A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

29 September 2023
Version 1.383

Title word cross-reference

#14 [2315]. #15949 [892]. #4059 [1266]. #8373 [2137].

(0, 1) [1077]. (0, s) [2578, 2978]. \((a^n - 1)/(a - 1)\) [939]. \((j, c)\) [746]. \((n^2\alpha)\) [2529]. \((n^k\alpha)\) [2530]. \((na)\) [2529]. \((t, m, s)\) [2081, 2935, 2087, 2388]. \((t, s)\) [2674, 2081, 2379, 2935, 2087]. \((X, Y)\) [3694]. \((X^2 - Y^2)^{1/2}\) [499].
0.1(0 \times 1)0 \times 9 [141]. 1 [753, 896, 2888, 173, 306, 728, 3013, 3015]. 1, 2, 3 [3549]. 1.13198824 \ldots\ [2553]. 10, 000 [285]. $\textbf{10.00}$ [170]. 10^{2857} [2524]. 10^{4355} [2078]. 100μ [3178]. 128 [3204]. 13 [273]. 16 [273]. 2
-adic good

\[\beta > 1, \beta \approx 1509. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta = 32 [1341]. \]

\[\beta = 28 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]

\[\beta \approx 32 [1509]. \]

\[\beta \approx 48 [1509]. \]
0.57pJ [3313]. 0.57pJ/bit [3313]. '05 [4146, 4150]. '07 [4156]. '08 [4161].

Approaches [2738]. Approximate
[898, 2026, 3978, 1627, 2367, 1977, 619, 702, 571, 948, 278, 422, 747, 1776, 2807].
Approximately [509, 1831]. Approximating [2496, 3978, 3526].
Approximation [2240, 2420, 2438, 1447, 1536, 2883, 2556, 1309, 711, 3600].
Approximations [145, 2841, 1073, 484, 1024, 3065, 1249, 3034, 3096].
April [4030, 4000, 4040, 4063, 4178, 4011, 4128, 4013, 4074, 4048, 4049].
Arbitrary [2236, 831, 1561, 3100, 986, 3866, 3896, 3046, 199, 1725, 3555, 3207, 1309, 711, 3600].
Archimedean [3345]. Architecture [2890, 2836, 3905, 3430, 2111, 3336, 3607, 3848, 1580].
Architectures [1479, 4163, 3808, 3702]. arcsine [3930]. Area [241, 1924, 3783, 3106, 2230].
Area-Efficient [3783, 3106]. areas [4157, 4125, 2775]. ARENA [4158].
Argument [684]. arguments [430]. Arisen [1]. Arising [1269, 1550, 3572, 3652].
Arithmetic [2319, 2411, 2148, 766, 3732, 2776, 736, 3775, 228, 369, 4082, 3579, 3, 1619, 1427, 1245, 1563, 2213, 1868, 1472, 1588].
arrangements [59]. Array [1405, 3355, 2615, 1391]. Arrays [1506, 937, 3567, 3332]. ARM7 [3133].
arbitrary [2236, 831, 1561, 3100, 986, 3866, 3896, 3046, 199, 1725, 3555, 3207, 1309, 711, 3600].
Assessment [1394, 2132, 2825, 2672, 1315, 1477, 2344]. Assignment [860, 866, 869, 881, 882, 883].
assumptions [1519]. Astronomical [1429]. Asymmetric [702, 3795].
Asymptotic [577, 102, 3572, 3652]. Asymptotically [2907]. Asymptotics [3064]. asymtotiques [801].
Attacking [3961]. Attacks [3351, 2354, 3092, 3919, 3791, 3954, 3832, 3535, 1460, 166].
Austria [4020, 4078, 4114, 4070, 4106]. Authentication [2015, 3852, 3883, 3322, 3323, 3287].
Autocorrelazioni [987]. Autokorrelation [471]. Autokorrelation [438].

Automata-based [1432]. automated [3847, 1861].

Automates [1580].

Automaton [2887, 3880]. automorphisms [3724].

Automatic [170, 1211, 2830, 2504, 2840, 2521, 786, 163, 2503, 3876, 3965, 137, 176, 3994, 2972, 3048].

Automatically [2411].

Automation [3272, 4185].

Automatically [2411].

Avalanche [3318].

Average [1796, 2153, 2247, 2248, 2671, 2979, 2718, 2154, 2831, 3617, 2441, 3553].

average-case [2154, 3617]. Averages [861].

Averaging [3729, 284]. avoid [1397, 1616].

Avoided [1191]. Avoiding [3675, 2584, 1817].

AVX [3798].

Award [3545]. Awarded [3885]. Aware [1668].

AWC [1907].

AWC/SWB [1907].

AWGN [2656, 3537].

B [399, 2137, 70]. Babington [70]. Babington-Smith [70]. Background [1783, 662].

backpropagation [2920]. backward [3067, 3033, 3440].

bacteriophage [3576].

Bad [2557, 2334, 2904, 4020, 3963, 2278, 2603, 3311, 3971, 3423].

BadRandom [3939]. bag [1728].

Bailey [3664, 3665].

balancing [1356].

ballistic [2327].

Baltimore [4055, 4146].

Banch [822, 686].

Banff [3997].

Baptist [4138].

Barbara [4085, 4159].

Base [1904, 784, 1020, 469, 2387, 3456].

Based [3476, 3584, 3587, 2411, 3893, 2825, 3975, 3953, 2416, 2749, 1698, 3053, 993, 2030, 2670, 635, 2755, 3503, 3959, 3374, 2498, 2680, 2906, 3980, 3729, 2994, 3279, 3157, 2917, 3682, 2438, 3802, 3171, 3686, 3396, 3765, 3005, 3178, 3772, 2088, 925, 3414, 3943, 3849, 3307, 1987, 930, 3309, 2638, 3088, 3202, 3031, 3318, 1778, 3211, 3322, 3323, 1047, 3331, 427, 3223, 3704, 3226, 3367, 3344, 3891, 3229, 3105, 3466, 3467, 102, 2887, 3108, 3921, 3790, 3922, 3582, 3791, 3113, 2892, 3665, 2821, 3116, 2748, 3488, 3238, 3239, 3559, 3362, 3976, 1696, 3494, 3133, 3055, 3722, 3504, 3723, 1064].

based [1224, 2583, 2682, 1065, 2433, 2834, 773, 3268, 1351, 3140, 3378, 3379, 3607, 3270, 1353, 3514, 3518, 3677, 2915, 1432, 3278, 3678, 1622, 3522, 1286, 1439, 3155, 3158, 3906, 3981, 1365, 2279, 2281, 2282, 2697, 2922, 3841, 2580, 2851, 3004, 3287, 3530, 3622, 1841, 3394, 3535, 3806, 3930, 2704, 3293, 3626, 3627, 2191, 2715, 793, 3771, 3297, 1245, 1380, 3407, 3408, 3695, 3984, 2867, 2688, 3017, 3304, 3637, 1651, 3191, 2384, 2539, 2458, 3420, 701, 2631, 2725, 3547, 99, 189, 3085, 1190, 2543, 3550, 3551, 3968, 3434, 1249, 3089, 3201, 1251, 2805, 2640, 2641, 3932, 3559, 3315, 3444, 1472].

based [3208, 3319, 1138, 1663, 2810, 3325, 3450, 3329, 3567, 51, 3785, 3888, 2652, 3334, 2886, 2741, 3988, 3575, 3459, 2958, 3341, 3705, 3043].

basiée [2867].

Bases [2974, 2687, 1143, 581, 1165, 1166, 1013].

Basic [1618, 1232, 921, 1025].

Basics [3372, 3326].

Battery [2069, 2189, 3983, 3971]. Baptin [170].

Bay
[295]. Columbia [4066, 4161]. column [3099]. Combination
[947, 2242, 1107, 1108, 1109, 3079, 2099, 427, 2410, 3268, 2281, 1654, 1248, 2885].
Combinations [398, 515, 484, 368, 1801, 1116, 2843, 447, 448, 62].
Combinatorial [634, 3671, 203, 2366, 1555, 2127, 238, 3510, 770].
Combinatorics [4057, 2762]. Combined
[3271, 3761, 2179, 2443, 2516, 2773, 2731, 1471, 1998, 3568, 3455, 1795, 1929, 1368, 1632, 2181, 2182, 2360, 2446, 2704, 1470, 1661, 2647].
Combiner [2394]. combiner [2394]. combinés [2647]. Combing
[903, 904, 1604, 3256, 2585, 3132, 3728]. Coming [3708]. Comment
[2820, 3117, 1150, 721, 786, 601, 1771]. Commitment [1553, 1645].
Commodore [1144]. Common [1208, 3902, 511, 1287, 1727, 3074, 1751, 1567, 808, 2171, 1119, 3633, 1856, 1085, 750, 3593, 2570, 2240, 1114, 1720, 911, 774, 729, 917, 1362, 2438, 1855, 2082, 940, 1476, 1672]. Commun
[2048, 2170]. Communicating [1310]. Communication
[584, 4154, 1310, 1327, 2491, 2832, 3520]. Communications
[505, 2694, 4150, 4079, 2741]. Comp [2137]. Compact
[2011, 2810, 3038, 3104, 1413, 2509, 3071, 600]. Companion [4198]. Comparative
[1337, 401, 502, 3258, 2112]. Comparing
[1223, 911, 1827, 2178, 3339]. Comparison [669, 578, 1054, 3244, 3837, 3680, 1727, 3164, 2079, 204, 2290, 610, 1081, 700, 2205, 2798, 1672, 1485, 1845, 1493, 591, 592, 1721, 2922, 2519, 3316, 2738, 462, 809]. Comparisons
[1855, 2082, 1476, 1397, 1751, 1856]. compatibility [3662]. Compatible
[1514, 1544, 3611]. Competing [186]. compiled [70]. Complement
[3675, 3922, 681, 4104, 3728, 3784]. Complexity
[2696, 3014, 3013, 3015]. Component-by-Component
[2696, 3014, 3013, 3015]. components [2773]. Component
1907, 1699, 1334, 585, 406, 1417, 2495, 1420, 1503, 1504, 1613, 1614, 1616, 1617, 1709, 1710, 1712, 1713. congruential
[1714, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1915, 1917, 1918, 1919, 1920, 1921, 2034, 2035, 2037, 2154, 2155, 2156, 2248, 2250, 2252, 2328, 2329, 2330, 1217, 1276, 1277, 1339, 1340, 2253, 2334, 2335, 2424, 856, 952, 1219, 1220, 1341, 1811, 765, 2907, 3057, 555, 2684, 1351, 2501, 3058, 3141, 3961, 2590, 775, 864, 3277, 356, 2174, 2175, 2275, 3156, 962, 1173, 1730, 2997, 826, 1367, 2181, 2445, 1174, 2284, 2926, 3393, 2187, 2704, 485, 521, 2371, 2615, 2858, 3076, 3931].

559, 692, 693, 1076, 87, 130, 162, 2628, 528, 1042, 79, 372, 2651, 668, 177, 100.

digraph [3229]. Dimension [3322, 3323, 1027]. Dimensional [270, 196, 201, 3150, 915, 3153, 1842, 1544, 205, 54, 1998, 3574, 714, 1792, 1795, 1331, 2668, 2750, 3371, 221, 222, 2187, 735, 2380, 3016, 188, 3025, 2298, 3030, 3745, 2552, 2121, 2309, 804, 3327]. Dimensionality [2975].

Discrepancies [1874, 2272, 2306, 2400]. Discrepancy [1027, 540].

Discrete [4083, 2009, 1095, 2129, 2564, 2889, 3347, 2240, 3113].

Discrete-Event [1095, 2129, 2564, 2889, 3347, 3327].

discriminatory [3328]. discs [935]. disjoint [1900]. disjunctions [1897].

Disk [1009, 2944]. Diskrepanz [738]. Diskret [3024]. Disney [4088].

distances [3474, 1699, 1700]. Distanz [738]. Distinct [1506, 954].

distribution

Distribution-Free

Distributione

Distributions

disturbance

Divergence

Divergent

Diversity

Diversity-Based

Diverted

Dividing

Divisible

Division

Divisor

divisors

do

Document

Documentation

Does

Doing

Domain

Domains

Domenico

Dominated

Donald

Don’t

Dopant

Dopant-Level

Dorothy

Dose

dot

dot-patterns

double

double-scroll

doubly

Down

Draft

DRAM

drastic

Draw

Drawbacks

Drawing

DRBG

Dress

Drive

Driven

Drives

DRM

DSS

Dual

dual-drive

dual-mode

Duality

Dudewicz

Due

DUHK

d’un

d’une

DUPER

Durbin

Durbin-Watson

durch

Dyadic

Dynamic

dynamic-multithreading

dynamical

Dyson

each

Early

Easily

East

Easy

Easy-to-Use

Eat

Eaton

EC

´ecarts

´echantillon

´echantillonnage

Econometric

Econometrics

Funktionen [246]. Further [2412, 2143, 52, 133, 3780, 420, 289, 3855, 3020].
fused [2655]. Fushimi [2218]. fusion [3236]. Future [3385]. Fuzzy
[350, 3916, 3551].

G [541, 2972, 594, 637, 1956, 1079, 262, 70]. G5
[380, 391, 434, 674, 596, 479, 644, 362, 363, 364, 168, 461, 628].

Galois [2228]. gambler [3161]. Gambling [2481, 2653, 3707].

Game [2869, 3912, 3148]. game-playing [2821].

Gamma [670, 3974, 542, 819, 906, 1272, 766, 867, 919, 2369, 2525, 1375, 3945,
2208, 1044, 534, 887, 888, 1015, 712, 805, 3704, 892, 897, 1261, 1053, 853, 377,
2835, 1032, 1231, 331, 3066, 3844, 785, 3398, 828, 1078, 2086, 565, 617,
701, 880, 747, 1016, 3207, 846, 748, 713, 1018, 761, 683, 3689].

gamma-distributed [331, 683]. Gamma-distribution [761].
gamma-rays [1078].

gammaverteilten [331]. gap [235]. gas [813, 677, 2300].

GASPRNG [3670]. Gate [3145, 2615, 3038]. Gates [3100, 3377]. Gateway
[4132, 4026, 4073].

générateurs [1367, 2647, 2538, 2184]. générateurs [3989]. General
[946, 501, 1930, 1931, 2052, 3803, 3168, 524, 106, 1081, 847, 3222, 2311, 4064,
721, 3763, 385, 968, 1249, 3089, 3555, 3884, 618].

General-Purpose [1081]. Generalised [2172, 897]. Generalization [444, 238]. generalizations
[3601]. Generalized
[3861, 1209, 1328, 1701, 2828, 3258, 1369, 648, 388, 3301, 2734, 1019, 3922,
1894, 3240, 1799, 3718, 1919, 2756, 410, 441, 1351, 3512, 2835, 3727, 1940,
3066, 2062, 3167, 3529, 1850, 1297, 2631, 2725, 2939, 3025, 2731, 1062].

Generate [1320, 1022, 1096, 1893, 2589, 1526, 3706, 1886, 2410, 772, 2168,
1229, 3884, 1587, 1880, 1671, 2008]. Generated
[3230, 3346, 267, 244, 1069, 613, 3775, 373, 3574, 1313, 1786, 581, 755, 1700,
438, 471, 585, 3601, 1419, 1503, 242, 765, 1344, 3057, 638, 1937, 1033, 2275,
2061, 2062, 1174, 3534, 2187, 2368, 695, 797, 1184, 1462, 1557, 2533, 3187,
3636, 926, 836, 1041, 3553, 2884, 233, 2309]. generates [2616, 2944].
générateurs [1367, 2647, 2538, 2184]. Generating
[1018, 2123, 2226, 814, 1679, 3826, 2888, 1596, 1788, 899, 945, 3588, 542, 1099,
1895, 2236, 852, 3717, 3364, 3756, 270, 196, 1210, 1211, 1606, 1798, 2494, 992,
1273, 3138, 153, 323, 408, 3508, 3509, 3923, 478, 245, 201, 1938, 3727, 3728,
155, 2511, 1947, 2059, 777, 1728, 1729, 1120, 1007, 1839, 3529, 309, 2067, 3538,
251, 870, 253, 254, 280, 281, 311, 335, 788, 966, 1126, 2309, 2525, 1642, 2076,
791, 1375, 3630, 831, 3542, 1293, 1376, 204, 205, 524, 2790, 1561, 1564, 3415.
2458, 1978, 2093, 527, 619, 702, 3308, 2207, 1247, 2208, 1091. Generating
[460, 2215, 1136, 626, 2301, 2548, 2475, 1310, 847, 2115, 1141, 713, 2955, 3036, 2393, 1050, 2561, 3751, 675, 1901, 1247, 2208, 1091, 3926, 156, 1778, 3212, 2324, 2425, 426, 2122, 1213, 1704, 1705, 1799, 2244, 3252, 3718, 994, 1153, 1417, 218].

Generation

Generation
[2645, 136, 165, 1778, 3095, 3209, 1876, 3212, 3213, 2219, 426, 1140, 1195, 537, 538, 1667, 712, 2479, 1590, 3653, 3822, 3576, 3788, 631, 1258, 431, 2484, 3859, 1483, 1787, 3108, 3231, 3789, 1890, 1321, 2965, 3474, 3475, 3660, 3661, 3662, 3711, 1261, 1891, 2130, 3040, 3583, 349, 3112, 987, 2891, 3664, 850, 3895, 238, 3115, 817, 1055, 1892, 182, 1490, 1410, 946, 905, 1692, 401, 1417, 3831, 402, 2414, 2324, 3046, 2023, 2326, 468, 1329, 1331, 989, 1605, 2828, 3365, 990, 991, 1024, 1104, 1213, 1704, 1705, 1799, 2244, 3252, 3718, 994, 1153, 1417, 218].

generation
[2038, 2157, 322, 2830, 1421, 2425, 764, 553, 1064, 1280, 1424, 1512, 2981, 555, 185, 1282, 1350, 639, 2834, 3672, 3903, 3379, 3798, 3757, 2990, 2054, 1068, 1823, 2504, 2688, 2769, 1433, 3146, 1032, 202, 1436, 1725, 1523, 1524, 824, 1070, 3927, 118, 1171, 1232, 3156, 1003, 3941, 1444, 779, 1446, 3981, 1006, 1034, 3840, 1957, 2361, 2364, 2847, 3619, 3842, 1837, 129, 3620, 3685, 1452, 3964, 3764, 3807, 1237, 158, 1454, 3766, 2522, 789, 1075, 3689, 1848, 1968, 2448, 2527, 2528, 1849, 160, 130, 1127, 3632, 3813, 561, 562, 1647, 1754, 1755, 1972, 2083].

generation
[2085, 615, 3302, 876, 3696, 418, 3848, 490, 3774, 1080, 1040, 3544, 3850, 3019, 3421, 3020, 1086, 1042, 3023, 3085, 931, 973, 3986, 1190, 878, 2543, 975, 3026, 3744, 2300, 1193, 983, 149, 2107, 3561, 2218, 2551, 1472, 3034, 3096, 3703, 1580, 2552, 1308, 3886, 1139, 1309, 846, 3650, 573, 629, 668, 710, 3332, 3101, 2554, 3572, 3652, 2404, 1589, 1253, 2406, 2654, 2739, 3795, 1582, 3330, 1892, 322, 1580, 1500, 1001, 622, 890, 759, 1517, 1531, 1352, 1304, 2972, 3048].

Generations [3485, 3527, 3242, 2393].
3334, 3221, 1784, 3573, 3224, 3456, 3038, 3225, 3889, 2740, 2886, 3575, 3459, 2958, 3973, 3705, 1256, 1592, 2309, 2959, 1884]. generator

[3497, 3600, 2002, 1215, 459, 461, 3214, 3329]. Generatoren [1050, 1052].

Generators [1394, 2559, 2310, 2815, 293, 3974, 2122, 2225, 2962, 3345, 1479, 3657, 3825, 3232, 3109, 2658, 2314, 3111, 2745, 2966, 578, 2132, 3349, 3989, 3476, 1598, 2233, 3587, 2136, 900, 3862, 3936, 1408, 3356, 3714, 2824, 2969, 3117, 2140, 903, 904, 3118, 1206, 2415, 906, 3363, 2417, 1209, 1270, 3127, 2898, 403, 2574, 1698, 3249, 1496, 1910, 1333, 1701, 1911, 2242, 3130, 3132, 3598, 3599, 3868, 2669, 720, 3602, 3038, 2366, 1633, 2453, 3687, 358, 3809, 3810, 1178, 1180, 1845, 1847, 2780, 2710, 3178, 1640, 2714, 3691, 1461, 1549, 1551, 1748, 1292, 2196, 2617, 2788, 1854, 2624, 2721]. Generators [769, 1815, 2759, 2760, 2908, 3606, 3630, 1976, 3038, 1976, 1092, 1766, 3777, 3816, 419, 1467, 2798, 3424, 3425, 3426, 3427, 2098, 3194, 802, 2632, 3428, 3196, 1657, 3429, 2099, 3310, 1090, 2462, 2634, 3027, 2214, 569, 2470, 2472, 535, 2642, 2643, 2394, 2879, 1392, 1577, 1777, 2000, 1137, 3445, 572, 2810, 3098, 1664, 1665, 2220, 1877, 2813, 3820, 805, 1311, 2116, 2481, 2653, 427, 1669, 428, 494, 3704, 848, 1673, 2407, 1050, 1144, 1198, 1313, 1315, 1477, 3655, 2655, 1885, 2483, 3105, 3106, 3823, 1259, 1400, 1319, 3749, 498, 3656, 2125].

generators [3581, 2127, 1678, 3108, 1680, 2313, 3472, 3659, 3790, 2316, 3582, 3662, 1052, 3040, 3583, 3712, 3348, 3233, 2566, 2014, 3971, 3113, 1684, 1147, 1053, 1406, 2894, 3863, 1054, 2895, 1203, 2016, 1688, 2661, 2747, 2970, 3044, 2413, 905, 1491, 1691, 2896, 1205, 718, 3122, 3716, 1902, 3125, 3897, 3666, 3493, 1903, 2145, 2237, 546, 2288, 1907, 2024, 2146, 2239, 1023, 1908, 3248, 2327, 1332, 1497, 1498, 3250, 1415, 1494, 1495, 3496, 1604, 1702, 2750, 2900, 3131, 3251, 3833, 1344, 1416, 633, 3901, 3253, 3254, 1608, 406, 1417, 2753, 2245, 2246, 2495, 1501, 3257, 1419, 1420, 1504]. generators

[1710, 1339, 2903, 1922, 1923, 2040, 2158, 2255, 2334, 2345, 2424, 2575, 2576, 1717, 1158, 1810, 856, 951, 952, 1219, 1220, 1341, 1811, 2043, 3836, 439, 1030, 275, 2339, 859, 997, 2907, 3057, 3837, 1348, 3724, 2909, 3510, 2761, 1721, 1816, 770, 476, 1227, 1282, 1350, 2585, 2684, 2763, 2764, 3141, 3673, 3380, 1519, 3381, 1430, 1818, 1819, 1928, 685, 3962, 3515, 3516, 1929, 2053, 2267, 2268, 2347, 2590, 3839, 1431, 2270, 3677, 775, 3938, 864, 3382, 3277, 1432, 1940, 3520, 1169, 3680, 1724, 2506, 2507, 2993, 1525, 356, 383, 2171, 2916, 1830].

generators [2174, 2273, 2274, 2352, 3523, 1002, 3156, 1442, 2843, 916, 1720, 3162, 2440, 3525, 1730, 2920, 2997, 3067, 826, 1367, 1368, 1450, 1632, 1838, 2179, 2181, 2182, 2184, 2279, 2280, 2360, 2362, 2363, 2445, 2446, 2600,

Heuristic-Based [2088]. heuristics [3033]. HI [4179]. Hidden [1717, 3889].

hiding [3380]. hierarchical [3149, 3004]. Hierarchy [2188, 3447, 2968, 1603].

High [2408, 3465, 2135, 3753, 2663, 3125, 3270, 3271, 3926, 3279, 3153, 3802, 4186, 2520, 651, 2071, 3737, 3632, 3404, 3414, 1190, 3095, 3097, 101, 3571, 1057, 1326, 2662, 2748, 2668, 2750, 3050, 3135, 3257, 2576, 2832, 3378, 3058, 1725, 1941, 2170, 118, 3163, 3283, 129, 3531, 1960, 3537, 3538, 1967, 792, 2380, 227, 3020, 2944, 3030, 1193, 3745, 3561, 122, 2475, 2552, 3573, 2959].

High-density [2663]. high-dimensional [2668, 2750, 2380, 3030, 3745].

High-entropy [3125]. high-functioning [3020]. high-order [3058].

High-Performance [3153, 3465, 2135, 3753, 2576, 1941, 2170, 118, 3163, 3283, 129, 3531, 1960, 3537, 3538, 1967, 792, 2380, 227, 3020, 2944, 3030, 1193, 3745, 3561, 122, 2475, 2552, 3573, 2959].

High-Quality [2188, 3447, 2968, 1603].

High-Speed [2408, 3271, 3802, 3414, 3753, 2520, 1190, 2748, 3257, 1725, 118, 129, 792, 227].

Higher [2019, 3243, 1698, 2434, 3239, 3521, 1246, 2953].

Higher-Order [1698].

Histogram [3490, 1619]. Histograms [3697, 1308]. Historical [2737].

Hyatt [4117, 4195, 4113]. Hybrid [3254, 3979, 354, 251, 3319, 3105, 3239, 557]. hyperbolas [2118, 2401].

33

[4016, 4011, 4010, 4070]. Integer
[1200, 2494, 2148, 3675, 1529, 3908, 3186, 3913, 2207, 1090, 1879, 1681, 3710, 1342, 3799, 781, 1121, 2931, 2070, 565, 617, 1591]. integer-valued
[1681, 3710, 3799]. Integers
[2976, 3923, 1287, 1403, 2241, 633, 113, 771, 1119, 1289, 3736, 1863, 1085]. Integral
[1887, 819, 1005, 1389, 712, 349, 132, 3551, 713, 3550]. Integrale
[278]. Integrale
[2971, 2254, 996, 2774, 2080, 2205, 2104, 1597, 2232, 901, 4176, 1349, 2911, 1820, 2906, 667, 397, 463, 540, 804, 2867, 540]. integrations
[1080]. integrators
[2277]. integrity
[4071]. Integro
[3355]. Integro-Local
[3355]. Intel
[2046, 3385, 2437]. Intelligent
[4185, 3497]. Intensive
[2921, 4070, 4049]. Inter
[3447]. Inter-domain
[3447]. Interactions
[1764]. interactive
[1793]. interchanges
[1728]. interdependence
[585]. Interface
[4031, 4018, 4023, 4011, 4048, 4049, 2054, 3290, 3966]. Interfaces
[2417]. Interruptions
[1020]. Interpretation
[6, 725, 384, 3361, 2066, 624]. interruptions
[1020]. Interval
[2411, 716, 953, 3960, 3908, 3913, 61, 3302, 2007]. Intervals
[2319, 1798, 953, 1727, 44, 969, 150]. intrainverted
[1722]. Intrinsic
[2233, 1514, 1292, 1761]. Intrinsically
[3625, 3852, 3883]. Introduction
[3858, 2826, 2019, 3243, 2666, 3049, 3159, 1840, 2285, 3170, 262, 1233, 1685, 2235, 2659, 3353, 296, 2326, 1726, 2703]. invalidates
[3418]. Invariance
[579]. Invariant
[1896, 3013]. Invariants
[3176]. Inventor
[3480]. Inverse
[1100, 3978, 2989, 3062, 3168, 187, 4140, 2545, 886, 889, 897, 1019, 3718, 1427, 324, 1068, 3727, 2058, 3529, 3910, 1965, 2863, 876, 1983, 1248, 1249]. Inversen
[1030]. inverses
[3173]. Inversion
[3244, 3004, 3367, 3860, 3046, 3365, 3055, 3607, 2168, 2769, 3529, 3099, 1876, 3889]. Inversion-based
[3004]. Inversions
[1503, 1462, 46]. Inversive
[2086]. invertible
[3572, 3652]. Inverting
[323, 3001]. investigating
[414]. investigation
[2678, 3982]. Investigations
[1665, 1670, 2143, 1747]. investing
[3767]. invitation
[4005]. Invited
[2500, 1633]. Involving
[197, 341, 342]. IoT
[3963, 3940, 3942, 3944]. iris
[3705]. Irrational
38

290, 2519, 2775, 1752, 3641, 2107]. low-dispersion [1377]. Low-Order
[1910, 1409]. Low-overhead [3988]. low-power [3248]. Lower
LPRng [2531, 2095]. LR [1541]. LSI [1156]. LSTMs [3927]. LT [3363].
Luby [2124, 1850, 3186]. Luc [1304]. Lucas [3511, 2403]. luck [3841].
luminescent [3686]. Lüscher [2170, 1941]. LUT [3095, 3702]. LUT-SR
[3702]. LUTs [3445]. LWR [3984]. LWR-based [3984]. LXM [3948].
Lyapunov [2849, 1842]. lying [1314]. LZSS [3359].

M/M/m [1020]. M/PH/1 [3328]. MA [4173, 4131]. Mach [3126].
Machine [151, 2749, 142, 916, 3801, 835, 166, 3828, 771, 2195, 3423, 192].
Machine-independent [916, 771]. Machinery [3992]. Machines
MaD0 [3805]. Made [1510, 1833]. Madland [3778]. Magma [3488].
Mahalanobis [135]. Main [3433]. Maine [4067]. mainly [312, 450].
maintenance [3407]. Majorana [3667]. Majority [3917]. Majorizing
[3830, 2546, 2905, 3448]. Man [128]. Management [2415, 4129, 4087, 3227].
Managing [3776]. Manhattan [3682]. MANIAC [1199]. Manipulating
[3362, 3574, 3891, 3922, 3806, 2092, 3314]. Maple [1951]. Mapping
[3429, 1422, 1030, 3521]. Mappings [3226, 2766]. Maps
[2611, 3344, 2965, 3239, 868, 3408, 3968, 3973]. March
[3994, 4051, 4174, 4031, 4023, 4185, 3996, 4081, 4155]. Marginal [2236, 1839].
Marginals [2569]. margins [2301]. Marinucci [3684]. Mario [3807]. Mark
[4038]. Markov
[2566, 212, 1097, 1201, 2240, 3371, 955, 512, 660, 709, 2001, 1785]. marks
[2317]. Marotto [3514]. Marriott [4044, 4017, 4132, 4026, 4073]. MARS
[3343, 2313, 2824, 1338, 1339, 1354, 2069, 2091, 1084, 3820, 3855]. Marshall
[2910]. Martuljek [4102]. Maryland [4055, 4146]. mashinakh [351].
masked [3673]. Masking [3916]. mass [738, 1589]. Massachusetts [4011].
[3829]. Mathematica [3630, 3693, 2100]. Mathematical
[3829, 4000, 4067, 3995, 4016, 4020, 1231, 1232, 96, 3684, 3997, 250, 1078, 3773,
2383, 3999, 55, 57, 4007, 4106, 3651, 938, 464, 495, 236, 717, 1218, 2457, 209].
Mathematical-Function [3829]. Mathematicians [2628]. Mathematics
[2409, 4000, 2823, 3995, 4016, 912, 4198, 1951, 1552, 1853, 4166, 4167, 4008,
139, 4197, 1742, 4015]. mathématiques [3997]. MathLink [2135].
MATLAB [3151, 2709, 3182, 2885]. Matrices
[2323, 1179, 3095, 1260, 1623, 1126]. Matrix [1593, 2236, 590, 1282, 1350,
2198, 1313, 1149, 1419, 3274, 3612, 53, 1558, 2083, 2085, 3572, 3652, 1227.

Matrixgeneratoren [1227, 1350]. matter [3954]. max [1457]. Maximal
[183, 1612, 1445, 829, 925, 2735, 1710, 2761, 3636, 3320]. Maximal-Length
[925, 1445]. Maximally [3872, 2182, 2446]. Maximum
[1271, 1026, 1157, 829, 925, 2735, 1710, 2761, 3636, 3320]. Maximal-length
[3542, 3738]. May
[4029, 4034, 4039, 4045, 4050, 4055, 4066, 4075, 4084, 4089, 4097, 4098, 4116,
4123, 4136, 4146, 4161, 4189, 3998, 4087, 3694]. mbedTLS [3856].
MC
[170]. MCNP [1274, 3375]. MCS [4133]. McShane [506]. MCV
[740, 800]. Mean
[577, 1100, 766, 2841, 601, 2, 539, 1706, 1707, 2756, 1707]. mean-square
[1706, 1707]. meaning [440]. Means [3506, 2998, 3091, 2108, 2590, 3403].
Measure [2227, 2349, 2562, 2909, 2921, 2097, 2646]. measurement
[3248, 3379]. measurements [557, 3567]. Measures
[2961, 3532, 2723, 633, 1809, 2272]. measuring [3434]. Mechanical [530].
mechanics [2896]. Mechanism [3919]. medians [437]. Medical
[24, 299, 47, 73, 114, 115, 171, 172, 3533]. Meeting [4014, 4009, 4005, 4135].
Meetings [1150, 1168]. Mehrfach [638, 639]. mehrfacher [278]. Mellin
[536]. Mellon [4013]. Memorial [4111]. Memory
[2408, 2225, 3749, 3905, 3739, 3912, 3433, 3859, 1741, 1746]. memoryless
[1295]. Mengen
[2747, 3240, 2749, 2828, 760, 3872, 1723, 913, 2853, 2373, 3008, 2536, 3416, 3197, 3431, 3698, 1776, 2807]. Mersenne-Exponent
[1691]. Metaheuristic [3979, 3982]. Metamodels [1727, 3593].
Metastability [3967, 3221, 2930]. Metastability-Based [3211]. Method
[2009, 267, 179, 758, 270, 196, 1210, 1211, 2494, 634, 1274, 2420, 1813, 220,
352, 641, 510, 25, 201, 1824, 1938, 645, 1005, 1120, 2925, 249, 2367, 2067, 601,
281, 335, 337, 359, 2369, 2525, 146, 2375, 2076, 187, 205, 613, 2198, 2202, 658,
19, 741, 527, 619, 702, 970, 4200, 2208, 1659, 2947, 3916, 3448, 1667,
847, 559, 1393, 3706, 630, 941, 1396, 2311, 1261, 1404, 234, 1055, 1792, 195,
1205, 1266, 3046, 320, 989, 948, 1704, 3499, 585, 1214, 2157, 2518, 591, 592,
273, 765, 767, 351, 1000, 1351, 3607, 94, 3515, 1521]. method
[1826, 1937, 67, 76, 3993, 1725, 1070, 2178, 918, 1006, 1034, 1174, 2924, 3003,
2521, 3622, 3537, 385, 828, 1124, 1125, 2370, 2526, 78, 1550, 920, 3001, 2865,
1010, 3879, 695, 797, 1184, 1972, 2083, 2085, 2293, 383, 662, 1084, 99, 189, 566,
877, 4019, 1089, 3699, 1390, 2876, 393, 709, 747, 2733, 1999, 193, 2880, 1876,
1309, 3784, 711, 177, 2223, 1475, 1880, 3972, 2555, 233, 7, 3973, 3787, 2121, 178].
Méthode [178]. Methoden [631, 1747]. Methodology
[3501, 725, 2596, 2462, 4108]. Methods
[576, 670, 4005, 2126, 3111, 2015, 3244, 547, 679, 2243, 1101, 1212, 2036, 2580,
636, 2341, 2757, 4193, 4183, 642, 512, 2172, 1438, 1441, 4171, 827, 788, 1642,
3996, 488, 831, 204, 614, 873, 1756, 2623, 2293, 1081, 4070, 700, 2205, 1865,
841, 4160, 1575, 1993, 2395, 2883, 4049, 464, 495, 651, 986, 1317, 892, 3751,
Modulo

Modulus

Molecular

molecular-dynamics

Moment

Moment-Generating

Moments

Monaco

Monica

monitoring

Monkey

Monkeying

Monographs

Monotone

Monotonicity

Monster

Monte

Monte-Carlo

Monterey

Montgomery

monthly

Montreal

Monty

Mordell

morphological

MOSFET

mostly

mother

Motion

mots

mouse

movement

moyennes

MP

MPI

MPPC

MR

MPR

MR1414863

MR2084569

MT19937

Mulders

Muller

Multi

multi-access

multi-bit

multi-class

multi-dimensional

multi-delays

multi-folding

multi-sequences

multi-stage

multicomputer

multicyclic

Multidimensional

Multigroup

Multiloop

Multimedia

Multinomial

Multiparty

Multicore

Multithreaded

Multithreading

Mulders

Multi-access

multi-bit

multi-class

multi-dimensional

multi-delays

multi-folding

multi-sequences

multi-stage

multicomputer

multicyclic

Multidimensional

Multigroup

Multiloop

Multimedia

Multinomial

Multiparty
2440, 3981, 598, 599, 248, 2920, 2997, 3067, 826, 1365, 3388, 1368, 1632, 1838, 1957, 2179, 2184, 2279, 2280, 2281, 2362, 2363, 2364, 2600, 2602, 2698, 2845, 2847, 2922, 3070, 3592, 3619, 3842. **number**

[3282, 1539, 1174, 3389, 1122, 3163, 3283, 2921, 782, 2849, 2851, 3004, 3166, 2284, 3763, 129, 482, 1734, 3620, 3167, 1542, 483, 868, 3530, 3531, 2612, 3685, 2930, 3766, 3624, 3292, 3293, 3626, 447, 448, 485, 521, 652, 789, 1075, 1179, 1546, 1547, 1636, 1742, 1966, 2287, 2706, 2781, 3399, 2708, 2857, 3176, 3911, 3540, 1848, 1967, 1968, 2448, 2527, 2528, 3627, 3690, 3737, 3628, 2372, 2373, 2783, 3008, 3074, 3180, 3076, 3541, 2786, 2864, 1747, 1643, 792, 454, 455, 830, 3693, 793]. **number**

[3295, 1078, 1127, 3402, 921, 832, 3297, 609, 3632, 3404, 3012, 611, 1010, 655, 1128, 1297, 1647, 1754, 1755, 2083, 2535, 2620, 2720, 3189, 3015, 3302, 3408, 2866, 3409, 3410, 616, 659, 3190, 876, 3696, 3081, 2538, 2868, 2938, 3413, 2203, 3304, 3774, 1463, 1130, 491, 525, 1080, 1299, 1464, 1760, 2091, 968, 1386, 3191, 3880, 2539, 2092, 564, 3544, 2094, 1300, 3418, 800, 3018, 3850, 1131, 618, 2540, 1981, 3421, 260, 1132, 620, 367, 839, 3547, 2215, 2465, 1193, 2639, 2803, 3556, 983, 2804, 2473, 3746, 3948, 3969, 2549, 208, 3090, 3558, 2640, 2641, 3932, 3559, 3315, 3561, 2878, 2304, 2393, 2551, 2730, 2646, 2731, 2733, 2808, 2949, 2950, 2951, 3032, 3033, 3093, 3440, 3441, 3442, 3562, 3563, 3207, 3443, 3444, 1472, 1661, 1875, 1999, 3034, 3094, 3096, 3702, 3747, 2396, 3446, 3321, 167, 2953, 3949, 2476, 1663]. **number**

[1308, 985, 3097, 2811, 3950, 3448, 3450, 1093, 2112, 1094, 3650, 3933, 2553, 3567, 232, 1587, 1878, 3035, 3568, 1754, 2652, 3332, 2117, 2223, 3334, 2005, 462, 2957, 3101, 2554, 3221, 3452, 3572, 3652, 1784, 2406, 2308, 2654, 2739, 3037, 3454, 3224, 3972, 3456, 3038, 3225, 3889, 2740, 2886, 2741, 3338, 3339, 3459, 2958, 3973, 3461, 3705, 1256, 1592, 575, 2959, 3795, 3497, 3600]. **number**

One-chip [3321]. One-class [3339]. One-dependent [1439]. One-Dimensional [3574, 188]. One-line [447, 448]. One-shot [3148]. One-Sided [484].

50

Probabilistic [1813, 922, 3316, 1588, 1900, 1237, 2432, 1724, 1739, 2777, 2931, 454, 1555, 625, 574].
Probabilîa [16].
probabilités [3].
Probabilities [950, 1108, 1567, 3828, 3, 3064, 140].
Probability [3858, 1887, 294, 4005, 3827, 2142, 169, 2027, 3138, 82, 305, 1239, 653, 560, 2619, 360, 1129, 1649, 2722, 2627, 2090, 1186, 2204, 526, 262, 207, 4072, 907, 4006, 151, 1331, 1104, 4177, 16, 2163, 381, 1443, 256, 1554, 663, 568, 2649, 3933, 4020, 389, 2618].
Probable [1, 969, 2, 2143, 1796, 1443].
probablistic [564].
Probably [1322].
Problem [2139, 3357, 52, 2906, 304, 1455, 388, 3773, 1774, 1599, 2822, 948, 3512, 958, 3174, 3875, 188, 3889].
procédé [322].
Procedure [1099, 1208, 950, 1108, 996, 3902, 444, 309, 280, 1762, 1594, 1676, 322, 773, 334, 283, 336, 3633].
Procedures [2570, 3726, 254, 565, 617, 2633, 1136, 1672, 1684, 582, 320, 2451, 2712, 2934, 3179, 344, 846].
Proceedings [4029, 4050, 4075, 4098, 4189, 4196, 3994, 4051, 4032, 4040, 3995, 4064, 4018, 4023, 4037, 4119, 3993, 4059, 4060, 4201, 4186, 4093, 4017, 4132, 4133, 4160, 4082, 4013, 4095, 4096, 4139, 4015, 4048, 4008, 4097, 4146, 4156, 4161, 4044, 4090, 4035, 4056, 4014, 4030, 4031, 4000, 4076, 4099, 4022, 4100, 4124, 4091, 4016, 4046, 4138, 4058, 4020, 4125, 4069, 4126, 4130, 4120, 4127, 4054, 4150, 4113, 4065, 4094, 4114, 4121, 4143, 4010, 4070, 4026, 4009, 4028, 4135, 4088, 4115, 4038, 4107, 4083, 4034, 4039, 4045, 4055, 4066, 4084, 4089, 4116, 4123, 4136, 4141, 4173, 4182, 4103, 3992, 3998, 4062, 4170].
Proceedings [4190, 4063, 4011, 4086, 4180, 4195, 4131, 3997, 4078, 4172, 4081, 4151, 4087, 4073, 4102, 4106, 4074, 4109, 4085, 4118, 4178, 4162, 4185, 4159, 4043].
Process [2067, 3313, 1704, 528, 981, 3329, 1591].
Process-Voltage-Temperature [3313].
Processes [170, 300, 350, 1822, 2691, 688, 2439, 97, 102, 1061, 4177, 274, 198, 1520, 3612, 4002, 2598, 3877, 360, 1129, 1649, 2722, 228, 62, 1781, 319, 389, 394].
Processing [669, 3496, 4081, 3998, 3664, 1203, 4119, 1355, 2271, 1446, 3163, 3632, 3189, 1982, 1656, 2554].
processor [3350, 1523, 1524, 3685, 3328].
Processors [2422, 4163, 3385, 3416, 3431, 3698, 3348, 3864, 1410, 1501, 1424, 1620, 1635, 1464, 3461, 3576].
Product [1113, 3978, 3938].
Produced [1408, 3761, 558, 1082, 1083, 1409, 3058, 2278, 1558, 2732].
Producing [337, 359, 75, 76, 385, 2949].
Product [2594, 3065, 207, 3202, 898, 1158, 1936, 1239].
Production [169, 331, 176].
Products [3010, 395, 534, 2042, 3525, 2811].
Profile [2962, 2829, 2764, 2785, 3076, 1749, 1555, 2953, 1882].
Program [3475, 3662, 2133, 1215, 3798, 225, 3218, 1023, 2376, 615, 1383, 1132, 936].
Programmable [2271, 1828, 2615].
Programmed [814, 900, 1690, 2959].
Programmierung [890].
Programming [3829, 3959, 2998, 2088, 1650, 3779, 4135, 890, 4016, 1218, 2169, 2708, 612, 2215, 3701].
Programs [1484, 3356].
3652, 3224, 3456, 2886, 3575, 3338, 3822, 3461, 3462, 438, 471, 639, 362, 3628

Pseudo-aleatoire [1892, 322]. pseudo-aléatoires [759, 284, 1580].

Pseudo-random

Pseudo-random-number

[3386, 2275, 3156, 3281, 1003, 1628, 2919, 248, 1007, 1174, 2441, 2926, 2612, 1841, 3393, 3396, 3292, 3176, 3690, 3737, 2373, 284, 455, 793, 3771, 3011, 1750, 3403, 2289, 695, 797, 799, 794, 798, 1148, 418, 2294, 491, 258, 3417, 662, 800, 663, 3850, 3642, 3022, 878, 3782, 3550, 3551, 2636, 3968, 1193, 345, 570, 3970, 3314, 2217, 2393, 2551, 2730, 165, 193, 3212, 2477, 1094, 3219, 2955, 3036, 1475, 3572, 3652, 3224, 3456, 3575, 3461, 3462, 628, 362].

Pseudo-random-number

[3166, 2864, 2299]. Pseudo-Randomness

[2588, 3142, 2772, 446, 1687, 3534, 1553, 3192]. pseudo-uniform [1023]. Pseudo-Zufallszahlen

[348, 471, 639]. pseudoentropy [3649]. pseudoinverses [1030]. pseudonoise [2915].

Pseudorandom

Pseudorandom

Pseudorandom
[2723, 3639, 1131, 1980, 419, 1467, 2097, 1387, 2632, 3428, 1657, 3197, 881, 882,
1092, 883, 1991, 2465, 709, 3031, 2474, 2642, 2394, 1306, 1392, 1577, 1663, 1877,
2113, 3100, 3218, 2116, 2481, 2653, 1141, 494, 2956, 1881, 3226, 3821, 3786, 1673,
907, 2742, 1050, 1395, 2655, 1885, 1593, 3891, 1259, 1400, 1481, 2011, 498, 2312,
2127, 2887, 1482, 1401, 1680, 3659, 3790, 2965, 3474, 3582, 3660, 3712, 987, 2014,
1599, 2894, 3895, 1054, 1055, 1691, 3488, 401, 1793, 3794, 3954, 2664, 3666, 759,
2827, 1908, 469, 2025, 2327, 1699, 1700, 470, 3955, 471, 3253, 472, 1105, 3601].
pseudorandom
[3977, 2246, 2495, 908, 1419, 1503, 1613, 1614, 1616, 1617,
1709, 1710, 1712, 1713, 1714, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1915,
1916, 1917, 1918, 1919, 1920, 2034, 2035, 2037, 2038, 2154, 2155, 2156,
2248, 2250, 2252, 2328, 2329, 2330, 1338, 1340, 2253, 2333, 2671, 1923, 2040,
2158, 2255, 2334, 587, 588, 322, 3722, 1811, 2497, 1279, 1224, 1280, 1344, 2338,
2339, 859, 3837, 1348, 3724, 2909, 555, 379, 2833].
pseudorandom
[771, 185, 639, 3903, 2763, 2501, 2764, 3141, 3673, 3757, 3381, 3962, 3515,
3516, 2051, 2053, 2265, 2267, 2268, 2345, 478, 2590, 2270, 864, 1432, 1940, 382,
2507, 2993, 414, 824, 1525, 1941, 2170, 356, 2171, 1286, 2916, 1830, 1361, 2175,
2176, 2512, 1442, 3907, 1235, 3162, 1445, 2440, 3981, 598, 599, 1365, 2921,
2063, 2387, 2284, 1177, 1290, 2608, 1542, 483, 868, 3531, 3174, 3736, 3806,
3910, 3930, 3175, 1372, 1454, 1740, 2068, 1848, 1967, 1968, 2448, 2527, 2528,
2372, 2374, 2783, 3008, 3074, 1850, 3811, 2785, 3076, 3931, 1550, 3632, 3298,
1010, 3813, 2197, 655]. pseudorandom
[875, 1039, 1128, 1244, 1245, 1297, 1378, 1379, 1381, 1462, 1556, 1558, 1754,
1755, 1857, 1971, 2083, 2533, 2534, 2535, 2620, 2621, 2622, 2720, 2937, 3187,
1758, 3409, 3410, 3412, 616, 3695, 3848, 3774, 1651, 525, 2091, 836, 968, 458,
1981, 1132, 1654, 1469, 1087, 1565, 1042, 877, 3986, 3644, 2543, 3087, 705,
2389, 3432, 2211, 2945, 1391, 3435, 3553, 3987, 2946, 624, 983, 3746, 3948,
3969, 3932, 1775, 1307, 1999, 2953, 1779, 2648, 936, 3649, 3215, 3216, 3451,
2112, 493, 3933, 710, 2221, 1587, 2117, 2118, 2223]. pseudorandom
pseudorandom-number [2655]. Pseudorandomness [2961, 2227, 3357,
3592, 3957, 723, 2681, 2500, 3871, 3614, 3904, 2508, 2593, 2689, 2595, 2605,

Q.R.N.G. [3469]. Qs [3609]. Quadratic [2033, 2037, 2252, 658, 2088, 1650,
Seed
Seeding
Seeds
seeming
Segmentation
Select
Selected
Selection
Selective
Self
self-adaptive
self-assembly
Self-Avoiding
Self-Excited
Self-Similarity
self-test
Self-testing
selfish
Semi
semi-infinite
Semi-Random
Semiconductor
seminar
Seminumerical
Semiparametric
sense
sensitive
Sensitivity
Sensor
sensors
Seoul
September
Sequence
Sequences
Sequential
Serial
Sequencing
Seeding
[4117, 3476, 3792, 2419, 1913, 2902, 3259, 3605, 2759, 2836, 2689, 4150, 2617, 2788, 2625, 3406, 3773, 3695, 1568, 3199, 3031, 2877, 4095, 4115, 3856, 4188, 2134, 2821, 3045, 4057, 3533, 1453, 793, 3298, 3304, 3310, 2946]. Seed
[3825, 2415, 3326, 1149, 2506, 1768, 3448, 3517]. Seeding
[1346, 2375, 3655, 1002, 3418]. Seeding
[135x610]Seeds
[2781, 3849, 1234, 3311]. seeming
[2628]. Segmentation
[1785, 3004]. Select
[1234]. Selection
[1208, 3127, 272, 2978, 3902, 3726, 1461, 2082, 3129, 2362, 2606, 3633, 1010, 2460]. Selecting
[1234]. Selection
[1208, 3127, 272, 2978, 3902, 3726, 1461, 2082, 3129, 2362, 2606, 3633, 1010, 2460]. Selective
[45]. Self
[3124, 2374, 3550, 1999]. Self-Avoiding
[3675, 2584, 1817]. Self-Excited
[3124]. Self-Similarity
[4154]. self-test
[1432, 1522, 2374, 1999]. Self-testing
[3645]. selfish
[3148]. Semi
[1247, 1310, 470]. semi-infinite
[470]. Semi-Random
[1247, 1310]. Semiconductor
[3307, 3213, 3325]. seminar
[3998]. Seminumerical
[2356]. Semiparametric
[1474]. sense
[872, 463]. sensitive
[2224]. Sensitivity
[2327]. Sensor
[2980, 3406, 3764]. sensors
[3559]. Seoul
[4149]. September
[3992, 4014, 4091, 4170, 4098, 4078, 4160, 4102, 4096, 4107, 4008]. Sequence
[1488, 1324, 3592, 3953, 1606, 1708, 1222, 408, 442, 1526, 2694, 384, 386, 3878, 3083, 1083, 3946, 666, 3218, 2407, 907, 1051, 3116, 901, 582, 1693, 1694, 1268, 3126, 37, 470, 551, 586, 3137, 1063, 1224, 2338, 3626, 3267, 3268, 324, 1430, 3838, 2990, 864, 3678, 3520, 306, 2771, 1033, 3156, 3281, 1004, 357, 1365, 3287, 2520, 647, 730, 731, 2187, 1740, 1374, 2374, 452, 453, 1009, 2081, 3695, 3848, 1041, 3420, 1190, 3087, 1769, 1045, 1773, 3314, 50, 2476, 3570, 13, 1253, 3338, 2309]. Sequences
[705, 622, 3198, 2463, 567, 1134, 3699, 345, 803, 1871, 2104, 2107, 1997, 2109, 2216, 2218, 2305, 3320, 1580, 3215, 493, 2553, 574, 1587, 3785, 1475, 807, 1671, 1882, 3575, 41, 809, 4057, 4162, 4149, 694, 733]. Sequential
[1145, 272, 3902, 1927, 558, 781, 1121, 120, 500, 1207]. Serial
[216, 52, 244,
SERPENT [2508, 2593]. server [2663, 2756, 1977]. Service [3468, 3469, 231, 2176, 1184, 1381, 1462, 51].

Ses [3196, 3275]. ses [1892].

Set [265].

SETS [1906, 170, 1732, 3684, 784, 250, 1976, 315, 231, 23, 1130, 20, 1591].

SETA [4162, 4149].

Setting [3326, 3526].

seventeenth [4029].

Seventh [1951, 4115, 4089].

Several [1902, 1827, 2353, 3623, 1499, 655, 1013].

SFQ [3337].

SHA [3772]. SHA-3 [3772].

Shadowing [1718].

Shamir [2893].

Shape [819, 2208, 712, 1053, 852, 3844, 3398, 3207, 713].

Shapes [3671, 2869, 3510].

Shapiro [3878].

Shared [2479, 1793].

Sharing [2076, 1984, 3065, 3328].

Shell [2797].

Shenzhen [4185].

Sheraton [4028].

Sherif [2103].

Sherman [127].

Shewhart [1197].

Shift [2571, 1209, 1328, 1106, 1029, 1062, 2982, 409, 1031, 1526, 2517, 517, 648, 650, 870, 487, 3543, 1566, 2388, 1989, 3647, 1577, 3445, 2735, 3918, 2407, 2410, 1268, 3126, 1508, 723, 1722, 2270, 1004, 3981, 2062, 3929, 333, 3535, 310, 1635, 1741, 2068, 1297, 1380, 1557, 3013, 3740, 1133, 1768, 2101, 3451, 3888, 3973, 3787]. shift-invariant [3013].

Shift-Nets [2388].

Shift-Register [1106, 2982, 650, 487, 1577, 1268, 1508, 2270, 1004].

Shift-Register-Sequence [2407]. shift-remainder [1298]. Shifted [3312, 3391, 3555].

Shifts [2800, 2970, 3044, 161]. shooting [1690]. shootout [3863].

Short [239, 323, 408, 405, 4067, 1159, 1595, 2101].

Shortest [719, 1526, 2874].

Shot [2943, 3148, 3434]. Should [1191].

shown [3707].

Shrinkage [3614, 3904]. Shrinking [1905].

shuffled [2476].

Shuffling [408, 742, 1485]. Shunt [338].

SIAM [4083, 4005, 1066, 4081, 933]. sic [2651].

side-channel [3191].

Sided [484, 3554].

Sieve [4077].

SIGACT [4075, 4172]. SIGACT-SIGMOD-SIGART [4075]. SIGART [4075, 4172].

Sigla [953].

SIGMOD [4075, 4172, 4087]. SIGMOD-SIGACT-SIGART [4172].

signature [1852].

Signed [1595].

significance [1163].

Significant [259, 430, 2914]. significantly [3493]. signing [2178]. silico [3576].

SIMD [3197]. SIMD-Oriented [3197].

Similar [3878].

SIMPL [763].

SIMPL/1 [763].

Simple [1478, 580, 1683, 1202, 1600, 906, 1607, 3758, 1074, 2525, 2374, 2076, 829, 3548, 2636, 2945, 1249, 3462, 2561, 850, 1148, 1795, 1103, 2425, 4104, 1281, 75, 3063, 2181, 2609, 3173, 621, 2473, 3207]. simplest [2063]. simplex [3788].

Simplicial [3819].

Simplicity [2050, 2165]. simplified [3172, 1850].

simplifying [3649]. Simply [2687, 1833]. Simscript [763]. simulate [1518].

Simulated [2570, 1776, 2807, 1901, 1223, 3025]. Simulating [2814, 3935, 1411, 758, 1215, 1266, 552, 2865, 1383, 1084].
Sophie-Germain [2858]. Sorrento [4091]. sort [1246]. Sorted [945, 899].
sound [2352, 3774]. Source
[1097, 3793, 3276, 3804, 650, 2210, 3991, 1201, 2748, 219, 3518, 3677, 3966, 2948].
Sources [1257, 1316, 2964, 30, 3373, 3814, 1247, 1310, 1327, 1543, 1843, 3845, 2790, 2302, 3886, 3450]. sous [801]. Southeast [4063, 4074]. Sowey
[931, 973]. SP [3045, 3814, 3428]. SP800 [2912, 3637]. SP800-22
[2912, 3637]. Spa [4127, 2055]. Space
[3144, 3075, 1680, 3371, 822, 686, 1559, 1757, 188, 2542]. space-bounded
[1559, 1757]. Spaces [3935, 3903, 1554, 3013, 3030]. Spacings
[366, 1945, 2282, 2600]. Spanish [134]. sparing
[1138]. Sparre
[238]. Sparse
[1516, 2700]. sparsest
[3681]. sparsity
[3724]. Spatial
[2515, 3047, 3683, 928, 3314]. Special
[2986, 3676, 3734, 3221]. Species [186]. Specific
[3720, 4163, 1007, 2008]. Specification [3905]. Specifications
[2505]. Specified
[2569, 1839, 2367, 3308]. Specker [3578]. Spectral
[3935, 1698, 768, 769, 1167, 862, 1067, 3928, 3911, 451, 3299, 2873, 3024, 3335, 2423, 685, 2991, 2348, 2274, 2280, 2508, 3317, 1307]. spectrally
[3699]. Spectrum
[2912, 3395, 3818, 3778]. Speed
[2408, 3271, 3802, 651, 3414, 3307, 101, 3571, 3335, 3753, 2748, 3135, 3257, 2832, 3378, 1725, 118, 2178, 129, 2520, 792, 227, 563, 1190, 2944, 122]. Speedy
[1662]. Sphere
[196, 201, 3684, 3539, 602, 845, 1579, 1139, 429]. Spheres
[205, 1170, 3327, 270]. Spherical
[341, 342]. Spherically
[169]. Spin
[3723, 3155, 735]. spintronics
[3723]. spirals
[1314]. Splittable
[3666, 3782, 3746, 3948]. Splitter
[2670]. splitters
[3315]. Splitting
[1631, 2158, 2223, 2554]. sponge
[3589]. spongy
[3741]. sponsored
[4005, 4016]. Spontaneous
[3453]. Spooler
[2095]. Spreading
[3758, 3274]. spreadsheet
[2862]. Spritz
[3741]. SPRNG
[2321, 2527, 2528]. sprout
[3311]. Square
[823, 44, 390, 3405, 1706, 1707, 2584, 94, 1627, 3166, 88, 14]. squared
[1352, 1172]. Squarefree
[2976]. Squares
[3878, 1439, 161]. squaring
[1308]. Squeeze
[880, 980, 828, 1089]. SR
[3702]. SRAM
[3976, 3276]. SRS
[1945]. SRU
[609]. SSE2
[3475]. St
[4059]. Stability
[319, 1813, 688, 394, 2230, 2598]. Stable
[758, 3519, 2507, 2993, 2439, 3945, 1266, 3252, 1383]. Stack
[2871]. STACS
[4033]. Stage
[1099, 3501, 159]. staircase
[1749, 1882]. Standard
[1492, 3506, 1418, 2505, 1861, 3772, 3644, 813, 677, 3958, 1947, 1629, 1654, 3881, 3061, 4128, 2469, 2547]. Standards
[91, 2541, 167]. Stanford
[4111]. Star
[2974, 2994, 3088, 3202, 3312, 3089, 3555]. Start
[584, 3301]. Start-Up
[584]. STATCOM
[3124]. State
[4017]. State-transition
[3095]. States
[3374, 2194, 3912, 3630, 3693, 3434]. stationarity
[817]. Stationary
[350, 688, 784, 3065, 2598, 3189, 3413]. Statist
[1266, 1066, 1034, 692, 693]. Statistical
[3934, 2816, 896, 3039, 2565, 3349, 815, 716, 851, 1698, 947, 2242, 1025, 585, 2242, 1025, 585.

time-dependent
[3536, 3822]. time-space [1680]. time-tested [3767]. Times
[2524, 941, 1620, 1982, 891]. Timestamp [2479]. timing [2479].
Tina [3477]. tiny [2119, 2743, 3460]. Tippett [43, 49, 28, 29]. TLP [902, 1033]. TLS
[3939, 3963]. TODAES [3545]. today [4041]. Together [3895]. Token
[2479]. Top [2532]. Top-Level [2532]. topics [931, 973]. Topologies [3447].
topology [2715]. Toss [3826, 1790]. Touted [2524]. tracing [1922].
Tract [70]. Traffic [505, 2756, 147, 3328]. Training [584]. trajectory
[590]. Transform [1887, 2323, 3871, 2912, 3186, 848, 1696, 3680, 3308, 3703]. Transformation
[654, 3301, 889, 3704, 1691, 718, 43, 923, 924, 1983, 2543, 2392, 1016].
Transformation-Based [3704]. Transformations
[296, 2269, 2172, 2595, 791, 3582, 1261, 194, 2028, 1718, 3277, 1249].
Transformed [2337, 1938, 805, 1826, 3062, 2703]. Transforming [2825].
transportation [3275]. transpositions [992]. Trapdoor [1094, 1049].
trapezoidal [3521]. Treatment [2669, 1850, 87]. tree [1278, 1308]. Trees
[1774, 1679, 1787, 1899, 1912, 1112, 1430, 1834]. Trends [3103, 1647]. Trial
[1183]. Trials [643, 687, 147, 393]. Triangle [4053]. triangles [2167].
Triangular [1405, 3355, 3636]. Trident [3408]. Trier [4068]. trigamma
[1705]. Trinomials [1723, 2191, 1997]. triple [2821, 2917]. triples
[2037, 2250, 2329]. trivariate [3970]. trivial [770]. TRNG
[3893, 3765, 3985, 3988]. TRNGs [3912, 3458]. Trojans [3663]. True
[2818, 3110, 2745, 3584, 3490, 3975, 3595, 3053, 3133, 2755, 3139, 2581, 3669, 1347, 3276, 3145, 3383, 2566, 3802, 3865, 3394, 3846, 3081, 3414, 3943, 3640, 3309, 2634, 3029, 3313, 3437, 3560, 3092, 3211, 2810, 3333, 3335, 3106, 3466, 3467, 3791, 3115, 3116, 3236, 3237, 3238, 3267, 3268, 3270, 3278, 2520, 3530, 3536, 3293, 3555, 3443, 3450, 3566, 3452, 3450, 3038, 3214, 3329]. Truly
[3241, 3503, 857, 2682, 3379, 3666, 1979, 537, 538, 3113, 3861, 2748, 3723, 2583, 600, 3630, 3693, 573, 629, 668]. Truncated [2898, 1537, 417, 1474, 853, 1342].
true [2346]. trustless [3850]. Trustworthy [3843]. trx [3843]. Tsallis
[3025]. Tucson [4024]. Tunable [3269, 2841]. Tuning [2809, 2882]. Tunnel
[3975]. tuples [2441]. Turán [2052, 656]. Turbo [3647, 1608, 1364].
[1398, 1154, 1615, 1711, 1451, 1086]. Tweedie [3789]. Twelfth [4075].
twentieth

twenty-eighth

twenty-second

twenty-fourth

twenty-sixth

Twin

twisters

twisting

Two-bit

Two-Dimensional

Two-Queue

Two-Sided

two-term

UHF

UHF-RFID

UK

Ultimate

ultracomputers

Ultrahigh-Speed

Ultrahigh

Unavoidable

Unbiased

uncertain

Unconditional

Unconstrained

Understanding

uniform

Uniform

Uniform-Gaussian

uniformément

uniform-distributed

uniforms

uniclone

Ultimate

Unique

units

unity

Univariate
References

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling. *Philosophical Magazine, 50*(302):157–175, July/December 1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897.
REFERENCES

This paper introduces the Klein–Nishina distribution of random numbers.

REFERENCES

REFERENCES

[34] N. Smirnov. On the estimation of the discrepancy between empirical curves of distribution for two independent samples. *Bulletin Mathématique de l'Université de Moscou, Série internationale* 2, 2(2): 1–16, ???? 1939. CODEN ????. ISSN ????.

REFERENCES

Dixon:1944:FCP

Levene:1944:CMR

Onsager:1944:CST

Rice:1944:MAR

Wolfowitz:1944:ADR

Rice:1945:MAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cameron:1952:RST

Goodman:1952:EPSa

Ore:1952:GCR

Tippett:1952:RSN

Anonymous:1953:RDa

Anonymous:1953:RDb

Anonymous:1953:RDc

REFERENCES

[141] E. C. Fieller, T. Lewis, and E. S. Pearson. *Correlated random normal deviates; 3,000 sets of deviates, each giving 9 random pairs with correlations 0.1(0 × 1)0 × 9*, volume 26 of *Tracts for computers*. Cambridge University Press, Cambridge, UK, 1955. 60 pp. LCCN QA47 .T7 no.26. Compiled from Herman Wold’s Table of random normal deviates (Tract no. XXV) by E. C. Fieller, T. Lewis, and E. S. Pearson: *Random normal deviates*.

REFERENCES

REFERENCES

REFERENCES

[178] J. Bass and J. Guilloud. Méthode de Monte-Carlo et suites uniformément denses. (French) [The Monte Carlo Method and sequences of uniformly-

REFERENCES

[Ehrlich:1959:MCS] Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{(K/y)(\partial u/\partial y)}{= 0}$. *Journal of the ACM*, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

527–537, October 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

[232] Donald D. Wall. A random number test for large samples. In Anonymous [3998], pages 7–11. LCCN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Scheuer:1962:GNR

Shanks:1962:CD

Sibuya:1962:FCN

Spanier:1962:UAM

Todd:1962:SNA

Walsh:1962:HNS

Allard:1963:MCR

Anonymous:1963:BRBd

REFERENCES

Barnes:1963:CEG

Bolshev:1963:APT

DeMatteis:1963:SAP

Firestone:1963:CNU

Fisher:1963:STB

Franklin:1963:DSR

Gabai:1963:DCSa

REFERENCES

REFERENCES

[328] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\left\{ \frac{a}{m} j^2 \right\}, \left\{ \frac{a}{m} (j + \tau)^2 \right\} \). Mathematics of Computation, 18 (86):211–232, April 1964. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

[339] George Marsaglia. Ratios of normal variables and ratios of sums of variables. Mathematical note D1-82-0348, Mathematics Re-
REFERENCES

REFERENCES

Tocher:1964:AS

Barker:1965:MCC

Barnett:1965:RNE

Franklin:1965:NSS

Golenko:1965:MSA

Greenberger:1965:MR

Hampton:1965:EUP

Hampton:1965:HAD

REFERENCES

REFERENCES

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See certification [628] and remarks [380, 391].

Pike:1965:ARN

Pike:1965:CAGb

Potter:1965:CNS

Pyke:1965:S

Reeves:1965:AUR

Rosenberg:1965:CNN

Scheinok:1965:DFR

Seshadri:1965:RVW

[370] V. Seshadri. On random variables which have the same distribution as their reciprocals. *Canadian mathematical bulletin = Bulletin canadien
de mathématiques, 8(??):819–824, ???? 1965. CODEN CMBUA3. ISSN 0008-4395 (print), 1496-4287 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[414] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [4004], pages 64–68. LCCN QA76.5 D55 1965.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

141

CODEN BRMIAC. ISSN 0005-7878. URL http://www.springerlink.com/content/16q4517x00r56955/.

[468] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [4005], pages 70–111. LCCN QA1 S565 v. 3.

REFERENCES

REFERENCES

Anonymous:1970:EWC

Anonymous:1970:FVP

Blaisdell:1970:RSP

Butler:1970:AAG

REFERENCES

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See remark [618].

[Cenacchi:1970:PRN]

[Dixon:1970:NSE]

[Downham:1970:SAA]

[Fuchs:1970:EDR]

[Good:1970:RPM]

[Haber:1970:NEM]

REFERENCES

REFERENCES

995, November 1970. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

McShane:1970:RSE

Murry:1970:GAG

Payne:1970:FTP

Prasad:1970:PDA

Rader:1970:FMG

Reader:1970:RDM

Schaffer:1970:AAG

REFERENCES

49, January 1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

153

Vincent:1970:CGT

Vincent:1970:GTR

White:1970:FDC

Zaremba:1970:DII

Ashford:1971:BRG

Berman:1971:GGD

Beyer:1971:LSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[626] Nathan O. Sokal. Optimum choice of noise frequency band and sampling rate for generating random binary digits from clipped white noise.
REFERENCES

Sowey:1972:CCB

Sullins:1972:CAP

Vincent:1972:CPA

Ahrens:1973:EFM

Ahrens:1973:NME

Burford:1973:BAC

REFERENCES

[646] G. P. Learmonth and P. A. W. Lewis. Naval Postgraduate School random number generator package LLRANDOM. Report NP555LW73061A, Naval Postgraduate School, Monterey, CA, USA, 1973. The shuffling algorithm proposed in this report does *not* lengthen the period, and only marginally reduces the lattice structure of linear congruential generators,
despite the apparently tiny difference with the [754] algorithm: see [1485] for a comparison, both mathematical, and graphical.

E. J. McGrath and D. C. Irving. Techniques for efficient Monte Carlo simulation. Vol. II. Random number generation for selected probabil-

REFERENCES

1973. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Tsuda:1973:NIF

Vincent:1973:RGT

Adam:1974:CLS

Ahrens:1974:CMS

Alam:1974:SNT

Beasley:1974:CSR

Block:1974:CBE

REFERENCES

Brent:1974:AAG

Chen:1974:GRV

Cohn:1974:CRP

Coldwell:1974:CDS

Collins:1974:CTE

Dahlquist:1974:NM

Dieter:1974:URN

REFERENCES

REFERENCES

[694] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. *Sémin Théorie des Nombres*, 6(??):??, ???. 1974–1975. CODEN ???. ISSN ???

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[730] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Mat. Sb. (N.S.),* 98(??):??, 1975. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

[756] R. P. Brent. Analysis of the binary Euclidean algorithm. In Traub [4013], pages 321–355. ISBN 0-12-697540-X. LCCN QA76.6 .SD195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959. The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be $O(0.705 \lg N)$ for large $N = \max(|u|, |v|)$. See [2488] for an update, and a repair to an incorrect conjecture in this paper. See also [2412], where the worst case
complexity is shown to be $O(\lg N)$, and the number of right shifts at most $2\lg(N)$.

1976. CODEN SIMUD5. ISSN 0163-6103. URL http://www.or.unc.edu/research/temp/tech70b.html.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[860] Donald P. Gaver. Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments: Comment.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

ISSN 0010-485X (print), 1436-5057 (electronic). See [670].

0035-9254 (print), 1467-9876 (electronic).

[894] A. C. Atkinson. A family of switching algorithms for the computer gen-
CODEN BIOKAX. ISSN 0006-3444 (print), 1464-3510 (electronic). URL

[895] A. C. Atkinson. Recent developments in the computer generation of
CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic).

AS 134: The generation of beta random variables with one parameter
greater than and one parameter less than 1. Applied Statistics, 28(1):90–
93, March 1979. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876

Gaussian, generalised hyperbolic, gamma, and related random variables.
Research reports — Department of Theoretical Statistics, University of
Aarhus; no. 52. Department of Theoretical Statistics, Institute of Math-
ematics, University of Aarhus, Arhus, Denmark, 1979. 48 (various) pp.
LCCN QA273.6 .A84.

[898] Niels Bache. Approximate percentage points for the distribution of a
product of independent positive random variables. Applied Statistics, 28
(2):158–162, 1979. CODEN APSTAG. ISSN 0035-9254 (print), 1467-
9876 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pangratz:1979:PRN

Pavlov:1979:PNG

Reeds:1979:CMC

Ripley:1979:TRS

Roberts:1979:ITN

Rubin:1979:SCB

Sahai:1979:SSB

REFERENCES

REFERENCES

REFERENCES

Sahai:1980:SSB

Sampson:1980:NCD

Schmeiser:1980:ARM

Schmeiser:1980:BVG

Schmeiser:1980:GVD

Schmeiser:1980:RVGa

Schmeiser:1980:RVGb

REFERENCES

[987] F. Battaglia. Riproduzione delle autocorrelazioni nei metodi di generazione di numeri pseudo-casuali normali. (Italian) [Reproduction of

REFERENCES

Dudewicz:1981:HRN

Fishman:1981:SCM

Friedman:1981:NPP

Gentle:1981:PCR

Grafton:1981:SAA

Green:1981:BRBa

Greenwood:1981:PFA

REFERENCES

REFERENCES

[1014] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

Blum:1982:HGC

Crigler:1982:RCP

Devroye:1982:NAR

DiDonato:1982:FSP

Dykstra:1982:MLE

Faure:1982:DSA

REFERENCES

REFERENCES

REFERENCES

Afflerbach:1983:LKG

Barel:1983:FHR

Barel:1983:UGG

Best:1983:NGV

Blum:1983:CTP

[1054] Lenore Blum, Manuel Blum, and Michael Shub. Comparison of two pseudorandom number generators. In Chaum et al. [4022], pages 61–
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schmeiser:1983:RAG

Shamir:1983:GCS

VanEs:1983:RNG

Vazirani:1983:TPR

Banks:1984:DES

Blum:1984:HGC

REFERENCES

REFERENCES

[1110] George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative congruential random number generators with

Fishman:1984:SDD

Frederickson:1984:PRT

Frieze:1984:LCG

Gal:1984:OEC

Guinier:1984:RNS

Hamedani:1984:NLC

Heth:1984:PVP

REFERENCES

Kalle:1984:PRN

Kannan:1984:SPA

Kronmal:1984:ACA

Kuo:1984:SRI

Landauer:1984:ERN

Lugannani:1984:DRQ

REFERENCES

Thesen:1984:SER

Tolleth:1984:SSM

Ulrich:1984:CGD

Vazirani:1984:ESP

Whitney:1984:GTP

Wichmann:1984:SAC

Afflerbach:1985:CMR

REFERENCES

REFERENCES

REFERENCES

[1162] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random functions (extended abstract). In
REFERENCES

Gordon:1985:SSB

Griffiths:1985:ASA

Helfrich:1985:ACMa

Helfrich:1985:ACMb

Hill:1985:SAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1227] H. Grothe. Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren. (German) [Matrix generators for generating uniformly distributed

REFERENCES

Kleijnen:1986:SRN

Ko:1986:NIP

LEcuyer:1986:EPB

Loukas:1986:CGB

Luby:1986:PRP

Malik:1986:PDF

Marsaglia:1986:IFC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chiu:1987:SRS

Chung:1987:RWA

Collings:1987:CRN

Compagner:1987:MLS

Dagpunar:1987:NMS

Diaconis:1987:SAG

REFERENCES

 REFERENCES

REFERENCES

REFERENCES

REFERENCES

Salvat:1987:ARS

Schmidt:1987:VGF

Steele:1987:BRB

Stern:1987:SLC

Tezuka:1987:DGP

Tsang:1987:DTA

Ulrich:1987:MCG

Vaziranni:1987:SCC

Warnock:1987:RNG

Wichmann:1987:BRN

Afflerbach:1988:LSP

Afflerbach:1988:NRN

REFERENCES

Dudewicz:1988:TVF

[1335] Edward J. Dudewicz and Zaven A. Karian. TESTRAND for the VAX-
11 family of computers: a random-number generation and testing li-
ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic). URL http://

Durst:1988:TPR

[1336] Mark J. Durst. Testing parallel random number generators. In Weg-
man et al. [4048], pages 228–231. URL http://www.dtic.mil/dtic/
tr/fulltext/u2/a208838.pdf.

Edwards:1988:CAM

random number generators. In Wegman et al. [4048], pages 618–623.

Eichenauer:1988:MLTb

[1338] Jürgen Eichenauer and Harald Niederreiter. On Marsaglia’s lattice test
1988. CODEN MSMHB2. ISSN 0025-2611 (print), 1432-1785 (elec-
tronic).

Eichenauer:1988:MLTc

[1339] Jürgen Eichenauer, Holger Grothe, and Jürgen Lehn. Marsaglia’s lat-
tice test and non-linear congruential pseudo-random number generators.
1435-926X (electronic).

Eichenauer:1988:NCP

[1340] Jürgen Eichenauer, Jürgen Lehn, and Alev Topuzoğlu. A nonlinear con-
gruential pseudorandom number generator with power of two modulus.
MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://

Fishman:1988:MCR

[1341] G. S. Fishman. Multiplicative congruential random number generators
with modulus 2^β: An exhaustive analysis for $\beta = 32$ and a partial anal-

[1348] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. In IEEE [4047], pages 12–24. CODEN ASF-
REFERENCES

REFERENCES

Heidelberger:1988:DES

Hong:1988:LGA

Izumi:1988:FGW

Kachitvichyanukul:1988:AHS

Kachitvichyanukul:1988:BRV

Kannan:1988:PFN

REFERENCES

[1367] Pierre L’Ecuyer and François Blouin. BonGCL, un logiciel pour la recherche de bons générateurs à congruence linéaire. (French) [BonGCL,

LEcuyer:1988:EPC

LEcuyer:1988:GLC

LEcuyer:1988:LCG

Levitan:1988:QSN

Luby:1988:HCP

Mactutus:1988:CSN

Matsumoto:1988:FPS

Minh:1988:GGV

Monahan:1988:CAG

Niederreiter:1988:LDL

Niederreiter:1988:RNC

Niederreiter:1988:SIN

Niederreiter:1988:SNC

Niederreiter:1988:STD

Ore:1988:NTH

Panton:1988:PPS

Park:1988:RNG

Percus:1988:LRC

Petersen:1988:SVR

Reif:1988:EPP

REFERENCES

[1395] Lothar Afflerbach and Rainer Weibächer. The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers.
REFERENCES

Ahrens:1989:AMS

Ahrens:1989:HAL

Ahrens:1989:NUR

Ahrens:1989:NUR

Aiello:1989:HIG

Allender:1989:SCE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kharitonov:1989:LBP

Kim:1989:PRP

Kleijnen:1989:PNG

Komo:1989:MLP

Koniges:1989:PPR

Korolev:1989:ANA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1500] H. Döring. Erzeugung normalverteilter Zufallszahlen mit 16-bit-PC. (German) [Generation of normally-distributed random numbers on an
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kinderman:1990:CCG

Korolev:1990:ADR

Koutras:1990:TCN

Krawczyk:1990:HPC

Lagarias:1990:PNG

LEcuyer:1990:RNS

REFERENCES

REFERENCES

Norton:1990:AAE

Oommen:1990:GRP

Oyanagi:1990:SPR

Palmore:1990:CAC

Parrish:1990:GRD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2036, 1875] about the extremely bad lattice structure in high dimensions of the generators proposed in this paper.

Silvio Micali and Claus-Peter Schnorr. Efficient, perfect polynomial random number generators. *Journal of Cryptology: the journal of the Inter-
REFERENCES

Mulmuley:1991:FPP

Naor:1991:BCU

Niederreiter:1991:FFT

Niederreiter:1991:RTR

Oyanagi:1991:SPR

Papoulis:1991:PRV

Pardalos:1991:CTP

[1655] Terry Ritter. The efficient generation of cryptographic confusion sequences. *Cryptologia*, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748~db=all~order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyšev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.
REFERENCES

REFERENCES

REFERENCES

Bays:1992:IRN

Bellido:1992:SBR

Berdnikov:1992:RNG

Binder:1992:MCS

Bratley:1992:ITL

Brenner:1992:PRL

REFERENCES

Canfield:1992:RARb

Carroll:1992:CCE

Collins:1992:RNG

Dai:1992:BSD

DalleMolle:1992:HOC

REFERENCES

Dougherty:1992:OMS

Dougherty:1992:OMSb

Ehrenfeucht:1992:PSH

Eichenauer-Herrmann:1992:ASI

Eichenauer-Herrmann:1992:CIC

Eichenauer-Herrmann:1992:ICP

Eichenauer-Herrmann:1992:LBD

Eichenauer-Herrmann:1992:NIC

Eichenauer-Herrmann:1992:RDQ

Engel:1992:RRP

Faure:1992:GPE

Ferrenberg:1992:MCS

Louchard:1992:DAD

Maclaren:1992:LUL

Makino:1992:GSR

Marsaglia:1992:MRN

Mason:1992:ACA

Matsumoto:1992:TGG

Maurer:1992:UST

Ressler:1992:RLP

Savir:1992:MSL

Schneier:1992:PRS

Sedgewick:1992:AC

Sezgin:1992:SCC

Sharp:1992:RPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:1993:PGH

Couture:1993:DDV

Damgaard:1993:ACE

DeMatteis:1993:LRC

Devroye:1993:GRI

Devroye:1993:RVG
REFERENCES

Dobkin:1993:CD

Dufour:1993:IEB

Eichenauer-Herrmann:1993:DIC

Eichenauer-Herrmann:1993:EIC

Eichenauer-Herrmann:1993:EPN

Eichenauer-Herrmann:1993:ICP

Eichenauer-Herrmann:1993:KTS

[1806] Jürgen Eichenauer-Herrmann and Harald Niederreiter. Kloosterman-type sums and the discrepancy of nonoverlapping pairs of inversive

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lee:1993:GRB

Li:1993:IKC

Lin:1993:NCP

Loparo:1993:LER

Makino:1993:SPR

Marsaglia:1993:LHR

REFERENCES

January 1993. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content?content=a748639214&db=all&order=page. random number generator; cryptographic keystreams; division algorithm; seed values; long cycle length; keystream generation.

REFERENCES

in Communications and Computing held at the University of Nevada, Las Vegas, August 7–10, 1991.

[Niederreiter:1993:FPS]

[Niederreiter:1993:LRP]

[Niederreiter:1993:PNQ]

[NIST:1993:FPS]

[Park:1993:ATR]

[1862] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. *Communications of the ACM*, 36(7):108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1384, 1492, 1847, 1872]. The authors report that they would now recommend the MCG \(x_{n+1} = 48 \, 271 \, x_n \mod (2^{31} - 1) \) over their original \(x_{n+1} = 16 \, 807 \, x_n \mod (2^{31} - 1) \).

[Pollard:1993:FCI]

Rajasekaran:1993:FAG

Saarinen:1993:RNT

Schrift:1993:UTN

Selke:1993:CFM

Sharp:1993:PRN

Sherif:1993:DTN

Sloan:1993:BRB

REFERENCES

December 1993. CODEN SIREAD. ISSN 0036-1445 (print), 1095-7200 (electronic).

REFERENCES

REFERENCES

William J. Corcoran. A multiloop Vigenère cipher with exceptionally long component series. *Cryptologia*, 18(4):356–371, October 1994. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a748639272~db=all~order=page. multiloop Vigenère cipher; exceptionally long component series; computer generation; polyalphabetic cryptographic system; character set; linear congruential generating function; component series; cryptanalysis; multiloop system; computationally secure; personal computers; Spectra Publishing; Power Basic; BASIC.

Don Davis, Ross Ihaka, and Philip Fenstermacher. Cryptographic randomness from air turbulence in disk drives. In Desmedt [4085], pages
REFERENCES

DeArmon:1994:RLO

Deng:1994:DIR

Devroye:1994:NHS

Eastlake:1994:RRR

Eichenauer-Herrmann:1994:BES

Eichenauer-Herrmann:1994:CNC

REFERENCES

Hartel:1994:CRN

Hellekalek:1994:GDEa

Hellekalek:1994:GDEb

Hennecke:1994:RER

Hildebrand:1994:RWS

Hill:1994:CMR

REFERENCES

[1941] F. James. RANLUX: a Fortran implementation of the high-quality pseudorandom number generator of Lüscher. Computer Physics Communications-

Zaven A. Karian and Rohit Goyal. Random number generation and testing. *Maple Technical Newsletter*, 1(1):32–37, Spring 1994. CODEN ????. ISSN 1061-5733. URL http://www.can.nl/Systems_and_Packages/Per_Purpose/General/Maple/mtn/mtnvin1.html. This article describes the Maple-language random-number generator, a multiplicative congruential generator \((x_{\text{new}} = (A \times x + C) \mod P)\) with \(A = 427,419,669,081\), \(C = 0\), \(P = 10^{12} - 11\), and initial seed 1. It was used up to Maple Version 9 (2003). Later versions of Maple instead use the Mersenne Twister.

Luscher:1994:PHQ

Ma:1994:IMC

MacLaren:1994:CPN

Makino:1994:LFR

Marsaglia:1994:MAR

Marsaglia:1994:REI

Marsaglia:1994:SPV

February 1994. CODEN CPHYE2. ISSN 0894-1866 (print), 1558-4208 (electronic).

Mascagni:1994:FHQ

Mascagni:1994:PPN

Matsumoto:1994:TGG

McGrath:1994:SAB

Niederreiter:1994:NCP

Niederreiter:1994:PVG

Odlyzko:1994:PKC

REFERENCES

REFERENCES

REFERENCES

ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a748639261~db=all~order=page.

Rivest:1994:DBI

Schneier:1994:AAd

Shallit:1994:ALS

Shukhman:1994:GQR

Sitharam:1994:PGL

Sorenson:1994:TFG

Spanier:1994:QRM

REFERENCES

REFERENCES

REFERENCES

Barnes:1995:APE

Baum:1995:CCP

Bellare:1995:XMN

Bowman:1995:EPR

Carrasco:1995:RRT

Chen:1995:IDP

Childs:1995:CIH
[2020] Wun-Seng Chou and Harald Niederreiter. On the lattice test for inversive
congruential pseudorandom numbers. In Niederreiter and Shiue [4094],
1995.

1036 (print), 1730-6264 (electronic).

[2022] Chee-Seng Chow and Amir Herzberg. Network randomization protocol:
a proactive pseudo-random generator. In USENIX [4095], pages 55–64 (or

*Physical Review E (Statistical physics, plasmas, fluids, and related
interdisciplinary topics)*, 52(5):5634–5645, November 1995. CO-
DEN PLEEE8. ISSN 1539-3755 (print), 1550-2376 (electronic). URL

[2024] Raymond Couture and Pierre L’Ecuyer. Linear recurrences with
carry as random number generators. In Alexopoulos et al. [4090],
pages 263–267. CODEN WSCPDK. ISBN 0-7803-3018-8, 0-7803-
3017-X. ISSN 0275-0708, 0743-1902. LCCN QA76.9.C65 W56
jsp?punumber=3475. IEEE Catalog No. 95CB35865.

[2025] T. W. Cusick. Properties of the $x^2 \bmod N$ pseudorandom number gener-
1995. CODEN IETTAW. ISSN 0018-9448 (print), 1557-9654 (electronic).

REFERENCES

REFERENCES

Hormann:1995:RTS

Kaliski:1995:MIA

Kessler:1995:GOC

Koc:1995:RCS

Kubota:1995:DRE

Kurita:1995:DWD

Lee:1995:CSS

Pattanaik:1995:AER

Penrice:1995:AEP

Percus:1995:TAM

Phatak:1995:LMP

Pickover:1995:GET

Pickover:1995:RNG

REFERENCES

Takashima:1995:STT

Tezuka:1995:URN

Varhol:1995:ANS

Vattulainen:1995:CSS

Vattulainen:1995:MIF

Vattulainen:1995:PMT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2187] Ping Luo. The two-dimensional structure of the sequence of random numbers generated by multiplicative congruential generators. *Journal*
REFERENCES

REFERENCES

Ogawa:1996:RRP

Paplinski:1996:HIL

Petrov:1996:LTP

Radovic:1996:QMC

Rubin:1996:OTP

Sanchis:1996:PAC

REFERENCES

Sipper:1996:CEP

Sipper:1996:GPR

Takashima:1996:HWT

Takashima:1996:LVT

Takashima:1996:STT

Ugrin-Sparac:1996:NAG

Ugrin-Sparac:1996:PET

[2220] G. Ugrin-Šparac and D. Ugrin-Šparac. On a possible error of type II in statistical evaluation of pseudo-random number genera-
Wallace:1996:FPG

Wang:1996:LIL

Wegenkittl:1996:RSP

Alon:1997:SSD

Aluru:1997:LFR

REFERENCES

Annexstein:1997:GBS

Arvind:1997:RBM

Athanasiu:1997:SGP

Baker:1997:NPU

Balakrishnan:1997:ASW

Bellare:1997:PRN

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

Eichenauer-Herrmann:1997:CCC

Eichenauer-Herrmann:1997:ICP

Eichenauer-Herrmann:1997:PSN

Eichenauer-Herrmann:1997:QCP

Emmerich:1997:EPQ

[2266] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breitenecker [4106], page ?? ISBN 3-901608-11-7. LCCN ???
REFERENCES

\[
\begin{align*}
\text{#define } & \text{znew } ((z=36969*(z\&65535)+(z\&\sim16))\sim16) \\
\text{#define } & \text{wnew } ((w=18000*(w\&65535)+(w\&\sim16))\&65535) \\
\text{#define } & \text{IUNI } (znew+wnew) \\
\text{#define } & \text{UNI } (znew+wnew)*4.656613e-10 \\
\text{static unsigned } & \text{long } z=362436069, w=521288629; \\
\text{void setseed(} & \text{unsigned long i1,unsigned long i2)} \\
\text{z=}&i1; \text{w=}&i2; \text{Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0, 1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.
\end{align*}
\]

REFERENCES

REFERENCES

Woodward:1997:ECD

Wu:1997:MCR

Zubkov:1997:PTD

Aiello:1998:DPP

Andreev:1998:NGD

Antoch:1998:RPN
REFERENCES

REFERENCES

REFERENCES

Couture:1998:GEI

DSouza:1998:SBD

Eichenauer-Herrmann:1998:IUB

Eichenauer-Herrmann:1998:LBD

Eichenauer-Herrmann:1998:SQI

Ellison:1998:CRN

Emmerich:1998:EPC

REFERENCES

[2338] A. Fuster-Sabater and L. J. Garcia-Villalba. Likelihood that a pseudorandom sequence generator has optimal properties. Electronics Let-

REFERENCES

patent application number 08/648,553, filed 15 May 1996 by Intel Corporation.

[2356] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, Reading, MA, USA, third edi-
REFERENCES

Kolmogorov:1998:TRN

Larcher:1998:DPS

LEcuyer:1998:GPI

LEcuyer:1998:RNGa

LEcuyer:1998:RNGb

LEcuyer:1998:RNGb

REFERENCES

(3):1–8, 1998. CODEN JSSOBK. ISSN 1548-7660. URL http://www.jstatsoft.org/v03/i03; http://www.jstatsoft.org/v03/i03/GERMGAM.PDF; http://www.jstatsoft.org/v03/i03/GERMGAM.PS; http://www.jstatsoft.org/v03/i03/updates.

REFERENCES

[2381] Chul Gyu Park and Dong Wan Shin. An algorithm for generating correlated random variables in a class of infinitely divisible distribu-

REFERENCES

Schatte:1998:BLV

Schmid:1998:SNN

Schneier:1998:YSP

Shchur:1998:RGR

Soto:1998:STR

Sugita:1998:LTS

REFERENCES

vanHameren:1998:GLD

Wegenkittl:1998:THS

Wheeler:1998:CX

Williams:1998:ELP

Williamson:1998:CNR

Wolf:1998:RWP

REFERENCES

Entacher:1999:QMC

Falk:1999:SAG

Fernandez:1999:AER

Fernandez:1999:ANRa

Fernandez:1999:ANRb

Gartner:1999:PCP

Gartner:1999:RCZ

[2430] Bernd Gärtner. Ein Reifall mit Computer-Zufallszahlen. (German) [A failure with computer random numbers]. Mitteilungen der Deutschen
REFERENCES

[2455] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of pseudo-random functions. Journal of Com-

REFERENCES

REFERENCES

of-rsa.ppt. Presented at the 1999 RSA Data Security Conference, San Jose, CA.

REFERENCES

[2482] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.

REFERENCES

REFERENCES

Hormann:2000:ARV

IEEE:2000:IPH

Impagliazzo:2000:EPR

Indyk:2000:SDP

Iwata:2000:PAF

Mansharamani:2000:RTG

Marsaglia:2000:ADS

Marsaglia:2000:MRN

[2524] George Marsaglia. The monster, a random number generator with period over 10^{2857} times as long as the previously touted longest-period one. Technical report ????, Florida State University, Tallahassee, FL, USA, ????. 2000.

Marsaglia:2000:SMG

Marsaglia:2000:ZMG

Mascagni:2000:ASS

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://doi.acm.org/10.1145/358407.358427. See correction [2528].

Mascagni:2000:CAS

Mauduit:2000:FPBa

Mauduit:2000:FPBb

Miles:2000:L

Moriai:2000:PTL

Niederreiter:2000:DPN

Niederreiter:2000:ESD

Niederreiter:2000:IES

Nishimura:2000:TBM

NIST:2000:RNG

Panneton:2000:GNA

Petrie:2000:NBI

Proykova:2000:HIR

REFERENCES

Stefanescu:2000:GUR

Stefanov:2000:OQR

Sugita:2000:RWS

Takashima:2000:HPR

Tomassini:2000:GHQ

Viswanath:2000:RFS

REFERENCES

[2565] Lawrence Barker, Henry Rolka, Deborah Rolka, and Cedric Brown. Statistical practice — equivalence testing for binomial random variables:

[Battaglia:2001:GAP]

[Batu:2001:TRV]

[Chamayou:2001:PRN]

[Chen:2001:ING]

[Chick:2001:NPS]

[Chowdhury:2001:ESI]

REFERENCES

REFERENCES

[2584] Richard J. Gonsalves. Pivot algorithm for self-avoiding walks on a square lattice. Fortran program, 2001. URL http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/files/Chapter12/saw.f. The program contains code (near the end) for the portable rannyu() generator. It is a linear congruential generator with multiplier $A = 3167285 = 0x1d9335$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

[2589] Julio César Hernández, José María Sierra, Arturo Ribagorda, Benjamín Ramos, and J. C. Mex-Perera. Distinguishing TEA from a ran-

REFERENCES

REFERENCES

LEcuyer:2001:RN

LEcuyer:2001:RNG

LEcuyer:2001:SUR

LEcuyer:2001:TSL

Lee:2001:PBG

Lemieux:2001:SCL

REFERENCES

REFERENCES

RAND:2001:MRD

Raqab:2001:ELS

Rukhin:2001:STS

Rukhin:2001:TRS

Schindler:2001:EOT

Stojanovski:2001:CBRb

Sudan:2001:PGX

Swartz:2001:NTR

Talim:2001:CRW

Tan:2001:PPR

Tang:2001:SAS

Touzin:2001:GRM

[2647] Renée Touzin. Des générateurs récursifs multiples combinés rapides avec des coefficients de la forme $\pm 2^{p_1} \pm 2^{p_2}$. (French) [Fast combined multiple recursive generators of the form $\pm 2^{p_1} \pm 2^{p_2}$]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2001. xiii + 128 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en informatique option recherche opérationnelle.

Trevisan:2001:EPG

Tu:2001:NFG

Vadhan:2001:OP

Vanura:2001:ARC

Watkins:2001:ERN

Wegenkittl:2001:GTP

REFERENCES

Brent:2002:SUN

Brillhart:2002:FHP

Cameron:2002:HDM

Choe:2002:FRT

Churchhouse:2002:CCJ

Delfs:2002:ICP

REFERENCES

REFERENCES

Janke:2002:PRN

Jeruchim:2002:FRV

Jeruchim:2002:MCS

Jones:2002:KTP

Karras:2002:SPB

[2706] George Marsaglia. Re: *good* 64-bit random-number generator. Posting to the sci.crypt.random-numbers news group, September 3,

Marsaglia:2002:SDP

Martin:2002:ARN

Martinez:2002:CSH

Matsumoto:2002:NTW

Maurer:2002:IRS

REFERENCES

[2717] Mark R. V. Murray. An implementation of the Yarrow PRNG for FreeBSD. In USENIX [4139], pages 47–53. ISBN 1-880446-02-

REFERENCES

Umans:2002:PRG

Wang:2002:HOL

Wang:2002:NCT

Wu:2002:BPR

Yaguchi:2002:CLP

Yao:2002:CBR
REFERENCES

[2744] Anonymous. /dev/random. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ /dev/random (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in drivers/char/random.c in the Linux source tree.”.

REFERENCES

[2749] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fair uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. Communications of the ACM, 46(7):11–13, July 2003. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

[2759] Oded Goldreich and Vered Rosen. On the security of modular exponentiation with application to the construction of pseudorandom genera-
Gonnet:2003:RTT

Goresky:2003:EMC

Grabner:2003:CGD

Guimond:2003:SPI

Gutierrez:2003:LNC

Hellekalek:2003:EEC

Hernandez:2003:FED

Hill:2003:UPO

Hitchcock:2003:HMH

Hormann:2003:CRV

Intel:2003:IRN

Joe:2003:RAI

REFERENCES

REFERENCES

REFERENCES

Anonymous:2004:RNG

Anonymous:2004:TRR

Bauke:2004:PRC

Beebe:2004:CJR

Bellare:2004:CBG

Blacher:2004:SCA

Borwein:2004:MEP

REFERENCES

REFERENCES

REFERENCES

[2841] Daniel R. Jeske and Todd Blessinger. Tunable approximations for the mean and variance of the maximum of heterogeneous geometrically dis-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Banks:2005:DES

Barak:2005:MAP

Beliakov:2005:CLR

Beliakov:2005:UNR

Benony:2005:CPC

Blackburn:2005:PNP

Bogdanov:2005:PGL

Calvayrac:2005:RNG

Castro:2005:NRG

Contini:2005:SAA

Damgaard:2005:CRM

[2899] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom generator. Lecture Notes in Computer
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2948] Janusz Stoklosa and Jaroslaw Bubicz. Compound inversive congruential generator as a source of keys for stream ciphers. In Hamid R. Arab-
REFERENCES

REFERENCES

Wichmann:2005:GGP

Wiese:2005:IPN

Wiese:2005:PRP

Zhang:2005:ZBH

Zuquete:2005:EHQ

REFERENCES

REFERENCES

REFERENCES

535

REFERENCES

[3003] Dong-U Lee, John D. Villasenor, Wayne Luk, and Philip H. W. Leong. A hardware Gaussian noise generator using the Box–Muller method and

REFERENCES

REFERENCES

REFERENCES

Brown:2007:SAN

Cheung:2007:HGA

Chiu:2007:CKC

Cowles:2007:BRB

Delfs:2007:ICP

REFERENCES

Edgington:2007:RT

Gerlovina:2007:LBS

Gutierrez:2007:ISP

Haramoto:2007:EJA

Hars:2007:PRS

Hasan:2007:FSU

Hormann:2007:ITD

Hormann:2007:SGD

Juneja:2007:AFS

Kang:2007:PFS

Kundu:2007:CWG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Alimohammad:2008:CAG

Alimohammad:2008:EAH

Alioto:2008:APE

Alvarez:2008:ETR

Attya:2008:ROC

REFERENCES

Bader:2008:DFP

Balachandran:2008:TRN

Banks:2008:FIP

Basu:2008:CCE

Beirami:2008:PMD

Bello:2008:OPR

REFERENCES

Collins:2008:TSI

Cordero:2008:DPV

Das:2008:ASS

Deng:2008:DIE

Deng:2008:ICS

Deng:2008:IRN

Drutarovsky:2008:CSC

M. Drutarovsky and M. Varchola. Cryptographic system on a chip based on Actel ARM7 soft-core with embedded true random number genera-

REFERENCES

[3150] Stephen Joe and Frances Y. Kuo. Constructing Sobol’ sequences with better two-dimensional projections. *SIAM Journal on Scientific Com-

REFERENCES

Katz:2008:RRNa

Katz:2008:RRNb

Kiessler:2008:BRBe

Killmann:2008:DPR

Kim:2008:TRG

Kolokotronis:2008:CPN

Langdon:2008:FHQ

LEcuyer:2008:CPS

Lee:2008:HAS

Lee:2008:PRN

Leiva:2008:RNG

REFERENCES

REFERENCES

McCullough:2008:MEW

Miller:2008:OSB

Moler:2008:NCM

Murdoch:2008:VRV

Murphy:2008:CLW

Nandakumar:2008:EET

Nguyen:2008:ODD

REFERENCES

REFERENCES

Tokunaga:2008:TRN

Toyama:2008:GPR

Uchida:2008:FPR

Udawatta:2008:TVN

Varbanets:2008:ESS

Varbanets:2008:ICGa

REFERENCES

REFERENCES

Wold:2008:AER

Xiang:2008:NPR

Xu:2008:SMS

Yaguchi:2008:NNP

Yang:2008:LLM

Yang:2008:NTR

REFERENCES

Alhakim:2009:MSG

Anyanwu:2009:DCS

Awerbuch:2009:RRN

Aycock:2009:COU

Bastos-Filho:2009:IQR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Holcomb:2009:PSS

Hornfeck:2009:MCG

Hu:2009:TRN

Jun:2009:HPP

Kanter:2009:OUR

Katti:2009:EHI

McCullough:2009:AES

Mitchum:2009:DPR

Mustafa:2009:DPR

Nakura:2009:ROB

Nandi:2009:ISA

Nekrutkin:2009:STS

Qiu:2009:CMW

Reidler:2009:USR

Ridout:2009:GRN

Santoro:2009:FEF

Santoro:2009:LMR

Sindhikara:2009:BSS

REFERENCES

Srinivasan:2009:BPV

Sun:2009:CPR

Svozil:2009:TCQ

Tafazzoli:2009:PCE

Tang:2009:FPS

REFERENCES

[3323] Qiaoling Tong, Xuecheng Zou, and Hengqing Tong. A RFID authentication protocol based on infinite dimension pseudo random number
REFERENCES

I. M. Verloop, U. Ayesta, and R. Núñez-Queija. Heavy-traffic analysis of the M/PH/1 discriminatory processor sharing queue with phase-

Wold:2009:OST

Xiao-chen:2009:URN

Yamanashi:2009:SRN

Youssef:2009:IEU

Yu:2009:ESC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3373] Ariel Gabizon. Deterministic Extraction from Weak Random Sources. Monographs in theoretical computer science. Springer-Verlag, Berlin,
REFERENCES

Hong Guo, Wenzhuo Tang, Yu Liu, and Wei Wei. Truly random number generation based on measurement of phase noise of a laser. *Physical Re-
view E (Statistical physics, plasmas, fluids, and related interdisciplinary
topics), 81(5):051137, May 2010. CODEN PLEEE8. ISSN 1539-3755
1103/PhysRevE.81.051137.

[3380] C. Guyeux, Qianxue Wang, and J. M. Bahi. Improving random number
generators by chaotic iterations application in data hiding. In 2010 In-
ternational Conference on Computer Application and System Modeling
(ICCASM), volume 13, pages V13–643–V13–647. IEEE Computer So-
ciety Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 2010. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5622199.

[3381] Iftach Haitner, Omer Reingold, and Salil Vadhan. Efficiency improve-
ments in constructing pseudorandom generators from one-way func-
tions. In ACM [4173], pages 437–446. ISBN 1-60558-817-2. LCCN
63314455x..

[3382] Kenta Hongo, Ryo Maezono, and Kenichi Miura. Random number gen-
erators tested on quantum Monte Carlo simulations. Journal of Compu-
tational Chemistry, 31(11):2186–2194, August 2010. CODEN JCCHDD.
ISSN 0192-8651 (print), 1096-987X (electronic).

testing of true random number generators through dynamic reconfigu-
ration. In 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools (DSD), pages 247–250. IEEE Com-
puter Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
jsp?tp=&arnumber=5615649.

rem for sums of independent identically distributed random variables.
Journal of Mathematical Physics, 51(1):015208, January 2010. CODEN
JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.
URL http://jmp.aip.org/resource/1/jmapaq/v51/i1/p015208_s1.

REFERENCES

[3396] Lan Luan. The pseudo-random code generator design based on FPGA. In *2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM)*, volume 2, pages 282–284. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
REFERENCES

605

Luo:2010:PAE

Maaref:2010:GVR

Marsaglia:2010:SKR

Marton:2010:RDC

Meka:2010:PGP

Moghadam:2010:DRN

Ostafe:2010:DGS

Ostafe:2010:MPP

Ostafe:2010:PNH

Ostafe:2010:PNM

Panneton:2010:RSR

Pareschi:2010:ITH

[3414] F. Pareschi, G. Setti, and R. Rovatti. Implementation and testing of high-speed CMOS true random number generators based on chaotic systems.
Pashley:2010:GRN

Passerat-Palmbach:2010:RIG

Peris-Lopez:2010:CSP

Plesser:2010:RSI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3471] Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final
random bit and remove any bias caused by imperfections in the noise source and A/D converter.”.

[Bahi:2011:DFC]

[Bahi:2011:ECS]

[Barash:2011:ADD]

[Barash:2011:RPL]

[Baudet:2011:SOB]

REFERENCES

REFERENCES

Hwang:2011:SID

Jian:2011:TBQ

Kao:2011:EAT

Kleimo:2011:RNG

Koucky:2011:PGG

LEcuyer:2011:AZV

REFERENCES

REFERENCES

[3544] Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer. Pseudorandom number generation for Brownian Dynamics and Dissipative Par-

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [4186], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????

REFERENCES

Seyedzadeh:2011:IES

Shaolan:2011:EDE

Shparlinski:2011:ADP

Simard:2011:CTS

Sinescu:2011:ECS

Soucarros:2011:ITT

generators. In 2011 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 24–27. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 2011. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?
.tp=&arnumber=5954990.

64-bit finalizer. Blog on “Twiddling the Bits”, September 28,
2011. URL http://zimbry.blogspot.com/2011/09/better-bit-
mixing-improving-on.html.

[3558] M. Stipcevic. Quantum random number generators and their use in
cryptography. In 2011 Proceedings of the 34th International Convention
MIPRO, pages 1474–1479. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 2011. URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5967293.

[3559] A. Suciu, D. Lebu, and K. Marton. Unpredictable random number gen-
erator based on mobile sensors. In 2011 IEEE International Conference
on Intelligent Computer Communication and Processing (ICCP), pages
445–448. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
org/stamp/stamp.jsp?tp=&arnumber=6047913.

Gbit/s generation of superconductive true random number generator.
2011. CODEN ITASE9. ISSN 1051-8223 (print), 1558-2515 (elec-
arnumber=5674104.

[3561] T. Symul, S. M. Assad, and P. K. Lam. Real time demonstration of
high bitrate quantum random number generation with coherent laser
APPLAB. ISSN 0003-6951 (print), 1077-3118 (electronic), 1520-8842.
URL http://apl.aip.org/resource/1/applab/v98/i23.

REFERENCES

Wang:2011:CRN

Wang:2011:LTA

Wang:2011:MPF

Wei:2011:HSB

Wikramaratna:2011:CIM

Wu:2011:TEH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Horstmann:2012:JEC

Horvath:2012:ARM

Horvath:2012:EGP

Impagliazzo:2012:PS

Kaczynski:2012:BNR

Kaczynski:2012:NRV

[3616] W. Kaczynski, L. Leemis, N. Loehr, and J. McQueston. Nonparametric random variate generation using a piecewise-linear cumulative distribu-

[3622] Y. Li, P. Chow, J. Jiang, M. Zhang, and S. Wei. Software/hardware framework for generating parallel Gaussian random numbers based on

Li:2012:TST

[3623] Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.

Manssen:2012:RNG

Marandi:2012:AOQ

Marquardt:2012:PNG

Mascagni:2012:PRN

REFERENCES

Masse:2012:RNS

Miles:2012:SPN

Miszczak:2012:GUT

Molina-Gil:2012:PGS

Nandapalan:2012:HPP

Nazzal:2012:UGA

REFERENCES

REFERENCES

[3663] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.
REFERENCES

[Beliakov:2013:EIBa]

[Beliakov:2013:EIBb]

[Claessen:2013:SPN]

[Deng:2013:FTQ]

[Ducklin:2013:ARN]
REFERENCES

REFERENCES

REFERENCES

Mukhopadhyay:2013:RBI

Ozkaynak:2013:SPP

Pae:2013:EOR

Sainudiin:2013:PER

Saito:2013:VMT

Schretter:2013:DIM

Colas Schretter and Harald Niederreiter. A direct inversion method for non-uniform quasi-random point sequences. *Monte Carlo Methods and

Sezgin:2013:FBP

Stroustrup:2013:CPL

Thomas:2013:LSF

Thomas:2013:PGG

Xi:2013:LTB

Zhu:2013:NIC

REFERENCES

Baron:2014:LSP

Blacher:2014:PRN

Braverman:2014:PGR

Brown:2014:DRN

Chen:2014:EES

Cheng:2014:GBR

REFERENCES

Gomez-Perez:2014:AEA

Haigh:2014:ABE

Healey:2014:SPS

Hormann:2014:GGI

Hosseini:2014:GPR

Hu:2014:MBA

[3729] Jiaqiao Hu, Enlu Zhou, and Qi Fan. Model-based annealing random search with stochastic averaging. ACM Transactions on Modeling and
Kawai:2014:ADT

Koo:2014:CRB

Korzen:2014:PPP

Langr:2014:APP

LEcuyer:2014:LSS

Ling:2014:MDN

Liu:2014:LFP

Mascagni:2014:HPC

Mohamed:2014:MCS

Mortari:2014:MAV

Raaphorst:2014:CSC

REFERENCES

Beznosko:2015:HSH

Beznosko:2015:PPF

Carlet:2015:EBF

Claessen:2015:GCR

Guyeux:2015:ECS

Haeupler:2015:SFD

REFERENCES

Lubicz:2015:TOB

Malik:2015:RCL

Malkiel:2015:RWW

Miles:2015:CCP

Miles:2015:SPN

Mortari:2015:VAS

REFERENCES

December 2015. CODEN ????. ISSN 1936-7406 (print), 1936-7414 (electronic).

REFERENCES

REFERENCES

Balkova:2016:APN

Bayon:2016:FME

Chang-Fong:2016:CSC

Chattopadhyay:2016:ETS

Chen:2016:PEP

deanRade:2016:RNG

B. B. de Andrade, H. Bolfarine, and A. N. Siroky. Random number generation and estimation with the bimodal asymmetric power-normal
REFERENCES

Lao:2016:BFD

Lecuyer:2016:ALB

Li:2016:ITS

Li:2016:MUN

Liu:2016:PBG

Losego:2016:SMW

Malik:2016:GRN

REFERENCES

Mandal:2016:DIW

Mandal:2016:FRI

McFarland:2016:MZA

Miller:2016:RPS

Nekrutkin:2016:CBF

NIST:2016:SDR

Ohsaka:2016:DIA

REFERENCES

[3824] Anonymous. The DUHK attack: Don’t use hard-coded keys. Web site., October 25, 2017. URL https://duhkattack.com/. From the introduction: “DUHK (Don’t Use Hard-coded Keys) is a vulnerability that affects devices using the ANSI X9.31 Random Number Generator (RNG) in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions, preventing third parties from reading intercepted communications.” See [3832] for details of the attack.

[3827] George Barmpalias, Douglas Cenzer, and Christopher P. Porter. The probability of a computable output from a random oracle. *ACM Trans-

REFERENCES

Kuhl:2017:HRV

Lampropoulos:2017:BLI

LeCuyer:2017:HRN

Lenstra:2017:TPR

Liu:2017:ESG

Monroe:2017:NPR

Nordrum:2017:TRN

REFERENCES

January 2017. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

SoltaniPanah:2019:CDG

Steele:2019:UBP

Ueno:2019:TBP

Viola:2019:CEP

Xu:2019:NPF

Zhang:2019:REU

Anonymous:2020:X

xorshift+, xoshiro, and xoroshiro, with comments about which common test suites they pass or fail. Lua 5.4 changed from the previous default of C’s rand() or random() to a new one based on xoshiro256** (256-bit state, 32- or 64-bit result). The period of xoshiro256** is \(2^{256} - 1\) (about \(10^{77}\)). See [3862, 3863].

REFERENCES

Stpiczynski:2020:ALB

Vigna:2020:POR

AlmarazLuengo:2021:RSR

Arroyo:2021:ARI

Blackman:2021:SLP

REFERENCES

[3943] Adriaan Peetermans, Vladimir Rozić, and Ingrid Verbauwhede. Design and analysis of configurable ring oscillators for true random number
REFERENCES

[3950] Ikram Ullah, Naveed Ahmed Azam, and Umar Hayat. Efficient and secure substitution box and random number generators over Mordell el-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zheng:2022:BCS

AlmarazLuengo:2023:GPR

Chatterjee:2023:FFT

Cicek:2023:NRW

Dupin:2023:AIR

Giles:2023:AIC

REFERENCES

[3991] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating
randomness; source code to other useful crypto modules; miscellaneous.

REFERENCES

Anonymous:1969:CPP

Bose:1970:EPS

Rice:1971:MS

Zaremba:1972:ANT

Schaffner:1974:PPB

Patil:1975:MCS

[4016] M. A. H. Dempster, editor. Stochastic programming: proceedings of an international conference sponsored by the Institute of Mathematics and
REFERENCES

Oren:1980:SDM

Eddy:1981:CSS

Rubinstein:1981:SMC

Grossmann:1982:PSI

IEEE:1982:ASF

Chaum:1983:ACP

REFERENCES

710

REFERENCES

www.acm.org/pubs/contents/proceedings/simulation/318242/.

[4039] ACM, editor. Proceedings of the nineteenth annual ACM Symposium on
LCCN QA 76.6 A13 1987. ACM order number 508870.

EUROCRYPT ’87: Workshop on the Theory and Application of Cryp-
tographic Techniques, Amsterdam, The Netherlands, April 13–15, 1987:
Proceedings, volume 304 of Lecture Notes in Computer Science. Spring-
er-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,

Cryptology yesterday, today, and tomorrow. The Artech House communi-
cation and electronic defense library. Artech House Inc., Norwood, MA,
US$60.00. First volume of selected papers from issues of Cryptologia.

[4042] IEEE, editor. 28th annual Symposium on Foundations of Computer Sci-
ence, October 12–14, 1987, Los Angeles, California. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1987. CODEN ASFPDV. ISBN 0-8186-0807-2, 0-8186-4807-4 (mi-
crofiche), 0-8186-8807-6 (casebound). ISSN 0272-5428. LCCN QA 76
S979 1987. IEEE Catalog no. 87CH2471-1. Computer Society order num-
ber 807.

proceedings, volume 263 of Lecture Notes in Computer Science. Spring-
er-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
0302-9743 (print), 1611-3349 (electronic). LCCN QA76.9.A25 C791
Conference held at the University of California, Santa Barbara, Aug. 11–15, 1986.

REFERENCES

ACM:1989:PTF

Anonymous:1989:PFC

Beker:1989:CC

IEEE:1989:ASF

MacNair:1989:WSC

REFERENCES

[Pomerance:1990:CCNb]

[Day:1991:PAA]

[Dorninger:1991:CGA]

REFERENCES

[4071] Gustavus J. Simmons, editor. Contemporary Cryptology: the science of information integrity. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1996:ASF

IEEE:1996:ASF

IEEE:1996:ASF

IEEE:1996:ASF

REFERENCES

REFERENCES

Anonymous:1999:NIS

Fossorier:1999:AAA

Heath:1999:APP

Iliev:1999:RAN

Niederreiter:1999:MCQ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Helleseth:2005:STA

Meadows:2005:CPA

Smart:2005:CCI

Henderson:2006:S

Niederreiter:2006:MCQ

REFERENCES

REFERENCES

[4164] Alexander Keller, Stefan Heinrich, and Harald Niederreiter, editors. Monte Carlo and Quasi-Monte Carlo methods 2006. Springer-Ver-
REFERENCES

Christophe Clavier and Kris Gaj, editors. *Cryptographic Hardware and Embedded Systems — CHES 2009: 11th International Workshop*

REFERENCES

2), 0-08-044897-6 (vol. 3), 0-08-044898-4 (vol. 4), 0-08-044899-2 (vol. 5), 0-08-044900-X (vol. 6), 0-08-044901-8 (vol. 7), 0-08-044902-6 (vol. 8). Cannot read pp. LCCN LB15 .I569 2010. URL http://sfx.metabib.ch/sfx_locater?sid=ALEPH:DSV01\%26isbn=0-08-044894-1. Eight volumes.

REFERENCES

[Hwu:2012:GCG]

[IEEE:2012:PIA]

[ACM:2013:SPF]

[Bailey:2013:CAM]

[Higham:2015:PCA]
REFERENCES

