A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 March 2019
Version 1.305

Title word cross-reference

#14 [2267]. #15949 [870]. #4059 [1240]. #8373 [2091].

(0, 1) [1052]. (0, s) [2524, 2908]. (a^n - 1)/(a - 1) [916]. (j, c) [729]. (n^2 \alpha) [2477]. (n^k \alpha) [2478]. (n\alpha) [2477]. (t, m, s) [2035, 2868, 2041, 2340]. (t, s) [2619, 2035, 2331, 2868, 2041]. (X^2 - Y^2)^{1/2} [489]. 0.1(0 \times 1)0 \times 9 [139]. 1 [736, 874, 2821, 171, 711, 2943, 2945]. 1, 2, 3 [3456]. 1.13198824... [2501]. 10, 000 [282]. $10.00 [168]. 10^{2857} [2472]. 10^{1035} [2033]. 1200\mu [3102]. 128 [3128]. 13 [270]. 16 [270]. 2 [2821, 2110, 928, 3067, 2486, 2801, 2947]. 2, 000 [86]. $24.95 [2078]. 2^{-31} - 1 [836, 929]. 2^{15} [2128]. 2^{31} - 1 [3506, 801, 972, 1005, 1193, 1194]. 2^{31} - 69 [3351]. 2^{32} - 1 [1085]. 2^n [1470, 2228]. 2^n [1313, 1476, 1722]. 2^k [2600]. 2^{k-1} [2600]. 2^p [3215]. 2^n - 1 [2260]. 3 [1777, 3633]. 32 [3588]. 4 [270]. 48 [245]. 5 [270]. $52.95 [3556]. 64
\[a = \pm 2^q \pm 2^r\] \[\{ a_n \} \quad \lambda \{ b_n \} \quad \{ a_n(j+\tau)^2 \} \]

\[\phi(\lambda|x^n) \quad \chi^2 \quad D \quad d^2 \quad e \quad f \quad \Gamma \quad j \quad K \quad L \quad \lambda \quad M \quad N \quad \phi(0) \quad P \quad \pi \quad \pi \quad q \quad S \quad \sigma \quad \sqrt{2} \quad \sum a_n/n \quad T \quad U \quad X(1+i) = AX(1+i) \mod 2^3 1 \quad x^2 \mod N \quad X_{n+1} = ax_n + b_n \quad \mod p \quad (a+x) \sin(bx) \mod 1 \quad Z/nZ \quad Z_p \quad [2650].

-g**{adic} \[3306, 445, 444, 2358]. \quad -biased \[1900]. \quad -Bit \[3128, 3736, 245]. \quad -concave \[2555]. \quad -D \[3067]. \quad -deformed \[2490]. \quad -dependent \[1900]. \quad -Detection \[3721]. \quad -digit \[270]. \quad -Dimensional \[267, 194, 199, 893, 1509, 1956, 1756, 786, 203, 1303, 2955]. \quad -discrepancy \[2021]. \quad -distributed \[1315]. \quad -Distribution \[943, 1848, 1037]. \quad -distributions \[1797, 2069]. \quad -
\]

Advanced [1447, 1909, 3769, 3933, 3887, 2420, 2495]. Advances [3781, 3799, 3817, 1066, 3879, 2644, 3838, 2663, 3789, 3791, 3844, 3916, 3802].

Affine [3688, 2491]. Against [2831, 3265, 3710, 1325, 3115, 3555, 3700, 3747].

Air [3764, 1867]. AIS [2542, 2413]. AIX [2738]. Akima [755]. al. [895].

algorithm [1708, 555, 1547, 3868]. algorithmische [555]. algorithmischer [1708].

Approximations [143, 2775, 1048, 1001, 2995, 1223, 2964, 3025]. April [3789, 3760, 3799, 3822, 3933, 3877, 3833, 3807, 3808]. Arbitrary [2189, 812, 1525, 3029, 963, 3732, 2976, 197, 1686, 3462, 1282, 694, 3507].

Archimedean [3260]. Architecture [2823, 2770, 3340, 2065, 3251, 3513, 2964, 3025]. Architectures [1447, 3691, 3602]. Area [2823, 2770, 3340, 2065, 3251, 3513, 3720, 1544]. Area-Efficient [2823, 2770, 3340, 2065, 3251, 3513, 3720, 1544].

automorphisms [3620]. Autonomous [3356]. Autoregressive [1693].
available [3120]. Avalanche [3233]. Average
[1757, 2201, 2202, 2616, 2099, 2661, 2108, 2766, 3522, 2393, 3460].
average-case [2108, 3522]. Averages [841]. Averaging [3624, 281]. avoid
[1368, 1579]. Avoided [1165]. Avoiding [3850, 2530, 1777]. AVX [3682].
award [3452]. Aware [1630]. AWC [1865]. AWC/SWB [1865]. AWGN
[2601, 3444].
Experimental [920, 921, 3157, 3272, 3187, 627, 709, 24, 933, 893, 941, 942, 849, 949, 2742, 3699, 791, 3158, 1890, 1708, 175, 7].
Explaining [2905]. Explicit [2275, 3679, 3062, 1763, 1876, 2869, 3049, 1991, 2110, 2726, 2164].
Exploring [193x586] [3699].
Exploitation [3560, 2863].
Exploration [3699].
Exponent [1684, 1801, 743]. Exponential [563, 1872, 2915, 3068, 2295, 1049, 2560, 304, 769, 2482, 2870, 3112, 953, 2809, 3137, 1364, 1289, 344, 658, 2696, 2113, 2378, 1583, 2769, 3517, 330, 1213, 248, 933, 893, 936, 941, 942, 849, 949, 2742, 3699, 791, 3158, 1890, 1708, 175, 7].
Exponentially [212, 3427, 3129, 312, 3172, 224, 3694].
Exponentiation [2701, 2132, 1617].
exponentiations [1550].
exponents [2783].
Expressing [249].
expression [2014].
Extendable [3661].
Extendable-Output [3661].
Extended [2368, 1136, 1483, 2543, 3653, 1517, 1169, 487, 1236, 3827, 1405, 1789, 3433, 473, 3310, 1215, 2425, 2428].
Extending [1159]. Extends [1788].
Extensible [2452, 2731].
Extension [2247, 3459, 3128, 658].
Extensions [615, 898, 2243, 2125].
extensively [1860, 2305].
extracted [3718].
Extracting [2896, 2155, 1723].
Extraction [3286, 3590, 3545].
Extractor [3679, 2456, 3688, 2593, 2581, 2877, 2428, 3371].
Extrapolation [1338]. Extraterrestrial [2047].
Extreme [1677, 8].
Extremely [472, 723, 584, 585, 3480]. extremely-high-throughput [3480].
Face [3238].
Facilities [1594, 344].
Factored [1292].
Factorial [2242].
Factoring [1012, 1150, 1262, 1821, 1737, 2746].
Factorization [1816, 724, 1332, 683, 1163, 1943, 3548].
Factorizations [1032, 1298, 2607].
failure [2382].
fair [2623, 2460, 2995].
Fairfax [3807].
Fairmont [3815].
Fall [135].
Family [3420, 2546, 2715].
Families [3420, 2546, 2715].
Fat [1554].
fat-tailed [1554].
Feasible [3677, 3393, 3572, 1215].
Fault-tolerant [3572, 1215].
Faulty [3625].
Fauro [2676].
FCRC [3856].
FCSR [2820, 3235].
FCSR[s] [3494, 3180].
FDC [1912].
Features [434, 1547].
February [3929, 3865, 3898, 3774].
Feedback [2517, 1183, 1300, 1037, 1492, 2466, 507, 633, 3693, 635, 848, 3450, 1530, 3552, 2677, 3054, 1683, 2017, 940, 329, 3442, 305, 2023, 2658, 1270, 1351, 3633, 1729, 3742, 3674, 1107].
Feeding [3052].
Feinstein [315].
Feistel [3702].
Feistel-inspired [3702].
Feller [3266, 1376].
Fence [3606].
Fermat [3508].
fermions [3572].
ferromagnetic [720].
Festchrift [3923]. Few [2896, 3058, 3029, 2994, 1276].
Few-body [1276].
Fiar [2691].
Fibonacci [2076, 2178, 3641, 1852, 403, 3420, 1921, 247,
1925, 1926, 2026, 2027, 2028, 2793, 1934, 2409, 1739, 1832, 2501, 2290, 2383, 3838, 1609, 1714, 1815, 2154, 2483.

Field

Field-programmable [2561].

Fields

[135x634] [2561].

Finalist

[2458, 2539].

Finnish

[704, 719, 515, 1106, 909, 913].

First-Order

[1693, 1325].

First-Order [1693, 1325].

Fisher

[920, 921, 933, 936, 941, 942, 949].

Fishman

[3923].

Fitting

[1825].

Flaws

[3266].

Flies

[253].

Flying

[1072, 1175].

Floating

[3072, 1690, 2980, 3431, 2016, 3696, 650, 2166, 1826, 693, 2968].

Floating-Gate

[3072, 1690, 2980, 3431, 2016, 3696, 650, 2166, 1826, 693, 2968].

flashing

[1072, 1175].

flaw

[3573].

flaws

[3266].

flying

[1072, 1175].

float

[3486].

Floating

[3072, 1690, 2980, 3431, 2016, 3696, 650, 2166, 1826, 693, 2968].

Floating-Point

[2016, 650, 2166, 1826, 693].

flop

[160].

Florida

[3786, 3864, 3756, 3847, 3776].

flow

[2995, 1741].

flow-level

[2995].

Fly

[3224].

Fock

[2490].

folding

[901, 902, 3720, 2889].

Fonctions

[4, 281].

force

[3764].

forced

[3483].

forests

[1846].

Fork

[1373, 1795].

Fork-Join

[1373, 1795].

form

[2592].

formal

[2594].

Formal

[2010].

formalism

[2594].

Formalization

[2991].

Format

[3176].

Formation

[197, 469].

formes

[2592].

Forms

[823, 1178, 1041, 1098, 948].

formula

[3429, 2717].

Formulae

[167].

Formulas

[391].

Formulation

[2098, 977, 688].

Forsythe

[615].

Fortran

fortune

[1781].

Forty

[3951].

Forty-fifth

[3951].

Forum

[2691].

forward

[2996, 2963].

Found

[1751].

foundation

[555].

Foundations

[3780, 3783, 3786, 3801, 3806, 3812, 3818, 3828, 3851, 3860, 3864, 3885, 3889, 3935, 3950].

Four

[1435, 2359, 1682, 2234, 2029, 2030, 2401, 2580, 2669, 3242].

Four-Bit

[1435].

four-dimensional

[3242].

Four-Tap

[2359].

Fourier

[2845, 398, 3585, 3308].

Fourth

[3895, 3810, 3825, 3879, 3757].

FPGA

[3034, 3040, 3158, 2368, 3403, 2442, 2985, 3413, 3190, 3198, 3299, 3737, 3309, 3740, 3331, 3339, 3224, 2580, 2669, 3352, 3354, 3602, 3640, 3671, 2749, 3144, 3250, 3482].

FPGA-Based

[2368, 3224, 3034, 3413, 2749, 3482].

FPGA-Optimised

[3354].

FPGAs
2224, 1205, 2388, 152, 2303, 1899, 2124, 2433, 2459, 3430, 2713, 1259, 1093,
3299, 3199, 1409, 2129, 2130, 2228, 3081, 3082, 3200, 3085, 2462, 981, 1414, 1591,
2852, 584, 585, 245, 763, 1096, 1337, 3301, 2234, 3201, 3302, 985, 3090, 3202

Generators

[3203, 764, 2018, 2784, 2785, 2857, 2933, 2934, 2469, 1507, 474, 2555, 3438, 3439,
2863, 1800, 2786, 3307, 3440, 3443, 3690, 2139, 2649, 1918, 586, 1597, 634, 3444,
3591, 3208, 1511, 1512, 2239, 2650, 3311, 3447, 1925, 3631, 2325, 3448, 774,
446, 811, 2658, 775, 1053, 3314, 899, 813, 3315, 814, 3213, 987, 1219, 3319, 644,
3114, 3596, 3010, 2157, 3219, 1432, 160, 481, 515, 3328, 945, 1615, 3115, 3740,
2336, 2487, 2046, 1273, 782, 603, 2488, 1939, 3331, 605, 362, 3454, 1617, 2952,
2807, 2808, 2954, 1619, 3549, 687, 3670, 2955, 690, 1730, 2341, 3342, 482, 3457].

Generatoren [1026, 1028]. Generators [1365, 2507, 2262, 2754, 290, 2076,
2178, 2894, 3260, 1447, 3562, 3704, 3153, 3038, 2603, 2266, 3040, 2687, 2989,
506, 2086, 3748, 3385, 1561, 2186, 3494, 2090, 878, 1378, 3270, 3612, 2761,
2900, 3045, 2094, 881, 882, 3046, 1180, 2367, 884, 3277, 2369, 1183, 1244, 1300,
3055, 2831, 398, 2520, 1659, 3169, 1464, 1868, 1305, 1662, 1869, 2195, 3058,
3060, 3505, 3506, 3734, 2614, 703, 3509, 1308, 1987, 2105, 2106, 1388, 1309,
1575, 1997, 3410, 2620, 2910, 3511, 746, 801, 972, 1005, 1085, 1476, 1196, 705,
1088, 1772, 1480, 2914, 299, 750, 751, 1775, 2701, 2702, 2841, 3512, 3576].

Generators [3579, 2002, 2005, 2119, 2989, 3070, 3736, 2990, 2219, 2537, 2011,
2846, 842, 3296, 276, 323, 2639, 2306, 2131, 3586, 2542, 547, 2543, 1503, 1210,
1341, 1342, 1694, 2137, 2236, 2311, 2317, 2394, 2395, 2396, 2464, 2465, 2466,
2550, 2645, 2646, 2932, 2998, 3000, 3204, 3436, 3629, 3749, 3686, 1693, 3207,
2647, 2860, 2861, 3097, 3528, 3308, 2318, 1596, 2405, 3590, 353, 3692, 3693,
1152, 1154, 1804, 1806, 2721, 2653, 3102, 1603, 2657, 3593, 1430, 1514, 1516,
1709, 1265, 2150, 2563, 2729, 1812, 2570, 2664, 3540, 719, 849, 595, 639, 776,
777, 3539, 1817, 3662, 3325, 1355, 3012, 1934]. Generators

[1057, 1727, 3666, 414, 1435, 3335, 3336, 3337, 3338, 2052, 3118, 784, 2577, 3120,
1620, 3339, 2053, 3225, 1065, 2413, 2579, 2957, 2167, 556, 2421, 2423, 525, 2587,
2588, 2346, 2812, 1363, 1541, 1738, 1958, 1111, 3354, 559, 2749, 3027, 1626,
1627, 2173, 1835, 2752, 3699, 787, 1284, 2070, 2432, 2598, 422, 1631, 423, 484,
3603, 828, 1635, 2359, 1026, 1118, 1172, 1286, 1288, 1445, 3560, 2600, 1843, 2434,
3034, 3035, 3702, 1233, 1371, 1291, 3641, 488, 3561, 2079, 3488, 2081, 1640, 3037,
1642, 2265, 3381, 3564, 3676, 2268, 3489, 3567, 1028, 2970, 3490, 3610, 3263].

generators [3154, 1971, 3677, 3041, 1646, 1121, 2827, 1029, 2828, 1177, 1973, 1650, 2606,
2689, 2974, 2365, 883, 1459, 1653, 2829, 1179, 701, 3050, 3613, 1860, 3053, 3571,
3402, 1861, 2099, 2190, 535, 2191, 1865, 2100, 2192, 1000, 1866, 3168, 2279, 1304, 1465, 1466, 3170, 1385, 1462, 1463, 3405, 1567, 1663, 2692, 2833, 3059, 3171, 1306, 1386, 618, 2834, 3173, 3174, 1571, 401, 1387, 2695, 2199, 2200, 2446, 1469, 3177, 1389, 1390, 1472, 1671, 1311, 2836, 1880, 1881, 1996, 2112, 2209, 2286, 2287, 2376, 2521, 2522, 1678, 1132, 1770, 836, 928, 929, 1193, 1194, 1313.

generators [2136, 2138, 2232, 2233, 2312, 2314, 2315, 2397, 2398, 2546, 2548, 2642, 2715, 2779, 2855, 2997, 2999, 3305, 1504, 3716, 1097, 2854, 3093, 3205, 2237, 1695, 3094, 1151, 1263, 846, 2558, 3737, 3306, 3002, 3099, 1212, 2141, 2649, 1921, 2023, 3529, 3209, 3531, 439, 440, 476, 511, 1599, 1703, 1922, 1924, 2722, 2652, 3100, 2323, 2561, 2792, 2793, 3532, 3592, 1705, 1927, 2324, 2326, 2724, 2938, 3003, 1706, 1809, 772, 3104, 3005, 3313, 2727, 2798, 1708, 1606, 447, 3595, 3211, 3660, 1711, 594, 3099, 3215, 2151, 640, 1103, 1270, 1522, 2483, 2566, 2633, 1523, 1718].

generators [1719, 3113, 2800, 3320, 3321, 601, 2486, 2802, 2871, 2947, 3324, 1614, 1105, 1272, 1356, 1433, 1721, 1722, 2045, 1357, 2048, 3329, 2948, 1106, 2051, 820, 2337, 1062, 1529, 855, 1063, 2249, 2055, 1535, 1825, 1361, 1438, 1732, 2810, 3601, 2580, 2669, 1733, 2415, 3344, 3723, 260, 2168, 1949, 1734, 3463, 2743, 2424, 3639, 1278, 3465, 2585, 2586, 2425, 3320, 2256, 2591, 2747, 2883, 2962, 2963, 3022, 3349, 3469, 3470, 1623, 1833, 1957, 3023, 3602, 3640, 3355, 2885, 2592, 2428, 2593, 1625, 962, 2750, 2678, 2751, 3359, 1068, 2066, 1069, 3727, 2174, 1836, 3475, 1743, 2597, 2071, 2176].

generators [1962, 454, 3361, 2260, 2967, 3363, 3700, 2683, 3253, 3254, 3673, 3370, 3371, 2273, 3092, 3206, 394, 504]. generators-part [2585]. Generazione [964].

Genetic [2537, 2630, 2631, 628, 672, 2928, 3894, 2812, 2888, 2092, 2830, 2652, 3538, 3906].

Gentle [2956, 2438, 2795]. Genuine [3550, 2817]. Geographic [2273].

inverted [2040], invertible [3479, 3557], Inverting [319, 2931].
Investigating [409], investigations [1627, 1632, 2097, 1708].
Investing [3657], invitation [3764], Invited [2450, 1596].
Involving [195, 337, 338], Irrational [2440, 449, 2062, 1493].
ISAAC [2433], ISBN [3587, 3556], Ising
[2268, 2099, 1489, 1585, 2250, 2424]. Island [3788, 3786, 3927].
isotropic [530], Isotopic [530]. ISSAC [3852], ISSAC'93 [3835], Issue [3581, 2278].
Issues [3059, 1984], J [870, 1240, 2902, 1041, 1497, 1010, 1054, 910].
J. [168], J3Gen [3594], jaguar [3863]. James [2438, 2795, 2956].
Jansson [504, 394], January [3792, 3874, 2006]. Japan [3821], Japanese [1932, 165].
Java [2758, 2369, 3516, 2787, 3663, 3013]. Java-implemented [3013].
JavaTalk [2308], Jersey [3950]. Jitter [3375, 3376]. JMASM1 [2618], jobs [1795].
jobstreams [958], John [1484, 1496, 1772, 2872, 3761]. Join [1373, 1795].
Joint [324, 3894], Jonathan [3751], Jordan [721], Jordanscher [721].
Jose [3937], Joseph [259], Joy [3031], Jr [168], Julius [2610], July
[3835, 3859, 3775, 3753, 3852, 3873, 3927, 3769, 3894, 3841].
Jump [2989, 3070, 3071], June [3848, 3899, 3914, 3928, 3937, 3951, 3764, 3906, 3868, 3945, 3823, 3779, 3753, 3934, 3762, 3853, 3880, 3927, 3892, 3841, 3854, 3881].
Jungles [2335], Juniper [3733], Justification [2195, 987].
Kakutani [3216], kappa [3604]. KASUMI [2541], Keccak [3496]. KENO
[2050], KENO-Va [2050], kernel [2943]. Kernels [2944, 1954].
Key [3374, 3265, 2722, 3051, 3283, 890, 2455, 2850, 2935, 1604, 2031, 1516, 2489, 1942, 1631, 3043, 3393, 2392, 3314, 1931, 3115].
Key-Stream [3374]. Keys
[3703, 3514, 1604, 3695, 3733, 2880]. keystream [3187, 3458], keystreams
[1769]. Khintchine [2638], Kie [3794, 3835], Kinderman [2813]. kinetic
[3653]. Kingston [3884]. KISS [3311, 3455], Klomov [2826], Kloosterman
[1766], Kloosterman-type [1766]. KMCLib [3653], Known
[1810, 3279, 2286, 783], Knoxville [3796]. Knuth [1700, 679, 716, 3668].
Kochen [3485], Koen [2977], Koksma [2007], Kolmogorov
[63, 399, 71, 1135, 769, 2720, 97, 818, 188, 3461]. Kong [3897], Kongruenz
[1026], Kongruenz-Generatoren [1026], konvexe [32], konvexer [721].
Korea [3907], Körper [32], Kreyszig [1909]. krigen [3500], kriwoi [34].
Kronecker [3499], KY [3919].

L [531, 580, 622], Laboratory [3752, 3754], Lag [595]. Lagged
[2076, 2178, 1921, 2026, 2027, 2028, 1934, 3641, 2206, 1132, 1926, 2793, 1925].
Lagged-Fibonacci \[1921, 2026, 2027, 2028, 3641, 1926, 2793, 1925\].

Lagrange \[1665\]. Lai \[3310\]. Lake \[3847, 3854\]. Lamar \[2928\]. lamp \[2725\].

Landau \[691, 1109\]. language \[3716\]. languages \[3700\]. Laning \[168\].

Lansing \[3768\]. Laplace \[2526, 669, 3008, 3223\]. laptops \[2273\]. Large \[3752, 3269, 3505, 3506, 841, 669, 26, 2860, 2149, 185, 3220, 1531, 2971, 2833, 3059, 3171, 1323, 64, 73, 244, 95, 3737, 1055, 606, 230\]. Large-Order \[3505, 3506\]. Large-Scale \[3752, 185, 2149, 2971, 95, 3737\]. large-size \[73\].

largely \[963\]. Laser \[3222, 3292, 3307, 3468, 3249\]. Lasers \[3108, 3135, 3240\].

Last \[2170\]. Latin \[2332\]. LatMRG \[2135\]. Lattice \[532, 568, 1976, 2901, 2441, 702, 2617, 2837, 2301, 1470, 1767, 1310, 1311, 1133, 2530, 3423, 3424, 2921, 1139, 1140, 2452, 3196, 2228, 674, 710, 2231, 2339, 2397, 2467, 2545, 3304, 2468, 2552, 1918, 850, 2943, 2945, 1062, 3018, 3125, 3462, 2252, 1833, 3742, 392, 455, 3687\].
lattice-based \[3742\]. lattice-bases \[1139\]. lattice-sublattice \[3196\]. lattices \[2100, 2780, 2808\].

Lausanne \[3925\]. lava \[2725\]. LavaRnd \[2572\].

Law \[3401, 3220, 1531, 2175, 3062, 2696, 3183, 15, 197, 2117, 244, 16, 3105, 783, 2339, 3387, 3266, 3076, 2940, 885\].

Laws \[841, 1501, 2736, 562\].

Laxenburg \[3829\]. LC \[2875\]. LCG \[2617\]. LCGs \[2211, 2522, 2234\].

Leading \[2925, 618, 1038\]. leads \[1855\]. leads-to \[1855\]. Leakage \[2430\].

Leap \[3251, 2287\]. leap-frog \[2287\]. learnability \[2177\]. Learning \[3127, 1949\]. Least \[736, 533, 104, 1408\].

Least-Remainder \[104\]. leave \[3733\]. Lecons \[4\]. Lecture \[3587\]. Lectures \[262, 4\]. L’Ecuyer \[1439\]. Lee \[487\].

Left \[3453, 1947, 460\]. Left-Shift \[1947\]. legacy \[3710\]. Legal \[2691\].

Legge \[16\]. legli \[15\]. Lehmer \[1662, 2199, 2200, 748, 3586, 894, 246, 2157, 481, 2059, 231\].

lengths \[2821, 1977\]. Less \[736, 874, 2936\]. Lesson \[1724\]. lessons \[3733\]. Letter \[466, 1204, 1803, 2954, 484\]. letters \[2872\]. leurs \[3\]. Level \[3568, 2480, 1126, 2995, 1790, 3011, 2740\]. Lewis \[743\]. Lexington \[3919\].

Leydold \[2092\]. LFSR \[2275, 3732, 3166, 2398, 3314, 3721, 3251\].

LFSR-Based \[3721\]. Libgcrypt \[3081\]. Liblice \[3762\]. libraries \[2123\].

Library \[3386, 3708, 1035, 1307, 1199, 2550, 2646, 2932, 3000, 2647, 2144, 1441, 1557, 1638, 3384, 3566, 3567, 3609, 2824, 3282, 3181, 3575, 3682, 2844, 2999, 2475, 2476\]. Lie \[1936\]. Life \[2361, 3547\]. light \[3468\]. Lightweight \[3692, 3363\]. Like \[2691, 469, 2031, 3634, 3356\]. Likelihood \[2290, 1003, 1131\].

Limit \[698, 1239, 2444, 1473, 2526, 3587, 3446, 2940, 2158, 2809, 2344, 3476, 562, 63, 2987, 3297, 1701, 3445, 3566, 410, 2728, 1162, 188, 2096\]. limiting \[1708\]. Limits \[618, 85, 38, 2258, 2352\]. Lin \[2779\]. Lindberg \[1376\]. Line \[2101, 2688, 439, 440, 3225\]. linéaire \[1339\]. linéaires \[2486, 2801\]. Linear \[393, 2894, 1377, 2517, 2831, 1980, 924, 3508, 2287, 2288, 1082, 1083, 1084,

Linear-Algebra \[1816\]. linear-complexity \[1519\]. linear-size \[3610\]. Linearly \[978\]. linearization \[3674\]. Lineare \[1026\]. linearer \[978\]. linearization \[3674\]. Linearization \[1026\]. linearer \[978\]. linearization \[3674\]. Linearly \[3151, 3261, 3130, 1955\]. Link \[3212\]. linkage \[3774\]. links \[2008\]. Linux \[2917, 3123\]. LISA \[3855\]. List \[654, 1933, 1728\]. list-update \[1933\]. Lists \[922, 877\]. Littlewood \[1911\]. LLL \[2921\]. LLL-spectral \[2921\]. LLRANDOM \[631\]. Lmcgrid \[3148\]. Load \[2210\]. loaded \[2460\]. Loads \[3052\]. Local \[3562, 3269, 715, 590, 1346, 1513, 1602, 1817, 3488, 1328, 3002, 1162\]. Locality \[3562, 3488\]. localization \[1649, 3280\]. Log \[740, 2449, 2344, 1078, 1897, 2453\]. log-concave \[1078, 1897, 2453\]. Log-Normal \[740\]. Logarithm \[2839, 2662, 2175, 3383, 244, 2809\]. Logarithmic \[867, 3603, 990\]. logarithmically \[980\]. logarithms \[1368, 1259\]. logic \[1855, 3290\]. logiciel \[1339\]. Logistic \[3276, 3008, 2046, 3160\]. logspace \[1372, 1642\]. logspace-hard \[1372\]. lois \[783\]. London \[3587\]. Long \[3562, 880, 1864, 1466, 1758, 2374, 3191, 438, 2472, 1810, 1356, 1958, 1285, 3488, 2974, 1304, 2613, 2692, 1390, 1475, 753, 2304, 2643, 1924, 2033, 2947, 687, 2682\]. long-cycle \[2613, 2692\]. Long-Period \[880, 3191, 1958, 2974, 1475, 753, 2947, 687, 2682\]. Long-Range \[2374, 1466, 1758, 1304, 1390\]. Longest \[2472\]. Longest-period \[2472\]. Look \[3165, 3511, 774, 824\]. Look-Up \[3165, 774, 824\]. Lookup \[812\]. Loop \[838\]. loops \[3124\]. Lorentzian \[666\]. Loss \[3681\]. lot \[3258\]. Lottery \[3683\]. Louis \[3818\]. Louisiana \[3815\]. Lovasz \[1998\]. Low \[3562, 1851, 1868, 2905, 2622, 3308, 1217, 1348, 1714, 2153, 2330, 2159, 1542, 1739, 1832, 3148, 3488, 2828, 1379, 879, 1648, 1753, 3168, 2920, 3073, 3302, 985, 1418, 2468, 2717, 2786, 3099, 3594, 3448, 1713, 2246, 3546, 2061, 2075\]. low-cost \[3594, 3448\]. Low-Degree \[3308\]. low-dimensional \[1753, 2075\]. Low-Dimensionality \[2905\]. Low-Discrepancy \[2622, 2153, 2330, 1542, 1851, 1217, 1348, 1714, 879, 1648, 2920, 2468, 2717, 1713, 3546, 2061\]. low-dispersion \[1348\]. Low-Order \[1868, 1379\]. low-power \[3168\]. Lower \[1673, 2281, 1411, 1520, 2674, 1878, 3015\]. Lowness \[3683\]. LP \[2362, 1948\]. LPRng \[2479, 2049\]. LR \[1506\]. LSI \[1130\]. LT \[3277\]. Luby
M [997, 1913, 69, 3102, 997, 1913, 3243]. M. [315, 389]. M/M/1 [1913].
M/M/m [997]. M/PH/1 [3243]. MA [3928, 3890]. Mach [3054]. Machine
[149, 2691, 140, 894, 3685, 816, 164, 3707, 753, 470, 2149, 3334, 190].
Machine-independent [894, 753]. Machinery [3752]. Machines
Made [1477, 1793]. Madland [3667]. Magma [3397].
Mainly [307, 442]. main [3318].
[2367, 3888, 3846, 3148]. Managing [3665]. Manhattan [3586]. MANIAC
[1173]. Manipulating [540]. Manipulation [3649]. mantissa [650, 990].
[2153, 2643, 1164, 652]. Map [3276, 3481, 3690, 2046, 3229]. Maple [1909].
Mapping [3339, 1007, 3429]. Mappings [3147, 2708]. Maps
[2557, 3259, 2897, 3160, 846, 3319]. March
[3754, 3810, 3929, 3790, 3782, 3940, 3756, 3840, 3913]. Marginal [2189, 1799].
Margins [2515]. margins [2253]. Marinucci [3587]. Mark [3797].
Markov [210, 1072, 1175, 2193, 3284, 932, 502, 645, 692, 1746]. marks [2269].
Marotto [3422]. Marriott [3803, 3776, 3891, 3785, 3832]. MARS [2458].
Marsaglia [3258, 2265, 2761, 1310, 1311, 1326, 2024, 2045, 1059, 3699, 3727].
Marshall [2843]. Martuljek [3861]. Maryland [3814, 3904]. mashinakh
[346]. masked [3578]. mass [721, 1552]. Massachusetts [3770]. Massen
Mathematica [3535, 3595, 2054]. Mathematical
[3708, 3760, 3826, 3755, 3775, 3779, 1205, 1206, 95, 3587, 3757, 247, 1053, 3662, 2335, 3759, 54, 56, 3766, 3865, 3556, 915, 456, 485, 234, 700, 1192, 2409, 207].
Mathematical-Function [3708]. Mathematicians [2574]. Mathematics
[2361, 3760, 2760, 3755, 3775, 890, 3952, 1909, 3922, 3767, 137, 3751, 1703, 3774]. mathématiques [3757]. MathLink [2089]. MATLAB [3078, 3106, 2818].
Matrices [2275, 1153, 3024, 1234, 1586, 1101]. Matrix
Maximal [181, 1575, 1414, 810, 903, 2677, 1671, 2703, 3541, 3235].
Maximal-Length [903, 1414]. Maximally [3736, 2136, 2398]. Maximum
[1245, 1003, 1131, 2215, 2775, 1720, 1858, 2994, 83, 1955, 3030].
[3788, 3793, 3798, 3804, 3809, 3814, 3825, 3834, 3843, 3848, 3856, 3857, 3875, 3882, 3895, 3904, 3918, 3944, 3758, 3846]. mbedTLS [3728]. MC [2230].
[3745]. microprocessors [813]. Microscopy [1725]. Microsoft
[3883, 2403, 2655, 2656, 2687, 3103, 3104, 1630]. mid [93]. mid-square [93].
[62, 146, 387, 2576, 166, 1198]. Milwaukee [3851]. MIMD [1433]. MIMO
[3473]. min [1426, 2581, 2877]. min-entropies [2581, 2877]. min-max
minicomputer-based [1112]. Minimal
[2893, 1400, 1388, 2576, 166, 1198]. minimization [3221, 1741].
Minimum [1853, 2624]. Mining [3514]. Minkowski [1117, 1139, 1140].
Minkowski-reduced [1117, 1139]. Minneapolis [3851]. Minnesota
[3846, 3878]. Miscellaneous [701, 800, 639, 696]. Miscellaneous [3750]. Mises
[2067]. Misson [3929]. Missouri [3818]. MISTY [2634, 2541].
MISTY-Type [2541]. misunderstandings [1253]. Mitchell [1631]. mittels
[978, 1841]. Mixed [290, 323, 817, 945]. Mixing [1264, 553, 1679, 1203, 3464].
MIXMAX [3670]. Mixture [1454, 1095, 2077, 1016, 3127].
mixture-of-subsets [3127]. Mixture-plus-Acceptance-Rejection [1095].
[3084, 2574, 3085]. Model [2823, 3624, 184, 53, 2959, 1442, 3148, 792, 2268,
3677, 3388, 1121, 2608, 3646, 2098, 2099, 1489, 2995, 1700, 3592, 3318, 1941,
2250, 2251, 3127, 2424, 1552, 3146, 1554]. Model-Based [3624]. Modeling
[1561, 2189, 3896, 3686, 3012, 1725, 3605, 1011, 1593, 2463, 2929, 226, 1544].
Modelirovanie [346]. modélisation [1544]. modelled [3043]. Modelling
[2741, 3865, 1129, 1188]. Models [495, 1693, 1813, 2077, 3577, 932, 3076,
1789, 2717, 3776, 958, 2253, 2068, 3701, 1964]. Modern
[3374, 3764, 3705, 1128, 2384, 3917, 3609, 3769]. modification [1699, 1563].
Modified [994, 3276, 2110, 414, 2675, 995, 316, 2228, 3694, 191].
Modified-Logistic [3276]. Modular
[2701, 2919, 1157, 2493, 1396, 2132, 3098, 2797]. Modulated [2875].
modulator [3054]. Module [2922, 3157]. Modules [2571, 3750]. moduli
[2365, 2100, 1661, 1306, 1323, 2323, 2792, 3215]. Modulo
[2066, 247, 364, 368, 229, 2079, 928, 1253, 1316, 301, 711, 2642, 2855, 2486,
2947, 1722, 1440, 5, 2940]. Modulus [3506, 801, 972, 1005, 1085, 1476, 2053,
556, 2882, 2600, 1470, 1576, 1580, 1673, 1674, 1762, 1875, 1876, 2109, 2110,
2280, 2281, 1312, 836, 929, 1193, 1194, 1313, 2128, 2228, 764, 3306, 2482, 2870,
1737, 2746, 3350, 3351, 3138, 3139, 3360, 2260]. Molecular [2508, 3714, 1893].
molecular-dynamics [1893]. Moment [1853, 1034, 1569, 2242, 720].
Moment-Generating [1853]. Moments [754, 3420, 3429, 2127, 1220].
Monaco [3892]. Monica [3755]. monitoring [3225]. Monkey [1804, 2045].
Monkeying [2865]. Monographs [3556]. Monotone
[1077, 329, 2864, 2122, 2992, 3522]. Monotonicity [1086]. Monster [2472].
Monite [3764, 176, 2438, 111, 3931, 3897, 1585, 3920, 630, 3926, 3303, 2795,
3853, 3873, 3880, 3901, 3911, 2245, 2050, 98, 187, 2956, 3892, 1828, 1742, 1173,
Number-theoretic numbers.

Oscillator-Based

Oscillators

Other

Otherwise

Ottawa

Output

Overview

Oxford

P

P-RnaPredict

P. PA

Package

Packings

Pad

Pages

Pair

Pair-wise

Pairs

Pairwise

Palace

Palasti

Palo

Paper

Papers

Papoulis

Paragon

Parallel

Parameter

Parametric

Paris

Park

Patching

Passage

Passau

Passive

Password

Patchwork

Partitioning

Partitions

parts

PASCAL

Pass [2651]

Passau [3933]

Passive [3039, 3594]

Password [1819, 1422]

past [3303]

Patchwork

Patchwork-Verwerfung

path
prime-power [2482]. Primes [2102, 916]. Primitive
[2078, 3952]. Principle [3645, 3414]. Principles
[3834, 178, 797, 1302, 2611, 2979, 835, 2311, 3927, 3867, 2573, 1484, 1496, 1497].
Primes [2102, 916]. Primitive
[2078, 3952]. Principle [3645, 3414]. Principles
[3834, 178, 797, 1302, 2611, 2979, 835, 2311, 3927, 3867, 2573, 1484, 1496, 1497].
[1604, 2087]. Prize [2778]. PRNG [3681, 2772, 3594, 2660]. PRNGlib [2144].
Probabilistic [1773, 900, 3231, 1551, 1858, 1299, 2384, 1685, 1700, 2864, 446, 555, 2594, 3779, 384, 2564].
Probabilities [927, 1083, 1531, 3707, 3, 2994, 138].
Probability [3730, 1845, 291, 3764, 3706, 2096, 167, 1983, 3065, 81, 300, 1213, 638, 549, 2565, 355, 1104, 1612, 2665, 2573, 2044, 1160, 2158, 516, 259, 205, 3831, 885, 3765, 149, 1303, 1079, 3932, 15, 2117, 376, 1412, 253, 1518, 648, 555, 2594, 3779, 384, 2564].
Probable [1, 946, 2, 2097, 1757, 1412]. probabilistic [553]. Probably [1294].
Problem [2093, 3271, 51, 2839, 299, 1424, 383, 3662, 1735, 1562, 2759, 925, 3194, 935, 186].
180, 3306, 3309, 1597, 3208, 3100, 3592, 3631, 2325, 281, 3448, 2727, 2798, 447, 775, 3660, 2941, 1711, 3315, 2241, 680, 779, 780, 781, 1158, 3319, 1526, 413, 2246, 481, 255, 1055, 328, 3115, 3116, 647, 782, 648, 3722, 3331, 3547.

pseudo [947, 2952, 856, 690, 607, 3457, 3458, 2581, 2251, 1167, 341, 557, 3229, 2170, 2345, 2499, 2672, 163, 2348, 191, 1544, 3355, 3134, 2428, 3672, 3357, 1069, 3141, 2887, 2966, 1443, 3479, 3557, 3145, 3365, 2819, 3482, 3253, 3701, 3370, 3371, 430, 463, 624, 357, 613].

test-aleatoire [1121].

Pseudo-random [2859, 2558, 1800, 3306, 3309, 3208, 3100, 3592, 3631, 2325, 281, 447, 775, 3660, 2941, 1711, 3315, 2241, 680, 779, 780, 781, 1158, 413, 2246, 481, 255, 1055, 328, 3115, 3116, 647, 782, 648, 3722, 3547, 2952, 856, 3457, 3458, 2581, 1167, 341, 557, 3229, 2170, 2345, 2499, 2672, 163, 191, 3134, 2428, 1069, 3141, 2887, 2966, 1443, 3479, 3557, 3145, 3365, 3482, 3370, 3371, 613, 357].

Pseudorandom

pseudorandom

pseudorandom

pseudorandom-number

pseudorandomness

pseudosuchainykh [346]. PSI [1394]. PUB [1819]. Public

random

random-access [3075].
Random-Bit [1381, 535].
Random-dierence [19].
Random-Number

Random-Start [3216].
Random-Variate [2879].
random-walk [2251].
randomised [1846].
Randomized [1998, 2622, 3421, 1333, 1792, 2716, 1711, 2150, 2247, 2644, 3303, 684].
randomizer [1473].
Randomly [843, 2041, 649, 2161, 1442, 21, 1794, 3304].
randomly-shifted [3304].
Randomness

RANEXP [1890].
RANF [1093].
Range [2374, 8, 399, 1304, 1466, 1758, 1390, 2291, 1356].
RANGEN [2618].
ranges [2417].
Rank [998, 1325, 2924, 3687, 2943, 2945, 3017].
rank- [2943, 2945].
Rank-1 [2924, 3687].
Rank-based [1325].
Ranking [2090, 3743, 2117, 3538].
Sequences

\[\{3372, 2893, 2080, 3151, 3261, 829, 264, 1456, 999, 1071, 179, 1378, 1851, 880, 2096, 181, 370, 459, 570, 3278, 537, 2445, 1573, 1081, 2524, 2908, 1088, 838, 2912, 2628, 141, 404, 499, 242, 324, 3651, 3077, 223, 3091, 438, 3693, 509, 510, 848, 589, 2477, 2478, 794, 1513, 1602, 1264, 810, 2329, 49, 2427, 3477, 13, 1227, 3253, 2261 \}\]

sequences \[\{1754, 2366, 3049, 1245, 1566, 1756, 1865, 1658, 215, 181, 370, 459, 570, 3278, 537, 2445, 1573, 1081, 2524, 2908, 1088, 838, 2912, 2628, 141, 404, 499, 242, 324, 3651, 3077, 223, 3091, 438, 3693, 509, 510, 848, 589, 2477, 2478, 794, 1513, 1602, 1264, 810, 2329, 49, 2427, 3477, 13, 1227, 3253, 2261 \}\]

Sequential \[\{2061, 1955, 2063, 2169, 2171, 2257, 3235, 1544, 3137, 483, 2501, 561, 1550, 1443, 269, 3743, 1885, 547, 763, 1096, 119, 490, 1554 \}\]

Serial \[\{214, 51, 241, 2645, 852, 538, 1774, 116, 172, 405, 433, 1325, 2130, 1158, 1352, 1431, 50 \}\]

Series \[\{1864, 168, 1693, 3587, 766, 247, 1934, 311, 229, 22, 1105, 19, 1554 \}\]

Serpent \[\{2458, 2539 \}\]

Server \[\{2608, 2698, 1935 \}\]

Serpent-\[\{2605, 930, 2383, 2151, 2814, 1450, 707, 21, 156, 158, 1721, 648, 35 \}\]

SETA \[\{3919, 3907 \}\]

Sets \[\{2507, 2622, 3086, 3091, 2310, 360, 1542, 2679, 2081, 344, 1753, 41, 2376, 139, 273, 1780, 2296, 3869, 2121, 2545, 2468, 2552, 721, 1217, 1269, 1713, 1714, 2801, 2946, 602, 947, 2075, 3086 \}\]

Setting \[\{3241, 3434 \}\]

seventeenth \[\{3788 \}\]

Seventh \[\{1909, 3874, 3848 \}\]

Several \[\{1860, 1787, 2305, 3528, 1467, 640, 990 \}\]

SFQ \[\{3252 \}\]

SHA \[\{3661 \}\]

SHA-3 \[\{3661 \}\]

Shadowing \[\{1679 \}\]

Shamir \[\{2826 \}\]

Shape \[\{800, 695, 832, 696 \}\]

Shapes \[\{3576, 2803, 3419 \}\]

Shapiro \[\{3739 \}\]

Shared \[\{2430, 1754 \}\]

Sharing \[\{2031, 1942, 2995, 3243 \}\]

Shell \[\{2737 \}\]

Shenzhen \[\{3940 \}\]

Sheraton \[\{3787 \}\]

Sherif \[\{2057 \}\]

Sherman \[\{126 \}\]

Shewhart \[\{1171 \}\]

Shift \[\{2517, 1183, 1300, 1081, 1006, 1037, 2912, 404, 1008, 1492, 2466, 507, 633, 635, 848, 478, 3450, 1530, 2340, 1947, 3552, 1541, 3354, 2677, 2359, 2362, 1242, 3054, 1475, 706, 1683, 2223, 981, 2017, 329, 3442, 305, 1598, 1702, 2023, 1270, 1351, 1521, 1271, 2943, 3633, 1107, 1729, 2055, 3360, 3742, 3674 \}\]

Shift-invariant \[\{2943 \}\]

Shift-Nets \[\{2340 \}\]

Shift-Register \[\{1081, 2912, 635, 478, 1541, 1242, 1475, 2223, 981 \}\]

Shift-Register-Sequence \[\{2359 \}\]

shift-remainder \[\{1271 \}\]

Shifted \[\{3227, 3304, 3462 \}\]

Shifts \[\{2739, 2974, 159 \}\]

shooting \[\{1652 \}\]

Short
Small-bias [3189]. smaller [2128]. Smart [3692, 3102, 2690, 3933].
Small-World [3189]. small-deviation [3198].
Software/hardware [3527]. SOI [3588]. Sojourn [1955, 2063, 2171, 2169].
Source [1072, 3679, 3195, 3688, 635, 2163, 3750, 1175, 2690, 217, 3426, 3582, 2880]. Sources [1231, 2806, 29, 3286, 3697, 1221, 1283, 1299, 1508, 1802, 3718, 2730, 2254, 3359].
Specker [3485]. Spectral [1659, 750, 751, 1141, 842, 1042, 443, 3215, 2807, 2954, 3250, 2375, 670, 2921, 2300, 2227, 2233, 2674, 2747, 3232, 1280].
Spectrum [2845, 3308, 3667]. Speed [2360, 3191, 3686, 636, 3325, 3222, 100, 3478, 3250, 3644, 2690, 3063, 3177, 2767, 3291, 1686, 117, 2132, 128, 2469, 774, 225, 552, 1164, 2876, 121].
Symposium [374, 3226]. synchronized [1636, 3259, 1940]. Syndrome [2104].
Symmetry [133]. Systematic [2226, 3110, 2800, 910, 911, 2810, 2250].

Systolic [2092, 1236].

T-Concave [2012].
Tabla [133]. Table [1966, 3165, 812, 824, 78, 3671, 1289, 674, 508, 774, 44].
Table-free [1289].
Table-Hadamard [3671]. Table-Lookup [812]. Tables [313, 6, 435, 20, 31, 2397, 2398, 17, 308, 2035, 2484, 134, 189, 68, 49, 69, 23, 46, 72, 113, 114, 169, 170, 1324, 302, 2309, 7, 869, 133].
Tabular [3164].
Tag [3317, 3162, 3448]. Tags [3039, 3328, 3342]. Tail [927, 1083, 669, 1301, 2994, 3445].
tailed [3391, 1554]. Tails [2757, 857, 954, 2984]. Taken [8]. Talk [2450]. tandem [3158].
tangent [1908]. Tap [2359]. taps [2415]. Target [1652]. Targeting [3132, 3677].
Tatzmannsdorf [3779]. Tausworthe [1027, 1756, 1662, 743, 1473, 466, 1038, 1392, 2136, 777, 1015, 515, 1619, 1023, 559, 651]. Tb [3589]. TDIST [2818].
TEA [2830, 2535, 2630, 2631, 2708, 2773, 2659, 2243, 2073]. Teach [2691].
Teaching [3176, 3078]. Technical [2085, 2011, 1806, 2722, 2052, 3865, 3881, 3653, 236, 319, 403, 400].

Twin-floating [3486]. Twist [2588]. Twisted [1705, 1927].

twister [2325, 2691, 2787, 2938, 3327, 3121, 3341, 3599].

twisters [3503].

twisting [1705, 1927].

Two-Sided [3461]. Two-Source [3679, 3688].

Two-Stage [3825].

two-term [3825].

two-sh [2458].

type [176, 199, 2541, 769, 2873, 864, 2173, 3149, 399, 1766, 1135, 351, 684, 3134, 3479, 3557].

types [3528, 562].

Unavoidable [1036]. Unbiased [1072, 1299, 1175, 572]. Unbounded [2909, 2766, 2992]. uncertain [3186]. uncertainty [3896, 1192, 3213].

Unconditional [3099]. Unconstrained [2042]. Uncorrelated [1454, 294].

Uncovering [2409]. Underlying [843]. Understanding [2925, 3665].

unequal [138]. unicorn [3717].

uniform [1226, 2964, 3025, 3602, 913, 5, 1838, 2681, 3281, 2991, 2930, 420, 1277].

uniform-Gaussian [2224]. uniformément [176]. Uniformity [2090, 970, 841, 2645, 484, 2911, 2559, 2147, 1103, 1829].

Uniformly [267, 194, 199, 1690, 1693, 549, 203, 1110, 785, 176, 1467, 2377, 1201, 469, 301, 1258, 2864, 1168, 693, 1443]. uniformly-distributed [176]. Uniforms [1896, 2126, 1629, 1364, 1895, 2127, 2470, 1540].

Unifying [3591]. Unimodal [1077, 2197, 1100]. Unique [3287, 1338, 3143]. unit [424].

units [3264, 3569, 3090, 95, 3537, 3405]. Univariate [1047, 503, 1902, 2555].

Variables

Variance

Variations

Various

Varying

Varyable

Variation

Variational

Variations

Vector

Vectorial

Vectorized

Vectors

Vegas

Verifiable

Verification

Verified

Vermont

Versatile

Verschlusselungsabbildungen

Version

Versions

VAX

VAX-11

Vector

Vector [3494, 1179, 1357]

Vectorized [3741, 1179, 1475, 1357]

Vectors [532, 2189, 2515, 702, 2284, 506, 284, 1020, 3345, 1286, 2362, 568, 2091, 3614, 1756, 2285, 1133, 1201, 1255, 1322, 2231, 1522, 2481, 2808, 608, 1948, 2674]

Vegas [3848, 3889, 3935, 3853]

Verifiable [3678, 3056]

Verification [2770]

Verified [2363, 3728]

Vermont [3860]

Versatile [509]

Verschlusselungsabbildungen [1007]

Version [3561, 998, 1092, 2606, 3000, 3635]
References

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling. *Philosophical Magazine, 50*(302):157–175, July/December 1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897.

[3] Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques. (French) [Countable probabilities and their arithmetic ap-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kendall:1941:TR

Kolmogoroff:1941:CLU

Nair:1941:DSC

Young:1941:ROS

Dodd:1942:CTR

Dodd:1942:TTR

Mann:1942:CNC

Peatman:1942:TRN

REFERENCES

REFERENCES

[61] S. M. Ulam and John von Neumann. On combinations of stochastic and deterministic processes. Bulletin of the American Mathematical Society, 53(11):1120, November 1947. CODEN BAMOAD. ISSN 0002-9904 (print), 1936-881X (electronic). URL http://www.jstor.org/stable/2236265. The abstract notes “... starting with almost every x_1 (in the sense of Lebesgue measure) and iterating the function $f(x) = 4 \cdot (1 - x)$ one obtains a sequence of numbers on $(0, 1)$ with a computable algebraic distribution. By playing suitable games with numbers ‘drawn’ in this fashion, one can obtain various other distributions, either given explicitly or satisfying given differential or integral equations.”.

[64] H. C. Hamaker. Random frequencies, expedient for the construction of artificial samples of large size. Statistica Rijswijk, 2(??):129–137, ???? 1948. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

Richtmyer:1951:EDI

vonNeumann:1951:VTU

Votaw:1951:HSS

Anderson:1952:ATC

Anonymous:1952:RD

Cameron:1952:RST

Goodman:1952:EPSa

REFERENCES

REFERENCES

on the development and practice of science and engineering in the 20th Century.” See [2436, 2437], and the Hasting–Metropolis generalization in [502]. See also [343, 645, 2710].

REFERENCES

[133] Jose Royo and Sebastian Ferrer. Tabla de numeros aleatorios obtenida de los numeros de la Loteria Nacional Española. (spanish) [Tables of random numbers obtained from numbers in the Spanish National Lottery].

[139] E. C. Fieller, T. Lewis, and E. S. Pearson. *Correlated random normal deviates; 3,000 sets of deviates, each giving 9 random pairs with correlations 0.1(0 × 1)0 × 9*, volume 26 of *Tracts for computers*. Cambridge University Press, Cambridge, UK, 1955. 60 pp. LCCN QA47 .T7 no.26. Compiled from Herman Wold’s Table of random normal deviates (Tract no. XXV) by E. C. Fieller, T. Lewis, and E. S. Pearson: *Random normal deviates.*

REFERENCES

REFERENCES

REFERENCES

REFERENCES

vonHoerner:1957:HZR

Walsh:1957:EMO

Bass:1958:MMC

Bauer:1958:MCM

Bendat:1958:PAR

Bofinger:1958:PPP

Box:1958:NGR

REFERENCES

REFERENCES

REFERENCES

[195] Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{1}{(K/y)} \frac{\partial u}{\partial y} = 0$. *Journal of the ACM*, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

Bureau of Standards (1934), 64B(??):211–215, ???? 1960. CODEN ????
ISSN 0091-0635.

Butcher:1960:SR

????, ?????, 1960. LCCN ???? URL ????.

Clark:1960:EDR

distributed random numbers. Published for Operations Research Office,
Johns Hopkins University by Johns Hopkins Press, Baltimore, MD, USA,

Clark:1960:USR

Research, 8(2):185–195, March/April 1960. CODEN OPREAI. ISSN

Coveyou:1960:SCG

COAH. ISSN 0004-5411 (print), 1557-735X (electronic).

DeMatteis:1960:PRS

length. Report 88, Comitato AND Nazionale per l’Energia Nucleare,
Bologna, Italy, 1960.

Edmonds:1960:GPR

[216] A. R. Edmonds. The generation of pseudo-random numbers on
1460-2067 (electronic). URL http://www3.oup.co.uk/computer_journ-
al/hdb/Volume_02/Issue_04/020181.sgm.abs.html; http://www3.oup.co.uk/computer_journ-
al/hdb/Volume_02/Issue_04/tiff/181.tif; http://www3.oup.co.uk/computer_journ-
al/hdb/Volume_02/Issue_04/tiff/182.tif; http://www3.oup.co.uk/computer_journ-
al/hdb/Volume_02/Issue_04/tiff/183.tif; http://www3.oup.co.uk/computer_journ-
al/hdb/Volume_02/Issue_04/tiff/184.tif; http://www3.oup.co.uk/computer_journ-
al/hdb/Volume_02/Issue_04/tiff/185.tif.

REFERENCES

[230] Donald D. Wall. A random number test for large samples. In Anonymous [3758], pages 7–11. LCCN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hlawk:1962:ABM

Hull:1962:RNG

Marsaglia:1962:FPG

Marsaglia:1962:IPM

Marsaglia:1962:RVC

Marsaglia:1962:SPG

MendesFrance:1962:CMF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[324] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\{a_m j^2\}, \{a_m (j+\tau)^2\} \). *Mathematics of Computation*, 18(86):211–232, April 1964. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

Kronmal:1964:EPN

Liu:1964:MFS

MacLaren:1964:FPG

Marsaglia:1964:CMG

Marsaglia:1964:FPG

Marsaglia:1964:MPR

Marsaglia:1964:RDA

REFERENCES

REFERENCES

Fleiss:1966:NER

Gorenstein:1966:APN

Hansson:1966:RAG

Heyde:1966:SRS

Hutchinson:1966:NUP

Jansson:1966:RNG

Loveland:1966:NIM

REFERENCES

REFERENCES

 REFERENCES

REFERENCES

[409] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [3763], pages 64–68. LCCN QA76.5 D55 1965.

REFERENCES

[433] I. J. Good and T. N. Gover. The generalized serial test and the binary expansion of \(\sqrt{2} \). *Journal of the Royal Statistical Society. Series A (General)*, 131(??):434, ???? 1968. CODEN JSSAEF. ISSN 0035-9238. See [405].

the hyperplane problem that linear congruential generators suffer from, although careful choice of multipliers can minimize its importance: see [398, 2200, 2199, 2446].

REFERENCES

REFERENCES

1436-5081 (electronic). URL http://www.springerlink.com/content/j48m46451580607q/.

Zarem:1968:MBM

Beasley:1969:DTS

Bell:1969:DFT

Chaitin:1969:LPC

Coveyou:1969:RNG

[460] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [3764], pages 70–111. LCCN QA1 S565 v. 3.

Cunsolo:1969:CNP

[461] D. Cunsolo. Costruzione di numeri pseudorandom con periodo superiore alla base m. (Italian) [generation of pseudorandom numbers with period greater than the base m]. Calcolo: a quarterly on numerical analysis and theory of computation, 6(1):69–85, March 1969. CODEN
REFERENCES

CALOBK. ISSN 0008-0624 (print), 1126-5434 (electronic). URL http://www.springerlink.com/content/60u464k30851uj27/.

Deo:1969:APN

Dieter:1969:AME

Donnelly:1969:STU

Downham:1969:RT

Fellen:1969:LEI

Good:1969:HRR

REFERENCES

Formation of pseudo-random uniformly distributed numbers from noise-like signals.

[470] W. J. Hemmerle. Generating pseudorandom numbers on a two’s complement machine such as the IBM 360.

REFERENCES

REFERENCES

REFERENCES

Gustavson:1970:FRN

Haber:1970:NEM

Haber:1970:SNA

Halton:1970:RPS

Harris:1970:AFG

Hastings:1970:MCS

Johnson:1970:CUD

REFERENCES

REFERENCES

REFERENCES

Good:1971:SRS

Han:1971:DR

Jackson:1971:PCC

Kozlov:1971:DRN

Marsaglia:1971:RVI

REFERENCES

[555] Claus Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit: Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. (German) [Randomness and probability. An algorithmic foundation of probability theory], volume 218 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,

REFERENCES

REFERENCES

CS-TR-72-254, Stanford University, Department of Computer Science, Stanford, CA, USA, January 1972. 21 pp.

Kral:1972:NAP

Maddocks:1972:CAG

Majithia:1972:CFD

Marsaglia:1972:CPS

Marsaglia:1972:SLC

Mason:1972:LTN

Mihram:1972:SV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[640] Frank Neuman, Robert Merrick, and Clyde F. Martin. The correlation structure of several popular pseudorandom number generators. Report

[647] P. Pohl. The multicyclic vector method of generating pseudo-random numbers. I. Theoretical background, description of the method and al-

REFERENCES

REFERENCES

REFERENCES

[679] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. Sémin Théorie des Nombres, 6(?):??, 1974–1975. CODEN ???? ISSN ????.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[713] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Mat. Sb. (N.S.), 98(??):??, ???. 1975. CODEN ????. ISSN ???.

[714] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Math. USSR-Sb., 27(??):183–197, ???. 1975. CODEN ????. ISSN ???.

REFERENCES

REFERENCES

REFERENCES

for a comparison, both mathematical, and graphical, of the two algorithms. Reference [3] for IBM Report GC20-8011-0 is incorrectly given year 1969; the correct year is 1959.

[739] R. P. Brent. Analysis of the binary Euclidean algorithm. In Traub [3772], pages 321–355. ISBN 0-12-697540-X. LCCN QA76.6 .S9195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959. The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be $O(0.705 \lg N)$ for large $N = \max(|u|, |v|)$. See [2439] for an update, and a repair to an incorrect conjecture in this paper. See also [2364], where the worst case complexity is shown to be $O(\lg N)$, and the number of right shifts at most $2 \lg(N)$.

REFERENCES

REFERENCES

REFERENCES

Marsaglia:1976:IFM

Marsaglia:1976:RNG

McArdle:1976:ETM

Michael:1976:GRV

Miklich:1976:HSN

Mitchell:1976:EAD

Neuman:1976:APC

[783] Alain Rouault. Propriétés asymptotiques d’un n-échantillon d’une variable aléatoire dénombrable connues sous le nom de lois de Zipf. (French) [asymptotic properties of an n-sample of a denumerable random variable known under the name of Zipf’s law]. *Comptes Rendus Hebdomadaires

Rudolph:1976:RNG

Sobol:1976:UDS

vanDooren:1976:AAN

Wallace:1976:TRG

Wedderburn:1976:SAR

Williams:1976:PRS

Witsenhausen:1976:VBC

[790] H. S. Witsenhausen. Values and bounds for the common information of two discrete random variables. SIAM Journal on Applied Mathematics,

Zakharov:1976:ECS

Zucker:1976:TMT

Ahrens:1977:URN

Akchurin:1977:RNG

Amadori:1977:CDS

Beasley:1977:SAA

Bendat:1977:PAR

Bohrer:1977:SSR

Camp:1977:IPN

Cheng:1977:MGG

Fishman:1977:ETM

Gait:1977:NNP

Garling:1977:SBS

Gideon:1977:SAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1979. CODEN MNMTA2. ISSN 0026-9255 (print), 1436-5081 (electronic).

REFERENCES

Management, Southern Methodist University, Dallas, TX 75275, USA, 1978. ?? pp.

Schmeiser:1978:SMG

Schruben:1978:PNAa

Schruben:1978:PNAb

Simon:1978:PNA

Singh:1978:CPP

Sowey:1978:SCB

REFERENCES

REFERENCES

Atkinson:1979:CGP

Atkinson:1979:FSA

Atkinson:1979:RDC

Atkinson:1979:SAA

Atkinson:1979:SGI

Bache:1979:APP

Bentley:1979:AGS
J. L. Bentley and J. B. Saxe. Algorithm: Generating sorted lists of randoms. Report CMU-CS-79-113, Department of Computer Science,
REFERENCES

Carnegie-Mellon University, Pittsburgh, PA, USA, March 1979. Published in [922].

REFERENCES

REFERENCES

Monahan:1979:ENM

Moore:1979:RNG

Nadas:1979:PP

Niki:1979:CMF

Niki:1979:MFN

Pangratz:1979:PRN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

???? 1980. CODEN OPREAI. ISSN 0030-364X (print), 1526-5463 (electronic).

REFERENCES

Diaconis:1981:GRP

Dudewicz:1981:EBT

Dudewicz:1981:HRN

Fishman:1981:SCM

Friedman:1981:NPP

Gentle:1981:PCR

REFERENCES

REFERENCES

Rubinstein:1981:RNG

Schatte:1981:RVL

Schmeiser:1981:PRV
[991] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

Tadikamalla:1981:CGG

Tadikamalla:1981:FDO

Ahrens:1982:CGP

Ahrens:1982:GGV

REFERENCES

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [426].

REFERENCES

REFERENCES

REFERENCES

Hora:1983:EIF

Inoue:1983:RNG

Jennergren:1983:AMR

Kac:1983:WR

Kachitvichyanukul:1983:DUR

Keefer:1983:TPA

Lawrance:1983:SDP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Fishman:1984:EAM]

[Fishman:1984:SDD]

[Frederickson:1984:PRT]

[Frieze:1984:LCG]

[Guinier:1984:RNS]

REFERENCES

REFERENCES

REFERENCES

Ahrens:1985:SRS

Akl:1985:FPR

Berry:1985:RPD

Blom:1985:SPE

Bounas:1985:DDS

Burks:1985:CEM

[1124] Arthur W. Burks, Alston S. Householder, N. Metropolis, and S. M. Ulam. Comments on early Monte Carlo computations and scien-
REFERENCES

Clark:1985:PNG

Dowdy:1985:AUM

Dudewicz:1985:RNG

Dudewicz:1985:TMD

Dyadkin:1985:AMN

Fairfield:1985:LRN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1201] H. Grothe. Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren. (German) [Matrix generators for generating uniformly distributed

REFERENCES

Nicola:1986:QAF

Niederreiter:1986:DFS

Niederreiter:1986:LDP

Niederreiter:1986:MNI

Niederreiter:1986:PVG

Panny:1986:NHM

Santha:1986:GQR

REFERENCES

Shore:1986:AID

Shore:1986:SGA

Sowey:1986:TCB

Stephens:1986:TBE

Stephens:1986:TUD

Wolfram:1986:RSG

Wolfram:1986:TAC

Zeisel:1986:SAR

Zielinski:1986:QRN

Agnew:1987:RSC

Aldridge:1987:CRR

Allender:1987:SCE

Anderson:1987:GRO

Barbu:1987:NFM

REFERENCES

Chiu:1987:SRS

Chung:1987:RWA

Collings:1987:CRN

Compagner:1987:MLS

Dagpunar:1987:NMS

Doolen:1987:MCW

REFERENCES

REFERENCES

REFERENCES

1613-9798 (electronic). URL http://www.springerlink.com/content/q7885421202m6565/.

REFERENCES

Binder:1988:MCS

Bratley:1988:AIS

Brickell:1988:CSR

Brillhart:1988:FHP

Chor:1988:UBS

Collings:1988:AIG

REFERENCES

REFERENCES

Durst:1988:TPR

Edwards:1988:CAM

Eichenauer:1988:MLTb

Eichenauer:1988:MLTc

Eichenauer:1988:NCP

Fishman:1988:MCR

Frieze:1988:RTI
Alan M. Frieze, Johan Håstad, Ravi Kannan, Jeffrey C. Lagarias, and Adi Shamir. Reconstructing truncated integer variables satisfying linear
REFERENCES

[Fushimi:1988:DUR]

[Fushimi:1988:STP]

[Gifford:1988:NRN]

[Gleason:1988:IPS]

[Gleck:1988:QTR]

[Goldreich:1988:EPG]

[Greiner:1988:NIS]

REFERENCES

Grothe:1988:MEG

Guinier:1988:FPU

Haberman:1988:WUC

Hallin:1988:RBT

Harmon:1988:AIM

Heidelberger:1988:DES

REFERENCES

Hong:1988:LGA

Izumi:1988:FGW

Kachitvichyanukul:1988:AHS

Kachitvichyanukul:1988:BRV

Kannan:1988:PFN

Karloff:1988:RAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Impagliazzo:1989:ECS

Impagliazzo:1989:HRR

Impagliazzo:1989:PRG

Kachitvichyanukul:1989:ABS

Kahaner:1989:NMS

Kamps:1989:CPL

[1408] U. Kamps. Chebyshev polynomials and least squares estimation based on one-dependent random variables. Linear Algebra and its Applications,
Kao:1989:RNG

Kelton:1989:RIM

Kharitonov:1989:LBP

Kim:1989:PRP

Kleijnen:1989:PNG

Komo:1989:MLP

REFERENCES

REFERENCES

Association for Cryptologic Research, 1(3):159–176, ????. 1989. CODEN JOCREQ. ISSN 0933-2790 (print), 1432-1378 (electronic).

Mertsch:1989:Pas

Niederreiter:1989:Stc

Paul:1989:Irn

Percus:1989:Rng

Pickover:1989:Prg

Reber:1989:PNG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

August 1990. CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

January 1990. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/76379.html. See criticism and errata [1732], and further criticism in [1820]. The latter point out that Carta’s implementation does not correspond to their proposal.

[1467] Lih-Yuan Deng and E. Olusegun George. Generation of uniform variates from several nearly uniformly distributed variables. Communications
REFERENCES

Doring:1990:ENZ

Eddy:1990:RNG

Eichenauer-Herrmann:1990:LSN

Eichenauer-Herrmann:1990:PLC

Eichenauer-Herrmann:1990:UBB

REFERENCES

REFERENCES

[1493] Bruce R. Johnson and David J. Leeming. A study of the digits of \(\pi \), \(e \), and certain other irrational numbers. *Sankhyā (Indian Journal of*
REFERENCES

Korolev:1990:ADR

Koutras:1990:TCN

Krawczyk:1990:HPC

Lagarias:1990:PNG

LEcuyer:1990:RNS

LEcuyer:1990:UVW

REFERENCES

REFERENCES

REFERENCES

[1531] L. V. Rozovskii. Probabilities of large deviations of sums of independent random variables with common distribution function in the domain of

Rueppel:1990:SSP

Sarno:1990:GDR

Schmeiser:1990:NCI

Schnorr:1990:EPR

Sezgin:1990:FPU

Sezgin:1990:RNG

REFERENCES

Sherif:1990:DNC

Sobol:1990:QMC

Stadlober:1990:RUA

Tezuka:1990:LSP

Tezuka:1990:NFL

Tichy:1990:RPC

Tindo:1990:ACA

[1544] G. Tindo. *Automates cellulaires: applications à la modélisation de certains systèmes discrets et à la conception d’une architecture parallèle pour la génération de suites pseudo-aléatoires*. (French) [Cellular automata:
applications to the modeling of certain discrete systems and toward the
design of a parallel architecture for generation of random sequences]. Dis-
sertation (thesis), Université de Nantes, Nantes, France, 1990.

Computer Science Institute, Berkeley, CA, August 1990.

[1546] A. van der Steen. Portable parallel generation of random numbers. Su-
percomputer, 7(1):18–20, January 1990. CODEN SPCOEL. ISSN 0168-
7875.

[1547] V. A. Velizhanin, I. G. Dyadkin, F. Kh. Enikeeva, B. K. Zhuravlyov,
B. E. Lukhminsky, and R. T. Khanatdinov. Monte Carlo simulation in
nuclear geophysics — 1. Features of Monte Carlo algorithmic techniques
for solving problems in borehole nuclear geophysics. Nuclear Geophysics,
4(B12):425–435, 2376, ???? 1990. ISSN 0969-8086 (print), 1878-6383
(electronic).

and Engineering, 5(2):82–88, April 1990. CODEN CSSEEI. ISSN 0267-
6192.

[1549] Y. H. Wang. Dependent random variables with independent subsets. II.
Canadian mathematical bulletin = Bulletin canadien de mathématiques,
33(??):24–28, ???? 1990. CODEN CMBUA3. ISSN 0008-4395 (print),
1496-4287 (electronic).

[1550] C. C. Wang and D. Pei. A VLSI design for computing exponentia-
tions in GF(2^m) and its application to generate pseudorandom num-
ber sequences. IEEE Transactions on Computers, 39(2):258–262, Febru-
ary 1990. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (elec-

methods for calculating convolutions and dependency bounds. Inter-
REFERENCES

Wolff:1990:AFM

Wong:1990:RNG

Yeh:1990:ODT

Zielinski:1990:APN

Akopov:1991:MGP

Anastasio:1991:OCL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Papoulis:1991:PRV

Pardalos:1991:CTP

Patarin:1991:NRP

Peterson:1991:NRN

Pickover:1991:PRG

Revello:1991:CEC
REFERENCES

[1618] Terry Ritter. The efficient generation of cryptographic confusion sequences. *Cryptologia*, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748~db=all~order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyshev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.

REFERENCES

REFERENCES

Walsh:1991:MFR

Wheeler:1991:PMN

Wheeler:1991:SIC

Yamamoto:1991:NEM

Yang:1991:UCR

Zeng:1991:PBG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1713] H. Niederreiter. Constructions of low-discrepancy point sets and sequences. In *Colloquia Mathematica Societatis János Bolyai, 60. Sets,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:1993:PGH

Couture:1993:DDV

Damgaard:1993:ACE

DeMatteis:1993:LRC

Devroye:1993:RVG

Dobkin:1993:CD

REFERENCES

REFERENCES

Eichenauer-Herrmann:1993:SIN

Erdmann:1993:CMT

Fisher:1993:OOR

Flahive:1993:ICG

Galway:1993:ESCb

Ganzha:1993:PSM

REFERENCES

REFERENCES

Lin:1993:NCP

Loparo:1993:LER

Makino:1993:SPR

Marsaglia:1993:LHR

Marsaglia:1993:MTR

Marsaglia:1993:RNG

Marsaglia:1993:TCR

REFERENCES

REFERENCES

REFERENCES

[1820] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. Communications of the ACM, 36(7): 108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1355, 1460, 1806, 1830]. The authors report that they would now recommend the MCG \(x_{n+1} = 48 \cdot 271x_n \mod (2^{31} - 1) \) over their original \(x_{n+1} = 16 \cdot 807x_n \mod (2^{31} - 1) \).

REFERENCES

Tezuka:1993:LSA

Toral:1993:GGD

Vattulainen:1993:IIP

Wang:1993:URP

Weber:1993:AIG

Willemain:1993:MGA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

function; component series; cryptanalysis; multiloop system; computationally secure; personal computers; Spectra Publishing; Power Basic; BASIC.

Couture:1994:LSC

Cuccaro:1994:TTQ

Davis:1994:CRA

DeArmon:1994:RLO

Deng:1994:DIR

Devroye:1994:NHS

REFERENCES

November 11, 1994. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

Eichenauer-Herrmann:1994:GIC

Eichenauer-Herrmann:1994:ILB

Eichenauer-Herrmann:1994:SIN

Endl:1994:CRG

Entacher:1994:CNP

Gaines:1994:RGS

REFERENCES

Gemmell:1994:TBE

Gray:1994:QGB

Gupta:1994:RSD

Hamilton:1994:PNG

Hartel:1994:CRN

Hellekalek:1994:GDEa

Hellekalek:1994:GDEb

Hennecke:1994:RER

Hildebrand:1994:RWS

Hill:1994:CMR

Holian:1994:PNG

Hoogland:1994:GPR

Hormann:1994:NQR

REFERENCES

Hormann:1994:TRM

Hormann:1994:UGD

Huber:1994:PLG

James:1994:RFI

Jimbo:1994:RBB

Jimbo:1994:RBD

Johnson:1994:CUD

REFERENCES 354

Kaigh:1994:SRS

Kanatani:1994:SAG

Kari:1994:GNS

Karian:1994:RNG

[1906] Zaven A. Karian and Rohit Goyal. Random number generation and testing. Maple Technical Newsletter, 1(1):32–37, Spring 1994. CODEN ???? ISSN 1061-5733. URL http://www.can.nl/Systems_and_Packages/Per_Purpose/General/Maple/mtn/mtnvini.html. This article describes the Maple-language random-number generator, a multiplicative congruential generator (xnew = (A x + C) mod P) with A = 427,419,669,081, C = 0, P = 1012 – 11, and initial seed 1. It was used up to Maple Version 9 (2003). Later versions of Maple instead use the Mersenne Twister.

Karloff:1994:CWI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Takashima:1994:STT

Tezuka:1994:DDC

Tezuka:1994:MDC

Tezuka:1994:UVL

VanderMeer:1994:RBG

Vattulainen:1994:NTR

Vattulainen:1994:PTR

Weingartner:1994:NCP

Wolfram:1994:CA

Zhang:1994:PEE

Zijp:1994:UTC

Ahrens:1995:OTM

Al-Hussaini:1995:UPT

REFERENCES

Cusic:1995:PPN

Damien:1995:ARV

Dan:1995:CDA

Dellaportas:1995:RVT

DeMatteis:1995:CCP

Dudewicz:1995:EBR

REFERENCES

REFERENCES

[2006] P. Hellekalek. Correlations between pseudorandom numbers: theory and numerical practice. In P. Hellekalek, G. Larcher, and P. Zinterhof, edi-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Penrice:1995:AEP

Percus:1995:TAM

Phatak:1995:LMP

Pickover:1995:GET

Pickover:1995:RNG

Powell:1995:LEP

Ramon:1995:PKV

REFERENCES

REFERENCES

Sherif:1995:UWF

Sobol:1995:IQS

Sorenson:1995:ALE

Storn:1995:CO

Struckmeier:1995:FGL

Sugita:1995:PRN

Takashima:1995:STT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Devroye:1996:RVG

Dietzfelbinger:1996:UHW

Dodge:1996:NRN

Dorfman:1996:PSR

Dwyer:1996:TRNa

Dwyer:1996:TRNb

Eichenauer-Herrmann:1996:ABC

REFERENCES

FFTAFM. ISSN 1071-5797 (print), 1090-2465 (electronic). URL http://

[2108] Jürgen Eichenauer-Herrmann and Frank Emmerich. Compound in-
versive congruential pseudorandom numbers: an average-case anal-
CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (elec-
110&arg1=S0025-5718-96-00675-8&u=/mcom/1996-65-213/; http:/

[2109] Jürgen Eichenauer-Herrmann. Equidistribution properties of inver-
sive congruential pseudorandom numbers with power of two modulus.
44(3):199–205, 1996. CODEN MTRKA8. ISSN 0026-1335 (print), 1435-
926X (electronic).

[2110] Jürgen Eichenauer-Herrmann. Modified explicit inversive congruential
pseudorandom numbers with power of 2 modulus. Statistics and Compu-
ting, 6(1):31–36, March 1996. CODEN STACE3. ISSN 0960-3174 (print),
1007/BF00161571.

[2111] Frank Emmerich. Pseudorandom vector generation by the compound in-
versive method. Mathematics of Computation, 65(214):749–760, April
1996. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (elec-
110&arg1=S0025-5718-96-00706-5&u=/mcom/1996-65-214/; http:/

[2112] Karl Entacher and Stefan Wegenkittl. On the relevance of splitting prop-
erties and the compound method in parallel applications of pseudoran-
dom number generators. In Trobec et al. [3861], pages 64–74. ISBN
86-80023-25-6. LCCN ????

with exponential and normal distributions. Computers in Physics, 10
See [2378] for a proof of the algorithm proposed here for exponential random numbers.

Heinrich:1996:EA

Hofmeister:1996:ISG

Hormann:1996:RIG

Horstmann:1996:CCL

James:1996:ERF

Johnson:1996:RES

REFERENCES

REFERENCES

Masuda:1996:PPR

Matsumoto:1996:SDR

Matthews:1996:SRN

Mikhailov:1996:ENU

Mikhailov:1996:RSR

Mikov:1996:LSA

Mulmuley:1996:RGA

[2151] S. Nemnyugin and A. Larionov. Set of random walk tests for pseudo-
random generators. In Peter Borchers, Marian Bubak, and Andrzej
Maksymowicz, editors, Proceedings of the 8th Joint EPS-APS Inter-
national Conference on Physics Computing: PC ’96: September 17–
CYFRONET, Kraków, Poland, 1996. ISBN 83-902363-3-8. LCCN QC20
J45 1996.

[2152] Harald Niederreiter. Improved bounds in the multiple-recursive matrix
method for pseudorandom number and vector generation. Finite Fields

[2153] H. Niederreiter and C. Xing. Low-discrepancy sequences and global func-
tion fields with many rational places. Finite Fields and their Applications,
2(3):241–273, ???? 1996. CODEN FFTAFM. ISSN 1071-5797 (print),
1090-2465 (electronic).

[2154] H. Niederreiter and C. Xing. Quasirandom points and global function
fields. In Cohen and Niederreiter [3859], pages 269–296. ISBN 0-521-

Homer and Jin-Yi Cai, editors, Proceedings of the 11th Annual IEEE
Conference on Computational Complexity, 24–27 May 1996, pages 44–
58. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1996. ISBN 0-8186-7386-9, 0-8186-7387-7 (case-

[2156] Shigeyoshi Ogawa. On a robustness of the random particle method.
CODEN MCMAC6. ISSN 0929-9629 (print), 1569-3961 (elec-
issue-3/mcma.1996.2.3.175/mcma.1996.2.3.175.xml; http://www.
math.utah.edu/pub/tex/bib/prng.bib. See erratum [2245].
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Baker:1997:NPU

Balakrishnan:1997:ASW

Bellare:1997:PRN

Berblinger:1997:MCI

Berg:1997:CNF

REFERENCES

REFERENCES

Eichenauer-Herrmann:1997:ICP

Eichenauer-Herrmann:1997:PSN

Eichenauer-Herrmann:1997:QCP

Emmeric:1997:EPQ

Entacher:1997:ASP

Entacher:1997:CSP

REFERENCES

Hellekalek:1997:CAP

Hellekalek:1997:GRN

[2219] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breitenecker [3865], page ?? ISBN 3-901608-11-7. LCCN ???.

Hellekalek:1997:NPNa

Hellekalek:1997:NPNb

Herendi:1997:FGR

[228] Takashi Kato, Li-Ming Wu, and Niro Yanagihara. On the lattice structure of pseudo-random numbers generated by the modified inversive congruential generator with modulus 2^n. *Japan Journal of Industrial and
REFERENCES

REFERENCES

[2239] George Marsaglia. A random number generator for C. Posted to the sci.math.num-analysis news group, September 29, 1997. URL http://mathforum.org/kb/thread.jspa?messageID=1607565. From the posting: “Keep the following six lines of code somewhere in your files. #define znew ((z=36969*(z&65535)+(z>>16))<<16) #define wnew ((w=18000*(w&65535)+(w>>16))&65535) #define IUNI (znew+wnew) #define UNI (znew+wnew)*4.656613e-10 static unsigned long z=362436069, w=521288629; void setseed(unsigned long i1,unsigned long i2)z=i1; w=i2; Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0, 1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.

REFERENCES

REFERENCES

Eichenauer-Herrmann:1998:SQI

Ellison:1998:CRN

Emmerich:1998:EPC

Emmerich:1998:SIP

Entacher:1998:BSW

Entacher:1998:LCG

Entacher:1998:LIP

Evans:1998:RVG

Fuster-Sabater:1998:LPS

Gammel:1998:HRR

Garcia:1998:GCE

Gentle:1998:RNG

Hellekalek:1998:WST

Hickernell:1998:LRH

Homan:1998:RNG

Jakobsson:1998:PSP

Kao:1998:RNG

Kao:1998:SET

REFERENCES

[2318] Chi-Jen Lu. Improved pseudorandom generators for combinatorial rectangles. Lecture Notes in Computer Science, 1443:223–??,

REFERENCES

REFERENCES

REFERENCES

Soto:1998:STR

Sugita:1998:LTS

Takashima:1998:RWT

Tanaka:1998:OLA

Tezuka:1998:FAM

Thomlinson:1998:NBP

Trotter:1998:RTS

REFERENCES

REFERENCES

Chu:1999:DTF

Coddington:1999:IIR

deRaadt:1999:COO

Durrant:1999:RND

Eichelsbacher:1999:CPA

REFERENCES

Fernandez:1999:ANRa

Fernandez:1999:ANRb

Gartner:1999:PCP

Gartner:1999:RCZ

Goldreich:1999:IDB

Goldreich:1999:MCP

Gonzalez:1999:RNG

[2385] Jorge A. González and Ramiro Pino. A random number generator based on unpredictable chaotic functions. Computer Physics Communications,
Grin:1999:DNR

Haastad:1999:PGO

Intel:1999:IRN

Jun:1999:IRN

Kleinman:1999:SBO

Koldobsky:1999:PDD

Koshiba:1999:UPN

Larcher:1999:ADS

LEcuyer:1999:BLC

LEcuyer:1999:GPI

LEcuyer:1999:SRU

LEcuyer:1999:TLC

REFERENCES

[2424] Dietrich Stauffer. Ising model as test for simple random number generators. *International Journal of Modern Physics C* [Physics and Com-

[2433] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.

REFERENCES

Beichl:2000:MA

Borkowf:2000:BRB

Brent:2000:TYA

Chen:2000:RRI

Couture:2000:LCR

REFERENCES

REFERENCES

[2458] Tetsu Iwata and Kaoru Kurosawa. On the pseudorandomness of AES finalists — RC6, Serpent, MARS and Twofish (abstract only). In

REFERENCES

[2472] George Marsaglia. The monster, a random number generator with period
over $10^{2^{857}}$ times as long as the previously touted longest-period one. Technical report ???, Florida State University, Tallahassee, FL, USA, ???. 2000.

[2473] George Marsaglia and Wai Wan Tsang. A simple method for generating
gamma variables. *ACM Transactions on Mathematical Software*, 26(3):
363–372, September 2000. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

[2474] George Marsaglia and Wai Wan Tsang. The ziggurat method for
www.jstatsoft.org/v05/i08; http://www.jstatsoft.org/v05/
i08/rnorrexp.c; http://www.jstatsoft.org/v05/i08/updates;
http://www.jstatsoft.org/v05/i08/ziggurat.pdf. See [2858,
2953].

scalable library for pseudorandom number generation. *ACM Transactions
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL
http://doi.acm.org/10.1145/358407.358427. See correction [2476].

[2476] Michael Mascagni and Ashok Srinivasan. Corrigendum: Algorithm 806:
SPRNG: a scalable library for pseudorandom number generation. *ACM

Niederreiter:2000:IES

Nishimura:2000:TBM

NIST:2000:RNG

Panneton:2000:GNA

François Panneton. Générateurs de nombres aléatoires utilisant des récurrences linéaires modulo 2. (French) [random-number generators using linear recurrences modulo 2]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2000. xiii + 179 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en informatique option recherche opérationnelle.

Petrie:2000:NBI

Proykova:2000:HIR

RSA:2000:PKC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2530] Richard J. Gonsalves. Pivot algorithm for self-avoiding walks on a square lattice. Fortran program, 2001. URL http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/Files/Chapter12/saw.f. The program contains code (near the end) for the portable rannyu() generator. It is a linear congruential generator with multiplier $A = 31 167 285 = 0x1db_9335$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

REFERENCES

[2537] J. C. Hernández, A. Ribagorda, P. Isasi, and J. M. Sierra. Genetic algorithms can be used to obtain good linear congruential generators.
REFERENCES

Krause:2001:MHC

Kuang:2001:CSA

LEcuyer:2001:CQR

LEcuyer:2001:PBS

LEcuyer:2001:RN

LEcuyer:2001:RNG

REFERENCES

REFERENCES

[2577] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and San Vo. *A Statistical Test Suite For Random and Pseudorandom Number Generators for Cryptographic Applications*. National Institute for Standards and Technology, Gaithersburg, MD,
REFERENCES

REFERENCES

[2592] Renée Touzin. Des générateurs récursifs multiples combinés rapides avec des coefficients de la forme $\pm 2^{p_1} \pm 2^{p_2}$. (French) [Fast combined multiple recursive generators of the form $\pm 2^{p_1} \pm 2^{p_2}$]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2001. xiii + 128 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en informatique option recherche opérationnelle.

REFERENCES

[2607] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. *Factorizations of b^n ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12*
REFERENCES

L.-Y. Deng and H. Xu. Design, search, and implementation of high-dimensional, efficient, long-cycle, and portable uniform random variate
REFERENCES

REFERENCES

[2640] ëfIü. P. (ëfIUriî Petrovitch) Kunchenko. Polynomial parameter estimations of close to Gaussian random variables. Berichte aus der Kommu-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Moon:2002:IDC

Murray:2002:IYP

Niederreiter:2002:ADI

Niederreiter:2002:ICS

Niederreiter:2002:RAT

REFERENCES

REFERENCES

REFERENCES

[2686] Anonymous. */dev/random*. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ */dev/random* (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in drivers/char/random.c in the Linux source tree.”.

REFERENCES

[2691] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fiar uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. Communications of the ACM, 46(7):11–13, July 2003. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

[2717] Xueqing Li, Wenping Wang, Ralph R. Martin, and Adrian Bowyer. Using low-discrepancy sequences and the Crofton formula to compute surface areas of geometric models. Computer Aided Design, 35(9):771–782, August 2003. CODEN CAIDA5. ISSN 0010-4485 (print), 1879-
REFERENCES

Lodwick:2003:EVC

Louchard:2003:ARS

Marsaglia:2003:EKD

Marsaglia:2003:RNG

Marsaglia:2003:TOS

Marsaglia:2003:XR

xorshift generators and the well-understood linear feedback shift register generators. See also [3456, 3549, 3639] for the failure of Marsaglia’s xorwow() generator from this paper. See [2871, 3699] for detailed analysis.

REFERENCES

Timothy C. Brown. Transforming a random variable to a prescribed distribution: An application to school-based assessment. *Journal of Applied
Conflitti:2004:MDS

Deng:2004:GMP

Dorfer:2004:CFE

Feige:2004:SIR

Fung:2004:AIH

E. Fung, K. Leung, N. Parimi, M. Purnaprajna, and V. C. Gaudet. ASIC implementation of a high speed WGNG for communication channel emulation [white Gaussian noise generator]. In IEEE, editor, 2004 *IEEE Workshop on Signal Processing Systems Design and Implementation proceedings: October 13–15, 2004, Crowne Plaza Hotel, Austin,
REFERENCES

Guan:2004:PNG

Gupta:2004:DBG

Gutmann:2004:CSA

Haldir:2004:HCL

Hernandez:2004:STN

Hong:2004:DCT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2826] Vincent Bénony, François Recher, Éric Wegrzynowski, and Caroline Fontaine. Cryptanalysis of a particular case of Klimov–Shamir pseudo-random generator. In Helleseth et al. [3907], pages
Blackburn:2005:PNP

Bogdanov:2005:PGL

Calvayrac:2005:RNG

Castro:2005:NRG

Contini:2005:SAA

[2831] Scott Contini and Igor E. Shparlinski. On Stern’s attack against secret truncated linear congruential generators. *Lecture Notes*
REFERENCES

REFERENCES

REFERENCES

[2850] Sharon S. Keller. *NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES*
REFERENCES

Kemp:2005:PRN

Konuma:2005:DEH

Kung:2005:SGT

Larrondo:2005:ISC

LEcuyer:2005:FRN

[2874] B. Ya. Ryabko and V. A. Monarev. Using information theory approach to randomness testing. *Journal of Statistical Planning and In-
REFERENCES

Wic

Wiese:2005:IPN

Wiese:2005:PRP

Zhang:2005:ZBH

Zuquete:2005:EHQ

REFERENCES

Barker:2006:RRN

BenAtti:2006:BMA

Brent:2006:FRR

Cools:2006:CEL

Creutzig:2006:BRW

Devroye:2006:NRV

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

Maffre:2006:WKT

Marsaglia:2006:RCS

Matsumoto:2006:PNG

Matsumoto:2006:UPN

McCullough:2006:RT

Miller:2006:MCL

REFERENCES

[2971] Heiko Bauke and Stephan Mertens. Random numbers for large-scale
distributed Monte Carlo simulations. *Physical Review E (Statistical
physics, plasmas, fluids, and related interdisciplinary topics)*, 75(6(part
2)):066701, June 2007. CODEN PLEEE8. ISSN 1539-3755 (print), 1550-

[2972] Verónica Becher, Santiago Figueira, and Rafael Picchi. Turing’s unpublished
algorithm for normal numbers. *Theoretical Computer Science*, 377
1879-2294 (electronic).

functional algorithms for simulation optimization. *ACM Transactions
CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

[2974] Richard Pierce Brent. Some long-period random number generators
using shifts and xors. *The ANZIAM Journal*, 48(??):C188–C202,
???? 2007. CODEN AJNOA2. ISSN 1446-1811 (print), 1446-8735
ANZIAMJ/article/view/40/79. Proceedings of the Computational Tech-
niques and Applications Conference.

the NIST SP 800-90 elliptic curve random number generator. In
Menezes [3916], pages 466–481. ISBN 3-540-74142-9 (paperback). LCCN
1777777.1777815.

Hardware generation of arbitrary random number distributions from un-
iform distributions via the inversion method. *IEEE Transactions on Very
CODEN IEVSE9. ISSN 1063-8210 (print), 1557-9999 (electronic). URL
REFERENCES

Chiu:2007:CKC

Cowles:2007:BRB

Delfs:2007:ICP

Doornik:2007:CHP

Dorrendorf:2007:CRNa

Dorrendorf:2007:CRNb

[2982] Leo Dorrendorf, Zvi Guterman, and Benny Pinkas. Cryptanalysis of the random number generator of the Windows operating system. In Rebecca N. Wright, Paul F. Syverson, and David Evans, editors, *CCS ’07: proceedings of the 14th ACM Conference on Computer and Communications Security*: Alexandria, Virginia, USA, October 29–November 2,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3030] Sastra Wijaya, Syn Kiat Tan, and Sheng-Uei Guan. Permutation and sampling with maximum length CA or pseudorandom number genera-

REFERENCES

REFERENCES

[3060] Lih-Yuan Deng, Rui Guo, Dennis K. J. Lin, and Fengshan Bai. Improving random number generators in the Monte Carlo simulations

REFERENCES

Hiroshi Haramoto, Makoto Matsumoto, and Pierre L’Ecuyer. A fast jump ahead algorithm for linear recurrences in a polynomial space. In

Holleman:2008:WCT

Hou:2008:LPD

Howes:2008:U

Inaltekin:2008:ANE

Jang:2008:CDH

Joe:2008:CSS

REFERENCES

Jovanovic-Dolecek:2008:UMT

Kalos:2008:MCM

Kang:2008:HPP

Kato:2008:QSC

Katsoprinakis:2008:QRN

Katti:2008:SPR

REFERENCES

Katz:2008:RRNa

Katz:2008:RRNb

Kiessler:2008:BRBe

Killmann:2008:DPR

Kim:2008:TRG

REFERENCES

Masaro:2008:RODb

Matsumoto:2008:MPR

McCullough:2008:ASP

McCullough:2008:MEW

Miller:2008:OSB

Moler:2008:NCM

REFERENCES

REFERENCES

Rumley:2008:PRN

Saito:2008:SOF

Schlier:2008:SHS

Schneier:2008:SSR

Shen:2008:RRL

Sinescu:2008:CLR

REFERENCES

REFERENCES

Varbanets:2008:ICGa

Varbanets:2008:ICGb

Walker:2008:EPN

Wang:2008:DCP

Wikramaratna:2008:ACR

Willink:2008:UPN

Wold:2008:AER

REFERENCES

REFERENCES

Czernik:2009:CRN

Danko:2009:IPR

DeMicco:2009:QR

Deng:2009:SPM

Devroye:2009:RVG

Dodson:2009:IGT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

???? 2009. CODEN TPRBAU. ISSN 0040-585X (print), 1095-7219 (electronic).

REFERENCES

CODEN JIOSDC. ISSN 0252-2667.

S. K. Tawfeeq. A random number generator based on single-photon
avalanche photodiode dark counts. Journal of Lightwave Technology,
27(24):5665–5667, 2009. CODEN JLTEDG. ISSN 0733-8724
stamp/stamp.jsp?tp=&arnumber=5286273.

N. M. Thamrin, G. Witjaksono, A. Nuruddin, and M. S. Abdullah. An
whois:2009:RNG

Tian Tian and Wen-Feng Qi. Periods of termwise exclusive ors of
maximal length FCSR sequences. Finite Fields and their Applica-
science/article/pii/S1071579708000762.

Simone Tisa and Franco Zappa. One-chip quantum random number
generator. Proceedings of the SPIE — The International Society for
Optical Engineering, 7236(1):72360J, 2009. CODEN PSISDG. ISSN
link/?PSI/7236/72360J/1. Quantum Communications Realized II.

Qiaoling Tong, Xuecheng Zou, and Hengqing Tong. A RFID authen-
tication protocol based on infinite dimension pseudo random number
generator. In 2009. CSO 2009. International Joint Conference on Com-
putational Sciences and Optimization, volume 1, pages 292–294. IEEE
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 2009. URL http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5193698.

REFERENCES

Wei:2009:QRN

Wold:2009:OST

Xiao-chen:2009:URN

Yamanashi:2009:SRN

Youssef:2009:IEU

Yu:2009:ESC

[3254] Senhua Yu and D. Dasgupta. An empirical study of Conserved Self Pattern Recognition Algorithm: Comparing to other one-class classifiers and

Afshin Akhshani, Sohrab Behnia, Amir Akhavan, Siew-Choo Lim, and Zainuriah Hassan. Pseudo random number generator based on synchronized chaotic maps. International Journal of Modern Physics C
REFERENCES

Anashin:2010:NAE

Anyanwu:2010:DCS

Banks:2010:DES

Barsegov:2010:EPR

Bastos-Filho:2010:IRN

Bellare:2010:PFP

REFERENCES

REFERENCES

REFERENCES

Doty-Humphrey:2010:PR

Duplys:2010:KRU

ElHaddad:2010:QMC

Feldman:2010:BMC

Gabizon:2010:DEW

Gabriel:2010:GUQ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ostafe:2010:PNH

Ostafe:2010:PNM

Panneton:2010:RSR

Pareschi:2010:ITH

Pashley:2010:GRN

Passerat-Palmbach:2010:RIG

Peris-Lopez:2010:CSP

Plesser:2010:RSI

Proshchan:2010:BQQ

Qi:2010:DFR

Quantis:2010:RNG

[3332] Quantis. Random number generation using quantum physics. ID Quantique white paper Version 3.0, ID Quantique SA, 1227 Carouge/Geneva,
REFERENCES

REFERENCES

Saiprasert:2010:OHA

Saito:2010:VMT

Segui:2010:AIP

Shen:2010:PQR

Shi:2010:MED

Shin:2010:AFG

REFERENCES

Srinivasan:2010:ADP

Stankovski:2010:GDN

Suciu:2010:PIN

Tang:2010:BHA

Tang:2010:BLC

REFERENCES

REFERENCES

Vakhania:2010:QGR

Valtchanov:2010:CRS

Varbanets:2010:ICG

Wikramaratna:2010:TEC

REFERENCES

REFERENCES

[3380] Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final random bit and remove any bias caused by imperfections in the noise source and A/D converter.”.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hofert:2011:SET

Hung:2011:DRD

Hwang:2011:SID

Jian:2011:TBQ

Kao:2011:EAT

Kleimo:2011:RNG

Koucky:2011:PGG

LECuyer:2011:AZV

LECuyer:2011:NUR

LECuyer:2011:URN

Leydold:2011:GGI

Li:2011:CBT

Li:2011:OOH

REFERENCES

Liu:2011:NPR

Liu:2011:PRC

Liu:2011:SBA

Liu:2011:TRN

Malik:2011:EHI
REFERENCES

[3450] Nilanjan Mukherjee, Janusz Rajski, Grzegorz Mrugalski, Artur Pogiel, and Jerzy Tyszer. Ring generator: An ultimate linear feedback shift...

Phillips:2011:PRN

Qiu:2011:ATB

Quantis:2011:RRW

Ren:2011:QRN

Rose:2011:KBT

Salmon:2011:PRN

[3456] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [3941], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ?????
REFERENCES

[3462] Vasile Sinescu and Pierre L’Ecuyer. Existence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted

REFERENCES

REFERENCES

REFERENCES

[3491] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, and François Poucheret. Contactless electromagnetic active attack on ring oscillator
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Horstmann:2012:JEC

Horvath:2012:ARM

Horvath:2012:EGP

Impagliazzo:2012:PS

Kaczynski:2012:BNR

Kaczynski:2012:NRV

Karakostas:2012:DAC

Li:2012:TST

Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.

Manssen:2012:RNG

Marandi:2012:AQ

Marquardt:2012:PNG

Mascagni:2012:PRN

Masse:2012:RNS

Miles:2012:SPN

Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom functions, and natural proofs. Lecture Notes in Computer
Misczak:2012:GUT

Molina-Gil:2012:PGS

Nandapalan:2012:HPP

Nazzal:2012:UGA

Neves:2012:FSN

NIST:2012:RRN

[3540] NIST. Recommendation for random number generation using deterministic random bit generators. Special Publication 800-90, National Insti-
tute for Standards and Technology, Gaithersburg, MD, USA, 2012. URL http://csrc.nist.gov/publications/PubsSPs.html#800-90A.

REFERENCES

REFERENCES

Zhang:2012:RAG

Afshar:2013:ESR

Anonymous:2013:ERN

Applebaum:2013:PGL

AragonArtacho:2013:WRN

Bailey:2013:NNP

Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.

REFERENCES

REFERENCES

Gugala:2013:RNG

Gutierrez:2013:PML

Haitner:2013:EIC

Hamze:2013:SAR

Hill:2013:SIP

Hladky:2013:RNG

REFERENCES

Hu:2013:PSG

IBM:2013:IPC

Imai:2013:CRN

Khoshkenar:2013:NTR

Leonenko:2013:BRD

Liberty:2013:THR

REFERENCES

Anonymous:2014:CEF

Anonymous:2014:RNG

Barabesi:2014:NUR

Barash:2014:PGA

Baron:2014:LSP

Blacher:2014:PRN

Braverman:2014:PGR
REFERENCES

REFERENCES

Fukushima:2014:SDS

Gomez-Perez:2014:AEA

Haigh:2014:ABE

Healey:2014:SPS

Hormann:2014:GGI

Hu:2014:MBA

[3624] Jiaqiao Hu, Enlu Zhou, and Qi Fan. Model-based annealing random search with stochastic averaging. ACM Transactions on Modeling and
REFERENCES

Kawai:2014:ADT

Koo:2014:CRB

Korzen:2014:PPP

Langr:2014:APP

LEcuyer:2014:LSS

Ling:2014:MDN

Mascagni:2014:HPC

Mohamed:2014:MCS

Raaphorst:2014:CSC

Rivest:2014:SSR

Saito:2014:XV

Sanguinetti:2014:QRN

REFERENCES

REFERENCES

LoRe:2015:SRN

Lubicz:2015:TOB

Malik:2015:RCL

Malkiel:2015:RWW

Miles:2015:CCP

Miles:2015:SPN

Moufek:2015:MCB

REFERENCES

REFERENCES

REFERENCES

Mandal:2016:DIW

Mandal:2016:FRI

McFerland:2016:MZA

Miller:2016:RPS

Nekrutkin:2016:CBF

NIST:2016:SDR

[3703] Anonymous. The DUHK attack: Don’t use hard-coded keys. Web site., October 25, 2017. URL https://duhkattack.com/. From the introduction: “DUHK (Don’t Use Hard-coded Keys) is a vulnerability that affects devices using the ANSI X9.31 Random Number Generator (RNG) in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions,
preventing third parties from reading intercepted communications.” See [3710] for details of the attack.

REFERENCES

REFERENCES

[3728] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher, and Andrew W. Appel. Verified correctness and secu-
REFERENCES

rity of mbedTLS HMAC-DRBG. In ACM, editor, Proceedings of CCS
17, October 30–November 3, 2017, Dallas, TX, USA, pages 1–14. ACM
???? URL http://www.cs.princeton.edu/~appel/papers/verified-
hmac-drbg.pdf.

Aletti:2018:GDR

[3729] Giacomo Aletti. Generation of discrete random variables in scal-
able frameworks. Statistics & Probability Letters, 132(?):99–106,
January 2018. CODEN SPLTDC. ISSN 0167-7152 (print), 1879-
article/pii/S0167715217302900.

Anderson:2018:IP

[3730] David F. Anderson, Timo O. Seppäläinen, and Benedek Valkó. Intro-
duction to Probability. Cambridge mathematical textbooks. Cambridge

Bernardini:2018:GES

[3731] Riccardo Bernardini and Roberto Rinaldo. Generalized Elias schemes
for efficient harvesting of truly random bits. International Journal of
Information Security, 17(1):67–81, February 2018. CODEN ????. ISSN

Chang:2018:CSL

[3732] Zuling Chang, Martianus Frederic Ezerman, San Ling, and Huaxiong
Wang. The cycle structure of LFSR with arbitrary characteristic poly-
nomial over finite fields. Cryptography and Communications, 10(6):
1183–1202, November 2018. CODEN ????. ISSN 1936-2447 (print),
1007/s12095-017-0273-2.

Checkoway:2018:WDL

[3733] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried,
Shaanan Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Wein-
mann, Eric Rescorla, and Hovav Shacham. Where did I leave my
keys?: lessons from the Juniper Dual EC incident. Communications
of the ACM, 61(11):148–155, November 2018. CODEN CACMA2. ISSN
Deng:2018:SFE

Ermakov:2018:RRQ

Harase:2018:IBM

Lin:2018:RNG

Merali:2018:PAS

Mullner:2018:RSS

REFERENCES

Petrica:2018:FOC

Sanders:2018:EPR

Wang:2018:LBA

Gorder:2019:RSN

Lemire:2019:FRI

Poudel:2019:MTU

Quaglia:2019:RCR

Zhang:2019:REU

Basuyaux:20xx:RNG

L’Ecuyer:20xx:PNG

Wagner:20xx:WRS

[3750] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating randomness; source code to other useful crypto modules; miscellaneous. World-Wide Web site., 20xx. URL http://www.cs.berkeley.edu/~daw/rnd/.

Bailey:2013:CAM

REFERENCES

REFERENCES

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1969. LCCN QA1 S565 v. 3.

Rice:1971:MS

Zarem:1972:ANT

Schaffner:1974:PPB

Patil:1975:MCS

REFERENCES

Oren:1980:SDM

Eddy:1981:CSS

Rubinstein:1981:SMC

Grossmann:1982:PSI

IEEE:1982:ASF

Chaum:1983:ACP

REFERENCES

REFERENCES

[3792] Kurt Mehlhorn, editor. STACS 85: 2nd Annual Symposium on Theoretical Aspects of Computer Science, Saarbrücken, January 3–5, 1985, vol-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

ACM:1989:PTF

Anonymous:1989:PFC

Beker:1989:CC

IEEE:1989:ASF

MacNair:1989:WSC

REFERENCES

REFERENCES

ACM:1992:PTF

Burr:1992:UEN

Gritzmann:1992:ORE

IEEE:1992:ASF

Pflug:1992:SOP

Simmons:1992:CCS

 Gustavus J. Simmons, editor. *Contemporary Cryptology: the science of information integrity*. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

REFERENCES

LCCN QA3 .L35 v.1554.

REFERENCES

REFERENCES

IEEE:1997:ASF

Troch:1997:PSI

Wyrzykowski:1997:PNP

Banks:1998:HSP

Buhler:1998:ANT

Hellekalek:1998:RQR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schueller:2001:MCS

Smelser:2001:IES

Spector:2001:GPG

ACM:2002:PTF

Dror:2002:MUE

REFERENCES

USENIX:2002:PBF

ACM:2004:PAA

Gentle:2004:HCS

Niederreiter:2004:MCQ

REFERENCES

REFERENCES

REFERENCES

ACM:2008:SPA

Golomb:2008:STA

Keller:2008:MCQ

Nguyen:2008:GG

Rousseau:2008:MT

Alexopoulos:2009:AFS

Christos Alexopoulos, David Goldsman, and James R. Wilson, editors. *Advancing the frontiers of simulation: a Festschrift in honor of George

[Belsley:2009:HCE]

[Clavier:2009:CHE]

[LEcuyer:2009:MCQ]

[Paredaens:2009:PTE]

[ACM:2010:PAI]

REFERENCES

Anon:2010:NDS

Cont:2010:EQF

Dick:2010:DNS

Feldman:2010:APS

Gollmann:2010:SCR

IEEE:2010:ISV

REFERENCES

REFERENCES

Lathrop:2011:SPI

Lovric:2011:IES

vanTilborg:2011:ECS

ACM:2012:SPA

Cooper:2012:HWC

Dunn:2012:EMC

REFERENCES

[3952] Nicholas J. Higham, Mark R. Dennis, Paul Glendinning, Paul A. Martin, Fadil Santosa, and Jared Tanner, editors. The Princeton Companion to