Title word cross-reference

\((n, k)\) [CL13, MMCW18]. 0 [GAL96b]. 1 [APY06, GAL96b, MG09, RS98b]. 2 [CFG94, DFRC01, MCDB12, MCCW15, Pan97, PND02, RS98b, ST97]. 3 [Kru98, WGM+10, YKLD14]. $\$5$ [SCF01]. 5 [QY20]. 6 [HY18]. 1 [Sar92]. 2 [GM92, TKE+08, Ram94]. \hat{p}_5 [NP04]. $\mathcal{P}\mathcal{L}\mathcal{S}$ [DM12]. d [Bar93, HS96, Pel93]. $\circ P$ [KW19]. $\diamond \mathcal{P}_{\text{mute}}$ [FMR05]. e [HK95b]. ℓ [Wu95a]. g [LYW20]. K

[Ste12, ACM19b, AS97, GGHJ04, Gal96a, KSOK07, NM96, San03, VP99]. L [Vid06]. m [WW19]. N [Ste12, AS97, IN99, KSOK07, NM96, Sto96, WW19, XUZ02]. $O(m)$ [NTHK17]. $\Omega(\log n - k \log k)$ [Gal96a]. p

[XUZ02, ZN13]. p_5 [NP04]. $Q_{n,k,m}$ [CS13, LZG+19]. t [IR16]. $X + Y$ [AG98]. Z

[QRR97].

Title word cross-reference

1-edge [CH94]. 1-Fault [RV09]. 1-Latent [KY06]. 11-Step [BB09].
2 [Hag92, Sch97]. 2-CNF [Hag92]. 2.0 [CG98a, DLPW08]. 2D [Fra93a, YTL92]. 2D-PARBS [Fra93a]. 2D-Torus [YTL92].
3D [BKT92, CM95, SC96]. 3D-grid [BKT92].
5 [WLR95]. 512 [Nov20].
Abel [Gla93]. Abel-Poisson [Gla93].
Advances [NA05, Qia10]. Affects [DW07b]. affine [BFCD94, CRF95, KP94, Len92]. Agent [PRH+03, VMA11]. Agent-Based [PRH+03]. Aggregating [YSL05a]. Aggregation [PA99]. Agreement [Mai97, Pel95]. Aided [VKS99, AD92a]. Alberto [Ano04c]. Algebra [AB08, Sol09b]. Algebraic [HCD+19, RR91]. Algorithm [AAH14, AD02, AG98, BE03, BK+98, BSM+16, BOV15, BEGK00, CC17, CLM+16, DF99, DDS17, Dev05, DWS15, DT00, EW11, FS99, GMC05, HA10, HHL+07, HL98b, HT99, HLJ97, IN99, JS06, KKS00, KOKM14, KSAOK05, LMS98, LPP01, LN05, Mar98, MMT12, MM16, NF06, NTHK17, OV06, Pag13, RRM15, ST12, SMK98, SCJ+10, TTV00, Tsao04, VKS99, Vid06, XX20, AS92, BNKS93, BK92, CM96, DJMJ91, DR96, GI94, JR96, KDK+93, KESH95, LM97, MB95, OW92, PB96, Pan94, Per94, PS93, ROJ94, SF91, SS92, TM93, TH94, Wan96, Wu96, Wue09, YDL91, YDL94].
Algorithmic [BDR+99, OLC+00, ZKmST18].
Algorithms [APY06, Ano94, AKC99, AB16, BF02, CMS99, CJN99, CG98b, DDT99, DGT98, DFRC01, Don07, FDZ99, GGH+04, GRS07, GHS97, GK03, HHKM13, HKP+98, HHH+99, JW07, KLN04, KN06, KL90, LS14, LMT10, MS99, MRRV07, MGBK07, MHKT05, MMAL06, MB98, NP04, PL11, PND02, PADB03, Raja02, RDK00, SKN10, SDLM18, VP98, VSS00, WSK16, XUZ02, BM95, BCD95, CLM93, Chl92, CT94, CF95, DH94, DDT92, Du93, FD92, HK95a, IR95, Nak95b, NR95, OSW93, PA95, PD95, Qia95, RP93, RSS95, SC96, XWF93, Zar97, SW93].
Aligned [YWJ03]. Alignment [AP95, IKMH09, DR94, KDK+93].
Alignments [FAH03]. All-Optical [CKP00, PSSV02]. All-To-All [APY06, FV99, CMS99]. Allocation [BDG97, HW06, IO98, PK04, TE04, AER94, CC93, HS93, KY96, PPRZ93, RB95].
Allocator [VH01]. Almost [De04, KN06, Pel95]. Almost-Optimal [KN06]. Almost-safe [Pel95]. Alternator [Had08, Kul07]. Among [CH03]. analyse
Analysis [AD02, Agr99, CG97, GLMM+04, GRS07, GS07, HC02, JZSM08, KOKM14, KB+13, Kra01, LCS+14, MMJ+03, RvGG01, SBR+17, SHM03, WR97, WGM+10, YGM97, ZHW09, ZXYY20, Lia92, VP96, Wan96].

Analytical [AH00a, AH00b, ZSLC18].

Analytics [GGS+15].

Analyzing [ARA20].

Anarchy [GLMM06].

And-Parallelism [Mar98].

Annealing [Pet03].

Anniversary [Akl11b].

Anonymous [CLM+16, DDLV17, Tur10].

Ant [DHBL06].

Anticipated [LM00].

API [CH03].

Apostolico [Ano04c].

Application [BLY+08, GB98, GM04, HW06, KS97, KC02, NA10b, ZHW09, Lin92].

Applications [AB08, AKP99, BS01, BRT09, BCL97, BDG97, CMS99, CLT13, CGS15, CLZC11, CFG04, FOCK15, FC05, FAMP12, Gar14, GP03, Ger02, GG96, HM01, HL03, IDS+05, KBFB01, KL08, KHAM04, LF14, LFJ99, MTD98, MMJ+03, NKCS03, NTG99, PT07, PT98, RBS15, SB12, VD03, ZMD15, Ahb92, DM96, LOSZ93].

Applied [AIL16, CmL19a].

Applying [Mac12, TFTY05, TB18].

Approach [EADN06, Gam07, GS15, KWD03, VLR+03, CU96, FFSY93, RP93, Xue96].

Approaches [AL05, BMSW04, DHB06].

Approximability [CDF+07, SX02].

Approximate [AB16, BGK+06, Tur10, BCD95, DV97, FR96].

Approximations [BBL04].

Arbitrary [BD02, CM97, DWS15, Had08, VRR20, ES92].

Arc [RB93].

Arc-Disjoint [RB93].

Archetypes [Mas99].

Architectural [Gam07, DRS96].

Architecture [ATM01, BLY+08, DDS17, Fujo8, HL98b, MCB12, MAP+19, MCR+17, MJJ16, PL11, ZS08, AD92b, GS95].

Architectures [ADKT12, AFIN11, BGJ10, BCL97, CG98b, CRY+03, Mic98, PAKM08, CLZ92, CF91, DM96, DAB+11, Nak95a, RR91].

Area [PADB03, PT07, CQS09].

Areas [CQS11].

Arithmetic [GW94].

ARM [TH13].

ARMI [TSS+06].

Arounds [KRS93].

Arrangement [AA21, XLYL20].

Array [CG97, DP03, ER99, LTZ98, MCB12, QM98, RS97, YKLD14, AQRW95, Kri91, Qia95, Sto96, TM93].

Arrays [DT00, FUV99, GS03, IQP98, KM09, Sib02, UKY90, GW94, GLah93, IK96, Len92, Myo92, Oks95, OSZ91, PS93, RR91, Xue91].

Art [KB19].

Artificial [Mac12, YF18].

Ars [AS97, KSOK07, Ste12, WW19, Bar93, NM96, Pel93, Sto96, TM93, VP99].

Asher [Wan96].

Aspects [NA07b].

Assessing [BMRGR13].

Assignment [EB98, KU09, KN92].

Assist [AB08].

Associated [DT96].

Association [TH13, ZN13].

Associative [AAH14, SW08, THAJ15].

Associativity [DGJS95].

Assumption [MMRT06].

Asymptotic [GGV12, PT07].

Asynchronous [RR08].

Asynchronous [BIW11, GSS08, IR16, Pel06, YS05a, AJ96, Dor92, FMR05].

ATM [EFZ98].

Atmospheric [LF14].

ATMR [CP98a, CP98b].

Atomic [BF97].

Attached [DWH+06].

Attacks [LLC11].

Augmentation [JS15].

Augmented [ZXY20].

Authenticated [CLL16, NA07c].

Authentication [CLH13, LCC11].

Author [Ano98a, Ano99a, Ano00a, Ano01a, Ano02a, Ano03a, Ano04a, Ano05a, Ano06a, Ano07a, Ano08a, Ano09a, Ano10a, Ano11a, Ano12, Ano13, Ano14, Ano15, Ano16, Ano17, Ano18, Ano19, Ano20].

Auto [CFL12].

Auto-Tuning [CFL12].

Automata [Car07, DTST15, TLLH17, Tor09, Wue09, BH06].

Automated [HC02, LLL+03, TLLH17].

Automatic [AB08, AGMM00, BF97, CL95, CJ01, EW13, HBL03, KKKL18, MRS04, MMJ+03, NvG95, WLR11, Fea94, GAL96b].

Automaton [MG09, MS09].

Availability [Wol99].

Average [CQS11, LP98, BHPS95, Kop96].

avoidance
[Dor92, Dua92]. AVX [Nov20]. AVX-512 [Nov20]. Aware
[ACCLS14, BMRGR13, BK08, DDT17, FOCK15, LO09, LN05, SYR13a, ZS08].
Axiom [CBC03].

Back [HL98b]. Back-Propagation [HL98b]. Background [SCJ+10].
backtrack [KCH92]. Bag
[FOCK15, OKL11, SB12]. Bag-of-Task
[FOCK15]. Bag-Of-Tasks [OKL11, SB12]. Balanced [ST14, SSZ04].
Balancers [KMA01]. Balancing
[CLR11, DEKS04, EMPF04, GC06, GT00b, MRRV07, ST12, VH00, CLZ92, XL94].

Bandwidth
[CRY+03, BKT95, PeL93, VP96]. Barnes
[BGLM05]. Barrier [APSF01]. Barrier-Lock [APSF01].
base [GM92]. Based
[AHA14, Ahn19b, ARA20, AGLS12, AKP99, CLL16, CGW05, CJ01, Deh97, DHBL06, DEKS04, DBK+09b, EW13, ESSP01, FC05, FGK15, HHL+07, HL98b, KSAOK05, LCS+14, LMT10, MCDB12, MMT17, MR01, OLC+00, PFM+09, PRH+03, Sch05, SFHW11, Sch15, THAJ15, WLW11, Wu98, YKL14, ZJSY20, ZLL+21, Ahn19a, AD92b, AQRW95, BNW07, DM06, FMR05, KS96, KP94, KCH92, KP96, Qia95, ROJ94]. Basic
[Sol09b]. Batch [TLH11, FL09]. Batched
[Nov20]. BaTS [FOCK15]. Bayesian
[MMAL06]. Be [VMA11]. Behavior
[Cho98]. Being [AK10]. Ben [Wan96].
Ben-Asher [Wan96]. Benchmark
[ZHW09]. Benchmarking [CG01, DM96].
Benefits [BK08, ZTS+16]. Benes [CM97].
Best [BET04, KBI03, KY96]. better
[Wan96]. Between [BFG+08, DLP03, GM03, GVC14, LLD+03, Trä09, Mac95].
Beyond [AB99]. BFS [SS92]. bibliography
[Nak95a]. Biconnectivity [JS15].
Bicriteria [BBL04]. bidimensional
[ABIM93]. Big [MDAT17, VDL+15].

Bijective [MCCW15]. Binary
[CRG16, HMA99, KR98, QM98, XU99, XUZ02, SW93, UN92]. Bioinformatics
[CCC04, CFG04]. Biological
[Ada07, CC17, IKMH09]. Biomolecular
[FGK15, NA07b]. BIP [TW01].
BIP/Myrinet [TW01]. Bipancyclic
[LYZ18]. Bipartite
[BMFU18, CJE99, Hag95, TMW20]. Bird
[CS95]. Bird-Meertens [CS95]. Bit [Gla93].
Bit-level [Gla93]. Black [MCI+01]. BLAS
[MCR+17, SS05]. Block [BOV15, MCDB12, OV06, VRT97, WBUW14]. Block-Cyclic
[VRT97]. Block-Jacobi [BOV15, OV06].
Block-Parallel [MCDB12]. Blocked
[FDZ99]. Blocking [HT98, WHTW10].
Blog [BLL12]. Blue [KGB+13]. Bluegene
[ABB+03]. Bluegene/L [ABB+03].
Bluetooth [TB18]. Boltzmann
[OTK15, PKW+03, ZHW09]. Boolean
[TB94]. bottleneck [NM96]. Bound
[CG98a, HPP99, CT94, CF95, Gal96a, Kop96, Mac93]. Boundary
[BFG+08]. Bounded [BEGK00, KW19, Sin96, CK93].
Bounds [DR00, GR11, HT21, MV04, PeL93, SB12, CL93, MSP95, RLG91, Wu95a]. Box
[MCI+01]. Bracket [HT99]. Braided
[LG97]. Branch
[CG98a, HPP99, CT94, CF95].
Branch-And-Bound
[HPP99, CG98a, CT94, CF95]. Breadth
[Gre93]. Breadth-depth [Gre93]. Bridges
[Dev05]. Brief [CQSY20a]. Broadcast
[Ahn19a, BM97, DVWZ99, IR16, LP98, LM00, Mic98, RV09, SW08, HK95b, Mac93, SV93, WV95]. Broadcast/Reduction
[SW08]. Broadcasting
[AD02, CMS99, DR00, DPK98, DD99, DV02, HL98a, KCP00, PeL92, Qiu07, BKK94, BOSZ92, BOSW94]. Broader
[TBV98]. Bruijn
[AH98, Bar93, DA93, MV04, PeL93, RB93].
BSP
[CG01, CS01, DPM+10, FS99, Gav03, GS99,
Conflict-free [VLL+91]. Congestion [DM12, RS98b]. Conjugate [SSK+18].
Connected [AKPSR16, CZ20, LPL20, LZY18, QY20, SKN10, VRR20, Chl92, FU92, KY96, Kri91].
Connection [MCCW15]. Connectivity [AS19, CQSY20a, HY19, kLCL20, LYW20, MWZ19, Nm20, TMW20, WW19, WXW20, ZXY20, Ahn94, YDL94]. Conquer [HL00, Tis01, HL96].
DT13, DT15, FKB+99, Gav08, GGS+15, GB98, GKS08, Guo01, GS97, HA10, HZW08, HY19, KKKL18, KET06, LMZ99, LF97, LTB01, LZX+18, MP93, MRRV07, MDAT17, Mon94, NKCS03, PP01, RBS15, Sah95, SBR+17, TKE+08, THAJ15, Tho03, XLP12, XWF93, YGM97, ZMZZ20, CU96, GAL96b, GDC94, GHSJ94, HT94, LV96, NvG95.

[KSOK07]. **Disjoint** [HHKM13, Kru98, YMZL04a, YMZL04b, RB93]. **disjunction** [BHP95]. **Disk** [DZ13]. **Dispel** [Akl06c]. **dispersal** [DMP94]. **Distance** [ACM19a, GGH+04, GZL+20, HHH+99, BIL92, DV97, PA95]. **Distance-Two** [GGH+04]. **Distances** [CQS11].

Distributed [Agu02, AL05, Ahn19a, Ahn19b, ATM01, ABNP00, AKPSR16, BCBB09, BCQO99, Cho98, CRY+03, DTLA93, FD92, GP03, IT02, Jes06, KOKM14, KWDS03, LPP01, LO09, Lou01, MMJ+03, NA05, NTG99, OL11, PADB03, SBR+17, SWK+13, SB15, SCF01, VD03, WLR95, ZSLC18, AER94, GHSJ94, JJ96, MNR96, NvG95, PPRZ93, RLG91, Sah95, SS92, TH94, van94].

Distributed-Memory [IT02, GHSJ94, NvG95]. **Distribution** [Agr99, CSFK08, LF97, NA07c, NA10b, NNA10, Fea94, GAL96b]. **Distributions** [DP03, VRT97].

Distributively [Aba04]. **Distributively-Owned** [Aba04]. **Divide** [HL00, Ti01, HL96]. **Divide-and-Conquer** [HL00, HL96]. **Divisible** [Rob11]. **division** [AD92b]. **DLP** [Sol09a]. **DNA** [CGW05, Gar14]. **DNA-Based** [CGW05].

Do [CT94, LJ95, CRF95]. **Documents** [MRS04]. **Does** [Ada09, KE00]. **Domain** [KSHL14, OK20]. **Domain-Specific** [KSHL14].

domatic [RF93]. **Dominating** [DWS15, HHHKM13]. **Domination** [LZG+19]. **Double** [FNP17, FGK15, HL97].

Double-Ended [FNP17]. **Doubly** [BIW11].

Doubly-Expedited [BIW11]. **Down** [CS03]. **Downloads** [PADB03]. **Drawing** [XU99]. **Drawings** [TV00]. **Driven** [KET06, NKC03, PMW+12, PT08, TKE+08, Tho03, YGM97]. **DSL** [GDTF17]. **DTML** [Sar92]. **Due** [LM00]. **duplex** [KRS93].

Duplication [BGK00]. **During** [KHW05]. **Dust** [CDM+03]. **Dynamic** [BOV15, BL08, BDG97, CmL19a, CLR11, DGB10, DR00, DT00, DV02, Dol98, GM03, Hua06, Jes08, KMA01, MG11, MCI+01, MMJ+03, PAG08, Ran05, SB15, SLG04, TFFY05, FFSY93, Myo92, PLR+95, VP96].

Dynamically [WBUW14, Nak95a].

E-BaTS [FOCK15]. **ear** [IR95]. **Early** [TE04]. **ECM** [KSHL14]. **Eden** [HHOM02].

Edge [ACM19a, DDLV17, HL99, LPL20, MWZ19, MCCW15, RS98b, VSS00, ZXY20, CH94, FR96]. **Edge-Color** [ACM19a].

Edge-Congestion [RS98b].

Edge-Connected [LPL20].

Edge-Connectivity [MWZ19].

Edge-Faults [MCCW15]. **Edges** [FVR20, Pan97, Kop96, BFG+08]. **Editor** [FAMP12, Ano01c, Ano06g, Ano08h, Ano09f, JKRW08, JKRW09, Qiu10, Sta12, TA09a, WKRJ10, WKR11]. **Editor-in-Chief** [Ano01c]. **Editorial** [Akl11a, Akl11b, Akl12d, Akl12b, Akl12c, Akl13a, Akl13b, Akl13c, Akl13d, Akl14a, Akl14d, Akl14b, Akl14c, Akl15a, Akl15b, Akl15c, Akl15d, Akl16a, Akl16b, Akl16c, Ak16d, Ak17a, Ak17b, Ano97a, Ano97b, Ano97c, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano99b, Ano99c, Ano99d, Ano00b, Ano00c, Ano01b, Ano02b, Ano02c, Ano03b, Ano04b, Ano04c, Ano04d, Ano05b, Ano05c, Ano06e, Ano06b, Ano06c, Ano06d, Ano06f, Ano07b, Ano07c, Ano07d, Ano07e, Ano07f, Ano08g, Ano08b, Ano08c, Ano08d, Ano08e, Ano08f, Ano08g, Ano09b, Ano09c, Ano09d, Ano09e, Ano10b, Ano10c, Ano10d, Ano10e, Ano11b, Ano11c, BET04, Cos93, Cos95, Cos96a, Cos96b, Cos97, Cos99, Cos00, Cos01, Cos03, Cos04, KBH03, YS05b].

Editors [Ada15, DMVT14, DT11, DT13, DT15, GK17, GK14, HGH12, WKR13, WKR14].

Effect [HSL09]. **Effective** [CSK00, HHH+98, CR95, Du94, PRS95].

effectiveness [CF95]. **Effects** [HUZ06].

Efficiency [CRY+03, IR16]. **Efficient** [Ano19a, Ber92, BEK00, Bo09, BH93].

FAB [YJW03]. facility [LHCT96]. Factor

Fault-Tolerant [LH02, ML99, MV08a, Res97, RV98, SV00, W98, ZXY20, BK92, CM95, CH94]. Faults [DR00, DV02, MAl97, MCCW15, DMP94, Pe95]. Faulty [A006, D005, IO98, KOKM14, St12, Pel92, W95a]. Federated [GMK13]. Feedback [Ak103, FTY05].

Fourier [NA10a, GHSJ94]. FPGA [ZJSY20]. FPGAs [TK+08]. Fractional [MMCW18, ZZZY21, ZMZZ20]. Fragile [MCDB12]. Framework [DDT17, FC05, GDM17, LC14, RBS15, TH13, Tor09, VD03]. Frameworks [KWDS03, MDAT17, Qui00, THAJ15]. Free [BW16, FNP17, KY96, Kme14, MRR06, NP04, PT97, SV00, ST14, WOS03, Dua93, VLL+91]. Friendly [CGR16]. FT [LNLE00]. Fully [AKPSR16, TH94]. Fully-Connected [AKPSR16]. Function [KW06, GI94, JR96]. Functional [BL08, DRS96, Gav03, GL05, HL02, LCK02, Lou01]. Functions [AH00a, AH00b, Ak103, Nit02, BNKS93, Ga96a, NR95]. Further [HUU06]. Fusing [ATM01]. Fusion [PMW+12, WBUW14]. Fusion-Driven [PMW+12]. Future [CQSY20a, KB19]. Fuzzy [AsS19].

Generalized [BCQ099, HY19, ZXY20, ZZL+21, DA93]. generate [TM93]. Generating [BEGK00, GS94a, Her05, St606, Tsa04, AS92].

Generation [EW13, LBD+14, Pag13, SSK+18, TLHL17, VP99, VRT97, WLW11, CL95, ES92]. Generations [EW13, KBG+13]. Generative [KB05]. Generator
[KOKM14, KKKL18]. Generic [Ger02, GB08, Nit05]. Genes [GLMM+04]. Genetic [CG08b, LN05, VKS99, DDTV92]. genome [ZN13]. genome-wide [ZN13]. Genomic [SZH14]. Gentle [GSS08]. Geometric [Akl06a, Akl06b, DPS00]. GFFS [GMK13]. Given [EFZ98]. Global [ATM01, CBC03, CLH13, PS98, AR95, BH93, GMK13]. Go [KE00]. Gödel [AMN12]. Gomoku [YF18]. Gossiping [FPP98, HS96, HKP98 + 98, RS96, SS03, FY93, LR93]. Göttfert [ST12]. GPGPU [BCL12]. GPU [EW11, EW13, GZW16, GGV16, GZW16, GGV12, LMT10, MG11, MV08b, SKN10, SHBG14, WJ16]. GPU-Based [LMT10]. GPUs [DZ12, HCD + 19, IKMH09, LF14, Mer15, WJ12]. graded [FDFR93]. Gradient [SSK+18]. Gradual [BM97]. Grained [Box09, Box21, CD99, CSBS95, GG96]. Grammar [BW16]. Granularity [LTB01]. Graph [AA21, AG02, ARA20, BKG + 98, CS13, DWS15, GH + 08, LZG + 19, LH07, SKN10, TMW20, ZMD15, Ahn94, AR96, BKT92, CL95, GS95, IR95, PB96, Pe93, RB93, Sch93, Srid9, SS92]. Graph-Optimization [ZMD15]. Graphics [AIL16, EW10]. Graphs [Ada09, AH98, ACM19a, BMFU18, CZ20, CJN99, CL13, CQS16, DMNP11, EMPF04, FVR20, GZL + 20, HHI + 99, KR15, LP98, LY20, MMCW18, MWZ19, MV04, NTHK17, NP04, PND02, PPF12, QY20, WX20, ZXY20, Bar93, CL93, CQS09, GP96, HP92, Hsu93, Kop96, LH95, PS93, RP93, Wo95, YDL94]. Gravity [GT00a]. Gray [Sto96, TM93]. Greedy [ST97]. Grid [BCMC+04, CFG04, GLMM+04, GK13, GM04, KW06, LLD + 03, MHC + 04, Pan97, SSK + 18, SPA04, TTV00, Gri92, CF09, CSFK08, Don07, FC05, HK03, HUZ06, Kru98, MJGR90, NKCS03, Pan03, TTV05, Wo99, ZS08, ZTP + 08, BKT92]. Grid-Enabled [SPA04]. Grid-Enabling [GM04]. Grids [ABG02, AWD01, BF02, CCCV04, DT01, Gam07, RS98b, WBUW14, BFG + 08, EM98, HMA99, NDFM07, ZYGD08]. Group [CDP + 07, Vid06]. Groups [GT00b]. Guarantees [YWJ03]. Guest [An006f, An007f, An007g, An008h, An008f, An008g, An009f, FAMP12, JRW08, JKRW09, TA09a, Ada15, An006g, DMVT14, DT11, DT13, DT15, GKI7, GKI4, HGI2, Qui10, Sta12, WKRJ10, WKR11, WKR13, WKR14]. Guided [TFTY05]. H [LTB01]. H2O [KWDS03]. Hadoop [GS15]. Half [JS18, KRS93]. half-duplex [KRS93]. Halos [Bra00]. Hamilton [BDDP98, SˇSZ04]. Hamiltonian [PND02, RB93, Wu00]. Hamiltonicity [HLH + 17]. Hand [San03]. Handling [Cam08]. Hard [Kre97, Mak90, Sar92]. Hardness [BGK + 06, Fla97]. Hardware [DTST15, Mar98, MAP + 19, SW08, SSK + 18, ROJ94]. Harness [MS01a, GS03]. Harnessing [IKMH09]. Hash [PFM + 09]. Hash-Based [PFM + 09]. Haskell [HBL03]. Heap [Wu00]. heaps [CC92, SSSM93]. Helmholtz [Sta95]. Help [Pan03]. Here [AKPS16]. Hereditary [HHH + 99]. Heterogeneous [ADKT12, BLMR03, BRT09, BDR + 99, CLR11, FZL + 16, GGV12, GKS99, GDDM17, HGI2, IDS + 05, LMZ99, LN05, RBS15, VDL + 15, DAB + 11]. Heuristic [GS15, AS94]. Heuristics [FV99, SYL95]. Hexagonal [GVC14]. Hiding [AD02]. Hierarchical [BGK00, CLZ11, GEBR + 03, HA10, HGI2, Mic98, Wo95]. Hierarchy [Ada09, FZJ99, MPR18, NA10d, RSS12]. High [AFN11, EW10, EW11, GEL03, GBS + 07, GS03, GDTF17, GKI4, HM01, HL03, HGI2, Hin03, KB19, LCS + 14, LY07, MG11, PAG08, PA99, PADB03, SHBG14, TSS + 06, UVJ11, GC95, GV96, Sch97]. High-Level [GS03, GDTF17, HM01, HL03,
HGH12, Hin03, SHBG14.

High-Performance [GK14, LCS+14].

High-Productivity [LY07].

Higher [HL00]. Higher-Order [HL00]. Highly [CLR11, RV98, Vd06]. HirondML [CRV08]. HMC [LC14]. HMC-SIM [LC14].

Holes [MCI+01]. Homomorphic [HT99]. homomorphisms [Col95, GDH96].

Honeycomb [BBBL04, CMS99, MLY99, YMZL04a, YMZL04b]. Hop [EFZ98].

Hosted [DJMN13]. Hot [ST97].

Hot-Potato [ST97]. Hough [Pan94].

HPC [CLT13, CLZC11, CLR11, FOCK15]. HPCS [LY07]. HPF [Bra00, Guo01]. HPF-Like [Guo01]. Huffman [KLN04, LP94]. Hut [BGLM05]. Hybrid [GKS08, KHAM04, LC14, SFHW11].

Hybrid-Parallel [SFHW11]. Hyper [CQS16]. Hyper-Buttery [CQS16].

Hypercomputation [GB12, Sta12, Syr13b].

Hypercubes [IÖ98, KK300, kLCL20, Nin20, RV98, WD03, ZXY20, Ber92, RT92, RSS95, Wu95a, Man91]. Hypercubes-Like [kLCL20].

Hypercubic [KP96]. Hypergraphs [BEK00, KBGE07, LPL20]. Hypermedia [MRS04]. Hypermeshes [KKC98].

I-P [XU99]. I/O [Agu02, BKT95, Geo01, GKS08, LFC+10].

ICGS [Yan05]. Identification [NTV12].

Idle [IKMH09]. II [Ano04d, Cos03, Cos04].

ILP [Sol09a, TE04]. Image [Che96, DEK04, MTD08, VLR+03].

Images [MTD98, SPA04]. Impact [AP05, BL08, DPM+10, SKL10].

imperfectly [Xue96]. Implement [MMRT06]. Implementation [Ada07, AKP99, CF03, Gav08, GB98, GBS+07, HKS01, KH02, LSF14, MMAL06, OTK15, SAJ10, YKLD14, AR95, GV96].

Implementations [CH03, HL02, Nit05, SCJ+10].

Implementing [CG98a, GHSJ94, KW19, MG11, PK08, BA95]. implications [DRS96]. Importance [Akl10, TB18, ZS08].

Importance-Aware [ZS08]. Impossibility [RS98a]. Imprecise [ZZL+21].

Improvement [CP98c, BK92]. Improving [CRY+03, IDS+05, MGBG07]. Incomplete [GCP99]. Incompleteness [AMN12].

Incorporating [NTG99]. increase [Dua94].

Increasing [ACK99, HW06]. Incremental [BEGK00, JJ96, Wu95b]. incrementally [Sri96]. Independent [BEGK00, CGW05, FS99, KBGE07, LF97, LZG+19].

Independent-set [CGW05]. Index [Ano98a, Ano99a, Ano00a, Ano01a, Ano02a, Ano03a, Ano04a, Ano05a, Ano06a, Ano07a, Ano08a, Ano09a, Ano10a, Ano11a, Ano12, Ano13, Ano14, Ano15, Ano16, Ano17, Ano18, Ano19, Ano20, GZL+20]. indexing [BFC94]. Induced [Ahm19a, RB13].

Inducing [Jon15]. Inductive [CCQ13].

InfiniBand [KLJ08]. Influence [KKFZ14]. Information [BKK94, GGH+04, NA07a, ZS08, FDFR93].

Infrastructure [BS01, LO09, NDFM07, OL11, TDS99].

Inherently [Akl06a, Akl06b, CT94].

initialization [HS93]. Input [GHF10, BF94]. inputs [BM95].

Insensitive [BE03]. Inspired [ZMD15].

Installation [KHW05]. Instruction [Jes06].

Instruction-Level [Jes06]. Instructions [Ano98g]. Instrumentation [MC1+01].

Integer [BGPT00, CD99, EW10, EW11, Ger18, Pag13, BM95, GAL96b]. Integrated [MIJ16]. Integrating [RR08]. Integration [Huz06].

Intel [MIJ16, OTK15, Sol09b, ZHW09].
Intelligence [VMA11, YF18]. Intelligent [VMA11, OKH^+02]. Intensive [IDS^+05, Qia95]. Interconnect [AD02].

Interconnection [CS13, CQSY20a, GP03, JS18, Lav02, Qiu07, RVGG01, RV98, San03, AD92b, FK96, Fio93, GS94b, Wu96].

Interconnects [BK08]. Interface [DBK^+09b]. Intermediate [BF02, GGL12]. International [DMVT14]. Internet [AGLS12, CSK00]. Internet-Based [AGLS12]. Interpolants [KW06]. Interval [AS19, AER93, Fla97, PB96]. Intractability [AER94].

Introduction [Ano08h, GSS08]. Intuitive [Tor09]. Inversion [Rag98, DT96]. Invocation [TT05]. Invocations [RR08].

Irregular [Agr99, Bra00, CA99, RBS15, Trä09, WS03, CSBS95]. Island [MGBG07].

Iso [GGS^+15]. Iso-Quality [GGS^+15]. Isolating [BCS05]. Isomigration [ABNP00].

Issue [Akl11b, Akl14a, Ano06e, DMVT14, DT13, DT15, FAMP12, GKL14, HL03, Sta12, WKRJ10, WKR11, WKR13, WKR14, WJ16, WGM^+10, ZS08]. largest [OSW93]. last [Tro93]. Latency [AD02, AFN11, Jes93, SW08]. Latent [KY06].

L2-Cache [AFN11]. Label [Aah14]. LAM [RS07]. Language [BGJ10, Deb97, DGRD03, GL05, GKS08, Guo01, HL00, HOM02, LY07, Sch05].

Languages [LY07, ROJ94]. LAPACK [MCR^+17]. Large [BCQ099, BK09, CLT13, CC17, EADN06, GQ09, HSL09, JKRW08, JKRW09, KHW09, LF14, LO09, Man91, NA05, OL11, WKRJ10, WKR11, WKR13, WKR14, WJ16, WGM^+10, YKLD14, Yan05, ZS08, BH92, CFG94, HP92].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].

Large-Scale [CLT13, GJQ09, HSL09, JKRW08, KHW09, LO09, OL11, WKRJ10, WKR11, WKR13, WKR14, WGM^+10, ZS08].
MMMS94, Myo92, Oks95, Sto96, SJL94, TM93. Linearizability [CBC03].
Linearizable [FNP17, MNR96]. Linearly [MCCW15]. Link [MS99]. Linked
[WJ12, DH94]. Links [GLMM06]. Linux [RˇsT06]. List [HHL+07, Sib02, WJ12, Alb92,
Col95, DH94, KY96]. List-Based [HHL+07]. Listing [VP98]. literal [KCH92].
Listing [AR09, AGMM00, DSV97, HLJ97, RDK00, TFTY05, Xue97, AS94, GS94a, HT94,
ROJ94]. loop-based [ROJ94]. Loops [LSW97, BFCD94, BL92, CRF95, DV97, PPRZ93, Xu96, van94, GL94]. loosely
[CF91]. Losses [KE00]. Low.
[BAS96b, GGL12, HTHH05, LBD+14, LSF14, PT07, TB18, BKT92, DDT95, DGJS95].
low-cost [DGJS95]. Low-Density [PT07].
Low-Level [GGL12]. Lower [HT21, CL93, Gal96a, Kop96, Mac93, RLG91].
LU [DDT95, GCP99, PBKP92]. Lyapunov [BCQ099, CHQ96]. LZ [De 04].

M [Ram94]. Mach [LBD+14]. Machine [Ada07, Cml913, GKSP99, OII12, Ram94].
Machines [BK09, BNW07, Pag13, Gri92, NvG95, SMS95, TB94]. Macro
[ADKT12, DDT17]. Made [Sax20].

Maekawa [BK92]. Maintaining [AS19, ADG91]. Maintenance
[DBG10, FL96]. make [BK92]. Makespan [AB16]. Malicious [AGLS12]. Malleable
[VD03]. Management [CFR09, HMA99, Jes08, NDFM07, SMK98, SYR13a, JD92].
Managing [ARA20, DJMN13]. Manipulating [QRR97]. manipulation
[Sah95]. manuscripts [Ano98g]. Many
[AFN11, Jes08, KBE07, MCCW15, UVJ11, MIJ16]. Many-Core
[AFN11, Jes08, UVJ11]. Map [TH13].
Map-Reduce [TH13]. Mapped [FVR20]. Mapping [AB08, BLY+08, BRT90, BK08,
CLZC11, EB98, UN92, GL94, GS95, HL96]. Mappings
[BMRR13, LF97, DDR96, KP94].
MapReduce [TH13]. Mark [KCH92].
Marrella [AR96]. Massive [MAP+19].
Massively
[BCL97, FUV99, LFC+10, SB+17, CLZ92].
Master [AGLS12, MRRV07, SB12].
Master-Slave [MRRV07, SB12].
Master-Worker [AGLS12]. matched
[VLL+91]. Matching
[AMC18, BGK+98, BMFU18, CP12, CL13,
CLM+16, Hsu93, HT99, MCCW18, MS01b,
Raj02, XUZ02, ZLY20, ZZZZ20, Chu96, Hag95, YDL91]. Materialized
[JR05]. Mathematical [Sza12, Vol94].
Matrices [Ja99, DT96, RV96]. Matrix
[ACCLS14, Box09, FV16, Fuj08, GZW16,
HT98, LSF14, SFHW11, SAJ10, WJ16,
Lin92, MP93]. Matrix-Vector
[Fuj08, GZW16, SFHW11]. max
[CC92, BCD95]. Maximal
[BHF01, BEGK00, CLM+16, FS99, GGHJ04,
KBE07, MB98, NTHK17, ZXY20, YDL91].
Maximum [HC02, Hag92, PD95]. MCMC
[BZ13]. MD [HTHH05]. Measured
[HRH18]. Mechanism [CFM+99, GC06].
Mechanisms
[JSYD07, Jon15, Pel06, VH00]. Median
[Nag09]. Mediator [JR05]. Medical
[MTD98, SPA04]. MEDINA [SBR+17].
Medium [TW01, VDL+15]. Meertens [CS95]. memories [VLL+91]. Memory
[AL05, ABO06, BF97, BCSo5, Cho98, CA99, DDLV17, FDZ99, GRS07, GPS03, GHF10,
GKS08, GS97, HK01, HK6, IT02, KE00, LFP01, LC14, LM00, OLC+00, OKH+02,
Pag13, RRS12, SKL10, SWK+13, VH00,
VH01, VP96, WR97, Yai08, CHQ96, DJM91,
DGJS95, FFSY93, GHSJ94, HS93, JD92,
MR96, NV95, PPRZ93, Sah95].
Memristors [FVR20].
Merge [ST14].
Mesh [AG98, BK08, DDS17, EWM04,
HT98, KCP00, MB98, Ran05, San03, ST97,
Tan99, CH92, CR95, Fra93b, FY93, HS96,
HP92, KY96, Kri91, KN95, Mac95, MB95,
SC96, XL94, JS06, LJ10]. mesh-bus
[FY93, HS96]. mesh-connected
[Chl92, Kri91]. Meshes [ZJ09].
Message [Ahn19b, AP05, CA99, Her05, PA99, TW01,
Yai08, BNKS93, BAS96b, BH93, PBK92].
Message-Buffer [AP05].
Message-Passing [Her05, BNKS93, BH93].
Messages [KW19]. Messy [HL98a].
Metacomputing
[Gam03, GL05, LFJ99, MS01a]. Metadate
[KBF01, ZYPGD08]. Metatheuristics
[AIL16]. Method [AH00a, AH00b, CBV+05,
CSK00, LG97, OK20, Pur06, TFTY05,
Tan99, Yai05, DRS96, Sta95, XL94, OTK15].
Methodologies [GJQ09]. methodology
[PRS95]. Methods
[FAMP12, GCP99, KB05]. Metric [Fox13].
Metrics [DPM+10, DGT98]. MIC [MJJ16].
Microprocessors [DGJS95]. Microscopy
[BCM+04]. Microthreading [Jes06].
Middleware [JSYD07, SS13]. Migratable
[VD03]. Migrating [GM03]. Migration
[CCR11, RB13]. Migration-Induced
[RB13]. Migrations [CRV08]. Miller
[DV95]. Millions [BB+11]. MIMD
[DDTV92, MMMS94]. min [CC92, BCD95].
min-max [CC92]. Minimal [DWS15,
DVWZ99, HRH18, BH96, Oks95, SC96].
Minimizing [HL99, Huo06]. Minimum
[AA21, DF99, DW07a, LP98, BM95, FL96,
Zar97]. Mining [TH13, THAJ15]. Minla
[Pet03]. Misses [RB13]. Mixed [BLMR03].
ML [Gav08]. Mobile
[HT21, PMW+12, SM98]. Mobility
[CLH13, DTL05]. Mock [Sui17]. mode
[Alb91]. Model [Agu02, Ald03, BVHR13,
BNW07, CGW05, Deb97, DTST15, GZW16,
GS99, GKS08, Guo01, GMCC05, Jes06,
Jon15, KSAOK05, KSOK07, KSHL14,
MBG07, MJ16, MDA17, Ran05, RVW98,
WR97, AD92a, DH94, GAL96b, GDC94,
Mac93, SV93, WY92, Sch09]. Model-Based
[Deb97, BNW07]. Modeling
[BKW98, CP98a, DBK09a, HKW05, KB11,
KE00, LDC08, ZSLC18]. Modelling
[DJM91, HK16, NA05]. Models
[BSM+16, BA01, JW07, KHAM04, TBV98,
XLP12, Fra93a, GS94b, Mac95]. Modified
[GS15]. Modular
[EW13, Gav08, LF97, DMR96]. modulo
[BFC94]. Monitoring [DBK+09b, GGV12,
GKK14, RGM6, AD92a]. monoid [CC93].
Monte [Huz06, MHC+04].
Morphogenesis [Mac12]. morphological
[DJM91]. Most [VSS00]. Moves [MG09].
MPI
[BBG+11, BIC05, CGS15, DBK+09b, FC05,
GB98, GBS+07, LNL00, Ran05, RST06].
MPI-FT [LNL10]. MPICH [RST06]. MR
[TH13]. MR-ARM [TH13]. Multi [AAH14,
DDS17, DZ13, GZW16, LS97, Len92,
MGB07, MKA98, OR12, RVGG01, SKL10,
S09a, S09b, SHBG14, BH93, CL93,
DGJS95, DAB+11, MSP95, TL91, ZN13].
multi-chain [ZN13]. Multi-Core
[DZ13, SKL10, S09a, S09b, DAB+11].
Multi-Dimensional [LS97, CL93].
Multi-Disk [DZ13]. Multi-GPU
Nodes [GEL03, MLY99].
Non [Fox13, PT07, SPA04, ZJ09].
Non-Asymptotic [PT07], Non-Rigid [SPA04].
Non-determinism [Kra01].
nondeterministic [Vir93].
Nonlinear [Akl03].
Nonnegative [FV16].
NOR [SX02].
NOR-Circuits [SX02].
normal [RV96].
Normality [GR99].
Nondeterministic [PT07].
Non-Rigid [SPA04].
Non-uniform [ZJ09].
Nondeterminism [Kra01].
nondeterministic [Vir93].
Nonlinear [Akl03].
Nonnegative [FV16].
NOR [SX02].
NOR-Circuits [SX02].
normal [RV96].
Normality [GR99].
Note [Ada15, Akl11a, Akl11b, Akl12d, Akl12a, Akl12b, Akl12c, Akl13a, Akl13b, Akl13c, Akl13d, Akl14a, Akl14d, Akl14b, Akl14c, Akl15a, Akl15b, Akl15c, Akl15d, Akl16a, Akl16b, Akl16c, Akl16d, Akl17a, Akl17b, Ano97a, Ano97b, Ano97c, Ano98b, Ano98c, Ano98d, Ano98e, Ano98f, Ano99b, Ano99c, Ano99d, Ano99e, Ano99f, Ano100b, Ano100c, Ano100d, Ano101c, Ano102b, Ano102c, Ano103b, Ano104b, Ano104c, Ano104d, Ano105b, Ano105c, Ano106c, Ano106d, Ano106e, Ano106f, Ano106g, Ano107b, Ano107c, Ano107d, Ano107e, Ano107f, Ano107g, Ano108b, Ano108c, Ano108d, Ano108e, Ano108f, Ano108g, Ano109b, Ano109c, Ano109d, Ano109e, Ano109f, Ano10b, Ano10c, Ano10d, Ano10e, Ano11b, Ano11c, ACM19b, AKP99, BBL04, BET04, CD99, CBC03, CE98, Cos93, Cos95, Cos96a, Cos96b, Cos97, Cos99, Cos100, Cos101, Cos103, Cos104, DMVT14, DFRC01].
Note [DT11, DT13, DT15, FAMP12, GK17, GK14, HGH12, JKR08, JKR09, KBH03, LYG99, Qiu01, Sta12, TA09a, WW19, WKRJ10, WKR11, WKR13, WKR14, YS05b, ZXLY20, CQ99, Kri91].
Notifications [LLD99].
Novel [CC93, GZW16, Mar98].
NP [CCQ13, Sch09].
NP-Complete [Sch09].
NTT [MCDB12].
NTT-Based [MCDB12].
NUMA [ACCL14].
NUMA-Aware [ACCL14].
Number [KOKM14, LYG99, DS97, RB93, Wu95a].
numbers [Fra93b].
Numerical [KB11, MV08b].
O [Agu02, BKT95, Geo01, GKS08, LFC10, SF91].
Object [BCL97, FKB99, MP18, Qui00, Wan93].
Object-Oriented [BCL97, Qui00].
Object-Relational [FKB99].
Objective [MGBG07, CF03, CRV08].
Objects [GR99].
Observation [CFM99].
Observing [DPM99].
OCaml [BCL12].
OcamlP3L [DLPW08].
October [BET04].
offtrees [SJL94].
Off [CGS15, Geo01, IR16, Kri91, LP94].
Off-Line [CGS15, Kri91].
Off-Processor [Geo01].
Offering [XLP12].
Offs [DLP03].
old [RR91].
Omega [Fio93].
OmpSs [DAB99].
On-Chip [CmL19a].
One [BIW11, BOV15, FV99, LMS98, NA01c, Pan97, Sib02, Sol09a, DDR96, KN95].
One-Dimensional [Sib02].
One-Phase [LMS98].
One-Sided [Sol09a].
One-Step [BIW11].
One-Time [NA01c].
One-To-All [FV99].
one-to-one [DDR96].
One-Way [Pan97].
Online [BMFU18, GKK14, PLR95, dSJR95].
Onto [BRT09, LH95, van94].
Ontology [Sza12].
Opacity [Hea07].
open [IR95, GBS97].
OpenCL [GDDM17, OTK15].
OpenMP [Car07, HA10, Mar03, Ran05, RBA05].
Operating [Jes08, MJGR09, OKH95, VLR95].
Operational [HH02, RGM06].
Operations [Agu02, BIC05, Cho98, FNP17, Nti05, Tra09, BH93, CH96, SW93, TB94, RGM06].
OPIOM [Geo01].
Optical [AD02, CKP00, CC11, ER99, HQP98, KM02, LTZ98, PSSV02, QM98, RS97, AD92b, BAS96b, Qia95].
Optimal [AA21, BBL04, BBBL04, BH96, De04, DWH06, DV02, Dol98, EMPF04, FY93, GW94, HL98b, HT99, IK96, IÖ98, JADT02, KR98, KN06, Kme14, Kre97, KN92, Kr98, MS99, Mic98, NF06, RS98b, Sib02, SÖ03, Tur10, WSK16, XUZ02, XL94, YL10].
dGP92, AS92, BNKS93, CC95, DKR91, JR96, LM97, NR95, PB96, Per94].

Optimality [BGK03, PV99, PV00, Sch93].

Optimally [Far98].

optimistic [MNR96].

Optimization [AB99, AB16, BKW98, CmL19b, DHBL06, GZW16, KSHL14, PKW+03, WJ12, XX20, YGM97, ZMD15, KS96].

Optimizations [GGL12, HZW08, KLJ08, KET06].

Optimizing [CSFK08, GKS+14, LSW97, MIJ16].

optimum [GS94a].

Opus [LMZ99].

Order [AA21, Had08, HL00, Nov20, Pag13, Mac93, VAP94].

order-preserving [Mac93].

ordered [FDFR93, LH95].

Orderings [BOV15].

orders [AER93].

Organization [ABB+03, OII12, RGM06].

Organization-Specific [RGM06].

Organizing [KW06, LSW97, LMZ99, LCK09, LPP01, LFC+10, LTB01, LSF14, LGHB07, MCD12, MGBG07, MKA98, MTD98, MAP+19, MS01a, MS01b, NF06, NA05, NP04, Nit02, OK20, OVI06, OII12, OKH+02, Pag13, PND02, PDO95, Pet03, PK04, PA99, PKW+03, PV12, PRH+03, PT98, Rag98, Raj02, Res97, RBS15, RR12, ST12, SFHW11, SX02, ST14, Su17, SZJK11, SJL94, TTV00, Tan09, Thaj15, Tho03, TMKS16, TX98, VS03, VP98, VMA11, Vas03, Wan93, WKJ10, WK11, WK13, WK14, WHTW10, Wu95b, XX20, Yan05, ZN13, ZSLC18, ZLL04, ADS91, Alb01, AD02a, AD92b, BM95, BIL92, BH96, CDSS93, CU96, CLM93, CDZ96, CH96, CLZ92, CF95, CF91, DS97, DM96, Dor92, FL96, GI94, GS94a, GMR92, GS94b, GV96, GS95, HK95a, Hsu93, IR95, IK96].

Parallel [KB19, KBF01, KB11, KBGE07].

Parallel-Based [ARA20].

Parallel/Distributed [NA05].

Parallelism [BLMR03, BGLM05, Cam08, GDH96, GDTF17, Mar03, Mar98, MG11, NA07a, PP01, RBAA05, Vas03, GDC94,
Parallelization
[AH00a, AH00b, Ano94, AGMM00, CJ01, DSV97, EB98, HA10, HTHH05, KE06, MHC+04, MMT17, Mas99, MMAL06, TA09b, AS94, BI92]. Parallelizing
[Car07, DV97, HW06, NA10a, RVW98].

parameter [Wuc09]. parameters [XL94].

Parasites [SZH14]. PARBS [Fra93a].

Parentheses [VP98, XUZ02]. Parenthesis [Tsa04].

Parentheses [AH00a, AH00b, Ano94, AGMM00, CJ01, DSV97, EB98, HA10, HTHH05, KE06, MHC+04, MMT17, Mas99, MMAL06, TA09b, AS94, BI92]. Parallelizing
[Car07, DV97, HW06, NA10a, RVW98].

parameters [XL94].

Parasites [SZH14]. PARBS [Fra93a].

Parentheses [VP98, XUZ02]. Parenthesis [Tsa04].

Parentheses [AH00a, AH00b, Ano94, AGMM00, CJ01, DSV97, EB98, HA10, HTHH05, KE06, MHC+04, MMT17, Mas99, MMAL06, TA09b, AS94, BI92]. Parallelizing
[Car07, DV97, HW06, NA10a, RVW98].

parameters [XL94]. parameters [Wuc09].

Parasites [SZH14]. PARBS [Fra93a].

Parentheses [VP98, XUZ02]. Parenthesis [Tsa04].

Parentheses [AH00a, AH00b, Ano94, AGMM00, CJ01, DSV97, EB98, HA10, HTHH05, KE06, MHC+04, MMT17, Mas99, MMAL06, TA09b, AS94, BI92]. Parallelizing
[Car07, DV97, HW06, NA10a, RVW98].

parameters [Wuc09].
Practice [DMVT14]. Practices [TB18].
PRAM [AJ96, DH94, De 04, Fra93a, GS94b, HS93, HS97, Lin92, NR95]. PRAMs [BKK94]. PRAS [KDK + 93]. precedence [UN92]. Precision [EW10, EW11].
Prelude [Ano05d, CQSY20b, DT01, DT03, HM01, HL03]. Prefix [CDPT10, DDS17, JS06, Nak95b, WJ12, WS03, SBP94]. Prefix-sums [Nak95b]. Prefix-sums [BSM + 16]. Presence [AGLS12, DR00, GPP09, RS98a].
Preserving [VH00, Mac93]. Preventive [CCR11]. Price [GLMM06, OIL12].
primitives [AR95]. Prior [NA10c]. priority [CH96]. Probabilistic [EADN06].
Problem [BGK00, BF05, CCQ13, CCVV04, CLL16, CGW05, EF298, FS99, HKS01, Ku09, LMS98, NA10d, Pet03, SSSM93, Sch09, TFTP9, VSS00, YMLZ04a, YMLZ04b, AQRW95, BA95, DR94, G194, Gal96a, JR96, LP94, OSW93, Per94, RP93, RR91, SF91, TH94, Wan96, Zar97].
Problems [ACK99, AB16, CA99, GK03, Kne14, Kre97, MS99, MKA98, PP01, SX02, ZMD15, BM95, BOSZ92, Man91, Myo92].
Process [AB08, DPM + 10, IN99, RDK00, Sin96].
Processes [GM03, KKFZ14, Vir93].
Processing [AIL16, ATM01, BCL12, BKW08, EW10, GSS08, JKR08, JKR09, LGHB07, Mak09, MKA98, MTD98, NA07a, WKRJ10, WKR11, WKR13, WKR14, AD92a, TL91].
Processor [BDH + 08, Geo01, GT00b, HW06, LTZ98, SW08, SS05, SAJ10, XUZ02, CC93, Fra93b, GW94, Kri91, LJ95, OSZ91, PPRZ03, PS93, RR91, SC96, YDL94].
processor-time-minimal [SC96].
Processors [BGPT00, CmL19a, CnL19b, HQP98, SKL10, Sol09b, TE04, WHHT10, DTLA93, GS94a, GMR92, Sto96, RSS95].
Product [AA21, ACM19b, EMPF04, MWZ19, Rob11, BA95, Wan96]. production [BA95].
Productive [LY07]. Products [ACM19a].
Profiling [LCS + 14, MS05, PKW + 03].
Program [ABG02, BF05, HC02, KS96, Mas99, LH95, Wol95]. Programming [BGK03, BCL12, CG98b, DLPW08, DT00, FG02, Ger02, GS03, HM01, HL03, HGH12, KH02, KB05, Kru08, KC02, LCK02, MS01a, PAG08, SHBG14, Tor09, TX98, ZTS + 16, Col95, DAB + 11, GAL96b, Myo92, RB95, Vio94]. Programs [ABNP00, BGLM05, CS03, CG97, EB98, SSP01, GV03, Gav03, GS97, HPP06, Her05, KE00, LT01, Lou01, CU96, CD96, Dor92, HT94, KCH92, LV96].
Project [LY07]. Proof [CM96, CP98b, GP03, HoHqZS20, O’D94].
Proofs [Gav03, LV96]. Propagation [CDM + 03, HL98b]. Proper [ACM19a].
Protein [CFG04]. PROTEUS [CCCV04].
Publishers [LLD + 03]. Pure [ST97, TT05].
Purpose [SAJ10]. PVM [LHCT96].
pyramids [Fio93]. Python [Hin03].
QAP [AIL16]. QoS [WD03]. QR
Quadtree [BKT95, SJL94]. Quality [GGS+15]. Quantifying [BK09].
Quantitative [KE00]. Quantum [Akl10, AsS19, CBV+05, NA07c, NA07a, NA10b, NNA10, NA10d, Qiu10, XX20, NA10a].
Quad-Core [BDH+08]. Quad-Tree [BDH+08].
recursions [HL96]. Recursive [AH00a, AH00b, FG02, LG97, FK96].
recursively [NR95]. Redistribution [MRRV97]. redistributions [GHSJ94].
Reduce [GS97, TH13]. Reducing [BVHR13, RB13]. Reduction [LSW97, SW08, Jese93, SM95].
Reductions [HPP06, HL99, Sar92]. Redundancy [SMH03, Dua94, PS93]. redundant [DS97].
Refined [KCH92]. Refinement [KCH92]. Regulated [GLMM+04].
Regular [AMN12]. Regulated-Ring [MV08a]. Reliability [AB16, LG97, LZS+18, XLP12, ZXYY20, ZZL+21].
Reliable [AGLS12, BS01, DMP94, IR16]. Reliable [KLH+14, Mas99, Ram05, RRS12]. reflected [Sto96, TM93].
Reflection [NTG99]. Register [TE04, AQRW95]. register-based [AQRW95]. Registration [SPA04].
Regular [Ano4d, BFMF18, Cos03, Cos04, DT00, LZY18, MG09, Trä90]. Regulated [GLMM+04].
Regulatory [GLMM+04]. Related [ACK99, CQS16, PL11, BM95, Man91].
Relation [GVC14]. Relational [BKW98, FKB+99]. relations [BF94].
Relaxed-Ring [MV08a]. Reliability [AB16, LG97, LZS+18, XLP12, ZXY20, ZEZ+21].
Refilling [AGLS12, BS01, DMP94, IR16]. Remote [GS97, RR08].
repairing [FP93]. Repetitions [DMS99]. Replication [AKP99, IT02, MP93].
Replication-Based [AKP99]. reporting [LM97]. Repository [FKB+99].
Representations [GGL12, QRR97, Wan93]. Representations [Pan93].
Reprogrammability [ZKmST18]. request [VP96]. Requests [BBF05]. Requires [SM20].
Resolution [HKS01, ZJSY20]. Resource [CFR09, CmL19a, CDP+07, dSJR+15].
Resources [CFR09, Jes08, Vas03]. Respect
[VSS00]. Response [GS15]. Restart
[SWK+13]. Restricted [DM12, GLMM06,
KN06, KM09, MWZ19, Pag13]. restructure
[Xue96]. Results
[BICO5, HT21, TBV98, ZHW09, RR91]. Retiming [DSV97]. Reuse [WR97].
reverse [Wue09]. Reversible [TA09b]. Revisiting [DV95]. rewrite [Ram94].
RFID [TB18]. Right [San03]. Rigid
[SPA04]. Ring
[KMY97, MLY99, MV08a, Mic98, RSS95,
UKY07, DTLA93, KP96, RS96]. Rings
[PSSV02]. Ripple [TA09b]. Ripple-Carry
[TA09b]. Risk [CDP+07]. road [AD92a].
Robin [CmL19b]. Robots [DP09, HT21].
Robust [DVS07a, DW07b, Fox13]. Rooted
[PV99, PV00]. ROSE [Qui00]. rotator
[Sri96]. Round [CmL19b]. Routable
[Far98]. Router [KCP00]. routers [Jes93].
routes [GS94b]. Routines [CLR11].
Routing [BCBB09, BCL97, GPP09, GHS97,
GK03, HLJ97, KSS95, KLJ08, KSA05,
KS07, LJ10, Pan97, RS97, RV08, SV00,
ST97, SZZ04, Ste12, WS03, WD03, ABIM93,
ARS93, CL03, Dua93, Fh97, GP96, Kri91,
Man91, Sue95, YTL92]. routings [HK95b].
row [Sue95]. Rule [TH13]. Rules
[AAH14, Wue09]. Run [Mar98]. Run-Time
[Mar98]. Running [SB12]. Runtime
[ABNP00, CH03, DPM+10, JSYD07,
PAKM08, YKL14, ZSLC18, CSBS95].

s [KCH92, GSS08, ZTS+16]. S-NET
[ZTS+16, GSS08]. SAC [GS03]. Safe
[DWS15, KY06, Peh95]. Sample [ZD12].
Sandpile [Sch09]. SAT [BCD95].
Satisfaction [BBF05, HK95].
satisifiability [Hag92]. Savings [DHBL06].
Scalability [SB12, XLP12]. Scalable
[Ahn19b, APSF01, CGS15, Fox13, MG11,
PP97, VH01, Zia95]. Scalasca [WGM+10].
Scale [CCR11, CLT13, GJQ09, HSL09,
JKRW08, JKRW09, KHW05, LO09,
LBD+14, OL11, WKRJ10, WKR11, WKR13,
WK14, WGM+10, YKL14, ZS08].
Scaling [MS01b, ZSLC18]. Scan
[Mer15, OD94]. Scatter [DP09].
Scattering [MKA98, CF93].
scattering-gathering [CF93]. schedule
[BT92]. Scheduler [CFR09, VDL+15].
Schedules [BBL04, Gon09, SY13a, GS94a].
Scheduling
[ABA04, AGu02, AL05, BGK00, BLMR03,
BGPT00, CFR09, CF93, CJ01, DSV97,
DMNP11, DT96, Don07, FOCK15, GDDM17,
GS15, IDS+05, KRS15, KLW04, LNO5,
Mak09, MRRV07, MR08, MM012,
MM16, Nit05, OJ12, OKL11, SLG04,
TFTY05, VKS99, WSK16, WY03, ZSLC18,
AER93, DKK91, GG96, LH95, LFCT96,
MS05, NPT95, PLR+95, ROJ94, RB95,
SYL95, WLR95, Wt95, Wu95b, Wu96].
Scheme
[CLL16, CLH13, NLNE00, Qiu07, Sch93].
Schemes [CP98c, DW07a, EMP04,
LDC08, Fh97, Tro93]. Science
[DJMN13, LF14]. Scientific
[BDH08, DT01, DT13, DT15, KLJ08,
LF14, LF99, NC03, dSJR+15]. Search
[BMSW04, CC17, CN16, DHLB06, EW13,
Jai99, KR98, LMT10, MM16, SZK11,
Gre93]. Search-Based [EW13]. Second
[LBD+14, Pag13]. Second-Generation
[LBD+14]. Second-Order [Pag13].
Security [MCI+01, TB18]. Segment
[CP98c, HC02]. Selecting [KP94].
Selection [AG98, Bo21, CmL19b, CH03,
ER99, JL05, Ber92, Chl92, KCH92].
Selective [Rag98]. Selectively [PMW+12].
Self [CLL16, CH03, CLM+16, DDT17,
DDT99, DGT98, DDLV17, Dev05, DWS15,
Dol98. FP93, GGH+04, GHJ04, GHJ+08,
HK13, KY06, KWD03, NTHK17, PT97,
P09, PV00, SDLM18, Tur10, ZTP+08,
SS92, TH94]. Self-Adaptive
[DDT17]. Self-Certified [CLL16]. Self-Composition
[ZTP+08]. Self-Organizing [KWS03].
Self-repairing [PF93]. Self-Stabilization
Self-Stabilizing [Chi03, CLM+16, DDT99, DGT98, DDLV17, Dev05, DWS15, GGY+04, GGHJ04, GHJ+08, HHKM13, KY06, NTHK17, PT97, Tur10, SDLM18, SS92, TH94]. Selfish [GPP09]. Semantic [ARA20, Deb97].

Solvers
[BCQ09, IT02, San03, SSK +18, BE96].

Solver
[LFC +10, ZLL04].

Solving
[CCCV04, CGW05, CHQ96, Kme14, MMMS04, SF91]. Some
[GZL +20, LFJ99, SKN10, Vir93]. Sort
[DJZ12, Mer15, WXW20]. Sorted
[Jaia99].

Some
[BB09, BR19, CG01, CD99, ER99, GS99, Ger18, JS18, LJ10, MG11, NF06, KSS95, KN95, KW92, Man91, MB95, Par92, Sue95].

Solving
[CCCV04, CGW05, CHQ96, Kme14, MMMS04, SF91]. Some
[GZL +20, LFJ99, SKN10, Vir93]. Sort
[DJZ12, Mer15, WXW20]. Sorted
[Jaia99].

Space
[BW16, SDLM18, SZJK11, GL94, HL96].
	space-time
[GL94, HL96]. Spaces
[Fox13].

Spacetree
[WBUW14]. Spanners
[Kru98, CK93, LS91]. Spanning
[DF99, LZY18, QM98, SKN10, FL96, Qia95, SS92, Zar97].

Spans
[MPR18]. SPar
[CMP17].

Spatial
[MG08]. Spatially
[DW07a, DW07b]. Special
[An06e, DMVT14, DT13, DT15, FAMP12, GH14, KLH +14, SHBG14, Zar97]. Specific
[KSHL14, RGM06].

Specification
[CP98a, CP98b, Cho98, Deb97]. Specifications
[Her05]. Specification
[CSC01]. Specifying
[Xue91]. Spectral
[Pet93]. Speculative
[GV03, WY92]. Speed
[BGPT00, Pur06]. Speed-Up
[Pur06]. Speedup
[AB99, IN99, KE00, SYR13a]. Speedup-Aware
[SYR13a]. SPL
[GKS +14]. SPMD
[van94]. SPOC
[BCL12].

Spreading
[BLL12]. SQL
[CGK06]. Squad
[UK09]. Square
[Q98, IK96]. SRS
[VD03]. Stabilization
[Dol98, PV99, PV00].

Stabilizing
[CDPT10, Chi03, CLM +16, DDT99, DGT98, DDLV17, Dev05, DWS15, GGH +04, GGJ04, GH +08, HHKM13, JADT02, KY06, NTHK17, PT97, Tur10, SDLM18, SS92, TH94]. Stable
[BCQ09, ST14]. Stage
[RvGG01]. STAPL
[TSS +06]. Star
[CL13, MMCW18, Res97, RV98, CQS09, GP96]. State
[DMNP11, KB19, SZJK11, UKY09].

State-of-the-Art
[KB91]. states
[AR96].

Static
[BGK +06, GS97, Wol95, GAL96b, GDC94, GC95, KRS93, MSP95, SYL95].

Station
[GKMP05]. Status
[RMG06].

Steady
[DMNP11]. Steady-State
[DMNP11]. Steiner
[ACM19]. Stencil
[GKS +14, KLH +14, SHBG14, WHTW10]. Step
[BB09, BIW11, ADG91]. Steppwise
[Mas99]. Storage
[ABO06, DWH +06, PT07, VH01]. Strassen
[EL11, GV96]. Strategies
[BLMR03, DEK94, ZLL +21, CLZ92, GG96].

Strategy
[BCL97, GG12, Mak90, CR95, CC93, KY96, LH95]. Stream
[BCL12, GSS08, GDTF17]. streamlining
[PRS95]. Streams
[FZL +16, GM03]. strides
[VLL +91]. Strings
[Tsa04, VP98]. Strong
[HLH +17, ZXY20, ZZZY21]. Structure
[kLCL20, ZK15ST18]. Structured
[DDT99, MV08a, Ran95, WSK16, Wu96].

Structures
[FAMP12, Gav08, LMT10, KP96]. Studies
[ZTS +16]. Study
[BCLM05, CDM +03, CFG04, DBK09a, Ger18, HTHH05, MG11, TW01, DDT95, ZN13]. Sub
[OSW93]. Sub-logarithmic
[OSW93]. subarray
[PD95]. Subcube
[IÖ98, Lat91, YL10, KN92]. subgraph
[FU92]. Subgraphs
[LZ18]. Sublinear
[MR98]. sublogarithmic
[Sri96]. submesh
[KY96]. Submission
[MHC +04]. Subprograms
[Sol09b]. Subscribed
[RB13]. Subsequence
[LP94, PD95]. Subspace
[GCP99]. Substrate
[Ada07]. Substructure
[kLCL20]. Subtraction
[EW10, SCJ +10]. Suffices
[EM98]. suffix
[BH96]. Suitable
[Tan09]. Sum
[HC02]. Summation
[Mic98, Fra93b]. sums
[Nak95b]. Sun
[HZW08]. Super
[LP12, SR96, ZJSY20]. Super-Resolution
[ZJSY20]. Supercomputer
[CGW05]. Supercomputers
[CCR11, Kra01].
Supercube [ARS93]. Supercubes [SH99].
Superr primitivity [IK96]. Support
[Bra00, Dan01, DGB10, Mar98, NKCS03,
Qui00, CSBS95]. Surface [CQS11, CQS09].
Survey
[AIL16, CZ20, GJQ06, SWK+13, DV97].
Survivability [KHAM04]. SVD
[BOV15, OV06, Sol09a]. SVP [UVJ11].
Sweep [WGM+10]. switch [SF91].
Switched [I¨O98, PS98]. Switches [LTZ98].
switching [BAS96b]. SX [ZHWH09].
Symbolic [CJ01, GV03, JSZM08].
Symmetric [CKP00, GP03, LTZ98, CFG94, SS92].
Symmetrical [UKY09]. Symmetry
[XLP12]. Synchronization [APSF01, Chi03,
GS97, PT97, RS98a, ST14, UKY09, VAP94].
Synchronization-Free [ST14].
Synchronization-Oriented [APSF01].
Synchronizer [JADT02]. Synchronous
[BVHR13, CS03, Gav08, LTZ98, Sui17,
VH00, CF95]. Syntentic [FAH03].
Synthesis [RR91, GW94]. Synthesizing
[Myo92]. Synthetic [PPF12]. System
[ABB+03, ER99, EADN06, Gam03, HTHH05,
KMG01, KHW05, MS01a, MJGR09,
PAM08, RB13, VLR+03, ZJSY20, ZSLC18,
DS97, MNR96, Oks95, TM93, GMK13].
System-Level [EADN06].
System-On-Chips [PAM08]. Systematic
[MHK05]. SystemC [SAJ10]. Systems
[AL05, Ahn19a, Ahn19b, BIW11, BW16,
CDPT10, CCA01, Cho98, Do98, EADN06,
FGK15, GR11, GEBR+03, GKK14, GJQ09,
HZW08, HGH12, Jes08, KB19, KB11, LO09,
LCS+14, LN05, LFC+10, Mak09, NA05,
OL11, OKH+02, PFM+09, RB15, RRS12,
SFHW11, SWK+13, SHBC14, UVJ11, VD03,
VLR+03, VMA11, Wu98, Yan05, ZHW09,
AER94, BNK93, BA95, BAS96b, BH93,
CRF95, FMR05, MMM94, Mon94, OSZ91,
PS93, RLG91, TL91]. Systolic
[ES92, EWM04, HKP+98, MCD12, Tsa04,
VP99, YKLD14, AS92, AQRW95, BE96,
CC95, Glah93, Myo92, Oks95, Xue91].
Systolic-Array [MCD12].

T2 [HZW08]. Table [KLJ08]. Tabu
[BSMW04]. Tagged [Ser01].
Tagged-Token [Ser01]. Target [BGJ10].
Targeting [ADKT12]. Targets [PMW+12].
Task [BJMR03, DMNP11, Don97, FOCK15,
GDDM17, GK13, GS95, KRS15, KU09,
LHC96, LN05, LTBO1, Mar03, dSRJ+15,
AER94, CL95, GG96, MSP95, PS93]. Tasks
[LMZ99, Mak09, OKL11, SB12]. Taxonomy
[Don97]. technique [Gri92, RT92].

Techniques
[ARA20, An94, CJ01, DSV97, NG99,
OKH+02, SWK+13, CL95, FL96, RB95].
Technological [SKL10]. Technology
[KKFZ14]. Template [BGL03, BGLM05,
GM04, Raj02, Chu96, HBL03]. Temporal
[AS19, WHTW10]. Tensor [ACM19b].
Terminating [Kul07]. Terms [LYW20].
Testing [Sui17, IK96]. Text [De 04]. Their
[BD02, KSHL14, YWJ03, FK96, KP96,
SSSM93]. THEMIS [KBFB01]. Theorem
[HohqZS20]. Theoretical [Agu02].
Theories [AMN12, Sch15]. Theory
[DMVT14, Gar14, Du94, Vio94]. these
BW16]. thinning [DJM91]. Thread
[ABNP00, CnL19b, SLG04]. Threads
[CRV08]. Three
[Aki06c, BCMC+04, Car07, FL96, KBG+13,
YMZL04a, YMZL04b, MB95].
Three-Dimensional [BCM+04]. Tight
[Wu95a]. Tighter [DR00, TVB98]. Tiled
[ZSLC18]. Tiling
[DSV97, GVC014, KS97, KLW10, Xue97].
Time [AB99, Aki03, BAS96a, BA01, CBC03,
CL93, Cos15a, DR00, DMS99, DD99,
DVZ99, Do98, GGH14, GGS+15, GS15,
HW06, JSYD07, KS97, KR98, KY06,
Kme14, LP98, Mak09, Mar98, MMRT06,
MB98, Nag09, NA10c, Oks95, RRM15,
RV09, SM20, VRR20, UXZ02, ZJSY20,
AD92a, AER93, CM96, CHQ96, Gal96a,
GL94, HL96, KS96, LP94, LJ95, MB95, Pan94, Pel92, PS93, SC96, SYL95.

Time-To-Live [VRR20]. Timelike [ANS12]. Times [HRH18, MRS04, RvGG01]. timestamps [Sin96]. TLP [Sol09a].

Toeplitz [Oks95]. Token [Ser01, KOKM14, DMP94]. Tolerance [CC11, GK13, LNLE00, NTG99, RT92].

tolerating [MT16]. Tool [MKA98, KOKM14, DMP94]. Tolerance [LH02, MLY99, MV08a, ARS93, BK92, CM95, CH94, GV93, GP96].

Tolerating [MT16]. Tool [MKA98, AR96]. Tools [Pan03]. Toolset [WGM +10]. Top [CS03]. Top-Down [CS03]. Topologies [Had08, LDC08].

Topology [BL08, BK08, MV08a, VRR20]. Tori [BF02, CQS11, DKP98, DV02, YMZL04b].

Toroidal [PS98]. Torus [DR00, LZY18, MLY99, Pan93, YTL92].

Tournament [Wu00]. Tours [CDS993].

Toussaint [Ada09]. TPNC [DMVT14]. Track [CLT13]. Track [PMW +12].

tracking [JJ96]. Trade [DLPT03, LP94]. trade-off [LP94]. Trade-Offs [LP03].

tradeoffs [BAS96a, LJJ95]. Trading [IR16, IT02]. traffic [AD92a, JJ96].

Trajectory [CBV +05]. Transactional [GHF10]. Transfer [JSD07, MIJ16].

Transform [FUV99, Pan94, PA95, NA10a]. Transformation [BFCD94, BF95, Xue97].

Transformations [AGMM00, KKKL18]. transforms [BIL92, GHSJ94]. Transitive [GMR92, PL11, An94, JJ96]. Translation [BSM +16].

Transmissions [HT98, Pel92]. Transparency [Hea07]. Transport [Jon15].

Transposition [HT98]. traversal [GV93]. Tree [CKP00, CDPT10, CQR16, DGT98, DMNP11, HL99, IR95, JADT02, MHKT05, Nag09, PV99, PV00, Rob11, SKN10, UX99, XUZ02, YKLD14, FL96, LM97, Wu96, Zar97, dGP92].

Tree-Based [YKLD14]. Tree-Shaped [DMNP11]. Trees [BR19, BGP00, BW16, DF99, DDLV17, JS15, KR98, LH02, LJ10, QM98, RRM15, SDLM18, VP99, Bar93, LP94, PLR +95, SS92, UN92]. Triangle [NTHK17].

Triangular [Rag98, DT96]. Triangulation [LPP01, RRS12]. Trident [SS05].

Triangular [San03, BE96, MMMS94].

Trilinos [LBD +14]. True [SX02]. Truthful [GC06]. Tuning [CFL12, LTBO1, MMJ +03, PA99].

Turing [FG02]. Twentieth [Akl11b]. Two [APY06, BGP00, BSMW04, Ch92, DM12, GGH +04, HMKM13, KSHL14, LCL11, Nov20, ZTS +16, CR95, KW92, OSZ91].

Two-Dimensional [BMSW04, CR95, KW92, OSZ91].

Two-Factor [LCL11]. Two-Player [DM12].

Typed [GSS08]. typesetting [Ano98g].

UltraSPARC [HZW08]. Unbounded [MT16, AQRW95]. Uncertain [HT21].

Uncertainty [Cos15a, GPP09]. Undecidability [AMN12].

Unfriendly [HHKM13]. Unified [Qiu07, FFSY93, RP93]. Uniform [An094, BGP00, Doi98, BF94, Mon94, Xue91, ZJ09].

Uniformly [CZ02]. unifying [BOSW94, CU96, RR91]. unimodular [Xue96].

Unimodularity [BL92]. Unit [EW10]. Units [AIL16, GW94].

Unity [CP98a, CP98b]. Universal [Akl06c, MS09, NA07a, ZLL04].

Universality [FG02]. Unlabeled [DKP98].

Unrelated [OII12]. unshuffle [CC93].

unshuffle-exchange [CC93].

Unstructured [PFM +09, WLR95].

Unsymmetric [Yan05]. Until [MG09].

update [Tro93]. update-last [Tro93].

updates [FL96]. Updating [DF99].

Upgrade [DBK909]. Usability [Pan03].

Use [CCA01, KHW05]. Used [VMA11].

User [LCL11]. Using
[AB08, ABG02, BGK00, BSM16, BNW07, CP98a, CP98b, Cos15b, DDLV17, EW11, Gam07, GAL96b, GT00b, HW06, Kw06, KHAM04, KE06, LG97, MGBG07, MKA98, Mas99, MCI01, MM16, NTG99, PPF12, QRR97, Rag98, RV98, SW08, SMH03, SHBG14, VRR20, WJ12, Wol99, Wu00, WS03, YKLD14, YF18, TKE08, UspenskyAda07].

Wait [FNP17, PT97]. Wait-Free [FNP17, PT97]. Waiting [Hua06]. Waksman [BD02]. watchman [GS94b].

Xeon [OTK15, Sol09b]. XML [Sch05]. XOmega [Fio93]. XSEDE [GMK13]. XT4 [DBK09a]. XtreemOS [MJGR09].

Z [Wue09]. Z-parameter [Wue09]. Zero [KN95]. Zero-one [KN95].
References

Abraham:2021:MLA

Abdelhamid:2014:MLR

Akl:1999:PRT

Aldinucci:2008:AMA

Aupy:2016:AAE

Abawajy:2004:PJS

Almasi:2003:OBS

Alt:2002:PDC
Arruabarrena:1993:PEA

Antoniou:2000:CDP

Attiya:2006:SMS

Alkowaiileet:2014:NAM

Atallah:1999:PAL

Arora:2019:PCD

Arunandhi:2019:NSK

REFERENCES

Ali:1992:PPM

Aly:1992:RPC

Afsahi:2002:ALH

Adamatzky:2007:PMI

Adamatzky:2009:DPG

Adamatzky:2015:GEN

Arora:1991:MDC

Aldinucci:2012:THA

Akl:1991:CDP

Ali:1993:TCS
[AER93] H. H. Ali and H. El-Rewini. The time complexity of scheduling interval orders with communication is polynomial. Parallel
REFERENCES

Ali:1994:ITA

Alves:2011:HLC

Anta:2012:RIB

Ahn:2000:AMPa

Agrawal:1999:DDA

Aguilar:2002:GTM

Andreae:1998:HBG

Artigas:2000:ALT

References

Ahn:2000:AMPb

Ahn:2019:ECI

Ahn:2019:SSB

Abdelkafi:2016:SMA

Arm:1996:DLE

Akl:2003:PRT

Akl:2006:ESP

Akl:2006:IPG

Akl:2006:TCD

Selim G. Akl. Three counterexamples to dispel the myth of

REFERENCES

REFERENCES

Anonymous:1998:ITC

Anonymous:1999:AI

Anonymous:1999:ENa

Anonymous:1999:ENb

Anonymous:1999:ENc

Anonymous:2000:AI

Anonymous:2000:ENa

Anonymous:2000:ENb

Anonymous:2001:AI

Anonymous:2001:EN

Anonymous:2001:NEC

Anonymous:2002:AI

[Ano02a] Anonymous. Author index volume 12 (2002). *Parallel Pro-

Anonymous:2002:ENa

Anonymous:2002:ENb

Anonymous:2003:AIV

Anonymous:2003:EN

Anonymous:2004:AIV

Anonymous:2004:EN

Anonymous:2004:ENPa

Anonymous:2004:ENPb

Anonymous:2005:AIV

Anonymous:2005:ENa

Anonymous:2005:ENb

Anonymous:2005:P

Anonymous:2006:AIV
[Ano06a] Anonymous. Author index volume 16. Parallel Processing Let-
Anonymous:2006:ENa

Anonymous:2006:ENb

Anonymous:2006:ENc

Anonymous:2006:ENS

Anonymous:2006:GENb

Anonymous:2006:GENa

Anonymous:2007:AIV

Anonymous:2007:ENa

Anonymous:2007:ENb

Anonymous:2007:ENc

Anonymous:2007:ENd

Anonymous:2007:GENa

Anonymous:2007:GENb
Anonymous:2008:AIv

Anonymous:2008:ENa

Anonymous:2008:ENb

Anonymous:2008:ENc

Anonymous:2008:ENd

Anonymous:2008:GENa

Anonymous:2008:GENb

Anonymous:2008:GEI

Anonymous:2009:AIv

Anonymous:2009:ENa

Anonymous:2009:ENb

Anonymous:2009:ENc

Anonymous:2009:ENd

Anonymous:2009:GEN

Anonymous:2010:AIV

Anonymous:2010:ENa

Anonymous:2010:ENb

Anonymous:2010:ENc

Anonymous:2010:ENd

Anonymous:2011:AIV

Anonymous:2011:ENa

Anonymous:2011:ENb

Anonymous:2012:AIV

Anonymous:2013:AIV

Anonymous:2014:AIV

Anonymous:2015:AIV

Anonymous:2016:AIV

Anonymous:2017:AIV

[Ano17]

Anonymous:2018:AIV

[Ano18]

Anonymous:2019:AIV

[Ano19]

Anonymous:2020:AIV

[Ano20]

[ANS12]

[AP05]

[APSF01]

[APY06]

REFERENCES

Amamiya:2001:AFC

Arnold:2001:CCD

Ben-Asher:1991:RRN

Ben-Asher:1995:CPP

Bruda:2001:NFM

Barth:1993:EMD

Ben-Asher:1996:TTR

Ben-Asher:1996:LCA

Baddar:2009:SSN

Bein:2004:OEH

Doina Bein, Wolfgang W. Bein, Natasa Brajkovska, and Shahram Latif. Optimal embedding of honeycomb networks

REFERENCES

Berthome:1992:EKH

Blazewicz:2004:ENS

Barlos:1994:JWP

Bodeveix:1997:TAV

Barth:2002:CMA

Bastoul:2005:APT

Balasa:1994:TNL

Balaton:2008:ECB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[D. Bhagavathi, S. Olariu, J. L. Schwing, and J. Zhang. Convex polygon problems on meshes...

Becka:2015:NDO

Boxer:2009:ECG

Boxer:2021:CGP

Banerjee:2019:SNT

Baker:2001:ERJ

Bandyopadhyay:2016:PCA

REFERENCES

ISSN 0129-6264 (print), 1793-642X (electronic).

9

Barrett:2013:RBB

Brarda:2016:LCT

Stefan D. Bruda and Mary Sarah Ruth Wilkin. Limitations of coverability trees for context-free parallel communicating grammar systems and why these grammar systems are not linear space. Parallel Processing Letters, 26(3):1650012, September 2016. CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Chong:1999:SMV

Campa:2008:ECC

Carbajal:2007:PTD

Charron-Bost:2003:NLG

Carino:2005:PAQ

Carlsson:1992:PCH

Chung:1993:NPP

Chan:1995:OSD

Ceres:2011:FTS

Coccimiglio:2017:PLS

Chiola:2001:UCF

Cannataro:2004:PBP

Calude:2013:ICP

Cappello:2011:PMV

Chatzigiannakis:2003:CSP

Coudert:2007:SRR

Caron:2010:SSP

Caceres:1993:FET

Chaudhuri:1996:PCA

Coffman:1998:NLP

Cosnard:1991:RPL

Charles:1993:SSS

Correa:1995:ESP

Chailloux:2003:PIO

Comellas:1994:LVS

REFERENCES

ISSN 0129-6264. URL http://www-mat.upc.es/~comellas/2reach/2reach.html.

Comin:2004:GDB

Collins:2012:ATP

Charpentier:1999:OAC

Calheiros:2009:SMV

Collard:1997:ADA

Chen:1998:IPB

Comellas:1998:GPD

Cerin:2001:BCW

Cerin:2006:MSS
Christophe Cérin, Jean-Luc Gaudiot, and Michel Koskas. A multithreaded SQL service. Parallel Processing Letters, 16(2):

REFERENCES

Chande:2016:NSC

Chandrasekharan:1993:EPA

Cohen:2016:SSA

Carrington:2013:CLS

Corradi:1992:LBS

Chung:2011:HMH

Chandra:1995:RFM

Clarke:2011:DLB

Chung:2011:HMH

REFERENCES

Chang:1997:ASB

Carroll:2019:ACM

Carroll:2019:RRT

Carle:1999:AAB

Cole:1995:PPL

Cosnard:1993:EN

Cosnard:1995:EN

Cosnard:1996:ENa

Cosnard:1996:ENb

Cosnard:1997:EN
REFERENCES

Cosnard:1999:EN

Cosnard:2000:EN

Cosnard:2001:EN

Cosnard:2003:ENS

Cosnard:2004:ENS

Costa:2015:UT

Costello:2015:CVD

Charpentier:1998:SVAAa

REFERENCES

Cheng:2012:MPC

Cheng:2009:SNS

Cheng:2011:SAA

Cheng:2016:CDH

Cheng:2020:BAD

Cheng:2020:P

Chu:1995:ETD

Collard:1995:CDL

Chailloux:2008:HFT
REFERENCES

REFERENCES

[Dan01] M. Danelutto. Efficient support for skeletons on worksta-

Darte:1996:COM

Datta:2017:FPA

Desprez:1995:PSL

Das:1999:SSA

Danelutto:2017:PAS

DeFalco:1992:SGA

DeAgostino:2004:AWO

Debbabi:1997:MBC

Drews:2004:SWB

F. Drews, K. Ecker, O. Kao, and S. Schomann. Strategies for

REFERENCES

Das:1994:SDR

Deelman:2013:HSM

Doerner:2006:PCS

Diks:1998:BUT

Darte:1991:LSN

Dessmark:2003:TOB

DiCosmo:2008:SPP

[Roberto Di Cosmo, Zheng Li, Susanna Pelagatti, and Pierre Weis. Skeletal parallel programming with OcamlP3L 2.0. *Parallel Processing Letters*, 18(1):]

REFERENCES

DiCosmo:2003:CDA

Dieudonne:2009:SR

DaRosaRighi:2010:OIM

Darte:1994:AP

DeMarco:2000:TTB

Dikaiakos:1996:FAS

De:1997:FPM

dasilva:2015:OTR

[Rafael Ferreira da Silva, Gideon Juve, Mats Rynge, Ewa Deelman, and Miron Livny. Online task resource consumption prediction for scientific workflows. Parallel Processing Letters, 25(3):1541003, September 2015.]
REFERENCES

CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

REFERENCES

2005. CODEN PPLTEE. ISSN 0129-6264.

Das:1993:DFD

Dourvas:2015:HAC

Duato:1992:CCN

Duato:1993:DDA

Duato:1994:TIE

Darte:1995:RDK

Darte:1997:PNL

Dobrev:2002:OBT

Dinneen:1999:CTR

Drzadzewski:2007:CMN
Grzegorz Drzadzewski and Mark Wineberg. Comparing minimum neighborhood evaluation

REFERENCES

[FOSK15] Alexandra Vintila Filip, Ana-Maria Oprescu, Stefania Costache, and Thilo Kielmann. E-BaTS:

REFERENCES

[Gamess:2003:ESP] Eric Gamess. Execution of sequential and parallel Java byte-

Gamess:2007:AAB

Garzon:2014:DCD

Gava:2003:FPF

Gava:2008:MID

Gorlatch:1998:GMI

Govindarajulu:2012:MMH

Graham:2007:OMH

Germain:1995:SNH

Grosu:2006:TLB

REFERENCES

REFERENCES

Goddard:2008:SSG

Greenberg:1997:PAS

Gupta:1994:IFF

Goraya:2013:FTT

Gorlatch:2017:GEN

Grossling:2014:GEN

Gustedt:2009:EML

Gupta:2003:PAV

Geijer:2004:GCA

Gairing:2006:PAR

Galbiati:1992:CEP

Gallard:2003:DSE

Green:2004:CSP

Gusatto:2005:EPA

Grimshaw:2013:GXG

Gastaldo:1992:TCP

Gonzalez:2009:ICS

Gu:1996:FTR
[GP96] Qian-Ping Gu and Shietung Peng. Fault tolerant routing

Gascard:2003:FPA

Georgiou:2009:SRP

Gontmakher:2003:CVJ

Garg:1999:NCC

Gamboa:2011:SPB

Greenlaw:1993:BSP

Griebel:1992:CTS

Georgiou:2007:FSA

Gasperoni:1994:GCO

Gewali:1994:CEW

Gupta:1995:TGP

Gupta:1997:SAR

Gerbessiotis:1999:EDS

Grelck:2003:SHL

Gopalan:2015:MDS

Grelck:2008:GIN

Gruau:2000:CG

Guyennet:2000:LBU

REFERENCES

CODEN PPLTEE. ISSN 0129-6264.

Haddix:2008:ODA

Haglin:1992:AMS

Haglin:1995:BEM

Hammond:2003:AST

Hayashi:2002:ACA

Hassan:2019:EAM

Head:2007:PET

Herrmann:2005:GMP

Hains:2012:GEN

REFERENCES

Hsieh:1999:EPA

Hedetniemi:2013:SSA

Heller:2007:LCL

Hidalgo-Herrero:2002:OSP

Hinsen:2003:HLP

Hagerup:1995:FPP

Ho:1995:EBH

Heinzlreiter:2003:VSG

Higham:2016:PMC

Hromkovic:1998:ESA

Hambrusch:1999:MDT

Habbas:2001:SMI

Herrmann:1996:SMC

Herrmann:2000:HOL

Herrmann:2002:FFI

Hains:2003:PSI

Hung:2017:SFH

Hwang:1997:PRA

Hais:2001:PHL

Hollingsworth:1999:BVM

Hernandez-orozco:2020:SPL

Hsu:1992:EML

Herley:1999:FDP

Haddad:2006:NEP

Hamdi:1998:CPA

Hofinger:2018:FAE

Siegfried Höfinger, Thomas Ruh, and Ernst Haenschmid. Fast approximate evaluation of

Higham:1993:PMA

Hily:1996:GDM

Hirschberg:1997:DCP

Hoefler:2009:ENN

Hsu:1993:MPS

Heckler:1994:CLD

Hofri:1998:MTM

Hu:1999:COH

Heriban:2021:MRU

Adam Heriban and Sébastien Tixeuil. Mobile robots with uncertain visibility sensors: Possibility results and lower bounds. *Parallel Processing Letters*, 31(01):??, March 2021. ISSN 0129-6264 (print), 1793-642X
REFERENCES

Hayashi:2005:PCS

Huang:2006:MWR

Hofbauer:2006:QMC

Huang:2006:PAT

Hamann:2007:EC

Hao:2018:RRC

Hao:2019:GCD

Hager:2008:DAC

Ishii:2005:ISC

[IDS+05] Renato P. Ishii, Rodrigo F. De Mello, Luciano J. Senger, Marcos J. Santana, Regina H. C.

Iliopoulos:1996:OPS

Ino:2009:HPI

Igarashi:1999:SPM

Izadi:1998:OSA

Ibarra:1995:TOE

Imbs:2016:TRE

Irony:2002:TRC

Johnen:2002:OSS

Jain:1999:PSM

Johnson:1992:PBM

Jesshope:1993:LRV

Jesshope:2006:MMD

Jesshope:2008:OSS

Jard:1996:ITD

Jones:2008:GEN

Jones:2009:GEN

Joo:2005:ASM

JaJa:1996:ORP

Jana:2006:IPP

Jain:2015:SSP

Jain:2018:HCL

Jeannot:2007:IRT

Jones:2008:SEA

Jafer:2007:PAC

Kelly:2005:GAM

Kerbyson:2011:MPD

Darren J. Kerbyson and Kevin J. Barker. Modeling the perfor-

Kulkarni:1993:PPA

Kim:2000:WDS

Kutil:2006:PWF

Kumar:1995:CAP

Kulkarni:1993:PPA

Kygriacou:2006:CCO

Kee:2002:EIB

Krings:2004:SIS

Kerbyson:2005:UPP

REFERENCES

REFERENCES

Koppelman:1996:LBA

Kelly:1994:SAM

Kwai:1996:GHN

Karpinski:1998:STP

Krizanc:1991:NOP

Krizanc:1993:CMS

Kari:2015:WCS

Krumme:1998:ODP

Kremer:1997:ONO

Kranzlmuller:2001:NAS

REFERENCES

REFERENCES

1992. CODEN PPLTEE. ISSN 0129-6264.

Klimke:2006:CDA

Kumar:2019:IBM

Kurzyniec:2003:TSO

Kim:1996:FSL

Kiniwa:2006:RLT

Latifi:1991:SEF

Lavault:2002:EPI

Lin:2014:TES

REFERENCES

Leidel:2014:HSS

Lechtchinsky:2002:PFP

Li:2014:EPP

Lemeire:2008:MPC

Lenders:1992:MAA

Lee:1997:MMD

Lapillonne:2014:UCD

Liu:2010:MPP

Larsson:1999:SME
REFERENCES

Latifi:1997:REB

Lee:1999:PEJ

Lumsdaine:2007:CPG

Lee:1995:SFP

Loh:2002:EFT

Lee:1999:TSF

Lindon:1992:DAA

Lutz:1995:DFC

Lucas:2010:SRO

Lee:2011:TAT

Lawley:2003:ANB

Lingas:1997:SOP

Loechner:2000:MCD

Lecroq:1998:OPP

Luong:2010:NSG

Laure:1999:OHC

Lin:2005:GAE

Louca:2000:MFP

Looges:1993:PPC

Lefevre:2009:TEA

Lin:1993:SEM

Lin:1994:CRB

Loulergue:2001:DEF

Levcopoulos:1994:WTP

Liestman:1998:MAT

Lin:2020:SEC

Lee:2001:IPA

Liestman:1993:PG

REFERENCES

REFERENCES

Lv:2018:RED

LZS

Lv:2018:RED

LZY

Lu:2018:RCE

LZY

Mackenzie:1993:LBO

Mac93

Mackenzie:1995:SBR

Mac95

Man97

Manzini:1991:LSR

Mendez:2019:PAR

Diego Mendez, David Arevalo, Diego Patino, Eduardo Gerlein, and Ricardo Quintana. Parallel architecture of reconfigurable hardware for massive output active noise con-
REFERENCES

Marsh:1998:NAH

Marowka:2003:EOT

Massingill:1999:EPP

Merry:1995:CTS

Murshed:1998:CTA

Moles:2015:DLC

Medarametla:2015:LME

Madanayake:2012:BPS
REFERENCES

ISSN 0129-6264 (print), 1793-642X (electronic).

Miller:2001:PIB

Merchant:2017:ABL

Misale:2017:CBD

Merry:2015:PCS

Maignan:2009:CAM

Merrill:2011:HPS

Marquez:2007:IPM

Maigne:2004:PMC

Lydia Maigne, David Hill, Pascal Calvat, Vincent Breton, Romain Reuillon, Delphine Lazaro, Yannick Legre, and Denise Donnariex. Parallelization of Monte Carlo simulations and submission to a grid environment. *Parallel Processing Letters*, 14(2):
177–??, June 2004. CODEN PPLTEE. ISSN 0129-6264.

Marsh:1998:UPP

Megson:1999:FTR

Mishra:2016:RSA

Mendiburu:2006:IPE

References

[MP93] J. Malard and C. C. Paige. Data replication in dense matrix fac-
REFERENCES

REFERENCES

Nakashima:2006:COP

Ning:2020:CEF

Nitsche:2002:LSF

Nitsche:2005:DSC

Narayanan:2003:DSD

Nicol:1996:BPK

Nagy:2010:KDV

Novakovic:2020:BCS

Nikolopoulos:2004:PAR

Stavros D. Nikolopoulos and Leonidas Palios. Parallel algorithms for recognizing p_5-free and \bar{p}_5-free weakly chordal

Norman:1995:CSC

Niedermeier:1995:OAO

Nivat:1994:EPS

Nguyen-Tuong:1999:URI

Neggazi:2017:MSS

Ngonmang:2012:LCI

Ning:1995:ADC

ODonnell:1994:CPP

Ooshita:2012:PMO

Fukuhito Ooshita, Tomoko Izumi, and Taisuke Izumi. The price of multi-organization constraint in unrelated parallel machine scheduling. *Parallel Pro-
REFERENCES

cessing Letters, 22(2):1250006, June 2012. CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Okoubi:2020:PND

Oskin:2002:OST

Oprescu:2011:BEC

Oksa:1995:TLS

Orgerie:2011:EEE

Oskin:2000:ACP

Olariu:1993:SAL

Olariu:1991:PTP

REFERENCES

Obrecht:2015:PEO

Oksa:2006:PPB

Olariu:1992:PAF

Pelaez:2008:HLP

Page:2013:PAS

Pionteck:2008:ACA

[PAKM08] Thilo Pionteck, Carsten Albrecht, Roman Koch, and Erik Maehle. Adaptive communication architectures for runtime...
REFERENCES

Pan:1994:MEC

Panaite:1997:RPG

Pancake:2003:UID

Parberry:1992:PSN

Pal:1996:OPA

Purushotham:1992:PEL

Perumalla:1995:PAM

Pelc:1992:BTS

Pellegrini:1993:BBD

Pelc:1995:ABA

REFERENCES

[122]

Pelc:2006:VMA

Persiano:1994:OAD

Petit:2003:CSS

Papadakis:2009:HBO

Petrank:2004:PCG

Poldner:2008:IFS

Petrank:2004:PCG

Pohl:2003:OPC

Pan:2011:TCR

Palis:1995:OSD

Phoha:2012:DFD

Shashi Phoha, Goutham Mallapragada, Yicheng Wen, Doina

2012.

REFERENCES

1993. CODEN PPLTEE. ISSN 0129-6264.

Peters:1998:GCC

Paterson:2002:PCA

Papatriantafilou:1997:SSW

Prylli:1998:EDS

Plank:2007:ENA

Purcz:2006:CCS

Petit:1999:OSS

Petit:2000:OSS

Qiao:1995:DCA

Qiu:2007:UNB

Ke Qiu. On a unified neighbourhood broadcasting scheme for

REFERENCES

REFERENCES

Robertazzi:2011:PFS

Rahmouni:1994:LSA

Raman:1993:UAP

Risset:1991:SPA

Rodriguez:2008:IRI

Rajasingh:2015:LTA

Rodriguez:2012:EMH

Ravishankar:1996:GRR

Rajasekaran:1997:DRA
REFERENCES

Ramesh:1998:ISP

Rottger:1998:EDG

Rosenberg:1995:RRP

Rozman:2006:CPL

Rai:1992:RTF

Roch:1996:FPC

Rescigno:1998:HFT

Rieksts:2009:TRF

Reijns:2001:PAM

Rus:1998:UMC
REFERENCES

REFERENCES

Scheiman:1996:PDR

Siegelin:2001:SCD

Schwabe:1993:OVD

Schreiber:1997:HPF

Schikuta:2005:TXB

Schulz:2009:HFI

Schumann:2015:TCB

Silveira:2010:IBS

Sudo:2018:CSS

Anonymous:2001:TTD

REFERENCES

2001. CODEN PPLTEE. ISSN 0129-6264.

Sun:1991:PAS

Schubert:2011:HPS

Shu:1999:FDS

Steuwer:2014:HLP

Sancho:2010:PTI

Sibeyn:2002:OLR

Siegelmann:1996:NSC

Singh:1996:BTP

Swift:1994:PCL

Soman:2010:SGA

Shin:2004:NAD

Sudo:2020:LER

Soliman:2009:EIT

Soliman:2009:PEM

Stefanescu:2004:GEN

Srimani:1996:SRI

Sur:1992:SDA

Sibeyn:2003:OGC

Soliman:2005:PEB

Slawinski:2013:TCU

Schmitt:2018:RHG

Schmeck:1993:PHT

Stacho:2004:RBC

Spirakis:1997:PGH

REFERENCES

REFERENCES

CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Sun:2011:PAP

Thomsen:2009:GEN

Thomsen:2009:PRR

Tang:2009:SPA

Tassone:2018:IAS

Trefethen:1999:LIC

Anne E. Trefethen, Mishi De-rakhshan, and Stefano Salvini.

[KTE08] Konstantinos Tatas, Costas Kyriacou, Paraskevas Evripidou, Pedro Trancoso, and Stephan Wong. Rapid prototyping of the data-driven chip-

Tian:1991:PMJ

Tzeng:2011:BVM

Tachon:2017:AGB

Thangavel:1993:PAG

Tromp:1993:US
J. Tromp. On update-last schemes. *Parallel Processing
Tsay:2004:DSA

Thomas:2006:AHL

Talia:2005:APD

Tamassia:2000:PAP

Turau:2010:SSV

Tourancheau:2001:SMM

Trevisan:1998:PCP

Umeo:2009:FSS

Ullman:1992:MBP
Uddin:2011:HLS

vanDongen:1994:CDL

Valero:1994:NSO

Vasilev:2003:BVR

Vadhiyar:2003:SFD

Villebonnet:2015:BML

Vee:2000:LPL

Vee:2001:SES

Vidyasankar:2006:HCG
REFERENCES

Karla Vargas, Sergio Rajsbaum, and Michel Raynal. An eventually perfect failure detector for

Wei:2012:OLL

Wu:2016:ANG

Weems:2011:GEN

Weems:2014:GEN

Wang:1995:DSU

Walker:2011:APG

Wolski:1995:SSH
R. Wolski. Static scheduling of hierarchical program graphs.
REFERENCES

Wolski:1999:PCA

Wilde:1997:MRA

Wu:2003:DFR

Wang:2016:OSA

Wu:1998:FTC

Wu:2000:FHP

Wuensche:2009:CAE

REFERENCES

Xue:1997:TLT

Xiang:2002:TOS

Xirouchakis:1993:DPV

Xu:2020:PQA

Yaikhom:2008:MPM

Yang:2005:IPM

Yang:1991:IMM

Yang:1994:PEC

Yan:2018:UCD

REFERENCES

REFERENCES

148

Zaroliagis:1997:SWP

Zavanella:2001:SBP

Zeiser:2009:BAA

Ziavras:1995:SMH

Zha:2020:RTL

Zenil:2018:ACR

Zhi:2004:UPS

Zhang:2015:PIA

REFERENCES

Zhu:2020:FMP

Zhao:2013:PMP

Zanikolas:2008:IAA

Zheng:2018:SPC

Zimeo:2008:CSC

Zaichenkov:2016:CBC

Zhang:2020:SNS

Zhai:2020:FTM

[XXY20] Liyang Zhai, Liqiong Xu, and Weihua Yang. Fault-tolerant

Zhang:2020:RAG

Zeinalipour-Yazti:2008:MRP

Zhuang:2021:REG

Zhang:2021:FSM