A Bibliography of Publications on the Numerical Calculation of π

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

10 September 2021
Version 1.103

(sin α)/α [128]. 0 [251], 1 [264], 1/π [224, 225, 318, 289]. 1/π^2 [243, 258, 225, 10,000 [57]. 10,000,000 [155]. 16 [233]. 2,000 [39]. 2,576,980,370,000 [252]. $\$24.95 [222]. 29,360,000 [112]. $2H_2$ [262]. b [210]. C [306]. d [306]. e [221, 113, 107, 65, 38, 126, 32, 39, 40, 250, 13, 63]. $e^{-\pi/2} = \nu$ [15]. γ [77]. GL(n, Z) [110]. N [129, 163, 96, 110, 154]. ϕ [223, 230]. π [156, 221, 276, 111, 157, 203, 269, 35, 183, 140, 112, 113, 270, 313, 28, 23, 200, 70, 78, 139, 163, 17, 107, 309, 165, 92, 95, 101, 102, 119, 261, 44, 65, 212, 18, 223, 230, 298, 231, 71, 262, 216, 88, 166, 55, 152, 217, 66, 38, 213, 37, 24, 133, 299, 4, 272, 26, 21, 293, 128, 5, 9, 10, 285, 180, 232, 143, 148, 233, 115, 187, 116, 246, 122, 126, 247, 188, 93, 117, 286, 167, 181, 72, 27, 134, 182, 22, 129, 105, 135, 32, 39, 84, 234, 68, 97, 47, 29, 196, 168]. π [207, 57, 48, 235, 7, 214, 149, 14, 202, 40, 76, 19, 6, 58, 77, 274, 69, 11, 12, 36, 250, 175, 252, 310, 94, 62, 123, 30, 176, 220, 131, 16, 13, 145, 169, 302, 155, 53, 192, 63, 8, 170]. π, e [87, 106]. $\pi/12$ [31]. $\pi/4$ [46]. $\pi/8$ [31]. $\pi = 2 \sum \arccot f_{2k+1}$ [79]. π^2 [260, 279, 125, 48]. π^4 [104]. $\pi \coth \pi$ [236]. q [246]. $\sqrt{2}$ [61, 64]. $\sqrt{2} + \sqrt{2}$ [250]. $\sum 1/k^2 = \pi^2/6$ [67]. $\sum_{k=1}^{\infty} 1/k^2 = \pi^2/6$ [54]. $\sum_{k=1}^{\infty} = \pi^2/6$ [73]. $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$ [108]. $\sqrt{2}$ [87]. Z [110]. $\zeta(2) = \frac{\pi^2}{6}$ [288].
BBP-Type [259, 264, 240, 241, 242, 253, 254, 255, 256, 257, 278].
Benford [268]. Berggren [325]. Berkeley [198]. Best [28, 326]. better
[221], between [118]. Beyond [292]. bilateral [262]. billion [160, 119, 175].
billionth [162]. Binary [240, 241, 253, 254, 256, 208, 162, 163, 61, 64].
both [290]. Bouncing [315]. Boy [304]. Brent [86, 100]. Bresenham [202].

C [77]. calculate [190]. calculated [39]. calculates [312]. Calculation
[200, 18, 9, 10, 148, 93, 84, 207, 219, 58, 175, 94, 145, 311, 88, 4, 5, 117, 22, 68,
Catalan-Type [250]. Catalan’s [260]. catalogue [313]. Celebrating [301].
Celebration [327]. Central [143]. Century [23, 301, 133, 211]. certain
Choong [77]. Christmas [263]. Chronology [41, 42, 43]. cifre [72]. Circle
classical [120]. Classroom [46, 84, 73, 48, 67]. cluster [310]. Colin [222].
Communicating [228]. Comp [77]. comparative [324]. Compendium
[259, 278]. Complex [173]. complexity [75, 244, 319]. Comprising [3].
Computation [112, 215, 260, 309, 24, 47, 76, 19, 11, 12, 251, 310, 275, 159,
271, 279, 120, 109, 178, 122, 154, 7, 202, 155]. Computational [303, 204, 319].
[28, 309, 286, 287, 179, 300, 315]. Concerning [65]. Conclusion [37].
Conjecture [65, 50]. Conjectured [224, 269, 261]. considerations [109].
[241, 255, 113, 161, 259, 205, 189, 118, 159, 278, 120, 63]. Construction
Contributions [3]. convenient [7]. convergence [273]. Convergent
[112, 92]. Converging [102]. Correct [34, 157]. Correspondence [62].
[95, 101]. CUDA [286].

D [77]. Day [281, 291, 294, 239]. Daykin [77]. debate [221, 222]. Decimal
[112, 293, 93, 218, 40, 53, 38, 10, 117, 72, 39, 154, 175, 252, 155].
decimale [72]. décimales [60]. Decimals [309, 3, 58, 94, 60, 233]. Degree
Department [319]. dependence [50]. Dependent [110]. Derivation

7

quadratic [216]. Quadratically [102]. Quadrillionth [287, 251, 310].
[112]. quelques [2]. Quest [158, 231]. Questions [28, 17, 18, 24, 26, 19, 16].

R [77]. Rabbinical [176]. Ramanujan
Ramanujan-like [243, 258, 262]. Ramanujan-type [318]. Random
[195, 199, 280, 153, 217, 293, 45, 198, 282, 283, 226]. Randomness
[303, 218, 57, 220, 245, 38, 197]. rapid [159]. rapidly [92]. rare [217].
Rathbone [77]. Rational [65, 71, 91, 77, 318]. Ratios [31]. Real
Reconstruction [272]. Record [266, 290, 312]. Rectification [3].
Refutation [226]. Regular [77]. Relation
[256, 15, 184, 93, 127, 194, 114, 177, 144]. Relations
[17, 110, 264, 27, 136, 137, 118, 98, 121]. Remark [82]. remarkable [2].
[224, 246]. Reproducibility [303]. Researcher [198]. Researchers [300].
Resolution [239]. Results [113, 16, 118]. Review [222, 305]. Revisited

S3071 [287]. Salamin [134, 100]. Satisfy [152]. Science [303, 321, 319].
Sciences [325]. Scientific [215]. Search [150]. Searching [212]. seeming
[197]. September [327, 320]. Sequence [187, 97, 249]. serial [61, 64]. Series
[24, 224, 225, 46, 267, 243, 216, 318, 129, 97, 207, 7, 131, 289, 202]. Shanks
[34]. Short [103]. Simple [156, 311, 26, 104, 46, 73]. simplified [100].
Slice [206]. Some [203, 309, 232, 47, 16, 261, 2]. source [164, 185, 209].
[321]. Stands [290]. statistica [72]. Statistical [152, 39, 57, 246, 72, 60].
Statistically [293]. statistics [317]. statistique [60]. Steinhaus [51]. Still
[291, 281]. String [258, 243]. Students [295]. Studies [325]. Study
[303, 57, 320, 220, 267, 324, 60, 126]. stumbled [300]. such [226]. suggested
[123]. Sulla [72]. Summing [267]. Sums [141, 114]. Supercomputer
[287, 290]. Supercomputing [322]. Survey [11, 12]. Surveys [325].

Table [77]. tackled [197]. Takebe [168]. Talking [172]. tangent [131].
Taust [294]. Teaching [128]. Techniques [194]. ten [275]. Terms
REFERENCES

Xeon [310].

y-cruncher [316]. Year [150]. yields [129]. Youqin [169].

Zach [302]. Zahl [30, 8]. Zero [256, 264, 75, 244]. zero-finding [75, 244]. Zhao [169].

References

REFERENCES

In this famous paper, Lambert proved that \(\pi \) is irrational. See [167] for further remarks, a simplification of the proof, and references to earlier papers that discuss Lambert’s proof.

[8] Carl Louis Ferdinand von Lindemann. Über die Zahl \(\pi \). (German) [On the number \(\pi \)]. *Mathematische Annalen*, 20(??):213–225, ???? 1882. CODEN MAANAE. ISSN 0025-5831 (print), 1432-1807 (electronic). In this famous paper, von Lindemann proved that \(\pi \) is transcendental, showing that it is impossible to square the circle by compass and straightedge, a problem dating back before 400 BCE in Greece.

REFERENCES

REFERENCES

[54] Yoshio Matsuoka. Mathematical notes: An elementary proof of the formula \(\sum_{k=1}^{\infty} \frac{1}{k^2} = \pi^2/6 \). American Mathematical Monthly, 68(5):485–487, May 1961. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

Shanks:1962:CD

[58] Daniel Shanks and John W. Wrench, Jr. Calculation of π to 100,000 decimals. *Mathematics of Computation*, 16(77):76–99, January 1962. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003813. A note added in proof says: “J. M. Gerard of IBM United Kingdom Limited, who was then unaware of the computation described above, computed π to 20,000 D on the 7090 in the London Data Centre on July 31, 1961. His program used Machin’s formula, (1) $\pi = 16 \arctan(1/5) - 4 \arctan(1/239)$, and required 39 minutes running time. His result agrees with ours to that number of decimals.”.

Smith:1966:CP

Esmenjaud-Bonnardel:1965:ESD

Good:1967:GST

Tee:1967:CP

Yarbrough:1967:PCC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kanada:1983:CDP

Tamura:1983:CDB

Borwein:1984:CHO

Borwein:1984:EAO

Newman:1984:SAS

Haastad:1985:PTA

REFERENCES

theoretical computer science of the Gesellschaft für Informatik (G.I.) and the special interest group for applied mathematics of the Association française des sciences et techniques de l’information, de l’organisation et des systèmes (AFCET)."

REFERENCES

Parks:1986:NOI

Bernstein:1987:NFA

Choe:1987:NEP

[108] Boo Rim Choe. Notes: An elementary proof of \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2 / 6 \). *American Mathematical Monthly*, 94(7):662–663, August/September 1987. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

Edgar:1987:PDE

Ferguson:1987:NIA

Almkvist:1988:GLR

Bailey:1988:CDD

REFERENCES

[119] J. M. Borwein, P. B. Borwein, and D. H. Bailey. Ramanujan, modular equations, and approximations to π or how to compute one billion digits of
REFERENCES

REFERENCES

Gillman:1991:TML

Lynch:1990:DHO

Schroeder:1991:FCP

Tweddle:1991:JMR

Barrow:1992:PSC

Freguglia:1992:DFP

[133] Paolo Freguglia. The determination of \(\pi \) in Fibonacci’s Practica geometriae in a fifteenth-century manuscript. In Contributions to the history
REFERENCES

REFERENCES

Rabinowitz:1995:SAD

Adamchik:1996:PYO

Barrow:1996:PSC

Dodge:1996:DSA

Dodge:1996:NRN

Plouffe:1996:CTD

Wei:1996:CDD

[156] Victor Adamchik and Stan Wagon. Notes: A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein [119], and Plouffe, [159], done in 1995, but only just published, that discovered an amazing formula for π as is a power series in 16^{-k}, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4^{-k}. They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.

Bellard:1997:BBD

Bellard:1997:NFC

[163] Fabrice Bellard. A new formula to compute the n-th binary digit of π. This formula is claimed in [251] to be somewhat faster to compute than the BBP formula., 1997. URL http://bellard.org/pi/pi_bin.pdf.

Berggren:1997:PSB

Blatner:1997:JP

Delahaye:1997:FNc

Laczkovich:1997:LPI

REFERENCES

REFERENCES

REFERENCES

35

Lagarias:2000:NAC

Percival:2000:PDE

Venkatachala:2000:RP

Xu:2000:C

Arndt:2001:PU

Bailey:2001:PIR

REFERENCES

REFERENCES

REFERENCES

[226] George Marsaglia. Refutation of claims such as “Pi is less random than we thought”. *InterStat: statistics on the Internet*, January 23, 2006. CODEN
Bailey:2007:EMA

Borwein:2008:CMD

Borwein:2008:VPG

Chan:2008:MTF

Chong:2008:EQ

Guillera:2008:EPS

[239] United States Congress. House Resolution 224: Pi day. Web document, March 12, 2009. The resolution ends with: “Resolved, That the House of Representatives— (1) supports the designation of a “Pi Day” and its celebration around the world; (2) recognizes the continuing importance of National Science Foundation’s math and science education programs; and (3) encourages schools and educators to observe the day with appropriate activities that teach students about Pi and engage them about the study of mathematics.”

REFERENCES

Jones:2010:DP1

Kaneko:2010:NNP

Osler:2010:LBF

Sondow:2010:NWC

Sze:2010:TQB

Takahashi:2010:PIM

Adegoke:2011:CBB

[260] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π^2 and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont, NSW 2009, Australia, April 11, 2011. 18 pp. URL http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.
Borwein:2011:PSE

[261] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for π. Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

Chu:2011:DBS

Knuth:2011:WPC

Lafont:2011:DBT

Yee:2011:LC

Yee:2011:TDPa

Yee:2011:TDPb

REFERENCES

[281] David H. Bailey and Jonathan Borwein. Pi day is upon us again and we still do not know if pi is normal. Report, Lawrence Berkeley National
REFERENCES

Beliakov:2013:EIBa

Beliakov:2013:EIBb

Casey:2013:PPP

Gourevitch:2013:W

Karrels:2013:CDC

Karrels:2013:SCQ

REFERENCES

[290] Alexander Yee and Shiguro Kondo. It stands at 10 trillion digits of pi... world record for both desktop and supercomputer!!! Web site, April 15, 2013. URL http://www.numberworld.org/y-cruncher/. This site also contains a table of digit records from 2009 to 2013 for various mathematical constants. The π record of 10,000,000,000,050 decimal digits was reached on 17 October 2011 after 371 days of computation, and 45 hours of verification.

[293] Reinhard E. Ganz. The decimal expansion of π is not statistically random. *Experimental mathematics*, 23(2):99–104, 2014. CODEN ????? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [303], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.
REFERENCES

[300] Catherine Meyers. New derivation of pi links quantum physics and pure math: Researchers stumbled upon a famous pre-Newtonian formula for pi while computing the energy levels of a hydrogen atom, November
REFERENCES

REFERENCES

REFERENCES

