A Bibliography of Publications on the Numerical Calculation of \(\pi \)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 April 2023
Version 1.107

\[(\sin \alpha) / \alpha = 0.0 \] [248]. 1 [261]. 1/\pi [221, 222, 315, 286]. 1/\pi^2 [240, 255, 222]. 10,000 [57]. 10,000,000 [155]. 16 [230]. 2,000 [39]. 2,576,980,370,000 [249].

$24.95 [219]. \sqrt{\pi} [259]. b [207]. C [303]. d [303]. e [218, 113, 107, 65, 38, 126, 32, 39, 40, 247, 13, 63]. e^{-(\pi/2)} = i [15]. \gamma [77].

GL(n, Z) [110]. N [129, 163, 96, 110, 154]. \phi [220, 227]. \pi [156, 218, 273, 111, 157, 201, 266, 35, 182, 140, 112, 113, 267, 310, 28, 23, 198, 70, 78, 139, 163, 17, 107, 306, 164, 92, 95, 101, 102, 119, 258, 44, 65, 209, 18, 220, 227, 295, 228, 71, 259, 213, 88, 320, 165, 55, 152, 214, 66, 38, 210, 37, 24, 133, 296, 4, 269, 26, 21, 290, 128, 5, 9, 10, 282, 179, 229, 143, 148, 230, 115, 185, 116, 243, 122, 126, 244, 186, 93, 117, 283, 166, 180, 72, 27, 134, 181, 22, 317, 129, 105, 135, 32, 39, 84, 231, 68, 97, 47]. \pi [29, 194, 167, 205, 57, 48, 232, 7, 211, 149, 14, 200, 40, 76, 19, 6, 58, 77, 271, 69, 11, 12, 36, 247, 174, 249, 307, 94, 62, 123, 30, 175, 217, 131, 16, 13, 145, 168, 299, 155, 53, 190, 63, 8, 169]. \pi, e [87, 106]. \pi/12 [31]. \pi/4 [46]. \pi/8 [31]. \pi = 2 \sum \arccot f_{2k+1} [79]. \pi^2 [257, 276, 125, 48]. \pi^4 [104]. \pi \cot \pi [233]. q [243]. \sqrt{2} [61, 64]. \sqrt{2 + \sqrt{2}} [247]. \sum 1/k^2 = \pi^2/6 [67]. \sum_{k=1}^{\infty} 1/k^2 = \pi^2/6 [54]. \sum_{k=1}^{\infty} = \pi^2/6 [73]. \sum_{n=1}^{\infty} 1/n^2 = \pi^2/6 [108]. \sqrt{2} [87]. Z [110]. \zeta(2) = \pi^2/6 [285].

0 [219]. 0-88385-900-9 [219].

1975 [322]. 1983 [323].

3rd [324].

524 [80].

719 [138]. 786 [172].

'88 [325].

9 [219]. 90 [146]. 90d [160]. 949 [299].

Approximation [35, 140, 23, 37, 26, 36, 175, 53, 186, 91, 323].

Arccotangent [27]. Archimedes [308, 289, 292]. Arctan [181].

Arctangent [17, 93, 136]. arising [97]. Arithmetic [111, 212, 80, 82, 86, 76, 172, 117, 249]. Arithmetic-Geometric [111, 76].

Aryabhata [21]. Aspects [324]. Association [219]. asymptotic [205].

Australia [333].

base [50]. base-dependence [50]. Based [146, 316, 93, 94, 280]. Bases [254, 199]. BBP
3

Garage [284]. Garrity [219]. Gauss [111, 93, 134, 94]. Gave [301]. General
[250]. Generalization [83]. generalized [85, 61, 64]. generating [286].
geometriae [133]. Geometric [111, 76, 81, 136]. German [8]. goodness

Hadoop [248]. Happy [291]. harmonic [129]. held [323, 322]. Helped
[292]. Hennecke [30]. Heterogeneous [316]. hexadecimal [307].
Hierarchical [124]. High [212, 268, 264]. High-Precision [212, 268].
Higher [83, 95]. histoire [116]. Historical [15, 11, 12]. History
[70, 78, 294, 142, 139, 116, 270]. Hold [196]. Honnecourt [123]. Honor
[331]. House [236]. Hui [145]. hydrogen [297]. hyperbolic [9, 10].
Hypergeometric [286, 264].

ibid [77]. Identically [185]. Identities [170]. if [278, 288]. implementation
[279, 280, 249]. Inaccessible [257, 276]. incomputability [242].
Independent [185]. Indian [25]. Inductive [110]. Infinite [66, 247, 7].
Institute [323]. Integer [183, 127, 192, 176, 98, 121, 144]. integral [114].
Introduction [235]. inverse [131]. inverse-tangent [131]. Involving
[113, 16, 310, 114]. Irrational [244, 106, 126]. Irrationality
[226, 72]. iteration [101]. iterations [213].

journeys [329]. Joy [164].

Kočański [269]. Kreis [30].

Lazzarini [140]. lecture [260]. Legacy [333]. Legendre [93, 94]. Leibnitz
[46]. Leibnitz-Gregory [46]. Leibniz [321]. less [223]. level [315]. levels
[299]. Lucas [143]. Lucky [140].

M [333]. Machin [207, 227, 200, 131]. Machin-Type [207, 227]. Magical
[292]. manuscript [133, 230, 123]. Many [157]. Math [204, 297, 77].
Mathematical

REFERENCES

Xeon [307].

y-crvuncher [313, 318]. Year [150]. yields [129]. Youqin [168].

References

Lambert:1768:MQP

Shanks:1853:CMC

Frisby:1871:C

Glaisher:1871:RC

Shanks:1873:ENV

Polster:1879:NIS

vonLindemann:1882:ZGN

[8] Carl Louis Ferdinand von Lindemann. Über die Zahl π. (German) [On the number π]. *Mathematische Annalen*, 20(??):213–225, ????, 1882. CODEN MAANA3. ISSN 0025-5831 (print), 1432-1807 (electronic). In this famous paper, von Lindemann proved that π is transcendental, showing that it is impossible to square the circle by compass and straightedge, a problem dating back before 400 BCE in Greece.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[58] Daniel Shanks and John W. Wrench, Jr. Calculation of π to 100,000 decimals. *Mathematics of Computation*, 16(77):76–99, January 1962. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003813. A note added in proof says: “J. M. Gerard of IBM United Kingdom Limited, who was then unaware of the computation described above, computed π to 20,000 D on the 7090 in the London Data Centre on July 31, 1961. His program used Machin’s formula, (1) $\pi = 16 \arctan(1/5) - 4 \arctan(1/239)$, and required 39 minutes running time. His result agrees with ours to that number of decimals.”.

REFERENCES

Choong:1971:RA

Lauro:1972:SDS

Papadimitriou:1973:CNS

Brent:1976:FMP

Brent:1976:MPZ

Salamin:1976:CUA

Shanks:1976:TER

Mathematics of Computation, 30(134):381, 1976. CODEN MCMPAF.

Beckmann:1977:HP

Anderson:1978:F

Brent:1978:AMF

Solomon:1978:GP

Brent:1979:RMF

Ferguson:1979:GEA

REFERENCES

REFERENCES

Montgomery:1985:MMT

Newman:1985:SVF

Borwein:1986:ECI

Borwein:1986:MQC

Ferguson:1986:SPE

Hancl:1986:NSP

REFERENCES

[108] Boo Rim Choe. Notes: An elementary proof of $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. *American Mathematical Monthly*, 94(7):662–663, August/September 1987. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

[112] David H. Bailey. The computation of π to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm. *Mathematics of Computation,*
REFERENCES

REFERENCES

REFERENCES

Freguglia:1992:DFP

Lord:1992:RCG

Mauron:1992:P

Abeles:1993:CDG

Arno:1993:NPT

Bailey:1993:AMT

Beckmann:1993:HP

Badger:1994:LLA

[155] Gong Yi Wei, Zi Giang Yang, Jia Chang Sun, and Jia Kai Li. The computation of π to 10,000,000 decimal digits. *Journal on Numerical Methods and Computer Applications*, 17(1):78–81, 1996. ISSN 1000-3266. Also

[156] Victor Adamchik and Stan Wagon. Notes: A simple formula for \(\pi\). American Mathematical Monthly, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein [119], and Plouffe, [159], done in 1995, but only just published, that discovered an amazing formula for \(\pi\) as a power series in \(16^{-k}\), enabling any base-16 digit of \(\pi\) to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of \(4^{-k}\). They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of \(10^{-k}\).

REMARKS

[163] Fabrice Bellard. A new formula to compute the n-th binary digit of π. This formula is claimed in [248] to be somewhat faster to compute than the BBP formula., 1997. URL http://bellard.org/pi/pi_bin.pdf.

REFERENCES

References

[182] Jörg Arndt and Christoph Haenel. π: Algorithmen, Computer, Arithmetik. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / Lon-
REFERENCES

REFERENCES

Borwein:2004:MEP

Byatt:2004:SPD

Eymard:2004:N

Posamentier:2004:PBW

Bailey:2005:HPF

Chua:2005:EML

REFERENCES

REFERENCES

REFERENCES

[236] United States Congress. House Resolution 224: Pi day. Web document, March 12, 2009. The resolution ends with: “Resolved, That the House of Representatives—(1) supports the designation of a “Pi Day” and its celebration around the world; (2) recognizes the continuing importance of National Science Foundation’s math and science education programs; and (3) encourages schools and educators to observe the day with appropriate activities that teach students about Pi and engage them about the study of mathematics.”.

REFERENCES

Sze:2010:TQB

Tsz-Wo Sze. The two quadrillionth bit of pi is 0! distributed computation
of pi with Apache Hadoop. In IEEE, editor, 2010 IEEE Second Inter-
national Conference on Cloud Computing Technology and Science (Cloud-
Com), page 727. IEEE Computer Society Press, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 2010. ISBN 1-4244-9405-2. LCCN

Takahashi:2010:PIM

Daisuke Takahashi. Parallel implementation of multiple-precision arith-
metic and 2,576,980,370,000 decimal digits of \(\pi \) calculation. Parallel
Computing, 36(8):439–448, August 2010. CODEN PACOEJ. ISSN 0167-
8191 (print), 1872-7336 (electronic).

Adegoke:2011:CBB

Kunle Adegoke. A class of binary BBP-type formulas in general de-
atwebpages.com/.

Adegoke:2011:FPD

Kunle Adegoke. Formal proofs of degree 5 binary BBP-type for-
atwebpages.com/.

Adegoke:2011:NAD

Kunle Adegoke. A novel approach to the discovery of ternary BBP-type
formulas for polylogarithm constants. Notes on Number Theory and Dis-
crete Mathematics, 17(1):??, ???? 2011. CODEN ???? ISSN ???? URL
http://adegoke.atwebpages.com/.

Adegoke:2011:NDB

Kunle Adegoke. New degree 4 binary BBP-type formulas and a zero
atwebpages.com/.

Adegoke:2011:SRB

Kunle Adegoke. Symbolic routes to BBP-type formulas of any degree in
arbitrary bases. Applied Mathematics and Information Sciences, ??(??):
??, May 2011.

[258] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for \(\pi\). Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

REFERENCES

REFERENCES

[287] Alexander Yee and Shiguro Kondo. It stands at 10 trillion digits of pi... world record for both desktop and supercomputer!!! Web site, April 15, 2013. URL http://www.numberworld.org/y-cruncher/. This site also contains a table of digit records from 2009 to 2013 for various mathematical constants. The π record of 10,000,000,000,050 decimal digits was reached on 17 October 2011 after 371 days of computation, and 45 hours of verification.

[290] Reinhard E. Ganz. The decimal expansion of π is not statistically random. Experimental mathematics, 23(2):99–104, 2014. CODEN ????? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [300], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

REFERENCES

REFERENCES

[306] Yves Bertot, Laurence Rideau, and Laurent Théry. Distant decimals of π: Formal proofs of some algorithms computing them and guarantees of exact
Takahashi:2018:CQH

Bailey:2019:SPA

Porter:2019:GEC

Bailey:2020:CMF

Brent:2020:BBP

Monroe:2020:NBB

Yee:2020:CMT

Staudte:2020:EGF

Guillera:2021:PRR

Ernstsson:2022:DPP

Lucas:2022:MSF

Yee:2022:CMT

Bailey:2023:CBT

REFERENCES

