A Complete Bibliography of Publications in *Journal of Numerical Linear Algebra with Applications* and *Numerical Linear Algebra with Applications*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

01 October 2017
Version 1.55

Title word cross-reference

(1, 1) [Cao08, Krz11]. (2, 2) [Li00], (m, k) [MN00]. (q) [Jia96]. + [LJM14], 0.822 [Ano09]. 16 [KM09]. 2 [AM96, BV13, Mar94, NBKS99, QB15, ZVO14, vKVW00]. 2 × 2 [AB10, AB13, Cao13, Kol05]. 3 [GKY97, KK16, LPW06, NBKS99, PM97, PR96, mMP99, vKVW00]. 4 [MR14]. A [CC07]. A − BX ± X * B* [LT08]. A − XB [Den09]. α [Tre13, XCG16]. AXA* = B [Tia13]. AXB + CYD = E [vPXP06, WTTZ10]. AXB = C [fLyHZ11, Miy15]. H [Gra08, LOY08]. K [Mar95]. D [BLA11]. GMRES(k) [KY95].

H [AMM04, BCGM09, Chiu04, KP10, KC17, Leb02, LP16, Sun06, ZSCX10, DMM*08, Pul09]. H1 [AMM04]. H1 [LPW06]. Hsc [Ozb13]. hp [DMM*08]. IDR(s) [CvG11]. ILU [CGK94, KOV17]. k [BO08, VVM05a]. λ [FLPW01]. l [Dax94]. LU [KNY00, KOV17, DHS95, Saa94]. M [BNT94, Sau95, Beu94, CCH98, HHLL16, IP13, JZ11, Kra02, LSL01, WQZ09, XZS10, ZH06, vN00]. R [DN12, HK02]. O(N) [Sac05]. P [LHL70, Pea09, AEHV15, Beu03, BB06, GKY97, LZ90, LO13, Pul09]. p × p × 2(p ≥ 2) [JK12]. Q [Cha12, DBLP16]. QMR [FH94]. QR [ADP96, Cha12, FG02, AG95, CH94]. R [DW15, BKM+12]. s [CK10]. S/P
\[(z_j) = g(z_j) (j = 1, 2, \ldots, n) \]

\[u^T(A) V = \text{Gr04}. \]

\[X = \text{fLyHZ11}. \]

\[Z = \text{HHQ13, HCD15, LQY13, XC13}. \]

\[DMM^+08, \text{Pul09}. \]

- circulants

\[\text{Tre13, XCG16}. \]

- conforming

\[\text{AMM04, LPW06}. \]

- cycle

\[\text{BLZ08, Lai97, NN10, Not98}. \]

- decomposition

\[\text{Kap98}. \]

- dominated

\[\text{AMM04}. \]

- eigenpairs

\[\text{LP16}. \]

- eigenvalue

\[\text{WQZ09}. \]

- eigenvalues

\[\text{HHQ13, HCD15, LQY13, XC13}. \]

- elliptic

\[\text{ZSCX10}. \]

- factor

\[\text{Cha12}. \]

- factorization

\[\text{KNY00}. \]

- factors

\[\text{BO08}. \]

- function

\[\text{XZS10}. \]

- hierarchical

\[\text{LO13, Pul09}. \]

- linear

\[\text{DN12}. \]

- matrices

\[\text{BNT94, BCC98, BCGM09, KC17, Kra02, LSL01, LHL07a, Pei09, Sun06, vN00}. \]

- matrix

\[\text{FLPW01, Sau95, Gra08, HK02, HHLL16, IP13, JZ11, LOY08, ZJ06}. \]

- monotonicity

\[\text{Mar95}. \]

- multisplittings

\[\text{BCC98}. \]

- optimization

\[\text{Chu04}. \]

- partitionings

\[\text{GKY97}. \]

- policy

\[\text{BLLA11}. \]

- refinement

\[\text{DMM}^+08. \]

- self-adjoint

\[\text{Leb02}. \]

- step

\[\text{CK10, Li00}. \]

- th

\[\text{AEH15}. \]

- version

\[\text{Beu03}. \]

- weighted

\[\text{DBLP16}. \]

0-521-48296-8 [Nab97].

14 [SB12]. 1st [NL09].

2010 [NL09]. 2D [BCV03]. 2nd [Kap02].

3-D [BG02]. 3D [MM02, NH98].

4th [Web10a]. 4th-order [Web10a].

60th [Vas03].

70th [CLR13, Vas05].

80th [SGP14].

97 [Axe98]. 98 [Axe99].

ABS [SCD94]. ABS-type [SCD94].

absorbing [Cas11, RV12]. abstract [NV08a]. accelerated [BEH+17, Ema12, PRPI09, YYN12].

Acceleration [DE06, BGN07, rFS09, WM12]. Accuracy [LL97, BS01, SWKW98]. Accurate

[BP13, DPP16, KR06, LVW01, Van00]. achieving [SWKW98]. acoustic [GM17, mM04]. acoustics [CCG06].

activity [MC04]. Adaptive

[MM06, MM11, RR12, BLE97, BGM+12, BE98, DHR+04, Fer96, JYH17, LM06, MMC12, MWZ06, Mit10, RSR10, SWKW98, Ver00, ZSCX10]. adaptively [YYN12].

addition [BH07]. additive

[BL11, CL96, Cz02, DS08, KV92, KLM15, NV08a, YY14, XZ10]. ADI

[Dam08, MP16]. ADI-preconditioned

[Dam08]. adjoint

[Leb02, MM11].

adjustments [FLR03]. admissible [VL11].

Advanced [VZ08]. advection

[BCV03, CCK06]. advection-diffusion

[BCV03]. advection-dominated [CCK06].

aerodynamic [LV04]. agglomeration [IV04, KV06, LV08, LV12]. aggregation

[BMM+08, BVV12, BDM+14, CG15, GHT09, GHJ16, MM98, NN11, NY03, OS10, Pul08, PM11, Sch12].

aggregation-based [CG15, NN11].

aggregation/disaggregation [MM98].

aggressive [Yan10]. AILU [GN00]. AINV

[KKNY01]. AINV-type [KKNY01].

Algebra

[NA09, AN09, SB12, JNL92, BDRS12, BM05a, CSCP05, Dat01, GGV13, Gy08, Mar00, MV05, Özb13, PDV05].

Algebraic

[Ada04, AN94, BBS12, BO08, GL95a, Kra06].
Algorithm [ARSO14, Amb15, AB12, AMMR17, AG95, BCK05, BPS05, BCB14, BFdP13, BD15, BLP01, CD11, CC03, CP12, ER96, FG02, FO95, Gian99, GM17, Het07, HHLL16, JR94, JZ11, Jou94, Kap99, Kau07, KMC16, Liv04b, LYL15, MPV06, MC17, MLV05, MV08, MP13, MP16, MC04, MR14, NG15, NL16, Not98, Not02b, OST10a, PM97, RS02, Sei10, Sha99, TC10, VY14, XZ09, ZCS15, ZCW11].

Analyzing [RV12]. angle [DMY03, Lec12]. angles [GH06]. anisotropic [BG12, CG15, GHT90, H™n06, KW99, KT08, KLM14, KNP03, Sch12, ZCS15, YZ13].

aligned [YXZ13].

Analysis [BEH+17, BLP01, CCvG06, CG15, MS07, Mat96, SPD05, SP06, Sha98, YZ13, YXZ13, Zhu14, Axe15, BPS15, Bat95, BW17b, BBG13, BV12, Cas11, CDDSC12, CTP09, CLC11, CL13, CLTW11, CV13, CDW06, Don10, EM11, FM15, GZ16, CX14, HJR97, HVvR04, Lee10, LV04, LT09, LB08, MO11, MO14, MM98, MM02, NN11, NLZ11, Not10, PV99, Pf99, RR12, Saa00b, ST17a, Sha99, TCH98, WC15, WW08b, WW11, WF15, mMvDV02, vRH05].

analytic [GN00, IT05]. analytical [SSB05].

Alternating [BD12]. alternation [MM95]. alternating [LMM00].

Alternative [GS99]. Alternatives [Sid97].

AMG [LOS04, BBM+06, GX14, HV16, KV06, MMP06, TTV15, Vas02, XM17].

AMG-shifted [TT15]. AMGe [LV08].

AMLI [Ben03, Mar98]. among [Par92]. analyse [AN13, HS13]. analyses [PM97].
JZ09, JK17, KKNY01, KNY99, KM92, LS04, LB17, LPS15, NY03, Sol14, VW97].

Approximated [NR17]. Approximating [DE98, VS17, AFSCSU14, SS97].

Approximation [AEHV14, AH02, BE09, BF11a, BCV03, DK15, DK95, FMPS13, HK02, HPS15, ITS07, KJ12, KT08, KLM15, KV15, LPS16, LV12, LZQ12, MO16, OST10b, PW12, SLV04, SLV06, DW15, XG10, XHZ03].

Approximations [CYZ99, DLVZ06, FY01, HJR97, KN07, LO15, M07, Mor07, Mor09, Per06, RSCTP15].

arbitrary [BW17a, HR05].

arbitrary-degree [BW17a]. architectures [FO95].

arising [AN03b, BGM09, BMP11, BRT07, CZ15, FP15, Gen00, HKKP07, HM14, MZH17, Ma16, MSV13, Miy17, MST16, PM97, Shi10, SMSW00, TC10]. arithmetic [DK95, GKV12].

ARMS [SS02]. Arnoldi [BHHJ13, GGV13, HLLL13, KR14, MP15, PR07, VM16, WW07, WF15, YNN12].

arrow [BFG95, GNQ15]. Arrowhead [Zha92].

assignment [CQX11, LC13, LW04, LW05]. associated [CCG00, IP13, MO94]. Asymptotic [BGP97, CGK05, Tre05, Lami12].

Asymptotical [DS02]. asynchronous [Sch99]. atmospheric [BNP15]. atomic [LO15]. Augmentation [Cao08].

Augmented [BR07, TT15, CS97, GE16, LD07, MG08, Szu14, Zit05]. Austin [Lee10].

Automated [SV11]. Auxiliary [KLM15, BC12, KV08]. aware [DHR04]. away [IV04]. Axelsson [Cao13, Vas05].

axisymmetric [CP06].

B [Nabo97]. background [LNY15].

Backward [CTP09, GL95a, EM11, LC07, LZ12, Pei03, Smu05, WKS95, YHD11].

balance [GSS01]. balanced [Lot07].

Balancing [PY03, BPS13, LT09, MD03, NV08a, WLBH12]. BAMG [BKM+12].

Banach [LZY11]. band [VP95]. banded [BCR11, CSCTP05, CGK05, FLM09, GSS01, Kau07, Lot07, MS14]. Barrier [Gar01, Mar95]. Barzilai [HD07]. based [AB12, AMMR17, AMMP06, Bai10, BZ13, BMAA16, BG05a, BB15, BCZ12, BC12, BMM+08, BLW08, CW97, CG15, CLNY15, Ch03, DMM+08, Don10, DKVB15, FP05, Fer96, GN00, GB11, GZ16, GNQ15, GHW06, GKY97, HM03, Het07, HL16, HM16, IV04, JK17, Kap98, KY95, KXX03, KN14, KNY00, KR08, KLM15, Lam12, LO13, L04, LNY15, LXS16, LM06, MM06, MMP10, NN11, Naz95, NA97, NV08b, Reu96, RR12, SW96, SPD05, SH14, UM09, WH94, WTW14, XS90, Xie11, xW15, XM17, ZMO10]. bases [CV03, MYZ16].

basic [BR99, BB96, MLV05]. basis [BGW05, BCHT04, CDDC12, CGK15, CLNY15, CH03, DMM+08, Don10, DKVB15, FP05, GKY97, HM03, Het07, HL16, HM16, IV04, JK17, Kap98, KY95, KXX03, KN14, KNY00, KR08, KLM15, Lam12, LO13, L04, LNY15, LXS16, LM06, MM06, MMP10, NN11, Naz95, NA97, NV08b, Reu96, RR12, SW96, SPD05, SH14, UM09, WH94, WTW14, XS90, Xie11, xW15, XM17, ZMO10].

BEM [FS09, HPSS03].

Bézier [KABH17]. Bernoulli [AB12].

Bernstein [BGW05]. Besov [Dah02]. best [BDDK+15, BHP13, KJ12].

better [Alb06, BG05b]. between [Li00, MC09, Tre05]. bi [PL07, LZQ12].

bi-quadratic [LZQ12]. bi-symmetric [PL07]. bidirectional [BP13].

bidomain [MNCT07]. biharmonic [AY11, L09, OW95].

bilinear [ABB10, J09, STZ12]. Binary [BMP11].

Bingham [HG00]. biomechanical [LV99].

biomechanics [Axe99, NBKS99]. Biomedical [LD08, NL09]. birthday [CLR13, LPQ06, SGP14, Vas03, Vas05].

Biswa [CLR13]. bisymmetric [YH04].

black [NA97, DM10, YW12]. Blaheta [AB13, Cao13]. BLAS [OOO11]. Blended [HK02, BM05a].

Block [CE13]. Blocks [CE13]. Blowup [CE13]. Blum [CE13].
[BKP02, RBV08, Wan00, Zhu08, Zhu14].
Coffey [DPP16]. Collapsible [LD08].
collapsing [BB01]. collisions [LO15].
collection [CDSC12, FP15, PSK08].
column [KV15]. Combination
[Not02a, PW13, Shi02]. combined
[KRW08, SLV13, SBS15]. Comment
[Cao13, AB13]. Comments
[WTZD10, NT04]. Communication
[Lai97, Yon96, AMMR17, VY14].
Communications [LD08, NL09].
Commuting [VZ14]. compactly [FP15].
comparative [LR08], comparing [MMC12].
Comparison [CGK94, Li00, PGT14, SBS15, AG99, BB96, CP99, FLR03, FP95b, GLOW04, KP00, MC09, NV08a, Not05b].
comparisons [BT15]. compatible [Liv04a].
compensated [AK94]. complement [BGM09, HKK07, KW99, KNX01, KLM15, LXS16, LW03, NG15, PW12, Rak99, SGP14, WW08b].
complement-based [LXS16].
complementarity [AW11, Bai10, BZ13, CK14, DJ09, HL16, HM16, XZS10, wX15].
Complementary [ZM08]. complements
[BG05a, Kra06, MW16, NX03, WTWG14].
complete [JL09]. Completely [GL95b].
completion [EHM95, Lao16]. complex
[AK00, CV13, GH06, HES15, HKH06, IK00, KR11, KH07, MZHB17, Not05a, SS97, Wu15, XQ09]. complexities [Alb06].
complexity [DFZ05, GHJV16]. Compliant
[LD08]. component [BF11b, MM02, NH06].
component-wise [BF11b]. components
[BDGL09, LB17]. componentwise
[Dia09, DXW12, Lam12]. composite
[Fer96, RSR10, RR12]. Composite-based
[RR12]. compressed [IBr92]. compression
[IBr02]. compressive [ZZ15]. Computation
[EJK01, Mai06, Ozb13, AT00, BB16, BV00, Chu04, Huc98, MVK04, MM11, Miy17, MGF+02, NX03, Sd97, WLBH12, XM17].
Computational [BGM11, CCvG06, Ema12, GS97, Ian16, Mar00, SS07]. Computations
[MPV06, Axe98, AC11, BP13, DPP16, Kho96, OST10b]. Computed [GL95a].
computer [CZ15, DK95, GL02]. computers
[JO04, MM97, TSPS06]. Computing
[BDGL09, Dax04, Lor14, MRT98, NW15, vNR07, BGW05, CJL08, CF05, DE06, FM99, KNX01, KBF15, KMC16, KH06, LZY11, LP16, MM98, MVV08, MP16, Pul16, RT02, SLK16, SHT11, TS12, WQZ09, WW07, YYN12, ZQ12, MMM09]. concept
[Mey94]. concerning [BM05a]. Condition
[BC10, CLTW11, YDH11, BB06, BT92, BG05b, CCG00, CDW06, DW07, Dia09, DXW12, DWWQ13, EHM95, EG16, LX08, LH08, LLW09, Pul08]. conditioned
[MM09, NCV05]. conditioning
[BDGL09, LHW11]. conditions
[Per06, Szy94, XHZ03, Zit00, Zit05].
conduction [AJ94]. conforming
[AM04, BMN05, KM99, LPW06]. conic
[Naz95]. conjugate [AM95, BGP97, BMSS09, BB96, CNT07, Cha07, DMY03, DR03, Hac92, Kap94, Kap02, MO94, Mey94, Not02a, PR95, DW13, WD08, Wei94].
Connection [MC09]. conquer
[KNX01, LLLJ16]. Conservative [AIT05a].
conserving [ABM17]. Consistency
[FLR03]. Consistent [Ric09, DBG06].
consistently [Bea94]. constant
[AM96, Liv14, Mar94]. constrained
[Ada04, AN03b, DD07, DR03, ER96, GW00, HHM10, KV06, Lin12, LWC16, LV98, NBKS99, PW12, PSW14, Pen08, RS10, Sto92, SW12, Vla00, XJ12]. Constraint
[SL10, Ber12, Cao09, fLyHZ11, pLL07, LW07, MRT02, yPyHZ04, WBL14].
constraint-preconditioned
[Ber12, WBL14]. constraints
[BRPS13, Dob99, Lay05, LQZ12, MD03, MS07, SW12, VfFd13]. constructing
[BFP13, KKNY01, NY03]. construction
[BC09, WWC15]. constructions [YNP04].
constructive [BW17a]. contact
[Ada04, Hla99, IV04, NO04, ZVO14].
Continuation [DF01, CWS97, CC03].
continuous [Cas11, SSB15].
continuous-time [Cas11].
continuously [Vos09]. contrast [AY11].
contribution [WF15].
control [BLP08, BFPS10, BO13, DMS17, Dat01, KK13, IW05, MS07, MP13, PS14, ROA13, SW12, VFDV13, ZHJL12]. controlled [CFJ16].
controllers [Ozb13].
convection [BR99, FY01, HP97, HK12, KABH17, KZX03, RSCTP15, XG10, ZYFG11, vRH05]. convection-diffusion [BR99, FY01, KZX03, ZYFG11, vRH05].
Convergence [BBG13, BH16, CL96, CP99, LT09, LB08, MD03, MM98, NH98, Pu16, ST17a, Sch99, WCZ15, ZSCX10, Zit05, AJ94, BPS15, BS01, BGP07, BR99, BMSS09, BLZ08, BV12, C202, Che02, CJT03, CK14, DS08, FTV05, GR99, GD11, GX14, HVX16, J094, Jot94, Kap94, Kap05, KP06, Li00, Liu12, LW16, MRT06, MO08, PS95, PRP09, Pu08, RV12, SLV13, Szy94, VL11, ZW10, ZQ12, Zit09, Zit00, vDE02].
convergent [CQ10, GT09, Sol14].
convex [Car97, Laz16, LMV04, Shi02, Shi04]. core [BH04, JYZ17, Mor07].
core-functions [Mor07].
corner [BLZ08]. corrected [BKM12, MZ15]. correction [CS02, CRV14, GS99, NV08a, NFD10]. corrections [LXS16, QXB09].
corrector [HM14].
corrector-type [HM14].
sprinciple [DBLP16, LW16]. corresponding [AT00].
Corrigendum [HS14].
cosine [RAOA13].
coupled [LNP12, GLOW04, HMS99, LPV01, TSPSO06].
coupling [FS09, HPPS03].
couplings [Yot01].
covolume [CCK06].
crack [CKW02, LW09].
criteria
[BB15, Pen07, Sot13].
critically [HHLL16].
Cross [OST10b, MO16].
Crout [May06, May07].
Crouzeix [KMS08, SSB04, Zhu14].
Crouzeix-Velte [SSB04].
cubic [HLLW05]. curl [CP06, KPV08, ZSCX10].
current [Bai12].
curvature [KRW08].
curvature-based [KRW08]. curvilinear [PSK08]. cycle [BLZ08, TO09, Lai97, NN10, Not98, VL11].
cylindrical [HG00].
Czech [FM99].
Czech-US [FM99].
D [GKY97, AM06, BV13, BG02, KK16, LPW06, Mar94, NBKS99, PM97, PR96, QB15, ZVO14, nMP09, vKVW00]. DAE [ABK15].
damped [BC09]. damping [BTT13].
data [Bau08, BF11a, BFdP13, BH04, CLNY15, DQW15, NLZ11, PDV05, Rie09].
data-sparse [Bau08, BF11a]. Datta [CLR13].
Davidson [CFJ16, Don05].
decision [Buc11, CEQ10].
Decomposition [CGK94, AN03a, AN07, AMMR17, AFK02, BP13, BW17a, Bla94, Bla02, BPS13, CS89, Car97, CGM01, CL13, CLNY15, CJT03, EM05, FL00, FRR16, FGNW14, GVT03, GB15, GTH16, Gus03, HLM92, HC05, Ibr02, JIM90, KK92, Kap98, Kap02, Kem12, KMMR10, Kho96, KN14, KN03, LR95, LV99, LT09, LH11, LXS16, LT11, LT13, LMM00, MD03, MM02, MR14b, PY03, Saur95, TSPSO06, WQ07, YL08, Zhu08].
decompositions [BF96, BLW08, LS06, SSB04].
deconvolution [MLV05].
Decoupling [LVW01].
Dedicated [SGP14, CLR13].
Dedication [NN15].
defect [NFD10].
defective [AFS14].
defects [KK16].
deficient [DE98, GS97].
definite
[ARMW14, AIT05a, AV94, Bai16, BMA16, BT03, DJ09, Ema12, Kap98, KH07, Kol05].
definite - [PW13]. definition - [VVM05c].

DEFLATED-GMRES - [MN00]. deflation - [NV08a, SLV13]. degenerate - [BMM06, Sto92]. degree - [BW17a, DS10, Gus04b, HVX16]. delay - [DGRR11, JLW05, LC13, MSV13]. delay-differential - [MSV13]. denoising - [LNP12, ZZ15]. denoising/deblurring - [LNP12]. dense - [CDGmM04, DS10, GTY97, KN07, KBF15, Ver00]. density - [NY03, OST10b]. dependency - [RV12]. dependent - [CNT07, CRV14, GS05, HG00, KPT14, Mai06, MV13, RBV08, Sha98, ZYFG11, kVW00]. depending - [Vos09].

derivative - [LY15]. derivatives - [AT00, Xie11]. derived - [BDV06]. deriving - [Mey94].

derivative - [LY15]. derivatives - [AT00, Xie11]. derived - [BDV06]. deriving - [Mey94].

descent - [BCR11, BCR14, Bot13, JLW05, LH08, LHW11, LW03, MW11, MSV13, MM11, PSK08, Rak09, RBV08, SW12, TC10, ZCW11, Zhu14].

differential-algebraic - [ZCW11].

diagnostic - [BLP01, CS95, ES09a, GMR05, HS05, MRT02, SW96, TSP00].

diagnosis - [BLP17, BCV03, BR99, CCK06, CG15, FY01, Gan99, KXZ03, KRW08, KP10, Lee16, LPS15, Mav01, OC04, RSCPT15, Sch12, WBWM04, XG10, YXZ13, ZYFG11, vRH05].

diffusion- - [KRW08]. digraphs - [THC09].

dimension - [BTT13, CLNY15, KCS11, VS17, vGSZ15].

dimensional - [AALS01, CGPV13, CLNY15, DY04, KT08, NLZ11, Özv13, Rja98, XSZ09].

dimensionality - [YZ13]. dimensions - [SBS15, XZS15, YZ13].

direct - [Dam08, JZ11, ZJ06, BLPO1, CNY05, CS95, ES09a, GM05, HS05, MRT02, SW06, TSP00].

direction - [BB96, DBG06, XJ12].

directions - [DS13b, ZS08]. Dirichlet - [Rja98].

disaggregation - [Pul08, PM11].

discontinuous - [ABM17, BKP02, BBS12, DLV06, EFW03, HHvR04, KT08, Wan00, WBWM04, vRH05].

discrepancy - [BC02].

discrete - [BCV03, CLTW11, DGB+13, DNR12, GORR16, Han13, KM92, NR14b, PSK08, SSB04, Web10a].

discrete-differential - [Web10a].

discretization - [ABM17, BCR11, BS01, CMG11, DP03, HHvR04, HK12, Lay05, LPV01, LOY08, UM009, Zhu14].

discretizations - [AT15, BCR14, BBS12, EGF11, GHO15, K0V17, Lee12, Lee16, LOS04, MW11, Osw95, RS02, SRGL13, SSB15, XS11, XZS15].

discretized - [GS07, KS04, MNCT07, vRH05].

discriminant - [GS07, KS04, MNCT07, vRH05].

disordered - [Sac05].

displacement - [Bla94, WN05, Bla02, KM99].

displaying - [EJK01].

distance - [DFNY08, AFS14, NR11].

distance-two - [DFNY08].

distortion - [BG02].

distributed - [FOS95, JO94, MW16].

distribution - [AFSCSU14, Ber12, BF11b, Cao99, DSW11, GR05, SJBH14, WBL14].

distributive - [GGLO08, GLOW04].

div - [AMM04, CP06, GGLO08].

divergence - [MRT02].

divide - [KNX01, LLLJ16].

divide-and-conquer - [LLLJ16].

division - [Kub92].

does - [NN10].

domain - [CGK94, Car97, HLM92, KNP03, RVW98, Zhu08, AFO2, BPS13, CS96, CM01].
domains [Dah02, DS02, HKH06, KM92].

Dominant [Yon96, MRT98, RT02, ZQLX13].

Dominated [Yon96, MRT98, RT02, ZQLX13].

Doubled [AMM94, CCK06, HKH96, KM92].

doubly [GHR98].

DQGMRES [SW96].

Drazin [WL03].

Dynamical [Bat95, BBJ17, BW17b].

dynamically [MN00].

Dynamic [Not94].

dynamic [Not94].

dynamic [Not94].

Editorial [Axe96, Axe99, Axe03, Axe04, Lan97, NT03, Saa00a, Yav04, Mar00, NT04].

Effect [BS01, LW04].

Efficient [LH08, LLW09].

Efficiency [DMM08, CNT07, KNY99, Tur00].

Efficiency-based [DMM08].

Efficient [BV00, BCV03, DJS16, FJP12, Gen00, HPS15, Hux98, LV99, Po00, VP95, WWX10, mMP99, BDA94, CP12, EGF11, GM17, HS13, KBF13, KR14, LR08, OOO11, yPxP06, RGG07, TSPSO06, WTZD10, XZS15].

eigCG [ARS014].

eigenspaces [Zit05].

Eigenvalue [AN06, AB13, Cao13, KY95, LV04, Peñ09, AFSCSU14, AG99, AB10, Bai95, Ber12, CQX11, CR16, CCvG06, CS02, DL97, DJS16, Dia09, EKS02, HKST12, HS08, HLL13, HLLW05, Jia17, LLL97, LLL14, LLJ16, LIV04b, LYL15, MMM09, MVV08, Mee01, MSV13, MP15, MZ98, PPv95, SLK16, SJBH14, Sim03, Sot13, VJM16, WQZ09, WBL14, YCY17, YHL11, ZQ12, ZQLX13, ZQW13].

eigenvalues [AT00, BB16, BW05, CSYS14, HHQ13, Kol05, KVC09, KVC12, HCD15, LS05, LQY13, Mai06, MM11, SHT11, XC13].

Eigenvector [LW98].

eigenvectors [AT00, Mai06, Pul16].

Elastic [Höm06].

Elasticity [AM96, AALS01, Axe99, BKY10, BLE97, Bla94, BC12, GLGR10, GL98, GL02, GL13, KBF12, LS04, Mar94, Mar98, Pad99, Rja98, XSS09, XSS11, XSS15].

Elastoplastic [MBW97].

Electromagnetic [WDS09].

Electromagnetism [CDG00, CDGmM04].

Electron [OST10b].

Electrostatic [GIK02, Gro00, IK00, Peñ03, Ren96].

Elliptic [CGK94, AV94, BBP03, BMS05, BC12, CYZ99, CKW02, CGL05, DJS16, Do09, EGF11, EFW03, GLGR10, HH06, HSL13, HK12, IV04, KMM10, KR11, KOS04, KV06, Kra06, KLM14, Lai97, LV08, LR95, LMM00, LPW06, MW16, PY03, PS00, PR95, RS02, Rja98, RSCTP15, SSP14, SSB15, The98, Vas92, VL96, Vas02, WBWM04, XSS09, XSS11, ZYFG11, ZSCX10].

Elements [BB00, GL13, HhvR04, Lee10, Osw95, Pul09, RS02, ZHJL12].

Elimination [GK02, Gro00, IK00, Peñ03, Ren96].

Electrical [MC04].
Embedded [GNR14]. embedding [FLPW01, RVW98].
EMC [Ver00]. enables [MC08]. enclosure [Miy15, OOO11]. energetic [Lee12].
Energy [VSG09, BBM+06, KOV17]. energy-based [BBM+06].
Energy-minimizing [VSG09]. Engine [RSR10]. Engineering [LD08, NL09, WW08a, CEQN07, Mar16, Ano08]. entries [EW13, Par03]. envelope [BPS95]. Environment [ADP96, CEQN07, TT10]. environmental [MS07]. equalities [CPSM06]. equality [DR03, LV98]. equation [AY11, AB12, AJ94, BMP11, Bot13, CKW02, CD11, Cha07, CM11, Dah02, DK15, KP10, Lee12, Lee16, LB08, LS15, Lu05, Miy15, Osw95, yPxP06, yPES07, RV12, SW12, Tia13, WTZD10, Zhu14, vRH05]. Equations [GL95a, ARMW14, ABM17, AB12, Axe99, AC11, BPS15, BGX06, BCR11, BCR14, BL17, BKP02, Ban08, BMAA16, Ben08, BL08, BES14, BR99, BG05a, BG00, BHHJ13, BCZ12, BFM12, CLR01, Che02, CH03, CQ10, Cor04, Dam08, DBC06, DXW12, DLZ06, Gan99, GB11, Gem00, GS09, Gra08, GS07, GD11, HWF01, HES15, HM14, HHL16, IP13, JLW05, JL09, JO94, KW99, KXZ03, KLM+06, KS04, KKV17, KPT14, KS15, LR08, Lee10, LH08, LW09, LWW11, LGS12, LXX17, Liv14, LW03, LPS15, LMM00, LRGO17, MV13, MNT07, MW11, Mar94, MZHB17, MM09, MCV01, MSV13, MM11, Miy17, NFD10, NQ96, Ols99, PM97, PR95, PR16, Rak99, RBV08, RSCPT15, SCD94, Ste99, Szy94, TC10, TSPS06, Tyr05, Var08, Web10a, XSZ09, YDH11, YXZ13, ZCW11, ZZ15, ZSWX13, Zhu08]. equidistantly [Rie09]. equilateral [RSCPT15]. equilibrium [DHSW11]. equispaced [FP05]. Equivalence [Szy94]. equivalent [MZHB17]. Errata [SB12]. Erratum [BN12]. Error [GL95a, OOO16, AM96, AW11, CM11, HJR97, LO13, MMN+10, Ney02, Pu09, WW11]. Error-free [OOO16]. errors [LC07, LZ12, Sun05]. essentially [ZQLX13]. Estimate [AM96, ES05]. estimates [AN06, AB10, AB13, BB06, CL96, Cao13, FVZ05, LZ12, MST16, Pu09]. Estimating [LV98]. Estimation [BPN15, GR04, BZ08, BT92, DPN16, DXW12, LX08, NG15, Ney02, SZ11]. estimations [CD11]. estimator [MVK04]. estimators [AM96, MMN+10]. Euler [Cor04, NFD10]. European [Rag14]. Evaluating [BB01]. evaluations [KS10]. even [Not05a, XC13]. evolution [BBG13]. Ewing [LPQ06]. Exact [KV15, Bot13, DK95, Pu16]. expansion [DS02, GTI16, MS07, RR12, ROA13, SLK16]. expansions [Tre05]. experience [BGM11]. Experimental [RR12]. experiments [ABK97, GL02]. Explicit [Lam12]. exploiting [VJM16]. exploits [NL16]. Exponential [PDV05, BV00, BCV03, DQW15, LLS12, Mor07, PS11, Rag14, VS17, WF15]. expressions [LT08, Not05a]. extended [DPP16, KS10, ZHZ10]. Extending [ARSO14]. Extension [BKP02, BCB14]. extensions [Sun06]. exterior [GH01]. extracted [SPD05, SP06]. extraction [LNY15]. Extremal [Jia17, LT08, Vla00, Zho16]. extreme [HHQ13, HCD15].

F.E.M. [AM96]. Faber [Nov03]. factor [An09, Cha12, DM10, GI02, IK00, KM09]. factored [KKNY01]. factoring [BG05a, Kau07]. Factorization [ADP96, BT03, Bla94, CCG00, CG05, Cha12, DWS95, FG02, GN00, KNY00, KM92, MW16, OS01, RTN03, Saa94, SK01, ST17b, XQ09, ZHJL12]. factorizations [AMMP06, Bea94, CCS10, CH94, CV03, GND15, KKV17, LW15, MS14, MvdV02, M04]. Factorized [KNY99, NY03].

Finding [EW13, HHQ13, PRP09, Ron92]. finer [Vom12]. finer-grain [Vom12]. finger [ISZ09]. Finite [Do09, KMMR10, AK99, AMM04, BBP03, BB00, BMN05, BC12, CYZ99, CKW02, CGL05, DMS17, DMM*08, EGF11, EWY03, FY01, Fer96, GLGR10, GL13, HH06, HK12, KR11, Kra06, KLM14, Lai97, LR95, Lee10, LMM00, LPW06, MW16, Osv95, P03, PS00, PR11, Pul09, RS02, RSCTP15, SGP14, SSB15, The08, Vas02, VL96, WBWM04, XZ09, XS11, ZYFG11, ZSCX10].

finite-difference [PR11]. FIR [RS07]. First [KLM*06, BB17, BGM*12, GRH98, Hem96, KNX01, LY15, MMN*10]. first-order [BBJ17]. First-order [KLM*06, BGM*12, Hem96, MMN*10]. fit [BDK18]. fitting [DQW15, PDV05]. fixed [BG05a, Bir15]. fixed-point [Bir15]. Flexible [ZHJL12, vGSZ15]. flow [BLLA11, HG00, HK12, KR11, KRW08, Lay05, LV04, Mar00, MRT96, ŠBS15, Tur00, Web10b, Web10a, Yot01, vKVW00, LD08]. fluid [BLLA11, Ema12, HG00, Mar00, MRT96, SV11, Web10b, Web10a]. fluid-solid [SV11]. FOM [GR99]. Form [Zha92, AB10, AB13, BC14, BO08, BWN05, BB13, Cao13, GS07, GNO15, Han13, KKNY01, LGS12, MMM09, vNR07]. formal [Tre05]. format [BG13, BMAA16, Gra08]. formats [DK15, HKST12]. forms [Bra02, HS05, LPS16]. formula [MS14]. formulas [BWN05]. formulation [CQX11, GH01, ŠBS15, Ypm95]. formulations [MZHB17, PS00, Sim03].

FOSLS [MMN*10]. Fourier [CV13, Don10, HHvR04, MO11, ROA13, TSPSO06]. fourth [UMO09, WQZ09]. fourth-order [UMO09, WQZ09]. Foz2006 [GY08]. FP [BCB14]. fractional [BLP17, LPS15]. framework [BD15]. Fredholm [MM09]. free [ABB10, AD11, GTY97, MP16, Not2b, OOO16, RSR10, Sim03, TT10, YNP04, ZYL13]. free-space [RSL10]. frequency [AN07, EKS02, MZHB17, MC09, MN00, PR11]. frequency-domain [PR11]. friction [Hla99]. frictional [ZVO14]. Frobenius [CDG00, DW07, ES09b, MGF*02]. Frobenius-norm [CDG00]. frontal [RS01, Sco99]. FSAI [FJP12, FJP16]. full [MW06, SKR08, TGKR10]. fully [MC04]. function [CDDSC12, GGZ12, KS10, LZ09, Part03, PSW14, Tre05, XZS10]. functional [KN14]. functionals [AMM04]. functions [CKW02, CCL12, CCL08, DK95, Est09, MN05, Mor07, Mor09, MP14, Naz95, Xie11]. fundamental [ZYL13]. Further [MMN*10, Saa00b]. fuzzy [CEQN07].

Galerkin [ABM17, BBS12, CGM11, DLVZ06, HHvR04, KTO8, LPV01, NSCTP05, SGP14, WTWG14, vRH05].
games [AD12]. gauge [KMMR10]. Gauss [HP97, KLN99, LO13, Peñ03, Sun06]. Gaussian [GIK02, RO06]. Gay [ADI08]. GCV [FRR16]. General [JK09, AN13, BCB14, BCGM09, BDR17, CS96, Kap98, KS15, Lor14, SZ99, SS02, ZW10]. general-form [BCB14]. Generalization [CNP96, Zt00, Don10, LWW09]. Generalizations [SSB04]. Generalized [Amb15, Che15, KKR14, NR12, AM95, Bla02, BC12, BMM+08, CC07, Cao09, CD11, CL13, CV03, DL97, Dam08, FT98, FM15, GIK02, GW00, HLLL13, KV92, KCV09, KVC12, LR08, LZY11, LT13, Mai06, MP15, MP13, RY08, SLK16, SX15, WW08b, Wei94, YCY17, Zho06, vNR07]. generalizing [BT92]. generated [Tre05]. Generating [Ste99, Est09, Vom12]. generation [BG02, Gar01, Gar04, LM06, MS07]. geometric [BS10, Cho03, Gar04, HS11, HS14, Ian16, LJM14, XZ09, ZM10]. geometric-based [XZ09]. geometries [HKH+06, PSK08]. Gerschgorin [LHL07, Peñ07]. Gerschgorin-type [LHL07]. Gersgorin-type [KCV09]. GES [BMM+08]. GES-SA [BMM+08]. gigaflops [Tur00]. given [BFdP13]. GKB [BCB14]. Global [CGM11, BS10, FR16, GD11]. Globalization [NQ96]. Globally [CQ10]. GMRES [BR07, BE98, CZ02, De 13, DS08, DN12, GR99, JYH17, Jou94, MYZ16, MN00, Sid11, Sim99, SWKW98, VL11, WZ94, ZM08, Zit00, Zit05, vV94]. GMRES-type [BR07]. GMRESR [vV94]. Golub [FR16, GOR16]. GPCG [Bla02]. GPCG-generalized [Bla02]. grad [GGL08]. grade [IT05]. graded [BLZ08, BCS09]. gradient [AM95, BGP97, BMSS09, CNT07, Cha07, DMY03, DR03, Hae92, Kap94, Kap02, MO94, Mey94, PR95, SZ11, DW15, WD08, Wei94]. gradient-like [Mey94]. gradients [Not02a]. grain [Vom12]. Gram [Dax04, LBG13, LL97, Van00, WL08]. graph [KXZ03]. graphs [CNZ17, EJK01, VZ14]. greedy [BT15]. Grid [GVT03, Alb06, AO07, BG02, CGPV13, CSCTP05, CG15, CRV14, Don10, ELV94, FVZ05, Fer96, GKK04, Gar04, GMOS06, GHO15, HVX16, KV96, MO08, NV08a, NN10, NH98, Not10, RSR10, RR12, ZSWX13]. grids [BH04, Bla03, ELV94, Gar01, GLGR10, LPW06, Mit10, OCYM08, YYX13, ZMO10]. group [WN05]. growth [GIK02, RO06, KM09, WL08]. GSOR [HES15]. Guest [Mar00].

IBLU [BLW08]. identification [LNP12, ZYL13]. identify [GB15]. II [ELV94, GL02]. III [CSCTP05, GKY97, GL13]. IJNMBE [NL09]. III [LHW11, CLTW11, DNR12, Est09, GORR16, NR14b, NCV05]. ill-conditioned [NCV05]. Ill-conditioning [LHW11]. ill-posed [CLTW11, DNR12, Est09, GORR16, NR14b]. ILU [AMMP06, May05, May07, SZ99]. ILUCP [May05]. ILUT [Bas00, Saa94]. ILUT/ILDLT [Bas00]. image [BC02, CFAM16, CNSY05, Don05, GHW06, HMM10,Hom06,Per06,GM17,SKR08]. images [BNT94]. imaging [BNP15]. IMMB [Axe99]. impact [Ano90]. Implementation [AK99, BISC14, BM05a, DMY03, WF15]. Implicit [FP95a, BGX06, Bai12, BM05a, BD15, Chel15, HL16, ISZ09, LWV01, MC04, PBN05, VVM05b, ZS08, mMvdV02]. Imposing [Szu14]. Improved [ARMW14, Cor04, JO94, LW15, BVV12, CGPV13, LV12, Sun06]. improvement [WCZ15, WL03]. Improvements [BB06]. improves [HVX16]. Improving [BKY10, GKV12, ST17b]. inclusion [LHLS07, LLK14, THC09]. Incomplete [Jia96, BT03, Bla94, CCS10, GQ15, Gro00, JO94, Kap02, KNY00, RTN03, Ren06, Saa94, SW96, Sun95, ST17b, VS17, ZHJL12, mMvdV02, m04, GKY97]. incompressible [BKP02, HK12, Kovi17, LV04, Ols99, Tur00, Web10b, Web10a, vKVW00]. increasing [DMY03, HVX16]. increasing-angle [DMY03]. Incremental [CCS10, BT02]. indefinite [BRT07, CL96, CK01, CS95, CRV14, GM17, GMSV16, Krz11, LT09, Liv14, PS00, ST17b, SL10, TT15, Vas92]. Indefinitely [DR03, LV98]. independence [DS08]. independent [CJL08, KP06]. indirect [BLP01]. induced [Lay05, vGSZ15]. industry [m04]. inequalities [AM96, CSPM06, DKVB15]. inequality [AALS01, Bla03, DGRR11, DH04, DR03, EM95, Mar94]. inertia [KC17]. Inexact [ABK97, HD07, Sid11, Bir15, CQ10, FB15, GB11, HLM92, KK02, KP06, LLL97, LV98, Sin03, WtFW15]. infimum [Chu04]. infinite [Ozb13, VJM16]. Information [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano13a, Ano13b, Ano13c, Ano13d, Ano14b, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15e, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano14a, Ano14c, Ano14d, BF96, FJ05, Ano14e, Ano15d, Ano16f]. initial [Nov03, PBN05, VLM1]. initializing [BMM+08]. inner [FJP16, Gus04a, Mey94, MGF+02, Xia12]. Innovative [BDRS12]. integer [CP12]. integrable [SHT11]. integral [AFSCSU14, MM09]. integrals [LO15]. integration [ABK15, LLS12, MC09]. integrators [Ber01, JL04, Mor07, Rag14].
intensity [GKV12]. inter [MC08].
inter-grid [MC08]. interaction [SV11].
interchanges [EM11]. Interface
[Wan00, JM10, XM17, Yot01, ZYL13].
interface-based [XM17]. Interior [LMV04,
BMM06, BCS09, BPS13, HP04, MST16].
Interior-point [LMV04].
interface-based [XM17].
Interior-point [LMV04, BMM06, BCS09,
BPS13, HP04, MST16].
Inverse [LC05, NR14a, Tre13, AEHV14,
BF11a, BM13, BPS00, BFG95, BFM12,
CC07, DL97, DW07, DWWQ13, EW13,
EKS02, Egg07, EHM95, FGT11, FK15,
Han13, ISZ09, JQ09, JK17, KKNY01,
Kho96, KY09, KKMM12, LLL97, pLL07,
LWW09, LZY11, MV13, MP16, MGF+02,
NY03, yPyH04, Sol14, Sot13, TS12,
WL03, XHZ03, XCG16, Zho06, Ne05].
invert [MP14, PS11, WtFW15, Sim03].
invertibility [Den09]. investigation
[KS10]. involving [DWWQ13]. IOM
[Jia96]. ion [LO15, TC10]. ion-atomic
[LO15]. IPARS [LVW01]. IRAM [Xie11].
IRAM-based [Xie11]. Irreversible [BL03].
isometric [Gar01, Gar02]. isospectrally
[VW15]. Issue
[An08, Ano12a, Ano12b, Ano12c, Ano12d,
Ano12e, Ano12f, Ano13a, Ano13b, Ano13c,
Ano13d, Ano14a, Ano14b, Ano14c, Ano14d,
Ano14e, Ano14f, Ano15f, Ano15a, Ano15b,
Ano15c, Ano15d, Ano15e, Ano16f, Ano16a,
Ano16b, Ano16c, Ano16d, Ano16e, Ano17a,
Ano17b, Ano17c, Ano17d, LD08, Ano17e,
CLR13, Dat01, Fal06, VW01, Vas05, Axe99].
issues [BM05a]. Iterated [BDR17, AN03a].
iterates [DS13b]. iteration
[AT15, AN94, BGY06, Bai10, Bai12, BZ13,
BLP17, BM13, CH05, Che15, Egg07, FK15,
GB11, GH01, HSM99, HL16, Kra02, KKR14,
LLL07, Lam12, LS15, PS95, wX15, Zho06,
ZS08, Ney05]. iterations [BGN07, BG05a,
FJP16, GG12, HNS05, Kap05, KN09, L09,
Lin12, Lu05, NZ14, Saa00b, Sch99, vdE02].
Iterative
[AT00, BF11b, CGK94, DBG06, GMR05,
LPV01, MO16, NZ14, PM97, AEHV14,
AEHV15, AK00, ABN15, BEH+17, BM17,
Ber01, BR99, CR16, CH05, CK01, CK10,
ELV94, FM99, GYT97, Gus97, HG00, HES15,
HM14, LR08, Lee10, LSL01, LZY11, LW16,
LM14, MM98, NO04, Obs99, yPxP06, PR96,
PR11, Pu08, PM11, Sol14, Sun06, Zzy94,
WDS09, WZTD10, WW11, ZW10, Axe99].
IV [KNY99]. Ivo [SGP14].
J [NN15]. Jacobi [BFdP13, BFG95, FJP16,
GS99, HLLW05, MSV13, Not02a, Sch99,
Zho06, vNR07, vdE02].
Jacobi-Newton-iterations [Sch99].
Jacobian [BS01]. January [NL09]. Jordan
[EJK01, GH06, Pen03]. Journal
[JNL92, NL09]. Jr. [KVW10]. jump
[VFD13, Zhu08, Zhu14]. jumps [LSS12].
justifications [Gar04].
Kahan [FRR16, GORR16]. Kalman
[BPSH13]. Karhunen [SLK16]. kernel
[HK02, MN05]. kind [MM09]. KKT
[BGM09, MST16]. Kronecker
[BD17a, Che15, DWWQ13, EJK01, KN07,
LPS16, LS04, Per06, XG10]. Kruikier
[JK09]. Krylov
[HS14, CO04, AGG+16, AFSCS14, BPSH13,
BMA16, Bot13, BD15, CS97, CQ10, CK10,
Dam08, DK95, Ema12, Fas05, HS11, IT05,
KS10, Mor07, MP14, NV08b, PPV95, Rag14,
RLG12, RV12, Sid97, SS07, VS17, Yot01.
Krylov-accelerated [Ema12].
Krylov-based [NV08b]. Kutta [Che15].

L [Nab97, CZ02, ZMO10]. L-shaped [ZMO10]. L. [JK09]. Lagrange [Cor04].
Lagranian-type [EG16]. Lagrangian [Nab97, CZ02, ZMO10].
Lagrangian [L]. L-shaped [ZMO10]. L. [JK09]. Lagrange [Cor04].
Lagrangian [EG16]. Lagrangians [LD07]. Lamé [BKP02]. Lanczos [ARS04, BB16, BB17, CWS97, CC03, FG02, FJ05, GORR16, Lam12, LV98, Meo01, Mor09, PV99, PS11, Par92, Sim03].
Lanczos-type [CWS97, FG02]. Laplace [QB15, SLV13]. Laplace [CV13, TT15, UMO09, XC13]. Laplacians [Bao08].
Laplacian [CV13, TT15, UMO09, XC13]. Level-based [SH14]. Level [SH14, CGM01, CS02, CRV14, DLVZ06, GVT03, HH06, HHvR04, KM99, KV96, NCV05, OC04, SZ99, SP06, SV11, VSG09, XZS10, YXZ13, Zik08, vRH05].
Level-based [SH14]. Level-dependent [CRV14]. Levinson [Bun92]. like [Bai09, Bai16, BMM06, Lee10, Mey94, OS01, PRP09, mMP99]. likelihood [ES05, NG15]. limit [LY15]. Limited [GMTV16]. limiting [DS13b]. line [BDK+15, DMY03, MM95]. Linear [NLA94, Ano09, ITS07, Jia96, Nab97, ZQ12, ARSO14, ARMW14, Ada04, AGG+16, AW11, ACR+00, AIT05b, JNL92, AMP99, AK00, AN03b, BDGL09, BPS15, Bai16, BCR11, BZ13, BCR14, BLP17, BKY10, BG13, Bas00, BLE97, BL08, BFS10, BEH+17, Ber01, BW05, BvdV00, Bot13, BC12, BM04a, BS09, CS09, CS11, CDGM04, CPSM06, CSCTP05, CGL05, CC03, CK14, DGB+13, DMS17, Dat01, DDG99, DGRR11, DW07, DWWQ13, DNR12, DGM+16, DJ09, DN12, FG11, FP15, FS09, Gen00, GM11, GSS01, GY08, GT97, GS05, GW00, GL03, GL13, HHvR04, HES15, HSCCTP05, J09, JK17, JYH17, Jou94, JO94, KK02, KPP06, KS04, KB15, Kra02, KS15, KKR14, LX08, LHL07b, LTO01, LC13, LL97, LV98, LM04, Mar00, MCV01, MV05, Mav01].
Linear [MP13, Mey94, MC04, Naz95, NQ96, NLZ11, Nov03, OC04, Ozb13, Pad99, PBN05, PM97, PGT14, RGG07, RT99, SZ99, SS02, SB12, SS07, SMSW00, Sto92, Sun05, SL10, Sz04, TT10, VFDV13, VW01, WK95, WD08, WM12, Wu15, WF15, XS09, XS11, XJ12, XZS15, wX15, YHD11, ZW10, vGSZ15].
Linear-constrained [XJ12].
Linear-quadratic [BLP08]. Linearization [LZ12, KABH17]. linearizations [KR14].
Linearized [BGX06, NFD10]. linearly [Bla94, LVD02, Sto92]. Lipschitzian [DS02]. load [WLBH12]. Local
McMorrow [Lee10]. mean
[BG02], measures [Buc11, OST10a]. mechanical [LV99]. mechanics
[Ada04, Axe99, GMY10]. Medal [Ana08]. media
[BKP02, CGPV13, GM17, KP10, NH06, SBS15, WWX10, Yot01]. Median
[LNY15]. Memory
[KR14, FO95, GMTV16, JO94]. Memory-ecient
[KR14]. mesh [BB00, BLZ08, BCS09, HMS99, KR11, KV96, Mav01, RSC15, SRGL13, XZS15]. meshfree [LOY08, LOS04]. Meshing
[HKH10]. Method [Jia96, ABBP10, AK99, AN94, AM95, AFK02, BB00, BGX06, Bai12, BDRS12, BZ13, BCR14, BLP17, BP13, BLE97, Baz08, BMAA16, BGM11, BK11, BEH+17, BGP97, BR99, BGW05, BDV06, BCS09, BB96, BM05a, CEQN07, CS09, CS11, CGM01, CS02, CSCTP05, CEL+96, Che02, CCK06, Che15, CN17, CWS97, CK10, Dam08, DMM+08, DMY11, Den12, Den14, DBG06, Dob99, EZ96, EM11, ELY94, Fal06, Fal10, rFS09, FM99, FM15, FP95b, GB11, GRL10, GORR16, GZ16, GVT03, GMR05, GGV13, GMS06, Gua97, GL95b, HS11, HS14, HL16, HP04, HLLW05, IV04, GS96, MM1R10, KP00, KCS11, KLM14, Ks15, KRP14, Lee10, Lee12, Li00, LSL01]. methods [LHL07b, LLW09, LNY15, LXX17, LZY11, LW16, LMM00, MAMC12, MAMM09, Mar00, MG08, MPA96, MZ98, MST16, NBKS99, NSCTP05, Not05b, Not10, PB05, PY03, PRP09, Pul08, PM11, Rag14, SRGL13, SB12, SK01, SWY07, Sei10, Sid11, SS07, SG14, Sta96, Szy94, VSG09, VZ08, Wei94, Wie99, wX15, ZW10, ZSCX10, ZSW13, Zik08, vV94, Fal08, GL02]. MILU
[WH94]. Mindlin [CY99]. minimal
[BGX06, CFX05, JR94, KMC16, MRT96, SW96, Sta96]. Minimization
[EHM95, CG00, Car97, DMY03, DFZ05, Het07, KV96, MD03, NZ14, XJ12]. Minimizing
[CvG11, AMM04, VSG09]. Minimum
[GH01, DE98, DBG06, DS10, Gus03, HMSN99, Kap05, Miy15, Saa00b]. minmax [Vos09]. MinRes
[KK13]. mirror
[BCK05]. Mixed
[DXW12, AB10, AB13, BCG13, Cao13, CEL+96, CKM06, H01, GT09, GS07, Lai97, LP01, LGS12, LW17, PY03, PS00, RWW98, SBS15, VL96, WBWM04, Web10b, YZ13]. mixed-hybrid [SBS15]. mixed-order
mode [STZ12]. Model [Lay05, Sha99, BLA11, BBJ17, FLPW01, Gus08, KNP03, MV13, XG10, ZS08].

model-order [MV13]. modeling [FH94, WWX10].

modelling [Gar04, GMR05, LO15, NH06, SWY07].

Models [CEQN07, Bai12, BL03, BV13, Buc11, DSHW11, GM17, GB15, LNP12, PGT14, QXB09, TC10]. modern [MM97].

Modelling [CEQN07, Bai12, BL03, BV13, Buc11, DSHW11, GM17, GB15, LNP12, PGT14, QXB09, TC10]. modern [MM97].

Modifiability [BE09]. modification [CSYS14].

Modifying [Alb06]. Modular [BC02].

distributed [BLLA11]. Modulus [Bai10, BZ13, HL16, DJ09, HM16, wX15].

Modulus-based [Bai10, BZ13, HL16, DJ09, HM16, wX15].

moment [AK16, GHR98, VfdV13].

Moore [AK16, BEH+17].

Monte [AK16, BEH+17].

Moore [DW07, DWWQ13, KKMM12, LXW13].

Moreau [PSW14]. mortar [DP03, PY03].

MRRR [MPV06].

Multi [NH06, BCK05, CS02, CLNY15, Lec12, PDV05, SZ99, SV11, TC10, XM17, ZHJL12, vGSZ15]. multi-channel [PDV05].

multi-dimensional [CLNY15].

multi-energetic [Lec12]. multi-ion [TC10].

multi-level [CS02, SZ99, SV11].

multi-mirror [BCK05]. multi-parameters [ZHJL12].

Multi-scale [NH06, XM17].

multi-shift [vGSZ15].

multidimensional [BBKY06, LO15].

Multifrontal [ADP96, NL16].

Multigrid [AD12, BB00, BW17b, BCS09, BBKY06, Den12, Don14, Fal08, Fu10, GLGR10, KRW08, Mav01, SRGL13, Wie99, WTGW14, ZVO14, Ada04, Ay11, BKY10, BLE97, BBS12, BO08, BH04, BISC14, BDV06, BLZ08, BMM+08, BVV12, BKM+12, BDM+14, BS10, Cho03, DY04, DFNY08, Don05, Don10, DHR+04, EZ96, Ema12, Fal06, FM15, GM17, GLOW04, GGLO08, GHT09, GKV12, GT09, Gra08, GHJV16, GMOS06, HBH10, Het07, Höm06, IV04, KXRZ03, KR11, KR06, KLM15, Lee12, Lee16, LOS04, Liv04b, Liv14, LJ14, LD07, LRG017, MO11, MMC12, MO14, MPRP10, MWZ06, MBW97, MC08, Mit10, NN11, NFD10, NSCTP05, Not05b, NV08b, OST10a, PB99, RS02, RV12, Reu96, RBV08, RGM17, Sei10, Sha98, SKR08, SSB15, TGKR10, TC10, TY10, UMO09, VZ08, VY14, Wan00, Web10b].

multigrid [Web10a, XSZ09, XZS15, YW12, ZHu14, ZMO10, vRH05, DM10].

Multigrid-based [UMO09].

Multigrid-in-time [BW17b]. Multilevel [AT15, CEL+96, CV03, Osw95, Sta96, AM96, AMM04, AN94, AV94, BNM05, BCZ12, CL96, DMYT11, DGM+16, Kra02, Kra06, KT08, KMS08, KLM14, KP10, Lai97, LSS03, LM06, MM95, May07, Not98, Not02b, Not05b, Pad09, SS02, Sha99, SLV13, The98, XCG16, Yot01, vN00].

multilinear [LPS16, PDV05]. multiphysics [Yot01].

multiple [ARSO14, ARMW14, CNZ17, MAi06].

multiplication [Kap99, OOO11, OOO16, WF15].

multiplicative [CL96]. multiprecision [BB16].

Multiscale [HPPS03, FP15, VSG09, WWX10].

multisecant [rFS09]. multisensors [CNSY05].

multisplitting [RLG12, AMP99, BZ13, CS09, CS11, JS96, LSL01, Ren98].

multisplittings [BCC98, CP99, FP95b].

multistep [BWN05]. multivariate [LZQ12, MVK04].

Nath [CLR13]. Navier [AB12, CA99, HFW01, KOV17, LMM00, Ols99]. near [CNY05, Ver00]. near-circulant-block [CNY05].

near-singularity [Ver00]. nearby [AFS14]. nearest [DBLP16, GHR98, MRT98, NW15].

nearly
[BKP02, HFW01, NA97, RSCTP15].

Necessary [Pul08]. negative
[BMM06, CF05, PR11]. Nested
[Bla03, GNQ15, MO16, vV94]. networks
[GB15, WWC +15]. Neumann [RT99].

neutral [ZCW11]. neutron
[Cha07, CGM11]. Newton [ABBP10, AMMP06, ABK07, AFK02, BC09, BMM06, CQ10, DL97, DS13b, GB11, GKK04, GD11, HP04, KP06, LB08, Lu05, LV98, NQ96, OC04, Schh99, Vla00, Yot01, Zs15, Zho06].

Newton-like [BMM06]. Newton-type
[ABBP10, Vla00]. NLA [Axe10, Vas05].

nodal [BDV06]. nodes [FP05].

noisy [BC09]. Non
[AMP99, VW01, Bai16, BMM06, Bla02, BMN05, CL96, Cao04, Car97, CGM01, CPS01, CGL05, CK01, CF05, DS02, EZ96, FP05, GB11, GM11, GVT03, HKP07, HSC010, KP06, KM09, Kra02, LD02, LH07b, Lu05, LMM00, LV98, LMM04, Mav01, MZ98, MC04, NQ96, OC04, RT99, SB12, Sei10, WD08, vN00].

non-conforming [BMN05, KM99].

non-convex [LMM04]. non-equispaced [FP05]. non-Hermitian [SB12, Bai16, CPS01, HSC010, LH07b, WD08].

Non-linear
[VW01, Bla02, CGL05, KP06, Kra02, LD02, LV98, Mav01, MC04, NQ96, OC04, RT99].

non-linearly [LD02]. non-Lipschitzian
[DS02]. non-negative [BMN06, CIX05].

non-overlapping
[CGM01, GVT03, LMM00]. non-smooth [Car97]. Non-stationary
[AMP99, LMM00]. non-symmetric
[Bla02, CL96, Cao04, CK01, EZ96, GB11, GM11, HKP07, Lu05, MZ98, Sei10, vN00].

nonaligned [YXZ13]. nonconvex [Laz16].

Nonequivalence [FLP01]. Nonlinear
[Gra08, AMMP06, AC11, BRT07, De 13, DGR011, rFS09, GD11, HM16, MV13, MSV13, Naz05, yPES07, SGS15, SCD94, VJM16, Vos09, XZS10, Zs15]. nonlinearly

[DW15]. nonnegative
[BGX06, BGM09, BGM11, CQZ13, Sot13, WWC +15, ZQ12, ZQLX13, ZQW13].

non-normal [MYZ16]. Nonnormality
[Baz08]. nonpositive [Hua12].

nonsingularity [Peñ07]. nonsmooth
[Che02, CQ10]. Nonsymmetric
[CGK94, YW12, ARSO14, Bai95, BGM06, Ema12, HM14, IP13, Jou94, LW07, LB08, Mey94, Not10, SJBH14, SX15, Sta96, SL10, Vos92, WTG014]. nonzero [ZHJL12].

norm
[CDG00, Dnx94, DE98, DBG06, DHW16, EM95, EH95, Gar02, My15, XJ12, YL08].

Normal [Gus04b, SZ11, LSO5]. normality
[NR11]. norms [GZ16, SB03]. normwise
[DW07, F98]. notch [RS07].

Note
[LY11, CNT07, Cao09, CK14, DS10, DS08, DN12, FT08, GM11, GX14, J001, KH07, Lai97, LXW13, LW07, LC07, Lot07, N055, SB03, SM05, SHT11, VVM05c, Vom10, Vom12, WBL14]. notion [DGM +16]. novel
[NPR13, SP06]. nuclear [XJ12]. null
[ITS07, WF13]. null-space [ITS07].

nullspace [Sim03]. nullspace-free [Sim03].

number
[BB06, BC10, EH95, EG16, LH08, LLW09, RV12, TGKR10, ZJHL12].

numbers
[BG05b, CCG00, CLTW11, CDW06, DW07, Dia09, DX12, DWWQ13, Liv14, YDH11].

Numer
[SB12]. Numerical
[AGG +16, NLA94, AN06, AN08, AN09, BLP08, Ben11, CH03, CA99, DMS17, GS05, HMM10, HJR97, fLYHZ11, LD08, MK94, MMM09, MV05, NBKS99, NsC010, NL09, WW08a, JNL92, Bai95, BDRS12, BK02, Bt95, BGM11, Ber01, BDS04, CQX11, CJW06, Cor04, CJ03, Dat01, SD02, GY08, HPS15, LJ04, LH08, LHW11, LGS12, Lin12, MM09, MP13, OCM08, Ols99, Òzb13, SHT11, Turo00, Mar00].

Oblique [Han13, YCY17]. oblivious
[MWZ06]. observations [CZ02]. observer
obstacle [JZ11, ZJ06]. occasion [CLR13, LPQ06, SGP14, Vas03, Vas05]. occur [CC03, occurring [AG99]. oceanography [Rak99]. odd [Not05a]. Odir [CK01]. off [EW13]. off-diagonal [EW13]. One [OC04, CSYS14, FMPS13, O'H14, Pul08]. One-level [OC04]. open [Gar04, RR12]. OpenMG [BISC14]. operations [STZ12]. Operator [Gus97, Gus98, Gus03, MMPR10, Alb06, BV00, BCV03, BFM12, Den09, GN00, GH11, Liv04b, MP15, Tyr05]. Operator-based [MMPR10]. operators [AFSCSU14, ABBP10, AEHV14, BKY10, Don10, GGL008, GVT03, Kho96, MC08, PSK08, Yan10]. optical [BCK05, KRW08]. Optimal [Bai09, BTT13, ELV94, GOH15, LHL07, LD07, MM95, Not97, WKS95, BL08, BFS010, BNM05, DH04, EG16, HFW01, KK13, Lai97, MNCT07, MS07, MP13, NA97, PSCW14, RGG07, RSC15]. optimality [NN10]. optimally [Cha07]. optimization [AN03b, BDK+15, Chu04, De 13, DD07, Gart02, GY08, HHM10, HP04, KCS11, Laz16, LQ12, Lin12, LM04, MV13, NBKS99, PW12, RS10, SW12, WCZ15]. optimize [MC08]. optimized [O0011]. Optimizing [TGK10]. option [LSL12, Rag14]. order [ABB10, AEHV14, AH15, AB15, BCR11, BCR14, BB17, BH16, BGM+12, CEL+96, DLIV09, ELV94, GM17, GT16, GWH06, GKY97, GL13, Hem96, JMI0, Kap02, KLM+06, KP06, KM09, Lam12, LY15, MV17, MMN+10, MNCT07, RS01, SSB15, TSP006, UMO09, WQ07, WQZ09, Web10b, Web10a, XZ09, XS11]. order-reducible [BCR14]. ordered [Bea94]. Ordering [HS05, HS15, Sco99]. orderings [DS10, NA97]. ordinary [BCR11, BCR14, Bot13, ZCW11]. oriented [TC10]. Orthogonal [FB95, VVM05a, AM95, BF96, DBG06, Kem12, MO94]. orthogonality [Par92]. Orthogonalization [Jia96, LB13, LL97, SW96, VS17]. orthogonalizations [Dax04]. orthogonalizing [Mat96]. Orthotropic [GL96]. Oseen [HBH10, KL+06, Ols99]. outer [Cor04, Xia12]. output [LW05]. outs [LPW06]. outlets [KVC12]. over-penalized [BPS13]. overall [BS01]. overlap [KK02, mMVdV02]. Overlapping [CS96, GNQ15, CGM01, Gai99, GVT03, JS96, KP00, LMM00, MO11]. overrelaxation [BG07, Gus03]. Owe [Cao13, Vas05].

p [SP06, HMS99]. p-level [SP06]. Padé [BLW08, GGZ12, LZ09]. PageRank [WW07, YYH12]. pairs [CLC11]. pairwise [FLR03]. palindromic [LYL15, MMMM09]. panel [PR96]. Papers [Ano08, LD08]. parabolic [AT15, JM10, KK13]. Parallel [AO07, AMMP06, Bas00, BLE97, BGM+12, BS10, CR16, FJP16, GR05, GL96, KR11, Lee16, LSL01, LGS12, NO04, RT99, The98, Voe92, WH94, ZYFG11, AGG+16, ACR+09, AMMR17, AMP99, BPS00, BvdV00, CS09, CS11, CMT03, DFNY08, FJP12, FM99, GMR05, GSS01, GMOS06, GL98, GL02, GL13, Hac92, HS05, JO94, KK02, Ku92, LW01, LSS03, LWC16, MW16, MM97, MBW97, MC04, MR14, Pad09, PR95, PR96, Rak99, Ren08, Sid97, TSP006, Van00, WLH12, mMVdV02, mMO4]. parallelism [Von12]. parallelizable [GL95]. parameter [AK99, GNR14, GS05, KPT14, MSV13, Not02b]. parameter-dependent [GS05, KPT14]. parameter-free [Not02b]. parameterized [CCvG06]. parameters [Bai09, BNP15, GOH15, Mai06, Yan04, ZHJL12]. parametrization [Hua12]. Parlett [EM95]. pARMS [LS03]. Part [GL98, GL02, GL13]. Partial [LW04, LW05, BGP97, CQX11, LH08, LWH11, LW03, MW11, MM11, Not02a, Rak99, RBV08, SW12, TC10, Zhu14, vNR07].
Preconditioner [TT10, BPS15, BT03, Beu03, BC12, BPS13, CGPV13, CJZ11, CNP96, CJW06, CS95, CV13, Doh07, ES07, EGF11, GN00, HFW01, ISZ09, KS04, KV96, Kuz92, KP10, LS04, May05, May07, MC09, NL16, SPD05, SP06, SLV13, SGP14, UMO09, Xia12, XS11, XM17, Zhu14, vN00].

Preconditioners [CPS01, Est09, GS07, PSW14, Ay11, AN13, Bai16, BM17, Bla02, BMN05, BCTH04, Cao08, CDG00, CDGM04, CGM01, CC92, CW97, CEL+96, DDG99, DP03, FP15, FK15, FS09, GMTV16, GNQ15, HLM92, HH06, Hem96, HK12, JIWO5, KABH17, KY95, KKNY01, KP00, Krz11, LW01, LOY08, Lec16, Lj04, LXS16, LC05, LW07, LWC16, Mar16, MS07, NV08a, NR12, Os95, PW12, PS00, QB15, RS10, RSCTP15, RVW98, SZ99, ST17b, The98, TT15, Ty92, Ty95, XG10, YNP04, ZCW11, ZHJL12, Zhu08, mMP99].

Preconditioning [ABM17, AN03b, AB10, ABNP15, ABK15, CFA16, Egg07, Gro00, HSC05, MW11, Piu09, SMSW00, SW12, Vas92, VL96, WDS09, WBWM04, AFSCSU14, AT15, AK94, AV94, AFO2, Axe15, BCR11, BCR14, Bas00, BGM09, BPS00, Bla04, CDDSC12, De13, DLV06, Dd07, Dos99, DKBV15, FJP12, FJP16, GM11, Gus03, GL95b, HPS03, JZ09, JK17, Kap94, Kap98, KK02, Kap02, KM99, KP08, KOV17, Kra02, Kra94, KM08, LV04, LW03, MM95, MM02, NO04, NR11, NA97, Not98, Not02b, NCV05, PW13, Poi00, SL10, Vas02, WH94, AB13, Cao13].

preconditionings [GKY97, KNY99, NY93]. prediction [BS10, PGT14]. predictive [FM15]. predictor [BB97, HM14]. Preface [Axe02, AK10, Cve09, Dat01, NT04].

Problems [CGK94, GL96, Ada04, AB00, AW11, AIT05b, AG99, AV94, Axe08, AN03b, BBP03, Bai09, Bai10, Bai12, BZ13, BKY10, BKP02, Bar02, BLE97, BBS12, BM06, BM90, BGM11, BLP08, BCV03, Bla94, BC02, BBG13, BvdV00, BRT07, BO13, BDM+14, CL96, CNT07, CQX11, CGPV13, CRS05, CR16, CEQ07, Cao04, CJZ11, CCvG06, CC92, CNP96, CW97, CS02, CTP09, CEL+96, CCK06, CWS07, CC03, CLTW11, CP12, CV13, CR14, CK14, Dax94, DE98, DW07, Dia09, DR11, DJ09, DHR+04, DP03, DR03, Egg07, EGF11, ELV94, EWY03, FY01, FGT01, Gar04, GGL08, GH01, GORR16, GHT09, GT03, GZG12, GMTV16, GL98, GL02, GL13, HP97, HKST12, HJR97, Han13, HS13, HL16, HD07, HLL13, HM16, HLLW05, JZ11, JM10, KK02, KR11, KP00, KK13, KR06, KT08, KMS08]. problems [KLM14, Krz11, KM92, LLL97, LR95, Lay05, LPV01, LV99, LW07, Lin12, LZ12, LW16, LW17, Liv04b, LL97, LV98, MZ15, MMM09, MS07, Mar00, Mar98, MRT02,
Mar16, MSS07, Mav01, MSV13, MP13, MM07, MBW97, MM02, MZ98, NR14a, NR14b, Nov03, OS10, Pad99, PBN05, PSW14, Pen08, RR12, ROA13, SLK16, SX15, Shi02, Shi04, SV11, Sta96, Sto92, Tre13, TT15, VJM16, VL96, Ver00, Wan00, WWC+15, XC10, XZS15, wX15, XCG16, Xi15, ZHZ10, ZSCX10, mMP99, mM04, VW01.

Procedure [IDVV96, JZ09, JK17, LR95].

process [PRR+16]. processes [AD11, BL03, Buc11, DGB+13, NH06].

processing [Dat01, KLN99, SKR08].

Procrustes [CZ15, KH07, XCG16].

product [BW17a, Che15, DQW15, DK15, Gus04a, KN07, LS04, MGF+02, Per06, XG10]. products [BB01, DWWQ13, LPS16, Mat96, Mey94].

Professor [SGP14].

profile [HR05].

programming [BRT07, HHQ13, LV98, Naz95, RGG07, Shi02, Shi04].

Progress [Bai95].

Projected [HKKP07, Shi04].

projected-steepest-descent [Shi04].

projection [BG13, Baz08, BG00, FB95, ITO13, JC13, JN06, JQ05, KPT14, KS15, LSV15, LVS15, LS04, LV12, NL16, O’H14, QXB09, SPD05, SP06, SLV04, SLV06, DW15, Tia13, Tyr92, VVM05a, VJM16, WQ07].

Projector [DD07].

prolongator [KV15].

prolongators [BDV06].

proof [Adi08].

propagation [BO13, mM04]. proper [Kem12].

Properties [PSK08, Wei94, You96, ZHZ10, BDS94, Bun92, CGK05, CWW06, LV12, NLR13].

property [DMY03, EZ96, ES09b, NL16, YLH11].

proposal [NCV05].

proving [BBP03].

pseudo [BFdP13, mMvdV02].

pseudo-Jacobi [BFdP13].

pseudo-overlap [mMvdV02].

Pseudoeigenvector [MYZ16].

Pseudospectra [KCC16, VW15, NR17].

PSF [BNP15].

published [Ano09].

pure [KM99].

Python [BISC14].

QLP [HC05].

QR [CGK05, Fas05, LW15, VVM05b].

quadratic [BLP08, BG05a, BMP11, CQX11, CCvG06, DMS17, DD07, DR03, EGF11, HLLL13, KLM14, LC13, LW05, LZQ12, LYL15, MP13, QXB09, Ste99, XZS15].

quality [BC10, Kap98, NY03].

quantum [KMMR10].

Quasi [RSCTP15, Gar01, Gar02, HSM99, LY15, MN05, SW96, ZZ15].

quasi-isometric [Gar01, Gar02].

quasi-kernel [MN05].

quasi-minimal [SW96].

quasi-Newton [ZZ15].

Quasi-optimal [RSCTP15], quasi-uniform [HMS99].

question [JK09].

queueing [BLLA11].

quotient [FK15, Het07, NZ14, PS95, Zho06].

R [Nab97].

Rachford [LR95].

radial [CDDSC12].

radiation [OC04, WBWM04, XM17].

radii [CIFX05].

Radim [Cao13].

radiosity [Leb02].

radix [MR14].

radix- [MR14].

random [HPS15, LW98, WF15].

Randomized [SLK16].

range [AMMR17, CWW06, KK16, Yan10, ZW10].

range-Hermitian [ZW10].

Rank [GS97, Kug92, AT15, BE09, Bao08, BF96, CH94, CSYS14, DE98, DBLP16, ES05, FMPS13, Gra08, HU05, HCM05, KJ12, KPT14, KS15, LSV15, LXS16, LO15, NL16, O’H14, QXB09, SPD05, SP06, SLV04, SLV06, DW15, Tia13, Tyr92, VVM05a, VJM16, WQ07].

rank- [DW15].

rank-1 [KJ12, WQ07].

Rank-deficient [GS97, DE98].

rank-exploiting [VJM16].

rank-one [CSYS14, O’H14].

ranks [LT08, STZ12].

Rapid [LO13].

rarely [BG05b].

rate [BS01, CJT03, MRT96, RW12, Zik08].

rates [Li00].

Rational [Fas05, Mor09, Rag14, BBJ17, Mee01, Mor07, PRR+16, Tre05].

Raviart [KMS08, LV12, Zhi14].

ray [Liv04b].

Rayleigh [FK15, Het07, HS08, KABH17, NZ14, PS95, Zho06].

Raytcho [Vas03].

RBFs [FP15].

RD [Mor07].

SA [BM+08, GX14, HVX16]. SA-AMG [HVX16]. saddle [AN06, Axe15, Bai09, Bai12, Ber12, Cao04, Cao08, Cao09, CJZ11, CH03, EG16, HD07, KP00, KKR14, Krz11,
KKMM12, LOY08, LOS04, LW07, MZ15, PW13, SJBH14, SX15, VL96, WBL14.
saddle-point [Bai09, Bai12, EG16, KKR14, KKMM12, LOY08, VL96], same [GHR98], sample [DXW12]. sampled [Rie09].
sampling [AFSCSU14, FGT11]. SANS [LS04]. SAXPY [Ypm95]. Scale [VF01, Axe98, BBJ17, Bar02, BCB14, Ben08, BL08, BES14, DMY03, Gra08, GR04, Lee16, NH06, XM17]. scaled [CTP09]. scaling [BBKY06, GHO15, HS15]. scattering [FGT11, MV13, WTSO9].

Schmidt [Zha92, BS01, CRV14, GB11, GSS01, GMOS06, KV15, LLS12, Po00, Pul16, RR12]. schemes [AIT05b, AJ94, Bir15, DE06, Gus03, HM14, KABH17, OCYM08].

Schroenmakers [DPP16], Schr"odinger [CJL08], Schur [BG00, BCK05, BG05a, Bra02, BCGM09, BD15, Bm02, HHP07, KSB13, KW99, Kra06, KLM15, LXS16, LW03, MMMM09, MW16, NG15, PW12, Rak99, SGP14, TSPS06, WW08b, WTWG14, vNR07].

Schwarz [AB13, Cao13, AALS01, AB10, BK11, CZ02, DS08, KP00, OC04, VSG09, XS10].

scientific [Axe98]. searches [DMY03].

Second [JM10, VFdV13, BBJ17, CEL+96, DLVZ06, GT116, KP06, LM06, MM09].

Seidel [HP97, KLN99, LO13, Sun06]. select [Alb06]. selected [BT13]. selection [AO07, CDG00, MO16]. selective [NO04].

Selfadjoint [AV94]. Semi [Mar98, CH05, Ema12, GLGR10, KH07, LJM14, LD07, MCV01, MC08, Par92, WW08b, Xia12].

semi-orthogonality [Par92].

semi-separable [MCV01, Xia12].

semi-structured [GLGR10].

semiconductor [GMR05].

Semiconvergence [CS11]. Semidefinite [LZQ12, CS09, HHQ13, PS11].

semidiscrete [GB15]. Semilocal [GD11].

semiorthogonal [VLL13].

semiseparability [VVM05a].

semiseparanal [Fas05, VVM05a, VVM05b, VVM05c, XCG10]. sensing [BT15, ZZ15].

Sensitivity [CL13, GL95a, PV99, BW17b].

separable [MCV01, Xia12]. sequences [AFSCSU14, Not05a, TT10].

sequential [ACR+00, HHQ13, HCD15].

serendipity [HH06]. series [GZ16, ROA13]. set [BDK+15, MO16]. sets [KMC16, LLK14].

Several [Wu15, Pul16]. Shader [Nab97].

Shamanskii [LB08]. shape [RP04]. shaped [RH11, ZMO10]. shapes [AG95]. shared [JO94].

shell [MBW97, The98]. Shift [PS11, BBP03, IP13, MC09, MP14, WtFW15, vGSZ15, Snc03].

shift-and-invert [MP14, WtFW15, Sim03].

Shift-invert [PS11]. Shifted [LM16, CV13, JR94, JYH17, SLV13, TT15, UMO09].

Short [Lai97, SHT11, Yon96]. sided [FK15, JZ11, ZJ06, Zik08]. sides [ARSO14, ARMW14].

Sign [Nab97, CLC11, GM17, GJGZ12].

sign-definite [GM17]. Sign-Solvable [Nab97].

signal [Dat01, HM03]. signless [XC13].

Signorini [Hla99, IV04]. similarity [VVM05a]. similarly [T05].

SIMPLE [LV04, KNY99]. simpler [JYH17, WZ94].

simplified [BM06, ZVO14]. simulating [MC04].

simulation [BFPS10, BvdV00, BO13, PR11].

simulations [AK16, KR11, LWC16, NO04].
Simulator [LWV01]. Simultaneous
[DK15, Peñ03, AT15, GM11, LT11]. sinc
[BCR11, BCR14, NSCTP05]. Sine [CW97].
single [PDV05]. single-channel [PDV05].
singly [HS05]. Singular
[AFSCSU14, BCC98, CKW02, Cao08, CL13, Dod11, FP95a, FH94, GTI16, HS11, HS14, HHL08, JLM05, KR06, Krz11, KKMM12, LSL01, LHL07, LHW11, LT13, MPS96, NR14b, Roh92, Sau95, SS97, Szy94, THC09, Tre05, ZW10]. Singular-value [AFSCSU14].
singularities [BLZ08, CKW02, Dah02, LLW09]. singularity [Ver00]. sixtieth [LPQ06]. size
[FJP12]. skew
[BGN07, KKR14, LHL07b, SB12, Wu15].
skew-Hermitian
[SB12, BGN07, KKR14, LHL07b, Wu15]. small
[DXW12, KY96]. smallest
[MV08, MM11]. Smith [BES14]. smooth
[Car97, HKKP07, The98]. Smoothed
[BDM+14, CDW06, OS10, Sch12, BMM+08, BVV12, GHT09]. smoother
[LRO17, ZVO14]. smoother
[GLO08, GKV12, HBB10, LJ14, MO11, Yan04]. smoothing
[BC09, E96, GLOW04, HP97, TC10]. smoothness
[Cho03]. SNAP [ITS07]. Sobolev [AFK02]. social [GB15]. software
[Voe92]. solid
[Ada04, SV11]. Solution
[Bar02, BFP10, Ben11, JL09, ACR99, AD11, Ax98, Ax99, BDGLO9, Bai95, BKP02, Bau08, BMI06, BLP08, B01, BPS00, BPM11, BRT07, BDS94, Bot13, BFM12, CGPV13, CLR01, Che15, CA99, Cor04, DMS17, DBLP16, FJP12, Gem00, GTY97, Gra08, GS05, GL08, GL02, GL13, HJR97, HG00, Hla99, ITS07, JZ11, J094, KRW08, LX08, LP01, LV99, LGS12, Lin12, LL97, Lot07, MS14, MZHB17, MP13, MM97, MBW97, Miy15, Ohs99, yPE07, Ren98, SGM15, Sin03, Ste95, TSPS006, WWC08, ZYL13, VWO1]. Solutions
[GL95a, Pen08, AW11, BGX06, CH03, DE98, DBG06, HM96, KR06, fLYHZ11, pLL07, Miy17, PP95, Tia13]. solvability [XHZ03]. Solvable [NB97]. solve
[BG13, KBF15, Liv04b, MZHB17, ZJ06]. solver
[BvdV00, CH05, GKK94, RK13, KR06, LSS03, LM06, MNCT07, MRT02, Ols99, Pad99, PR11, RTN03, Rak99, RGG07, RGM17, SS02, Sol14, SKR08, Yot01]. solvers
[AGG+16, AG99, AKB97, Ber01, BC02, BO13, FS09, HLM92, HS05, LR08, Lee16, Mey94, NO04, Sch12, Soc09]. solves
[Cha07]. Solving
[BG05a, Nov03, AH02, AMMR17, AK99, AK00, CA04, CQ10, CC03, CN05, DN12, EM11, FH94, HKKP07, HM14, JLM05, Jou94, KS15, KKMM12, KM92, LT09, Liv14, MZ15, ML05, NQ96, PM97, yP906, RSR10, Sh02, Sto92, TT10, Var08, Vla00, WTZD10, mMP99, mMO4, vGZ15]. Some
[BFG95, BM05a, CGK94, CZ02, HM14, LS06, Mar95, Sun06, Ber01, BB06, CDW06, DS10, GL02, LV08, LHL07a, Peñ09, XZ15].
SOR
[Che02]. sorting
[Bra02]. Space
[Lee12, AT15, AMM04, AFK02, BPSH13, BV13, BC12, KV92, LTS07, KLM15, RSR10]. Space-angle-energy
[Lee12]. spaces
[GH06, LV12, LZY11, LP06, VSG09]. Sparse
[CDG00, CGM04, Vas02, WWC15, AB00, BPS95, Bas00, Buo08, BF11a, BEH+17, BPS00, BVO0, BG00, CS96, DR03, EW13, FJP12, GHO15, Gus03, HS15, HS05, Hue98, ISZ09, JZ09, JK17, KNY01, KNY99, LLL97, LV98, Mey94, NLZ11, NY03, NH98, RTN03, SZ99, SS02, VS17, WLH012, XM17, vGZ15]. sparsity
[Poi00]. spatial
[BLP17]. SPD
[Mar16]. Special
[An08, CLR13, Fa06, LD08, VW01, Vas05, Ben08, D01, ES07, Mey94, Axe99]. specially
[SHT11]. specified
[LYHZ11]. Spectral
[CDG00, MST16, SGSM15, mMV02, BPS95, BFCP13, BM17, CQZ13, CNZ17, CIX05, LQY13, LNO13, MS14, MO09, Par03, SK01]. spectrum
...
successive-overrelaxation [BGN07].
sufficient [Pul08]. sum [AD12].
summation [FP05, KK16]. Super
[CNYS05]. Super-resolution [CNYS05].
Superconvergence [FY01]. superfast
[CHV05]. Superlinear [Kap05].
superlinearly [CQ10]. superoptimal
[CSCTP05]. superfast [CHV05].
Super-resolution [CNYS05].
superconvergence [FY01]. superfast
[CHV05]. Super-resolution [CNYS05].
superlinearly [CQ10]. superoptimal
[CSCTP05]. superfast [CHV05].
Super-resolution [CNYS05].
superconvergence [FY01]. superfast
[CHV05]. Super-resolution [CNYS05].
superlinearly [CQ10]. superoptimal
[CSCTP05]. superfast [CHV05].
Super-resolution [CNYS05].
third [ABBP10, BCR11, BCR14].
third-order [ABBP10, BCR11, BCR14].
Thomas [LV12].
three [AALS01, BB96, CGPV13, DM10, Ibr02, KT08, Rja98, XZS15, YW12].
three-dimensional [AALS01, CGPV13, KT08, Rja98].
three-way [Ibr02].
threshold [Saa94, SZ99].
thresholding [LM06].
Tight [OOO11].
Tikhonov [BCB14, BDR17, CRS05, CLTW11, Don05, FRR16, GNR14, LHW11].
time [AT15, ABK15, Bai12, BW17b, Bot13, CNT07, Cas11, CLNY15, CJL08, DGRR11, DK15, GZ16, GS07, HG00, Kem12, KK13, Lam12, LLS12, LGS12, LC13, MV13, MC09, RBV08, ZYFG11, ZSWX13, vKVW00].
time-delay [DGRR11, LC13].
time-dependent [CNT07, MV13, RBV08, ZYFG11].
time-exact [Bot13].
time-harmonic [Bai12, GS07, LGS12, ZSWX13].
time-independent [CJL08].
time-periodic [KK13].
times [KVW10].
tire [SMSW00].
Toeplitz [AH02, BLP17, BG05a, BG05b, CNP96, CPS01, CGK05, CNY05, CHV05, CS95, Don10, DGM+16, Est09, FLM09, HR05, Hem96, HSCTP05, KN07, LC05, LC07, Lot07, LPS15, MS14, MV08, NR11, NPR13, NCV05, PS11, WiFW15].
Toeplitz-plus-Hankel [KN07].
tolerant [RTN03].
tool [FM15, GS97].
tools [BBP03].
topology [HP04, Vas02].
Total [CLNY15, CTP09, FB95, GR05, LVD02, LW17, MVK04, MLV05, ZZ15].
totally [BP13, Hua12].
Tracking [LB17].
transfer [Don10, GVT03, KV92].
transfers [WTWG14].
transform [CW97].
transformation [FLPW01, LL97, MC09, OOO16, VVM05a].
transformations [CHV05, Dax04, Han13, JO01].
transforming [Lin12].
transforms [FP05].
transition [BH16, LCN13].
transmission [RJ95].
transport [Cha07, CGM11, HM14, Miy17, TC10].
treatment [JM10, MM09].
tree [Vön12].
Trees [BMP11].
Trefftz [LLW09].
Triangular [Zhao16, BNT94, BF11a, FP95a, GLGR10, KABH17, KKR14, LPS15, MMMM09, Mit10, RS10, SRGL13].
Tridiagonal [NPR13, Zha92, BPS15, BM05b, BM06, EM11, Jia17, LLLJ16, XQ09, YLH11].
trigonometric [CHV05, FP05].
trigonometry [Gus97, Gus98, Gus03].
trilinear [BG02].
triplet [LT11].
triplets [SS97].
Truncated [GKK04, KS15, GTH16, LHW11, NR14b].
truncation [STZ12, Zhao16].
Trust [Natz5].
Tubes [LD08].
Tucker [JY17].
Tuned [FK15, Mar16].
tunnel [FLPW01].
twisted [XQ09].
Two [BM17, CSCTP05, DLVZ06, ES09b, rFS09, HH06, JS96, KM99, KV96, PBN05, XZS10, Yon96, Zha92, ZSWX13, Zik08, vRH05, AM96, AD12, AMMP06, AN13, CGPV13, CGM01, CG15, DY04, DFNY08, DBG06, ELV94, FVZ05, FK15, FH94, GVT03, HHvR04, HVX16, HLLL16, Ian16, JZ11, MCV01, MS13, MP15, MPS96, NN10, NH06, Not10, NCV05, VSG09, WM12, XZ09, YYX13, ZJ06].
two-by-two [AN13, MP15].
two-component [NH06].
two-dimensional [DY04, XZS09].
Two-grid [CSCTP05, ZSWX13, CGPV13, CG15, ELV94, FVZ05, HVX16, NN10, Not10].
two-level [DLVZ06, HH06, KM99, KV96, XZS10, vRH05, CGM01, GVT03, HHvR04, NCV05, VSG09, YYX13, Zik08].
two-phase [HLLL16, NH06].
two-player [AD12].
two-real-parameter [MSV13].
two-sided [Zik08, FK15, JZ11, ZJ06].
two-stage [BM17, JS96, AMMP06, MPS96].
two-step [PNB05].
two-term [WM12].
Two-Way [Zha92, MCV01].
type [ABBP10, BR07, Baz08, Ben08, Cao08, CWS97, EG16, FG02, KKY95].
REFERENCES

Achchab:2001:SCB

B. Achchab, O. Axelsson, L. Laayouni, and A. Souissi. Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three-

References

Adlers:2000:MSS [AB00]

Axelsson:2010:PMP [AB10]
Owe Axelsson and Radim Blaheta. Preconditioning of matrices partitioned in 2×2 block form: Eigenvalue estimates and Schwarz DD for mixed FEM. *Numerical Linear Algebra with Applications*, 17(5):787–810, October 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). See comment [Cao13, AB13].

Amodei:2012:SAN [AB12]

Axelsson:2013:RCB [AB13]

Amat:2010:TON [ABBP10]

Axelsson:1997:INS [ABK97]
June 1997. CODEN NLAAEM.

Axelsson:2015:PMH

Adler:2017:PMC

Axelsson:2015:PIM

Axelsson:2011:MCN

Amadio:2000:ABD

Amparore:2011:RMF

REFERENCES

Akian:2012:MMT

Adams:2004:AMM

Adib:2008:HPG

Amestoy:1996:MFM

Amat:2014:AIO

Amat:2015:NFH

Axelsson:2002:SSP

Akinola:2014:CDN

Al-Fhaid:2014:SVE

Agullo:2016:NRS

Al-Homidan:2002:SAS

Amodio:2005:CPP

REFERENCES

Amodio:2005:SSH

Andreev:1994:CDS

Axelsson:1994:DCR

Arushanian:1999:ILS

Axelsson:2000:RVI

Axelsson:2010:P

Arismendi:2016:MCA

[AK16] Juan Carlos Arismendi and Herbert Kimura. Monte Carlo approximate tensor moment simulations. *Numerical Linear Algebra with Applications*, 23(5): 825–847, October 2016. CODEN NLAAEM. ISSN 1070-
REFERENCES

Alber:2006:MCS

Axelsson:1995:GCG

Achchab:1996:EVT

Ambikasaran:2015:GRP

Austin:2004:RMA

Arnal:2006:PNT

Appelhans:2017:LCP

David J. Appelhans, Tom Manteuffel, Steve McCormick, and John Ruge. A low-communication, parallel algorithm for solving PDEs based
on range decomposition. Numerical Linear Algebra with Applications, 24(3):??, May 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:2008:CPS

Anonymous:2009:NLA

[Ano09] Anonymous. *Numerical Linear Algebra with Applications* impact factor for 2008 has been published to be 0.822. *Numerical Linear Algebra with Applications*, 16(9): ???. 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:2012:IIa

Anonymous:2012:IIb

Anonymous:2012:IIc

Anonymous:2012:IIId

Anonymous:2012:IIe

Anonymous:2012:IIf

Anonymous:2013:IIa

REFERENCES

Anonymous:2013:Ib

Anonymous:2013:Ic

Anonymous:2013:Id

Anonymous:2014:Ia

Anonymous:2014:Ib

Anonymous:2014:Ic

Anonymous:2014:Id

Anonymous:2014:Ie

Anonymous:2014:If

Anonymous:2015:Ia
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Andrew:2000:ICD

Andreev:2015:MPL

Alefeld:2011:BEA

Axelsson:1994:VSM

Axelsson:1996:E

Axelsson:1998:PSM

Axelsson:1999:ESI

Axelsson:2002:P

Axelsson:2003:E

Axelsson:2004:E

Axelsson:2010:PYN

Owe Axelsson. The past 16 years of NLA. *Numerical Linear Algebra with Applications*, 17(1):1, ???. 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Axelsson:2015:UAP

Aksoylu:2011:RMP

Bai:1995:PNS

Bai:2009:OPH

Zhong-Zhi Bai. Optimal parameters in the HSS-like methods
REFERENCES

Bazan:2008:NEP

Broyden:1996:CTB

Bazan:1997:ZLP

Becker:2000:MTF

Benner:2001:EPM

Beuchler:2006:ISC

REFERENCE
REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Boman:2004:MWB

Bae:2005:SAA

Bai:2011:SDB

Bai:2014:ORS

Brenner:2009:MMS

Bergamaschi:2003:EAE

Brannick:2012:AMM
REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Bebiano:2013:ACP

Borges:1995:SIE

Brezinski:2012:MLO

Benzi:2010:SLS

Boley:2000:LSP

Branets:2002:DMT

Bini:2005:SQM

[BG05a] Dario A. Bini and Luca Gemignani. Solving quadratic matrix equations and factoring polynomials: new fixed point iterations based on Schur complements of Toeplitz matrices. *Numerical Linear Algebra with Applications*, 12(2-3):181–189,
REFERENCES

March/April 2005. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Bini:2005:SMM

Bai:2006:ALI

Bergen:2004:HHG

Bebendorf:2007:SRA

Bozorgmanesh:2016:CTP

Bouhamidi:2013:PBA

Birken:2015:TCI

Philipp Birken. Termination criteria for inexact fixed-point

Bertalan:2014:ONM

Benzi:2011:RAS

Brezina:2012:RCB

Bakhvalov:2002:ETS

Baker:2010:IAM

Bohl:2003:IMP

REFERENCES

Blaheta:1994:DDI

Blaheta:2002:GGP

Blaheta:2003:NTG

Bastian:1997:PAM

Baek:2011:MMF

Bunch:2001:ADI

Benner:2008:NSL
Peter Benner, Jing-Rebecca Li, and Thilo Penzl. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic opti-

Bai:2017:DTS

Buzdin:2008:IDB

Brannick:2008:UCM

Brugnano:2005:SLA

Bunch:2005:PSS

Bunch:2006:SPS

Benner:2013:PII

Peter Benner and Thomas Mach. The preconditioned inverse iteration for hierarchical matrices. *Numerical Linear Algebra with Applications*, 20(1):150–166, January 2013. CODEN NLAAEM. ISSN 1070-
REFERENCES

5325 (print), 1099-1506 (electronic).

Bergamaschi:2017:TSS

Beik:2016:KSM

Bella via:2006:IPN

Bouyouli:2009:NRC

1070-5325 (print), 1099-1506 (electronic).

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Bergamaschi:2000:AIP

Bardsley:2013:KSA

Bey:1999:CBI

Baglama:2007:AGT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Carpentieri:2000:SPS

Carpentieri:2004:SSP

Cucker:2006:SAS

Chen:1996:MPM

Canha:2007:MMD

Chen:2016:PTI

Chu:2005:CMR

Moody T. Chu and Shu fang Xu. On computing minimal re-

Calandra:2013:ITG

Chan:1994:LRR

Chen:2003:NVS

Chen:2002:CSM

Chang:2005:SIM

Chen:2002:CSM
Chen:2015:GKP

Chien:2008:TIA

Chow:2003:UMM

Chu:2004:CIO

Chien:2009:TIA

CJT03

Codevico:2005:SSR

Cao:2011:SPS

REFERENCES

70

875–895, October 2011. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Xiao Shan Chen, Wen Li, and Wai-Ki Ching. Perturbation
analysis for the sign functions of
regular matrix pairs. Numeri-
cal Linear Algebra with Applica-
tions, 18(2):189–203, March
2011. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-
1506 (electronic).

[Chen:2015:TVB]
Chuan Chen, Xutao Li, Michael K.
Ng, and Xiaoming Yuan. Total
variation based tensor decom-
position for multi-dimensional
data with time dimension. Nu-
merical Linear Algebra with
Applications, 22(6):999–1019,
December 2015. CODEN NLAAEM.
ISSN 1070-5325
(print), 1099-1506 (electronic).

[CLNY15]

[CLR01] D. Calvetti, B. Lewis, and
L. Reichel. On the solution of
large Sylvester-observer equa-
tions. Numerical Linear Alge-
bra with Applications, 8(6–7):
435–451, September/November
2001. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-
1506 (electronic). URL http:
//www3.interscience.wiley.
com/cgi-bin/abstract/85007287/
START; http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=85007287&PLACEBO=IE.pdf.

[CLR13] E. K-W. Chu, W.-W. Lin, and
L. Reichel. Special issue dedi-
cated to Biswa Nath Datta on
the occasion of his 70th birth-
day. Numerical Linear Alge-
bra with Applications, 20(2):
167–170, March 2013. CO-
DEN NLAAEM. ISSN 1070-
5325 (print), 1099-1506 (elec-
tronic).

[Chu:2011:CNP]
Delin Chu, Lijing Lin, Roger
C. E. Tan, and Yimin Wei. Con-
dition numbers and perturba-
tion analysis for the Tikhonov
regularization of discrete ill-
posed problems. Numerical
Linear Algebra with Applica-
tions, 18(1):87–103, January
2011. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-
1506 (electronic).

[Chan:1996:GSP]
Raymond H. Chan, Michael K.
Ng, and Robert J. Plemmons.
Generalization of Strang’s pre-
conditioner with applications
to Toeplitz least squares prob-
lems. Numerical Linear Alge-
bra with Applications, 3(1):
45–64, January/February 1996.
CODEN NLAAEM. ISSN
1070-5325 (print), 1099-1506
(electronic). URL http://
//www3.interscience.wiley.
com/cgi-bin/abstract?ID=15000497.

[Ching:2005:SRI]
Wai-Ki Ching, Michael K. Ng,
Kenton N. Sze, and Andy C.
Yau. Super-resolution image
reconstruction using multisens-
sors. Numerical Linear Alge-
bra with Applications, 12(2–3):
271–281, March/April 2005. CO-
DEN NLAAEM. ISSN 1070-
Cai:2007:NEC

Ching:2005:DMS

Chen:2017:BSC

Coroian:2004:IOI
REFERENCES

Chan:2001:PNH

Castillo:2006:ILS

Chen:2010:GSC

Cai:2011:FNM

Chang:2013:SST

Campos:2016:PIR

Calvetti:2005:TRL
D. Calvetti, L. Reichel, and A. Shuibi. Tikhonov regularization of large symmetric problems. *Numerical Linear Algebra
Cools:2014:NLD

Concus:1995:MDP

Cai:1996:ODD

Chapman:1997:DAK

Chan:2002:SCM

Cao:2009:PMM

Cao:2011:SPM

Chan:2005:TGM

Cheng:2014:BER

Chang:2009:BPA

Chow:2003:MBF

Cools:2013:LFA

Cvetkovic:2009:P

Collignon:2011:MSI

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Damm:2008:DMA

Datta:2001:PSI

Dax:1994:RRM

Dax:2004:CPH

Deng:2006:IOD

Duan:2016:LRS

Domoradova:2007:PPP
Dayde:1999:SSP

DeSterck:2013:SDP

Dax:1998:AMN

Du:2006:ASC

Deng:2009:IO

Dendy:2012:MM

Dendy:2014:MM

Dieci:2001:CIS

L. Dieci and M. J. Friedman. Continuation of invariant sub-
REFERENCES

DeSterck:2008:DTI

DiFiore:2005:LCM

Dabkowski:2013:SPS

Donatelli:2016:PHM

Dey:2011:SFS

Dostal:2004:SFO

REFERENCES

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Dolgov:2015:SST

Dostal:2015:RBS

Dai:1997:NMG

Dobrev:2006:TLP

Dendy:2010:BBM

DeSterck:2008:EBR

Damm:2017:NSF

Tobias Damm, Hermann Mena, and Tony Stillfjord. Numerical solution of the finite horizon

DeSterck:2011:FMM

Dai:2003:IAP

Du:2012:NLG

Donatelli:2012:SRM

Dobrowolski:1999:FEM

Dodig:2011:PPP

Dohrmann:2007:ABP

[Doh07] C. R. Dohrmann. An approximate BDDC precondi-
REFERENCES

Weiyang Ding, Liqun Qi, and Yimin Wei. Fast Hankel tensor–vector product and its application to exponential data fitting. *Numerical Linear Al-

REFERENCES

Dollar:2010:NFA

Dosso:2013:SSS

Dupont:2013:PMT

Diao:2007:FNC
REFERENCES

Dardyk:2004:MAT

Egger:2007:PCI

References

Elsner:1995:MNN

Elnroth:2001:CPG

Egana:2002:IEM

Ewing:1994:LR

Edelman:1995:PMN

Erway:2011:BSA

Emans:2012:KAA

Escalante:1996:DAC

Elden:2005:MLE

Elfving:2007:BPS

Elfving:2009:DMR

Elhashash:2009:TCM

Estatico:2009:PIP

Eastwood:2013:FDE

Ewing:2003:SDF

Ecker:1996:SPM

Falgout:2006:SIM

Falgout:2008:MM

Falgout:2010:MM

Fasino:2005:RKM

Fierro:1995:OPT

Ferket:1996:FDB
REFERENCES

REFERENCES

Freitag:2015:TPI

Favati:2009:RAU

Farhat:2000:SDP

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Freund:1999:CUW

Friedhoff:2015:GPA

Friedland:2013:BRO

Freitag:1995:RAD

Fernando:1995:ICA

Frommer:1995:CRM

Fenn:2005:FSB
REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Farrell:2015:BPL

Fenu:2016:GTR

Feng:2016:FSD

Gander:1999:WRA

Martin J. Gander. A waveform relaxation algorithm with overlapping splitting for reac-

Falgout:2005:TGC

Feng:2016:FSD

Gander:1999:WRA

Martin J. Gander. A waveform relaxation algorithm with overlapping splitting for reac-

Guo:2011:SGC

Gemignani:2000:ESS

Gaspar:2008:DSM

Gleich:2013:PAM

Gomilko:2012:PFI

Gatica:2001:MRI

Galantai:2006:JPA

[GH06] A. Galántai and Cs. J. Hegedűs. Jordan’s principal angles in
CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Greif:2011:BSC

Gratton:2016:RCA

Griebel:2015:OSP

Glunt:1998:NDS

Gee:2009:NSA

Grimm:2006:HOP

George:2002:GFG

Alan George, Khakim D. Ikramov, and Andrey B. Kucherov. On the growth factor in Gaussian elimination for gen-

Ivar Gustafsson and Gunhild Lindskog. Parallel algorithms for orthotropic problems. *Numerical Linear Algebra with Applications*, 3(3):185–203, May/June 1996. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-
REFERENCES

S. Gazzola, P. Novati, and M. R. Russo. Embedded techniques for choosing the parameter in Tikhonov regular-

[GS97] W. Govaerts and B. Sijnave. Rank-deficient ma-

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Goreinov:1997:MFI

Gustafson:1997:OTI

Gustafson:1998:OTM

Gustafson:2003:OTP

Gustafson:2004:IPL

Gustafson:2004:ND

Giraud:2003:GTO

L. Giraud, F. Guevara Vasquez, and R. S. Tuminaro. Grid

Gulliksson:2000:PTG

Guo:2014:NUB

Gonzaga:2008:FNL

Gillard:2016:WNS

Hackbusch:1992:PCG

Hansen:2013:OPS

Hamilton:2010:NMS

REFERENCES

He:2000:SBF

Hakopian:2006:TLP

Huang:2016:NTP

Haber:2010:NOC

Hu:2013:FEE

Hemker:2004:FTL

Han:1997:NAP

REFERENCES

REFERENCES

Hlavacek:1999:RSS

Huang:2013:SGA

Hwang:2005:JDM

Haase:1992:DDP

Hansen:1996:PPS

Hanna:2003:CMB

Huang:2014:SPC

REFERENCES

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Harbrecht:2015:EAR

Heinig:2005:SAS

Hu:2005:OTS

Hochstenbach:2008:HRR

Hayami:2011:GVK

Hogg:2013:EAP

Hayami:2014:CGV

REFERENCES

REFERENCES

Ixaru:1996:RP
[102x681]

L. Gr. Ixaru, H. De Meyer, G. Vanden Berghe, and M. Van Daele. A regularization procedure for \(\sum_{i=1}^{n} f(z_j)x_i = g(z_j)(j = 1, 2, \ldots, n) \). Numerical Linear Algebra with Applications, 3(1):81–90, January/February 1996. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). URL http://www3.interscience.wiley.com/cgi-bin/abstract?ID=15000499.

Ikramov:2000:BGF

Iannazzo:2013:SST

Imakura:2009:IWS

Ilic:2005:KSA

Ilic:2007:LSS

Iontcheva:2004:MMM

Ana H. Iontcheva and Panayot S. Vassilevski. Monotone multigrid methods based on element agglomeration coarsening away from the contact boundary for the Signorini’s prob-
Jia:1996:IIO

Jia:1996:IO

Jia:2017:RBS

Jian:2017:EEI

JL09

Jian:2017:EEI

JLW05

Jun:2010:SOT

REFERENCES

839–853, October 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:1992:JNL

Journal of numerical linear algebra with applications, 1992. ISSN 0129-3281. World Scientific Publishing Co., Singapore; Philadelphia, PA, USA; River Edge, NJ, USA.

Joubert:1994:IC

Joubert:1994:CBR

Janovska:2001:NHT

Jagels:1994:FMR

Jones:1996:TSM

Jing:2017:SGA

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Jiang:2017:TTC

Jia:2009:PSA

Jiang:2011:DAS

Ke:2017:BTP

Kaporin:1994:NCR

Kaporin:1998:HQP

Kaporin:1999:PAF
Igor Kaporin. A practical algorithm for faster matrix multiplication. _Numerical Linear Algebra with Applications_, 6(8):687–700, December 1999. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-
REFERENCES

[102x681] REFERENCES

[102x681] 114

[KK16] Venera Khoromskaia and Boris N. Khoromskij. Fast tensor method

Kong:2012:SBR

Kaporin:2002:PBO

Kollmann:2013:PMS

Khoromskaia:2016:FTM
Venera Khoromskaia and Boris N. Khoromskij. Fast tensor method

Kucera:2012:MPI

Kharchenko:2001:RAT

Krukier:2014:GSH

Kim:2006:FOS

Kraus:2014:RMM

Kraus:2015:ASM

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Kraus:2008:MPC

Kilmer:2007:KPA

Kindermann:2014:NAT

Kwak:2003:DDM

Kirkland:2001:DCA

Kolotilina:1999:FSA

Kolotilina:2000:IFA

Kolotilina:2005:BEB

Konshin:2017:FPS

Klawonn:2000:COS

Kuznetsov:2010:NMA

Kressner:2014:PLR

Kim:2006:MIC

T. Kim, J. E. Pasciak, and P. S. Vassilevski. Mesh-independent convergence of the modified inexact Newton method for a second order non-linear problem. *Numerical Linear Alge-
REFERENCES

Kolev:2008:CAM

Kostler:2006:AMS

Kimmritz:2011:PMM

Kressner:2014:MEA

Kraus:2002:APM

Kraus:2006:AMP

Kostler:2008:MSO
REFERENCES

Krzyzanowski:2011:BPS

Klawonn:2004:PEL

Knizhnerman:2010:NIE

Kressner:2015:TLR

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Keel:2013:RHS

Kraus:2008:MMD

Kublanovskaya:1992:RDA

Kuznetsov:1992:NPA

REFERENCES

Kaagstrom:1992:GSS

Krizkova:1996:TLP

Kolev:2006:AEA

Kostic:2012:LGE

Kincaid:2010:LTD

Khoromskij:1999:RSC

REFERENCES

Kim:2003:MMB

Kharchenko:1995:ETB

Lai:1997:SCN

Lammers:2012:EHO

Langer:1997:E

Layton:2005:MRC

Lazzaro:2016:NAL
REFERENCES

124

Lin:2008:CAN

Lee:2017:UAP

Leon:2013:GSO

Lin:2005:ITP

Liu:2007:NBE

Li:2013:PAL

Li:2013:PBP

Lukas:2007:OMP

D. Lukáš and Z. Dostál. Optimal multigrid preconditioned
semi-monotonic augmented Lagrangians applied to the Stokes problem.
CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

\textbf{Luo:2008:CPS}
X. Y. Luo and C. Davies. Call for papers: Special issue on
‘Flow in Collapsible Tubes or Over Compliant Surfaces for
Biomedical Applications’, Communications in Numerical
Methods in Engineering (CNM).
CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

\textbf{Lee:2002:SAE}
Michel Leblond. \textit{H}-self-adjoint matrices. Application
CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

\textbf{Lee:2010:USA}
Young-Ju Lee. Uniform stability analysis of Austin, Manteuffel and McCormick finite elements and fast and robust it-
erative methods for the Stokes-like equations.
CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

\textbf{Lee:2012:SAE}
B. Lee. Space-angle-energy multigrid methods for \textit{S}_n
discretizations of the multi-energetic Boltzmann equation.
\textit{Numerical Linear Algebra with Applications}, 19(4):
773–795, August 2012. CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

\textbf{Lee:2016:PPM}
Barry Lee. Parallel preconditioners and multigrid solvers for stochastic polynomial chaos
discretizations of the diffusion equation at the large scale.
ISSN 1070-5325 (print), 1099-1506 (electronic).

\textbf{Li:2012:PNS}
Dan Li, Chen Greif, and Dominik Schötzau. Parallel numerical solution of the time-
harmonic Maxwell equations in mixed form.
CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).
Li:2008:ECN

Li:2011:ICT

Li:2007:SSM

Li:2007:MHS

Li:2007:OGT

Linsenmann:2012:CR

REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Livne:2004:CCR

Livshits:2004:AMW

Livshits:2014:SMM

Lei:2004:BPS

Lu:2014:HGA

Longley:1997:AGS

Li:2014:NEI

[Luksan:2004:IPM] Ladislav Lukšan, Ctirad Matonoha, and Jan Vlček. Interior-

[Xinxin Li, Michael K. Ng, and Xiaoming Yuan. Median filtering-based methods for static background extraction from surveillance video. *Numerical Linear Algebra with Applications*, 22(5):845–865, October 2015. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).]

REFERENCES

REFERENCES

[LS06] Wen Li and Weiwei Sun. Some remarks on the perturbation of

REFERENCES

20(1):60–73, January 2013. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Lu:2005:NIN

Luksan:1998:IPI

LeTallec:1999:ESM

Li:2004:EAS

Lashuk:2008:SVE

Lashuk:2012:EA
REFERENCES

Lin:2007:NCP

Li:2015:IRP

Liu:2016:CIM

Liu:2017:WMM

Liu:2016:FCP

Liu:2009:GBD

Laub:2008:ASC

Li:2016:SCB
REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Li:2013:NSP

Li:2017:SMT

Dong-Hui Li, Shuilian Xie, and Hong-Ru Xu. Splitting methods for tensor equations. *Numerical Linear Algebra with Applications*, 24(5):??, October 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Levi:2015:SLQ

Lu:2015:NLD

Laszkiewicz:2009:PFI

Liu:2012:LEB

Ling:2012:SRA

Mailybaev:2006:CME

Margenov:1994:UBC

Marek:1995:SRB

Marek:2000:GEN

Martinez:2016:TPE

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

[Mavriplis:2001:MAN]

[Mayer:2005:ICI]

[Michelini:2008:SAA]

Pablo Navarrete Michelini and Edward J. Coyle. A semi-algebraic approach that enables

Meerbergen:2009:CCB

Michael:2012:SMT

Mastronardi:2001:FST

Meyer:1994:CSI

Mandel:2003:CBD

Meerbergen:2001:CPR

REFERENCES

140

Matioli:2008:NFP

Miyajima:2015:FEM

Miyajima:2017:FVC

Ma:1994:NCI

Mastronardi:2005:FRS
REFERENCES

5325 (print), 1099-1506 (electronic).

Margenov:1995:OAM

Meyer:1997:MAS

Marek:1998:CAI

Mihajlovi:2002:CDP

Mongaloxide:2004:PP1

Mastroianni:2009:WCM

Mehrmann:2011:ACS

MacLachlan:2012:RAM

MacLachlan:2006:ARB

Mackey:2009:NMP

Manteuffel:2010:FRE

mongaMade:1999:EPL

Manteuffel:2010:OBI

REFERENCES

[143]

ISSN 1070-5325 (print), 1099-1506 (electronic).

Mikhalev:2016:IRS

Moret:2007:RRK

Mehrmann:2013:GSD

Moret:2014:RSI

Meerbergen:2015:SA

Mehrmann:2016:IFA

Migallon:1996:BTS

Marques:2006:CES

Martikainen:2002:FDS

Marcato:2007:IEC

Malyshev:2014:FSU

Mathew:2007:ABM

Morini:2016:SEU

Benedetta Morini, Valeria Simoncini, and Mattia Tani. Spectral estimates for unreduced symmetric KKT systems arising from Interior Point meth-

Meerbergen:2013:JDM

Mastronardi:2005:NLA

Mancini:2013:ISP

REFERENCES

REFERENCES

Noutsos:2005:PPI

Neymeyr:2002:PEE

Neymeyr:2005:NII

Naumovich:2010:AMW

NGuessan:2015:CAM

Noordmans:1998:CRS

REFERENCES

REFERENCES

793–794, October 2015. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[Nakajima:2004:PIS]

[Notay:1994:DDV]

[Notay:1998:OCA]

[Notarnicola:2005:MRE]

[Notay:2002:CJD]

[Notay:2002:RPF]

[Notay:2005:AMA]
Y. Notay. Algebraic multigrid and algebraic multilevel methods: a theoretical comparison. *Numerical Linear Algebra
REFERENCES

Notay:2010:AAT

Novati:2003:SLI

Noschese:2011:SDN

Noschese:2012:GCS

Noschese:2014:ISP

Noschese:2014:MTS

Silvia Noschese and Lothar Reichel. A modified truncated...

[153]

[162]

[162]

[162]

[162]

[Numerical Linear Algebra with Applications, 11(8–9):693, October/November 2004. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).]

Nikishin;2003;PTA

Neymeyr;2014;IMR

Ovtchinnikov;2004;OLN

Oishi;2008;SNS

OHara;2014;PRO

Olshanskii;1999;ISO

Ozaki;2011;TEE

REFERENCES

Padiy:1999:PMS

Parlett:1992:RMS

Parlett:2003:SDF

Pan:2005:TSW

Pap:2005:EDF

Pena:2003:SBS

Pena:2007:RGD

Peng:2008:SSC

Zhen-Yun Peng. Solutions of symmetry-constrained least-
REFERENCES

Pena:2009:EBS

Perrone:2006:KPA

Pflaum:1999:AAM

Pestman:2014:CSW

Liao:2007:LSS

Payer:1997:ISS

REFERENCES

REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Petkovic:2009:CLR

Panic:2016:RAP

Pantazis:1995:RCR

Perugia:2000:BDI

Pang:2011:SIL

Pironkov:2008:PDC

Pearson:2014:PSC

John W. Pearson, Martin Stoll, and Andrew J. Wathen. Preconditioners for state-constrained optimal control problems with Moreau–Yosida penalty func-
REFERENCES

Pultarov:2008:SL

Paige:1999:SAL

Pultarov:2009:PPE

Pearson:2012:NAS

Pultarov:2016:CTE

Pestana:2013:CPS

REFERENCES

Pencheva:2003:BDD

Quaife:2015:PLD

Qian:2009:SLR

Rag:2014:RKM

Rakowsky:1999:SCM

Rosseel:2008:AMS

Renaut:1998:PMS

REFERENCES

REFERENCES

Tyrone Rees and Martin Stoll. Block-triangular preconditioners for PDE-constrained optimization. *Numerical Linear Algebra with Applications*, 17(6):977–996, December 2010. CODEN NLAAEM. ISSN 1070-
REFERENCES

5325 (print), 1099-1506 (electronic).

Russo:2015:QOP

Ritter:2010:FAC

Rossi:1999:PFD

Raydan:2002:PPA

Raghavan:2003:LTH

Reps:2012:AWN

[B. Reps and W. Vanroose. Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer. *Numerical Linear Algebra with Applications*, 19 (2):232–252, March 2012. CODEN NLAAEM. ISSN 1070-
REFERENCES

5325 (print), 1099-1506 (electronic).

Rusten:1998:DEP

Reichel:2008:GLA

Saad:2000:E

Saad:2000:FAM

Saad:2000:IDT

Sauter:1995:SIC

REFERENCES

28, 1995. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Solak:2003:NBN

[SBS03] Salkuyeh:2012:EMH

Schrader:1999:CAJ

Schroder:2012:SAS

Scott:1999:NRO

Jennifer A. Scott. A new row ordering strategy for frontal

REFERENCES

Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997).

Simoncini:2003:AFS

Shen:2014:EDP

Sayed:2001:SSF

Sturmer:2008:FFM

Sun:2010:CPN

Saibaba:2016:RAG

Schuermans:2004:SWL

REFERENCES

Salinas:2013:MMC

Simoncini:2007:RCD

Stoyan:2004:GDA

Sundar:2015:CMA

Sadkane:2017:CAC

REFERENCES

Scott:2017:ISR

Starke:1996:MMR

Stewart:1995:SBH

Stefanovski:1999:GEA

Stoer:1992:DAS

Savostyanov:2012:FTM

Sun:2005:NBE

Sun:2006:SEI

RESOURCES

869–876, ???. 2006. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[The98] Michael Thess. Parallel multilevel preconditioners for thin
References

Tian:2013:LSS

Trench:2005:ARB

Trench:2013:IPU

Tang:2012:PMC

Trias:2006:DSF

Tebbens:2010:PUS

REFERENCES

vanGijzen:2015:FMS

VanBeeumen:2016:REI

vanKan:2000:FPC

Vassilevski:1996:PMF

Vecharynski:2011:ACC

Vlachkova:2000:NTA

vanRaalte:2005:TLM

Vo:2017:ALS

Vanlent:2009:EMC

vanderVorst:1994:GFN

VanBarel:2005:OST

Vandebril:2005:IQA

Vandebril:2005:NRD

REFERENCES

[Wan00] Wing Lok Wan. Interface preserving coarsening multigrid for elliptic problems with highly discontinuous coefficients. *Numerical Linear Algebra with Applications*, 7(7–8):727–742, October/December 2000. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-
REFERENCES

1506 (electronic). URL http://www3.interscience.wiley.com/cgi-bin/abstract/73505480/

Wu:2014:NED

Warsa:2004:PMD

Wang:2015:CAB

Wang:2008:LCG

Wang:2009:PIA

Webster:2010:AMO

Webster:2010:AMM
REFERENCES

[WLBH12] Lei Wang, Heng Liang, Fengshan Bai, and Yan Huo. A load

Wang:2012:PTT

Wei:2005:DSG

Wang:2007:SSR

Wang:2009:PMC

Wu:2010:CEI

Wu:2015:SVH

Wu:2011:NIR

Wen:2015:SSN

Wheeler:2010:EAM

REFERENCES

Xu:2015:MMB

Walker:1994:SG

Xie:2013:ESL

Xie:2016:PPI

Xia:2010:FAH

Xiang:2010:KP

Xie:2003:SCI

Xia:2012:RIO

Xie:2011:IBM

Xiao:2011:RPH

Xiao:2009:GBA

Xu:2010:TLA
REFERENCES

Xiao:2015:EAM

Yin:2017:FAO

Yang:2004:URP

Yang:2008:PBW

Yang:2010:LRI

Yavneh:2004:E

Yuan:2011:PEB
Quan Yuan, Huinan Leng, and Zhiqing He. A property of eigenvalue bounds for a class of symmetric tridiagonal interval ma-
Yang:2004:MFC

Yong:1996:SCT

Yotov:2001:MNK

Peng:2007:PDS

Ypma:1995:SFP

Peng:2006:EIM

Peng:2004:IPB

REFERENCES

ary 2004. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[Ye:2013:AAA] Qiang Ye and Weifeng Zhi. Analysis of alignment algorithms with mixed dimensions for dimensionality reduc-

REFERENCES

191

tient iteration, inverse iteration
generalized Davidson and New-
ton updates. *Numerical Lin-
ear Algebra with Applications*,
13(8):621–642, ???? 2006. CO-
DEN NLAAEM. ISSN 1070-
5325 (print), 1099-1506 (elec-
tronic).

Zhou:2016:TTE

Zhu:2008:DDP

Zhu:2014:AMP

Zhu:2014:AMP

Zikatanov:2008:TSB

Zitko:2000:GCC

Zitko:2005:CCR

Jan Zitko. Convergence conditions for a restarted GMRES method augmented with eigenspaces. *Numerical Linear Algebra with Applications*, 12
REFERENCES

Zeng:2006:DAS

Zhong:2008:CCR

Zubair:2010:GMM

Zhang:2012:LCA

Zhang:2013:DEE

Zhou:2013:LES

Zhou:2008:AIS

Zhong:2010:CAE

Zhong:2013:TGM

Zhao:2014:MFS

Zhang:2010:CGS

Zhang:2011:PCF

Zhao:2013:IIF

Zhang:2015:MQN