A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 August 2021
Version 1.353

Title word cross-reference

#14 [2300]. #15949 [885]. #4059 [1256]. #8373 [2123].

(0, 1) [1067]. (0, s) [2562, 2959]. (a^n - 1)/(a - 1) [931]. (j, e) [740]. (n^2\alpha) [2513]. (n^k\alpha) [2514]. (n\alpha) [2513]. (t, m, s) [2067, 2917, 2073, 2373]. (t, s) [2657, 2067, 2364, 2917, 2073]. (X, Y) [3662]. (X^2 - Y^2)1/2 [497].

\[\frac{a}{m} \cdot j, \frac{a}{m} \cdot (j + \tau)^2 \] \mod \{327, \mod 1 \mod 300, 301, 406, 651, 733, 656\}. \mod n
\]

\[C^\infty [1275]. C \exp(-\lambda|x|^\nu) [1478]. \chi^2 [348, 939, 1097, 1098, 1099, 6, 7]. D [2399, 1824, 3006, 2101]. d^2 [92]. e [80, 1516, 86, 371]. \epsilon [1928]. F_2 [3040, 3049, 3262, 3827]. F_{2w} [2850]. k [1230, 1300]. j [2028]. K [2213, 3844, 1466, 3816, 3846, 1782, 2134, 1052, 1333, 1935, 3703, 3733, 1118, 1370, 1984]. k > 1 [1360]. L^2 [2052, 1980]. L_2 [2152]. L_p [2424]. \lambda [2839]. M [1445, 1214, 1180, 843, 468, 1054, 1024, 445, 249, 1364, 1777, 2359, 2095, 2201, 2203, 2290, 1129, 230]. F_2 [3123, 3484]. F_{2w} [2997]. F_q [3239, 3539]. F_q^\infty [3239, 3539]. GF(2^m) [1574]. \mu [3218]. N [1147, 908, 269, 1321, 1693, 1694, 2247, 721, 3700, 204, 616, 195, 2811, 200, 1532, 3806, 795, 206, 428, 798]. O(3) [1576]. O(n(1 + \log(N/n))) [1945]. P [6, 719, 3863, 3161, 2446, 2194, 3308, 2207, 2391].

\[\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 + (K/y)(\partial u/\partial y) = 0 \] [196]. \[\pi [2883, 80, 1516, 86, 284, 287, 2935]. \pm 1 [659]. \pm 2k^1 \pm 2^j [2293]. \pm 2p^1 \pm 2^{p^2} [2630]. Q [2526]. S [1019, 1886]. \sigma [1576]. X [409, 440]. \sum a_n/n [659]. T [2593, 2867, 1876, 844, 1886, 1319, 3044, 953, 958, 39]. U(0, 1) [2742]. X(1 + I) = AX(I) \mod 2^{317} [776]. X/Z [3662]. x^2 \mod N [2011].

\[X_{n+1} = a_n X_n + b_n \] (mod p) [1809]. \[X_t = X_{t-3p} \oplus X_{t-3q} [1500]. Y/Z [3662]. y = [(a + x) \sin(bx)] \mod 1 [2371]. Z [3662]. Z/nZ [1919]. Z_p [1401].

good [2689].

/dev/random [2726, 2781, 2872]. /dev/urandom [2781].
0.57pJ [3287]. 0.57pJ/bit [3287]. '05 [4049, 4053]. '07 [4059]. '08 [4063].

5.0 [1655]. 5.2 [2781]. 500 [3339, 321]. 51st [4081]. 52 [885]. 52nd [4096]. 5th [4064].

6 [3653]. 60th [3896]. 61 [1245]. 623-dimensionally [2358]. 64-bit
Advanced [1467, 1937, 3914, 4079, 4032, 2454, 2531]. Advances [3926, 3944, 3962, 1081, 4012, 4024, 2682, 3983, 2703, 3934, 3936, 3989, 4061, 3947].
approaches [2720]. Approximate
Approximately [507, 1818]. Approximating [2481, 3495].
Approximation [2225, 2405, 2423, 1435, 1524, 2865, 2540, 1874, 3114, 1271,
1114, 3733, 1238, 742]. Approximations [144, 2823, 1063, 482, 1016, 3046, 1239, 3015, 3076].
April [3934, 3905, 3944, 3967, 4079, 3915, 614, 696, 567, 940, 277, 421, 741, 1763, 2789].
Arbitrary [2221, 825, 1548, 3080, 978, 3821, 3850, 3027, 198, 1712, 3524, 1299, 705, 3569].
Archimedean [3319]. Architecture [2872, 2818, 3858, 3400, 2097, 3310, 3576, 3805, 1567].
Architectures [1467, 4065, 3770, 3669]. arcsine [3881]. Area [240, 1910, 3746, 3086, 2215].
Area-Efficient [3746, 3086]. areas [4060, 4029, 2757]. Argument [679]. arguments [429].
Arisen [1]. Arising [1259, 1538, 3541, 3621]. Arithmetic [2304, 2396, 2134, 760, 3696, 2758, 730, 3738, 227, 368, 3986, 3548, 3, 1606,
1415, 1235, 1550, 2198, 1854, 1460, 1575]. arithmetical [296]. arithmétique [3]. Arizona [3928, 3969].
Arlington [3987, 4021, 4036, 3930, 3977]. ARM7 [3113]. Arnold [2946]. arranged [21].
arrangements [58]. Array [1394, 3328, 2599, 1380]. Arrays [1494, 929, 3704, 801]. arrival [3581, 2582, 3536, 3306]. arrivals [2738].
Art [1730, 1752, 3742, 346, 3921]. Artefacts [1585]. Art [1446]. article [885, 2278]. Artificial [146, 64, 73]. Ascending [2759].
asHIIP [3417]. ASIC [2814]. Aspects [909, 9337]. Asperger [3001]. ASR [1245].
Assignment [854, 860, 862, 874, 875, 876]. Assoc [1256, 1025]. Associated [1262, 2778, 3199, 2870, 1019, 21, 255, 423].
Asymptotic [573, 101, 3714, 679, 1547, 795, 2288, 1576, 55, 2291, 403, 3224, 2482, 2582, 1767].
Asymptotical [2889]. Asymptotically [295, 3360, 1445, 2362, 661, 3060].
Asymptotics [3045]. asymptotiques [795]. Atari [1446]. ATI [3466].
Attraction [1554, 370, 739]. Attractor [1682]. Auburn [3967]. auctions [3241]. Audio [3461].
Auditorium [4015]. August [4060, 3971, 3900, 3899, 4029, 4015, 4024, 4035, 4061, 3914, 3974, 2644].
Austria [3924, 3982, 4018, 3974, 4010]. Authentication [2001, 3809, 3838, 3296, 3297, 3263].
Autocorrelazioni [979]. Autokorrelation [470]. Autokorrelation [437].
[2849, 1293]. **Bonferroni** [1198, 774]. **BonGCL** [1357]. **bons** [1357]. **Book** [293, 884, 2110, 539, 398, 2472, 318, 2128, 3029, 2953, 169, 590, 1505, 632, 991, 3250, 512, 1519, 1520, 3139, 3653, 2843, 388, 1735, 1069, 1840, 2602, 2853, 3007, 1856, 1294, 3620]. **Boolean** [3787, 3718, 3608]. **Bootstrap** [1956]. **Bootstrapping** [2958]. **borehole** [1570]. **Borrow** [1764, 3808, 1861]. **Borwein** [3896, 3633, 3634]. **both** [1763, 2789]. **Bound** [2074, 2020]. **Boundary** [196, 1929]. **Bounded** [2212, 1126, 933, 2546, 1788, 3524, 3536]. **Bounding** [2304, 3560, 1993]. **Bounds** [1900, 2019, 589, 722, 774, 2275, 2184, 3167, 2280, 1176, 3286, 802, 1788, 3114, 1492, 1699, 1906, 2313, 2314, 1911, 2259, 1430, 1614, 651, 1543, 3066, 2714, 1575]. **Box** [2881, 712, 761, 2984, 3506, 3657, 649]. **BPP** [2416, 1531, 2287]. **Bracket** [2863]. **Braid** [2663, 2589, 1861]. **Branch** [283]. **Branching** [3329, 3681, 3330, 3875, 3832, 2852, 1691, 1418, 2041]. **breakdown** [3505]. **Breaking** [1038, 2667]. **Brilliant** [3764]. **British** [3970, 4063]. **BRL** [117, 128]. **Broadband** [3089]. **Broken** [3083, 3848]. **Brownian** [1596, 3513]. **Browser** [2148]. **Bruitjn** [3206, 2211, 2399, 3850, 515, 3772]. **Brunswick** [4096]. **Bryan** [261]. **BSAFE** [2114, 2299]. **BSDCon** [4043]. **BSTJ** [495]. **BTPEC** [1425]. **Buena** [3992]. **Buffer** [2013]. **buffering** [1649]. **Bug** [3177]. **build** [2912]. **Builder** [3766]. **Building** [1302]. **Built** [3119, 3804, 3072, 1420, 1510, 2359, 3662, 1985]. **Built-In** [3072, 3119, 1420, 1510, 2359, 1985]. **Bulgaria** [4024]. **bulk** [3252]. **Bureau** [90]. **Burlington** [4005]. **Butterfly** [3868]. **butterfly-patterned** [3868].
combiners [1733]. combinés [2630]. Combining
[896, 897, 1591, 3233, 2569, 3112]. Coming [3675]. Comment [294, 1588, 169,
2563, 854, 1056, 948, 1612, 951, 860, 956, 2907, 957, 862, 2613, 964, 876, 869].
Commentary [2166]. Comments [2802, 3097, 1140, 715, 780, 597, 1612, 951, 860,
956, 2907, 957, 862, 2613, 964, 876, 869].
Commitment [1540, 1632]. Commodore [1134]. Common
[1198, 3855, 509, 1277, 1714, 3054, 1738, 1554, 802, 2157, 1109, 3602, 1842,
1075, 744, 3562, 2554, 2225, 1104, 1707, 904, 768, 723, 910, 1352, 2423, 1841,
2068, 932, 1464, 1659]. Commun [2034, 2156]. Communicating
[1300]. Communication [580, 4057, 1300, 1317, 2476, 2814, 3489]. Communications
[503, 2677, 4053, 3983, 2723]. Comp [2123]. Compact
[1997, 2792, 3019, 1402, 2494, 3051, 596]. Companion [4098]. Comparative
[1327, 400, 500, 3235, 2996]. Comparing
[1213, 904, 1814, 2164, 3313]. Comparison [664, 574, 1044, 3221, 3799, 3649,
1714, 3144, 2065, 203, 2275, 605, 1071, 695, 2191, 2780, 1659, 1473, 1671, 1481,
587, 588, 1708, 2904, 2504, 3290, 2720, 461, 803]. Comparisons
[1841, 2068, 1464, 1386, 1738, 1842]. compatibility [3631]. Compatible
[1502, 1532, 3580]. Competing
[185]. compiled [69]. Complement
[1110, 730, 477]. Complete
[1281, 1007, 3929, 927, 2383, 2804, 2804]. Completed
[945]. Completely [507]. Complex
[3644, 676, 4008, 3747]. Complexity
[2797, 2943, 1476, 1778, 3342, 1796, 2895, 3859, 2581, 1827, 1945, 2270, 3149,
3731, 2620, 3917, 1300, 2468, 2119, 1886, 1317, 3796, 3570, 1149, 2891, 2746,
3586, 773, 2903, 3503, 2767, 3056, 1736, 3775, 1542, 2934, 1992, 1868]. complicated
[2534]. Component
[1892, 2679, 2995, 2994, 2996]. Component-by-Component
[2679, 2995, 2994, 2996]. components [2755]. Composite
[3222, 29, 2679, 864, 1561, 2089, 3180, 2132, 1687, 1431, 2088, 1855].
Composite
[3222, 29, 2679, 864, 1561, 2089, 3180, 2132, 1687, 1431, 2088, 1855].
Composited
[3772]. Composition
[1920, 3674, 1228, 840]. Compound
[1260, 2405, 1901, 2025, 2139, 2140, 2232, 2234, 2317, 2929, 3452, 1790, 2024,
2233, 2143, 2144, 2592, 2908, 2605, 79, 2208]. compressed
[2063]. compression
[3961]. Compromise
[3083, 2988]. Compromised
[3685, 3797]. COMPSTAT
[3950]. Comptes
[3902]. Compton
[376]. Comput
[2034, 1056, 2156]. Computability
[4091, 2439, 3274]. Computable
[3789]. Computation
[3897, 3791, 4051, 3980, 2127, 2881, 1686, 848, 29, 141, 4086, 329, 1932, 3997, 3982,
2072, 2075, 3806, 4039, 3204, 933, 3899, 1252, 2398, 1886, 2574, 2492, 2974, 1839,
1744, 1976, 883, 4062]. Computational
[3896, 4070, 2557, 940, 4094, 2438, 2692, 3965, 343, 3866, 4062, 423, 3752, 2878,
1049, 3950, 4045, 1503, 554, 1725, 4099]. Computationally
[3974, 3953]. Computations
[1140, 412, 1158, 3696, 695, 2530, 2119, 2395, 2475, 718, 1418, 1361, 158, 1546].
compute
[2757]. Computer
[572, 665, 978, 1009, 885, 746, 886, 887, 888, 3935, 2731, 1319, 3567, 1144,
3922, 503, 1501, 243, 412, 3915, 3925, 3928, 3931, 3946, 3951, 3957, 3963, 3973,
3996, 4005, 4009, 4030, 4034, 4081, 4096, 1160, 1161, 859, 770, 819, 1523, 723,
corresponding [702, 1125]. Corrigenda [2123].
Corrigendum [2246, 1025, 2512, 1365, 535, 624, 3621]. Corroboration [2731].
Cosmological [3653, 3508]. Cost [3280, 3204, 1000, 3660, 3510, 2445, 3290].
cost-effectiveness [3290].
Cramér [293]. Crash [3876]. CRAY [2406, 1375]. CRAY-System [2406].
Create [2731, 1745]. created [2281]. Creates [2851]. creation [2357].
Criteria [1383, 1465, 2959, 518, 1449, 101, 2347, 2590, 3289]. Criterion [1].
Critical [2731, 1687, 3887, 3028, 1686]. Crofton [2757]. Cross [1773, 3473, 3183, 3184, 3472, 554].
Cross-correlation [1773, 554].
Cryptographically [3207, 3320, 3443, 1014, 1086, 1355, 3388, 3003, 1082, 2724, 3720, 1295, 1878].
Cryptographically-secure [1878]. cryptographiquement [1878].
Cryptography [3956, 2305, 895, 1682, 2649, 3030, 2964, 905, 2490, 2595, 2986, 3372, 1628, 2525, 2192, 2195, 4057, 2621, 4058, 1660, 2403, 4089, 4060, 2417, 4029, 3255, 1711, 1527, 2273, 1959, 2369, 2523, 3394, 2450, 3527, 2623, 3299, 3196, 4054].
Cryptology [1136, 3936, 3926, 3944, 3945, 3965, 1121, 3975, 3934, 3989, 3962, 4061, 3947].
Cryostat [3293, 1355, 3734]. cryostats [2425, 1369, 3189].
Crystal [4021, 53, 4036, 3930, 3977]. crystallography [3254]. CSD [2089].
Discrete

Discrete-Event

Discrete-Time

discreteRV
discrets
discriminating
discriminatory
disks
disjoint
disjunctions
Disk
Diskrepanz
Diskret
Disney
Disorder
Dispersion
dissipative
dissociated
dissociation
Distance
Distance-Bounding
distances
distribution
Distribution
Distribution-Free
Distributing
Distribution-Free
Distributing
Extendable [3735]. Extendable-Output [3735]. Extended
[2401, 1152, 1504, 2581, 3726, 1540, 1185, 495, 1252, 3972, 1424, 1816, 3494,
480, 3370, 1231, 2459, 2462]. Extending [1175]. Extends [1815]. Extensible
[2487, 2773]. Extension [2280, 3521, 3182, 668]. Extensions
[625, 913, 2276, 2157], extensively [1888, 2338], extracted [3803].
Extracting [2945, 2187, 1749]. Extraction [3346, 3656, 3609]. Extractor
[3617, 3869]. Extractors [3756, 2491, 3767, 2631, 2169, 2926, 2462, 3432].
Extrapolation [1356]. Extraterrestrial [2079]. Extreme [1703, 8].
Extremely [479, 734, 594, 595, 3542]. extremely-high-throughput [3542].

fabulous [3250]. Face [3297]. Facilities [1618, 348]. Factored [1310].
Factorial [2275]. Factoring [1027, 1166, 1279, 1849, 1763, 2789].
Factorization [1844, 735, 1350, 693, 1179, 1971, 3612]. Factorizations
[1047, 1316, 2645]. fail [3862]. failure [2415]. fair [2661, 2495, 3046]. Fairfax
[3952]. Fairmont [3960]. Family [887, 1325, 2659, 3771, 700, 1565, 3442,
3558, 1595, 2230, 1275, 3700, 1008, 3669, 2793]. Fast
[2638, 1136, 3089, 1042, 3717, 2950, 1678, 1480, 580, 3823, 2145, 2660, 1215,
1415, 675, 1417, 505, 3721, 3124, 3485, 3041, 2254, 2671, 1347, 1818, 2163,
2501, 2904, 3861, 1723, 3828, 1725, 308, 359, 279, 782, 238, 2057, 3055, 1448,
118, 1631, 3603, 2994, 2995, 2996, 734, 3866, 525, 1850, 3175, 1559, 3406, 3710,
3182, 2093, 1765, 3811, 3190, 3299, 704, 2206, 537, 3423, 1251, 938, 765, 1341,
2032, 2751, 2467, 2494, 3045, 996, 1436, 3259, 3143, 3260, 3498, 333, 1621, 335,
[3162]. fat [1578]. fat-tailed [1578]. Fault [3754, 3454, 3636, 1231].
Faulty [3694]. Fault-tolerant [3636, 1231]. Faulty [3694].
Faure [2716]. FCRC [4001]. FCSR [2869, 3830, 3294]. FCSRs [3556, 3237, 3828].
FDC [1940]. Features
[441, 1570]. February [4075, 4010, 4043, 3919]. Feedback
[2555, 1199, 1318, 1052, 1514, 2502, 515, 643, 3772, 645, 863, 3512, 1553, 3616,
2717, 3871, 3106, 1709, 2048, 955, 3880, 332, 3504, 309, 2054, 2698, 1287, 1369,
3704, 1755, 3842, 3750, 1123]. Feeding [3104]. Feinstein [318]. Feistel
[3785]. Feistel-inspired [3785]. Feller [3325, 1394]. Fence [3675]. Fermat
[3570]. fermions [3636]. ferromagnetic [731]. Festschrift [4069]. Few
[2945, 3110, 3080, 3045, 1293]. few-body [1293]. Fiar [2731]. Fibonacci
[3250, 2108, 2210, 3713, 1880, 407, 3481, 1949, 249, 1953, 1954, 2057, 2058,
2059, 2841, 1962, 2442, 1765, 1860, 2537, 230]. Field
[2213, 3981, 2857, 1583, 1946, 2599, 1235, 919]. field-programmable [2599].
Fields [3884, 3653, 3368, 3508, 1844, 2185, 1772, 316, 3821, 4004, 3642, 947,
1166, 2271, 3983, 1633, 1740, 1843, 2186, 2519]. Fifteenth [3927]. Fifth
[4062, 3987, 4097, 3999]. Figures [1469]. File [3211]. Files [3233]. filling
[187]. Filter [3055, 3718]. Filtered [2591, 2869]. Filtering [545, 2963, 3615].
filters [1693, 1694, 1828]. Final [1003, 2434]. Finalist [2531]. Finalists
[2493, 2577]. finalizer [3526]. Finally [1337]. Finance
[3091, 4084, 4076, 3701]. Financial [2380]. Find
Finding
Finely
Fingerprint
Finite
Finite-Difference
Finite-length
FIPS
First
Fishman
fission
Fit
Five
Fix
Fixed
fixing
FPGA
Flash
Flaw
flights
Flip
Flip-flop
Flipper
flipping
Flips
float
Floating
Floating-Gate
Floating-Point
Florida
flow
flow-level
Fly
folding
Flonction
Force
forced
forests
Fork
Fork-Join
Form
Fonction
Foundation
foundations
Four
four-dimensional
Fourier
fractions
Framework
France
Frank
FreeBSD
Freedom
free
French
France
frequencies [64, 73]. Frequency [2036, 2151, 3765, 2924, 1036, 621, 550, 1342, 3267, 2708, 705].
Frustration [3301]. Fukuoka [3966]. Full [3217, 1096, 1021, 3856, 3291, 2790].

General-Purpose [1071].

generating [1010, 2109, 2211, 808, 1666, 3788, 1872, 2395, 766, 2154, 1219, 3839, 1574, 1866, 1658, 1994]. Generating [1010, 2109, 2211, 808, 1666, 3788, 1872, 2395, 766, 2154, 1219, 3839, 1574, 1866, 1658, 1994].

Generation [3075, 3186, 1862, 3189, 3190, 2204, 425, 1130, 1185, 535, 536, 1654, 706, 2464, 1577, 3622, 3784, 3545, 3751, 626, 1248, 430, 2469, 1471, 1774, 3088, 3208, 3752, 1876, 1311, 2946, 3444, 3445, 3629, 3630, 3631, 3678, 1251, 1877, 2116, 3021, 3552, 348, 3092, 979, 2873, 3633, 844, 3849, 2124, 3095, 811, 1045, 1878, 181, 1478, 1399, 938, 898, 1679, 400, 1780, 3793, 401, 2399, 2309, 3027, 2009,
generators
[2320, 2409, 2559, 2560, 1704, 1148, 1797, 850, 943, 944, 1209, 1210, 1331, 1798,
2029, 2324, 274, 2324, 853, 989, 2889, 3038, 3799, 1338, 3689, 2891,
3480, 2743, 1708, 1803, 764, 475, 1217, 1272, 1340, 2569, 2667, 2745, 2746, 3121,
3642, 3553, 1507, 3354, 1418, 1805, 1806, 1914, 1697, 1329,
2885, 1908, 1909, 2026, 2144, 2240, 2319].

generators
[2425, 3494, 1717, 2902, 2978, 3047, 820, 1357, 1358, 1438, 1619,
1825, 2165, 2167, 2168, 2170, 2264, 2345, 2347, 2348, 2430, 2431, 2584,
2586, 2600, 2755, 2827, 2904, 3048, 3050, 3365, 1527, 3801, 1112, 2903, 3146,
3263, 2269, 1721, 3147, 1167, 1280, 861, 2596, 3829, 3366, 3053, 3881, 3153,
1228, 2173, 2687, 1949, 2054, 3593, 3267, 3595, 446, 447, 483, 519, 1623, 1729,
1950, 1952, 2763, 2691, 3154, 3864, 2356, 2599, 2840, 2841, 3596, 3658, 1731,
1955, 2357, 2359, 2765, 2989, 3054, 1732, 1837, 784, 3158, 3056, 3373, 2768,
2846, 1734, 1630, 454, 3832, 3661, 3269].

generators
[2065, 3734, 1737, 604, 3060, 3273, 2183, 650, 1118, 1287, 1545, 2519, 2604, 2703,
1546, 1744, 1745, 3167, 2848, 3350, 3381, 611, 2522, 2850, 2998, 3384, 1638,
1120, 1289, 1374, 1452, 1747, 1748, 2077, 1375, 2080, 3389, 2999, 1122, 2083,
833, 2370, 3836, 1077, 1552, 870, 1078, 3779, 3745, 2282, 2087, 1558, 1853, 1379,
1458, 1758, 2858, 3668, 2618, 2709, 1759, 2449, 3405, 3808, 262, 2200, 1977, 1760,
3525, 2786, 2458, 3710, 1295, 3527, 2623, 2624, 2459, 3289, 2860, 2289, 2629,
2790, 2932, 3013, 3014, 3073, 3410, 3531, 3532, 1648, 1861, 1985, 3074, 3187].

generators
[3669, 3711, 3416, 2934, 2630, 2462, 2631, 1650, 977, 2793, 2718, 2794, 3420, 1083, 2098, 1084, 3812, 3893, 2206, 1864, 3537, 1769, 2635, 2103, 2208, 1991, 461, 3422, 2293, 3018, 3424, 3783, 2723, 3312, 3313, 3749, 3431, 3432, 3206, 3145, 3264, 398, 512].
generators-part
[2623].

Generazione
[979, 488].

Genetic
[2550, 2575, 2668, 2669, 638, 682, 2979, 2760, 4039, 2861, 2937, 2124, 2879, 2691, 3602, 4051].

Gentle
[3007, 2472, 2843].

Genuine
[3614, 2866].

Geographic
[2906].

Geometric
[3551, 760, 1932, 2182, 2793, 2757, 1737, 2632].

Geometrical
[3301, 2052].

Geographically
[2823, 2744, 2759].

Geometry
[2363, 2364, 1049, 3230, 1936].

geophysics
[1570].

George
[4069, 261].

Georgia
[4020, 4007, 3935].

Germain
[2840].

German

Germany
[4079].

Getting
[3300, 2465].

GFSR
[2034, 1388, 1411, 2035, 1731, 1955, 2362, 1296, 1297, 1381, 1860, 1984].

GI
[1942].

GI/G/1
[1942].

Gibbs
[1781, 2014, 2031, 731].

gigahertz
[1470].

Gill
[504].

Giovanni
[3653].

Gitterstruktur
[1041].

Given
[1090, 1201, 1593, 1514, 1, 150, 983, 259, 2286, 1653].

giving
[140].

Glasgow

krivoi [34], Kronecker [3561], FY [4064].

L [539, 590, 632], Laboratory [3897, 3899], Lag [605], Lagged
Lagged-Fibonacci [1949, 2057, 2058, 2059, 3713, 1954, 2841, 1953].
Lagrange [1691], Lai [3370], Lake [3992, 3999], Lamar [2979], lamp [2766].
Landau [2552, 3825, 702, 1125], language [3801, 3883], language-based [3883], languages [3783], Laning [169], Lansing [3913], Laplace [2564, 679, 3059, 3282].
laptops [2306], Large [3897, 3328, 3567, 3568, 855, 679, 26, 2909, 3700, 3863, 2181, 186, 3279, 1554, 3022, 2882, 3111, 3228, 2815, 1341, 73, 246, 95, 3829, 1070, 616, 231].
Large-Order [3567, 3568].
Large-Scale [3897, 186, 2181, 3022, 95, 3829].
large-size [73], largely [978], Laser [3281, 3352, 3886, 3367, 3530, 3308].
Lasers [3162, 3190, 3299], Last [2202], Latin [2365], LatMRG [2167].
lattice-based [3842], lattice-bases [3842], lattice-sublattice [3842].
lattices [2132, 2828, 3863, 2856].
LavaRnd [2610].
Law [3462, 3279, 1554, 2207, 3114, 2736, 3240, 15, 198, 2149, 246, 16, 3881, 3159, 795, 2372, 3448, 3325, 3129, 2991, 2857, 900].
Laws [855, 1524, 2778, 571].
Laxenburg [3974].
LC [2924], LCG [2655], LCGs [2242, 2560, 2266].
Leading [2976, 628, 1053], leads-to [1888], Leakage [2464].
Leap [3876, 3310, 2320], leap-frog [2320], learnability [2209], Learning [3181, 1977].
Least [747, 541, 104, 1427], Least-Remainder [104], leave [3822].
Lecons [4], Lecture [3653].
Lectures [264, 4], L’Ecuyer [1459], Lee [495], Left [3515, 1975, 467], Left-Shift [1975], legacy [3794], Legal [2731].
Legge [16], leggi [15], Lehmann [3250], Lehmer
[1688, 2230, 2231, 759, 3651, 909, 248, 2189, 489, 2091, 232].
Lemma [2625, 2459].
Lemmas [2566], Length [3787, 182, 374, 466, 1257, 240, 1599, 1096, 1021, 823, 1838, 918, 1885, 1261, 216, 469, 1408, 1491, 1697, 1149, 858, 1926, 2491, 1433, 594, 595, 1727, 3167, 654, 1983, 3294, 3539, 3081, 3712].
lengths [2870, 2007].
Less [747, 889, 2987].
Lession [1750], lessons [3822].
Letter [473, 1220, 1831, 3005, 492], letters [2921], leurs [3], Leuven [4065].
Level [3632, 2516, 1142, 3046, 1817, 3062, 2783].
Lewis [754], Lexical [2484].
Lexington [4064], Leydold [2953], LFIB4 [3883], LFSR
[2308, 3821, 3223, 2431, 3374, 3806, 3310].
LFSR-Based [3806], LFSRs [3845, 3850].
Libgcrypt [3759], Liblice [3907], libraries [2155], Library
[3447, 3791, 1050, 1325, 1215, 2588, 2684, 2983, 3051, 2685, 2176, 1461, 1581, 1663, 3445, 3630, 3631, 3678, 2873, 3851, 3341, 3238, 3639, 3761, 2893, 3050, 2511, 2512].
Lie [1964], Life [2394, 3611], light [3530].
Lightweight
low-cost [3600, 3510]. Low-Degree [3368]. low-dimensional [1779, 2107].
Low-Dimensionality [2956]. Low-Discrepancy [2660, 2185, 2363, 1565,
1879, 1233, 1366, 1740, 894, 1673, 2971, 2504, 2757, 1739, 3610, 2093,
2107].

low-dispersion [1366]. Low-Order [1896, 1906, 3066]. Low-Discrepancy
Low-Dimensional [1739, 2107]. Low-Dimensionality [2956]. Low-Discrepancy
LT [3336].
Luby [2110, 1837, 3164]. Lucas [3481, 2388]. luck [3801].
luminescent [3655]. L¨uscher [2156, 1927]. LUT [3075, 3669]. LUT-SR
[3669]. LUTs [3415]. Lyapunov [2831, 1829]. lying [1304]. LZSS [3332].
M [1012, 1941, 69, 3156, 1012, 1941, 3302]. M. [318, 393]. M/M/1 [1941].
M/M/m [1012]. M/PH/1 [3302]. MA [4074, 4035]. Mach [3106].
Manhattan [3651]. MANNIC [1189]. Manipulating [548]. Manipulation
Many [2185, 2081, 1180, 662]. Map [3335, 3543, 3845, 3769, 2078, 3288].
[2595, 3318, 2946, 3216, 861, 3379]. March [3899, 3955, 4075, 3935, 3927,
4086, 3901, 3985, 4058]. Marginal [2221, 1826]. Marginals [2553]. margins [2286].
Marinucci [3653]. Mark [3942]. Markov [2550, 211, 1087, 1191, 2225, 3344,
947, 510, 655, 703, 1987, 1772]. marks [2302]. Marotto [3483]. Marriott [3948,
Marsaglia [3317, 2298, 2806, 1328, 1329, 1344, 2055, 2077, 1074, 3782, 3812].
masking [3642]. Masking [3869]. mass [732, 1576]. Massachusetts [3915].
Massen [732]. Masssey [2948, 3370, 3810]. Massively [3886, 1921, 3593].
[3791]. Mathematica [3599, 3661, 2086]. Mathematical
[3791, 3905, 3971, 3900, 3920, 3924, 1221, 1222, 95, 3653, 3902, 249, 1068, 3736,
2368, 3904, 54, 56, 3911, 4010, 3620, 930, 463, 493, 235, 711, 1208, 2442, 208].
[3905, 2805, 3900, 3920, 905, 4098, 1937, 4068, 3895, 3912, 138, 3896,
1729, 3919]. math´ematiques [3902]. MathLink [2121]. MATLAB
methods [4025, 2517, 4046, 4056, 3165, 488, 1031, 3904, 260, 1179, 1971, 3612, 2444, 873, 967, 972, 975, 289, 1218, 3581, 4024, 1223, 3132, 4066, 953, 2682, 2827, 3725, 3145, 95, 779, 1113, 2433, 1741, 1742, 1957, 3998, 4018].

Metodi [979, 488]. Metric [652, 2706, 3093].

Metropolis [1189, 2470, 2471, 2878, 1781, 1264, 2031, 2246, 2892, 2750]. MHz [2868].

Microscopy [1751]. Microsoft [4028, 2436, 2695, 2696, 2916, 3157, 3158, 1655].

Model-Based [3693]. Modeling [1585, 3847, 2221, 4041, 3765, 3063, 1751, 3674, 1026, 1617, 2499, 2980, 227, 1567]. Modelirovanie [350].

NIST-Recommended [2899]. Nix [3741]. NJ [2110]. \textit{nm} [3339, 3654].

Numbers [2967, 992, 184, 633, 634, 476, 1105, 2486, 3720, 65, 74, 2037, 2250, 2330, 477, 2749, 66, 1219, 993, 1712, 413, 2257, 330, 1516, 20, 1350, 1351, 1024, 2260, 25,
numbers
[2936, 3017, 1866, 69, 2539, 232, 3784, 28, 3430, 3545, 883, 1994, 1870, 1569, 175, 3304, 3562, 2554, 2225, 1104, 1707, 904, 768, 723, 910, 1352, 2423, 1841, 2068, 535, 932, 1464, 1659, 624, 3250]. Numer::
[925].
numerical
[708, 2798, 1197, 3900, 674, 349, 988, 1800, 1606, 4084, 1339, 506, 276, 637, 1218, 1426, 1941, 2437, 3160, 1752, 2191, 490, 1761, 3906, 290, 662, 264, 1575, 3912, 1586, 3338, 3760, 1605, 2893, 2037, 1056, 2751, 2155, 4024, 1515, 22, 1361, 3366, 1113, 1324, 2279, 963, 1857, 2090, 2534, 1566, 1862, 396, 538, 798, 2297, 2214]. Numerics
[3995, 4006, 4011]. nVidia
[3260].
O
[4090, 4032].
Object
[1797, 2681, 3500]. object-oriented
[2681, 3500]. Objectives
[2564].
Oblivious
[3875]. observation
[1581, 1663, 1693, 1694]. Observations
[864, 1081, 348, 22]. Obtain
[3249, 2575]. Obtained
[3680, 545, 1740, 133, 1008]. Obtaining
[695, 66, 962, 1379, 176]. obtenida
[133]. OCCAM
[1451]. Occupancy
[2658]. October
[4021, 3941, 4052, 3931, 3946, 3951, 3957, 3963, 3973, 3996, 4005, 4009, 4034, 4081, 4096, 3913]. octrees
[1908]. odd
[1982]. Odyssey
[4036]. off
[2738]. Offer
[2578]. Office
[3909]. Offord
[1939]. offs
[1667]. Offset
[3125]. Olds
[3913]. OMAC
[3272]. On-line
[3284]. On-the-Fly
[3283]. on/off
[2738]. One
[1995, 3626, 747, 3450, 2133, 2244, 2420, 3643, 2668, 1611, 1167, 1280, 1620, 446, 447, 482, 2508, 730, 2074, 2192, 1644, 3295, 3543, 1578, 3550, 889, 3354, 1424, 3128, 1427, 187, 2629, 1184, 5, 3313, 3749]. One-chip
[3295]. one-class
[3313]. one-dependent
[1427]. One-Dimensional
[3543, 187]. One-line
[446, 447]. one-shot
[3128]. One-Sided
[482]. One-Table
[1995]. One-Time
[3450, 2244, 2192]. One-Way
[3626, 3643, 1620, 2420, 1611, 1167, 1280, 3550, 3354, 1424, 3749]. Ones
[1373, 2080]. Online
[3837, 2617, 3661, 3061]. Only
[2731, 3338, 3350, 3581, 2493]. Ontario
[4029, 3986]. OpenACC
[3883]. OpenCL
[3851]. OpenMP
[3883]. OpenSSL
[3748, 3094]. Operating
[3032, 3033, 3232, 3046, 1238]. operation
[3088].
[321]. Procedure [1089, 1198, 942, 1098, 988, 3855, 443, 308, 279, 1749, 1581, 1663, 321, 767, 333, 282, 335, 3602]. Procedures [2554, 3691, 253, 612, 2616, 1126, 1659, 1671, 578, 319, 2436, 2695, 2916, 3157, 343, 840]. Proceedings [3933, 3954, 3979, 4002, 4097, 3899, 3955, 3936, 3944, 3900, 3968, 3922, 3927, 3941, 4023, 3982, 3963, 3964, 4099, 4087, 3997, 3921, 4036, 4037, 4062, 3986, 3917, 3999, 4000, 4043, 3919, 3952, 3912, 4001, 4049, 4059, 4063, 3948, 3994, 3939, 3960, 3918, 3934, 3935, 3995, 3980, 4003, 3926, 4004, 4028, 3995, 3920, 3950, 4042, 3926, 3924, 4029, 3973, 4030, 4034, 4024, 4031, 3958, 4053, 4017, 3969, 3998, 4018, 4025, 4046, 3914, 3974, 3990, 3931, 3932, 4039, 3992, 4019, 3942, 4011, 3987, 3938, 3943, 3949, 3959, 3970, 3988, 3993, 4020, 4027, 4040, 4044, 4074, 4083, 4007, 3897, 3903, 3966, 4071]. Proceedings [4091, 3967, 3915, 3990, 4081, 4096, 4035, 3902, 3982, 4073, 3985, 4054, 3991, 3977, 4006, 4010, 3978, 4013, 3989, 4022, 4079, 4064, 4086, 4061, 3947].

Process [2053, 3287, 1691, 526, 973, 3303, 1578].

Processing [664, 3466, 3985, 3903, 3633, 1193, 4023, 1345, 2256, 1434, 3143, 3601, 3167, 1968, 1643, 2538].

Processors [2407, 4065, 3358, 3387, 3401, 3666, 3322, 1399, 1489, 1412, 1607, 1622, 1452, 3431, 3545].

Produced [1397, 3724, 555, 1072, 1073, 1398, 3039, 2263, 1545, 2714]. Producing [336, 358, 74, 75, 384, 2930].

Product [2578, 3046, 206, 3180, 891, 1148, 1922, 1229]. Production [168, 330, 175].

Products [2991, 394, 532, 2028, 3494, 2793]. Professor [4028]. Profile [2943, 2811, 2746, 2767, 3056, 1736, 1542, 2934, 1868]. Program [3445, 3631, 2121, 1205, 3761, 224, 3195, 1015, 2361, 610, 1372, 1122, 928]. Programmable [2256, 1815, 2599].

Producing [808, 893, 1677, 2940].

Programmierung [883].

Programming [3791, 2979, 2074, 1637, 3742, 4039, 883, 3920, 1208, 2155, 2691, 607, 2200].

Programs [1472, 3329, 3681, 3330, 374, 466, 1017, 3875, 702, 1125, 1461, 3646, 914, 1968, 1879].

progressive [3841]. project [2569].

Projections [5130].

Property [180, 3199, 3444, 1138, 3231, 3801, 1285, 797]. property-based [3801].

Propriétés [795].

Prospective [508]. protection [2302].

Proton [347].

Proton-Electron [347]. Provable [3012, 1871]. Provably
pseudorandom

Pseudorandomness

Pseudozufallsvektoren [1340]. Pseudozufallszahlenfolgen [617].

Pseudoluchainykh [350]. PSI [1413]. PUB [1847].

62

[2937, 2938]. RnaPredict [2937, 2938]. RNG
[1671, 3794, 1146, 3140, 2837, 3890]. RNGAVXLIB [3761]. RNG> [3885].
RNGs [3854, 2395, 3685, 3797, 3341, 2764, 2376, 2453, 2456]. RNGSSELIB
[3445, 3631]. road [1702]. robots [2627]. Robust
[3208, 1445, 2534]. Robustness
[3208, 1323, 1689, 3155, 2188, 3428, 2278]. Rockefeller
[3964]. rocket [255].
[1774]. Roots [785]. ROP [3872]. Rosenbluth [2892]. Rotation
[1829, 2094]. Round [2881, 2573, 2668, 2672, 2699, 2879]. Rounding
[2223, 2047]. Rounds [2669]. Route [3687]. Routine [1302]. Routines
[780]. RSA [1308, 3012, 3201]. RSA-Based [3012]. RSAEuro [2117].
rstream [2905]. Rudin [3833]. ruin [950, 3141]. rule [241, 2539].
rule [241, 2539]. Ruins-Down [990]. Ruins-Up [990]. Russian
[3005, 350, 34]. Russians [3764].
RV [3764].

S [3097, 318, 991, 1056, 444, 393, 3655, 2106, 3529]. S-3800 [2106].
SAFE [3823, 2085]. Salford [1914]. Salt [3999]. Salzburg [4018]. same
[369]. Sample [710, 1090, 3565, 630, 760, 2962, 58, 795, 35]. Sampler
[585, 2014]. samplers [1781]. Samples
[1200, 1972, 1979, 8, 430, 844, 64, 73, 17, 39, 134, 33, 231]. Sampling
[572, 665, 933, 1135, 1995, 3846, 3563, 847, 1262, 1481, 2136, 271, 755, 756,
1101, 1498, 716, 48, 854, 1215, 510, 3691, 24, 3488, 2043, 1348, 1425, 3763,
860, 1945, 2352, 862, 3702, 1, 3889, 655, 3837, 874, 875, 876, 621, 162, 1186,
100, 625, 978, 1307, 1385, 3674, 2109, 885, 12, 1586, 239, 150, 42, 3035, 3825,
587, 588, 2031, 2246, 116, 65, 73, 74, 2257, 94, 156, 3360, 25, 30, 31, 1354,
3495, 2506, 1725, 1155, 158, 283, 3733, 27, 2771, 2365, 560, 259, 188, 1292,
2534, 2788, 976, 121, 373, 9, 106, 209, 136, 2101]. sampling [3081, 69, 28].
Sampling-Vectorized [3837]. Samuel [4069]. San
[4059, 4083, 3948, 3994, 4075, 4039, 4019, 4043]. Santa [3900, 3989, 4061].
SAR [4042]. Satisfied [411, 552]. Satisfying [527, 460, 1332, 3280, 458, 13].
Saturday [4051]. Saturday-Wednesday [4051]. Saunders [3147, 2780].
Savage [2507]. Saving [3825]. SC’11 [4087]. Scalable
[3228, 3264, 3814, 3688, 3639, 2834, 2511, 2512, 2306, 3145]. Scale
[2209, 3897, 781, 186, 10, 3022, 14, 1694, 3886, 95, 3829, 1445, 2181, 1070].
Scale-sensitive [2209]. Scaling [2283, 3298]. Scan [3504]. Scan-based
Schedules [664]. scheduling [1822, 3378]. schemata [2635].
schemata-based [2635]. Scheme [3328, 1964, 3016, 3370, 787, 1638, 3520].
Schemes [1800, 2516, 736, 1187, 3817, 1422, 2353, 158]. Schnorr [1555].
Sequences [3433, 2942, 2112, 3207, 3320, 843, 266, 1476, 112, 1086, 180, 236, 1397, 1879, 895, 2128, 182, 374, 466, 580, 3337, 545, 2479, 1597, 1096, 2562, 2959, 1103, 852, 2963, 2666, 142, 408, 507, 244, 327, 3724, 3130, 224, 3144, 445, 3501, 2760, 3772, 517, 518, 863, 599, 2513, 2514, 2842, 1536, 1626, 1281, 823, 2362, 3833, 2185, 2363, 2364, 2917, 3275, 2073, 2279, 918, 2190, 2706, 2707, 3608, 1072, 2191, 2852, 1642, 1237, 1082, 1564, 1860, 1984, 2716, 2382, 1300, 2207, 1302, 1867, 743, 3543, 210, 1773, 2211, 1390, 2870, 177, 2395, 1477, 234, 1398].

Sieve [3981]. SIGACT [3979, 4073]. SIGACT-SIGMOD-SIGART [3979]. SIGART [3979, 4073]. Sigla [945]. SIGMOD [3979, 4073, 3991].
Similar [3833]. Similarity [2308, 4057]. SIMPL [757]. SIMPL/1 [757].
Simple [1466, 576, 1670, 1192, 1158, 899, 1594, 3721, 1064, 2509, 2359, 2062, 823, 3517, 2619, 2926, 1239, 3432, 2545, 844, 1138, 1782, 1093, 2410, 4008, 1271, 74, 3044, 2167, 2593, 3152, 616, 2458]. simplest [2049].
simulation [2642, 3326, 3452, 212, 1889, 1482, 471, 1051, 273, 1271, 1105, 3645, 3908, 2489, 1511, 2257, 1160, 1274, 3045, 1933, 1434, 2905, 2051, 3500, 3602, 1738, 1957, 256, 2849, 1120, 615, 1377, 2086, 1645, 973, 373, 1570, 570, 742, 3542, 3202, 3921, 3974, 1735, 1840. Simulation-Based [2423].
Sixteenth [3935]. Sixth [3985, 4039, 3988, 3900]. Size [3787, 710, 2136, 3444, 3679, 64, 73, 1929]. sizes [2430, 1456]. sketch [3065].
small-deviation [380]. Small-World [3246]. smaller [2100]. Smart [3771, 3156, 2730, 4079]. Smart-Card [3156]. Smirnov
Strela [191]. strength [3704]. strength- [3704]. Strengthen [3600].

References

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling.
REFERENCES

Student:1908:PEM

Borel:1909:PDL

Borel:1914:LTF

Weyl:1916:GZM

Fisher:1922:ICT

Yule:1922:AMA

Tippett:1925:EIR

Tippett:1927:RSN

Yule:1927:RS

Klein:1929:SSD

Baker:1930:RSN

Ward:1931:DRS

Champernowne:1933:CDN

Glivenko:1933:SDE

Karl Pearson. On a new method of determining “goodness of fit”. *Biometrika*, 26(4):425–442, December 1934. CODEN BIOKAX. ISSN 0006-3444 (print), 1464-3510 (electronic). URL http://www.jstor.org/stable/2331988. According to [373, page 36], this paper introduced the $P_n(\lambda)$ test for “determining whether a sample of size n, supposed to have been drawn at random from a parent population having a known probability integral has probably been drawn at random.” See [27] for its first use on random numbers from a uniform distribution.

[29] E. Dietze and W. D. Goodale, Jr. The computation of the composite noise resulting from random variable sources. *The Bell Sys-
REFERENCES

Kendall:1939:SPR

Kendall:1939:TRS

Mahler:1939:UKK

Smirnov:1939:EDB

Smirnov:1939:OUE

Vickery:1939:DRS

REFERENCES

REFERENCES

[64] H. C. Hamaker. Random frequencies, expedient for the construction of artificial samples of large size. Statistica Rijswijk, 2(??):129–137, ????. 1948. CODEN ???? ISSN ????

Fisher:1949:STB

Hamaker:1949:RSF

Hamaker:1949:STP

Horton:1949:DMP

Mauchly:1949:PRN

Metropolis:1949:MCM

Stevens:1949:TRD

Walsh:1949:CCR

REFERENCES

REFERENCES

REFERENCES

Anonymous:1954:RDb

Anonymous:1954:RDc

Anonymous:1954:RDd

Bartholomew:1954:NUS

Hammersley:1954:PMM

Lehmer:1954:DRN

Meyer:1954:GTR

Moshman:1954:GPR

REFERENCES

E. C. Fieller, T. Lewis, and E. S. Pearson. Correlated random normal deviates; 3,000 sets of deviates, each giving 9 random pairs with correlations 0.1(0 × 1)0 × 9, volume 26 of Tracts for computers. Cambridge University Press, Cambridge, UK, 1955. 60 pp. LCCN QA47 .T7 no.26. Compiled from Herman Wold’s Table of random normal deviates (Tract no. XXV) by E. C. Fieller, T. Lewis, and E. S. Pearson: *Random normal deviates*.

REFERENCES

[Stuart:1956:ETR]

[Taussky:1956:GTP]

C. B. TOMPKINS. Machine attacks on problems whose variables are permutations. In *Curtiss [500]*, pages 195–212. LCCN ????.

[Tompkins:1956:MAP]

[Tompkins:1956:RJS]

[Tompkins:1956:RMR]

[Cook:1957:RFP]

[Davis:1957:CJH]
REFERENCES

[177] J. Bass and J. Guilloud. Méthode de Monte-Carlo et suites uniformément denses. (French) [The Monte Carlo Method and sequences of uniformly-

Bauer:1958:MCM

Bendat:1958:PAR

Bofinger:1958:PPP

Box:1958:NGR

Certaine:1958:SPR

Franklin:1958:EPR

Gross:1958:AGP

Leslie:1958:PSM
REFERENCES

Muller:1958:IMG

Renyi:1958:ODP

Richtmyer:1958:NRS

Schmid:1958:KSL

Sengupta:1958:TRN

Sobol:1958:PRN

Thomson:1958:MCM

REFERENCES

[196] Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (K/y)(\partial u/\partial y) = 0$. *Journal of the ACM*, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

527–537, October 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

[231] Donald D. Wall. A random number test for large samples. In Anonymous [3903], pages 7–11. LCCN ????

REFERENCES

REFERENCES

Pinkham:1961:DFS

Rao:1961:GRP

Richtmyer:1961:MCM

Riffenburgh:1961:RPI

Sibuya:1961:EOR

Solomon:1961:SIA

REFERENCES

REFERENCES

December 1962. CODEN NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic).

REFERENCES

REFERENCES

Magleby:1963:SNF

Marsaglia:1963:GDR

Marsaglia:1963:RNF

Moses:1963:TRP

Poore:1963:CAR

Tucker:1963:QCS

Ahsanullah:1964:RVE

Alanen:1964:TFF

Bekessy:1964:RBD

Brillinger:1964:BRI

Chow:1964:RNG

Durstenfeld:1964:ARP

Esmenjaud-Bonnardel:1964:PGN

Gebhardt:1964:GND

Halton:1964:ARI

Hammer:1964:GRN

REFERENCES

[327] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\left\{ \frac{a_{m}j^2}{m} \right\}, \left\{ \frac{a_{m}(j+\tau)^2}{m} \right\} \). Mathematics of Computation, 18 (86):211–232, April 1964. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

[338] George Marsaglia. Ratios of normal variables and ratios of sums of variables. Mathematical note D1-82-0348, Mathematics Re-

REFERENCES

REFERENCES

REFERENCES

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See certification [623] and remarks [379, 390].

Pike:1965:ARN

Pike:1965:CAGb

Potter:1965:CNS

Pyke:1965:S

Reeves:1965:AUR

Rosenberg:1965:CNN

Scheinok:1965:DFR

Seshadri:1965:RVW

[369] V. Seshadri. On random variables which have the same distribution as their reciprocals. *Canadian mathematical bulletin = Bulletin canadien
REFERENCES

127

de mathématiques, 8(??):819–824, 1965. CODEN CMBUA3. ISSN 0008-4395 (print), 1496-4287 (electronic).

REFERENCES

Fleiss:1966:NER

Gorenstein:1966:APN

Hansson:1966:RAG

Heyde:1966:SRS

Hutchinson:1966:NUP

Jansson:1966:RNG

Loveland:1966:NIM

REFERENCES

REFERENCES

REFERENCES

Behboodian:1967:EAV

Canavos:1967:CAT

Chambers:1967:RNG

Coveyou:1967:FAU

Csorgo:1967:NPS

deBalbine:1967:NRP

Downham:1967:MCP

REFERENCES

REFERENCES

[413] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [3908], pages 64–68. LCCN QA76.5 D55 1965.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN BRMIAC. ISSN 0005-7878. URL http://www.springerlink.com/content/16q4517x00r56955/.

[Muller:1968:RN]

[Pillai:1968:NEI]

REFERENCES

[467] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [3909], pages 70–111. LCCN QA1 S565 v. 3.

Fellen:1969:LEI

Good:1969:HRR

Grosenbaugh:1969:MFR

Gubenko:1969:FPR

Hemmerle:1969:GPN

Knop:1969:RAG

Kruskal:1969:EPR

REFERENCES

REFERENCES

Anonymous:1970:EWC

Anonymous:1970:FVP

Behboodian:1970:ERV

Blaisdell:1970:RSP

Butler:1970:AAG

Cenacchi:1970:PRN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[549] I. G. Dyadkin. An analogue of von Neumann’s algorithm for simulating a normal distribution. In *Monte Carlo methods and applications*
REFERENCES

Friedman:1971:REG

Gibbons:1971:NSI

Good:1971:SRS

Han:1971:DRV

Jackson:1971:PCC

REFERENCES

REFERENCES

tober 1972. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). See erratum [682].

[645] D. G. Maritsas. The autocorrelation function of the two feedback shift-register pseudorandom source. *IEEE Transactions on Computers*, C-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[689] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. \textit{Sémin Théorie des Nombres}, 6(??):??, 1974–1975. CODEN ??? ISSN ???

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[724] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Mat. Sb. (N.S.),* 98(??):??, 1975. CODEN ????? ISSN ???.

[725] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Math. USSR-Sb.,* 27(??):183–197, 1975. CODEN ????? ISSN ???.

REFERENCES

REFERENCES

REFERENCES

for a comparison, both mathematical, and graphical, of the two algorithms. Reference [3] for IBM Report GC20-8011-0 is incorrectly given year 1969; the correct year is 1959.

[750] R. P. Brent. Analysis of the binary Euclidean algorithm. In Traub [3917], pages 321–355. ISBN 0-12-697540-X. LCCN QA76.6 .S9195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959. The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be $O(0.705 \lg N)$ for large $N = \max(|u|, |v|)$. See [2473] for an update, and a repair to an incorrect conjecture in this paper. See also [2397], where the worst case complexity is shown to be $O(\lg N)$, and the number of right shifts at most $2 \lg(N)$.

REFERENCES

REFERENCES

REFERENCES

[773] Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number generation. In Traub [3917], pages 357–428. ISBN 0-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[830] P. Peskun. Improving the apparent randomness of pseudorandom numbers generated by the mixed congruential method. In D. Hogben and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hollander:1978:TDU

Holmlid:1978:UCP

Kemp:1978:CGB

Kiefer:1978:PNA

Li:1978:EMN

Mallows:1978:PNA

REFERENCES

REFERENCES

1978. CODEN JSCSAJ. ISSN 0094-9655 (print), 1026-7778 (electronic), 1563-5163.

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Landauer:1981:RNF

Menzefricke:1981:BAC

Nekrutkin:1981:JSM

Preece:1981:DFD

Rubinstein:1981:RNG

Schatte:1981:RVL

REFERENCES

[1006] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

Blum:1982:HGC

Crigler:1982:RCP

Devroye:1982:NAR

DiDonato:1982:FSP

Dykstra:1982:MLE

Faure:1982:DSA

Reprinted in [1154, pages 238–242]. See also the extended 32-bit generator in [3017].

REFERENCES

[1052] Masanori Fushimi and Shu Tezuka. The k-distribution of Generalized Feedback Shift Register pseudorandom numbers. *Communications of the
REFERENCES

REFERENCES

Miyatake:1983:MAR

Muller:1983:BRB

Pearson:1983:APR

Peterson:1983:ACT

Plumstead:1983:ISPa

Plumstead:1983:ISPb

Pokhodzei:1983:OMM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kalle:1984:PRN

Kannan:1984:SPA

Kronmal:1984:ACA

Kuo:1984:SRI

Landauer:1984:ERN

Lugannani:1984:DRQ

Marsaglia:1984:EAM

References

236

Marsaglia:1984:FEI

Marsaglia:1984:GCM

Modianos:1984:RNG

Niederreiter:1984:PSP

Papoulis:1984:PRV

Paulsen:1984:IRN

Porter:1984:CNS
REFERENCES

237

Rasmussen:1984:FPS

Ronse:1984:FSR

Scholtz:1984:GS

Schorr:1984:PLV

Smith:1984:EMC

Thesen:1984:SER

REFERENCES

REFERENCES

REFERENCES

April/June 1985. CODEN AHCOE5. ISSN 0164-1239. URL http://
dlib.computer.org/an/books/an1985/pdf/a2141.pdf; http://

252–255, November 1985. CODEN SIMUA2. ISSN 0037-5497 (print),
1741-3133 (electronic). See criticism and response [1220].

[1142] Lawrence W. Dowdy and Manvinder S. Chopra. On the applicability of
using multiprogramming level distributions. *ACM SIGMETRICS Per-
ISSN 0163-5999 (print), 1557-9484 (electronic).

generation on microcomputers. In ????, editor, *Modeling and Simulation
San Diego, CA, USA, 1985. ISBN ????. LCCN ????

and Analysis of Discrete-Event Computer Simulations*. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1985. ISBN 0-8186-0597-9 (paperback), 0-8186-4597-0. ix + 475

U.S.S.R. Computational Mathematics and Mathematical Physics, 25
(4):91–93, ???? 1985. CODEN CMMPA9. ISSN 0041-5553, 0502-
004155538590148X. English translation of Russian original published in

number generator (RNG). In Blakley and Chaum [3936], pages
0302-9743 (print), 1611-3349 (electronic). LCCN QA76.9.A25 C791
REFERENCES

Feltz:1985:MLE

Figiel:1985:NLP

Fincke:1985:IMC

Gibbons:1985:NSI

Gleser:1985:EPG

Goldreich:1985:CAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Collings:1986:IGF

Deak:1986:EMG

Devroye:1986:AMG

Devroye:1986:GMS

Devroye:1986:NUR

Dyadkin:1986:EAM

REFERENCES

REFERENCES

[1217] H. Grothe. Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren. (German) [Matrix generators for generating uniformly distributed

Kleijnen:1986:SRN

Ko:1986:NIP

LEcuyer:1986:EPB

Loukas:1986:CGB

Luby:1986:PRP

Malik:1986:PDF

Marsaglia:1986:IFC

REFERENCES

REFERENCES

REFERENCES

Bojanczyk:1987:SAE

Bonclet:1987:ACO

Bratley:1987:GS

Burton:1987:CLT

Chambers:1987:CMS

Chin:1987:TLP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dudewicz:1988:TVF

Durst:1988:TPR

Edwards:1988:CAM

Eichenauer:1988:MLTb

Eichenauer:1988:MLTc

Eichenauer:1988:NCP

Fishman:1988:MCR

[1331] G. S. Fishman. Multiplicative congruential random number generators with modulus 2^β: An exhaustive analysis for $\beta = 32$ and a partial anal-

[1338] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. In IEEE [3951], pages 12–24. CODEN ASF-

REFERENCES

Heidelberger:1988:DES

Hong:1988:LGA

Izumi:1988:FGW

Kachitvichyanukul:1988:AHS

Kachitvichyanukul:1988:BRV

Kannan:1988:PFN

REFERENCES

[1357] Pierre L’Ecuyer and François Blouin. BonGCL, un logiciel pour la recherche de bons générateurs à congruence linéaire. (French) [BonGCL,

REFERENCES

REFERENCES

Ahrens:1989:AMS

Ahrens:1989:HAL

Ahrens:1989:NUR

Aiello:1989:HIG

Allender:1989:SCE

Babai:1989:MPL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kachitvichyanukul:1989:ABS

Kahaner:1989:NMS

Kamps:1989:CPL

Kao:1989:RNG

Kelton:1989:RIM

Kharitonov:1989:LBP

REFERENCES

REFERENCES

generators. In MacNair et al. [3958], pages 467–476. ISBN 0-911801-58-

5823. IEEE order number 89CH2778-9.

[1440] David J. Lilja. Efficient generation of Poisson distributed random vari-
able. Technical Report CSRD 900, University of Illinois at Urbana-
Champaign, Center for Supercomputing Research and Development, Urb-
ana, IL 61801, USA, July 31, 1989. 15 pp.

of Cryptology: the journal of the International Association for Cryp-
tologic Research, 1(3):151–158, ???? 1989. CODEN JOCREQ. ISSN
0933-2790 (print), 1432-1378 (electronic).

[1442] N. M. Maclaren. The generation of multiple independent sequences of
DEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL

(print), 1095-7200 (electronic).

robust M-estimates of scale for positive random variables. Journal of the
REFERENCES

McIntosh:1989:RAE

Meer:1989:SIP

Meier:1989:FCA

Mertsch:1989:PAS

Niederreiter:1989:STC

Paul:1989:IRN

Percus:1989:RNG

[1452] Ora E. Percus and Malvin H. Kalos. Random number generators for MIMD parallel processors. Journal of Parallel and Distributed Com-

REFERENCES

REFERENCES

[1472] François Baccelli and Zhen Liu. On the execution of parallel programs on multiprocessor systems — a queuing theory approach. *Journal of the

REFERENCES

Bralic:1990:AGR

Burford:1990:RNG

Carta:1990:TFI

Dagpunar:1990:SMD

Deak:1990:RNG

Deak:1990:URN

DeArman:1990:IRN

REFERENCES

[1497] George S. Fishman. Multiplicative congruential random number generators with modulus 2^β: An exhaustive analysis for $\beta \approx 32$ and a partial

[1504] Oded Goldreich and Hugo Krawczyk. Sparse pseudorandom distributions (extended abstract). Lecture Notes in Computer Science, 435:113–??, 1990. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (elec-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

90-012, University of Tokyo, Faculty of Science, Dept. of Information Science, Tokyo, Japan, April 1990. 6 pp.

[1561] Y. S. Sherif and R. G. Dear. Development of a new composite pseudo-
random number generator. *Microelectronics and Reliability*, 30(??):545–
553, ???? 1990. CODEN MCRLAS. ISSN 0026-2714 (print), 1872-941X
(electronic).

24(??):55–61, ???? 1990. CODEN PNENDE. ISSN 0149-1970 (print),
1878-4224 (electronic).

[1563] Ernst Stadlober. The ratio of uniforms approach for generating dis-
crete random variates. *Journal of Computational and Applied Mathemat-
science/article/pii/0377042790903495.

[1564] Shu Tezuka. Lattice structure of pseudorandom sequences from shift-
register generators. In Balci et al. [3960], pages 266–269. ISBN 0-911801-
72-3. LCCN QA76.5.W56 1990.

IBM Research, Tokyo Research Laboratory, Tokyo, Japan, January 1990.

[1566] Robert F. Tichy. Random points in the cube and on the sphere with
applications to numerical analysis. *Journal of Computational and Ap-

[1567] G. Tindo. *Automates cellulaires: applications à la modélisation de cer-
tains systèmes discrets et à la conception d’une architecture parallèle pour
la génération de suites pseudo-aléatoires.* (French) [Cellular automata:
applications to the modeling of certain discrete systems and toward the
design of a parallel architecture for generation of random sequences]. Disses-
tation (thesis), Université de Nantes, Nantes, France, 1990.

REFERENCES

[1588] Alan T. Clementson. A comment on a random-number generator for microcomputers. OR: the journal of the Operational Research Society,
REFERENCES

Compagner:1991:DR

Compagner:1991:HCR

Deng:1991:CRN

Deng:1991:RDR

Devroye:1991:AGD

Devroye:1991:ETA

Dohmann:1991:RNG

REFERENCES

Eichenauer-Herrmann:1991:ICPa

Eichenauer-Herrmann:1991:ICPb

Eichenauer-Herrmann:1991:NIC

Geers:1991:HEB

Gerasimov:1991:NOH

Gupta:1991:PAT

Hultquist:1991:GRN

REFERENCES

Maier:1991:FPR

Makino:1991:GSR

Marsaglia:1991:NCR

Marsaglia:1991:NGR

Matus:1991:AFD

Maurer:1991:LRP

Maurer:1991:UST

REFERENCES

[1641] Timothy E. Revello. A combination of exponentiation ciphers and the data encryption standard as a pseudorandom number generator. The-
sis (M.S.), Rensselaer Polytechnic Institute at The Hartford Graduate Center, Troy, NY, USA, 1991. viii + 68 pp.

[1642] Terry Ritter. The efficient generation of cryptographic confusion sequences. *Cryptologia*, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748~db=all~order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyšev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.

REFERENCES

REFERENCES

Vose:1991:LAG

Wakefield:1991:EGR

Walsh:1991:MFR

Wheeler:1991:PMN

Wheeler:1991:SIC

Yamamoto:1991:NEM

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>

Dai:1992:BSD

DalleMolle:1992:HOC

DeMatteis:1992:CCD

DeMatteis:1992:CDP

Deng:1992:GLT

Deng:1992:RSN

[1702] Eduardo Engel. *A road to randomness in physical systems*, volume 71 of *Lecture notes in statistics*. Springer-Verlag, Berlin, Germany / Heidel-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Grassberger:1993:CGR

Grassberger:1993:MCS

Hamilton:1993:PNGa

Hamilton:1993:PNGb

Hansen:1993:GPC

Hayes:1993:WF

Hildebrand:1993:RPF

Hormann:1993:GBR

Hormann:1993:PRN

Hormann:1993:QNU

Hormann:1993:TRM

Jebelean:1993:CSG

Kalkuhl:1993:PDC

[1815] Christoph Kalkuhl. Pulse/data channel extends programmable pulse generator applications. *Hewlett-Packard Journal: technical information*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1848] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. *Communications of the ACM*, 36(7):108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1373, 1480, 1834, 1858]. The authors report that they would now recommend the MCG $x_{n+1} = 48271x_n \mod (2^{31} - 1)$ over their original $x_{n+1} = 16807x_n \mod (2^{31} - 1)$.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

function; component series; cryptanalysis; multiloop system; computa-
tionally secure; personal computers; Spectra Publishing; Power Basic;
BASIC.

Couture:1994:LSC

[1893] Raymond Couture and Pierre L’Ecuyer. On the lattice structure of

Cuccaro:1994:TTQ

[1894] Steven A. Cuccaro, Michael Mascagni, and Daniel V. Pryor. Tech-
niques for testing the quality of parallel pseudorandom number gener-
ators. Technical report SRC-TR-94-128, Supercomputing Research Cen-

Davis:1994:CRA

[1895] Don Davis, Ross Ihaka, and Philip Fenstermacher. Cryptographic ran-
domness from air turbulence in disk drives. In Desmedt [3989], pages
114–120. CODEN LNCSDE. ISBN 3-540-58333-5 (Berlin), 0-387-58333-
5 (New York). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN
service/series/0558/bibs/0839/08390114.htm; http://link.springer-

DeArmon:1994:RLO

[1896] James S. DeArmon. Randomness of low-order bits in random number
sagepub.com/content/62/6/373.abstract.

Deng:1994:DIR

of random number generators for multiprocessor systems. *International
IMSIEK. ISSN 0228-6203 (print), 1925-7082 (electronic). URL http://

Devroye:1994:NHS

[1898] Luc Devroye and Paul Kruszewski. A note on the Horton–Strahler num-
ber for random trees. *Information Processing Letters*, 52(3):155–159,
REFERENCES

November 11, 1994. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

Eichenauer-Herrmann:1994:GIC

Eichenauer-Herrmann:1994:ILB

Eichenauer-Herrmann:1994:SIN

Endl:1994:CRG

Entacher:1994:CNP

Gaines:1994:RGS

Hormann:1994:TRM

Hormann:1994:UGD

Huber:1994:PLG

James:1994:RFI

Jimbo:1994:RBB

Jimbo:1994:RBD

Johnson:1994:CUD

REFERENCES

Makino:1994:LFR

Marsaglia:1994:MAR

Marsaglia:1994:REI

Marsaglia:1994:SPV

Mascagni:1994:FHQ

Mascagni:1994:PPN

Matsumoto:1994:TGG

REFERENCES

[Rarity:1994:QRN]

[Riesel:1994:PNC]

[Ritter:1994:EPR]

[Rivest:1994:DBI]

[Schneier:1994:AAd]

[Shallit:1994:ALS]

Shukhman:1994:GQR

Sitharam:1994:PGL

Sorenson:1994:TFG

Spanier:1994:QRM

Strauch:1994:D

Swan:1994:AAa

Szwarcfiter:1994:EKD

REFERENCES

Takashima:1994:STT

ISSN 0915-2350 (print), 1881-1337 (electronic).

Tezuka:1994:DDC

Tezuka:1994:MDC

Tezuka:1994:UVL

Tierney:1994:MCE

vanderMeer:1994:RBG

Vattulainen:1994:NTR

Institute for Theoretical Physics, University of Helsinki, Helsinki, Finland.

REFERENCES

Carrasco:1995:RRT

Chen:1995:IDP

Childs:1995:CIH

Chou:1995:LTI

Chou:1995:PLI

Chow:1995:NRP

Compagner:1995:OCR

[2009] A. Compagner. Operational conditions for random-number generation. Physical Review E (Statistical physics, plasmas, fluids, and re-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Koc:1995:RCS

Kubota:1995:DRE

Kurita:1995:DWD

Lee:1995:CSS

Leeb:1995:DT

Leeb:1995:RNC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vattulainen:1995:CSS

Vattulainen:1995:MIF

Vattulainen:1995:PMT

Walker:1995:GRV

Wegenkittl:1995:ETPa

Wegenkittl:1995:ETPb

Wegenkittl:1995:THS

[2104] Stefan Wegenkittl. Are there hyperbolas in the scatter plots of inversive congruential pseudorandom numbers? Journal of Computational

REFERENCES

REFERENCES

Barron:1996:RTR

Barry:1996:RTU

Beaver:1996:CPC

Bellare:1996:PFR

Berdnikov:1996:NMP

Bernhofen:1996:RBR

REFERENCES

REFERENCES

[2134] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithmetic without primes. Lecture Notes in
REFERENCES

Dodge:1996:NRN

Dorfman:1996:PSR

Dwyer:1996:TRNa

Dwyer:1996:TRNb

Eichenauer-Herrmann:1996:ABC

Eichenauer-Herrmann:1996:CIC

Eichenauer-Herrmann:1996:EPI

REFERENCES

Eichenauer-Herrmann:1996:MEI

Emmerich:1996:PVG

Entacher:1996:RSP

Fernandez:1996:FAR

Fischer:1996:EPR

Fishman:1996:MCC

REFERENCES

[2160] Chiang Kao and J. Y. Wong. An exhaustive analysis of prime modulus multiplicative congruential random number generators with modulus

Kato:1996:NCP

Kato:1996:STN

Kemp:1996:CFP

Koc:1996:ACM

REFERENCES

Luby:1996:PCA

Luo:1996:TDS

Marini:1996:CHR

Marsaglia:1996:DBT

Masuda:1996:PPR

Matsumoto:1996:SDR

Matthews:1996:SRN

REFERENCES

REFERENCES

[2191] Igor Radović, Ilya M. Sobol, and Robert F. Tichy. Quasi-Monte Carlo methods for numerical integration: Comparison of different low discrep-

[Rubin:1996:OTP]

[Sanchis:1996:PAC]

[Schervish:1996:VWT]

[Schneier:1996:ACP]

[Sethumadhavan:1996:NPE]

[Sezgin:1996:RNG]

REFERENCES

Ugrin-Sparac:1996:PET

Wallace:1996:FPG

Wang:1996:LIL

Wegenkittl:1996:RSP

Alon:1997:SSD

REFERENCES

REFERENCES

Bellare:1997:PRN

Berblinger:1997:MCI

Berg:1997:CNF

Binder:1997:AMC

Binder:1997:MCS

Cario:1997:MGR

report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, USA, 1997.

Eichenauer-Herrmann:1997:AEP

Eichenauer-Herrmann:1997:CCC

Eichenauer-Herrmann:1997:ICP

Eichenauer-Herrmann:1997:PSN

Eichenauer-Herrmann:1997:QCP

REFERENCES

[2250] P. Hellekalek. On correlation analysis of pseudorandom numbers. In H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editors,
REFERENCES

[2251] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breitenecker [4010], page ?? ISBN 3-901608-11-7. LCCN ????

REFERENCES

[2269] Hannes Leeb and Stefan Wegenkittl. Inversive and linear congruential pseudorandom number generators in empirical tests. *ACM Transactions*

#define znew ((z=36969*(z&65535)+(z¿¿16))¡¡16)
#define wnew ((w=18000*(w&65535)+(w¿¿16))&65535)
#define IUNI (znew+wnew)
#define UNI (znew+wnew)*4.656613e-10
static unsigned long z=362436069, w=521288629; void setseed(unsigned long i1,unsigned long i2)z=i1; w=i2; Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0, 1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.

REFERENCES

REFERENCES

vanHameren:1997:GLD

Woodward:1997:ECD

Wu:1997:MCR

Zubkov:1997:PTD

Aiello:1998:DPP

Andreev:1998:NGD

Antoch:1998:RPN

Bach:1998:EPM

Baldwin:1998:PAB

Baldwin:1998:PPR

Ballesteros:1998:TRN

Barni:1998:CPD

REFERENCES

REFERENCES

http://www.loc.gov/catdir/description/wiley037/97051533.html
http://www.loc.gov/catdir/toc/onix01/97051533.html.

Coddington:1998:RNG

Couture:1998:GEI

DSouza:1998:SBD

Eichenauer-Herrmann:1998:IUB

Eichenauer-Herrmann:1998:LBD

Eichenauer-Herrmann:1998:SQI

REFERENCES

loc.gov/catdir/enhancements/fy0815/97034133-d.html; http://www.loc.gov/catdir/enhancements/fy0815/97034133-t.html.

Ellison:1998:CRN

Emmerich:1998:EPC

Emmerich:1998:SIP

Entacher:1998:BSW

Entacher:1998:LCG

Entacher:1998:LIP

REFERENCES

REFERENCES

[Hickernell:1998:LRH]

[Hoffman:1998:RNG]

[Jakobsson:1998:PSP]

[Kao:1998:RNG]

[Kao:1998:SET]

John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic attacks on pseudorandom number generators. Lecture Notes in
Knudsen:1998:JHH

Knuth:1998:SA

Kolmogorov:1998:TRN

Larcher:1998:DPS

LEcuyer:1998:DPS

LEcuyer:1998:GPI

Philip M. Lurie and Matthew S. Goldberg. An approximate method for sampling correlated random variables from partially-specified distri-

[2358] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number genera-
REFERENCES

REFERENCES

REFERENCES

Pong P. Chu and Robert E. Jones. Design techniques of FPGA-based random number generator (extended abstract). In ?????, editor, *MAPLD 99 Proceedings: Military and Aerospace Applications*

REFERENCES

REFERENCES

[2419] Frances Griffin, Harald Niederreiter, and Igor Shparlinski. On the distribution of nonlinear recursive congruential pseudorandom numbers of

REFERENCES

Sobol:1999:PRN

Soto:1999:EST

Soto:1999:RTA

Soto:1999:STRa

Soto:1999:STRb

Soto:1999:STRc

Stauffer:1999:IMT

Sudan:1999:PGX

Tomassini:1999:GHQ

Tretiakov:1999:EMC

Trevisan:1999:CEU

Vattulainen:1999:FTR

I. Vattulainen. Framework for testing random numbers in parallel calculations. *Physical Review E (Statistical physics, plasmas, fluids, and

[2467] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.

REFERENCES

Fukuyama:2000:PFA

Gennaro:2000:IPR

Gentleman:2000:LSS

Goldreich:2000:ITP

Gutierrez:2000:MDI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2508] George Marsaglia. The monster, a random number generator with period over 10^{2857} times as long as the previously touted longest-period one. Technical report ????., Florida State University, Tallahassee, FL, USA, ???? 2000.

REFERENCES

Mascagni:2000:ASS

Mascagni:2000:CAS

Mauduit:2000:FPBa

Mauduit:2000:FPBb

Miles:2000:L

Moriai:2000:PTL

REFERENCES

Viswanath:2000:RFS

Wikramaratna:2000:PRN

Yaguchi:2000:RHR

Zhukov:2000:ANA

Ackermann:2001:PRN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gerosa:2001:FIB

Gonsalves:2001:PAS

[2568] Richard J. Gonsalves. Pivot algorithm for self-avoiding walks on a square lattice. Fortran program, 2001. URL http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/Files/Chapter12/saw.f. The program contains code (near the end) for the portable rannyu() generator. It is a linear congruential generator with multiplier $A = 31\, 167\, 285 = 0x1d9335$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

Guimond:2001:CRN

Gutierrez:2001:IMP

Gutmann:2001:RNG

REFERENCES

[2582] Lei Kuang and Armand M. Makowski. Convex stability and asymptotic convex ordering for non-stationary arrival processes. *ACM SIGMET-
REFERENCES

tions in honor of the seventieth birthday of Masanobu Shinozuka on December 23, 2000.

Li:2001:SPD

Liang:2001:NET

Liang:2001:TMU

Litvak:2001:SPE

Mascagni:2001:PIC

REFERENCES

[2606] Harald Niederreiter and Igor E. Shparlinski. On the distribution of
inversive congruential pseudorandom numbers in parts of the period.
Mathematics of Computation, 70(236):1569–1574, October 2001. CO-
DEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL
http://www.ams.org/journal-getitem?pii=S0025-5718-00-01273-
4; http://www.ams.org/mcom/2001-70-236/S0025-5718-00-01273-
4/S0025-5718-00-01273-4.dvi; http://www.ams.org/mcom/2001-
70-236/S0025-5718-00-01273-4/S0025-5718-00-01273-4.pdf; http:
//www.ams.org/mcom/2001-70-236/S0025-5718-00-01273-4/S0025-
5718-00-01273-4.ps; http://www.ams.org/mcom/2001-70-236/S0025-

[2607] Harald Niederreiter and Arne Winterhof. On a new class of inversive
pseudorandom numbers for parallelized simulation methods. *Periodica
0031-5303 (print), 1588-2829 (electronic).

[2608] NIST. *Batteries of Statistical Tests for Random Number Generators.*
National Institute for Standards and Technology, Gaithersburg, MD,
Wide Web site.

[2609] NIST. Security requirements for cryptographic modules. Federal In-
formation Processing Standards Publication FIPS PUB 140-2, National
Institute for Standards and Technology, Gaithersburg, MD, USA, May

[2610] Landon Curt Noll, Simon Cooper, and Mel Pleasant. How good is
test.html.

[2611] Peyton Z. Peebles. *Probability, random variables, and random
signal principles.* McGraw-Hill series in electrical and computer
engineering. McGraw-Hill, New York, NY, USA, fourth edition,
REFERENCES

REFERENCES

[2630] Renée Touzin. Des générateurs récursifs multiples combinés rapides avec des coefficients de la forme $\pm 2^p_1 \pm 2^p_2$. (French) [Fast combined multiple recursive generators of the form $\pm 2^p_1 \pm 2^p_2$]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2001. xiii + 128 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en informatique option recherche opérationnelle.

Touzin:2001:GRM

Trevisan:2001:EPG

Tu:2001:NFG

Vadhan:2001:OP

Vanura:2001:ARC

Watkins:2001:ERN

REFERENCES

REFERENCES

[2654] Frank Emmerich. Average equidistribution and statistical independence properties of digital inversive pseudorandom numbers over parts of the

REFERENCES

REFERENCES

REFERENCES

[2682] Pierre L’Ecuyer and Christiane Lemieux. Recent advances in randomized
quasi-Monte Carlo methods. In Dror et al. [4041], pages 419–474. ISBN
gov/catdir/enhancements/fy0820/2001050485-d.html; http://
www.loc.gov/catdir/enhancements/fy0820/2001050485-t.html.

tests of uniformity for random number generators. SIAM Journal on
siam.org/sam-bin/dbq/article/34903.

[2684] Pierre L’Ecuyer and Richard Simard. TestU01: a software library in
ANSI C for empirical testing of random number generators: Software
user’s guide. Web report, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, Montréal, Québec, Canada,
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html.

[2685] J. Leydold and W. Hörmann. UNURAN — a library for universal non-
uniform random number generators. Web software archive., 2002. URL
http://statistik.wu-wien.ac.at/unuran.

rejection and correlation introduction. In Fang et al. [4042], pages 345–
http://www.loc.gov/catdir/enhancements/fy0817/2002283816-d.
html.

[2687] Ping Luo. A combined generator based on linear congruential generators
and its structural improvement. Journal on Numerical Methods and

[2688] Hosam Mahmoud and Tatsuie Tsukiji. On the internal structure of ran-
dom recursive circuits. Journal of Computational and Applied Mathe-
matics, 142(1):155–171, May 1, 2002. CODEN JCAMDI. ISSN 0377-0427

[Marsaglia:2002:RGB]

[Marsaglia:2002:SDP]

[Martin:2002:ARN]

[Martinez:2002:CSH]

[Matsumoto:2002:NTW]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2726] Anonymous. /dev/random. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ /dev/random (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in drivers/char/random.c in the Linux source tree.”.

[2731] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fiar uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. *Communications of the ACM*, 46(7):11–13, July 2003. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Oded Goldreich and Vered Rosen. On the security of modular exponentiation with application to the construction of pseudorandom genera-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2806] Richard P. Brent. Note on Marsaglia’s xorshift random number genera-
ISSN 1548-7660. URL http://www.jstatsoft.org/counter.php?id=
101&url=v11/105/v11i05.pdf&ct=1. See [2764, 2920, 3782]. This arti-
cle shows the equivalence of xorshift generators and the well-understood
linear feedback shift register generators.

[2807] Timothy C. Brown. Transforming a random variable to a prescribed dis-
tribution: An application to school-based assessment. Journal of Applied
3215980.

[2808] James Antonio Bucklew. Introduction to Rare Event Simulation, vol-
ume ?? of Springer Series in Statistics. Springer-Verlag, Berlin, Ger-
many / Heidelberg, Germany / London, UK / etc., 2004. CODEN ????
ISBN 0-387-20078-9, 1-4419-1893-0, 1-4757-4078-6 (e-book). ISSN 0172-

[2809] Alessandro Conflitti and Igor E. Shparlinski. On the multidimen-
tional distribution of the subset sum generator of pseudorandom
numbers. Mathematics of Computation, 73(246):1005–1011,
April 2004. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-
S0025-5718-03-01563-1/home.html; http://www.ams.org/mcom/
2004-73-246/S0025-5718-03-01563-1/S0025-5718-03-01563-1-dvi;
http://www.ams.org/mcom/2004-73-246/S0025-5718-03-01563-1/S0025-
5718-03-01563-1-1.pdf; http://www.ams.org/mcom/2004-73-
246/S0025-5718-03-01563-1/S0025-5718-03-01563-1-1.ps; http:
//www.ams.org/mcom/2004-73-246/S0025-5718-03-01563-1/S0025-
5718-03-01563-1.tex; http://www.jstor.org/stable/pdfplus/
4099816.pdf.

[2810] Lih-Yuan Deng. Generalized Mersenne prime number and its applica-
www.loc.gov/catdir/enhancements/fy0817/2004041328-d.html.

REFERENCES

[2823] Daniel R. Jeske and Todd Blessinger. Tunable approximations for the mean and variance of the maximum of heterogeneous geometrically dis-

REFERENCES

Ossola:2004:SED

Panneton:2004:CEP

Panneton:2004:RNG

Peitgen:2004:CGH

Rasulov:2004:QSB

REFERENCES

REFERENCES

REFERENCES

[2881] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom generator. Lecture Notes in Computer

Deng:2005:EPM

Dodge:2005:RNG

Eastlake:2005:RRR

Elsner:2005:IRN

Entacher:2005:BLP

Falcioni:2005:PMC

Gennaro:2005:IPR

Gerlovina:2005:ABL

Gonnet:2005:MRG

Gonzalez:2005:SCM

Gubernatis:2005:MRM

Hahn:2005:CLM

REFERENCES

REFERENCES

REFERENCES

Tang:2005:EER

Tang:2005:MLC

Tang:2005:RMR

Terpstra:2005:SIC

Topuzoglu:2005:LCP

Tu:2005:SRD

REFERENCES

Wichmann:2005:GGP

Wiese:2005:IPN

Wiese:2005:PRP

Zhang:2005:ZBH

Zuquete:2005:EHQ

REFERENCES

Barker:2006:RRN

BenAtti:2006:BMA

Berkovitz:2006:EHR

Brent:2006:FRR

Brent:2006:SLP

Cools:2006:CEL

Creutzig:2006:BRW

REFERENCES

Devroye:2006:NRV

Dick:2006:WSD

Dickinson:2006:EEL

El-Mahassni:2006:DNC

Evans:2006:DOS

Faure:2006:SCR

REFERENCES

REFERENCES

REFERENCES

springerlink.com/content/c60q42qt2m035685/.

gov/catdir/toc/ecip0611/2006010073.html.

article/pii/S0927050706130030.

arnumber=1628955.

REFERENCES

Mueller:2006:SMG

Nau:2006:RN

Nuyens:2006:FAC

Nuyens:2006:FCCa

Nuyens:2006:FCCb

Panneton:2006:IDH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Drutarovsky:2007:RCB

Dupuis:2007:ISS

Echeverria:2007:FGR

Edgington:2007:RT

Gerlovina:2007:LBS

REFERENCES

REFERENCES

REFERENCES

[3081] Sastra Wijaya, Syn Kiat Tan, and Sheng-Uei Guan. Permutation and sampling with maximum length CA or pseudorandom number genera-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

556

[3122] Johan Håstad and Mats Näslund. Practical construction and analysis of pseudo-randomness primitives. *Journal of Cryptology: the jour-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3150] Wei Li, Kangshun Li, Wensheng Zhang, Chao Wang, and Ying Huang. A random number generator based on particle dynamical evolutionary algorithm. In 2008. ICNC ’08. Fourth International Conference on
REFERENCES

Li:2008:SAD

Liu:2008:CMI

Lovett:2008:UPG

Martin:2008:IPR

Masaro:2008:RODb

Matsumoto:2008:MPR

Nandakumar:2008:EET

Nguyen:2008:ODD

Niederreiter:2008:CPN

Niederreiter:2008:ESN

Niuda:2008:BFL

Ozdemir:2008:RNG

[3181] Manas Somaiya, Christopher Jermaine, and Sanjay Ranka. Learning correlations using the mixture-of-subsets model. ACM Transactions on

David B. Thomas and Wayne Luk. Resource efficient generators for the floating-point uniform and exponential distributions. In IEEE [4065],
REFERENCES

cites

Tokunaga:2008:TRN

Toyama:2008:GPR

Uchida:2008:FPR

Udawatta:2008:TVN

Varbanets:2008:ESS

Varbanets:2008:ICGa

Varbanets:2008:ICGb

Walker:2008:EPN

Wang:2008:DCP

Ware:2008:RIE

Wikramaratna:2008:ACR

Willink:2008:UPN

Wold:2008:AER

Xiang:2008:NPR

Xu:2008:SMS

Yaguchi:2008:NNP

Yang:2008:LLM

Yang:2008:NTR

REFERENCES

on Information Science and Engineering, volume 2, pages 236–238. IEEE
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
.jsp?tp=&arnumber=4732384.

[3206] Abbas Alhakim and Mufutau Akinwande. A multiple stream gener-
ator based on de Bruijn digraph homomorphisms. Journal of Sta-
CODEN JSCSAJ. ISSN 0094-9655 (print), 1026-7778 (electronic).
1563-5163. URL http://www.tandfonline.com/doi/abs/10.1080/
00949650802322129.

of cryptographically strong generator by linearly generated sequences.
International Journal of Computer Science and Security (IJCSS), 3(3):
186–200, June 2009. CODEN ???? ISSN 1985-1553. URL http:/
/www.cscjournals.org/csc/manuscript/Journals/IJCSS/volume3/
Issue3/IJCSS-78.pdf.

[3208] Baruch Awerbuch and Christian Scheideler. Robust random number
generation for peer-to-peer systems. Theoretical Computer Science, 410
(6–7):453–466, February 28, 2009. CODEN TCSCDI. ISSN 0304-3975
(print), 1879-2294 (electronic).

using pseudo-random number generators. In 2009. CSE ’09. Interna-
tional Conference on Computational Science and Engineering, volume 3,
pages 418–423. IEEE Computer Society Press, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 2009. URL http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=5283236.

Impact of the quality of random numbers generators on the perform-
ance of particle swarm optimization. In IEEE International Conference on
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
.jsp?tp=&arnumber=5346366.
Blacher:2009:FRN

Blacher:2009:PRN

Blaszczyk:2009:EVT

Blaszczyk:2009:HIP

Cao:2009:DSB

Cecen:2009:NHN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3264] JunKyu Lee, Yu Bi, Gregory D. Peterson, Robert J. Hinde, and Robert J. Harrison. HASPRNG: Hardware Accelerated Scalable Parallel Ran-
REFERENCES

Lemieux:2009:PNG

Marchi:2009:PPR

Markenos:2009:FIA

McCullough:2009:AES

Mitchum:2009:DPR

REFERENCES

Orlov:2009:ORN

Paindaveine:2009:MRT

Pareschi:2009:PAC

Petrov:2009:SLL

Qiu:2009:CMW

Reidler:2009:USR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2009:NPR

Wayne:2009:PAT

Wei:2009:BFT

Wei:2009:QRN

Wold:2009:OST

Xiao-chen:2009:URN

Abbott:2010:QRN

Agapie:2010:RPH

Akhshani:2010:PRN

Anashin:2010:NAE

Anyanwu:2010:DCS

Banks:2010:DES

REFERENCES

[3328] A. A. Borovkov. Integro-local and local theorems on normal and large deviations of the sums of nonidentically distributed random variables in

REFERENCES

REFERENCES

2618–2626, December 2010. CODEN JSSODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Hongo:2010:RNG

Hotoleanu:2010:RTT

Jaksic:2010:QCL

Jones:2010:IMD

Kang:2010:FIG

Kawai:2010:AOA

REFERENCES

REFERENCES

Meka:2010:PGP

Moghadam:2010:DRN

Murguia:2010:IAP

Navin:2010:CSR

Navin:2010:ETU

REFERENCES

Panneton:2010:RSR

Pareschi:2010:ITH

Pashley:2010:GRN

Passerat-Palmbach:2010:RIG

Peris-Lopez:2010:CSP

Plesser:2010:RSI

Prochan:2010:BQQ

Qi:2010:DFR

Quantis:2010:RNG

Quantis:2010:RTR

REFERENCES

Stankovski:2010:GDN

Suciu:2010:PIN

Tang:2010:BHA

Tang:2010:BLC

Tang:2010:OMR

REFERENCES

REFERENCES

REFERENCES

Zafar:2010:GRN

Zhmurov:2010:EPR

Zimand:2010:SEC

Abbott:2011:NNS

Abbott:2011:QRN

Al-Abiachi:2011:CDN

[3441] Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final
random bit and remove any bias caused by imperfections in the noise source and A/D converter.

Demchik:2011:PRN

deOliveira:2011:DRP

desai:2011:PRN

Devroye:2011:DCM

Duan:2011:POR

Ergun:2011:IPS

REFERENCES

Harase:2011:FLR

Heam:2011:SEU

Hedayatpour:2011:HFB

Hofert:2011:SET

Hung:2011:DRD

REFERENCES

REFERENCES

REFERENCES

Marinucci:2011:RFS

Marton:2011:PUR

Merhi:2011:SPR

Mohamed:2011:EAG

Mukherjee:2011:RGU

Phillips:2011:PRN

[3518] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1,2,3. In Lathrop et al. [4087], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????

Seyedzadeh:2011:IES

Shaolan:2011:EDE

Shparlinski:2011:ADP

Simard:2011:CTS

Sinescu:2011:ECS

Soucarros:2011:ITT

REFERENCES

REFERENCES

REFERENCES

Anonymous:2012:CTC

Applebaum:2012:PGL

Barash:2012:GSP

Barker:2012:RRN

Bayon:2012:CEA

Becher:2012:TNN

Beisbart:2012:WMC
[3555] Claus Beisbart and John D. Norton. Why Monte Carlo simulations are inferences and not experiments. International Studies in the Philosophy

REFERENCES

Chen:2012:ECR

Chi:2012:ESN

Chiu:2012:MTR

Cohen:2012:SMI

Colbeck:2012:FRC

Deng:2012:ECS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3592] Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.

REFERENCES

[3604] NIST. Recommendation for random number generation using deterministic random bit generators. Special Publication 800-90, National Insti-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3632] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.

Claessen:2013:SPN

Deng:2013:FTQ

Ducklin:2013:ARN

Frauchiger:2013:TRR

Gao:2013:GGA

Gopalan:2013:PGC

REFERENCES

Liberty:2013:THR

Liu:2013:ITT

Ma:2013:PQR

Malik:2013:UCB

Mascagni:2013:PPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Devroye:2014:RVG

Dodis:2014:HEY

Doty-Humphrey:2014:STP

England:2014:ERG

Fukushima:2014:SDS

Gomez-Perez:2014:AEA

Domingo Gómez-Pérez, Alina Ostafe, and Igor Shparlinski. Algebraic entropy, automorphisms and sparsity of algebraic dynamical sys-

REFERENCES

REFERENCES

REFERENCES

Andersen:2015:MEL

Astor:2015:ADI

Berman:2015:NAA

Beznosko:2015:HSH

Beznosko:2015:PPF

Carlet:2015:EBF

Claessen:2015:GCR

Guyeux:2015:ECS

Haeupler:2015:SFD

Hare:2015:MDR

Hill:2015:PRN

Jessa:2015:QRS

REFERENCES

REFERENCES

[3743] Santanu Sarkar. Further non-randomness in RC4, RC4A and VMPC.
CODEN ???. ISSN 1936-2447 (print), 1936-2455 (electronic). URL
http://link.springer.com/accesspage/article/10.1007/s12095-
014-0119-0.

[3744] Konstantin G. Savvidy. The MIXMAX random number genera-
pii/S0010465515002489.

[3745] Hans Georg Schaathun. Evaluation of splittable pseudo-random gener-
CODEN JFPRES. ISSN 0956-7968 (print), 1469-7653 (electronic). URL https://
www.cambridge.org/core/journals/journal-of-functional-programming/article/evaluation-of-splittable-pseudorandom-generators/3EBAA9F14939C5BB5560E32D1A13
2F

Gaussian random number generator. *ACM Transactions on Reconfig-
CODEN ???. ISSN 1936-7406 (print), 1936-7414 (electronic).

[3747] Ryo Urano and Yuko Okamoto. Deterministic replica-exchange method
without pseudo random numbers for simulations of complex sys-
pii/S0010465515003069.

[3748] Yongge Wang and Tony Nicol. On statistical distance based test-
pii/S0167404815000693.

REFERENCES

REFERENCES

Miller:2016:RPS

Nekrutkin:2016:CBF

NIST:2016:SDR

Ohsaka:2016:DIA

Raitza:2016:RRN

Savvidy:2016:ACS

Savvidy:2016:SEC

Konstantin Savvidy and George Savvidy. Spectrum and entropy of C-systems MIXMAX random number generator. *Chaos, Solitons & Frac-
REFERENCES

VanBever:2016:SBT

Vigna:2016:EEM

Yamakami:2016:PGA

Yu:2016:GPR

Aljahdali:2017:FIS

Anonymous:2017:DAD

in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions, preventing third parties from reading intercepted communications.” See [3794] for details of the attack.

[3792] Riccardo Bernardini and Roberto Rinaldo. Making random permutations from physically unclonable constants. *International Journal of In-
REFERENCES

Chalk:2017:CIR

Cohney:2017:PSR

Deng:2017:DPR

Devroye:2017:EBC

Dodis:2017:HEY

Fog:2017:PRN

Ghersi:2017:CQR

Herrero-Collantes:2017:QRN

Lampropoulos:2017:BLL

Lenstra:2017:TPR

Monroe:2017:NPR

Nordrum:2017:TRN

REFERENCES

Blackman:2018:SLP

Blackman:2018:XXG

Cai:2018:VHA

Chang:2018:CSL

Checkoway:2018:WDL

Deng:2018:SFE

REFERENCES

Wang:2018:LBA

Xu:2018:SCM

Achiha:2019:GKW

Alhadawi:2019:DPB

Arnas:2019:RSU

Bernard:2019:PSM

REFERENCES

REFERENCES

Kim:2019:GBA

Kissel:2019:KRC

Lemire:2019:FRI

Lemire:2019:XXX

Liu:2019:LFP

Martirosyan:2019:STM

Zhang:2019:REU

Anonymous:2020:X

[3873] Anonymous. Xorshift. Web site., 2020. URL https://en.wikipedia.org/wiki/Xorshift. This article discusses Marsaglia’s Xorshift family of generators, including 32-bit, 64-bit, and 128-bit variants, plus xorwow, xorshift+, xoshiro, and xoroshiro, with comments about which common test suites they pass or fail. Lua 5.4 changed from the previous default of C’s rand() or random() to a new one based on xoshiro256** (256-bit state, 32- or 64-bit result). The period of xoshiro256** is 2**256 - 1 (about 10**77). See [3818, 3819].

Goualard:2020:GRF

Gurjar:2020:PBO

Hurley-Smith:2020:QLC

James:2020:RHQ

REFERENCES

[3894] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating randomness; source code to other useful crypto modules; miscellaneous. World-Wide Web site., 20xx. URL http://www.cs.berkeley.edu/~daw/rnd/.

[3895] Yvan Saint-Aubin and Christiane Rousseau, editors. Mathematics and Technology. Springer Undergraduate Texts in Mathematics and Technol-

REFERENCES

REFERENCES

REFERENCES

[3919] Peter C. C. Wang, editor. Information linkage between applied mathematics and industry: Proceedings of the First Annual Workshop on the
REFERENCES

Dempster:1980:SPP

Oren:1980:SDM

Eddy:1981:CSS

Rubinstein:1981:SMC

Grossmann:1982:PSI

IEEE:1982:ASF

REFERENCES

REFERENCES

REFERENCES

Mehlhorn:1985:SAS

ACM:1986:PEA

Arkin:1986:SOP

DAgostino:1986:GFT

Heath:1986:HMP

Wilson:1986:WSC

ACM:1987:PNA

Chaum:1987:ACE

Deavours:1987:CYT

IEEE:1987:ASF

Odlyzko:1987:ACC

REFERENCES

REFERENCES

IEEE:1990:PSN

Pomerance:1990:CCNb

Anonymous:1991:PIS

Day:1991:PAA

Dorninger:1991:CGA

Nelson:1991:WSC

REFERENCES

[3975] Gustavus J. Simmons, editor. Contemporary Cryptology: the science of information integrity. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

Steele:1992:PA

Swain:1992:PWS

Vouk:1992:PAS

ACM:1993:PPT

Bronstein:1993:IPI

Lenstra:1993:DNF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1996:ASF

IEEE:1996:ASF

Trobec:1996:PIW

Andradottir:1997:PWS

Gell-Mann:1997:QJA
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schueller:2001:MCS

Smelser:2001:IES

Spector:2001:GPG

ACM:2002:PTF

Dror:2002:MUE

REFERENCES

713

Fang:2002:MCQ

USENIX:2002:PBF

ACM:2004:PAA

Gentle:2004:HCS

Niederreiter:2004:MCQ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4068] Christiane Rousseau and Yvan Saint-Aubin, editors. Mathematics and Technology. Springer Undergraduate Texts in Mathematics and Technol-
REFERENCES

REFERENCES

[4079] Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi-Cartigny, editors. *Smart card research and advanced application: 9th IFIP WG 8.8/11.2 International Conference, CARDIS 2010, Passau, Germany, April 14–16, 2010: proceedings*, volume 6035 of *Lecture Notes in Computer Science*. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / Lon-
REFERENCES

IEEE:2010:ISV

IEEE:2010:PIA

Peterson:2010:IEE

ACM:2011:PAI

Gilli:2011:NMO

REFERENCES

REFERENCES

Cooper:2012:HWC

Dunn:2012:EMC

Dyson:2012:TCO

Gentle:2012:HCS

Hwu:2012:GCG

IEEE:2012:PIA

REFERENCES

ACM:2013:SPF

Higham:2015:PCA

Krizhizhanovskaya:2020:CSI