A Complete Bibliography of Publications in *Journal of Numerical Linear Algebra with Applications* and *Numerical Linear Algebra with Applications*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

10 November 2023
Version 1.71

Title word cross-reference

(1, 1) [Cao08, Krz11]. (2, 2) [Li00]. (m, k) [MN00]. (q) [Jia96]. + [LJM14]. \(-\Delta u = \lambda u\) [EFG+18]. 0.822 [Aro09]. 16 [Km09]. 2 [AM96, BF19, BV13, DHBV21, Mar94, NBKS99, NSCTPW22, QB15, ZVO14, vKVW00]. 2 x 2 [AB10, AB13, Cao13, Kol05]. 3 [GKY97, KK16, LPW06, NBKS99, PM97, PR96, SY18b, mMP99, vKVW00]. 4 [MR14, SY18b]. A [CC07]. \(A - BX \pm X \ast B^*\) [LT08]. \(A - XB\) [Den09]. \(Ax = b\) [AL21]. \(\alpha\) [Tre13, XCG16]. \(AXA^* = B\) [Tia13]. \(AXB + CYD = E\) [yPXP06, WTZD10]. \(AXB = C\) [LyHZ11, Miy15]. \(\beta\) [DP23]. \(\mathcal{H}\) [Gra08, LOY08]. \(\mathcal{H}^2\) [Bör17]. \(\mathcal{K}\) [Mar95]. \(\mathcal{D}\) [BLLA11]. \(f\) [LM+23]. \(f(A)x = b\) [AL21]. \(\Gamma\) [DP23]. GMRES\((k)\) [KY95]. \(H\) [AMM04, BK21, BCGM09, Chu04, KPV08, KC17, Leb02, LP16, Sm06, ZSCX10, DMM+08, FS21, Pul09]. \(H(\text{div})\) [BO18]. \(H^1\) [AMM04]. \(H_1\) [LPW06]. \(H_\infty\) [Özb13, TV20]. \(hp\) [DMM+08]. IDR\((s)\) [CvG11]. \(ILU\) [CGK94, KOV17]. k [BO08, VVM05a]. L [Aih20]. \(\lambda\) [FLPW01]. \(LDL^T\) [LSS18]. \(l_p\) [Dax94]. \(LU\) [KNY00, KOV17, Le 23, DHS95, Saa94]. M [BNT94, Sau95, Bea94, BCC98, HHLL16, IP13, JZ11, Kra02, LSL01, WQZ09, XZS10, ZJ06, vN00, CSB20]. \(P_k\) [RSCTP20]. \(R\)
\[\mathbf{R}^3 \text{ [ST23].} \ \mathcal{H} \text{ [HK02].} \ O(N) \text{ [Sac05].} \ \Omega \text{ [CGS20].} \ P \text{ [LHL07a, Peña09, AHEV15, Ben03, BB06, GKY97, LZ09, LO13, LH17, Pul09].} \ p \times p \times 2(p \geq 2) \text{ [KJ12].} \ Q \text{ [Cha12, DBLP16, DOP21].} \ Q_2 - Q_1 \text{ [PT17].} \ Q \text{ MR [FH94].} \ Q \text{ R [LZ09].} \ Q \text{ Z [X23a].} \ R \text{ [DW15, BKM + 12].} \ s \text{ [CGY22, CK10].} \ S/P \text{ [Bea94, BNT94].} \ S_\alpha \text{ [Lee12].} \ SSOR \text{ [JO94].} \ t \text{ [BSMN22, Lun20, RU22, ZSKA18].} \ tr(f(A)) \text{ [CS18].} \ U^T U + U^T R + R^T U \text{ [Kap98].} \ uT(A)v \text{ [GR04].} \ V \text{ [BLZ08, Lai97, Lot23, NN10, Not98].} \ \varphi \text{ [MPR20].} \ X \text{ [F3yHz11].} \ Z \text{ [CHCS22, HCD15, HHQ13, LQY13, XC13, ZZLX20].} \]

0-521-48296-8 [Nab97].

14 [SB12]. 1st [NL09].

2010 [NL09]. 2017 [Den18]. 2D [BCV03].

2nd [Kap02].

3-D [BG02]. 3-tensors [ED22]. 3D [MM02, NH98].

4th [Web10a]. 4th-order [Web10a].

60th [Vas03].

70th [CLR13, Vas05]. 7th [BFG + 18].

80th [SGP14].

97 [Axe98]. 98 [Axe99].
adaptively [YYN12]. adaptivity [vVW23].

Algebra [NLA94, Ano09, SB12, JNL92, BDRS12, BNR18, BM05a, CSCTP05, Dat01, GGV13, Gy08, Mar00, MV05, Ozbi13, PDV05]. Algebraic [Ada04, AN94, BD21, BSB12, BO08, FM18, GL95a, Kra06, LB21, Lee21a, LOS04, NN11, NFD10, Not05b, Not10, Pfi99, RBV08, Sin03, Web10b, Web10a, XM17, AB12, BGX06, BKY10, BF11a, BDV06, BCZ12, BVV12, BKM+12, BDM+14, CG15, CH21, DFNy08, Don10, Emad12, GB11, GHJY16, Gmos06, Heto7, HM14, HLLL16, IP13, KH23, Ks22, Kra02, Kizu92, KP10, LSS03, LB08, LS15, LCHH18, Liv04b, Lu05, LJ14, MMC12, MO14, MPRP10, MM95, MBW97, MC08, MSF21, Miy17, NL16, Not98, Not02b, OST10a, PM97, PT17, Rho07, SS02, Sei10, Sha99, SH19, SY18b, TC10, VY14, XZS09, XZS15, ZCW11, vN00].

algorithm [ARS04, Amb15, AB12, ADO23, AMMR17, AG95, BCK05, BPS95, BCB14, BFdP13, BD15, BLF01, CD11, CX23a, CX23b, CC03, CP12, DW15, DDM23, DGC19, DDL+21, ER96, FG02, FO95, Gat99, GM17, GP18, HK21, HVCY21, HRN+18, Het07, HLLL16, HW22, JR94, JZ11, Jou94, Kap99, Kau07, KN00, KV06, LV21, LC21, LZ23, Liv04b, LYL15, MPV06, MCV01, MV05, MV08, MP13, MP16, MCLM20, MM18, MC04, MR14, NG15, NLZ11, OC04, PR16, RK18, RO08, Rho92, SW96, ST17a, Sh04, SS97, SWK98, St02, SHT11, TGK10, VJM16, VVM05b, Van00, Vla00, WDS09, WMD21, WLO8, WW07, WTIFW15, Yan23, YCY17, ZQ12, ZZ15, ZZLX20, ZWA18].

algorithmic [DIPR19]. Algorithms [BVD+18, GL96, AH02, AMP99, BH04, BT15, Bun92, CL96, CS96, Cao04, CGY22, CQ10, CJT03, DMY03, DFZ05, DKVB15, Du19, FLMO9, FP95a, FH94, HJR97, HCGM23, HR05, HM16, HL21, KN14, KR14, Kub92, Lai97, LW98, LLLJ16, LZ22, Mar98, Mat96, MP18b, MK20, Pf99, RS07, Sac05, SLK16, SHVB21, Sh08, SX15, SC04, SST18, SSB15, SLA+21, US19, VP95, WWX10, XCGL10, XXW19, XZS10, YZ13, ZJ06, vGSZ15].

alignment [YZ13]. All-at-once [DW21]. Almost [ACR+00, Bos19, AW11, AMP99, BL20, EFG+18]. almost-isotropic [BL20]. along [MM95]. Alternately [BGX06].

alternating [AG19, Bail2, DH18, DL23, EY23, IZZ20, Liu22, MS22, MVLB23, MYD20, ORU23, Wan18a, XJ12, ZN18, ZS08]. Alternative [GS99]. Alternatives [Sid97]. AMG [LOS04, BBM+06, DV19, GX14, HVCX16, KV06, MMM06, TT15, Vas02, Web18, XM17].

analyse [AN13, HS13]. analyses [PM97].

Analysis [BEH+17, BLP01, CCvG06, CG15, GR23, MSS07, Mat96, SPD05, SP06, Sha98, YZ13, YXZ13, Zhu14, AK23, Axe15, BPS15, BSC20, Bat95, BL22, BW17b, BGG13, BVV12, Cas11, CDDSC12, CTP09, CLC11, CL13, CMSW19, CLTW11, CV13, CDW06, DFMH20, Don10, DFF +21b, DFF +18, EFG +18, EM11, FHM21, FM15, GMSCS20, GZ16, GCLG18, GX14, HJR97, HM18, HM20, He21, HHvR04, HW22, KO18, Lee10, Lee21b, LV04, LT09, LC21, LB08, LH17, MO11, MO14, MM98, MM02, NN11, NLZ11, NSCTPW22, Not10, PV99, PY22, Pas19, Pf99, RSCTP20, RR12, Saa00b, ST17a, ShvBW21, Shh99, The98, WCZ15, WW08b, WW11, WF15, WX21, ZN22, ZY19, ZBCN22, mMvdV02, vRH05].

analytic [CLQY23, GN00, IT05].

analytical [SSB04].

Analyzing [RV12]. Anderson [LLPC23, LZ22, Pas19]. Anderson-type [Pas19]. angle [DMY03, Lee12]. angles [GH06].

anisotropic [BCZ12, CG15, GHT09, Hön06, KW99, KT08, KLM14, KNP03, RNV21, Sch12, XZS15, YXZ13].

anti [MMMM09, Per06, XHZ03].

anti-persymmetric [XHZ03].

anti-reflective [Per06]. anti-triangular [MMMM09].

approximants [AGRR21, BCK05, CH05, GORR16, LMM00, LD07, Mit10, RU22].

approximation [DE98, VS17, AFSCSU14, CGS20, NSCTPW22, SS97].

approximations [BLW08].

Approximate [AHJ20, Bea94, BPS00, HDIS18, LPS18, MGF +02, PPv95, ZS08, AW11, AK16, BPSH13, BSI17, CN21, DK23, Do10, DS10, Hus03, Huc98, ISZ09, JZ09, JK17, KNY01, KN99, KM92, LS04, LB17, LPS15, NY03, SSB19, Sol14, VVW7, WW20].

Approximated [NR17].

approximation [AEHV14, BPSH13, BSI17, CN21, DK23, Do10, DS10, Hus03, Huc98, ISZ09, JZ09, JK17, KNY01, KN99, KM92, LS04, LB17, LPS15, NY03, SSB19, Sol14, VVW7, WW20].

approximations [CYZ99, DLVZ06, ESS23, FY01, HJR97, KKRS21, KN07, LW21, LO15, Mor07, Mor09, Per06, RSCTP15, US19].

arbitrarily [MK23].

arbitrary [BW17a, HR05].

arbitrary-degree [BW17a].

arithmetic [DK95, GKV12, TR21].

arithmetics [BB16].
[HK02, BM05a]. Block [Bai12, BHL +22, CNZ17, CK10, FP15, FGNW14, GKY97, HK12, KABH17, MPS96, PS00, RS10, SLV06, AGRR21, ACR +00, ACGH21, AB10, AN13, AB13, BPS15, BCR14, Bas00, BL22, Bot13, BHHJ13, CCS19, Cao08, Cao13, CNY05, CV03, CB21, DJW +21, DHS95, DGM +16, DFF +21b, DL23, ES07, FJP12, FJP16, FS09, Gro00, HS05, HDH19, IS09, KK02, KN07, KP00, KNY00, Kol05, KC17, KLMP21, Krz11, Lam12, LO13, Le 23, LPS15, MSS07, MR14, NZ14, Po00, ST19, Ste95, SHJC18, Tre13, VVM05a, Van00, WCLZ15, Wan18b, Wan18a, WH94, XCG16, YNP04, YZCQ23, Zhou18, ZBCN23, Zou23, SF18]. Block-diagonal [PS00, BCR14, FS09]. block-Lanczos [Zho18]. block-preconditioned [DJW +21]. block-preconditioner [ES07]. Block-row [SLV06]. block-semiseparable [VVM05a]. block-structured [HM18]. block-Toeplitz [HM18]. break [HM96]. Brinkman [He23]. Broadband [RSR10]. Broyden [DEM18, USS21]. Brua1di [Nab97]. BSSOR [GKY97]. Buckley [IK00]. building [PGT14]. Bunyakowski [AALS01]. BVM [LJ04]. BVM-based [LJ04].

Computational [BGM11, HJ18, CCvG06, DFF+18, Ern12, GS97, Ian16, Mar00, SS07].
Computations [MPV06, Axe98, AC11, BP13, CRZT20, DFF+18, DOP19, Kho96, MP18a, MPR22, MPR23, OST10b, QvGvW+21]. Computed [GL95a].
computer [CZ15, DK95]. computers [JO94, MM97, Mez20, TSPSO06]. Computing [BDGL09, Dax04, GMS18, KKRS21, LCHH18, LMM+23, Lor14, MRT98, NW15, YM22, YHAG20, vNR07, BL22, BGW05, BP22, CS18, CCLQ18, CJL08, CXX05, CC20, CHCS22, Dem21, DE06, FM99, HCQM23, HVCY21, KK23a, KNX01, KBF15, KMC16, KR06, LK17, LZY11, LP16, MM98, MVV08, MP16, MK20, Pul16, RT02, SLK16, SHT18, SHT11, TS12, WQZ09, WW07, Yun18, YYN12, ZQ12, ZZLX20, MMMM09].
concept [Mey94]. concerning [BM05a]. Condition [BC10, CLTW11, MDB21, YDH11, ADT19, B06, BT92, BG05b, CCG00, CDW06, DW07, Dia09, DXW12, DWWQ13, EHM95, EG16, LX08, LH08, LIW09, Pul08, TDL+22, ZLHH23]. condition-number [ADT19]. conditioned [MM99, NCV05, SPI21, Ye20]. conditioning [BDGL09, LHW11, TDH+18, YHAG20]. conditions [Per06, Szy94, XHZ03, Zitt00, Zitt05]. conduction [AJ94]. conduction [LA23].
conforming [AMM04, BMN05, KLS23, KM99, LPW06].
conic [Naz95].
conjugate [AM95, BL22, BGP97, BMSS09, BB96, CNT07, CGY22, Cha07, CL23, DMV03, DW15, DR03, GTP21, Hac92, HZZC23, IIFM23, Kap94, Kap02, MO94, Mey94, Not02a, PR95, WD08, Wei94, YBZ19].
Connection [MC09]. connectivity [CLQY23]. conquer [KNX01, LLLJ16, SK21]. Conservative [AIT05a, HKL19, DKM+22]. conserving [ABM17, KLS23]. Consistency [FLR03]. Consistent [Rie09, DBG06]. consistently [Bea94]. constant [AM96, Liv14, Mar94]. constrained [Ada04, AN03b, BD21, BVD+18, DD07, DR03, ER96, GW00, HHHM, KV06, Lin12, LWC16, LWS+23, LV98, NBKS99, PW12, PSM14, Peo08, RS10, SKKS22, SY18a, St092, S12, Vla00, XJ12, PPS20]. Constraint [SL10, Ber12, BDDM18, CAO09, DLSvL20, DGC19, eLHZ11, pLL07, LW07, MRT02, yPyHZ04, WBL14]. constraint-preconditioned [Ber12, WBL14]. constraints [ADMS22, BDS13, Dob99, Lay05, LZQ12, MD03, MS07, dCSR19, SW12, VFDV13]. Constructing [Uhl23, BFD13, KKNY01, NY03]. construction [BC09, WW+15]. constructions [YNP04]. constructive [BW17a]. contact [Ada04, Hla99, IV04, NO04, ZVO14]. Continuation [DF01, HKL21, BP22, CWS97, CC03]. continuous [Cas11, LZZ20, SSB15]. continuous-time [Cas11]. continuously [Vos09]. contour [CZ22, HFG+22, KKPS18]. contrast [AY11, GKK19]. contribution [WF15]. control [BLP08, BFS10, BO13, DMS17, Dat01, GTZ18, HW19, KKK13, LP22, LC13, LW05, MS07, MP13, NV23, P51, QvGW+21, ROA13, SKKS22, SY18a, SW12, VFDV13, ZHJL12]. controlled [FJP16]. controller [CSB20]. controllers [Ozb13]. convection [BR99, FY01, HP97, HK12, KABH17, KXZ03, PH19, RSCTP15, XG10, ZYFG11, vRH05]. convection-diffusion [BR99, FY01, KXZ03, PH19, ZYFG11, vRH05]. Convergence [BR22, BBG13, BH16, CL96, CP99, DFHM20, HNR+18, HW21, IIFM23, KKO20, KO18].
convergent [BSI17, CQ10, GT09, Sol14, ZZLX20].

D [DHBV21, GKY97, AM96, BV13, BG02, KK16, LPW06, Mar94, NBKS99, NSCTPW22, PM97, PR96, QB15, SY18b, ZVO14, mMP99, vKVW00]. DAE [ABK15]. damped [BC09, CMSW19]. damping [BTT13, MW21, TV20]. Darcy [He23]. Data [CCX23, GA18, Bauo8, BF11a, BFDp13, BH04, CLNY15, DLSvL20, DQW15, KKS9, KK23a, LC21, NLNZ11, PDV05, Rie09, TDL'18, TDL'22]. Data-driven [CCX23, GA18]. data-sparse [Bau08, BF11a]. Datta [CLR13]. Davidson [FJP16, GS99, HLLW05, MSV13, Not02a, Zho06, vNR07, vDE02]. DCT [CSCTP05]. DD [AB13, Cao13, BI10]. deblurring [BDRZ21, CFAM16, Don05, LNP12]. decay [FSS18]. decision [Buc11, CEQN07]. decomposable [Uhl23]. Decomposition [CGK94, AN03a, AN07, ADMS22, ADO23, AMMR17, AFK02, AG19, BP13, BW17a, Bla94, Bla02, BVD+18, BPS13, BO18, BIA18, CS96, Car97, CGM01, C13, CLNY15, CJT03, DH18, EM95, EY23, FLP00, FRR1, GNV14, GVT03, GB15, GT16, GUS03, HLM92, HDIS18, HC05, Ibr02, JK18, JM10, KV92, KKPS18, Kap98, Kap02, Kem12, KMMR10, Kho96, KN14, KN03, LR95, LV99, LT09, LHW11, LXS16, LT11, LT13, Liu22, LMM00, MS22, MP20, MD03, MK20, MM02, MVLB23, MM18, MYD20, MSF21, NBR14b, PY03, PH19, SHvBW21, Sau95, SNN20, TSPS006, WQ07, WSN19, YL08, ZSKA18, Zhu08]. Decompositions [ZN20, BF96, BLW08, LS06, SSB04]. deconvolution [MLV05]. Decoupling [LVW01, HDIS18]. Dedicated
Dedication [Bun95, SGP14, CLR13].

Deep [PLMV23]. Defect [NFD10].

Defective [AFS14]. Defects [KK16].

Deficient [DE98, GS97]. Definite [ARMW14, AIT05a, AV94, Bai16, Bai18a, BMAA16, BT03, BMM20, DJW+21, DJ09, Ema12, Kap98, KH07, Kol05, LHL07b, MVV08, yPES07, SB12, WW08b].

Definiteness [PW13]. Definition [Lun20, VVM05c].

Derated [CS97, MYZ16, SHJC18, MN00].

DEFLATED-GMRES [MN00].

Degenerate [BMM06, Sto92]. Degree [BW17a, DS10, Gus04b, HVX16]. Delay [DOR19, DGRR11, JLV05, LC13, MSV13]. Delay-differential [MSV13]. Denoising [LNP12]. Denoising/deblurring [NV08a, SLV13, ZBCN23].

Dense [CDGmM04, DS10, GTY97, How18, KBF15, Ver00]. Density [LMM+23, NY03, OST10b].

Dependent [BEG18, CNT07, CRV14, GS05, HG00, KPT14, LP22, Mai06, MV13, RBV08, Sha98, Xie21, ZYFG11, vKVW00]. Depending [Vos09]. Derivative [DA21, IKA22, KKR21, LY15, LWS+23, US21]. Derivative-free [IKA22, LWS+23, US21].

Derivatives [AT00, Xie11]. Derived [BDV06]. Deriving [Mey94]. Descent [ACGH21, BW19, De13, Liu22, NZ14, Shi02, Shi04, TR21, YZCQ23, ZBCN23].

Design [AG99, BCK05, MC08, SWSW00].

Designing [RS07]. Designs [LW05].

Determinantal [CC07]. Determinants [MP15]. Determining [WW20].

Developments [SS07]. Deviation [CCvG06, DDM23]. Device [GMR05]. DFT [Not05a].

Diagonal [BLP17, SZ99, ACR+00, BCR14, EW13, EM11, Fas05, FS09, HN05, HS05, KKMM12, MCV01, Par03, PS00, TS12, ZZ15].

Diagonal-plus-semiseparable [Fas05].

Diagonal-plus-Toeplitz [BLP17].

Diagonalization [CCS19, MCLM20, WZZ18]. Diagonally [AK94, Yon96, MRT98, RT02]. Diameter [Par03]. Difference [AJ94, FY01, Fer96, Gem00, PR11, PL21, SCD94, Web10a, ZZ21].

Different [DOR19, Tre05]. Differentiable [Est09]. Differential [AHJ20, BCR11, BCR14, BSC20, BD21, Bot13, DOR19, GB22, HJ18, JLV05, KKO20, LH08, LW11, LW03, MW11, MR22, MSV13, MM11, PES07, Rak99, RV08, SW12, TC10, ZCW11, Zhu14].

Differential-algebraic [ZCW11].

Differentiation [DO18]. Difficult [HST22].

Diffusion [ALM18, BLP17, Bai18b, BL20, BEV22, BCV03, BR99, CCK06, CG15, DJW+21, DHS23, DOR21, DA21, FY01, Gan99, GB22, GKK99, KX203, KWS+18, KRW08, KA10, Lee16, LCHH18, LPS15, MA01, OC04, PH19, QPS23, RV21, RSCTP15, Sch12, WBM04, WZZ18, XG10, YXZ13, ZYFG11, vRH05]. Diffusion- [KRW08]. Diffusion-dominated [GBB22]. Diffusion-wave [DA21].

Digraphs [THC09].

Dimension [BTT13, CLNY15, KCS11, VS17, vGSZ15].

Dimensional [AALS01, CGPV13, CLNY15, DY04, DLSvL20, KK23b, KT08, LMM+23, LS22, NLZ11, Ob13, Rja98, SKKS22, XSS09, ZZ21].

Dimensionality [LW21, PY22, YZ13].

Dimensions [BO18, DHNR18, SBS15, XZS15, YZ13].

Direct [Dam08, GT19, JZ11, SH19, ZJ06, BLP01, CNY05, CS95, DOR21, ES09a, GMR05, HS05, MRT02, SW06, ST18, TW20, TPS006]. Directed [FM18].

Direction [BB96, DBG06, LZZ20, XJ12, ZN18].

Directional [Bör17]. Directions [DS13b, ZS08].

Dirichlet [Rja98].

Disaggregation [MM98, Pu08, PM11].

Discontinuous [ABM17, BKP02, BBS12, DLVZ06, DFF+18, ESY03, HHvR04, KT08, Wan00, WBM04, vRH05].

Discrepancy
[BC02]. discrete [AGRR21, BCV03, BDRZ21, CLTW11, DGB+13, DNR12, DHNR18, GORR16, Han13, HDA19, JK18, KM92, NR14b, PSK08, SSB04, Web10a], discrete-difference [Web10a], discretization [ABM17, BCR11, BS01, CGM11, DP03, GMSCS20, GTZ18, HHvR04, HK12, Lay05, LPV01, LOY08, LP22, SY18b, UM009, Zhu14], discrete-difference [Web10a], discretization [ABM17, BCR11, BS01, CGM11, DP03, GMSCS20, GTZ18, HHvR04, HK12, Lay05, LPV01, LOY08, LP22, SY18b, UM009, Zhu14], discretizations [AT15, BCR14, BK21, BBS12, CBE18, DMMR23, DKM+22, EGF11, GHO15, HM20, HKLP19, KOV17, Lee12, Lee16, LOS04, MW11, Osv95, PT17, RS02, SRL13, SSB15, XZS15], discretized [Bai18b, BL20, CN21, GS07, KS04, MNCT07, MRK22, vRH05], discriminant [NLZ11, WF15], disks [Pen07], disordered [Sac05], Displacement [EJK01], dissipative [BGS21], dissipative-Hamiltonian [BGS21], Distance [DFNY08, AFS14, LCHH18, NR11], Distance-two [DFNY08], distances [LMM+23], Distortion [BG02], Distributed [GL18, FO95, JO94, MW16], distribution [AFSCSU14, Ber12, BF11b, Cao09, DHSW11, GR05, MV19, SJBH14, WBL14], Distributive [GGLO08, GLOW04], div [AMM04, CP06, GGLO08], divergence [MRT02], divergences [LMM+23], divide [KNX01, LLLJ16, SK21], divide-and-conquer [LLLJ16, SK21], division [Kub92], does [NN10], Domain [BIA18, CGK94, Car97, HLM92, KKPS18, KN03, RVW98, Zhu08, AFK02, AG19, BPS13, BO18, CS96, CGM01, FLP00, GVT03, Gus03, HKKP07, JM10, Kho96, LR95, LV99, LT09, LXS16, LMM00, MD03, MZH17, MSF21, FY03, PR11, RT99, WLC21], domains [Dah02, DS02, EGMS20, HKH+06, KM92], Dominant [Yon96, MRT98, RT02, ZQLX13], dominated [AMM04, CCK06, GB22, HP97, RSCTP15], dominating [GGLO08], double [AL21, DL23, QB15], double-layer [QB15], double-preconditioning [AL21], doubling [GB11, HHLL16, LYL15, MP13, PR16], doubly [GH1098], Downwind [HP97], DP [DHBV21], DQGMRES [SW96], Dr [KXV10], Drazin [BNS20, WL03], DRIC [Not94], driven [CCX23, GA18], drivings [PM97], dual [DH04, FLP00, GH01, HP04, Saa94, Sto92, WSN19], dual-dual [GH01], dual-primal [FLP00], Duffin [LWW09], Dykstra [ER96], dynamic [Not94], Dynamical [Bat95, ESS23, BBJ17, BW17b], dynamically [MN00], dynamics [Ema12, HW19], ECLES [dCSRS19], eddy [Bai12], edge [Dah02, KSS22, RS02, ZSCX10], editing [dCSRS19], Editorial [Axe96, Axe99, Axe03, Axe04, BNR18, Bsn95, Kk23a, Lan97, NT03, Saa00a, Yav04, Mar00, NT04], effect [BS01, LW04], Effective [LH08, LLW09, HFG+22], Effectiveness [XXCB20], Effects [CJT03], Efficiency [DMM+08, CNT07, KNY99, LH17, Tur00], Efficiency-based [DMM+08], Efficient [BV00, BCV03, BEG18, DPS16, FJP12, Gem00, HPS15, HCGM23, Huc98, LV99, Poi00, SCP20, VP95, WWX10, mMP99, vVW23, BDS94, CP12, DJW+21, DGC19, DDL+21, EG11, GM17, HS13, KBF15, KR14, LR08, LM22, MPR22, Oo011, yPxp06, RGG07, TPS006, WTTZ10, XZS15, Zha18], eigCG [ARSO14], eigendata [BC09, YZB19], eigenfrequencies [BTT13], eigenpair [MPV06], Eigenpairs [ESC20, dF20, AK23, CHS22, DK95, LP16, Xie11, ZXL20], eigenparameter [Vos09], eigenproblem [BGP97, FT98, Not02a, XHZ03], eigenproblems [Bas00, BPS00, BFG95, DS13b, FLPW01, FJP12, KCS11, Ney02,
SGSM15, TY10, Vos09, XCG16, vdE02].
eigensolution [Mar16]. eigensolver [BMM+08, HFG+22, ZBCN23].
eigensolvers [BM17, GKL18]. eigenspaces [Zt05].
Eigenvalue [AN06, AB13, Cao10, KY95, LV04, Pei09, AS19, AFSCSU14, AG99, AB10, Bal05, Ber12, CQX11, CR16, CR20, CCvG06, CS02, CQLQ18, CWsS18, CMSW19, CZQ22, CX22, DL97, DHR20, DPS16, Dia09, DGP19, EKS02, GP18, HKST12, HS08, HMMP19, HLL13, HLLW05, Jia17, KPPS18, KH23, LLL97, LLK14, LLLJ16, fLWyL+21, Liv04b, LYL15, LS22, MMMM09, MVVO8, Mee01, MSV13, MP15, MZ98, PPv95, RMM19, RMM22, SLK16, SJBH14, Sim03, Sth13, VJM16, WQZ09, WBL14, Xic21, XX22, YBY19, YCY17, YLH11, ZQ12, ZQLX13, ZW13].
Eigenvalues [ESC18, AT00, BB16, BWN05, BG23, CSYS14, EFG+18, HCD15, HVCY21, HHQ13, Kol05, KCV09, KVC12, LS05, LQY13, Mai06, MM11, MV19, PL21, SHT11, TS20, XC13, YM22].
Eigenvector [NR19, LW98]. eigenvectors [AT00, CCS19, ESC18, HVCY21, Mai06, PL16]. Einstein [HXM19, HL21].
elastic [GT19, H0m06, NSCTPW22]. elasticity [AM96, AALS01, Axe99, BKY10, BLE07, Bla94, BC12, BIA18, GLGR10, GL98, GL02, GL13, HNR+18, KKO2, KS04, KSS2, KMM19, Mar94, Mar98, Pad09, Rja98, XZS09, XS11, XZS15]. elastoplastic [MBW97].
electrical [MC04]. electrodynamics [KMRR10]. electromagnetic [WDS09].
electromagnetism [CDG00, CDGmM04].
electron [OST10b]. Element [LV12, RSCTPW20, AK99, AMM04, BBP03, BMMN05, BC12, CQZ29, CKW02, CGL05, DMM+08, Do99, EGF11, EWY03, GLGR10, GTZ18, HH06, HM20, HS13, HK12, HC20, IV04, KMM18, KMMR10, KR11, KS04, KV06, Kra06, KLM14, Lai97, LV08, LR95, LMM00, LPW06, MW16, MSB18, NSCTPW22, PY03, PS00, PR95, PL21, RS02, Rja98, RSCTPW15, SGFP14, SY18b, SSB15, The98, Vas92, VL96, Vas02, WBWM04, XZS09, XSI1, ZYFG11, ZSCX10]. elements [BB00, GL13, HHvR04, KKO20, Lee10, Os95, Pul09, RS02, ZHJL12, vVW23].
elimination [GK02, Gro00, IK00, Pei03, Ren96].
Elliptic [CGK94, AV94, BBP03, BBS12, BCZ12, CC92, CW97, CS02, CGL05, CEL+96, DHS23, DMMR23, DLVZ06, Dob99, DHR+04, DP03, ELV94, EWY03, GN00, GTZ18, HKST12, KKO20, KWO9, KKR23b, KRO6, KTM08, KLM14, KM92, LPV01, Lee19, Lee21a, LW03, MRT02, MSS07, MM11, Ney02, RAK99, RT99, SKKS22, SY18a, Sta96, Vab20, VL96, Wan00, ZSCX10, Zhu08, Zhu14].
Embedded [GNR14]. embedding [FLPW01, QV21, RVW98]. EMC [Ver00]. enables [MC08]. enclosure [Miy15, OOO11]. encountered [BMMR18].
energetic [Lee12]. Energy [VSG09, BBM+06, KV06, Lee12, MD03, SWY07].
ergy-based [BBM+06].
Energy-minimizing [VSG09]. Engine [RSR10]. Engineering [LD08, NL09, WW08a, CEQN07, Mar16, An08].
Enhanced [KH23, RNV21]. enriched [HDA19]. entries [EW13, FSS18, Par03].
envelope [BPS95]. Environment [ADP96, CEQN07, TT10]. environmental [MS07]. epidemic [GCLG18]. equalities [CP$^$S06]. equality [DR03, LV98].
equation [AY11, AB12, AJ94, BD21, BMP11, Bot13, CKW02, CD11, Cha07, CMG11, Dah02, DO18, DA21, DK15, ESS23, FZwCW17, GH23, KP10, Lee12, Lee16, LB08, LS15, LLV19, Lu05, Miy15, Os95, yPb06, yPES07, RV12, SY18b, SW12, Tia13, TH19, WTZD10, Zhu14, vRH05].
Equations [BFG+18, GL05, ARM14, ABM17, AB12,
Axe99, AC11, BPS15, BGX06, BCR11, BCR14, BLP17, Bli18b, BL20, BKP02, BEV22, BSC20, Bau08, BMAA16, Ben08, BLP08, BES14, BR99, BG05a, BMNR18, BG00, BHHJ13, BCZ12, BFM12, CLR10, CN21, Che02, CH03, CL23, CQ10, CSZ21, CB21, Cor04, DJW+21, Dam08, DSV18, DW21, DIPR19, DOR19, OR21, DBG06, DMMR23, DXW12, DLYZ06, DFF+18, FHM21, Gan99, GB11, GBB22, Gem00, GS99, Gra08, GD11, HS21a, HM18, HFW01, HNR+18, HES15, HM14, HLLL16, HXM19, HL21, IP13, IKAA22, JMPR18, JLW05, JL09, JO94, KKO20, KW99, KS04, KWS+18, KPT14, KS15, KLMP21, LR08, Le10, LB21, LH08, LLW09, LH08, LG12, LXX17, LSC21, LW22, LWS+23, Liv14, LW03, LPS15, LPSV18, LMM00.

Equations [LRGO17, MV13, MNCT07, MW11, Mar94, MZHB17, MRK22, MM09, MC00, MDMS23, MSV13, MM11, Miy17, NFD10, Ols99, PM07, PR95, PR16, P07, QPS23, Rak99, RBV08, RSCTP15, SL19, Sm09, SC09, Ste99, Szy94, TC10, TSP006, Tyr05, USS21, Var08, V09+22, WRW18, WCV20, Web10a, WZZ18, XS09, YDH11, YXX13, ZCW11, Z09, Z18, Z21, ZSWX13, Zhu08, vVW23]. Equidistantly [Rie09]. Equilateral [RSCTP15].

Expanding [HC20]. Expansion [DS02, GT16, MS07, RR12, ROA13, SLK16]. Expansions [Tre05]. Expectations [FOV21]. Experience [BGM11]. Experimental [RR12]. Experiments [ABK97, GL02]. Exploiting [VJM16]. Exploits [NL16]. Exploring [AMR18]. Exponential [PD05, BV00, BCV03, DQW15, LLS12, Mor07, PS11, Rag14, Sm09, VS17, WtFW15]. Exponentially [TS20]. Expressions [LT08, Not05a]. Extended [BL22, DPP16, Du19, KS10, VEV23, WX21, ZHZ20]. Extending [ARSO14]. Extension [BKP02, BCB14, DHR20, HW22]. Extensions [Sun06]. Exterior [GH01]. Extracted [SPD05, SP06]. Extractions [LNY15]. Extrapolation [CRZT20]. Extremal [Jia17, LT08, Vla00, Zha16]. Extreme [BL22, BHL+22, HCD15, HHQ13].

F.E.M. [AM96]. Faber [Nov03]. Factor [Ao09, Cha12, DM10, GIK02, GH23, HW18, IK00, KM09]. Factored [KKN01]. Factoring [BG06a, Kau07]. Factorization [ADP96, BN21, AGH21, BT03, Bla94, CCG00, CGK03, Cha12, DHS95, DCT18, FG02, GN00, KNN00, KM92, Le 23, LSS18, MW16, OS01, RTN03, Saa94, SK01, ST17b, XCCB20, XQ09, ZHJL12]. Factorizations [AMMP06, Bea94, CCS10, CH94, CV03].

Error [An09, Cha12, DM10, GIK02, GH23, HW18, IK00, KM09]. Factoring [BG06a, Kau07]. Factorization [ADP96, BN21, AGH21, BT03, Bla94, CCG00, CGK03, Cha12, DHS95, DCT18, FG02, GN00, KNN00, KM92, Le 23, LSS18, MW16, OS01, RTN03, Saa94, SK01, ST17b, XCCB20, XQ09, ZHJL12]. Factorizations [AMMP06, Bea94, CCS10, CH94, CV03].
GPBi-CG [Aih20]. GPBi-CGstab [Aih20]. GPCG [Bla02]. GPCG-generalized [Bla02]. GPU [HCGM23]. grad [GGLO08]. grade [IT05]. graded [BLZ08, BCS09]. Gradient [LWZ22, AM05, BL22, BGP97, BN21, BMSS09, CNT07, CGY22, Cha07, CI23, CHCS22, DMY03, DW15, DR03, Hac02, HZZC23, IIFM23, Kap02, LCZZ21, Liu22, MO94, Mey94, OHD21, PR95, SZ11, WD08, Wei94, YBZ19, ZM20].

Gradient-like [Mey94]. gradient-type [LCZZ21]. gradients [GSTPT21, Not02a].

Grain [Vom12]. Gram [Dax04, LBG13, LL97, MPR23, SLA 21, Van00, WL08, Zou23]. graph [FM18, KXZ03, QV21]. graphs [CNZ17, EJK01, LCHH18, VZ14].

Greedy [LWZ22, AM95, BL22, BGP97, BN21, MW06, Mit10, OCYM08, YXZ13, ZMO10].

Greedy [LWZ22, AM95, BL22, BGP97, BN21, MW06, Mit10, OCYM08, YXZ13, ZMO10].

IBLU [BLW08]. ice [AMR18]. ice-sheet [AMR18]. identification [EAA19, LNP12, ZYL13]. identify [GB15]. III [ELV94, GL02]. III [CSCTP05, GKY97, GL13]. IJNMBE [NL09]. ILDLT [Bas00]. Ill [LHW11, AGRR21, BDRZ21, CLTW11, DNR12, DHNR18, Est09, GORR16, HDA19, NR14b, NCV05, RU22, Sp121, Ye20]. ill-conditioned [NCV05, Sp121, Ye20]. Ill-conditioning [LHW11]. ill-posed [AGRR21, BDRZ21, CLTW11, DNR12, DHNR18, Est09, GORR16, HDA19, NR14b, RU22]. ILU [AMMP06, CGJ21, May05, May07, SZ99]. ILUCP [May05]. ILUT [Bas00]. ILUT/ILDLT [Bas00]. image [BC02, BDRZ21, CFAM16, CXY09, CNSY05, Don05, GHWO6, HHM10, Ham06, JNS19, LW21, PN18, Per06, RGM17, SKR08]. images [BNT94, NWZ17]. imaging [BNP15]. IMMB [Axe99]. Impact [SWW21, Ano99]. Implementation [AK99, BISC14, BM05a, DMY03, MM18, WF15, YAG20]. Implicit [FP95a, BGX06, Bai12, BM05a, BD15, Che15, DL23, HL16, ISZ09, LW01, LZZ20, MC04, PBN05, VVM05b, Wan18a, ZZ21, ZS08, ZBCN23, mMvdV02]. Imposing [Szu14]. Improved [ARMW14, Cor04, JO04, LW15, BVV12, CGPV13, HZZC23, LV12, LC21, Sim06]. improvement [WCZ15, WL03]. Improvements [BB06]. improves [HVX16]. Improving [BKY10, CSB20, DV19, GKL18, GKV12, ST17b]. impulse [LCZZ21]. including [CDDDZ19]. inclusion [LHLS07, LLK14, THCO9]. inclusions [GKK19]. Incomplete [FP21, Jia96, BT03, Bla94, CCS10, GNN15, Gro00, JO04, KAP02, KNY00, RTN03, Reu96, Saa94, SW96, Saut95, ST17b, VS17, XCCB20, ZHLJ12, mMvdV02, mM04, GKY97].

incompressible [BKP02, DFF+18, HW19, HK12, Kovan17, LV04, Ols99, OZ22, Tur00, Web10b, Web10a, vKVW00]. incorporated [TYF23]. increasing [DM03, HVX16, NR22]. increasing-angle [DM03]. Incremental [CCS10, BT92]. indefinite [BRT07, CL96, CK10, CS95, CRV14, GM17, GMTV16, Krz11, LT09, Liv14, PS00, ST17b, SL10, TT15, Vas92]. Indefinitely [DR03, LV98]. Independence [He21, DS08]. independent [CCS19, CJL08, FS21, KPV06]. index [RNV21]. indirect [BLP01]. individual [PL21]. induced [Lay05, vGSZ15]. industry [mM04]. inequalities [AM96, CPSM06, DKVB15]. inequality [AALS01, Bla03, DGRR11, DH04, DR03, EM95, Mar94]. Inertia [CR20, DCT18, KC17]. Inertia-based [CR20]. inertia-revealing [DCT18].

Inexact [ABK97, DDKR23, HD07, Sid11, XX22, Bir15, CQ10, Dax19, FK15, GB11, GP18, HLM92, HW18, KK02, KPVD6, LLL97, LZZ20, LW98, MB21, Sim03, WtFW15].

infimum [Chu04]. infinite [BMMR18, Ozb13, VJM16]. Information [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano13a, Ano13b, Ano13c, Ano13d,
Ano14b, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15e, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano18f, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20f, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano22a, Ano22b, Ano22c, Ano22d, Ano22e, Ano22f, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23f, Ano14a, Ano14c, Ano14d, BF96, FJ05, TYF23.

information-incorporated [TYF23].

initial [Nov03, PBN05, VL11]. initializing [BMM +08].

Innovative [BDRS12]. inpainting [JNS19].

integer [CP12]. integers [DOP21].

integrable [SHT11]. integral [AFSCSU14, CZS22, HSY18, MM09].

integrals [LO15]. integration [ABK15, FS21, HFG +22, KKPS18, LLS12, MC09].

integration-based [HFG +22]. integrator [SL19]. integrators [Ber01, LJo4, Mor07, Rag14].

integro [GBB22]. integro-differential [GBB22].

intensity [GKV12]. inter [MC08].

inter-grid [MC08]. interaction [SV11].

interchanges [EM11]. interdisciplinary [BNR18]. interest [FOV21].

Interface [Wan00, JM10, XM17, Yot01, ZYL13].

interface-based [XM17].

Interior [LMV04, PPS20, BMM06, BGM +21, BCS09, BPS13, HP04, MST16].

Interior-point [LMV04, PPS20]. internal [HKH +06].

International [NL09]. Interpolating [MNS05]. interpolation [BKY10, DFNY08, Gan05, HK21, HM03, KKS19, KV06, KV15, LY15, MMPR10, Pul16, Rie09, TY20, Vla00, Web10b, Yan10].

Interpreting [CPSM06]. interval [DPS16, Jia17, KSB13, Roh92, SH19, YLH11].

intervals [Jia17, LHL07, THC09].

Introducing [MS07]. invariance [JYZ17].

invariant [AG95, DF01, MK94, MP16, YL08]. Inverse [LC05, NR14a, SP18, Tre13, AS19, AEHV14, BF11a, BNS20, BM13, BPS00, BFG95, BFM12, BSI17, CC07, CWw18, DL97, DHR20, DW07, DWQ13, EW13, EKS02, Egg07, EHM95, FGT11, FP21, FK15, Han13, ISZ09, JZ09, JK17, JK18, KKNY01, Kho96, KNY99, KKMM12, LLL97, pLL07, LWW09, LZY11, MB21, Ma22, MV13, MP16, MGF +02, NY03, yPyHZ04, SCP20, Sol14, Sot13, TS12, WL03, XHZ03, XCG16, YBZ19, ZN18, Zho06, Ney05]. inverse-free [MP16].

inverses [BSMN22, Cor04, DK23, FSS18, Gus03, Huc98, LXW13, VR23, WN05].

inversion [BO13, KK02, LPS15, LPSV18].

inversions [Dax19]. invert [MP14, PS11, WtFW15, Sim03].

invertibility [Den09]. investigation [KS10]. involving [DA21, DWQ13, HL21, PPS20].

ION [Jia96]. ion [LO15, TC10]. ion-atomic [LO15].

IPARS [LVW01]. IRAM [Xie11].

IRAM-based [Xie11]. Irreversible [BL03].

ISBN [Nab97]. isogeometric [CBE18, EFG +18, GMS20]. isolation [EKS02]. isometric [Gar01, Gar02].

isospectrally [WW15]. isotropic [BL20].

Issue [Ano08, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano13a, Ano13b, Ano13c, Ano13d, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano18f, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano20a, Ano20b, Ano20c, Ano20d, Ano20e, Ano20f, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21f, Ano22a, Ano22b, Ano22c, Ano22d, Ano22e, Ano22f, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23f, LD08, CLR13, Dat01,
issues [BM05a]. Iterated [BDR17, AN03a]. iterates [DS13b]. iteration [BDR17, AN03a].

Fal06, VW01, Vas05, Axe99]. Iterated [BDR17, AN03a]. iterates [DS13b]. iteration [BDR17, AN03a].

[AS19, AT15, AN94, BXG06, Bai10, Bai12, BZ13, BLP17, Bai18a, Bai18b, BL20, BM13, CH05, Che15, CX22, DL23, Egg07, FK15, GB11, GH01, HMS99, HL16, HW21, HFG+22, KO18, Kra02, KKR14, LLL97, LLPC23, Lam12, LS15, LZZ20, MM18, PS95, Pas19, Spi21, Wan18b, Wan18a, wX15, YHS18, Zho06, ZS08, Ney05].

[236x526]iterations [BGN07, BG05a, FJP16, GGZ12, HN05, Kap05, KLN99, LZ09, Lin12, Lu05, NZ14, Saa00b, Sch99, ZL22].

Iterative [AT00, BF11b, CGK94, DBG06, GMR05, LPV01, MO16, MSB18, NZ14, PM97, AEHV14, AEHV15, AK00, ABNP15, BEH+17, BM17, Ber01, BR99, BN21, BDRZ21, CR16, CH05, CK01, CK10, DA21, ELV94, FM99, GKK19, GTY97, GuS97, HG00, HES15, HY22, HM14, HW22, LR08, Lee10, LP22, LSL01, LZZ20, LZY11, LW16, LCZZ21, LMJ14, MM98, NO04, OC22, Obs99, yPxP06, PR96, PR11, PH19, Pul08, PM11, SH19, Sm19, Sol14, Sun06, Szy97, WDS09, WCW20, WTD10, WW11, WX21, ZW10, Axe99]. IV [KNY99]. Ivo [SGP14].

J [NN15]. Jacobi [ESS23, BFdP13, BFG95, FJP16, GS99, HLLW05, MSV13, Not02a, Sch99, Zo06, vNR07, vdE02].

Jacobi-Newton-iterations [Sch99].

Kutt [Che15, FS21].

L [Nab97, CZ02, DH18, ZMO10]. L-BFGS [DH18]. L-shaped [ZMO10]. L. [JK09].

Lagrange [Cor04]. Lagrangian [EG16, MG08, MP16, OZ22].

Lagrangian-type [EG16]. Lagrangians [LD07]. Laguerre [DOP19]. Lamé [BKP02].

LAMG [FM18]. Lanczos [ARSO14, Aih20, AGRR21, BB16, BBJ17, CGY22, CS18, CWW97, CC03, FG02, FJP16, GORR16, Lam12, LW98, Mec01, Mor09, PV99, PS11, Par92, Sim03, Zo18].

Lanczos-type [Aih20, CWW97, FG02].

Laplace [QB15, SLV13]. Laplacian [CV13, FM18, HM20, TT15, UM09, XC13, DHBV21]. Laplacians [BO08]. Large [Ben08, Jia96, W001, AHJ20, AG99, ADT19, Axe98, BW19, BB17, Bar02, BCB14, BLPO9, BES14, BV00, BG00, BG05b, BHH13, CLR01, CRS05, CG21, DMY03, Dax94, DNR12, DGM+16, DGP19, DHBV21, DR03, EW13, ED22, FSB21, FJP12, GLJ19, GTY97, Gra08, GR04, HJ18, JZ09, JK17, KBF15, LLL97, Lee16, LV98, Mar16, MZ98, RK18, SCP20, Sid11, Sir19, VS17, WDS09, Xie11, vGSZ15].
Localization [KVC12]. localizations [KCV09, KCC16]. localized [HVCY21].
Locally [RSCTP20, BB00, BL22, KR11, MK23, ZLX20]. location [LC21].
locations [BB97]. Loève [SLK16].
logarithm [Lor14]. logarithmic [DHW16].
Long [Kem12, KK16, Yan10]. location [LC21].
locations [BB97]. Loève [SLK16].
logarithm [Lor14]. logarithmic [DHW16].
Long [Kem12, KK16, Yan10]. Long-time [Kem12]. look [LYL15].
loosely [TSPSO06]. Low [AN07, Bau08, BF96, CH94, DFZ05, SLA+21, VHM+22, WN18, WLC21, YZCQ23, AT15, AMMR17, BE09, BHL+22, CCX23, CWWZ22, DPPV19, DBLP16, ESS23, ED22, Gra08, HS18, HC05, JMR18, KKR21, KO18, KPT14, KS15, Laz16, LXS16, LW21, LO15, MKR22, NL16, NY03, ORU23, QXB09, SLV04, SLV06, Tyr92, ZXS20, ZG22].
low-communication [AMMR17].
Low-complexity [DFZ05].
Low-density [NY03].
Low-order [VHM+22].
Low-rank [BF96, CH94, WN18, WLC21, AT15, BE09, BHL+22, CCX23, CWWZ22, DPPV19, DBLP16, ESS23, ED22, Gra08, HS18, HC05, JMR18, KKR21, KO18, KPT14, KS15, Laz16, LXS16, LO15, MKR22, NL16, ORU23, QXB09, ZXS20, ZG22].
Lower [ZLLH23, Alb06, SPD05, SP06].
LQ [BG00].
LQ-Schur [BG00].
LSQR [RY08].
LTI [ZS08].
LU [CCS10, LW15].
Lucas [DOR21].
Luré [PR16].
Lyapunov [BLP08, CSZ21, Dam08, DSV18, KPT14].

M [KVW10]. maintaining [Par92].
Making [LSJ18, CEQN07]. manifold [KO18]. manifolds [MK94, SZ11, SVV22].
manipulations [HK21]. Manteuffel [Lee01]. manufacturing [CYNN05].
mapping [BG02]. mappings [BGS21, Gar02]. maps [MK94]. Marek [SGP14].
Markov [AD11, BLLA11, Ben11, BK11, BL03, BDS94, BH16, BCC98, Buc11, BF11b, Cas11, DSV18, DWSW11, DMTY11, FHH94, KNX01, LLLV19, MPS96, NX03, NW15, Sid11, VFDv13].
Markov-modulated [BLLA11].
Markovian [BMP11]. mass [AMB17, EKS02, KLSC23]. mass-conserving [AMB17].
master [DO18, DK15]. matching [BCZ12, DGC19, KXXZ03].
mathematician [Voe92]. Matlab [Bra02].
Matrices [DKM+22, Yon96, AFSCSU14, AIT05a, AD19, AN94, AN06, AB10, AN13, AB13, Axe15, Bai16, BI16, BPS95, BP13, BNT94, BH07, BF11a, BF19, BM13, BT03, BV00, Ber12, BW05, BG05a, BG23, BFGF95, BN21, BG05b, BFIM2, BCC98, BCGM09, BM05b, BM06, CS96, CCX23, Cao08, Cao09, Cao13, CDDSC12, CCLN05, CGK05, CX05, CDDZ19, DLSV12, DPP16, DOP19, DOP21, DP23, Den21, Dia09, DS10, Don10, DNR12, DS13a, Dos99, DCT18, DHNR18, ESC18, ESC20, ES09b, Est09, EQ16, FLR03, FG02, Fas05, FP95a, FBSC21, FP21, FSS18, GI02, GS97, GR04, HH06, HLM+18, HR05, HS15, How18, Hua12, HC05, I016, IK00, J094, Jia17, Kau07, KN07, KS22, Kol05, KC17, Kra02, Kra06, Le 23, Leb02, LVD02, LSL01, LS05, LHL07a, LSL05, LSO6, LHL07a]. matrices [LW21, pLL07, Mai06, MP18a, MPB20, MPR22, MPB23, MM98, Mar16, MM09, Mat96, MW16, MDMS23, MCC+12, MN05, MYZ16, NSCTPW22, NR11, NPR13, NR19, OS01, Pe09, yPyH04, Pio00, RSCTP20, RMM19, Sch10, SJBH14, SS97, SB03, Sol14, SST18, Sun06, SK21, TS20, Tre05, Uh02, VVM05a, VP95, VVM05b, VVM05c, VV15, Vas92, VR23, WBL14, XCLG10, XH03, XM17, YM22, YPC20, YLH11, ZLLH23, ZH00, Zol16, dF20, vN00, Nab97].
Matrix [AB00, AG95, AC11, BK21, BFG+18, Bun92, GTY97, Not05a, YNP04, Zha92, AK23, AFS14, AH02, AEVH15, AD11, Bai10, BSC20, BB17, BE09, BF013, BB01, Ben08, BW05, BG05a, BMMR18, BFG18, BG00, Bör17, Bos19, BHHJ13, CCE+18.
CCS19, CCG00, CH03, CLC11, CSYS14, CGS20, CH21, DPRV19, DBG06, DGRR11, DGM+16, DK95, DLP16, EW13, EM95, EHM95, ER96, FLPW01, GBB22, GMS18, GHR98, GGZ12, Gra08, HJ18, HK02, HK21, HM03, HS21a, HVCY21, HL16, HM16, HHL16, IP13, Ibr02, JNS19, JZ11, KV92, KKR5, Kap98, Kap99, KNX01, KH07, KS10, KO18, KM09, KR14, KPT14, KS15, KLMP21, LZ09, Laz16, LOY08, flyHZ11, flWyL+21, LZ22, LZ23, pLI07, LH17, LT08, LT11, Lor14, LPS15, MVV08, MSS07, MRT98, Miy15, Mor09, MP14]. matrix [OOO11, OOO16, yPxP06, yPES07, QvGvW+21, Rja98, Roh92, ST23, Sau95, Sha98, Ste99, SHT11, TS12, TT10, THCO9, Tia13, TY10, US19, Vas02, VS17, WW08b, WTZD10, WtFW15, WF15, XJ12, Xie11, XQ09, wX15, YDHH13, Yan23, YHAG20, ZJ06, ZN18]. matrix-dependent [Sha98]. Matrix-free [BK21, GTY97, YNP04, PS11, yPxP06, yPES07, QvGvW+21, Rja98, Roh92, ST23, Sau95, Sha98, Ste99, SHT11, TS12, TT10, THCO9, Tia13, TY10, US19, Vas02, VS17, WW08b, WTZD10, WtFW15, WF15, XJ12, Xie11, XQ09, wX15, YDHH13, Yan23, YHAG20, ZJ06, ZN18]. matrix-valued [DGM+16, Xie11]. max [BDK+15]. max-length-vector [BDK+15]. maximal [LW16, RMM19]. maximization [DDM23, SH14]. Maximum [BCHT04, Gar02, CCLQ18, ES05, NG15]. Maximum-weight-basis [BCHT04]. Maxwell [GS07, LGS12, MV13, MZHB17, ZSXW13]. McCormick [Lee10]. mean [Ian16, KNX01, YHAG20]. means [MS14, RNV21]. measure [BG02]. measures [Buc11, OST10a]. mechanical [LV99]. mechanics [Ada04, Axe99, GMTV16]. mechanism [DH18]. mechanisms [MYD20]. Medal [Ano08]. media [BKPO2, CGPV13, GM17, KP10, NH06, SBS15, WWX10, Yot01]. Median [LNY15]. Memory [KR14, FO05, GMTV16, J094]. Memory-efficient [KR14]. memoryless [USS21]. meromorphic [BEG18]. Mesh [KPV06, AG19, BC10, BGM+12, DJW+21, DHR+04, DS08, HST22, KPV06, ŠBS15, YPC20]. Mesh-independent [KPV06]. meshes [BB00, BLZ08, BCS09, CH21, HSM99, KR11, KV96, Mav01, OZB+18, RSCP15, SRGL13, XZS15]. meshfree [CN21, LOY08, LOS04]. Meshing [HKH+06]. Method [Jia96, AC23, Aih20, ABBP10, AK99, AN94, AM95, AKF02, AG19, BC09, BG13, BB16, BBJ17, BMM06, BES14, BL22, BS01, BGM+21, Bla02, Bot13, BHHJ13, BMMS20, BC12, BC12, BC09, BPS13, BP22, BDRZ21, CKW02, C2Z0, CNT07, CQX11, Cha07, CGL05, CH05, CG15, CS18, CZS22, CNY05, Cho03, CK01, CBE18, CP06, CHCS22, CK14, DL97, DMY03, DHR20, DSH23, DDKR23, Dax94, Dax19, DOR19, DOR21, Dem21, DA21, DGM+16, DJ09, DGP19, DS13b, DR03, EKS02, ES09a, EW03, FL00, Fer96, GBB22, GHT09, GS09, GT09, GT19, GD11, Hac92, HK21, HCD15, HKKP07, HS18, HES15, Hno06, HD07, HHQ13, HC20, HLL13, HW18, HSY18, IKAA22, JM10, Kap94, Kem12, KY95, KKNY01, KK16, KW99, KXX03, KPV06, KR11, KS10, KS22]. method [KLS23, Kra02, KT08, KLM15, KPT14, KM92, LV08, LPV01, Li00, LT09, fLWyL+21, LW23, LB08, LS15, LH17, LW17, LCZZ21, Liv14, LJ14, LP16, LPSV18, LS22, LMM00, LV98, LMV04, MZ15, MB21, Ma22, MO94, MM08, MRT96, Mee01, MSV13, MP15, MW06, MBW97, Mit10, MP14, MN00, NQ96, NR14b, Not94, ODH21, PS11, PS95, PY22, yPxP06, PR95, PR96, PR11, PT17, Rak99, RU22, RS01, RS02, RV12, Reu96, dCSRS19, RT99, ROA13, RMM22, SKKS22, Sha99, Sim03, Sim19, Sun06, SHT18, SK21, TS12, Uhl23, US21, WD08, WQZ09, WC15, Wan18b, Wan18a, WBWM04, WSN19, WTTZ10, Wt15, WX21, XS20, XJ12, XSZ15, Xie11, Xie21, XQ09, XX22, YHS18, Yan18, YBZ19, YYN12, YXZ13, YZCQ23, YHAG20, ZYFG11, ZN18, ZLLH23, ZY13, Zit05, ZM20, ZMO10,
Methods
[Ano08, CGK94, Den18, LD08, NL09, QACT18, VW01, WW08a, ARMW14, AM96, Ada04, AD12, AGRR21, AEHV14, AEHV15, AABHV18, AMMP06, AK94, AV94, Axe98, Axe99, AK00, AN03b, ABNP15, ABK15, Axe15, BR07, BGX06, Bai09, Bai10, Bai12, BDRS12, BZ13, BCR14, BLP17, BZ17, BNR18, Bai18a, Bai18b, BW19, BL20, BP13, BLE97, Baz08, BMAA16, BGM11, BK11, BEH+17, BGP97, BR99, BGW05, BDV06, Bra21, BCS09, BO18, BB96, BM05a, BS17, BHL+22, CEQN07, CS09, CS11, CGM01, CS02, CSCTP05, CEL+96, Che02, CCK06, Che15, CNZ17, CWs18, CL23, CWs97, CK10, CRZT20, Dam08, DMM+08, DMTY11, Den12, Den14, DBG06, Dob99, DFF+21b, DL23, DFF+18, EZ96, EGMS20, EN17, EM11, ELV94, Fal06, Fal10, rFS09, FM99, FM15, FP95b, GB11, GMSCS20, GLGR10, GORR16, GLJ19, GZ16].

minimal/maximal [RMM19].

Minimization
[EHM95, CGD00, Car97, DMY03, DFZ05, Het07, KV06, MD03, Nz14, XJ12, Yan18].

Minimizing
[CvG11, STGPT21, AMM04, VSG09].

Minimum
[GH01, DE98, DBG06, DS10, Gus03, HSM99, Kap05, Mfy15, Saa00b].

minmax [Vos09].

MINRES
[SHZ20, KK13].

mirror [BCK05].

miscible
[HC20].

Mixed
[CGY22, DXW12, KMM18, AB10, AB13, BBG13, Cao13, CEL+96, CCK06, GH01, GTZ18, GTO9, GS07, HC20, Lai97, LPV01, LG512, LW17, OC22, PY03, PS00, PT17, RVW98, SWW21, SB515, VL96, WBM04, Web10b, YZ13, ZY19].

mixed-hybrid [SB515].

mixed-order
[Web10b].

mode
[STZ12].

Model
[Al05, Sha99, AMR18, BLLL11, BBJ17, FLPW01, GA18, Gus98, KN03, Lec18, MV13, WSN19, XG10, ZS08].

model-order
[MV13].

modeling
[FH94, WWX10].

modelling
[Gar04, GMR05, LO15, NH06, SWY07].

Models
[CEQN07, Bai12, BL03, BV13, Buc11, DHWS11, GM07, TGL18, HKLP19, LNP12, PGT14, QX09, TC10].

modern [MM97].

Modifiable
[BE09].

modification
[CSYS14, ZG22].

Modified
[HL07b, wX15, Bef94, CS05, DJ09, Kap02, KPV06, NR14b, Sun06, WZ15, SB12].

Modifying
[Alb06].

Modular
[BC02].

modulated
[BLLL11].

Modulus
[Bai10, BZ13, BZ17, HL16, Mez20, DJ09, HM16, LZ22, LZ23, wX15, YHS18].

Modulus-based
[Bai10, BZ13, BZ17, HL16, Mez20, HM16, LZ22, LZ23, wX15].

moment
[AK16, GR98, VfdV13].

Moments
[BFM12, HFG+22].

Monotone
[IV04, IKAA22, LWS+23, USS21, ZS15].

monotonic
[LD07].

monotonicity
[Mar95].

Monte
[AK16, BEH+17, RNV21].

Moore
[DW07, DWWQ13, KKKM12, LXW13].
Moreau [PSW14]. Morrison [HS21a].
mortar [DP03, PY03]. motivation [MM18].
Motzkin [ZL22]. MRRR [MPV06].
MSMAOR [CK14]. Multi
[HN06, TYP23, BCK05, CS02, CLNY15, Lee12, PDV05, RNV21, SZ99, SV11, TC10, XM17, ZHJL12, vGSZ15]. multi-channel
[AD12, BB00, BW17b, Bra21, BCS09, BO18, BBKY06, Den12, Den14, DFF+21b, Fal08, Fal10, GLGR10, KRW08, Lee18, Lee19, Mav01, SRGL13, Wie99, WTWG14, ZVO14, Ada04, ALM18, AY11, AK19, BZ17, BKY10, BD21, BLE97, BBS12, BO08, BH04, BISC14, BMS17, BDV06, BLZ08, BMM+08, BVV12, BKM+12, BDM+14, BS10, BHL+22, Cho03, CH21, CBE18, DY04, DFNY08, DFF+21a, DMMR23, Don05, Don10, DKM+22, DHR+04, EZ96, Ema12, Fal06, FM18, FM15, FS21, GM17, GLOW04, GGL08, GHT09, GKV12, GT09, Gra08, GHJV16, GH23, GMOS06, HBH10, HM18, HM20, He23, HNR+18, Het07, Höm06, IV04, KX003, KR11, KS22, KR06, KLM15, Lee12, Lee16, LB21, Lee21a, LOS04, LCHH18, Liv04b, Liv14, Lot23, LJM14, LD07, LRGO17, MO11, MMC12, MO14, MMPR10, MWZ06]. multigrid
[MBW97, MC08, Mit07, MSF21, MW21, NN11, NFD10, NSCTP05, NSCTPW22, Not05b, NV08b, OST10a, Pht09, PT17, RS02, RV12, Ren96, RNV21, RBV08, RGV17, Sei10, Shg98, SY18b, SKR08, SSSF23, SSB15, TGRKR10, TC10, TY10, TH19, UMO09, VZ08, VY14, Wan00, Web10b, Web10a, WZZ18, XZ09, XZ15, YW12, Zhu14, ZMO10, vRH05, DM10, Den18]. multigrid-based [UM009]. Multigrid-in-time [BW17b]. multigrid-reduction-in-time [FS21]. multigroup [KWS+18]. Multilevel [AT15, CEL+96, CV03, LSC21, MFFJ18, Osw95, PLMV23, QV21, Sta96, AM96, AMM04, AN94, AV94, BMN05, BCZ12, CL96, CGJ21, DMTY11, DGM+16, FOV21, Kra02, Kra06, KT08, KMS08, KLM14, KP10, Lai97, LSS03, LM06, MM95, May07, Not98, Not02b, Not05b, Pad99, QvGvW+21, SS02, Sha99, SLV13, Th98, US19, XCG16, Yot01, vN00]. Multilevel-in-width [PLMV23]. multilinear [KWS+18]. multiparameter [RMM22]. multiparameter-eigenvalue [RMM22]. multiphysics [Yot01]. multiple
[ARSO14, ARMW14, CN27, HKLP19, MA06, RNV21, SHJ18]. multiple-network [HKLP19]. multiplication
[Kap09, OOO11, OOO16, WF15]. multiplicative [CL96, LSC21]. multiplicity [CC20]. multipliers
[BGM+21, ZN18]. multiprecision [BB16]. Multiprocessor [ADP96]. Multiscale
[HPSS03, BIA18, FP15, VSG09, WWX10]. multisecant [FS09]. multisensors
[CNSY05]. Multisplitting
[RLG12, AMP99, BZ13, CS09, CS11, JS96, LSL01, Mez98, Ren98]. multisplittings [BCC98, CP99, FP95b]. Multistage [OC22]. multistep [BNW05]. multivariate
[HDIS18, LQZ12, MKV04]. multiwavelet [DOR21].

Nath [CLR13]. Navier
[AB12, CA09, DFF+18, HFW01, KOV17, LMM00, Ols99, PT17, QvGvW+21]. near
[CN05, Ver00]. near-circulant-block
[CN05]. near-singularity [Ver00]. nearby
[AFL14]. nearest [CGS20, DBLP16].
GMS18, GHR98, MRT95, NW15, ST23.
nearly [BKP02, HFW01, NA97, RSCTP15].
Necessity [BF19]. Necessary [Pul08].
negative [BMM06, CfX05, PR11, Yun23].
Nested [Bla03, GNQ15, MO16, MM18, vV94].
Nesterov [HY22, MYD20]. network
[CHCS22, HKLP19, NR22, PLMV23].
networks [GB15, Lee18, WWC15].
Neumann [KMM19, RT99].
near [BN13, CCGM05].
negative [BMM06, CfX05, PR11, vN00].
non-aligned [YXZ13]. Nonconvex
[DB23, HZ23, Laz16]. Nonequivalence [FLPW01].
Nonlinear [Gra08, Vab23, AMMP06, AC11, BRT07, De 13, DGRR11, rFS09, GD11, HM16, IKA22, LB21, LZ22, LWS+23, MV13, MSV13, Naz95, yPES07, SGSM15, SCD94, USS21, VJM16, Vos09, WRW18, Xie21, XZS10, ZZ15]. Nonlinearly
[DH18, DW15]. nonmatching [OZB+18].
Nonnegative [ADMS22, ACGH21, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZQW13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nonnegative [ADMS22, AC821, BGX06, BGM09, BGM11, CQZ13, DDL+21, HKL21, Sot13, Van23, WWC+15, ZQ12, ZQLX13, ZWQA18].
nullspace-free [Sim03]. number
[ADT19, BB06, BC10, EHM95, EG16, LH08, LLW09, RV12, TDL++22, TGKR10, ZHLJ12, ZLLL23]. numbers [BG05b, CCG00, CLTW11, CDW06, DW07, Diao09, DXW12, DWWQ13, Liv14, MDB21, YDH08, LLW09, RV12, TDL++22, TGKR10, ZHJL12, ZLLH23].

Numer [SB12]. Numerical [AGG16, NLA94, ANo08, Ano09, BL08, Ben11, CH03, CSZ21, CA99, DMS17, DSV18, FZwCW17, GS05, HHM10, HJR97, HL21, KKO20, fLyHZ11, LD08, MK94, MMMM09, MV05, NBKS99, NSCTP05, NL09, WW08a, JNL92, Bai95, BD1, BN18, BKP02, BSC20, Bat95, BGM11, Ber01, BDS94, CQX11, CJW06, Cor04, C1, Dat01, DS02, GD07, Dia09, DXW12, DWWQ13, Liv14, MDB21, YDH08, LLW09, RV12, TDL++22, TGKR10, ZHJL12, ZLLH23].

NURBS [GMSCS20].

Objective [Ris19]. Oblique
[Han13, VCY17]. oblivious [MWZ06]. observations [CZ02]. observer
[CLR01, CD11]. obstacle [JJZ11, ZZ06]. occasion
[CLR13, LPQ06, SGP14, Vas03, Vas05]. occur [CC03]. occurring
[ADT19]. ODE [AI21]. ODE-based [AI21]. Odir
[CO1]. off [EW13]. off-diagonal [EW13]. once
[DW21]. One [OC04, CSYS14, EGMS20, FMPS13, O’H14, Pu08].

One-level [OC04]. one-way [EGMS20]. open
[Gar04, RR12]. OpenMG [BISC14].

operations [STZ12]. Operator
[Gus97, Gus98, Gus03, MMPI10, AB06, BV00, BC03, BMF12, Den09, GN00, GH11, LV04b, MP15, SKSS22, Ty05, Vab20].

Operator-based [MMPI10]. operators
[AFSCSU14, ABBP10, AEHV14, BK10, DFF++21a, Don10, DKM++22, GGL08, GVT03, Kho96, MC08, PSK08, Yan10].

optical [BCK05, KR108]. Optimal
[Bai09, BTT13, ELV94, FS21, GHO15, HLM+18, LHL07, Lot23, LD07, MM95, Not98, WKS95, BLP08, BL22, BFPS10, BM05, CDDZ19, DH04, EG16, GTZ18, GR23, HW01, HW18, KKK13, Lai97, LP22, LZ23, MNCT07, MSS07, MP13, NV23, NA97, P14, RGG07, RSCTP15, SKSS22, SY18a]. optimality [NN10]. optimally [Cha07].

optimization
[ADO23, AN03b, BD21, BDK++15, BZ23, CWWZ22, Chu04, De 13, DD07, Gar02, GY08, HMK10, HP04, HZC23, HW22, KCS11, Laz16, LZQ12, Lin12, LMV04, MV13, NBKS99, ORU23, PW12, PPS20, RS10, Ris19, SW12, TV20, WC15, WN18, YB23].

optimize [MC08]. optimized
[EGMS20, OO11]. Optimizing
[DFF++21a, TGKR10]. option
[LLS12, Rag14]. order
[ABBP10, AEHV14, AEHV15, AABHV18, ABK15, BCR11, B14, BK21, BJ17, BNS20, BH16, BGM++12, BSI17, CEL++96, DOR19, DOR21, DMMR23, DLYV06, ELV94, GM17, GA18, GTI16, GHW06, GKY97, GL13, HM10, Hem96, JM10, Kap02, KL1++06, KP06, KM09, Lam12, Lee19, LY15, LZ23, LLV19, Lun20, MV13, MMN++10, MNCT07, MCLM20, RS01, SBB15, TSP006, UMO09, VHM++22, WQ07, WQZ09, Web10b, Web10a, X09, X11, YB23, ZN20].

order-reducible [BCR14]. ordered
[Bea94]. Ordering
[HS05, HS15, Sco99].

orderings [DS10, NA97]. ordinary
[BCR11, BCR14, Bot13, ZCW11]. oriented
[TC10]. Orthogonal
[FB95, VVM05a, AM95, BF96, DBG06, K12, MO94, MK23, PN18].

orthogonality [Par92]. Orthogonalization
[Jia96, LBG13, LW23, LL07, SW96, VS17].

orthogonalizations [Dax04]. orthogonalizing [Mat96]. Orthotropic
[GL96]. oscillators [MV19]. Oseen
[CBE18, HBH10, KLM++06, Ols99]. outer
[Cor04, DDKR23, Xia12]. output
[LW05]. outs [LPW06]. ovals [KVC12].
over-penalized [BPS13]. overall [BS01].
overlap [KK02, mMvdV02]. Overlapping [CS96, GQ15, CGM01, Gan99, GVT03, JS96, KP00, LMM00, MO11].
overrelaxation [BGN07, Gus03, ORU23].
Owe [Cao13, Vas05].
p [SP06, HMS99]. p-level [SP06]. Padé [BLW08, GGZ12, LZ09]. PageRank [BP22, CRZT20, HW21, LLFC3, LLNV17, MP18b, WW07, YYN12].
pairs [CLC11, GMS18]. pairwise [FLR03, MS22]. palindromic [LYL15, MMMM09]. panel [PR96]. Papers [Ano08, LD08]. parabolic [AT15, DHS23, JM10, KK13, LSC21, vVW23].
Parallel [AO07, AMMP06, Bas00, BLE97, BGM+12, BS10, CR16, FJP12, FM99, GMR05, GL98, GL02, GL13, He92, HS05, JO94, KK02, Kuz92, LVW01, LSS03, LWC16, MW16, MM97, MBW97, MSF21, NO04, RT99, The98, Voe92, WH94, ZYFG11, AGG+16, ACR+00, AMMR17, AMP99, BPS00, BMS17, BMS18, BvdV00, CS09, CS11, CJT03, DFNY08, DFHM20, FJP12, FM99, GMR05, GSS01, GMOS06, GL98, GL02, GL13, Ha92, HS05, JO94, KK02, Kuz92, LVW01, LSS03, LWC16, MW16, MM97, MBW97, Mez20, MC04, MR14, Pad99, PR95, PR96, Rak99, RK18, Ren98, SL19, Si97, TSPS06, Van00, WLH12, mMvdV02, mN04].
parallel-in-time [DFHM20]. parallelism [Vöm12]. parallelizable [GL5b].
Parameter [ZM20, AK99, BEG18, GNR14, GS05, He23, HHMP99, HKLP19, KPT14, LZ23, MSV13, Not92b, Xie21, Yan18].
parameter-dependent [BEG18, GS05, KPT14, Xie21].
parameter-free [Not92b].
parameter-robust [He23, HKLP19].
parameterized [CvG06, DHR20, HW18, flWyL+21, RMM19, TS20, VEV23].
parameters [Bai09, BNP15, GHO15, HW18, Mal06, dCSRS19, Yan04, Yan18, ZHJ12].
parametric [SH19]. parametrization [Hua12]. Parareal [DFF+21a, FS21, GL21].
particle [Sei10]. particular [ESC20, dF20]. partition [BD06]. partitioned [AB10, AB13, Cao13, Po00]. partitioning [CJT03, ED22]. partitionings [GKY97].
pattern [CDG00, ISZ09]. PDE [BDM+14, GH06, Lin12, OZB+18, PW12, PPS20, RS10]. PDE-based [GH06].
PDE-constrained [PPS20, Lin12, PW12, RS10]. PDEs [AT15, AMMR17, CGJ21, Hem96, Höm06, LP22, MO11, VSG09, VZ08, ZMO10].
Peaceman [LR95]. PEERS [KS04]. penalized [BPS13, Dos99]. penalties [MG08].
penalty [BCS09, BPS13, BDR17, DH04, La97, PS14]. pencil [WQ05].
pencils [BB01, flWyL+21]. Penrose [DW07, DWQW13, KKMM12, LXW13].
pentadiagonal [TS20]. Performance [BT15, Sei10, mN04, Aib06, BE98, MO14, MSF21, SST18]. periodic [CX22, KX13, Var08, WZZ18]. periodicity [BDS94]. permanents [WLH12].
permittivity [PR11]. permutation [May07]. Perron [Dem21, ES09b, KNX01, LCN13, MP18b, NX03]. Perron-based [MP18b]. perspective [BMS17, OST10a].
persymmetric [XH03]. Perturbation [Cas11, CLC11, GCLG18, GW00, WW08b, YL08, ZY19, CPF09, Cha12, CLTW11, FT98, JLW05, LS05, LS06, LCN13, LW15, MS22, O'H14, WKS95, WW20, WLO3, Xie21, YDH11]. perturbation-based [Xie21]. perturbations [AIT05a, AIT05b, BGS21, BSC20, LXW13, NR19]. perturbed
[Sau95]. Petrov [CGM11]. phase
[DY04, HS13, HHL16, NH06, SY18a].
phylogenetic [BL03]. physics [TC10].
physics-oriented [TC10], Physiology
[PM11]. Piecewise [HM96, Bos19].
piezoelectric [CN21]. pinch [LPW06].
pinch-outs [LPW06]. pipes [HG00].
pivoted [HC05], pivoting [BM05b, BM06,
EM11, LSS18, May05, May07]. placement
[Dod11, He21]. planar [GLGR10].
Planck [ZZ21]. plane [BLE97, Ypm95].
planewise [mMP99]. planewise-like [mMP99].
plants [Ozb13]. plasticity
[ABK97, Car97, HJR97, Wie09], plate
[AY11, CYZ99]. player [AD12]. Plemmons
[NN15]. plus [BLP17, DPRV19, Fas95,
HN05, KN07, MCV01]. point
[AN06, Axx15, Bao09, Bao12, BM06, Ber12,
BGM+21, BGO5a, Bir15, Cao04, Cao08,
Cao09, CjZ11, CH03, CGJ21, CRZT20,
DLsvL20, DL23, EG16, HP04, HD07,
HDH19, HW21, KP00, K018, KKR14,
Krz11, KKMM12, LLPC23, LOY08, LOS04,
LW07, LMV04, LSS18, MZ15, PPS20, PW13,
RS18, SjJH14, SX15, TH19, VEV3, VL96,
Wan18a, Web18, WBL14, Zha18, MST16].
point-proximal [BGM+21]. point-type
[Cao08]. points [HM06]. Poisson
[CKW02, CjL08, Dab92, GH23, RSR10, TSP006].
polar [CCG00, LS06, RT02, YL08]. Pole
[Dod11, LC13, LW04, LWO5]. poles [Mee01].
policy [BLLA11]. pollution [LC21].
polyadic [BVD+18]. polyhedral [Dah02].
polynomial [CCS19, CR16, CJSZ22, Gan05,
GKV12, HM96, HS08, HVX6, Lee16, LW98,
LM22, Lot23, WC15]. polynomials
[AK23, BB07, BGW05, BG05a, HDIS18,
KR14, M94, MN05, Nov03]. population
[DHSW11]. poroelasticity
[GLOW04, HKLP19, LRG01]. porous
[NH06, SBS15, WWX10, Yot01]. posed
[AGR21, BDRZ21, CLTW11, DNR12,
DNR18, Est09, GORR16, HDA19, NR14b,
RU22]. positive
[ARMW14, AIT05a, AV94, Bai16, Bai18a,
BP13, BMAA16, BT03, BMM20, BN21,
CS09, CS11, DJW+21, DPP16, DJ09, Kap98,
Kol05, LHL07b, MVV08, PS11, yPes07,
PW13, SR12, WW08b]. positive-definite
[DJW+21, DJ09, Kol05, LHL07b, MVV08,
SB12]. positivity [KSB13, MPR23].
powerflow [LB21]. powers [HLM+18].
practical
[DBG+13, Kap99, WQZ09, WM12]. Prandtl
[BGL+22, CGY22, GSTPT21, OC22,
SWW21]. Preconditioned
[Axe98, CGK94, CL23, DGM+16, GKK19,
HMS99, HES15, WCW20, AN06, BM13,
BL22, Ber12, Ber01, BN05, B06, Bla02,
BHJ13, BDRZ21, BE98, Cz02, Cao09,
DJW+21, Dan08, DWC5, DH18, D08,
DR03, GLJ19, IIFM23, K13, KPT14, LD07,
LV98, PR95, PR96, PL21, RV12, SJBH14,
SH20, TDL+22, WBL14, ZZ21, ZBCN23].
Preconditioner
[TT10, BPS15, BT03, B03, BC12, BPS13,
CPGV13, CJZ11, CNP96, CJW06, CS95,
CV13, Doh07, EES11, GN00, GTZ18,
HF01, IS09, K04, KLS23, KVS+18,
KV96, Kuz92, KP10, LS04, LSC21, May05,
May07, MC09, N16, OZ22, SPD05, SP06,
SLV13, SGP14, UM09, VEY23, Xia12,
XS11, XM17, Zha18, ZXS20, Zh014, vN00].
Preconditioners
[BEV22, CPS01, Est09, GS07, NV23, PSW14,
AY11, AN13, Bao16, BM17, BDDMS18,
BMM20, Bla02, BM05, BCHT04, BIA18,
BSI17, Cao08, CDG00, CDGM04, CGM01,
CC92, CW97, CEL+96, CDDZ19, DDG99, DP03, FP15, FK15, FS09, GMTV16, GNQ15, GR23, HLM92, HH06, Hem96, HKLP19, HK12, JLW05, KABH17, KY95, KKNY01, KK23b, KP00, Krz11, LW01, LOY08, Lee16, LJ04, LXS16, LC05, LW07, LWC16, Mal16, MS07, NV08a, NR12, Osw95, PW12, PS00, QvGvW21, SMSW00, SW12, Vas92, VL96, WDS09, WBWM04, Ye20, AFSCSU14, AT15, AL21, AK94, AV94, AWF02, Axe15, BCR11, BCR14, BD21, BK21, Bas00, BGM09, BPS00, BGM+21, Bla94, CN21, CDDSC12, De13, DL17, DLY07, Dos99, DKVB15, FJ12, FJP16, GM11, Gus03, GL95b, HPS03, JZ09, JK17, Kap94, Kap98, KK02, Kap02, KM99, KP08, KOV17, Krs02, Kra06, KMS08, LV04, LM22, LW03, MFFJ18, MM95, MM02, NO04, NR11, NA97, Not98, Not02b, NVC05, PPS20, PW13, Poi00, QPS23, SP18, SL10, TSM21, Vas02, VHM+22, WH94, XCC820, AB13, Cao13.

Preconditionings [GKY97, KNY99, NY03].

to [Gar04]. priori [HM96]. PRISM [Axe98].

Preconditioning [ABM17, AN03b, AB10, ABNP15, ABK15, CFAM16, Egg07, Gro00, HW19, HSC05, MW11, Puls09, QvGvW21, SMS00, SW12, Vas92, VL16, WDS09, WBWM04, Ye20, AFSCSU14, AT15, AL21, AK94, AV94, AWF02, Axe15, BCR11, BCR14, BD21, BK21, Bas00, BGM09, BPS00, BGM+21, Bla94, CN21, CDDSC12, De13, DL17, DLY07, Dos99, DKVB15, FJ12, FJP16, GM11, Gus03, GL95b, HPS03, JZ09, JK17, Kap94, Kap98, KK02, Kap02, KM99, KP08, KOV17, Krs02, Kra06, KMS08, LV04, LM22, LW03, MFFJ18, MM95, MM02, NO04, NR11, NA97, Not98, Not02b, NVC05, PPS20, PW13, Poi00, QPS23, SP18, SL10, TSM21, Vas02, VHM+22, WH94, XCC820, AB13, Cao13].

Prediction [BS10, PGT14]. Predictive [FM15].

Preface [Axe02, AK10, Cve09, Dat01, NT04].

Prefiltration [NY03]. Preordering [LSS18]. presentation [EJK01]. preserving [HHLL16, LW23, PR16, Wan00, WRW18].

Press [Nab97, Amb15].

Primal [HP04, RT02, FLP00, WSN19].

Primal-dual [HP04, WSN19]. primitive [Den21].

principal [GH06, HW22, LB17, LC21, PY22].

principle [BC02, Vos09]. principles [Gar04].
KP00, KK13, KR06, KT08, KMS08, KLM14, Krz11, KM92, LLI97, LR95, Lay05, LPV01, LV99, Lee21a, L23, LW07, Lin12, LZ12, LW16, LW17, Liv04b, LL97, LS22, LV98, MZ15, MB21, Ma22, MMM09, MS07, Mar00, Mar98, MRT02, Mar16, MSS07, Mav01, MSP13, MM97, MBW97, Mez20, MM02, MSB18, MZ98, NV23, NR14a, NR14b, Nov03, OS10, Pad99, PBN05, PSW14, PPS20, Pen08, PH19, PL21, RU22, RR12, RNV21, ROA13, RMM22, SLK16, SCP20, SKK22, SX15, Shi02, Shi04, SY18a, SV11, Sta96, Sto92, TDH18, Tre13, TT15, VEV23, VJM16].

problems [VL96, Ver00, Wan00, Wan18a, Web18, WWC15, XG10, XZS15, XXW19, wX15, XCG16, XX22, YBZ19, YCY17, ZZ15, ZN18, Zha18, ZHZ10, ZY19, ZSCX10, mMP99, mM04, VW01].

Procedure [IDVV96, GL21, JZ09, JK17, LR95].

processes [AD11, BMMR18, BL03, Buc11, DGB13, GCLG18, NH06].

processing [Dat01, KLN99, SKR08].

Procrustes [CZ15, KH07, XCG16].

producing [SH19].

product [Aih20, BW17a, BSMN22, Che15, DQW15, DK15, FzwCW17, Gus04a, HXM19, HL21, KN07, LS04, MGF02, Per06, RU22, RX10, ZSKA18].

products [BB01, DWWQ13, LPS16, Mat96, Mey94].

Professor [SGP14].

profile [HR05].

program [CCLQ18].

programming [BDdSM18, BGM+21, BNP15, BMMR18, CQX11, CR20, CcvG06, CMSW19, DMS17, DD07, DR03, EGF11, GA18, HLLL13, KLM14, LC13, LW05, LZQ12, LYL15, MP13, ODH21, QXB09, Ste99, ZS15].

quadratic-bilinear [GA18].

quadratics [GSTPT21].

quadrature [GL21].

quality [BC10, Kap98, NY03].

quantification [Lee21b, SCP20].

quantity [FOV21].

Quantized [KKS19].

Quantum [CVY21, KMMR10].

Quasi [RSCTP15, BMM20, DEM18, Gar01, Gar02, HMS99, LY15, MN05, SW96, YM22, ZZ15, Bai18a].

Quasi-HSS [Bai18a].

quasi-isometric [Gar01, Gar02].

quasi-kernel [MN05].

quasi-minimal [SW96].

quasi-Newton [BMM20, DEM18, ZZ15].

Quasi-optimal [RSCTP15].

quasi-rational [YM22].

quasi-uniform [HMS99].

quasiseparable [BEG18].

quaternion [JNS19, LW23].

question [JK09].

queueing [BLLA11].

quotient [CX22, CX23a, CX23b, CHCS22, ...]
FK15, Het07, NZ14, PS95, Zho06.

quotient-gradient [CHCS22].

Reeves [YBZ19]. re**fined** [BB00, HS08, KR11]. Re**finement** [GL95a, BS01, BGM+12, CR16, DMM+08, DFF+21a, FS21, GORR16, GA18, HNR+18, KCS11, Lay05, LO13, Lee18, LW21, MMM06, MV13, MR14, PV99, PY22, Shi02, Shi04, SSSF23, VP95, YZ13, ZS08, vGSZ15]. reduction-based [MMM06].

reaction-diffusion [DOR21]. **Real** [AK00, YPC20, BF19, Bra02, CHV05, GHR08, MZH17, MSV13, MV19, Sot13, vNR07]. real-equivalent [MZH17]. Real-time [YPC20]. realizability [Sot13], realizable [CFX05]. realization [Baz08, PR96]. reciprocals [Vo2110]. reconstruction [CSNY05, PN18]. Recovering [MK23]. recovery [AGG+16, BZ23, DDM23]. rectangular [BS01, Le 23, LS06, Osw95, Pu09]. Recursive [FLM09, HSY18, NV08b, LSS03, Not05a, NA97, SS02]. **Recycling** [OZ22, RLG12, SGM15]. red [NA97]. red-black [NA97]. reduced [ES05, GH11, KN14, Sir19, VW15]. reduced-rank [ES05]. redu**cible** [BCR14, ZWQA18]. Reducing [GHJV16, VY14, Zhou92]. reduction [AGRR21, AK94, BB17, BPS05, BTT13, DFF+21a, FS21, GORR16, GA18, HNR+18, KCS11, Lay05, LO13, Lee18, LW21, MMM06, MV13, MR14, PV99, PY22, Shi02, Shi04, SSSF23, VP95, YZ13, ZS08, vGSZ15]. reduction-based [MMM06].

reduction-in-time [DFF+21a]. reductions [KNX01]. Reeves [YBZ19]. refined [BB00, HS08, KR11]. Re**finement** [GL95a, BS01, BGM+12, CR16, DMM+08, DFF+21a, FS21, GORR16, GA18, HNR+18, KCS11, Lay05, LO13, Lee18, LW21, MMM06, MV13, MR14, PV99, PY22, Shi02, Shi04, SSSF23, VP95, YZ13, ZS08, vGSZ15]. reduction-based [MMM06].

regenerator [Per06]. regenerative [AD11]. region [HS18, fLWyL+21]. Regions [PS95, Naz95]. registra**tion** [GHW06, HMM10, Höm06, RGM17].

Regression [TSMM21, ES05, PY22, PLMV23]. regular [CLC11, FG02, FT98]. regularity [Dah02].

Regularization [BGM09, DHNR18, IDV96, BCB14, BDR17, CRS05, CLTW11, Don05, DNR12, FRR16, GNR14, LHW11, Spi21, WLC21]. regularized [BL20, ES07, ES09a, FGT11, MIV05, RLG12]. regularizer [KRW08].
Regularizing [CDDZ19]. Reissner [CYZ99]. related [AK94, DSV18, DP23, DKM+22, ESC18, GGZ12, Li00, MPR22, Mor09], relations [Tia13]. relationships [JYZ17, Tre05].

relative [DOP21, DP23, YM22]. Relaxation [BKM+12, LLV19, DDKR23, Dax94, FHM21, FP95b, Gan99, HM18, He23, LZQ12, Liv04a, PBN05, SX15, SSSF23, Yan04].

Relaxation-corrected [BKM+12].

Reliable [Ber01, Hla99]. remarks [LS06, Mar95]. removal [LCZZ21]. Reorthogonalization [DKVB15, Van00, Zou23].

Reorthogonalization-based [DKVB15]. Repairing [Ver00], repeated [AT00]. repetitive [DGB+13]. representation [CC07, DEM18, VVM05c, Vom12]. representations [RMM22, VR23]. representative [KKO20]. representing [MO16]. reservoir [LVW01, LWC16].

residual [AC23, AM95, GH01, Gus03, HMS99, JR94, JK17, Kap05, LWC16, MO94, MRT96, SW96, Saa00b, Sta96, SLA+21]. resilient [AGG+16]. resolution [CNYS05, JK09, TR21]. resonant [AG99].

Respectively [Bai18b]. Response [AB13]. restart [KLMP21, MYD20, MN00].

restared [Dax19, Jou94, MP14, Sim99, VL11, ZM08, Zho18, Zif00, Zif05].

restarting [BD15, SHJC18]. restoration [BC02, CNXY20, Per06]. restoring [NWZ17]. Restricted [BK11]. result [FP95b]. resultant [BGW05]. results [BF19, BNS20, BMS09, DFF+18, Kap94, MMN+10, MM18, NH98]. retinex [YHS18].

retraction [Kau07]. retrieval [BF96, FJ05].

reward [Buc11]. rewards [Par92].

RIC [Not94]. Riccati [AJH20, BGX06, BLP08, GB11, GL95a, Gra08, HM14, HLL16, IP13, LB08, LS15, Lu05, Miy17, Var08]. Richard [LPQ06]. Richardson [Pas19]. Ridge [TSM21]. Riemannian [BZ23, FJ05, HS18, HW22, MB21, YBZ19, YHAG20].

Riesz [DKM+22, MDMS23]. Right [SHZ20, ARSO14, ARMW14, Liu12, SHJC18].

RLSL [BLP01].

Robert [NN15]. Robust [AY11, BMN05, JNS19, KSB13, KW99, KLM14, MMC12, Not02b, SNZ20, ZN22, AMM04, BT03, CDG00, CGJ21, GTZ18, He23, HKLP19, KKNY01, Lee10, NV23, S99, Xia12, XS11, vN00].

robustness [NR22, ST17b, XXCB20]. root [AEHV15, Dem21, LZ09, LH17, Mor09, PRP09]. root-finding [PRP09]. roots [CC20, MO94].

rotated [CG15]. rotating [SL19]. rotation [ST23]. rotations [MCLM20, Ypm95]. rounded [BH07].

roundoff [WW11]. row [Dax94, May07, RS01, SLV06, Sco99, WX21, ZHZ10].

Ryckibi [Amb15].

SA [BMM+08, GX14, HVX16]. SA-AMG [HVX16]. saddle [AN06, Axel15, Bai09, Bai12, Ber12, Cao04, Cao08, Cao09, CJZ11, CH03, CGJ21, DLSvL20, DL23, EG16, HD07, HDH19, KP00, KRK14, Krz11, KKMM12, LOY08, LOS04, LW07, LSS18, MZ15, PW13, RS18, SJBH14, SX15, VEV23, VL96, Wan18a, Web18, WBL14, Zha18].

saddle-point [Bai09, Bai12, CGJ21, EG16, HD19, KKKR14, KKMM12, LOY08, LSS18, VL96, Wan18a, Web18].

SAXPY \cite{Ypm95}. Scalable \cite{DH04, OZB+18, FOV21, FLP00, Liv14, MW16}.
Scale \cite{VW01, Axe98, BB17, Bar02, BCB14, Ben08, BLP08, BES14, BHL+22, CGJ21, DMY03, DGP19, GLJ19, Gra08, GR04, HJ18, Lee16, NH06, Sir19, XM17}. Scaled \cite{Yan18, Bai18b, CTP09}. scaling \cite{BBKY06, CZS22, GHO15, HS15, USS21}.
scattering \cite{FGT11, MV13, WDS09}.
Scheme \cite{Zha92, BS01, BMS17, BMS18, CRV14, GB11, GSS01, GMOS06, HY22, KV15, LLS12, Poi00, Pul16, RR12, ZZ21}.
schemes \cite{AIT05b, AJ94, Bir15, DE06, Gus03, HM18, HM14, KABH17, OC04, SWW21, VSG09, XZS10}.
Schmidt \cite{Dax04, LBG13, LL97, SLA+21, Van00, WL08, Zou23}.
Schoenmakers \cite{DPP16}.
Schrodinger \cite{CJL08, WRW18}.
Schur \cite{BG00, DHBV21, BCK05, BG05a, Bra02, BCGM09, BD15, Bun92, CN21, HKKP07, KSB13, KW99, Kra06, KLM15, LXS16, LW03, MMM09, MW16, NG15, PW12, Rak99, SGP14, TSPSO06, WW08b, WTWG14, vNR07}.
Schwarz \cite{AB13, Cao13, AALS01, AB10, AG19, BK11, CZ02, DS08, EGM520, KP00, KWS+18, LSC21, OC04, SWW21, VSG09, XZS10}.
science \cite{KK23a}.
scientiﬁc \cite{Axe98, KK23a}.
searches \cite{DMY03}.
Schoenmakers \cite{DPP16}.
Schrödinger \cite{CJL08, WRW18}.
Schur \cite{BG00, DHBV21, BCK05, BG05a, Bra02, BCGM09, BD15, Bun92, CN21, HKKP07, KSB13, KW99, Kra06, KLM15, LXS16, LW03, MMM09, MW16, NG15, PW12, Rak99, SGP14, TSPSO06, WW08b, WTWG14, vNR07}.
Schwarz \cite{AB13, Cao13, AALS01, AB10, AG19, BK11, CZ02, DS08, EGM520, KP00, KWS+18, LSC21, OC04, SWW21, VSG09, XZS10}.
science \cite{KK23a}.
semi-algebraic \cite{MC08}.
Semi-coarsening \cite{Mar98}.
semi-definite \cite{Ema12, KH07, WW08b}.
semi-iterative \cite{CH05, LJM14}.
semi-monotonic \cite{LD07}.
semi-orthogonality \cite{Par92}.
semi-separable \cite{MCV01, Xia12}.
semi-structured \cite{GLR10}.
semicoarsened \cite{RNV21}.
semiconductor \cite{GMR05}.
Semiconvergence \cite{CS11, WX21}.
Semidefinite \cite{LZQ12, CS09, CS11, CCLQ18, HHQ13, PS11, TR21}.
semi-discrete \cite{BG15}.
semilinear \cite{ZZ21}.
Semilocal \cite{GD11}.
semiorthogonal \cite{MM11}.
Selfadjoint \cite{AV94}.
Semi-active \cite{TV20}.
semi-active
[CX22, CX23a, CX23b, DJW+21, FK15, JZ11, PL21, WW20, ZJ06, Zik08]. sides
[ARS014, ARMW14, SLJC18]. Sign
[Nab97, CLC11, GM17, GGZ12, SST18]. sign-indefinite [GM17]. Sign-Solvable [Nab97]. signal [Dat01, HM03, ZG22]. Sign
[Nab97, CLC11, GM17, GGZ12, SST18]. sign-Solvable [Nab97].

Signorini [Hla99, IV04]. similarity [VVM05a]. similarly [Tre05].

Signorini [Hla99, IV04]. similarity [VVM05a]. similarly [Tre05].

Simple [DK15, Pe~n03, AT15, GM17, LT11]. sinc
[BCR11, BCR14, NSCTP05]. Sine
[CF97, QPS23]. single [BHL+22, PDV05]. single-channel [PDV05]. singly [HS05].

Singular [AFSCSU14, BCC98, CKW02, Ca08, CWW22, CL13, CS21, Dod11, EN17, FP95a, FH94, GT16, HS11, HS14, HS21b, HHL16, JLW03, JY96, Krz11, KKMM12, KMM19, LSL01, LHS07, LH11, LT13, MB21, Ma22, MPS96, NR14b, PH19, Roh92, SHvBW21, Saut95, SS97, SNZ20, SHZ20, Sxy94, TH09, Tre05, ZW10, ZSKA18]. Singular-value
[AFSCSU14]. singularities
[BLZ08, CKW02, Dab02, LLW09]. singularity [BG23, Ver00]. sixthtieth
[LPQ06]. size
[BMMR18, FJP12, KKO20, MYD20]. skeleton [Zou23]. Sketch
[TYZL23]. Sketch-and-project [TYZL23].

Sketch-and-project [TYZL23].

skew [BG07, KKR14, LHL07b, SB12, Wu15, ZM20, Bai18a]. skew-Hermitian
[SB12, BGN07, KKR14, LHL07b, Wu15, ZM20, Bai18a]. slicing [CR20]. sliding
[AMR18]. small [DXW12, KV96]. smallest
[MV08, MM11]. SMASH [CCE+18].

Smith [BES14]. smooth
[Car97, HKKP07, The98]. Smoothed

[BDM+14, CDW06, HST22, OS10, Sch12, BMMS08, BVV12, GHT09, KWS+18]. smoother [GH23, LRG017, ZVO14].

smoothers [AK19, BO18, CB21, GGL08, GKV12, HBB10, Lot23, LM14, MO11, SWW21, Yan04]. smoothing
[BC09, EZ96, GLOW04, GH23, HP97, TC10].

solvability [XHZ03]. Solvable [Nab97]. solve [BG13, DV19, HXM19, KBF15, Liv04b, MZH17, ZJ06].

solved [CZ22]. solver
[BvdV00, Bos19, CHV05, DJW+21, GKK04, IIFM23, KKK, KR06, LP22, LSS03, LM06, MNCT07, MRT02, Ols99, OZ22, Pad99, PR11, RTN03, Rak99, RGG07, RGM17, SS02, Sol14, SKR08, TW20, TH19, Vab23, Yot01].

solvers [AGG+16, AG99, ABK97, Ber01, BC02, BO13, BHL+22, DNM+22, FC23, FS09, HLM92, HLM+18, HS05, KKP18, LR08, Lee16, Mey94, MSB18, NO04, Sch12, Sco99, Web18]. solves [Cha07, GP18].

Solving [BG05a, CCS19, EAA19, Nov03,
WZZ18, AH02, AL21, AMMR17, AK99, AK00, Bai18b, BW19, BL20, BSH17, Cao04, CQ10, CWWs18, CL23, CC03, CNY05, DA21, DN12, DDL+21, EM11, FH94, HKKP07, HM14, HL21, JMW05, Jou94, KS15, KKMM12, KM92, LT09, LWZ22, LLV19, Liv14, MZ15, MLV05, Mez20, NQ96, PM97, yPxP06, QACT18, RSR10, SL19, Shi02, Smi19, Sto92, STJ18, TT10, USS21, Var08, Vla00, WTZD10, Yan23, ZL22, mMP99, mM04, vGSZ15]. Some [BFG95, BM05a, CGK94, CZ02, HM14, LS06, Mar95, Sun06, Ber01, BB06, CDW06, DP23, DSS10, ESC20, GL08, LHL07a, Peñ09, XZS15, dF20]. SOR [Che02]. sorting [Bra02]. source [TH19]. Space [Lee12, AT15, AMM04, AFK02, BPSH13, BMS17, BMS18, BV13, BC12, DHNR18, GB15, How18, ITS07, KV92, Kar14, LHL07b, LZZ22, LB12, VEV23, Wan18b, Wan18a, WCC20, Wu15, wX15, ZM20]. spring [EKS02]. spring-mass [EKS02]. SQP [AH02]. Square [DNR12, TY10, Mor09]. squared [BES14, CL23]. squares [AB00, AK99, BDGL09, BW19, Bar02, BMM06, BGM09, BGM+12, CYZ99, CNP96, CTP09, CP12, CP06, DE98, DH18, DV07, DWWQ13, DDL+21, EAA19, ES07, ES09a, ER96, EV23, FB05, GW00, GR05, KMM18, KLM+06, LV02, pLL07, LZ12, LW17, LLL7, MS22, MN+10, MVK04, MLV05, MDB21, MVLB23, MYD20, Miy15, PY22, Pen08, RN98, RL12, Sto92, TDH+18, Tan13, Vab23, WKS95, WCC+15, XXW19, ZHZ10, ZY19]. squares-total [ZY19]. SSOR [Bai16, GKY97, WH94]. SSOR-like [Bai16]. Stability [CJW06, DHS95, OCYM08, BV13, DGB+13, DS13a, EM11, KSB13, Lee10, NX03, Peñ03, Saut95, ST17b]. stabilization [AB12, AG19, DGB+13, DGR11, Lay05]. Stabilized [BH07, MW21, Cao04, CL23, EY03, KOV17, LMM00, RGM17]. Stabilizing [VV97]. Stable [OS01, ABK15, CGS20, Gem00, GMS18, LWX13, LSJ18, MCV01, ZG22]. Stably [CC20]. stage [AMMP06, BM17, JS96, MPS96]. Staggered [DFF+18, OCYM08]. standard [Han13, LPV01]. standard-form [Han13].
survey [CQZ13, ST23, SK01]. **SVD** [FJ05, GL18, SSB19, QX09, ZN20]. sweeping [BPS20, MN00]. **Sylvester** [Bau08, BMAA16, BHHJ13, CLR01, CD11, DIPR19, DXW12, HJ18, JMRP18, KLMP21, LZZ20, MP15]. **Sylvester-observer** [CLR01, CD11]. symbol [BEV22, BG23, DGM +16]. symbols [ESC18]. Symmetric [AITS05b, Liu22, PN18, QXB09, Zha92, ARMW14, AG95, AK00, BGP97, BV00, Ber12, BMM20, Bla02, BCS09, BPS13, BMO5b, BM06, CL96, CR505, CR20, Ca04, CS09, CS11, CDGMm04, CK01, CHV05, CS95, DS10, DJ09, EW13, EZ96, EN17, GB11, GM11, GMTV16, HKK07, HR05, HVCY21, HES15, HS15, IK00, Jia17, KKS18, KH23, Kap08, Kan07, LOY08, LJQ13, LLLJ16, LW22, pLL07, Lu05, MV08, MZ98, MST16, NSCTP05, Not02a, O1H14, PS11, PS00, RT02, RS18, RMM19, ST17b, Sei10, SS97, Sot13, VVM05b, WQZ09, WBL14, Wu15, XHZ03, XQ09, YZCQ23, YLH11, ZZLX20, ZQW13, vN00]. symmetrization [FBSC21, GM11]. symmetrizing [Tyr92]. symmetry [Pen08, Szu14]. symmetric-constrained [Pen08]. symplectic [DS13a]. synchronization [CvG11, ŠLA +21]. Synchronous [EGMS20, BZ13, Mez20]. synthesis [RGG07]. system [AALS01, BC09, Baz08, BB06, BvdV00, BGM +12, CJL08, GLOW04, GP18, HES15, ITS05, KLM +06, KRW08, LW04, MN +10, SB12, SCD04, USS21, ZS08]. systematic [GLOW04]. Systems [Jia96, Nab97, ARSO14, AM06, Ada04, ACR +00, AL21, AMP99, AMMP06, AK00, AN03b, BPS15, BGS21, BLP17, Bai18a, BG13, BB1J7, Bas00, Batt05, BMG09, BFP010, BEH +17, BDiSM18, BM20, BM05, BWD17, BEG18, BRT07, Bot13, BVD +18, BSI17, CS09, CS11, CDGMm04, CD11, CPSM06, CPS01, CSCTP05, CC03, CNY05, CR01, CA99, CHV05, CS95, CP06, DSV18, DDG99, DHM20, DIPR19, DGR11, Dob09, Dod11, DGM +16, DFF +21b, DL23, DN12, EKS02, Ema12, EN17, EM11, FP15, FML09, FM18, FH94, Gen00, GLJ19, GM11, GSS01, GTY97, GA18, GKY97, CS05, GD11, HLM +18, HKK07, HS11, HK05, HW18, HTCTP05, IIFM23, JZ09, JK17, JYH18, JL09, JSh04, KBF15, KM99, KKR14, KKKM12, La097, LX08, LOY08, Lee19, Lee21a, LOS04, LJ04, LHL07b, LT09, LC13, LZ22, LC05]. systems [LC07, LW03, Lot07, LSS18, MO11, MP20, MS14, MW11, MZHB17, MCV01, Mey94, MPS96, MST16, NSCTP05, NCV05, PPS97, PW13, QACT18, RK18, RS18, RVW98, S99, SS02, Sac05, SP05, SP06, SP18, SS07, SH19, SWSW00, Spi21, Ste95, SHZ20, Sm05, SL10, SJHC18, Szu14, TYZL23, TT10, TR21, TC10, VfD13, VZ08, WD08, WM12, Wan18b, WTGW14, Wu15, Yan23, Ye20, ZW10, ZL22, ZXS20, vGSZ15, HS14, HS21b].

T [mM04, ZN20]. **T-SVD** [ZN20].

tangential [AN03a, AN07]. technique [CN21, HM03, IP13, NY03, WZZ18, XCC20]. techniques [ACR +00, BB00, Bla94, CDDSC12, CS97, CFAM16, Dat01, ELV94, GKL18, GR14, HK02, HS05, LM06, QPS23, ZS99, Ver00, YHAG20, BFG +18]. technology [RSC20]. template [LB17]. Tensor [ADO23, BFG +18, BZ23, DHW16, JYZ17, KK23a, SKKS22, SVV22, VR23, ADMS22, AT15, AGCH21, AK16, BG13, BMAA16, BH16, CWW22, CLNY15, CL23, DW15, DH18, DQW15, DK15, DDL +21, DS13b, EAA19, ED22, ET23, FzwCW17, HKST12, HS18, HDSI18, HM19, HL21, KK16, KKS19, KK23b, KN14, LQY13, LCN13, LXX17, LW22, LL19, Liu22, LP16, Lun20, MS22, MK20, MYD20, OST10b, RU22, RMM22, STZ12, SN20, TYZL23, TYF23, WQZ09,
tensor-structured \cite{KK23b}, tensor-train \cite{RMM22}. tensors \cite{BW17a, BNS20, BSMN22, CQL18, CHCS22, DK23, ED22, FMPS13, HCD15, HKL21, HHQ13, KJ12, LKK14, LNQ13, Lun20, MCLM20, MCC+12, MK23, MVLB23, O’SH14, PN18, WQ07, WN18, ZN20, ZQW13, ZSKA18]. term \cite{BDR17, LAI97, WM12}. Termination \cite{BIR15}. terms \cite{PPS20}. tessellations \cite{DE06}. test \cite{BC09, CQL18}. tetrahedral \cite{BLA03}. texture \cite{WSN19}. TFETI \cite{DHBV21}. th \cite{AEH15, LZ09, LH17}. their \cite{BGS21, BKP02, CEQ07, KK23a, KCC16, KU92, LY15, LHW11, LWS+23, MDMS23, MDB21, TIA13, VOM10, XIE11]. theorem \cite{ADI08}. theorems \cite{BBP03, BKP02, CP99}. Theoretical \cite{MO14, GAO04, NOT05b, WF15}. theories \cite{BDRS12, BNR18}. theory \cite{AHJ20, ABK97, ABNP15, CCV06, CQZ13, FT98, CPS01, CQ95, GL98, HM14, JU99, LQY13, MIIY17, PN18, WQ07, YM18, ZQ12, ZQW13]. thermal \cite{HK12}. thermoacoustics \cite{SGS15}. thin \cite{THE98}. third \cite{ABB10, BCR11, BCR14, LUN20, YB23, ZN20}. third-order \cite{ABB10, BCR11, BCR14, LUN20, YB23, ZN20}. Thomas \cite{LV12}. Three \cite{LWS+23, ALS01, BO18, BB96, CGVP13, DM10, HMMP19, HW18, HDH19, IBA92, KK23b, KTO8, Rja98, SKKS22, XZ15, YN12]. three-by-three \cite{HDH19}. three-dimensional \cite{AAI01, CGVP13, KV95, KTO8, Rja98, SKKS22}. three-parameter \cite{HMMP19}. three-way \cite{IBR02}. threshold \cite{SAAS94, SZA99}. thresholding \cite{CWZ22, HW22, LM06}. Tight \cite{DUL19, OOO11}. Tikhonov \cite{BCB14, BDR17, CR05, CLTW11, DON05, FRR16, GNR14, LHW11, RU22}. time \cite{AT15, ABK15, BAI12, BW17b, BMS17, BMS18, Bot13, CNT07, CAS11, CLNY15, CJL08, DV19, DFM19, DFF+21a, DGR11, DKL15, FS21, GZ16, GS07, HG00, HNR+18, KEN12, KK13, LAM12, LLS12, LP22, LGS12, LC13, LSC21, LPS18, MV13, MC09, RBV08, SL19, SY18b, SSS23, TH19, WZ18, YPC20, ZYFG11, ZZ11, ZSW13, vkv00, vvkv18]. time-delay \cite{DGRR11, LC13}. time-dependent \cite{CMT07, LP22, MV13, RBV08, ZYFG11]. time-exact \cite{BOT13}. time-fractional \cite{LPSV18}. time-harmonic \cite{BIA12, LGS12, ZSW13}. time-independent \cite{CJL08}. time-periodic \cite{KK13, WZZ18}. time-space \cite{ZZ11}. times \cite{KVV10}. tire \cite{SMSW00}. Toeplitz \cite{BF19, AHO2, BLPM17, BG05a, BG23, BG05b, CNP96, CPS01, CGK05, CNY05, CHE05, CS95, DON10, DGF16, DFF+21a, ESC13, ESC20, EST09, FLM09, FSB21, HR05, HEN96, HSTCT05, KNO7, LCO5, LCO7, Lot07, LPS15, MS14, MIV08, NR11, NPR13, NR19, NCV05, PS11, RSTCT20, SP18, WTWF15, DF20]. Toeplitz-block \cite{SP18}. Toeplitz-plus-Hankel \cite{KN07}. Toeplitz-type \cite{NR19}. tolerant \cite{RTN03}. tool \cite{FM15, GS97}. tools \cite{BBP03}. topology \cite{HP04, KSS22, VAS02}. Total \cite{CLNY15, MPR23, CTP09, FB95, GR05, LVD02, LW17, MVK04, MLV05, MDB21, XXW19, ZZ15, ZY19]. totally \cite{BP13, HUA12}. Trace \cite{KCS11, BFM12}. tracking \cite{LB17}. train \cite{ADO23, BZ23, RMM22, ZN22}. training \cite{PLMV23}. transfer \cite{DON10, GVT03, KV92}. transfers \cite{WTW14}. transform \cite{CVY21, CW97, DHR20, QPS19, YB23, TW20]. transformation \cite{FLP01, HSY18, LL97, MC09, OOO16, VVM05a}. transformations \cite{CHM20, DAX04, HAN93, JO01}. transformed \cite{MP20, SNZ20, WLC21}. transforming \cite{LIA12}. transforms \cite{FP05}. transient \cite{KWS+18}. transition \cite{BH16, LCN13}. translation \cite{KY95}. transmission \cite{HGO1}. transport \cite{AHJ20, CHA07, CGM11, HM14, MIY17, TC10].
travel [TH19]. treatment [JM10, MM09].
tree [Vöm12]. Trees [BMP11]. Trefftz [LLW09].
triangle [RSCTP15]. Triangular [Zho16, BNT94, BF11a, FP95a, GLR10, KABH17, KKR14, LPS15, MMMM09, Mit10, RS10, SRGL13, SST18].
triangulations [RSCTP20]. Tridiagonal [NPR13, Zha92, BPS15, BF19, BM05b, BM06, EM11, Jia17, LLLJ16, NR19, XQ09, YLLH11].
trigonometric [CHV05, FP95a].
trigonometry [Gus97, Gus98, Gus03].
trilinear [BG02].
triplet [BT11].
triplets [SS97].
tropical [CZS22].
Truncated [GKK04, KS15, GTI16, LHW11, MDB21, NR14b, SSB19].
truncation [STZ12, Zho16].
Trust [Naz95, HS18, fLWyL+21].
trust-region [HS18, fLWyL+21].
TTRISK [ADO23].
Tubes [LD08].
Tucker [GL18, JYZ17, YZCQ23].
Tuned [FK15, Mar16].
tuning [FLPW01].
tunnel [PM97].
twisted [XQ09].
Two [BM17, CSCTP05, CWwS18, CX22, DLVZ06, ES09b, rFS09, HH06, HM20, JS96, KM99, KV96, Ma22, PBN05, PL21, TSM21, XZS10, You6, Zha92, ZSWX13, Zik08, vRH05, AM06, AD12, AABHV18, AMMP06, AN13, BS17, CGPV13, CGM01, CG15, CX23a, CX23b, DJW+21, DY04, DFNY08, DBG06, DKM+22, EN17, ELV04, FVZ05, FK15, FH04, GV03, HK03, HT01, HvvR04, HVX16, HC20, HLLL16, Ian16, JZ11, KW5+18, LS22, MCV01, MSV13, MP15, MP596, NN10, NH06, Not10, NCV05, SY18a, VSG09, WM12, Wan18b, WW20, XZS09, Yan18, YZX13, ZJ06, ZZ21].
two-by-two [AN13, MP15, Wan18b].
two-component [NH06].
two-dimensional [DY04, LS22, XZS09, ZZ21].
Two-grid [CSCTP05, ZSWX13, CGPV13, CG15, ELV04, FVZ05, HVX16, HC20, NN10, Not10].
Two-level [DLVZ06, HH06, HM20, KM99, KV96, TSM21, XZS10, vRH05, CGM01, EN17, GVT03, IHvr04, KWS7+18, NCV05, VSG09, YZX13, Zik08].
two-parameter [Yan18].
two-phase [HHLL16, NH06, SY18a].
two-player [AD12].
two-real-parameter [MSV13].
Two-sided [CX22, PL21, Zik08, CX23a, CX23b, DJW+21, FK15, JZ11, WW20, ZJ06].
Two-stage [BM17, JS96, AMMP06, MPS96].
two-step [CWwS18, Ma22, PBN05].
two-term [WM12].
two-variable [HK21].
Two-Way [Zha92, MCV01].
type [Aih20, ABBP10, AABHV18, BR07, Baz08, Ben08, Cao08, CWwS18, CWS97, EG16, FG02, GKK04, GH23, HM14, KKNV01, KCV09, LHL07, LT13, LCZZ21, LS22, MP15, NR12, NR19, Pas19, SCD94, Vla00, ZCW11].
typical [XZS15].
UK£30.00 [Nab97].
Ulm [Ma22].
unbalanced [FLM09].
uncertain [DGB+13, DGR11].
uncertainty [Lee21h, NV23, SCP20].
unconstrained [HZZC23, Ris19].
underdetermined [QACT18].
Unified [Ax15, DHS23].
Uniform [BLZ08, Lee10, CLQY23, HMS99, XC13].
umiformization [Sid11].
umifying [Aih20].
umilevel [Tre13].
uminess [LLNV17].
umit [WCZ15].
umarily [YL08].
umitary [DPRV19, JR94, Lor14, Mat96, MCLM20].
umity [BDV06].
University [Nab97].
unreduced [MST16].
unsteady [OC04].
unstructured [Cho03, KV96, Mav01].
Unsymmetric [Jia96, EM11, GR04, HS05, SM14].
utangling [GKK04].
unwrapping [DY04].
update [ZZ15].
updates [BDdSM18, DEM18, TT10, Ty92, Zho06].
Updating [LB17].
Upper [Mar94, BNT94, Du19, GX14, ZLLH23].
US$49.95 [Nab97].
Use [HKST12, Bla02, BDS94, FH94, HS15, Yan04].
used [KV15].
users [GB15].
Using [BBP03, GB15, Kap02, AW11, AMR18, AKF02, BB16, BP13,
validation [CH03, OOO16], value [AFSCSU14, BBP03, BWN05, CWWZ22, CL13, Che15, JK18, Lee21a, LHW11, LT13, MB21, Ma22, MSB18, NR14b, Nov03, PBN05, PH19, Pul09, QvGvW+21, RTN03, RMM19, Sim03, SNZ20, SVV22, YY23, ZLLH23, ZM20, vNR07, vVW23]. usual [BG05b]. Uzawa [Cao04, HW18, PH19, Pul09, QvGvW+21, RTN03, RMM19, Sim03, SNZ20, SVV22, YY23, ZLLH23]. validation [CH03, OOO16]. value [AFSCSU14, BBP03, BWN05, CWWZ22, CL13, Che15, JK18, Lee21a, LHW11, LT13, MB21, Ma22, MSB18, NR14b, Nov03, PBN05, PH19, Pul09, QvGvW+21, RTN03, RMM19, Sim03, SNZ20, SVV22, YY23, ZLLH23].

years [Axe10, LBG13]. yielding [KLS23].

Yosida [PSW14]. Young [KVVW10].

zero [AD12, BB97]. zero-sum [AD12]. zeros [MN05]. Zienkiewicz [Ano08]. ZNN [Uhl23]. zone [NO04].
References

Ang:2021:ABC

Amodio:2000:ABD

Amparore:2011:RMF

Akian:2012:MMT

Adams:2004:AMM

Adib:2008:HPG

Alexandrov:2022:NCT
Boian Alexandrov, Derek F. DeSantis, Gianmarco Manzini,

Antil:2023:TTR

Amestoy:1996:MFM

Avron:2019:SCN

Amat:2014:AIO

Amat:2015:NFH

Axelsson:2002:SSP

Akinola:2014:CDN

Al-Fhaid:2014:SVE

Arbenz:1995:MSI

Arbenz:1999:CSL

Axelsson:2019:CFM

Agullo:2016:NRS

Alqahtani:2021:BLB

Abdulaziz Alqahtani, Silvia Gazzola, Lothar Reichel, and Giuseppe Rodriguez.

Al-Homidan:2002:SAS

Angelova:2020:ASL

Aihara:2020:GCL

Kensuke Aihara. GPBi-CGstab(L): A Lanczos-type product method unifying bi-CGstab(L) and GPBi-CG. *Numerical Linear Algebra with Applications*, 27(3):e2298:1–e2298:??, May 2020. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Amadio:2005:CPP

Amadio:2005:SSH

Andreev:1994:CDS

Axelsson:1994:DCR

REFERENCES

Arushanian:1999:ILS

Axelsson:2000:RVI

Axelsson:2010:P

Arismendi:2016:MCA

Aksoylu:2019:SMS

Ahmad:2023:BEA

Antoine:2021:OBD

[AL21] Xavier Antoine and Emmanuel Lorin. ODE-based double-
preconditioning for solving linear systems $Ax = b$ and $f(A)x = b$. Numerical Linear Algebra with Applications, 28 (6):e2399:1–e2399:??, December 2021. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[A MMP06] J. Arnal, H. Migallón, V. Mi-

Axelsson:2006:EEP

Achdou:2007:LFT

Axelsson:2013:GAA

Anonymous:2009:NLA

[Ano09] Anonymous. Numerical Linear Algebra with Applications impact factor for 2008 has been published to be 0.822. *Numerical Linear Algebra with Applications*, 16(9):i, ???. 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:2012:IIa

Anonymous:2012:IIb

Anonymous:2012:IIc

Anonymous:2012:IIId

Anonymous:2012:IIe

Anonymous:2012:IIf

Anonymous:2013:IId

Anonymous:2013:IIf

Anonymous:2013:IIa

Anonymous:2013:IIb

Anonymous:2013:IIc
Anonymous:2014:IIe

Anonymous:2014:IIf

Anonymous:2015:IIa

Anonymous:2015:IIb

Anonymous:2015:IIc

Anonymous:2015:IId

Anonymous:2015:IIe

Anonymous:2015:IIf

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIc

Anonymous:2016:IId

Anonymous:2016:IIe

Anonymous:2016:II

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IId

Anonymous:2017:IIe

Anonymous:2017:IIf

Anonymous:2018:IIa

Anonymous:2018:IIb

Anonymous:2018:IIc

Anonymous:2018:IId

Anonymous:2018:IIe

Anonymous:2018:II

Anonymous:2019:IIa

Anonymous:2019:IIb

Anonymous:2019:IIc

Anonymous:2019:IId

Anonymous:2019:IIE

Anonymous:2019:IIF

Anonymous:2020:IIA

Anonymous:2020:IIIB

Anonymous:2020:IIIC

Anonymous:2020:IID

Anonymous:2020:III

Anonymous:2020:IIId

Anonymous:2021:IIA

Anonymous:2021:IIIA

Anonymous:2021:IIC

Anonymous:2021:IID

Anonymous:2021:IIE

Anonymous:2021:IIF

Anonymous:2022:IIA

Anonymous:2022:IIB

Anonymous:2022:IIC

Anonymous:2022:IID

Anonymous:2022:IIE

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:2022:IIf

Anonymous:2023:IIa

Anonymous:2023:IIb

Anonymous:2023:IIc

Anonymous:2023:IId

Anonymous:2023:IIe

Anonymous:2023:IIf

Alber:2007:PCG

Abdel-Rehim:2014:ISM

Abdel-Rehim:2014:EEA

Abdi:2019:PII

Andrew:2000:ICD

Andreev:2015:MPL

Axelsson:1994:VSM

Alefeld:2011:BEA

Axelsson:1996:E

Axelsson:1998:PSM

Axelsson:1999:ESI

Axelsson:2002:P

Axelsson:2003:E

Axelsson:2004:E

Axelsson:2010:PYN

Axelsson:2015:UAP

[Axe15] Owe Axelsson. Unified analysis of preconditioning methods for saddle point matrices. *Numerical Linear Alge-
REFERENCES

Aksoylu:2011:RMP

Bai:2012:BAS

Bai:1995:PNS

Bai:2016:SLP

Bai:2009:OPH

Bai:2018:QHI

Bai:2010:MBM

Bai:2018:RSH

Zhong-Zhi Bai. Respectively scaled HSS iteration methods
Baryamureeba:2002:SLS

Basermann:2000:PBI

Batterson:1995:DAN

Baur:2008:LRS

Bazan:2008:NEP

Broyden:1996:CTB

Bazan:1997:ZLP

Fermin S. V. Bazán and Licio H. Bezerra. On zero lo-

Becker:2000:MTF

Benner:2001:EPM

Beuchler:2006:ISC

Bangay:2016:FLM

Boffi:2013:CAH

Barkouki:2017:MRL

Bronstein:2006:MMS

Branick:2006:EBA

Bacuta:2003:UFE

Bastian:2012:AMD

Blomgren:2002:MSI

Bai:2009:SNM

REFERENCES

Bai:2011:SDB

Bai:2014:ORS

Bergamaschi:2003:EAE

Brannick:2012:AMM

Bujanovic:2015:NFI

Barker:2021:AMP
[BD21] Andrew T. Barker and Andrei Draganescu. Algebraic multigrid preconditioning of the Hessian in optimization con-

REFERENCES

REFERENCES

Benzi:2017:AMC

Benzi:2011:NSM

Beuc:2003:APV

Ben:2008:LSM

Benc:2011:NSM

Ben:2014:SSM

Beuchler:2003:APV
Barakitis:2022:PFD

Berry:1996:LRO

[Michael W. Berry and Ricardo D. Fierro. Low-rank orthogonal decompositions for information retrieval applications. Numerical Linear Algebra with Applications, 3(4):301–327, July/August 1996. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).]

Bebendorf:2011:PAD

Bebiano:2019:NRR

Bebiano:2013:ACP

Borges:1995:SIE

REFERENCES

Benner:2018:WME

Brezinski:2012:MLO

Benzi:2010:SLS

Boley:2000:LSP

Branets:2002:DMT

Bini:2005:SQM

Bottcher:2005:SCN

[BG05b] A. Böttcher and S. M. Grudsky. Structured condition numbers of large Toeplitz matrices are rarely better than

Ballani:2013:PMS

Bogoya:2023:AET

Bellavia:2011:CEN

Brezina:2012:PAM

Bergamaschi:2021:NPA

Bai:2007:SOA

Zhong-Zhi Bai, Gene H. Golub, and Michael K. Ng. On

Bozorgmanesh:2016:CTP

[BH16]

Bouhamidi:2013:PBA

[BHHJ13]

Buttari:2022:BLR

[BHL+22]

Blick:2018:DDP

[BIA18]

Birken:2015:TCI

[Bir15]

Bertalan:2014:ONM

[BISC14]

Benzi:2011:RAS

Michele Benzi and Verena Kühlemann. Restricted additive Schwarz methods for

Barker:2021:MFP

Brezina:2012:RCB

Bakhvalov:2002:ETS

Baker:2010:IAM

Bohl:2003:IMP

Bai:2020:RHS

REFERENCES

5325 (print), 1099-1506 (electronic).

[Benner:2022:CAV]

[BL97]

[Blaheta:1994:DDI]

[BL02]

[BLLA11]

[BLE97]

[Bastian:1997:PAM]

[Bunch:2001:ADI]
REFERENCES

REFERENCES

REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Bot:2021:FCP

Berisha:2015:EAP

Bai:2018:ENM

Behera:2020:FRD

Beauwens:1994:IUT

Bell:2008:AMF

Borzi:2013:FSS

Brenner:2018:MMT

[BO18] Susanne C. Brenner and Duk-Soon Oh. Multigrid methods for $H(\text{div})$ in three dimensions with nonoverlapping domain

REFERENCES

References

Brannick:2021:MM

Bonettini:2007:SIS

Bennett:2001:EOD

Buckeridge:2010:PGM

Barbarino:2020:NHP

Buranay:2017:TCH

Behera:2022:CGI
Ratikanta Behera, Jajati Kesari Sahoo, Ram N. Mohapatra, and M. Zuhair Nashed.

Bischof:1992:GIC

Benzi:2003:RIF

Blanchard:2015:PCG

Benner:2013:ODS

Buchholz:2011:BRM

Bunch:1992:MPL

Bunch:1995:EDB

Bergamaschi:2000:ECE

Luca Bergamaschi and Marco Vianello. Efficient computation of the exponential opera-

[BW17b] Patrick Blonigan and Qiqi Wang. Multigrid-in-time for sensitivity analysis of chaotic dynamical systems. *Numerical Linear Algebra with Applications*, 24(3):??, May 2017. CODEN NLAAEM. ISSN 1070-
Bai:2019:GRC

Bertaccini:2005:EPM

Bai:2013:MBS

Bai:2017:MBM

Budzinskiy:2023:TTC

Cihlar:1999:NSN

Cao:2004:FUA

Cao:2008:ABP

Cao:2009:NSD

Cao:2013:CPM

Carstensen:1997:DDN

Caswell:2011:PAC

Claus:2021:NBS
Coley:2018:GMM

Chan:1992:CPE

Chien:2003:ALA

Cai:2018:SSM

Chaitin-Chatelin:2000:CNA

REFERENCES

REFERENCES

REFERENCES

Chang:2005:APQ

Chatzipantelidis:2005:FVE

Carvalho:2001:LPT

Chang:2011:GEB

Calandra:2013:ITG

Choudhary:2020:ANS

REFERENCES

Carson:2022:MPS

Chan:1994:LRR

Chen:2003:NVS

Chen:2005:SIM

Clevenger:2021:CBA

Chang:2007:CGM

Chang:2012:PFF

Cui:2022:RQG

Lu-Bin Cui, Qing Hu, Ying Chen, and Yi-Sheng Song. A Rayleigh quotient-gradient neural network method for computing Z-eigenpairs of general tensors. *Numerical Linear Algebra with Applications*,
Chen:2002:CSM

Chen:2015:GKP

Cho:2003:UMM

Ch:2004:CIO

Codevico:2005:SSR

Chien:2008:TIA

Cullum:2003:EPD

Jane K. Cullum, Keith Johnson, and Miroslav Tůma. Effects of problem decomposition (partitioning) on the rate of convergence of parallel numerical algorithms. *Numerical
REFERENCES

[CW02] Zhiqiang Cai and Chen-Yao G. Lai. Convergence estimates of multilevel additive and multiplicative algorithms for non-

REFERENCES

Chen:2020:SFI

Ching:2005:DMS

Chen:2017:BSC

Coroian:2004:IOI

Climent:1999:CCT

Copeland:2006:LSM

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Chun:2012:EAC

Chan:2001:PNH

Castillo:2006:ILS

Chen:2010:GSC

Cai:2011:FNM

Chang:2013:SST

Campos:2016:PIR

REFERENCES

REFERENCES

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

[CHN23b] Xiao Shan Chen and Hongguo Xu. QR algorithm with
REFERENCES

Cardoso:2015:SSP

REFERENCES

Damm:2008:DMA

Datta:2001:PSI

Dax:1994:RRM

Dax:2004:CPH

Dax:2019:RKM

Deng:2006:IOD

Duan:2016:LRS

Rodrigues:2019:EGM

[DSRS19] Elisa de Cássia Silva Rodrigues and Jorge Stolfi. ECLES: A
REFERENCES

DeSterck:2013:SDP

Dax:1998:AMN

Du:2006:ASC

DeGuchy:2018:CRF

Dembele:2021:MCP

Deng:2009:IO

Dendy:2012:MM

Dendy:2014:MM

Dendy:2018:MM

Dieci:2001:CIS

daFonseca:2020:ESP

Dumbser:2018:SDG

DeSterck:2021:OMR

Donatelli:2021:MMB

DeSterck:2020:CAP

DeSterck:2008:DTI

DiFiore:2005:LCM

Dabkowski:2013:SPS

DGC19

DGM+16

DGP19

REFERENCES

(1):??, January 2019. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

DEY:2011:SFS

DOUSTAL:2021:BRB

DYKES:2018:RMD

DOUGLAS:2004:CAM

DYLAVAND:2020:ECT

[DHR20] Zeynab Dalvand, Masoud Hajarian, and Jose E. Roman.

DOUSTAL:2004:SFO

REFERENCES

REFERENCES

DiPietro:2023:HOM

Damm:2017:NSF

DeSterck:2011:FMM

Dai:2003:IAP

Du:2012:NLG

Donatelli:2012:SRM

Dayar:2018:CVF

REFERENCES

[DOR19] Haniye Dehestani, Yadollah Ordokhani, and Mohsen Razzaghi. On the applicability of
REFERENCES

DAHER:2021:NDM

DOSTAL:1999:PPM

DELGADO:2016:AFC

DELGADO:2019:WMU

Gianna M. Del Corso, Federico Poloni, Leonardo Robol, and Raf Vandebril. When is a matrix unitary or Hermitian plus low rank? *Numerical Linear Algebra with Applications*, 26
REFERENCES

(D6):e2266:1–e2266:??, December 2019. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

5325 (print), 1099-1506 (electronic).

REFERENCES

Elmaliki:2011:EHP

Egger:2007:PCI

ElHaddad:2020:SAO

Elmroth:2001:CPG

Egana:2002:IEM

Elfvling:2007:BPS

[ES07] Tommy Elfving and Ingegerd Skoglund. A block-preconditioned
for a special regularized least-
squares problem. *Numeri-
cal Linear Algebra with Ap-
ISSN 1070-5325 (print), 1099-
1506 (electronic).

Elfvling:2009:DMR

[ES09a] Tommy Elfving and Ingegerd Skoglund. A direct method
for a regularized least-squares problem. *Numerical Linear Al-
gebra with Applications*, 16(8):
649–675, ???. 2009. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-
1506 (electronic).

Elhashash:2009:TCM

[ES09b] Abed Elhashash and Daniel B.
Szyld. Two characterizations
of matrices with the Perron–
Frobenius property. *Numeri-
cal Linear Algebra with Ap-
plications*, 16(11-12):863–869, ???. 2009. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-
1506 (electronic).

Ekstrom:2018:EEB

[ESC18] S.-E. Ekström and S. Serra-
Capizzano. Eigenvalues and
eigenvectors of banded Toeplitz
matrices and the related sym-
ols. *Numerical Linear Al-
gebra with Applications*, 25(5):
??, October 2018. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-1506 (electronic).

Ekstrom:2020:ESP

[SCH20] Sven-Erik Ekström and Ste-
fano Serra-Capizzano. Eigen-
pairs of some particular band
Toeplitz matrices: A com-
ment. *Numerical Linear Al-
gebra with Applications*, 27
(1):e2273:1–e2273:??, January
2020. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-
1506 (electronic).

Estatico:2009:PIP

[Est09] C. Estatico. Preconditioners
for ill-posed Toeplitz matrices
with differentiable generating
functions. *Numerical Linear Al-
gebra with Applications*, 16
ISSN 1070-5325 (print), 1099-1506 (electronic).

Eastwood:2013:FDE

[EW13] Shawn Eastwood and Justin W. L. Wan. Finding off-
diagonal entries of the inverse
of a large symmetric sparse ma-
trix. *Numerical Linear Al-
gebra with Applications*, 20(1):
REFERENCES

74–92, January 2013. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[FB95] Ricardo D. Fierro and James R. Bunch. Orthogonal projection
REFERENCES

[FBSC21]

[FG02]

[Fasino:2002:LTA]

[Farea:2021:ASL]

[Farea:2023:EGS]

[FGNW14]

[Fares:2011:FRL]

[Fer96]

Roland W. Freund and Marlis Hochbruck. On the use of two

REFERENCES

Iterative Methods and Parallel Computing.

[Friedhoff:2015:GPA]

[Fox:2018:AMD]

[Friedland:2013:BRO]

[Freitag:1995:RAD]

[Fairbanks:2021:EPQ]

[Fernando:1995:ICA]

[Frommer:1995:CRM]
REFERENCES

REFERENCES

and Parallel Computing, Part 2 (Milovy, 1997).

Gander:2005:CBP

Garanzha:2001:BVG

Garanzha:2002:MNO

Garanzha:2004:VPG

Gao:2011:INM

Gosnell:2015:USD

Gathungu:2022:HMM

Gomez-Corral:2018:PAF

Gomez-Corral:2018:PAF

Guo:2011:SGC

Gaspar:2008:DSM

Gleich:2013:PAM

Gomilko:2012:PFI

Gatica:2001:MRI

[GH01] Gabriel N. Gatica and Norbert Heuer. Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems. *Numeri-
REFERENCES

Galantai:2006:JPA

Greif:2011:BSC

Greif:2023:CFM

Gratton:2016:RCA

Griebel:2015:OSP

Glunt:1998:NDS

REFERENCES

2012. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

REFERENCES

REFERENCES

Gander:2000:APB

Gazzola:2016:LGK

Gavin:2018:KES

Goossens:1999:RHR

Grigori:2015:OPB

Gazzolla:2014:ETC

REFERENCES

REFERENCES

REFERENCES

2013. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Hamilton:2010:NMS

Huckaby:2005:SPQ

Hu:2020:TGM

Hao:2015:SSP

Heavner:2023:EAC

Hu:2007:IBB

Hansen:2019:HEB
Huang:2019:UMC

Hollander:2018:ADM

He:2021:IPL

He:2023:VBP

Hemmingsson:1996:TPB

Hezari:2015:PGI

Hetmaniuk:2007:RQM

REFERENCES

Huber:2022:FSI

Hemmingsson-Fränden:2001:NOP

Hakopian:2006:TLP

Huang:2016:NTP

Haber:2010:NOC
Hu:2013:FEE

Hemker:2004:FTL

Hached:2018:CKB

Han:1997:NAP

Hackbusch:2002:BKA

Howle:2012:BPF

Hadjifotinou:2021:ATV

[KH21] Katerina G. Hadjifotinou and Nicholas P. Karampetakis. An algorithm for two-variable ra-

Holm:2006:MDC

Haslinger:2007:PSC

Hsu:2021:CMN

Hong:2019:CDP

Hackbusch:2012:UTF

Hong:2016:MBM

REFERENCES

REFERENCES

Hanna:2003:CMB

Huang:2014:SPC

Huang:2016:MBM

Hochstenbach:2019:SMT

Heuer:1999:PMR

Norbert Heuer, Matthias Maischak, and Ernst P. Stephan. Preconditioned minimum residual iteration for
REFERENCES

Ho:2005:SIC

Hessen:2018:CMR

Homke:2006:MMA

Howell:2018:PSM

Hackbusch:1997:DGS

Hoppe:2004:PDN

REFERENCES

1070-5325 (print), 1099-1506 (electronic).

REFERENCES

REFERENCES

REFERENCES

Ixaru:1996:RP

L. Gr. Ixaru, H. De Meyer, G. Vanden Berghe, and M. Van Daele. A regularization procedure for $\sum_{i=1}^{n} f_i(z_j) x_i = g(z_j) (j = 1, 2, \ldots, n)$. *Numerical Linear Algebra with Applications*, 3(1):81–90, January/February 1996. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). URL http://www3.interscience.wiley.com/cgi-bin/abstract?ID=15000499.

Iwashita:2023:CAP

Ikramov:2000:BGF

Ibrahim:2022:ADF

Iannazzi:2013:SST

Imakura:2009:IWS

REFERENCES

Johnson:2009:STC

Jin:2005:CPS

Jun:2010:SOT

Jarlebring:2018:KML

Anonymous:1992:JNL

Journal of numerical linear algebra with applications, 1992. ISSN 0129-3281. World Scientific Publishing Co., Singapore; Philadelphia, PA, USA; River Edge, NJ, USA.

Jia:2019:RQM

Joubert:1994:IIC

REFERENCES

1070-5325 (print), 1099-1506 (electronic).

Janovska:2001:NHT

Joubert:1994:CBR

Jagels:1994:FMR

Jones:1996:TSM

Jing:2017:SGA

Jiang:2017:TTC

Jia:2009:PSA

REFERENCES

[KAP05] I. Kaporin. Superlinear convergence in minimum residual iterations. *Numerical Linear Al-
REFERENCES

Kaufman:2007:RAF

Kolberg:2015:EAS

Kostic:2017:IBM

Kostic:2016:PLT

Kokiopoulou:2011:TOE

Kostic:2009:GTL

Kemper:2012:LTB

Kiskiras:2007:NCS

J. Kiskiras and G. D. Halikias. A note on the complex

Venera Khoromskaia and Boris N. Khoromskij. Fast tensor method for summation of long-range potentials on 3D lattices with defects. *Numerical Linear Algebra with Applications*, 23(2):249–271, March 2016. CODEN NLAAEM. ISSN 1070-
REFERENCES

5325 (print), 1099-1506 (electronic).

Kharchenko:2001:RAT

Kharchenko:2020:NAT
Applications, 25(5):??, October 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Krukier:2014:GSH

Kandolf:2021:CLR

Khoromskij:2019:QCA

Kim:2006:FOS

Kraus:2014:RMM

Kraus:2015:ASM

Kressner:2021:CRB

[KLMP21] Daniel Kressner, Kathryn Lund, Stefano Massei, and Da-

Križek:1999:PPG

Kogler:2023:CAS

Kutchero:1992:AFM

Kolev:1999:TLP

Kravvaritis:2009:GFH

Kostic:2016:ACM

Vladimir R. Kostić, Agnieszka Międlar, and Ljiljana
REFERENCES

Kalchev:2018:MLS

Kuchta:2019:SNP

Ketelsen:2010:FEM

Kraus:2008:MPC

Kilmer:2007:KPA

Kindermann:2014:NA

Kwak:2003:DDM

REFERENCES

1070-5325 (print), 1099-1506 (electronic).

[KOV17] Igor Konshin, Maxim Olshanskii, and Yuri Vassilevski. LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier–Stokes equations. *Nu-
REFERENCES

Madlen Kimmritz and Thomas Richter. Parallel multigrid

[REFERENCES]

Kressner:2014:MEA

Kraus:2002:APM

Kraus:2006:AMP

Kostler:2008:MSO

Krzysztof:2011:BPS

Klawonn:2004:PEL

Knizhnerman:2010:NIE

L. Knizhnerman and V. Simoncini. A new investigation of the extended Krylov subspace

Kressner:2015:TLR

Kogler:2022:AMM

Keel:2013:RHS

Kraus:2008:MMD

Kublanovskaya:1992:RDA

Kuznetsov:1992:NPA

Kaagstrom:1992:GSS

Krizkova:1996:TLP

[KV96] Jitka Křížková and Petr Vaněk. Two-level preconditioner with small coarse grid

Kolev:2006:AEA

Kuzel:2015:EIS

Kostic:2012:LGE

Kincaid:2010:LTD

Khoromskij:1999:RSC

Kong:2018:FCT

Kim:2003:MMB

Lamers:2012:EHO

Kharchenko:1995:ETB

Langer:1997:E

Lai:1997:SCN

Layton:2005:MRC

Lazzaro:2016:NAL

Laz16 Damiana Lazzaro. A non-convex approach to low-rank matrix completion using convex optimization. *Numeri-
cal Linear Algebra with Applications, 23(5):801–824, October 2016. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Lin:2008:CAN

Lin:2005:ITP

Lee:2017:UAP

Lee:2021:AMN

Leon:2013:GSO

Lee:2021:AMN

Liu:2007:NBE

Li:2021:SPP

[LC21] Jingwei Li and Xiao-Chuan Cai. Summation pollution
REFERENCES

[LCHH18] Lin:2018:CDS

[Li:2013:PBP] [LCN13]

[Le23] [LCZZ21]

Leblond:2002:SAM

Lee:2010:USA

Lee:2012:SAE

Lee:2016:PPM

Lee:2018:MMR

Lee:2019:MSO

Lee:2021:AMS

Lee:2021:SAU

REFERENCES

Li:2012:PNS

Li:2008:ECN

Ling:2017:AEE

Li:2007:SSM

Hou-Biao Li, Ting-Zhu Huang, and Hong Li. On some subclasses of \(P \)-matrices. *Numerical Linear Algebra with Applications*, 18(2):205–221, March 2011. CODEN NLAAEM.

Li:2007:MHS

Li:2007:OGT

Li:2011:ICT

Zi-Cai Li, Hung-Tsai Huang, and Yimin Wei. Ill-conditioning of the truncated singular value decomposition, Tikhonov regularization and their applications to numerical partial differential equations. *Numerical Linear Algebra with Applications*, 18(2):205–221, March 2011. CODEN NLAAEM.
REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Li:2000:CBC

[Li00]

Linsenmann:2012:CRT

[Lin12]

Liu:2022:STD

[Liu22]

Livne:2004:CCR

[Liv04a]

Livshits:2004:AMW

[Liv04b]

Livshits:2014:SMM

[Liv14]

Lei:2004:BPS

[LJ04]
REFERENCES

[LLPC23] Fuqì Lai, Wen Li, Xiaofei Peng, and Yannan Chen. Ander-

REFERENCES

[Litvinenko:2023:CDD]

[Luksan:2004:IPM]

[Li:2012:CSD]

[Litsarev:2015:FLR]
REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

[LPQ06] Raytcho Lazarov, Joseph Pasciak, and Guan Qin. On the occasion of the sixtieth birthday...
REFERENCES

Lu:2015:FAI

Lamping:2016:SAK

Li:2013:EST

Lazarov:2001:ISC

Lyons:2006:F

REFERENCES

Li:2021:MST

Liu:2018:MGS

Li:2001:PMI

Lungten:2018:PSP

Liu:2008:MER

Li:2009:CAB

Liu:2011:SDM

Liu:2013:HTG

Lu:2005:NIN

Lund:2020:TFD

Luksan:1998:IPI

LeTallec:1999:ESM

Li:2004:EAS

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Lashuk:2008:SVE

Lashuk:2012:EAC

Lacroix:2001:DPI

Lemmerling:2002:STL

Leyk:1998:ELE

Loghin:2003:SCP

Lin:2004:PPA

Lin:2004:PPA

Lin:2005:PPA

Lin:2007:NCP

Li:2015:IRP

Liu:2016:CIM

Liu:2017:WMM

Li:2021:RGL

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LZ23]</td>
<td>Zhizhi Li and Huai Zhang. On estimation of the optimal parameter of the modulus-</td>
</tr>
</tbody>
</table>

REFERENCES

REFERENCES

REFERENCES

Michael:2012:SMT

Miao:2020:UJD

Mastronardi:2001:FST

Mandel:2003:CBD

Meng:2021:CNT

Mazza:2023:MBS

Meerbergen:2001:CPR

K. Meerbergen. Changing poles in the rational Lanczos method for the Hermi-
REFERENCES

Miya:2015:FEM

Miya:2017:FVC

Ma:1994:NCI

Mickelin:2020:ACT

Mickelin:2023:ROT

Mastronardi:2005:FRS

Margenov:1995:OAM

Meyer:1997:MAS

Arnd Meyer and Detlef Michael. A modern approach to the

Marek:1998:CAI

Mihajlovi:2002:CDP

Mihajlovi:2002:CDP

Mehrmann:2011:ACS

Mehrmann:2011:ACS

REFERENCES

519–537, 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

MongaMade:2002:SAP

Moriya:2000:DGM

Moret:2005:IFM

Mardal:2007:OOS

Manteuffel:1994:ROP

MacLachlan:2011:LFA

MacLachlan:2014:TBA

Mikhalev:2016:IRS

Moret:2007:RRK

Moret:2009:RLA

Mehrmann:2013:GSD

Moret:2014:RSI

Meerbergen:2015:SA

Mehrmann:2016:IFA

Mendosa:1998:CND

Martikainen:2002:FDS

Marcato:2007:IEC
REFERENCES

Malyshev:2014:FSU

Ma:2022:AAL

Mohamed:2018:ISG

Mitchell:2021:PPA

Mathew:2007:ABM

Morini:2016:SEU

Meerbergen:2013:JDM
REFERENCES

Mastronardi:2005:NLA

Mancini:2013:ISP

Mohammadi:2019:DRE

Markovsky:2004:CMS

Minster:2023:CDT

Mastronardi:2008:FAC

Mardal:2011:PDS

REFERENCES

[NCV05] D. Noutsos, S. Serra Capizzano, and P. Vassalos. A preconditioning proposal for...

Neymeyr:2002:PEE

Neymeyr:2005:NII

Naumovich:2010:AMW

NGuessan:2015:CAM

Noordmans:1998:CRS

Niessner:2006:MSM

REFERENCES

Nithiarasu:2009:JCN

Napov:2016:AMP

Napov:2010:WDT

Napov:2011:AAA

Nagy:2015:DRJ

Nakajima:2004:PIS

Kengo Nakajima and Hiroshi Okuda. Parallel iterative solvers with selective blocking preconditioning for simulations of fault-zone contact. *Numerical Linear Algebra with Applications*, 11(8-9):831–852, Oc-
REFERENCES

Notay:1994:DDV

Nota:1998:OCA

Nota:2002:CJD

Nota:2002:RPF

Nota:2005:AME

Nota:2005:AMA

Nota:2010:AAT

Novati:2003:SLI

Noschese:2013:TTM

Nazareth:1996:GNM

Noschese:2011:SDN

Noschese:2012:GCS

Noschese:2014:ISP

Noschese:2014:MTS

Noschese:2017:ASP
Silvia Noschese and Lothar Reichel. Approximated structured pseudospectra. *Numer-

2008. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Nota:2008:RKB

Nobile:2023:PRO

Nielsen:2015:CNR

Ng:2017:VAR

Michael K. Ng, Wei Wang, and Xile Zhao. A variational approach for restoring images corrupted by noisy blur kernels and additive noise. *Numerical Linear Algebra with Applications*, 24(6):??, December 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Neumann:2003:SCS

Nikishin:2003:PTA

Neymeyr:2014:IMR

REFERENCES

REFERENCES

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

<table>
<thead>
<tr>
<th>Author1</th>
<th>Author2</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan</td>
<td>Ng</td>
<td>2018</td>
<td>Symmetric orthogonal approximation to symmetric tensors with applications to image reconstruction.</td>
<td>Numerical Linear Algebra with Applications</td>
<td>25(5)</td>
<td></td>
<td>CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).</td>
</tr>
<tr>
<td>Poirier</td>
<td></td>
<td>2000</td>
<td>Efficient preconditioning scheme for block partitioned matrices with structured sparsity.</td>
<td>Numerical Linear Algebra with Applications</td>
<td>7(7-8)</td>
<td>715-726</td>
<td></td>
</tr>
<tr>
<td>Pester</td>
<td>Rjasanow</td>
<td>1995</td>
<td>A parallel version of the preconditioned conjugate gradient method for boundary element equations.</td>
<td>Numerical Linear Algebra with Applications</td>
<td>2(1)</td>
<td>1-16</td>
<td>CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).</td>
</tr>
<tr>
<td>Pearson</td>
<td>Porcelli</td>
<td>2020</td>
<td>Interior-point methods and preconditioning for PDE-constrained optimization problems involving sparsity terms.</td>
<td>Numerical Linear Algebra with Applications</td>
<td>27(2)</td>
<td>e2276:1-e2276:??</td>
<td>CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).</td>
</tr>
</tbody>
</table>
Pflaum:2011:ISF

Poloni:2016:SPD

Petkovic:2009:CLR

Pranic:2016:RAP

Pantazis:1995:RCR

Perugia:2000:BDI

Pang:2011:SIL
Hong-Kui Pang and Hai-Wei Sun. Shift-invert Lanczos

Pironkov:2008:PDC

Pearson:2014:PSC

Prokopenko:2017:AMM

Andrey Prokopenko and Raymond S. Tuminaro. An algebraic multigrid method for $Q_2 - Q_1$ mixed discretizations of the Navier–Stokes equations. *Numerical Linear Algebra with Applications*, 24(6):??, December 2017. CODEN NLAAEM.

ISSN 1070-5325 (print), 1099-1506 (electronic).

Pultarova:2008:NSL

Pultarova:2009:PPE

Pultarova:2016:CTE

Paige:1999:SAL

Christopher C. Paige and Paul Van Dooren. Sensitivity analysis of the Lanczos reduction. *Numerical Linear Al-

Qin:2023:STB

Quiring:2021:MGE

Qiu:2021:PNS

Qian:2009:SLR

Ragni:2014:RKM

Rakowsky:1999:SCM

Rosseel:2008:AMS
REFERENCES

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Russo:2015:QOP

Rahla:2020:SAP

Ritter:2010:FAC

Rossi:1999:PFD

Raydan:2002:PPA

Raghavan:2003:LTH

Padma Raghavan, Keita Teranishi, and Esmond G. Ng.

RU22

RV12

RVW98

RY08

Saa00a

Saa94

Saa2000:E
Saad:2000:FAM

Sacksteder:2005:ADS

Sauter:1995:SIC

Solak:2003:NBN

Salkuyeh:2012:EMH

Sistek:2015:BMH

Spedicato:1994:CD

Schrader:1999:CAJ

Schrader:2012:SAS

Scott:1999:NRO

Saibaba:2020:EKS

Seibold:2010:PAM

Sousedik:2014:HSC

REFERENCES

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Simoncini:1999:NVR

Simoncini:2003:AFS

Sirkovic:2019:RBA

Sayed:2001:SSF

Susnjara:2021:FSD

Shen:2014:EDP

Sirko:2019:RBA

REFERENCES

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Schuermans:2006:BRH

Sheikh:2013:CSL

Smietanski:2019:NEI

Sosonkina:2000:PSL

Song:2020:RTC

Soleymani:2014:FCI

Soto:2013:FRC

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[STZ12] D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zama-

Sun:2005:NBE

Sun:2006:SEI

Stammberger:2011:AML

Stoll:2012:PPD

Sosonkina:1998:NAG

Maria Sosonkina, Layne T. Watson, Rakesh K. Kapania, and Homer F. Walker. A

Schneck:2021:IMP

Schleicher:2007:MMM

Shen:2015:UAV

Song:2018:TPS

Steinbach:2018:CAM

Saad:1999:DTT

Shi:2011:NEM

Szularz:2014:ISA

Szyld:1994:ECC

Thum:2010:TPO

Tabeart:2018:CLP

Tabeart:2022:NBC

Thekale:2010:ONM
REFERENCES

Treister:2019:MSH

Eran Treister and Eldad Haber. A multigrid solver to the Helmholtz equation with a point source based on travel time and amplitude. *Numerical Linear Algebra with Applications*, 26(1):??, January 2019. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Tian:2009:DI

Thess:1998:PMP

Tia13

Thao:2021:CA

Tre05

Tre13

W. Trench. Inverse problems for unilevel block α-circulants. *Numerical Linear Algebra with Applications*, 20

REFERENCES

Frank Uhlig. Constructing the field of values of decomposable and general matrices using the ZNN based path following method. *Numerical Linear
REFERENCES

REFERENCES

numerical Linear Algebra with Applications, 30(4):e2478:1−e2478:??, August 2023. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Vargas:2013:SMC

vanGijzen:2015:FMS

Voronin:2022:LOP

VanBeeumen:2016:REI

vanKan:2000:FPC

Vassilevski:1996:PMF

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Vasquez:2015:PIR

Vassilevski:2014:RCA

Vassilevski:2008:AMM

Vassilevski:2014:CPG

Wan:2000:IPC

Wang:2018:NBA

Wang:2018:CAS

Wu:2014:NED

Shi-Liang Wu, Luca Bergamaschi, and Cui-Xia Li. A note

Webster:2018:CAS

Weiss:1994:PGC

Wu:2015:TCF

Washio:1994:PBP

Walden:1995:OBP

Wei:2003:IPB

REFERENCES

Wei:2008:GFM

WL08

Wei:2005:DSG

WL05

Wang:2012:LBS

WLBH12

Wang:2021:LRT

WLC21

Wang:2012:PTT

WM12

Wang:2018:LRA

WN18

Wang:2007:SSR

WQ07

Wang:2009:PMC

Yiju Wang, Liqun Qi, and Xinzhen Zhang. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. *Numerical Linear
REFERENCES

Wang:2018:SPC

Wen:2019:PDM

Wu:2015:ISI

Wiesner:2014:MTN

Wu:2010:CEI

Wu:2015:SVH

Wu:2007:PAA

2007. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Xia:2012:RIO

Xie:2011:IBM

Xie:2021:PBM

Xiao:2012:ADM

Xu:2017:AIB

Xu:2009:TFM

Xiao:2011:RPH

REFERENCES

REFERENCES

[Yang:2011:CNB] Xingdong Yang, Hua Dai, and Qingquan He. Condition numbers and backward perturbation bound for linear matrix

Yang:2004:MFC

Yong:1996:SCT

Yotov:2001:MNK

Yeung:2020:ART

Peng:2007:PDS

Ypma:1995:SFP

Peng:2006:EIM

Zhen yun Peng and Ya xin Peng. An efficient iterative method for solving the matrix equation $AXB + CYD =$

Peng:2004:IPB

Ya2012:NBB

Yu:2013:ATL

Zhou:2023:CAB

(5):e2498:1–e2498:??, October 2023. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Zhang:2022:GMK

Zhang:2023:LUB

Zhong:2008:CCR

Zou:2020:PEH

Zubair:2010:GMM

Zhang:2018:ADM

Zeng:2020:DTO

Chao Zeng and Michael K. Ng. Decompositions of third-order tensors: HOSVD, T-SVD, and beyond. *Numerical
REFERENCES

Civil:2022:RTT

[262]

[2023:FBC]

[2012:LCA]

[2013:DEE]

[2013:LES]

[2008:AIS]

[2010:CAE]

Zhang:2018:RTS

Zhong:2013:TGM

Zhao:2014:MFS

Zhang:2010:CGS

Zhang:2011:PCF

Zheng:2020:MLR

Zheng:2019:PAM
REFERENCES

Zhao:2013:IIF

Zhang:2015:MQN

Zhao:2020:LCC

Zhang:2021:PID

Chengjian Zhang and Yongtao Zhou. A preconditioned implicit difference scheme for semilinear two-dimensional time-space fractional Fokker–Planck equations. *Numerical