A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 January 2018
Version 1.283

Title word cross-reference

#14 [2262]. #15949 [867]. #4059 [1237]. #8373 [2085].

(0, 1) [1049]. (0, s) [2517, 2900]. (a^n - 1)/(a - 1) [913]. (j, c) [726]. (n^2 \alpha) [2470]. (n^k \alpha) [2471]. (n\alpha) [2470]. (t, m, s) [2029, 2860, 2035, 2334]. (t, s) [2612, 2029, 2325, 2860, 2035]. (X^2 - Y^2)^{1/2} [488]. 0.1(0 \times 1)0 \times 9 [139]. 1 [733, 871, 2813, 171, 301, 708, 2935, 2937]. 1, 2, 3 [3445]. 1.13198824... [2494]. 10, 000 [282]. $10.00 [168]. 10^{2357} [2465]. 10^{1355} [2027]. 1200 \mu [3094]. 128 [3119]. 13 [270]. 16 [270]. 2 [2813, 2104, 925, 3059, 2479, 2793, 2939]. 2, 000 [86]. $24.95 [2072]. 2^{-31} - 1 [833, 926]. 2^{15} [2122]. 2^{-31} - 1 [3494, 798, 969, 1002, 1190, 1191]. 2^{31} - 69 [3341]. 2^{32} - 1 [1082]. 2^9 [1467, 2222]. 2^3 [1310, 1473, 1718]. 2^k [2593]. 2^{k-1} [2593]. 2^p [3205]. 2^p - 1 [2255]. 3 [1772, 3620]. 32 [3575]. 4 [270]. 48 [245]. 5 [270]. $52.95 [3544].
$[0, 1] \ [217, 843] \cdot 2 \ [3094] \cdot \tau \ [2356, 1942] \cdot a \ [363] \cdot a = \pm 2^q + 2^r \ [2388, 2458] \cdot a_n \ [647] \cdot \alpha \lambda \ [710, 711] \cdot b \ [2119, 3296] \cdot b = 2, 3, 5, 6, 7, 10, 11, 12 \ [1029, 1295, 2600] \cdot b^q \pm 1 \ [1029, 1295, 2600] \cdot \beta = 32 \ [1310] \cdot \beta = 48 \ [1310]$

$\beta \simeq 32 \ [1473] \cdot \beta \simeq 48 \ [1473] \cdot \left\{ \frac{a}{m^2} \bigg\} \bigg\{ \frac{a}{m} (j + r)^2 \bigg\} \ [323] \cdot \text{mod} 1$

$[296, 297, 401, 639, 719, 644] \cdot \text{mod} \ [2188] \cdot C^\infty \ [1255] \cdot C \exp(-\lambda|x|^r) \ [1455] \cdot \chi^2 \ [343, 921, 1079, 1080, 1081, 6, 7] \cdot D \ [2360, 1792, 2947, 2063] \cdot d^2 \ [92] \cdot e \ [80, 1490, 86, 366] \cdot e [1895] \cdot F_2 \ [2981, 2990, 3194] \cdot F_{2w} \ [2794] \cdot G \ [443, 444] \cdot \Gamma \ [1211, 1185] \cdot j [1922] \cdot k \ [2175, 1443, 1751, 2096, 1034, 1312, 1902, 1100, 1349, 1950] \cdot k > 1 \ [1339] \cdot L^2 \ [2015, 1946] \cdot L_2 \ [2114] \cdot L_p \ [2385] \cdot \lambda [2783] \cdot M \ [1423, 1195, 1161, 826, 460, 1036, 1006, 437, 247, 1343, 2139, 2320, 2057, 2163, 2165, 2252, 1110, 229] \cdot F_2 \ [3062, 3413] \cdot F_{2w} \ [2938] \cdot F_q \ [3172, 3466] \cdot F_{q^n} \ [3172, 3466] \cdot F_2 \ [3414] \cdot GF(2^n) \ [1547] \cdot \mu [3152] \cdot N \ [1128, 890, 267, 1300, 1663, 1664, 2209, 707, 203, 604, 194, 2757, 199, 1506, 3703, 780, 205, 423, 783] \cdot \Omega(3) \ [1549] \cdot O(n(1 + \log(N/n))) [1911] \cdot P \ [6, 705, 3098, 2405, 2156, 3298, 2169, 2352] \cdot \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (K/y)(\partial u/\partial y) = 0 \ [195] \cdot \pi \ [2826, 80, 1490, 86, 282, 285, 2878] \cdot \pm 1 \ [647] \cdot \pm 2^{k_1} \pm 2^{k_2} \ [2255] \cdot \pm 2^{m_1} \pm 2^{m_2} \ [2585] \cdot q \ [2483] \cdot S \ [1001, 1853] \cdot \sigma \ [1549] \cdot \sqrt{2} \ [404, 432] \cdot \sum a_n / n \ [647] \cdot T \ [2548, 2810, 1843, 827, 1853, 1298, 2985, 935, 940, 39] \cdot U(0, 1) \ [2695] \cdot X(I + 1) = A X(I) \mod 2^{31} \ [761] \cdot x^2 \mod N \ [1975] \cdot X_{n+1} = a_n X_n + b_n \mod (p) \ [1777] \cdot X_I = X_{I-3p} \oplus X_{I-3q} \ [1476] \cdot y = [(a + x) \sin(hx)] \mod 1 \ [2332] \cdot Z/nZ \ [1886] \cdot Z_p \ [1379]$

good [2643].
0.57pJ [3218]. 0.57pJ/bit [3218]. '05 [3867, 3871]. '07 [3877]. '08 [3881].

1 [743, 1038, 1907, 1908, 3325]. 1.04 [3152]. 1.1 [3640]. 1.6 [3576]. '10
'13 [3914]. 133 [265, 266, 303, 309]. 134 [871]. 13th [3840]. 14th
[3878, 3807]. 153 [924, 1080, 1081]. 155 [921, 1081]. 157 [972]. 16
[1465, 2946, 907]. 16-Bit [1258, 1851, 739, 1465, 2159]. 16-bit-PC [1465].

2 [194, 219, 2240, 3326]. 2.4GHz [3336]. 20 [2072, 2406]. 200 [298, 358].
29th [3785, 3769]. 2nd [3742, 3755].

3 [3064, 3648, 1928, 3327]. 3-Key [2842]. 3.0 [2614]. 3.x [2261]. 30 [3456].
30th [3775, 3796]. 31 [2535]. 31-bit [750]. 31st [3781]. 32-Bit
[1207, 2919, 2989, 1726, 3340]. 32-bit-word [532]. 334 [425, 470]. 33rd
[504, 606]. 38th [3827]. 39th [3877].

4 [456, 655, 3328]. 4086 [2827]. 40th [3881]. 41st [3848]. 42 [674, 675].
48-Bit [1016]. 488 [657]. 4Gbps [3218].

5.0 [1626]. 5.2 [2730]. 500 [3270, 317]. 51st [3898]. 52 [867]. 52nd [3913].
5th [3882].

60th [3915]. 61 [1226]. 623-dimensionally [2319]. 64-bit

82g [1038]. 82h [1007]. 84 [3754]. 85 [1997]. '86 [3765]. '87 [3762]. '88 [3780].

9th [3896].

= [3721, 3731].

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearer [3182]</td>
<td>[2027, 2555]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Cleve [2027]</td>
<td>[2555]</td>
<td>CKv12</td>
</tr>
<tr>
<td>CMOS [3270, 3064, 3315, 3218, 3336]</td>
<td>[168]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Co-evolving [2161]</td>
<td>[168, 2161]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Code [3143, 2095, 3166, 979, 3299, 2157, 3546, 2681, 968, 3183, 1913, 2044, 3715, 1051]</td>
<td>[138]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clever [3182]</td>
<td>[2027, 2555]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Client-server</td>
<td>[1929]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Club [1284]</td>
<td>[1820, 2245]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clock [1965]</td>
<td>[2165]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clock-controlled [1965]</td>
<td>[2556]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clock-flipping</td>
<td>[1965]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clipped [609]</td>
<td>[2025]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Close [2457, 1141, 2633]</td>
<td>[2457]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Cloudier [3663]</td>
<td>[2025]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Coin [3689, 1069, 2087, 3261, 1746, 2521, 3288, 1421, 161, 1172]</td>
<td>[138]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Coin-Tossing</td>
<td>[1746]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Collector</td>
<td>[3725, 1957]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Collector</td>
<td>[142]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Cluster-flipping</td>
<td>[1820]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clustered-rocket</td>
<td>[253]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clustered</td>
<td>[253]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Cluster-flipping</td>
<td>[253]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Clustering</td>
<td>[3179, 3176]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combined</td>
<td>[3728, 2203]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combined</td>
<td>[142]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combined</td>
<td>[3729, 2697]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combined</td>
<td>[3729, 2697]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combination</td>
<td>[392, 503, 474, 362, 1756, 1088, 2769, 438, 439, 61]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combination</td>
<td>[392, 503, 474, 362, 1756, 1088, 2769, 438, 439, 61]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combinatorial</td>
<td>[617, 3564, 201, 2312, 1516, 2075, 235, 3409, 749]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combinatorics</td>
<td>[3779, 2697]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combiners [1703]</td>
<td>[2340]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combiners [1703]</td>
<td>[2340]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combining</td>
<td>[878, 879, 1564, 3166, 2524, 3052]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Combining</td>
<td>[878, 879, 1564, 3166, 2524, 3052]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Comment [292, 1561, 168, 2518, 837, 1038, 930, 1585, 933, 842, 938, 2850, 939, 844, 2568, 946, 855, 851]</td>
<td>[138]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Commentary</td>
<td>[2128]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Commentary</td>
<td>[2128]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Commitment [1514, 1605]</td>
<td>[1280]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Commodore</td>
<td>[1115]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Common</td>
<td>[1179, 499, 1257, 1684, 2995, 1708, 1528, 787, 2119, 1091, 3526, 1809, 1057, 730, 3488, 2509, 2187, 1086, 1677, 886, 753, 709, 892, 1331, 2384, 1808, 2030, 914, 1441, 1630]</td>
<td>[138]</td>
</tr>
<tr>
<td>Commun [1997, 2118]</td>
<td>[1280]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Communications [494, 2632, 3871, 3801, 2676]</td>
<td>[138]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Compatible</td>
<td>[1478, 1506, 3504]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Compatible</td>
<td>[1478, 1506, 3504]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Comparing</td>
<td>[1194, 886, 1782, 2126, 3244]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Comparative</td>
<td>[1306, 395, 491, 3168, 2060]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Compatibility</td>
<td>[1306, 395, 491, 3168, 2060]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Compatibility</td>
<td>[1306, 395, 491, 3168, 2060]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Compatible</td>
<td>[1478, 1506, 3504]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Competing</td>
<td>[1478, 1506, 3504]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Compiled</td>
<td>[69]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Complete</td>
<td>[1261, 989, 909, 2344, 2751, 2751]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Completed</td>
<td>[927]</td>
<td>CKv12</td>
</tr>
<tr>
<td>Complex</td>
<td>[3568, 663, 3826, 3658]</td>
<td>CKv12</td>
</tr>
</tbody>
</table>
Confidence
configurable [2498]. configuration [1159]. Confusion
Congrès [3721]. Congress [3721]. Congruence
congruences [1311, 187]. congruent [2141]. Congruential
Convergent [310].
Convolutional [3647]. Convolutions [666, 2546, 1548]. Cooperation [3524].
Cope [2423]. Copenhagen [3768]. Coprocessor [2531, 3572]. copula [3023].
Copulas [3023]. Copyright [2264]. CORDIC [3578, 3624]. Core.
Corfu [1935, 2733, 1837]. Correspondence [655, 2005, 1801, 2046].
Corrigendum [1007, 2469, 1344, 525, 612, 3545].
Cryptanalytic [2301]. CRYPTO
Cryptography
Cryptology

[1117, 3754, 3744, 3762, 3763, 3783, 3793, 3752, 3807, 3780, 3879, 3765]

Cryptosystem [3224, 1334, 3647]. cryptosystems [2386, 1348, 3125].

Crystal [3839, 53, 3854, 3748, 3795]. crystallography [3186].

CSD [2051].

Cuba [2836]. cube [416, 1540, 783]. Cubic [1571, 2197, 1816].

CUDA [3476, 3066, 3192, 3537].

Customer [2684]. Cusum [1168]. Cusum-Shewhart [1168].

cut [2524].

Frequency [1999, 2113, 3671, 2867, 1018, 609, 540, 1321, 3199, 2661, 691].
Frequency-Modulated [2867]. frog [2282]. frontiers [3886, 3865].
frustration [3232]. FTTN77 [1881]. Fukuoka [3784].
2593, 1847, 3151, 1754, 3602, 1872, 2691, 3610, 1893, 2011, 1036, 3427, 1804, 1267, 2947, 2666, 1036
generator

generators [3662, 3033, 1642, 1118, 2819, 1026, 2820, 1174, 1967, 1646, 2599, 2682, 2966, 2359, 880, 1456, 1649, 2821, 1176, 698, 3042, 3600, 1855, 3045, 3559, 3392, 1856, 2093, 2184, 533, 2185, 1860, 1974, 2094, 2186, 997, 1861, 3158, 2274, 1301, 1462, 1463, 3160, 1382, 1450, 1460, 3395, 1564, 1659, 2685, 2825, 3051, 3161, 1303, 1383, 616, 2826, 3163, 3164, 1568, 400, 1384, 2688, 2193, 2591, 2439, 1466, 3167, 1386, 1387, 1469, 1667, 1308, 2828, 1875, 1876, 1900, 2106, 2203, 2281, 2282, 2370, 2514, 2515, 1674, 1129, 1765, 833, 925, 926, 1190, 1191, 1310, 1766, 1993].

generators [3697, 430, 1004, 272, 2286, 836, 971, 2832, 2979, 3698, 1317, 3607, 2834, 3409, 2696, 1678, 1771, 749, 467, 1198, 1252, 1319, 2524, 2622, 2698, 2699, 3060, 3566,
2042, 3324, 1820, 3458, 3459, 2879, 2958]. **Goodness**
[3758, 579, 2857, 18, 815, 68, 87, 101, 3042, 1132, 1037, 1143, 97, 607].
Goodness-of-Fit [2857, 815, 3758, 3042, 1132, 1037, 1143, 607].
Gossip [3824]. **GP** [3857, 3531]. **GP-2001** [3857]. **GP-GPU** [3537]. **GPU** [3628, 3372, 3554, 3596, 3563, 3278, 3634, 3902, 3912, 3517, 3884, 3317, 3531, 3440, 3359]. **GPU-enabled** [3317]. **GPUs** [3596, 3389, 3639].
Gradient [3184, 1503]. **Graduate** [3843]. **Grand** [3835].
Grande [2363]. **Graph** [2901, 505, 1853, 2828, 1992, 2758, 1896, 1948].
Graphic [3331, 3586, 3254]. **Graphical** [1434, 1618, 1731]. **Graphics** [3395, 3317, 3253, 3557, 3082, 3525, 1431, 1613, 3360, 3472]. **graphs** [1841, 2115].
gray [1664]. **gray-scale** [1664].
Greater [871, 460]. **Greatest** [499, 1257, 1091, 1057, 730]. **Greece** [3880].
Greedy [3337]. **Green** [1273].
growth [3310]. **Guangdong** [3903].
guarantee [1248]. **guaranteed** [3627]. **Guarantees** [1677, 1958].
Guest [2273, 3020].
Guide [3476, 1028, 1235, 2543, 2639, 2558, 989, 2129, 2992, 2557]. **Guidelines** [1677, 1531].
Guitar [2684].
hiding \[3283\]. hierarchical \[3068, 2926\]. Hierarchy \[2136, 3346, 1563\]. High \[2354, 3364, 2083, 3631, 2601, 3045, 3180, 3181, 3218, 3072, 3671, 3315, 1161, 3016, 3018, 100, 3467, 1029, 1295, 2618, 2683, 2606, 2685, 2972, 3055, 3167, 2515, 2759, 3281, 2980, 1682, 1894, 2118, 117, 3082, 3192, 128, 3429, 1912, 3434, 3435, 1919, 771, 2326, 225, 2942, 2868, 2952, 3429, 3457, 121, 2419, 2493, 3469, 2883]. High-density \[2601\]. high-dimensional \[2606, 2685, 2326, 2952, 3625\]. High-entropy \[3045\]. high-functioning \[2942\]. high-order \[2980\]. High-Performance \[3072, 3188, 3525, 3429\]. high-period \[2972\]. High-Quality \[2083, 2515, 1894, 2118, 1912, 2419, 2493\]. Higher \[1655, 2380, 3150, 3419, 1217, 2877\]. Higher-Order \[1655\]. Highly \[1578, 2938\]. highly-uniform \[2938\]. Hilbert \[2935\]. Hill \[168, 3861, 866, 1753, 3096\]. Hilton \[3782, 3776\]. Hirschberg \[1839\]. Histogram \[3389, 1579\]. Histograms \[3585, 1278\]. Historical \[2672\]. History \[70, 88, 700, 2703, 2721, 67, 1350, 368\]. Hit \[1744, 1977, 1750\]. Hit-and-Run \[1744, 1750\]. Hitachi \[2068\]. Hitting \[2377\]. HK97 \[3472\]. Hlawka \[847, 454\]. HMAC \[3710\]. HMAC-DRBG \[3710\]. Hoare \[3846\]. Hoeffding \[2242\]. Home \[2448\]. homogeneous \[12, 1580\]. Homomorphism \[505, 2360\]. homomorphisms \[3140\]. Hong \[3860\]. Honolulu \[3840, 3897\]. honor \[3886, 3915\]. honour \[3846\]. Hopfield \[3345\]. Hörmann \[2894\]. Horner \[2496, 239\]. Horseshoes \[2302\]. Horton \[1865\]. Hot \[3833\]. HotBits \[2809\]. Hotel \[3778, 3724, 3821, 3776, 3748, 3750, 3795, 3810, 3861, 3760, 3835\]. Houston \[3745\]. Huge \[2996\]. hundred \[1195\]. Hurst \[2286\]. HW \[3089\]. Hyatt \[3839, 3913, 3835\]. Hybrid \[3164, 348, 2193, 3224, 3026, 3150, 544\]. hyperbolas \[2066, 2347\]. Hyperbolic \[2729, 872, 993, 1754, 1903, 1935\]. Hypercube \[3759, 907, 908, 1325\]. Hypercubes \[3773\]. Hypergeometric \[1327, 1142\]. hyperplane \[2193\]. Hyperplanes \[2195\]. hyperspheres \[3248, 2952\]. Hypotheses \[173\]. Hypothesis \[433\].

I. \[866\]. IBM \[3722, 701, 792, 660, 1392, 1478, 469, 2531, 153, 1506, 481, 453\]. IBM-Compatible \[1478, 1506\]. ibre \[1023\]. IC \[2683, 3400, 3280, 2380, 2480, 3343\]. ICCMSE \[3880\]. ICGA \[3857\]. ICGA-2001 \[3857\]. ICICTA \[3903\]. icosahedral \[165\]. ideal \[792, 660\]. identical \[928\]. Identically \[2497, 3287\]. Identification \[1421\]. Identifying \[3185\]. identities \[1357\]. identity \[2507, 1903\]. IEEE \[3852, 3897, 3898, 3913\]. If \[1453\]. IFIP \[3896\]. II \[3842, 1229, 3258, 1664, 1757, 2204, 1774, 1884, 1202, 251, 1921, 2024, 2396, 636, 1604, 677, 1433, 520, 2579, 863, 2167, 1546, 2069\]. II.5 \[743\]. IIASA \[3792\]. iid \[3157\]. III \[3831, 2205, 2001, 2395, 776\]. Illiac \[151\]. Illinois \[3767, 3862, 3743\]. Illumination \[2037\]. illusion \[2908\]. Illustrated \[24\]. illustrations \[7\]. Illustrative \[2876\]. IMA \[3841, 3872\]. IMACS \[3828\]. Image \[3399, 3446, 3447, 3234, 3243, 3416, 3428, 1425, 3355\]. Images
[2750, 2363, 3504, 2779, 3650, 3005]. Java-implemented [3005]. JavaTalk
[3798, 3822, 3738, 3717, 3815, 3836, 3890, 3732, 3857, 3804]. Jump
[2981, 3062, 3063]. June [3811, 3862, 3877, 3891, 3900, 3914, 3728, 3869, 3831,
3908, 3786, 3742, 3717, 3897, 3726, 3816, 3843, 3890, 3855, 3804, 3817, 3844].
Jungles [2329]. Justification [2189, 984].
Kakutani [3206]. kappa [3591]. KASUMI [2534]. Keccak [3484]. KENO
[3364, 3255, 2267, 3043, 3273, 887, 2448, 2842, 2927, 1601, 2025, 1513, 2482,
1936, 1627, 3035, 2386, 3304, 1925, 3106]. Key-Stream [3364]. Keys
[3687, 3502, 1601, 3680, 2872]. keystream [3177, 3447]. keystreams [1764].
Kloosterman-type [1761]. KMCLib [3640]. Known
[1805, 3269, 2281, 780]. Knoxville [3759]. Knuth [1696, 676, 713]. Kochen
[3474]. Koen [2969]. Kolmogorov
[63, 398, 71, 1132, 766, 2713, 97, 815, 188, 3450]. Kong [3860]. Kongruenz
[1023]. Kongruenz-Generatoren [1023]. konvexe [32]. konvexer [718].
Korea [3870]. Körper [32]. kriging [3488]. krivoi [34]. Kronecker [3487]. KY
[3882].
L [529, 578, 620]. Laboratory [3716, 3718]. Lag [593]. Lagged
Laplace [2519, 666, 3000, 3213]. laptops [2268]. Large
[3716, 3259, 3493, 3494, 838, 666, 26, 2852, 2143, 185, 3210, 1528, 2963, 2825,
3051, 3161, 1320, 64, 73, 244, 95, 1052, 604, 230]. Large-Order [3493, 3494].
Large-Scale [3716, 185, 2143, 2963, 95]. large-size [73]. largely [960].
Laser [3212, 3282, 3297, 457, 3239]. Lasers [3009, 3126, 3200]. Last [2164].
Latin [2326]. LatMRG [2129]. Lattice
[530, 566, 1970, 2893, 2434, 699, 2610, 2829, 2296, 2916, 2634, 3616, 3672, 2709,
588, 2401, 2724, 2950, 3009, 3117, 3217, 1538, 2672, 1023, 1114, 1169, 1283,
2085, 1860, 2757, 1467, 1762, 1307, 1308, 1130, 2523, 3413, 3414, 2913, 1136,
1137, 2445, 3186, 2222, 671, 707, 2226, 2228, 2391, 2460, 2538, 3294, 2461,
2545, 1912, 847, 2935, 2937, 1059, 3010, 3116, 3451, 2247, 1828, 391, 454, 3672].
lattice-bases [1136]. lattice-sublattice [3186]. lattices [2094, 2772, 2800].
Lausanne [3888]. lava [2718]. LavaRnd [2565]. Law
[3391, 3210, 1528, 2169, 3054, 2689, 3173, 15, 197, 2111, 244, 16, 3097, 780,
2334, 3377, 3256, 3068, 2932, 2801, 882]. Laws [838, 1498, 2729, 560].
Laxenburg [3792]. LC [2867]. LCG [2610]. LCGs [2205, 2515, 2229].
Leading [2917, 616, 1035]. leads [1850]. leads-to [1850]. Leakage [2423].
Leap [3241, 2282]. leap-frog [2282]. learnability [2171]. Learning
[3118, 1943]. Least [733, 531, 104, 1405]. Least-Remainder [104]. Lécons
Lehmer [1658, 2193, 2194, 745, 3574, 891, 246, 2151, 480, 2053, 231].
Lemmas [2521]. Length [3688, 181, 369, 458, 1238, 238, 1572, 1078, 1003, 807, 1805,
1852, 1242, 461, 1386, 1468, 1667, 1130, 841, 1893, 2449, 1411, 582, 583, 1697,
3104, 642, 1949, 3225, 3466, 3022].
[465, 1201, 1798, 2946, 483]. letters [2864]. Levels
[3556, 2473, 1123, 2987, 1785, 3003, 2732]. Lewis [740]. Lexington [3882].
Leydold [2894]. LFSR [2270, 3156, 2392, 3304, 3703, 3241]. LFSR-Based
[3703]. Libgcrypt [3666]. Liblice [3726]. libraries [2117]. Library
[3376, 3692, 1032, 1304, 1196, 2543, 2639, 2924, 2992, 2640, 2138, 1438, 1554, 1634,
3374, 3554, 3596, 2816, 3272, 3171, 3563, 3667, 2896, 2991, 2468, 2469].
Lie [1930]. Life [2355, 3535]. light [3457]. Lightweight [3677, 3353]. Like
[2684, 468, 2025, 3621, 3346]. Likelihood [2285, 1000, 1128]. Limit
[695, 1236, 2437, 1470, 2519, 2932, 2152, 2801, 2338, 3465, 560, 63, 2979, 3287,
1697, 3435, 3643, 409, 2721, 1159, 188, 2090]. limiting [1704]. Limits
[616, 85, 38, 2253, 2346]. Lin [2771]. Lindberg [1373]. Line
[2095, 2681, 438, 439, 3215]. linéaire [1336]. linéaires [2479, 2793]. Linear
[392, 2868, 1374, 2510, 2823, 1974, 921, 3496, 2282, 2283, 1079, 1080, 1081,
3405, 1085, 835, 2904, 2763, 1996, 2981, 3062, 3063, 2216, 2530, 2838, 3503,
3508, 3509, 503, 759, 1338, 1339, 2388, 2459, 2990, 3194, 2550, 2583, 1796, 845,
474, 587, 807, 3439, 3000, 596, 849, 1811, 1055, 362, 2575, 3540, 2340, 367,
2670, 3545, 209, 1169, 1363, 3597, 566, 1454, 1027, 1376, 2359, 1649, 3046,
1860, 2094, 111, 3049, 1463, 1303, 569, 1756, 1384, 1469, 1188, 1246, 1308,
2203, 2281, 2369, 3270, 925, 1311, 1250, 1313, 3172, 2832, 2979, 1679, 2622].
linear [2699, 2980, 3560, 1088, 3413, 3414, 2529, 975, 3075, 936, 1144, 2919,
1336, 2129, 2226, 2239, 2391, 2635, 2847, 1145, 2232, 843, 3432, 2642, 252,
2317, 2784, 2719, 2997, 2651, 1706, 3001, 677, 775, 776, 850, 1155, 1516,
2792, 2479, 2793, 2794, 2938, 2939, 901, 1353, 1717, 1718, 942, 1014, 3620,
2799, 2800, 2946, 1725, 1220, 957, 1275, 2874, 3014, 3222, 3340, 3458, 2956,
3017, 2877, 1622, 13, 2810, 3355, 1835, 2256, 1023]. Linear-Algebra [1811].
[975]. Linearily [3141, 3251, 3121, 1949]. Link [3202]. linkage [3737]. links
Load [2204]. loaded [2453]. Loads [3044].
Local [3550, 3259, 712, 588, 1343, 1510, 1599, 1812, 3477, 1325, 2994, 1159].
Locality [3550, 3477]. localization [1645, 3270]. Log
[737, 2442, 2328, 1075, 1892, 2446]. log-concave [1075, 1892, 2446].
Log-Normal [737]. Logarithm [2831, 2655, 2169, 3373, 244, 2801].
log-concave [1075, 1892, 2446]. Logistic [3266, 3000, 2040, 3150].
logspace [1369, 1638]. logspace-hard [1369]. Lois [780]. Long
[3550, 877, 1859, 1463, 1753, 2368, 3181, 437, 2465, 1805, 1353, 1952, 1282, 3477,
2966, 1301, 2606, 2685, 1918, 2027, 2939, 684, 2675]. log-concave [1075, 1892, 2446]. Log-Normal [737]. Logarithm [2831, 2655, 2169, 3373, 244, 2801].
Log-concave [1075, 1892, 2446]. Long-Cycle [2606, 2685]. Long-Period
[877, 3181, 1952, 2966, 1472, 750, 2299, 2636, 1918, 2027, 2939, 684, 2675].
Log-Normal [737]. Logarithm [2831, 2655, 2169, 3373, 244, 2801].
Log-concave [1075, 1892, 2446]. Long-Cycle [2606, 2685]. Long-Period
[877, 3181, 1952, 2966, 1472, 750, 2299, 2636, 1918, 2027, 2939, 684, 2675].
Long-Range [2368, 1463, 1753, 1301, 1387]. Low-Dimensionality [2807]. Low-Discrepancy [2615, 2147, 2324, 1539, 1846, 1214, 1345, 1710, 876, 1644, 2912, 2461, 2710, 1709, 3534, 2055].
Low-Dimensional [1748, 2069]. Log-Normal [737]. Logarithm [2831, 2655, 2169, 3373, 244, 2801].
Log-concave [1075, 1892, 2446]. Low-Dimensionality [2807]. Low-Discrepancy [2615, 2147, 2324, 1539, 1846, 1214, 1345, 1710, 876, 1644, 2912, 2461, 2710, 1709, 3534, 2055].
low-cost [3581, 3437]. Long-Degree [3298]. Low-Degree [3298]. low-dimensional [1748, 2069].
Low-Dimensionality [2807]. Low-Discrepancy [2615, 2147, 2324, 1539, 1846, 1214, 1345, 1710, 876, 1644, 2912, 2461, 2710, 1709, 3534, 2055].
Low-Dimensional [1748, 2069].
Marginals [2508]. margins [2248]. Mark [3760]. Markov

Nonparametric [654, 541, 1131, 1676, 2693, 3406, 3508, 3509, 289].
nonprobabilistic [1583]. nonrandom [608]. Nonrandomness [3337, 1329].
Nonrecursive [535, 3138, 2675]. nonskewed [1220]. nonsuccessive [2667].
Nonuniform [962, 2970, 2895, 1186, 2766, 2816, 2817, 2894, 758, 1819, 3495].

Phenomena

Physics

Pseudo

Pseudo-aléatoire

Pseudo-aléatoires

Pseudo-disturbance

Pseudo-Inversen

Pseudo-Casuali

Pseudo-Random
2717, 2995, 1804, 3679, 2719, 2997, 1512, 3525, 3204, 984, 3681, 2145, 638, 850, 1012, 1100, 1215, 1216, 1267, 1346, 1347, 1349, 1428, 1517, 1519, 1711, 1712, 1810, 1923, 2031, 2474, 2475, 2476, 2559, 2560, 2561, 2656.
pseudorandom
[2862, 3102, 1715, 3310, 3311, 3313, 599, 3583, 3650, 1611, 513, 2039, 814, 942, 449, 1933, 1103, 1614, 1434, 1731, 1951, 2877, 1735, 2586, 910, 3542, 3128, 3129, 3350, 2060, 482, 690, 2168, 1547, 2065, 2066, 2170, 2347, 2424, 1956, 2881, 3022, 2675, 231, 788, 1552, 1959, 3396, 3235].
pseudorandom-number
[2593].
Pseudorandomness
[2885, 2174, 3261, 3487, 703, 2619, 2443, 3507, 2451, 2532, 2627, 2534, 2544, 2134, 3300, 2473, 1605, 2588, 2503, 2081, 2378, 3020, 2673, 2072].
pseudozufallsvektoren [1319]. Pseudozufallszahlenfolgen [605].
psevdosluchainykh [345].
PSI [1391].
PUB [1814].
Publications [259, 388].
Publicly [3048].
PUF [3706].
Public-Key [887, 2448, 2482].
Public-Key [887, 2448, 2482]. Public [2267, 887, 2448, 1925, 2482, 3184, 2386].
Public-Key [887, 2448, 2482].
punched [35].
punctured [3647].
Pure [3701].
purposes [1053].
purposes [2853].
PVT [3336]. PVT-variation [3336]. pW [3270].
pyramids [1425]. Python [3614, 3515, 2315, 2316].
Quadrature [890, 765, 712, 1011, 390, 2445]. Quality [2083, 3392, 1780, 2628, 3638, 2020, 1062, 3016, 3124, 2880, 3144, 3254, 1861, 2515, 1890, 1894, 2118, 3082, 3192, 1912, 3434, 1919, 590, 2407, 2408, 2419, 2493, 2881, 2883].
Quantitative [3032, 719, 3893, 3618]. quantity [225]. Quantum [3362, 3363, 3473, 2747, 3367, 3386, 3039, 3605, 3277, 3699, 1583, 3074, 3291, 3511, 3577, 3518, 3680, 1936, 3443, 3623, 518, 2577, 3011, 3454, 3019, 3239, 3247, 3474, 3262, 3560, 371, 3055, 3562, 3698, 3285, 3287, 2452, 3420, 3073, 11, 3523, 3582, 3322, 3333, 2734, 2490, 3220, 3457, 3226, 3230, 3543, 3463, 2957, 3237].

récursifs [2585]. recursion [1476, 975, 13]. Recursions
[2982, 2021, 2022, 1971, 1920]. Recursive [2598, 2361, 3050, 3493, 3494, 1567,
2833, 2380, 3415, 2389, 2458, 3616, 2852, 585, 2146, 2804, 527, 3478, 3042,
3151, 2825, 3051, 3161, 1246, 622, 2220, 2221, 2300, 3421, 2845, 2988, 1793,
2127, 2129, 2228, 2306, 2031, 2033, 3115, 1732, 2584, 2667, 2668, 2738, 2739,
2873, 2875, 2954, 2955, 3222, 3339, 3341, 3459, 2585, 3133]. recursively [621].
recycle [1401]. Redefining [3442]. Rédei [3060, 2997]. Redondo [3848].
Reduced [112, 2528, 2652, 1114, 566, 2822, 1136, 1137]. reduced-round [2822]. reducible [1831]. Reducing [2433, 2121]. reduction [3413, 3414, 3290, 3493, 3494, 1567,
2833, 2380, 3415, 2389, 2458, 3616, 2852, 585, 2146, 2804, 527, 3478, 3042,
3151, 2825, 3051, 3161, 1246, 622, 2220, 2221, 2300, 3421, 2845, 2988, 1793,
2127, 2129, 2228, 2306, 2031, 2033, 3115, 1732, 2584, 2667, 2668, 2738, 2739,
2873, 2875, 2954, 2955, 3222, 3339, 3341, 3459, 2585, 3133]. recursively [621].
recycle [1401]. Redefining [3442]. Rédei [3060, 2997]. Redondo [3848].
Reference [2079, 3171]. Refutation [2928]. Regarding [2876, 1229].
Regency [3839, 3913]. Regenerative [1968, 886, 889]. REG [3713].
region [1414]. Regional [3785, 3401, 3796]. Regions [1107]. Register
[1180, 1297, 1078, 1003, 2904, 403, 1489, 2459, 631, 633, 845, 477, 3439, 3540,
1538, 2353, 2356, 1239, 3046, 1472, 703, 1005, 2217, 978, 3432, 1595, 1698,
2017, 1267, 1348, 1518, 3620, 1725, 2049, 1034]. Registers
[2510, 505, 1527, 3119, 3344, 2670, 1679, 2011, 328, 305, 1104]. Regression
[1684, 3049, 723]. Regular [3260, 3599, 3659]. Regularities [475, 509].
Regularity [2839, 3173]. Regularly [3585, 2976]. Rehearsal [3024].
Reinfall [2376]. Reingold [3617, 2575]. Rejection
[1474, 435, 1394, 1779, 1891, 2006, 2116, 1092, 2016, 819, 784, 1836, 3660, 992,
2817, 3695, 751, 1781, 2984, 3505, 1496, 980, 1007, 2641, 1061, 823].
Rejection-inversion [2116]. Rejoinder [918, 857]. Rekursion [975].
rekursiv [621, 622]. rekursiv-erzeugte [622]. Related
[1840, 3255, 325, 766, 872, 1860, 1383, 2771, 905, 947]. Related-Key [3255].
Reliable [2961, 2892, 3317, 3596]. Remainder [531, 104, 105, 1268, 2666].
Remark [266, 1080, 1081, 374, 1138, 839, 2706, 470, 303, 252, 1152, 679, 385,
601, 606, 1019, 785, 1226, 1387, 1671, 1080, 1081, 748, 1138, 839, 1152, 785].
Remarks [313, 877, 194, 247, 1801, 1346, 414, 1834, 3170, 2050]. removal
[2217]. Renaissance [3825]. rendering [3539]. rendus [3721].
renormalization [757]. Rényi [398]. Repeatable [507, 508]. Repeating
[2695, 222]. Repetition [2906, 2833, 2142]. Repetitions [1938].
Replacement [2016]. replica [3658]. replica-exchange [3658]. replication
[994]. Reply [2518, 1492, 651]. Report [1745, 3323, 103]. Representation
[2224, 943, 1852, 663, 270, 1434, 648, 1731, 690]. Representations
[1849, 1555]. Reprise [2936]. reproducibility [1248]. Reproducible
Requirement [2684]. Requirements [2564, 3639]. Requires [3503].
requiring [2702]. rescaled [2286]. Research

sanners [1750]. Samples
[1181, 1938, 1945, 8, 827, 64, 73, 17, 39, 134, 33, 230]. Sampling
[561, 653, 915, 1116, 1960, 3489, 830, 1243, 1458, 2098, 269, 741, 742, 1083,
1474, 702, 48, 837, 1196, 500, 3609, 24, 3417, 2006, 1327, 1403, 3669, 842, 1911,
2313, 844, 3619, 1, 643, 856, 857, 858, 609, 161, 1167, 100, 613, 960, 1286, 1364,
3592, 2071, 867, 12, 1559, 237, 149, 42, 2976, 575, 576, 116, 65, 73, 74, 2219,
94, 155, 3290, 25, 30, 31, 1333, 3424, 2463, 1695, 1097, 157, 281, 27, 2326, 550,
257, 187, 1272, 2491, 2737, 958, 12, 1559, 237, 149, 42, 2976, 575, 576, 116, 65,
73, 74, 2219, 94, 155, 3290, 25, 30, 31, 1333, 3424, 2463, 1695, 1097, 157, 281,
27, 2326, 550, 257, 187, 1272, 2491, 2737, 958, 121, 368, 9, 106, 208, 135, 2063,
3022, 69, 28].
Samuel [3886]. San [3877, 3900, 3766, 3812, 3892, 3857, 3837, 3861]. Santa
[3719, 3807, 3879]. SAR [3860]. Satisfied [406, 542]. Satisfying
[406, 542]. Satisfy [1311, 3211, 450, 13]. Satiety [517, 452, 13]. Saturday
[3869]. Saturday-Wednesday
[3869]. Saunders [3086]. Savage [2464]. SC'11 [3904]. Scalable
[3161, 3196, 3711, 3563, 2778, 2468, 2469, 2268, 3084]. Scale
[2171, 3716, 766, 185, 10, 2963, 14, 1664, 95, 1423, 2143, 1052].
Scale-sensitive [2171]. Scaling [2245, 3229]. Scan [3432]. Scan-based
Schedules [652]. scheduling [1790, 3308]. schemata [2590].
schemata-based [2590]. Scheme [3259, 1930, 2957, 3300, 772, 1611, 3447].
Schemes [1768, 2473, 722, 1168, 1400, 2314, 157]. Schnorr [1529]. School
[2754, 3737, 629]. School-Based [2754]. Schwinger [2263]. Sci [1038].
Science [3740, 3851, 3745, 3733, 3743, 3746, 3749, 3764, 3769, 3755, 3781,
3791, 3814, 3823, 3827, 3848, 3852, 3898, 3913, 3905, 3755, 3747, 3802, 3875,
3880, 3866, 3735, 3770, 3771, 3753, 3846, 3834, 3865, 3734, 3535, 3793].
siences [3856]. Scientific
[3728, 2892, 1121, 3727, 1139, 1722, 2487, 3803, 3171, 2715, 3816, 3732].
Scientists [625, 274, 1199]. scores [428]. Scrambled [3206, 3684, 3113].
Scrambling [2361]. scramblings [2725, 3709]. screening [3221, 2584].
scroll [3149, 3178]. SEAC [89]. SEAL [2614]. Search
[3493, 969, 1391, 3611, 811, 907, 908, 2606, 3051, 2515, 926, 2913, 707, 1336,
1793, 1512, 2802, 2582, 3458, 3459]. Searches [2610, 2220, 1414]. Searching
[2845, 2804]. Seattle [3772, 3904]. secant [1754]. Second
[3716, 3759, 30, 3853, 3003, 860, 3828, 3777, 3845, 3222]. Second-level [3003].
second-order [3222]. Secondary [2880]. Secret [2823, 1275, 2423]. Secure
[3372, 2680, 3255, 1452, 3486, 2108, 2531, 2632, 3075, 3641, 3094, 3013, 1111,
1166, 2677, 3634, 3418, 1400, 2298, 1334, 3089, 3318, 3106, 2944, 2335, 1275,
3543, 2676, 1845]. Securely [3680]. sécuritaire [1845]. Security
[3839, 3375, 3663, 2365, 1866, 2827, 3169, 3499, 2694, 2762, 2627, 3871, 2556,
2722, 2564, 3307, 3649, 3583, 1529, 3114, 2953, 2803, 3817, 3837, 3710, 3906,
2082, 2967, 3779, 3430, 1419, 772, 3204, 3209, 3215, 2870]. Seed
[3688, 2361, 3231, 1120, 2449, 1725, 3347, 3415]. Seeding
[1315, 2321, 3548, 976, 3319]. Seeds [2715, 3763, 1205, 3216]. seeming [2567].
Segmentation [1741, 2926]. Select [2509]. Selected
[3847, 636, 3876, 3878, 2203, 3870, 2864, 1225, 3878]. Selecting [1205].
Selection
Selective [44]. Self
self-adaptive [3446]. self-assembly [3693]. Self-Avoiding
Self-Excited [3044]. Self-Similarity [3875]. self-test
Self-testing [3538]. selfish [3067]. Semi
Spectrum [2837, 3298, 3654]. Speed
[2354, 3181, 3671, 634, 3315, 3212, 100, 3467, 3240, 3631, 2683, 3055, 3167,
2759, 3281, 1681, 117, 2126, 128, 2462, 771, 225, 550, 1161, 2868, 121].
Speedy [1621]. Sphere [194, 199, 586, 1540, 1110, 423]. Spheres
[203, 1141, 3232, 267]. Spherical [336, 337]. Spherically [167]. Spin
[3484]. spongy [3621]. sponsored [3728, 3735]. Spontaneous [3352].
Spooler [2043]. Spreading [3635, 3183]. spreadsheet [2788]. Spritz [3621].
SRPN [2268, 2468, 2469]. sprout [3216]. Square
[801, 43, 384, 3306, 1663, 1664, 2523, 93, 1587, 3085, 87]. squared
[1321, 1143]. Squarefree [2898]. squares [1405, 159]. squaring [1278].
Squeeze [855, 954, 806, 1061]. SR [3589]. SRAM [3185]. SRS [1898]. SRU
[592]. SSE2 [3374]. St [3781]. Stability [314, 1768, 670, 388, 2177, 2537].
Stable [738, 3417, 2450, 2915, 2385, 1237, 3162, 1351]. Stack [2797]. STACS
[3755]. Stage [1071, 3400, 157]. staircase [1706, 1835]. Standard
[1457, 3491, 1385, 2448, 1814, 3648, 3537, 792, 660, 1900, 1589, 1614, 2983,
3850, 2413, 2488]. Standards [90, 2482, 165]. Stanford [3833]. Star
[2896, 2916, 3009, 3117, 3217, 3010, 3451]. Start [568, 3206]. Start-Up [568].
STATCOM [3044]. State
[1069, 3185, 2996, 118, 3016, 1172, 3694, 3274, 1907, 1908, 3739, 132, 3471].
state-of-the-art [3739]. State-transition [3016]. States
[3277, 2142, 3523, 3582, 3333]. stationary [795]. Stationary
[344, 670, 763, 2987, 2537, 3104, 3314]. Statist [1237, 1038, 1007, 674, 675].
Statistic [126, 924, 1080, 815, 1234, 1194, 1587, 1010]. Statistical
[871, 2961, 2506, 793, 696, 828, 1655, 921, 2189, 999, 569, 493, 1763, 2280, 924,
1079, 1080, 1081, 23, 46, 72, 113, 114, 169, 170, 1002, 1195, 1313, 836, 541,
1131, 1676, 2693, 3406, 1392, 747, 748, 2621, 2834, 1134, 972, 2698, 495, 3182,
753, 407, 242, 1138, 839, 1039, 1201, 1899, 934, 2768, 628, 2305, 3671, 763,
2550, 3905, 1600, 2396, 1152, 86, 2563, 777, 850, 1012, 1147, 1519, 3530, 282,
720, 2570, 2571, 2485, 820, 859, 2337, 2412, 2414, 2415, 2416, 3338, 3707, 1438,
2167, 785, 1021, 1113, 1226, 960, 3722, 3373, 3478]. statistical
[1292, 1643, 2181, 2182, 2597, 3257, 234, 3272, 1756, 883, 1874, 2609, 833, 2286,
345, 3742, 1324, 3570, 1254, 2299, 3726, 2846, 2547, 1702, 2397, 2648, 2788, 2859,
3095, 1267, 3732, 1103, 1356, 2403, 2797, 387, 2584, 3627, 207, 959, 1958, 458].
Statistically [837, 842, 844, 856, 857, 858, 3650]. statisticheskii [345].
Statisticians [3736]. Statistics [1961, 3722, 795, 3166, 2608, 3740, 2899,
1767, 3745, 3911, 2209, 3742, 623, 3733, 53, 682, 524, 289, 3770, 3771, 3736,
3753, 3729, 213, 3768, 3863, 2697, 1135, 1321, 2626, 511, 3097, 1222, 2338].
STATLIB [1438]. Steady [1907, 1908]. Steady-state [1907, 1908]. Steady-state
[3556]. Stein [2366]. Step [3004, 1100, 1349]. steps [492]. Stern [2823]. Still
[353]. Stimulated [336]. STOC [3867, 3877, 3881, 3914]. STOC’12 [3907].
1389, 2130, 774, 1012, 513, 1616, 1620, 557, 649. Tb [3576]. TDIST [2810].
TEA [2822, 2528, 2623, 2624, 2701, 2765, 2652, 2238, 2067]. Teach [2684].
Teaching [3166, 3070]. Technical
[2079, 2005, 1801, 2715, 2046, 3828, 3844, 3640, 236, 318, 402, 399].
Technique [1394, 2006, 807, 3461, 992, 74, 2702]. Techniques
[3752, 3384, 3389, 3762, 2362, 1861, 269, 2632, 1503, 2715, 636, 3029, 3758,
463, 544, 155, 1544, 3469, 99]. Technology [2268, 3733, 3903, 3885, 3834].
Teil [519, 520]. Telegraphic [1796]. Temperature [3218, 3452].
[3421, 2845, 2988, 2954, 3339, 3459]. terms [2221, 249, 1161]. termwise
[3225]. Terrain [2041]. TES [1602]. Test
[2263, 2506, 995, 126, 917, 918, 3385, 236, 2098, 493, 743, 2906,
747, 748, 2695, 2833, 142, 579, 2764, 1138, 930, 839, 1039, 933, 3574, 2768,
938, 939, 2927, 43, 1151, 2857, 2646, 1600, 119, 849, 1610, 3003, 1815, 3703,
3323, 946, 2570, 1818, 1062, 724, 2336, 2051, 3338, 1825, 3707, 2740, 2807,
3127, 3131, 785, 87, 865, 3248, 694, 3028, 731, 233, 2091, 2602, 315, 1752, 464,
1307, 1308, 1876, 2369, 1129, 116, 172, 404, 432, 3279, 92, 667, 2295, 1398,
1485, 3065, 222, 408, 2841, 2221, 2124, 2013, 2551, 2464, 3520, 2320, 2717].
test [1702, 3205, 1100, 1155, 1349, 1428, 3530, 2039, 45, 2797, 2798, 607, 2417,
1949, 2057, 2163, 2165, 2739, 3222, 1277, 1951, 50, 230, 28, 3028, 2837, 1582].
Test-Pattern [724]. tested [1855, 3285, 2300, 3644]. Testing
[2506, 2080, 2507, 1238, 3047, 1032, 1304, 1305, 2099, 2100, 2613, 798, 405, 3415,
840, 3286, 153, 1901, 223, 1690, 2543, 2639, 2924, 2992, 3516, 2552, 506, 1262,
1051, 2478, 3315, 1016, 2571, 3110, 2337, 2412, 2413, 2414, 2415, 2416, 2488, 610,
860, 1221, 2735, 1623, 2064, 1112, 825, 487, 2428, 456, 1642, 2969, 1861, 3163,
968, 740, 1764, 90, 91, 345, 3279, 200, 2129, 2308, 2991, 1910, 156, 158, 129,
599, 680, 339, 2866, 3538, 1822, 555, 49, 163, 910, 2422, 3715, 2065, 2349, 1025].
TESTRAND [1051, 968, 1032, 1304]. Tests
[654, 916, 62, 2093, 1655, 967, 618, 2204, 1392, 1478, 972, 198, 82, 3182, 22,
3080, 1684, 628, 2132, 2230, 2305, 2457, 2638, 766, 1799, 2137, 2644, 2563,
3208, 3003, 3530, 903, 173, 2572, 1222, 1223, 2425, 2501, 457, 427, 1644, 103,
3042, 41, 3272, 3604, 923, 1245, 1982, 2978, 239, 1993, 1195, 1313, 836, 1132,
1037, 116, 1134, 1322, 2913, 3570, 1201, 2119, 1898, 1143, 2769, 2227, 2228,
2309, 2539, 761, 2232, 762, 769, 2145, 850, 1012, 2241, 1717, 942, 3319, 2661,
519, 520, 1819, 607, 162, 2164, 2251, 2252, 2339, 2667, 959]. tests
[2742, 1954, 1955, 2062, 2132, 2018, 973]. TESTU01
[2931, 2543, 2639, 2991, 2924, 2992]. Texas [3745, 3837, 3750]. Texture
[789, 929]. Textured [1741]. theatres [1219]. thefts [3561]. Their
[500, 2632, 2457, 2550, 1023, 3, 3496, 1867, 1579, 3698, 3882, 3870, 2217, 3186,
438, 439, 1606, 2476, 3008, 364, 147, 3454, 2676]. Theme [3771]. Theorem
[1373, 2631, 105, 3474, 235, 1036, 3412, 3287, 32, 3435, 3643, 409, 2721, 3100,
639, 1159, 2338, 2666, 1236, 2519, 2932, 2801]. theorem-based [3412].
Theorems
[1961, 3259, 2090, 71, 349, 588, 2152, 2659, 680, 564, 1470, 63, 640, 188, 3465].
Truly...
uniform
[1223, 2956, 3017, 3589, 910, 5, 1833, 2674, 3271, 2983, 2922, 419, 1274].
uniform-Gaussian [2218].
uniformément [1223, 2956, 3017, 3589, 910, 5, 1833, 2674, 3271, 2983, 2922, 419, 1274].
Uniformity [1163]. Uniformly [2084, 967, 841, 2638, 483, 2903, 2552, 2141, 1100, 1824].
Uniformization [1163]. Uniformly-distributed [176]. Uniforms [1891, 2120, 1625, 1361, 1890, 2121, 2463, 1537].
Unimodal [1074, 2191, 1097]. Unique [3277, 1335, 3134]. unit [423].
Univariate [1044, 501, 1897, 2548]. Universal [2817, 2096, 1323, 2549, 2640, 1165, 690, 1440].
universe [3910]. University [2640]. UNIX [3817]. Unknown [2266, 1179, 766, 38, 983].
unleash [2718]. unperceivable [2264]. Unpredictability [2386]. Unpredictable [1173, 3455, 2379, 1416, 3436].
USA [3862, 3867, 3877, 3831, 3807, 3840, 3882, 3849, 3853, 3879, 3816, 3843, 3805, 3819, 3891, 3900, 3907, 3914, 3773, 3869, 3740, 3852, 3898, 3913, 3871, 3850, 3854, 3803, 3817, 3818, 3844]. usable [3383, 1697]. Usage [3652, 1933].
Usenix [3844]. User [2543, 2639, 2992, 2129, 2732]. user-level [2732]. users [2930].

V [2090, 487, 2470, 599, 3725]. v. [239]. VA [3805, 3803, 3854, 2044].
Vacuum [3277, 3333]. Valentin [2090]. valeurs [2132]. Validating [2711].
Pearson:1900:CGS

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling. Philosophical Magazine, 50(302):157–175, July/December 1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897.
REFERENCES

REFERENCES

57(??):228–240, 1937. CODEN PRSEAE. ISSN 0080-4541 (print), 2053-5902 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

on the development and practice of science and engineering in the 20th Century.” See [2429, 2430], and the Hasting–Metropolis generalization in [500]. See also [342, 643, 2703].

[133] Jose Royo and Sebastian Ferrer. Tabla de numeros aleatorios obtenida de los numeros de la Loteria Nacional Española. (spanish) [Tables of random numbers obtained from numbers in the Spanish National Lottery].
REFERENCES

[139] E. C. Fieller, T. Lewis, and E. S. Pearson. *Correlated random normal deviates; 3,000 sets of deviates, each giving 9 random pairs with correlations 0.1(0 × 1)0 × 9*, volume 26 of *Tracts for computers*. Cambridge University Press, Cambridge, UK, 1955. 60 pp. LCCN QA47 .T7 no.26. Compiled from Herman Wold’s Table of random normal deviates (Tract no. XXV) by E. C. Fieller, T. Lewis, and E. S. Pearson: *Random normal deviates*.

REFERENCES

[164] C. B. Tompkins. Machine attacks on problems whose variables are permutations. In Curtiss [3719], pages 195–212. LCCN 0???

vonHoerner:1957:HZR

Walsh:1957:EMO

Bass:1958:MMC

Bauer:1958:MCM

Bendat:1958:PAR

Bofinger:1958:PPP

Box:1958:NGR

REFERENCES

Sengupta:1958:TRN

Sobol:1958:PRN

Thomson:1958:MCM

Bolshev:1959:TRV

Cashwell:1959:PMM

Cook:1959:RRP

Ehrlich:1959:MCS

[195] Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + (K/y)(\partial u/\partial y) = 0$. *Journal of the ACM*, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Golenko:1959:DCS

Golenko:1959:FRN

Green:1959:ETA

Hicks:1959:EMG

IBM:1959:RNG

Lehmer:1959:CPD

Muller:1959:CMG

Muller:1959:NMG

Page:1959:PRE

Schulz-Arenstorff:1959:PDP

Sterzer:1959:RNG

Thomson:1959:EMS

Tippett:1959:RSN

Zierler:1959:LRS

Bazley:1960:AMC

REFERENCES

REFERENCES

[230] Donald D. Wall. A random number test for large samples. In Anonymous [3722], pages 7–11. LCCN ???.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

MendesFrance:1962:CMF
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[323] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\left\{ \frac{a_m j^2}{m} \right\}, \left\{ \frac{a_m (j+\tau)^2}{m} \right\} \). *Mathematics of Computation*, 18 (86):211–232, April 1964. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

Marsaglia:1964:RVC

Marsaglia:1964:SPIa

Marsaglia:1964:SPIb

Onicescu:1964:NSA

Poore:1964:CPG

Sobol:1964:PPR

Stockmal:1964:CPR

REFERENCES

REFERENCES

Pike:1965:ARN

Pike:1965:CAGb

Potter:1965:CNS

Pyke:1965:S

Reeves:1965:AUR

Rosenberg:1965:CNN

Scheinok:1965:DFR

Seshadri:1965:RVW

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[408] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [3727], pages 64–68. LCCN QA76.5 D55 1965.

REFERENCES

REFERENCES

REFERENCES

the hyperplane problem that linear congruential generators suffer from, although careful choice of multipliers can minimize its importance: see [397, 2194, 2193, 2439].

REFERENCES

Muller:1968:RN

Pillai:1968:NEI

Polljak:1968:APN

Show:1968:AGR

Sibuya:1968:GDE

Snow:1968:AGR

Whittlesey:1968:CCB

Zaremba:1968:GLP

REFERENCES

136

Zaremba:1968:MBM

Beasley:1969:DTS

Bell:1969:DFT

Chaitin:1969:LPC

Coveyou:1969:RNG

[459] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [3728], pages 70–111. LCCN QA1 S565 v. 3.

Cunsolo:1969:CNP

REFERENCES

REFERENCES

[469] W. J. Hemmerle. Generating pseudorandom numbers on a two’s complement machine such as the IBM 360. *Communications of the ACM*, 12(7):382–383, July 1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Subrahmaniam:1970:SAM

Vincent:1970:CGT

Vincent:1970:GTR

White:1970:FDC

Zaremba:1970:DI1

Ashford:1971:BRG

Beyer:1971:LSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Elias:1972:ECU

Ermakov:1972:NPSa

Ermakov:1972:NPSb

Everett:1972:MCS

Falk:1972:EDT

Forsythe:1972:NCMa

Forsythe:1972:NCMb

Frazer:1972:BOM
REFERENCES

Garside:1972:BRBa

Heathcote:1972:TGF

Hurst:1972:AAG

Kirschenmann:1972:CR

Kral:1972:ENA

Kral:1972:NAP

Maddocks:1972:CAG

October 1972. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).
REFERENCES

Majithia:1972:CFD

Marsaglia:1972:CPS

Marsaglia:1972:SLC

Mason:1972:LTN

Mihram:1972:SV

Miyatake:1972:GUR

Nance:1972:BRN
REFERENCES

REFERENCES

Ahrens:1973:EFM

Ahrens:1973:NME

Burford:1973:BAC

Diaconis:1973:LMI

Persi Diaconis. Limits of measures of the integers with applications to random number generators and the distribution of leading digits. Memorandum NS-211, Department of Statistics, Harvard University, Cambridge, MA, USA, March 22, 1973.

Dieter:1973:CMG

Durbin:1973:DTT

REFERENCES

REFERENCES

SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). See erratum [669].

REFERENCES

REFERENCES

REFERENCES

[666] Richard A. Handelsman and John S. Lew. Asymptotic expansion of Laplace convolutions for large argument and tail densities for certain

[676] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. *Sémin Théorie des Nombres*, 6(??):??, 1974–1975. CODEN ????? ISSN ?????

REFERENCES

David Michael Fellows. Comments on “A general Fortran emulator for IBM 360/370 random number generator ‘RANDU’”. Technical report 6,

REFERENCES

[710] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Mat. Sb. (N.S.),* 98(??):??, ??? 1975. CODEN ??? ISSN ???.

[711] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Math. USSR-Sb.*, 27(??):183–197, ?? 1975. CODEN ??? ISSN ???.

REFERENCES

REFERENCES

Brent:1976:ABE

[736] R. P. Brent. Analysis of the binary Euclidean algorithm. In Traub [3735], pages 321–355. ISBN 0-12-697540-X. LCCN QA76.6 .S9195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959. The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be $O(0.705 \log N)$ for large $N = \max(|u|, |v|)$. See [2432] for an update, and a repair to an incorrect conjecture in this paper. See also [2358], where the worst case complexity is shown to be $O(\log N)$, and the number of right shifts at most $2 \log(N)$.

Chamayou:1976:DAG

Chambers:1976:MSS

Claustiaux:1976:GCN

Enison:1976:PTB

Fishman:1976:SGD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

vanDooren:1976:AAN

Wallace:1976:TRG

Wedderburn:1976:SAR

Williams:1976:PRS

Witsenhausen:1976:VBC

Zakharov:1976:ECS

Zucker:1976:TMT

Ahrens:1977:URN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[826] A. C. Arvillias and D. G. Maritsas. Partitioning the period of a class of m-sequences and application to pseudorandom number generation.
REFERENCES

REFERENCES

REFERENCES

[845] D. G. Maritsas, A. C. Arvillias, and A. C. Bounas. Phase-shift analysis of linear feedback shift register structures generating pseudoran-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Anonymous:1979:BRT]

[Anonymous:1979:BRT]

[Apostolopoulos:1979:IAN]

[Atkinson:1979:CGP]

[Atkinson:1979:CGP]

[Atkinson:1979:FSA]

[Atkinson:1979:FSA]

[Atkinson:1979:RDC]

[Atkinson:1979:RDC]

[Atkinson:1979:SAA]

REFERENCES

REFERENCES

Brown:1979:CPNb

Burford:1979:AVM

Cheng:1979:SSG

delJunco:1979:HLV

Edgell:1979:SCD

Good:1979:CCR

Hammersley:1979:MCM

Heidelberger:1979:CSS

Hellman:1979:MPK

Hill:1979:CPP

Iglehart:1979:RSI

Kahaner:1979:EAD

REFERENCES

REFERENCES

REFERENCES

Bentley:1980:GSL

Brown:1980:GFG

Davies:1980:SAA

Dempster:1980:CEA

Edgington:1980:RT

Farebrother:1980:SAA

Fishman:1980:NLR

Fishman:1980:SCM
[926] George S. Fishman and Louis R. Moore III. In search of correlation in multiplicative congruential generators with modulus \(2^{-31} - 1 \). Technical

REFERENCES

Marsaglia:1980:GRV

O'Brien:1980:PIR

Peskun:1980:TTC

Petkovic:1980:RRV

Ribeiro:1980:MOS

Rice:1980:DQF

Rubin:1980:RAE

REFERENCES

[961] F. Battaglia. Riproduzione delle autocorrelazioni nei metodi di generazione di numeri pseudo-casuali normali. (Italian) [Reproduction of
autocorrelations in the generation of pseudorandom normal numbers].

1981. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

[963] I. Deák. An economical method for random number generation and a
normal generator. Computing: Archiv für Informatik und Numerik, 27
(2):113–121, June 1981. CODEN CMPTA2. ISSN 0010-485X (print),
1436-5057 (electronic).

[964] Luc Devroye. The computer generation of Poisson random variables.

[965] Luc Devroye. On the computer generation of random variables with a
given characteristic function. Computers and Mathematics and Applica-
tions, 7(6):547–552, 1981. CODEN CMAPDK. ISSN 0898-1221
science/article/pii/0898122181900389.

[966] Persi Diaconis and Mehrdad Shahshahani. Generating a random per-
mutation with random transpositions. Zeitschrift für Wahrschein-
CODEN ZWVGAA. ISSN 0044-3719. URL http://link.springer.com/
article/10.1007/BF00535457.

[967] Edward J. Dudewicz and Edward C. van der Meulen. Entropy-based tests
967–974, December 1981. CODEN JSTNAL. ISSN 0162-1459 (print),
REFERENCES

Dudewicz:1981:HRN

Fishman:1981:SCM

Friedman:1981:NPP

Gentle:1981:PCR

Grafton:1981:SAA

Green:1981:BRBa

Greenwood:1981:PFA

REFERENCES

[988] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

Blum:1982:HGC

Crigler:1982:RCP

Devroye:1982:NAR

DiDonato:1982:FSP

Dykstra:1982:MLE

Faure:1982:DSA

REFERENCES

REFERENCES

REFERENCES

Reprinted in [1135, pages 238–242]. See also the extended 32-bit generator in [2958].

REFERENCES

[1034] Masanori Fushimi and Shu Tezuka. The k-distribution of Generalized Feedback Shift Register pseudorandom numbers. Communications of the
REFERENCES

Jennergren:1983:AMR

Kac:1983:WR

Kachitvichyanukul:1983:DUR

Keefer:1983:TPA

Lawrance:1983:SDP

Marsaglia:1983:RNG

Marsaglia:1983:RV1

Marse:1983:IPF

REFERENCES

REFERENCES

Purdy:1983:CFA

Ripley:1983:CGR

Ripley:1983:LSP

Rosenbaum:1983:RNG

Sakasegawa:1983:SRS

Savir:1983:NET

REFERENCES

REFERENCES

Brody:1984:RNG

Brown:1984:ETS

Cheng:1984:GIG

Devroye:1984:MGR

Devroye:1984:RVG

Devroye:1984:SAG

Devroye:1984:UPI

REFERENCES

[1083] George S. Fishman and Louis R. Moore III. Sampling from a discrete
distribution while preserving monotonicity. *The American Statistician*,
38(?):219–223, ???? 1984. CODEN ASTAAJ. ISSN 0003-1305 (print),
1537-2731 (electronic).

Pseudo-random trees in Monte Carlo. *Parallel Computing*, 1(2):175–180,
December 1984. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336
(electronic).

[1085] A. M. Frieze, R. Kannan, and J. C. Lagarias. Linear congruential gener-
ators do not produce random sequences. In IEEE [3749], pages 480–484.
CODEN ASFPDV. ISBN 0-8186-8591-3, 0-8186-0591-X (paperback), 0-
IEEE catalog number 84CH2085-9.

26(?):502–512, ???? 1984. CODEN MCSIDR. ISSN 0378-4754 (print),
1872-7166 (electronic).

[1087] Daniel Guinier. Random numbers for stochastic simulation. *ACM SIG-
BIO Newsletter*, 6(4):5–6, March 1984. CODEN SINWDG. ISSN 0163-
5697 (print), 1557-9506 (electronic).

ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

[1089] C. D. Heth. A Pascal version of a pseudorandom number generator. *Be-
havior Research Methods, Instruments, and Computers*, 16(6):548–550,
???? 1984. CODEN BRMCEW. ISSN 0743-3808 (print), 1532-5970
(electronic).
REFERENCES

Marsaglia:1984:FEI

Marsaglia:1984:GCM

Modianos:1984:RNG

Niederreiter:1984:PSP

Papoulis:1984:PRV

Paulsen:1984:IRN

REFERENCES

CEW. ISSN 0743-3808 (print), 1532-5970 (electronic). URL http://www.springerlink.com/content/a25j12g243u6566n/.

Ronse:1984:FSR

Scholtz:1984:GS

Schorr:1984:PLV

Smith:1984:EMC

Thesen:1984:SER

Tolleth:1984:SSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Griffiths:1985:ASA

Helfrich:1985:ACMa

Helfrich:1985:ACMb

Hill:1985:SAR

Hurd:1985:NEM

Imai:1985:PNG

[1140] T. Imai and Masanori Fushimi. Pseudorandom number generators whose subsequences are multidimensionally equidistributed. *Transactions of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vitter:1985:RSR

Yashchin:1985:ADC

Afflerbach:1986:SLS

Anderson:1986:MMC

Anon:1986:IRN

Blum:1986:IUC

Blum:1986:SUP

Bowman:1986:SRN

Brown:1986:DFP

Celmaster:1986:MVR

Chandrasekaran:1986:IAR

Chernoff:1986:NSB

Clark:1986:BSP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shore:1986:AID

Shore:1986:SGA

Sowey:1986:TCB

Stephens:1986:TBE

Stephens:1986:TUD

Wolfram:1986:RSG

Wolfram:1986:TAC

[1232] Gh. Barbu. A new fast method for computer generation of gamma and beta random variables by transformations of uniform variables. Statist-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1278] Wai Wan Tsang and George Marsaglia. A decision tree algorithm for
squaring histograms in random number generation. *Ars Combinatoria.*
???? ISSN 0381-7032.

of variates from arbitrary continuous distributions. *SIAM Journal on
SIJCD4. ISSN 0196-5204.

[1280] U. V. Vazirani. Strong communication complexity or generating quasi-
random sequences from two communicating semi-random sources. *Com-
binatorica*, 7(4):375–392, ???. 1987. CODEN COMBDI. ISSN 0209-9683
(print), 1439-6912 (electronic).

[1282] Brian A. Wichmann and I. D. Hill. Building a random-number generator:
A Pascal routine for very-long-cycle random-number sequences. *BYTE
Magazine*, 12(3):127–128, ???. 1987. CODEN BYTEDJ. ISSN 0360-
5280 (print), 1082-7838 (electronic).

[1283] Lothar Afflerbach and Holger Grothe. The lattice structure of pseudo-
random vectors generated by matrix generators. *Journal of Compu-
JCAMDI. ISSN 0377-0427 (print), 1879-1778 (electronic). URL http://
www.sciencedirect.com/science/article/pii/037704278890338X.

[1284] Lothar Afflerbach and Klaus Wenzel. Normal random numbers lying
237–244, December 1988. CODEN STPAE4. ISSN 0932-5026 (print),
REFERENCES

[1291] Pierre Beauchemin, Gilles Brassard, Claude Crépeau, Claude Goutier, and Carl Pomerance. The generation of random numbers that are probably prime. *Journal of Cryptology: the journal of the International

REFERENCES

Durst:1988:TPR

Edwards:1988:CAM

Eichenauer:1988:MLT

Eichenauer:1988:MLTb

Eichenauer:1988:NCP

Fishman:1988:MCR

Frieze:1988:RTI
Alan M. Frieze, Johan Håstad, Ravi Kannan, Jeffrey C. Lagarias, and Adi Shamir. Reconstructing truncated integer variables satisfying linear
REFERENCES

REFERENCES

REFERENCES

Kleijnen:1988:ASE

Kolmogorov:1988:AR

Korin:1988:TRM

Kurosawa:1988:CSP

Lagarias:1988:UEP

LEcuyer:1988:BLP

LEcuyer:1988:EPC

REFERENCES

REFERENCES

Percus:1988:LRC

Petersen:1988:SVR

Reif:1988:EPP

Ripley:1988:UAS

Rockower:1988:IIR

Sezgin:1988:MOP

Shi:1988:SRP

REFERENCES

Eichenauer-Herrmann:1989:PLP

Eichenauer-Herrmann:1989:RLR

Evans:1989:PRN

Fushimi:1989:ERB

Fushimi:1989:RNG

Gilmore:1989:RSP

Gleason:1989:STI

REFERENCES

REFERENCES

Impagliazzo:1989:ECS

Impagliazzo:1989:HRR

Impagliazzo:1989:PRG

Kachitvichyanukul:1989:ABS

Kahaner:1989:NMS

Kamps:1989:CPL

[1405] U. Kamps. Chebyshev polynomials and least squares estimation based on one-dependent random variables. Linear Algebra and its Applications,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mertsch:1989:PAS

Niederreiter:1989:STC

Paul:1989:IRN

Percus:1989:RNG

Pickover:1989:PRG

Reber:1989:PNG

Rhee:1989:OPIa

[1433] Wansoo T. Rhee and Michel Talagrand. Optimal bin packing with items of random sizes. II. SIAM Journal on Computing, 18(1):139–151, Febru-
Richards:1989:GRP

Sezgin:1989:EPC

Tezuka:1989:ALC

Tezuka:1989:RNG

Thomas:1989:SNL

Wang:1989:SMR

Wikramaratna:1989:ANM

Asada:1990:GCH

Ascheid:1990:GWD

Baccelli:1990:EPP

Bays:1990:CIR

Behboodian:1990:EUD

Bernstein:1990:SRN

REFERENCES

REFERENCES

[1465] H. Döring. Erzeugung normalverteilter Zufallszahlen mit 16-bit-PC. (German) |Generation of normally-distributed random numbers on an
REFERENCES 286

References

Goldreich:1990:NCI

Goldreich:1990:SPD

Golland:1990:BRB

Haastad:1990:PRG

Hildebrand:1990:RCS

Hormann:1990:AMG

Hortensius:1990:CAC

REFERENCES

Koutras:1990:TCN

Krawczyk:1990:HPC

Lagarias:1990:PNG

L’Ecuyer:1990:RNS

L’Ecuyer:1990:UVW

Levitan:1990:PNG

Lutz:1990:PSB

REFERENCES

Macomber:1990:DUR

Marsaglia:1990:DBR

Marsaglia:1990:RNG

Marsaglia:1990:TUR

Maurer:1990:PLR

Micali:1990:EPR

Mitchell:1990:EEA

Mitchell:1990:NKG

Naor:1990:BCU

Naor:1990:SPS

Niederreiter:1990:CAP

Niederreiter:1990:LBD

REFERENCES

90-012, University of Tokyo, Faculty of Science, Dept. of Information Science, Tokyo, Japan, April 1990. 6 pp.

Palmore:1990:CAC

Parrish:1990:GRD

Ripley:1990:TPN

Roggeman:1990:VFS

Rozovskii:1990:PLD

G. Tindo. *Automates cellulaires: applications à la modélisation de certains systèmes discrets et à la conception d’une architecture parallèle pour la génération de suites pseudo-aléatoires.* (French) [Cellular automata: applications to the modeling of certain discrete systems and toward the design of a parallel architecture for generation of random sequences]. Dissertation (thesis), Université de Nantes, Nantes, France, 1990.
REFERENCES

REFERENCES

REFERENCES

Dunweg:1991:BDS

Eichenauer-Herrmann:1991:ASI

Eichenauer-Herrmann:1991:CCP

Eichenauer-Herrmann:1991:CIC

Eichenauer-Herrmann:1991:DIC

Eichenauer-Herrmann:1991:DQC

Eichenauer-Herrmann:1991:ICPa

Eichenauer-Herrmann:1991:ICPb

Eichenauer-Herrmann:1991:NIC

Geers:1991:HEB

Gerasimov:1991:NOH

Gupta:1991:PAT

Hultquist:1991:GRN

Ito:1991:PEU

REFERENCES

REFERENCES

[1615] Terry Ritter. The efficient generation of cryptographic confusion sequences. Cryptologia, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748&db=all&order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyshev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.

REFERENCES

REFERENCES

Agrawal:1992:PAS

Aluru:1992:RNG

Anastasio:1992:OCL

Anderson:1992:CRN

Arno:1992:SCS

Atkinson:1992:GBT

Babai:1992:MPP

Baker:1992:PPT

Bays:1992:IRN

Bellido:1992:SBR

Berdnikov:1992:RNG

Binder:1992:MCS

Bratley:1992:ITL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lawrance:1992:UDF

LeCuyer:1992:TRN

Lehn:1992:PNG

Leva:1992:ANR

Leva:1992:FNR

Lloyd:1992:CBF

Lo:1992:FCA

REFERENCES

REFERENCES

Szyszkowicz:1992:GRP

Tang:1992:SDA

Tezuka:1992:AAC

Tezuka:1992:FGL

Traub:1992:MCA

Tsai:1992:AFT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kalkuhl:1993:PDC

Kanellakis:1993:IDM

Kankaala:1993:BLC

Karloff:1993:FAA

Karloff:1993:RAP

Kepler:1993:RVM

REFERENCES

REFERENCES

[1815] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. *Communications of the ACM*, 36(7):108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1352, 1457, 1801, 1825]. The authors report that they would now recommend the MCG \(x_{n+1} = 48\,271x_n \mod (2^{31} - 1) \) over their original \(x_{n+1} = 16\,807x_n \mod (2^{31} - 1) \).

REFERENCES

REFERENCES

- Toral:1993:GGD

- Vattulainen:1993:IIP

- Wang:1993:URP

- Weber:1993:AIG

- Willemain:1993:MGA

- Winkler:1993:SRP

REFERENCES

REFERENCES

125, May 1994. CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

[1859] William J. Corcoran. A multiloop Vigenère cipher with exceptionally long component series. *Cryptologia*, 18(4):356–371, October 1994. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content?content=a748639272&db=all&order=page. multiloop Vigenère cipher; exceptionally long component series; computer generation; polyalphabetic cryptographic system; character set; linear congruential generating function; component series; cryptanalysis; multiloop system; computationally secure; personal computers; Spectra Publishing; Power Basic; BASIC.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ritter:1994:EPR

Rivest:1994:DBI

Schneier:1994:AAd

Shallit:1994:ALS

Shukhman:1994:GQR

Sitharam:1994:PGL

REFERENCES

REFERENCES

Zhang:1994:PEE

Zijp:1994:UTC

Ahrens:1995:OTM

Al-Hussaini:1995:UPT

Anguita:1995:CDP

Antipov:1995:COP

REFERENCES

[1977] Asit Dan, Philip S. Yu, and Jen Yao Chung. Characterization of database access pattern for analytic prediction of buffer

REFERENCES

Eichenauer-Herrmann:1995:IUB

Eichenauer-Herrmann:1995:NPE

Eichenauer-Herrmann:1995:PNG

Eichenauer-Herrmann:1995:QCP

Eichenauer-Herrmann:1995:RCM

Eichenauer-Herrmann:1995:UAA

Kessler:1995:GOC

Koc:1995:RCS

Kubota:1995:DRE

Kurita:1995:DWD

Lee:1995:CSS

Leeb:1995:DT

REFERENCES

Ong:1995:CBG

Owen:1995:RPN

Palubeckis:1995:HBB

Pattanaik:1995:AER

Penrice:1995:AEP

Percus:1995:TAM

REFERENCES

REFERENCES

REFERENCES

[2066] Stefan Wegenkittl. Are there hyperbolas in the scatter plots of inversive congruential pseudorandom numbers? *Journal of Computational
REFERENCES

Wheeler:1995:TTE

Wong:1995:EHS

Zhu:1995:MEC

Aluru:1996:PAL

Anderson:1996:GPR

Anonymous:1996:BRPe
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Beyer:1996:CLS

Bland:1996:SRN

Boppana:1996:BCP

Bromley:1996:QNG

Brunner:1996:PCO

Bryc:1996:BRB

REFERENCES

[2096] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithmetic without primes. Lecture Notes in
REFERENCES

Dodge:1996:NRN

Dodge: 1996: NRN

Dorfman:1996:PSR

Dorfman: 1996: PSR

Dwyer:1996:TRNa

Dwyer: 1996: TRNa

Dwyer:1996:TRNb

Dwyer: 1996: TRNb

Eichenauer-Herrmann:1996:ABC

Eichenauer-Herrmann: 1996: ABC

Eichenauer-Herrmann:1996:CIC

Eichenauer-Herrmann: 1996: CIC

Eichenauer-Herrmann:1996:EPI

Eichenauer-Herrmann: 1996: EPI

Jürgen Eichenauer-Herrmann. Equidistribution properties of inversive congruential pseudorandom numbers with power of two modulus.
REFERENCES

REFERENCES

[2122] Chiang Kao and J. Y. Wong. An exhaustive analysis of prime modulus multiplicative congruential random number generators with modulus

REFERENCES

REFERENCES

[2153] Igor Radović, Ilya M. Sobol, and Robert F. Tichy. Quasi-Monte Carlo methods for numerical integration: Comparison of different low discrep-

REFERENCES

REFERENCES

Ugrin-Sparac:1996:PET

Wallace:1996:FPG

Wang:1996:LIL

Wegenkittl:1996:RSP

Alon:1997:SSD

REFERENCES

REFERENCES

report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, USA, 1997.

REFERENCES

Eichenauer-Herrmann:1997:QCP

Emmerich:1997:EPQ

Entacher:1997:ASP

Entacher:1997:CSP

Entacher:1997:PPL

Entacher:1997:PPP

Fishman:1997:MCC

REFERENCES

[2213] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breitenecker [3828], page ?? ISBN 3-901608-11-7. LCCN ???

REFERENCES

REFERENCES

Kreckel:1997:PAM

LEcuyer:1997:BLS

LEcuyer:1997:EBT

LEcuyer:1997:ILS

LEcuyer:1997:RNG

LEcuyer:1997:TBS

LEcuyer:1997:URN

[2234] George Marsaglia. A random number generator for C. Posted to the sci.math.num-analysis news group, September 29, 1997. URL http://mathforum.org/kb/thread.jspa?messageID=1607565. From the posting: “Keep the following six lines of code somewhere in your files. #define znew ((z=36969*(z&65535)+(z>>16))>>16) #define wnew ((w=18000*(w&65535)+(w>>16))&65535) #define IUNI (znew+wnew) #define UNI (znew+wnew)*4.656613e-10 static unsigned long z=362436069, w=521288629; void setseed(unsigned long i1,unsigned long i2)z=i1; w=i2; Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0, 1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.

[2236] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In IEEE [3827], pages 458–467. CODEN ASF-
REFERENCES

Woodward:1997:ECD

Wu:1997:MCR

Zubkov:1997:PTD

Aiello:1998:DPP

Andreev:1998:NGD

Antoch:1998:RPN

REFERENCES

REFERENCES

[2272] Paul D. Coddington and Sung-Hoon Ko. Random number generator for parallel computers. In Greg Egan, Richard Brent, and Dennis Gan-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Tanaka:1998:OLA

Tezuka:1998:FAM

Thomlinson:1998:NBP

Trotter:1998:RTS

Vallee:1998:CAB

Vallee:1998:DBE

vanHameren:1998:GLD

REFERENCES

REFERENCES

REFERENCES

Goldreich:1999:IDB

Goldreich:1999:MCP

Gonzalez:1999:RNG

Griffin:1999:DNR

Haastad:1999:PGO

Intel:1999:IRN

Jun:1999:IRN

[2383] Benjamin Jun and Paul Kocher. The Intel random number generator. White paper prepared for Intel Corporation, Cryptography Re-

REFERENCES

2163 (electronic). URL http://journals.cambridge.org/action/displayIssue?jid=CPC&volumeId=8&issueId=03.

McCullough:1999:ARS

McCullough:1999:ASP

McCullough:1999:NRE

MRaihi:1999:CAR

Muller:1999:CRV

Niederreiter:1999:DLS

REFERENCES

REFERENCES

Presented at the ANSI X9F1 Meeting, Institute for Defense Analyses, Alexandria, VA.

REFERENCES

[2426] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.
REFERENCES

[Balazs:2000:ONC]

[Beichl:2000:MA]

[Borkowf:2000:BRB]

[Brent:2000:TYA]

[Chen:2000:RRI]

REFERENCES

REFERENCES

31–36, January 2000. CODEN MNMTA2. ISSN 0026-9255 (print), 1436-5081 (electronic).

[Hickernell:2000:ELS]

[Hormann:2000:AAG]

[Hormann:2000:ARV]

[Impagliazzo:2000:EPR]

[Indyk:2000:SDP]

REFERENCES

REFERENCES

[2465] George Marsaglia. The monster, a random number generator with period over 10^{2857} times as long as the previously touted longest-period one. Technical report ????, Florida State University, Tallahassee, FL, USA, ???. 2000.

REFERENCES

REFERENCES

REFERENCES

Agrawal:2001:HSP

Alexander:2001:AMC

AlOsh:2001:SAG

Arvind:2001:PRB

Bailey:2001:RCF

Banks:2001:DES

REFERENCES

Crandall:2001:PNC

Cryan:2001:PGN

Entacher:2001:EOR

Entacher:2001:ORN

Entacher:2001:PQ

Faure:2001:VS

Fernandez:2001:RCA

REFERENCES

Fischer:2001:CLT

Fischer:2001:TRN

Folegati:2001:CLR

Gerosa:2001:FIB

Gonsalves:2001:PAS

The program contains code (near the end) for the portable ran_nu() generator. It is a linear congruential generator with multiplier $A = 31,167,285 = 0x1db_{9335}$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

REFERENCES

Hernandez:2001:FNO

Hernandez:2001:GAC

Howgrave-Graham:2001:PRN

Iwata:2001:PAF

Johnson:2001:CCO

Kang:2001:PMT

[2534] Ju-Sung Kang, Okyeon Yi, Dowon Hong, and Hyunsook Cho. Pseu-
dorandomness of MISTY-type transformations and the block ci-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

www.rand.org/content/dam/rand/pubs/monograph_reports/2005/
digits.txt.zip; http://www.rand.org/pubs/monograph_reports/
MR1418.html. See also [146].

[2570] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heck-
ert, James Dray, and San Vo. A Statistical Test Suite For Random
and Pseudorandom Number Generators for Cryptographic Applications.
National Institute for Standards and Technology, Gaithersburg, MD,
csrc.nist.gov/rng/sts-1.5.tar; http://csrc.nist.gov/rng/
www.cs.sunysb.edu/~algorith/implement/rng/distrib/SP800-22b.pdf;

DEN TPRBAU. ISSN 0040-585X (print), 1095-7219 (electronic). URL

[2572] W. Schindler. Efficient online tests for true random number gener-
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/
bibs/2162/21620103.htm; http://link.springer-ny.com/link/
service/series/0558/papers/2162/21620103.pdf.

FPGA implementation of neighborhood-of-four cellular automata ran-

[2574] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. In IEEE [3852], pages

REFERENCES

[2585] Renée Touzin. Des générateurs récursifs multiples combinés rapides avec des coefficients de la forme $\pm 2^p1 \pm 2^p2$. (French) [Fast combined multiple recursive generators of the form $\pm 2^p1 \pm 2^p2$]. Thèse (M.Sc.), Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada, 2001. xiii + 128 pp. Mémoire présenté à la faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en informatique option recherche opérationnelle.

REFERENCES

REFERENCES

Futschik:2002:EFE

Gangnon:2002:MDE

Gennaro:2002:CPG

Gilbert:2002:NRP

Gleeson:2002:TRN

Golic:2002:SWM
REFERENCES

REFERENCES

Janke:2002:PRN

Jeruchim:2002:FRV

Jeruchim:2002:MCS

Jones:2002:KTP

Karras:2002:SPB

Kunchenko:2002:PPE

Kuo:2002:CCC

LEcuyer:2002:CEG

LEcuyer:2002:OOR

LEcuyer:2002:RAR

LEcuyer:2002:SST
LEcuyer:2002:TSL

Leydold:2002:ULU

Leydold:2002:VTD

Luo:2002:CGB

Marsaglia:2002:RGB

Marsaglia:2002:SDP

REFERENCES

REFERENCES

Niederreiter:2002:RAT

NIST:2002:ERN

Papoulis:2002:PRV

Philipp:2002:MTD

Pirsic:2002:SIN

Rukhin:2002:DNW

Shackleford:2002:FIN

[2662] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg Snider. FPGA implementation of neighborhood-of-four cellular automata ran-

Shparlinski:2002:DDH

Sugita:2002:RNI

Tan:2002:PPP

Tang:2002:CRN

Tang:2002:LBS

REFERENCES

[2679] Anonymous. /dev/random. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ /dev/random (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in drivers/char/random.c in the Linux source tree.”.
REFERENCES

[2684] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fiar uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. Communications of the ACM, 46(7):11–13, July 2003. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

Intel:2003:IRN

Joe:2003:RAI

Kocarev:2003:CPR

LEcuyer:2003:CGC

Lemieux:2003:RPL

Li:2003:ULD

[2710] Xueqing Li, Wenping Wang, Ralph R. Martin, and Adrian Bowyer. Using low-discrepancy sequences and the Crofton formula to compute surface areas of geometric models. Computer Aided Design, 35(9):771–782, August 2003. CODEN CAIDA5. ISSN 0010-4485 (print), 1879-

xorshift generators and the well-understood linear feedback shift register generators. See also [3445, 3537, 3626] for the failure of Marsaglia’s xorwow() generator from this paper. See [2863, 3684] for detailed analysis.

REFERENCES

REFERENCES

Tu:2003:GRI

Umans:2003:PRG

Vavriv:2003:RNG

Al-Subaihi:2004:SCM

Alekhnovich:2004:PGP

Anonymous:2004:RNG

Anonymous:2004:TRR
REFERENCES

Mascagni:2004:PPM

Mauduit:2004:CPB

McCullough:2004:BRB

McCullough:2004:FSE

McIvor:2004:IIM

Mertens:2004:EPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bogdanov:2005:PGL

Calvayrac:2005:RNG

Castro:2005:NRE

Contini:2005:SAA

Damgaard:2005:CRM

[2824] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom generator. *Lecture Notes in Computer...
REFERENCES

REFERENCES

REFERENCES

Hamano:2005:DSD

Hess:2005:LCM

Hill:2005:RDS

Horan:2005:NRN

Kang:2005:ETP

Keller:2005:NRR

Kemp:2005:PRN

REFERENCES

REFERENCES

[Niederreiter:2005:DSN]

[Niederreiter:2005:ESD]

[Panneton:2005:XRN]

[Redei:2005:JNS]

[Ryabko:2005:NTA]

[Ryabko:2005:UIT]

REFERENCES

REFERENCES

REFERENCES

Dickinson:2006:EEL

El-Mahassni:2006:DNC

Evans:2006:DOS

Faure:2006:SCR

Feige:2006:SIR

Finnigin:2006:CPN

Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the Linux random number generator. Report, The Hebrew University of
Jerusalem and University of Haifa, Jerusalem and Haifa, Israel, March 6, 2006. 18 pp. URL http://www.pinkas.net/PAPERS/gpr06.pdf.

REFERENCES

REFERENCES

REFERENCES

Purczyński:2006:FGF

Rinehart:2006:PRN

Ripley:2006:SS

Rose:2006:CSP

Rubin:2006:EGE

Rybakov:2006:LES

Schanze:2006:EDT

Schmidt:2006:BRJ

[2948] Volker Schmidt. Book review: James E. Gentle: Random number
generation and Monte Carlo methods. Metrika. International Journal
for Theoretical and Applied Statistics, 64(2):251–252, October
1007/s00184-006-0089-0.

Schroeder:2006:RNG

287–292. Volume 7 of Springer Series in Information Sciences [3875],
fourth edition, 2006. ISBN 3-540-26598-8, 3-540-26596-1. ISSN 0720-
678X. LCCN QA241.

Sezgin:2006:DLP

CMPTA2. ISSN 0010-485X (print), 1436-5057 (electronic). URL http:
//www.springerlink.com/openurl.asp?genre=article&issn=0010-
485X&volume=78&issue=2&spage=173.

Simka:2006:MTR

random number generator aimed at cryptographic application. In IS-
CAS 2006: 2006 IEEE International Symposium on Circuits and Sys-
tems: Circuits and systems: at crossroads of life and technology: pro-
cedings: May 21–24: Kos International Convention Centre (KICC),
Island of Kos, Greece, pages 5619–5623. IEEE Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2006. ISBN
ieee.org/xpl/RecentCon.jsp?punumber=11145. IEEE catalog number
06CH37717C.

Skoge:2006:PHH

[2952] Monica Skoge, Aleksandar Donev, Frank H. Stillinger, and Salvatore
Torquato. Packing hyperspheres in high-dimensional Euclidean spaces.
Physical Review E (Statistical physics, plasmas, fluids, and related in-
terdisciplinary topics), 74(4):041127, October 2006. CODEN PLEEE8.
RECURSIVE PSEUDO-RANDOM NUMBER GENERATORS

Steinfeld:2006:PSE

Tang:2006:EAT

Tang:2006:TAF

Thomas:2006:NUR

Wang:2006:SQR

Wichmann:2006:GGP

generator [1021] developed for 16-bit arithmetic to a new four-part combination generator for 32-bit arithmetic with a period of $2^{121} \approx 10^{36}$.

Bhatnagar:2007:ANB

Brent:2007:SLP

Brown:2007:SAN

Cheung:2007:HGA

Chiu:2007:CKC

Cowles:2007:BRB

REFERENCES

[2976] Paul Dupuis, Kevin Leder, and Hui Wang. Importance sampling for sums of random variables with regularly varying tails. ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nekrutkin:2007:AAO

Panditaratne:2007:TRN

Pareschi:2007:SLN

Pazo-Robles:2007:MPS

Perez:2007:RJI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cordero:2008:DPV

Das:2008:ASS

Deng:2008:DIE

Deng:2008:ICS

Deng:2008:IRN

Drutarovsky:2008:CSC

REFERENCES

REFERENCES

REFERENCES

547

Katz:2008:RRNb

Kiessler:2008:BRBe

Killmann:2008:DPR

Kim:2008:TRG

Kolokotronis:2008:CPN

Langdon:2008:FHQ

[3088] Wei Li, Kangshun Li, Wensheng Zhang, Chao Wang, and Ying Huang. A random number generator based on particle dynamical evolutionary

McCullough:2008:ASP

McCullough:2008:MEW

Miller:2008:OSB

Murdoch:2008:VRV

Murphy:2008:CLW

Nandakumar:2008:EET

Nguyen:2008:ODD

REFERENCES

Uchida:2008:FPR

Udawatta:2008:TVN

Varbanets:2008:ESS

Varbanets:2008:ICGa

Varbanets:2008:ICGb

Walker:2008:EPN

Wang:2008:DCP

REFERENCES

Wikramaratna:2008:ACR

Willink:2008:UPN

Wold:2008:AER

Xiang:2008:NPR

Xu:2008:SMS

Yaguchi:2008:NNP

Yang:2008:NTR

Alhakim:2009:MSG

Anyanwu:2009:DCS

Awerbuch:2009:RRN

Aycock:2009:COU

Bastos-Filho:2009:IQR

Blacher:2009:FRN

Blacher:2009:PRN

Blaszczyk:2009:EVT

Blaszczyk:2009:HIP

Cao:2009:DSB

[3149] Fuqiang Cao and Shuguo Li. A double-scroll based true random number generator with power and throughput adjustable. In 2009. ASICON
REFERENCES

REFERENCES

[3167] Hassan M. Edrees, Brian Cheung, McCullen Sandora, David B. Nummey, and Deian Stefan. Hardware-optimized Ziggurat algorithm for
REFERENCES

Faure:2009:GHS

Feldhofer:2009:HIS

Fischer:2009:SRF

Galassi:2009:GSL

Gao:2009:MPL

REFERENCES

REFERENCES

REFERENCES

Ladd:2009:FRN

Langdon:2009:FHQ

Laracy:2009:RVG

LEcuyer:2009:LRN

Lee:2009:ERA

Lee:2009:HHA

[3196] JunKyu Lee, Yu Bi, Gregory D. Peterson, Robert J. Hinde, and Robert J. Harrison. HASPRNG: Hardware Accelerated Scalable Parallel Ran-
REFERENCES

REFERENCES

Paindaveine:2009:MRT

Pareschi:2009:PAC

Petrov:2009:SLL

Qiu:2009:CMW

Reidler:2009:USR

Ridout:2009:GRN

REFERENCES

REFERENCES

2219, ???. 2009. CODEN CSFOEH. ISSN 0960-0779 (print), 1873-2887 (electronic).

REFERENCES

REFERENCES

Umlauft:2009:GNS

vanMeel:2009:GFS

Verloop:2009:HTA

Volos:2009:IEP

vonzurGathen:2009:SSP

Wang:2009:NPR

REFERENCES

Yamanashi:2009:SRN

Youssef:2009:IEU

Yu:2009:ESC

Yuhua:2009:EDR

Zhu:2009:WFB

Abbott:2010:QRN

[3247] Alistair A. Abbott, Cristian S. Calude, and Karl Svozil. A quantum random number generator certified by value indefiniteness. Re-
REFERENCES

REFERENCES

[3259] A. A. Borovkov. Integro-local and local theorems on normal and large deviations of the sums of nonidentically distributed random variables in

REFERENCES

REFERENCES

Yu Liu, Wenzhuo Tang, and Hong Guo. True random number generator based on the phase noise of laser. In 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), pages 1–2. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,

REFERENCES

Orue:2010:TNP

Ostafe:2010:DGS

Ostafe:2010:MPP

Ostafe:2010:PNH

Ostafe:2010:PNM

Panneton:2010:RSR

Pareschi:2010:ITH

Pashley:2010:GRN

Passerat-Palmbach:2010:RIG

Peris-Lopez:2010:CSP

Plesser:2010:RSI

REFERENCES

Roper:2010:CRNb

Roper:2010:CRNc

Roper:2010:CRNd

Saiprasert:2010:MMM

Saiprasert:2010:OHA

Saito:2010:VMT

Segui:2010:AIP

REFERENCES

Tang:2010:BHA

Tang:2010:BLC

Tang:2010:OMR

Tarsa:2010:STR

Tavas:2010:IRN

REFERENCES

[3349] B. Valtchanov, V. Fischer, A. Aubert, and F. Bernard. Characterization of randomness sources in ring oscillator-based true random number

[3355] Hong Xin, Zhu Shujing, Chen Weibin, and Jian Chongjun. An image encryption base on non-linear pseudo-random number generator. In 2010
REFERENCES

Ying:2010:DRN

Yoo:2010:IRR

Yu:2010:NRN

Zafar:2010:GRN

Zhmurov:2010:EPR

Anonymous. Quantum random bit generator service. Project developed by Centre for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia, 2011. URL http://random.irb.hr/.

Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final random bit and remove any bias caused by imperfections in the noise source and A/D converter.”

Jacques M. Bahi, Raphaël Couturier, Christophe Guyeux, and Pierre-Cyrille Héam. Efficient and cryptographically secure generation of
REFERENCES

REFERENCES

Bustard:2011:QRB

Cai:2011:ADB

Carter:2011:TQS

Chan:2011:TRN

Chen:2011:ARN

Chevallier:2011:LSB

[3409] Parikshit Gopalan, Raghu Meka, Omer Reingold, and David Zuckerman. Pseudorandom generators for combinatorial shapes. In ACM [3900],

Malik:2011:EHI

Malik:2011:GHT

Marton:2011:PUR

Merhi:2011:SPR

Mohamed:2011:EAG

REFERENCES

[3445] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [3904], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????.

REFERENCES

Symul:2011:RTD

Tang:2011:ESG

Tang:2011:PES

Taylor:2011:DR

Veillette:2011:TCP

Versolatto:2011:MPR

REFERENCES

Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, and François Poucheret. Contactless electromagnetic active attack on ring oscillator

Becher:2012:TNN

Berger:2012:CPR

Bergman:2012:GRV

Bertoni:2012:KSF

Boldyreva:2012:NPG

Boureanu:2012:PFA

REFERENCES

REFERENCES

[3511] Ping Koy Lam, Thomas Symul, and Syed Assad. Quantum random number generator. Web site, April 2012. URL http:
Random numbers are generated from quantum vacuum noise. See [3457] for details.

[3516] Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.
REFERENCES

REFERENCES

REFERENCES

References

Troyer:2012:REQ

Vadhan:2012:CPS

Vazirani:2012:CQD

Walsh:2012:BRB

Wikramaratna:2012:CCI

Yalta:2012:CSR

REFERENCES

[3556] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ma:2013:PQR

Malik:2013:UCB

Mascagni:2013:PPR

Meka:2013:PGP

Melia-Segui:2013:JPL

Miszczak:2013:EOQ

REFERENCES

Thomas:2013:LSF

Xi:2013:LTB

Abdul:2014:MGK

Anawis:2014:ARR

Anonymous:2014:CEF

Anonymous:2014:RNG

REFERENCES

[3601] Ching-Wei Cheng, Ying-Chao Hung, and Narayanaswamy Balakrishnan. Generating beta random numbers and Dirichlet random vectors
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Passerat-Palmbach:2015:TSS]

[Pollack:2015:SNN]

[Potter:2015:MUE]

[Raitza:2015:RRN]

[Romano:2015:AGR]

[Sarkar:2015:FNR]

REFERENCES

Bayon:2016:FME

Chang-Fong:2016:CSC

Chattopadhyay:2016:ETS

deAndrade:2016:RNG

Dorre:2016:ELO

Guskova:2016:RPL
REFERENCES

REFERENCES

Journal of the ACM, 63(4):33:1–33:??, November 2016. CODEN JA-
COAH. ISSN 0004-5411 (print), 1557-735X (electronic).

[3681] Vladimir Nekrutkin. On the complexity of binary floating point pseudo-
random generation. Monte Carlo Methods and Applications, 22(2):109–
??, June 2016. CODEN MCMAC6. ISSN 0929-9629 (print), 1569-3961

[3682] NIST. SP 800-90B: Draft recommendation for the entropy sources used
for random bit generation. Web document, January 27, 2016. URL
http://csrc.nist.gov/publications/PubsDrafts.html#800-90B.

[3683] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken ichi Kawarabayashi
Dynamic influence analysis in evolving networks. Proceedings of the
VLDB Endowment, 9(12):1077–1088, August 2016. CODEN ???
ISSN 2150-8097.

[3684] Sebastiano Vigna. An experimental exploration of Marsaglia’s xorshift
generators, scrambled. ACM Transactions on Mathematical Software, 42
(4):30:1–30:23, July 2016. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic). URL http://dl.acm.org/citation.cfm?id=
2845077.

[3685] Tomoyuki Yamakami. Pseudorandom generators against advised
context-free languages. Theoretical Computer Science, 613(??):1–27,
February 1, 2016. CODEN TCSCDI. ISSN 0304-3975 (print), 1879-
article/pii/S0304397515009196.

[3686] Qiqing Yu and Junyi Dong. Generation of pseudo random numbers and
estimation under Cox models with time-dependent covariates. Journal
of Statistical Computation and Simulation, 86(14):2727–2739, 2016. CO-
DEN JSCSAJ. ISSN 0094-9655 (print), 1026-7778 (electronic), 1563-
5163.
Anonymous:2017:DAD

[3687] Anonymous. The DUHK attack: Don’t use hard-coded keys. Web site., October 25, 2017. URL https://duhkattack.com/. From the introduction: “DUHK (Don’t Use Hard-coded Keys) is a vulnerability that affects devices using the ANSI X9.31 Random Number Generator (RNG) in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions, preventing third parties from reading intercepted communications.” See [3694] for details of the attack.

Artemenko:2017:PGO

Bacher:2017:GRP

Barmpalias:2017:PCO

Barmpalias:2017:RNP

Beebe:2017:MFC

REFERENCES

Herrero-Collantes:2017:QRN

Lampropoulos:2017:BLL

Monroe:2017:NPR

Nordrum:2017:TRN

Pomeranz:2017:CSL

Popov:2017:DTP

Sibidanov:2017:RSB

REFERENCES

[3715] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating randomness; source code to other useful crypto modules; miscellaneous. World-Wide Web site., 20xx. URL http://www.cs.berkeley.edu/~daw/rnd/.

REFERENCES

Anonymous:1954:ADC

Curtiss:1956:NAP

Meyer:1956:SMC

Macphail:1959:PFC

Anonymous:1960:PFI

Ralston:1960:MMD

Birkhoff:1961:NRT
REFERENCES

REFERENCES

[3737] Peter C. C. Wang, editor. Information linkage between applied mathematics and industry: Proceedings of the First Annual Workshop on the
REFERENCES

Dempster:1980:SPP

Oren:1980:SDM

Eddy:1981:CSS

Rubinstein:1981:SMC

Grossmann:1982:PSI

IEEE:1982:ASF

Chaum:1983:ACP

Gentle:1983:CSS

IEEE:1983:ASF

Ralston:1983:ECS

IEEE:1984:ASF

IEEE:1984:ASF

REFERENCES

Mehlhorn:1985:SAS

ACM:1986:PEA

Arkin:1986:SOP

DAgostino:1986:GFT

Heath:1986:HMP

Abrams:1988:WSC

ACM:1988:PTA

Edwards:1988:CPC

IEEE:1988:ASF

Wegman:1988:CSS

REFERENCES

REFERENCES

REFERENCES

IEEE:1990:PSN

Pomerance:1990:CCNb

Anonymous:1991:PIS

Day:1991:PAA

Dorninger:1991:CGA

Nelson:1991:WSC

[3793] Gustavus J. Simmons, editor. Contemporary Cryptology: the science of information integrity. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

REFERENCEs

LCCN QA3 .L35 v.1554.

REFERENCES

Meadows:2005:CPA

Smart:2005:CCI

Henderson:2006:S

Niederreiter:2006:MCQ

Schroeder:2006:NTS

Manfred Robert Schroeder. Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information,
REFERENCES

REFERENCES

[3886] Christos Alexopoulos, David Goldsman, and James R. Wilson, editors. Advancing the frontiers of simulation: a Festschrift in honor of George
REFERENCES

Belsley:2009:HCE

Clavier:2009:CHE

LECuyer:2009:MCQ

Paredaens:2009:PTE

ACM:2010:PAI

REFERENCES

REFERENCES

IEEE:2010:PIA

Peterson:2010:IEE

ACM:2011:PAI

Gilli:2011:NMO

Hwu:2011:GCG

IEEE:2011:ICI

REFERENCES

REFERENCES

[3915] David H. Bailey, Heinz H. Bauschke, Peter Borwein, Frank Garvan, Michel Théra, Jon D. Vanderwerff, and Henry Wolkowicz, editors. *Com-