A Bibliography of Publications on the Numerical Calculation of π

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

01 March 2018
Version 1.86

\(\sin \alpha / \alpha \) \[127\]. \(0 \) \[240\]. \(1 \) \[253\]. \(1/\pi \) \[275\], \(215 \), \(216 \]. \(1/\pi^2 \) \[247\], \(216 \]. \(10,000 \) \[57\]. \(10,000,000 \) \[152\]. \(16 \) \[224\]. \(2 \) \[60\], \(63 \]. \(2 + 2 \) \[239\]. \(2,000 \) \[39\]. \(2,576,980,370,000 \) \[241\]. \(29,360,000 \) \[111\]. \(2H_2 \) \[251\]. \(b \) \[203\]. \(e \)
\[112\], \(106 \), \(64 \), \(38 \), \(125 \), \(32 \), \(39 \), \(40 \), \(239 \), \(13 \), \(62 \]. \(e^{-\pi^2/2} = i^\gamma \) \[15\]. \(\gamma \) \[76\].
\(GL(n, Z) \) \[109\]. \(N \) \[128\], \(160 \), \(95 \), \(109 \), \(151 \]. \(\phi \) \[214\], \(221 \]. \(\pi \)
\[265\], \(138 \), \(259 \), \(118 \), \(205 \), \(284 \), \(70 \), \(87 \), \(210 \), \(285 \), \(279 \), \(272 \), \(132 \), \(176 \), \(128 \), \(96 \), \(226 \), \(207 \), \(14 \), \(76 \), \(171 \), \(165 \), \(288 \), \(153 \), \(110 \), \(154 \), \(196 \), \(258 \), \(35 \), \(111 \), \(112 \), \(28 \), \(23 \), \(193 \), \(69 \), \(77 \), \(137 \), \(160 \), \(17 \), \(106 \), \(162 \), \(91 \), \(94 \), \(100 \), \(101 \), \(250 \), \(44 \), \(64 \), \(18 \), \(214 \), \(221 \), \(222 \), \(225 \), \(209 \), \(55 \), \(149 \), \(65 \), \(38 \), \(206 \), \(37 \), \(24 \), \(131 \), \(4 \), \(261 \), \(26 \), \(21 \), \(127 \), \(5 \), \(9 \), \(10 \), \(174 \), \(223 \), \(140 \), \(145 \), \(224 \), \(114 \), \(180 \), \(115 \), \(235 \), \(121 \), \(125 \), \(236 \), \(181 \), \(92 \), \(116 \), \(163 \), \(175 \), \(71 \), \(72 \), \(22 \), \(104 \), \(133 \), \(32 \), \(39 \), \(83 \), \(225 \), \(67 \), \(47 \), \(29 \]. \(\pi \)
\[189\], \(164 \), \(200 \), \(57 \), \(48 \), \(7 \), \(146 \), \(195 \), \(40 \), \(75 \), \(19 \), \(6 \), \(58 \), \(263 \), \(68 \), \(11 \), \(12 \), \(36 \), \(239 \), \(170 \), \(241 \), \(93 \), \(162 \), \(30 \), \(213 \), \(129 \), \(16 \), \(13 \), \(142 \), \(152 \), \(53 \), \(185 \), \(62 \), \(8 \]. \(\pi \), \(e \) \[86\], \(105\]. \(\pi/12 \) \[31\]. \(\pi/4 \) \[46\]. \(\pi/8 \) \[31\]. \(\pi = 2 \sum \arccot f_{2k+1} \) \[78\]. \(\pi^2 \) \[249\], \(124 \), \(48 \]. \(\pi^4 \)
\[103\]. \(\pi \coth \pi \) \[227\]. \(q \) \[235\]. \(\sum 1/k^2 = \pi^2/6 \) \[66\]. \(\sum_{k=1}^\infty 1/k^2 = \pi^2/6 \) \[54\].
\(\sum_{k=1}^\infty \pi^2/6 \) \[72\]. \(\sum_{n=1}^\infty 1/n^2 = \pi^2/6 \) \[107\]. \(\sqrt{2} \) \[86\]. \(Z \) \[109\]. \(\zeta(2) = \pi^2/6 \) \[274\].

1975 [293]. 1983 [294].

3rd [295].

524 [79].

719 [136]. 786 [168].

'88 [296].

90 [143]. 90d [157]. 949 [288].

Al-Kāshī [224]. Alexandria [299]. Algebraic [201, 55, 95, 237]. Algorithm
[111, 82, 109, 144, 261, 92, 83, 93, 135, 117, 126, 269, 84, 113, 172, 88, 132,
146, 195, 141, 136, 79, 81, 168]. Algorithms
[101, 89, 102, 223, 106, 94, 97, 120, 99, 195]. Almanac [121]. American
[283]. Among [57, 135, 97, 120]. Analysis [172]. Analytic [293, 293].
[244, 259, 134]. approximate [122]. Approximation
[35, 138, 23, 37, 26, 36, 171, 53, 181, 90, 294]. Approximations
[70, 261, 157, 95, 118, 14, 76]. April [293]. Arbitrary [246]. Arccotangent
[27]. Archimedes [278, 281]. Arctan [176]. Arctangent [17, 92, 134].
Arithmetic-Geometric [110, 75]. Arithmetical [182]. Articles [283]. ary
Attempts [11, 12]. AUGMENT [85]. August [294].

base-dependence [50]. Based [143, 92, 93, 270]. Bases [246, 194]. BBP
[230, 231, 232, 242, 243, 244, 245, 246, 248, 203, 253]. BBP-Type
[248, 253, 230, 231, 232, 242, 243, 244, 245, 246]. Bechmann [122].
beginnings [164]. being [130, 148]. Benford [257]. Berggren [299].
billion [157, 118, 170]. billionth [159]. Binary

Elementary [73, 107, 54, 74, 233]. Ellipses [110]. Empirical [259, 222].
ergy [286]. ENIAC [278, 39, 40, 263]. enri [164]. Episodes [212].
Euler [112, 139, 200]. European [25]. Evaluation [139, 73, 34, 74, 233].
Experimentally [199, 258, 250]. Experimentation [197]. Explaining [1].

Generalization [82]. generalized [84, 60, 63]. generating [275].
generation [269]. Generator [150, 270]. Generators [192, 210].
geometriae [131]. Geometric [110, 75, 80, 134]. German [8]. graphics [269].

ibid [76]. Identically [180]. Identities [166]. if [268, 277]. implementation

Novel [244]. November [296]. Number

Year [147]. yields [128]. Youqin [165].
REFERENCES

References

vonLindemann:1882:ZGN

[8] Carl Louis Ferdinand von Lindemann. Über die Zahl π. (German) [On the number π]. *Mathematische Annalen*, 20(??):213–225, ????. 1882. CODEN MAANA3. ISSN 0025-5831 (print), 1432-1807 (electronic). In this famous paper, von Lindemann proved that π is transcendental, showing that it is impossible to square the circle by compass and straightedge, a problem dating back before 400 BCE in Greece.

Glaisher:1883:CHL

Glaisher:1891:CHL

Smith:1895:HSA

Smith:1896:EHS

Veblen:1904:T

Ramanujan:1914:MEA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

December 1955. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

[54] Yoshio Matsuoka. Mathematical notes: An elementary proof of the formula \(\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \). *American Mathematical Monthly*, 68(5):485–487, May 1961. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

[58] Daniel Shanks and John W. Wrench, Jr. Calculation of \(\pi \) to 100,000 decimals. *Mathematics of Computation*, 16(77):76–99, January 1962. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003813. A note added in proof says: “J. M. Gerard of IBM United Kingdom Limited, who was then unaware of the computation described above, computed \(\pi \) to 20,000 D on the 7090 in the London Data Centre on July 31, 1961. His program used Machin’s formula, (1) \[\pi = 16 \arctan(1/5) - 4 \arctan(1/239) \], and required 39 minutes running time. His result agrees with ours to that number of decimals.”.

[60] I. J. Good and T. N. Gover. The generalized serial test and the binary expansion of \(\sqrt{2} \). *Journal of the Royal Statistical Society. Series A (Gen-
REFERENCES

REFERENCES

REFERENCES

MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). See also [74, 233].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[107] Boo Rim Choe. Notes: An elementary proof of $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. *American Mathematical Monthly*, 94(7):662–663, August/September 1987. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

[144] Steven Finch. The miraculous Bailey–Borwein–Plouffe pi algorithm. Recent URLs redirect to an unrelated site, but the one given here worked on...
Hirata:1995:CTT

Rabinowitz:1995:SAD

Adamchik:1996:PYO

Barrow:1996:PSC

Dodge:1996:DSA

Dodge:1996:NRN

Plouffe:1996:CTD

[153] Victor Adamchik and Stan Wagon. Notes: A simple formula for \(\pi \). *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein [118], and Plouffe, [156], done in 1995, but only just published, that discovered an amazing formula for \(\pi \) as is a power series in \(16^{-k} \), enabling any base-16 digit of \(\pi \) to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of \(4^{-k} \). They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of \(10^{-k} \).

[157] D. H. Bailey, J. M. Borwein, and P. B. Borwein. Ramanujan, modular equations, and approximations to \(\pi \) or How to compute one billion digits

[160] Fabrice Bellard. A new formula to compute the \(n \)-th binary digit of \(\pi \). This formula is claimed in [240] to be somewhat faster to compute than the BBP formula., 1997. URL http://bellard.org/pi/pi_bin.pdf.

DADS. ISSN 0315-0860 (print), 1090-249X (electronic). URL http://

web.archive.org/20020812145823/http://www.cecm.sfu.ca/PI/

REFERENCES

REFERENCES

REFERENCES

of Representatives— (1) supports the designation of a “Pi Day” and its celebration around the world; (2) recognizes the continuing importance of National Science Foundation’s math and science education programs; and (3) encourages schools and educators to observe the day with appropriate activities that teach students about Pi and engage them about the study of mathematics.”.

Adegoke:2010:NBD

Adegoke:2010:NBT

Adegoke:2010:NPR

Brent:2010:MPZ

Calude:2010:EEQ

Jauregui:2010:NRD

[249] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π^2 and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont, NSW 2009, Australia, April 11, 2011. 18 pp. URL http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.
REFERENCES

[250] D. Borwein and Jonathan M. Borwein. Proof of some experimentally
conjectured formulas for π. Preprint, Department of Mathematics, Uni-
versity of Western Ontario and Centre for Computer-assisted Research
Mathematics and its Applications (CARMA), School of Mathematical
and Physical Sciences, University of Newcastle, London, ON, Canada and
Callaghan, NSW 2308, Australia, December 4, 2011.

[251] Wenchang Chu. Dougall’s bilateral $_2H_2$-series and Ramanujan-like
π-formulae. Mathematics of Computation, 80(276):2223–2251, Oc-
tober 2011. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-
276/S0025-5718-2011-02474-9/home.html; http://www.ams.org/
journals/mcom/2011-80-276/S0025-5718-2011-02474-9/S0025-5718-
2813357.

[252] Donald Knuth. Why π? [Christmas tree lecture]. 100-minute YouTube
video., September 6, 2011. URL https://www.youtube.com/watch?v=
mw6dYK9lRzU.

[253] Jaume Oliver Lafont. Degree 1 BBP-type zero relations. Where is this

[255] Alexander Yee and Shigeru Kondo. Trillion digits of π — new world
numberworld.org/misc_runs/pi-5t/details.html.

[256] Alexander J. Yee and Shigeru Kondo. 10 trillion digits of π: A case study
of summing hypergeometric series to high precision on multicore systems.
Preprint, University of Illinois Urbana-Champaign and Asahimatsu Food
Co. Ltd., Urbana, IL, USA and Iida, Japan, 2011. URL http://hdl.
handle.net/2142/28348.
Zorzi:2011:BLP

Amdeberhan:2012:FEC

Bailey:2012:EAN

Bailey:2012:HPC

Fuks:2012:AAK

Osada:2012:EHC

Shelburne:2012:ED

REFERENCES

REFERENCES

[276] Alexander Yee and Shiguro Kondo. It stands at 10 trillion digits of π... world record for both desktop and supercomputer!!! Web site, April 15, 2013. URL http://www.numberworld.org/y-cruncher/. This site also
contains a table of digit records from 2009 to 2013 for various mathematical constants. The \(\pi \) record of 10,000,000,000,050 decimal digits was reached on 17 October 2011 after 371 days of computation, and 45 hours of verification.

[279] Reinhard E. Ganz. The decimal expansion of \(\pi \) is not statistically random. *Experimental mathematics*, 23(2):99–104, 2014. CODEN ????? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [289], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

[295] B. Monien and G. Vidal-Naquet, editors. *STACS 86: 3rd Annual Symposium on Theoretical Aspects of Computer Science, Orsay, France, Jan-
REFERENCES

Martin:1988:SPN

Schumer:2004:MJ

Alladi:2013:RPW

Sidoli:2014:ATB

REFERENCES