A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 October 2019
Version 1.320

Title word cross-reference

#14 [2275]. #15949 [870]. #4059 [1241]. #8373 [2098].

(0, 1) [1052]. (0, s) [2533, 2920]. (a^n - 1)/(a - 1) [916]. (j, c) [729]. (n^2α) [2486]. (n^kα) [2487]. (να) [2486]. (t, m, s) [2042, 2879, 2048, 2348]. (t, s) [2628, 2042, 2339, 2879, 2048]. (X^2 - Y^2)^1/2 [489]. 0.1(0 × 1)0 × 9 [139]. 1 [736, 874, 128, 3141]. 13 [270]. 16 [270]. 2 [2832, 2117, 3079, 2495, 2811, 2957]. 1, 2, 3 [3472]. 1.13198824... [2510]. 10, 000 [282]. $10.00 [168]. 10^{2857} [2481]. 10^{4355} [2040]. 1200µ [3115]. 128 [3141]. 13 [270]. 16 [270]. 2 [2832, 2117, 928, 2879, 2495, 2811, 2957]. 2, 000 [86]. $24.95 [2085]. 2^-31 - 1 [836, 929]. 2^{15} [2135], 2^{31} - 1

0.57pJ [3242]. 0.57pJ/bit [3242]. '05 [3941, 3945]. '07 [3951]. '08 [3955].

5.0 [1634]. 5.2 [2748]. 500 [3294, 317]. 51st [3972]. 52 [870]. 52nd [3987]. 5th [3956].

6 [3603]. 60th [3788]. 61 [1230]. 623-dimensionally [2333]. 64-bit
Advanced [1451, 1915, 3806, 3970, 3924, 2429, 2504]. Advances [3818, 3836, 3854, 1066, 3904, 3916, 2653, 3875, 2672, 3826, 3828, 3881, 3953, 3839].

Approximations
[143, 2785, 1048, 475, 1001, 3007, 1224, 2976, 3037]. April
[3826, 3797, 3836, 3859, 3970, 3807, 3924, 3809, 3870, 3844, 3845]. Arbitrary
[2196, 812, 1529, 3041, 963, 3753, 3774, 2988, 197, 1691, 3478, 1284, 694, 3523].
Archimedean [3274]. Architecture
[2834, 2780, 3778, 3355, 2072, 3265, 3529, 3740, 1548]. Architectures
[1451, 3711, 3618]. Area
[219x574][238, 1888, 3691, 3047, 2190]. Area-Efficient
[3691, 3047]. areas
[3952, 3921, 2726]. Argument
[669]. arguments
[425]. Arisen [1]. Arising
[1244, 1519, 3495, 3573]. Arithmetical
[293]. Arithmétiques [3]. Arizona
[3820, 3861]. Arlington
[3879, 3913, 3928, 3822, 3869]. ARM7
[3073]. Arnold [2908]. arranged [21]. arrangements [58]. Array
[1378, 3283, 2570, 1364]. Arrays
[1478, 914, 3651, 789]. arrival
[3533, 2553, 3490, 3261]. arrivals [2707]. Art
[1709, 1731, 3687, 342, 3813]. Artefacts
[1565]. Arthur
[3027]. article
[870, 2253]. Artifacts
[2706]. Ascending
[2728]. aSHIIP
[3372]. ASIC
[2777]. Aspects
[3501, 3829]. Asperger
[2962]. ASR
[1230]. Assembler
[2224]. assembly
[3729]. assess [1909]. Assessing
[2139, 2410]. Assessment
[1367, 2093, 2772, 2626, 1290, 1449, 2304]. Assignment
[2093, 2772, 2626, 1290, 1449, 2304]. Associative
[1247, 2746, 3156, 2832, 1004, 21, 253, 419]. Association
[1804, 3805, 165, 3572, 951, 7]. associées [1004]. Assumption
[3514]. assumptions [1489]. Astronomical
[1401]. Asymmetric
[686, 3700]. Asymptotic
[564, 101, 3660, 669, 1528, 783, 2263, 1556, 55, 2266, 399, 3180, 2457, 2553, 1746].
Asymptotically
[2851]. Asymptotiques
[783]. Autocorrelated
[1609, 984, 1844]. Autocorrelation
[1577, 323, 635, 776, 777, 1675, 301, 430, 463]. Autocorrelations
[324, 964]. Autonome
[964]. Autokorrelation
[463]. Automata
[1404]. Automated
[1825]. Automates
[1548]. Automatic
[168, 1186, 2463, 2784, 2479, 768, 161, 2462, 3761, 135, 174, 3791, 2914, 2990].
[1713]. Beta [655, 735, 736, 872, 874, 822, 953, 524, 870, 1236, 313, 830, 832, 3631, 326, 2943, 767, 2047, 1064, 952, 696, 1847]. beta- [326].

Bibliography [593, 480, 612, 863, 1225, 908, 950]. bicompositional [3511].

Biennial [3805]. billion [1890]. billion-record [1890]. Biltmore [3861].

bimodal [3700]. Binomial [655, 2522, 2222, 1333, 1409, 1506, 3558, 1161, 918, 870, 1788, 1212, 606]. Binomial-Truncated [1506].

Black-Box [2843]. Block [2550, 1266, 2489, 2884, 3203, 2717, 1596, 3128].

bodies [32]. body [2811, 1278]. Bonferroni [1183, 762]. BonGCL [1341].

Borwein [3788, 3585, 3586]. both [1742, 2756]. Bound [2049, 1996].

carry-free [1060]. Carus [3572]. cascade [2095]. Case
[2191, 509, 1, 2837, 3180, 1762, 2115, 2295, 3538, 2946, 50, 3155]. cases
[2806, 2817, 2966]. Casinos [3705]. Casuali [964]. cat [2908]. Cathedral
[3935, 3984]. Cauchy [1291, 3519, 2535]. Cautionary [219]. Cautions
[2031]. Cebyshev [1684, 1204]. Cell [3050, 3621, 1326]. Cells
[3780, 2514, 3593]. cellulares [1548]. Cellular [2283, 3079, 1404, 1492, 3092,
1548, 1969, 1246, 3187, 2785, 1405, 1709, 2334, 3330, 3763, 2749, 2589,
2678, 2175, 2425, 2353, 1963, 2435, 2509, 1629, 1228, 1229]. Censored
[843]. Centenary [3982]. Center [3856]. Central
[1083, 2952, 3312, 3461, 3674, 2737, 1240, 2535, 2819]. Centre [3804]. centro
[3495, 3573]. centro-invertible [3495, 3573]. centroids [429]. Century
[2452, 3909, 2770]. Certain [41, 495, 669, 24, 425, 1292, 101, 1871, 2205, 171,
206, 297, 402, 219, 220, 1497, 2555, 1703, 1432, 1519, 689, 1548]. certains
[1548]. Certifiable [3571]. Certification [3389, 359, 309, 613]. Certified
[2200, 502, 3088, 645, 210, 3299, 692]. Chance [2369, 3469, 460, 244].
Change [1868, 3430, 3358, 986]. Changes [2535]. Changing [2696, 1828].
Channel [965, 3288, 1793, 2451, 2777, 3128, 3489]. Chaos [1643, 1661, 2995,
2549, 3096, 2723, 3454, 3939, 2813, 2594, 2595, 3160, 2692, 3053, 3419, 3097,
1806, 2734, 3127, 1531, 3233, 3346, 3369, 3147, 2366, 2830, 3384, 3620].
Chaos-Based [2995, 3454, 2594, 2595, 2692, 3053, 3419, 3233, 2830, 3620].
chao-s-type [3147]. Chaotic [3398, 1459, 3428, 2018, 2566, 2335, 3121, 3340,
3236, 2592, 3142, 3143, 3148, 2762, 3260, 1636, 3273, 3770, 3056, 3183, 3427,
2849, 2538, 2993, 3201, 3308, 3665, 3438, 1403, 3210, 3599, 2793, 3457, 3334,
3612, 1163, 3243, 3254, 3766, 3258, 3154, 3267]. Chapman [2300]. Chapter
[2915, 2942]. Character [2520, 2671]. characterisation [2017].
Characteristic [1186, 1269, 3753, 3774, 968, 1076, 760, 2811, 1961, 2070].
characteristics [196]. Characterization [1989, 862, 3375].
characterizations [1669]. Characterizing [3570]. Characters [2804].
Cheat [3705]. Chebyshev [1411, 3710]. check [886]. Checks [2644]. Chen
[3599, 3612]. Chernoff [2250, 2255]. CHES [3962, 3927]. Chi
[804, 43, 1268, 1349, 3331, 87, 1326, 1147]. Chi-Square [804, 3331, 87].
China [3934, 3977]. Chinese [105, 2682]. Chip [3073, 1454, 3065, 3250].
chips [3907]. chisel [346]. Choice [486, 676, 43, 611, 87, 2545, 2605].
Cholesky [951]. Choose [816]. Choosing [807, 588, 1812, 2731, 945].
CiE [3982]. Cipher
[1870, 2550, 3016, 907, 2592, 1639, 2717, 3093, 3128, 3652, 2500, 3154].
Ciphers
[1452, 2619, 2489, 2884, 3193, 3758, 3458, 1432, 1712, 3329, 1621, 2891].
Circuit [2706, 2886, 3027, 3056, 3159]. Circuits
Circulation [3642]. Cirencester [3946]. City [3835, 3913, 3792, 3891].
[2551, 1506, 96, 2422, 87, 1147, 1794, 1599, 3027]. Classical
[3725, 3280, 3755, 1887, 795, 662, 1692]. Classification [1886]. Classified
[612, 863, 1225]. classifiers [210x574]. Classroom
[393, 567, 294, 505, 383, 360, 363, 2895]. Clearer
[315x562]. Cleve
[2040, 2571]. client
[1941]. client-server
[1941]. Clipped
[611]. Clipper
[2038]. Clipper-like
[2038]. Clock
[1977]. Clock-controlled
[1977]. Close
[2473, 1145, 2649]. Close-Point
[2473]. Closer
[3527]. Cloudier
[3698]. clubs
[1289]. Cluster
[1831, 2258]. Cluster-flipping
[1831]. Clustered
[253]. clustered-rocket
[253]. Clustering
[3202, 887, 3199]. cm
[168]. CMOS
[3294, 3084, 3242, 525, 3141, 3497, 1644, 2768, 1305, 1469, 1773, 1785, 3207, 2130, 940, 1806, 1603, 1935, 2341, 1941, 3768, 3268]. Co
[168, 2174]. Co-evolving
[2174]. Code
[3166, 2108, 3189, 982, 3324, 2170, 3574, 2697, 971, 3206, 1925, 2057, 3787, 1054]. Coded
[3123, 3723]. Codes
[3291, 2619, 1266, 3914, 270, 3679]. Coding
[2566, 481, 3946, 3950, 3848, 427, 894, 3875]. Coefficient
[335x443]. Coefficients
[3070, 1012, 815, 2601]. Coherent
[1384, 3430, 3484]. Coin
[1756]. Coin-Tossing
[1756]. Coins
[2767, 2469]. Collected
[3798, 1969]. collecting
[138]. collection
[3801, 2215]. Collector
[142]. College
[3792]. Collision
[3513, 2758, 2826]. Collision-Resistant
[3513]. colorectal
[3245]. Coloring
[2255]. Columbia
[3862, 3955]. column
[3040]. Combination
[924, 2202, 1082, 1083, 1084, 3020, 2060, 422, 2370, 3201, 2241, 1621, 1223, 2829]. Combinations
[393, 505, 475, 363, 1766, 1091, 2787, 439, 440, 61]. Combinatorial
[619, 3592, 201, 2326, 1523, 2088, 235, 3435, 752]. Combinatorics
[3853, 2713]. Combined
[3204, 3669, 2140, 2403, 2474, 2724, 2682, 1443, 1962, 3491, 3380, 1761, 1893, 1342, 1599, 2142, 2413, 2320, 2406, 2658, 1442, 1627, 2601]. Combiner
[2354]. combiners
[1712]. combinés
[2601]. Combining
[881, 882, 1571, 3189, 2540, 3072]. Coming
[3623]. Commentary
[2141]. Comments
[2768, 3057, 1125, 704, 768, 587, 1737]. Commitment
[1521, 1612]. Commodore
[1119]. Common
[1183, 3777, 501, 1262, 1693, 3015, 1717, 1535, 790, 2132, 1094, 3554, 1820, 1060, 733, 3516, 2525, 2200, 1089, 1686, 889, 756, 712, 895, 1336, 2398, 1819, 2043, 917, 1448, 1638]. Commun
[2010, 2131]. Communicating
[1285]. Communication
[570, 3949, 1285, 1301, 2451, 2777, 3444]. Communications
[495, 2648, 3945, 3875, 2692]. Comp
[2098]. Compact
[1974, 2759, 2980, 3045, 1386, 2468, 3012, 586]. Companion
[3989]. Comparative
[1311, 396, 492, 3191, 2073]. Comparing
[1198, 889, 1792, 2139, 3268]. Comparison
[654, 565, 1029, 3177, 3734, 3601, 1693, 3103, 202, 2250, 595, 1056, 685, 2166,
ENIAC [3638, 86]. Enigma [2619]. Enjoy [3043]. Enough [1809].
ensemble [2908]. Enskog [2619]. ENT [3153]. entanglement [3316].
Enterprise [2747]. Enthusiasm [2700]. entropies [1590, 2590, 2888].
Entropy [2611, 2097, 3633, 3732, 3701, 970, 1992, 576, 3099, 2239, 3708, 3673,
3606, 2736, 2808, 3717, 3684, 3065, 1040, 3637]. Entropy-Based
Environment [2696, 1976, 2798, 1623]. Environments [3292, 3176]. EPC
[3357]. Equal [649, 215, 1145, 2256]. Equalization [3415]. Equally
[625, 1324]. Equation [118]. Equations [2203, 2050, 2276, 1323, 159, 131, 132, 136, 3768].
Equidistributed [499, 3757, 217, 1144, 2143, 2406, 2651, 2333]. Equidistribution
[3399, 1769, 2116, 2213, 2292, 2208, 2625, 182, 1038]. equilibria [3087].
[2632]. Ergodic [3274, 673, 846, 3122]. Erlang [883]. ERNIE [234, 207].
Erratum [487, 2906, 1195, 2010, 672, 2131, 584, 2253, 910]. Error
[630, 982, 767, 1519, 2, 2827, 2180, 1762, 3074, 3914, 3319, 2945, 610, 2824].
error-correcting [3914]. Errors [2062, 2198, 1683, 2023, 2665, 2806, 2810, 2258].
Erwin [1915]. erzeugte [623, 624]. Erzeugter [430, 463]. Erzeugung
[1026, 616, 1202, 978, 1324, 1472, 326, 1847, 868]. Erzeugungen [607].
Escape [1661]. Escrow [2038]. Española [133]. Especially [3676]. Essays
[2200, 2633, 1043, 94, 630, 1510, 587, 85, 684, 1947, 2827, 529, 1003, 1132,
3207, 1411, 2809, 33, 3721, 3700]. Estimations [2154, 2649, 3026].
Estimators [3099, 1918]. Euclid [104, 26]. Euclidean
[1975, 739, 2372, 2484, 663, 493, 1528, 2972, 2066, 2358, 2359]. Eugene [976].
Euro [2632]. EUROCRYPT [3826, 3836]. Europe [3982]. European
[3810]. Evalua [3048]. Evalua-Test [3048]. Evaluating
[1979, 2729, 1000, 219, 220, 3268]. Evaluation [3577, 1461, 1992, 1005, 750,
751, 498, 242, 842, 1589, 2648, 2551, 327, 3606, 3238, 3690, 2422, 2180, 2081,
3047, 836, 1041, 2863, 2946, 1929, 1938, 1107, 948, 98, 417]. evaluations
[2021]. even [3622, 3496]. even-distribution [3496]. Event
[1070, 2090, 2521, 2833, 3276, 1129, 621, 835, 3407, 542, 1329, 1911]. Events
[766, 2845, 1189]. everyone [3532]. Evidence [2793, 3286, 81, 2716, 2962].
Evolutionary [3943, 2530, 3109, 3562, 3931, 3269, 2545, 2900]. Evolvable
[2606]. Evolved [2940]. evolving [3718, 2174]. Exact
[3517, 539, 1136, 3613, 2267, 1368, 1758, 538, 1099, 2967, 2423, 50, 2082].
exact-approximation [1099]. Exactly [3704]. examination [3933].
Example [567]. Examples [1458, 841, 2673, 2895, 1980]. Exceeding [3199].
Excel [2411, 2664, 2878, 3116, 2665, 2806, 3117]. Exceptionally [1870].
exchange [3692]. Exchangeable [3430, 1123]. Excited [3064, 3428].
exclusive [3249]. Execution [1456]. executive [2962]. exemplary [2084].
Exhaustive [1085, 1480, 1194, 1195, 1315, 2135, 2974, 3485, 3486].

Exist [3676, 3034]. Existence [1780, 850, 2741, 3478, 1234, 1373, 1322].

expanded [1726]. Expanding [3715]. Expansion [669, 405, 433].

Expected [1574, 2421, 3731, 1889, 1326, 1221]. expedient [64].

experience [1564, 2192, 925, 2065]. experiences [409].

Experiment [2770, 3656]. Experimental [920, 921, 3170, 3286, 3200, 626, 709, 24, 933, 893, 936, 941, 942, 849, 949, 2752, 3719, 791, 3171, 1896, 1713, 175, 7].

Explicitly [2917]. Explicitly [2283, 3699, 3074, 1768, 1882, 2580, 1997, 2117, 2735, 2171].

Explicitations [2710, 2139, 1621]. exponentiations [1554]. exponents [2793].

Expressing [249]. expression [2021]. Extendable [3680].

Extendable-Output [3680].

Extended [2376, 1137, 1487, 2552, 3671, 1521, 1170, 487, 1237, 3864, 1408, 1794, 3449, 473, 3325, 1216, 2434, 2437].

Extending [1160]. Extends [1793].

Extracting [2907, 2162, 1728]. Extraction [3301, 3606, 3561]. Extractor [3569, 3759]. Extractions [3699, 2465, 3708, 2602, 2590, 2888, 2437, 3837].

Extrapolation [1340]. Extraterrestrial [2054]. Extreme [1682, 8].

Extremely [472, 723, 584, 585, 3496]. extremely-high-throughput [3496].

Face [3252]. Facilities [1598, 344]. Factored [1294]. Factorial [2250].

Factoring [1012, 1151, 1264, 1827, 1742, 2756]. Factorization [1822, 724, 1334, 683, 1164, 1949, 3564].

Family [872, 1309, 2630, 3712, 1546, 3397, 3512, 1575, 2205, 1260, 993, 3618, 2760].

Fastest [3121]. fat [1558]. fat-tailed [1558]. Fault [3697, 3409, 3588, 1216].

FCSR [2831, 3760, 3249]. FCSRs [3510, 3193, 3758]. FDC [1918]. Features
GASPRNG [3591]. Gate [3084, 2570, 2980]. Gates [3041, 3305]. Gateway
[3928, 3822, 3869]. Gathering [2611]. Gauss [1817]. Gaussian
[3045, 2610, 996, 1379, 659, 1075, 3178, 2451, 3632, 1576, 3190, 294,
345, 2777, 3529, 2229, 3640, 2231, 2470, 3314, 2649, 2794, 2868, 2945, 2946,
3107, 3453, 3543, 3461, 3607, 3674, 3711, 636, 1604, 443, 1014, 3649, 854, 360,
2961, 3354, 3355, 3655, 524, 391, 3035, 3145, 3658, 3691, 1840, 3374, 867, 2901,
GCD [1237, 1792, 1160, 1273, 1953, 1956, 2066, 1843]. GCDs [3111].
GECCO [3943, 3931]. GECCO-2001 [3931]. geeks [2734]. gems
[3976, 3986, 3958]. Gen2 [3175, 3357]. généateurs [3785]. General
[923, 491, 1894, 1895, 2014, 3707, 3107, 514, 1056, 827, 3156, 2271, 3860,
704, 3671, 380, 945, 1224, 3030, 3478, 3765, 603]. General-Purpose
[1056]. Generalised
[2133, 875]. Generalization
[436, 235]. generalizations
[3524]. Generate
[1294, 999, 1071, 1857, 2544, 1496, 3621, 1850, 2370, 754, 2129, 1204, 3765,
1595, 1844, 1637, 1971]. Generated
[3164, 3275, 264, 241, 1044, 598, 368, 3497, 1288, 1752, 568, 738, 1666, 430,
463, 571, 3524, 1392, 1475, 239, 748, 1351, 2999, 623, 1901, 1009, 2235, 2023,
2024, 1149, 3457, 2148, 2328, 680, 779, 1159, 1434, 1525, 2490, 3124, 3557, 904,
817, 1017, 3476, 2828, 231, 2269]. Generating
[995, 2084, 2186, 1645, 3725, 2832, 1563, 1754, 877, 922, 3511, 1074, 1859, 2196,
832, 3631, 3292, 267, 194, 1185, 1186, 1573, 2454, 969, 1248, 3077, 1151, 318,
403, 3433, 3434, 470, 242, 199, 1902, 3640, 153, 2470, 1911, 2021, 759, 1694,
1695, 1095, 984, 1804, 3453, 304, 2029, 3461, 248, 848, 250, 251, 277, 278, 306,
330, 770, 943, 1101, 2329, 2482, 1609, 2038, 773, 3551, 812, 3465, 1268, 1349,
202, 203, 514, 2740, 1529, 1532, 3341, 2418, 1942, 2054, 517, 604, 686, 3237,
2168, 1222, 1066, 452, 2175, 1111, 611, 2261, 2505, 2435, 1285]. Generating
[827, 2076, 1116, 696, 2898, 2978, 1366, 1026, 2518, 660, 1865, 1076, 1078, 749,
1890, 1202, 93, 1491, 1791, 3533, 1502, 938, 1799, 896, 1421, 2565, 3543, 767,
329, 224, 252, 280, 331, 509, 1099, 2330, 2483, 3714, 479, 2336, 3611, 898,
2953, 2341, 602, 647, 339, 1828, 606, 2346, 3686, 1064, 858, 957, 2750, 1544,
730, 191, 165, 1632, 3787, 694, 1447, 2512, 3575, 1847]. Generation
[3389, 3769, 994, 1371, 2368, 3749, 1235, 2765, 3624, 829, 531, 735, 736, 871,
872, 873, 874, 3398, 2275, 2834, 2909, 2912, 2191, 1459, 2280, 2447, 2282, 2102,
3412, 831, 740, 2524, 800, 1075, 1244, 742, 214, 536, 461, 1304, 1988, 1471,
2452, 1077, 1187, 2108, 2702, 3015, 619, 3189, 1035, 1309, 1191, 1998, 3635,
2382, 1081, 2297, 2920, 90, 91, 2631, 1888, 2300, 580, 2301, 2708, 3198, 622,
436, 2302, 2542, 320, 2229, 1689, 1900, 2784, 3534, 3086, 2547, 582, 1331, 2644,
325, 2646, 2133, 2647, 1047, 1333, 3536, 3537, 1912, 1593, 758, 806]. Generation
[1504, 2236, 1423, 2558, 2792, 2942, 3103, 808, 3645, 1150, 3779, 246, 3605, 676,
1602, 1707, 3711, 3546, 2149, 1811, 2800, 2034, 2035, 2949, 443,
2354, 2823, 1365, 1545, 1743, 1964, 1112, 3370, 559, 2759, 3039, 1630,
1631, 2180, 1841, 2762, 3719, 787, 1286, 2077, 2441, 2607, 422, 1635, 423, 484,
3619, 828, 1639, 2367, 1026, 1119, 1173, 1288, 1290, 1449, 3576, 2609, 1849, 2443,
3046, 3047, 3722, 1234, 1373, 1293, 3659, 488, 3577, 2086, 3504, 2088, 1644, 3049,
1646, 2273, 3397, 3580, 3696, 2276, 3705, 3583, 1028, 2982, 3506, 3627, 3277].
generators
[3167, 1977, 3697, 3053, 1650, 1122, 1379, 2838, 1029, 2839, 1178, 1979, 1654,
2615, 2698, 2912, 2986, 2373, 883, 1463, 1657, 2840, 1180, 701, 3062, 3630, 1866,
3065, 3587, 3418, 1867, 2106, 2197, 535, 1000, 1872, 3181, 2287, 1306, 1469, 3187,
1575, 401, 1390, 2704, 2205, 2206, 2455, 1473, 3190, 1392, 1393, 1476, 1676, 1313,
2847, 1886, 1887, 2002, 2119, 2215, 2294, 2295, 2384, 2530, 2531, 1683, 1133, 1775, 836,
928, 929, 1194].
generators
[1195, 1315, 1776, 2005, 3733, 431, 1007, 272, 2299, 839, 974, 2851, 2999, 3734,
1322, 3637, 2853, 3435, 2712, 1687, 1781, 752, 468, 1202, 1257, 1324, 2540, 2638,
2714, 2715, 3080, 3594, 3308, 1489, 3309, 1402, 1873, 1784, 1892, 670, 3439,
3340, 1893, 2015, 2227, 2228, 2307, 2545, 3735, 1403, 2230, 3598, 757, 844, 3310,
3209, 1404, 1904, 3444, 1144, 3601, 1690, 2465, 2466, 2935, 1495, 351, 378, 2132,
2860, 1795, 2135, 2233, 2312, 2313, 3447, 979, 3095, 1414, 2787, 894, 1692,
3101, 2400, 3449, 1696, 2864, 2939, 3008, 807, 1341, 1342, 1422, 1599, 1803].
generators
[2140, 2142, 2143, 2145, 2239, 2240, 2320, 2322, 2323, 2405, 2406, 2555, 2557,
2651, 2724, 2789, 2866, 3009, 3011, 3320, 1508, 3736, 1097, 2865, 3105, 3218,
2244, 1700, 3106, 1132, 1265, 846, 2567, 3759, 3321, 3014, 3112, 1213, 2148, 2658,
1927, 2030, 3545, 3222, 3547, 439, 440, 476, 511, 1603, 1708, 1928, 1930, 2731,
2661, 3113, 2331, 2570, 2802, 2803, 3548, 3608, 1710, 1719, 1933, 2332, 2334, 2733,
2950, 3015, 1711, 1815, 772, 3117, 3017, 3328, 2736, 2808, 1713, 1610, 447, 3611,
3224, 3679, 1716, 594, 3021, 3228, 2158, 640, 1103, 1272, 1526, 2492, 2575, 2672].
generators
[1527, 1723, 1724, 3126, 2810, 3335, 3336, 601, 2495, 2812, 2882,
2959, 3339, 1618, 1105, 1274, 1358, 1436, 1726, 1727, 2052, 1359, 2055, 3344,
2960, 1107, 2058, 820, 2345, 1062, 1532, 855, 1063, 3690, 2257, 2062, 1539,
1831, 1363, 1442, 1737, 2820, 3617, 2589, 2678, 1738, 2424, 3360, 3743, 260,
2175, 1955, 1739, 3479, 2753, 2433, 3657, 1250, 3481, 2594, 2595, 2434, 3244,
2822, 2264, 2600, 2757, 2894, 2974, 2975, 3034, 3365, 3485, 3486, 1627, 1839,
1963, 3035, 3618, 3658, 3371, 2896, 2601, 2437, 2602, 1629, 962, 2760, 2687,
2761, 3375, 1068, 2073, 1069, 3747, 2181, 1842]. generators
[3491, 1748, 2006, 2078, 2183, 1968, 454, 3377, 2268, 2979, 3379, 3720, 2692,
3267, 3268, 3693, 3386, 3387, 2281, 3104, 3219, 394, 504]. generators-part
[2594]. Generazione [964]. Genetic
[2546, 2639, 2640, 628, 672, 2940, 3031, 2823, 2899, 2099, 2841, 2661, 3554, 3943].
Gentle [2968, 2447, 2805]. Genuine [3566, 2828]. Geographic [2281]. Geometric
[3505, 1910, 2157, 2760, 2726, 1716, 2603]. Geometrical
[3256, 2028]. Geometrically [2785, 2713, 2728]. Geometry

Guitar [2700].

Hard-coded [3723]. hard/soft [3235]. hardcore [3627]. hardnesses [2687, 2761]. Hardware [1372, 3584, 3662, 3663, 2280, 3529, 2552, 3104, 3711, 1615, 2164, 3355, 3248, 3145, 3787, 3784, 3295, 2514, 1027, 2536, 3200, 3079, 3213, 3927, 2863, 2794, 2868, 2945, 2946, 3543, 3604, 2874, 3758, 3460, 2661, 2901, 3523, 3219].

Hardware-based [3248, 2794]. Hardware-optimized [3190]. Hardware-optimized [3190].

High [2368, 3390, 2096, 3662, 2617, 3065, 3203, 3204, 3211, 3092, 3706, 3978, 2478, 636, 2033, 3648, 3553, 3340, 1165, 3036, 3038, 100, 3494, 1032, 1302, 2616, 2699, 2622, 2701, 2992, 3075, 3190, 2531, 2777, 3306, 3000, 1691, 1905, 2131, 117, 3102, 3215, 128, 3455, 1924, 3460, 3461, 1931, 774, 2340, 225, 2962, 2887, 2972, 1168, 3656, 3484, 121, 2435, 2509, 3496, 2902]. High-density [2617]. high-dimensional [2622, 2701, 2340, 2972, 3656]. High-entropy [3065]. high-functioning [2962]. high-order [3000]. High-Performance [3092, 3211, 3553, 3455]. high-period [2992]. High-Quality [2096, 2531, 1905, 2131, 1924, 2435, 2509]. High-Speed [2368, 3204, 3706, 3340, 3662, 2478, 1165, 2699, 3190, 1691, 117, 128, 774, 225].

Hyatt [3913, 3987, 3909]. Hybrid [3187, 349, 2508, 3248, 3046, 3173, 546].
hyerbolas [2079, 2361]. Hyperbolic [2746, 875, 996, 1764, 1914, 1947].
Hypercube [3833, 910, 911, 1330]. Hypercubes [3847]. Hypergeometric
[1332, 1146]. hyperplane [2205]. Hyperplanes [2207]. hyperspheres
[3272, 2972]. Hypotheses [173]. Hypothesis [434].
I. [869]. IBM [3795, 704, 795, 662, 1398, 1485, 753, 1513, 482, 454].
IBM-Compatible [1485, 1513]. ibre [1026]. IC
[2699, 3426, 3305, 3306, 2344, 2496, 3369]. ICCMSE [3954]. ICGA [3931].
ICGA-2001 [3931]. ICICTA [3954]. IC ICTA [3977]. Icosahedral
[165]. ideal [795, 662]. identical [931]. Identically [2513, 3312]. Identification
[3926, 3971, 3972, 3987]. If [1460]. IFIP [3970]. II
[3916, 1233, 3282, 1673, 1767, 2216, 1784, 1895, 1206, 251, 1933, 2037, 2410,
638, 1611, 680, 1440, 522, 2595, 866, 2180, 1553, 2082]. II.5 [746]. IIASA
Illustrations [7]. Illustrative [2895]. IMA [3915, 3946]. IMACS [3902].
Image [3425, 3473, 3474, 3258, 3267, 3442, 3454, 1431, 3381]. Images
Impact [3167, 3278, 1105, 2899]. Imperfections [630]. implement [73].
Implementation [1853, 3725, 3052, 1376, 1652, 1181, 1981, 2526, 3067, 1875,
3070, 2706, 3192, 1197, 1484, 1328, 2869, 3605, 1925, 3712, 3874, 2669, 594,
719, 3340, 1435, 2676, 1944, 1945, 3568, 1841, 3162, 1372, 2186, 3585, 3586,
3171, 2374, 3179, 2451, 2622, 466, 2777, 2714, 3200, 3079, 1905, 2131, 3314,
3213, 2240, 3460, 2661, 2164, 1623, 1737, 2589, 2678, 3364].
Implementations [1464, 2377, 2403, 3713, 3730, 2320, 2570]. implemented
[1243, 3419, 1687, 1093, 3604, 1100, 3025]. Implementing
[1298, 799, 3757, 1598, 1812, 1052, 1019, 2722]. implicated [3589].
implications [3193, 544]. implicitly [1377]. imply [3196]. Importance
[2996, 1320, 3450]. important [460]. Impossibility [2949, 1608].
Impossible [2668, 2074]. Improper [626, 1193]. improve [2497]. Improved
[1648, 1766, 1884, 2288, 1134, 2458, 2850, 2391, 3708, 2326, 2807, 3227, 2159,
2959, 879, 1996, 3693]. Improvement [3330, 1938, 1162, 2086, 2658, 3357].
Improvements [3595, 770, 3309, 2173]. improves [3722]. Improving
[737, 3182, 1468, 3072, 3308, 278, 3023, 817, 3480, 3383, 3593, 1457]. incident
[3754]. included [2856, 3558]. including [1134, 2031, 1229]. Incomplete
[2614, 2492, 2671, 1215]. incomputability [3501, 3286]. Increase [3332].
Increasing [1038]. Indefiniteness [3059, 3271]. indentation [3499].
Independence
[173, 3399, 2523, 1773, 1885, 2293, 2625, 2005, 1196, 2563, 780, 1352, 1526, 726].
independences [2036, 2037, 2409]. Independent
[2907, 1378, 1072, 1176, 2103, 3519, 2109, 2921, 841, 3639, 2128, 1419, 1505,
982, 512, 411, 944, 1161, 2165, 516, 1535, 390, 310, 915, 2513, 3769, 2515,

1744, 1838, 3161, 3504, 2839, 879, 1652, 1758, 3181, 2932, 3085, 3317, 985, 1421, 2477, 2726, 2796, 3112, 3610, 3464, 1718, 2254, 3562, 2068, 2082.

Low-cost [3610, 3464]. Low-Degree [3323]. Low-dimensional [1758, 2082]. Low-Dimensionality [2917]. Low-Discrepancy [2631, 2338, 1546, 1857, 1218, 1350, 1719, 879, 1652, 2932, 2477, 2726, 1718, 3562, 2068].

Many [2160, 2652, 1165, 652]. Map [3290, 3497, 3770, 3710, 2053, 3243].

Marsaglia [3272, 2273, 2771, 1312, 1313, 1328, 2031, 2052, 1059, 3719, 3747].

2044, 2046, 3495, 3573, 1202. Matrixgeneratoren [1202, 1324]. max [1429].
Maximal [181, 1579, 1417, 810, 903, 2686, 1676, 2712, 3557, 3249].
May [3825, 3830, 3835, 3841, 3846, 3851, 3862, 3871, 3880, 3885, 3893, 3894, 3912, 3919, 3932, 3941, 3955, 3981, 3983]. mbedTLS [3748].
MC [2237]. MCNP [1249, 3303]. MCS [3929]. MCS [3929].
McShane [496]. MCV [723, 782]. Mean [564, 1075, 2785, 587, 2, 529, 1672, 1673, 2707, 1941].
mean-square [1672, 1673]. meaning [432]. Means [3519, 2940, 3032, 2069, 2545, 3330].
Measure [2187, 2309, 2519, 2853, 2865, 2058, 2600]. measurement [3181, 3307]. measurements [546, 3490].
Mechanical [2840]. mechanics [2840]. mechanics [2840].
Memory [2368, 2185, 3659, 3778, 3650, 3780, 3358, 1707, 1712].
Mellon [3809]. Memorial [3907]. Memory [2368, 2185, 3659, 3778, 3650, 3780, 3358, 1707, 1712].
Metamodels [1693, 3516]. Metastability [3146, 2874].
Multiple-Comparison [1638].
Multiple-Recursive [2159, 2044, 2046]. Multiple-Valued [238]. multiples [2601]. Multiplexed [2637]. Multiplication [2139, 1158, 1557].

NIST-Recommended [2861]. Nix [3686]. NJ [2085]. nm [3294, 3604].
249, 2812, 2882, 3682, 1435, 1105, 481, 515]. **number**
[1055, 1274, 1436, 1726, 2052, 945, 1359, 3128, 3763, 2496, 2053, 553, 3467, 2055,
1275, 3344, 782, 2960, 3742, 1106, 603, 2497, 1945, 3347, 257, 1107, 605, 362,
820, 3470, 2345, 1621, 2962, 1062, 1533, 2964, 1063, 2677, 3026, 1623, 908, 950,
1165, 3565, 687, 2500, 3689, 2967, 690, 607, 2062, 2968, 2349, 1539, 3357, 1831,
482, 3473, 1363, 1442, 1626, 1737, 2063, 2172, 2173, 2820, 3617, 2589, 2678,
1738, 1832, 2259, 2424, 3359, 824, 1833, 3743, 3655, 3478, 2175, 2425, 1168, 2593,
2752, 3479, 960, 2753, 2433, 3657, 2506, 206, 3031, 3481, 2594, 2595, 3482, 3244.
Number-theoretic [2249]. **Numbers** [3389, 486, 793, 2903, 2763, 2517,
1643, 2765, 2087, 3579, 2188, 919, 1294, 3398, 2612, 292, 1296, 3508, 922, 2096,
3628, 2614, 236, 181, 740, 2449, 1982, 1183, 214, 2528, 539, 619, 268, 703,
1576, 2379, 1191, 1578, 1582, 1677, 1878, 1995, 2001, 2114, 2207, 2209, 2211,
2918, 2291, 2214, 2296, 2629, 837, 1037, 3302, 48, 318, 403, 841, 3198, 1319,
3433, 3434, 3777, 241, 2394, 2541, 2302, 499, 320, 375, 2544, 2641, 3668, 3208,
1790, 1044, 350, 2644, 324, 2646, 153, 1498, 1797, 3602, 1693, 223, 1695, 1506].
Numbers [547, 630, 1509, 2556, 1697, 26, 246, 676, 1926, 1347, 636, 441, 812,
130, 1269, 448, 598, 851, 852, 2416, 2578, 2680, 1615, 3341, 816, 1619,
3234, 2744, 2745, 356, 386, 1943, 3683, 1438, 3469, 517, 3133, 1829, 519, 453,
341, 3032, 613, 368, 1281, 2179, 528, 1116, 1447, 2365, 885, 1026, 1289, 1368,
1560, 3626, 1453, 1975, 1455, 3580, 1295, 3581, 3583, 3727, 176, 3167, 964,
2983, 1563, 1648, 2984, 2697, 313, 3586, 1564, 2192, 1566, 2769, 738, 1462, 103,
396, 492, 3631, 1865, 2618, 212, 213, 742, 3179, 1246, 2773, 57]. **numbers**
[2450, 461, 1465, 1387, 293, 430, 463, 538, 571, 665, 42, 464, 2992, 1472, 112,
216, 1580, 1581, 1583, 1678, 1680, 1767, 1768, 1769, 1770, 1771, 1772, 1773,
1879, 1880, 1881, 1882, 1883, 1884, 1885, 1996, 1997, 1999, 2115, 2116, 2117,
2208, 2210, 2212, 2288, 2289, 2290, 1312, 2213, 2625, 2383, 3756, 317, 151,
2004, 2120, 2386, 2387, 2388, 239, 1776, 182, 747, 748, 1199, 1318, 2390, 2538,
140, 197, 217, 116, 467, 2928, 977, 183, 623]. **numbers**
[624, 469, 1090, 2460, 3665, 65, 74, 2013, 2225, 2305, 470, 2718, 66, 1204, 978,
1691, 409, 2232, 326, 1497, 20, 1334, 1335, 1009, 2235, 25, 30, 31, 21, 2788,
2315, 302, 2317, 3643, 2023, 2242, 2867, 3670, 1801, 984, 985, 2401, 1922, 2027,
2563, 2870, 3543, 508, 2148, 1426, 1602, 1707, 2030, 3461, 307, 442, 2407, 76,
3714, 2735, 679, 716, 479, 2156, 2336, 592, 717, 2571, 2953, 814, 27, 3554,
1717, 1820, 2740, 680, 779, 780, 781, 815, 853, 1015, 1159, 1219, 1351, 1352,
1354, 1434, 1524, 1525, 1821, 1824, 1935]. **numbers**
[2490, 2491, 2576, 2577, 2881, 3124, 338, 3337, 3338, 1530, 413, 2254, 904, 255,
3902, 3870, 3905, 3881, 3914, 3970, 3956, 3977, 3953, 3839. **Process**
[2029, 3242, 1670, 518, 958, 3258, 1558]. **Process-Voltage-Temperature**
[3242]. **Processes**
[2738, 1521, 2415, 639, 598, 815, 851, 852, 1615, 204, 903, 3559, 2342, 3467,
Pseudorandomness

Pseudorandomness
[2904, 2187, 3285, 3515, 706, 2635, 2459, 3535, 2467, 2548, 2643, 2550, 2560, 2147, 3325, 2489, 1612, 2604, 2519, 2094, 2392, 3761, 3040, 2689, 2085].
pseudozufallsvektoren [1324]. Pseudozufallszahlenfolgen [607].
spezdosluchainykh [346].
PSI [1397]. PUB [1825]. Public
[2280, 890, 2464, 1937, 2498, 3207, 2400, 3737]. Public-Key [890, 2464, 2498].
Publications [259, 389]. Publicly [3068]. Published [3603]. PUF [3744].
PUFs [3782]. Pulse [3428, 1793, 661, 3429]. Pulse-Excited [3428].
Pure [3738]. Purpose [1056]. Purposes [2872].
Quadrature [893, 768, 715, 1014, 391, 2461]. Quality
[2096, 3418, 1790, 2644, 3669, 2033, 1065, 3136, 3146, 2899, 3722, 3167, 3278, 1872, 2531, 1901, 1905, 2131, 3102, 3215, 1924, 3460, 1931, 592, 2423, 2424, 2435, 2509, 2900, 2902].
Quantifiers [3183]. Quantis [3569]. Quantitative [3052, 722, 3967, 3648]. quantity [135].
Quantum-Mechanical [520]. Quantumlike [688]. quark [3900]. 'quasi
Quantis [3569]. Quantitative [3052, 722, 3967, 3648]. quantity [135].
Quasi-Monte [3957, 3963, 3910, 3948, 1834, 3299, 2384, 2041, 851, 1722, 2166, 1543, 3656, 2355, 2827, 456, 3968, 3934, 3318, 3890, 3917, 3938, 879, 1785, 2461, 2653, 2561, 2811, 485, 2792, 3103]. Quasi-Monte-Carlo [98].
quasi-white [2231]. quasicrystals [2638]. Quasigroup [3016].
Quasigroups [3434]. Quasirandom [2517, 1298, 2101, 3414, 1197, 2161, 2814, 1739, 3176, 2722, 1345, 1821, 1824, 1835, 2065, 561]. Quaternion
[3374]. QUATRIÈME [3794]. Quick [441]. Quest
[1321, 3395]. questions [84]. Queue [965, 1919, 1920, 997, 2707, 940, 3257].
Queueing [1375, 1216]. Queuing [1456, 605, 784]. Quick [1993]. Quickly
[1890]. Quicksort [2453]. Quinary [903]. Quincunx [3345]. Quintessential
[3345]. quintic [2997]. quotient [1214]. quotients [3524, 1217].
57

random

residues [569, 891, 13]. Resilient [3699]. Resistant [3513, 3288, 3409, 3298].
Resolution [3339, 844]. Resolution-stationary [3339]. resolving
[3446, 3470]. Resonances [3250]. Resort [3923]. Resource
Response [1592, 940, 1826, 958, 2707, 684]. Response-time [958].
restricted [3447, 3485]. restriction [2892]. Restrictions [3528, 3034].
result [372, 722]. Resulting [29]. Results
[1851, 2279, 1299, 103, 2217, 684, 2002, 2015, 376, 132, 3377, 2266, 2632].
retrieval [270]. Retrospective [500]. return [2618].
Reverse [2894]. Reviews [869, 531, 2281, 314]. Revised
[3944, 1142, 1042, 3950, 3952, 2982, 3008]. revision [3743]. Revisited
[3944, 1142, 1042, 3950, 3952, 2982, 3008]. revision [3743]. Revisited
[2910, 2502, 2095]. Revisiting [2272, 3674]. RFC [1877, 2846]. RFID
[3051, 3175, 3192, 3218, 3610, 3464, 3343, 3251, 3252]. Rhode [3825, 3964].
Right [3255, 3542]. Rigorous [3130, 3563]. Ring
[3507, 3466, 3226, 3383, 3697, 3306, 3758, 3222, 3375]. ring-oscillator-based
[3050, 2903, 3333]. risk-based [3333]. RNA [2899, 2900]. RnaPredict
[2899, 2900]. RNG [1650, 3730, 1131, 3099, 2799]. RNGAVXLIB [3702].
RNGs [3776, 2370, 3633, 3732, 3296, 2732, 2351, 2428, 2431].
RNGSSELIB [3400, 3585]. road [1681]. robots [2598]. Robust
[3165, 536, 2995, 3096, 3099, 3715, 1820, 2680, 3097, 1429, 2507].
Robustness [1307, 1668, 3114, 2163, 3383, 2253]. Rockefeller [3856]. rocket [253].
[1753]. Roots [773]. ROP [3784]. Rosenbluth [2854]. Rotation
[1807, 2069]. Round [2843, 2544, 2639, 2643, 2668, 2841].
[768]. RSA [1292, 2973, 3158]. RSA-Based [2973]. RSAEuro [2092].
rstream [2867]. Rudin [3762]. ruin [935, 3100]. rule [239, 2512]. Rules
[2913, 2309, 2936, 2650, 3707, 2725, 1014, 2741, 3029, 3139, 3241, 2476, 3319,
2477, 2561, 2955, 2957, 3030, 3138, 3478]. Rumor [3666]. Run
[1754, 1760, 1887, 2713]. running [3278]. Runs
[428, 494, 3076, 975, 3232, 559, 788, 2832, 465, 1909, 52, 2728, 2875, 58, 55].
Runs-Down [975]. Runs-Up [975]. Russian [2966, 346, 34]. Russians
[3705]. RV [1207].

S [3057, 314, 976, 1041, 437, 389, 3605, 2081, 3483]. S-3800 [2081].
SAFE [3755, 2060]. Salford [1892]. Salt [3891]. Salzburg [3910]. same
[365]. Sample [699, 1075, 3519, 620, 2923, 58, 783, 35]. Sampler [575, 1990].
siamplers [1760]. Samples
[1185, 1950, 1957, 8, 830, 64, 73, 17, 39, 134, 33, 230]. Sampling
[563, 655, 918, 1120, 1972, 3771, 3517, 833, 1247, 1465, 2111, 269, 744, 745,
1086, 1481, 705, 48, 840, 1200, 502, 3639, 24, 3443, 2019, 1332, 1409, 3704, 845,
1923, 2327, 847, 3649, 1, 645, 3764, 859, 860, 861, 611, 161, 1171, 100, 615,
963, 1291, 1369, 3622, 2084, 870, 12, 1566, 237, 149, 42, 2996, 577, 578, 2007,
2221, 116, 65, 73, 74, 2232, 94, 155, 3315, 25, 30, 31, 1338, 3450, 2479, 1704,
1100, 157, 281, 3678, 27, 2739, 2340, 552, 257, 187, 1277, 2507, 2755, 961, 121,
369, 9, 106, 208, 135, 2076, 3042, 69]. sampling [28]. Sampling-Vectorized
[3764]. San [3960]. San [3951, 3974, 3840, 3886, 3966, 3931, 3911, 3935].
Santa [3792, 3881, 3953]. SAR [3934]. Satisfied [407, 544]. Satisfying
[519, 453, 1316, 3235, 451, 13]. Saturday [3943]. Saturday-Wednesday
[3943]. Saunders [3106]. Savage [2480]. SC’11 [3978]. Scalable
[3184, 3219, 3749, 3636, 3591, 2796, 2484, 2485, 2281, 3104]. Scale
[2184, 3789, 769, 185, 10, 2983, 14, 1673, 95, 3759, 1429, 2156, 1055].
Scale-sensitive [2184]. Scaling [2258, 3253]. Scan [3458]. Scan-based
[3458]. Scatter [3196, 2079, 2361]. scattered [372]. Scattering [3412, 11].
Schedules [654]. scheduling [1800, 3333]. schemata [2606].
schemata-based [2606]. Scheme [3283, 1942, 2977, 3325, 775, 1618, 3474].
Schemes [1778, 2489, 725, 1172, 3752, 1406, 2328, 157]. Schnorr [1536].
School [2772, 3811, 631]. School-Based [2772]. Schwinger [2276]. Sci
[1041]. Science
[3814, 3925, 3819, 3807, 3817, 3820, 3823, 3838, 3843, 3849, 3855, 3865, 3888,
397, 3901, 3922, 3926, 3972, 3978, 3979, 3829, 3821, 3876, 3805, 3949, 3954,
3940, 3809, 3844, 3845, 3827, 3920, 3908, 3939, 3808, 3563, 3867]. sciences
[3930]. Scientific
[3801, 2911, 1125, 3800, 1143, 1731, 2503, 3877, 3194, 2731, 3890, 3806].
Scientists [627, 274, 1203]. scores [429]. Scrambled [3230, 3719, 3135].
Scrambling [2628, 3722]. scramblings [2742, 3747]. screening [3245, 2600].
scroll [3172, 3201]. SEAC [89]. SEAL [2630]. Search
[3521, 972, 1397, 3641, 814, 910, 911, 2622, 3071, 2531, 929, 2933, 710, 1341,
1803, 1519, 2820, 2598, 3485, 3486]. Searches [2626, 2233, 1420]. Searching
[2864, 2823]. Seattle [3846, 3978]. secant [1764]. Second
[3789, 3833, 30, 3927, 3023, 863, 3902, 3851, 3919, 3246]. Second-level [3023].
second-order [3246]. Secondary [2899]. Secret [2842, 1280, 2439]. Secure
[3398, 2696, 3279, 1459, 3514, 2121, 2547, 2648, 3095, 3672, 3115, 2747, 3358,
3033, 1115, 1170, 2693, 3665, 3444, 1406, 2311, 1339, 3130, 3343, 3128, 2964,
2349, 1280, 3571, 2692, 3755, 1856]. Securely [3715]. sécuritaire [1856].
Security [3913, 3401, 3698, 2379, 1877, 2846, 3192, 3527, 2710, 2780, 2643,
3945, 2572, 2738, 2580, 3332, 3681, 3612, 1536, 3136, 2973, 2821, 3891, 3911,
3748, 3980, 2095, 2987, 3853, 3456, 1425, 775, 3227, 3233, 3239, 2889]. Seed
[3724, 2375, 3255, 1124, 2465, 1734, 3373, 3441]. Seeding
[1320, 2335, 3576, 979, 3344]. Seeds [2731, 3741, 1209, 3240]. seeming [2583].
Segmentation [1751, 2946]. Select [2525]. Selected
Self-adaptive [3473], self-assembly [3729], Self-Avoiding [3596, 2539, 1782], Self-Excited [3064], Self-Similarity [3949], self-test [1404, 1492, 2334], self-testing [3566], selfish [338], Sensitive [2184], Sensitivity [2287], Sensor [2922, 3332, 3672], sensors [3482], Seoul [3944], September [3789, 3810, 3962, 3887, 3956, 3864, 3833, 3915, 3800, 3874, 3954, 3898, 3892, 3903, 3804].

Sequence [1460, 1298, 3515, 1573, 1674, 1197, 403, 434, 1496, 2648, 379, 381, 3762, 3024, 1058, 651, 3153, 2367, 885, 1027, 3056, 879, 1659, 1660, 1243, 3066, 36, 462, 540, 572, 3076, 1038, 1199, 2298, 3195, 3200, 3201, 319, 1402, 2932, 844, 3599, 3444, 301, 2722, 1009, 3095, 3213, 981, 352, 1339, 3218, 2478, 632, 713, 714, 2148, 1706, 1348, 2334, 444, 445, 986, 2042, 3612, 3740, 1017, 3346, 1165, 3028, 1735, 1021, 1739, 3243, 49, 2436, 3493, 13, 1228, 3627, 2269].

sequences [785, 1835, 2065, 2068, 1961, 2070, 2176, 2178, 2265, 3249, 1548, 3150, 483, 2510, 561, 1554, 1447, 789, 1637, 1846, 3498, 40, 791, 3853, 3956, 3944, 679, 716].

Simulation-Based [2398]. Simulations

tests
[2760, 1966, 1967, 2075, 2145, 2031, 976]. TESTU01
[2951, 2559, 2655, 3011, 2944, 3012]. Texas [3819, 3911, 3824]. Texture
[792, 932]. Textured [1751]. theatres [1223]. thefts [3589]. Their
[502, 2648, 2473, 2566, 2415, 1026, 3, 3524, 1878, 1586, 3734, 3956, 3944, 2230,
3209, 439, 440, 1613, 2492, 3028, 365, 147, 3481, 2692]. Theme [3845].

Theorem [1378, 2647, 105, 3501, 235, 1039, 3438, 3312, 32, 3461, 3674, 410,
2737, 3122, 641, 1163, 2352, 2682, 1240, 2535, 2952, 2819]. theorem-based
[3438]. Theorems [1973, 3283, 2103, 71, 350, 3603, 3462, 590, 2165, 2675,
683, 566, 1477, 63, 642, 188, 3492]. theoretic [2249]. Theoretical
[757, 3829, 945, 2975, 1749, 3377, 2142, 2254, 647]. Theme [243, 4, 3804].

Time [3405, 663, 2200, 1574, 2219, 2711, 3311, 712, 1698, 1923,
2167, 1646, 1647, 566, 2697, 3053, 2618, 2707, 1889, 754, 1422, 940, 3459, 3675,
986, 2040, 3226, 3127, 1105, 958, 3484, 1961, 2070, 2176, 2177, 1746, 3490,
3261, 19, 1558, 3384, 3721, 1587]. time-dependent [3459, 3721].
time-space [1646]. time-tested [3675]. Times [2481, 918, 1587, 1946, 869].

Tight [1889]. Tile [3729, 2638]. tilings [1007]. Tillich [3129]. Tilted
[3443, 3185]. Time [3405, 663, 2200, 1574, 2219, 2711, 3311, 712, 1698, 1923,
2167, 1646, 1647, 566, 2697, 3053, 2618, 2707, 1889, 754, 1422, 940, 3459, 3675,
986, 2040, 3226, 3127, 1105, 958, 3484, 1961, 2070, 2176, 2177, 1746, 3490,
3261, 19, 1558, 3384, 3721, 1587]. time-dependent [3459, 3721].
time-space [1646]. time-tested [3675]. Times [2481, 918, 1587, 1946, 869].

Threshold [2527, 3609, 3105, 3328]. throughput [3172, 3496]. Tied [2700].

Too [2527, 3609, 3105, 3328]. throughput [3172, 3496]. Tied [2700].

Too [2527, 3609, 3105, 3328]. throughput [3172, 3496]. Tied [2700].

Too [2527, 3609, 3105, 3328]. throughput [3172, 3496]. Tied [2700].

Too [2527, 3609, 3105, 3328]. throughput [3172, 3496]. Tied [2700].

V [2103, 488, 2486, 601, 3798]. v. [239]. VA [3879, 3877, 3928, 2057].
Vacuum [3302, 3359]. Valentin [2103]. valeurs [2145]. Validating [2727].
Validation [1693, 3170, 3171, 3200, 3149]. Valuable [2549, 3622]. Value [564, 395, 3059, 195, 3271, 2039, 1941, 3373].
Values [393, 291, 735, 736, 737, 2522, 3403, 567, 1458, 2279, 2371, 1378, 3283, 314, 1859, 741, 800, 3417, 3517, 3519, 238, 924, 1573, 1248, 2109, 2380, 3077, 2919, 1082, 1083, 1084, 2921, 294, 3430, 2537, 495, 2633, 841, 2222, 668, 436, 625, 545, 669, 3667, 581, 1898, 1902, 582, 2645, 2785, 505, 1048, 1798, 758, 806, 1504, 1419, 1505, 3644, 1506, 1095, 1049, 897, 2569, 2727, 2327, 304, 96, 251, 277, 278, 279, 330, 332, 354, 512, 770, 943, 1428, 1604, 2329, 2482, 2800, 590, 384, 549, 3465, 1268, 1349].

Zufallsvektoren \[1202\]. Zufallszahlen \[978, 1847, 868, 174, 1028, 430, 463, 2390, 624, 326\]. Zufallszahlengeneratoren \[1713\]. zur \[1026, 616, 1202, 1324, 1713, 275, 978, 650\].

References

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling. *Philosophical Magazine*, 50(302):157–175, July/December 1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897.

REFERENCES

Karl Pearson. On a new method of determining “goodness of fit”. *Biometrika*, 26(4):425–442, December 1934. CODEN BIOKAX. ISSN 0006-3444 (print), 1464-3510 (electronic). URL http://www.jstor.org/stable/2331988. According to [369, page 36], this paper introduced the $P_n(\lambda)$ test for “determining whether a sample of size n, supposed to have been drawn at random from a parent population having a known probability integral has probably been drawn at random.” See [27] for its first use on random numbers from a uniform distribution.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1954:RDb

Anonymous:1954:RDc

Anonymous:1954:RDd

Bartholomew:1954:NUS

Hammersley:1954:PMM

Lehmer:1954:DRN

Meyer:1954:GTR

Moshman:1954:GPR

REFERENCES

REFERENCES

[162] Alan Stuart. The efficiencies of tests of randomness, distribution-free methods vs. normal alternatives. Journal of the American Statistical...
REFERENCES

REFERENCES

REFERENCES

Bolshev:1959:TRV

Cashwell:1959:PMM

Cook:1959:RRP

Ehrlich:1959:MCS

195 Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \left(\frac{K}{y}\right) \frac{\partial u}{\partial y} = 0$. *Journal of the ACM*, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Golenko:1959:DCS

Golenko:1959:FRN

Green:1959:ETA

REFERENCES

REFERENCES

Halton:1960:ECQ

Hammersley:1960:MCM

Hunter:1960:NTR

Kleinrock:1960:PTS

Marsaglia:1960:GED

Pakov:1960:GRC

Postnikov:1960:AMR

[230] Donald D. Wall. A random number test for large samples. In Anonymous [3795], pages 7–11. LCCN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

January 1963. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Hoeffding:1963:PIS

Jagerman:1963:AFS

Kolmogorov:1963:TRN

Laughlin:1963:RAR

MacLaren:1963:FPG

Magleby:1963:SNF

Marsaglia:1963:GDR

Marsaglia:1963:RNF

REFERENCES

REFERENCES

[323] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\left\{ \frac{a}{m}j^2 \right\} \), \(\left\{ \frac{a}{m}(j+\tau)^2 \right\} \). *Mathematics of Computation*, 18
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mckinney:1966:CNG

Miller:1966:BRB

Murthy:1966:NER

Pike:1966:RAG

RAND:1966:MRD

Shreider:1966:MCM

Spitzer:1966:RPP

REFERENCES

129

REFERENCES

REFERENCES

[409] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [3800], pages 64–68. LCCN QA76.5 D55 1965.

REFERENCES

REFERENCES

REFERENCES

[430] Ulrich Dieter. Autokorrelation multiplikativ erzeugter Pseudo-Zufallszahlen (German) [Autocorrelation generated multiplicative pseudo-random
REFERENCES

numbers]. Operations Research-Verfahren, 6(??):69–85, ????. 1968. CODEN ORVEAI. ISSN 0078-5318.

REFERENCES

Meijer:1968:DASa

Meijer:1968:DASb

Millenson:1968:HRN

Miller:1968:ACP

Muller:1968:RN

Pillai:1968:NEI

REFERENCES

REFERENCES

[460] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [3801], pages 70–111. LCCN QA1 S565 v. 3.

REFERENCES

[463] Ulrich Dieter. Autokorrelation multiplikativ erzeugter Pseudo-
Zufallszahlen. (German) [Autocorrelation in multiplicatively-generated
pseudorandom numbers]. Operations Research-Verfahren, 6(?):69–85,
???? 1969. CODEN ORVEAI. ISSN 0078-5318.

[464] T. Donnelly. Some techniques for using pseudorandom numbers in com-
1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (elec-
tronic).

[465] D. Y. Downham. The runs up and down test. The Computer Jour-
nal, 12(4):373–376, November 1969. CODEN CMPJA6. ISSN 0010-
4620 (print), 1460-2067 (electronic). URL http://www3.oup.co.uk/
computer_journal/hdb/Volume_12/Issue_04/120373.sgm.abs.html;
http://www3.oup.co.uk/computer_journal/hdb/Volume_12/Issue_04/tiff/373.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_12/Issue_04/tiff/374.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_12/Issue_04/tiff/375.tif;

[466] Bryna M. Fellen. Letter to the Editor: an implementation of the Taus-
CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See
[454].

[467] I. J. Good. How random are random numbers? The American Statis-
tician, 23(4):42–45, October 1969. CODEN ASTAAJ. ISSN 0003-1305
2681742.

[468] L. R. Grosenbaugh. More on Fortran random number generators. Com-
CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

Butler:1970:AAG

Cenacchi:1970:PRN

Dixon:1970:NSE

Downham:1970:SAA

Fuchs:1970:EDR

Good:1970:RPM

Gustavson:1970:FRN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[555] Claus Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit: Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. (German) [Randomness and probability. An algorithmic foundation of probability theory], volume 218 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Niederreiter:1972:MED

Norman:1972:CPG

Overstreet:1972:FVP

Phillips:1972:PGG

Proll:1972:RAA

Ramberg:1972:AMG

160

Sowey:1972:CCB

Sullins:1972:CAP

Vincent:1972:CPA

Ahrens:1973:EFM

Ahrens:1973:NME

Burford:1973:BAC

Diaconis:1973:LMI

[618] Persi Diaconis. Limits of measures of the integers with applications to random number generators and the distribution of leading digits. Mem-
orandum NS-211, Department of Statistics, Harvard University, Cambridge, MA, USA, March 22, 1973.

[625] Shanti S. Gupta, Klaus Nagel, and S. Panchapakesan. On the order statistics from equally correlated normal random variables. Biometrika,
REFERENCES

Hader:1973:IMR

Hamming:1973:NMS

Holland:1973:GAO

Knop:1973:AAR

Kozlov:1973:EEM

Learmonth:1973:NPS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[679] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. *Sémin Théorie des Nombres*, 6(??):??, ????. 1974–1975. CODEN ???. ISSN ???

REFERENCES

[713] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. \textit{Mat. Sb. (N.S.)}, 98(??):??, ???? 1975. CODEN ???? ISSN ????

[714] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. \textit{Math. USSR-Sb.}, 27(??):183–197, ???? 1975. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[739] R. P. Brent. Analysis of the binary Euclidean algorithm. In Traub [3809], pages 321–355. ISBN 0-12-697540-X. LCCN QA76.6 .S9195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959. The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be $O(0.705 \log N)$ for large $N = \max(|u|,|v|)$. See [2448] for an update, and a repair to an incorrect conjecture in this paper. See also [2372], where the worst case complexity is shown to be $O(\log N)$, and the number of right shifts at most $2 \log(N)$.

Atkinson:1976:SAG

Bays:1976:IPR

Blood:1976:CPR

Brent:1976:ABE

Chamayou:1976:DAG

Chambers:1976:MSS
REFERENCES

REFERENCES

Golder:1976:BMM

Golder:1976:SAA

Golder:1976:SAR

Greenwood:1976:DTC

Greenwood:1976:FMI

Greenwood:1976:MTG
J. Arthur Greenwood. Moments of the time to generate random variables by rejection. *Annals of the Institute of Statistical Mathematics (Tokyo)*,
REFERENCES

[761] Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number generation. In Traub [3809], pages 357–428. ISBN 0-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[804] Rudy A. Gideon and John Gurland. Some alternative expansions for the distribution function of a noncentral chi-square random variable. SIAM
REFERENCES

Mitchell:1977:TLM

Mueller:1977:RNG

Musyck:1977:SPG

Niederreiter:1977:PRN

Payne:1977:NRN

Peskun:1977:IAR

Pettitt:1977:KSG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1979. CODEN MNMTA2. ISSN 0026-9255 (print), 1436-5081 (electronic).

Niederreiter:1978:QMC

Niederreiter:1978:STLa

Niederreiter:1978:STLb

Padgett:1978:CCI

Romankevich:1978:MCN

Sakasegawa:1978:GNP

Schmeiser:1978:GVD
Management, Southern Methodist University, Dallas, TX 75275, USA, 1978. ?? pp.

REFERENCES

REFERENCES

REFERENCES

Carnegie-Mellon University, Pittsburgh, PA, USA, March 1979. Published in [922].

REFERENCES

REFERENCES

Monahan:1979:ENM

Moore:1979:RNG

Nadas:1979:PP

Niki:1979:CMF

Niki:1979:MFN

Pangratz:1979:PRN
REFERENCES

REFERENCES

REFERENCES

Atkinson:1980:TPR

Basu:1980:RAEa

Basu:1980:RAEb

Bentley:1980:GSL

Brown:1980:GFG

Davies:1980:SAA

Dempster:1980:CEA

REFERENCES

REFERENCES

Lam:1980:RTD

Lane:1980:RAE

Lindley:1980:RAE

Marsaglia:1980:GRV

O'Brien:1980:PIR

Peskun:1980:TTC

Petkovic:1980:RRV

REFERENCES

REFERENCES

REFERENCES

Rubinstein:1981:RNG

Schatte:1981:RVL

Schmeiser:1981:PRV

[991] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

Tadikamalla:1981:CGG

Tadikamalla:1981:FDO

Ahrens:1982:CGP

Ahrens:1982:GGV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [426].

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

See [823, 927, 924, 1083].

Fishman:1984:EAM

Fishman:1984:SDD

Frederickson:1984:PRT

Frieze:1984:LCG

Gal:1984:OEC

Guinier:1984:RNS

REFERENCES

References

REFERENCES

REFERENCES

Bounas:1985:DDS

Burks:1985:CEM

Clark:1985:PNG

Dowdy:1985:AUM

Dudewicz:1985:RNG

Dudewicz:1985:TMD

Dyadkin:1985:AMN

REFERENCES 237

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1194] George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative congruential random number generators with modulus

Goldreich:1986:HCR

Grothe:1986:MEG

Hamming:1986:NMS

Hosack:1986:UCM

Hultquist:1986:LST

Inoue:1986:MAR
REFERENCES

REFERENCES

Marsaglia:1986:IFC

Nicola:1986:QAF

Niederreiter:1986:DFS

Niederreiter:1986:LDP

Niederreiter:1986:MNI

Niederreiter:1986:PVG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chin:1987:TLP

Chiu:1987:SRS

Chung:1987:RWA

Collings:1987:CRN

Compagner:1987:MLS

Dagpunar:1987:NMS
Diaconis:1987:SAG

Doolen:1987:MCW

Edgington:1987:RT

Eichenauer:1987:MRN

Eichenauer:1987:SQC

Federickson:1987:PMC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1348] M. Matsumoto and Y. Kurita. The fixed point of an \(m \)-sequence and local non-randomness. Report 88-027, Department of Information Science, University of Tokyo, Tokyo, Japan, 1988.

REFERENCES

Ahrens:1989:AMS

Ahrens:1989:HAL

Ahrens:1989:NUR

Aiello:1989:HIG

Allender:1989:SCE

Babai:1989:MPL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

punumber=5823. IEEE order number 89CH2778-9.

5823. IEEE order number 89CH2778-9.

[1424] David J. Lilja. Efficient generation of Poisson distributed random vari-
ables. Technical Report CSRD 900, University of Illinois at Urbana-
Champaign, Center for Supercomputing Research and Development, Urb-
ana, IL 61801, USA, July 31, 1989. 15 pp.

of Cryptology: the journal of the International Association for Crypt-
ologic Research, 1(3):151–158, ???. 1989. CODEN JOCREQ. ISSN
0933-2790 (print), 1432-1378 (electronic).

[1426] N. M. Maclaren. The generation of multiple independent sequences of
DEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL

(print), 1095-7200 (electronic).

robust M-estimates of scale for positive random variables. Journal of the
References

McIntosh:1989:RAE

Meer:1989:SIP

Meier:1989:FCA

Mertsch:1989:PAS

Niederreiter:1989:STC

Paul:1989:IRN

Percus:1989:RNG

[1436] Ora E. Percus and Malvin H. Kalos. Random number generators for MIMD parallel processors. Journal of Parallel and Distributed Com-
REFERENCES

Pickover:1989:PRG

Reber:1989:PNG

Rhee:1989:OPIa

Richards:1989:GRP

Sezgin:1989:EPC

Tezuka:1989:ALC

REFERENCES

[1456] François Baccelli and Zhen Liu. On the execution of parallel programs on multiprocessor systems — a queuing theory approach. Journal of the
REFERENCES

Bays:1990:CIR

Behboodian:1990:EUD

Bernstein:1990:SRN

Beth:1990:CPR

Bhavsar:1990:EDL

REFERENCES

Bralic:1990:AGR

Burford:1990:RNG

Carta:1990:TFI

Dagpunar:1990:SMD

Deak:1990:RNG

Deak:1990:URN

REFERENCES

REFERENCES

REFERENCES

Kemp:1990:NAG

Kemp:1990:PRA

Kinderman:1990:CCG

Korolev:1990:ADR

Koutras:1990:TCN

Krawczyk:1990:HPC

REFERENCES

REFERENCES

Marsaglia:1990:TUR

Maurer:1990:PLR

Micali:1990:EPR

Mitchell:1990:EEA

Mitchell:1990:NKG

Naor:1990:BCU

Norton:1990:AAE

Oommen:1990:GRP

Oyanagi:1990:SPR

Yoshio Oyanagi, Eiichi Goto, and N. Yoshida. Supercomputing pseudo random numbers: proposals on hardware and software. Technical report 90-012, University of Tokyo, Faculty of Science, Dept. of Information Science, Tokyo, Japan, April 1990. 6 pp.

Palmore:1990:CAC

Parrish:1990:GRD

REFERENCES

REFERENCES

REFERENCES

304

Deng:1991:RDR

[1572] L. Y. Deng and C. Rousseau. Recent development in random number
????

Devroye:1991:AGD

[1573] Luc Devroye. Algorithms for generating discrete random variables with
a given generating function or a given moment sequence. SIAM Journal
CODEN SIJCD4. ISSN 0196-5204.

Devroye:1991:ETA

[1574] Luc Devroye. Expected time analysis of a simple recursive Poisson ran-
don variate generator. Computing: Archiv für Informatik und Numerik,
1436-5057 (electronic).

Dohmann:1991:RNG

& Data Analysis, 12(1):129–132, August 1991. CODEN CSDADW. ISSN
sciencedirect.com/science/article/pii/016794739190108E.

Dunweg:1991:BDS

[1576] Burkhard Düngweg and Wolfgang Paul. Brownian dynamics sim-
ulations without Gaussian random numbers. International Journal
of Modern Physics C [Physics and Computers], 2(3):817–827,
September 1991. CODEN IJMPEO. ISSN 0129-1831 (print), 1793-
6586 (electronic). URL http://www.worldscinet.com/ijmpc/02/
0203/S0129183191001037.html.

Eichenauer-Herrmann:1991:ASI

congruential pseudorandom number sequences. Technical Report 1384,
Technische Hochschule Darmstadt, FB Mathematik, Darmstadt, Ger-

REFERENCES

Kao:1991:CRN

Kemp:1991:PRV

Koen:1991:ACB

Komo:1991:DPR

Lai:1991:PNB

Law:1991:SMA

[1998, 1839] about the extremely bad lattice structure in high dimensions of the generators proposed in this paper.

Marsaglia:1991:NGR

Matus:1991:AFD

Maurer:1991:LRP

Maurer:1991:UST

McInnes:1991:IPK

Melamed:1991:TCM

Micalli:1991:EPP

[1610] Silvio Micalli and Claus-Peter Schnorr. Efficient, perfect polynomial random number generators. *Journal of Cryptology: the journal of the Inter-
REFERENCES

Mulmuley:1991:FPP

Naor:1991:BCU

Niederreiter:1991:FFT

Niederreiter:1991:RTR

Oyanagi:1991:SPR

Papoulis:1991:PRV

Pardalos:1991:CTP

REFERENCES

[1622] Terry Ritter. The efficient generation of cryptographic confusion sequences. *Cryptologia*, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748"db=all"order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyšev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.

REFERENCES

Tyurin:1991:TRN

Ugrin-Sparac:1991:SIP

Vose:1991:LAG

Wakefield:1991:EGR

Walsh:1991:MFR

Wheeler:1991:PMN

REFERENCES

Wheeler:1991:SIC

Yamamoto:1991:NEM

Yang:1991:UCR

Zeng:1991:PBG

Agrawal:1992:PAS

Aluru:1992:RNG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Collins:1992:RNG

Dai:1992:BSD

DalleMolle:1992:HOC

DeMatteis:1992:CCD

DeMatteis:1992:CDP

REFERENCES

REFERENCES

[1700] J. Lehn. Pseudorandom number generators. In Gritzmann et al. [3864],

ACM Transactions on Mathematical Software, 18(4):454–455, December

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1703] Sheelagh Lloyd. Counting binary functions with certain cryptographic
properties. *Journal of Cryptology: the journal of the International As-
JOCREQ. ISSN 0933-2790 (print), 1432-1378 (electronic).

[1705] G. Louchard, B. Randrianarimanana, and R. Schott. Dynamic algo-
ISSN 0304-3975 (print), 1879-2294 (electronic).

[1706] N. M. Maclaren. A limit on the usable length of a pseudorandom
REFERENCES

Makino:1992:GSR

Marsaglia:1992:MRN

Mason:1992:ACA

Matsumoto:1992:TGG

Maurer:1992:UST

Meier:1992:CPC

Mertsch:1992:MBB

[1713] Michael Mertsch. *Methoden zur Bestimmung und Begrenzung des Einflusses algorithmischer Zufallszahlengeneratoren auf simulative Untersuchungen*. (German) [Methods for determining and limiting the influence of algorithmic random number generators on experimental investigations], volume 199 of *Fortschritt-Berichte VDI: Reihe 10*. VDI-Verlag,
REFERENCES

[Fisher:1993:OOR]

[Flahive:1993:ICG]

[Galway:1993:ESCb]

[Ganzha:1993:PSM]

[Gokhale:1993:DBC]

[Goldreich:1993:EPG]

Grassberger:1993:CGR

Grassberger:1993:MCS

Hamilton:1993:PNGa

Hamilton:1993:PNGb

Hansen:1993:GPC

Hayes:1993:WF

Hildebrand:1993:RPF

Hormann:1993:GBR

Hormann:1993:PRN

Hormann:1993:QNU

Hormann:1993:TRM

Jebelean:1993:CSG

Kalkuhl:1993:PDC

[1793] Christoph Kalkuhl. Pulse/data channel extends programmable pulse generator applications. *Hewlett-Packard Journal: technical information*
REFERENCES

REFERENCES

REFERENCES

[1826] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. *Communications of the ACM*, 36(7):108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1357, 1464, 1812, 1836]. The authors report that they would now recommend the MCG $x_{n+1} = 48\ 271x_n \mod (2^{31} - 1)$ over their original $x_{n+1} = 16\ 807x_n \mod (2^{31} - 1)$.

REFERENCES

REFERENCES

Annan:1994:RAA

Anonymous:1994:IPR

Bailey:1994:PGR

Barcucci:1994:RGD

Boucher:1994:GPA

Bratley:1994:APG

REFERENCES

REFERENCES

REFERENCES

function; component series; cryptanalysis; multiloop system; computationally secure; personal computers; Spectra Publishing; Power Basic; BASIC.

Couture:1994:LSC

Cuccaro:1994:TTQ

Davis:1994:CRA

DeArmon:1994:RLO

Deng:1994:DIR

Devroye:1994:NHS

November 11, 1994. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

Eichenauer-Herrmann:1994:GIC

Eichenauer-Herrmann:1994:ILB

Eichenauer-Herrmann:1994:SIN

Endl:1994:CRG

Entacher:1994:CNP

Gaines:1994:RGS

REFERENCES

Hennecke:1994:RER

Hildebrand:1994:RWS

Hill:1994:CMR

Holian:1994:PNG

Hoogland:1994:GPR

Hormann:1994:NQR

REFERENCES

355

Hormann:1994:TRM

Hormann:1994:UGD

Huber:1994:PLG

James:1994:RFI

Jimbo:1994:RBB

Jimbo:1994:RBD

Johnson:1994:CUD

[1912] Zaven A. Karian and Rohit Goyal. Random number generation and testing. Maple Technical Newsletter, 1(1):32–37, Spring 1994. CODEN ????? ISSN 1061-5733. URL http://www.can.nl/Systems_and_Packages/Per_Purpose/General/Maple/mtn/mtnv1n1.html. This article describes the Maple-language random-number generator, a multiplicative congruential generator \((x_{\text{new}} = (A \times + C) \mod P)\) with \(A = 427,419,669,081, C = 0, P = 10^{12} - 11,\) and initial seed 1. It was used up to Maple Version 9 (2003). Later versions of Maple instead use the Mersenne Twister.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dwyer:1995:QPR

Edgington:1995:RT

Eichenauer-Herrmann:1995:DBN

Eichenauer-Herrmann:1995:IUB

Eichenauer-Herrmann:1995:NPE

Eichenauer-Herrmann:1995:PNG

Eichenauer-Herrmann:1995:QCP

REFERENCES

REFERENCES

REFERENCES

Schmid:1995:EMC

Sezgin:1995:SRN

Sherif:1995:UWF

Sobol:1995:IQS

Sorenson:1995:ALE

Storn:1995:CO

Struckmeier:1995:FGL

REFERENCES

Sugita:1995:PRN

Takashima:1995:STT

Tezuka:1995:URN

Varhol:1995:ANS

Vattulainen:1995:CSS

Vattulainen:1995:MIF

REFERENCES

REFERENCES

Boppana:1996:BCP

Bromley:1996:QNG

Brunner:1996:PCO

Bryc:1996:BRB

Burthe:1996:FIS

Chandwani:1996:FAP

REFERENCES

REFERENCES

See [2137] for a treatment of the discrepancy of the inversive congruential generator, [2235] for an analysis of lattice structure of inverse congruential generators.

Kato:1996:STN

Kemp:1996:CFP

Koc:1996:ACM

LEcuyer:1996:CMR

LEcuyer:1996:CSA

REFERENCES

[2148] Ping Luo. The two-dimensional structure of the sequence of random numbers generated by multiplicative congruential generators. Journal
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Devroye:1997:RVG

Dyadkin:1997:FEL

Dyadkin:1997:SBM

Eichenauer-Herrmann:1997:ADH

Eichenauer-Herrmann:1997:AEP

Entacher:1997:CSP

Entacher:1997:PPL

Entacher:1997:PPP

Fishman:1997:MCC

Foster:1997:DOT

Gell-Mann:1997:ETZ

Gilks:1997:CAR

[2226] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breitenecker [3902], page ?? ISBN 3-901608-11-7. LCCN ????

[226] Rudolf Lidl and Harald Niederreiter. *Finite fields*, volume 20 of *Encyclopedia of mathematics and its applications*. Cambridge Univer-
REFERENCES

[2247] George Marsaglia. A random number generator for C. Posted to the sci.math.num-analysis news group, September 29, 1997. URL http://mathforum.org/kb/thread.jspa?messageID=1607565. From the posting: “Keep the following six lines of code somewhere in your files. #define znew ((z=36969*(z&65535)+(z¿¿16))¿¿16) #define wnew ((w=18000*(w&65535)+(w¿¿16))&65535) #define IUNI (znew+wnew) #define UNI (znew+wnew)*4.656613e-10 static unsigned long z=362436069, w=521288629; void setseed(unsigned long i1,unsigned long i2)z=i1; w=i2; Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0, 1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Emmerich:1998:SIP

Entacher:1998:BSW

Entacher:1998:LIP

Entacher:1998:LCG

Evans:1998:RVG

Fuster-Sabater:1998:LPS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

423

LEcuyer:1998:URNa

LEcuyer:1998:URNb

Lu:1998:IPG

Lurie:1998:AMS

Malov:1998:RVG

Marsaglia:1998:MPMa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wegenkittl:1998:THS

Wheeler:1998:CX

Williams:1998:ELP

Williamson:1998:CNR

Wolf:1998:RWP

Woodcock:1998:ACR

REFERENCES

Durrant:1999:RND

Eichelsbacher:1999:CPA

Entacher:1999:CSR

Entacher:1999:PRN

Entacher:1999:PSL

Entacher:1999:QMC

REFERENCES

[2397] Benjamin Jun and Paul Kocher. The Intel random number generator. White paper prepared for Intel Corporation, Cryptography Re-
REFERENCES

McCullough:1999:ARS

McCullough:1999:ASP

McCullough:1999:NRE

MRaihi:1999:CAR

Muller:1999:CRV

Naor:1999:STA

REFERENCES

REFERENCES

Soto:1999:RTA

Soto:1999:STRa

Soto:1999:STRb

Soto:1999:STRc

Stauffer:1999:IMT

Sudan:1999:PGX

REFERENCES

REFERENCES

[2442] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.

REFERENCES

REFERENCES

REFERENCES

Goldreich:2000:ITP

Gutierrez:2000:MDI

Hickernell:2000:ELS

Hormann:2000:AAG

Hormann:2000:ARV

IEEE:2000:IPH

Impagliazzo:2000:EPR

Indyk:2000:SDP

Iwata:2000:PAF

Jennewein:2000:FCQ

Juels:2000:HTL

REFERENCES

448

[2481] George Marsaglia. The monster, a random number generator with period over 10^{2857} times as long as the previously touted longest-period one. Technical report ?, ?, Florida State University, Tallahassee, FL, USA, ??. 2000.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Coffman:2001:TPS

Crandall:2001:PNC

Cryan:2001:PGN

Entacher:2001:ORN

Entacher:2001:EOR

Entacher:2001:PQ

REFERENCES

REFERENCES

[2539] Richard J. Gonsalves. Pivot algorithm for self-avoiding walks on a square lattice. Fortran program, 2001. URL http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/Files/Chapter12/saw.f. The program contains code (near the end) for the portable ranlux() generator. It is a linear congruential generator with multiplier $A = 31 167 285 = 0x1db_9335$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

REFERENCES

Lemieux:2001:SCL

Lenczewski:2001:FRV

Levin:2001:SIC

Leydold:2001:SUG

Leydold:2001:UAA

REFERENCES

Li:2001:SPD

Liang:2001:NET

Liang:2001:TMU

Litvak:2001:SPE

Mascagni:2001:PIC

REFERENCES

REFERENCES

[2601] Renée Touzin. Des générateurs récursifs multiples combinés rapides avec des coefficients de la forme $\pm2^p_1 \pm 2^p_2$. (French) [Fast combined multiple recursive generators of the form $\pm2^p_1 \pm 2^p_2$]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2001. xiii + 128 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maîtres sciences (M.Sc.) en informatique option recherche opérationnelle.

REFERENCES

REFERENCES

REFERENCES

[2625] Frank Emmerich. Average equidistribution and statistical independence properties of digital inversive pseudorandom numbers over parts of the
REFERENCES

REFERENCES

Fluhrer:2002:CSP

Friedel:2002:FGR

Futschik:2002:EFE

Gangnon:2002:MDE

Gennaro:2002:CPG

Gilbert:2002:NRP

Gleeson:2002:TRN

Golic:2002:SWM

Guimond:2002:PDP

Hernandez:2002:AGA

Hernandez:2002:GCT

Hertling:2002:SNN

Hormann:2002:FGO

Iwata:2002:RSS

Janke:2002:PRN

Jeruchim:2002:FRV

Jeruchim:2002:MCS

REFERENCES

REFERENCES

LEcuyer:2002:RAR

LEcuyer:2002:SST

LEcuyer:2002:TSL

Leydold:2002:ULU

Leydold:2002:VTD

Luo:2002:CGB

[2659] George Marsaglia. Re: *good* 64-bit random-number generator. Posting to the sci.crypt.random-numbers news group, September 3,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2695] Anonymous. */dev/random*. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like
keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ \texttt{/dev/random} (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in \texttt{drivers/char/random.c} in the Linux source tree.”.

[2700] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fiar uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. \textit{Communications of the ACM}, 46(12):59–61, December 2003.

Deng:2003:SHD

Devroye:2003:NUR

Dichtl:2003:HPO

Dwyer:2003:PRN

Engel:2003:BLE

Epstein:2003:DIT

REFERENCES

REFERENCES

Myers:2003:EAS

Neal:2003:SS

Neuenschwander:2003:GRN

Niederreiter:2003:EGE

Owen:2003:VAS

Papadimitrioul:2003:FSS

PeytonJones:2003:RNa

REFERENCES

Soubusta:2003:ERQ

13th Polish-Czech-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics.

Srinivasan:2003:TPR

Stipcevic:2003:NDR

Sugita:2003:DRW

Tang:2003:SDA

Tang:2003:SPM

Tsang:2003:TCT

Tsoi:2003:CFB

Tu:2003:GRI

Umans:2003:PRG

Vavriv:2003:RNG

Al-Subaihi:2004:SCM

496

REFERENCES

REFERENCES

LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://www.springerlink.com/content/an4492lnlaa5bf0g/.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Arnault:2005:DPN

Balakirsky:2005:GFA

Banks:2005:DES

Barak:2005:MAP

Beliakov:2005:CLR

Beliakov:2005:UNR

REFERENCES

[2841] Julio César Hernández Castro and Pedro Isasi Viñuela. New results on the genetic cryptanalysis of TEA and reduced-round versions of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2896] Alev Topuzoglu and Arne Winterhof. On the linear complexity profile of nonlinear congruential pseudorandom number generators of higher

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hechenleitner:2006:PSG

Hong:2006:DRN

Indyk:2006:SDP

Joe:2006:CGR

Kossovsky:2006:TBU

Kuipers:2006:UDS

[2945] Dong-U Lee, John D. Villasenor, Wayne Luk, and Philip H. W. Leong. A hardware Gaussian noise generator using the Box–Muller method and

McCullough:2006:RT

Miller:2006:MCL

Mueller:2006:SMG

Nau:2006:RN

Nuyens:2006:FAC

Nuyens:2006:FCCa

REFERENCES

REFERENCES

REFERENCES

Atman:2007:ATA

Barker:2007:RRN

Bauke:2007:RNL

Becher:2007:TUA

Bhatnagar:2007:ANB

Brent:2007:SLP

REFERENCES

REFERENCES

Hasan:2007:FSU

Hormann:2007:ITD

Hormann:2007:SGD

Juneja:2007:AFS

Kang:2007:PFS

Kung:2007:RFB

REFERENCES

Matsumoto:2007:FSC

Meidl:2007:LCP

Mislove:2007:DRV

Morgenstern:2007:URR

Nadarajah:2007:LCL

Nekrutkin:2007:AAO

REFERENCES

Panditaratne:2007:TRN

Pareschi:2007:SLN

Pazo-Robles:2007:MPS

Perez:2007:RJI

Rusu:2007:PRN

Santhanam:2007:CLB

REFERENCES

[3033] B. Sunar, W. J. Martin, and D. R. Stinson. A provably secure true random number generator with built-in tolerance to active attacks. IEEE
REFERENCES

REFERENCES

Alimohammad:2008:EAH

Alioto:2008:APE

Alvarez:2008:ETR

Attya:2008:ROC

Bader:2008:DFP

REFERENCES

REFERENCES

REFERENCES

Howes:2008:U

Inaltekin:2008:ANE

Jang:2008:CDH

Joe:2008:CSS

Jovanovic-Dolecek:2008:UMT

Kalos:2008:MCM

Kang:2008:HPP

REFERENCES

REFERENCES

Kiessler:2008:BRB

Killmann:2008:DPR

Kim:2008:TRG

Kolokotronis:2008:CPN

Langdon:2008:FHQ

LEcuyer:2008:CPS

[3103] Pierre L’Ecuyer. Comparison of point sets and sequences for Quasi-Monte Carlo and for random number generation. In Golomb et al. [3956], pages

REFERENCES

[3115] M. Matsumoto, S. Yasuda, R. Ohba, K. Ikegami, T. Tanamoto, and S. Fujita. 1200µ m² physical random-number generators based on SiN

McCullough:2008:ASP

McCullough:2008:MEW

Moler:2008:NCM

Murdoch:2008:VRV

Murphy:2008:CLW

REFERENCES

[3140] Manas Somaiya, Christopher Jermaine, and Sanjay Ranka. Learning correlations using the mixture-of-subsets model. ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3188] Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas. Cryptanalysis of the random number generator of the Windows operating system. ACM
REFERENCES

Dryver:2009:CSE

Edrees:2009:HOZ

Faure:2009:GHS

Feldhofer:2009:HIS

Fischer:2009:SRF

REFERENCES

Galassi:2009:GSL

Gao:2009:MPL

Gauvrit:2009:SRI

Gelenbe:2009:ASN

Gentle:2009:GRN

Guha:2009:EEC

Guinee:2009:EVH

REFERENCES

REFERENCES

REFERENCES

Kanter:2009:OUR

Katti:2009:EHI

Ladd:2009:FRN

Langdon:2009:FHQ

Laracy:2009:RVG

Lee:2009:ERA

Lee:2009:HHA

Lemieux:2009:PNG

Marchi:2009:PPR

Markenos:2009:FIA

REFERENCES

McCullough:2009:AES

Mitchum:2009:DPR

Mustafa:2009:DPR

Nakura:2009:ROB

Nandi:2009:ISA

Nekrutkin:2009:STS

REFERENCES

REFERENCES

Srinivasan:2009:BPV

Sun:2009:CPR

Svozil:2009:TCQ

Tafazzoli:2009:PCE

Tang:2009:FPS

REFERENCES

[3252] Qiaoling Tong, Xuecheng Zou, and Hengqing Tong. A RFID authentication protocol based on infinite dimension pseudo random number
References

Tzeng:2009:RNG

Uchida:2009:FPR

Umlauft:2009:GNS

vanMeel:2009:GFS

Verloop:2009:HTA

I. M. Verloop, U. Ayesta, and R. Núñez-Queija. Heavy-traffic analysis of the M/PH/1 discriminatory processor sharing queue with phase-
REFERENCES

REFERENCES

Wold:2009:OST

Xiao-chen:2009:URN

Yamanashi:2009:SRN

Youssef:2009:IEU

Yu:2009:ESC

Yuhua:2009:EDR

Zhu:2009:WFB

Abbott:2010:QRN

Agapie:2010:RPH

Akhshani:2010:PRN
REFERENCES

[3280] Arno Berger and Theodore P. Hill. Fundamental flaws in Feller’s classical
derivation of Benford’s Law. ArXiv e-prints, May 2010. CODEN ????.

[3281] K. (Kurt) Binder and Dieter W. Heermann. Monte Carlo simulation in
statistical physics: an introduction. Graduate texts in physics. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,

[3282] R. Blacher. A perfect random number generator. II. Rapport de recherche
LJK, Université de Grenoble, Grenoble, France, 2010. URL http://hal.archives-ouvertes.fr/hal-00443576/fr/.

[3283] A. A. Borovkov. Integro-local and local theorems on normal and large
deviations of the sums of nonidentically distributed random variables in
the triangular array scheme. Theory of Probability and its Applications,
54(4):571–587, ???? 2010. CODEN TPRBAU. ISSN 0040-585X (print),
1095-7219 (electronic).

[3284] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudo-
random generators for regular branching programs. In IEEE [3972], pages
year=2010&volume=00&catalog=4244&acronym=focs. IEEE Computer Society order number P4244.

[3285] Joshua Brody and Elad Verbin. The coin problem and pseudo-
randomness for branching programs. In IEEE [3972], pages 30–39.
year=2010&volume=00&catalog=4244&acronym=focs. IEEE Computer Society order number P4244.
REFERENCES

REFERENCES

Chi:2010:GPR

Derflinger:2010:RVG

DeRoover:2010:MPR

deSchryver:2010:NHE

REFERENCES

[3301] Ariel Gabizon. Deterministic Extraction from Weak Random Sources. Monographs in theoretical computer science. Springer-Verlag, Berlin,

Hong Guo, Wenzhuo Tang, Yu Liu, and Wei Wei. Truly random number generation based on measurement of phase noise of a laser. *Physical Re-

Guyeux:2010:IRN

Haitner:2010:EIC

Hongo:2010:RNG

Hotoleanu:2010:RTT

Jaksic:2010:QCL

Jones:2010:IMD

Kang:2010:FIG

Kawai:2010:AOA

Kwon:2010:QRN

Lan:2010:RNG

LEcuyer:2010:CPR

REFERENCES

REFERENCES

[3341] P. J. Pashley and A. Amodeo. Generating random numbers. In Peterson et al. [3973], pages 184–189. ISBN 0-08-044894-1 (e-book), 0-08-044893-3 (set), 0-08-044895-X (vol. 1), 0-08-044896-8 (vol. 2), 0-08-044897-6 (vol. 3), 0-08-044898-4 (vol. 4), 0-08-044899-2 (vol. 5), 0-08-044900-X (vol. 6), 0-08-044901-8 (vol. 7), 0-08-044902-6 (vol. 8). LCCN LB15 .1569

Passerat-Palmbach:2010:RIG

Peris-Lopez:2010:CSP

Plesser:2010:RSI

Proschman:2010:BQQ

Qi:2010:DFR

Saiprasert:2010:MMM

Saiprasert:2010:OHA

Saito:2010:VMT

Segui:2010:AIP

Seznec:2010:PCM

Shen:2010:PQR

REFERENCES

REFERENCES

13(6):593–600, December 2010. CODEN ???? ISSN 0972-0529.

REFERENCES

REFERENCES

[3388] Alastair A. Abbott and Cristian S. Calude. Von Neumann normalisation and symptoms of randomness: An application to sequences of

Abbott:2011:QRN

Al-Abiachi:2011:CDN

Amaki:2011:JAO

Amaki:2011:OBT

Anonymous:2011:QRB

REFERENCES

[3396] Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final random bit and remove any bias caused by imperfections in the noise source and A/D converter.”.

Barash:2011:RPL

Baudet:2011:SOB

Bauke:2011:TRN

Becker:2011:BLC

Behnia:2011:NDM

Bellovin:2011:FMI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3472] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [3978], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????.

Symul:2011:RTD

Tang:2011:ESG

Tang:2011:PES

Taylor:2011:DR

Veillette:2011:TCP

Versolatto:2011:MPR

REFERENCES

Becher:2012:TNN

Beisbart:2012:WMC

Berger:2012:CPR

Bergman:2012:GRV

Bertoni:2012:KSF

Boldyreva:2012:NPG

REFERENCES

Deng:2012:ECS

Deng:2012:LOM

deSchryver:2012:HER

Du:2012:LCP

Dunn:2012:PNG

REFERENCES

Horstmann:2012:JEC

Horvath:2012:ARM

Horvath:2012:EGP

Impagliazzo:2012:PS

Kaczynski:2012:BNR

Kaczynski:2012:NRV

Karakostas:2012:DAC

REFERENCES

[3544] Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.

Miszczak:2012:GUT

Molina-Gil:2012:PGS

Nandapalan:2012:HPP

Nazzal:2012:UGA

Neves:2012:FSN

NIST:2012:RRN

NIST. Recommendation for random number generation using deterministic random bit generators. Special Publication 800-90, National Insti-
tute for Standards and Technology, Gaithersburg, MD, USA, 2012. URL http://csrc.nist.gov/publications/PubsSPs.html#800-90A.

REFERENCES

REFERENCES

[3584] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.

REFERENCES

REFERENCES

Anawis:2014:ARR

Anonymous:2014:CEF

Anonymous:2014:RNG

Barabesi:2014:NUR

Barash:2014:PGA

Baron:2014:LSP

REFERENCES

[Bracher:2014:PRN]

[Braverman:2014:PGR]

[Chen:2014:EES]

[Cheng:2014:GBR]

[Devroye:2014:RVG]

[Dodis:2014:HEY]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Carlet:2015:EBF

Guyeux:2015:ECS

Haeupler:2015:SFD

Hare:2015:MDR

Hill:2015:PRN

Jessa:2015:QRS

REFERENCES

Mandal:2016:FRI

McFarland:2016:MZA

Miller:2016:RPS

Nekrutkin:2016:CBF

NIST:2016:SDR

Ohsaka:2016:DIA

Vigna:2016:EEM

REFERENCES

657

Yamakami:2016:PGA

Yu:2016:GPR

Aljahdali:2017:FIS

Anonymous:2017:DAD

[3723] Anonymous. The DUHK attack: Don’t use hard-coded keys. Web site., October 25, 2017. URL https://duhkattack.com/. From the introduction: “DUHK (Don’t Use Hard-coded Keys) is a vulnerability that affects devices using the ANSI X9.31 Random Number Generator (RNG) in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions, preventing third parties from reading intercepted communications.” See [3730] for details of the attack.

Artemenko:2017:PGO

REFERENCES

[3737] Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth, unicorn, and trx. *International Journal of*
REFERENCES

ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://
cacm.acm.org/magazines/2017/1/211100/fulltext.

ISSN 1084-4309 (print), 1557-7309 (electronic).

ISSN 1862-2976 (print), 1862-2984 (electronic).

REFERENCES

Ermakov:2018:RRQ

Harase:2018:IBM

Lin:2018:FCB

Lin:2018:RNG

Liu:2018:SFS

Meral:2018:PAS

REFERENCES

Quaglia:2019:RCR

Ueno:2019:TBP

Xu:2019:NPF

Zhang:2019:REU

Basuyaux:20xx:RNG

LEcuyer:20xx:PNG

REFERENCES

[3787] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating randomness; source code to other useful crypto modules; miscellaneous. World-Wide Web site., 20xx. URL http://www.cs.berkeley.edu/~daw/rnd/.

REFERENCES

REFERENCES

REFERENCES

[3811] Peter C. C. Wang, editor. Information linkage between applied mathematics and industry: Proceedings of the First Annual Workshop on the
REFERENCES

REFERENCES

REFERENCES

Mehlhorn:1985:SAS

ACM:1986:PEA

Arkin:1986:SOP

DAgostino:1986:GFT

Heath:1986:HMP

REFERENCES

REFERENCES

ACM:1990:PTS

Balci:1990:WSC

Capocelli:1990:SCC

Goldwasser:1990:ACC

IEEE:1990:PAS

REFERENCES

REFERENCES

ACM:1992:PTF

Burr:1992:UEN

Gritzmann:1992:ORE

IEEE:1992:ASF

Pflug:1992:SOP

Simmons:1992:CCS

REFERENCES

REFERENCES

Miola:1993:DIS

Mullen:1993:FFC

Ralston:1993:ECS

Sincovec:1993:PSS

Swartzlander:1993:PSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cohen:1996:FFA

IEEE:1996:ASF

Trobec:1996:PIW

Andradottir:1997:PWS

Gell-Mann:1997:QJA

REFERENCES

REFERENCES

NIST:2000:TAE

Gass:2001:EOR

IEEE:2001:ISF

Koc:2001:CHEa

Peters:2001:WPW

REFERENCES

Schueller:2001:MCS

Smelser:2001:IES

Spector:2001:GPG

ACM:2002:PTF

Dror:2002:MUE

REFERENCES

Fang:2002:MCQ

USENIX:2002:PBF

ACM:2004:PAA

Gentle:2004:HCS

Niederreiter:2004:MCQ

REFERENCES

REFERENCES

REFERENCES

[3960] Christos Alexopoulos, David Goldsman, and James R. Wilson, editors. Advancing the frontiers of simulation: a Festschrift in honor of George

[Belsley:2009:HCE]

[Clavier:2009:CHE]

[LEcuyer:2009:MCQ]

[Paredaens:2009:PTE]

[ACM:2010:PAI]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3989] Nicholas J. Higham, Mark R. Dennis, Paul Glendinning, Paul A. Martin, Fadil Santosa, and Jared Tanner, editors. The Princeton Companion to