Title word cross-reference

(1, 1) [Cao08, Krz11]. (2, 2) [Li00]. (m, k) [MN00]. (q) [Jia96]. + [LJM14]. −Δu = λu [EFG+18]. 0.822 [Ano09]. 16 [KM09]. 2 [AM96, BV13, Mar94, NBKS99, QB15, ZVO14, vKVW00]. 2 × 2 [AB10, AB13, Cao13, Kol05]. 3 [GKY97, KK16, LPW06, NBKS99, PM97, PR96, SY18b, mMP99, vKVW00]. 4 [MR14, SY18b]. A [CC07]. A − BX ± X * B* [LT08]. A − XB [Den09]. α [Tre13, XCG16]. AXA+ = B [Tia13]. AXB + CYD = E [yPxP06, WTZD10]. AXB = C [fLyHZ11, Miy15]. H [Gra08, LOY08]. H² [Bör17], K [Mar95]. D [BLLA11]. GMRES(k) [KY95]. H [AMM04, BCGM09, Chu04, KPV08, KC17, Leb02, LP16, Sun06, ZSCX10, DMM+08, Pul09]. H(div) [BO18]. H¹ [AMM04]. H₁ [LPW06]. H∞ [Özb13]. hp [DMM+08]. IDR(s) [CvG11]. ILU [CGK94, KOV17]. k [BO08, VVM05a]. λ [FLPW01]. LDL^T [LSS18]. l_p [Dax94]. LU [KNY00, KOV17, DHS95, Saa94]. M [BNT94, San95, Bea94, BCC98, HHLL16, IP13, JZ11, Kra02, LSL01, WQZ09, XZS10, ZJ06, vN00]. R [DN12]. H [HK02]. O(N) [Sac05]. P [LHLO7a, Peñ09, AEHV15, Beu03, BB06, GKY97, LZ09, LO13, LH17, Pul09]. p × p × 2(p ≥ 2) [KJ12]. Q [Cha12, DBLP16]. Q₂ − Q₁ [PT17]. QMR [FH94]. QR
[ADP96, Cha12, FG02, AG95, CH94].
\[R \]
\[s \] [CK10].
\[S/P \]
\[S_n \] [Lee12].
\[SSOR \] [JO94].
\[t \] [ZSKA18].
\[\text{tr}(f(A)) \] [CS18].
\[U^T U + U^T R + R^T U \] [Kap98].
\[uT(A)v \] [GR04].
\[V \] [BLZ08, Lai97, NN10, Not98].
\[X \] [fLyHZ11].
\[Z \]
\[HCD15, HHQ13, LQY13, XC13].

- circulants [Tre13, XCG16].
- conforming [AMM04, LPW06].
- cycle [BLZ08, Lai97, NN10, Not98].

- decomposition [Kap98].
- dominated [AMM04].
- eigenpairs [LP16].
- eigenvalue [WQZ09].
- eigenvalues [HCD15, HHQ13, LQY13, XC13].
- elliptic [ZSCX10].
- factor [Cha12].
- factorization [KNY00].
- factors [Bea94].
- FEM [BB06].
- function [BO08].
- function [XZS10].
- hierarchica [LO13, Pul09].
- linear [DN12].

- matrices [BNT94, BCC98, BCGM99, KC17, Kra02, LSL01, LH67a, Pen90, Sun06, vN00].

- matrix [FLPW01, Sau95, Bör17, Gra08, HK02, HHLL16, IP13, JZ11, LOY08, ZJ06].

- monotonicity [Mar95].
- multisplittings [BCC98].
- optimization [Chu04].

- partitionings [GKY97].
- policy [BLLA11].

- product [ZSKA18].
- refinement [DMM+08].
- self-adjoint [Leb02].
- step [CK10, Li00].
- th [AEHV15].

- version [Beu03].
- weighted [DBLP16].

0-521-48296-8 [Nab97].

14 [SB12].
1st [NL09].

2010 [NL09].
2017 [Den18].
2D [BCV03].
2nd [Kap02].

3-D [BG02].
3D [MM02, NH98].

4th [Web10a].
4th-order [Web10a].

60th [Vas03].

70th [CLR13, Vas05].
7th [BFG+18].

80th [SGP14].

'97 [Axe98].
98 [Axe99].

ABS [SCD94].
ABS-type [SCD94].
absorbing [Cas11, RV12].
abstract [NV08a].
accelerated [BEH+17, Ema12, HW18, PRPI09, Wan18b, YYN12].

Accelerating [PH19, KKPS18].
Acceleration [DE06, BGN07, DHI8, rFS09, Ris19, WM12].

Accuracy [LL97, BS01, SWKW98].
Accurate [BP13, DPP16, DOP19, MP18a, KR06, LVW01, Van00].
achieving [SWKW98].
acoustic [GM17, mM04].

acoustics [CCvG06].
activity [MC04].

Adaptive [MMM06, MM11, RR12, BLE97, BGM+12, BE98, DHR+04, Fer96, GKL18, JYH17, LM06, MMC12, MW06, Mit10, RSR10, SWKW98, SY18b, Ver00, ZSCX10].

adaptively [YYN12].
addition [BH07].

additive [BN11, CL96, CZ02, DS08, KV92, KLM15, NV08a, NWZ17, YY14, XZS10].

ADI [Dam08, MP16].

ADI-preconditioned [Dam08].
adjoint [Leb02, MM11].
adjustments [FLR03].

admissible [VL11].
Advanced [VZ08].

Advances [MM18].
advection [BCV03, CCK06].

advection-diffusion [BCV03].
advection-dominated [CCK06].
aerodynamic [LW04].

agglomeration [IV04, KV06, LV08, LV12].
aggregation [BMM+08, BVV12, BDM+14, CG15, GHT09, GHJV16, KWS+18, MM08, NN11, NY03, OS10, Pul08, PM11, Sch12].

aggregation-based [CG15, NN11].
aggregation/disaggregation [MM98].
aggressive [Yan10].

AILU [GN00].
AINV [KKNY01].
AINV-type [KKNY01].
Algebra
Algebraic [Ada04, AN94, BBS12, BO08, FM18, GL95a, Kra06, LOS04, NN11, NFD10, Not05b, Not10, Pf99, RBV08, Sim03, Web09, Web10a, XM17, AB12, BGX06, BKY10, BF11a, BDV06, BCZ12, BV12, BKM+12, BDM+14, CG15, DFNY08, Don10, Emm12, GMos06, Het07, HM14, HLL16, IP13, Kra02, Kuz92, KP10, LSS03, LB08, LS15, LCHH18, Liv04b, Lu05, LJ14, MMC12, MO14, MP10, MM95, MBW97, MC08, Muy17, NL16, Not98, Not02b, OST10a, PM97, PT17, RS02, SS02, Sei10, Sha99, SY16b, TC10, VY14, XZ09, XZS15, ZCW11, vN00].

Algorithm [ARSO14, Amb15, AB12, AMMR17, AG95, BCK05, BPS95, BCB14, BFdP13, BD15, BLP01, CD11, CC03, CP12, DW15, ER96, FG02, FO95, Gau99, GM17, GP18, HNR+18, Het07, HLL16, JR94, JZ11, Jou94, Kap09, Kau07, KNY00, KMC16, Liv04b, LYL15, MV06, MCC01, MLV05, MVV08, MP13, MP16, MM18, MC04, MR14, NG15, NLZ11, OC04, PR16, RK18, RY08, RSR10, Roh92, SW06, ST17a, Shi04, SS97, SWK98, St092, SHT11, TGKR10, VM16, VVM05b, Van00, Vla00, WDS09, WM12, WL07, WQ08, WtFW15, YCY17, ZQ12, ZZ15, ZWA18].

Algorithms [BVD+18, GL96, AH02, AMP99, BH04, BT15, Bun92, CL96, CS96, Cao04, CQ10, Cjt03, DMY03, DFZ05, DKVB15, FLM09, FP95a, FH94, HJR97, HR05, HM16, KN14, KR14, Kub92, Lai97, LW98, LLL16, Mar98, Mat96, MP18b, Pf99, RS07, Sac05, SLK16, Sha08, SX15, SCD04, SST18, SS15, VP95, WX10, XCG10, XXW19, XZS10, YZ13, ZJ06, vGSZ15]. aligned [YZ13].

alignment [YZ13]. Almost [ACR+00, AW11, AMP99, EFG+18]. along [MM95]. Alternately [BGX06]. alternating [Bai12, DH18, Wan18a, XJ12, ZN18, ZS08].

Alternative [GS99]. Alternatives [Sid97]. AMG [LOS04, BBM+06, GX14, HVX16, KV06, MMM06, TT15, Vas02, Web18, XM17]. AMG-shifted [TT15]. AMGe [LV08]. AMLI [Beut03, Mar98]. among [Par92]. amplitude [TH19]. analyse [AN13, HS13]. analyses [PM97]. Analysis [BEH+17, BLP01, CCvG06, CG15, MSS07, Mat96, SP05, SP06, Sha98, YZ13, XZ13, Zhu14, Axe15, BPS15, Bat95, BW17b, BBG13, BV12, Cas11, CDDSC12, CTP09, CLC11, CL13, CLTW11, CV13, CDW06, Don10, DFF+18, EFG+18, EM11, FM15, GZ16, GCLG18, GX14, HJR97, HM18, HHvR04, KO18, Lee10, LV04, LT09, LB08, LH17, MO11, MO14, MM98, MM02, NN11, NLZ11, Not05, PV99, Pf99, RR12, Saa00b, ST17a, Sha99, The98, WCZ15, WW08b, WW11, WF15, mMvdV02, vRH05].

analytic [GN00, IT05]. analytical [SSB04]. Analyzing [RV12]. angle [DMY03, Lee12]. angles [GH06]. anisotropic [BC12, CG15, GHT09, Hän06, KW99, KT08, KL14, KN03, Sch12, XZS15, XZ13].

anti [MM99, Per06, XHZ03]. anti-persymmetric [XHZ03]. anti-reflective [Per06]. anti-triangular [MM99]. antibandwidth [SH14]. Any [VL11]. Appl [SB12]. Application [CC03, Ibr02, LD08, MBW97, AM96, ABK15, BGW05, BCC98, Car97, CD11, DH18, DQW15, DCT18, GKK04, GMV16, KMM18, Lam12, LY15, LQY13, NR11, SLK16, Vas02, Wan18b, BG02, CPS06, Leb02]. Applications [NLA94, LX08, Ada04, ACR+00, JNL92, ABNP15, BNR18, BK02, BF96, BV14+18, BFM12, CC07, CCS10, CEQ07, CNP96, CCL05, CCLQ18, CNY05, DHH16, DKVB15, FJ05, FH94, GCLG18, HPS15, Hua12, KCC16, Kub92, LB17, LHW11, LQ13, LT08, LW09, LT11, LT13, LPS15, MV05, ZS08].
NPR13, NR14a, PN18, PRR+16, SKR08, WWC+15, XM17, ZZ15, NL09, Ano09]. applied [BCK05, CH05, GORR16, LMM00, LD07, MO11, Mit10, ZCW11]. approach [AMM04, AN13, CCLQ18, CLJ09, DY04, DGRR11, DS02, FLPW01, GH06, HKP07, HG00, KV02, KNX01, KBF15, Laz16, LVD02, MZHB17, MM97, MC08, NWZ17, RT02, SP18, Ste99]. approaches [KKPS18, KNY99, MMC12, MFFJ18, Mav01, NH08]. appropriate [KV96]. approximants [BLW08]. Approximate [Bea94, BPS00, HDIS18, LPSV18, MGF+02, PPv95, ZS08, AW11, AK16, BPSH13, BS17, Doh07, DS10, Gus03, Huc98, ISZ09, JZ09, JK17, KKNY01, KNY99, KM92, LS04, LB17, LPS15, NY03, Sol14, VW97]. Approximated [NR17]. Approximating [DE98, VS17, AFSCSU14, SS97]. Approximation [AEHV14, AH02, BE09, BF11a, BCV03, BMS17, BMS18, CCE+18, DW15, DK15, DK95, EFG+18, FMPS13, HK02, HPS15, ITS07, KJ12, KT08, KLM15, KV15, LPS16, LV12, LQZ12, MO16, OS10b, PN18, PW12, SLV04, SLV06, WN18, XG10, XH303]. approximations [CYZ99, DLVZ06, FY01, HJRG97, KN07, LO15, Mor07, Mor09, Per06, RSCTP15]. arbitrary [BW17a, HR05]. arbitrary-degree [BW17a]. architectures [FO95]. arising [AN03b, BG95, BFPS10, BMP11, BRT07, CZ15, FP15, Gem00, HKK07, HM14, MZH17, Mar16, MSV13, My17, MST16, PM97, Se10, SMSW00, TC10, ZN18]. arithmetic [DK95, GKV12]. arithmetics [BB16]. ARMS [SS02]. Arnoldi [BHHJ13, GGV13, HLL13, KR14, MP15, PRR+16, VJM16, WW07, WtFW15, YYN12]. arrow [BFG95, GNQ15]. Arrowhead [Zha92]. assignment [CQX11, LC13, LW04, LW05}. assimilation [TDH+18]. associated [CCG00, IP13, MO94]. Asymptotic [BGP97, BMS18, CG05, Tre05, Lam12]. Asymptotical [DS02]. asynchronous [Sch99]. atmospheric [BNP15]. atomic [LO15]. Augmentation [Cao08]. Augmented [BR07, TT15, CS97, EG16, HW18, LD07, MG08, Szu14, Zit05]. Austin [Lee10]. Automated [SV11]. Auxiliary [KLM15, BC12, KPV08]. aware [DH04]. away [IV04]. Axelson [Cao13, Vas05]. axisymmetric [CP06]. B [Nab97, EFG+18]. B-spline [EFG+18]. background [LNY15]. Backward [CTP09, GD95a, DO18, EM11, LC07, LZ12, Pei03, Sm05, WKS95, YDH11]. balance [GSS01]. balanced [Lot07]. Balancing [PY03, BPS13, LT09, MD03, NV08a, WLH12]. BAMG [BKM+12]. Banach [LZY11]. band [VP95]. banded [BCR11, CSCTP05, CG05, ESC18, FL09, GSS01, Kan07, Lot07, MS14]. Barrier [Gar01, Mar95]. Barzilai [HD07]. basal [AMR18]. based [AMR18, AB12, AMMR17, AMMP06, Bai10, BZ13, BZ17, BMAA16, BG05a, BBM+06, BCZ12, BC12, BMM+08, BLW08, CW97, CG15, CLNY15, Cho03, DMM+08, Don10, DKVB15, FP05, Fer96, GKL18, GN00, GB11, GZ16, GNQ15, GH06, GKY97, HJ18, HM03, Hot07, HIL16, HM16, IV04, JK17, Kap98, KY95, KXZ03, KN14, KNY00, KWS+18, KR08, KLM15, Lam12, LO13, LJ04, LNY15, LXS16, LM06, MIM06, MMPP10, MP18b, NN11, Naz95, NA97, NV08b, Reu96, RR12, SW96, SP05, SH14, TH19, UMO09, WH94, WTW14, XZ09, Xie11, wX15, XM17, ZSKA18, ZMO10]. bases [CV03, MP18a, MYZ16]. basic [BR99, BB96, ML05]. basis [BGW05, BHT04, CDDSC12, Gan05, KR14, LO13, Sid97, WW97, Ver00]. BCCB [LJ04]. BDDC [Doh07, SBS15]. be [Ano09, PM97]. BE-FE [PM97]. becomes
[Ben11, BK11, BDS94, BCC98, Cas11, DMYT11, KNX01, MPS96, NX03, Sid11].

Change [Gan05]. Changing [Mee01].

channel [PDV05], chaos [Lee16], chaotic [BW17b].

Characteristic [CCK06, ZYFG11]. Characteristic-mixed [CCK06]. characterizations [ES09b].

Chasing [Zha92]. ChebFilterCG [ST17a]. Chebyshev

[PRPI09, PSK08, Wan18b]. Chebyshev-like [PRPI09]. chemical

[DO18, DK15]. Cholesky [EM95, FP95a, JO94, Kap02, RTN03, Sau95, ZHJL12].

choosing [GNR14]. circuit [BvdV00]. Circulant [CC92, JLW05, CNY05, HN05, NR12, SPD05, WRW18, YNF04].

circulant-plus-diagonal [HN05], circulants [GGV13, Tre13, XCG16]. class [CNY05, CQLQ18, DEM18, DN12, HES15, HLM16, HM16, IK00, LT09, MP18a, Pul08, SPD05, SP06, SCD94, Wu15, YLH11].

classes [BSI17, rFS09, Peñ09]. classic [MM97].

classification [GMOS06, NLZ11].

CLC [Web18]. climbing [SH14]. CLJP [Alb06]. closed [EFG+18]. closure [EJK01].

clustered [CP12]. clustering [CNZ17]. clusters [KBF15]. CNM [LD08, WW08a].

Coarse [GMOS06, AO07, CRV14, KV06, LV12, NV08a, VSG09]. coarse-grid [AO07].

Coarsening [Liv04a, BBM+06, DM10, GMOS06, IV04, Mar98, Wan00, XM17, Yan10, YW12, ZMO10]. code [Bra02].

coefficient [DHR+04, GVT03, Sau95]. coefficients [BKP02, BMRM18, RBV08, Wan00, Zhu08, Zhu14]. Coffey [DPP16].

Collapsible [LD08]. collapsing [BB01].

collisions [LO15]. collocation [CDDSC12, FP15, MP18a, PS08].

column [KV15]. columns [How18]. Combination [Not02a, PW13, Shi02]. combined [KRW08, SLV13, SBS15]. Comment [Cao13, AB13].

Comments [WTZD10, NT04]. Communication [Lai97, Yon96, AMMR17, VY14].

Communications [LD08, NL09].

Commuting [VZ14, JMPR18]. Compact [DEM18, DO18, DGP19]. compactly [FP15]. comparative [LR08, RS18].

comparing [MMC12]. Comparison

[CGK94, Li00, PGT14, SY18b, SSB15, AG99, BB96, CP99, FLR03, FP95b, GLOW04, GLJ19, KP00, MC09, NV08a, Not05b].

comparisons [BT15]. compatible [CBE18, Liv04a]. compensated [AK94]. complement [BCGM09, HKKP07, KW99, KNX01, KLM15, LXH16, LW03, NG15, PW12, Rak99, SGP14, WW08b].

complement-based [LXS16].

complementarity [AW11, BAI10, BZ13, BZ17, CK14, DJ09, HL16, HM16, XZS10, wX15].

Complementary [ZM08]. complements [BG05a, Kra06, MW16, NX03, WTWG14].

complete [JL09]. Completely [GL95b].

completions [EHM95, HS18, Lax16].

complex [AK00, CV13, GH06, HES15, HKH+06, IK00, KR11, KH07, MZH117, Not05a, SS97, Wan18a, Wu15, XQ09].

complexities [Alb06]. complexity [DFZ05, GHJ16]. Compliant [LD08].

component [BF11b, MM02, NH06].

component-wise [BF11b]. components [BGD09, LB17]. componentwise [Dia09, DXW12, Lam12]. Composite [ALM18, Fer96, RSR10, RR12].

Composite-based [RR12].

Composite-grid [ALM18]. compressed [BT15]. compression [Bör17, Fbr02].

compressive [ZZ15]. Computation

[EJK01, Mai06, Öz03, AT00, BB16, BV00, BEG18, Chm04, Huc98, MVK04, MM11, Miy17, MGF+02, NX03, Sid97, WLBH12, XM17].

Computational

[BB17, CCvG06, DFF+18, Ema12, GS97, Ian16, Mar00, SS07]. Computations [MPV06, Axe98, AC11, BP13, DPP16, DOP19, Kho96, MP18a, OST10b].

Computed [GL95a]. computer
computers
Computing
Condition
Conditioned
Conditioning
Conditioned
Connections
Connection
Convergence
Convergent
Correlated
Correlation
Corrigendum
Corrupted
Cosine
Counts
Coupled
Coupling

DD [AB13, Cao13, AB10]. deblurring [CFAM16, Don05, LNP12]. decay [FSS18]. decision [Buc11, CEQN07].

Decomposition [CGK94, AN03a, AN07, AMMR17, AFK02, BP13, BW17a, Bla94, Bla02, BVD18]. BPS13, BO18, BIA18, CS96, Car97, CGM01, CL13, CLNY15, CJT03, DH18, EM95, FLP00, FRR16, FGNW14, GT03, GB15, GT16, Gus03, HLM92, HDIS18, HC05, Ibr02, JK18, JM10, KV92, KPKS15, Kap98, Kap02, Kem12, KMMR10, Kh096, KN14, KNP03, LR95, LV99, LT09, LHW11, LXS16, LT11, LT13, LMM00, MD03, MM02, MM18, NR14b, PY03, PH19, San95, TSPSO06, WQ07, YL08, ZSKA18, Zhu08].

deformations [BF96, BWL08, LS06, SSB04]. deconvolution [MLV05]. Decoupling [LVW01, HDIS18]. Dedicated [Bun95, SGP14, CLR13]. Dedication [NN15]. defective [NFD10]. defective [AFS14]. defects [KK16]. deficient [DE98, GS97]. definite [ARMW14, AIT05a, AV94, Bai16, Bai18a, BMAA16, BT03, DJ09, Ema12, Kap98, KH07, Ko05, LHL07b, MV08, yPES07, SB12, WW08b]. definiteness [PW13]. definition [VVM05c]. Deflated [CS97, MYZ16, SHJC18, MN00]. DeFLATED-GMRES [MN00]. deflation [NV08a, SLV13]. degenerate [BMM06, Sto92]. degree [BW17a, DS10, Gus04b, HVX16]. delay [DGRR11, JLW05, LC13, MSV13].
delay-differential [MSV13]. denoising [LNP12, ZZ15]. denoising/deblurring [LNP12]. dense [CDGM04, DS10, GTY97, How18, KN07, KBF15, Ver06]. density [NY03, OST10b]. dependency [RV12]. dependent [BEG18, CNT07, CRV14, GS05, HG00, KPT14, Mai06, MV13, RBV08, Sha98, ZYFG11, vKVW00]. depending [Vos09]. derivative [LY15]. derivatives [AT00, Xie11]. derived [BDV06]. deriving [Mey94]. descent [De 13, NZ14, Shi02, Shi04]. design [AG99, BCK05, MC08, SMSW00]. designing [RS07]. designs [LW05].
determinantal [CC07]. determinants [MP15]. developments [SS07]. deviation [CCvG06]. device [GMR05]. DFT [Not05a].

Diagonal [BLP17, SZ99, ACR99, BCR14, EW13, EM11, Fas05, FS09, HN05, HS05, KKM12, MCV01, Par03, PSS00, TS12, ZZ15]. diagonal-plus-semiseparable [Fas05]. diagonal-plus-Toeplitz [BLP17].
diagonalization [WZZ18]. Diagonally [AK94, Yon96, MRT98, RT02]. diameter [Par03]. difference [AJ94, FY01, Fer96, Gem00, PR11, SCD94, Web10a]. different [Tre05]. differentiable [Est09]. differential [BRR11, BCR14, Bot13, HJ18, JLLW05].
LH08, LH11, LW03, MW11, MSV13, MM11, PSK08, Rak99, RBV08, SW12, TC10, ZCW11, Zhu14]. differential-algebraic [ZCW11]. differentiation [DO18].

dierential-algebraic [ZCW11]. dierentiation [DO18].
diusion [ALM18, BLP17, Bai18b, BCV03, BR99, CCK06, CG15, FY01, Gan99, KXX03, KWS+18, KRWO8, KP10, Lee16, LCHH18, LPS15, Mav01, OC04, PH19, RSCTP15, Sch12, WBWM04, WZZ18, XG10, YXZ13, ZYFG11, vRH05].
diusion- [KRW08].
digraphs [THC09]. dimension [BTT13, CLNY15, KCS11, VS17, vGSZ15].
dimensional [AALS01, CGPV13, CLNY15, DY04, KT08, NLZ11, Ozbi3, Rja98, XSZ15].
dimensionality [YZ13]. dimensions [BO18, DHNR18, SBS15, XZS15, YZ13].

direct [Dam08, JZ11, ZJ06, BLP01, CNY05, CS95, ES09a, GMR05, HS05, MRT02, SW96, SST18, TPSOS06]. directed [FM18].
direction [BB96, DBG06, XJ12, ZN18].

Directional [Bor17]. directions [DS13b, ZS08].
disaggregation [MM98, Pul08, PM11].
discontinuous [ABM17, BKP02, BBS12, DLVZ06, DFF+18, EYW03, HHvR04, KT08, Wan00, WBWM04, vRH05]. discrepancy [BC02]. discrete [BCV03, CLTW11, DGB+13, DNR12, DHNR18, GORR16, Han13, JK18, KM92, NR14b, Psk08, SSB04, Web10a].
discrete-difference [Web10a].
discretization [ABM17, BCR11, BS01, CGM11, DP03, GTZ18, HHvR04, HK12, Lay05, LPV01, LO08, SY18b, UM09, Zhu14].

discretizations [AT15, BCR14, BBS12, CBE18, EGF11, GH015, KOV17, Lee12, Lee16, LOS04, MW11, Ow95, PT17, RS02, SRGL13, SSB15, XS11, XSS15]. discretized [Bai18b, GS07, KS04, MNCT07, vRH05].
discriminant [NLZ11, WF15]. disks [Pen07]. disordered [Sac05]. Displacement [Bla94, WN05, Bla02, KM99]. displaying [EJK01]. Distance
[BV00, BCV03, BEG18, DPS16, FJP12, Gem00, HPS15, Huc98, LV99, Poio00, VP95, WWX10, mMP99, B9D94, CP12, EGF11, GM17, HS13, KBF15, KR14, LR08, OOO11, yPxP06, RGG07, TSPS06, WTZD10, ZH15, Zha18]. eigCG [ARSO14].
eigendata [BC09]. eigenfrequencies [BTIT13]. eigenpair [MPZ06]. eigenpairs [DK95, LP16, Xie11]. eigenparameter [Vos09].
eigenproblem [BGP97, FT98, Not02a, XHZ03]. eigenproblems [Bas00, BPS00, BFG95, DS13b, FLPW01, FJP12, KCS11, Ney02, SGSM15, TY10, Vos09, XCG16, vdE02].
eigensolution [Mar16]. eigensolver [BMM+08]. eigensolvers [BM17, GKL18].
eigenspaces [Zit05].
eigenvalues [AN06, AB12, BPS15, BFG18, GL95a, ARMW14, ABM17, AB12, Axe99, AC11, BPS15, BGM06, BCR11, BCR14, BLP17, Bai88, BK02, Ban08].
BMAA16, Ben08, BLP08, BES14, BR99, BG05a, BMRR18, BG00, BHHJ13, BCZ12, BFM12, CLR01, Che02, CH03, CQ10, Cor04, Dam08, DSV18, DBG06, DXW12, DLVZ06, DFF+18, Gan99, GB11, Gem00, GS99, Gra08, GS07, GD11, HM18, HFW01, HNR+18, HE15, HML16, IP13, JMR18, JL09, J094, KXZ03, KLM+06, KSM+10, KS04, KWS+18, KOV17, KPT14, KS15, LR08, Lee10, LHW11, LGS12, LXX17, Liv14, LV03, LPS15, LPSV18, LMM00, LRG017, MV13, MNC070, MW11, Mar94, MZHB17, MM09, MCV01, MSV13, MM11, Miy17, NFD10, NQ96, Ols99, PM97, PR95, PT17, Rak99, RBV08, RSCTP15, SCD94, Ste99, Szy94, TSPSO06, Tyr05, Var08, WRW18, Web10a, WZZ18, XSZ09, YDH11, YXZ13, ZCW11, ZZ15, ZN18, ZSWX13, Zhu08.

equations [TSPSO06, Tyr05, Var08, WRW18, Web10a, WZZ18, XSZ09, YDH11, YXZ13, ZCW11, ZZ15, ZN18, ZSWX13, Zhu08].
equidistantly [Rie09].
equilateral [RSCTP15].
equilibrium [DHSW11].
equispaced [FP05].
Equivalence [Szy94].
equivalent [MZHB17].
Errata [SB12].
Erratum [BN12].
Error [GL95a, OOO16, AM96, AW11, CGM11, CS18, HJR97, LO13, MMN10, Ney02, Pul09, WW11].
Error-free [OOO16].
errors [LC07, LZ12, Sun05].
Estimate [AM96, CS18, ES05].
estimates [AN06, AB10, AB13, BB06, CL96, Cao13, FVZ05, LZ12, MST16, Pul09, Zho18].
Estimating [BN12].
Estimation [BNP15, GR04, Baz08, BT92, DPS16, DXW12, LX08, NG15, Ney02, SZ11].
estimations [CD11].
estimator [MVK04].
Euler [Cor04, LH17, NFD10].
European [Rag14].
Evaluating [BB01].
evaluations [KS10].
even [Not05a, XC13].
evolution [BBG13].
Ewing [LPQ06].
Exact [KV15, Bot13, DK95, Pul16].
expansion [DS02, GTI16, MS07, RR12, ROA13, SLK16].
expansions [Trey05].
experience [BGM11].
Experimental [RR12].
experiments [ABK97, GL02].
Explicit [Lam12].
exploiting [VJM16].
exploits [NL16].
Exploring [AMR18].
Exponential [PDV05, BV00, BCV03, DQW15, LLS12, Mor07, PS11, Rag14, VS17, WtFW15].
expressions [LT08, Not05a].
extended [DPP16, KS10, ZHZ10].
Extending [ARSO14].
Extension [BKPO2, BCBO14].
extensions [Sun06].
exterior [GH10].
extracted [SPD05, SP06].
extractions [LNY15].
Extremal [Jia17, LT08, Vla00, Zho16].

F.E.M. [AM96].
Faber [Nov03].
factor [Ano09, Cha12, DM10, GIKO2, HW18, IK00, KM09].
factored [KKNy10].
factoring [BG05a, Kan07].
Factorization [ADP96, BT03, Bia94, CCG00, CGK05, Cha12, DHS95, DCT18, FG02, GN00, KNY00, KM92, LSS18, MW16, OS01, RTN03, Saa94, SK01, ST17b, XQ09, ZHJL12].
factorizations [AMMP06, Bea94, CCS10, CH94, CV03, GNQ15, KOB17, LW15, MS14, RS18, mVmdV02, mM04].
Factorized [KNY99, NY03].
factors [Bea94, BF11a, WL08].
families [AABH18].
family [AEHV14, AEHV15, GGZ12, LZO9, LWC16, LPW06, MG80, Sot13, vV94].
Fast [BO13, Cao04, DMY11, DQW15, FGT11, FP05, FS09, KK16, LLS12, L015, LPS15, MS14, MCV01, MLV05, Miy15, Miy17, RS07, STZ12, XCG10, vKVW00, BB16, DPP16, DS10, Fer96, JHR94, Kho96, Lee10, LLLJ16, MRT02, MV08, Rak99, RS10, Sol14, SKR08, WF15, ZWQA18, RR12].
fast-adaptive [RSR10].
faster [Kap99].
fault [NO04].
fault-zone [NO04].

FDFD [PR11].
FE [GKY97, PM97].
feasible [AW11].
FEAST [GP18, YCY17].
feedback [DGGR11, LW05].

FEM [AB10, AB13, Beu03, BB06, Cao13, FS09].
GM17, HPPS03, HMS99, KM99, Mar94.

FEM-BEM [HPPS03]. **FEM/BEM** [HMS99]. **FETI** [DH04, DKVB15]. **FFT** [ZVO14]. fictitious [HKKP07, RT99]. field [KMMR10]. fields [HPS15, OZB\(^+\)18]. filter [RGG07].

filtering [AN03a, AN07, BPSH13, FGNW14, LNY15]. filtering-based [LNY15]. filters [RS07].

Finding [EW13, HHQ13, PRPI09, Roh92].

Finite [Vom12]. finite-grain [Vom12].

finite-difference [PR11]. finite-element [SY18].

FIR [RS07].

First [KLM\(^+\)06, BBJ17, BGM\(^+\)12, GHR98, Hem96, KNX01, LV15, MMN\(^+\)10]. first-order [BBJ17].

fitting [DQW15, PDV05]. fixed-point [BG05a, Bir15, KO18].

flexible [ZHJL12, vGSZ15]. flow [BLLA11, HG00, HK12, KR11, KRW08, Lay05, LV04, Mar00, MRT96, SBS15, Tur00, Web10b, Web10a, Yet01, vKH00, LD08].

fluid [BLLA11, Ema12, HG00, HW19, Mar00, MRT96, SV11, Web10b, Web10a].

fluid-solid [SV11]. fluidity [AMR18].

fluidity-based [AMR18]. **FORM** [GR99].

Form [Zha92, AB10, AB13, BCB14, BO08, BWN05, BBG13, CAo13, EFG\(^+\)18, GS07, GNQ15, Han13, KKNY01, LGS12, MMMD09, vNR07].

formal [Tre05]. **format** [BG13, BMMA16, Gra08, GL18]. **formats** [DO18, DK15, HKST12].

formula [MS14].

formulas [BWN05]. formulation [CQX11, GH01, SBS15, Ypm95].

formulations [MZHB17, PS00, Sim03].

FOSLS [MMN\(^+\)10, AMR18]. Fourier [CV13, Don10, HM18, HHR04, MO11, ROA13, TSPSO06].

fourth [UM09, WQZ09]. fourth-order [UM09, WQZ09]. **Foz2006** [GY08]. FP [BCB14]. fractional [BLP17, Bt18b, HLM\(^+\)18, LPS15, LPSV18, WRW18, WZZ18]. framework [BD15].

Fredholm [MM09]. free [ABBP10, AD11, GTY97, MP16, Not02b, OOO16, RSR10, Sim03, TT10, YNP04, ZYL13].

free-space [RSR10]. frequency [AN07, Bör17, EKS02, MZHB17, MC09, MN00, PR11].

frequency-domain [PR11]. friction [HL94]. fractional [ZVO14]. Frobenius [CDG00, DW07, ES09b, MG\(^+\)02].

Frobenius-norm [CDG00]. frontal [RS01, Sco99]. frozen [AABBH18, FSAI].

full [BMS17, BMS18, DEM18, MWZ06, SKR08, TGKR10]. fully [KWS\(^+\)18, MC04].

function [CDDSC12, GGZ12, KS10, LZ09, Part03, PSW14, SP18, SST18, Tre05, XZ10].

functional [KN14]. functionals [AMM04]. functions [BEG18, CKW02, CL11, CJL08, HK5, Est09, FSS18, MN05, Mor07, Mor09, MP14, Naz95, Xie11]. fundamental [ZYL13].

Further [MMN\(^+\)10, Saa00b].

fuzzy [CEQN07].

Galerkin [ABM17, BSB12, CGM11, DLV06, DFF\(^+\)18, HHR04, KT08, LPV01, NSCTP05, SPS14, WTWG14, vRH05].

games [AD12]. gauge [KMMR10]. Gauss [HP97, KLN99, LO13, Pe~n03, Sun06].

Gaussian [GIK02, IK00, Reu96]. Gay [Adi08].

GCV [FRR16]. General [JK09, AN13, BCB14, BCGM09, BDR17, CS96, Kap98, KS15, Lor14, MP18a, SZZ99, SS02, ZW10]. general-form [BCB14].

Generalization
Generalizations [SSB04]. Generalized [Amb15, Che15, KKR14, NR12, AM95, Bla02, BC12, BM+08, CC07, Cao09, CD11, CL13, CV03, CBE18, DL97, Dam08, FT98, FM15, GIK02, GW00, HLLL13, JMPR18, KV92, KCV09, KVC12, LR08, LZY11, LT13, Ma06, MP15, MP13, MSB18, RY08, SLK16, SX15, WW08b, Wei94, YCY17, Zha18, Zho06, vNR07]. Generalizing [BT92]. generated [Tre05]. Generating [Ste99, Est09, OZB18, SP18, Vom12].

generation [BG02, Gar01, Gar04, LM06, MS07]. geometric [BS10, Cho03, CBE18, Gar04, HS11, HS14, Ian16, LJ14, XSZ09, ZMO10]. geometric-based [XZS09]. geometries [HKH06, PSK08]. Gerschgorin [LHLS07, Peñ07].

Gerschgorin-type [LHLS07]. Gersgorin [KCV09, KMC16]. Gersgorin-type [KCV09]. GES [BMM+08]. GES-SA [BMM+08]. giga
ops [Tur00].

given [BFdP13]. GKB [BCB14]. Global [CMG11, BS10, FRR16, GD11, LSJ18].

Globalization [NQ96]. Globally [CQ10].

GMRES [BR07, BE98, C202, De 13, DS08, DN12, GR99, JYH17, Jou94, LSJ18, MYZ16, MN00, Sid11, Sim99, SWKW98, SHJC18, VL11, WZ94, ZMO8, Zit00, Zit05, vNR07].

GMRES-type [BR07]. GMRESR [vV94].

Golub [FRR16, GORR16]. GPCG [Bla02]. GPCG-generalized [Bla02].

grad [GGL08]. grade [IT05]. graded [BLZ08, BCS09]. gradient [AM95, BGP97, BMSS09, CNT07, Cha07, DMY03, DW15, DR03, Hac92, Kap94, Kap02, MO94, Mey94, Pr95, SZ11, WD08, Wei94].

gradient-like [Mey94]. gradients [Not02a].

h [Cha07, HSS09]. h-optimally [Cha07]. h-p [HSS09]. Hadamard [KM09].

Hamiltonian [AIT05a, AIT05b]. hand [ARS014, ARMW14, SHJC18]. handy [Adi08]. Hankel [BB16, DQW15, KN07, OS01, SLV06, SB03].

Hankel-like [OS01]. hardback [Nab97].

Harmonic [HS08, MZ98, Bai12, GR99, GS07, Kho96, LG512, Vom10, ZSWX13]. heart [MC04]. heat [AJ94, SY18b].

Helmholtz [CGPV13, CV13, CRV14, KMMR10, Liv04b, Liv14, OS10, RV12, TH19, TT15, UMO99].

help [GKV12]. Hermitian [LT13, SB12, BGN07, Bai16, Bai18a, CPS01, CSYS14, DBG06, Fast05, HM03, HSCTP05, Kol05, KKR14, LHL07b, LC05, Mee01, NC05, SLK16, WD08, Wu15, ZW10, vdE02].

Hermitian-type [LT13]. Hessenberg [CGK05, Gem00, Ste95]. heterogeneous [BBS12, CGPV13, GM17, KP10, KNP03, NH06]. heuristics [SH14]. Hierarchical [BH04, SGP14, BH07, BM13, CV03, EGF11, GL18, LO13, OZ*18, Pul09, VW97, GL18].

hierarchically [XCGL10, Xia12].
hierarchies [Alb06, DHR04, EJK01]. hierarchy [CCE+18]. High [Cap98, SST18, Ay11, AEHV14, AEHV15, AABHV18, ABK15, Bör17, BS17, GM17, GKY97, Lam12, NLZ11, NY03, SWKW98, SSB15, TSPSO06]. high-contrast [AY11].

high-dimensional [NLZ11].

high-frequency [Bör17]. high-order [AEHV14, AEHV15, AABHV18, ABK15,

BLU [BLW08]. ice [AMR18]. ice-sheet [AMR18]. identification [LNp12, ZYL13]. identify [GB15]. II [ELV94, GL02]. III [CSCTP05, GKY97, GL13]. IJNMBE [NL09]. ILDLT [Bas00]. Ill [LHW11, CLTW11, DNR12, DHNR18, Est09, GORR16, NR14b, NCV05]. ill-conditioned [NCV05]. Ill-conditioning [LHW11]. ill-posed [CLTW11, DNR12, DHNR18, Est09, GORR16, NR14b]. ILU [AMMP06, May05, May07, S299]. ILUCP [May05]. ILUT [Bas00, Saa94]. ILUT/ILDLT [Bas00]. image [BC02, CFAM16, CNSY05, Don05, GHW06, HHI10, Hön06, PN18, Per06, RGM17, SKR08]. images [BNT94, NWZ17]. imaging [BNP15]. IMMB [Axe99]. impact [Ano09]. Implementation [AK99, BISC14, BM05a, DMY03, MM18, WF15]. Implicit [FP95a, BGX06, Bai12, BM05a, BD15, Chei15, HL16, ISZ09, LVW01, MC04, PBN05, VVM05b, Wan18a, ZS08, mMvDv02]. Improving [Szu14]. Improved [ARMW14, Cor04, JO94, LW15, BVV12, CGPv13, LV12, Sun06]. improvement [WCZ15, WL03]. Improvements [BB06]. improves [HVX16]. Improving [BKY10, GKL18, GKV12, ST17b]. inclusion [LHLs07, LLK14, THc09]. Incomplete [Jia96, BT03, Bla94, CStS15, GqN15, Gro00, JO94, Kap02, KNY00, RTN03, Ren96, Saa94, SW96, Sau95, ST17b, VS17, ZHHL12, mMvDv02, mM04, GKY97]. incompressible [BKp02, DZF+18, HW19, HK12, KOV17, LV04, Ols99, Tur00, Web10b, Web10a, vKvW00]. increasing [DMY03, HVX16]. increasing-angle [DMY03]. Incremental [Ccs10, BT92]. indefinite [BRT07, CL96, Ck01, CstS95, Crv14, Gm17, Gmtv16, Krz11, Lt09, Ltv14, Pso0, ST17b, SL10, Ttt15, Vas92]. Indefinitely [DR03, LV98]. independence [DS08]. independent [Cjl08, KPv06]. indirect [BLP01]. induced [Lay05, Vgsz15]. industry [Mm04]. inequalities [Am96, Cpsm06, Dkvb15]. inequality [Aals01, Bla03, Dgrr11, Dh04, Dr03, Em95, Mar94]. inertia-revealing [Dct18, Kc17]. inertia-revealing [Dct18]. Inexact [Abk97, Hdo07, Sid11, Bir15, Cq10, Dax19, Fk15, Gb11, Gp18, Hlm92, Hw18, Kk02, Kpv06, Lll97, Ltv98, Sim03, Wtfw15]. infimum [Chu04]. infinite [Bmmr18, Ozb13, Vjm16]. Information [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano13a, Ano13b, Ano13c, Ano13d, Ano14b, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15e, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano18f, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano19, Ano14a, Ano14c, Ano14d, Bf96, Fj05, Ano14e, Ano15d, Ano16f]. initial [Nov03, Pbn05, Vl11]. initializing
[BMM⁺08]. inner
[FJP16, Gus04a, Mey94, MGF⁺02, Xia12].
Innovative [BDRS12]. integer [CP12].
tegrable [SHT1]. integral
(AFSCSU14, HSY18, MM09]. integrals
[LO15]. integration
[ABK15, KKP18, LLS12, MC09]. integrators
[Ber01, LJ04, Mor07, Rag14]. intensity
[GVK12]. inter [MC08].
ter-grid [MC08]. interaction [SV11].
terchanges [EM11]. interdisciplinary
[BNR18]. Interface
[Wan00, JM10, XM17, Yot01, ZYL13].
terface-based [XM17]. Interior [LMV04, BMM06, BCS09, HP04, MST16].
Interior-point [LMV04]. internal
[HKH⁺06]. International [NL09].
Interpolating [MN05]. interpolation
[BKY10, DFNY08, Gan05, HM03, KV06, KV15, LMMR10, Pul16, Ric09, Vla00, Web10b, Yan10]. Interpreting [CPMS06].
terval
[DPS16, Jia17, KSB13, Roh92, YLH11].
tervals [Jia17, LHLS07, THC09].
Introducing [MS07]. invariance [JY17].
invariant
[AG95, DF01, MK94, PM16, YL08]. Inverse
[LC05, NR14a, SP18, Tre13, AEHV14, BF11a, BM13, BPS00, BFM95, BF12, BSI17, C07, CWs18, DL07, DW07, DWWQ13, EW13, EKS02, Egg07, EHM95, FGT11, FK15, Han13, ISZ09, JZ09, JK17, JK18, KKNY01, Kho96, KNT99, KKM12, LL97, PLL07, LW09, LZY11, MV13, MP16, MGF⁺02, NY03, yPyH204, Sol14, Sot13, TS12, WL03, XHZ03, XCG16, ZN18, Zho06, Ney05].
inverse-free [MP16]. inverses [Cor04, FSS18, Gus03, Huc98, LXW13, WN05].
inversion [BO13, KK02, LPS15, LPSV18].
inversions [Dax19]. invert
[MP14, PS11, WtFW15, Sim03].
invertibility [Den09]. investigation
[KS10]. involving [DWWQ13]. IOM
[Jia96]. ion [LO15, TC10]. ion-atomic
[LO15]. IPARS [LVW01]. IRAM [Xie11].
IRAM-based [Xie11]. Irreversible [BL03].
ISBN [Nab97]. isogeometric
[CBE18, EFG⁺18]. isolation [EK02].
isometric [Gar01, Gar02]. isospectrally
[VW15]. Issue [Ano08, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano13a, Ano13b, Ano13c, Ano13d, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano15f, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano16f, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano18f, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano19, LD08, CLR13, Dat01, Fal06, VW01, Vas05, Axe99]. issues [BM05a]. Iterated [BDR17, AN03a].
iterates [DS13b]. iteration
[AT15, AN94, BGX06, Bail0, Bail2, BZ13, BLCP17, Bail1, Bia18a, Bia18b, BM13, CH05, Che15, Egg07, FK15, GB11, GH01, HMS99, HL16, K018, Kra02, KKR14, LLL97, Lam12, LS15, MM18, PS95, Wan18b, Wan18a, wX15, YHS18, Zho06, Z0S8, Ney05].
iterations [BG07, BO05a, FJP16, GGZ12, HK05, Kap05, KLN99, LZ09, Lin12, Lu05, NZ14, Saa00b, Sch99, vdE02]. Iterative
[AT00, BF11b, CGK94, DBG06, GMR05, LPV01, MO16, MSB18, NZ14, PM97, AEHV14, AEHV15, AK00, ABPN15, BEH⁺17, BM17, Ber01, BR99, CR16, CH05, CK01, CK10, ELV94, FM99, GTY97, Gus97, HG00, HES15, HM14, LR08, Lec10, LSL01, LZY11, LW16, LMJ14, MM98, NO04, OB99, yPyP06, PR96, PR11, PH19, Pul08, PM11, Sol14, Sun06, Syz94, WDS09, WTDZ10, WW11, ZW10, Axe99]. IV [KNY99]. Ivo
[SGP14].
J [NN15]. Jacobi [BFP13, BFG95, FJP16, GS99, HLLW05, MSV13, Not02a, Sch99, Zho06, vNR07, vdE02].
Jacobi-Newton-iterations [Sch99].
Jacobian [BS01]. January [NL09]. Jordan
[EJK01, GH06, Pen03]. Journal
Ber01, BWN05, Bla02, BMS18, BvdV00, Bot13, BC12, BFM12, BM05a, BIA18, BSI17, CS09, CS11, CDGmM04, CPSM06, CSCTP05, CGL05, CC03, CK01, CK14, DGB+13, DMS17, DSV18, Dat01, DDG99, DGRR11, DW07, DWQ13, DNR12, DGM+16, DJ09, DN12, FZwCW17, FGT11, FP15, FS09, Gem00, GLJ19, GM11, GSS01, GY08, GTY97, GS05, GW00, GL98, GL02, GL13, HLM+18, HHvR04, HNR+18, HE15, HSCTP05, JZ09, JK17, JYH17, Jou94, JO94, KMM18, KK02, KPV06, KS04, KBF15, Kra02. linear [KS15, KKR14, KMM19, LX08, LH07b, LT09, LC13, LL97, LV98, LM04, Mar00, MC01, MV05, MAV01, MP13, MEY94, MC04, NAZ95, NQ96, NLZ11, NOV03, OCO4, ÖZ13, PAD99, PBN05, PM97, PG14, RK18, RGG07, RT99, SZ99, SS02, SB12, SS07, SMW00, ST092, SUN05, SL10, SHJC18, SZN14, TTX0, VFDV13, WV01, WKS95, WD08, WM12, W018, WU15, WF15, XZ09, XS11, XJ12, XZ15, W1X5, YDH11, ZW10, vGSZ15]. linear-constrained [XJ12].

logarithm [Lor14]. logarithmic [DH16]. Long [Kem12, K16, Yan10]. long-range [KK16, Yan10]. Long-time [Kem12]. look [LYL15]. loosely [TSPS06]. Low [AN07, BAB08, BF06, CH94, DFZ05, WN18, AT15, AMMR17, BE09, DBLP16, Gra08, HS18, HC05, JMPR18, KO18, KPT14, KS15, Laz16, LXS16, LO15, NL16, NY03, QB09, SLV04, SV06, VY92]. low-communication [AMMR17].

Low-complexity [DFZ05]. low-density [NY03]. Low-rank [BF96, CH94, WN18, AT15, BE09, Gra08, HS18, HC05, JMPR18, KO18, KPT14, KS15, Laz16, LXS16, LO15, NL16, QB09]. lower [Alb06, SPD05, SP06]. LQ [BG00]. LQ-Schur [BG00]. LSQR [RY08]. LTI [ZS08]. LU [CCS10, LW15]. Lyapunov [BLP08, Dan08, DS18, KPT14].

M [KV10]. maintaining [Par92]. Making [LS18, CEQN07]. manifold [KO18]. manifolds [MK94, SZ11]. Manteuffel [Lee10]. manufacturing [CNY05]. mapping [BG02]. mappings [Gar02]. maps [MK94]. Marek [SP14]. Markov [AD11, BLLA11, Ben11, BK11, BL03, BDS04, BH16, BCC98, BU11, BF11b, CAS11, DS18, DHS11, DMY11, DED14, KNX01, MPS09, NX03, NW15, SI14, VFD13]. Markov-modulated [BLLA11]. Markovian [BMP11]. mass [AB17, EKS02]. mass-conserving [AB17]. master [DO18, DK15]. matching [BCZ12, KXZ03]. matchings [HS15]. material [LNP12]. materials [BMI+14, PR11]. Mathematical [SWY07]. mathematician [Voe92]. Matlab [Bra02]. Matrices [Yon96, AFSCS14, AIT05a, AN94, AN06, AB10, AN13, AB13, AX15, BAE0, BB16, BPS95, BP13, BNT94, BH07, BF11a, BM13, BT03, BV00, Ber12, BWN05, BG05a, BFG95, BG05b, BFM12, BCC98, BCG10, BM05b, BM06, CS96, CA08, CA09, CA13, CDD12, CLN05, CGK05, CX05, DPP16, DPO19, Dia09, DS10, Don10, DNR12, DS13a, DSH9, DCT18, DNN18, ESC18, ES90b, EST09, EG16, FLR03, FG02, Fas05, FP95a, FSS18, GIK02, GS97, GR04, HH06, HLM+18, HR05, HS15, HOW18, HUI12, HC05, IAN16, IK00, JR94, JIA17, KAU07, KNO7,

low-density [NY03]. Low-rank [BF96, CH94, WN18, AT15, BE09, Gra08, HS18, HC05, JMPR18, KO18, KPT14, KS15, Laz16, LXS16, LO15, NL16, QB09]. lower [Alb06, SPD05, SP06]. LQ [BG00]. LQ-Schur [BG00]. LSQR [RY08]. LTI [ZS08]. LU [CCS10, LW15]. Lyapunov [BLP08, Dan08, DS18, KPT14].

M [KV10]. maintaining [Par92]. Making [LS18, CEQN07]. manifold [KO18]. manifolds [MK94, SZ11]. Manteuffel [Lee10]. manufacturing [CNY05]. mapping [BG02]. mappings [Gar02]. maps [MK94]. Marek [SP14]. Markov [AD11, BLLA11, Ben11, BK11, BL03, BDS04, BH16, BCC98, BU11, BF11b, CAS11, DS18, DHS11, DMY11, DED14, KNX01, MPS09, NX03, NW15, SI14, VFD13]. Markov-modulated [BLLA11]. Markovian [BMP11]. mass [AB17, EKS02]. mass-conserving [AB17]. master [DO18, DK15]. matching [BCZ12, KXZ03]. matchings [HS15]. material [LNP12]. materials [BMI+14, PR11]. Mathematical [SWY07]. mathematician [Voe92]. Matlab [Bra02]. Matrices [Yon96, AFSCS14, AIT05a, AN94, AN06, AB10, AN13, AB13, AX15, BAE0, BB16, BPS95, BP13, BNT94, BH07, BF11a, BM13, BT03, BV00, Ber12, BWN05, BG05a, BFG95, BG05b, BFM12, BCC98, BCG10, BM05b, BM06, CS96, CA08, CA09, CA13, CDD12, CLN05, CGK05, CX05, DPP16, DPO19, Dia09, DS10, Don10, DNR12, DS13a, DSH9, DCT18, DNN18, ESC18, ES90b, EST09, EG16, FLR03, FG02, Fas05, FP95a, FSS18, GIK02, GS97, GR04, HH06, HLM+18, HR05, HS15, HOW18, HUI12, HC05, IAN16, IK00, JR94, JIA17, KAU07, KNO7,
matrices [Sei10, SJBH14, SS97, SB03, Sol14, SST18, Sun06, Tre05, VVM05a, VP95, VVM05b, VVM05c, VV15, Vas92, WBL14, XCGL10, XHZ03, XM17, YLH11, ZHZ10, Zho16, vN00, Nab97]. Matrix [AB00, AG95, AC11, BFG18, Bun92, GTY97, Not05a, YNP04, Zha92, AFS14, AH02, AEHV15, AD11, Bai10, BBJ17, BE09, BFdP13, BB01, Ben08, BGW05, BG05a, BMMR18, BEG18, BG00, Bör17, BHHJ13, CCE18, CCG00, CH03, CLC11, CSYS14, DBC06, DGRR11, DGM16, DK95, DBLP16, EW13, EM95, EHM95, ER96, FLPW01, GMS18, GHR98, GGZ12, Gra08, HJ18, HK02, HM03, HL16, HM16, HLLL16, IP13, Ibr02, JZ11, KV92, Kap98, Kap99, KNN01, KH07, KS10, KO18, KM09, KR14, KPT14, KS15, LZ09, Læz16, LOY08, fLHY11, pLL07, LH17, LT08, LT11, Lor14, LPS15, MV08, MSS07, MRT98, Muy15, Mor09, MP14, OOO11, OOO16, PS11, yPxP06, yPES07, Rja98, Rohen. Sau95, Sha98, Ste99, SHT11, TS12, TT10, THC09, Tia13, TY10, Vas02, VS17]. matrix [WW08b, WTZD10, WtFW15, WF15, XJ12, Xie11, XQ09, xK15, YDH11, ZJ06, ZN18]. matrix-dependent [Sha98]. Matrix-free [GTY97, YNP04, AD11, TT10]. matrix-valued [DGM16, Xie11]. max [BDK15]. max-length-vector [BDK15]. maximal [LW16]. maximization [SH14]. Maximum [BCHT04, Gar02, CLCLQ18, ES05, NG15]. Maximum-weight-basis [BCHT04]. Maxwell [GS07, LGS12, MV13, MZH18, ZSWX13]. McCormick [Lee10]. mean [Ian16, KNX01]. means [MS14]. measure [BG02]. measures [Buc11, OST10a]. mechanical [LV99]. mechanics [Ada04, Axe99, GMTV16]. mechanism [DH18]. Medal [Ano08]. media [BKP02, CGPV13, GM17, KP10, NH06, SBS15, WWX10, Yot01]. Median [LNY15]. Memory [KR14, FO95, GMTV16, JO94]. Memory-efficient [KR14]. meromorphic [BEG18]. Mesh [KPV06, BC10, BGM12, DHR04, DS08, KPV08, SBS15]. Mesh-independent [KPV06]. meshes [BB00, BLZ08, BCS09, HSM99, KR11, KV96, Mov01, OZB18, RSCTP15, SRGL13, XZ15]. meshfree [LOY08, LOS04]. Meshing [HKK+06]. Method [Jia96, ABBP10, AK99, AN94, AM95, AKF02, BC09, BG13, BB16, BB17, BMM06, BES14, BS01, Bla02, Bot13, BHHJ13, BMS09, BC12, BCS09, BPS13, CKW02, CZO2, CNT07, CQXI11, Cha07, CGL05, CH05, CG15, CS18, CNY05, Cho03, CK01, CBE18, CP06, CK14, DL97, DMY03, Dax94, Dax19, DGM16, DJ09, DGP19, DS13b, DR03, EKSO2, ES09a, EWY03, FLP00, Fer96, GHT09, GS99, GT09, GD11, Hac92, HCD15, HKKP07, HS18, HES15, Höm06, HD07, HHQ13, HLLL13, HW18, HSY18, JM10, Kap94, Ken12, KY95, KKNY01, KK16, KW99, KXX03, KP06, KR11, KS10, Kra02, KT08, KLM15, KPT14, KM02, LV08, LPV01, L00, LT09, L0B8, LS15, LH17, LW17, Liv14, LJM14, LP16, LPSV18, MAM00, LV98, LMV04, MZ15, MO94, MM98, MRT96, Mee01]. method [MSV13, MP15, MW06, MBW97, Mit10, MP14, MN00, NP96, NR14b, Not94, PS11, PS95, yPxP06, PR95, PR96, PR11, PT17, Rka99, RS01, RS02, RV12, Ren96, RT99, ROA13, Sha99, Sim03, Sm06, SHJC18, TS12, WD08, WQZ09, WCZ15, Wan18b, Wan18a, WBWM04, WTZD10, Wu15, XZ09, XJ12, XZ15, Xie11, XQ09, YHS18, Yan18, YNN12, YXZ13, ZYFG11, ZN18, ZYL13, Zit05, ZMO10, vNR07, vRH05]. Methods [Ano08, CGK94, Den18, LD08, NL09, QACT18, VW01, WW08a, ARMW14,
BH04, BISC14, BMS17, BDV06, BLZ08, BMM+08, BVV12, BKM+12, BDM+14, BS10, Cho03, CBE18, DY04, DFNY08, Don05, Don10, DHR+04, EZ96, Ema12, Fa06, FM18, FM15, GM17, GLOW04, GGLO08, GHT09, GKV12, Gra08, GHJV16, GMOS06, HBH10, HM18, HNR+18, Het07, Høn05, IV04, KXZ03, KR11, KR06, KLM15, Lee12, Lee16, LOS04, LCHH18, Liv04b, Liv14, LJM14, LD07, LRGO17, MO11, MMC12, MO14, MPR10, MWZ06, MBW97, MC08, Mit10, NN11, NFD10, NSCTP05, Not05b, NV08b, OST10a, Pf99, PT17, RS02, RV12, Reu96, RBV08, RGM17, Sei10.

definitions

multigrid [Sha98, SY18b, SKR08, SSB15, TGKR10, TC10, TY10, TH19, UM09, VZ08, VY14, Wan00, Web10b, Web10a, WZZ18, XSS09, XZS15, YW12, Zha14, ZMO10, rHR05, DM10, Den18].

multigrid-based [UMO09].

Multigrid-in-time [BW17b].

multigroup [KWS+18].

Multilevel [AT15, CEL+96, CV03, MFFJ18, Osvg95, Sta96, AM96, AMM04, AN94, AV94, BMM05, BCZ12, CL96, DMITY11, DGM+16, Kra02, Kra06, KT08, KMS08, KLM14, KP10, Lai97, LSS03, LM06, MM95, May07, Not98, Not02b, Not05b, Pad09, SS02, Sha99, SLV13, Th98, XCG16, Yot01, vN00].

multilinear [LPS16, LLNV17, MP18b, PDV05].

multiphysics [Yot01].

multiple [ARSO14, ARMW14, CNZ17, Mai06, SHJC18].

multiplication [Kap99, OO011, OO016, WF15].

multiplicative [CL96].

multipliers [ZN18].

multiprecision [BB16].

Multiprocessor [ADP96].

Multiscale [HPPS03, BIA18, FP15, VSG09, WWX10].

multisecant [rFS09].

multisensors [CNSY05].

Multisplitting [RLG12, AMP99, BZ13, CS09, CS11, JS96, LSL01, Reu98].

multisplittings [BCC98, CP99, FP95b].

multistep [BWN05].

multivariate [HDIS18, LZQ12, MVK04].

Nath [CLR13].

Navier [AB12, CA99, DFF+18, HFW01, KOV17, LMM00, Oks99, PT17].

near [CNY05, Ver00].

near-circulant-block [CNY05].

near-singularity [Ver00].

nearby [AFS14].

Nested [Bla03, GNQ15, MO16, MM18, vV94].

networks [GB15, Lee18, WW15].

Neumann [KMM19, RT99].

neutral [ZCWI11].

neutron [Cha07, CGM11, KWS+18].

Newton [ABBP10, AABHV18, AMMP06, ABK97, AFWK02, BC09, BMM06, CQ10, CWs18, DL97, DEM18, DS13b, GB11, GKK04, GD11, HP04, KPV06, LB08, Lu05, LV98, NQ96, OC04, Sch99, Vla00, Yot01, ZZ15, Zhu06].

Newton-like [BMM06].

Newton-type [ABBP10, AABHV18, CWs18, Vla00].

NLA [Axe10, Vas05].

nodal [BDV06].

nodes [FP05].

noise [NWZ17].

noisy [BC09, NWZ17].

Non [AMP99, VW01, Bia16, BMM06, Bla02, BMN05, CL96, Cao04, Car97, CMG01, CPS01, CGL05, CK01, FX05, D02, EZ96, FP05, GB11, GM11, GT03, HKKP07, HSCTP05, KPV06, KM99, Kra02, LVD02, LHL07b, Lu05, LMM00, LV98, LMV04, Mav01, MZ98, MC04, NQ96, OC04, RT99, SB12, Sei10, WD08, vN00, Bai18a].

non-conforming [BMN05, KM99].

non-convex [LVD02].

non-Lipschitzian [DS02].

non-negative [BM06, CFX05].

Non-linear [WW01, Bla02, CGL05, KPV06, Kra02, LV98, LMV04, Mav01, MC04, NQ96, OC04, RT99].

non-linearly [LVD02].

non-equispaced [FP05].

non-Hermitian [SB12, Bai16, CPS01, HSCTP05, LHL07b, WD08, Bai18a].

non-conforming [BMN05, KM99].

non-equispaced [FP05].

non-Hermitian [SB12, Bai16, CPS01, HSCTP05, LHL07b, WD08, Bai18a].

non-conforming [BMN05, KM99].

non-convex [LVD02].

non-Lipschitzian [DS02].

non-negative [BM06, CFX05].

non-convex [LVD02].

non-Hermitian [SB12, Bai16, CPS01, HSCTP05, LHL07b, WD08, Bai18a].

non-linear [WW01, Bla02, CGL05, KPV06, Kra02, LV98, LMV04, Mav01, MC04, NQ96, OC04, RT99].

non-linearly [LVD02].

non-Lipschitzian [DS02].

non-negative [BM06, CFX05].
non-overlapping [CGM01, GVT03, LMM00]. non-smooth [Car97]. Non-stationary [AMP99, LMM00]. non-symmetric [Bla02, CL96, Cao04, CK01, EZ96, GB11, GM11, HKKP07, Lu05, MZ98, Sei10, vN00]. nonaligned [YXZ13]. nonconvex [Laz16]. Nonequivalence [FLPW01]. Nonlinear [Gra08, AMMP06, AC11, BRT07, De 13, DGRR11, fFS09, GD11, HM16, MV13, MSV13, Naz95, yPES07, SCD94, VJM16, Vas09, WRW18, XZS10, ZZ15]. Nonlinearly [DH18, DW15]. nonmatching [OZB +18]. nonnegative [BGX06, BGM09, BGM11, CQZ13, Sot13, WWC +15, ZQ12, ZQLX13, ZQW13, ZQWA18]. nonnormal [MYZ16]. Nonnormality [Baz08]. nonoverlapping [BO18]. nonpositive [Hua12]. nonrestarted [Zho18]. nonsingularity [Peñ07]. nonsmooth [Che92, CQ10]. Nonsymmetric [CGK94, YW12, ARSO14, Bai95, GBX06, Ema12, GLJ19, HM14, IP13, Jou94, LW07, LB08, Mey94, Not10, SJBH14, SX15, Sta96, SL10, Vas92, WTW14]. nonzero [ZJHL12]. norm [CDG00, Dax94, DE98, DBG06, DHW16, EM95, EHM95, Gar02, Miy15, XJ12, YL08, Yan18]. Normal [Gus04b, SZ11, FSS18, LS05]. normality [NR11]. norms [ZJ16, SB03]. normwise [DW07, FT08]. notch [RS07]. Note [LZY11, CNT07, Ca09, CK14, DS10, DS08, DN12, FT98, GM11, GX14, JO01, KH07, La97, LXW13, LW07, LC07, Lot07, Ney05, SB03, Sun05, SHT11, VVM05c, Vóm10, Vöm12, Wan18a, WBL14]. notion [DGM +16]. novel [NPR13, SP06, BNR18]. NS [FM18]. NS-LAMG [FM18]. nuclear [XJ12]. null [How18, ITS07, RS18, WF15]. null-space [ITS07, RS18]. nullspace [Sim03]. nullspace-free [Sim03]. number [BB06, BC10, EHM95, EG16, LH08, LLW09, RV12, TGRK10, ZHJL12]. numbers [BG05b, CCG00, CLTW11, CDW06, DW07, Dia09, DXW12, DWWQ13, Liv14, YDH11]. Numer [SB12]. Numerical [AGG +16, NLA94, Ano08, Ano09, BLP08, Ben11, CH03, CA99, DMS17, DSV18, FZW CW17, GS05, HHM10, HJR97, fLYHZ11, LD08, MK94, MMM09, MV05, NBKS99, NSCTP05, NL09, WW08a, JNL92, Bai95, BDRS12, BNR18, BKP02, Bat95, BGM11, Ber01, BDS94, CQX11, CJW06, Cor04, CJT03, Dat01, DS02, GY08, HPS15, L04, LH08, LHW11, LGS12, Lin12, MM09, MP13, MM18, OCYM08, Ols99, Özb13, SHT11, TUr00, Mar00].

Objective [Ris19]. Oblique [Hau13, YCY17]. oblivious [MWZ06]. observations [CZ02]. observer [CLR01, CD11]. obstacle [JZ11, ZJ06]. occasion [CLR13, LPQ06, SGP14, Vas03, Vas05]. occur [CC03]. occurring [AG09]. oceanography [Rak99]. odd [Not05a]. Odir [CK01]. off [EW13]. off-diagonal [EW13]. One [OC04, CSYS14, FMPS13, O’H14, Pul08]. One-level [OC04]. open [Gar04, RR12]. OpenMG [BISC14]. operations [STZ12]. Operator [Gus97, Gus98, Gus03, MMPR10, Alb06, BV00, BCV03, BFM12, Den09, GN00, GH11, Liv04b, MP15, Tyr05]. Operator-based [MMPR10]. operators [AFSCSU14, ABBP10, AEHV14, BKY10, Don10, GGL008, GVT03, Kho96, MC08, PSK08, Yan10]. optical [BCK05, KRW08]. Optimal [Bai09, BTB13, ELV94, GH015, HLM +18, HLS07, LD07, MM95, Not98, WKS95, BLP08, BFPS10, BNM05, DH04, EG16, GTZ18, HFW01, HW18, KK13, Lai97, MNCT07, MSS07, MP13, NA97, PSLW14, RGG07, RSCTP15, SY18a]. optimality [NN10]. optimally [Cha07]. optimization [AN03b, BDK +15, Chu04, De 13, DD07, Gar02, GY08, HHM10, HP04, KCS11, Laz16, LZQ12, Lin12, LV04, MV13, NBKS99,
PW12, RS10, Ris19, SW12, WCZ15, WN18].

optimize [MC08]. optimized [OOO11].

Optimizing [TGKR10]. option
[LLS12, Rag14]. order [ABBP10, AEHV14, AEHV15, AABHV18, ABK15, BCR11, BCR14, BBJ17, BH16, BGM^+12, BSI17, CEL^+96, DLVZ06, ELV94, GM17, GA18, GT16, GHW06, GKY97, GL13, Hen96, JM10, Kap02, KLM^+06, KPV06, KM09, Lam12, LY15, MV13, MMN^+10, MNCT07, RS01, SSB15, TSPSO06, UMO09, WQ07, WQZ09, Web10b, Web10a, XSZ09, XS11].

order-reducible [BCR14]. ordered [Bea94].

Ordering [HS05, HS15, Sco99].

orderings [DS10, NA97]. ordinary [BCR11, BCR14, Bot13, ZCW11]. oriented [TC10].

Orthogonal [FB95, VVM05a, AM95, BF96, DBG06, Kem12, MO94, PN18].

orthogonality [Par92]. Orthogonalization [Jia96, LBG13, LL97, SW96, VS17].

orthogonalizations [Dax04].

orthogonalizing [Mat96]. Orthotropic [GL96].

Oseen [CBE18, HBB10, KLM^+06, Ols99]. outer [Cor04, Xia12]. output [LW05]. outs [LPW06]. ovals [KVC12].

over Penalized [BPS13]. overall [BS01]. overlap [KK02, mMvdV00, Kem12, MO14, PN18].

Overlapping [CS96, GQ15, CM01, Gan99, GVT03, JS96, KP00, LMM00, MO11].

overrelaxation [BGN07, Gus03]. Owe [Cao13, Vas05].

p [SP06, HMS99]. p-level [SP06]. Padé [BLV08, GZ12, LZ90]. PageRank [LLNV17, MP18b, WW07, YYN12]. pairs [CLC11, GMS18]. pairwise [FLR03].

palindromic [LYL15, MM09]. panel [PR06]. Papers [Ano08, LD08]. parabolic [AT15, JM10, KK13]. Parallel
[AO07, AMMP06, Bas00, BLE97, BGM^+12, BS10, CR16, FJP16, GR05, GL96, KR11, Lee16, LSL01, LGS12, NO04, RT99, The98, Voe92, WH94, ZYFG11, AGG^+16, ACR^+00, AMMR17, AMP99, BPS00, BMS17, BMS18, BvDV00, CS09, CS11, CJT03, DFN08, FJP12, FM99, GMR05, GSS01, GMOS06, GL98, GL02, GL13, Hae92, HS05, JO94, KK02, Kuz92, LW01, LSS03, LWC16, MW16, MM97, MBW97, MC04, MR14, Pad99, PR95, PR96, Rak99, RK18, Ren98, Sid97, TSPSO06, Van00, WLH12, mMMvdV02, mM04]. parallelism [Vom12].

parallelizable [GL95]. parameter [AK99, BEG18, GNR14, GS05, KPT14, MSV13, Not02b, Yan18].

parameter-dependent [BEG18, GS05, KPT14]. parameter-free [Not02b]. parameterized [CCvG06, HW18]. parameters [Bai09, BNP15, GHO15, HW18, Mai06, Yan04, Yan18, ZHJ12].

parametrization [Hua12]. Parlett [Bun95, EM95]. pARMS [LS03]. Partial [GL98, GL02, GL13].

Performance [BT15, Sei10]. PDEs [AT15, AMMR17, Hem96, Hóm06, MO11, VSG09, VZ08, ZMO10]. Peaceman [LR95].

pEERS [KS04]. penalized [BPS13, Dos99]. penalties [MG08]. penalty [BCS09, BPS13, BDR17, DH04, Lai97, PSW14]. pencil [LW05]. pencils [BB01]. Penrose [DW07, DWWQ13, KKM12, LXW13].

periodic [KK13, Var08, WZZ18]. periodicity [BDS94]. permanents [WLH12].
permittivity [PR11], permutation [May07]. Perron
[ES09b, KNX01, LCN13, MP18b, NX03].
Perron-based [MP18b].
perspective [BMS17, OST10a]. persymmetric [XHZ03].
Perturbation
[Cas11, CLC11, GCLG18, GW00, WW08b, YL08, CTP09, Cha12, CLTW11, FT98, JLW05, LS05, LS06, LCN13, LW15, O’H14, WKP95, WL03, YDH11]. perturbations
[AIT05a, AIT05b, LXW13].
perturbed [Sau95].
Petrov [CGM11].
phase [DY04, HS13, HLLL16, NH06, SY18a].
planar [BLE97, Ypm95].
planewise [mMP99], planewise-like [mMP99].
plants [Ozb13].
plasticity [ABK97, Car97, HJR97, Wie99].
plate [AY11, CYZ99]. player [AD12].
Plemmons [NN15].
plus [BLP17, Fas05, HN05, KN07, MCV01].
point [AN06, Axe15, Bai09, Bai12, BMM06, Ber12, BG05a, Bir15, Cao04, Cao08, Cao09, CJZ11, CH03, EG16, HP04, HD07, KPO0, KO18, KKR14, Kz11, KMM12, LOV08, LOS04, LW07, LMV04, LSS18, MZ15, PW13, RS18, SJBH14, SX15, TH19, VL96, Wan18a, Web18, WBL14, Zha18, MST16].
point-type [Cao08]. points [HM96].
Poisson
[CKW02, CJL08, Dah02, RSR10, TSPS06].
polar [CCG00, LS06, RT02, YL08].
Pole
[Dod11, LC13, LW04, LW05].
poles [Mee01].
policy [BLLA11].
polyhedral [Dah02].

polyhedral [Dah02].

polynomial [CR16, Gan05, GKV12, HM96, HS08, HVX6, Le16, LW98, WCZ15].
polynomials [BB97, BGW05, BG05a, HDIS18, KR14, MO94, MN05, Nov03].

population [DHSW11].
poroelasticity [GLOW04, LRG017].
porous [NH06, SB15, WW10, Yot01]. posed
[CLTW11, DNR12, DHN18, Est09, GORR16, NR14b].
positive
[ARMW14, AIT05a, AV94, Bai16, Bai18a, BP13, BMAA16, BT03, CS09, CS11, DPP16, DJ09, Kap98, Kol05, LHL07b, MV08, PS11, yPES07, PW13, SB12, WW08b].
positive-definite
[DJ09, Kol05, LHL07b, MV08, SB12].

positivity
[KSB13]. possible [VL11]. Post
[KL13]. Post-processing [KL13].

posteriori
[AM96, BLP01, CS18, OOO16, Pul09, Ney02].
potential [Kho96, MRT96, Shi02, Shi04].

potential-reduction [Shi04]. potentials
[KK16].

powers
[HLM+18].
predictive
[AM96, BLP01, CS18, OOO16, Pul09, Ney02].
preconditioner
[TT10, BPS15, BT03, Bm03, BC12, BPS13, CGPV13, CJZ11, CNP96, CJWT06, CS95, CV13, Doh07, ESO7, EGF11, GN00, GTZ18, HFW01, ISZ09, KS04, KWS+18, KV96, Kuz92, KP10, LS04, May05, May07, MC09, NL16, SPD05, SP06, SLV13, SGP14, UMO09, Xia12, XS11, XM17, Zha18, Zhu14, vN00].

Preconditioners
[CP01, Est09, GS07, PSW14, AL11, AN13, Bai16, BM17, BDM18, Bla02, BMN05, BCHT04, BIA18, BSI17, Cao08, CDG00, CDGM04, CGM01, CC92, CW97, CEL+96, DDG99, DP03, FP15, FK15, FS09, GMTV16,
Preconditioning

[ABM17, AN03b, AB10, ABNP15, ABK15, CFAM16, Egg07, Gro00, HW19, HSCTP05, MW11, Pul09, SMSW00, SW12, Vas92, VL96, WDS09, WBWM04, AFSCSU14, AT15, AK94, AV94, AFK02, Axe15, BCR11, BCR14, Bas00, BGM09, BPS00, Bla94, CDDSC12, De 13, DLVZ06, DD07, Dos99, DKVB15, FJP12, FJP16, GM11, Gus03, GL95b, HPPS03, JZ09, JK17, Kap94, Kap98, KK02, Kap02, KM09, KPV08, KOV17, Kra02, Kra06, KMS08, LV04, LW03, MFFJ18, MM95, MM02, NO04, NR11, NA97, Not98, Not02b, NCV05, PW13, Pol00, SP18, SL10, Vas02, WH94, AB13, Ca03].

Preconditionings [GKY97, KNY99, NY03].

Prediction [BS10, PGT14].

Predictive [FM15].

Prediction [Axe02, AK10, Cve09, Dat01, NT04].

Prefiltration [NY03].

Preordering [LSS18].

Preservation [EJK01].

Press [Nab97, Amb15].

Pressure [Lay05, LWC16, vKVW00].

Prestructuring [How18].

Price [Nab97], pricing [LSS12, Rag14].

Primal [HP04, RT02, FLP00].

Primal-dual [HP04].

Principal [GH06, LB17].

Principal [BC02, Vos09].

Principles [Gar04].

Priori [HM96].

PRISM [Axe98].

Prize [Ano08].

Probabilistic [WWC+15].

Probabilities [NX03].

Probability [BH16, LCN13, MM98].

Probing [TS12].

Problem [AH02, AK99, ABK15, Bai95, BDK+15, BFPS10, CZ15, Car97, CPSM06, CGLO5, CG15, CFAM16, CJT03, DL97, DMS17, DWQ13, Dod11, DBLP16, ES07, ES09a, ER96, GKK04, Gus98, HBH10, Hla99, HS08, IV04, KABH17, KP06, KH07, KMM19, KN03, LLLJ16, pLL07, LYL15, LD07, MV13, MRT96, MLV05, Mee01, MP15, Ols99, OC04, yPyHZ04, Ren98, RSR10, Rja98, RT99, Sau95, SH14, Sim03, Sot13, VF013, Vla00, WKS95, XZS10, YHS18, ZJ06, ZYFG11, ZYL13, ZVO14].

Problems [CGK94, GL96, Ada04, AB00, AW11, ALT05b, AG99, AV94, Axe98, AN03b, BBP03, Bai09, Bai10, Bai12, BZ13, BZ17, BKY10, BKP02, Bar02, BLE97, BBS12, BMM06, BG09, BGM11, BL08, BCV03, Bla94, BC02, BB13, BMS18, BvdV00, BRT07, Bö01, BO13, BDM+14, BIA18, CL96, CNT07, CQX11, CGPV13, CRS05, CR16, CQZ07, Ca04, CJZ11, CCV06, CC92, CNP96, CW97, CS02, CTP09, CEL+96, CCK06, CWs18, CW97, CC03, CLTW11, CP12, CBE18, CV13, CR14, CK14, Dax94, DE98, DW07, Dia09, DN12, DJ09, DGP19, DHR+04, DP03, DR03, DHRN18, Egg07, EGF11, ELV94, EWY03, FY01, FGT11, Gar04, GGO08, GH01, GORR16, GHT09, GV03, GZ12, GTZ18, GMT16, GL98, GL02, GL13, HJ18, HP97, HKST12, HJR97, Han13, HW19, HS13, HL16, HD07, HLLL13, HM16].

Problems [HLLW05, JZ11, JK18, JM10, KKP18, KMM18, K02, KR11, K00, KK13, KR06, KT08, KMS08, KLM14, Kr11, KM92, LL97, LR95, Lay05, LP01, LV99, LW07, Lin12, LZ12, LW16, LW17, Liv04b, LL97, LV98, MZ15, MM09, MS07, Mar00, Mar98, MRT02, Mar16, MS07, May01, MS13, MP13, MM97, MBW97, MM02, MSB18, MZ98, NR14a, NR14b, Nov03, OS10, Pad99, PBN05, PSS14, Pen08, PH19, RR12, ROA13, SLK16, SX15, Sh02, Shi04, SY18a, SV11, Sta96, Sto92, TDH+18, Tre13, TT15, VJM16, VL96, Ver00, Wan00, Wan18a, Web18, WWC+15, XG10, XZS15, XXW19, wX15, XCG16, YCY17, ZZ15, ZN18, Zha18,
shift-and-invert \[\text{MP14, WtFW15, Sim03}].
Shift-invert \[\text{PS11}].
Shifted \[\text{DP16, CV13, JR94, JHY17, SLV13, TT15, UM09}\].
shifts \[\text{SHJC18}].
Short \[\text{Lai97, SHT11, Yon96}\].
sided \[\text{FK15, ZJ11, ZJ06, Zik08}\].
sides \[\text{ARSO14, ARMW14, SHJC18}\].
Sign \[\text{Nab97, CJC11, GM17, GGZ12, SST18}\].
sign-indefinite \[\text{GM17}\].
Sign-Solvable \[\text{Nab97}\].
signal \[\text{Dat01, HM03}\].
signless \[\text{XC13}\].
Signorini \[\text{Hla99, IV04}\].
similarity \[\text{VVM05a}\].
similarly \[\text{Tre05}\].
SIMPLE \[\text{LV04, KNY99}\].
simpler \[\text{JYH17, LSJ18, WZ94}\].
simplified \[\text{BM06, ZVO14}\].
simplifying \[\text{MC04}\].
simulation \[\text{BFPS10, BvdV00, BO13, PR11}\].
simulations \[\text{AK16, KR11, LWC16, NO04}\].
simulator \[\text{LVW01}\].
simultaneous \[\text{DK15, Pen03, AT15, GM11, LT11}\].
sinc \[\text{BRC11, BCR14, NSCTP05}\].
Sine \[\text{CW97}\].
single \[\text{PDV05}\].
single-channel \[\text{PDV05}\].
singly \[\text{HS05}\].
Singular \[\text{AFSCSU14, BCC98, CKW02, Cao08, CL13, Dod11, EN17, FP99a, FH94, GT116, HS11, HS41, HILL16, J LW05, JK18, KR06, Krz11, KKKM12, KMM19, LSL01, LHL07, LH11, LT13, MPS96, NRI4b, PH19, Roh92, Sau95, SS97, Sz94, THCO9, Trec05, ZW10, ZSKA18}\].
Singular-value \[\text{AFSCSU14}\].
singularities \[\text{BLZ08, CKW02, Dab02, LLW09}\].
singularity \[\text{Ver00}\].
sixtieth \[\text{LPQ06}\].
size \[\text{BMMR18, FJP12}\].
skew \[\text{BGN07, KKR14, LH07b, SB12, Wu15, BAI18a}\].
skew-Hermitian \[\text{SB12, BGN07, KKR14, LH07b, Wu15, BAI18a}\].
sliding \[\text{AMR18}\].
small \[\text{DXW12, KV96}\].
smallest \[\text{MV08, MM11}\].
SMASH \[\text{CCE+18}\].
Smith \[\text{BES14}\].
smooth \[\text{Car97, HKKP07, The98}\].
Smoothed \[\text{BDM+14, CDW06, OS10, Sch12, BMM+08, BVV12, GHT09, KWS+18}\].
smooth \[\text{LRGO17, ZVO14}\].
smoothers \[\text{BO18, GGLO08, GKV12, HBH10, LJM14, MO11, Yan04}\].
smoothing \[\text{BC09, EZ96, GLOW04, HP97, TC10}\].
smoothness \[\text{Ch03}\].
SNAP \[\text{ITS07}\].
Sobolev \[\text{AFK02}\].
social \[\text{GB15}\].
software \[\text{Voe92}\].
solid \[\text{Ad04, SV11}\].
Solution \[\text{Bar02, BFPS10, Ben11, JL09, ACR+00, AD11, Axe98, Axe99, BDGL09, BAI95, BKP02, Bau08, BMM06, BLP08, BS01, BPS00, BMP11, BEG18, BRT07, BDS94, Bot13, BVD+18, BM12, CFPV13, CLR01, Che15, CA99, Cor04, DMS17, DSV18, DO18, DDL1, FZCW17, FJP12, Gem00, GTY97, Gra08, GS05, GL08, GL02, GL13, HJR97, HG00, Hla99, ITS07, JZ11, JQ94, KRW08, LX08, LPV01, LV99, LGS12, Lin12, LL97, Lot07, MS14, MZHB17, MP13, MM97, MBW97, Mj15, MSB18, Ols99, yPES07, PH19, Ren98, SGSM15, Sim03, Ste95, TPS06, WWC+15, ZN18, ZYL13, VW01].
Solutions \[\text{GL95a, Pen08, AW11, BGM06, CH03, DE98, DBG06, HM96, KR06, fHyH11, pLL07, Mi17, PP+95, Tia13}\].
solvability \[\text{XHZ03}\].
Solvable \[\text{Nab97}\].
solve \[\text{BG13, KBF15, Liv04b, MZHB17, ZJ06}\].
solver \[\text{BvdV00, CHV05, GKK04, KK13, KR06, LSS03, LM06, MNCT07, MRT02, Ols99, Pad99, PR11, RNT03, Rak99, RGG07, RGM17, SS02, SL14, SKR08, TH19, Yot01}\].
solvers \[\text{AGG+16, AG99, ABK97, Ber01, BC02, BO13, FS09, HLM92, HLM+18, HS05, KKPS18, LR08, Lee16, Mey94, MSB18, NO04, Sch12, Sco99, Web18}\].
solves \[\text{Cha07, GP18}\].
Solving \[\text{BG05a, Nov03, WZZ18, AH02, AMMR17, AK99, AK00, BAI18b, BS17, CA04, CQ10, CVwS18, CC03, CN05, DN12, EM11, FH94, HKKP07, HM14, JLW05, JH04, KS15, KKKM12, KM92, LT09, Liv14, MZ15, MLV05, NQ96, PM07, yPSCP06, QACT18, RSR10, Shi02, Sto92, SHJC18, TT10, Var08, Vl00, WTZD10, mMP99, mMO4, vGSZ15}\].
Some \[\text{BFG95, BM05a, CGK94, CZ02, HM14}\]
LS06, Mar95, Sun06, Ber01, BB06, CDW06, DS10, GL02, LV08, LHL07a, Pe~n09, XZS15. **SOR** [Che02]. sorting [Bra02]. source [TH19]. Space [Lee12, AT15, AMM04, AFK02, BPSH13, BMS17, BMS18, BV13, BC12, DHNR18, GB15, How18, ITS07, KV92, KLM15, RS18, RSR10, SY18b, WRW18].

Space-angle-energy [Lee12]. spaces [GH06, LV12, LZY11, LPW06, VSG09]. Sparse [CDG00, CDGmM04, Vas02, WWC+15, AB00, BPS95, Bas00, Bau08, BF11a, BEH+17, BPS00, BV00, BG00, CS96, DCT18, DR03, EW13, FJP12, FSS18, GHO15, Gus03, HLM+18, HS15, How18, HS05, Huc98, ISZ99, JZ09, JK17, KKNY01, KNY99, LLL97, LV98, LSS18, Mey94, NLZ11, NY03, NH98, RTN03, RK18, RS18, SZ99, SS02, SY18a, WRW18]. sparsity [Poi00]. spatially [OZB+18]. SPD [HLM+18, Mar16]. Special [Ano08, CLR13, Fal06, LD08, VW01, Vas05, Ben08, Dat01, ES07, Mey94, A xe99].

specially [SHT11]. specified [FLyHZ11]. Spectral [CDDSC12, MST16, SGSM15, mMvdV02, BPS95, BFdP13, BM17, CQZ13, CNZ17, CIX05, LQY13, LNQ13, MS14, MC09, Par03, SK01, ZWQ18, DFF+18]. spectrum [Cao09, Lor14]. Speed [LY15]. sphere [ALM18]. spheres [WCM15]. Spline [LPS16, EFG+18]. splines [LY15]. Split [HR05]. Splitting [HN05, LXX17, BGN07, Bai10, Bai12, BLPP17, CJJ11, Che15, Gan99, HLM+16, HMR+14, KKR14, LHL07b, SB12, Wan18b, Wan18a, Wu15, xW15]. spring [EKS02]. spring-mass [EKS02]. SQP [AH02]. Square [DNR12, TY10, Mor09]. squares [BES14].

squared [BES14]. squares [AB00, AK99, BDGL09, Bar02, BMM06, BG00, BMG09, BGM11, BGM+12, CYZ99, CNP96, CTP09, CP12, CP06, DE98, DH18, DW07, DWWQ13, ES07, ES09a, ER96, FB95, GW00, GR05, KMM18, KLM+06, LVD02, pLL07, LZ12, LW17, LL97, MMN+10, MVK04, MLV05, Miy15, Pen08, Ren98, RLG12, Sto92, TDH+18, Tia13, WKS95, WWC+15, XZW19, ZHZ10]. SSOR. [Bai16, GKY97, WH94]. **SSOR-like** [Bai16]. Stability [CJW06, DHS95, OCM08, BV13, DGB+13, DS13a, EM11, KSB13, Lee10, NX03, Pe~n03, Sau95, ST17b]. stabilization [AB12, DGB+13, DGR11, Lay05]. Stabilized [BH07, Cao04, EWY03, KVO17, LMM00, RGM17]. Stabilizing [VW97]. Stable [OS01, ABK15, Gen00, GMS18, LWX13, LSJ18, MCV01]. stage [AMMP06, BM17, JS96, MPS96]. Staggered [DFF+18, OCM08]. standard [Han13, LPV01]. standard-form [Han13]. standpoint [Voe92]. start [IW98]. State [DGRR11, BV13, BF11b, CD11, DK15, KV92, LCH18, PSV14]. state-constrained [PSW14]. state-space [BV13, KV92]. state-time [DK15]. static [LNY15]. stationary [AMP09, BH16, LMM00, MM98, NX03, RBV08, ZW10]. statistical [DXW12, LX08, LT08]. Steady [HG00, BF11b]. steady-state [BF11b]. Steepest [De 13, NZ14, Shi02, Shi04]. Stein [BES14]. step [AV94, CWW818, CK10, L100, PBN05]. stepping [Lam12]. steps [Fas05, Shi02]. Stewart [HC05]. Stiefel [CZ15]. Stieljes [AN94, FSS18]. stiffness [DKV15]. stochastic [AD12, BMMR18, BDM+14, DMS17, GHR98, Lee16, MM98, RBV08, ROA13, SGP14, TY10]. Stokes [ABM17, AB12, AK99, BKP02, CA99, CBE18, DFF+18, HM18, HFW01, KVO17, LR08, Lee10, LMM00, LD07, Ols99, PT17]. Stokes-like [Lee10]. Strange [ZCW11, CNP96, NR12]. Strang-type [ZCW11, NR12]. strategies [AGG+16, BE98, CDG00, DMM+08, GTY97, HSCTP05, Kap94, PM97, PGT14, SGSM15, SS00]. strategy [BBM+06, BM05b, BM06, GP18, Sco99, SY18a, WLH12].
strength [OST10a]. Strengthened [AALS01, AM96, Bla03, Mar94]. stress [MM02]. stretch [TY10]. stretched [KM92, ZMO10]. stretching [AB00].

Strong [DBG+13, Bai18a, DS13a]. strongly [ABK15, KW99]. structural [GMTV16]. structure [BS01, FZwCW17, Hem96, HHL16, PR16, Rja98, WRW18, WN05]. structure-preserving [HHL16, PR16].

Structured [BGW05, BG05b, CCE+18, CCLN05, MCC+12, SLV04, Tyr05, CCLQ18, DDG99, Dia09, GLGR10, Gem00, HM18, LVD02, LYL15, MMC12, MKV04, MLV05, MP13, NR11, NR17, Poi00, Sun05, SHT11, Tre05].

Strongly [DGB+13, Bai18a, DS13a]. strongly [DGB+13, Bai18a, DS13a]. strongly [DGB+13, Bai18a, DS13a]. strongly [DGB+13, Bai18a, DS13a]. strongly [DGB+13, Bai18a, DS13a].

Subdomain [HLM92]. subgraph [BCZ12].

Subspace [CS02, DDG99, BMAA16, Bot13, CS97, Dam08, DK95, GLJ19, GTI16, HCD15, HS11, HS14, IP13, KS10, LS15, NR14a, RLG12, Sid97, SS07, ZS08].

Subspace-based [GZ16].

Subspace-by-subspace [DDG99].

Subspaces [BDK+15, DF01, IT05, MP16, PPv95, VS17].

Subtracting [GMRO5].

Subtracting [GMRO5].

Successive [BGNO7, Gnu03, WQ07].

Subtracting [GMRO5].

Super [CNSY05].

Super-resolution [CNSY05].

Superconvergence [FY01].

Superfast [CHV05].

Superlinear [Kap05].

Superlinearly [CQ10].

Superoptimal [CJW06].

HCD15, WQ07].

Supply [CPSM06].

Supported [FP15].

Supported [FP15].

Supported [FP15].

Survey [CQZ13, SK01].

Sylvester [Bau08, BMAA16, BHHJ13, CLR01, CD11, DXW12, HJ18, JMR18, MP15].

Sylvester-observer [CLR01, CD11].

Symbol [DGM+16].

Symmetrization [GM11].

Symmetry [Pen92].

Symmetry [Pen92].

Symmetry [Pen92].

Symmetry-constrained [Pen08].

Symplectic [DS13a].

Synchronization [CGV11].

Synthesis [RGG07].

System [AALS01, BC09, Baz08, BB06, BvdV00, BMAA+12, CJL08, GLOW04, GP18, HES15, HL10, KLM+06, KRW08, LW04, MMN+10, SB12, SCQ14, ZS08].

Systematic [GLOW04].

Systems [Jia96, Nab97, ARSO14, AM96, Ada04, ACR+00, AMP99, AMMP06, AK00, AN03b, BPS15, BLP17, Bai18a, BG13, BB17, Bus00, Bat95, BGM09, BFP10, BEH+17, BDDSM18, BMN05, BW17b, BGE18, BRT07, Bot13, BVD+18, BS17, CS09, CS11, CDGM04, CD11, CPSM06, CPS01, CSCTP05, CC03, CNY05, CK01, CA99, CHV05, CS95, CP06, DSV18, DDG99, DGRR11, Dob99, Dod11, DGM+16, DN12, EKS02, Ema12, EN17, EM16, ECA19, ECA20, EM17, EM18, EM19, EM20].
EM11, FP15, FLM09, FM18, FH94, Gem00, GLJ19, GM11, GSS01, GTY97, GA18, GKY97, GS05, GD11, HLM+18, HKKP07, HS11, HN05, HW18, HSCTP05, JZ09, JK17, JYH17, JL09, Jou94, KBF15, KM99, KKR14, KKMM12, Lai97, LX08, LOY08, LOS04, LJ04, LHL97b, LT09, LC13, LC05, LC07, LW03, Lot07, LSS18, MO11, MS14, MW11, MZH17, MCV01, Mey94, MPS96, systems [MST16, NSCTP05, NCV05, PM97, PW13, QACT18, RK18, RS18, RVW98, SZ99, SS02, Sac05, SPD05, SP06, SP18, SS07, SMSW00, Ste95, Sm05, SL10, SHJC18, Szu14, TT10, TC10, VFV13, VZ08, WD08, WM12, Wan18b, WTWG14, Wu15, ZW10, vGSZ15, HS14].

\[t \text{ [mM04].} \]

\[\text{tangential [AN03a, AN07].} \]

\[\text{technique [HM03, IP13, NY03, WZZ18].} \]

\[\text{techniques [ACR}+\text{00, BB00, Bla94, CDDSC12, CS97, CFAM16, Dat01, ELV94, GKL18, GNR14, HK02, HS05, LM06, SZ99, Ver00, BFG}+\text{18].} \]

\[\text{template [LB17].} \]

\[\text{Tensor [BFG}+\text{18, DHW16, JYZ17, AT15, AK16, BG13, BMAA16, BH16, CLNY15, DW15, DH18, DQW15, DK15, DS13b, FzwCW17, HKST12, HS18, HDS18, KK16, KN14, LQV13, LC13, LXX17, LP16, OST10b, STZ12, WQZ09, XC13, ZQ12, ZQLX13, ZSKA18, ZQW13]. tensors [BW17a, CQZ13, CCLQ18, FMPS13, HCD15, HHQ13, KJ12, LLK14, LNQ13, MCC}+\text{12, O}’\text{H14, PN18, WQ07, WN18, ZWQA18].} \]

\[\text{term [BDR17, Lai97, WM12]. Termination [Bir15]. tessellations [DE06]. test [BC09, CCLQ18]. tetrahedral [Bla03]. th [AEHV15, LZ09, LH17]. their [BKPO2, CEQN07, KCC16, Kuh92, LY15, LH11, Tia13, Vöm10, Xie11]. theorem [Adi08]. theorems [BBP03, BKPO2, CP99]. Theoretical [MO14, Gar04, MM18, Not05b, WF15]. theories [BDRS12, BNR18]. theory [ABK97, ABNP15, CCvG06, CQZ13, FT98, GW00, GL98, HM14, JLO9, LQY13, LNQ13, Miy17, Pu16, VV97]. thermal [HK12]. thermoacoustics [SGSM15]. thin [The98]. third [ABBP10, BCR11, BCR14]. third-order [ABBP10, BCR11, BCR14]. Thomas [LV12]. three [AALS01, BO18, BB96, CGPV13, DM10, HW18, Ibr02, KT08, Rja98, XZ15, YW12]. three-dimensional [AALS01, CGPV13, KT08, Rja98]. three-way [Ibr02]. threshold [Saa94, SZ99]. thresholding [LM06]. Tight [OOO11]. Tikhonov [BCR14, BDR17, CRS05, CLTW11, Don05, FRR16, GNR14, LHW11]. time [AT15, ABK15, Bai12, BW17b, BMS17, BMS18, Bot13, CNT07, Cas11, CLNY15, CJL08, DGRR11, DK15, GZ16, GS07, HG00, HNR}+\text{18, Kem12, KK13, Lam12, LLS12, LGS12, LC13, LPVS18, MV13, MC09, RBV08, SY18b, TH19, WZ18, ZYFG11, ZSWX13, vKVW00]. time-delay [DGGR11, LC13]. time-dependent [CNT07, MV13, RBV08, ZYFG11]. time-exact [Bot13]. time-fractional [LPSV18]. time-harmonic [Bai12, GS07, LGS12, ZSWX13]. time-independent [CJL08]. time-periodic [KK13, WZ18]. times [KVW10]. tire [SMSW00]. Toeplitz [AH02, BLP17, BG05a, BG05b, CNP96, CPS01, CGK05, CNY05, CHV05, CS95, Don10, DGM}+\text{16, ESC18, Est09, FLM09, HR05, Hem96, HSCTP05, KN07, LC05, LC07, Lot07, LPS15, MS14, MMV08, NR11, NPR13, NCV05, PS11, SP18, WtFW15]. Toeplitz-block [SP18]. Toeplitz-plus-Hankel [KN07]. tolerant [RTN03]. tool [FM15, GS07]. tools [BBP03]. topology [HP04, Vas02]. Total [CLNY15, CTP09, FB95, GRS95, LVD02, LW17, MKV04, MLV05, XXW19, ZZ15]. totally [BP13, Hua12]. Trace [KCS11, BFM12]. tracking [LB17].
transfer [Don10, GVT03, KV92]. transfers [WTWG14]. transform [CW97].
transformation [FLPW01, HSY18, LL97, MC09, OOO16, VVM05a]. transformations [CHV05, Dax04, Han13, J001].
transforming [Lin12]. transforms [WTWG14]. transform [CW97].
transformation [FLPW01, HSY18, LL97, MC09, OOO16, VVM05a]. transformations [CHV05, Dax04, Han13, J001].
transient [KWS+18]. transition [BH16, LC13]. translation [KY95].
transport [Cha07, CGM11, HM14, Mgy17, TC10].
travel [TH19]. treatment [JM10, MM09].
tree [Vom12]. Trees [BMP11]. Tretz [LLW09].
triangle [RSCTP15]. Triangular [Zho16, BNT94, BF11a, FP95a, GLGR10, KABH17, KKR14, LPS15, MmMm09, Mit10, RS10, SRGL13, SST18].
Tridiagonal [NPR13, Zho16].
trigonometric [CHV05, FP05].
trigonometry [Gus97, Gus98, Gus03].
trilinear [BG02]. triplet [LT11]. triplets [SS97].
truncated [GKk04, KS15, GTI16, LHlW11, NR14b].
Two [BM17, CSCTP05, CwwS18, DLV06, ES09b, rFS09, HH06, JS96, KM99, KV96, PB05, ZXS10, Yon96, Zha92, ZSWX13, Zik08, vRH05, AM96, AD12, AABHV18, AMMP06, AN13, BS17, CGFV13, CGM01, CG15, DY04, DFNY08, DBG06, EN17, ELV94, FVZ05, FK15, FH94, GVT03, HHvR04, HVX16, HHLl16, IAn16, Jz11, KWS+18, MCV01, MSV13, MP15, Mps96, NN10, NH06, Not10, NCV05, SY18a, VSG09, WM12, Wan18b, XS09, Yan18, XZ13, ZJO6]. two-by-two [AN13, MP15, Wan18b].
two-component [NH06]. two-dimensional [DY04, XS09].
two-grid [CSCTP05, ZSWX13, CGFV13, CG15, ELV94, FVZ05, HVX16, NN10, Not10].
Two-level [DLV06, HH06, KM99, KV96, XZS10, vRH05, CGM01, EN17, GVT03, HHvR04, KWS+18, NCV05, VSG09, YXZ13, Zik08].
two-parameter [Yan18]. two-phase [HHL16, NH06, SY18a]. two-player [AD12]. two-real-parameter [MSV13].
Two-sided [Zik08, FK15, Jz11, ZJ06].
Two-stage [BM17, JS96, AMMP06, MPS96]. Two-step [CwwS18, PB05].
two-term [WM12].
Two-Way [Zha92, MCV01]. type [ABB10, AABHV18, BR07, Baz08, Ben08, Cao08, CwwS18, CWS97, E016, FG02, GKK04, HM14, KKNY01, KCV09, LHLs07, LT13, MP15, NR12, SC9D4, Via00, ZCW11].
typical [ZXS15].
UK£30.00 [Nab97]. unbalanced [FLM09].
uncertain [DGB+13, DGRR11].
unconstrained [Ris19]. underdetermined [QACT18].
Unified [Axe15]. Uniform [BLZ08, Lee10, Hms99, Xc13].
unification [Sid11]. unilevel [Tre13]. uniqueness [Llnv17]. unit [WCZ15].
unitarily [Y08]. unitary [JR94, Lor14, Mat96].
University [Nab97]. unreduced [MST16].
unsteady [OC04]. unstructured [Cho03, KV96, May01].
Unsymmetric [Jia96, EM11, GR04, HS05, MS14].
untangling [GKK04]. unwrapping [DY04].
update [ZZ15]. updates [BDDSM18, DEM18, TT10, Tyr92, Zho06].
US$49.95 [Nab97].
Use [HKST12, Bla02, BDS94, FH94, HS15, Yan04]. used [KV15]. users [GB15].
Using [BBB03, GB15, Kap02, AW11, AMR18, A FK02, BBl6, Bp13, BTT13, BC02, Buc11, CKW02, CS18, CNSY05, CHV05, DK15, GP18, HDIS18, IS09, KMMR10, KRW08, Kra06, Laz16, MGF+02, NG15, NX03, OZB+18, OOO11, Özb13, PDV05, PH19.
Pul09, RTN03, Sim03, VY14, VS17, vNR07.
usual [BG05b].
References [Cao04, HW18, LRGO17, MZ15, SX15].

validation [CH03, OO016], value [AFSCSU14, BBP03, BWN05, CL13, Che15, JK18, LHW11, LT13, MSB18, NR14b, Nov03, PBN05, PH19, RT99, ZSKA18].
valued [AK00, DGM+16, MZHB17, Xie11].
values [FP95a, GR99, LHLS07, THC09, Tre05, Vom10].
Variable [AV94, DHR+04, GVT03, GR05, RS07, SX15, VS17].
Variable-step [AV94].
variant [JYH17, Sim99, Zha18].
variants [VY14, Wu15].

Validation [CH03, OO016], value [AFSCSU14, BBP03, BWN05, CL13, Che15, JK18, LHW11, LT13, MSB18, NR14b, Nov03, PBN05, PH19, RT99, ZSKA18].
valued [AK00, DGM+16, MZHB17, Xie11].
values [FP95a, GR99, LHLS07, THC09, Tre05, Vom10].
Variable [AV94, DHR+04, GVT03, GR05, RS07, SX15, VS17].
Variable-step [AV94].
variants [VY14, Wu15].

References

Amat:2018:THO

AABHV18

Achchab:2001:SCB
REFERENCES

Axelsson:2015:PMH

Adler:2017:PMC

Axelsson:2015:PIM

Axelsson:2011:MCN

Amodio:2000:ABD

Amparore:2011:RMF

Akian:2012:MMT

Adams:2004:AMM

Adib:2008:HPG

Amestoy:1996:MFM

Amat:2014:AIO

Axelsson:2002:SSP

Akinola:2014:CDN

REFERENCES

[Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997)].

[AIT05b] P. Amodio, F. Iavernaro, and D. Trigiante. Symmetric schemes and Hamiltonian perturbations of linear Hamiltonian

Andreev:1994:CDS

Axelsson:1994:DCR

Arushanian:1999:ILS

Axelsson:2000:RV

Axelsson:2010:P

Arismendi:2016:MCA

Alber:2006:MCS

[Alb06] David M. Alber. Modifying CLJP to select grid hierarchies with lower operator

Adler:2018:CGM

Axelsson:1995:GCG

Achchab:1996:ECT

Ambikasaran:2015:GRP

Austin:2004:RMA

Arnal:2006:PNT

Appelhans:2017:LCP

David J. Appelhans, Tom Manteuffel, Steve McCormick,

References

References

[AN07] Y. Achdou and F. Nataf. Low frequency tangential filtering

[Ano09] Anonymous. *Numerical Linear Algebra with Applications* impact factor for 2008 has been published to be 0.822. *Numerical Linear Algebra with Applications*, 16(9):i, 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Anonymous:2013:Ia

Anonymous:2013:Ib

Anonymous:2013:Ic

Anonymous:2013:Id

Anonymous:2014:Ia

Anonymous:2014:Ib

Anonymous:2014:Ic

Anonymous:2014:Id

Anonymous:2014:Ie

Anonymous:2014:If
Anonymous:2015:IIa

Anonymous:2015:IIb

Anonymous:2015:IIc

Anonymous:2015:IId

Anonymous:2015:IIE

Anonymous:2015:II

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIc

Anonymous:2016:IId

|-------------------|-------------------|
REFERENCES

Anonymous:2018:IIc

Anonymous:2018:IIId

Anonymous:2018:IIe

Anonymous:2018:II

Anonymous:2019:II

Alber:2007:PCG

Abdel-Rehim:2014:ISM

Abdel-Rehim:2014:EEA

Andrew:2000:ICD
[AT00] Alan L. Andrew and Roger C. E. Tan. Iterative computation of derivatives of repeated eigenvalues and the corresponding eigenvectors. Nu-
REFERENCES

Andreev:2015:MPL

Axelsson:1994:VSM

Axelsson:1999:ESI
REFERENCES

Axelsson:2002:P

Axelsson:2003:E

Axelsson:2004:E

Axelsson:2010:PYN
Owe Axelsson. The past 16 years of NLA. *Numerical Linear Algebra with Applications*, 17(1):1, 2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Axelsson:2015:UAP

Aksoylu:2011:RMP

Bai:1995:PNS

Bai:2009:OPH

REFERENCES

Batterson:1995:DAN

Baur:2008:LRS

Bazan:2008:NEP

Broyden:1996:CTB

Bazan:1997:ZLP

Becker:2000:MTF

Benner:2001:EPM

REFERENCES

Beuchler:2006:ISC

Bangay:2016:FLM

Boffi:2013:CAH

Barkouki:2017:MRL

Bronstein:2006:MMS

Brannick:2006:EBA

Bacuta:2003:UFE
REFERENCES

with Applications, 10(1–2):33–64, January/March 2003. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Brannick:2012:AMM

Bujanovic:2015:NFI

Bergamaschi:2018:BLU

Baboulin:2009:CCC

Bates:2015:MLV

Brezina:2014:SAA

REFERENCES

[Beu03] Sven Beuchler. AMLI preconditioner for the p-version of the FEM. *Numerical Linear Algebra with Applications*, 10(8):
REFERENCES

Berry:1996:LRO

Bebendorf:2011:PAD

Busic:2011:ICW

Bebiano:2013:ACP

Borges:1995:SIE

Benner:2018:WME
Peter Benner, Heike Faßbender, Lars Grasedyck, Daniel Kressner, Beatrice Meini, and Valeria Simoncini. 7th Workshop on Matrix Equations and Tensor Techniques. *Numerical Linear Algebra with Applications*, 25(6):??, December 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Brezinski:2012:MLO
Claude Brezinski, Paraskevi Fika, and Marilena Mitrouli. Moments of a linear operator, with applications to the trace of the inverse of matrices and the

Benzi:2010:SLS

Boley:2000:LSP

Branets:2002:DMT

Bini:2005:SQM

Bottcher:2005:SCN

Ballani:2013:PMS

Bellavia:2009:RPK

Stefania Bellavia, Jacek Gondzio, and Benedetta Morini. Regularization and precondition-

655–674, 2006. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

5325 (print), 1099-1506 (electronic).

Benzi:2011:RAS

Baker:2010:IAM

Brezina:2012:RCB

Bohl:2003:IMP

Bakhvalov:2002:ETS

Blaheta:1994:DDI

Blaheta:2002:GGP

Radim Blaheta. GPCG—generalized preconditioned CG method and its use with non-linear and non-symmetric displacement decomposition preconditioners. *Numerical Lin-
REFERENCES

Blaheta:2003:NTG

Bastian:1997:PAM

Bai:2017:DTS

Buzdin:2008:IDB

Brannick:2008:UCM

Brugnano:2005:SLA

Bunch:2006:SPS

Benner:2013:PII

Bergamaschi:2017:TSS

Beik:2016:KSM

approximation scheme in space and time for linear problems. *Numerical Linear Algebra with Applications*, 25(6):??, December 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Bouyouli:2009:NRC

Bai:2012:E

Berisha:2015:EAP

Bai:2018:ENM

Beauwens:1994:IUT

Bell:2008:AMF

Borzi:2013:FSS

Brenner:2018:MMT

Susanne C. Brenner and Duk-Soon Oh. Multigrid methods
for $H(\text{div})$ in three dimensions with nonoverlapping domain decomposition smoothers. *Numerical Linear Algebra with Applications*, 25(5):??, October 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Borm:2017:DMC

Bor17

Botchev:2013:BKS

Bot13

Barreras:2013:ACM

BP13

Barnard:1995:SAE

BPS95

Bergamaschi:2000:AIP

BPS00

Brenner:2013:BDD

BPS13
REFERENCES

Bagci:2015:CAS
Bey:1999:CBI
Baglama:2007:AGT
Bardsley:2013:KSA
Brandts:2002:MCS
Bonettini:2007:SIS
Bennett:2001:EOD

[BS01] Beth Anne V. Bennett and Mitchell D. Smooke. The effect of overall discretization scheme on Jacobian structure, convergence rate, and solution accu-

Buckeridge:2010:PGM

Buranay:2017:TCH

Bischof:1992:GIC

Benzi:2003:RIF

Blanchard:2015:PCG

Benner:2013:ODS

Buchholz:2011:BRM

REFERENCES

919–930, November 2011. CODEN NLAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

Cao:2008:ABP

Cao:2009:NSD

Cao:2013:CPM

Carstensen:1997:DDN

Caswell:2011:PA

Coley:2018:GMM

Chan:1992:CPE

Raymond H. Chan and Tony F. Chan. Circulant preconditioners

[Chen:2018:SPA] Haibin Chen, Yannan Chen, Guoyin Li, and Liqun Qi. A semidefinite program approach for computing the maximum eigenvalue of a class of struc-

Cavoretto:2012:SAP

Carpentieri:2000:SPS

Carpentieri:2004:SSP
NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Cucker:2006:SAS

Chen:1996:MPM

Canha:2007:MMD

Chen:2016:PTI

Chu:2005:CMR

Chen:2015:AAB

Cai:1994:CSD

Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic prob-
REFERENCES

REFERENCES

[Cho04] Delin Chu. On the computation of the infimum in H-optimization. Numerical Linear Algebra with Applications,
REFERENCES

[102x681] REFERENCES

Anthony T. Chronopoulos and Andrey B. Kucherov. Block

REFERENCES

REFERENCES

5325 (print), 1099-1506 (electronic).

REFERENCES

Chen:2010:GSC

Cai:2011:FNM

Chang:2013:SST

Campos:2016:PIR

Calvetti:2005:TRL

Cools:2014:NLD

Concus:1995:MDP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DCT18] Alex Druinsky, Eyal Carlebach, and Sivan Toledo. Wilkin-

REFERENCES

Deng:2009:IO

Dendy:2012:MM

Dendy:2014:MM

Dendy:2018:MM

Dieci:2001:CIS

Dumbser:2018:SDG

DeSterck:2008:DTI

DiFiore:2005:LCM

Dabkowski:2013:SPS

Donatelli:2016:PHM

Dopico:2019:CRK

Dey:2011:SFS

Dostal:2004:SFO

DeSterck:2018:NPB

Dykes:2018:RMD

Laura Dykes, Guangxin Huang, Silvia Noschese, and Lothar Re-
ichel. Regularization matrices for discrete ill-posed problems in several space dimensions. *Numerical Linear Algebra with Applications*, 25(4):??, August 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Dolgov:2015:SST

Dostal:2015:RBS

Dai:1997:NMG

Dobrev:2006:TLP

Dendy:2010:BBM

DeSterck:2008:EBR

REFERENCES

Dodig:2011:PPP

Dohrmann:2007:ABP

Donatelli:2005:MID

Donatelli:2010:AGL

Donatelli:2019:ACL

Dostal:1999:PPM

Dryja:2003:PMD

Delgado:2016:AFC
Jorge Delgado, Guillermo Peña, and Juan Manuel Peña. Ac-

DiNapoli:2016:EEE

Ding:2015:FHT

Durazzi:2003:IPC

Du:2008:NMI

Dollar:2010:NFA

Dosso:2013:SSS

Gregory Dardyk and Irad Yavneh. A multigrid approach to two-dimensional phase un-

Ekstrom:2018:EBS

Estrin:2016:TOC

Elmaliki:2011:EHP

Egger:2007:PCI

Elsner:1995:MNN

Elmroth:2001:CPG

Elden:2005:MLE

Elfving:2007:BPS

Elfving:2009:DMR

Elhashash:2009:TCM
Abed Elhashash and Daniel B. Szyld. Two characterizations of matrices with the Perron–Frobenius property. *Numerical Linear Algebra with Applications*, 16(11-12):863–869, ???.

Ekström:2018:EEB

Estatico:2009:PIP

Eastwood:2013:FDE

Ewing:2003:SDF
REFERENCES

Ecker:1996:SPM

Falgout:2006:SIM

Falgout:2008:MM

Falgout:2010:MM

Fasino:2005:RKM

Fierro:1995:OPT

Ferket:1996:FDB

Fasino:2002:LTA

Dario Fasino and Luca Gemignani. A Lanczos-type algorithm for the QR factorization of regular Cauchy matrices. Numerical Linear Algebra with Ap-
REFERENCES

Fezzani:2014:BFD

Fares:2011:FRL

Freund:1994:UTA

Ferreiro:2005:LRS

Ferronato:2012:EPR

Ferronato:2016:PJD

Freitag:2015:TP1

REFERENCES

175–196, January 2015. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Favati:2009:RAU

Farhat:2000:SDP

Ferng:2001:NTM

Farkas:2003:CAP

Li:2011:NSC

Freund:1999:CUW

REFERENCES

REFERENCES

Fan:2017:NSL

Gosea:2018:DDM

Gander:1999:WRA

Gander:2005:CBP

Garanzha:2001:BVG

Garanzha:2002:MNO

Garanzha:2004:VPG
V. A. Garanzha. Variational principles in grid generation and
REFERENCES

Gleich:2013:PAM

Gomilko:2012:PFI

Gatica:2001:MRI

Galantai:2006:JPA

Greif:2011:BSC

Gratton:2016:RCA

Griebel:2015:OSP

Glunt:1998:NDS

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Mahadevan Ganesh and Charles Morgenstern. An efficient multigrid algorithm for heterogeneous acoustic media sign-
indefinite high-order FEM models. *Numerical Linear Algebra with Applications*, 24(3):??, May 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Griebel:2006:CGC

Giraud:2005:IVD

Gillis:2018:CNS

Gratton:2016:LMP

Gander:2000:APB

Grigori:2015:OPB

REFERENCES

Grosz:2000:PIB

Govaerts:1997:RDM

Genseberger:1999:ACE

Gu:2005:NSP

Greif:2007:PDT

Golub:2001:PBS

REFERENCES

Gopalakrishnan:2009:CMC

Gratton:2016:SOE

Goreinov:1997:MFI

Gong:2018:ROP

Gustafson:1997:OTM

Gustafson:2003:OTP

Gustafson:2004:IPL

Gustafson:2004:ND

Giraud:2003:GTO

Gulliksson:2000:PTG

Guo:2014:NUB

Gonzaga:2008:FNL

Gillard:2016:WNS

J. W. Gillard and A. A. Zhigljavsky. Weighted norms in subspace-based methods for time series analysis. *Numeri-
REFERENCES

Hackbusch:1992:PCG

Hansen:2013:OPS

Hamilton:2010:NMS

Huckaby:2005:SPQ

Hao:2015:SSP

Hu:2007:IBB

Hollander:2018:ADM

Hemmingsson:1996:TPB

Hemmingsson-Fränden:2001: NOP

Hetmaniuk:2007: RQM

Huang:2016:NTP

Tsung-Ming Huang, Wei-Qiang Huang, Ren-Cang Li, and Wen-Wei Lin. A new two-phase structure-preserving doubling algorithm for critically singular M-matrix algebraic Riccati equations. Numerical Linear Algebra with Applications, 23(2):291–313, March 2016. CODEN NLAAEM. ISSN 1070-
Haber:2010:NOC

Hu:2013:FEE

Hemker:2004:FTL

Hached:2018:CKB

Han:1997:NAP

Hackbusch:2002:BKA

Howle:2012:BPF

Victoria E. Howle and Robert C. Kirby. Block precondition-

Holm:2006:MDC

Haslinger:2007:PSC

Hlavacek:1999:RSS

Huang:2013:SGA

REFERENCES

He:2018:LFA

Heuer:1999:PMR

Hömke:2006:MMA

Howell:2018:PSM

Hackbusch:1997:DGS
REFERENCES

wiley.com/cgi-bin/fulltext?ID=15001017&PLACEBO=IE.pdf.

REFERENCES

REFERENCES

[IK00] Khakim D. Ikramov and Andrey B. Kucherov. Bound-

REFERENCES

intersciencie.wiley.com/cgi-bin/abstract?ID=15001005.

Jian:2017:EEI

Johnson:2009:STC

Jia:2017:RBS

Jun:2010:SOT

Jarlebring:2018:KML
Elias Jarlebring, Giampaolo Mele, Davide Palitta, and Emil
REFERENCES

Anonymous:1992:JNL

Joubert:1994:IIC

Janovská:2001:NHT

Joubert:1994:CBR

Jagels:1994:FMR

Jones:1996:TSM

Jing:2017:SGA

REFERENCES

Jiang:2017:TTC

Jia:2009:PSA

Jiang:2011:DAS

Ke:2017:BTP

Kaporin:1994:NCR

Kaporin:1998:HQP

Kaporin:1999:PAF

REFERENCES

Kaporin:2002:UMO

Kaporin:2005:SCM

Kaufman:2007:RAF

Kolberg:2015:EAS

Kostic:2017:IBM

Kostic:2016:PLT

Kokiopoulou:2011:TOE

Kostic:2009:GTL

Kemper:2012:LTB

Kiskiras:2007:NCS

Khoromskij:1996:FCI

Kong:2012:SBR

Kaporin:2002:PBO

Kollmann:2013:PMS

REFERENCES

Khoromskaia:2016:FTM

Kalantzis:2018:DDA

Kucera:2012:MPI

Krukier:2014:GSH

Kim:2006:FOS

Kraus:2014:RMM

[KLM14] Johannes Kraus, Maria Lymbery, and Svetozar Margenov.

[Kraus:2015:ASM]

[KL99]

[KM92]

[KM09]

[KM15]

[KMC16]

[Kostic:2016:ACM]
REFERENCES

2016. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Kirkland:2001:DCA

Kolotilina:1999:FSA

Kolotilina:2000:IFA

Kolotilina:2005:BEB

Kolesnikov:2018:CAP

Konshin:2017:FPS

Igor Konshin, Maxim Olshanskii, and Yuri Vassilevski. LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier–Stokes equations. *Numerical Linear Algebra with Applications*, 24(3):??, May 2017. CODEN NLAAEM. ISSN 1070-
REFERENCES

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Kressner:2014:MEA

Kraus:2002:APM

Kraus:2006:AMP

Kostler:2008:MSO

Krzysanowski:2011:BPS

Klawonn:2004:PEL

Knizhnerman:2010:NIE

REFERENCES

REFERENCES

Kuzel:2015:EIS

Kostic:2012:LGE

Kincaid:2010:LTD

Khoromskij:1999:RSC

Kong:2018:FCT

Kim:2003:MMB

Kharchenko:1995:ETB

REFERENCES

[LB17] Geunseop Lee and Jesse Barlow. Updating approximate principal components with applications...
to template tracking. *Numerical Linear Algebra with Applications*, 24(2):??, March 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Leon:2013:GSO

Lin:2005:ITP

Liu:2007:NBE

Li:2013:P

Lin:2018:CDS

Li:2013:PBP

Lukas:2007:OMP

REFERENCES

Li:2008:ECN

Ling:2017:AEE

Li:2007:SSM

Li:2007:MHS

LHLS07

Li:2011:ICT

Li:2000:CBC
Linsenmann:2012:CR

Livne:2004:CCR

Livshits:2004:AMW

Livshits:2014:SMM

Lei:2004:BPS

Lu:2014:HGA

Longley:1997:AGS

REFERENCES

Li:2014:NEI

Lai:1997:III

Li:2009:ECN

Lee:2012:FET

Li:2017:UMP
Wen Li, Dongdong Liu, Michael K. Ng, and Seak-Weng Vong. The uniqueness of multilinear PageRank vectors. *Numerical Linear Algebra with Applications*, 24(6):??, December 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Li:2016:NFD

Limon:2006:MAS
REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Lube:2000:NNO

Lim:2013:STT

Li:2015:MFB

LeBorne:2013:RER

Litsarev:2015:FLR

M. S. Litsarev and I. V. Osledets. Fast low-rank approximations of multidimensional integrals in ion-atomic collisions

REFERENCES

Luo:2017:USM

Langville:2004:KPA

Li:2005:PBE

Li:2006:SRP

Lin:2015:NSI

Liu:2018:MGS

Li:2001:PMI

REFERENCES

Li:2003:PPV

Lungten:2018:PSP

Liu:2011:SDM

Liu:2013:HTG

Lu:2005:NIN

Li:2009:MER

Luksan:1998:IPI

REFERENCES

Sébastien Lacroix, Yuri V. Vassilevski, and Mary F. Wheeler. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numerical Linear Algebra with Applica-
REFERENCES

[LW16] Xin-Guo Liu and Wei-Guo Wang. On convergence of it-

Liu:2017:WMM

Liu:2016:FCP

Liu:2009:GBD

Laub:2008:ASC

Li:2016:SCB

Li:2013:NSP

Li:2017:SMT

 REFERENCES

Levi:2015:SLQ

Lu:2015:NLD

Laszkiewicz:2009:PFI

Liu:2012:LEB

Liu:2011:NIM

Mainlybaev:2006:CME

References

REFERENCES

Mayer:2005:ICI

Mayer:2007:MCI

Meynen:1997:APA

Murillo:2004:FIP

Michelini:2008:SAA

Meerbergen:2009:CCB

L. C. Matioli and C. C. Gonzaga. A new family of penal-

REFERENCES

Mitchell:2018:AIT

MacLachlan:2012:RAM

MacLachlan:2006:ARB

Mackey:2009:NMP

Manteuffel:2010:FRE

MongaMade:1999:EPL

Manteuffel:2010:OBI

mongaMade:2002:SAP

Moriya:2000:DGM

Moret:2005:IFM

Mardal:2007:OOS

Manteuffel:1994:ROP

MacLachlan:2011:LFA

REFERENCES

Mehrmann:2016:IFA

Mainar:2018:ACC

Meini:2018:PBA

Migallón:1996:BTS

Marques:2006:CES

Myllykoski:2014:PRB

Maryska:1996:PFF

REFERENCES

[MST16] Benedetta Morini, Valeria Simoncini, and Mattia Tani. Spectral estimates for unreduced symmetric KKT systems aris-
REFERENCES

- **Meyer:2013:JDM**

- **Mastronardi:2005:NLA**

- **Mancini:2013:ISP**

- **Markovsky:2004:CMS**

- **Mastronardi:2008:FA**

- **Mardal:2011:PDS**

- **Maurer:2016:SPF**
 Daniel Maurer and Christian Wieners. A scalable parallel factorization of ﬁnite element

Mehl:2006:COS

Morgan:2016:PBD

Morgan:1998:HPM

Ma:2015:CUM

Marioni:2017:NAS

Nota:1997:NOP

Nabben:1997:BRM

Noutsos:2005:PPI

Neymeyr:2002:PEE

Neymeyr:2005:NII

Naumovich:2010:AMW

NGuessan:2015:CAM

Noordmans:1998:CRS

Niessner:2006:MSM

Nithiarasu:2009:JCN

Napov:2016:AMP

Anonymous:1994:NLA

Numerical Linear Algebra with Applications, 1994. ISSN 1070-
REFERENCES

5325 (print), 1099-1506 (electronic). John Wiley and Sons, New York, NY, USA; London, UK; Sydney, Australia.

Ng:2011:SLD

Napo:2010:WDT

Napo:2011:AAA

Nagy:2015:DRJ

Nakajima:2004:PIS

Notay:1994:DD

Notay:1998:OCA

REFERENCES

[NT04] Esmond Ng and Wei-Pai Tang. Preface 2 Editorial comments.
REFERENCES

Numerical Linear Algebra with Applications, 11(8–9):693, October/November 2004. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Ovtchinnikov:2004:OLN

Oishi:2008:SNS

OHara:2014:PRO

Olshanskii:1999:ISO

Ozaki:2011:TEE

Ozaki:2016:EFT

Olshevsky:2001:SFH

REFERENCES

REFERENCES

171

Parlett:1992:RMS

Parlett:2003:SDF

Pan:2005:TSW

Papy:2005:EDF

Pena:2003:SBS

Pena:2007:R GD

Peng:2008:SSC

Pena:2009:EBS

Perrone:2006:KP

Pflaum:1999:AAM

Pestman:2014:CSW

Pitton:2019:AIS

Liao:2007:LSS

Payer:1997:ISS

Pultarová:2011:PP1

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[PR16] Federico Poloni and Timo Reis. A structure-preserving dou-

Petkovic:2009:CLR

Pranic:2016:RAP

Pang:2011:SIL

Pironkov:2008:PDC

REFERENCES

[PT17] Andrey Prokopenko and Raymond S. Tuminaro. An algebraic multigrid method for $\mathcal{Q}_2 - \mathcal{Q}_1$ mixed discretizations of the Navier–Stokes equations. *Numerical Linear Algebra with Applications*, 24(6):???, December 2017. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

[176] Pestana:2013:CPS

[162] Qian:2009:SLR

[186] Pencheva:2003:BDD

[102] Qian:2018:MSU

[196] Quaife:2015:PLD

[311] Rakowsky:1999:SCM

Rosseel:2008:AMS

Renate:1998:PMS

Reusken:1996:MMB

Fang:2009:TCM

Ren:2007:ELP

Ruthotto:2017:SMS

Rietsch:2009:CIE

Riseth:2019:OAU

Rjasanow:1998:SBE

Rao:2018:HPA

Renaut:2012:MRL

Ruijter:2013:FCS

Rohn:1992:AFS

Ritter:2012:EAF

Reid:2001:RRO

J. K. Reid and J. A. Scott. Reversing the row order for

Reitzinger:2002:AMM

Routray:2007:FAD

Rees:2010:BTP

Rees:2018:CSN

Russo:2015:QOP

Ritter:2010:FAC

REFERENCES

2010. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Rossi:1999:PFD

Raydan:2002:PPA

Raghavan:2003:LTH

Reps:2012:AWN

Rusten:1998:DEP

Reichel:2008:GLA

Saad:1994:IDT

Saad:2000:E

Saad:2000:FAM

Sacksteder:2005:ADS

Sauter:1995:SIC

Solak:2003:NBN

Salkuyeh:2012:EMH
REFERENCES

885–890, October 2012. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). See [LHL07b].

[182]

Yixun Shi. A projected-steepest-descent potential-reduction algorithm for convex program-

Sun:2018:BGM

Sun:2011:SNI

Sidje:1997:APK

Sidje:2011:IUG

Simoncini:1999:NVR

Simoncini:2003:AFS

REFERENCES

ISSN 1070-5325 (print), 1099-1506 (electronic).

Shen:2014:EDP

Shu-Qian Shen, Ling Jian, Wen-Di Bao, and Ting-Zhu Huang.
On the eigenvalue distribution of preconditioned nonsymmetric saddle point matrices.
ISSN 1070-5325 (print), 1099-1506 (electronic).

Sayed:2001:SSF

A. H. Sayed and T. Kailath.
A survey of spectral factorization methods.
Numerical Linear Algebra with Applications, 8(6–7): 467–496, September/November 2001. CODEN NLAAEM.
ISSN 1070-5325 (print), 1099-1506 (electronic).

URL http://www3.interscience.wiley.com/cgi-bin/abstract/85007288/START;

Sturmer:2008:FFM

M. Stürmer, H. Köstler, and U. Rüde.
A fast full multigrid solver for applications in image processing.

Sun:2010:CPN

Li-Ying Sun and Jun Liu.
Constraint preconditioning for nonsymmetric indefinite linear systems.

Saibaba:2016:RAG

Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion.

Schuermans:2004:SWL

M. Schuermans, P. Lemmerling, and S. Van Huffel.
Structured weighted low rank approximation.

Schuermans:2006:BRH

M. Schuermans, P. Lemmerling, and S. Van Huffel.
Block-row Hankel weighted low rank approximation.
Numerical Linear Algebra with Applications,
REFERENCES

Sheikh:2013:CSL

[SLV13]

Sosonkina:2000:PSL

[SMSW00]

Soleymani:2014:FCI

[Sol14]

Soto:2013:FRC

[SP13]

Salapaka:2006:ANP

[SP06]

Schneider:2018:IGF
F. S. Schneider and M. Pismarenco. Inverse generating function approach for the preconditioning of Toeplitz-block systems. *Numerical Linear Algebra with Applications*, 25(5):??, October 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[SP18]

Salapaka:2005:ACB
Salinas:2013:MMC

Simoncini:1997:AAS

Saad:2002:AAR

Simoncini:2007:RCD

Stoyan:2004:GDA

Sundar:2015:CMA

Stotland:2018:HPD

Sadkane:2017:CA

Scott:2017:ISR

Starko:1996:MMR

Stoer:1992:DAS

Savostyanov:2012:FTM

Sun:2005:NBE

REFERENCES

Sun:2006:SEI

[Sun06]

Stammberger:2011:AML

[SV11]

Saad:1996:DDQ

[SW96]

Stoll:2012:PPD

[SX15]

Sosonkina:1998:NAG

[SWKW98]

Schleicher:2007:MMM

[SWY07]

Shen:2015:UAV
Hailun Shen and Hua Xiang. Uzawa algorithms with variable relaxation for nonsymmetric generalized saddle point problems. *Numerical Linear
REFERENCES

Song:2018:TPS

Steinbach:2018:CAM

Saad:1999:DTT

Shi:2011:NEM

Szularz:2014:ISA

Szylr:1994:ECC

Szyld:1994:ECC

Thum:2010:TPO

Tabeart:2018:CLP

Thekale:2010:ONM

Treister:2019:MSH

Eran Treister and Eldad Haber. A multigrid solver to the Helmholtz equation with a point source based on travel time and amplitude. *Numerical Linear Algebra with Applications*, 26(1):??, January 2019. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

W. F. Trench. Asymptotic relationships between singular val-

[Treister:2010:SSM] Eran Treister and Irad Yavneh. Square and stretch multigrid for stochastic matrix eigenprob-
REFERENCES

REFERENCES

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Fernando Guevara Vasquez and Benjamin Z. Web. Pseudospec-

Fernando Guevara Vasquez and Benjamin Z. Web. Pseudospec-
REFERENCES

198

REFERENCES

Weiss:1994:PGC

Wu:2015:TCF

Washio:1994:PBP

Weiners:1999:MMP

Walden:1995:OBP

Wei:2003:IPB

Wei:2008:GFM

Wang:2012:LBS

Wang:2012:PTT

Wei:2005:DSG

Wang:2018:LRA

Wang:2018:SPC

Wang:2009:PMC

Wang:2018:SPC

Wu:2015:ISI

Wheeler:2010:EAM

Xu:2015:MBB

Walker:1994:SG

Wu:2018:STP

Xie:2013:ESL

Xu:2016:PP1

Xia:2010:FAH

REFERENCES

[XS11] Yingxiong Xiao and Shi Shu. A robust preconditioner for higher

Xiao:2009:GBA

Xie:2019:RAT

Xu:2010:TLA

Xiao:2015:EAM

Yang:2004:URP

Yang:2010:LRI

Yang:2018:SNM

[Yan18] Ai-Li Yang. Scaled norm minimization method for computing the parameters of the HSS and the two-parameter HSS preconditioners. *Numerical Linear Algebra with Applications*, 25(4):??, August 2018. CO-
REFERENCES

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Yavneh:2004:E

Yavneh:2004:E

Yin:2017:FAO

Yin:2017:FAO

Yang:2011:CNB

Yang:2011:CNB

Yang:2018:MIM

Yang:2018:MIM

Yang:2004:MFC

Yang:2004:MFC

Yong:1996:SCT

Yong:1996:SCT

[Yon96] Xue-Rong Yong. Short communication: Two properties of diagonally dominant matrices. *Numerical Linear Al-
REFERENCES

[102x681] 207

Yotov:2001:MNK

Peng:2007:PDS

Peng:2004:IPB

Yavneh:2012:NBB

Yu:2013:ATL

DEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Yin:2012:AAA

Ye:2013:AAA

Zhang:2011:STP

Zha:1992:TWC

Zhang:2018:EVH

Zhang:2012:FIC

Yong Zhang, Ting-Zhu Huang, Yan-Fei Jing, and Liang Li. Flexible incomplete Cholesky factorization with multi-parameters to control the number of nonzero elements in preconditioners. *Numerical Linear Algebra with Applications*, 19(3):555–569, May 2012. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Zhou:2006:SJD

Zhou:2016:TTE

Weiqi Zhou. Triangular truncation and its extremal ma-

Zhou:2018:CEN

Zh:2014:AMP

Zhu:2010:PLS

Zikatanov:2008:TSB

Zitko:2000:GCC

Zitko:2005:CCR

REFERENCES

[**Zeng:2006:DAS**]

[**Zhong:2008:CCR**]

[**Zubair:2010:GMM**]

[**Zhang:2012:LCA**]

[**Zhang:2013:DEE**]

[**Zhou:2013:LES**]

[**Zhou:2008:AIS**]
Yunkai Zhou and D. C. Sorensen. Approximate implicit subspace iteration with alternating directions for LTI sys-

Zhong:2010:CAE

Zhang:2018:RTS

Zhong:2013:TGM

Zhao:2014:MFS

Zhang:2010:CGS

Zhou:2018:FAS

Zhang:2011:PCF

