Title word cross-reference

(1, 1) [Cao08, Krz11]. (2, 2) [Li00]. (m, k) [MN00]. (q) [Jia96]. + [LJM14]. 0.822 [Ano09]. 16 [KM09]. 2 [AM96, BV13, Mar94, NBKS99, QB15, ZVO14, vKVW00]. 2 × 2 [AB10, AB13, Cao13, Kol05]. 3 [GKY97, KK16, LPW06, NBKS99, PM97, PR96, MP99, vKVW00]. 4 [MR14]. A [CC07]. A − BX ± X * B* [LT08]. A − XB [Den09]. α [Tre13, XCG16]. AXA* = B [Tia13]. AXB + CYD = E [yPxP06, WTZD10]. AXB = C [fLyHZ11, Miy15]. H [Gra08, LOY08]. H² [Bör17]. K [Mar95]. D [BLLA11].

GMRES(k) [KY95]. H [AMM04, BCGM09, Chu04, KPV08, KC17, Leb02, LP16, Sun06, ZSCX10, DMM+08, Pul09]. H¹ [AMM04]. Hᵗ [LPW06]. H∞ [Özb13]. hp [DMM+08]. IDR(s) [CvG11]. ILU [CGK94, KOV17]. k [BO08, VVM05a]. λ [FLPW01]. lₚ [Dax94]. LU [KNY00, KOV17, DSH95, Saa94]. M [BNT94, Sau95, Bea94, BCC98, HHLL16, IP13, ZJ11, Kra02, LSL01, WQZ09, XZS10, ZJ06, vN00]. R [DN12]. H [HK02]. O(N) [Sac05]. P [LHL07a, Pen09, AEHV15, Bea03, BB06, GKY97, LZ09, LO13, LHV17, Pul09]. p × p × 2(p ≥ 2) [KJ12]. Q [Cha12, DBLP16]. QMR [FH94]. QR [ADP96, Cha12, FG02, AG95, CH94]. R [DW15, BKM+12]. s [CK10]. S/P
Approximating [DE98, VS17, AFSCSU14, SS97].
Approximation [AEHV14, AH02, BE09, BF11a, BCV03, BMS17, DK15, DK95, FMPS13, HK02, HPS15, ITS07, KJ12, KT08, KLM15, KV15, LPS15, LV12, LZQ12, MO16, OST10b, PW12, SLV04, SLV06, DW15, XG10, XHZ03].
Approximations [CYZ99, DLVZ06, FY01, HJR97, KN07, LO15, Mor07, Mor09, Per06, RSCTP15].
Arbitrary [BW17a, HR05].
Arbitrary-degree [BW17a]. architectures [FO95]. arising [AN03b, BGM09, BFPS10, BMP11, BRT07, CZ15, FP15, Gen00, HKKP07, HM14, MZHB17, Mar16, MSV13, Miy17, MST16, PM97, Sil10, SMSW00, TC10]. arithmetic [DK95, GKV12]. arithmetics [BB16].
Automated [SV11]. Auxiliary [KLM15, BC12, KPV08]. aware [DHR+04]. away [IV04]. Axelsson [Cao13, Vas05]. axisymmetric [CP06].
B [Nab97]. background [LNY15].
Backward [CTP09, GL95a, EM11, LC07, LZ12, Pen03, Sun05, WKS95, YDH11]. balance [GSS01]. balanced [Lot07].
Balancing [PY03, BPS13, LT09, MD03, NV08a, WLBH12]. BAMG [BKMc12]. Banach [LZY11]. band [VP95].
Banded [BCRP11, CSCTP05, CGK05, FLM09, GSS01, Kau07, Lot07, MS14]. Barrier [Gar01, Mar95]. Barzilai [HD07]. basic [AB12, AMMR17, AMMP06, Bai10, BZ13, BZ17, BMAA16, BG05a, BBM^+06, BCZ12, BC12, BMM^+08, BLW08, CW97, CG15, CLNY15, Cho03, DMM^+08, Don10, DKVB15, FP05, Fer96, GKL18, GN00, GB11, GZ16, GQN15, GHW06, GKY97, HM03, Het07, HL16, HM16, IV04, JK17, Kap98, KY95, KXZ03, KN14, KNY00, KRW08, KLM15, Lam12, LO13, LJ04, LNY15, LXS16, LM06, MMM06, MMR10, NN11, Naz95, NA97, NV08h, Reu96, RR12, SW96, SPD05, SH14, UMO09, WH94, WTW14, XZS09, Xie11, wX15, XM17, ZMO10]. bases [CV03, MYZ16].
Base [BR99, BB96, MLV05]. basis [BGW05, BCHT04, CDDSC12, Gan05, KR14, LO13, Sid97, VW97, Ver00]. BCCB [LJ04]. BDDC [Doh07, BS15]. be [Ano09, PM97]. BE-FE [PM97]. becomes [NL09]. been [Ano09]. behavior [Jou94, Kem12, VL11].
BEM [FS09, HPPS03, HMS99].
Bénard [KABH17]. Beresford [Bum95]. Bernoulli [AB12]. Bernstein [BGW05].
Besov [Dah02]. best [BDK^+15, FMPS13, KJ12]. better [Alb06, BG05b]. between [Li00, MC09, Tre05]. bi [PLL07, LZQ12]. bi-quadratic [LZQ12]. bi-symmetric [PLL07].
biharmonic [BP13]. bidomain [MNCT07]. biharmonic [AY11, LLW09, Osv95].
Bilinear [ABB10, JL09, STZ12]. Binary [BMP11].
Bingham [HG00]. biomechanical [LV99]. biomechanics [Axe99, NBKS99]. Biomedical [LD08, NL09]. birthday [CLR13, LPQ06, SGP14, Vas03, Vas05].
Biswa [CLR13]. bisymmetric [yPyH24]. black [NA97, DM10, YW12]. Blaheta
Block-diagonal [PS00, BCR14, FS09].
block-preconditioner [ES07].
Block-row [SLV06].
block-semiseparable [VVM05a].
block-Toeplitz [CNY05].
Block-triangular [RS10].
blocking [NO04].
blocks [Cao08, JS96, KKMM12].
blur [NWZ17].
Boltzmann [Lee12].
Book [Nab97].
Boolean [WWC +15].
bootstrap [BKM +12, MMPR10].
bordered [HS05, VP95].
bordering [KNY00].
Borwein [HD07].
Bott [LWW09].
bound [DD07, GX14, HVX16, LCN13, Mar94, SB03, YDH11].
bound-constrained [DD07].
boundary [BBP03, BWN05, Che15, IV04, Per06, PR95, RR12, Rj98, RT99, ZYL13].
bounded [LY15].
Bounding [AW11, Buc11, DHSW11, IK00].
Bounds [Kol05, BC10, BF11b, CGM11, CSYS14, DS08, LS05, LW15, MO14, PPv95, Peñ09, WKS95, WL03, YL08, YLH11, Zik08].
Box [DM10, GH11, YW12].
break [HM96].
Broadband [RSR10].
Brualdi [Nab97].
BSSOR [GKY97].
Buckley [IK00].
bu [PGT14].
Bunyakowski [AALS01].
BVM [LJ04].
BVM-based [LJ04].
Yan10, YW12, ZMO10]. code [Bra02].
coefficient [DHR+04, GVT03, Sau95].
coefficients [BKP02, RBV08, Wan00, Zho08, Zhu14].
Coffey [DPP16]. Collapsible [LD08].
collapsing [BB01]. collisions [LO15].
collocation [CDDSC12, FP15, PSK08].
column [KV15]. Combination [Not02a, PW13, Shi02].
combined [KRW08, SLV13, ˇSBS15].
Comment [Cao13, AB13]. Comments [WTZD10, NT04].
Communication [Lai97, Yon96, AMMR17, VY14].
Communications [LD08, NL09].
Commuting [VZ14]. compactly [FP15].
comparative [LR08, RS18]. comparing [MMC12].
Comparison [CGK94, Li00, PGT14, SSB15, AG99, BB96,
CP99, FLR03, FP95b, GLOW04, KP00,
MC09, NV08a, Not05b]. comparisons [BT15].
compatible [Liv04a].
compatibly [FP15]. components [BDGL09, LB17].
component-wise [BF11b]. components [BDGL09, LB17]. componentwise [BF11b].
Composite [BT15]. compressed [Bör17, Ibr02].
compressive [ZZ15]. Computation [EJK01, Mai06, ˇOsˇb13, AT00, BB16, BV00,
Chu04, Huc98, MVK04, MM11, Miy17,
MGF+02, NX03, Sid97, WLBH12, XM17].
Computational [BGM11, CCyG06, Ema12,
GS97, Ian16, Mar00, SS07]. Computations [MPV06, Axe98, AC11, BP13, DPP16,
Kho96, OST10b]. Computed [GL95a].
computer [CZ15, DK95, GL02]. computers [JO94, MM97, TSPS06]. Computing
[BDGL09, Dax04, Lor14, MRT98, NW15,
vNR07, BGG05, CCLQ18, CJL08, CFX05,
DE06, FM99, KNX01, KBF15, KMC16,
KR06, LH17, LZY11, LP16, MM98, MV08,
MP16, Pul16, RT02, SLK16, SHT11, TS12,
WQZ09, WW07, YYN12, ZQ12, MMMM09].
concept [Mey94]. concerning [BM05a].
Condition [BC10, CLTW11, YDH11, BB06,
BT92, BG05b, CCG00, CDW06, DW07,
Dia09, DXW12, DWQ013, EHM05, EG16,
LX08, LH08, LLW09, Pul08]. conditioned
[MM09, NCV05]. conditioning [BDGL09, LHW11]. conditions
[Per06, Szy94, XHZ03, Zit00, Zit05].
conduction [MC09]. conquer [KNX01, LLLJ16]. Conservative [ATT05a].
conserving [ABM17]. Consistency [FLR03]. Consistent [Rie09, DBG06].
consistently [Bea94]. constant
[AM96, Liv14, Mar94]. constrained
[Ada04, AN03b, DD07, DR03, ER96, GW00,
HHM10, KV06, Lin12, LWC16, LV98,
NBKS09, PW12, PSW14, Pen08, RS10,
Sto92, SW12, Vla00, XJ12]. Constraint
[SL10, Ber12, Cao09, fLyHZ11, pLL07,
LW07, MRT02, yPyHZ04, WBL14].
constraint-preconditioned [Ber12, WBL14]. constraints
[BPS13, Dob99, Lay05, LZQ12, MD03, MS07, SW12, VFdV13]. constructing [BFdP13, KKNY01, NY03]. construction [BC09, WWC^+15]. constructions [YNP04]. constructive [BW17a]. contact [Ada04, Hla99, IV04, NO04, ZVO14].

Continuation [DF01, CWS97, CC03]. continuous [Cas11, SSB15]. continuous-time [Cas11]. continuously [Vos09]. contrast [AY11]. contribution [WF15]. control [BLP08, BFPS10, BO13, DMS17, Dat01, GTZ18, KK13, LC13, LW05, MSS07, MP13, PSW14, ROA13, SW12, VFdV13, ZHJL12]. controlled [FJP16]. controllers [¨Ozb13].

Convergence [BBG13, BH16, CL96, CP99, LT09, LB08, MD03, MM98, NH98, Pal16, ST17a, Sch99, WCZ15, ZSCX10, Zıt05, AJ94, BPS15, BS01, BGP97, BR99, BMSS09, BLZ08, BVV12, CZ02, Che02, CJT03, CK14, DS08, EN17, FVZ05, GR99, GD11, GX14, HVX16, JK09, Jou94, Kap94, Kap05, KP06, Li00, Lin12, LW16, MRT96, MC08, PS05, PRP09, Pal08, RV12, SLV13, Szy94, VL11, ZW10, ZQ12, Zık08, Zıt00, vdE02]. convergent [BSI17, CQ10, GT09, Sol14]. convex [Car97, Laz16, LMV04, Shi02, Shi04].

D [GKY97, AM06, BV13, BG02, KK16, LPW06, Mar94, NBKS99, PM97, PR96, QB15, ZVO14, mMP99, vKVW00]. DAE [ABK15]. damped [BC09]. damping [BTT13]. data [Bau08, BF11a, BFdP13, BH04, CLNY15, DQW15, NLZ11, PDV05, Rie09].

data-sparse [Bau08, BF11a]. Datta [CLR13]. Davidson [FJP16, GS99, HLLW05, MSV13, Not02a, Zhu06, vNR07, vdE02]. DCT [CSCTP05].

DD [AB13, Cao13, AB10]. deblurring [CFAM16, Don05, LNP12]. decision [Buc11, CEQN07]. Decomposition [CGK94, AN03a, AN07, AMMR17, AFK02, BP13, BW17a, Bla94, Bla02, BPS13, CS96, Car97, CGM01, CL13, CLNY15, CJT03, EM95, FLF00, FRR16, FGNW14, GVT03, GB15, GT16, Gwus03, HLM92, HC05, Ibr02, JK18, JM10, KV92, Kap98, Kap02, Kems12, KMMR10, Kho96, KN14, KNP03, LR95, LV99, LT09, LHW11, LXS16, LT11, LT13, LMM00, MD03, MM02, NR14b, PY03, Sau95, TSPSO06, WQ07, YL08, Zhu08]. decompositions
deconvolution [MLV05]. Decoupling [LVW01]. Dedicated
WBWM04, XSZ09, XS11, ZYFG11, ZSCX10. elements [BB00, GL13, HhvR04, Lee10, Osw95, Pul09, RS02, ZHJL12]. elimination [GIK02, Gro00, HKST12, Lee10, LR04, Pul09, RS02, ZHJL12]. Elliptic [CGK94, AV94, BBP03, BBS12, BCZ12, CC92, CW97, CS02, CGL05, CEL+96, DLVZ06, Dob99, DHR+04, DP03, ELV94, ELV94, EN00, GTZ18, HKST12, KW99, KR06, KT08, KMS08, KLM14, KM92, LP01, LW03, MRT02, MM11, Ney02, RT99, Sta96, Wan00, ZS10, Zhu08, Zhu14]. Embedded [GNR14]. embedding [FLPW01, RVW98]. EMC [Vey00]. enables [MC08]. enclosure [Miy15, OOO11]. energetic [Lee12]. Energy [VSG09, BBM+06, KV06, Lee12, MD03, SWY07]. energy-based [BBM+06]. Energy-minimizing [VSG09]. Engine [RSR10]. Engineering [LD08, NL09, WW08a, CEQN07, Mar16, Ano08]. entries [EW13, Par03]. envelope [BPS95]. Environment [ADP96, CEQN07, TT10]. environmental [MS07]. equalities [CPSM06]. equality [DR03, LV98]. equation [AY11, AB12, AJ94, BPM11, Bot13, CKW02, CD11, Cha07, CGM11, Dah02, DK15, FZwCW17, KP10, Lee12, Lee16, LB08, LS15, Lu05, Miy15, Os95, vPxp06, yPES07, RV12, SW12, Tia13, WTZD10, Zhu14, vRH05]. Equations [GL5a, ARMW14, ABM17, AB12, Axe99, AC11, BPS15, BGX06, BCR11, BCR14, BL17, BKP02, Bau08, BMAA16, Ben08, BLP08, BES14, BR99, BG05a, BG00, BHJ13, BCZ12, BF12, CLR01, Che02, CH03, CQ10, Cor04, Dam08, DBG06, DXW12, DLVZ06, Gan99, GB11, Gem00, GS99, Gra08, GS07, GD11, HFW01, HES15, HM14, HHLL16, IP13, JLW05, JL09, JO94, KW99, KXZ03, KLM+06, KS04, KOV17, KPT14, KS15, LR08, Lee10, LH08, LLW09, LHW11, LGS12, LXX17, Liv14, LW03, LPS15, LMM00, LRGO17, MV13, MNCT07, MW11, Mar94, MZHB17, MM09, MC01, MS13, MM11, Miy17, NFD10, NQ96, OLs99, PM07, PR95, PR16, PT17, Rak99, RBV08, RSC15, SCD94, Ste99, Sy94, TC10, TSPS06, Ty05, Var08, Web10a, XSZ09, YDH11, YXZ13, ZCW11, ZZ15, ZS13]. equations [Zhu08]. equidistantly [Rie09]. equilibrium [RSCT15]. equilateral [RSCTP15]. equal [HDSW11]. equi-spaced [FP05]. Equivalence [Sy94]. equivalent [MZH17]. Erratum [SB12]. Error [GL95a, OOO16, AM96, AW11, CGM11, HHJ07, LO13, MMN+10, Ney02, Pul09, WW11]. Error-free [OOO16]. errors [LC07, LZ12, Sun05]. essentially [ZQLX13]. Estimate [AM96]. ES05]. estimates [AN06, AB10, AB13, BB06, CL96, Cao13, FVZ05, LZ12, MST16, Pul09]. Estimating [BW98]. Estimation [BNP15, GR04, Baz08, BT92, DPS16, DXW12, LX08, NG15, Ney02, SZ11]. estimations [CD11]. estimator [MVK04]. estimators [AM96, MMN+10]. Euler [Cor04, LH17, NFD10]. European [Rag14]. Evaluating [BB01]. evaluations [KS10]. even [Not05a, XC13]. evolution [BBG13]. Ewing [LP06]. Exact [KV15, Bot13, DK95, Pul16]. expansion [DS02, GTH16, MS07, RR12, ROA13, SLK16]. expansions [Tre05]. experience [BG11]. Experimental [RR12]. experiments [ABK97, GL02]. Explicit [Lam12]. exploiting [VJM16]. exploits [NL16]. Exponential [PDV05, BV00, BCV03, DQW15, LLS12, Mor07, PS11, Rag14, VS17, WtFW15]. expressions [LT08, Not05a]. extended [DPP16, KS10, ZHZ10]. Extending [ARSO14]. Extension [BKP02, BCB14]. extensions [Sun06]. exterior [GH01]. extracted [SP05, SP06]. extraction [LNY15]. Extremal [Jia17, LT08, Vla00, Zhao16]. extreme
CDG00, DW07, ES09b, MGF+02.

Frobenius-norm [CDG00]. frontal [RS01, Sco99]. frozen [AABHV18]. FSAI [FJP12, FJP16]. full [BMS17, MWZ06, SKR08, TGKR10]. function [CDDSC12, GGZ12, KS10, LZ09, Par03, PSW14, Tre05, XZS10]. functional [KN14]. functionals [AMM04]. functions [CKW02, CLC11, CJL08, DK95, Est09, MN05, Mor07, Mor09, MP14, Naz95, Xie11]. fundamental [ZYL13]. Further [MMN+10, Saa00b]. fuzzy [CEQN07].

Galerkin [ABM17, BBS12, CGM11, DLVZ06, HHvR04, KT08, LPV01, NSCTP05, SGP14, WTWG14, vRH05]. games [AD12]. gauge [KMMR10]. Gauss [HP97, KLN99, LO13, Pe˜n03, Sun06]. Gaussian [GIK02, IK00, Reu96]. Gay [Adi08]. GCV [FRR16]. General [JK09, AN13, BC14, BCGM09, BDR17, CS96, Kap98, KS15, Lor14, SZ99, SS02, Xie11]. general-form [BCB14]. Generalization [CNP96, Z´ıt00, Don10, IWW09]. Generalizations [SSB04]. Generalized [Amb15, Che15, KKR14, NR12, AM95, Bla02, BC12, BMM+08, CC07, Cao09, CD11, CL13, CV03, DL97, Dam08, FT98, FM15, GIK02, GW00, HLLL13, KV92, KCV09, KVC12, LR08, LZ13, Mai06, MP15, MP13, RY08, SLK16, SX15, WW08b, Wei94, YCY17, Zho06, vNR07]. Generalizing [BT92]. generated [Tre05]. Generating [Ste99, Est09, V¨om12]. generation [BG02, Gar01, Gar04, LM06, MS07]. geometric [BS10, Cho03, Gar04, HS11, HS14, Ian16, LJM14, XZS09, ZMO10]. geometric-based [XSZ09]. geometries [HKH+06, PSK08]. Gershgorin [LHLS07, Pe˜n07]. Gershgorin-type [LHLS07]. Gersgorin [KCV09, KMC16]. Gersgorin-type [KCV09]. GES [BMM+08]. GES-SA [BMM+08]. gigaflops [Tur00]. given [BFdP13]. GKB [BCB14]. Global [CGM11, BS10, FRR16, GD11]. Globalization [NQ96]. Globally [CQ10]. GMRES [BR07, BE98, CZ02, De 13, DS08, DN12, GR99, JYH17, Jou94, MYZ16, MN00, Sid11, Sim99, SWKW08, VL11, WZ94, ZM08, Zit00, Zit05, vV94]. GMRES-type [BR07]. GMRESR [vV94]. Golub [FRR16, GORR16]. GPCG [Bla02]. GPCG-generalized [Bla02]. grad [GGLO08]. grade [IT05]. graded [BLZ08, BCS09]. gradient [AM95, BGP97, BMM09, CNT07, Cha07, DMY03, DR03, Hac92, Kap94, Kap02, MO94, Mey94, PR95, SZ11, DW15, WD08, Wei94]. gradient-like [Mey94]. gradients [Not02a]. grain [V¨om12]. Gram [Dax04, LBG13, LL97, Van00, WL08]. graph [KXZ03]. graphs [CNZ17, EJK01, VZ14]. greedy [BT15]. Grid [GV03, ALM18, Alb06, AO07, BG02, CGPV13, CSCTP05, CG15, CRV14, Don10, ELV94, FVZ05, Fer96, GKK04, Gar04, GMOS06, GOH05, HXV16, KV96, MC08, NV08a, NN10, NH98, Not10, RSR10, RR12, ZSWX13]. grids [BH04, Bal03, ELV94, Gar01, GLGR10, LPW06, Mit10, OCYM08, YZX13, ZMO10]. group [WN05]. growth [GIK02, IK00, KM09, WL08]. GSOR [HES15]. Guest [Mar00].

[LT13, SB12, BGN07, Bai16, CPS01, CSYS14, DBC06, Fas05, HM03, HSCTP05, Kol05, KKR14, LHL07b, LC05, Mee01, NCV05, SLK16, WD08, Wu15, ZW10, vdE02].

Hermitian-type [LT13].

Hessenberg [CGK05, Gem00, Ste95].

heterogeneous [BBS12, CGPV13, GM17, KP10, KNP03, NH06].

heuristics [SH14].

Hierarchical [BH04, SGP14, BH07, BM13, CV03, EGF11, LO13, Pul09, VW97]. hierarchically [XCGL10, Xia12].

hierarchies [Alb06, DHR04, EJK01].

High [Kap98, AY11, AEHV14, AEHV15, AABHV18, ABK15, Bör17, BSI17, GM17, GKY97, Lam12, NLZ11, NY03, SWK98, SSB15, TPS006]. high-contrast [AY11].

high-dimensional [NLZ11].

Higham [GIK02].

higher [BH16, GHW06, GL13, WQ07, XSZ09, XS11].

higher-order [BH16, GHW06, WQ07, XSZ09]. highly [BKP02, GVT03, MYZ16, Wan00].

hill [SH14]. homotopic [CCvG06]. horizon [DMS17].

Householder [Dax04, LL97]. hp [Mit10]. hp-adaptive [Mit10].

hp-multigrid [Mit10]. HSS [Bai09, DGM+16, G11]. HSS-like [Bai09].

Hurwitz [KSB13]. hybrid [BH04, CNY05, Laif97, LJM14, RTN03, SBS15, Yan04].

hybridized [GT09]. hydrodynamics [XM17]. hyper [CH05]. hyper-power [CH05].

hyperbolic [BBG13, JO01].

hyperelastic [RGM17]. hyperellipsoids [BDK+15]. hypergraph [LQY13, XC13].

hypergraphs [CCLQ18]. hyperspectral [BNP15, LNP12].

ILDLT [Bas00]. Ill [LHW11, CLTW11, DNR12, Est09, GORR16, NR14b, NCV05]. ill-conditioned [NCV05]. Ill-conditioning [LHW11].

ill-posed [CLTW11, DNR12, Est09, GORR16, NR14b].

ILU [AMMP06, May05, May07, S299].

ILUCP [May05]. ILUT [Bas00, Saa94].

ILUT/ILDLT [Bas00]. image [BC02, CFAM16, CNY05, Don05, GHW06, HOM10, HOM06, Per06, RGM17, SKR08].

images [BNT94, NWZ17]. imaging [BNP15].

IMMB [Axe99]. impact [Ano09].

Implementation [AK99, BISC14, BM05a, DMY03, WF15].

Implicit [FP95a, BGX06, Bai12, BM05a, BD15, Che15, HL16, ISZ09, LW01, MC04, PBN05, VVM05b, ZS08, mVMD02].

Imposing [Szu14]. Improved [ARMW14, Cor04, JO94, LW15, BVV12, CGPV13, LV12, Sun06]. improvement [WCZ15, WL03]. Improvements [BB06].

improves [HVX16]. Improving [BKY10, GKL18, GKV12, ST17b].

inclusion [LHLS07, LK14, TH09].

Incomplete [Jia96, BT03, Bla94, CCS10, GNQ15, Gro00, JO94, Kap02, KNY00, RTN03, Ren96, Sau94, SW96, Sau95, ST17b, VS17, ZHJL12, mVMD02, mM04, GKY97].

incompressible [BKP02, HK12, KOV17, LVE04, Ols99, Tur00, Web10b, Web10a, vKVW00]. increasing [DMI03, HVX16]. increasing-angle [DMI03].

Incremental [CSC10, BT92].

indefinite [BRT07, CL06, C01, CS95, CRV14, GM17, GMTV16, KRz11, LT09, Liv14, PS00, ST17b, SL10, TT15, Vas92].

Indefinitely [DR03, LV98]. independence [DS08]. independent [CJL08, KPV06].

indirect [BLP01]. induced [Lay05, vGSZ15]. industry [mM04].

inequalities [AM96, CPSM06, DKVB15].

inequality [AALS01, Bla03, DGR11].
DH04, DR03, EM95, Mar94. Inertia [KC17]. Inexact [ABK97, HD07, Sid11, Bir15, CQ10, FK15, GB11, HLM92, KK02, KPVO6, LLL97, LV98, Sim03, WtFW15]. infimum [Chk04]. Infinite [¨Ozb13, VJM16]. Information [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano13a, Ano13b, Ano13c, Ano13d, Ano14a, Ano14b, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15e, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano18, Ano14a, Ano14c, Ano14d, BF96, FJ05, Ano14e, Ano15d, Ano16f]. integrating [BMM+08]. inner [FJP16, Gus04a, Mey94, MGF+02, Xia12]. Innovative [BMM+08]. integrable [SHT11]. integral [AFSCSU14, MM09]. integrals [LO15]. integration [ABK15, LLS12, MC09]. integrators [Ber01, LJ04, Mor07, Rag14]. intensity [GKV12]. inter-grid [MC08]. interaction [SV11]. interchanges [EM11]. Interface [Wan00, JM10, XM17, Yot01, ZYL13]. Interface-based [XM17]. Interior [LMV04, BMM06, BCS09, BPS13, HP04, MST16]. Interior-point [LMV04]. internal [HKH+06]. International [NL09]. Interpolating [MN05]. interpolation [BKY10, DFNY08, Gan05, HM03, KV06, KV15, LY15, MMPR10, Pul16, Rie09, Vla00, Web10b, Yan10]. Interpreting [CPMS06]. interval [DPS16, Jia17, KSB13, Roh92, YHLH11]. intervals [Jia17, LHLS07, THC09]. Introducing [MS07]. Invariance [JYZ17]. invariant [AG95, DF01, MK94, MP16, YL08]. Inverse [LC05, NR14a, Tre13, AEHV14, BF11a, BM13, BPS00, BFG95, BFM12, BSI17, CC07, DL97, DW07, DWWQ13, EW13, EKS02, Egg07, EHM95, FGT11, FK15, Han13, ISZ09, JZ09, JK17, JK18, KKNY01, Kho96, KN99, KKMM12, LLL97, pLL07, LWW09, LZY11, MV13, MP16, MG+02, NY03, yPyHZ04, Sol14, Sot13, TS12, WL03, XHZ03, XCG16, Zho06, Ney05]. inverse-free [MP16]. inverses [Cor04, Gus03, Huie98, LXW13, WN05]. Inversion [BO13, KK02, LPS15]. invert [MP14, PS11, WtFW15, Sim03]. invertibility [Den09]. investigation [KS10]. involving [DWWQ13]. IOM [Jia96]. ion [LO15, TC10]. Ion-atomic [LO15]. IPARS [LVW01]. IRAM [Xie11]. IRAM-based [Xie11]. Irreversible [BL03]. ISBN [Nab97]. isolation [EKS02]. isometric [Gar01, Gar02]. Isospectrally [VV15]. Issue [Ano08, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano13a, Ano13b, Ano13c, Ano13d, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano16f, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano18, Ano14a, Ano14c, Ano14d, BF96, FJ05, Ano14e, Ano15d, Ano16f]. initial [Nov03, PBN05, VL11]. initializing [BMM06]. Interpolating [BM05a]. Iterated [BDR17, AN03a]. iterates [DS13b]. iteration [AT15, AN94, BGX06, BAI10, Bai12, BZ13, BLP17, BM13, CH05, Che15, Egg07, FK15, GB11, GH01, HML99, HL16, Kuo2, KKR14, LLL97, Lam12, LS15, PS95, wX15, Zho06, ZS08, Ney05]. iterations [BGN07, BG05a, FJP16, GGZ12, HM03, Kap05, KLN99, LZ09, Lin12, Lu05, N14, Saa00b, Sch99, vdE02]. Iterative [AT00, BF11b, CG94, DBG06, GMR05, LPV01, MO16, N14, PM07, EHV14, AEHV15, AK00, ABPN15, BEH+17, BM17, Ber01, BR99, CR16, CH05, CK01, CK10, ELV94, FM99, GTY97, Gus97, HG01, HES15, HM14, LR08, Leo10, LSL01, LZY11, LWW11, LJM14, MM98, NO04, OL099, yPxP06, PR96, PR11, Pul08, PM11, Sol14, Sun06, Szy94, WDS09, WTZD10, WW11, ZW10, Xue99]. IV [KN99]. Ivo [SGP14].
J [NN15].
Jacobi [BFdP13, BFG95, FJP16, GS99, HLLW05, MSV13, Not02a, Sch99, Zho06, vNR07, vdeE02].

Jacobi-Newton-iterations [Sch99].

Jacobian [BS01].
January [NL09].
Jordan [EJK01, GH06, Pen03].

Kahan [Bun95, FRR16, GORR16].
Kalman [BPHS13]. Karhunen [SLK16]. kernel [HK02, MN05]. kernels [NWZ17]. kind [MM09]. KKT [BGM09, MST16].

Kronecker [BW17a, Che15, DWWQ13, EJK01, KN07, LPS16, LS04, Per06, XG10]. Krukier [JK09]. Krylov [HS14, OC04, AGR+16, AFSCSU14, BPSH13, BMAA16, Bot13, BD15, CS97, CQ10, CK10, Dam08, DK95, Ema12, EN17, Fas05, HS11, IT05, KS10, Mor07, MP14, NV08b, PP+95, Rag14, RLG12, RV12, Sid97, SS07, VS17, Yot01]. Krylov-accelerated [Ema12]. Krylov-based [NV08b]. Kutta [Che15].

L [Nab97, CZ02, ZMO10]. Large-Scale [VW01, Ben08, BBJ17, Bar02, BCB14, BLP08, BES14, DMY03, Gra08, GR04]. large-size [FJP12]. largest [LW98, WQZ09, ZQ12, ZQW13]. latency [RTN03]. lattices [KKT]. layer [QB15, RV12]. layered [BDM+14]. Lazarov [Vas03]. LDL [mM04]. learning [SZ11]. Least [CYZ99, pLL07, Tia13, AB00, AK99, BDGL09, Bar02, BMM06, BGM09, BGM11, BGM+12, CNP96, CTP09, CP12, CP06, Dax94, DE98, DW07, DWWQ13, ES07, ES09a, ER96, FB95, GW00, GR05, KLM+06, LV02, LZ12, LW17, LL97, MNN+10, MVK04, MLV05, Miy15, Pen08, Ren98, RLG12, Sto92, WKS95, WWC+15, ZHZ10]. least-rank [Tia13]. Least-squares [CYZ99, pLL07, Tia13, AK99, BDGL09, Bar02, BMM06, BGM09, BGM11, CTP09, CP06, DW07, ES07, ES09a, ER96, LV02, Pen08, ZHZ10]. Left [WD08]. lemma [Gus04a, Mar95]. length [BDK+15]. Level [SH14, CGM01, CS02, CRV14, DLVZ06, EN17, GVT03, HH06, H+R04, KM99, KV96, NCV05, OC04, S299, SP06, SV11, VSG09, XZS10, YXX13, Zik08, vRH05]. Level-based [SH14]. level-dependent [CRV14]. Levinson [Bun92]. life [KVV10]. like [Bai09, Bai16, BMM06, Lee10, Mey94, OS01, PRPI09, mMP99]. likelihood [ES05, NG15]. limit [LY15]. Limited [GMTV16]. limiting [DS13b]. line [BDK+15, DMY03, MM95]. Linear [NLA94, Ano09, ITS07, Jia96, Nab97, ZQ12, ARSO14, ARMW14, Ada04, AGG+16, AW11, ACR+00, ALT05b, JNL02, AMP99, AK00, AN30b, BDGL09, BPS15, BAI10, BCR11, BZ13, BCR14, BLP17, BZ17, BKY10, BG13, Bas00, BLE97, BLP08, BFS10, BEH+17, Ber01, BWN05, Bla02, BvV00, Bot13, BC12, BMF12, BM05a, BSH17, CS09, CS11, CDGmM04, CPSM06, CSCS10, CGL05, C003, CK01, CK14, DGB+13, DMS17, Dat01, DDG99, DGR11].
DGM+16, DK95, DLP16, EW13, EM95, EHM95, ER96, FLPW01, GHR98, GGZ12, Gra08, HK02, HM03, HL16, HM16, HLLL16, IP13, Ibr02, JZ11, KV92, Kap98, Kap99, KNX01, KH07, KS10, KM09, KR14, KPT14, KS15, LZ09, L0Y08, fLyHZ11, pLL07, LH17, LT08, LT11, Lor14, LPS15, MVV08, MSS07, MRT98, Myi15, Mor09, MP14, OOO11, OOO16, PS11, yPxP06, yPES07, Rja98, Roh92, Sau95, Sha98, Ste99, SHT11, TS12, TT10, THCO9, Tia13, TY10, Vas02, VS17, WW08b, WTZD10, WtFW15, WF15, XJ12, Xie11, XQ09, xW15, YDH11].

matrix [ZJ06]. matrix-dependent [Sha98].

matrix-free [GTY97, YNP04, AD11, TT10]. matrix-valued [DGM+16, Xie11].

max [BDK+15]. max-length-vector [BDK+15].

maximal [LW16]. maximization [SH14].

Maximum [BCHT04, Gar02, CCLQ18, ES05, NG15].

Maximum-weight-basis [BCHT04].

Maxwell [GS07, LGS12, MV13, MZHJ17, ZSWX13].

McCormick [Lee10]. mean [Ian16, KNX01]. means [MS14]. measure [BG02]. measures [Buc11, OST10a].

media [BKP02, CGPV13, GM17, KP10, NH06, SBS15, WWX10, Yot01]. Median [LNY15]. Memory [KR14, FO95, GMVT16, J094].

Memory-efficient [KR14]. Mesh [KPV06, BC10, BMG+12, DHR+04, DS08, KPVO8, SBS15]. Mesh-independent [KPVO6].

meshes [BB00, BLZ08, BCS09, HMS99, KR11, KV96, Mav01, RSTC15, SRGL13, XZ15]. meshfree [LOY08, LOS04]. Meshing [KHJ+06]. Method [Jia96, ABBP10, AK99, AN94, AM95, AFK02, BC09, BG13, BB16, BJ17, BMR06, BLS14, BS01, BLa02, Bot13, BHHJ13, BMS09, BCZ12, BC12, BCS09, BPS13, CKW02, CZ02, CNT07, CQX11, Cha07, CGL05, CH05, CG15, CNY05, Cho03, CK01, CP06, CK14, DL97, DMY03, Dax94, DGM+16, DJ09, DS13b, DR03, EKS02, ES09a, EWY03, FLP00, Fer96, GHT09, GS09, GT09, GD11, Hac92, HKPF07, HES15, HOM06, HD07, HHH13, HLLL13, JCI10, Kap94, Kemi12, KY95, KKNY01, KK16, KW99, KXT03, KP06, KR11, KS10, Kra02, KT08, KLM15, KPT14, KM92, HCD15, LV08, LPVO1, Li00, LT09, LB08, LS15, LH17, LW17, Liv14, LJM14, LP16, LMM00, LV98, LMV04, MZ15, MO94, MM98, MRT96, Mee01, MS13, MP15, MW06, MBW97, Mit10, MP14, MN00].

method [NQ96, NR14b, Not94, PS11, PS95, yPxP06, PR95, PR96, PR11, PT17, Rak99, RS01, RS02, RV12, Ren96, RT99, ROA13, Sha99, Sim03, Sum06, TS12, WD08, WQZ09, WZX15, WBWM04, WTZD10, Wu15, XZ09, XJ12, XZ15, Xie11, XQ09, YYN12, YXZ13, YZFG11, YZL13, Zit05, ZMO10, vNR07, vRH05]. Methods [Ano08, CGK94, LD08, NL09, QACT18, VW01, WW08a, ARM14, AM96, Ada04, AD12, AEHV14, AEHV15, AABHV18, AMMP06, AK94, AV94, Axe98, Ax99, AK00, AN03b, ABNP15, ABK15, Axe15, BR07, BGX06, BAI09, Bai10, Bai12, BDRS12, BZ13, BCR14, BL17, BZ17, BP13, BLEM1, Baz08, BMAA16, BMG11, BK11, BE1+17, BGP97, BR09, BGW05, BDVO6, BCS09, BB96, BM05a, BS17, CEQ07, CS09, CS11, CGM01, CS02, CSCTP05, CEL*96, CHe02, CCK06, Che15, CNZ17, CWS97, CK10, Dam08, DMM*08, DMTY11, Den12, Den14, DBG06, Dob99, EZ96, EM17, ENL94,Fal06, Fal10, rFS09, FM99, FM15, FP95b, GB11, GLGR10, GORR16, GZ16, GVT03, GMR05, GGV13, GM0S06, Gus97, GL95b, HS11, HS14, HL16, HP04, HLLLW05, IV04, JS05, KMMR10, KP00, KCS11, KLM14, KS15].

methods [KKR14, Lee10, Lee12, Li00, LSL01, LHL07b, LLLW09, LNY15, LXX17,
LZY11, LW16, LMM00, MMC12, MMMM09, Mar00, MG08, MPS96, MZ98, MST16, NBKS99, NSCTP05, Not05b, Not10, PBN05, PY03, PRP09, Pu08, PM14, Rag14, SRGL13, SB12, SK01, SWY07, Sci10, Sid11, SS07, SGP14, Sta96, Szy94, VSG09, VZ08, Wei94, Wie99, wX15,ZW10, ZSCX10, ZSWX13, Zik08, vV94, Fal08, GL02].

[MILU [WH94].

Mindlin [CYZ99].

Minimal [BGX06, CfX05, JR94, KMC16, MRT96, SW96, Sta96].

Minimization [EHM95, CDG00, Car97, DMY03, DFZ05, Het07, KV06, MD03, NZ14, XJ12].

Minimizing [CvG11, AMM04, VSG09].

Minimum [GH01, DE98, DBG06, DS10, Gus03, Gus03b, Kap05, Miy15, Saa00b].

minmax [Vos09].

MinRes [KK13].

Mirror [BCK05].

Mixed [DXW12, AB10, AB13, BBG13, Cao13, CEL+96, CCK06, GH01, GTZ18, GT09, GSO7, Lai97, LPV01, LGS12, LW17, PY03, PS00, PT17, RVW98, SBS15, VL96, WBW04, Web10b, YZ13].

mixed-hybrid [ŠBS15].

mixed-order [Web10b].

mode [STZ12].

Model [Lay05, Sha99, BLLA11, BBJ17, FLPW01, Gus98, KNP03, MV13, XG10, ZS08].

model-order [MV13].

modeling [FH94, WWX10].

model [Car04, GMR05, LO15, NH06, SWY07].

Models [CEQN07, Bai12, BL03, BV13, Buc11, DHSW11, GM17, GN15, LNP12, PGT14, QXB09, TC10].

modern [MM97].

Modifiable [BE09].

 modification [CSYS14].

Modified [LHL07b, wX15, Bea94, CS95, DJ09, Kap02, KPV06, NR14b, Sun06, WL08, ZZ15, SB12].

Modifying [Alb06].

Modular [BC02].

modulated [BLLA11].

Modulus [Bai10, BZ13, BZ17, HL16, DJ09, HM16, wX15].

Modulus-based [Bai10, BZ13, BZ17, HL16, HM16, wX15].

moment [AK16, GHR98, VFvdV13].

Moments [BFM12].

Monotone [IV04, ZZ15].

monotonicity [Mar95].

Monte [AK16, BEH+17].

Moore [DW07, DWWQ13, KKMM12, LXW13].

Moreau [PSW14].

mortar [DP03, PY03].

MRRR [MPV06].

MSMAOR [CK14].

Multi [NH06, BCK05, CS02, CLNY15, Lee12, PVD05, SZ99, SV11, TC10, XM17, ZHJL12, vGZ15].

multi-channel [PDV05].

multi-dimensional [CLNY15].

multi-energetic [Lee12].

multi-ion [TC10].

multi-level [CS02, SZ99, SV11].

multi-mirror [BCK05].

multi-parameters [ZHJL12].

Multi-scale [NH06, XM17].

multi-shift [vGZ15].

multidimensional [BBKY06, LO15].

Multifrontal [ADP96, NL16].

Multigrid [AD12, BB00, BW17b, BCS09, BBKY06, Den12, Den14, Fal08, Fal10, GLGR10, KRW08, Mov01, SRGL13, Wie99, WTWG14, ZVO14, Ada04, ALM18, AY11, BZ17, BKY10, BLE97, BBS12, BO08, BH04, BISC14, BMS17, BDV06, BLZ08, BMM+08, BVV12, BKM+12, BDM+14, BS10, Cho03, DY04, DFN08, Don05, Don10, DHR+04, EZ96, Ema12, Fal06, FM15, GM17, GLOW04, GGL008, GHT09, GKV12, GT09, Gra08, GHJ16, Gmos06, HBB10, Het07, Hsm06, IV04, KXZ03, KR11, KRO6, KLM15, Lee12, Lec16, LOS04, Liv04b, Liv14, LM14, LD07, LRGO17, MO11, MCC12, MO14, MMR10, MWZ06, MBW97, MC08, Mit10, NN11, NFDO, NSCTP05, Not05b, NV08b, OST10a, Pf99, PT17, RS02, RV12, R096, RBV08, RGM17, Sei10, Sha98, SKR08, SSB15, TGKR10, TC10, TY10, UMO09].

multigrid [VZ08, VY14, Wan00, Web10b, Web10a, XSO9, XZS15, YW12, Zhn14, ZMO10, vRH05, DM10].

multigrid-based [UMO09].

Multigrid-in-time [BW17b].

Multilevel [AT15, CEL+96, CV03, Osw95, Sta96, AM96, AMM04, AN94, AV94, BMN05, BCZ12, CL96, DMTY11, DGM+16, Kra02, Kra06, KTO8, KMS08, KLM14, KP10, Lai97, LSS03, LM06, MM95, May07,
Not98, Not02b, Not05b, Pad99, SS02, Sha99, SLV13, The98, XCG16, Yot01, vN00.
\textbf{multilinear} \cite{LPS16, LLNV17, PDV05}.
\textbf{multiphysics} \cite{Yot01}.
\textbf{multiple} \cite{ARSO14, ARMW14, CNZ17, Mai06}.
\textbf{multiplication} \cite{Kap99, OOO11, OOO16, WF15}.
\textbf{multiplicative} \cite{CL96}.
\textbf{multiprecision} \cite{BB16}.
\textbf{Multiprocessor} \cite{ADP96}.
\textbf{Multiscale} \cite{HPPS03, FP15, VSG09, WWX10}.
\textbf{multisecant} \cite{rFS09}.
\textbf{multisensors} \cite{CNSY05}.
\textbf{Multisplitting} \cite{RLG12, AMP99, BZ13, CS09, CS11, JS96, LSL01, Ren98}.
\textbf{multisplittings} \cite{BCC98, CP99, FP95b}.
\textbf{multistep} \cite{BWN05}.
\textbf{multivariate} \cite{LZQ12, MVK04}.
\textbf{Nath} \cite{CLR13}.
\textbf{Navier} \cite{AB12, CA99, HFW01, KOV17, LMM00, Ols99, PT17}.
\textbf{near} \cite{CNY05, Ver00}.
\textbf{near-circulant-block} \cite{CNY05}.
\textbf{near-singularity} \cite{Ver00}.
\textbf{nearby} \cite{AFS14}.
\textbf{nearest} \cite{DBLP16, GHR98, MRT98, NW15}.
\textbf{nearly} \cite{BKP02, HFW01, NA97, RSCTP15}.
\textbf{Necessary} \cite{Pul08}.
\textbf{negative} \cite{BMM06, CfX05, PR11}.
\textbf{Nested} \cite{Bla03, GNQ15, MO16, vV94}.
\textbf{networks} \cite{GB15, WWC15}.
\textbf{Neumann} \cite{RT99}.
\textbf{neutral} \cite{ZCW11}.
\textbf{Newton} \cite{Cha07, CGM11}.
\textbf{Newton-like} \cite{BMM06}.
\textbf{Newton-type} \cite{ABB10, ABB19, ABB20}.
\textbf{NLA} \cite{AXC10, VAS05}.
\textbf{nodal} \cite{BDV06}.
\textbf{nodes} \cite{FP05}.
\textbf{noise} \cite{NWZ17}.
\textbf{noisy} \cite{BC09, NWZ17}.
\textbf{Non} \cite{AMP99, VW01, BLA95, CL96, CAO04, CAR97, CGM01, CPS01, CGL05, CK01, CIX05, DS02, EZ96, FP05, GB11, GM11, GVT03, HKKP07, HSCTP05, KPV06, KM99, KRA02, LVD02, LHL07b, LV05, LMM00, LV98, LMM04, MAV01, MZ98, MC04, NQ96, OC04, RT99, SB12, Sei10, WD08, vN00}.
\textbf{non-conforming} \cite{BMN05, KM99}.
\textbf{non-convex} \cite{LMV04}.
\textbf{non-equispaced} \cite{FP05}.
\textbf{non-Hermitian} \cite{SB12, Bai16, CPS01, HSCTP05, LHL07b, WD08}.
\textbf{Non-linear} \cite{VW01, BLA95, CGL05, KOV17, LMM00, OC04, RT99}.
\textbf{Non-linearly} \cite{LVD02}.
\textbf{non-Lipschitzian} \cite{DS02}.
\textbf{non-negative} \cite{BMN05, CIX05}.
\textbf{non-overlapping} \cite{CGM01, GVT03, LMM00}.
\textbf{non-smooth} \cite{Car97}.
\textbf{Non-stationary} \cite{AMP99, LMM00}.
\textbf{non-symmetric} \cite{Bla02, CL96, CAO04, CK01, EZ96, GB11, GM11, HKKP07, LV98, OC04, RT99}.
\textbf{non-aligned} \cite{YXZ13}.
\textbf{nonconvex} \cite{Laz16}.
\textbf{Nonequivalence} \cite{FLPW01}.
\textbf{Nonlinear} \cite{Gra08, AMMP06, AC11, BRTO7, De13, DGR11, RFS09, GD11, HM16, MV13, MSV13, Naz95, yPES07, SGSM15, SC944, VJM16, VPP09, ZQ12, ZQW13}.
\textbf{nonlinearly} \cite{LVD02}.
\textbf{nonnegative} \cite{BGX06, BGM09, BGM11, CQZ13, SB03}.
\textbf{nonnormal} \cite{MYZ16}.
\textbf{Nonnormality} \cite{Baz08}.
\textbf{nonpositive} \cite{Hua12}.
\textbf{nonsingularity} \cite{Pe07}.
\textbf{nonsmooth} \cite{Che02, CQ10}.
\textbf{Nonsymmetric} \cite{CGK94, YW12, ARSO14, BAI95, BGM09, VAS92, WTWG14}.
\textbf{nonzero} \cite{ZHJL12}.
\textbf{norm} \cite{CDG00, DAX94, DE98, DB06, DHW16, EHM95, EHM95, GA02, MY15, XJ12, YL08}.
\textbf{Normal} \cite{GUS04, SZ11, LS05}.
\textbf{normality} \cite{NR11}.
\textbf{norms} \cite{GZ16, SB03}.
\textbf{normwise} \cite{DW07, FT98}.
\textbf{notch} \cite{RS07}.
\textbf{Note} \cite{LZY11, CNT07, CAO09, CK14, DS10, DS08}.
DN12, FT98, GM11, GX14, JO01, KH07, Lai97, LXW13, LW07, LC07, Lot07, Ney05, SB03, Sun05, SHT11, VVM05c, Vöm10, Vöm12, WBL14. notion [DGM+16]. novel [NPR13, SP06]. nuclear [XJ12]. null [ITS07, RS18, WF15]. null-space [ITS07, RS18]. nullspace [Sim03]. nullspace-free [Sim03]. number [BB06, BC10, EHM95, EG16, LH08, LLW09, RV12, TGKR10, ZHJL12]. numbers [BG05b, CCG00, CLTW11, CDW06, DW07, Dia09, DXW12, DWWQ13, Liv14, YDH11]. Numer [SB12]. Numerical [AGG+16, NLA94, Ano08, Ano09, BL08, Ben11, CH03, CA99, DMS17, FZwCW17, GS05, HMM10, HJR97, FLxHZ11, LD08, MK94, MMm09, MV05, NBKS99, NSCTP05, NL09, WW08a, JNL92, Bai95, BDRS12, BKP02, Bat95, BGM11, Ber01, BDS94, CQX11, CJW06, Cor04, CJT03, Dat01, DS02, GY08, HPS15, Lj04, LH08, LH11, LGS12, Lin12, MM09, MP13, OCYm08, Ols99, Özb13, SHT11, Tur00, Mar00].

Oblique [Han13, YCY17]. oblivious [MWZ06]. observations [CZ02]. observer [CLR01, CD11]. obstacle [JZ11, ZJ06]. occasion [CLR13, LPQ06, SGP14, Vas03, Vas05]. occur [CC03]. occurring [AG99].

Operator [Gus97, Gus98, Gus03, MMPR10, Alb06, BV00, BCv03, BFm12, Den09, GN00, GH11, Liv04b, MP15, Tyr05]. Operator-based [MMPR10]. operators [AFSCSU14, ABBP10, AHEV14, AHEV14, BKY10, Don10, GGL08, GVT03, Kho96, MC08, PSK08, Yan10]. optical [BCK05, KRW08]. Optimal [Bai09, BTT13, ELV94, GHO15, LHLS07, LD07, MM95, Not98, WKS95, BLP08, BFPS10, BMN05, DH04, EG16, GTZ18, HFw01, KK13, Lai97, MNCT07, MSS07, MP13, NA97, PSW14, RGG07, RSCTP15]. optimality [NN10]. optimally [Cha07].

Orthogonality [Par92]. Orthogonalization [Jia96, LBG13, LL07, SW06, VS17]. orthogonalizations [Dax04]. orthogonalizing [Mat96]. Orthotropic [GL96]. Oseen [HBH10, KLM+06, Ols99].

Outer [Cor04, Xia12]. output [LW05]. outs [LPW06]. oval [KVC12]. over-penalized [BPS13]. overall [BS01]. overlap [Kk02, mVmdV02]. Overlapping [CS96, GNQ15, CGM01, Gao99, GVt03, JS96, KP00, LMM00, MO11].

Overrelaxation [BGW07, Gus03]. Owe [Cao13, Vas05].

P [SP06, HMX99]. P-level [SP06]. Padé [BLW08, GGL12, Lz09]. PageRank [LLN17, WW07, YYN12]. pairs [CLC11].
polynomials [BB97, BGW05, BG05a, KR14, MO94, MN05, Nov03]. population [DHSW11]. poroelasticity [GLOW04, LRGO17]. porous [NH06, BS15, WWX10, Yot01]. posed [CLTW11, DNR12, Est09, GORR16, NR14b]. positive [CLTW11, DNR12, Est09, GORR16, NR14b]. positive-definite [CLTW11, DNR12, Est09, GORR16, NR14b]. positivity [KSB13]. possible [VL11]. Post [KLN99]. Post-processing [KLN99]. posteriori [AM96, BLP01, OOO16, Pul09, Ney02]. potential [Kho96, MRT96, Shi02, Shi04]. potential-reduction [Shi04]. potentials [KK16]. power [CEQN07, CH05, DS13b, GGV13, JZ09, LP16, WW07]. practical [DGB+13, Kap99, WQZ09, WM12]. Prandtl [Wie99]. Prandtl-Reuss [Wie99]. Preconditioned [Axe98, CGK94, DGM+16, HMS99, HES15, AN06, BM13, Ber12, Ber01, BWN05, BB06, Bla02, BHJ13, BE98, CZ02, Cao09, Dam08, DS08, DR03, KK13, KPT14, LD07, LV98, PR95, PR96, RV12, SJBH14, DW15, WBL14]. Preconditioner [TT10, BPS15, BT03, Beu03, BC12, BPS13, CGPV13, CJZ11, CNP96, CJW06, CS95, CV13, Doh07, ES07, EGF11, GN00, GTZ18, HF01, ISZ09, KSO4, KV96, Kuz92, KP10, LS04, May05, May07, MC09, NL16, SPD05, SP06, SLV13, SGP14, UM09, Xia12, XS11, XM17, Zhu14, vN00]. Preconditioners [CP01, Est09, GS07, PSW14, AY11, AN13, Bai16, BM17, Bla02, BMN05, BCH04, BS17, Cao08, CG00, CDM04, CGM01, CC92, CW97, CEL+96, DDG99, DP03, FP15, FK15, FS09, GPTV16, GNQ15, HLM92, HH06, Hem96, HK12, JLW05, KABH17, KY95, KKNY01, KP00, Krz11, LVW01, LOY08, Lee16, LJD14, LXS16, LC05, LW07, LW16, Mar16, MMS07, NV08a, NR12, Osw95, PW12, PS00, QB15, RS10, RSCTP15, RVW98, SZ99, ST17b, The98, TT15, Tyr92, Tyr05, XG10, YNP04, ZCW11, ZHJL12, Zhu08, mMP99]. Preconditioning [ABM17, AN03b, AB10, ABP15, ABK15, CFAM16, Egg07, Gro00, HSCTP05, MW11, Pul09, SMSW00, SW12, Vas92, VL96, WDS09, WBWM04, AFCSU14, AT15, AK94, AV94, AFK02, Ax15, BCR11, BCR14, Bas00, BGM09, BPS00, Bla94, CDDSC12, De 13, DLVZ06, DD07, Dos99, DKBV15, FJP12, FJP16, GM11, Gus03, GL95b, HPPS03, JZ09, JK17, Kap94, Kap98, KK12, Kap02, KM99, KP08, KV17, Kra02, Kra06, KMS08, LV04, LW03, MM95, MM02, NO04, NR11, NA97, Not98, Not02b, NC05, PW13, Poi00, SL10, Vas02, WH94, AB13, Cao13]. preconditionings [GKY97, KNV99, NY03]. prediction [BS10, PGT14]. predictive [FM15]. predictor [BB97, HM14]. Predace [Axe02, AK10, Cve09, Dat01, NT04]. Prefiltration [NY03]. presentation [EJK01]. preserving [HHLL16, PR16, Wan00]. Press [Nab97, Amb15]. pressure [Hay05, LWC16, vKVV00]. Price [Nab97]. pricing [LLS12, Rag14]. Primal [HP04, RT02, FLP00]. Primal-dual [HP04]. principal [GH06, LB17]. principle [BC02, Vos09]. principles [Gar04]. priori [HM96]. PRISM [Axe98]. Prize [Ano08]. probabilistic [WWc+15]. probabilities [NX03]. probability [BH16, LCN13, MM98]. probing [TS12]. problem [AH02, AK09, ABK15, BAI95, BDK+15, BFPS10, CZ15, Car97, CPSM06, CGL05, CG15, CFAM16, CJT03, DL97, DMS17, DWWQ13, Dod11, DDBP16, ES07, ES09a, ER96, GKK04, Gus98, HBBH10, Hla99, HSO8, IV04, KABH17, KPV06, KO70, KNP03, LLL16, PLL07, LYL15, LD07, MV13,
MRT96, MLV05, Mee01, MP15, Ols99, OC04, PybHZ04, Ren98, RSR10, Rja98, RT99, Sau95, SH14, Sim03, Sot13, VFdv13, Vla00, WK95, XZS10, ZJ06, ZYFG11, ZYL13, ZVO14. Problems [CGK94, GL96, Ada04, AB00, AW11, ATT05b, AG99, AV94, Ae98, AN03b, BBP03, Bai09, Bai10, Bai12, BZ13, BZ17, BKY10, BKp02, Bar02, BLE97, BBS12, BM06, BGM09, BGM11, BLP08, BCV03, Bla94, BC02, BBG13, BvdV00, BRT07, Bör17, BO13, BDM+]14, CL96, CNT07, CQX11, CGPV13, CRS05, CR16, CEQN07, Cao04, CJI11, CCyG06, CC92, CNP96, CW97, CS02, CTP09, CEL+96, CCK06, Cao04, CJZ11, DL96, Aha04, AB00, AW11, ATT05b, AG99, AV94, Ae98, AN03b, BBP03, Bai09, Bai10, Bai12, BZ13, BZ17, BKY10, BKp02, Bar02, BLE97, BBS12, BM06, BGM09, BGM11, BLP08, BCV03, Bla94, BC02, BBG13, BvdV00, BRT07, Bör17, BO13, BDM+]14, CL96, CNT07, CQX11, CGPV13, CRS05, CR16, CEQN07, Cao04, CJI11, CCyG06, CC92, CNP96, CW97, CS02, CTP09, CEL+96, CCK06, CWS97, CC03, CLTW11, CP12, CV13, CRV14, CK14, Dax94, DE98, DW07, Dia09, DNR12, DJ09, DHR+04, DP03, DR03, Egg07, EGF11, ELV94, EWY03, FY01, FGT11, Gar04, GGLO08, GH01, GORR16, GHT09, GVT03, GZG2, GZ21, GTZ18, GMTV16, GL08, GL02, GL16, HP97, HKST12, HJR97, Han13, HS13, HL16, HD07, HLLL13, HM16, HLLL05, JZ11, JK18, JM10, KK02, KR11, KP00. problems [KK13, KR06, KT08, KMS08, KLM14, Krz11, KM92, LLL97, LR95, Lay05, LPV01, LV99, LW07, Lii12, LZ12, LW16, LW17, Liv04b, LL97, LV98, MZ15, MMMM09, MS07, Mar00, Mar98, MRT02, Mar16, MS07, Mav01, MSV13, MP13, MM97, MBW97, MM02, MZ98, NR14a, NR14b, Nov03, OS10, Pad99, PBN05, PS14, Pen08, RR12, ROA13, SLK16, SX15, Sh02, Shi04, SV11, Sta96, Sto92, Tre13, TT15, VJM16, VL96, Ver00, Wan00, WWC+15, XG10, XZS15, wX15, XCG16, YCY17, ZZ15, ZHZ10, ZSCT10, mMP99, mMP04, VW01]. Procedure [IDVV96, JZ09, JK17, LR95]. process [PRR+16]. processes [AD11, BL03, Buc11, DGB+13, NH06]. processing [DA01, KLN99, SKR08]. Procrustes [CZ15, KH07, XCG16]. product [BW17a, Che15, DQW15, DK15, FZwCW17, Gus04a, KN07, LS04, MGF+02, Per06, XG10]. products [BB01, DWWQ13, LPS16, Mat96, Mey94]. Professor [SGP14]. profile [HR05]. program [CCLQ18]. programming [BRT07, HHQ13, LV98, Naz95, RGG07, Shi02, Shi04]. Progress [Bai95]. Projected [HKKP07, Shi04]. projected-steepest-descent [Shi04]. projection [BG13, Baz08, BG00, FB95, GKL18, ITS07, HCD15, MS98, RT02, YCY17]. projection-based [GKL18]. projection-type [Baz08]. projections [Dax04, Han13, VZ14, WTWG14]. Projector [DD07]. prolongator [KV15]. prolongators [BDV06]. proof [Adi08]. propagation [BO13, mM04]. proper [Kem12]. Properties [PSK08, Wei94, Ym96, Zh10, BBS94, Bun92, CG05, CW06, LV12, NPR13]. property [DMY03, EZ96, ESO9b, NL16, YLH11]. proposal [NCV05]. proving [BBP03]. pseudo [BFdP13, mMvdV02]. pseudo-Jacobi [BFdP13]. pseudo-overlap [mMvdV02]. Pseudoeigenvector [MYZ16]. Pseudospectra [KCC16, VW15, NR17]. PSF [BNP15]. published [Ano09]. pure [KM99]. purely [BF11a]. Python [BISC14]. Q1[PT17], Q2[PT17], QLP[HC05]. QR[CG05, Fa05, LW15, V]. R [Nab97]. Rachford [LR95]. radial [CDDSC12], radiation [OC04, WBWM04, XM17]. radii [CIX05]. Radim [Cao13]. radiosity [Leb02]. radix [MR14]. radix- [MR14]. random [HPS15, LW98, WF15]. Randomized [SLK16]. range [AMMR17, CJW06, KK16, Yan10, ZW10]. range-Hermitian [ZW10]. Rank [GS97, Kub92, AT15, BE09, Bau08, BF96, CH94, CSYS14, DE98, DBLP16,
ES05, FMPS13, Gra08, HR05, HC05, KJ12, KPT14, KS15, Laz16, LXS16, LO15, NL16, O’H14, QXB09, SPD05, SP06, SLV04, SLV06, DW15, Tia13, Tyr92, VVM05a, VJM16, WQ07.

SA [BMM+_08, GX14, HVX16].
SA-AMG [HVX16]. saddle [AN06, Axe15, Bai09, Bai12, Ber12, Cao04, Cao08, Cao09, CJZ11, CH03, EG16, HD07, KP00, KKR14, KFz11, KKMM12, LOY08, LOS04, LW07, MZ15, PW13, RS18, SJBH14, SX15, VL06, WBL14]. saddle-point [Bai09, Bai12, EG16, KKR14, KKMM12, LOY08, VL06]. same [GHR98]. sample [DXW12]. sample [Rie09]. sampling [AFSCSU14, FGT11]. SANs [LS04]. SAXPY [Ypm95]. Scalable [DH04, FLP00, Liv14, MW16]. Scale [VW01, Axe98, BB17, Bar02, BCB14, Ben08, BLP08, BES14, DMY03, Gra08, GR04, Lee16, NH06, XM17]. scaled [CTP09]. scaling [BBKY06, GHO15, HS15]. scattering [FGT11, MV13, WDS09]. Scheme [Zha92, BS01, BMS17, CRV14, GB11, GSS01, GMOS06, KV15, LSS12, Poi00, Pul16, RR12]. schemes [AIT05b, AJ94, Bir15, DE06, Gus03, HM14, KABH17, OCYM08]. Schmidt [Dax04, LBG13, LL07, Van00, WL08]. Schoenmakers [DPP16]. Schrödinger [CJL08]. Schur [BG00, BCK05, GO05a, Bra02, BCGM09, BD15, Bun92, HKKP07, KSB13, KW99, Kra06, KLM15, LXS16, LW03, MMOM09, MW16, NG15, PW12, Rak99, SGP14, TSPSO06, WW08b, WTWG14, vNR07]. Schwarz [AB13, Cao13, AALS01, AB10, BK11, CZ02, DS08, KP00, OC04, VSG09, XZ10]. scientific [Axe98]. searches [DMY03]. Second [JM10, VFDV13, BBJ17, CEL+96, DLVZ06, GTI16, KPV06, LM06, MM09].

second-generation [LM06].

semi-monotonic [LD07].
semi-orthogonality [Par92].
semi-separable [MC01, Xia12].
semi-structured [GLGR10].
semiconductor [GMR05].
Solutions

[GL95a, Pen08, AW11, BGX06, CH03, DE98, DBG06, HM96, KR06, fLyHZ11, pLL07, Miy17, PPv95, Tia13].

solvability [XHZ03]. Solvable [Nab97].

solve [BG13, KBF15, Liv04b, MZHB17, ZJ06]. solver [BvdV00, CHV05, GKK04, KK13, KR06, LSS03, LM06, MNCT07, MRT02, Ols99, Pad99, PR11, RTN03, Rak99, RGG07, RGM17, SS02, Sol14, SKR08, Yot01]. solvers

solves [Cha07]. Solving [BG05a, Nov03, AH02, AMMR17, AK99, AK00, BSI17, Cao04, CQ10, CC03, CNY05, DN12, EM11, FH94, HKKP07, HM14, JLW05, Jou94, KS15, KKMM12, KM92, LT09, Liv14, MZ15, MLV05, NQ96, PM97, yPxp06, QACT18, RSR10, Shi02, Sto92, TT10, Var08, Vla00, WTZD10, mMP99, mMo4, vGSZ15]. Some [BFG95, BM05a, CGK94, CZ02, HM14, LS06, Mar95, Sun06, Ber01, BB06, CDW06, DS10, GL02, LV08, LHL07a, Pen09, XZ15]. SOR [Che02]. sorting [Bra02]. Space

[Lee12, AT15, AMM04, AFK02, BPSH13, BMS17, BV13, BC12, GB15, ITS07, KV92, KLM15, RS18, RSR10]. Space-angle-energy [Lee12]. spaces

[GH06, LV12, LZY11, LPW06, VSG09]. Sparse [CDG00, CDGMm04, Vaso2, WWC+15, AB00, BPS95, Bas00, Bau08, BF11a, BEH+17, BPS00, BV00, BG00, CS96, DR03, EW13, FJP12, GOH15, Gus03, HS15, HS05, Huc98, ISZ09, JZ09, JK17, KKNY01, KNYY99, LLL97, LV98, Mey94, NLZ11, NY03, NH98, RTN03, RS18, SZ99, SS02, VS17, WLBH12, XM17, vGSZ15]. sparsity [Poi00]. spatial [BLP17]. SPD

[Mar16]. Special [Ano08, CLR13, Fal06, LD08, VW01, Vas05, Ben08, Dat01, ES07, Mey94, Axe99]. specially [SHT11]. specified [fLyHZ11]. Spectral

[CDDSC12, MST16, SGS15, mMdV02, BPS95, BFdP13, BM17, CQZ13, CN2Z17, CF05, LQY13, LNQ13, MS14, MC09, Par03, SK01]. spectrum [Cao09, Loro14]. Speed

[LY15]. sphere [ALM18]. spheres [WCZ15]. Spline [LPS16]. splines [LY15]. Split [HR05]. Splitting [HN05, LXX17, BGN07, BAI10, Bai12, BLIP17, CIZ11, Che15, Gan99, HL16, HM16, KKR14, LHL07b, SB12, Wu15, wX15]. spring [EKS02]. spring-mass [EKS02]. SQP [AH02]. Square

[DNR12, TY10, Mor09]. squared [BES14]. squares

[AB00, AK99, BGD10, Bar02, BMM06, BGM09, BGM+12, CYZ99, CPQ96, CTP09, CP12, CP06, DE98, DO07, DWWQ13, ES07, ES09a, ER96, FB95, GW00, GR05, KLM+06, LV02, pLL07, LZ12, LW17, LL97, MMN+10, MvK04, MLV05, Mv15, Pen08, Ren98, RL12, Sto92, Tia13, WK95, WWC+15, ZHZ10]. SSOR [Bai16, GKY97, WH94]. SSOR-like [Bai16]. Stability

[CJW06, DSH95, OCYMO8, BV13, DGB+13, DS13a, EM11, KSB13, Lee10, NX03, Pen03, Sau95, ST17b]. stabilization

[AB12, DGB+13, DGR11, Lay05]. Stabilized [BH07, Cao04, EWY03, K0V17, LMM00, RGM17]. Stabilizing [VW97]. Stable [OS01, ABK15, Gem00, LWX13, MCV01]. stage

[AMMP06, BM17, JS96, MPS96]. staggered [OCYMO8]. standard

[Han13, LPV01]. standard-form [Han13]. standpoint [Voe92]. start

[LW98]. State [DGR11, BV13,

Steepest [De 13, NZ14, Shi02, Shi04]. Stein [BES14]. step [AV94, CK10, Li00, PBN05]. stepping [Lam12]. steps [Fas05, Shi02]. Stewart [HC05]. Stiefel [CZ15]. Stieljes [AN94]. stiffness [DKVB15]. stochastic [AD12, BDM+14, DMS17, GHR98, Lee16, MM98, RBV08, ROA13, SGP14, TY10]. Stokes [ABM17, AB12, AK99, BKP02, CA99, HFW01, KOV17, LR08, Lee10, LMM00, LD07, Ols99, PT17].

Stokes-like [Lee10]. Strang [ZCW11, CNP99, NR12]. Strang-type [ZCW11, NR12]. strategies [AGG+16, BE98, CDG00, DMM+08, GTY97, HSCTP05, Kap94, PM97, PGT14, SGSM15, SMSW00]. strategy [BBM+06, BM05b, BM06, Sco99, WLBH12]. strength [OST10a].

Strengthened [AALS01, AM96, Bla03, Mar94]. stress [MM02]. stretch [TY10]. stretched [KM92, ZMO10]. stretching [AB00]. Strong [DB+13, DS13a]. strongly [ABK15, KW99]. structural [GMTV16]. structure [BS01, FZwCW17, Hem96, HHLL16, PR16, Rja98, WN05].

structure-preserving [HHLL16, PR16]. Structured [BGW05, BG05b, CCLN05, MCC+12, SLV04, Tyr05, CCLQ18, DDG99, Dia09, GLGR10, Gem00, LVD02, LYL15, MMC12, MKV04, MLV05, MP13, NR11, NR17, Poi00, Sun05, SHT11, Tre05]. structures [BCK05, BH04, EJK01]. structuring [SV11]. Studies [Zho06]. study [LR08, RS18]. sub [CZ15, LPS15, SV11]. sub-diffusion [LPS15]. sub-Stiefel [CZ15].

sub-structuring [SV11]. subclasses [LHL07a]. subdomain [HLM92]. subgraph [BCZ12]. submatrix [KK02, fLYHZ11, pLL07, yPyHZ04]. suboptimal [HS15]. subsets [MPV06]. Subspace [CS02, DDG99, BMAA16, Bot13, CS97, Dam08, DK95, GZ16, GTI16, HS11, HS14, IP13, KS10, HCD15, LS15, NR14a, RLG12, Sid97, SS07, ZS08].

Surfaces [LD08]. surveillance [LNY15]. survey [CQZ13, SK01]. SVD [FJ05, XQ09]. sweeping [BPS15]. switching [MN00]. Sylvester [Bau08, BMAA16, BHHJ13, CLR01, CD11, DXW12, MP15].

Sylvester-observer [CLR01, CD11]. symbol [DGM+16]. Symmetric [AIt05b, QXB09, Zha92, ARMW14, AG95, AK00, BGP97, BV00, Ber12, Bla02, BCS09, BPS13, BM05b, BM06, CL96, CRS05, Cao04, CS09, CS11, CDGM04, CK01, CHV05, CS95].
symmetrization \[\text{GM11}\]. symmetrizing \[\text{Tyr92}\]. symmetry \[\text{Pen08}, \text{Szu14}\]. symmetry-constrained \[\text{Pen08}\]. symplectic \[\text{DS13a}\]. synchronization \[\text{CvG11}\]. synchronous \[\text{BZ13}\]. synthesis \[\text{RGG07}\]. system \[\text{AALS01}, \text{BC09}, \text{Baz08}, \text{BB06}, \text{BvdV00}, \text{BG}\text{M}^{+12}, \text{CJL08}, \text{GLOW04}, \text{HE}\text{S15}, \text{ITS07}, \text{KLM}^{+06}, \text{KRW08}, \text{LW04}, \text{MMN}^{+10}, \text{SB12}, \text{SCD94}, \text{ZS08}\].

systematic \[\text{GLOW04}\]. Systems \[\text{Jia96}, \text{Nab97}, \text{ARSO14}, \text{AM96}, \text{Ada04}, \text{ACR}^{+00}, \text{AMP99}, \text{AMMP06}, \text{AK00}, \text{AN03b}, \text{BPS15}, \text{BLP17}, \text{BG}\text{13}, \text{BBJ17}, \text{Bas00}, \text{B}\text{a}\text{t95}, \text{BG}\text{M}09, \text{BFPS10}, \text{BEH}^{+17}, \text{BMNO5}, \text{BW17b}, \text{BRT07}, \text{Bot13}, \text{BSI17}, \text{CS09}, \text{CS11}, \text{CDGmM04}, \text{CD11}, \text{CPSM06}, \text{CP01}, \text{CSCTP05}, \text{CC03}, \text{CNY05}, \text{CK01}, \text{CA99}, \text{CHV05}, \text{CS95}, \text{CP06}, \text{DDG99}, \text{DGRR11}, \text{Dob99}, \text{Dod11}, \text{DGM}^{+16}, \text{DN12}, \text{EKSO2}, \text{Ema12}, \text{EN17}, \text{EM11}, \text{FP15}, \text{FLM09}, \text{FH94}, \text{Gem00}, \text{GM11}, \text{GSO1}, \text{GTY97}, \text{GKY97}, \text{GS05}, \text{GD11}, \text{HKPP07}, \text{HS11}, \text{HN05}, \text{HSCTP05}, \text{JZ09}, \text{JK17}, \text{JYH17}, \text{JL09}, \text{Jou94}, \text{KBF15}, \text{KM99}, \text{KKR14}, \text{KKMM12}, \text{Lai97}, \text{LX08}, \text{LOY08}, \text{LOS04}, \text{LJ04}, \text{LHL07b}, \text{LT09}, \text{LC13}, \text{LC05}, \text{LC07}, \text{LW03}, \text{Lot07}, \text{MO11}, \text{MS14}, \text{MW11}, \text{MZH17}, \text{MCV01}, \text{Mey94}, \text{MPS96}, \text{MST16}, \text{NSCTP05}, \text{NCVO5}, \text{PM97}, \text{PW13}, \text{QACT18}, \text{RS18}, \text{RVW98}, \text{SZ99}, \text{SS02}, \text{Sacre}05].
systems \[\text{SPD05}, \text{SP06}, \text{SS07}, \text{SMSW00}, \text{Ste95}, \text{Sun05}, \text{SL10}, \text{Szu14}, \text{TT10}, \text{TC10}, \text{VFVd13}, \text{VZ08}, \text{WD08}, \text{WM12}, \text{WTHW14}, \text{Wu15}, \text{ZW10}, \text{vGSO15}, \text{HS14}].

t \[\text{mM04}\]. tangential \[\text{AN03a}, \text{AN07}\]. technique \[\text{HM03}, \text{IP13}, \text{NY03}\]. techniques \[\text{ACR}^{+00}, \text{BB00}, \text{Bla94}, \text{CDDSC12}, \text{CS97}, \text{CFAM16}, \text{Dat01}, \text{ELV94}, \text{GKL18}, \text{GRN14}, \text{HK02}, \text{HS05}, \text{LM06}, \text{SZ99}, \text{Ver00}\]. template \[\text{LB17}\].

Tensor \[\text{DHW16}, \text{JYZ17}, \text{AT15}, \text{AK16}, \text{BG}\text{13}, \text{BMAA16}, \text{BH16}, \text{CLNY15}, \text{DQW15}, \text{DK15}, \text{DS13b}, \text{FZW17}, \text{HST12}, \text{KK16}, \text{KN14}, \text{LQY13}, \text{LCN13}, \text{LXX17}, \text{LP16}, \text{OST10b}, \text{STZ12}, \text{DW15}, \text{WQZ09}, \text{XC13}, \text{ZQ12}, \text{ZQLX13}, \text{ZQW13}].

tensors \[\text{BW17a}, \text{CQZ13}, \text{CCLQ18}, \text{FMP13}, \text{HHQ13}, \text{KJ12}, \text{HCD15}, \text{LLK14}, \text{LNQ13}, \text{MCC}^{+12}, \text{O'H14}, \text{WQ07}\].
term \[\text{BDR17}, \text{Lai97}, \text{WM12}\].

Termination \[\text{Bir15}\]. tessellations \[\text{DE06}\]. test \[\text{BC09}, \text{CCLQ18}\].
tetrahedral \[\text{Bla03}\]. th\[\text{AEHV15}, \text{LZ09}, \text{LH17}\].

their \[\text{BKP02}, \text{CEQ07}, \text{KCC16}, \text{Kub92}, \text{LY15}, \text{LHW11}, \text{Tia13}, \text{Vöm10}, \text{Xie11}\].

theorem \[\text{Adi08}\]. theorems \[\text{BBP03}, \text{BKP02}, \text{CP99}\].

Theoretical \[\text{MO14}, \text{Gar04}, \text{Not05b}, \text{WF15}\].

theories \[\text{BDRS12}\]. theory \[\text{ABK97}, \text{ABNP15}, \text{CCcG06}, \text{CQZ13}, \text{FT98}, \text{GW00}, \text{GL98}, \text{HM14}, \text{JL09}, \text{LQY13}, \text{LNQ13}, \text{Miy17}, \text{Pul16}, \text{VW97}\].

thermal \[\text{HK12}\]. thermoacoustics \[\text{SGSM15}\]. thin \[\text{The98}\].

third \[\text{ABB10}, \text{BCR11}, \text{BCR14}\].

third-order \[\text{ABB10}, \text{BCR11}, \text{BCR14}\].

Thomas \[\text{LV12}\]. three \[\text{AALS01}, \text{BB96}, \text{CGPV13}, \text{DM10}, \text{IBr02}, \text{KT08}, \text{Rja98}, \text{XZS15}, \text{Y1W12}\].

three-dimensional \[\text{AALS01}, \text{CGPV13}, \text{KT08}, \text{Rja98}\].
three-way [Ibr02]. threshold [Saa94, SZ99]. thresholding [LM06].
Tight [OOO11]. Tikhonov [BCB14, BDR17, CRS05, CLTW11, Don05, FRR16, GNR14, LHW11]. time [AT15, ABK15, Bai12, BW17b, BMS17, Bot13, CNT07, Cas11, CLNY15, CJL08, DGRR11, DK15, GZ16, GS07, HG00, Kem12, KK13, Lam12, LLS12, LGS12, LC13, MV13, MC09, RBV08, ZYFG11, ZSWX13, vKvw00].
time-delay [DGRR11, LC13].
time-dependent [CNT07, MV13, RBV08, ZYFG11]. time-exact [Bot13]. time-harmonic [Bai12, GS07, LGS12, ZSWX13].
time-independent [CJL08].
time-periodic [KK13]. times [KVW10].
tire [SMSW00]. Toeplitz [AH02, BLP17, BG05a, BG05b, CNP96, CPS01, CGK05, CNy05, CHV05, CS95, Don10, DGM+16, Est09, FLM09, HR05, Hem96, HSCTP05, KN07, LC05, LC07, Lot07, LPS15, MS14, MVV08, NR11, NPR13, NCV05, PS11, WitFW15].
Toeplitz-plus-Hankel [KN07]. tolerant [RTN03]. tool [FM15, GS97]. tools [BBP03]. topology [HP04, Vas02].
Total [CLNY15, CTP09, FB95, GR05, LVD02, LW17, MVK04, MLV05, ZZ15].
totally [BP13, Hua12]. Trace [KCS11, BFM12]. tracking [LB17].
transfer [Don10, GVT03, KV92]. transfers [WTWG14]. transform [CW97]. transformation [FLPW01, LL97, MC09, OOO16, VVM05a]. transformations [CHV05, Dax04, Han13, J001].
transforming [Lin12]. transforms [FP05]. transition [BH16, LCN13].
translation [KY95]. transmission [GH01].
transport [Cha07, CGM11, HM14, Miy17, TC10].
treatment [JM10, MM09].
tree [VÖm12]. Trees [BMP11]. Trefftz [LLW09]. triangle [RSCTP15].
Triangular [Zho16, BNT94, BF11a, FP95a, GLR10, KABH17, KKR14, LPS15, MNNM09, Mit10, RS10, SRGL13].
Tridiagonal [NPR13, Zha92, BPS15, BM05b, BM06, EM11, Jia17, LLLJ16, XQ09, YLLH11].
trigonometric [CHV05, FP05].
trigonometry [Gus97, Gus98, Gus03].
trilinear [BG02]. triplet [LT11]. triplets [SS97].
Truncated [GKK04, KS15, GTI16, LHW11, NR14b].
truncaction [STZ12, Zho16].
Trust [Naz95]. Tubes [LD08].
Tucker [JY17]. Tuned [FK15, Mar16].
tuning [FLPW01].
tunnel [PM97]. twisted [XQ09].
Two [BM17, CSCTP05, DLVZ06, ES09b, rFS09, HH06, JS96, KM99, KV96, PBN05, XZ10, Yon96, Zha92, ZSWX13, Zik08, vRHO5, AM96, AD12, AABHV18, AMPM06, AN13, BSI17, CGPV13, CGM01, CG15, DY04, DFNY08, DBG06, EN17, ELV94, FVZ05, FK15, FH94, GVT03, HHvR04, HVX16, HLL16, Iau16, JZ11, MC0V1, MS13, MP15, MPS96, NN10, NH06, Not10, NCV05, VSG09, WM12, XZ10, YXX13, ZJ06].
two-by-two [AN13, MP15].
two-component [NH06].
two-dimensional [DY04, XZ09].
Two-grid [CSCTP05, ZSWX13, CGPV13, CG15, ELV94, FVZ05, HVX16, NN10, Not10].
Two-level [DLVZ06, HH06, KM99, KV96, XZ10, vRh05, CGM01, EN17, GVT03, HHvR04, NCV05, VSG09, YXX13, Zik08].
two-phase [HHL16, NH06].
two-player [AD12].
two-real-parameter [MSV13].
Two-sided [Zik08, FK15, JZ11, ZJ06].
Two-stage
[BM17, JS96, AMMP06, MPS96].
Two-step [PBN05], two-term [WM12].
Two-Way [Zha92, MCV01]. type
[ABBP10, AABHV18, BR07, Baz08, Ben08, Cao08, CWS97, EG16, FG02, GKK04, HM14, KKNY01, KCV09, LHLS07, LT13, MP15, NR12, SCD94, Vla00, ZCW11]. typical [XZS15].

unification [Sid11]. unilevel [Tre13]. uniqueness [LLNV17]. unit [WCZ15]. unitarily [YL08]. unitary [JR94, Lor14, Mat96]. unity [BDV06].

University [Nab97]. unreduced [MST16]. unsteady [OC04]. unstructured [Cho03, KV96, Mav01].

Unsymmetric [Jia96, EM11, GR04, HS05, MS14].

US $49.95 [Nab97]. Use [HKST12, Bla02, BDS94, FH94, HS15, Yan04]. used [KV15]. users [GB15].

Using [BBP03, GB15, Kap02, AW11, AFK02, BB16, BP13, BTT13, BC02, Buc11, CKW02, CNSY05, CHV05, DK15, ISZ90, KMMR10, KR08, Kra06, Laz16, MGFR02, NG15, NNO03, OOO11, Özbl13, PDV05, Pu09, RTN03, Sim03, VY14, VS17, vNR07].

usual [BG05b]. Uzawa [Cao04, LRGO17, MZ15, SX15].

validation [CH03, OOO16]. value [AFSCSU14, BBP03, BWN05, CL13, Che15, JK18, LHW11, LT13, NR14b, Nov03, PBN05, RT99]. valued [AK00, DGM16, MZHB17, Xie11].

values [FP95a, GR99, LHLS07, THCO9, Tre05, Vóm10]. Variable [AV94, DHR04, GMT03, GR05, RS07, SX15, VS17]. Variable-step [AV94].

variant [JYH17, Sim99]. variants [VY14, Wu15]. variation [CLNY15, ZZ15]. Variational [Gar04, DH04, DKVB15, Gar01, NWZ/17].

variations [HLLL13]. various [BE98]. vector [BDK15, BMP11, BH16, DQW15, GH06, GB15, KV15, LCN13].

vectors [AW11, FP95a, LLNV17, MM98, Par92]. velocity [CD11]. Velte [SSB04]. verified [KBF15, Miy17].

versions [Beu03, HMS99, LSS03, Not94, PR95].
versions [LV08, NV08a]. versus [GMR05, Kra02, Tur00]. very [KBF15].

via [Dax04, DGM16, FRR16, GKL18, HHQ13, KSB13, Kho96, KNX01, NY03]. vibrating [BC09, CD11, LW04].

video [LNY15]. view [HS11, HS14].
viewpoint [Ian16]. vision [CZ15].

volume [CGL05]. Voronoi [DE06].

water [CPSM06]. wave [BO13, CIL08, Liv04b, Liv14, RV12, mM04]. wave-ray [Liv04b]. waveform [FP95b, Gan99, PBN05].

wavelet [ISZ09, LM06]. wavelets [VW97]. Way [Zha92, Ibr02, MCV01]. weakly [BPS13, HM16]. weather [BS10].

weight [BCHT04]. Weighted [GZ16, Bar02, DBLP16, JK18, SLV04, SLV06, YL08]. weighting [LW17]. Well [MM09].

Well-conditioned [MM09]. where [Sau95]. William [Bun95]. wind [BFPS10], wise [BF11]. within [BS01, NFD10]. without [EM11, HM96, Van00]. Woodbury

[MS14]. workshop [FM99].

years [Axe10, LBG13]. Yosida
REFERENCES

[PSW14]. Young [Kvw10].
zero [AD12, BB97]. zero-sum [AD12]. zeros [MN05]. Zienkiewicz [Ano08].
zone [NO04].

References

Amat:2018:THO

Achchab:2001:SCB

Adlers:2000:MSS

Axelsson:2010:PMP

Owe Axelsson and Radim Blaheta. Preconditioning of matrices partitioned in 2×2 block form: eigenvalue estimates and Schwarz DD for mixed FEM. *Numerical Linear Algebra with Applications*, 17(5):787–810, October 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). See comment [Cao13, AB13].

Amodei:2012:SAN

Axelsson:2013:RCB

Owe Axelsson and Radim Blaheta. Response to Comment on ‘Preconditioning of matrices partitioned in 2×2 block form: Eigenvalue estimates and Schwarz DD for mixed FEM’ by Owe Axelsson, Radim Bla-

[ACR+00] P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G. L.

REFERENCES

Al-Homidan:2002:SAS

Amodio:2005:CPP

Amodio:2005:SSH

Andreev:1994:CDS

Axelsson:1994:DCR

Arushanian:1999:ILS

Axelsson:2000:RVI

Owe Axelsson and Andrey Kucherov. Real valued itera-
Axelsson:2010:P

Arismendi:2016:MCA

Alber:2006:MCS

Adler:2018:CGM

Axelsson:1995:GCG

Achchab:1996:ECT

Axelsson:2003:PML

Axelsson:2006:EEP

Achdou:2007:LFT

Axelsson:2013:GAA

Anonymous:2008:CPS

Anonymous:2009:NLA

Anonymous. Numerical Linear Algebra with Applications impact factor for 2008 has been published to be 0.822. *Numerical Linear Algebra with Applications*, 16(9):i, ????? 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:2012:IIa

Anonymous:2012:IIb

Anonymous:2012:IIc

Anonymous:2012:IIId

Anonymous:2012:IIe

Anonymous:2012:IIIf

Anonymous:2013:IId

Anonymous:2013:IIe

Anonymous:2013:IIf

Anonymous:2014:IIa

Anonymous:2014:IIb
Anonymous:2014:IIc

Anonymous:2014:IIId

Anonymous:2014:IIe

Anonymous:2014:IIf

Anonymous:2015:IId

Anonymous:2015:IIf

Anonymous:2015:IIa

Anonymous:2015:IIb

Anonymous:2015:IIc

Anonymous:2015:IIe

Anonymous:2015:IIf

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIc

Anonymous:2016:IID

Anonymous:2016:IIe

Anonymous:2016:II

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IID

REFERENCES

Anonymous:2017:Ile

Anonymous:2017:IIg

Anonymous:2018:II

Alber:2007:PCG

Abdel-Rehim:2014:ISM

Abdel-Rehim:2014:EEA

Andrew:2000:ICD

Andreev:2015:MPL
REFERENCES

317–337, March 2015. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Axelsson:2003:E

Axelsson:2004:E

Axelsson:2010:PYN

Axelsson:2015:UAP

Aksoylu:2011:RMP

Bai:1995:PNS

Bai:2009:OPH

Bai:2010:MBM

Bai:2012:BAS

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Bai:2016:SLP

Bar02

Basermann:2000:PBI

Batterson:1995:DAN

Baur:2008:LRS

Bazan:2008:NEP

Broyden:1996:CTB

REFERENCES

[Daniele Boffi, Anna}
REFERENCES

Marc Baboulin, Jack Dongarra, Serge Gratton, and Julien Langou. Computing the conditioning of the components of a linear least-squares solution. *Numerical Linear Algebra with Applications*, 16(7):517–533, 2009. CODEN NLAAEM. ISSN 1070-
5325 (print), 1099-1506 (electronic).

Barlow:2009:MLR

Benelli:2008:LSM

Beauwens:1994:AFM

Bertaccini:2001:RPI

Bergamaschi:2012:EDC

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Brezinski:2012:MLO

Branets:2002:DMT

Benzi:2010:SLS

Boley:2000:LSP

Bini:2005:SQM

Bottcher:2005:SCN

Ballani:2013:PMS

Jonas Ballani and Lars Grasedyck. A projection method to solve linear systems in tensor format. *Numerical Linear Algebra with
REFERENCES

Bai:2006:ALI

Bergen:2004:HHG

Bebendorf:2007:SRA

Bozorgmanesh:2016:CTP

Bouhamidi:2013:PBA

Birken:2015:TCI

Bertalan:2014:ONM

REFERENCES

REFERENCES

November 2002. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[Blaheta:2003:NTG]

[Bastian:1997:PAM]

[BLA11]

[BLP01]

[BLP08]

[BLP17]
REFERENCES

REFERENCES

19(5):891, October 2012. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). See [BGN07].

REFERENCES

Blanchard:2015:PCG

Benner:2013:ODS

Buchholz:2011:BRM

Bouagada:2013:SSS

Bunch:1992:MPL

Bunch:1995:EDB

Bergamaschi:2000:ECE

Bouagada:2013:SSS

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

[Chen:2018:SPA] Haibin Chen, Yannan Chen, Guoyin Li, and Liqun Qi. A
semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. *Numerical Linear Algebra with Applications*, 25(1):??, January 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Calgaro:2010:IIL

Chaitin-Chatelin:2006:APQ

Carvalho:2011:NAG

Cavoretto:2012:SAP

Carpentieri:2000:SPS

Carpentieri:2004:SSP

REFERENCES

Chang:2005:APQ

Chatzipantelidis:2005:FVE

Carvalho:2001:LPT

Chang:2011:GEB

Calandra:2013:ITG

Chan:1994:LRR

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CH03]</td>
<td>Numerical validation of solutions of saddle point matrix equations.</td>
<td>Xiaojun Chen and Kouji Hashimoto</td>
<td>Numerical Linear Algebra with Applications</td>
<td>10</td>
<td>7</td>
<td>661–672</td>
<td>2003</td>
</tr>
<tr>
<td>[CH02]</td>
<td>On convergence of SOR methods for nonsmooth equations.</td>
<td>Xiaojun Chen</td>
<td>Numerical Linear Algebra with Applications</td>
<td>9</td>
<td>1</td>
<td>81–92</td>
<td>2002</td>
</tr>
<tr>
<td>[CH05]</td>
<td>The semi-iterative method applied to the hyper-power iteration.</td>
<td>Xuzhou Chen and Robert E. Hartwig</td>
<td>Numerical Linear Algebra with Applications</td>
<td>12</td>
<td>9</td>
<td>895–910</td>
<td>2005</td>
</tr>
<tr>
<td>[Cha07]</td>
<td>The conjugate gradient method solves the neutron transport equation h-optimally.</td>
<td>B. Chang</td>
<td>Numerical Linear Algebra with Applications</td>
<td>14</td>
<td>10</td>
<td>751–769</td>
<td>2007</td>
</tr>
<tr>
<td>[Chu04]</td>
<td>On the computation of the infimum in H-optimization.</td>
<td>Delin Chu</td>
<td>Numerical Linear Algebra with Applications,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

REFERENCES

Anthony T. Chronopoulos and Andrey B. Kucherov. Block

Anthony T. Chronopoulos and Andrey B. Kucherov. Block

REFERENCES

REFERENCES

5325 (print), 1099-1506 (electronic).

Chen:2017:BSC

[CNZ17]

Coroian:2004:IOI

[Cor04]

Climent:1999:CCT

[CP99]

Copeland:2006:LSM

Chun:2012:EAC

[CP12]

Chan:2001:PNH

[CP01]

Castillo:2006:ILS
E. Castillo, R. E. Pruneda, C. Solares, and R. Minguez. Interpreting linear systems of equalities and inequalities. Application to the water supply

Chen:2010:GSC

Cai:2011:FNME

Chang:2013:SST

Campos:2016:PIR

Calvetti:2005:TRL

Cools:2014:NLD

Concus:1995:MDP

REFERENCES

5325 (print), 1099-1506 (electronic). Special issue dedicated to David M. Young, Jr.

Cheng:2014:BER

Chang:2009:BPA

Chow:2003:MBF

Cools:2013:LFA

Cvetkovic:2009:P

Collignon:2011:MSI

Chan:1997:STB

Chien:1997:LTM

REFERENCES

[Cai:1999:LSF]

[Dahlke:2002:BRE]

[Damm:2008:DMA]

[Datta:2001:PSI]

Dax:1994:RRM

Dax:2004:CPH

Deng:2006:IOD

DeSterck:2013:SDP

REFERENCES

Dax:1998:AMN

Du:2006:ASC

Deng:2009:IOX

Dendy:2012:MM

Dieci:2001:CIS

DeSterck:2008:DTI

DiFiore:2005:LCM
Carmine Di Fiore, Stefano Fanelli, and Paolo Zellini. Low-

Dabkowski:2013:SPS

Donatelli:2016:PHM

Dey:2011:SFS

Dostal:2004:SFO

Douglas:2004:CAM

Demmel:1995:SBF

Dayar:2011:BED

Ding:2016:TLN

Diao:2009:CCN

Dong:2009:MMM

Druskin:1995:KSA

Dolgov:2015:SST

Dostal:2015:RBS

REFERENCES

Du:2012:NLG

Donatelli:2012:SRM

Dobrowolski:1999:FEM

wiley.com/cgi-bin/fulltext?

Dohrmann:2007:ABP

Donatelli:2010:AGL

Dohrmann:2007:ABP

Donatelli:2005:MID

Donatelli:2010:AGL

REFERENCES

5325 (print), 1099-1506 (electronic).

REFERENCES

[DS13b] Todd F. Dupont and L. Ridgway Scott. The power method for tensor eigenproblems and limiting directions of Newton it-

REFERENCES

[Diao:2012:MCC]

[Dardyk:2004:MAT]

[Estrin:2016:TOC]

[Elmaliki:2011:EHP]

[Egger:2007:PCI]

[Elsner:1995:MNN]

[Elmroth:2001:CPG]
Egana:2002:IEM

Ewing:1994:LRT

Edelman:1995:PMN

Erway:2011:BSA

Emans:2012:KAA

Erlangga:2017:CTL

Escalante:1996:DAC
REFERENCES

Eldén:2005:MLE

Elfving:2007:BPS

Elfving:2009:DMR

Elhashash:2009:TCM

Estatico:2009:PIP

Eastwood:2013:FDE

Ewing:2003:SDF

REFERENCES

Special Issue: Czech-US Work-
shop on Iterative Methods and Parallel Computing.

Friedhoff:2015:GPA

Friedland:2013:BRO

Freitag:1995:RAD

Fernando:1995:ICA

Frommer:1995:CRM

Fenn:2005:FSB

[FRR16] Caterina Fenu, Lothar Reichel, and Giuseppe Rodriguez. GCV for Tikhonov regularization via

Fern:2015:BPL

Farrell:2015:BPL

Fukken:2009:FSB

Fraysse:1998:NNP

Falgout:2005:TGC

Fang:2001:SFD

Fan:2017:NSL

Gander:1999:WRA

REFERENCES

Gander:2005:CBP

Garanzha:2001:BVG

Garanzha:2002:MNO

Garanzha:2004:VPG

Gao:2011:INM

Gosnell:2015:USD

Guo:2011:SGC

REFERENCES

Gemignani:2000:ESS

Gaspar:2008:DSM

Gleich:2013:PAM

Gomilko:2012:PFI

Gatica:2001:MRI

Galantai:2006:JPA

REFERENCES

Greif:2011:BSC

Gratton:2016:RCA

Griebel:2015:OSP

Glunt:1998:NDS

Gee:2009:NSA

Grimm:2006:HOP

George:2002:GFG

More references...
REFERENCES

REFERENCES

[GNQ15] Laura Grigori, Frédéric Nataf, and Long Qu. Overlapping for preconditioners based on incomplete factorizations and nested

REFERENCES

Govaerts:1997:RDM

Gu:2005:NSP

Greif:2007:PDT

Golub:2001:PBS

Gopalakrishnan:2009:CMC

REFERENCES

Gustafson:2004:IPL

Gustafson:2004:ND

Giraud:2003:GTO

Gulliksson:2000:PTG

Guo:2014:NUB

Gonzaga:2008:FNL

Gillard:2016:WNS

Hackbusch:1992:PCG

Wolfgang Hackbusch. A parallel conjugate gradient method.
REFERENCES

Hansen:2013:OPS

Hamilton:2010:NMS

Huckaby:2005:SPQ

LHao:2015:SSP

Hu:2007:IBB

Hemmingsson:1996:TPB

Hezari:2015:PGI

Hetmaniuk:2007:RQM
U. Hetmaniuk. A Rayleigh

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

REFERENCES

REFERENCES

Hoppe:2004:PDN

Harbrecht:2003:MPC

Harbrecht:2015:EAR

Heinig:2005:SAS

Hu:2005:OTS

Hochstenbach:2008:HRR

Hayami:2011:GVK

REFERENCES

Hogg:2013:EAP

Hayami:2014:CGV

Hogg:2015:USM

Huckle:1998:ECS

Hu:2016:TGS
Xiaozhe Hu, Panayot S. Vassilevski, and Jinchao Xu. A two-grid SA-AMG convergence bound that improves when increasing the polynomial degree. *Numerical Linear Algebra with Applications*, 23(4):746–771, August 2016. CODEN NLAAEM. ISSN 1070-
5325 (print), 1099-1506 (electronic).

L. Gr. Ixaru, H. De Meyer, G. Vandenberghe, and M. Van Daele. A regularization procedure for \(\sum_{i=1}^{n} f(z_j)x_i = g(z_j)(j = 1, 2, \ldots, n) \). *Numerical Linear Algebra with Applications*, 3(1):81–90, January/February 1996. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). URL http://www3.interscience.wiley.com/cgi-bin/abstract?ID=15000499.

Meisam Jozi and Saeed Karimi. A weighted singular value decomposition for the discrete inverse problems. Numerical Linear Algebra with Applications,
REFERENCES

25(1):??, January 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Johnson:2009:STC

Jin:2005:CPS

Jun:2010:SOT

Anonymous:1992:JNL

Joubert:1994:IIC

Janovska:2001:NHT

Joubert:1994:CBR
REFERENCES

Jagels:1994:FMR

Jones:1996:TSM

Jing:2017:SGA

Jiang:2017:TTC

Jia:2009:PSA

Jiang:2011:DAS

Ke:2017:BTP

Kaporin:1994:NCR

Kaporin:1998:HQP

[102x681]REFERENCES

[162x646]DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Kaporin:1998:HQP

Kaporin:1999:PAF

[102x582]

Kaporin:2005:SCM

Kaufman:2007:RAF

[162x646]

Kolberg:2015:EAS

[162x646]

Kostic:2017:IBM

V. R. Kostić and Lj. Cvetković. On the inertia of the block H-matrices. Numerical Linear Al-
Kostic:2016:PLT

Kokiopoulou:2011:TOE

Kostic:2009:GTL

Kemper:2012:LTB

Kiskiras:2007:NCS

Khoromskij:1996:FCI

Kong:2012:SBR

Kaporin:2002:PBO

Igor E. Kaporin and Igor N. Konshin. A parallel block over-

Kollmann:2013:PMS

Khoromskaia:2016:FTM

Kucera:2012:MPI

Kharchenko:2001:RAT

Krukier:2014:GSH

Kim:2006:FOS

[Sang Dong Kim, Chang-Ock Lee, Thomas A. Manteuffel, Stephen F. McCormick, and...

Kraus:2014:RMM

Kraus:2015:ASM

Krizek:1999:PPG

Kutcherov:1992:AFM

Kolev:1999:TLP

Kravvaritis:2009:GFH

REFERENCES

16(9):715–743, ???. 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Kostic:2016:ACM

Ketelsen:2010:FEM

Kraus:2008:MPC

Kilmer:2007:KPA

Kostic:2016:ACM

Ketelsen:2010:FEM

Kraus:2008:MPC

Kilmer:2007:KPA

Kindermann:2014:NAT

Kwak:2003:DDM

Kirkland:2001:DCA

Kolotilina:1999:FSA

Kraus:2006:AMP

Kostler:2008:MSO

Krzyszanowski:2011:BPS

Klawonn:2004:PEL

Knizhnerman:2010:NIE

Kressner:2015:TLR

Keel:2013:RHS

Kraus:2008:MMD

Kublanovskaya:1992:RDA

Kuznetsov:1992:NPA

Kaagstrom:1992:GSS

Kolev:2006:AEA

Kuzel:2015:EIS

Kostic:2012:LGE

REFERENCES

Kharchenko:1995:ETB

Lai:1997:SCN

REFERENCES

REFERENCES

Li:2013:PAL

Li:2013:PBP

Lukas:2007:OMP

Luo:2008:CPS

Leblond:2002:SAM

Lee:2010:USA

REFERENCES

Lee:2012:SAE

Lee:2016:PPM

Li:2012:PNS

Li:2007:SSM

Li:2007:MHS

Li:2007:OGT

[LHLS07] Hou-Biao Li, Ting-Zhu Huang, Hong Li, and Shu-Qian Shen.

Siu-Long Lei and Xiao-Qing Jin. BCCB preconditioners for sys-

Lu:2014:HGA

Longley:1997:AGS

Li:2016:NFD

Li:2017:UMP

Wen Li, Dongdong Liu, Michael K. Ng, and Seak-Weng Vong. The uniqueness of multilinear PageRank vectors. *Numerical Linear Algebra with Applications*, 24(6):??, December 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).
Lee:2012:FET

Li:2009:ECN

Limon:2006:MAS

Lube:2000:NNO

Luksan:2004:IPM

Li:2012:CSD

Lim:2013:STT

Lek-Heng Lim, Michael K. Ng, and Liquan Qi. The spectral theory of tensors and its applications. *Numerical Linear Al-
REFERENCES

Loring:2014:CLU

Li:2015:MFB

LeBorne:2013:RER

Litsarev:2015:FLR

Lotti:2007:NSB

LeBorne:2008:MPS

REFERENCES

Layton:1995:PRP

Larin:2008:CSE

Luo:2017:USM

Langville:2004:KPA

Li:2005:PBE

Li:2006:SRP

Lin:2015:NSI

Li:2001:PMI

REFERENCES

Li:2003:PPV

Liu:2008:MER

Lu:2005:NIN

Luksan:1998:IPI

Le Tallec: 1999: ESM

Li: 2004: EAS

Lashuk: 2008: SVE

Lashuk: 2012: EAC

Lemmerling: 2002: STL

Lacroix: 2001: DPI

Xin-Guo Liu and Wei-Guo Wang. On convergence of iterative methods for maximal

Dong-Hui Li, Shuiliang Xie, and Hong-Ru Xu. Splitting methods for tensor equations. *Numerical Linear Algebra with Applications*, 24(5):??, October 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Margenov:1994:UBC

Marek:1995:SRB

Marek:2000:GEN

Martinez:2016:TPE

Mathias:1996:AAO

Mavriplis:2001:MAN

REFERENCES

Mayer:2005:ICI

Mayer:2007:MCI

Meynen:1997:APA

Murillo:2004:FIP

Michelini:2008:SAA

Meerbergen:2009:CCB

REFERENCES

Michael:2012:SMT

Mastronardi:2001:FST

Mandel:2003:CBD

Meyer:1994:CSI

Matioli:2008:NFP

Montero:2002:AIC
G. Montero, L. González, E. Flórez, M. D. García, and
REFERENCES

Mitchell:2010:HMM

Miyajima:2015:FEM

Miyajima:2017:FVC

Ma:1994:NCI

Mastronardi:2005:FRS

Margenov:1995:OAM

Meyer:1997:MAS

Arnd Meyer and Detlef Michael. A modern approach to the solution of problems of classic elastoplasticity on paral-
Marek:1998:CAI

Mihajlovi:2002:CDP

Mihajlovi:2009:WCM

Mehrmann:2011:ACS

MacLachlan:2012:RAM
S. P. MacLachlan, J. D. Moulton, and T. P. Chartier. Robust and adaptive multigrid methods: comparing structured and

MacLachlan:2006:ARB

Mackey:2009:NMP

Manteuffel:2010:FRE

MongaMade:1999:EPL

Manteuffel:2010:OBI

MongaMade:2002:SAP

Moriya:2000:DGM

Moret:2005:IFM

Mardal:2007:OOS

Manteuffel:1994:ROP

MacLachlan:2011:LFA

MacLachlan:2014:TBA

Mikhalev:2016:IRS

REFERENCES

REFERENCES

Mastronardi:2005:NLA

Mancini:2013:ISP

Markovsky:2004:CMS

Mastronardi:2008:FAC
REFERENCES

[MZH17] L. Marioni, J. R. Alves Z., E. Hachem, and F. Bay. A new approach to solve complex valued systems arising from the solution of Maxwell equations in the frequency domain through real-equivalent formu-
REFERENCES

Notay:1997:NOP

Nabben:1997:BRM

Nazareth:1995:TRB

Nedoma:1999:NMC

Noutsos:2005:PPI

Neymeyr:2002:PEE

Klaus Neymeyr. *A posteriori* error estimation for ellip-

Algebra with Applications, 16 (11-12):1013–1014, ???? 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Notay:1998:OCA

Notarnicola:2005:MRE

Notay:2005:AMA

Notay:2010:AAT

Novati:2003:SLI
REFERENCES

Noschese:2013:TTM

Noschese:2011:SDN

Noschese:2012:GCS

Noschese:2014:ISP

Noschese:2014:MTS

Noschese:2017:ASP

REFERENCES

Ozaki:2016:EFT

Olshevsky:2001:SFH

Olson:2010:SAH

Olshevsky:2010:CAT

Oswald:1995:MPD

Ozbay:2013:CCI

REFERENCES

Padiy:1999:PMS

Parlett:1992:RMS

Parlett:2003:SDF

Pan:2005:TSW

Papy:2005:EDF

Pena:2003:SBS

Pena:2007:RGD

Peng:2008:SSC

REFERENCES

Poirier:2000:EPS

Paige:1995:ASE

Pester:1995:PVP

Pester:1996:PPI

Pflaum:2011:ISF

Poloni:2016:SPD

Petkovic:2009:CLR

Pranic:2016:RAP

Pantazis:1995:RCR

Perugia:2000:BDI

Pang:2011:SIL

Pironkov:2008:PDC

Pearson:2014:PSC

REFERENCES

Prokopenko:2017:AMM

Pultarova:2008:NSL

Pultarova:2009:PPE

Pultarova:2016:CTE

Paige:1999:SAL

Pearson:2012:NAS

Pestana:2013:CPS

J. Pestana and A. J. Wathen. Combination preconditioning of saddle point systems for positive definiteness. *Numerical Linear Algebra with Applications*, 20 (5):785–808, October 2013. CODEN NLAAEM. ISSN 1070-
REFERENCES

Pencheva:2003:BDD

Qian:2018:MSU

Quaife:2015:PLD

Ragi:2014:RKM

Rakowsky:1999:SCM

Rosseel:2008:AMS

REFERENCES

REFERENCES

Renaut:2012:MRL

Ruijter:2013:FCS

Rohn:1992:AFS

Ritter:2012:EAF

Reid:2001:RRO

Reitzinger:2002:AMM

Routray:2007:FAD

REFERENCES

REFERENCES

5325 (print), 1099-1506 (electronic).

Raghavan:2003:LTH

Reps:2012:AWN

Rusten:1998:DEP

Reichel:2008:GLA

Saad:1994:IDT

Saad:2000:E

Saad:2000:FAM
REFERENCES

Sacksteder:2005:ADS

Sauter:1995:SIC

Solak:2003:NBN

Salkuyeh:2012:EMH

Sistek:2015:BMH

Spedicato:1994:CDA

Schrader:1999:CAJ

REFERENCES

171

Schroder:2012:SAS

Scott:1999:NRO

Seibold:2010:PAM

Sousedik:2014:HSC

Salas:2015:SRS

Scott:2014:LBH
REFERENCES

Li-Ying Sun and Jun Liu. Constraint preconditioning for nonsymmetric indefinite linear systems. *Numerical Linear Algebra with Applications*, 17(4): 677–689, 2010. CODEN NLAAEM. ISSN 1070-

REFERENCES

REFERENCES

ST17b Jennifer Scott and Miroslav Tůma. Improving the stability and robustness of incomplete symmetric indefinite factorization preconditioners. *Numerical Linear Algebra with Applications*, 24(5):??, October 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

STZ12 D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. Fast truncation of mode ranks for bilinear tensor

Sun:2005:NBE

Sun:2006:SEI

Stammberger:2011:AML

Saad:1996:DDQ

Stoll:2012:PPD

Sosonkina:1998:NAG

Schleicher:2007:MMM

Jörg Schleicher, Lei Wang, and Jin Yun Yuan. Mathemati-
Shen:2015:UAV

Saad:1999:DTT

Shi:2011:NEM

Szularz:2014:ISA

Szyld:1994:ECC

Thum:2010:TPO

Thekale:2010:ONM

A. Thekale, T. Gradl, K. Klamt, and U. Rüde. Optimizing the number of multigrid cycles in the full multigrid algorithm. *Numerical Linear Al-
REFERENCES

Tebbens:2010:PUS

Tsuji:2015:AAS

Turck:2000:CIF

Tyrtyshnikov:1992:SPL

Tyrtyshnikov:2005:SPO

Umetani:2009:MBS

REFERENCES

Vanderstraeten:2000:APB

Var00

Van00

Varga:2008:SPR

Var08

Varga:2008:SPR

Vas92

Vassilevski:1992:PNI

vdE02

Vassilevski:2002:CJD

Vas03

Vassilevski:2003:OBR

Vas05

Vassilevski:2005:SIN

Menno E. Verbeek. Repairing near-singularity for dense EMC...

Vargas:2013:SMC

vanGijzen:2015:FMS

VanBeeumen:2016:REI

Vecharynski:2011:ACC

Eugene Vecharynski and Julien Langou. Any admissible cycle-convergence behavior is possi-
References

 REFERENCES

 Vlachkova:2000:NTA

 vanNotay:2000:RAM

 vanNoorden:2007:CPG

 Voevodin:1992:PSS

 Vomel:2010:NHR

 Vomel:2012:NGF

 Voss:2009:MPN
2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Wu:2010:CEI

Wu:2015:SVH

Wu:2007:PAA

Wei:2008:NME

Wei:2008:PAG

Wu:2011:NIR

Wen:2015:SSN

REFERENCES

Wheeler:2010:EAM

Xu:2015:MB

Walker:1994:SG

Xie:2013:ESL

Xie:2003:SCI
Dongxu Xie, Xiyuan Hu, and Lei Zhang. The solvability conditions for inverse eigenproblem of symmetric and anti-persymmetric matrices and its...
REFERENCES

[XSZ09] Yingxiong Xiao, Shi Shu, and Tuyan Zhao. A geometric-based algebraic multigrid method for higher-order finite element equations in two-dimensional linear elasticity. *Numerical Linear Algebra with Applications*, 16(7):535–559. ???? 2009. CODEN NLAAEM. ISSN 1070-
Xu:2010:TLA

Yavneh:2004:E

Yin:2017:FAO

Yang:2011:CNB

Yang:2008:PBW
[YL08] Hu Yang and Hanyu Li. Perturbation bounds for weighted polar decomposition in the
REFERENCES

[193]

Yuan:2011:PEB

Yang:2004:MFC

Yong:1996:SCT

Yotov:2001:MNK

Peng:2007:PDS

Ypma:1995:SFP

Peng:2006:EIM

REFERENCES

473–485, ???? 2006. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). See comments [WTZD10].

Peng:2004:IPB

Yavneh:2012:NBB

Yu:2013:ATL

Yin:2012:AAA

Ye:2013:AAA

Zhang:2011:STP

Zha:1992:TWC

Zhou:2006:SJD

Zhou:2016:TTE

Zhu:2008:DDP

Zhu:2014:AMP

Zhao:2010:PLS

Zikatanov:2008:TSB

Zitko:2000:GCC

Jan Zítko. Generalization of convergence conditions for a restarted GMRES. *Numerical Linear Algebra with Applications*, 7(3):117–131, April/May 2000. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). URL http:
Zitko:2005:CCR

Zeng:2006:DAS

Zhong:2008:CCR

Zubair:2010:GMM

Zhang:2012:LCA

Zhang:2013:DEE

Zhou:2013:LES

Zhou:2008:AIS

Zhong:2010:CAE

Zhong:2013:TGM

Zhao:2014:MFS

Zhang:2010:CGS

Zhong:2011:PCF

Zhao:2013:IIF