A Bibliography of Publications on the Numerical Calculation of π

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org
WWW URL: http://www.math.utah.edu/~beebe/

24 October 2017
Version 1.85

(sin α)/α [127]. 0 [240]. 1 [253]. 1/π [275, 215, 216]. 1/π^2 [247, 216]. 10,000 [57]. 10,000,000 [152]. 16 [224]. 2 [60, 63]. 2 + 2 [239]. 2,000 [39]. 2,576,980,370,000 [241]. 29,360,000 [111]. $2H_2$ [251]. b [203]. e
[112, 106, 64, 38, 125, 32, 39, 40, 239, 13, 62]. $e^{-1/2}$ = i [15]. γ [76].

GL(n, \mathbb{Z}) [109]. N [128, 160, 95, 109, 151]. ϕ [214, 221]. π
[189, 164, 200, 57, 48, 7, 146, 195, 40, 75, 19, 6, 58, 263, 68, 11, 12, 36, 239, 170, 241, 93, 61, 122, 30, 213, 129, 16, 13, 142, 152, 53, 185, 62, 8]. π, e [86, 105]. $\pi/12$ [31]. $\pi/4$ [46]. $\pi/8$ [31]. $\pi = 2 \arccot f_{2k+1}$ [78]. π^2 [249, 124, 48]. π^4
[103]. $\pi \coth \pi$ [227]. q [235]. $\sum 1/k^2 = \pi^2/6$ [66]. $\sum_{k=1}^\infty 1/k^2 = \pi^2/6$ [54].

$\sum_{k=1}^\infty \pi^2/6$ [72]. $\sum_{n=1}^\infty 1/n^2 = \pi^2/6$ [107]. $\sqrt{2}$ [86]. Z [109]. $\zeta(2) = \pi^2/6$ [274].

1975 [293]. 1983 [294].

3rd [295].

524 [79].

719 [136]. 786 [168].

'88 [296].

90 [143]. 90d [157]. 949 [288].

Again [277, 268]. ages [189]. Air [1]. Al [224, 19]. Al-Biruni [19].
Attempts [11, 12]. AUGMENT [85]. August [294].

beginnings [164]. being [130, 148]. Benford [257]. Berggren [299].

ibid [76]. Identically [180]. Identities [166]. if [268, 277]. implementation
5

Properties [289, 211, 57, 213, 234, 38, 190].

Year [147]. yields [128]. Youqin [165].
References

[8] Carl Louis Ferdinand von Lindemann. Über die Zahl \(\pi \). (German) [On the number \(\pi \)]. *Mathematische Annalen*, 20(??):213–225, ???? 1882. CODEN MAANA3. ISSN 0025-5831 (print), 1432-1807 (electronic). In this famous paper, von Lindemann proved that \(\pi \) is transcendental, showing that it is impossible to square the circle by compass and straightedge, a problem dating back before 400 BCE in Greece.

REFERENCES

REFERENCES

REFERENCES

December 1955. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

[58] Daniel Shanks and John W. Wrench, Jr. Calculation of π to 100,000 decimals. *Mathematics of Computation*, 16(77):76–99, January 1962. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003813. A note added in proof says: “J. M. Gerard of IBM United Kingdom Limited, who was then unaware of the computation described above, computed π to 20,000 D on the 7090 in the London Data Centre on July 31, 1961. His program used Machin’s formula, (1) $[\pi = 16 \arctan(1/5) - 4 \arctan(1/239)]$, and required 39 minutes running time. His result agrees with ours to that number of decimals.”.

[60] I. J. Good and T. N. Gover. The generalized serial test and the binary expansion of $\sqrt{2}$. *Journal of the Royal Statistical Society. Series A (Gen-

REFERENCES

MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). See also [74, 233].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

27

Beckmann:1993:HP

Badger:1994:LLA

Bailey:1994:EEE

Hauss:1994:FLC

Rossner:1994:SIR

Volkov:1994:CAC

Bailey:1995:FBM

Finch:1995:MBB

[144] Steven Finch. The miraculous Bailey–Borwein–Plouffe π algorithm. Recent URLs redirect to an unrelated site, but the one given here worked on

Adamchik and Stan Wagon. Notes: A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein [118], and Plouffe, [156], done in 1995, but only just published, that discovered an amazing formula for π as is a power series in 16^{-k}, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4^{-k}. They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.

D. H. Bailey, J. M. Borwein, and P. B. Borwein. Ramanujan, modular equations, and approximations to pi or How to compute one billion digits

[160] Fabrice Bellard. A new formula to compute the n-th binary digit of π. This formula is claimed in [240] to be somewhat faster to compute than the BBP formula., 1997. URL http://bellard.org/pi/pi_bin.pdf.

REFERENCES

REFERENCES

REFERENCES

[191] Paul Preuss. Are the digits of \(\pi \) random? A Berkeley Lab researcher may hold the key. *Energy Science News*, ??(??):??,

REFERENCES

REFERENCES

of Representatives—(1) supports the designation of a “Pi Day” and its celebration around the world; (2) recognizes the continuing importance of National Science Foundation’s math and science education programs; and (3) encourages schools and educators to observe the day with appropriate activities that teach students about Pi and engage them about the study of mathematics.”.

REFERENCES

[249] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π^2 and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont, NSW 2009, Australia, April 11, 2011. 18 pp. URL http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.
[250] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for π. Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

computation of pi to ten trillion digits. *Advances in Difference Equations*,
advancesindifferenceequations.com/content/2013/1/100.

world of mathematics: essays providing a comparative study* [298], pages
1007/978-81-322-0767-2_16. This article appeared in The Hindu, India’s
national newspaper in December 1994 on Ramanujan’s 107th birth
anniversary.

[266] Francisco Aragón Artacho, David H. Bailey, Jonathan M. Borwein, and
Peter B. Borwein. Walking on real numbers. *The Mathematical Intelli-
gencer*, 35(1):42–60, March 2013. CODEN MAINDC. ISSN 0343-6993

[267] David H. Bailey and Jonathan M. Borwein. Are the digits of pi random?
david-h-bailey/are-the-digits-of-pi-random_b_3085725.html.

[268] David H. Bailey and Jonathan Borwein. Pi day is upon us again and
we still do not know if pi is normal. Report, Lawrence Berkeley National
Laboratory and Centre for Computer Assisted Research Mathematics and
its Applications (CARMA), University of Newcastle, Berkeley, CA 94720,
USA and Callaghan, NSW 2308, Australia, May 29, 2013. 20 pp. URL

efficient implementation of Bailey and Borwein’s algorithm for parallel
random number generation on graphics processing units. *Computing*, 95
(4):309–326, April 2013. CODEN CMPTA2. ISSN 0010-485X (print),
1007/s00607-012-0234-8. See also [270].
REFERENCES

[276] Alexander Yee and Shiguro Kondo. It stands at 10 trillion digits of pi... world record for both desktop and supercomputer!!! Web site, April 15, 2013. URL http://www.numberworld.org/y-cruncher/. This site also
contains a table of digit records from 2009 to 2013 for various mathematical constants. The π record of 10,000,000,000,050 decimal digits was reached on 17 October 2011 after 371 days of computation, and 45 hours of verification.

[279] Reinhard E. Ganz. The decimal expansion of π is not statistically random. *Experimental mathematics*, 23(2):99–104, 2014. CODEN ???? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [289], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

REFERENCES

[295] B. Monien and G. Vidal-Naquet, editors. *STACS 86: 3rd Annual Symposium on Theoretical Aspects of Computer Science, Orsay, France, Jan-

Bailey:2016:RCS

Roberts:2016:HFB

Bailey:2017:PCP

Yee:2017:PNL

Traub:1976:ACC

Singh:1984:ATS

Monien:1986:SAS

