A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

05 August 2024
Version 1.393

Title word cross-reference

#14 [2315]. #15949 [892]. #4059 [1266]. #8373 [2137].

(0, 1) [1077]. (0, s) [2578, 2979]. (a^n – 1)/(a – 1) [939]. (j, c) [746]. (n^2 alpha) [2529]. (n^k alpha) [2530]. (nalpha) [2529]. (t, m, s) [2081, 2936, 2087, 2388]. (t, s) [2674, 2081, 2379, 2936, 2087]. (X, Y) [3695]. (X^2 – Y^2)^1/2 [499].
\[\frac{a \pm j^2}{x^{\frac{a}{m}} (j + \tau)^2} \equiv 32 \mod 1 \]
0.57pJ [3314]. 0.57pJ/bit [3314]. '05 [4159, 4163]. '07 [4169]. '08 [4174].

5.0 [1668]. 5.2 [2800]. 500 [3367, 322]. 51st [4193]. 52 [892]. 52nd [4208]. 5th [4175].

6 [3685]. 60th [4210]. 61 [1255]. 623-dimensionally [2373]. 64-bit
4

9th [4191]. = [4010, 4021].

Black [2900]. Black-Box [2900]. Block [2595, 1291, 2532, 2942, 3271, 2766, 1629, 3192]. Blockcipher [2681].

Combinatorial [634, 3672, 203, 2366, 1555, 2127, 238, 3511, 770].
Combinatorialics [4070, 2762].
Combiner [2394].
Combiners [1746].
combinés [2647].
Combination [947, 2242, 1107, 1108, 1109, 3080, 2099, 427, 2410, 3269, 2281, 1654, 1248, 2886].
Combinations [398, 515, 484, 368, 1801, 1116, 2844, 447, 448, 62].
Combined [398, 515, 484, 368, 1801, 1116, 2844, 447, 448, 62].
Combining [903, 904, 1604, 3257, 2585, 3133, 3729].
Comment [295, 1601, 170, 2579, 860, 1066, 956, 1032, 1625, 959, 866, 964, 2926, 965, 869, 2629, 972, 883, 876].
Commentary [2180].
Comments [2821, 3118, 1150, 721, 786, 601, 1771].
Commitment [1553, 1645].
Commodore [1144].
Common [1208, 3904, 511, 1287, 1727, 3075, 1751, 1567, 808, 2171, 1119, 3634, 1856, 1085, 750, 3594, 2570, 2240, 1114, 1720, 911, 774, 729, 917, 1362, 2438, 1855, 2082, 940, 1476, 1672].
Commun [2048, 2170].
Communicating [1310].
Communication [584, 4167, 1310, 1327, 2491, 2833, 3521].
Communications [505, 4163, 4092, 2741].
Comp [2137].
Compact [2011, 2811, 3039, 3105, 1413, 2509, 3072, 600].
Comparative [1337, 401, 502, 3529, 2112].
Comparing [1223, 911, 1827, 2178, 3340].
Comparison [669, 578, 1054, 3245, 3838, 3681, 1727, 3165, 2079, 204, 2290, 610, 1081, 700, 2205, 2799, 1672, 1485, 1684, 1493, 591, 592, 1721, 2923, 2519, 3317, 2738, 462, 809].
Comparisons [1855, 2082, 1476, 1397, 1751, 1856].
compatibility [3663].
Compatible [1514, 1544, 3612].
Competing [186].
compiled [70].
Complete [1291, 1015, 3113, 935, 2398, 2823, 2823].
Completed [953].
Compete [1906, 2696, 3015, 3014, 3016].
Component [2696, 3015, 3014, 3016].
components [2773].
Composite [3246, 30, 2696, 871, 1574, 2103, 3203, 2146, 1700, 1443, 2102, 1869].
Composited [3811].
Composition [1934, 2208, 3708, 1238, 846].
Composition-Alias [2208].
Compound [1270, 2420, 1915, 2039, 2153, 2154, 2247, 2249, 2332, 2949, 3483, 1803, 2038, 2248, 2157, 2158, 2608, 2927, 2621, 80, 2223].
compressed [2077].
compression [4070].
Compromise [3104, 3008].
Compromised [3720, 3836].
COMPSTAT [4059].
Comptes [4010].
Compton [377].
Comput [2048, 1066, 2170].
Computability [4203, 2454, 3301].
Computable [3828].
Computation [4005, 3830, 4161, 4089, 2141, 2900, 1699, 854, 30, 142, 4198, 330, 1946, 4106,
3998, 4091, 2086, 2089, 3850, 4148, 3228, 941, 4007, 3860, 1262, 2413, 1900, 2590, 2507, 2994, 3986, 1852, 1757, 1990, 890, 4173.

Computational
[4210, 4182, 2573, 948, 4206, 2453, 2709, 4074, 344, 3915, 4173, 424, 3790, 2897, 1059, 4059, 3902, 4155, 1515, 557, 1738, 4214].

Computationally
[4083, 3971, 4062].

Computations
[1150, 413, 1168, 3733, 700, 2546, 2133, 2410, 2490, 724, 1430, 1371, 159, 1559].

compute
[2775].

Computer
[576, 670, 986, 1017, 892, 752, 893, 894, 895, 542, 4044, 2749, 1329, 3599, 1154, 4031, 505, 1513, 244, 413, 4024, 4034, 4037, 4040, 4055, 4060, 4066, 4072, 4082, 4105, 4114, 4118, 4139, 4143, 4193, 4208, 1170, 1171, 865, 776, 825, 867, 1535, 729, 1951, 827, 1373, 601, 337, 359, 1037, 4163, 4046, 1079, 4016, 3635, 4212, 1563, 1081, 4038, 4093, 1467, 1086, 3780, 2544, 1659, 4095, 887, 888, 4026, 1139, 712, 428, 539, 1261, 1682, 850, 1263, 759, 1023, 4137, 3132, 990, 991, 472, 994, 761, 762, 764, 2430, 4125, 1006, 1034, 2065, 1237, 1961, 311].

computer
[385, 1124, 454, 830, 1241, 615, 227, 1040, 4025, 1189, 1985, 3644, 1771, 374, 1309, 846, 2430, 4036].

Computes
[4203].

Computing
[4042, 4047, 4052, 4058, 4063, 4068, 4079, 4097, 4102, 4111, 4129, 4136, 4149, 4154, 4159, 4169, 4174, 4186, 4195, 4202, 4209, 2817, 892, 3040, 2970, 375, 467, 3365, 678, 152, 1800, 1812, 953, 2429, 2499, 1287, 960, 4199, 3174, 119, 1038, 1765, 2801, 4167, 3555, 4094, 3566, 4062, 2558, 212, 3243, 2756, 2166, 4197, 4207, 118, 1119, 96, 129, 3394, 2853, 3738, 3183, 4092, 4107, 1587, 139, 4061].

column [469].

Concept [384, 386, 37]. conception [1580].

Conceptual
[3466, 3984].

Concerning [355, 80, 2765, 188]. concert [3019].

Conclusion
[3273, 2449].

Concrete
[2019, 3244, 2947, 2134].

Conditional
[2074, 2075, 2449, 3187]. conditionally [3570]. conditions [2023]. cone [2548].

Conference
[4110, 4057, 4103, 4116, 4011, 4064, 4130, 4069, 4161, 4112, 4203, 4076, 4191, 4050, 4176, 4198, 4140, 4214, 4199, 4067, 4163, 4126, 4172, 4141, 4078, 4030, 4145, 4093, 4416, 4173, 4094, 4164, 4100, 4148, 4086, 4101, 4109, 4357, 4087, 4051, 4048, 4113, 4029, 4098, 4077, 4151, 4175, 4162, 4017, 4244, 4133, 4015, 4107, 427, 4134, 4156, 4128].

Confidence [1727, 39, 86, 1627]. Configurable [3945, 2557]. configuration [1188].

Congruential
[293, 2963, 267, 543, 2020, 2899, 1610, 1611, 1612, 1615, 1711, 2033, 2153, 2249, 2251, 2977, 3137, 820, 995, 1028, 1110, 1509, 3507, 1113, 858, 768, 769, 2434, 2838, 2047, 2591, 2914, 862, 327, 2177, 1538, 1369, 1370, 2442, 1732, 2929, 603, 654, 794, 613, 874, 2456, 2937, 658, 2099, 427, 1050, 1198, 1395, 3824, 2137, 1489, 1055, 1409, 2413, 632, 1691, 3240, 1600, 718, 2021, 320,
Correcting [3973, 4131]. Correction [1266, 3048, 1535, 2402, 1142, 221].
Corrections [270, 2843, 923]. correctly [1925]. Correctness [3857, 1781].
Correlated [2815, 2133, 1097, 141, 640, 3727, 596, 919, 2367, 697, 1, 2561,
431, 349, 1201, 1239, 3178, 2376, 227, 2381, 1983, 2803, 1884]. Correlation
[3466, 2236, 216, 52, 995, 244, 1746, 735, 840, 813, 1786, 497, 677, 1797, 952,
2265, 2345, 557, 481, 2850, 2703, 1126, 1460, 40, 655, 3188, 1760, 663, 1570, 51].
Correlational [813, 677, 462]. Correlations [755, 2569, 676, 2422, 2051, 2876, 1603,
1332, 1498, 2029, 549, 1420, 2425, 141, 1816, 2270, 1830, 1385, 1867, 2299, 3204, 2301, 2480]. Correspondence
[672, 2056, 1847, 2098]. corresponding [708, 1135]. Corrigenda [2137].
Corrigendum [2261, 1034, 2528, 1376, 1420, 2425, 141, 1816, 2270, 1830,
1385, 1867, 2299, 3204, 2301, 2480]. Cosmological [3685, 3540].
Cost [3307, 3228, 1008, 3693, 3542, 2460, 3317]. cost-effectiveness [3317].
Costruzione [469]. Countable [3]. Counter [3137]. Counter-Dependent
[3137]. Counting [2830, 1834, 1737, 2207, 3092, 1888, 1831]. Counts
[3319, 1352]. Couple [2038]. Coupled [3504, 3207, 3503, 3157, 3409, 3206].
Coupling [3391]. Coupon [144, 140]. courbe [35]. course [4080, 4023].
Courses [3257, 265]. Covariance [421, 53]. covariates [3823]. covering
[3741]. coverings [429]. covers [3627]. Cox [3823]. CPU [3871]. CPUs
[3895, 3712, 1769]. crack [2838]. cracked [605]. Cracking
[927, 3425, 3426, 3427, 3428, 838]. Cramér [294]. Crash [3927]. CRAY
[2421, 1386]. CRAY-System [2421]. Create [2749, 1758]. created [2296].
Creating [2870]. creation [2372]. Criteria
[1394, 1477, 2979, 520, 1461, 102, 2362, 2606, 3316]. Criterion [1]. Critical
[2749, 1700, 3944, 3048, 1699]. Crofton [2775]. Cross
[1786, 3504, 3206, 3207, 3503, 557]. Cross-correlation [1786, 557].
Cross-Coupled [3504, 3207, 3503]. cryogenic [1482]. Cryptanalysis
[2743, 2894, 3588, 1325, 1689, 3052, 3053, 3256, 2981, 2676, 2680, 2685, 2840,
2716, 2898]. Cryptanalytic [2354]. CRYPTO
[4045, 4098, 4172, 4056, 3104, 2993, 2592, 3969, 3956, 4004, 4035, 4071].
Crytoanalysis [2686]. Cryptographic
[1257, 1316, 3936, 3350, 2231, 4043, 3119, 3793, 4053, 3249, 1909, 3134,
2331, 1162, 2837, 2990, 3680, 3163, 2929, 1962, 2375, 2625, 1655, 2632,
3429, 3553, 3030, 3315, 3209, 1047, 3992, 2124, 3923, 3116, 3237, 2748,
3667, 3269, 3839, 2766, 1434, 2482, 2512, 3390, 1737, 1238, 2186, 3305,
2458, 2873, 3989, 3991, 3463, 4183, 4144]. Cryptographically
[3231, 3347, 3474, 1022, 1096, 1365, 3418, 3023, 1092, 2742, 3957, 3758, 3983,
1305, 1892]. cryptographically-secure [3983, 1892].
cryptographiquement [1892]. Cryptography
[4065, 2320, 902, 1695, 2666, 3050, 2984, 912, 2505, 2611, 3006, 3401, 1641,
2541, 2206, 2210, 4167, 2638, 4168, 1673, 2418, 4201, 4170, 2432, 4138, 3279,
1724, 1539, 2288, 1973, 2384, 2539, 3424, 2465, 3559, 2640, 3326, 3220, 4164].
Cryptology
[1146, 4045, 4035, 4053, 4054, 4074, 1131, 4084, 4043, 4098, 4071, 4172, 4056].
deployed [3424]. deposition
enhancements [3958]. Enhancing [3992, 3981, 1458]. ENIAC [3726, 87].
Equidistributed [509, 3873, 219, 1169, 2182, 2446, 2697, 2373]. Equidistribution [3475, 1804, 2155, 2253, 2332, 2248, 2671, 184, 1063]. equilibria [3149].
Erratum [497, 2964, 432, 1220, 2048, 687, 2170, 598, 2293, 933].
evaluations [2059]. even [3708, 3574]. even-distribution [3574]. Event [1095, 2129, 2564, 2890, 3348, 2827, 1154, 636, 855, 3483, 553, 1355, 1947].
Events [784, 2902, 1214]. everyone [3612]. Evidence [2850, 3359, 82, 2765, 3021]. evolution [3113, 3221]. Evolutionary [4161, 2575, 3172, 3642, 4148, 3341, 2590, 2958]. Evolvable [2652]. Evolved [2999]. evolving [3816, 2214]. Exact [3595, 550, 1161, 3697, 2307, 1395, 1792, 549, 3960, 1124, 3026, 2463, 51, 2121].

[1892, 322, 1580, 1500, 1001, 622, 890, 759, 1517, 1531, 1532, 1304, 2973, 3049].

generator
[2309, 2960, 1884, 3498, 3601, 2002, 1215, 459, 461, 3215, 3330]. Generatoren
[1050, 1052]. Generators
[1394, 2559, 2310, 2816, 293, 3976, 2122, 2225, 2963, 3346, 1479, 3658, 3826, 3233, 3110, 2658, 2314, 3112, 2745, 2967, 578, 2132, 3350, 4002, 2476, 3098, 3326, 3449, 3650, 3217, 3218, 3452, 3567, 3568, 1585, 3036, 3220, 3335, 3222, 1784, 3574, 3225, 3457, 3039, 3226, 3890, 2740, 2887, 3576, 3460, 2959, 3975, 3706, 1256, 1592].

Generators
[769, 1815, 2759, 2760, 2909, 3607, 3672, 3981, 3675, 2047, 2050, 2165, 3060, 3144, 3873, 3061, 2266, 2591, 2056, 2914, 862, 3384, 3965, 279, 327, 3927, 3928, 2694, 2554, 2177, 3683, 2596, 558, 2597, 1538, 1236, 1369, 1370, 1733, 2183, 2283, 2359, 2365, 2442, 2443, 2444, 2551, 2516, 2517, 2604, 2700, 2701, 3003, 3070, 3072, 3286, 3529, 3735, 3930, 4003, 3803, 1732, 3290, 3170, 2702, 2928, 2929, 3173, 3624, 3396, 2366, 3998, 1633, 2453, 3688, 358, 3810, 3811, 1178, 1180, 1845, 1847, 2780, 2710, 3179, 1640, 2714, 3692, 1461, 1549, 1551, 1748, 1292, 2196, 2617, 2788, 1854, 2624].

 generators
[3657, 2125, 3582, 2127, 1678, 3109, 1680, 2313, 3473, 3660, 3791, 2316, 3583, 3663, 1052, 3041, 3584, 3713, 3349, 3234, 2566, 2014, 3792, 3114, 1684, 1147, 1053, 1406, 2895, 3864, 1054, 2896, 1203, 2016, 1688, 2661, 2747, 2971, 3045, 2413, 905, 1491, 1691, 2897, 1205, 718, 3123, 3717, 1902, 3126, 3898, 3667, 3494, 1903, 2145, 2237, 546, 2388, 1907, 2024, 2146, 2239, 1023, 1908, 3249, 2327, 1342, 1497, 1498, 3251, 1415, 1494, 1495, 3497, 1604, 1702, 2750, 2901, 3132, 3252, 3834, 1334, 1416, 633, 2902, 3254, 3255, 1608, 406, 1417, 2753, 2245, 246, 2495, 1501, 3258, 1419, 1420].

generators
generators
[1830, 2174, 2273, 2274, 2352, 3524, 1002, 3157, 1442, 2844,
Goodness-of-Fit
Gossip
Gossip
Graduate
Grand
Grande
Granular
Graph
Graphic
Graphical
Graphics
Graphs
greater
Greatest
Greece
Greedy
Green
grenades
Grenoble
gretl
Grid
GRNG
Group
Grouped
grouping
Groups
growth
Guangdong
Guarantee
guaranteed
Guarantees
Guest
Guide
Guideline
Guidelines
Guitar
H
H2PEC
Haar
H˚astad
Hadamard
Halcomb
Halftoning
Halton
Hamburg
Hamiltonian
Hammersley
Hamming
Hand
Handbook
hand
Handel
Handel-C
Hard
Hard/soft
hardcore
Hardness
hardnesses
Hardware
Hardware-based
Hardware-optimized
Harmonic
Harvard
harvesting
Harshard
Hash
Hash3
Hashing
HASHPRNG
Hastings
HAVEGE
Having
Hawaii
Heads
heap
heap-ordered
heat
heavy-tailed
Heavy
Hecke
Held
Helios
Helmholtz
Hermite
[3056, 1166]. **Herstellung** [176]. **Heston** [3691]. **Heterogeneous**
[3365, 3961, 2842, 3243, 3307]. **Heuristic** [72, 2088, 3068, 2802, 3441].
Heuristic-Based [2088]. **heuristics** [3034]. **HI** [4192]. **Hidden** [1717, 3890].
hiding [3381]. **hierarchical** [3150, 3005]. **Hierarchy** [2188, 3448, 2969, 1603].
High-density [2663]. **high-dimensional** [2668, 2750, 2380, 3031, 3746].
High-efficiency [3985]. **High-entropy** [3126]. **high-functioning** [3021].
high-order [3059]. **High-Performance** [3154, 3280, 3633, 3532].
high-period [3051]. **High-Quality**
[2135, 3928, 2576, 1941, 2170, 1960, 2475, 2552]. **High-Speed**
[2408, 3272, 3803, 3415, 3754, 2520, 1190, 2748, 3258, 1725, 118, 129, 792, 227].
Higher [2019, 3244, 1698, 2434, 3240, 3522, 1246, 2954]. **Higher-Order**
[1698]. **Highly** [1618, 3017]. **highly-uniform** [3017]. **Hilbert** [3014].
Hill [170, 4152, 891, 1797, 3181]. **Hilton** [4073, 4067]. **Hirschberg** [1886].
Histogram [3491, 1619]. **Histograms** [3698, 1308]. **Historical** [2737].
History [71, 89, 720, 2768, 3841, 3843, 2787, 68, 1382, 374, 3221]. **Hit**
[1788, 2027, 3995, 1794]. **Hit-and-Run** [1788, 1794]. **Hitachi** [2120].
Hitting [2431]. **HK97** [3577]. **Hlawka** [872, 463]. **HMAC** [3857].
HMAC-DRBG [3857]. **Hoare** [4137]. **Hoeffding** [2295]. **Home** [2505].
homogeneous [12, 1620]. **Homomorphism** [517, 2414]. **homomorphisms**
[3230]. **Hong** [4151]. **Honolulu** [4131, 4192]. **honor** [4181, 4210]. **honour**
[4137]. **Hopfield** [3447]. **H"{o}rmann** [2973]. **Horner** [2555, 242]. **Horseshoes**
[2355]. **Horton** [1912]. **Hot** [4124]. **HotBits** [2885]. **Hotel**
[4069, 4013, 4112, 4067, 4039, 4022, 4041, 4086, 4101, 4051, 4126].
Houston [4036]. **Huge** [3076]. **hundred** [1224]. **Hurst** [2339]. **HW** [3173].
Hyatt [4130, 4208, 4126]. **Hybrid**
[3255, 3981, 354, 2551, 3320, 3106, 3240, 557]. **hyperbolas** [2118, 2401].
Hyperbolic [2797, 897, 1019, 1799, 1950, 1983]. **Hypercube**
[4050, 933, 934, 1356]. **Hypercubes** [4064]. **Hypergeometric** [1358, 1171].
hyperplane [2245]. **Hyperplanes** [2247]. **Hyperrectangles** [1798].
hyperspheres [3344, 3031]. **Hypotheses** [175]. **Hypothesis** [442].

I. [891]. **IBM** [4011, 721, 813, 677, 1426, 1514, 478, 2592, 155, 1544, 492, 462].
IBM-Compatible [1514, 1544]. **ibre** [1050]. **IC**
[2748, 3502, 3378, 3379, 2384, 2539, 3445]. **ICCMSE** [4173]. **ICCS** [4214].
ICGA [4148]. **ICGA-2001** [4148]. **ICICTA** [4198]. **icosahedral** [167].
ideal [813, 677]. **identical** [954]. **Identically** [2556, 3385]. **Identification**
[1455]. **Identifying** [3277]. **identities** [1389]. **identity** [2567, 1950]. **IEEE**
[4143, 4192, 4193, 4208]. **If** [1488]. **IFIP** [4191]. **II**
[4133, 1258, 3355, 1707, 1802, 2256, 1819, 1931, 1231, 4214, 254, 1969, 2075,
Investigation [2678, 3984]. Investigations [1665, 1670, 2143, 1747].
investing [3768]. invitation [4018]. Invited [2500, 1633]. Inviting [299, 1633].

L [541, 594, 637]. Laboratory [4005, 4007]. Lag [610]. Lagged
3147, 3941, 3390, 1008, 1449, 2519, 2775, 2853, 3176, 3693, 3542, 1752, 2294, 3642, 2107, 2121. low-cost [3693, 3542]. Low-Degree [3396].
Luby [2124, 1850, 3187]. Luc [248x1304]. Lucas [3512, 2403]. luck [3842].
Lyapunov [2850, 1842]. lying [1314]. LZSS [3360].
multi-stage [159]. multicomputer [1835]. multicyclic [662].
Multidimensional [2914, 2272, 3736, 1244, 1584, 494, 901, 2828, 2501, 2912].
multidimensionally [1169]. Multigroup [290]. Multiloop [1906].
Multimedia [3205]. Multinomial [1099]. Multiparty [1401, 1680, 2900].
multiphase [3991]. Multiple [2415, 241, 152, 3131, 3599, 3600, 2422, 996,
2909, 638, 1283, 508, 1430, 2828, 2501, 2912, 2198, 930, 3430, 2880, 1476, 1672, 3230, 3583, 3123, 3241, 2901, 3132, 3252, 1276, 278, 1527, 2273, 2274, 2353, 3524, 2921, 3068, 1838, 2179, 2181, 2280, 2360, 1454, 1751, 1856, 2082, 2732, 2808, 2809, 2950, 2952, 3033, 3034, 3318, 3441, 3443, 3564, 2647, 3222].
Multiple-Comparison [1672]. Multiple-Recursive [277x299, 2083, 2085].
Multiple-Valued [241]. multiples [2647]. Multiplexed [2683].
Multiplication [2178, 1183, 1590]. Multiplications [2990]. Multiplicative
[267, 543, 406, 820, 995, 1028, 1110, 1341, 1509, 3278, 2177, 1732, 654, 2099, 569, 535, 2308, 2137, 905, 1600, 718, 320, 1699, 438, 1420, 856, 952, 1219, 1220, 555, 1427, 2174, 3912, 2187, 2860, 1010, 3300, 927, 3038]. multiplicatively
[471]. multiplicatively-generated [471]. Multiplicators [496]. Multiplier
[4000, 1776, 2808, 3094, 3563, 2308]. Multipliers [2442, 2516, 1055, 2413,
1898, 1334, 2246, 2495, 685, 3524, 2998, 782, 2877, 3971, 2732, 2950, 3033].
multiplikativ [438, 471]. Multiply [742, 2655, 2239, 2761, 639].
multiply-with-carry [2239, 2761]. Multiprocessor [1484, 1911, 1674].
multiprocessors [4050, 1741]. multiprogrammed [981].
multiprogramming [1152]. multisequences [3889]. mutispin [1300].
Multistep [1294, 1481]. multithreading [3621]. multivariable [223].
Multivariate [2815, 578, 1788, 2972, 1337, 2586, 1934, 1284, 2276, 2774,
3411, 3304, 3430, 3431, 3210, 431, 2892, 3044, 2244, 1176, 2613, 790, 2866,
3412, 3413, 1564, 981, 3885]. Murmur [3558]. musical [3708]. mutual
[923, 924]. Mutually [861]. MUX [3991]. mV [3367]. my [3868].

[3847]. Naor [3736, 2637]. Nash [3149]. National
[4007, 4130, 4156, 134, 4018, 91]. NATO [4023]. Natural
[2149, 1345, 3630, 3770, 524, 2219, 2097]. Nature [3981, 786].
NDSS [4187]. NDSTRNG [3994]. near [2590, 4015]. nearby [2184].
[726]. Negative [2262, 842, 349, 1237]. nei [987]. neighbor [1356].
neighborhood [2635, 2727]. neighborhood-of-four [2635, 2727]. Nested
[996, 2476]. net [2081, 2233]. Netherlands [4053, 4214]. Nets
[2975, 2379, 2936, 2087, 2388, 4189, 2793, 2463, 625]. Netscape [2162].
Network [4187, 2022, 3270, 3610, 2694, 3407, 3327, 2111, 2230, 3499].
networked [3265]. Networking [4199]. Networks
Neuere [631]. Neumann

Normal [398, 634, 323, 368, 43, 1500, 3812, 2616]. notional-distributed [1500]. normalverteilter [1500]. NORTA [2569]. North [4066, 4087].

Number [2354, 2177, 2919, 866, 3942, 2596, 1447, 2276, 332, 480, 2696, 1288, 1631, 1733, 2183, 2283, 2359, 2365, 2443, 2444, 2515, 2603, 2604, 2700, 2701, 2849, 3001, 3003, 3070, 3072, 3165, 3286, 3529, 3735, 3930, 4003, 3944, 3619].
46

1621, 224, 382, 202, 1169, 3681, 1231, 2436, 154, 1523, 1524, 1525, 1941, 2170, 356, 383, 2482, 1070, 2509, 3929, 3523, 2171, 118, 1118, 1172, 2917, 3387, 1830, 1440, 2174, 2273, 2274, 2352, 2353, 3524, 1002, 2175, 2176, 3155, 3156, 3159, 2512, 1442, 2844, 3908, 916, 1004, 1234, 1444, 1726, 779, 3163, 1445, 1628, 1446, 2920, 2440, 3983, 598, 599, 248, 2921, 2998, 3068, 826, 1365, 3389, 1368, 1632, 1838, 1957, 2179, 2184, 2279, 2280, 2281, 2360, 2361, 2362, 2363, 2364, 2600, 2602, 2698, 2846, 2848, 2923, 3071.

3393, 3620, 3843, 3283, 1539, 1174, 3390, 1122, 3164, 3284, 782, 2850, 783, 3633, 3405, 3013, 611, 1010, 655, 1128, 1297, 1647, 1754, 1755, 2083, 2535, 2620, 2720, 3190, 3016, 3303, 3409, 2867, 3410, 3411, 616, 659, 3191, 876, 3697, 3082, 2538, 2869, 2939, 3414, 2203, 3305, 3775, 1463, 1130, 491, 525, 1080, 1299, 1464, 1760, 2091, 968, 1386, 3192, 3881, 2539, 2092, 564, 3545, 2094, 1300, 3419, 800, 3019, 3851, 1131, 618, 2540, 1981, 3422, 260, 1132, 620, 367, 839, 3548, 2385, 1654, 3882, 3021, 1087, 1565, 3023, 1088, 2726, 3086, 1656, 931.

[346, 455, 830, 3694, 793, 3296, 1078, 1127, 3403, 921, 832, 3298, 609, 3633, 3405, 3013, 611, 1010, 655, 1128, 1297, 1647, 1754, 1755, 2083, 2535, 2620, 2720, 3190, 3016, 3303, 3409, 2867, 3410, 3411, 616, 659, 3191, 876, 3697, 3082, 2538, 2869, 2939, 3414, 2203, 3305, 3775, 1463, 1130, 491, 525, 1080, 1299, 1464, 1760, 2091, 968, 1386, 3192, 3881, 2539, 2092, 564, 3545, 2094, 1300, 3419, 800, 3019, 3851, 1131, 618, 2540, 1981, 3422, 260, 1132, 620, 367, 839, 3548, 2385, 1654, 3882, 3021, 1087, 1565, 3023, 1088, 2726, 3086, 1656, 931.

3322, 167, 2954, 3951, 2476, 1663, 1308, 985, 3098, 2812, 3952, 3449, 3451, 1093, 2112, 1094, 3651, 3935, 2553, 3568, 232, 1587, 1878, 3036, 3569, 1782, 2652, 3333, 2117, 2223, 3335, 2065, 462, 2958, 3102, 2554, 3222, 3453, 3573, 3653, 1784, 2406, 2308, 2654, 2739, 3038, 3455, 3225, 3974, 3457, 3093, 3226, 3890, 2740, 2887, 2741, 3339, 3340, 3460, 2959, 3975, 3462, 3706, 1256, 1592, 575, 2960, 3796, 3498, 3601]. **Number-theoretic** [2289]. **Numbers**

[225, 1729, 1537, 558, 645, 1540, 2601, 1731, 27, 249, 691, 1962, 1373, 651, 449,
54

3284, 2441, 2927, 2612, 1841, 3394, 3397, 1634, 3293, 3177, 3691, 3738, 2373, 284, 3542, 2786, 2865, 455, 793, 3772, 3012, 1750, 3404, 2289, 695, 797, 798.

Pseudorandom

Pseudorandomness

Pseudozufallsvektoren

Pseudozufallszahlenfolgen

Pseudosluchainykh

PSI

PSO

PUF

Publications

Publicly

Published

Public-Key

Public-Key-Number

Pseudorandom

Pseudorandom-Number

Public-Key

Public-Key-Number

Pseudozufallsvektoren

Pseudozufallszahlenfolgen

Pseudosluchainykh

PSI

PSO

PUF
PUF-TRNG \[3988\]. PUFs \[3918\]. Pulse \[3504, 1828, 676, 3505\]. Pulse-Excited \[3504\]. Pulse/Data \[1828\]. Pulses \[519, 520, 3335\]. punched \[36\]. punctured \[3772\]. Pure \[3846\]. Purpose \[1081\]. Purposes \[3936, 2929\]. PVT \[3438\]. PVT-variation \[3438\]. pW \[3367\]. pyramids \[1459\]. Python \[3733, 3623, 2369, 2370, 4212\].

Quasirandom \[2560, 1324, 2140, 3490, 1222, 2200, 2871, 1773, 3243, 2771, 1371, 1857, 1860, 1871, 2104, 574\]. Quaternion \[3450\]. quatrième \[4010\]. Quebec \[4097, 4149\]. Query \[449\]. Quest \[1347, 3471\]. questions \[85\]. Queue \[988, 1955, 1956, 1020, 2756, 963, 3329\]. Queueing \[1402, 1241\]. Queueing \[1484, 620, 802\]. Quick \[2031\]. QuickCheck \[3878\]. Quickly \[1926\]. Quicksort \[2493\]. Quinary \[925\]. Quincunx \[3420\]. Quintessential \[3420\]. quintic \[3056\]. quotient \[1239\]. quotients \[3602, 1242\].

R \[2137, 3937, 3718, 3169, 3291\]. R16 \[806\]. R18 \[769\]. R24 \[862\]. R52 \[1108\]. R53 \[1109\]. R57 \[1167\]. R58 \[1181\]. Rabin \[1318\]. Racah \[424\]. Rackoff \[1850\]. Radial \[348\]. Radiation \[338, 11\]. Radical \[324\]. Radical-inverse \[324\]. radio \[497, 481\]. radioactive \[2885\]. Radisson
Randomizer [1505]. Randomly [863, 2087, 664, 2207, 1474, 22, 1834, 3392].
randomly-shifted [3392]. Randomness
[3464, 671, 3936, 3708, 2965, 1021, 127, 3586, 2318, 3423, 3547, 3641, 2633, 3646, 175, 2469, 2547, 1872, 3649, 2955, 2555, 3579, 3891, 3954, 2819, 3471, 3751, 466, 2969, 436, 1687, 213, 3359, 104, 3048, 1327, 3598, 1602, 3251, 42, 3901, 81, 1715, 3670, 440, 143, 117].
randoms [899]. ‘RANDU’ [721].
RANEXP [1932]. RANF [1118]. Range
[2422, 8, 404, 1332, 1498, 1797, 1420, 2339, 1385]. RANGEN [2673]. ranges
[2466]. Rank [1021, 1353, 2995, 3804, 3014, 3016, 3089]. rank-
[3014, 3016]. Rank-1 [2995, 3804]. Rank-based [1353]. Ranking
[2136, 3904, 2163, 3634]. ranks [2368]. ranlip [2892]. RANLUX [2263, 2264, 1941, 2170, 2390].
ranshi [2164]. RANTEST [936]. ranut [2661]. Rapid [1653]. rapides
[2647]. rapidly [74]. rapprochés [2184]. Rare [2827, 3483, 2902].
raspredelenija [35]. Rate [2240, 3766, 626, 3405, 3697]. Rates
[1938, 2172, 1667, 1393, 2521]. Rational
[169, 3079, 2199, 2795, 3613, 1036, 3931]. Ratios [339, 3695, 1504]. RAW
RC6 [2508, 2593]. RCR [3915]. RDRAND [3895]. Re [2706, 3419].
Re-seeding [3419]. reactor [4013, 3505]. read [3978]. read-write [3978].
Reading [10]. Real [3659, 2150, 3139, 3384, 3965, 3562, 728, 2195, 2945].
Real-Time [3384]. Real-Valued [3139]. realistic [3670]. realization
[3476, 3799, 3421, 2804, 2641]. Reasonably [1]. Reasoning [2824, 3201].
receiver [3275]. Rechenautomaten [176]. recherche [1367]. Recipes
[1765, 2312, 2229]. Reciprocal [376, 378, 412, 390, 420, 421, 1365, 2305].
Recommendation [2967, 3041, 3584, 3124, 3636, 3815, 3887].
Recommendations [3936, 2132, 1913, 2903]. Recommended [2918].
Reconfigurable [3054, 3141, 3853, 3884, 3210, 2581, 2931, 3498].
Reconfiguration [3384]. Reconstructing [1342]. Reconstruction [3811].
Record [316, 1926, 4124, 2725]. Recovery [3720, 3836, 3833, 3192].
recrystallization [3993]. rectangle [1395]. Rectangles
[2366, 3655, 2127, 1545]. Recurrence [373, 3652, 951, 1280, 1344, 926].

SIMD-Oriented [3198]. Similar [3879]. Similarity [2323, 4167].
SIMPL [763]. SIMPL/1 [763]. Simple
[1478, 580, 1683, 1202, 1606, 1607, 3759, 1074, 2525, 2374, 2076, 829, 3549, 2636, 2946, 1249, 3463, 2561, 850, 1148, 1795, 1103, 2425, 4117, 1281, 75, 3064, 2181, 2609, 3174, 621, 2473, 3208]. simplest [3198]. simplexes [3879].
Structures

Subgroup

Subharmonic

Sublattice

Sublinear

Subroutine

Subsequence

Subset

Subsets

Subspace

Substitute

Substitution

Substitution-Permutation

Substream

Substructure

Subtle

Subtract

Subtract-with-Borrow

Subtraction

Such

Suggestions

Suitable

Suite

Suites

Summer

Sums

Super

Supercomputer

Supercomputers

Supercomputing

Supercube

Superconductive

Superior

Superior

Supplement

Support

Supported

Supposed

Suppression

Surface

Survey

Survival

SWAC

Swan

Swarm

SWB

Swendsen

Switched

Switched-Capacitor

Switching

Switzerland

SX

Symbolic

Symbolic-Numerical

Symmetric

Symmetrical
3467, 3468, 3792, 3116, 3117, 3237, 3238, 3239, 3268, 3269, 3271, 3279, 2520, 3039, 3114, 3862, 2748, 3724, 2583, 600, 3631, 3694, 573, 629, 668. **Truncated** [2899, 1537, 417, 1474, 853, 1342].

trust [2346].**trustless** [3851].**Trustworthy** [3844].**trx** [3844].**Tsallis** [3026].**Tucson** [4037].**Tunable** [3270, 2842].**Tuning** [2810, 2883].**Tunnel** [3977].**tuples** [2441].**Turán** [2052, 656].**Turbo** [3648, 1608, 1364].**TURBO RAND** [1225].**Turbulence** [1909, 1446].**turbulent** [2682].**Turing** [4203, 3043, 3586, 3899, 4205].**turn** [2510].**Tutorial** [1398, 1154, 1615, 1451, 1086].**Tweedie** [3790].**Twelfth** [4088].**twenty** [2510].**Two** [3104, 2010, 1099, 988, 427, 808, 714, 497, 1485, 1054, 401, 1617, 1712, 1713, 1917, 1918, 2155, 2328, 2329, 1340, 1280, 1344, 2684, 478, 3729, 1119, 3524, 777, 2921, 3068, 1632, 481, 186, 2066, 3394, 2187, 1239, 2784, 735, 3846, 2938, 1085, 2298, 34, 2646, 3033, 3441, 3564, 1472, 2552, 2738, 2309].**Two-bit** [3523].**Two-Dimensional** [3151, 3154, 1842, 54, 714, 2298, 2552, 2309].**Two-Queue** [988].**Two-Sided** [3555].**Two-Source** [3794, 3805].**Two-Stage** [1099].**two-term** [3524, 2921, 3068, 3033, 3441, 3564].**Twofish** [2508].**Type** [2689, 155, 2595, 787, 2942, 886, 2220, 3229, 3993, 404, 1806, 1161, 1518, 356, 699, 3213, 3573, 3653].**Types** [3624, 575].

Übertragungsprinzip [33].**UHF** [3896].**UHF-RFID** [3896].**UK** [4203, 4164].**uklonenijah** [35].**Ukraine** [4089].**Ulam** [3605].**Ulrich** [892].**Ultimate** [2256, 3544].**Ultra** [3455].**Ultra-lightweight** [3455].**ultracomputers** [1299].**Ultrafast** [3722, 3806, 3281, 3943, 3568].**Ultrahigh** [3308].**Ultrahigh-Speed** [3308].**Unavoidable** [1061].**Unbiased** [1097, 1327, 1201, 586].**Unbounded** [2980, 2832, 3063].**uncertain** [3267].**uncertainty** [4150, 1218, 3298].**unclonable** [3831].**Unconditional** [3176].**Unconstrained** [2088].**Uncorrelated** [1486, 298].**Uncovering** [2457].**Underlying** [863].**Understanding** [2996, 3777].**unequal** [140].**unicorn** [3844].**Unified** [2010, 2039, 1541, 3969, 290, 2000, 567, 3100].**Uniform** [811, 1398, 1787, 1688, 403, 1415, 1495, 2751, 1273, 680, 1429, 825, 516, 690, 2997, 1451, 1957, 2283, 2364, 2365, 2444, 2603, 3529, 1074, 783, 2702, 3292, 358, 1544, 1077, 1642, 3079, 2084, 1572, 2110, 3096, 3446, 427, 3337, 3342, 3789, 1397, 2224, 1786, 1261, 1052, 2661, 905, 401, 3047, 3757, 2326, 1023, 1499, 1702, 1703, 2668, 2750, 1213, 1922, 2043, 3837, 764, 1433, 3377, 1351, 1519, 685, 2991, 246, 1825, 382, 2271, 1232, 777, 85, 2282, 3528, 730, 731, 2610, 252, 2373, 607, 656, 739, 923, 924, 3017, 121, 1386, 661, 367, 970, 623, 3700, 1660].

References

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling. *Philosophical Magazine*, 50(302):157–175, July/December 1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897.

80 REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[94] Preston C. Hammer. The mid-square method of generating digits. In Householder et al. [4006], page 33.

REFERENCES

REFERENCES

REFERENCES

[141] E. C. Fieller, T. Lewis, and E. S. Pearson. Correlated random normal deviates; 3,000 sets of deviates, each giving 9 random pairs with correlations 0.1(0 × 1)0 × 9, volume 26 of Tracts for computers. Cambridge University Press, Cambridge, UK, 1955. 60 pp. LCCN QA47 .T7 no.26. Compiled from Herman Wold’s Table of random normal deviates (Tract no. XXV) by E. C. Fieller, T. Lewis, and E. S. Pearson: Random normal deviates.

REFERENCES

REFERENCES

REFERENCES

178 J. Bass and J. Guilloud. Méthode de Monte-Carlo et suites uniformément denses. (French) [The Monte Carlo Method and sequences of uniformly-
REFERENCES

[Bolshev:1959:TRV]

[Cashwell:1959:PMM]

[Cook:1959:RRP]

[197] Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (K/y)(\partial u/\partial y) = 0$. *Journal of the ACM*, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

[Ehrlich:1959:MCS]

[Golenko:1959:DCS]

[Golenko:1959:FRN]

REFERENCES

527–537, October 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[232] Donald D. Wall. A random number test for large samples. In Anonymous [4011], pages 7–11. LCCN ???

REFERENCES

REFERENCES

REFERENCES

REFERENCES

December 1962. CODEN NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic).

[295]
REFERENCES

119

Barnes:1963:CEG

Bolshev:1963:APT

DeMatteis:1963:SAP

Firestone:1963:CNU

Fisher:1963:STB

Franklin:1963:DSR

Gabai:1963:DCSa

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
</table>
REFERENCES

[328] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\left\{ \frac{a_m j^2}{m} \right\}, \left\{ \frac{a_m (j + \tau)^2}{m} \right\} \). Mathematics of Computation, 18 (86):211–232, April 1964. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

Kronmal:1964:EPN

Liu:1964:MFS

MacLaren:1964:FPG

Marsaglia:1964:CMG

Marsaglia:1964:FPG

Marsaglia:1964:MPR

Marsaglia:1964:RDA

Marsaglia:1964:RNV

[339] George Marsaglia. Ratios of normal variables and ratios of sums of variables. Mathematical note D1-82-0348, Mathematics Re-

Marsaglia:1964:RVC

Marsaglia:1964:SPIa

Marsaglia:1964:SPIb

Onicescu:1964:NSA

Poore:1964:CPG

Sobol:1964:PPR

Stockmal:1964:CPR

REFERENCES

REFERENCES

REFERENCES

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See certification [628] and remarks [380, 391].

Pike:1965:ARN

Pike:1965:CAGb

Potter:1965:CNS

Pyke:1965:S

Reeves:1965:AUR

Rosenberg:1965:CNN

Scheinok:1965:DFR

Seshadri:1965:RVW

[370] V. Seshadri. On random variables which have the same distribution as their reciprocals. *Canadian mathematical bulletin = Bulletin canadien
REFERENCES

Shapiro:1965:DAA

Stoneham:1965:SDT

Tausworthe:1965:RNG

Teichroew:1965:HDS

Chaitin:1966:LPC

Chiang:1966:ERR

Dyadkin:1966:SRE

REFERENCES

REFERENCES

REFERENCES

Shreider:1966:MCM

Spitzer:1966:RPP

Springer:1966:DPI

Stroud:1966:GQF

Zaremba:1966:GLP

Albert:1967:CNN

Azorin:1967:BRB

REFERENCES

Behboodian:1967:EAV

Canavos:1967:CAT

Chambers:1967:RNG

Coveyou:1967:FAU

Csorgo:1967:NPS

deBalbine:1967:NRP

Downham:1967:MCP

REFERENCES

REFERENCES

[414] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [4017], pages 64–68. LCCN QA76.5 D55 1965.

VanGelder:1967:SNR

Westlake:1967:URN

White:1967:EDC

Wyner:1967:RPC

Adhikari:1968:DMS

Anonymous:1968:GCM

Ayoub:1968:EEK

REFERENCES

REFERENCES

REFERENCES

Miller:1968:ACP

Muller:1968:RN

Pillai:1968:NEI

Polljak:1968:APN

Show:1968:AGR

Sibuya:1968:GDE

REFERENCES

[468] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [4018], pages 70–111. LCCN QA1 S565 v. 3.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See remark [618].

Dixon:1970:NSE

Downham:1970:SAA

Fuchs:1970:EDR

Good:1970:RPM

Gustavson:1970:FRN

Haber:1970:NEM

149

REFERENCES

995, November 1970. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

Vincent:1970:CGT

Vincent:1970:GTR

White:1970:FDC

Zaremba:1970:DII

Ashford:1971:BRG

Berman:1971:GGD

Beyer:1971:LSM

REFERENCES

REFERENCES

[568] Claus Peter Schnorr. *Zufälligkeit und Wahrscheinlichkeit: Eine algorithmische Begründung der Wahrscheinlichkeitstheorie*. (German) [Randomness and probability. An algorithmic foundation of probability theory], volume 218 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,

Ahrens:1972:CMS

Alam:1972:AVM

Barr:1972:CMN

Basu:1972:ITF

Behboodian:1972:CNS

Beyer:1972:LSR

Broemeling:1972:BPD

REFERENCES

REFERENCES

Forsythe:1972:NCMa

Forsythe:1972:NCMb

Frazer:1972:BOM

Garside:1972:BRBa

Heathcote:1972:TGF

Hurst:1972:AAG

Kirschmann:1972:CR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[626] Nathan O. Sokal. Optimum choice of noise frequency band and sampling rate for generating random binary digits from clipped white noise.

Sowey:1972:CCB

Sullins:1972:CAP

Vincent:1972:CPA

Ahrens:1973:EFM

Ahrens:1973:NME

Burford:1973:BAC

REFERENCES

[646] G. P. Learmonth and P. A. W. Lewis. Naval Postgraduate School random number generator package LLRANDOM. Report NP555LW73061A, Naval Postgraduate School, Monterey, CA, USA, 1973. The shuffling algorithm proposed in this report does not lengthen the period, and only marginally reduces the lattice structure of linear congruential generators,
despite the apparently tiny difference with the [754] algorithm: see [1485] for a comparison, both mathematical, and graphical.

[653] E. J. McGrath and D. C. Irving. Techniques for efficient Monte Carlo simulation. Vol. II. Random number generation for selected probabil-

Neave:1973:MUB

Neuman:1973:CSS

Niederreiter:1973:BEB

Niederreiter:1973:MTD

Overstreet:1973:QCM

Overstreet:1973:RNG

REFERENCES

Tsuda:1973:NIF

Vincent:1973:RGT

Adam:1974:CLS

Ahrens:1974:CMS

Alam:1974:SNT

Beasley:1974:CSR

Block:1974:CBE

REFERENCES

Brent:1974:AAG

Chen:1974:GRV

Cohn:1974:CRP

Coldwell:1974:CDS

Collins:1974:CTE

Dahlquist:1974:NM

Dieter:1974:URN

REFERENCES

REFERENCES

[694] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. *Sémin Théorie des Nombres*, 6(?):??, ????. 1974–1975. CODEN ????. ISSN ???

REFERENCES

REFERENCES

[709] I. M. Sobol’. Pseudorandom numbers for the construction of discrete
Markov chains by a Monte Carlo method. Ž. Vyčisl. Mat. i Mat. Fiz.,
14:36–44, 266, 1974. ISSN 0044-4669.

numbers with floating-point representation. Electronics Letters,
10(25–26):533–534, December 12, 1974. CODEN ELLEAK. ISSN 0013-5194
stamp/stamp.jsp?tp=&arnumber=4245313.

with arbitrary frequency distributions. Electronics Letters,
10(8):127–128, April 18, 1974. CODEN ELLEAK. ISSN 0013-5194 (print), 1350-
jsp?tp=&arnumber=4245054.

[712] N. D. Wallace. Computer generation of gamma random variates with
non-integral shape parameters. Communications of the ACM,
17(12):691–695, December 1974. CODEN CACMA2. ISSN 0001-0782 (print),
1557-7317 (electronic).

[713] J. Whittaker. Miscellanea: Generating gamma and beta random vari-
ables with non-integral shape parameters. Applied Statistics,
23(2):210–214, 1974. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (elec-
tronic).

[714] Y. Akeda and M. Hori. Numerical test of Palásti’s conjecture on two-
March 27, 1975. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (elec-
tronic). URL http://www.nature.com/nature/journal/v254/n5498/
pdf/254318a0.pdf.

variables. Canadian mathematical bulletin = Bulletin canadien de
REFERENCES

REFERENCES

REFERENCES

M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Mat. Sb. (N.S.)*, 98(??):??, 1975. CODEN ????, ISSN ???.

M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Math. USSR-Sb.* 27(??):183–197, 1975. CODEN ????, ISSN ???.

REFERENCES

Newman:1975:MIF

Niederreiter:1975:DDM

Niederreiter:1975:QVR

Pohl:1975:MFP

Pollard:1975:MCM

Rosenblatt:1975:MSS

Schaufele:1975:API

REFERENCES

REFERENCES

Anderson:1976:PRR

Atkinson:1976:CGB

Atkinson:1976:SAG

Bays:1976:IPR

Blood:1976:CPR

Brent:1976:ABE

complexity is shown to be $O(lg N)$, and the number of right shifts at most $2 lg(N)$.

REFERENCES

1976. CODEN SIMUD5. ISSN 0163-6103. URL http://www.or.unc.edu/research/temp/tech70b.html.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[860] Donald P. Gaver. Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments: Comment.
REFERENCES

[Geller:1978:SEW]

[Hoaglin:1978:SAR]

[Hollander:1978:TDU]

[Holmlid:1978:UCP]

[Kemp:1978:CGB]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schrage:1979:MPF

Sobol:1979:ESS

Sobol:1979:SSH

Tanemura:1979:RCP

Tripathi:1979:RFI

vanLint:1979:PRA

Wang:1979:MND

REFERENCES

REFERENCES

216

Marsaglia:1980:GRV

OBrien:1980:PIR

Peskun:1980:TTC

Petkovic:1980:RRV

Ribeiro:1980:MOS

Rice:1980:DQF

Rubin:1980:RAE

REFERENCES

[987] F. Battaglia. Riproduzione delle autocorrelazioni nei metodi di generazione di numeri pseudo-casuali normali. (Italian) [Reproduction of

Calo:1981:DAT

Deak:1981:EMR

Devroye:1981:CGP

Devroye:1981:CGR

Diaconis:1981:GRP

Dudewicz:1981:EBT

REFERENCES

Landauer:1981:RNF

Menzefricke:1981:BAC

Nekrutkin:1981:JSM

Preece:1981:DFD

Rubinstein:1981:RNG

Schatte:1981:RVL

223

REFERENCES

[1014] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

REFERENCES

REFERENCES

REFERENCES

[1054] Lenore Blum, Manuel Blum, and Michael Shub. Comparison of two pseudorandom number generators. In Chaum et al. [4035], pages 61–

REFERENCES

REFERENCES

REFERENCES

Plumstead:1983:ISPb

Pokhodzei:1983:OMM

Purdy:1983:CFA

Ripley:1983:CGR

Ripley:1983:LSP

Rosenbaum:1983:RNG

Sakasegawa:1983:SRS

REFERENCES

REFERENCES

[1110] George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative congruential random number generators with
REFERENCES

REFERENCES

Marsaglia:1984:EAM

Marsaglia:1984:FEI

Marsaglia:1984:GCM

Modianos:1984:RNG

Niederreiter:1984:PSP

Papoulis:1984:PRV

Paulsen:1984:IRN

REFERENCES

REFERENCES

REFERENCES

[1162] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptologic applications of random functions (extended abstract). In
REFERENCES

REFERENCES

Reichert:1985:LLT

Riesel:1985:PNC

Saito:1985:HSS

Sawitzki:1985:ARN

Shanthikumar:1985:DRV

Smith:1985:VHP

Thesen:1985:EGU

REFERENCES

REFERENCES

[1227] H. Grothe. Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren. (German) Matrix generators for generating uniformly distributed
REFERENCES

REFERENCES

Nicola:1986:QAF

Niederreiter:1986:DFS

Niederreiter:1986:LDP

Niederreiter:1986:MNI

Niederreiter:1986:PVG

Panny:1986:NHM

Santha:1986:GQR

REFERENCES

Zeisel:1986:SAR

Zielinski:1986:QRN

Agnew:1987:RSC

Aldridge:1987:CRR

Allender:1987:SCE

Anderson:1987:GRO

Barbu:1987:NFM

Gh. Barbu. A new fast method for computer generation of gamma and beta random variables by transformations of uniform variables. *Statisti-
REFERENCES

260

REFERENCES

Chiu:1987:SRS

Chung:1987:RWA

Collings:1987:CRN

Compagner:1987:MLS

Dagpunar:1987:NMS

Diaconis:1987:SAG
Doolen:1987:MCW

Edgington:1987:RT

Eichenauer:1987:MRN

Eichenauer:1987:SQC

Federickson:1987:PMC

Fullerton:1987:NPN

Fushimi:1987:MAP

REFERENCES

Beauchemin:1988:GRN

Binder:1988:MCS

Bratley:1988:AIS

Brickell:1988:CSR

Brillhart:1988:FHP

Chor:1988:UBS

[1328] Bruce Jay Collings and G. Barry Hembree. Addendum to “Initializing
generalized feedback shift register pseudorandom number generators”.
0004-5411 (print), 1557-735X (electronic). See [1209].

of t and normal distributions. *Communications in Statistics: Simulation
and Computation*, 17(2):653–661, 1988. CODEN CSSCDB. ISSN 0361-
0918.

catdir/enhancements/fy0638/88003212-d.html; http://www.loc.gov/catdir/
enhancements/fy0638/88003212-t.html.

[1331] A. De Angelis. A class of N-dimensional probability density func-
tions suitable for random generation. *Computer Physics Communications*,
52(1):61–64, December 1988. CODEN CPHCBZ. ISSN 0010-4655
science/article/pii/0010465588901725.

[1332] A. De Matteis and S. Pagnutti. Parallelization of random number gener-
ators and long-range correlations. *Numerische Mathematik*, 53(5):595–
608, August 1988. CODEN NUMMA7. ISSN 0029-599X (print), 0945-
3245 (electronic).

In Wegman et al. [4061], pages 624–626. URL http://www.dtic.mil/
dtic/tr/fulltext/u2/a208838.pdf.

[1334] V. Denzer and A. Ecker. Optimal multipliers for linear congruential
pseudo-random number generators with prime moduli. *BIT (Nordisk tid-
skrift for informationsbehandling)*, 28(4):803–808, December 1988. CO-
DEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-9125 (elec-
REFERENCES

[1341] G. S. Fishman. Multiplicative congruential random number generators with modulus 2^β: An exhaustive analysis for $\beta = 32$ and a partial anal-

[1348] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. In IEEE [4060], pages 12–24. CODEN ASF-
REFERENCES

[1367] Pierre L’Ecuyer and François Blouin. BonGCL, un logiciel pour la recherche de bons générateurs à congruence linéaire. (French) [BonGCL,
software for the search for good linear congruential generators]. Technical Report DIUL-RT-8803, Computer Science Department, Laval University, Ste-Foy, Qu´ebec, Canada, 1988.

REFERENCES

[1395] Lothar Afflerbach and Rainer Weibächer. The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Paul:1989:IRN

Percus:1989:RNG

Pickover:1989:PRG

Reber:1989:PNG

Rhee:1989:OPIa

REFERENCES

REFERENCES

REFERENCES

[1500] H. Döring. Erzeugung normalverteilter Zufallszahlen mit 16-bit-PC. (German) |Generation of normally-distributed random numbers on an

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vinogradova:1990:ECF

Wallace:1990:PRG

Wang:1990:DRV

Wang:1990:VDC

Williamson:1990:PAN

Wolf:1990:AFM

Wong:1990:RNG

Michael Berblinger and Christoph Schlier. Monte Carlo integration with quasi-random numbers: some experience. *Computer Physics Communication*...
Berndnicov:1991:MCS

Bittner:1991:NSP

Chambers:1991:SEM

Clementson:1991:CRN

Compagner:1991:DR

Compagner:1991:HCR

REFERENCES
REFERENCES

314

REFERENCES

Kao:1991:CRN

Kemp:1991:PRV

Koen:1991:ACB

Komo:1991:DPR

Lai:1991:PNB

Law:1991:SMA

[2036, 1875] about the extremely bad lattice structure in high dimensions of the generators proposed in this paper.

Marsaglia:1991:NGR

Matus:1991:AFD

Maurer:1991:LRP

Maurer:1991:UST

McInnes:1991:IPK

Melamed:1991:TCM

Micali:1991:EPP

[1643] Silvio Micali and Claus-Peter Schnorr. Efficient, perfect polynomial random number generators. Journal of Cryptology: the journal of the Inter-
REFERENCES

Patarin:1991:NRP

Peterson:1991:NRN

Pickover:1991:PRG

Revello:1991:CEC

Ritter:1991:EGC

[1655] Terry Ritter. The efficient generation of cryptographic confusion sequences. Cryptologia, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748~db=all~order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyshev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.
REFERENCES

REFERENCES

REFERENCES

Aluru:1992:RNG

Anastasio:1992:OCL

Anderson:1992:CRN

Arno:1992:PSC

Atkinson:1992:GBT

Babai:1992:MPP

Baker:1992:PPT

REFERENCES

Bays:1992:IRN

Bellido:1992:SBR

Berdnikov:1992:RNG

Binder:1992:MCS

Bratley:1992:ITL

Brenner:1992:PRL

REFERENCES 326

Canfield:1992:RARb

Carroll:1992:CCE

Collins:1992:RNG

Dai:1992:BSD

DalleMolle:1992:HOC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Louchard:1992:DAD

Maclaren:1992:LUL

Makino:1992:GSR

Marsaglia:1992:MRN

Mason:1992:ACA

Matsumoto:1992:TGG

Maurer:1992:UST

Sobol:1992:QSG

Sprugnoli:1992:GBT

Szyszkowicz:1992:GRP

Tang:1992:SDA

Tezuka:1992: AAC

Tezuka:1992:FGL

Traub:1992:MCA

Atkinson:1993:UGR

Belisle:1993:HRA

Brickell:1993:SRI

Browne:1993:CTC

Bshouty:1993:CFR

Bundschuh:1993:MEC

Cerecedo:1993:NIG

[1793] M. Cerecedo, T. Matsumoto, and H. Imai. Non-interactive generation of shared pseudorandom sequences. Lecture Notes in Computer Science,

REFERENCES

[1806] Jürgen Eichenauer-Herrmann and Harald Niederreiter. Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive

Eichenauer-Herrmann:1993:LSN

Eichenauer-Herrmann:1993:SIN

Erdmann:1993:CMT

Fisher:1993:OOR

Flahive:1993:ICG

Galway:1993:ESCb

REFERENCES

Hansen:1993:GPC

Hayes:1993:WF

Hildebrand:1993:RPF

Hormann:1993:GBR

Hormann:1993:PRN

Hormann:1993:QNU
Hormann:1993:TRM

Jebelean:1993:CSG

Kalkuhl:1993:PDC

Kanellakis:1993:IDM

Kankaala:1993:BLC

REFERENCES

REFERENCES

[Lee:1993:GRB]

[Li:1993:IKC]

[Lin:1993:NCP]

[Loparo:1993:LER]

[Makino:1993:SPR]

[Marsaglia:1993:LHR]

January 1993. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content?content=a748639214&db=all&order=page. random number generator; cryptographic keystreams; division algorithm; seed values; long cycle length; keystream generation.

Monagan:1993:GPD

Morris:1993:NL

N:1993:BR

Nelson:1993:CVM

Nelson:1993:RMC

Niederreiter:1993:FFP

in Communications and Computing held at the University of Nevada, Las Vegas, August 7–10, 1991.

[1862] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. *Communications of the ACM*, 36(7):108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1384, 1492, 1847, 1872]. The authors report that they would now recommend the MCG $x_{n+1} = 48271x_n \mod (2^{31} - 1)$ over their original $x_{n+1} = 16807x_n \mod (2^{31} - 1)$.

REFERENCES

REFERENCES

December 1993. CODEN SIREAD. ISSN 0036-1445 (print), 1095-7200 (electronic).

REFERENCES

REFERENCES

REFERENCES

Cooperman:1994:RBC

Coppersmith:1994:SG

Corcoran:1994:MVC

[1906] William J. Corcoran. A multiloop Vigenère cipher with exceptionally long component series. Cryptologia, 18(4):356–371, October 1994. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a748639272~db=all~order=page. multiloop Vigenère cipher; exceptionally long component series; computer generation; polyalphabetic cryptographic system; character set; linear congruential generating function; component series; cryptanalysis; multiloop system; computationally secure; personal computers; Spectra Publishing; Power Basic; BASIC.

Couture:1994:LSC

Cuccaro:1994:TTQ

Davis:1994:CRA

[1909] Don Davis, Ross Ihaka, and Philip Fenstermacher. Cryptographic randomness from air turbulence in disk drives. In Desmedt [4098], pages

Eichenauer-Herrmann:1994:DIP

Eichenauer-Herrmann:1994:DQC

Eichenauer-Herrmann:1994:EIC

Eichenauer-Herrmann:1994:GIC

Eichenauer-Herrmann:1994:ILB

Eichenauer-Herrmann:1994:SIN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Karian:1994:RNG

Karloff:1994:CWI

Kenney:1994:HTI

Kreyszig:1994:MCM

Lavastre:1994:SAS

REFERENCES

Luscher:1994:PHQ

Ma:1994:IMC

MacLaren:1994:CPN

Makino:1994:LFR

Marsaglia:1994:MAR

Marsaglia:1994:REI

Marsaglia:1994:SPV

February 1994. CODEN CPHYE2. ISSN 0894-1866 (print), 1558-4208 (electronic).

D. V. Pryor, S. A. Cuccaro, M. Mascagni, and M. L. Robinson. Implementation of a portable and reproducible parallel pseudorandom num-
REFERENCES

ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a748639261~db=all~order=page.

REFERENCES

Zhang:1994:PEE

Zijp:1994:UTC

Ahrens:1995:OTM

Al-Hussaini:1995:UPT

Anguita:1995:CDP

Antipov:1995:COP

REFERENCES

Chou:1995:LTI

Chou:1995:PLI

Chow:1995:NRP

Compagner:1995:OCR

Couture:1995:LRC

Cusick:1995:PPN

REFERENCES

REFERENCES

REFERENCES

[Marsaglia:1995:MRN]

[Marsaglia:1995:RVI]

[Mascagni:1995:PPNa]

[Matus:1995:CIAa]

[Matus:1995:CIAb]

REFERENCES

Pattanaik:1995:AER

Penrice:1995:AEP

Percus:1995:TAM

Phatak:1995:LMP

Pickover:1995:GET

Pickover:1995:RNG

REFERENCES

Powell:1995:LEP

Ramon:1995:PKV

Regan:1995:PGM

Ross:1995:TCP

Sakamoto:1995:CMC

Savory:1995:UMA

Schmid:1995:EMC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2187] Ping Luo. The two-dimensional structure of the sequence of random numbers generated by multiplicative congruential generators. Journal
REFERENCES

REFERENCES

REFERENCES

Sipper:1996:CEP

Sipper:1996:GPR

Takashima:1996:HWT

Takashima:1996:LVT

Takashima:1996:STT

Ugrin-Sparac:1996:NAG

Ugrin-Sparac:1996:PET

[2220] G. Ugrin-Šparac and D. Ugrin-Šparac. On a possible error of type II in statistical evaluation of pseudo-random number genera-

REFERENCES

REFERENCES

Berblinger:1997:MCI

Berg:1997:CNF

Binder:1997:AMC

Binder:1997:MCS

Cario:1997:MGR

Coddington:1997:RNG

REFERENCES

Eichenauer-Herrmann:1997:CCC

Eichenauer-Herrmann:1997:ICP

Eichenauer-Herrmann:1997:PSN

Eichenauer-Herrmann:1997:QCP

Emmerich:1997:EPQ

[2266] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breiteneker [4119], page ?? ISBN 3-901608-11-7. LCCN ????

REFERENCES

REFERENCES

Marsaglia:1997:RNG

[2287] George Marsaglia. A random number generator for C. Posted to the sci.math.num-analysis news group, September 29, 1997. URL http://mathforum.org/kb/thread.jspa?messageID=1607565. From the posting: “Keep the following six lines of code somewhere in your files. #define znew (z=36969*(z&65535)+(z>>16))<<16) #define wnew ((w=18000*(w&65535)+(w>>16))&65535) #define IUNI (znew+wnew) #define UNI (znew+wnew)*4.656613e-10 static unsigned long z=362436069, w=521288629; void setseed(unsigned long i1,unsigned long i2)z=i1; w=i2; Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0, 1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.

Menezes:1997:HAC

Naor:1997:NTC

Pincus:1997:APR

Schaber:1997:DIC

Shchur:1997:CMC

Shchur:1997:SDR

Slone:1997:EBR

Woodward:1997:ECD

Wu:1997:MCR

Zubkov:1997:PTD

Aiello:1998:DPP

Andreev:1998:NGD

Antoch:1998:RPN

REFERENCES

REFERENCES

Emmerich:1998:SIP

Entacher:1998:BSW

Entacher:1998:LIP

Entacher:1998:LCG

Evans:1998:RVG

Fuster-Sabater:1998:LPS

A. Fuster-Sabater and L. J. Garcia-Villalba. Likelihood that a pseudorandom sequence generator has optimal properties. Electronics Let-
Gammel:1998:HRR

Garcia:1998:GCE

Gentle:1998:RNG

Gutmann:1998:SGP

Hamilton:1998:AEP

patent application number 08/648,553, filed 15 May 1996 by Intel Corporation.

[2356] Donald E. Knuth. *Seminumerical Algorithms*, volume 2 of *The Art of Computer Programming*. Addison-Wesley, Reading, MA, USA, third edi-
REFERENCES

Kolmogorov:1998:TRN

Larcher:1998:DPS

LECuyer:1998:GPI

LECuyer:1998:RNGa

LECuyer:1998:RNGb

LECuyer:1998:RNGb

REFERENCES

REFERENCES

(3):1–8, 1998. CODEN JSSOBK. ISSN 1548-7660. URL http://www.jstatsoft.org/v03/i03; http://www.jstatsoft.org/v03/i03/GERMGAM.PDF; http://www.jstatsoft.org/v03/i03/GERMGAM.PS; http://www.jstatsoft.org/v03/i03/updates.

Marsaglia:1998:MPMb

Mascagni:1998:PLC

Matsumoto:1998:DCP

Matsumoto:1998:MTD

REFERENCES

Mende:1998:MSP

Miller:1998:BPG

Morohosi:1998:DAR

Niederreiter:1998:AGA

Niederreiter:1998:NSA

Owen:1998:LSS

Park:1998:AGC

[2381] Chul Gyu Park and Dong Wan Shin. An algorithm for generating correlated random variables in a class of infinitely divisible distribu-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2430] Bernd Gärtner. Ein Reifall mit Computer-Zufallszahlen. (German) [A failure with computer random numbers]. *Mitteilungen der Deutschen
REFERENCES

Mathematiker-Vereinigung, 2(??):55–60, ???? 1999. CODEN ????
ISSN 0947-4471. URL http://www.inf.ethz.ch/personal/gaertner/
texts/own_work/dmv.ps.gz.

Goldreich:1999:IDB

[2431] O. Goldreich and A. Wigderson. Improved derandomization of BPP
using a hitting set generator. Lecture Notes in Computer Science, 1671:
131–??, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
(electronic).

Goldreich:1999:MCP

[2432] Oded Goldreich. Modern cryptography, probabilistic proofs, and pseudo-
randomness, volume 17 of Algorithms and combinatorics. Springer-Ver-
ISBN 3-540-64766-X. ISSN 0937-5511. xv + 182 pp. LCCN QA76.9.A25
G64 1999.

Gonzalez:1999:RNG

[2433] Jorge A. González and Ramiro Pino. A random number generator based
on unpredictable chaotic functions. Computer Physics Communications,
120(2–3):109–114, August 1999. CODEN CPHCBZ. ISSN 0010-4655
science/article/pii/S0010465599002337.

Griffin:1999:DNR

[2434] Frances Griffin, Harald Niederreiter, and Igor Shparlinski. On the dis-
tribution of nonlinear recursive congruential pseudorandom numbers of
higher orders. In Fossorier et al. [4131], pages 87–93. ISBN 3-540-
enhancements/fy0812/99054502-d.html.

Haastad:1999:PGO

A pseudorandom generator from any one-way function. SIAM Journal
on Computing, 28(4):1364–1396, August 1999. CODEN SMJCAT. ISSN
org/sam-bin/dbq/article/24470.

Intel:1999:IRN

[2436] Intel Platform Security Division. The Intel random number generator. In-
intel.com/design/security/rng/techbrief.pdf.
REFERENCES

[2455] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of pseudo-random functions. *Journal of Com-
REFERENCES

REFERENCES

of-rsa.ppt. Presented at the 1999 RSA Data Security Conference, San Jose, CA.

REFERENCES

[2482] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.

REFERENCES

Borkowf:2000:BRB

Brent:2000:TYA

Chen:2000:RRI

Couture:2000:LCR

Danger:2000:EFI

Deng:2000:RNG

REFERENCES

REFERENCES

REFERENCES

[2524] George Marsaglia. The monster, a random number generator with period over 10^{2857} times as long as the previously touted longest-period one. Technical report ?????, Florida State University, Tallahassee, FL, USA, ????? 2000.

REFERENCES

[2534] Harald Niederreiter and Igor E. Shparlinski. Exponential sums and the
distribution of inversive congruential pseudorandom numbers with prime-
ISSN 0065-1036 (print), 1730-6264 (electronic).

[2535] H. Niederreiter and A. Winterhof. Incomplete exponential sums over
finite fields and their applications to new inversive pseudorandom num-
ber generators. *Finite Fields and their Applications*, 93(??):387–399,
???? 2000. CODEN FFTAFM. ISSN 1071-5797 (print), 1090-2465 (elec-
tronic).

[2536] Takuji Nishimura. Tables of 64-bit Mersenne twisters. *ACM Transac-
CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

[2537] NIST. Random number generation and testing. World-Wide Web site.,

[2538] François Panneton. Générateurs de nombres aléatoires utilisant des
récurrences linéaires modulo 2. (French) [random-number generators
using linear recurrences modulo 2]. Thèse (M.Sc.), Département
d’informatique et de recherche opérationnelle, Université de Montréal,
Montréal, QC, Canada, 2000. xiii + 179 pp. Mémoire présenté à la fac-
ulté des études supérieures en vue de l’obtention du grade de Maître es
sciences (M.Sc.) en informatique option recherche opérationnelle.

for applications in cryptography. *IEEE Journal of Solid-State Circuits*,
47(5):615–621, ????. 2000. CODEN IJSCBC. ISSN 0018-9200 (print),
1558-173X (electronic).

Physics Communications*, 124(2–3):125–131, February 2000. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://

REFERENCES

REFERENCES

[2565] Lawrence Barker, Henry Rolka, Deborah Rolka, and Cedric Brown. Statistical practice — equivalence testing for binomial random variables:

[Battaglia:2001:GAP]

[Batu:2001:TRV]

[Chamayou:2001:PRN]

[Chen:2001:ING]

[Chick:2001:NPS]

[Chowdhury:2001:ESI]

[2584] Richard J. Gonsalves. Pivot algorithm for self-avoiding walks on a square lattice. Fortran program, 2001. URL http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/Files/Chapter12/saw.f. The program contains code (near the end) for the portable rannyu() generator. It is a linear congruential generator with multiplier $A = 31167285 = 0x1db9335$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

[2589] Julio César Hernández, José María Sierra, Arturo Ribagorda, Benjamín Ramos, and J. C. Mex-Perera. Distinguishing TEA from a ran-

Hernandez:2001:FNO

Hernandez:2001:GAC

Howgrave-Graham:2001:PRN

Iwata:2001:PAF

Johnson:2001:CCO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

RAND:2001:MRD

Raqab:2001:ELS

Rukhin:2001:STS

Rukhin:2001:TRS

Schindler:2001:EOT

[2647] Renée Touzin. Des générateurs récursifs multiples combinés rapides avec des coefficients de la forme $\pm 2^{p_1} \pm 2^{p_2}$. (French) [Fast combined multiple recursive generators of the form $\pm 2^{p_1} \pm 2^{p_2}$]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2001. xiii + 128 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en informatique option recherche opérationnelle.

REFERENCES

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

REFERENCES

Friedel:2002:FGR

Futschik:2002:EFE

Gangnon:2002:MDE

Gennaro:2002:CPG

Gilbert:2002:NRP

Gleeson:2002:TRN

Golic:2002:SWM

REFERENCES

Janke:2002:PRN

Jeruchim:2002:FRV

Jeruchim:2002:MCS

Jones:2002:KTP

Karras:2002:SPB

[2706] George Marsaglia. Re: *good* 64-bit random-number generator. Posting to the sci.crypt.random-numbers news group, September 3,

REFERENCES

McCullough:2002:ASP

McCullough:2002:DMF

McCullough:2002:RNG

Mita:2002:PBG

Moon:2002:IDC

Murray:2002:IYP

Niederreiter:2002:ADI

Niederreiter:2002:ICS

Niederreiter:2002:RAT

NIST:2002:ERN

Papoulis:2002:PRV

Philipp:2002:MTD

REFERENCES

REFERENCES

REFERENCES

494

Umans:2002:PRG

Wang:2002:HOL

Wang:2002:NCT

Wu:2002:BPR

Yaguchi:2002:CLP

Yao:2002:CBR

REFERENCES

[2744] Anonymous. /dev/random. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ /dev/random (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in drivers/char/random.c in the Linux source tree.”.

[2749] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fair uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. *Communications of the ACM*, 46(7):11–13, July 2003. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Engel:2003:BLE

Epstein:2003:DIT

Galmes:2003:ACM

Gentle:2003:RNG

Gibbons:2003:NSI

Goldreich:2003:SME

Oded Goldreich and Vered Rosen. On the security of modular exponentiation with application to the construction of pseudorandom genera-
Gonnet:2003:RTT

Goresky:2003:EMC

Grabner:2003:CGD

Guimond:2003:SPI

Gutierrez:2003:LNC

Hellekalek:2003:EEC

REFERENCES

REFERENCES

Maaranen:2003:UQR

Marsaglia:2003:EKD

Marsaglia:2003:RNG

Marsaglia:2003:TOS

Marsaglia:2003:XR

Matsumoto:2003:SDT

Srinivasan:2003:TPR

Stipcevic:2003:NDR

Sugita:2003:DRW

Tang:2003:SDA

Tang:2003:SPM

Tsang:2003:TCT

[2816] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudorandom generators in propositional proof complex-

[Borwein:2004:MEP]

[Brent:2004:NMX]

[Brown:2004:TRV]

[Bucklew:2004:IRE]

[Conflitti:2004:MDS]

REFERENCES

Deng:2004:GMP

Dorfer:2004:CFE

Espejo:2004:ANR

Feige:2004:SIR

Fung:2004:AIH

Goubin:2004:CLF

REFERENCES

Guan:2004:PNG

Gupta:2004:DBG

Gutmann:2004:CSA

Haldir:2004:HCL

Hernandez:2004:STN

Hong:2004:DCT
Hormann:2004:ANR

Jeske:2004:TAM

Kim:2004:CNS

Kim:2004:CRN

Knight:2004:PDU

LEcuyer:2004:DLR

REFERENCES

REFERENCES

REFERENCES

Schmuland:2004:CLT

Sezgin:2004:MSS

Sugita:2004:SPR

Szczepanski:2004:BRN

Tang:2004:SGM

Tirler:2004:EKR

REFERENCES

REFERENCES

REFERENCES

[2898] Julio César Hernández Castro and Pedro Isasi Viñuela. New results on the genetic cryptanalysis of TEA and reduced-round versions of

REFERENCES

Falcioni:2005:PMC

Gennaro:2005:IPR

Gerlovina:2005:ABL

Gonnet:2005:MRG

Gonzalez:2005:SCM

REFERENCES

Gubernatis:2005:MRM

Hahn:2005:CLM

Hamano:2005:DSD

Hess:2005:LCM

Hill:2005:RDS

Horan:2005:NRN

Kang:2005:ETP

REFERENCES

REFERENCES

REFERENCES

Liang:2005:NPR

Lim:2005:EMT

Louchard:2005:MRU

Marsaglia:2005:MGF

Marsaglia:2005:RPO

REFERENCES

Jeff T. Terpstra. Some illustrative classroom examples regarding sums of discrete random variables with finite support. *The American Statistician*,

Topuzoglu:2005:LCP

Tu:2005:SRD

Wichmann:2005:GGP

Wiese:2005:PRP

Zhang:2005:ZBH

Zuquete:2005:EHQ

Aistleitner:2006:NZG

Alon:2006:MPF

Aly:2006:LCP

Anonymous:2006:E

REFERENCES

Barak:2006:ERU

Barash:2006:POE

Barker:2006:RRN

BenAtti:2006:BMA

Berkovitz:2006:EHR

Brent:2006:FRR

[2977] Edwin D. El-Mahassni, Igor E. Shparlinski, and Arne Winterhof. Distribution of nonlinear congruential pseudorandom numbers modulo al-

Evans:2006:DOS

Faure:2006:SCR

Feige:2006:SIR

Finnigin:2006:CPN

Galperin:2006:SSU

Gammel:2006:LFN

REFERENCES

[2990] Laszlo Hars. Modular inverse algorithms without multiplications for cryptographic applications. EURASIP Journal on Embedded Systems,
REFERENCES

REFERENCES

520, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

L’Ecuyer:2006:TSL

Lee:2006:HGN

Lee:2006:IBH

Maffre:2006:WKT

Marsaglia:2006:RCS

REFERENCES

REFERENCES

Schmidt:2006:BRJ

Schroeder:2006:RNG

Sezgin:2006:DLP

Simka:2006:MTR

Skoge:2006:PHH

REFERENCES

generator [1048] developed for 16-bit arithmetic to a new four-part combination generator for 32-bit arithmetic with a period of $2^{121} \approx 10^{36}$.

Bhatnagar:2007:ANB

Brent:2007:SLP

Brown:2007:SAN

Cheung:2007:HGA

Chiu:2007:CKC

Cowles:2007:BRB

REFERENCES

Delfs:2007:ICP

Doornik:2007:CHP

Dorrendorf:2007:CRNa

Dorrendorf:2007:CRNb

Drutarovsky:2007:RCB

REFERENCES

Hars:2007:PRS

Hasan:2007:FSU

Hormann:2007:ITD

Hormann:2007:SGD

Juneja:2007:AFS

Kang:2007:PFS

W. N. Kang, F. P. Kelly, N. H. Lee, and R. J. Williams. Product form stationary distributions for diffusion approximations to a flow-level model operating under a proportional fair sharing policy. ACM SIGMETRICS
REFERENCES

Kundu:2007:CWG

Kung:2007:RFB

LEcuyer:2007:EPB

LEcuyer:2007:LRN

LEcuyer:2007:TCL

LEcuyer:2007:TSL

[3072] Pierre L’Ecuyer and Richard Simard. TestU01, a software library in ANSI C for empirical testing of random number generators: User’s guide,

Lim:2007:MCA

Liu:2007:NLR

Matsumoto:2007:CDI

Matsumoto:2007:FSC

Meidl:2007:LCP

Mislove:2007:DRV

REFERENCES

REFERENCES

Perez:2007:RJI

Rusu:2007:PRN

Santhanam:2007:CLB

Sathyanarayana:2007:GPS

Sinescu:2007:GIR

REFERENCES

“Special Issue: Field Programmable Technology. Guest Editors: Gordon Brebner, Samir Chakraborty, and Weng-Fai Wong”.

REFERENCES

REFERENCES

REFERENCES

Haramoto:2008:EJA

Haramoto:2008:FJA

Holleman:2008:WCT

Hou:2008:LPD

Howes:2008:U

Inaltekin:2008:ANE

[3149] Hazer Inaltekin and Stephen B. Wicker. The analysis of Nash equilibria of the one-shot random-access game for wireless networks and the behavior
REFERENCES

Jang:2008:CDH

Joe:2008:CSS

Jovanovic-Dolecek:2008:UMT

Kalos:2008:MCM

Kang:2008:HPP

Kato:2008:QSC

REFERENCES

[3172] Wei Li, Kangshun Li, Wensheng Zhang, Chao Wang, and Ying Huang. A random number generator based on particle dynamical evolutionary algorithm. In *2008. ICNC ’08. Fourth International Conference on
REFERENCES

REFERENCES

Petit:2008:BCB

Petit:2008:EPR

Reuillon:2008:RDS

Rousseau:2008:RNG

Rukhin:2008:TRA

Rumley:2008:PRN

REFERENCES

[Saito:2008:SOF]

[Schlier:2008:SHS]

[Schneier:2008:SSR]

[Shen:2008:RRL]

[Sinescu:2008:CLR]

[Sinescu:2008:GLR]

REFERENCES

REFERENCES

Varbanets:2008:ESS

Varbanets:2008:ICGa

Varbanets:2008:ICGb

Walker:2008:EPN

Wang:2008:DCP

Ware:2008:RIE

Wikramaratna:2008:ACR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

sciences, 367(1901):3281–3296, August 28, 2009. ISSN 1364-503x (print), 1471-2962 (electronic).

Devroye:2009:RVG

Devroye:2009:RVG

Dodson:2009:IGT

Dogaru:2009:HCA

Dorrendorf:2009:CRN

REFERENCES

Edrees:2009:HOZ

Faure:2009:GHS

Feldhofer:2009:HIS

Fischer:2009:SRF

Galassi:2009:GSL

Gao:2009:MPL

[3263] Zhi-Han Gao and Fang-Wei Fu. The minimal polynomial over \mathbb{F}_q of linear recurring sequence over \mathbb{F}_{q^m}. *Finite Fields and their Applications,*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Katti:2009:EHI

Ladd:2009:FRN

Langdon:2009:FHQ

Laracy:2009:RVG

LEcuyer:2009:LRN

LEcuyer:2009:TV

REFERENCES

REFERENCES

Nekrutkin:2009:STS

Nies:2009:CR

Okten:2009:GNK

Orlov:2009:ORN

Paindaveine:2009:MRT

Pareschi:2009:PAC

REFERENCES

[3340] Senhua Yu and D. Dasgupta. An empirical study of Conserved Self Pattern Recognition Algorithm: Comparing to other one-class classifiers and

REFERENCES

Anashin:2010:NAE

Anyanwu:2010:DCS

Banks:2010:DES

Barsegov:2010:EPR

Bassham:2010:STS

Bastos-Filho:2010:IRN

REFERENCES

Bellare:2010:PFP

Berger:2010:FFF

Binder:2010:MCS

Blacher:2010:PRN

Borovkov:2010:ILL

Braverman:2010:PGR

[3363] Shih-Liang Chen, TingTing Hwang, and Wen-Wei Lin. Randomness enhancement for a digitalized modified-logistic map based pseudo random
REFERENCES

Cheong:2010:ERE

Chi:2010:GPR

Derflinger:2010:RVG

DeRoover:2010:MPR

deSchryver:2010:NHE

Christian de Schryver, Daniel Schmidt, Norbert Wehn, Elke Korn, Henning Marxen, and Ralf Korn. A new hardware efficient inversion based random number generator for non-uniform distributions. In Viktor Prasanna, editor, International Conference on Reconfigurable Computing and FPGAs (ReConFig), 2010: 13–15 December 2010,
REFERENCES

REFERENCES

bw.de/bsz314370110vor.htm; http://www.gbv.de/dms/zbw/609423665.pdf.

REFERENCES

Murguia:2010:IAP

NanoOpticsGroup:2010:HBR

Navin:2010:CSR

Navin:2010:ETU

Ning:2010:GRO

REFERENCES

Pareschi:2010:ITH

Pashley:2010:GRN

Passerat-Palmbach:2010:RIG

Peris-Lopez:2010:CSP

Plesser:2010:RSI

[3419] Hans Ekkehard Plesser and Anders Grønvik Jahnsen. Re-seeding invalidates tests of random number generators. Applied Mathematics and
REFERENCES

REFERENCES

Saito:2010:VMT

Segui:2010:AIP

Seznec:2010:PCM

Shen:2010:PQR

Shi:2010:MED

Shin:2010:AFG

Srinivasan:2010:ADP

S. Srinivasan, S. Mathew, R. Ramanarayanan, F. Sheikh, M. Anders, H. Kaul, V. Erraguntla, R. Krishnamurthy, and G. Taylor. 2.4GHz

REFERENCES

REFERENCES

Wu:2010:ULT

Xiaohui:2010:DCR

Xin:2010:IEB

Ying:2010:DRN

Yoo:2010:IRR

Yu:2010:NRN

REFERENCES

Zafar:2010:GRN

Zhmurov:2010:EPR

Zimand:2010:SEC

Abbott:2011:NNS

Abbott:2011:QRN

Al-Abiachi:2011:CDN

REFERENCES

[3472] Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final
random bit and remove any bias caused by imperfections in the noise source and A/D converter.”.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hwang:2011:SID

Jian:2011:TBQ

Kao:2011:EAT

Kleimo:2011:RNG

Koucky:2011:PGG

LEcuyer:2011:AZV

REFERENCES

[3545] Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer. Pseudorandom number generation for Brownian Dynamics and Dissipative Par-

[3550] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [4199], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ???.

REFERENCES

Seyedzadeh:2011:IES

Shaolan:2011:EDE

Shparlinski:2011:ADP

Simard:2011:CTS

Sinescu:2011:ECS

Soucarros:2011:ITT

REFERENCES

REFERENCES

REFERENCES

Cesaratto:2012:PRK

Chen:2012:ECR

Chi:2012:ESN

Chiu:2012:MTR

Cohen:2012:SMI

Colbeck:2012:FRC

REFERENCES

REFERENCES

[3617] W. Kaczynski, L. Leemis, N. Loehr, and J. McQueston. Nonparametric random variate generation using a piecewise-linear cumulative distribu-

[3623] Y. Li, P. Chow, J. Jiang, M. Zhang, and S. Wei. Software/hardware framework for generating parallel Gaussian random numbers based on

[3624] Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.

REFERENCES

QUANTIS: 2012: REQ

RAINVILLE: 2012: EOL

REUILLON: 2012: PSS

RIESEL: 2012: PNC

SAITO: 2012: DCS

SAITO: 2012: RGR

REFERENCES

[3664] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.
REFERENCES

Beliakov:2013:EIBa

Beliakov:2013:EIBb

Claessen:2013:SPN

Deng:2013:FTQ

Ducklin:2013:ARN

REFERENCES

REFERENCES

REFERENCES

Khoshkenar:2013:NTR

Lang:2013:TRS

Leonenko:2013:BRD

Liberty:2013:THR

Liu:2013:ITT

Ma:2013:PQR

[3688] Xiongfeng Ma, Feihu Xu, He Xu, Xiaoqing Tan, Bing Qi, and Hoi-Kwong Lo. Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Physical Review A (Atomic,
REFERENCES

Malik:2013:UCB

Martino:2013:EEG

Mascagni:2013:PPR

Meka:2013:PGP

Melia-Segui:2013:JPL

Miszczak:2013:EOQ

Colas Schretter and Harald Niederreiter. A direct inversion method for non-uniform quasi-random point sequences. *Monte Carlo Methods and

REFERENCES

REFERENCES

[3719] Luc Devroye. Random variate generation for the generalized inverse
2014. CODEN STACE3. ISSN 0960-3174 (print), 1573-1375 (elec-
tronic). URL http://link.springer.com/article/10.1007/s11222-
012-9367-2.

[3720] Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel
Wichs. How to eat your entropy and have it too — optimal recovery
strategies for compromised RNGs. Report, Dept. of Computer Science,
New York University; Dept. of Computer Science and Applied Mathe-
matics, Weizmann Institute; Dept. of Computer Science, Northeastern
University, New York, NY, USA; Tel Aviv, Israel; Boston, MA, USA,

B. J. Sussman. Efficient Raman generation in a waveguide: A route to
104(5):051117:1–051117:4, ????. 2014. CODEN APPLAB. ISSN 0003-
6951 (print), 1077-3118 (electronic), 1520-8842. URL ????.

[3723] Xiaole Fang, Qianxue Wang, Christophe Guyeux, and Jacques M.
Bahi. FPGA acceleration of a pseudorandom number generator based
on chaotic iterations. *Journal of Information Security and Applica-
tions (JIISA)*, 19(1):78–87, February 2014. CODEN ????. ISSN 2214-
S221421261400012X.

[3724] Akio Fukushima, Takayuki Seki, Kay Yakushiji, Hitoshi Kubota, Hi-
roshi Imamura, Shinji Yuasa, and Koji Ando. Spin dice: A scalable
truly random number generator based on spintronics. *Applied Physics Express*, 7(8):083001:1–083001:5, August 2014. CO-
DEN APEPC4. ISSN 1882-0778 (print), 1882-0786 (electronic).

REFERENCES

Kawai:2014:ADT

Koo:2014:CRB

Korzen:2014:PPP

Langr:2014:APP

LEcuyer:2014:LSS

Ling:2014:MDN

Liu:2014:LFP

Mascagni:2014:HPC

Mohamed:2014:MCS

Mortari:2014:MAV

Raaphorst:2014:CSC

REFERENCES

REFERENCES

Moufek:2015:MCB

NIST:2015:SSP

Nuida:2015:MPS

Passerat-Palmbach:2015:TSS

Pollack:2015:SNN

Potter:2015:MUE

Raitza:2015:RRN

REFERENCES

December 2015. CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

REFERENCES

REFERENCES

Balkova:2016:APN

Bayon:2016:FME

Chang-Fong:2016:CSC

Chattopadhyay:2016:ETS

Chen:2016:PEP

deAndrade:2016:RNG

[3796] B. B. de Andrade, H. Bolfarine, and A. N. Siroky. Random number generation and estimation with the bimodal asymmetric power-normal

REFERENCES

Mandal:2016:DIW

Mandal:2016:FRI

McFarland:2016:MZA

Miller:2016:RPS

Nekrutkin:2016:CBF

NIST:2016:SDR

Ohsaka:2016:DIA

REFERENCES

Raitza:2016:RRN

Savvidy:2016:ACS

Savvidy:2016:SEC

VanBever:2016:SBT

Vigna:2016:EEM

Yamakami:2016:PGA

[3825] Anonymous. The DUHK attack: Don’t use hard-coded keys. Web site., October 25, 2017. URL https://duhkattack.com/. From the introduction: “DUHK (Don’t Use Hard-coded Keys) is a vulnerability that affects devices using the ANSI X9.31 Random Number Generator (RNG) in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions, preventing third parties from reading intercepted communications.” See [3833] for details of the attack.

[3828] George Barmpalias, Douglas Cenzer, and Christopher P. Porter. The probability of a computable output from a random oracle. *ACM Trans-
REFERENCES

Barmpalias:2017:RNP

Beebe:2017:MFC

Bernardini:2017:MRP

Chalk:2017:CIR

Cohney:2017:PSR

Deng:2017:DPR

REFERENCES

e1404:??, September/October 2017. CODEN ???? ISSN 1939-0068 (print), 1939-5108 (electronic).

REFERENCES

REFERENCES

January 2017. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[3860] Karolos Antoniadis, Peva Blanchard, and Julien Stainer. The entropy of a distributed computation random number generation from memory

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3908] HyungGyoon Kim, Hyungmin Cho, and Changwoo Pyo. GPU-based acceleration of the Linear Complexity Test for random number generator testing. Journal of Parallel and Distributed Computing, 128(??):
Kissel:2019:KRC

Lemire:2019:FRI

Lemire:2019:XXX

Liu:2019:LFP

Martirosyan:2019:STM

Poudel:2019:MTU

Quaglia:2019:RCR

SoltaniPanah:2019:CDG

Steele:2019:UBP

Ueno:2019:TBP

Viola:2019:CEP

Xu:2019:NPF

Zhang:2019:REU

Anonymous. Xorshift. Web site., 2020. URL https://en.wikipedia.org/wiki/Xorshift. This article discusses Marsaglia’s Xorshift family of generators, including 32-bit, 64-bit, and 128-bit variants, plus xorwow, xorshift+, xoshiro, and xoroshiro, with comments about which common test suites they pass or fail. Lua 5.4 changed from the previous default of C’s rand() or random() to a new one based on xoshiro256** (256-bit state, 32- or 64-bit result). The period of xoshiro256** is 2**256 - 1 (about 10**77). See [3863, 3864].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Luengo:2023:STS

[3986] Elena Almaraz Luengo, Bittor Ala˜na Olivares, Luis Javier García Vil-

lalba, Julio Hernandez-Castro, and Darren Hurley-Smith. StringENT
test suite: ENT battery revisited for efficient P

Pandit:2023:LBQ

[3987] Anupama Arjun Pandit, Atul Kumar, and Arun Mishra. LWR-based quantum-safe pseudo-random number generator. Journal of Informa-
article/pii/S2214212623000169.

Pratihar:2023:BSF

[3988] Kuheli Pratihar, Urbi Chatterjee, Manaar Alam, Rajat Subhra

Saini:2023:CNF

[3989] A. Saini, A. Tsokanos, and R. Kirner. CryptoQNRG: a new frame-
work for evaluation of cryptographic strength in quantum and pseudo-
random number generation for key-scheduling algorithms. The Journal

Shparlinski:2023:FPS

[3990] Igor E. Shparlinski. Fixed points of the subset sum pseudorandom number
springer.com/article/10.1007/
s10623-023-01209-5.

Yao:2023:LOT

[3991] Liang Yao, Huaguo Liang, and Yingchun Lu. Low-overhead TRNG based
on MUX for cryptographic protection using multiphase sampling. The
JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL https://

[4004] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating
randomness; source code to other useful crypto modules; miscellaneous. World-Wide Web site., 20xx. URL http://www.cs.berkeley.edu/~daw/rnd/.

REFERENCES

REFERENCES

REFERENCES

M. A. H. Dempster, editor. Stochastic programming: proceedings of an international conference sponsored by the Institute of Mathematics and

REFERENCES

REFERENCES

REFERENCES

Mehlhorn:1985:SAS

ACM:1986:PEA

Arkin:1986:SOP

DAgostino:1986:GFT

Heath:1986:HMP

Wilson:1986:WSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

719

[4084] Gustavus J. Simmons, editor. Contemporary Cryptology: the science of information integrity. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

REFERENCES

LCCN QA3 .L35 v.1554.

REFERENCES

ACM-SIAM:1994:ASD

ACM:1994:PTS

Desmedt:1994:ACC

IEEE:1994:PSW

Snodgrass:1994:PAS

REFERENCES

[4112] John M. Charnes, D. J. Morice, D. T. Brunner, and J. J. Swain, editors. 1996 Winter Simulation Conference: proceedings, Hotel Del Coronado, Coronado, California, 8–11 December 1996. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
REFERENCES 725

Cohen:1996:FFA

IEEE:1996:ASF

Trobec:1996:PIW

Andradottir:1997:PWS

Gell-Mann:1997:QJA

IEEE:1997:ASF

Troch:1997:PSI

Wyrzykowski:1997:PNP

Banks:1998:HSP

Buhler:1998:ANT

Hellekalek:1998:RQR

REFERENCES

REFERENCES

Anonymous:1999:NIS

Fossorier:1999:AAA

Heath:1999:APP

Iliev:1999:RAN

Niederreiter:1999:MCQ

REFERENCES

REFERENCES

REFERENCES

Fang:2002:MCQ

USENIX:2002:PBF

Rudnicki:2003:OIP

ACM:2004:PAA

Gentle:2004:HCS

REFERENCES

REFERENCES

Schroeder:2006:NTS

Ytrehus:2006:CCI

ACM:2007:SPA

Adams:2007:SAC

Altiok:2007:SMA

Menezes:2007:ACC

REFERENCES

Simos:2007:CMS

ACM:2008:SPA

Golomb:2008:STA

IEEE:2008:ICA

Keller:2008:MCQ

[4177] Alexander Keller, Stefan Heinrich, and Harald Niederreiter, editors. Monte Carlo and Quasi-Monte Carlo methods 2006. Springer-Ver-
REFERENCES

REFERENCES

LEcuyer:2009:MCQ

Paredaens:2009:PTE

ACM:2010:PAI

Anonymous:2010:NDS

Cont:2010:EQF

Dick:2010:DNS

REFERENCES

REFERENCES

2), 0-08-044897-6 (vol. 3), 0-08-044898-4 (vol. 4), 0-08-044899-2 (vol. 5),
0-08-044900-X (vol. 6), 0-08-044901-8 (vol. 7), 0-08-044902-6 (vol. 8).

on Theory of Computing: June 6–8, 2011, San Jose, CA, USA. ACM

[4198] IEEE, editor. International Conference on Intelligent Computation Tech-
nology and Automation (ICICTA), 2011: 28–29 March 2011, Shenzhen,
Guangdong, China; proceedings. IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2011. ISBN
ieee.org/servlet/opac?punumber=5750113.

[4199] Scott Lathrop, Jim Costa, and William Kramer, editors. SC’11: Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle, WA, November 12–18 2011.
ACM Press and IEEE Computer Society Press, New York, NY 10036,
USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
2011. ISBN 1-4503-0771-X. LCCN ????

ence. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / Lon-
REFERENCES

vanTilborg:2011:ECS

ACM:2012:SPA

Cooper:2012:HWC

Dunn:2012:EMC

Dyson:2012:TCO

Gentle:2012:HCS

REFERENCES

Hwu:2012:GCG

IEEE:2012:PIA

ACM:2013:SPF

Bailey:2013:CAM

Higham:2015:PCA

REFERENCES

Osais:2017:CSF

Rubinstein:2017:SMC

Krhizhanovskaya:2020:CSI