A Bibliography of Publications on the Numerical Calculation of \(\pi \)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
 Tel: +1 801 581 5254
 FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

30 April 2019
Version 1.94

\[(\sin \alpha) / \alpha \text{[127]}, 0 \text{[245]}, 1 \text{[258]}, 1/\pi \text{[280, 219, 220]}, 1/\pi^2 \text{[252, 220]}, 10,000 \text{[57]}, 10,000,000 \text{[154]}, 16 \text{[228]}, 2 \text{[60, 63]}, 2 + 2 \text{[244]}, 2,000 \text{[39]}, 2,576,980,370,000 \text{[246]}, \textbf{24,95} \text{[217]}, 29,360,000 \text{[111]}, zH_2 \text{[256]}, b \text{[205]}, C \text{[297]}, d \text{[297]}, e \text{[216, 112, 106, 64, 38, 125, 32, 39, 40, 244, 13, 62]}, e^{-\pi/2} = i^1 \text{[15]}, e \text{[86, 105]}, \gamma \text{[76]}, GL(n, Z) \text{[109]}, N \text{[128, 162, 95, 109, 153]}, \phi \text{[218, 225]}, \pi \text{[270, 139, 264, 138, 300, 164, 118, 207, 289, 70, 87, 212, 290, 284, 277, 133, 178, 128, 96, 230, 209, 14, 76, 301, 173, 167, 293, 155, 216, 110, 156, 198, 263, 35, 111, 112, 28, 23, 195, 69, 77, 162, 17, 106, 91, 94, 100, 101, 255, 44, 64, 18, 218, 225, 226, 256, 211, 55, 151, 65, 38, 208, 37, 24, 132, 4, 266, 26, 21, 127, 5, 9, 10, 176, 227, 142, 147, 228, 114, 182, 115, 240, 121, 125, 241, 183, 92, 116, 165, 177, 71, 27, 22, 104, 134, 32, 39, 83, 229]}, \pi \text{[67, 47, 29, 191, 166, 202, 57, 48, 7, 148, 197, 40, 75, 19, 6, 58, 268, 68, 11, 12, 36, 244, 172, 246, 93, 61, 122, 30, 215, 130, 16, 13, 144, 154, 53, 187, 62, 8]}, \pi, e \text{[86, 105]}, \pi/12 \text{[31]}, \pi/4 \text{[46]}, \pi/8 \text{[31]}, \pi = 2 \sum \arccot f_{2k+1} \text{[78]}, \pi^2 \text{[254, 124, 48]}, \pi^4 \text{[103]}, \pi \coth \pi \text{[231]}, q \text{[240]}, \sum 1/k^2 = \pi^2/6 \text{[66]}, \sum_{k=1}^\infty 1/k^2 = \pi^2/6 \text{[54]}, \sum_{k=1}^\infty \pi^2/6 \text{[72]}, \sum_{n=1}^\infty 1/n^2 = \pi^2/6 \text{[107]}, \sqrt{2} \text{[86]}, Z \text{[109]}, \zeta(2) = \pi^2/6 \text{[279]}. \]

0 [217]. 0-88385-900-9 [217].

1975 [303]. 1983 [304].

3rd [305].

524 [79].

719 [137]. 786 [170].

'88 [306].

9 [217]. 90 [145]. 90d [159]. 949 [293].

Analytic [303, 303]. ancient [68, 144, 309]. Annual [305].
Approximation [35, 139, 23, 37, 26, 36, 173, 53, 183, 90, 304].
AUGMENT [85]. August [304].

dimensional [128]. Dimensions [82]. Dirac [240]. Direction [149].
Discovering [241]. Discovery [249, 199]. Discussions
[28, 17, 18, 31, 24, 26, 19, 16]. Distant [300]. Distributed
[182, 245, 185, 172]. distribution [71]. distribuzione [71]. divided [297].
Elementary [73, 107, 54, 74, 238]. Ellipses [110]. Empirical [264, 226].
employee [302]. energy [291]. ENIAC [283, 39, 40, 268]. enri [166].
Episodes [214]. Equally [86]. equations [159, 118, 14]. equivalent [68].
[84, 82, 89, 102]. Euler [112, 140, 202]. European [25]. Evaluation
[140, 73, 34, 74, 238]. events [212]. evidence [239]. Evolution [53]. Exact
[300]. Excluding [205]. Execution [137]. Existence [102]. Expansion
[284, 91, 60, 63]. Expansions [190, 203, 213, 48]. Experiment [206].
Experimental [140, 222, 239, 233]. Experimentally [201, 263, 255].
Experimentation [199]. Explaining [1]. explicationis [1]. Explicit
[95, 100], exploration [289]. Exploring [141]. Exponential [64, 240].
Expressing [225]. Expressions [64]. Extended [53]. Extension [6].
External [123]. Extraction [235, 236]. Extremal [211].

[84]. FFTs [123]. FGHC [147]. Fibonacci [132, 142]. fifteenth [132].
fifteenth-century [132]. Figures [34]. Finding
[168, 205, 136, 74, 238, 113, 174, 97, 120]. First [57, 39, 297]. Floating [210].
Floating-Point [210]. Florida [306]. Forcade [84]. forgotten [243]. Form
[65]. Formal [248, 300]. Formula
[155, 78, 28, 104, 54, 229, 72, 66, 299, 162, 290, 291]. Formulae
[205, 178, 256]. Formulas
FORTRAN [137, 145, 79, 81]. Fortran-90 [145]. Fractals [129]. Fraction
French [59, 115, 2]. function [74, 238, 240]. Functions
[73, 304, 170, 195, 280]. Fundamental [190, 117].

Garage [278]. Garrity [217]. Gauss [110, 92, 133, 93]. Gave [295]. General
[247]. Generalization [82]. generalized [84, 60, 63]. generating [280].
generation [274]. Generator [152, 275]. Generators [194, 212].
Geometriae [132]. Geometric [110, 75, 80, 135]. German [8]. Google [302].
Grand [141]. graphics [274]. Great [217, 216]. greco [224]. Greek

References

[8] Carl Louis Ferdinand von Lindemann. Über die Zahl π. (German) [On the number π]. *Mathematische Annalen*, 20(??):213–225, ???? 1882. CODEN MAANA3. ISSN 0025-5831 (print), 1432-1807 (electronic). In this famous paper, von Lindemann proved that π is transcendental, showing that it is impossible to square the circle by compass and straightedge, a problem dating back before 400 BCE in Greece.

REFERENCES

REFERENCES

REFERENCES

Niven:1939:T

Thomas:1940:RPZ

Dorwart:1942:DNV

Menger:1945:MP

Copeland:1946:NNN

Ferguson:1946:EPS

Anonymous:1947:NA

Smith:1947:NA

REFERENCES

REFERENCES

[58] Daniel Shanks and John W. Wrench, Jr. Calculation of \(\pi \) to 100,000 decimals. *Mathematics of Computation*, 16(77):76–99, January 1962. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003813. A note added in proof says: “J. M. Gerard of IBM United Kingdom Limited, who was then unaware of the computation described above, computed \(\pi \) to 20,000 D on the 7090 in the
London Data Centre on July 31, 1961. His program used Machin’s formula, (1) \[\pi = 16 \arctan(1/5) - 4 \arctan(1/239) \], and required 39 minutes running time. His result agrees with ours to that number of decimals.”.

[63] I. J. Good and T. N. Gover. The generalized serial test and the binary expansion of \(\sqrt{2} \). *Journal of the Royal Statistical Society, Series A (General)*, 131(??):434, ???? 1968. CODEN JSSAEF. ISSN 0035-9238. See [60].

[66] E. L. Stark. Classroom notes: Another proof of the formula \(\sum \frac{1}{k^2} = \frac{\pi^2}{6} \). *American Mathematical Monthly*, 76(5):552–553, May 1969. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

[72] Ioannis Papadimitriou. Classroom notes: a simple proof of the formula \(\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \). *American Mathematical Monthly*, 80(4):424–425, April 1973. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[107] Boo Rim Choe. Notes: An elementary proof of $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. *American Mathematical Monthly*, 94(7):662–663, August/September 1987. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[155] Victor Adamchik and Stan Wagon. Notes: A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein [118], and Plouffe, [158], done in 1995, but only just published, that discovered an amazing formula for π as is a power series in 16^{-k}, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4^{-k}. They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.
REFERENCES

REFERENCES

[162] Fabrice Bellard. A new formula to compute the \(n \)-th binary digit of \(\pi \). This formula is claimed in [245] to be somewhat faster to compute than the BBP formula., 1997. URL http://bellard.org/pi/pi_bin.pdf.

REFERENCES

REFERENCES

Kalantari:2000:NFA

Lagarias:2000:NAC

Percival:2000:PDE

Venkatachal:2000:RP

Xu:2000:C

Arndt:2001:PU

Bailey:2001:PIR

REFERENCES

J. O’Conner and E. F. Robertson. \(\pi \) through the ages. Web site., 2001. URL http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html.

REFERENCES

REFERENCES

REFERENCES

[215] Shu-Ju Tu and Ephraim Fischbach. A study on the randomness of the
digits of π. *International Journal of Modern Physics C [Physics and Com-
com/ijmpc/16/1602/S01291831051602.html. The statistical analysis in
this work is flawed; see [213, 221].

great π/e debate: [which is the better number?]*. Mathematical Associ-
comments/na7ua/pi_vs_e_debate/. One 40-minute DVD.

and Thomas Garrity Mathematical Association of America, 2006, $\$24.95

[218] Hei-Chi Chan. π in terms of ϕ. *Fibonacci Quarterly*, 44(2):141–144, May
ca/Abstracts/44-2/chan.pdf.

[219] Jesús Guillera. A class of conjectured series representations for $1/\pi$. *Ex-
org/euclid.em/1175789776.

[220] Jesús Guillera. A new method to obtain series for $1/\pi$ and $1/\pi^2$. *Ex-
perimental mathematics*, 15(1):83–89, ???. 2006. CODEN ???? ISSN
org/euclid.em/1150476906.
REFERENCES

Marsaglia:2006:RCS

Bailey:2007:EMA

Borwein:2008:CMD

Borwein:2008:VPG

Chan:2008:MTF

Chong:2008:EQ

Guillera:2008:EPS

[234] United States Congress. House Resolution 224: Pi day. Web document, March 12, 2009. The resolution ends with: “Resolved, That the House of Representatives— (1) supports the designation of a “Pi Day” and its celebration around the world; (2) recognizes the continuing importance of National Science Foundation’s math and science education programs; and
(3) encourages schools and educators to observe the day with appropriate activities that teach students about Pi and engage them about the study of mathematics.”.

Adegoke:2010:NBD

Adegoke:2010:NBT

Adegoke:2010:NPR

Brent:2010:MPZ

Calude:2010:EEQ

Jauregui:2010:NRD

REFERENCES

[254] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π^2 and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont, NSW 2009, Australia, April 11, 2011. 18 pp. URL http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.
REFERENCES

[255] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for π. Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

REFERENCES

[281] Alexander Yee and Shiguro Kondo. It stands at 10 trillion digits of pi... world record for both desktop and supercomputer!!! Web site, April 15, 2013. URL http://www.numberworld.org/y-cruncher/. This site also
contains a table of digit records from 2009 to 2013 for various mathematical constants. The π record of 10,000,000,000,050 decimal digits was reached on 17 October 2011 after 371 days of computation, and 45 hours of verification.

[284] Reinhard E. Ganz. The decimal expansion of π is not statistically random. *Experimental mathematics*, 23(2):99–104, 2014. CODEN ????? ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [294], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

REFERENCES

REFERENCES

[301] Daisuke Takahashi. Computation of the 100 quadrillionth hexadecimal digit of π on a cluster of Intel Xeon Phi processors. *Parallel Comput-*

REFERENCES

