A Bibliography of Publications on the Numerical Calculation of \(\pi \)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

21 May 2024
Version 1.112

\[
\begin{align*}
(\pi) & [249]. \ (\sin \alpha)/\alpha [131]. \ 0 [252]. \ 1/\pi [224, 225, 319, 290]. \ 1/\pi^2 [243, 259, 225]. \ 10,000 [57]. \ 10,000,000 [158]. \ 16 [233]. \ 2,000 [39]. \ 2,576,980,370,000 [253]. \ \$24.95 [222]. \ \sqrt{x^2} [263]. \ 6 [210]. \ C [307]. \ d [307]. \ c \ [221, 116, 110, 65, 38, 129, 32, 39, 40, 251, 13, 63]. \ e^{-\pi/2} = i [15]. \ \gamma [79]. \ GL(n, Z) [113]. \ N [132, 166, 98, 113, 157]. \ \phi [223, 230]. \ \pi [320, 327, 159, 221, 277, 114, 160, 204, 270, 35, 185, 143, 115, 116, 271, 314, 28, 23, 201, 71, 80, 142, 166, 17, 110, 310, 10, 104, 105, 2, 62, 44, 65, 212, 18, 223, 230, 299, 231, 72, 263, 216, 90, 325, 168, 55, 155, 217, 67, 38, 213, 37, 75, 24, 146, 151, 233, 118, 188, 119, 246, 125, 129, 247, 189, 95, 120, 287, 169, 183, 73, 27, 137, 184, 22, 322, 13, 108, 138, 32, 39, 86, 234, 69]. \ \pi [99, 47, 29, 197, 170, 208, 57, 48, 235, 7, 214, 152, 14, 203, 40, 78, 19, 6, 58, 79, 275, 70, 11, 12, 36, 251, 177, 253, 311, 96, 62, 126, 30, 178, 220, 134, 16, 13, 148, 171, 303, 158, 53, 193, 63, 8, 172]. \ \pi, e [89, 109]. \ \pi/12 [31]. \ \pi/4 [46]. \ \pi/8 [31]. \ \pi = 2 \sum \arccot f_{2k+1} [81]. \ \pi^2 [261, 280, 128, 48]. \ \pi^4 [107]. \ \pi \coth \pi [236]. \ \pi [246]. \ \sqrt{2} [61, 64]. \ \sqrt{2} + \sqrt{2} [251]. \ \sum 1/k^2 = \pi^2/6 [68]. \ \sum k=1 1/k^2 = \pi^2/6 [54]. \ \sum k=1 \infty 1/k^2 = \pi^2/6 [74]. \ \sum n=1 \infty 1/n^2 = \pi^2/6 [111]. \ \sqrt{2} [89]. \ Z [113]. \ \zeta(2) = \pi^2/6]
\end{align*}
\]
base [50]. base-dependence [50]. Based [149, 321, 95, 96, 284]. Bases [258, 202].
beginnings [170]. Being [135, 154]. Benford [269].
Borweins [115]. both [291]. Bouncing [316]. Boy [305]. Brent [88, 103].
Bresenham [203]. Brief [298]. Brothers [315]. Brouncker [250].
Brouncker [250]. Brun [91].
Computation [115, 215, 261, 310, 24, 47, 78, 19, 11, 12, 252, 311, 276, 162, 272, 280, 123, 112, 180, 125, 157, 7, 203, 158]. Computational [304, 205, 328].
Computations [173, 237, 266, 308, 118, 193]. Compute [89, 163, 166, 122].
Conclusion [37]. Conjecture [65, 50]. Conjectured [224, 270, 262]. considerations [112].
Correspondence [62]. Counting [135, 154]. Coupon [45]. crucible [238].
cruncher [317, 323]. Cubic [97, 104]. CUDA [287].
decimales [60]. Decimals [310, 3, 58, 96, 60, 233]. Degree
Department [328]. dependence [50]. Dependent [113]. Derivation
[46, 301, 300, 249]. Desktop [291]. Detection [186, 195]. Determination
[207, 228]. Digits [115, 261, 281, 304, 45, 188, 57, 199, 302, 220, 267,
268, 276, 160, 163, 280, 122, 212, 38, 181, 129, 120, 287, 73, 39, 198,
313, 152, 177, 253, 158, 291]. dimensional [132]. Dimensions [85]. Dirac
[28, 17, 18, 31, 24, 26, 19, 16]. Distant [310]. Distributed
[188, 252, 191, 177]. distribution [73]. distribuzione [73]. divided [307].

Elementary [76, 111, 54, 77, 244]. Ellipses [114]. Empirical [271, 231].
employee [313]. energy [301]. ENIAC [293, 39, 40, 275]. enri [170].
[87, 85, 92, 106]. Euler [116, 144, 325, 208]. European [25]. Evaluation
[144, 76, 34, 77, 244]. events [217]. Evidence [318, 245]. Evolution [53].
Exact [310]. Excluding [210]. Execution [141]. Existence [106].
Expansion [294, 94, 61, 64]. Expansions [196, 209, 218, 48]. Experiment
[211]. Experimental [144, 227, 245, 238]. Experimentally [207, 270, 262].
Experimentation [205]. Explaining [1]. explicationis [1]. Explicit
[98, 104]. exploration [299]. Exploring [145]. Exponential [65, 246].
Expressing [230]. Expressions [65]. Extended [53]. Extension [6].

Factorial [146]. famous [301]. Farm [305]. fascinating [168]. fascinating
[168]. Fast [76, 110, 93, 103]. fastest [319]. Ferguson [87]. FFTs [127].
FGHC [151]. Fibonacci [136, 146]. fifteenth [136]. fifteenth-century
[136]. Figures [34]. Finding [173, 210, 140, 77, 244, 117, 179, 101, 124]. First
Formula [320, 159, 81, 28, 325, 108, 54, 234, 74, 68, 309, 166, 300, 301].
Formule [210, 184, 263]. Formulas [240, 241, 242, 254, 255, 256, 257, 258,
204, 260, 324, 237, 230, 259, 270, 279, 314, 262, 189]. FORTRAN
[141, 149, 82, 84]. Fortran-90 [149]. Found [325]. Fractals [133]. Fraction
French [168, 60, 119, 2]. Function [327, 77, 244, 246]. Functions
Fundamental [196, 121]. further [75].

Xeon [311].

Zach [303]. Zahl [30, 8]. Zero [257, 265, 77, 244]. zero-finding [77, 244]. Zhao [171].
References

[8] Carl Louis Ferdinand von Lindemann. Über die Zahl π. (German) [On the number π]. Mathematische Annalen, 20(??):213–225, ???? 1882. CODEN
MAANA3. ISSN 0025-5831 (print), 1432-1807 (electronic). In this famous paper, von Lindemann proved that π is transcendental, showing that it is impossible to square the circle by compass and straightedge, a problem dating back before 400 BCE in Greece.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[58] Daniel Shanks and John W. Wrench, Jr. Calculation of \(\pi \) to 100,000 decimals. *Mathematics of Computation*, 16(77):76–99, January 1962. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003813. A note added in proof says: “J. M. Gerard of IBM United Kingdom Limited, who was then unaware of the computation described above, computed \(\pi \) to 20,000 D on the 7090 in the London Data Centre on July 31, 1961. His program used Machin’s formula, (1) \(\pi = 16 \arctan(1/5) - 4 \arctan(1/239) \), and required 39 minutes running time. His result agrees with ours to that number of decimals.”.

REFERENCES

Based on Interim Report ADA014059, Department of Computer Science, Carnegie-Mellon University (July 1975), ii + 26 pages. See also [78] and update in [244].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[159] Victor Adamchik and Stan Wagon. Notes: A simple formula for π. *American Mathematical Monthly*, 104(9):852–855, November 1997. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.maa.org/pubs/monthly_nov97_toc.html. The authors employ Mathematica to extend earlier work of Bailey, Borwein [122], and Plouffe, [162], done in 1995, but only just published, that discovered an amazing formula for π as is a power series in 16^{-k}, enabling any base-16 digit of π to be computed without knowledge of any prior digits. In this paper, Mathematica is used to find several simpler formulas having powers of 4^{-k}. They also note that it has been proven that their methods cannot be used to exhibit similar formulas in powers of 10^{-k}.

REFERENCES

[166] Fabrice Bellard. A new formula to compute the \(n \)-th binary digit of \(\pi \). This formula is claimed in [252] to be somewhat faster to compute than the BBP formula., 1997. URL http://bellard.org/pi/pi_bin.pdf.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Brown:2004:PBW

Bailey:2005:HPF

Chua:2005:EML

Dodge:2005:RNG

Marsaglia:2005:RPO

REFERENCES

REFERENCES

United States Congress. House Resolution 224: Pi day. Web document, March 12, 2009. The resolution ends with: “Resolved, That the House of Representatives— (1) supports the designation of a “Pi Day” and its celebration around the world; (2) recognizes the continuing importance of National Science Foundation’s math and science education programs; and
(3) encourages schools and educators to observe the day with appropriate activities that teach students about Pi and engage them about the study of mathematics.”.

[253] Daisuke Takahashi. Parallel implementation of multiple-precision arithmetic and 2,576,980,370,000 decimal digits of \(\pi \) calculation. Parallel
Adegoke:2011:CBB

Adegoke:2011:FPD

Adegoke:2011:NAD

Adegoke:2011:NDB

Adegoke:2011:SRB

Almkvist:2011:RLF

Bailey:2011:BTF
[261] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π^2 and Catalan’s constant. Report, Lawrence Berkeley National Laboratory; Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle; IBM Australia, Berkeley, CA, USA; Callaghan, NSW 2308, Australia; St. Leonards, NSW 2065, Australia; Pyrmont, NSW 2009, Australia, April 11, 2011. 18 pp. URL http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.

[262] D. Borwein and Jonathan M. Borwein. Proof of some experimentally conjectured formulas for π. Preprint, Department of Mathematics, University of Western Ontario and Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School of Mathematical and Physical Sciences, University of Newcastle, London, ON, Canada and Callaghan, NSW 2308, Australia, December 4, 2011.

REFERENCES

REFERENCES

[280] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π² and...
REFERENCES

REFERENCES

[291] Alexander Yee and Shiguro Kondo. It stands at 10 trillion digits of π... world record for both desktop and supercomputer!!! Web site, April 15, 2013. URL http://www.numberworld.org/y-cruncher/. This site also contains a table of digit records from 2009 to 2013 for various mathematical constants. The π record of 10,000,000,000,050 decimal digits was reached on 17 October 2011 after 371 days of computation, and 45 hours of verification.

REFERENCES

[294] Reinhard E. Ganz. The decimal expansion of π is not statistically random. Experimental mathematics, 23(2):99–104, 2014. CODEN ????. ISSN 1058-6458 (print), 1944-950X (electronic). See the reproduction of results, and reanalysis, in [304], that reveals a flaw in the statistical analysis in this paper: Ganz used only a single blocksize in sampling digits, and that blocksize produces anomalous statistics.

REFERENCES

Friedmann:2015:QMD

Meyers:2015:NDP
Catherine Meyers. New derivation of π links quantum physics and pure math: Researchers stumbled upon a famous pre-Newtonian formula for π while computing the energy levels of a hydrogen atom, November 10, 2015. URL https://publishing.aip.org/publishing/journal-highlights/new-derivation-pi-links-quantum-physics-and-pure-math. See [300].

Tracy:2015:OCC

Wardhaugh:2015:LCC

Bailey:2016:RCS

Roberts:2016:HFB
REFERENCES

REFERENCES

Ernstsson:2022:DPP

Lucas:2022:MSF

Yee:2022:CMT

Bailey:2023:CBT

Craig-Wood:2023:EFF

Strickland:2023:HLT

REFERENCES

[Berggren:1997:PSB]

[Berggren:2000:PSB]

[Berggren:2004:PSB]

[Schumer:2004:MJ]

[Alladi:2013:RPW]

[Sidoli:2014:ATB]

Nathan Sidoli and Glen Van Brummelen, editors. *From Alexandria, Through Baghdad: Surveys and Studies in the Ancient Greek and
