, GAC14, HMLB16, Hon94, HM91, JY15, KTLK13, KI95, KEL03, KON00, KKD03, KWD03, LEN95, LHS16, LFA96, MAH11, MS02, MAR07, MG15, MRG17, NS97, Pan99, QSA+16, SCV91a, SAC+98, SRU98, WC99, YFF+12, ARW03, ALS10, BBO+05, BCM+07, BAD+09, BB00, Boo93, BE12, BG94c, CAR08, CFF+91, Cha05, CSB00, CHER95a, CRE+03, CHER96, DLM99, DESE+13, EV01, FM95b, FD95, FJ97, GC92, G097, GKK09, GE07, GE08, GB99, HMC97, HFF8, HOP98, HW93, IE97, JMS+10, JX96, KTK12, KEP03, KIM94, LSS12, LUT94, MT02a, MT02b, MT02c, MR98, M103, N00].

parallel

[NPA92, ODSP12, RCV+10, RHH10, SBC90, SCH91, SCV91b, SHA98, SWYC94, ST98, SGS14, THF03, TCC95, VQP01, VGG+10a, VGG+10b, WKO8a, WKO8b, WKO8c, WOK96, WTH+12, YCW+14, F95, VRE04, WN10].

Parallel-Multithreaded

[WC99].

Parallelism

[ACK92, ABLL92, BAM93].

CSS+91b, DVB99, EHW96, FKP15, FUR00c, GP95, DK02, LKB11, LEL+97a, LEL+97b, MG99, MR94, MAR03, MCF99, NB99, RBA05, SPP99, SMD+10, SG96, THER99, WS08, YBL16, YV96b, ALIH08, AKSD16, CSS+91a, CSS+91c, EE09a, FN17, FUM00a, FURM00b, HDT+13, KRBJ12, KDM+98, KV+09, K09, LAH+12, QQ0+09, SLGZ99, SD13, TEL95, TEL98a, TEL98b, VDBN98, VV00, WEI98a, XSA09, YZ14, ZIG96].

parallelism-aware

[LAH+12].

parallèlisme [Zig96].

Parallelization

[CRE99, K09, LVA+13, RM99, W2W98, YL16, AC09, DC07, JLY+03, PO03, RKM+10a, RKM+10b, RRMJ12, TFG10].

parallelized [CJ91].

Parallelizing

[BM91, DWP+13, KFB+12].

ParaLog

[VGK+10a, VGK+10b].

Parameterized

[BOR01, F12].

Parametric

[Ano98b, FRT95].
PIC [BMV03], PicoServer [KSB+08].
picture [AC09], Piecing [Ano97b].
Pipelining [GV95, RVOA08], PIRATE [ICH+10]. Pitfalls
[Hol98a, SPY+93, CL00, San04]. place
[SCM05, SGLGL+14]. placement
[NLK09, TE94a]. plagiarism [TLZ+16].
Plan [DLZ+13, Pre90]. PlanICS [NSP+14]. Planning
[NSP+14]. plans [GARH14].
plastic [MCS15]. Platform
[AB01, AB02, CT00, DTIW16, EEL+97, FSS06, Lam95, MT93, PG03, WCW+04b, WCW+04c, WCW+04d].
Platform-Independent [FSS06].
Platforms
[LS11, PWL+11, CNQ13, LSS12]. PLDI
[ACM94a, ACM99a]. Plug [DHR+01].
Plug-in [DHR+01]. plus [Ano95a, Ano95b].
PM [AB02]. PM2 [ABN99, AB01]. Pointer
[RR99, SR91a]. pointers [Sin97, WW96].
Points [CC04, CHH+03]. policies
[Eie97, EE09a, KPPER06]. Policy [MVZ93].
Polling [Pla02]. Pollution [MPD04].
Polynomial [Kuc92, Kuc91]. Pool
[PSCS01, LML00]. Pools [Cal97]. POPL
[ACM94b, ACM95b, ACM98b]. Port
[Koo90]. Portability [VSM+16]. Portable
[AB01, ABN00, BBFW02, Eng00, KF97, LD+16, Yas95, CS00, GCRD04, Mix94, MT93, MAAB14, TB97a, TB97b]. Portals
[BRM03]. Porting [JJ91, Yam96]. Portland
[ACM94b, ACM99b, EEE93]. Ports
[Man98, Yam96]. possession [USE01]. POSIX
[Ano00c, AI94, BMR94, But97, GL91, GF00, GMB93, HBG01, HBG02, dIPRGRB99]. Post
[LB17]. Post-Silicon [LB17]. Pot
[VSDL+16]. Potential
[EGC02, Mou00, DG99], potentials
[ABF+10]. Power
[GG11, AKS06, Ano00a, Ano03, BCZY16, BGH+12, CMAB08, MB07, MR09, RCC12, RKK11, SYHL14, TLGM17, ECX+12, GW10, MLCW11, Pra95b, Ric91, SQP08a, SQP08b, SQP08c, CMF+13]. Power-aware
[MR09]. Power-Constrained
[TLGM17, GW10]. Power-Efficient
[BCZY16, SQP08a, SQP08b, SQP08c].
Power-Performance [CMBAN08].
POWER5
[BGC+08, MMM+05, KST04, Ano05].
POWER6 [LSF+07]. powered [Rel95].
PowerPC [BEKK00, SBKK99].
PowerRAC [Ano00b]. Practical
[HW92, LMK+14, NG01, ND16, PRB+15, RR96, TGBS05, BCC010, RD09, RPB+09].
PRAM [For97, Lep95]. Pre [P05, Luk01].
Pre-Execution [P05, Luk01]. Precise
[HR16, KUC15, CLL+02, FF09, WTH+12].
Precomputation [MGQS+08, WWW+02].
Preconditioning [Nak03, GEG07].
PREDEATOR [LTHB14]. Predicate
[GPR11, How00]. Predictable [BBdH+11].
Predicting [Lun99]. Prediction
[AKS06, CMBAN08, IBST01, PBL+17, BWDZ15, BMV03, CTP02, CPT08, GL98b, RRP06, TFG10, WHG07].
Prediction-Based [CMBAN08, RRP06]. predictive [LTBH14, SRA06]. Predictors
[EPAG16]. preemptive [JLS09]. prefetch
[AMC+03]. Prefetcher [LYH16].
Prefetching
[BL96, GK94, MKC97, SLT03, VT96, LB95, LB96b, Maa96, SLT02, SKK09]. Prefix
[WJ12]. Preliminaries [NB93].
Preliminary [EHG95]. Preparation
[GH03]. preprocessor [Fou97, Mil95].
prescient [AMC+03]. Presentation
[Kub15]. presented
[ACM93a, ACM94b, ACM95b, ACM98b]. preserving [MSM+11]. pressure
[DTLM14, SLP08]. preventing [PR07].
Price [Ano98b]. Pricing [TT03]. Primer
[LB96a, Wil97]. Primitive [L00].
primitives [BBH+17, LZ07, NLK09].
principle [LAK09]. Principles [ACM93a, ACM94b, ACM95b, ACM98b, TLA+02].
print [Van97a]. priorities [STV02].
prioritization [FD95]. Priority
[BCG98, NBMM12, SCCP13, ST05].
priority-based [NBMM12]. Private
[Man99]. privatization [HZ12]. Pro
[Ano97a]. Probabilistic
[EE10, EE12, CHH03, Smi06]. Problem
[HH11, Lee06, YFF12, BIK11, Mit96].
Problems
[DK02, Nak03, AR17, Bar99, FTAB14, FR95].
procedure [BGK94c, KASD07, LQ15].
procedures [MCS15]. Proceedings
[ACM92c, ACM94a, ACM99a, ACM01,
Ano90, Ano94a, Ano94d, AOV+99, Gol94,
Hoi12, IEE89, IEE90, IEE92, IEE93, IEE94a,
IEE95, IEE96, IEE02, Lak96, LCK11, USE99,
USE91a, USE91b, USE92a, USE93a, USE93b,
USE96, USE98b, USE98a, USE00b, USE01,
USE02, ACM92, ACM95a, ACM96, EV01,
IEE97, Wat91, ACM93b, ACM98c, RM03,
Ano91, DLM99, IEE94b, IEE94c, FR95].
Process [FT96, FG91, BM91, HF96, LVS01,
MR98, Ply89, WP10, WCV+98].
process-oriented [WP10]. Processes
[CB16, Ike91, SPY+93, ZSA13, YZYL07,
Zig96]. Processing [AHW02, GAC14,
RWW97, SS91, WN10, How98, MVY95, Par91,
PYP+10, RKHT17, WCZ+07]. Processor
[ABC93, Ano00b, BCG+08, BGH12,
EHG95, GV95, HMMN91, HHOM91,
HHOM92, KST04, KML04, KAO05, LVH12,
MGQS+08, MG99, MTN+00, MV993,
MB05, SW08, Sin97, ST00c, SZ02, SBK99,
SUF+12, WS08, AAHF09, APX12, BEKK00,
CL94, CY90, Cho92, EE10, Fis97, Fu97,
Goo97, HF88, HKN+92, HMM+92,
KDM+98, Kho97, KBA08, LBVH96a,
LBVH06a, LBVH06c, LCH+08, Lu94, MK12,
Met95, Moo95, Moo96, OCRS07, Raj93,
Sha95a, SJA12, Sin99, ST00a, ST00b,
STV02, Squ94, Srin93, Tsa97a, Tsa97b,
TEE+96, VIA+05, WCW+04b, WCW+04c,
WCW+04d, YN09, ZP04]. processor-based
[WCW+04b, WCW+04c, WCW+04d].
Processor-In-Memory [SZ02]. Processors
[ARB+02, AH00, Ano01, BF04, EEL+97,
FT96, GJT+12, GSL10, KS16, KLOG8, KU00,
KLD09, LPE+99, MH95, MCFT99, MR09,
OC01, PF01, RCM+16, RRK11, SU01,
SR01b, US02a, YG10, ZP11, Aga88, Aga91,
AGA92, AAC+15, BGDMW12, BWD15,
CS95a, CS95b, CN14, CDD+10, DWYB10,
Div95, Eic97, EE09a, EE09b, EE12, FD95,
GMW90, GBP+07, KBF+12, LLL10,
LBE+98, Luk01, MN03, MEG03, MTPT12,
MIS96, NB12, NIZ17, PFV03, PAB+14,
RGG+12, RCM+12, RPNT08, SLP08,
SMS+03, US02b, US03, ZSB+12, WM03].
process [Zig96]. Proc [MT93].
Products [Ano97a, Ano98b, Bra97].
Professional [Ano00b]. Profile [BMR94].
profiler [DTLM14]. profiling [DG99].
Program
[Chl15a, DSR15, EFN+01, GN96, KKW14,
NB93, PF01, PS01, TSY00, TJY98,
YLLS16, AC09, BGC14, BD06, Cal02, Dan09,
Duh95, ENF+02, FRT95, JEV04, JPS09].
Programmability [THA12].
programmable [PYP10].
programmation [Swi09]. programmed
[PPA13]. Programmer
[Cro98, Wil00, MS87, San04, Swi09].
Programming
[ACM93a, ACM94a, ACM94b, ACM94d,
ACM95b, ACM98b, ACM99a, BBG+10,
BTE98, But97, CMK00, CV98, CDEK+01,
Chl15, CT00, CW98, DM98, FHM95a,
FTP11, HCD+94, Hol98d, Hol98e, Hol98f,
Hol98c, Hol99a, Hol99b, ILFO01, KKH03,
KSS95, KSS96, KIAT99, LB96a, LB00,
LH12, Mas99, NB96, Nor96, PG99,
QOQO+09, QOM+12, Rod95b, SBB96,
TC198, Vre04, Wil97, YFF+12, dIPRGB99,
v985, ALS10, AR17, AG96, ABG+08,
BCHS00, BO96, BYLNO9, Bir98, CFK+91,
Car99a, CS00, CMS03, Cha05, DSH+10,
EV01, FHM95b, GKZ12, GLL94, Go97, GL07,
HLC97, Hyd00, JPS+08, JHM04, KIM+03,
Kim94, LB98, LP09, Man96, MSM+10,
MKIO04, MR98, Mix94, NHFP08, Nev99, NBF98, ND96, PG96, Pra97, RR96, RR03, SKS+92, SV96c, SV96a, SV96b, She98, She02, Sun95, TB97a, TB97b, TMAG03.

programming [Wal00, WCC+07, Yan02].

Programs [ABN00, BBF92, BE13, BLG01, CJW+15, CRE99, CS02, CC04, Cd0S01, Chr01, DRV02, EGP14, FQ02, GKCE17, HLI94, Kri98, LCS04, Lun97, Lun99, MS99, OB13, PHK91, Rin01, RD96, RR99, SPDLK+17, SBN+97, SYH14, Ste01, TGBS05, Tra91, Vol93, VE93, ABF+10, BRSS10, BK13, BCG13, BGC14, Bhu95, BE12, BC02, BS10b, BNS11a, BNS11b, BNS12, CZCW13, CJ91, CL00, CCL+02, CVJL08, Cor00, DJLP10, DESE13, EFG+03, EG11, EHSU07, FK12, Fer13, FF04, FFQ05, FF08, FFY08, GMR90, GRS06, GPR11, HZ12, JPS+08, JWTG11, KF09, K09, LQ15, Lea96, LMC14, LC13, MS03, MS87, MC06, MQ07, NR06, NH09, NHI14, NV15, OsS1P12, PDP+13, PS03, PS07, RVS13, Rei95, RS07, SR01a, SCG95, SRA06, Sen08, SP06b, Shi00, SJS14, Sto02, Taf13, TR14].

progress [TLZ+16, WTH+12, XSaJ08, YCW+14, YNPP12, ZJS10, ZJS06, dB09, vPG03].

Progress [FSPD17, TLGM17, ZHCB15].

Progress-Aware [FSPD17]. Progressive [BBdH+11, TG000]. Project [Ano99].

projection [SSKP+07]. Projections [MQLR16, MLR15]. proliferating [Ano94b].

Prolog [EC98, AR17, KA97]. Promises [Gar01].

Proof [Add03, AdBrS08, FKP15, AdBrS05, GLPR12]. properties [KTLK13, Van97b].

proposed [GV95]. protect [San04].

Protein-Protein [BCS11]. Protocol [GRS97, HI01, ABN00, KASD07, QS04].

Protocols [AB01, AB02, GRR06, TVD14].

provide [Way95]. provides [Hig97].

Providing [PSMO1, PSM03]. proving [Taf13]. Provisioning [BSLS14, FGG14].

psuedorandom [SLF14]. PSO [HH16].

PTF [Yam96]. Pthreads [NBF98, Yam96, LB98, AS14, NBF96].

Publications [Bee98]. Publishing [An00b, Hig97].

Purpose [Ber96b, HS+S14, Man98, ZSA13, Ber96a, DC99, DC00, HSD+12, SKA01].

Put [Wal95].

PVM [DLM99, DPZ97, Pla02, ZG98]. PVM/MPI [DLM99].

Python [Swi09, How98, Pul00].

Q [Ber96b, Cri98a]. Q&A [Cri98b, Hag02].

QoS [ICHT+10, PSM01]. QR [Dav11].

quality [PSM03]. Quantiative [NBM93].

Quasi [Pla02]. Quasi- [Pla02]. Queries [TG099, TG000]. query [GARH14].

QUERYFLEX [Ano97a]. querying [HF96].

Queue [Cri98b, Cri98a]. queues [SCH05, ST05].

Queuing [VK99, KP1ER06]. Quick [Ano00b].

QuickRec [PDP+13]. quicksort [PSM01, PSM03].

R3000 [Ar92]. Race [HM96, KUCT15, MKM14, SB+97, Sen08,

Yan02, ZLJ16, AFFF06, AHK08, EQT07,

FF09, HR16, RHPV91, MMN09, NAW06,

NA07, PS03, PS07, PF06, RVS13,

WDC+13, XHB06, DWS+12]. race-freeness [AHK08].

RaceFree [LZW+13]. Races [KZC15, FF10, NWT+09, RB07, PT03,

RBK+09]. racy [SRJ15]. RADISH [DWS+12].

Ramada [Ano94d].

Ramada-Congress [Ano94d]. random [LSS12, Sen08]. random-number [LSS12].

Ranking [DV99, VV00]. ray [To95].

RCDC [DNB+12]. RCU [CZK12].

Reachability [LCS04, LQ15].

reachability-module-theories [LQ15].
Reusable [Han97]. Reuse [BCZY16, KZTK15, JSB+11, NAAL01, PHCR09]. revealing [Dav11]. Reverse
[Coo02, LSB15, WCV+98]. Review
[Lar97, Van97a, Vre04]. Reviews [Bra97]. Revised [Cha05]. revisionist [PT91].
revolutions [ECX+12]. Rewriting
[BGK94a, BGK94b]. RHEED [BD06].
RISC [Cho92, GV95, MHG95, Men91, Nik94, SBJK99]. rise [Len95]. Robot
[Lev97]. Robust [CMF+13, LG04]. Rockefeller [IEE90]. Rogue [Ano00b].
Role [BC94, KZTK15]. rollback [YZYL07]. root [CMX10]. Ropes [HMC95]. Row
[KZTK15]. RP3 [CJ91]. RPC [Tod95]. RPython [MRG17]. RTOSS
[IEE94a, IEE94d]. RTR [XHB06]. Ruby
[OCT14]. rules [GLPR12]. Run [EJ93, LFA96, SS96, Pra95c, Swe07, TNB+95].
Run-Time [EJ93, LFA96, SS96, TNB+95]. running [Cal02, MLCW11, SSN10]. runs
[Hig97]. Runtime [ARN99, ABN00, ABH+00, ABN00, BJK+96, BMN99, CZS+17, DNR00, FSS06, KPC96, NPT98, NS97, QOM+12, SS99, ATLM+06, ALW+15, BAD+10a, BAD+10b, BJK+95, EQt07, Gof97, Ong97, Tsy00, TMAG03]. runtimes [RL14]. Russians [KNPS16].

SAC [GS06]. Safe
[BCL+98, Kle00, Low00, NH09, Pla02, AFF06, BYLN09, DMBM16, Fek08, GCC99, GOT03, Gros03, NHFP08, Nev99, Rin99]. Safe-for-Space [BCL+98]. Safety
[Hag02, Pla98, Ric99, SP00a, GPS14, San99, San04, SRA06, Taf13, Van97b, Ven98, Yan02]. safety-critical [San04]. Salt [Hol12].
Sampled [JYE+16]. sampling [MMN09].
San [ACM93b, ACM94d, ACM95b, ACM98b, USE89, USE92a, USE93b, USE98b, USE00a, USE02]. Santa
[Gol94, WP10]. SAT [VSDK09]. Save
[Pla93, Dye98]. saving [Mus09].
SC2000 [ACM00]. SC2002 [IEE02].
SC2003 [ACM03]. SC98
[ACM98d, ACM98d]. SC’99 [ACM99b].
Scalability [CCH11, Nak01, BWZD15, DSEE13, ROAO08, VIA+05]. Scalable
[BMBW00b, CH04, CKZ12, IEE94b].
KUCT15, LMJ14, MLCW11, Mic04, SS96, ZLW+16, BMBW00a, BMBW00c, GW10, Lz07, Mao96, PWD+12, SCZM00]. scalar
[GL98b, ZCSM02a, ZCSM02b]. Scale
[CJW+15, HC17, LA93, PWl+11, AG06, BCM+07, GOF03, SMK10, KBA08]. scale-out [AG06]. Scaling
[HC17, AR17, ECX+12, KTLK13, SW16].
Scaling-Aware [HC17]. scene [RVR04]. Schedule
[MQLR16, MLR15, NAAL01, WTH+12].
Scheduler
[ABLL92, BDN02, FSPD17, GJT+12, QSaS+16, SRS98, SS95, DC99, DC00, FKS+12, GP05, HZ12, WTKW08, XSaJ08].
Scheduler-Centric [BDN02]. scheduler-oblivious [HZ12]. schedulers
[NBMM12]. schedules [BCG13].
Scheduling
[BL94, BL98, BL99, FS96, FSPD16, GRS06, JLS99, KLDB09, NAAL01, PEA+96, PM14, RS08, SLG04, YWJ03, BL93, CS95a, CS95b, CCC12, DC99, DC00, EE10, EE12, FD95, FKS+12, GA09, HL07, JSMP12, KJK+13, KJP+03, Mis96, OA08a, OA08b, OA08c, PAB+14, Pol90, ROA14, SCCP13, SLG06, ST00a, TAs07, WHJ+95, ZSB+12]. Scheme
[ABN99, PSJ+15, SKKC09]. Schur [YFF+12].
Science [Gol94]. Scientific
[CMBAN08, HLB94, WN10, BT01, BD06, Dan09, NJ00, Bra97]. scoring [TO10].
Scotland [AOV+99]. Scriptics
[Ano00b].
Scripting [RBPM00]. Scripts [TLA+02].
Seamless [CV98]. Search
[AMRR98, BCCO10, LAH+12, Mah11].
searches [TCG95]. Seattle
[ACM93c, IEE94a, IEE94d, LCK11, USE98a].
sec [AHW02]. Second
[IEE89, IEE96, FR95]. Section
[DSR15, CS12, DTLM14, SMQP09, YL16].
Section-Based [DSR15]. sections [NM10].
Secure [SV98]. Security
[BRRS10, MS03, Way95]. sedition [Bak95b].
SEDMS [USE92b]. See [Swe07, AC09].
segmentation [BCG14]. Select [KKD03].
selected [Cha05]. Selection
[AT16, PR05, Sta90]. Selective
[Nak03, PR98, VAG09, MCRS10]. Self
[LLLC15, Pet00, SEP96, BDF98, SLP +09].
Self-Allocating [SEP96]. self-healing
[SBB96]. self-migrating [BDF98].
Sema [Kor89]. semantic
[BNS11a, BNS11b, BNS12]. Semantics
[BR15, CKRW99, HEJ09, MP01, CKRW97a, CKRW97b, KT17, ZHCB15]. Semantics-aware [HEJ09]. Semaphore
[Holo98b, Kor89]. Semaphores [Hol98c].
semiconductor [Bak95b]. Sensible
[LC04, DC99, DC00, PFH06, ZJS +11, LG04].
Separation [SCG95, TFG10, TVD14].
September [ACM93c, AOV99, DLM99, FR95, Hon94, IEE99, USE98b]. Sequences
[GH03, FTAB14]. Sequential [CV98, CKRW97a, CKRW97b, SCG95, SMN +12]. serialization [BHK +04]. Server
[An00b, Cal97, Smi92, VB00, Zha00, CASA14, Est93, Goa96, Hig97, MEG03, SBB96, Sh097b, Sta90]. server-side
[SBB96]. Servers
[RCC12, BDM98, BBYG +05, BEKK00, KSB +08, RPNT05, SV96c, SV96a, SV96b]. Service
[CGK06, GMW99, Hig97, PSM03]. services [LZ07]. session
[Bak95b, HCD +04, IAD +04, VGR06].
sessions [An04c]. set [An92, KBF +12].
Sets [MNG16]. Seven [But14]. several
[FGG14]. shader [PYP +10]. shallow
[LVA +13]. Shanghai [IEE97]. shape
[Cor00, GBCS07]. ShrC [AGEB08].
Shared [BWXF05, BS96, DM98, EJ93,
GMR98, GH98, LB92, MVZ93, MCT08,
ST99, Thr99, VB00, WC99, YMR93b,
BB00, Boo99, DLOCO9, DPZ97, EKKL90, EV01, Gle91, ISS98, Jef94, MLC04, MKR10,
NPC06, RGG +12, TSY99, TSY00, YMR93a,
YN09, ZSB +12, dBO9, Cha05].
Shared-Memory
[BS96, DM98, EJ93, MVZ93, MCT08, Thr99,
WC99, EKKL90, TSY00, YN09].
shared-variable [dBO9]. Sharing
[CLFL94, CB16, RKK15, SP00a, Wei98b,
ZJS12, AGEB08, AGN09, LTHB14, Sam99,
SS95, TAS07, TE94a, Ver96, VQ12, ZJS10].
sharing-aware [TAS07]. sharing-based
[TE94a]. Shelf [MHG95]. shell [Ric91].
Shift [Ham96]. Shindo [An00a]. Shop
[Bec00]. short [CPT08, Lie94]. shortage
[An04b]. Should [EH+07]. SICStus
[EC98]. side [MWTW10, SBB96]. sided
[QSHI16]. SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].
SIGCOMM [RM03]. Signal
[Eng00, BM91]. Signals [GRR06].
Significance [ZJS12]. SIGPLAN
[ACM94a, ACM93a, ACM94b, ACM95b, ACM98b, ACM99a]. SIGPLAN-SIGACT
[ACM93a, ACM94b, ACM95b, ACM98b].
Silicon [LB17, THA +12]. SIMD
[FSY09, SW08]. Simple [AKS06, Ch15b,
WS08, BDM07, CL00, MSM +10].
SimpleGraphics [MKK99]. simplify
[PO03]. Simplifying [Pom98]. simulate
[MAF +09]. Simulation [For97, GV95,
HPB11, JYE +16, MPD04, VTSM12, WG94,
An07b, BBH +17, KBF +12, Leg01, Lep95,
MHW02, SWYC94, Sri03]. Simulations
[HEMK17, LS11, SC +15, ABC +15, KU17,
LVA +13, VPQ12]. Simulator [SRS98,
PWD +12, TSCH99, WZWS08, Nak03].
Simultaneous
[An05, CSK +99, EEL +97, GSL10,
HMNN91, LEL +97a, LEL +97b, LPE +99,
LEL +99, LRZ16, MCFT99, REL06b, SP07,
SLG04, SU01, ST00c, TEL95, TUL96,
 Single-Address-Space [CLFL94].

double-and [YSY09].

Single-Chip [HHOM91, MTN00].

Single-ISA [KTR04].

Single-Process [FT96].

Single-program [Dub95].

Single-thread [MLC09].

Singles [KTR04].

Slicing [KTF96].

Slices [PSG06a, PSG06b, PSG06c].

Slice-based [PSG06a, PSG06b, PSG06c].

Smalltalk [Bri98].

Smart [Sim97].

SMP [BWXF05, BNH01, CRE99, HD02, KKH03, KKJ+13, Pra95c, TAS07, TMAG03].

SMPs [WGW07].

SMT [Ano05, AH00, CY09, EE09b, EE10, EE12, FSPD16, FSPD17, KKL08, KI16, MG99, MMM+05, NSP+14, PAB+14, PLT+15, RPNT08, SLP08, TAS07, VS11, WA08].

SMT-based [KI16, PAB+14].

Soft [CH04].

Special [Ano94e, GGB93b, KU00].

specialization [WTH+12].

specialize [CWS06].

Specialized [dPRGB99].

Specific [Ste01, SP00b, Sh00].

specification [Sta05].

specifications [TVD10].

Specifying [BNS11a, BNS11b, BNS12].

spectroscopy [KC09].

spectrum [DKF94, Sha95b].

Speculated [SCL05].

Speculation [SU01, WS08, YBL16, DG99, GB99, JEV99, LWV+10, MT02a, MT02b, MT02c, NB12, PO03, PT03, SCZM00].

Speculative [AH00, Ano01, Ano02, BF04, IBST01, KKL08, MGQS+08, MG99, MT02a, MT02b, MT02c, RKM+10a, RKM+10b, SR01b,
Survival [Ano99]. Surviving [Ano99].
SVR4 [SPY+93]. swap [MLS15]. Swing [Gee98]. Switch [GN00, Eic97, GWM07].
Switzerland [Lak96]. Sy [USE01].
Symantec [Rod95a]. symbiosis [Bri89, EE10, EE12].
Symbiotic [ST00a, ST00b, STV02]. Symbolic [ACM94c, BGC14, Hon94, Lak96, Wat91, BHKR95, Fu97, HFF88]. Symmetric [BM07, HPB11]. Symmetry [ES97]. Symposium [ACM93a, ACM93b, ACM94b, ACM94c, ACM95b, ACM98b, ACM98c, Ano91, Ano94a, Ano00a, Ano03, Gol94, Hon94, Lak96, USE91a, USE92b, USE93a, USE98a, Wat91]. Synapsys [Col90a]. Synchronization [Bec01, Hei03, LA93, Rec98, DHM12, DESE13, MT02b, MT02c, MTPT12, NLK09, PRS14, RD06, Ven97]. synchronization-induced [MTPT12]. synchronization-related [RD06].
Synchronizing [McM96a, McM96b, CZWC13].
Synchronous [BM07, HPB11]. Syntax [KT17].
Tabulating [AA95, NPA92]. Tabulating [AR17]. Tabu [AMRR98].
Tabu [AMRR98]. TaintEraser [ZJS12]. Take [Wei97]. taking [Ano92b]. Talking [Ano94c, HCM94]. TAM [CGSV93]. Taming [Hol00, HBCG13, HHPV15]. TapeWare [Ano00b]. targeting [LHG94]. Task [CCK+16, GP95, Kwo03, Mar03, Mis96, PM14, ABG+08, CASA14, DCK07, OdSSP12, RCM+12]. Task-Level [GP95].
task [Di93, KR01a].
Tasks [Fin95, PV+17, FG+14].
Taxonomy [HM96, SPH96].
Tech
threaded

OA08c, PYP+10, PR98, Pra95c, RCV+10, RKM+10a, RKM+10b, RBPM00, RGK99, RS08, SCB15, Sam99, SP00a, SE12, Seif98, Sh097a, Sh097b, SV98, Sml06, St002, SQP08a, SQP08b, SQP08c, Taf13, TSY99, TSY00, Tem97, TMAG03, TJA+11, VIA+05, VV00, VK99, Wal00, Wil98, XMN99, YZ07, YSY+09, ZKR+11, dB09, vPG03, CGSV93].

Threading

BFA+15, DHR+01, Hol08d, KS16, LKBK11, McC97a, McC97b, MS15, Nor90, OR12, PTMB09, RCC14, Rei01, Sch90, TGO99, YLLS16, Bak95a, Bak95b, DTIW16, FWL03, LZW+13, MLC+09, MCFT99, NJ00, RRP06, RR04, SQP08a, SQP08b, SQP08c, VDBN98, kSYHX+11, YKL13, CH04].

Threading-Based

KS16. ThreadMentor

CMS03, She92. Threads

Ali94, Ano94c, ACR01, Ber96b, BCL+98, Boe05, BLPV04, Cal00, CGR92, Col90b, Crr98b, Crr98a, TLA+02, FHM95a, For95a, For95b, GMB93, GSC96, GN96, Gus95, Hai97b, HW92, HBG01, Hol00, How05, JLS99, KSS95, LP94, Lee93, Lee06, LB96a, LFA96, Man98, MP98, McM06c, Nor96, PSM01, Pet00, Pet03, Pla93, Pra95c, San04, SEP96, TG99, WCW+04a, Wll94a, Wll94b, Wll97, Yam95, Yam96, dIPRB99, Ano02, Bak95b, BZ07, Ber96a, BW97, BDF98, Bir89, BS00, Bu14, Bu97, CZWC13, Cal02, CPT08, Dra96, DESE13, DC99, DC00, FHM95b, FL90, GP05, Goi97, HCM94, HMC95, Hai97a, HBG02, HJT+93, HKT93, HKN+92, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, Kan94, KEE95, KSS96, Lan02, LZ07, MSLM91, MR98, MQW95, McM96a, McM96b, McM98a, McM98b, Men91].

threads

Mit96, MEG94, OW97, OW99, OL02a, OL02b, OL02c, PSM03, Pan99, PG03, PL03, RR03, Sch91, SCG95, SZG91, SZ92, SCM05, SKP+02, TAN04, WCW+04b, WCW+04c, WCW+04d, Wei98a, WCW+98, WW96, ZCMS02a, ZCMS02b, ZP04, ALW+15, Van97a]. Threads

AO00b, TB97a, TB97b. ThreadScope

WT10. Three

YMR99, YMR93a.

Throttling

BG94, CIM+17, EJ93, GN96, IEE94a, JLS99, LFA96, Lun97, MN00, PUF+04, PSCS01, SUE+12, SS96, Set94, dIPRB99, CS95a, CS95b, DC99, DC00, GB99, IEE94d, Jef94, Jen95, KKB+03, KASD07, KBF+12, MKK99, ND96, OT95, OdsSP12, PSM01, PSM03, RGG+12, San04, SZG91, SZ92, SJB92a, SJB92b, TSY99, TNB+95].

time-critical

KASD07. time-efficient

GB99. time-shared

Jef94.

timely

NH09. Timers

Ho99a, GRR06.

Timethread

BC94. Timethread-Role

BC94. Timing

Sk97, MHW02.

timing-first

MHW02. tiny

Xue12. Tip

Pet00.

Tips

Mit96, Pet00.

tk

Ass96, USE98b.

together

Ano97b, Pol90.

tokyo

Ano00a.

tolerant

MITS10, PG01, RRP06.

tolerant

[ÖCS01].

tolerating

Luk01, RBK+09, SKK+01.

Tool

AddS03, Ano98b, Goe01, Kor98, TAM+08, CMS03, CSM00, Hig97, LMC14, RGK99, YNP09.

Tool-supported

AddS03. Toolbox

Bra97. Toolkit

[SMZ+13].

tools

Ano98b, Cha05, EV01, WWW+02, EHSU07, Len95.

tools

Ano00b.

Toolset

Ano97a.

top

Ano99, AB02, DNR00.

topaz

MS87.

topics

BGG95, GCM95.

toroidal

KE+03.

totally

DHR+01.

trace

RS08, HEJ09.

trace-based

RS08.

traces

HEMK17, HR16.

tracing

Lem02, EKWL90, Tod95.

tracking

CZS+17, LH09, CZSB16, ZJS+11.

trade

AAC+15, Par91, KUCT15.

trade-off
[Bak95a, HW92, WWW+02]. Use-once
[Bak95a]. Useful [Pet03]. USENIX
[Ano90, Ano94f]. User
[ABLL92, DLM99, Eng00, GRS97, MQW95, SLT03, BF08, GP05, GRR06, HF96, Li05, MSLM91, OT95, SLT02, TNB+95, YZYL07]. User-Level [ABLL92, SLT03, MQW95, GRR06, MSLM91, OT95, SLT02, YZYL07].

User-Space [Eng00, GRS97]. Using
[Ano99, ABH+00, BDN02, BBC+00, BLG01, BTE98, CRE99, Cor00, DS16, DTIW16, DBRD91, GH03, HBG01, HJT+93, HBTG98, Hei03, How00, KMJC02, Kwo03, KET06b, LFA96, MPD04, McM98a, McM98b, Mix94, MM07, PF01, PBR+15, PO03, SW08, SCD+15, SEP96, SLT02, WJ12, Whi03, ZLJ16, Ano96, Bar09, BCM+07, CML00, Cat94, CTYP92, CDD+10, CVJL08, CKZ12, DESE13, GCC15, GMB03, GEG07, Hig97, HH97, JWTG11, JY+03, KASD07, KB+12, LK15, MM14, NPC06, NWT+07, Nik94, PT03, RKM+10a, RKM+10b, RM99, RPNT05, SLGZ99, SLP+09, TFG10, Toc95, TAN04, VPC02, VD08, ZJS+11, KSB+08].

UT [Hol12]. Utility
[FHM95a, JSMIP13, FHM95b]. Utility-based [JSMIP13]. utilization
[Squ94]. Utilizing [ES97]. UX
[Ano95a, Ano95b, Yam96].

V [EKB+92, Pea92, FG91, PST+92]. v.1.0
[Ano00b]. Validating [LB17]. Validation
[BVM03, LB17, SCB15]. value
[DG99, TFG10, ZCSM02a, ZCSM02b]. variable [Evr01, dB09]. Variables
[Hol98c, Whi03, Bak95a]. variation [PGB12]. variety [CML00]. VAX [Gil88].

Vector [Goo97, HHOM91, HHOM92, KBH+04a, KBH+04b, KKS+08, LRZ16, VD08, CS95a, CS95b, CSV10, KBA08]. Vector-Processor [HHOM91, HHOM92].

Vector-Thread [KBH+04a, KBH+04b, KBA08]. vectorization [cC91, JMS+10, RKHT17].

vectors [KT12]. Velodrome [FFY08]. Verification
[AmBdRS02, BCR01, CHl15a, DRV02, EGP14, FK12, KKW14, BK13, CASA14, DCK07, EG11, FFQS05, NHH14, Sta05]. verifiers [GLPR12]. Verifying
[GR09, RKCW98, GPR11]. version
[NHFP08, TV10]. version-consistent
[NHFP08]. versions [BD06]. Versus
[NSP+14, Am96, Yam96, dPRGB99].

Very [AOV+99, Pet03]. VI [ACM94d, Ano03]. via
[BCZY16, FBF01, Hig97, KRBJ12, KGPH12, LWV+10, LYTZ15, LEL+97a, LEL+97b, RM00, SCCP13, SMD+10, Ten98, VV11, WCV+04b, WCV+04c, WCV+04d, WCV+04a, WLK+09]. Viability [KLB97]. Video [BC00]. view [KTLK13, PT91].

Vina [TO10]. Virtual
[BSSS14, BBM09, KG05, KKD+03, PRB07, USE01, WCV+04a, DLM99, DPZ97, DC99, DC00, MN03, MRG17, Ven97, WCV+04b, WCV+04c, WCV+04d, WK08a, WK08b, WK08c]. Virtualization [LRZ16, ABB+15]. Virtually [LB92]. virtues [NJK16]. virus [GJ11]. viscous [RM99]. Virtual
[PTMB09, Dll93, McM96c, Esp96, Nag01]. Visualization [Ano97a, ACMR01, Cal02, Cas02, BCS00, CSB00, MKK99, NCA93].

Visualizing [CdOS01, WT10, DSEE13]. Visually [Dru95]. VLIW
[FGG14]. VMs [KKJ+13].

voltage [MTPT12]. volumes [Koo93]. VRSync
[MTPT12]. vs [EHP+07, MMTW10, MCFT99, SKP+07, VPC02, VD08, ZJS+11, KSB+08].

vulnerability [SSN10, WHG07].

WA [LCK11, ACM93c, IEE94a, IEE94d]. Wabi [Ano97a]. Waiting [LA93]. Waits
[How00]. Wanted [Ano94g]. Warnings
[CJW+15]. warp
[FSYA09, MTS10, Rei95, Tam95]. was
[San04]. Washington
[ACM92, Ano90, IEE94c, USE98a]. Watch
REFERENCES

[Ano97b]. water [LVA+13]. Wave
[Ano00b, BBC+00, LS07]. wavelet
[TKHG04]. Way
[KAO05, MTN+00, Rin99, ZJFA09, FGT96]. Ways
[Wei97]. Weak [KZC15, TVD14].
Weaving [Pra95b]. Web [Ano94d, Swi09, Chl15a, Chl15b, Hig97, PCM16]. Webrelay [Zha00]. WebThreads [Ano97a]. week [Ano95a, Ano95b]. weeks [But14].
Wheeler [LHS16, NTR16]. Where [EHP+07]. Whole [GN96, BM09].
Whole-Program [GN96]. Wide [Ano94d, Ano96, FGT96]. wide-area [FGT96]. Widening [KKW14]. will [Ano95a, Ano95b]. WiMAX [CDD+10].
Windows [USE98a, HKT93, YZYL07, Hig97, Lee93, PC96, Pra95c, Pra95b, TCI98, Tim03, YAM96]. Winter [Ano90, USE89, USE91b, USE93b]. Wired [DHR+01]. Within [BP05]. without [Gus05, LZW14, Pla02]. woes [Ver97].
WOMPAT [Cha05, EV01]. Work [Ber96b, Wal95, ALH80, Ber96a, BL94, BL99, Lep95, OdSSP12, RL14]. work-optimal [Lep95]. work-stealing [ALH80, RL14]. worker [SCM05].
workflows [FGG14]. Working [BT01].
Workload [KTR+04, SSYG97, LBE+98].
Workloads [KML04, LYH16, RCC12, CML00, SQP08a, SQP08b, SQP08c, WA08].
WorkPlace [Bra97]. works [Hig97, San04].
Workshop [ACM98a, RM03, Ano94e, Cha05, EV01, IEE89, IEE94a, IEE94d, Ass96, USE96, FR95]. Workstation [Ano00b, HN91, IEE89]. Workstations [KLIH97, Lu98, LGH94, RGK99, PH97].
World [Ano92a, Ano92b, Ano94d, Ano96, Sut99, BBM09, Hol98d, Hol98a, Hol98b, Hol98c, Hol99a, Hol99b, WLG+14].
World-wide [Ano96]. Wrapper [AS14]. Wrappers [Hub01]. Write [Sho97a, Sho97b]. Writer [Ano97a]. written [ND13]. WWOS [IEE89]. WWOS-II [IEE89].
X [Ano00b, Smi92, SRI95, MSM+16]. Xeon [SCD+15]. Xlib [Gil93, STW93]. XML [DWYB10]. XMT [DV99, VV00, BC14, VTSM12, VDBN98].
XMT-2 [BC14]. XPS [Ger95].
Year [Ano99]. Yokohama [Ano03]. York [IEE90]. Yosemite [Ano00b].
z13 [ABB+15, CJB+15]. Zurich [Lak96].

References

[Ano97b].

[Ano97b].
José I. Aliaga, Hartwig Anzt, Maribel Castillo, Juan C. Fernández, Germán León, Joaquín Pérez, and Enrique S. Quintana-Ortí. Unveiling...

Alverson:1992:EHP

Amamiya:2009:CBN

Antoniu:2001:DPP

Antoniu:2002:IMP

Athanasaki:2008:EPL

REFERENCES

Axnix:2015:IZF

Agarwal:1993:SMV

Antonopoulos:2009:ASH

Aliaga:2015:CMS

Aliaga:2012:SDG

REFERENCES

Antoniu:1999:ETT

Aumage:2000:PAM

Antoniu:2000:CDP

Aleen:2009:CAS

Almasi:2003:DCD

ACM:1992:CPI

REFERENCES

QA 76.88 I57 1992. Sponsored by ACM SIGARCH.

REFERENCES

ACM:2003:SII

Arvind:1997:MSC

Attali:2001:GVJ

ÁdBdRS05

Abraham:2008:DPS

Abraham:2005:ABP

Abraham:2003:TSP

Abadi:2006:TSL

Arnold:1996:MPJ

Agerwala:2006:SRC

Agarwal:1989:PTM

Agarwal:1991:PTM

Agarwal:1992:PTM

Anderson:2008:SCD

Amrhein:1996:CSM

Anderson:2009:LAC

Akkary:2000:CSM

Abdulla:2008:MCR

Adiletta:2002:PSA

Aitken:1996:MCJ

Gary Aitken. Moving from...

Ahn:2012:ISE

Azagury:1999:NIR

Aciicmez:2006:PSB

Arjomand:2016:BAP

Alfieri:1994:EKI

Agrawal:2008:AWS

Agrawal:2010:HLF

Amamiya:1989:DFC

Amaranth:1998:TBM

Aamodt:2003:FMO

Abraham-Mumm:2002:VJR

Azizi:2009:AEC

[Aiex:1998:CMT]

[Ann96]

[Anonymous:1990:PWU]

Anonymous. Multiprocessor desktops are proliferating, even though there remains a shortage of multithreaded applications for them. *Open Systems Today*, 165:60–??, December 1994. ISSN 1061-0839.
Anonymous:1994:PIW

Anonymous:1994:SIP

Anonymous:1994:USC

Anonymous:1994:WMC

Anonymous:1995:HUW
Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1995:HWB
Anonymous. HP-UX 10.0 will be unveiled this week, with newly tuned kernel and I/O paths, plus a multithreaded NFS implementation. Open Systems Today, 168:34–??, February 1995. ISSN 1061-0839.

Anonymous:1996:WWD
Anonymous:1997:NPW

Anonymous:1997:TWP

Anonymous:1998:MS

Anonymous:1998:NTS

Anonymous:1999:BST

Anonymous:2000:CCI

Anonymous:2000:NPAa

REFERENCES

Anonymous:2000:SLT

Anonymous:2001:ESM

Anonymous:2002:ST

Anonymous:2003:CCV

Anonymous:2005:ECS

Anonymous. Errata: Characterization of Simultaneous
REFERENCES

Atkinson:1999:PTF

Arnau:2012:BMG

Areias:2017:SDP

Adiletta:2002:NGI

Arunachalam:1992:EMM

Addison:2003:OIA

Awile:2014:PWF

USENIX:1996:ATT

Altiparmak:2016:MMF

Adl-Tabatabai:2006:CRS

Boehm:2008:FCC

Bocchino:2009:TES

REFERENCES

[Bergan:2010:CCRa]

[Bergan:2010:CCRb]

[Baldwin:2002:LMF]

[Bic:1993:EUI]

[Burckhardt:2007:CCC]
REFERENCES

June 2007. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Barabash:2005:PIM

Buhr:1994:TRM

Ball:1998:MTA

Bhandarkar:2000:PPM

Boudol:2002:NCP

Bronson:2010:PCB

Banerjee:1995:PCD

[BCG+95] Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene W. Hodges IV,
REFERENCES

2000. CODEN CCUJEX. ISSN 1075-2838.

Becker:2001:SMW

Beddow:1991:MTC

Beebe:1998:BPA

Borkenhagen:2000:MPP

Berg:1996:HDT

Berg:1996:JQH

Bettcher:1973:TSR

Bhowmik:2004:GCF

REFERENCES

Bahmann:2008:EFK

Bhatotia:2015:ITL

Bic:1995:ATD

Bergan:2014:SEM

Baghsorkhi:2012:EPE

Burgess:2012:EFL

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
</table>

[BJK+96]

[BIK+11]

[Bir89]

[Blumofe:1996:CEM]

[BK96]

REFERENCES

REFERENCES

[BMF+16] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri

Bouge:1999:ECM

Baker:1994:EPP

Briguglio:2003:PPM

Brunst:2001:GBP

Burnim:2011:SCSa

Burnim:2011:SCSb

2011. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Jean-Pierre Briot. From objects to actors: study of a limited symbiosis in Smalltalk-80. *ACM SIGPLAN Notices*, 24(4):69–72, April 1989. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
REFERENCES

Brightwell:2003:DIP

Barthe:2010:SMP

Bellosa:1996:PIL

Broadman:1999:ECM

Boussinot:2000:JTS

Bacon:2006:BFL
Bokhari:2010:EPM

Burnim:2010:ACD

Bartolini:2014:AFG

Boisvert:2001:ASS

Brunett:1998:IET

Butenhof:1997:PPT

Buttari:2013:FGM
Butcher:2014:SCM

Bik:1997:JPJ

Beveridge:1997:MAW

Bai:2015:SPA

Basharahil:2005:DSA

Benaya:2007:UTA

Calcote:1997:TPS

Calkins:2000:ITT

Callaway:2002:VTR

John Callaway. *Visualization of threads in a running Java program*. Thesis (M.S.), University of California, Santa Cruz, Santa Cruz, CA, USA, 2002.

Caromel:1989:GMC

CarrerasVaquer:1989:APE

Campanoni:2008:PDC

Catano:2014:CSL

Néstor Cataño, Ijaz Ahmed, Radu I. Siminiceanu, and Jonathan Aldrich. A case study on the lightweight verification of a multi-threaded...

Catanzaro:1994:MSA

Cazals:2002:NID

Caswell:1989:IMD

Caswell:1990:IMD

Creech:2016:TSS

Coons:2010:GEU

Cui:2000:MPC

J. Cui, J. L. Bordim, K. Nakano, T. Hayashi, and N. Ishii. Multithreaded parallel computer model with performance evaluation. *Lec-
REFERENCES

Gautham N. Chinya, Jamison D. Collins, Perry H. Wang, Hong Jiang, Guei-Yuan Lueh, Thomas A. Piazza, and Hong Wang. Bothnia: a dual-personality extension to the Intel integrated graphics driver. Oper-
Chetlur:2010:SWM

Chandra:2001:PPO

Chung:2013:LBD

ChassindeKergommeaux:2001:PEE

Catalyurek:2012:GCA

Canetti:1991:PCP

R. Canetti, L. P. Fertig, S. A.

Cerin:2006:MSS

Cattaneo:1992:ACT

Culler:1993:TCC

Chong:1995:PAF

Indranil Chowdhury. Performance evaluation and architecture of an instruction cache
for multithreaded RISC processor. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1992. x + 93 pp.

REFERENCES

Curran:2015:IZM

Cejtin:1995:HOD

Cai:2015:ADB

Carter:1994:HSF

Cenciarelli:1997:SMJ

Cenciarelli:1997:SMT
P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From sequential to multi-threaded Java: An event-

[Caudal:1995:DEM] F. Caudal and B. Lecus-

Cian. Design and evaluation of a multi-threaded architecture for parallel graph re-

[Choi:2000:SCP] Sung-Eun Choi and E. Christopher Lewis. A study of common pitfalls in simple multi-threaded programs. *SIGCSE Bulletin (ACM Special Inter-

Cormen:2009:IA

Chapman:1998:OHI

Cahir:2000:PMM

Cahoon:2000:EPD

Curtis-Maury:2008:PBP

Carr:2003:TPT

Chen:2010:CCM

Che:2014:ALM

Cabodi:2013:TBM

Chuang:2006:UPB

Colvin:1990:CTS

Colvin:1990:MLT

Coorg:1995:PNS

Cook:2002:REJ

Corbett:2000:USA

Choi:2008:ABP

Clark:2002:AMT

Cappello:1999:PNB

Criscolo:1998:JQH

Criscolo:1998:JQ

Cromwell:1998:PBD

Chang:1995:CSM

Chang:1995:CTS

Carr:2000:PCL

Carothers:2002:CMP

Chen:2012:CLA

ChassindeKergommeaux:2000:PIV

 REFERENCES

Chappell:1999:SSM

Chappell:1999:SSM

Constantinou:2005:PIS

Choi:2010:MDA

Culler:1991:FGPa

Culler:1991:FGPb

Culler:1991:FGPc

Choi:2010:MDA

Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-

REFERENCES

Das:2007:FVT

Dennis:1994:MMP

DuBois:2013:CSI

DeWitt:1999:PTL

Domani:2003:TLH

DHollander:1992:PLL

DeRusso:1998:MEH

REFERENCES

Dolby:2012:DCA

Duncan:2001:LPD

Dillon:1993:VEM

Divekar:1995:IMP

Dam:2010:PCI

Karniadakis:2002:DLP
Denniston:2016:DH

Dubey:1994:APM

Doligez:1993:CGG

Devietti:2009:DDS

Dongarra:1999:RAP

delaPuente:1999:RTP

REFERENCES

1999. CODEN AALEE5.
ISSN 1094-3641 (print), 1557-9476 (electronic).

Demange:2013:PBB

Dagum:1998:OIS

Daloz:2016:ETS

Dorffman:1994:EMO

Devietti:2012:RRC

Danjean:2000:IKA
REFERENCES

References

Deniz:2016:UML

Bois:2013:BGV

Dang:2017:ECB

Dohi:2010:IPE

Das:2015:SBP

Ding:2015:OCA

Wei Ding, Xulong Tang, Mahmut Kandemir, Yuanrui Zhang, and Emre Kultursay. Optimizing off-chip accesses in multicores. *ACM SIG-
REFERENCES

David:2014:CMC

Diavastos:2016:ITD

Dubey:1995:SSM

Dugger:1995:MC

Dascal:1999:ELR

Devietti:2012:RAS
REFERENCES

Ding:2010:PCM

Dyer:1998:CAS

Ding:2012:CDF

Elwasif:2001:AMT

Eskilson:1998:SMM

Esmaeilzadeh:2012:LBL
[ECX+12] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S. McKinley. Looking back on the language and hardware revolutions: measured power, per-

Eyerman:2009:MLP

Eyerman:2009:PTC

Eyerman:2010:PJS

Eyerman:2012:PMJ

Eggers:1997:SMP

Edelstein:2003:FTM

Emmi:2007:LA

Edelstein:2001:MJP

Edelstein:2002:MJP

Esparza:2011:CPB

El-Ghazawi:2002:UPP

Eggers:2010:AL

Esparza:2014:PBV

107

REFERENCES

Elmasri:1995:TCL

Emer:2007:STV

Eytani:2007:TFB

Eickemeyer:1997:EMP

Eager:1993:CER

Eickemeyer:1996:EMU

Ediger:2013:GMA

1045-9219 (print), 1558-2183 (electronic).

Eykholt:1992:BMM

Eggers:1990:TEI

English:1995:MC

Engelschall:2000:PMS

Evtyushkin:2016:UMC

Elmas:2007:GRT

Emerson:1997:USW
REFERENCES

Philipp Farber. Execution architecture of the multithreaded ADAM prototype.

Figueiredo:2001:IPH [FBF01]

Fiske:1995:TPT [FD95]

Feuerstein:1996:MTP [FD96]

Feuerstein:2002:LMT [FdL02]

Fekete:2008:TSD [Fek08]

Ferrara:2013:GSA [Fer13]

Flanagan:2004:ADA [FF04]
REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Flanagan:2008:ADA

Flanagan:2009:FEP

Flanagan:2010:AMD

Flanagan:2008:TAS

Flanagan:2005:MVM

Flanagan:2008:VSC

Faulkner:1991:PFS

REFERENCES

REFERENCES

Farzan:2012:VPC

Fillo:1997:MMM

Farzan:2015:PSU

Foltzer:2012:MSP

Foster:1996:NAI

Faust:1990:POO

REFERENCES

REFERENCES

Flanagan:2002:MCM

Ferreira:1995:PAI

Feliu:2016:BAL

Feliu:2017:PFP

Factor:2006:PID

Michael Factor, Assaf Schuster, and Konstantin Shagin.
REFERENCES

Fung:2009:DWF

Farcy:1996:ISP

Fabregat-Traver:2014:SSG

Feinbube:2011:JFM

Fujita:1997:MPA

Flautner:2000:TLPa

REFERENCES

Flautner:2000:TLPc

Flautner:2000:TLPb

Fang:2003:DGO

Grant:2009:IEE

Guzzi:2014:CPP

Gallagher:1994:PLM

Gao:1993:EHD

REFERENCES

Garber:2001:NBT

Giceva:2014:DQP

Greiner:1999:PTE

Giampapa:2005:BGA

Gotsman:2007:TMS

Gao:1995:ATD

Guang R. Gao, Lubomir Bic, and Jean-Luc Gaudiot. Ad-...

Ghoting:2007:CCF

Gokhale:1992:ICI

Garcia:1999:MMI

Ghosh:2015:NCC

Georges:2004:JPR

Gasiunas:2017:FBA
[VGD+17] Vaidas Gasiunas, David Dominguez-

Gravvanis:2008:JMB

Geary:1998:SM

Gravvanis:2007:PPA

Geiselbrecht:2001:NOS

Gerber:1995:IOX

Garcia:2000:PTL

REFERENCES

Granat:2009:NPQ

Garland:2012:DUP

Gallmeister:1991:EEP

Golla:1998:CMR

Golla:1998:CEB

Goldwasser:2007:INP

Gu:1999:EJT
REFERENCES

ISSN 0163-5980 (print), 1943-586X (electronic).

REFERENCES

Govindarajan:1992:LCM

Grunwald:1996:WPO

Gopinath:2000:PSB

Goeschl:2001:JTT

Goldwasser:1994:PAS

Gollapudi:1996:MCA

Sreenivas Gollapudi. A multithreaded client-server architecture for distributed multimedia systems. Thesis (M.S.), Dept. of Computer Science, State University of New York
REFERENCES

Goldstein:1997:LTC

Gonzalez:1990:MSC

Goossens:1997:MVC

Gould:2003:GLT

Girkar:1995:ETL

Gil:2005:TCS

Gidenstam:2008:LLF

Gupta:2011:PAR

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and refinement for

Gerakios:2014:SSG

Grossman:2003:TSM

Gomez:2006:STC

Gomez:1997:EMU

Gomez:2006:SCM

Gontmakher:2000:JCN
Alex Gontmakher and Assaf Schuster. Java consistency: nonoperational char-
CODEN ACSYEC. ISSN 0734-2071 (print), 1557-7333 (electronic). URL

[M. Gulati. Multithreading on a superscalar microprocessor. Thesis (M.S., Engineering), University of California,]

Haines:1997:OIA

Hamilton:1996:JSN

Hanson:1997:CII

Harrington:1999:WMM

Hayden:1993:BIC

Haines:1992:SMC

Hottelier:2015:SLE

Hunt:2013:DTN

Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. DDOS: taming nondeterminism in distributed systems. ACM SIGPLAN
REFERENCES

Hanson:2001:UFI

Hanson:2002:AFI

Heber:1998:UMA

Hankendi:2017:SCS

Haines:1994:DCT

Halsted:1994:PCR

Haines:1994:DCT

Ding:2002:MOP
REFERENCES

Honarmand:2013:CUA

Heinlein:2003:ATS

Hoffman:2009: SAT

Hroub:2017:EGC

Halstead:1988:MMP

Hertzum:1996:BQO

Halappanavar:2012:AWM

[HFV+12] Mahants Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and Alex Pothen. Approximate weighted matching on emerging many-core and multithreaded architectures. *The International
REFERENCES

REFERENCES

[Hig97] Lauren Hightower. Publishing dynamic data on the Internet — Allaire’s Cold Fusion is a development tool that provides access (via the Web) to any database the Web server can access using ODBC. Cold Fusion runs as a multithreaded Windows NT system service and works with any ODBC-compliant database. Dr. Dobb’s Journal of Software Tools, 22(1):70–??, January 1997. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

Huelsbergen:1993:CCG

Hur:2007:MSM

He:2008:COD

Hansen:1990:EPA

Holm:1994:CSP

Helmbold:1996:TRC

Haines:1995:RSC

Matthew Haines, Piyush Mehrotra, and David Cronk.
REFERENCES

Ropes, support for collective operations among distributed threads. Washington, DC, USA, 1995. ?? pp. Shipping list number 96-0037-M.

Haines:1997:DPP

Haines:1997:DPP

Hart:1996:MPA

Hirata:1992:MPA

Harish:2016:PIK

Harish:2016:PIK

Hirata:1991:MPA

Horiguchi:1991:PEP

Horiguchi:1991:PEP

Holub:1998:PJTb

REFERENCES

Holub:1998:PJTc

Holub:1998:PJTd

Holub:1998:PJTb

Holub:1999:PJTb

Holub:2000:TJT

Holingsworth:2012:SPI

REFERENCES

Hong:1994:FIS

Hopper:1998:CFM

Howes:1998:TPC

Howard:2000:UPW

Halappanavar:2015:CLL

Hsu:2011:MSS

Huang:2016:PMR

Jeff Huang and Arun K. Rajagopalan. Precise and maximal race detection from incomplete traces. ACM SIGPLAN Notices, 51(10):462–
REFERENCES

476, October 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Hud96] Greg Hudson. Multithreaded design in the Athena environ-
REFERENCES

Halladay:1992:PUM

Hsieh:1993:CME

Horwood:2000:DMA

Hyde:2000:JTP

Huang:2012:EPS

Huang:2013:CRL

Iannucci:1994:MCA

IEEE:1994:PSH

IEEE:1994:PSW

REFERENCES

IEE:1995:PCL

IEE:1996:PSM

IEE:1997:APD

IEE:1999:HCS

IEE:2002:STI

Iwata:2001:PMT

Ishihara:2001:CCP

Itzkovitz:1998:TMA

Jaisson:2008:IPM

Jeffay:1994:LMT

Jen95

Johnson:2004:MCP

Ji:1998:PMM

REFERENCES

Johnston:2004:ADP

Jolitz:1991:PUB

W. F. Jolitz and L. G. Jolitz. Porting UNIX to the 386. The basic kernel multiprogramming and multitasking. II. *Dr. Dobb’s Journal of Software Tools*, 16(10):62, 64, 66, 68, 70, 72, 118–120, October 1991. CODEN DDJOEB. ISSN 1044-789X.

Jin:2003:AMP

Jons:1999:NPS

Jang:2010:DTE

Joe:1996:CSP

Jonak:1986:EFL

Jonas:1991:BCL

REFERENCES

Jagannathan:1992:CSC

Jacobs:2008:PMC

Joshi:2009:RDP

Joisha:2011:TEA

Joisha:2012:TTE

Joao:2012:BIS

REFERENCES

tronic). ASPLOS ’12 conference proceedings.

Kumar:2007:ESI

Krashinsky:2008:ISV

Kyle:2012:EP1

Koster:2003:TTI

Krashinsky:2004:VTAb

Krashinsky:2004:VTAA

REFERENCES

REFERENCES

88, 89, 98, August 1997. CODEN DDJOEB. ISSN 1044-789X.

Keckler:1998:EFG

Kleiman:1995:IT

Kelly:1994:MBC

Kelly:1994:MOB

Klasky:2003:GBP

Kempf:2002:BTL

Kepner:2003:MTF

Kyriacou:2006:CCO

REFERENCES

Kyriacou:2006:DDM

Kougiouris:1997:PMF

Kocberber:2015:AMA

Kim:1994:HAM

Keller:2005:TBV

Kollias:2007:APC

Kunal:2009:HDS

REFERENCES

REFERENCES

[Kumar:2008:AVO] Sanjeev Kumar, Daehyun Kim, Mikhail Smelyanskiy,

REFERENCES

[155]

[KNPS16] Youngho Kim, Joong Chae Na, Heejin Park, and Jeong Seop.

Kim:2006:ERI

Koniges:2000:ISP

Koontz:1993:PBM

Korty:1989:SLL

Karamcheti:1996:RME

Kaiser:2006:CJC

gust 2006. CODEN AALE5. ISSN 1094-3641 (print), 1557-9476 (electronic).

Kalayappan:2016:FRT

Kgil:2008:PUS

Kalla:2004:IPC

Kumar:2004:AST

Nagendra J. Kumar, Siddhartha Shivshankar, and Alexander G. Dean. Asynchronous software thread integration for efficient software.
REFERENCES

[Kumar:2004:SIH] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I. Farkas. Single-ISA heterogeneous multicore architectures for mul-
REFERENCES

160

LCCN QA 76.95 I59 1991.

Kuszmaul:2015:SSF

Kejariwal:2009:ELL

Kwok:2003:EHC

Kasikci:2015:ACD

Kandemir:2015:MRR

Lim:1993:WAS

REFERENCES

Lafreniere:2000:SMD

Liu:2012:FPA

LakshmanYN:1996:IPI

Lenharth:2009:RDO

Lam:1995:CPC

Lang:1997:MTE

Laneve:2002:TSJ

Larcheveque:1995:OIP

Larbi:1997:BRM

LeSergent:1992:IMT

Lim:1995:LPB

Lewis:1998:MPP

Lewis:2000:MPJ

Lee:2017:MVN

[LB17] Doowon Lee and Valeria Bertacco. MTraceCheck: Validating non-deterministic behavior of memory consistency
REFERENCES

[Lo:1998:ADW]

[LBE+98]

[LBH12]

[LCH+08]

Duo Liu, Zheng Chen, Bei Hua, Nenghai Yu, and Xianan Tang. High-performance

[Li:2006:MEMa]

[Li:2006:MEMb]

[Li:2006:MEMc]

[Lucia:2013:CEF]

Duo Liu, Zheng Chen, Bei Hua, Nenghai Yu, and Xianan Tang. High-performance

Lathrop:2011:SPI

Li:2004:FRT

Lozi:2016:FPL

Leary:1996:CEH

Lee:1993:TW

Lee:2006:PT

Legrand:2001:MTD

Leiserson:1997:AAM

Lo:1997:CTL

Lo:1997:CTP

Leman:2002:EFT

Lenatti:1995:RPM

Leppänen:1995:PWO

Ville Leppänen. Performance of work-optimal PRAM simulation algorithms on coated

[Lev97] Peter J. Leven. A multithreaded implementation of a Robot Control C Library. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 1997. x + 72 pp.

[LH94] Ben Lee and A. R. Hur-
REFERENCES

Lee:2009:MHF

Li:2005:OSA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu:2014:TAP</td>
<td>Xu Liu and John Mellor-Crummey. A tool to analyze the performance of multithreaded programs on NUMA.</td>
</tr>
</tbody>
</table>

REFERENCES

Lo:1999:SDR

LPS07

LQ15

LRZ16

Laudon:2007:CWM

Liao:2011:AUB

Lu:1994:MPM

Lu:1995:HMC

Lu:1998:ONW

Lob2001:TML

Lundberg:1997:BMC

Lundberg:1999:PBS

Lobeiras:2013:PSW

Jacobo Lobeiras, Moisés Viñas, Margarita Amor, Basilio B. Fraguela, Manuel

Peng Li and Steve Zdancewic. Combining events and threads for scalable network services implementation and evalua-

REFERENCES

Mahafzah:2011:PMI

Mahafzah:2013:PAM

Manley:1998:GPT

Manley:1999:IPT

Mao:1996:PMS

Marowka:2003:EOT

Marowka:2007:PCD

Man:1991:MLC

Man:1996:JLP
REFERENCES

Masney:1999:IMT

Mateosian:1997:MNT

Mattson:2003:HGO

Mendelson:1999:DAM

McNairy:2005:MDC

Madan:2007:PEA

Moon:2006:TMS

McCarthy:1997:MTI
REFERENCES

McCarthy:1997:WMT

Mitchell:1999:ILP

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Instruction-level parallelism vs. thread-level parallelism on simultaneous multi-threading processors. In ACM [ACM99b], page ??

McManis:1996:JDSa

McManis:1996:JDSb

McManis:1997:JDS

McManis:1999:JDS

McManis:1998:DUT

McManis:1998:JDU

Mannarswamy:2010:CAS

Mitchell:2015:GIA

Montesinos:2008:DRD

Mikschl:1996:MMS

Matheou:2015:ASD

Mukherjee:1994:MII

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

??, 1995. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Mis96] Amitabh Mishra. Task and instruction scheduling in parallel multithreaded processors. Thesis (M.S.), Department of Computer Science, Texas A&M University, College Station, TX, USA, 1996. ix + 60 pp.

[MJF+10] Lingchuan Meng, Jeremy Johnson, Franz Franchetti, Yevgen Voronenko, Marc Moren...

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES

2016. CODEN ???? ISSN 1084-6654.

Moore:1995:MPD

Moore:1996:MPD

Mount:2000:ADP

Massalin:1989:TIO

Manson:2001:CSM

Martin:2004:HPA

Musuvathi:2007:ICB

Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of multithreaded programs. *ACM SIGPLAN Notices*, 42(6):446–455. June 2007. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
REFERENCES

2867 (print), 1558-1160 (electronic).

Musuvathi:2008:FSM

Machado:2016:CDD

Mayes:1995:ULT

Marinescu:1994:HLC

Mascarenhas:1998:MTP

Mukherjee:2009:PAS

G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91a], pages 27–40. LCCN QAX 27.

REFERENCES

Marino:2010:DSE

Marino:2011:CSP

Marino:2016:DXU

Morrisett:1993:PLP

Martinez:2002:SSAa

Martinez:2002:SSAb

Martinez:2002:SSAc

Minh:2007:EHT

Matsushita:2000:MSC

Meng:2010:DWS

Muller:2003:OCB

Musoll:2009:LSO

REFERENCES

REFERENCES

tronic). OOPSLA ’13 conference proceedings.

Norris:2016:PAM

Nemeth:2000:AMD

Nevison:1999:SSC

Nemawarkar:1994:PIN

Neamtiu:2009:STU

Neamtiu:2008:CEV

Nikhil:1994:MII

Nielsen:2000:MTN

Narayanaswamy:2016:VCA

Nicolau:2009:TEP

Nakaike:2010:LER

Nordstrom:1990:TL

Northrup:1996:PUT

Nikhil:1992:MMP

Narayanasamy:2006:RSM

[NPC06] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory dependencies using

Nemeth:1999:MLK

Nogueira:2016:BBW

Norwood:1994:SMP

Nguyen:2015:RCC

Narayanasamy:2007:ACB

Nutaro:2017:HAA

Ottoni:2008:COGa

Ottoni:2008:COGb

Ottoni:2008:COGc

Olszewski:2009:KED

Ossner:2013:GMB

Ostler:2007:IHT

Ozer:2001:WMT

Odaira:2014:EGI

Rei Odaira, Jose G. Castanos,

Olivier:2012:CMW [OL02a]

Ogata:1992:DIH [OKID92]

Oplinger:2002:ESRb [OL02b]

Oplinger:2002:ESRc [OL02c]

Omma:2004:BMA [Omm04]

REFERENCES

Ongwattanakul:1997:RDM

Onion:1997:MM

Oh:2012:MTS

Odersky:1993:CNA

Oikawa:1995:RDU

Oyama:2000:OCC

Oaks:1997:JT

Oaks:1999:JT

Peternier:2014:IEU

Pant:1999:TCP

Park:1991:PTM

Papadopoulos:1992:MCS

Park:2017:HHC

Porter:2015:PFG

Donald E. Porter, Michael D. Bond, Indrajit Roy, Kathryn S. Mckinley, and Emmett Witchel.

Petitpierre:2003:JTC

Plakal:2001:CGC

Pratikakis:2006:LCS

Park:2003:IMP

Pham:1992:MDA

Pham:1996:MPW

Pham:1999:MPW

Parcerisa:2001:ILT

J.-M. Parcerisa and A. Gonzalez. Improving latency tolerance of multithreading through decoupling. IEEE
REFERENCES

Pinilla:2003:UJT

Pusukuri:2012:TTD

Pusukuri:2014:LCA

Pusukuri:2016:TEL

Park:1997:HPM

Pham:1991:EMD

Thuan Quang Pham. The experimental migration of a distributed application to a multithreaded environment. Thesis (M.S.), Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 1991. 51 pp.

REFERENCES

Parashar:2013:TIC

Piumarta:1998:ODT

Petric:2005:EEP

Prabhakar:1995:IDO

Prasad:1995:WTS

Prasad:1995:WNT

Prasad:1997:MPT

[207]

Permandla:2007:TSP

[207]

Presotto:1990:MSP

[207]

Petrovic:2014:LHM

[207]

Protopopov:2001:MMP

[207]

Pozniansky:2003:EFD

[207]

Pozniansky:2007:MEF

[207]

Pyarali:2001:EOT

Parashar:2006:SSBa

Parashar:2006:SSBb

Parashar:2006:SSBc

Pang:2001:PSR

Pang:2003:PSR

0626 (print), 1532-0634 (electronic).

[Robert Preissl, Theodore M. Wong, Pallab Datta, My-]

Preissl:2011:MGA

Park:2010:ISP

Quintana-Orti:2012:RSP

Quintana-Orti:2009:PMA

Qian:2016:EFS

REFERENCES

Qian:2016:ODG

Qian:2014:PRR

Rajagopal:1993:DMI

Arjun Rajagopal. Design of a multithreaded instruction cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1993. ix + 84 pp.

Ramsey:1994:CTB

Rashid:1989:MFO

Ratanaworabhan:2009:DTA

Ranganathan:2000:AMT

M. Ranganathan, Mark Bednarek, Fernand Pors, and Doug Montgomery. AGNI: a multi-threaded middleware
REFERENCES

Reda:2012:APC

Rahman:2014:CCO

Ro:2006:DEH

Rakvic:2010:TMT

Radojkovic:2012:OTA

[Reich:1995:DHP] David E. Reich. Designing high-powered OS/2 Warp ap-

[RGG+12] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and Francisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded COTS processors in time-critical environments. ACM Transactions on Archi-
REFERENCES

Rodgers:1999:TSN

Richards:1999:ALT

Ringle:1999:SCT

Richman:1991:EHC

Rinard:2001:AMP

REFERENCES

Rodgers:1999:TSN

Richards:1999:ALT

Ringle:1999:SCT

Richman:1991:EHC
Reddy:2011:BFH

Reus:1998:VCO

Reiche:2017:AVI

Rodrigues:2015:DSE

Raman:2010:SPUa

Raman:2010:SPUb

Ribic:2014:EEW

Raghavan:2009:DLC

Roe:1999:PMI

Reinhardt:2000:TFD

Roh:1996:GOE

ROA14

REFERENCES

[Ran95] M. T. Raghunath and Abhiram Ranade. Designing interconnection networks for

Vimal K. Reddy, Eric Rotenberg, and Sailashri Parthasarathy. Understanding prediction-based partial redundant threading for low-overhead, high-coverage fault tolerance. ACM
REFERENCES

[Rosu:2007:ITO]

[Rounce:2008:DIS]

[Riccobene:2009:SCB]

[Rohan:2001:RMD]

[Rangan:2008:PSD]

[Roth:2004:MTC]
References

Raychev:2013:ERD

Ravoor:1997:MTP

Shaw:1998:CIP

Samorodin:1999:SFS

Sanden:2004:CJT
B. Sanden. Coping with Java threads: Java works for many kinds of concurrent software, but it was not designed for safety-critical real-time applications and does not protect the programmer from the pitfalls associated with multithreading. Computer, 37(4):20–27, 2004. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Sato:2002:SJL
Smith:1980:ASD

Sah:1996:PIS

Saavedra-Barrera:1991:ASM

Saavedra-Barrera:1990:AMA

Storino:1999:MTB

Savage:1997:EDD

Saillard:2015:SDV

[SCB15] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Static/dynamic validation of MPI collective communications in multi-threaded con-

Saez:2013:DFP

Schweitzer:2015:PEM

Schauser:1995:SCP

Klaus E. Schauser, David E. Culler, and Seth C. Goldstein. Separation constraint partitioning: a new algorithm for partitioning non-strict pro-

Schonberg:1989:FDA

Schmitt:1990:CEM

Schauser:1991:CDT

Schmidt:1998:EAM

Douglas C. Schmidt. Evaluating architectures for multithreaded object request

Schildt:2014:JCR

Sendag:2005:IIS

Steinke:2005:NPF

Schauser:1991:CCM

Schauser:1991:CML

Steffan:2000:SAT

Spertus:1995:ELB

So:2013:STI

Sartor:2012:EMT

Seiden:1999:ROM

Sen:2008:RDR

Severance:1996:MOB

Sundaresan:1996:COO

[SG96] Neelakantan Sundaresan and
REFERENCES

Sung:2014:PTR

Sodan:1997:ENN

Sridharan:2014:AEP

Shahnaz:1995:DMD

Munira Shahnaz. Design of a multithreaded data cache for a hyperscalar processor. Thesis (M.S.), Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 1995. xi + 80 pp.

Shankar:1995:STI

Shaw:1998:CPM

Shene:1998:MPI

Shene:2002:TST

Shinjo:2000:DCEb

Sinharoy:1997:OTC

Shoffner:1997:JSSa

Shoffner:1997:JSSb

Sime:1997:GPM

REFERENCES

Sinharoy:1999:COI

Singh:1992:DRT

Steengaard:1995:ONC

Sharafeddine:2012:DOE

Singh:1992:DRS

Stewart:1997:MDH

Sung:2001:MDA

Smaragdakis:2007:TIC

Schoenherr:2011:MTI

Sohn:2001:CTC

Son:2009:CDD

Sung:2002:CPE

Sato:1992:TBP

REFERENCES

Suleman:2009:ACS

Swanson:2003:ESI

Singh:2012:EES

Sodan:2002:AMA

Samorodin:2000:SFS

Shinjo:2000:DCEa

Yasushi Shinjo and Calton Pu. Developing correct and efficient multithreaded programs with thread-specific data and a partial evaluator. Operating Systems Review, 34(2):33, April 2000. CODEN OSRED8. ISSN 0163-
REFERENCES

5980 (print), 1943-586X (electronic).

[SPH96] Sharkey:2007:EOA

[SP+03] Sharkey:2007:EOA

[SQP08a] Saarikivi:2017:MTS

[SQP08b] Spero:1994:MMD

M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading: power-efficient and high-performance execution of

Suleman:2008:FDTc

Squillante:1994:AMP

Salcianu:2001:PEA

Sohi:2001:SMP

Samak:2014:MTS

Sen:2006:OEP

REFERENCES

Szymanski:1996:LCR

Sutherland:2010:CTC

Shi:2007:CCP

Soundararajan:2010:CSE

Saito:1999:MRS

Sohn:1997:DWDD

References

REFERENCES

Stoller:2002:MCM

Samak:2016:DSF

Stuckey:1995:FCI

Snavely:2002:SJP

Schmidtmann:1993:DIM

Shen:1999:ATL

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management for fast MPI execution on shared memory machines. In ACM [ACM99b], page ??.

Sigmund:1996:IBM

Sigmund:2001:SCS

REFERENCES

REFERENCES

Schaffer:2008:UHM

Sleiman:2016:ESO

Sweetman:2007:SMR

Swinnen:2009:APA

Shee:1994:DMA

Shih:2014:COR

Schwan:1992:MRT

Sterling:2002:GMP

Schwan:1991:RTT
Karsten Schwan, Hongyi Zhou, and Ahmed Gheith.

Tamasanis:1995:MMW

Thoziyoor:2008:CMM

Theobald:2000:LCE
REFERENCES

Tolmach:2004:IFL

Toulouse:1995:CID

Tas:2007:TCS

Thompson:1997:THP

Thompson:1997:TPC

Tseng:2003:DST

Thekkath:1994:ISB

R. Thekkath and S. J. Eggers. Impact of sharing-
based thread placement on multithreaded architectures.

Thekkath:1994:EMH

Tullsen:1996:ECI

Tullsen:1995:SMM

Tullsen:1998:SMM

Order Plan Catalog Number 98CB36235.

TempleLang:1997:MTE

Tennberg:1998:CAD

Tennberg:2002:RGO

Trancoso:2006:CCM

Tetewsky:1994:GDR

Tian:2010:SPU

Tang:1999:APT

REFERENCES

Timmerman:2003:EWC

Tsai:1998:POC

Tu:2011:MBM

Thitikamol:1998:PNM

Theobald:2001:DCI

Theobald:2002:IEC

REFERENCES

REFERENCES

Tsai:1997:PSC

Tsai:1997:SIC

Torrant:1999:SMS

Tumeo:2012:DN

Tang:1999:CRT

Tang:2000:PTR

Thulasiram:2003:PEM
Ruppa K. Thulasiram and Parimala Thulasiraman. Per-

Thulasiraman:2002:EMA

Taura:1999:SMI

Tullsen:1996:SM

Tentyukov:2010:MFV

Torlak:2010:MCA

Turon:2014:GNW

REFERENCES

REFERENCES

[USENIX:1992:PSU]

[USENIX:1992:SED]

[USENIX:1993:PUMB]

[USENIX:1993:PWU]

[USENIX:1996:PFA]

[USENIX:1998:PUWa]

[USENIX:1998:PSA]
REFERENCES

REFERENCES

vanHoff:1995:JIP

Vanhelstuwe:1997:BRJ

Vanhelstuwe:1997:JPE

Vckovski:2000:MTS

Volkov:2008:LQC

Vishkin:1998:EMT

Volkman:1993:CDB

[VE93] Victor R. Volkman and John English. Class DGSThread: a base class for multithreaded DOS programs. C Users Jour-
REFERENCES

nal, 11(12):113–??, December 1993. ISSN 0898-9788.

Vachharajani:2005:CMP

Vlassov:1999:QMM

Volkman:1993:CCP

Vitali:2012:LSO

Vrenios:2004:PPC

Vinoski:1996:DCD
[VS96] S. Vinoski and D. C. Schmidt. Distributed callbacks and de-
coupled communication in CORBA. *C++ Report*, 8(9):
48–56, 77, October 1996. CODEN CRPTE7. ISSN 1040-
6042.

Vandierendonck:2011:MSR
SMT resource usage through speculative instruction win-
dow weighting. *ACM Transactions on Architecture and
???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Vander-Swalmen:2009:CAM
[VSDK09] Pascal Vander-Swalmen, Gilles Dequen, and Michaël Krā-
jecki. A collaborative approach for multi-threaded SAT solving.
International Journal of Parallel Programming, 37(3):324–342,
June 2009. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640
issn=0885-7458&volume=37&issue=3&spage=324.

Vale:2016:PDT
[VSDL16] Tiago M. Vale, João A. Silva, Ricardo J. Dias, and João M.
Lourenço. Pot: Deterministic transactional execution.

2016. CODEN ???? ISSN 1544-3566 (print), 1544-3973
(electronic).

Vantrease:2008:CSI
[VSM+08] Dana Vantrease, Robert Schreiber, Matteo Monchiero,
Moray McLaren, Norman P. Jouppi, Marco Fiorentino,
Al Davis, Nathan Binkert, Raymond G. Beausoleil, and
Jung Ho Ahn. Corona: System implications of emerging
nanophotonic technology. *ACM SIGARCH Computer
CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

VanZee:2016:BFE
[VSM+16] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng
Low, Robert A. Van De Geijn, Francisco D. Igual, Mikhail
Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon Austel,
John A. Gunnels, and Lee Killough. The BLIS frame-
work: Experiments in portability. *ACM Transactions on
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Vlassov:1996:AMM

Volos:2012:ATM

[VTSL12]

Villa:2012:FAS

[VTS12]

Vishkin:2000:ELR

[VV00]

VanDeGeijn:2011:HPD

Winter:2008:ATN

Walter:1995:PMS

Walmsley:2000:MTP

Wang:2004:HTVd

Wang:2004:HTVa

Wang:2004:HTVc

[Wang:2004:HTVc]

WCZ+07

Wester:2013:PDR

Benjamin Wester, David De-

Wei:2012:OLL

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wadd:2014:RWD

Val:2015:MCC

Youjip Won, Kyeongyeol Lim, and Jaehong Min. MUCH: Multithreaded content-based file chunking. *IEEE Transactions on Computers*, 64(5):1375–1388, ??? 2015. CODEN ITCOB4. ISSN 0018-
REFERENCES

264

9340 (print), 1557-9956 (electronic).

Watcharawitch:2003:MME

Wendykier:2010:PCH

Wismuller:1996:IDP

Welch:2010:SCF

Wheeler:2010:VMM

[WT10] Kyle B. Wheeler and Due-

[Yam96] Michael Yam. DCE pthreads versus NT threads. Michael ports PTF, a C++ class library for DCE pthreads, from HP-UX System 9 to Windows NT. In doing so, he examines the differences between pthreads and NT threads, and describes the porting experience. *Dr. Dobb’s Journal of Software Tools*, 21(12):16–??, December 1996. CODEN DDJOEB. ISSN 1044-789X.
Yang:1997:MUA

Yan:2002:RCC

Yasrebi:1995:EDO

Yiapanis:2016:CDS

Yang:2014:MPP

Yamashita:2012:APS

Yi:2010:NAS

Yu:2013:GDS

Yao:2016:OCO

Yu:2016:DLR

Young-Myers:1992:DTC

Young-Myers:1993:ESTa

Young-Myers:1993:ESTb
Yu:2009:CIC

Yu:2012:MCD

Yoo:1996:CAA

Yoo:1996:PCM

Youseff:2009:PES

Yong:2003:AMC

Yan:2007:HMC

REFERENCES

[ZCSM02b] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan,

Zhuang:2004:BRA

Zhuang:2011:CST

Zarrabi:2013:LSF

Zhuravlev:2012:SST

Ziarek:2006:SMC

Zuberek:2002:APB